@ GO Corporation

GO Technical Library

PenPoint Application
Writing Guide

| EXPANDED SECOND EDITION

@ GO Corporation

GO Technical Library

. . .

PenPoint Application Writing Guide, Expanded Second Edition provides
a tutorial on writing PenPoint applications, including many coding samples.
It also provides information about PenPoint 2.0 Japanese and how it supports
internationalized applications. This is the first book you should read as a
beginning PenPoint application developer.

PenPoint Architectural Reference, Volume I presents the concepts of the
fundamental PenPoint classes. Read this book when you need to understand
the fundamental PenPoint subsystems, such as the class manager, application
framework, windows and graphics, and so on.

PenPoint Architectural Reference;-Volume II presents the concepts of the
supplemental PenPoint classes. You shiguld read this book when you need to
understand the supplemental PenPoint sdbsystems, such as the text subsystem,
the file system, connectivity, and so on.

PenPoint API Reference, Volume I provides a complete reference to the
fundamental PenPoint classes, messages, and data structures.

PenPoint API Reference, Volume II provides a complete reference to the
supplemental PenPoint classes, messages, and data structures.

PenPoint User Interface Design Reference describes the elements of the PenPoint
Notebook User Interface, sets standards for using those elements, and describes
how PenPoint uses the elements. Read this book before designing your
application’s user interface.

PenPoint Development Tools describes the environment for.developing,
debugging, and testing PenPoint applications. You need this book when
you start to implement and test your first PenPoint application.

PenPoint

PenPoint Application
Writing Guide

EXPANDED SECOND EDITION

@ GO Corporation

GO Technical Library

VV Addison-Wesley Publishing Company

Reading, Massachusetts ¢ Menlo Park, California ¢ New York
Don Mills, Ontario ¢ Wokingham, England ¢ Amsterdam
Bonn ¢ Sydney Singapore ¢ Tokyo ¢ Madrid ® San Juan
Paris ¢ Seoul ¢ Milan ¢ Mexico City 4 Taipei

70T
D63
P49
199

Warranty Disclaimer
and Limitation of
Liability

U.S. Government
Restricted Rights

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book and Addison-Wesley was aware of a trademark
claim, the designations have been printed in initial capital letters.

The authors and publishers have taken care in preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

Copyright © 1991-1993 GO Corporation. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher.
Printed in the United States of America. Published simultaneously in Canada.

The following are trademarks of GO Corporation: PenPoint, the PenPoint logo, EDA, GO,
GO Corporation, the GO logo, GOWrite, ImagePoint, MiniNote, MiniText, and NotePaper.

. Words are checked against the 77,000 word Proximity/Merriam-Webster Linguibase, © 1983 Merriam

Webster. © 1983. All rights reserved, Proximity Technology, Inc. The spelling portion of this product is
based on spelling and thesaurus technology from Franklin Electronic publishers. All other products or
services mentioned in this document are identified by the trademarks or service marks of their respective
companies or organizations.

PenTOPS Copyright © 1990-1992, Sitka Corporation. All Rights Reserved.
PANOSE is a trademark of ElseWare Corporation, Seattle, Washington.

GO CORPORATION MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT
LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT, REGARDING PENPOINT SOFTWARE OR ANYTHING ELSE.
GO Corporation does not warrant, guarantee, or make any representations regarding the use or the
results of the use of the PenPoint software, other products, or documentation in terms of its
correctness, accuracy, reliability, currentness, or otherwise. The entire risk as to the results and
performance of the PenPoint software and documentation is assumed by you. The exclusion of
implied warranties is not permitted by some states. The above exclusion may not apply to you.

In no event will GO Corporation, its directors, officers, employees, or agents be liable to you for any
consequential, incidental, or indirect damages (including damages for loss of business profits,
business interruption, loss of business information, cost of procurement of substitute goods or
technology, and the like) arising out of the use or inability to use the documentation or defects
therein even if GO Corporation has been advised of the possibility of such damages, whether under
theory of contract, tort (including negligence), products liability, or otherwise. Because some states
do not allow the exclusion or limitation of liability for consequential or incidental damages, the
above limitations may not apply to you. GO Corporation’s total liability to you from any cause
whatsoever, and regardless of the form of the action (whether in contract, tort [including
negligence], product liability or otherwise), will be limited to $50.

The PenPoint documentation is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by
the U.S. Government is subject to restrictions as set forth in FAR 52.227-19 (Commercial Computer
Software—Restricted Rights) and DFAR 252.227-7013 (c) (1) (ii) (Rights in Technical Data and
Computer Software), as applicable. Manufacturer is GO Corporation, Suite 400, 919 East Hillsdale
Boulevard, Foster City, CA 94404, USA.

ISBN 0-201-62299-8
123456789—AL—9796959493
First Printing, February 1993

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION

Preface

The PenPoint Application Writing Guide: Expanded Second Edition is an updated
version of the PenPoint Application Writing Guide printed in March 1992. This
expanded edition includes new information that reflects GO Corporation’s
enhancements to the PenPoint™ operating system for PenPoint 2.0 Japanese
and the PenPoint Software Development Kit (SDK) 2.0 Japanese.

This book is an up-to-date introduction to the PenPoint SDK 2.0 Japanese oper-
ating system and contains errata and additional information for earlier PenPoint
SDKs. Unless stated otherwise, discussions of the PenPoint operating system and the
PenPoint SDK in this book are valid for PenPoint 1.0, PenPoint 1.01, and PenPoint
2.0 Japanese.

PenPoint 2.0 Japanese is a Japanese product with Japanese system resources (on-line
help, menu choices, and so on). Developers who do not read Japanese can run the

PenPoint SDK 2.0 Japanese with U.S. English resources, but there are some parts of
the system that show Japanese text even with the U.S. English feature enabled.

W Intended audience

This book is intended for programmers who want to write applications for the
PenPoint operating system. It assumes that you are familiar with the C program-
ming language and related development tools such as MAKE utilities.

¥ Document structure

This book contains several parts:

& Part 1: PenPoint Application Writing Guide is an introduction to the PenPoint
operating system and the PenPoint SDK. It introduces you to basic PenPoint
programming concepts, then illustrates those concepts by examining some of
the sample applications included with the PenPoint SDK.

& DPart 2: PenPoint Internationalization Handbook describes the features
PenPoint provides that allow you to write an application that is easy to port
from one national locale to another.

@ Part 3: PenPoint Japanese Localization Handbook shows how to use features
of the PenPoint SDK 2.0 Japanese that support Japanese-language application
development.

& Dart 4: PenPoint Development Tools Supplement provides new information
about the development tools you use with the PenPoint SDK. This part is
an update to PenPoint Development Tools originally published for the
PenPoint SDK 1.0.

vi PENPOINT APPLICATION WRITING GUIDE
Preface

& Part 5: PenPoint Architectural Reference Supplement provides new information
about the architecture of the PenPoint operating system and the classes that it
provides. This part is an update to PenPoint Architectural Reference originally
published for the PenPoint SDK 1.0.

& Part 6: PenPoint User Interface Design Reference Supplement provides new
information about user interface design and the user interface classes that
PenPoint provides. This part is an update to PenPoint User Interface Design
Reference originally published for the PenPoint SDK 1.0.

& Part 7: Sample Code provides descriptions and listings of the sample applica-
tions used as examples in this book, and descriptions of the other sample code
included with the PenPoint SDK.

Each of these parts was at one time intended to be a separate document, but the
P P y
have been bound together into a single volume for your convenience. Be aware that
g g Y
you may still find some cross-references that refer to a part of this volume as though
it were still a separate book.

W Other sources of information

Several parts of this book supplement existing books published for the PenPoint
SDK 1.0. These books include PenPoint Development Tools, PenPoint Architectural
Reference, and PenPoint User Interface Design Reference.

For information on the classes, messages, macros, functions, and structures that the
PenPoint SDK header files define, see the header files themselves. Many of the
header files have changed since the PenPoint API Reference was published for the
PenPoint SDK 1.0.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
CONTENTS

W Part 1/ PenPoint Application Writing Guide

1/ Introduction 5

2 / PenPoint System Overview 7

3 / Application Concepts 23

4 / PenPoint Class Manager 43

5 / Developing an Application 61

6 / A Simple Application (Empty Application) 91
7 I Creating Objects (Hello World: Toolkit) 111

8 / Creating a New Class (Hello World:
Custom Window) 123

9 / Saving and Restoring Data (Counter) 133
10 / Handling Input (Tic-Tac-Toe) 145
11 / Refining the Application (Tic-Tac-Toe) 155
12 / Releasing the Application 169

Part 2 / PenPoint Internationalization
Handbook

13 / Introduction 175

14 / Overview 177

15 / PenPoint Support for International Software 183
16 / Procedures 209

17 / Porting to PenPoint 2.0 229

18 / Localization Guidelines 235

19 / Additional Resources 237

Part 3 / PenPoint Japanese Localization
Handbook

20 / Introduction 243

21/ Japanese Characters 245

22 / Processing Japanese Text 255
23 / Development Environment 273
24 [Procedures 283

25 / Resources 301

26 / Japanese Character Set 303

P Part 4 / PenPoint Development Tools

Supplement

27 / Introduction 375

28 / Road Map 377

29 / Creating Applications and Services 381
30 / Debugging 395

31 / Tools and Utilities 403

32 / Miscellaneous 415

Part 5 / PenPoint Architectural Reference
Supplement

33 / Overview 427

34 / Class Manager 433

35 / Application Framework 435
36 / Windows and Graphics 441
37 / UI Toolkit 445

38 / Input and Handwriting Recognition 451
39/ Text 463

40 / The File System 467

41 / System Services 471

42 / Utility Classes 479

43 / Connectivity 483

44 | Resources 495

45 / Installation API 499

46 / Writing PenPoint Services 503

47 / International Services and Routines 507

Part 6 / PenPoint User Interface Design
Reference Supplement

48 / Introduction 517

49 |/ The Notebook 519

50 / The Bookshelf 523

51 / Overall System Changes 535

P Part 7 / Sample Code 549

P Index 659

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION

CONTENTS

W List of Tables

3-1

5-1

5-2

6-1
10-1
15-1
15-2
15-3
15-4
15-5
15-6
15-7
16-1
16-2
16-3
21-1
21-2
21-3
22-1
22-2
22-3
22-4
22-5
22-6
23-1
23-2
23-3
23-4
24-1
29-1
29-2
29-3
30-1
30-2
31-1
31-2
31-3

Notebook organization and the file system 36
Generic status values 81

Status-checking macros 82

Common header files 99

Tic-Tac-Toe files 147

How to work with strings 186

Formatting differences between countries 196
PenPoint international functions 197

Some functions from ISRH 198
International function structures 201

GO’s gesture symbols 203

Makefile variables 206

8- and 16-bit functions 213

Resource utility functions 221

Converting to international functions 226
Japanese writing 247

Unicode encoding of Japanese characters 250
Japanese font files 251

Japanese punctuation marks 257

Japanese behavior of international functions 262
Default Japanese Formatting 267

Supported Japanese eras 268

Date formats 268

Time Formats 269

Debug CharSet variable values 274

GO’s sample makefile variables 275

DOS utilities 276

Character sets in control files 278

Using UCONVERT 285

Attributes stamped by the makefile 385
Makefile variables 386

Sample distribution disk structure 390
DebugCharSet variable permissible values 398
Mini-debugger controls 402

Valid values for CHARSET 403

404

Attributes stamped on installable items 406

Attribute utilities

31-4 Attributes stamped on documents

31-5
32-1

.33-1

33-2
33-3
34-1
35-1
36-1
37-1
37-2
38-1
38-2
38-3
38-4
38-5

39-1
39-2
40-1

40-2

40-3
41-1
41-2
41-3
41-4
43-1
43-2
43-3
43-4

43-5
43-6
43-7
43-8
44-1
44-2

406
Using UCONVERT 409

PenPoint Development Tools errata 422

New header files 430

Header files changed for resource strings 430
Some data name changes 431

Part 1 (Class Manager)—typos 434

Part 2 (Application Framework)—typos 439

Part 3 (Windows and Graphics)—typos 443
clsAcetateLayout synchronization messages 447
Part 4 (UI Toolkit)—typos 449

cIsKKC messages 452

clsCharTranslator messages 456

Changed gesture names 459

Obsolete gesture names 460

Part 5 (Input and Handwriting
Translation)—typos 461

New gesture targets 463
Part 6 (Text)—typos 465

Stamped attributes—PenPoint 2.0 installable
items 467

Stamped attributes—PenPoint 2.0
documents 467

Part 7 (File System)—typos 469
472
Renamed counted string functions 474

Renamed WATCOM functions 475

Compose Text format code types

Part 8 (System Services)—typos 477
Default I/O port state settings 485
MODEM_METRICS fields 486

487

Discrete modem initialization messages

Modem service creation and initialization
messages 490

Modem service request messages 490

Client and observer notification messages 491
Predefined service managers 492

Part 10 (Connectivity) —typos 493

Resource file utility routines 495

Part 11 (Resources)—typos 497

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
CONTENTS

47-1 Header files 507

47-2 Delimiting routines 509

47-3 Hyphenation routines 509

47-4 Time conversion functions 509

47-5 Formatting functions 510

47-6 Parsing functions 510

47-7 Sort and compare functions 511

47-8 Character set conversion functions 511
47-9 String compression functions 512

47-10 CHARTYPE macros 512

49-1 Gestures used in the Table of Contents 520
51-1 Non-core gestures used in MiniText 537
51-2 Gestures that work in MiniNote 541
51-3 Gestures used in edit pads 544

51-4 Gestures used in Japanese edit pads 547

P List of Figures

3-1 Application, view, and object classes 30

3-2
3-3
3-4

4-1
4-2
4-3

6-1
7-1
9-1
10-1
11-1
11-2
11-3
14-1

14-2

14-3
15-1
21-1
22-1
22-2
22-3
22-4
22-5
231

Application Framework and Notebook
hierarchy 33

The Notebook hierarchy as mirrored by the
file system 34

Notebook hierarchy and application
processes 35

Message handling by a class and its ancestors 46
Sending msgListAddItemAt to a list 47

How messages to instances are processed
by classes 49

Empty Application option sheet 94

UI Toolkit components 115

Counter Application objects 135

Tic-Tac-Toe classes and instances 146
Stationery notebook and Stationery menu 160
Quick Help 162

Application and document icons 167

Common source code for multiple
localizations 178

Multiple source files for multiple
localizations 179

Japanese Text in MiniText 180

Unicode architecture 185

Character code spaces 253

Handling the KKC gesture 259

Displaying the translated characters 259
Handling a character alternatives request 260
Text with selected bunsetsu 263

Text with sentence selected 264

Unicode Browser 280

23-2 Japanese virtual keyboard 281

28-1
31-1
38-1

Creating an application 379
Specifying a resource with RESDEL 408

Translation alternatives returned by

msgXlateData 459

Part 1/
PenPoint Application
Writing Guide

\I\\J\‘

\1\]‘

o

10
11

16
16
17
17

18

24
24

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 1 / APPLICATION WRITING GUIDE

Chapter 1 / Introduction

Intended audience
28

29

Other sources of information

Chapter 2 / PenPoint System Overview
Design considerations

User interface
The pen 31
Notebook metaphor

Object-oriented architecture
Architecture and functionality
Kernel layer

System layer

File system

Resource manager
Networking
Windowing

Graphics

Printing

User Interface Toolkit
Input and handwriting translation 40
Selection Manager and data transfer

38

Component layer

Application Framework layer 41

Application layer

Software development environment

Software development kit

Coding conventions P
Extensibility

PenPoint design guidelines 3

Conserve memory 44
Think small 45
Use a modular design

Your application must recover

Take advantage of object-oriented programming 47
Consider sharing code and data

Use document orientation

Design for file format compatibility

Exploit the pen

Use the PenPoint user interface 49

Chapter 3 / Application Concepts
PenPoint programming is unique

How applications work

Installing and starting applications

MS-DOS installation

PenPoint installation ' 55
Installer responsibilities

Running a PenPoint application

Life cycle of a document

Activating a document

Not all active documents are on-screen
Application classes and instances

PenPoint drives your application

Application objects

A descendant of clsApp
An instance of cdlsWin
An instance of clsObject

Understanding the application hierarchy
The Notebook’s own hierarchy

The Bookshelf

The Notebook

Page-level applications

Sections

- Floating accessories

Embedded applications
Application data

Activating and terminating documents
Turning a page and msgAppClose
Restoring inactive documents
Page-turning instead of closing

Saving state (no quit)

Documents, not files and applications
No new, no save as. . .
Stationery

Shutting down and terminating applications
Conserving memory

Avoiding duplication

Hot mode

Components

Chapter 4 / PenPoint Class Manager
Objects instead of functions and data
Messages instead of function calls

Classes instead of code sharing
Handling messages

Sending a message

Message arguments

ObjectCall() parameters

Returned values

How objects know how to respond

Creating an object

Classes and instances

An alternative explanation

The _NEW structure

Identifying _NEW structure elements
Code to create an object

Identifying the new object: UIDs

Creating a class

New class message arguments
Method tables

Self

Possible responses to messages

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
/ APPLICATION WRITING GUIDE

PART

1

P’ Chapter 5 / Developing an Application

61

63

66

67

69

71

74

77

84

Designing your application
Designing the user interface
Designing classes

Designing messages
Designing message handlers
Designing program units

87

Designing for internationalization and localization
Porting from PenPoint 1.0 to PenPoint 2.0 Japanese

Preparing for internationalization

Development strategy
Application entry point
Application instance data
Creating stateful objects
Displaying on screen
Creating component classes

Development cycles
Compiling and linking
Installing the application
Debugging

A developer’s checklist
Checklist of required interactions
Checklist of nonessential items

GO’s coding conventions
Typedefs

Variables

Functions

Defines (macros and constants)
Class manager constants
Exported names

PenPoint file structure
File header comment
Include directives
Defines, types, globals
Function prototypes
Message headers
Indentation

Comments

Some coding suggestions

PenPoint types and macros
Data types

Basic constants

Legibility

Compiler isolation

Data conversion and checking
Bit manipulation

Tags

Return values

Return status debugging function
Error-handling macros

Debugging assistance
Printing debugging strings
Assertions

92

92
92
94

101

104

105

108
108

111

112

Debugging flags
Suggestions

The tutorial programs

Empty Application

Hello World (Toolkit)

Hello World (Custom Window)
Counter Application
Tic-Tac-Toe

Template Application

Other code available

Chapter 6 / A Simple Application
(Empty Application)

Files used
Not the simplest

Compiling and linking the code
Compiling method tables

Installing and running Empty Application
Interesting things you can do with Empty Application
Code run-through

PenPoint source code file organization
Empty Application’s source code
Libraries and header files

Class UID

Class creation

Documents, accessories and stationery

Where does the application class come from?
Installation and activation

Handling a message
Method table
msgDestroy

Message handler

Parameters

Parameters in EmptyAppDestroy()
Status return value

Message handlers are private

Using debugger stream output

The debugger stream
Seeing debug output

Chapter 7 / Creating Objects
(Hello World: Toolkit)

HelloTK
Compiling and installing the application
Interesting things you can do with HelloTK

Code run-through for HELLOTK1.C
Highlights of HELLOTK1

Sending messages

Creating toolkit components

Where the window goes
Why msgApplnit?

119

123

125

127

129

130
131
131

133
133

138

140

143

145

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
/ APPLICATION WRITING GUIDE

PART 1

Why did the window appear?

Possible enhancements

Highlights of the second HelloTK
Only one client window per frame
Layout

Possible enhancements

Chapter 8 / Creating a New Class
(Hello World: Custom Window)

Hello World (Custom Window)
Compiling the code

Highlights of clsHelloWorld
Highlights of clsHelloWin

Graphics overview
System drawing context
Coordinates in drawing context

When to paint

When to create things
Instance data

Is it msgNew or msglnit?
Window initialization

Using instance data
No filing yet

Drawing in a window
Possible enhancements

Debugging Hello World (Custom Window)

Chapter 9 / Saving and Restoring Data
(Counter)

Saving state

Counter application

Compiling and installing the application
Counter Application highlights

Counter class highlights

Instance data

Getting and setting values

Object filing
Handling msgSave
Handling msgRestore

Counter Application’s instance data
Memory-mapped file

Opening and closing the file

Filing the counter object

Menu support
Buttons

Chapter 10 / Handling Input
(Tic-Tac-Toe)

Tic-Tac-Toe objects
Application components
Separate stateful data objects

146
147

148

150

151
152

155

159

159

160

161

164

166

169
169

170
170

Tic-Tac-Toe structure

Tic-Tac-Toe window
Coordinate system
Advanced repainting strategy

View and data interaction

Data object design

Instance data by value vs. by reference

Saving a data object

Handling failures during msglnit and msgRestore

The selection and keyboard input
How selection works

More on view and data interaction

Handwriting and gestures
Input event handling
Gesture handling
Keyboard handling

Chapter 11 / Refining the Application
(Tic-Tac-Toe)

Debugging

Tracing

Debugf() statements and debug flags
Dumping objects

Symbol names

Installation features

Stationery
Creating stationery
How Tic-Tac-Toe handles stationery

Help notebook
Creating help documents

Quick Help
Creating Quick Help resources

Standard message facility

Using StdMsg() facilities

Substituting text and defining buttons
StdMsg() and resource files or lists
StdMsg() customization function

Bitmaps (icons)

Creating icons

Chapter 12 / Releasing the Application
Registering your classes

Documenting the application
Writing manuals

Screen shots

Gesture font

On-disk structure

Sharing your classes

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 1 / APPLICATION WRITING GUIDE

Chapter 1 / Introduction

The PenPoint™ operating system is an object-oriented, multitasking operating We sometitres use the names
system that is optimized for pen-based computing. Writing applications for the ;g}fo”li_z‘a and Pi”?‘”tSDK
. n 15 document. pecause
PenPoint operating system will present you with some new challenges. However, this release of Penfoint has been

PenPoint contains many features that make application development far easier localized only to Japan, these
terms refer to FenFoint 2.0

Japanese and PenFoint 2.0 SDK
One feature that makes application development easier is the PenPoint Application Japanese.
Framework, which eliminates the need to write “boilerplate” code. In other oper-

than development in many other environments.

ating systems, programmers must write code to perform housekeeping functions,
such as application installation, input and output file handling, and so on. These
are provided automatically by the PenPoint Application Framework.

PenPoint also provides most of the on-screen objects used by the PenPoint Note-
book User Interface (NUI). By using these objects, your application can conform to
the PenPoint NUI, without a great amount of work on your part.

In this manual, you will learn about the PenPoint operating system, the PenPoint
development environment, and, of course, how to write applications for the Pen-
Point operating system. The PenPoint Software Development Kit (SDK) contains
several sample applications that you can compile and run. These sample applica-
tions are used throughout this manual to demonstrate concepts and programming
techniques.

Intended audience

This manual is intended for programmers who want to write applications for the
PenPoint operating system. It assumes that you are familiar with the C program-
ming language and related development tools, such as make utilities.

You should also be aware of the information in the companion volume, PenPoint
Development Tools. Pay particular attention to Chapter 2, Roadmap to SDK Docu-
mentation, which describes the organization of the PenPoint SDK documentation
and recommends a path through the manuals.

¥ Other sources of information

For conceptual information about the various classes in PenPoint, see the PenPoint
Architectural Reference.

For information on running PenPoint on a PC, see the Running PenPoint on a PC
document that comes with the PenPoint SDK.

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

To learn how to use the PenPoint development tools and utilities, such as the
PenPoint source-level debugger, see PenPoint Development Tools.

For reference information on the classes, messages, macros, functions, and struc-
tures defined by PenPoint, see the PenPoint API Reference. The information in

the PenPoint API Reference is derived directly from the PenPoint header files
(in PENPOINT\SDK\INC).

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 1 / APPLICATION WRITING GUIDE

Chapter 2 / PenPoint System Overview

When GO Corporation undertook to build a mobile, pen-based computer system,
we quickly recognized that existing standard operating systems were not adequate
for the task. Those systems, designed for the very different needs of keyboard-based
desktop computers, would require such extensive rewriting to support this new
market that they would no longer run the installed base of applications that made
them standard in the first place. We therefore determined that a new, general-
purpose operating system would be needed, designed specifically for the unique
requirements of pen-based computing. The result is the PenPoint™ operating
system. This document is a brief introduction and overview of its design goals,
architecture, and functionality.

W Design considerations

After extensive research and analysis, GO identified the following key requirements
for pen-based system software:

¢ A direct, natural, intuitive, and flexible graphical user interface.
¢ Strong support for handwriting recognition and gesture based commands.
¢ A richer organizational metaphor than the traditional file-system model.

¢ A high degree of memory conservation through extensive sharing of code,
data, and resources.

¢ Priority-based, preemptive multitasking.
¢ Detachable networking and deferred data transfer.
¢ Hardware independence (ability to move to new processors quickly).

The PenPoint operating system was developed to satisfy these requirements.

W User interface

PenPoint’s most distinctive feature is its innovative user interface. The user interface
is the cornerstone on which the entire system is built; all other design consider-
ations follow from it. The user interface, in turn, is based on two main organizing
principles:

The use of a pen as the primary input device.
¢ The use of a notebook metaphor that is natural and easy to use.

The consequences of these two basic design features permeate the entire system.

8 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

% The pen

The pen naturally combines three distinct system control functions: pointing, data
input, and command invocation. Like a mouse, it can point anywhere on the
screen to designate an operand, specify a location, draw a picture, drag an object, or
select from a menu. Through sophisticated handwriting recognition software, it can
replace the keyboard as a source of text input. Finally, it can do something neither a
mouse nor a keyboard can do: issue commands through graphical gestures.

%> Gestures

Gestures are simple shapes or figures that the user draws directly on the screen to
invoke an action or command. For example, a cross out X gesture is used to delete,
a circle © to edit, and a caret A to insert. A set of built-in core gestures form the
heart of the PenPoint user interface:

Caret A Check
Circle o© Cross out X
Flick left — Flick right —
Flick up | Flick down |
Insert space | Pigtail 7
Press & Tap 4

Tap press Undo

To exploit the unique properties of the pen, PenPoint provides strong support for
gestural command invocation. The same handwriting translation subsystem that
recognizes characters for text input also recognizes those shapes that constitute
meaningful gestures. The form, location, and context of the gesture then determine
the action to be performed and the data objects affected. Because a gesture can be
made directly over the target object, it can specify both the operand and the opera-
tion in a single act. This gives the pen-based interface a directness and simplicity
that cannot be achieved with a mouse.

%» PenPoint control

The pen has one more notable property as a control device. Because it draws
directly on the face of the screen (rather than on a physically separate working sur-
face such as a mouse pad or graphics tablet), it eliminates a major source of diffi-
culty among new computer users—the relationship between movement of the
mouse and the movement of the cursor on the screen. With a pen, the user’s eye is
focused exactly where his or her hand is working. Most PenPoint applications can
thus dispense with an on-screen cursor for tracking the pen, though one is available
as an optional user preference.

% Notebook metaphor

Instead of a traditional file system based on a hierarchy of nested directories and
cryptic file names, PenPoint uses a “notebook” metaphor for information storage
and retrieval. By using familiar models of working with paper-based documents,

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW
Object-oriented architecture

the notebook approach provides a rich variety of natural and intuitive techniques
for organizing and accessing information:

¢ A bookshelf upon which multiple user notebooks may reside, as well as sys-
tem notebooks for help information and stationery, an inbox and outbox, and
various tools and accessories. A user can have any number of notebooks open
at once; typical use involves one main notebook.

¢ A table of contents offering an overview of all available documents in the
notebook, allowing easy manipulation and navigation at the global level. The
table of contents can be organized in natural page number order, or sorted by
name, size, type, or date.

¢ Sections and subsections for hierarchical organization.
¢ Page numbers and notebook tabs for direct random access.
¢ Page turning for sequential access.

Because the notebook is a familiar, physical, and stable model, a user can employ
spatial memory of layout and juxtaposition to help find and organize their infor-
mation.

Object-oriented architecture

To facilitate code sharing and overall memory conservation, PenPoint uses an
object-oriented approach to system architecture. All application programming
interfaces (APIs) above the kernel layer are implemented using object-oriented
programming techniques of subclass inheritance and message passing. This helps to
ensure that PenPoint and its APIs have these characteristics:

¢ They are compact, providing a body of shared code that need not be dupli-
cated by all applications.

¢ They are consistent, since all applications share the same implementation of
common system and user interface functions.

They are flexible, allowing applications to modify PenPoint’s behavior by sub-
classing its built-in classes.

The event-driven, object-oriented nature of the system minimizes the need to “rein-
vent the wheel” with each new application. Programmers can “code by exception,”
reusing existing code while altering or adding only the specific behavior and func-
tionality that their own applications require. Because the object-oriented architec-
ture is system-wide, these benefits are not restricted to single applications; in fact,
applications can share code with each other just as readily as with the system itself.

¥ Architecture and functionality

PenPoint’s overall software architecture is organized into five layers:

T The kernel, which provides multitasking process support, memory manage-
ment, and access to hardware. The kernel works closely with the PenPoint
class manager, which makes PenPoint object oriented.

1 / APP WRITING GUIDE

10 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

2 The system layer, which provides windowing, graphics, and user interface
support in addition to common operating system services such as filing and
networking.

3 The component layer, which consists of general-purpose subsystems offermg
significant functionality that can be shared among applications.

4 The Application Framework, which serves as a “head start” for building
applications.

5 The applications themselves.

Each of these layers is discussed in detail below.

¥ Kernel layer

The kernel is the portion of the PenPoint operating system that interacts directly
with the hardware. Besides handling such low-level tasks as process scheduling and
synchronization, dynamic memory allocation, and resource management, it also
provides these services, which are needed to support the object-oriented software
architecture:

¢ Priority-based, preemptive multitasking.

& Processes and threads (lightweight tasks sharing the same address space).

&

Interprocess communication and semaphores.

24

Task-based interrupt handling.

¢ 32-bit flat memory model.

¢ Protected memory management and code execution.
@

Heap memory allocation with transparent relocation and compaction (no

fixed-length buffers).

Object-oriented message passing and subclass inheritance.

All hardware dependencies in the kernel are isolated into a library subset called the
machine interface layer (MIL) to facilitate porting to a wide variety of hardware and
processor architectures. The kernel runs on both PC and pen-based machines. All of
PenPoint’s APIs use full 32-bit addresses.

Other parts of the kernel layer support features that keep PenPoint small and effi-
cient. These parts are defined below.

Loader Unlike a traditional, disk-based operating system, PenPoint’s loader
does not require multiple copies of system and application code to be
present in the machine at the same time. Instead, it maintains a single
instance of all code and resources, which are shared among all clients.
When installing a new application, the loader reads in only those compo-
nents that are not already present in memory.

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW

Power Conservation When running on battery-powered hardware, the ker-
nel reduces power consumption by shutting down the CPU whenever there
are no tasks awaiting processor time. Subsequent events such as pen activ-
ity or clock-chip alarms generate interrupts that reactivate the CPU. The
kernel also monitors the main battery and will refuse to run if power is too
low, ensuring reliable protection of user data.

Class Manager PenPoint’s Class Manager works closely with the kernel
to support object-oriented programming techniques such as single-
inheritance subclassing and message passing. The Class Manager also
provides important protection and multitasking services not found in C++
or other object-oriented languages. These services safeguard the operating
system against possible corruption arising from the use of object-oriented
techniques. For example, instance data for system-defined classes is pro-
tected so that the data cannot be altered by any subclasses. Applications
thus derive the benefits of subclassing without jeopardizing the integrity of
the system.

p System layer

PenPoint’s system layer provides a broader range of support services than a tradi-
tional operating system. In addition to the usual system facilities such as filing and
networking, it also provides such high-level services as windowing, graphics,
printing, and user interface support. This helps keep application code compact and
consistent while facilitating application development for the machine.

File system

PenPoint’s file system is designed for compatibility with other existing file systems,
particularly MS-DOS, and includes full support for reading and writing MS-DOS-
formatted disks. It provides many of the standard features of traditional file sys-
tems, including hierarchical directories, file handles, paths, and current working
directories, as well as such extended features as 32-character file names, memory-
mapped files, object-oriented APIs, and general, client-specified attributes for files
and directories.

The PenPoint file system is a strict superset of the MS-DOS file system; all PenPoint-
specific information is stored as an MS-DOS file within each MS-DOS directory. This
approach is used when mapping to other file systems as well. Additional, installable
volume types are also supported.

’» Resource manager

PenPoint’s Resource Manager and the resource files that it controls allow applica-
tions to separate data from code in a clean, structured way. The Resource Manager
can store and retrieve both standard PenPoint objects and application-defined data,
in either a specific file or a list of files. Resources can be created directly by the
application or by compiling a separate, text-based resource definition file.

System layer

1 / APP WRITING GUIDE

12 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

% Networking

PenPoint provides native support for smooth connectivity to other computers and
networks. Multiple, “autoconfiguring” network protocol stacks can be installed

on the fly. AppleTalk™ protocol is built in, enabling connection to other networks
through a variety of AppleTalk-compatible gateways. With the appropriate TOPS
software, users can configure their systems to connect directly to desktop
computers.

Through the use of these networking facilities, remote services such as printers are
as easily accessible to PenPoint applications as if they were directly connected.
Remote file systems on desktop computers and network file servers are also trans-
parently available via a remote-file-system volume. A user can browse PC and file-
server directories, for instance, using PenPoint’s Connections notebook. Several
remote volumes can be installed at once: for example, a PenPoint system can hook
directly to a Macintosh and a DOS computer at the same time.

A typical user, while on an airplane, might mark up a fax, fill out an expense report
to be electronically mailed to the payables department, draft a business letter to be
printed, edit an existing document, and export it to a PC’s hard disk. Upon connec-
tion to the physical devices, conventional operating systems would require that user
to run each application, load each document and dispense with it. PenPoint’s In
box and Out box services allow the user to defer and batch data transfer operations
for completion at a later time. Upon returning to the office and establishing the
physical connection, the documents are automatically faxed, printed, and mailed.
These services are extensible and can support a wide variety of transfer operations,
including electronic mail, print jobs, fax transmissions, and file transfers.

% Windowing
The window system supports nested hierarchies of windows with multiple coordi-
nate systems, clipping, and protection. Windows are integrated with PenPoint’s
input system, so that incoming pen events are automatically directed to the correct
process and window. Windows use little memory and can therefore be used freely
by applications to construct their user interface.

Usually windows appear on screen, but they can also be created on other, off-screen
image devices, such as printers.

The window system maintains a global, screen-wide display plane called the acetate
plane, which is where ink from the pen is normally “dribbled” by the pen-tracking
software as the user writes on the screen. The acetate plane greatly improves the
system’s visual responsiveness, both in displaying and in erasing pen marks on the
screen.

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW

P Graphics

PenPoint’s built-in graphics facility, the ImagePoint™ imaging model, unifies

text with other graphics primitives in a single, PostScript-like imaging model.
ImagePoint™ graphics can be arbitrarily scaled, rotated, and translated, and can be
used for both screen display and printing. ImagePoint’s graphics capabilities include
these elements:

Polylines Bezier curves
Rectangles Ellipses
Rounded rectangles Arxcs
Polygons Sectors
Sampled images Chords

Text

A picture segment facility allows ImagePoint messages to be stored and played back
on demand, facilitating a variety of drawing and imaging applications. For
improved performance, the imaging system dynamically creates machine code
when appropriate for low-level graphics operations such as direct pixel transfer. The
ImagePoint API also supports the use of color, (specified in conventional RGB
values) allowing PenPoint to run on grey-scale and color screens.

To conserve memory, ImagePoint uses outline fonts to render text at any point size.
(Bitmap fonts are automatically substituted at low resolutions for improved visual
clarity.) Fonts are heavily compressed and some character styles are synthesized to
minimize memory requirements. If a requested font is not present, ImagePoint will
find the closest available match. Text characters can be scaled and rotated in the
same way as other graphical entities.

Printing

The ImagePoint imaging model is used for printing as well as screen display,
allowing applications to use the same image-rendering code for both purposes,
rebinding it to either a screen window or a printer as the occasion demands.
PenPoint handles all printer configuration, and automatically controls margins,
headers, and footers, relieving the application of these details. (As in most other
areas of PenPoint, applications can override the default behavior.)

One key benefit of this approach is that documents to be faxed are rendered specif-
ically for a 200-DPI output device. The resulting output will be of sufficiently high
quality that mobile users may not require a portable printer at all, opting instead to
use a nearby plain paper fax machine.

PenPoint supports Epson-compatible dot-matrix printers and HP Laserjet-compat-
ible laser printers. When the printer does not have a requested font, the ImagePoint
imaging model will render and download one from its own set of outline fonts,
ensuring good WYSIWYG correspondence and shielding the user from the complex-
ities of font management.

System layer

13

1 / APP WRITING GUIDE

14

Py

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

User Interface Toolkit

PenPoint’s User Interface Toolkit offers a wide variety of on-screen controls:

Menu bars Nonmodal alerts
Pulldown menus Pushbuttons
Section tabs Exclusive choice buttons
Window frames Nonexclusive choice buttons
Title bars Pop-up choice lists
Scroll bars List boxes
Option sheets Editable text fields
Dialog boxes Handwriting pads
Progress bar Grabbers
Modal alerts Busy clock
Trackers
A major innovation in PenPoint’s User Interface Toolkit is automatic layout. Also called the PenPoint Ul

Instead of specifying the exact position and size of controls, the application need 00k

only supply a set of constraints on their relative positions, and the Toolkit will

dynamically calculate their exact horizontal and vertical coordinates. This makes it
easy for programmers or users to resize elements of the user interface, change their
fonts or other visual characteristics, or switch between portrait and landscape screen
orientations, while preserving the correct proportions and positional relationships.

Input and handwriting translation

PenPoint’s input subsystem translates input events received by the hardware into
messages directed to application objects. The low-level pen events include:

In proximity Out of proximity
Tip down Tip up

Move down Move up
Window enter Window exit

These low-level events can be grouped into higher-level aggregates called scribbles,
which are then translated by the handwriting translation (HWX) subsystem into
either text characters or command gestures. These characters or gestures in turn are
dispatched to the appropriate objects via a rich input distribution model that
includes filtering, grabbing, inserting, and routing of input up and down the
window hierarchy. |

The portion of the GOWrite handwriting translation engine that matches and
recognizes character shapes is replaceable, allowing PenPoint to improve its HWX
techniques as better algorithms become available. There are two parts to the hand-
writing translation engine: the first part matches shapes, the second part uses con-
text to improve the translation.

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW

The current HWX engine recognizes hand-printed characters and has the following
characteristics:

¢ Operates in real time (shape matcher operates at 60 characters per second on

33 Mhz 80486).
Runs in a background process.
¢ Handles mixed upper- and lowercase letters, numerals, and punctuation.
o Tolerates characters that overlap or touch.
¢ Recognizes characters independently of stroke order, direction, and time order.

¢ Uses context to distinguish nonunique character forms such as the letter “0”
and the numeral “0”.

¢ Tolerates inconsistency by same user (that is, the user may shape the same
character in different ways at different times).

@ Accepts optional context-sensitive aids (such as word lists, dictionaries, and
character templates) provided by an application. Applications are given great
control over this process; they may issue constraints that merely influence the
result or force a match against a predefined list.

Although PenPoint is designed primarily for pen-based input, it is not limited to
the pen. For high-volume data entry, PenPoint accepts input from a keyboard.

As an alternative, PenPoint also provides a software “virtual keyboard.” Users
can display the keyboard on the screen and input text by tapping on the keys with
the pen.

Selection Manager and data transfer

The Selection Manager subsystem maintains a system-wide selection, which is the
target for all editing operations. The Selection Manager also implements a single-
level stack for temporarily saving the current selection. Editing is based on a move-
and-copy model, rather than a “clipboard” (cut-and-paste) model. The source and
destination applications negotiate data transfers from one application to another.
The destination application requests a list of available data formats from the source
application. PenPoint supports a variety of standard transfer formats, including
Rich Text Format (RTF), structured graphics, and Tagged Image File Format (TIFF);
applications can extend this list to include other formats as well.

PenPoint’s object-oriented architecture also makes possible the PenPoint EDA™ or
embedded document architecture. This is a unique form of “live” data transfer in
which the transferred data carries with it an instance of its own source application.
Through object-oriented message passing, this embedded application instance can
then be used to display, edit, or otherwise manipulate the data from within the des-
tination application. Although more conventional forms of “hot links” and
Dynamic Data Exchange (DDE) linking are still possible in PenPoint, such live
application embedding obviates the need for most of them.

System layer

15

1 / APP WRITING GUIDE

16 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

» Component layer

Above and beyond the traditional kernel and system facilities, PenPoint adds a rich,
powerful, and extensible component layer. Components are general-purpose code

units with application-level functionality that can be shared and reused as building
blocks by multiple client applications. They speed the development of applications,
reduce memory consumption, and provide for more consistent user interfaces and
tighter integration across diverse applications.

PenPoint includes several components, such as a multifont, WYSIWYG text editor
and a scribble editing window that can be embedded within any application that
needs them. You can include these components in your application without paying
any license fee to GO.

Third-party developers may market components to other developers. Applications
may also provide their own general-purpose components to be installed and shared
in the PenPoint runtime environment.

W Application Framework layer

The Application Framework is a set of protocols rigorously defining the structure
and common behavior of a PenPoint application. Through the Application Frame-
work, applications inherit a wide variety of standard behavior, including installation
and configuration, creation of new documents, application stationery (template
documents), on-line help, document properties, spell checking, search and replace,
import/export file dialogs, and printing. New code is required only for added func-
tionality or to modify or override specific aspects of the default behavior. Use of the
Application Framework thus yields significant savings in programming time and
code space.

An application developer creates the application code and any resources needed by
the application. When a user installs an application, the PenPoint Application
Framework takes care of:

¢ Copying the application code and all other auxiliary files to the system.
¢ Creating new documents.

¢ Creating and terminating tasks.

¢ Storing and retrieving user data in the file system.

Creating and destroying a main window for the application.

Active documents save their internal state in the file system, but this is invisible to
the user: there is no need to save or load the application’s state explicitly from one
session to the next.

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW 17
Application layer

W Application layer

Using the “live” recursive embedding available through EDA, PenPoint’s notebook
metaphor and user interface are implemented as a set of bundled system applica-
tions. Although the user simply perceives these collectively as “the Notebook,” they
are in fact distinct applications, providing a cleanly delineated and modular
architecture.

The key bundled applications include Bookshelf, Notebook, and Section applica-
tions that together constitute the core notebook metaphor. In addition:

¢ The Table of Contents (TOC) application provides a user interface for special-
ized organization and retrieval at the front of the notebook.

¢ A bundled text editor provides end users with intuitive, pen-based Rich Text
editing. .

¢ A standard Send user interface and an Address List allow for the addressing of
all electronic mail, fax, and file transfers.

¢ A file browser allows the user to point to files and directories and use standard
gesture commands to manipulate them.

Multiple instances of the Notebook can be created; in fact, the Create, Help,
Configuration, In box, and Out box applications are all instances of the notebook
application. Developers benefit from this code sharing; users benefit from decreased
memory requirements as well as greater consistency in the user interface. The Help
notebook, for example, consists of help documents ordered by section (applica-
tion), and therefore looks just like the standard table of contents. Users already
know how to navigate through this notebook and can even create hyperlink refer-
ences to important sections. Developers can simply write ASCII text to provide on-
line documentation. Documents in the Help notebook can be any type of PenPoint
application documents. Developers can also leverage existing application code to
build very powerful help systems that can demonstrate real functionality.

W Software development environment

With the exception of some hardware-dependent code, PenPoint and the applica-
tions it supports are written in ANSI C, using current versions of leading PC-based
development tools. Developers already acquainted with object-oriented concepts,
and with the graphical user interfaces and multitasking found in operating systems
like OS/2 and Macintosh System 7, will find the development environment familiar.

% Software development kit

The PenPoint SDK provides developers with the documentation and tools to
develop applications. The kit includes a source-level symbolic debugger, as well as
an outline font editor for creating scalable and rotatable application-specific glyphs.
Because PenPoint runs on DOS 386 machines, the full application edit-compile-
debug cycle can be accomplished solely on a PC, or on a combination of a PC and a
pen computer running PenPoint. In the former configuration, you use a pen-driven
digitizer tablet to simulate pen input. In the latter configuration, the PC serves as

1 / APP WRITING GUIDE

18 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

a debugging monitor, as well as a convenient repository of the development system
libraries, header files, on-line documentation, and source code.

% Coding conventions

All PenPoint code is written in accordance with modern software engineering stan-

dards, including:
+ Consistent naming conventions for modules, functions, and variables.
¢ Carefully designed modularity.
¢ Proper commenting and formatting of source code.

Almost all of the C code is structured using object-oriented programming tech-
niques. Classes are defined and objects are created and sent messages by making
calls into a library of C routines called the Class Manager. These techniques are in
the mainstream of currently evolving industry practices, but the details are unique
to GO and are well documented in the SDK materials.

% Extensibility

PenPoint is extensible in a variety of ways, allowing for the addition of new
networking protocols, imaging models, font models, and file-system volumes.
PenPoint can run on computer architectures ranging from solid-state, pocket pen
computers to powerful disk-based workstations with pen-tablet screens.

The operating system is a working whole, with most modules integrated and tested
as part of the full system since early 1988. Because of techniques such as hardware
memory protection, object-oriented programming, rigorous modularization, and
extensive sharing of code, PenPoint is a highly reliable operating system.

» PenPoint design guidelines

To this point, this chapter has presented concepts that relate to the PenPoint oper-
ating system as a whole. The remainder of the chapter describes important points
that application developers will have to keep in mind while designing and coding
PenPoint applications.

% Conserve memory

Do not squander memory. Your application should use little memory when active.
It must be able to further reduce its memory usage when off-screen. An application
that is packed with functionality but consumes a lot of memory is less likely to be

successful than one that meets key needs and requires very little memory.

W Think small

Most PC programs stand alone as large monolithic programs that attempt to do
everything. In the cooperative, multitasking PenPoint environment with its
Embedded Document Architecture, it makes more sense to provide programs that
present a facet of functionality or that orchestrate other applications and compo-

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW
PenPoint design guidelines

nents. Use existing classes and components where possible rather than writing your
own from scratch.

Use a modular design

Consider writing your application as a set of separable components. A component
is a separately loadable module (a dynamic link library or DLL) that provides soft-
ware functionality. A component has a well-defined programmatic interface so that
other software can reuse it or replace it. With modular design, your application
becomes an organizing structure that ties together other components in a useful
way. For example, an outliner application might use a drawing component, a
charting component, and a table entry component; you could license these compo-
nents to or from other developers. GO is working to develop a market for third-

party components, and offers several components itself, including Text View™ and
the TableServer™ .

Your application must recover

Users may go for weeks or months without backing up their PenPoint computer’s
file system. If your application goes wrong, the PenPoint operating system will try
to halt your application rather than the entire computer, but it is your responsi-
bility to ensure that a new invocation of your application will be able to recover
cleanly using whatever information it finds in the file system. This precept some-
times conflicts with avoiding data duplication, because the memory file system is
more bullet-proof than the address space of a running application. For this reason,
filed state will usually survive a process crash.

Moreover, most users will not have the PenPoint computer boot disks on hand.
That means you cannot rely on the user being able to press the reset switch in a
jam. PenPoint uses hardware and software protection techniques to secure against
applications unintentionally corrupting the kernel and/or file system, but it is not

foolproof.

Take advantage of object-oriented programming

You don’t get to vote on using object-oriented techniques. You must write a class
for your application that inherits from clsApp. The windows your application dis-
plays on the screen must be instances of clsWin (or instances of a class that inherits
from clsWin). Of course, there are tremendous payoffs from PenPoint’s object-ori-
ented approach in program size reduction, code sharing, application consistency,
programmer productivity, and elimination of boilerplate code (those large chunks
of setup or housekeeping code that appear unchanged in every application).

Consider sharing code and data

Think about what other parts of PenPoint need to access your classes, what tasks
need to run the code in them, and who maintains their data. If your application has
a client-server architecture, with a separate back-end or a core engine, you'll need to
have the big picture in mind when choosing local or global memory, dynamic or

19

1/ APP WRITING GUIDE

20

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

well-known objects, process or subtask execution, protecting shared data with
semaphores and queued access, and so on.

PenPoint is a rich operating system that makes its kernel features available to appli-
cations. A straightforward application may not need to concern itself with any of
the kernel features. It just interacts with PenPoint subsystems, which make careful
use of the kernel. For example, none of the sample programs use any advanced
kernel features.

Use document orientation

In the PenPoint operating system, the user sees documents, not separate programs
and program files. Every document on a page is the conjunction of data and a pro-
cess running an application. This leads to a document-centered approach to appli-
cation design in place of a program-oriented approach. By comparison, on a
Macintosh or IBM PC-compatible computer, the user tends to start a program and
work on a succession of files. Under PenPoint, the user turns to a new document
(or taps in a floating document) and the system unobtrusively turns control over to
the right program for that document. ‘

There are many ramifications of this orientation: applications have no Open. . .
or Save As. . . commands; the PenPoint operating system, not the user, saves data
and quits programs; you deliver application templates and defaults to the user as
stationery.

Design for file format compatibility

The PenPoint application environment differs from that of other operating systems
in that PenPoint saves your application data, along with information about objects
in the document. Because of this filing method, your data formats within PenPoint
will differ from their PC equivalents.

Most PenPoint users, however, will need to read and write application data in for-
mats that are understood by other non-PenPoint applications. Fither your applica-
tion should be able to read and write data in other formats, or you should create an
import or export filter for your PenPoint files. PenPoint provides import and export
filters for some common file formats. Because the import-export mechanism is class
based, you or other application developers can create import-export filters for other
file formats.

Exploit the pen

Graphical user interfaces built around a mouse or other pointing devices lead to
flexible program architectures that respond to the user’s actions instead of requiring
the user to perform certain steps. The pen-oriented notebook interface of PenPoint
is even more free-form. Just as with a mouse, the user can point to and manipulate
(click, drag, stretch) entities on-screen, but in the PenPoint operating system the
user can also make gestures and handwrite characters “on” the visual entities.
Taking advantage of the pen is a challenge and a tremendous opportunity.

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW
PenPoint design guidelines

% Use the PenPoint user interface

The Notebook User Interface (NUI) differs from other graphical user interfaces. If
you are porting a DOS or Macintosh-based program to PenPoint, rather than create
new user interface classes, try to create a user interface that takes advantage of the
PenPoint UI Toolkit.

The PenPoint User Interface Design Reference describes the PenPoint user interface,
its rationale, and how and when to use its components. You should not deviate
from the PenPoint interface. Remember that a consistent user interface allows users
to learn your application quickly; an inconsistent user interface will count against
your application in product reviews (and acceptance in the marketplace).

The PenPoint UI Toolkit contains classes that create almost every on-screen object
in the PenPoint NUL If you use these classes, it is hard to deviate from the standard.
Additionally, it is easier to follow the conventions by using these classes than to sub-
class and change their default behavior.

21

1 / APP WRITING GUIDE

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 1 / APPLICATION WRITING GUIDE

Chapter 3 / Application Concepts

This chapter gives you the big picture of application development for the PenPoint™
operating system. It introduces the design issues you need to consider when writing
an application for a mobile, pen-based computer, how applications work under
PenPoint, and how you use the PenPoint classes.

This chapter also presents concepts in general terms to provide the fundamental
understanding that puts the balance of this manual in context. You needn’t have
read any of the other documentation before reading this chapter. However, if you
have the SDK software, you might want to read the “Getting Started” document in
the Open Me First packet for detailed instruction on how to compile and run the
tutorial programs.

If you want a basic look at how the PenPoint operating system works, without
a focus on writing applications, read Chapter 2, PenPoint System Overview. If
you need an introduction to object-oriented programming, read these industry
publications:

Principles of Object-Oriented Design, Grady Booch,
The Benjamin/Cummins Publishing Co., 1991.

Object-Oriented Programming for the Macintosh, Kurt Schmucker,
Hayden Book Company, 1986.

Object-Oriented Programming: An Evolutionary Approach, Second Edition,
Brad J. Cox and Andrew J. Novobilski, Addison-Wesley Publishing Company, 1991.

However you do it, make sure you come to understand the basics of object-oriented
programming, because in PenPoint every application must be class-based.

This chapter points out some of the aspects of the PenPoint operating system that
may have an notable effect on your approach to application design.

As you know, application development takes place at two levels:
¢ At the architectural level, where you design your application.
¢ At the implementation level, where you write and test program statements.

At the architectural level, this chapter assumes that you have basic familiarity
with object-oriented programming. In developing a PenPoint application you'll
be designing different kinds of objects and the interactions between them and
PenPoint. The section “How Applications Work” introduces the PenPoint
Application Framework, which influences and supports the structure of 2/
PenPoint applications.

24 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

At the programming statement level, this chapter assumes that you are well-versed
in C programming. You'll be writing C code that makes heavy use of the PenPoint
Class Manager. Chapter 4, PenPoint Class Manager introduces the Class Manager
and shows you what lines of code in PenPoint look like.

With some understanding of the Application Framework and the Class Manager,
you'll have the tools necessary to understand both the architecture and implemen-
tation of simple PenPoint programs and applications. Later chapters in this manual
describe the SDK sample programs in PENPOINT\SDK\SAMPLE (the installation pro-
cedure for the SDK creates the PENPOINT directory on your hard disk).

' PenPoint programming is unique

Just as a PenPoint computer is used in work environments that differ from other
computers, PenPoint applications execute in an environment that differs from con-
ventional PC application environments. There are eight key differences found in
PenPoint application environments:

¢ Stylus-based user interaction.

¢ Object-oriented programming.

L 2

Disk storage unnecessary.

¢ Multitasking.

¢ Cooperating, simultaneously active, embeddable applications.

¢ Graphics-intensive user interface.

¢ Notebook metaphor.

¢ Document orientation instead of application and file orientation.

Dealing with these aspects of PenPoint requires you to observe a number of guide-
lines, described in the following sections. The benefit is that the software architec-
ture of PenPoint eliminates much of the work for you. ’

The Class Manager supports the pervasive use of classes and objects throughout
PenPoint; not only in the user interface area, but also in areas such as the file system
and the imaging model. These classes provide you with ready-made components
that you can use as is or customize in your applications. These objects already con-
serve memory, exploit the pen interface, cooperate with other processes, and so on.
In particular, nearly all of the work your application needs to do to work within the
PenPoint Notebook is already implemented by pre-existing classes that comprise
the PenPoint Application Framework.

» How applications work

In the PenPoint operating system, the environment in which your application runs
and how it starts up are unlike any other operating system.

MS-DOS accepts a command line, executes a single program at a time, and does
litcle while that program is running. The PenPoint Application Framework takes an
active role in running your application. The Application Framework is responsible

CHAPTER 3 / APPLICATION CONCEPTS
How applications work

for activating, saving, restoring, and terminating your application. Additionally, the
Application Framework plays a part in installing and deinstalling your application.

Because all PenPoint applications use the Application Framework, all applications
behave consistently. Additionally, the Application Framework handles the house-
keeping functions that Macintosh or MS-DOS programs must perform from boiler-
plate code. Meanwhile, the PenPoint Application Framework presents the PenPoint
user with multiple small, concurrent documents as part of a consistent, rich note-
book metaphor.

It’s difficult to cleanly define the PenPoint Application Framework, because it is
both external to your application and something your application is itself a part of.
But here’s an attempt:

PenPoint Application Framework Both the protocol for supporting multi-
ple, embeddable, concurrent applications in PenPoint, and the support
code that implements most of an application’s default response to the
protocol.

To help you understand how an application fits into the PenPoint computing envi-
ronment, this section walks through some important stages in the life of an applica-
tion. By the end of this section you should understand a little about the PenPoint
Application Framework, some of the classes of objects in PenPoint, and why classes
are so important. The next section explains class-based programming in PenPoint.

With an understanding of the PenPoint Application Framework and the Class
Manager under your belt, you'll be able to work through the tutorials on PenPoint
programming that begin in Chapter 6. The tutorial summarizes other PenPoint
subsystems: windows, User Interface (UI) Toolkit, filesystem, and handwriting
translation. The tutorial incorporates these subsystems into a set of increasingly
functional sample programs.

Installing and starting applications

After acquiring an application, the user must install the application in the PenPoint
computer. Usually an application distribution disk contains the code and data
that implement the application’s classes, and any other classes required by the
application.

We'll first look at how a user installs and starts a program on a traditional PC oper-
ating system (MS-DOS). Then we'll compare these operations with installing and
running an application on PenPoint.

% MS-DOS installation

In MS-DOS, the user usually installs a program by copying the program from distri-
bution disk to a hard disk. Once on the hard disk, the program does nothing until
the user types a command to start the program.

Some MS-DOS programs require the user to copy the files from distribution disks to
the hard disk; others provide their own installation programs that copy the files to

25

/ APP WRITING GUIDE

~

26

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

the hard disk and alter system configuration parameters for their program. Installa-
tion varies tremendously from program to program.

When the user types the startup command for a program, MS-DOS loads the pro-
gram into memory from the hard disk and transfers control to the program. Once
the program is running, it controls most of the operations of the CPU until the user
leaves the program.

PenPoint installation

In PenPoint, the user installs a program by opening the Connections or Settings
notebook on the Bookshelf and turning to the installable software sheet (or by
inserting a disk that contains quick installer information).

From the installable software sheet, the user can choose various categories of install-
able items, including applications, services, dictionaries, and so on. When the user
turns to a page for an installable item, the Installer shows all the available applica-
tions that can be installed from the currently open volumes. The user selects an
item and taps the Installed? checkbox next to the item. The Installer copies the pro-
gram to an area of memory set aside for programs (the loader database) and copies
other files required by the program (such as help files, application resource files, and
stationery files) to the file system.

From this point, running PenPoint applications differs significantly from the Ms-
DOS model. Once a program is in the loader database, PenPoint can transfer con-
trol directly to it; there is no intermediate step of loading the program into
memory, because it is there already.

PenPoint transfers control to your program under two conditions: the user is
installing your program, or the user is opening a document that requires your pro-
gram (we will cover this case in the next section).

Installer responsibilities

During installation, the Installer calls a standard entry point (called main()) in your
program in such a way that you can tell that your program is being installed. At this
time, most programs create their application class and any other classes that they
need. Some programs initialize files or common data structures such as dictionaries
or stationery.

If your application requires code for other classes (such as a special character-entry
class) and resources (such as a special font), the Installer ensures that these classes
and resources are present in the computer. If they are not present, the Installer
copies and installs them also. In turn, these classes may require additional classes
and resources, and so on.

The Installer keeps track of all installed applications. When the Installer initializes
your application, the application specifies whether it should go in the Tools Acces-
sory palette or in the Stationery notebook, or both (or neither). Depending how
your application initializes itself, the user will now see the application in the
Accessories window, or in the Stationery notebook and Create pop-up menu.

CHAPTER 3 / APPLICATION CONCEPTS 27
Running a PenPoint application

After installation, your code is in a similar state to an MS-DOS.EXE or .COM pro-
gram that has just been loaded into memory but not yet run. However, when the
MS-DOS program terminates, it removes itself from memory. PenPoint programs
stay in the system until the user removes the application.

¥ Running a PenPoint application

When running an MS-DOS program, the user has to find a file that contains data
understood by the program. When the user decides to stop using the program, he
or she must save the data to a file and then exit. If the user chooses a file that the
program doesn’t understand, the program might display garbled information, at
best, and at worst the program might crash.

PenPoint takes a fundamentally different approach: the user creates a document
from a list of available applications and, at some later time, tells PenPoint to acti-
vate the document. The user doesn’t have to activate the document immediately
after creating it and, in fact, can create many, many documents without activating
any of them.

% Life cycle of a document

The standard components of an application include its application code, applica-
tion object, resource file, instance directory, process, and main window. The full life
cycle of a document created by an application includes the following operations:

¢ Document creation (create file)

%

Activation (create process)

L 4

Opening (open on screen)

L 4

Closing (remove from screen)

L 4

Termination (terminate process)

Destruction (delete file)

%

Active documents save their internal state in the file system, but this is invisible to
the user: there is no need to save or load the application’s state explicitly from one
session to the next.

% Activating a document

When the user activates the document, PenPoint finds out from the document A PenFoint document remains

what application it requires and creates a process that “runs” the application (see in the computer from the time
« L. . » .) it is created until the time
Application classes and instances” on the following page for more details). When 112t the user deletes it, but

the user deactivates the document, PenPoint saves all of the document’s informa- the application process exists
tion and then destroys the application process. Zzzvﬁhlle the document is

% Not all active documents are on-screen

It’s only when the user activates a particular document that the document has a
running application process. When the user activates a document, the PenPoint
Application Framework creates an application process and calls the standard main()

1 / APP WRITING GUIDE

28

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

entry point in your code in such a way that your application can tell that it is
starting an application process (and not being installed).

However, just because a document is running, doesn’t mean that it must be on-
screen; conversely, if a document is not on-screen, its process might still be running.

The most common example of this is when the user makes a selection in a docu-
ment and then turns to another document (perhaps to find a target for a move or
copy). The document that owns the selection must remain active until it is told to
release the selection.

A second example is when the user chooses accelerated access speed (sometimes
called hot mode) from the Access document option sheet, the application processes
will continue running, even when the user has turned to another page.

For a third example, you might want to create a stock-watcher-type program that
runs in the background most of the time. This type of program will also be active,
but not on-screen.

Application classes and instances

A PenPoint computer contains only one copy of your application code in memory,
but a user can simultaneously activate several documents that use your application.
PenPoint can do this because your application code is a PenPoint class and an active
document is an instance of your application class.

When the user installs your application, your application creates your application
class. When the user activates a document that uses your application, the Applica-
tion Framework creates an instance of your application class.

Accept this as fact for now. We will spend pages and pages in this and other man-
uals explaining how this works.

PenPoint drives your application

Because of all the states that an application can be in, an application can’t take con-
trol and start drawing on the screen and processing input when its main() function
is called. In additon, your application can't find out on its own if it is on-screen or
should terminate. Instead it must be directed what to do by the PenPoint Applica-
tion Framework. The Application Framework sends messages to documents (and
hence to your application code) to initialize data, display on screen, save their state,
read their state, shut down, and so on. This is why applications must be imple-
mented as classes.

For example, when a document needs to be started up to do some work, the Pen-
Point Application Framework sends msgAppActivate (read this as “message app
activate”) to the document. When the user turns to a document’s page, the Pen-
Point Application Framework sends it msgAppOpen.

A typical MS-DOS program written in C has a main() routine that displays a wel-
come message, parses its command line, creates a user interface, initializes struc-
tures, and then waits for user input. By contrast, a PenPoint application’s main()

CHAPTER 3 / APPLICATION CONCEPTS

routine usually creates the application object and then immediately goes into a loop
waiting for messages to the application object to arrive. Because all applications
enter this loop, there is a routine, AppMain(), which enters the loop for you.

W Application objects

Most PenPoint applications perform three minimum actions:

¢ Respond to user and system events (including PenPoint Application Frame-
work messages).

¢ Create one or more windows for user input and to display output.
¢ Create one or more objects to maintain their data.

There are object classes already written in PenPoint for each of these actions:
clsApp, clsWin, and clsObject, respectively. These classes do the right kinds of

things for applications themselves, for windows, and for data. They provide a skel-

eton of correct behavior, although obviously GO’s code doesn't create the user inter-

face and data classes needed to implement behavior specific to your application. To
get the behavior you want, you often need to create descendant classes that inherit
from existing classes.

A descendant of clsApp

Lots of the behavior that is common to all applications is already implemented
for you.

The PenPoint Application Framework’s interactions are sophisticated and complex.
You'll learn more about them in the following sections. Applications need to behave
in a standard way to work well in the framework. To simplify life for the application
developer, your application class inherits most of this standard behavior from the
class clsApp. clsApp handles all the common machinery of application operation,
so that many applications do not need to do anything in response to messages like
msgAppActivate and msgAppOpen. Applications rely on clsApp to create their
main window, display the main window, save state, terminate the application
instance, and so on.

You must write a descendant class of clsApp and create it during installation. In the
example shown here, the descendant is clsTttApp. At the appropriate time, the
PenPoint Application Framework sends this class a message to create an instance of
the class (Tic-Tac-Toe application instance in the figure). However, you must
decide when to create your application’s other objects (windows and filing objects).

An instance of cIsWin

The PenPoint Application Framework creates a frame for your application by
default. This is a window with many decorations: a title bar, a shadow if the
window is floating, optional resize corners, close box, menu bar, tab bar, command
bar, etc. These decorations surround space for a client window. It is up to you to
create the client window. You can also create windows to go into your frame’s menu
bar, tab bar, and command bar, and you can create floating windows, additional

29
Application objects

i

The EMPTYAFPP sample
program in the Tutorial does
nothing significant in response
to any message, yet because it
inherits from clsApp you can
create Empty Application
documents, copy them, float
them, embed them, and so on.

Frames support only orne client
window, but you can insert

1/ APP WRITING GUIDE

other windows inside the client -

window.

30 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Application, view, and object classes FIGURE 3-1

clsObject

PenPoint .)
provides: - clsObject

several

window

subclasses
You must : :
write:

L

Tic-Tac-Toe
application
instance

.

clsView

Sereani

o

-

M

L

o

Tz’c— Tac-Toe

| view of squares§’T

Tic-Tac-Toe

| square values

.

Objects in a running
instance of your
application

frames, and so on. Most applications create one or more windows to draw in and
allow user input.

All window classes inherit from clsWin. This class does not paint anything useful in
its window, so you must either create your own window class that draws what you
want or you must use some of the many window descendant classes in PenPoint.

%y Some window classes

The Tic-Tac-Toe application, for example, creates several kinds of windows based
on existing classes in PenPoint (see Figure 3-1):

¢ A scrolling client window (an instance of clsScrollWin), which lets the user
scroll its contents.

¢ An option sheet for its options (clsOption).

¢ An option card for the option sheet (clsOptionTable).

CHAPTER 3 / APPLICATION CONCEPTS
Understanding the application hierarchy

¢ Various user interface component windows (clsButton, clsLabel, clsInteger-

Field) for the option card.
¢ Menus.
¢ A Tic-Tac-Toe view (clsTttView) to display the grid and Xs and Os.

Like clsTttApp, you have to write the code for clsTttView and create the class at
installation. Your application must create the various windows at the appropriate
times, such as when it receives msgApplnit or msgAppOpen.

Using clsView

Many applications will use clsView, a specialized descendant of clsWin, for their
custom windows. clsView associates its window with the data object it is dis-
playing; the data object sends the view a message when its data changes. In the
case of Tic-Tac-Toe, clsTttView inherits from clsView, so the Tic-Tac-Toe window
is a view.

In Tic-Tac-Toe, a clsTttView instance observes the data object (an instance of
clsTttData). More than one view can be associated with the same data; in theory
two views of the Tic-Tac-Toe board could show their state in different ways. When
the data changes, all the views are notified and can redraw themselves.

¥ An instance of clsObject

Instead of managing all of the data involved with an application itself, a PenPoint
application typically creates separate objects that maintain and file different parts of

the data. These objects respond to messages like “Save yourself” and “Restore your-
self from a file.”

clsObject is actually the ancestor of all classes in PenPoint, including clsWin and
clsApp. There is no class specifically for objects that must be filed. Filing is such a
general operation that all objects in the PenPoint operating system are given the
opportunity to respond to msgSave and msgRestore messages. PenPoint supplies
various descendant classes, which help in storing structured data, such as a list class
(cIsList), a picture segment (clsPicSeg), a block of styled text (clsText), and so on.

In Figure 3-1, the data for the Tic-Tac-Toe application (the values of the nine
squares) is maintained by a separate object, Tic-Tac-Toe square values, an instance

of the specialized class clsTttData.

¥ Understanding the application hierarchy

You may have wondered how PenPoint keeps track of all the sections, documents,
and embedded documents in a notebook if application objects are not immediately
up and running when they are created. The answer is that each document and
section in a notebook is represented in an application hierarchy in the PenPoint
file system. The Notebook table of contents displays a portion of this application
hierarchy.

31

/ APP WRITING GUIDE

TT—

32

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The reason it is called an application hierarchy is that the directory structure is the
same as the hierarchy of documents in PenPoint (including embedded documents,
accessories, and other floating documents not on a page in the Notebook). Each
notebook has a directory in the file system. Within the notebook, each document
or section has a directory. Within each section, each document or section has a

directory. Within each document, all embedded documents have a directory, and so-

on (see Figure 3-3).

As an example, when the user creates a document in a section of the Notebook, the
PenPoint Application Framework creates a new application directory in that sec-
tion’s directory. When the application is told to save its state by the PenPoint Appli-
cation Framework, the PenPoint Application Framework gives it a file to save to in
that application directory.

All PC operating systems have a file system, and in most you can store application
data in a similar hierarchy of directories and subdirectories. Some may even provide
a folder or section metaphor for their file system. But they do not directly weave
applications into this file system. The Notebook’s TOC (tap on its Contents tab to
move to it) shows the organization of documents in the Notebook, and this 7s the
organization of part of PenPoint’s file system.

In PenPoint, the application hierarchy exists in the PENPOINT\SYS\BOOKSHELF
directory on theSelectedVolume. You can inspect the application hierarchy your-
self. Modify your ENVIRON.INI file so that the DebugSet parameter specifies
/DB800. Run PenPoint and go to the Connections notebook. Using the directory
view, browse through the disk volume. In the PENPOINT directory, you should see
directories called NOTEBOOK, SECTION, and so on. Compare this with the Note-
book TOC. The Browser shows exactly what the file system looks like, while the
Notebook TOC interprets this part of the file system as the application hierarchy.

If your selected volume is your hard drive, you can also inspect this hierarchy from
DOS. However, to keep path names short, all of the PenPoint directory names
below PENPOINT use two letter names. For example, the SYS directory is SS in DOS,
the Bookshelf directory is BE the Notebook is NK, and so on.

The Notebook’s own hierarchy

The PenPoint classes and application hierarchy probably seem obscure and con-
fusing at this point. So let’s look at how the Notebook itself is written using this
metaphor. Each component of the Notebook is itself a document, with its own
main window, a parent window, and a directory in the file system’s application
hierarchy.

The important concept to grasp is that there is a correspondence among:
¢ The PenPoint applications.
¢ The functionality of the parts of the notebook metaphor.
¢ The visual presentation of parts of the Notebook.

¢ The PenPoint file system layout.

The application hierarchy
differs from the class
hierarchy explained in the
next chapter, and from the
hierarchy of windows
on-screen.

Strange and important!

CHAPTER 3 / APPLICATION CONCEPTS 33
Understanding the application hierarchy

Some of these relationships are:
Running documents are instances of application classes.

Functionality of notebooks, sections, and pages is delivered by application
classes.

Visual components of a notebook are these applications’ windows.
Sections and pages in a notebook are these applications’ directories.

Section name and page number location in a notebook combine to form a

location in the file system. The following figures are
explained in more detail in
This figure shows how a typical mix of applications in a running PenPoint system Part 2: Application Framework

uses different kinds of classes of the Fenfoint Architectural
’ Reference.
Application Framework and Notebook hierarchy FIGURE 3-2
clsObject

*

clsClass clsApp

all classes
in PenPoint

+

clsAppMgr

PenPoint
application
classes

clsRoot- clsContainer-
clsBSApp | ContainerApp App

|| theBookshelf

Noiehook

Notebook TOC,

and sections

clsSectApp

|
—n

application
i classes

applications

1 / APP WRITING GUIDE

34 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The Notebook hierarchy as mirrored by the file system FIGURE 3-3

Bookshelf
doc.res
— docstate.res
Notebook
doc.res
docstate.res
Contents
— doc.res
L docstate.res
— browstate
— Read Me First
— doc.res
docstate.res
—Samples
— doc.res
— docstate.res
— browstate
New Product Ideas

L efc...
Package Design Letter
- doc.res
I: docstate.res
Suggestion

_ doc.res
docstate.res

— efc...

Figure 3-3 and Figure 3-4 indicate how the same visual components exist in the file
system, and as processes and objects.

You can use the Connections notebook to explore the relationship between docu-
ments and the file system yourself. To view the running PenPoint file system in the
Connections notebook, you need to set the B debug flag to hexadecimal 800 in
order to view the contents of the boot file system. The easiest way to do this is to
modify the DebugFlag line in ENVIRON.INL

% The Bookshelf
The highest level of the application hierarchy is the Bookshelf. This is an applica-

tion, but there is only one instance of it—you can’t create additional bookshelves.
The Bookshelf application manages bookshelves and floating applications. Its
parent window is the entire screen of the PenPoint computer. It draws the white
background.

% The Notebook

Below the Bookshelf’s’s directory lies the directory of the main Notebook

(and other documents on the bookshelf). The Notebook application presents

the familiar visual metaphor of a notebook with pages and tabs. All applications
that “live” on a page have subdirectories in the Notebook. There are usually several
notebooks on a PenPoint computer: the main Notebook, the Stationery notebook,
and the Help notebook. Even the In box and Out box are implemented as
notebooks.

35

CHAPTER 3 / APPLICATION CONCEPTS
Understanding the application hierarchy

IGIND ONLEM ddV / L

Process O

FIGURE 3-4

on,
£
3
2
[

ion

‘Window List
f

ca

pp!

1001101
NB A
Class

App
Directory

Application
Object

Document Process

Floating
indow List
Components

NB Process

Object
File Handle
Resqurce

1001101

Document
Directory

Notebook hierarchy and application processes

ion Class

RS
i -]
Chmis e

t

ica

-
-
-
e
-
LR

ion
|
iText

-
.
ini

Application Class

M

Sect
App

R e 5l ooy G S o gy
ca .
.] | e
e o i .
o .
.

