
PENPOINT
m

PROGRAMMING
\ .

PenPoint™
Programming

PenPoint™
Programming

ANDY NOVOBILSKI

...
TT Addison-Wesley Publishing Company
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan Paris Seoul
Milan Mexico City Taipei

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Addison
Wesley was aware of a trademark claim, the designations have been printed in initial capi
tal letters or all capital letters.

Library of Congress Cataloging-in-Publication Data

Novobilski, Andrew J.
PenPoint programming / Andy Novobilski.

p. cm.
Includes index.
ISBN 0-201-60833-2
1. Operating systems (Computers) 2. Penpoint (Computer file)

I. Title.
QA76.76.063N72 1992
005.4' 469-dc20

Copyright © 1992 by Andy Novobilski

92-13076
CIP

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy
ing, recording, or otherwise, without the prior written permission of the publisher. Printed
in the United States of America. Published simultaneously in Canada.

Sponsoring Editor: Julie Stillman
Project Editors: Elizabeth Rogalin, Claire Horne
Production Coordinator: Vicki Hochstedler
Cover design by Ned Williams
Set in 10-pt Palatino by Electric Ink, Ltd.

1 234 5 6 78 9-MW-965949392
First printing, August 1992

To Mary Ellen and Claire,
who kept me smiling through my most pensive moments.

Lord, help me write software like Paul sewed tents (Acts 18).

Acknowledgments
============================

In April of 1991, I read a small article on the back page of a magazine
about a product called PenPoint. The more I read, the more excited I
became, and the more I wanted to capture some of that excitement and
pass it along to you. The process of sharing my excitement about Pen
Point resulted in the book you are now reading. There are many people
who helped me in my quest, and I am thankful to all of them. There are
several that I would like to acknowledge in a special way.

First, the book is here because two individuals took the time to listen to
my ideas and help me formulate them into a book. Thorn Hogan from GO
Corporation has helped me in just about every way possible, from intro
ducing me to the appropriate people at GO to getting me early releases of
software. Then Keith Wollman, Editor-in-Chief at Addison-Wesley, lis
tened patiently to my idea and helped me to refine it.

In addition, I wish to thank Claire Home, Joan Fitzgerald, Vicki Hochstedler,
Ann Lane, Elizabeth Rogalin, Julie Stillman, and all the other people at Addi
son-Wesley for the time, effort, and experience they brought to the project.
They took away every concern I had until I was free to write the best book I
possibly could. I also wish to thank Gary Downing of GO Corporation for
coordinating the technical edit to ensure that the information being presented
to you is timely and up to date.

Finally, I wish to thank my wife Mary Ellen for all her help in complet
ing this project. Her constant encouragement and willingness to help
whenever possible proved invaluable.

vii

Contents

Preface xiii

1 What's with the Pen? 1
A History Lesson 1
What is PenPoint? 4
PenPoint Internals 8
Wrap-up 10

2 The Class Manager 13
Why Objects? 14
PenPoint's Definition of OOP 20
The PenPoint Class Hierarchy 21
PenPoint's Class Manager 23
Building PenPoint Classes 31
Wrap-up 41

3 Application Building 43
PenPoint in Action 43
Taxonomy of a PenPoint Application 46
Compile-time Debugging Support 54
Tools for Debugging Applications 60
Wrap-up 64

4 The Application Framework 65
The Pre-framework Era 66
The Document Life Cycle 67
CoinApp 78
Wrap-up 88

ix

X CONTENTS

5 The Calculator Example 89
Object-oriented Design and PenPoint 90
The Calculator Example 95
Implementing the Calculator Application 99
Wrap-up 112

6 Constructing a User Interface 115
PenPoint Windows 116
The Calculator Button View 124
The Implementation of clsCalcBtVw 128
Wrap-up 151

7 Using the Pen 153
Library Support for Handwriting Recognition 154
clsBoxCalcApp: A Box-based Calculator 159
clsHWXCalc: A Scratch-paper-based Calculator 173
Wrap-up 190

8 A Crossword Puzzle 191
The Crossword Puzzle User's Guide 191
Implementing the Crossword Application 198
PenPoint Classes Used in clsXWordApp and clsXWordData 199
clsXWordApp: The Crossword Application Class 203
clsXWordData: The Crossword Puzzle Model Class 216
Wrap-up 229

9 Coordinating Views 233
User Preference Support 234
Packaging Components for Reuse: DLLs 236
clsXWordView: The Crossword Puzzle View Class 237
clsXWordClueList: The Clue List View Class 256
Wrap-up 270

10 WYSIWYG GUls 271
The ImagePoint Imaging Model 271
clsXWordGrid: A Direct Manipulation Crossword Grid 273
The Complete method.tbl File 295
Wrap-up 299

xi

Appendix A: Background Reading 301

Appendix B: Source Code for Crossword Application 303
makefile 303
xwordapp.dlc 305
xwordapp.h 306
xwordapp.c 307
xwrddata.h 316
xwrddata.c 318
xwrdview.h 327
xwrdview.c 329
xwrdgrid.h 342
xwrdgrid.c 344
method. tbl 360
xwrdclue.h 363
xwrdclue.c 364
dll.lbc 373
xclu~mth.tbl 374

Index 375

Preface

On April 16, 1992, I sat in the Sheraton Palace Hotel in San Francisco and
witnessed the official PenPoint product launch sponsored by GO Corpo
ration. There were over 600 people in the auditorium, and the place was
brimming with excitement. A new age was being ushered in with an
interaction metaphor that would make computing more accessible to
everyone-even those who are keyboard-phobic.

What was unique to the PenPoint launch was the number of software
applications available at the same time the operating system was intro
duced. Usually, there is a time lag between the unveiling of a new pro
gramming environment and introduction of applications, due to
programmers learning a new way of working. What shortened this cycle
for PenPoint was the richness of its object-based development environ
ment. Programmers using PenPoint were able to leverage the existing
components provided by GO to perform the mundane tasks of organizing
the application, and therefore spend more time on the application-specific
parts of the software they were creating.

My goal in writing PenPoint Programming is to introduce you to the pro
grammer's perspective of application writing using PenPoint objects, and
to help you realize the productivity gains made possible through Pen
Point's object model and application framework. I will consider myself
successful if you, after reading this book, gain an understanding of why
it's important to adhere to GO's guidelines for building PenPoint pro
grams, especially with respect to the application framework.

I leave you with a thought. As a new dad, I often wonder how technol
ogy will affect my little girl as she grows up. I hope when she is old
enough to read and comprehend what's in this book, her comment will
be, "But Dad, isn't all this stuff old hat? Why did everyone make such a
fuss over writing on a computer screen? I do it everyday. Besides, it's
even easier to work with computers these days because ... "

Good luck, and happy coding.

A.N.
Bethany, CT

xiii

1]

What's with the Pen?

Since you're reading this, I'm going to be presumptuous and assume you're
interested in exploring PenPoint from the perspective of a developer. But
before I start talking about programming, I'd like to take a minute and
share my thoughts with you on pen-based computing's importance to
users, and why PenPoint is important to pen-based computing.

A History Lesson

Back in the early '80s, I remember seeing a wonderful new product from
Xerox called the Star. Although it was slow, bulky, and a resource hog, it
was the end user's dream come true. After all, this new computer pro
vided the user a mouse to interact with a simulated desktop environment,
complete with tear sheets that mimicked ruled note paper. What's more,
when the user was stuck trying to figure out how something worked,
there was always a handy icon around to click on for help.

It took a few years, but mainstream acceptance of icon-based interfaces
eventually came to be. For instance, in 1985 Drexel University mandated
that every student entering the university must purchase a personal com
puter. The computer selected to adorn the dorm of every student was
none other than the Macintosh, which had a display metaphor based on
the mouse "point and click" Graphical User Interface technology from

1

2 CHAPTER 1

Xerox. Icons had finally found their rightful place in the computing uni
verse. It just goes to show that a picture really is worth a thousand words.

Or is it?

Mouse Trap

The GUls of mouse fame suffer from two problems you'll recognize
immediately. First, when's the last time you've seen a legal contract in pic
tures? Although a picture might be worth a thousand words, exactly
which thousand words does it mean? This is a historical lesson, after all;
otherwise you would be reading my words in hieroglyphics.

The second problem with mouse-based interfaces is the mouse itself.
As you sit at a keyboard typing, you must stop what you're doing, look
around to locate the mouse, pick up the mouse, coordinate its on-screen
position with its physical location, and finally use it to point and click. If
you're like me, just finding the dumb rodent is a royal pain. Of course,
there are touch screens, but the resolution a finger provides is not quite
fine enough to be useful on a small amount of screen real estate.

And Now, the Pen Makes Its Grand Entrance

The concept of a pen-based user interface is not exactly new, but that
doesn't make its encore appearance less than grand. Early researchers in
computer graphics at MIT long ago developed, used, and retired one ver
sion, the light pen. In those days, the location of the pen was determined by
a light burst sent from character to character until the pen finally
responded. Again, this method was not refined enough for the task at hand,
so the light pen was retired in favor of your friend and mine, the mouse.

What makes today's pen-based systems so different is the fine level of
granularity available in coordinating the pen's movements with the on
screen display. The current crop of pen-based machines (often referred to
as tablets) is powered by 386 chips, with a sufficient amount of RAM to
make life without a hard disk palatable. Also, the pen is just that, a pen. It
looks, weighs, tastes (ok, so I chew my pens), and feels like many writing
implements we use daily. As always, our peers in the hardware side of the
house have done their job well.

------_._--_._-------

A History Lesson 3

Choices

When one is designing an operating system for a new class of hardware,
there is always a choice. The hardware vendor can port an existing operat
ing system by extending the metaphor as needed to fit the new hardware or
build a new operating system that fits the new hardware from the begin
ning. Currently, the two major providers of operating systems for pen
based machines have chosen opposite sides. On one side, Microsoft has
implemented a compatibility layer for the pen and integrated it into their
Windows-NT product. On the other side, GO Corporation has chosen the
route of building an operating system from the ground up, one tailored to
the requirements of small, mobile, pen-based computers. It is GO's operat
ing system, PenPoint, that I'm going to describe for you in this book.

Where the Pens Are

Ok, you've got the new tablet hardware and PenPoint to run applications
on it. What applications are you going to develop? In my opinion, the
hardware and software involved in pen-based computing are going to
excel in three areas: mobility, unobtrusiveness, and ease of use.

Pen-based machines are finding their way into applications such as
inventory control and tracking due to several factors. These machines
tend to be physically small and easy to handle. They can be carried
around and operated while being held in all sorts of positions. With the
addition of innovative networking technologies such as infrared and
radio nets, they will become very useful in factory settings.

A second class of applications well suited to pen-based computing is that
in which a computer is extremely useful, as long as it's unobtrusive. Sup
pose you are a real estate agent who wants to help a client evaluate a loan.
You can communicate with your client, plus enter the information into a
computer, without a screen and keyboard between you and your client.

Finally, the replacement of the keyboard by the pen is going to open
personal computing to many keyboard-phobic people. The pen's simple
user interaction metaphor doesn't require the user to master the art of
chicken pecking at typewriter keys. Its simplicity encourages people to
try it, even those who have been intimidated by keyboards in the past.

4 CHAPTER 1

What is PenPoint?

According to Robert Carr, a founding officer of GO, and Dan Shafer in
their book The Power of Penpoint, Penpoint is

a new operating system designed and built from the ground up by
GO Corporation for the unique requirements of mobile, pen-based
computers. It is a 32-bit, object-oriented, multi-tasking operating sys
tem that packs the power of workstation-class operating systems
into a compact implementation that does not require a disk.
As important as what it is, however, is what it is not. It isn't a product

based on someone's gut instincts, without any regard to work already in
existence. Someone thought this product out and decided to adopt con
cepts that truly set PenPoint apart. First, PenPoint provides the user with
a consistent metaphor for interacting with applications. Second, PenPoint
isolates the system's components (display, handwriting translation, file
system, and so on) from each other so they can be swapped out individu
ally without affecting the entire system. Third, PenPoint is totally commit
ted to an object-based development schema for writing applications.

To describe these concepts, GO provides close to 3000 pages of docu
mentation for programmers writing applications for PenPoint. The next
several pages are the condensed version of the background information
you should keep in mind when considering application development for
PenPoint.

The User Interface

When you activate a mobile computer running PenPoint, you are pre
sented with the table of contents from the Notebook. Figure 1.1 shows a
sample view of the contents of a pen-based tablet, including the clock, sta
tionary notebook, and the table of contents for the primary notebook. As
you can see from the figure, the PenPoint user interface metaphor was
implemented using the concepts traditionally associated with a notebook
and, therefore, carries the name, Notebook User Interface, or NUl.

You work with your tablet by using a stylus to interact with the NUL
There are three very important forms of stylus interaction: selections,
used to move between documents contained in the NUl; gestures, used to
interact with a particular document; and handwriting, used to enter new
information into your applications.

What is PenPoint?

Figure 1.1 The PenPoint Notebook User Interface

Notebook: Contents

DOOJment Edit Options View Create

~ &Ie
~ Read Me First .. 2

o Samples.. 3

~ System Leg

i Show Trace Log Size Font Size

1992-01-19 20: 31: 311 Setting mod required for GO-CLSPRN_DLL-
1992-01-19 20: 31: 311 Setting mod required for GO-PPORT-V1(0)
1992-01-19 20: 31: 32 1 Setting mod required for GOO-PPORTO-V1(
1992-01-19 20: 31: 32 1 setting mod required for GO-PCL_DLL-V1(
1992-01-19 20: 31: 32 1 setting mod required for GO-PRSPOOL-V1(
1992-01-19 20: 31: 32 1 setting mod required for PIP-CALCAPP_E
1992-01-19 20: 31: 331 setting mod required for go-anapehot-v1
1992-01-19 20:31:36Iappmiac[Bookahelf]: got magAppehanged
1992-01-19 20:31:36Iappmiac[Contenta]: got magAppehanged

1992-01-19 20:31:361*** BROWFL.C: BroWMagAppehanged:
1992-01-19 20:31:371*** BROWFL.C: BroWMagAppehanged:
1992-01-19 20:31:371*** BROWFL.C: BroWMagAppehanged: Time t
1992-01-19 20: 31: 371appmiac [syetem Log]: got magAppehanged
1992-01-19 20: 31: 381appmiac [Connectiona]: got magAppehanged
1992-01-19 20:31:381*** BROWFL.C: BroWMagAppehanged: atartT'
1992-01-19 20:31:381*** BROWFL.C: BroWMagAppehanged: endTim
1992-01-19 20:31:391*** BROWFL.C: BroWMagAppebanged: Time t
1992-01-19 20:31:391*** BroWMagBroweeruaercolsetstate ***
1992-01-19 20: 31: 391appmiac [Notebook]: got magAppehanged

1992-01-19 20: 32:21ISahApp: invoking APPHain, proceaacount

~.~....... ···········_······" u • ... •••••

? "II ¢ c} 611 .ili9 ~1.:Q:..Q. •
Help Settings Connections Siafionery Acoessories Keyboard InbCH OutbCH Notebook

5

1 >

For example, suppose you are writing a memo to be faxed at a later
time. First, you might select an appropriate piece of faxable stationary to
work with from the Create menu and add it to your table of contents.
Next, you select the document which would cause PenPoint to "turn" to
that page, making the new document available for editing. Then, you
could use the gestures outlined in Figure 1.2 to indicate where you wish
to start editing the document. Finally, you would enter new text by writ
ing (actually printing) the text in the document using the pen.

6 CHAPTER 1

Figure 1.2 The Core Gestures Available in PenPoint

Bracket 1 eft C I nsert space L Flick left -
Bracket Ri ght J Pi gtai 1 r Fl i ck ri ght -

Caret ;\ Press 1- Flick up J

Check V Tap V Flick down ,
Circle 0 Tap press :J...

Crossout "'2'

The System Interface

Behind the scenes of the Notebook User Interface is a set of components
that provides the basic PenPoint functionality. These components extend
from the basic, such as user interface support, to the innovative, such as
support for the recursive live embedding of applications within each
other. To provide all this functionality without wasting space, PenPoint
relies on object-oriented techniques, such as inheritance, to support code
sharing among components.

Basic Components The basic functionality of PenPoint includes com
ponents for managing services such as file system access, handwriting
recognition, and the high resolution bit-mapped displays that you would
expect PenPoint to have. Through the use of an object-based architecture,
each of these system-level components can be interchanged with other
components that implement the same functionality, without rebuilding
the operating system.

For example, consider the handwriting recognition system. The one cur
rently supplied with PenPoint is based on stroke analysis to determine
printed characters. It would be possible to exchange the default system for
one that recognizes cursive or one that was built using neural net technology.

What is PenPoint? 7

Recursive Live Embedding Recursive live embedding is one feature
that reflects PenPoint's commitment to application building reusing code
whenever possible. Simply put, recursive live embedding is the ability to
embed live applications within other live applications. At first, it appears
to be a simple extension of cutting and pasting data across different ap
plications, but in reality it is much more.

Consider what's involved in adding a figure to a document using tradi
tional word processors. Then consider the effort required to change the
picture in the document at a later time. In PenPoint, it is not simply the
picture's data that's embedded in the text document, but the entire pic
ture application itself! As a programmer, you can imagine how much this
frees you to concentrate on what your application does best and lets the
user use other applications to enhance yours.

Inheritance and PenPoint PenPoint relies on the object-oriented tech
nique of inheritance to reduce code bulk further by providing a formal
method for code sharing. The increased reliance on code sharing results
in a scalable operating system designed to make the most efficient use of
the limited resources available on the new class of pen-based tablets. If
you as the application designer do your job correctly, your PenPoint
based application will run correctly on everything from machines that
exist in RAM only, to those with auxiliary storage (disk drive, RAM disk,
and so on).

The Programmer's Interface

My first reaction when reading about the functionality required for a Pen
Point application was to recall the Windows and Macintosh application
development I've done in the past and reach for the aspirin bottle. Further
reading, backed up with actual application development experience, has
proven my first reaction to be a bit premature. Yes, PenPoint applications
require a lot of functionality, but PenPoint already provides much of it in
the form of a rich library of reusable components.

Consider the Application Programmer's Interface (API) to the various
components of the PenPoint operating system. The APIs consist of a set of
messages (requests for an object to do something) that can be sent to vari
ous objects contained in the operating system. The entire package is
wrapped up in the concept of an Application Framework that supports a
predefined set of messages sent to an application class at well-known
points in the application's lifetime.

What is of immediate interest to people planning to develop applica
tions for PenPoint is that the default behavior for each of the messages

8 CHAPTER 1

already exists in the application class. You only have to augment the
default behavior when your application does something special. Through
the use of the Application Framework PenPoint applications become con
sistent, not only in the way you write the software necessary to build
them, but in how the user interacts with different applications.

PenPoint Internals

Several areas of PenPoint's implementation as an operating system are
important to the concepts discussed in this book. As a programmer, you
need to be aware of portability issues involved with running your appli
cation on different hardware platforms. This includes understanding the
characteristics of the display and how the display and pen tracking sys
tems work together in implementing the Notebook User Interface. Also,
it's helpful to have some understanding of the connectivity features of
PenPoint.

The Kernel

PenPoint 1.0 is a preemptive multi-tasking operating system designed to
run in the native 32-bit, flat memory mode of the Intel 80386 microproces
sor. It uses many of the same features present in 0/5 2, including light
weight threads and Dynamic Link Libraries. PenPoint is isolated from a
particular vendor's hardware through the Machine Interface Layer
(MIL) which implements a virtual machine for PenPoint to interact with.

The kernel takes advantage of the memory protection available within
the microprocessor to provide protection against data corruption, includ
ing an efficient warm-reboot mechanism. This is important for applica
tions designed to run in the field collecting information that will be
transferred to another machine at a later time. If you as an application
programmer follow the published guidelines for initializing and manipu
lating data in PenPoint, then PenPoint will help your application recover
gracefully from a system fault.

Display

PenPoint provides several layers of abstraction for building a user inter
face. At the highest level are stand-alone components, such as the Default
Application menu. Next are reusable components, such as buttons and

PenPoint Internals 9

text fields, that can be combined to build a user interface. Finally, Pen
Point allows you to access the drawing context for a particular window
on the display device on which you can render a set of primitives, such as
rectangles and text.

Although you can reference absolute pixel coordinates, it is generally a
bad idea to do so for a couple of reasons. First, PenPoint can run on many
different size screen devices, so if you accessed pixels directly, you would
have to rewrite existing code. Second, in addition to size, the color capa
bilities of devices can vary.

PenPoint provides several mechanisms for helping application writers
cope with writing generic applications that work on a multitude of differ
ent displays. For example, PenPoint supports the concept of relative layout;
you can tell a window to position its top at the same point as the bottom of
another window. When the user interface must redraw itself, PenPoint
looks at the windows involved and then manages the layout for you.

PenPoint also manages a generic color model for you. This allows you
to select colors and have PenPoint pick the closest match. You can also
choose from a set of standard colors for the best possible look for your
user interface regardless of the actual hardware you're running on.

I nteracting with the Pen

The pen plays a dual role in pen-based systems. It is the user's main
pointing device for quick interaction with the Notebook User Interface. In
addition, it replaces the keyboard as the user's primary data entry tool by
using character-recognition software when pointing isn't good enough.

The pen's intuitiveness tends to mask some of the complexities in using
it with applications. For example, consider using the pen to draw two
lines rotated 45 degrees crossing at right angles. Is this a rather complex
description of the letter 'X'? Or is it a gesture that means "cross this out"
or delete it? Or is it a method for showing the extent of a rectangle?

Quite possibly, it could be all three. The exact meaning would be deter
mined at the time it was drawn, depending on the context in which its
drawing occurred. PenPoint provides applications with the ability to
"help" the handwriting recognition system by building in additional con
textual information.

In addition to the various gestures and character recognition, the pen
provides a richer set of locator type information. With the mouse, you get
moves and buttons. With the pen, you get moves, strokes, and positions
on the pen contacting the surface, plus proximity data-events generated
when the pen comes within a certain distance from the display, but hasn't
necessarily touched the screen. Finally, unlike the mouse, where visual

10 CHAPTER 1

feedback is required, visual feedback about the location of the pen is more
nuisance than necessity. There is no need to show a user directly interact
ing with the display device the pen's current location, since the user
makes selections by touching the appropriate place on the display with
the pen.

Connectivity

Pen-based machines are meant to be mobile. Many current applications
depend on the ability to work on a document with the understanding that
some 110 operations might need to be deferred until later. Connectivity is
handled at various levels, both from the application's and the system's
points of view.

For instance, consider the letter faxing example described earlier. Once
you complete the act of creating the document to be faxed, you would like
to queue it up to be faxed and then forget about it. PenPoint provides any
application a standard mechanism for doing this called the In and Out
Boxes.

The In and Out Boxes are specialized floating notebooks that provide
common organization (interface and architecture) for the mechanisms
used to transfer information to and from other devices when the devices
are in physical contact. This allows applications to transfer data logically
when it makes sense for the application, and not when two pieces of
hardware happen to be connected.

In addition to the In and Out Boxes, PenPoint provides for connectivity
at both the network and file system level. PenPoint has been designed to
work with any file system that can handle the API. It also has defined pro
tocols for dealing with the various layers of the OSI networking standard.
This allows PenPoint-based hardware to interact easily with both MS
DOS and Macintosh file systems.

Wrap-up

Operating systems built for small systems are amazing not only for what
they do in a small space, but for how they do it. PenPoint is able to make
available a large amount of reusable functionality because of the decision
to embrace the tenets of software reuse whenever possible, including its
object-based implementation.

In order to make the most of the resources available to you in PenPoint,
you will find yourself adapting to the way PenPoint works more often

Wrap-up 11

than adapting the components of PenPoint to work the way you do. My
best piece of advice, gained from several years of writing object-based
code, is to let go and do it GO's way from the start.

Nowhere will this be more true than with respect to the PenPoint
Application Framework. We all have our own style of organizing the vari
ous components of an application to work in a certain order. Now, that
freedom has been replaced by a standard framework that also imple
ments the order in which things happen. This standardization benefits
you in the long way in two areas, despite the restrictions it places on your
coding style. First, a standard behavior for all applications will lead to
greater user acceptance of the environment and a willingness on the
user's part to try new applications. Second, if new components you pro
duce conform to PenPoint standards, they will be reusable in future
development efforts you might undertake.

In the end, it's your commitment to building solid applications that fit
the PenPoint pen-based metaphor that will determine the scope of your
success.

Cindy and Bill Kennedy
P. O. Drawer 984
Hempstead, TX 77445-0984

The Class Manager
==============

Over the past several years, the programming community has seen a ris
ing interest in a new form of computing called object-oriented program
ming. Object-oriented programming takes its name from the fact that it
provides a technique for segregating pieces of functionality into well
defined units called objects. Because the segregation process for creating
objects is formalized, other implementation techniques such as inherit
ance and deferred binding can be used to increase the quality of the soft
ware being produced.

PenPoint capitalizes on the use of an object-oriented model to aid in
reaching its goal of an operating system built of small interchangeable
components that are also made available to other applications. It pack
ages both low level items, such as buttons, and higher level items, such as
the Application Framework, into classes of objects to be used.

This chapter discusses the various aspects of object-oriented program
ming in general and how PenPoint uses them. A general discussion of
vocabulary is followed by a look at the various classes available in Pen
Point. The last part of this chapter concentrates on the various functions
and macro definitions that PenPoint provides for using objects.

13

14 CHAPTER 2

Why Objects?

The two most important benefits of using objects in PenPoint are
increased productivity and improved software quality. For example,
whenever you reuse an object generated by a class in PenPoint, not only
are you reusing predefined code, thereby saving development time and
storage space, but you are reaping the benefits of GO Corporation's qual
ity assurance program and its commitment to having their objects work
well with each other-all for free.

In general, object-based environments are classified based on their
implementation of various forms of abstractions. For example, you have
probably heard of various programming languages such as Smalltalk,
Objective-C, and C++ that support objects, and you might even have used
one or more of them. You might also have heard the terms "encapsula
tion," "inheritance," and dynamic or static "binding." Because there are
many different uses of these terms in the field right now, I think it's pru
dent to spend a few moments outlining the basic concepts so we can work
with a consistent and common vocabulary.

Encapsulation

The term encapsulation describes the way in which the behavior and per
sistent data needed to implement a model of a real world abstraction is
organized. By definition, only the behavior defined for the particular
abstraction may access that entity's data. This produces a form of "fire
wall" protection by not allowing outsiders to interfere with the entity's
internal workings. In essence, you use encapsulation to provide a data
abstraction of the real world entity you wish to model.

For example, suppose you want to describe a light fixture that can be
either on or off. You might say that in order for an object to be a light fix
ture, it must respond to being turned on or off, and it must remember
whether or not it is on or off. The persistent data would be a variable that
tracked whether or not a light fixture is on. The behavior would include
ways to turn the fixture on and off and possibly a way to check the state
that the light fixture is in.

The information used to keep track of an object is often organized as a
set of variables called instance variables. Behaviors that manipulate this
data are then called instance methods. Because the use of objects means
data abstraction, only the instance methods of an object can directly
access the instance variables of that object. Objects that have the same
kind of private data and share the same instance methods belong to the

Why Objects? 15

same class of objects. Here's a more formal definition of what the light fix
ture object might be:

Class
LightFixture

Instance Variables
BOOL onOffFlag

Instance Methods
turnFixtureOn
turnFixtureOff
isFixtureOn
isFixtureOFF

What's nice about this formal definition is how easy it is to see that all
light fixtures share the same behavior and same type of stateful informa
tion. What differs is that the information for each individual light fixture
object is unique. This observation leads to the concept of each object hav
ing a unique part and a shared part. In general, the unique part of an
object contains the instance data and a pointer to the shared information
(generally the instance methods) for the kind of object it is.

Figure 2.1 shows the conceptual layout of several light fixture objects.
Notice that although there are two different objects, both share a single
copy of the instance methods.

One last point-it's important to realize that there are two fundamen
tally different views of the same object, based on whether you're the pro
vider (sometimes called the producer) or the user (sometimes called the
consumer) of the object. The producer of an object is the person who
designs, develops, and produces the object that the consumer uses. The
producer has access to the instance data of the object, while the consumer
can only access the abstraction through the methods the producer pro
vides. The consumer, on the other hand, should be able to reuse a produc
er's objects free of worry that the underlying abstraction is faulty. This
means that the most productive programmers in an object-based environ
ment are those who spend the bulk of their time as consumers of pre
existing code.

16 CHAPTER 2

FIGURE 2.1 How Light Fixture Objects Are Laid Out

Inheritance

turnFixtureOn
tu rn Fixtu reOff

Mth Table

There are times when you, as a consumer of objects, can find existing
objects that almost match most of your specifications. At that point, you
would like to be able to extend the existing object by adding the behavior
and data needed to accomplish your task. In object-oriented program
ming, you accomplish this using a technique called inheritance.

Inheritance is a formal methodology for reusing large pieces of code by
adding a new piece of code that defines only the differences between old
and new. For example, you could produce a new type of light fixture, say
a timed light fixture, by adding timing capabilities to an existing light fix
ture. The terminology used to represent this relationship is that the new
class (TimedLightFixture) is a subclass of the pre-existing (LightFixture)
class. Conversely, you would say that the pre-existing class (LightFixture)
is the superclass of the new (TimedLightFixture) class. Here's a list that
shows the extensions necessary to build a new class of timed light fixture
objects.

Why Objects?

Class

TimedLightFixture

SuperClass

LightFixture

Instance Variables

BOOL timerOnOff
TIME turnOnAt, turnOff At.

Instance Methods

turnFixtureOn
turnFixtureOff
setOnTime (TIME newOnTime)
setOffTime (TIME newOffTime)

17

In addition to adding new instance data and methods, the new
TimedLightFixture class redefines, or overrides, two methods (turnFix
tureOn, turnFixtureOff) defined in its superclass. If you send the turnFix
tureOn message to a light fixture object, that request will be handled by
the method in the LightFixture class. On the other hand, the same request
to a timed light fixture object will be handled in the TimedLightFixture
class because that class has its own turnFixtureOn method defined. As in
most object-oriented programming environments, PenPoint supports sev
eral ways for the subclass to access the behavior of a superclass's method
that it overrides.

As I mentioned earlier, there are two views of every object: the produc
er's and the consumer's. The previous list defined the producer's view of
the new TimedLightFixture class. It simply shows the differences between
a timed light fixture and a basic light fixture. The next list defines the con
sumer's view of a timed light fixture, including the data and methods
inherited from a light fixture.

Class
TimedLightFixture

Instance Variables

BOOL onOffFlag
BOOL timerOnOff
TIME turnOnAt, turnOff At.

Instance Methods

isFixtureOn

18

isFixtureOFF
turnFixtureOn
turnFixtureOff
setOnTime (TIME newOnTime)
setOfffime (TIME newOfffime)

CHAPTER 2

The inheritance hierarchy for this example is very simple and therefore
fairly easy to explain. As you can imagine, deep inheritance hierarchies
can quickly lead to very complicated objects and problems in trying to
figure out exactly where something is happening. Inheritance is not a
panacea and should be used as an implementation tool only. When
designing objects, you should start with their requirements and then try
to find an existing object that does the trick. Then if you can't find a direct
match, you should consider using inheritance.

Binding Options

You work with objects by sending them messages. These messages are
then translated to an appropriate method in a particular class, based on
the type of object you sent the message to. For example, if you send the
turnFixtureOn message to a timed light fixture object, it uses the method
found in the TimedLightFixture class to carry out your request. On the
other hand, if you sent the same message to a light fixture object, it uses
the method found in the LightFixture class to carry out your request. The
process of determining which method in which class should respond to
which message sent to a certain object is known as binding.

Binding a requested behavior (a message send) to the actual implemen
tation (the method) can take place at multiple points in the life cycle of an
application. For example, you can define a macro that provides a set of
functionality that is expanded during preprocessing. The macro is said to
be bound at preprocessing time, because once the preprocessor has run,
the behavior of that macro can't be changed. Another example of a bind
ing tool is a linker, which resolves references to functions that might be
located in different modules. This form of binding is exploited for reuse
by defining libraries of functions that multiple applications can share.

The binding of messages sent to objects can occur at various times. For
example, you can ask the linker to bind a message sent to a particular class
of object to the actual method that will handle the request, but only if you
know that information ahead of time. Although this produces efficient
code, it severely limits reuse of objects, because the compiler must know
every possible use of the object when it's being built. At the other end of the
spectrum, you can defer binding until the message is actually sent to the

Why Objects? 19

object in question. At that time, a lookup is performed to see which method
to call to access the required functionality. This allows you to build generic
objects that will work with any other object, as long as that other object
responds to the messages your original object expects to send.

Reliability, Reusability, and Cost

During any design process, there is always the possibility that a new
requirement will arise that has no existing solution. When this situation
occurs in object-based design, it is usually solved by implementing a new
class. Unfortunately, most of the time the solution doesn't go far enough.

A reusable component will go through three distinct stages. The first
stage is when the component is good enough for me, its designer, and
developer. Because I'm the only one using it, I can make assumptions
about its internal representation and limit the amount of destructive test
ing (exceeding boundary limits, for example) performed. Also, because of
the limited requirements on its robustness, I can quickly get a class to this
stage. The downside of stopping at this stage is that the cost to develop
the component can be spread over one person only, since no one else
would want to reuse such a component.

The second stage occurs when you convince me to share my custom
component with you. In the process of using the component within a sec
ond application, I will spend additional time uncovering and fixing prob
lems that didn't arise in my application, but manifested themselves in
yours. Also, since we are sharing the same object, I'll have the added ben
efit of increased generality in my component. The actual effort in moving
from stage one to stage two is usually a fraction of the time taken to get to
stage one. However, now I can divide the cost of developing and main
taining the component by two.

Finally, there is stage three, when a component has been designed and
tested to be as generic as possible to work in applications as yet unimag
ined. This type of reusability is available in PenPoint as a direct result of
PenPoint's use of deferred binding in sending messages between objects.
Getting a class to stage three tends to be fairly expensive, because now I
must incur the cost of documenting the component for a much wider
audience. However, the cost of developing the component can now be
spread over a much larger number of users, both inside and possibly out
side of my development organization.

20 CHAPTER 2

PenPoint's Definition of OOP

PenPoint has adopted the best features of object-oriented programming
(OOP) and has applied them to reusing code efficiently. For example, con
sider the idea of shared libraries. PenPoint uses Dynamic Link Libraries
(DLLs) to allow multiple applications to share the same copy of the
library by deferring linking until the application starts to run. This allows
greater code reuse since multiple users of the same object work from a
common piece of code, instead of individual copies. A very important but
often overlooked bonus is that it is necessary to change an object in one
place only to have the benefits of its updates extended to all its subclasses.

Encapsulation in Pen Point

PenPoint implements two types of objects: instances and classes.
Instances are objects that inherit from clsObject and have the given
instance data described by the class object. Class objects (sometimes
known as meta-classes) inherit from clsClass and have the responsibility
for defining what goes into their instance objects and which methods
should respond to certain messages received by an instance of their class.

Because PenPoint objects tend to be heavyweights (that is, they rou
tinely send messages to each other across process boundaries), PenPoint
extends the concept of encapsulation to include allocating an object's
instance data from protected memory, affording your application an extra
bit of data security. Placing instance data in protected memory is useful
but does necessitate caution when writing the data back into protected
memory.

For example, suppose you de-reference the instance data to access one
field and then call another method. The second method also accesses the
same instance data, changes a field, and then writes the information back
into protected memory. When it returns to your original code, you con
tinue to modify the instance data, and then you too rewrite it. But, you're
working from an original copy of the instance data that was invalidated
by the message you sent, thereby corrupting the contents of the instance
variables.

Inheritance in PenPoint

PenPoint implements a single inheritance model for its classes. A class
inherits both instance data and methods from its superclass (sometimes
referred to as its ancestor). Even though a class inherits its superclass's

The PenPoint Class Hierarchy 21

instance variables, it can only directly access those defined for it. It must
send messages to its ancestors to access instance data that they define.
Instance methods overridden by a subclass can be accessed one of three
ways. First, you can specify that the inherited behavior be called before
the new behavior. Second, you can specify that the inherited behavior be
called immediately after the new behavior completes. Third, you can send
a message to the su perclass within the method asking for the inherited
behavior to be executed.

Message Binding in PenPoint

PenPoint incorporates several mechanisms for sending messages syn
chronously and asynchronously, not only within a single process but
across process boundaries as well. The user of the remote object can
choose how a message is sent, a feature that gives a great degree of flexi
bility in configuring how things work together.

The PenPoint Class Hierarchy

Application building in object-based systems should be an assembly pro
cess based upon the availability of already built (designed, developed,
tested, and packaged) components. Ideally, you would build your appli
cation by selecting what you need from the components list, providing a
small amount of glue code, and linking everything together into your fin
ished application. Unfortunately, most of the time you need to write more
than "just a little glue code" to have everything necessary for your appli
cation; you end up needing additional classes.

Even if you find yourself having to design and develop new classes, the
assembly metaphor is still a reasonable way to proceed. Any additional
classes deemed necessary to develop should be as generic as possible so
the next time someone is looking for that type of behavior, they can reuse
what you have just created. Once you have manufactured the new class,
you can slip back into assembly mentality and actually write that little
piece of glue code necessary to bind the components together.

The success of any assembly effort relies on the designer having a
strong understanding of the components available. In PenPoint, this
translates into the application programmer having a feel for the contents
of the class library and the steps involved with reusing them, both by
assembling complex objects from existing ones (construction) and by cus
tomizing existing classes for a specific need (subclassing).

22 CHAPTER ·2

What's Available

PenPoint's class hierarchy consists of approximately 180 classes divided
over six major areas of functionality. Although it's technically one big
hierarchy because all objects inherit from clsObject, my experience has
shown that a hierarchy this large is easier to comprehend if taken in
smaller pieces. For discussion purposes I treat the smaller pieces as sepa
rate hierarchies. This is reasonable because the interaction between classes
of different hierarchies tends to be across a small, rigidly defined, mes
sage-based interface with few assumptions made about how the internals
of the interacting objects work. In general, you can apply the rules of soft
ware engineering with respect to coupling and cohesion to help you
understand and delimit the boundaries of these sub hierarchies.

The six subhierarchies of interest in PenPoint are the application
classes, installation classes, windows and UI toolkit control classes,
remote interfaces and file system classes, text and handwriting classes,
and a set of miscellaneous classes. Classes that are members of the same
small hierarchy tend to rely more upon in-depth knowledge of each oth
er's internal implementation. Sometimes, this information is encoded in
the form of shared superclasses that localize the need for cross class-spe
cific information.

Application Classes PenPoint provides a methodology for building ap
plications that insures all applications work in a similar manner. Known
as the Application Framework, this methodology is implemented using
the application class hierarchy, which includes the superclass of all appli
cation classes, clsApp. In addition to clsApp, the application class hierar
chy also contains clsClass, the Class Manager itself.

Installation Classes The installation classes are used to implement be
havior for managing the installation of system resources. These resources
include fonts, handwriting prototypes, applications, services, and user
preferences.

Windows and VI Toolkit Control Classes The windows and UI toolkit
control classes are the largest of the PenPoint hierarchies, with over 60
classes dedicated to the implementation and control of the Notebook User
Interface. In addition to being the largest, they also boast the deepest hier
archy leafs (clsPopUpChoice, for example, with nine superclasses). They
include classes such as clsWin (the window class), which is superclass to
all displayable items in the NUl, and the classes that actually manage the
devices used to display the NUL

PenPoint's Class Manager 23

The windows and UI toolkit control classes are probably the most
mature set of classes in PenPoint from the viewpoint of historical prece
dence. This is due to the traditional strengths associated with object-ori
ented systems that have deferred binding (such as Smalltalk or PenPoint)
for building user interface components. Therefore, the implementers of
PenPoint were able to leverage a large amount of existing knowledge in
building the NUL

Remote Interfaces and File System Classes Included in the remote in
terfaces and file system class hierarchy is support for network-based com
puting, such as TOPS and SoftTalk. In addition to network support, there
are also classes that provide for file management, hardcopy printing, and
fax I modem support.

Text and Handwriting Classes The text and handwriting class hierar
chy provides support for managing user input to applications. There are
individual classes that support entities such as gestures, scribbles, keys,
pen strokes, and so on. This class also contains a spelling manager for use
within your PenPoint applications.

Miscellaneous Classes Finally, there is a hierarchy of classes that are sup
portive in nature, but not attachable to any subsystem in PenPoint. These
classes include, for example, a string manager, a timer, and a battery monitor.

PenPoint's Class Manager

One of the most powerful PenPoint features is its total commitment to the
use of objects. Unfortunately, GO chose not to support one of the many
object-oriented programming languages available and instead imple
mented a set of function calls and macros for managing objects in the Pen
Point environment based on ANSI-C. This makes managing the use of
objects one of the most difficult and time-consuming requirements of
writing application software for PenPoint, because many aspects of
object-based programming managed by OOP languages must be done
manually by the application programmer.

The functions, macros, and support classes used to implement the Pen
Point object model are collectively known as the Class Manager. The next
several sections outline the functional and macro-based interfaces to the
Class Manager that are needed when using objects in PenPoint.

24 CHAPTER 2

Identifiers

The term UID, or Universal Identifier, refers to a system-wide unique
handle on an object. Actually, two types of Universal Identifiers are avail
able in PenPoint: Well known UIDs which identify classes and Dynamic
UIDs which identify instances created by your application.

Both types of UIDs are 32-bit numbers used by the Class Manager to
identify an object. UIDs are not data pointers, rather they are a collection
of information that includes an administered value from the GO Corpora
tion. This administered value guarantees your new UID uniqueness from
every other UID created, unless someone doesn't follow the rules. You
will notice that the example classes contained in this book all use an
administered value that GO provided for the purpose.

Class UIDs A Well Known UID for a new class is created using the
MakeWKN () macro supplied in the go.h header file. For example, suppose
GO gave you two administered values (1111 and 2222) for use in imple
menting the LightFixture and TimedLightFixture classes. You would use
the MakeWKN () macro to generate Universal Identifiers for those classes
by including

#define clsLightFixture MakeWKN(llll, 1, wknGlobal)
#define clsTimedLightFixture MakeWKN(2222 , 1, wknGlobal)

where the first parameter (1111) is the administered value, the second (1)
is the version number, and the third (wknGlobal) is the scope.

Alternately, you could use the MakeGlobalWKN () macro

#define clsLightFixture MakeGlobalWKN(llll, 1)
#define clsTimedLightFixture MakeGlobalWKN(2222 , 1)

to automatically define the scope as global.

Other Well Known UIDs There are several other types of Well Known
Universal Identifiers in addition to the ones used for objects. They include
the management of unique values for status information, message identi
fiers, and tags.

For example, you can use the MakeMsg () macro to generate a unique
identifier for the isFixtureOn method in class clsLightFixture by including

#define msgIsFixtureOn MakeMsg(clsLightFixture, 0)

where the first parameter is the name of the class the message is defined
for and the numerical value indicates a unique message number for that

PenPoint's Class Manager 25

class. Each message is truly unique because it makes use of the adminis
tered value found in the class's Well Known DID.

Similarly, error status values are created using the MakeStatus ()
macro:

#define stsFixtureShorted MakeStatus(clsLightFixture, 1)

The actual status value created is a signed value that indicates whether
the status is an error (negative) or a non-error (positive). To create a non
error status code you could use the MakeNonErr () macro:

#define stsFixtureOn MakeNonErr(clsLightFixture, 1)

Finally, tags are 32-bit values that can be used to identify well-known
constants within your application. Tags are commonly used to identify
such things as option sheets, options cards, and Quick Help strings. Tags
are generated using the MakeTag () macro which takes a class DID and a
tag identifier as parameters and creates a unique tag.

Manipulating Objects

PenPoint defines several messages that are used to create, maintain, and
free objects from your application. Most behavior for implementing this
functionality is actually inherited by a new class from its root ancestor,
clsObject, or clsObject's meta-class clsClass. (The use of meta-classes to
build objects will be discussed in the next section.)

Creating Instances Creating an object (an instance of a class) in Pen
Point is a two-step process involving the initialization of a default data
structure and then the actual creation of the object itself. By convention,
each class in PenPoint defines a CLASSNAME_NEW structure that contains
the information necessary to initialize a new object.

For example, consider a block of code that creates a label object from
clsLabel:

LABEL_NEW In;
STATUS s;

ObjCallRet(msgNewDefaults, clsLabel, &In, s);
In.label.pString "Default String Value";
In. label. style. scaleUnits bsUnitsFitWindowProper;
In. label. style.xAlignment lsAlignCenter;
In. label. style.yAlignment lsAlignCenter;
ObjCallRet(msgNew, clsLabel, &In, s);

26 CHAPTER 2

The first line defines a structure that holds the new information needed
to initialize the label. This structure is defined in a file called label.h in the
Software Developer's Kit or SDK. Next, the new structure is filled in by
sending a message to clsLabel asking for its default values. Once you
have the default values, you can modify them. In this case, the label will
have the default string of IIDefault String Value ll

, will size itself so
it takes up as much of the window as possible, and will center itself in its
parent window. Finally, a msgNew message is sent to clsLabel with a
pointer to the completed LABEL_NEW structure. When the message
returns, the new structure's In. obj ect. uid field contains the UID of
the label object that was just created.

If you want to use the default new structure returned by msgNewDe
faults without modifications, you could replace the two calls in the code
block with the single call sequence:

LABEL_NEW In;
STATUS s

ObjCallRet(msgNewWithDefaults, clsLabel, &In, s);

The definition of In is still needed because that is where the UID of the
new object will be returned.

Removing Objects When you are done with an object, you must de
stroy it to free its resources for other processes to use. Keep in mind that
memory is a valued resource in a tablet machine running PenPoint, and
therefore you should not keep objects past their natural lifetime. You re
move an object by sending it the msgDestroy message.

For example, to remove the label object just created, you would do the
following:

ObjCallRet(msgDestroy, In.object.uid, objNull, s);

The obj Null parameter is a place keeper because the Obj CallRet ()
macro requires four parameters. obj Null is a PenPoint-defined null
object.

Inspecting Objects You can use several messages to inspect an object's
contents. For example, to have a particular object send debugging infor
mation about itself to the debug output stream, you would send it the
msgDump message:

ObjCallRet(msgDump, In·~object.uid, minS32, s);

PenPoint's Class Manager 27

The amount of information is controlled by the value passed in the
argument parameter. By convention, the value minS32 produces verbose
output, including recursive verbose outputs for any embedded objects it
contains. This is the maximum amount of information that you can
request. You use values to specify how much information you want about
an object.

o
1

-1

maxS32
minS32

N

Implementer chooses what information is most useful.
Terse, one line only.
Terse, includes information about embedded objects. One
line of information for the parent object, plus one line of
information for each object embedded in it.
Verbose, includes all possible information about the object.
Verbose, includes information about embedded objects.
Provides maximum amount of information.
All other values are at the discretion of the implementer.

In addition to asking an object to dump its debugging information, you
can also request other information using these messages.

msgIsA
msgClass
msgVersion
msgTrace

Tests if the object is a member of the indicated class.
Passes back the class used to create the object.
Passes back the version of the object.
Turns on message tracing for the messages sent to the
object.

NOTE: This list is not complete.

Sending the msgTrace message to an object turns on message tracing.
When this happens, every Obj ectCall () to the object causes a three
line message to be printed:

C> Trace ObjectCall:@cls="ancestor name"
C> object="object name"

task=" task"
depth="D"

C> msg="message name", pArgs= " address" , pData= " address"

where task is the task ID in hex, depth is the number of recursive dispatch
loops, and pArgs/pData points to the method arguments and instance
data, respectively.

When the trace is complete another message is printed:

28

C> Trace ObjectCall:return="status value"
C> object="object name"

Sending Messages

CHAPTER 2

task=" task"
depth="D/C"

You send a message to an object in PenPoint using one of several pre
defined function calls. In general, when you send a message to an object,
the Class Manager looks at the message sending type, the message ID,
and the object the message is being sent to before determining exactly
which method should be used to provide the requested behavior. Pen
Point's very versatile messaging facility allows you to send messages not
only in your process space, but also to objects located in other processes.

GO has defined a set of macros to help manage message sending and
the status values returned. Before I explain these, however, let's look at
the underlying functions that support the macros.

Message Functions In general, messages look like this:

s = ObjectCall(rnsgSorneMessage, anObject, pArgStructure

where msgSomeMessage is a Well Known UID, anObject is a variable con
taining the Universal ID of the object that is to receive the msgSomeMes
sage message, and pArgStructure is a pointer to a structure containing the
arguments required by the message being sent. The message function
returns a status value indicating the success or failure of the message.

The actual function prototype of ObjectCallO is

STATUS EXPORTED ObjectCall(
MESSAGE rnsg,
OBJECT object,
P_ARGS pArgs

) ;

Use ObjectCallO to send messages to objects within your own process
space. If you want to send a message across task boundaries, use the
Obj ectSend () function, defined

STATUS EXPORTED ObjectSend(
MESSAGE rnsg,
OBJECT object,
P_ARGS pArgs,
SIZEOF lenArgs

) ;

PenPoint's Class Manager 29

Because an ObjectSendO message crosses process boundaries, the
pArgs block must be copied into the address space of the object that will
receive the message. An additional parameter, lenArgs, facilitates this.
If lenArgs equals zero, ObjectSendO interprets pArgs to point at a
block of globally accessible memory. Once the data transfer is complete,
ObjectSendO causes an ObjectCallO to execute in the process space of
the target object.

Due to the crossing of process boundaries, the data pointed to by pArgs
will not be updated and therefore cannot be used to retrieve information.
If you need to retrieve information across boundaries, you use the
Obj ectSendUpdate () function which works like Obj ectSend () but
does copy the information back across boundaries.

Obj ectCall (), Obj ectSend (), and Obj ectSendUpdate () are all
synchronous functions. They block execution on the sending side until the
receiving side has finished handling the message. Two functions,
Obj ectPost () and Obj ectPostAsync (), remove the blocking
requirement on the sender's side.

Obj ectPost () is similar to Obj ectSend () I except that it defers
message sending until the receiving object's task returns to its top level
dispatch loop. Because the receiving side waits until the object is at its top
level dispatch loop, you can be assured that one message will be pro
cessed before another is sent.

If you aren't concerned with synchronizing the input loop with the
message, you can use the Obj ectPostAsync () function instead. How
ever, you must be aware, if not concerned, about issues involving concur
rency on the receiving object's side. Also, it isn't possible for
Obj ectPostAsync () or Obj ectPost () to return a meaningful status
value, because the sending task does not block while waiting for a reply.

Message Macros To facilitate exception handling, GO has defined a set
of macros to be used when sending messages. The format for these mac
ros is

<message-type> <status-handler>
(message, object, pArgs, <opt-status>, <opt-label»

where:

<message-type> Is "ObjectCall," "ObjectSend," or a similar function.
<status-handler> Is one of

Ret To return immediately if there is an error.
Jmp To jump to the <opt-label> if an error occurs.
Ok To test for an error and return the results of the

test.

30 CHAPTER 2

<opt-status> Is the status value returned by the method handling
the message.

<opt-label> Is the point in the source code where control should be
transferred in case of error.

Suppose, for example, that you are sending a message to create an object
and an error occurs. If you want to exit the current function, the correct
function to use is

ObjCallRet(msgNew, clsWhatever, &newStr, s} i

where s had been previously defined as type STATUS.
On the other hand, if you need to perform some clean-up function,

even if an error caused an abnormal status code to be returned, you can
use Obj CallJmp (). For example, consider the code fragment:

II allocate space for a local buffer
s = stsOKi
ObjCallJmp(msgNew, clsWhatever, &newStr, s, dealloc_mem}i
II do processing using the buffer

dealloc_mem:
II free the temporary buffer
return Si

This code uses a dynamically allocated buffer with an object that it cre
ates. This function needs to free the buffer, even if it doesn't use it due to
an error status being passed back from the msgN ew message.

In this example, an error condition causes execution to be transferred
directly to dealloc_mem without attempting to use the clsWhatever
object. The value of status reflects the error value if msgNew was unsuc
cessful. If execution proceeds normally, then the status remains stsOK.

Utility Functions

One of the great difficulties with systems that support dynamic linking
and loading of software concerns versioning. In PenPoint, one piece of
information stored for each object is a current version number. This infor
mation can be used to determine whether it can be used as is with the cur
rently loaded module that implements the object's behavior. It is possible
to include routines with your custom objects that allow older versions of
objects to be upgraded to the current version.

In addition to the version number, there is a set of functions that can be
used to get ASCII information about a class. For example, you could use

Building PenPoint Classes 31

the ClsMsgToString () function to find the symbolic name of the mes
sage ID passed as an input parameter. This type of information is also
helpful in producing debugging tools, or even the response to a msg
Dump message.

Building Pen Point Classes

In the perfect world, you could simply turn to a stash of built components
and use them to construct your application, without having to add a sin
gle new component. This is very close to a reality in PenPoint, due to the
rich set of components it provides. The single exception is that each appli
cation in PenPoint must have its own subclass of the application class to
be able to do any useful work. But even then, only a small amount of new
code needs to be written to implement a custom application class.

You must provide four pieces of information to PenPoint when adding
a new class to those it makes available to your application. First, you must
provide a set of functions that implement the behavior that sets your class
apart from another. Second, you must provide a translation mechanism,
called a method table, that translates a message into a Universal Identi
fier that can be used to bind the behavior request (message) with its
implementer (the function). Third, you must provide a function that
sends a message to the Class Manager to request your class be added.
Consumers of your class use this function to register it with the Class
Manager when they need it. Finally, you should provide an interface file
containing message definitions, the NewDefaults structure, status values,
and other information for consumers of your class.

The Implementation File

The implementation file for a class usually consists of the structure that
defines the class's instance variables, plus the functions that implement
the class's desired behavior. In addition, there is a function that can be
called to register the class with the Class Manager.

Instance Variables Instance variables are defined using a C structure
specified in the implementation file. When the class is registered, the
Class Manager is passed the size of the instance variables structure so it
knows how much memory to allocate for each instance from protected
memory.

32 CHAPTER 2

For example, the instance variable structure for clsLightFixture would
look like this:

typedef struct INSTANCE_DATA {
BOOL anOffFlag;

} INSTANCE_DATA, *P_INSTANCE_DATA;

There are several size limits for instance data. First, the instance data
for any class is limited to 64K. Second, the instance data for an entire
object (that is, the data my new class defines, plus all the data its ancestors
define) is limited to 64K of protected data. Finally, unprotected instance
data is limited to 64K per class, but there is no limit on unprotected
instance data for the entire object.

Method Macros Methods are defined using macros that create functions
with the names and parameter types the Class Manager expects. Each
m~thod receives five pieces of information from the Class Manager when
it is invoked:

msg
self
pArgs

ctx
pData

The UID of the message used to invoke this method.
A pointer to the object that the message is being sent to.
A pointer to a block of memory containing the argument
data.
The context that contains the method being executed.
A pointer to the instance data contained in protected mem
ory.

The default definition for a method is handled using the MsgHandler
Pr imi t i ve () macro. This macro is defined

#define MsgHandlerPrimitive(fn,
canst MESSAGE msg,
canst OBJECT self,
canst pArgsType
canst CONTEXT
canst pInstData

pArgs,
ctx,
pData)

pArgsType,
\
\
\
\

pInstData) fn(\

A second macro, MsgHandlerParametersNoWarning works in tan
dem with the MsgHandlerPrimi ti ve () macro to instruct the compiler
to ignore any unused members of the MsgHandlerPrimitive () mac
ros input declaration. This macro is defined

#define MsgHandlerParametersNaWarning \
Unused (msg) ; Unused(self); Unused (pArgs) ; \

Building PenPoint Classes 33

Unused(ctx)i Unused (pData)

Several variations on MsgHandlerPrimitive () can be used based
on the needs of a particular application. For example, suppose you are not
going to access the instance data pointer passed to the method, and the
method itself has no arguments. You could use

MsgHandler(MyMethod)
{

II do something
MsgHandlerParametersNoWarningi

If, on the other hand, you need to access the arguments passed to the
method, but not the instance data, you could use the MsgHandlerArg
Type () macro:

typedef struct MYARGS
char *aStringi

} MYARGS, *P_MYARGSi

MsgHandlerArgType(MyMethod, P_MYARGS)
{

STATUS Si
ObjCallRet(msgSetStringValue, self, pArgs->aString, s) i

return stsOKi
MsgHandlerParametersNoWarningi

MsgHandlerArgType () uses its second parameter to specify the type
to cast the pointer to the arguments passed by the Class Manager. Also
notice that I made use of the self variable to send a message. Self is
defined to point at the UID of the object originally sent the message. The
value of self never changes, even if the code that handles the message is
not located in the class that the object belongs to.

Finally, MsgHandlerWi thTypes () can be used when it's necessary to
access both the instance data and the arguments:

typedef struct INSTANCE_DATA {
BOOL onOffFlagi

} INSTANCE_DATA, *P_INSTANCE_DATAi

typedef struct MYARGS
char *aStringi

} MYARGS, *P_MYARGSi

MsgHandlerWithTypes(MyMethod, P_MYARGS, P_INSTANCE_DATA)

34 CHAPTER 2

STATUS s;

if (pData->onOffFlag)
ObjCallRet(msgSetStringValue, self, pArgs->aString, s);

else
ObjCallRet(msgSetStringValue, self, "", s);

return stsOK;
MsgHandlerParametersNoWarning

Method Table

Each class has a method table that is used to translate between messages
and methods. In PenPoint, it is your responsibility as the application pro
grammer to maintain this table for each new class you build. The method
table is composed of a set of entries that have three fields: the message
field; the method field; and the attribute field. The attribute field indicates
whether the ancestor method (if present) should be called before the cur
rent method (objCallAncestorBefore), after the current method
(obj CallAncestorAfter), or not at all (0). There is one entry per mes
sage/method pair in the class.

For example, consider the method table entries for the LightFixture
class:

MSG_INFO clsLightFixtureMethods[] = {

} ;

msgTurnFixtureOn,
msgTurnFixtureOff,
msgIsFixtureOn,
msgIsFixtureOff,

°

" LightFixtureTurnOn " , 0,
"LightFixtureTurnOff" , 0,
"LightFixtureIsOn" , 0,
"LightFixtureIsOff" , 0,

This information is processed by a special tool, called mt.exe, that cre
ates a table used specifically by the Class Manager. In this example, the
four messages have been defined with the MakeMsg () macro in the
header file used to publish the new class' interface. The listed methods
correspond to the methods you created in the implementation file using
the various MsgHandl e () macros.

A second entry in the method table file organizes multiple classes'
method tables in one place. It is called the CLASS_INFO structure and
looks like this:

Building PenPoint Classes

CLASS INFO cIassInfo[] = {

} ;

"cIsLightFixture" , cIsLightFixtureMethods, 0,
o

35

Each row in the table contains the class name in quotes, followed by the
name of the MSG_INFO structure. A null terminates each row, and a null
in the first column of the last row terminates the entire structure.

Registering a PenPoint Class at Runtime

Once you have built the appropriate structures, methods, and method
table, you need to provide users of your new class a function they can call
to register it with PenPoint. By convention you do this by defining the
function:

STATUS CIsYourClassNameInit (void)

to register the new class with the Class Manager.
Continuing the clsLightFixture example, the class registration function

would be

STATUS CIsLightFixtureInit (void)
{

CLASS_NEW new;
STATUS s;

ObjCaIIJmp(msgNewDefauIts, cIsCIass, &new, s, Error);

new.object.uid
new.cIs.pMsg
new.cIs.ancestor
new.cIs.size
new.cIs.newArgsSize

ObjCaIlJmp(msgNew,

return stsOK;

Error:
return S;

cIsLightFixture;
cIsLightFixtureTabIe;
cIsObject;
SizeOf(INSTANCE_DATA) ;
SizeOf(LIGHTFIXTURE_NEW) ;

cIsCIass, &new, s, Error);

ClsLightFixtureIni t () assumes that a global Well Known DID
(clsLightFixtureTable) has been defined for the class, a method table (cls-

36 CHAPTER 2

LightFixtureTable) exists for the class, and that a new data structure
(LIGHTFIXTURE_NEW) and an instance variable data structure
(INSTANCE_DATA) have been defined for the class. Finally, you need to
specify the new class's superclass, or ancestor, as part of the CLASS_NEW
data.

After modifying the CLASS_NEW structure returned by the msgNewDe
faults message, msgNew is sent to clsClass to register the new class
you've defined. In this example, only four of the available parameters are
modified. The actual permutated list of available attributes you can
change is

APP_MGR_NEW new;
new.object.newStructVersion;11 Out: [msgNewDefaults] Vald
msgNew

new.object.key;
new.object.uid;

new.object.cap;
new.object.objClass;

new.object.heap;

new.object.sparel;
new.object.spare2;
new.cls.pMsg;
new.cls.ancestor;
new.cls.size;
new.cls.newArgsSize;
new.cls.sparel;
new.appMgr.dir;

II In: [msgNew] Valid version
II In: [msgNew] Lock for the object
II In: [msgNew] Well-known uid
II Out: [msgNew] Dynamic or Wkn uid
II In: [msgNew] Initial capabilities
II Out: [msgNewDefaults] Cls called
II In: [msgObjectNew] Class id
II In: [msg*] Used by toolkit
II Out: [msgNewDefaults] Heap for
II additional storage. If capCall,pass
II OSProcessSharedHeap else pass
II OSProcessHeap
II Unused (reserved)
II Unused (reserved)
I I In: Can be pNull for abstract class
II In: Ancestor to inherit from
II In: Size of instance data, can be 0
I I In: Size of XX_NEW struct, can be 0
II Unused (reserved)

II App monitor dire
new. appMgr. appMonitor;
new.appMgr.resFile;
new.appMgr.iconBitmap;
new.appMgr.smalllconBitmap;
new.appMgr.appWinClass;

II App monitor object.
II App res file.
II Icon bitmap.
II Small icon bitmap.
II App win class.

new. appMgr. defaultRect;
new.appMgr.name[nameBufLength];
new.appMgr.version[nameBufLength] ;
new.appMgr.company[nameBufLength] ;
new.appMgr.defaultDocName["I];
new. appMgr. copyright;
new.appMgr.programHandle;
new.appMgr.reserved[4];
new.appMgr.flags;

I I Defaul t rect (points) .
II Application name.
II Version.
II Company name.
II Default doc name.
II Copyright.
II Program handle.
II Reserved.

Building PenPoint Classes 37

This list of attributes should not be seen as a challenge-How many
values can I change? Rather, you should view it as an indication of the
type of benefits the object-based framework provides for you. You must
only point out the differences in your class to PenPoint, because much of
the work your application needs to do has already been implemented.

A Class Interface File

Early on, I mentioned that there are two distinct views of an object: the
consumer's and the producer's. The first three items you provide for the
Class Manager constitute the producer's view of the object: the methods,
message-to-method translation table, and the actual mechanics of specify
ing the superclass of the new class.

There are times, however, when other consumers will want to use a class
you produced for yourself. Although this doesn't happen with custom
application classes very often, it does happen to classes such as clsLabel
that are reused many times by many different consumers. The current con
vention is for you to produce an interface file for objects that might have
consumers at a future time.

The interface file contains the definition of the class's _NEW structure
and any new messages that the class defines. It also includes definitions
for status values that might be passed as return codes, and data structure
definitions for sets of information that might be passed as arguments to
one of the methods during a message send.

The interface file for clsLightFixture might look something like this:

#ifndef LGTFXTR_INCLUDED
#define LGTFXTR_INCLUDED

#ifndef CLSMGR_INCLUDED
#include <clsrngr.h>
#endif

#define clsLightFixture MakeGlobalWKN(1111, 1)

STATUS ClsLightFixtureInit (void) i

#define stsFixtureShorted MakeStatus(clsLightFixture, 1)

#define stsFixtureArcing MakeStatus(clsLightFixture, 2)

38 CHAPTER 2

#define stsFixtureOn MakeNonErr(clsLightFixture, 1)

#define stsFixtureOff MakeNonErr(clsLightFixture, 2)

#define rnsgTurnFixtureOn MakeMsg(clsLightFixture, 1)
#define rnsgTurnFixtureOff MakeMsg(clsLightFixture, 2)
#define rnsgIsFixtureOn MakeMsg(clsLightFixture, 3)
#define rnsgIsFixtureOff MakeMsg(clsLightFixture, 4)

typedef struct LIGHTFIXTURE_NEW_ONLY
BOOL initialState

} LIGHTFIXTURE_NEW_ONLY;

#define lightFixtureNewFields \
objectNewFields \
LIGHTFIXTURE_NEW_ONLY lightFixture;

typedef struct LIGHTFIXTURE_NEW {
lightFixtureNewFields

} LIGHTFIXTURE_NEW, *P_LIGHTFIXTURE_NEW

#endif II LGTFXTR_INCLUDED

The last part of the definition file specifies the structure used to allocate
new instances of clsLightFixture. The LIGHTFIXTURE_NEW_ONLY struc
ture defines the entries light fixture's initialize method needs. Those fields
are added to the information clsLightFixture's ancestor, clsObject, needs.
Finally, a LIGHTFIXTURE_NEW structure is defined to provide access to
all the required initialization parameters.

Reusing Inherited Behavior

One way to reuse an existing class is to subclass it. You can then create a
new object by indicating how it differs from the old object, its superclass.
For example, consider how you would build the timed light fixture object
from the existing light fixture object.

Defining the New Class This time, I'm going to start with the
ClsTirnedLightFixturelni t () function used to define the
clsTimedLightFixture class:

STATUS ClsTirnedLightFixturelnit (void)
{

CLASS_NEW new;

Building PenPoint Classes

STATUS s;

ObjCallJmp(msgNewDefaults, clsClass, &new, s, Error) i

new.object.uid
new.cls.pMsg
new.cls.ancestor
new.cls.size
new.cls.newArgsSize

ObjCallJmp(msgNew,

return stsOK;

Error:
return Si

clsTimedLightFixturei
clsTimedLightFixtureTablei
clsLightFixturei
SizeOf(INSTANCE_DATA) i

SizeOf(TMDLIGHTFIXTURE_NEW) i

clsClass, &new, s, Error) i

39

Notice that the only real difference between this function and Cls
LightFixtureIni t () are the values passed to the new structure used
by clsClass. Like clsLightFixture, clsTimedLightFixture has its own
method table and unique Well Known DID. However, instead of using
clsObject as its immediate ancestor, clsTimedLightFixture uses clsLight
Fixture, and therefore also inherits from clsObject's functionality.

Overriding Methods in the Superc1ass In the class definition for timed
light fixture two methods, turnFixtureOn and turnFixtureOff, have the
same name as the methods in their ancestor's class. By definition, when
you send a message to an object, the method table for the object is
checked first, and if a match is found, it's executed. Otherwise, the ances
tor's message table is searched, and so on, until a match is found. What
happens when your new method needs to access the behavior for the
same method name in its ancestor class?

One way you can do this in PenPoint involves specifying that the
ancestor's behavior should be invoked either before or after the class's
behavior based on an entry in the new class's method table. For example,
the method table for clsTimedLightFixture is defined as

MSG_INFO clsTimedLightFixtureMethods[] = {
msgTurnFixtureOn, "TimedLgtFixTurnOn h

,

objCallAncestorBefore,
msgTurnFixtureOff, " TimedLgtFixTurnOff " ,
objCallAncestorAfter,
msgSetOnTime, " TimedLgtFixSetOnTime " , 0,

40

} ;

msgSetOffTime,
o

CHAPTER 2

"TimedLgtFixSetOffTime",O,

The entries in the third field of msgTurnFixtureOn and msgTurnFix
tureOff contain the predefined values objCallAncestorBefore and
obj CallAncestorAfter I respectively. Like the predefined names
imply, obj CallAncestorBefore causes the behavior inherited from
the ancestor, in this case clsLightFixture, to be executed first followed by
the method found in clsTimedLightFixture. In the same way, the method
that corresponds to msgTurnOnFixture in clsLightFixture will be called
after the method defined in clsTimedLightFixture completes executing.
The entries for msgSetOnTime and msgSetOffTime appear with a null in
the third field, indicating that the ancestor's behavior should not be
invoked automatically.

Messages to the Superclass There are times when you might find it nec
essary to call an ancestor's behavior somewhere in the middle of a meth
od that has been overridden. PenPoint provides two functions,
Obj ectCallAncestor () and Obj ectCallAncestorCtx (), that al
Iowa method to invoke its inherited behavior from anywhere inside it
self.

ObjectCallAncestorCtx() is defined

STATUS EXPORTED ObjectCallAncestorCtx(
CONTEXT ctx

) ;

It requires only the current context to be given as an input parameter. It
automatically calls the ancestor function using the same set of arguments
used to call the original method.

If for some reason you desire to change the information being passed
back to the ancestor, PenPoint provides the Obj ectCallAncestor ()
function, which is defined

STATUS EXPORTED ObjectCallAncestor(
MESSAGE msg;
OBJECT self;
P_ARGS pArgs;
CONTEXT ctx

) ;

You might consider the need to use this function as a red flag with
respect to your object design. By definition, when you override a method,
you should be augmenting and/or replacing its behavior in such a way

Wrap-up 41

that the external interface to the method doesn't change. For example,
consumers should be able to send msgTurnFixtureOn to either clsLight
Fixture or clsTimedLightFixture objects without having to change the way
the messages are sent. Therefore, the behavior inherited by
clsTimedLightFixture from clsLightFixture should be accessed using the
same set of values that were sent to the original method.

Wrap-up

This chapter covered a lot of ground in a very short time, especially with
respect to object-oriented programming in general. It's a fact of life-if
you're going to work with PenPoint, you're going to need to learn about
object-oriented programming. I suggest that you supplement your read
ing of PenPoint material with some material on object-based program
ming in general. I've placed a reasonable reading list in the back of the
book if you're looking for a place to start.

=======Application Building

Learning to build PenPoint applications can be a very time-consuming
process. For example, users interact with PenPoint in an unusual way. In
addition to changes in how the application interacts with the user, every
operating system carries its own definition of what makes up the execut
able form of an application. For PenPoint, the problems associated with
building applications are increased. For example, the current implementa
tion of the Software Developer's Kit (SDK) for PenPoint requires a cross
development environment, since there are no PenPoint-based tools for
building applications. I hope that I can delete these words from a later
edition of this book, but for now you must cope with building applica
tions with MS-DOS and then testing them with PenPoint.

This chapter begins the process of answering the question, "What
makes up a PenPoint application from the programmer's viewpoint?" I
will start with a brief explanation of PenPoint's boot procedure. Next, I'll
cover the minimum set of functionality an application must implement to
run (notice I said "run," and not "do something spectacular") under Pen
Point and some of the help available in debugging applications that don't
work correctly the first time.

PenPoint in Action

With PenPoint, end users are given an environment in which the concept
of "installing the operating system" makes no sense. Of course, someone

43

44 CHAPTER 3

had to pre-configure the operating environment at some point, but the
user doesn't care about that. The user's only care is that the machine turns
on and places the tablet in the same place and state that it was in when
the user suspended it.

To make this a reality, PenPoint takes on some extra work in setting up
and maintaining its operating environment. Some of this extra work is
passed on to the application class and therefore is your responsibility as
an application programmer to implement. However, there is a reasonable
set of defaults defined in clsApp that handles most of the work for the
application programmer, thereby reducing your load. This section dis
cusses initializing the PenPoint environment for the first time and then
discusses what's involved in adding and removing applications while
PenPoint is active.

Starting PenPoint

The PenPoint boot sequence consists of five stages, starting with hard
ware initialization and ending with loading the default set of applica
tions. In between, the user's environment is set up, the default DLLs
(Dynamic Link Libraries) are loaded, and the system applications are
installed.

mil.ini The first initialization file PenPoint accesses during its boot se
quence is mil.ini. The MIL, or Machine Interface Layer, protects PenPoint
from needing intimate knowledge of the exact hardware it is running on.
The three most important pieces of hardware specified by mil.ini are the
screen type, the stylus device, and the memory model. The boot program
uses this information in mil.ini to configure the hardware, initialize the
Machine Interface Layer, and then to actually start the PenPoint kernel.

environ.ini When the kernel starts, it uses the environ.ini file to get in
formation about the environment that PenPoint will be operating in. For
example, this file contains the location of the application that should be
started for the user when PenPoint completes booting. It also specifies
characteristics of the display such as pixel characteristics, whether the
screen is in portrait or landscape mode, whether the volume is in RAM or
on a permanent storage device such as a hard disk.

boot. dIe Once the environment is initialized, PenPoint reads the
boot.dIe file for a list of all the DLLs that need to be loaded for the current
configuration of PenPoint to work correctly. Most subsystems (VI toolkit,

PenPoint in Action 45

windowing system, and others) in PenPoint are implemented as DLLs
and must be loaded before applications can be started.

PenPoint processes boot.dIe by looking for each specified DLL file in
the \ \boot \penpoint \boot \dll directory. Once the DLL is
loaded, a call is made to the DllMain () function which behaves much
like the main () function described later in this chapter. Once installa
tion is complete, the components in the DLL can be shared by multiple
applications running in the environment.

syscopy.ini Once the DLLs listed in boot.dIe are loaded, PenPoint copies
all the files and directories listed in syscopy.ini into the selected volume. The
first two entriesjn the list of files to be copied are sysapp.ini and app.ini.

sysapp.ini sysapp.ini specifies all the system applications needed for
PenPoint to run correctly. By definition, applications loaded based on
their presence in this file can not be removed by the user. Therefore, if
you're providing pre-loaded pen-based machines for a vertical applica
tion that you want to keep intact, you should load all the applications
from sysa pp .ini.

app.ini Finally, app.ini contains a list of the applications that should
be started when PenPoint is started. Unlike applications specified in
sysapp.ini, applications present in app.ini can be removed by the user.
This is helpful if you want a pen-based machine to be loaded with the
software for three different types of jobs, and then let the user of the
tablet delete what's not needed.

Installing an Application

PenPoint provides a consistent mechanism for installing applications.
This mechanism is called the Installer, and it relies on application distri
bution to be in a predefined form. The actual installation of an application
can occur either at boot time or runtime, whichever is most convenient for
the end user. If you want to preload your application, you need to copy it
onto the boot volume in the predefined format.

Installing at Boot: app.ini app.ini contains a list of applications that
should be loaded prior to finishing the PenPoint boot process. Each line in
the file is a separate entry and corresponds to a single application. For ex
ample, the entry for a calendar application might be

\\boot\penpoint\app\Personal Calendar

46 CHAPTER 3

Notice that the PenPoint name is given, not the name of the MS-DOS
executable. Also, \ \boot maps to the hard drive with the volume name
"boot." PenPoint requires its boot volume to be named "boot."

