
THE POWER OF

PENPOINT,"

The Power of PenPoint™

The Power of PenPoint™

Robert Carr
Dan Shafer

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts • Menlo Park, California • New York

Don Mills, Ontario • Wokingham, England • Amsterdam
Bonn • Sydney • Singapore • Tokyo • Madrid • San Juan

Paris • Seoul • Milan • Mexico City • Taipei

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book and Addison-Wesley was aware of a trademark claim, the designations
have been printed in initial capital letters.

ISBN 0-201-57763-1

Copyright © 1991 by Robert Carr and Dan Shafer

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

Sponsoring Editor, Carole McClendon

Cover design by Jean Seal
Set in 11-point Helvetica Light by Don Huntington

1 23456789 -MW- 9594939291
First printing, February, 1991

This book is dedicated to my wife Andrea, and my son Ian.

This one's for Alicia, whose generation will look back on what

we've considered so fantastic ... and agree!

R.C.

D.S.

Contents

Preface

Acknowledgments

1 Introduction
Our Friend the Pen
Mobile Pen-Based Computing: An Untapped Market
The Laptop Isn't a Solution
Why Build a New Operating System?

Key Requirements
What Is PenPoint?
Notebook User Interface
Application Framework
Embedded Document Architecture

The Document Model
Live Application Embedding
Hyperlinks

Applications
Mobile Connectivity
Compact and Scalable
A Solid Foundation
Summary

xvii

xxiii

1
2
3
4
5
5
7
8

10
11
12
12
14
14
15
17
18
19

vii

viii

The Power of Pen Point

2 The PenPoint User Interface 21
Ambitious Goals 21
PenPoint and Traditional GUls 22

Windows and Their Frames 23
Menus and Option Sheets 23
Basic Controls 25

Some New Items 26
Tabs 26
Writing Pads 26

Pen Point's Notebook Metaphor 29
Benefits of the Notebook Metaphor 33

The Bookshelf 34
Gestures: The Pen Builds on the Mouse 36

Gestures as Commands 36
Ideas in Conflict 38
Standard Gesture Language 39
Using the Pen for Data Entry 40
Keyboard Support 42

More Differences 42
Direct Move and Copy 43
Stationery Notebook 43
Scrolling 43
Cork Margin 44
Embedded Document Architecture 44
Hyperlink Buttons 46
Floating Pages 46
Integrated Connectivity 46

User I nterface Consistency 47
Summary 48

3 Developing Applications for PenPoint 49
Why Develop for PenPoint? 49
The Learning Process 50
The Development Process 52

Thinking about Your Application 52
Prototyping Your Application 53
Designing Your Application 54
Mapping to the PenPoint Class Library 56

ix

Contents

The SDK 57
Contents of the SDK 57
Language and Software Support 57
Runtime Function Support 58
General Usage 58
Hardware Requirements 59

User Interface Design Guidelines 59
Summary 60

4 The PenPoint Kernel 61
Task Management 62
Memory Management 63
Multitasking Support Functions 64

How PenPoint Handles Multitasking 65
Multitasking within an Application 66

Reliability 67
Protection of the Kernel 68
Survival of Application Crashes 68
Recovery from Operating System Crashes 69

The Loader 69
Date and Time Services 70
Machine Interface Library 70
Other Kernel Services 71
Summary 72

5 The Class Manager 73
Features Supported 75

Programming Efficiencies 77
Unique Identifiers 77

Major Programming Tasks 79
Setting Up Message Arguments 79
Sending Messages 80
Creating New Instances 82
Controlling Object Access and Capabilities 82
Creating New Classes 83
Setting Up Observer Objects 84

Summary 85

x

The Power of Pen Point

6 The Application Framework
Purpose of Layer

Common Functions Handled by Application Framework
Advantages of Application Framework

Architectural Overview
Standard Application Elements

Application Code
Document Directory
Document Process
Application Object
Resource Files
Main Window

Application Framework Standard Behavior and Inheritance
Installation Behavior
Creation of New Application Instances
On-Line Help
Document Properties
Move/Copy
Gesture Recognition
Goto Buttons
Standard Application Menu Support
File Import and Export
Printing Support
Spell Checking
Search and Replace
Application Stationery

PenPoint Application Life Cycle
I nstance Creation
Activation
Opening
Closing
Terminating
Destruction

Summary

87
89
89
89
91
96
96
97
98
99
99

100
101
102
102
103
104
104
106
106
107
107
109
109
109
110
111
112
112
113
113
113
114
114

7 The PenPoint Windowing System
Basic Concepts
Working with Windows

Creating a Window
Showing Windows
Laying Out a Window
Managing Windows
Filing Windows

Summary

8 Recursive Live Embedding of Applications
What It Is
Why It's Important
What the User Sees
How It's Done

The Problem of Data Storage
Basic Concepts

File System Hierarchy
Process Space
Embedded Windows
clsApp

Lightweight Embedding with Components
What Your Application Must Do

Embedded Window Marks
The Problem of Traversal

The Notebook as an Example
How You Program for Application Embedding

Where to Place Embedded Windows
Move/Copy Protocol
Traversal Protocol

Creating a Traversal Driver
Supporting Traversal as a Slave

Summary

xi

Contents

115
118
122
123
124
125
126
126
128

129
129
131
133
134
135
135
136
137
137
140
141
141
142
142
144
146
147
147
148
149
151
151

xii

The Power of PenPoint

9 ImagePoint: Graphics and Imaging System 153
Overview of Graphics in PenPoint 154

PenPoint Dr?wing Primitives 154
Painting and Repainting Windows 155

Role and Use of System Drawing Contexts 156
Creating a Drawing Context 157
Binding a DC to a Window 158
Drawing with a DC 159
Storing DC Drawings 159

Clipping and Repainting Windows 160
Clipping the Drawing Area 160
Repainting a Window 162

Graphics Primitives 163
Open Shape Primitives 163
Closed Shape Primitives 165
Text Primitive 167
CopyRect and CopyPixels Operations 168

Color Graphics Interface 169
Dealing with Prestored Images 170
Fonts 170

Opening a Font 172
Font Metrics and Character Geometry 173

Drawing Text 173
Text Calculations 174

Printing 174
Summary 176

10 The User Interface Toolkit 177
The UI Toolkit: An Overview 177
Automatic Layout 179
Types of UI Components 181
Common Control Behavior 182

Creating Controls 182
Responsive Behaviors 183

Labels 184
Buttons 185
Menu Buttons and Menus 187

xiii

Contents

Menu Buttons 188
Menus 189

Scrollbars 189
List Boxes 193

Window List Boxes 193
String List Boxes 194
Font List Box 194

Fields 195
Notes 196
Frames and Frame Decorations 199
Option Sheets 200
Icons 202
Toolkit Tables 203
Summary 204

11 The File System 205
Traditional File Activities Supported 208
Unique File Activities Supported 208
Installation 209
Application Framework's Default File System Usage 210
Interaction with Other File Systems 211
Files and Compound Documents 212
File Import and Export 212

File Import 213
File Export 214

Summary 215

12 Resources and Their Management 217
Types of Resources 218
When Are Resources Created? 218
Locating Resources 219
Resource File Formats 221
Managing Resources 222

Creating Resources 222
Compacting Files 223

Application Instance Data 223
Summary 224

xiv

The Power of Pen Point

13 Input and Handwriting Recognition 225
Overview of Input 227

What the User Sees 228
Terminology 229
Key Problems and Their Pen Point Solutions 229

Handwriting Translation in PenPoint 232
Characteristics of the HWX Engine 232
How Handwriting Recognition Works 233

How Input Is Processed 234
The Processing Pipeline 234
Events 235
Filters, Grabbers, and Listeners 237
Translation 238

Summary 239

14 Text Editing and Related Classes 241
Basic Approach to Programming 242

Text Data Objects 243
Text Views 244
T ext I nsertion Pads 244

Summary 244

15 The Service Manager 245
Layering Services 246
Standard Service Managers 247
Installing and Using Services 248
Connecting and Disconnecting 250
User Interfaces for Service Managers 250
Designing Services 251
Summary 251

16 Connectivity 253
Overview of PenPoint Connectivity Support 253
Remote File System 254

Other Types of Remote Connectivity 255
Remote File Systems 256

xv

Contents

Transport Layer 257
Link Layer 257
Connectivity-Related Facilities 258

In Box and Out Box 258
The Send User Interface 260

Summary 261

Appendix A: Important Data Structures, Classes, and Messages 263
The Class Manager (Ch. 5) 264
The Application Framework (Ch. 6) 266 .
The PenPoint Windowing System (Ch. 7) 272
Recursive Live Embedding Protocol (Ch. 8) 274
ImagePoint: Graphics and Imaging System (Ch. 9) 276
The User Interface Toolkit (Ch 10) 279
The File System (Ch. 11) 285
Resources and Their Management (Ch. 12) 287
Text Editing and Related Classes (Ch. 14) 288
The Service Manager (Ch. 15) 292

Appendix B: Things to Keep in Mind 295
Memory Is Tight 295
Think Small 295
Modular Components 296
Everything's in Memory 296
There's Only Memory 296
Your Application Must Recover 297
Object-Oriented or Else 297
Who Runs the Code? Who Owns the Data? 297
Tip 298
User Sees Documents, Not Separate Programs and Program Files 298
File Format Compatibility Is Important 298
Exploit the Pen 299
The Good News 299

xvi

The Power of Pen Point

Appendix C: Evaluating Pen-Based Computers and
Handwriting Recognition Technology 301

Pen-Based Computing Does Not Equal Handwriting Recognition 301
Applications That Don't Rely on Handwriting Recognition 303
What Dialog between Applications and the Handwriting Recognition

System Is Supported? 304
Is the Handwriting Recognition System Replaceable? 306
What Capabilities or Features of Handwriting Recognition Systems Are

Importann 307
Measuring the Accuracy of Handwriting Recognition Systems 311
How Accurate Is GO's Handwriting Recognition System? 317
Summary 321

Glossary of PenPoint Terms

Index

323

335

Preface

This book presents an architectural overview of PenPoint, a new, object
oriented, preemptive multitasking operating system specifically optimized for
pen-based computing.

Who Should Read This Book?

As we wrote this book, we had in mind three audiences.
First, we wanted to appeal to technical and engineering managers, who

have to make decisions about where to concentrate their companies' software
development efforts during the next two orthree years. This book contains
enough technical detail and information about development techniques,
environments, and strategies to make it possible for such managers to factor
PenPoint into their thinking.

Second, we knew that as soon as PenPoint was officially announced, there
would be significant interest from programmers wanting to know what this new
operating system is and how it might affect their work. This book provides a
foundation from which such readers can determine their levels of interest in
creating software for the pen-based computers of the 1990s. It also gives
these programmers a technical base from which to delve into the thousands of
pages of documentation about the Software Developer's Kit (SDK) by pointing
out the important concepts, data structures, classes, and messages on which

xvii

xviii

The Power of Pen Point

to focus. (This SDK documentation, incidentally, is being published by
Addison-Wesley in its GO Technical Library series.)

Finally, we are well aware of a vast group of people who are simply techni
cally curious; we belong to that group. For this group of people who begin
their exposure to PenPoint with no particular thought to using it or program
ming in it, we have used examples and comparisons with older operating
systems as a way of differentiating PenPoint from those systems. We have also
included a number of commentaries explaining the rationale behind PenPoint's
design features, which will help such readers understand it better.

What's the Purpose of This Book?

Keeping in mind the three audiences discussed previously, we set ourselves
several goals in writing this book and making it available early in Pen Point's history.

We wanted to convey something of how it feels to work with a pen-based
computer and to program applications for this new paradigm. It is important to
us that readers of this book gain an appreciation for the gestalt of pen-based
computing and what makes it different for both the user and the application
designer from all forms of computing that have preceded it. A book that
accomplished only that purpose would, we felt, be useful and interesting.

But we wanted to go beyond the gestalt and look under the hood of Pen
Point. We wanted to take a look at how PenPoint accomplishes the behavior
that makes it a unique operating system. How does its object-oriented nature
influence its design, and vice versa? How are its various pieces organized,
and how do they interact?

Finally, we wanted to give prospective PenPoint programmers a sense of
what programming for PenPoint is like, as well as a way of knowing how to
make best use of the SDK documentation with which they will deal as they
develop PenPoint applications.

It is important to note what this book is not. It is not a programming manual;
you will not find, in fact, a single line of sample code in its pages. It is not a
complete reference guide to PenPoint; such a book occupies many more
pages than this volume. Finally, it is not an end-user manual or even a com
prehensive overview of the PenPoint user interface.

xix

Preface

How Is This Book Organized?

This book has sixteen chapters, three appendices, and a Glossary.

Chapter 1 is an introduction to PenPoint. It begins with a discussion of the
development of pen-based computing and includes a rationale for the
development of a new operating system to support the new paradigm. It
also provides a top-level view of PenPoint and its organization.

Chapter 2 focuses on the user interface to PenPoint, examining the operating
system from the user's perspective. It focuses on the two important new ideas
the user sees on a PenPoint-based system: the pen and the notebook metaphor.

Chapter 3 describes the development tools, environment, and approach to
PenPoint programming. It begins with a brief discussion of the reasons you
should consider undertaking PenPoint development, moves to explaining
the learning process you, should follow to master the environment, and
offers some design hints. It also talks specifically about software support
and the development process.

Chapter 4 begins the technical examination of PenPoint that occupies the
rest of the book. It focuses on the kernel layer of the operating system, that
layer closest to the hardware of a PenPoint-based system.

Chapter 5 concentrates on the Class Manager, a significant element of
PenPoint in which the object-oriented behavior of the operating system is
concentrated. Here, you'll learn how to create new classes and subclass
existing ones.

Chapter 6 explains the use of the Application Framework, the portion of
PenPoint with which you will become most familiar as you build your pro
grams. This collection of classes defines the protocols that make up a
PenPoint application. It is also a complete implementation of a generic
PenPoint application.

Chapter 7 describes the windowing subsystem in PenPoint. Here, you'll see
that PenPoint windows are designed to be memory-efficient, or lightweight,
objects so that you can afford to define a great many of them in an applica
tion. You'll see how to create and manage the windows that provide the
framework for your application's interface.

xx

The Power of Pen Point

Chapter 8 discusses an important new concept in PenPoint: recursive live
embedding. PenPoint users can open new documents from within existing
documents even when the new document is created and managed by a
different application from that of the host document. This process can
continue to a theoretically unlimited number of levels of embedding. But this
capability presents special problems for an operating system. You'll see in
this chapter how PenPoint implements this feature and deals with the
problem, as well as how your applications are affected.

Chapter 9 discusses ImagePoint, the graphics subsystem in PenPoint. This
is the part of the system that produces the actual images on the screen in
the windows discussed in Chapter 7. You will learn how windows work, how
to create and manage them, and how multiple overlapping windows from
multiple applications interact with each other.

Chapter 10 describes the User Interface Toolkit, a collection of classes that
makes it easy for you to give your PenPoint applications the look and feel
users will come to expect from pen-based programs. You'll learn about the
various controls, decorations, and other components of the user interface.

Chapter 11 provides an in-depth look at the PenPoint file system. This is a
key component of PenPoint; much· of the special functionality of the system
(such as installable objects and PenPoint's unique connectivity) are based
on the file system. You'll see how the system works, how it cooperates with
existing file systems, and how to use it in your applications.

Chapter 12 explains the concept of resources and how they are used in
PenPoint. You'll learn that you can use the system's Resource Manager to
help you manage your data and objects in such a way that you don't have
to spend time designing file formats, or worrying about where files are
located in the hierarchy when your application runs or the precise location
of elements within a file. The Resource Manager can take care of all of
those details for you.

Chapter 13 concentrates on the input subsystem. This is where you learn
about the pen and how it works from a programming perspective. You'll
also gain an understanding of how handwriting translation works and how it
affects your application.

xxi

Preface

Chapter 14 presents the key ideas behind the text-editing capabilities of
PenPoint. You'll see how PenPoint's text editor is built on the view-data
model and how to make use of this editing capability in your application.

Chapter 15 outlines the Service Manager, a unique collection of routines that
permit PenPoint to install and deinstall, connect and disconnect, activate
and deactivate a variety of device drivers and background services. You'll
see that PenPoint is unique in allowing the user to install, deinstall, and
configure services on the fly without shutting down the system or interfering
with other operations.

Chapter 16 describes how a PenPoint-based system's built-in connectivity is
implemented. Networking takes center stage, but other issues such as
electronic mail, facsimile transmission, and the unique concept of deferred
I/O are also discussed.

Appendix A is a chapter-by-chapter collection of programming information
about the important elements of PenPoint discussed in chapters 4-15. The
important data structures and their key fields are discussed. Tables summa
rize the most-otten-used classes and the messages they define, with which
you will want to become most familiar.

Appendix B offers some design and programming hints for programmers
and in the process gives you a different slant on the gestalt of PenPoint
development.

Appendix C provides insight into how to evaluate pen-based computers and
handwriting recognition technology.

Glossary is a glossary of terms used in this book and in describing PenPoint.

What Are Those Gray Boxes?

Scattered throughout the book, you'll find sections printed on a gray back
ground. These special boxes contain information of two types.

First, there are notes. These generally point out an important exception or
clarification of information in the main text. They are always labeled NOTE.

xxii

The Power of PenPoint

Second, there are asides and insights. These gray boxes have longer, more
explanatory headings and provide the perspective of PenPoint architect
Robert Carr with regard to such issues as why he and his team decided to
take a certain approach to design, the advantages of a particular design
element, or the trade-offs involved in the decision-making process. These
should give you valuable insight into the minds of the people who designed
PenPoint.

Becoming a Developer

GO Corporation has an active program underway to train and support
qualified application developers. Excellent documentation, developer tools,
and courses are available. If you are interested in developing software for
PenPoint and would like more information, please call or write:

Developer Marketing, GO Corporation, 950 Tower Lane, Suite 1400, Foster
City, Calif. 94404; (415) 345-7400.

Contacting the Authors

We enjoy hearing from people who have read this book and have insights,
questions, compliments, complaints, or other communication to share with us.
We can both be reached on MCI Mail, as RCARR and DSHAFER, respectively.
Or you can write to Robert at GO Corporation, 950 Tower Lane, Suite 1400,
Foster City, Calif. 94404. Dan is also accessible via CompuServe (71246,402),
CONNECT (DSHAFER), and AppleLink (DSHAFER).

Acknowledgments

PenPoint is the result of a team effort by more than 70 dedicated individuals.
To the degree PenPoint's design and implementation are successful and
excellent, and to the degree PenPoint is well-received by the market, all credit
and acknowledgment must go to this entire team. I believe PenPoint will be
more than merely successful.

Software engineers, documentation professionals, product marketing per
sonnel, user interface design experts, testers, software quality assurance
people, and, yes, management and financial backers: every role and every
individual made invaluable contributions. PenPoint is a good product because
of the inspiration, patience, and particularly the hard work of these individuals.

I particularly want to thank those who joined the PenPoint team early, when
we had only our imaginations. It is a rare individual who can confront the
challenge of invention. But as hard as truly original imagining is, building a
working version proved to be ten times harder.

R.C.

Like PenPoint, this book is a collaboration among a number of people. We
wish to express appreciation to Alex Brown, John Zussman, Patty Zussman,
Carol Broadbent, and many other GO Corporation staffers who assisted with
the design, development, and production of this book. Carole McClendon,
Joanne Clapp Fullagar, Rachel Guichard, and Mary Cavaliere of Addison-

xxiii

xxiv

The Power of Pen Point

Wesley believed in the book, nurtured it through its development and publica
tion, and share in the credit for the finished product. Don and Rae Huntington
of Production Services did their usual wonderful job of being the last ones in
the chain of production and of performing admirably under pressure.

R.C. & D.S.