Package Design Letter
.
o

Samples

-

B
Gt Rk A

/

e

/

.. .
g

S R i mﬁ»ﬁ@&mmﬂmm xl!!uma
. s
E o
L -
.
e

=

0 S e
L - 5
... == @ @ @O

S

MiniNote
Application Class

Lo
Eaaadaun
.

.

36

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The Notebook document stores the section tab size, the current page shown in
the Notebook, the page numbering scheme, and so on in its directory.

When the user taps to turn a page in the Notebook, the Notebook traverses the
application hierarchy to the next document directory and sends a PenPoint Appli-
cation Framework message to that document’s application to start it up.

The Notebook’s window covers most of the screen except for the Bookshelf at the
bottom.

Page-level applications

The subdirectories in the Notebook’s directory relate directly to the documents Actually, sections are

and sections in the Notebook. The name of the subdirectory is the name of the -~ documents that know how to
. . . . , behave in a table of contents.

document or section. Each of these subdirectories contains the filed state of an

instance of a section or document.

This table lists some of the items in the Notebook (shown in Figure 3-3), the direc-
tory in which each of the items are stored, and the class from which each item is

instantiated.

Notebook organization and the file system TABLE 3-1
Document or sechion Stored in directory Instance of cluss
Samples Notebook Contents clsSection

New Product Ideas Samples clsMiniText

Package Design Letter Samples clsMiniText
Suggestion Package Design Letter clsMiniNote

Most applications have a menu bar. The PenPoint Application Framework supplies
a set of standard application menus (SAMs), to which applications add their own
menu jtems. The PenPoint Application Framework provides support for the menus
(Document, Edit, and Options) and many of the items on the menus.

Applications draw in the window that the Notebook provides for them. A page-
level applications’s window is the Notebook area; except for the tabs area.

Sections

Sections are similar to other applications: they are instances of an application class
(clsSectApp), they appear on a Notebook page, they can have tabs. A section appli-
cation displays a table of contents showing the documents that are in that section:
these are simply the application subdirectories in the section’s own directory.

One difference between a section and other applications is that a section has a spe-
cial attribute in its directory entry. When the Notebook is traversing the application
hierarchy (to display its table of contents, or turn to the next page), if it comes
across a section it descends into the section. This enables the Notebook to number
pages correctly.

Section data stored in the section’s directory entry includes the state of its table of
contents view (expanded or compressed). The Notebook Contents page is an
instance of clsSectApp, just like other sections.

CHAPTER 3 / APPLICATION CONCEPTS 37
Understanding the application hierarchy

" Floating accessories

Most PenPoint applications are part of the Notebook. But some applications, such
as the calculator, the disk viewer, and the snapshot tool, don’t “live” on a page in the
Notebook. These accessories “float” on the Bookshelf when active, appearing over
pages in the Notebook. Their parent window is the Bookshelf, not the Notebook
page area. They aren’t part of the Notebook’s table of contents and you can’t turn
the page to them. However, a floating application is still part of the same under-
lying model: it has a directory (it’s just not a subdirectory of the Notebook), it is

sent messages, and SO on.

¥» Embedded applications

It is possible to embed documents in other documents that permit it. For example,
an on-line “electronic newspaper” document might embed an instance of a cross-
word puzzle application in itself; the crossword puzzle class might allow the user to
embed an instance of a text application in a crossword puzzle document to let the
user jot down notes and guesses. The design of PenPoint makes it easy to write
applications that can embed, and can be embedded in, other applications.

When the user creates a new document in the Notebook, PenPoint actually embeds
the application in the Notebook application. This document embedded in the
Notebook is called a page-level application.

Only page-level applications appear in the Notebook’s Table of Contents; appli-
cations that are embedded in page-level applications do not. It doesn’t make sense
for a user to turn the page to an application embedded in the current page.

Application embedding is very straightforward. When the user moves or copies an
application, the Bookshelf application sends a msgAppCreateChild message to the
destination application. If the application permits embedding, the PenPoint Appli-
cation Framework handles this message by creating a directory for the embedded
application within the destination application’s directory.

When an application is embedded in another, the embedded application is inserted
into two hierarchies: the file system hierarchy and the window system hierarchy. In
the file system, the application directory for an embedded application is a subdirec-
tory of the application directory of the application in which it is embedded. In the
window system, the parent application supplies a window into which the
embedded application can insert its main window.

Thus, in our example, the newspaper application uses an application directory for
the newspaper document. Within that directory is an application directory for the
crossword document. Within the crossword application directory is a directory for
the text editor document. The newspaper document window contains a window
that is the main window for the crossword document. The crossword document
window contains a window that is the main window for the text editor.

1 / APP WRITING GUIDE

38 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

% Application data

A document stores data in its directory so that when its running process is termi-
nated, its state lives on in the file system. The Application Framework can later
create a new process for the document and direct the document’s application to
restore the document from this filed state.

Some information is of interest to this instance only, such as the visible part of the
file, the user’s current selection, and so on. This would probably be saved by the
application itself, that is to say, when the application receives msgSave it writes this
information out.

The application can also tell the Application Framework to send msgSave to other There are many mechanisms
objects to get them to save their data (your application can’t send msgSave directly ~that automatically propagate
. msgSave to related objecte.
to another object). For example, the image in a sketching program might be imple- ¢ 05 can be set to save
mented as a separate object; when the application is told to save, it tells the Applica- child windows, views save their

tion Framework to save the image object. data objects, and so on.

By default clsApp saves the information about the document, including its com-
ments, frame window position, mode, and so on, so you only need to save those
things created by your application class.

¥ Activating and terminating documents

In the section “Application classes and instances” on page 28, we described how an
instance of the application is created. The previous section should help clarify the
relationship between the file system and an instance of your application. The loca-
tion of a document in the file system hierarchy has a one-to-one correspondence
with its location in the Notebook, on a page, within a section, and so on. See the
figure to get a sense of the relationship.

The main determinant of how and when documents blossom from being directo-
ries and data in the file system to being live running processes and objects is the
user’s action of turning the page.

When the user turns to a page, the documents on that page become visible; if they
aren’t already running, the Application Framework activates them.

% Turning a page and msgAppCIosé
When the user turns to another page, the document on the original page no
longer needs to appear on screen, so the PenPoint Application Framework sends

msgAppClose to the application instance, indicating that it can close down its user
interface.

When it receives msgAppClose, the application might still have some processing to
do or it might be talking to another application. The application can finish its work
before acting in response to msgAppClose.

To respond to msgAppClose, the application should save (to the file system) any
data about on-screen objects that the user moved or changed. The application

CHAPTER 3 / APPLICATION CONCEPTS
Activating and terminating documents

should then destroy and remove all windows that it created, thereby reducing
memory usage.

An application instance may receive msgAppTerminate after msgAppClose

(if it is’t in “hot mode”). When it receives msgAppTerminate, the application
must save all data that will be required to restore the document to the screen exactly
as it was before, because msgAppTerminate kills the document’s process.

Restoring inactive documents

When the user turns back to the saved document, the Application Framework
looks at that document’s directory. If the process for the document was terminated,
the Application Framework starts a new process, creates a new instance of the appli-
cation class, and recreates the document based on information in the directory. As
part of this re-creation, the Application Framework sends the document msg-
Restore, which tells it to read its state back in from the file system.

The Application Framework then sends msgAppOpen to the application, telling it
to prepare to draw on the screen. The Application Framework also sends msg-
Restore and msgAppOpen to any embedded applications in that document.

Finally, the Application Framework inserts the application’s windows into the
screen, and the windows receive messages telling them to paint.

From this point the user can interact with the document. When the user makes a
gesture within the document, the document’s application controls the resulting
action.

Page-turning instead of closing

As described in “Turning a page and msgAppClose,” most PenPoint applications
don’t need a Close menu item. Most documents are active until the user turns the
page; others may be active even when off-screen (for instance, if they have the selec-
tion or are involved in a copy operation). The user doesn’t know what a running
application is: when the user turns to a page, everything on it appears exactly as it
was when the page was last “open,” and every window responds to the pen. The fact
that some of the applications may have been running all the time while others were
terminated and restarted should be inconsequential to the user.

Saving state (no quit)
In an MS-DOS or Macintosh program, the user explicitly quits the application, and
thus doesnt expect the application to reappear in exactly the same state.

Because of PenPoint’s notebook and paper paradigm, you must preserve all the
visual state of your application so that when it is restarted it appears the same. This
has strong implications for the kinds of information your application needs to save
when an application receives msgSave.

39

1 / APP WRITING GUIDE

40

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

 Documents, not files and applications

It’s important to understand that the application instance and the file it is editing
are conjoined.

The user should rarely, if ever, see “files.” Instead, she or he sees only documents.
(The exception to this is when importing data from and exporting data to other
computers.) Ordinarily, for every document in the application hierarchy there is an
application.

A user can deinstall an application without deleting the application’s documents in
the file system. If the user tries to turn to one of these documents, there is no code
to activate them. Instead, these orphan applications are handled by a “mask” appli-
cation that tells the user that the application has been deinstalled and prompts the
user to reinstall the application.

No new, no save as. ..

On a PC, the user usually starts an application, and then chooses what file to open
with that application. But in the PenPoint operating system, the user can start an
application by:

¢ Turning to the page that contains a document.
¢ Floating a document.
¢ Creating a new embedded document.

The document open on a page, and any floating or embedded documents on that
page, are all applications with open files. You do not open a file from within an
application. Instead, you turn to (or float or embed) another document and
PenPoint starts up the correct application for that document.

Thus, it does not make sense to try to open another document from the current
application, or to save the current document as another document.

The only time that an application needs to actually open a file from disk is when it
is importing or exporting data that will be used by a file-oriented program on a file-
oriented operating system.

Stationery

Users often want new instances of an application to start off from a particular state.
Instead of opening a template from within the application, Penpoint supports
application-specific stationery. The default piece of stationery is an application
instance started from scratch. The user can create additional stationery documents,
which are just filed documents kept in a separate notebook.

In the case of Tic-Tac-Toe, each document shows a view of its own board. There is
no new command, because the user can always create a new document. There is no
save command either—the Tic-Tac-Toe state is saved on every page turn. There’s no
open command, because the user can either turn to another Tic-Tac-Toe’s page to
“read it in,” or can start from a desired template by accessing documents in the
Stationery menu or auxiliary notebook.

CHAPTER 3 / APPLICATION CONCEPTS 41
Shutting down and terminating applications

» Shuiting down and terminating applications

If a document is in the application hierarchy, it always exists as a directory in the

file system, whether it has a running process or not, and whether it is visible or not:

When the user deletes a document (page-level or embedded), PenPoint deletes its

directory from the file system.

The user can also elect to use the installer to deinstall or deactivate an application. While the application is

not available, the mask

. application handles the
ferent application, or when the user isn’t using an application any more. Deinstalla- agﬁncaﬁon’e documents.

tion removes all application code from the loader database, which prevents the user
from running it. However, the documents still exist in the application hierarchy,
and can spring back to life if and when the user re-installs the application. Deacti-
vation also removes the application code, but PenPoint remembers where the appli-
cation came from, so that it can prompt the user to insert the appropriate disk if the
user chooses to reactivate the application.

This might be necessary when the user needs more room on the computer for a dif-

% Conserving memory

When a document is active, it is obviously consuming memory, but when it is not
active, it can still consume memory (if the computer is using a RAM-based file
system). The document’s saved state is in the application hierarchy, which can be in
the RAM file system; the RAM file system shares RAM with running processes. This
emphasizes how important it is to conserve memory.

You should also try to conserve memory when an instance is running but not open
(for example, if it has the selection but is off-screen). This is an opportunity to
destroy UI controls and other objects which are only needed when your application
is on-screen.

% Avoiding duplication
Documents receive messages from the Application Framework telling them to save
their state to their directory. When a document starts up, its corresponding applica-
tion often reads all of this state back into memory. This means that there are two
copies of the documents state; the one in its address space and the saved copy in the
file system. This can be quite wasteful of space. There are several approaches to
eliminating this redundancy:

+ Don't read state back into memory. Read information in from the file system
when needed. This works well for database-type objects. Because the applica-
tion hierarchy is in memory, file I/O is faster than you might think, but this is
still slow. It does prevent the user from reverting to the filed state of the docu-
ment, since the filed state is always being updated. Your application would
have to disable Revert, or make its own backup copy of filed state.

¢ Use memory-mapped files to map filed state into the application’s address
space. This works well for large data files, but it does interfere with Revert.

1 / APP WRITING GUIDE

42 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

¢ Read state back into memory, then delete the information from the file sys-
tem. This means that if the application instance crashes, there is nothing in
the file system to recover.

¢ Refuse to save state to the file system. This implies that the application
process can’t be terminated. This also means that the application state can't
be recovered.

% Hot mode

The last alternative above is supported by the PenPoint Application Framework. An
application class or the user (by choosing Accelerated for Access Speed in the appli-
cation’s option sheet) can tell the PenPoint Application Framework that an applica-
tion instance should not be terminated. This is called hot mode. It means that the
document will appear much faster when the user turns to it, because its process
never went away. Ordinarily the Application Framework must start a new process,
create a new application object, tell it to restore its state, then put it on-screen.

¥» Components

As we have seen, you can embed applications within other applications. This is the
basis for the Application Framework’s hierarchy. Applications require a good deal of
overhead: each has its own directory, has code in the loader database, and runs as its
own process (in addition to the directories and processes used by that application’s

documents).

You can reduce the size of an application by using components. Components are
separate DLLs that provide a well-defined API to their clients. Most components can
be used as part of an applications, but they don’t require much overhead.

Components don’t run as a separate process, and don’t have a separate directory.
Some components, such as Reference buttons, manifest themselves as visible
objects and let the user embed, move, and copy them. Others, such as text views,
are visible but can be added to applications only programmatically. Still others,
such as the Address Book, do not even have a UJ; that is, they do not display on-
screen (the address book provides information that other applications then format

and display).

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 1 / APPLICATION WRITING GUIDE

Chapter 4 / PenPoint Class Manager

The previous chapter introduced some of the concepts in the PenPoint™
Application Framework. This section quickly covers the PenPoint operating
system’s object-oriented Class Manager. The Application Framework largely deter-
mines the overall structure of your applications; sending messages to objects using
the Class Manager makes up 80% of the line-by-line structure of your code. With
an understanding of the Application Framework and the Class Manager, you can
start the tutorial.

There are three elements to the PenPoint operating system’s object-oriented soft-
ware environment: objects, messages, and classes.

Perhaps the simplest way to introduce the concepts of objects, classes, and messages
is by looking at an example. The example discussed in the next three sections out-
lines what must happen to set the title of an icon. A user sets an icon’s title by
making the check «/ gesture over it. When its option sheet appears, the user enters
a new icon title, makes sure the layout style is one that includes the title, and taps

Apply.
If you feel that you understand the concepts of object-oriented, message-passing,

class-based systems, you can skip this introduction and go directly to the section
titled “Sending a Message.”

W Objects instead of functions and data

In a non-object-oriented system, the icon and its title would be stored in a data
structure. Any piece of code that gets or sets information pertaining to the icon
must know the exact organization of that data structure. To modify the icon title,
the program would locate the data structure that represented the icon; for example,
it might change the icon’s title string by changing a pTitleString pointer. This pro-
gram will break if the internal structure changes or if the string is later implemented
by storing a compact resource identifier.

In an object-oriented system, anything in the system can be an object. In our
example, the icon is represented by an object. The object knows about both the
data for dn icon and the functions that manipulate it. The object hides, or encapsu-
lates, the details of its data structures and implementation from clients. One of the
messages understood by the object might be “Set Your Title String,” which tells the
object to change its title.

Because the object contains the code for the functions that manipulate it, the object
locates its own internal data structures that represent the title, and changes the title.

44

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

This encapsulation reduces the risk of clients depending, either deliberately or -
accidentally, on implementation details of a subsystem. If the internal structure
changes, only the object’s code that manipulates the structures must change. Any
client that sends the “Set Your Title String” message can still send that message and
will still get the same effect.

Some objected-oriented systems, including PenPoint, use software and hardware

J Y g
protection facilities to prevent clients from accessing or altering the internal struc-
tures of objects, whether accidentally or maliciously.

Ideally, in object-oriented operating systems, the objects presented to clients should
model concrete ideas in the application. For example, if your application’s user
interface requires a button, it should create an object for that button; if your appli-
cation has a counter, it should create an object to maintain that counter value.

Messages instead of function calls

Modular software systems are sometimes object-oriented without being message-
passing. That is to say, they have objects that hide data structures from clients (such
as “window”), and you pass these software objects as arguments to functions which
act on them. Using the example of setting an icon’s string, in such systems you
might pass the iconWindow object to a routine called WindowSetString().

But this approach requires that clients know which function to call, or that the
function handle many different kinds of objects. The implementation of icon
strings might change so that icons need to be handled specially by a new IconSet-
String() function. Again, all clients would have to change their function calls.

Message-passing systems flip this control structure so that the object hides the rou-
tines it uses. A client simply sends a message to the object, and the object figures
out what to do. This is known as data encapsulation. In the example we're using,
clients send the message msglabelSetString to the icon; the only argument for the
message is a pointer to the new title string.

Because icons (or other objects) respond to messages, it doesn't restrict the imple-
mentation of icons: if, in the future, icons handle titles differently than other labels,
they can still respond to msgLabelSetString correctly.

“The object figures out what to do” sounds like black magic, but it is actually not
very complicated. You call a C routine to send a message to an object. Inside the
Class Manager code, the Class Manager looks up that message in a table (created by
the developer of the icon class) that specifies what function to call for different mes-
sages. If the message is in the table, the Class Manager then calls the icon’s internal
function which actually implements the message.

One benefit of using messages instead of function calls is that many different
objects can respond to the same message. All objects that come from a common
ancestor will usually respond to the messages defined by that ancestor. For instance,
you can send msgLabelSetString to almost any object. (In some systems, this is
called “operator overloading.”)

Note The term “client” here
and elsewhere in the SDK
documentation means any
code making use of a software
facility.

An object can respond to any
message sent to it; the
message does not have to be
defined by the object’s class
or its ancestor clase.

CHAPTER 4 / PENPOINT CLASS MANAGER
Classes instead of code sharing

You can send any message to any object. Depending on whether it knows how to
respond to the message, the object chooses what to do:

¢ If the object understands the message and can handle it, the object processes
the message.

o If the object doesnt understand the message, it gives the message to its ances-
tor, to see if its ancestor knows how to handle the message (more on ancestors
later in this section).

¢ If the object understands the message, but doesnt want to handle it, the object
can ignore the message (by returning a nonerror completion status), reject the
message (by returning an error completion status), or give the message to its
ancestor.

P Classes instead of code sharing

Icons and several other similar objects have titles. Thus, each of those objects that
has a modifiable title must handle the “set string” message in some way or other.

In other programming methodologies, programmers take advantage of functional
overlap by copying function code, trying to make data structures conform so the
same routine can be used, or calling general routines from object-specific routines.
However, whether you copy code or link with general routines, the resulting exe-
cutable file contains a static copy of the shared code. The best you can hope for is
shared code implemented by the system, which is rare.

In a class-based system, an object is an instance of a specific class. The class defines
the data structures that are used by its instances, but doesn’t necessarily describe the
data in the structures (it is the data stored in these structures that differentiates each
instance). The class also contains the functions that manipulate the object’s data.

Each instance of a class contains the data for the specific thing being described
(such as an icon). Each instance also knows to which class it belongs. Thus, there
can be many instances of a class (and data for each instance), but the code for that
class exists in only one place in the entire system.

If an existing class does almost, but not quite, everything you want, you can create
a new class that inherits its behavior from the existing class. The new class is said to
be a subclass or descendant of its ancestor class. The subclass contains unique
functionality that was not previously available in its ancestor.

The subclass should not reproduce anything that was defined by its ancestor. The
subclass only defines the additional data structures required to describe the new
thing and the functions required to handle messages for the new thing.

Of course, subclassing does not stop at one generation. The icon window class, for
example, has eight ancestors between it and clsObject, which is the fundamental
class for all classes in PenPoint.

Take a look at the PenPoint Class Hierarchy in the class hierarchy poster. Find the
relationship between clsIcon and clsLabel (they’re near the lower right edge).

45

1 / APP WRITING GUIDE

46

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

% Handling messages

An object can send a message to its ancestor class either when it doesn’t recognize =~ Remember that even when

the message or when it chooses to allow its ancestor class to handle the message. the ancestor handles the
message, it uses the data

Because the icon window class inherits from the window class, the icon window ~ for the object that initially
. . received the message.

automatically responds to all the messages that a window responds to (such as msg-

WinDelta to move it or msgWinSetVisible to hide it) in addition to all the mes-

sages specific to an icon window (such as msglconSetPictureSize). A class can

override or change some of its ancestors” messages; for example, the icon window

responds to msgWinRepaint by letting its ancestor label paint the string, then it

draws its picture.

Message handling by a class and its ancestors FIGURE 4-1

clsObject

msgListAddItem
——————— List

47

By making it very easy to inherit behavior from existing classes, class-based systems
encourage programmers to extend existing classes instead of having to write their
own software subsystems from scratch. If you create a new kind of window, say an
icon with a contrast knob, you can make it a descendant of another class, and it will
inherit all the behavior of that class, or as much behavior as you choose.

You may find it easier to understand class-based programming by viewing code
instead of reading abstract explanations. The next few pages give some simple
examples of using messages and classes, and even the very simplest program in the
tutorial is fully class-based (in fact, for an application to run under PenPoint, it
must be class-based).

CHAPTER 4 / PENPOINT CLASS MANAGER 47

P Sending a message

In PenPoint, you usually send a message to an object using the ObjectCall() func-
tion (or ObjectSend() if the object is owned by another process). The differences
between ObjectCall() and ObjectSend() are detailed in Part 1: Class Manager, of
the PenPoint Architectural Reference.

Here’s a real-life example of sending a message. PenPoint provides a utility class,
clsList, which maintains a list object. The messages that clsList responds to are doc-
umented in Part 9: Utility Classes, of the PenPoint Architectural Reference and in the
clsList header file (PENPOINT\SDK\INC\LIST.H). This is the definition of msgList-
AddItemAt from LIST.H:

Sending a message

/**

msgListAddItemAt takes P_LIST ENTRY, returns STATUS
Adds an item to a list by position.

**/

#define msgListAddItemAt MakeMsg(clsList, 10)

Don’t worry about the details of the definition right now; this just tells us that
msgListAddItemAt is defined by clsList, that the message uses a P_LIST_ENTRY
structure to convey its arguments, and that the message returns a value of type
STATUS when it completes.

We want to send msgListAddItemAt to a list object, telling it to add the value ‘G’
to itself at position three in the list.

Sending msglistAdditemAt to a list

FIGURE 4-2

MgListAddltem

Message arguments

Now, in order for a list object to respond appropriately to msgListAddItem, it’s
going to need some additional information. In this case the additional information
is the item to add to the list (G), and where to add it (third postion). Most messages
need certain information for objects to respond correctly to them. The informa-
tion, called message arguments, you pass to the recipient along with the message.

In this case, the header file informs us that msgListAddItemAt takes a
P_LIST_ENTRY. In PenPoint’s C dialect, this means “a pointer to a LIST_ENTRY”
structure. Here’s the structure:

typedef struct LIST_ENTRY {
Ulé position;
LIST ITEM item;
} LIST_ENTRY, *P_LIST ENTRY;
U16 is an unsigned 16-bit number, P_UNKNOWN means a 32-bit pointer to an
unknown. (Chapter 5, Developing an Application, describes the rest of PenPoint’s

ubiquitous typedefs and #defines.)

The use of a weak word

like “takes” is deliberate.
Although a class usually
requires a specific message
argument structure, there
is no mechanism available to
detect when you pass it the
wrong structure.

1 / APP WRITING GUIDE

48 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

When you can deliver the message and its arguments to a list object, you're set.
Here’s the C code to do it:

LIST list; . // the object
LIST _ENTRY add; ™ // structure for message arguments
STATUS s; // most functions return a STATUS value

// Add an item to the list:

// 1. Assemble the message arguments;

add.position . = 3;

add.item = (LIST__ITEM) 'G’;

// 2. Now send the message and message arguments to the object.

if ((s = ObjectCall (msgListAddItemAt, list, &add)) !'= stsOK) {
Dbg (Debugf (U_L("add item failed: status is: 0x%1X", s)));
}

% ObjectCall() parameters

The code fragment above assumes that the list object (list) has already been created; The term “parameters” is

object creation is covered later in this chapter. As you can see, ObjectCall() takes ~ Uoed in function calls; the
term “arguments” is used for

three parameters: data required for a specific
message.

@ The message (msglListAddItem). Messages are just 32-bit constants defined by
a class in its header file. You can send an object a message defined by any of =~ We U%d 17;[0‘ ;agj ’;0 i;dicafe
R . . items define enfoint
the classes from which it inherits. .(Some objects even respond to messages and other symbols used in
defined by classes that are not their ancestors.) examples.
¢ The object (list). Objects are referenced by UIDs, unique 32-bit ID numbers.

UIDs are discussed in more detail later.

¢ The arguments for the message (add). Not all messages take arguments (msg-
FrameClose, for example, takes none), but others do (msglconSetPictureSize,
for example, takes a width and height). The PenPoint Architectural Reference
manual and the header files (in this case, PENPOINT\SDK\INC\LIST.H) docu-
ment each message’s arguments.

ObjectCall() has one 32-bit parameter for all the message’s arguments; if a message
takes more arguments than can fit in 32 bits, you must assemble the arguments in a
structure and pass ObjectCall() a pointer to the structure. In this case, msgList-
AddItem takes a P_LIST_ENTRY, a pointer to a LIST_ENTRY structure. (The Pen-
Point convention is that a type that begins with P_ is a pointer to a type.) Hence the
address of the add structure (&add) is passed to ObjectCall().

% Returned values

The result of sending a message is returned as a status value (type STATUS). stsOK
(“status OK”) is zero. All status values that represent error conditions are less than
zero. Note that STATUS is a 32-bit quantity, hence the %IX in the Debugf() state-
ment to print out a long hexadecimal.

Some messages are designed to return errors that you should test for. For example,
the status returned by sending msglsA to an object is stsOK if the object inherits
from the specified class, and stsBadAncestor if the object does not.

Some objects respond to messages by returning a positive value (which is not a
status value, but an actual number). Others return more complex information by

CHAPTER 4 / PENPOINT CLASS MANAGER 49
Creating an object

filling in fields of the message argument structure supplied by the caller (or buffers
indicated by pointers in the message argument structure) and passing back the
structure.

How objects know how to respond

The list object responds to msgListAddItem because it is an instance of clsList. But
what does that mean?

The list object has several attributes. Among them are the class that created the
object and the instance data for that object. As described above, when you define a
class, you must also create a table of the messages handled by your class.

The Class Manager finds out which class created the object and looks for the The Class Manager gives

method table for that class. The method table tells the Class Manager that the class the object a pointer to the
object’s instance data. This

has a function entry point for that message, so the Class Manager calls that func- ;7 aspect of PenPoint’s
tion entry point, passing in the message and the message argument structure. data integrity.

Although the object receives the message, its class has the code to handle the
message.

If the class decides to give the message to its ancestor, it passes the message and the
message arguments to the ancestor (but the instance data is still the instance data
for the object that received the message).

How messages to instances are processed by classes FIGURE 4-3

clsObject

MsgListAddltem
List clsList

W Creating an object

Where did the list object in the example above come from?

The short answer is that a client asked clsList to create an instance of itself by
sending msgNew to clsList. In many ways this is no different than when we sent
msgListAddItem to the list object in the previous example.

Classes and instances

The longer answer involves understanding the relationship among classes and

" instances. In the section “Sending a Message,” we discussed the fact that you send
messages to objects and those objects respond to the messages. We also discussed
how a class describes the data structures and the code used by its instances.

A class responds to msgNew by manufacturing an instance of itself. What is an
instance? It is merely an identifier and the data structures that represent an object.

1/ APP WRITING GUIDE

50

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Thus, the class asks the Class Manager to allocate the data structure and assign an
identifier to the structure.

How can a class respond to a message? This is a fundamental concept and one that
is hard to understand at first: a class is an object, just like any other PenPoint object.
And just like any other PenPoint object, an object is an instance of a class. In the
case of classes, all classes are instances of clsClass.

You can think of classes as objects that know how to create instances.

When a client sends a message to a class, the class behaves like any other object and
allows the class that created it (clsClass) to handle the message. clsClass contains
the code that creates new objects.

Thus, in answer to our original question about how did the list object come into
being: a client sent msgNew to the object named clsList. clsList is an instance of
clsClass, so the code in clsClass created a new object that is an instance of clsList.

An alternative explanation

At an implementation level, here’s what actually happens.

The PenPoint Class Manager maintains a database of data structures; each data
structure represents an object. The PenPoint Class Manager locates these objects by
32-bit values, called UIDs (unique identifiers); UIDs are explained later in this
chapter in “Identifying the new object: UIDs” on page 54. The data structure for
each object contains some consistent information (defined by clsObject) that indi-
cates the class to which the object belongs and other attributes for the object. Other
information in the data structure varies from object to object, depending on which
class created the object.

When a client sends a message to an object, the Class Manager uses the UID to
locate the object. The Class Manager then uses the object’s data structure to
find the class that created the object. The Class Manager finds the class and uses
the class’s method table to find the entry point for the function that handles the
message.

To create an object, the process works the same way. A client sends msgNew to a
class object. The Class Manager locates the object, finds the class that created the
object (clsClass), and calls the function in clsClass that creates new objects.

The NEW structure

For many classes, the _NEW structure is identical to the structure that contains the
object’s metrics.

You send msgNew to nearly every class to create a new instance of that class. In the
case of msgNew, the message argument value is always a pointer to a structure that
defines characteristics for the new object. This structure is commonly called the
class’s _NEW structure because the name of the structure is a variation of the class
name, followed by _NEW. For clsList, the "NEW structure is LIST_NEW.

[n other wordes, all classes
are objects, but not all
objects are classes.

When the object created by
clsClass is an instance of

clsClass, the new object is
a class.

The exceptions are
pseudo-classes and
abstract classes.

CHAPTER 4 / PENPOINT CLASS MANAGER

The _NEW structure is mainly used to initialize the new instance. For example,
when creating a new window you can give it a size and specify its visibility.

The _NEW structure differs depending on the class to which you send it. You can

find the specific _NEW structure to use when creating an instance of a class by

looking in the PenPoint API Reference manual or in the class’s header file. For

clsList, messages and message arguments are defined in PENPOINT\SDK\INC\

LIST.H. The _NEW structure is LIST_NEW. This excerpt comes from the LISTH file:
typedef struct LIST NEW ONLY {

LIST__STYLE style;
LIST FILE MODE fileMode;
U32 reserved[4];// Reserved

} LIST NEW_ONLY, *P_LIST NEW ONLY;

#define listNewFields\
objectNewFields \
LIST NEW ONLY list;

typedef struct LIST NEW {
listNewFields
} LIST_NEW, *P_LIST NEW;

Reading the _NEW structure definition

To read the _"NEW structure definition, you need to perform the work that the
compiler does in its preprocessor phase, expanding the macro definitions. The
_NEW structures in the PenPoint API Reference have all been expanded for your
convenience.

Start by looking for the definition for the _NEW structure (typedef struct
LIST_NEW) at the end of the example. The structure is represented by a #define
name (in this case listNewFields).

Here’s where it gets tricky; start thinking about inheritance. The #define name (list-
NewFields) has two parts:

¢ The #define name for the objectNewFields structure of the class’s immediate

ancestor (in this case, objectNewFields, which defines the arguments required
by clsObject).

¢ A _NEW_ONLY structure for the class being defined (LIST_NEW_ONLY). The
LIST_NEW_ONLY structure contains the actual msgNew arguments required
for clsList.

Each subclass of a class adds its own _NEW_ONLY structure to the ...NewFields
#define used by its immediate ancestor. This is how the _"NEW structure for a class
contains the arguments required by that class, by its ancestor class, by that class’s
ancestor, by that class’s ancestor, and so on.

In this case, however, there is only one ancestor, clsObject. objectNewFields is
defined in PENPOINT\SDK\INC\CLSMGR.H:
#define objectNewFields OBJECT NEW_ONLY object;

Creating an object

51

1 / APP WRITING GUIDE

52 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

OBJECT_NEW_ONILY is defined in the same file. It has many fields:
typedef struct OBJECT NEW {

U32 newStructVersion; // Out: [msgNewDefaults] Validate msgNew
// In:[msgNew] Valid version
OBJ_KEY key; // In:[msgNew] Lock for the object
OBJECT uid; // In:[msgNew] Well-known uid
// Out: [msgNew] Dynamic or Well-known uid
OBJ CAPABILITY cap; // In:[msgNew] Initial capabilities
CLASS objClass; // Out: [msgNewDefaults] Set to self

// In:[msgObjectNew] Class of instance
// In:[msg*] Used by toolkit components
OS_HEAP_ID heap; // Out: [msgNewDefaults] Heap to use for
// additional storage. If capCall then
// OSProcessSharedHeap else OSProcessHeap
U32 sparel; // Unused (reserved)
U32 spare2; // Unused (reserved)
} OBJECT NEW ONLY, OBJECT NEW, * P_OBJECT NEW ONLY, * P_OBJECT NEW;
Most elements in an argument structure are passed [z to messages—you're speci-
fying what you want the message to do. Oz indicates that an element is set during
message processing and passed back to you. /n:Out means that you pass in an ele-

ment and the message processing sets the field and passes it back to you.

%» A_NEW_ONLY for each class

Why such a complicated set of types? Thanks to class inheritance, when you create
an instance of a class, you are also creating an instance of that class’s immediate
ancestor class, and that ancestor’s ancestor class, and so on up the inheritance hier-
archy to the root Object class. Each ancestor class typically allows the client to ini-
tialize some of its instance data. Many classes allow you to supply the msgNew
arguments of their ancestor(s) along with their own arguments.

This is true for clsList: it inherits from clsObject (as do all objects) and part of its
msgNew argument structure is the OBJECT_NEW argument structure for clsOb-
ject. clsList has three msgNew arguments of its own: how it should file the entries
in the list, a list style, and a reserved U32.

These large message arguments structures are intimidating, but the good news is
that by sending msgNewDefaults, you get classes to do the work of filling in appro-
priate default values. You then only need to change a few fields to get the new
object to do what you want.

% Identifying _NEW structure elements

As a class adds a _NEW_ONLY structure to a_NEW structure, it also gives a name to
the _"NEW_ONLY structure. From the clsList example, we can expand the
LIST_NEW definition as: '
typedef struct LIST NEW {
objectNewFields

LIST_NEW_ONLY list;
} LIST NEW, *P_LIST NEW;

CHAPTER 4 / PENPOINT CLASS MANAGER

The name list identifies the LIST_NEW_ONLY structure within the LIST_NEW struc-
ture with the name list. We can carry on the expansion to apply the definition of
objectNewFields:

typedef struct LIST NEW {
OBJECT NEW ONLY object;
LIST NEW ONLY list;
} LIST NEW, *P_LIST NEW;
You can see now, when you create an identifier of type LIST_NEW; you can specify
the _NEW_ONLY structures by specifying their names. For example, if your code
contains:

LIST NEW myList;

You can refer to the LIST_NEW_ONLY structure by myList.list, and the OBJECT_-
NEW_ONLY structure by myList.object.

Code to create an object

This example code creates the list object to which we sent a message in the first
code fragment. Later code will show how the list class is itself created.

The preceding discussion mentioned that the client sends msgNew to a class to
create an instance of the class. The function parameters used in ObjectCall() for
msgNew are the same as before (the object to which you send the message, the mes-
sage, and the message argument value).

As we have seen, the _NEW structure can get quite large (because most subclasses
add their own data fields to the _NEW structure). Many classes have default values
for fields in the _"NEW structure, yet clients must be able to override these defaults,
if they want.

To initialize the "NEW structure to its defaults, clients must send msgNewDefaults
to a class before sending msgNew. msgNewDefaults tells a class to initialize the
defaults in the _NEW structure for that class. After msgNewDefaults returns, the
client can modify any fields in the _NEW structure and then can call msgNew.

Creating an object

LIST list; // Object we are creating.
LIST NEW new; // Structure for msgNew arguments sent to clsList.
STATUS s;

// Initialize NEW structure (in new).
ObjCallRet (msgNewDefaults, clsList, &new, s);

// Modify defaults as necessary.
new.list.fileMode = listFileItemsAsData;

// Now create the object by sending msgNew to the class.
ObjCallWarn (msgNew, clsList, &new, s);

// The UID of the new object is passed back in the _NEW structure.

list = new.object.uid;
Because almost every message returns a status value (to say nothing of most func-
tion calls), your code tends to become littered with status checking. Hence
PENPOINT\SDK\INC\CLSMGR.H defines several macros to check for bad status
values. This fragment uses one of those macros, ObjCallWarn(). ObjCallWarn()
does a standard ObjectCall() with its first three parameters, and assigns the return
value to its fourth. If the returned value is less than stsOK, ObjCallWarn() prints a

Status values less than
stsOK indicate errorse.

53

1 / APP WRITING GUIDE

54

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

warning to the debugging output device (when compiled with the DEBUG flag).
There are many other macros of a similar nature; they are documented in Parz 1:
Class Manager of the PenPoint Architectural Reference.

Identifying the new object: UIDs

When you send msgNew to a class, the message needs to give you an identifier for
the new object (so your code can use it). As mentioned previously, messages often
pass back values in the structure that contains the message arguments. In this case,
clsObject passes back the UID of the newly created object in its OBJECT_NEW
structure (in object.uid).

In our code example, the UID for the new object was passed back in new.object.uid.
The sample copied the value to the object named list, and henceforth uses list when
referring to the new list object.

You refer to objects using UIDs. A UID is a 32-bit number used by the Class Man-
ager to indicate a specific PenPoint object. An object’s UID is zota C pointer; it con-
sists of information used by the Class Manager to find an object and information
about the object’s class and other things. The symbol list in this example is the UID
of our list object; clsList is the UID of the list class.

PenPoint defines many classes that clients can use to create instances for their own
use (such as the list class, the window class, and so on). All of these built-in classes
are depicted in the class hierarchy poster.

When a client sends msgNew to a class to create a new object, the class is identified There are other types of
UiDe: local well-known UIDs
and local private UlDs. There
are no global, private UlDs.

by a unique value. If an application knows this value and the class is loaded in
PenPoint, the application can create an instance of the class. This value is called a
global well-known UID.

The global well-known UIDs of all the public PenPoint classes, including clsList,
are defined in PENPOINT\SDK\INC\UID.H. Because all PenPoint programs include
this header file when they are compiled, all programs know about these classes.

clsList is defined with this line in UID.H:
#define clsList MakeWKN (10,1, wknGlobal)

MakeWKN() (pronounced “make well-known”) is a macro that returns a 32-bit
constant. Here the parameters to MakeWKN() mean “create a well-known UID in
global memory for version 1 of administered ID 10.” No other well-known UID
uses the number 10.

Eventually, when you finalize your application, you will need to define your own
well-known UIDs. Contact GO Customer Services at 1-415-358-2040 (or by
Internet electronic mail at gocustomer@go.com) for information on how to get a
unique administered value.

Until that time, you can use some spare UIDs, defined in PENPOINT\SDK\
INC\UID.H, for this purpose. These UIDs have the values wknGDTa through
wknGDTg.

CHAPTER 4 / PENPOINT CLASS MANAGER 55
Creating a class

W Creating a class

You have seen how to send a message to an object and how to send msgNew to a
class to create a new object. You use the same procedure to create any object and
send it messages, so you can send messages to any instance of any class in PenPoint.

The last step is to create your own classes for your application. At the very least, you
must create a class for your own application; frequently, you will also create special
window classes and data objects that draw and store what you want.

1 / APP WRITING GUIDE

Creating a class is similar to creating an instance, because in both cases you send
msgNew to a class. When you create a class, you send msgNew to clsClass. This is
the class of classes. Remember that a class is just an object that knows how to create
instances of itself; in this case, clsClass knows how to create objects which them-
selves can create objects.

In short, to create a class, you send msgNew to clsClass, and it creates your new Some classes, such as clslist,
class object. A routine much like this in the PenPoint source files creates clsList; itis 2" created at boot time; other

. . classes are created later, such
executed when the user boots PenPoint (when the SYSUTIL.DLL is loaded). as at application installation.

/**
ClsListInit
Install clsList
**/
STATUS ClsListInit (void)
{

CLASS NEW new;

STATUS S;

ObjCallWarn (msgNewDefaults, clsClass, &new, s);
new.object.uid clsList;
new.class.pMsg = (P_MSG) ListMethodTable;
new.class.ancestor clsObject;
new.class.size SizeOf (P_UNKNOWN) ;
new.class.newArgsSize SizeOf (LIST_NEW) ;
ObjCallRet (msgNew, clsClass, &new, s);
return stsOK;

} // ClsListInit

% New class message arguments

The important thing, as always, is the group of message arguments. Here the mes-
sage is msgNew, just as when we created the list object; because we are sending it to
a different class, the message arguments are different. When sent to clsClass,
msgNew takes a pointer to a CLASS_NEW structure. Like LIST_NEW, CLASS_NEW
includes the arguments to OBJECT_NEW as part of its message arguments. Briefly,
the CLASS_NEW message arguments are:

¢ The same OBJECT_NEW arguments used by other objects—a lock, capabili-
ties, a heap to use (and a UID field in which the Class Manager returns the
UID of the object).

¢ The method table (new.class.pMsg) which is where you tell the class which
functions handle which messages. You must write the method table. This is
the core of a class, and is discussed in great detail in the next section.

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The ancestor of this class (new.class.ancestor). The Class Manager has to
know what the class’s ancestor is so that your class can inherit behavior from
it; that is, let the ancestor class handle some messages. In this case, clsList is an
immediate descendant of clsObject.

@ The size of the data needed by instances of the class (new.class.size). The Class
Manager needs the information to know how much room to allocate in mem-
ory when it creates a new instance of this class.

The size of the structure that contains information used to create a a new
instance of the class (new.class.newArgsSize).

For a list, the instance data is just a pointer to the heap where it stores the list infor- P_UNKNOWN is the typedef

mation, hence the size is SizeOf(P_UNKNOWN). For other objects, the instance used in Penfoint for a pointer
. to an unknown type.

data may include a lot of things, such as window height and width, title, current

font, etc. Note that an object has instance data for each of the classes it is an

instance of—not just its immediate class, but that class’s ancestor, and that ances-

tor’s ancestor, and so on.

The instance data size must be a constant! If, say, a title string is associated with Important! Instance data

;s g p |
each instance of your class, then you need either to have a (small) fixed-size title size must be a constant.
or to keep the string separate and have a pointer to it in the instance data.

Method tables

Nearly all classes respond to messages differently than their ancestors do—other- Some classes exist just to
wise, why create a new class? As a class implementer, you have to write methods to 4¢fine a set of messages;

the implementation of those
messages is up to its
descendante.

do whatever it is you want to accomplish in response to a particular message.

In PenPoint, a method is a C function, called a message handler. The terms mes-
sage handler and method are used interchangably.

When a client sends a message to an instance of your class, you want the Class
Manager to call the message handler that is appropriate for that message. You tell
the Class Manager what to do with each message through a method table.

A method table is simply a mapping that says “for message msgSomeMsg, call my
message handler MyFunction().” You specify the table as a C array in a file that is
separate from your code (you must compile it with the method table compiler,
described below). A method table file has the extension .TBL. Each class has its own
method table; however, a single method table file can have method tables for several
classes. At the end of the file is a class info table that maps a class to the method
table for that class. There must be an entry in the class info table for each method
table in the file. The file looks something like this:

MSG_INFO clsYourClassMethods[] = {

msgNewDefaults, "myClassNewDefaults", objCallAncestorBefore,
msgSomeMsg, "MyFunction", flags,
0,

}i

CLASS_INFO classInfo[] = {
"clsYourClass", clsYourClassMethods, 0,
0

}i

CHAPTER 4 / PENPOINT CLASS MANAGER 57
Creating a class

The quotation marks around the messages and classes are required. You can tell
the Class Manager to call your ancestor class with the same message before or
after calling your function by setting flags in the third field in the method table
(the third field in the CLASS_INFO table is not currently used and should always
contain 0).

%» Identifying a class’s message table

To convert the method table file into a form the Class Manager can use, you com-
pile the table file with the C compiler, then run the resulting object through the
Method Table compiler (PENPOINT\SDK\UTIL\CLSMGR\MT.EXE). This turns it into
a .0B] file that you link into your application.

The most important argument you have to pass to msgNew when creating a class is
a pointer to this method table (new.class.pMsg in the code fragment above). When
you create the class, you set new.class.pMsg to clsYourClass.

When an object is sent a message, the Class Manager looks in its class’s method
table to see if there is a method for that message. If not, the Class Manager looks in
the class’s ancestor’s method table, and so on. If the Class Manager finds a method
for the message, it transfers execution to the function named in the method table.

When the Class Manager calls the function named in the method table, it passes
the function several parameters:

¢ The message sent (msg).
¢ The UID of the object that originally received the message (self).

¢ The message arguments (pArgs). The Class Manager assumes that the message
arguments are a pointer to a separate message arguments structure).

¢ The internal context the Class Manager uses to keep track of classes (ctx).

¢ A pointer to the instance data of the instance.

% Self

Self is the UID of the object that received the message.

As we discussed before, when an object receives a message, the class manager first Of course, each ancestor

sees if the object’s class can handle the message, then it passes the message to its deals with only the parts of
the object data that it knows

about; an ancestor can’t
that each of those classes work on is the data in the object that first received the modify a structure defined

message (which is identified by self). This is fundamental to understanding object- % 't descendant.
oriented programming in PenPoint: calling ancestor makes more methods available
to the data in an object, it doesn't add any new data.

ancestor, which passes the message to its ancestor, and so on. However, the data

A second fundamental concept is that an ancestor may need to make a change

to the data in the object. However, rather than making the change immediately
by calling a function, the ancestor sends a message to self to make the change.

Be careful not to get pulled into the semantic pit here; self means the object

that received the original message, not the ancestor class handling the message.
(Remember that the ancestors only make more functions available; not more data.)

1 / APP WRITING GUIDE

58

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Because the message is sent to self, self’s class can inspect the message and choose
whether it wants to override the message or allow its ancestor to handle it. Each
ancestor inspects the message and can either override the message or pass it to its
ancestor. This continues until the ancestor that sent the original message receives
the message itself and, having given all of its descendants the opportunity to over-
ride the message, now handles the message itself (or even passes the message to its
ancestor!).

Possible responses to messages

Here are some of the flavors of responses you can make to a message in a message

handler:

@ Do something before and/or after passing it to the ancestor class. This might
include modifying the message arguments, sending self some other message,
calling some routine, and so on. This means that the class will respond to the
message differently than its ancestor.

¢ Do something with the message, but don’t pass the message to the ancestor
class. This is appropriate if the message is one you defined, because it will be
unknown to any ancestor classes. If the message is one defined by an ancestor,
this response means that you're blocking inheritance, which is occasionally
appropriate.

¢ Do nothing, but return some status value. This blocks inheritance, and means When such a message is new

that it’s up to descendant classes to implement the message. This is not as to a class (no ancestor), it is
. . . R called an abstract message.

rare as it sounds; many classes send out advisory messages informing
their instances or other objects that something has happened. For example,
clsWindow sends self the message msgWinSized if a window changes size.
This is useful for descendant classes that need to know about size changes, but
clsWin itself doesn’t care.

What messages does your message handler have to respond to? It usually ought to
respond to all the messages specific to your class which you define—no other
ancestor class will. Ordinarily an instance of each class has its own data, so most
classes intercept msgNew to execute a special initialization routine; if there are
defaults for an instance’s data, the class will also respond to msgNewDefaults. Most
classes should also respond to msgFree to clean up when an instance is destroyed.

Here is clsList’s method table.

//

/7 Include files

//

#include <list.h> // where the messages are defined

MSG_INFO ListMethods [] =
|

/* clsObject methods */
msgNewDefaults, "ListNewDefaults", O,
msgInit, "ListInit", O,

msgFree, "ListMFree", O,

msgSave, "ListSave", 0,

msgRestore, "ListRestore", 0,

CHAPTER 4 / PENPOINT CLASS MANAGER
Creating a class

/* clsList methods */
msgListFree, "ListMFree", 0,
// Functions for the rest of the clsList methods...

-7

-7

Vi

CLASS INFO classInfo[] =

{ "ListMethodTable", ListMethods, 0,

0

}i
Note that clsList responds to most intercepted messages by calling an appropriate
function (ListInit(), ListMFree(), and so on). The functions that implement the
various list messages are not printed here; indeed, external code should never call
routines internal to a class. One of the goals of object-oriented programming is to
hide the implementation of a class from clients using the class.

59

1 / APP WRITING GUIDE

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 1 / APPLICATION WRITING GUIDE

Chapter 5 / Developing an Application

Thus far, we have described the PenPoint™ operating system and PenPoint
applications from a conceptual point of view. By now you should understand
how PenPoint differs from most other operating systems and what the PenPoint
Application Framework and Class Manager do for you.

With this chapter we start to address what you, as a PenPoint apphcatlon developer,
have to do when writing PenPoint applications.

¢ The first section describes many of the things that you have to think about
when designing an application.

The second section describes some of the things that you have to consider
when designing an application for an international market.

¢ The third section describes the functions and data structures that you will
create when you write an application.

¢ The fourth section describes the cycle of compiling and linking that you will
follow when developing an application.

¢ The fifth section provides a checklist of things that you must do to ensure that
your application is complete.

& The sixth and following sections describe the coding standards and naming
conventions used by GO. Included in these sections is a discussion of some of
the debugging assistance provided by PenPoint.

¢ The last section describes the tutorial programs provided with the SDK.

» Designing your application

When you design a PenPoint application, there are several separate elements that
you need to design:

& The user interface

¢ The classes

¢ The messages

¢ The message handlers
¢ The program units

This section points out some of the questions you must ask yourself when
designing an application. This section does not attempt to answer any of the ques-
tions; many answers require a good deal of explanation, and many decisions involve
your own needs.

62

B

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Just read this section and keep these questions in mind as you read the rest of the
manual.

Designing the user interface

The most obvious part of a PenPoint application is the user interface. Almost as
soon as you determine what your application will do, you should begin to consider
your user interface.

Your user application should be consistent with the PenPoint user interface, which
is described in detail in the PenPoint User Interface Design Reference.

Designing classes

PenPoint provides a rich set of classes that can do much of the work for your
application. Your task is to decide which of these classes will serve you best. The
PenPoint Architectural Reference describes the PenPoint classes and what they can
provide for you.

If the classes provided by PenPoint don’t do exactly what you need, you should look
for the class that comes closest to your needs, then create your own class that
inherits behavior from that class.

Designing messages

After determining that you need to create your own class, you need to decide what
messages you need. Usually you add new messages to those already defined by your
class’s ancestors.

However, the real trick to subclassing comes when you decide how to handle the
messages provided by your class’s ancestors. If you do not specify how your class
will handle your ancestors’ messages, the PenPoint class manager sends the messages
to your immediate ancestor, automatically. If you decide to handle an ancestor
message, you then need to decide when your ancestors handle the message, if at all.
Do you:

¢ Call the ancestor before you handle the message?
¢ Call the ancestor after you handle the message?

¢ Handle the message without passing it to your ancestor at all (thereby over-
riding ancestor behavior)?

Designing message handlers

After determining the messages that you will handle, you then need to design the
methods that will do the work for each of the messages. In considering the methods
and the information they need, you will probably start to get an idea of the instance
data that your class needs to maintain.

CHAPTER 5 / DEVELOPING AN APPLICATION 63
Designing for internationalization and localization

% Designing program units
When you understand the classes that you require, you should consider how
to organize your classes and their methods into program units. The common
approach used in our sample code is to place the source for each class into a
separate file.

You should consider whether a class will be used by a number of different applica-
tions or used by a single application. If the class can be used by more than one
application (such as a calculator engine), you should compile and link it into a
separate DLL (dynamic link library). Each application tells the installer which DLLs
it needs at install time. The installer then determines whether the DLL is present or
not. If not, it installs the DLL.

P Designing for internationalization and localization

PenPoint 2.0 Japanese contains support for applications that are written for

more than one language or region. The process of generalizing an application so
that it is suitable for use in more than one country is called internationalization.
Modifying an application so that it is usable in a specific language or region is called
localization.

PenPoint 1.0 already includes many features that will be used to support inter-
nationalization. For example, PenPoint 1.0 uses PenPoint resource files to store its
text strings. When localizing to a specific language, a different resource file will be
created that contains text strings in that language.

There are two aspects to the changes implied by PenPoint 2.0 Japanese. The first is
making your application port easily to PenPoint 2.0 Japanese. The second is inter-
nationalizing your application.

% Porting from PenPoint 1.0 to PenPoint 2.0 Japanese

PenPoint 2.0 Japanese incorporates some major changes that will cause applications
compiled for PenPoint 1.0 to be incompatible with PenPoint 2.0 Japanese. The
data created by 1.0 applications should still work under PenPoint 2.0 Japanese, and
properly writtern 1.0 applications should be portable to PenPoint 2.0 Japanese with
nothing more than a recompilation.

This section describes how to write your PenPoint 1.0 application so that it will be
portable to PenPoint 2.0 Japanese. Using these guidelines does 7oz mean that you
will have internationalized your application! Internationalization and localization
are much larger issues, and are dealt with elsewhere. These instructions are intended
only to make it easier for you to port your United States English application to
PenPoint 2.0 Japanese.

The biggest change is that PenPoint 1.0 uses the ASCII character set, while PenPoint
2.0 Japanese uses Unicode. ASCII is an 8-bit character set; Unicode is a 16-bit char-
acter set. This affects character types, string routines, quoted strings, and other
string-related entities.

! 1/ APP WRITING GUIDE

64 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

%» Character types

PenPoint provides three character types: CHARS, CHAR16, and CHAR. The first two
provide 8- and 16-bit characters, respectively. In PenPoint 1.0, the plain CHAR type
is 8 bits long; in PenPoint 2.0 Japanese, CHAR is 16 bits long. You need to convert
all of your character data to use the CHAR type, except where you know the size
you'll need will be the same under PenPoint 1.0 and PenPoint 2.0 Japanese (for
example, in the code that saves and restores data).

Any places where you depend on a CHAR having a small value, you should rethink
the problem. For example, if you currently translate a character by indexing 256-
element array (CHAR array[sizeof(CHAR)]), you probably won’t want to use the
same strategy when sizeof(CHAR), and therefore the size of your array, is 65,536.

Any places where you depend on sizeof(CHAR) being one byte, you need to change
the value.

%7 String routines

All of the familiar C string routines (strcmp, strcpy; and so on) still exist in PenPoint
2.0 Japanese, and they still work only on 8-bit characters. The INTL.H header file in
PenPoint 1.0 defines a new set of string routines (named Ustremp(), Ustrepy(), and
so on) that perform the equivalent functions on 16-bit Unicode characters.

In PenPoint 1.0, the U...() functions are identical to their 8-bit namesakes. In
PenPoint 2.0 Japanese, they are 16-bit routines. In other words, the old routines
only work on CHARS strings, while the U...() routines work on CHARS strings in
PenPoint 1.0 and on CHARIG6 strings in PenPoint 2.0 Japanese. If you use the U...()
versions and CHAR strings in your PenPoint 1.0 code, you will not have to change
anything for PenPoint 2.0 Japanese, because CHAR is an 8-bit value in PenPoint 1.0
and a 16-bit value in PenPoint 2.0 Japanese.

You should use the U...() versions wherever you use CHAR strings, which should be
for every string you display on the screen or debugging ourput device.

%» Character and string constants

When you use CHARS, you can use standard C conventions for forming character
and string constants. That is:

CHAR8 *s = "string";

CHAR8 ¢ = 'c’;
When you use the CHAR16 type, you must precede the character or string constant
with the letter L, which tells the compiler you are using a 16-bit (long) character, as:

CHAR16 *s = L"string"

CHAR16 ¢ = L'c’
When you use the CHAR type, you must precede the character or string constant
with the identifier U_L, which means UNICODE, long. In PenPoint 1.0, this tells
the compiler to use 8-bit characters; in PenPoint 2.0 Japanese, this tells the com-
piler to use 16-bit characters.

CHAR *s = U L"string";
CHAR ¢ = U_L'c’;

CHAPTER 5 / DEVELOPING AN APPLICATION
Designing for internationalization and localization

% Preparing for internationalization

PenPoint 1.0 does not contain all the messages, functions, and tools that you
will need to internationalize your application. However, there are several facilities
available in PenPoint 1.0 that you can use to reduce the work needed to inter-
nationalize. This section lists these facilities.

%7 Move strings into resource files

You should move as many of your text strings into resource files as possible. When
text strings are hard-coded into your application, they are very difficult to translate
and do not allow users to change language dynamically. If you move your applica-
tion’s text strings into resource files they are easy to translate and allow users to
change language simply by substituting one resource file for another.

If you use the StdMsg() facility for displaying dialog boxes, error messages, and
progress notes, your text strings are already in resource files. The positional param-
eter facility provided with StdMsg() and the compose text string routines do not
depend on the order of replaceable values in the function parameters. These func-
tions are unlike printf(), where the order of the function parameters is directly
related to the order of replaceable values in the string. When you use StdMsg()

or compose text, the function parameters are always in the same order, but your
string can use them in the order dictated by the national language in which you
are writing.

%v Identify and modularize code that varies with locale

When internationalizing an application, moving its text strings to resource files
allows users to change the language, but in order to support another language, parts
of your application code must be equally replaceable. For example, when sorting
characters in another language, you must be prepared to handle different sort
sequences.

PenPoint 2.0 Japanese provides a number of services to perform functions that vary
by language, such as sorting, number formatting, number scanning, numbers with
units, times and dates (input and output), character comparisons, character conver-
sions, spell-checking, and so on.

The PenPoint Services architecture enables you to create functions that users can
install and activate whenever they choose. For instance, users can install several
different printer drivers, but they only make one driver current at a time. Similarly,
users of PenPoint 2.0 Japanese can install several different sort engines and choose
one to use with the current language.

You should identify and flag any language-dependent routines, such as text manip-
ulation, in your PenPoint 1.0 application. When you port the code to PenPoint 2.0
Japanese, use services to replace them wherever possible.

65

1 / APP WRITING GUIDE

66 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Part 13: Writing PenPoint Services in the PenPoint Architectural Reference describes
how to create your own services. If you make your language-dependent functions
into services in PenPoint 1.0, the change to PenPoint 2.0 Japanese will be much
easier.

%> New fext composition routines

The file CMPSTEXTH contains ComposeText() routines for assembling a com-
posite string out of other pieces. Use these routines to create strings in your Ul—
don’t use sprintf()! The ComposeText() routines will also save you effort because
you can specify the resource ID of a format string and the code will read it from the
resfile for you. You can, of course, give the format string directly to the routines.

W Development strategy

Where do you start writing an application?

The PenPoint Application Framework provides so much boilerplate work for you,
it is very easy to create applications through incremental implementation. You start
with an empty application, that is, one that allows the Application Framework to
provide default handling of most messages. Then, one by one, you add new objects
and classes to the application, testing and debugging as you go.

As we shall see in Chapter 6, A Simple Application (Empty Application), the
PenPoint SDK includes sources for an empty application called Empty Application.
You can copy, compile, install, and run Empty Application.

This section describes the fundamental parts of PenPoint applications. These are
the parts that you will probably work on first. They are also the parts you will
return to many times to modify.

% Application entry point

All PenPoint applications must have a function named main(), which is the entry
point for an application. When the application is installed, main() creates the appli-
cation class and can create any other private classes required by all instances of the
application.

% Application instance data

In PenPoint, objects that are instances of the same class share the same code. For
example, if there are two insertion pads visible on the screen, they are both running
the same copy of the insertion pad class code, but each instance of the insertion pad
has different instance data.

As soon as your application has data that can be different for each of its documents,
your application needs to maintain instance data.

What do you save in instance data?

The most common use of instance data is to save identifiers for objects created by
your application. The PenPoint object-data model suggests that any time you have
data, you should use a class to maintain that data.

CHAPTER 5 / DEVELOPING AN APPLICATION
Development cycles

When your application class has instance data, it must be prepared to respond to Any class with instance

msglnit by initializing values in the instance data (if needed). data must respond to
msglnit in the same way.

¥ Creating stateful objects

Stateful objects contain data that must be preserved when a document is not active.

You can do some interesting things with an application that uses only the behavior
provided by the Application Framework. However, soon after you start developing
an application, you will want the application to be able to save and restore data
when the user turns away from and turns back to its documents. To save and restore
documents, you need to create, save, and restore stateful objects. '

Usually an application’s instance data contains some stateful objects and some non-
stateful objects.
If your application class has stateful objects, you must be prepared to handle:

msgApplnit by creating and initializing the stateful objects required by
a new document. Your application can create additional stateful objects
later.

msgSave by saving all stateful objects to a resource file.

msgRestore by restoring all stateful objects from a resource file.

¥ Displaying on screen
Most applications need to display themselves on screen. The PenPoint Application
Framework provides access to the screen by creating a frame object.

When your application receives msgAppOpen, it should create the remaining non-
stateful objects that it needs to display on screen, and then should display itself in
the frame provided by the application framework.

When your application receives msgAppClose, it should remove itself from the
frame and destroy all of its nonstateful objects.

% Creating component classes

If you create new component classes that can be shared by a number of different
applications (or other components), you usually define the component classes in
a DLL file.

As an application executable file must have a function named main(), a DLL file
must have a function named DLLMain(). DLLMain() creates the component
classes defined in the DLL.

9 Development cycles

The compile, install, test, and debug cycle in PenPoint is similar to the develop-
ment cycle for most other operating systems. This section briefly describes the steps
involved in the development cycle. Later sections cover these steps in greater detail.

67

/ APP WRITING GUIDE

[

68 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

% Compiling and linking

There are several types of files used to compile and link PenPoint applications.
These files include:

¢ The make file.
¢ The application’s method table files.
& The application’s C source and header files.

¢ The PenPoint SDK header and library files.

%7 Method table files

You create a method table file to equate the messages handled by your class to a
function defined in your source. You create one method table per class, but one
method table file can contain several method tables.

You compile the method table and then compile the resuiting intermediate object
file with the PenPoint method table compiler, MT. This produces:

¢ A header file that you use when you compile your C source.

¢ An object file that you use when you link your application.

%# C source and header files
PenPoint applications are written in the C language; the object-oriented extensions
are provided through standard C function calls. The source for each class (applica-
tion or component) is maintained in a separate file.

Following normal C programming practice, it is advisable to define your symbols,
structures, macros, and external declarations in one or more header (H) files.

%¥ PenPoint SDK files

The PenPoint SDK header and library files are in the directories PENPOINT\
SDK\INC and PENPOINT\SDK\LIB, respectively.

You should include these directories in your compiler and linker search paths.

¥ Installing the application

One difference between PenPoint and most other operating systems is that once
you have compiled an application, you must install the application into PenPoint
before you can use it. There is no “run” command in PenPoint, so you must use the
Notebook to transfer control to the application.

Additionally, all application code in PenPoint is shared. PenPoint must know where
your application code is installed so that all instances of your application use the
same code.

CHAPTER 5 / DEVELOPING AN APPLICATION
A developer’s checklist

There are two ways to install an application into PenPoint:
Install when you boot PenPoint.
Install explicitly with the PenPoint application installer.

You can install an application when you boot PenPoint by adding your application’s
PenPoint name to your PENPOINT\SDK\BOOT\/ocale\APPINI file (where locale is
USA for United States English and JPN for Japanese).

You can explicitly install a PenPoint application by running the PenPoint applica-
tion installer (found in the Connections and Settings notebooks).

You can use the Connections notebook to tell PenPoint to display the installable
applications (or any other installable items) whenever a volume becomes available.

% Debugging

There are a number of tools available to you to aid in debugging. Among them are:

¢ Using Debugf() or DPrintf() statements to send text to the debugger stream.
You can use a second monitor or the system log application to view the debug-
ger stream. You can also save the debugger stream in a log file. The Debugf{()
and DPrintf() statements are described later in this Chapter. The system log
application is described in PenPoint Development Tools.

¢ Using the PenPoint source debugger (DB) to debug your application. The
debugger is described in PenPoint Development Tool.

¢ Handling msgDump. msgDump requests an object to format its instance
data and send it to the debugger stream. While developing an application, you
can send msgDump to any object whose state is questionable. From the
PenPoint source debugger, you can use the od command to send msgDump to
an object. It is not a good idea to send msgDump in production code.

p A developer’s checklist

When your PenPoint application does what you want it to, you can stop and
move on to your next project. However, PenPoint applications are far more useable
when they can interact with the PenPoint operating system and other applications.
There is such a wealth of interaction that it is easy to omit some behavior from your
application.

This section presents two checklists. The first checklist details all the interactions
that you should include in your PenPoint application, starting at the fundamental
Application Framework interactions. The second checklist lists the interactions that
you should consider adding to your application to improve its appearance or

usability.

69

1/ APP WRITING GUIDE

70 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

% Checklist of required interactions
You should use this checklist to ensure that your application is complete. The items
in the checklist point to parts of this manual and the PenPoint Architectural Refer-
ence where the item is described in detail.
(J Handle application class installation (in main() when processCount equals 0).

U Create the application class.

L] Handle application object instantiation (in main() when processCount is
pp] P
greater than 0).

] Create any private classes required by an instance of your
application class.

I Create any other objects required at the time.
J Create and display windows.
U Insert yourself into frame on msgAppOpen.
I Remove yourself from frame on msgAppClose.
1 Handle application termination.
U Respond to msgFree protocol.
) Handle application deactivation or deinstallation (msgAppTerminate).
] Handle msgDump.
) Handle msgSave.
(J Save data.
] Handle msgRestore.
«J Restore data.
{ Restore objects.
J Observe objects.
J Handle input.
< Handle selection protocol.

{J Respond to Printing messages.

B Checklist of nonessential items

Use this checklist to ensure that you have considered all possible nonessential addi-
tions to your application. The items in the checklist point to parts of this manual
and the PenPoint Architectural Reference where the item is described in detail.

() Add menus to SAMs.

(] Handle Option sheet protocols.

Create an option sheet.

CHAPTER 5 / DEVELOPING AN APPLICATION 71
GO’s coding conventions

(J Allow Application Embedding,

(1 Respond to move/copy protocol.

1 Handle document import and export.
(J Handle Undo.

(J Respond to traversal protocols.

U Define document icons.

U Create Stationery.

U Create Help notebook files.

U Create Quick Help Resources.

P GO’s coding conventions

At GO, we have developed techniques to make PenPoint code easier to write,
understand, debug, and port. Some of our techniques are stylistic conventions,
such as how variable and function names should be capitalized. Others fall under
the category of extensions to C, including a suite of basic data types that are com-
piler and architecture independent. This section describes:

¢ The conventions that GO code follows.
¢ The global types, macros, constants, and constructions provided in PenPoint.

¢ PenPoint’s global debugging macros and other functions that we have found
useful to diagnose program errors.

While we would be delighted for you to follow all of our conventions, we obviously
do not expect every developer to do so. Conventions are a matter of taste, and you
should follow a style that is comfortable to you. However, we do recommend that
you make use of our extensions. They will help make your code easier to debug and
port. Also, by describing our style, we hope to make it easier for you to understand
our header files and sample code.

% Typedefs

All typedefs are CAPITALIZED and use the underscore character to separate words.
typedef unsigned short Ul6;
typedef Ul6 TBL_ROW_COUNT;

Pointer types have the prefix P_.

typedef unsigned short U16, * P_Ul6;
typedef TBL_ROW_COUNT *P_TBL_ROW_COUNT;

In structure definitions, the name of the structure type is also the structure tag.

typedef struct LIST ENTRY {
Ule position;
LIST_ITEM item;

} LIST ENTRY, *P_LIST ENTRY;

The tag name is used by the PenPoint source-level debugger.

1 / APP WRITING GUIDE

72

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

% Variables

Variable names are mixed case, always starting with a lowercase letter, with capitial-
ization used to distinguish words. Variable names do not normally include under-
score characters.

Ul6 numButtons;
Pointer variable names are prefixed with a lowercase p. The letter following the p is
capitalized.

P_Ul6 pColorMap;
Functions

Functions are mixed case, always starting with a capital letter, with capitialization
used to distinguish words. Function names do not normally include underscore
characters.

Function names often use a Noun-Verb style. The verb is what the function does,
the noun is the target of the function’s action.
TilePopUp(); PenStrokeRetrace();

However, the main() function is simply main().

Defines (macros and constants)

Defines follow the same capitalization rules as variables and functions. Macros
follow the rules for function names (mixed-case, first letter uppercase) and con-
stants follow the rules for variable names (mixed-case, first letter lowercase).

#define OutRange(v,1,h) ((v)<(l) || (v)>(h))
#define maxNameLength 32
#define nameBufLength (maxNameLength+1)

¥ Class manager constants

You use several special kinds of constants when writing Class Manager code:
¢ Class names
¢ Well-known objects
¢ Messages

¢ Status values

%r Class names

Class names start with “cls” followed by the name of the class: clsList, clsScrollBar,
and so on.

%» Well-known objects

Pre-existing objects in PenPoint to which you can send messages have the prefix
“the”: theRootWindow, theSystemPreferences, and so on.

CHAPTER 5 / DEVELOPING AN APPLICATION
GO’s coding conventions

%r Messages

Messages follow the standard style for constants, but have special prefix “msg”. This
is followed by the name of the class that defines the message (possibly abbreviated)
and finally by the action requested by the message: msgListRemoveltem, msg-
AddrBookChanged, and so on.

The exceptions to this rule are the basic clsObject messages, including msgNew;,
msgSave, and msgFree, which apply to all classes. These basic messages do not
identify their class.

%y Status values

Like messages, status values follow the standard style for constants. However, all
status values start with the prefix sts. This is followed by the name of the class that
defines the status value (possibly abbreviated) and finally by a description of the
status: stsListEmpty and stsListFull.

For more information on the way unique messages and status values are con-
structed for a class, please refer to Part 1: Class Manager of the PenPoint Architec-
tural Reference.

% Exported names

At GO, we use prefixes to indicate the architectural subsystem or component that
defines an exported variable, define, type, or function. Prefixes help lower the possi-
bility of name conflicts across PenPoint. They also help developers find which files
contain the relevant source code.

Note that fields within exported structures are not prefixed, and locals within
sample code source files are generally not prefixed either.

For example, exported System Service names are all prefaced with OS:

#define osNumPriorities 51

#define osDefaultPriority 0

typedef U16 OS_INTERRUPT ID; // logical interrupt ID
STATUS EXPORTEDQO OSProgramInstall (

P_CHAR pCommandLine, // dlc or exe name (and arguments)
P_CHAR pWorkingDir, // working dir of the program

P_OS _PROG_HANDLE pProgHandle, // Out: program handle

P_CHAR pBadName, // Out: If error, dll/exe that was bad
P_CHAR pBadRef // Out: If error, reference that was bad

)i
The file PENPOINT\SDK\UTIL\TAGS\TAGS lists most of the exported names in
PenPoint. You can scan it to see if a particular prefix is used.

The standard global include file PENPOINT\SDK\INC\GO.H does not prefix its
identifiers—if something is common across PenPoint, such as the U16 type, it is not
prefixed in any way.

73

1/ APP WRITING GUIDE

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

P PenPoint file structure

At GO, we follow a similar structure for both header files and source code files.

The general structure of a header file is shown below:

file header comment
#includes

#defines

typedefs

global variables
function prototypes
message headers

Here is the general format of the source code file for a class implementation:

file header comment

#includes

#defines

typedefs

global variables

internal functions

exported functions

“methods” implementing messages

class initialization function

main() function (for application classes)

% File header comment

The file header comment contains a brief description of the contents of the file. It
also includes the revision number of the header file. If you have a problem using a
PenPoint API, the revision level of the software is important information.

Include directives
The include directives all follow the file header and are of the form:

#include <incfile.h>

Note that the filename for the include file does not contain any directory informa-
tion. To locate include files, you specify an include path externally (either in the
INCLUDE system variable or as a compiler flag).

%r Multiple inclusion

PenPoint has many subsystems, each linked to other subsystems. Each element
tends to have its own header file(s). Consequently, including the header file for one
subsystem leads to it including dozens of other subsystems. Often the same header
files are included by other header files. This can slow down compiling and may lead
to errors if header files are compiled in more than once.

All PenPoint header files guard against being included multiple times by defining
a unique string (FILENAME_INCLUDED) and checking to see if this string has been
defined:

/‘k***

filename.h
(C) Copyright 1991, GO Corporation, All Rights Reserved.

Include file format.

CHAPTER 5 / DEVELOPING AN APPLICATION
PenPoint file structure

$Revision$
$Author$

$Dhate$
***/

#ifndef FILENAME INCLUDED

#define FILENAME INCLUDED

// defines, types, and so on of header file
#endif // FILENAME INCLUDED

where FILENAME is the name of the include file itself.

You can speed up compiling by putting the same checks in your files to avoid
reading even the first few lines of a header file a second time:

#ifndef LIST INCLUDED
#include <list.h>
#endif // LIST INCLUDED

Common header files

In a class implementation, if you include the header file of your immediate
ancestor, this will usually include the header files of all your ancestors.

If you include any header file at all, you will not need to include <GO.H>.

Defines, types, globals
This section of a file holds all of the #defines, typedefs, and global and static decla-

rations used only in this file. By grouping these items in one place, you will be able
to find them more easily.

Function prototypes

Function prototypes in header files indicate the parameters and format of PenPoint
functions. Each is preceded by a comment header:

/**

Function returns TYPE
Brief description.

Comments, remarks.

*/

function declaration;
For example:

/**

OSHeapBlockSize returns STATUS
Passes back the size of the heap block.