Runtime Installation PenPoint provides the Installer application to al
low the user to bring new applications onto a pre-loaded machine after
initialization. It does this by searching all known volumes for installable
applications and then listing them for the user. It does a selective search: it
looks in all volumes for the directory \penpoint\app and then presents
the user with the applications named in the subdirectories it finds.

To make your application installable, you need to copy it to a subdirec
tory of \penpoint\app on a named volume. This volume could be a hard
disk, a RAM disk, or even a floppy disk containing the release of commer
cial software. The Installer can then add your application to the list the
user chooses from.

Application Modules and DLLs One way PenPoint reduces space over
head is by supporting Dynamic Link Libraries (DLLs). As a result, if you
and I are sharing the functionality of the same class, we both don't need our
own separate copy-we can just share one. Since a single application could
depend on multiple DLLs being present for it to run correctly, a PenPoint
methodology was devised to track the dependency requirements.

This is done by providing a file with the same name as the application
except with the extension dIe. When you request that a certain application
be installed, the Installer first checks for the application name with the dIe
extension. If found, it checks for the required DLLs, loads those it hasn't
loaded yet, and indicates whether the application can be installed or not.

If you have a DLL that needs to be pre-loaded, you can always place it
in boot.dIe. But for the most part, you shouldn't preload DLLs until the
application that needs them is about to be installed. This helps to cut
down on memory usage for the pen-based systems and leaves more room
for PenPoint to run.

Taxonomy of a PenPoint Application

The code for creating the simplest form of a PenPoint application is
straightforward and consists of three source files: the application source
file; the application header file; and the method tables for the classes the
application defines. For the first example, it's necessary to define stub
structures because much of the functionality is not needed.

Taxonomy of a PenPoint Application 47

The Application Source File

The application source file contains two C function definitions essential to
a PenPoint application. The first function, main (), is used by the applica
tion monitor to start PenPoint applications the first time and then to indi
cate when the user starts new PenPoint documents (instances of an
application). The second function, ClsClassNameIni t (), is called by
main () the first time it is executed and is used to register the application
class with the Class Manager.

mainO As with all C programs, PenPoint applications need a main ()
routine. PenPoint uses this as the entry point for installing the application
and for creating instances of the application (user documents). The demo
application main () source is

void CDECL
main(int argc, char *argv[], U16 processCount)
{

STATUS Si

if (processCount == 0) {
ClsDemoAppInit()i
AppMonitorMain(clsDemoApp, objNull)i
}

else
AppMain () i

Notice the definition of the mainO routine:

void CDECL
main (int argc, char *argv[], U16 processCount)

It has an extra parameter, processCount, passed as input to it. The Pen
Point kernel will call the main () routine at two different times in the
application's lifetime: first, when the application is installed, and second,
any time a document for that application is activated. The Penpoint ker
nel keeps a count of the number of processes running a particular pro
gram and passes that number to the main routine via the processCount
variable. The application can then use this variable to decide whether the
application is being installed (processCount == 0), or whether the user is
attempting to activate an instance of the application (processCount > 0).

When the application is first installed, it must create two types of
objects and register them with the Class Manager. The first is the applica
tion object itself, which the Class Manager uses to build documents for
the user. The second type of objects are those required by the application

48 CHAPTER 3

itself but currently not available in PenPoint. By convention, objects are
created and registered with the PenPoint operating environment by call
ing a function of the form ClsclassnameInit ().
In DemoApp, when processCount is zero, then the conditional:

if (processCount == 0) {
ClsDemoAppInit();
AppMonitorMain(clsDemoApp, objNull);
}

is true and the initialization function ClsDemoAppInit () is called.
After ClsDemoApp is initialized, the AppMoni torMain () routine is

used to set up a dispatching loop for completing the application installa
tion, and monitoring behavior for importing documents, copying station
ary and resources, and similar activities.

When main () is invoked with processCount greater than zero, the
PenPoint kernel is signalling that an instance of the application (a user
document) is being activated. For DemoApp, this is handled by calling
,the PenPoint function AppMain () . AppMain () sets up the dispatching
loop that handles messages sent to the application in the normal course of
the document's lifetime.

ClsDemoApplnitO The DemoApp application object is created by call
ing the ClsDemoAppIni t () function when the main () function is
called with a processCount of zero. Two things are happening here. First,
I'm going to be creating the structure necessary to register my application
object with PenPoint. Second, I'm creating a new instance of the Applica
tion Manager to manage the interaction of my application with the user.

One of the data structures required to initialize a class is the table used to
translate between messages and the methods that respond to those mes
sages. For the demonstration application this table, clsDemoAppTable, is
defined in the method.tbl file to be discussed soon. The actual object is cre
ated by running the PenPoint utility mt.exe on the method.tbl file which
produces the method.h file as one of its outputs. The method.h file contains
the declaration for the message translation table. The declaration for
DemoAppis

extern const U32 clsDemoAppTable[];

The actual function is defined

STATUS ClsDemoAppInit(void)
{

APP_MGR_NEW new;
STATUS s;

Taxonomy of a PenPoint Application 49

ObjCallJrnp(rnsgNewDefaults, clsAppMgr, &new, s, Error);

new.object.uid
new.object.pMsg
new.object.ancestor
new.object.size
new.object.newArgsSize

clsDernoApp;
clsDernoAppTable;
clsApp;
Nil (SIZEOF) ;
SizeOf(APP_NEW);

ObjCallJrnp(rnsgNew, clsAppMgr, &new, s, Error);

return stsOK;

Error:
return S;

The application initialization:

STATUS ClsDernoAppInit(void)
{

APP_MGR_NEW new;
STATUS s;

is defined to return the status of the initialization. It also indicates that it
has no input parameters. Finally, it defines two local variables, new and s,
which are used during the initialization. NEW is a structure of type
APP _MGR_NEW that is used by the Application Manager class clsAppMgr
(defined in the SDK) to initialize itself when it is first created.

The NEW structure is used to create a new application object by first
obtaining a reasonable set of defaults from clsAppMgr and then modify
ing only the parts that need to be changed. This structure will be filled in
as a result of the first message sent in the function:

ObjCallJrnp(rnsgNewDefaults, clsAppMgr, &new, s, Error)

ObjCallJrnp (), a macro defined in the SDK, sends the message indi
cated in the first parameter (msgNewDefaul ts) to the object indicated in
the second parameter (c 1 sAppMgr), passing the third parameter (a
pointer to the NEW structure) as the argument to the method being
invoked. If the returned status value indicates that an error occurred, con
trol transfers to the label (Error:) indicated in the fourth parameter. In
the case of both message sends defined in this function, control transfers
to the Error: label if the status indicates an error occurred. At that point,
the function returns with the value of s that indicates the problem that
caused the error.

50 CHAPTER 3

Once the msgNewDefaults message is sent to clsAppMgr, the NEW struc
ture contains the correct set of default parameters for creating an instance of
clsAppMgr. The NEW structure is then modified so it contains the correct
value for registering the DemoApp application. In essence, I am setting up
a class registration object to be used as an input to the method that
responds to msgN ew in clsAppMgr. For this application, I am asking the
Application Manager class to register my application class as

new.object.uid = clsDernoApp;

having the Well Known UID clsDemoApp, with the method dispatch
table,

new.object.pMsg = clsDernoAppTablei

and the superclass (or ancestor object);

new.object.ancestor = clsAPPi

This particular demonstration application doesn't have any instance
data, so

new.object.size = Nil(SIZEOF);

sets its size to zero. Finally I indicate the size of the structure that will be
used to create a new instance of clsDemoApp:

new.object.newArgsSize = SizeOf(APP_NEW);

Once the NEW structure has been modified for the application obj~ct, it
is sent as a parameter for the msgNew message that is sent to class
clsAppMgr via the message:

ObjCallJrnp(rnsgNew, clsAppMgr, &new, s, Error);

At that time, clsAppMgr registers clsDemoApp for you and proceeds
to make everything ready to finish the installation of the application.

Including External Definitions In most cases, you will use constructs
(structures, #define macros, and so on) defined by interface files. At the
beginning of the demonstration application's source file are the prepro
cessor directives:

#ifdef APP_INCLUDED
#include <app.h>
#endif

Taxonomy of a PenPoint Application

#ifdef APPMGR_INCLUDED
#include <apprngr.h>
#endif

#ifdef DEBUG_INCLUDED
#include <debug.h>
#endif

#include "rnethod.h"
#include "dernoapp.h"

51

Like most applications, the demonstration application includes the fol
lowing definition files:

app.h

appmgr.h

debug.h

Defines the API for the Application Framework class
clsApp.

Defines the API for the Application Manager class
clsAppMgr

Defines a set of support routines that enable the debug
ging of PenPoint applications.

Notice that each of the PenPoint definition files are surrounded by the
construct:

#ifdef FILENAME_INCLUDED
#include <filename.h>
#endif

This construct saves compiling time by preventing the inclusion of a defi
nition file more than once per compile. This construct depends on the def
inition file defining the token FILENAME_INCLUDED the first time the
file is read.

In addition to the generic definition files included by the application
source file, there are several definition files specific to the application
itself. For the demonstration application, they are

method.h

demoapp.h

Contains the declaration of the method table data
structure used by clsApp.

Defines the Well Known UID of the application class.

52 CHAPTER 3

The number of application-specific definition files changes based on the
requirements for the application class. For example, if your application
class uses a label object, then it must include labeI.h from the PenPoint
Includes directory to work correctly.

The Application Interface File

The demo application interface file, demoapp.h, contains one piece of
information, the global Well Known DID. It is defined

#ifndef DEMOAPP_INCLUDED
#define DEMOAPP_INCLUDED

#ifndef GO_INCLUDED
#include <go.h>
#endif

#define clsDemoApp MakeGlobalWKN(4140, 1)

#endif II DEMOAPP_INCLUDED

In practice, this interface file could easily be done away with by includ
ing the MakeGlobalWKN () macro in the demoapp.c source file itself.
However, non-trivial examples sometimes need to export information to
other classes in the application, and this is the ideal place to do it.

Notice that the first two lines in the file backup the convention defined
to stop multiple inclusions of definition files:

#ifdef FILENAME_INCLUDED
#include <filename.h>
#endif

The conditional check and definition insure that even if the definition file
is accessed again, its contents won't be processed more than once:

#ifndef DEMOAPP_INCLUDED
#define DEMOAPP_INCLUDED

The Method Table

The third source code file you must provide to complete the demo appli
cation is the method table for the clsDemoApp application class. The
method table definition discussed in Chapter 2 consists of two parts in a
separate file named method. tbI. The first part is

Taxonomy of a PenPoint Application

MSG_INFO clsDemoAppMethods[]
a

} ;

53

It's used to specify the name of a message and the actual location of the
behavior to use when that message is sent to the object. In the case of
clsDemoApp, no methods are defined; instances of clsDemoApp rely
completely upon inherited behavior to implement their functionality.

The method table compiler, mt.exe, uses the second part of the file to
construct the method table data structure that PenPoint expects to work
with internally by mapping the table name to the structure containing the
dispatch table:

CLASS_INFO classInfo[]
"clsDemoAppTable" ,
a

} i

clsDemoAppMethods, a,

There are no restrictions on the number of method/ message translation
tables that can be specified in a CLASS_INFO structure, and no limit to
the number of classes that can be described in one method.tbl module.

The output from running mt.exe on a method table is a definition file
that contains declarations used to reference each method translation table
defined in the file, and method prototypes for each of the methods refer
enced in the method tables.

method.h for the demonstration application looks like this:

II WARNING: DO NOT EDIT this file.
II WARNING: File generated by Penpoint 386 Method
Compiler.

#include <clsmgr.h>

extern const U32 clsDemoAppTable[] i

There are no method prototypes because the message translation table
didn't define any. If you were to modify the demonstration application
class to override the method that responds to the msgAppInit message so
that the method table for the class now reads

MSG_INFO clsDemoAppMethods[] =
msgAppInit, "DemoAppAppInit" ,

callAncestorBefore,
a

} i

54 CHAPTER 3

then the output from running mt.exe on the new method.table would be

II WARNING: DO NOT EDIT this file.
II WARNING: File generated by Penpoint 386 Method
Compiler.

#include <clsmgr.h>

MsgHandler(DemoAppAppInit) ;

extern const U32 clsDemoAppTable[];

Appl ication I dentification Information

The last bit of information needed to make a fully functioning PenPoint
application is provided at link time. This information links the name
given to the executable created with MS-DOS (demoapp.exe) to an appli
cation name and a load module name used by PenPoint.

The application name is the name that PenPoint displays to the user
during installation and de-installation of the application. This name is
not bound by the eight- and three- character rule and can contain spaces.
It is given to the application by the Stamp utility that comes with the
PenPoint SDK.

PenPoint uses the load module name to associate a company and ver
sion number along with a unique module identifier to a particular execut
able. The format of this identifier is

companyName-moduleName-majorVersion(minorVersion)

Using this format, the load module name for the demonstration appli
cation would be

pip-demoapp-Vl(O)

Version information is kept so that PenPoint can detect version mis
matches between objects and the classes used to create them.

Compile-time Debugging Support

One of the most underrated areas in application development is support
for debugging application code. Most programmers are happy enough
when they hear that they can print messages to a console or log file from

Compile-time Debugging Support 55

anywhere in their code. Fortunately, this is often enough to lead the pro
grammer to a problem's source. There are times, however, when it
becomes necessary to use dedicated software for aiding in application
development-time to turn to a source level debugger.

In addition to msgDump discussed in the last chapter, PenPoint's SDK
supports a functional interface to a set of debug flags with a dedicated out
put stream for debug messages. The functional approach to debugging
mimics the way C programmers tend to use printfO statements to dump
information, while the source level debugger allows you to test and modify
your code without going through the arduous cross development cycle.

The interface for PenPoint's compile time debugging support functions
can be found in the debug.h include file. This file supplies three types of
coding support for application debugging. First, it supplies a set of mac
ros that allow you to selectively include or remove debugging informa
tion from your code. Second, it provides a set of functions that enable you
to send messages to a dedicated output stream. Third, it provides a func
tional interface to a globally available set of debug flags.

The Debug Macros

debug.h defines several macros that allow you to have debugging calls in
your code, but to turn them off at compile time using the define prepro
cessor directive. The mechanism in place uses the token DEBUG to check
if code should be included for compiling. It is your responsibility to
define DEBUG as one of the parameters passed to the compiler.

DbgO The first macro, Dbg () ,is defined

#ifdef DEBUG
#define Dbg(x) x
#else
#define Dbg(x)
#endif

The macro takes a single parameter, a statement to be executed inside the
parenthesis. If DEBUG is defined, its contents replace the macro; other
wise, it evaluates to the empty string.

For example, if you wanted to enable a msgDump of some object only
during a debugging session, you would specify

Dbg(ObjectCallWarn(msgDump, someObject, someLevel);)

ASSERTO ASSERTO, the second macro provided by debug.h, is defined

56 CHAPTER 3

#ifdef DEBUG
#define ASSERT (cond, str) ((void) (! (cond) ? \

(Debugf("==> ERROR, File: %s, Line: %d ==> %s\n", \
__ FILE __ , __ LINE __ , str)),l: 0))

#else
#define ASSERT(cond, str)
#endif

The ASSERT () macro checks the validity of an assertion (cond) at some
point in your code and will print an error message composed of the speci
fied string (str), file name (_FILE_), and line number (_LINE_) at
which the error occurred if the assertion fails. It also returns a 1 if the asser
tion fails and a 0 otherwise, so you can take appropriate action by placing
the macro inside an if statement. _LINE_ and _FILE_ are predefined,
set by the preprocessor to apply the value of the current line number and
filename.

The ASSERTO macro can be used to implement whitebox testing, that is,
testing done to a component by itself to make sure its integrity stays intact.
This can be very useful if you are using someone else's objects and expect
them to behave one way, when in reality they were not designed to do so.

For example, suppose you're working with a string object that you
think is of variable width, when in fact the string object uses a fixed size
buffer. The implementer of the string object might have included an asser
tion at the start of the method that handles the msgSetN ewString message
that looks like this:

if (ASSERT((strlen(pData->pStr)<FBUFF_SIZE),
"buffer overflow"))

; \\ do something that responds to the error condition.

If you send a message with a string parameter that exceeds the appro
priate length, and you have a version of the String class build with the DEBUG
token defined, the following message would be sent to the output debug
stream:

==> ERROR, File: String.c, Line: 57 ==> buffer overflow

followed by the action specified in the if statement being executed.

DbgFlagO The last macro works in conjunction with a set of flags kept
by PenPoint to help with the debugging task. This macro, DbgFlagO, is
defined

#ifdef DEBUG
#define DbgFlag(f,v,e) if (DbgFlagGet(f, v)) e

Compile-time Debugging Support

#else
#define DbgFlag(f,v,e)
#endif

57

This macro uses the DbgFlagGetO function to check if the specified flag
is set. If it is, the statement represented by e is executed; otherwise noth
ing happens.

The Debug Functions

PenPoint provides two types of debug functions. The first is a function that
sends formatted information in ASCII form to the debug output stream.
The second works in conjunction with a set of system flags to implement a
global scheme for application monitoring and debugging.

DebugfO The Debugf () function is used to write information to the ded
icated debug output stream in the same manner as fprintf (stderr,
...) would be used in other C-based programming environments. The
definition of Debugf () is

void CDECL Debugf(char * str, ...);

where str specifies the output to the debug stream. str can contain format
ting characters used to insert the value of the parameters following str in
the function call. If you're not familiar with the C fprintf () function,
its types of parameters include strings, signed and unsigned numbers in
multiple (decimal, hexidecimal, and other) formats.

For instance, suppose you want to leave a trail of debug messages
inside your application to display the various activities of an instance of
your application. You could insert this statement at the beginning of each
of your routines:

Dbg (Debugf ("msgFoo, inside file %s II I _FILE_);)

This causes the appropriate log message to be printed whenever you
define DEBUG during the compile.

The Debug Flags PenPoint also provides a means to control debugging
information and actions on the fly through the use of a global set of debug
flags. The flags are organized into 256 sets with each set having access to
32 bits of flags. Inside debug.h is a complete description of the flag ranges
reserved by GO and those available to other developers, plus the various
flags that are valid in each of the sets.

58 CHAPTER 3

For example, the flag set used to interact with the debug system is
known as set 'D' (hex value Ox44) and contains the following flags:

DOOOI

D0002

D0004

D0008

DOOIO

D0020

D8000

DIOOOO

D20000

Disables all DebugStr output.

Disables StringPrint output.

Disables System Log output.

Disables System Log Non Error output.

Disables System Log App Error output.

Disables System Log System Error output.

Writes output to the penpoint.log file, flushed every n chars
based on the environment variable DebugLogFlushCount.

Disables mini-debugger in production version of Pen point.

Disables memory statistics gestures (M,N, T) on Book
shelf.

You can alter and/ or check these flags at any time during the course of
PenPoint's uptime using the DebugFlagSet () and DebugFlagGet ()
functions. They are defined

U32 EXPORTED DbgFlagGet(U16 set, U32 flags);
U32 EXPORTED DbgFlagSet(U16 set, U32 flags);

Notice that both functions use U16 to specify the flag set so that even
though there are only 256 currently supported flag sets, the system can be
expanded in the future.

The Messages Window

PenPoint provides a special application for viewing system information.
The application System Messages shown in Figure 3.1 is located in the
Accessory menu. This application can be used to display information
such as memory usage, and error and non-error messages sent between
applications. It also displays current lists of tasks in the system and
devices that PenPoint knows about.

Compile-time Debugging Support

FIGURE 3.1 The System Log Window

Notebook: Contents < 1 >
Document Ed if Opti ons View Create

I::l.ame ~

~ Rea.cI Me First """"""""""""""""""""""""""""""""""""'" 2 o Samples , .. , .. 3

System Leg

ow Trace Log Size Font Size

1992-01-19 20: 31: 311 Setting mod required for GO-CLSPRN_DLL-
1992-01-19 20: 31: 311 Setting mod required for GO-PPORT-V1(0)
1992-01-19 20: 31: 32 1 Setting mod required for GOO-PPORTO-V1(
1992-01-19 20: 31: 32 1 setting mod required for GO-PCL_DLL-V1(
1992-01-19 20:31: 32 1 Setting mod required for GO-PRSPOOL-V1(
1992-01-19 20: 31: 321 Setting mod required for PIP-CALCAPP_E
1992-01-19 20: 31: 331 Setting mod required for go-anapehot-v1
1992-01-19 20: 31: 361appmiac [Bookshelf]: got magAppChanged
1992-01-19 20: 31: 361appmiac [contenta]: got magAppchanged

1992-01-19 20:31:361*** BROWFL.C: BroWMagAppchanged:
1992-01-19 20:31:371*** BROWFL.C: BroWMagAppchanged: endTim
1992-01-19 20:31:371*** BROWFL.C: BroWMagAppchanged: Time t
1992-01-19 20:31:37Iappmiac[S~tem Log]: got magAppchanged
1992-01-19 20: 31: 381appmiac [Connectiona]: got magAppchanged
1992-01-19 20:31:381*** BROWFL.C: BroWMagAppChanged: atartT'
1992-01-19 20:31:381*** BROWFL.C: BroWMagAppChanged: endTim
1992-01-19 20:31:391*** BROWFL.C: BroWMagAppchanged: Time t
1992-01-19 20:31:391*** BroWMagBrowaeruaercolSetState ***
1992-01-19 20: 31: 391appmiac [Notebook]: got magAppchanged

1992-01-19 20: 32:21IsahApp: invoking AppMain, proceaaCount

59

60 CHAPTER 3

This application watches the debug output stream and displays mes
sages that pass its current set of filters. Since the update list can grow
quite long, the application allows you to specify how much information is
retained over time.

Tools for Debugging Applications

PenPoint supports two debuggers for use in application building. The
first debugger is a mini-debugger that trades space and time requirements
for reduced functionality. The second debugger, called DB, is a full sym
bolic debugger that you can use in application development. You tell Pen
Point which debugger to use by placing the resources appropriate for the
debugger you want in the boot.dIe file.

In general, you use the symbolic DB debugger during application
development, when flexibility and ease of use (while working at your
application code level) is of primary importance. Using DB incurs a per
formance penalty, however, because it requires space to manage the sym
bol tables and CPU cycles to work with symbolic (versus binary)
information. You can reduce the performance penalty and still have the
ability to collect information about an unexpected application or system
failure by using the mini-debugger instead.

When an error occurs, PenPoint automatically invokes the appropriate
debugger and causes the debugger to display information indicating
what caused the exception. If an error occurs within PenPoint and no
debugger is present, then the default action is to dump registers, print a
stack backtrace, print task information on the debugging output stream,
and then continue.

Mini-Debugger

The mini-debugger is a limited feature tool that enables you to collect
information about a problem that might have occurred unexpectedly.
Mini-db does allow you to collect information about tasks, heaps, seg
ments, memory usage, and the file system. The biggest difference
between the mini-debugger and DB is that you have to work at the
assembly level when using mini-db. You can still set breakpoints, disas
semble code, and modify registers, but you must do it at the assembler
level; that is, you have to understand the underlying architecture of the
platform to make it worthwhile.

Tools for Debugging Applications 61

However, you can always collect the pertinent information and then
retire to another area to solve the problem.

You can also use the mini debugger to change the state of the system
debug flags using the fs command. For instance, suppose you want to
enable message logging. You enter mini-db by signalling the operating
system (on a PC press the Pause key) and waiting for mini-db's prompt to
appear. Next, to start the logging process, you enter:

fs /DD8000

When you finish logging information and want to turn off logging, you
again enter mini-db and again type

fs /DD8000

Finally, the mini-debugger gives you a full list of its commands with
cryptic explanations of what they do. This is useful, because mini-db
seems to be entered when you least expect it. You access the help screen
by typing I/?" at the input prompt.

The DB Source Debugger

There is a certain stage in application development when problems occur
ring can only be solved by watching the state of the information change
as each operation takes place. This can be accomplished by inserting
debugfO statements after every line of code that dump the values of perti
nent information. However, the problem with this approach is that in
order to effect a change, you have to recompile, relink, re-install, and re
run the application. This is where a source level debugger is most useful.

In PenPoint, the ability to explore and modify an application is even
more important because you are working in a cross development environ
ment, where in addition to the standard development cycle, you might
also have to add time to resume MS-DOS and reload and run PenPoint
before you can try again. DB provides you with the ability to set break
points, set and get values, look at the task list, and so on, all at the sym
bolic level.

What follows is a brief synopsis of DB. If you're an experienced debug
ger user, I suggest you read through the DB manual to familiarize your
self with its full set of capabilities and features. If you've never used a
symbolic debugger before, I recommend you take a few minutes to do the
examples outlined in the first several chapters of the DB manual. They'll
give you a feel for what a debugger can provide.

62 CHAPTER 3

Getting Ready to Use DB You need to be aware of three basic steps
when preparing to use DB. First, you need to compile and link your appli
cation so that the full set of symbols are maintained. Second, you need to
add the Dynamic Link Libraries that implement DB to the files to be load
ed in BOOT.DLC. Third, you need to specify that the debug versions of
the PenPoint objects be loaded at runtime instead of the normally loaded
production objects.

If you are going to work with the same application over an extended
period of time, you can do several things to make your work easier. First,
you can specify the location of a default file that DB should use when it's
loaded to initialize its environment. This is done in the environ.ini file by
adding the line

DBlni=\\dev_vol\apps\anapp\anappdb.ini

where dev _vol is the volume name of the device on which you are doing
your application development.

Then, you can place a separate db.ini file in each application development
directory that you might wish to debug. That way, you only have to change
the pointer in environ.ini to customize DB for a particular application.

For example, to debug the demo application, you place the line

DBlni=\\dev_vol\apps\demoapp\demodb.ini

in your environ.ini file. Then the \ \dev _vol \apps \demoapp directory
would be the file demodb.ini containing the lines

sym "demoapp"
srcdir "demoapp" \\dev_vol\apps\demoapp

which load the appropriate set of symbols to debug DemoApp, plus
would provide DB with a location to look for source files referenced in the
symbolic information tables.

DB Contexts The basic operation mode for DB is based on the require
ment that DB always debugs applications relative to a specific context.
For DB, a context is composed of a current task, a current call, and the
current scope. The current task is represented by an ID task and contains
the addr~.Bs of the code currently executing. The current call references the
stack frame of the currently active function. Finally, the current scope rep
resents the name scope in which to look up identifiers used in commands.

You set the current context by giving the ID task followed by the ctx
command. DB acknowledges that it is in a particular context by display
ing the executable module name and the ID task as part of its prompt. To

Tools for Debugging Applications 63

find out the ID task of the task you wish to debug, you can type "tl" (task
list) while inside DB.

For example, if you are going to start debugging DemoApp, you first
find DemoApp's task ID using the tl command. Suppose, for the sake of
the example, that the task ID came back as Ox75 hex. You can then change
the context by typing

> 075 ctx

DB would acknowledge the change by making its prompt read

"pip-demoapp-vl(O) " [0] 075>

The number in square brackets indicate the number of instances of that
executable module that is currently registered with the system.

Examining the Current State Several sets of commands are available in
DB for examining an application's current state. These commands pro
vide functionality for evaluating the contents of a variable, looking at the
contents of the stack, and looking at the source code that surround where
the application is currently paused.

For example, the command for evaluating the contents of a data value
is simply? However, you can add modifiers to it that evaluate the data
(either a physical address or a symbolic one) as a string pointer or a long
int, for example. So, if pStr pointed to a block in memory that contained a
null terminated string, you could display its contents by typing

> ? *pStr,s

The same flexibility lets you view the current line being executed either
as source or as the disassembled instructions that the source line was
compiled into.

Modifying Execution Behavior There are four basic ways to modify the
execution behavior of an application. First, you can press the hard-wired in
terrupt key to pause the execution of the application and give control to the
debugger. Second, using the bp command you can set a breakpoint so that
when a particular function executes, the application pauses and the debug
ger takes control. Third, you can specify a watch point on memory, so that
any time a particular location in memory is accessed, you are notified by
the application stopping and control being given to the debugger. Finally,
while in the debugger you can specify how execution is to proceed.

You can specify that execution continues in one of several ways. First,
you can have the application continue to execute without stopping using

64 CHAPTER 3

the g command. Or, you can tell the debugger to use the P, p, T, or t to
execute the next statement and come back when the statement is com
pleted. Actually, you can even indicate to the debugger whether it should
step into a function (that is, continue tracing the functionality, even
through the subfunction) if the line to be executed contains a functional
call (the T and t commands), or to step over the call and treat it as if it was
a simple statement (the P and p commands). This level of control allows
you to verify assumptions about how your application executes and
whether or not the data value matches what you expected.

Wrap-up

When I sat down to write this book, I debated how much information to
give on the mechanics of the compiler and linker. At first I thought "lots,"
but later I began to wonder. As you can tell, my final decision was to defer
the discussion of the compiler to the compiler manual itself. GO has done
a good job of predefining compiler jlinker options through default rules
passed to the Make utility, and I would suggest a copy and modify
approach to building makefiles until you truly need something unique.

The Appl ication
Framework

Whenever a new technology appears, I categorize it based on the contri
butions it makes to various areas it interacts with. Once I establish catego
ries, I rank the features contained in the categories according to their
impact. There is no doubt that the pen-and-paper metaphor is the most
striking contribution PenPoint makes in the user interaction category.

In the application developer's category, the choice for the number one
spot is less clear. After all, PenPoint provides the application writer with a
lot of help, including an object-based environment complete with several
rich sets of predefined classes for tackling the various problems that come
with writing an application. But for my money, the single most important
feature of PenPoint from the application developer's point of view is its
insistence that the application be written by extending a predefined
Application Framework.

By insistence, I mean that GO has made it next to impossible for you to
write a PenPoint application that doesn't work by extending the frame
work. Using the Application Framework forces you to trade a small
amount of flexibility for the benefits of code reuse and consistency of
operation. In my opinion that trade is worth it. First, code reuse means
your applications don't take up extra space by re-implementing function
ality already present in PenPoint's predefined classes. Second, consistency
of operation means your applications behave in a well-defined manner so
features such as embedded documents are available to all applications,
even those developed by different vendors.

This chapter briefly touches on the history of application frameworks
and how PenPoint fits in. It demonstrates the life cycle of a PenPoint

65

66 CHAPTER 4

application through the use of a tiny example. The example is then
extended to illustrate the life cycle of a document (an instance of the
application). Finally, a more complete application example illustrates how
the application fits into the framework, and some of the functionality the
framework provides to the application.

The Pre-framework Era

The first application I wrote for a "user-friendly" environment was for an
early Apollo machine running Display Manager, and the process was a
nightmare. On top of the operating system, I had to contend with a bit
map graphic display and a new set of user input events in which the loca
tion of the mouse was important. It took several pages of code just to cre
ate a window, display the text "Hello World," and allow the user to exit
gracefully. But, the availability of a bit-map display and its benefits to the
user interface made the effort worth it.

Two years later, I worked on a new product from Microsoft called Win
dows which promised to provide the PC with a better user interface. One
thing was for sure: it added a lot more pages of code to the number
needed to build a simple "Hello World" application. Two years later, I
moved to the Apple Macintosh and, you guessed it, pages and pages of
code to do the simplest tasks. What I found most frustrating in all three
environments was that I was reusing the same code framework to build
each application by applying the cookie cutter approach: copy frame
work, edit framework for new application, compile new application. I
kept asking myself, "Why? If I'm using the same code, couldn't there be a
way to reuse the bulk of it by sharing it among applications?"

As it turns out, I wasn't alone in my frustration. Several research
groups, including one at Apple, also recognized the need for formalized
reuse. The Apple group was able to use their knowledge of object-ori
ented programming to build Object-Pascal, a language which added the
extensions necessary to support objects in Pascal. Once that tool was in
place, they proceeded to build a set of classes for writing Macintosh appli
cations that would do most of the work. Known as MacApp, this product
provided a framework that programmers could customize to build their
specific applications.

Based on reading GO's literature, it appears that their development
staff was influenced by the work done at Apple and adopted many con
cepts present in MacApp. However, as I already mentioned, there is no
alternative means of building a PenPoint application; you can't ignore the
framework and interact with the user directly like you could in building

The Document Life Cycle 67

Macintosh applications. You must build PenPoint applications by extend
ing the framework.

I don't know about you, but I'm always a little wary when someone
sticks me with something "for my own good." It's not enough for the
operating system vendor to say "trust me" and I'll immediately accept. I
need reasons. Good ones. In the case of PenPoint, the Application Frame
work provides several, not just in what the framework does, but more
importantly, in how the framework does them.

For example, the framework imposes consistent and well-known appli
cation and document life cycles within the Pen point operating environ
ment. Application writers know in advance when and how an application
will be installed and removed. They also know in advance how an appli
cation will be told to save its state, to start itself, to gracefully exit itself,
and to embed an instance of itself inside another running application.

Another significant difference between GO's framework and MacApp's
is that GO chose not to embrace an object-oriented language such as
Object-Pascal, Objective-C, or c++ for implementing their concept of
objects for PenPoint. Instead they took the approach of having the pro
grammer manage the object model for the application by hand coding the
method tables. This means that PenPoint application code can look messy
compared to its MacApp counterpart.

If this is your first exposure to object-based application frameworks,
two other examples might be of interest to you in exploring this form of
application development. First, you might want to read about ET ++
which was written in C++ and based on MacApp. Second, you might look
at NeXTSTEP which was written using Objective-C. Both these frame
works use C-based object technology to allow greater code reuse.

The Document life Cycle

From the programmer's point of view, a PenPoint application exists in
three forms. First, the application exists as source code that is compiled
and linked. Once the application is successfully built, it enters its second
form, that of installed application. Once installed, the application has a
factory that can build the third form of existence, PenPoint documents
which are instances of the installed application. The Application Frame
work is used by the programmer in its source form to build PenPoint
applications that work consistently with other PenPoint applications.

The Application Framework supports application development by pro
viding a well-defined protocol for informing PenPoint what an applica
tion needs on installation and how the instances of that application (the

68 CHAPTER 4

documents) should perform. In Chapter 3, the first Penpoint application
defined only the behavior necessary to install the application and relied
entirely on inherited behavior from clsApp to manage instances of the
application. Once installed, the inherited behavior was used to create and
manage user documents as they went through their individual life cycle.

The third and final component of the application framework concerns
the life cycle of a PenPoint document.

States in the Document Life Cycle

Each document is a separate instance of the application class and can be
thought of as existing in one of five well defined states: nonexistent, cre
ated, activated, opened, and dormant. The document is cycled through
these five states in response to actions by the user. Figure 4.1 shows the
path of the document through each state, with the order of flow repre
sented by the paths labeled with circled numbers. The next sections
describe these states.

Created The first step in the document life cycle shows the framework
creating an instance of the application class (the user's document). The
framework uses the behavior in clsAppMgr to create a directory for the
document and to save its stateful information (instance data) there. The
application must insure that a document is created so that an error in this
state allows the framework to remove the instance in a well-behaved
manner. The document can move from this state to either the nonexistent
state due to an error or to the activated state because of a user request.

Activated A document in the activated state is a completely functioning
instance of an application, except it has no interactive interface with the
user. A process exists for the document that contains the document object
with that object's application data in a valid state. The application data
was made valid either through initialization (path 2 from the created
state) or by restoring it from previously saved data (path 6 from the dor
mant state).

When a document transits to the activated state from dormant or cre
ated, its next normal transition is to move to the opened state (path 3) so
the user can interact with it. When a document transits back to the acti
vated state from the opened state (path 4), its next logical transition is to
dormant (path 5). One exception to this is when the document is kept in
"hot" mode either by a user's request for efficiency reasons or an applica
tion's request because an operation must be completed before the docu
ment can release its thread and become dormant by not freeing the
document's thread.

The Document Life Cycle

FIGURE 4.1 The States of a Document Life Cycle

Nonexistent

4

3

Opened
(Interactive)

69

Opened A document in the opened state is equivalent to one in the acti
vated state with the addition that the document's process is given access
to the display and the user is able to interact with it. A document is al
ways placed in the opened state by a transition from the activated state
(path 3) and always transits back to the activated state (path 4).

Dormant A document in the dormant state, like one in the created state,
has a directory. In addition to the directory, a document in the dormant state
also has a resource file. The document's application data (or object's state) is
stored in this resource file in the PenPoint file system. Finally, no active pro
cess is associated with the application when it is in the dormant state.

A document in the dormant state can either be reactivated (path 6)
when the user wishes to interact with the document or can transit to the
nonexistent state (path 7) when the user removes the document from the
PenPoint file system. A document will not transit from the dormant state

70 CHAPTER 4

to the nonexistent state when the user de-installs the document's applica
tion from the PenPoint file system. Instead, the document remains dor
mant and PenPoint prompts the user appropriately if the user attempts to
turn to the document.

Nonexistent A document in the Nonexistent state has no representation
within the PenPoint file system. A document can be transit to the nonex
istent state from the dormant state (path 7) when the user removes the
document from the Notebook's table of contents. A document also tran
sits to the nonexistent state when an error occurs during the document's
creation (path E).

DemoApp Updated

From your perspective as the programmer, each stage in the document life
cycle is defined by a set of messages sent by the Application Manager to the
PenPoint application. Most applications provide methods for handling one
of more of the following seven messages: msgInit, msgSave, msgRestore,
msgFree, msgAppInit, msgAppOpen, and msgAppClose. By overriding
these messages, your new application class can insert the behavior it
requires to work correctly before calling the inherited behavior. You can
also rely on the default behavior inherited from the Application Manager
for each of these messages to handle the framework's demands in a reason
able and consistent manner. You should note that the Application Manager
sends the messages to the application object, so in addition to providing
some default behavior, the Application Manager also provides some forms
of housekeeping when errors occur.

I have extended the demonstration application so it correctly overrides
each of the seven messages. Currently, each method prints a message to
the debug log and then allows its ancestor's behavior to be executed in
the correct sequence. The debug messages will appear on the debug log.
The following sections describe each of the methods located in demoapp.c
application source file.

msgInit Your application receives the msgInit message as a result of the
user turning the page to a document from your application, which causes
PenPoint to create a new instance of the application. This causes the docu
ment to pass into the the activated state. The code for this method is

MsgHandler(DernoAppInit)
{

Debugf(IDernoApp:DernoAppInit");
return stsOK;

The Document Life Cycle 71

MsgHandlerParametersNoWarningi

The method that responds to msgInit is responsible for creating and ini
tializing the instance data for the application. This method receives no
extra parameters in order to perform its function. It is important that you
specify in the method dispatch table that your application's ancestor's
msgInit method be called first. Let it do such housekeeping as opening
the application's directory in the file system and updating its own
instance data.

msgAppInit Your application is sent a special message, msgAppInit, the
first time a user turns to the document. The code for this method is

MsgHandler(DemoAppApplnit)
{

Debugf("DemoApp:DemoAppApplnit") i

return stsOKi
MsgHandlerParametersNoWarningj

This is the time at which clsApp actually creates the resource file for the
document. The application's method table should specify that its ancestor
is called first in order for clsApp to also create the main window. This is
where you set up the resources necessary to file and manage any stateful
objects your application uses.

msgFree When the user turns away from the document supported by
your application, the Notebook terminates the document by sending it
the msgFree message (unless the document is in hot mode, in which it ap
pears to go away but the process is still intact). This is the part of the
framework that is responsible for moving the document from its dormant
state to its nonexistent state. The code for this method is

MsgHandlerWithTypes(DemoAppFree, P_ARGS, P_INSTANCE_DATA)
{

Debugf("DemoApp:DemoAppFree") i

return stsOKi
MsgHandlerParametersNoWarningi

This method is responsible for freeing the instance data used by the
application object, including freeing objects created to support the docu
ment. In the case of this method, its ancestor should be called after this
method completes. Also, this method should always return stsOK to

72 CHAPTER 4

insure appropriate default behavior if a problem should occur during the
freeing of the object. In the case of this method, the instance data is passed
as a pointer to the method handling the message.

msgAppOpen PenPoint sends msgAppOpen to your application to sig
nal the moving of the document from the activated to the opened state.
Your application uses this method to create the windows and control ob
jects needed to interact with the user. The sample code for this method is

MsgHandlerWithTypes(DernoAppOpen, P_ARGS, P_INSTANCE_DATA)
{

Debugf(IDernoApp:DernoAppOpen") i

return stsOKi
MsgHandlerPararnetersNoWarningi

This method is the one that builds the user interface to your application
for the document by creating and attaching objects to the main window. It
is important that the method table specifies that the ancestor is called
after your application's method completes so that the environment can be
set up correctly.

msgAppClose Your application receives msgAppClose when the user
turns away from the document (providing the document is not in hot
mode). The code for this method is

MsgHandler(DernoAppClose)
{

Debugf(IDernoApp:DernoAppClose") i

return stsOKi
MsgHandlerPararnetersNoWarningi

The method table for your application should specify that the ancestor's
method is called first, followed by your application's processing. This
method is used to destroy all stateless objects used by your application.

msgSave Your application object is sent msgSave to indicate that you
should file your instance data, including other objects used by the docu
ment, in the file indicated. The code used to implement this method is

MsgHandlerWithTypes(DemoAppSave, P_OBJ_SAVE, P_INSTANCE_DATA)

{

Debugf(IDemoApp:DemoAppSave")i

return stsOKi

The Document Life Cycle 73

MsgHandlerParametersNoWarningi

A parameter passed to the method indicates the file in which to save
your data. You should set the method table so that your ancestor is called
before your method. The framework uses this opportunity to automati
cally file for you information stored in the objects you reused from the
PenPoint class library.

msgRestore The framework sends your application msgRestore when it
wants you to recreate the object from saved data. The code for this method is

MsgHandlerWithTypes(DemoAppRestore, P_OBJ_RESTORE,
P_INSTANCE_DATA)
{

Debugf("DemoApp:DemoAppRestore") i

return stsOKi
MsgHandlerParametersNoWarningi

This method has the file used to restore the objects used by the applica
tion to support the document passed to it as an argument. The method
table should be set up so that the ancestor is called before the new method
is invoked.

Header Files Included from the SDK In order to work correctly, the
demo application must access some of the information contained in the
header files included in the Penpoint SDK. They are

#ifndef APP_INCLUDED
#include <app.h>
#endif

#ifndef APPMGR_INCLUDED
#include <appmgr.h>
#endif

#ifndef DEBUG_INCLUDED
#include <debug.h>
#endif

#include "DemoApp.h"
#include "method.h"
#include <string.h>

74 CHAPTER 4

For the sake of the demonstration, I have defined an instance data struc
ture, even though it isn't used, allowing you to see its placement relative to
the rest of the source file. In addition, several method definitions require
access to instance data for the job they normally do. In this example, no
instance data is needed, but the definition is included to placate the C com
piler. The stub definition used is

typedef struct INSTANCE_DATA
U32 dummy;

} INSTANCE_DATA, *P_INSTANCE_DATA;

mainO Revisited I have changed the main () and the ClsDemoAppIn
it () functions so they output debug messages to show how the flow of
execution passes through them. The changes are noted in bold text.

STATUS ClsDemoApplnit(void)

APP_MGR_NEW new;

STATUS s;

Debugf("DemoApp:ClsDemoApplnit");

ObjCallJmp(msgNewDefaults, clsAppMgr, &new, s, Error);

new.object.uid

new.cls.pMsg

new.cls.ancestor

new.cls.size

clsDemoApp;

clsDemoAppTable;

clsApp;

SizeOf(INSTANCE_DATA) ;

new.cls.newArgsSize SizeOf(APP_NEW);

strcpy(new.appMgr.company, "PenPoint Programming");

strcpy(new.appMgr.defaultDocName, "Framework Demo App");

ObjCallJmp(msgNew, clsAppMgr, &new, s, Error);

return stsOK;

Error:

return s;

void CDECL
rnain(

int argc,
char * argv [] ,
U16 processCount)

The Document Life Cycle

STATUS s;

Debugf("DemoApp:main");

if (processCount == 0) {
Debugf("DemoApp:main-processCount=O");
ClsDemoApplnit() ;
AppMonitorMain(clsDemoApp, objNull);
}

else {
Debugf("DemoApp:main-processCount>O");
AppMain() ;
}

Unused(argc); Unused (argv) ;
/* main */

75

Updated Method Table It is necessary to update the method dispatch
table to reflect the changes made in the application object definition.
These changes add the preprocessor directives that include the definition
files necessary for the table to build correctly. The source code for the
method table is

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#ifndef APP_INCLUDED
#include <app.h>
#endif

#ifndef FWAPP_INCLUDED
#include <demoapp.h>
#endif

MSG_INFO clsDemoAppMethods[] = {
msglni t, "DemoApplni t " ,

objCallAncestorBefore,
msgSave, "DemoAppSave",

objCallAncestorBefore,
msgRestore, "DemoAppRestore",

objCallAncestorBefore,
msgFree, "DemoAppFree" ,

objCallAncestorAfter,
msgApplnit, "DemoAppApplnit",

objCallAncestorBefore,
msgAppOpen, "DemoAppOpen II ,

76 CHAPTER 4

objCallAncestorAfter,
msgAppClose, II DemoAppClose II ,

objCallAncestorBefore,
o

} i

CLASS_INFO classInfo[J = {

} i

II clsDemoAppTable II ,

o
clsDemoAppMethods, 0,

If you recall from the previous paragraphs, each method that is overri
den requires that its ancestors be called before or after. This information is
specified in the third parameter of the method table entries.

The additional definition files specified at the beginning of the method
table file are needed because they contain definitions for some of the mes
sages that Demo App is overriding.

Running DemoApp

The following paragraphs outline the results of installing the correctly
built DemoApp application in a running PenPoint environment. The out
put shown was gathered by turning on the debug logging functionality
and saving the resulting messages in a file.

The first step is for the user to install the application, resulting in the
following debug output from the DemoApp application:

Loader: Loading pip-demoapp-vl(O)
DemoApp: main
DemoApp: main-processCount=O
DemoApp:ClsDemoAppInit

As expected, the main () function is called with processCount = 0,
indicating that the application should initialize any classes needing to be
registered with the Class Manager. In this case, it only initializes the
application object.

The user's next action is to create an empty document for the installed
application and add it to the Notebook. The result is-Nothing! It is not
necessary for the application to handle any messages when the user cre
ates the document.

Next, the user turns to the document that was just created. The result
ing debug information is

DemoApp:main
DemoApp:main:processCount>O

The Document Life Cycle

DemoApp:DemoApplnit
DemoApp:DemoAppApplnit
DemoApp:DemoAppOpen
DemoApp:DemoAppSave

77

The application's main () routine is called with the value of process
Count greater than 0, indicating that the user is turning to a new docu
ment that has been created, but is currently not activated. The application
receives the msgInit message followed by msgAppInit message, since it's
the first time the document is being opened. Next, the framework sends
the messages to the application necessary to create the objects that will be
used to display the document on the screen for the user to interact with.
Finally, the application is told to save the document's data to the PenPoint
file system for the first time.

At this point, the user begins to interact with the application. Since
DemoApp is a no-functionality type application, there is nothing interest
ing for the user to do. So the user turns back to the table of contents. At
that point, the following debug information appears.

DemoApp:DemoAppClose
DemoApp:DemoAppSave
DemoApp:Free

PenPoint notifies your application that the user is turning away from
the document by sending the msgAppClose message to it. It then sends
the msgSave message so that the application object can save the appropri
ate state data (instance variables, other objects, etc.) in the resource file.
Finally, the framework frees the data associated with displaying the docu
ment to the user. This set of messages would be different if the user was
keeping the document in hot mode.

The next time the user turns to the document, the application's execu
tion path is

DemoApp:main
DemoApp:main-processCount>O
DemoApp:DemoApplnit
DemoApp:DemoAppRestore
DemoApp:DemoAppOpen

This set of trace information is the same as the first time the user turns
to the document, except msgAppInit does not need to be received a sec
ond time. Again, the sequence of events would have been different if the
user was opening a document that was being kept in hot mode.

The last thing the user does in the life cycle of the document is to
remove it from the table of contents. In the case of our demonstration

78 CHAPTER 4

application, all this processing is done through behavior inherited from
the Application Framework, so there are no logged events.

CoinApp

Now that the various functions of the application life cycle have been dis
cussed, I would like to close this chapter by implementing a simple appli
cation, CoinApp, that changes the state of the display whenever the user
turns from the document. The application shows its state by displaying
the words "Heads" or "Tails" when the user turns to the page of the docu
ment. This example gives you a chance to understand what is involved
with saving the state of the application even as it goes through the appli
cation and document life cycles.

method.tbl

Again, the application consists of three files: the source and definition files
for the coin application's class contained in CoinApp.c and CoinApp.h
respectively and the method table definitions contained in method. tbl.
You will notice that this application overrides all the messages, except
msgFree described in the last section, so it can save and restore its stateful
data correctly. The method. tbl method table definitions for the CoinApp
class are

#ifndef CLSMGR_INCLUDED
#include <clsrngr.h>
#endif

#ifndef APP_INCLUDED
#include <app.h>
#endif

MSG_INFO clsCoinAppMethods[] = {

rnsglnit, "CoinApplnit" ,
objCallAncestorBefore,
rnsgSave, "CoinAppSave" ,
objCallAncestorBefore,
rnsgRestore, "CoinAppRestore" ,
objCallAncestorBefore,
rnsgApplnit, "CoinAppApplnit" ,
objCallAncestorBefore,

CoinApp 79

rnsgAppOpen, "CoinAppOpen" ,
objCallAncestorAfter,
rnsgAppClose, "CoinAppClose" ,
objCallAncestorBefore,
o

} i

CLASS_INFO classInfo[] = {

"clsCoinAppTable",clsCoinAppMethods, 0,
o

} i

coinapp.c

coinapp.c contains the method definitions for the clsCoinApp class and
the main () entry point for the coin application. I have listed the routines
in the order that the framework sends messages to them. Again I remind
you that no method is defined for responding to msgFree. Instead, Coin
App relies on the behavior inherited from clsApp.

The beginning of the file contains the necessary include directives to
provide the compiler with the definitions needed to compile the module.
They are

#ifndef APP_INCLUDED
#include <app.h>
#endif

#ifndef APPMGR_INCLUDED
#include <apprngr.h>
#endif

#ifndef OS_INCLUDED
#include <os.h>
#endif

#ifndef RESFILE_INCLUDED
#include <resfile.h>
#endif

#ifndef FRAME_INCLUDED
#include <frarne.h>
#endif

#ifndef DEBUG_INCLUDED
#include <debug.h>
#endif

80

#include "coinapp.h"
#include "rnethod.h"
#include <string.h>

CHAPTER 4

Instance Variables Following the include directives, come the instance
data declarations:

typedef enurn COIN_STATUS
heads, tails

} COIN_STATUS;

typedef struct INSTANCE_DATA {
COIN_STATUS coin;

} INSTANCE_DATA, *P_INSTANCE_DATA;

In the case of CoinApp, class clsCoinApp has one instance variable,
coin, which contains the state the coin should be "displayed" in (heads or
tails) when the user turns to the document.

CoinAppInit The first method defined in the module is CoinAppInit,
which responds to msgInit, after its ancestor is called. This method is de
fined as

MsgHandler(CoinAppInit)
{

INSTANCE_DATA inst;

inst.coin = heads;
ObjectWrite(self, ctx, &inst);

return stsOK;
MsgHandlerPararnetersNoWarning;

This method is used to initialize the values of the instance data so that
if a problem in the document set up occurs, PenPoint can remove its con
tents and not worry about an undefined state. Since the coin instance vari
able is an enumerated type, it is ok to arbitrarily assign it to one of the
two valid states. Next, Obj ectWri te () is used to update the instance
data. This function must be used because the instance data is kept in an
area of memory protected by the operating system. Obj ectWri te ()
takes three parameters: self, a pointer to the object responding to the mes
sage; ctx, the context of the object receiving the message; and a pointer to
the instance data that has been modified in the local memory.

CoinApp 81

CoinAppSave The CoinAppSave method responds to msgSave, after its
ancestor is called. This method is defined as

MsgHandlerArgType(CoinAppSave, P_OBJ_SAVE)
{

STREAM_READ_WRITE fsWrite;
STATUS S;

fsWrite.numBytes = SizeOf(INSTANCE_DATA);
fsWrite.pBuf = pData;
ObjCallRet(msgStreamWrite, pArgs->file, &fsWrite, s);

return stsOK;
MsgHandlerParametersNoWarning;

The CoinAppSave method requires one parameter, a pointer to the
information that specifies the object to be used in saving the application's
instance data. This method sets up the members of a STREAM_READ_

WRITE structure to indicate where the instance data begins and how
many bytes it contains. Although pDa t a is not visibly defined in the
source code, the MsgHandlerArgType () macro automatically does it for
you. After the structure is filled in, it is sent as a parameter to the file
object specified in the input using the msgStream Write message.

CoinAppRestore The CoinAppRestore method responds to msgSave,
after its ancestor is called. This method is defined

MsgHandlerArgType(CoinAppRestore, P_OBJ_RESTORE)
{

INSTANCE_DATA
STREAM_READ_WRITE
STATUS

inst;
fSRead;
s;

fsRead.numBytes SizeOf(INSTANCE_DATA)i
fsRead.pBuf = &insti
ObjCallRet(msgStreamRead, pArgs->file, &fsRead, s) i
ObjectWrite(self, ctx, &inst) i

return stsOKi
MsgHandlerParametersNoWarningi

This method is used to read the value of the document's application
instance data from the data stored before the document was made dor
mant. The STREAM_READ_WRITE structure is initialized to contain the

82 CHAPTER 4

size of the instance data and a pointer to the space to copy the specified
bytes into. Next, the instance data is written to the official copy kept in
protected memory.

CoinAppAppInit The CoinAppApplnit method responds to msgApplnit,
after its ancestor is called. Recall that msgApplnit is only called the first time
the user turns to the document. This method is defined as

MsgHandler(CoinAppAppInit)
{

INSTANCE_DATA
STATUS

inst;
S;

inst = IDataDeref(pData, INSTANCE_DATA);
inst.coin = heads;
ObjectWrite(self, ctx, &inst);

return stsOK;
MsgHandlerPararnetersNoWarning;

This method sets the initial state of the coin to heads the first time the
user turns to the document. It uses the macro IDataDeref () to place a
copy of the instance data from the protected area of memory into the local
memory area where it can be modified. Next, the instance variable coin is
set to the heads value. Finally, the instance data is written back to the pro
tected area via a call to Obj ectWri te ();.

CoinAppOpen The CoinAppOpen method responds to msgAppOpen.
Its ancestor is called after it completes its processing. This method is de
fined

MsgHandlerWithTypes(CoinAppOpen, P_ARGS, P_INSTANCE_DATA)
{

APP_METRICS
LABEL_NEW
STATUS

am;
In;
s;

ObjCallRet(rnsgNewDefaults,
In.label.style.scaleUnits
In. label. style.xAlignrnent
In. label. style.yAlignrnent
In.label.pString =

clsLabel, &In, s);
lsScaleFitWindowProper;
lsAlignCenter;
lsAlignCenter;

(pData->coin == heads) ? "Heads" : "Tails";
ObjCallRet(rnsgNew, clsLabel, &In, s);

CoinApp

ObjCallJrnp(rnsgAppGetMetrics, self, &arn, s, Error) i

ObjCallJrnp(rnsgFrarneSetClientWin, arn.rnainWin,
In.object.uid, s, Error) i

return stsOKi
MsgHandlerPararnetersNoWarningi

Error:
return Si

83

Notice that this method uses a different method definition macro,
MsgHandlerWi thTypes () that lists P _INSTANCE_DATA as one of its
types. Unlike the other methods that cast pDa t a inside a macro or
function used by the method, the CoinA ppOpen method does so by
including it in the list of types in the method header. This casts pData

to be a pointer to the protected copy of the instance data allowing it to
be used directly by the method in a read-only capacity. The only prob
lem was that in order to use MsgHandlerWi thTypes (), I had to spec
ify a type for the middle parameter. So I used the default P _ARGS
provided by the SDK.

CoinAppOpen is responsible for creating the objects that the document
needs to interact with the user. In the case of CoinApp, this is simply a
label that displays the coin's status. In order to create an instance of clsLa
bel, a message is first sent to it asking to fill in a LABEL_NEW structure
with a reasonable set of default values. CoinAppOpen then modifies the
scale and alignment of the label object so it is centered and takes up the
entire window. Next, it sets the value of pString, the pointer used to ini
tialize the value of the label, to one of two strings ("Heads II or JJTails ")

based on the current state of the coin instance variable. Once the structure
is complete, it is sent as a parameter to the Class Manager to create a new
instance of the clsLabel class.

The final two messages are used by the application to set the label
object as the client of the application's main window. First, a message is
sent to self that invokes behavior necessary to fill in the APP _METRICS

structure passed to it as a parameter. Next, the label object is passed as a
parameter in the msgFrameSetClientWin message, which is sent to the
main window object returned by the msgAppGetMetrics message. These
last two messages are sent via the Obj CallJrnp () macro which causes
the flow of control to go immediately to the code following the label
"Error" if stsOK is not returned.

84 CHAPTER 4

CoinAppClose The CoinAppClose method responds to msgAppClose,
after its ancestor is called. This method is defined

MsgHandler(CoinAppClose)
{

INSTANCE_DATA inst;

inst = IDataDeref(pData, INSTANCE_DATA);
inst.coin = (inst.coin== heads) ? tails
ObjectWrite(self, ctx, &inst);

return stsOK;
MsgHandlerParametersNoWarning;

heads;

The first action this method takes is to create a local copy of the
instance data that can be modified. It then modifies the information and
writes it back into the protected area of memory. This method is made
necessary by the requirement that the status of the coin (heads or tails)
changes when the user closes the document. It would be possible to avoid
this method entirely by updating the value of coin in CoinAppOpen after
the label object is set, but it would be incorrect since the specification says
it should be done when the user closes the document.

ClsCoinAppInit The ClsCoinAppIni t () function is very similar to
those used in previous examples. It's defined

STATUS ClsCoinAppInit(void)
{

APP_MGR_NEW new;
STATUS s;

ObjCallJmp(msgNewDefaults, clsAppMgr, &new, s, Error);

new.object.uid
new.cls.pMsg
new.cls.ancestor
new.cls.size
new.cls.newArgsSize

clsCoinApp;
clsCoinAppTable;
clsApp;
SizeOf(INSTANCE_DATA) ;
SizeOf(APP_NEW);

strcpy(new.appMgr.name, "Coin Application");
strcpy (new.appMgr. company, "PenPoint Programming");

ObjCallJmp(msgNew, clsAppMgr, &new, s, Error);

return stsOK;

CoinApp

Error:
return Si

85

Two new things are shown in this example. First, since the CoinApp
class has instance data, the value of the initialization structure is changed
to reflect the size of the instance data being used.

new.class.size = SizeOf(INSTANCE_DATA) i

Second, in addition to the company name being specified, the applica
tion name itself is being specified using the statement:

strcpy(new.appMgr.name, "Coin Application") i

mainO The main () function for the coin application is a copy-and
paste version of the same main () function used in previous examples.
It's defined

void CDECL
main(int argc, char *argv[], U16 processCount)
{

STATUS Si

if (processCount == 0) {
ClsCoinAppInit() i

AppMonitorMain(clsCoinApp, objNull) i

}

else
AppMain () i

Unused (argc) i Unused(argv)i

coinapp.h

In addition to the class and method definitions contained in coinapp.c,
there are the definitions included in coinapp.h. In this example, coinapp.h
is used to define a Well Known UID for the coin application. It's defined

#ifndef COINAPP_INCLUDED
#define COINAPP_INCLUDED

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

86

#ifndef UID_INCLUDED
#include <uid.h>
#endif

#define clsCoinApp MakeGlobalWKN{ 4141, 1);
#endif

Installing and Using CoinApp

CHAPTER 4

After CoinApp is built and installed, the user can create a document
based on the application. The first time the user turns to the document, it
displays the text "Heads" so that the text is centered and takes up the
entire document window. The next time the user turns to this document,
it will display the text "Tails" in the same fashion. The document's dis
play toggles between these two values until the user decides to remove
the document from the machine. If you're interested in watching the flow
of execution, you can add debugging statements to the beginning of each
method definition so you will know when the method is being invoked.

Debugging CoinApp

Now would be an interesting time to step back and take a second look at
the symbolic debugger. I would like to demonstrate a brief debugging
session using the techniques discussed in the last chapter for preparing an
application for debugging, and then actually use the debugger to explore
the application.

The first step in using DB with the coin application is to insure that
coinapp.exe has been built to contain all the necessary symbolic informa
tion. Next, check the boot.dIe file to insure that the proper DLLs have
been or will be loaded for DB to work. Finally, once PenPoint is running,
install CoinApp and then press the interrupt key (Pause key on PCs). You
should now be inside the debugger.

Choosing a Context It is necessary to specify the context of the coin ap
plication before you can begin debugging it using symbolic information.
To get the ID task, you type

> tl'

and watch for the task ID associated with pip-coinapp-v1(O).

CoinApp 87

For the sake of the example, assume that the task ID for the coin appli
cation is 07. You would type

> 07 ctx'

and DB would respond

"pip-coinapp-vl(O) " [0] 07>

indicating it is ready to work with the symbols from the specified task.
Next, you need to tell DB where to find the symbolic and source infor

mation for the coin application. This is done by entering the commands

"pip-coinapp-vl(O) " [0] 07> sym "coinapp"
"pip-coinapp-vl(O) " [0] 07> srcdir "coinapp"
\\dev_vol\penpoint\coinapp

No"Y you are ready to begin debugging.

Setting a Breakpoint Setting a breakpoint for the CoinAppApplnit
method and then starting the application is as simple as typing

"pip-coinapp-vl(O) " [0] 07> bp CoinAppAppInit

followed by

"pip-coinapp-vl(O) " [0] 07> g

You are notified when you create a document by the debugger showing
you a status update that a breakpoint has been encountered. You can then
use the various commands to access information about the application in
general.

A Quick Look at CoinAppApplnit Once you stop at the breakpoint,
you can type v to see an abbreviated listing of the code that surrounds the
breakpoint. For example, after typing v, you would see

STATUS ClsCoinAppInit(void)
{

APP_MGR_NEW newi
STATUS Si

ObjCallJmp(msgNewDefaults, clsAppMgr, &new, s, Error)i

You can then choose to explore the contents of various data values or
continue execution.

88 CHAPTER 4

When you're done debugging CoinAppAppInit, you can remove the
breakpoint by typing bl for a list of current breakpoints and then type bc
followed by a number to remove the one that represents CoinAppAppInit.

You might consider taking a few moments to use DB with CoinApp to
get a feel for how the symbolic debugger performs.

Wrap-up

When you think about the application classes role in the management of
documents, it might be helpful to view it as the factory that creates docu
ments. It assembles the components into the document itself, but the indi
vidual components do the work. Working with this mind-set, you can
create objects your application needs that work within the framework of
PenPoint and therefore can be reused by others.

This chapter provided a large amount of information fundamental to
understanding application writing in PenPoint. It started by discussing
the life cycle of a document, or instance of an application, that the user
interacts with. It discussed the messages sent as the document moves
through its life cycle states of nonexistent, created, activated, opened, and
dormant by creating a simple application that overrode the messages sent
to the application and printed out debugging information that showed
the flow of execution based on user actions.

Finally, it provided an example of an application that managed a single
instance variable through all phases of the document life cycle. This appli
cation, called CoinApp, managed the display of the state of a hypothetical
coin to the user each time the user turned to the document. Although con
trived, CoinApp gives a more realistic feel for working with the full set of
components in a real application.

As I mentioned in the beginning, of all that PenPoint provides the pro
grammer, the use of an Application Framework is most significant in
encouraging productivity and quality gains. I hope by now that even if
you don't agree with me, you have been able to grasp the potential avail
able when all applications behave in a consistent manner by responding
to a set of well-defined protocols.

The Calculator

E x am p::==1 e=================================

Ever been to a coffee pot round table? It's the type of discussion that hap
pens when people are at the coffee machine taking a break and someone
puts forth an idea that just begs to be challenged. I recently was part of
such a round table during a class on object-oriented design and analysis
that ended up as a debate on the issue of how much time should be spent
on pre-coding, versus actual coding. The collective wisdom present pro
nounced that 75 percent of the effort should go into the requirements,
analysis, and design phases before any code is written, with the rest of the
effort devoted to coding and testing. The catch with this statement is that
it assumes you know enough about the components of your design to
accurately schedule time for their implementation. If not, you could be
building an application based on so many unknowns that the project
might never be complete.

Of course, in the ideal world where schedules aren't an issue, you
would do the perfect design, complete your code, and then look back at
the project to compute the design-to-coding ratio. Unfortunately, most of
us live in a world where schedules are very much a reality and often find
ourselves cutting design time to insure that code will be completed on
schedule. My experience with object-based software indicates that this
problem can be greatly reduced by providing standards for coding and
reuse whenever possible.

PenPoint offers the application designer and developer a lot of help in
this area by providing a consistent Application Framework plus a large
number of reusable classes to draw on when building new applications.

89

90 CHAPTER 5

For example, when building a user interface, you could always use a
generic component to get your application up and running and then cus
tomize it later. PenPoint supports you in these activities by providing a
wide choice of customizable wigits that fit almost any need, plus the
inheritance facility for easily extending the behavior of a particular type
of object you might want.

The first four chapters of this book deal with the basics of creating
generic PenPoint applications. In this chapter, I'm going to begin intro
ducing the concepts needed to design and build real applications that
have data and do work. I will begin with a small section on object-ori
ented design for PenPoint, followed by a section on using an implementa
tion strategy geared towards reuse. Once these topics are on the table, I'll
go back and apply them to produce a design and implementation strategy
for a simple calculator example. I'll end the chapter by explaining the
application and model classes for the calculator.

Object-oriented Design and PenPoint

PenPoint's use of objects carries with it a new set of responsibilities in
terms of application design and implementation. One example of the new
way of doing things can be found in the analysis and design of the objects
involved in implementing an application. My experience has shown that
it is generally not hard to identify candidates for objecthood. What's hard
is classifying the objects into groupings and then documenting their inter
relationships.

The View/Data Approach

One of the most important features of objects in general is their ability to
separate responsibilities into well-defined units known as classes. Early
on, Small talk programmers recognized that most classes of objects used in
building applications would fall into one of three categories: model (or
data) objects for representing the underlying application domain; view
objects for presenting the information contained in the model to the user;
and controller objects for managing the interaction between the user and
the application.

Consider a PenPoint application that mimics a simple noteboard used
to exchange messages on the refrigerator. The model for this application
might be a text data buffer that can hold a predefined number of charac
ters. The data contained in the buffer would then be preserved across

Object-oriented Design and PenPoint 91

page turns by the Application Framework. What the model doesn't con
, tain is the functionality for interacting with the user. That is the responsi
bility of the view and controller objects.

The view object for the noteboard application would display the contents
of the model in a way that is comprehensible to the user. There can be mul
tiple views for a single model with each view presenting the model's infor
mation to the user in a different manner. The application then uses
controller objects to manage the user's interaction with the model. You can
quickly imagine applying various PenPoint gestures to the view to imple
ment actions such as adding, erasing, and changing the displayed text.

The appearance of the view and the interaction with the controller are
influenced heavily by the user interface (presentation) tools available to
the programmer. In the case of PenPoint, the use of the pen is so well inte
grated with the presentation of information to the user that the view and
controller objects are referred to by the name view alone.

Notification of Observers

The techniques of associating data and views have been refined in Pen
Point to include a mechanism for having the views register with the
model as an observer of the model's data. The model then issues a mes
sage to all its observers telling them to update themselves because the
data contained in the model has changed. The ability of one object to reg
ister as an observer is not limited to user interface objects only, rather the
mechanism has been generalized so any object can be an observer of any
other object.

The observer/notification mechanism consists of a set of eight mes
sages used to add, remove, and update observers on an object's notifica
tion list. This behavior is inherited by all objects in the PenPoint system.

Adding and Removing Observers The observer/notification mecha
nism uses three messages for adding and removing observers from an ob
ject's notification list. They are

msgAddObserver and
msgAddObserverAt

msgRemoveObserver

Add an object to another object's observer list.

Remove an object from an object's notification
list.

An object registers as an observer of another object by sending a message
to the object it wishes to observe with its own DID as the argument. For

92 CHAPTER 5

example, if objectA wishes to become an observer of objectB, then objectA
sends objectB the message:

ObjCallWarn(msgAddObserver, objectB, objectA, s);

The object asking to be added or removed from an object notification
list will be sent a msgAdded or msgRemoved message when the update
to the contents of the list actually takes place.

Notifying Observers An object can send a message to its observers us
ing one of two different messages, depending upon whether it wants to
wait for each notification message to complete (msgNotifyObservers) or
whether it wants to send and forget (msgPostObservers). Both messages
are sent to self and take a pointer to an OBJ_NOTIFY_OBSERVERS struc
ture as an argument.

The OBJ_NOTIFY_OBSERVERS structure defines the message to be
sent and a pointer to the argument block to be sent with it. For example, if
objectB wishes to notify the observers on its notification list of a change in
its state, it would use

SOME_DATA data;
OBJ NOTIFY_OBSERVERS nobs;
STATUS s;

setSomeData(&data);
nobs.msg = msgSomeDataHasChanged;
nobs.pArgs = &data;
nobs.lenSend = SizeOf(SOME_DATA);

ObjCallRet(msgNotifyObservers, self, &nobs, s);
II or for posting
II ObjCallRet(msgPostObservers, self, &nob, s);

It is the responsibility of the observer and observee to coordinate which
messages would be ok for notification purposes. To avoid some problems
associated with coordination between class from different sources, Pen
Point also provides a generic msgUpdate message that every object is
guaranteed to respond to.

Managing the List of Observers In addition to the messages already dis
cussed, the observer/notification mechanism provides three messages for
working with the contents of a list of observers.

Object-oriented Design and PenPoint

msgEnumObservers

msgGetObserver

msgNumObservers

CRC Cards

93

Get back the list of observers.

Getting the observer back to a particular position
in the list.

Get the number of observers included in the list.

Once you've decided on the problem you wish to tackle, it is important
for you to identify and formally describe an initial set of objects. Kent
Beck, Ward Cunningham, and several others have been vocal proponents
of a simple approach for collecting the pertinent information, organized
on 3 x 5 cards, they call the Class-Responsibility-Collaborator (CRC)
Approach. The CRC Approach allows you to organize the important
information about an object early on by facilitating a process of making
many small decisions about the division of responsibilities between dif
ferent objects in the system.

The word Class stands for class name and represents the process of cre
ating a name space for the application at hand. Carefully chosen names
allow you to construct a working vocabulary that encompasses both the
user's domain knowledge and the designer's concept of what the system
should do. As an example, look at the names of the user interface compo
nents from PenPoint's class library. In particular, consider clsButton
objects that have well-defined and significant meaning to both the end
user (push a button for some action) and the programmer (when the user
pushes a button, perform an action).

In addition to naming a class, it is important that you are able to write a
concise description of the responsibilities of the class. Each class is used to
produce objects that have a specific responsibility for implementing part
of the application's behavior. Responsibilities are identified with short
phrases such as Ifexecutes an action in response to the user pressing a but
ton." Although you can create classes without responsibilities as place
holders, you should seriously consider removing objects without any
responsibilities at the end of the design phase.

The third piece of information collected by the eRC Approach are the
other objects the class collaborates with to fulfill its responsibilities. For
example, the application object collaborates with objects like the window
manager in order to fulfill its responsibilities for managing the application.
Listing the collaboration between objects helps identify the interrelation
ships between components and which areas might be ripe for reuse. Classes

94 CHAPTER 5

with lots of collaborators indicate an object that is probably doing too many
things and signal the need to go back and check its responsibilities.

The CRC Approach was originally designed to use 3x5 cards to collect
the information. These cards had the advantages of being cheap and
small. Cheap was an advantage in that you could afford as many as you
needed and small was an advantage in that it made you think about the
relative importance of information being added to the card. Using cards
also has the advantage of allowing you to reorder the cards based on a
particular design need.

For example, you might reorder all cards that collaborate with a partic
ular item to verify that the object in question is not doing too much work.
You can also spatially organize the cards to show various forms of interre
lationships of the application as a whole. Finally, when coming to imple
mentation, the CRC cards could be ordered based on a taxonomy that
could be used to create an inheritance hierarchy for implementation.

For the purpose of the book, I will substitute tables for 3x5 card images.
Each table will contain the following information:

Class Name

Description

Superclasses

Responsibilities/
Collaborator Pairs

Identifying Reuse

The name of the class represented by the table.

A concise description of what the class will be
used for.

The enumerated list of classes, in order of
parentage, that the new class will inherit from.
I use an expanded list, even though just the
superclass name would be enough, because it
provides a handy reminder of what types of
behaviors might be found.

A list of responsibilities the new object is go
ing to undertake, along with any objects it's
going to collaborate with in carrying out the
listed responsibility.

Perhaps the largest and most important area of reuse is the framework
described in Chapter 4. By relying on a common framework, you can pro
duce applications that work consistently in a smaller amount of time.
PenPoint also supplies a large library of components that can be reused

The Calculator Example 95

when building custom applications that fit in nicely with an object design
based on the CRC Approach.

For example, once the CRC cards for the noteboard application are
complete, you can compare them to a list of known components already
supplied by PenPoint. Suppose you have identified a clipboard buffer in a
text editing application. It makes sense to consider using a prebuilt text
class instead of building a new object from scratch. The thought process
encoded in the CRC cards allows you to measure the effectiveness of the
fit and weigh the cost of reusing generic versus building specific applica
tion classes.

The Calculator Example

Armed with a stack of blank CRC cards, it's time to sit down and layout
the design of a simple calculator. By simple, I mean the button-based four
function (add, subtract, multiply, and divide), integer-based calculator
shown in Figure 5.1. The user interacts with the calculator by tapping the
buttons with the pen and viewing the results of the computations in the
top window.

I find it useful to work with CRC cards in stages. First, for each real
world entity that might become an object in my application I create a card
with the class name and description filled in. Then, I go back over the
entire deck, writing a list of responsibilities for each class. Finally, I look at
each of the responsibilities and decide (a) if there is an appropriate exist
ing class I might reuse as is, (b) if there is an existing class I might derive a
new subclass from, or (c) to resign myself to the fact that I cannot reuse
any existing code.

Calendar Application Classes

When the interactions are complete, the Calculator application will con
sist of the three classes: clsCalcApp, which is responsible for managing
the calculator application's' interaction with the PenPoint Application
Framework; clsCalcEng, which provides the application's model of an
accumulator-based calculation engine; and clsCalcBtVw, which is a but
ton-based interface between the user and the calculation engine.