1
Introduction

PenPoint is a new operating system designed and built from the ground up
by GO Corporation for the unique requirements of mobile, pen-based comput
ers. It is a 32-bit, object-oriented, multitasking operating system that packs the
power of workstation-class operating systems into a compact implementation
that does not require a hard disk.

Shrinking hardware sizes and the addition of a pen make possible a dra
matic change in the way computers are used. Instead of controlling the com
puter through a combination of mouse and keyboard, PenPoint proposes the
use of a single, simple pen. Instead of using computers only at desks or
tables, PenPoint proposes mobile usage throughout the day, wherever the
user is: in meetings, standing, walking, at a desk, in the car, even on the
couch at home.

PenPoint computers are powerful, tabletlike devices that behave much more
like a notebook than traditional computers. Users control PenPoint computers
with special pens that are sensed by the- screen. The user writes directly on
the screen, combining the convenience of a notebook with the power of a
computer. Data is entered by handwriting, which PenPoint translates into
standard text. Commands are issued by pointing and by gestures such as
circling and scratching out.

In the early 1980s, the desktop personal computer market was only able to
flourish after the arrival of a standard operating system that allowed many
hardware companies to build systems that all could run the same application

1

2

The Power of PenPoint

software. In the 1990s, there is a need for a new, general-purpose, mobile,
pen-based operating system to playa similar role in catalyzing the opportuni
ties in the high-growth markets for mobile, pen-based computing. PenPoint is
designed to be that catalyst.

Our Friend the Pen

Under PenPoint, the pen is the primary input device. The pen is used for
pointing (by touching the screen), data entry (through handwriting), and
commands (through gestures).

Using a pen, it is easy to make a simple gesture that specifies both what
you want to do (the operation) and what you want to do it to (the operand).
This results in a more natural, direct feel when using the computer. Take the
example of deleting a word. In a mouse-driven interface, you must double
click the mouse to select the word, then choose Delete from a menu or the
keyboard. In PenPoint, you simply draw an "X" over the word, and it is deleted.
Gesture commands are difficult (at best) with a mouse. In contrast, the pen is
a single unified tool that combines the functions of a mouse and keyboard and
adds the new function of gesture commands.

The pen is the most natural and ergonomic computer input device. Humans
are capable of incredible precision and deftness with penlike devices: Walk
into any museum and view the artwork created with pencil, pen, and brush.
This deftness is possible because the pen allows the eyes and hand to coordi
nate closely. Furthermore, the pen does not require an on-screen cursor,
since the pen tip itself indicates the pen's location on the screen. Users are
freed from learning about the concept of cursors, which accelerates learning
and improves efficiency in using the system.

It is also important to recognize how comfortable meeting attendees are
when other people are writing with pens and how uncomfortable and dis
tracted they are by typing on keyboard-based computers. In other words, the
pen is socially acceptable in a wide variety of meeting situations. Furthermore,
pen-based computers can be used while standing and walking, while key
boards always require a table or desk.

3

Introduction

Mobile Pen-Based Computing:
An Untapped Market

In recent years, the growth rate of sales of desktop computers has slowed
dramatically. Even with a graphical user interface (GUI), computers remain
difficult for most people to learn and, because they are desktop systems, they
cannot meet the needs of the millions of American workers who spend most of
their day away from a desk. Despite the high sales rate of personal computers
throughout the 1980s, today only about one-third of the 78 million white-collar
workers in the United States use desktop systems.

Of those who do not use PCs, there are between 25 million and 35 million
who spend much of their time away from their desk. These users need mobile,
pen-based computers. Examples of these professionals include sales person
nel, lawyers, doctors, journalists, scientists, lab technicians, managers, execu
tives, estimators, inspectors, and field engineers. In addition, there are signifi
cant numbers of blue-collar clipboard users and government workers who are
not served by desktop PC technology.

At the heart of these markets that will benefit from PenPoint is a new set of
tasks - that don't belong at a desk or can't be performed there - as well as
new users. Recognizing that there are new tasks makes it easier to answer the
often-asked question: "Will brand-new customers or users of existing comput
ers use mobile, pen-based computers?" It will be both. While the dominant
new market opportunity consists of the more than 25 million new users who
spend most of their time away from their desk (if they indeed have one), there
are many users of existing PC technology who will benefit from these devices
as well.

Because they are used for new tasks, and often by new users, pen-based
computing needs new application software suited for these new markets. Entire
new categories of applications such as meeting-aid software, note-taking, and
group document markup and revision will emerge. Applications that are limited in
the current PC market because they are deskbound (for example, calendars,
personal-information managers, and forms-completion systems) will flourish in
the mobile, pen-based market. They are all hampered in their market success
so long as they must be run on a desktop PC or laptop computer.

4

The Power of Pen Point

Pen-based computers will come in a variety of sizes and shapes. The pen.
naturally scales to any paper size, so a variety of screen sizes makes sense.
Contrast this situation with the keyboard, which cannot be shrunk smaller than
typewriter size and still be usable. Depending on the task, users will buy shirt
pocket, steno pad, notebook (page-sized screens), and desktop.visual tablet
configurations of pen-based computers. Users interested in ultimate portability
for lightweight electronic mail, calendering, and personal-information manage
ment would choose a pocket-sized device. Steno pads might be most appro
priate for on-screen forms completion. Users interested in serious document
processing will typically want page-sized screens. Lastly, graphic artists and
CAD/CAM users will probably prefer using a pen on a live screen in the visual
tablet configuration at their desk or drawing table.

The Laptop Isn't a Solution

A common question is "Why aren't laptops an appropriate solution for the
mobile market?" They aren't because they are actually desktop devices, not
mobile devices. Laptops are evolutionary personal computers. Their very premise
is that they are 100 percent compatible with desktop computers (that is, they must
run the same software). They are therefore reduced-sized desktop computers
optimized for transportability (to move from desk to desk), not mobility.

Like their desktop-based predecessors, laptop computers command the
user's full attention during their operation. They simply cannot be made unobtrusive
the way a mobile, pen-based system can. When a laptop is placed on a table
or desk, the laptop computer must be opened up with the screen folding up
into the air. This intrudes into interpersonal space. Typing on a laptop key
board is intrusive in many group situations and therefore rarely done. And, of
course, keyboard computers cannot be used while standing or walking.

The real need is not for mobile, pen-based computers to run the same
software as desktop computers, but for them to have access to data files
stored on existing desktop computers and networks. Desktop operating
systems do a poor job of providing access to each other's data files. In con
trast, PenPoint excels at providing access to a variety of desktop operating
systems' data files.

5

Introduction

Why Build a New Operating System?

GO Corporation was founded in 1987 to pioneer mobile, pen-based com
puting. Early in its development, GO Corporation determined that there were
three major alternative approaches to developing system software for this market.
The first alternative is to assemble a unique collection from standard pieces.
This is essentially what NeXT, Inc., has done: It took a version of UNIX and
Display PostScript and surrounded them with a variety of less standard pieces.
This alternative has the disadvantage that it does not bring along an installed
base of applications and that existing standard pieces were developed for the
desktop and perform poorly in a pen-based, mobile computing environment.

The second alternative is to add a "pen compatibility box" to an existing
standard operating system such as OS/2 or Microsoft Windows. The pen
compatibility box would attempt to run existing mouse-based software by
using the pen to emulate the keyboard and mouse. While technically possible,
this approach misses the point of the pen: The pen can be much simpler to
use than the mouse and keyboard. When the pen is layered above a mouse
based GUI, a more complex system results, not a simpler one. The user of
such a system must ultimately be fully aware of the underlying keyboard and
mouse system and the mapping between it and the pen.

The third alternative is to design and build a new operating system from the
ground up for the unique requirements of the mobile, pen-based market. This
is the approach that GO Corporation took. Today, PenPoint is available for
applications and hardware development activities.

Key Requirements

There are a number of key requirements for an operating system for the
mobile, pen-based computer market.

The first key requirement is for a user interface designed to require only a
fraction of the user's concentration; it must not presume the user's full attention
will be focused on running the computer system, as desktop user interfaces
do. The user interface must also provide support for the pen through gestures
and handwriting translation.

6

The Power of Pen Point

In addition, applications on the pen-based system must be rewritten so they
can, wherever possible, supply context for handwriting translation. Only an
application can understand the meaning (semantics) of various regions of its
screen display. Therefore, when the pen is touched to the screen, the applica
tion should be able to control the translation and meaning of the pen ink. For
example, only an application can specify whether certain fields it displays are
alpha or numeric. This simple information is vital in performing high-accuracy
handwriting translations.

Mobility brings a number of key requirements, including deferred data
transfer, detachable networking, and low memory and power consumption.

Deferred data transfer refers to users' need to issue data transfer commands
on their schedule, not the computer's. With laptop computers, users must wait
until they have an actual connection to a network, telephone line, or printer
before they can give an electronic-mail, print, or facsimile command. Users
must therefore perform the clerical work of keeping lists of file names to send
or print when the appropriate facilities become available. This is burdensome.
It is much more efficient to allow users to "address" the electronic-mail mes
sage when they've finished composing it; the user can then be free to move on
to the next task, and the computer can perform the clerical task of tracking
pending operations. An operating system for the mobile, pen-based market
must provide mechanisms for deferred data transfer.

Detachable networking refers to the need for users to be able to make and
break networking connections at will. In addition, the operating system must
support multiple network protocol stacks so that the same pen-based machine
can talk to many types of computers and networks (including wireless) in the
course of a single day. When a connection is temporarily broken, the system
should gracefully suspend the connection and be ready to resume it again
when the connection is remade.

An operating system for the mobile, pen-based markets must excel at data
compatibility with many existing personal computer and networking standards.
Interestingly, a new operating system can actually do a better job at this than
an existing one. Existing operating systems tend to be compatible only with
themselves, creating islands of data without bridges. A new operating system
can be designed to be promiscuously compatible and connectable.

Memory and power consumption needs must be minimized, not maximized,
by an operating system. Desktop operating systems and applications are

7

Introduction

rapidly growing to fill all space available on large hard disks. These large hard
disks are not always small enough or durable enough for small, pen-based
computers that can get knocked about in use. Therefore, pen-based comput
ers require a system that can minimize total memory requirements, including
disk space. Also, the operating system must include sophisticated power
management because batteries are a significant portion of the weight of pen
based computers.

Any successful operating system must provide a rich development environ
ment. While existing systems have a head start on building a collection of tools
and trained programmers, a modern, object-oriented operating system can do
the best job of this. This is because it can provide the most-productive coding
environment for the applications developer, since its application programming
interfaces (APls) will be consistent, coherent, and provide the right functional
ity for the new market. In contrast, traditional desktop operating systems are
increasingly burdened with the complexity that stems from piling layer upon
layer of software.

Finally, since the mobile, pen-based computer market is new, any operating
system choice must provide a strong foundation upon which an entire new
market can be built. The operating system must incorporate proven, robust
technology choices such as 32-bit addressing, flat-memory model portability,
and object orientation.

What Is PenPoint'?

To understand PenPoint, you must grasp the significance of three adjec
tives: general-purpose, mobile, and pen-based. A general-purpose operating
system is essential because computer markets naturally seek out general
purpose system software; no one wants to buy a vertically integrated solution
that ties hardware, system software, and applications together into a single
vendor solution. Mobility is vital for the markets of people who spend most of
their time away from the desk. Pen-based operation means that applications and
system user interfaces are extensively rewritten to take advantage of the pen.

8

The Power of Pen Point

Notebook User Interface

PenPoint was designed to be driven primarily by a pen. Because of this,
PenPoint includes many new elements not found in traditional GUls. Three of
the most important are the notebook metaphor, gestures, and powerful hand
writing translation. Together, these constitute the Notebook User Interface (NUl).

The notebook metaphor in PenPoint provides the user with a simple-to
operate, on-screen Notebook (see Figure 1-1). The user's information is orga
nized as a collection of pages and sections. Tabs appear at the right-hand
side of the screen, and there is a Table of Contents at the front of the Note
book. At the bottom of the screen is the Bookshelf, a repository for systemwide
objects and resources such as In Box, Out Box, and on-line Help. (Chapter 2
describes the notebook metaphor and other aspects of the NUl in detail.)

Note book: Contents .: 1 :-:-

Docume nt Edit Create View Show Sort

N.ame. ~

rn Current Products. . .. 2
Gj Inventory 3

D Stand ard 0 rde r Form . . . 4

rn Proposed New Products. . . 5
@) New Prod uct Ideas 6

[3 Capers...7

21 Chili Mixes8

rnS~... ..9
2l Sales by Region.. . 10

[21 New Hires... . .. 11

[j(Customers..... .. 12

@) Chain Stores.. 13

@] Complaints to Act on· .. · 14

[] New Bottle Design. .15

[3 Salsa,Condiments........ ". 16

2l Package Design Letter.... .17

Bj Proposed New Design (3~,.g1) 18

~ Bottle Design Sketch........ 19

(j Revised Bottle FAX..

Gd CONTRACT ..

[gj New Prod uct Draft ..

.5~J ~ II .ill!9 rn il .~J
Help Prete re noes Too Is S fa to ne ry Dis ks Keyboa td

Figure 1-1 The Notebook Table of Contents

.20

21

.22

Q\$.!..!.
I nsfa lie r In o !,It

9

Introduction

10

The Power of Pen Point

We have already introduced the idea of gesture commands. PenPoint's NUl
builds in a standard set of powerful gestures that work consistently across all
applications.

PenPoint's handwriting recognition system insulates applications from the
need to develop any form of pattern-recognition techniques. Yet it allows those
programs full control over the translation process, which is essential in attain
ing true pen-based user interfaces. While the user writes, PenPoint performs
the recognition process in the background, so that the resulting text can be
displayed immediately after the user signals that all of the text has been entered.

Application Framework

All applications written for PenPoint must adhere to PenPoint's Application
Framework (discussed in detail in Chapter 6), which is a set of protocols rigorously
defining the structure and common behavior of a PenPoint application.

Through the Application Framework, applications inherit a wide variety of
standard behaviors, including

• gesture recognition and response

• copy and move data transfers

• live embedding of other applications

• view-data model

• installation and configuration

• creation of application instances

• on-line help

• document properties

• spell-checking

• search and replace

• printing

• import/exporting file formats

• application life cycle

11

Introduction

New code is required only to add functionality or to modify or override
specific aspects of the default behavior. Use of the Application Framework
thus yields significant savings in programming time and code space.

The Application Framework defines the standard components of an applica
tion, including the application's code, an application object that is the control
center for the application, a resource file, instance directory, process, and a
main window.

Applications have a well-defined life cycle comprising six phases

• creation (create document state in file system)

• activation (create process)

• opening (turn to page)

• closing (turn away from page)

• termination (kill process)

• destruction (delete document state from file system)

I n addition to normal applications that run when their page is turned to,
PenPoint provides a Service Manager architecture that supports background
server applications such as databases and network connections. Applications
can interrogate PenPoint as to the presence of services and then establish
message-passing connections to these services. For example, a personal
information manager application might provide many views onto one large
collection of textual and calendar information. Each view would reside as a
page in the Notebook. Actions in one view (your personal calendar) can thus
be reflected instantly in another view (your project schedule).

Applications save their internal state in a directory in the file system, but this
is invisible to the user, who has no need to save or load the application's state
explicitly from one session to the next.

Embedded Document Architecture

The most innovative aspect of PenPoint's Application Framework is its
Embedded Document Architecture (EDA), which provides three key user
benefits: the document model, live application embedding, and hyperlinks.

12

The Power of Pen Point

The Document Model

In PenPoint, the operating system performs the clerical bookkeeping steps
of starting and stopping processes (running applications) and of loading and
saving application data. This is called a "document" model because the user
never deals with application programs and data files or with the need to
associate the two by loading files. Instead, users simply move from page to
page and always see their data just as they last left it: scrolled to exactly the·
same location and with the application apparently still running. Unless the user
is transferring information to other computers, there is no need for the user to
deal with separate files and programs. Instead, to the user's mind, each
document is itself a live, running piece of the user's data.

Live Application Embedding

Live application embedding refers to PenPoint's capability to embed a live
instance of one application inside another application. It is PenPoint's most
unique technical innovation.

For example, a text document can, with no special programming on the part
of its creator, embed any other PenPoint application, such as a spreadsheet or
business graphics application, within a text document it creates. Figure 1-2
shows a text document with two embeddees: a live, running drawing program
and a live, running signature pad (which is, by the way, a built-in PenPoint
object), both with their borders turned off. The result is that all PenPoint appli
cations can provide a true compound document capability in which users are
free to mix and match applications seamlessly.

The pen is an inherently multimedia tool; nothing is more natural than quickly
switching from writing numbers to writing words to drawing a sketch, all on
one piece of paper. PenPoint's live embedding allows every document in the
PenPoint Notebook to be 'a compound or multimedia-ready, paperlike surface.

Other operating systems copy "dead" data from one application to another.
This requires the designer of the receiving application to write code to accept
a variety of data formats from the Clipboard and dynamic data exchange
(DOE) transfer mechanisms. While PenPoint supports this mode of transfer of
pure data, the norm is for the receiving application simply to embed an instance of
the application that already knows how to edit and display the data.

< 19 >
Docume nt Edit Insert Case Format

Dear Mr. Hopkins:

I've received our department's most recent proposal for
the New Wodd Foods bottle design. They recommend a
common resin) polyethylene terephthalate (PET)) which
is recyclable) lightweight) and achieves your breaking
resistance goal. Smtching to this resin also has the
advantage of giving us greater design flexibility.

I faxed your packaging consultant this latest revision and
received his comments by fax yesterday.

We can go over these recommendations when we meet
next Tuesday. In the meantime) don't hesitate to call me
if you've any questions (915-893-9877).

Sincerely)

I -
Elena Huerta
New Product Supervisor -1J "II ~ rn iil ~ Q}$.!..!. .. ~
Help Prete re noes Tools: Statbnety Disks: Keyboatd Installer In Out

Figure 1-2 Text Document with an Embedded Document

~7

13

Introduction

14

The Power of Pen Point

Hyperlinks

Hyperlinks are a standard element of PenPoint's EDA. PenPoint provides a
simple gesture with which a new hyperlink button can be created. The resulting
button will "jump" (a combination of turning pages and scrolling a document) to the
location selected when the button'was created. Users can rename buttons and
place them anywhere in the Notebook. Since PenPoint supports live embed
ding, the buttons can be placed inside documents as well as in PenPoint's
Bookshelf area. The result is a hyperlinking mechanism that is completely
integrated with both the operating system and all applications written for it.

Applications

From what we have said, it should be clear that PenPoint applications and
the operating system have a close relationship with one another. The user
might form the impression that installed applications and the operating system
are simply part of a seamless whole. But the two are, in fact, cleanly sepa
rated. This allows easy distribution, installation, and deinstallation of PenPoint
applications by third parties.

PenPoint comes with one built-in application, the MiniText editor, which is a
pen-aware formatted-text editor. It is available for all applications to reuse,
saving them the work of coding their own text editors.

Otherwise, as a general-purpose operating system, PenPoint applications
will typically be bought by end users and added to their PenPoint system, just
as MS-DOS and Macintosh applications are today.

PenPoint's standard for application distribution is 1.44MB, 3.5-inch MS-DOS
disks. Every PenPoint-capable machine has access to such a drive (either built-in,
viaa base station, or through a desktop system). When the user places an
application distribution disk into the drive, PenPoint automatically senses it and
displays an application installation dialog box. If the user confirms a desire to install
or update the application, PenPoint handles the rest. All needed application
code and resources are installed into the PenPoint machine. Application code
is also relocated at this time. PenPoint will also ensure that all classes required
by the application are installed and are of the correct version.

15

Introduction

Mobile Connectivity

PenPoint excels at connectivity to a variety of computers and networks.
Mobile connectivity requires an operating system to be different from existing
desktop operating systems, which evolved in a world of static connectivity.