The size of the heap block is the actual size of the block. This may
be slightly larger than the requested size.

See Also
OSHeapBlockAlloc
OSHeapBlockResize

*/

STATUS EXPORTED OSHeapBlockSize (
P_UNKNOWN pHeapBlock, // pointer to the heap block
P_SIZEOF pSize // Out: size of the heap block
)i

The header file descriptions of functions provide a “reminder” facility, not a
tutorial.

75

1 / APP WRITING GUIDE

76 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

% Message headers

Many header files contain message headers, which are where messages are described
and where their constants and related data structures are defined. Message headers

have the following format:
/***
msgXxxAction takes STRUC TURE, returns STATUS
category: message use
Brief description.
Comments, remarks.
*/
#define msgXxxAction MakeMsg (clsXxx, 1)
typedef struct STRUC TURE {

} STRUC_TURE, *P_STRUC_TURE;

For example:

/**

msgAddrBookGetMetrics takes P_ADDR BOOK METRICS, returns STATUS.

Passes back the metrics for the address book.

*/ v

#define msgAddrBookGetMetrics MakeMsg (c1sAddressBook, 8)

typedef struct ADDR BOOK METRICS {
Uleé numEntries; // Total number of entries
Ul6 numServices; // Number of known services
Ul6 numGroups; // Number of groups in the address book
U32 sparel;
U32 spare2;

} ADDR_BOOK_METRICS, *P_ADDR_BOOK_METRICS;

We relied on the regular format of message descriptions in header files to generate
the datasheets for messages in the PenPoint API Reference.

%¥ In, out, and in-out

In a message header, you can assume that all parameters and message arguments are
input-only (In) unless otherwise specified (Out or In-Out).

% Indentation

Most PenPoint header files use four spaces per tab for indentation. Most program-
mer’s editors allow you to adjust tab spacing; setting it to four will make it easier to
read GO files.

% Comments

In general, slash-asterisk C comments (/* and */) indicate the start and end of
functional areas, and slash C (//) comments are used for in-line comments within
functions.

% Some coding suggestions

Here are some of the other conventions that GO code follows (more or less):

¢ Always include the default case in your switch statements to explicitly show
that you are aware of what happens when the switch fails.

CHAPTER 5 / DEVELOPING AN APPLICATION 77
PenPoint types and macros

¢ Don't use load-time initializations, except for constant values. Since PenPoint
restarts code without reloading it, your code should explicitly initialize your
variables.

¢ Use #defines for constants and put the defines in an include file (if it is used
across multiple files) or at the beginning of the source file with a comment to
indicate its use.

¢ When defining an external function, use prototype declarations to describe
the parameters and types it requires.

¢ Make calls to external functions as specified by the include file of the sub-
system exporting the function.

¢ If your files fully declare the types of their functions, this will help them to be
independent of any flags that may be set during compilation.

¢ A source file should compile without warnings.

¢ Structure names must not be used as exported names. Use the type name to
export a structure type. Structure names should be used only for self-referenc-
ing pointers.

¢ Code for a single function should not exceed a few pages. Break it up (but
don’t go overboard!).

¢ Use GO’s Class Manager to support standard object-oriented programming
methodologies.

¢ The most important parameter to a function should be the first parameter, for
example, WindowDrag(pWin, newx, newy). This is usually the object on
which the function acts.

» PenPoint types and macros

In developing PenPoint, we found it useful to establish a “base” environment that
goes beyond the structures and macros provided by the C language. This section
describes many of these extensions. For a complete list, please look at
PENPOINT\SDK\INC\GO.H, where all of our extensions are defined.

¥ Data types

To allow for portability between different C compilers and processors, we define six
basic data types that directly indicate their size in bits. Three are signed: S8, S16,
and $32. The others are unsigned: U8, U16, and U32. W also define corresponding
pointers for each, prefixed with P_, and pointers to pointers, which are prefixed
with PP_.

To plan for internationalization efforts, we provide the CHAR data type. CHAR is
functionally equivalent to char and is defined to be a U8 in PenPoint 1.0. In Pen-
Point 2.0 Japanese, which includes support for international character sets, we've
changed CHAR to U16. Simply stated, you should use CHAR instead of char to
ensure an easier transition to PenPoint 2.0 Japanese.

1 / APP WRITING GUIDE

78

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

CHAR has two related data types: P_CHAR, which represents a pointer to a char-
acter, and PP_CHAR, which is a pointer to a string. -

P_UNKNOWN is for uninterpreted pointers, that is, pointers that you do not deref-
erence and about which code makes no assumptions.

P_PROC is for pointers to functions. It assumes the Pascal calling convention.
The SIZEOF type is for the sizes of C structures returned by sizeof.

The status values returned by many functions are of type STATUS. This is a signed
32-bit value, although most subsystems encode status values to indicate the class
defining the error to avoid status value conflicts. “Return values” on page 80
describes status values in greater detail.

Basic constants
Use the enumerated type BOOLEAN for logical values true and false. The BOOLEAN

type also defines the values True, False, TRUE, and FALSE to preempt any discus-
sion about capitalization rules.

Similarly, null is the preferred spelling for null (0), but NULL is also defined. pNull
is a null pointer.

minS8, maxS8, minS16, maxS16, minS32, and maxS32 are the minimum
and maximum integer values for the three signed types. maxU8, maxU16,
and maxU32 are the maximum values of the three unsigned types. Obviously,
the minimum unsigned value is zero.

Names in many PenPoint subsystems can be no longer than 32 characters. This
limit is defined as maxNameLength. Since strings are normally null-terminated, we

define nameBufLength to be maxNameLength + 1.

Legibility
GO.H defines AND, OR, NOT, and MOD to be the corresponding C logical “punctu-
ation;” this avoids confusion with the double-character bit operators && and II.

Compiler isolation

GO.H provides macros and other #defines that you can use to ensure compiler
independence.

Function qualifiers

GO.H introduces a layer in between the special function qualifier keywords, such as
STATIC, by providing uppercase versions of all these keywords.

Using the uppercase versions allow you to easily remove or redefine these keywords
in source code if necessary. This allows you, for example, to experiment with
changing the calling sequences of your code to check for errors or changes.

It’s important to explicitly specify calling conventions in your function prototypes
so that code can compile with a different set of compiler switches from GO’s
defaults, yet still observe the protocol requirements.

CHAPTER 5 / DEVELOPING AN APPLICATION 79
PenPoint types and macros

STATIC, LOCAL, and GLOBAL are compiler #defines that support the appearance
(if not the reality) of modular programming,.

%7 Enumerated values

Some compilers base the size of an enum value on the fields in that enum. This has
unfortunate side effects if an enum is saved as instance data; programs compiled
under different compilers might read or write different amounts of data, based on
the size of the enum as they perceive it.

To guarantee that an enum is a fixed size, use the Enum16() and Enum32()
macros. These macros create enums that are 16 and 32 bits long, respectively. The
macros expect a single argument—the name of the enum to be defined.

Within an Enum16() or Enum32(), use the bit flags (flag0 through flag31, also
defined in GO.H) to define enumerated bits.

Most PenPoint header files indicate when bits in an enum can be ORed to specify
several flags. If a PenPoint header file uses the flag0-style bit flags, assume that you
can OR these flags.

% Data conversion and checking

Abs(), Even(), and Odd() are macros that perform comparisons, returning a
boolean. Max and Min return the larger and lesser of two numbers, respectively.

OutRange() and InRange() check whether a value falls within a specified range.
They work with any numeric data type.

Be careful when using the Abs(), Min(), Max(), OutRange(), and InRange()
macros because their parameters are evaluated multiple times. If a function call
is used as an argument, multiple calls to the function will be made to evaluate
the macro.

% Bit manipulation

GO.H defines each bit as flag0 through flag31, with flag0 being the least-significant
(rightmost) bit.

LowU16(), HighU16(), LowU8(), and HighU8() extract words and bytes by
casting and logical shifts. MakeU16() and MakeU32() assemble words and 32-bit
quantities out of 8-bit and 16-bit quantities.

FlagOn() and FlagOff() check whether a particular flag (bit) is set or reset.
FlagSet() and FlagClr() set a particular flag. All four can take a combination of flags
ORed together. You can use these bit manipulation macros with U8, U16, or U32
data types.

1 / APP WRITING GUIDE

80 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide
% Tags

There are several types of values passed around or otherwise shared among
subsystems and applications in PenPoint:

¢ Class names
¢ Messages

¢ Return values
¢ Window tags

All of these are 32-bit constants (U32). As you develop code and classes, you will
define your own. It is vital that they not conflict, so GO provides a tag mechanism
to guarantee unique names for them. GO administers a number space in which
every developer can reserve a unique set of numbers. A tag is simply a 32-bit con-
stant associated with an adminstered number. With each administered number you
can define 256 different tags: because the administered numbers are unique, so will
be the tags.

You usually use your classes’ administered number to define messages, status values,
and window tags, since these are all usually associated with a particular class. See
Part 1: Class Manager of the PenPoint Architectural Reference for an explanation of
how classes, tags, and administered numbers relate to each other.

Return values

Most PenPoint code returns error and feedback information by returning special
values from functions rather than generating exceptions. PenPoint still uses excep-
tions for certain types of errors: GP fault, divide by 0, and so on. Otherwise, func-
tions that return success or failure must return a status value. Status values are 32-
bit tags, defined in GO.H:

typedef S32 STATUS, * P_STATUS;

The universal status value defined to mean “all is well” is stsOK. By conven-
tion, return values less than stsOK denote errors, while return values greater than
stsOK indicate that the function did not fail, but may not have completed in the
usual way.

There is a set of GO standard status values that you can use in different situations
(described below), but usually each subsystem needs to define its own specific status
values. To guarantee uniqueness among status values returned by third-party soft-
ware, group your status values by class, even if the status does not come from a
class-based component. GO administers well-known numbers for classes, as
explained above in “Tags.”

%» Defining status values

GO.H defines a macro, MakeStatus(wkn,sts), to make a 32-bit error status value
from a well-known 32-bit identifier and an error number. Usually, the well-known
number is the class that defines the error.

CHAPTER 5 / DEVELOPING AN APPLICATION
PenPoint types and macros

To make a status value that does not indicate an error, use MakeWarning(cls, msg),
which creates a positive tag.

So, if you want to define status values, all you need is a reserved class. GO can allo-
cate one for you. You can then define up to 256 error status values and 255 success
status values, using MakeStatus() and MakeWarning() with numbers in the range
0-255. If you need more status values, you can request another class UID.

%» Pseudoclasses for status values

Since not everything in the PenPoint API is a message-based interface to an object-
oriented class, there are several pseudoclasses defined solely to provide “classes” for
status values from some subsystems: clsGO, clsOS, clsGoMath, and so on. You can
ask GO for your own pseudoclasses for error codes if necessary.

% Testing returned status values

To test a STATUS value for the occurrence of an error, just test whether the value is
less than stsOK. To test for one specific error, compare the value to the full error
code from the appropriate header file. There are macros to assist in this, described
.« . »

in “Error-handling macros” on page 82.

There are a small number of system-wide error/status conditions. You can return a
generic status value instead of defining your own, so long as you use it consistently
with its definition. If you need to convey a slightly different sense, define your own
context-specific status value.

Here are the generic status values. Their “class” identifier is the pseudo-class clsGO.

Generic status values

1/ APP WRITING GUIDE

stsRequestNotSupported
stsReadOnly
stslncompatibleVersions
stsNotYetImplemented
stsOutOfMem

v Non-error status values
stsRequestDenied

stsRequestForward

stsTruncatedData

TABLE 5-1
Status value Description
stsOK Everything’s fine.
W Errors
stsBadParam One or more parameters to a function call or message are invalid.
stsNoMatch A lookup function or message was unable to locate the desired item.
stsEndOfData Reached the end of the data.
stsFailed Generic failure.
stsTimeOut A time-out occurred before the requested operation completed.

The message is not supported.

The target can’t be modified.

The message has a different version than the recipient.
The message is not yet fully implemented.

The system has run out of memory.

The recipient decided not to perform the operation.
The recipient asks the caller to forward the request to some other object.

The request was satisfied, but not all the expected data has been
passed back.

82 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The macro StsOK() returns true if the status returned by an expression is greater
than or equal to stsOK. If you want to check for any status other than stsOK, use
StsFailed(). See “Error-Handling Macros,” below.

% Return status debugging function

The function StsWarn() evaluates any expression that returns a STATUS. If you do
not set the DEBUG preprocessor variable during compilation, StsWarn() is defined
to be the expression itself—a no-op. This means that whenever you call a function
that returns a status value, you can use StsWarn().

If DEBUG is defined, and the expression evaluates to an error (less than stsOK),
then StsWarn() prints the status value returned by the expression together with the
file and line number where StsWarn() was called (the special compiler keywords
__FILE__and __LINE_).

%% Human-readable status values

You can load tables of symbol names in the Class Manager so that if you have set
DEBUG, the above functions will print out a string for status return values, instead
of a number. For an example of this, see the S_TTT.C file of the Tic-Tac-Toe sample
program in Part 7: Sample Cod.

% Error-handling macros

Every PenPoint function or message returns a STATUS that you should check. The
following status macros make function checking much easier by handling typical
approaches to handling errors.

Status-checking macros TABLE 5-2
Error handling approoach Macro

Check for an error (no warning) StsChk()

Check for an error and warn StsFailed()

Return if result is an error StsRet()

Jump to an error handler if result is an error StsJmp()

Check that the result is not an error StsOK()

The Class Manager defines similar macros for checking the status values returned
when sending a message. ‘

Each status value checker works with any expression that evaluates to a STATUS.
Each takes the expression and a variable to assign the status to. All of these macros
(except StsChk()) call StsWarn(), so that they print out a warning message if you
set the DEBUG preprocessor variable during compilation.

Since often one function calls another which also returns STATUS, using these
macros consistently will give a “stack trace” indicating the site of the error and the
nested set of functions which produced the error.

The examples below assume that MyFunc() returns STATUS.

CHAPTER 5 / DEVELOPING AN APPLICATION
PenPoint types and macros

%v StsChk(se, s)

Checks for an error.

¢ Description Sets the STATUS s to the result of evaluating se. If s is less than
stsOK, returns true, otherwise returns false. Does not print out a warning
message.

¢ Example
STATUS .8
if (StsChk (MyFunc(paraml, param2), s)) {
// MyFunc() failed
}

%»r StsFailed(se, s)
Checks for an error.

¢ Description Sets the STATUS s to the result of evaluating se. If s is anything
other than stsOK, returns true and prints an error if DEBUG is set. If s is
stsOK, returns false.

¢ Example
STATUS S;
if (StsFailed (MyFunc(paraml, param2), s)) {
// MyFunc() returned other than stsOK, so check status
switch (Cls(s)) {

} else {
// MyFunc() did the expected thing, so continue
}

¢ Remarks This is analogous to StsOK(), but it reverses the sense of the test
in order to be more consistent with other checking macros.

%¥ StsJmp(se, s, label)

Jump to label on error.

¢ Description Sets the STATUS s to se. If s is less than stsOK, it prints an
error if DEBUG is set and does a goto to label. This is useful when you have a
sequence of operations, any of which can fail, each having its own clean-up
code.

¢ Example
STATUS S;
pMeml = allocate some memory;
StsJdmp (MyFunc (paraml, param2), s, Errorl);
pMem2 = allocate some more memory;
StsJdmp (MyFunc (paraml, param2), s, Error2);

return stsOK;
Error2:
// Handle error 2.
OSHeapBlockFree (pMem2) ;
Errorl:
// Handle error 1.
OSHeapBlockFree (pMeml) ;

return s;

83

1 / APP WRITING GUIDE

84 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

%y StsOK(se, s)
Checks that things are OK.

¢ Description Sets the STATUS s to the result of evaluating se. If s is greater
than stsOK, returns true. Otherwise, prints an error if DEBUG is set and
returns.

¢ Example
STATUS S;
if (StsOK(MyFunc(paraml, param2), s)) {
// MyFunc() succeeded, continue.
} else {
// MyFunc() failed, check status.
switch (Cls(s)) {

}
Remarks This is analogous to StsFailed(), but reverses the sense of the test
and returns true for any status value that is not an error. In other words,

this could return true, but the status might be some other value than
stsOK, such as stsNoMatch.

%» StsRet(se, s)

Returns status on error.

¢ Description Sets the STATUS s to se. If s is less than stsOK, prints an error if
DEBUG is set and returns s. This is useful if one function calls another and
should immediately fail if the second function fails.

¢ Example
STATUS s;

// I1f MyFunc has problems, return.
StsRet (MyFunc (paraml, param2), s);

7 Debugging assistance

GO has developed a set of useful functions and macros to assist in debugging
PenPoint applications. They are no substitute for DB, the PenPoint Source-level
debugger, or the PenPoint mini-debugger (both these debuggers are documented in
PenPoint Development Tools). However, they help you trace the operation of a pro-
gram without using a debugger. They are an elaboration of the time-honored tech-
nique of inserting printf() lines in your code.

% Printing debugging strings
DPrintf() and Debugf() print text to the debugger stream. They take a formatting
string and optional parameters to display, in the same manner as as the standard C
function printf(). The only difference between DPrintf() and Debugf() is that
Debugf() supplies a trailing newline (if you want a newline at the end of DPrintf()

output, end it with \n).

Debugf ("Entering init method for clsApp");
Debugf ("main: process count = %d", processCount);

CHAPTER 5 / DEVELOPING AN APPLICATION 85
Debugging assistance

%» Debugger stream

The debugger stream is a pseudo-device to which programs (including PenPoint)
can write debugging information. There are several ways to view the debugger
stream:

¢ If you have a single screen, you can see the most recent lines written to the
debugger stream when you press Pause.

o If you have a second (monochrome) monitor, serial terminal, or PC running
communications software, you can constantly watch the debugger stream on
this monitor while you run PenPoint on the main (VGA) monitor.

You can send the debugger stream to a log file, by setting the D debugger flag
to the hexadecimal value 8000. Usually you do this in the ENVIRON.INI file,
but you can also do it from the PenPoint symbolic debugger, or from the
mini-debugger.

DebugSet=/DD8000

DebugLog=\\boot \tmp\run3. log

¢ You can use the System Log application to view the debugger stream while

running a PenPoint appliction.

None of these destinations are mutually exclusive.

¥ Assertions

Often when working on functions called by other functions, you assume that the
software is in a certain state. The ASSERT() macro lets you state these assumptions,
and if DEBUG is set, it checks to see that they are in fact the case. If they are not sat-
isfied, it will print an error. For example, a square root function might rely on never
being called with a negative number:

void MySqRoot (int num) {
ASSERT (num >= 0, "MySqRoot: input parameter is negative!");
// Calculate square root...

The test is only performed if DEBUG is defined.

% Debugging flags
At different times you want to print different debugging information, or you want
your program to work a certain way. DEBUG is the common #define used by Pen-
Point to include debugging output; if you set DEBUG when compiling, the status-
checking macros print out additional information, the ASSERT() macro is enabled,
and so on. You can use your own C preprocessor directives to get finer control over
program behavior, for example:

OBJECT myDc
#ifdef MYDEBUGL

// Dump DC state

ObjectCall (msgDump, myDc, Nil (P_ARGS));
#endif

The disadvantage of this technique is that you must recompile your program to
enable or disable this code.

1/ APP WRITING GUIDE

86 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Another approach is to check the value of a flag in your code. PenPoint supports
256 global debugging flag sets. Each flag set is a 32-bit value, which means that
you can assign at least 32 different meanings to each debugging flag set.

Because there are 256 debug flag sets, they can be indexed by an 8-bit character.
Commonly, we refer to a specific debugging flag set by the character that indexes

~ that flag. GO has reserved all the uppercase character debug flags sets (A through Z),
and has reserved some of the lowercase characters also. To find which debug flag
sets are available, see the file PENPOINT\SDK\INC\DEBUG.H.

You can set the value of a flag set, and retrieve it. The typical way you use debug-
ging flag sets is to set the value of a flag set before running a program, and in the
program check to see which bits in the flag set are on. The function DbgFlagGet()
returns the state of a flag set ANDed with a mask.

For example, if you were using the flag F in your program and were checking the
third bit in it to see whether or not to dump an object, the code above would be:
if (DbgFlagGet(’'F’, 0x0004)) {
// Dump DC state
ObjectCall (msgDump, mydc, Nil(P_ARGS));
}
You only need to compile your program once, and you can turn on object dumping
by changing the F flag set to 0x4 (or 0x8, or 0xF004, and so on). The disadvantage
of this is that the flag-testing code is compiled into your program, increasing its size
slightly. Often programmers bracket the entire DbgFlagGet() test within a Dbg()
macro so that the flag-testing code is only compiled while in the testing version of
their program.

%r Setting debugging flag sets
There are several ways to set debugging flag sets. Note that there is a single set of
these flags shared by all processes.
¢ In PENPOINT\BOOT\ENVIRON.INI, set the flag to the desired bit pattern with:
DebugSet=/DFnnnn/DEmmmmn. . .,
where F and fare letters that identify a particular flag set and nnnn and mmmm are

a hexadecimal values. For example, DebugSet=/DFE004.

¢ By typing fs F nnnn in either the PenPoint source-level debugger or the
PenPoint mini debugger.

¢ By using DbgFlagSet() in a program, for example:
DbgFlagSet ('F’,0xE004) .

P> Suggestions

%r Isolate debugging messages

In general, always isolate all debugging code using preprocessor directives:
#ifdef DEBUG
Debugf (U_L(“Debugging output string”))
#endif

CHAPTER 5 / DEVELOPING AN APPLICATION
The tutorial programs

DEBUG is the conventional flag for debugging code, used by much of PenPoint. If
you have a short statement that you want to isolate for debugging purposes, you
can use the Dbg() macro, which has the effect of using the preprocessor directives
shown above:

Dbg (Debugf (U_L(“Debugging output string”)))

Use the status-checking macros

Using the status-checking macros StsOK(), StsJump(), and so on, and their coun-
terparts for sending messages may seem cumbersome, but they provide useful
debugging information if DEBUG is defined. Also, since most functions and mes-
sage sends return the error status if they encounter an error, the “stack” of status
prints provides a traceback showing where the error first occurred and who called it.

This status error listing shows the result of sending msgDrwCtxSetWindow to
objNull:

C> ObjectCall: sts=stsBadObject "tttview.c".@232 task=0x05d8

C> object=objNull

C> msg=msgDrwCtxSetWindow, pArgs=26ec0438

>> StatusWarn: sts=stsBadObject "tttview.c".@330 task=0x05d8

>> StatusWarn: sts=stsBadObject "tttview.c".@743 task=0x05d8

Page fault in task 05D8 at 1B:440CCD52. Error code = 0004.

EAX=00000000 EBX=04000002 ECX=E002E5CF EDX=440CCD05 ESI=41BC8EF0 EDI=4401EC38
EIP=440CCD52 EBP=004329E0 ESP=004329CC FLG=00010246 CR2=0000000C CR3=00077000
CS=001B DS=002B SS=002B ES=002B FS=0000 GS=0000 TSS=05D8 TNAME=TIC1

Use the debuggers

If your code crashes unexpectedly, you can use the PenPoint mini-debugger to get
a stack trace at the assembly-language level (type st at its > prompt). The linker’s
.MAP files enable you to translate assembly language addresses to functions and line
numbers.

If you suspect that your code is going to crash or behave improperly, run it from the
PenPoint source-level debugger. This lets you step through your code, query and set
values, and evaluate simple C expressions.

Both debuggers are described in PenPoint Development Tools.

The tutorial programs

Now that you've read the broad overview of PenPoint and its class-based applica-
tions, views, and objects, you are ready to get down to some of the nuts and bolts of
writing an application. This section describes the remaining chapters in this book
and the sample programs used in those chapters. The programs are:

¢ Empty Application

¢ Hello World (toolkit)

¢ Hello World (custom window)
¢ Counter Application

¢ Tic-Tac-Toe

¢ Template Application

1/ APP WRITING GUIDE

88 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Chapter 6, A Simple Application (Empty Application), explains how to compile
and run programs using Empty Application. The chapter is quite long because it
teaches the general development cycle:

¢ How to compile an application.

¢ How to install an application on a PC or PenPoint computer.

¢ How to run an application.

¢ Some interesting things to look for when running any application.
¢ How to use some of the PenPoint debugging tools.

The Empty Application is used to illustrate these steps, but the comments are
applicable to all the other sample applications.

% Empty Application
The tutorial starts off with an extremely simple application, Empty Application.
Chapter 6 explains how to build and run it and how the application works. Empty
Application has no view, no data, and no application-specific behavior (apart from
printing a debugging message). It only responds to one message from the Applica-
tion Framework. However, it does create an application class (as all PenPoint appli-
cations must), and through inheritance from clsApp, you can create, open, float,
zoom, close, rename, file, embed, and destroy Empty Application documents.

% Hello World (Toolkit)

The next application is the traditional “Hello World” application. This prints
Hello World! in its window. Rather than creating a window from scratch, this uses
the existing User Interface Toolkit components. One of these is clsLabel, which dis-
plays a string. Hello World (toolkit) uses this existing class instead of creating its
own. The components in the UI Toolkit are rich in features; for example, labels can
scale their text to fit. If you can use a toolkit class, do so.

Hello World (toolkit) is described more fully in Chapter 7, Creating Objects (Hello
World: Toolkit).

CHAPTER 5 / DEVELOPING AN APPLICATION 89
The tutorial programs

% Hello World (Custom Window)

Of course it is possible to draw text and graphics yourself. Hello World (custom
window) draws the text Hello World in its window, and draws a stylized exclama-
tion mark beside it. To do this, the application must create a separate window class
and create a system drawing context to draw in its window, which is substantially
harder than using toolkit components.

Hello World (custom window) is described in Chapter 8.

% Counter Application

o

Counter Application displays the value of a counter object in a label. It creates a

separate counter class and interacts with it. The application has a menu created A sé
from UI Toolkit components that lets the user choose whether to display the :
counter value in decimal, hexadecimal, or octal.

-

SR
e

iy
¢ 5

Both the application and the counter object must file state. The tutorial programs
presented before Counter Application are not stateful, that is, they don’t have data

i

SRR

e
o

that the user can change permanently. Realistic applications must allow users to
change things, so they must file their state.

s

Sial

m

The application object uses a memory-mapped file to keep track of its state. Using
a memory-mapped file avoids duplicating data in both the memory file system

in program memory. By contrast, the counter object writes its value to a file when
it is saved.

The counter application is described in Chapter 9.

% Tic-Tac-Toe
The rest of the tutorial develops a “real” working application, Tic-Tac-Toe. This
application is covered in Chapters 10 and 11.

k
:
?
5

-

L k?%%g% : @%’%w:u%: .
Citaos D -

y

S
g

T
o

o
i

-
:

e
S

-

Tic-Tac-Toe presents a tic-tac-toe board and lets the user write Xs and Os on it. It is
not a true computerized game—the user does not play tic-tac-toe against the com-
puter. Instead, it assumes that that there are two users who want to play the game

e
e

cnnon

—
.

against each other.

Although a tic-tac-toe game is not exactly a typical notebook application, Tic-Tac-
Toe has many of the characteristics of a full-blown PenPoint application. It has a
graphical interface, handwritten input, keyboard input, gesture support, use of the
notebook metaphor, selection, data import and export, option cards, undo support,
stationery, help text, and so on.

-

B
2
o

o
-

e
.

o
.

canl

i

90 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

¥ Template Application

As its name implies, Template Application is a template, “cookie cutter” applica-
tion. As such, it does not exhibit much functionality. However, it does handle many
“typical” application messages. This aspect makes Template Application a good
starting point for building a real application.

% Other code available

Other source code is provided in the SDK in addition to the tutorial code.

All the source to sample programs is on-disk in PENPOINT\SDK\SAMPLE. Some of
the other sample programs are described in Appendix A, Sample Code. Excerpts
from sample programs also appear and are described in those parts of the PenPoint
Architectural Reference that cover related subsystems.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 1 / APPLICATION WRITING GUIDE

Chapter 6 / A Simple Application
(Empty Application)

Applications written for many operating systems have to perform housekeeping
functions by implementing their own boilerplate code; that is, code that is essen-
tially the same from one application to the next. In the PenPoint™ operating
system, the PenPoint Application Framework performs most of these housekeeping
functions. By using the Application Framework, you can create an application that
can be installed, that can create multiple instances of itself, that can handle page
turns, floats and zooms, and that can display an option sheet, all without writing an
additional line of code.

Empty Application is a very simple application. Like all PenPoint applications,
Empty Application is a subclass of clsApp, so Empty Application inherits all of the
Application Framework behavior. The only additional code in Empty Application
is a method that responds to msgDestroy by sending a message to the debug stream
(when the program is compiled with the DEBUG preprocessor #define name).

The PenPoint Application Framework is responsible for everything else Empty
Application does. Because the Application Framework handles so much of an
application’s interaction with the system, even such an insubstantial application
has substantial functionality.

¥ Files used

The code for Empty Application is in PENPOINT\SDK\SAMPLE\EMPTYAPP. There
are three files in the directory:

EMPTYAPP.C Contains the application class’s code and initialization routine.
METHODS.TBL Contains the list of messages that the application class
responds to and the associated message handlers to call.

MAKEFILE Contains rules that tell the make utility how to build Empty
Application.

There is also a text file file called README.TXT that describes Empty Application,
but the README.TXT file is not required to compile and link the application.

% Not the simplest

The name Empty Application is not quite accurate, because it isn’t totally empty.
You could create an application with no method table at all; that is, one that
responds to no messages at all and relies entirely on methods inherited from clsApp.
Empty Application handles one message by printing a string to the debug stream,
so it needs a method table.

92 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

» Compiling and linking the code

The source code for sample applications is in subdirectories of PENPOINT\SDK\
SAMPLE. Each subdirectory contains a “makefile” that tells the make utility how to
build the application. All you need to do to compile and link Empty Application is
make PENPOINT\SDK\SAMPLE\EMPTYAPP the current directory and start the make
utility, but you need to understand what the files are doing so that you can later
modify the makefiles to fit your needs.

These sections describe the actual commands used to compile, link, and stamp
EMPTYAPP.

% Compiling method tables

You compile method tables into an object file by running them through the
PenPoint method table compiler (in PENPOINT\SDK\UTIL\CLSMGR\MT.EXE).

By convention, method tables have the suffix .TBL. The control files that the make
utility uses include a default rule for compiling method tables. MT produces an
object file and a header file for the method table. You use these files when you com-
pile and link the application.

¥ Installing and running Empty Application

As described in the “How applications work” on page 24, you must install an appli-
cation in PenPoint before you can run it. To install Empty Application, you either
install it at boot time or use the Settings notebook on a running PenPoint system.
The Application Installer is described in Using PenPoint.

To install the application at boot time:

¢ Add a line that says \BOOT\PENPOINT\APP\Empty Application to PENPOINT\
BOOT\/localdAPPINI (where locale is USA or JPN).

Boot PenPoint on your PC.

¢ When the Notebook appears, draw a caret a in the TOC to insert an Empty
Application document in the Notebook.

When you create an Empty Application document in the Notebook, PenPoint cre- The section “Installation and
ates a directory for the document in the application hierarchy (that’s why it shows activation” on page 101
. s R explains the difference between
up in the table of contents), but it’s only when you turn to the document’s page Inetallation and Activation,
that a process for the document is activated. Until then the document isn’t running and the relationship between
and doesn’t have a process or a valid cIsEmptyApp object. FenFoint processes and
application classes.

P Interesting things you can do with Empty Application

Although Empty Application doesn’t do any useful work, you can learn a lot about
the operation of PenPoint by studying it. PenPoint provides a host of features and
support to even the simplest application. You can try the following:

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION)
Interesting things you can do with Empty Application

Create multiple instances (documents) of it. The PenPoint file system appends
a number to each document to guarantee a unique application directory name
in the application hierarchy. You create documents by performing one of these
actions:

+ Choose Empty Application from the Create menu in the Notebook
contents page.

+ Choose Empty Application from the pop-up menu that appears when
you draw a caret A on the contents page.

« Use the Stationery notebook to create Empty Application documents in
the Notebook.

o Tap and hold on the title bar or name of an Empty Application docu-
ment in the TOC to make a copy of an existing document. Drag the
icon that appears to where you want it to go, such as on the icon book-
shelf, or elsewhere in the TOC.

+ Tap the Accessories icon in the bookshelf below the Notebook and tap
the Empty Application icon in its window.

Float a Notebook Empty Application document by turning to the Notebook’s
table of contents and double-tapping on its page number (you must first
enable floating in the Float & Zoom section of PenPoint Preferences).
Compare the difference between an accessory and a floating document—
accessories have no page number.

Zoom a floating Empty Application by flicking upwards on its title bar
(you must first enable zooming in the Float & Zoom section of PenPoint
Preferences).

Display the properties of an Empty Application document by drawing a
check v in its title bar. An option sheet for the document appears, with sev-
eral cards in it for the document’s appearance.

In the table of contents, press and hold on a Empty Application title until a
dashed line appears around it. You can now move the document around. Try
moving it to another place in the Notebook.

Give the Empty Application document a tab in the notebook by writing a “T”
in its title bar. You can use the tab to navigate to the Empty Application docu-
ment quickly.

Give the Empty Application document a corkboard margin by writing a “C”
in its title bar. A thick strip appears at the bottom of its window.

¢ As you turn the pages, note the sequence of messages sent to each instance of
clsEmptyApp by the PenPoint Application Framework.

Select an Empty Application document in the table of contents, then use the
disk viewer to open a directory on your hard disk. Copy the document to the
hard disk. Then delete the document by drawing a cross out X over it.

93

1 / APP WRITING GUIBE

94 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide .

Empty Application option sheef FIGURE 6-1

¢ Set the G debugger flag to 1000 in PENPOINT\BOOT\ENVIRON.INI (or set the
flag with the fs mini-debugger command). This turns on debugging info for
reading and writing resources in clsResFile. This is the class that files objects
during msgAppSave processing.

¢ Select an Empty Application document in the TOC and move it by pressing
and holding on its title. Move it inside another open document. If the other
application supports it, the PenPoint Application Framework will embed the
Empty Application document inside the other.

Code run-through

Enough details of running Empty Application; now let’s look at its C code. First
we'll look at the layout of PenPoint source files.

% PenPoint source code file organization

Most source code in PenPoint has a similar structure. Although Empty Application
is a very simple application, it has a similar layout to other applications.

Remember that application programs have at least one class (the application class
itself), so an application program is composed of at least these two files:

& The method table that specifies the messages to which this class responds and
the functions that handle those messages.

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION)
Code run-through

¢ The C source code for the class.

The organization of the C source code is described in the sections below.

% Method table file

The method table file lists all the messages that the class handles. The PenPoint
Class Manager sends any messages not listed in the method table to the class’s
ancestor for handling (and possibly to the ancestor’s ancestor). Looking at a class’s
method table gives you a good feel for what the class does.

The method table file always has the suffix .TBL. It looks like C code, but you pro-
cess it with the method table compiler MT before linking it into your program.

A single method table file can have method tables for several different classes. The
names of the method tables are usually pretty self-explanatory, typically the name of
the class with the word Methods appended. For example, Empty Application’s class
is cIsEmptyApp, and Empty Application’s method table is clsEmptyAppMethods.

Although the normal practice is to define a method for each message, you can use
the wild-card feature of method tables to have one method handle several messages.
Method table wild cards match any message within a given set of messages, and call
the associated method. Method table wild cards are described in Parz 1: Class
Manager of the PenPoint Architectural Reference.

%r Application C code file

By convention, an application source code file is usually organized into the
following sections:

+ #include directives for the header files required by the application.
¢ #defines and typedefs.

+ Utility routines.

Message handlers.

¢ Class initialization routine.

¢ main() entry point.

The application’s main() routine is at the end of the source file. The operating
system calls the application’s main() routine under two circumstances:

¢ When installing the application (this happens only once).

¢ When activating individual documents (this happens each time the user turns
to or floats a document that uses the application).

The C files for nonapplication classes dont have main() routines, because only

applications actually start C processes. The declaration for the main() routine is:
main{argc, argv, processCount)

The argc and argv parameters are not used in PenPoint. PenPoint uses the process-

Count parameter to pass in the number of processes running this application.

When processCount is 0, there are no other processes running this application; this

95

1/ APP WRITING GUIDE

96

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

indicates that PenPoint is installing the application. Once an application is
installed, the process that has a processCount of 0 stays in memory until the appli-
cation is deinstalled.

On installation, main() initializes the application class, by calling an initialization
routine. This routine precedes main() in the source file. Standard practice is to
name this routine using the name of the application class (with an initial capital
letter), followed by “Init”. For example, the initialization routine for clsEmptyApp
is CIsEmptyApplnit().

When the initialization routine creates the application class, it specifies the method
table used by the application class.

In the method table, you establish a relationship between the messages that your
class handles and the name of a function in your C code file that handles each mes-

- sage. These functions are called message handlers and are similar to the “methods”

o

(4

of other object-oriented systems. Message handlers should be local static routines
that return STATUS. If your class does handle a message, the method table also indi-
cates whether the Class Manager should call your class’s ancestor before or after

(if at all).

Message handler parameters

Because the Class Manager calls your message handlers, you don’t get to choose
message handler parameters. The arguments passed to all message handlers are:

msg The message itself.
self The object that received the message.

pArgs The message argument. This 32-bit value can be either a single argu-
ment or a pointer to a structure containing a number of arguments.

ctx A context maintained by the Class Manager.
pData The instance data of self.

Because the parameters to message handlers are always the same, PENPOINT\SDK\
INC\CLSMGR H defines several macros to generate standard message handler decla-
rations. The MsgHandler() macro generates a message handler declaration based
on the name of the function. The MsgHandlerWith Types() macro generates a
message handler declaration based on the name of the function and the types to
which to cast its arguments.

Empty Application’s source code

This section presents an overview of Empty Application’s method table and C
source code.

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION)
Code run-through

%y Method table

The method table file, METHODS.TBL, specifies that Empty Application has one
message handler; clsEmptyApp handles msgDestroy in a function called Empty-
AppDestroy().

MSG_INFO clsEmptyAppMethods [] = {

$ifdef DEBUG

msgDestroy, "EmptyAppDestroy",objCallAncestorAfter,
#endif

0

}i

The #ifdef and #endif statements cause the message handler to be defined only
when you specify /DDEBUG in the compiler options.

%»¥ C source code

There are three significant parts of EMPTYAPP.C:

¢ The main() routine, which handles application installation and application
startup.

¢ The initialization routine, which is invoked by main() at installation time.

¢ The message handler for msgDestroy, which was specified in the method
table.

This section presents this code without further comment. Subsequent sections in
this chapter examine the code in detail.

The main() routine for EMPTYAPPC is:

/**

main

Main application entry point (as a PROCESS -- the app's MsgProc

is where messages show up once an instance is running).
**/

void CDECL
main (

532 argc,

CHAR * argvl[],

U032 processCount)
{

Dbg (Debugf (U_L("main: starting emptyapp.exe[%d]"), processCount);)
if (processCount == () {
// Create application class.
ClsEmptyAppInit ();
// Invoke app monitor to install this application.
AppMonitorMain (clsEmptyApp, objNull);
} else {
// Create an application instance and dispatch messages.
AppMain();
}/ Suppress compiler's "unused parameter" warnings
Unused(argc); Unused(argv);

} /* main */

97

1 / APP WRITING GUIDE

98 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The initialization routine invoked by main() on installation is:
/**
ClsEmptyAppInit

Install the EmptyApp application class as a well-known UID.
**/

STATUS
ClsEmptyAppInit (void)
(

APP MGR NEW new;

STATUS s;

//

// Install the Empty App class as a descendant of clsApp.
//

ObjCallWarn (msgNewDefaults, clsAppMgr, &new);
new.object.uid = clsEmptyApp;

new.cls.pMsg = clsEmptyAppTable;

new.cls.ancestor = clsApp;

//

// This class has no instance data, so its size is zero.
//

new.cls.size = Nil (SIZEOF);

//

// This class has no msgNew arguments of its own.

//

new.cls.newArgsSize = SizeOf (APP_NEW) ;
new.appMgr.flags.accessory = true;

Ustrcpy (new.appMgr.company, U_L("GO Corporation"));

Ustrcpy (new.appMgr .defaultDocName, U_L("Empty App Document"));

ObjCallJdmp (msgNew, clsAppMgr, &new, s, Error);

//

// Turn on message tracing if flag is set.

//

if (DbgFlagGet ('F', 0x1L)) {
Debugf (U_L("Turning on message tracing for clsEmptyApp"));
(void)ObjCallWarn (msgTrace, clsEmptyApp, (P_ARGS) true);

}

return stsOK;

Error:
return s;

} /* ClsEmptyAppInit */
Finally, the message handler for msgDestroy is:

/**
EmptyAppDestroy i
Respond to msgDestroy by printing a simple message if in DEBUG mode.

**/

MsgHandler (EmptyAppDestroy)

{

#ifdef DEBUG
Debugf (U_L("EmptyApp: app instance %p about to die!"), self);

#endif
//

// The Class Manager will pass the message onto the ancestor
// if we return a non-error status value.

//

return stsOK;

MsgHandlerParametersNoWarning; // suppress compiler warnings

} /* EmptyAppDestroy */

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION) 99
Code run-through

% Libraries and header files

You interact with most of PenPoint by sending messages to objects. Thus a typical
application only uses a few functions and only needs to be linked with APPLIB and
PENPOINT.LIB. However, you need to pick up the definitions of all the messages
you send, status values you check, and objects to which you send messages from
their respective header files.

Because Empty Application only looks for CLSMGR.H and APPH messages, it only
needs to include a few header files from PENPOINT\SDK\INC:

Common header files TABLE 6-1

Header file Purpose

GO.H Fundamental constants and utility macros in PenPoint.

OS.H Operating system constants and macros.

DEBUG.H Functions and macros to put debugging statements in your code.

APPH Messages defined by clsApp. ‘

APPMGR.H msgNew arguments of clsAppMgr used when an application class is created.

CLSMGR.H Functions and macros that provide PenPoint’s object-oriented extensions to C.
% Class UID

To write even the simplest application you must create your own application class,
so that’s primarily what Empty Application does.

Your application needs to have a well-known UID (unique identifier, the “handle”
on a Class Manager object) so the system can start it. All well-known UIDs contain
a value that is administered by GO—this keeps them unique. When you finalize
your application, you must obtain a unique administered value from GO. Contact
GO Customer Services at 1-415-358-2040 (or by Internet electronic mail at
gocustomer@go.com) for information on how to get a unique administered value.
Until you get an administered value for your application, you can use the pre-
defined well-known UIDs that are set aside for testing. These test UIDs, wknGDTa
through wknGDTg, are defined in PENPOINT\SDK\ INC\UID.H for this purpose.
Just define your class to be one of them:

#define clsMyClass wknGDTa

This is the approach that Empty Application takes. However, most other sample
applications use well-known UIDs assigned to them by GO. Because most applica-
tions aren't part of the PenPoint API, these well-known UIDs don’t show up in
PENPOINT\SDKAINC\UID.H.

You can use local well-known UIDs instead of global well-known UIDs for classes
that your application uses internally. These do not contain an administered value;
however, you must ensure that they remain unique within your application.

Be on the lookout for conflicts with other test software when using the well-known
testing UIDs (wknGDTa through wknGDTg). If another application happens to
use the same well-known testing UID for one of its classes, you will have problems
installing your application because it has the same UID as another class.

1/ APP WRITING GUIDE

100 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

% Class creation

The initialization routine CIsEmptyApplnit() creates the clsEmptyApp class. It
should look familiar to you from the discussion of classes in Chapter 3, Application
Concepts. However, application classes are slightly different from other classes. You
create most classes by sending msgNew to clsClass, whereas you create application
classes by sending msgNew to clsAppMg.

STATUS
ClsEmptyAppInit (void)
{

APP_MGR NEWnew;

STATUS S;

//

// Install the Empty App class as a descendant of clsApp.
//

ObjCallWarn (msgNewDefaults, clsAppMgr, &new);
new.object.uid = clsEmptyApp;

Ustrcpy (new.appMgr.defaultDocName, U _L("Empty App Document"));
ObjCallJmp (msgNew, clsAppMgr, &new, s, Error);

%» clsAppMgr explained

The PenPoint Application Framework needs to know a lot of things about an
application before it can set in motion the machinery to create an instance of the
application. It needs to know:

¢ Whether the application supports embedding child applications.
¢ Whether the application saves its data or runs continuously (“hot mode”).
¢ Whether the application’s documents appear as stationery or accessories.

¢ The icon to use for the application’s documents.

¢ The default name for the application’s documents. Tip It is better to specify
.. s the company name, default
Instances of the application class can’t provide this information because the document name, and other
PenPoint Application Framework needs this information before it creates an locale-dependent information

T , . . . ih the USA.RES or JPN.RES
application instance. To solve this cleanly, application classes are not instances file. This helps when porting

of clsClass, but instead are instances of clsAppMgr, the application manager class. your application to other
When an application is installed, its clsAppMgr instance is initialized, and this localee.
instance can supply the needed information.

new.cls.newArgsSize = SizeOf (APP_NEW);
new.appMgr.flags.accessory = true;
Ustrcpy (new.appMgr.company, U_L("GO Corporation"));
Ustrcpy (new.appMgr.defaultDocName, U_L("Empty App Document"));
ObjCallJmp (msgNew, clsAppMgr, &new, s, Error);
Application classes should be well known so that other processes can send messages
to them. Otherwise, the Notebook would not be able to send messages to your
application class to create new documents when the user chooses it from the Create

menu. You supply the UID for your application class in the msgNew arguments.

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION) 101
Where does the application class come from?

ObjCallWarn (msgNewDefaults, clsAppMgr, &new);

new.object.uid = clsEmptyApp;
new.cls.pMsg = clsEmptyAppTable;
new.cls.ancestor = clsApp;

//

// This class has no instance data, so its size is zero.

//
new.cls.size = Nil (SIZEOF) ;

The cls.pMsg argument to msgNew establishes the connection between the new
class and its method table. More on this later.

Documents, accessories and stationery

We have been referring to all copies of an application as documents. Not all docu-
ments in the system live on a page in the Notebook. Tools such as the clock and the
personal dictionary float above the Notebook.

If you set appMgr.flags.accessory to true, clsAppMgr will put your application in
the Accessories palette. When the user taps on your application’s document icon,
clsApp will insert the new document on screen as a floating document. If you set
appMgt.flags.stationery to true, clsAppMgr will put a blank instance of your appli-
cation in the Stationery notebook (whether or not your application has custom
stationery). When the user selects and copies the stationery document from the
Stationery palette, clsApp will insert the new document in the Notebook.

» Where does the application class come from?

The connection between a process running in PenPoint and an application class is
not immediately obvious. You're probably wondering who calls the initialization
routine for clsEmptyApp, who sends msgNew to create a new Empty Application
instance, what process corresponds to this application instance, and why the
familiar-looking C main() routine doesn’t do very much.

Installation and activation

The connection between an application class and a PenPoint process is an applica-
tion’s main() routine. Every executable must have a main() routine; it is the routine
that PenPoint calls when it creates a new process running your application’s execut-

able image.
void CDECL
main (
s32 argc,
CHAR * argv(],
U32 processCount)

Dbg (Debugf (U_L("main: starting emptyapp.exe[%d]"), processCount);)

The kernel keeps track of the number of processes running a particular program,
and passes this to main() as a parameter (processCount). For applications, there are
two points at which PenPoint does this: application installation and document
activation.

Tip For debugging purposes,
it’s convenient to be able to
create documents both as
floating accessories and
Notebook pages.

1/ APP WRITING GUIDE

102 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Application installation occurs when the user or APPINI installs the application;
that is, when PenPoint loads the application from disk into memory. No applica-
tion documents are active at this point, but the code is present on the PenPoint
computer.

Document activation occurs every time the user starts up a document that uses the
application, typically by turning to its page.

When the user creates a document in the Notebook’s TOC, PenPoint does ot exe-
cute the application code, it merely creates a directory for the document in the
application hierarchy. Try it: while turned to the TOC, create a new Empty Applica-
tion document. The Debugf() statement in main() does not print out anything
until you turn to the document.

In MS-DOS, loading and executing code are part of the same operation; on a
PenPoint computer, installing an application, creating documents for that appli-
cation, and executing application code are three separate operations.

On MS-DOS, quitting an application is an action under the control of the user.
In PenPoint, when the user turns away from a document, PenPoint determines
whether it should destroy the application process or not. PenPoint does not keep
running processes around for every application on every page, so it destroys pro-
cesses that aren’t active (thereby destroying application objects).

PenPoint starts and destroys application processes without the user’s knowledge
and, ideally, without any effect apparent to the user.

%7 A simple discussion of main()

When an application is installed, PenPoint creates a process and calls the applica-
tion’s main() to run in the process. At this time, this is the only copy of the applica-
tion running on the machine; thus, processCount contains the value 0. During
installation, you should create your application class and any other classes you
need. You then call AppMonitorMain(), which handles application installation,
import, copying stationery and resources, and so on. Empty Application doesn’t
take explicit advantage of any of these features, but other programs do.
if (processCount == 0) {

// Create application class.

ClsEmptyAppInit();

// Invoke app monitor to install this application.

AppMonitorMain (clsEmptyApp, objNull);

} else {

The process that PenPoint created at application installation keeps on running until
PenPoint deactivates or deinstalls the application. Therefore, all subsequent pro-
cesses that run the application’s code will have processCount values greater than 0.

When a document is activated (typically by the user turning to its page), PenPoint
calls main() (processCount is greater than zero). At this point you should call the
PenPoint Application Framework routine AppMain(). This creates an instance of

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION) 103
Where does the application class come from?

your application class and starts dispatching messages to it (and other objects created
by the application) so that the new instance can receive Class Manager messages:
if (processCount == () ({
} else {
// Create an application instance and dispatch messages.
AppMain () ;

1 / APP WRITING GUIDE

}

// Suppress compiler's "unused parameter" warnings

Unused(argc); Unused(argv);

} /* main */
Most applications follow these simple steps and have a main() routine similar to the
one in EMPTYAPPC.

%» A complex explanation of main()

The following paragraphs explain the process interactions taking place around
main(). Read on if you really want to understand how application start-up works.

Installation occurs when PenPoint reads PENPOINT\BOOT\APPINI (and SYSAPPINI)
and when the user installs applications using the Installed Applications page of the
Settings notebook. PenPoint or the Settings notebook calls the System Services rou-
tine OSProgramlInstall(), which loads the executable code for your application
(EMPTYAPPEXE) into a special area of PenPoint memory called the loader database.
OSProgramlInstall() also creates a new PenPoint process and calls the function
main() with processCount equal to 0. At this point your code should initialize any
information that all instances will need, such as its application class and any other
nonsystem classes required by your application. The one thing every Empty Appli-
cation instance needs is clsEmptyApp itself, hence when the main() routine in
EMPTYAPPC is called with processCount of 0, it creates clsEmptyApp.

%r Application installation

The process that PenPoint creates when processCount equals 0 also manages other
application functions that are not specific to an individual document. These func-
tions include copying stationery during installation, de-installation, file imporrt,
and so on. Rather than saddle your application with all these responsibilities, the
PenPoint Application Framework provides a class, clsAppMonitor, which provides
the correct default behavior for all these functions. When you call AppMonitor-
Main() it creates one of these objects and dispatches messages to it. If your applica-
tion needs to do more sophisticated installation (shared dictionaries, configuration,
and so on), or can support file import, you can subclass clsAppMonltor and have a
custom application installation manager.

Activation occurs in an indirect fashion when the user chooses Empty Application
from the Tools notebook or the Stationery notebook. The Notebook or Bookshelf
application sends msgAppCreateChild to the current selection. When clsApp
receives this message, it creates a new slot in the application hierarchy for the new
document. But a process and an application object aren’t created until needed. The

104 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

document may not be activated until the user turns to the document’s page, or
otherwise needs to interact with it.

%» Activating an application

At or before the point where a live application instance is needed, the PenPoint
Application Framework sends the application’s parent msgAppActivateChild.
While processing this, clsApp calls the System Services routine OSProgram-
Instantiate(). OSProgramInstantiate() creates a new PenPoint process, and in the
context of that process it calls the function main() with processCount set to a non-
zero number.

Finally, there is a running process for an Empty Application document! In theory,
you could put any code you want in main(), just like an ordinary C program. How-
ever, the only way a PenPoint application knows what to do—when to initialize,
when it’s about to go on-screen, when to file, and so on—is by messages sent to

its application object. So, the first and only thing you need to do in main() when
processCount is non-zero is to create an instance of your application class and then
go into a dispatch loop to receive messages. This is what the AppMain() call does.
AppMain() does not return until the user turns away from the document and the
application instance can be terminated.

¥ Handling a message

csEmptyApp only responds to one message. That doesn’t mean that Empty
Application documents don't receive messages—if you turned on tracing while
running Empty Application, you'll have seen the dozens of messages that an Empty
Application application instance receives during a page turn. It means only that
cIsEmptyApp lets its ancestor take care of all messages except one, and it turns out
that clsApp does an excellent job of handling PenPoint Application Framework
messages.

A real application or other class has to intercept some messages, otherwise it has the
same behavior as its parent class. In the case of an application class, the application
needs to respond to PenPoint Application Framework messages that tell documents
when to start up, when to restore themselves from the file system, when they are
about to go on-screen, and so on. If the application has standard application menus
(SAMs), it will receive messages such as msgAppPrint, msgAppPrintSetup, and
msgAppAbout, from the buttons in the menus.

Often, the class responds to these messages by creating, destroying, or filing other
objects used by the application. EMPTYAPPC doesn’t do any of this; all it does is
print a string when it receives one particular message, msgDestroy.

% Method table

Objects of your classes (especially application instances) receive lots of messages
regardless of whether or not you want your class to deal with those messages. Your
class’s method table tells the Class Manager which messages your class intercepts.

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION) 105

This code sample is from Empty Application’s method table file (METHODS.TBL):

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

MSG_INFO clsEmptyAppMethods [] = {
#ifdef DEBUG
msgDestroy, “EmptyAppDestroy", objCallAncestorAfter,
#endif
0
}i

CLASS INFO classInfol] = {
"clsEmptyAppTable", clsEmptyAppMethods, O,
0

}i
This basically says “If an instance of cIsEmptyApp receives msgDestroy, call
EmptyAppDestroy(), then pass the message to clsEmptyApp’s ancestor.”

The link between the functions in a method table and a particular class is estab-
lished by one of the msgNew arguments when you create the class (new.cls.pMsg).
This is the name you associate with the class’s MSG_INFO array in the CLASS_INFO
array; in this example, the pMsg is clsEmptyAppTable. This code sample is from

CIsEmptyApplnit() in EMPTYAPPC:

// Install the Empty App class as a descendant of clsApp.
//
ObjCallWarn (msgNewDefaults, clsAppMgr, &new);

new.object.uid = clsEmptyApp;
new.cls.pMsg = clsEmptyAppTable;
new.cls.ancestor = clsApp;

’» msgDestroy

The names of most messages identify the class that defined them: for example,
msgAppOpen is defined by clsApp. Messages defined by the Class Manager itself
are the exception to this convention. msgDestroy is defined by the Class Manager
in PENPOINT\SDK\INC\CLSMGR H; this is why Empty Application’s METHODS.TBL
#includes this header file. The Class Manager responds to msgDestroy by
destroying the object that received msgDestroy.

W Message handler

The message handler (also known as a method) is just a C routine you write that
does something in response to the message. Empty Application’s message handler
for msgDestroy is EmptyAppDestroy(), which just prints a string to the debugger
stream.

The name you give the message handler must match the name you specified in the

method table (EmptyAppDestroy()).

Message handler

1/ APP WRITING GUIDE

The Class Manager actually
turns around and sends the
object another message,

msegFree, to free the object.

106 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide
% Parameters
The parameters that the Class Manager passes to a message handler are:
msg The message received by the instance.
self The UID of the instance that received the message.
pArgs The message arguments passed along with the message by the sender
of the message. ’
ctx A context that helps the Class Manager keep track of the class in the
instance’s hierarchy that is currently processing the message.
pData A pointer to the instance data, information specific to the instance
whose format is defined by the class.

Here’s the definition from CLSMGR.H:

// Definition of a pointer to a method.
typedef STATUS (CDECL * P_MSG HANDLER) (
MESSAGE msgq,

OBJECT self,
P_ARGS pPArgs,
CONTEXT ctx,

P_IDATA pData

)i
You never call your message handlers, the Class Manager does, and always with the
same set of parameters. The PenPoint Method Table Compiler generates a header
file containing function prototypes for all the message handlers specified in the
message table; you can guard against accidentally leaving out a parameter by
including these files in your class implementation C files:

#ifndef APP_INCLUDED

#include <a§p.h> // for application messages (and clsmgr.h)
#endif

#ifndef DEBUG_INCLUDED

#include <debug.h> // for debugging statements.

#endif

$ifndef APPMGR INCLUDED
#include <appmgr.h> // for AppMgr startup stuff
#endif

#ifndef INTL INCLUDED
#include <intl.h> // for international routines
#endif

#include <methods.h> // method function prototypes generated by MT
#include <string.h> // for strcpy().

MsgHandler() is a macro that expands into the correct definition of a pointer to a
message handler. It saves you typing all these parameters.
/**
EmptyAppDestroy

Respond to msgDestroy by printing a simple message if in DEBUG mode.
**/

MsgHandler (EmptyAppDestroy)
{

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION)

% Parameters in EmptyAppDestroy()

It turns out that Empty Application’s EmptyAppDestroy() routine doesn’t need
most of the parameters. The informative string prints out the UID of self (the
Empty Application document that received the message) and doesn't use the rest of
the parameters.

#ifdef DEBUG

Debugf (U_L("EmptyApp: app instance %p about to die!"), self);

#endif
We aren’t interested in the msg, since the Class Manager should only call this func-
tion with msgDestroy. clsEmptyApp has no instance data, so we don't need pData.
(Remember, we specified that class.size is 0 when we created cIsEmptyApp.)
Although we don’t need these parameters, there is no way to tell the Class Manager
not to send them.

The C compiler will warn about unused parameters in functions. Since many mes-
sage handlers won’t use all their parameters, CLSMGR.H defines a fragment of code,
MsgHandlerParametersNoWarning, which mentions each parameter. You can
stick this in your message handler at any point.

MsgHandlerParametersNoWarning; // suppress compiler warnings
} /* EmptyAppDestroy */

Status return value

Message handlers are supposed to return a status value. This is important both to
indicate to the sender of the message that the message was handled successfully, and
to control how the Class Manager passes the message up the class ancestry chain.
Empty Application’s method table directed the Class Manager to pass msgDestroy
to cIsEmptyApp’s ancestor after calling Empty Application’s handler:

msgDestroy, "EmptyAppDestroy",objCallAncestorAfter,

If EmptyAppDestroy() were to return an error status value, the Class Manager
would not call the ancestor, and the normal result of sending msgDestroy would be
pre-empted (the application object would not go away). Sometimes this is what you
want, but not in this case, so we return stsOK.

// The Class Manager will pass the message onto the ancestor
// if we return a non-error status value.
return stsOK;

Message handlers are private

Although message handlers are just regular C functions, you normally do 7or want
other code to call your message handlers. One of the goals of object-oriented pro-
gramming is to hide the implementation of functionality from clients of that func-
tionality. Clients should communicate with your objects by sending them messages,
not by calling your functions. That way you can change the names and implemen-
tation of a message handler without affecting clients of your API.

Message handler

107

1/ APP WRITING GUIDE

108 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

p» Using debugger stream output
There are two main ways to debug programs in PenPoint:
¢ Send data to the debugger stream.
¢ Use the PenPoint source-level debugger.

Additionally, you can use the PenPoint mini-debugger, which is part of PenPoint,
but is most useful when debugging kernel and device-interface code.

Note that you can’t use debugging tools designed to run under DOS because these
packages require your executable file to be running under DOS.

This section discusses sending data to the debugger stream. For a complete tutorial
on how to use the PenPoint source-level debugger (DB) and mini-debugger (mini-
DB), see the part on debugging in PenPoint Development Tools.

¥ The debugger stream

You can send data to the debugger stream with Debugf() and DPrintf() statements
in your code. This is much like debugging a DOS application by adding printf()

statements to the code.

EMPTYAPPC uses the system debugging output function Debugf() to print strings
to the debug stream (Empty Application doesn’t use its PenPoint windows to dis-
play anything).

Debugf() is much like the standard C function printf(). The %p formatting code in
the format string means “print this out as a 32-bit hexadecimal pointer.” Because
UIDs such as self are 32 bits, this is a quick and dirty way to print a UID value. The
Class Manager defines routines that convert UIDs to more meaningful values that
this application could have used instead; the message tracing and status warning
debugging facilities use these fancier output formats.

% Seeing debug output
There are several ways to view the information sent to the debugger stream:

¢ If you press Pause while running PenPoint, your screen will switch from
graphics to text display and you will see strings that have been written to the
debugger stream.

¢ If you have a second monitor and do not set monodebug=off in your MIL.INI
file, debugger stream data is displayed on the second monitor.

¢ If you turn on the 8000 bit in the D debug flag, debugging strings will be cop-
ied to the file \PENPOINT.LOG on theBootVolume (the directory specified
with PenPointPath in ENVIRON.INI).

¢ You can run the System Log application.

The System Log application is a PenPoint application that allows you to review data
sent to the debugger stream. To use it, install it by uncommenting it in SYSAPPINI
or by installing from disk (just as you install any other application in PenPoint).

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION)
The debugger stream

When the System Log application is installed, it adds its icon to the Accessories
window. Tap on the icon to open the application.

Debug strings appear in the System Log application. You can scroll up and down to
see its contents.

You can also check flags, see available memory, and set flags from the System Log
application. To learn more about the System Log application, see the part on
debugging in PenPoint Development Tools.

109

1 / APP WRITING GUIDE

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 1 / APPLICATION WRITING GUIDE

Chapter 7 / Creating Obijects
(Hello World: Toolkit)

Although Empty Application shows that the Application Framework can do many
things for an application, Empty Application is still rather boring, in that it doesn’t
contain anything or show anything on screen. This chapter describes how to create
objects. It so happens that these objects also display things on screen.

A standard, simple test program is one that prints “Hello World.” With the
PenPoint™ operating system, there are two different ways to approach this:

@ Use PenPoint’s UI Toolkit to create a standard label that contains the text.

¢ Create a window and draw text in it using text and drawing services provided
by the ImagePoint™ imaging model.

These two styles mirror two general classes of program. Programs such as database
programs and forms can use standard user interface components to create dialogs

with the user. Programs such as presentation packages and graphics editors do a lot
of their own drawing. They need to create a special kind of window and draw in it.

This chapter shows the first approach; the application clsHelloWorld calls on the

UI Toolkit to create a label object. The next chapter describes how to create a

window and draw in it (and also discusses how to create a new class).

Even programs that do use custom windows will make heavy use of the UI Toolkit. An application can choose not

Every application has a menu bar with standard menu buttons, a frame, and at ~ £0 use these Ul elements, but
. . . doing so ihvolves extra work

least one option sheet, and most programs will add to these to implement other ;1 5065 against GO's User

controls and dialogs with the user. Interface guidelines.

Moreover, using the UI Toolkit is much simpler than using a window. The toolkit
component classes are all descendants of clsWin, the class that supports overlapping
windows on the screen (and printer). But they know how and when to draw them-
selves and file themselves, so there’s very little you need to do besides create them
and put them in your application’s frame.

¥ HelloTK

Hello World (toolkit) uses Ul Toolkit components to display the words “Hello
World!” These components know how to draw themselves and position themselves.
Consequently, it’s extremely simple to create the application.

The directory PENPOINT\SDK\SAMPLE\HELLOTK actually contains two different
versions of Hello World (toolkit). The first version, HELLOTK1.C, creates a single
label in its frame. Usually you want to put several windows in a frame; this is more
complex and is handled by HELLOTK2.C.

112 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide .
" Compiling and installing the application
Both versions of Hello World (toolkit) (HELLOTK1.C and HELLOTK2.C) have a
single C file. Consequently, compiling, downloading, and running it are the same as
for Empty Application. Because there are multiple versions of the code, copy the
version you want to run as HELLOTK.C before building the application.

This creates a PENPOINT\APP\HELLOTK directory and compiles a HELLOTK.EXE
file in it. It uses STAMP to give the directory the long name Hello World (toolkit) and
the .EXE the long name Hello World (toolkit).exe.

Install Hello World (toolkit) either by adding \BOOT\PENPOINT\APP\Hello World
(toolkit) to PENPOINT\BOOT\/ocale\APPINI (where locale is a locale such as JPN or
USA) before starting PenPoint or by installing the application using the Installer.

Create Hello World (toolkit) application instances from the Stationery notebook,
from the stationery quick menu, or from the Accessory palette.

% Interesting things you can do with HelloTK
Alas, Hello World (toolkit) doesn’t do much more than Empty Application besides
display a label. It doesn’t do anything less, so you can create multiple instances of it
as accessories or as pages in the Notebook, you can trace messages to it (by setting
the F flag to 0x20), and so on.

The only new thing to do is to notice how the label draws itself. Try zooming or
resizing a Hello World (toolkit) document.

9 Code run-through for HELLOTK1.C

HELLOTKI.C creates a single label in its frame.

% Highlights of HELLOTK 1
The method table for Hello World (toolkit) only responds to one message,

msgApplnit.

msgAppInit, "HelloAppInit", objCallAncestorBefore,
In order to avoid clashing with other Hello World applications, HELLOTK1.C uses a
different well-known UID.

t#define clsHelloWorld wknGDTb // avoids clashing with other HelloWorlds

Most of the work is done in the message handler HelloApplInit(), which responds
to msgApplnit by creating the client window (a label).

So that it can use the same method table as HELLOTK2.C, HELLOTK1.C responds to
msgAppOpen and msgAppClose as well as msgApplnit; however, it does nothing
with these messages but return stsOK.

The only significant thing that happens in Hello World (toolkit) is that it responds
to msgApplnit by creating a label. The code to do this is very simple, about 35
lines, but deciding what to do in those few lines introduces several key concepts in
PenPoint application development:

CHAPTER 7 / CREATING OBJECTS (HELLO WORLD: TOOLKIT) 113
Code run-through for HELLOTK1.C

¢ Choosing what classes to use.
¢ Deciding when to create objects.

It also involves some common programming techniques:
¢ Creating an instance of a class.

¢ Sending messages to self.

"% Sending messages

Empty Application receives messages, but does not send messages. Often in
responding to a message, your application must send other messages. It might send
messages to other objects, or even send itself messages to get its ancestor classes to
do things. Hello World (toolkit) shows how to send a few simple messages.

%7 ObjectCall()

Use ObjectCall() to pass a message to another object in your process. This works
like a function call: the thread of control in your application’s process continues in
the message handler of the other object’s class, and returns to your code when the
other object’s class returns a status value to your code.

There are other ways to send a message:
¢ Asynchronously
¢ Using the input queue
¢ Between processes

In a simple application, stick to ObjectCall().

%» Testing return values and debugging

Because messages return a status value, you should usually check their return values.
This would ordinarily lead to lots and lots of constructs in your code, such as the
following:

if ((s = ObjectCall (msgXxx, someObject, &args) < stsOK) {
// Print standard warning if DEBUG set
// Handle error...

}

To save typing and code complexity, for every Class Manager function that returns
a status value, there are macro versions of the function that jump to an error han-
dler, or return true if there’s an error, etc. For ObjectCall(), these are ObjCall-
Warn(), ObjCallRet(), ObjCallJmp(), ObjCallChk(), and ObjCallOK().

The return value of ObjCallWarn() is the status value returned by ObjectCall(). If
compiled with the DEBUG preprocessor variable set, then ObjCallWarn() prints out
an error string if the status value is an error (that is, less than stsOK).

The other macros incorporate ObjCallWarn() into their behavior:
ObjCallRet() Calls ObjCallWarn() and then returns the status value if it

Is an error.

1/ APP WRITING GUIDE

114 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

ObjCallJmp() Calls ObjCallWarn() and then jumps to a error label (where

you can handle the error) if the status value is an error.

ObjCallChk() Calls ObjCallWarn() and then returns the value true if the

status value is an error.

ObjCallOK() Calls ObjCallWarn() and then returns the value true if the
status value is not an error (that is, greater than or equal to stsOK).

% Creating toolkit components

HELLOTKI.C responds to msgApplnit by creating a label. Labels are one of the
many components provided by the UI Toolkit. But why does it create this particular
kind of component? '

%» What kind of component?
It’s worth taking a close look at the class hierarchy poster to see all the toolkit

classes.
Most of the UI Toolkit classes are windows. clsWin implements the standard Tip Some of the key decisions
window behavior of multiple overlapping regions on a pixel device, but clsWin you make In any object-

))) he d d £ lsWin inheric cdlsWin: oriented programming system
does not draw images in a window. The descendants of clsWin inherit clsWin’s are choosing which built-in

behavior and add the ability to draw images, handle input, and so on. All of the UT classes to use and which built-

toolkit components inherit from clsBorder, a special kind of window which knows " ¢149962 to subclas.

how to draw a border.

Part 4: UI Toolkit of the PenPoint Architectural Reference explains the UI Toolkit in
all its multilevel glory. For a hint of what it can do, Figure 7-1 shows a screen shot
with all the different kinds of UI Toolkit components present.

There are many other classes in the Ul Toolkit. There are several base classes that
provide lower-level functionality. And there are many specialized components
classes, such as date handwriting input fields.

For Hello World (toolkit), all we need is a class that can display a string, such as
clsLabel.

To learn more about a class, you can try to:
@ Use the class browser to get a brief description of it and all its messages.
Read about it in its subsystem’s part of the PenPoint Architectural Reference.
¢ Look up its “datasheets” in the PenPoint API Reference.
¢ Look at its header file in PENPOINT\SDK\INC.

The class Browser, the header, and the documentation all give you the information
you need to create an instance of the class.

%»» msgNew arguments for clsLabel

As you learned in Chapter 3, Application Concepts, you create objects by sending
msgNew to their class. Different classes allow different kinds of initialization, so
you pass different arguments to different classes. The documentation states what

CHAPTER 7 / CREATING OBJECTS (HELLO WORLD: TOOLKIT)
Code run-through for HELLOTK1.

Ul Toolkit components FIGURE 7-1

115

Title Bar Menu Bar Page Number

Frame
Pull-down Menu

Menu Button

e : o six

o
]
.

- - i o

o . : o .

”?F;‘i%%ﬁ%is . . (-
..

m;ﬁangnsiaeﬁmma ,; T ";“ — gw@sxii T

. ..

-

. . o

.. .

L L
: o

e oy
ai g&s!ﬁ;@ié e
G
o

Sran e

e V
gzgzénggigs‘%ﬁ§§‘%” gssﬁu%iii%iih’“I§¥'ﬁ"‘%“‘“”"§gg Tab Bars
|k 5%&, »ig%\‘.‘} gl

- A
el
%ému

T

s

i’fim _ L, Which 13 a hugggmnmm d e el Vertical Scrollbar
Option Sheet

mgtimw

i . - ;
it . - | “g o sl : Option Table
. - yi *?ﬁ;]

S

Labels

it

Gt
!mxmmmaﬁ -

e

. ;Em

-
) x%n

e
.

2o

e

sse it

o

e
-

Fopup Choice

L

ISy
&
L
o

Toggle Table
Shadow

-
-
.

g
e
-
R

o
hahe

S

o
o

e

h

.
L
Gl

e
o
o

.
-

-
.

e
i

i
Coioanieun
e
e
.

.
e
e

G

:

i
s
=
Leiaiaiosccans
=
o
Sian

o . ﬂm&“‘i‘ﬁm

; %%gm

i
.
-
FEL R

on

.
.

B
B

Command Bar

o
.
L
-

. -
.
.
.
%ﬁ'ﬁ@gﬁ
b
-

.
o

B

e

-

o

LR
-

eaan i

e

E

ok
Baea e

L
L

m%m%ﬁég

o
i@émig
.
L

o

-
s

sl

i
Rise e

i
o
e
n
o
o

;5%5%&%@

i
.
B

s

-

.

i
wena
G
T

L

-

%3@%&

-

St an

-
-

-
-

o

-

Sean e

B
e
e

SRl i

o

ai
Snoion
Botes
%gém
Givineuens

.
é

.

‘_@§§
G
i e

o

Gner

i}iiiﬁi‘m
-
:

i

L

Sin

Bookshelf

e
f

-

@5!
L
i
S
e

"gé"
a

-

-

SR
i
Uia@aa
.
“ééé‘
N

e
-

foaen

heannay
;%’éﬁ .
T 5

S o Euumxnmx

i o5 3 S

e - o g : R

gﬁmm % ot Jior) ‘ EE@W
e SRR - , C 2%55"»3!“&‘3 e

§ i
:

e
Gadanatots
i

mié
SEEane
-

message arguments a given class needs for msgNew. In the header file, the infor-
mation is expressed as follows:
msgNew takes P _LABEL NEW, returns STATUS

This says that you should pass in a pointer to a LABEL_NEW structure when you
send msgNew to clsLabel. What you typically do is declare a LABEL_NEW structure
in the routine which sends msgNew. You can give this any variable name you want;
Hello World (toolkit) names it In, the first letter of each part of the structure name.
The sample code follows this naming convention consistently.

1 / APP WRITING GUIDE

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

/**
HelloAppInit

Respond to msgAppInit by creating the client window (a label).
**/

MsgHandler (HelloAppInit)
{

APP_METRICS am;
LABEL_NEW 1n;
STATUS 8i

Before you send msgNew to a class, you must a/ways send msgNewDefaults to
that class. This takes the same message arguments as msgNew (a pointer to a
LABEL NEW structure in this case). This gives the class and its ancestors a chance to
initialize the structure to the appropriate default values. It saves your code from ini-

tializing the dozens of fields in a _NEW structure.
// Create the Hello label window.
ObjCallWarn (msgNewDefaults, clsLabel, &ln);

Note the use of ObjCallWarn() instead of ObjectCall(). As mentioned earlier, Obj-
CallWarn(), when compiled with DEBUG set, sends a warning message to the
debugging output device when it returns a non-zero status value.