96 CHAPTER 5

FIGURE 5.1 The Calculator Application

Notebook: Contents < 1)

Docu ment Edit Opti ons View Create

~ .E'age

~ Reed Me First , ... , .. " , ... , , ... , ... , , .. " 2
o Samples:.. 3

0
0 a
~
vr
:t'I
1'[1

~
::s:
1'[1

4 6 " [
00
l»
3

2 3 X
"0
i'j)
.....

+ --

,.mama __ mama ________ mama ____ ~~ ________ mama __________ ~

? .tIl ¢J Q [jl ~ ~..Q:. J!:. II
Help S etfin gs Con nec1ions Sfa fionery Accessories Keyb oa.rd In bGl OytbGl Noteb ook

The Calculator Example 97

clsCalcApp Table 5.1 shows the CRC information for the calculator's ap
plication class. Notice that one of clsCalcApp's responsibilities is to register
the application and associated classes with PenPoint. This responsibility re
fers specifically to the main () routine required for each PenPoint applica
tion. Although technically not part of the actual application class, this
responsibility needs to be accounted for and belongs here. In addition to
having the main () routine, clsCalcApp is also responsible for creating the
clsCalcEng model and clsCalcBtVw view that make the application unique.

TABLE 5.1 CRC Table for the Calculator's Application Class

Class:

Description:

Ancestors:

clsCalcApp

manages the Calculator application's interaction with the
appl ication framework.

clsApp, clsObject

Responsibilities/Collaborators:

• registers the application and associated classes with PenPoint.
• with clsCalcEng, creates the calculator engine used as the applica

tion's model object.
• with clsCalcBtVw, creates the button view used to interact with the

model.

clsCalcEng Table 5.2 on the next page shows the CRC information for
the Calculator Engine class. Objects created from this class are used as the
model for the Calculator application. It manages a set of mathematical op
erations, including checking for error conditions, and notifies its observ
ers when the value of its accumulator changes or when an error condition
occurs. Notice that it relies on behavior inherited from its clsObject ances
tor to manage the notification process.

clsCalcView Table 5.3 on the next page shows the CRC information for
the Calculator Button View class. Objects created from this class provide
the user with an interface to the underlying calculator engine model. A
prominent feature of this class is that it serves as an example of design by
construction. When, you look at the responsibilities the class has, you
quickly realize that they are mostly organizational in nature. For example,
clsCalcBtVw will build its interface by reusing instances clsLabel, clsBut
ton, and clsTkTable to construct the calculator keypad paradigm instead
of building components from scratch.

98 CHAPTER 5

TABLE 5.2 CRC Table for the Calculator Engine Class

Class:

Description:

Ancestors:

clsCalcEng

computes the value of an accumulator based on a series of
mathematical operations.

clsObject

clsObject provides the mechanism to notify observers that the
accumulator has changed.

Responsibilities/Collaborators:

• adds, subtracts, multiplies, and divides values with the accumulator.
• notifies observers when the accumulator value changes.
• notifies observers when a divide by zero or accumulator overflow

error occurs.

TABLE 5.3 CRC Table for the Calculator Button View Class

Class:

Description:

Ancestors:

clsCalcBtVw

provides the user with a button-based view for using the
calculator engine.

clsView, clsCustomLayout, clsBorder, clsEmbeddedWin,
clsGWin, clsWin, clsObject

• cls View registers view as an observer of the model.
• clsView causes the model to be saved and restored.
• clsCustomLayout manages the resizing and layout of child windows.

Responsibilities/Collaborators:

• with clsTkTable, creates a table of clsButtons that represent a calcula-
tor keypad.

• with clsLabel, displays the current value of the accumulator.
• with clsResFile, manages the save and restore of stateful data.
• with clsButton, converts user input into values for the calculator

engine.
• with clsButton, converts user input into commands for the calculator

engine.
• with clsCalcEng, computes the user's requests.

Implementing the Calculator Application 99

Implementing the Calculator Application

N ow that the design for the Calculator application has been laid out, it's
time for you to begin the implementation phase. For this application, each
CRC description represents a separate PenPoint class that needs to be
written. The rest of this chapter concentrates on building the application
class, clsCalcApp, and the model class, clsCalcEng. I've left the discussion
of the user interface class, clsCalcBtVw, for the next chapter.

The clsCalcApp Application Class

The application class for the calculator is actually rather small, due to its
ability to reuse much of the default behavior supplied by its ancestor,
clsApp. It is only necessary for clsCalcApp to override one method,
msgApplnit, to accomplish its responsibilities. Additionally, the file that
contains clsCalcApp also contains the main () routine required to register
the application with PenPoint.

calcapp.c The calcapp.c file contains the code for the method that over
rides msgAppInit and the main () routine. It begins by including the files
necessary for it to compile:

#ifndef APP_INCLUDED
#include <app.h>
#endif

#ifndef APPMGR_INCLUDED
#include <appmgr.h>
#endif

#ifndef OS_INCLUDED
#include <os.h>
#endif

#ifndef FRAME_INCLUDED
#include <frame.h>
#endif

#ifndef DEBUG_INCLUDED
#include <debug.h>
#endif

#ifndef CALCENG_INCLUDED
#include <calceng.h>
#endif

100

#ifndef CALCAPP_INCLUDED
#include <calcapp.h>
#endif

#ifndef CALCBTVW_INCLUDED
#include <calcbtvw.h>
#endif

#include "method.h">
#include <string.h>

CHAPTER 5

CalcAppApplnit The CalcAppAppInit method responds to the msgApp
Init message the first time a document for the application is created. The
code for CalcAppAppInit is

MsgHandler(CalcAppAppInit)
{

CALCBTVW_NEW
CALC ENG_NEW
APP_METRICS
STATUS

cbv;
cn;
am;
s;

ObjCallWarn(msgNewDefaults, clsCalcEng, &cn, s);
ObjCallRet(msgNew, clsCalcEng, &cn, s);

ObjCallWarn(msgNewDefaults, clsCalcBtVw, &cbv, s);
cbv.view.dataObject = cn.object.uid;
ObjCallRet(msgNew, clsCalcBtVw, &cbv, s);

ObjCallWarn(msgAppGetMetrics, self, &am, s, Error);
ObjCallJmp(msgFrameSetClientWin, am.mainWin,

cbv.object.uid, s, Error);

return stsOK;
Error:

return S;
MsgHandlerParametersNoWarning;

This method creates the model and view objects for the document and
~nstalls the view object into the window hierarchy. The various forms of
the document (initialized, stored, opened, etc.) will be managed for you
by behavior inherited from clsApp. Notice that the UID of the calculator
engine is passed as input to the button view object. This is part of the

Implementing the Calculator Application 101

convention established by ancestors of the View class. Once a View class
is created with an instance of the model class it is a view of, it manages
that model object automatically. This includes saving and restoring the
model's state when appropriate. In essence, you transferred ownership
of the model from the application to the view.

CIsCalcApplnit The ClsCalcApplnit function is called by the main ()
routine when the Calculator application is installed. It is implemented as

STATUS ClsCalcApplnit (void)
{

APP_MGR_NEW new;
STATUS Si

ObjCallJmp(msgNewDefaults, clsAppMgr, &new, s, Error) i

new.object.uid
new.cls.pMsg
new.cls.ancestor
new.cls.size
new.cls.newArgsSize

clsCalcApPi
clsCalcAppTable;
clsApp;
Nil(SIZEOF) ;
SizeOf (APP_NEW) i

new.appMgr.flags.accessory = TRUE;

strcpy(new.appMgr.name, "Button Calculator");
strcpy(new.appMgr.company, "Penpoint Programming");

ObjCallJmp(msgNew, clsAppMgr, &new, s, Error);

return stsOK;

Error:
return s;

The function registers the Calculator Application class clsCalcApp with
PenPoint so it can be used to create documents' forms. In addition to
specifying the traditional information about ancestor and instance vari
ables size, I have asked the application to place the installed Calculator
application onto the Accessories menu using the statement:

new.appMgr.flags.accessory = TRUE;

You can also use the flags structure in the APP _MGR_NEW to indicate
any of the following information to the application manager:

102

stationary

accessory

hotMode

allowEmbedding

confirmDelete

de-installable

systemApp

appMonitor

CHAPTER 5

Put the application in the stationary Notebook.

Put the application in the Accessory menu.

Create application documents in hot mode.

Allow child-embedded applications within
this application's documents.

Ask the user for confirmation before deleting a
document.

The user can de-install the application.

The specified application is a system application.

Create an application monitor.

Finally, the Calculator class is given a Well Known DID, clsCalcApp,
that was defined in the header file for the applications:

#define clsCalcApp MakeGlobalWKN{4142, 1)

mainO calcapp. c also contains the main () routine used to install the
application. It is defined

void CDECL
main(

int
char *
U16

STATUS s;

argc,
argv [] ,
processCount)

if (processCount 0) {
ClsCalcApplnit();
ClsCalcEnglnit();
ClsCalcBtVwlnit();
AppMonitorMain(clsCalcApp, objNull);
}

else
AppMain() ;

Unused (argc) ; Unused(argv);

Implementing the Calculator Application 103

As you probably expected, the main () routine is another cut-and-paste
function with the additional behavior that the Calculator Engine model and
Calculator Button views are created when the user turns to a document.

calcapp.h The header file for clsCalcApp contains the definition of the
Well Known DID used to identify the calculator application class. In addi
tion it also includes the macros necessary to produce the DID. Its com
plete definition is .

#ifndef CALCAPP_INCLUDED
#define CALCAPP_INCLUDED

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#define clsCalcApp MakeGlobalWKN(4142 , 1)

#endif II CALCAPP_INCLUDED

method.tbi and c1sCalcApp method.tblcontains the following MSG_INFO

structure for mapping messages to methods in dsCalcApp:

MSG_INFO clsCalcAppMethods[] = {

} ;

msgApplnit, "CalcAppApplnit" , objCallAncestorBefore,
a

The clsCalcEng Model Class

The calculator engine works by handling messages that request a certain
operation be performed on the data contained in the accumulator. Instead
of passing the result back, the object simply notifies its observers that a
change has occurred. This technique allows multiple views to watch the
same model and receive an update message whenever any view action
whether self-originated or not-caused the model to change.

The model class for the calculator contains the methods necessary to
implement a small but functional calculator. Like most model classes,
clsCalcEng does not collaborate with many other classes, because the bulk
of its responsibility is to define the intrinsic behavior of the application
itself. clsCalcEng relies on clsObject for help in filing and managing the
notification of an object's observers when changes happen and on clsRes
File to provide a means to save its persistent data when the need arises.

104 CHAPTER 5

In addition to the functions used to respond to the messages defined by
the clsCalcEng class, I also use several functions to simplify the reading of
the code. This is one advantage of a hybrid environment that allows you
to mix both function calls and message sends to obtain the best possible
source code. In general, when using the PenPoint message-sending mac
ros, it is best to pass pointers to return values and define the actual func
tion to return type STATUS. This eliminates the compiler generating a
warning that the function is attempting to return a different type. The rea
son for the conflict is that the message-passing macros such as Obj Call
Ret produce code that returns the status value if an error is detected,
which would not be of the same type if the function was declared to
return something other than STATUS.

calceng.h The Calculator engine is defined using two files: calceng.h
and calceng.c. calceng.h contains definitions of the classes, Well Known
VID, messages, and error status values used by both clsCalcEng and its
observers. calceng.h begins

#ifndef CALCENG_INCLUDED
#define CALCENG_INCLUDED

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#define clsCalcEng MakeGlobalWKN(4143, 1)

STATUS ClsCalcEngInit (void);

These lines include the definition of the global Well Known VID used to
identify the clsCalcEng class within the Calculator application.

Next, calceng.h defines the two status values that an instance of clsCal
cEng might send its observers. They are

#define stsCalcEngOverflow MakeStatus(clsCalcEng, 1)
#define stsCalcEngZeroDiv MakeStatus(clsCalcEng, 2)

Notice that the MakeStatus macro generates a unique status value by
combining a Well Known VID (clsCalcEng) with an ordinal (1 or 2).

N ext, the following messages are defined for use with dsCalcEng
objects.

#define msgCalcEngGetAccm
#define msgCalcEngSetAccm
#define msgCalcEngClr

MakeMsg(clsCalcEng, 1)
MakeMsg(clsCalcEng, 2)
MakeMsg(clsCalcEng, 3)

Implementing the Calculator Application 105

#define msgCalcEngAdd MakeMsg(clsCalcEng, 4)
#define msgCalcEngSub MakeMsg(clsCalcEng, 5)
#define msgCalcEngDiv MakeMsg(clsCalcEng, 6)
#define msgCalcEngMul MakeMsg(clsCalcEng, 7)
#define msgCalcEngAccmChanged MakeMsg(clsCalcEng, 8)
#define msgCalcEngError MakeMsg(clsCalcEng, 9)

The last two messages, msgCalcEngError and msgClacAccmChanged,
have no corresponding methods in calceng. c. These messages are sent
by a calculator engine object to its observers when the value of its accu
mulator changes or it encounters an error condition. The observing object
is responsibile for defining a method for responding to these messages
when they are sent.

Following the message definitions, calceng.h defines two data struc
tures used for interacting with the calculator engine. The first

#define CalcEngNewFields ObjectNewFields

typedef struct CALCENG_NEW {
CalcEngNewFields

} CALC ENG_NEW , *P_CALCENG_NEW;

is defined so that objects creating instances of clsCalcEng can follow the
normal convention of using msgNewDefaults followed by msgNew, even
though clsCalcEng doesn't add any additional initialization values.

The second structure, used to pass values back and forth from the cal
culator engine, is defined

typedef struct CALCENG_VAL {
S32 value;

} CALC ENG_VAL , FAR *P_CALCENG_VAL;

#define CALCENG_MAX_DIGITS 8

Notice that the calculator engine was implemented to take and receive
32-bit signed integers. In turn, it will do all its computations in 32-bit
signed integers and will signal overflow based on the result exceeding
CALCENG_MAX_DIGITS. Placing the value inside a structure allows an
upgrade of the calculator to floating point at a later time without requir
ing a massive edit of the code that uses the calculator engine.

Finally, the last line of calceng.h is

#endif II CALC ENG_INCLUDED

calceng.c calceng.c contains the implementation of the Calculator En
gine class. It begins by including the necessary definition files:

106

#ifndef CLSMGR_INCLUDED
#include <clsrngr.h>
#endif

#ifndef FS_INCLUDED
#include <fs.h>
#endif

#ifndef CALC ENG_INCLUDED
#include <calceng.h>
#endif

#include "rnethod.h"

During the initial development phase, you could also add

#ifndef DEBUG_INCLUDED
#include <debug.h>
#endif

CHAPTER 5

This provides access to the debugging help provided by PenPoint.
Next, the instance data and accumulator limits are defined:

typedef struct INSTANCE_DATA {
S32 accrni

} INSTANCE_DATA, *P_INSTANCE_DATAi

#define POS_OVERFLOW 100000000
#define NEG_OVERFLOW -100000000

The rest of the data in calceng.c can be divided into these groups: sup
port functions for notifying observers; methods for managing the
dsCalcEng with respect to PenPoint; and methods for updating and
monitoring the accumulator.

Notifier Support Functions calceng.c contains two functions used by the
methods in clsCalcEng to notify observers about a change in the accumula
tor or a possible error. The first function, tellObj sAccrnChanged (), is
defined

STATUS tellObsAccmChanged(OBJECT absrObj, S32 newVal)

CALC ENG_VAL CVi

OBJ_NOTIFY_OBSERVERS nabsi

STATUS Si

cv.value = newVali

Implementing the Calculator Application

nobs.msg = msgCalcEngAccmChanged;

nobs.pArgs = &cv;

nobs.lenSend = SizeOf(CALCENG_VAL);

ObjCallJmp(msgNotifyObservers, obsrObj, &nobs, s, Error);

return stsOK;

Error:

return s;

107

This function is used to notify observers of a calculator engine object
that the value of the accumulator has changed. It does this by filling in an
OBJ_NOTIFY_OBSERVERS structure with the msgCalcEngAccmChanged
message and passing a pointer (&cv) to a structure that contains the new
value of the accumulator. Finally, it issues the msgN otifyObservers mes
sage to the observed object.

In the same way, the tellObsError () function is used to notify
observers of the obsrObj that an error has occurred. This is the only error
notification an observer of an object will get. Since the calculator engine
has been set up as a stateless entity, a user of a calculator engine object
could continue to send requests for calculations and receive updated
accumulator values, even though those values would be incorrect. The
tellObsError () function is implemented as

STATUS tellObsError(OBJECT obsrObj, STATUS errval

OBJ_NOTIFY_OBSERVERS

STATUS

nobs;

s;

nobs.msg

nobs.pArgs

= msgCalcEngError;

= &errval;

nobs.lenSend = SizeOf(STATUS);

ObjCallJmp(msgNotifyObservers, obsrObj, &nobs, s, Error);

return stsOK;

Error:

return s;

Accumulator Access Methods The calculator engine supports seven
methods for accessing and/ or updating the value contained in the accu
mulator. They are CalcEngReadAccm, CalcEngSetAccm, CalcEngClr,
CalcEngAdd, CalcEngSub, CalcEngMul, and CalcEngDiv.

The first one, CalcEngClr, responds to the msgCalcClr message and
resets the value of the accumulator to zero. It is defined

108

MsgHandler(CalcEngClr)
{

INSTANCE_DATA inst;

inst = IDataDeref(pData, INSTANCE_DATA);
inst.accm = 0;
ObjectWrite(self, ctx, &inst);

return tellObsAccmChanged(self, inst.accm);

CHAPTER 5

It is necessary to de-reference that instance data from the pointer
passed into the method before changing its value, because the pointer to
the instance data indicates a protected memory area. Once updated, the
value of the accumulator is written back into the protected memory
with a call to Obj ectWri te () . Finally, the CalcEngClr method uses the
tellObsAccmChanged () function to notify its observers that the accu
mulator has a new value.

clsCa1cEng defines four methods for updating the accumulator through
a requested mathematical operation. Each method also receives a pointer
to a P _CALCVAL structure containing the value that is to be used to
update the accumulator. The first operation method is

MsgHandlerArgType(CalcEngAdd, P_CALCENG_VAL
{

INSTANCE_DATA inst;

inst = IDataDeref(pData, INSTANCE_DATA);
inst.accm += pArgs->value;
if (inst.accm >= POS_OVERFLOW

return tellObsError(self, stsCalcEngOverflow);
else {

ObjectWrite(self, ctx, &inst);
return tellObsAccmChanged(self, inst.accm);

This method de-references the instance data, adds to it the values
passed to the method, and then checks for overflow. If the addition is in
error, the tellObsError () function is called. If the operation suc
ceeds, the instance data is written back into protected memory and the
tellObsAccmChanged () function is called.

The CalcEngSub method works in a similar manner and is defined

Implementing the Calculator Application

MsgHandlerArgType(CalcEngSub, P_CALCENG_VAL
{

INSTANCE_DATA inst;

inst = IDataDeref(pData, INSTANCE_DATA);
inst.accm -= pArgs->value;
if (inst.accm <= NEG_OVERFLOW)

return tellObsError(self, stsCalcEngOverflow);
else {

ObjectWrite(self, ctx, &inst);
return tellObsAccmChanged(self, inst.accm);

109

The CalcEngMul method multiplies the given value by the accumula
tor and checks for both positive and negative overflow. It is defined

MsgHandlerArgType(CalcEngMul, P_CALCENG_VAL
{

INSTANCE_DATA inst;

inst = IDataDeref(pData, INSTANCE_DATA);
inst.accm *= pArgs->value;
if ((inst. accm >= POS_OVERFLOW) I I

(inst.accm <= NEG_OVERFLOW))
return tellObsError(self, stsCalcEngOverflow);

else {
ObjectWrite(self, ctx, &inst);
return tellObsAccmChanged(self, inst.accm) i

The last operation method, CalcEngDiv, divides the accumulator by the
input value. It checks the input value. If the value is zero it generates an
error condition before attempting the operation. It is defined

MsgHandlerArgType(CalcEngDiv, P_CALCENG_VAL
{

INSTANCE_DATA inst;

if (pArgs->value == 0)
return tellObsError(self, stsCalcEngZeroDiv);

inst = IDataDeref(pData, INSTANCE_DATA);
inst.accm /= pArgs->valuei
ObjectWrite(self, ctx, &inst);

110 CHAPTER 5

return tellObsAccmChanged(self, inst.accm);

In addition to the operation methods, clsCa1cEng also provides meth
ods for setting and getting the value of the accumulator. They are defined

MsgHandlerWithTypes(CalcEngGetAccffi, P_CALCENG_VAL,
P_INSTANCE_DATA)

pArgs->value = pData->accm;

return stsOK;
MsgHandlerParametersNoWarning;

MsgHandlerArgType(CalcEngSetAccm, P_CALCENG_VAL
{

INSTANCE_DATA inst;

inst = IDataDeref(pData, INSTANCE_DATA);
inst.accm = pArgs->value;
ObjectWrite(self, ctx, &inst);

return tellObsAccmChanged(self, inst.accm);

Object Maintenance Methods ca1ceng.c defines several methods for
maintaining clsCa1cEng objects. The first of these methods responds to
msgInit and is used to set the accumulator to zero. It is defined

MsgHandler(CalcEngInit)
{

INSTANCE_DATA inst;

inst.accm = 0;

ObjectWrite(self, ctx, &inst);

return stsOK;
MsgHandlerParametersNoWarning;

Methods are also provided to save and restore the state of the engine by
saving the contents of the accumulator in a resource file. The method for
saving data is

Implementing the Calculator Application

MsgHandlerArgType(CalcEngSave, P_OBJ_SAVE)
{

STREAM_READ_WRITE fsWrite;
STATUS s;

fsWrite.numBytes= SizeOf(INSTANCE_DATA);
fsWrite.pBuf pData;
ObjCallRet(msgStreamWrite, pArgs->file, &fsWrite, s);

return stsOK;
MsgHandlerParametersNoWarning;

The method for restoring the data is

MsgHandlerArgType(CalcEngRestore, P_OBJ_RESTORE)
{

INSTANCE_DATA inst;
STREAM_READ_WRITE fsRead;
STATUS s;

fsRead.numBytes SizeOf(INSTANCE_DATA);
fsRead.pBuf &inst;
ObjCallRet(msgStreamRead, pArgs->file, &fsRead, s);

ObjectWrite(self, ctx, &inst);

return stsOK;
MsgHandlerParametersNoWarning;

111

Finally, calceng.c contains the function ClsCalcEng () which is called
by the main () routine in response to a new document being opened. The
ClsCalcEng () function registers the clsCalcEng class with the Class
Manager so calculator documents can use its objects. The function is
defined

STATUS ClsCalcEngInit (void)
{

CLASS_NEW new;
STATUS s;

ObjCallJmp(msgNewDefaults, clsClass, &new, s, Error);

new.object.uid
new.cls.pMsg
new.cls.ancestor
new.cls.size

clsCalcEng;
clsCalcEngTable;
clsObject;
SizeOf(INSTANCE_DATA) ;

112

new.cls.newArgsSize = SizeOf(CALCENG_NEW);

ObjCallJmp(msgNew, clsClass, &new, s, Error);

return stsOK;

Error:
return s;

CHAPTER 5

method.tbi and clsCaicEng method. tbl contains the following MSG_INFO

structure for mapping messages to methods in clsCalcEng:

MSG_INFO clsCalcEngMethods[] = {

} ;

msglnit, "CalcEnglnit" ,
objCallAncestorBefore,
msgSave, " CalcEngSave " ,
objCallAncestorBefore,
msgRestore, "CalcEngRestore" ,
objCallAncestorBefore,
msgCalcEngGetAccm,
msgCalcEngSetAccm,
msgCalcEngClr,
msgCalcEngAdd,
msgCalcEngSub,
msgCalcEngMul,
msgCalcEngDiv,
a

"CalcEngReadAccm" ,
"CalcEngSetAccm" ,
"CalcEngClr" ,
"CalcEngAdd" ,
"CalcEngSub" ,
"CalcEngMul" ,
"CalcEngDiv" ,

Wrap-up

0,
0,
0,
0,
0,
0,
0,

This chapter has covered a lot of ground with respect to application
development in general and building PenPoint applications in particular.
Writing PenPoint applications requires the use of an object-based toolkit.
In Chapter 4 you learned how the Application Framework was used by
exploring all the different methods your application could override. Now,
you get to the first real application and discover that you need only over
ride one method for the application to exhibit the necessary behavior.

Wrap-up 113

You've got to love it.
In the next chapter, I'm going to take a quick break from developing the

calculator example to discuss the PenPoint windowing model and how
you can use (or should I say reuse) the predefined objects contained in the
environment. I'll finish up the calculator by implementing a button-based
view for the calculator engine class.

Constructing a User
Interface

One of the most rewarding aspects of building applications is the design
and implementation of the user interface. While previous chapters cov
ered important topics that are indispensable in PenPoint, who could say
that watching the Application Framework go through its paces is fun? But
user interfaces? Now there's an area that's fun because you can see the
results of your work.

PenPoint takes full advantage of the object-oriented paradigm in imple
menting its Notebook User Interface. First, PenPoint uses inheritance to
classify the behavior of a windowing system into a set of pre-built library
components. At the base of this inheritance hierarchy are a series of
generic window components, including clsBorder (the Border Layer class)
that implements the concept of rectangular drawing regions. In the mid
dle of the hierarchy are components which add layout and control behav
ior to the basic windowing behavior of their ancestors. Finally, the leaf
classes of the hierarchy implement the components that the user touches
directly, such as clsText, clsMenu, clsTextField, and many more.

In this chapter, I reuse several of PenPoint's predefined user interface
components to build a front-end view for the calculator engine of the last
chapter. My goal for this chapter is to provide you with an understanding
of some of the major ways in which interfaces are constructed, including
the use of custom layout and table objects. Armed with this information,
you can weigh your implementation options when it comes time to
design your application's user interface.

115

116 CHAPTER 6

PenPoint Windows

The term window has come to mean many different things, depending on
the context in which it is used. When I talk about a window in PenPoint, I
am referring to a rectangular region, often thought of as a bitmap, that has
a drawing context attached to it. This is not to be confused with a Pen
Point frame, a complex composite of various window types, such as
scrollbars, title bars, and menus that you interact with when running a
program. In actuality, the title, menu, scrollbar, and other parts of a frame
are actually windows! PenPoint uses the window class as a basic building
block to construct more complex components for the user to interact with.

One of the best analogies for dealing with this style of window is to
think of the sheets of acetate cartoonists use. The cartoonists draw on each
sheet of acetate using different types of ink and writing implements,
depending on their needs. After each individual sheet is drawn, it can be
laid on top of others to create the desired effect. Also, because the sheets
are organized in this layered fashion, careful planning allows the various
sheets to be used at a later time.

Consider a two-person animation team constructing a cartoon. The per
son rendering the background might choose greens and browns to build a
wooded scene. In the process of designing the scene, this animator might
opt for reusable pine trees by drawing them on a separate layer. At the
same time, the person creating the characters is busy drawing them in dif
ferent poses on separate layers so they can be overlaid on the background
scene and the animation sequence shot.

In PenPoint, the layers of acetate are called windows and are the basic
building blocks for all the components in the Notebook User Interface
(NUn. Windows are kept in a visual hierarchy (not to be confused with
the inheritance hierarchy) that PenPoint manages for you. This hierarchy
is responsible for managing which areas of the screen are visible to the
user, which areas get repainted when "dirty," and many other functions.
The Window Manager, in addition to its repainting responsibilities, also
manages the distribution of user events to individual windows. It uses
the window hierarchy to decide which window is allowed first response
to a user event (pen tap, pen move, and so on).

A Sample of Component Classes

The component library used to build user interfaces in PenPoint can be
briefly described using a core subset of the available classes. Figure 6.1
shows an edited version of the user interface management hierarchy that

Pen Point Windows 117

lists the core classes. The following sections provide a brief description of
each core component.

clsWin The window class clsWin is the patriarch of the window man
agement system for PenPoint's NUL It provides the basic functionality for
maintaining a window's place in the window hierarchy and managing
the window's relationship with its parent and child windows, including
resizing and layout. It also provides support for the more mechanical
tasks of clipping (managing which part of the window needs to be re
drawn) and saving the state of the window.

FIGURE 6.1 The Penpoint User Interface Component Hierarchy (edited)

clsObject

clsWin

clsBorder

~~--------~---------
clsCustom

Layout

clsView

clsTable
Layout

clsTkTable

clsControl

~
,,-_ -

clsLable

clsButton

118 CHAPTER 6

Window objects in PenPoint use the family metaphor to describe their
relationship to one another. A window

• Will have a parent window that depends on the window hierarchy.
• Might have one or more child windows depend on it in the window

hierarchy.
• Might have several sibling windows which share the same parent

window with it.

If a parent window is visible and its child window wants to be visible,
it will be. If the child window wants to be hidden, even if the parent is
visible, it will be. However, if a child wants to be visible but its parent is
hidden, the child also remains hidden until its parent becomes visible.

Figure 6.2 shows a wire frame view of a simple set of window objects
that demonstrates the family relationship of a view hierarchy. The parent
window for the sample drawing includes both a clsLabel child window
and a clsTkTable child window, which are window siblings. The clsTkTa
ble child window in turn contains a group of clsButton objects (which are
also descendants of cls Win) organized in a table format. A window can be
inserted as a child of, or sibling to, another window by sending a message
to itself indicating the window it wants to be related to, and how it wants
to be related.

FIGURE 6.2 A Sample View Hierarchy of Window Objects

clsTkTable

PenPoint Windows 119

In addition to visibility, parents also manage the clipping and layout of
their children. For example, you size and locate a child window relative to
its parent window, not the actual device. This philosophy extends to the
restriction that child windows can't draw outside their parent's bound
aries, but a parent can choose to have its drawing clipped away from the
visible part of its child windows. There is also an option that allows a
child window to make itself transparent, allowing the contents of its par
ent to show through.

The parent, in addition to its clipping responsibilities, also manages the
layout and resizing of its children. A built-in protocol allows parent and
children to work together to compute a reasonable screen layout for win
dows. This includes shrink-wrapping, which allows windows to change
size based on their contents and to pass the size information back to their
parent.

Finally, you use the behavior in the window class to control the user's
input to the application. Windows are given access to pen and keyboard
input from the user, based on their position in the window hierarchy. This
includes behavior that allows events to be filtered: to be handled and/or
distributed to other windows besides the one that got the event originally.

clsBorder clsBorder, which inherits from several abstract ancestors, is
the backbone window object for the NUL A border window is a simple
rectangular region with a border that has a drawing context attached to it.
clsBorder is special because it contains the majority of the behavior neces
sary to create controls that work with other PenPoint components such as
style sheets and menus.

You can control how a border window looks by specifying its visual
attributes either at creation or through messaging. For example, PenPoint
provides a predefined set of default values for the visual attribute values,
such as width, height, and border type. You can use the values supplied
by PenPoint or you can specify custom values when you set up the
attributes of a clsBorder object. The advantage of using predefined values
is that they provide optimum performance in the PenPoint environment,
as well as a higher level of consistency with other NUl components.

Your ability to customize components is not limited to changing just
the visual attributes of clsBorder objects. You can also create custom com
ponents by inheriting from clsBorder and adding new behavior. This
allows you to have the standard behaviors where appropriate, plus over
ride the various drawing methods that are part of the window repainting
protocol used to update the display screen. You can then concentrate on
the custom portion of your component while inheriting the majority of
behavior from the ancestor class.

120 CHAPTER 6

Figure 6.3 shows the various parts of a border object. Notice that there
are several ways to talk about the size of a border window. First, you can
talk about the size of the border object that includes everything: the
inside, the margin, the border, and the border's shadow. Then in progres
sion, you can describe the size in terms of the bordered area (everything
excluding the shadow), the margin area (the inside and margin only), and
the inner area (only the inside). clsBorder contains messages for obtain
ing and manipulating the values of these geometries in a way that facili
tates layout of border objects relative to each other.

clsControl PenPoint uses clsControl, which inherits directly from cls
Border, as an abstract superclass that provides a consistent paradigm for
writing the components that translate a user's action into a program re
quest. Using this common control paradigm, you can guarantee that a cer
tain amount of consistency exists between classes of control objects, such
as text fields and buttons, even though these controls have a different ap
pearance from each other.

clsControl supports the concept of a generic control model by defining
an instance variable used to hold the value of the control, such as the text
in a label value or the location of the indicator for a scroll bar. Each control
object also has a client object which is notified of the final outcome of a
user's interaction with a control.

Controls are built by subclassing clsControl and overriding an appro
priate subset of methods that is used to indicate the type of interaction the
user requested. By definition, a clsControl object responds to certain types
of user actions by sending itself messages. It is the subclass's responsibil
ity to override the method corresponding to a desired user interaction so
it can then send the appropriate message to the client object. There are
four times that clsControl objects send messages to themselves:

• When the user first selects the control.
• When the control enters preview mode.
• When the user accepts the previewed condition or action.
• When the control notifies its client of the user's request.

The user begins interacting with the control by gesturing on it (Gesture
response is managed by clsControl's clsGWin ancestor class), which in
turn places the control in preview mode. For example, you would "press
a button" by tapping on it with the pen, causing the button to enter pre
view mode. The button's response to entering preview mode is to invert
itself to provide you with appropriate feedback. You would accept the
action represented by the button by lifting the pen off the screen, causing
the client of the button to receive a notification to go do something.

PenPoint Windows 121

FIGURE 6.3 The Parts of a clsBorder Window Object

PostScript erro

Although most controls reuse the standard behavior for handling pre
view mode, at times the availability of the preview protocol becomes use
ful. For example, you are building a telephone number entry control that
only accepts valid area codes. You would be able to override the method
that responds to the msgControlAcceptPreview message which clsControl
sends to itself to check for a valid area code when the user indicates com
pletion. You could then accept the value and notify the control's client of
the new value, or you could indicate to the user that the value entered is
incorrect and start over.

Finally, controls can be disabled and enabled programmatically, allow
ing you to present the user with different combinations of available con
trols based on the state of your application. For example, an empty
document might have its printing controls disabled.

clsLabel clsLabel, the simplest of all controls, is used to display infor
mation, such as text strings, to the user without providing any interactive
capabilities. It is an ancestor class for other classes, such as buttons, menu
items, and title bars, that can reuse a standard set of text layout facilities,
but require different forms of previewing and notification behaviors.

When creating a clsLabel object, you can specify attributes such as the
label's string or child window; whether the text or child window is left
justified, centered, or right justified; the rotation of text; whether the text
is selectable or not; and the decoration used to set the label off from its
surroundings. Although clsLabel objects don't receive input from the
user, they are able to implement gesture recognition through control mes
sages. This would allow, for example, a label object used to annotate
another control object to respond to the "?" help gesture and provide
information about the control it is being used to annotate.

122 CHAPTER 6

clsButton clsButton adds preview and notification behavior to its clsLa
bel ancestor by implementing three different styles of buttons: momen
tary contact, toggle, and lock-on. Momentary contact buttons are used to
change the value of a control to On and then to Off when the button is re
leased. Toggle buttons change, or toggle, their value between "On" and
"Off" (or any two values) each time the button is pushed. Finally, a lock
on button will set its value to "On," and then prohibit the user from turn
ing the button off once it's on. Lock-on buttons (like their cousins, the ra
dio buttons) are generally used to implement a selection of choices where
one, and only one, must be selected.

Each button style differs in how it handles preview and notification
messages, but shares the same layout capabilities. For example, momen
tary contact buttons provide the user with feedback in preview mode but
don't send a notification message to the client unless the user raises the
pen while the button is still highlighted. On the other hand, toggle and
lock-on buttons don't provide many preview capabilities and are gener
ally used in components that require the user to set options and then
select a completed interaction.

Managing Collections of Controls

One very powerful feature of the PenPoint NUl class library is its addi
tion of several classes for managing the layout of a collection of controls.
These classes are re-used in many different ways, from creating complex
style sheets composed of multiple types of control objects, to creating user
menus from collections of standard buttons. These layout classes are not
restricted to objects defined in the PenPoint class library, but work with
any view that responds to the appropriate messages.

Layout classes use information you supply to determine its child win
dows' layouts. In this manner, a parent knows how to layout its child
windows, and depends on those windows to know how to layout their
children, if there are any. A layout window positions its children by first
asking them for size information and then specifying to each child how it
should lay itself out. This happens recursively, until each child in the win
dow hierarchy has had a chance to lay itself out. One interesting feature
of table and custom layout windows is that they can "shrink wrap"
around the windows of the controls they contain.

Two basic types of layout classes, tables (subclasses of clsTableLayouts)
and custom (subclasses of clsCustomeLayouts), are included in the class
library. clsTableLayouts objects manage collections of same-sized controls
that easily fit in a grid format. clsCustomeLayouts objects manage collec
tions of controls, possibly of different sizes, that are grouped together but
can't or won't fit into a grid-based grouping.

PenPoint Windows 123

clsTableLayouts clsTableLayouts with its subclass, clsTkTable, provides
the basis of many PenPoint NUl staples. Table layouts allow all their com
ponents to be created at one time and to share the same client for notifica
tion purposes. Additionally, the table layout, as its name implies,
manages the layout of its child windows according to information given
to it during initialization. Subclasses of clsTkTable, and hence clsTable
Layouts, include clsChoice, clsTabBar, clsMenu, clslcon Win, and other ob
jects that provide table-based groupings of choices for the user to make.

In addition to a client for each of the individual controls, clsTableLay
out objects also include a manager for the table itself. This allows a con
troller object to receive notification messages from the individual
components included in the table. This is very useful in building option
sheets that might allow or disallow certain choices based on other compo
nents in the sheet. The manager would receive notification of controls
being manipulated and would have the chance to then alter the overall
state of the sheet appropriately.

Individual components contained in a table are created at the same
time and are inserted as children of the table. Each component shares the
same client, default msgNew structure, and pointer to the information
that defines the individual components. As the table layout creates each
component, its specific information is read from that definition table. The
definition table in turn contains information about each individual com
ponent in a generic format that each individual type of component inter
prets according to the component's needs. For example, when creating
button components, this information is used to give each button its label,
notification message, and associated notification value.

clsCustomeLayout Custom layouts make it possible for you to create
and position child windows according to a set of logical constraints. Un
like tables, no attempt is made to ease the burden of coordinating controls
and control clients. Custom layout objects are generally used for complex
views constructed from a small number of components.

Child windows contained in custom views can be laid out using a set
of logical constraints to specify positioning. For example, instead of com
puting exact (x,y) coordinates of each child window, you can give relative
positioning instructions such as "align top of window A with bottom of
window B" or "center windows A and B" instead. This alignment is speci
fied using a macro defined by PenPoint called CLAI ign () . Figure 6.4
shows CLAlign () being used to specify the alignment constraints for
several windows.

124 CHAPTER 6

FIGURE 6.4 Various Uses of the CLAlignO Macro to Specify the Position of One
Window Relative to Another.

The relationships of the windows in Figure 6.4 to one another are

• WinB as it relates to WinA: x -> CLAlign(clMinEdge, clSameAs,
clMinEdge), y -> CLAlign(clMaxEdge, clSameAs, clMaxEdge).

• WinC as it relates to WinA: x,y -> CLAlign(clCenterEdge, clSameAs,
clCenterEdge).

• WinD as it relates to WinC: x -> CLAlign(clMinEdge, clSameAs,
clMinEdge), y -> CLAlign(clMaxEdge, clSameAs, clMinEdge).

The Calculator Button View

Chapter 5 covered the data model for the calculator application. Now it's
time to discuss the user interface to, or view of, the calculator's engine
used in the application. Although Figure 6.5 shows the calculator applica
tion on the NUl in document form, the calculator actually makes itself an
accessory and uses its application window to hold the button-based cal
culator view. You might have noticed that the calculator shown in Figure
6.5 is exactly proportional to the one shown in Chapter 5. This is a direct
result of relying on PenPoint's auto-sizing and auto-layout capabilities to
render the application's user interface to the screen.

The Calculator Button View 125

FIGURE 6.5 The Calculator Application Running as a Document in the Notebook
User Interface

7 8 9 C
456
1 2 3 X

+ -
F:k. .-S .JJ. 11 -~ ~ -

Help S ettin gs Con nections Sta fionery Ao::essoties Ke-yb 09.rd In bGl OutbGl Noteb ook

126 CHAPTER 6

The calculator view itself is comprised of two subviews that are kept
as child windows. The first subview is the display window, which is a
clsLabel object. The second subview is the keypad used for data entry,
which is built using a table layout object. The class that implements this
calculator button view is called clsCalcBtVw and has the responsibility
for creating, laying out, and freeing its subviews during the normal
course of a PenPoint document's life cycle. In addition, it also manages
the user interaction needed to send updates to the application's model,
the calculator engine.

clsCalcBtVw fulfills its responsibilities by relying heavily upon the
inherited behavior of its ancestor, cls View, and the borrowed behavior of
the clsTkTable object it uses to manage the keypad. It also defines the
logic necessary to maintain the state of the user's actions, even if the user
turns away from the document during the entry of a number. Although
the example itself is somewhat contrived, the actions it goes through in
supporting its role as view to the user are standard for any custom view
you might create.

Subdassing dsView

c1sView objects in PenPoint are windows used to display and possibly
modify the contents of a data object. For instance, you use a text field
view to display modifiable text to the user. When users modify the view,
they are actually indicating to your application that the underlying data
(the text) that the view is observing should be changed. It is also possible
for the text field to change for a reason other than user interaction, and,
therefore, the data model has the ability to tell the view to update itself
with the new value.

It is common in object-based programming to have multiple views for a
single model. Consider an application that shows the contents of an array
of numbers in various forms. One view might be a pie chart, another a
line graph, while a third might be a tabular display of the numbers that
the user can modify. Since each view shares the same model, a change to
the model results in each of the views updating themselves to reflect to
the data's contents.

Managing the Data When a clsCalcBtVw object is created, part of the
information passed into its msgNew message is the data object for the
view. The cls View ancestor class manages this object by registering itself
as an observer of it so it can be notified when the data changes. The view
also takes care of saving the data object when it receives the msgSave re
quest. Although this is convenient for data objects with just one view, you

The Calculator Button View 127

need to be careful when saving and restoring views that share a data ob
ject with other views.

The clsCalcBtVw object used for the interface is created in the clsCalcApp
application class described in the last chapter. The actual method used to
create the button view is CalcAppAppInit, whichrespondstothemsgAp
pIni t message and is located in the calcapp.c source file. It reads

MsgHandler(CalcAppAppInit)
{

CALCBTVW_NEW
CALC ENG_NEW
APP_METRICS
STATUS

cbv;
cn;
am;
s;

ObjCallWarn(msgNewDefaults, clsCalcEng, &cn, s);
ObjCallRet(msgNew, clsCalcEng, &cn, s);

ObjCallWarn(msgNewDefaults, clsCalcBtVw, &cbv, s);
cbv.view.dataObject = cn.object.uid;
ObjCallRet(msgNew, clsCalcBtVw, &cbv, s);

ObjCallWarn(msgAppGetMetrics, self, &am, s, Error);
ObjCallJmp(msgFrameSetClientWin, am.mainWin,

cbv.object.uid, s, Error);

return stsOK;
Error:

return S;
MsgHandlerParametersNoWarning;

After the view object is created, it is inserted as the client window for
the application. At that point, you can rely upon the Application Frame
work and inherited behavior to manage much of the mechanical work for
the button view. For instance, when saving the place of a user who turns
away from the document, the Application Framework starts the closing
process which includes asking the window hierarchy to save itself. Behav
ior inherited by clsCalcBtVw from clsWin insures that all child windows,
including the view, accumulator display, and keypad, are also given the
opportunity to save their contents. Additionally, inherited behavior from
clsView guarantees that the data object will be given a chance to write
and store its stateful data. The process will then be reversed when the
user reactivates the document by turning back to it.

Managing the Layout In addition to inheriting behavior to manage the
data object from cls View, clsCalcBtVw also inherits layout abilities from

128 CHAPTER 6

another of its ancestor classes, clsCustomeLayout. clsCalcBtVw uses its
layout capabilities to manage its two windows by setting up relative posi
tioning instructions by responding to a message from its parent window
requesting the size and constraints of its children.

This was the logical choice for managing the child windows, since
clsCalcBtVw was a subclass of clsCustomLayout as a result of being a
subclass of cls View. In general, the use of custom layouts is not restricted
to creating new custom layouts by subclassing only. It is also possible to
use custom layouts directly by creating one, adding child windows, and
then specifying the constraints for each individual child window. How
ever, this method has the disadvantage of requiring a large space over
head, since the information must be stored once for each child window.

Using dsTkTable

c1sTkTable is a layout class that it reused by instancing it, as opposed to
inheriting from it. clsCalcBtVw uses an instance of clsTkTable to manage
the array of buttons that make up the keypad for the user to enter data.
The keypad is used to construct numerical values and to indicate when
the data object should be updated with the contents of the value. For this
application, I've chosen to allow clsCalcBtVw to manage the interaction
of the user and the buttons, but some of this responsibility might be han
dled by a manager constructed especially for this purpose and used to
control the table layout.

The Implementation of clsCalcBtVw

The calculator button view works by collecting input from the user that
makes up a number, followed by what the user wants to do with the
number that follows it. For example, it keeps track of the user pressing the
1 and 2 keys and would present it to the calculator engine (its data object)
as the value 12 if the next key pressed was an operator key (add or sub
tract, for example.). The operator entered is stored as the next operation to
perform, and the calculator starts collecting a new value. The next time an
operator key is pressed, the new value is sent with the old operator to the
calculator engine and a new value is computed.

To provide this capability, clsCalcBtVw is implemented to maintain
three pieces of information about the state of the user's interaction with it.
First it tracks what the value would be if the next key the user presses is
an operator key. Second, it tracks the number of digits the user types. This

The Implementation of c1sCalcBtVw 129

index is also used to maintain error states in which the user is not allowed
to enter any additional numbers. Finally, since the engine it's working
with takes a value and operation that is to be applied to the engine's cur
rent accumulator value, clsCalcBtVw keeps track of the next operation
that should be executed when a user finishes entering a number.

What it doesn't do is process a return value from a calculator engine
operation. Instead, it depends on being notified by the calculator engine
that a new accumulator value exists or an error has occurred.

The source code that defines clsCalcBtVw is contained in three files: the
header file, calcbtvw.h, which contains the external interface to the class;
the source file, calcbtvw.c, which contains the support functions and
method definitions for c1sCalcBtVw; and the method table file, meth
od.tbl, which contains the information needed to map messages sent to
clsCalcBtVw objects to the methods that respond to them. The next sec
tions explain each file in detail.

calcbtvw.h

calcbtvw.h contains the external interface for the calculator button view
class, clsCalcBtVw. The beginning of the file includes other required defi
nition files, then a macro for building the private Well Known DID that
uniquely identifies the class to the Class Manager. The beginning of the
file looks like

#ifndef CALCBTVW_INCLUDED
#define CALCBTVW_INCLUDED

#ifndef GO_INCLUDED
#include <go.h>
#endif

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#ifndef VIEW_INCLUDED
#include <view.h>
#endif

#ifndef CLAYOUT_INCLUDED
#include <clayout.h>
#endif

#define clsCalcBtVw MakeGlobalWKN(4144,1)

130 CHAPTER 6

STATUS FAR PASCAL ClsCalcBtVwInit(void);

Following the definition of clsCalcBtVw is the declaration for the func
tion ClsCalcBtVwlnitO which is called by the calculator application to
register clsCalcBtVw with the Class Manager.

calcbtvw.h also contains message definitions for the two messages used
by the buttons in the keypad table to indicate the method that should be
called when the user presses a certain type of button. Those messages are
defined

#define msgCalcBtVwDigit
#define msgCalcBtVwFnc

MakeMsg(clsCalcBtVw, 1)
MakeMsg(clsCalcBtVw, 2)

Finally, calcbtvw.h contains the definitions for the CALCBTVW_NEW

structure used to create new instances of clsCalcBtVw:

#define calcbtvwNewFields \
viewNewFields

typedef struct CALCBTVW_NEW
calcbtvwNewFields

} CALCBTVW_NEW, *P_CALCBTVW_NEW;

#endif

Notice that the CALCBTVW_NEW structure is built using the calcbtvwNew
Fields macro which has been defined to point back to the viewNewFields
macro. This is because clsCalcBtVw doesn't need anything extra during ini
tialization beyond what is already provided to a subclass of cls View.

calcbtvw.c

calcbtvw.c contains the actual implementation of the Calculator Button
View class, clsCalcBtVw. It begins by including the header files:

#ifndef WIN_INCLUDED
#include <win.h>
#endif

#ifndef FS_INCLUDED II defines for reading and writing to
files
#include <fs.h>
#endif

The Implementation of clsCalcBtVw

#ifndef LABEL_INCLUDED
#include <label.h>
#endif

#ifndef BUTTON_INCLUDED
#include <button.h>
#endif

#ifndef TK_INCLUDED
#include <tk.h>
#endif

#ifndef CALCBTVW_INCLUDED
#include <calcbtvw.h>
#endif

#ifndef CALCENG_INCLUDED
#include <calceng.h>
#endif

#ifndef DEBUG_INCLUDED
#include <debug.h>
#endif

#include <rnethod.h>
#include <stdio.h>
#include <string.h>

131

Following the header file include statements are a series of macro defi
nitions used by the TkTable object in clsCalcBtVw during initialization.
They are

#define KB_ROW_SPACING 5
#define KB_COL_SPACING 5

#define W_MARGIN 10
#define H_MARGIN 10

The spac ing macros are used to set the number of space units that
should exist between individual items contained in the table. The marg in
macros are used to define the amount of space to be left between the out
side of the table and the inside of the surrounding parent window.

A final set of macros are defined to be used in communicating the over
all state of the calculator to the user with respect to possible errors. These
macros are used in conjunction with the index instance variable described
below. They are

132

#define ERROR_CONDITION (x) (x<O)
#define OVR_ERROR -1
#define OVR_ERROR_STR "-Overflow-"
#define DIV_ERROR -2
#define DIV_ERROR_STR "-Zero Div-"

CHAPTER 6

Next comes the definition of the instance variables used by clsCalcBtVw:

typedef struct INSTANCE_DATA
S16 indexi
S32
U32
OBJECT

valuei
nextOPi
model i

OBJECT accmDisplaYi
OBJECT keypadi
INSTANCE_DATA, *P_INSTANCE_DATAi

The first three values (index, value, and nextOp) constitute the stateful
data of the clsCalcBtVw object. The index instance variable tracks how
many digits the user has entered and whether or not the user should be
allowed to continue, based on possible error conditions in the calculator
engine data object. By definition, a negative index value indicates an error
condition occurred. Macros defined at the head of the file manage this. I
chose to implement error handling in this manner because the overhead
of using status constructs isn't needed: the information is not shared out
side the compilable module.

The value instance variable tracks the value that should be passed to
the calculator engines when the user presses an operator key. The value is
computed by multiplying the current value by 10 and adding the result to
the value of the number key pressed.

Finally, the nextOp instance variable tracks the next operation to be
used with the calculator engine. When the user presses an operator key,
the message inside nextOp is sent with the contents of the value instance
variable as its argument. When that completes, nextOp is set to the value
of the operator key that began the operation and the user can again enter
input.

The final three instance variables manage the view when it is active.
The instance variable model is set to the data object being managed by
clsCalcBtVw's cls View ancestor class. I have done this to avoid having to
query self for the data object every time the user causes an interaction.
The next two instance variables, accmDisplay and keypad, hold the UIDs
of the label object and table object that make up the accumulator display
and the keypad, respectively.

The Implementation of c1sCalcBtVw 133

The Accumulator Child Window One problem with writing code for
PenPoint is that the code becomes very verbose, even for the simplest
things. I have adopted the style of placing logical units of functionality
into functions for the purpose of making some of the code more readable.
One such function is CVBuildAccmDisplayO, which constructs the label
value used to display the current value of the accumulator. This function
is defined

STATUS LOCAL CBVBuildAccmDisplay(OBJECT self,
P_OBJECT pDisplay

LABEL_NEW lni
STATUS Si

ObjCallWarn(msgNewDefaults, clsLabel, &In) i

In.label.style.scaleUnits bsUnitsFitWindowProperi
In.label.style.xAlignment = lsAlignRighti
In.border.style.edge = bsEdgeAlli
In.win.flags.style &= ~wsSendFilei
ObjCallRet(msgNew, clsLabel, &In, s) i

*pDisplay = In.object.uidi
return stsOKi

This function takes the UID of the object that called it, along with a
pointer to the UID that is to hold the created label object and return a sta
tus code. This function and any others that contain the message sending
macros must define the function to return STATUS to avoid mismatched
return type warnings. This requirement is a result of some macros being
defined to return STATUS on detection of an error.

Inside the CBVBuildAccmDisplay () function, a LABEL_NEW struc
ture is initialized by sending a msgNewDefaults message to clsLabel. The
structure is then modified so that the label's font size is large enough to fit
the window it's given during resizing operations (bsUnitsFitWindow
Proper), and that the label's text is right-aligned with an edge around
the entire label. Finally, the wsSendFile attribute of the label is turned off,
so that when the label's parent window is saved, the label will not be.
Instead, clsCalcBtVw messages manage the accumulator (and keypad
table) directly. This saves file system space by freeing windows when they
are no longer needed and recreating them when the view becomes visible
once more.

The Keypad Child Window The calculator button view's keypad is
built using a clsTkTable object to manage the creation and layout of but-

134 CHAPTER 6

tons that represent the number and operation keys. clsCalcBtVw builds
the keypad by calling the CBVBuildKeypad () function with the DID of
the clsCalcBtVw object and a pointer to the variable holding the DID of
the newly created keypad. This function, like CBVBuildAccm (), also re
turns a stsOK STATUS if the table is created and an error status other
wise. The function is defined

STATUS LOCAL CBVBuildKeypad(OBJECT self , P_OBJECT pKeypad)

{

TK_TABLE_NEW

P_BUTTON_NEW

STATUS

tktNew;

pBn;

s;

static TK_TABLE_ENTRY keyEntries[] = {

"7" , msgCalcBtVwDigit, (U32)7 L
"8" , msgCalcBtVwDigit, (U32)8 },

"9" , msgCalcBtVwDigi t, (U32) 9 },

"C", msgCalcBtVwFnc, msgCalcEngClr },

"4" I msgCalcBtVwDigit, (U32)4 },

"5" , msgCalcBtVwDigi t, (U32) 5 },

"6" , msgCalcBtVwDigit, (U32)6 },

"/", msgCalcBtVwFnc, msgCalcEngDi v },

"1" , msgCalcBtVwDigit, (U32)1 L
"2" , msgCalcBtVwDigit, (U32)2 L
"3" , msgCalcBtVwDigit, (U32)3 L
"X", msgCalcBtVwFnc, msgCalcEngMul },

"0" , msgCalcBtVwDigit, (U32)0 },

"+", msgCalcBtVwFnc, msgCalcEngAdd },

"-", msgCalcBtVwFnc, msgCalcEngSub },

"=", msgCalcBtVwFnc, msgCalcEngSetAccm },

{pNull}

} ;

ObjCallWarn(msgNewDefaults, clsTkTable, &tktNew);

tktNew.win.flags.style 1= wsTransparent;

tktNew.win.flags.style& -wsSendFile;

tktNew.border.style.backgroundlnk bslnkGray33;

tktNew.border.style.edge bsEdgeNone;

tktNew.tableLayout.style.growChildWidth true;

tktNew.tableLayout.style.growChildHeight= true;

tktNew.tableLayout.numRows.constraint

tktNew.tableLayout.numRows.value

tktNew.tableLayout.numCols.constraint

tktNew.tableLayout.numCols.value

tktNew.tableLayout.rowHeight.constraint

tktNew.tableLayout.rowHeight.gap

tlAbsolute;

4;

tlAbsolute;

4;

tlMaxFit;

KB_ROW_SPACING;

The Implementation of clsCalcBtVw

tktNew.tableLayout.colWidth.constraint

tktNew.tableLayout.colWidth.gap

tktNew.tkTable.client

tlMaxFit;

KB_COL_SPACING;

self;

tktNew.tkTable.pEntries = (P_TK_TABLE_ENTRY)keyEntries;

pBn = tktNew.tkTable.pButtonNew;

pBn->label.style.scaleUnits

pBn->border.style.edge

pBn->border.style.join

pBn->border.style.shadow

pBn->gWin.style.gestureEnable

pBn->gWin.style.gestureForward

= bsUnitsFitWindowProper;

= bsEdgeAll;

= bsJoinSquare;

= bsShadowNone;

false;

= false;

ObjCallRet(rnsgNew, clsTkTable, &tktNew, S)i

*pKeypad = tktNew.object.uid;

return stsOK;

135

Creating a table of buttons to be used as the calculator's keypad
involves two steps. First, the buttons' layout must be specified. Second,
the information that makes each button unique must be organized and
presented to the table in an organized manner.

The first step in creating a new clsTkTable object is to send msgNewDe
faults to clsTkTable and pass to it an address of the TK_TABLE_NEW struc
ture to be filled in. For the calculator keypad, the following statements
cause the window containing the individual buttons to be transparent.

tktNew.win.flags.style
tktNew.win.flags.style &

wsTransparenti
-wsSendFile;

As a result of these statements, the TkTable parent window becomes the
background that surrounds the space not covered by the individual but
tons. Then, by turning off the wsSendFile flag, you tell the TkTable object
not to save its components when its parent is being saved.

The next two statements set the border style with a InkGray33 back
ground and no edge:

tktNew.border.style.backgroundlnk
tktNew.border.style.edge

bslnkGray33i
bsEdgeNone;

It is possible to specify exact shades for the background color, but in doing
so, you take risks with the visual appearance of your object. Whenever pos
sible, use the predefined default values because they have been developed
to look good, regardless of the platform your application runs on.

136 CHAPTER 6

The next set of statements specify the attributes of the table layout
itself.

tktNew.tableLayout.style.growChildWidth true;
tktNew.tableLayout.style.growChildHeigh true;
tktNew.tableLayout.numRows.constraint tlAbsolute;
tktNew.tableLayout.numRows.value 4;
tktNew.tableLayout.numCols.constraint tlAbsolute;
tktNew.tableLayout.numCols.value 4;
tktNew.tableLayout.rowHeight.constraint tlMaxFit;
tktNew.tableLayout.rowHeight.gap= KB_ROW_SPACING;
tktNew.tableLayout.colWidth.constraint = tlMaxFit;
tktNew.tableLayout.colWidth.gap= KB_COL_SPACING;

The table used to build the keypad allows its children to grow to the max
imum size allocated to them in the tabular grid; the key pad will have
exactly four rows and four columns. Finally, the table specifies the
amount of space between rows and columns in the table.

Following the positioning information come the actual control data and
control management information beginning with the statements:

tktNew.tkTable.client

tktNew.tkTable.pEntries

self;

(P_TK_TABLE_ENTRY)keyEntries;

These statements tell the TkTable object to make the client of each control
it creates self. Within this application that means the clsCalcBtVw object.
Next the individual button data is taken from the array keyEntries, which
was defined

static TK_TABLE_ENTRY keyEntries[] = {
{ "7" , msgCalcBtVwDigi t, (U32) 7 },
{ "8" , msgCalcBtVwDigi t, (U32) 8 },
{ "9" , msgCalcBtVwDi9"i t, (U32) 9 },

} ;

{ "C", msgCalcBtVwFnc, msgCalcEngClr },
{ "4" , msgCalcBtVwDigit, (U32)4 },

{pNull}

clsTkTable looks at the number of rows and columns and uses that infor
mation to place each control in its proper location. Nothing is specified for
the keypad table because the default of row-by-column suffices. Each entry
in the array specifies the label to be applied to the control, the message to be
sent when the control is activated, and the value to be sent as data with the
message being sent. The data is not restricted to simple numeric values-it
can be any 32-bit piece of information. In the case of the keypad, number

The Implementation of clsCalcBtVw 137

buttons send the value they represent, while operator buttons send the
message that should be used to carry out that operation.

Finally, the last several lines of code are used to specify attributes com
mon to all the buttons in the table. They are

pBn = tktNew.tkTable.pButtonNeWi

pBn->label.style.scaleUnits

pBn->border.style.edge

pBn->border.style.join

pBn->border. style. shadow

pBn->gWin.style.gestureEnable

pBn->gWin.style.gestureForward

bsUnitsFitWindowProperi

bsEdgeAlli

bsJoinSquarei

= bsShadowNonei

falsei

= false;

Although I have been using buttons in this example, a table can be
used to hold any type of control. The major differences are in the control
definition structure because the values in the array change based on the
type of control being used.

Registering clsCalcBtVw For a clsCalcBtVw object to be created, it must
first be registered with the Class Manager as a subclass of clsView with
space set aside for the instance data defined in the INSTANCE_DATA

structure. Registration is done using the function:

STATUS ClsCalcBtVwlnit(void)
{

CLASS_NEW Ci

STATUS s

ObjCallWarn(msgNewDefaults, clsClass, &c) i

c.object.uid clsCalcBtVwi
c.class.pMsg clsCalcBtVwTablei
c.class.ancestor clsviewi
c.class.size SizeOf(INSTANCE_DATA)i
c.class.newArgsSize SizeOf(CALCBTVW_NEW)i
ObjectCallJmp(msgNew, clsClass, &c, s, Error) i

return stsOKi
Error:

return Si

Initializing the View When the Calculator Application class creates an
instance of clsCalcBtVw, it is initialized using the CalcBtVwInit method,
which is defined

138

MsgHandlerArgType(CalcBtVwInit, P_CALCBTVW_NEW)

INSTANCE_DATA

WIN_METRICS

BORDER_STYLE

CALC ENG_NEW

STATUS

inst.value

inst.index

inst.nextOp

inst;

wm;

bs;

cn;

s;

0;

0;

msgCalcEngSetAccm;

if (! (pArgs->view.dataObject) &&

pArgs->view.createDataObject)

ObjCallWarn(msgNewDefaults, clsCalcEng, &cn);

ObjCallRet(msgNew, clsCalcEng, &cn, s);

ObjCallRet(msgViewSetDataObject, self, cn.object.uid,s);

inst.model = cn.object.uid;

else

inst.model = pArgs->view.dataObject;

CBVBuildAccmDisplay(self, &inst.accmDisplay);

CBVBuildKeypad(self, &inst.keypad);

ObjectWrite(self, ctx, &inst);

ObjCallWarn(msgBorderGetStyle, self, &bs);

bs.backgroundInk = bsInkGray33i

ObjCallRet(msgBorderSetStyle, self, &bs, s) i

ObjCallRet(msgLabelSetString, inst.accmDisplay, "0", s)i

wm.parent = selfi

wm.options = wsPOSTOPi

ObjCallRet(msgWinInsert, inst.accmDisplay, &wm, s);

wm.parent = selfi

wm.options = wsPosBottomi

ObjCallRet(msgWinInsert, inst.keypad, &wm, s)i

return stsOKi

MsgHandlerParametersNoWarning;

CHAPTER 6

The Implementation of clsCalcBtVw

The first three lines of the method

inst.value
inst.index
inst.nextOp

0;
0;
rnsgCalcEngSetAccrn;

139

are responsible for initializing the persistent part of the instance data so
that the current value is zero, with no errors detected, and the first opera
tion to be done when the user indicates a value is ready for the calculator
engine, is to set the calculator engine's accumulator to that value.

Next, the local copy of the data object is set if available, otherwise, the
following code checks to see if it should be created.

if (! (pArgs->view.dataObject) &&

pArgs->view.createDataObject)

ObjCallWarn(msgNewDefaults, clsCalcEng, &cn);

ObjCallRet(msgNew, clsCalcEng, &cn, s);

ObjCallRet(msgViewSetDataObject, self, cn.object.uid,s);

inst.model = cn.object.uid;

else

inst.model = pArgs->view.dataObject;

This code is the responsibility of the subclass of cls View. It allows some
one to use an instance of the view object without worrying about creating
the appropriate data object.

Next

CBVBuildAccrnDisplay(self, &inst.accrnDisplay);
CBVBuildKeypad(self, &inst.keypad);

ObjectWrite(self, ctx, &inst);

creates the accumulator display and keypad child windows used to
implement the calculator button view. Once completed, the instance data
is written into protected memory.

The last piece of code in the initialization function

ObjCallWarn(msgBorderGetStyle, self, &bs);

bs.backgroundInk = bsInkGray33;

ObjCallRet(msgBorderSetStyle, self, &bs, s);

ObjCallRet(msgLabelSetString, inst.accmDisplay, "0", s);

wm.parent = self;

wm.options = wsPosTop;

140

ObjCallRet(msgWinlnsert, inst.accmDisplay, &wm, s) i

wm.parent = selfi

wm.options = wsPosBottomi

ObjCallRet(msgWinlnsert, inst.keypad, &wm, s) i

CHAPTER 6

accomplishes the initialization of both the clsCalcBtVw's background and
the text in the accumulator display object, followed by the insertion of the
accumulator display and keypad windows as children of the view itself.

Initializing and Freeing the View Because the accumulator display and
keypad windows have been removed from the normal child window pro
cessing loop, they need to be freed. This is done by overriding the method
for freeing a clsView by adding a new CalcBtVwFree method:

MsgHandlerWithTypes(CalcBtVwFree, P_ARGS, P_INSTANCE_DATA)

STATUS Si

ObjCallRet(msgDestroy, pData->accmDisplay, objNull, s)i

ObjCallRet(msgDestroy, pData->keypad, objNull, s)i

return stsOKi

MsgHandlerParametersNoWarningj

Changing the View's Data Object Because clsCalcBtVw objects keep a
shadow copy of the data object as one of their instance variables (model), it
is necessary to know when that value changes. Currently, that can happen
at two times. First, when the instance of clsCalcBtVw is initialized, and sec
ond, when the consumer of the object sends a msgViewSetDataObject mes
sage to the calculator button view. The initialization method CalcBtVwlnit
handles the first case, while the second case is handled by overriding the
method used to respond to rnsgViewSetDataObj ect with

MsgHandlerArgType(CalcBtVwSetDataObject, OBJECT
{

inst;

inst = IDataDeref(pData, INSTANCE_DATA);
inst.model = pArgs;
ObjectWrite(self, ctx, &inst);

return stsOK;
MsgHandlerParametersNoWarning;

The Implementation of clsCalcBtVw 141

This method de-references the instance data set aside for the instance of
clsCalcBtVw, sets the model instance variable to the new data object, and
then rewrites the instance data back into the protected area of memory.
Notice in the method table definition that this method allows its ances
tor's method to be called prior to executing its own behavior.

Saving State clsCalcBtVw objects are sent msgSave as a result of their
parent window being told to save its state. clsCalcBtVw objects respond
by writing only their persistent data to a file, choosing to allow their child
windows to be freed. It then rebuilds those windows as a result of receiv
ing a msgRestore message.

The method used for saving the clsCalcBtVw's state is

MsgHandlerWithTypes(CalcBtVwSave, P_OBJ_SAVE,
P_INSTANCE_DATA)

STREAM_READ_WRITE
STATUS

fsWrite;
s;

fsWrite.numBytes=SizeOf(S16) ;
fsWrite.pBuf= & (pData->index) ;
ObjCallRet(msgStreamWrite, pArgs->file, &fsWrite, s);
fsWrite.numBytes= SizeOf(S32);
fsWrite.pBuf= & (pData->value) ;
ObjCallRet(msgStreamWrite, pArgs->file, &fsWrite, s);
fsWrite.numBytes= SizeOf(U32);
fsWrite.pBuf= & (pData->nextOp) ;
ObjCallRet(msgStreamWrite, pArgs->file, &fsWrite, s);

return stsOK;
MsgHandlerParametersNoWarning;

For this example, I adopted the convention for saving instance data
which requires that individual data items be saved in a file. An alternative
would have been to define a substructure that contained only the persis
tent data and to replace the three msgStream Write messages with a single
message.

Restoring State clsCaclBtVw objects receive a msgRestore message
when it's their turn to be re-created from a file during a window hierar
chy's process of rebuilding itself. The method that handles msgRestore
for clsCalcBtVw is

MsgHandlerArgType(CalcBtVwRestore, P_OBJ_RESTORE)

142

INSTANCE_DATA

STREAM_READ_WRITE

WIN_METRICS

STATUS

char

inst;

fsRead;

WIn;

s;

fsRead.nurnBytes =SizeOf(S16);

fsRead.pBuf = &inst.index;

ObjCallRet(rnsgStrearnRead, pArgs->file, &fsRead, s);

fsRead.nurnBytes = SizeOf(S32);

fsRead.pBuf = &inst.value:

ObjCallRet(rnsgStrearnRead, pArgs->file, &fsRead, s);

fsRead.nurnBytes = SizeOf(U32):

fsRead.pBuf = &inst.nextOp:

ObjCallRet(rnsgStrearnRead, pArgs->file, &fsRead, s):

ObjCallRet(rnsgViewGetDataObject, self, &inst.rnodel, s);

CBVBuildAccrnDisplay(self, &inst.accrnDisplay):

CBVBuildKeypad(self, &inst.keypad);

ObjectWrite(self, ctx, &inst):

switch(inst.index) {

case OVR_ERROR:

strcpy(buff, OVR_ERROR_STR);

break:

case DIV_ERROR:

strcpy(buff, DIV_ERROR_STR):

break;

default:

sprintf(buff, "%ld", inst.value):

break:

ObjCallRet(rnsgLabelSetString, inst.accrnDisplay, buff, s):

WIn. parent = self:

WIn. options = wsPosTop:

ObjCallRet(rnsgWinInsert, inst.accrnDisplay, &WIn, s);

WIn.parent = self:

WIn. options = wsPosBottorn:

ObjCallRet(rnsgWinInsert, inst.keypad, & WIn , s):

CHAPTER 6

The Implementation of clsCalcBtVw

return stsOK;

MsgHandlerParametersNoWarning;

143

The CalcBtVwRestore method is similar to the initialization method in
that it first restores the stateful data, then it gets the value of the data
object that has been restored by its superclass. Next it re-creates the accu
mulator and keypad views used. After it re-creates itself, it writes its
information back into protected memory. Next, it checks the contents of
the index instance variable to determine if an error condition exists and
sets the initial value of the accumulator label value accordingly. Finally, it
reinstalls its child windows into the window hierarchy so they can be
properly displayed.

Managing the Layout of the Child Windows It is important for sub
classes of clsCustomLayout to provide a method for specifying the layout
information for the child windows it creates. The clsCalcBtVw class pro
vides this information by overriding the msgCstmLayoutGetChildSpec
method defined in its ancestor with the following method:

MsgHandlerWithTypes(

CalcBtVwCLGetChildSpec, P_CSTM_LAYOUT_CHILD_SPEC,

P_INSTANCE_DATA)

if (pArgs->child == pData->accmDisplay) {

pArgs->metrics.h.constraint clPctOf;

pArgs->metrics.h.value

pArgs->metrics.w.constraint

pArgs->metrics.w.value

pArgs->metrics.x.constraint=

15;

clSameAs;

- (2 *W_MARGIN) ;

C1Align(clCenterEdge, clSameAs, clCenterEdge);

pArgs->metrics.y.constraint

C1Align(clMaxEdge, clSameAs, clMaxEdge);

pArgs->metrics.y.value

else if (pArgs->child == pData->keypad) {

pArgs->metrics.h.relWin

pArgs->metrics.h.constraint

C1Extend(clSameAs, clMinEdge);

pArgs->metrics.h.value

pArgs->metrics.w.relWin

pArgs->metrics.w.constraint

pArgs->metrics.x.relWin

pArgs->metrics.x.constraint

pData->accmDisplay;

-H_MARGIN;

pData->AccmDisplay;

clSameAs;

pData->AccmDisplay;

clSameAs;

144

pArgs->metrics.y.constraint

CIAlign(clMinEdge, clSameAs, clMinEdge);

pArgs->metrics.y.value = H_MARGIN;

return (stsOK);

MsgHandlerParametersNoWarning;

CHAPTER 6

This single method provides the information for each of its child win
dows. It uses a set of if-then-else constructs to check which object is being
laid out and sets the CSTM_LAYOUT_CHILD_SPEC child specification
structure accordingly. This structure contains a set of metrics for specify
ing information about four types of constraints: height, width, x, and y.
These metrics include both relative positioning and absolute adjustments.
For example, a window could be told to make its height the same as
another window's except that it should be smaller by a certain number of
units.

In the case of clsCalcBtVw's children, if the child being laid out is the
accumulator display, then the structure is set with

pArgs->metrics.h.constraint

pArgs->metrics.h.value

pArgs->metrics.w.constraint

pArgs->metrics.w.value

pArgs->metrics.x.constraint

clPctOf;

15;

clSameAs;

- (2*W_MARGIN) ;

CIAlign(clCenterEdge, clSameAs, clCenterEdge);

pArgs->metrics.y.constraint

CIAlign(clMaxEdge, clSameAs, clMaxEdge);

pArgs->metrics.y.value

This indicates that the accumulator's display height should be 15 percent
of its parent's height and its width should be the same as its parent's
width minus two times the value of the w_rnargin macro. It specifies that
the center of its x edge should be the same as the center of its parent's x
edge, relying on the values it specifies for its width constraint to make it
fit properly on its parent. In the same way, it uses the CLAlign () macro
to set its y constraint.

In a similar manner, the layout specification for the keypad table child
window is

pArgs->metrics.h.relWin = pData->accmDisplay;

pArgs->metrics.h.constraint

CIExtend(clSameAs, clMinEdge);

pArgs->metrics.h.value -H_MARGIN;

pArgs->metrics.w.relWin = pData->AccmDisplay;

The Implementation of clsCalcBtVw

pArgs->metrics.w.constraint

pArgs->metrics.x.relWin

pArgs->metrics.x.constraint

= clSameAsi

= pData->AccmDisplaYi

= clSameAsi

pArgs->metrics.y.constraint

C1Align(clMinEdge, clSameAs, clMinEdge) i

pArgs->metrics.y.value = H_MARGINi

145

As you can see, the specification for the keypad is very similar to that
of the accumulator display. However, one interesting difference concerns
specifying the height of the keypad. I have chosen to specify height as rel
ative to another window other than the parent by setting

pArgs->metrics.h.relWin = pData->accmDisplay;
pArgs->metrics.h.constraint

C1Extend(clSameAs, clMinEdge);
pArgs->metrics.h.value = -H_MARGIN;

and then using the CLExtend () macro to extend the height of the key
pad so it reaches the minimum edge of the accmDisplay child window
minus the value of h_marg in.