PenPoint provides smooth connectivity to other computers and networks
through built-in networking APls that go well beyond the file transfer utilities
currently used for laptop computers. PenPoint's networking protocols provide
access to file system volumes, printers, and other remote services provided by
desktop personal computers and networks.

Mobile, pen-based computers are connected and disconnected many times
a day, often to and from different computers and networks. For these reasons,
PenPoint supports multiple, "autoconfiguring" network protocol stacks that can
be dynamically installed without rebooting the operating system. Network
connections can be established and broken at will by the user (in other words,
the user simply plugs cables in and removes them or walks into and out of
receiving range for wireless communications), and the operating system and
applications handle the breaks gracefully, suspending all interruptible opera
tions until the connection is reestablished.

16

The Power of Pen Point

PenPoint's Out Box allows users to initiate file transfers, send electronic mail
and facsimiles, and print documents to any destination, regardless of where
the user is and regardless of whether the pen-based computer is currently
hooked up to a connection that could satisfy the command.

The Out Box is a central, extensible queueing service for all connection
dependent transfer operations. Transfer agent services that extend the Out
Box to work with specific destinations such as printers, file transfer, specific
electronic-mail protocols (Mel Mail, PROFS, MHS, and so forth), and facsimile
can be installed. The user interface for the Out Box is a small floating Note
book that provides a section for each Out Box transfer service.

Outgoing information must, of course, be addressed. PenPoint supplies
standard Print and Send commands that allow communication services to be
tightly integrated with PenPoint applications. The Send command brings up
service-extensible addressing mechanisms that allow the user to send a single
document to multiple destinations. PenPoint provides a standard address
book API so that the user's favorite address-book application can be used to
store addressing information integrated with the address-book information the
user keeps for all other uses.

Few people have the time to read all their electronic mail at their desk when
they're plugged into the network. PenPoint's I n Box supports quick download
ing of all received mail and facsimiles, so users can disconnect and carry their
mail with them for perusal between meetings or at home in the easy chair. The
'In Box architecture is symmetrical to the Out Box and is similarly extensible by
installable transfer services.

PenPoint's file system is designed for compatibility with other existing file
systems, particularly MS-DOS, and includes full support for reading and
writing MS-DOS-formatted disks.

The PenPoint file system is tied to the MS-DOS file system; all PenPoint
specific information is stored as an MS-DOS file in each MS-DOS directory.
This approach is used when mapping to other file systems as well. Additional,
installable volume types are also supported.

17

Introduction

Compact and Scalable

Desktop operating systems assume large, cheap mass storage and there
fore run poorly or not at all in one-tier hardware (RAM only, no mass storage)
or require prohibitively expensive amounts of RAM to simulate disk space, or
require difficult-to-update ROM memory. Although small applications exist for
desktop operating systems, most of the best-selling applications typically
require several megabytes of disk space.

In contrast, PenPoint is designed to run as a single, standard operating
system on a full range of pen-based hardware, providing the largest possible
market for applications. PenPoint runs well on both one-tier and two-tier (RAM
with mass storage) memory architectures. As a result, PenPoint users will have
a choice between small RAM-only machines and slightly larger machines with
or without hard disks.

PenPoint's object-oriented design achieves compactness through a high
degree of code sharing. Furthermore, PenPoint keeps only a single copy of
code in the computer, because it relocates executable code at application
installation time, not at application load time, as is traditionally done. If applica
tions are relocated into memory at load time, there must be an additional copy
of unrelocated application code on the disk. This, in effect, doubles total
memory requirements. Once PenPoint installs an application, only a single
copy of its code (the relocated executable) resides in the PenPoint machine
until the user deinstalls that application.

PenPoint applications are small compared with their desktop counterparts.
Competitive PenPoint applications often require total storage space of only 100 to
200 KB, rather than the megabytes that existing disk-based applications require.

Because PenPoint hardware will vary in screen size from shirt pocket up to
large desktop visual tablets, PenPoint provides full support for all PenPoint
user interfaces (including applications) to automatically adjust and scale to a
variety of screen sizes. PenPoint's User Interface Toolkit allows applications to
specify their user interfaces in the form of a relative constraint language.
PenPoint then calculates the actual size and position of all user interface
elements during program execution. As a result, applications do not hard-wire
screen-size dependencies, as they have in the MS-DOS world.

18

The Power of Pen Point

A Solid Foundation

Combined with its unique support for the pen and mobile computing and its
compact implementation, PenPoint is a platform that can provide a large and
growing market for applications well into the next century.

All of PenPoint's APls are 32-bit, and the first commercial version of Pen
Point will run on the Intel 80386 processor in its native, 32-bit, flat-memory
mode. In addition, because PenPoint is written in C and is designed for port
ability, it can be ported to a variety of other processor architectures, including
high-performance, low-power RISC (reduced instruction set computing) chips.

PenPoint provides preemptive multitasking similar to OS/2's, enabling
smooth user interface interactions, background communications, and smooth
background translation of handwriting while the user is writing. Each applica
tion runs in its own process. Lightweight child threads are supported.

Reliability is crucial to the mobile, pen-based market. PenPoint therefore
takes full advantage of available hardware memory and hardware process
protection to provide a reliable and robust environment. If an individual appli
cation or process crashes, the rest of the system keeps on running. Even if
PenPoint itself crashes, it provides an on-the-fly diskless "warm boot" that
preserves all user Notebook data and application code and returns control to
the user within one minute. Companies can count on PenPointfor their most
critical field applications.

Although we've seen that PenPoint requires little storage space, it can run equally
well in high-end configurations with large amounts of memory. PenPoint can directly
address up to four gigabytes of physical memory. Furthermore, PenPoint incorpo
rates paged virtual-memory support, allowing it to work efficiently in architec
tures that include backing store, such as desktop hard disk machines.

Software developers today are forced to write ever larger applications
because today's operating systems require every application to be self
sufficient and monolithic. As a result, small developers are increasingly locked
out of the commercial application marketplace since large, monolithic applica
tions generally require either large programming teams or long development
cycles. PenPoint changes the equation in favor of smaller development teams
by providing an object-oriented environment in which applications can build
upon each other and share large amounts of functionality.

19

Introduction

The event-driven, object-oriented nature of the system minimizes the need
to "reinvent the wheel" with each new application. PenPoint's APls are imple
mented using object-oriented programming techniques of subclass inherit
ance and message passing. PenPoint provides more than 250 classes and
1,500 messages for use by the application developer. Programmers can code
by exception, reusing existing code while altering or adding only the specific
behavior and functionality their own applications require. Because the object
oriented architecture is systemwide, these benefits are not restricted to single
applications; in fact, applications can share code with each other just as
readily as with the system itself.

Summary

This chapter has introduced the key concepts behind the PenPoint Operat
ing System. As we have seen, this new operating system was created to
respond to the unique needs of pen-based computing. Specifically, these
needs demand a general-purpose, mobile operating system.

PenPoint responds to these unique needs with such features as:

• Notebook User Interface (NUl) - PenPoint's central organizing concept
consisting of pages, tabs and a table of contents. In addition, a new but
familiar language of gestures and powerful handwriting recognition com
pletes the NUl.

• Embedded Document Architecture (EDA [TM]) - PenPoint's EDA lets the
user embed live, editable documents within other documents and create
hyperlink buttons between any two locations in the notebook.

• Mobile Connectivity - Instant-on, detachable networking and deferred I/O
permit truly portable computers for mobile workers.

• Compact and Scalable - While expressly designed for small light-weight,
portable computers, PenPoint is highly hardware independent and scales to
a variety of sizes, from pocket-size to wallboard-size computers.

• Rich OS for the 90s - A true, 32-bit, flat-memory model architecture with
pre-emptive multitasking and a powerful, compact imaging model,
ImagepointTM.

2
The PenPoint

User Interface

PenPoint is unique, in that it is the first operating system designed to be driven
primarily by a pen. Because of this, PenPoint includes many new elements not
found in traditional GUls. This chapter will provide you with an understanding
of the PenPoint user interface, its design goals, how it relates to traditional
GUls, and the unique ways PenPoint works with the pen. It is neither a com
plete exposition of the interface nor a user manual.

Ambitious Goals

As discussed in Chapter 1, since mobile, pen-based computers are used in
different ways from desktop systems, they have different user interface (UI)
requirements than desktop PCs. Briefly stated, users of mobile, pen-based
systems require a user interface that is direct and intuitive, yet powerful and
flexible.

Early on, GO Corporation established goals that PenPoint's UI would have to

• be based on coherent metaphors-the user's conceptual model is the
single most important element in a good U I.

• fully exploit the pen-Uls would have to be rethought from the ground up, if
necessary, for the real potential of the pen to be unleashed.

21

22

The Power of Pen Point

• balance visual invitation and visual restraint-visual invitation is important to
encourage the user to touch an element on the screen. But it is in tension with
visual restraint: Good design is uncluttered, and PenPoint's users would be
accustomed to using pens on uncluttered territory (blank sheets of paper).

• strike a balance among simplicity, consistency, and efficiency-that is, "easy at
the beginning, powerful at the end." Real head room must exist for users to
grow more efficient in their use of PenPoint as they gain experience.

• permit a smooth transition for users of existing GUls-many PenPoint users
would come from a background of using existing GUls, and they might
continue to switch between the two systems. PenPoint would have to be
"interoperable." It would therefore build upon and extend GUls, not gratu
itously reinvent every UI technique imaginable.

PenPoint's user interface is the design solution that meets these goals. It is
an immediately graspable user interface, even for the rank novice: Use a pen
for interaction, and organize your information as you would in a notebook. The
simplicity and directness of this user interface are compelling.

PenPoint and Traditional GUls

If you have used a GUI, you will find many familiar concepts in PenPoint's
user interface. User interaction techniques such as pointing to a graphics
screen (with a mouse in a traditional GUI, with the pen in PenPoint's), scrolling
windows, and pull-down menus are all important foundations of PenPoint. On
the inside, application programmers will find that PenPoint has a modern
windowing and graphics subsystem that they must use to render their screen
display and that their applications must be structured in an event-driven
fashion, just as in desktop GUls.

There is much that is unique about PenPoint's user interface; and this chapter's
purpose is to focus on the unique, not the familiar. We will briefly introduce
PenPoint's more traditional elements and then discuss those that are unique.

23

The PenPoint User Interface

Windows and Their Frames

PenPoint applications run inside of a window and may in fact be sharing the
screen with other applications. These windows are called document frames
and can be resized and repositioned (except when they are a page in the
Notebook, as described later in this chapter). Figure 2-1 shows the standard
elements of a PenPoint document frame. As you can see, the standard ele
ments of a window are there.

title line

menu bar

Proof ...
Find .. . I~scrollbar

bodyo~
document

Spell .. .

resize
handles !

ma~~~~--""'r-"'''''''_''''''''''''''_'''''''''''''_'''''''''''''_'''''''''''''_ __ +~
Figure 2-1 Document Frame Showing Standard Elements

Menus and Option Sheets

PenPoint uses Option Sheets in addition to pull-down menus. (See Figure 2-2).
Menus are typically used for verblike commands, Option Sheets for setting
adjecfive-like attributes of an object (such as font size). Option Sheets help
avoid "menu overload." Furthermore, since attribute settings and commands
are different, placing the two in distinct portions of the user interface permits

24

The Power of Pen Point

PenPoint to provide optimum behavior for each. Commands should take effect
right away; consequently, menus dismiss (go away) as soon as you choose a
command. Options, however, are often set several at a time, and the same
settings may be applied to several objects in a row; therefore, Option Sheets
allow the user to set as many options as desired. The Apply button applies
settings to the selected object. The user may then change the selection and
continue using the Option Sheet. The Apply and Close button applies the
settings and then dismisses the Option Sheet. The Close button simply closes
the sheet without affecting the selected object.

CONTRACT < 21 >
Document Edit Insert Case Format

Dear Ms. Huerta:

This is our agreement concerning your involvement in a
new bottle design for New World Foods, Inc.

1. You agree to supply design services and technical
drawings to New World. The designs and drawings

it,you
World

.' before

Top Margin:

Right M8/gin:

• US Standard

,.LJ ... l.ol.o.! in .

........................... ¥ ..•.•.... >< in .

:.J5. 0.0 Li in.

Lt .. 0. :.0

not hold you liable for any losses incurred once we have
approved the design and started production.

Please sign a copy of this agreement and fax it back to
me.

?: ~II !9 tSi1 iii ~ [}a.!. .!.
Help Pteferences Tools: Statbnery Disks Keyboard Installer In Out

Figure 2-2 Typical Option Sheet

25

The PenPoint User Interface

Basic Controls

PenPoint includes a wide variety of the basic GUI controls such as buttons,
checklists, and multiple checklists. Of course, to echo the pen-based nature of
the system, PenPoint displays choice settings as check marks (as shown in
Figure 2-3).

CONTRACT '21 ~,

Docume nt Edit Insert Case Format

Dear Ms. Huerta:

This is our agreementconceming your inyolyementin a
new bottle design for New World Foods, Inc.

1. You agree to supply design services and technical
drawings to New World. The designs and drawings
become the property of New World upon payment for
your services.

2. Your cost estimates must be submitted .1" ••
~ ~ S .. I~ .. ~r~t~~lr I Hopkins before

~ Roman (URW)

~ 12

" Bold
./ Italic

Small Caps
Strike -thru
Underline

an approved

Heavy Underline to withstand the
Hidden have guaranteed

charge. New
uate testing

IV"V''''' "",-,..,. We will thus
not hold you liable for any losses incurred once we have
approved the design and started production.

Please sign a copy of this agreement and fax it back to
me.

,,1..1 ~Ii ~ tSTI iii .~.! []..!..!.
Help Preferences Tools: Sfatbnery Disks Keyboatd Insfaller In Out

Figure 2-3 Choice Settings Displayed as Check Marks

26

The Power of Pen Point

Some New Items

PenPoint's UI Toolkit includes two items not normally found in other GUls:
notebook tabs and writing pads.

Tabs

Tabs are a user interface feature toat simulates the tabs in a three-ring
binder (as shown in Figure 2-4). In a moment, we'll describe how these tabs
are used in the notebook metaphor itself. But you can use the same tab code
to create navigational tools in your application (to switch between screens in a
form or sheets in a three-dimensional spreadsheet, for example).

PenPoint's tabs overlap when there are too many to display in a single
column. In this case, they can be directly manipulated with simple flicks up
and down of the pen tip. A flick left will uncover all the tabs.

Writing Pads

Writing pads (see Figure 2-5) are used to capture handwriting, translate it
into ASCII text, and allow simple editing. The larger writing pad in Figure 2-5 is
an embedded writing pad, while the smaller one is a pop-up edit pad.

Writing pads provide a natural area for handwriting, since they are similar to
lined paper. Because many people handwrite larger than the size of the
translated text on the screen, the user can adjust the dimensions of the writing
pads. A system preference setting allows the user to choose between boxed
and ruled styles of pads. Boxes require separation of characters and may
ensure higher recognition rates; ruled lines are simple lines on which the user
may write characters more closely together.

The user can cause a writing pad to appear in either of two ways. One
command creates an embedded pad, the other a pop-up pad. Embedded
pads are typically used for larger amounts of text. The application opens up
space around the embedded pad so that the preceding and succeeding
context is still visible while the user writes into the pad. Pop-up pads are

27

The PenPoint User Interface

optimized for small amounts of text. They float at or near the location of the
command, and the application does not shift its display. They are great for
inserting, editing, or replacing up to a few words.

~

hI..ama
~ Cunent Products

El Inventory

D Stand ard 0 roe r Fo rm

~ PlOposed New Products .

EI New Prod uct Ide as . ..

~ Capers

EJ Chili Mixes

~ Sales

...4

. 5

...6

.. .. 7

...8

. ... 9

El Sales by Region ,10

El New Hires 11

~ Cusmmers 12

El Chain Stores 13

EI Complaints to Act on...... 14

~ New Bottle Design... 15

EJ Salsaf:;ondiments 16

EI Pack~e Design Letter. 17

El Proposed New Design (3,.Q,g1)

I:iI Bottle Design Sketch·...

,18

, ... 19
f~ ;j Revised Bottle FAX........ 20

f3 CONTRACT. 21

El New Product Draft 22

iI Drawing Paper.. 23

1.1 .'11 ~ [5il i1 ~ r)..!. ~
Help Pre1erences Tools: Statonety Disks Keyboatd Installer In Out

Figure 2-4 Divider Tab Simulation

28

The Power of Pen Point

CONTRACT

Document Edit Insert Case Format

Dear Ms. Huerta:

This is our agreemen
new bottle design for

1. You agree to supply design services and technical
dravvings to New World.

<21 >

2. If your design proves to be inadequate to withstand the
stresses) heat) and shock for which you have guaranteed
it) you will complete a new design at no charge.

3. Your cost estimates must be submitted in advance
every week and approved by Richard Hopkins before
you continue work.

4. New World will pay each invoice from an approved
estima te wi thin thirty (30) days.

Please sign a copy of this agreement and fax it back to
me.

"1J o
"C o
VI
/[I
0..

Z
/[I

=E
"1J
o
0..
£:
Q.
VI

--------~--------~---------~--~~------.. 1J ~ II ill.'9 [51l mil ~ ~.!..!.
He Ip P re1e re noes Too Is: S fa tb ne ty Dis: ks Keyboa td I nsfa lie r In Ol,d

Figure 2-5 Two Types of Writing Pads

29

The Pen Point User Interface

All writing pads are essentially the same object appearing with various
default sizes in response to user commands. They are resizable. After hand
writing into the pad, the user presses the OK button. This causes the trans
lated text to appear in the boxes. The user can write directly into these boxes
to correct any errors. In addition, space can be easily opened up, and charac
ters can be deleted with a simple gesture. The result is a reliable method of
entering handwriting and correcting it that is easy to learn and use. When the
user presses the OK button again on the translated (and corrected) text, the
pad will empty its text into the underlying application.

Applications can use writing-pad objects as an integral part of their user
interface. They may, for instance, embed pads into on-screen fields so the
user can simply place the pen into the field and begin writing.

Because writing pads provide a rich and comprehensive set of handwriting
entry styles, the result is that applications can simply reuse these PenPoint
objects for almost all their handwriting input. The user benefits because the
user interface for handwriting is consistent across a wide variety of applications.

Pen Point's Notebook Metaphor

PenPoint's notebook metaphor is based on the intuitive organizing principles
of pages in a notebook with sections, tabs, and a Table of Contents (see
Figure 2-6). All user data exists as pages.

Pages are numbered in the top-right corner. The user can turn pages with a
tap or a flick of the pen tip on or near the page number. Page turns include a
special graphical effect that looks much like a real page turn.

Notebook tabs appear on the right-hand side of the Notebook and may be
attached to any page or section; touching a tab turns immediately to its loca
tion in the Notebook. If there are more tabs than will fit on the screen, they
overlap and collapse together. Their overlapping can be controlled with flicks
of the pen tip.

There are no file load or save commands, nor is there the concept of pro
grams existing distinct from program data files. Instead, each page of the
Notebook is called a "document" and is viewed by the user as a live applica
tion instance that is always available just as the user last left it.

30

The Power of PenPoint

". Notebook: Contents

Docume nt Edit Create View Show Sort

bI..arna
m Current Prodl.ds .

2l Inventory

o Standard Order Form

m Proposed New Prodl.ds ..

[3 New Product Ideas ...

21 Capers ...

!Ij Chili Mixes.

m Sales.

2J Sales by Region.

!Ij New Hires ..

m CustonelS

2J Chain Stores

21 Complaints to Act on .

m New Bottle Design

21 Salse,Condiments

< 1 >

£.age.

. 2

.. 3
.4

· ... 5

6

.. 7

. ... 8

" .. 9

. ... 10

. 11

.. .. 12

. 13

21 Pack~e Design Letter

.. 14

.15

... 16

. .. 17

.... 18

· . 19

. 20

. .21

[j Proposed New Design (3R~1l··
~ Bottle Design Sketch ..