Now you're ready to give values to those fields in the structure that you care about.

Figuring out what's in a _NEW structure is not easy. It contains initialization infor-

mation for the class you are sending it to, along with initialization information for

that class’s ancestor, and for its ancestor’s ancestor, all the way to initialization argu-
ments for clsObject. Sometimes the only initializations you're interested in are the

ones for the class you've chosen, but in the case of the Ul Toolkit, you often have to
reach back and initialize fields for several of the ancestor classes as well.

1n.label.style.scaleUnits = bsUnitsFitWindowProper;

I1n.label.style.xAlignment = lsAlignCenter;

I1n.label.style.yAlignment = lsAlignCenter;

In.label.pString = U_L("Hello World!");
You can look up the hierarchy for a class by looking in the PenPoint API Reference
section for that class. The description of the \NEW structure for msgNew always
gives the "NEW_ONLY structures that make up the "NEW structure. Thus, the hier-

archy for clsLabel expands to:

LABEL, NEW {
OBJECT NEW ONLY object;
WIN_NEW_ONLY win;

GWIN NEW_ONLY gWin;
EMBEDDED WIN_NEW_ONLYembeddedWin;
BORDER_NEW_ONLY border;
CONTROL_NEW_ONLYcontrol;
LABEL NEW_ONLY label;

}

When in doubt, rely on msgNewDefaults to set up the appropriate initialization,
and modify as little as possible.

CHAPTER 7 / CREATING OBJECTS (HELLO WORLD: TOOLKIT) 117
Code run-through for HELLOTK1.C

All you need do to create a label is pass clsLabel a pointer to a string to give the
string a label. However, the LABEL_STYLE structure contains various style fields
that also let you change the way the label looks.

We want the text to fill the entire window, so the scaleUnits field looks promising.
This is a bit field in LABEL_STYLE, but rather than hard-code numeric values for
these in your code, LABEL.H defines the possible values it can take. One of these is
IsScaleFitWindowProper. This tells clsLabel to paint the label so that it fills the
window, but keeping the horizontal and vertical scaling the same. Other style fields
control the alignment of the text string within the label. In this example, we'd like
to center the label.

By the way, one reason that clsLabel has so many style settings and other msgNew
arguments is that many other toolkit components use it to draw their text, either by
creating lots of labels or by inheriting from clsLabel. Thus clsLabel draws the text
in tab bars, in fields, in notes, and so on:

// Create the Hello label window.
ObjCallWarn (msgNewDefaults, clsLabel, &ln);

1n.label.style.scaleUnits = bsUnitsFitWindowProper;
In.label.style.xAlignment = lsAlignCenter;
1n.label.style.yAlignment = lsAlignCenter;
1n.label.pString = U_L("Hello World!");

ObjCallRet (msgNew, clsLabel, &ln, s);

Now the label window object exists. The Class Manager passes back its UID in
In.object.uid. But at this point it doesn’t have a parent, so it won't show up on-
screen.

Where the window goes

Empty Application appeared on-screen even though it didn’t create any windows
itself. The Application Framework creates a frame for a document. Frames are Ul
Toolkit components. A frame can include other windows within it. Empty Applica-
tion’s frame has a title bar, page number, and resize boxes; you've seen other applica-
tions whose frames also include tab bars, command bars, and menu bars.

Most importantly, a frame can contain a client window, the large central area
in a frame. Empty Application didn’t supply a client window (hence it looked
pretty dull).

Hello World (toolkit) wants the label it creates to be the client window. The mes-
sage msgFrameSetClientWin sets a frame’s client window. But the label must have
its frame’s UID to send a message to its frame. Hello World (toolkit) didn’t create
the frame, its ancestor clsApp did.

clsApp does not define a specific message to get the main window. Instead, it pro-
vides a message to get diverse information about application instances, including
the main window of that application. An application can have a different main
window for itself other than a frame.

1 / APP WRITING GUIDE

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Information made public about instances of a class is often called metrics, and the

message to get this information for an application is msgAppGetMetrics. msg-

AppGetMetrics takes a pointer to an APP_METRICS structure, one of the fields in

the structure is mainWin. Here is how HelloApplInit() gets its main window:
APP_METRICS am;

// Get the app's main window (its frame).
ObjCallJdmp (msgAppGetMetrics, self, &am, s, error);

// Insert the label in the frame as its client window.
ObjCallJdmp (msgFrameSetClientWin, am.mainWin, \
(P_ARGS) In.object.uid, s, error);

Note that the code sends msgAppGetMetrics to self. We have been talking loosely
about Hello World (toolkit) doing this and that, but remember that this code is
run as a result of an instance of clsHelloWorld receiving a message, and that
clsHelloWorld is a descendant of clsApp. Thus, the document is the application
object to which we want to send msgAppGetMetrics. In the middle of responding
to one message (msgApplnit), we need to send a message to the same object that
received the message. This is actually very common. The Class Manager provides a
parameter to methods, self, which identifies the object that received the message.

Why msgApplnit?

Earlier you turned on message tracing to Empty Application. This causes the class
manager to dump out every message received by instances of clsEmptyApp. You
should have noticed that each Empty Application document receives dozens of
messages during the course of a page turn to or from itself. These messages are sent
to documents (application instances) by the PenPoint Application Framework.

If you want your application to do something, you must figure out when to do it.
Your process can't take over the machine and do whatever it wants, whenever it
wants. It must do what it wants in response to the appropriate messages.

One of the hardest things in PenPoint programming is figuring out when to
do things.

So, when should Hello World (toolkit) create its label? Because it inserts the label in
its frame (using msgFrameSetClientWin), it can’t create the label before it has a
frame. But it should have a label in its frame before it goes on screen.

It turns out that clsApp creates the document’s frame in response to msgApplnit.
Thus Hello World (toolkit) can get its frame and insert the label in its msgApplInit
handler, but it must do so after clsApp has responded to the message. This is why
its method table tells the Class Manager to first send the message to its ancestor:
MSG_INFO clsHelloMethods [] = {
msgAppInit, "HelloAppInit", objCallAncestorBefore,
msgAppOpen, "HelloOpen", objCallAncestorAfter,
Note that doing this relies on knowing what the ancestor class does. You'll spend
a lot of time reading Part 2: Application Framework of the PenPoint Architectural
Reference to learn about the PenPoint Application Framework messages and how
clsApp responds to them.

CHAPTER 7 / CREATING OBJECTS (HELLO WORLD: TOOLKIT) 119
Highlights of the second HelloTK

¥ Why did the window appear?

If you're familiar with other window systems, you may be wondering how the label
gets sized, positioned, and made visible on screen. These will be explained during
the development of other tutorial programs. But here’s a summary.

When the application is about to go on screen it receives msgAppOpen. clsApp
inserts the main window (the frame) in the Notebook’s window and tells it to lay
out. clsFrame takes care of sizing and positioning its title bar, page number, move
box, and client window (the label). Each of these windows is sent a message by the
window system to repaint itself when it is exposed on screen. clsLabel responds to
the repaint message by painting its label string. Thus all you need to do is put a
toolkit window inside your frame, and the system takes care of the rest for you.

¥» Possible enhancements

You can change the class of the window created in HelloApplInit() to be some other Warning Passing the wrong

kind of window class by changing the class to which Hello World (toolkit) sends ~ M992@¢ arguments with a

. . message is one of the more
msgNewDefaults and msgNew. But different classes take different message argu- -ommon errors in Penfoint
ments when they are created. You need to replace the declaration of a LABEL_NEW programming. The C compiler

structure with the msgNew arguments of the new class. will not cateh the error.

If the class handling the message expects different arguments, it will blindly read
past the end of the structure you passed it, and if it passes back values, it will over-
write random memory. A given class receiving a given messsage has to be given a
pointer to the appropriate structure, otherwise unpredictable results will occur: but
it can’t enforce this.

There are many classes which inherit from clsLabel, consequently, if you used
one of these, you wouldn’t even have to change the initialization of the structure.
For example, clsField inherits from clsLabel, and FIELD_NEW includes the

same NEW_ONLY structures as LABEL_NEW, so it takes the same border and
label specifications.

¥ Highlights of the second HelloTK

HELLOTK2.C is much like HELLOTK1.C. The big difference is that it supports more
than one window. Most applications have many windows within their frame.

You compile and run it the same way. Just copy HELLOTK2.C to HELLOTK.C and
follow the steps outlined above.

¥ Only one client window per frame

Frames only support a single client window. But usually you'll want several win-
dows in your application. You have two alternatives:

¢ Subclass clsFrame (which is very difficult).

¢ Create a client window, then insert all the windows you want into that client
window (which is quite easy).

1/ APP WRITING GUIDE

120 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The toolkit provides two window classes that help you organize the windows
within the client window. These are called layout windows. To understand why
they’re needed, you need to know a little bit about layout.

% Layout

When you're using several windows, something is responsible for positioning them
on the screen. You can set a window’s position and size to some value with msg-
WinDelta. However, if the user changes the system font size, or resizes the frame,
or changes from portrait to landscape mode, the numbers you pick are unlikely to
still be appropriate. It’s more convenient to specify window locations at an abstract
level:

¢ “I want this window below that one, and extending to the edge of that other

»

one.
¢ “Position these windows in two columns of equal width.”

The UI Toolkit provides two layout classes that support these styles, clsCustom-
Layout and clsTableLayout. Both are packed with features. Both lay out their own
child windows according to the constraints (for custom layout) or algorithm (for
table layout) that you specify. The general way of using layout windows is to create
one, specify the layout you want, and insert the windows in it.

HELLOTK2.C uses a custom layout window and positions a single label in its center
using ClAlign(clCenter, cISameAs, clCenter).

CstmLayoutSpecInit (&(cs.metrics));

cs.child = ln.object.uid;

cs.metrics.x.constraint = ClAlign(clCenterEdge, clSameAs, clCenterEdge);
cs.metrics.y.constraint = ClAlign(clCenterEdge, clSameAs, clCenterEdge);
cs.metrics.w.constraint = clAsIs;

cs.metrics.h.constraint = clAsIs;

ObjCallJdmp (msgCstmLayoutSetChildSpec, cn.object.uid, &cs, s, error2);

% Possible enhancements
You might consider trying to add one of the following to HELLOTK2.C.

% Fields

Change the label to be an editable field. There are several ways of handling hand-
writing in PenPoint. One way is to use a UI component that allows editing, cls-
Field. Since fields have similar behavior to labels (they display a string, have a
length, font, and so on), clsField inherits from clsLabel. This makes it easy to
update the application: replace the LABEL_NEW structure with FIELD_NEW, and
clsLabel with clsField, and recompile. You can now hand-write into the field.

%» More components

Add some more controls, using different custom layout constraints. You should be
able to put together a simple control panel.

CHAPTER 7 / CREATING OBJECTS (HELLO WORLD: TOOLKIT)
Highlights of the second HelloTK

%~ General model of controls
You specify the metrics of each control when you create it, then you insert them
in your layout window. The controls lay themselves out, repaint themselves, and
support user interaction without any intervention on your part. When the user
activates a control, the control sends its client (set in the msgNew arguments of
clsControl, or by msgControlSetClient) a notification message.

For more information on controls, see Part 4: UI Toolkit of the PenPoint
Architectural Reference.

121

1/ APP WRITING GUIDE

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 1 / APPLICATION WRITING GUIDE

Chapter 8 / Creating a New Class
(Hello World: Custom Window)

This chapter describes how you create a new class. Along the way, the chapter
also describes how to display the string “Hello World!” on screen by creating and
drawing in custom windows.

P Hello World (Custom Window)

Hello World (custom window) creates an instance of a custom window and uses the
custom window to display some text.

It’s still not a very realistic application because it doesn’t file any data, but it does
use an additional class, a descendant of clsWin, to do its drawing. Your application
may be able to use only standard UI components from the UI Toolkit and other
PenPoint™ subsystems; but if not, you will create new classes of windows to imple-
ment the special behavior you require.

So far, our example applications have been quite simple and have not needed to
define their own classes (apart from creating a subclass of clsApp). One of the big
advantages in object-oriented programming is that when you do define a class,
other applications can create instances of the class (rather than defining new classes
on their own).

So that other applications can use the new class, developers often define each class
in a single C file and then compile and link one or more C files into a DLL. The C
file that contains the application class (and has main()) is compiled into an execut-

able file.

To show this coding style, Hello World (custom window) is implemented as
an application and a separate DLL. There are two parts to Hello World (custom
window): clsHelloWorld (the application class), and clsHelloWin (the win-
dow class). HELLO.C implements clsHelloWorld and HELLOWIN.C defines
clsHelloWin. HELTBL.TBL contains the method table for clsHelloWorld;
HELWTBL.TBL contains the method table for clsHelloWin.

% Compiling the code
Compiling and linking the Hello World (custom window) executable is somewhat
similar to compiling Empty Application. However, Hello World (custom window)
is compiled and linked in two parts: an EXE file that contains the application, and a
DLL file that contains the class of the client window (clsHelloWin).

You can build Hello World (custom window) by changing the directory to
'PENPOINT\SDK\SAMPLE\HELLO and running the make utility.

124 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Note that because the application class, clsHelloWorld, and its window class are in
different files, compiling is more efficient if they have separate method table files
(HELTBL.TBL and HELWTBL.TBL).

%» Linking DLLs

When you link DLLs (dynamic link libraries), the information you provide to the
linker is slightly different from the information you provide when linking an exe-
cutable image. In addition to the object code, the linker requires a DLL.LBC file.
This file lists all the exported functions defined in the DLL being linked. Usually,
PenPoint DLLs only have the single entry point DLLMain(). The lines in the
DLL.LBC file have the form:

++entry point.'lname'

Letter case doesn’t matter in the DLL.LBC file.

The entry-point is the name of the exported function. In PenPoint, this is DLL-
Main(), the entry point for the DLL. The PenPoint Installer uses the /name to iden-
tify code modules. An Iname is composed of a company ID, a project name, and a
revision number. The revision number takes the form Vmajor(minor), where major
is the major revision number and minor is the minor revision number.

Thus, for Hello World (custom window), the DLL.LBC file contains the single line:
++DLLMAIN. ' GO-HELLO DLL-V2(0)’

In this example, the entry point is DLLMain() and the Iname is GO-HELLO_DLL-

V2(0). The Iname indicates that the company is GO, the project is HELLO_DLL, and

the version is 2(0).

%» DLC files

Because Hello World (custom window) requires that HELLO.DLL be loaded before
HELLO.EXE can run, you need to have a HELLO.DLC file in the Hello World
(custom window) application directory that expresses the relationship:

GO-HELLO DLL-V2(0) hello.dll

GO-HELLO_EXE-V2(0) hello.exe
The PenPoint installer uses this information when installing the Hello World
(custom window) application. The first line indicates that the Hello World (custom
window) application depends on the DLL file HELLO.DLL, version 2(0). Should this
DLL already be loaded, PenPoint will not attempt to load it. The second line tells
PenPoint to install the executable file HELLO.EXE.

Because the PenPoint name of the application directory is “Hello World,” the
makefile must STAMP the .DLC file with the name “Hello World” so that the
Installer will find it.

CHAPTER 8 / CREATING A NEW CLASS (HELLO WORLD: CUSTOM WINDOW) 125
Graphics overview

% Highlights of clsHelloWorld

The method table for clsHelloWorld (in HELTBL.TBL) handles two significant
messages:

msgAppOpen, “HelloOpen", objCallAncestorAfter,
msgAppClose, "HelloClose", objCallAncestorBefore,

The handler for msgAppOpen creates an instance of clsHelloWin and inserts it as
the frame’s client window.

The handler for msgAppClose destroys the client window.
When processCount is 0, main() calls ClsHelloInit().

% Highlights of clsHelloWin

The DLLMain() for clsHelloWin is the only thing defined in DLLINIT.C. The
DLLMain() calls ClsHelloWinInit(), the initialization routine for clsHelloWin.
STATUS EXPORTED DLLMain (void)
StsRet (ClsHelloWinInit (), s);
The method table for clsHelloWin (in HELWTBL.TBL) handles three significant
messages:

msgInit, "HelloWinInit", objCallAncestorBefore,
msgFree, "HelloWinFree", objCallAncestorAfter,
msgWinRepaint, "HelloWinRepaint", 0,

clsHelloWin is the first sample application that defines its own instance data (in

HELLOWIN.C).
typedef struct INSTANCE DATA {
SYSDC dc;

} INSTANCE DATA, *P_INSTANCE_DATA;

clsHelloWin responds to msglnit by zeroing the instance data, creating a drawing
context, initializing the drawing context, and storing the drawing context in the
hello window object’s instance data.

The class responds to msgDestroy by destroying the drawing context.

clsHelloWin responds to msgWinRepaint by calculating the text width and scaling
the window so that it fits the text

W Graphics overview

To draw in a window you need to create a drawing context object (often abbrevi-
ated to DC). You send messages to the drawing context, not your window, to draw.
The drawing context’s class knows how to perform these graphics operations. There
could be different kinds of drawing contexts to choose from on PenPoint: For
example, there might be one available from a third-party company which under-
stands 3-D graphics, or you could create your own.

1/ APP WRITING GUIDE

126

Py

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

System drawing context

The standard system drawing context (sometimes abbreviated to sysDC) supports
the ImagePoint imaging model. You can draw lines, polygons, ellipses, Bezier
curves, and text by sending messages to an instance of the system drawing context.

Each of these graphic operations is affected by the current graphics state of your
DC. The system drawing context strokes lines and the borders of figures with the
current line pattern, width, end style, and corner style, all of which you can set and
get using system drawing context messages. Similarly, it fills figures with the current
fill pattern. Most drawing operations involve both stroking and filling a figure, but
by adjusting line width and setting patterns to transparent, you can only fill or only
stroke a figure.

The pixels of figures on the screen are transformed according to the current
rasterOp. This is a mathematical description of how the destination pixels on

the screen are affected by the pixels in the source figure. To paint over pixels on the
screen, you use the default rasterOp, sysDcRopCopy; another common rasterOp is
sysDcRopXOR, which inverts pixels on the screen.

At this writing there are no PenPoint computers that support color, however, the
system drawing context supports a full color model. You can set the background
and foreground colors (on a black and white display, the resulting colors will always
be black, white, or a shade of gray). The line and fill patterns are mixtures of the
current foreground and background color, or sysDcInkTransparent.

Because the system drawing context is a normal Class Manager object, you create a
new instance of it in the usual way, by sending msgNew to clsSysDrwCtx. Your
drawing messages end up on some window on the screen, so at some point you
must bind your DC to the desired window using msgDcSetWindow. -

Coordinates in drawing context

Another vital property of the system drawing context is its arbitrary coordinate
system. You can choose whether one unit in your drawing (as in “draw a line one
unit long”) is one point, 0.01 mm, 0.001 inch, 1/20 of a point, one pixel on the
final device. You can then scale units in both the X and Y direction; one useful
scaling is to scale them relative to the height and width of your window. You can
even rotate your coordinate system. What this gives you is the precision of knowing
that your drawing will be an exact size. It also gives you the freedom to use any
coordinate system and scale that suits your drawing. The default coordinates are
one unit is one point (approximately 1/72 of an inch), and the origin is in the lower
left corner of your window.

Hello World (custom window) uses the default units, but scales its coordinate
system so that its text output remains at a regular aspect ratio.

When fo paint

Windows need to repaint themselves when they first appear on the screen, when
they are is resized, and when they are exposed after other windows have covered

If you want to draw temporarily
on the screen, it’s better to
set the sysDcDrawDynamic
mode instead of directly
changing the rasterOp.

CHAPTER 8 / CREATING A NEW CLASS (HELLO WORLD: CUSTOM WINDOW) 127
When to create things

them. Windows receive msgWinRepaint when the window system determines that
they need to repaint, and windows must respond to this.

“clsHelloWin only paints in response to msgWinRepaint. The way most windows
work is that they repaint dirty areas rather than paint new ones. When a window
wants to draw something new, it can dirty itself and will receive msgWinRepaint.
clsHelloWin has no need to dirty itself since it doesn’t change what it paints.

When to create things

The need to manage a separate object (a drawing context) introduces two crucial
g p) g
questions you need to consider when designing an application:

¢ When do I create and destroy an object (or resource)?
¢ When do I file it, if at all?

An application can create objects at many stages in its life. It can create objects at
installation, at initialization (or at restore time), when opening, or when painting
its windows. If your application waits until it needs an object before it creates the
object, it will use less memory before it creates the object. But creating objects takes
time, so you may want to create the object at initialization time, before the user
interacts with the application, to reduce the time it takes your application to
respond to the user. As is often the case, you must strike a balance between memory
and performance.

To decide when to create objects, you need to work backwards from when they are
needed. In this case, Hello World only needs a drawing context in its window’s
repaint routine. Creating a DC every time you need to repaint is OK, but it is a fairly
expensive operation in terms of time. Besides, realistic applications often use a DC
in input processing as well, to figure out where the user’s pen is in convenient coor-
dinates. However, we do know that a DC will never be needed when the view
doesn’t exist.

clsHello could create the DC and pass it to clsHelloWin, but it’s usually much
more straightforward for the object that needs another object to create that object.

Hello World creates its window when it receives msgAppOpen and destroys its
window when it receives msgAppClose. These are reasonable times for the window
to create its DC, so clsHelloWin creates a DC when it receives msglnit and destroys
the DC when it receives msgFree.

Instance data

In our example, clsHelloWin creates its DC in advance. This means that it has

to store the UID of the DC somewhere so that it can use it during msgWinRepaint.
In typical DOS C programs, you can declare static variables to hold information.

It is possible to do this in PenPoint, but in general you should not do it in object-
oriented code.

Instead, you should store the information inside each object, in its instance data.
Up until now our classes have not had to remember state, so they haven’t needed

1/ APP WRITING GUIDE

128 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

their own instance data. (Even if the class you create does not define instance data
for its objects, its ancestors define some instance data, such as the document name

and the label of the toolkit field.)

Specifying instance data is easy. You just tell the Class Manager how big it is (in the
class.size field) when you create your class. You would typically define a typedef for
the structure of your class’s instance data, then give the size of this as the class.size.
In the case of clsHelloWin, we define a structure called INSTANCE_DATA:

typedef struct INSTANCE DATA {
SYSDC dc;
} INSTANCE DATA, *P INSTANCE DATA;

and then in ClsHelloWinInit():

STATUS ClsHelloWinInit (void)
{
CLASS_NEW new;
STATUS S;
// Create the class.
ObjCallWarn (msgNewDefaults, clsClass, &new);

new.object.uid = clsHelloWin;
new.cls.pMsg = clsHelloWinTable;
new.cls.ancestor = clsWin;

new.cls.size = SizeOf (INSTANCE DATA);
new.cls.newArgsSize = SizeOf (HELLO_WIN NEW);

ObjCallRet (msgNew, clsClass, &new, s);

% Is it msgNew or msglnit?

As we discussed, clsHelloWin creates its DC when it is created. It does this by
responding to msglnit.

Note that clsHelloWin responds to msglnit, not msgNew. When you create an
object, you send its class msgNew. No classes intercept this message, so it goes up
the ancestor chain to clsClass, which creates the new object. The Class Manager
then sends msglnit to the newly created object, so that it can initialize itself.

% Window initialization
Here’s the HelloWinlInit() code that creates the Hello Window in response
to msglnit: -

MsgHandler (HelloWinInit)

{
SYSDC_NEW dn;
INSTANCE DATA data;
SYSDC_FONT SPEC fs;
SCALE fontScale;
STATUS s;

clsHelloWinlInit declares an instance data structure. It does this because the pointer
to instance data passed to message handlers by the Class Manager (pData, unused
in this routine) is read-only.

CHAPTER 8 / CREATING A NEW CLASS (HELLO WORLD: CUSTOM WINDOW) 129
Using instance data

It then initializes the instance data to zero. It’s important for instance data to be in a
well-known state. This isn’t necessary in the case of clsHelloWin, since the only
instance data is the DC UID that it will fill in, but it is good programming practice.
// Null the instance data.
memset (&data, 0, SizeOf(data));
clsHelloWin then creates a DC:
// Create a dc.
ObjCallRet (msgNewWithDefaults, clsSysDrwCtx, &dn, s);

When msgNewWithDefaults returns, it passes back the UID of the new system msgNewWithDefaults works
like megNewDefaults followed
immediately with msgNew.
data.dc = dn.object.uid; Use msgNewWithDefaults

clsHelloWin sets the desired DC state (including the line thickness) and binds it to when you don's need to modify
the defaults before creating

self (the instance that has just been created when HelloWinInit() is called): the object.

drawing context. This is what clsHelloWin wants for its instance data:

// Rounded lines, thickness of zero.
ObjectCall (msgDcSetLineThickness, data.dc, (P_ARGS)0);
if (DbgFlagGet ('F', 0x40L)) {
Dbg (Debugf (U_L("Use a non-zero line thickness."));)
ObjectCall (msgDcSetLineThickness, data.dc, (P_ARGS)2);
}

// Open a font. Use the "user input" font (whatever the user has
// chosen for this in System Preferences.

fs.id = 0;

fs.attr.group = sysDcGroupUserInput;
fs.attr.weight = gysDcWeightNormal;
fs.attr.aspect = sysDcAspectNormal;
fs.attr.italic = 0;
fs.attr.monospaced =0,

fs.attr.encoding = sysDcEncodeGoSystem;

ObjCallJmp (msgDcOpenFont, data.dc, &fs, s, Error);

// Scale the font. The entire DC will be scaled in the repaint
// to pleasingly fill the window.

fontScale.x = fontScale.y = FxMakeFixed(initFontScale,0);
ObjectCall (msgDcScaleFont, data.dc, &fontScale);

// Bind the window to the dc.

ObjectCall (msgDcSetWindow, data.dc, (P_ARGS)self);
At this point, clsHelloWin has set up its instance data in a local structure. It calls
ObjectWrite() to get the Class Manager to update the instance data stored in the

Hello Window instance:

// Update the instance data.
ObjectWrite (self, ctx, &data);
return stsOK

¥ Using instance data

Accessing instance data is easy. The Class Manager passes a read-only pointer to
instance data into the class’s message handlers.

The Class Manager has no idea what the instance data is, so it just declares the
pointer as a mystery type (P_DATA, which is defined as P_UNKNOWN). The
MsgHandler() macro names the pointer pData.

1 / APP WRITING GUIDE

130

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

clsHelloWin needs to access its instance data during msgWinRepaint handling so
it can use the DC. It knows that the instance data pointed to by pData is type
INSTANCE_DATA, so it uses the MsgHandlerWithTypes() macro, which allows it to
provide the types (or casts) for the argument and instance data pointers:
MsgHandlerWithTypes (HelloWinRepaint, P_ARGS, P_INSTANCE DATA)

You can pass the pData pointer around freely within your code, but whenever you
want to change instance data, you must de-reference it into a local (writable) vari-
able, modify the local variable, and then call ObjectWrite(). clsHelloWin creates its
DC when it is created, and never changes it, so it doesn’t have to worry about
de-referencing its instance data into local storage. But clsCntr, described in Chapter

9, does have to do this.

No filing yet

On a page turn, the process and all objects associated with a Hello World (custom
window) document are destroyed. Normally this means that objects have to file
their state. However, since clsHelloWin destroys its DC when it is destroyed and
never changes its DC’s state, it doesn’t have to file its DC.

The application does not file its view—it creates it at msgAppOpen to draw, then
destroys it at msgAppClose, and there’s no useful state to remember from the DC.
You could imagine an application that would want to remember some of the state
of its DC. For example, if the user could choose the font in Hello World (custom
window), then the program would need to remember what the font was so that
when the user turns back to the application’s page the application continues to use
the same font.

Drawing in a window

Empty Application prints out messages, but it doesn’t draw them in its window.
Instead it uses the error output routine Debugf() to generate output. Hello World
(custom window) actually draws something in its window. Windows are separate
objects from applications, and the window gets told to repaint, not the application.
Hence, you need to create a window object. The window object will receive msg-
WinRepaint messages whenever it needs to paint its window, either because the
application has just appeared on-screen, or because another window was obscuring
part of this window.

clsWin responds to msgWinRepaint by filling self with the background color and
outlining the edge of the window. You could put an instance of clsWin inside your
frame, but we want something more interesting to appear in the window. So
clsHelloWin intercepts msgWinRepaint and draws its own thing. It draws

the strings “Hello” and “World” and then draws an exclamation point using
graphics commands. The most complex thing about its repaint routine is its
scaling. It measures how long the strings “Hello” and “World” will be, then uses
this information to scale its coordinate system so that the words and drawing fit in
the window nicely.

CHAPTER 8 / CREATING A NEW CLASS (HELLO WORLD: CUSTOM WINDOW)
Possible enhancements

P Possible enhancements

Try drawing some other shapes using other msgDcDraw... messages. Nest a
clsHelloWin window in the custom layout window from HELLOTK2.C.

W Debugging Hello World (custom window)

If you want to modify Hello World (custom window), you might need to use DB
extensively as you make changes. This section explains techniques developers com-
monly use to speed up debugging with DB.

To save typing commands over and over to DB, you can store them in files and read
them into DB using its < command, for example:
<\\boot\proj\setbreak.txt

When it starts, DB looks for a start-up file called DBCUSTOM.DB. It tries to find this
in \BOOT\PENPOINT\APP\DB, but you can specify the path to another file by speci-
fying the path in a DBCustom line in PENPOINT\BOOT\ENVIRON.INI. You can use
DBCUSTOM.DB to set up the ctx and srcdir for your application’s executables and
DLLs, and set breakpoints. Here’s how a DBCUSTOM.DB for Hello World (custom
window) might look:

sym "go-hello exe-V2(0)" \\boot\penpoint\sdk\sample\hello\hello.exe
srcdir "go-hello_exe-V2(0)" \\boot\penpoint\sdk\sample\hello

sym "go-hello d11-v2(0)" \\boot\penpoint\sdk\sample\hello\hello.dll
srcdir "go-hello dl1-V2(0)" \\boot\penpoint\sdk\sample\hello

bp HelloWinRepaint

g

Whenever you start a new instance of Hello World (custom window)—either by
choosing from the Accessory palette or by turning a page—DB will halt. At that
point you can type t to step a line, g to continue, and so on.

131

1/ APP WRITING GUIDE

r

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 1 / APPLICATION WRITING GUIDE

Chapter 9 / Saving and Restoring Data
(Counter)

The sample programs we have considered so far do not have any information to
save. They always do the same thing in response to the same messages. However,
real applications must be able to save and restore data.

PenPoint™ applications maintain information about what is on screen, how the
user last interacted with the application, what options were set, what controls were
active at the time, and so on. This information together with the application’s data
is called the application’s state.

Because PenPoint is an object-oriented system, there is no real distinction between
data and state information. An application is built from a series of objects.

A scribble object might contain the scribbles that the user just drew, while a scroll
window object contains the current scrolling position of the window. The former
contains “user data” and the latter contains state information, but to PenPoint
they are simply objects. This chapter discusses how applications save and restore
their data.

The last part of this chapter describes how to create a menu using clsTkTable.

P Saving state

Remember that as the user turns from page to page in the Notebook, the Applica-

tion Framework is starting up and shutting down instances of clsApp. When you

turn the page from Empty Application or Hello World, the Application Framework

destroys the clsEmptyApp or clsHelloWorld application object. When you turn

back to that page, the Application Framework creates a new application object.

This is fine, because these applications don’t need to remember anything. They start Note The basic rule for

filing state is: if | don’t file

. . T . this state, will users notice
must preserve this state, so that the user is not aware that the application instance is 1},41 the application is

from scratch each time they appear. However, if applications do change state, they
coming and going “behind” what is seen on-screen. different when they turn
back to ite page?
Counter application

The Counter Application saves data. Each time the application appears on-screen,
it increments a counter and displays the counter’s value. It also lets the user choose
the format in which to display the counter (decimal, octal, or hexadecimal).

Based on the state filing rule, the application has two pieces of state that it
should file:

¢ The value of the counter.

¢ The format in which it was told to display the counter.

134 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

clsCntrApp remembers the format in which it displays the counter value. cls-
CntrApp could also remember the value of the counter, but one of the benefits of
an object-oriented system is that you can break up your application code into
objects that model the natural structure of the system. /

It’s natural to think of the application displaying the value of a separate object, so
that’s the way we implement it: clsCntrApp creates and interacts with a separate
clsCntr object. Because the format could be applied to all counter objects in the
application, clsCntrApp remembers the format.

Note the difference between Counter Application and the two Hello World sample
programs. The Hello World applications had to create other objects to get the
behavior they needed. An application object is not a window, so they had to create
window objects. In the case of Counter Application’s counter object, were not
forced to use a separate object—we could have clsCntrApp remember the state of
the counter, but for design reasons we choose to implement the counter as a sepa-
rate object.

PenPoint has several classes that store a numeric value:
clsIntegerField A handwriting field that accepts numeric input.
clsPageNum The page number in floating frames.

clsCounter The page number with up and down arrows in the Notebook.

These are all window classes that display a numeric value. clsCntrApp creates a Because the Ul Toolkit uses

label to display the value of the counter, much like Hello World (toolkit). Hence ~ *he eymbol clsCounter already,
Counter Application uses the
symbol clsCntr for its counter

counter class. Figure 9-1 shows the classes defined by Counter Application and clase.
their ancestors.

none of these are quite right for Counter Application, so we create a separate

% Compiling and installing the application

To compile Counter Application, change to the PENPOINT\SDK\SAMPLE\CNTRAPP
directory and start the MAKE utility. This creates a PENPOINT\APP\CNTRAPP direc-
tory and compiles CNTRAPPEXE in that directory.

Install Counter Application either by adding \BOOT\PENPOINT\APP\Counter
Application to PENPOINT\BOOT\locale\ APPINI (where /ocale is USA for United States
English or JPN for Japanese) before starting PenPoint or by installing the applica-
tion using the Installer.

% Counter Application highlights

The method table for clsCntrApp handles a number of interesting messages:

msglnit, "CntrAppInit", objCallAncestorBefore,
msgSave, "CntrAppSave", objCallAncestorBefore,
msgRestore, "CntrAppRestore", objCallAncestorBefore,
msgFree, "CntrAppFree", objCallAncestorAfter,
msgAppInit, "CntrAppAppInit", objCallAncestorBefore,
msgAppOpen, "CntrAppOpen", objCallAncestorAfter,
msgAppClose, "CntrAppClose", objCallAncestorBefore,

msgCntrAppChangeFormat, "CntrAppChangeFormat", O,

CHAPTER 9 / SAVING AND RESTORING DATA (COUNTER) 135
Counter application

Counter Application objects

FIGURE 9-1

PenPoint
provides:

Counter
application
instance

.
-
-
-
.

S -
e

counter

o
i
-

-
:

i
.

Sames

i
.

number

.
. v
Obsjects in a running
Counter Document

clsCntrApp creates an instance of clsCntr at msgApplnit time.

clsCntrApp responds to msgAppOpen by incrementing the counter, creating a
label containing the counter value, making the label the client window, and creating

the menu bar.

clsCntrApp responds to msgAppClose by destroying the client window.

The class responds to msgCntrAppChangeFormat, which is sent by its menu but-
tons, by changing its stored data format.

When processCount is 0, main() calls ClsCntrApplnit().

Counter class highlights ‘
The method table for clsCntr is also defined in METHODS.TBL and handles these

messages:

msgNewDefaults,
msglInit,
msgSave,
msgRestore,
msgFree,
msgCntrGetValue,
msgCntrincr,

"CntrNewDefaults",
"CntrInit",
"CntrSave",
"CntrRestore",
"CntrFree",
"CntrGetValue",
"CntriIncr",

objCallAncestorBefore,
objCallAncestorBefore,
objCallAncestorBefore,
objCallAncestorBefore,
objCallAncestorAfter,
0,

0,

method table

#defines, typedefs

message handlers

class inticlization

main eniry point

method table

#defines, typedels

message handlers

class initialization

main entry point

1 / APP WRITING GUIDE

136 PENPOINT APPLICATION WRITING GUIDE
"Part 1 / Application Writing Guide

% Instance data

The instance data for a clsCntr object contains the value of the counter:

typedef struct CNTR_INST {

S32 currentValue;
} CNTR_INST,
*P_CNTR_INST;

Make sure you notice the difference between CNTR_INST, the counter’s instance
data, and CNTR_INFO, the structure used for the arguments passed with msgCntr-
GetValue. In this example, the two structures contain the same data; in a more
complex example, the instance data would contain all the stateful information
required by an instance of the object, while the message argument structure would
only contain the data needed by a particular message.

Because the purpose of clsCntr is to maintain a value for its client, clsCntr must Important point.
provide a means for its client to access the value. One common approach lets the
client perform these tasks:

¢ Specify an initial value in msgNew.
¢ Get the value with a special message.
@ Set the value with a special message.

clsCntr does all of these except set the value. The _"NEW_ONLY information for
clsCntr contains an initial value. Here is the CNTR_NEW_ONLY structure from

CNTR.H:

typedef struct CNTR NEW_ONLY {
S$32 initialvValue;
} CNTR NEW ONLY, *P_CNTR NEW ONLY;

In case its client doesn't specify an initial value when the client sends msgNew,
clsCntr initializes the msgNew argument to a reasonable value (zero) in msgNew-
Defaults:

MsgHandlerArgType (CntrNewDefaults, P_CNTR_NEW)

{
Dbg(Debugf(U_L("Cntr:CntrNewDefaults"));)

// Set default value in new struct.
pArgs->cntr.initialvValue = 0;

return stsOK;
MsgHandlerParametersNoWarning;

} /* CntrNewDefaults */

In response to msglnit, clsCounter initializes the instance data to the starting value
specified in the msgNew arguments:
MsgHandlerArgType (CntrInit, P_CNTR NEW)

{
CNTR_INST inst;

Dbg (Debugf (U_L("Cntr:CntrInit"));)
// Set starting value.
inst.currentValue = pArgs->cntr.initialValue;
// Update instance data.
ObjectWrite (self, ctx, &inst);
return stsOK;
MsgHandlerParametersNoWarning;
} /* CntrInit */

CHAPTER 9 / SAVING AND RESTORING DATA (COUNTER) 137

¥ Getting and setting values

clsCntr defines messages to get and set the counter value, msgCntrGetValue and
msgCntrlnc. Note how we intentionally limit the API to suit the design of the
object: the client cant directly set the counter value, it can only increment it. This
makes the counter less general.

The (dubious) advantage of the approach used is that if the design of clsCntr
changes so that it has more information, CNTR_INFO could change to include
more information, and clients of it would only need to recompile.

%7 Geftting the value

The handler for msgCntrGetValue is straightforward. Note that the client must
pass it a pointer to the structure in which clsCntr passes back the value.

MsgHandlerWithTypes (CntrGetValue, P_CNTR_INFO, P_CNTR INST)
{
Dbg (Debugf (U_L("Cntr:CntrGetValue"));)
pArgs->value = pData->currentValue;
return stsOK;
MsgHandlerParametersNoWarning;
} /* CntrGetvValue */
In this case, passing a CNTR_INFO structure as the message arguments is not neces-
sary. msgCntrGetValue could take a pointer to an $32, instead of a pointer to a
structure that contains an $32. However, as soon as you need more than 32 bits to
communicate the message arguments, you must define a structure and pass a

pointer to the structure.

%» Incrementing the value

msgCntrlncr increments the value. It doesn’t take any arguments.

MsgHandlerWithTypes (CntrIncr, P_ARGS, P_CNTR_INST)

{
CNTR_INST inst;

Dbg (Debugf (U_L("Cntr:CntrIncr"));)

inst = *pData;
inst.currentValue+t+;
ObjectWrite (self, ctx, &inst);

return stsOK;
MsgHandlerParametersNoWarning;

} /* CntrIncr */

There are a couple of ihings to note here. First, the instance data is stored in
memory that only the Class Manager can write. When the Class Manager calls the
message handler, it passes a pointer to this protected instance data. If the code had
tried to update the protected pData->currentValue directly, PenPoint would have
generated a general protection fault. That is why the code assigns the instance data
(the implicit pData argument) to a variable (inst) before modifying it. After modi-
fying the copy of the instance data, the code calls ObjectWrite(), which directs the
Class Manager to update the protected instance data stored in the object.

Second, the code uses the MsgHandlerWithTypes() macro to define the function.
MsgHandlerWith Types() works like MsgHandler(), but lets you specify data types

Counter application

1 / APP WRITING GUIDE

Note Two frequent sources of
programming error are trying to
modify protected, read-only
instance data (instead of a
copy of the instance data), and
forgetting to update instance
data with ObjectWrite() after
modifying the copy of the
instance data.

138 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

for the message argument (pArgs) and instance data (pData). In addition to the
name of the method, the MsgHandlerWithTypes() macro takes two arguments
that indicate the types of the message arguments (pArgs) and the instance data
(pData).

In the Cntrlncr() example above, the MsgHandlerWithTypes() casts the message
argument as a P_ARGS pointer (the default for pArgs), and the instance data as a
P_CNTR_INST, a pointer to a CNTR_INST structure.

¥ Object filing

The way objects preserve state is by filing it at the appropriate time. The Applica- Objects can also preserve
state by refusing to be

terminated, although this
usually consumes memory.

tion Framework sends the application instance msgSave when the document
should save its state and msgRestore when the document should recreate itself. The
order in which applications receive these and other messages from the Application
Framework is explained in Part 2: Application Framework of the PenPoint Architec-
tural Reference manual.

The message arguments to msgSave and msgRestore include a handle on a
resource file. Objects respond by writing out their state to this file and reading

it back in. The objects do not care where the resource file is, nor do they care who
created it.

The Application Framework creates and manages a resource file for each document.
The file handle passed by msgSave and msgRestore is for this resource file. If you
start up the disk viewer with the B debug flag set to 800 hexadecimal, and expand
\BOOT\PENPOINT\SYS\Bookshelf\Notebook\ CONTENTS, you should be able to see
these files; look for a file called DOC.RES in each document directory.

At the level of msgSave and msgRestore, classes can just write bytes to a file (the
resource file) to save state.

When it receives msgSave, clsCntrApp could get the value of the counter object
(by sending it msgCntrGetValue) and just write the number to the file. However,
this would introduce dependencies between the two objects, which in object-ori-
ented programming is a bad thing. So, instead clsCntrApp tells the counter object
to file itself. We'll cover exactly how this happens later, but for now just accept that
the clsCntr instance receives msgSave.

% Handling msgSave

The message argument to msgSave is a pointer to an OBJ_SAVE structure:
MsgHandlerArgType (CntrSave, P_OBJ_SAVE)

If you look in PENPOINT\SDK\INC\CLSMGR.H, you will notice that one of the fields
in the OBJ_SAVE structure is the handle of the file to save to. So all cIsCntr has to do
is write that part of its instance data that it needs to save to the file: basically, all of
its instance data.

To write to a file, you send msgStreamWrite to the file handle. The message takes a
pointer to a STREAM_READ_WRITE structure, in which you specify what to file and
how many bytes to write.

CHAPTER 9 / SAVING AND RESTORING DATA (COUNTER)
Obiject filing

MsgHandlerArgType (CntrSave, P_OBJ_SAVE)

{
STREAM READ_WRITE fsWrite;

STATUS s;

Debugf ("Cntr:CntrSave") ;

//

// Write instance to the file.
!/

fsWrite.numBytes= SizeOf (CNTR_INST);
fsWrite.pBuf= pData;
ObjCallRet (msgStreamWrite, pArgs->file, &fsWrite, s);
return stsOK;
MsgHandlerParametersNoWarning;
} /* CntrSave */
msgStreamWrite passes back information about how many bytes it actually wrote.

A real application would check this information to make sure that it successfully

filed all its state.

Handling msgRestore

msgRestore is similar to msgSave. The Class Manager handles msgRestore by cre-
ating a new object, so the ancestor must be called first. The message argument to
msgRestore is a pointer to an OBJ_RESTORE structure:

MsgHandlerArgType (CntrRestore, P_OBJ_RESTORE)

Again, one of the fields in this structure is the UID of the file handle to restore from.
clsCntr just has to restore self’s instance data from the filed data. This is similar to
initializing instance data in msglnit handling, except that the information has to be
read from a file instead of from msgNew arguments. You declare a local instance
data structure:

MsgHandlerArgType (CntrRestore, P_OBJ RESTORE)
{

CNTR_INST inst;
STREAM READ WRITE fsRead;
STATUS s;

To read from a file, you send msgStreamRead to the file handle, which takes a
pointer to the same STREAM_READ_WRITE structure as msgStreamWrite. In the
structure you specify how many bytes to read and give a pointer to your buffer that
will receive the data:

Dbg (Debugf (U_L("Cntr:CntrRestore"));)

//

// Read instance data from the file.

//

fsRead.numBytes= SizeOf (CNTR_INST);

fsRead.pBuf= &inst;

ObjCallRet (msgStreamRead, pArgs->file, &fsRead, s);

You call ObjectWrite() to update the object’s instance data.

//
// Update instance data.

//
ObjectWrite(self, ctx, &inst);

return stsOK;
MsgHandlerParametersNoWarning;

} /* CntrRestore */

139

1/ APP WRITING GUIDE

140

W

By

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Counter Application’s instance data
clsCntrApp’s instance data contains:

¢ The display format to use for the counter value.

& The UID of the counter object.

¢ A memory-mapped file handle (explained below).

When the user turns away from a Counter Application document’s page, the Appli-
cation Framework destroys the counter object (and the application instance). When
the user turns back to the Counter Application document, the counter object is
restored with a different UID. Hence clsCntrApp should 7ot file the UID of the
counter object, because it will be invalid upon restore. clsCntrApp only needs to
file the display format and to tell the counter object to save its data.

Memory-mapped file

Counter Application could just write its data to the resource file created by the
Application Framework, just as the counter object did. However, a disadvantage of
filing data is that there are two copies of the information when a document is open:
the instance data in the object maintained by the Class Manager and the filed data
in the document resource file maintained by the file system.

One way to avoid this duplication of data is to use a memory-mapped file. Instead
of reading and writing to a file, you can simply map the file into your address space;
reading and writing to the file take place transparently as you access that memory.

clsCntrApp stores its data (the current representation) in a memory-mapped file.

Opening and closing the file

Because you need to open the file both when creating the document for the first
time, and when restoring the document after it has been filed, you need to open the
file in two different places (msgApplnit and msgRestore), but you only need close
it in one place (msgFree).

Why close the file in response to msgFree? Why not msgSave? Remember that
when an application is created, it is sent msgApplnit (in response to which it cre-
ates and initializes objects) and then is immediately sent msgSave (which allows it
to save its newly initialized objects before doing anything else). msgSave is also sent
when the user checkpoints a document. In other words, receiving msgSave doesn't
necessarily mean that we’re about to destroy the application object.

Opening for the first time

When Counter Application receives msgApplnit, it creates the counter object:

MsgHandler (CntrAppInit)
{ CNTRAPP_INST inst;
Dbg (Debugf (U _L("CntrApp:CntrAppInit"));)
inst.counter = pNull;
inst.fileHandle = pNull;
inst.pFormat = pNull;

Tip Saving the UIDs of an
object is usually incorrect.
Either the object has a well-
known UID (ih which case
there’s no reason to file it), or
the UID is dynamic (in which
case the UID will be different
when the object is restored).

Counter Application and the
counter object use different
filing methods. This is useful
when you need to differentiate
between instance data and
other forms of data.

CHAPTER 9 / SAVING AND RESTORING DATA (COUNTER) 141
Counter Application’s instance data

// Update instance data.
ObjectWrite(self, ctx, &inst);

return stsOK;
MsgHandlerParametersNoWarning;

} /* CntrAppInit */

1 / APP WRITING GUIDE

%»» Opening to restore
CntrAppRestore() opens a file (called FORMATFILE) where it stores the document’s
instance data, then maps the file to memory. This makes the format data available
in inst.pFormat.

MsgHandlerWithTypes (CntrAppRestore, P_OBJ RESTORE, P_CNTRAPP_INST)
{

FS_NEW fsn;
CNTRAPP_INST inst;
STATUS S;

Dbg (Debugf (U_L ("CntrApp:CntrAppRestore”));)

// Get handle for format file, and save the handle.

// The default for fsn.fs.locator.uid is theWorkingDir, which
// is the document's directory.

ObjCallWarn (msgNewDefaults, clsFileHandle, &fsn);
fsn.fs.locator.pPath = U L("formatfile");

ObjCallRet (msgNew, clsFileHandle, &fsn, s);

inst.fileHandle = fsn.object.uid;
// Map the file to memory ,
ObjCallRet (msgFSMemoryMapSetSize, fsn.object.uid, \
(P_ARGS) (SIZEOF) cntrAppMemoryMapSize, s);
ObjCallRet (msgFSMemoryMap, fsn.object.uid, &inst.pFormat, s);

// Restore the counter object.
ObjCallJdmp (msgResGetObject, pArgs->file, &inst.counter, s, Error);

// Update instance data.
ObjectWrite(self, ctx, &inst);

return stsOK;
MsgHandlerParametersNoWarning;

Error:
return s;
} /* CntrAppRestore */

Using a memory-mapped file handle lets you maintain just one copy of the instance
data when the document is open. The alternative is to create an instance data struc-
ture in memory when the document opens, copy the filed data to the structure in
memory, then copy changes from the in-memory data structure to the file before
closing the document.

%7 Closing on msgFree

When the application receives msgFree, it destroys the counter object, sends msg-
FSMemoryMapFree to unmap the file, and then sends msgDestroy to the file
handle to close the file.

MsgHandlerWithTypes (CntrAppFree, P_ARGS, P_CNTRAPP_INST)

{
STATUS s;

Dbg (Debugf (U_L("CntrApp:CntrAppFree")) ;)
ObjCallRet (msgDestroy, pData->counter, Nil(P_ARGS), s);

142 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

// Unmap the file
ObjCallRet (msgFSMemoryMapFree, pData->fileHandle, Nil(P_ARGS), s);

// Free the file handle v
ObjCallRet (msgDestroy, pData->fileHandle, Nil(P_ARGS), s);

return stsOK;
MsgHandlerParametersNoWarning;

} /* CntrAppFree */

% Filing the counter object

The only thing that is left to do is to tell the counter object when to save and
restore its data. For this, you send the resource messages msgResPutObject and
msgResGetObject to the resource file handle created by the Application Frame-
work. These messages are defined in RESFILE.H. You do not send msgSave and
msgRestore directly to the counter object.

The resource file handle is an instance of clsResFile. When you send a message to
the resource file handle, you tell it which object you want to put or get. In the case
of msgResPutObject, clsResFile writes information about the object to the
resource file, then sends msgSave to the object. In the case of msgResGetObject,
clsResFile reads information about the object from the file, creates the object,
which is essentially empty until clsResFile sends msgRestore to the object. This is
how objects receive msgSave and msgRestore.

%» Saving the counter object

When Counter Application receives msgSave, it sends msgResPutObject to the file
handle passed in with the msgSave arguments.

MsgHandlerWithTypes (CntrAppSave, P_OBJ SAVE, P_CNTRAPP INST)

{
STATUS s;

Dbg (Debugf (U_L("CntrApp:CntrAppSave")) ;)

// Save the counter object. ‘
ObjCallRet (msgResPutObject, pArgs->file, pData->counter, s);

return stsOK;
MsgHandlerParametersNoWarning;

} /* CntrAppSave */
Counter Application doesn’t have to write the instance data to a file, because the
data is a memory-mapped to a file.

%7 Restoring the counter object

When Counter Application receives msgRestore, it sends msgResGetObject to the
file handle passed in with the msgRestore arguments.

MsgHandlerWithTypes (CntrAppRestore, P_OBJ RESTORE, P_CNTRAPP_INST)
{

FS_NEW fsn;

CNTRAPP_INST inst;

STATUS s;

CHAPTER 9 / SAVING AND RESTORING DATA (COUNTER) 143
Menu support

Dbg (Debugf (U_L("CntrApp:CntrAppRestore"));)

// Get handle for format file, and save the handle.

// The default for fsn.fs.locator.uid is theWorkingDir, which
// is the document's directory.

ObjCallWarn (msgNewDefaults, clsFileHandle, &fsn);
fsn.fs.locator.pPath = U _L("formatfile");

ObjCallRet (msgNew, clsFileHandle, &fsn, s);

inst.fileHandle = fsn.object.uid;

// Map the file to memory
ObjCallRet (msgFSMemoryMapSetSize, fsn.object.uid, \

(P_ARGS) (SIZEOF) cntrAppMemoryMapSize, s);
ObjCallRet (msgFSMemoryMap, fsn.object.uid, &inst.pFormat, s);

// Restore the counter object.
ObjCallJmp (msgResGetObject, pArgs->file, &inst.counter, s, Error);

// Update instance data.
ObjectWrite (self, ctx, &inst);

return stsOK;
MsgHandlerParametersNoWarning;

Error:
return s;
} /* CntrAppRestore */

» Menu support

clsCntrApp creates a menu by specifying the contents of the menu statically in a
toolkit table. clsTkTable is the ancestor of several Ul components that display a set
of windows, including choices, option tables, and menus. Instead of creating each
of the items in a toolkit table by sending msgNew over and over to different classes,
you can specify in a set of toolkit table entries what should be in the table. When
you send msgNew to clsTkTable (or one of its descendants) it creates its child
items based on the information you gave it.

When it receives msgAppOpen, clsCntrApp appends its menu to the SAMs
(standard application menus) by passing its menu as an argument to msgApp-
CreateMenuBar.

¥ Buftons

The items in the menu are a set of buttons. When you create a button in toolkit
table entry, you specify:

¢ The button’s string, or a resource ID tag that refers to a string in a resource file.
& The notification message the button should send when the user activates it.
¢ A value for the button.

@ If the string is specified as resource ID, the type of resource (usually tkLabel-
StringID to specify a string resource).

There are other fields in a TK_TABLE_ENTRY, but you can rely on their defaults
of 0.

1/ APP WRITING GUIDE

144

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The menu bar used in Counter Application is described by the TK_TABLE_ENTRY
structure named CntrAppMenuBar() in CNTRAPPC. CntrAppMenuBar() specifies
user-readable strings, such as the name of the menu and the menu items, with
resource ID tags.
typedef enum CNTRAPP DISPLAY FORMAT {
dec, oct, hex

} CNTRAPP DISPLAY FORMAT,
*P_CNTRAPP_DISPLAY FORMAT;

Here we use tags that are associated with strings in a resource file
for the name of our menu and the menu items.

*

*

*

* When using tags in a TKTable, the fifth field must be an id that gives
* the type of the tag. If there is an item already in the fifth field,
* you can 'or' the two field items, and the system will know which one

* to use.

static const TK_TABLE ENTRY CntrAppMenuBar[] = {

{tagCntrMenu, 0, 0, 0, tkMenuPullDown | tkLabelStringId, clsMenuButton},
{tagCntrDec, msgCntrAppChangeFormat, dec, 0, tkLabelStringId},
{tagCntrOct, msgCntrAppChangeFormat, oct, 0, tkLabelStringld},
{tagCntrHex, msgCntrAppChangeFormat, hex, 0, tkLabelStringId},

{pNull},
{pNull}
Vi

When the user taps one of the menu buttons, the menu button sends msgCntr-
AppChangeFormat to its client, which by default is the application. The message
argument is the value of the button (dec, oct, or hex). clsCntrApp’s message han-
dler for msgCntrAppChangeFormat looks at the message argument to determine
which button the user tapped.

MsgHandlerWithTypes (CntrAppChangeFormat, P_ARGS, P_CNTRAPP_ INST)
{
APP_METRICS am;

WIN thelabel;

STATUS S;

CHAR buf [MAXSTRLEN] ;

Dbg (Debugf (U_L("CntrApp:CntrAppChangeFormat")) ;)
//

// Update mmap data

//

* (pData->pFormat) = (CNTRAPP_DISPLAY FORMAT) (U32)pArgs;
// Build the string for the label.
StsRet (BuildString(buf, pData), s);
// Get app metrics.
ObjCallRet (msgAppGetMetrics, self, &am, s);
// Get the clientWin.
ObjCallRet (msgFrameGetClientWin, am.mainWin, &thelabel, s);
// Set the label string.
ObjCallRet (msglabelSetString, thelabel, buf, s);
return stsOK;
MsgHandlerParametersNoWarning;
} /* CntrAppChangeFormat */

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 1 / APPLICATION WRITING GUIDE

Chapter 10 / Handling Input
(Tic-Tac-Toe)

Tic-Tac-Toe is a large, robust application that demonstrates how to “play along” Tic-Tac-Toe, also known as
with many of the PenPoint™ protocols affecting applications: Naughts and Crosses, is a
game where two players take
¢ SAMs (standard application menus) turne placing markers on 2 3
3 grid. The object is to place
¢ Selections three markers in a row while
preventing your opponent from
¢ Move/copy protocol placing three markers in a row.
¢ Keyboard input focus
+ Stationery
¢ Help

L 3

Option sheets

The rest of this chapter details the architecture of Tic-Tac-Toe, its files, classes,

objects, etc, and describes some of the enhanced application features implemented
in Tic-Tac-Toe.

W Tic-Tac-Toe objects

No tutorial of this size can give you a course in object-oriented program design. It is
an art, not a science. The books mentioned in Chapter 3 will be helpful. No matter
what your experience level, you will find that you will probably have to redesign
your object hierarchy at least once. (Here at GO, we redesigned our class hierarchy
countless times in the first two years—now it is quite stable.) But there are some
generally accepted techniques for breaking up an application into manageable com-
ponents, and this tutorial will lead you through them.

Each section from now on will discuss the various design choices made.

% Application components

A typical functional application does something in its application window, then
saves data in the document working directory.

Tic-Tac-Toe does this: it displays a tic-tac-toe board in its window, then stores the

state of the board. Its application class is clsTttApp. The application creates its own
class to display the board, clsTttView. It also creates a separate object just to store

the state of the board, clsTttData.

146 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Tic-Tac-Toe classes and instances FIGURE 10-1

clsObject

PenPoint] '
provides clsWin clsObject

several
window |
You must subclasses ||
Tic-Tac-Toe
application clsTteApp clsView
instance

Tic-Tac-Toe

iew of squares

csTttView

Tic-Tac-Toe
square values

clsTttData

Objects in a I:L;nning
instance of your
application
%> Separate stateful data objects
The Tic-Tac-Toe data object’s set of Xs and Os are the main part of its state, which it
must preserve.

The application and view also maintain some state, the application files its version,
and the view remembers the thickness of the lines on the Tic-Tac-Toe board.

W Tic-Tac-Toe structure

Table 10-1 lists the files in PENPOINT\SDK\SAMPLE\TTT that you use to build the
Tic-Tac-Toe application (the directory also contains some text files that provide
information about the application)

CHAPTER 10 / HANDLING INPUT (TIC-TAC-TOE) 147
Tic-Tac-Toe window

Tic-Tac-Toe files TABLE 10-1

File name Purpose

MAKEFILE Dependency definitions for the MAKE utility.

METHODS.TBL Message tables for clsTttApp, clsTttView, and clsTttData.

USARC Resource file containing the strings and other resources for the
United States English localization.

JPN.RC Resource file containing the strings and other resources for the Japanese
localization.

S_TTT.C Sets up UID-to-string translation tables that the Class Manager uses to
provide more informative debugging output.

TTTPRIV.H TuDbgHelper() support macro and debugger flags, TTT_VERSION
typedef, function definitions for routines in TTTUTIL.C and debug-
ging routines in TTTDBG.C, and class UID definitions.

TTTAPPC Implements the main() routine and most of clsTttApp’s message
handlers.

TTTVIEW.C Implements most of clsTttView, handling repaint and input.

TTTDATA.C Implements clsTttData.

TTTUTIL.C Utility routines to create scrollwin, create and adjust menu sections, read
and write filed data and version numbers, get application components,
handle selection. Also application-specific routines to manipulate Tic-
Tac-Toe square values.

TTTVOPT.C Message handlers for the option sheet protocol.

TTTVXFER.C Message handlers for the move/copy selection transfer protocol.

TTDBG.C Miscellaneous routines supporting the Debug menu choices (dump,
trace, force repaint, etc.).

TTTMBAR.C Defines the TK_TABLE_ENTRY arrays for Tic-Tac-To€’s menu bar.

TTTAPPH Defines clsTttApp messages.

TTTVIEW.H Defines clsTttView messages and their message argument structures, and
defines tags used in the view’s option sheet.

TTTDATA.H Defines possible square values, various Tic-Tac-Toe data structures, and
clsTttView messages and their message argument structures.

S_TTT.C Sets up UID-to-string translation tables which the Class Manager uses to

¥ Tic-Tac-Toe window

provide more informative debugging output.

There is no pre-existing class that draws letters in a rectangular grid. So, some work
is needed here. The PenPoint UI Toolkit provides labels that can have borders, along
with clsTableLayout that lets you position windows in a regular grid. So, you could
create the Tic-Tac-Toe board by creating nine one-character labels in a table layout

window. However, there are some problems with this:

& Labels don't (ordinarily) scale to fit the space available.

¢ Each label is a window. A window in PenPoint is fairly lightweight
(that is, it has a small system resource requirement), but if we were to
change to a 16 x 16 board, it would use 256 single-character label windows.

A even more efficient way to draw the grid is to create a window and use the
ImagePoint™ graphics system to draw the lines of the 3 x 3 grid.

1/ APP WRITING GUIDE

148 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

% Coordinate system

The obvious coordinate system is one unit is one square. However, this system
makes it difficult to position characters within a square, since you specify coordi-
nates for drawing operations in $32 coordinates.

The Tic-Tac-Toe view uses local window coordinates for its drawing.

% Advanced repainting strategy

As explained in Hello World, the window system tells windows to repaint. When a
window receives msgWinRepaint, it always self-sends msgWinBeginRepaint. This
sets up the update region of the window—the part of the window where pixels can
be altered—to the part of the window that needs repainting. After sending msg-
WinBeginRepaint, a window can only affect its pixels which the window system
thinks need repainting, no matter where the window tries to paint.

Because the window system must calculate this dirty area, it makes the area avail-
able to advanced clients by passing it back in the message argument structure of
msgWinBeginRepaint. In a fit of probable overkill, the Tic-Tac-Toe view is such an
advanced client. Tic-Tac-Toe looks at the RECT32 structure passed back and figures
out what parts of the grid lines and which squares it needs to repaint. It wants to do
this in its own coordinate system, so it sends msgWinBeginRepaint to its DC.

¥ View and data interaction

The Tic-Tac-Toe view displays what’s in the data object, so it needs access to the
data maintained by the data object. There are various ways that a view can get to
this state. It could share memory pointers with the data object, or it could use the
specialized function ObjectPeek() to look directly at the data object’s instance data
memory. However, both of these methods compromise the separation of view and
data into two objects. A purer approach is to have the view object send the data
object a message when it needs to know the data object’s state, but you still have to
decide whether the data object should pass the view its internal data structures or a
well-defined public data structure.

These are the classic problems of encapsulation and abstraction faced in object-
oriented program design.

% Data object design

Tic-Tac-Toe’s data object class, clsTttData, is similar to Counter Application’s
clsCntr. It lets its client perform these tasks:

¢ Specify an initial board layout in msgNew.

¢ Get the value of all the squares (msgTttDataGetMetrics).

¢ Set the value of all the squares (msgTttDataSetMetrics).

¢ Set the value of a particular square (msgTttDataSetSquare).

clsTttData gets and sets the square values as part of getting and setting all of its
metrics. The theory is that any client that wants to set and get this probably wants

CHAPTER 10 / HANDLING INPUT (TIC-TAC-TOE)
View and data interaction

all the information about the data object. (In fact, clsTttData’s instance metrics
comprise only its square values.)

Instance data by value vs. by reference

The instance data for each of clsTttApp, clsTttView, and clsTttData is a pointer
that points to a data structure outside the instance. The outside data structure is
where the class stores the information. Storing instance data by reference in this
way has some advantages:

¢ You don’t have to use ObjectWrite() to update instance data every time state
changes, since the pointer never changes.

¢ The size of the instance data can vary.

It does mean that the class has to allocate space for the instance information. The
Tic-Tac-Toe classes do this using OSHeapBlockAlloc() in msglnit processing.

Saving a data object

clsTttApp tells its view to file, and an instance of clsView automatically files its data
object. ’

Handling failures during msginit and msgRestore

msglnit and msgRestore both create objects. It is vital that the handlers for these
messages guarantee that the object is initialized to some well-known state, even if
your handler or some ancestor failed in some way, because after a failed creation,

the object will in fact receive msgDestroy.

Note how clsTttData writes appropriate data into its instance data even in the case
of an error.

MsgHandlerWithTypes (TttDataInit, P_TTT DATA NEW, PP_TTT DATA INST)
{

P_TTT DATA INST

STATUS S;

DbthtDataInit((U_L("")))
// Initialize for error recovery.

1/
pInst = pNull;

// Allocate, initialize, and record instance data.

//

StsJmp (OSHeapBlockAlloc (osProcessHeapId, SizeOf (*pInst), &pInst), \
s, Error);

pInst->metrics = pArgs->tttData.metrics;

ObjectWrite (self, ctx, &plnst);

DbgTttDatalInit ((U_L("return stsOK")))
return stsOK;
MsgHandlerParametersNoWarning;

Error:
if (pInst) {
OSHeapBlockFree (pInst);
}
DbgTttDataInit ((U_L("Error; returns 0x%1x"),s))
return s;
} /* TttDatalnit */

149

/ APP WRITING GUIDE

[

150 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

¥ The selection and keyboard input

When a computer permits multiple windows on-screen, it must decide which
window receives keyboard input. PenPoint uses a selection model, meaning that it
sends keyboard input to the object holding the selection (along with all the other
move/copy/options/delete messages that the selected object may receive). So, to
allow typing, the Tic-Tac-Toe view must “be selectable.”

% How selection works

There can only be one primary selection in the Notebook Ul at a time. The user
usually selects something on-screen by tapping on it. In response to holding the
selection, the selected thing is highlighted. Depending on what is selected, the user
can then operate on the selection by deleting it, copying it, asking for its option
sheet, and so on. '

PenPoint’s Selection Manager keeps track of which object has the selection. How-
ever, it is up to the class implementor to support selections, to highlight the selec-
tion, and to implement whatever operations on that selection make sense. Text
fields and text views support selections, but clsWin and clsObject do not.

%» Which object?

Because the Tic-Tac-Toe view is the object that draws the Tic-Tac-Toe board, it
makes sense for it to track selections. The selection does not change the board con-
tents, so the Tic-Tac-Toe data object need not care.

When the user selects in the Tic-Tac-Toe view, the action selects the entire view. A
more realistic class would figure out which of its squares the user selected, but the
principles used by clsTttView are the same.

clsTttView responds to selection messages sent by the Selection Manager. It asks
theSelectionManager if it holds the selection, and if so, repaints differently to indi-
cate this fact.

% What event causes selections?

The application developer must decide what input event causes a selection in

the Tic-Tac-Toe view: the usual is a pen-up event or a pen-hold timeout. On
receiving this input event, the object wishing to acquire the selection should send
msgSelSetOwner to the special Selection Manager object. Since the Tic-Tac-Toe
view also supports keyboard input, it also calls the routine InputSetTarget() to
acquire the keyboard focus. From this point on, the view receives keyboard input
events, and may receive other messages intended for the selection, such as options,
move, and copy.

The object which has acquired the selection should highlight the selected “thing”
on-screen. clsTttView draws the board in gray when it has the selection, and in
white when it does not have the selection. It determines whether it has the selection
by sending msgSelIsSelected to self. Here is the code from TttViewRepaint()
(msgSellsSelected returns stsOK if the receiver of the message has the selection):

CHAPTER 10 / HANDLING INPUT (TIC-TAC-TOE) 151
More on view and data interaction

// Fill the dirty rect with the appropriate background. If we hold the
// selection, the appropriate background is grey, otherwise it is white.
//
s = ObjectCall (msgSellIsSelected, self, pNull);
if (s == stsOK) {
DbgTttViewRepaint ((U_L("self is selected")))
ObjectCall (msgDcSetBackgroundRGB, (*pData)->dc, \
(P_ARGS) sysDcRGBGray33) ;
} else {
DbgTttViewRepaint ((U_L("self is not selected")))
ObjectCall (msgDcSetBackgroundRGB, (*pData)->dc, \
(P_ARGS) sysDcRGBWhite) ;
}

%r Supporting selections

When a Tic-Tac-Toe view receives a msgPenHold Timeout input event, clsTttView
self-sends msgTttViewTakeSel telling it to acquire the selection, and self-sends
msgWinUpdate, which forces it to repaint the entire board. (If the view supported
square-by-square selection, it would convert the input event X-Y coordinates to a
square location on the board).

%» Move/copy protocol

The selection holder receives a variety of messages, including msgSelYield and
the move/copy protocol messages. Because clsTttView inherits from clsEmbed-
dedWiin, it can rely on clsEmbeddedWin’s default handling of many selection
messages.

¥ More on view and data interaction

Thus far the data maintained by the data object has been static; now the user can
change the data. But the user interacts with the view, not the data object. It’s the
view that knows what characters the user entered. The view must tell the data
object about the change as well as draw the new data.

The natural way to do this might seem to be for the view to draw the new letter in
the square, and then tell the data object about the new letter. However, this is not
the view-data model. Instead, the view tells the data object about the changed letter
by sending it msgTttDataSetSquare. When the data object receives this message, it
updates its state, then broadcasts msgTttDataChanged to all its observers. When
the view receives msgTttDataChanged, it knows it needs to repaint the board. The
advantages of this model are that the data object can remain in control of its data: it
could reject the update message from the view, and the view would not display bad
data. Also, it allows for several views to display the same data object, since if any of
them updates the data object, they all are told about the change.

To actually draw the new square, clsTttView dirties the rectangle of the square that
changed. This also may seem odd—why not paint the square immediately with the
new value when notified by the data object of the new value? But the Tic-Tac-Toe
view already knows how to repaint itself; it’s nice to take advantage of the batching
provided by the window system’s repaint algorithm.

1 / APP WRITING GUIDE

152

V’

(4

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The Text subsystem is a more compelling argument for the view-data model used
by Tic-Tac-Toe. Using the same kind of message flow to update text views and text
data objects, Text does indeed allow several views of the same underlying object,
and it has a very intelligent window repainting routine.

Handwriting and gestures

Views inherit from clsGWin, so there is little extra work required to make clsT'tt-
View respond to input events and gestures.

Input event handling

There is one input message in PenPoint, msglnputEvent. Within the message argu-
ments of this is a device code that indicates the type of input event. Device codes all
begin with msgKey or msgPen, which is slightly confusing because objects never
receive these messages, they always receive msglnputEvent. clsTttView’s handles
msglnputEvent with a routine called TttViewInputEvent().

TttViewlnputEvent() calls a routine to process keyboard events, and lets clsTtt-
View’s ancestor, clsEmbeddedWin, handle pen events. clsEmbeddedWin includes
code for handling many pen input events. For example, clsEmbeddedWin watches
for pen-hold timeouts and, if self is moveable or copyable, self-sends msgSelSelect
and msgSelBeginMoveCopy.

MsgHandlerWithTypes (TttViewInputEvent, P_INPUT EVENT, PP_TTT_VIEW_ INST)
{
STATUS s;

switch (ClsNum(pArgs->devCode)) {

case ClsNum(clsKey):
s = TttViewKeylInput (self, pArgs);
break;

default:
s = ObjectCallAncestorCtx(ctx);
: break;
}
return s;
MsgHandlerParametersNoWarning;
} /* TttViewInputEvent */

Gesture handling

When clsTttView’s ancestor gets a pen event, the event ends up being handled by
clsGWin. If clsGWin recognizes the pen event as a gesture, it sends msgGWin-
Gesture to self. In other words, when the user draws a gesture on the Tic-Tac-Toe
view, the view receives msgGWinGesture.

The arguments for msgGWinGesture are different in PenPoint 1.0 than in
PenPoint 2.0 Japanese. For PenPoint 1.0, the arguments include the gesture in the
form of a message identifier. The class for the message is clsXGesture. The number
of the message encodes the actual gesture detected by clsGWin. In PenPoint 2.0
Japanese, the arguments include the gesture in the form of a Unicode character that
represents the gesture.