What is often overlooked is the amount of work PenPoint is doing in
computing what should go where when windows are given sizes in val
ues relative to other windows. You have to be careful that something is
given a set of constraints that can be figured out without dropping into a
cyclical loop. In this example, I have set the accumulator display to be a
certain height (a percentage of its parent window) and do not alter that in
the layout specifications.

Managing User Interaction The user interacts with the calculator view
by tapping the keypad buttons. These buttons have been defined in the
TK_TABLE_ENTRY structure to send one of two messages, depending on
the button pressed. The clsCalcBtVw object also receives a value indicat
ing the exact button pushed.

The first message, msgCalcBtVwDigit, is sent when the user presses
one of the digit (0-9) keys. The method that handles this message is

MsgHandlerWithTypes(CalcBtVwDigit, P_ARGS, P_INSTANCE_DATA)

INSTANCE_DATA

int

STATUS

char

insti

vali

Si

if (ERROR_CONDITION (pData->index)

return stsOKi

146

if (pData->index >= CALCENG_MAX_DIGITS

return stsOK;

inst = IDataDeref(pData, INSTANCE_DATA);

val = (int)pArgs;

if (inst.index == 0

inst.value val;

else

inst.value inst.value*10 + val;

ObjectWrite(self, ctx, &inst);

sprintf(buff, n%ld n , inst.value);

ObjCallRet(msgLabelSetString, inst.accmDisplay, buff, s);

inst.index++;

return stsOK;

MsgHandlerParametersNoWarning;

CHAPTER 6

The first thing this method does is to check if the user is still able to add
to the value by checking whether an error condition exists or whether the
maximum number of allowable digits has already been typed. If neither
condition is true, it then de-references the instance data and proceeds to
update the contents of the value instance variable. Once complete, it then
updates the accumulator display, increments the index, and writes the
instance data back into protected memory.

The user pressing an operator key (+,-, *,/ ,=,C) causes the msgCalc
BtVwFnc message to be sent with the message that should be used as the
next operation. The method that responds to this message is

MsgHandlerWithTypes(CalcBtVwFnc, P_ARGS, P_INSTANCE_DATA)
{

INSTANCE_DATA inst;
CAL C ENG_VAL cv;
U32 nextSel;
STATUS s;

if ((U32)pArgs == msgCalcEngClr) {
ObjCallRet(msgCalcEngClr, pData->model, &cv, s);
nextSel = msgCalcEngSetAccm;
}

else if (ERROR_CONDITION (pData->index)) {
return stsOK;
}

The Implementation of clsCalcBtVw

else if (pData->index != a) {
cv.value = pData->valuei
ObjCallRet(pData->nextOp, pData->model, &cv, s) i
nextSel = (U32)pArgsi
}

else
nextSel = pArgs;

inst = IDataDeref(pData, INSTANCE_DATA) i

inst.nextOp = nextSeli
ObjectWrite(self, ctx, &inst)i

return stsOKi
MsgHandlerParametersNoWarningi

147

If you are familiar with other object-based programming environments,
then you recognize this as more of a controller type behavior than a view
behavior. However, as is often the case, both types of behaviors get rolled
into the same object. In essence, this method decides how the view should
be allowed to update the data object that is the calculator engine.

First, it checks to see if the user pressed the Clear button. If so, the
states of the engine and the view are reset and control is returned. Next, if
the Clear key wasn't pressed, this method checks to see if an error condi
tion exists. If so, it returns without allowing the user to change anything.
This forces the user to press Clear to recover from an error state.

After checks for clear and errors, the next thing checked is whether the
user has entered a value yet. If so, that value is passed to the calculator
engine via the message contained in the nextOp instance variable, and
nextOp is set to be the operation that was pushed, causing the method to
be invoked. If the user has not entered a value, then the next operation is
changed to the one just entered.

Notice that I'm not waiting for the calculator engine to return to me the
results of the operation request. Instead, I'm assuming that the request
makes it and I'm relying on the data object to send me an update message
indicating whether the accumulator value has changed or an error has
occurred.

Finally, I de-reference the instance data, update the value of nextOp
and rewrite the data to protected memory. I needed to be very careful
about de-referencing and updating instance data in an asynchronous
environment because the opportunity exists for other methods to de-ref
erence and rewrite instance data as a result of a message I send. A good
rule of thumb is avoid de-referencing data when a message you send
might cause another message to be sent back to you.

148 CHAPTER 6

Handling Updates from the Calculator Engine That last two methods
are used to respond to messages sent by the calculator engine to its view
when the contents of its accumulator changes or it perceives an error has
occurred. The first method is used to respond to the msgCalcEngAccm
Changed and is defined

MsgHandlerArgType(CalcBtVwAccmChanged, P_CALCENG_VAL)

{

INSTANCE_DATA

STATUS

char

inst;

s;

inst = IDataDeref(pData, INSTANCE_DATA);

inst.value = pArgs->value;

inst.index = 0;

ObjectWrite(self, ctx, &inst);

sprintf(buff, "%ld", inst.value);

ObjCallRet(msgLabelSetString, inst.accmDisplay, buff, s);

return stsOK;

MsgHandlerParametersNoWarning;

This method simply updates the value and index instance variables to
reflect the change in the calculator engine and then updates the accumula
tor display.

The second method in clsCalcBtVw is used to respond to a msgCalc
EngError sent by the calculator engine to its view. That method is defined

MsgHandlerArgType(CalcBtVwAccmError, P_STATUS)

INSTANCE_DATA inst;

STATUS s;

char buff[256];

inst IDataDeref(pData, INSTANCE_DATA);

inst.value = 0;

switch(*pArgs)

case stsCalcEngOverflow:

inst.index = OVR_ERROR;

strcpy(buff, OVR_ERROR_STR);

break;

The Implementation of clsCalcBtVw

case stsCalcEngZeroDiv:

inst.index = DIV_ERROR;

strcpy(buff, DIV_ERROR_STR);

break;

ObjectWrite(self, ctx, &inst);

ObjCallRet(msgLabelSetString, inst.accmDisplay, buff, s);

return stsOK;

MsgHandlerParametersNoWarning;

149

This method checks the error type and then sets the index instance
variable appropriately. It also changes the accumulator display label
value to indicate the type of error that occurred.

method.tbl

In this final section, I present the complete method table file method.tbl,
which contains definitions for all three classes (clsCalcApp, clsCalcEng,
and clsCalcBtVw). It is defined

#ifndef CLSMGR_INCLUDED

#include <clsmgr.h>

#endif

#ifndef APP_INCLUDED

#include <app.h>

#endif

#ifndef WIN_INCLUDED

#include <win.h>

#endif

#ifndef CLAYOUT_INCLUDED

#include <clayout.h>

#endif

#ifndef CALC ENG_INCLUDED

#include <calceng.h>

#endif

#ifndef CALCBTVW_INCLUDED

#include <calcbtvw.h>

#endif

150

MSG_INFO clsCalcAppMethods[] =

msgAppInit,"CalcAppAppInit",

o

MSG_INFO clsCalcEngMethods[] = {

msgInit,

msgSave,

msgRestore,

msgCalcEngGetAccm,

msgCalcEngClr,

msgCalcEngAdd,

msgCalcEngSub,

msgCalcEngMul,

msgCalcEngDiv,

msgCalcEngSetAccm,

o

"CalcEngInit",

"CalcEngSave",

"CalcEngRestore",

"CalcEngGetAccm",

"CalcEngClr" ,

"CalcEngAdd" ,

"CalcEngSub" ,

"CalcEngMul",

"CalcEngDiv" ,

"CalcEngSetAccm",

MSG_INFO clsCalcBtVwMethods[] = {
msgInit,

msgFree,

"CalcBtVwInit",

"CalcBtVwFree",

CHAPTER 6

objCallAncestorBefore,

objCallAncestorBefore,

objCallAncestorBefore,

objCallAncestorBefore,

0,

0,

0,

0,

0,

0,

0,

objCallAncestorBefore,

objCallAncestorAfter,

msgSave, "CalcBtVwSave" , objCallAncestorBefore,

msgRestore, "CalcBtVwRestore" , objCallAncestorBefore,

msgViewSetDataObject, "CalcBtVwSetDataObject" ,

objCallAncestorBefore,

msgCstmLayoutGetChildSpec, "CalcBtVwCLGetChildSpec",

objCallAncestorBefore,

msgCalcBtVwDigit,

msgCalcBtVwFnc,

"CalcBtVwDigit" ,

"CalcBtVwFnc",

0,

0,

msgCalcEngAccmChanged, "CalcBtVwAccmChanged" , 0,

msgCalcEngError,

o
"CalcBtVwAccmError" , 0,

CLASS_INFO classInfo[] = {

"clsCalcAppTable" ,

"clsCalcEngTable",

"clsCalcBtVwTable" ,

o

clsCalcAppMethods,

clsCalcEngMethods,

clsCalcBtVwMethods,

0,

0,

0,

Wrap-up 151

Wrap-up

This chapter presented some of the most powerful parts of PenPoint's
user interface toolkit. You have seen the relatively small amount of code
needed to build some of the most common forms of user interface objects:
those grouped into subviews and, more specifically, those whose sub
views can be expressed as tables.

I invite you to take some time to consider the following object-driven
enhancements to the clsCalcBtVw class. First, a rule of thumb in object
based programming is that the presence of a case statement indicates the
need for a better class decomposition. This is very evident in the manner
in which the accumulator display is updated. It should be a very simple
exercise to subclass clsLabel to build a new control, clsAccmDisplay, that
responds to messages indicating error status. In the same way, there is a
general need for a keypad object. You might consider subclassing clsTkTa
ble to develop an actual clsKeypad that would build a standard keypad,
plus provide a standard controller for how the keys work together in
sequence.

My motivation in asking you to look at these enhancements is simple: in
the process of building a custom application, you are now in the position to
add a little extra effort in exchange for increasing the number of potential
reusers of your custom control objects. If nothing else, you can add these
new objects to your bag of tricks for the next application you build.

Using the Pen

As an applications developer, I am always looking for ways to make soft
ware more accessible to the end-user. One way I accomplish this is to fol
low naturally occurring metaphors whenever possible. For example, what
could be more natural to the user than the button-based calculator imple
mented in the past several chapters? It looks and works like a desk calcu
lator. The user sees this electronic PenPoint version and immediately
knows how to interact with it. It just couldn't get any better.

That's what I thought until the people at the first PenPoint seminar I
attended pointed out that we actually do calculations on paper a little dif
ferently; we write numbers and operators on paper and then solve the
problem. I realized that a lot of the metaphors I was thinking of using
were based on the compromises necessary to have electronic help avail
able for tasks I normally do on paper. For example, I mistakenly assumed
that the hardware-constrained metaphor of a button-based calculator
would be best on a pen-based system without fully thinking the problem
through.

In this chapter, I discuss PenPoint handwriting recognition by pre
senting two slightly different examples of calculator applications. The
first sample program replaces the keypad input with two numerical and
one character input components. The user forms a calculation by hand
writing two numbers and an operator into the input components; the
result is computed whenever the pen moves out of proximity (away
from the screen). The second application actually changes the metaphor

153

154 CHAPTER 7

of performing calculations to one of pen and paper using a scratch-pad
approach.

Library Support for Handwriting Recognition

PenPoint provides several levels of support for translating handwritten
input into information the application can use. Objects exist at the lowest
level for collecting, storing, and translating raw pen input into character
and gesture data. At the form building level are a set of predefined com
ponents for simple,well-defined types of input, such as integers and small
amounts of text. At the text entry level are components that can accept,
translate, and render large amounts of information in several standard
formats, including Microsoft's RTF (Rich Text Format).

In addition to components for capturing input, a set of translation utili
ties, both libraries and classes, allows you to capture application specific
information, such as allowable characters, and make it available to the
handwriting recognition system (HWX). By combining various objects
and library routines, you can quickly construct a user interface that han
dles validation of handwritten input at various times and gives the user
consistent feedback on how to enter the intended data correctly.

The Handwriting Recognition Process

The process of going from the user moving the pen on the tablet to the
application receiving interesting data involves several stages. First, Pen
Point monitors and records the physical movement of the pen on the dis
play screen. Second, PenPoint collects individual pen movements and
organizes them in groups called scribbles. Third, PenPoint translates
scribbles into usable data such as gestures and characters. Finally, Pen
Point notifies interested objects when the translated data is available.

The object responsible for handwriting recognition for PenPoint appli
cations is the HWX Enginet Currently the HWX Engine's functionality,
implemented as a real-time background task, includes recognizing both
uppercase and lowercase letters, numbers, symbols, and punctuation that
the user presents to the system on standard ruled "paper." The HWX
Engine's task of character recognition can be aided in several ways. First,
the user can provide information to the HWX Engine by writing inside
boxed input panels that assist the HWX Engine in character segmentation.
Second, the programmer can provide information to the HWX Engine
that indicates valid values for a particular input object.

Library Support for Handwriting Recognition 155

Finally, since the HWX Engine is an object, another object that meets
the specifications for handwriting recognition can replace it at any time.
This allows advances in handwriting recognition to be introduced apart
from updates to the operating system. It also has the potential to optimize
the translation process for various languages by building HWX Engines
for specific languages.

The Acetate Layer Grab a pen and a piece of clean paper and draw a
box in the center of it. Now, draw a line from the upper left to the lower
right corner of the box. Simple. Now, for the sake of argument, assume
that you could interact in exactly the same way with an application on a
pen-based machine. Unlike a mouse, whose visual feedback is an on
screen cursor, the pen gives you visual feedback when you write directly
on the portion of the screen that interests you-you can watch "ink" drib
ble out of the pen as you move it across the screen.

PenPoint's acetate layer provides this form of visual feedback to the
user. This layer coordinates the pen's movement anywhere on the screen
by providing an optional "flow of ink" that trails the pen's point and pro
vides visual feedback to the user. The acetate layer then collects the indi
vidual pen movements, turns them into input events, and places them in
the input queue.

Input Events PenPoint generates input events in one of two ways:
through device drivers that collect user interactions and format them into
data records that represent events; or through software emulation of
hardware events that allow an application to simulate what a user might
do. These device drivers include both pen and non-pen (keyboard, for ex
ample) input devices. However, because the main focus of PenPoint's in
put system is the pen, I'll highlight pen events.

Table 7.1 lists the standard pen events. As you look over the list, you'll
notice a reference to the pen moving in and out of proximity. Proximity
refers to the time that the tablet can sense the location of the pen, but the
user is not touching the screen with the tip of the pen. In essence, this pro
vides another degree of freedom (in addition to x,y location) that the
application can use while interacting with the user. For example, the most
common use of out-of-proximity is when the user has written on the ace
tate and then moves the pen off the tablet, indicating that a translation
from strokes to data should occur.

156 CHAPTER 7

TABLE 7.1 Pen Events.

Event

eventTipUp
eventTipDown
eventMoveUp
eventEnterUp
eventEnterDown
eventExitUp
eventExitDown
eventInProxUp
eventInProxDown
eventOutProxUp
eventOutProxDown
eventStroke
eventTap
eventTimeout
eventHoldTimeout
eventHWTimeout
eventOther

Meaning

Pen tip in proximity
Pen tip touches the screen
Pen moved while in proximity
Pen entered a window in proximity
Pen entered a window touching the screen
Pen exited a window in proximity
Pen exited a window touching the screen
Pen entered proximity, but not touching
Pen entered proximity, touching the screen
Pen exited proximity, but not touching
Pen exited proximity, touching the screen
Pen made a stroke
Pen made a tap
Pen up and gesture timed out
Pen down and hold timed out
Pen up and handwriting timed out
Used for any other pen action

Scribbles Scribbles, the intermediate objects used to collect stroke input
events that will be passed to the HWX Engine for translation, are support
ed by clsScribble, a subclass of clsObject. clsScribble manages both the
collection of pen events and the interface used by the translators to access
them. Because scribbles are used often, they have been highly optimized
in the current implementation of PenPoint, and therefore, you should be
careful to observe the API when using them.

In addition to collecting and returning groups of strokes, scribbles can
also selectively add and delete strokes from a self-contained strokelist.
Finally, scribbles contain the behavior necessary to render the pen strokes
onto a valid drawing context, allowing efficient repair of damaged win
dows containing scribbles.

Handwritten Input

One common method for a user to interact with an application is through
a group of related data fields in a form format. These groups are known
by several different titles, including dialog boxes, data entry panels, and

Library Support for Handwriting Recognition 157

option sheets. Usually, the information can be exchanged using discrete
selection style controls such as menus, radio buttons, and toggles. But in
some cases, the user must enter analog style data, such as numbers and
small pieces of text. In PenPoint, analog data is entered by writing on the
screen.

Fields PenPoint supports non-discrete data entry by providing the ap
plication builder with a subclass of clsLabel, clsField, that can collect
handwritten data and translate it into the appropriate information. cls
Field and its subclasses clsIntegerField, clsDateField, clsFixedField, and
clsTextField are shown in Figure 7.1. They provide you with several well
defined prebuilt components for managing data entry, including hooks
for using your application to validate context specific information that
might be contained in the entry field.

FIGURE 7.1 Predefined Components for Handwritten Input

Field oometext

Date Field

Fixed Field

Integer Field

Text Field

158 CHAPTER 7

clsField objects can interact with the user in different ways, based on the
style information used to create them. For example, you can specify that a
field be made in-line so that it provides full handwriting and gesture recog
nition directly on the field itself. At the other end of the spectrum, you can
specify that the user is not able to modify the contents of a field directly.
Instead, the user selects the field, causing an insertion pad to appear.
Finally, the middle ground consists of overwrite fields that look like inser
tion pads (separate character boxes, each character can be overwritten) but
allow editing directly, without creating a separate insertion pad.

Scratch Paper Sometimes it's necessary to get information from the user
that exceeds the capabilities of a field. PenPoint provides an object called
clsSPaper that manages re-display, simple editing, and translation of stroke
data that doesn't fit a predefined field. Typically, you create a clsSPaper ob
ject, attach a translator to it, and then wait for it to notify your application
that it has translated data available for you to process.

clsSPaper is a composite object that manages the interaction between
three parties: the scribble, the translator, and the SPaper's client. For
example, when the user places a stroke on the SPaper object, the SPa per
object sends a msgScrAddStroke message to the scribble, which in turns
sends the same message to the translator. This continues until SPaper
decides that the user is done. Although this decision can be made several·
different ways, it usually occurs when the user moves the pen out of prox
imity after adding stroke data to the SPa per object.

When the SPaper object receives the msgSPaperComplete message it
sends the msgScrComplete message to the scribble object, which in turn
sends it to the translator. When the translator finishes translating the
information, it sends a msgXlateComplete message to the SPaper object,
which in turns notifies its client (your application) that translated data is
available It is then up to your application to extract this information from
the SPaper object and use it.

clsSPaper objects can be set up many different ways, depending on the
style flags set during component creation. This, coupled with the ability
to provide custom translators, make SPa per a very valuable object for col
lecting application-specific information.

Application-specific Input Support

Although this chapter has discussed the wonders of handwritten input,
using a keyboard and mouse has some advantages. For example, a circu
lar pen stroke can indicate various things-the number a (zero), the letters
o or 0, or a request by the user to edit selected text. This wouldn't be a

clsBoxCalcApp: A Box-based Calculator 159

problem for keyboard or mouse input because there are different keys for
0,0, and 0, and editing selections come from the mouse alone.

PenPoint addresses this problem by allowing you to help the HWX
Engine translate scribbles into gestures and characters. You provide this
help by specifying custom translators for the generic input controls to use.
For example, if you were collecting a series of numbers separated by the +
and - operators, you could provide a clsSPaper object with a translator
that recognized only 0123456789+-. The list of characters 0123456789+- is
a template and is used as part of building a translator.

Translators, Templates, and XLists Currently, PenPoint discriminates
the different types of translation objects based on the type of recognition
they support. For example, c1sXGesture supports the translations of scrib
bles into gesture commands, while c1sXText supports the translation of
scribbles into text characters. c1sXWord, a subclass of clsXText, translates
scribbles into words.

Each translator has different attributes that control how the translator
notifies its clients about changes in the state of translation. These include
attributes for signalling the addition of common character sets such as
alphabetic, punctuation, and numeric to the list of recognized characters.
Translators also use templates to more tightly constrain the types of char
acters recognized.

You build a template by specifying a list of valid characters and
optional constraints to a utility function that compiles the template into a
single, contiguous block of memory. This template is then passed as one
of the parameters to the translator that you create. The translator uses this
template to resolve ambiguities in handwriting while building the XList
<translated list) it keeps as a result of the completed translation. For exam
ple, the calculation template 0123456789+- described earlier would help
the translator resolve ambiguities by making scribbles match a 5 instead
of an s, a 2 instead of a z, and so on.

clsBoxCalcApp: A Box-based Calculator

Now you have a rudimentary background in the components available
for handwriting recognition. It's time to move on to several applications
that actually use them. The first example is the two-integer, one-operator
calculator shown in Figure 7.2. This application is constructed from two
clsIntegerField objects that contains numbers and one clsField object that
contains the operator.

160 CHAPTER 7

FIGURE 7.2 The Box-based Calculator

The user interacts with this calculator by changing the value of any of
the three fields and then moving the pen out of proximity. When the pen
leaves proximity, translation takes place and the application is notified
that new data exists. Once the application receives notification, it recovers
the value from each component, constructs the equation, does the compu
tation, and sets the display value accordingly.

The operator field in this example uses the validation messages to be
given the opportunity to make sure the operator is valid. This is the same
type of validation procedure you use if you want to check that a certain
entered code is valid. In the next example, I avoid the validation messages
by relying on a template to pre-screen the data. Although the template
approach is also appropriate with the operator field in the box calculator, I
think it's worthwhile to expose you to both types of validation.

This example also demonstrates the use of tags in identifying windows.
A tag is a unique identifier based on an administered value that allows
you to locate a window in a hierarchy without knowing its UID. This fea
ture is very useful because UIDs change when objects are filed in and out,

clsBoxCalcApp: A Box-based Calculator 161

but tags do not. Therefore, if you know a window's tag, you can always
obtain the window's current DID.

The BoxCalc Application

Instead of creating a subclass of clsCustomLayout, I have a single class,
the application class, that uses an instance of clsCustomLayout as its main
window. The following sections describe the functions and methods that
make up the box-based calculator example.

Definitions The following header files contain definitions, message
identifiers, and function prototypes for services required by the box calcu
lator. This list includes one new definition file, tkfield.h, required by ob
jects that need to use clsField or a subclass of clsField.

#ifndef APP_INCLUDED
#include <app.h>
#endif

#ifndef APPMGR_INCLUDED
#include <appmgr.h>
#endif

#ifndef FRAME_INCLUDED
#include <frame.h>
#endif

#ifndef WIN_INCLUDED
#include <win.h>
#endif

#ifndef CLAYOUT_INCLUDED
#include <clayout.h>
#endif

#ifndef TKFIELD_INCLUDED
#include <tkfield.h>
#endif

#ifndef LABEL_INCLUDED
#include <label.h>
#endif

#ifndef DEBUG_INCLUDED
#include <debug.h>
#endif

162

#include <method.h>
#include <stdio.h>
#include <string.h>

CHAPTER 7

Administered Identifiers Following the statements for including defini
tion files are a set of identifiers built using an administered value. They
include the class ID for clsBoxCalcApp,

#define clsBoxCalcApp MakeGlobalWKN(4146, 1)

a status value required by the validation method used with the operator
field,

#define stsNonValidOp

and a set of tags:

#define firstNumTag
#define secondNumTag
#define operatorTag
#define resultsTag

MakeWarning(clsBoxCalcApp, 1)

MakeTag(clsBoxCalcApp, 1
MakeTag(clsBoxCalcApp, 2
MakeTag(clsBoxCalcApp, 3
MakeTag(clsBoxCalcApp, 4

The tags identify each child window after the application has been saved
and then restored.

In addition to aiding in the restoration of the instance variable structure
in this application, tags can also be used to access components of a com
posite object, such as style sheets.

Instance Variables The box calculator application uses four instance
variables to maintain pointers to its child windows:

typedef struct INSTANCE_DATA
OBJECT firstNurnWini
OBJECT secondNumWini
OBJECT operatorWini
OBJECT resultsWini
} INSTANCE_DATA, *P_INSTANCE_DATAi

The instance variables are not technically required because you could
identify each window through its tag when needed. However, caching the
window UIDs during restoration of the application increases efficiency by
reducing messaging overhead.

clsBoxCalcApp: A Box-based Calculator 163

mainO and ClsBoxCalcApplnitO The box calculator uses a standard
main () function that calls ClsBoxCalcInitO to register the box calculator
application class with the Class Manager:

void CDECL
main(

int argc,
char *argv[],
U16 processCount)

if (processCount == 0) {
ClsBoxCalcApplnit();
AppMonitorMain(clsBoxCalcApp, objNull);
}

else
AppMain() ;

Unused (argc) ; Unused (argv) ;

ClsBoxCalclnitO is defined

STATUS ClsBoxCalcApplnit (void)
{

APP_MGR_NEW new;
STATUS s;

ObjCallJmp(msgNewDefaults, clsAppMgr, &new, s, Error);

new.object.uid
new.cls.pMsg
new.cls.ancestor
new.cls.size
new.cls.newArgsSize

clsBoxCalcApp;
clsBoxCalcAppTable;
clsApp;
SizeOf(INSTANCE_DATA);
SizeOf (APP_NEW) ;

new.appMgr.flags.accessory
new.appMgr. flags. stationery
new.appMgr.flags.allowEmbedding
new.appMgr.defaultRect.size.w
new.appMgr.defaultRect.size.h

true;
false;
false;
450;
300;

strcpy(new.appMgr.name, "Box Calculator");
strcpy(new.appMgr.company, "Penpoint Programming");

ObjCallJmp(msgNew, clsAppMgr, &new, s, Error);

return stsOK;

164

Error:
return s;

CHAPTER 7

This function creates clsBoxCalcApp, a subclass of clsApp, with its own
instance variables. The following code indicates that the box calculator is
an accessory only, doesn't have stationery, and cannot be used with recur
sive live embedding. Also, this accessory should be started with a default
width of 450 LSD (Logical Screen Dnits) and a height of 300 LSD.

new.appMgr.flags.accessory
new.appMgr.flags.stationery
new.appMgr.flags.allowEmbedding
new.appMgr.defaultRect.size.w
new.appMgr.defaultRect.size.h

true;
false;
false;
450;
300;

Application Initialization clsBoxCalcApp objects respond to msgApp
Init with the following method:

MsgHandler(BoxCalcAppAppInit)
{

INSTANCE_DATA inst;
APP_METRICS am;
WIN_METRICS wm;
CSTM_LAYOUT_NEW cln;
STATUS s;

BuildNumberWin(self, firstNumTag, &inst.firstNumWin);
BuildNumberWin(self, secondNumTag, &inst.secondNumWin);
BuildOperatorWin(self, operatorTag, &inst.operatorWin);
BuildResultsWin(resultsTag, &inst.resultsWin);

ObjectWrite(self, ctx, &inst);

ObjCallWarn(msgNewDefaults, clsCustomLayout, &cln);
cln.border.style.backgroundInk = bsInkGray33;
ObjCallWarn(msgNew, clsCustomLayout, &cln);

wm.parent
wm.options

cln.object.uid;
wsPosTop;

ObjCallRet(msgWinInsert, inst.firstNumWin, &wm, s);
ObjCallRet(msgWinInsert, inst.secondNumWin, &wm, s);
ObjCallRet(msgWinInsert, inst.operatorWin, &wm, s);
ObjCallRet(msgWinInsert, inst.resultsWin, &wm, s);

AlignChildren(cln.object.uid, &inst);

clsBoxCalcApp: A Box-based Calculator 165

ObjCallWarn(msgAppGetMetrics, self, &am);
ObjCallJmp(msgFrameSetClientWin,am.mainWin,cln.object.uid,

s, Error);

return stsOK;
Error:

return s;
MsgHandlerParametersNoWarning;

The first five lines initial the application's instance variables using func
tion calls to construct the required components. Each function is passed:
self receives notification messages when the individual components have
new translated information to report; an individual tag identifies the win
dow when the instance data is rebuilt during a restore; a pointer to the
instance variable contains the identifier of the new object created by the
function. Once each component has been created, and the values of the
instance variables have been filled in, the instance data is written to pro
tected memory.

Next, a dsCustomLayout object is created with a gray background, and
all the components are inserted into the custom layout as the layout's
children. After all four windows have been successfully inserted, the
AlignChildren () function is called to provide the custom layout object
with the specification for the location of each individual component.

Finally, the newly created custom layout object and its child windows
are inserted as the application's main window.

Child Window Alignment Child window alignment inside the custom
layout is accomplished by the function

STATUS LOCAL
AlignChildren(OBJECT cstmLayoutObj,P_INSTANCE_DATA pInst
{

CSTM_LAYOUT_CHILD_SPEC clcs;
STATUS s;

CstmLayoutSpecInit(&clcs.metrics) ;
clcs.metrics.h.constraint clPctOf;
clcs.metrics.h.value 20;
clcs.metrics.w.constraint clPctOf;
clcs.metrics.x.constraint

ClAlign(clMinEdge,clPctOf,clMaxEdge);
clcs.metrics.y.constraint =

CIAlign(clMinEdge,clPctOf,clMaxEdge);

166 CHAPTER 7

clcs.child plnst->firstNurnWin;
clcs.rnetrics.w.value 50;
clcs.rnetrics.x.value 40;
clcs.rnetrics.y.value 65;
ObjCallRet(rnsgCstrnLayoutSetChildSpec, cstrnLayoutObj,

&clcs,s);

clcs.child plnst->secondNurnWin;
clcs.rnetrics.w.value 50;
clcs.rnetrics.x.value 40;
clcs.rnetrics.y.value 40;
ObjCallRet(rnsgCstrnLayoutSetChildSpec, cstrnLayoutObj,

&clcs, s);

clcs.child plnst->operatorWin;
clcs.rnetrics.w.value 20;
clcs.rnetrics.x.value 10;
clcs.rnetrics.y.value 40;
ObjCallRet(rnsgCstrnLayoutSetChildSpec, cstrnLayoutObj,

&clcs, s);

clcs.child plnst->resultsWin;
clcs.rnetrics.w.value 80;
clcs.rnetrics.x.value 10;
clcs.rnetrics.y.value 15;
ObjCallRet(rnsgCstrnLayoutSetChildSpec, cstrnLayoutObj,

&clcs, s);

return stsOK;

The first set of statements initializes a child specification object that sets
the height to always be 20% of the available window. It also specifies that
the x, y, and w (width) values should be considered a percentage of the
available window.

Next it sets the w, x, and y values for each individual component used
to construct the box calculator. Then for each child window it sends a
message to the custom layout object indicating that child's window speci
fications.

Restoring the Application As I mentioned earlier, I'm using tags to help
restore the instance variables so they can be used to access the various
components when their values change. Since saving and restoring indi
vidual components can conveniently be left to the underlying framework,
my only required functionality for restoring the application is to query

c1sBoxCaIcApp: A Box-based Calculator 167

the custom layout for the new UIDs for each of its child windows. This is
handled by the method that responds to the msgRestore message:

MsgHandler(BoxCalcRestore)

INSTANCE_DATA inst;

APP_METRICS am;

OBJECT frmWin;

STATUS s;

ObjCallWarn(msgAppGetMetrics, self, &am);

ObjCallJmp(msgFrameGetClientWin, am.mainWin, &frmWin,

s, Error);

inst.firstNumWin=

(WIN)ObjectCall(msgWinFindTag,frmWin, (P_ARGS)firstNumTag);

inst.secondNumWin=

(WIN)ObjectCall(msgWinFindTag,frmWin, (P_ARGS)secondNumTag);

inst.operatorWin=

(WIN)ObjectCall(msgWinFindTag,frmWin, (P_ARGS)operatorTag);

inst.resultsWin=

(WIN)ObjectCall (msgWinFindTag, frmWin, (P_ARGS)resultsTag);

ObjectWrite(self, ctx, &inst);

return stsOK;

Error:

return s;

MsgHandlerParametersNoWarning;

This method first queries the application for its frame-the custom lay
out window in the case of the box calculator. Next it sends the msgWin
FindTag message to search the window hierarchy for each component
window, filling in the values of the instance variables as it finds them.
Finally, it writes the instance data containing the current UIDs back into
protected memory.

Creating the Required Display Components

Earlier I mentioned that each component was created using one of several
support functions. The use of functions to organize the creation of the dis
play components was predominantly organizational: it improves the
readability of the code. Each function, with the exception of Bu i 1 d
ResultsWin (), takes as input the client object, a unique tag, and a
pointer to a memory location that stores the UID of the object created.

168 CHAPTER 7

BuildResults WinO This function builds a standard clsLabel object that
will be used to display the result of the computation. Bu i 1 d
ResultsWindow() is defined

STATUS LOCAL
BuildResultsWin(TAG uTag, P_OBJECT pResWin)
{

}

LABEL_NEW In;
STATUS s;

ObjCaIIRet(msgNewDefaults, clsLabel, &In, s);
In.win.tag
In. label. style. scaleUnits
In. label. style.xAlignment
In.border. style. edge
In.label.pString

uTag;
bsUnitsFitWindowProper;
IsAlignRight;
bsEdgeAII;
II 0" ;

ObjCaIIRet(msgNew, clsLabel, &In, s);

*pResWin = In.object.uidi
return stsOKi

BuildNumberWindowO Each number window is an instance of clslnte
gerField that has been initialized to contain a maximum of eight columns
(which means eight digits) and to have a border around the editable field.
The BuildNumberWindow () function is defined

STATUS LOCAL
BuildNumberWin(OBJECT clientObj,TAG uTag,P_OBJECT pNumWin
{

INTEGER_FI ELD_NEW ifni
STATUS s;

ObjCaIIWarn(msgNewDefaults, clslntegerField, &ifn);
ifn.win.tag uTag;
ifn.control.client clientObji
ifn.field.style.clientNotifyModified= true;
ifn.label.style.numCols IsNumAbsolute;
ifn.label.cols 8;
ifn.border.style.edge bsEdgeAlli
ifn.field.maxLen 8;
ObjCaIIRet(msgNew, clslntegerField, &ifn, s);
ObjCallRet(msgControlSetValue, ifn.object.uid, 0, s);
ObjCaIIWarn(msgControISetDirty, ifn.object.uid,

(P_ARGS) (U32)false);

clsBoxCalcApp: A Box-based Calculator.

*pNurnWin = ifn.object.uid;
return stsOKi

169

In addition to defining this field's appearance characteristics, the func
tion also defines two important pieces of control information. First, the
statement

ifn.control.client = clientObj;

indicates that notification of the control's value changing should be sent
to the object referenced by clientObj.

Second, the statement

ifn.field.style.clientNotifyModified = true;

tells the field to notify the client object by sending it the msgFieldModi
fied message when the value in the field changes.

Finally the integer field is given an initial value of zero and then reset
using the msgControlSetDirty message so that any change in its value
results in a msgFieldModified message being sent to the client object.

BuildOperatorWindow() The Operator window is an instance of cls
Field that is initialized to be one character in length and surrounded by a
border. BuildOperatorWindow () is defined

STATUS LOCAL
BuildOperatorWin(OBJECT clientObj, TAG uTag,

P_OBJECT pOpWin)

FIELD_NEW ifni
STATUS Si

ObjCallWarn(rnsgNewDefaults, clsField, &ifn);
ifn.win.tag
ifn.control.client
ifn.field.style.focusStyle
ifn.field.style.clientValidate
ifn.field.style.clientNotifyModified
ifn.label.style.nurnCols
ifn.field.style.editType
ifn.label.cols
ifn.border.style.edge
ifn.field.rnaxLen

uTagi
clientObji
fstNonei
truei
truei
lSNurnAbsolutei
fstOverwritei
1i
bsEdgeAlli
1i

ObjCallRet(rnsgNew, clsField, &ifn, s);
ObjCallRet(rnsgLabelSetString, ifn.object.uid, n+ n, S) i

170 CHAPTER 7

ObjCallWarn(msgControlSetDirty, ifn.object.uid,
(P_ARGS) (U32)false);

*pOpWin = ifn.object.uid;
return stsOKi

Several additional specifications within this component's style field
indicate the type of editing and validation it should support. The state
ments

ifn.field.style.foclisStyle = fstNonei
ifn.field.style.editType = fstOverWritei

indicate that it will use a boxed format that allows the character already
displayed in the box to be overwritten without grabbing the input fO,cus.

Also, like the integer field created earlier, the statements

ifn.control.client = clientObji
ifn.field.style.clientValidate = truei

indicate it wishes to notify its client when the value in the field has been
modified.

In addition to notifying the client when the field is modified, the state
ment

ifn.field.style.clientNotifyModified = truei

tells the field to issue a msgFieldValidateEdit message to the client object
to allow it to validate the new value of the control before a msgFieldMod
ified message is sent.

Finally the operator field is given an initial value of + and then reset
using the msgControlSetDirty message so that any change in its value
results in a msgFieldModified message being sent to the client object.

Validation and Computation

The last two methods in the box calculator example are responsible for
validating the operator view in response to a msgFieldValidateEdit mes
sage and updating the value of the results window when it receives a
msgFieldModified message.

Field Validation Validation of the operator field occurs in the box cal
culator application object at the request of the msgFieldValidateEdit mes-

c1sBoxCaIcApp: A Box-based Calculator 171

sage sent to it by the operator field object. The method that handles the
valida tion is defined

MsgHandlerArgType(BoxCalcOpValidate, P_FIELD_NOTIFY)

STATUS s' ,
CONTROL_STRING cStr;
char buff[32];

cStr.len = 2;
cStr.pString = buff;
ObjCallRet(rnsgLabelGetString, pArgs->field, &cStr, s);

switch(buff[O]) {
case
case
case

'+' :
I _ I.

'x' :
case '/':

return stsOK;
break;

default:
ObjCallRet(rnsgLabelSetString, pArgs->field, "?", s);
ObjCallWarn(rnsgControlSetDirty, pArgs->field,
(P_ARGS) (U32)false);
pArgs->failureMessage = rnsgFieldNotifyInvalid;
return stsNonValidOp;
break;

MsgHandlerPararnetersNoWarning;

This method first accesses the control to find out what value the trans
lator thinks the user entered using the msgLabelGetString message. It
then checks to see if the character is one of four (+, -, x, and /) it considers
valid. If the character is valid, it returns stsOK, which causes the field to
immediately issue a msgFieldModified message to its client object. If the
character is invalid, the field is reset with ? to provide the user with visual
feedback, the control's dirty bit is reset, and a failure message is con
structed. Finally, a warning (not error) status value is returned.

Computing the Result The method that computes the value of the oper
ation specified by the two numerical fields and the operator field works
on the brute force method of computing. When in doubt, reset everything
and depend on error handling to avoid conflict.

Computation of the result is handled by the method

172

MsgHandlerWithTypes(BoxCalcCompute, P_ARGS,
P_INSTANCE_DATA)

S32
STATUS

numl, num2, res;
s;

CONTROL_STRING cStr;
char buff[32];

CHAPTER 7

ObjCallWarn(msgControlSetDirty, pData->firstNumWin,
(P_ARGS) (U32)false);

ObjCallWarn(msgControlSetDirty, pData->secondNumWin,
(P_ARGS) (U32)false);

ObjCallWarn(msgControlSetDirty, pData->operatorWin,
(P_ARGS) (U32) false);

ObjCallJmp(msgFieldValidate, pData->operatorWin,
(P_ARGS)O,s, Error);

ObjCallJmp(msgControlGetValue, pData->firstNumWin,
&numl,s, Error);

ObjCallJmp(msgControlGetValue, pData->secondNumWin,
&num2,s, Error);

cStr.len = 2;
cStr.pString = buff;
ObjCallJmp(msgLabelGetString, pData->operatorWin, &cStr,

s, Error);

switch (buff[O]) {
case '+': res
case '-': res

numl + num2; break;
numl - num2; break;

case 'x': res numl * num2; break;
case 'I': res (num2?(numl/num2) :numl); break;
case '7': return stsOK;
default: goto Error;
}

sprintf(buff, "%d", res);
ObjCallRet(msgLabelSetString,pData->resultsWin,buff,s);

return stsOK;
Error:

return s;
MsgHandlerParametersNoWarning;

This method first resets the dirty bit for each component. This is neces
sary because I'm not taking time to find out which component issued the

clsHWXCalc: A Scratch-paper-based Calculator 173

update message. Next each component is queried for its value. Note that
an integer field containing incorrect information (didn't pass validation)
generates an error, thereby leaving the method early without disturbing
the value in the results window.

If all three values are valid, a switch statement computes the result and
displays it in the results window. Notice that if the operator is ?, the
method returns without disturbing the value in the results window.

The Method Table

Finally, no PenPoint application is complete without a file containing the
necessary method table(s). For the box calculator, this file is defined

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#ifndef APP_INCLUDED
#include <app.h>
#endif

#ifndef FIELD_INCLUDED
#include <field.h>
#endif

MSG_INFO clsBoxCalcAppMethods[] = {
msgAppInit, II BoxCalcAppAppInit II ,

objCallAncestorBefore,

} i

msgRestore, "BoxCalcRestore" , objCallAncestorBefore,
msgFieldValidateEdit, "BoxCalcOpValidate ll , 0,
msgFieldModified, "BoxCalcCompute ll , 0,

°
CLASS_INFO classInfo[] = {

"clsBoxCalcAppTablell,clsBoxCalcAppMethods,O,

° } i

clsHWXCalc: A Scratch-paper-based Calculator

By now, you probably have a good idea of what I'm leading up to-a
handwriting-based calculator not artificially constrained by boxed entry

174 CHAPTER 7

fields. Although not functionally a shining star, this calculator demon
strates a powerful use of the pen-and-paper metaphor.

Figure 7.3 shows the scratch-paper-based calculator (SPaper Calcula
tor) in its full glory. The way the application works is that the handwrit
ten data remains displayed on the screen, while its value is displayed in
the results window. If there is an error in handwritten entry, the applica
tion displays what it thinks you wrote in the results window instead. The
old handwritten calculation is removed with the first stroke of the pen
when something new is placed in the results window.

Pretty simple, right? Well, not quite. I had to subclass clsSPaper (the
scratch paper) to provide the stroke display and cleanup behavior I
wanted so that I could keep the stroke data visible while the user looked
at the result. I also implemented the subclass to automatically provide the
SPa per object with a translator that only recognizes 0123456789+-. (As I
said, the functionality isn't great.)

The following sections describe in greater detail the various objects that
make up the application.

FIGURE 7.3 The Scratch-paper-based Calculator

clsHWXCalc: A Scratch-paper-based Calculator 175

clsHWXCalcApp

clsHWXCalcApp is the application class for the scratch-paper-based cal
culator. It contains methods and functions for managing the application,
functions for creating and laying out components, and methods and func
tions for evaluating the results of the calculator's scratch pad translations.

Definitions The following header files contain definitions, message
identifiers, and function prototypes for services required by the scratch
pad calculator:

#ifndef APP_INCLUDED
#include <app.h>
#endif

#ifndef APPMGR_INCLUDED
#include <appmgr.h>
#endif

#ifndef FRAME_INCLUDED
#include <frame.h>
#endif

#ifndef WIN_INCLUDED
#include <win.h>
#endif

#ifndef CLAYOUT_INCLUDED
#include <clayout.h>
#endif

#ifndef LABEL_INCLUDED
#include <label.h>
#endif

#ifndef CLCSPAPR_INCLUDED
#include <clcspapr.h>
#endif

#ifndef XLATE_INCLUDED
#include <xlate.h>
#endif

#ifndef XLFILTER_INCLUDED
#include <xlfilter.h>
#endif

176

#ifndef DEBUG_INCLUDED
#include <debug.h>
#endif

#include <rnethod.h>
#include <string.h>
#include <stdlib.h>

CHAPTER 7

This code fragment introduces several new definition files: clcspapr.h is
the definition file for the calculator scratch paper; xlate.h contains the
interface for accessing the information resulting from handwriting trans
lation; xlfilter.h defines the interfaces to various functions used to filter
the translated data; stdlib.h contains several useful functions for manipu
lating and parsing information contained in ASCII strings.

In addition to the definition files' include statements is the definition of
the application's Well Known UID:

#define clsHWXCalcApp MakeGlobalWKN(4147, 1)

the definition of several window tags:

#define entryTag
#define resultsTag

MakeTag(clsHWXCalcApp, 1
MakeTag(clsHWXCalcApp, 2

and the definition of the instance data structure:

typedef struct INSTANCE_DATA
OBJECT entryWini
OBJECT resultsWini
} INSTANCE_DATA, *P_INSTANCE_DATAi

mainO and ClsBoxCalcAppInitO The scratch paper calculator uses a
standard main () function that calls ClsHWXCalcInitO to register the
Scratch Pad Calculator application class with the Class Manager. It also
calls ClsCalcSPaperInitO to register my subclass of clsSPaper.

void CDECL
main(

int argc,
char * argv[],
U16 processCount)

if (processCount == 0) {
ClsHWXCalcAppInit() ;
ClsCalcSPaperInit() ;
AppMonitorMain(clsHWXCalcApp, objNull);
}

clsHWXCalc: A Scratch-paper-based Calculator

else
AppMain() ;

Unused (argc) ; Unused (argv) ;

ClsHWXCalcInitO is defined

STATUS CIsHWXCalcAppInit (void)
{

APP_MGR_NEW new;
STATUS s;

177

ObjCallJmp(msgNewDefaults, clsAppMgr, &new, s, Error);

new.object.uid
new.cls.pMsg
new.cls.ancestor
new.cls.size
new.cls.newArgsSize

clsHWXCalcApp;
clsHWXCalcAppTable;
clsApp;
SizeOf(INSTANCE_DATA);
SizeOf (APP_NEW) ;

new.appMgr.flags.accessory
new.appMgr.flags.stationery
new.appMgr.flags.allowEmbedding
new.appMgr.defaultRect.size.w
new.appMgr.defaultRect.size.h

true;
false;
false;
450;
200;

strcpy(new.appMgr.name, "Handwriting Calculator");
strcpy(new.appMgr.company, "PenPoint Programming");

ObjCallJmp(msgNew, clsAppMgr, &new, s, Error);

return stsOK;

Error:
return s;

Application Initialization clsHWXCalcApp objects respond to msgAp
pInit with the following method. It follows the same format as the appli
cation initialization method from the box calculator example.

MsgHandler(HWXCalcAppAppInit)
{

INSTANCE_DATA inst;
APP_METRICS am;
WIN_METRICS wrn;
CSTM_LAYOUT_NEW clnj

178

STATUS s;

BuildEntryWin(self, entryTag, &inst.entryWin);
BuildResultsWin(resultsTag, &inst.resultsWin);

ObjectWrite(self, ctx, &inst);

CHAPTER 7

ObjCallWarn(msgNewDefaults, clsCustomLayout, &cln);
cln.border.style.backgroundInk = bsInkGray33;
ObjCallWarn(msgNew, clsCustomLayout, &cln);

wm.parent
wm.options

cln.object.uid;
wsPosTop;

ObjCallRet(msgWinInsert, inst.entryWin, &wm, s);
ObjCallRet(msgWinInsert, inst.resultsWin, &wm, s);

AlignChildren(cln.object.uid, &inst);

ObjCallWarn(msgAppGetMetrics, self, &am);
ObjCallJmp(msgFrameSetClientWin,am.mainWin,
cln.object.uid,s, Error);

return stsOK;
Error:

return s;
MsgHandlerParametersNoWarning;

In the same vein, the child windows are arranged by a call to

STATUS LOCAL
AlignChildren(OBJECT cstmLayoutObj,P_INSTANCE_DATA pInst)
{

CSTM_LAYOUT_CHILD_SPEC clcs;
STATUS s;

CstmLayoutSpecInit(&clcs.metrics);
clcs.metrics.h.constraint clPctOf;
clcs.metrics.h.value 35;
clcs.metrics.w.constraint clPctOf;
clcs.metrics.w.value 80;
clcs.metrics.x.constraint

ClAlign(clMinEdge,clPctOf,clMaxEdge);
clcs.metrics.x.value = 10;
clcs.metrics.y.constraint

ClAlign(clMinEdge,clPctOf,clMaxEdge);

clsHWXCalc: A Scratch-paper-based Calculator

clcs.child = pInst->entryWin;
clcs.metrics.y.value = 55;
ObjCallRet(msgCstmLayoutSetChildSpec, cstmLayoutObj,

&clcs, s);
clcs.child = pInst->resultsWin;
clcs.metrics.y.value = 10;
ObjCallRet(msgCstmLayoutSetChildSpec, cstmLayoutObj,

&clcs, s);

return stsOK;

179

Restoring the Application Once again, the instance variables are re
stored using the predefined tags to access the various components when
their values change. The method that performs this behavior is

MsgHandler(HWXCalcRestore)
{

INSTANCE_DATA
APP_METRICS
OBJECT
STATUS

inst;
am;
frmWin;
s;

ObjCallWarn(msgAppGetMetrics, self, &am);
ObjCalIJmp(msgFrameGetClientWin, am.mainWin, &frmWin,

s, Error);

inst.entryWin= (WIN)ObjectCall (msgWinFindTag,
frmWin, (P_ARGS)entryTag);

inst.resultsWin=(WIN)ObjectCall(msgWinFindTag,
frmWin, (P_ARGS)resultsTag);

ObjectWrite(self, ctx, &inst);

ObjCallRet(msgAddObserver, inst.entryWin, self, s);

return stsOK;
Error:

return s;
MsgHandlerParametersNoWarning;

There is one additional step in restoring the scratch paper calculator:
reestablishing the application as a client of the calculator scratch paper
object using the statement

ObjCallRet(msgAddObserver, inst.entryWin, self, s);

180 CHAPTER 7

Creating the Display Components Two display components need to be
built. First is the results window, built using

STATUS LOCAL
BuildResultsWin(TAG uTag, P_OBJECT pResWin)
{

LABEL_NEW In;
STATUS s;

ObjCallRet(msgNewDefaults, clsLabel, &In, s);
In.win.tag
In.label.style.scaleUnits
In. label. style.xAlignment
In.border.style.edge
In.label.pString

uTag;
bsUnitsFitWindowProper;
lsAlignRight;
bsEdgeAll;
" 0 II ;

ObjCallRet(msgNew, clsLabel, &In, s);

*pResWin = In.object.uid;
return stsOK;

Second is the calculator scratch pad window, built using

STATUS LOCAL
BuildEntryWin(OBJECT clientObj, TAG uTag, P_OBJECT
pEntryWin)
{

STATUS s;
CALCSPAPER_NEW spn;

ObjectCall(msgNewDefaults, clsCalcSPaper, &spn);
spn.win.tag uTag;
spn.border.style.resize = bsResizeNone;
spn.sPaper.listener = clientObj;
ObjCallRet(msgNew, clsCalcSPaper, &spn, s);

*pEntryWin = spn.object.uid;
return stsOK;

Notice that the scratch paper initialization structure has a special field
for the listener. This is because it doesn't inherit from clsControl and
therefore must manage its own client notification. When the scratch paper
completes a translation it sends the listener the message, msgSPaperXlate
Completed. The listener then retrieves the translated data from the
scratch paper and processes it according to the application's needs.

clsHWXCalc: A Scratch-paper-based Calculator 181

Computing the Results The following method responds to the msgSPa
perXlateCompleted. It processes the input data and then displays the ap
propriate information in the results window.

MsgHandlerWithTypes (HWXCalcCornpute, P_ARGS,P_INSTANCE_DA TA)
{

STATUS
XLATE_DATA
X2STRING
char

s;
xdata;
x2sData;
resval[50] ;

xdata.heap osProcessHeapId;
ObjCallRet(rnsgSPaperGetXlateData,

pData->entryWin,&xdata,s);
XList2Text(xdata.pXList);
XList2StringLength(xdata.pXList, &x2sData.count);
OSHeapBlockAlloc(osProcessHeapId, x2sData.count,

&x2sData.pString);
Xist2String(xdata.pXList, &x2sData);

if (preprocessString(x2sData.pString)) {
itoa(cornputeValue(x2sData.pString), resval, 10);
ObjCallRet(rnsgLabelSetString, pData->resultsWin,

resval, s);

else
ObjCallRet(rnsgLabelSetString, pData->resultsWin,

x2sData.pString, s);

ObjCallWarn(rnsgOkToResetSPaper,pData->entryWin, (P_ARGS)O);
OSHeapBlockFree(x2sData.pString) ;
XListFree(xdata.pXList) ;

return stsOK;
MsgHandlerPararnetersNoWarning;

This method begins by retrieving the translation data from the scratch
paper object. Since the quantity of data is dynamic, I elected to use space
on my heap to hold the information. I indicate this by setting

xdata.heap = osProcessHeapId;

The data is returned from the msgSPaperGetXlateData in raw transla
tion list format. PenPoint provides several filters to aid in the manage
ment of translation data. One of these, XList2TextO, can be applied to the

182 CHAPTER 7

translation data because I'm expecting characters (not gestures) that are
members of the set 0123456789+-.

Once the XList2TextO filter is applied, you proceed to transform the
information in the filtered XList into a string of ASCII characters. Again,
the process requires that memory be allocated for storage, so the osPro
cessHeapId predefine is used to indicate that memory should be allocated
from the application's heap.

Once the string is generated, a local function filters it further, removing
white space and checking for unrecognized characters. If it finds unrecog
nized characters, the erroneous translation is displayed in the results win
dow. Otherwise, the string is parsed for its components, a value is
computed, and the result is displayed in the results window.

The method then sends a reset message to the calculator scratch paper
so it clears itself the next time the user applies the pen to it. Finally, the
method deallocates the temporary storage that it created directly
(x2sData.pString) and relies on the XList support function XListFree ()
to clean up any memory it has allocated on the applications stack.

Computing Support Functions The following two functions use stan
dard C utilities to validate the translated string, parse it, and compute a
result.

U32 LOCAL preprocessString(char *pString)
{

char *pPrcStr = pString;

while (*pString
switch(*pString) {

case '0': case '1': case '2': case '3':
case '4': case '5': case '6': case '7':
case '8': case '9': case '-': case '+':

*pPrcStr++ = *pString++;
break;

case ' ': case '\n':
pString++;
break;

default:
return false;

*pPrcStr = '\0';
return true;

clsHWXCalc: A Scratch-paper-based Calculator

U32 LOCAL cornputeValue(char *pString)
{

U32 val=O;
S16 nextOp = 1;

while (*pString)
if (*pString

pString++;
I + I)

else if (*pString
nextOp *= -1;
pString++;
}

else {

I I) {

183

val += nextOp * (U32)strtoul (pString, & pString,10);
nextOp = 1;
}

return val;

clsCalcSPaper

clsCalcSPaper, a subclass of clsSPaper, implements a special form of
scratch paper that

• Has a built-in translator restricting input to 0123456789+-.
• Keeps the stroke data visible on the display device until the first

stroke after the clsCalcSPaper object has been reset.

The External Interface The external interface to clsCalcSPaper is defined
in clcspapr.h:

#ifndef CLCSPAPR_INCLUDED
#define CLCSPAPR_INCLUDED

#ifndef CLSMGR_INCLUDED
#include <clsrngr.h>
#endif
#ifndef SPAPER_INCLUDED
#include <spaper.h>
#endif

#define clsCalcSPaper MakeGlobalWKN(4148, 1)

define rnsgOkToResetSPaper MakeMsg(clsCalcSPaper, 1)

184

STATUS ClsCalcSPaperInit(void)i

#define CalcSPaperNewFields \
sPaperNewFields

typedef struct CALCSPAPER_DATA
CalcSPaperNewFields

} CALC S PAPER_NEW , *P_CALCSPAPER_NEWi

#endif

CHAPTER 7

Definitions Required for clsCa1cSPaper's Implementation The follow
ing header files contain definitions, message identifiers, and function pro
totypes for services the Calculator Scratch Paper subclass requires:

#ifndef FS_INCLUDED
#include <fs.h>
#endif

#ifndef PEN_INCLUDED
#include <pen.h>
#endif

#ifndef XLATE_INCLUDED
#include <xlate.h>
#endif

#ifndef XLFILTER_INCLUDED
#include <xlfilter.h>
#endif

#ifndef XTEMPLT_INCLUDED
#include <xtemplt.h>
#endif

#ifndef CLCSPAPR_INCLUDED
#include <clcspapr.h>
#endif

#ifndef DEBUG_INCLUDED
#include <debug.h>
#endif

#include <method.h>

This code fragment introduces several new definition files: pen.h is the
definition file for the input events associated with the pen; xtemplt.h con-

clsHWXCalc: A Scratch-paper-based Calculator 185

tains several useful functions for manipulating templates used by stroke
translators.

In addition to the definitions, there is the instance data structure:

typedef struct INSTANCE_DATA {
U32 okToReset;
} INSTANCE_DATA, *P_INSTANCE_DATA;

okToReset, when true, instructs this class to clear the contents of the
scratch paper the next time the user writes on it.

The Class Registration Routine Calling the following function registers
clsCalcSPaper with the Class Manager.

STATUS CIsCaIcSPaperInit (void)
{

CLASS_NEW new;
STATUS s i

ObjCaIIJmp(msgNewDefauIts, cIsClass, &new, s, Error) i

new.object.uid
new.cIs.pMsg
new.cIs.ancestor
new.cIs.size
new.cIs.newArgsSize

cIsCaIcSPaperi
cIsCaIcSPaperTabIei
cIsSPaperi
SizeOf(INSTANCE_DATA)i
SizeOf(CALCSPAPER_NEW) ;

ObjCaIIJmp(msgNew, cIsClass, &new, s, Error) i

return stsOKi

Error:
return Si

Initialization A clsCalcSPaper object is initialized to contain a custom
translator with a special filter attached. The initialization method is

MsgHandIerArgType(CaIcSPaperInit, P_CALCSPAPER_NEW)
{

INSTANCE_DATA
STATUS
P_UNKNOWN
XLATE_NEW
U16
XTM_ARGS

inst;
Si

pNewTempIatei
xNewTransi
xIateFIagsi
xtmArgsi

186 CHAPTER 7

ObjectCall(msgNewDefaults, clsXText, &xNewTrans);

xtmArgs.xtmType xtmTypeCharList;
xtmArgs.xtrnMode 0; II no special modes
xtmArgs.pXtmData "0123456789+-"; II ascii template
StsRet(XTemplateCompile(&xtmArgs, osProcessHeapId,

&pNewTemplate), s);

xNewTrans.xlate.pTemplate pNewTemplate;
xNewTrans.xlate.hwxFlags &=
-(alphaNumericEnablelpunctuationEnablelverticalEnable) ;

ObjCallRet(msgNew, clsXText, &xNewTrans, s);

ObjCallRet(msgXlateGetFlags, xNewTrans.object.uid,
&xlateFlags, s);

xlateFlags 1= xTemplateVeto 1 spaceDisable;
ObjCallRet(msgXlateSetFlags, xNewTrans.object.uid,

(P_ARGS)xlateFlags,s);«

pArgs->sPaper.translator
pArgs->sPaper.flags

ObjectCallAncestorCtx(ctx);

xNewTrans.object.uid;
1= spProx;

inst.okToReset = true;
ObjectWrite(self, ctx, &inst);

return stsOK;
MsgHandlerParametersNoWarning;

The translator and filter are created as a result of the msgInit message
being sent. Until now, specifying when the inherited behavior for a
method should be called has been done in the definition of the method
table. In this example, I specify the filter/translator pair by explicitly call
ing the ancestor class's initialization method before calling the ancestor's
msgInit handling method and after the default initialization structure was
filled in per the needs of the Calculator Scratch Pad class.

ObjectCallAncestorCtx(ctx);

At initialization, the initialization structure for a text translator is filled
in by first creating a new template using

xtmArgs.xtmType = xtmTypeCharList;

clsHWXCalc: A Scratch-paper-based Calculator 187

xtmArgs.xtrnMode 0; II no special modes
xtmArgs.pXtmData "0123456789+-"; II ascii template
StsRet(XTemplateCompile(&xtmArgs, osProcessHeapId,

&pNewTemplate), s);

Once the template is compiled, it is added to the initialization informa
tion used to create the translator. The translator is then told to not recog
nize all alphanumerics and punctuation:

xNewTrans.xlate.hwxFlags &=
-(alphaNumericEnable I punctuationEnable I verticalEnable);

Next, the translator is created and told to allow the template values to
veto the success of the translation, in effect restricting the valid characters
to only those contained in the template. Once the translator is complete, it
is used as a parameter in the new structure that will be passed to the
ancestor's initialization routine. Finally, the subclass's one instance vari
able is initialized to true.

Saving and Restoring Instance Data The next two methods maintain the
state of the okToReset flag when the object is saved.

MsgHandlerArgType(CalcSPaperSave, P_OBJ_SAVE)
{

STATUS s;

fsWrite.numBytes = SizeOf(INSTANCE_DATA);
fsWrite.pBuf pData;
ObjCallRet(msgStreamWrite, pArgs->file, &fsWrite, s);

return stsOK;
MsgHandlerParametersNoWarning;

MsgHandlerArgType(CalcSPaperRestore, P_OBJ_RESTORE)
{

INSTANCE_DATA inst;
STREAM_READ_WRITE fSRead;
STATUS s;

fsRead.numBytes SizeOf(INSTANCE_DATA);
fsRead.pBuf = &inst;
ObjCallRet(msgStreamRead, pArgs->file, &fsRead, s);

ObjectWrite(self, ctx, &inst);

188

}

return stsOK;
MsgHandlerParametersNoWarning;

CHAPTER 7

Clearing the Scratch Paper The behavior for clearing the contents of the
scratch paper is shared by two methods. The application uses the first to
indicate when the scratch paper should be freed:

MsgHandler(CalcSPaperReset)
{

inst;

inst = IDataDeref(pData, INSTANCE_DATA);
inst.okToReset = true;
ObjectWrite(self, ctx, &inst);

return stsOK;
MsgHandlerParametersNoWarning;

The second method monitors input events, waiting for the first user
stroke after the okToReset flag has been set to true. This method responds
to the msgInputEvent message.

MsgHandlerWithTypes(CalcSPaperInputEvent, P_INPUT_EVENT,
P_INSTANCE_DATA)
{

INSTANCE_DATA inst;

if (pArgs->devCode == msgPenStroke) {
if (pData->okToReset) {

ObjCallWarn(msgSPaperClear, self, (P_ARGS)0) ;
inst = IDataDeref(pData, INSTANCE_DATA);
inst.okToReset = false;
ObjectWrite(self, ctx, &inst);
}

return stsInputContinue;
MsgHandlerParametersNoWarning;

Makefiles and Method Tables Until now, the applications in this book
required only two libraries (penpoint and app) to link successfully. In this
example, you must also include in the makefile the xtemplt and xlist librar
ies to link with the code that supports the utility functions they contain.

clsHWXCalc: A Scratch-paper-based Calcu latar 189

As always, the final step in supplying source code are the method
tables. For the scratch paper calculator, the method table file is defined

#ifndef APP_INCLUDED
#include <app.h>
#endif

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#ifndef INPUT_INCLUDED
#include <input.h>
#endif

#ifndef CLCSPAPR_INCLUDED
#include <clcspapr.h>
#endif

MSG_INFO clsHWXCalcAppMethods[] = {

} ;

msgAppInit, "HWXCalcAppAppInit" , objCallAncestorBefore,
msgRestore, "HWXCalcRestore" , objCallAncestorBefore,
msgSPaperXlateCompleted,"HWXCalcCompute", 0,
o

MSG_INFO clsCalcSPaperMethods[] = {
msgInit, "CalcSPaperInit" , 0,
msgSave, "CalcSPaperSave" ,
objCallAncestorBefore,
msgRestore, "CalcSPaperRestore" ,
objCallAncestorBefore,
msgOkToResetSPaper, "CalcSPaperReset" , 0,

msgInputEvent,"CalcSPaperInputEvent",
objCallAncestorAfter,

o
} ;

CLASS_INFO classInfo[] =
"clsHWXCalcAppTable" ,
"clsCalcSPaperTable",
o

}

clsHWXCalcAppMethods,
clsCalcSPaperMethods,

190 CHAPTER 7

Wrap-up

By now, you realize that I've only scratched the surface of the handwrit
ing recognition system's capabilities. However, I have covered most of
what you need to know to build many form-based applications, because
you can manage most work associated with handwritten input using the
predefined components in the toolkit.

If you're looking for something to do, consider extending the hwxcalc
example so that it

• Allows parenthesis, multiplication, and division.
• Works with input lines that look like

<operator> <number> <comment>
so you could have annotated worksheets, like

+5 income
-4 taxes

The <operator> <number> <comment> example brings up an interest
ing point. Most applications written for traditional WYSIWYG (What you
see is what you get) user interfaces attempt to manage data entry so a bad
value is flagged and the user is notified immediately. This insures the
integrity of much of the application's data before the entire operation is
completed. This isn't the case with handwriting-based input.

When the user writes something, it usually expresses a complete
thought, which is then handed to your application in one piece, much like
a compiler handles a source file. It is then your responsibility to analyze
the data, like a compiler analyzes a program, checking for accuracy and
completeness before committing to the operation. There is actually a lot of
help out there for doing this type of analysis. You could start by reading a
primer on the Unix tools Lex and Yacc which provide support for build
ing a compiler-like translator based on predefined grammar.

Finally, I ask you to consider carefully before adopting a user interac
tion metaphor for the PenPoint applications you build. As with the calcu
lator, many metaphors might work. It's up to you to decide on the one
that's best based on pen and paper.

A Crossword Puzzle

The first seven chapters of this book concentrated on concepts, using
small applications to illustrate how to write programs for PenPoint. Start
ing in this chapter and continuing through the remainder of the book, I'm
shifting gears to build a single application that resembles an actual prod
uct: a simple crossword puzzle application.

My goal in presenting this application is threefold. First, I want to illus
trate more accurately the level of effort required to write PenPoint applica
tions, including the use of Dynamic Link Libraries (DLLs). Second, I want
to add to your bag of tricks by giving you alternative means of presenting
information, such as drawing contexts, menus, and notes. Third, I want to
leave you with a project to complete-a final lesson of sorts-that will let
you extend the book's sample application into a more robust product.

Chapter 8 describes the crossword puzzle application by providing a
User's Guide that lists the application's functionality and its look and feel.
Following the User's Guide is a description of the various components
used to implement the application's look and feel and convey it to the
user. Finally, the source code used to implement the application's clsX
WordApp and clsXWordData classes is presented along with the entries
in the method table that supports them.

The Crossword Puzzle User's Guide

When I sat down to think about a final example, it didn't take long to
decide on a crossword puzzle. Most of us have seen and worked on a cross
word puzzle at least once or twice. The paper-based version of a crossword
puzzle maps directly to what a pen-based version would look like. Finally,
it's fun.

191

192 CHAPTER 8

FIGURE 8.1 The Crossword Puzzle Application

1 3

AB C

6

E

c> .-S
...¢:i ~

Help S effing s Connections Sfa tionety Ao::essoties Keyb oard

The Crossword Puzzle User's Guide 193

The crossword puzzle application shown in Figure 8.1 consists of a grid
for entering letters, two clue lists, and menu selections for presenting
commands to the application. You work the crossword by importing puz
zles from outside PenPoint, and then writing the answers to the listed
clues directly on the grid. Progress in solving the puzzle is checked by
selecting a command from the Puzzle menu's Check submenu. You can
also instruct the clue lists to draw a line through any clue you tap to help
you track your progress.

The puzzle's maximum size is lOxIa. The application sizes the individ
ual character boxes so that the entire puzzle grid takes the same amount
of screen space, regardless of the total number of letter boxes in the grid.
The puzzles themselves are created by producing an ASCII text file in the
format described in the next section. You can obtain a blank lOxIa grid by
creating a piece of crossword paper that has no puzzle attached to it. This
will help you to create new puzzles for other people to use.

Loading Puzzles

The crossword application relies on PenPoint's import facility to load new
puzzles. The puzzle provider creates a file that contains ASCII text
descriptions of clues, positions, and answers for the. puzzle. When the
user drags a puzzle file into the Notebook, the import manager asks each
loaded application if it knows how to process the file. The crossword
application recognizes the puzzle and responds to the Import Manager
that it wants to work on the file. Once the Import Manager polls each
application, it presents the user with a list of applications that can work
with the file. The user must then select the crossword puzzle application.

Take a moment and consider the implications of this mechanism on other
applications. For example, you are writing a program that tracks the move
ment of stock prices. You could easily have a PenPoint application that
imports data from a stock information retrieval service and converts the
data into pages in your PenPoint Notebook. You could then embed the
price-charting pages in other documents you might send to a client later.

Writing Your Answers

You interact with the grid shown in Figure 8.1 just as you would with a
paper crossword puzzle. You can write a single uppercase character or
multiple uppercase characters in either the horizontal or vertical direction.
The default unknown character globe replaces unrecognized handwritten

194 CHAPTER 8

characters. You can remove a letter at ~any time by drawing a horizontal
line through it.

The characters themselves are rendered in black or one of two gray
shades that relate to the entry's accuracy. A dark gray letter is one that has
been entered but not checked. A black letter is a character that has been
confirmed as correct, while a light gray character is one that has been
determined to be wrong.

Menu Commands

The crossword application has a menu bar that has been altered by
removing standard functionality that the crossword application won't use
and adding new functionality that it will use. You instruct the crossword
puzzle to perform certain actions by selecting items from the Puzzle
menu. These actions include showing the puzzle's solution, starting the
puzzle over, changing the clue list's behavior, and checking the validity of
letters that have been entered into the puzzle grid.

By the way, the Puzzle menu is not a good example of user interface
design, because it actually implements three separate types of functional
ity in one place. However, I claim writer's license because I want to dem
onstrate nested menus that include choices.

The Puzzle Menu The Puzzle menu shown in Figure 8.2 contains the
following items:

• Start Over-Select this command from the menu to erase the grid
and redisplay any stricken clues without a line through them.

• Show Solution-Select this command from the menu to fill the grid
with the correct answers, overwriting any letters that might have
already been present.

• Tapping Clue-Select this item from the menu to see a submenu that
allows you to change the behavior of the clue lists.

• Check-Select this item from the menu to see a submenu that allows
you to check the current contents of the puzzle grid against the cor
rect answers.

The Tapping Clue Sub-Menu The Tapping Clue submenu shown in Fig
ure 8.3 lets you choose how the clue lists behave when you tap on an item
they contain. The choices are mutually exclusive, and PenPoint marks the
option currently in effect with a check mark. The two choices are

The Crossword Puzzle User's Guide 195

FIGURE 8.2 The Puzzle Menu

• Does Nothing-Select this item from the submenu to instruct the
clue list boxes to ignore any pen taps that occur on one of the items
they contain. It also removes any stricken lines that might have been
placed there already.

• Strike it Out-Select this item from the submenu to instruct the clue
list boxes to draw a line through any clue you tap on. To remove the
line, you tap on the clue a second time. The clue lists remember
which clues have been stricken so it can redraw the lines when the
user selects Strike it Out after choosing Does Nothing.

The Check Sub-Menu The Check submenu shown in Figure 8.4 con
tains commands for checking the current contents of the puzzle grid
against the correct answers. You can check your answers with

FIGURE 8.3 The Tapping Clue Submenu Text

196 CHAPTER 8

• Puzzle ... -Select this item from the submenu to see the note shown
in Figure 8.5. This note provides you with the total number of words
in the puzzle, along with the number of words you have correct; and
the total number of letters in the puzzle, along with the number of
letters you have correct. You dismiss the note by tapping the OK but
ton at the bottom.

• Words-Select this item from the submenu to instruct the crossword
application to compare each complete word you entered in the grid
against the correct words in the the puzzle. Once the check is com
plete, the grid is redrawn, with the letters of correct words drawn in
black, and everything else drawn in light gray. This command draws
correct letters in incorrect words in light gray.

• Letters-Select this item from the submenu to instruct the crossword
application to compare each letter in the grid to the correct letter for
that position and to redraw correct letters in black and incorrect let
ters in light gray. Unlike the Words option, any letter that's correct
will be drawn as correct, even if the word or words it belongs to is
incorrect.

Creating New Puzzles

You create new puzzles by building an ASCII file that the crossword puz
zle application can import. For example, the file that describes the puzzle
shown in Figure 8.1 contains the lines

pip-xwordpuzzle
3,2,2
1,O,O,ABC,First 3 letters of Alpha
6,O,2,EBB,_ and flow, tide
1,O,O,ACE,_ in the hole
3,2,O,CAB,Taxi

The first line contains a string expected by the crossword puzzle appli
cation to indicate that the file contains the description of a puzzle and can
be imported by the application.

The second line lists the size of the grid (3x3), the number of across
clues (2), and the number of down clues (2).

The remaining lines list the word/ clue entries that make up the puzzle.
Clues are listed in numerical order, with all the across clues first, followed
by the down clues. Each clue consists of five fields: number, x position, y
position, word, and clue. For example, the first entry shown is for 1
across, which is located at x position 0, y position 0 (the top of the puzzle).
The word at this location is ABC, and the clue for 1 across is "First 3 let
ters of Alpha."

The Crossword Puzzle User's Guide

FIGURE 8.4 The Check Submenu

FIGURE 8.5 The Check Puzzle Note Window

6

12 - Total Words

2 - Corre::t Words

25 - Total Letters

5 - Corre::t Letters

I. Iype
10.Lum
11. Not
12. Roll:

1. Bern
3. Help
5. Muse
6. Wep
8. Fish (
q I ittlF!

You must use the comma (,) field delimiter as required.

197

198 CHAPTER 8

Implementing the Crossword Application

Once the user interactions have been specified, designing and implement
ing the classes necessary to implement the crossword puzzle is a straight
forward process. The crossword application consists of five custom
components implemented as PenPoint classes:

• clsXWordApp-The Crossword Application class is a descendant of
clsApp responsibile for managing the acceptance of queries from the
import manager, managing user interactions through the menu inter
face, and maintaining the application's mainO routine used to man
age the document lifecycle.

• clsXWordData-The Crossword Application Data Model class inher
its from clsObject and is the keeper of clues, words, and the grid tem
plate that indicate legal blocks that the user can write in. It also
maintains the functionality for translating ASCII files in the cross
word format into data objects that are then attached to a view and
filed as crossword puzzle documents.

• clsXWordView-The Crossword Puzzle view (described in Chapter
9) inherits from clsView and is a composite object that builds the
crossword puzzle's user interface by creating a grid object and two
clue list objects for display to the user. It also checks system prefer
ences to find out if the display is in landscape or portrait mode and
adjusts its layout accordingly. Finally, clsXWordView serves as the
interface between what the user enters in the grid and what the
model says is correct. It is the object that resolves the difference
between what's entered and what's correct and then informs the grid
object how to update itself.