(j Revised Bottle FAX.

@] CONTRACT ..

~ New Product Draft .. · .. 22

.. 1...1 ~ 11 .ill!9 [51 ii1 .~J [)..!..!.
Help Preferences Tools Statbnery Disks Keyboard Installer In Out

Figure 2-6 Notebook Table of Contents

Behind the scenes, the PenPoint Application Framework associates data files
with installed application code and operating system processes. To the Pen
Point uS'er, a page of the Notebook and a document are synonymous. To a Pen
Point programmer, documents are also synonymous with "application in
stance." (Inthis book, we'll use the latter term since our audience is technical.)

31

The Pen Point User Interface

Pages may be grouped into sections. Sections may also contain other
sections; arbitrary hierarchies may therefore be created. The first page of the
Notebook is a Table of Contents that looks and operates likes its book equiva
lent. In the Table of Contents, the pages and sections are displayed as an
indented outline. Sections may be collapsed and expanded as in an outline
processor. Touching a page number in the Table of Contents turns to that
page. All contents of the Notebook are always visible from the Table of Con
tents, and pages may be easily created, moved, copied, deleted, and other
wise manipulated from that point. Entire sections may be transferred in and out
of the Notebook just as easily as individual pages.

In Figure 2-7, the user has turned to a text document page. When the page
turning command was given, PenPoint did the following steps:

• cleared the screen and displayed a page-turn effect lasting less than a
second

• created a process and application object for the destination page being
turned to

• sent a message to the destination application object to restore its saved
state from the file system

• sent a message to the destination application object to display itself on the
screen

In the background, now that the user is able to view and interact with data on the
destination page, PenPoint sends messages to the original page's application
to file its data. PenPoint then terminates the process behind the original application.

As you can see from this sequence of steps, it is the PenPoint operating
system that performs the clerical bookkeeping steps of starting and stopping
processes (running applications) and of loading and saving application data.
Users simply move from page to page and always see their data just as they
last left it: scrolled to exactly the same location and with the application seem
ing to be still running. In reality, because PenPoint Notebooks can contain
hundreds or thousands of pages, PenPoint automatically starts and stops
processes behind the scenes for the user. Otherwise, if PenPoint actually kept
these off-page processes running, memory would be consumed quickly.

32

The Power of Pen Point

r New Product Ideas <6 >

Document Edit Insert Case Format

TO: Dick Hopkins

FROM: Enrique Fabbro

DATE: February 2, 1991

SUBJECT: New Product Ideas

CC: TestKitchens, Sara Schwartz

Dick --
I was fiddling around with some of my mother's old
recipes the other day and I came up with several ways we
might try to market eggplant which is a good stable
vegetable. It's cheap to grow and it survives well in cold
storage, and various preparations ofitseem to hold up
vrell on the shelf. I think these new products might be
especially popular in the Southvrestand in California
where they're rediscovering vegetables. Let me know
what you think. -- Enrique

Eggplant dip
(We'll need a catchy name for this.) This is a variation on
babaganoush thatI think will stand up well to long-term
shelf storage. It involves roasting the eggplants (which vre
can do in bulk) and then smashing them with garlic,
lemon, olive oil and spices. We currently have some
problems with the oil separating out to the top of the jar,
which is very unappetizing, but I'm sure we can find a
binding agent to solve this.

Southwestern cuny sauce
Tl-.;o<' ;" ... 00 0<'00,'11"'''' (""';ll; ... tT "'.- 1. _1. .•

?! ¥'II ill:9 [51 il ~! QI+'!',!,
Help Preferences Tools Statbnety Dis:ks Keyboard Instal~r In Out

Figure 2-7 Display after User Turns to a Text Document Page

The Notebook metaphor is designed for mobile users who are most often
communicating with other users. Mobile users must be able to focus their
attention elsewhere than on the computer. The Notebook metaphor supports a
quick-reference style of access in which the user must be able to find informa
tion with just a few taps of the pen.

33

The PenPoint User Interface

Benefits of the Notebook Metaphor

The notebook metaphor stands in stark contrast to the high level of concen
tration the desktop metaphor requires. This is not surprising: The desktop
metaphor was designed for desktop users who are alone with the personal
computer and therefore free to concentrate their full attention on the computer.
The user of a desktop system is assumed to be doing nothing else while
operating the computer. The user of a pen-based, mobile system, on the other
hand, may be able to devote only a small portion of conscious attention to the
computer.

The notebook metaphor provides these benefits

• It is a physically familiar (like a real notebook) and stable user model (pages
and sections remain in the order and state the user last left them in).

• Users need not learn about the unnecessarily technical.distinction between
programs and data files, because user data in the Notebook simply exists as
live, running documents; there are no file load or save commands to learn.

• Because it is a stable model, users can employ their spatial memory of the
unique ordering of their pages and sections to help find and organize their
information.

• The Table of Contents provides an instant overview of Notebook contents;
all organizational tasks (such as create, delete, move, rename, and so forth)
and navigational tasks (page turns) can be performed from the Table of
Contents.

• Tabs on any page or section allow the user to maintain a set of documents
so that they are instantly accessible with a single tap.

• Sections allow hierarchies to be formed: According to the user's preference
and style, the Notebook may either be a simple flat collection of pages with
no sections or a rich and deep hierarchical collection of sections within sections.

• The user can move sequentially through the Notebook simply by turning pages.

• The user can move in random order through the Notebook either by turning
to a Table of Contents and then turning to any other page or by touching on
an attached tab or using Goto buttons for frequently traveled paths. (Note
that the terms Goto buttons and hyper/inks mean the same thing.)

34

The Power of Pen Point

The Bookshelf

At the bottom of the PenPoint screen is a Bookshelf area in which
systemwide objects and resources are displayed as icons. You can think of
the Bookshelf as the meta-area in which the Notebook is rooted, or resides.

PenPoint's standard Bookshelf includes icons for these objects

• on-line help system

• system preferences

• Tools Palette

• Stationery Notebook

• Disk Manager

• software keyboard

• Installer

• I n Box and Out Box

• the selected Notebook

A tap of the pen on any of these objects opens it on the screen, floating over
the Notebook.

The power of object-oriented programming is evidenced in Pen Point's use
of the notebook metaphor in several of these subsystems: The stationery,
reference help, In Box, and Out Box all use floating instances of small, recur
sive Notebooks for their user interfaces. The user is able to use the familiar
concepts of a Table of Contents, pages, and sections to browse through these
system services, and PenPoint is able to achieve tremendous code reuse.

The on-line help system provides context-sensitive and reference-style help
screens.

System preferences provide the user with configuration options such as the
choice between writing in all uppercase or mixed upper- and lowercase,
writing-pad styles, system font, portrait or landscape screen orientation, time
and date, and whether to enable sound. The user can also see memory usage
statistics here.

35

The Pen Point User Interface

The Tools Palette provides a pop-up window with icons for a variety of
system accessories and tools such as clocks, calculators, and, importantly,
Pen Point's handwriting training program. .

The Stationery Notebook provides a place for the user (as well as installed
applications) to store copies of documents they would like to use as tem
plates. This provides for a standardized form of application templates to be
fully integrated with PenPoint's creation user interface.

The Disk Manager allows the user to browse and transfer files to and from
external disk volumes. These may be floppy disks, hard disks, desktop PC
and Macintosh computers, or volumes on network servers. The Disk Manager
user interface is based on the same code as the Notebook's Table of Contents
and provides a similar outline view that uses the identical core gestures for all
transfer and manipulation of external files.

The software keyboard is a small pop-up image of a keyboard that the user
may tap with the pen tip when a physical keyboard is absent and the user
would prefer to not handwrite.

The Installer manages all installed applications, listing them and their
memory consumption for the user.

The In Box and Out Box queue up incoming and outgoing data transfer
operations until a suitable connection is available (see Chapter 16 for more
information on these).

The current Notebook fills the screen but is not the root of the PenPoint world.
Therefore, an icon representing the current Notebook sits on the Bookshelf along
side the other icons (in the default configuration, it is scrolled out of view).

Because PenPoint ensures that the Notebook contains only user data (and
not system objects), advanced users may want to manage multiple Notebooks
in a single PenPoint machine. These Notebooks would be created by the user
or loaded from disk, and the user would switch between them by choosing
their icons on the Bookshelf. There is nothing to prevent a Notebook from
residing on disk.

Besides adding Notebooks to the Bookshelf, the user can also place other
objects such as documents and hyperlink buttons (described later in this
chapter) there. As the Bookshelf fills up, it will automatically wrap the icons to
fill into row order. The bottom of the Notebook has a resize handle so the user
may draw it up to uncover as many rows of icons as the Bookshelf contains.

36

The Power of Pen Point

Gestures: The Pen Builds on the Mouse

The pen builds upon the heritage of the mouse as a pointing device. As we
discussed earlier in this chapter, PenPoint is based on many traditional GUI
principles, including the principle that much of the GUI screen is responsive to
pointing operations. Pointing is much easier with the pen than with the mouse.
With the mouse, you must position the cursor to the correct location and then
click the mouse button. These are skills that must be learned. With the pen you
simply tap on the screen.

But the pen extends well beyond the mouse's function as a pointing device.
Since people can write and draw well with the pen, it can be used for many more
classes of operations than can the mouse. In fact, PenPoint uses the pen as its
primary input device; it is the only input device the user ever needs to learn or use.

In PenPoint, the pen is used for pointing, data entry, and gesture commands. Of
all input devices, it is the only one that can be used for all three. The mouse
cannot, because it is too difficult to handwrite with a mouse. The keyboard
cannot, because it is difficult to point with cursor keys and you cannot draw
gesture commands with a keyboard. Even when voice recognition is suffi
ciently perfected for unconstrained high-volume data entry and command
issuance, it will still be a horrible pointing device. (Imagine controlling your
computer through voice commands without a pointing device like the pen in
hand: "Delete that word ... no, not that one, two to the left ... OK, now, see that
word "abject" four lines up? I want you to move it to just before the ... ".)

Because the pen unifies all these input modalities into a single, natural tool,
it is the ideal primary input device for a computer. Keyboards (covered later in
this chapter) and voice recognition become excellent adjuncts to the pen, to
be used in special situations.

Gestures as Commands

The most interesting and useful capability of the pen is not the handwriting
you can perform with it, but the gesture commands you can issue with it.
Gesture commands specify in a single step both a command and the target of
the command. With mouse-based systems, the user must always select the
operand object, then select the command verb. With the pen, users simply
draw the command directly over the intended operand object.

37

The Pen Point User Interface

The pen is so powerful that intensive editing and data entry tasks can be
performed entirely with it. In Figure 2-8, the user draws a small caret gesture to
request that a "gap" be opened up to write into. In response, the text opens up
a gap and fills it with a writing-pad object (one of many standard PenPoint
support objects). Figure 2-9 shows the resulting writing pad with some typical
hand printing that PenPoint recognizes.

New Prod uct Ide as

Docume nt Edit Insert- Case Format

Eggplant dip
(Weill need a catchy name for this.) This is a variation on
babaganoush that I think ¥lill stand up well to long-term
shelf storage. I t involves roasting the eggplants (which we
can do in bulk) and then smashing them ¥lith garlic)
lemon) olive oil and spices. We currently have some
problems ¥lith the oil separating out to the top of the jar)
which is very unappetizing) but I'm sure we can find a
binding agent to solve this.

Southwestern cuny sauce
This is essentially ~auce. Grilling or barbecuing
vegetables like eggplant and zucchini and other squash
has become very popular in the West lately. Yould spread
this curry sauce over the vegetables as you grill them.

Figure 2-8 Caret Gesture to Request Writing Space

While the user handprints, PenPoint performs the recognition process in the
background, so that the resulting text can be displayed nearly instantlyafter
the user closes the writing pad. Upon closing, the resulting ASCII text is
passed to the application.

Under PenPoint, the location ofagesture controls its intended meaning. For
instance, when the letter "0" is drawn in a handwriting area, it is translated into
ASCII 79 (a capital "0"), but when it's drawn over application data such as a
word, it is translated into the Edit command. When the "0" is drawn into an
object-oriented drawing program, it is translated into the command to create a
circle object (see figures 2-10 and 2-11). Such location-specific gestures provide
an intuitive "do what I mean" style of interface that is free of the confusing
modes that arise when a mouse is used where a pen would be more natural.

38

The Power of Pen Point

New Product Ideas ·;6

Docume nt Edit Insert Case Format

Eggplant dip
(We'll need a catchy name for this.) This is a variation on
babaganoush that I think will stand up we11 to long-term
shelf storage. It involves roasting the eggplants (which we
can do in bulk) and then smashing them with garlic,
lemon, olive oil and spices. We currently have some
problems with the jar,
which is very a
binding agent to

Southwestern
This is essentia11y a sauce. Grilling or barbecuing
vegetables like eggplant and zucchini and other squash
has become very popular in the West lately. You'd spread
this curry sauce over the vegetables as you gri11 them.

Figure 2-9 Writing Pad Appears in Response to Gesture

Figure 2-10 User Draws a Circle Gesture

Ideas in Conflict

Even though the pen builds on the heritage of the mouse as a pointing
device, it is important to note that the two devices mix together about as well
as oil and water. The mouse requires an on-screen cursor; the pen abhors
this. The mouse does not trail ink on the screen; the pen requires this.

39

The Pen Point User Interface

Figure 2-11 Drawing Program Creates Circle Shape in Response to Gesture

As a result of these fundamental conflicts, unchanged mouse-based GUI
applications require a mouse cursor. If these applications are running on the
same machine as pen-based applications, the user will be confronted with the
difficult situation of having a pen with a button on it to switch the pen between
mouse mode and pen mode. The user would have to understand the nature of
every window on the screen and ensure the pen was in the correct mode
before touching it to the screen.

Standard Gesture Language

PenPoint provides a standard, rich gestural language based on intuition
about pen editing marks. The heart of the gestural user interface is a set of
core gestures shown in Figure 2-12. These gestures work consistently across
all applications, providing common commands such as Select, Delete, Move,
Copy, Options, and Help. PenPoint provides dozens of additional gestures for
application-specific commands (for example, the same letter "B" that applies a
style of boldface when drawn in a word processor will toggle document bor
ders on and off if drawn on the title bar of a document).

GO has found that a well-designed gesture is highly mnemonic. The choice
of gestures should be driven by two key factors

40

The Power of Pen Point

• They should leverage our society's "collective unconscious" regarding
editing marks; for exa'mple, scratch-out and pigtail marks are intuitive
deletion gestures.

• They must be easy to draw and make; GO's user research has found that
many multistroke gestures (those in which the pen tip is typically lifted at
least once during drawing) cause users difficulty.

[Bracket, left Flick up

] Bracket, right Flick down

A Caret L Insert space

3 Check '1 Pigtail

o Circle
,. Press

X Cross out .r Tap

-Flickleft .r Tap press
•

-Flickright

Figure 2-12 Core Gestures in PenPoint

While virtually all commands and operations in PenPoint are available
through menus and Option Sheets so that users can easily find them, the most
frequently used commands have gesture equivalents. Because these are so
direct and efficient, most users will use them rather than other approaches.

Using the Pen for Data Entry

PenPoint includes a powerful handwriting recognition (HWX) subsystem.
This system is available to all applications. In addition, it is used by a number
of PenPoint objects (such as the writing pads mentioned previously) that are in
turn available to all PenPoint applications.

41

The PenPoint User Interface

The initial version of PenPoint is shipped with a HWX system developed
entirely by GO Corporation that has the following characteristics:

• recognizes neatly printed, mixed upper- and lowercase letters, numerals,
and punctuation

• gives the user the option of writing into character boxes or on ruled lines

• tolerates characters that overlap or touch

• recognizes characters independently of stroke and time order

• accommodates several users with or without training.

PenPoint supports these features on an impressive list of naturally shaped
characters at very high recognition rates, even when the user is writing ran
dom English text. Typical word accuracy rates are 80 percent or better, which
is equivalent to character accuracy rates of 90 to 97 percent. For more infor
mation on the HWX system see Chapter 13; for more information on evaluating
HWX systems see Appendix C.

Under PenPoint, the pen is clearly a respectable data entry device. With
time, it will only get better, because PenPoint's HWX is replaceable. HWX APls
exist as standard programming interfaces regardless of what HWX is currently
installed. Therefore, PenPoint's algorithms can be continuously improved
without disturbing the growing base of applications.

PenPoint's HWX subsystem is replaceable, allowing replacement of GO
Corporation's current English-language HWX with engines developed by third
parties. This supports placement of PenPoint into foreign markets such as
Japan, but it also guarantees that the world's best HWX can be available
within PenPoint. Several third-party efforts are already underway to port other
HWX technology into PenPoint.

With time, PenPoint will support HWX systems that deliver accuracy rates
higher than today's and tolerate messier or cursive handwriting. HWX is a
CPU-intensive task, and a better job can typically be done by expending more
processor time. GO Corporation's algorithms have ,been carefully designed to
run in real time on current-generation hardware. As faster processors become
available, more ambitious HWX goals can be set. Furthermore, as the PenPoint
market grows, the market for HWX engines will grow and encourage entrepre
neurial development.

42

The Power of Pen Point

Keyboard Support

PenPoint also supports keyboards for high-volume data entry. When users
are working at a table or desk and they know how to type and they have a
physical keyboard available, nothing beats the keyboard. But it's important to
point out that where other operating systems tend to use the keyboard for
everything (for example, all commands must be issuable from the keyboard)
and the mouse for some things, PenPoint inverts this former primacy of the
keyboard; in PenPoint every user action can be done with the pen and the
keyboard is supported chiefly for its excellence at high-volume data entry.
That is, PenPoint's user interface guidelines do not require the use of Alt key
combinations, function keys, or the ESC key.

More Differences

Besides the notebook metaphor and gestures, PenPoint's user interface
contains a number of other features not normally found in a traditional GUI.
These include

• a non-traditional move/copy model

• the Stationery Notebook

• scroll margins and scrolling with gestures

• cork margin

• Embedded Document Architecture

• hyperlink buttons

• floating pages

• integrated connectivity

43

The PenPoint User Interface

Direct Move and Copy

Move and copy operations in traditional GUls are based on a clipboard
model in which the user must first copy or cut data to an invisible clipboard
and then issue another command to paste the data into the destination appli
cation. In PenPoint, the user employs gestures that immediately initiate a direct
manipulation drag and drop move/copy user interface. (See Chapter 8 for a
more detailed description of how this portion of the user interface is imple
mented.) Move and copy work within individual applications, across applica
tion boundaries, and across pages in the Notebook.

Stationery Notebook

PenPoint's Stationery Notebook unifies the user interface for creating new
blank instances of applications with the user interface for creating copies of
application template documents. It is extensible by applications, which can
bring templates with them at installation time, and by users, who may add their
own templates at any time. All templates (including a blank one for the cre
ation of blank application instances) are stored in the Stationery Notebook. An
entry in this Notebook with a check mark next to it will then appear in the
Stationery menu, which is a simple menu that appears in the Table of Contents
in response to the insertion gesture.

Scrolling

PenPoint contains relatively traditional scroll bars with up and down arrows
and a scroll handle that is draggable and indicates your current position in the
file. These scroll bars are called scroll margins because they also contain a
thin margin into which you can draw flick gestures. These are simple up and
down flicks (in a vertical scroll margin) or left and right flicks (in a horizontal
scroll margin).

44

The Power of Pen Point

The scroll margins are infrequently used, however, because users may draw
the same scroll fl(cks in the application window itself. The result is direct
manipulation at its best: To scroll a line to the top of the window just place the
pen tip near it and draw a quick little flick up. Scrolling via flick gestures is
much more efficient than scroll bars because the placement of the pen tip can
be very imprecise and casual; with scroll bars, the placement of the pen tip (or
mouse cursor) must be precise.