CHAPTER 10 / HANDLING INPUT (TIC-TAC-TOE)
Handwriting and gestures

TttViewGesture(), the handler for msgGWinGesture, uses a switch statement to
take appropriate action based on the gesture argument. Because the msgGWin-
Gesture API is different in PenPoint 1.0 than in PenPoint 2.0 Japanese, the code
uses an #ifdef directive that lets you compile the correct switch statement for
PenPoint 1.0 by defining PP1_0, or setting it on the compiler command line. The
switch statement handles the gestures that are meaningful to clsTttView, and lets

the ancestor class handle all other gestures:
MsgHandlerWithTypes (TttViewGesture, P_GWIN_GESTURE, PP_TTT_VIEW_INST)
{
STATUS s;
#ifdef PP1 0
switch (pArgs->msg) {
#else
switch(pArgs->gesture) {
#endif

case xgslTap:
ObjCallJdmp (msgTttViewToggleSel, self, pNull, s, Error);
break;

case xgsCross:
StsJmp (TttViewGestureSetSquare (self, pArgs, tttX), s, Error);
_break;
case xgsCircle:
StsJmp (TttViewGestureSetSquare (self, pArgs, tttO), s, Error);
break;
case xgsPigtailVert:
StsJmp (TttViewGestureSetSquare (self, pArgs, tttBlank), \
s, Error);
break;
case xgsCheck:
case xgsUGesture:
// Make sure there is a selection.
s = ObjectCall (msgSelIsSelected, self, pNull);
if (s == stsNoMatch) {
ObjCalldmp (msgTttViewTakeSel, self, pNull, s, Error);
ObjCallJmp (msgWinUpdate, self, pNull, s, Error);
}
// Then call the ancestor.
ObjCallAncestorCtxJdmp(ctx, s, Error);
break;
default:
DbgTttViewGesture ((U_L("Letting ancestor handle gesture")))
: return ObjCallAncestorCtxWarn (ctx);
}
DbgTttViewGesture ((U_L("return stsOK")))
return stsOK;
MsgHandlerParametersNoWarning;
Error:
DbgTttViewGesture((U_L("Error; return 0x%1x"),s))
return s;
} /* TttViewGesture */

153

1 / APP WRITING GUIDE

154 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

%W Keyboard handling

clsTttView’s keyboard input routine handles multikey input, for example, when
the user presses two keys at once or in rapid succession. The device code for this is
msgKeyMulti, and the input event data includes the number of keystrokes and an
array of their values. The keyCode of a key value is a simple ASCII number.

clsTttView handles the X, O, and Space keys on the keyboard.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 1 / APPLICATION WRITING GUIDE

Chapter 11 / Refining the Application
(Tic-Tac-Toe)

Tic-Tac-Toe has many of the niceties expected of a real application. Many of these
enhancements are independent of the program, and could be added to Empty
Application as easily as to Tic-Tac-Toe.

» Debugging
You can use DB, the PenPoint™ source-level debugger, to step through code. In an
object-oriented system, your objects receive many messages from outside sources,
many of which you may not expect. It’s useful to be able to easily track the flow of
messages through your routines, and to turn this on and off while your program is
running. As you've noticed if you've looked at the code, Tic-Tac-Toe has extensive

support for debugging. It uses the following facilities for debugging:
¢ msgTrace to trace messages.
¢ Debugf() to print debugging messages.
¢ msgDump to dump the state of objects.

¢ ClsSymbolsInit() to give the Class Manager symbolic names for Tic-Tac-Toe’s
objects, messages, and status values.

The complexity in Tic-Tac-Toe arises because it lets you turn features on and off
while the program is running.

% Tracing
It’s very useful to have a log of what messages are coming in. You can get a message

log by turning on message tracing; you can cither turn it on for a class or for a
single instance of that class.

In DEBUG mode, TTTMBAR.C defines a debug menu which can turn tracing on or
off for the various classes. All the menu items send msgTttAppChangeTracing to
the application. The message argument encodes the target object to trace and
whether to trace it or not:

static TK_TABLE ENTRY traceMenu[] = {

{"Trace App On", msgTttAppChangeTracing, MakeU32(0,1)},
{"Trace App Off", msgTttAppChangeTracing, MakeU32(0,0)},
{"Trace View On", msgTttAppChangeTracing, MakeU32(1,1)},
{"Trace View Off", msgTttAppChangeTracing, MakeU32(1,0)},
{"Trace Data On", msgTttAppChangeTracing, MakeU32(2,1)},
{"Trace Data Off", msgTttAppChangeTracing, MakeU32(2,0)},

{pNull}
}:

156 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Note that the strings in this TK_TABLE_ENTRY array, unlike the one used for the
menu bar in Counter Application, are not specified with resource IDs. That’s
acceptable programming practice in this case, because the user will never see the
trace menu. That means that you'll never have to translate the strings to another
language, so there is no benefit to putting the strings into a resource file (and no
cost to hard-coding them). ‘

The TttDbgChangeTracing() routine is implemented in TTTDBG.C. It simply
sends msgTrace to the target object, with an argument of true or false.

%> Debugf() statements and debug flags

Going beyond message tracing, it’s useful to print out what your application is
doing at various stages. One approach is to add simple Debugf() statements as you
debug various sections. However, in a large program you can quickly get over-
whelmed by debugging statements you're not interested in. Tic-Tac-Toe leaves all
the Debugf() statements in the code, and controls which statements show up by
examining a debugging flag set. It uses DbgFlagGet() to check whether a flag is set,
the same as Empty App and the other simpler applications. What Tic-Tac-Toe
provides is an easy way to print out a string identifying the routine, followed by
whatever printf()-style parameters you want to use. Thus this code:

if (s == stsFSNodeNotFound) {
DbgTttAppCheckStationery ((U_L("file not found; s=0x%1x"),s))
goto NormalExit;

}

will print out
TttAppCheckStationery: file not found; s=0xnum

but only if the appropriate debugging flag is set.

So, how is it implemented? A definition of its debug routine precedes each function
for which you want to print debugging information, for example, DbgTttApp-
CheckStationery(). :
#define DbgTttAppCheckStationery(x) \

TttDbgHelper (U _L("TttAppCheckStationery"), tttAppDbgSet, 0x1, x)
Call this macro anywhere that you might want to display a debugging string. The
parameter to the macro (x) is the Unicode format string and any arguments
((U_L("file not found; s=0x%Ix"),s)). In order to treat multiple parameters as one,
they must be enclosed in a second set of parentheses.

The TttDbgHelper() routine checks if the specified flag (0x0001) is set in the spec-
ified debugging flag set (tttAppDbgSet), and if so prints the identifying string
(U_L("TttAppCheckStationery™)) together with any printf()-style format string
passed in (x).

CHAPTER 11 / REFINING THE APPLICATION (TIC-TAC-TOE) 157
Debugging

There are 256 debugging flag sets, each with a 32-bit value. GO uses some of them
for its applications—see PENPOINT\SDK\INC\DEBUG.H for a full list. TTTPRIV.H
defines the debugging flag sets used in Tic-Tac-Toe, such as tttAppDbgSet:

//

// Debug flag sets

//

#define tttAppDbgSet 0xC0
#define tttDataDbgSet 0xCl
#define tttUtilDbgSet 0xC2
#define tttViewDbgSet 0xC3
#define tttViewOptsDbgSet 0xC4
#define tttViewXferDbgSet 0xC5

Other routines use other flags.

In case you're interested, here’s the definition of TttDbgHelper():

#define TttDbgHelper (str,set, flag,x) \
Dbg (if (DbgFlagGet ((set), (U32) (flag))) {DPrintf("%s: ",str); Debugf x;})

Dprintf() is the same as Debugf(), except that Dprintf() doesn’t insert an automatic
new line at the end of the function.

P» Dumping objects
One of the messages defined by the Class Manager is msgDump. A class should

respond to it by calling its ancestor, then printing out information about self’s
state. Most classes only implement msgDump in the DEBUG version of their code.

Tic-Tac-Toe lets you dump its various objects from its Debug menu. In
TTTMBAR.C, it defines the menu:
static TK_TABLE_ENTRY debugMenu[] = {

{"Dump View", msgTttAppDumpView, 0},

{"Dump Data", msgTttAppDumpDataObject, 0},

{"Dump App", msgDump, 0},

{"Dump Window Tree", (U32)dumpTreeMenu, 0, 0, tkMenuPullRight},

{"Trace", (U32) traceMenu, 0, 0, tkMenuPullRight |
tkBorderEdgeTop},

{"Force Repaint", msgTttAppForceRepaint, 0, 0, tkBorderEdgeTop},

{pNull}

i
The client of the menu is the application, so to dump the application all the menu
item needs to do is send msgDump. For the view and data object, you would either
have to change the clients of the menu items, or have the application class respond
to special msgTttAppDumpView or msgTttAppDumpData messages by sending
msgDump to the appropriate target. Tic-Tac-Toe does the latter; the handlers for
these messages are in TTTDBG.C.

%7 Dumping any object
Another approach is to have a generic dump-object function in the DEBUG version
of your code which sends msgDump to its argument. When running DB, you can
call this routine directly, passing it the UID of the object you want dumped.

1/ APP WRITING GUIDE

158 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

% Symbol names
All the Class Manager’s macros (ObjCallRet(), ObjCallWarn(), ObjCall-

AncestorChk(), and so on) print a string giving the message, object, and status
value if they fail (in DEBUG mode). You can also ask DB to print out messages,
objects, and status values. Ordinarily the most the Class Manager and DB can do is
print the various fields in the UID, such as the administrated field and message
number. However, if you supply the Class Manager a mapping from symbol names
to English names, it and DB will use the English names in their debugging output.

The Class Manager routine you use is ClsSymbolsInit(). The routine takes
three arrays, one for objects, one for messages, and one for status values. Each
array is composed of symbol-string pairs. Tic-Tac-Toe sets up these arrays in the
file S_TTT.C:

const CLS_SYM STS tttStsSymbols[] = {
0, 0};

const CLS_SYM MSG tttMsgSymbols[] = {
msgTttAppChangeDebugFlag, U_L("msgTttAppChangeDebugFlag"),

msgTttAppChangeDebugSet, U_L("msgTttAppChangeDebugSet"),
msgTttViewTakeSel, U_L("msgTttViewTakeSel"),
0, 0};
const CLS_SYM OBJ tttObjSymbols[] = {
clsTttApp, U L{"clsTttApp"),
clsTttData, U_L("clsTttData"),
clsTttView, U_L("clsTttView"),
0, 0}; '

(Tic-Tac-Toe doesn’t define any STATUS values.) ClsSymbolsInit() also takes a
fourth parameter, a unique string identifying this group of symbolic names. Here’s
the routine in S_TTT.C that calls ClsSymbolsInit():

STATUS EXPORTED TttSymbolsInit (void)
{
return ClsSymbolsInit (

U_L("ttt"),
tttObjSymbols,
tttMsgSymbols,
tttStsSymbols);

}

At installation (from process instance 0), TTT.EXE calls TttSymbolsInit() to load

these arrays. To save space, all of this code is excluded if DEBUG is not set.

%¥ Generating symbols automatically

It's cumbersome to type in and update the arrays of UID-string pairs. At GO we
have developed scripts that automatically generate files like S_TTT.C. These scripts
require the MKS toolkit and other third-party utilities, so they are on the unsup-
ported SDK Goodies disk.

%¥ Printing symbol names yourself

Tic-Tac-Toe just prints UIDs as long integers when it needs to print them out. You
‘can also print them in hexadecimal format using the %p format code. If you want
to print out the long names within your own code, the Class Manager defines

CHAPTER 11 / REFINING THE APPLICATION (TIC-TAC-TOE)
; Installation features

several functions to convert objects, messages, and status values to strings, such as

ClsObjectToString().

W Installation features

During installation, PenPoint automatically creates several application enhance-
ments based on the contents of the application’s installation directory:

o Stationery.

¢ Help notebook documents.

¢ Quick-help for the application’s windows.
¢ Application icons.

The nice thing about these enhancements is that you can create and modify them
separately from writing and compiling the application. In fact, all of these features
could have been added to Empty Application, the very simplest application.

General details on application installation are covered in detail in Part 12: Installa-

tion API of the PenPoint Architectural Reference. This section only covers what Tic-
Tac-Toe does.

¥ Stationery

The user can pick a Tic-Tac-Toe board to start with from a list of Stationery. The
user can draw a caret A over the table of contents to pop up a Stationery menu, or
can open the Stationery auxiliary notebook (see Figure 11-1).

¥ Creating stationery

The Installer looks for Stationery in a subdirectory called STATNRY. Each Stationery
document should be in a separate directory in STATNRY. You can stamp the directo-
ries with long PenPoint names, and in PenPoint 2.0 Japanese you can stamp the
directory with a locale and read the long name from a resource file. You can also
stamp the directories with attributes indicating whether the Stationery should
appear in the Stationery menu and whether it should appear in the Stationery
notebook.

% How Tic-Tac-Toe handles stationery

Stationery directories can contain a filed document—a regular instance of the
application. To build such Stationery you copy a document from the Notebook to
the installation volume. One disadvantage of this is that it could make the Statio-
nery take up more space, since it’s an entire filed document.

Instead, clsTttApp always checks for a file called TTTSTUFETXT in the document’s
directory when a document is first run (during msgApplnit). The routine is Ttt-
AppCheckStationery() in TTTAPPC. If it finds a TTTSTUFETXT file, clsTttApp
opens it and sends msgTttDataRead to its data object. This tells the data object to
set its state from the file.

159

1 / APP WRITING GUIDE

160

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide °

Stationery notebook and Stationery menu

FIGURE 11-1

clsTttData simply reads the first nine bytes of the file and sets its value from those;

for example, the TTTSTUFETXT file for “Tic-Tac-Toe (filled)” (in PENPOINT\APP\
TTT\STATNRY\TTTSTAT1) is simply

xoxoxoxox stationery for tttapp

This saves a lot of space over a filed Tic-Tac=Toe document; however, note that this
form of Stationery doesn’t include things like the thickness of the grid in the view.

The user can always make Stationery that is a full document by moving or copying
a Tic-Tac-Toe document to the Stationery notebook.

The makefile for Tic-Tac-Toe creates the STATNRY directory in PENPOINT\APP\
TTT, and then creates the two directories TTTSTAT1 and TTTSTAT2. The makefile
copies the file FILLED.TXT to TTTSTAT1 and names it TTTSTUFETXT; it then copies
the file XSONLY.TXT to TTTSTAT2 and also names it TTTSTUFETXT

Help notebook

Tic-Tac-Toe has its own Help information, which the user can view in the Help
auxiliary notebook. Each page in the Help notebook is a separate document.

Tic-Tac-Toe doesn’t have to do anything to support this.

CHAPTER 11 / REFINING THE APPLICATION (TIC-TAC-TOE) 161
Quick Help

% Creating help documents

During installation, if there is anything in the HELP subdirectory of the application
home, the Installer creates a subsection for the application in Applications section
of the Help notebook. The Installer automatically installs help documents in this
section of the Help notebook. Like stationery, you put help documents in subdirec-
tories of a special subdirectory in the Tic-Tac-Toe installation directory, called HELP
You can stamp the directories with long PenPoint names, these are the names of the
pages in the Help notebook.

1/ APP WRITING GUIDE

The Tic-Tac-Toe makefile creates a HELP directory in PENPOINT\APP\TTT and
creates TTTHELP1 and TTTHELP2 directories in TTTHELPR. The makefile copies
STRAT.TXT to TTTHELP! and names it HELPTXT; it then copies RULES.TXT to
TTTHELP2 and names it also HELPTXT.

Help documents can either be complete instances of filed documents (of any type,
such as MiniText or MiniNote, even a help version of your application), or a simple
text file. If the directory contains a simple text file, the Help notebook will run a
version of MiniText on that page, displaying the contents of the file. This is the
approach Tic-Tac-Toe uses.

W Quick Help
Quick Help is the other form of help in PenPoint. The Quick Help window

appears when the user makes the question mark ? gesture in a window, or taps on a
window when Quick Help is up (see Figure 11-2).

clsGWin, the gesture window class, automatically handles the Quick Help gesture.
It will invoke the Quick Help window, if it knows what to display. Instead of speci-
fying to clsGWin what strings to display, you create your strings in a separate
resource, and just give clsGWin an ID which it uses to locate the strings. In the
msgNewDefaults handling of clsTttView:

MsgHandlerWithTypes (TttViewNewDefaults, P_TTT VIEW NEW, PP_TTT VIEW INST)
{ ‘
DbgTttViewNewDefaults ((U_L("self=0x%1x"),self))

pPArgs->win.flags.input |= inputHoldTimeout;
pArgs->gWin.helpld = tagTttView;

pArgs->view.createDataObject = true;
This is the only thing clsTttView must do to handle Quick Help.

% Creating Quick Help resources

One way to create resources is to tell a resource file to file an object, using say
msgResPutObject. This is what happens when an application is told to save a
document.

However, one goal of resources is to separate the definition of a resource from the
application that uses it. So you can also compile resources under DOS, putting them

162

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Quick Help

FIGURE 11-2

in a resource file, and read them from within PenPoint applications. These
resources aren’t objects, they are basically predefined data structures.

In the case of Quick Help, a Quick Help resource consists of three parts:
¢ The strings that contain the Quick Help text.
A tagged string array resource (type RC_TAGGED_STRING) that associates each

text string with a tag. The tags are used by the gesture window helplds to asso-
ciate a gesture window with its Quick Help text.

¢ An RC_INPUT structure containing:

o A list resource ID created from the administered portion of the Quick
Help ID (in this case clsTttView) and the Quick Help group (usually
resGrpQhelp).

» A pointer to the tagged string array resource for the class.

+ A length field (updated by the resource compiler).

o The identifer for the string array resource agent (resTaggedString-
ArrayResAgent).

CHAPTER 11 / REFINING THE APPLICATION (TIC-TAC-TOE) 163
Quick Help

Each Quick Help string has two parts, which are separated by two vertical line
characters (I). The first part is the title for the Quick Help card; the second part
is the Quick Help text. The vertical line characters are not printed when Quick
Help displays.

These are the United States English Quick Help strings for the Tic-Tac-Toe appli-
cation, defined in USA.RC (there is also a Japanese version in JPN.RC):

// Define the Quick Help resource for TTT.

static RC_TAGGED_STRING tttviewQHelpStrings[] = {
// Quick help for TTT's option card to change the line thickness.
tagTttViewCard,
U_L("TTT Card||")
U_L("Use this option card to change the thickness of the lines ")
U_L("on the Tic-Tac-Toe board."),

// Quick help for the line thickness control in TTT's option card.
tagCardLineThickness,

U_L("Line Thickness||")

U_L("Change the line thickness by writing in a number from 1-9."),

// Quick Help for the TTT window.

tagTttView,

U_L("Tic-Tac-Toe||")

U_L("The Tic-Tac-Toe window lets you to make X's and 0's in a”
“Tic-Tac-Toe ")

U_L("grid. You can write X's and O's and make move, copy ")

U L("and pigtail delete gestures.\n\n")

U_L("It does not recognize a completed game, either tied or won.\n\n")

U _L("To clear the game and start again, tap Select All in the Edit menu, ")

U_L("then tap Delete."),

Nil (TAG)

1/ APP WRITING GUIDE

Vi
static RC_INPUTtttViewQHelp = {
resTttViewQHelp,
tttviewQHelpStrings,
0,
resTaggedStringArrayResAgent
i
See Part 11: Resources, in the PenPoint Architectural Reference, for more information
on resource compiling and the specifics of Quick Help resources.

To compile resource definitions into a resource file, you use the PenPoint Resource
Compiler (PENPOINT\SDK\UTIL\DOS\RC).

The Installer copies the application resource file during installation. Hence the
makefile tells the resource compiler to append the Quick Help resources to the
application resource file. The name of the application resource file includes a three-
letter code that indicates the locale for which you've compiled the resource file. For
example, for the United States, the resource file is called USA.RES; for Japan,

it is called JPN.RES. You define in the makefile which locales to compile resource
files for.

164 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

P Standard message facility

The PenPoint standard message facility, StdMsg(), provides a standard way for your
application to display modal dialog boxes, error messages, and progress notes
without requiring it to create UI objects. StdMsg() uses clsNote (see NOTE.H) to
display its messages. Notes have a title, a message body, and zero or more command
buttons at the bottom.

Message text and command button definitions are stored in resource files. StdMsg()
supports parameter substitution for the message text and button labels (see
CMPSTEXT.H). A 32-bit value (a tag in the case of dialog boxes and a status code in
the case of errors) is used to select the appropriate resource.

StdMsg() provides the following routines for when the programmer knows exactly
which message is to be displayed:

¢ System and application dialog boxes use StdMsg(tag, ...)
Application errors use StdError(status, ...)

¢ System errors use StdSystemFError(status, ...)

¢ Progress notes use StdProgressUp(tag, &token, ...)

With StdMsg(), StdError(), StdSystemError(), and StdProgressUp(), any param-
eter substitutions are supplied with the argument list, much like printf(). Like
printf(), there is no error checking regarding the number and type of the substitu-
tion parameters. The first three functions return an integer, which indicates the
command button that the user tapped. Progress notes, which use StdProgressUp(),
don’t have a command bar.

StdMsg() also provides support for the situation where an unknown error status is
encountered: StdUnknownError(). This function does not provide parameter sub-
stitution or multiple command buttons, it always displays a single “OK” command
button. StdUnknownErrox() replaces any parameter substition specifications in the
text with “?2?”.

% Using StdMsg() facilities

To use StdMsg(), you first define the message text strings. These strings are held in
string array resources, like Quick Help. A single resource holds all the strings for a
given class. There is a separate string array for dialog boxes and error messages. You
should store the application message resources in the application’s resource file.
Here’s the resource file definition of all of the error notes for the CLOCK sample
application:
static RC_TAGGED STRING errorStrings[] = {
// Error: user has set alarm to before the current time
stsClockAlarmInvalid,

U L("You can't set the alarm date and time to be earlier ")
U _L("than the current date and time."),

// Error: user has specified an out-of-bounds number, like 12:72
stsClockFieldRangeError,

U L("The “1s you specified is invalid. Choose a number ")

U L("between “2d and *3d."),

CHAPTER 11 / REFINING THE APPLICATION (TIC-TAC-TOE)
Standard message facility

// Error: user has specified a string with an illegal character
stsClockIntFieldInvalid,
U _L("The *1s you specified is invalid because it is ")
U_L("blank or contains an invalid character."),
// Error: user has specified a date not using month/day/year format
stsClockDateFieldInvalid,
U_L("The date “ls you specified is invalid because it is ")
U_L("blank or does not follow the format mm/dd/yy."),
Nil (TAG)

}i

static RC_INPUT stdError = {
resClockAppStdMsgError,
errorStrings,
0,
resTaggedStringArrayResAgent

}i

You must define a tag or error status for each string. The string’s position in the
string array determines its tag or status index (starting from 0). Here are the defini-
tions for the example above:

#define stsClockAlarmInvalid MakeStatus(clsClockApp, 0)
$define stsClockFieldRangeError MakeStatus(clsClockApp, 1)
#define stsClockIntFieldInvalid MakeStatus(clsClockApp, 2)
#define stsClockDateFieldInvalid MakeStatus (clsClockApp, 3)
To create a note from the items defined above, simply call StdMsg() or StdError().

if ((low <= value) && (value <= high)) {
return stsOK;
} else {
// else field out of range
StdMsg(stsClockFieldRangeError, pFieldName, low, high);
return stsFailed;
}
Progress notes are slightly different from the message functions. Your application
displays a progress note when it begins a lengthy operation, and takes the note
down when the operation completes. PenPoint 1.0 does not support cancellation of
the operation. Here’s an example of progress note usage:

SP_TOKEN token;

StdProgressUp (tagFooProgressl, &token, paraml, param2);
. Lengthy operation .

StdProgressDown (&token) ;

Substituting text and defining buttons

The message strings can contain substituted text and definitions for buttons. String
substitution follows the rules defined by the compose text function (defined in
CMPSTXT.H). A button definition is a substring enclosed in square brackets at the
beginning of the message string. You can define any number of buttons, but you
must define all buttons at the beginning of the string. The button substrings can
contain text substitution. If the string doesn’t define any buttons, StdMsg() creates
a single “OK” button.

165

1/ APP WRITING GUIDE

166 PENPOINT APPLICATION WRITING GUIDE
) Part 1 / Application Writing Guide

StdMsg(), StdError(), and StdSystemError() return the button number that the

user tapped when dismissing the note. Button numbers start with 0. For example,

this string definition would result in a return value of 1 if the user tapped Buttonl1:
U L("[ButtonO] [Buttonl] [Button2] Here’s your message!")

Be aware that these functions might also return a negative error status, which indi-
cates that a problem occurred inside the function.

You can break your message up into paragraphs by putting two newline characters
at the paragraph breaks. For example:

U_L("Here’s the first paragraph.\n\nHere’s the second one.")

% StdMsg() and resource files or lists

There are variations of StdMsg() and StdError() that allow you to specify the
resource file handle or resource list to use. These are most useful for PenPoint
Services, where there is no default resource list available. These messages are:

& StdMsgRes(resource_file, tag, ...)

¢ StdErrorRes(resource_file, status, ...)

% StdMsg() customization function

The function StdMsgCustom() allows you to customize a StdMsg() note. The
function returns the UID of the note object (created by clsNote), without dis-
playing it. You can modify this object as you wish and then display it yourself using
the messages defined by clsNote.

P Bitmaps (icons)
PenPoint uses icons to represent applications in the table of contents and in
Browsers. You can also use icons in your own applications. In PenPoint termi-
nology, the icon includes optional text as well as a bitmap picture. There are default
bitmaps for applications and documents, but you can create your own using the
bitmap editor (see Figure 11-3).

When it needs a bitmap, the Application Framework searches for it by resource

ID in your application’s resource list. If you do not specify an application icon in
your application’s resource file, the search gets the default bitmap in the system
resource file. However, if you put a different icon in your application’s resource file,
it will be used instead. You don’t need to make any changes to your application to
support this.

CHAPTER 11 / REFINING THE APPLICATION (TIC-TAC-TOE)

Application and document icons

Bitmaps (icons)

FIGURE 11-3

167

I H

el

e
.
.

.-
Eugmm“

o

.

e

.

i
5

¥ Creating icons

The bitmap editor application is available in the PENPOINT\APP\BITMAP directory.
It is also available on the PenPoint Goodies disk.

The bitmap editor needs to generate a bitmap as a resource and put it in a resource
file. However, it conforms to the PenPoint document model, so it has no Save com-
mand. Instead, you use the About... menu item in the Document menu to bring up
the Export option card to specify the type of bitmap resource, and then use the
Export... command to actually generate the bitmap resource. You generally export
four bitmaps, two each for the application and document in 16 x 16 and 32 x 32
sizes. Although you can export them to the APPRES file in your application’s instal-
lation directory, it is often preferable to create separate SMICON.RES and
LGICON.RES files for the large and small icons and use the resource compiler to
append these to your application’s resource file.

For more information on using the bitmap editor, see Part 3: Tools in PenPoint
Development Tools.

1/ APP WRITING GUIDE

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 1 / APPLICATION WRITING GUIDE

Chapter 12 / Releasing the Application

You're almost done, but not quite. Before you make your application available to
the larger world of PenPoint™ users, you must complete these tasks:

& Register your classes with GO.
¢ Document the application.
¢ Prepare your distribution disks.

You should also consider making your classes available to other developers. If you
do so, you need to document the API for those classes.

¥ Registering your classes

While developing an application, you can identify your classes with the well-known
UIDs wknGDTa through wknGDTg. Of course, if you use these UIDs in a pub-
lished application, they will conflict with other developers who use your application
and attempt to use these well-known UIDs to test their own applications.

When you are fairly sure that you will publish your application, you must obtain an
administered value for each of your public classes. Remember that a UID consists of
an administered object value, a version number, and a scope (global or local, well-
known or private). Contact GO Customer Services at 1-415-358-2040 (or by
Internet electronic mail at gocustomer@go.com) for information on how to get a
unique administered value.

» Documenting the application
The need for quality documentation cannot be over-emphasized. There are three
ways in which you should document your application:
¢ Manuals or other form of separate documentation.

¢ Pages in the Help notebook.
¢ Quick Help text.

% Writing manuals

For more information on documenting your application, contact GO Customer Ser-
vices at 1-415-358-2040 (or by Internet electronic mail at gocustomer@go.com)
and ask for Tech Note #8, Documenting PenPoint Applications. This technical note,
written by GO’s end-user documentation group, provides information about how
GO writes and produces its end-user documentation. The Tech Notes also give
print specifications, if you want your documentation to appear similar to GO’s.

170 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

%> Screen shots

The S-Shot utility enables you to capture TIFF images of PenPoint computer
screens. You can then incorporate your images into your documentation. S-Shot is
on the SDK Goodies disk.

% Gesture font

For developer and end-user documentation, GO created an Adobe Type 1 font that
depicts the PenPoint gesture set. If you use a PostScript printer, you can incorporate
this font into your documentation and on-line help.

Registered developers may request a copy of the PenPoint Gesture font from GO by
contacting GO Customer Services.

P On-disk structure

When developing your application, the PenPoint file organization requires you to
place your files in certain specific directories under the PENPOINT directory. This is
described in detail in Chapter 3 of Part 12: Installation APIin the PenPoint Architec
tural Reference. ’

Before distributing your application, you should ensure that all your auxiliary files,
such as Help notebook pages, Stationery, Resource files, and so on are in their cor-
rect directories.

p Sharing your classes

If you have created a component class that might be useful to other PenPoint devel-
opers, you should consider licensing the class.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION

Part 2 /

PenPoint
Internationalization

Handbook

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 2 /

P Chapter 13 / Introduction

175 Intended audience
176 Handbook structure

176 How to use this handbook

P Chapter 14 / Overview

177 Overview of international software

178 Whiting international software
Step 1. Support Unicode

Step 2. Write locale-independent code

Step 3. Use resource files
Step 4. Create your application

182 Internationalization checklist

INTERNATIONALIZATION HANDBOOK

210

211

215

216

¥ Chapter 15 / PenPoint Support

for International Software

183 International character sets
Multibyte and wide characters
Introduction to Unicode
Unicode architecture

Code supporting Unicode

189 Resource files
Strings in resource files
Resource file structure
Tags in source code
Predefined tags

Working with resource files

196 Locale-independent code

197 PenPoint’s international functions
International functions in ISR.H

Locales

Predefined locale identifiers
Styles

Query capability

International function structures

Unicode glyphs
Composed strings

205 Managing your project
Project organization

Makefiles

206 Scanning your source code
Other DOS utilities

207 Missing functions

#» Chapter 16 / Procedures

209 Supporting Unicode
Prerequisite information
Procedure
Examples
Related procedures

219

220

222

223

224

Using the DOS utility INTLSCAN
Prerequisite information
Procedure

Related information

Interpreting INTLSCAN messages
Prerequisite information
Procedure

Examples

Related information

Creating Unicode strings
Prerequisite information
Procedure

Examples

Related procedures

Moving strings to resource files
Prerequisite information
Procedure

Example

Related information

Using predefined AppMgr tags
Prerequisite information
Procedure

Example

Related information

Using resource utility functions
Prerequisite information
Procedure

Example

Related information

Using tags in source code
Prerequisite information
Procedure

Examples

Using ComposeText functions
Prerequisite information
Procedure

Example

Related information

Updating your makefile
Prerequisite information
Procedure

Example

Related information

225 Writing locale-independent code

227

Prerequisite information
Procedure
Example

Checking the system locale
Prerequisite information
Procedure

Example

Related procedures

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 2 / INTERNATIONALIZATION HANDBOOK

P Chapter 17 / Porting to PenPoint 2.0
229 Changed APIs

Prerequisite information
Procedure
Related information

230 Gesture handling code
Prerequisite information
Procedure
Examples

231 Special characters
Prerequisite information
Procedure
Example
Notes

233 File version data

233 Single code base
P Chapter 18 / Localization Guidelines

J Chapter 19 / Additional Resources
237 Texts

238 Standards organizations

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 2 / INTERNATIONALIZATION HANDBOOK

Chapter 13 / Introduction

The worldwide software market is growing at an exciting rate. Recognizing this
trend, GO Corporation has designed PenPoint™ to be a global operating system.
Specifically, the PenPoint operating system provides many objects, functions, and
tools that help you prepare your application for an international market.

Modifying an application for use in a specific country (or locale, because countries
like Canada, Switzerland, and Singapore use more than one language) is called
localization. The process of preparing an application so that it is ready to localize is
called internationalization.

This handbook provides a step-by-step guide through the process of international-
izing your code. The result is code that is ready to be adapted to particular markets.

This handbook does 7oz contain specific guidelines on how to design a successful
version of your application for a particular market. It does not, for example, offer
specific suggestions on how to design an appropriate user interface for Japan or
Germany or Italy.

Because this handbook does not discuss localization, you may want to work with
your marketing and sales departments, local software partners, localization houses,
users, and other resources to create an appropriate product for a given locale. Also,
Chapter 19, Additional Resources, lists resources that may help you with the local-
ization process.

The PenPoint operating system currently supports only American English and
Japanese. Future releases will support more languages and countries.

¥ Intended audience

This handbook is for developers designing original PenPoint applications for an
international market and for developers porting existing PenPoint 1.0 applications
to PenPoint 2.0 Japanese. When used in this document, the terms “PenPoint 2.0”
or “PenPoint SDK 2.0” refer to “PenPoint 2.0 Japanese” or “PenPoint 2.0 SDK
Japanese.”

Many issues that you need to consider while designing international applications
are less important if you are developing only for a local market. For example, con-
sider an icon designed to signal “stop.” American users might expect such an icon
to look like a traffic light with a red light on top. This icon would be inappropriate
in many countries outside of the United States. In Japan, for example, traffic lights
are horizontal so that the red light is on the far left.

00 ®
®)
®)
®)

<
®
>

Japan

176 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

This handbook assumes that you are familiar with PenPoint programming. Part I:
PenPoint Application Writing Guide is the best place to start if you are new to
PenPoint programming. You will also get the most out of this handbook if you
understand what your target locale is and what kind of application you plan to
market there. Once you've identified the target locales for your application, you can
tailor the general recommendations in this handbook to your specific needs.

This handbook also assumes you have installed PenPoint SDK 2.0 Japanese. See
Installing and Running the PenPoint SDK 2.0, a document included with the SDK,
for details on how to install the SDK.

For details on localizing your application to Japan, read Part 3: PenPoint Japanese
Localization Handbook. This part assumes you have internationalized your code
according to the guidelines in this handbook.

¥ Handbook structure
This chapter describes the handbook’s purpose and organization.

Chapter 14, Overview, describes the general process of how to write an inter-
national application.

Chapter 15, PenPoint Support for International Software, describes PenPoint’s
routines, functions, and utilities that support international applications.

Chapter 16, Procedures, provides step-by-step instructions on how to write code
for international applications.

Chapter 17, Porting to PenPoint 2.0, discusses how to port existing PenPoint 1.0
code to the latest version of PenPoint.

Chapter 18, Localization Guidelines, lists general issues to consider while localizing
your application.

Chapter 19, Additional Resources, describes other helpful resources, including dic-
tionaries, books, and contacts for standards organizations.

P How to use this handbook

If you are new to internationalization issues, begin with Chapter 14, Overview.
If you are familiar with internationalization issues and want to learn how the
PenPoint operating system helps you produce internationalized applications,
read Chapter 15, PenPoint Support for International Software. Both of these
conceptual chapters place the procedures covered in Chapter 16, Procedures, in
perspective.

If you are looking for specific directions on how to perform a task such as supporting
Unicode, see “Supporting Unicode” on page 209 in Chapter 16, Procedures. Each
procedure refers to other information, usually in this handbook, that you need to
understand before doing the procedure.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 2 / INTERNATIONALIZATION HANDBOOK

Chapter 14 / Overview

This chapter provides a general overview of how to write international software.
Chapter 15, PenPoint Support for International Software, provides specific details
on how some special features of the Japanese localization of PenPoint™ operating
system 2.0 help you write international software.

Many books and organizations may also help you internationalize your application.
Chapter 19, Additional Resources, lists some of these resources.

P Overview of international software

The goal of internationalization is to make an application easily adaptable for a
target locale. The internationalized version of your source code must support inter-
national character sets and behave appropriately for different locales.

In this handbook, we usually use the term locale to identify a particular country,
language, and dialect. Often, as with the USA and Japan, the country name is
enough to identify a locale because the country uses only one language and no
major dialects. Sometimes, however, as in Canada, Switzerland, and Singapore,
countries use multiple languages and even dialects. In such cases, a locale represents
both a country and a language (and sometimes a dialect) such as French-speaking
Canada or Chinese-speaking Singapore.

In the best case, you can maintain a single code base for your application and create
localized versions by simply creating different resource files. Figure 14-1 shows this
optimum design. Remember that resource files are collections of data, such as
strings, that are cleanly separated from your application code.

Think of resource files as modular pieces that can be snapped in and out of your
application as the locale requires. What kind of pieces might be stored as resource
files? Anything that the user sees is a likely candidate. These include user interface
strings, window layouts, icons, and bitmaps.

You can also use resource files to store binary data that your application interprets.
For example, you might use a flag in a resource file to tell your application whether
to calculate in English or metric units. Another set of flags might represent user
preferences. '

Sometimes local versions of your application differ too much for you to maintain a
common code base. For example, a Japanese version of your application might need
to provide context-sensitive handwriting recognition that a German version of your
application does not need to provide. '

178

VPENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

Common source code for multiple localizations FIGURE 14-1

Machine-readable files,
such as object files, are
shown with binary number
along their bottom edge;
files you create and edit are
shown without the binary
numbers.

Japanese | . French
version ‘ version

When local versions of your application differ too much for you to maintain a
common code base, create different DLLs from different source code files as shown
in Figure 14-2. In the example above, you might write all the code that provides
additional Japanese handwriting support in one source file, compile the code into a
DLL, and then link that library with the rest of your application’s object files.

If you must resort to separate code bases for each locale, keep the differences iso-
lated to as few files as possible. This strategy makes it easier to test and maintain
your code.

Writing international software

This section introduces the process of writing international software. After this
overview, you may want to look through Figure 14-1. This checklist is a detailed,
step-by-step description of how to implement the general tasks described here.

Internationalizing an application requires these four general steps:
T Prepare to handle international character sets by supporting Unicode.
2 Write locale-independent code.

3 Move application components that vary with locale like strings, window lay-
outs, and bitmaps into resource files.

4 Update your project files.

179

CHAPTER 14 / OVERVIEW

Overview of international software

FIGURE 14-2

Multiple source files for multiple localizations

NOUYZITYNOUVYNUIINI / T _

le source code base for
all your localizations, keep

functionality specific to a
locale in a separate file.

When you cannot maintain a
sing

s S SEemesesesse s
. E e o
;;;;; . . |
e . o
- o - e
. L

e o
e e
...
k. ... : @@

S e Sl T aitnkeeennuanmnine iRl e
- - |

P Connin s ey
as e

Japanese
version

.
- ... 3
, . £ . =
wﬂ@&ﬂmgﬁ% - =
e
.
@ﬁ@é&gﬁ%ﬁ&@ﬁwmw&m
.
-

£ ! e s s el
... _ 3
S i seeen SR LS Gi SR s s s
... = -
- = &i{mﬁaﬁmmm e

.]
s - .
... 5 . I -
. = = = 3
- £ - '
.
E

version

, . .
-

. - . |
.. 3 @
- e = L =
= - e
i .

o
.. .

.. e]
5 el
- - -

mm@mmmﬁmﬁxﬁ ﬁmxiuwm, . G

A Tt
-
-
- 3
e
Ionsme R

. 3 ..
S = o

W

e e
SRR s B

daal

Notice that steps 1 and 2 involve producing the block of common code at the top

and step 4 brings

1er,

he middle t

int

of Figure 14-1. Step 3 creates the resource files

all the pieces together.

ion of the word processor

ilored for U.S. users. Th

Consider the example of a word processor. A U.S. vers

should provide functionality and an

is applica-

interface ta
ite Roman characters.

1d:
¢ Display, read, and wr
¢ Del

tion wou

ish gram-

and paragraphs based on U.S. Engl

English words, sentences,

1 convent

imit

.

ons.

matica

ish alphabet
on the other hand

¢ Sort words based on the order of the Engl

inter-

ity

should use an

o]
ional

and support Japanese funct

ite Japanese characters.

¢ Display, read, and wr

A Japanese version of the word processor,
¢ Del

face tailored to Japanese users,

and paragraphs based on Japanese gram-

sentences,

Japanese phrases,

1mit

ons.

matical convent

1ng conventions.

Sort characters based on Japanese sort

See Figure 14-3 for a MiniText document that shows how this might look.

180

PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

Japanese Text in MiniTex# FIGURE 14-3

This screen shows the
result of a user double-
tapping to select a
Japanese phrase. A
PenPoint function provides
the phrase-selection
algorithm.

Again, the goal is to have a single code base for both local versions of your applica-
tion. This single code base combined with an appropriate resource file yields a
localized version of your application. The four general steps you must take to write
an international version of your application or service are described in more detail
below.

Step 1. Support Unicode

Your application must support multiple character sets such as Roman letters and
Japanese characters. In order to maintain a single code base for all local versions of
your application, you need a single character coding scheme that handles all the
character sets you plan to support. The PenPoint operating system, beginning with
version 2.0 Japanese, uses Unicode as its character coding scheme. Your first task is
to provide Unicode support in your code.

¢ The Unicode character encoding scheme is discussed beginning with the sec-
tion “International character sets” on page 183.

¢ The process of supporting Unicode is discussed beginning with the section
“Supporting Unicode” on page 209.

Step 2. Write locale-independent code

The next step is to make your application behave correctly for a particular locale.
Rather than rewriting major parts of your code to perform local functions (sorting,
formatting, and filing, for example), write a single block of internationalized source
code that behaves as expected in a given locale.

For example, rather than write separate formatting algorithms for English and Japa-
nese dates, you can use a single PenPoint function called IntlFormatDate() in your
code that appropriately formats English or Japanese dates depending on the locale.
PenPoint provides a collection of functions whose behavior changes according to
the locale (specified as an argument). These functions are discussed in detail in
Chapter 15, PenPoint Support for International Software.

CHAPTER 14 / OVERVIEW 181
Overview of international software

Whenever possible, your application should also use PenPoint-defined objects
because these objects behave appropriately for any currently supported locale. For
example, an input pad (cIsIP) in the Japanese version of PenPoint handles Japanese
handwriting recognition.

¢ The PenPoint international functions are discussed in Chapter 15, PenPoint
Support for International Software.

¢ For step-by-step instructions on how to use the international functions, see
Chapter 16, Procedures.

% Step 3. Use resource files

Next, move application elements that vary with locale into resource files. The
strings in your user interface are a good example, though other elements, such as
bitmaps, may also belong in resource files.

Having strings and other elements that vary with locale in resource files makes it
easier to localize your application.

¢ Resource files are discussed in the section jResource files” on page 189.

¢ The process of moving things to resource files is discussed beginning with the
section “Using the DOS utility INTLSCAN” on page 210. The discussion

continues in “Moving strings to resource files” on page 216.

% Step 4. Create your application
Finally, update your project directory and makefile to create localized versions of

your application or service.

Makefiles are discussed in detail in Chapter 29 of Part 4: PenPoint Development
Tools Supplement. For more details on how to update your makefiles, see “Updating
your makefile” on page 224.

For recommendations on how to organize your project files, see “Managing your
project” on page 205.

2 / INTERNATIONALIZATION

182 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

¥V Internationalization checklist

These are the steps you should take to prepare your application for an international
market. Don’t worry if some of the terms in the checklist are unfamiliar. They will
be explained in the section shown in the checklist.

I Understand the steps involved in the internationalization process by reading
this chapter.

_J Use INTLSCAN to help internationalize your code (“Using the DOS utility
INTLSCAN” on page 210).

U Declare character and string data as 16 bits long (“Supporting Unicode”
on page 209).

I Use 16-bit routines to handle Unicode characters (“Using the DOS
utility INTLSCAN” on page 210).

U Make literal strings Unicode strings (“Creating Unicode strings” on
page 215).

(I Move most literal strings to resource files (“Moving strings to resource
files” on page 216).

«l Use resource files to store locale-dependent components (“Resource files” on
page 189).
{J Use predefined Application Manager tags “Using predefined AppMgr
tags’ on page 219).

Use tags in your source code (“Using tags in source code” on page 222).

< Use utility functions to read data out of resource files (“Using resource
utility functions” on page 220).

«J Write locale-independent code (“Locale-independent code” on page 196).

) Take advantage of PenPoint’s international functions (“PenPoint’s inter-
national functions” on page 197).

« Manage your project files (“Updating your makefile” on page 224).
(J If necessary, handle porting from 1.0 details (Chapter 17, Porting to PenPoint 2.0).

I Update your code to reflect new PenPoint APIs (“Changed APIs” on
page 229).

page 230).

< Use the bitmap editor to design special characters (“Special characters”
on page 231).

page 233).
} Maintain a single code base (“Single code base” on page 233).

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 2 / INTERNATIONALIZATION HANDBOOK

Chapter 15 / PenPoint Support for
International Software

This chapter introduces the messages, functions, and utilities the PenPoint™ oper-
ating system provides to support international software. Currently, the PenPoint
operating system 2.0 Japanese supports only Japanese and U.S. English. Future
releases of PenPoint will support more locales.

WV International character sets

English text is composed of letters derived from the Roman alphabet. The Roman
writing system is the most common in the modern world. Some 70 percent of the
world’s literate population write or understand a language based on the Roman
writing system.

Languages based on Roman letters are relatively simple to represent. Indeed, 8-bit
ASClI-based encoding schemes are sufficient to encode most European alphabets,
Roman and non-Roman, as well as a large collection of punctuation marks.

Not all countries, of course, use letters from these European alphabets. The Cyrillic
and Hebrew alphabets are two familiar examples.

Some languages do not use alphabets at all, or do not use them as the primary ~ Samples of Chinese and
building blocks of language. Instead, these languages use ideographs (literally g:ii;iiiif;ig; aﬁ:fdg
“idea symbols”) to represent a thing or idea rather than letters to represent words. fof Japanese (Ieft) and

. . . " document (right).
Chinese, Japanese, and Korean are the most common of these ideographic writing (right)

systems, and these languages are written by almost a billion people in the world HAGE FHE
today. These character sets contain thousands rather than dozens of characters.

See Part 3: PenPoint Japanese Localization Handbook for more details on the
Japanese language and its encoding.

P Mulﬁbyte and wide characters

The problem with large character sets, from a programmer’s point of view, is that
they are difficult to represent. Clearly, 8 bytes are insufficient because you can rep-
resent only 28 or 256 characters if you use a one-to-one mapping between code
points and represented characters. A code point is a number that represents a par-
ticular character. For example, the ASCII code point for the letter A’ is 0x41.

Two possible solutions to this problem are multlbyte characters and wide
characters.

Multibyte character encoding schemes use one or more bytes to represent a single
character. A good example of this scheme is the Japanese Industrial Standards (JIS)
encoding of Japanese.

184 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

JIS encoding involves two states. In one state, a single byte represents a single ASCII
character. In the other state, two bytes represent a single Japanese character. A spe-
cial sequence of codes shifts a text stream between the two states.

Because many of the world’s existing computer devices deal with bytes of informa-
tion, such a scheme takes advantage of existing byte-sized system designs.

On the other hand, there are drawbacks to multibyte encoding. One of the obvious
disadvantages is that you must know what state a given byte is in before you can
manipulate it. For example, in an arbitrary stream of JIS text, you cannot be sure if

a given byte is a single ASCII character or half a Japanese character without scanning
for the “shift-in” and “shift-out” codes.

Because code that processes these multibyte character sets is complex and error-
prone, programmers have developed an alternative scheme: using fixed-length
codes wide enough to accommodate the required characters.

These wide codes allow more characters to be encoded without ambiguity. Char-
acter manipulation code is thus easier to write.

However, no widely adopted standard of wide character encoding has been estab-
lished. Implementation of wide character sets has been private to a particular com-
pany. Though systems could depend on their internal characters being of some
fixed length longer than a byte, they could not depend on other systems using the
same fixed length in the same way.

% Introduction to Unicode

The PenPoint operating system, beginning with version 2.0 Japanese, encodes its The Unicode Standard is
character using Unicode, a character encoding system that offers advantages of both 8upported by a nonprofit

liib d wide ch h I ‘de. 16-bit cod d h corporation called the Unicode
multibyte and wide character schemes. It uses a wide, 16-bit code to encode each Congortium, It is made up of
character, regardless of the language to which it belongs. For example, Roman let- companies such as Apple, IBM,

ters and Japanese characters are both 16-bits long. HF, DEC, NeXT, and GO.

The uniform 16-bit length frees the programmer from the difficulties of multibyte
encoding: a 16-bit Unicode code always represents a single character.

The Unicode standard aims to be comprehensive. Because Unicode characters are
uniformly 16-bits long, there are 216 or roughly 65,500 possible characters. Cur-
rently, some 34,400 characters and symbols have been assigned as part of Unicode
1.0. According to the Unicode Consortium, these characters are “more than suffi-
cient for modern communication.”

For more information on Unicode, see Chapter 19, Additional Resources, for more
details on the two-volume book titled The Unicode Standard, Version 1.0.

Minor changes have been made to the Unicode standard since the publication of
the two volumes. This revised standard is Unicode 1.0.1, and PenPoint uses this
most current version of the Unicode standard.

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 185
International character sets

% Unicode architecture

The complete Unicode character set is divided into four major zones, as shown in
Figure 15-1.

Unicode architecture FIGURE 15-1

Unicode The four zones in Unicode

Low byte =——b contain the following:

Alphabets contain all
00 20 40 60 80 A0 CO EO FF alphabets and all other
nonideographic script
characters, as well as
miscellaneous symbols.

CJK contain all Chinese,
Japanese, and Korean
ideographe.

Reserved is a currently
unassigned zone reserved
for future use.

Private Use Area contains
areas that corporations
can use to define their
owh characters. For
example, GO's gesture
glyphs are in the private
use area. This private area

also includes characters
. Alphabets |___| Reserved retained for compatibility
. with previous character
CJK . Private Use Area encoding standarde.

The character set is laid out in successive blocks of 256 code points. A Unicode
code point is a unique 16-bit number representing a particular character. For
example, the code point 0x0041 represents the Latin letter A’.

Each block (or group of blocks) of 256 code points forms a linguistic or functional
category. For example, there are blocks representing ASCII characters, Cyrillic let-
ters, Arrows, Mathematical Operators, and Chinese, Japanese, and Korean (CJK)
ideographs.

Each block is identified by the value of its upper byte. For example, ASCII characters
are in block 00, Arabic is in block 06, and Thai is in OE.

Chinese, Japanese, and Korean ideographs occupy the 76 blocks from hex 40 to 8B,
representing a total of approximately 19,500 characters.

For more details on how Unicode compares with existing double-byte character
sets, notably the popular JIS and Shift-JIS used in Japan, please see The Unicode
Standard 1.0 and the Part 3: PenPoint Japanese Applications Handbook.

2 / INTERNATIONALIZATION

186 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

% Code supporting Unicode

Providing Unicode support in your code is a straightforward, one-time procedure.
Once your code supports Unicode, you never need to rewrite substantial portions
of your code to support different character sets.

ASCII-based encoding systems use 8 bits to encode characters while Unicode uses The letter ‘a’ encoded as
16 bits. Supporting Unicode requires you to write code that deals with 16-bit &-bit (top) and 16-bit

. . . (bottom) code pointe.
rather than 8-bit characters. The PenPoint SDK 2.0 Japanese provides tools to help
you make the transition, which impacts the following categories of code:

¢ Character types.

¢ String functions.

Character and string constants.
¢ String formatting.

Each of these categories is discussed below. Table 15-1 below gives you a flavor of
how the new code will look compared to the old.

How fo work with strings TABLE 15-1
Attribute 8-bit strings 16-bit strings Both 8- and 16-bit
Character types CHARS CHAR16 CHAR

Character/string constants “John” L“John” U_L(“John”

String functions strlen(&aString) strlen16(8&aString) Ustrlen(&aString)
String formatting “%hs” “O%ls” “%s”

Library functions isupper(aChar) _uisupper(aChar) Uisupper(aChar)

The last column is labelled “Both 8- and 16-bit.” The code shown in this column
works with 8-bit characters in PenPoint 1.0 and 16-bit characters in PenPoint 2.0
Japanese (and beyond).

For example, declaring a variable of type CHAR declares an 8-bit character (CHARS)
character in PenPoint 1.0 and a 16-bit character (CHAR16) in PenPoint 2.0 Japa-
nese. Future releases of the PenPoint operating system will continue to use 16-bit
Unicode characters. Use these hybrid functions and types whenever possible.

Most of the hybrid types are defined CTYPE.H. The hybrid functions are defined in
the same C header file as the equivalent C function. For example, the Ustrlen()
function is defined in STRING.H. The U_L() macro is defined in INTL.H.

Several procedures in Chapter 16, beginning with “Examples” on page 210, list
step-by-step directions for writing code that supports Unicode. Read the following
sections for an overview of the process.

The SDK includes a DOS utility called INTLSCAN that flags code that may need to
be changed to support Unicode. The utility is on the Goodies disk in the directory
\SDK\UTIL\DOS. See “Using the DOS utility INTLSCAN” on page 210 for more

information.

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 187
International character sets

%» Character types
The PenPoint operating system provides three type declarations for character data:
CHARS, CHARI16, and CHAR. The first two declare 8- and 16-bit characters, respec-
tively. The CHAR type is defined for code portability: it is 8 bits wide in PenPoint
1.0 and 16 bits wide in PenPoint 2.0 Japanese.

If you have PenPoint 1.0 code that uses the char (lower case) type, convert all

of your character data to use the CHAR (upper case) type. You may not need to
change declarations of noncharacter data. Use types such as U8 to declare variables
of fixed size.

Where noncharacter data depends on the size of CHAR beingl byte, you need to
update your code because CHAR is 2 bytes longs in PenPoint 2.0 Japanese.

The DOS utility INTLSCAN, included on the Goodies disk in \SDK\UTIL\DOS, flags
lines of code that may need to change to support Unicode. See “Using the DOS
utility INTLSCAN” on page 210 for information on how to use INTLSCAN.

% String functions
The familiar C string library functions (stremp(), strepy(), and so on) still exist in
PenPoint 2.0, but they work only on 8-bit characters. A set of PenPoint macros
such as Ustrlen() and Ustremp() allows you to work with 8-bit and 16-bit strings,
depending on the PenPoint version. These macros are defined in STRING.H.

In PenPoint 2.0 Japanese, the macros are defined to call new functions provided by
the WATCOM C compiler to work with 16-bit data. These functions all have the
character _u prepended to the equivalent C function name. For example, the
header file STRING.H defines prototypes for a set of string functions named
_ustremp(), _ustrepy(), and so on.

These 16-bit functions are defined in the same C header file you would find the
equivalent 8-bit C function. Prototypes for strlen() and _ustrlen(), for example, are
both defined in STRING.H.

One note before you replace all your 8-bit functions with the 16-bit or hybrid func-
tions like Ustrlen(). Some functions like isupper() not only have 16-bit equivalents,
- but they also have equivalents in the PenPoint international package. In this partic-
ular case, the equivalent to isupper() is IntlCharlsUpper() defined in CHARTYPE.H.

The international functions also work on 16-bit characters or strings, but these
functions are more likely to provide behavior appropriate for a particular language.
Use these functions, discussed beginning with the section “Locale-independent
code” on page 196, whenever you are processing linguistically meaningful text.

In summary, GO recommends that you use the following functions, in order of
Y; y g
preference:

¢ Use the PenPoint international functions such as IntlStrConvert() when you
are processing text the user sees.

¢ Use the U...() macros such as Ustrcmp() when an international function is
unavailable or when you are processing internal data.

2 / INTERNATIONALIZATION

188 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

¢ Use the _u...() functions such as _ustrlen() provided by WATCOM when you
are sure your data is 16-bits long.

¢ Use the C library functions such as strlen() when you are sure your data is 8-
bits long.

%» Character and string constants

When you use CHARS, you can use the standard C conventions for forming char-
acter and string constants. For example:

CHAR8 *s = "string";
CHAR8 ¢ = 'c';

«©»

When you use the CHARI16 type, you must wrap the L“” modifier around your lit-
eral character or strings. This tells the compiler you are using a 16-bit (or Long)
character, as in:

CHAR16 *s = L"string";

CHAR16 ¢ = L'c’; '
When you use the CHAR type, you must put the character or string constant in the -
macro U_L().

CHAR *s = U_L("string");

CHAR c = U L('c'");
Again, the U_L() macro is a hybrid. In PenPoint 1.0, U_L() tells the compiler to use
8-bit characters; in PenPoint 2.0, it tells the compiler to use 16-bit characters. GO
recommends that you use the U_L() macro around all of your literal strings.

The L” modifier is part of the C language, and the U_L() macro is defined in
INTL.H.

You can specify particular Unicode characters in literal strings by typing \x value in
the string, where value is a four-digit hexadecimal number. For example, here are
some Quick Help strings from the TextView class:

U_L"\xF61F \\tab Pigtail. Delete a character.\\par "
U L"\xF60A \xF609 \xF60C \xF60B \\tab Flicks. Scroll up, down, left, or
right.\\par "
This code uses the Unicode value for GO’s gesture glyphs to specify them in a literal
string. See Table 15-6 for a list of the Unicode value for all of the gesture glyphs.

% String formatting

When you use the standard C formatting codes to format strings, make sure you use
the correct format code. Note that the Uprintf() function requires the U_L() macro
wrapped around its format code, as shown below”

Uprintf(U_L(“%hs”), “I am an 8-bit string.”);
Uprintf(U_L(“%1s”), L“I am a 16-bit string.”);
Uprintf (U _L(“%s”), U_L(“I can be either kind of string.”));

%7 Memory and file space

You may be concerned about the additional memory and file space required to sup-
port Unicode. Rest assured that your data files will not automatically double their
size as a result of supporting Unicode.

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 189
Resource files

Unicode does not demand much more storage space than popular multibyte
encoding schemes like Shift-JIS, a standard popular in Japan. Japanese text requires
2 bytes in JIS and Shift-JIS just as it does in Unicode.

Although a Unicode representation of English-only text requires twice the memory Compression affects only
space as an ASCII representation, you can compress the data efficiently when writing 3‘3 Qi'zllegf'l[ygz;jgi jtat:'
. . . « . . . ou wi | &
it to a file. In practice, a compressed Unicode file containing English-only text is per character of memory
less than 1% larger than the identical file stored in ASCIL. when processing data.

%r Compressing Unicode

You can compress Unicode strings with the PenPoint functions IntlCompress-
Unicode(), defined in \2_0\PENPOINT\SDK\INC\ISR.H. The function implements a
compression scheme called packed Unicode. This scheme adds 1 byte to every 255
bytes of ASCII data and compresses a typical Shift-JIS file by roughly a quarter. You
can compress data before writing it to a file.

You can also buy commercial compression algorithms to compress filed data. Be
aware, however, that many commercially available compression algorithms are opti-
mized for 8-bit data, and Unicode is 16 bits long. On the other hand, algorithms
like the 16-bit Huffman algorithm that are optimized for 16-bit characters are
often memory intensive.

Of course, the data in your application that does not represent text does not require
any additional memory.

VP Resource files

PenPoint resource files store objects and data in a structured way that is isolated
from source code. If you are unfamiliar with PenPoint resource files, read Part 11 of
the PenPoint Architectural Reference for an overview.

You can use resource files to store elements of your application that vary from locale
to locale. The most typical example of this is using resource files to store translated
user interface strings.

The following list gives examples of when you might use resource files to store
elements that differ between localized versions of an application.

Text for menus, Quick Help, and StdMsg...() messages.
¢ Different, locally appropriate versions of a bitmap representing “stop.”
¢ Two different window layouts for two different locales.

¢ Flags that your application reads and writes as binary data to save user
preferences.

Resource files usually store user interface elements like strings, window layouts,
and bitmaps. You can, however, use resource files to store things other than UI
elements. The last example, for example, is binary data that influences how your
application behaves.

2 / INTERNATIONALIZATION

190

4

L4

(1

PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

Think of resource files as a place to store modular elements that can be plugged in
and out of your application as appropriate to the locale. -

GO recommends that you use a strategy for naming resources files to represent the
specific localization. All of the PenPoint 2.0 sample code, for example, has a USA.RC
file for the American localization and a JPN.RC file for the Japanese localization.

You must use the exact names JPN.RC and USA.RC if your makefile uses the standard
makefile rules included with the sample applications (\2_0\PENPOINT\SDK\SAMPLE\
SRULES.MIF). The standard makefile rules look for particular strings in USA.RC or
JPN.RC to stamp the application directory with PenPoint information.

Resource files existed in PenPoint 1.0, although they were not used extensively in
sample code. Resource file architecture in PenPoint 2.0 Japanese is unchanged, and
there are additional utilities for working with resources in RESUTIL.H. The resource
file architecture supports 16-bit strings.

Strings in resource files

If you have literal strings in your source code, consider moving the strings to
resource files. The DOS utility INTLSCAN flags literal strings (as well as lines that
may not be appropriate for international applications) in your code. See “Using the
DOS utility INTLSCAN” on page 210 for details on how to use INTLSCAN.

While you may not need to move literal strings to resource files for a successful
compile, we strongly encourage you to do so. The trade-offs involved in the move
are described in the following sections.

Advantages of moving strings to resource files

Strings in resource files are easier to translate because all the strings are in one
place. You can simply pass the resource file to translators, and they can trans-
late the strings without any programming knowledge.

Applications with strings in resource files are easier to maintain because all
user interface strings are in one place rather than scattered throughout various
source and header files.

¢ Having strings in resource files makes it easier to maintain a single code base
even if you have many localized versions of your application. Ideally, you can
create new localized versions of your application by simply providing new
resource files.

Disadvantages of moving strings to resource files

Moving strings to resource files makes your code harder to read. People who want
to understand what your code does must follow the tag reference to another file.
Some of the sample code included with the SDK, like EmptyApp, leaves strings in
the source files for exactly this reason.

GO recommends that you use one resource file to contain all the strings for a
particular localization. The resource file name should describe the locale, as in
USA.RC and JPN.RC.

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE
Resource files

¥ Resource file structure

This section describes the recommended structure for resource files. Before we
describe the structure, you should understand the following about strings in
resource files.

& Each string is associated with a tag that is defined in a header file. You use this
tag in your source code when you need to use the string.

¢ Each string can be part of a group. In the resource file, the entire group is
considered a single resource. The four predefined groups for each class are:
+ Toolkit strings.
+ Quick Help strings.
+ Miscellaneous strings (such as format strings for ComposeText
functions).
+ Standard Message strings.
You can define your own groups as needed.
¢ Each group can have up to four arrays that identify lists of indexed resources.
Each array or list is identified as a well-known list resource ID. Because each

atray may contain up to 256 entries, your class can have up to 1,024 tags and
corresponding strings just using the predefined groups.

The resource file from the sample Counter Application clearly shows the recom-
mended file structure. You can find this code in \2_0\PENPOINT\SDK\SAMPLE\
CNTRAPP.

%» Creating tags in header files

You must define a tag for each string you want to use. Remember that tags are just
32-bit numbers with a fixed structure. Define these tags in the header file that your
source code includes. For example, CNTRAPPH defines these tags:

#define tagCntrMenu MakeTag (c1lsCntrApp, 0)

#define tagCntrDec MakeTag(clsCntrApp, 1)
#define tagCntrOct MakeTag(clsCntrApp, 2)
#define tagCntrHex MakeTag (clsCntrApp, 3)

When you use resource utility functions from RESUTIL.H to read these strings from
a resource file, use these tags when the functions expect a variable of type
IX_RES_ID. See “Tags in source code” on page 193 for an example.

You must also define a RES_ID for each group. A RES_ID is a 32-bit number, defined
in CLSMGR.H, that identifies a resource. Use a RES_ID to identify a particular
resource in a resource file. The header file CNTRAPPH defines these RES_IDs:

#define resCntrTK MakeListResId (clsCntrApp, resGrpTK, 0)
#define resCntrMisc MakeListResId (clsCntrApp, resGrpMisc, 0)

%» Defining tags and strings in resource files

You put the literal strings and their associated tags in a resource file. GO recom-
mends that you put U.S. English strings in USA.RC, and Japanese strings in JPN.RC.

191

2 / INTERNATIONALIZATION

192 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

The data structure that contains a tag and its corresponding string is an array of
structures of type RC_TAGGED_STRING.

/**‘k*************************
Toolkit Strings
***/

/*
* Strings used by toolkit elements in CNTRAPP. 1In this case, there are
* only the Representation menu and its menu items.

*/

static RC_TAGGED_STRING tkStrings[] = {
// Representation menu
tagCntrMenu, U_L("Representation"),
// Decimal menu item
tagCntrDec, U_L("Dec"),
// Octal menu item
tagCntrOct, U _L("Oct"),
// Hexagonal menu item
tagCntrHex, U_L("Hex"),
Nil (TAG)

}i
Notice that the literal strings are surrounded by the U_L() macro which indicates
the string contains 8-bit character data in PenPoint 1.0 and 16-bit character data in
PenPoint 2.0 Japanese.

An RC_INPUT structure immediately follows the RC_TAGGED_STRING array.

static RC_INPUT tk = {
resCntrrTkK,
tkStrings,
0,
resTaggedStringArrayResAgent
i
The macro resCntrTK, defined in CNTRAPPH, is a 32-bit number that identifies
the resource, in this case the group of strings defined in tkStrings

#define resCntrTK MakeListResId(clsCntrApp, resGrpTK, 0)

The RC_INPUT structure also indicates how the Counter Application should inter-
pret the tkStrings array. In this case, the tagged string array resource agent inter-
prets the array. Every group has both of these structures: the RC_TAGGED_STRING
structure and the RC_INPUT structure.

Finally, after all the groups have been similarly defined, one more structure of type
P_RC_INPUT is required to identify all the groups.
P_RC_INPUT resInput[] = {

&app, // the Application Framework strings
&tk, // the TK strings for CNTRAPP

smisc, // the Misc strings for CNTRAPP
pNull // End of list.

i
Note that Counter Application uses only three out of the four standard groups.
This is fine. Groups may be left empty except for toolkit strings belonging to the \
Application Framework. The Application Framework uses those strings to display |
information about your application to the user. \

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 193
Resource files

Look at the sample code provided with the SDK for more examples of resource files.
The Goodies disk also contains three files in \SDK\UTIL\TEMPLATE. The files,
TEMPLATE.C, TEMPLATE.H, and TEMPLATE.RC, are examples of resource files and
source code that uses resources.

» Tags in source code

After defining tags in your resource file, you use them in one of three ways.

¢ Use tags directly if a function or message expects a tag as a parameter. Stan-
dard toolkit elements that inherit from clsTkTable often expect tags. This
code sets up a standard toolkit menu, again in Counter Application.

static const TK_TABLE ENTRY CntrAppMenuBar[] = {

{tagCntrMenu, 0, 0, 0, tkMenuPullDown | tkLabelStringId, clsMenuButton},
{tagCntrDec, msgCntrAppChangeFormat, dec, 0, tkLabelStringId},
{tagCntrOct, msgCntrAppChangeFormat, oct, 0, tkLabelStringId},
{tagCntrHex, msgCntrAppChangeFormat, hex, 0, tkLabelStringId},
{pNull},

{pNull}

2 / INTERNATIONALIZATION

}i

When you use tags instead of literal strings in a TK_TABLE_ENTRY, you must
set (or add, using the bitwise OR operator) the tkLabelStringld flag. This flag
directs the code to read the required string out of a resource file.

¢ Use tags instead of literal strings. Many user interface objects that inherit Although thie was not

from clsLabel allow you to use tags in the place of literal strings. Let the object described in detail in the 1.0
.) ¢ . documentation, you can use
know that you are supplying a tag rather than a string by setting the infoType ta4s instead of strings in both
field of the LABEL_STYLE structure to IsInfoStringlId. This constant is defined Fenfoint 1.0 and Fenfoint 2.0

in LABEL.H. Japanese.
¢ Use resource utility functions to read the required string out of your resource
file. A variety of resource utility functions are defined in RESUTIL.H.

size = sizeof (resStr) / sizeof (CHAR);

ResUtilGetListString (resStr, size, resGrpMisc, tagCntrMessage);

The ResUtilGetListString() function expects a RES_ID to identify the group
in which the string is defined; in the example shown here, resGrpMisc is the
group defined in CNTRAPPH. The function also expects a IX_RES_ID.

See “Using tags in source code” on page 222 for more detailed instructions and
code samples.

% Predefined tags
The Application Manager has predefined tags that you use to identify your com-

pany, application name, and copyright information.

In PenPoint 1.0, you did this by filling in fields of the APP_MGR_NEW structure. In
PenPoint 2.0 Japanese, you must put these strings in a resource file and associate
them with the predefined tags defined in APPTAG.H.

194 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

The strings defined in this resource file are used in two ways:

¢ The Application Framework reads these strings from your resource file when it
needs to display information about your application to the user.

¢ Standard makefiles (such as those provided with the sample applications) use
the application name and type to stamp your project directory.

This example is from the Counter Application.

static RC_TAGGED_STRING appStrings[] = {

// Default document name
tagAppMgrAppDefaultDocName,
U _L("Counter Application"),

// The company that produced the program.
tagAppMgrAppCompany,
U_L("GO Corporation"}),

// The copyright string.
tagAppMgrAppCopyright,
U_L("\x00A9 Copyright 1992 by GO Corporation, All Rights Reserved."),

Nil (TAG) // end of list marker
}i
See “Makefiles” in Chapter 29 of Part 4: PenPoint Development Tools Supplement for
more information on how the standard makefile rules use these tags. As usual, a
RC_INPUT structure follows the RC_TAGGED_STRING structure.
static RC_INPUT app = {

tagAppMgrAppStrings, // standard resource ID for APP strings
appStrings, // pointer to string array
0, // data length; ignored for string arrays

resTaggedStringArrayResAgent // How to interpret the data pointer
}i

% Working with resource files

The PenPoint operating system provides three DOS utilities to work with compiled
resource files (for example, USA.RES). With these utilities, you can append
(RESAPPND), view (RESDUMP), and delete (RESDEL) resources from a resource file.

For example, here is output of the utility RESDUMP on the Counter Application’s
resource file USA.RES. The DOS utilities work only on compiled resource files, so the
following example shows the entire application being compiled and created in an
application directory under \2_0\PENPOINT\APP.

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 195
Resource files

C:\>2_0\PENPOINT\SDK\SAMPLES\CNTRAPP> wmake

C:\2_0\PENPOINT\SDK\SAMPLES\CNTRAPP> cd \2_0\penpoint\app\cntrapp
C:\2_0\PENPOINT\APP\CNTRAPP> resdump usa.res
DOS/4GW Protected Mode Run-time Version 1.6
Copyright (c) Rational Systems, Inc. 1990-1992
File Header:
file key=0100023A
file format=3
creator class=[0x0100023A WKN: Scope=Global Admin=285 Ver=1]
file minimum system version=0
file end=383
reserved=00 00 00 00 00 00 00 00 00 00 0O 00 00 00
Resource 0 is a well-known data resource
resId = [0x4640008A WKN List: Scope=Global Admin=69 Group=Misc List=0]
Wkn data agent = 8(String Array), data length=162
Min sys version = 0
0: 05 00 00 01 00 00 00 00-16 00 00 00 27 00 00 00 *............ oL
16: 62 00 00 00 78 00 00 00-86 00 00 00 00 14 43 6F *b...X......... Co*
32: 75 6E 74 65 72 20 41 70-70 6C 69 63 61 74 69 6F *unter Applicatio*
48: 6E 00 00 OF 47 4F 20 43-6F 72 70 6F 72 61 74 69 *n...GO Corporati*
64: 6F 6E 00 00 39 A9 20 43-6F 70 79 72 69 67 68 74 *on..9. Copyright*
80: 20 31 39 39 32 20 62 79-20 47 4F 20 43 6F 72 70 * 1992 by GO Corp*
96: 6F 72 61 74 69 6F 6E 2C-20 41 6C 6C 20 52 69 67 *oration, All Rig*
112: 68 74 73 20 52 65 73 65-72 76 65 64 2E 00 00 14 *hts Reserved....*
128: 43 6F 75 6E 74 65 72 20-41 70 70 6C 69 63 61 74 *Counter Applicat*
144: 69 6F 6E 00 00 OC 41 70-70 6C 69 63 61 74 69 6F *ion...Applicatio*
160: 6E 00 *n. ¥
Resource 1 is a well-known data resource
resld = [0x40400456 WKN List: Scope=Global Admin=555 Group=ToolKit List=0]
Wkn data agent = 8(String Array), data length=59
Min sys version = 0
0: 04 00 00 01 00 00 00 00-11 00 00 00 17 00 00 00 *................ *
16: 1D 00 00 00 23 00 00 00-00 OF 52 65 70 72 65 73 *....%..... Repres*
32: 65 6E 74 61 74 69 6F 6E-00 00 04 44 65 63 00 00 *entation...Dec..*
48: 04 4F 63 74 00 00 04 48-65 78 00 *.Oct...Hex.*
Resource 2 is a well-known data resource
resld = [0x46400456 WKN List: Scope=Global Admin=555 Group=Misc List=0]
Wkn data agent = 8(String Array), data length=103
Min sys version = 0

0: 06 00 00 01 00 00 00 00-03 00 00 00 06 00 00 00 *................ *
16: 09 00 00 00 OC 00 00 00-28 00 00 00 47 00 00 00 *........ (...G...*
32: 00 01 00 00 01 00 00 01-00 00 01 00 00 1A 54 68 *.............. Th*

48: 65 20 63 6F 75 6E 74 65-72 20 76 61 6C 75 65 20 *e counter value *
64: 69 73 3A 20 5E 31 73 00-00 1D 52 65 70 72 65 73 *is: “ls...Repres*
80: 65 6E 74 61 74 69 6F 6E-20 74 79 70 65 20 75 6E *entation type un*
96: 6B 6E 6F 77 6E 2E 00 *known. .*

Each group defined in CNTRAPPH is a separate resource with its own RES_ID.

Notice that the Application Manager group has a different administered number

(Admin=69) than the Counter Application’s groups (Admin=555). Look in

CNTRAPPH to see that 555 is the well-known UID identifying clsCntrApp.

#define clsCntrAppMakeWKN (555, 1, wknGlobal)

See Part 4: PenPoint Development Tools Supplement for more information on these
DOS utilities.

2 / INTERNATIONALIZATION

196 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

W Locale-independent code

Your application’s behavior will likely vary between locales. Formatting, for
example, is a behavior that varies between locales. Table 15-2 shows some examples
of different formatting conventions.