• clsXWordClueList-The Clue List display (described in Chapter 9)
inherits from clsCustomLayout and provides a simple mechanism
for displaying a list of entries that can be told to strike themselves
out when the user taps them. This component has been implemented
as a Dynamic Link Library for this project.

• clsXWordGrid-The Crossword Puzzles Interactive Grid (described
in Chapter 10) inherits from clsSPaper and provides the view that the
user interacts with while working the puzzle. It translates scribbles
into uppercase letters and displays the letters in a color-coded
scheme that indicates whether a particular character entry is correct.

PenPoint Classes Used in clsXWordApp and clsXWordData 199

PenPoint Classes Used in clsXWordApp and clsXWordData

The Crossword Puzzle class, clsXWordApp, is a combination of compo
nents from the PenPoint library that implement importing, menu han
dling, and user notification, as well as custom components that handle
puzzle-specific issues such as the crossword model (clsXWordData) and
view (clsXWordView).

In addition to the components clsXWordApp uses, several data manipu
lation components pass information between the crossword model and the
view. The following sections describe the general capabilities of these Pen
Point components used to implement the crossword puzzle application and
model classes. The application-specific view classes are described in the
next chapters.

Importing Files

PenPoint provides a set of classes that manage importing and exporting
information to and from the PenPoint environment. These classes serve as
the primary interface between application-oriented operating systems,
such as the PC and Macintosh, to the document-oriented PenPoint envi
ronment. PenPoint manages most of the functionality of importing files
such as prompting the user, querying applications on whether they can
handle a particular file, moving or copying a file, and so on. clsImport
does, however, require your application to respond to certain messages in
certain ways in order for it to use importing.

clsImport The first step in working with clsImport is to implement a
method in your application class that responds to the msgImportQuery
class message. This is one of the few times that the class, and not an in
stance of the class, is responsibile for responding to a particular message.

Each application is sent this message when the user imports a new file
into PenPoint. The message contains a pointer to a data structure that pro
vides an open file handle to the file wishing to be imported. It's up to the
application class to respond yes if it can import the file or no if it cannot. If
the application can import the file, it can also indicate goodness of fit for
handling the data which the Import Manager uses to order the list of
applications responding positively to msgImportRequest.

Once the user selects an application, a document for that application is
created (including the sending of the msgAppInit message) and then sent
a msgImport message. This message contains information that includes an
open file handle to use to finish creating the new document. If the applica
tion that receives the msglmport message can't create the document (for

200 CHAPTER 8

example, the file's contents are garbled at some point), it should return a
status other than stsOK.

Reading Data Files One difficult problem of exchanging information
between operating systems and platforms is that even ASCII information
is not stored in the same format. For example, some systems use a car
riage return to delineate lines, others use a line feed, while others believe
in redundancy and require both! In addition most operating systems have
their own preferred format for storing information.

PenPoint is no exception to the unique data format philosophy. Thank
fully, however, GO provided a compatibility layer that allows you to use
the stdio library functions such as fprintfO and fgetsO when working with
imported data files. These functions allow you to write data-importing
code that matches the code used to write the file, even if the file was not
written on a PenPoint machine.

Menu Support

The second new set of components used in the crossword puzzle applica
tion involves menu support. Menus are built as special cases of clsTkTable
and therefore can be expected to behave in a similar fashion. Because
menus are windows, it's possible to change their appearance dynamically
throughout their document's lifecycle.

clsMenu In PenPoint the clsMenu class implements menus as a subclass
of clsTkTable that has been optimized to provide a table whose default
entries are clsMenuButton objects. Menus can be oriented both horizon
tally (the application's menu bar) or vertically (a pull-down menu select
ed from the main menu bar). A special kind of submenu, a pull-right
submenu, is also created vertically.

You can specify the contents of a menu by providing the MENU_NEW

structure with a TK_TABLE_ENTRY structure that contains information
describing the menu. Included in this specification are definitions for dec
orations such as right arrows and check marks, and flags for indicating
that a pull-right submenu has been defined inline.

clsMenuButton clsMenuButton is a subclass of clsButton that has been
implemented to support the concept of submenus that they can pop up
and take down. As a subclass of clsButton, clsMenuButton is also a sub
class of clsControl and therefore able to respond to the Preview protocol
implemented in clsControl. When selected, a clsMenuButton object dis
plays its submenu, if it has one. For example, child menus can take the

Pen Point Classes Used in c1sXWordApp and c1sXWordData 201

form of menus that appear when the user pulls down (mbMenuPull
Down), pulls right (mbMenuPullRight), or selects a menu button to have
a list of selections pop up (mbMenuPopup).

c1sChoice Sometimes it's desirable to display a list of items from which
the user can choose one, and only one, item. PenPoint implements this
functionality in the clsChoice class. clsChoice, also a descendant of clsTk
Table, builds its child windows using buttons that have the bsContact
LockOn style flag set to true.

Notifying the User

Sometimes it's necessary for the application to inform the user about a
change in status. One option you have is to create a window (including
components), insert it into the hierarchy, make it visible, and then monitor
the user's interaction with it. This option is so popular that PenPoint pro
vides this functionality in the clsN ote component.

c1sNote clsNote is an easy-to-use mechanism for providing the user
with timely information about an application's status. You create a cls
Note object by specifying a TK_TABLE_ENTRY structure that contains in
formation to be displayed. You can then display the note in a model
fashion with your application blocked until the user acknowledges the
message the note contains. Or, you can make the note model, allowing it
to stay visible until

• The user taps on a button or
• Something in your application tells it to terminate or
• A specified time interval passes and the note times out.

Maintain Lists of Data

Stop and reflect for a moment: consider the amount of time you spend
building data structures and writing case statements that execute differ
ent instructions to perform the same functionality based on the type of
data structure you're working with. One powerful feature of object-based
environments that support dynamic binding (like PenPoint), is the ability
to manipulate lists of objects without knowing what those objects are
until runtime. This allows code you've written, tested, and placed into
production to be reused in other applications-you don't need to add
case clauses to your switch statements.

202 CHAPTER 8

Two PenPoint classes, clsList and clsString, illustrate this concept very well.

clsString clsString provides a standard mechanism for maintaining a
null-terminated ASCII string. It allocates and frees the space necessary to
store the string and can respond to save and restore messages. It also is an
observable object, so clients can observe a string object and receive notifi
cation messages when it changes.

Keep several facts in mind when working with string objects. First,
when you file and restore the object, there is no guarantee that pointers to
the object's internal byte buffer will remain constant. You should maintain
indexes into the string if you need to manipulate its subcomponents. Sec
ond, string objects are not locked. Anyone with the string object's UID can
request its buffer and change its contents.

There are several ways to avoid ownership conflicts. One is to make
copies of objects before giving them to another object. This way, you
know that whenever an object is passed to you, you must free it when
you're through. Unfortunately, a system performance penalty tends to be
associated with constantly allocating and freeing objects.

A second method for avoiding ownership conflicts is to provide a shared
object mechanism capable of freeing the object when all references to it are
removed. Unfortunately, this often requires either operating system sup
port or writing an additional piece of object management software.

A third method is to establish a verbal agreement on who owns what
objects. For instance, when I create a string object I might agree to provide
that information to you by passing you the object's UID with the under
standing that you will only read from the string. At other times, I might
send you information in one form that you understand, like a string, even
though that information is kept differently in my object. In this case, I'm
relying upon you to free the object when you are through with it, because
I created it just for you.

clsList Groups of strings are very commonly manipulated as a single
entity. For example, menus, file lists, and so on all can be thought of as a
group or list of strings. PenPoint provides a special class, clsList, that opti
mizes the maintenance and manipulation of lists of objects, including but
not limited to string objects.

Lists implement the generic behavior necessary to save and restore
their contents, locate an item they contain, modify a list entry, and enu
merate the objects contained in the list. Your code can manipulate the list
without being concerned about the components the list contains.

One common problem with lists is the confusion caused by figuring out
what is being destroyed when you free a list. This is very important,
because multiple lists often share pointers to common items. In these cases,

c1sXWordApp: The Crossword Application Class 203

you don't want to free the actual items, only the list of pointers to them. At
other times, however, you might want to free both the individual items in
the list and the list itself. PenPoint supports both forms of freeing.

clsXWordApp: The Crossword Application Class

clsXWordApp is the application class for the crossword puzzle applica
tion. It is responsible for creating a new crossword puzzle document
including the interaction with clsImport required to bring in new puzzles.
clsXWordApp also manages the Puzzle menu and its submenus used in
working the crossword puzzle. Finally, clsXWordApp's mainO routine
contains the function calls necessary to initialize the rest of the required
classes, except clsXWordClue which is contained in a DLL.

clsXWordApp is implemented using two files (xwordapp.h and
xwordapp.c) in addition to having a set of entries in the method table file
(method.tbl).

xwordapp.h

xwordapp.h is the external interface for the crossword puzzle application
class clsXWordApp. The file begins by checking to make sure the file
hasn't already been included:

#ifndef XWORDAPP_INCLUDED
#define XWORDAPP_INCLUDED

If this is the first access to this file, the first action taken is to include the
interface files for the other components it relies upon, using the statements

#ifndef GO_INCLUDED
#include <go.h>
#endif

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

Following the include directives is the definition of the Well Known ID
used to represent clsXWordApp:

#define clsXWordApp MakeGlobalWKN{ 4149, 1)

204 CHAPTER 8

The next statements define message selectors for each application-specific
message clsXWordApp requires.

#define rnsgXWordAppStartOver
#define rnsgXWordAppShowSoln
#define rnsgXWordAppSetClueTap
#define rnsgXWordAppDoCheck

Finally,

#endif

MakeMsg(clsXWordApp, 1
MakeMsg(clsXWordApp, 2
MakeMsg(clsXWordApp, 3
MakeMsg(clsXWordApp, 4

at the end of the file closes out the #ifdef statement at the beginning of
the file.

xwordapp.c

xwordapp.c contains the actual implementation for the clsXWordApp
crossword application class. It begins by including the familiar header
files:

#ifndef APP_INCLUDED
#include <app.h>
#endif

#ifndef APPMGR_INCLUDED
#include <apprngr.h>
#endif

#ifndef FRAME_INCLUDED
#include <frarne.h>
#endif

#ifndef FS_INCLUDED
#include <fs.h>
#endif

#ifndef RESFILE_INCLUDED
#include <resfile.h>
#endif

#ifndef TKTABLE_INCLUDED
#include <tktable.h>
#endif

#ifndef DEBUG_INCLUDED

clsXWordApp: The Crossword Application Class

#include <debug.h>
#endif

#include <string.h>
#include <stdio.h>

The header file that describes the interface to clsMenu is

#ifndef MENU_INCLUDED
#include <menu.h>
#endif

The header file that describes the interface to clsImport is

#ifndef IMPORT_INCLUDED
#include <import.h>
#endif

The header file that describes the interface to clsNote is

#ifndef NOTE_INCLUDED
#include <note.h>
#endif

205

Another file contains the tag definitions for objects such as default
menus that PenPoint defines but the application modifies:

#ifndef APPTAG_INCLUDED
#include <apptag.h>
#endif

Finally, the interfaces to the other custom classes that implement the
crossword application are included:

#ifndef XWORDAPP_INCLUDED
#include <xwordapp.h>
#endif

#ifndef XWRDVIEW_INCLUDED
#include <xwrdview.h>
#endif

#ifndef XWRDCLUE_INCLUDED
#include <xwrdclue.h>
#endif

#ifndef XWRDDATA_INCLUDED
#include <xwrddata.h>

206 CHAPTER 8

#endif

#include <method.h>

Instance Variables clsXWordApp maintains one instance variable, xw
View, in the structure

typedef struct INSTANCE_DATA
OBJECT xwView;

} INSTANCE_DATA, *P_INSTANCE_DATA;

I've adopted the convention of maintaining a handle to windows that
I'm going to use in more than one method in a class. In this case, an alter
native to using an instance variable would be to ask the application win
dow's metrics structure to tell me the UID of the current view whenever I
needed it.

Application Initialization xwordapp.c contains a standard mainO rou
tine that the Application Manager calls while maintaining crossword puz
zle documents. It is defined

void CDECL,
main (

int argc,
char *
U16

argv[] ,
processCount)

if (processCount == 0) {
ClsXWordAppInit() ;

else

ClsXWordDataInit() ;
ClsXWordViewInit() ;
ClsXWordGridInit() ;
AppMonitorMain(clsXWordApp, objNull);
}

AppMain() ;

Unused(argc); Unused(argv);

This routine calls the initialization functions for each of the classes the
application requires. The initialization function for the application class
itself is

STATUS ClsXWordAppInit (void)
{

clsXWordApp: The Crossword Application Class

STATUS s;

ObjCallRet(msgNewDefaults, clsAppMgr, &new, s);

new.object.uid
new.cls.pMsg
new.cls.ancestor
new.cls.size
new.cls.newArgsSize

new.appMgr.flags.accessory

clsXWordApp;
clsXWordAppTable;
clsApp;
SizeOf(INSTANCE_DATA) ;
SizeOf(APP_NEW) ;

FALSE;

strcpy(new.appMgr.name, "Crossword Puzzle");
strcpy(new.appMgr.company, "PenPoint Programming");

ObjCallRet(msgNew, clsAppMgr, &new, s);

return stsOK;

207

Initialization Initialization of the application is handled by the
XWordAppAppInit method which responds to the msgAppInit message.
It is defined

MsgHandler(XWordAppAppInit)
{

INSTANCE_DATA'
XWORDVIEW_NEW
APP_METRICS
OBJECT
STATUS

inst;
vn;
am;
mWin;
s;

ObjCallRet(msgNewDefaults, clsXWordView, &vn, s);
ObjCallRet(msgNew, clsXWordView, &vn, s);

inst.xwView = vn.object.uid;
ObjectWrite(self,ctx, &inst);

ObjCallRet(msgAppGetMetrics, self, &am, s);
ObjCallRet(msgFrameSetClientWin, am.mainWin, inst.xwView, s);

StsRet(XWABuildMenus(self, &mWin), s);
ObjCallRet(msgFrameSetMenuBar, am.mainWin, mWin, s);

return stsOK;
MsgHandlerParametersNoWarning;

208 CHAPTER 8

This method initializes the application by inserting a default clsXWord
View object as the application frame's client window. Next it calls the
XWABuildMenus () function to set up the Application's menu. If the
menu is successfully created, it is used as the frame's menu bar.

Restoring clsXWordApp uses the XWordAppRestore method to re
spond to msgRestore by finding the UID of the xwordview object and
copying it into an instance variable for future use. The XWordAppRestore
method is defined

MsgHandlerArgType(XWordAppRestore, P_OBJ_RESTORE
{

INSTANCE_DATA
APP_METRICS
STATUS

inst;
ami

Si

ObjCallRet(msgAppGetMetrics, self, &am, S)i

ObjCallRet(msgFrameGetClientWin,am.mainWin,&inst.xwView,s);
ObjectWrite(self, ctx, &inst);

return stsOK;
MsgHandlerParametersNoWarningi

Building the Menu Bar The clsXWordApp application implements menu
management using a set of predefined tags, a predefined TK_TABLE_EN

TRY structure, the XWABui IdMenus () function, and a set of methods that
handles the messages sent when the user selects a menu item.

Included in xwordapp.c are the predefined tags

#define tagXWordMenuPuzzle MakeTag(clsXWordApp, 1
#define tagClueTapMenu MakeTag(clsXWordApp, 2

#define rnnStartOverTag MakeTag(clsXWordApp, 3
#define rnnShowSolnTag MakeTag(clsXWordApp, 4

#define rnnNothingTag MakeTag(clsXWordApp, 5
#define rnnStrikeOutTag MakeTag(clsXWordApp, 6

#define rnnPuzzleTag MakeTag(clsXWordApp, 7
#define rnnWordsTag MakeTag(clsXWordApp, 8
#define rnnLettersTag MakeTag(clsXWordApp, 9

used by the predefined TK_TABLE_ENTRY structure:

c1sXWordApp: The Crossword Application Class

static TK_TABLE_ENTRY XWordAppMenuBar[] = {
{"Puzzle", 0, O,tagXWordMenuPuzzle, tkMenuPul 1 Down ,

clsMenuButton} ,

} ;

{"Start Over", msgXWordAppStartOver, mnStartOverTag },
{"Show Solution", msgXWordAppShowSoln, mnShowSolnTag,

0, tkBorderEdgeBottom},
{"Tapping Clue", 0, 0, 0, tkMenuPullRight},

0, 0, 0, tagClueTapMenu, 0, clsChoice },
{"Does Nothing",msgXWordAppSetClueTap,

mnNothingTag,
mnNothingTag, tkButtonOn} ,

{"Strikes It Out",msgXWordAppSetClueTap,

{pNull},
{pNull} ,

mnStrikeOutTag},

{"Check", 0, 0, 0, tkMenuPullRight},
{"Puzzle ... ",
{"Words" ,
{"Letters" ,
{pNull},

{pNull} ,
{pNull}

msgXWordAppDoCheck, mnPuzzleTag},
msgXWordAppDoCheck, mnWordsTag},
msgXWordAppDoCheck, mnLettersTag},

209

Each member of the TK_TABLE_ENTRY structure contains information
used to specify the menu structure. In addition to providing the type of
item to be placed in the table, and the message and tag to be sent when an
item is selected, there is information about the item's attributes.

Notice the use of predefined values that start with the letters tk. These
values provide additional information about the menu's layout and func
tionality. For example,

{"Puzzle", 0, O,tagXWordMenuPuzzle, tkMenuPul lDown ,
clsMenuButton} ,

uses tkMenuPullDown to indicate that the following items in the struc
ture describe a pull-down menu that's activated using a clsMenuButton
object.
Another example is

{"Tapping Clue", 0, 0, 0, tkMenuPullRight},

which indicates that the items that follow should be used to build a menu
that pulls out to the right. The next line

{ 0, 0, 0, tagClueTapMenu, 0, clsChoice },

210 CHAPTER 8

indicates that the menu will actually be a clsChoice object used to main
tain a list of mutually exclusive options. In the case of this menu, the next
entry uses tkButtonOn to indicate that it should be the first item selected.

Certain entries also specify one of the predefined tags as part of their infor
mation. There are two uses for this information. First, it's used as a qualifier
to a single message that's meant to do more than one thing. For example, the
entries each send the same message when selected by the user:

{"Puzzle ... ",
{"Words" I

{"Letters" I

msgXWordAppDoCheck, mnPuzzleTag} I

msgXWordAppDoCheck , mnWordsTag} I

msgXWordAppDoCheck , mnLettersTag} I

To differentiate between the entries, the method relies on the value of the
third parameter (in this case a unique tag) to indicate what should be
done.

The second use is to identify certain parts of a menu structure so it can
be modified dynamically. For example, the structure

static U32 removeMenuTags[] = {
tagAppMenuCheckpoint ,
tagAppMenuRevert ,
tagAppMenuEdit,
a

} i

contains tags to menus that are part of the Default Application menu.
XWABuildMenus () uses this information to remove unwanted items
from the menu it eventually displays.

Given this default information, XWordAppAppInit calls XWABuild
Menus () to create the default application menu. XWABui ldMenus () is
defined

STATUS LOCAL XWABuildMenus(OBJECT self , P_OBJECT pMenuWin)
{

MENU_NEW mn;
OBJECT w;
STATUS s;
U16 i;

ObjCallRet(msgNewDefaults , clsMenu, &ron I s);
mn. tkTable. client = self;
mn.tkTable.pEntries = XWordAppMenuBar;
ObjCallRet(msgNew, clsMenu , &ron I s);
ObjCallRet(msgAppCreateMenuBar , self, &ron.object.uid, s);

clsXWordApp: The Crossword Application Class

*pMenuWin = mn.object.uid;
for(i=O; removeMenuTags[i]; i++) {

w = (WIN)ObjectCall(msgWinFindTag, *pMenuWin,
(P_ARGS)removeMenuTags[i]);

ObjCallWarn(msgTkTableRemove, *pMenuWin, (P_ARGS)w);
}

return stsOKi

211

First, XWABui ldMenus () created an instance of clsMenu by sending
msgNewDefaults to clsMenu and adding the application as the client and
specifying the default menu structure. Once the menu object is built, the
items corresponding to the tags listed in the REMOVEMENUTAGS [] struc
ture are removed and the function returns.

Responding to Menu Selections When the user selects a menu item,
the item responds by doing one of several things. For instance, if the user
selects Check, the menu manager automatically pops up the Check sub
menu. Some items, however, specify that a message should be sent to the
menu's client. This section describes the methods that respond to the user
selecting an item from a menu.

First, when the user selects Start Over, the application is sent the mes
sage msgXWordAppStartOver. The method that handles that message is
defined

MsgHandlerWithTypes (XWordAppStartOver, P_ARGS, P_INSTANCE_DATA)
{

return ObjCallWarn(msgXWordViewStartPlayOver,
pData->xwView, NULL);

MsgHandlerParametersNoWarning;

This method processes the message by passing it to the crossword appli
cation view object. The message msgXWordAppShowSoln is handled in
the same way:

MsgHandlerWithTypes(XWordAppShowSoln, P_ARGS,P_INSTANCE_DATA)
{

return ObjCallWarn(msgXWordViewShowSoln,
pData->xwView, NULL);

MsgHandlerParametersNoWarningi

Next, the message msgXWordSetClueTap is handled by the method

212

MsgHandlerWithTypes(XWordAppSetClueTap,
P_ARGS, P_INSTANCE_DATA

STATUS s;

switch ((U32)pArgs) {
case mnNothingTag:

ObjCallRet(msgXWordVieWClueTapNothing,
pData->xwView, NULL, s);

break;

case mnStrikeOutTag:
ObjCallRet(msgXWordVieWClueTapStrikeOut,

pData->xwView, NULL, s);
break;

return stsOK;
MsgHandlerParametersNoWarning;

CHAPTER 8

This method looks at the argument passed to determine which menu item
actually caused the message to be sent. It then takes appropriate action to
inform the view of the user's requirements.

In the same manner, the next method processes the msgXWordAppDoCheck
message when the user selects an item from the Check submenu.

MsgHandlerWithTypes(XWordAppDoCheck,P_ARGS,P_INSTANCE_DATA
{

STATUS s;

switch ((U32)pArgs) {
case mnPuzzleTag:

StsRet(XWAShoWCheckPuzzleStats(pData), s);
break;

case mnWordsTag:
ObjCallRet(msgXWordVieWCheckWords,
pData->xwView, NULL, s);
break;

case mnLettersTag:
ObjCallRet(msgXWordVieWCheckLetters,
pData->xwView, NULL, s);
break;

clsXWordApp: The Crossword Application Class

return stsOKi
MsgHandlerParametersNoWarningi

213

Note Management The previous method contained a call to the func
tion XWAShowCheckPuzzleStats () when the user selected the Puzzle
option from the Check submenu. This function has the responsibility of
creating a clsNote object that will display information about how correct
the crossword puzzle currently is.

In order to complete its task, XWAShowCheckPuzzleStats () needs
to use predefined structures to create the note:

static UB twBuff[25], cwBuff[25] , tlBuff[25] , clBuff[25];

static TK_TABLE ENTRY ChkPuzzleTb[] = {
{ twBuff, 0, 0, 0, 0, clsLabel },
{ cwBuff, 0, 0, 0, 0, clsLabel },
{ " " 0, 0, 0, 0, clsLabel }, ,
{ tlBuff, 0, 0, 0, 0, clsLabel },

{ clBuff, 0, 0, 0, 0, clsLabel } ,
{pNull}

} ;

static TK_TABLE_ENTRY ChkPuzzleCrndBar[]
{"OK", 0, 0, 0, 0, clsButton},
{pNull}

} ;

The first TK_TABLE_ENTRY structure is a place holder because the
value of its contents changes each time it's displayed to the user. The
XWAShowCheckPuzzleStats () function is defined

STATUS LOCAL XWAShoWCheckPuzzleStats(P_INSTANCE_DATA pData
{

U32
NOTE_NEW
XWORDVIEW_STATS
STATUS

aMsgi

nni

XVSi
Si

ObjCallRet(rnsgXWordVieWCheckPuzzle,pData->xwView,&xvs,S)i

sprintf(twBuff, "%3d - Total Words", xvs.wordCount) i

sprintf(cwBuff, "%3d - Correct Words", xvs.okWords) i

sprintf(tlBuff, "%3d - Total Letters", xvs.letterCount) i

sprintf(clBuff, "%3d - Correct Letters", xvs.okLetters) i

214 CHAPTER 8

ObjCallRet(msgNewDefaults, clsNote, &nn, s);
nn.note.metrics.flags = nfSystemModal I nfUnformattedTitle;
nn.note.pTitle = "Checking the puzzle reveals ... ";
nn.note.pContentEntries = ChkPuzzleTb;
nn.note.pCmdBarEntries = ChkPuzzleCmdBar;
ObjCallRet(msgNew, clsNote, &nn, s);

ObjCallRet(msgNoteShow, nn.object.uid, (P_ARGS)&aMsg, s);

ObjCallWarn(msgDestroy, nn.object.uid, pNull);

return stsOK;

The first thing the method does is to send the msgXWordViewCheck
Puzzle message to the view object to request current statistics for the puz
zle. It then takes that information, formats it, and prints it in the predefined
buffers the TK_TABLE_ENTRY structure points to.

Next, it creates the note as modal by 'or'ing in the nfSystemModal flag
. into the nn.note.metrics.flag variable. Once created, the note is made visible

to the user using the msgNoteShow message. The application blocks at
this point and awaits the return from the displayed note. The user signals
completion by selecting the OK button at the bottom of the panel.

Importing Data Files The last two methods to be discussed in this chap
ter are XWordAppImportQuery and XWordAppImport which are used
to support importing puzzles into PenPoint.

The XWordAppImportQuery method is invoked in response to the
application being sent the msglmportQuery message when the user
attempts to drag a non-PenPoint document into PenPoint. The method is
defined

MsgHandlerArgType(XWordApplmportQuery, P_IMPORT_QUERY)
{

if (ObjectCall(msgIsXWordFile, clsXWordData, pArgs->file)
== stsOK) {

pArgs->canlmport = true;
pArgs->suitabi1 ityRating = 100;

}

return stsOK;
MsgHandlerParametersNoWarning;

c1sXWordApp: The Crossword Application Class

XWordAppImportQuery uses

if (ObjectCall(msgIsXWordFile, clsXWordData, pArgs->file)
== stsOK)

215

to ask clsXWordData if the file handle references a crossword file. If the
message returns stsOK, then the information

pArgs->canImport
pArgs->suitabilityRating

true;
100;

is used to indicate that the file can be processed with the highest suitabil
ity rating possible.

If the user selects the crossword application to process the imported
file, a new document is created, sent the msgAppInit message, and then
sent the msgImport message with a handle on the open file. clsX
WordApp responds to the msgImport message with

MsgHandlerWithTypes(XWordAppImport, P_IMPORT_DOC,
P_INSTANCE_DATA)

INSTANCE_DATA
APP_METRICS
XWORDDATA_NEW
XWORDVIEW_NEW
OBJECT
STATUS

inst;
am;
xwn;
vn;
oldView;
s;

inst = IDataDeref(pData, INSTANCE_DATA);
oldView = inst.xwViewi

ObjCallRet(msgNewDefaults, clsXWordData, &xwn, s);
xwn.xword.file = pArgs->file;
ObjCallRet(msgNew, clsXWordData, &xwn, s);

ObjCallRet(msgNewDefaults, clsXWordView, &vn, s);
vn.view.dataObject = xwn.object.uid;
ObjCallRet(msgNew, clsXWordView, &vn, s);

inst.xwView = vn.object.uid;
ObjectWrite(self, ctx, &inst);

ObjCallRet(msgAppGetMetrics, self, &am, s);
ObjCallRet(msgFrameSetClientWin, am.mainWin,

inst.xwView, s);

ObjCallWarn(msgDestroy, oldView, NULL }i

216

return stsOK;
MsgHandlerParametersNoWarning;

CHAPTER 8

This method responds to the import message by instructing the clsX
WordData class to make an instance of itself using the data file referenced
by the open handle. Next, a view object is created for the new crossword
model and replaces the default view already there. The default view is
then freed.

method.tbl

method.tbl contains the following MSG_INFO structure for mapping mes
sages to methods in clsXWordApp:

MSG_INFO clsXWordAppMethods[] = {

} ;

msgImportQuery,
msgImport,
msgAppInit,

"XWordAppImportQuery" , objClassMessage,
"XWordAppImport" , 0 ,
"XWordAppAppInit",objCallAncestorBefore,

msgRestore, "XWordAppRestore",objCallAncestorBefore,
msgXWordAppStartOver, "XWordAppStartOver" , 0,
msgXWordAppShowSoln, "XWordAppShowSoln" , 0,
msgXWordAppSetClueTap, "XWordAppSetClueTap",O,
msgXWordAppDoCheck,
o

"XWordAppDoCheck" , 0,

clsXWordData: The Crossword Puzzle Model Class

clsXWordData is the model class for the crossword puzzle application. It
is responsible for managing the clues, words, and positional information
that make each crossword puzzle document unique. clsXWordData is the
class that actually contains the functionality for converting an imported
data file into a model object that the user interacts with when working a
crossword puzzle.

clsXWordData is implemented using the files xwrddata.h and xwrd
data.c. It also has a set of entries in the method table file method. tbl.

clsXWordData: The Crossword Puzzle Model Class 217

xwrddata.h

xwrddata.h is the external interface for the Crossword Puzzle Model class
clsXWordData. The beginning of the file checks to make sure it hasn't
already been included:

#ifndef XWRDDATA_INCLUDED
#define XWRDDATA_INCLUDED

Next, xwrddata.h uses include directives to access the external inter
faces of the other components it needs:

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#ifndef GEO_INCLUDED
#include <geo.h>
#endif

geo.h contains the macros and type definitions used to manipulate logi
cal geometric constructs such as points and rectangles.

Following the include directives is the definition of the Well Known
UID

#define clsXWordData MakeGlobalWKN(4152, 1)

used to identify the clsXWordData class to the PenPoint Class Manager
followed by

STATUS ClsXWordDatalnit (void) i

which the mainO routine uses in clsXWordApp to register the clsXWord
Data class with the Class Manager.

Next come the message selectors for the methods unique to clsX
WordData:

#define msgXWordDataIsXWordFile
#define msgXWordDataGetInfo
#define msgXWordDataGetLetters
#define msgXWordDataGetAcrossCount
#define msgXWordDataGetDownCount
#define msgXWordDataGetAcrossWord
#define msgXWordDataGetDownWord

MakeMsg(clsXWordData,l)
MakeMsg(clsXWordData,2)
MakeMsg(clsXWordData,3)
MakeMsg(clsXWordData,4)
MakeMsg(clsXWordData,5)
MakeMsg(clsXWordData,6)
MakeMsg(clsXWordData,7)

218 CHAPTER 8

Following the message identifiers are a set of data structures used to
transfer information to and from the crossword puzzle model. The first
set of structures is used·during the creation of a new class:

typedef struct XWORDDATA_NEW_ONLY
FILE_HANDLE file;
U32 size;
XWORDDATA_NEW_ONLY, *P_XWORDDATA_NEW_ONLY;

#define xworddataNewFields \
objectNewFields \
XWORDDATA_NEW_ONLY xword;

typedef struct XWORDDATA_NEW
xworddataNewFields

} XWORDDATA_NEW, *P_XWORDDATA_NEW;

These structures retrieve information about a certain part of the cross
word puzzle:

#define XWORD_MAX_WORD_SIZE 10
#define XWORD_MAX_CLUE_SIZE 40
#define XWORD_MAX_GRID_SIZE 100

typedef struct XWORDDATA_LETTER
U32 x;
U32 y;
U8 letter;
XWORDDATA_LETTER, *P_XWORDDATA_LETTER;

typedef struct XWORDDATA_WORD
U32 index;
XY32 origin;
U8 word [XWORD_MAX_WORD_SIZE+1] ;
XWORDDATA_WORD, *P_XWORDDATA_WORD;

typedef struct XWORDDATA_INFO {
U32 size;
XWORD_DATA template [XWORD_MAX_GRID_SIZE] ;
XWORD_DATA numbers [XWORD_MAX_GRID_SIZE] ;
OBJECT acrossCluesi
OBJECT downClues;

} XWORDDATA_INFO, *P_XWORDDATA_INFO;

Finally, at the end of the file, the statement

clsXWordData: The Crossword Puzzle Model Class 219

#endif

closes the initial #ifndef clause.

xwrddata.c

xwrddata.c contains the actual implementation for the clsXWordData
Crossword Puzzle Model class. It begins by including the familiar header
files:

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#ifndef FS INCLUDED
#include <fs.h>
#endif

#ifndef OSHEAP_INCLUDED
#include <osheap.h>
#endif

#ifndef DEBUG_INCLUDED
#include <debug.h>
#endif

#include "string.h"
#include "stdio.h"

The interface file that describes the external interface to clsString follows:

#ifndef STROBJ_INCLUDED
#include <strobj.h>
#endif

Then the interface to clsList:

#ifndef LIST_INCLUDED
#include <list.h>
#endif

Finally, the interfaces to the Crossword Puzzle Data class itself along
with the interface to the method table is included with the statements

#ifndef XWRDDATA_INCLUDED
#include <xwrddata.h>

220 CHAPTER 8

#endif

#include "method.h"

Instance Variables clsXWordData uses this data structure to maintain
information about each individual word/clue pair used in the puzzle:

typedef struct XWORD_ENTRY
U32 number;
U32 x, y;
UB word[XWORD_MAX_WORD_SIZE+lJ;
UB clue[XWORD_MAX_CLUE_SIZE+lJ;
XWORD_ENTRY, *P_XWORD_ENTRY;

Next, these statements provide clsXWordData with a structure for
maintaining information on the overall organization of the crossword
puzzle model:

typedef struct METRICS
U32 size,

gridSize,
acrossCnt,
downCnt;

UB grid[XWORD_MAX_GRID_SIZEJ;
METRICS, *P_METRICS;

The grid array maintains a flattened list of the characters that make up
the puzzle. This array is used, for example, to generate the template that
instructs the grid object which squares to black out. To get the character at
position x, y, you compute:

x + y * size

Finally, a combination of the METRICS and and XWORD_ENTRY members
are maintained as clsXWordData's instance data using the structure

typedef struct INSTANCE_DATA {
METRICS metrics;
P_XWORD_ENTRY pEntries;
INSTANCE_DATA, *P_INSTANCE_DATA;

clsXWordData: The Crossword Puzzle Model Class 221

Class Registration The mainO routine in clsXWordApp uses the
ClsXWordDataInit () function to register clsXWordData with the
Class Manager. It is defined

STATUS ClsXWordDataInit (void)
{

CLASS_NEW new;
STATUS s;

ObjCallRet(msgNewDefaults, clsClass, &new, s);

new.object.uid
new.cls.pMsg
new.cls.ancestor
new.cls.size
new.cls.newArgsSize

clsXWordData;
clsXWordDataTable;
clsObject;
SizeOf(INSTANCE_DATA) ;
SizeOf(XWORDDATA_NEW);

ObjCallRet(msgNew, clsClass, &new, s);

return stsOK;

Checking Imported Files clsXWordApp invokes the class method to veri
fy if an ASCII file contains information necessary to construct a crossword
puzzle.

MsgHandlerArgType(XWordDataIsXWordFile, FILE_HANDLE)
{

FILE *fp;
STATUS s;

fp StdioStreamBind(pArgs);

if !strncmp(getData(fp), XWORDDATA_LINE_l,
strlen(XWORDDATA_LINE_l))

s stsOK;
else

s stsFailed;

StdioStreamUnbind(fp);

return s;
MsgHandlerParametersNoWarning;

The check is made by seeing if the first line in the file matches

222 CHAPTER 8

#define XWORDDATA_LINE_l "pip-xwordpuzzle"

and returning stsOK if the match is made and stsFailed if it is not.
Notice that an extra step was needed to use the function contained in

stdio.h. This step consists of binding the file handle to a file pointer using

fp = StdioStrearnBind(pArgs) i

prior to any file I/O to obtain a file pointer, and then calling

StdioStrearnUnbind(fp) i

when the file pointer is no longer needed.
Both this method and the method for initializing an object from an

imported file use the utility routine

static P_U8 getData(FILE *fp
{

static U8buff[MAX_INPUT_REC_SIZE]i

return fgets(buff, MAX_INPUT_REC_SIZE, fp) i

to read in the data line by line.

Creating a clsXWordData Object There are several ways to create a
new model object for a crossword puzzle document, including starting
from scratch or importing the initial information from outside the Pen
Point environment. Either way, the following method handles the first
message sent to the object, msgNewDefaults:

MsgHandlerArgType(XWordDataNewDefaults, P_XWORDDATA_NEW)
{

memset(& (pArgs->xword) , 0, SizeOf(XWORDDATA_NEW_ONLY));

return stsOK;
MsgHandlerParametersNoWarning;

During initialization, the contents of the xword component of the
XWORDDATA_NEW structure is checked for non-zero values. If the value is
zero, a default set of instance data is built. Otherwise, the object is initial
ized from information read in from the file the xword.file value specifies.

The method that responds to msglnit is defined

clsXWordData: The Crossword Puzzle Model Class

MsgHandlerArgType(XWordDataInit, P_XWORDDATA_NEW)
{

INSTANCE_DATA insti
STATUS Si

if (pArgs->xword.file
StsRet(XWDBuildXWordFromFile(&inst,pArgs->xword.file),s) i

else {
memset(&inst, 0, SizeOf(INSTANCE_DATA))i

inst.metrics.size = pArgs->xword.sizei
inst.metrics.gridSize =

inst.metrics.size*inst.metrics.sizei
memset(inst.metrics.grid, ' " inst.metrics.gridSize)i

ObjectWrite(self, ctx, &inst)i

return stsOKi
MsgHandlerParametersNoWarningi

223

This method checks to see if it's being asked to create the object from an
imported file. If so, it uses the function

STATUS LOCAL
XWDBui IdXWordFromFi Ie (P_INSTANCE_DATA pData,FILE_HANDLE file)
{

U32 iI, j, leni
P_XWORD_ENTRY pEnti
P_METRICS pMeti
P_U8 pGridi
U32 entSizei
FILE *fPi
STATUS Si

fp = StdioStreamBind(file)i

getData(fp)i II ignore first line (importable check)

pMet = &(pData->metrics)i
sscanf(getData(fp), "%U, %u, %u" ,

& (pMet->size), & (pMet->acrossCnt), & (pMet->downCnt))i

pMet->gridSize = pMet->size * pMet->sizei

entSize = (pMet->acrossCnt + pMet->downCnt)
* SizeOf(XWORD_ENTRY)i

224 CHAPTER 8

StsRet(
OSHeapBlockAlloc(osProcessHeapld, entSize,

&(pData->pEntries)) , s);
memset(pData->pEntries, 0, entSize)i

pEnt = pData->pEntriesi
pGrid = pData->metrics.grid;
memset (pGrid, 0, XWORD_MAX_GRID_SIZE);
for (il=Oi il«pMet->acrossCnt)i il++, pEnt++)

sscanf(getData(fp), "%u,%u,%u,%[",],%["\n\r]n,
&(pEnt->number), &(pEnt->x), &(pEnt->y),
pEnt->word, pEnt->clue)i

strncpy(&pGrid[pEnt->y * pMet->size + pEnt->x],
pEnt->word, strlen(pEnt->word))i

for (il=Oi il«pMet->downCnt)i il++, pEnt++) {
sscanf(getData(fp), n%u,%u,%u,%[",],%["\n\r]n,

&(pEnt->number), & (pEnt->x) , &(pEnt->y),
pEnt->word, pEnt->clue)i

for (j=O, len=strlen(pEnt->word)i j<leni j++
pGrid[(pEnt->y + j) * pMet->size + pEnt->x]

pEnt->word[j]i

StdioStreamUnbind(fp);

return stsOKi

Freeing Instance Data The following method frees any memory allocat
ed from the heap to store the word/clue entries:

MsgHandlerWithTypes(XWordDataFree, P_ARGS, P_INSTANCE_DATA)
{

if (pData->pEntries)
OSHeapBlockFree(pData->pEntries)i

return stsOKi
MsgHandlerParametersNoWarningi

Responding to Save and Restore Instances of clsXWordData save their
state by using this method to save their instance data:

clsXWordData: The Crossword Puzzle Model Class

MsgHandlerWithTypes (XWordDataSave, P_OBJ_SAVE,P_INSTANCE_DATA)
{

STREAM_READ_WRITE
U32

STATUS

fsWrite.numBytes
fsWrite.pBuf

fsWrite;
entCnt;
Si

= SizeOf(METRICS)i
= &(pData->metrics)i

ObjCallRet(msgStreamWrite, pArgs->file, &fsWrite, S)i

if (pData->pEntries) {
entCnt =

pData->metrics.acrossCnt + pData->metrics.downCnt;
fsWrite.nurnBytes = entCnt * SizeOf(XWORD_ENTRY);
fsWrite.pBuf = pData->pEntries;
ObjCallRet(msgStreamWrite, pArgs->file, &fsWrite, S)i

}

return stsOKi
MsgHandlerParametersNoWarning;

This method restores the instance data:

MsgHandlerArgType(XWordDataRestore, P_OBJ_RESTORE)
{

INSTANCE_DATA
STREAM_READ_WRITE
STATUS
U32

U32

insti
fsReadi
Si

entSize;
entCnti

fsRead.nurnBytes = SizeOf(METRICS)i
fsRead.pBuf = &inst.metrics;
ObjCallRet(msgStreamRead, pArgs->file, &fsRead, s);

entCnt = inst.metrics.acrossCnt + inst.metrics.downCnt;
if (entCnt) {

entSize = entCnt * SizeOf(XWORD_ENTRY)i
StsRet(

OSHeapBlockAlloc(osProcessHeapId, entSize,
&inst.pEntries), S)i

225

226

fsRead.numBytes = entSizej
fsRead.pBuf = inst.pEntriesj
ObjCallJmp(msgStreamRead, pArgs->file, &fsRead,

s, Error) j

ObjectWrite(self, ctx, &inst)j

return stsOKj
Error:

OSHeapBlockFree(inst.pEntries)j

return Sj

MsgHandlerParametersNoWarningj

CHAPTER 8

Asking for Model Information clsXWordData provides a method for
returning all information about the model in a form that the view can use.
The method that responds to this message is defined

MsgHandlerWithTypes(XWordDataGetInfo, P_XWORDDATA_INFO,
P_INSTANCE_DATA)
{

U32 i, 1;
P_XWORD_ENTRY pEnt;
P_METRICS pMet;
LIST_NEW In;
STROBJ_NEW sonj

U8 buff[XWORD_MAX_CLUE_SIZE+5]j
STATUS S;

pArgs->size pData->metrics.sizej

pMet = & (pData->metrics) ;
memset(pArgs->template, 0, pMet->gridSize);
memset(pArgs->numbers, 0, pMet->gridSize);

for (i=Oj i<pMet->gridSizej i++)
pArgs->template[i] = pMet->grid[i] ? 1 OJ

pEnt = pData->pEntriesj
for(i=O, l=pMet->acrossCnt+pMet->downCntj i<l; i++,pEnt++)

pArgs->numbers[pEnt->x + pEnt->y * pMet->size] =
(U8) (pEnt->nlimber)j

ObjCallRet(msgNewDefaults, clsList, &In, s);
ObjCallRet(msgNew, clsList, &In, s);
pArgs->acrossClues = In.object.uid;

clsXWordData: The Crossword Puzzle Model Class

ObjCallRet(msgNewDefaults, clsList, &In, s);
ObjCallRet(msgNew, clsList, &In, s);
pArgs->downClues = In.object.uid;

pEnt = pData->pEntries;
for (i=O; i<pMet->acrossCnt; i++, pEnt++) {

ObjCallRet(msgNewDefaults, clsString, &son, s);
sprintf(buff, "%u. %s", pEnt->number, pEnt->clue);
son.strobj.pString = buff;
ObjCallRet(msgNew, clsString, &son, s);
ObjCallRet(msgListAddltem, pArgs->acrossClues,

son.object.uid, s);

for (i=O; i<pMet->downCnt; i++, pEnt++) {
ObjCallRet(msgNewDefaults, clsString, &son, s);
sprintf(buff, "%u. %s", pEnt->number, pEnt->clue);
son.strobj.pString = buff;
ObjCallRet(msgNew, clsString, &son, s);
ObjCallRet(msgListAddltem, pArgs->downClues,

son.object.uid, s);

return stsOK;
MsgHandlerParametersNoWarning;

227

This method provides information concerning the size of the puzzle:

pArgs->size = pData->rnetrics.size;

a template that indicates which blocks should be black:

for (i=O; i<pMet->gridSize; i++)
pArgs->ternplate[i] = pMet->grid[i] ? 1 : 0;

and a template indicating which blocks should be numbered:

pEnt = pData->pEntries;
for(i=O, l=pMet->acrossCnt+pMet->downCnt; i<l; i++,pEnt++)

pArgs->numbers[pEnt->x + pEnt->y * pMet->size] =
(U8) (pEnt->number) ;

This method also constructs two clue lists (across and down) by creat
ing two list objects:

228

ObjCallRet(msgNewDefaults, clsList, &In, s);
ObjCallRet(msgNew, clsList, &In, s);
pArgs->acrossClues = In.object.uid;

CHAPTER 8

It then fills them with new string objects: that represent the puzzle's clues

pEnt = pData->pEntriesi
for (i=Oi i<pMet->acrossCnti i++, pEnt++) {

ObjCallRet(msgNewDefaults, clsString, &son, s)i

sprintf(buff, "%u. %s", pEnt->number, pEnt->clue)i

son.strobj.pString = buffi
ObjCallRet(msgNew, clsString, &son, s)i

ObjCallRet(msgListAddItem, pArgs->acrossClues,
son.object.uid, s)i

The clsXWordData class also implements methods to return the solution:

MsgHandlerWithTypes(XWordDataGetLetters,
P_XWORD_DATA, P_INSTANCE_DATA)

memcpy(pArgs,pData->metrics.grid,pData->metrics.gridSize)i

return stsOKi
MsgHandlerParametersNoWarningi

the number of across entries:

MsgHandlerWithTypes(XWordDataGetAcrossCount,
P_U32 , P_INSTANCE_DATA)

*pArgs pData->metrics.acrossCnti

return stsOK;
MsgHandlerParametersNoWarning;

the number of down entries:

MsgHandlerWithTypes(XWordDataGetDownCount,
P_U32 , P_INSTANCE_DATA)

*pArgs pData->metrics.downCnt;

return stsOK;

clsXWordData: The Crossword Puzzle Model Class

MsgHandlerParametersNoWarning;

the correct spelling of a word in the across direction:

MsgHandlerWithTypes(XWordDataGetAcrossWord,
P_XWORDDATA_WORD, P_INSTANCE_DATA)

if (pData->metrics.acrossCnt) {
pArgs->origin.x = pData->pEntries[pArgs->index] .Xi

pArgs->origin.y = pData->pEntries[pArgs->index] .Yi

strcpy(pArgs->word, pData->pEntries[pArgs->index] .word)i

}

else
memset(pArgs, 0, SizeOf(XWORDDATA_WORD))i

return stsOKi
MsgHandlerParametersNoWarningi

and the correct spelling of a word in the down direction:

MsgHandlerWithTypes(XWordDataGetDownWord,
P_XWORDDATA_WORD, P_INSTANCE_DATA)

if pData->metrics.downCnt) {
pArgs->origin.x =
pData->pEntries[pData->metrics.acrossCnt+pArgs->index] .Xi

pArgs->origin.y =
pData->pEntries[pData->metrics.acrossCnt+pArgs->index] .y;
strcpy(pArgs->word,
pData->pEntries[pData->metrics.acrossCnt+pArgs->index] .word

) i

else
memset(pArgs, 0, SizeOf(XWORDDATA_WORD))i

return stsOKi
MsgHandlerParametersNoWarningi

method.tbl

229

method. tbl contains· the following MSG_INFO structure for mapping mes
sages to methods in clsXWordData:

230

MSG_INFO cIsXWordDataMethods[]
msgNewDefauIts,

objCallAncestorBefore,
msglnit,

objCaIIAncestorBefore,
msgFree,

objCallAncestorAfter,
msgSave,

objCaIIAncestorBefore,
msgRestore,

objCaIIAncestorBefore,
msgXWordDataI sXWordFi Ie ,

} ;

objClassMessage,
msgXWordDataGetlnfo,
msgXWordDataGetLetters,
msgXWordDataGetAcrossCount
msgXWordDataGetDownCount,
msgXWordDataGetAcrossWord,
msgXWordDataGetDownWord,
o

Wrap-up

"XWordDataNewDefaults",

"XWordDatalnit",

"XWordDataFree",

"XWordDataSave",

"XWordDataRestore" ,

"XWordDataIsXWordFile" ,

"XWordDataGetlnfo",
"XWordDataGetLetters" ,
"XWordDataGetAcrossCount" ,
"XWordDataGetDownCount" ,
"XWordDataGetAcrossWord" ,
"XWordDataGetDownWord" ,

CHAPTER 8

0,

0,

0,

0,

0,

0,

This chapter presents the foundation for building a functional crossword
application for PenPoint. It includes a small User's Guide, a description of
the classes created to complete the project, an explanation of the new
library classes used, and, finally, a description of the application class
itself.

By now, you're probably thinking you can make several additions to
the application's functionality. If so, here's a topic to think about that isn't
covered in this chapter: stationery. Stationery is predefined templates
used to create new documents. One area in which the crossword puzzle
would benefit from using stationery is creating new puzzles. For instance,
you could create a new puzzle starting with a piece of 5x5 stationery, fill
ing in the answers, and then filling in the clues. Once the document is
fully created, you could select Start Over from the Puzzle menu and then
make a copy of that document available on some form of distribution
media.

Wrap-up 231

For now, if you want to create a new puzzle, you have to build an
ASCII file with the information in the format described at the beginning
of the chapter. Here's a second puzzle so you're not stuck with just one:

pip-xwordpuzzle
6,6,6
2,4,O,PA,Ma and
4,O,l,DEBT,Owe
7,l,2,BRAND,Type
10,2,3,AXE,Lumberjack's Tool
11,2,4,WET,Not dry
12,O,5,BUNS,Rolls
l,l,O,FEB,Second month
3,5,O,AID,Help
5,2,l,BRAWN,Muscle
6,3,l,TAXES,We pay too many
8,4,2,NET,Fish or butterfly
9,O,3,FIB,Little lie

Coordinating Views

Back in the early '80s, Apple did something rather bold. It released a
machine whose internals couldn't be accessed. When you bought an early
Macintosh, you received one kind of keyboard, one kind of mouse, one
kind of display, and so on. This was very different from the PC market
where assembling a machine could take days because you could choose
so many different components from so many different vendors. Of course,
time, the market, and screaming users demanded that the Macintosh be
opened up, and so Apple produced the Mac II.

And lots of things broke.
For instance, applications written to take advantage of Motorola's

addressing scheme for the 68000 by stuffing attributes into the unused
eight bits of an address would run for a while on the new hardware and
then suddenly go belly up. Or, a window would grow beyond a certain
size and look very strange, all because someone forgot to check the screen
resolution assuming it would always be the same.

I wouldn't have told this story except for one thing: its historical signif
icance. People drive technology. The more people that use a technology
the more that technology tends to change. PenPoint is going to open per
sonal computing to a large number of people for the first time. Past expe
rience shows that these users will demand change and that hardware
vendors eager to differentiate their products will happily oblige.

GO anticipated this by building PenPoint to be scaleable, both in size
and in functionality. What this means to you, me, and others who write
programs for PenPoint is that we must take care to write well-behaved

233

234 CHAPTER 9

code that avoids using knowledge of the layers underlying the Applica
tion Programmer's Interface.

For example, if you need to know whether to lay an application out in a
horizontal or vertical format based on the screen orientation, you should
ask PenPoint. Layout is also a concern to keep in mind when transferring
documents from one pen computer to another because a document origi
nally laid out horizontally and then saved might be restored on a verti
cally oriented machine!

The two classes described in this chapter illustrate several PenPoint
features that help manage change in the user environment your applica
tion runs in. The first class, clsXWordView, manages the components the
user needs to work the crossword puzzle. clsXWordView asks PenPoint
for its screen orientation and then decides how to lay itself out in the most
visually appealing manner. The second class, clsXWordClue, is a simple
class that displays a header followed by a list of strings. I have imple
mented this class as a DLL to illustrate one way of writing and distribut
ing interchangeable and scaleable components.

User Preference Support

Most new operating environments come with a way for the user to cus
tomize the working environment. PenPoint supports user preferences by
providing a preferences application that the user interacts with to select
the system preferences. PenPoint then stores this information in a
resource file that all PenPoint applications can access to find out what
defaults the user wants.

This section touches briefly on the concept of resource files and how they
are used to store the user preferences. It then talks about the user preference
resource file in particular and the type of information it contains.

Resources

A resource in PenPoint is a collection of data identified with a unique ID.
Programs use resources to maintain information such as string tables, per
sistent objects, component descriptions for option sheets, and any other
data an application wishes to maintain.

Resources are managed by the Resource Manager, can be of any size,
and can contain any type of information. The Resource Manager provides
the functionality for reading, writing, and accessing particular resource
items. In addition to the predefined types of resources such as objects, you

User Preference Support 235

can define custom agents that allow the Resource Manager to efficiently
manipulate resources composed of custom types.

Another feature of a resource is that you can describe it in a text file, as
you would a program, and then use a GO tool to compile it. This is useful
in areas such as internationalization where you might wish to supply dif
ferent string resources based on the language used. You can pre-build dif
ferent resource files and then let the user select the one that makes the
most sense.

System Preferences

PenPoint keeps user preferences in a resource file called generic that stan
dard Resource Manager calls can access. Preferences are organized as a
set of different resources that can be accessed by using a set of Well
Known Resource IDs available to any application.

Screen Orientation The crossword puzzle clsXWordView uses the
screen orientation resource prOrientation to layout its components. The
prOrientation resource contains an unsigned 8-bit (U8) value set to one of
two values:

• prPortrait indicates that the long edge of the screen is vertical.
• prLandscape indicates that the long edge of the screen is horizontal.

Other Preferences In addition to prOrientation, PenPoint also supports
the user preferences listed in Table 9.1.

TABLE 9.1 Other User Preferences.

Preference

prSystemFont

prUserFont
prHandPreference

prWritingStyle
prGestureTimeout

prHWXTimeout

Sets default for

Font used to display text the system main
tains
Font used to display text the user enters
Display layout-Ieft- or right-handed
writing
Writing style-Mixed or uppercase
Length of time waited before detecting the
end of a gesture
Length of time waited before detecting the
end of a written entry

236

prPenHoldTimeout

prInputPadStyle

prLineHeight
prCharBoxWidth
prCharBoxHeight
prTimeFormat
prTimeSeconds
prTime
prDateFormat
prDocFloating
prDocZooming
prBell
prInactivityPowerDown

prPenCursor
prPrimary Input

CHAPTER 9

Length of time the user must hold the pen
to the screen for a pen event to be gener
ated
Type of input pad (boxed or ruled) pre
sented to the user
Line height for writing pads
Width of character-entry boxes
Height of character-entry boxes
Time display-12- or 24-hour format
Displaying or not displaying seconds field
System time value
Format for displaying dates
Document can or can not be floated
Document can or can not be zoomed
Bell is on or off
Length of time to wait from the user's last
interaction before automatically powering
down
Visible or invisible cursor
Primary input-the pen or a keyboard

Packaging Components for Reuse: DLLs

Every now and then, you build a component with a usefulness that tran
scends the application you started writing it for. When this happens, you
need to think about packaging that component for reuse. Traditionally, C
programmers have packaged reusable code in the form of libraries that
can be linked in when the executable application is built.

Unfortunately, this method of code sharing leaves each application
with its own copy of the library. Several operating systems provide a
packaging technology that reduces code duplication by keeping one copy
of the library loaded and allowing applications that need it to link to it at
runtime. Supported by PenPoint, these reusable libraries, called Dynamic
Link Libraries (or DLLs), are compatible with the code sharing inherent in
PenPoint's support of object-based inheritance.

c1sXWordView: The Crossword Puzzle View Class 237

Dynamic Link Libraries

DLLs in PenPoint are self-contained units of functionality that different
applications can share. The linker and loader work in concert to provide
information necessary to resolve all references when the application is
loaded, including loading the DLLs required by the application if they're
not already present.

The build process for using DLLs is very simple and straightforward. I
refer you to the PenPoint tools manual for more details about compiling
and linking DLLs.

DLLMain The one addition necessary to support DLLs is that the mod
ule to be placed in the library must have a special entry point. By conven
tion, this entry point is normally named DLLMain and is called without
arguments. The loader expects the routine to return sysOK if it initialized
without error. Normally, the initialization functions for classes defined in
the DLL are called at this point.

clsXWordView: The Crossword Puzzle View Class

The clsXWordView class serves as the liaison between the application
model (clsXWordData) and the user. A subclass of clsView, it is a composite
object that provides instances of clsXWordClueList to give the user a list of
clues and an instance of clsXWordGrid for the user to work the puzzle on.

The clsXWordView object is created as a result of the user creating a
puzzle document. It can be created for a particular clsXWordData object
that might have been imported, or it can create a default display that can
help in building new puzzles. Once created, it is inserted into the applica
tion's frame and becomes the document's main view.

clsXWordView's layout code has been built to look at the system prefer
ences and lay itself out differently based on the orientation of the display.
For example, Figure 8.1 showed the crossword puzzle in portrait layout,
while Figure 9.1 shows a crossword document in landscape layout. In
addition to coordinating the building of display components, clsXWord
View also manages the correctness checks that the user selects from the
Application menu.

238 CHAPTER 9

FIGURE 9.1 Horizontal (Landscape) Layout of the Crossword Puzzle
Application

12

4. Owe
7. Type
10. Lumberjack's tool
11. Not Dry
12. Rolls

? ~ II ¢I c> jjl .ill9 ~.:Q:..it. •
Help Settings Connections Siationety Accessories Keyboard Inbai OytbOH Notebook

clsXWordView is implemented in three parts: the interface file xwrd
view.h; the implementation file xwrdview.c; and a structure residing in
method.tbl that maps messages sent to clsXWordView objects to the meth
ods that handle those messages.

xwrdview.h

xwrdview.h is the external interface for the Crossword Puzzle View class
clsXWordView. The file begins by checking to make sure the file hasn't
already been included

#ifndef XWRDVIEW_INCLUDED
#define XWRDVIEW_INCLUDED

clsXWordView: The Crossword Puzzle View Class 239

If this is the first access to the file, the first action taken is to include the
interface files for the other components it relies upon, using the statements

#ifndef GO_INCLUDED
#include <go.h>
#endif

#ifndef CLSMGR_INCLUDED
#include <clsrngr.h>
#endif

#ifndef VIEW_INCLUDED
#include <view.h>
#endif

Following the include directives is the definition of the Well Known ID

#define clsXWordView MakeGlobalWKN(4150,l)

used to identify the clsXWordView class to the PenPoint Class Manager,
followed by

STATUS ClsXWordViewInit(void);

which the mainO routine uses in clsXWordApp to register the clsXWord-
View class with the Class Manager. .

N ext come the message selectors used to define messages new to clsX
Word View. They are defined

#define rnsgXWordViewStartPlayOver MakeMsg(clsXWordView,l)
#define rnsgXWordViewShowSoln MakeMsg(clsXWordView,2)
#define rnsgXWordViewClueTapNothing MakeMsg(clsXWordView,3)
#define rnsgXWordViewClueTapStrikeOut\

#define rnsgXWordViewCheckPuzzle
#define rnsgXWordViewCheckLetters
#define rnsgXWordViewCheckWords

MakeMsg(clsXWordView,4)
MakeMsg(clsXWordView,5)
MakeMsg(clsXWordView,6)
MakeMsg(clsXWordView,7)

Following the message selectors are a set of data structures used to
transfer information to and from the crossword puzzle model. The first
set of structures is used during the creation of a new class:

#define xwordviewNewFields \
viewNewFields

typedef struct XWORDVIEW_NEW

240

xwordviewNewFields
XWORDVIEW_NEW, *P_XWORDVIEW_NEWi

CHAPTER 9

The next structure is used by another class (in this example the clsX
WordApp object) to find out how many letters and words the user has
correctly entered on the grid:

typedef struct XWORDVIEW_STATS
U32 wordCoun t ,

okWords,
letterCount,
okLettersi

XWORDVIEW_STATS, *P_XWORDVIEW_STATSi

Finally at the end of the file, the statement

#endif

closes the initial #ifndef clause.

xwrdview.c

xwrdview.c contains the actual implementation for the clsXWordView
Crossword User View class. It begins by including the familiar header files:

#ifndef WIN_INCLUDED
#include <win.h>
#endif

#ifndef FS_INCLUDED
#include <fs.h>
#endif

#ifndef DEBUG_INCLUDED
#include <debug.h>
#endif

#include <stdio.h>
#include <string.h>

Following the reader files is the interface file that describes the external
interface to the preferences resource file:

#ifndef PREFS_INCLUDED
#include <prefs.h>
#endif

c1sXWordView: The Crossword Puzzle View Class 241

Finally, the interfaces to the Crossword Puzzle classes used by the View
class, the View class itself, and the entries generated by the method com
piler are included with the statements:

#ifndef XWRDVIEW_INCLUDED
#include <xwrdview.h>
#endif

#ifndef XWRDGRID_INCLUDED
#include <xwrdgrid.h>
#endif

#ifndef XWRDCLUE_INCLUDED
#include <xwrdclue.h>
#endif

#ifndef XWRDDATA_INCLUDED
#include <xwrddata.h>
#endif

#include <method.h>

Component Window Tags clsXWordView relies on the Window Man
ager to save and restore the state of the list and grid components it cre
ates. The following tags are defined so that the window IDs can be located
after the windows themselves have been restored:

#define
#define
#define

gridWinTag
acrossWinTag
downWinTag

MakeTag(clsXWordView, 1
MakeTag(clsXWordView, 2
MakeTag(clsXWordView, 3

Instance Variables clsXWordView maintains its instance data using the
structure

typedef struct INSTANCE_DATA
UB dispOrientationi
U32 size;
U32 gridSizei
OBJECT model;
OBJECT grid;
OBJECT acrossClues;
OBJECT downCluesi

INSTANCE_DATA, *P_INSTANCE_DATA;

242 CHAPTER 9

clsXWordView uses

• dispOrientation to indicate whether the puzzle should be laid out
for portrait or landscape viewing

• size and gridSize to store the length and total number of squares in
the grid, respectively

• model to identify the instance of clsXWordData that contains the
solution to the puzzle

• grid, acrossClues, and downClues to hold the IDs of the compo
nents used to display information and interact with the user.

Class Registration The mainO routine in clsXWordApp uses the ClsX
WordViewInitO function to register clsXWordView with the Class Manag
er. It is defined

STATUS ClsXWordViewlnit(void)
{

CLASS_NEW c;
STATUS s;

ObjCallRet(msgNewDefaults, clsClass, &c, s);
c.object.uid clsXWordView;
c.cls.pMsg clsXWordViewTable;
c.cls.ancestor clsView;
c.cls.size SizeOf(INSTANCE_DATA);
c.cls.newArgsSize SizeOf(XWORDVIEW_NEW);
ObjCallRet(msgNew, clsClass, &c, s);

return stsOK;

Creating a clsXWordView Object A new instance of clsXWordView is
created by sending msgNewDefaults, to initialize the XWORDVIEW_NEW

structure. The method that responds to this message is

MsgHandlerArgType(XWordViewNewDefaults, P_XWORDVIEW_NEW)
{

pArgs->view.createDataObject = TRUE;

return stsOK;
MsgHandlerParametersNoWarning;

Next, the XWORDVIEW_NEW structure is filled out and used as the param
eter when msgNew is sent to clsXWordView. The method that responds to
the msgInit message that is sent is

clsXWordView: The Crossword Puzzle View Class

MsgHandlerArgType(XWordViewInit, P_XWORDVIEW_NEW)
{

INSTANCE_DATA inst;
WIN_METRICS wm;
BORDER_STYLE bs;
XWORDDATA_NEW xwn;
RES_READ_DATA read;
STATUS s;
XWORDDATA_INFO xwrdInfo;

if (! (pArgs->view.dataObject)

243

&& pArgs->view.createDataObject) {
ObjCallRet(msgNewDefaults, clsXWordData, &xwn, s);
xwn.xword.size = 10;
ObjCallRet(msgNew, clsXWordData, &xwn, s);
ObjCallRet (msgViewSetDataObject, self,
xwn.object.uid,s) ;
inst.model = xwn.object.uid;
}

else
inst.model pArgs->view.dataObject;

read.resId prOrientation;
read.heap 0;
read.pData &inst.dispOrientation;
read. length SizeOf(US);
ObjCallRet(msgResReadData,theSystemPreferences,&read,s);

ObjCallRet(msgXWordDataGetInfo, inst.model, &xwrdInfo,s);

inst.size
inst.gridSize

xwrdInfo.size;
inst.size * inst.size;

StsRet (xWVBuildClueList ("Across", xwrdInfo.acrossClues,
acrossWinTag,&inst.acrossClues) ,s);

StsRet(XWVBuildClueList("Down", xwrdInfo.downClues,
downWinTag, &inst.downClues), s);

StsRet(XWVBuildGrid(inst.size, inst.gridSize,
xwrdInfo.template,xwrdInfo.numbers,
gridWinTag, &inst.grid), s);

ObjectWrite(self, ctx, &inst);

ObjCallRet(msgBorderGetStyle, self, &bs, s);

bs.backgroundInk = bsInkGray33;
ObjCallWarn(msgBorderSetStyle, self, &bs);

244

wm.parent = self;
wm.options = wsPosTop;

CHAPTER 9

ObjCallRet(msgWinlnsert, inst.acrossClues, &wm, s);
ObjCallRet(msgWinlnsert, inst.downClues, &wm, s);
ObjCallRet(msgWinlnsert, inst.grid, &wm, s);

return stsOK;
MsgHandlerParametersNoWarning;

First, the XWordViewlnit method checks to see if a data object has been
created. If so, it's used to initialize the view. Otherwise, an empty 10xl0
default crossword puzzle is created. This will be used to display a blank
grid to the user who could then use it to help generate new puzzles.

After the model issue is resolved, the preferences resource file is que
ried to find out the orientation of the display. A read structure is set up
and then sent to the globally defined object theSystemPreferences.

Next, the data object is asked to fill in an information structure that
indicates the size of the puzzle and provides a list of across clues and a list
of down clues. Using that information, grid Size is computed, and then the
grid, acrossList, and downList objects are created using the XWVBuild
ClueList () and xWVBuildGrid () functions.

When the instance data is completely initialized, it is written back to
protected memory. The last thing the method does is to set its background
color to light gray, and then insert each of its component windows as its
children.

The XWVBuildClueList () function is defined

STATUS LOCAL
XWVBuildClueList(P_STRING pTitle,OBJECT clueList,

TAG winTag, P_OBJECT pList)

XWORDCLUE_NEW xwc;
STATUS s;

ObjCallRet(msgNewDefaults, clsXWordClueList, &xwc, s);
xwc.win.tag winTag;
xwc.border.style.edge bsEdgeAll;
xwc.border. style. shadow bsShadowThickBlack;
xwc.xwclue.pTitle pTitle;
xwc.xwclue.clueList clueList
ObjCallRet(msgNew, clsXWordClueList, &xwc, s);

clsXWordView: The Crossword Puzzle View Class

*pList = xwc.object.uid;
return stsOK;

245

This function creates a clsXWordCLueList window named pTitle that is
surrounded with an edge, given a thick black shadow, displays the list of
clues in dueList, and can be identified by the tag winTag.

The XWVBuildGridO function is defined

STATUS LOCAL
XWVBuildGrid(U32 size, U32 gridSize,

{

P_XWORD_DATA pTernplate, P_XWORD_DATA pNurnbers,
TAG winTag, P_OBJECT pGrid)

XWORDGRID_NEW xwc;
STATUS s;
U32 i;

ObjCallRet(rnsgNewDefaults, clsXWordGrid, &xwc, s);
xwc.win.tag winTag;
xwc.border.style.shadow = bSShadowThickBlack;
xwc.xwgrid.size = size;
for (i=O; i<gridSize; i++) {

xwc.xwgrid.ternplate[i] pTernplate[i];
xwc.xwgrid.nurnbers[i] = pNurnbers[i];
}

ObjCallRet(rnsgNew, clsXWordGrid, &xwc, s);

*pGrid = xwc.object.uid;
return stsOK;

This function uses the code

for (i=O; i<gridSize; i++) {
xwc.xwgrid.ternplate[i] pTernplate[i];
xwc.xwgrid.nurnbers[i] = pNurnbers[i];
}

to initialize an array that tells clsXWordGrid which squares should be
blacked out in the grid (pTemplate), and which squares should be num
bered (pNumbers). The pNumbers array is set up so an entry will be zero,
unless it has a number to be displayed.

Responding to Save and Restore Instances of clsXWordView save part
of their state, but also rely on the Window Manager to save the compo-

246 CHAPTER 9

nent windows used to construct the view. The method that responds to
msgSave is

MsgHandlerWithTypes(XWordViewSave,P_OBJ_SAVE,
P_INSTANCE_DATA)

STATUS Si

fsWrite.nurnBytes = SizeOf(U32) i

fsWrite.pBuf = &(pData->size)i
ObjCallRet(rnsgStrearnWrite, pArgs->file, &fsWrite, s) i

return stsOKi
MsgHandlerPararnetersNoWarningi

The method that responds to msgRestore is implemented as

MsgHandlerArgType(XWordViewRestore, P_OBJ_RESTORE)
{

INSTANCE_DATA insti
RES_READ_DATA readi
STREAM_READ_WRITE fsRead;
STATUS Si

fsRead.nurnBytes SizeOf(U32) i

fSRead.pBuf &inst.sizei
ObjCallRet(rnsgStrearnRead, pArgs->file, &fsRead, s) i

inst.gridSize = inst.size * inst.sizei

read.resId prOrientationi
read.heap Oi
read.pData &inst.dispOrientationi
read. length SizeOf(U8)i
ObjCallRet(rnsgResReadData,theSysternPreferences,&read,s)i

inst.grid =
(WIN)ObjectCall(rnsgWinFindTag,self, (P_ARGS)gridWinTag)i
inst.acrossClues =

(WIN)ObjectCall(rnsgWinFindTag,self, (P_ARGS)acrossWinTag)i
inst.downClues =
(WIN)ObjectCall (rnsgWinFindTag, self, (P_ARGS)downWinTag)i

clsXWordView: The Crossword Puzzle View Class

ObjCallRet(msgViewGetDataObject,self,&inst.model,s) ;

ObjectWrite(self, ctx, &inst);

return stsOK;
MsgHandlerParametersNoWarning;

247

At first, it might seem redundant to check for the screen orientation on
a document that has been filed out. However, the check is important
because the document could have been saved on one tablet, transferred to
another, and then restored. It's possible that the user on the new machine
might have oriented the tablet's screen differently. Actually, now is a good
time to point out that the screen resolution might not even be the same for
the two machines!

clsXWordView also overrides the msgViewSetDataObject with the
method

MsgHandlerArgType(XWordViewSetDataObject, OBJECT)
{

INSTANCE_DATA inst;

inst = IDataDeref(pData, INSTANCE_DATA);
inst.model = pArgs;
ObjectWrite(self, ctx, &inst);

return stsOK;
MsgHandlerParametersNoWarning;

to keep track of when the model changes.

Window Layout As a subclass of cls View, which inherits from clsCus
tomLayout, instances of clsXWordView receive notification that a window
layout episode has started. clsXWordView responds to this notification
using the method

MsgHandlerWithTypes(XWordViewCLGetChildSpec,
P_CSTM_LAYOUT_CHILD_SPEC,P_INSTANCE_DATA)

if (pData->dispOrientation == prLandscape
XWVLandscapeLayout(pData, pArgs);

else
XWVPortraitLayout(pData, pArgs);

248

return stsOK;
MsgHandlerPararnetersNoWarning;

CHAPTER 9

This method uses the dispOrientation instance variable to choose
which layout function (XWVLandscapeLayout () or XWVPortrait
Layou t ()) it should call. These rather verbose functions are defined

LOCAL
XWVLandscapeLayout(P_INSTANCE_DATA pData,

P_CSTM_LAYOUT_CHILD_SPEC pSpec)

if (pSpec->child == pData->grid) {
pSpec->metrics.h.constraint
pSpec->metrics.h.value
pSpec->metrics.w.constraint
pSpec->metrics.w.relWin
pSpec->metrics.x.constraint

clPctOf;
96;
clSameAs I clOpposite;
pSpec->child;

ClAlign(clMinEdge, clPctOf, clMaxEdge);
pSpec->metrics.x.value = 2;
pSpec->metrics.y.constraint =

ClAlign(clCenterEdge, clSameAs, clCenterEdge);

else if (pSpec->child == pData->acrossClues) {
pSpec->metrics.w.constraint =

ClExtend(clPctOf, clMaxEdge);
pSpec->metrics.w.value 98;
pSpec->metrics.h.constraint clPctOf;
pSpec->metrics.h.value 44;
pSpec->metrics.h.relWin pData->grid;
pSpec->metrics.x.constraint

ClAlign(clMinEdge, clPctOf, clMaxEdge);
pSpec->metrics.x.value 106;
pSpec->metrics.x.relWin = pData->grid;
pSpec->metrics.y.constraint

ClAlign(clMaxEdge, clSameAs, clMaxEdge);
pSpec->metrics.y.relWin = pData->grid;
}

else if (pSpec->child == pData->downClues) {
pSpec->metrics.w.constraint =

ClExtend(clPctOf, clMaxEdge);
pSpec->metrics.w.value 98;
pSpec->metrics.h.constraint clPctOf;
pSpec->metrics.h.value 44;
pSpec->metrics.h.relWin pData->grid;
pSpec->metrics.x.constraint

ClAlign(clMinEdge, clPctOf, clMaxEdge);

c1sXWordView: The Crossword Puzzle View Class

pSpec->metrics.x.relWin
pSpec->metrics.x.value
pSpec->metrics.y.constraint

pData->grid;
106;

C1Align(clMinEdge, clSameAs, clMinEdge);
pSpec->metrics.y.relWin = pData->grid;
}

return stsOK;

249

Notice that in several places I use a value of 106 percent to place the
alignment coordinate outside the relative window.