Cork Margin

The cork margin is a unique standard part of every PenPoint document
frame (although it is turned off by default). It is a simple little border area at the
bottom of the document frame (see Figure 2-13) that can contain any PenPoint
object. It is called the cork margin because you "stick" things there in a fash
ion similar to a small cork bulletin board. In fact, the cork margin's capabilities
as a general-purpose repository are similar to the Bookshelf, which we previ
ously described. Both cork margins and the Bookshelf can contain hyperlink
buttons, closed documents (appearing as icons), and other PenPoint objects.

Because the cork margin is attached to a document frame, it goes wherever
the document goes. You might put several hyperlink buttons in the cork mar
gin that point to various locations in the document that you want to mark.
Because the Bookshelf is always at the bottom of the screen, it is global. In
essence, the cork margin serves as a local buffer for objects, and the Book
shelf as a global buffer.

Embedded Document Architecture

One of PenPoint's most impressive technical capabilities is its Embedded
Document Architecture, in which live applications may be placed inside each
other to produce true compound documents. (This book devotes Chapter 8 to
this topic.) While complex software technology is required to implement this
capability, to the user the embedding user interface is straightforward.

Inventory

Document Edit Insert Case Format

COSroMER STATlJS REPORT

AS OF OCroBER 30. 1990

PREV G'O'RR
COST PRODUCT LINE YTD YTD CHANGE

WHOLE FOODS
10 Marinara 1.240 1.800 30%
20 Garlic Bomb 670 640 7% -
25 SW CUrry 8.009 5.340 40~"o
30 Loco Coconut 400 590 20%
40 Fish's Friend 130 106 25%
50 Outstanding 44 78 90%
60 Mellow Yellow 120 120 0% -

roTAL 12.008 12.987 8% t

UNCLE BOB'S GROCERY
20 Garlic Bomb 130 108 25%
40 Fish's Friend 44 79 95%
50 Outstanding 118 118 0%

roTAL 2.400 2.600 8% t

RED LABEL SroRES
25 SW CUrry 105 100 5% t

30 Loco Coconut 40 75 95%

roTAL 150 175 20%

PRESCOTT'S

<3

%

t

t
t

-
t

-
t

t

t

10 Marinara 1.240 1.800 30% ..t
20 Garlic Bomb 670 640 7% -

U

25 SW CUrry 8.009 5. 340 40% t

,3:P'"J,'OOQ,):;Qnp'p'pt,,,,,,,,,,,,,,4J~P',,,,,,,,,,,,,,,,,,,,,,,,,,5.9JL,,,,,,,,,,,,,,,,,,,,,,,2,9%,,,,,1",,,,,, ?.
CREAL FOOal) (SUPER G ROCERY) ~ ToC\:) 2:00 P :M.

[WHOLE FOOal) (UNCLE BOB'S) (~:~£:~:~.I9CPRESCOTT'Sj

.1J "II ~ (Sil ii1 ~ QJ..!. .!.
Help Preferenoes Tools Stati:mery Disks Keybou:l Installer In Out

Figure 2-13 Cork Margin at Bottom of Page

45

The Pen Point User Interface

To create a document inside of another, the user simply opens the Statio
nery menu inside of the host document and chooses the new document type,
just as he or she normally would. Embedded documents may be closed to a
small icon (in which case the application is no longer running) or they may be
open. When the document is open, the user has full control through standard
document Option Sheet settings over whether the document menu bar, scroll
bar, and borders are on or off.

46

The Power of Pen Point

Hyperlink Buttons

PenPoint includes hyperlink buttons as a first-class, integral part of the
operating system. The user creates these links by selecting the target for
navigation and drawing a simple gesture at the location where the hyperlink
button should be placed. PenPoint creates a button that points directly to the
selected destination. Hyperlink buttons can point to any page in the Notebook
or to locations within pages. When a hyperlink button is pressed, PenPoint
creates an automatic page turn to the destination page. The location within the
destination page is selected and scrolled into view. Hyperlink buttons are
correctly preserved across all filing and other data transfer operations.

Floating Pages

Pages in the Notebook may be floated by the user double-tapping on the
page number in the Table of Contents (or on a tab or hyperlink button pointing
to the page). A single tap on any of these goes to the page while a double tap
floats the page. You can think of floating pages as being temporarily "torn out"
of the Notebook, while remembering their original location, to which they return
when the floater is closed.

Floating gives PenPoint a general overlapping window model for those users
and situations in which this is appropriate. In other GUls, overlapping windows
are the only organizational style, so users simply must learn to use it. In Pen
Point, this style is treated as an advanced approach; users can confine their
systems to the more intuitive page-turning model.

Integrated Connectivity

PenPoint includes an extensive set of user interfaces for connectivity. Because
data transfer is so integral to mobile, pen-based computers, PenPoint allows
documents being transferred to queue up in the In Box and Out Box. These
services fill and empty when the appropriate communications connections (for
instance, a connection to a desktop PC or network) are available (see Chapter

47

The Pen Point User Interface

16 for more information). Both the In Box and Out Box use small floating
Notebooks as their user interfaces, allowing the user to employ the familiar
organizational power of pages, sections, and the Table of Contents.

The Send command in PenPoint is available from within every application to
send a copy of that document as electronic mail or facsimile (if the appropriate
transfer services are installed). The Send command brings up a standard
addressing user interface that works with a systemwide Send List (a form of
address book for addresses and phone numbers), and the pending transfer
operation is then entered into the Out Box.

User Interface Consistency

PenPoint encourages application user interfaces to be consistent with one
another in several areas. In our previous discussion of gestures, we pointed
out the concept of a core set of approximately one dozen gestures that all
applications implement in a consistent fashion. In addition, there is a set of
Standard Application Menus (SAMs), commands, and Option Sheets that all
applications must implement. (As you may have guessed, the Application
Framework provides default implementations of these features that are suffi
cient for most applications.)

SAMS specifies two required menus: a Document menu and an Edit menu.
The Document menu contains (at least) Checkpoint, Revert, Print, Print Setup,
Send, and About commands. The Edit menu contains (at least) Undo, Select
All, Options, Move, Copy, Delete, Find, and Spell. In addition, SAMS provides
standard document Option Sheets that provide option cards to describe
document title and information, access controls, and application information.

To ensure appropriate application UI consistency, the PenPoint Software
Developer's Kit includes UI Guidelines that specify the full set of consistency
requirements.

48

The Power of PenPoint

Summary

This chapter has looked at the PenPoint user interface primarily from the
user's perspective. While this interface shares many features with existing
graphical user interfaces (GUls), PenPoint incorporates some new ideas,
including notebook tabs for navigation among documents and writing pads for
insertion of handwritten text. .

As we have seen, Pen Point is organized around the concept of a notebook,
including sections, tabs, and a Table of Contents. PenPoint also includes a Book
shelf area along the bottom of the notebook where system-wide objects can be
stored for easy access regardless of where in the notebook the user is working.

We have looked at the core gestures and handwriting recognition tech
niques that make up one of PenPoint's most unique and visible user interface
elements. We have noted that the pen is not intended for high-volume data .
entry and that PenPoint therefore also supports keyboard data input.

3
Developing Applications
for PenPoint

PenPoint is radically new in many ways. Yet, in other ways, it builds on ideas
that have preceded it, some of which may be familiar to you. As with any new
technology, PenPoint offers some intriguing challenges to programmers who
want to develop applications to take advantage of its new features and capa
bilities.

Mindful of this challenge, GO Corporation provides a significant amount of
support for your programming efforts. From training to a Software Developer's
Kit (SDK) that contains all of the class libraries, source code, development
tools, and sample applications you'll need to build PenPoint applications,
PenPoint's developers offer you a range of help and encouragement as you
embark on your programming effort.

Why Develop for PenPoint?

At the outset, you may still be unconvinced that you should spend your valuable
time and resources developing applications for the Pen Point platform. There are at
least four reasons you should seriously consider doing just that.

First, many, if not most, of the major computer hardware vendors will be
producing systems that run PenPoint. GO Corporation's strategy is to license
the PenPoint operating system and support software to as broad a range of
hardware manufacturers as possible. To that end, GO has made a conscious

49

50

The Power of Pen Point

decision not to become a hardware company itself. When it formally announced
PenPoint, significant industry support was also announced. For you, that means
that there will be many sales representatives, retailers, OEMs, and others selling
Pen Point-based computer systems, resulting in widespread knowledge and
acceptance of the operating system as an emerging standard.

Second, the market for pen-based computers will grow very rapidly over the
next few years. By the end of the 1990s, the pen-based market will be just as
large as the desktop PC market was at the end of the 1980s. This large market
will use pen-based computers for new tasks for which it will require new
software; existing desktop PC-based applications will, for the most part, not
simply be ported to PenPoint. As you will see throughout this book, a pen
based system creates a new set of expectations and affords a host of opportu
nities for rethinking application design. New software companies will be
founded; new software companies will flourish.

Third, the fact that you are reading this book means you have a chance to
get into this emerging and potentially huge market early. There are no estab
lished, dominant players in this arena. You can enter the software market with
a product that has as good a chance as any of becoming a success.

Finally, the fundamental paradigm shift from desktop to pen-based note
book computing opens many new opportunities for creative products and
designs. The old rules are no longer valid. This will be an exciting platform for
which to develop software simply because it will give you an opportunity to
stretch your creativity and your mind to envision and implement new kinds of
software that were heretofore either unheard of or not feasible because of the
limitations of desktop computing.

The Learning Process

Obviously, all of this potential requires you to invest some time and effort in
learning the new paradigm and in mastering some new tools.

Before you begin your approach to PenPoint, you should already be a C
programmer. In its first release, PenPoint supports ANSI (American National
Standards Institute) C. (Chapter 4 describes the C support in PenPoint in more
detail.) You should also have some familiarity with object-oriented program-

51

Developing Applications for Pen Point

ming (OOP) since PenPoint is strongly oriented toward OOP development with
class libraries, messages, and inheritance. Note that it is not necessary that.
you learn a new OOP language. PenPoint uses only standard ANSI C, not
C++. The object-oriented aspects of PenPoint are concentrated largely in the
Class Manager (see Chapter 5), which you will need to learn. Thus the learn
ing curve for this aspect of PenPoint development is less steep than for under
taking a transition to a fully object-oriented language like C++.

Once your background includes C and OOP programming, you should learn
the PenPoint Application Framework (see Chapter 6). This is the most impor
tant and often-used portion of the Pen Point class library. A working understand
ing of this aspect of PenPoint is essential to success in developing PenPoint
applications.

Next, you'll want to learn some additional material about PenPoint's class
library and development support. Of particular importance are portions of the
windowing system (see Chapter 7), the graphics interface (see Chapter 9), the
file and resource systems (see chapters 11 and 12), and the User Interface
Toolkit (see Chapter 10). This book furnishes an overview of how those activi
ties are organized and implemented, providing you some background that will
prove valuable when you tackle the SDK documentation, which covers these
subjects in greater detail.

52

The Power of Pen Point

After you have a reading knowledge of the main classes and functions in
PenPoint, you should study and modify the sample problems that come with
the SDK. These applications are well-comm.ented and are explained in SDK
documentation so that you can grasp how and why they work. By making
judicious modifications in them, you will begin to get a feel not only for how
PenPoint programs work, but also how programming for PenPoint feels.

With this background, you're ready to design and build your application.

The Development Process

Object-oriented design and development require different approaches from
those you may have used with procedural languages and designs. One key
difference to keep in mind is that rapid prototyping is so easy in PenPoint that
you can afford to spend some time building multiple prototypes before you
write much code.

Even before you prototype, though, you should think seriously about your
application design in the context of the pen-based computing paradigm.

Thinking about Your Application

You should think of your application as a specialized building block dealing
with a single data type. It may, in fact, turn out to be a collection of such
components, but if you begin thinking of it in terms of this key idea, you'll find
that it is easier to design, prototype, build, test, and sell.

With PenPoint's capability to embed applications inside other applications
dynamically (a subject covered in detail in Chapter 8), you can often create
sophisticated applications by relying on other applications' capabilities. For
example, you may be able to create an application that integrates an existing
text editor and an existing spreadsheet program into a problem-solving tool
such as a business plan generator.

53

Developing Applications for Pen Point

Prototyping Your Application

The PenPoint SDK comes equipped with prototyping tools that enable you to
craft an empty shell of a program and demonstrate how it would work on the
PenPoint system without having to write any C code. This makes it possible for
you to prototype your application with several different interfaces or approaches
and then get feedback from potential users about its design.

Market testing of this kind is important, but it is often difficult in traditional
development environments because the only way to show how a program will
work is to build it. By the time that's done, the cost and time involved in chang
ing it may be prohibitive. With PenPoint's object-oriented approach and its
prototyping tools, however, you can take advantage of early market feedback
to modify a design so that it will sell better after you have invested all of the
time and energy you put into coding it.

Even if you are building a PenPoint application for a captive market, such as
an in-house department or work team, this kind of market testing and user
feedback is important to its success. You can let users participate in the
design process; in fact, some of the PenPoint prototyping tools are easy
enough to use that you can even teach your potential users how to create the
interface the way they want to see it. Then you can help them fine-tune it
before you begin coding. The benefit of this early user buy-in and ownership
lies in the degree to which users will not only accept but embrace the finished
product and make extensive use of it.

54

The Power of Pen Point

Designing Your Application

Object-oriented design is an important subject that is beyond the scope of
this book. One piece of advice that you'll find most useful in this regard,·
however, is that you should decompose your design into objects defined by
their behaviors. In other words, you should examine your design for bits of
behavior that can be used as the basis for constructing individual objects.
One way to approach this problem, suggested by software designer and
consultant David A. Wilson, is to write a narrative description of your program.
The nouns in the description become candidates for objects and the verbs
become candidates for messages those objects need to understand.

As you design an application for PenPoint, try to keep in mind the need to
be as thoroughly pen-oriented as possible. This requires you to think about the
appropriate uses of ink, gestures, and data entry techniques.

As with any object-oriented environment, the real efficiency and power of
PenPoint derives from maximum reuse of PenPoint components. Don't reinvent
the wheel where you don't have to do so. You will find that it will almost always
payoff to spend more time looking through the PenPoint class library for an
object that matches or nearly matches the behavior you need than starting
from scratch writing a new object.

Taking the idea of reusing code a step farther, you should design code so
that it creates reusable components. This will result, over time, in a library of
reusable objects dealing with behaviors you often need. Over time, you should
find that the amount of new code you have to write for each new application is
reduced. You might even come up with such interesting reusable components
that you'll find you can market them as well.

Exploit the Application Framework (see Chapter 6), the view-data model
(see Chapter 8) and the observer model (see Chapter 5) in PenPoint to make
your application behavior efficient and predictable. Using the view-data and
observer models permits you to create multiple views of the same data ele
ment and benefit from automatic updating of the view when the value of the
data changes. This can be a powerful technique.

Consider using the Service Architecture (see Chapter 15)to create some or
all of the parts of your application. Any element of your program that does not
require a user interface might be a candidate' for implementation via the

55

Developing Applications for Pen Point

Service architecture. For example, if you have a database engine in your
application, you can create it using the Service architecture, make it a sepa
rate component, and gain not only efficiency but, potentially, another market
able product.

56

The Power of PenPoint

PenPoint supports memory-mapped files, which allow you to address data
in a file as if it were in main memory. You should consider using this approach
to data access in your application because of its efficiency.

In designing your PenPoint application, be sure to provide data connectivity
to desktop PCs and Macintoshes, particularly to the most popular file formats
with which you wish your application to be data-compatible. The PenPoint remote
file system (see Chapter 16) and Import/Export support (see Chapter 11) make
it easy to provide this support.

Make your user interface scalable so that its size and aspect ratio can be
adjusted to the hardware environment in which it is run. The automatic layout
feature in PenPoint's User Interface Toolkit provides excellent support for this;
use it. Particularly in view of the number of hardware manufacturers who will
build PenPoint-based systems, it is important that you not lock your application
into a particular assumption about screen size and orientation.

Mapping to the PenPoint Class Library

You will want to map all of your objects to the PenPoint class library to the
maximum possible extent. Before you can do this, you need to learn enough
about the class library that each new search for an object need not start from
scratch. This book is designed to introduce you to and summarize the opera
tions of the important classes and groups of classes in PenPoint.

When you've studied and become somewhat familiar with the class library,
then you can search for objects that have some or all of the behavior you've
defined for your application's objects. By understanding what the PenPoint
classes do, you can quickly narrow your search. The SDK documentation then
enables you to focus quickly on the likely candidate objects.

Having identified an object to work with as the basic behavior definition for
your application object, you will then either subclass that class, customizing
your newly created object class, or create an instance of the original object if
its behavior exactly matches that required by your object. Resist the tempta
tion to create new objects at the root level of the object hierarchy; more often
than not, you'll find that this means some reinventing of the wheel.

57

Developing Applications for Pen Point

The SDK

We strongly encourage you to take the Application Developer's Course
(ADC) from GO Corporation as part of your training in PenPoint. This class is
offered frequently and includes a great deal of hands-on laboratory experi
ence building applications. If you take this program, an SDK is included as
part of the course materials. Otherwise, you can purchase the SDK documen
tation -separately.

Contents of the SDK

The SDK contains the software and documentation you need to build Pen
Point applications. The main elements of the SDK are

• a set of application developer's guides that focus on broad issues and the
use of development tools

• a comprehensive architectural reference that describes in detail all classes
and messages in the PenPoint class library

• an API reference that reproduces all header files, formal message and
parameter definitions, and data structures

• all necessary header and include files

• an object-aware, source-code debugger

• a database-driven class browser

• prototyping tools

• a special version of PenPoint that runs on PCs

Language and Software Support

PenPoint development requires an ANSI C compiler. The PenPoint Class
Manager provides all the object functionality developers have come to expect
from environments such as Smalltalk and Object Pascal. Because the Class
Manager is a subsystem of PenPoint rather than a language extension, its

58

The Power of Pen Point

capabilities are available via standard C syntax. In addition, these same capabili
ties can be made available to other languages such as Pascal and C++.

Virtually all PenPoint APls are based on Class Manager messages and
objects. This means you can reuse and modify system code at many levels in
the system.

A comprehensive set of debugging capabilities is an inherent part of the
SDK. Not only can you set and monitor debug flags in a separate debugging
window in the PC-based development environment, you can also use a
source-level symbolic debugger. It allows the programmer to examine clsMgr
objects and messages, set break points in the source code, manage multiple
threads, and execute sophisticated debugging scripts.

Runtime Function Support

PenPoint supports most standard C runtime functions. Because of differ
ences between pen-based and other kinds of user interfaces and due to the
special needs of an object-oriented operating system, some of these functions
are modified and a few are not relevant.

Chapter 4 describes C runtime function support in more detail ..

General Usage

The general development process for a PenPoint application involves
creating the original source code files on an MS-DOS-based machine, prefer
ably one with an 80386 CPU. You can undertake some testing and debugging
in the PC environment, though it is obviously difficult to test fully the pen-based
aspects of your user interface without a pen.

Ultimately, you download your application to a PenPoint-based computer.
You might do this either by physically creating and reading a disk with the
application or via a fast communications link between the PC and the PenPoint
based computer. The GO debugger will function in a remote debugging mode
in this case, with the debugger user interface and symbol table on the PC
while it debugs your application in the target hardware.

59

Developing Applications for Pen Point

As you undoubtedly know, the development process then becomes iterative
until you have a debugged application working as you want it to work. At that
point, you create the distributable product. We recommend you distribute your
product on a 1.4MB disk with an MS-DOS format and that you follow certain
directory structure requirements discussed in Chapter 11 to ensure maximum
compatibility with the PenPoint-based hardware system on which the user will
install your program.