Formatting differences between countries TABLE 15-2
Attribuie American English example Different country example
Number formatting 1,234,567.89 Germany: 1.234.567,89
Time formafﬁng 1 1:45 p.m. Ita].y: h 23,45
Date formatiing 3/31/92 Sweden: 92-03-31
Currency formatling $1995.95 Norway: Kr. 1,995
Address formatting John Smith Denmark:
Vice-President, Sales Administrerende direktor
Acme Widgets Corporation Acme Corp.
123 Industrial Boulevard Sandtoften 39
Providence, RI 02913 DK-2820 Gentofte
U.S.A. Danmark
Phone numbers (416) 325-2061 France: (16) 2.25.20.61
Paper sizes LCttel', 8.5" x11" England: A4, 210 cm x 297 cm
Sort order begins aAbBcCdDeE Portugal: aA2A4A4AZA

The following categories of behavior vary from locale to locale. If your application
supports any of these behaviors, make sure local versions of your application imple-
ment the behavior appropriately. This list is not comprehensive.
¢ Formatting conventions
+ Number formatting.
+ Currency handling.
.+ Time and date formatting.

+ Numbered items (for example, “3 files”).

*

Phone number formats.
Fax dialing formats, cover sheets, and form letters.

Paper sizes.

L 4

Sorting and comparison rules.

¢ Word and sentence.

L 2

Linguistic packages.

+ Dictionaries.

+ Heuristics for text processing.

+ Local handwriting translation engines.
Rather than write different code for each country, take advantage of PenPoint’s col-
lection of international functions. These international functions behave appropri-

ately for a particular language or country. Using these functions frees you from
implementing the locally appropriate version of a function yourself.

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE
PenPoint’s international functions

In the ideal case, the international functions allow you to write and maintain a
single code base no matter how many local versions you create. This single code
base would be locale-independent code.

Sometimes, you cannot write a single block of code to implement all the local vari-
ants your application requires. You have two alternatives in this case:

+ You can create different DLLs from different source. You then load a different
DLL for each local version of your application. See Figure 14-2 for a diagram
of this situation.

¢ You can write a service to implement a specific function for a locale.*

W PenPoint’s international functions

The PenPoint operating system provides a host of types, data structures, and func-
tions that simplify your task of writing locale-independent code.

Consider a concrete example. Notice from Table 15-2 that Germans write

1.234.567,89 while the Americans prefer 1,234,567.89.

Rather than write your own formatting algorithm, you can simply call a function
called IntlFormatS32() in your code. The functions accepts, among other argu-
ments, a locale identifier (see “Locales” on page 199 for a discussion of locale iden-
tifiers), and returns the correctly formatted string.

Currently, PenPoint supports only U.S. English and Japanese versions of these inter-
national functions. Future releases of PenPoint will support more countries, lan-

guages, and functionality.

Table 15-3 describes the international functions PenPoint provides. The next sec-
tion describes the most important functions, most of which are in ISR.H. For details
on particular functions, see the on-line header files in \2_0\PENPOINT\SDK\INC.

197

PenPoint international functions TABLE 15-3

Header file jo include Contents

ISRH Types and functions such as word, sentence, and paragraph delimiting; line

(stands for “International Services break calculation; time, date, number, and currency formatting; sorting and

and Routines”) comparison; and Unicode manipulation. These functions deal primarily with
strings.

ISRSTYLE.H Styles that used to control how international functions behave. For example,

styles control how to format date and negative numbers, how to sort a list
(whether to consider spaces or not), and how to delimit words.

GOLOCALE.H Constants for country, language, and currency names, as well as names for
commonly used strings like days of the week, months of the year, time zones,
and units of measurement.

CHARTYPE.H Types, macros, and functions that work on individual characters. Sample

operations include checking for spaces and uppercase letters.

INTL.H Types and macros used by international functions.

2 / INTERNATIONALIZATION

198 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

PenPoint international functions TABLE 15-3 (confinued)
Header file to include Contents
GLPYH.H Macros for Unicode code points, such as GO gesture glyphs, commonly used

in PenPoint applications and services.

CMPSTEXT.H Functions that compose text from strings and variable values, allowing free
placement of the parameters throughout the text.

Remember to link the appropriate library with your source code if you use any of
these functions. All of the functions described below are defined in INTL.LIB with
the exception of ComposeText() functions, which are defined in SYSUTIL.LIB.

% International functions in ISR.H

Most of PenPoint’s international functions are defined in the header file ISR H.
Table 15-4 shows some of the most commonly used functions and their behavior.

Some functions from ISR.H TABLE 15-4
Function Default behavior

Int|DelimitWord() Delimits a word (or word-equivalent in languages with no words).
IntlDelimitSentence() Delimits a sentence.

IntIBreakLine() Calculates how to break a line of text that cannot fit on a single line.
IntlSecToTimeStruct() Converts time from seconds since 1970 to international time structure.
Intllntd TimeToOSDate Time() Converts from international time structure to system time structure.
IntlFormatS32() Formats a signed integer with the proper punctuation, as in 1,896.
IntlFormatNumber() Formats a floating point number with the proper punctuation.
IntlFormatDate() Formats a date, such as 26-Dec-1991.

IntlFormatTime() Formats a time, such as 12:45 A.M.

IntlParseS32() Parses a formatted signed integer, such as (1,592)

IntlParseNumber() Parses a formatted floating point number, such as 12,572.78
IntlParseDate() Parses a formatted date, such as 26-Dec-1991.

IntlParseTime() Parses a formatted time, such as 12:45 A.M.

IntlCompare() Compares Unicode value of characters.

IntlSort() Sorts strings.

IntlConvertUnits() Converts measures in different units, such as feet and meters.
IntlStrConvert() Converts strings between various formats, such as lower- and upper-case.
IntIMBToUnicode() Converts multibyte characters to Unicode characters.

Many of the functions come in pairs that reverse each other’s functionality:

¢ The formatting functions such as IntlFormatDate() have parsing equivalents
such as IntlParseDate().

¢ The conversion functions such as IntIMBToUnicode() have functions that
reverse the conversion such as IntlUnicodeToMB(),

Many of the functions also have counted and uncounted version. Counted
versions have the letter N in their names. For example, the counted version of

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 199
PenPoint’s international functions

IntlDelimitWord() is IntINDelimitWord(). The uncounted functions work on
null-terminated strings. The counted versions work on strings with known length.

Most of the functions require a 32-bit argument that identifies a locale. Locales are
explained in the next section.

Locales

This handbook uses the term locale rather than country or language because coun-
tries vary a great deal within their borders. Canada, Switzerland, and Singapore, for
example, are countries that use more than one language. Even within a language,
there are distinct variations called dialects. All of these differences influence the
localization process.

9 / INTERNATIOR AL L7 ATION

The PenPoint international functions take these factors into account by intro-
ducing a type called LOCALE_ID. This 32-bit number contains three byte-long
“fields” that correspond to the language, dialect, and country of a particular locale.
Thus, a variable of type LOCALE_ID unique identifies a locale as a 32-bit number.

LOCALE_ID uses only 3 bytes of data. The remaining bits are reserved for future
use. Fill those bits with Os if you do custom manipulation of these identifiers. Usu-
ally, just use predefined macros in GOLOCALE.H to manipulate variables of type
LOCALE_ID.

The following code uses a macro defined in INTL.H to create locale identifiers for
two familiar locales. The arguments are constants defined in GOLOCALE.H. The
three arguments correspond to the language, dialect, and country for each locale.

#define locUSA intlLIDMakeLocaleId(ilcEnglish, 0, iccUnitedStates)
#define locJpn intlLIDMakelLocaleId(ilcJapanese, 0, iccdJapan)

The types and macros for creating locale identifiers are defined in INTL.H. Lan-
guages, dialects, and countries are assigned an 8-bit code and a corresponding mne-
monic (like iccUnitedStates) in GOLOCALE.H.

Predefined locale identifiers

The PenPoint operating system identifies the current system locale by setting the a
LOCALE_ID called systemLocale. This initialization is done at boot time, so by the
time your application is running, systemLocale has been set.

- If your application must behave differently in different locales, your code can check
the value of systemLocale to control its behavior. The Clock sample application,
for example, checks the value of systemLocale to determine how it should format
the time. See “Checking the system locale” on page 227 for a code sample.

Most commonly, though, your application needs to behave appropriately for only a
single locale. To accomplish this single-locale behavior, use a series of macros whose
names begin with Loc...(). For example, use the macro called LocDelimitWord()
to provide word selection functionality appropriate to PenPoint’s current locale.
Here is the definition of LocDelimitWord in ISR.H:
#define LocDelimitWord(tx,s, st) IntlDelimitWord(tx, s, intlDefaultLocale, st)

200

PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

Notice that the macros simply call the related international function with the pre-
defined locale identifier intlDefaultLocale as an argument.

The international functions provide behavior to support Japanese and U.S. English.
As shown above, two locale identifiers, locUSA and locJpn, are defined in
GOLOCALE.H. You can send these identifiers as arguments to the international
functions.

Styles
Often, even a LOCALE_ID is not enough to specify how a function should behave.

There are, for example, at least four different ways to display a date in each Western
language.
PenPoint introduces a 32-bit number called a style to control how functions should
behave within locales. For example, the various styles associated with displaying a
date are defined in ISRSTYLEH as:

// Flags used with all Date format styles

#define intlFmtDateSpaceFill flaglé // Space fill numeric fields
#define intlFmtDateZeroFill flagl?7 // Zero fill numeric fields
// International Date format styles

#define intlFmtDateStyleNumeric 0x0001 // e.g. 1/14/92

#define intlFmtDateStyleAbbrv 0x0002 // e.g. 14-JAN-92

#define intlFmtDateStyleShort 0x0003 // e.g. Jan. 14, 1992

#define intlFmtDateStyleFull 0x0004 // e.g. January 14, 1992

You use these styles when calling the function IntINFormatDate(). Note that the
function expects, among other things, a locale and a style, as parameters:

S32 EXPORTED IntlFormatDate (
P_INTL_TIME pTimeVal, // Time to format

P_CHAR pString, // Out: converted string

U32 length, // Length of buffer

IX RES_ID format, // Optional explicit format

LOCALE_ID locale, // Locale to use, intlDefaultlocale for default
U32 style // Conversion style to use, or styleDefault

)i
Styles are divided into two halves. The two halves represent major variations (flags)
and more subtle variations (styles).

¢ A flag is a major variation that affects all the functions in a given category.
You can specify only one flag at a time.

¢ A format style is a more subtle variation. You can sometimes use multiple
variants simultaneously using the bitwise OR operator. If you specify an
unsupported collection of styles, an international function returns the status
stsRequestNotSupported.

The flag intlIFmtDateSpaceFill is a good example of a major style. It directs the
date formatting function to use spaces as a placeholder in dates, as in 12/ 3/92.
Because you can only specify one flag at a time, you cannot specify intlFmt-
DateSpaceFill and intlFmtDateZeroFill at the same time.

Unlike flags, you can specify a collection of format styles. For example, you can
specify intlFmtTimeStyleStandard and intlFmtTimeForce24Hour simultaneously

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 201
PenPoint’s international functions

to format a time that looks like 13:57. Use the bitwise OR operator to specify mul-
tiple styles simultaneously. For example, define myStyle as follows to specify the
two styles above:

U32 myStyle = intlFmtTimeStyleStandard | intlFmtTimeForce24Hour;

Use the predefined style intlStyleDefault as a parameter to an international
function when you want to use what GO expects to be the most common variation
for a given locale. Comments in ISRSTYLE.H identify the default style for a partic-
ular locale.

Query capability

Many of the PenPoint international functions require a buffer as an argument. A
function that requires a buffer often offers clients a query capability in which the
client requests the function to recommend a size for the buffer to pass in. For
example, if you pass pNull as two of the arguments to the IntlDelimitWord() func-
tion, the function returns the recommended size of buffer to pass in.

U32 size;
U32 style = intlStyleDefault;

size = LocDelimitSentence (pNull, pNull, style);

Use the size returned by the function to determine how much of your buffer to
send when you call the function again. See the procedure on delimiting words
inPart 3: PenPoint Japanese Localization Handbook for a more detailed code sample.

International function structures

The international functions use three new structures as shown in Table 15-5. All of
the structures are defined in ISR.H.

International function structures TABLE 15-5
Structure name Descripfion
INTL_CNTD_STR Contains a string and its count. Used by IntINSort() to sort a collection of

counted strings.

INTL_TIME A time structure that is a superset of the standard tm structure. It contains
two additional members to represent an era (for example, A.D., heisei) and

time zone. The year member represents the year of an era rather than years
since 1900. Valid eras are defined in GOLOCALE.H.

INTL_BREAK_LINE Contains information on how to break a line, including the position of the
break, the characters to delete from the end and start of the line, and the char-
acter to insert at the and start of the line.

The new time structure INTL_TIME introduces a new era member to accommodate
international calendars. Many calendar systems use era information more heavily
than the Western Gregorian calendar. For example, the Japanese imperial calendar
specifies dates relative to the reign of the current emperor. The year 1992 is repre-
sented as heisei 4, the fourth year of the current emperor’s reign.

There are international functions to convert between this international time struc-
ture and the system time structure OS_DATE_TIME.

A/ ERITEDNEATIORNI AL PY ATIAN

202 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

The line break structure INTL_BREAK_LINE is used by the IntlBreakLine() (and its
counted equivalent) to contain information about how a line should break. Dif-
ferent languages uses different rules about how lines should break.

For example, English permits words to break roughly at each syllable. A hyphen
is used to indicate that a word continues to the next line. So running becomes
run-ning.

In Japanese, on the other hand, characters simply follow each other sequentially
across lines. The only restriction is that certain characters, such as an open paren-
thesis, cannot end or begin a line.

As another example, when the German word backen breaks across lines, it becomes
bak-ken. Notice that the trailing ¢ becomes a trailing £ The IntlBreakLine() func-
tion uses the INTL_BREAK_LINE structure to retutn the necessary line break infor-
mation. The structure is defined in ISR.H as follows:

typedef struct INTL_BREAK LINE {
U32 breakat; // position of line break

This example is given to clarify
the structure. The PenFoint 2.0
Japanese version of
Int|BreakLine() supports only
U.S. English and Japanese.

U32 deleteThis; // chars to delete from end of this line

CHAR insertThis[intlBreakLineMaxInsert];

// chars to insert at end of this line
U32 deleteNext; // chars to delete from start of next line

CHAR insertNext[intlBreakLineMaxInsert];

// chars to insert at start of next line

} INTL BREAK LINE, *P_INTL BREAK LINE;

% Unicode glyphs
The file GLYPH.H defines mnemonics for the Unicode values of various standard
glyphs. Included are PenPoint user interface glyphs, GO gesture glyphs, Unicode

control characters, and the Unicode values of PenPoint’s standard gestures.
g

For example, you might use the mnemonics to assign the value of a character.
CHAR myGlyph = glyphCheckMark;

After you make this assignment, use the standard drawing context messages to draw
the gesture glyph on the screen. See Part 3 of the Architectural Reference for more
information on drawing PenPoint graphics.

Table 15-6 lists the Unicode values of GO’s gesture glyphs. The abbreviation “na”
means the gesture glyph was undefined in PenPoint 1.0.

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 203

PenPoint’s international functions

GO’s gesture symbols TABLE 15-6

Gesture tag Unicode gggg 0'31] #define Symbol >
1.0 2

xgs1Tap F600 46 glyph1Tap 4 g

xgs2Tap F601 128 glyph2Tap Y §

xgs3Tap F602 129 glyph3Tap A4 %

xgsd Tap F603 130 glyph4Tap y é

xgsPressHold F604 138 glyphPressHold i z

xgsTapHold F605 137 glyphTapHold 4 ;

xgs2TapHold F606 244 glyph2TapHold

xgs3TapHold F607 245 glyph3TapHold

xgs4 TapHold F608 246 glyph4TapHold

xgsFlickUp F609 174 glyphFlickUp J

xgsFlickDown FG60A 175 glyphFlickDown |

xgsFlickLeft F60B 176 glyphFlickLeft —

xgsFlickRight F60C 177 glyphFlickRight —

xgsDblFlickUp F60D 178 glyphDblFlickUp i

xgsDblFlickDown FGOE 179 glyphDblFlickDown N

xgsDblFlickLeft F60F 180 glyphDblFlickLeft =

xgsDblFlickRight F610 181 glyphDblFlickRight =

xgs TrplFlickUp F611 na glyphTrplFlickUp I

xgs TrplFlickDown F612 na glyphTrplFlickDown]

xgs TrplFlickLeft F613 na glyphTrplFlickLeft =

xgs TrplFlickRight F614 189 glyphTrplFlickRight =

xgsQuadFlickUp F615 na glyphQuadFlickUp Il

xgsQuadFlickDown F616 na glyphQuadFlickDown m

xgsQuadFlickLeft F617 na glyphQuadFlickLeft =

xgsQuadFlickRight F618 193 glyphQuadFlickRight =

xgsVertCounterFlick F619 200 glyphVertCounterFlick I

xgsHorzCounterFlick F61A 201 glyphHorzCounterFlick =

xgsPlus '+' F61B 43 glyphPlus +

xgsLeftParens F61C 40 glyphOpenBracket [

xgsRightParens E61D 41 glyphCloseBracket]

xgsCross / xgsXGesture FG1E 88 glyphCross X

xgsPigtail Vert F61F 141 glyphPigtail 7

xgsScratchOut F620 140 glyphScratchOut =

xgsCircle xgsOGesture F621 79 glyphCircle o

xgsCircleTap F622 142 glyphCircleTap ®

xgsCircleLine F623 146 glyphCircleLine e

xgsCircleFlickUp F624 202 glyphCircleFlickUp &

xgsCircleFlickDown F625 203 glyphCircleFlickDown P

xgsDblCircle F626 204 glyphDblICircle -5

xgsCircleCrossOut F627 207 glyphCircleCross %

204

PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

% Composed strings

GO’s gesture symbols TABLE 15-6 (continued)
Gesiure tag Unicode gggg o“::! . #define Symbof
xgsUpCaret F628 143 glyphCaret A
xgsUpCaretDot F629 95 glyphCaretTap A
xgsDblUpCaret F62A 161 glyphDblCaret A
xgsCheck / xgsVGesture F62B 86 glyphCheck Vv
xgsCheckTap F62C 136 glyphCheckTap V4
xgsUpArrow F62D 153 glyphUpArrow 1
xgsDownArrow FG2E 155 glyphDownArrow \2
xgsLeftArrow F62F na glyphLeftArrow <«
xgsRightArrow F630 na glyphRightArrow -
xgsUp2Arrow F631 na glyphUp2Arrow T
xgsDown2Arrow F632 na glyphDown2Arrow \’
xgsLeft2Arrow F633 na glyphLeft2Arrow &«
xgsRight2Arrow F634 na glyphRight2Arrow =
xgsUpLeft F635 240 glyphUpLeft A
xgsUpRight F636 173 glyphUpRight r
xgsDownlLeft F637 169 glyphDownlLeft)
xgsDownRight / F638 76 glyphDownRight L
xgsLGesture

xgsLeftUp F639 209 glyphLeftUp —
xgsLeftDown F63A 210 glyphLeftDown —
xgsRightUp F63B 165 glyphRightUp -
xgsRightDown F63C 167 glyphRightDown =
xgsDownLeftFlick F63E 170 glyphDownLeftFlick B
xgsDownRightFlick F640 168 glyphDownRightFlick L
xgsRightUpFlick F643 166 glyphRightUpFlick —
xgsNull FGFF 255 glyphUnrecognized

This table shows only some of the naﬁes defined in GLYPH.H. See the on-line
header file for a complete listing.

Because strings created dynamically differ between locales, you need to be careful
composing them. Many of the messages you display to the user are composed
dynamically. For example, the file system dynamically composes the message
“Delete MYFILE.DOC?” when the user makes the cross-out gesture over the file

MYFILE.DOC.

The rules for composing strings differ between locales. Punctuation, word order,
and capitalization rules, for example, vary between locales.

Because the familiar C library functions such as sprintf() and printf() fix the order
of their parameters, they are not appropriate for composing strings where word

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 205
Managing your project

order varies. PenPoint’s compose text functions, defined in CMPSTEXT.H, allow you
to place parameters where necessary.
The strategy is as follows:

1 Write the message interspersed with placeholders for each of the variables
displayed in the message.

2 Place the entire message in a different resource file for each localized version
of your application.

2 / INTERNATIONALIZATION

3 Read the message out of the resource file when you need to display it.

For example, here is part of the resource file TEMPLATE.RC from the Goodies disk.
It shows the English version of a confirmation message. Versions of this message in
other languages may put the variables in different places.

// Define the warning/informational message resource for EXAMPLE.
static RC_TAGGED_STRING stdMsgWarningStrings[] = {

// Confirmation message used with the undo operation. It allows
// the user to undo the last operation or all operations.
// Buttons: [Undo “1s] The last operation is undone

// [Undo all] Undo all operations since last checkpoint

// [Cancell] Cancels the operation, nothing undone

// Parameters: “ls The type of the last operation (such as DRAW)
!/ A2s Name of the picture being worked on
stsExmplConfirmUndo,

U_L("[Undo ~1s] [Undo all] [Cancel] Undo the last operation (”ls) on *2s?"),
Nil(TAG)
Vi
There many ComposeText functions that accept literal strings, pointers to format
strings, and resource identifiers (RES_ID) as parameters. See the header file
\2_0\PENPOINT\SDK\INC\CMPSTEXTH for details. Remember to ink SYSUTIL.LIB
with your source code if you use these functions.

¥ Managing your project
Your project consists of a collection of files that comprise your application. It
includes header files, source code, resource files, makefiles, and supporting files like
Stationery and help documents. The following sections discuss strategies and tools
you use to create localized versions of your application.

See Chapter 29 of Part 4: PenPoint Development Tools Supplement for more infor-

mation on this topic.

% Project organization

GO suggests that you keep all your project files in a single directory, including all
the different resource files for your various localizations. Notice in the sample code,
for example, that every application contains a USA.RC and a JPN.RC file. Each file
corresponds to a particular localization.

When you build your application, compile the appropriate resource files and copy
the compiled file into your application directory along with the executable image.

206 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

The makefiles provided with the sample applications show you how to set up a
makefile to coordinate the process of producing different localizations of your
application. ‘

% Makefiles

The makefiles provided with the sample applications contain a few lines that help
create localized versions of your application. The information in this section applies
only if you are using the WATCOM WMAKE application to make your application.

First, you can add a LOCALE flag to the command line to make a particular local-
ized version of your application. For example, type one of the following to create
the Japanese or American version of your application:

wmake LOCALE=jpn

wmake LOCALE=usa
Inside the makefile, you can use three resource variables to identify which resource
files to include with the executable image:

Makefile variables TABLE 15-7
Variable Usage

RES_FILES For resource files that are the same for all locales
USA_RES_FILES For resource files unique to the U.S. localization
JPN_RES_FILES For resource files unique to the Japanese localization

See “Updating your makefile” on page 224 for details on how to use these
makefiles.

P Scanning your source code

INTLSCAN.EXE is a DOS utility located on the Goodies disk. It scans source code
files and flags lines that may not be appropriate for international applications. The
flagged lines fall into one of three categories.

@ Code that deals with ASCII. These lines of code usually need to change as
follows:

+ Code that performs ASCII (8-bit) manipulation must be changed to
code that performs Unicode (16-bit) manipulation.
+ Literal ASCII strings must become literal Unicode strings.

o Strings, including all the strings users see, should be moved into
resource files to facilitate translation.

¢ Functions that are locale-dependent. Using these locale-dependent functions
will make it difficult for you to localize your application. Consider replacing
your locale-dependent function with a locale-independent equivalent.

¢ PenPoint 1.0 code that will no longer work under the latest PenPoint version
because of API changes. Calls to the old APIs must be changed to reflect the
new APIs.

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE
Missing functions

INTLSCAN searches for particular declarations and function calls in your code.
Because it cannot tell what you are doing with a particular variable or function,

it may flag a line that does not need to be changed. If you are certain the code
INTLSCAN flagged will work in all the locales you plan to market your application,
leave it alone.

Conversely, do not assume that because INTLSCAN did not flag any lines in your
code that your application is ready for localization. There are many international-
ization issues that INTLSCAN cannot possibly detect. For example, INTLSCAN
cannot tell you whether a particular piece of your application’s functionality is
appropriate to a particular locale.

Working with local users and getting familiar with popular local applications may
help you understand the needs of a locale.

See “Using the DOS utility INTLSCAN” on page 210 for step-by-step directions
on using INTLSCAN.

% Other DOS utilities

A new DOS utility called UCONVERT on the Goodies disk converts between
various character sets and Unicode. Chapter 24 of Part 3: PenPoint Japanese
Localization Handbook contains instructions on using Unicode to convert between
Shift-JIS, ASCII, and Unicode files.

Other utilities included with the PenPoint SDK 2.0 Japanese help you create local-
ized versions of your application. See Chapter 31 of Part 4: PenPoint Development
Tools Supplement for details on these utilities.

V Missing functions

If your want to maintain a single code base for multiple local versions of your appli-
cation, you need the international package unless you plan to implement a function
not already in PenPoint.

If you do implement a new function, and you think the function you implement
would be useful to many developers, contact GO Technical Services with your
suggestion.

207

2 / INTERNATIONALIZATION

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 2 / INTERNATIONALIZATION HANDBOOK

Chapter 16 / Procedures

This chapter provides step-by-step details on how to write internationalized code.
To help you use this chapter more efficiently, each procedure begins with a list of
references to prerequisite information and ends with a list of related information. If
you have read the previous chapters already, don’t worry about the prerequisite
information.

The prerequisite information discusses the concepts and motivations for doing a
particular procedure. If possible, an example is included with each task.

W Supporting Unicode

Read this section if you want to support Unicode in a new application. If you want If you followed the

to add Unicode support to an existing PenPoint 1.0 application, see “Using the suggestions in “Designing
for internationalization and

DOS utility INTLSCAN” on page 210. localization” in Chapter 5
of Fart 1: FenFoint Application
¥ Prerequisite information Writing Guide, your code

.) _ already handles 16-bit data.

Read the following for an overview of Unicode and the code required to support it: We still recommend that you
« . . work through this procedure

¢ Internatlonal Chal‘acter Sets on page 183. since it Provideg new d@ta”g

like which string manipulation
functions to call.

¢ “Multibyte and wide characters” on page 183.
¢ “Unicode architecture” on page 185.

¢ “Code supporting Unicode” on page 186.

% Procedure

T Declare character and strings (pointer to characters) as CHAR, which is a 16-
bit type in PenPoint 2.0 Japanese.

2 When you process text that a user sees, use the PenPoint international func-
tions such as IntlCharIsUpper() and IntlFormatS32(). These functions are
guaranteed to behave appropriately for the specified locale.

3 When no international functions are available, use the PenPoint macros U...()
functions Ustrcpy() and Uisupper() rather than the standard C library func-
tions to manipulate text. These functions work on 16-bit data in PenPoint 2.0
and on 8-bit data in PenPoint 1.0.

" 4 Use the WATCOM C compiler _u...() functions such as _ustrcpy() and _uisupper()
for 16-bit data only. These functions may not be locale-independent, so use the
PenPoint international functions whenever you are processing readable text.

210

PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

Wrap the U_L() macro around literal strings, including format strings in the
PenPoint U...() functions. See “Creating Unicode strings” on page 215 for
details.

Do not depend on CHAR being 1 byte long because CHAR is 2 bytes long in
PenPoint 2.0 Japanese.

Run INTLSCAN to help ensure your code supports Unicode. See “Using the
DOS utility INTLSCAN” on page 210 for details.

% Examples

See the following sections for code samples:

&

@

€

34

“Unicode: 8-bit type—consider CHAR or P_CHAR?” on page 212.
“Unicode: 8-bit function—consider 16-bit replacement” on page 212.
“Unicode: check mem size for sizeof(CHAR) != 17 on page 213.
“CHARS: fixed 8-bit type—are you sure?” on page 215.

% Related procedures

L4

£ 4

“Using the DOS utility INTLSCAN” on page 210.
“Interpreting INTLSCAN messages” on page 211.

W Using the DOS utility INTLSCAN

This procedure helps you use the DOS utility INTLSCAN.EXE. The utility identifies
lines of code that may not be internationalized.

%> Prerequisite information
Read the following to understand why you should use INTLSCAN.

L 2

4

A4

L 2

“Overview of international software” on page 177.
“Writing international software” on page 178.
“International character sets” on page 183.
“Resource files” on page 189.
“Locale-independent code” on page 196.
“Managing your project” on page 205.

“Scanning your source code” on page 206.

% Procedure

1

Copy INTLSCAN.EXE to your \2_0\PENPOINT\SDK\UTIL\DOS directory from
the \SDK\UTIL\DOS directory on the Goodies disk.

If necessary, use the CONTEXT.BAT batch file to update your PATH variable to
include \2_0\PENPOINT\SDK\UTIL\DOS in your DOS path. See Installing and
Running PenPoint SDK 2.0 for more information on the batch file.

context 2 0

CHAPTER 16 / PROCEDURES 211

Interpreting INTLSCAN messages

3 Run INTLSCAN on your source (.C) files by typing:
intlscan *.C

4 List the error files generated by INTLSCAN:
dir *.ERR

5 Open any .ERR file with a non-zero size. The file contains a list of line
numbers and corresponding INTLSCAN messages.

6 Make any necessary changes to your source code. The next procedure

“Interpreting INTLSCAN messages” on page 211 shows you how to make ~next error” command that

the changes INTLSCAN recommends.
7 Repeat steps 4 through 6 for all of your project’s header (H) files.
8 Repeat steps 4 through 6 for all of your project’s resource (.RC) files.

% Related information

¢ “Interpreting INTLSCAN messages” on page 211.
+ “Moving strings to resource files” on page 216.

¢ “Updating your makefile” on page 224.

W Interpreting INTLSCAN messages

Tip You can choose what kind
of code INTLSCAN flags. Type
INTLSCAN /H to see which
switches are available.

Tip Many editors feature a

moves you to the next line
that needs attention.

9 7 INTERNATIONAI 17 ATION

If INTLSCAN detects a line of code that may need to be changed, it writes the line
number and one of the following messages to the file FILENAME.ERR. This section
helps you interpret the message and make the recommended changes to your code.

Here is a list of INTLSCAN’s messages. Each of these is discussed below.
Unicode: 8-bit type—consider CHAR or P_CHAR.
¢ Unicode: Check mem size for sizeof(CHAR) != 1.
¢ Unicode: 8-bit function—consider 16-bit replacerﬁent.

¢ CHARS: Fixed 8-bit type—Are you sure?

L 4

Resource: Literal string.

Resource: Literal character.

L4

¢ ISR: USA function—consider ISR equivalent.

ISR stands for International Services and Routines.

¥ Prerequisite information

Read the following to understand why INTLSCAN flags certain lines of code.
¢ “International character sets” on page 183.
“Code supporting Unicode” on page 186.
¢ “Locale-independent code” on page 196.
¢ “Resource files” on page 189.

212 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

% Procedure
1 Open the FILENAMEERR file generated by INTLSCAN.

2 Ifyour editor supports multiple windows, open your source file, FILENAME.C.

3 Ifappropriate, make the first recommended change. Remember, the changes
are only recommendations. Some of the flagged lines may not need to change.

4 Ifyour editor supports a “next error” function, use it to move to the next line
INTLSCAN flagged.

5 You may want to run INTLSCAN after finishing your changes to make sure you
responded to all of INTLSCAN’s recommendations.

% Examples

Each of the possible INTLSCAN messages is listed and described below along with
old and rewritten code examples. The first sentence of each section describes why
INTLSCAN flagged your code.

%» Unicode: 8-bit type—consider CHAR or P_CHAR
You see this message when your code contains a 8-bit variable with a type such as
U8, P_STRING, or char. If appropriate, redeclare these variables as 16-bit strings or
characters (using types such as CHAR or P_CHAR). Any text processing should be
done in 16 bits. Actual byte-sized data should remain 8-bits long.

Remember that CHAR is 16-bits long in PenPoint 2.0 and 8-bits long in PenPoint
1.0. If you want 16-bit data all the time, use CHARI16.

Here are some examples of old and rewritten code. Old code is on top and grayed

out.
typedef char AM PM STR[5]; Strings heed to be made of
typedef CHAR AM PM STR[5]; 16-bit characters.
P_STRING tmpDate;

Fointers to (strings) also need

P_CHAR tmpDate; to be 16 bits.

Note that declarations like:
U8 fontSize;

need not change because fontSize is real 8-bit data.

%» Unicode: 8-bit function—consider 16-bit replacement

You see this message when your code calls a function that works only with 8-bit
data. You may want to replace the function with its 16-bit equivalent. Table 16-1
outlines some of your options.

CHAPTER 16 / PROCEDURES 213
Interpreting INTLSCAN messages

8- and 16-bit functions TABLE 16-1
If you want. . . Use. .. 2
A specific 8-bit function A function from the standard C library such as isupper(). ¢
A function that will work on 8-bit data in PenPoint 1.0 and A PenPoint macro such as Uisupper(). N
16-bit data in PenPoint 2.0. g
A function that works on 16-bit data only. A WATCOM _u...() function such as _uisupper(). -g
A function that works on 16-bit data and whose behavior is A PenPoint international function such as IntlCharls- 2
appropriate to any locale PenPoint supports. Upper().. g
©

If you want to maintain a single code base that compiles under PenPoint 1.0 and
PenPoint 2.0, use the U...() functions rather than the _u...() functions. The U...()
functions are 8-bit in PenPoint 1.0 and 16-bit in PenPoint 2.0. For more details on
maintaining a single code base, see “Single code base” on page 233.

Here are some examples of old and new code:

char sl[l; Standard C functions like
Ule ix; strlen() work only on &-bit
e arguments. Use Ustrlen()
ix = strlen(s); instead because it expects
CHAR s[]; 16-bit argumente.

Ule ix;

ix = Ustrlen(s);

strcat (tmpStr, " "), Literal strings need to be
Ustrcat (tmpStr, U L(" ")); 16 bits.

Notice the last code example contains the U_L() macro. This macro, defined in
INTL.H, makes the literal string inside a 16-bit string in PenPoint 2.0. In PenPoint
1.0, it allows strings to remain 8-bits long.

Unicode: check mem size for sizeof(CHAR) != 1

You see this message when your code calls a function like OSHeapBlockAlloc()
that takes a size in bytes. When you call such functions, remember that 16-bit
strings require twice the memory of 8-bit strings. Hence, if you depend on CHAR
being 1 byte long, multiply your former memory request by the size of CHAR. For

example:
#$define MAX DT STR 60
P_CHAR pBuf;

OSHeapBlockAlloc (osProcessSharedHeapld,
(SIZEOF) (MAX DT STR), &pBuf);

#define MAX DT STR 60
P_CHAR pBuf;
OSHeapBlockAlloc (osProcessSharedHeapld,
(SIZEOF) (sizeof (CHAR) *MAX DT STR), &pBuf);

214 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

You need to do this multiplication for CHAR types only. You do not need to change
the following code because the SizeOf() macro correctly computes the size of the
structure CLOCK_APP_DATA, taking into account any 16-bit characters or strings it
might have.

OSHeapBlockAlloc (osProcessHeapId, SizeOf (CLOCK_APP DATA), &pInst);

The SizeOf() macro is defined in GO.H.

%7 Resource: literal string

You see this when your code contains a literal quoted string. Consider putting these
strings in a resource file, unless the string falls into one of these categories:

¢ Strings that are meaningful in all languages and in all countries. Universally
recognized names like “Disneyland” or “Coca-Cola” might be examples.

¢ Debugging strings that you display using Debugf().
¢ Hidden filenames that users will never see.

If you leave the literal string in your code because it falls into one of these three cat-
egories, consider wrapping the U_L() macro around the string. This makes it a 16-
bit string in PenPoint 2.0 Japanese.

Move all other strings to resource files. See “Moving strings to resource files” on
page 216 for the procedure.

Here are samples of old and new code that may help you change your code:

strepy ((*pData) ~>token.buf, "Error"); Use ResUtilGetListString()
// where token.buf in pData is defined as CHAR[maxDigits] to read the string from a
ResUtilGetListString((*pData)->token.buf, maxDigits, resGrpMisc, resource file into a pre-
tagCalcAppError) ; allocated buffer rather than
// Where tagCalcAppError is a tag with a corresponding string in a use a literal string.

// resGrpMisc string array

SYSDC_TEXT OUTPUT tx;
tx.pText = "Hello"; Use ResUtilAllocListString()

SYSDC_TEXT OUTPUT tx; W[TG” {’EOL;”;O ;01’ ha‘;‘e a P;@'
P_CHAR helloStr; aflocated PUTEr, and you 4o

not know how long the string
helloStr =

. . . ‘ , might be. This function
ResUtilAllocListString (osProcessHeapld, resGrpMisc, tagHelloStr); o ates abuffer on the
// where tagHelloStr is a tag with a corresponding string in a

X X heap, into which it loads
// resGrpMisc string array the requested string from a

// Free the string when you are finished resource file. Remember to free
OSHeapBlockFree (helloStr); the string after using it.

%» Resource: literal character

You see this message when your code contains a literal character. Consider moving
the literal character to a resource file, unless you are certain this character is valid in
every language and every country in the world (and on all hardware, too). If a char-
acter stays literal, consider wrapping the U_L() macro around characters so that
they are 16-bit.

CHAPTER 16 / PROCEDURES
Creating Unicode strings
For example, change this code:
#define BACK SLASH CHAR '\\'

to this:
#define BACK_SLASH CHAR U L('\\')

Typically, you may leave back slashes (in a filename, for example) as literals, but
most other characters probably need to go into a resource file.

% ISR: USA function—consider ISR equivalent

You see this message when your code uses a locale-dependent function. Unless you
are sure this function will work in all the locales you sell this application, replace the
function with a locale-independent function from PenPoint’s international package.

See “Writing locale-independent code” on page 225 for details. Table 16-3, which
lists locale-dependent functions and their locale-independent equivalents, may also
be helpful.

%r CHARS: fixed 8-bit type—are you sure?
You see this message when your code declares an 8-bit data type by declaring some-
thing to be of type CHARS or P_CHARS. Make sure you intend the variable to con-
tain only 8-bit data. If the variable stores the value of a Unicode character, use a 16-
bit type like CHAR.

For example,
CHAR8 internalString = “private”;

should be changed to
CHAR internalString

U_L("private”);

Remember to make sure the user does not see this string. If the user does see the
string, it should go in a resource file.

% Related information

¢ “Moving strings to resource files” on page 216.

¢ “Updating your makefile” on page 224.

W Creating Unicode strings

This procedure writes Unicode characters and strings in your code.

% Prerequisite information

¢ “International character sets” on page 183.

¢ “Code supporting Unicode” on page 186.

% Procedure

1 Declare all characters and pointer to characters as a 16-bit type. Use CHAR16
for data that is always 16 bits and CHAR for data that will be 8 bits long in
PenPoint 1.0 and 16 bits in later releases. '

2 / INTERNATIONALIZATION

216 PENPOINT APPI.ICATION WRITING GUIDE
Part 2 / Internationalization Handbook

nn

2 Wrap the U_L() macro around literal characters and strings. Use the L"" mod-
ifier only if you are certain your character data will always be 16 bits long.

3 To specify special Unicode characters, use a \x followed by its Unicode value, a
4-digit hexadecimal number.

% Examples

These code fragments show examples of the U_L() macro and L"" modifier.
Uprintf(U_L(“I am 8 bits long in PenPoint 1.0; 16 bits in PenPoint 2.0");
P_CHAR16 pTheString = L"I am always a 16-bit string.”;

static RC_TAGGED_ STRINGqHelpStrings[] = {
tagTextView, U_L("\xF61F \\tab Pigtail. Delete a character.\\par "),
Nil (TAG)

nn

}i

" Related procedures
¢ “Using the DOS utility INTLSCAN” on page 210.

¢ “Interpreting INTLSCAN messages” on page 211.

W' Moving strings to resource files If you read “Designing for
. .)) . . internationalization and
This procedure explains how to put strings in a resource file and use those strings in |ocalization” in Chapter 5 of

source code. Part 1: FenPoint Application
Writing Guide, your code may

ST . already have its strings in
" Prerequisite information resource files.

& Part 11: Resources in PenPoint Architectural Reference.
¢ “Resource files” on page 189.

¢ “Strings in resource files” on page 190.
¢ “Resource file structure” on page 191.

¢ “Tags in source code” on page 193.

% Procedure

1 Copy a resource file named USA.RC or JPN.RC from one of the sample app-
lications into your project directory. Alternatively, copy the file \SDK\UTIL\
TEMPLATE\TEMPLATE.RC from the Goodies disk. For example, type the
following:
copy \2_0\penpoint\sdk\sample\cntrapp\usa.rc c:\myapp

2 Name the resource file to remind you of which localization the file is for:
USA.RC and JPN.RC, for example.

Identify the file in which you plan to use a particular string, say PROJECT.C.

4 Define tags for each string in the corresponding header file, PROJECTH. If you
want to use an array of strings in a group such as the Toolkit group, you need
a RES_ID for each group.

CHAPTER 16 / PROCEDURES
Moving strings to resource files

5 Replace the template resource file’s strings and tags with your own strings

and tags.

6 Modify your implementation in PROJECT.C to use your new tags rather than
the literal string. See “Using tags in source code” on page 222 for details.

7 Update your makefile to identify which resources should be included
with your application. See “Updating your makefile” on page 224 for more
information.

% Example

The following code comes from the Counter Application in 2_0\PENPOINT\SDK\
SAMPLE\CNTRAPP. It shows the result of moving strings to resource files.

The following tags are defined in the header file CNTRAPPH. The macro Make-

ListResId() is

defined in RESFILE.H, and the macro MakeTag() is defined in GO.H.

Each group must be identified by a RES_ID created by the MakeListResID() macro,
and each string must be defined by a TAG created by the MakeTag() macro.
/* The RES_IDs for the resource lists used with the TAGs.

*/
#define
#define
/*

* TAGs

*/
#define
#define
#define
#define
/*

* TAGs

*/
#define
#define

resCntrTK MakeListResId (clsCntrApp, resGrpTK, 0)
resCntrMisc MakeListResId (clsCntrApp, resGrpMisc, 0)

used to identify toolkit strings.

tagCntrMenu MakeTag (clsCntrApp, 0)
tagCntrDec MakeTag (clsCntrApp, 1)
tagCntrOct MakeTag(clsCntrApp, 2)
tagCntrHex MakeTag (clsCntrApp, 3)

used to identify miscellaneous CNTRAPP strings.

tagCntrMessage MakeTag(clsCntrApp, 4)
tagCntrUnknown MakeTag(clsCntrApp, 5)

The next code fragment comes from the resource file USA.RC. The file uses three
groups of strings, Application Framework strings, toolkit strings, and miscellaneous
strings. Note that all the literal strings are enveloped in the U_L() macro, making
them 16-bit Unicode strings.

/*******

%k kok ok ok ok ok

KAK KKK I IR A AR KA ARk kAR AR KRR AR Ak k kA hkkkkkkhkkkkkhkkkkkkhkkkkkkkkhkhkkkkk

APP framework strings
***/

static RC_TAGGED_STRING appStrings([] = {

//
ta

//
ta

//
ta

//
ta

Default document name
gAppMgrAppDefaultDocName,
U_L("Counter Application"),
The company that produced the program.
gAppMgrAppCompany,
U_L("GO Corporation"),
The copyright string.
gAppMgrAppCopyright,
U_L("\x00A9 Copyright 1992 by GO Corporation, All Rights Reserved."),
User-visible filename. 32 characters or less.
gAppMgrAppFilename,
U_L(“Counter Application”),

217

2 / INTERNATIONALIZATION

218

PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

// User-visible file type. 32 characters or less.
tagAppMgrAppClassName,
U_L(“Application”),
Nil (TAG) // end of list marker
}i
static RC_INPUT app = {

tagAppMgrAppStrings, // standard resource ID for APP strings
appStrings, // pointer to string array
o0, // data length; ignored for string arrays

resTaggedStringArrayResAgent // How to interpret the data pointer
i

/**
Toolkit strings
***/

/*
* Strings used by toolkit elements in CNTRAPP. In this case, there are
* only the Representation menu and its menu items.

*/
static RC_TAGGED_STRING tkstrings[] = {
// Representation menu
tagCntrMenu, U_L("Representation”),
// Decimal menu item
tagCntrDec, U_L("Dec"),
// Octal menu item
tagCntrOct, U_L("Oct"),
// Hexagonal menu item
tagCntrHex, U_L("Hex"),
Nil (TAG)

bi
static RC_INPUT tk = {
resCntrTk,
tkStrings,
0,
resTaggedStringArrayResAgent
¥
/**

Miscellaneous strings
***/

static RC_TAGGED_STRING miscStrings[] = {
//
// Message used to display counter value. The '“ls' argument allows
// the code to fill in the appropriate value based on the user's menu
// choice.
//
tagCntrMessage, U_L("The counter value is: “ls"),

//
// Message indicating an unknown representation type.

//
tagCntrUnknown, U_L("Representation type unknown."),
Nil (TAG)
i
static RC_INPUT misc = {
resCntrMisc,
miscStrings,
0,
resTaggedStringArrayResAgent
}i

CHAPTER 16 / PROCEDURES 219
Using predefined AppMgr tags

After each of the groups is defined with a RC_TAGGED_STRING and RC_INPUT
structure, a P_RC_INPUT structure identifies all the groups. Each of the groups is a

separate resource in the resource file. Z
/** E
. N

List of resources 3
***/ rd
(¢}

P_RC_INPUT reslInput [] = { 5
&app, // the Application Framework strings Z

&tk, // the TK strings for CNTRAPP %
gmisc, // the Misc strings for CNTRAPP =
pNull // End of list. o

}i
Finally, Counter Application’s source code needs to use these tags. Here is the code
that creates the application’s menu bar:

static const TK_TABLE ENTRY CntrAppMenuBar[] = {
{tagCntrMenu, 0, 0, 0, tkMenuPullDown | tkLabelStringld, clsMenuButton},
{tagCntrDec, msgCntrAppChangeFormat, dec, 0, tkLabelStringId},
{tagCntrOct, msgCntrAppChangeFormat, oct, 0, tkLabelStringId},
{tagCntrHex, msgCntrAppChangeFormat, hex, 0, tkLabelStringId},
{pNull},
{pNull}
i
"% Related information

¢ “Using the DOS utility INTLSCAN” on page 210.
¢ “Updating your makefile” on page 224.

W Using predefined AppMgr tags

The Application Manager has predefined tags that you should use to identify your
company, application name, and copyright information. In PenPoint 1.0, you did

this by filling in fields of the APP_MGR_NEW structure. You should now put these

strings in a resource file and use the new predefined tags that are part of the Appli-
cation Manager’s toolkit group.

% Prerequisite information

¢ “Resource files” on page 189.

¢ “Strings in resource files” on page 190.
¢ “Resource file structure” on page 191.
o “Tags in source code” on page 193.

¢ “Predefined tags” on page 193.

% Procedure

1 Ifyou have PenPoint 1.0 code that uses the fields of the APP_MGR_NEW struc-
ture to identify your company, application name, and copyright information,
remove these lines.

220 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

2 Place this information in a resource file appropriate to the localized version.
For example, American strings might go in USA.RC, Japanese strings into
JPN.RC, and so on.

3 Your strings must be 32 characters or less.

% Example

Remove these lines from PenPoint 1.0 code:

strcpy (new.appMgr.company, "GO Corporation");
strcpy (new.appMgr.defaultDocName, "Counter Application");
ObjCallRet (msgNew, clsAppMgr, &new, s);

and simply call:
ObjCallRet (msgNew, clsAppMgr, &new, s)

Then put these lines in your resource file:
/**

APP framework strings
***/

static RC_TAGGED_STRING appStrings[] = {

// Default document name
tagAppMgrAppDefaultDocName,
U L("Counter Application"),
// The company that produced the program.
tagAppMgrAppCompany,
U_L("GO Corporation"}),
// The copyright string.
tagAppMgrAppCopyright,
U_L("\x00A9 Copyright 1992 by GO Corporation, All Rights Reserved."),
// User-visible filename. 32 characters or less.
tagAppMgrAppFilename,
U_L(“Counter Application”),
// User-visible file type. 32 characters or less.
tagAppMgrAppClassName,
U_L(“Application”),
Nil (TAG) // end of list marker
}i
static RC_INPUT app = {

tagAppMgrAppStrings, // standard resource ID for APP strings
appStrings, // pointer to string array
0, // data length; ignored for string arrays

resTaggedStringArrayResAgent // How to interpret the data pointer
}i

% Related information

+ “Moving strings to resource files” on page 216.

¢ “Updating your makefile” on page 224.

W Using resource utility functions

This procedure uses functions defined in RESUTIL.H to read data out of resource files.

CHAPTER 16 / PROCEDURES 221
Using resource utility functions

» Prerequisite information
¢ “Resource files” on page 189.
¢ “Resource file structure” on page 191.

¢ “Tags in source code” on page 193.

¥ Procedure

1 Find code where you use msgResReadObject or msgResReadData to read
data out of a resource file.

9 7 INTERNIATIOONIALIZ ATION

2 Call Resource Utility functions as shortcuts to reading objects and strings out
of resource files. Table 16-2 lists the available functions.

3 Call one of the first four functions in Table 16-2 to read a single object or
string from theProcessResList, the application’s standard list of resources
stored in USA.RES or JPN.RES.

1 Call one of the last three functions in Table 16-2 to read a string from a group.
The functions expect you to specify the group (RES_ID) and the string’s loca-
tion (IX_RES_ID) in that group. Use the RES_ID and TAGs you defined in your
header file with the MakeTag() and MakeListResID() macros. See “Strings in

resource files” on page 190 for details on strings in groups.

2 In most cases, avoid the load utilities ResUtilLoadObject() and ResUtil-
LoadListString() because these fuctions allocate their own memory.

3 Link RESFILE.LIB with your code if you use any of these functions.

Resource utility functions . TABLE162

Function Pescription

ResUtilLoadObject Loads an object from theProcessResList.

ResUtilLoadString Loads a string from theProcessResList into a buffer or a heap..

ResUtilGetString Same as ResUtilLoadString except that you provide a buffer and its size.

ResUtilAllocString Loads a string from theProcessResList into a heap you specify.

ResUtilLoadListString Loads an item from a string list in theProcessResList into a buffer or a heap.
You pass in the desired string’s group and its index in that group.

ResUtilGetListString Loads a string from a string array in theProcessResList into a buffer you
specify. You pass in the desired string’s group and index.

ResUtilAllocListString Loads a string from a string array in theProcessResList into a heap you
specify.

% Example
Replace this code:

#define sampleResId MakeWknResId(clsSample, 17)

readObj.resId = sampleResId;

readObj.mode = resReadObjectMany;

ObjCallRet (msgNewDefaults, clsObject, &readObj.objectNew, status);
status = ObjCallWarn(msgResReadObject, file, &readObj);

object = readObj.objectNew.uid;

nn

222 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

with this code:

#define sampleResId MakeWknResId(clsSample, 17)
status = ResUtilLoadObject (sampleResId, &object);

% Related information

¢ “Moving strings to resource files” on page 216.

¢ “Updating your makefile” on page 224.

W Using tags in source code

This procedure shows you two ways to use tags that you have defined in resource
and header files in your code.

% Prerequisite information

¢ “Resource files” on page 189.
¢ “Resource file structure” on page 191.

¢ “Tags in source code” on page 193.

% Procedure

You can choose any one of these steps as needed:
1 Use the tag directly when the function or message expects a tag as a parameter.

2 Usea tag in place of a literal string with any UI component that inherits from
clsLabel. Set the label style to IsInfoStringld to let the object know you are
using a tag rather than a literal string.

3 Use ResUtil functions to read the required string out of the resource file. Pass
the tag as a parameter to the function to let it know which string you want.

% Examples

The three examples below show the different ways to use a tag in source code.

%»¥ In toolkit tables

Code from \2_0\PENPOINT\SDK\SAMPLE\CNTRAPP\CNTRAPP.C uses tags to set up
Counter Application’s standard toolkit menu.

static const TK_TABLE ENTRY CntrAppMenuBar[] = {

{tagCntrMenu, 0, 0, 0, tkMenuPullDown | tkLabelStringId, clsMenuButton},
{tagCntrDec, msgCntrAppChangeFormat, dec, 0, tkLabelStringId},
{tagCntrOct, msgCntrAppChangeFormat, oct, 0, tkLabelStringId},
{tagCntrHex, msgCntrAppChangeFormat, hex, 0, tkLabelStringId},
{pNull},

{pNull}

}i

When you use tags instead of strings in a TK_TABLE_ENTRY, you must set the flag
tkLabelStringID flag. Notice that the bitwise OR operator is used to add the flag to
another flag, tkMenuPullDown.

CHAPTER 16 / PROCEDURES
Using ComposeText functions
%» In place of a literal string
The toolkit demo sample application in 2_0\PENPOINT\SDK\SAMPLES\ICONS.C
shows the use of tags in place of literal strings. Note that clsIcon inherits from
clsLabel.
ICON NEW in;

// Set the icon’s label
in.label.style.infoType = lsInfoStringld;
in.label.pString = (P_CHAR)tagIconGoLogo;

%r Using resource utility functions
You can also use tags to fetch the required string out of your resource file.

size = sizeof (resStr) / sizeof (CHAR);
ResUtilGetListString (resStr, size, resGrpMisc, tagCntrMessage);

Note that one of the parameter ResUtilGetListString() expects is the group in
which the string is defined; in this case, resGrpMisc.

P Using ComposeText functions

This procedure uses ComposeText functions to compose strings while your appli-
cation is running. These functions are described in CMPSTEXT.H. Remember to
link SYSUTIL.LIB if you any of these functions.

% Prerequisite information
¢ “Resource files” on page 189.

¢ “Strings in resource files” on page 190.

¢ “Composed strings” on page 204.

% Procedure
1 Identify strings that you compose dynamically from variable values and pieces
of text.

2 Unless these composed strings are never displayed to the user, move these
strings to resource files (if you have not already done so).

3 Include ComposeText parameters in each string, making sure you place the
parameter in the appropriate place.

4 Call ComposeText functions in your source code when you need to create this
string.

% Example

This code is from the sample Counter Application. First, here is the entry in the
resource file:

// Message used to display counter value. The '“ls' argument allows
// the code to fill in the appropriate value based on the user's menu
// choice.

tagCntrMessage, U_L("The counter value is: *1s"),

223

9 / INTERNATIONAI 7 ATION

224 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

Here is the code that retrieves the string along with formatting information from
the resource file. The next block of lines composes the string,

P_CHAR pi
U32 size;
CHAR buffer [MINSTRLEN] ;

// Retrieve format string from resource file, and construct display

// string from format string and counter value.

size = MAXSTRLEN;

SComposeTextL(&p, &size, pNull, resGrpMisc, tagCntrMessage, buffer);
% Related information

¢ “Using resource utility functions” on page 220.

¢ “Updating your makefile” on page 224.

P Updating your makefile

This procedure shows you how to update your makefile to handle multiple resource
files. This applies only if you are using the WATCOM WMAKE tool.

% Prerequisite information
¢ “Managing your project” on page 205.
¢ “Makefiles” on page 206.

% Procedure

1 Specify a locale in the command line. If you don't specify a locale, the stan-
dard makefile rules assume it is JPN.

2 Specify the resource files needed to build a localized version of your applica-
tion by setting the RES_FILES, USA_RES_FILES, and JPN_RES_FILES variables in
your makefile. ’

3 Add $(APP_DIR)\$(TARGET_RESFILE) to your "all" line.

4 Set the variable RES_STAMP to yes. This directs the makefile to use the applica-
tion name and type defined in the resource file USA.RC or JPN.RC (depending
on the value of LOCALE).

% Example

From the command line, you can type either:
wmake LOCALE=usa
wmake LOCALE=jpn
to make the appropriate version of your application.

This sample makefile comes from NotePaper App, one of the sample appli-
cations included with the SDK. You can find the code in \2_0\PENPOINT\SDK\
SAMPLE\NPAPP,

CHAPTER 16 / PROCEDURES
Writing locale-independent code

The .res files for your project. If you have resources, add
$(APP_DIR)\$(TARGET_RESFILE) to the "all" target.

RES_FILES = bitmap.res
USA_RES FILES = usa.res
JPN_RES FILES = jpn.res

Targets
all: $(APP_DIR) \$ (PROJ) .exe S(APP_DIR)\$(TARGET_RESFILE) .SYMBOLIC

% Related information

¢ “Using tags in source code” on page 222.

WV Writing locale-independent code

This procedure helps make your code general enough to behave appropriately for a
given locale. The goal is to maintain a single code base for all local versions of your
application.

% Prerequisite information

“Writing international software” on page 178.

¢ “Locale-independent code” on page 196.

¢ “Using the DOS utility INTLSCAN” on page 210.
¢ “Interpreting INTLSCAN messages” on page 211.

% Procedure
1 Run INTLSCAN on your source files to identify code that may be locale-
dependent by typing:

intlscan -r -u PROJECT.C

The flags -r and -u force INTLSCAN to suppress messages about Unicode and

resource files. See “Using the DOS utility INTLSCAN” on page 210 for
details on using the INTLSCAN.

2 Identify other functionality that your application performs that may vary
between locales. See “Locale-independent code” on page 196 for a partial
listing of functionality categories that tend to vary tremendously between
locales.

3 Replace locale-dependent function calls with calls to PenPoint international
functions. Table 16-3 lists all the functions INTLSCAN flags and suggests
PenPoint replacements.

4 If the required function does not exist in the PenPoint international package,
write your own locale-independent code. Usually this means your function or
message accepts a locale (and, optionally, a style) as a parameter. If you think
the function you are writing would be widely useful to PenPoint developers,
contact GO Technical Services with your suggestion.

225

A 7 ERSTEMDALATIOUVNE &1 1Y S PIALL

226 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

% Example

Table 16-3 lists locale-dependent functions and their suggested replacements from
the PenPoint international package. This table should orient you to the problem
of locale-dependent code and suggest further areas of code that may be locale-
dependent.

Ellipses (...) in the chart indicate that there are a number of related functions with
similar names. For example, IntlFormat... means that there are a variety of func-
tions like IntlFormatS32(), IntlFormatDate(), and so on whose names begin with

IntdFormat.

Converting fo infernational functions TABLE 16-3
i you are using . . . Consider using And #include this
_asctime IntlFormatDate/ Time ISR.H
_bprintf ComposeText CMPSTEXTH
_ctime IntlFormatDate/Time ISRH
_gmtime IntlSecToTimeStruct ISR.H
_localtime IntlSecToTimeStruct ISR.H
_vbprintf ComposeText/IntFormat... CMPSTEXT.H / ISR.H
asctime IntlIFormatDate/Time ISRH

atof IntlParseNumber ISRH

atoi IntlParseS32 ISRH

atol IntlParseS32 ISR.H

bsearch Ihthompare (for compare routine) ISRH

ctime IntlFormatDate/Time ISR.H

fprintf ComposeText/IntlFormat... CMPSTEXT.H /ISR.H
fscanf IntlParse... ISRH

govt IntlFormatNumber ISRH

gmtime IntlSecToTimeStruct ISR.H

isalnum IntlCharlsAlphaNumeric CHARTYPE.H
isalpha IntlCharlsAlphabetic CHARTYPE.H
isentrl IntlCharlsControl CHARTYPE.H
isdigit IntlCharlsDecimalDigit CHARTYPE.H
isgraph IntlCharIsGraphic CHARTYPE.H
islower IntlCharlsLower CHARTYPE.H
isprint IntlCharlsPrinting CHARTYPE.H
ispunct IntlCharlsPunctuation CHARTYPE.H
isspace IntlCharIsSpace CHARTYPE.H
isupper IntdCharlsUpper CHARTYPE.H
isxdigit IntlCharlsHexadecimal Digit CHARTYPE.H
itoa IntlFormatS32 ISRH

lfind IntlCompare (for compare routine) ISR.H
localtime IntlSecToTimeStruct ISRH

Isearch IntlCompare (for compare routine) ISRH

ltoa IntlFormatS32 ISR.H

Converting to international functions

CHAPTER 16 / PROCEDURES 227
Checking the system locale

TABLE 16-3 (continued)

If you are using . . .
memicmp
mktime
printf
gsort
scanf
sprintf
sscanf
strftime
stricmp
strlwr
strnicmp
strtod
strtol
strtoul
strupr
tolower
toupper
ultoa
utoa
viprintf
viscanf
vprintf
vscanf
vsprintf

vsscanf

Consider using
IntINStrCompare
IntITimeStructToSec

ComposeText/IntlIFormat...

IntdSort/Compare
IntlParse...

ComposeText/IntdFormat...

IntlParse...
IntlFormatTime
IntlStrCompare
IntlStrConvert
IntINStrCompare
IntlParseS32

IntlParseS32

IntlParseS32 (if possible)
IntlStrConvert
IntlStrConvert
IndStrConvert
IntlFormatS32 (if possible)
IntlFormatS32 (if possible)

ComposeText/IntlFormat...

IntlParse...

ComposeText/IntlFormat...

IntlParse...

ComposeText/IntlFormat...

IntIParse...

W Checking the system locale

This procedure shows you how to check systemLocale to control your application’s

behavior.

% Prerequisite information

¢ “Locale-independent code” on page 196.

¢ “Locales” on page 199.

¢ “Predefined locale identifiers” on page 199.

% Procedure

And #include this
ISR.H

ISR.H
CMPSTEXTH /ISR.H
ISR.H

ISR.H

ISR.H

ISR.H

ISR.H

ISR.-H

ISRH

ISR.H

ISR.H

ISR.H

ISR.H

ISRH

ISR.H

ISR.H

ISR-H

ISR.H
CMPSTEXT.H / ISR.H
ISRH

'CMPSTEXT.H / ISR.H

ISR.H
CMPSTEXT.H / ISR.H
ISR.H

1 Compare the value of systemLocale with the locale you are interested in.

2 Write the code to perform the special function.

3 Use the comparison to control whether the code executes.

2 / INTERNATIONALIZATION

228 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

"% Example

The following code comes from the Clock sample application. The fragments come
from \2_0\PENPOINT\SDK\SAMPLE\CLOCK\CLOCKAPP.C. Here are the relevant type
and macro definitions:

#define bothUp (timeUp|dateUp)

#define oneRow 4

#define oneCol 8

#define sideBySide 32

#define alarmOnTime 64

#define timeAndDate (bothUp | oneRow | sideBySide | timeFirst)
#define dateOverTime (bothUp | oneCol | alarmOnTime)

#define defaultFmtUSA timeAndDate
#define defaultFmtJPN dateAndTime

#define filedData \
U8 fmt;

BOOLEAN alarmSnoozeEnable;

typedef struct CLOCK APP_DATA {
filedData // the filed portion of the instance data must come first

OBJECT self;
} CLOCK APP_DATA, *P CLOCK_APP DATA;

‘The code that uses these macros and types checks the system locale and selects an
appropriate date format.

#ifdef PP1 0
// Assume a USA locale for PenPoint 1.0
pInst->fmt = defaultFmtUSA;
#else

{
// Choose different defaults depending on locale

SYS_LOCALE currentLocale;

currentLocale.pLocaleString=pNull;
// get the current locale
ObjCallWarn (msgSysGetLocale, theSystem, ¤tLocale);

if (currentLocale.localeId==1ocUSA)
pInst->fmt=defaultFmtUSA;
else if (currentlocale.localeld==locdJdpn)
pInst->fmt=defaul tFmtJPN;
else
pInst->fmt=defaultFmt;

}
#endif

Like most of the sample applications, the Clock application has been written to be
compiled under both PenPoint 1.0 and PenPoint 2.0 Japanese. The symbol PP1_0 is
defined to mark code that is for PenPoint 1.0 only.

To maintain a single source code base, you must use the PenPoint bridging package
included with the PenPoint SDK 2.0 Japanese. See “Single code base” on page 233
in Chapter 17 for more information.

% Related procedures
¢ “Writing locale-independent code” on page 225.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 2 / INTERNATIONALIZATION HANDBOOK

Chapter 17 / Porting to PenPoint 2.0

This chapter discusses the changes you need to make if you are porting an existing
PenPoint™ 1.0 application to PenPoint 2.0 Japanese. You must perform these
four steps:

1 Make changes required by changed PenPoint APIs.
Update your gesture handling code.

Use bitmaps rather than fonts to display special characters.

B N

If you have not already done so, file version information as part of your
instance data.

You must also make the changes discussed in the first four chapters of this hand-
book. For example, your 8-bit character should now be 16-bit data, your strings
should be in resource files, and your locale-dependent functions should have been
replaced with locale-independent functions.

W Changed APIs

This procedure shows you how to update your PenPoint 1.0 code to reflect the new
PenPoint 2.0 APIs.

% Prerequisite information

Various categories of API changes have been made. Many of the fundamental
changes have been discussed in this handbook, such as 8-bit to 16-bit character
data. The PenPoint SDK 2.0 Release Notes describes most of the general API changes,
and the Part 5: Architectural Reference Supplement provides more message and struc-
ture-level details.

The DOS utility INTLSCAN flags lines of code that use PenPoint 1.0 APIs.

% Procedure

1 Run the utility to identify the lines in your code that contain PenPoint 1.0
APIs. See “Using the DOS utility INTLSCAN” on page 210 for details.

2 Replace the PenPoint 1.0 APIs with their updated APIs.

% Related information
¢ “Single code base” on page 233.

230 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

W Gesture handling code

This procedure updates your PenPoint 1.0 gesture handling code so that it compiles
under PenPoint 2.0.

% Prerequisite information
In PenPoint 1.0, gestures were encoded as 32-bit numbers. Beginning in 2.0, ges-

tures are encoded as Unicode characters.

The change is simple. The msg member of the GWIN_GESTURE date structure has
been renamed to gesture. So the declaration used to look like:
typedef struct GWIN GESTURE {

MESSAGE msg; // gesture Id

RECT32 bounds; // bounding box in LWC

XY32 hotPoint; // gesture hot point

OBJECT uid; // object in which the gesture was generated
U32 reserved; // reserved for future use

} GWIN GESTURE, *P_GWIN GESTURE;

and now looks like this:
typedef struct GWIN GESTURE {

CHAR gesture; // gesture Id (Unicode point)

RECT32 bounds; // bounding box in LWC

XY32 hotPoint; // gesture hot point

OBJECT uid; // object in which the gesture was generated
U32 reserved[2]; // reserved for future use

} GWIN GESTURE, *P_GWIN GESTURE;

% Procedure
To change your code, simply:
1 Search your .C files for instances of the msg member of the GWIN_GESTURE
structure.

2 Replace them with references to the gesture member.

3 Anywhere you have declared msg to be of type TAG, MESSAGE, or U32, make
sure to change the field name to be gesture of type CHAR.

4 Replace the following obsolete code fragments with their newer counterparts.
Unless you are maintaining a very old code base, you should not have to worry
about this last step.

+ Replace MsgNew(pg->msg) with pg->gesture.
+ Replace TagNum(xgsGestureName) with xgsGestureName.

% Examples

This sample comes from the Tic-Tac-Toe application. You can find the code listed
here in \2_0\PENPOINT\SDL\SAMPLE\TTT\TTTVIEW.C.

This code is from the TttViewGesture message handler. The old version reads:

MsgHandlerWithTypes (TttViewGesture, P_GWIN GESTURE, PP_TTT VIEW_INST)
{

STATUS s;
// OBJECT owner;

CHAPTER 17 / PORTING TO PENPOINT 2.0
Special characters

switch (MsgNum (pArgs->msqg)) {

case MsgNum(xgslTap):
ObjCallJdmp (msgTttViewToggleSel, self, pNull, s, Error);
break;

case MsgNum(xgsCross) :
StsJdmp (TttViewGestureSetSquare (self, pArgs, tttX), s, Error);
break;

case MsgNum(xgsCircle):
StsJdmp (TttViewGestureSetSquare (self, pArgs, tttO), s, Error);
break;

The new code instead looks like this. Notice pArgs->msg is now pArgs->gesture.

MsgHandlerWithTypes (TttViewGesture, P_GWIN_GESTURE, PP_TTT VIEW INST)

{
STATUS s;
// OBJECT owner;

switch (pArgs->gesture) {

case xgslTap:
ObjCallJdmp (msgTttViewToggleSel, self, pNull, s, Error);
break;

case xgsCross:
StsJmp (TttViewGestureSetSquare (self, pArgs, tttX), s, Error);
break;

case xgsCircle:
Stsdmp (TttViewGestureSetSquare (self, pArgs, tttO), s, Error);
break;

W Special characters

PenPoint 2.0 no longer supports the 1.0 font editor. If you used the font editor to
design special glyphs to display in your application’s user interface, these glyphs will
not display under 2.0.

% Prerequisite information

You might have designed certain user interface elements with the font editor. For
example, you might have designed a special interface that allows your application to
control a CD-ROM player. Its buttons are the familiar buttons found on most CD
players, and the icons representing play, skip track, and so on are actually special
glyphs of a font.

If you need to design special screen elements, use the bitmap editor instead of the
font editor.

If you have already created outline fonts with the font editor and need them in your
PenPoint 2.0 Japanese applications, contact GO Technical Services to see if your
fonts can be translated.

231

2 / INYERNATIONALIZATION

232 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

Also contact GO Technical Services if you need a particular Unicode glyph for your
application that is currently unsupported. Given enough demand, it is possible that
future releases of PenPoint will support the glyph you need.

% Procedure

1 Install the bitmap editor as you would any other PenPoint application. It is
available in \PENPOINT\APP\BITMAR.

2 Create the special symbols your application needs. Documentation on the
bitmap editor is in Chapter 31, Bitmap Editor, of Part 4: PenPoint Develop-
ment Tools Supplement. The bitmap editor saves your bitmap as a resource file
with the extension .RES. |

3 Use messages from clsIcon or clsBitmap to read the bitmap out of the
resource file and display it on the screen.

% Example

This code comes from the toolkit demo sample application. You can find this code
in \2_0\PENPOINT\SDK\SAMPLE\TKDEMO\ICONS.C. The first thing to do is create
an instance of clsIcon. '

ObjCallRet (msgNewDefaults, clsIcon, &in, s);

in.control.client = app;

in.win.tag = tagIconResource;

in.label.style.infoType = 1lsInfoStringId;

in.label.pString = (P_CHAR)tagIconResource;

ObjCallRet (msgNew, clsIcon, &in, s);

in.win.parent = parent;

ObjCallRet (msgWinInsert, in.object.uid, &in.win, s);
Notice no bitmap is specified here. When it needs the bitmap, clsIcon sends the
icon’s client msglconProvideBitmap. In this case, the client is the application itself.
When the application receives this message, it responds by passing the message to

its ancestor which provides the bitmap.

When you make TKDEMO, the resource compiler appends the ICON.RES file cre-
ated by the bitmap editor into either USA.RES or JPN.RES (depending on which
localization you are working on). The application class clsApp knows how to read
the icon our of the compiled resource file, so it responds appropriately to the mes-
sage msglconProvideBitmap.

% Noftes

There are several reasons GO requires you to create special symbols with the bitmap
editor rather than the font editor.

¢ Bitmaps can be local to an application, whereas fonts are a global resource
available to all applications.

¢ You can manipulate gray pixels with the bitmap editor.

CHAPTER 17 / PORTING TO PENPOINT 2.0 233
File version data

¢ clsIcon will scale bitmaps with respect to screen resolution and the window
layout, while fonts scale mathematically without regard for the surrounding
visual context. A 10-pt font scaled 120% is 12 points, regardless of whether
this is visually appropriate.

W File version data

Remember to file a version number with the instance data of your application. This
will make it possible for future versions of your application to read documents cre-
ated by previous versions of your application. One possible way to file version data
is to set aside the first byte of your filed instance data for a version number.

In general, you cannot read documents created by PenPoint 1.0 applications with
applications created for PenPoint 2.0 Japanese. This is because many PenPoint
objects are filing different data than they did in PenPoint 1.0.

P Single code base

GO provides a bridging package that allows you to maintain a single code base that
compiles and runs under both PenPoint 1.0 and PenPoint 2.0 Japanese. Your code
must be written in a special way and must make use of the header files, makefiles,

and library files provided with the bridging package.

See the PenPoint Bridging Handbook included with the PenPoint SDK 2.0 Japanese
for more details on how to use the bridging package. Most of all, the PenPoint
sample applications are specially written to compile and run under both versions of
PenPoint. Use these samples as templates for the applications and services you want
to create to run under both versions of PenPoint.

2 / INTERNATIONALIZATION

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 2 / INTERNATIONALIZATION HANDBOOK

Chapter 18 / Localization Guidelines

After you finish internationalizing your application, the only step remaining is to
prepare your application for a specific locale.

Remember that your product is much more than code. The released product should
include translated documentation, appropriate packaging, a support plan, and
other marketing and sales preparation.

The goal of localization is to produce a software product that respects a particular
culture’s language, customs, and traditions. Though this may seem obvious, a local-
ized software product should behave similarly to applications developed by people
native to your target locale.

This handbook does not cover specific details on how to localize to a particular
country. However, here are a few guidelines to consider as you begin the localiza-
tion process:

¢ Does the application support the local writing system? Your application
should read, write, render, process, and receive user input for all the characters
needed for communicating in the local writing system. The PenPoint™ oper-
ating system provides much, if not all, of the required support. Make sure
your application takes advantage of the provided support.

@ Does the application respect local text formatting conventions? Numbers,
times, dates, currencies, and other text should display as the local user expects.

¢ Does the application behave as expected? Localized applications, for instance,
should sort and compare using locally accepted precedence rules, calculate
mortgage and interest payments using local formulas, and select words, sen-
tences, and paragraphs using local grammatical rules.

¢ Does the application support standards popular in the local computing
environment? File and communication standards are particularly important.

¢ Does the application respect local customs, taboos, and traditions? For
example, make sure that any gestures, icons, and strings the application uses
are appropriate, meaningful, and nonoffensive.