Next, the function that manages portrait layout is defined

LOCAL
XWVPortraitLayout(P_INSTANCE_DATA pData,

P_CSTM_LAYOUT_CHILD_SPEC pSpec)

if (pSpec->child == pData->grid) {
pSpec->metrics.h.constraint clSameAs I clOpposite;
pSpec->metrics.h.relWin pSpec->child;
pSpec->metrics.w.constraint clPctOf;
pSpec->metrics.w.value 80;
pSpec->metrics.x.constraint

C1Align(clCenterEdge, clSameAs, clCenterEdge);
pSpec->metrics.y.constraint =

C1Align(clMaxEdge, clPctOf, clMaxEdge);
pSpec->metrics.y.value = 98;
}

else if (pSpec->child == pData->acrossClues) {
pSpec->metrics.h.constraint =

C1Extend(clPctOf, clMinEdge);
pSpec->metrics.h.value 94;
pSpec->metrics.h.relWin pData->grid;
pSpec->metrics.w.constraint clPctOf;
pSpec->metrics.w.value 44;
pSpec->metrics.w.relWin pData->grid;
pSpec->metrics.y.constraint

C1Align(clMinEdge, clPctOf, clMaxEdge);
pSpec->metrics.y.value = 2;
pSpec->metrics.x.constraint =

C1Align(clMinEdge, clSameAs, clMinEdge);
pSpec->metrics.x.relWin = pData->grid;
}

else if (pSpec->child == pData->downClues) {
pSpec->metrics.h.constraint =

C1Extend(clPctOf, clMinEdge);

250

pSpec->metrics.h.value
pSpec->metrics.h.relWin
pSpec->metrics.w.constraint
pSpec~>metrics.w.value

pSpec->metrics.w.relWin
pSpec->metrics.y.constraint

94;
pData->grid;
clPctOf;
44;
pData->grid;

C1Align(clMinEdge, clPctOf, clMaxEdge);
pSpec->metrics.y.value = 2;
pSpec->metrics.x.constraint =

C1Align(clMaxEdge, clSameAs, clMaxEdge);
pSpec->metrics.x.relWin = pData->grid;
}

return stsOK;

CHAPTER 9

Controlling Play clsXWordView defines several methods that control how
the user plays or works the crossword puzzle. They are XWordViewShowSoln
and XWordViewStartOver, which respond to the messages
msgXWordViewShowSoln and msgXWordViewStartOver, respectively.

XWordViewShowSoln gets the correct answers from the model object and
forwards them to the grid object. It is defined

MsgHandlerWithTypes(XWordViewShowSoln,
P_ARGS, P_INSTANCE_DATA)

XWORD_DATA solution [XWORD_MAX_GRID_SIZE] ;
GRID_DATA gridData[GRID_MAX_GRID_SIZE];
U32 i;
STATUS S;

ObjCallRet(msgXWordDataGetLetters, pData->model,
&solution, s);

for (i=O; i<pData->gridSize; i++)
gridData[i] = solution[i];

ObjCallRet(msgXWordGridSetLetters,pData>grid,gridData,s);

return stsOK;
MsgHandlerParametersNoWarning;

XWordViewStartPlayOver instructs the grid and clue objects to reset
themselves as if the user never worked the puzzle. It is defined

MsgHandlerWithTypes(XWordViewStartPlayOver,
P_ARGS, P_INSTANCE_DATA)

clsXWordView: The Crossword Puzzle View Class

STATUS Si

ObjCallRet(rnsgXWordGridStartPlayOver,pData->grid,
NULL, s) i

251

ObjCallRet(rnsgXWordClueStartPlayOver, pData>acrossClues,
NULL, s)i

ObjCallRet(rnsgXWordClueStartPlayOver, pData->downClues,
NULL, s) i

return stsOKi
MsgHandlerPararnetersNoWarningi

Controlling the Clue Lists clsXWordView defines several methods that
control the user's interaction with the items on the clue lists. These methods
are invoked by messages sent from the clsXWordApp object when it receives
messages from the menu bar requesting a user command be executed.

Two methods, XWordViewClueTapNothing, which responds to the mes
sage msgXWordViewClueTapNothing, and XWordViewClueTapStrikeOut,
which responds to the message msgXWordViewClueTapStrikeOut, act as
forwarders to the clue list component objects. They are defined

MsgHandlerWithTypes(XWordVieWClueTapNothing,
P_ARGS, P_INSTANCE_DATA}

STATUS Sj

ObjCallRet(msgXWordClueClueTapNothing,pData->acrossClues,
NULL, s } j

ObjCallRet(msgXWordClueClueTapNothing,pData->downClues,
NULL, s } j

return stsOKj
MsgHandlerParametersNoWarningj

MsgHandlerWithTypes(XWordVieWClueTapStrikeOut, P_ARGS,
P_INSTANCE_DATA}

STATUS Sj

ObjCallRet(msgXWordClueClueTapStrikeOut,pData->acrossClues,
NULL, s };

252

ObjCallRet(msgXWordClueClueTapStrikeOut , pData->downClues,
NULL, s);

return stsOK;
MsgHandlerParametersNoWarning;

CHAPTER 9

The Puzzle Statistics The clsXWordView method XWordViewCheckPuzzle
responds to the msgXWordViewCheckPuzzle message by requesting cop
ies of the model's correct data and the grid's user-supplied data, and then
comparing the two sets of information in a meaningful manner. The
method is defined

MsgHandlerWithTypes(XWordViewCheekPuzzle,
P_XWORDVIEW_STATS, P_INSTANCE_DATA)

XWORD_DATA
GRID_DATA
U32
XWORDDATA_WORD
STATUS

solution[XWORD_MAX_GRID_SIZEJ;
frGrid[GRID_MAX_GRID_SIZEJ;
i, len, ent, index;
xdw;
s;

ObjCallRet(msgXWordDataGetLetters, pData->model,
&solution, s);

ObjCallRet(msgXWordGridGetLetters, pData->grid,&frGrid,s);

pArgs->letterCount = pArgs->okLetters = 0;
for (i=O, len=pData->gridSize; i<len; i++

if (solution[i]) {
pArgs->letterCount++;
if (solution[i] == frGrid[i]

pArgs->okLetters++;

pArgs->okWords = 0;
ObjCallRet(msgXWordDataGetAerossCount,pData->model,&ent,s);
pArgs->wordCount = ent;
for (i=O; i<ent; i++) {

xdw.index = .i;
ObjCallRet(msgXWordDataGetAeros sWord , pData->model,

&xdw, s);
index = xdw.origin.x + xdw.origin.y*pData->size;
if (XWVaeeStrEqu(&frGrid[index] , pData->size,xdw.word))

pArgs->okWords++;

clsXWordView: The Crossword Puzzle View Class

ObjCallRet(msgXWordDataGetDownCount, pData->model,&cnt,s);
pArgs->wordCount += cnti
for (i=Oi i<cnti i++) {

xdw. index = i;
ObjCallRet(msgXWordDataGetDownWord,pData->model,&xdw,s);
index = xdw.origin.x + xdw.origin.y*pData->sizei
if (XWVdwnStrEqu(&frGrid[index], pData->size,xdw.word))

pArgs->okWords++;

return stsOKi
MsgHandlerParametersNoWarningi

253

In addition to requesting more information from the model, the
XWordViewCheckPuzzle uses two local functions to do the equivalent of
!strcmpO. The first function

XWVaccStrEqu(P_U8 gStr, U32 size, P_U8 word
{

return (!strncrnp(gStr, word, strlen(word)
Unused (size);

? 1 o);

is somewhat redundant. However, it provides a matching function for

XWVdwnStrEqu(P_U8 gStr, U32 size, P_U8 word)
{

U32 len, i;

for (i=O, len=strlen(word); i < len; i++) {
if (*gStr != word[i])

break;
gStr += size;
}

return (i
}

len) ;

This function is necessary to navigate the puzzle data which is kept as a
flattened array layout of the two-dimensional data.

Visual Feedback on the Grid In addition to the statistics display, the
user also has the option of requesting that the grid display its letters in
differently shaded fonts indicating which letters are correct and which
are incorrect. clsXWordView supports this functionality by implement
ing two methods that, with one difference, perform work similar to

254 CHAPTER 9

XWordViewCheckPuzzle. The difference is that instead of returning infor
mation to the application class for display to the user, the view sends a
message to the grid indicating which letters are correct. It then relies on
the grid to do something intelligent with the information.

The first method, XWordViewCheckLetters, responds to the message
msgXWordViewCheckLetters and is defined

MsgHandlerWithTypes(XWordViewCheckLetters,
P_ARGS, P_INSTANCE_DATA)

XWORD_DATA solution[XWORD_MAX_GRID_SIZE];
GRID_DATA frGrid[GRID_MAX_GRID_SIZE] ,

toGrid[GRID_MAX_GRID_SIZEJ;
U32 i;
STATUS s;

ObjCallRet(msgXWordDataGetLetters, pData->model,
&solution,s) ;

ObjCallRet(msgXWordGridGetLetters, pData->grid,&frGrid,s);

for (i=O; i<pData->gridSize; i++)
if (f rG rid [i])

toGrid[i] (solution[i] == frGrid[i]);
else

toGrid[i] 0;

ObjCallRet(msgXWordGridSetOkLetters,pData->grid,toGrid,s);

return stsOK;
MsgHandlerParametersNoWarning;

The second method, XWordViewCheckWords, responds to the message
msgXWordViewCheckWords and is defined

MsgHandlerWithTypes(XWordvieWCheekWords,
P_ARGS, P_INSTANCE_DATA)

U32

GRID....;DATA
i, j, len, ent, index;
frGrid[GRID_MAX_GRID_SIZE],
toGrid[GRID_MAX_GRID_SIZE]i

XWORDDATA_WORD XdWi
STATUS Si

ObjCallRet(msgXWordGridGetLetters, pData->grid,&frGrid,s) i

memset(toGrid, 0, pData->gridSize * SizeOf(GRID_DATA))i

clsXWordView: The Crossword Puzzle View Class

ObjCallRet(msgXWordDataGetAcrossCount,pData->model,&cnt,s)j

for (i=Oj i<cntj i++) {
xdw. index = i j

ObjCallRet(msgXWordDataGetAcrossWord, pData->model,&xdw, s)j

index = xdw.origin.x + xdw.origin.y*pData->sizej
if (XWVaccStrEqu(&frGrid[index),pData->size,xdw.word)){

len = strlen(xdw.word)j

for (j=O j j<len j j++
toGrid[index+j) = 1;

ObjCallRet(msgXWordDataGetDownCount,pData>model,&cnt,s)j
for (i=Oj i<cntj i++) {

xdw.index = ij
ObjCallRet(msgXWordDataGetDownWord,pData->model,&xdw,s)j
index = xdw.origin.x + xdw.origin.y*pData->size;
if (XWVdwnStrEqu(&frGrid[index),pData->size,xdw.word)){

len = strlen(xdw.word);
for (j=O j j<len ; j++)

toGrid[index) = 1j

index += pData->sizej

ObjCallRet(msgXWordGridSetOkLetters,pData->grid,toGrid, s)j

return stsOKj

MsgHandlerParametersNoWarning;
}

method.tbl

255

method. tbl contains the following MSG_INFO structure for mapping
messages to methods in clsXWordView:

MSG_INFO clsXWordViewMethods[) = {

msgNewDefaults,"XWordViewNewDefaults",objCallAncestorBefore,
msglnit, "XWordViewlnit", objCallAncestorBefore,
msgSave,
msgRestore,

"XWordviewSave" ,
"XWordViewRestore",

objCallAncestorBefore,
objCallAncestorBefore,

256

rnsgCstmLayoutGetChildSpec, "XWordVieWCLGetChildSpec" ,
objCallAncestorBefore,

rnsgXWordViewStartPlayOver, "XWordViewStartPlayOver",

CHAPTER 9

0,

rnsgXWordViewShowSoln, "XWordviewShowSoln" , 0,
rnsgXWordVieWClueTapNothing, "XWordVieWClueTapNothing" , 0,
rnsgXWordVieWClueTapStrikeOut, "XWordVieWClueTapStrikeOut" , 0,
rnsgXWordVieWCheckPuzzle,
rnsgXWordVieWCheckLetters,
rnsgXWordVieWCheckWords,

° } i

"XWordvieWCheckPuzzle" ,
"XWordVieWCheckLetters" ,
"XWordVieWCheckWords" ,

clsXWordClueList: The Clue List View Class

0,

0,

0,

The clsXWordClueList class is a control-style component that displays a
titled, scrollable list of items to the user. The class is a subclass of clsCus
tomLayout and is constructed by combining a clsListBox object with a
clsLabel object. The clue list can be programmatically instructed to
respond to a single tap on a list item by toggling as strikeout line through
the item. I choose to implement this class as a DLL because I'm sure there
will be other times when I want a list with a title on the top.

c1sListBox

clsXWordClueList uses an instance of clsListBox to manage the display of
clues. In addition to managing the display of items it contains, clsListBox
also allows you to register to receive notification when the user performs
a gesture on one of the items. clsListBox items also have the ability to
associate application-specific data with each object. This information is
maintained, but not interpreted, for the object that is using clsListBox.

Incidentally, there are other specialized subclasses of clsListBox for
managing lists of strings. They are clsStringListBox and clsFontListBox.
At first, clsStringListBox seemed a likely candidate for clsXWordClueList,
because it displays a list of strings. Unfortunately, it doesn't allow gesture
forwarding, which is used to indicate that the user is tapping on the clue.
The second subclass of clsListBox, clsFontListBox, is actually a subclass of
clsStringListBox. It automatically fills in its contents from the list of avail
able fonts.

clsXWordClueList: The Clue List View Class 257

xwrdclue.h

xwrdclue.h is the external interface for the clue list display class clsX
WordClueList. The file begins by checking to make sure the file hasn't
already been included

#ifndef XWRDCLUE_INCLUDED
#define XWRDCLUE_INCLUDED

If this is the first access to the file, the first action taken is to include the
interface files for the other components it relies upon, using the statements

#ifndef GO_INCLUDED
#include <go.h>
#endif

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#ifndef CLAYOUT_INCLUDED
#include <label.h>
#endif

Following the include directives is the definition of the Well Known ID:

#define clsXWordClueList MakeGlobalWKN(4153,l)

This identifies the clsXWordClueList class to the PenPoint Class Manager.
Next come the message selectors used to define messages new to clsX

WordClueList:

#define msgXWordClueStartPlayOver \
MakeMsg(clsXWordClueList, 1

#define msgXWordClueClueTapNothing \
MakeMsg(clsXWordClueList, 2

#define msgXWordClueClueTapStrikeOut \
MakeMsg(clsXWordClueList, 3

Following the message selectors are a set of data structures used during
the creation of a new clsXWordClueList object:

typedef struct
U32
P_STRING

size;
pTitle;

OBJECT clueList;
XWORDCLUE_NEW_ONLY, *P_XWORDCLUE_NEW_ONLY;

258

#define xwordclueNewFields \
customLayoutNewFields \
XWORDCLUE_NEW_ONLY xwcluei

typedef struct XWORDCLUE_NEW
xwordclueNewFields

} XWORDCLUE_NEW, *P_XWORDCLUE_NEWi

Finally, at the end of the file, the statement

#endif

closes the initial #ifndef clause.

xwrdclue.c

CHAPTER 9

xwrdclue.c contains the actual implementation for the clsXWordClueList
class. It begins by including the familiar header files:

#ifndef GO_INCLUDED
#include <go.h>
#endif

#ifndef WIN_INCLUDED
#include <win.h>
#endif

#ifndef STROBJ_INCLUDED
#include <strobj.h>
#endif

#ifndef LIST_INCLUDED
#include <list.h>
#endif

#ifndef FS INCLUDED
#include <fs.h>
#endif

#ifndef CLAYOUT_INCLUDED
#include <clayout.h>
#endif

#ifndef LABEL_INCLUDED
#include <label.h>
#endif

clsXWordClueList: The Clue List View Class

#ifndef GWIN_INCLUDED
#include <gwin.h>
#endif

#ifndef XGESTURE_INCLUDED
#include <xgesture.h>
#endif

#ifndef DEBUG_INCLUDED
#include <debug.h>
#endif

#include <stdio.h>
#include <string.h>

259

The interface file that describes the external interface to the clsListBox
object follows:

#ifndef LISTBOX_INCLUDED
#include <listbox.h>
#endif

Finally, the interface to the clsXWordClueList class itself and the entries
generated by the method compiler are included with the statements

#ifndef XWRDCLUE_INCLUDED
#include <xwrdclue.h>
#endif

#include <xclu_rnth.h>

Notice that a second method table file has been introduced. This is nec
essary to support placing clsXWordClueList in its own separate Dynamic
Link Library.

Component Window Tags clsXWordClueList relies on the Window
Manager to save and restore the state of the title and list components it
creates. The following tags

#define titleWinTag
#define listWinTag

MakeTag(clsXWordClueList, 1)
MakeTag(clsXWordClueList, 2)

are defined so the window IDs can be located after the windows them
selves have been restored.

260 CHAPTER 9

Instance Variables clsXWordClueList maintains its instance data by us
ing the structure

typedef struct INSTANCE_DATA
UB clueTapMode;
U16 clueCnt;
OBJECT titleWin;
OBJECT listWin;
INSTANCE_DATA, *P_INSTANCE_DATA;

clsXWordClueList uses clueTapMode to keep track of whether it should
monitor user taps on items in the clue list. It uses the definitions

#define MODE_NOTHING 0
#define MODE_STRIKEOUT 1

to indicate its state.
The rest of the instance variables keep information that is commonly

used to process requests. Keeping this information as instance data is a
performance consideration; this information could be requested from the
listBox object or Window Manager as needed.

DLL Initialization xwrdclue.c contains a standard DLLMainO routine
that PenPoint calls when the DLL is loaded into the operating environ
ment. It is defined

STATUS EXPORTED DLLMain (void)
{

STATUSs;

StsRet (ClsXWordClueListInit () , s);

return stsOK;

and is responsible for calling

STATUS ClsXWordClueListInit(void)
{

CLASS_NEW c;
STATUS s;

ObjCallRet(rnsgNewDefaults, clsClass, &c, s);
c.object.uid clsXWordClueList;
c.cls.pMsg clsXWordClueListTable;
c.cls.ancestor
c.cls.size

clsCustornLayout;
SizeOf(INSTANCE_DATA) ;

clsXWordClueList: The Clue List View Class

c.cls.newArgsSize = SizeOf(XWORDCLUE_NEW);
ObjCallRet(msgNew, clsClass, &c, s);

return stsOK;

261

Initializing a clsXWordClueList Object The method that responds to
the msglnit message for clsXWordClueList is

MsgHandlerArgType(XWordClueInit, P_XWORDCLUE_NEW)
{

INSTANCE_DATA inst;
WIN_METRICS WID;
LIST_FREE If;
STATUS s;

inst.clueTapMode = MODE_NOTHING;
ObjCallRet(msgListNumItems, pArgs->xwclue.clueList,

&inst.clueCnt, s);

StsRet(XWCCreateListTitle(pArgs->xwclue.pTitle,
titleWinTag, &inst.titleWin), s);

StsRet(XWCCreateListBox(self, pArgs->xwclue.clueList,
listWinTag, &inst.listWin), s);

If.key = (OBJ_KEY)clsList;
If.mode = listFreeItemsAsObjects;
ObjCallWarn(msgListFree, pArgs->xwclue.clueList, &If);

ObjectWrite(self, ctx, &inst);

wm.parent = self;

wm.options = wsPosTop;
ObjCallRet(msgWinInsert, inst.titleWin, &wm, s);
ObjCallRet(msgWinInsert, inst.listWin, &wm, s);

return stsOK;
MsgHandlerParametersNoWarning;

This method begins by setting the clueCnt instance variable with the
value returned from the message sent asking the list for that information.
Next, it creates the title and list objects that comprise a clsXWordClueList
object. It then frees the list it was given as part of XWORDCLUE_NEW struc-

262 CHAPTER 9

ture. Finally, it writes the instance data back to protected memory and
inserts the new child windows in the window hierarchy.

In the process of creating the list component, XWordClueInit uses the
XWCCreateListTitle () and XWCCreateListBox () functions.

XWCCreateListTitleO is defined

STATUS LOCAL
XWCCreateListTitle(P_U8 pTitle,TAG tag, P_OBJECT pTitleWin)
{

LABEL_NEW
STATUS

In;
s;

ObjCallRet(msgNewDefaults, clsLabel, &In, s);
In.win.tag tag;
In.label.style.scaleUnits bsUnitsFitWindowProper;
In.label.style.xAlignment IsAlignCenter;
In.label.pString pTitle;
In.border.style.edge bsEdgeAII;
ObjCaIIRet(msgNew, clsLabel, &In, s);
*pTitleWin = In.object.uid;

return stsOK;

XWCCreateListBoxO is defined

STATUS LOCAL
XWCCreateListBox(OBJECT self, OBJECT list, TAG tag,

P_OBJECT pListBox)

LIST_BOX_NEW Ibn;
LIST_BOX_ENTRY lbe;
LABEL_NEW In;
LIST_ENTRY Ie;
STATUS s;
U16 cnt;
U32 i;

ObjCallRet(msgListNumItems, list, &cnt, s);

ObjCaIIRet(msgNewDefaults, clsListBox, &lbn, s);
lbn.win.tag tag;
lbn.border.style.edge bsEdgeAII;
Ibn.listBox.client self;
Ibn.listBox.nEntries cnt;
Ibn.listBox.nEntriesToView cnt;
ObjCaIIRet(msgNew, clsListBox, &lbn, s);
*pListBox = lbn.object.uid;

clsXWordClueList: The Clue List View Class

memset(&lbe, 0, SizeOf(LIST_BOX_ENTRY));
lbe.listBox = *pListBox;
lbe.freeEntry= lbFreeDataWhenDestroyed;
for (i=O; i<ent; i++) {

lbe.position = le.position = i;
ObjCallRet(msgListGetItem, list, &le, s);
ObjCallRet(msgNewDefaults, elsLabel, &In, s);
In.border.style.edge = bsEdgeNone;

263

ObjCallRet(msgStrObjGetStr,le.item,&ln.label.pString,s);
ObjCallRet(msgNew, elsLabel, &In, s);
lbe.win = In.objeet.uid;
ObjCallRet(msgListBoxInsertEntry, *pListBox, &lbe, s);
}

return stsOK;

The first part of this function uses the code

lbn.listBox.elient
lbn.listBox.nEntries
lbn.listBox.nEntriesToView

self;
ent;
ent;

to create a clsListBox object that will create and display all possible
entries. Additionally, the clsXWordClueList object being created will be
notified of all changes made to the ListBox, including forwarded gestures.

Next, a LIST_BOX_ENTRY structure is initialized to describe the type
of labels that will be inserted into the ListBox to display the clues. The ini
tialization includes the line

lbe.freeEntry = lbFreeDataWhenDestroyed;

which instructs the list not to free any objects until the ListBox itself is
destroyed. You can also specify that the items be freed when they are no
longer visible to the user.

Once the structure is initialized, the input list is traversed, and individual
clsLabel objects are created and then inserted into the ListBox for each clue.

Responding to Save and Restore Instances of clsXWordClueList save
the current clueCnt and clueTapMode and rely on the Window Manager
to save the component windows used to construct the clue list. The meth
od that responds to msgSave is

264

MsgHandlerWithTypes(XWordClueSave,P_OBJ_SAVE,P_INSTANCE_DATA)
{

STREAM_READ_WRITE fsWritei
STATUS Si

fsWrite.numBytes = SizeOf(U16)i
fsWrite.pBuf = &(pData->clueCnt)i
ObjCallRet(msgStreamWrite, pArgs->file, &fsWrite, s)i

fsWrite.numBytes = SizeOf(U8)i
fsWrite.pBuf = &(pData->clueTapMode)i
ObjCallRet(msgStreamWrite, pArgs->file, &fsWrite, s)i

return stsOKi
MsgHandlerParametersNoWarningi

The method that responds to msgRestore is

MsgHandlerArgType(XWordClueRestore, P_OBJ_RESTORE)
{

INSTANCE_DATA
LIST_BOX_METRICS
STREAM_READ_WRITE
STATUS

inst;
Ibm;
fsRead;
s;

fsRead.numBytes = SizeOf(U16);
fsRead.pBuf = &inst.clueCnt;

CHAPTER 9

ObjCaIIRet(msgStreamRead, pArgs->file, &fsRead, s);

fsRead.numBytes = SizeOf(U8);
fsRead.pBuf = &inst.clueTapMode;
ObjCallRet(msgStreamRead, pArgs->file, &fsRead, s);
inst.titleWin =
(WIN)ObjectCall(msgWinFindTag,self, (P_ARGS)titleWinTag);
inst.listWin =
(WIN)ObjectCall(msgWinFindTag,self, (P_ARGS)listWinTag);

ObjectWrite(self, ctx, &inst);

ObjCallRet(msgListBoxGetMetrics,inst.listWin, &lbm, s);
Ibm. client = self;
ObjCallRet(msgListBoxSetMetrics,inst.listWin, &lbm, s);

return stsOK;
MsgHandlerParametersNoWarning;

clsXWordClueList: The Clue List View Class

The statements

ObjCallRet(msgListBoxGetMetrics, inst.listWin, &lbm, s)i

Ibm. client = self;
ObjCallRet(msgListBoxSetMetrics, inst.listWin, &lbm, s);

265

are necessary to re-establish the clsXWordClueList parent object as a
dependent of the ListBox object after restoring is complete.

Window Layout As a subclass of clsCustomLayout, instances of
clsXWordClueList receive notification that a window layout episode has
started. clsXWordClueList responds to this notification using the method

#define TEXT_SIZE 12

MsgHandlerWithTypes(XWordClueCLGetChildSpec,
P_CSTM_LAYOUT_CHILD_SPEC, P_INSTANCE_DATA)

if pArgs->child == pData->titleWin) {
pArgs->metrics.w.constraint
pArgs->metrics.h.constraint
pArgs->metrics.h.value
pArgs->metrics.x.constraint

clSameAs;
clAbsolute;
TEXT_SIZE;

C1Align(clMinEdge, clSameAs,
pArgs->metrics.y.constraint

C1Align(clMaxEdge, clSameAs,

c lMinEdge) ;

c lMaxEdge) ;

else if (pArgs->child == pData->listWin) {
pArgs->metrics.w.constraint clSameAs;
pArgs->metrics.h.relWin = pData->titleWin;
pArgs->metrics.h.constraint

C1Extend(clSameAs, clMinEdge);
pArgs->metrics.x.constraint

C1Align(clMinEdge, clSameAs, clMinEdge);
pArgs->metrics.y.constraint

C1Align(clMinEdge, clSameAs, clMinEdge);

return stsOK;
MsgHandlerParametersNoWarning;

Notice that I specify an absolute size for the label. This causes the clue list
to take from the space for displaying clues as it gets smaller. Otherwise, you
could end up with two small boxes, neither of which are readable.

266 CHAPTER 9

Controlling Play clsXWordClueList defines several methods that
control how the user plays or interacts with the list of clues. They are
XW ord CI ueStartPla yOver, XW ord CI ueCI ueTa pN othing, and
XWordClueClueTapStrikeOut, which respond to the messages
msgXWordClueStartPlayOver, msgXWordClueClueTapNothing, and ms
gXWordClueClueTapStrikeOut, respectively.

XWordClueStartPlayOver is defined

MsgHandlerWithTypes(XWordClueStartPlayOver,
P_ARGS, P_INSTANCE_DATA)

LIST_BOX_ENTRY Ibe;
U32 i;
STATUS s;

for (i=O; i<pData->clueCnt; i++) {
Ibe.listBox = pData->listWin;
Ibe.position = i;
ObjCallRet(msgListBoxGetEntry, pData->listWin, &lbe,s);
if (Ibe.data == MODE_STRIKEOUT) {

StsRet(XWCSetClueEntryStyle(lbe.win, MODE_NOTHING),s);
Ibe.data = MODE_NOTHING;
ObjCallRet(msgListBoxSetEntry, pData->listWin,&lbe,s);
}

return stsOK;
MsgHandlerParametersNoWarning;

XWordClueStartPlayOver goes through each item in the list and removes
the strikeout attribute from the displayed item if it's there. It uses the
function

STATUS LOCAL
XWCSetClueEntryStyle(OBJECT clueEnt, UB style)
{

LABEL_STYLE
STATUS

Is;
s;

ObjCallRet(msgLabelGetStyle, clueEnt, &ls, s);
ls.strikeout = (style == MODE_STRIKEOUT) ? 1 : 0;
ObjCallRet(msgLabelSetStyle, clueEnt, &ls, s);
ObjCallRet(msgWinDirtyRect, clueEnt, pNull, s);

return stsOK;

clsXWordClueList: The Clue List View Class 267

to remove the strikeout mark. The next two methods also use this func
tion for setting and removing the strikeout attribute.

The XWordClueClueTapNothing method is used to disable the strike
out feature from the clue list. It is implemented by

MsgHandlerArgType(XWordClueClueTapNothing, P_ARGS
{

INSTANCE_DATA inst;
LIST_BOX_ENTRY Ibe;
U32 i;
STATUS s;

inst = IDataDeref(pData, INSTANCE_DATA);
inst.clueTapMode = MODE_NOTHING;
ObjectWrite(self, ctx, &inst);

for (i=O; i<inst.clueCnt; i++
Ibe.listBox = inst.listWin;
Ibe.position = i;
ObjCallRet (msgListBoxGetEntry, inst.listWin,&lbe, s);
if (Ibe.data == MODE_STRIKEOUT)

StsRet(XWCSetClueEntryStyle(lbe.win,MODE_NOTHING),S)i

return stsOK;
MsgHandlerParametersNoWarning;

Although the strikeout attribute is removed from the displayed Label
item, it is not removed from the list item's data. This allows the user to
turn off the strikeout features without losing track of the items that have
been marked. When the XWordClueClueTapStrikeout method is used, all
items that were marked as having a line through them will be restored to
that state.

The implementation for the XWordClueClueTapStrikeout method is

MsgHandlerArgType(XWordClueClueTapStrikeOut, P_ARGS
{

INSTANCE_DATA inst;
LIST_BOX_ENTRY Ibe;
U32 i;

STAWS s;

inst = IDataDeref(pData, INSTANCE_DATA);
inst.clueTapMode = MODE_STRIKEOUT;
ObjectWrite(self, ctx, &inst);

268

for (i=Oi i<inst.clueCnti i++) {
Ibe.listBox = inst.listWini
Ibe.position = ii
ObjCallRet(msgListBoxGetEntry, inst.listWin, &lbe, S)i

if (Ibe.data == MODE~STRIKEOUT
StsRet(XWCSetClueEntryStyle(Ibe.win, MODE_STRIKEOUT) ,

s) i

return stsOKi
MsgHandlerParametersNoWarningi

CHAPTER 9

Handling Forwarded Gestures clsXWordClueList uses the gesture for
warding feature of clsListBox to tell when the user has tapped on an item
in the ListBox. Currently, a tap causes the strikeout state to toggle be
tween On and Off. The code that implements this functionality responds
to msgListBoxEntryGesture and is defined

MsgHandlerWithTypes(XWordClueEntryGesture,
P_LIST_BOX_ENTRY, P_INSTANCE_DATA)

STATUS Si

if (! (((P_GWIN_GESTURE) (pArgs->arg))->msg == xgslTap))
return stsOKi

if (pData->clueTapMode == MODE_NOTHING
return stsOKi

pArgs->data = (P_UNKNOWN) ((pArgs->data == MODE_NOTHING)
? MODE_STRIKEOUT: MODE_NOTHING)i

StsRet(XWCSetClueEntryStyle(pArgs->win, (U8)pArgs->data),s) i

ObjCallRet(msgListBoxSetEntry,pArgs->listBox, pArgs,s)i

ObjCallRet(msgWinDirtyRect, pArgs->win, pNull, s)i

return stsOKi
MsgHandlerParametersNoWarningi

The first conditional

if (! (((P_GWIN_GESTURE) (pArgs->arg))->msg == xgslTap)

clsXWordClueList: The Clue List View Class 269

extracts the event from the ListBox entry structure and checks to see if it's
a single tap. If it is, the conditional then checks to see if the user wants the
tap processed or not.

xclu_mth.tbl contains the complete set of message/method mapping
structures for the clsXWordClueList DLL and is implemented

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#ifndef CLAYOUT_INCLUDED
#include <clayout.h>
#endif

#ifndef LISTBOX_INCLUDED
include <listbox.h>
#endif

#ifndef XWRDCLUE_INCLUDED
#include <xwrdclue.h>
#endif

MSG_INFO clsXWordClueListMethods[] = {

msgInit, "XWordClueInit", objCallAncestorBefore,
msgSave, "XWordClueSave", objCallAncestorBefore,
msgRestore, "XWordClueRestore", objCallAncestorBefore,
msgCstmLayoutGetChildSpec, "XWordClueCLGetChildSpec",

objCallAncestorBefore,
msgXWordClueStartPlayOver, 11 XWordClueStartPlayOver 11 , 0,
msgXWordClueClueTapNothing, "XWordClueClueTapNothing", 0,
msgXWordClueClueTapStrikeOut,IXWordClueClueTapStrikeOut",0,

} ;

msgListBoxEntryGesture,

°
"XWordClueEntryGesture",

CLASS_INFO classInfo[] = {
"clsXWordClueListTable",clsXWordClueListMethods,O,

° } ;

0,

270 CHAPTER 9

Wrap-up

One powerful advantage of using objects to program is the support they
provide for decoupling information. For example, what makes a cross
word puzzle view is that it responds to the requests of the crossword
application class. It doesn't care if its start over message was generated by
a menu selection or a voice command-that's someone else's problem.

DLLs carry this concept even further. Notice that there was no compile
time indication that clsXWordView uses functionality from a DLL. clsX
WordView methods send messages that aren't bound to the receiving
method until runtime anyway, so it makes no difference when the linking
of behavior with the request for its usage occurs. This is why it's safe to say
that the use of deferred binding in conjunction with DLLs is going to open
a brand new market for reusable components for application building.

Finally, although I only profiled Strings and Lists, several other utility
classes included in the PenPoint SDK are worth looking into before you
start large-scale development. The time you spend learning the compo
nent hierarchy will be regained by the time you save reusing the PenPoint
components and therefore you should consider it a high priority item.

1](0)

WYSIWYG GUls

The focus of this chapter is to place PenPoint's concept of WYSIWYG
GUIs (What You See Is What You Get Graphical User Interfaces) within
the framework of direct manipulation metaphors. Basically, the tightly
integrated combination of pen and screen open the door to many possible
direct manipulation style metaphors never before produced. For example,
suppose I have a program for maintaining a phone list attached to a tablet
machine. One possible metaphor for a dialing feature would be to render
an old style rotary dial telephone ring onto the screen so the user could
place a pen inside a finger circle and proceed to pull the dial around, just
as you would dial a real rotary phone with a pen.

In the tradition of saving the best for last, Chapter 10 finishes the cross
word puzzle application by presenting the code necessary to render the
grid using a PenPoint drawing context. The grid is then used by the cross
word puzzle view graph to provide the user with a direct manipulation
style object for working the puzzle. This chapter also touches on memory
mapped file I/O as one means of saving space on a tablet computer.
Finally, I close the chapter and the book with several suggestions for
extending the crossword puzzle that would be both fun and informative.

The ImagePoint Imaging Model

ImagePoint is a multiple coordinate system imaging model supported by
PenPoint for rendering images onto hardware display devices. It provides

271

272 CHAPTER 10

a rich model for placing graphical images on a display device (a screen, a
plotter, or a printer, for example) that is well beyond the scope of a single
chapter in this book. With that in mind, I would like to present some
highlights to give you an idea of what's happening behind the screens.

Coordinate Systems

ImagePoint supports a simple two-dimensional coordinate system based
upon the concept that any place in the plane can be described as a dis
tance in units from a point designated as the origin. What the units are
depends upon the coordinate system in use at the time of the drawing
request. To facilitate image rendering, ImagePoint supports several differ
ent coordinate systems, each with its own strengths and weaknesses.

Unit Definitions ImagePoint supports five integer-based coordinate sys
tems ranging from direct mapping to hardware pixels to user-defined logi
cal space. Starting from the highest level and moving to the hardware are

• Logical Unit Coordinates (LUC), an abstract set of coordinates
ImagePoint uses in rendering primitives on behalf of an application.

• Logical Window Coordinates (LWC), a translated set of pixel coordi
nates in which the origin of the window is mapped to (0,0).

• Parent Window Coordinates (PWC), a translated set of pixel coordi
nates in which (0,0) is mapped to the origin of a window's parent.

• Logical Device Coordinates (LDC), a translated set of pixel coordi
nates in which (0,0) is mapped to the origin (lower left corner) of the
display device.

• Device Units (DU4), the physical coordinate system of the hardware
device. This coordinate system is fixed and varies from hardware
platform to hardware platform. Its abbreviation comes from the fact
that many hardware displays implement a fourth-quadrant (0,0 in
upper left corner) coordinate system.

Transformations ImagePoint supports coordinate transformation
through a set of utility routines. The transformation routines are not limit
ed to transforming a coordinate in one space to its coordinate in another.
In addition to that functionality, transformations include scaling, transla
tion, and rotation of coordinates.

clsXWordGrid: A Direct Manipulation Crossword Grid 273

Drawing Contexts

Drawing contexts are logical imaging models bound to physical display
devices. You create a drawing context (an instance of class clsDrwCtx)
and then set its attributes based on the stylistic requirements of your
application. You then draw your user interface in the drawing context
where ImagePoint performs the operations necessary to translate logical
requests into a physical device update.

Drawing contexts provide support for clipping, drawing, image ren
dering, hit detections, color support, fonts, and several other pieces of
functionality. Even though drawing contexts are bound to a particular
window, that binding is not an exclusive relationship. Multiple drawing
contexts can be shared between multiple windows, usually as a perfor
mance consideration.

Graphics Primitives

ImagePoint supports a simple set of drawing primitives for rendering
images on the display. For example, there are open figures such as
polylines, bezier curves, and arcs. There are also closed figures such as
rectangles, polygons, and chords. Each primitive uses the information
contained in the drawing context, such as foreground color, background
color, and so on when rendering its image onto the display. In addition to
primitive drawing operations, ImagePoint also supports rendering
images in various formats, such as TIFF, to the screen.

Text

Text support is probably one of the most underrated features of Pen
Point's drawing model. GO has adopted outline font technology for use
in rendering text to display devices. This allows decent-looking fonts to
be rendered at any size and greatly aids in building portable user inter
faces. ImagePoint also supports font bitmaps as a performance enhance
ment for rapid text rendering. In addition, there is automatic font
selection based on the closest match to a requested set of attributes.

clsXWordGrid: A Direct Manipulation Crossword Grid

The clsXWordGrid class implements the visual component the user inter
acts with to work the crossword puzzle. It is a subclass of clsSPaper, from

274 CHAPTER 10

which it inherits its ability to gather user strokes into scribbles that are
translated to letters. The translator object built for the clsXWordGrid con
tains a template that recognizes uppercase A-Z and a straight line. With the
straight line, the user can II draw through" or erase a character in the grid.

The grid works in units of blocks that are given the logical coordinate
size of 100 units by 100 units. The block is then scaled so that size by size
(where size is the number of blocks across or down) can be drawn in the
space available to the grid. The grid manages hit detection based on infor
mation passed back with the xlist when translation occurs, and can effec
tively deal with a character string in the horizontal or vertical direction.

The grid manages user feedback by maintaining an attribute field for
each displayable block in a memory-mapped file. The file is actually a flat
tened representation of the two-dimensional grid that stores the informa
tion in the grid, one row following the next. Each block has its own
attribute field that indicates whether the block should be blacked out or
not. Further, if a block is capable of containing a letter, the attribute tracks
whether the user has filled one in and, if so, whether it's correct, incorrect,
or untested. Feedback is provided by rendering the characters in different
shaded fonts; black for correct, dark gray for untested, and light gray for
tested and found incorrect.

clsXWordGrid maintains the list of block entries inside a memory
mapped file. The reason for using a memory-mapped file scheme is to
reduce memory usage in the tablet machines. Current implementations of
PenPoint contain the entire operating system and storage volume inside
the tablet's RAM. This means that data that exists in both a file and an
internal memory structure is using twice as much memory as it needs to.
This isn't a problem with the crossword application, but it might be a sig
nificant factor in building a word processor. Either way, it's a useful addi
tion to a programmer's bag of tricks.

The following sections present the files xwrdgrid.h and xwrdgrid.c
which implement the interface and implementation of the clsXWordGrid
class, respectively. The method.tbl source, including the entries for clsX
WordApp, clsXWordView, clsXWordData, and clsXWordGrid, is pre
sented in its entirety near the end of this chapter.

xwrdgrid.h

xwrdgrid.h is the external interface for the crossword puzzle's Grid View
class clsXWordGrid. The file begins by checking to make sure that it
hasn't been included already:

clsXWordGrid: A Direct Manipulation Crossword Grid

#ifndef XWRDGRID_INCLUDED
#define XWRDGRID_INCLUDED

275

If this is the first access to the file, the first action taken is to include the
interface files for the other components it relies upon, using the statement

#ifndef GO_INCLUDED
#include <go.h>
#endif

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#ifndef SPAPER_INCLUDED
#include <spaper.h>
#endif

Following the include directives is the definition of the Well Known ID:

#define clsXWordGrid MakeGlobalWKN(4151,l)

used to identify the clsXWordGrid class to the PenPoint Class Manager,
followed by:

STATUS ClsXWordGridInit(void);

which the mainO routine in clsXWordApp uses to register the clsXWord
Grid class with the Class Manager.

Next come the message selectors used to define messages new to clsX
Word Grid. They are defined

#define msgXWordGridStartPlayOver MakeMsg(clsXWordGrid, 1)
#define msgXWordGridGetLetters MakeMsg(clsXWordGrid, 2)
#define msgXWordGridSetLetters MakeMsg(clsXWordGrid, 3)
#define msgXWordGridSetOkLetters MakeMsg(clsXWordGrid, 4)

Following the message selectors are the data structures used to specify
the initialization of the crossword puzzle's grid. They are defined

typedef struct {

276

U8 size;
GRID_DATA numbers [GRID_MAX_GRID_SIZE] ;
GRID_DATA template [GRID_MAX_GRID_SIZE] ;

XWORDGRID_NEW_ONLY, *P_XWORDGRID_NEW_ONLY;

#define xwordgridNewFields \
sPaperNewFields \
XWORDGRID_NEW_ONLY xwgrid;

typedef struct XWORDGRID_NEW {
xwordgridNewFields

} XWORDGRID_NEW, *P_XWORDGRID_NEW;

Finally, at the end of the file, the statement

#endif

closes the initial #ifndef clause.

xwrdgrid.c

CHAPTER 10

xwrdgrid.c contains the actual implementation for the clsXWordGrid
Crossword Puzzle Grid View class.

Include statements xwrdgrid.c begins by including the familiar header
files:

#ifndef WIN_INCLUDED
#include <win.h>
#endif

#ifndef GEO_INCLUDED
#include <geo.h>
#endif

#ifndef FS_INCLUDED
#include <fs.h>
#endif

#ifndef SPAPER_INCLUDED
#include <spaper.h>
#endif

#ifndef OSHEAP_INCLUDED
#include <osheap.h>
#endif

clsXWordGrid: A Direct Manipulation Crossword Grid

#ifndef XLATE_INCLUDED
#include <xlate.h>
#endif

#ifndef XLFILTER_INCLUDED
#include <xlfilter.h>
#endif

#ifndef XTEMPLT_INCLUDED
#include <xternplt.h>
#endif

#ifndef DEBUG_INCLUDED
#include <debug.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

277

The header files are followed by the interface file that describes the
external interface to the graphics primitives:

#ifndef SYSGRAF_INCLUDED
#include <sysgraf.h>
#endif

the font primitives:

#ifndef SYSFONT_INCLUDED
#include <sysfont.h>
#endif

and the fixed-point math primitives:

#ifndef GOMATH_INCLUDED
#include <gornath.h>
#endif

Finally, the interfaces to the Crossword Puzzle Grid and the entries gen
erated by the method compiler are included with the statements

#ifndef XWRDGRID_INCLUDED
#include <xwrdgrid.h>
#endif

#include <rnethod.h>

278 CHAPTER 10

xwrdgrid.c Constants The first defined constant is the name of the file
used to hold data for the grid:

#define GRID_DATAFILE "gridDataFile"

Next, xwrdgrid.c uses a set of defined values for computing the logical
coordinates for the layout of a character block:

#define BLOCK_SIZE 100
#define BLOCK LTR_X_OFF 25
#define BLOCK_LTR_Y_OFF 20
#define BLOCK_NUM_X_OFF 5
#define BLOCK_NUM_Y_OFF 5

Finally, the attributes attached to each block are a set of flags that are
lor' ed into the attribute variable. The possible flag values are

#define beNull OxOO
#define beBlack OxOl
#define beNumber Ox02
#define beLetter Ox04
#define beRight OxOB
#define beWrong OxlO

Instance Variables clsXWordGrid maintains its instance data using two
different structures. The first structure is used to describe each entry in
the grid:

typedef struct GRID_ENTRY
UB number;
UB letter;
UB status;
GRID_ENTRY, *P_GRID_ENTRYi

The actual instance data is described by the structure

typedef struct INSTANCE_DATA {
U32 size;
U32 gridSizei
U32 screenBlockSizei
SYSDC gridDC;
OBJECT gdFileHandle;
P GRID_ENTRY pEntries;
INSTANCE_DATA, *P_INSTANCE_DATA;

clsXWordGrid: A Direct Manipulation Crossword Grid 279

clsXWordGrid uses the size instance variable to keep track of the num
ber of blocks in a row or column and the gridSize instance variable to
keep track of the total number of blocks in the grid. screenBlockSize is set
whenever the grid window resizes and is used by clsXWordGrid to help
calculate hit detection and rectangles that need to be redrawn. Next, the
grid DC instance variable holds the ID of the drawing context used by the
grid to render itself into its window.

The final two entries are used by clsXWordGrid to maintain the under
lying model data for the grid in a memory-mapped file. gdFileHandle
identifies the file that contains the data, while pEntries is a memory
pointer to the start of the array.

Registration The ClsXWordGridlnit () function is used by the
mainO routine in clsXWordApp to register clsXWordGrid with the Class
Manager. It is defined

STATUS ClsXWordGridInit(void)
{

CLASS_NEW c;
STATUS S;

ObjCallRet(msgNewDefaults, clsClass, &c, s);
c.object.uid clsXWordGrid;
c.cls.pMsg clsXWordGridTable;
c.cls.ancestor clsSPaper;
c.cls.size SizeOf(INSTANCE_DATA);
c.cls.newArgsSize SizeOf(XWORDGRID_NEW);
ObjCallRet(msgNew, clsClass, &c, s);

return stsOK;

Creating a clsXWordGrid Object A new instance of clsXWordGrid is
created by first initializing the XWORDGRID_NEW structure by sending ms
gNewDefaults. The method that responds to this message is

MsgHandlerArgType(XWordGridNewDefaults, P_XWORDGRID_NEW)
{

pArgs->border.style.edge = bsEdgeAll;
memset (& (pArgs->xwgrid), 0, SizeOf (XWORDGRID_NEW_ONLY));

return stsOK;
MsgHandlerParametersNoWarning;

280 CHAPTER 10

This method zeros out the parameters contained in the XWORDGRID_
NEW portion of the initialization structure, and sets the border style to
have an edge all around the grid.

Next, the XWORDGRID_NEW structure is filled out and used as the
parameter when msgNew is sent to clsXWordGrid. The method that
responds to the msglnit message is

MsgHandlerArgType(XWordGridInit, P_XWORDGRID_NEW)

INSTANCE_DATA

FS_NEW

insti

fsni

GRID_ENTRY

STATUS Si

U32 ii

StsRet(XWGBuildTranslator(&(pArgs->sPaper.translator)),s) i

pArgs->sPaper.flags &= -spRulingi

pArgs->sPaper.flags 1= spProxi

ObjectCallAncestorCtx(ctx) i

inst.size pArgs->xwgrid.sizei

inst.gridSize (inst.size * inst.size)i

ObjCallRet(msgNewDefaults, clsFileHandle, &fsn, s) i

fsn.fs.locator.pPath = GRID_DATAFILEi

fsn.fs.locator.uid = theWorkingDiri

ObjCallRet(msgNew, clsFileHandle, &fsn, s) i

inst.gdFileHandle = fsn.object.uidi

fsWrite.numBytes = inst.gridSize * SizeOf(GRID_ENTRY) i

memset(ge, 0, fsWrite.numBytes) i

fsWrite.pBuf = gei

ObjCallRet(msgStreamWrite, inst.gdFileHandle, &fsWrite,s)i

ObjCallRet(msgFSMemoryMap, inst.gdFileHandle,

&inst.pEntries, s)i

for (i=Oi i<inst.gridSizei i++) {

if (! (pArgs->xwgrid.template[i])

inst.pEntries[i] .status 1= beBlacki

else

if (inst.pEntries[i] .number = pArgs->xwgrid.numbers[i])

inst.pEntries[i] .status 1= beNumberi

clsXWordGrid: A Direct Manipulation Crossword Grid

StsRet(XWGBuildGridDC(&inst.gridDC), s)i

ObjectWrite(self, ctx, &inst)i

ObjectCall(msgDcSetWindow, inst.gridDC, (P_ARGS) self) i

return stsOKi

MsgHandlerParametersNoWarningi

281

The XWordGridInit method is responsible for initializing the four major
parts of the the grid object. If you look ahead to the method.tbl section, you
will notice that the ancestor class is not called automatically. Instead, the
ancestor is called explicitly so that a translator built using XWGBuild
Translator () can be inserted as part of the initialization structure.

The XWGBuildTranslator () function is defined

STATUS LOCAL

XWGBuildTranslator(P_OBJECT pTranslator)

P_UNKNOWN pNewTemplatei

XLATE_NEW xNewTransi

U16 xlateFlagsi

XTM_ARGS xtmArgsi

STATUS Si

ObjCallRet(msgNewDefaults, clsXText, &xNewTrans, s)i

xtmArgs.xtmType

xtmArgs.xtmMode

xtmTypeCharListi

Oi

xtmArgs.pXtmData "ABCDEFGHIJKLMNOPQRSTUVWXYZ-"i

StsRet(XTemplateCompile(&xtmArgs,

osProcessHeapld, &pNewTemplate), s) i

xNewTrans.xlate.pTemplate = pNewTemplatei

xNewTrans.xlate.hwxFlags &=

-(xltCaseEnablelxltPunctuationEnablelxltVerticalEnable)i

ObjCallRet(msgNew, clsXText, &xNewTrans, S)i

ObjCallRet(msgXlateGetFlags, xNewTrans.object.uid,

&xlateFlags, S)i

xlateFlags 1= xTemplateVeto 1 xltSpaceDisablei

ObjCallRet(msgXlateSetFlags, xNewTrans.object.uid,

(P_ARGS)xlateFlags, S)i

282 CHAPTER 10

*pTranslator = xNewTrans.object.uidi

return stsOKi

After the translator is built, the ancestor class is given a chance to ini
tialize. This creates the appropriate scribble object and sets up the XWord
Grid for receiving translated handwriting.

The next step in the XWordGridlnit method is to set the size instance
variable from the XWORDGRID_NEW structure and then create and mem
ory map the file that will monitor the grid's contents. File creation and
memory mapping are done using

fsWrite.numBytes = inst.gridSize * SizeOf(GRID_ENTRY)i

memset(ge, 0, fsWrite.numBytes)i

fsWrite.pBuf = gei

ObjCallRet(msgStreamWrite, inst.gdFileHandle, &fsWrite, S)i

ObjCallRet(msgFSMemoryMap, inst.gdFileHandle,

&inst.pEntries, s)i

The file handle to the memory-mapped file is retained as an instance
variable. Once the file is initialized, XWordGridlnit uses the template and
number data from XWORDGRID_NEW to initialize the grid entries.

The last step before writing the instance data back into protected mem
ory is to call the function XWGBuildDC (), which builds the graphics con
text that is bound to the window and used to render the grid on the
display.

The XWGBuildDC () function is defined

STATUS LOCAL
XWGBuildGridDC(P_SYSDC pDC)
{

SYSDC_NEW dni
SYSDC_FONT_SPEC fSi
STATUS Si

ObjCallRet(msgNewDefaults, clsSysDrwCtx, &dn, s)i

ObjCallRet(msgNew, clsSysDrwCtx, &dn, s) i
*pDC = dn.object.uidi

ObjCallWarn(msgDcSetLineThickness, *pDC, (P_ARGS)2)i

fs.id
fs.attr.group
fs.attr.weight

Oi
sysDcGroupUserlnputi
sysDcWeightNormali

clsXWordGrid: A Direct Manipulation Crossword Grid

fs.attr.aspect
fs.attr.italic

sysDcAspectNormal;
0;

fs.attr.monospaced 0;
fs.attr.encoding sysDcEncodeGoSystem;
ObjCallRet(msgDcOpenFont, *pDC, &fs, s);

return stsOK;

283

This function creates a default instance of class clsSysDrwCtx, sets its
line thickness to 2, and then opens a font that has been specified by set
ting the attributes in the SYSDC_FONT_SPEC structure.

Freeing Instances of c1sXWordGrid The next method is responsible for
responding to msgFree to de-allocate any resources allocated by the
clsXWordGrid object:

MsgHandlerWithTypes(XWordGridFree, P_ARGS, P_INSTANCE_DATA}

STATUS Si

ObjCallRet(msgFSMemoryMapFree, pData->gdFileHandle,NULL,s}i

ObjCallWarn(msgDestroy, pData->gdFileHandle, NULL} i

ObjCallWarn(msgDestroy, pData->gridDC, NULL }i

return stsOKi

MsgHandlerParametersNoWarningi

In this example, it is necessary to unmap the memory-mapped file by
sending the file handle the msgFSMemoryFree message. The file handle
itself must also be destroyed by sending it the msgDestroy message. Note,
however, that this doesn't destroy the file's contents. That won't happen
until the puzzle document itself is freed, and all associated files are also
freed.

In addition to the file handle, XWordGridFree must also de-allocate the
resources used to maintain the drawing context for the grid window.

Saving and Restoring The next method is used by clsXWordGrid to re
spond to msgSave by filing the size of the grid and the screenSize of a
block used to hold a character in the grid:

MsgHandlerWithTypes(XWordGridSave,
P_OBJ_SAVE, P_INSTANCE_DATA)

284 CHAPTER 10

STATUS s;

fsWrite.numBytes = SizeOf(U32);
fsWrite.pBuf &(pData->size);
ObjCallRet(msgStreamWrite, pArgs->file, &fsWrite, s);

fsWrite.numBytes = SizeOf(U32);
fsWrite.pBuf = &(pData->screenBlockSize);
ObjCallRet(msgStreamWrite, pArgs->file, &fsWrite, s);

return stsOK;
MsgHandlerParametersNoWarning;

The next method is used to restore the state of the grid:

MsgHandlerArgType(XWordGridRestore, P_OBJ_RESTORE
{

STREAM_READ_WRITE
INSTANCE_DATA
FS_NEW
STATUS

fsRead;
inst;
fsn;
s;

fsRead.numBytes SizeOf(U32);
fsRead.pBuf &inst.size;
ObjCallRet(msgStreamRead, pArgs->file, &fsRead, s);

inst.gridSize = inst.size * inst.size;

fsRead.numBytes = SizeOf(U32);
fsRead.pBuf = &inst.screenBlockSize;
ObjCallRet(msgStreamRead, pArgs->file, &fsRead, s);

ObjCallRet(msgNewDefaults, clsFileHandle, &fsn, s);
fsn.fs.locator.pPath = GRID_DATAFILE;
fsn.fs.locator.uid = theWorkingDir;
ObjCallRet(msgNew, clsFileHandle, &fsn, s);
inst.gdFileHandle = fsn.object.uid;

ObjCallRet(msgFSMemoryMap, inst.gdFileHandle,
&inst.pEntries, s);

StsRet(XWGBuildGridDC(&inst.gridDC), s);

ObjectWrite(self, ctx, &inst);

ObjCallWarn(msgDcSetWindow, inst.gridDC, (P_ARGS)self);

c1sXWordGrid: A Direct Manipulation Crossword Grid

ObjCallWarn(msgSPaperClear, self, NULL) i

return stsOKi
MsgHandlerParametersNoWarningi

285

In addition to reading in the horizontal and vertical size of the grid and
the block size, it also computes the number of blocks in the grid (gridSize)
and remaps the grid data file that contains the current entry information.

Next it rebuilds the device context using XWGBuildGridDCO and then
writes the instance data back into protected memory. Finally, the device con
text ID is mapped onto the window used to display the grid and the ancestor
class behavior managing the scribbles is used to clean up any stray, unproc
essed scribbles that remain from the user prior to the page turn.

Rendering the Grid The Window Manager sends the msgWinRepaint
message to inform a PenPoint window that it needs repainting. The win
dow processes this message by notifying the Window Manager that it's
about ready to begin updating the display. Next it updates the display by
sending commands to a drawing context mapped to a window. Finally,
when the repainting is done, the window sends the Window Manager a
message indicating that the update episode is now over.

The method that responds to msgWinRepaint for clsXWordGrid is
defined

MsgHandlerWithTypes(XWordGridRepaint,P_ARGS,P_INSTANCE_DATA)

RECT32 r;

SIZE32 sz;

STATUS s;

ObjCallRet(msgWinBeginRepaint, pData->gridDC, pNull, s);

ObjCallWarn(msgDcIdentity, pData->gridDC, pNull);

sZ.w = sz.h = pData->8ize*BLOCK_SIZE;

ObjCallRet(m8gDcScaleWorld, pData->gridDC, &8Z, 8);

ObjCallRet(msgBorderGetBorderRect, self, &r, s);

ObjCallRet(msgDcLWCtoLUC_RECT32, pData->gridDC, &r, 8);

ObjCallRet(m8gDcClipRect, pData->gridDC, &r, s);

ObjCallWarn(msgDcFillWindow, pData->gridDC, pNull);

StsRet(XWGDrawGrid(pData), 8);

StsRet(XWGDrawTemplate(pData), 8);

286

StsRet(XWGDrawLetters(pData), s);

ObjCallRet(msgWinEndRepaint, self, Nil (P_ARGS), s);

return stsOK;

MsgHandlerParametersNoWarning;

CHAPTER 10

The first action this method takes is to set up the translation matrix
inside the drawing context so that each block-no matter how many are
in the grid-is of size BLOCK_SIZE. From this time on, all drawing opera
tions occur in this logical coordinate space.

The next step is to protect the grid's shadow by asking self for its bor
der rectangle, transforming it into world coordinates, and then using it as
the clipping rectangle for all subsequent operations. Once the drawing
rectangle is determined, it is cleared and then repainted in several layers.
When the repainting is done, the episode is marked closed.

The actual drawing takes place using several local functions responsi
ble for different layers of the rendering process. Although not necessary, I
chose to implement drawing this way since rendering using drawing con
texts tends to result in very verbose code that's hard to follow and hence
hard to debug.

The first function, XWGDrawGridO, is defined

STATUS LOCAL

XWGDrawGrid(P_INSTANCE_DATA pData

SYSDC_POLYLINE pI;

XY32 pnts[2];

STATUS

U16

U32

s;

i;
gridWorldSize;

ObjCallWarn(msgDcSetForegroundRGB, pData->gridDC,

(P_ARGS)sysDcRGBBlack);

gridWorldSize = pData->size * BLOCK_SIZE;

pl.count

pl.points

pnts[O].y

pnts [1] .y

2 ;

pnts;

= gridWorldSize;

= 0;

for (i=BLOCK_SIZE; i<gridWorldSize; i+=BLOCK_SIZE)

pnts[O].x = pnts[l].x = i;

ObjCallRet(msgDcDrawPolyline, pData->gridDC, &pl, s);

}

clsXWordGrid: A Direct Manipulation Crossword Grid

pnts [0] . x = 0 i

pnts[l].x = gridWorldSizei

for (i=BLOCK_SIZEi i<gridWorldSizei i+=BLOCK_SIZE)

pnts[O].y = pnts[l].y = ii

ObjCallRet(msgDcDrawPolyline, pData->gridDC, &pl, s) i

}

return stsOKi

287

This function sets the foreground color to black, so that the polylines it
is about to draw are colored black, and then draws two sets of lines that
serve to render the grid.

Next, the function XWGDrawTemplate () is defined:

STATUS LOCAL

XWGDrawTemplate(P_INSTANCE_DATA pData

SYSDC_TEXT_OUTPUT tXi

SYSDC_PATTERN oldPati

U8 c [3] i

U32

SCALE

RECT32

P GRID_ENTRY

STATUS

x, Yi

fontScalei

blackOuti

pGridEntrYi

Si

ObjCallWarn(msgDcIdentityFont, pData->gridDC, pNull)i

fontScale.x=fontScale.y =FxMakeFixed(((BLOCK_SIZE*l)/4) ,0) i

ObjCallWarn(msgDcScaleFont, pData->gridDC, &fontScale) i

ObjCallWarn(msgDcSetForegroundRGB, pData->gridDC,

(P_ARGS)sysDcRGBBlack)i

91dPat = ObjCallWarn(msgDcSetFillPat, pData->gridDC,

(P_ARGS)sysDcPat75)i

blackOut.size.w = blackOut.size.h = BLOCK_SIZE;

pGridEntry = pData->pEntriesi

memset(&tx, 0, sizeof(SYSDC_TEXT_OUTPUT)) i

tx.alignChr = sysDcAlignChrToPi

tx.pText = Ci

tx.lenText = 2i

for(y=Oi y<pData->sizei y++) {

tx.cp.y= (pData->size - y)*BLOCK_SIZE - BLOCK_NDM_Y_OFFi

blackOut.origin.y = (pData->size - y - l)*BLOCK_SIZEi

288

for(x = 0; x<pData->size; x++, pGridEntry++

if (pGridEntry->status & beBlack) {

blackOut.origin.x = x*BLOCK_SIZE;

ObjCallRet(msgDcDrawRectangle, pData->gridDC,

&blackOut, s);

else if (pGridEntry->status & beNumber) {

sprintf(c, "%2d", pGridEntry->number);

CHAPTER 10

tx.cp.x = x*BLOCK_SIZE + BLOCK_NUM_X_OFF;

ObjCallRet(msgDcDrawText, pData->gridDC, &tx, s);

ObjCallWarn(msgDcSetFillPat,pData->gridDC, (P_ARGS)oldPat);

return stsOK;

This function scales the font to one-quarter the size of a block, sets the
fill pattern color to 75 percent foreground color, 25 percent background
color, and prepares generic text and block structures.

This method scans the attributes of each entry in the grid data, to deter
mine if the block should be blacked out or drawn with or without a
number. When through, this method tries to be nice by setting the fill pat
tern to what it previously was. This is an unnecessary step, because by
convention the drawing context is used only by a single instance of this
object, and any method that uses the context follows the assumption that
nothing can safely be assumed.

Finally, the XWGDrawLet ters () function is used to render the text to
the screen. It is defined

STATUS LOCAL XWGDrawLetters(P_INSTANCE_DATA pData)

SYSDC_TEXT_OUTPUT tx;

U32 x, y;

SCALE

UB

P_GRID_ENTRY

STATUS

fontScale;

str [2J ;

pGridEntry;

s;

ObjCallWarn(msgDcIdentityFont, pData->gridDC, pNull);

fontScale.x = fontScale.y =
FxMakeFixed(((BLOCK_SIZE*3)/4) ,0) ;

ObjCallWarn(msgDcScaleFont, pData->gridDC, &fontScale);

memset(&tx, 0, sizeof(SYSDC_TEXT_OUTPUT));

clsXWordGrid: A Direct Manipulation Crossword Grid

tx.alignChr sysDcAlignChrBaseline;

tx.lenText 1;

tx.pText str;

pGridEntry = pData->pEntries;

for(y=O; y<pData->size; y++)

tx.cp.y = (pData->size - y -l)*BLOCK_SIZE

+ BLOCK_LTR_Y_OFF;

for(x = 0; x<pData->size; X++, pGridEntry++

tx.cp.x = x*BLOCK_SIZE + BLOCK_LTR_X_OFF;

*tx.pText = pGridEntry->letter;

if (pGridEntry->status & beWrong) {

ObjCallWarn(msgDcSetForegroundRGB, pData->gridDC,

(P_ARGS)sysDcRGBGray33) i

ObjCallRet(msgDcDrawText, pData->gridDC, &tx, s);

else if (pGridEntry->status & beRight) {

ObjCallWarn(msgDcSetForegroundRGB, pData->gridDC,

(P_ARGS)sysDcRGBBlack);

ObjCallRet(msgDcDrawText, pData->gridDC, &tx, s);

}

else if (pGridEntry->status & beLetter) {

ObjCallWarn(msgDcSetForegroundRGB, pData->gridDC,

(P_ARGS)sysDcRGBGray66);

ObjCallRet(msgDcDrawText, pData->gridDC, &tx, s);

return stsOK;

289

The function checks the various attribute flags of the letter in question
and, based on that information, decides which font to use to render the
letter.

Managing User Input Rendering a display window to look like a cross
word puzzle is only half the problem that clsXWordGrid solves. The other
half is managing user input handwritten on the grid. clsXWordGrid re
ceives a tremendous amount of assistance in this area from its ancestor
class clsSPaper.

Handwriting recognition is managed by the ancestor class which sends
itself the message msgXlateCompleted when translated writing is avail
able. The XWordGridTransWriting method is used to retrieve the trans
lated list of data, filter that list, and locate the block in which writing
began. It is defined

290

MsgHandlerWithTypes(XWordGridTransWriting, P_ARGS,

P_INSTANCE_DATA

STATUS s;

XLATE_DATA xdata;

X2STRING x2sData;

XLIST_ELEMENT xe;

XY32 penLoc;

RECT32 dr;

U32 index;

P_U8 pStr;

xdata.heap osProcessHeapld;

ObjCallRet(msgSPaperGetXlateData, self, &xdata, s);

XList2Text(xdata.pXList);

XListGet(xdata.pXList, 0, &xe);

StsRet(

XWGFindGridPos(pData,

&(((P_XLATE_BDATA) (xe.pData))->box.origin),

&penLoc), s);

ObjCallRet(msgWinDirtyRect, self,

&(((P_XLATE_BDATA) (xe.pData))->box), s);

XList2StringLength(xdata.pXList, &x2sData.count);

StsRet(OSHeapBlockAlloc(osProcessHeapld, x2sData. count ,

&x2sData.pString), s);

XList2String(xdata.pXList, &x2sData);

StsJmp(

XWGFilterTransData(x2sData.pString, x2sData.count),

s, Error);

index = penLoc.x + penLoc.y * pData->size;

for (pStr = x2sData.pString; *pStr; pStr++) {

if (*pStr == '\n ') {

index += pData->size - 1;

penLoc.y++;

penLoc.x--;

else {

if ! (pData->pEntries[index] .status & beBlack)) {

pData->pEntries[index] . status &=

-(beLetter IbeWrong IbeRight);
if (*pStr == ,_,

CHAPTER 10

clsXWordGrid: A Direct Manipulation Crossword Grid

pData->pEntries[index] .letter

else {

pData->pEntries[index] .letter = *pStr;

pData->pEntries[index] .status 1= beLetter;

StsJmp(XWGGridPosToRect(pData, &penLoc, &dr),

s, Error);

ObjCallJmp(msgWinDirtyRect, self, &dr, s, Error);

index++;

penLoc.x++;

s = stsOK;

Error:

OSHeapBlockFree(x2sData.pString) ;

XListFree(xdata.pXList) ;

return s;

MsgHandlerParametersNoWarning;

291

XWordGridTransWriting uses several local functions to help with its
responsibilities. The first two are

STATUS LOCAL

XWGFindGridPos(P_INSTANCE_DATA pData, P_XY32 pIn,

P_XY32 pOut

pOut->x

pOut->y

pIn->x / pData->screenBlockSize;

pData->size - pIn->y / pData->screenBlockSize -1;

return stsOK;

and

STATUS LOCAL

XWGGridPosToRect

pOut->origin.x

pOut->origin.y

P_INSTANCE_DATA pData, P_XY32 pIn,

P_RECT32 pOut)

pIn->x * pData->screenBlockSize;

(pData->size - pIn->y - 1)

* pData->screenBlockSize;

292 CHAPTER 10

pout->size.w pout->size.h pData->screenBlockSizei

return stsOKi

The other function confirms that the list of translated data exactly
matches what this application expects:

STATUS LOCAL
XWGFilterTransData(P_U8 pStr, U32 len)
{

U32 i, j;

for (i=O, j=Oi i<leni i++)
if (pStr[i] '\n')

I I (pStr[i] == xltCharUnknownDefault
I I (pStr [i] == '-')
I I ((pStr [i] >= 'A') && (pStr [i] <= ' Z ')))
pStr[j++] = pStr[i]i

pStr [j] = '\ 0 ' ;

return stsOKi

In addition to the utility functions already described, handwriting rec
ognition makes use of size knowledge gained as a result of responding to
the msgWinSized message with the method

MsgHandlerArgType(XWordGridWinSized, P_WIN_METRICS

INSTANCE_DATA insti

WIN_METRICS wmi

STATUS Si

ObjCallRet(msgWinGetMetrics, self, &wm, s) i

inst = IDataDeref(pData, INSTANCE_DATA) i

inst.screenBlockSize = wm.bounds.size.w / inst.sizei

ObjectWrite(self, ctx, &inst) i

return stsOKi

MsgHandlerParametersNoWarningi

This method then stores the new window extent value divided by the
number of blocks in the appropriate instance variable.

clsXWordGrid: A Direct Manipulation Crossword Grid 293

Responding to the Outside World clsXWordGrid defines several meth
ods that respond to external messages asking it to get and/ or set the state
of letter attributes inside the grid. It also responds to a request to start
over. The start over message msgXWordGridStartPlayOver request is
handled by the method

MsgHandlerWithTypes(XWordGridStartPlayOver,
P_ARGS, P_INSTANCE_DATA

U32 i;
STATUS s;

for (i=O; i<pData->gridSize; i++)
if (! (pData->pEntries[i] .status & beBlack)) {

pData->pEntries[i] .status &=
~(beLetter I beWrong beRight);

pData->pEntries[i] .letter = '\0';
}

ObjCallRet(msgWinDirtyRect, self, pNull, s);

return stsOK;
MsgHandlerParametersNoWarning;

In addition to starting over, the grid can be told to accept an array of
items as the solution to the puzzle, and therefore renders them as correct
onto the display. The method that accomplishes this is defined

MsgHandlerWithTypes(XWordGridSetLetters,

U32 ij

XY32 penLocj

RECT32 drj

STATUS Sj

P_GRID_DATA, P_INSTANCE_DATA)

for (i=Oj i<pData->gridSizej i++

if (pData->pEntries[i] .letter = pArgs[iJ) {

pData->pEntries[i] . status 1= beLetter 1 beRightj

pData->pEntries[i] . status &= -beWrongj

penLoc.x = i % pData->sizej

penLoc.y = i / pData->sizej

StsRet(XWGGridPosToRect(pData, &penLoc, &dr), s) j

ObjCallRet(msgWinDirtyRect, self, &dr, s)j

}

294

return stsOK;

MsgHandlerParametersNoWarning;

CHAPTER 10

An additional method has the same functionality, but takes as its input
a subset of correct letters, not the entire grid:

MsgHandlerWithTypes(XWordGridSetOkLetters,

U32

XY32

RECT32

STATUS

i;
penLoc;

dr;

s;

P_GRID_DATA, P_INSTANCE_DATA)

for (i=O; i<pData->gridSize; i++

if (pData->pEntries[i] .status & beLetter

pData->pEntries[i] . status &= -(beWrong beRight);

pData->pEntries[i] .status 1=

pArgs[i] ? beRight : beWrong;

penLoc.x = i % pData->size;

penLoc.y = i / pData->size;

StsRet(XWGGridPosToRect(pData, &penLoc, &dr), s) i

ObjCallRet(msgWinDirtyRect, self, &dr, s);

}

return stsOK;

MsgHandlerParametersNoWarning;

The next method returns a copy of the letters the user has actually filled
in. This is used as information when trying to determine which, if any, of
the user's letters are correct.