Hardware Requirements

To develop PenPoint applications, you need a development platform and a run
and-test platform. The development platform must be an MS-DOS-compatible
computer system. The run-and-test platform can be either a 80386-based PC
with an EGA or VGA display and a mouse or digitizing tablet to simulate pen
activity or a PenPoint-based system if you want to run PenPoint on the target
hardware. We recommend the latter, but it is not required.

GO Corporation maintains a list of supported computer systems; you can
obtain the latest list from the company.

With either a mouse or a digitizing tablet, you can simulate at least portions
of the pen-based user interface in your application. However, you cannot get
the true feeling of using a pen on the display any other way than with actual
PenPoint target hardware; we recommend every development team have
access to at least one.

If you want to connect your desktop development platform directly to a
PenPoint-based system, you can do so through one of the high-speed point
to-point network interfaces supported by GO Corporation. Chapter 16 pro
vides more details on this point.

User Interface Design Guidelines

GO Corporation puts a great deal of emphasis on the consistency of the
user interface in PenPoint applications. Experience has shown that this is
important to the adoption and efficient use of any graphical user interface.

60

The Power of Pen Point

Users come to expect certain kinds of behavior from applications running in a
particular environment. Applications that meet these expectations are almost
always more successful than those that do not.

To facilitate your program's user interface design, GO Corporation publishes
the PenPoint User Interface Style Guide. The SDK contains a copy of this
document.

We strongly encourage you to obtain and study these interface guidelines
and to comply with them. You should deviate from the guidelines only when
there is an overwhelmingly compelling reason to do so.

Summary

This chapter has briefly examined some global issues surrounding the
development of applications for Pen Point-based computer systems. There are
at least four good reasons to develop such applications.

As we have seen, there is a learning curve for programmers interested in
developing applications for this new operating system, but the object-oriented
nature of the system makes it possible to learn development techniques
efficiently. This object orientation also requires that you think differently about
your application and its design from traditional procedural approaches.

Finally, we have examined the contents of the SDK with which you will work
as a PenPoint developer.

4
The PenPoint Kernel

A robust, multitasking kernel is the foundation of any modern operating
system. PenPoint is built on just such a foundation: a 32-bit, preemptive
multitasking kernel with functionality similar to both OS/2 and UNIX. PenPoint's
kernel is responsible for the orderly operation of the hardware on which Pen
Point is running. You will rarely need to access the kernel directly except for
memory allocation and deallocation, but understanding how the kernel works
will assist you in dealing with the rest of the system with which you have more
frequent programming contact and also satisfies your natural curiosity about
what's "under the hood."

The basic role of the kernel layer is the adjudication of resource ownership
and allocation. The resources the kernel arbitrates are of two primary types:
time and space. Time refers to execution time on the CPU; space encom
passes not only memory but also such space-constrained entities as I/O ports.
The kernel uses the two basic concepts of privileges (for space access) and
priorities (for CPU allocation) to manage these resources.

Because the kernel is the foundation of the system, it is the least object
oriented element in the PenPoint operating system. A specialized adjunct to
the kernel is Pen Point's Class Manager, which we discuss in detail in Chapter 5.
Taken together, the kernel and Class Manager include a well-defined API
(application programming interface), but the kernel's interface consists exclu
sively of functions rather than messages. The Class Manager provides the
object and class technology that the rest of PenPoint uses to behave in an
object-oriented manner.

61

62

The Power of Pen Point

Even though most of your interaction with the kernel involves memory alloca
tion and deallocation, we will look first at time management because you need
to understand how the kernel handles tasks and processes before you can
understand how that management process affects memory allocation and
utilization.

Task Management

A task in PenPoint is defined as any executing thread of control. It is the
basic executing entity in the system. You can think of tasks as consisting of
hardware tasks and software tasks. The latter can be further subdivided into
processes and subtasks. These processes and subtasks are scheduled and
run by a software scheduler based on a priority scheme that determines which
task should run at any given time. The only kind of hardware tasks available in
PenPoint are interrupts.

A process is the first task that runs when an application is instantiated. A
new process requests local memory. Processes own all the resources used by
the application instance, including memory, subtasks, and the semaphores
that are used in locking and interrupt management schemes. When a process
is terminated, all resources owned by it are returned to" the system.

You can envision a process as a single address space unit. Everything
inside any process is accessible to the rest of the process. In other words,
inside a process, everything is shared as in a family. In fact, we will refer to a r
process and all of its subtasks together as a task family. Other processes,
however, cannot access any of the resources owned by a process without
specific permission and knowledge.

A subtask is a thread of execution started by either a process or a subtask.
Subtasks created by other subtasks are called sibling subtasks. The process
that creates a subtask owns that subtask in a parent-child relationship. A
subtask has the following characteristics:

• It shares local memory with its parent process as well as any sibling
processes.

• It owns no resources.

63

The Pen Point Kernel

• It has its own registers and stack.

• It can lock semaphores as well as send and receive messages.

The PenPoint software task scheduler handles the initiation and execution of
processes and subtasks. To start a process, the kernel creates a new execu
tion context consisting of local memory, a local instance pointer to the execut
able code, and a new stack; it then initializes data values.

A process can be started by another process or by a subtask, but there is
no hierarchical relationship between processes. In other words, a process that
creates another process does not therefore own the created process. This
also means that there is no special impact on a created process by its creator.
The created process will not terminate when the creator does (or even be
notified of its termination unless specific instructions exist to do so), and the
created process can decide to associate itself with other processes any time
and in any way.

Memory Management

Since PenPoint-based computer systems are by nature strongly focused on
memory as a storage medium and less reliant on alternative media such as
disk drives than are traditional operating systems, memory residence and
memory allocation have somewhat different meanings than you may be accus
tomed to. All components of the operating system, all applications, and all
application data are kept in RAM.

The PenPoint kernel uses privilege settings to determine which of the vari
ous tasks and processes (see next section) running in the system has access
to which memory and other space-related resources.

Memory can be private to a process, although there is also global memory.
We will look at how processes deal with their private memory in the next
section. Global memory is shared by all processes, and any task can allocate
memory in the global area of RAM. The memory manager keeps track of

64

The Power of PenPoint

global memory usage through identifiers and counters that track how many
instances of which application processes are sharing a given piece of global
data. It will not free the data area, even though a specific instance may
attempt to do so, until all of the processes have finished using it.

PenPoint memory management uses a flat-memory model in which you can
create heaps and allocate memory within those heaps.

Multitasking Support Functions

There are, as you may know, two major approaches to multitasking: pre
emptive and yield-based. In a preemptive multitasking environment, the
operating system is able to preempt an executing task and regain control of
the processor. In a yield-based approach, applications must follow a rigorous
set of rules that define a "well-behaved" program. These rules typically require
the application to "call back" into the operating system periodically so that the
system can regain CPU control if needed.

PenPoint uses a preemptive approach to multitasking.

65

The Pen Point Kernel

How PenPoint Handles Multitasking

Relating this approach to multitasking to the discussion earlier in this chap
ter about tasks and processes, you can see how PenPoint deals with
multitasking.

A process is the first task run when an application is instantiated. Therefore,
all processes are owned by their application instances. This gives processes a
kind of schizophrenic perspective. Seen from the kernel level, a process is
exactly the same as an application instance. In other words, the kernel sees
only the process. Seen from the top level of the system, including from the
viewpoint of your application, an application instance has other items besides
the process associated with it These other items include memory and resources.

Processes generate subtasks, which are then managed by the software task
scheduler as previously described.

The scheduler uses priority levels to determine which subtask to execute. All
software tasks have a priority associated with them. Those with higher priority

66

The Power of PenPoint

values execute before those with lower priority values. These values are
defined at two levels. They have a priority class (high, medium high, medium
low, and low) and, within each class, a priority rating of 1 to 50. One rule of
prioritization in PenPoint is that all on-screen applications always have a higher
priority than off-screen pages and applications. Tasks of the same priority
share (time-slice) the processor.

Multitasking within an Application

Most applications are a single process. They do not contain separate
subtasks. Therefore, they will not typically use the kernel's task management
or its other task-related functionality. This is in part because PenPoint single
threads all of your application's interactions with the operating system, the
input system, and other executing applications.

Some applications, however, may want to create separate subtasks. For
example, a spreadsheet might create a subtask to handle calculation in the
background, asynchronously with the user interface's view of the data. Any
application that wants to create its own subtasks must use the kernel's task
management as well as the kernel's intertask communication routines. If you
do <{reate an application that consists of multiple- subtasks, you must be
extremely careful to avoid deadlock. PenPoint supplies a semaphore architec
ture to support this requirement, but since it is rarely necessary for you to
delve into this area, we do not discuss this process here.

67

The PenPoint Kernel

Reliability

The kernel of PenPoint is essential to the operation of the entire system.
Therefore, it is important that it be designed to be as reliable and crash-proof
as possible. Reliability in PenPoint involves three key issues

• a protection model for the kernel's contents

• enabling the operating system to survive an application crash

• enabling the operating system to recover quickly from a crash in the operat
ing system itself

68

The Power of Pen Point

Protection of the Kernel

The kernel's protection model must protect the system in ways that are far
different from those of object-oriented systems that do not attempt to perform
operating system functions. In an object-oriented environment (as you'll see
shortly), programmers spend most of their time subclassing existing classes in
the hierarchy to give them slightly different behavior.

In an environment such as Smalltalk, it is virtually impossible to separate your
application code from the system code. You are frequently called on to exam
ine system source code, understand what it does, and then either use it or sub
class it to achieve some specific behavior omitted by the system designers.

The problem with allowing such rampant object access in PenPoint, of
course, is that here the class library is in large part also the operating system
that holds things together in the environment. It could be disastrous to permit
any programmer to make a modification that could in turn alter how any other
application runs.

PenPoint uses hardware-level protection schemes to protect its core objects
from accidental alteration.

Survival of Application Crashes

As we have pointed out, PenPoint uses a preemptive multitasking model. As
a result, the system will always retake control even from an application that
crashes. It will regain this control within a few milliseconds of the occurrence
of the application crash.

Once the operating system has regained control, it can follow an orderly
application shutdown procedure to keep the rest of the system intact. This
means that if one of several executing applications enters an infinite loop, the
problem will not propagate to the other executing processes in the system.
Instead, within a short time of the occurrence of the crash, PenPoint will be
operational again.

69

The PenPoint Kernel

Recovery from Operating System Crashes

If the PenPoint operating system itself crashes, the user warm-boots to
recover.

Warm booting involves scrapping all running processes, including those
running at the kernel level. All applications and installed code resources, as
well as data files, are carefully preserved, and dynamic memory is cleared.

The system then shuts down all of the processes that were running when the
crash occurred and clears their resources, including dynamic memory. Each
process is started from a clean slate. With the probable exception of the page
to which the user was turned when the crash occurred, everything in the
system should be restored to its precrash condition. Depending on exactly what
was happening and on its stage of development when the crash occurred,
even the active page may be preserved.

PenPoint is designed to handle this entire crash recovery process in less
than a minute. It is, in essence, an on-the-fly diskless reboot process.

The Loader

Traditional operating systems always have two copies of the code for the
system and for any executing applications. One of these copies exists in its
unrelocated form on disk and one in its relocated form in the system's
memory. In PenPoint, of course, this executable code can exist only in the
system's memory since it has no guarantee that an external storage medium
will be available.

PenPoint loads a single, relocated copy of binary code into memory. This
single copy is shared by all instances of an application and is preserved even
across operating system crashes. This obviates the need for the unrelocated
form of the code to be anywhere but on application distribution disks. If you
write a word processing application and your user has thirty-five documents
stored on his or her computer system, each of which uses your application,
there is still only one copy of your executable code. Each of these documents
is an instance of your application and owns a pointer to the executable code

70

The Power of Pen Point

as well as some data that helps it keep track of where in the execution process
it last stopped.

This is clearly a major gain over traditional operating systems in terms of
memory utilization as well as overall efficiency.

Date and Time Services

The kernel, since it lives closest to the hardware, is of necessity closest to
the clock chip in the system on which PenPoint is running. As a result, Pen
Point places some useful date and time services in the kernel.

The most interesting of these services is the alarm subsystem. It keeps track
of a queue of alarm dates and times. As each alarm time arrives, even if the
machine is turned off, action dictated by the alarm when it was set will be
taken. PenPoint systems need this capability because to conserve batteries
they need to be powered down when not in use. With the clock on a separate
chip and this alarm system, we can permit application designers to build such
applications as calendar-based alarms. It is possible, for example, to build an
application that will wake up the system and carry out a telecommunications
task when rates are favorable or traffic is low.

More-traditional timer interrupts as well as setting and getting the date and
time are also supported by PenPoint.

Machine Interface Library

Part of the kernel layer of PenPoint is known as the Machine Interface Library
(MIL). This library supports the efficient porting of PenPoint to new hardware
environments and is of interest only to developers with that assignment.

The MIL is an extensible part of the PenPoint Adaptation Kit (PAK), about
which you should contact GO Corporation if you want to deploy PenPoint in an
environment in which it is not now implemented.

71

The Pen Point Kernel

Other Kernel Services

Floating-point math is supported through a library of C routines. These
routines are relatively standard and include functions to handle

• addition and subtraction

• multiplication and division

• trigonometric functions

• logarithmic functions

• conversion between floating-point and fixed numbers

The PenPoint C runtime library provides as much of the functionality of
leading C libraries as is reasonable in view of hardware and operating system
requirements and differences. Functions specific to the MS-DOS or IBM BIOS
environments are not implemented. Functions that make calls to those omitted
functions have been modified accordingly.

All functions are reentrant, including some that were not designed to be so
in the Microsoft library. Some time-related functions were completely replaced
with newly named functions to avoid problems involving differences in param
eter list sizes.

For the most part, however, you will find that PenPoint's C runtime library
closely resembles the Microsoft library.

An ANSI (American National Standards Institute) C compatible stream I/O
library is also part of the PenPoint kernel layer. This library is a robust and
flexible architecture for file and serial I/O support.

72

The Power of Pen Point

Summary

This chapter has examined the kernel layer of the PenPoint operating sys
tem, the layer that is closest to the hardware on which PenPoint is imple
mented. The kernel handles task and process management, memory manage
ment, and multitasking support.

As we have seen, the kernel is designed to ensure reliability of the operating
system from alteration by programming or by system or program crashes.

The kernel also includes other functions such as a loader, date and time
services, and a Machine Interface Library.

5
The Class· Manager

PenPoint is an extensible, object-oriented operating system. It uses a Class
Manager to support object-oriented programming (OOP) concepts. The Class
Manager provides all the object functionality that developers have come to
expect from environments such as Smalltalk and Object Pascal. Developers
can use calls to the Class Manager to create classes and class hierarchies, to
create and destroy objects or class instances, to inherit functionality from other
objects, and to define and send messages between objects.

Virtually all PenPoint application programming interfaces (APls) are based
on Class Manager messages and objects. This means you can reuse and
modify system code at many levels. As a result, applications are smaller and
provide a more consistent user interface (see Chapter 2) because they share
standard functionality provided by PenPoint subsystems. Traditional operating
systems, of course, are not object-oriented at all. These facts lead to some obser
vations about the differences between PenPoint and earlier operating systems.

One of the most intriguing of these relates to the intimacy between applica
tions and the operating system. In a traditional operating system, most appli
cations interact with the operating system relatively infrequently, for specific
reasons and at widely spaced intervals. These interactions are generally calls
from the application to the operating system requesting access to facilities
managed by the system. The application can only call the surface (public)
APls, not the operating system's internal building blocks. Applications must

73

74

The Power of Pen Point

"take it or leave it" in regard to the way the operating system carries out its
core tasks. This situation is depicted in Figure 5-1.

Service
Requirements

I

I

Application I

1

Operating System I

Figure 5-1 Typical as/Application Interaction Model

In PenPoint, on the other band, there is a close working relationship between
the operating system and applications. As we will see in great detail throughout
the rest of this book, the development process can be viewed as extending
the operating system to encompass your application. Many of the functional
elements of your application may in fact turn out to be instances of facilities
furnished by PenPoint, perhaps with a bit of customization. Because all of
PenPoint above the kernel layer (see Chapter 4) is object-oriented, your·
application can "reach" into PenPoint's class hierarchy and call ancestor
classes as well as surface classes (leaf nodes). The result is a system that
provides many more entry points than a traditional operating system and
therefore supports a much greater degree of code sharing. (For example,
PenPoint has more than 1,500 messages compared with about 600 function
calls in Microsoft Windows 3.0.) This situation is depicted by Figure 5-2.

Message-passing
between application

and PenPoint as

Application

PenPoint

Figure 5-2 PenPoint as/Application Interaction Model

75

The Class Manager

Features Supported

To function as an object-oriented operating system, PenPoint has a number
of fundamental capabilities that traditional operating systems do not provide.
Among these are

• user-controlled installation/deinstallation of classes, including sharing of
classes between applications and message sending across process
boundaries

• versioning support so that new releases of application and system code
can work correctly with objects created by earlier versions

• support for objects that are global to the system and therefore shareable
between the system and applications

• means for protecting the operating system from being damaged as a result
of the subclassing that is an inherent part of object-oriented programming

• support for prohibited or controlled access to objects that are either private
or protected (for example, operating system file objects that must be pro
tected)

• unique IDs for all objects in the environment so that message passing can
be handled efficiently and correctly, even when data objects are transferred
from one PenPoint machine to another (which means that PenPoint objects
are persistent)

We will examine many of these facilities in this chapter, though many will be
dealt with in greater detail later in the book.

By providing these capabilities, PenPoint brings object-oriented technology
right to the foundation level of the operating system, enabling everything that
happens in a PenPoint-based system to have all the intuitiveness, efficiency,
ease of learning, and other characteristics of good object-oriented systems.

76

The Power of Pen Point

PenPoint's solution is to provide a subsystem called Class Manager. You will
interact a great deal with this subsystem and its important messages as you
create PenPoint applications. The Class Manager is an integral part of the
PenPoint kernel (see Chapter 4 for other elements that share the PenPoint
kernel with the Class Manager). Because the Class Manager is part of the
kernel, all the rest of PenPoint can use the Class Manager; this permits those
other elements of the system to package their functionality as classes. When
ever you build a PenPoint application, two of your main tasks will be to define
new classes and create new objects. This process involves the Class Manager
interaction.

In PenPoint, classes are used to package all public APls. You can think of
this as a way to describe and encapsulate highly flexible code modules.
However, these code modules typically use traditional C code with function
calls and pointers to implement their public APls. The result is a system that
combines the efficiency of C in its internal implementation with the power of
object-oriented programming in its external programmatic interface.

77

The Class Manager

Programming Efficiencies

Message handling does not require any special language constructs. A
message is constructed with standard C function calls, except that message
arguments must be stored in data structures before making the C function
calls. The resulting C code looks a little unusual but this implementation style
is efficient and implementable in ANSI C.

Object creation in PenPoint is also straightforward. Typically, you send the
message msgNew to a class you wish to instantiate. For example, to create a
new list object, you would send msgNew to clsList. You must always precede
msgNew with msgNewDefaults to initialize a data structure to default values
before you override some or all of those default values and then send
msgNew. In either case, the process is simple and standard.

Un iq ue Identifiers

PenPoint uses 32-bit unique identifiers (UIDs) to help the system keep track
of all classes and objects. A UID encodes information indicating whether the
object it references is global or local, and well-known (that is, permanently
defined at compile time) or dynamic (that is, created by the Class Manager at
runtime). Global well-known UIDs are assigned and administered by GO
Corporation to avoid conflicts. Because applications can embed other appli
cations (see Chapter 8), it is important that any well-known UIO you plan to
use in your program be assigned by GO Corporation and therefore guaran
teed to be unique among assigned UIDs.