¢ Is the user interface graphically pleasing? What one country considers attrac-
tive may not be attractive in another country. Japanese characters, for instance,
usually require more space than Roman characters. Does your interface make
more room elegantly?

236 PENPOINT APPLICATION WRITING GUIDE
Part 2 / internationalization Handbook

@ Is the documentation translated in a way local users find informative and
appropriate? Japanese users, for instance, tend to read documentation from
cover to cover rather than referring to the documentation only when needed.
Is your translation appropriate for such reading?

@ Is your packaging appropriate to the locale?

¢ Has your software and documentation been tested by quality assurance
personnel as well as local users?

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION

PART 2 / INTERNATIONALIZATION HANDBOOK

Chapter 19 / Additional Resources

This appendix contains references to resources you may find helpful as you prepare
your code for an international market.

V Texts

These books may be helpful to you as you plan and design your application. Some
are general guidebooks; others provide specific information on particular countries.

PenPoint Application Writing Guide: Expanded Edition GO Corporation,
1992. An introduction to PenPoint programming updated from the origi-
nal edition to discuss new sample code and other changes to the PenPoint
SDK since PenPoint SDK 1.0.

Do’s and Taboos Around the World, 2nd ed. Roger Axtell, John Wiley & Sons,
1990. A funny but informative guide to culturally acceptable and unac-
ceptable behavior in various cultures.

Dos and Taboos Roger Axtell, John Wiley & Sons, 1989 Similar to Do
and Taboos Around the World, this book is aimed at small businesses.
It includes discussions of planning for international markets, pricing,
shipping, managing and motivating distributors, and communication.
It also includes an entire chapter on Japan.

Symbol Sourcebook Henry Dreyfuss, Van Nostrand Reinhold, 1984. A

collection of internationally recognized symbols and icons.

Hoover’s Handbook of World Business 1992 The Reference Press, 1991.
Includes statistical and descriptive profiles of major countries and
companies around the world.

The Unicode Standard 1.0: Worldwide Character Encoding The Unicode
Consortium, Addison-Wesley, 1991. The definitive, two-volume book on
the Unicode standard, its history and design, implementation help, and
common glyphs for all characters defined in Unicode 1.0.

Guide to Macintosh Software Localization Apple Computer, Inc., Addison-
Wesley, 1992. Despite its title, this book contains general information that
will help developers of any platform internationalize their software.

Digital Guide to Developing International Software Digital Press, 1991.
Although aimed at DEC programmers, this practical book contains tables
of sort orders, formatting conventions, and other specific data that will
help developers localize their products to North American and European
markets.

238 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

National Language Information and Design Guide, Volumes 1-4, 2nd ed., IBM

Canada, 1990. Order nos. SE09-8001-01 through SE09-8004-01.
A set of general guidelines and specific details on how to support national
languages. Volume 1 is an overview, and volumes 2 through 4 cover tech-
nical details on implementing “left-to-right and double-byte character set
languages” (vol. 2), Arabic scripts (vol. 3), and Hebrew (vol. 4)..

Gestures Desmond Morris, Peter Collett, Peter Marsh, and Marie O’Shaugh-
nessy. Scarborough House, Chelsea, Michigan. A vast collection of appro-
priate and inappropriate gestures by culture.

The Standard C Library PJ. Plauger, Prentice Hall, 1992. Although this book
discusses the entire library, it also discusses the C library functions that
deal with multibyte and wide character encoding. See “Large Character

Sets for C” by P]J. Plauger in the August 1992 issue of Dr. Dobb’s Journal
for an overview.

W Standards organizations

Contact these organizations for more information on their specific standards.

American National Standards Institute (ANSI)
1430 Broadway
New York, NY 10018

Japanese Industrial Standards Committee (JISC)
c/o Standards Department

Agency of Industrial Science and Technology
Ministry of International Trade and Industry
1-3-1, Kasumigaseki

Chiyoda-ku

Tokyo 100

Japan

Unicode Incorporated

c/o Metaphor Computer Systems

1965 Chatleston Avenue

Mountain View, CA 94043

Fax: USA 415-71--3714

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION

Part 3/
PenPoint Japanese
Localization Handbook

4

243
243

v

245

247

250
251

4

255

262

266

273

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 3 / JAPANESE LOCALIZATION HANDBOOK

Chapter 20 / Introduction
Intended audience

Organization of this handbook

Chapter 21 / Japanese Characters

Overview of Japanese
Kanji

Kana

Romaji

Character encoding

The Japanese character set
Supplemental characters
Half- and full-width variants
Unicode

Fonts

JIS and Shift-JIS encoding

JIS encoding details

Shift-JIS encoding details
Character set code spaces
Converting to and from Shift-JIS
Gaiji

Chapter 22 / Processing Japanese Text

Japanese text entry
Handwriting recognition
Kana-kanji conversion
Romaji-kanji conversion
Supporting KKC and RKC
Using keyboards

Handling Japanese text

Delimiting words

Delimiting sentences

Comparing and sorting

Converting between character variants
Converting between Shift-JIS and Unicode
Compressing Unicode

Formatting Japanese text
Line breaks

Dates

Times

Numbers

Chapter 23 / Development Environment

Development tools
Text editors
Compilers
Debuggers
Makefiles

DOS utilities
Running PenPoint

278

279

279

283

284

285

286

287

289

290

PenPoint environment
ENVIRON.INI

MIL.INI

Initialization files

PenPoint tools

MiniText

Unicode Browser
Japanese virtual keyboard

Sample code
Japanese versions of sample code
Keisen Table application

Chapter 24 / Procedures
Working with Shift-JIS in text files

Prerequisite information
Procedure
Related information

Working with Unicode in source code
Prerequisite information

Procedure

Examples

Related information

Converting Unicode and Shift-JIS files
Prerequisite information

Procedure

Examples

Related information

Converting Unicode and Shift-]IS strings
Prerequisite information

Procedure

Example

Related information

Converting between character variants
Prerequisite information

Procedure

Example

Notes

Related information

Delimiting words
Prerequisite information
Procedure

Example

Notes

Related information

Delimiting sentences
Prerequisite information
Procedure

Example

Notes

Related information

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 3 / JAPANESE LOCALIZATION HANDBOOK

291 Comparing strings
Prerequisite information
Procedure
Example
Notes
Related information

292 Sorting strings
Prerequisite information
Procedure
Example
Notes
Related information

293 Handling line breaks
Prerequisite information
Procedure
Example
Notes
Related information

295 Using Japanese fonts
Prerequisite information
Procedure
Examples
Related information

296 Supporting kana-kanji conversion
Prerequisite information
Procedure
Notes
Examples

P Chapter 25 / Resources
P Chapter 26 / Japanese Character Set

303 How the list was created

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 3 / JAPANESE LOCALIZATION HANDBOOK

Chapter 20 / Introduction

Japan is an exciting market for PenPoint™ applications. The Japanese localization
of the PenPoint 2.0 Japanese operating system provides many building blocks you
can use to create high-quality, innovative Japanese applications. These building
blocks include:

+ A highly accurate handwriting recognition engine.
¢ An innovative font rendering engine.

¢ Functions that provide high-level support for Japanese, such as sorting and
date formatting and parsing.

¢ Support for various ways of accepting Japanese input.

This handbook introduces concepts that help you localize your application to
Japan. It discusses the changes you may need to make to your code, the develop-
ment environment, and other issues that may influence the design of your Japanese
product.

P Intended audience

This handbook assumes the following about its readers:
You are a developer planning to localize your application or service to Japan.

¢ You are familiar with PenPoint programming. Part 1: PenPoint Application
Writing Guide is the best place to start if you are new to PenPoint program-
ming.

@ You have code that is ready to localize. Specifically, this handbook assumes
that you have applied the procedures described in the Parz 2: PenPoint Interna-
tionalization Handbook to internationalize your code. For example, your appli-
cation should support Unicode, use resource files to store strings, and contain
locale-independent code.

W Organization of this handbook

Chapter 20, Introduction, describes the organization of this handbook.

Chapter 21, Japanese Characters, describes the Japanese language from a devel-
oper’s point of view. It describes the official Japanese character set and how
PenPoint 2.0 Japanese represents the character set internally. This chapter includes
a discussion of the popular Shift-JIS (Japanese Industrial Standards) character
encoding standard and how it compares with Unicode.

244

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

Chapter 22, Processing Japanese Text, builds on the previous chapter on Japanese
characters and discusses more global issues about processing Japanese text. Topics
include formatting conventions, sorting, and other text-related issues.

Chapter 23, Development Environment, describes the PenPoint 2.0 Japanese
development environment. It describes the tools, utilities, and sample files that are
designed specifically to help you create Japanese applications and services.

Chapter 24, Procedures, gives step-by-step instructions on how to perform
common tasks such as creating Shift-JIS strings, supporting kana-kanji conversion,
and using Japanese fonts.

Chapter 25, Resources, lists some books that may help you design, translate, and
market your Japanese application.

Chapter 26, Japanese Characters, contains a chart that shows the JIS character set
and the Unicode values of each character.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 3 / JAPANESE LOCALIZATION HANDBOOK

Chapter 21 / Japanese Characters

This chapter and Chapter 22, Processing Japanese Text, explain concepts that you
should understand when writing a Japanese application. This chapter discusses the
Japanese language and how the PenPoint™ operating system encodes Japanese
characters. Topics include:
¢ Overview of Japanese.
+ Kanji.
+ Kana.
+ Romaji.
¢ Character encoding.
+ The Japanese character set.
+ Half- and full-width variants.

+ Unicode.
+ Fonts.

+ JIS and Shift-JIS encoding.

+]IS encoding details.
Shift-JIS encoding details.
Converting to and from Shift-JIS.

*

*

+ Gaiji.
The next chapter discusses more general issues about handling user text input and

processing Japanese text. If you are new to the Japanese language and its encoding,
we recommend you read these two chapters in order.

W Overview of Japanese

The Japanese writing system is among the most complicated in the world. Where
most writing systems use fewer than 255 symbols, Japanese uses over 6,000 symbols.

Fortunately, you do not need to write any code to support this complex language.
Many PenPoint 2.0 Japanese classes and objects already support Japanese behavior.
For example, clsTextView can manipulate and display Japanese text in a window.

Use PenPoint 2.0 Japanese classes and objects whenever possible to implement this
behavior. See Part 4: UI Toolkit and Part 5: Input and Handwriting Recognition of
the PenPoint Architectural Reference for details.

Furthermore, the PenPoint 2.0 Japanese operating system provides a large set of
international functions that have been localized to manipulate Japanese characters.
For example, the IntlSort() function can correctly sort Japanese characters.

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

Use these international functions whenever available to provide behavior Japanese
users expect. See Chapter 22, Processing Japanese Text, for details.

Most languages are written with a single set of symbols. English, for example, uses a
single set of characters from a 26-letter alphabet and a collection of numerals and
punctuation marks. Japanese writing, in contrast, uses four different sets of symbols
called kanji, hiragana, katakana, and romaji. Each of these sets is discussed below.
Table 21-1 summarizes the discussion.

Kaniji

Kaniji is a collection of more than 6,000 characters derived from Chinese. Kanji
is the core of Japanese, representing nouns, verbs, adverbs, and adjectives. When a
PenPoint 2.0 Japanese term has a good kanji translation, the kanji is used in the
user interface. An official list of 6,355 characters, representing more than 99 per-
cent of kanji in common use, has been published by the Japanese Industrial Stan-
dards (JIS) organization. See “Character encoding” on page 247 for more details.

Kana

Kana are two sets of symbols that represent syllables of spoken Japanese. These sets
are called syllabaries because each symbol represents a syllable of spoken language.
Each syllabary contains 46 basic characters. You can apply vocalization markings to
these basic characters to represent a possible total of 104 syllables. These vocaliza-
tion markings indicate how to pronounce a syllable. Not all of the possible charac-
ters are used in practice.

Hiragana is a set of 83 characters used mainly to write inflections. Both verbs
and adjectives are inflected in Japanese. Pure hiragana words are rare in
computer interfaces. Sometimes, though, you may see hiragana following
kanji to form a complete word, as shown in the examples for “Apply” and
“Close” in the margin.

Katakana is a set of 86 characters used mainly to write words borrowed from
foreign languages. These borrowed terms are called loanwords.
For example, the Japanese word for #ruck is written in katakana and
pronounced teruku; similarly, the word for baseball is written and pro-
nounced besubaru. A popular Japanese dictionary lists more than 13,000
loanwords. Katakana words, because of their foreign origin, are often used
in computer interfaces. The katakana equivalents of PenPoint (penpointo),
notebook (no10), and printer (purinda) are shown in the margin.

¥ Romadiji

Romaji is the set of characters of the Latin alphabet. /i means characterin Japanese,
so romaji is literally “roman character.” Romaji includes both uppercase and lower-
case letters, numerals, and English punctation marks. Japanese uses romaji to repre-
sent expressions without turning them into loanwords.

The Japanese localization of the PenPoint 2.0 Japanese operating system provides a
great deal of support for Japanese language processing. For example, the operating

Kanji is the most complex of
all scripte. Each character is
composed of an average of
eight strokes.

Document %ﬁ

Cancel HXZ%
Print Fl il

Hiragana characters are
rounded and composed of
two or three strokes.

Apply WHT %
Close Fﬁﬁ U5
Yes 3w

Katakana characters are
more angular than hiragana.

PenPoint RRA B
Notebook ./ — [\
Printer 70 U > 57

Examples include:

LPTT:
SDK
DOS

CHAPTER 21 / JAPANESE CHARACTERS

Character encoding

247

Japanese writing TABLE 21-1

Script Number of characters Typical uses Example

Kanji Roughly 6,400 Key concepts that translate AAGE =&
well into Japanese

Hiragana 83 commonly used Articles Hirl Ewn
Verb and adjective inflections

Katakana 86 commonly used Accepted loanwords RUBRA Y N

Plant, animal names

Onomatopoeia (bang, click) 7

yry

Telegrams
Romaji 52 letters, 10 numerals, Foreign words 2.0 SDK, VGA, DOS
147 symbols Transliteration of Japanese

system provides an easy way for developers to encode, display, and recognize
Japanese characters. The next few sections discuss character encoding, fonts,
handwriting recognition, and conversion to and from existing Japanese encoding
standards.

¥ Character encoding

The 7-bit ASCII character encoding scheme is too small to accommodate the thou-
sands of Japanese characters. The most popular encoding system commonly used to
encode Japanese in personal computers is called Shift-JIS. See “Shift-JIS encoding
details” on page 252 for details on this encoding system.

Because code that processes Shift-JIS text can be quite difficult to write, the
PenPoint 2.0 Japanese operating system uses Unicode to encode Japanese charac-
ters. The following sections discuss Unicode and how it compares with Shift-JIS.

PenPoint 2.0 Japanese provides simple facilities to work with Japanese encoded
characters in either Shift-JIS or Unicode, although your application must process
Unicode characters internally.

The Japanese character set

PenPoint 2.0 Japanese supports a standard list of characters published by the JIS
organization in 1990. The characters are listed in a document called JIS C 0208-1990
and include the following:

6,355 kanji in Level 1 and Level 2.

L

¢ 86 katakana characters.
+ 83 hiragana characters.
¢ 10 numerals.

¢ 52 Roman characters.

147 symbols.

L 4

L 4

66 Cyrillic characters.

48 Greek characters.

&

32 line elements for making charts.

L 4

3 / JAPANESE LOCALIZATION

248 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

The kanji are divided into two levels. The Level 1 kanji contains 2,965 of the most These are exammples of radicals.
commonly used kanji sorted by pronunciation. The Level 2 kanji includes 3,390 L

less-frequently used characters sorted by radical. A radical is the most important J }

part of a kanji, somewhat analogous to a Latin or Greek root word in English.

Within each radical, characters are sorted by the number of strokes required to

write the character (excluding the radical).

Together, these levels define 6,355 characters, or more than 99 percent of the kanji
in common use.

The 1990 JIS standard derives from two previous JIS standards: one published

in 1978 and the other in 1983. New kanji were added and existing characters
rearranged in each edition, so that the standards are not strict supersets. Conversion
between sets, however, is straightforward.

PenPoint 2.0 Japanese has glyphs for all of the characters in the 1990 character set.
See “Fonts” on page 250 for more information.

The handwriting recognition engine that comes with the PenPoint SDK 2.0 Japa-
nese can recognize a large fraction of the characters in the 1990 list. See “Hand-
writing recognition” on page 255 for details.

% Supplemental characters

In 1990, JIS also published a supplemental character list in a document called JIS X
0212-1990. It specifies an additional 5,801 kanji, a collection of 245 Latin-based
characters, and 21 miscellaneous symbols and diacritical marks. These characters
are called the JIS Supplemental Characters. Because they are not part of the JIS Level
1 or 2 kanji, these characters are sometimes called gaiji, literally characters (j7)

- which are outside (gaz) the standard.

These supplemental characters are rarely used variants of characters primarily used
in proper names. The fonts shipped with PenPoint 2.0 Japanese do not contain
glyphs for these supplemental characters, although Unicode does assign each
character a code point. Thus you can represent any of these supplemental characters
internally, but PenPoint 2.0 Japanese cannot display the appropriate glyph.

Because there was no standard way of encoding these characters prior to Unicode,
PenPoint 2.0 Japanese files containing these supplemental characters are incompat-
ible. See “Gaiji” on page 254 for information on how PenPoint imports and exports
files containing these characters.

CHAPTER 21 / JAPANESE CHARACTERS 249
Character encoding

% Half- and full-width variants

Any katakana character may be half- or full-width. In Japanese, this is translated as Zenkaku (full-width)
hankaku (half-width) or zenkaku (full-width). PenPoint 2.0 Japanese can repre- o~ 32 o~

. . : RPA >
sent and display these half- and full-width variants. A HHH

This width distinction is not an inherent part of the language. Rather, it is a histor-

ical convention from the JIS standard. To allow more characters to fit per line, the Hankaku (half-width)
original JIS standard allowed a variant of the katakana characters to be as wide as a NV AY
monospaced Roman letter. Because kanji were twice as wide as Roman characters, T E Y

these katakana variants were called half-width characters.

In PenPoint 2.0 Japanese, a normal Roman character remains roughly half the
width of a kanji character. Because Roman characters are often proportional while
Japanese kana and kanji are always fixed-width, the comparison is a rough estimate.
In addition to these normal-width (hankaku) ASCII characters, PenPoint can also
represent and display double-width (zenkaku) ASCII characters.

7/ JAPANESE LOCALIZATION

X

The double-width Roman characters are monospaced, so they line up evenly with
kanji characters. You might use these double-width characters in a title or table that
contains mixed kanji and roman characters.

To see these zenkaku and hankaku variants, select some text in a MiniText docu-
ment and select To Zenkaku or To Hankaku from the Convert menu.

PenPoint 2.0 Japanese provides a function called IntlStrConvert() that can convert
between the half- and full-width characters. Remember that only katakana and
ASCII characters have these half-and full-width variants. See “Converting between
character variants” on page 287 for more information.

P Unicode

PenPoint 2.0 Japanese uses the 16-bit Unicode encoding standard to represent Jap- For more information on the

anese characters. Your source code should already support 16-bit Unicode charac- ~ Unicode standard, consult the
two-volume Unicode Standard:

ters. If it does not, see Part 2: PenPoint Internationalization Handbook for details on yursion 1.0 and Part 2: Penfoint

how to support Unicode. . Internationalization Handbook.

. Unicode encodes over 26,000
The Unicode standard assigns all the characters discussed above a unique 16-bit characters from the world's
number, sometimes called a code point. All the characters specified in the most ~ #¢ripte:

current 1990 list, the 5,801 supplemental kanji characters, as well as the half- and
full-width versions of katakana and Roman alphanumerics are assigned unique
Unicode code points. '

Thus, your application can represent and manipulate any of these characters
internally.

Table 21-2 shows how various Japanese characters are encoded in Unicode. One of
the design goals of Unicode was to eliminate redundant coding of characters
common to Chinese, Japanese, and Korean (CJK). If all three languages use the
same character, that character is assigned a single Unicode value.

250 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

The space allotted to these unified characters is labelled CJK ideographs. All of the
JIS kanji fall into this range. Also, because Chinese, Japanese, and Korean share
many punctuation marks, many of the Japanese punctuation marks are encoded as
ideographic punctuation.

Unicode encoding of Japanese characters TABLE 21-2
Description Unicode values (hex) Widsh

Romaji (ASCII, Extended Latin) U+0000—>U+03FF Half, proportional
Ideographic punctuation U+3000—U+303F Full, monospaced
Hiragana U+3040—U+309F Full, monospaced
Regular-width katakana (zenkaku) U+30A0—-U+30FF Full, monospaced
CJK ideographs (kanji) U+4E00—U+9FFF Full, monospaced
Half-width katakana (hankaku) U+FF60—U+FF9F Half, monospaced
Double-width ASCII U+FF00—-U+FF5F Full, monospaced
Compatibility Zone U+FE00—U+FFEF Not applicable
Private Use Zone U+E000—U+F7FF Not applicable

Unicode encodes half-width katkana and double-width ASCII in an area called the
Compatibility zone. It is called the Compatibility zone because the characters in
this zone exist in Unicode solely to be compatible with other character sets like
Shift-JIS. Remember that the half- and full-width distinction for katakana is not
inherent in Japanese, so these characters would not need code points if they did not
exist in the JIS standard.

Because files created on Japanese computers may contain characters outside of the
official JIS list, PenPoint 2.0 Japanese must map them to some location in the Uni-
code code space. The Unicode Private Use Zone is used for this purpose. See
“Gaiji” on page 254 for details.

W Fonts
The PenPoint operating system 2.0 Japanese currently provides two Japanese fonts, Mincho
Heisei Mincho and Heisei Gothic. Use the Mincho font in roughly the same way B H A5
you use a Roman serif font, and use Gothic as you would a Roman sans-serif font.
Note that all kanji and kana are monospaced. Gothic
The Mincho and Heisei fonts contain glyphs for JIS levels 1 and 2 kanji as well as T wH BAE

all of the other JIS C 0208-1990 characters. This includes the hankaku and zenkaku
versions of ASCII and katakana characters, but does not include the supplemental
characters.

The default system font, used by the system and text applications, is 12-point
Mincho. The default user font used in fields is 12-point Gothic.

Users can set either of these defaults to Gothic, Roman, Sans Serif, or Mincho in
the Preferences section of the Settings notebook. If Roman is the chosen default
font, Japanese characters appear in Mincho. If Sans Serif is chosen, Japanese charac-
ters appear in Gothic.

CHAPTER 21 / JAPANESE CHARACTERS 251
JIS and Shift-JIS encoding

Again, the standard fonts do not contain glyphs for any of the 5,801 supplemental
kanji. So while your application can represent internally any Unicode character, the
only kanji that appear on the screen are JIS levels 1 and 2 characters.

If your application tries to display one of the 5,801 JIS Supplemental Characters, it Hex quads
will appear as a hex quad. A hex quad is a collection of four hex numbers that rep-

00 F1 00
resent a single 16-bit code. The first (high) byte is on top, and the second (low) byte IB F2 12
is on the bottom. The first example in the margin represents the hexadecimal
number 0x001B.

The fonts are divided into several files, as shown in Table 21-3.

Japanese font files TABLE 21-3
Font file Size in kilobytes Contents

MC55.FDB 873 Mincho, JIS Level 1

MCS80.FDB 1,101 Mincho, JIS Level 2

MCB81.FDB 10 Mincho, half-width (hankaku)

GT55.FDB 712 Gothic, JIS Level 1

GT80.FDB 878 Gothic, JIS Level 2

GT81.FDB 7 Gothic, half-width (hankaku)

W JIS and Shift-JIS encoding

JIS and Shift-JIS are two popular character encoding schemes used by current Japa-
nese computer systems. Think of JIS encoding as the standard on larger computers
and Shift-JIS as the personal computer standard. For example, IBM DOS J5.0/V and
KanjiTalk, the Japanese version of the Macintosh operating system, use the Shift-JIS
encoding standard.

Do not confuse the JIS encoding standard with the JIS character list. The JIS
encoding standard maps characters in the JIS character list to a particular code
point.

Both JIS and Shift-JIS are multibyte encoding systems. That is, both use two bytes
to represent Japanese characters. The only exception is a hankaku character, the
half-width version of katakana. Each hankaku character requires one byte.

Both schemes also use a single byte to represent ASCII characters. This allows a text
file to mix ASCII and Japanese characters.

% JIS encoding details

JIS encoding overlaps with the printable ASCII characters; that is, its codes fall
between decimal 33 and 126 (hex 21 through 5F). ASCII codes still represent ASCII
characters, and each Japanese character is represented as a sequence of 2 byte-
long ASCII codes. Hankaku characters are represented by a single byte between
0xAl and 0xDE

3 / JAPANESE LOCALIZATION

252 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

To distinguish a single-byte ASCII character from a double-byte Japanese character,
applications must search for a shift state. The shift state indicates whether a given
text stream is in one-byte-per-character mode (ASCII) or two-bytes-per-character
mode (Japanese).

A shift is indicated by a particular escape sequence like ESC $ @ (hex 1B 24 40).
“Shift out” marks the beginning of a series of double-byte JIS characters, while
“shift in” marks the return to single-byte ASCII characters. Different shift states are

used for each different character set (1978, 1983, 1990).

The shift state can make text-processing code quite complex. If the application
needs to process text in the middle of a sentence or page, for example, the code may
be required to read backwards to determine the state.

Because the JIS encoding system is not widely used by Japanese personal computers,
PenPoint 2.0 Japanese does not provide any support of the JIS encoding. If neces-
sary, convert any JIS files to Shift-JIS before importing them into PenPoint 2.0
Japanese.

% Shift-JIS encoding details

Shift-JIS, sometimes abbreviated XJIS, is a variation of JIS encoding used widely by
Japanese personal computers. It eliminates state information by shifting the code of
the first byte of a Japanese character to above hex 80.

The second byte falls between decimal 64 and 126 (hex 40 and 7E). This range
contains both printing and nonprinting ASCII characters. So while the first byte of a
Shift-JIS character cannot be confused with a standard 7-bit ASCII character, the

second byte can be. As in the JIS encoding, hankaku characters are represented by a
single byte between 0xAl and 0xDE

Although the ASCII standard itself is only 7 bits, most vendors use the high ASCII
characters above hex 80 for special characters. For example, IBM uses codes above
hex 80 for line drawing elements, European alphabets, and other glyphs. Thus even
the first byte of a Shift-JIS character overlaps with codes that are previously assigned
code points.

This overlap makes processing text difficult even without explicit state information
embedded in the text stream.

For example, say your code encounters a character with code value below hex 80. It
might be an ASCII character, but it might also be the second byte of a Japanese char-
acter. You can check the code of the previous character, but this check does not
always resolve the ambiguity.

If the previous character is above hex 80, it can still be the first or second byte of a
Japanese character. To determine the state of the current character, your code must
scan through the stream backwards until two sequential ASCII characters appear.
This algorithm is complex, error-prone, and computationally expensive.

CHAPTER 21 / JAPANESE CHARACTERS 253
JIS and Shift-JIS encoding :

% Character set code spaces

Figure 21-1 shows what codes the different character encoding systems occupy.
Each of the two-dimensional charts shows the high byte along the left edge and the
low byte along the top edge. Notice that the original JIS encoding completely over-
laps with 7-bit ASCII; all bytes fall between hex 20 and 80.

Although Shift-JIS solves this overlap problem for 7-bit ASCII, most 8-bit ASCII
code points still overlap with Shift-JIS code points.

Unicode code points are shown on the left side. The four labelled zones contain the
following characters:
Alphabets contains alphabets, syllabaries, and symbols.

CJK contains Chinese, Japanese, and Korean characters, including all the JIS
Level 1, Level 2, and supplemental kanji.

Private Use area contains compatibility zone characters and characters for pri-
vate, corporate use. GO’s gesture glyphs are in the corporate use zone. The
hankaku, katakana, and zenkaku ASCII characters are the in compatibility
zone.

Reserved area is reserved by the Unicode Consortium for future use.

Character code spaces FIGURE 21-1
Unicode JIS and Shift-JIS Shift-JIS
Low byte ——> Low byte ——> High byte: &1-9F, EO-EF
00 20 40 60 80 A0 CO E0 FF 00 20 40 60 80 A0 Co Eo FF Low byte: 40-7E, 80-FC
High 00 T N Zenkaku: AO-EO
byte
20 JIs
l 40 High byte: 21-7E
Low byte: 21-7E
60 Zenkaku: AO-EO
80
Unicode
A0 See Table 21-2 for the ranges
Co - of Unicode code pointe.
E0
FF

B shifs

. Alphabets D Reserved
- Private Use Are;/

00 20 40 60 80 A0 CO EO FF
= :

E 3/ JAPANESE LOCALIZATION

254 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

% Converting to and from Shift-JIS

PenPoint 2.0 Japanese provides various conversion facilities between Shift-JIS and

Unicode:

¢ Convert Shift-JIS files to and from Unicode with the DOS utility UCONVERT.
This utility is included with the SDK in \2_0\SDK\UTIL\DOS\UCONVERT. See
“Converting Unicode and Shift-JIS files” on page 285 for details on using the
uility. ~

¢ Directly import Shift-JIS files into MiniText. See “Working with Shift-JIS in
text files” on page 283 for details. ‘

¢ Use the functions IntlMBToUnicode() and IntlUnicode ToMB() to translate
text programmatically. The default behavior of this function in PenPoint 2.0
Japanese converts between Unicode and the 1990 Shift-JIS encoding.

¢ Use clsText messages msgTextRead and msgTextWrite to read and write
Shift-JIS strings. These messages are documented in TXTDATA.H. Specify
fileTypeASCII as the format. Because Shift-JIS uses 8-bit characters, file-
TypeASCII works for both Shift-JIS and 8-bit extensions to ASCIL. File types
are defined in FILETYPE.H.

Y% Gaiji
Gaiji literally means characters (j7) that are outside (ga7) of the standard. There are
thousands of characters that are not included in JIS levels 1 or 2, many of which are
rarely used characters or rare forms of characters used in proper names.

Many of these characters have been defined as part of the 5,801 supplementary
kanji added to JIS in 1990. Unicode assigns each of these characters a unique
16-bit code.

Before Unicode, however, implementation of these gaiji varied tremendously. Con-
sequently, files are often incompatible between applications and computer systems.
For example, the AX Consortium, NEC, and Fujitsu each support mutually incom-
patible gaiji encoding schemes.

When you import a file containing gaiji encoded by one of these three schemes, Unicode sets aside an area
PenPoint 2.0 Japanese automatically maps the characters into parts of the Unicode ~¢2lled the Private Use Area to
. . ' use as a repository for private
Private Use Area. The characters are displayed as hex quads because the fonts codes. The area lies between
shipped with PenPoint 2.0 Japanese do not contain glyphs for gaiji. When you U+EOOO and U+F7FF. See

export the documents, all the gaiji characters are mapped to their original values. éﬁ';ﬁ;:{:mmn 1O, Volume 2
Note that if the computer from which you are importing does not use the

same gaiji mapping as the computer to which you are exporting, the gaiji are

not mapped correctly. In other words, PenPoint 2.0 Japanese does not translate

between different gaiji encodings.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 3 / JAPANESE LOCALIZATION HANDBOOK

Chapter 22 / Processing Japanese Text

This chapter discusses how Japanese text is typically processed and how your
application can use the PenPoint™ operating system’s support for high-level text
processing. Topics include:
¢ Japanese text entry.
+ Handwriting recognition.

«» Kana-kanji conversion.

L 2

Romaji-kanji conversion.
Supporting KKC and RKC.
Using keyboards.

L 4

L 4

¢ Handling Japanese text.
o Delimiting words.
o Delimiting sentences.
+ Comparing and sorting.
+ Converting between Shift-JIS and Unicode.

+ Compressing Unicode.

¢ Formatting Japanese text.
+ Line breaks.
» Dates.
+ Times.

+ Numbers.

W Japanese text entry

Using a keyboard to enter Japanese kanji is a cumbersome and time-consuming
process. One of the most exciting features of PenPoint 2.0 Japanese is Japanese
handwriting recognition.

With PenPoint 2.0 Japanese, users can simply write Japanese characters on their
PenPoint machine and the handwriting recognition engine translates the characters
into a machine-readable form. You do not have to write any code to support this
feature.

% Handwriting recognition
The handwriting engine shipped with PenPoint 2.0 Japanese recognizes all of the
JIS kana, romaji, and almost all of the JIS levels 1 and 2 kanji. See “Character recog-
nition” on page 256 for more details on which characters the handwriting engine
recognizes.

256 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

Here are a few tips that help the handwriting recognizer achieve higher accuracy.
You might mention these tips in your user documentation:

¢ Use the correct stroke order. Each Japanese character has a standard stroke
order. Although the engine recognizes popular variations on the stroke order,
recognition is better with the standard stroke order.

¢ Print neatly. Highly curved and joined strokes take more time to recognize.

¢ Keep radicals separate. Many Japanese characters are composed of two or
more radicals. Do not overlap them when writing.

¢ Do not add extra strokes. The engine tolerates missing strokes but not addi-
tional strokes.

¢ Experiment with simplified forms of a character. The engine recognizes tradi-
tional as well as some of the simplified forms of a character.

%» Character recognition
The handwriting engine recognizes all of the JIS Level 1 kanji (2,965) and roughly
2,900 of the 3,390 Level 2 kanji. The unrecognized characters fall into three
categories:

¢ Radicals that are not complete characters in themselves, suchas | = J .
Rarely used characters, such as i i fif§ .

¢ Rare variants of a character whose common style is recognized, such as

Users can enter characters not recognized by the handwriting engine in one of
three ways:

& Kana-kanji conversion (KKC) allows users to “spell” the kanji character in
either hiragana or katakana. The user then converts the kana sequence into a
kanji character. See “Kana-kanji conversion” on page 257 for more details

J] pag
on KKC.

¢ Romaji-kanji conversion (RKC) allows users to type in the English romaniza-
tion for a kanji character. PenPoint 2.0 Japanese uses the Hepburn system of
romanization. See “Romaji-kanji conversion” on page 258 for more infor-
mation.

¢ The Unicode Browser, a PenPoint accessory, allows users to enter these charac-
ters from a collection of pop-up lists. See “Unicode Browser” on page 279 for
details. The document New UI Features in PenPoint 2.0 shows you how to use
the Unicode Browser.

Because the fonts shipped with PenPoint 2.0 Japanese contain glyphs for all Level 1
and 2 characters, your application can display these characters even though the
handwriting recognition engine cannot recognize them. The limitation discussed
here applies only to the character recognition engine.

%r Punctuation recognition

CHAPTER 22 / PROCESSING JAPANESE TEXT 257
Japanese text entry

The handwriting engine recognizes the following Japanese punctuation marks and
symbols. ASCII punctuation marks are used primarily with romaji, although there is

some overlap. Japanese, for example, uses the English question mark.

See the Unicode Standard, Volume 1, pages 332 through 338, for representative

glyphs.

Japanese punctuation marks

TABLE 22-1

Unicode
valve

U+3002
U+3001
U+30FB
U+30FD
U+30FE

U+309D
U+309E

U+3003
U+3004

U+3005
U+3006
U+3007
U+30FC

U+300C
U+300D
U+3012

Unicode name

Ideographic period
Ideographic comma
Katakana middle dot
Katakana iteration mark

Katakana voiced interaction mark

Hiragana iteration mark

Hiragana voiced interation mark

Ditto mark

Ideographic ditto mark

Ideographic iteration mark
Ideographic closing mark
Ideographic number 0

Katakana-hiragana prolonged sound

mark

Opening corner bracket
Closing corner bracket
Postal mark

% Kana-kaniji conversion

Use

Denotes end of sentence.

Indicates pause, clarifies sentence structure.

3 / JAPANESE LOCALIZATION

Separates loanwords that may be unfamiliar to the reader.
Indicates that the previous katakana character should be repeated.

Indicates that the previous katakana character should be repeated
as a voiced character.

Indicates that the previous hiragana character should be repeated.

Indicates that the previous hiragana character should be repeated
as a voiced character.

Indicates above line should be repeated.

Used like a ditto mark to indicate the line above should be
repeated.

Indicates previous kanji should be repeated.
Indicates a deadline (for example, to mail in tax forms).
Denotes the number 0, commonly seen on business cards.

Used to indicate that the previous kana sound should be
elongated.

Used to start a quotation.
Used to end a quotation.

Indicates Japanese postal code, analogous to U.S. zip codes.

The typical method of entering Japanese with a personal computer is called kana-
kanji conversion (KKC). The approach is as follows.

The user types kana with a Japanese keyboard. The user then presses a special key to
convert a sequence of kana to a single kanji character.

Japanese has many homophones, words that sound alike. Consequently, a single
sequence of kana specifies a number of possible kanji. After the user presses the
convert key, a list of possible matches appears, and the user then selects the desired

character.

PenPoint 2.0 Japanese supports this method of entering kanji in addition to the
direct handwriting recognition discussed above. Users can type or write kana char-
acters, and then initiate KKC by pressing a special key (the space bar on American
keyboards and a dedicated KKC key on Japanese keyboards) or by using the right up

—! gesture.

258 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

The easiest way to provide KKC support in your application is to use a PenPoint 2.0
Japanese object that implements the behavior. Instances of cIsIP or clsField auto-
matically support KKC without any additional code.

To provide KKC support with your own custom objects, read the protocol described
below in “Supporting KKC and RKC.” Also see “Supporting kana-kanji conver-
sion” on page 296 for a code sample.

% Romaiji-kaniji conversion
A process similar to KKC called romaji-kanji conversion (RKC) allows users to

enter Japanese characters by typing English letters. The letters are first translated
into kana, which then undergo KKC to specify a list of possible kanji.

For example, if the user types the word #ihongo and hits the convert key, the inser-

tion pad replaces nihongo with Japanese characters. nihongo= H A&

Users can use an attached keyboard or PenPoint’s virtual keyboard to type Japanese
characters. The space bar initiates RKC on the English keyboard. The Japanese key-
board has a dedicated conversion key, as well as extra keys for scrolling through
alternatives and reversing the conversion.

See “Using keyboards” on page 261 for tips on using the keyboards to type
Japanese.

% Supporting KKC and RKC

The easiest way to support KKC and RKC is to create an instance of cIsIP or clsField
because these objects already support both character conversions. In general, only
sophisticated text-processing applications, such as word processors, need create
their own classes to handle KKC and RKC.

If you create your own class to support KKC and RKC, it should follow the protocol
described below. Before we describe the protocol, you should know about three
new PenPoint 2.0 Japanese classes.

The first new class, called clsCharTranslator, is an intermediary between clients
that want to support character translation and services that provide character trans-
lation functionality. Because clsCharTranslator is an abstract class, its descendant
cIsKKCT serves as the actual intermediary.

Both these classes receive messages from the client (often via clsGwin, as described ooOect)

below), and then request services from cIsKKC. Because cIsKKC is a descendant of —]
clsService, it provides APIs for requesting services to perform actual character trans-

lations. This architecture permits you to replace the translation engine provided DleChar ‘
with PenPoint 2.0 Japanese with your own engine.

Because the character translator requests gesture information, its clients are almost olokKC-

. . CharTranslator
always subclasses of clsGWin. Every instance of clsGWin creates a character trans-

lator (during msglnit) to which it sends translation requests.

! Client
You can specify which translator clsGWin sends the message to by filling in the (Subclase

of clsGWin)
LOCALE_ID field of GWIN_NEW_ONLY. If you do not specify a translator, clsGWin

\

cleService

CHAPTER 22 / PROCESSING JAPANESE TEXT 259
Japanese text entry

creates a translator appropriate to the system locale. The default translator for Japan

(locJpn) is an instance of clsKKCT.
Here is an example of the protocol in action, described as cIsIP implements it:

1 The user writes a few kana characters in an insertion pad, then requests KKC
with the right up —! gesture, as shown in Figure 22-1. When the pad receives a
gesture, it self-sends the message msgCharTransGesture.

Handling the KKC gesture FIGURE 22-1

Send msgCharTrans-
Gesture when the user
makes a gesture.

3 / JAPANESE LOCALIZATION

Respond to msgCharTrans-
CetClientBuffer by sending
the requested portions of
your text buffer.

2 Rather than handling the message itself, cIsIP allows the message to be han-
dled by clsGWin. In turn, clsGWin sends the message to the character trans-
lator it created as part of its response to msglnit. Again, for PenPoint 2.0
Japanese, the default translator is an instance of cIsKKCT.

3 When the character translator (an instance of cIsSKKCT) receives the gesture
information it determines if the gesture is relevant to character translation.
Since the right-up gesture explicitly requests KKC, it sends the msgCharTrans-
GetClientBuffer to the client (clsIP) requesting a portion of its buffer.

4 The client sends the requested characters in response to msgCharTransGet-
ClientBuffer.

5 The translator communicates with cIsKKC, the front-end to the actual service
that provides KKC. In this case, a translation is needed, so the translator sends
msgCharTransModifyBuffer with the translation to the client.

6 Using information sent with msgCharTransModifyBuffer, the insertion pad
updates its internal buffer and user interface to display the translated char-
acter. Note that in the result, shown in Figure 22-2, the translated characters
are highlighted. The arguments sent with msgCharTransModifyBuffer con-
tain information on which characters to highlight. See Part 6: PenPoint User
Interface Design Reference Supplement for details on how character highlighting
should behave during KKC.

Displaying the translated characters FIGURE 22.2

Handle msgCharTrans-
ModifyBuffer to display
the result of character
translation.

260

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

7 The user then requests a list of alternatives by tapping on the highlighted
character. The insertion pad self-sends msgCharTransGesture, again allowing
the message to be handled by cIsGWin.

8 The translator receives the message from clsGWin and queries cIsKKC for
character alternatives. It also asks the client where the character alternatives
pop-up box should be placed by sending msgCharTransProvideListXY. The
insertion pad calculates the coordinates of the upper-left corner of the pop-up
box. The pop-up box should appear directly below the original character.

Handling a character alternatives request FIGURE 22-3

Self-send msgCharTrans-
Gesture to notify the
character translator of
the user’s tap.

Handle msgCharTrans-
ProvidelistXY to let the

- character translator
calculate where to place the
character alternatives list.

' Handle msgCharTrans-

. ModifyBuffer to update
your buffer with the user's
choice.

9 If the user selects an alternative from the pop-up box, the translator sends

msgCharTransModifyBuffer to the insertion pad. The insertion pad then

updates its buffer and user interface.

10 When the user taps OK to dismiss insertion pad, the pad self-sends msgChar-
TransGoQuiescent to reset the translator in preparation for the next character
translation request.

The description above does not exhaust the messages involved in the character
translation protocol. For example, it did not mention any of the messages involved
for supporting keyboard input. The following paragraphs describe the most impor-
tant messages involved in the protocol.

The client should self-send the following four messages when appropriate. How-
ever, the client should not define a method to handle the message. Rather, the client
should allow the message to be passed up to clsGWin.

1 Self-send msgCharTransKey each time the user presses a key.

2 Self-send msgCharTransChar each time the user edits an existing buffer (for
example, when the user inserts or deletes a character). Normally, you need not
send this message as the user writes a new character. See step 4 below for han-
dling this case.

3 Self-send msgCharTransGoQuiescent to cancel the current translation. When
the user taps outside an insertion pad, for example, cIsIP self-sends msgChar-
TransGoQuiescent.

4 Self-send msgCharTransGesture each time the user makes a gesture on
your text. '

CHAPTER 22 / PROCESSING JAPANESE TEXT

The client should respond to the following messages sent by the character
translator:

msgCharTransModifyBuffer, which contains information on how to translate
characters. The client should respond by updating its text buffer and user
interface, including updating strong and weak highlighting. The character
translator sends the client a CHAR_TRANS_MODIFY structure containing
all the relevant information.

msgCharTransGetClientBuffer, which asks the client for some text from its
buffer. Pass the requested text to the character translator as part of a
CHAR_TRANS_GET_BUF structure.

msgCharTransProvideListXY, which asks the client where to put the charac-
ter alternative list. The client should compute root window coordinates so
that the pop-up box appears below the original character.

See “Supporting kana-kanji conversion” on page 296 for more details and a code
sample.

% Using keyboards

The PenPoint operating system 2.0 Japanese supports a number of keyboards
including;

¢ IBM Japanese AO1.

¢ IBM U.S. keyboard (IBM AT).

¢ Toshiba laptop keyboards (Toshiba Dynabook 386/20).
¢ Toshiba desktop keyboards (Toshiba J3100ZS).

¢ AX Consortium keyboard (Okidata 486 VX530)

Set the Keyboard variable in MIL.INI to identify your keyboard. Valid values are
shown in MIL.INL

Here are some tips when using the American keyboard:

¢ The keyboard has two modes: One lets you type English characters, the other
Japanese characters. Press Ctrl-Shift-L to toggle between modes.

¢ If you are having problems toggling modes, cancel the insertion pad, press
Ctrl-Shift-L, and then open another pad.

¢ Press the space bar to initiate KKC or RKC.

¢ In Japanese mode, alphabetic keys map to hiragana. Hold down the Shift key
to enter katakana.

¢ Use the up and down arrows to scroll through the character alternatives pop-

up box.

The Japanese keyboard has dedicated keys to initiate character conversion, scroll
through character alternatives, and adjust the current selection.

Japanese text entry

261

3 / JAPANESE LOCALIZATION

262 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

The virtual keyboard included as a PenPoint 2.0 Japanese accessory emulates both
American and Japanese keyboards. Bring up the keyboard from the Accessories
notebook and make the check gesture on the keyboard title bar to select an emu-
lation mode. See “Japanese virtual keyboard” on page 279 for more information.

¥ Handling Japanese text

PenPoint 2.0 Japanese provides a collection of international functions to perform
tasks like formatting dates and times, sorting, and word and paragraph selection.
Because the desired behavior of these functions varies widely between locales, the
international functions accept an argument that identifies a locale. The value of this
argument determines the function’s behavior.

Remember that in this context, a locale identifies a country, a language, and an
optional dialect. The default locale in PenPoint 2.0 Japanese is Japan, which is
defined as the 32-bit locale identifier locJpn in GOLOCALE.H.

See Table 22-2 for a summary of the default behavior of the most important inter-
national functions for Japan. The rest of this chapter provides more details by
describing how Japanese is typically processed. Topics include line breaking,
selecting words, sorting, and more.

See Part 2: PenPoint Internationalization Handbook for general information on
these international functions and locales. Most of the international functions are
defined in \2_O\PENPOINT\SDK\INC\ISR.H.

Chapter 24, Procedures, describes how to use PenPoint’s international functions to
give your applications the behavior described here.

If your application needs to provide appropriate behavior in just the default locale
locJpn, use the Loc...() macros rather than the Intl...() functions. For example,
here is the definition of LocDelimitWord() from ISR.H. Calling LocDelimitWord()
in PenPoint 2.0 Japanese delimits the Japanese equivalent of a word. |
#define LocDelimitWord(tx, s, st) IntlDelimitWord (tx, s, int1lDefaultLocale, st)

Notice that it calls the equivalent international function, sending intlDefaultLocale
as an argument.

Japanese behavior of international functions TABLE 22-2

Function Defauli behavior

IntlDelimitWord () Delimits a bunsetsu.

IntlDelimitSentence() Delimits a sentence ended by an ideographic period or other punctuation
mark.

IntlBreakLine() Prevents taboo characters from beginning or ending a line.

IntlSecToTimeStruct() Converts time since 1970 from seconds to the Imperial calendar system.

IntTimeStructToSec() Converts from the Imperial calendar system to seconds since 1970.

IntlFormatS32() Adds thousands separators and a minus sign, as in —1,234,567.

IntFormatNumber() Same as IntlFormatS32(), only adds decimal points as needed.

IntlFormatDate() Displays kanji to separate era, day, month, and year.

IndFormatTime() Displays A.M./PM., hours, and minutes with kanji separators.

CHAPTER 22 / PROCESSING JAPANESE TEXT 263
Handling Japanese text

Japanese behavior of international functions TABLE 22-2 {continued)

Function

Defauvlt behavior

IntiParseS32() Parses signed integers with thousands separators, decimal point, minus signs.
IntlParseNumber() Same as IntlParseS32(), only parses floating-point numbers.

IntlParseDate() Parses calendar format with kanji to indicate day, month, year.

IntlParse Time() Parses A.AM./PM., hours, minutes, with kanji separators.

IntlCompare() Compares Unicode values of two characters.

IntlSort() Sorts characters by Unicode value.

IntIMBToUnicode() Converts latest Shift-JIS encoding (1990) to Unicode.

IntlUnicodeToMB() Converts Unicode to latest Shift-JIS encoding (1990) to Unicode.

Many of these functions are discussed in detail in the rest of this chapter.

Delimiting words

The Japanese equivalent of an English word is called a bunsetsu, which literally
means a phrase.

Text with selected bunsetsu FIGURE 22-4

The rules for delimiting an English word are relatively straightforward because
English uses spaces and punctuation to separate words. Japanese does not use
spaces, so the rules for locating a bunsetsu are quite complicated.

Call the PenPoint 2.0 Japanese function LocDelimitWord() to locate a bunsetsu.

The prototype for the international function follows. Remember that the Loc...()

macro calls the Intl...() function, passing intlDefaultLocale as the LOCALE_ID.
S32 EXPORTED IntlDelimitWord (

P_CHAR pString, // Beginning of text region

P_U32 pStart, // In/Out: seed position/start of word
LOCALE_ID locale, // Locale to use -- from golocale.h .
U32 style // Delimit style -- from isrstyle.h

)i
This function and the IntlDelimitSentence() function both take a start position
and return the start and length of the requested item (a word or sentence). The
length is returned by the function, and the start position is returned as one of its
out parameters pStart.

Use the intlDelimitExpandLeft or intlDelimitExpandRight flags to extend the
selection in a single direction one bunsetsu at a time. See the file ISRSTYLE.H for
more details and other valid styles.

See “Delimiting words” on page 289 for more details on how to locate bunsetsu in
your application.

3/ JAPANESE LOCALIZATION

[

264 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

% Delimiting sentences

Japanese uses a mark called a maru to end a sentence. It works similarly to the
English period. Unicode calls the symbol the ideographic period (U+3002) because
it is common to Chinese, Japanese, and Korean.

Text with senfence selected FIGURE 22-5

Use the LocDelimitSentence() macro to find a sentence in a text stream. Here is

the prototype:
S32 EXPORTED IntlDelimitSentence (
P_CHAR pString, // Beginning of text region
P _U32 pStart, // In/Out: seed position/start of sentence
LOCALE ID locale, // Locale to use -- from golocale.h
U32 style // Delimit style -- from isrstyle.h

)i

See “Delimiting sentences” on page 290 for details on how to locate sentences in
your application.

% Comparing and sorting

There is a well-established ordering for the kana characters. The characters are
arranged according to the sounds of the “Fifty Sounds Table.” You can find the
table in any Japanese dictionary or introduction to Japanese writing. See Chapter
25, Resources, for references to some of these texts.

The kanji characters, however, are more difficult to order. Popular dictionaries sort
characters by radical. Within radicals, they sort characters by the number of addi-
tional strokes, not including the radical, it takes to write the character.

The JIS character list, unfortunately, is not uniformly ordered this way. The Level 1
kanji are ordered phonetically (that is, by their kana equivalents), while the Level 2
kanji are ordered by the radical-stroke scheme.

In a Shift-JIS text that contains both Level 1 and Level 2 kanji, sorting characters is
quite a challenge. Fortunately, the Unicode encoding already puts Japanese charac-
ters in sorted order. Thus PenPoint 2.0 Japanese can sort Japanese characters simply
by their Unicode value. Specify the intlSortStyleDictionary style when you call
IntlCompare() or IntlSort() to sort by radicals and number of strokes.

For more information on how Unicode orders Japanese characters, see The Unicode
Standard: Version 1.0, Volume 1.

The other available sort and compare style is intlSortStylePhoneBook. If you
specify this style, the sort and compare functions use the JIS ordering for Level 1
kanji; that is, comparing and sorting is done phonetically. There are various compli-
cated comparison rules for characters outside of the Level 1 kanji.

CHAPTER 22 / PROCESSING JAPANESE TEXT 265
Handling Japanese text

Here is the prototype for the IntlSort() function:

STATUS EXPORTED IntlSort(
PP_CHAR ppString, // list of strings to sort

U32 count, // number of strings in list
LOCALE _ID locale, // Locale to use -- from golocale.h
U32 style // Collation style -- from isrstyle.h

)i
See “Comparing strings” on page 291 and “Sorting strings” on page 292 for details
on how to give your application comparison and sort capabilities.

Converting between character variants

There are four typical character conversions you may want to support:
¢ Katakana to hiragana.
¢ Hiragana to katakana.
¢ Zenkaku (full-width) to hankaku (half-width).
¢ Hankaku to zenkaku.

The width conversion functions work with the ASCII and katakana characters. The
normal size for katakana is full-width (zenkaku), and the normal size for alphanu-

merics is half-width (hankaku).

You can convert individual characters or strings. Functions that work on individual
characters are in CHARTYPE.H, and have names that begin with IntlChar...(), as in
IntlCharToUpper(). The string conversion functions, defined in ISR.H. are IntIStr-
Convert() and IntINStrConvert().

All of these functions convert a Unicode character or string to another Unicode
character or string. They do not convert between character sets. For more informa-
tion on conversions between character sets, see the next section, “Converting

between Shift-JIS and Unicode.”

The Unicode representation of zenkaku and hankaku are in a special area called the
Unicode Compatibility Zone, which extends from U+FE00 to U+FFEE The zone
contains character variants that exist in Unicode solely to be compatible with other
characters sets like Shift-JIS.

The string conversion functions also support conversions to and from the Compat-
ibility Zone. Your application might, for example, import a Shift-JIS text, convert it
to Unicode, and then convert all the characters in the Compatibility Zone to their
equivalents outside of the Compatibility Zone. This would convert any half-width
katakana characters to full-width katakana. It would also convert any full-width
alphanumerics to half-width. Think of conversions out of the Compatibility Zone
as converting characters to their most typical form.

The string and character conversion functions also handle conversions between
upper and lowercase and between composed characters and their base character
plus diacritical mark equivalent.

See “Converting between character variants” on page 287 for details on how to pro-
vide character conversion support in your application.

3 / JAPANESE LOCALIZATION

See the header file
CHARTYPE.H for more
information about how the
character conversion functions
work. Some functions provide
only an approximation of the
desired conversion.

266 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

%> Converting between Shift-JIS and Unicode

Many existing Japanese files are in Shift-JIS format. Therefore, your application
may want to provide import capabilities for Shift-JIS files. PenPoint 2.0 Japanese
provides functions named IntIMBToUnicode() and IntlUnicodeToMB() to con-
vert between Shift-JIS to Unicode strings. The default translation converts to and
from the latest (1990) Shift-JIS encoding.

See “Converting Unicode and Shift-JIS strings” on page 286 for details on how to
use these functions.

If you are converting a string that contains a filename, set the intlCharSetFileNa-
meMapping flag. Because operating systems use different characters to represent
path and file names, the string conversion function must know whether the string
to be converted is (or contains) a filename. For example, most Japanese versions of
DOS use the yen (¥) character to separate path names, while most U.S. English ver-
sions of DOS use the backslash (\) character.

To convert entire files between different character sets, use the DOS utility UCON-
VERT. See “Converting Unicode and Shift-JIS files” on page 285 for details.

% Compressing Unicode

Unicode can be efficiently compressed when written to a file, especially if all the
characters in the text stream are from the same character set (for example, all ASCII
text).

All Unicode characters are 16-bits long. Shift-JIS, on the other hand, uses a single
byte to encode hankaku, katakana, and ASCII characters, and two bytes to encode a
all other Japanese characters. Thus, the two character encodings require roughly the
same amount of memory with mostly Japanese text.

When filed, however, Unicode data can be compressed. PenPoint 2.0 Japanese pro-
vides functions that allow you to compress Unicode strings before filing them. Typ-
ically, these compressed Unicode files store Japanese text using less space than the

identical Shift-JIS file.

Call IntlCompressUnicode() and IntlUncompressUnicode() to compress and
decompress Unicode strings. See the header file ISR.H for more information.

? Formatting Japanese text

The following sections describe Japanese text formatting conventions. Table 22-3
shows some of these conventions.

PenPoint 2.0 Japanese provides many formatting functions that provide appro-
priate formatting behavior for Japanese text. Your application should simply call
these functions whenever they are available.

The only formatting convention shown in Table 22-3 that does not have native
PenPoint 2.0 Japanese support is phone number formatting. Your application
should provide its own formatting functions to handle phone numbers. Note that
the number of digits in a Japanese area code varies with geographical location.

CHAPTER 22 / PROCESSING JAPANESE TEXT 267
Formatting Japanese text

TABLE 22-3

Default Japanese Formatting

Formatting area American English formatting Default Japanese fermatiing
Daie Formatting 3/31/92 199243 F 31

Time Formatting 11:45 PM. 1831514y

Number Formaftiné 1,234,567.89 1,234,567.89

Currency Formatting $1995.95 ' ¥199,500

Phone Numbers (415) 358-2000 (045) 472-6000

Paper Sizes Letter, 8.5 in. x 11 in. A4,210 cm x 297 cm

Table 22-3 shows the default format for a Western-style (Gregorian) date. See Table
22-5 for the default formatting of an Imperial calendar date.

Line breaks :

Japanese, like most other languages, does not permit certain characters to appear at
the beginning or end of a line. For example, in both English and Japanese, you
cannot begin a line with a close parenthesis or end a line with an open parenthesis.

Japanese characters do not use hyphens when they break across lines. Either a break
is permitted and the subsequent characters continue onto the next line, or no break
is permitted.

When romaji appears in text, Japanese uses the same rules as English for line breaks.

Call IntlBreakLine() to ensure your text breaks correctly. The function uses an
INTL_LINE_BREAK structure to contain information about how to break a line.
Here is the structure, defined in ISR.H:

typedef struct INTL_BREAK_LINE {
U32 DbreakAt; // position of line break
U32 deleteThis; // chars to delete from end of this line
CHAR insertThis[intlBreakLineMaxInsert];
// chars to insert at end of this line
U32 deleteNext; // chars to delete from start of next line
CHAR insertNext[intlBreakLineMaxInsert];
// chars to insert at start of next line
} INTL BREAK LINE, *P INTL BREAK LINE;

Because Japanese does not need hyphens to indicate a line break, you do not need
to use the fields when dealing with Japanese characters. However, because Japanese
follows the same rules as English when text contains romaji, your code should be

prepared to handle these fields. Here is the prototype for IntlBreakLine() itself:

S32 EXPORTED IntlBreakLine (
P_CHAR pString, // Line to break
U32 pos, // lst char that won't fit
P_INTL BREAK LINE pBreak, // Out: how to break it
LOCALE ID locale, // Locale to use
U32 style // breaking style

)i
See “Delimiting words” on page 289 for details.

3/ IAPANESE LOCALIZATION

|

The line break function does
not currently support
hyphenation, so the various
insert and delete fields in
INTL_BREAK_LINE are empty.
Hyphenation support is
planned for future releases of
FenFoint.

268

P

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

Dates

Japanese uses two different date formats. One is based on the Western-style
Gregorian calendar, the other on the Japanese imperial calendar. In the Japanese
imperial calendar, the year 1992 is called Heisei 4, the fourth year of the reign of
the current emperor. Otherwise, the two calendar systems are identical.

The international functions use the structure INTL_TIME, defined in ISR.H, to rep-
resent the current time. The INTL_TIME structure contains a field to represent the
era. Use macros defined in GOLOCALE.H to fill in this field if you use the era field
to represent, for example, a Japanese imperial date.

Table 22-4 shows the four Japanese eras that PenPoint 2.0 Japanese supports, along
with the macro that represents the era. '

Supported Japanese eras . TABLE 22-4
Era name Macro in GOLOCALEH Years

Meiji itcEraMeiji 1868-1912

Taisho itcEraTaisho 1912-1926

Showa itcEraShowa 1926-1989

Heisei itcEraHeisei 1989—present

Call IntlFormatDate() to get a formatted date string from an INTL_TIME structure.
The functions accept a number of style flags that can present dates in various for-
mats, examples of which are shown in Table 22-5.

Date formais TABLE 22-5
Deate Locale and style

199243 431 H locJpn, indFmtDateStyleFull

k43 H31H loc]pn, intlFmtDateStyleFull; intlSecTo TimeStructStyleJapanese
1990.1.15 locJpn, intlFmtDateStyleAbbrv

90/1/15 loc]pn, intlIFmtDateStyleNumeric

January 15, 1990 locUSA, intlFmtDateStyleFull

Jan. 15, 1990 locUSA, intlFmtDateStyleShort

1/15/90 locUSA, intlFmtDateStyleNumeric

15-Jan-90 locUSA, intlFmtDateStyleAbbrv

You use the intlSecToTimeStructStyleJapanese style with the IndSecToTime-
Struct() function. All the other styles shown work with IntlFormatDate().

If you cannot create the date string you want, IntlFormatDate() also accepts an
explicit format string. The string represents a date string constructed from its con-
stituent parts. PenPoint 2.0 Japanese allows you to construct a date string using any
of the following parts: day, month, year, day of the week, day of the year, and an
era. See the header file ISRSTYLE.H for more information.

CHAPTER 22 / PROCESSING JAPANESE TEXT
Formatting Japanese text

You can also format a date according to user-specified system preferences. The func-
tion PrefsIntlDateToString() returns a pointer to the string containing a formatted
date when you pass it a P_INTL_TIME structure. The function is defined in
PREFS.H.

See Chapter 107 in the PenPoint Architectural Reference for more general informa-
tion on how to observe system preferences.

Times

Japanese uses almost the same time formats as American English. The only differ-
ence is that kanji characters are used to distinguish hours, minutes, seconds, and
whether the time is A M. or PM. Table 22-6 shows some of the time formats you can
create by specifying the appropriate styles when calling IntlFormatTime(). All of
the examples below assume the locale is locJpn.

269

Time Formats TABLE 22-6

Time Locale and styles

158514 intlFmtTimeStyleLocal

15055143 3455 intlFmtTimeStyleLocal, int!FmtTimeDispSeconds

1830551453 intlFmtTimeStyleLocal

15305145 340 intIFmtTimeStyleLocal, intIFmtTimeDispSeconds

3:514-%% intdFmtTimeStyleStandard

3:51:34F-1% intlIFmtTimeStyleStandard, intlFmtTimeDispSeconds

13:51:34 intlFmtTimeStyleStandard, intlFmtTimeForce24Hour,
intlIFmtTimeDispSeconds

13:51 intlIFmtTimeStyleStandard, intlFmtTimeForce24Hour

Numbers

Japanese uses Arabic numerals to represent numbers for most purposes. In more
formal settings, however, Japanese text uses kanji to represent numbers. PenPoint
2.0 Japanese currently supports only Arabic numerals, although ISRSTYLE.H defines
a style intl FmtNumStyleKanji for future use.

Numbers like 1,234,567 are split every thousand with commas as they are in
English. Specify the default style intlStyleDefault when you call one of the number

formatting functions to format numbers this way.

Japanese occasionally uses an older style of formatting that puts a comma after
every ten thousand, as in 12,3456. You must provide your own formatting function
if you want to support the older style.

Remember that Japanese currency amounts can get quite large. Billions of yen are
not uncommon in typical texts. Remember to set aside screen space to display all
the necessary digits.

3 / JAPANESE LOCALIZATION

270 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

Call IntlFormatS32() or IntINFormatS32() to format a signed integer. The equiva-
lent functions IntiINFormatNumber() and IntlIFormatNumber() work on floating
point numbers.

You can specify many styles that control how numbers are formatted. The following
listing comes from ISRSTYLE.H.
/ *
The style flags for number formatting give you extensive control of

how the number is formatted. They work for both the FormatS32 and
the FormatNumber (double) functions.

intlFmtNumLeftJustify: Add padding spaces on the left so that the
decimal points align. This is based on the number of characters not
their widths, so it only works with fixed width fonts.

int1FmtNumRightJustify: Add padding spaces on the right so that the
decimal points align. This is based on the number of characters not
their widths, so it only works with fixed width fonts.

int1FmtNumDropTrailZeros: Drop trailing zeros after the decimal point.
E.g. 23.020 would become 23.02 with this set.

int1FmtNumScale: Move the decimal place to the left by the
number of digits specified by the 'scale' parameter. E.g. a scale of
two would cause 1234. to come out as 12.34 when this flag is set.
int1FmtNumSpaceFill: Force the fill character to be a space. So
if the results of a format would have been "***23.4" it would instead
be " 23.4".

int1FmtNumZeroFill: Force the fill character to be a zero. So
if the results of a format would have been "***23.4" it would instead
“be "00023.4".

intlFmtNumForceDecimal: Force a decimal point to be displayed
even if it would not normally be shown. E.g. "123" would become
"123." with this set. This is usually used with a scale of 0 or if
int1FmtNumDropTrailZeros is set.

int1FmtNumDisplayPositive: Force the display of the sign on
positive numbers. E.g. "123" would become "+123" with this set.

*/
#defineint1FmtNumLeftJustifyflaglé // Pad to align on left side
#defineint1FmtNumRightJustifyflagl? // Pad to align on right side
#defineint1FmtNumDropTrailZerosflagl8 // Drop trailing zeros in fraction
#defineint1FmtNumScale flagl9 // Move decimal by scale

" #define intlFmtNumSpaceFillflag20 // Use space character for fill
#define intlFmtNumZeroFillflag2l // Use 0 digit for fill
#define intlFmtNumForceDecimalflag22 // Use decimal even if not needed
#define intlFmtNumDisplayPositiveflag23 // Sign on positive num. (e.g. +5)
/*

Each style specifies a general way of formatting a number. The details depend on
the locale and the style flags you give. Also some of the styles are specific to some
regions of the world, and do not make sense everywhere.

int1FmtNumStylePlain: The simplest format for the locale. No

thousands separators or other fancy stuff. In USA & Japan you get
results like "1000.0" and "-1000.0" with this.

int1FmtNumStyleSimple: Default] This is the standard format used

in the locale. It normally includes the thousands separators. 1In
USA & Japan you get results like "1,000.0" and "-1,000.0" with this.

CHAPTER 22 / PROCESSING JAPANESE TEXT 271
Formatting Japanese text

int1FmtNumStyleAccounting: This is the typical style of numbers used
by accountants and such for the locale. In USA & Japan you get
results like "1,000.0" and "(1,000.0)" with this. This format always
uses some non-blank form of fill by default. For example "**3.45" is

used in USA and Japan.

int1FmtNumStyleFillSign: A common style in some places is to put the
space fill between the sign and the number. This style is only

defined for locales where this makes sense. In USA & Japan you get
results like "- 1,000.0" with this.

intlFmtNumStyleKanji: <<Not implemented>> This style indicates you
want Kanji digits instead of the normal 0-9.

*/

// International styles

#define intlFmtNumStylePlain0x0001
#define intlFmtNumStyleSimple0x0002
#define intlFmtNumStyleAccounting0x0003

// Common European/North American styles
#define intlFmtNumStyleFillSign0x0004

// e.g. 1000.0 & -1000.0
// e.g. 1,000.0 & -1,000.0
// e.g. 1,000.0 & (1,000.0)

3 / JAPANESE LOCALIZATION

// e.g. "- 1,000.0"

// Japanese Number Format styles, NOT supported at this time

#define intl1FmtNumStyleKanji0x0005

// Use Kanji digits

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 3 / JAPANESE LOCALIZATION HANDBOOK

Chapter 23 / Development Environment

The Japanese localization of the PenPoint™ 2.0 Japanese operating system devel-
opment environment contains many tools, utilities, and sample files that help you
edit, compile, link, and debug Japanese applications. This chapter highlights the
available tools, but does not discuss them in detail. More detailed information can
be found in PenPoint Development Tools and Part 4: PenPoint Development Tools
Supplement, in this book.

This chapter assumes that you are familiar with the process of creating PenPoint
applications. For more information on these topics, consult the PenPoint Applica-
tion Writing Guide, Expanded Edition and the two manuals mentioned above.
Chapter 28 of Part 4: PenPoint Development Tools Supplement contains a visual
overview of the entire process of creating PenPoint 2.0 Japanese applications

and services.

W Development tools

This section describes the tools you should use to edit, compile, and make
applications.

% Text editors

Your source code consists mostly of ASCII files since it is mostly C code.

Sometimes, though, your code contains literal Japanese strings. For example, the
Japanese version of your application resource file, JPN.RC, must contain Japanese
strings encoded as a combination of ASCII and Shift-JIS. Your application uses the
Japanese strings in JPN.RC in its user interface.

The easiest way to work with Shift-JIS files is with a Shift-JIS editor. Most editors
popular in the U.S. have Japanese versions that allow you to edit Japanese text.

You can use MiniText as a Shift-JIS and Unicode editor. First, make sure the
PenPoint system locale is JPN by specifying it when you run the GO batch file:

go Jjpn
When MiniText imports a DOS file, it assumes high ASCII characters are part of a

Japanese character; that is, it assumes the file contains Shift-JIS data. See “Working
with Shift-JIS in text files” on page 283 for details.

Keep the number of files that contain Shift-JIS characters at a minimum. This will
make your project easier to maintain because all your Japanese strings are in one
place. In the best case, only your application resource file JPN.RC will contain Shift-
JIS characters.

274 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

¥ Compilers
Make sure your compiler can compile code containing 16-bit characters. You must

set the compiler flag that enables this feature when compiling code that contains
16-bit Unicode or multibyte Shift-JIS strings.

For example, if you are using the WATCOM C compiler, you must set the compiler
flag /zKoU. The standard makefile rules provided with the sample applications as
SDEFINES.MIF automatically set this flag.

The PenPoint 2.0 Japanese resource compiler RC.EXE also uses this flag because
your resource files often contain Shift-JIS characters.

% Debuggers

PenPoint 2.0 Japanese allows you to display Japanese strings in the debugger
stream. You can specify which character set you want to display using the Debug-
CharSet variable in ENVIRON.INI discussed in the next section.

You can view the debugger stream on a second monitor only if your debugger
stream contains ASCII characters.

To view kanji in the debugger stream, use the System Log application or save the
debugger stream to a file. See Chapter 10 of PenPoint Development Tools and
Chapter 30 of PenPoint Development Tools Supplement for information on saving
the debugger stream to a file.

The value of DebugCharSet also controls the interpretation of the mini-debugger
memory dump commands (d, da, db, dd, and dw). See Chapter 30 of PenPoint
Development Tools Supplement for details on debugging.

%» DebugCharSet

The DebugCharSet variable in ENVIRON.INI controls the character set of your
debugging output. Table 23-1 shows the currently permissible values.

Debug CharSet variable values TABLE 23-1
VYalue Deseription

ASCII » Standard 7-bit ASCII

XJIS 1990 Shift-JIS character set

437 IBM Code Page 437 used in U.S. IBM PCs

850 IBM Code Page 850 used in Européan IBM PCs

If you are sending debugging information to your PenPoint monitor or a second
debugging monitor, make sure it can display characters in the specified Debug-
CharSet. GO does not support using Shift-JIS monitors as second debugging moni-
tors. See Chapter 30, Debugging, of Part 4: PenPoint Development Tools Supplement
for information about how to see Shift-JIS in your ﬁles

CHAPTER 23 / DEVELOPMENT ENVIRONMENT 275
Development tools

Literal strings in Debugf() and DPrintf() appear in the specified character set.
Unsupported Unicode characters display as hex quads in PenPoint 2.0 Japanese.
On your monitor, they display as \x#nnn, where nnnn is a four-digit hex number.

The default value of DebugCharSet depends on the value of LOCALE, another
ENVIRONL.INI variable. If LOCALE=]PN, the default is Shift-JIS. The default is ASCII
if LOCALE=USA.

If DebugCharSet is set to an invalid value, the default character set is assumed.

% Makefiles

The standard makefile rules provided with the sample applications help you make
different localized versions of your application. If you write your makefile by tailor-
ing a makefile from a sample application, you can add a LOCALE argument to the
command line to make a particular localized version of your application. For
instance, type:

wmake LOCALE=3jpn

wmake LOCALE=usa
to create the Japanese and American versions of your application, respectively. If
you do not supply a LOCALE argument, JPN is the default locale.

You must create a file called JPN.RC to contain your application’s Japanese strings.
The file should at least contain strings for the tagAppMgrAppFilename and
tagAppMgrAppClassName. The standard makefile rules stamp the application
directory with the strings associated with these tags.

In your makefile, you can use three new variables to identify which resource files to
compile and copy into the application directory with the executable image.

GO’s sample makefile variables TABLE 23-2
Variable Use

RES_FILES Resource files to be included with all versions of your application.
USA_RES_FILES Resource files to be included with only the American version.
JPN_RES_FILES Resource files to be included only with the Japanese version of your application.

See Chapter 29 of PenPoint Development Tools for details on creating PenPoint
applications and services.

% DOS utilities

PenPoint 2.0 Japanese provides a collection of DOS utilities that help you work with
resource files, PenPoint file names, and international character sets. See Chapter 14
of PenPoint Development Tools and Chapter 31 of Part 4: PenPoint Development
Tools Supplement for detailed information on how to use the utilities.

3 / JAPANESE LOCALIZATION

276 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

The following table briefly summarizes the purpose of each utility.

DOS vutilities

TABLE 23-3

Name

PSTAMP.EXE

PDEL.EXE
PCOPY.EXE
PDIR.EXE

PSYNC.EXE

RC.EXE
RESAPPND.EXE
RESDUMPEXE
RESDEL.EXE
UCONVERT.EXE
CONTEXT.BAT

GO.BAT

LOCALE.BAT

Purpose

Adds special PenPoint information to a DOS file or directory. Replaces
STAMP from PenPoint 1.0. '

Deletes specific directory entries from PENPOINT.DIR files.
Recursively copies files and directories to other PenPoint directories.