MsgHandlerWithTypes(XWordGridGetLetters,
P_GRID_DATA, P_INSTANCE_DATA}

U32i;

for (i=O; i<pData->gridSize; i++
if (pData->pEntries[i] .status & beLetter

pArgs[i] pData->pEntries[i] .letter;
else

pArgs[i] 0;

return stsOK;

The Complete method.tbl File 295

MsgHandlerParametersNoWarning;

method.tbl

method.tbl contains the following MSG_INFO structure for mapping mes
sages to methods in clsXWordGrid:

MSG_INFO clsXWordGridMethods[] = {
msgNewDefaults,

objCallAncestorBefore,
msglnit,

0,

"XWordGridNewDefaults"

"XWordGridlnit" ,

msgFree, "XWordGridFree" ,
objCallAncestorAfter,

msgSave, "XWordGridSave" ,
objCallAncestorBefore,

msgRestore, "XWordGridRestore" ,
objCallAncestorBefore,

msgWinRepaint, "XWordGridRepaint" ,
objCallAncestorBefore,

msgWinSized, "XWordGridWinSized" ,
objCallAncestorBefore,

msgXlateCompleted, "XWordGridTransWriting" ,
objCallAncestorBefore,

msgXWordGridStartPlayOver, "XWordGridStartPlayOver",
0,

msgXWordGridGetLetters, "XWordGridGetLetters",
0,

msgXWordGridSetLetters, "XWordGridSetLetters",
0,

msgXWordGridSetOkLetters, "XWordGridSetOkLetters",
0,

o

} ;

The Complete method.tbl File

The complete definition of the crossword puzzle application's method.tbl
file is

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

296 CHAPTER 10

#ifndef APP_INCLUDED
#include <app.h>
#endif

#ifndef WIN_INCLUDED
#include <win.h>
#endif

#ifndef IMPORT_INCLUDED
#include <irnport.h>
#endif

#ifndef CLAYOUT_INCLUDED
#include <clayout.h>
#endif

#ifndef XLATE_INCLUDED
#include <xlate.h>
#endif

#ifndef XWORDAPP_INCLUDED
#include <xwordapp.h>
#endif

#ifndef XWRDDATA_INCLUDED
#include <xwrddata.h>
#endif

#ifndef XWRDVIEW_INCLUDED
#include <xwrdview.h>
#endif

#ifndef XWRDGRID_INCLUDED
#include <xwrdgrid.h>
#endif

MSG_INFO clsXWordAppMethods[] = {
rnsgIrnportQuery,

objClassMessage,
rnsgIrnport,

0,
rnsgAppInit,

objCallAncestorBefore,
rnsgRestore,

objCallAncestorBefore,

II XWordApplrnportQuery II ,

II XWordApplrnport II ,

II XWordAppAppIni til,

IXWordAppRestore",

The Complete method.tbl File

rnsgXWordAppStartOver,
0,

rnsgXWordAppShowSoln,
0,

rnsgXWordAppSetClueTap,
0,

rnsgXWordAppDoCheck,

a
} ;

0,

"XWordAppStartOver" ,

"XWordAppShowSoln" ,

"XWordAppSetCl ueTap" ,

"XWordAppDoCheck" ,

MSG_INFO clsXWordDataMethods[] = {
rnsgNewDefaults,

objCallAncestorBefore,
rnsgInit,

objCallAncestorBefore,
rnsgFree,

objCallAncestorAfter,
rnsgSave,

objCallAncestorBefore,
msgRestore,

objCallAncestorBefore,
rnsgXWordDataIsXWordFile,

objClassMessage,
rnsgXWordDataGetInfo,

0,
rnsgXWordDataGetLetters,

"XWordDataNewDefaults" ,

"XWordDataInit" ,

"XWordDataFree",

"XWordDataSave",

"XWordDataRestore" ,

"XWordDataIsXWordFile" ,

"XWordDataGetInfo",

"XWordDataGetLetters" ,

297

0,
rnsgXWordDataGetAcrossCount,

0,
rnsgXWordDataGetDownCount,

"XWordDataGetAcrossCount" ,

0,
msgXWordDataGetAcrossWord,

0,
rnsgXWordDataGetDownWord,

a
} ;

0,

"XWordDataGetDownCount" ,

"XWordDataGetAcrossWord" ,

"XWordDataGetDownWord" ,

MSG_INFO clsXWordViewMethods[] = {
rnsgNewDefaults,

objCallAncestorBefore,
rnsgInit,

objCallAncestorBefore,
msgSave,

objCallAncestorBefore,
msgRestore,

objCallAncestorBefore,

"XWordviewNewDefaults" ,

"XWordViewInit" ,

"XWordViewSave",

"XWordViewRestore" ,

298 CHAPTER 10

msgCstmLayoutGetChildSpec, "XWordViewCLGetChildSpec",
objCallAncestorBefore,

msgXWordViewStartPlayOver, "XWordViewStartPlayOver",
0,

msgXWordViewShowSoln, "XWordViewShowSoln",
0,

msgXWordViewClueTapNothing, "XWordViewClueTapNothing" ,
0,

msgXWordViewClueTapStrikeOut, "XWordViewClueTapStrikeOu t",
0,

msgXWordViewCheckPuzzle,
0,

msgXWordViewCheckLetters,
0,

msgXWordViewCheckWords,

o
} ;

0,

"XWordViewCheckPuzzle",

"XWordViewCheckLetters" ,

"XWordViewCheckWords",

MSG_INFO clsXWordGridMethods[] = {
msgNewDefaults, "XWordGridNewDefaults" ,

objCallAncestorBefore,
msglnit, "XWordGridlnit" ,

0,
msgFree, "XWordGridFree" ,

objCallAncestorAfter,
msgSave, "XWordGridSave" ,

objCallAncestorBefore,
msgRestore, '"XWordGridRestore" ,

objCallAncestorBefore,
msgWinRepaint, "XWordGridRepaint" ,

objCallAncestorBefore,
msgWinSized, "XWordGridWinSized" ,

objCallAncestorBefore,
msgXlateCompleted, "XWordGridTransWriting",

objCallAncestorBefore,
msgXWordGridStartPlayOver, "XWordGridStartPlayOver",

0,
msgXWordGridGetLetters, "XWordGridGetLetters",

0,
msgXWordGridSetLetters, "XWordGridSetLetters",

0,
msgXWordGridSetOkLetters, "XWordGridSetOkLetters",

0,
o

} ;

Wrap-up

CLASS_INFO classInfo[]
"clsXWordAppTable" ,

0,
"clsXWordDataTable" ,

0,
"clsXWordViewTable" ,

0,
"clsXWordGridTable",

o
} ;

0,

Wrap-up

299

clsXWordAppMethods,

clsXWordDataMethods,

clsXWordViewMethods,

clsXWordGridMethods,

I believe that the only way to truly learn something is to experience it
firsthand. If you have been following the examples and building the sam
ple programs you have started on that journey, but you still have a way to
go. Now is a good time to branch out and explore other areas of the Pen
Point API by extending the crossword puzzle application. With that in
mind, I offer you a short list of possible enhancements to the crossword
puzzle application.

• Complete the clsXWordView component so it responds to receiving a
new model without being destroyed.

• Add clients to clsXWordClue and clsXWordGrid.
• Have clsXWordGrid notify its observers when a user has entered a let

ter or completed a word. This behavior could be tied to clsXWordView
so that clsXWordView performs an accuracy check automatically and
then sends the results back to the grid.

• Put back the Edit menu and support Undo, Cut, Paste.
• Be brave-support spell checking.
• Add help to the document.
• Add a create mode in which the user would enter letters on the grid

and then select a menu command to generate clue numbers automat
ically. Then, while in build mode, the user could tap on a clue to
bring up an insertion pad to enter the text for the clue.

• And so on.

A [p) [p)® ITiJ cd] 0 ~ A
Background Reading

Being able to effectively work with PenPoint requires experience in C pro
gramming, object-oriented programming, graphical user interface design,
and small systems understanding. There are many good books written on
the topics of small systems, graphical user interfaces, and C program
ming, and I urge you to seek them out.

To learn more about object-oriented programming in general, and how it's
implemented in PenPoint, you might consider reading the following books.

Beck, K., W. Cunningham. "A Diagram for Object-Oriented Programs."
Proceedings of OOPSLA '86: 361-367.

Carr, R., D. Shafer. The Power of PenPoint. Reading, MA: Addison-Wesley,
1991.

Cox, B., A. Novobilski. Object-Oriented Programming: An Evolutionary
Approach, Second Edition. Reading, MA: Addison-Wesley, 1991.

Jacobson, I. "Object-Oriented Development in an Industrial Environ
ment." Proceedings of OOPSLA '87: 183-191. ACM Press.

Krasner, G., S. Pope (1988). "A Cookbook Approach for Using the Model
View-Controller User Interface Paradigm in Smalltalk-80." Journal of
Object-Oriented Programming, 1 (3).

Novobilski, A. (1992). "NeXTstep and Me." Object Magazine 1(4).
Wirfs-Brock, R., R. Johnson (1990). "Surveying Current Research in

Object-Oriented Design." Communications of the ACM, 33(9), 104-124.

Additionally, Addison-Wesley publishes the GO Technical Library which
consists of the following titles.

• PenPoint Application Writing Guide (1992)
• PenPoint User Interface Design Reference (1992)
• PenPoint Development Tools (1992)
• PenPoint Architectural Reference, Volumes I and II (1992)
• PenPoint Application Programming Interface Reference, Volumes I and II

(1992)

301

A [p) [p)ce mJ mJ 0 ~ [B3

Source Code for Crossword
Appl ication

=======

This appendix contains the complete source listings for the crossword puzzle
application discussed in Chapters 8, 9, and 10.

makefile

!ifdef %PENPOINT_PATH

PENPOINT_PATH $ (%PENPOINT_PATH)

!else

PENPOINT_PATH d:\penpoint

!endif

The DOS name of your project directory

PROJ = xwordapp

Standard defines for sample code

!INCLUDE $(PENPOINT_PATH)\sdk\sample\sdefines.mif

The PenPoint name of your application

EXE_NAME = Crossword Puzzle

The linker name for your executable company-name-V<major> «minor»

EXE_LNAME = pip-xwordapp-vl(O)

Object files needed to build your app

EXE_OBJS = method.obj xwordapp.obj xwrddata.obj xwrdview.obj ~dgrid.obj

303

304

Libs needed to build your app

EXE_LIBS = $(DLL_NAME) penpoint app xtemplt xlist

EXE_DLC xwordapp.dlc

DLL_LNAME = pip-xwrdclue-vl(O)

DLL_OBJS xclu_mth.obj xwrdclue.obj

DLL_LIBS penpoint

Targets

all: $ (APP_DIR) \$ (PROJ) .exe $ (APP_DIR)\$ (PROJ) .dll .SYMBOLIC

The clean rule must be :: because it is also defined in srules

clean :: .SYMBOLIC

-del method.h

-del xclue_mth.h

-del xwordapp.lib

Dependencies

xwordapp.obj: xwordapp.c method.h xwordapp.h xwrddata.h xwrdview.h
xwrdgrid.h

xwrddata.obj: xwrddata.c method.h xwrddata.h

xwrdview.obj: xwrdview.c method.h xwrdview.h xwrddata.h xwrdgrid.h
xwrdclue.h

xwrdgrid.obj: xwrdgrid.c method.h xwrdgrid.h

xwrdclue.obj: xwrdclue.c xclu_mth.h xwrdclue.h

Standard rules for sample code

!INCLUDE $ (PENPOINT_PATH)\sdk\sample\srules.mif

APPENDIX B

xwordapp.dlc

xwordapp.dlc

pip-xwrdclue-vl(O) xwordapp.dll

pip-xwordapp-vl(O) xwordapp.exe

305

306

xwordapp.h

#ifndef XWORDAPP_INCLUDED

#define XWORDAPP_INCLUDED

#ifndef GO_INCLUDED

#include <go.h>

#endif

#ifndef CLSMGR_INCLUDED

#include <clsmgr.h>

#endif

#define clsXWordApp MakeGlobalWKN(4149, 1)

#define msgXWordAppStartOver MakeMsg(clsXWordApp,

#define msgXWordAppShowSoln MakeMsg(clsXWordApp,

#define msgXWordAppSetClueTap MakeMsg(clsXWordApp,

#define msgXWordAppDoCheck MakeMsg(clsXWordApp,

#endif

APPENDIX B

1

2

3

4

xwordapp.c

xwordapp.c

#ifndef APP_INCLUDED

#include <app.h>

#endif

#ifndef APPTAG_INCLUDED

#include <apptag.h>

#endif

#ifndef APPMGR-INCLUDED

#include <apprngr.h>

#endif

#ifndef FRAME_INCLUDED

#include <frarne.h>

#endif

#ifndef FS_INCLUDED

#include <fs.h>

#endif

#ifndef RESFILE_INCLUDED

#include <resfile.h>

#endif

#ifndef IMPORT_INCLUDED

#include <irnport.h>

#endif

#ifndef TKTABLE_INCLUDED

#include <tktable.h>

#endif

#ifndef MENU_INCLUDED

#include <rnenu.h>

#endif

#ifndef NOTE_INCLUDED

#include <note.h>

#endif

307

308

#ifndef XWORDAPP_INCLUDED

#include <xwordapp.h>

#endif

#ifndef XWRDVIEW_INCLUDED

#include <xwrdview.h>

#endif

#ifndef XWRDGRID_INCLUDED

#include <xwrdgrid.h>

#endif

#ifndef XWRDDATA_INCLUDED

#include <xwrddata.h>

#endif

#ifndef DEBUG_INCLUDED

#include <debug.h>

#endif

#include <method.h>

#include <string.h>

#include <stdio.h>

typedef struct INSTANCE_DATA

OBJECT xwViewi

} INSTANCE-PATA, *P_INSTANCE_DATAi

#define tagXWordMenuPuzzle MakeTag(clsXWordApp, 1

#define tagClueTapMenu MakeTag(clsXWordApp, 2

#define mnStartOverTag MakeTag(clsXWordApp, 3

#define mnShowSolnTag MakeTag(clsXWordApp, 4

#define mnNothingTag MakeTag(clsXWordApp, 5

#define mnStrikeOutTag MakeTag(clsXWordApp, 6

#define mnPuzzleTag MakeTag(clsXWordApp, 7

#define mnWordsTag MakeTag(clsXWordApp, 8

#define mnLettersTag MakeTag(clsXWordApp, 9

APPENDIX B

xwordapp.c

static TK_TABLE_ENTRY XWordAppMenuBar[] = {

} ;

{"Puzzle", 0, 0, tagXWordMenuPuzzle, tkMenuPul 1 Down , clsMenuButton},

{ "Start Over", msgXWordAppStartOver, mnStartOverTag },

{"Show Solution", msgXWordAppShowSoln, mnShowSolnTag,

0, tkBorderEdgeBottom} ,

{"Tapping Clue", 0, 0, 0, tkMenuPullRight},

0, 0, 0, tagClueTapMenu, 0, clsChoice },

{"Does Nothing",msgXWordAppSetClueTap,

mnNothingTag,mnNothingTag, tkButtonOn},

{"Strikes It Out",msgXWordAppSetClueTap, mnStrikeOutTag},

{pNull} ,

{pNull} ,

{"Check", 0, 0, 0, tkMenuPullRight},

{pNull} ,

{pNull}

{"Puzzle ... ", msgXWordAppDoCheck, mnPuzzleTag},

{"Words" , msgXWordAppDoCheck, mnWordsTag},

{"Letters", msgXWordAppDoCheck, mnLettersTag},

{pNull} ,

static U32 removeMenuTags[]

tagAppMenuCheckpoint,

tagAppMenuRevert,

tagAppMenuEdit,

° } ;

STATUS LOCAL XWABuildMenus(OBJECT self, P_OBJECT pMenuWin)

MENU_NEW mn;

OBJECT w;

STATUS s;

U16 i;

ObjCallRet(msgNewDefaults, clsMenu, &run, s);

mn.tkTable.client self;

mn.tkTable.pEntries XWordAppMenuBar;

ObjCallRet(msgNew, clsMenu, &mn, s);

ObjCallRet(msgAppCreateMenuBar, self, &run.object.uid, s);

309

310

*pMenuWin = mn.object.uid;

for(i=O; removeMenuTags[i]; i++) {

w = (WIN)ObjectCall(msgWinFindTag, *pMenuWin,

(P_ARGS)removeMenuTags[i]);

ObjCallWarn(msgTkTableRemove, *pMenuWin, (P_ARGS)w);

return stsOK;

static U8 twBuff [25] , cwBuff [25] , tlBuff [25] , clBuff[25];

static TK_TABLE_ENTRY ChkPuzzleTb[] =
{ twBuff, 0, 0, 0, 0, clsLabel },

{ cwBuff, 0, 0, 0, 0, clsLabel },

{ " " I 0, 0, 0, 0, clsLabel },

{ tlBuff, 0, 0, 0, 0, clsLabel },

{ clBuff, 0, 0, 0, 0, clsLabel },

{pNull}

} ;

static TK_TABLE_ENTRY ChkPuzzleCmdBar[]

{"OK", 0, 0, 0, 0, clsButton},

{pNull}

} ;

STATUS LOCAL XWAShowCheckPuzzleStats(P_INSTANCE_DATA pData)

U32

NOTE_NEW

aMsg;

nn;

XWORDVIEW_STATS xvs;

STATUS s;

ObjCallRet(msgXWordViewCheckPuzzle, pData->xwView, &xvs, s);

sprintf(twBuff, "%3d - Total Words", xvs . wordCount) ;

sprintf(cwBuff, "%3d - Correct Words", xvs.okWords) ;

sprintf(tlBuff, "%3d - Total Letters", xvs.letterCount) ;

sprintf(clBuff, "%3d - Correct Letters", xvs.okLetters) ;

APPENDIX B

xwordapp.c

ObjCallRet(msgNewDefaults, clsNote, &nn, s)i

nn.note.metrics.flags nfSystemModal I nfUnformattedTitlei

nn.note.pTitle "Checking the puzzle reveals ... ";

nn.note.pContentEntries ChkPuzzleTbi

nn.note.pCmdBarEntries ChkPuzzleCmdBari

ObjCallRet(msgNew, clsNote, &nn, s)i

ObjCallRet(msgNoteShow, nn.object.uid, (P_ARGS)&aMsg, s)i

ObjCallWarn(msgDestroy, nn.object.uid, pNull)i

return stsOKi

MsgHandlerArgType(XWordApplmportQuery, P_IMPORT_QUERY)

if (ObjectCall(msgXWordDataIsXWordFile, clsXWordData, pArgs->file)

== stsOK) {

pArgs->canlmport

pArgs->suitabilityRating

return stsOKi

MsgHandlerParametersNoWarningi

true;

100i

MsgHandlerWithTypes(XWordAppImport, P_IMPORT_DOC, P_INSTANCE_DATA)

INSTANCE_DATA insti

APP_METRICS ami

XWORDDATA_NEW xwni

XWORDVIEW_NEW VDi

OBJECT oldViewi

STATUS Si

inst = IDataDeref(pData, INSTANCE_DATA)i

oldView = inst.xwViewi

ObjCallRet(msgNewDefaults, clsXWordData, &xwn, s) i

311

312

xwn.xword.file = pArgs->filei

ObjCallRet(msgNew, clsXWordData, &xwn, s)i

ObjCallRet(msgNewDefaults, clsXWordView, &vn, s);

vn.view.dataObject = xwn.object.uidi

ObjCallRet(msgNew, clsXWordView, &vn, s) i

inst.xwView = vn.object.uid;

ObjectWrite(self, ctx, &inst);

ObjCallRet(msgAppGetMetrics, self, &am, s);

ObjCallRet(msgFrameSetClientWin, am.mainWin, inst.xwView, s);

ObjCallWarn(msgDestroy, oldView, NULL);

return stsOK;

MsgHandlerParametersNoWarningi

MsgHandler(XWordAppAppInit)

INSTANCE_DATA inst;

XWORDVIEW_NEW vni

APP_METRICS ami

OBJECT mWin;

STATUS s;

ObjCallRet(msgNewDefaults, clsXWordView, &vn, s);

ObjCallRet(msgNew, clsXWordView, &vn, s);

inst.xwView = vn.object.uid;

ObjectWrite(self, ctx, &inst);

ObjCallRet(msgAppGetMetrics, self, &am, s);

ObjCallRet(msgFrameSetClientWin, am.mainWin, inst.xwView, s);

XWABuildMenus(self, &mWin);

ObjCallRet(msgFrameSetMenuBar, am.mainWin, mWin, s);

return stsOK;

APPENDIX B

xwordapp.c

MsgHandlerParametersNoWarning;

MsgHandlerArgType(XWordAppRestore, P_OBJ_RESTORE

INSTANCE_DATA

APP_METRICS

STATUS

inst;

am;

s;

ObjCallRet(rnsgAppGetMetrics, self, &am, s);

ObjCallRet(rnsgFrameGetClientWin, am.rnainWin, &inst.xwView, s);

ObjectWrite(self, ctx, &inst);

return stsOK;

MsgHandlerParametersNoWarning;

MsgHandlerWithTypes(XWordAppStartOver, P_ARGS, P_INSTANCE_DATA)

return ObjCallWarn(rnsgXWordViewStartPlayOver, pData->xwView, NULL);

MsgHandlerParametersNoWarning;

MsgHandlerWithTypes(XWordAppShowSoln, P_ARGS, P_INSTANCE_DATA

return ObjCallWarn(msgXWordVi ewShowSo In , pData->xwView, NULL);

MsgHandlerParametersNoWarning;

MsgHandlerWithTypes(XWordAppSetClueTap, P_ARGS, P_INSTANCE_DATA

STATUS s;

switch ((U32)pArgs) {

case rnnNothingTag:

ObjCallRet(rnsgXWordVieWClueTapNothing, pData->xwView, NULL, s);

break;

313

314 APPENDIX B

case mnStrikeOutTag:

ObjCallRet(msgXWordViewClueTapStrikeOut,pData->xwView,NULL, S)i

breaki

return stsOKi

MsgHandlerParametersNoWarningi

MsgHandlerWithTypes(XWordAppDoCheck, P_ARGS, P_INSTANCE_DATA
{

STAWS Si

switch ((U32)pArgs) {

case mnPuzzleTag:

StsRet(XWAShowCheckPuzzleStats(pData), s)i

breaki

case mnWordsTag:

ObjCallRet(msgXWordViewCheckWords, pData->xwView, NULL, s)i

breaki

case mnLettersTag:

ObjCallRet(msgXWordViewCheckLetters, pData->xwView, NULL, s)i

breaki

return stsOKi

MsgHandlerParametersNoWarningi

STAWS ClsXWordApplnit (void)

APP_MGR_NEW neWi

STATUS Si

ObjCallRet(msgNewDefaults, clsAppMgr, &new, s)i

new.object.uid = clsXWordApPi

xwordapp.c

new.cls.pMsg

new.cls.ancestor

new.cls.size

new.cls.newArgsSize

clsXWordAppTablei

clsAPPi

SizeOf(INSTANCE_DATA)i

SizeOf (APP_NEW) i

new.appMgr.flags.accessory = FALSEi

strcpy(new.appMgr.name, "Crossword Puzzle");

strcpy (new.appMgr. company, "Programming in Penpoint");

ObjCaIIRet(msgNew, clsAppMgr, &new, s);

return stsOKi

void CDECL

main (

int

char *
U16

argc,

argv[] ,

processCount)

if (processCount == 0) {

CIsXWordApplnit()i

CIsXWordDatalnit()i

CIsXWordViewlnit()i

CIsXWordGridlnit()i

AppMonitorMain(clsXWordApp, objNull)i

else

AppMain()i

Unused(argc); Unused(argv);

315

316

xwrddata.h

#ifndef XWRDDATA_INCLUDED

#define XWRDDATA_INCLUDED

#ifndef CLSMGR_INCLUDED

#include <clsmgr.h>

#endif

#ifndef GEO_INCLUDED

#include <geo.h>

#endif

#define clsXWordData MakeGlobalWKN(4152, 1)

#define msgXWordDataIsXWordFile

#define msgXWordDataGetInfo

#define msgXWordDataGetLetters

#define msgXWordDataGetAcrossCount

#define msgXWordDataGetDownCount

#define msgXWordDataGetAcrossWord

#define msgXWordDataGetDownWord

STATUS ClsXWordDataInit (void) ;

typedef struct XWORDDATA_NEW_ONLY

FILE_HANDLE file;

U32 size;

#define xworddataNewFields \

objectNewFields \

XWORDDATA_NEW_ONLY xword;

typedef struct XWORDDATA_NEW {

xworddataNewFields

} XWORDDATA_NEW, *P_XWORDDATA_NEW;

MakeMsg(

MakeMsg(

MakeMsg(

MakeMsg(

MakeMsg(

MakeMsg(

MakeMsg(

APPENDIX B

clsXWordData, 1

clsXWordData, 2

clsXWordData, 3

clsXWordData, 4

clsXWordData, 5

clsXWordData, 6

clsXWordData, 7

xwrddata.h 31 7

#define XWORD_MAX_WORD_SIZE 10

#define XWORD_MAX_CLUE_SIZE 40

#define XWORD_MAX_GRID_SIZE 100

typedef struct XWORDDATA_LETTER

U32 Xi

U32 Yi

U8 letter;

XWORDDATA_LETTER, *P_XWORDDATA_LETTER;

typedef struct XWORDDATA_WORD

U32 index;

XY32 origin;

U8 word [XWORD_MAX_WORD_SIZE+1] ;

XWORDDATA_WORD, * P _XWORDDATA_WORD;

typedef struct XWORDDATA_INFO

U32 size;

XWORD_DATA template [XWORD_MAX_GRID_SIZE] i

XWORD_DATA numbers[XWORD_MAX_GRID_SIZE];

OBJECT

OBJECT

#endif

acrossClues;

downClues;

318

xwrddata~c

#ifndef CLSMGR_INCLUDED

#include <clsmgr.h>

#endif

#ifndef STROBJ_INCLUDED

#include <strobj.h>

#endif

#ifndef LIST_INCLUDED

#include <list.h>

#endif

#ifndef FS_INCLUDED

#include <fs.h>

#endif

#ifndef OSHEAP_INCLUDED

#include <osheap.h>

#endif

#ifndef XWRDDATA_INCLUDED

#include <xwrddata.h>

#endif

#ifndef DEBUG_INCLUDED

#include <debug.h>

#endif

#include "method.h"

#include "string.h"

#include "stdio.h"

/*

* Instance Variable Definitions

*
*/

typedef struct XWORD_ENTRY

U32 number;

APPENDIX B

xwrddata.c

U32

U8

U8

x, Yj

word[XWORD_MAX_WORD_SIZE+1Jj

clue[XWORD_MAX_CLUE_SIZE+1Jj

typedef struct METRICS

U32 size,

gridSize,

acrossCnt,

downCntj

U8 grid[XWORD_MAX_GRID_SIZEJj

METRICS, *P_METRICSj

typedef struct INSTANCE_DATA

METRICS metrics;

P_XWORD_ENTRY pEntriesj

INSTANCE_DATA, *P_INSTANCE_DATAj

MsgHandlerArgType(XWordDataNewDefaults, P_XWORDDATA_NEW)

memset(& (pArgs->xword), 0, SizeOf(XWORDDATA_NEW_ONLY)) j

return stsOKj

MsgHandlerParametersNoWarningj .

static P_U8 getData(FILE *fp)

#define XWORDDATA_LINE_l "pip-xwordpuzzle"

319

320 APPENDIX B

MsgHandlerArgType(XWordDataIsXWordFile, FILE_HANDLE)

FILE *fp;

STATUS s;

fp StdioStreamBind(pArgs);

if (!strncmp(getData(fp), XWORDDATA_LINE_l,strlen(XWORDDATA_LINE_l)))

s stsOK;

else

s = stsFailed;

StdioStreamUnbind(fp);

return S;

MsgHandlerParametersNoWarning;

STATUS LOCAL XWDBui IdXWordFromFi Ie (P_INSTANCE_DATA pData,FILE_HANDLE file)

U32 iI, j, leni

P XWORD_ENTRY pEnti

P_METRICS pMeti

P_U8 pGridi

U32 entSizei

FILE *fPi

STATUS Si

fp = StdioStreamBind(file) i

getData(fp)i II ignore first line (importable check)

pMet = &(pData->metrics)i

sscanf(getData (fp), "%u, %u, %u",

& (pMet->size), & (pMet->acrossCnt), & (pMet->downCnt))i

pMet->gridSize = pMet->size * pMet->size;

entSize = (pMet->acrossCnt + pMet->downCnt)*SizeOf(XWORD_ENTRY)i

StsRet(OSHeapBlockAlloc(osProcessHeapId,entSize,&(pData->pEntries)), s);

memset(pData->pEntries, 0, entSize)i

xwrddata.c

pEnt = pData->pEntrieSi

pGrid = pData->metrics.gridi

memset(pGrid, 0, XWORD_MAX_GRID_SIZE };

for (il=Oi il«pMet->acrossCnt); il++, pEnt++}

sscanf(getData(fp }, "%u,%u,%u,%[A,],%[A\n\r]",

&(pEnt->number},&(pEnt->x},&(pEnt->y) ,pEnt->word,pEnt->clue } i

strncpy(&pGrid[pEnt->y * pMet->size + pEnt->x], pEnt->word,

strlen(pEnt->word } };

for il=O; il«pMet->downCnt}i il++, pEnt++ } {

sscanf(getData(fp }, "%u,%u,%u,%[A,],%[A\n\r]",

& (pEnt->number) ,&(pEnt->x},&(pEnt->y},pEnt->word,pEnt->clue }i

for (j=O, len=strlen(pEnt->word}i j<leni j++)

pGrid[(pEnt->y + j} * pMet->size + pEnt->x] = pEnt->word[j];

StdioStreamUnbind(fp }i

return stsOKi

MsgHandlerArgType(XWordDataInit, P_XWORDDATA_NEW}

INSTANCE_DATA

STATUS

insti

Si

if (pArgs->xword.file

StsRet(XWDBui IdXWordFromFi Ie (&inst, pArgs->xword.file), s };

else {

memset(&inst, 0, SizeOf(INSTANCE_DATA} };

inst.metrics.size = pArgs->xword.size;

inst.metrics.gridSize = inst.metrics.size * inst.metrics.size;

memset(inst.metrics.grid, , " inst.metrics.gridSize };

ObjectWrite(self, ctx, &inst};

return stsOK;

321

322

MsgHandlerPararnetersNoWarning;

MsgHandlerWithTypes{XWordDataFree, P_ARGS, P_INSTANCE_DATA}

if { pData->pEntries

OSHeapBlockFree{ pData->pEntries };

return stsOK;

MsgHandlerPararnetersNoWarning;

MsgHandlerWithTypes{XWordDataSave, P_OBJ_SAVE, P_INSTANCE_DATA}

STREAM_READ_WRITE fsWrite;

U32 entCnt;

STATUS s;

fsWrite.numBytes = SizeOf{METRICS};

fsWrite.pBuf = &{pData->metrics};

ObjCallRet{msgStrearnWrite, pArgs->file, &fsWrite, s};

if { pData->pEntries } {

entCnt = pData->metrics.acrossCnt + pData->metrics.downCnt;

fsWrite.numBytes = entCnt*SizeOf{XWORD_ENTRY}i

fsWrite.pBuf = pData->pEntries;

ObjCallRet{msgStrearnWrite, pArgs->file, &fsWrite, S}i

return stsOK;

MsgHandlerPararnetersNoWarningi

MsgHandlerArgType{XWordDataRestore, P_OBJ_RESTORE}

INSTANCE_DATA

STREAM_READ_WRITE

STATUS

insti

fsReadi

Si

APPENDIX B

xwrddata.c

U32

U32

entSizej

entCntj

fsRead.numBytes= SizeOf(METRICS);

fsRead.pBuf= &inst.metrics;

ObjCa11Ret(msgStreamRead, pArgs->fi1e, &fsRead, s);

entCnt = inst.metrics.acrossCnt + inst.metrics.downCnt;

if (entCnt) {

entSize = entCnt * SizeOf(XWORD_ENTRY);

StsRet(OSHeapB1ockA11oc(osProcessHeapId, entSize,

&inst.pEntries) ,s) j

fsRead.numBytes = entSizej

fsRead.pBuf = inst.pEntries;

ObjCa11Jmp(msgStreamRead, pArgs->fi1e, &fsRead, s, Error) i

ObjectWrite(se1f, ctx, &inst)j

return stsOKj

Error:

OSHeapB1ockFree(inst.pEntries)j

return Sj

MsgHand1erParametersNoWarningj

MsgHand1erWithTypes(XWordDataGetInfo, P_XWORDDATA-INFO, P_INSTANCE_DATA)

U32

P XWORD_ENTRY

P_METRICS

LIST_NEW

STROBJ_NEW

U8

STATUS

i, 1j

pEntj

pMetj

1nj

sonj

Sj

pArgs->size = pData->metrics.sizej

pMet = &(pData->metrics)j

memset(pArgs->temp1ate, 0, pMet->gridSize)j

323

324

memset(pArgs->numbers, 0, pMet->gridSize);

for (i=O; i<pMet->gridSize; i++)

pArgs->template[i] = pMet->grid[i] ? 1 0;

pEnt = pData->pEntries;

APPENDIX B

for (i=O, 1 = pMet->acrossCnt + pMet->downCnt; i<l; i++, pEnt++)

pArgs->numbers[pEnt->x + pEnt->y * pMet->size] = (U8) (pEnt->number);

ObjCallRet(msgNewDefaults, clsList, &In, s);

ObjCallRet(msgNew, clsList, &In, s);

pArgs->acrossClues In.object.uid;

ObjCallRet(msgNewDefaults, clsList, &In, s);

ObjCallRet(msgNew, clsList, &In, s);

pArgs->downClues = In.object.uid;

pEnt = pData->pEntries;

for (i=O; i<pMet->acrossCnt; i++, pEnt++) {

ObjCallRet(msgNewDefaults, clsString, &son, s);

sprintf(buff, "%u. %s", pEnt->number, pEnt->clue);

son.strobj.pString = buff;

ObjCallRet(msgNew, clsString, &son, s);

ObjCallRet(msgListAddltem,pArgs->acrossClues,son.object.uid,s);

for (i=O; i<pMet->downCnt; i++, pEnt++) {

ObjCallRet(msgNewDefaults, clsString, &son, s);

sprintf(buff, "%u. %s", pEnt->number, pEnt->clue);

son.strobj.pString = buff;

ObjCallRet(msgNew, ~lsString, &son, s);

ObjCallRet(msgListAddltem, pArgs->downClues, son.object.uid, s);

return stsOK;

MsgHandlerParametersNoWarning;

MsgHandlerwithTypes(XWordDataGetLetters, P_XWORD_DATA, P_INSTANCE_DATA)

xwrddata.c

memcpy(pArgs, pData->metrics.grid, pData->metrics.gridSize)j

return stsOKj

MsgHandlerParametersNoWarningj

MsgHandlerWithTypes(XWordDataGetAcrossCount, P_U32 , P_INSTANCE_DATA)

*pArgs pData->metrics.acrossCntj

return stsOKj

MsgHandlerParametersNoWarningj

MsgHandlerWithTypes(XWordDataGetDownCount, P_U32 , P_INSTANCE_DATA)

*pArgs pData->metrics.downCntj

return stsOKj

MsgHandlerParametersNoWarningj

MsgHandlerWithTypes(XWordDataGetAcrossWord, P_XWORDDATA_WORD,

P_INSTANCE_DATA)

if (pData->rnetrics.acrossCnt) {

pArgs->origin.x pData->pEntries[pArgs->index] .Xj

pArgs->origin.y = pData->pEntries[pArgs->index] .yj

strcpy(pArgs->word, pData->pEntries[pArgs->index] .word)j

else

memset(pArgs, 0, SizeOf(XWORDDATA_WORD))j

return stsOKj

MsgHandlerParametersNoWarningj

325

326 APPENDIX B

MsgHandlerWithTypes(XWordDataGetDownWord, P_XWORDDATA_WORD,

P_INSTANCE_DATA)

if (pData->metrics.downCnt) {

pArgs->origin.x =
pData->pEntries[pData->metrics.acrossCnt+pArgs->index] .x;

pArgs->origin.y =
pData->pEntries[pData->metrics.acrossCnt+pArgs->index] .y;

strcpy(pArgs->word,

pData->pEntries[pData->metrics.acrossCnt+pArgs->index] .word);

else

memset(pArgs, 0, SizeOf(XWORDDATA_WORD));

return stsOK;

MsgHandlerParametersNoWarning;

STATUS ClsXWordDatalnit (void)

CLASS_NEW new;

STATUS s;

ObjCallRet(msgNewDefaults, clsClass, &new, s);

new.object.uid

new.cls.pMsg

new.cls.ancestor

new.cls.size

new.cls.newArgsSize

clsXWordData;

clsXWordDataTable;

clsObject;

SizeOf(INSTANCE_DATA);

SizeOf(XWORDDATA_NEW);

ObjCallRet(msgNew, clsClass, &new, s);

return stsOK;

xwrdview.h

xwrdview.h

#ifndef XWRDVIEW_INCLUDED

#define XWRDVIEW_INCLUDED

#ifndef GO_INCLUDED

#include <go.h>

#endif

#ifndef CLSMGR_INCLUDED

#include <clsmgr.h>

#endif

#ifndef VIEW_INCLUDED

#include <view.h>

#endif

#define clsXWordView MakeGlobalWKN(4150, 1)

#define msgXWordViewStartPlayOver

#define msgXWordViewShowSoln

#define msgXWordVieWClueTapNothing

#define msgXWordVieWClueTapStrikeOut

#define msgXWordVieWCheckPuzzle

#define msgXWordVieWCheckLetters

#define msgXWordVieWCheckWords

STATUS ClsXWordViewInit(void)i

#define xwordviewNewFields \

viewNewFields

typedef struct XWORDVIEW_NEW

xwordviewNewFields

XWORDVIEW_NEW, * P _XWORDVIEW_NEW i

typedef struct XWORDVIEW_STATS

U32 wordCount,

okWords,

letterCount,

okLettersi

MakeMsg(

MakeMsg(

MakeMsg(

MakeMsg(

MakeMsg(

MakeMsg(

MakeMsg(

327

clsXWordView, 1

clsXWordView, 2

clsXWordView, 3

clsXWordView, 4

clsXWordView, 5

clsXWordView, 6

clsXWordView, 7

328 APPENDIX B

#endif

xwrdview.c

xwrdview.c

#ifndef WIN_INCLUDED

#include <win.h>

#endif

#ifndef FS_INCLUDED

#include <fs.h>

#endif

#ifndef PREFS_INCLUDED

#include <prefs.h>

#endif

#ifndef XWRDVIEW_INCLUDED

#include <xwrdview.h>

#endif

#ifndef XWRDGRID_INCLUDED

#include <xwrdgrid.h>

#endif

#ifndef XWRDCLUE_INCLUDED

#include <xwrdclue.h>

#endif

#ifndef XWRDDATA_INCLUDED

#include <xwrddata.h>

#endif

#ifndef DEBUG_INCLUDED

#include <debug.h>

#endif

#include <method.h>

#include <stdio.h>

#include <string.h>

#define gridWinTag

#define acrossWinTag

#define downWinTag

MakeTag(

MakeTag(

MakeTag(

329

clsXWordView, 1

clsXWordView, 2

clsXWordView, 3

330

typedef struct INSTANCE_DATA

U8 dispOrientationi

U32 sizei

U32 gridSizei

OBJECT modeli

OBJECT gridi

OBJECT acrossCluesi

OBJECT downCluesi

INSTANCE_DATA, *P_INSTANCE_DATAi

STATUS LOCAL

XWVBuildClueList(P_STRING pTitle, OBJECT clueList, TAG winTag,

P_OBJECT pList)

XWORDCLUE_NEW XWCi

STATUS Si

ObjCallRet(msgNewDefaults, clsXWordClueList, &XWC, s);

xwc.win.tag

xwc.border.style.edge

xwc.border. style. shadow

xwc.xwclue.pTitle

winTag;

bsEdgeAll;

bsShadoWThickBlack;

pTitlei

xwc.xwclue.clueList clueList;

ObjCallRet(msgNew, clsXWordClueList, &xwc, s);

*pList = xwc.object.uidi

return stsOK;

STATUS LOCAL

XWVBuildGrid(U32 size, U32 gridSize,

P_XWORD_DATA pTemplate, P_XWORD_DATA pNumbers,

TAG winTag, P_OBJECT pGrid)

XWORDGRID_NEW XWCi

STATUS Si

U32 ii

APPENDIX B

xwrdview.c

ObjCallRet(msgNewDefaults, clsXWordGrid, &xwc, s);

xwc.win.tag winTag;

xwc.border.style.shadow = bsShadowThickBlack;

xwc.xwgrid.size size;

for (i=O; i<gridSize; i++) {

xwc.xwgrid.template[i) pTemplate[i);

xwc.xwgrid.numbers[i) = pNumbers[i);

ObjCallRet(msgNew, clsXWordGrid, &xwc, s);

*pGrid = xwc.object.uid;

return stsOK;

MsgHandlerArgType(XWordViewSetDataObject, OBJECT)

inst;

inst = IDataDeref(pData, INSTANCE_DATA);

inst.model = pArgs;

ObjectWrite(self, ctx, &inst);

return stsOK;

MsgHandlerparametersNoWarning;

MsgHandlerWithTypes(XWordViewSave, P_OBJ_SAVE, P_INSTANCE_DATA)

STREAM_READ_WRITE fsWrite;

STATUS s;

fsWrite.nurnBytes = SizeOf(U32);

fsWrite.pBuf &(pData->size);

ObjCallRet(msgStreamWrite, pArgs->file, &fsWrite, s);

return stsOK;

MsgHandlerParametersNoWarning;

331

332

MsgHandlerArgType(XWordViewRestore, P_OBJ_RESTORE)

INSTANCE_DATA

RES_READ_DATA

STREAM_READ_WRITE

STATUS

insti

readi

fsReadi

Si

fsRead.numBytes = SizeOf(U32)i

fsRead.pBuf &inst.sizei

ObjCallRet(msgStreamRead, pArgs->file, &fsRead, s)i

inst.gridSize = inst.size * inst.sizei

read.resId prOrientationi

read. heap Oi

read.pData &inst.dispOrientationi

read. length SizeOf(U8)i

ObjCallRet(msgResReadData, theSystemPreferences, &read, s)i

inst.grid

(WIN)ObjectCall (msgWinFindTag, self, (P_ARGS)gridWinTag) i

inst.acrossClues =
(WIN)ObjectCall (msgWinFindTag, self, (P_ARGS)acrossWinTag)i

inst.downClues

(WIN)ObjectCall (msgWinFindTag, self, (P_ARGS)downWinTag)i

ObjCallRet(msgViewGetDataObject, self, &inst.model, S)i

ObjectWrite(self, ctx, &inst) i

return stsOKi

MsgHandlerParametersNoWarningi

LOCAL

APPENDIX B

XWVLandscapeLayout(P_INSTANCE_DATA pData, P_CSTM_LAYOUT_CHILD_SPEC pSpec)

if (pSpec->child == pData->grid) {

pSpec->metrics.h.constraint = clPctOfi

xwrdview.c

pSpec->metrics.h.value

pSpec->metrics.w.constraint

pSpec->metrics.w.relWin

pSpec->metrics.x.constraint

96;

clSameAs I clOpposite;

pSpec->child;

ClAlign(clMinEdge, clPctOf, clMaxEdge);

pSpec->metrics.x.value 2;

pSpec->metrics.y.constraint

ClAlign(clCenterEdge, clSameAs, clCenterEdge);

else if (pSpec->child == pData->acrossClues) {

pSpec->metrics.w.constraint ClExtend(clPctOf, clMaxEdge);

pSpec->metrics.w.value 98;

pSpec->metrics.h.constraint clPctOf;

pSpec->metrics.h.value 44;

pSpec->metrics.h.relWin pData->grid;

pSpec->metrics.x.constraint

ClAlign(clMinEdge, clPctOf, clMaxEdge);

pSpec->metrics.x.value 106;

pSpec->metrics.x.relWin pData->grid;

pSpec->metrics.y.constraint

ClAlign(clMaxEdge, clSameAs, clMaxEdge);

pSpec->metrics.y.relWin = pData->grid;

else if (pSpec->child == pData->downClues) {

pSpec->metrics.w.constraint ClExtend(clPctOf, clMaxEdge);

pSpec->metrics.w.value

pSpec->metrics.h.constraint

pSpec->metrics.h.value

pSpec->metrics.h.relWin

pSpec->metrics.x.constraint

98;

clPctOf;

44;

pData->grid;

ClAlign(clMinEdge, clPctOf, clMaxEdge);

pSpec->metrics.x.relWin

pSpec->metrics.x.value

pSpec->metrics.y.constraint

pData->grid;

106;

ClAlign(clMinEdge, clSameAs, clMinEdge);

pSpec->metrics.y.relWin = pData->grid;

return stsOK;

333

334 APPENDIX B

LOCAL

XWVPortraitLayout(P_INSTANCE_DATA pData, P_CSTM_LAYOUT_CHILD_SPEC pSpec)

if (pSpec->child == pData->grid) {

pSpec->metrics.h.constraint

pSpec->metrics.h.relWin

pSpec->metrics.w.constraint

pSpec->metrics.w.value

pSpec->metrics.x.constraint

clSameAs I clOppositei

pSpec->childi

clPctOfi

80i

CIAlign(clCenterEdge, clSameAs, clCenterEdge)i

pSpec->metrics.y.constraint

ClAlign(clMaxEdge, clPctOf, clMaxEdge)i

pSpec->metrics.y.value = 98i

else if (pSpec~>child == pData->acrossClues) {

pSpec->metrics.h.constraint ClExtend(clPctOf, clMinEdge)i

pSpec->metrics.h.value 94i

pSpec->metrics.h.relWin pData->gridi

pSpec->metrics.w.constraint clPctOfi

pSpec->metrics.w.value 44i

pSpec->metrics.w.relWin pData->gridi

pSpec->metrics.y.constraint

ClAlign(clMinEdge, clPctOf, clMaxEdge)i

pSpec->metrics.y.value

pSpec->metrics.x.constraint
2i

ClAlign(clMinEdge, clSameAs, clMinEdge)i

pSpec->metrics.x.relWin = pData->gridi

else if (pSpec->child == pData->downClues) {

pSpec->metrics.h.constraint CIExtend(clPctOf, clMinEdge)i

pSpec->metrics.h.value 94i

pSpec->metrics.h.relWin pData->gridi

pSpec->metrics.w.constraint clPctOfi

pSpec->metrics.w.value

pSpec->metrics.w.relWin

pSpec->metrics.y.constraint

44i

pData->gridi

CIAlign(clMinEdge, clPctOf, clMaxEdge)i

pSpec->metrics.y.value 2i

pSpec->metrics.x.constraint

CIAlign(clMaxEdge, clSameAs, clMaxEdge)i

pSpec->metrics.x.relWin = pData->gridi

xwrdview.c

return stsOKi

MsgHandlerWithTypes(XWordVieWCLGetChildSpec, P_CSTM_LAYOUT_CHILD_SPEC,

P_INSTANCE_DATA)

if (pData->dispOrientation == prLandscape

XWVLandscapeLayout(pData, pArgs)i

else

XWVPortraitLayout(pData, pArgs) i

return stsOKi

MsgHandlerParametersNoWarningi

MsgHandlerArgType(XWordViewNewDefaults, P_XWORDVIEW_NEW)

pArgs->view.createDataObject = TRUEi

return stsOKi

MsgHandlerParametersNoWarningi

MsgHandlerArgType(XWordViewInit, P_XWORDVIEW_NEW)

INSTANCE_DATA insti

WIN_METRICS WIDi

BORDE~STYLE bSi

XWORDDATA_NEW xwni

RES_READ_DATA readi

STATUS Si

XWORDDATA_INFO xwrdInfoi

if ! (pArgs->view.dataObject) && pArgs->view.createDataObject) {

ObjCallRet(msgNewDefaults, clsXWordData, &xwn, s)i

xwn.xword.size = 10i

ObjCallRet(msgNew, clsXWordData, &xwn, S)i

335

336

ObjCallRet(msgViewSetDataObject, self, xwn.object.uid, s);

inst.model = xwn.object.uid;

else

inst.model pArgs->view.dataObject;

read.resId prOrientation;

read. heap 0;

read.pData &inst.dispOrientation;

read. length SizeOf(US);

ObjCallRet(msgResReadData, theSystemPreferences, &read, s);

ObjCallRet(msgXWordDataGetInfo, inst.model, &xwrdInfo, s);

inst.size

inst.gridSize

xwrdInfo.size;

inst.size * inst.size;

StsRet(XWVBuildClueList("Across", xwrdInfo.acrossClues,

acrossWinTag, &inst.acrossClues), s);

StsRet (XWVBuildClueList ("Down", xwrdInfo.downClues,

downWinTag, &inst.downClues), s);

StsRet(XWVBuildGrid(inst.size, inst.gridSize,

xwrdInfo.template, xwrdInfo.numbers,

gridWinTag, &inst.grid), s);

ObjectWrite(self, ctx, &inst);

ObjCallRet(msgBorderGetStyle, self, &bs, s);

bs.backgroundInk = bsInkGray33i

ObjCallWarn(msgBorderSetStyle, self, &bs)i

wm.parent = selfi

wm.options = wsPosToPi

ObjCallRet(msgWinInsert, inst.acrossClues, &wm, s)i

ObjCallRet(msgWinInsert, inst.downClues, &wm, s)i

ObjCallRet(msgWinInsert, inst.grid, &wm, s)i

return stsOKi

MsgHandlerParametersNoWarningi

APPENDIX B

xwrdview.c

MsgHandlerWithTypes(XWordViewStartPlayOver, P_ARGS, P_INSTANCE_DATA)

STATUS s;

ObjCallRet(rnsgXWordGridStartPlayOVer, pData->grid, NULL, s);

ObjCallRet(rnsgXWordClueStartPlayOver, pData->acrossClues, NULL, s);

ObjCallRet(rnsgXWordClueStartPlayOver, pData->downClues, NULL, s);

return stsOK;

MsgHandlerParametersNoWarning;

MsgHandlerWithTypes(XWordViewShowSoln, P_ARGS, P_INSTANCE_DATA)

XWORD_DATA

GRID_DATA

U32

STATUS

solution[XWORD_MAX_GRID_SIZE];

gridData[GRID_MAX_GRID_SIZE];

i;

s;

ObjCallRet(rnsgXWordDataGetLetters, pData->rnodel, &solution, s);

for (i=O; i<pData->gridSize; i++

gridData[i] = solution[i];

ObjCallRet(rnsgXWordGridSetLetters, pData->grid, gridData, s);

return stsOK;

MsgHandlerParametersNoWarning;

MsgHandlerWithTypes(XWordVieWClueTapNothing, P_ARGS, P_INSTANCE_DATA)

STATUS s;

ObjCallRet(rnsgXWordClueClueTapNothing, pData->acrossClues, NULL, s);

ObjCallRet(rnsgXWordClueClueTapNothing, pData->downClues, NULL, s);

return stsOK;

337

338 APPENDIX B

MsgHandlerParametersNoWarning;

MsgHandlerWithTypes(XWordVieWClueTapStrikeOut, P_ARGS, P_INSTANCE_DATA}

STATUS s;

ObjCallRet(msgXWordClueClueTapStrikeOut,pData->acrossClues,NULL, s };

ObjCallRet(msgXWordClueClueTapStrikeOut,pData->downClues, NULL, s };

return stsOK;

MsgHandlerParametersNoWarning;

XWVaccStrEqu(P_U8 gStr, U32 size, P_U8 word}

return (!strncmp(gStr, word, strlen(word}

Unused (size);

XWVdwnStrEqu(P_U8 gStr, U32 size, P_U8 word}

{

U32 len, i;

for (i=O, len=strlen(word); i < len; i++ } {

if (*gStr != word[i])

break;

gStr += size;

return (i len} ;

? 1 o };

MsgHandlerWithTypes(XWordVieWCheckPuzzle, P_XWORDVIEW_STATS, P_INSTANCE_DATA}

XWORD_DATA

GRID_DATA

solution[XWORD_MAX_GRID_SIZE];

frGrid[GRID_MAX_GRID_SIZE];

xwrdview.c 339

U32 i, len, cnt, index;

XWORDDATA_WORD XdWi

STATUS Si

ObjCallRet(msgXWordDataGetLetters, pData->model, &solution, s) i

ObjCallRet(msgXWordGridGetLetters, pData->grid, &frGrid, s)i

pArgs->letterCount = pArgs->okLetters = Oi

for (i=O, len=pData->gridSizei i<leni i++

if (solution[i]) {

pArgs->letterCount++i

if (solution[i] == frGrid[i]

pArgs->okLetters++;

pArgs->okWords = Oi

ObjCallRet(msgXWordDataGetAcrossCount, pData->model, &cnt, s)i

pArgs->wordCount = cnt;

for (i=Oi i<cnti i++

xdw. index = i i

ObjCallRet(msgXWordDataGetAcros sWord , pData->model, &xdw, s)i

index = xdw.origin.x + xdw.origin.y*pData->sizei

if (XWVaccStrEqu(&frGrid[index] , pData->size, xdw.word)

pArgs->okWords++i

ObjCallRet(msgXWordDataGetDownCount, pData->model, &cnt, s)i

pArgs->wordCount += cnti

for (i=Oi i<cnti i++) {

xdw. index = ii

ObjCallRet(msgXWordDataGetDownWord, pData->model, &xdw, s)i

index = xdw.origin.x + xdw.origin.y*pData->sizei

if (XWVdwnStrEqu(&frGrid[index] , pData->size, xdw.word))

pArgs->okWords++i

return stsOKi

MsgHandlerParametersNoWarningi

340 APPENDIX B

MsgHandlerWithTypes(XWordVieWCheekLetters, P_ARGS, P_INSTANCE_DATA)

XWORD_DATA solution[XWORD_MAX_GRID_SIZE]i

GRID_DATA frGrid[GRID_MAX_GRID_SIZE], toGrid[GRID_MAX_GRID_SIZE];

U32 i;

STATUS Si

ObjCallRet(msgXWordDataGetLetters, pData->model, &solution, s)i

ObjCallRet(msgXWordGridGetLetters, pData->grid, &frGrid, s)i

for (i=O; i<pData->gridSize; i++

if (frGrid[i])

toGrid[i] (solution[i]

else

toGrid[i] = 0;

frGrid[i]) i

ObjCallRet(msgXWordGridSetOkLetters, pData->grid, toGrid, s);

return stsOKi

MsgHandlerParametersNoWarningi

MsgHandlerWithTypes(XWordVieWCheekWords, P_ARGS, P_INSTANCE_DATA)

U32 i, j, len, ent, index;

GRID_DATA

XWORDDATA_WORD

STATUS

frGrid[GRID_MAX_GRID_SIZE], toGrid[GRID_MAX_GRID_SIZE];

XdWi

s;

ObjCallRet(msgXWordGridGetLetters, pData->grid, &frGrid, s);

memset(toGrid, 0, pData->gridSize * SizeOf(GRID_DATA));

ObjCallRet(msgXWordDataGetAerossCount, pData->model, &ent, s);

for (i=O; i<ent; i++) {

xdw. index = i;

ObjCallRet(msgXWordDataGetAeros sWord , pData->model, &xdw, s)i

index = xdw.origin.x + xdw.origin.y*pData->sizei

if (XWVaeeStrEqu(&frGrid[index] , pData->size, xdw.word)) {

len strlen(xdw.word);

for j=O; j<len i j++)

xwrdview.c

toGrid[index+j] 1;

ObjCallRet(msgXWordDataGetDownCount, pData->model, &cnt, s);

for (i=O; i<cnt; i++) {

xdw. index = i;

ObjCallRet(msgXWordDataGetDownWord, pData->model, &xdw, s)i

index = xdw.origin.x + xdw.origin.y*pData->size;

if (XWVdwnStrEqu(&frGrid[index] , pData->size, xdw.word)) {

len strlen(xdw.word);

for j=O; j<len j++

tOGrid[index] 1i

index += pData->size;

ObjCallRet(msgXWordGridSetOkLetters, pData->grid, toGrid, s);

return stsOK;

MsgHandlerParametersNoWarning;

STATUS ClsXWordViewlnit(void)

CLASS_NEW Ci

STATUS S;

ObjCallRet(msgNewDefaults, clsClass, &c, s);

c.object.uid

c.cls.pMsg

clsXWordView;

clsXWordViewTable;

c.cls.ancestor clsView;

c.cls.size SizeOf(INSTANCE_DATA);

c.cls.newArgsSize SizeOf(XWORDVIEW_NEW)i

ObjCallRet(msgNew, clsClass, &c, s)i

return stsOK;

341

342

xwrdgrid.h

#ifndef XWRDGRID_INCLUDED

#define XWRDGRID_INCLUDED

#ifndef GO_INCLUDED

#include <go.h>

#endif

#ifndef CLSMGR_INCLUDED

#include <clsmgr.h>

#endif

#ifndef SPAPER_INCLUDED

#include <spaper.h>

#endif

#define clsXWordGrid MakeGlobalWKN(4151,1)

#define rnsgXWordGridStartPlayOver MakeMsg(

#define rnsgXWordGridGetLetters MakeMsg(

#define rnsgXWordGridSetLetters MakeMsg(

#define rnsgXWordGridSetOkLetters MakeMsg(

STATUS ClsXWordGridInit(void);

typedef struct

UB size;

GRID_DATA nurnbers[GRID_MAX_GRID_SIZE];

GRID_DATA template[GRID_MAX_GRID_SIZE]i

XWORDGRID_NEW_ONLY, *P_XWORDGRID_NEW_ONLYi

#define xwordgridNewFields \

sPaperNewFields \

XWORDGRID_NEW_ONLY xwgridi

APPENDIX B

clsXWordGrid, 1

clsXWordGrid, 2

clsXWordGrid, 3

clsXWordGrid, 4

xwrdgrid.h

typedef struct XWORDGRID_NEW {

xwordgridNewFields

} XWORDGRID_NEW, *P_XWORDGRID_NEW;

#endif

343

344

xwrdgrid.c

#ifndef WIN_INCLUDED

#include <win.h>

#endif

#ifndef GEO_INCLUDED

#include <geo.h>

#endif

#ifndef FS_INCLUDED

#include <fs.h>

#endif

#ifndef SPAPER_INCLUDED

#include <spaper.h>

#endif

#ifndef SYSGRAF_INCLUDED

#include <sysgraf.h>

#endif

#ifndef SYSFONT_INCLUDED

#include <sysfont.h>

#endif

#ifndef OS HEAP_INCLUDED

#include <osheap.h>

#endif

#ifndef GOMATH_INCLUDED

#include <gornath.h>

#endif

#ifndef XLATE_INCLTJDED

#include <xlate.h>

#endif

#ifndef XLFILTER_INCLUDED

#include <xlfilter.h>

#endif

APPENDIX B

xwrdgrid.c

#ifndef XTEMPLT_INCLUDED

#include <xtemplt.h>

#endif

#ifndef XWRDGRID_INCLUDED

#include <xwrdgrid.h>

#endif

#ifndef DEBUG_INCLUDED

#include <debug.h>

#endif

#include <method.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define GRID_DATAFILE II gridDataFile II

#define BLOCK_SIZE

#define BLOCK_LTR_X_OFF

#define BLOCK_LTR_Y_OFF

#define BLOCK_NUM_X_OFF

#define BLOCK_NUM_Y_OFF

#define beNull OxOO

#define beBlack Ox01

#define beNumber Ox02

#define beLetter Ox04

#define beRight Ox08

#define beWrong Ox10

typedef struct GRID_ENTRY

U8 number;

U8 letter;

U8 status;

GRID_ENTRY, *P_GRID_ENTRY;

typedef struct INSTANCE_DATA

U32 size;

100 II percent of display

25

20

5

5

345

346

U32

U32

SYSDC

OBJECT

P_GRID_ENTRY

gridSize;

screenBlockSize;

gridDC;

gdFileHandle;

pEntries;

STATUS LOCAL

XWGBuildGridDC(P_SYSDC pDC

SYSDC_NEW dn;

SYSDC_FONT_SPEC fs;

STATUS s;

ObjCallRet(msgNewDefaults, clsSysDrwCtx, &dn, s);

ObjCallRet(msgNew, clsSysDrwCtx, &dn, s);

*pDC = dn.object.uid;

ObjCallWarn(msgDcSetLineThickness, *pDC, (P_ARGS)2) ;

fs.id

fs.attr.group

fs.attr.weight

fs.attr.aspect

fs.attr.italic

fs.attr.monospaced

0;

sysDcGroupUserInput;

sysDcWeightNormal;

sysDcAspectNormal;

0;

0;

fs.attr.encoding sysDcEncodeGoSystem;

ObjCallRet(msgDcOpenFont, *pDC, &£S, s);

return stsOK;

MsgHandlerArgType(XWordGridNewDefaults, P_XWORDGRID_NEW)

pArgs->border.style.edge = bsEdgeAll;

memset(& (pArgs->xwgrid) , 0, SizeOf(XWORDGRID_NEW_ONLY));

return stsOK;

MsgHandlerParametersNoWarning;

APPENDIX B

xwrdgrid.c

STAWS LOCAL

XWGBuildTranslator(P_OBJECT pTranslator)

P_UNKNOWN

XLATE_NEW

U16

XTM_ARGS

STAWS

pNewTemplate;

xNewTrans;

xlateFlags;

xtmArgs;

s;

ObjCallRet(msgNewDefaults, clsXText, &xNewTrans, s);

xtmArgs.xtm'JYpe

xtmArgs.xtmMode

xtmArgs.pXtmData

xtm'JYpeCharList;

0;

"ABCDEFGHIJKLMNOPQRSTUVWXYZ-";

StsRet(XTemplateCompile(&xtmArgs, osProcessHeapld, &pNewTemplate), s);

xNewTrans.xlate.pTemplate = pNewTemplate;

xNewTrans.xlate.hwxFlags &=

-(xltCaseEnable 1 xltPunctuationEnable 1 xltVerticalEnable);

ObjCallRet(msgNew, clsXText, &xNewTrans, s);

ObjCallRet(msgXlateGetFlags, xNewTrans.object.uid, &xlateFlags, s);

xlateFlags 1= xTemplateVetol xltSpaceDisable;

ObjCallRet(msgXlateSetFlags,xNewTrans.object.uid, (P_ARGS)xlateFlags, s);

*pTranslator xNewTrans.object.uid;

return stsOK;

MsgHandlerArg'JYpe(XWordGridInit, P_XWORDGRID_NEW)

INSTANCE_DATA

FS_NEW

STREAM_READ_WRITE

GRID_ENTRY

STAWS

inst;

fsn;

fsWrite;

ge[GRID_MAX_GRID_SIZEJ;

s;

347

348

U32 i;

StsRet(XWGBuildTranslator(& (pArgs->sPaper.translator)), s);

pArgs->sPaper.flags

pArgs->sPaper.flags

ObjectCallAncestorCtx(ctx);

&= -spRuling;

i= spProx;

inst.size

inst.gridSize

pArgs->xwgrid.size;

(inst.size * inst.size);

ObjCallRet(msgNewDefaults, clsFileHandle, &fsn, s);

fsn.fs.locator.pPath GRID_DATAFILE;

fsn.fs.locator.uid theWorkingDir;

ObjCallRet(msgNew, clsFileHandle, &fsn, s);

inst.gdFileHandle fsn.object.uidi

fsWrite.numBytes = inst.gridSize*SizeOf(GRID_ENTRY);

memset(ge, 0, fsWrite.numBytes);

fsWrite.pBuf = ge;

ObjCallRet(msgStreamWrite, inst.gdFileHandle, &fsWrite, s);

ObjCallRet(msgFSMemoryMap, inst.gdFileHandle, &inst.pEntries, s);

for (i=Oi i<inst.gridSize; i++) {

if (! (pArgs->xwgrid.template[i])

inst.pEntries[i] . status i= beBlack;

else if (inst.pEntries[i] .number = pArgs->xwgrid.numbers[i]

inst.pEntries[i] . status i= beNumber;

StsRet(XWGBuildGridDC(&inst.gridDC), s);

ObjectWrite(self, ctx, &inst);

ObjectCall(msgDcSetWindow, inst.gridDC, (P_ARGS)self)i

return stsOKi

MsgHandlerParametersNoWarning;

APPENDIX B

xwrdgrid.c

MsgHandlerWithTypes(XWordGridFree, P_ARGS, P_INSTANCE_DATA)

STATUS s;

ObjCallRet(msgFSMemoryMapFree, pData->gdFileHandle, NULL, s);

ObjCallWarn(msgDestroy, pData->gdFileHandle, NULL);

ObjCallWarn(msgDestroy, pData->gridDC, NULL);

return stsOK;

MsgHandlerParametersNoWarning;

MsgHandlerWithTypes(XWordGridSave, P_OBJ_SAVE, P_INSTANCE_DATA)

STREAM_READ_WRITE fsWrite;

STATUS S;

fsWrite.numBytes SizeOf(U32);

fsWrite.pBuf &(pData->size);

ObjCallRet(msgStreamWrite, pArgs->file, &fsWrite, s);

fsWrite.numBytes

fsWrite.pBuf

SizeOf(U32);

& (pData->screenBlockSize) ;

ObjCallRet(msgStreamWrite, pArgs->file, &fsWrite, s);

return stsOK;

MsgHandlerParametersNoWarning;

MsgHandlerArgType(XWordGridRestore, P_OBJ_RESTORE)

STREAM_READ_WRITE fsRead;

INSTANCE_DATA inst;

FS_NEW fsn;

STATUS s;

fsRead.numBytes SizeOf(U32);

349

350

fsRead.pBuf = &inst.size;

ObjCallRet(msgStrearnRead, pArgs->file, &fsRead, s);

inst.gridSize inst.size * inst.size;

fsRead.numBytes = SizeOf(U32);

fsRead.pBuf = &inst.screenBlockSize;

ObjCallRet(msgStrearnRead, pArgs->file, &fsRead, s);

ObjCallRet(msgNewDefaults, clsFileHandle, &fsn, s) j

fsn.fs.locator.pPath GRID_DATAFILE;

fsn.fs.locator.uid theWorkingDir;

ObjCallRet(msgNew, clsFileHandle, &fsn, s)i

inst.gdFileHandle = fsn.object.uidj

ObjCallRet(msgFSMemoryMap, inst.gdFileHandle, &inst.pEntries, s);

StsRet(XWGBuildGridDC(&inst.gridDC), s);

ObjectWrite(self, ctx, &inst);

ObjCallWarn(msgDcSetWindow, inst.gridDC, (P_ARGS) self) ;

ObjCallWarn(msgSPaperClear, self, NULL);

return stsOK;

MsgHandlerParametersNoWarning;

MsgHandlerWithTypes(XWordGridGetLetters, P_GRID_DATA, P_INSTANCE_DATA)

U32 i;

for (i=O; i<pData->gridSizej i++)

if (pData->pEntries[i].status & beLetter

pArgs[i] = pData->pEntries[i] .letter;

else

pArgs[i] 0;

return stsOKj

APPENDIX B

xwrdgrid.c

MsgHandlerParametersNoWarningi

STATUS LOCAL

XWGGridPosToRect(P_INSTANCE_DATA pData, P_XY32 pIn, P_RECT32 pOut}

pOut->origin.x

pOut->origin.y

pOut->size.w

pIn->x * pData->screenBlockSizei

(pData->size - pIn->y - I) * pData->screenBlockSizei

pout->size.h pData->screenBlockSizei

return stsOKi

MsgHandlerWithTypes(XWordGridSetLetters, P_GRID_DATA, P_INSTANCE_DATA}

U32

XY32

RECT32

STATUS

i· ,

penLoci

dri

Si

for (i=Oi i<pData->gridSizei i++)

if (pData->pEntries[i] . letter = pArgs[i]

pData->pEntries[i] . status 1= beLetter

pData->pEntries[i] . status &= -beWrongi

penLoc.x = i % pData->sizei

penLoc.y = i / pData->size;

beRighti

StsRet(XWGGridPosToRect(pData, &penLoc, &dr), s }i

ObjCallRet(msgWinDirtyRect, self, &dr, s } i

return stsOKi

MsgHandlerParametersNoWarningi

MsgHandlerWithTypes(XWordGridSetOkLetters, P_GRID_DATA, P_INSTANCE_DATA}

U32 ii

XY32 penLoci

351

352 APPENDIX B

RECT32 dr;

STATUS s;

for (i=O; i<pData->gridSize; i++)

if (pData->pEntries[i] . status & beLetter)

pData->pEntries[i] . status &= ~(beWrong beRight);

pData->pEntries[i] . status 1= pArgs[i] ? beRight : beWrong;

penLoc.x = i % pData->size;

penLoc.y = i / pData->size;

StsRet(XWGGridPosToRect(pData, &penLoc, &dr), s);

ObjCallRet(msgWinDirtyRect, self, &dr, s);

return stsOK;

MsgHandlerParametersNoWarning;

STATUS LOCAL

XWGDrawGrid(P_INSTANCE_DATA pData)

SYSDC_POLYLINE

XY32

STATUS

U16

U32

pl;

pnts[2] ;

s;

i· ,

gridWorldSize;

ObjCallWarn(msgDcSetForegroundRGB,pData->gridDC, (P_ARGS)sysDcRGBBlack);

gridWorldSize = pData->size * BLOCK_SIZE;

pl.count 2;

pl.points pnts;

pnts[O].y gridWorldSize;

pnts[l].y 0;

for (i=BLOCK_SIZE; i<gridWorldSize; i+=BLOCK_SIZE) {

pnts[O].x = pnts[l].x = i;

ObjCallRet(msgDcDrawPolyline, pData->gridDC, &pl, s);

pnts [0] .x 0;

pnts[l].x gridWorldSize;

xwrdgrid.c

for (i=BLOCK_SIZE; i<gridWorldSize; i+=BLOCK_SIZE) {

pnts[O].y = pnts[l].y = i;

ObjCallRet(msgDcDrawPolyline, pData->gridDC, &pl, s);

return stsOK;

STATUS LOCAL

XWGDrawTemplate(P_INSTANCE_DATA pData)

SYS DC_TEXT_OUT PUT tx;

SYSDC_PATTERN oldPat;

U8 c [3];

U32 x, y;

SCALE fontScale;

RECT32 blackOut;

P_GRID_ENTRY pGridEntry;

STATUS s;

ObjCallWarn(msgDcIdentityFont, pData->gridDC, pNull);

fontScale.x = fontScale.y = FxMakeFixed(((BLOCK_SIZE*1)/4) ,0);

ObjCallWarn(msgDcScaleFont, pData->gridDC, &fontScale);

ObjCallWarn(msgDcSetForegroundRGB,pData->gridDC, (P_ARGS)sysDcRGBBlack);

oldPat = ObjCallWarn(msgDcSetFillPat, pData->gridDC,

(P_ARGS)sysDcPat75);

blackOut.size.w = blackOut.size.h = BLOCK_SIZE;

pGridEntry pData->pEntries;

memset(&tx, 0, sizeof(SYSDC_TEXT_OUTPUT));

tx.alignChr

tx.pText

tx.lenText

sysDcAlignChrTop;

c;

2;

for(y=O; y<pData->size; y++) {

tx.cp.y = (pData->size - y)*BLOCK_SIZE - BLOCK_NDM_Y_OFF;

blackOut.origin.y = (pData->size - y - l)*BLOCK_SIZE;

for(x

if

0; x<pData->size; X++, pGridEntry++

pGridEntry->status & beBlack) {

353

354

blackOut.origin.x = x*BLOCK_SIZEi

ObjCallRet(rnsgDcDrawRectangle,pData->gridDC,&blackOut,s) i

else if (pGridEntry->status & beNurnber) {

sprintf(c, 1%2d", pGridEntry->nurnber) i

tx.cp.x = x*BLOCK_SIZE + BLOCK_NDM_X_OFFi

ObjCallRet(rnsgDcDrawText, pData->gridDC, &tx, s)i

ObjCallWarn(rnsgDcSetFillPat, pData->gridDC, (P_ARGS)oldPat)i

return stsOKi

STATUS LOCAL XWGDrawLetters(P_INSTANCE_DATA pData)

SYSDC_TEXT_OUTPUT tXi

U32 x, Yi

SCALE fontScalei

U8 str[2]i

P_GRID_ENTRY pGridEntryi

STATUS Si

ObjCallWarn(rnsgDcIdentityFont, pData->gridDC, pNull)i

fontScale.x = fontScale.y = FxMakeFixed(((BLOCK_SIZE*3)/4),O)i

ObjCallWarn(rnsgDcScaleFont, pData->gridDC, &fontScale) i

rnernset(&tx, 0, sizeof(SYSDC_TEXT_OUTPUT))i

tx. alignChr

tx.lenText

tx.pText

sysDcAlignChrBaselinei

1i

stri

pGridEntry = pData->pEntries;

for(y=Oi y<pData->size; y++)

tx.cp.y = (pData->size - y -l)*BLOC~SIZE + BLOCK_LTR_Y_OFF;

for(x = Oi x<pData->sizei X++, pGridEntry++)

tx.cp.x = x*BLOCK_SIZE + BLOCK_LTR_X_OFF;

*tx.pText = pGridEntry->letteri

if (pGridEntry->status & beWrong) {

APPENDIX B

xwrdgrid.c

ObjCallWarn(msgDcSetForegroundRGB, pData->gridDC,

(P_ARGS)sysDcRGBGray33);

ObjCallRet(msgDcDrawText, pData->gridDC, &tx, s)i

else if (pGridEntry->status & beRight) {

ObjCallWarn(msgDcSetForegroundRGB, pData->gridDC,

(P_ARGS)sysDcRGBBlack);

ObjCallRet(msgDcDrawText, pData->gridDC, &tx, s)i

else if (pGridEntry->status & beLetter) {

ObjCallWarn(msgDcSetForegroundRGB, pData->gridDC,

(P_ARGS)sysDcRGBGray66);

ObjCallRet(msgDcDrawText, pData->gridDC, &tx, s);

return stsOK;

MsgHandlerWithTypes(XWordGridRepaint, P_ARGS, P_INSTANCE_DATA) {

RECT32 r;

SIZE32 sz;

STATUS s;

ObjCallRet(msgWinBeginRepaint, pData->gridDC, pNull, s);

ObjCallWarn(msgDcIdentity, pData->gridDC, pNull);

sZ.w = sz.h = pData->size*BLOCK_SIZE;

ObjCallRet(msgDcScaleWorld, pData->gridDC, &sz, s);

ObjCallRet(msgBorderGetBorderRect, self, &r, s);

ObjCallRet(msgDcLWCtoLUC_RECT32, pData->gridDC, &r, s);

ObjCallRet(msgDcClipRect, pData->gridDC, &r, s);

ObjCallWarn(msgDcFillWindow, pData->gridDC, pNull);

StsRet(XWGDrawGrid(pData), s);

StsRet(XWGDrawTemplate(pData), s);

StsRet(XWGDrawLetters(pData), s);

355

356

ObjCallRet(msgWinEndRepaint, self, Nil (P_ARGS), s);

return stsOK;

MsgHandlerParametersNoWarning;

MsgHandlerArgType(XWordGridWinSized, P_WIN_METRICS

INSTANCE_DATA inst;

WIN_METRICS WID;

STATUS s;

ObjCallRet(msgWinGetMetrics, self, &WID, s);

inst = IDataDeref(pData, INSTANCE_DATA);

inst.screenBlockSize = WID.bounds.size.w / inst.size;

ObjectWrite(self, ctx, &inst);

return stsOK;

MsgHandlerParametersNoWarning;

MsgHandlerWithTypes(XWordGridStartPlayOver, P_ARGS, P_INSTANCE_DATA

U32 i;

STATUS s;

for (i=O; i<pData->gridSize; i++)

if (! (pData->pEntries[i] . status & beBlack)) {

APPENDIX B

pData->pEntries[i] . status &= -(beLetter I beWrong I beRight);

pData->pEntries[i] . letter J \0' ;

ObjCallRet(msgWinDirtyRect, self, pNull, s);

return stsOK;

MsgHandlerParametersNoWarning;

xwrdgrid.c

STATUS LOCAL

XWGFindGridPos(P_INSTANCE_DATA pData, P_XY32 pIn, P_XY32 pOut)

pOut->x pln->x / pData->screenBlockSize;

pOut->y pData->size - pIn->y / pData->screenBlockSize - 1;

return stsOK;

STATUS LOCAL

XWGFilterTransData(P_U8 pStr, U32 len)

U32 i, j;

for (i=O, j=O; i<len; i++)

if (pStr[i] '\n'

II (pStr[i]

II (pStr[i]

xltCharUnknownDefault

'-')

II ((pStr[i]>='A') && (pStr[i]<='Z')))

pStr[j++] = pStr[i];

pStr[j] = '\0';

return stsOK;

MsgHandlerWithTypes(XWordGridTransWriting, P_ARGS, P_INSTANCE~ATA

STATUS s;