PenPoint also supports the use of UIDs within filed data. These UIDs must
be persistent (that is, unique across all time and space). PenPoint accom
plishes this with Universal UIDs (UUIDs), which are 64-bit quantities that
include a unique machine 10 from the hardware on which PenPoint is running.
UUIDs can be used to point to PenPoint objects even when they've been filed
to external media and then loaded back into PenPoint, regardless of which
machine they are loaded into.

78

The Power of Pen Point

PenPoint has two root classes in its class hierarchy. All objects descend
from clsObject, but classes additionally descend from clsClass. Note that
clsClass is a meta-class, so that for each class in the system there is a corre
sponding object that stores information about the class as a whole (including
the code that implements its methods) and implements class-level operations.
In an idealized sense, objects encapsulate data and behavior (with behavior,
of course, expressed as code). But you obviously would not want to duplicate
the code with every object instance. To avoid this, clsClass supports classes
as a special kind of object that provides the shared behavior (code) and
information for a type, or class, of objects.

79

The Class Manager

Major Programming Tasks

As you create PenPoint applications, you are likely to find yourself involved
with the following activities that fall within the province of the Class Manager:

• setting up message arguments

• sending messages

• creating new instances

• controlling object access and capabilities

• creating new classes

• setting up observer objects

We will take a look at each of these functions so that you can get some of
the flavor of programming with PenPoint's Class Manager.

Setting Up Message Arguments

For all practical purposes, you can think of all processing in PenPoint taking
place as a result of one object sending another object a message. Conversely,
all objects in PenPoint respond to messages. So whenever you build an
application, you will find yourself spending a good deal of time designing and
creating messages and their arguments for your objects to respond to so they
can perform their function in the application.

Each message takes a single 32-bit parameter when it is sent. If you need to
pass more information than fits in 32 bits, you can use this parameter to pass a
pointer to a structure containing argument data.

Objects can respond to messages in one of two ways: by returning a status
token indicating success or failure of the operation requested in the m~ssage
or by returning data in the argument structure supplied by the message
sender.

80

The Power of Pen Point

Sending Messages

You send messages to objects to elicit from them behavior that they know
how to carry out. This behavior is either part of their class's definition or con
tained in a parent class. You need not know the details; all you have to know is
that a particular object is able to respond to a specific message you send to it.

Message passing in most object-oriented systems is purely local and syn
chronous. Objects can only send messages to objects that reside in the same
application instance. When an object sends a message to another object, all
processing halts until the receiving object responds. In PenPoint, message
passing can be synchronous or asynchronous. This feature is obviously
essential to a multitasking operating system.

Table 5-1 lists the four functions provided by PenPoint's Class Manager for
the sending of messages. In choosing which Class Manager function to call,
you must understand whether the destination object resides in a separate
task. You must also determine if you want synchronous (application code
execution is blocked) or asynchronous (application code continues executing
concurrently with the called code) tasking semantics.

Table 5-1 Message-Sending Functions in the Class Manager,

Function Usable across Usable
task boundaries? asynchronously?

ObjCall No No

ObjSend Yes No

ObjPostAsync Yes Yes

Use O~jCail for objects local to (that is, owned by) your task. To send
messages to objects in other tasks, you must use ObjSend or ObjPostAsync.
This is because processes have separate memory address spaces, which
means that argument data structures must be copied by the Class Manager
from the caller's task space into the address space of the called task.

ObjSend is synchronous. Most application developers will use ObjCail and
ObjSend.

81

The Class Manager

If your application' requires true concurrent multitasking between its tasks,
use ObjPostAsync. The caller and the responder will then execute concur
rently. This is a valuable technique for applications such as a spreadsheet that
wants to perform recalculations in the background while allowing the user to
continue to interact with the program's user interface.

Because most PenPoint programs test the returned status codes after sending
a message (just as they would if they were calling a C function), the Class
Manager defines a number of macros to assist you in message-passing tasks.

An Example

Figure 5-3 is a stylized example of sending a message in PenPoint. Three
pieces of information are essential

• the message to be sent

• the object to which the message is to be sent

• the argument values required by the message

position.x = 1;
position.y = 2;
ObjCall (msg, object, position);

Figure 5-3 Stylized Message-Sending Example

As we said earlier, the argument value is 32 bits; to pass more data, you use
some or all of the 32-bit argument to pass a pointer to a data structure whose
values you first initialize (in this example, the structure is called "position").

As you can see, ObjCall is a normal C function that takes these three param
eters; it then uses the Class Manager's internal method table machinery to
pass the argument and object to the appropriate method (C code) where the
message is implemented. ObjSend and ObjPostAsync work identically, except
that they may copy their arguments.

82

The Power of Pen Point

Creating New Instances

Because msgNew takes many detailed arguments that many programmers
will not need to initialize, all PenPoint classes respond to msgNewDefaults by
supplying default values in the P _ARGS block for msgNew. You should there
fore always precede a msgNew with a msgNewDefaults.

To create an instance of an existing class, you will generally follow this
process

1. Send the class you wish to instantiate msgNewDefaults, passing a pointer
to an appropriate argument structure.

2. The class initializes the new argument structure appropriate for this class.

3. Change fields you want to override.

4. Send msgNew to the class. This is where the actual instantiation occurs.

Controlling Object Access and Capabilities

One of the main issues in an object-oriented operating system, as we have
indicated several times, is the need to protect objects from unintentional
modification. Not all objects, of course, require such protection. But, clearly,
any object that the system depends on must be able to be protected from
alteration.

PenPoint implements this capability by using keys and locks. All objects can
have a key associated with them. This key limits access to certain kinds of
operations to applications that have the key. Several messages that request
basic object operations like freeing (removing) the object require the use of a
key unless the object has set certain of its capability flags to allow the opera
tion without a key. You can also require keys for messages you define.

Capability flags include those that permit a sending object to change the
class of an object, free it, use an object as an ancestor for a new class, make
an object observable, and control the messages that this object honors. Each
of these flags is a binary value that has different default settings depending on
whether the object is an instance or a class. Capability flags can be changed
dynamically by code with the appropriate key.

83

The Class Manager

Keys and locks, along with the Kernel's usage of hardware-protected
memory and process protection, are good examples of PenPoint's defensive
efforts to protect against misbehaved or buggy applications. These features
also support rapid application development because many bugs are caught
immediately by the PenPoint Kernel and the Class Manager. A highly reliable
operating system and applications are the result.

Creating New Classes

There are two stages to creating a class. First, you write code that defines
the new behavior the class will exhibit. The only reason you ever design and
create a new class in PenPoint is because your application requires some
behavior that is not defined in an existing PenPoint class, so behavior defini
tion is the key design step. Once you've coded this behavior, you compile the
new class and install it into a running PenPoint-based system.

The second stage takes place at runtime in PenPoint. There, the new class
is created by PenPoint sending msgNew to clsClass. The message arguments
are passed to clsClass in a structure called CLASS_NEW, which contains,
among other things, the name of the parent class, the name of a compiled
method table (see following section) to associate with the class, and the
amount of memory required for instance data.

Method Tables

How does a message to an object actually "look up" and call the appropri
ate C function? PenPoint's Class Manager maintains a method table for each
class in which message UIDs index into the table that contains the memory
addresses of the associated C routine. During development, the programmer
creates a table that associates each message's UID with a C function call,
then compiles this table using the special Method Table Compiler that comes
with the PenPoint SDK. This results in an object file. At runtime, when you
create your new class by sending a msgNew to clsClass, you pass it a compile
time symbolic reference to the method table and the Class Manager binds the
class to its method table.

84

The Power of Pen Point

Setting Up Observer Objects

A unique capability of clsObject (and therefore of all PenPoint objects) is its
observer capability. Any object may register itself as an "observer" of any
other object that is capable of being observed. Objects may have multiple
observers. Subsequently, the observer will be notified whenever there is a
change in the state of the observed object. This allows an efficient, data-driven
style of programming, rather than forcing objects to continuously poll or invent
ad hoc protocols just to coordinate among themselves.

The benefits of the observer architecture are significant. It is used as the
foundation of a variety of automatic notifications and updates in PenPoint,
ranging from applications being notified that a new service has been installed
to PenPoint's Application Framework views observing their data objects.

85

The Class Manager

To be able to notify observers of state changes, an object must have its
appropriate capability flag set, contain a list of objects to be notified (though
the list is maintained by the Class Manager in response to messages), and an
argument structure pointer if data is to be passed with the notification.

Once an object is set up so that it is observable, any notifications it posts
will automatically notify any dependent or interested objects of a state change;
you need do nothing to make this happen.

Summary

This chapter has examined the Class Manager in PenPoint, the repository of
the object-oriented behavior in the system. As we have seen, the Class Man
ager supports such features as

• user-controlled installation and deinstallation

• versioning

• global, sharable objects

• operating system protection

• controlled access to critical objects

• unique IDs for all objects

We have seen that application development through the Class Manager'
involves setting up and dealing with messages and objects as well as creating
new classes of objects.

We have also seen that observer objects are essential to the nature of
PenPoint.

6
The Application
Framework

As you can tell, applications written for the PenPoint Operating System
interact far more intimately with the system than do applications written for
more traditional operating systems. In older-style applications, the user had to
be aware of details of the system, including such issues as which application
to open to work with a specific document; the name and location of the data
file, and a host of other details. These users must explicitly save their data or
run the risk of losing it when the machine on which the operating system is
running is turned off. This is in stark contrast to a PenPoint application where
the user simply turns to a page in a notebook and the system locates the
appropriate document, identifies the application to run, and sets things up for
the user. When the user turns away from a page, the system saves the closed
document without user intervention.

This level of intimacy between the operating system and the application
would be an all but impossible feat if the operating system didn't provide
significant tool support for the designer. The Application Framework is the
home of the tools that enable you to handle this close-knit interaction between
what you build and the environment in which the user will work.

In windowing environments on other operating systems, you generally have
the choice of using the support framework supplied by the operating system
designer or going your own way. This is not the case with PenPoint applica
tions: Using the Application Framework as the basis for your application is not

87

88

The Power of PenPoint

an option, it is the only way you can get your application to install in and run on
a computer system using PenPoint.

Every PenPoint application, no matter how trivial or complex, must respond to
certain messages sent by the Application Framework. As we'll see in this chapter,
these messages are provided so that the user can install your application neatly
into Pen Poi nt, create new instances of your application (by creating an associated
document as a new page in the Notebook), and intermingle your application and its
documents with other documents on the same machine.

The Application Framework also makes it easy for you to build your applica
tion so that it follows the life cycle pattern of all PenPoint applications. As we'll
see later in this chapter, all PenPoint applications have life cycles. Most of the
programming necessary to support this paradigm is included in the Applica
tion Framework.

89

The Application Framework

Purpose of Layer

Essentially, the Application Framework layer of PenPoint serves two pur
poses. First, it is a collection of classes that define the protocols that make up
a Pen Point application. Second, it is a complete implementation in its own right
of a generic PenPoint application.

Common Functions Handled by Application Framework

Architecturally, the Application Framework is a set of classes that define proto
cols to implement common application behavior. These behaviors include

• installation via the Installer

• creation of application instances

• activation of an instance of your application (typically by turning to a page
in the Notebook)

• saving and restoration of application data

• deactivation and deletion of application instances

• deinstallation of applications

The Application Framework layer also provides the class and message
support needed to facilitate the use of the standard elements present in all
PenPoint applications.

Advantages of Application Framework

As we have said, you must use the Application Framework layer in building
a PenPoint application. But this is neither an arbitrary requirement nor an
onerous burden. In fact, you'll find that a number of advantages arise from
your full use of this layer's functionality.

First, like all of the other classes in PenPoint, the Application Framework
layer's classes make extensive use of inheritance to save code. By grouping
common behaviors and support for standard elements in a single collection of

90

The Power of Pen Point

tightly integrated classes, PenPoint makes it possible for you to focus on your
application's objectives rather than on its presentation to the user.

Second, because the Application Framework structures all applications in a
well-defined, standard way, they all can be manipulated by common software.
For example, the operating system can install, deinstall, and perform other
operations for all applications rather than each application being required to
reinvent this wheel.

Third, applications can even manipulate one another in a standard way. The
concept of applications interacting closely with other applications is probably
foreign to you. In most traditional operating systems, interaction between
applications is an arm's-length situation. You may be able to share data with
other applications or perhaps even launch them. But in PenPoint, the user can
create arbitrarily complex documents that embed multiple applications in a
single page of the Notebook. For example, for users to place an illustration in
the text of a word processing document, they create an instance of a drawing
program. PenPoint provides full support for all actions on the outer document
(in our example, the text document) to be applied to contained documents
(such as the illustration) as well. Furthermore, the PenPoint concept of applica
tion development will almost certainly lead to a plethora of small, independent
programs that serve highly specialized purposes. These applications may be
accessible to all other programs running in the Notebook, and thus be subject
to control by those programs. This complexity would be a nightmare if the
operating system didn't provide strong support for it. Fortunately, as you'll see
in this chapter, PenPoint does.

Fourth, you can implement a family of related applications extremely effi
ciently. Since the Application Framework, like the rest of PenPoint, is class
based, it can be extended. For example, you might write a family of related
applications so that they share a common subclass of the Application Frame
work. This would link them together more intimately than possible with other
operating systems, and it would do so efficiently.

In short, the Idea of the Application Framework is one you'll come to appre
ciate as you develop Pen Point programs.

91

The Application Framework

Architectural Overview

Figure 6-1 is a class hierarchy diagram of the Application Framework layer's
principal classes. Viewed in its entirety, the Application Framework layer
makes use of approximately sixteen classes. Of these, you will find yourself
most often using eight

• clsClass

• clsAppMgr

• clsApp

• clsAppOir

• clsEmbeddedWin

• clsView

• clsAppWin

• cfsAppMonitor

Figure 6-1 Application Framework Class Hierarchy

92

The Power of Pen Point

In Appendix A, we take a closer look at each of these classes, including the
messages defined by each that you will need to know and use most often. For
now, we are interested in taking a bird's eye view of the layer's architecture, so
we'll save the details until later.

As you saw in Chapter 1, all named classes in PenPoint are instances of
clsClass. They are also descendants of clsObject. We briefly touched on this
dual-inheritance structure in Chapter 1; now it is time to take a closer look at it
in the context of your application.

All applications are instances of clsAppMgr and descendants of clsClass.
This means that a user-created instance of an application, while obviously an
instance of the application's class itself, is a descendant of clsApp. This- rather
complex interrelationship of classes is shown in Figure 6-2.

I clsObject I
I

clsClass I CI~APP I
I ~~=-__ ~ ~

ClsAPPMgrr .. 1 clscalcAPp~ ~

Figure 6-2 Typical Application Class Hierarchy

In Figure 6-2, the dashed lines indicate instances the solid line descend
ancy. Your application would, of course, occupy the position in the diagram
where the class clsCalcApp appears. When the user creates an instance of
your application, that instance occupies the final leaf in the tree diagram in
Figure 6-2, labeled myCalcApp. As you know, the user can create multiple in
stances of any application.

To make sense of what seem to be parallel structures, you should recognize
that PenPoint is supporting two parallel dimensions here: The obvious dimen
sion is instantiating application instance objects; the less obvious is instantiat
ing clsAppMgr itself (that is, application installation). For application classes to
be installable and efficient in memory use, PenPoint extracts all code resources
and behavior that are common across all application instances and places this
in clsAppMgr. In other object-oriented systems, class hierarchies tend to be
static; they do not support the grafting of new classes into the hierarchical tree
structure. PenPoint's class hierarchy, by contrast, is dynamic. In PenPoint, not

93

The Application Framework

only is it possible to graft new classes onto the tree, it is even possible to do
this under user installation and deinstallation control.

This capability requires architectural and user interface support for grace
fully handling the application's dependency tree. If an operating system is truly
designed to encourage code sharing, it must handle the case in which some
of an application's dependencies are not present. This is what the "meta level"
of clsAppMgr is about.

The messages defined by clsAppMgr deal with maintaining common instance
data about an application as well as with creating, activating, and deleting
instances of applications. On the other hand, the messages defined by clsApp
deal with application instances while they are activated. (We'll have much
more to say about these and other phases of a PenPoint application's life
cycle shortly.)

The class hierarchy is not the only way to look architecturally at PenPoint
applications and their interaction with the Application Framework. Any applica
tion that is running (typically those that are currently visible on the display) can
be viewed from any of four separate but closely related aspects: its display,
its file directory, its process, and its object.

Figure 6-3 shows the screen of a computer system running Pen Point with
five applications open: the Bookshelf, the Notebook, the Notebook Contents, a
text-editing application called New Product Ideas, and a charting application
called Charting Paper.

You can see how this display of five applications relates to the file system's
handling of these applications and their elements by examining Figure 6-4.

As you can see, the Notebook that serves as the fundamental metaphor for
PenPoint applications uses the file system to organize its documents so that
they parallel the structure of the Notebook Table of Contents. Each document
and section has its own directory in the file system. If a document is contained
in a section, its file entry is a subdirectory of the section's directory. Similarly, if
a document has an embedded document, the embedded document's direc
tory is a subdirectory of its enclosing document's directory. The Bookshelf acts
much like a section, providing a "home" for all of the other top-level
subdirectories and documents in the Notebook.

94

The Power of PenPoint

No te bo 0 k: Co nte nts < 1 >
Doeume nt Edit Create View Show Sort

G!l First Expe rie nee·······

Of' Samples."" " "" " ,," 3

E1 New Prod uet Ide as "

[Ij Package Desig n Lette r"

[j Charting Paper"" "" "" ".

4

5

6

G!l Iy~~--------------------------~
New Prod uet Ide as

Doeume nt Ed it Inse rt Case Fo rmat

SoaI1rwestem ClIIIJ'saw:e
This is essentially a barte::ue sauce. Grilling or barl:e:u.ing vege
and other squash has l.:e::ome very PJpW.ar in the West lately. Y (
vegetables as you grill them .. Pete in the test ltitchens came up w:
sauce is thick enough to stay on the vegetables yet thin enough tl

Charting Pape r
,-, . ..

Doeume nt Ed it View Tiling

ZUGG

Eggplant

Fmi'a:nt pule
We :really need a new name for this one, but it's actu.allya great]

4

--------~----------~~---------~----~------.. 1J ~II ~ rn ii1 ~ ()..!..:!.
He Ip Ptefe te noes Too Is: Stat~ ne ty Disks Keyboatd Installe r In Out

Figure 6-3 Screen Display of Five Typical Applications

"""."" ... ~.!.~o..~:.<::o..~~.~~ " .. ".".. " " ... 1 .. >.
Document Edit Cre .. " ¥ilJw Show Sort

I:lIAmA.
I]j First Expe,ilJnc.6 ' ..

II Sanples ..

I]j New PlOductldeo.s .

[1l Peckege De.ig n Letle,

~ Charting P .. pe, ..

... 2

.. 3

.. 4

. 5
.. 6

[1l P.:: " ... " t:Joo."'..P.."'.d .. ""t.~ ... ~
Docume nt Ed it InsB rt C.... Fo ,m .. t

4 I
~~:·:~.G~ormr~:J i
alIdothetsquashl1as become verypopular in tbew .. tlalely. y, !: ~
~bIeo ..)'Ougrilllilem.Pelllintbelest_camoupv. H :
.. uceislhicl<...,U2hb.tayontbe~bIeo,...lhin...,ugh' " ~

~ "" ... <:;.h.~.rti"!!l"p'~!'.".'.""".".... .
()ocu rne .nl".Edit",¥iB"'.,.Tili""

~1J)~
E9~S

JitIBliuIIpute :
w. reoIlyneed. new name for Ihls OM, 1:AII iI'. actually. gzeo.t J i,
J::~~:::::::;:::: "':::::;::::::::':::::::::";::::':::::::::::::::::::::::::::::~'

95

The Application Framework

Bookshelf

tdoc.res
doc. state. res
Notebook

tdoc.res
docstate. res
Notebook Contents

doc. res
docstate. res
Samples

tdoc.res
docstate. res
New Product Ideas

Memo
etc

tdoc.res
docstate. res
Charting Paper

~doc.res
L docstate.res

Figure 6-4 File System Entries for Five Typical Applications

A process is associated with each running application in PenPoint. Much of
the work performed by the Application Framework involves the management of
this process in accordance with the application life cycle. The Application
Framework creates the process and sets up its application object to receive
messages. When the user turns away from the application, the Application
Framework destroys the process and saves its data (although you can design
your application to ~un in "hot mode" so that this behavior is not applied to
instances of it).