Lists the PenPoint names and file systems attributes for all the files and
directories in a DOS directory. Replaces GDIR from the utilities included
with PenPoint 1.0.

Scans the current directory and removes any entries from PENPOINT.DIR
for which there are no corresponding files.

Compiles resource files.

Appends resources from one resource file into another.

Shows the contents of a compiled resource file.

Deletes specified resources from a compiler file.

Converts files between character sets, for example from Shift-JIS to Unicode.

A DOS batch file that sets the required DOS environment variables

PenPoint requires. Takes an argument to indicate which version of
PenPoint (1.0 or 2.0).

Boots PenPoint on your development machine, allowing choice of the system
and user locales.

Switches the system and user locales that PenPoint uses.

In PenPoint 2.0 Japanese, the PENPOINT.DIR file is in Unicode format, although
the utilities that deal with PenPoint information can still read ASCII files. For addi-
tional information on each utility, type -? or /? after most of these commands to see
a help message. For example, type PDIR /2 for help on the PDIR utility.

See PenPoint Development Tools and its supplement for more information.

You can set two DOS environment variables to notify the utilities which character
set or locale you typically work with.

CHARSET can be one of ASCII, 437, LATIN1, or 850 to denote a character set.
LOCALE can be either USA or JPN.

For example, if you specify a LOCALE of JPN, then the DOS utility PDIR will inter-
pret your PenPoint names as a Shift-JIS string.

Do not confuse the DOS environment variable with the LOCALE in ENVIRON.INI.
Only the DOS utilities are sensitive to the DOS environment variable. PenPoint
itself is sensitive to the LOCALE in ENVIRONL.INI.

If you want, set these environment variables in your AUTOEXEC.BAT with the DOS
command SET. Other character sets and locales are supported, but the ones listed
here are the relevant values for Japan.

CHAPTER 23 / DEVELOPMENT ENVIRONMENT 277

¥ Running PenPoint

You must remove any terminate-and-stay-resident (TSR) programs before booting
PenPoint 2.0 Japanese. Some TSRs use the same interrupts as PenPoint. This con-
flict causes boot error 106 (unknown boot error).

The easiest way to remove TSRs is to remove the programs in GO.BAT and reinstall
them, if necessary, after PenPoint exits. Comments in GO.BAT indicate where you
should remove and reload your TSRs.

The GO.BAT batch file now takes two optional parameters to specify the locales to
boot with:

go system locale user locale

When you specify a system locale, PenPoint’s behavior and user interface are
changed to be appropriate to the specified locale (U.S. or Japanese).

When you specify both a system and user locale, the batch file directs PenPoint to
change its behavior to match the system locale, but to change its user interface
strings to match the target locale.

When you type GO with no parameters, PenPoint boots in the same state as it was
last booted. If you type GO with no parameters and you are in DebugTablet mode,
PenPoint warm boots. See Chapter 30 of Part 4: PenPoint Development Tools Supple-
ment for more information about debugging modes and warm booting. For
example:

¢ 'To boot with Japanese behavior and strings, type
go jpn
¢ To boot with Japanese behavior, but English strings, type
go jpn usa
Because the batch file only controls the resource files PenPoint loads, the stamped
application and service names appear in the system locale language.

GO.BAT relies on LOCALE.BAT to do the locale switch. Make sure \2_0\PENPOINT\
SDK\UTIL\DOS is in your DOS PATH. Both GO.BAT and LOCALE.BAT require utili-
ties in that directory to switch locales.

When you specify a locale with GO.BAT (or LOCALE.BAT) the batch file recursively
deletes your \PENPOINT\SS directory. This deletes any documents that you had
saved in your PenPoint 2.0 Japanese file system. Make sure to save the files to your
hard drive if you need them.

Currently, only two locales are supported: JPN and USA. See page 45 of PenPoint
Development Tools for more information about the GO batch file. The manual
describes the PenPoint boot process, including the order in which files are read and
the actions that are taken as a result.

See Chapter 31 of Part 4: PenPoint Development Tools Supplement for details on how
the batch file coordinates the locale switching,

Development tools

i 3 7/ JAPANESE LOCALIZATION

Warning The GO.BAT and
LOCALE.BAT batch files delete
your PenPoint files when you
specify locales.

278 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

¥ PenPoint environment

This section describes the PenPoint 2.0 Japanese environment variables relevant for
developing Japanese applications.

% ENVIRON.INI

There are two important variables new to PenPoint 2.0 Japanese that you should set
when running Japanese applications.

¢ Locale can be set to USA or JPN. Its value controls PenPoint’s behavior and
appearance. Different locales use different fonts, dynamic link libraries, appli-
cations, and services. See Chapter 32 of Part 4: PenPoint Development Tools
Supplement for details.

¢ DebugCharSet can be set to ASCII, XJIS, 437, or 850, controls the interpreta-
tion of characters you send to the debugger stream. See Chapter 4 of PenPoint
Development Tools Supplement for details.

Remember to set your PenPointPath to \2_0 if you are working with PenPoint 2.0
Japanese development.

% MILINI

PenPoint supports many different U.S. and Japanese keyboard models. Set your
Keyboard variable in MIL.INI to identify your keyboard.

The value of Keyboard determines how the keyboard behaves throughout Pen-
Point. For example, clsField and cIsSKKCT observe this variable to determine how
it should handle character input. To change keyboards, you must warm or cold
boot. Swap booting does not change keyboard behavior.

See “Using keyboards” on page 261 for tips on using your keyboard to type Japa-
nese and English characters. ‘

% Initialization files

PenPoint 2.0 Japanese uses a collection of control files to set up its environment.
Since these files can sometimes contain Japanese filenames, some of these control
files can contain Shift-JIS or Unicode characters. The following table shows which
combinations are permitted.

Character sets in control files TABLE 23-4
Filename Permissible character sefs

MIL.INT ASCII only

ENVIRON.INI ASCII only

BOOT.DLC ASCII, Unicode

CONSOLE.DLC ASCII, Unicode

APPINI ASCII, Shift-JIS

SERVICE.INI ASCII, Shift-JIS

SYSAPPINI ASCII, Shift-JIS

SYSCOPY.INI ASCII, Shift-JIS

CHAPTER 23 / DEVELOPMENT ENVIRONMENT 279
PenPoint tools

W PenPoint tools

The SDK includes some PenPoint 2.0 Japanese applications and accessories that can |
help you write Japanese applications.

% MiniText
You can use MiniText as a Shift-JIS and Unicode editor. It supports Japanese hand-
writing recognition, KKC, and RKC. Although insertion pads only let you enter
hankaku, you can convert between hankaku and zenkaku by selecting the To
Hankaku or To Zenkaku commands under the Convert menu.

MiniNote assumes any imported text file contain Shift-JIS when the Locale variable
in ENVIRONL.INI is set to JPN. Your Shift-JIS file can also contain RTF keywords.
Before you import an RTF file, run the file through the DOS utility RTFTRIM before
importing it. RTFTRIM removes RTF keywords that PenPoint’s text component does
not use from an RTF file. See Chapter 31 of Part 4: PenPoint Development Tools Sup-
plement for more information on RTFTRIM.

MiniText assumes that any file with a .UNC extension imported into PenPoint is a
Unicode file. Be sure your Unicode files have the .UNC extension before you import
them into your PenPoint notebook.

See “Working with Shift-]JIS in text files” on page 283 for details on how to create,
import, and export Shift-JIS files between PenPoint 2.0 Japanese and your develop-
ment machine.

¥ Unicode Browser

The Unicode Browser is a PenPoint 2.0 Japanese accessory that allows users to send
characters to the text stream by tapping on them in a table of possible characters.
See Using PenPoint for instructions on using the Unicode Browser.

% Japanese virtual keyboard

The virtual keyboard is another PenPoint 2.0 accessory that allows you to send
characters to the text stream. It offers various emulations, including American and
Japanese IBMJ-A01 keyboard modes.

Bring up the keyboard by tapping on its icon in the Accessories notebook. Change
modes by making the check " gesture over the title bar to switch modes.

With the Japanese keyboard, you can type romaji, hiragana, or katakana. There are
keys that toggle the keyboard between the character sets.

¥ Sample code

The sample code included with the SDK is a good starting point for your own appli--
cations. Here are a few details to note about the sample code included with the 2.0]
SDK in \2_0\PENPOINT\SDK\SAMPLE.

3 / JAPANESE LOCALIZATION

280 PENPOINT APPL_ICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

Unicode Browser

FIGURE 23-1

% Japanese versions of sample code

Most of the sample applications have two resource files, USA.RC and JPN.RC. As
their names suggest, these files contain U.S. English and Japanese strings. Use these
files to help write your own resource files.

All of the sample applications except the Keisen Table application make use of the
Bridging Package. This package allows you to maintain a single code base that com-
piles under both PenPoint 1.0 and 2.0. See the PenlPoint Bridging Handbook
included with the 2.0 SDK for details on how to do this.

Use the Unicode Browser to
enter hard-to-write
characters or characters
that are not recognized by the
handwriting recognition engine.

CHAPTER 23 / DEVELOPMENT ENVIRONMENT 281

Japanese virtual keyboard

PenPoint tools

FIGURE 23-2

% Keisen Table application

The Keisen Table sample application uses hard-coded Japanese strings because the
application is designed exclusively for Japan. It shows how to use toolkit tables to
create a complex Keisen Table, a popular way of gathering data in Japan.

All the hard-coded strings are in Shift-JIS format.

Use the virtual keyboard to
enter characters into the text
stream. You can simulate both
American and Japanese
keyboards.

3 / JAPANESE LOCALIZATION

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART3 / JAPANESE LOCALIZATION HANDBOOK

Chapter 24 / Procedures

This chapter contains step-by-step instructions on how to take advantage of the
PenPoint™ operating system’s support for Japanese applications. It describes in
detail how to perform several of the common procedures that developers use to
write Japanese applications.

W Working with Shift-JIS in text files

This procedure shows you one way of creating and editing Shift-JIS strings in a
text file.

% Prerequisite information

The easiest way to work with Shift-JIS is to edit it with a Shift-JIS editor. This
procedure shows you how to use MiniText as a Shift-JIS editor.

Shift-JIS strings are most commonly used in control files like APPINI and the
Japanese version of your resource file, JPN.RC.

¢ “Character encoding” on page 247.
¢ “Shift-JIS encoding details” on page 252.
o “Text editors” on page 273.

¢ “Initialization files” on page 278.

% Procedure

1 Set the B800 debugging flag so that you can access your hard drive with the
Connections notebook. You can do this one of two ways:

+ Add /B800 to the DebugSet line in ENVIRON.INI.

+ While in PenPoint, press Break to drop into the mini-debugger. Type
fs B +800 to set the flag, and then g to resume PenPoint.

2 Create 2 new MiniText document or import an existing document. You can
import by opening the Connections notebook and choosing Directory under
the View menu. Then browse through your disk and copy a Shift-JIS file to
your PenPoint notebook. Import the file as a MiniText document.

Turn to your new or imported MiniText document to edit it.
When you are done editing the file, turn back to your table of contents.
Open the Connections notebook and choose Directory under the View menu.

Move or copy the file to your hard drive.

b B < T R - T

Select Text File as the export type.

284 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

% Related information

+ “Working with Unicode in source code” on page 284.
¢ “Converting Unicode and Shift-JIS files” on page 285.
¢ “Converting Unicode and Shift-JIS strings” on page 286.

P Working with Unicode in source code

This procedure shows you how to create Unicode strings in your source code.

%W Prerequisite information
¢ Chapter 15, Part 2: PenPoint Internationalization Handbook.

¢ “Character encoding” on page 247.

¢ “Unicode” on page 249.

%> Procedure
1 Declare your character or pointer to characters as a 16-bit type. Use CHAR16

for data that is always 16 bits and CHAR for data that will be 8-bits long in
PenPoint 1.0 and 16 bits long in 2.0 and later releases.

2 Wrap the U_L() macro around literal characters and strings. Use the L""
modifier if you do not need your code to compile under PenPoint 1.0.

Type ASCII characters between the quotation marks.

4 To specify special Unicode characters, use a \x followed by a Unicode code
point, which has 4 hexadecimal digits.

¥ Examples

The following code uses the U_L() macro to indicate that the declared character or
strings are 8 bits long in PenPoint 1.0 and 16 bits long in PenPoint 2.0 Japanese.
The second example declares character data that is always 8 bits long,.

Uprintf(U L(“I am 8 bits long in PenPoint 1.0; 16 bits in PenPoint 2.0");
P_CHAR8 pTheString = L“I am always a 16-bit string.”;
static RC_TAGGED STRING qHelpStrings[] = { k
tagTextView, U L("\xF61F \\tab Pigtail. Delete a character.\\par "),
Nil (TAG)
}i

This last example specifies Unicode values directly because they cannot be typed
with the keyboard.

% Related information
& “Working with Shift-JIS in text files” on page 283.

¢ “Converting Unicode and Shift-JIS files” on page 285.
¢ “Converting Unicode and Shift-JIS strings” on page 286.

CHAPTER 24 / PROCEDURES 285

Converting Unicode and Shift-JIS files

W Converting Unicode and Shift-JIS files

This procedure converts files between Unicode and Shift-JIS formats.

% Prerequisite information

¢ “Character encoding” on page 247.

¢ “Unicode” on page 249.

¢ “Shift-JIS encoding details” on page 252.

¢ “Converting to and from Shift-JIS” on page 254.

% Procedure

If necessary, run CONTEXT.BAT to put your system in the 2_0 context.
The batch file adds \2_0\SDK\UTIL\DOS to the beginning of your PATH.

Run UCONVERT.EXE on the file to be converted. The syntax for this DOS
utility is:
UCONVERT s/[-d] [-m] ource-file dest-file [source CharSet] [dest CharSet]

You can specify a character set as either a code page or a locale as follows:

¢ Specify ASCII with one of the following: ASCII, 437, or USA.
¢ Specify Shift-JIS with XJIS or JPN.
¢ Specify Unicode with UNL

% Examples
Table 24-1 shows sample runs of the UCONVERT utility.
Using UCONVERT TABLE 24-1
Command Description
uconvert mytext.doc mytext.unc Puts a Unicode copy of ASCII document MYTEXT.DOC in the file
MYTEXT.UNC. ASCII-to-Unicode is the default conversion.
uconvert mytext.unc mytext.jis uni xjis Puts a Shift-JIS version of the Unicode document MYTEXT.UNC in the

file MYTEXTJIS

uconvert -d myfiles.doc myfiles.jis xjis uni ~ Puts a Shift-JIS version of the file MYFILES.TXT containing filenames in

the file MYFILES.JIS. The -d flag is necessary when the input Shift-]JIS file
contains filenames.

uconvert letter.jis letter.unc jpn uni Puts a Unicode copy of the Shift-JIS file LETTER.JIS in the file
. LETTER.UNC.
uconvert -m longfile.437 longfile.unc Puts a copy of the extended ASCII file LONGFILE.437 in the Unicode file

LONGFILE.UNC, converting all CR/LF combinations to the Unicode line
separator character (U+2028).

% Related information

¢ “Working with Shift-JIS in text files” on page 283.
¢ “Working with Unicode in source code” on page 284.

4 “Converting Unicode and Shift-JIS strings” on page 286.

3 / JAPANESE LOCALIZATION

286 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

¥ Converting Unicode and Shift-JIS strings

This procedure allows your code to convert between Unicode and Shift-JIS strings.

¥ Prerequisite information
¢ “Unicode” on page 249.

¢ “The Japanese character set” on page 247.
@ “Shift-JIS encoding details” on page 252.
@ “Converting to and from Shift-JIS” on page 254.

% Procedure
1 Include ISR H in your source file. Link INTL.LIB with your code by listing it in
your makefile. ‘
2 Call InthUnicodeToMB() to convert a Unicode string to a Shift-JIS string.
Use one of these styles to indicate which JIS character set to convert to:

+ intlCharSetStyleX]JIS maps to the most recent character set (currently
JIS X0208-1990)

+ intlCharSetStyleXJIS1978 for JIS C6226-1978
« intlCharSetStyleX]JIS1983 for JIS X0208-1983
o intlCharSetStyleX]JIS1990 for JIS X0208-1990
3 Call IntdMBToUnicode() to convert a Shift-JIS string to a Unicode string. Use

the same styles to indicate which character set you are converting from. The
default style uses the most current (1990) Shift-JIS standard.

4 Specify the style intlCharSetFileNameMapping if the string you want to con-
vert contains a filename.

% Example

This code fragment converts the multibyte string pStr8 to the Unicode string pStr.
MsgHandlerArgType (MyHandler, P_MY ARGS)

{
STATUS S;
U32 olLength, length;
P CHAR pStr;

P_CHARS pStrs8;
length = pArgs->len;
pStr8 = (P_CHAR8) pArgs->pData;
oLength = length;
if (SizeOf (CHAR) > 1)
{
StsWarn (OSHeapBlockAlloc (osProcessHeapld,
length*sizeof (CHAR), &pStr));
StsWarn (oLength=IntINMBToUnicode (pNull, 0, pStr8, &length,
intlStyleDefault));
StsWarn (length=Int1NMBToUnicode (pStr, oLength, pStr8, &length,
intlStyleDefault));

CHAPTER 24 / PROCEDURES
Converting between character variants

% Related information
o “Working with Shift-JIS in text files” on page 283.

¢ “Working with Unicode in source code” on page 284.

& Part 2: PenPoint Internationalization Handbook, “Locale-Independent Code,”
in Chapter 15.

P Converting between character variants

This procedure converts between various character sets, such as from zenkaku (full-

width) to hankaku (half-width), and from katakana to hiragana.

»» Prerequisite information
¢ “Kana” on page 246.

¢ “Half- and full-width variants” on page 249.

+ “Converting between character variants” on page 265.

P> Procedure
1 Include ISR H in your source file. Link INTL.LIB with your code by listing it in
your makefile.

2 Allow the user to specify a string to be converted. Collect the string in a buffer
with a terminating null.

Call the IntlStrConvert() function.

4 Update your memory and user interface.

% Example

This code sample uses clsTextView to support string conversion requested by the
user. The functions convert the selected text to all upper-case, all lower-case, or
initial capitals.

OBJECT myTextObject;
int desiredState;
U32 attrLimit, startlen, amtRemain, newLen, style;
TEXT_BUFFER textBuffer;
P_TV_SELECT pTarget;
switch (desiredState) {
case 1:
style = intlStrConvertStyleToUpper;
break;
case 2:
style = intlStrConvertStyleToProper;
break;
case 3:
style = intlStrConvertStyleToLower;

break;

287

3 / SAPANESE LOCALIZATION

288 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

while (pTarget->length)
{
// ensure buffer size is less then maxbufferlen
if (pTarget->length> MAXBUFFERLEN)
{
amtRemain = pTarget->length - MAXBUFFERLEN;
pTarget->length = MAXBUFFERLEN;
}
else
amtRemain = 0;

// Get selected chars into buffer
textBuffer.first = pTarget->first;
textBuffer.length = pTarget->length;
textBuffer.bufUsed = 0;
textBuffer.buf = pSrc;
textBuffer.bufLen = pTarget->length;
ObjCallWarn (msgTextGetBuffer, myTextObject, &textBuffer);
startLen = pTarget->length;
if (pTarget->length)
{
if (amtRemain)
style |= intlStrConvertMoreText;
else
style &= ~intlStrConvertMoreText;
// Do conversion with result in pDest
newLen = IntlNStrConvert (pDest, MAXBUFFERLEN * 2, pSrc,
& (pTarget->length), &ctx, intlDefaultlocale, style);

P> Notes

The function prototype for IntlStrConvert() is as follows:
532 EXPORTEDINTLStrConvert (

P_CHARpDest, // Out: converted string

U32 destLen, // Max space available in pDest
P_CHARpSrc, // Null-terminted string to be converted.
LOCALE IDlocale, // Locale to use -- from golocale.h

U32 style // Conversion style -- from isrstyle.h

bi
The relevant styles are:
// Flags used with string conversion styles.

#define intlStrConvertMoreText flaglé // More text than was passed.

// String Conversion styles

#define intlStrConvertStyleToUpper 0x0001 // All characters

$define intlStrConvertStyleToProper 0x0002 // lst letter of words only
#define intlStrConvertStyleToLower 0x0003 // All characters

#define intlStrConvertStyleToHiragana 0x0004 // from katakana, not kanji
#define intlStrConvertStyleToKatakana 0x0005 // from hiragana, not kanji
#define intlStrConvertStyleToComposed 0x0006 // minimize floating forms
#define intlStrConvertStyleToClean 0x0007 // maximize floating forms
#define intlStrConvertStyleToCompatibility 0x0008 // Map to C-Zone
#define intlStrConvertStyleFromCompatibility 0x0009 // Map from C-Zone
#define intlStrConvertStyleToHankaku 0x000A // Map to half-width chars

#define intlStrConvertStyleToZenkaku 0x000B // Map to full-width chars

CHAPTER 24 / PROCEDURES
Delimiting words

% Related information

See ISR.H for more information about how to convert large chunks of text
extending over multiple buffers (such as converting an entire file).

W Delimiting words

This procedure locates a bunsetsu, the Japanese equivalent of an English word or
phrase, in a text stream.

% Prerequisite information
“Delimiting words” on page 263.

% Procedure
1 Include ISR H in your source file. Link INTL.LIB with your code by listing it in
your makefile.

2 Locate where the user has requested a phrase selection.

3 Call LocDelimitWord() or LocNDelimitWord().

% Example

The following code demonstrates the query capabilities of the delimit word and
sentence functions. The code queries a function by calling it with pNull where it
expects a buffer. The function responds to the query by returning the size of the
buffer that the code needs to send to the function. The returned size is used in the

GetSpanBuf() call that fills the buffer with nCharToCopy characters.

#define atomSentence 4

typedef struct SPAN BUF {

P_CHAR buf;
TEXT_INDEX len;
U32 pos;
BOOLEAN freeBuf;

} SPAN BUF, *P_SPAN BUF;

SPAN_BUF spanBuf
TEXT INDEX oldPos, first, balen;
TEXT SPAN span, savNChToCopy, nCharToCopy;

STATUS s;
S32 style;
if (span.type == atomSentence)

savNChToCopy = nCharToCopy LocDelimitSentence (pNull, pNull, style);
else

savNChToCopy = nCharToCopy = LocDelimitWord (pNull, pNull, style);

289

3 / JAPANESE LOCALIZATION

290 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

while (TRUE) ({

spanBuf.pos = first;

s = GetSpanBuf (pB, &spanBuf, nCharToCopy);

if (s < stsOK) goto CleanUp;

oldPos = spanBuf.pos;

style = (first - spanBuf.pos) > 0 ?
FlagSet (intlDelimitMoreLeft, style)
FlagClr(intlDelimitMoreLeft, style);

style = (first + nCharToCopy) < balen ?
FlagSet (int1DelimitMoreRight, style)
FlagClr(intlDelimitMoreRight, style);

if (span.type == atomSentence)
s = LocNDelimitSentence (spanBuf.buf, spanBuf.len,

&spanBuf.pos, style);

else

s = LocNDelimitWord (spanBuf.buf, spanBuf.len, &spanBuf.pos, style);

The code uses two class manager macros FlagSet() and FlagClx() to set and clear
style flags. The macros are defined as follows in CLSMGR.H:
#define FlagSet (f,v) ((v) | (£f))

#define FlagClr(f,v) ((v) & (~f))
%> Nofes

The function prototype looks like this:
532 EXPORTED IntlNDelimitWord (

P_CHAR pString, // Beginning of text region

U32 length, // Length of text region.

P_U32 pStart, // In/Out: seed position/start of word
LOCALE ID locale, // Locale to use -- from golocale.h
U32 style // Delimit style -- from isrstyle.h

)i
The function expects a counted string, a locale, and a style. Remember that calling
LocDelimitWord() sends intlDefaultLocale and intIDefaultStyle as parameters.

Pass in a position you want to search from as pStart. When the function returns,
pStart contains the start of the bunsetsu, and the function itself returns the length
of the bunsetsu.

»%» Related information

¢ “Delimiting sentences” on page 290.

¢ The header files ISR.H and ISRSTYLE.H contain more information about dif-
ferent ways to call the delimit word and sentence functions.

¥ Delimiting sentences

This procedure locates a sentence in a text stream.

% Prerequisite information

“Delimiting sentences” on page 264.

CHAPTER 24 / PROCEDURES
Comparing strings

% Procedure

1 Include ISR.H in your source file. Link INTL.LIB with your code by listing it in
your makefile.

2 Locate the position in your text stream where the user requested a sentence
selection.

3 Call LocNDelimitSentence() or LocDelimitSentence().

¥ Example

See example for “Delimiting words” on page 289.

’» Notes

Here is the function prototype:
$32 EXPORTED IntlDelimitSentence(

P_CHAR pString, // Beginning of text region

P_U32 pStart, // In/Out: seed position/start of sentence
LOCALE_ID locale, // Locale to use -- from golocale.h

U32 style // Delimit style -- from isrstyle.h

)i
Specify intlDImtSntcStyleSentence as a style to select a sentence without any punc-
tuation.

’% Related information
“Delimiting words” on page 289.

¥V Comparing sirings

This procedure compares two null-terminated strings and returns their sort order.

¥» Prerequisite information

“Comparing and sorting” on page 264.

% Procedure

1 Find two null-terminated strings you want to compare.

2 Send the characters to IntlCompare().

% Example

This code compares two literal strings. It is intended as an example of how to call
IntlCompare() rather than as good coding practice. Do not use literal strings in
your code unless absolutely necessary.

P_CHAR firstString = L”First string”;
P_CHAR secondString = L”Second string”;
LocCompare (firstString, secondString, intlSortStyleDictionary);

291

3 / JAPANESE LOCALIZATION

292 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

% Notes

The function prototype follows:
S32 EXPORTED IntlCompare (

P_CHAR pleft, // left string of comparison

P_CHAR pRight, // right string of comparison
LOCALE_ID locale, // Locale to use -- from golocale.h
U32 style // Collation style -- from isrstyle.h

)i
The function returns:
¢ —1 when pLeft precedes pRight (left < right)
¢ 0 when pLeft is the same as pRight (left == right)
¢ 1 when pLeft follows pRight (left > right)
¢ stsRequestNotSupported if the locale or style is unsupported.

The following styles apply with sorting and comparing.

#define intlSortIgnoreCase flaglé // (*) Ignore case

#define intlSortStyleDictionary 0x0001 // e.g. treat space as first
character

#define intlSortStylePhoneBook 0x0002 // e.g. ignore spaces altogether

Remember that intlSortStyleDictionary uses the JIS order for Level 1 kanji and var-
ious rules for other characters, while intlSortStylePhoneBook sorts in Unicode
order, which is a good approximation of the radical and number of stroke sort
orders used in Japanese dictionaries.

% Related information
“Sorting strings” on page 292.

W Sorting strings

This procedure sorts an array of null-terminated strings.

% Prerequisite information
“Comparing and sorting” on page 264.

% Procedure

1 Include ISRH in your source file. Link INTL.LIB with your code by listing it in
your makefile.

Encode the strings you want sorted as an array of null-terminated strings.

Pass in the array as a pointer to a string (type PP_CHAR) as a parameter to Intl-
Sort().

% Example

No example available.

CHAPTER 24 / PROCEDURES
Handling line breaks

% Notes

The function prototype follows:

STATUS EXPORTED IntlSort (
PP_CHAR ppString, // list of strings to sort

U32 count, // number of strings in list
LOCALE_ID locale, // Locale to use -- from golocale.h
U32 style // Collation style -- from isrstyle.h

)i
See the Notes under “Comparing strings” on page 291 for details on the valid
styles.

Related information
“Comparing strings” on page 291.

Handling line breaks

This procedure breaks lines of text, ensuring that no character that is not allowed to
begin or end a line does so.

Prerequisite information
“Delimiting words” on page 289.

Procedure

1 Include ISRH in your source file. Link INTL.LIB with your code by listing it in
your makefile.

2 When displaying text that wraps, send the text stream to IntlBreakLine(). The
result is returned in an INTL_BREAK_LINE structure.

3 Check the breakAt field of INTL_BREAK_LINE for the position of the line
break.

4 If the position is at or before the start of a line, the function could not find an
appropriate break point. You should provide a default method to handle this
case. In most cases, you can just include all the characters that will fit on the
line and break when necessary.

Example

The following code checks to see if the text in pMetrics fits on the current line. If
the text does not fit, LocNBreakLine() is called to find an appropriate place to
break the line. If the function returns a break position at the beginning of the line,
no appropriate place was found to break the line, and hence the line need not be
remeasured. Otherwise, the line is remeasured and the buffer updated with the cor-
rect line break information.

P_TEXT LINE pMetrics;

P_POSSIBLE LINE maybeMetrics;

TEXT_INDEX savePos, pos, posInBuf;
CHAR charBufMem[MAX BUF SIZE];
CHAR *charBuf;

BOOLEAN wordWrap;

293

[3 / JAPANESE LOCALIZATION

294 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

INTL_BREAK LINE breakLine;
u32 style = intlStyleDefault;

if (('TextFits(pMetrics, &maybeMetrics)) && wordWrap)
{
savePos = pos;
posInBuf = charBuf-charBufMem;
LocNBreakLine (charBufMem, MAX BUF_SIZE, posInBuf, &breakLine, style);
if (posInBuf == breakLine.breakAt || breakLine.breakAt == 0)
goto NoReMeasure;
newBreakPos = pos - (posInBuf - breakLine.breakAt);
goto Remeasure;

¥ Notes

The IntlBreakLine() function requires a special structure as a parameter. When the
function returns, the information on how to break the line is passed out in this
structure. The following structure definition is in ISR.H:

typedef struct INTL BREAK LINE {
U32 breakAt; // position of line break
U32 deleteThis; // chars to delete from end of this line
CHAR insertThis[intlBreakLineMaxInsertl];
// chars to insert at end of this line
U32 deleteNext; // chars to delete from start of next line
CHAR insertNext[intlBreakLineMaxInsert];
// chars to insert at start of next line
} INTL_BREAK LINE, *P_INTL BREAK LINE;

The constant intlBreakLineMaxInsert is also defined in ISR.H. Its current value is 8.

Because Japanese simply breaks lines with no changes to the text stream, the fields

deleteThis, insertThis, deleteNext and deleteNext are typically empty.

The current version of this function does not support hyphenation, although such
support is planned. When hyphenation support is provided, and you use this func-
tion to check line breaks for romaji, the fields deleteThis and deleteNext are typi-

cally empty, while insertThis contains a hyphen.

The prototype for IntlBreakLine() is as follows:

532 EXPORTED IntlBreakLine (
P_CHAR pString, // Line to break
U32 pos, // 1lst char that won't fit
P_INTL BREAK LINE pBreak, // Out: how to break it
LOCALE ID locale, // Locale to use -- from golocale.h
U32 style // Break style -- from isrstyle.h

)i

% Related information
¢ “Delimiting words” on page 289.

¢ “Delimiting sentences” on page 290.

CHAPTER 24 / PROCEDURES 295
Using Japanese fonts

W Using Japanese fonts

This procedure describes various methods you can use to specify a particular Japa-
nese font.

¥ Prerequisite information
¢ “Fonts” on page 250
o PenPoint Architectural Reference, Part 3, Chapters 25-26.

% Procedure

There are a variety of ways your application can work with fonts.

¢ Use the default system fonts. Set the group field of SYSDC_FONT_ATTR struc-
ture to sysDcGroupDefault or sysDcGroupUserInput. The default fonts are
Mincho for the system and Gothic for the user.

¢ Use clsPopUpChoice to display currently installed fonts in a scrolling window
from which the user may select a font. See the example below for sample code.

¢ Set the drawing context with the desired font. The short font string for Min-
cho is MC55; for Gothic, the string is GT55. You can convert the string to a 16-
bit font identifier with the SysDcFontID() function. Note that if you specify
sysDcGroupTransitional, the group for Roman fonts, the system displays
Japanese characters in the Mincho font. Similarly, the system displays Gothic
characters when you specify the group as sysDcGroupSansSerif. See Chapter
26 of the Architectural Reference for details.

% Examples

The first example is from the Hello World application. It sets the font to be the
default user font by creating a drawing context in which the font group is sysDc-
GroupUserInput.

// Create a dc.
ObjCallRet (msgNewWithDefaults, clsSysDrwCtx, &dn, s);
data.dc = dn.object.uid;

// Open a font. Use the "user input" font (whatever the user has
// chosen for this in System Preferences.

fs.id = 0;

fs.attr.group= sysDcGroupUserInput;

fs.attr.weight= sysDcWeightNormal;

fs.attr.aspect= sysDcAspectNormal;

fs.attr.italic= 0;

fs.attr.monospaced= 0;

fs.attr.encoding= sysDcEncodeGoSystem;

ObjCallJdmp (msgDcOpenFont, data.dc, &fs, s, Error);

//
// Scale the font. The entire DC will be scaled in the repaint
// to pleasingly fill the window.
fontScale.x = fontScale.y = FxMakeFixed(initFontScale,0);
ObjectCall (msgDcScaleFont, data.dc, &fontScale);

// Bind the window to the dc.
ObjectCall (msgDcSetWindow, data.dc, (P_ARGS)self);

3 / JAPANESE LOCALIZATION

296 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

You can find this code in \2_ 0\PENPOINT\SDK\SAMPLE\HELLO\HELLOWIN.C.

The second example comes from the Clock Application. You can find the code in
\2_O\PENPOINT\SDK\CLOCK\CLOCKAPP.C.

You can set up a TK_TABLE that allows the user select from the available fonts. To

do so, include tkPopupChoiceFont as part of the flags field of a clsPopupChoice.

This notifies the popup filed to get the list of available fonts from the system.
static const TK_TABLE ENTRY clockDisplayCardEntries[] = {

{hlpClkAppDisplayFont, 0, 0, 0, tkLabelStringId, 0, hlpClkAppDisplayFont},
{fontPrune, 1, 0, tagFont, tkNoClient | tkPopupChoiceFont, clsPopupChoice,
hlpClkAppDisplayFont},

{pNull}
b
When the user taps Apply and this control is dirty, the Clock application must
rewrite each of its labels in the new chosen font.
StsRetNoWarn (ReadControl (pArgs->win, tagFont, &value, 0, 0, pNull, false), s);
if (s == stsDirtyControl) {
pInst->fontId = (Ul6) value;
SysDcFontString((Ul16) value, fontName);
Dbg {Debugf (U_L(“ClockApp: new font id is 0x%lx, \"%s\""“), value,
fontName) ;)
SetLabelFont (pInst->timeWin, pInst->fontId);
SetLabelFont (pInst->amPmWin, pInst->fontId);
SetLabelFont (pInst->dateWin, pInst->fontId);
SetLabelFont (pInst->alarmWin, pInst->fontId);
*pAppLayout = true;
SetLabelFont() is an internal function that updates the current font specs with the
new font ID.
STATUS SetLabelFont (OBJECT win, Ul6 fontId) {

SYSDC_FONT SPEC spec;

STATUS s;

if (win) {
ObjCallRet (msgLabelGetFontSpec, win, &spec, s);
spec.id = fontId;
ObjCallRet (msgLabelSetFontSpec, win, &spec, s);

}
} // SetLabelFont

% Related information
¢ “Working with Shift-JIS in text files” on page 283.

¢ “Working with Unicode in source code” on page 284.

W Supporting kana-kanji conversion

The easiest way to support KKC or RKC in your application is to create an instance
of cIsIP or clsField, because these classes already support character conversion.

This procedure describes how to make your own class the client of clsCharTrans.
The easiest way to do this is to make your class a subclass of cIsGWin or one of its
descendants.

CHAPTER 24 / PROCEDURES
Supporting kana-kanji conversion

% Prerequisite information

¢ “Kana-kanji conversion” on page 257.

& PenPoint Architectural Reference, Part 4, Chapter 32.

»» Procedure

1 Subclass clsGWin or one of its descendants.
2 Create your window as an instance of this subclass.

3 When appropriate, self-send the following messages to your window instance.
Do not handle the messages. Rather, allow them to pass up to clsGWin,
which sends the messages to its associated character translator. In PenPoint 2.0
Japanese, this translator is cIsKKCT.

Send msgCharTransKeyEvent whenever the user presses a key.

Send msgCharTransChar whenever the user changes the buffer (for example,
when the user inserts or deletes a character).

Send msgCharTransGesture when the user makes a gesture. If the gesture is
relevant to character translator, be prepared to handle msgCharTransGet-

ClientBuffer (described below).

Send msgCharTransGoQuiescent to abort any current translations.

4 Your class should respond to the following messages sent by the character
translator.

msgCharTransModifyBuffer, which contains information on how to update
g p
your buffer with the newly translated characters. Respond by updating
your text buffer and user interface, including updating strong and weak
highlighting. The character translator passes you a CHAR_TRANS_MODIFY
ghlighting p b4
structure.

msgCharTransGetClientBuffer, which asks your window instance for some
text. Pass the requested text to the character translator as part of a CHAR_
TRANS_GET_BUF structure.

msgCharTransProvideListXY, which asks your class where to put the charac-
ter alternative list. Compute the coordinates so that the list pops up below
the character.

msgCharTransSetMark, which notifies your class that the translator is collect-

ing characters. This message is sent for historical reasons. You can largely
ignore it.

297

3 / SAPANESE LOCALIZATION

298 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

% Notes

The following structures are used or required by the messages that the character
translator sends your class.

The character translator sends the CHAR_TRANS_MODIFY structure to let the client
know how to modify its buffer. The structure is sent with msgCharTransModify-
Buffer. Note that the markRelative, setActiveLenTo0, popupEvent, and user fields

are used internally and you generally do not need to worry about them.
typedef struct CHAR TRANS MODIFY {

CHAR TRANSLATOR ct; // in: originating translator
$32 first; // in: 1st char to modify

832 length; // in: # of chars to replace
S32 buflen; // in: # of chars in buf
P_CHAR buf; // in: chars to replace with
CHAR TRANS HIGHLIGHT highlight;

U32 markRelative:1,

setActivelLenTo0:1,
popupEvent:1,

reserved:29; // unused (reserved)
U32 user;
U32 sparel; // unused (reserved)

} CHAR TRANS MODIFY, *P_CHAR TRANS MODIFY;

The CHAR_TRANS_HIGHLIGHT structure contains information on how to high-
light characters in the current buffer. The character translator sends you this struc-
ture as part of the P_ARGS for msgCharTransModifyBuffer.

typedef struct CHAR TRANS_HIGHLIGHT {

532 weakStart;

s32 weakLen;

S32 strongStart;
S32 strongLen;

532 oldWeakLen;

532 oldStrongStart;
S32 oldStrongLen;

} CHAR TRANS HIGHLIGHT, *P CHAR TRANS HIGHLIGHT;
The character translator requests part of its client’s buffer with msgCharTransGet-
ClientBuffer. The CHAR_TRANS_GET_BUF structure describes what portion of the
buffer the character translator requires.

typedef struct CHAR TRANS GET BUF {

P_CHAR buf;

S32 startPosition;
832 length;

U32 reserved;

} CHAR TRANS GET BUF, *P_CHAR TRANS GET BUF;
When the user requests an alternative to the current translation, the translator
requests the client to provide the location for the pop-up box by sending msgChar-
TransProvideListXY. The client fills in the requested information as part of a
CHAR_TRANS_LIST_XY structure.

typedef struct CHAR TRANS LIST XY {

$32 charPosition; // character position in client buffer
XY32 XY; // root window coordinates for list
U32 reservedl;

U32 reserved?;

} CHAR_TRANS_LIST XY, *P_CHAR TRANS_LIST XY;

¥ Examples

CHAPTER 24 / PROCEDURES
Supporting kana-kanji conversion

The following code fragments illustrate different parts of the character translation
protocol. The first fragment shows a typical response to the user pressing a key.
const P_INPUT EVENT pEvent,

const OBJECT self,
P_KEY DATA pKeyData;
P_MY TEXT STRUCTURE pText;
Ulé key;

CHAR TRANS_ CHAR ctChar;

switch MsgNum(pEvent->devCode) {
case MsgNum(msgKeyChar) :

pKeyData = (P_KEY DATA) (pEvent->eventData);
key = pKeyData->keyCode;
ctKeyEvent.keyEvent = msgKeyChar;
ctKeyEvent .keyCode = key;

-ctKeyEvent.scanCode = pKeyData->scanCode;

ctKeyEvent.shiftState = pKeyData->shiftState;
s = ObjectCall (msgCharTransKeyEvent, self, &ctKeyEvent) ;
if (s < stsOK) :
s = HandleAnyKey(self, pText, pKeyData->shiftState,
key, pKeyData->repeatCount);
}

break;

The client self-sends msgCharTransKeyEvent each time the user presses a key. If
the translator does not use the key, the message returns a status less than stsOK. In
this case, the client responds by sending the key event to the internal function Han- -

dleAnyKey().

The second fragment is part of the HandleAnyKey() function. It shows a typical
instance of sending msgCharTransChar. Remember that you send msgCharTrans-
Char to self when a character in your buffer changes (for example, when the user
inserts or deletes a character). This particular code responds to the user pressing the

backspace key.

CHAR TRANS CHAR ctChar;

Ulé

switch (key)

{

repeatCount;

case uKeyBackSpace:

ctChar.c = (CHAR)key;
ctChar.position = r.first-1;
ctChar.operation = ctDeleteChar;
for (i = 0, sts==0K && i < repeatCount && ctChar.position >= 0; it++)
{
ObjCallWarn (msgCharTransChar, self, &ctChar);
ctChar.position--;

299

3 / JAPANESE LOCALIZATION

300 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

The third fragment shows the entire handler for msgTransCharGetClientBuf. The
character translator sends you this message to request a part of your buffer.
MsgHandlerArgType (SampleTextCharTransGetClientBuf, P_CHAR TRANS GET_BUF)

{

const P_MY TEXT STRUCTURE pText = IDataDeref (pData, P_MY TEXT STRUCTURE);
TEXT BUFFER myText;

myText .buf = pArgs->buf,

myText.first = pArgs->startPosition;

myText .length = text.buflen = pArgs->length;

ObjCallWarn (msgTextGetBuffer, pText->tb, &myText);

return (stsOK) ; i

MsgHandlerParametersNoWarning;

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION

PART3 / JAPANESE LOCALIZATION HANDBOOK

Chapter 25 / Resources

Here are some texts that may help you during your localization process. Though
not listed here, there are also consulting, translation, and marketing companies
that can help you design, test, and translate your Japanese application and
documentation.

Do’s and Taboos Around the World, 2nd ed. Roger Axtell, John Wiley & Sons,
1990. A funny but informative guide to culturally acceptable and unac-
ceptable behavior in various cultures.

Do and Taboos Roger Axtell. John Wiley & Sons, 1989. Similar to Do’ and
Taboos Around the World, this book is aimed towards small businesses.
Includes discussion of planning for international markets, pricing, ship-
ping, managing and motivating distributors, and communication. Also
devotes an entire chapter to Japan.

Electronic Handling of Japanese Text Ken Lunde. Describes how Japanese text is
handled electronically. Includes a superb history of Japanese character
encoding. Available through the Internet via anonymous FTP at
MSLUMN.EDU (128.101.24.1). The files, which include various utility
programs, are in the /PUB/LUNDE directory.

Localization for Japan Apple Computer, Inc. Apple Developer Technical
Publications, 1992. Contains a general overview of the Japanese computer
market. Aimed at the non-programmer.

Kanji and Kana Wolfgang Hadamitzky and Mark Spahn. Charles E. Tuttle
Company, 1981. A concise introduction to the Japanese writing system.

Soft Landing in Japan: A Market Entry Handbook for Software Companies
American Electronics Association, 1990. Contact the AFA at 408-
987-4200 for more information. '

The Unicode Standard: Version 1.0, Volume 1 The Unicode Consortium.

Addison-Wesley, 1991. Introduces the Unicode character encoding
system.

The Unicode Standard: Version 1.0, Volume 2 The Unicode Consortium.

Addison-Wesley, 1992. Shows glyphs for Chinese, Japanese, and Korean
ideographs.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART3 / JAPANESE LOCALIZATION HANDBOOK

Chapter 26 / Japanese Character Set

The following pages list all the kanji defined by the 1990 JIS character set listed in
Shift-JIS order. The Unicode value for each character is listed underneath each char-
acter as a 4-digit hexadecimal number.

We used PenPoint 2.0 Japanese to print this list with a standard 300 dots per inch
(dpi) laser printer.
The fonts shipped with PenPoint 2.0 Japanese contain glyphs for all the characters

listed. The characters that the handwriting recognition engine cannot recognize are
marked with an asterisk(*).

Shift-JIS is ordered by a system called ku-ten. Most Japanese characters require two
bytes of memory (half-width katakana characters, which require a single byte, are
the exception).

Shift-JIS identifies the first byte with a string between ku 1 and ku 94, and the
second byte with a string between ten 1 and ten 94. The kanji begin with ku 16
(hexadecimal 0x81).

Each ku is printed on a separate page that contains characters running from ten 1
to ten 94 for a given ku.

¥ How the list was created
The list was created as follows:

1T A C program generated an RTF file containing the characters in the proper
order and with the Unicode values.

2 The RTF file was passed into the DOS utility RTFTRIM. The result is a legal
RTF file stripped of the RTF keywords that PenPoint’s text component does
not use.

3 The trimmed file was imported as a MiniText document and printed to a
spool file. See Chapter 32 of Part 4: PenPoint Development Tools Supplement

for information on printing to a spool file.

4 The spooler output was copied to a laser printer.

304 PENPOINT APPLICATION WRITING GUIDE '
Part 3 / Japanese Localization Handbook

KU 16 1 2 3 4 5 6 7 8
H O W & R O x B O, KB &
4e9c¢ 5516 5a03 963f 54¢0 611b 6328 5916 9022
10 % % *% % j:}.% ?‘/E jlg; %)iz;: w2
8475 831c 7a50 60aa 63el 6e25 65ed 8466 82a6 9bfs
20 ¥OE B % % M i) B V5
6893 5727 65al 6271 5b9b 59d0 867b 98f4 7d62 7dbe
0 g = R O K O OE % B O£ H
9b8e 6216 7¢9f 88b7 5b89 Seb5 6309 6697 6848 95¢7
o % & L BB N &k & R E
978d 674f 4ee5 4£0a 414d 419d 5049 56f2 5937 59d4
« B OB O R OB 5% & B B B
5a01 5¢09 60df 610f 6170 6613 6905 70ba 754f 7570
o ®2 M & ¥ ZE= K BF & B E
79fb 7dad Tdef 80c3 840¢ 8863 8b02 9055 907a 533b
2 F = B OFvF B ® — T @ &
4¢95 4eals 57df 80h2 90c¢1 78el 4¢00 58f1 6ea2 9038
0 m X ¥ & & HEH W B 1R
7a32 8328 828b 9c2f 5141 5370 54bd S4el 56¢e0 59fb

5f15 982 6deb 80c4 852d

KU 17

10

20

40

50

70
80

90

>

pen
8fc2

12

N

5504
4¢91

66f3
e

&3]

885b

[

95b2

#

63a9

Hh
2

8276

519

3
=]
9640

5

9d5c
fg

9¢3b

1=

834f

6cf3
i

6db2

5186
=
18
6f14
p== =

=
9060

A

5180

CHAPTER 26 / JAPANESE CHARACTER SET

L O == A
HE x

S
a

—_
—

g

W %‘f “
w 4 w
o E)
— \O

N3

~X
N
i
o

v 2 BX

*

53f3

7
F
5b87

H

8l1fc

JA

T4dc

CH

5b30
ZH

Tade

A
157

60a6

5bb4
4nb

EAANY

71d5

i

65bc

3

4 \“!j

70cf
N
6€26

=]
958f
-2
571

9834

305

B2

Wiz

7525

306

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 18

20

40

50

70

80

8766

6211

J1

4ecb
ik

6062

1

#iF

62bc

=

9ecd

N
— [¢]
3 g N
& 3

3ai

W
jon
¢}

—

2>¥4 g; w3 ;4\
) g

i 3

2

it

65fa

]

Scal

e

4ffa

il

413d

79d1

1
6a2a
i
696

izl

5378
fitf
4fal
HER
6687
Vavasy
7b87
A
=1

8ca8
81c¢5

S6de

-]
7]

62d0

6b27
N
2K
837b

7N
6069

(E3

4173

679%¢

1t
82b!

1hn
8fc6

82bd
5
584a

44

6539

86fc

58ca

A3
213
7fcl

158
6106

9713

5609

KU 19

10

20

40

50

70

80

i

9b41

£

958b

6982

22

86d9
iz
64b9
L
8103

i

6390

f5

62ec
ME
691b

9d28

i

6666
Be
968¢
S
6daf
=

57a3

1%

683c

. Y

?
90ed
faran
BYN
7620
&
6d3b
i
6a3a

]

6822

3

7

68b0

H

8c9d
hg
788d
i
67ff
%
6838

3

95a3

B

6a2b
)
6e07
ol

9784

-

7

8305

4
i
v

6d77

86¢ce
AN
X
o6bbb
BE?
s}
9694
*E.
B
6a7f
JIE,
e
Gedl

3

0682a

=

=]

.

8431

CHAPTER 26 / JAPANESE CHARACTER SET

X
7070
B2
52be
i
8857
74

920e

&

7372

L3

9769

E

68b6

845b
gz

515¢

6

7

754¢

~

¥

5687
7a6b

5cb3

v
»,
é“%

6f5f
B
8f44
]

84b2

ey B

o
Y

[=x
3]

R

QMY M

[

-
HY £

O
—
(=N
o

307

89d2
984d
559d
7

9c39

938¢c

D 3/ JAPANESE LOCALIZATION

308 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 20 1 2 3 4 s 6 7 8 9
o N x B o ol & B OH
Tca$ 5208 82¢5 T4e6 4eTe 4£83 51a0 5bd2 520a
0 B & 5 W H®H % = E E F
5248 52¢7 5dfb 559a 582a 59¢6 5b8c 5b98 5bdb 5e72
2 B B K OB & # EH M #H 8
5¢79 60a3 611f 6163 61be 63db 6562 67d1 6853 68fa

i}

& T &= @ ¥ B O H H

[«,} N
.{.ﬁc‘ S
W
(<]

o
S
(¥
w

E M O® m % N

i
ol
B

40

Taff 7bal Tc21 7de9 7136 7£f0 809d 8266 83%¢ 89b3
50 w® OB B & ™M KR M KM ##g fH

8acc 8cab 9084 9451 9593 9591 95a2 9665 97d3 9928
@ WO 7 F B O B OB &5 B

8218 4e38 542b 5¢b8 Sdcc 73a9 764c 773¢ ~ 5ca9 7feb
0 E m® =M B B & &£ @& FE &4

8d0b 96¢l 9811 9854 9858 4101 4{0e 5371 559¢ 5668
0 2 # OB TFOok O OB = # Al

57fa 5947 5b09 Sbcd 5¢90 5e0c Sele Sfec 63ee 673a
w B OB B O FE

65d7 65¢2 671f 68ch 68c4

6¢57 6122 6197 6145 74b0 7518 76€3 770b

KU 21

20

40

50

70

90

%
#

5fbd

4¢80
53

7591
5403
811a

5f13

&5

Taae

S|

62d2

PARAY

9b5a

Vi

5e30

898f

%

507d

w

o oo & -
o o
i g W

5100

i

7fa9

o

6854
9006

6551
N
7d1a
25

6319

gl

4¢ab

&

6¢c17

il

8cb4

/53

5993

i

87tb

Ak

6a58

4¢18

i

673d
Mt
Tefe
VE
6¢20
h7i

4eac

CHAPTER 26 / JAPANESE CHARACTER SET

pAV.

757¢

)

8ecc

X

622f

[EE23
8b70

fik

7827

M

4ec7
&
6¢72

IH

65¢e7

R
8a31

;
A
7948
ﬁ
8f1d

%

6280

73

63ac

FF

6775

N

4f11
\‘_L'
DL
6¢ce3

He

725b

2]

8ddd

=

5b63

A E R

=0\ Y
= 8

Dt

W
&
<

\o -]
S Sx
o0

309

310 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 22 1 2

3 4 5 6 7 8 9
gt B/ R Oom * W B E
4f9b 4fa0 50d1 5147 7al6 5171 51f6 5354 5321
0 oo & XK O o=m O BOBE B R
537f¢ 53eb 55ac 5883 Scel 537 Sf4a 602f 6050 606d
2 ®oH B W OxE O B W & H
631f 6559 6a4b 6ccl 72c2 T2ed T7ef 80f8 8105 8208
0 & o s & &2 OB O OB
854¢ 9017 93el 971t 9957 9a5a 4ef0 Sidd Sc2d 6681
w X B 1 MW ET B O &£ B 5
696d 5c40 6612 6975 7389 6850 7c81 50c5 52¢4 5747
5 m & ;7 m &K F K & @ B
Sdfe 9326 65a4 6b23 6b3d 7434 7981 79bd 7b4b Tdca
o FAoOBE OB # E I & B @
82b9 83cc 887f 8951 8b39 8fd1 91d1 541f 9280 4e5d
L # A K #H A B H K B A
5036 53¢5 533a 72d7 7396 77¢9 82¢6 8eaf 99¢6 99¢8
. R & E O oz B B & B
99d2 5177 611a 865¢ 55b0 TaTa 5076 5bd3 9047 9685

w B8 9 B A

4e32 6adb 91e7 5¢51 5c¢48

KU 23

10

20

40

50

70

80

6817

AB

90el
13ea
643a

Tedb
v

%8
9dsf

73

5091

(L

5039

Sefa

e E

[
{Q
o

W
w
(o))
=)}

2

W
~1
(o]
(=

3 &

716

o

T E M

6b20

&

5026
J:l.gf\

61b2

CHAPTER 26 / JAPANESE CHARACTER SET

5
8f6l1

B

541b

(5

551

6075

7566

—

A
8a08

244

621f
e
7d50
Al

5263

6
¥
Taaa

S

85ab
T
5211

B

6176

T8

7a3d
2

=

(5] =]
8a63

5

6483

itk

8840
I}

55a7

7

RE
718a
Al

8al3

2

9688

ic3
Tfad
%
5553
#H

PIAARY
61a9
¥
e
Td4c

2

8efd
i
9699

6708

5805

311

Tc82

8ccd

572d

'y

63b2

I

7d99

|

981a

i

6841

{#

4ef6

Sacc

g 3/ JAPANESE LOCALZATION

312 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 24

~
S
“w
-3
~
L
o

WO 8 o’

T2ac 732¢ 7814 786f 7d79

3t -
>
&

N

(2.
O
—
o
N
t<l
N
=]
~
N
~3
(=N
~
&

o A R K

il
R

i
i
B
i
&

80a9 898b 8b19 8ce2 8ed2 9063 9375 967a 9855 9al3
2 @% JC SR ‘Z\j 32 M ‘0/?\ EZ IE‘
9¢78 5143 539f 53b3 Se7b 5126 6elb 6e90 7384 73fe
x % &% B ®#® R O+ @ &H & E
7d43 8237 8400 8afa 9650 4ede 500b 53e4 547¢ 56fa
. ;W B Mm% O W M
59d1 5b64 5df1 Seab 5127 6238 6545 67af 6e56 72d0
50 WMo kB O W R ¥ OB & B
Tecca 88b4 80al 80el 8310 864¢ 8a87 8de8 9237 96¢7
w B % H H H 4 B E B #
9867 9f13 4¢94 4¢92 410d 5348 5449 543e 5a2f 5f8¢c
o ®wmoOo®E B B W E FE O OBR E B
Sfal 609f 68a7 6a8¢ 745a 7881 8a9%¢ 8aad 8b77 9190
0 z X & & & Ot N o
4e5e 9bc9 4cad 4f7c 4faf 5019 5016 5149 516¢ 529f

52b9 52fe 539a 53¢3 5411

CHAPTER 26 / JAPANESE CHARACTER SET 313

KU 25 1 2 3 4 5 6 7 8 9
e M L % o AL EF K I
540e 5589 5751 57a2 597d 5b54 5b5d 5b8f 5de5

0 mooB = K K OKE A B O OROH

5de7 5df7 5¢78 5¢83 5¢9a Seb7 5f18 6052 614c 6297

2 WO O ®r A R OE M OB OB B

62d8 63a7 653b 6602 6643 66f4 676d 6821 6897 69cb

0 T # # # ® ®F 2 B/ B K

6¢5f 6d2a 6d69 6e2f 6¢9d 7532 7687 786¢ Ta3f Tce0

o AL Bk R M # 5 K B B

7d05 7d18 7d5¢ 7db1 8015 8003 80af 80b1 8154 818f

50 e ok fr # B B x® B

822a 8352 884c 8861 8blb 8ca2 8cfc 90ca 9175 9271

o R oW B OB OBE O OF & B HFH

783f 92fc 95a4 964d 9805 9999 9ad8 9d3b 525b 52ab

2 75 A & # B % @& # m A

; 5317 5408 58d5 6217 6fc0 8cba 815f 9¢b9 514b 523b

0 =) X BB OB OB OE OB B

544a 56fd 7a40 9177 9d60 9cd2 7344 6109 8170 7511
0 2 B & W\ A

Sffd 60da 9aa8 72db 8ibe

3/ IAPANESE LOCALIZATION

314

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 26

10

20

30

40

50

70

80

kg

9803

6628
=]

5319

3

5

4eca

i

68b1

i

Sdef
é*é

5750

=

5bbo
f
7815

=

5728

S

54b2

A

6714

it

518a

56f0
ke

6df7

Sde6

JiE
Sea7

3

5169
=
7826

%)

6750
Iz
5d0e

il
il

5237

57fc

Ta84

58be

7d3a

i)

67fb

(=

50b5

%
63al
V-
658¢
)
8cal

i

7895

7b56

b

5aS5a

826¢
NN
¥

6¢99

{[:5

50ac

683d
i
7d30
o
51b4

s

9dfa
29
7d22

9b42

7473

5742

fE

4f5c
He

YH

932f

2

61c7

4¢9b
w
7802

6700

88cl

962a

Ell

524a
N4

685¢

KU 27

10

20

40

50

70

80

5b57

2
Sbdf
il

634c

6492

=

1

523a

AE Mg EE M

Sbia

8cdc

J00N

6148

w =

64ac 64c6
fig I
9bab 76bf
S
685f 71c6
72 W
9910 65ac
8
5312 55¢3
T
5¢2b 5(d7
k3t
6b62 6b7b

5 %
8102 8113
1 -
96¢c 981¢
S
6301 60642

CHAPTER 26 / JAPANESE CHARACTER SET

s

AL

672d

Ui

6652

il

73ca

H

66ab
Y

56db
PN

601d
6¢0f
&

8996

6bol

/5

6bba

7345
A
8ase

=

4¢8b

96d1

Z
53¢c2

Te82

4edd

frii

59¢9

®

5bSc

ZiA

79¢1

—

H
8a66

fF

4f8d

315

3 o
g

E

(¥ \v» & [W
O (o)) Lo}
= o] ¢ Ml S

&

o))
g
I

=)

;55

3
=

i 3/ JAPANESE LOCALIZATION

316 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 28 i 2 3 4 s 6 7 8 9
X % v W@ B OF W R
6b21 6ecb 6¢cbb 723¢ 74bd 75d4 78cl 793a 800c
o B OB O OB XX B B =
8033 8lea 8494 819 6¢50 9c7f 5fof 8b58 9d2b Tafa
2 woR £ £ M O ® XK % = &K
8cf8 5b8d 96¢eb 4¢03 53f1 57f7 5931 5ac9 Sbad 6089
z 2 & K H £ =W ® & K =
6e7f 610 75be 8cea 5b9f 8500 7be0 5072 67f4 829d
o E & & & F H # & #® =K
5¢61 854a Tele 820c 5199 5¢04 6368 8d66 659¢ 716e
50 t B FH H O EH O E i B & A
793¢ 7d17 8005 8bld 8eea 906¢ 86¢7 90aa 501f 52fa
o R ® KX B B W #H = & 5
5c3a 6753 707¢ 7235 914c 91c8 932b 82e5 5bc2 531
. / £ W 5 F K K ¥ W®W &
609 4e3b 53d6 5b88 624b 6731 6b8a 72¢9 730 Ta2e
w o BB O\ ' OfF X W F & M
816b 8da3 9152 9996 5112 53d7 546a Sbff 6388 6a39

0

Tdac

S
=
=
H

KU 29

10

20

30

40

50

70

80

Ii\§

7d42

8f2f
i
5093

J5\

5919
R
8ff0
)

65ec

B2

9187

772

43
AR
6055

\',& % ‘:{l]_ —
s 7

B 3 8 B ad S
S S Ee
a — (=9

m

g_\un
£ N E

&=

i
5¢31
33

7fd2
914b
67d4

i

6dd1

N

Sdde
8led
M

916¢
6¢cdl
ro

795d
6625

6dI3

521d

T

8517

50b7

& *

=
&

)
B

(]
[38]
—_—
-—

6240

8al8
f&

511f

CHAPTER 26 / JAPANESE CHARACTER SET

6
o
62fe
&

8846

i

4ecO
it
7¢26
2
587¢
Z

821c¢

76f¢
m

i3

66d9

3

53d9

M
6d32
LL:
8972
(£
Af4f

B

9lcd

—aa

g
PAA LY

719f
BR

99(f
g
7d14

6cla

5973

317

O

g «
% 3/ IAPANESE LOUALIZATH

318

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 30

10

20

40

50

70

80

90

59be

570
(/A

677¢

&

7167

Y)
N

7d39

—

3]
8a73

4¢08

=]
60cSs

i

91b8

1

i

52dd

i

5a3c

7K

627f

I N C A o)

8096
8c61
4ele
=

64fe

9320

E # B

5320
]
5bbs

%
6284

5347
1%
5¢06

A

62db

|l\\\

6a3s
e
785d
qgi
848b
=
91a4

—

JL

5197

N

6756

TE]

5714

S3ec
/N
5¢0f

6377
6d88

7965
e
&
885d

i

937¢

1477

57ce

72b6

5531
5¢84
660c
6e58

TacO

2

8alf
B:E:

L
969c¢

58cc

7263

KU 31

10

20

30

50

70

80

5E

6b96

(3

4f38

65b0

9707

8a0a

2
9017

8870
6570

i

88l

CHAPTER 26 / JAPANESE CHARACTER SET

5
Te54
=
41b5

5439

9042
s

6742

6

i

8077

8da8

9310

96db

fik

89e6

636¢e

319

968f

6749

§ B ADANISE INCAITATION

320

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 32

10

40

50

70

80

52¢2

i

6816

897f¢

e

8106

&

Tcdd
63a5

8749
3
6247
15

717d

= B B 1

647a
i
5f81
i
6¢05

=

5bf8
:l\é[s

6027

»
(=)}

el

&

[2))
N
—
(=]

STl ESHE BE RS
o0 S r
g x Odg A g 2 =

A

[«
<]
el
\O

R

7dda

8

702¢
653f
76db
9192

65as5

B

8del
Rl
7bc0
=N
Sba3
e

6d45

51c4

Eo
]

6674
58f0
6589

773
7]

5207
¥

m
7d76

i

5ddd

6f5¢

KU 33

20

40

50

70

o £ m g W2

5897

bt

821b
P
9583
HE
Teee
BR
758¢
Ui

90061

723d
i

64ced

i

7618

N =3

85ib

f=2]
i
618¢

CHAPTER 26 / JAPANESE CHARACTER SET

s
fin
8239
f
9bae
e
564¢

=

85a6
W
Gl

524d
Lz
5851
il
7956

(=

50e7

=

5c64
6619
A ¢

]

Tedt

8d70

7
ey
8abe

=

=
5584

%N

5ca8
5|
79df
=l

5275

[}

531d
5de3
Tdcf
%

9001

8

555

8cce
W
6138

i

63aa
il
7c97

pyd

53cc

PAAAY

60e3

69¢cd
%yfz
VR

7d9c
B

906d

3

-]

8dfs

Jz\\

7136

66fe

7d20

53e2
18
60f3

i

69fd
Ay
[}

8061

9397

AT ALY AT

RaE

322 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 34 1 2 3 4 s 6 7 8 9
e B B & & M H’ B B
81d3 8535 8d08 9020 4fc3 5074 5247 5373 606f

o ® R OH OB H @B B K KB &

6349 675¢f 6e2c 8db3 901f 4fd7 Sc5e 8cca 65cf 7d%a

2 oo K Oo®W F O & H N &

5352 8896 5176 63c3 5b58 5b6b Sc0a 640d 6751 905¢
50 fi % XK K F HE K 2 B
4ed6 591a 592a 6¢70 8a51 553e 5815 59a5 60f0 6253
o ¥ of& B O B OB &K # ox
67cl 8235 6955 9640 99c¢4 9a28 4153 5806 Sbfe 8010
50 f ~F B B O B O W M
Scbl Se2f 585 6020 614b 6234 66ff 6¢f0 6ede 80ce

o B o5 K 5 BB & B & # K

817f 82d4 888b 8cb8 9000 902¢ 968a 9edb 9bdb 4ee3

L B K %5 K E & ®w # H K

5310 5927 7b2c 918d 984¢ 9dI9 6edd 7027 5353 5544

0 £ #£ W #H R E K FH # B

5b85 6258 629¢ 62d3 6ca2 Gfecf 7422 8al7 9438 6fcl

v @ H M #H KA

8afe 8338 5ic7 8618 S3ca

KU 35

20

40

50

70

80

90

68da
B
62¢S
e
7dbb
i
6696
&

667a
755¢

4e2d

B
8a3b

4e01

Al
53e9
:ES:
8c37

R

63a2

/¥

803d
13%1

—

6a80

6¢60

r

7af9

f

4ef2

B

914e
JK

5146

18

gy

4{46

J&

72€8

65¢6

w

it

9054

s
ﬁﬁ
b

& gﬁgg g
& £

i

]
[=a)
c

(=

3

~3
W
w
~

810

i

6a3d
e
6del
L
8495
AR
8ac7

7f6e
2
9010

i

62bd

1:7@5:

6al7

5bt5

CHAPTER 26 / JAPANESE CHARACTER SET

5

X

596a

—
=
=,
=3

R
8ab0

i
6¢e5b

25

935b

Tk

5024

8114

S

79¢9

#

7026

6

i

8131

732a

7

2

Sdfd
B
5358
35}

T7ed

—ts

i)

58¢7

B2

Taea

A

5606
Vi
Taef
G-
5f3e

i

Sf1b

l%‘m

99b3

]

Sael

H

866b
aﬂ»
RT
8457

323

Eo

8fbf

5|

—

5766

Tbaa

65ad |

b

6065
7bc9
7740
8877

ir

8caf

NESE LOCALIZATION

E 3/ IAPA

324

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 36

20

40

50

70

80

5b2¢

5243

1%

608c

it

8247

_ -
juyy

L
o

—
(<)}

o\
~
—
(=%

g{%

[
1
[=9
(2]

K

o 2

2

i3
¥

6l6e

8d85
L
6c88
7t
939a
i
8fbb

722a

5448

728

633a

-

8achd

=

S5e81

ik

7252
Bk
8df3

2

73cd

75db

&

8526

540a
be
5824
j; =
rE
63d0
i
8ed4

5f14
H
753a
ok

929a

8cc3
1
901a
2
7db4
i)

91¢3
5b9a
68af

it

9013

e
hE

8139

h\%

9ceS
b
6d25

63b4
&
6f70

&

4f4e

BE

Sead

1H

798¢

4
PJARY

612
=]

%

8178

52¢5
g%

589¢

W

69fb

by

576a

K

1%

505¢

Sef7

=

7a0b

KU 37

10

20

40

50

70

80

HY

7684

9244

LR

8ee2
5835

8ced
6012

5695
%
76d7
2z

7b54

5012
5¢f6
6dd8

7b52

5

912d
&
9069

=

586b

Jl\i

7069

il

59ac

#R

90fd

S515a

IS

5dsb
M=)
i
6e6f

Tcd6

HH
?Kk
199

6¢ba

5¢55

B
6bbf
1€
5192

R

7825
{5
Slcd

Ju
X

6295

2]

5230

CHAPTER 26 / JAPANESE CHARACTER SET

5
JE
6¢ces

=]

54f2

J5

5e97
1
6fbl
3L
6597

fh

7834
8

“
5200

&

642d

5

71c8

6

1

6458
1

5Mb9
6dfb

7530

Zan

675c

52aa
&

5510

6771
\%

5t53

7

#

64¢e2

i

64a4

i

Tesf
=2
=)

96fb
i
6e21

i3

Seab
&
5854
k
6843
;Ei

75d8

325

i
6ef4
iR
8fed

5

Lxn

5410

83df

4

5974
5957
R

68df

7b49

% 3/ IAPANESE LOCALIZATION

326 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 38

1 2 3 4 5 6 7 3 9
E B B F g =20 OB X B
8463 8569 85¢4 8a0c 8b04 8c46 8¢e0f 9003 900f
o w M HE OB OB & B OF B &
9419 9676 982d 9a30 95d8 50cd 52d5 540c¢ 5802 5c0e
2 H OB W B OE W &H & IR
61a7 649¢ 6dle 77b3 Tae5 80f4 8404 9053 9285 Scel
0 9 E £ @& = ¥ B XX B #
9d07 533f 5197 5fb3 6d9¢ 7279 7763 79bf Tbed 6bd2
“ oo O B &4 % B OB B O OO&
T2ec 8aad 6803 6a61 5118 7a81 6934 Sc4a 9cf6 82¢b
50 "B W oM T o= %, Wl K B
5bcs 9149 70le 5678 5c6f 60c7 6566 6¢8c 8c5a 9041
@ H & £ # T WM AN F N K
9813 5451 66¢7 920d 5948 90a3 5185 dedd 5lea 8599
0 Ak B ;s oM B M OB O Om
8b0e 7058 637a 934b 6962 99h4 7e04 7577 5357 6960
0 B o#% w == B X @B B Kk W
8edf 96¢3 6¢5d 4¢8¢ S5¢3c¢ 510 8fe9 5302 8cdl 8089

s i B #HOA

8679 Seff 65¢5 4¢73 5165

KU 39

10

20

40

50

70

80

90

5709

—_—

9019

6cea
<
T

Telb

877f

767d

83ab

676f

6885

79e4
PATAN

=l
7b94
=

99¢1

77¢7
s

7¢95

9cab

CHAPTER 26 / JAPANESE CHARACTER SET

5

/SR

598a

&

5e74

=

56a2

=

5df4
(==

e

175

ik

724c¢
i
7164
—
K
8429
fif

8236

AN
5fcd
oA

5ft5

wy/

R
60a9

i

628a

82ad
=
H

80cc
72|

721d

1A

an2f
%

8584

(T

=%
s
8a8d

jﬁ%

637b
6fc3

64ad

J\\\;

99ac

fif

80ba

8cb7
K

5265

~N

8fcb

58f2

535a

2

66dd

327

7960

Wy

71c3

&b
He

806
|
6177 |
Eﬁg —
Sec3

A

914d

N2
5]

8ced

ey

5

P
g
&
&
e

62cd
%=

620

328

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 40

10

20

40

50

70

80

=]

7551

7.3

629c¢

534a

30

72af

7

9812

5351

Lt

6bd4
Ak
8ab9

At

6787

ﬁ//Q
(W]

7872

9262

1

9¢ce9

)

5¢06

3

Tedl

e

6669

JFE

5¢87

76ae
JE
975¢

=]

7709

7891

98db

Tt8¢

6591

85¢9

via

76¢c4

FE

AT

60b2

79d8
Hii

6a0b

2

=

O
—
O
<

i

00
[
@

b

78d0

6249

o

7dcb
1

7¢38

R

6ac8

2
=

9aea

96bc
G
6c3e

#

7bc4

8543

it

6279

=121
777

i

5099

KU 41

10

20

40

50

70

2 MG 3

&

[2))
W
H
-

=

—, O o w
& EE W

o>
g

9f3b

3
e
Tal7

S

7562

i

5f6a

i
63cf
W
5f6¢
fF
4cd8
b3
6577

=

8cal
—

PAR DY

856a

—t

H
5¢45

4
Ut
5339
£
7b46

iz

6al9
T
75¢5

YK

658¢
I8
57¢0
s
6547
fiz

8cchd

P Y

iL
H

90c8

A

670d

CHAPTER 26 / JAPANESE CHARACTER SET

5
/B
758b

—_—

(=]

JE
903c
K
6¢37

®
79d2

i
6d5c¢

K

592b

Af7
=

666¢

b

8d74

+
j:\

5¢01

6d6e

961c¢

il

6953

-

5166

59¢b

98a8

==
O

o0
—
\O
(=N

3 ¢

~}
O
N
(-]

3R

S ¥
S8/

i

329

g 3/ JIAPANESE LOCALIZATION

330 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 42

1 2 3 4 5 6 7 8 9
w KB B #'® W % #h ¥ AL
798¢ 8179 8907 8986 6dI5 5f17 6255 6¢cb8 decf

o W M 2 W | " &' # B B

7269 9b92 5206 543b 5674 58b3 6lad4 626¢ 711a 596¢

» o ® M OF X H W O K B

7c89 Tcde 7d1b 9610 6587 805¢ 4el9 4f75 5175 5840
« W% B OOW X W B B Ok H
5e63 5e73 5f0a 67c4 4e26 853d 9589 965b 7c73 9801
o B B OZF M B B E R £
50fb 58cl 7656 78a7 5225 77a5 8511 7b86 504f 5909
50 FPeow w® 34 &k & & ® H» F
7247 Tbe7 7de8 8tba 81d4 904d 4fbf 52¢9 5a29 5fol

w HFOBR OB OB W O $» B O W

97ad 4fdd 8217 92¢a 5703 6355 6b69 752b 88dc 8f14

o BB 2 R . = o F M

Ta42 52dr 5893 6155 620a 66ac 6bced Tc3f 83e9 5023

w " x W B X & = B B

4{f8 5305 5446