XLATE_DATA xdata;

X2STRING x2sData;

XLIST_ELEMENT xe;

XY32 penLoc;

RECT32 dr;

U32 index;

P_U8 pStr;

xdata.heap osProcessHeapId;

ObjCallRet(msgSPaperGetXlateData, self, &xdata, s);

357

358

XList2Text(xdata.pXList)i

XListGet(xdata.pXList, 0, &xe)i

StsRet(XWGFindGridPos(pData,

APPENDIX B

&(((P_XLATE_BDATA) (xe.pData))->box.origin),

&penLoc), s) i

ObjCallRet(msgWinDirtyRect,self,&(((P_XLATE_BDATA) (xe.pData))->box) ,s) i

XList2StringLength(xdata.pXList, &x2sData.count)i

StsRet(OSHeapBlockAlloc(osProcessHeapId, x2sData. count ,

&x2sData.pString), s) i

XList2String(xdata.pXList, &x2sData)i

StsJmp(XWGFilterTransData(x2sData.pString,x2sData.count) , s, Error)i

index = penLoc.x + penLoc.y * pData->sizei

for (pStr = x2sData.pStringi *pStri pStr++) {

if (*pStr == '\n') {

index += pData->size - 1i

penLoc·Y++i

penLoc.x--i

else {

if (! (pData->pEntries[index] .status & beBlack)) {

pData->pEntries[index] . status &=

-(beLetterlbeWronglbeRight) i

if (*pStr == '-')

pData->pEntries[index] . letter Oi

else {

pData->pEntries[index] . letter = *pStri

pData->pEntries[index] . status 1= beLetteri

StsJmp(XWGGridPosToRect(pData, &penLoc, &dr), s, Error)i

ObjCallJmp(msgWinDirtyRect, self, &dr, s, Error) i

index++i

penLoc.x++i

s = stsOKi

Error:

xwrdgrid.c

OSHeapBlockFree(x2sData.pString) ;

XListFree(xdata.pXList);

return s;

MsgHandlerParametersNoWarning;

STATUS ClsXWordGridlnit(void)

CLASS_NEW c;

STATUS s;

ObjCallRet(msgNewDefaults, clsClass, &c, s);

c.object.uid

c.cls.pMsg

clsXWordGrid;

clsXWordGridTable;

c.cls.ancestor clsSPaper;

c.cls.size SizeOf(INSTANCE_DATA);

c.cls.newArgsSize SizeOf(XWORDGRID_NEW);

ObjCallRet(msgNew, clsClass, &c, s);

return stsOK;

359

360

method.tbl

#ifndef CLSMGR_INCLUDED

#include <clsmgr.h>

#endif

#ifndef APP_INCLUDED

#include <app.h>

#endif

#ifndef WIN_INCLUDED

#include <win.h>

#endif

#ifndef IMPORT_INCLUDED

#include <import.h>

#endif

#ifndef CLAYOUT_INCLUDED

#include <clayout.h>

#endif

#ifndef XLATE_INCLUDED

#include <xlate.h>

#endif

#ifndef XWORDAPP_INCLUDED

#include <xwordapp.h>

#endif

#ifndef XWRDDATA_INCLUDED

#include <xwrddata.h>

#endif

#ifndef XWRDVIEW_INCLUDED

#include <xwrdview.h>

#endif

#ifndef XWRDGRID_INCLUDED

#include <xwrdgrid.h>

#endif

APPENDIX B

method.tbl

MSG_INFO clsXWordAppMethods[] = {

} ;

rnsgIrnportQuery,

rnsgIrnport,

rnsgAppInit,

rnsgRestore,

rnsgXWordAppStartOver,

rnsgXWordAppShowSoln,

rnsgXWordAppSetClueTap,

rnsgXWordAppDoCheck,

o

"XWordAppIrnportQuery",

"XWordAppIrnport" ,

"XWordAppAppInit",

"XWordAppRestore" ,

"XWordAppStartOVer",

"XWordAppShowSoln" ,

"XWordAppSetClueTap" ,

"XWordAppDoCheck" ,

objClassMessage,

0,

objCallAncestorBefore,

objCallAncestorBefore,

0,

0,

0,

0,

MSG_INFO clsXWordDataMethods[] = {
rnsgNewDefaults,

rnsgInit,

rnsgFree,

rnsgSave,

"XWordDataNewDefaults", objCallAncestorBefore,

"XWordDataInit", objCallAncestorBefore,

"XWordDataFree" ,

"XWordDataSave",

objCallAncestorAfter,

objCallAncestorBefore,

rnsgRestore, "XWordDataRestore", objCallAncestorBefore,

361

rnsgXWordDataIsXWordFile, "XWordDataIsXWordFile" , objClassMessage,

} ;

rnsgXWordDataGetInfo,

rnsgXWordDataGetLetters,

rnsgXWordDataGetAcrossCount,

rnsgXWordDataGetDownCount,

rnsgXWordDataGetAcrossWord,

rnsgXWordDataGetDownWord,

o

"XWordDataGetInfo", 0,

"XWordDataGetLetters", 0,

"XWordDataGetAcrossCount", 0,

"XWordDataGetDownCount", 0,

"XWordDataGetAcrossWord" , 0,

"XWordDataGetDownWord", 0,

MSG_INFO clsXWordViewMethods[] = {

rnsgNewDefaults, "XWordViewNewDefaults", objCallAncestorBefore,

rnsgIni t, "XWordViewIni t " , obj CallAncestorBefore,

rnsgSave, "XWordViewSave", objCallAncestorBefore,

rnsgRestore, "XWordViewRestore", objCallAncestorBefore,

rnsgCstrnLayoutGetChildSpec,"XWordViewCLGetChildSpec",

objCallAncestorBefore,

rnsgXWordViewStartPlayOver,

rnsgXWordViewShowSoln,

"XWordViewStartPlayOver",

"XWordViewShowSoln" ,

0,

0,

362 APPEN DIX B

} ;

msgXWordVieWClueTapNothing, "XWordVieWClueTapNothing" , 0,

msgXWordVieWClueTapStrikeOut, "XWordVieWClueTapStrikeOut" , 0 ,

msgXWordVieWCheckPuzzle, "XWordVieWCheckPuzzle" , 0,

msgXWordVieWCheckLetters,

msgXWordVieWCheckWords,

o

"XWordVieWCheckLetters" ,

"XWordVieWCheckWords" ,

0,

0,

MSG_INFO clsXWordGridMethods[] = {

} ;

msgNewDefaults, "XWordGridNewDefaults" , objCallAncestorBefore,

msgInit, "XWordGridInit" , 0,

msgFree, "XWordGridFree" , objCallAncestorAfter,

msgSave, "XWordGridSave" , objCallAncestorBefore,

msgRestore, "XWordGridRestore" , objCallAncestorBefore,

msgWinRepaint, "XWordGridRepaint" , objCallAncestorBefore,

msgWinSized, "XWordGridWinSized" , objCallAncestorBefore,

msgXlateCompleted,"XWordGridTransWriting",objCallAncestorBefore,

msgXWordGridStartPlayOver, "XWordGridStartPlayOver" , 0,

msgXWordGridGetLet ters, "XWordGridGetLet ters" , 0 ,

msgXWordGridSetLetters, "XWordGridSetLetters" , 0,

msgXWordGridSetOkLetters, "XWordGridSetOkLetters" , 0,

o

CLASS_INFO classInfo[] =
"clsXWordAppTable" ,

"clsXWordDataTable",

"clsXWordViewTable" ,

"clsXWordGridTable",

o

clsXWordAppMethods,

clsXWordDataMethods,

clsXWordViewMethods,

clsXWordGridMethods,

0,

0,

0,

0,

} ;

xwrdclue.h

xwrdclue.h

#ifndef XWRDCLUE_INCLUDED

#define XWRDCLUE_INCLUDED

#ifndef GO_INCLUDED

#include <go.h>

#endif

#ifndef CLSMGR_INCLUDED

#include <clsmgr.h>

#endif

#ifndef CLAYOUT_INCLUDED

#include <clayout.h>

#endif

#define clsXWordClueList MakeGlobalWKN(4153,1)

#define msgXWordClueStartPlayOver

#define msgXWordClueClueTapNothing

#define msgXWordClueClueTapStrikeOut

typedef struct

U32 size;

P_STRING pTitle;

OBJECT clueList;

MakeMsg(clsXWordClueList, 1

MakeMsg(clsXWordClueList, 2

MakeMsg(clsXWordClueList, 3

XWORDCLUE_NEW_ONL Y , *P _XWORDCLUE_NEW_ONL Y;

#define xwordclueNewFields \

customLayoutNewFields \

XWORDCLUE_NEW_ONLY xwclue;

typedef struct XWORDCLUE_NEW {

xwordclueNewFields

} XWORDCLUE_NEW, *P_XWORDCLUE_NEW;

#endif

363

364

xwrdclue.c

#ifndef GO_INCLUDED

#include <go.h>

#endif

#ifndef WIN_INCLUDED

#include <win.h>

#endif

#ifndef STROBJ_INCLUDED

#include <strobj.h>

#endif

#ifndef LIST_INCLUDED

#include <list.h>

#endif

#ifndef FS_INCLUDED

#include <fs.h>

#endif

#ifndef CLAYOUT_INCLUDED

#include <clayout.h>

#endif

#ifndef LABEL_INCLUDED

#include <label.h>

#endif

#ifndef LISTBOX_INCLUDED

#include <listbox.h>

#endif

#ifndef GWIN_INCLUDED

#include <gwin.h>

#endif

#ifndef XGESTURE_INCLUDED

#include <xgesture.h>

#endif

APPENDIX B

xwrdclue.c

#ifndef XWRDCLUE_INCLUDED

#include <xwrdclue.h>

#endif

#ifndef DEBUG_INCLUDED

include <debug.h>

#endif

#include <xclu_mth.h>

#include <stdio.h>

#include <string.h>

#define titleWinTag MakeTag(clsXWordClueList, 1

#define listWinTag MakeTag(clsXWordClueList, 2

#define MODE_NOTHING 0

#define MODE_STRIKEOUT 1

#define TEXT_SIZE 12

typedef struct INSTANCE_DATA

U8 clueTapModej

U16 clueCntj

OBJECT titleWinj

OBJECT listWinj

INSTANCE_DATA, *P_INSTANCE_DATAj

STAWS LOCAL

XWCCreateListTitle(P_U8 pTitle, TAG tag, P_OBJECT pTitleWin)

LABEL_NEW lnj

STATUS Sj

ObjCaIIRet(msgNewDefaults, clsLabel, &In, s)j

In.win.tag tagj

In.label.style.scaleUnits bsUnitsFitWindowProperj

In.label.style.xAlignment IsAlignCenterj

In.label.pString pTitlej

In.border.style.edge bsEdgeAllj

ObjCaIIRet(msgNew, clsLabel, &In, s)j

365

366

*pTitleWin = In.objeet.uid;

return stsOK;

STATUS LOCAL

XWCCreateListBox(OBJECT self, OBJECT list, TAG tag,

P_OBJECT pListBox)

LIST_BOX_NEW ibn;

LIST_BOX_ENTRY lbe;
LABEL_NEW in;

LIST_ENTRY lei

STATUS s;

U16 ent;

U32 i;

ObjCallRet(msgListNumItems, list, &ent, s);

ObjCallRet(msgNewDefaults, elsListBox, &lbn, S)i

lbn.win.tag

lbn.border.style.edge

lbn.listBox.elient

lbn.listBox.nEntries

lbn.listBox.nEntriesToView

tagi

bsEdgeAll;

selfi

enti

enti

ObjCallRet(msgNew, elsListBox, &lbn, S)i

*pListBox = lbn.objeet.uidi

memset(&lbe, 0, SizeOf(LIST_BOX_ENTRY))i

lbe.listBox = *pListBox;

lbe.freeEntry lbFreeDataWhenDestroyed;

for (i=Oi i<ent; i++) {

lbe.position = le.position ii

ObjCallRet(msgListGetItem, list, &le, s)i

ObjCallRet(msgNewDefaults, elsLabel, &In, s);

In.border. style. edge = bsEdgeNonei

ObjCallRet(msgStrObjGetStr, le.item, &In.label.pString, s)i

ObjCallRet(msgNew, elsLabel, &In, s);

lbe.win = In.objeet.uid;

ObjCallRet(msgListBoxInsertEntry, *pListBox, &lbe, s)i

APPENDIX B

xwrdclue.c

return stsOK;

MsgHandlerArgType(XWordClueInit, P_XWORDCLUE_NEW}

INSTANCE_DATA

WIN_METRICS

LIST_FREE

STATUS

inst;

wmi

lfi

Si

inst.clueTapMode = MODE_NOTHING;

ObjCallRet(msgListNumltems,pArgs->xwclue.clueList,&inst.clueCnt,s }i

StsRet(XWCCreateListTitle(pArgs->xwclue.pTitle, titleWinTag,

&inst.titlewin }, s };

StsRet(XWCCreateListBox(self, pArgs->xwclue.clueList, listWinTag,

&inst.listwin }, s };

If.key = (OBJ_KEY}clsList;

If.mode = listFreeItemsAsObjects;

ObjCallWarn(msgListFree, pArgs->xwclue.clueList, &If);

ObjectWrite(self, ctx, &inst }i

wm.parent = self;

wm.options = wsPosTop;

ObjCallRet(msgWinInsert, inst.titleWin, &wm, s };

wm.parent = self;

wm.options = wsPosTop;

ObjCallRet(msgWinInsert, inst.listWin, &wm, s }i

return stsOK;

MsgHandlerParametersNoWarning;

MsgHandlerWithTypes(XWordClueSave, P_OBJ_SAVE, P_INSTANCE_DATA}

STREAM_READ_WRITE

STATUS

fsWrite;

s;

367

368

fsWrite.numBytes = SizeOf(U16);

fsWrite.pBuf = &(pData->clueCnt);

ObjCallRet(msgStreamwrite, pArgs->file, &fsWrite, s);

fsWrite.numBytes = SizeOf(US);

fsWrite.pBuf = &(pData->clueTapMode);

ObjCallRet(msgStreamWrite, pArgs->file, &fsWrite, s);

return stsOK;

MsgHandlerParametersNoWarning;

MsgHandlerArgType(XWordClueRestore, P_OBJ_RESTORE)

INSTANCE_DATA

LIST_BOX_METRICS

STREAM_READ_WRITE

STATUS

inst;

Ibm;

fsRead;

s;

fsRead.numBytes = SizeOf(U16);

fsRead.pBuf = &inst.clueCnt;

ObjCallRet(msgStreamRead, pArgs->file, &fsRead, s);

fsRead.numBytes = SizeOf(US);

fsRead.pBuf = &inst.clueTapMode;

ObjCallRet(msgStreamRead, pArgs->file, &fsRead, s);

inst.titleWin

(WIN)ObjectCall(msgWinFindTag,self, (P_ARGS)titleWinTag);

inst.listWin

(WIN)ObjectCall(msgWinFindTag,self, (P_ARGS)listWinTag);

ObjectWrite(self, ctx, &inst);

ObjCallRet(msgListBoxGetMetrics, inst.listWin, &lbm, s);

Ibm. client = self;

ObjCallRet(msgListBoxSetMetrics, inst.listWin, &lbm, s);

return stsOK;

MsgHandlerParametersNoWarning;

APPENDIX B

xwrdclue.c

MsgHandlerWithTypes(XWordClueCLGetChildSpec, P_CSTM_LAYOUT_CHI LD_SPEC,

P_INSTANCE_DATA)

if pArgs->child == pData->titleWin) {

pArgs->metrics.w.constraint

pArgs->metrics.h.constraint

pArgs->metrics.h.value

pArgs->metrics.x.constraint

clSameAs;

clAbsolute;

TEXT_SIZE;

C1Align(clMinEdge, clSameAs, clMinEdge)i

pArgs->metrics.y.constraint =
C1Align(clMaxEdge, clSameAs, clMaxEdge);

else if pArgs->child == pData->listWin) {

pArgs->metrics.w.constraint

pArgs->metrics.h.relWin

clSameAs;

pData->titleWin;

pArgs->metrics.h.constraint C1Extend (clSameAs , clMinEdge)i

pArgs->metrics.x.constraint

C1Align(clMinEdge, clSameAs, clMinEdge);

pArgs->metrics.y.constraint =
C1Align(clMinEdge, clSameAs, clMinEdge)i

return stsOK;

MsgHandlerParametersNoWarning;

STATUS LOCAL

XWCSetClueEntryStyle(OBJECT clueEnt, U8 style)

LABEL_STYLE lSi

STATUS S;

ObjCallRet(msgLabelGetStyle, clueEnt, &ls, s)i

ls.strikeout = (style == MODE_STRIKEOUT) ? 1 : 0;

ObjCallRet(msgLabelSetStyle, clueEnt, &ls, s);

ObjCallRet(msgWinDirtyRect, clueEnt, pNull, s);

return stsOK;

369

370 APPENDIX B

MsgHandlerWithTypes(XWordClueStartPlayOver, P_ARGS, P_INSTANCE_DATA

LIST_BOX_ENTRY Ibe;

U32 i;

STATUS s;

for (i=O; i<pData->clueCnt; i++

Ibe.listBox = pData->listWin;

Ibe.position = i;
ObjCallRet(msgListBoxGetEntry, pData->listWin, &lbe, s);

if (Ibe.data == MODE_STRIKEOUT)

StsRet(XWCSetClueEntryStyle(Ibe.win, MODE_NOTHING), s);

Ibe.data = MODE_NOTHING;

ObjCallRet(msgListBoxSetEntry, pData->listWin, &lbe, s);
}

return stsOK;

MsgHandlerParametersNoWarning;

MsgHandlerArgType(XWordClueClueTapNothing, P_ARGS

INSTANCE_DATA inst;

LIST_BOX_ENTRY Ibe;

U32 i;
STATUS s;

inst = IDataDeref(pData, INSTANCE_DATA);

inst.clueTapMode = MODE_NOTHING;

ObjectWrite(self, ctx, &inst);

for (i=O; i<inst.clueCnt; i++)

Ibe.listBox = inst.listWin;

Ibe.position = i;

ObjCallRet(msgListBoxGetEntry, inst.listWin, &lbe, s);

if (Ibe.data == MODE_STRIKEOUT

StsRet(XWCSetClueEntryStyle(Ibe.win, MODE_NOTHING), s);

return stsOK;

xwrdclue.c

MsgHandlerParametersNoWarning;

MsgHandlerArgType(XWordClueClueTapStrikeOut, P_ARGS

INSTANCE_DATA inst;

LIST_BOX_ENTRY Ibe;

U32 i;
STATUS s;

inst = IDataDeref(pData, INSTANCE_DATA);

inst.clueTapMode = MODE_STRIKEOUT;

ObjectWrite(self, ctx, &inst);

for (i=O; i<inst.clueCnt; i++)

Ibe.listBox = inst.listWin;

Ibe.position = i;

ObjCallRet(msgListBoxGetEntry, inst.listWin, &lbe, s);

if (Ibe.data == MODE_STRIKEOUT

StsRet(XWCSetClueEntryStyle(Ibe.win, MODE_STRIKEOUT), s);

return stsOK;

MsgHandlerParametersNoWarning;

MsgHandlerWithTypes(XWordClueEntryGesture, P_LIST_BOX_ENTRY,
P_INSTANCE_DATA)

{

STATUS S;

if (! (((P_GWIN_GESTURE) (pArgs->arg))->msg

return stsOK;

if (pData->clueTapMode

return stsOK;

xgslTap))

pArgs->data = (P_UNKNOWN) ((pArgs->data == MODE_NOTHING)

? MODE_STRIKEOUT: MODE_NOTHING);

StsRet(XWCSetClueEntryStyle(pArgs->win, (U8)pArgs->data), s);

371

372

ObjCallRet(rnsgListBoxSetEntry, pArgs->listBox, pArgs, s) i

ObjCallRet(rnsgWinDirtyRect, pArgs->win, pNull, s)i

return stsOKi

MsgHandlerPararnetersNoWarningi

STATUS ClsXWordClueListlnit(void)

CLASS_NEW Ci

STATUS Si

ObjCallRet(rnsgNewDefaults, clsClass, &c, s) i

c.object.uid

c.cls.pMsg

clsXWordClueListi

clsXWordClueListTablei

c.cls.ancestor clsCustornLayouti

c.cls.size SizeOf(INSTANCE_DATA) i

c.cls.newArgsSize SizeOf(XWORDCLUE_NEW)i

ObjCallRet(rnsgNew, clsClass, &c, s)i

return stsOKi

STATUS EXPORTED DLLMain (void)

STATUS Si

StsRet(ClsXWordClueListlnit(), S)i

return stsOKi

APPENDIX B

dll.lbc 373

dll.lbc

++DLLMAIN.'pip-xwrdclue-vl(O) ,

374

#ifndef CLSMGR_INCLUDED

#include <clsmgr.h>

#endif

#ifndef CLAYOUT_INCLUDED

#include <clayout.h>

#endif

#ifndef LISTBOX_INCLUDED

#include <listbox.h>

#endif

#ifndef XWRDCLUE_INCLUDED

#include <xwrdclue.h>

#endif

MSG_INFO clsXWordClueListMethods[] =
msgInit,

msgSave,

IXWordClueInit",

IXWordClueSave" ,

objCallAncestorBefore,

objCallAncestorBefore,

} ;

msgRestore, "XWordClueRestore", objCallAncestorBefore,

msgCstmLayoutGetChildSpec,IXWordClueCLGetChildSpec",

objCallAncestorBefore,

msgXWordClueStartPlayOver, IXWordClueStartPlayOver", 0,

msgXWordClueClueTapNothing, IXWordClueClueTapNothing", 0,

msgXWordClueClueTapStrikeOut,IXWordClueClueTapStrikeOut", 0,

msgListBoxEntryGesture, "XWordClueEntryGesture",

o
0,

CLASS_INFO classInfo[] = {

} ;

IclsXWordClueListTable" ,clsXWordClueListMethods, 0,

o

APPENDIX B

\penpoint\app 46
\ \boot\penpoint\boot\dIl45
_NEW 37
_FILE_56
_LINE_56
!strcmpO 253
#define directive 55
#ifdef FILENAME_INCLUDED 51
#include directives 79
? help gesture 121

absolute adjustments 144
absolute pixel coordinates 9
absolute size 265
abstract superclass 120
abstractions 14
accessible 153
Accessories Menu 58,101-102
accessory 102, 164
accumulator

changes 148
access methods 107
child window 133
display 139, 140, 148, 149
limits 106
view 143

acetate
example 116
layer 155

across clue count 196
acrossClues 242
acrossWinTag 241
across 227
activated state 47-48,68-69,72
add observer 91
addressing scheme 233
add stroke 156
additional functionality 230
administer value 25, 160, 162
administered value (defined) 24
agents 235
AlignChildrenO 165, 178
alignment 165, 249
allowEmbedding 102
alphanumerics 187
analog data 157
analysis 89
anappdb.ini62
ancestor class 50, 119, 121, 281, 285
ancestor 20, 21, 36, 39, 40, 70, 71, 72,76,

80,101
animation team 116
anObject 28
ANSI-C 23
Apollo 66
app.h51
app.ini45
Apple Macintosh I, 66
Apple 66, 233
Application's Menu 208
Application Framework, 7-8, 11, 13,22,

65,67-68,71,73,78-79,88-89,
91, 94, 115, 127, 166

framework API 51
Application Menu, default 8, 210
Application Menu 200, 210, 237
Application Programmers' Interface

(API) 7, 10, 156,234,299
application

class, 7, 8, 22, 31,44,47,52, 68, 88,
90,99,161, 175

code level 60
data 69
de-installation 54
developer 65
directory 71
distribution 45
domain 90
header file 46
heap 182
identification information 54
initialization 164, 206
installation 45, 48, 54
instance 66
lifecycle 18, 67, 78
lifetime 7
manager API 51
manager 48-50, 70, 101, 206
model 95, 237
modules 46
monitor 48,57,102
name 54
object 47, 71
oriented OS 199
programmer 4
registration 99
source file 46-47

application-specific data 256
applications 22, 44, 66, 94, 127
AppMainO 48
appmgr.h51
AppMonitorMainO 48
appMonitor 102
apptag.h 205
app 188
APP _METRICS 83
APP _MGR_NEW (defined) 36
APP _MGR_NEW 49,101
arcs 273
ASCII strings 30,57,176,182,193,196,

200,202
assembly level 60
assembly metaphor 21
assembly process 21,233
ASSERTO 55-56
asynchronous environment 147
asynchronous messages 21
attribute field 34
attributes 37, 273
auto layout 124
auto sizing 124
automatic filing 73
automatic font selection 273
auxiliary storage 7

Index

background color 273
background task 154
battery monitor 23
behavior request 31
behavior 14, 16, 21, 28, 30, 31, 90, 14
,bezier curves 273
binding (defined) 18
binding options 18
bit-mapped display 6
bitmap graphic display 66
bitmap 116, 273
black letter 194
blocked 201, 214
BLOCK_SIZE 286
\ \boot\penpoint\boot\dIl45
boot 46
boot procedure 43
boot sequence 44
boot time 45
boot volume 45
boot.dlc 44, 45, 60, 62, 86
border 120-121

area 120
object 120
rectangle 286
type 119

Border Layer 115
boundaries 119
boundary limits 19
box-based calculator 159,160-161,173,

177
BoxCalc Application 161

methods 164-172
boxed input panels 154
breakpoints 60-61, 63, 87
bsContactLockOn 201
bsEdgeAll135,137
bsEdgeNone 134, 135
bsInkGray33 134-135
bsJoinSquare 135, 137
bsShadowNone 135, 137
bsUnitsFitWindowProper 133, 135, 137
BuildEntryWinO 180
BuildNumberWinO 168
BuildOperatorWinO 169
BuildResultsWinO 167-168, 180
built-in protocol 119
.built-in translator 183
button-based

interface 95
calculator 153

buttons 8, 13, 121,201

C++ 14,67
C-based

Objects 67
programming 57

calcapp.c 102, 127
CalcAppAppInit 100, 127
calcbtvw.c 129-130
calcbtvw.h 129-130
CalcBtVwAccmChanged 148
CalcBtVwAccmError 148

375

376

CalcBtVwCLGetChildSpec 143
CalcBtVwDigit 145
CalcBtVwFnc 146
CalcBtVwFree 140
CalcBtVwInit 137-138,140
calcbtvwNewFields macro 130
CalcBtVwRestore 141-143
CalcBtVwSave 141
CalcBtVwSetDataObject 140
CALCBTVW _NEW 130
CalcEndSetAccm 110
calceng.c 105-106, 110, 111
calceng.h 104-105
CalcEngAdd 107-108
CalcEngClr 107-108
CalcEngDiv 107, 109
CalcEngGetAccm 110
CalcEngInit 11 0
CalcEngMul107,109
CaIcEngReadAccm 107
CalcEngRestore 111
CalcEngSave 111
CalcEngSetAccm 107
CalcEngSub 107-109
CALC ENG_NEW 105
CALCENG_ VAL 105
CalcSPaperInit 185
CalcSPaperInputEvent 188
CalcSPaperReset 188
CalcSPaperRestore 187
CalcSPaperSave 187
calculator application 96, 99, 125

application class 137
button view 124, 128, 139-140
engine class 95, 98, 105, 103-104,

107,110,115,128,139,147-148
error statuses 132
example 89-90, 95
scratch pad 186
scratch paper 179,184
view 126, 145
keypad 135

Carr, Robert 4
carriage return 200
cartoonists 116
case statement 151
categories 65
centered 121
character

boxes 158
data 154
recognition software 9
set 159

check marks 200
check puzzle note 197
Check Submenu 193-195, 197,211-213
child embedded applications 102
child window, 167

alignment 165
layout 123, 143
processing loop 140, 117-119,

121-122,126-128,141,178,262
children 123
ChkPuzzleCmdBar 213
ChkPuzzleTb 213
choice selection 122
chords 273

clAbsolute 265
CLAlignO 123-124,143-144
Class Manager 13,22-24 28, 31-35, 37,

47,76,83, Ill, 129, 137, 163,
176,185,217,239,242,275,279

class(es) 46, 90, 154
decomposition 151
hierarchy 21-22
initialization 48
interface 37
library 21, 73, 93, 122
manager (defined) 23
message 199
method 221
name 93-95
registration 47 50, 76, 97, 130, 137,

163,185,221,242,279
Universal Id 24-25,162

Class-Responsibility-Collaborator
Approach 93-95, 97

Cards 93,95
description 99
Table 98

classifying 90
CLASSNAME_NEW 13, 16-25,30,34,

37,66,104,198
CLASS_INFO 34-35, 53, 76
CLASS_NEW 36
clCenterEdge 124
clcspapr.h 176, 183
clearing 188
ClExtendO 143-145
client 123, 158, 179,211,299

notification 120, 158-159, 169-170,
180

object 120, 167, 169
window 127, 208

clientNotifyModified 170
clipping rectangle 286
clipping 117, 119, 273
clMaxEdge 124, 143-144
clMinEdge 124, 144-145
clock application 4
closed figures 273
clPctOf 143-144
clsAccmDisplay 151
clSameAs 124, 143, 145
clsAppMgr 49-51,68,74,84
c1sApp 22, 44, 51,68,71,79,97,99,100,

164,198
c1sBorder 98, lIS, 117, 119-121
ClsBoxCalcAppInitO 163, 176
c1sBoxCalcAppMethods 173
c1sBoxCalcApp 159, 162, 164
c1sButton 93,97-98,117-118,122,200,

213
ClsCalcAppInitO 101
c1sCalcAppMethods 103, 150
c1sCalcApp 95, 97, 99, 101-103, 127, 149
ClsCalcBtVwO 130
ClsCalcBtVwInitO 137
c1sCalcBtVwMethods 150
c1sCalcBtVw 95, 97-99, 118, 126-131,

133-134,136-137,140-141,143-
145,148-149,151

ClsCalcEngInitO 111
c1sCalcEngMethods 112, 150

INDEX

c1sCalcEng 95, 97-99,103-106,108,
110-111,149

ClsCalcSPaperInitO 185
c1sCalcSPaperMethods 189
c1sCalcSPaper 183-185
c1sChoice 123, 201, 209-210
ClsClassNameInitO 47
ClsclassnameInitO 48
c1sClass 20, 22, 25, 36, 39
ClsCoinAppInitO 84
c1sCoinAppMethods 78
clsCoinApp 79-80,86
c1sControl117, 120-121, 180,200
c1sCustomLayout 98,117,122-123,128,

143, 161, 165,198,247,256,265
clsDataField 157
ClsDemoAppInitO 48, 74
c1sDemoAppMethods 53, 75
clsDemoAppTable 48
c1sDemoApp 50, 52-53
c1sDrwCtx 273
clsEmbeddedWin 98
c1sField 157-159, 161, 169
c1sFixedField 157
c1sFontListBox 256
c1sGWin 98, 120
c1sHWXCalcAppMethods 189
clsHWXCalcApp 173, 175, 177
CIsHWXCalcInitO 177
c1sIcon Win 123
clsImport 199, 203, 205
c1sIntegerField 157,159,158
c1sKeypad 151
clsLabel keypad 126
c1sLabeI25-26, 37, 82-83, 97-98,

117-178,121-122,133, lSI, 157,
168,213,256, 263

c1sLightFixture INSTANCE_DATA 32
ClsLightFixtureInitO 35,39
clsLightFixtureMethods 34
c1sLightFixtureTable 36
clsLightFixture 24, 32, 37-38, 40-41
c1sListBox 256, 259, 263, 268
c1sList 202, 219, 228
clsMenuButton 200, 209
c1sMenu 115, 123,200,205,211
ClsMsgToStringO 31
c1sNote 201, 205, 213
c1s0bject 20, 22, 25, 38-39, 97-97, 103,

117,156,165
c1sPctOf 165
c1sPopUpChoice 22
c1sResFile 98,103
c1sSameAs 144
c1sScribble 156
c1sSPaper 158, 174, 176, 183, 198,273,

289
c1sStringListBox 256
c1sString 202, 219, 228
c1sSysDrwCtx 282-283
c1sTabBar 123
c1sTableLayout 117, 122-123
c1sTextField 115, 157
c1sText 115
ClsTimedLightFixtureInitO 38
clsTimedLightFixtureMethods 39
c1sTimedLightFixture 24,41

clsTkTable97-98, 117-118, 123, 126, 128,
133-136, 151,200-201

clsView 98,117,126-128,130,132,
139-140,198,247

clsWhatever 30
clsWin 22, 98,117-118,127
clsXGesture (defined) 159
clsXText (defined) 159
clsXText 186, 281
clsXWord (defined) 159
ClsXWordAppInitO 206
clsXWordAppMethods 216, 296
clsXWordApp 191, 198-199,203-204,

206,208,215,217,221,239-240,
242,251,274-275,279

ClsXwordClueListInitO 260
clsXWordClueListMethods 269
clsXWordClueList 198, 237, 245,

256-261,263,265-266,268-269
clsXWordClue 203, 234, 299
ClsXWordDataInitO 217, 221
clsXWordDataMethods 230, 297
clsXWordData 191, 198-199,215-217,

219-222,224,226,228,237,242,
274

ClsXWordGridInitO 275, 279
clsXWordGridMethods 295, 298
clsXWordGrid 198,237,245,273-276,

278-280,283,289,293,295,299
ClsXWordViewInitO 239, 242
clsXWordViewMethods 255, 297
clsXWordView 198, 208, 234-235, 237-

242,247,250-253,270,274,299
Cls YourClassNameInitO 35
clue count 196
clue list view class 256
clue list 193-194, 227, 251
clueCnt 261, 263
clueList 245
clueTapMode 260, 263
code 20,87

bulk 7
reuse 65, 67
sharing 7

coding 89
coin app 78-79, 83, 85-86, 88
coinapp class 78
coinapp.c 78-79, 85
coinapp.h 78, 85
CoinApp methods 80-84, 87-88
COIN_STATUS 80
collaborate 93-94, 103
collections of controls 122
color capabilities 9
color support 273
compatibility layer 200
compile time 54-55
compiler manual 64
compiler 18, 32, 64, 79, 1909
compiling 51, 62, 67, 214
completion 214
complex style sheets 122
complex views 123
components 6-7, 11, 19,21,31,56,90,

93,95,115-117,119,123,153-
154,159,167,180,190,199-200,
233-234,236,241,256,262,299

hierarchy 270
library 94, 115
packaging 236
window tags 259
windows 244, 263

composite object 158,198
computation 170
computeValueO 183
computing 171, 181-182
confirmDelete 102
conflicts 202
connectivity 8, 10
consistency of operation 65
constants 278
constraint metrics 144
constraints 128
construction 21, 31, 97, 116
constructs 217
consumer 15-17,31,37, 140
context 63, 80, 86

DB 62
contextual information 9
controls 119, 121, 159

behavior 115
client 136
collections 122
data 136
management 136
messages 121
model 120
objects 72
value 169
style 256

controller behavior 147
controller object 90-91, 123
controlling play 250, 266
coordinate 249

space 286
systems 271-272
transformation 272

correct spelling 229
cost of reuse 95
coupling 22, 270
Create Menu 5
create mode 299
created state 68-69, 199
creating instances 25
creating puzzles 196
creation 215
cross development environment 43
cross development 55,61
crossword

application 194, 203
model 199, 216, 239

crossword puzzle application 191-193,
196,200,234,238,241,250,
270-271,274,289,295,299

class 199
documents 198, 206
implementation 198
view 199, 240

CstmLayoutSpecInitO 165
CSTM_LAYOUT_CHILD_SPEC 144
ctx context 32, 63, 80
current

call 62
scope 62

state 63
task 62
version number 30

cursor 155
custom component 19, 119
custom layout 115, 122, 128, 166
custom translator 159, 185
customization 21, 234
cutting and pasting 7
cutting data 299
CVBuildAccmDisplayO 133-134
CVBuildKeypadO 134
cyclical loop 145

dark gray letter 194
data 16

abstraction 14
corruption 8
entry panels 156
entry tool 9
file 73
lists 201

377

object 126, 132, 141, 143, 147,244
security 20
structure 37
transfer 10

DB source level symbolic debugger
60-61,63,88

commands
? 61, 63
bc88
bl88
ctx 62, 87
fs 61
g 64, 87
srcdir 62, 87
sym62,87
tl63,86
v87
P,p64
T,t64

compiling 62
contexts 62
db.ini62
debugger 86
linking 62
manual 61
using 62

DbgO 55
DbgFlagO 56
DbgFlagGetO 57
de-installation 54, 70, 102
de-reference data 20,108,141,146-147
deallocate storage 182
dealloc_mem 30
debug command 61, 63
debugging CoinApp 86
debugging context 86
debugging DemoApp 63
debug.h 51, 55, 57
DebugfO 57, 61
DebugFlagGetO 58
DebugFlagSetO 58
DEBUG 55-57
debugging 51, 54-55, 57, 63

flags 55,55,61
functions 57

378

information 26-27
log 70, 76
macros 55
messages 55
objects 62
output stream 26, 60
session 86
tools 31,60

decoration 121, 200
decoupling 270
default

action 60
Application Menu 8
application 44
crossword puzzle 244
data structure 25
file 62
initialization structure 186
values 26

deferred
binding 13,18-19,23,270
I/O 10
messaging 29

#define directive 55
definition file 38, 52-53, 78,105
definitions 161, 175, 184
degree of freedom 155
delete stroke 156
demo application 48, 50, 52, 54, 62, 70,

73,76
DemoApp

debugging 63
method.h53
methods 70-73
method.tb148

demoapp.c 52, 70
demoapp.exe 54
demoapp.h 51-52
discrete selection 157
description 94
design 21,89, 97, 194, 198

by construction 97
process 19

design-to-coding ratio 89
destroy 202,263, 299
destructive testing 19
developing components 19
development

organization 19
time 14

device drivers 155
Device Units (DU4) 272
dialog boxes 156
direct manipulation 271, 273
direct mapping 272
directory 68-69
dirty bit 172
dirty windows 116
disassemble code 60
disassembled instructions 63
dismiss note 196
dispatch loop 29,48
dispatch table 53
display 69, 233

components 167, 180
devices 8, 22, 271, 273
window 126, 289

Display Manager 66
dispOrientation 242, 248
DllMainO 45, 237, 260
document 5,7,47-48,67-68,70,76-77,

100,111,125,199,206,222,230,
237, 247, 299

creation 215, 230
lifecycle 66-69,77-78,126,198,200
management 88
oriented OS 199
removal 69
transfer 234
process 69

documenting 19
Does Nothing choice 195
domain knowledge 93
dormant state 68-71
down clue count 196
downClues 242
downWinTag 241
down 227
drawing context 9, 116, 119, 156, 191,

271,273,279, 285-286, 288
drawing regions 115
drawing 273
dribbles 155
Dxxxx Debug flags (defined) 58
dynamic binding 14
dynamic binding 201
Dynamic Link Libraries 8, 20, 45-46,

86,191,198,203,234,236-237,
256,259-260,269-270

DllMainO 45, 237,260
initialization 260
loading 44

dynamic linking 30
dynamic link 62
dynamic loading 30
Dynamic UID (defined) 24
dynamically allocated buffer 30

edge 245,280
Edit menu 299
eight and three character rule 54
embedded

applications 102
documents 65
objects 27

emulation 155
encapsulation 14, 20
enhancements 299
entryTag 176
enumerated list of classes 94
enumerated type 80
environ.ini 44, 62
Error 49,60,68,70,83,148, 173

condition 146
messages 58
states 104
status 129

ET++ 67
event filtering 119
exception handling 29
executable 236

form 43
module name 62
module 63

execution behavior 63
exiting applications 67
exporting information 52,199
extension, dlc 46
external definitions 50

INDEX

external interface 41,129,183,217,240,
257, 259, 274, 277

factory 67, 88
family metaphor 118
feedback 120,122,154-155, 171,253,

274
fgetsO 200
field applications 8
fields 157-158,202
figures 273
file

creation 282
handle 216, 282
I/O 271
management 23
system access 6
system classes 22-23
system 10, 60, 70-71, 133

_FILE_56
FILENAME_INCLUDED 51
filing data 72, 103
fill pattern 288
filter data 176
filter /translator pair 186
filter 60,119,181-182,185
firstNumTag 162
fixed-point math primitives 277
flags 200, 278
floating notebooks 10
flow of control 83
flow of ink 155
focusStyle 170
fonts 22, 273

bitmaps 273
primitives 277
scale 288
selection 273
size 133
technology 273

foreground color 273, 287
form-based application 190
formatted information 57
format 200
forwarded gestures 256, 263,268
fprintfO 57, 200
frame (defined) 116
frame 167, 208, 237
frame client window 208
framework 66
free objects 202, 263
fstNone 170
function

calls 23, 28, 55, 64, 104
defintions 13
prototypes 161
references 18

functional interface 55
FxMakeFixedO 288

gdFileHandle 279
generic (defined) 235

generic 19
applications 9
components 90, 95
control model 120
input controls 159
objects 19

geo.h 217
geometric 217
geometries 120
gesture 4-6,9,23, 120, 154, 159, 182,

256, 263, 268
data 154
forwarding 256
recognition 121, 158

get values 61
getDataO 222
global debug flags 55
global well known DID 35, 52, 104
globally accessible memory 29
GO Corporation 4, 11, 14,24,29,57,

65-67,200, 233, 235, 273
GO PenPoint 3
go.h52
gomath.h 277
Graphical User interface (GUI) 1-2,271
graphics primitives 9, 273
gray background 165
gray letter 194
grid array 220
grid based grouping 122
grid size 196
grid view 274
gridDataFile 278
gridDC279
gridSize 242, 244, 279, 285
gridWinTag 241
grid 242
GRID_DATAFILE 278
GRID_ENTRY 278

hand coding 67
handwriting based calculator 173-174
handwriting 4, 159

classes 22-23
prototypes 22
recognition system (defined) 154
recognition system 6, 9,153-155,

158-159,190,289,292
translation 176
input 156, 190, 289

hard drive 46
hardware

characteristics 2, 8
devices 8, 271
displays 8, 271
events 155
initialization 44
vendor 3, 233

hardwired interrupt key 63
Header file 73, 129
heap 60,182
heavyweight objects 20
height 119, 144
help gesture 121
help screen 61
help 299
hidden window 118

hierarchy 23
ahit detections 273-275, 279
horizontal 274

layout 234, 238
menu 200
size 285

hot mode 68, 71-72, 77, 102
hotMode 102
HWX Engine (defined) 154
HWX engine 155-156, 159
hwxcalc example 190
HWXCalcAppAppInit 177
HWXCalcCompute 181
HWXCalcRestore 179
hybrid environment 104

icon-based interfaces 1
IDataDerefO 82, 84, 140
identification information 54
identification 160
identifying reuse 94
#ifdef FILENAME_INCLUDED 51
image rendering 272-273
ImagePoint 271-273
Imaging model 271, 273
implementation 18, 90, lOS, 184, 258

file 31,238
options 115
strategy 90
techniques 13
tool 18

implementer 31
implementing 198
import manager 193, 199
import.h205
imported 196, 199

data 200, 214
documents 48
file 221-223, 237
puzzles 193

In Box 10
#include directives 79
increase generality 19
indexed instance variables 131
index 132, 148-149
information structure 244
infrared nets 3
inheritance hierarchy 18, 94, 115-116
inheritance 6-7,13-14,16,20,90,115,

236
inherited behavior 21, 25, 38-41, 53, 68,

70,79,97, 126-127
initialization 164, 180, 186, 206-207, 260
ink 155
inner area 120
input 190

components 153
controls 159
devices 155
events 66,155,188
support 158

inserting windows 123
insertion pad 157-158,299
inside 120-121
inspecting objects 26
installation classes 22
installation 54

installed application 47, 67
Installer (defined) 45
installing applications 45, 76
installing CoinApp 86
installing at boot 45
instance (defined) 20
instance 24, 47, 53, 63, 67

379

data IS, 17,20-21,33,68,71,80,83,
106,108, 132, 176

(pData) 27
structure 74
size limits 32

methods (defined) 14
methods IS, 17
variables (defined) 14
variables 21, 31, 77, 80, 120, 162,

164, 179,206,260,278
data structure 36
size 101

INSTANCE_DATA 36, 185, 220, 278,
137

integer 159
field 170, 173

integer-based 272
INTEGER_FILED_NEW 168
interchangeable 234

components 13
interface

architecture 10
files 31, 50, 52, 238

internal representation 19
internals 8
internationalization 235

kernel 8, 44, 47-48
keyboard input 119, 159
keyboard-phobic 3
keyboards 3, 9, ISS, 158, 233
keypad 136, 145, 153

child window 133, 139
paradigm 97
view 143
windows 140

Label item 267
label.h 26, 52
label 25-26
LABEL_NEW 25-26, 83, 133
landscape layout 237-238
landscape mode 44
layered fashion 116
layout 119-120, 133, 135, 198,234,237,

278
abilities 127
behavior 115
capabilities 122, 128
episode 247, 265
function 248

IbFreeData WhenDestroyed 263
left-justified 121
lenArgs 29
letters choice 196
letters 274
Lex 190
library 18, 154, 188, 199,236
life cycle 65
light fixture 14-18, 24, 34

380

light pen 2
LIGHTFIXTURE_NEW 36, 38
LIGHTFIXTURE_NEW _ONLY 38
lightweight threads 8
_LINE_56
line break 200
linker 18, 64, 237
linking 20-21, 54, 62, 67, 236
List box 263,265, 268
list objects 227
list.h 219
listbox.h 259
listbox 260
listener 180
lists of data 201
lists 202, 262
listWinTag 259
LIST_BOX_ENTRY 263
In.object.uid 26
load module name 54
load module 54
loader 237
loading puzzle 193
local memory 80
locate 202
locator 9
lockon button 122
logical

constraints 123
coordinate size 274
coordinate space 272, 286
coordinates 278
Device Coordinates (LDC) 272
geomitries 217
imaging model 273
Screen Units 164
Unit Coordinates (LUC) 272
units 133
Window Coordinates (LWC) 272

long int 63
lowercase 154

Mac II 233
MacApp66
Machine Interface Layer (defined) 44
Machine Interface Layer 8
Macintosh 7, 10, 199, 233

applications 67
Mac II 233
MacApp66

macro definitions 13
macro-based interface 23
main window 71, 165
mainO 45, 47-48,74,76-77,79,85,97,

99,101-103, Ill, 163, 176, 198,
203,206,217,221,239,242,275,
279

maintenance methods 110
maintaining components 19
Make utility 64
makefile 64,188
MakeGlobalWKNO 24, 52
MakeMsgO 24, 34
MakeNonErrO 25
MakeStatusO 25,104
MakeTag025
MakeWKN024

manager (defined) 123
manager 128
managing data 126
managing notification 103
managing objects 23
mapping 285
margin area 120, 121
maximum size 193
maxS3227
mbMenuPopup 201
mbMenuPullDown 201
memory mapped file I/O 271
memory mapping 282
memory model 44
memory protection 8
memory usage 58, 60,274
memory-mapped file 274, 279, 283
memory 26
memset0224
menu 116, 119, 157, 191,200,202,210

bar 194, 208, 251
client 211
handling 199
interface 198
nested 194
selections 211
support 200

menu.h205
MENU_NEW 200
message 7, 17-21, 25-26, 28, 30-31, 34,

48,50,104
binding 21
definitions 105
dispatch table 50
field 34
functions (defined) 28
identifiers 24, 28, 31, 161
logging 61
macros (defined) 29
mapping2~9
sending macros 133
sending type 28
send 18,37, 39, 104
tracing 27
type 29

message to method translation table 37
message-based interface 22
message-sending macros 104
message/method mapping 53, 269
messages to supercIass 40
messaging

facility 28
overhead 162

meta-class 20,25
method 18,20-21,28,33-35,37,40-41,

48-49,53
arguments (pArgs) 27
definitions 129
dispatch table 71
field 34
lookup 19
macros (defined) 32

method table (defined) 31
method table 34-35,39,46,51-52,54,

67,72-73,75,173,188,216,219
attribute field 34

INDEX

compiler mt.exe 34,48,53-54,241,
259,277

definitions 78, 141
entries 76
message field 34
method field 34
structure 53

method.h 48, 51
method.tbl48, 52, 78,103,112,129,

149,203,216,229,238,255,281,
295

method/message mapping 53, 269
methodology 16,22
METRICS 220
metrics 144
Microsoft

RTF 154
Windows-NT 3
Windows 66

mil.ini44
mini-debugger 60-61
minS3227
miscellaneous classes 22-23
MIT 2
mmsgWinEndRepaint 286
mnLettersTag 208
mnNothingTag 208
mnPuzzleTag 208
mnShowSolnTag 208
mnStartOverTag 208
mnStrikeOutTag 208
mn WordsTag 208
modal 201, 214
model 14, 140, 199,226,237,239,242,

253
class 90, 99,103,216-219
data 279
objects 90-91

modify registers 60
modify 202
module 18, 30
momentary contact button 122
monitor 188
Motorola 233
mouse input 159
mouse-based interfaces 2
mouse 1,9, 66, 155, 158,233
MS-DOS 10,46,54,61
msgAdded 92
msgAddObserverAt 91
msgAddObserver 91-92,179
msgAppClose 70, 72,84
msgAppGetMetrics 83, 127
msgAppInit 53, 70-71, 77, 82, 99-100,

127, 164, 177,207,215
msgAppOpen 70, 72, 82
msgBorderGetBorderRect 285
msgBorderGetStyle 139
msgBorderSetStyle 139
msgCalcBtVwDigit 130, 145
msgCalcBtVwFnc 130, 146
msgCalcEngAccmChanged 105, 107,

148
msgCalcEngAdd 105
msgCalcEngClr 104
msgCalcEngDiv 105
msgCalcEngError 105, 148

msgCalcEngGetAccm 104
msgCalcEngMul105
msgCalcEngSetAccm 104
msgCalcEngSub 105
msgClass27
msgControlAcceptPreview 121
msgControlSetDirty 170
msgCstmLayoutGetChildSpec 143
msgCstmLayoutSetChildSpec 166
msgDcClipRect 285
msgDcDrawPolyline 286
msgDcDrawRectangle 288
msgDcDrawText 288
msgDcFillWindow 285
msgDcIdentityFont 287
msgDcIdentity 285
msgDcLWCtoLUC_RECT32285
msgDcScaleFont 287
msgDcScaleWorld 285
msgDcSetFillPat 287
msgDcSetFontForegroundColor 287
msgDcSetForegroundRGB 286
msgDestroy 26,140,283
msgDump 26, 31, 55
msgEnumObservers 93
msgFieldModified 169-171
msgFieldValidateEdit 170
msgFrameSetClientWin 83, 127
msgFree 70-71, 78-79, 283
msgFSMemoryFree 283
msgFSMemoryMap 282
msgGetObserver 93
MsgHandlerO 33-34
MsgHandlerArgTypeO 33, 81
MsgHandlerParametersNo Warning 32
MsgHandlerPrimitiveO 32-33
MsgHandlerWithTypesO 83
msgImportQuery 199, 214
msgImportRequest 199
msgImport 199, 215
msgInit 70-71, 77, 80, 186,222,242,261,

280
msgInputEvent 188
msgIsA27
msgIsXWordFile 215
msgLabelGetString 171
msgLabelSetString 139
msgListBoxEntryGesture 268
msgNewDefaults 26, 36, 49-50, 74, 105,

133, 135, 211, 222, 242, 279
msgNew 26, 30,36,50,74,105,123,

126,242
msgNoteShow 214
msgNotifyObservers 92, 107
msgNumObservers 93
msgOkToResetSPaper 183
msgPostObservers 92
msgRemoved 92
msgRemoveObserver 91
msgResReadData 243
msgRestore 70, 73,81,141,208,246,

264,284
msgSave 70, 72, 77, 81,126,141,246,

263,283
msgScrAddStroke 158
msgScrComplete 158
msgSomeMessage 28

msgSPaperComplete 158
msgSPaperGetXlateData 181,290
msgSPaperXlateCompleted 180-181
msgStreamRead 81, 142
msgStreamWrite 81,141
msgTrace 27
msgUpdate 92
msgVersion 27
msgViewGetDataObject 142
msgViewSetDataObject 140, 247
msgWinFindTag 167
msgWinInsert 140
msgWinRepaint 285
msgWinSized 292
msgXlateComplete 158, 289
msgXlateGetFlags 281
msgXlateSetFlags 281
msgXWordAppDoCheck 204, 212
msgXWordAppSetClueTap 204
msgXWordAppShowSoln 204, 211
msgXWordAppStartOver 204, 211
msgXWordClueClueTapNothing 257,

266
msgXWordClueClueTapStrikeOut

257,266
msgXWordClueStartPlayOver 257, 266
msgXWordDataGetAcrossCount 217
msgXWordDataGetAcrossWord 217
msgXWordDataGetDownCount 217
msgXWordDataGetDownWord 217
msgXWordDataGetInfo 217
msgXWordDataGetLetters 217
msgXWordDataIsXWordFile 217
msgXWordGridGetLetters 275
msgXWordGridSetLetters 275
msgXWordGridSetOkLetters 275
msgXWordGridStartPlayOver 275
msgXWordGridStartPlayOver 293
msgXWordSetClueTap 211
msgXWordViewCheckLetters 239
msgXWordViewCheckLetters 254
msgXWordViewCheckPuzzle 214, 239,

252
msgXWordViewCheckWords 239, 254
msgXWordViewClueStrikeOut 239
msgXWordViewClueTapNothing 239
msgXWordViewClueTapStrikeOut 251
msgXWordViewShowSoln 239, 250
msgXWordViewStartOver 250
msgXWordViewStartPlayOver 239
msg32
MSG_INFO 35, 216, 229, 255, 295
MS_DOS 43
multiple views 91, 103, 126

name scope 62
name space 93
named volume 46
nested menus 194
network based computing 23
networking technologies 3, 10
neural net technology 6
_NEW 37
NEW 50
new data structure 26, 36
NEWDEFAULTS 31
new puzzles 196

next statement 64
nextOp 132, 147
NeXTstep67
nfSystemModal214
Nil(SIZEOF) 50
nn.note.metrics.flag 214
non-discrete data 157
non-error messages 58
non-pen 155
nonexistent state 68-71
not activated 77
note management 213
note.h 205

381

noteboard example 90-91, 95
Notebook User Interface (NUl) 4-6, 8,

22-23,115-117,119,122-125
Notebook User Interface class library

122
Notebook 4, 70-71, 76
note 191, 196
notification 91,159-160,169-170,180,

199,265
behavior 122
client 123
list 91
messages 123, 202

notifies 154
notifying observers 92
null object 26
numbers 154
numeric 159

objCallAncestorAfter 34, 40
objCallAncestorBefore 34, 40
ObjCallJmpO 30, 49, 83
ObjCallRetO 26, 30,104
objClassMessage 216
object

creation 25, 223
freeing 25
management 202
manipulating 25
model 67
recreation 73

object-oriented (defined) 13
object-oriented 4,11,15-16

analysis 89
architecture 6
design 19, 89-90, 95
enhancements 151
environment 14, 65, 201
framework 37
implementation 10
paradigm 115
programming 17, 21, 23, 41, 66-67,

126,147
programming languages 23

Object-Pascal 66-67
ObjectCallO 27-29
ObjectCallAncestorO 40
ObjectCallAncestorCtxO 40,186
objecthood 90
Objective-C 14, 67
ObjectPostO 29
ObjectPostAsyncO 29
ObjectSendO 29
ObjectSendUpdateO 29

382

ObjectWriteO 80,82,108
object 13-14, 18, 20, 28, 30
objNull26
OBLNOTIFY_OBSERVERS 92,107
observer 91, 97, 103, 105

list 92-93
notification 91, 98,103,106,108,

299
registration 91, 126

observable object 202
obsrObj 107
OK Button 196,214
okToReset 187
on-screen cursor 155
open figures 273
opened state 68-69, 72
operating environment 44
operating system 3,4,6,8,10,13,43,

48,66-67,80,155,199-200,202,
234, 236, 260

operatorTag 162
operator 153, 159
opt-label 30
opt-status 30
optimum performance 119
option cards 25
option sheets 25, 123m 157, 234
ordinal 104
OS/28
OSHeapBlockAllocO 224,290
OSHeapBlockFreeO 224, 226, 291
OSI Networking Standard 10
osProcessHeapId 181-182, 224
Out Box 10
out-of-proximity 155, 158, 160
outline font technology 273
output debug messages 74
output stream 55
overriding methods 17,39-40,53,70,

76
overwrite fields 158
ownership 202

packaging 236
panels 154
paper 153-154
paradigm 120
parent boundaries 119
Parent Window Coordinates (PWC)

272
parent window 117-119, 122, 128, 133,

135
pArgs (method arguments) 27, 29, 32
pArgStructure 28
parsing 176, 182
Pascal 66
Paste 299
Pause key 61, 86
PC market 233
PC 199
pData (method data) 27, 32, 81, 83
pen and paper metaphor 65, 154, 174,

190
pen and screen 271
pen 2-3, 5,10,91,95,116,120,122,153-

155,158,160,174,184,195,271
computer (see tablet) 234

events 155-156
input 119,154
movement 116, 154
stroke 23, 158
tap 116, 195
tracking systems 8

pen-based
computing 1, 3-4
machines 10,45
metaphor 11
systems 2, 9, 46, 153
version 191

pen.h 184
PenPoint 188

classes 31, 199
library 199
Object Model 23
Seminar 153
Software Developer's Kit 73
windows 116
Definition of Objects 20

" \penpoint\app 46
pEntries 279
performance

considerations 119,273
enhancement 273

persistent
data 14,103,141
objects 234

personal computing 233
phone list 271
physical

address 63
display device 273
movement 154

pip-xwordpuzzle 196, 222
pixel 272

characteristics 44
plotter 272
point and click metaphor 1
pointing devices 9
polygons 273
polylines 273, 287
pop-up 200-201
portability issues 8portrait layout 237
portrait mode 44
positions 9
potential reusers 151
Power of PenPoint, The 4
pre-built component library 115
pre-coding 89

. pre-defined grammar 190
pre-framework era 66
pre-loading 45
predefined

classes 65
components 154, 190
resources 234
tags 179,208,210

preferences 235-236, 240, 244
prefs.h240
preprocessor directives 50
preprocessor 18
preprocessStringO 182
preview

behavior 122
mode 120-121

protocol 200
primitives 273, 277
print messages 54
prirttfO 55
printing 23, 282
private data 14
prLandscape 235
process 71

boundaries 20-21,29
space 29

processCount 47-48,75-77
processing loop 140
producer 15, 17,37
production objects 62
programmatic

disabling 121
enabling 121

programming community 13
programmatically 121, 256
prOrientation 235
protected data 32

INDEX

protected memory 20, 31-32, 80, 82, 84,
108,139,141,143,146-147,165,
167,262,282, 285

proximity (defined) 155
proximity data 9
proximity 158, 160
prPortrait 235
pString 83
pTitle 245
pull down 201
pull-down menu 200
pull-right submenu 200
punctuation 154, 159, 187
puzzle

document 237
size 193, 227
statistics 252
second sample 231

Puzzle Menu 193-195, 203
Puzzle menu option 213
Puzzle ... submenu 196
P_ARGS83
P _BUTTON_NEW 134
P _CALCVAL 108
P _ CUSTOM_LAYOUT_ CHILD_SPEC

143
P _GWIN_GESTURE 268
P _INSTANCE_DATA 83

Quick Help strings 25

radio buttons 122, 157
RAM volume 44
raw translation 181
re-install61
re-run 61
reactivated state 69
read-only capacity 83
reading data files 200
real estate agent 3
real world abstraction 14
real-time 154
receive notification 256
recompile 61
rectangle 9, 115,217,273,279
rectangular region 116, 119

recursive dispatch loop 27
recursive live embedding 6-7, 164
registration 48
relative positioning 123, 128, 144
relative Window positions 124
reliability 19
relink 61
relWin 145
remote

interface classes 22-23
object 21

remove observer 91
RemoveMenuTags 210-211
remove 194
removing objects 26
rendering 271
render 9,156,194,272,274,279,

285-286,289
reordering cards 94
repainting 116, 285

protocol 119
requested behavior 18
research groups 66
reset message 182
resizing layout 117
resizing 119, 279
resource

file 48, 69, 71, 77, 110,234,235,240,
244

Ids 235
manager (defined) 234
manager 235

responding 293
responsibility / collaborator pairs 94
restore state 110, 141
restoring data 68, 101, 111, 127, 162,

166, 179, 187, 245, 263, 283
resultsTag 162, 176
reusable

classes 89
components 8, 19

reusabilty 7,11,14,16,18-21,38,66,73,
89-90,93-95, 121,201,236

Rich Text Format 154
right arrows 200
right justified 121
root ancestor 25
rotation 272
ruled paper 154
running demoapp 76
runtime installation 46
runtime 45

sample programs 299
sample puzzle 231
saving

data 77, 101, 127, 187, 245, 263, 283
state 67, 78, 110, 147

scalable operating system 7
scaleable 233-234
scaling 272
scratch pad window 180
scratch paper based calculator 173-176
scratch paper 158, 183, 188
scratch-pad 154
screen 272

devices 9

layout 119
orientation 234-235, 247
resolutiion 233
type 44

screenBlockSize 279
scribbles (defined) 154
scribbles keys 23
scribbles 156, 158-159, 198,274,285
scrollable list 256
scrollbars 116
secondNumTag 162
segmentation 154
segment 60
selected volume 45
self-sent message 120
self 32-33,83,132,135-136,165
sending messages 28, 91
set values 61
shaded fonts 274
shadow 120-121,245
Shafer, Dan 4
shared

code 237
information 15
libraries 20
objects 202
part 15
pointers 202

Show Solution Submenu 194
shrink-wrap (defined) 119
shrink-wrap 122
sibling windows 118
signal 214
simple calculator 95
single inheritance 20
single model 126
single process 21
single tap 269
68000233
64K limit 32
size limits 32
size, instance variable 101
size 242, 265, 279
Smalltalk 14, 23, 90
SoftTalk 23
Software Developer's Kit (defined) 26
Software Developer'S Kit 43, 49, 54-55,

73,83,270
software

emulation 155
engineering 22
quality 13-14
reuse 10

solution 194, 293
source

code 62-63,67,78,104,129,190
information 87

source level debugger 55, 61
SPaper Calculator 174
specifications 16, 155
spell checking 299
spelling manager 23
spelling 229
sprintfO 146
sscanfO 224
stack contents 63
stack frame 62

stages of reuse 19
stamp utility 54
standard pen events 155-156
staples 123
start over Submenu 194, 211
starting over 194
starting PenPoint 44
state data 77

383

stateful data 15, 68, 77-78, 127, 132, 143
stateful objects 71
stateless entity 107
stateless objects 72
states 68-69, 260
static binding 14
stationary 5, 48, 102, 164,230

notebook 102
notebook application 4

statistics display 253
status

error 25
handler 29
information 24
non-error 25
update 87
values 28, 27

STATUS 30, 49, 104, 133-134
stdio.h 222
StdioStreamBindO 221-223
StdioStreamUnbindO 221-222, 224
stdio 200
stdlib.h 176
step into 64
step over 64
stock prices 193
storage format 200
!strcmpO 253
STREAM_READ_WRITE 81, 141
strike it out choice 195
strikeout

attribute 267
mark 267
state 268

string 182
manager 23
object 56
pointer 63
tables 234-235

strncpyO 224
strobj.h 219
stroke 9,156,174,274

analysis 6
data 158, 183
translator 185

strokelist 156
stsFailed 222
stsNon ValidOp 162
stsOK 30, 71, 134, 171, 222, 237
stub structure 46
style flag 201
style sheets 119
stylistic requirements 273
stylus device 4, 44
subclass 20-21, 31, 38, 95, 143, 174
sub hierarchies 22
superclass 16-17, 20-22, 36-40, 50, 94,

143
support functions 106, 129, 167, 182

384

support routines 51
symbolic

debugger, DB 60, 86
information 60,87
level 61, 63

symbols 62, 154
synchronous

functions 29
messages 21

sysapp.ini 45
syscopy.ini 45
SYSDC]ONT_SPEC 282-283
SYSDC_NEW 282
SYSDC_PATTERN 287
SYSDC_TEXT_OUTPUT 287
sysfont.h 277
sysgraf.h 277
system

applications 44-45, 102
components 4
debug flags 61
faults 8
flags 57
information 58
interface 6
Log 59
Messages 58
performance 202
preferences 198, 234-235, 237

systemApp 102

Table layout 115, 123, 126
windows 122
manager 123

Table Of Contents 4-5, 70, 77
table-based groupings 123
tablet (see pen computer) 2-4, 7,26,44,

154-155,234,247,271,274
tabular grid 136
tags (defined) 24-25, 160-161, 166-167,

179,208,210,241,245,259
definitions 205
identifier 25

tagClueTapMenu 208
tagXWordMenuPuzzle 208
take down 200
Tapping Clue Submenu 194-195
tap 116, 120, 145, 201, 256, 268-269
tasks 60

ID 27, 62-63, 86-87
list 58,61

taxonomy 46, 94
telephone example 121
tellObsAccmChangedO 106, 108
tellObsErrorO 107-108
template (defined) 159
template 185-186, 227, 230

compiling 159
testing 89
text 273

classes 22-23
field 9
file 235
layout facilities 121
rendering 273
rotation 121
strings 121

theSystemPreferences 244
thick black shadow 245
TIFF 273
timed light fixture 16-17,24
title bar 116, 121
titleWinTag 259
title 256
tkButtonOn 210
tkfield.h 161
tkMenuPullDown 209
tkMenuPullRight 209
TkTable 131, 136
TK_TABLE_ENTRY 134,145,200-201,

208-209,213-214
TK_TABLE_NEW 134-135
tlAbsolute 134
tlMaxFit 134-135
toggle button 122
toggle 157, 256
toolkit 190
top level dispatch loop 29
TOPS 23
translator 190
transformations 272, 286
translate scribbles 198
translated handwriting 282
translation 155, 158, 181, 187, 272, 274

data 176
matrix 286
mechanism 31
success 187
table37,48

translator 156, 159, 174, 183, 185
transparent 119
turning away 77
turning the page 70
two-dimensional 272

underlying
architecture 60
framework 166
model 279

Undo 299
unique

data format 200
message number 24
module indentifier 54
part 15
tag 167,210

Unit Definitions 272
Universal Identifier (defined) 24
Universal Identifier 26, 28, 31-33, 91,

100,132-133,160-161,167,202,
234

Unix 190
unknown character globe 193
unmapping 283
unrecognized characters 182
Unused032
update

episode 285
handling 148
mechanism 91
message 103, 147, 173
observer 91

uppercase 154

user
acceptance 11
environment 44, 234
events 116
feedback 274
guide 191
input 23, 289

INDEX

interaction metaphor 65, 145, 190
menus 122
notification 199, 201
preferences 22, 234

User Interface 4, 6, 8-9, 66, 72, 90-91,
115,124,154, 190, 194,273

components 23, 93, 117
management hierarchy 116
Toolkit classes 22-23, 44

user-friendly 66
user-supplied data 252
using CoinApp 86
utility functions 30,159,222,272

validation 154,157,170-171,173,194
messages 160

value 132, 146, 148
variable contents 63
vendor 3,233
verbal agreement 202
verbose

code 286
output 27

versioning (defined) 30
information 54
number 54

vertical applications 45
vertical layout 234
vertical size 285
vertical 274
vertical menus 200
veto success 187
view

behavior 147
class 101, 199,233,238,240-241,

270
freeing 140
hierarchy 118
initialization 140
objects 90-91
updating 126

view / data approach 90
viewNewFields macro 130
virtual machine 8
visibility 119
visible window 118
visual

attributes 119
component 273
feedback 10, 155, 171,253
hierarchy (defined) 116

volume name 46
volumes 46

warm-reboot mechanism 8
warning status 171
watchpoint 63
Well known

constants 25
Id (defined) 24

Id 25, 28, 39, 50-51, 85, 102-104,
129,176,275

lifecycles 67
resource Ids 235

well-defined protocol 67
whitebox testing 56
width 119, 144
wigits 90
window (defined) 116
Window 7, 9, 72, 118, 126,200,244,279

alignment 165
boundaries 119
classes 22-23, 116, 119
components 115
hierarchy 100, 117-118, 127, 141,

143, 160, 167, 262
identification 160
Id 161, 241, 259
layout episode 247, 265
repainting protocol 119
tag 161, 241, 259

Window Manager (defined) 116
Window Manager 93,241,245,260,

263,285
windowing system 45,115
winTag245
wire frame view 118
wknGlobal 24
word choice 196
word/clue entries 196
working environmnet 234
working vocabulary 93
world coordinates 286
wsSendFile 133-135
wsTransparent 134-135
WYSIWYG (What You See Is What You

Get) 190,271

x2sData.pString 182
X2STRING 181,290
xclu_mth.tbI269
Xerox Star 1
Xerox 1, 2
xlate.h 176
XLATE_DATA 181
XLATE_NEW 185, 281
xlfilter.h 176
XList2StringO 290
XList2StringLengthO 290
XList2TextO 181-182,290
XListFreeO 182,291
XlistGetO 290
XList 159, 182, 188" 274

XLIST _ELEMENT 290
XTemplateCompileO 187, 281
xtemplt.h 184
xtemplt 188
XTM-ARGS 185,281
xtmTypeCharList 186
XWABuildMenusO 208, 210-211
XWAShowCheckPuzzleStatsO 213
XWCCreateListBoxO 262
XWCCreateListTitleO 262
XWCSetClueEntryStyleO 266
XWDBuildXWordFromFileO 223
XWGBuildDCO 282
XWGBuildGridDCO 285
XWGBuildTranslatorO 280-281
XWGDrawGridO 286
XWGDrawLettersO 288
XWGDrawTemplateO 287
XWGFilterTransData 292
XWGFindGridPosO 291
XWGGridPosToRectO 291
xword file 222
xwordapp.c 203-204, 206
xwordapp.h 203
XWordAppAppInit 207, 210
XWordAppDoCheck 212
XWordAppImportQuery 214-215
XWordApplmport 214-215
XWordAppMenuBar 209
XWordAppRestore 208
XWordAppSetClueTap 212
XWordAppShowSoln 211
XWordAppStartOver 211
XWordClueCLGetChildSpec 265
XWordClueClueTapNothing 266-267
XWordClueClueTapStrikeOut 266-267
XWordClueEntryGesture 268
XWordClueInit 261-262
XWordClueRestore 264
XWordClueSave 264
XWordClueStartPlayOver 266
XWORDCLUE_NEW 258, 261
XWORDCLUE_NEW _ONLY 257
XWordDataFree 224
XWordDataGetAcrossCount 228
XWordDataGetAcross Word 229
XWordDataGetDownCount 228
XWordDataGetDown Word 229
XWordDataGetInfo 226
XWordDataGetLetters 228
XWordDataInit 223
XWordDataIsXWordFile 221
XWordDataNewDefaults 222

XWordDataRestore 225
XWordDataSave 225
XWORDDATA_INFO 218
XWORDDATA_LETTER 218
XWORDDATA_LINE_1 222
XWORDDATA_NEW 218, 222
XWORDDATA_NEW _ONLY 218
XWORDDATA_WORD 218
XWordGridFree 283
XWordGridGetLetters 294
XWordGridInit 280-282
XWordGridNewDefaults 279
XWordGridRepaint 285
XWordGridRestore 284
XWordGridSave 283
XWordGridSetLetters 293
XWordGridSetOkLetters 294
XWordGridStartPlayOver 293
XWordGridTransWriting 289-291
XWordGridWinSized 292
XWordGrid 282

385

XWORDGRID_NEW 276, 279-280, 282
XWordViewCheckLetters 254
XWordViewCheckPuzzle 252-254
XWordViewCLGetChildSpec 247
XWordViewClueTapNothing 251
XWordViewClueTapStrikeOut 251
XWordViewInit 243-244
XWordViewNewDefaults 242
XWordViewRestore 246
XWordViewSave 246
XWordViewSetDataObject 247
XWordViewShowSoln 250
XWordViewStartOver 250
XWORDVIEW _NEW 239-240, 242
XWORDVIEW _STATS 240
XWORD _ENTRY 220
xwrdclue.c 258
xwrdclue.h 257
xwrddata.c 216, 219
xwrddata.h 216-127
xwrdgrid.c 274, 276, 278
xwrdgrid.h 274
xwrdview.c 238, 240
xwrdview.h 238
XWVaccStrEquO 253
XWVBuildClueListO 244
XWVBuildGridO 244-245
XWVdwnStrEquO 253
XWVLandscapeLayoutO 248
XWVPortraitLayoutO 248-249

Yacc 190

Available Now ...

Developer's Sample Disk

Includes:

Complete source listing for six compilable applications

plus

Development techniques for over 30 PenPoint classes

Bonus!

Working copy of crossword application

Name ------------------------
Company _________________ __

Address ____________ _

City __________ State ___ Zip __ _

PC Disk Size 5!" ___ 3~" ____ _

Fill out coupon and mail with
check or money order, made
payable to NovoTech, for
US $25 (Outside US, please
have check drawn on a US or
Canadian Bank and add $5
shipping) and mail to:

NovoTech
PO Box 250
Bethany, CT 06524

Operating Systems >$26.95 USA
>$34.95 CANADA

IPIEINIPloll lWlr r I I I
IPIRIOIGIRIAIMIMIIINI61

"Requireo reading for all PenPoint programmers."
-Gary T. Downing, Manager

GO Educational Services, GO Corporation

PenPoint Programming is a hands-on tutorial showing how to develop applications
for the revolutionary operating system from GO Corporation. The author introduces
PenPoint from a programmer's perspective and demonstrates how following PenPoint's
predefined framework for applications building will result in software with standardized
behavior, reusable system-level components, and greatly increased functionality.

Through numerous in-depth examples, the book explores the different approach
required to write programs that take full advantage of the pen-based model. You'll
learn about PenPoint's Application Framework, the Notebook User Interface, and
PenPoint's handwriting recognition process. Topics include: .

• demonstration of over 30 PenPoint classes in the context of working applications
• object-oriented design techniques for writing applications
• importing and converting outside data into information that PenPoint understands
• object-oriented extensions used by PenPoint to implement the operating system
• how pen-centric application design differs from mouse-based design
For programmers and developers working with the PenPoint environment,

PenPoint Programming is an invaluable and essential resource.

Andy Novobilski is a consultant and developer
specializing in object-oriented programming and
pen-based technology. He is the coauthor of
Object Oriented Programming: An Evolutionary
Approach, Second Edition, with Brad Cox, and is
a contributor to Object Magazine.

Cover design by Ned Williams

9 780201 608335
ISBN 0-201-60833-2

60833