As we saw earlier in this chapter, an open document is an instance of an
application class, which is always a descendant of clsApp. Therefore, an open
document is an object capable of receiving and responding to messages
defined in its own class and in clsApp.

96

The Power of PenPoint

Standard Application Elements

All PenPoint applications consist of a number of standard elements. The six
most important from the viewpoint of the software designer are

• application code

• document directory

• document process

• application object

• resource files

• main window

Let's take a brief look at each of these standard elements in turn.

Application Code

The most obvious standard application element from the designer's view
point is the executable code for the program you write to create your applica
tion. You generally will write this code in a high-level language (probably C)
using the PenPoint Software Developer's Kit. You will then use special linking
tools to create a PenPoint application from that source code. The resulting
executable file is the application code element of the application.

In addition to the executable code itself, any Dynamic Link Libraries (DLLs)
that your application needs to run are also part of the application code ele
ment of a PenPoint program. DLLs generally are collections of classes or
external service routines that are frequently shared across applications and
that perform common tasks such as database access or special calculations.

Application code does not share memory with the PenPoint file system
where instances of applications and their related data are stored. Instead,
applications and the PenPoint operating system share a special area of RAM
that is protected against accidental erasure and is carefully managed by
PenPoint. Application instance data is forever linked to its code by a global,

97

The Application Framework

well-known unique identifier (UIO). Since this UIO includes built-in version
numbers, all application instance data is globally marked with a unique identi
fier defining which version of which code generated it.

Document Directory

By now, it probably has become second nature for you to think of all docu
ments as instances of the applications that created them. As you have seen,
every document has a corresponding directory, and when the user turns to a
document that requires a particular application, PenPoint determines from the
directory which application created the document, then creates and activates
an instance of that application.

The mechanism by which this automatic launching of the right application
takes place involves the class 10 of the application in the file system, specifi
cally in the instance directory for the document in question. This attribute
connects the document to its application.

98

The Power of Pen Point

Each instance directory entry in the file system, when opened in an applica
tion process, is an instance of clsAppOir, which in turn is a descendant of
clsOirHandle.

Document Process

The Application Framework, as you have seen, creates and manages a
separate process for each active application in a PenPoint environment. This
process is the vehicle by which the active application is managed by PenPoint
as long as it remains active.

An application process has several attributes, including

• a message queue where messages sent by various parts of the system to
the application instance are stored until they can be forwarded to the
appropriate object within the process

• an entry point that defines the means by which process startup takes place

• an AppMain routine, which is the event loop within which the program starts
the application life cycle and waits for a user event to which it should re
spond

• a method table that maps message names to method handlers; in other
words, where the names of messages to which the application responds
locally are related to the names of the procedures that contain the
responses

99

The Application Framework

Application Object

The application object is the core of the application. It processes information
and responds to messages sent to the object via the process associated with
it. As with all PenPoint objects, an application object has a unique identifier
that makes it possible for the object to receive messages from external events
or other objects, including the Application Framework.

In addition to dealing with messages that are part of its specific functions,
an application object creates other objects for the application and assigns respon
sibilities to these objects. In general, all of the activity that makes up the
application's functionality can be found in the application object's structure
and processing.

Because all application instances are objects and because of their inherit
ance (as described previously), all instances will receive and must process
messages from the Application Framework. This is the basic means by which
almost everything in the PenPoint environment happens. An Application
Framework class sends a message to an instance of an application, and that
instance either handles the message or passes it up the inheritance hierarchy
for one of its ancestors to handle.

Resource Files

Resource files in PenPoint are general-purpose storage mechanisms whose
format and contents are application dependent. They are administered by
PenPoint's Resource Manager (see Chapter 12). All application instances
have at least one resource file associated with them. This file is the repository
for all objects created by the application.

The Resource Manager provides your application with a persistent object
store in which you need only read and write. The Resource Manager deals
with locating objects on request and with space allocation and compaction.

Your application can use multiple files in the document directory, including
multiple resource files. To the degree your application structures its instance
data as objects and you use resource files for this data, you will find that filing

100

The Power of Pen Point

requires very little code under PenPoint. You need only ensure that each
object can read and write its own instance data.

The most important feature of a resource file is that it remains in the system's
memory after the user turns away from the application. In fact, when the user
closes your application instance by turning away from it, the resource files and
other files in its document directory, the directory itself, the application code,
and any associated DLLs and processes are all that remain of the application.

Main Window

All visible PenPoint applications must have at least one window. (PenPoint
supports "invisible," or background applications as well. A database server is
an example of such an application.) This window is referred to as the main window.

This window belongs exclusively to your application. You can do whatever
you like in this window. This includes, for example, bypassing PenPoint's built
in drawing routines (see Chapter 9) and using direct, low-level graphic primi
tives if you need to do so.

The primary purpose of your main window, of course, is to display data
relevant to your application. In addition, it gives the user a place to respond to
that data by giving your program instructions. PenPoint includes a great deal
of class support for the display of data by an application. (See Chapter 9 for
details.) But, as with drawing routines, you can always choose to bypass this
support completely and handle your own data management and display.

In general, you will have more than a single window. You will almost cer
tainly create child windows as part of any reasonably robust application. In
particular, if you are displaying many pieces of information, you will probably
want to build a special child window, called a view, for each data object.

101

The Application Framework

Application Framework Standard
Behavior and Inheritance

Like all good windowing environments, PenPoint's primary purpose is to make
life simpler for users. Users come to expect consistency from systems like Pen
Point. As they move from one application to another, they expect to be familiar with
the interface. This standardized behavior is a key part of the PenPoint system and a
major reason for the existence of the Application Framework.

As you might imagine, given PenPoint's highly object-oriented approach to
the world, .most of this standard behavior comes by inheritance. This makes it
easy for you to provide consistent applications to your users, and difficult to
avoid doing so.

While there are literally dozens of things that PenPoint applications tend to
have in common, we will focus in this section on a baker's dozen

• installation behavior

• creation of new application instances

• on-line help

• document properties

• move/copy

• gesture recognition

• Goto buttons (also called Hyperlink buttons)

• standard application menu support

• file import and export

• printing support

• spell checking

• search and replace

• application stationery

We will look at each of these in turn; a few of them will be covered in detail
elsewhere in this book.

102

The Power of Pen Point

Installation Behavior

Issues concerning installation are often ignored by developers until a prod
uct is almost ready to ship, or even until a later version. As a consequence,
installation is often a confusing and error-prone experience for the user.

To remedy this and to speed application coding, PenPoint provides a
comprehensive and subclassable set of installation-related behavior for Pen
Point applications. As a result, installation is straightforward for the user and
consistent across all applications. For example, when an application distribu
tion disk is placed into a PenPoint floppy drive, PenPoint recognizes it as an
installable application and automatically brings up a simple user interface by
which the user can confirm a desire to install. PenPoint handles the rest for the
user, and for the application.

Classes such as clslnstallMgr and clsApplnstallMgr together provide for

• application installation and deinstallation

• deactivation (temporary deinstallation) of an application to its "home" on an
external volume

Deactivation is useful for the user who wants to free up room on the Note
book by temporarily removing an infrequently used application. The applica
tion will be automatically reinstalled when the user turns to an instance of that
application, assuming the PenPoint system is connected to a device where the
Home volume can be found.

In addition, clsAppMonitor provides a single object and single execution
thread (known as "instance A" of an application) that represents the installed
application. This class is therefore where you can place code concerned with
your application's unique configuration and installation needs.

Creation of New Application Instances

We have already said a good deal about how and when PenPoint creates
new instances of your application. The mechanics, however, may be of some
interest to you.

103

The Application Framework

When the user issues a Create command, the Pen Point system creates a
new instance of your application. The Application Framework sends your program's
application class a message to create an instance of itself. Your application
class, by inheritance from clsAppMgr, then creates a subdirectory entry at the
appropriate place in the file system (depending on whether the instance is con
tained in a section, embedded in another document, or is a new stand-alone
instance) and fills in key attributes to help it keep track of what is going on.

If this new instance is created in the Notebook Table of Contents, then it is
not automatically run immediately after it is created. On the other hand, if this
new instance is created within another document so that its expected behavior
is to run immediately, it will do so.

On-Line Help

There are two ways your application can supply on-line help for the user.
PenPoint makes it quite simple for you to furnish such help. The basic ways of
providing help are

• Quick Help on an individual object (roughly corresponding to context
sensitive help in other systems)

• support of the PenPoint built-in Help Notebook with supplemental informa
tion about your application (roughly corresponding to reference help in
other systems)

Each method of help is implemented differently.
To provide Quick Help, you will define a special resource for each type of object

for which you want to offer assistance. For example, each visual element of your
program (such as menu commands or control regions) should be able to respond
with an appropriate Quick Help text. Protocols in clsGWin will then automatically
interpret the user's help gesture correctly, decode the object for which the user has
requested help, and display the correct resource.

The most convenient way of providing help is by adding your own applica
tion's content to the built-in PenPoint Help Notebook. You can add your help to
this Notebook in the form of text files that are managed by the system or in the
form of one or more help applications that you embed in the Help Notebook. If

104

The Power of PenPoint

you prefer to use the first approach, simply define a text file for each type of
help you want to supply, put the files into an appropriate subdirectory struc
ture, and let the installation process take care of the rest. (These text files can
use rich text formatting, or RTF. They need not be "plain" text files.) The sys
tem then uses its default help application, clsHelpApp, as the means of dis
playing and handling user interaction with your help files. To use the second
approach, you create separate Help applications and place them (rather than
text files) into the appropriate subdirectory of your distribution medium. You
might use this approach, for example, to use an on-line, interactive tutorial as
a help process that you want integrated into the Help Notebook.

Mechanically, you place the appropriate type of help data in a predefined
subdirectory of your distribution medium; the installation manager detects its
presence, finds it, and installs it correctly. That's all there is to it.

Document Properties

All documents in PenPoint have associated properties. Properties can
include characteristics such as author, comments, font used, page size,
access control, and additional descriptive information.

Users see these properties as personality traits they can examine and
change by asking for an Option Sheet describing the current document. This
sheet (see Figure 6-5 for a typical example) usually consists of a collection of
traits and values for those traits. The user taps on a trait to add or remove it
from the list or to change an attribute that can have only one value.

You define Option Sheets for your application using messages in clsOption,
which is part of the PenPoint User Interface Toolkit (see Chapter 10).

Move/Copy

The ability to move and copy information between documents is an impor
tant feature of the PenPoint system. As you undoubtedly can appreciate,
implementing such a protocol takes on some new dimensions when you must
account for multiple instances of a single application and for applications
embedded within other applications.

105

The Application Framework

CONTRACT <21 >
Docume nt Edit Insert Case Format

Dear Ms. Huerta:

This is our agreement concerning your involvement in a
new bottle design for New World Foods) Inc.

1. You agree to supply design services and technical
dra¥ri.ngs to New World. The designs and dravrings
become the t for
your

Title: CONTRACT

Author:

Comments:

Created: 12 ~6~D

last Modified: 1 ,.Q 1 ~ 1

Filed Size: 5 K

3DK is a

5. If your the
stresses) heat) and shock for which you have guaranteed
it) you will complete a new design atno charge. New
World agrees to submit the design to adequate testing
before using it for shipping our products. We will thus
not hold you liable for any losses incurred once we have
approved the design and started production.

Please sign a copy of this agreement and fax it back to
me.

~ .. ~~~~~~~~~.~------~------~
... 1..1 .'II~ ~l iil .. ~! []..!. .!.
Help Ptefetences Tools Statbnery Disks Keyboatd Installer In Out

Figure 6-5 Typical Document Property Sheet

Pen Point provides a robust set of messages to support move and copy
operations for all applications. This protocol is discussed in Chapter 8.

106

The Power of Pen Point

Gesture Recognition

As you saw in Chapter 2, one of the unique characteristics of computer
systems built around PenPoint is their recognition of pen gestures, combina
tions of strokes that may resemble an alphabetic character, proofreading
mark, or other symbol whose presence, position, size, and orientation may
have meaning for the system and the application.

Unless you plan to provide custom gesture recognition for your application,
you will have to do very little to provide users with this gesture-interpretation
support. All the necessary messages are provided as part of the input portion
of the PenPoint system. These matters are discussed more fully in Chapter 13.

Goto Buttons

Users of your application may define Goto buttons within documents cre
ated by your program. These buttons (see Figure 6-6 for an example) permit
the user to create cross-references to other documents and other portions of
the same document. They act as links in the system.

Figure 6-6 Typical Goto Button

The creation, management, and use of these buttons is handled in
clsEmbeddedWin and some of its subclasses. The subject of embedded
windows and their management, including Goto buttons, is covered in detail in
Chapter 8.

107

The Application Framework

Standard Application Menu Support

PenPoint provides default implementation for a number of standard menus,
menu commands, and Option Sheets. These are collectively referred to as
PenPoint's Standard Application Menus (SAMS). Chapter 2 contains a com
plete list of SAMS-related commands. PenPoint's User Interface Design Guide
lines require all applications to provide these commands. The Application
Framework makes it easy to comply with the guidelines by implementing
SAMS for you.

When your application receives msgAppOpen, it must create its user inter
face, including the menu bar. At this point you can either create the menu bar
without SAMS and then pass the msgAppOpen message to your ancestor
class, clsApp, or you can allow clsApp to create the menu bar and then merge
your unique menus or menu commands yourself later. In the first case, clsApp
will merge SAMS menus with those you've created; in the latter case, you do
the merging. The end result is the same.

In general, clsApp has default responses for all SAMS commands. For
instance, in the Document menu, the Print, Print Setup, and About commands
are fully implemented to display standard dialog and Option Sheets with no
coding on your part. You must write new code if you want to modify or extend
these standard behaviors (as you might for fancy printer settings, for example).
Menu options that are not available or appropriate are automatically grayed
out by clsApp. For example, the Move, Copy, and Delete commands from the
Edit menu only work if you have a selection. If there is no selection, clsApp
makes sure these menu items are grayed for you.

File Import and Export

On most computers, users generally can ignore the formats of data files with
which they work. They typically open an application, and once they are run
ning that program, all of the files they work with are in a format the program
understands. Except for the occasional need to create a text-only (ASCII)
version of a formatted word processing file for 'telecommunications or other
purposes, most users remain blissfully ignorant of details of file format. On the

108

The Power of Pen Point

other hand, the relatively more frequent operation of launching the right appli
cation for a particular document is more cumbersome on those systems,
requiring the user to have some knowledge of the connection between pro
grams and data files.

Computers built around PenPoint precisely reverse this process. A PenPoint
user, as you repeatedly have seen, opens an application by the simple expe
dient of turning to a Notebook page containing a document created by that
application or understood by it. This means that moving files into and out of
PenPoint requires an application to be selected by the user.

When importing data files from a traditional operating system into PenPoint,
the user must identify the application that will deal with that data. When users
attempt to move such files into PenPoint, they are asked to choose an installed
PenPoint application to manage or present the data. Then PenPoint's built-in
file import mechanism creates an instance of that application and sends to it a
message instructing it to translate the incoming data to its own format.

Similarly, when exporting data from PenPoint to other operating systems, the
user must choose an export file format that can be understood by the applica
tion on the receiving system.

As a developer of PenPoint applications, your responsibility is simply to
define the file formats used with or created by your programs. You provide this
information in data structures called IMPORT_DOC and EXPORT_LIST. Once
you've coded this information into your application, you can simply respond to
the five messages PenPoint sends to indicate a need to import or export data

• msglmportQuery

• msglmport

• msgExportGetFormats

• msgExport

• msgExportName

109

The Application Framework

Printing Support

Printing a document created using a PenPoint application is straightforward.
In fact, it requires no programming support. Printing is nothing more than
drawing a document's image on a device that produces hard-copy output
rather than a screen display. PenPoint's device imaging technology is very
PostScript-like in this sense.

Support for specific printers is furnished at the system level rather than at
the application level. Your application need not understand anything about the
device to which it is sending the image of the document and its data.

We cover the subject of printing as part of Chapter 9 when we talk about
graphic device images.

Spell Checking

Your application automatically supports spell checking unless you disable
this capability (as you might, for example, in a paint program where it would
not make sense). Spell checking is part of PenPoint's standard application
menu support (SAMS), described in detail in Chapter 10.

You may provide your user with custom dictionaries that are specific to your
application or to your class of users (for example, attorneys or doctors). Pen
Point is equipped with a built-in 77,OOO-word dictionary. The user also can
define new dictionaries.

The spell checking technology is part of the handwriting and input compo
nent of PenPoint (see Chapter 13).

Search and Replace

You will not have to undertake much, if any, programming to support robust
search and replace in your PenPoint applications. Through cisSR and the
Search and Replace Library, the operating system has powerful built-in sup
port for this common operation in text-based documents.

110

The Power of Pen Point

The process of searching and replacing text in a PenPoint document is
complicated by the possibility that it may be necessary to deal with embedded
documents. When ordering a search-and-replace operation, users can specify
whether to include embedded documents. If they choose to do so, the search
and-replace mechanism must be intelligent enough to deal with different
document types and often~imes with different formats.

Because of this complexity, search-and-replace operations technically are
part of a broader issue called application traversal. PenPoint defines numer
ous messages and procedures for dealing with this need. We will examine
them more closely in Chapter 8.

Application Stationery

All PenPoint applications automatically support the notion of stationery. You
need not provide specific programming support for this capability. The
stationery unifies creation of blank application instances along with default
templates. Stationery therefore acts as a sort of template with which users can
create new instances to give them a head start on creating a document.

For example, a text-editing program might include templates for the usual
forms for memorandums, business letters, even legal documents in the appro
priate directory of your distribution disk. So when users want to create a
document that follows the template's format, they simply choose the proper
stationery. PenPoint then creates an instance of the application. Users can
also define new stationery by creating templates they frequently use and
saving them as stationery documents.

If you wish to provide one or more stationery documents as part of your
application, you simply furnish them on your distribution medium in an appro
priately defined subdirectory. The PenPoint installation process takes care of
the rest of the work, placing instances of all template documents in an area
where the system can find them when requested.

111

The Application Framework

PenPoint Application Life Cycle

Figure 6-7 depicts the life cycle of a PenPoint application as a state dia
gram. All PenPoint applications go through this life cycle process each time
the user creates an instance of them. Your application manages the transitions
between the various states in response to Application Framework messages it
receives. The Application Framework messages usually are caused by user
actions, such as page turns, but could be programmatically generated as well.

In the following discussion, we will outline each application instance state in
terms of how it is generally entered and what messages your application must
respond to as it manages itself through the process. A more detailed discus
sion of the messages themselves appears in Appendix A.

Figure 6-7 Application Instance State Diagram

112

The Power of PenPoint

Instance Creation

Most often, the user creates a new instance of your application by tapping
on the Create menu and s.electing your application or by copying a blank
piece of application stationery owned by your application into the Notebook
Contents. There are, of course, other ways an instance can be created (for
example, by the user importing a file and selecting yours as the application to
manage and display its data).

When PenPoint needs a new instance of your application, it will send the
message msgAppMgrCreate, which is defined in clsAppMgr, to your applica
tion class.

Activation

When the user turns to a page containing an instance of your application,
PenPoint recognizes that the user wants to activate that instance, previously
dormant. Two steps take place when the user turns to a Notebook page that
requires activation of an instance of your application. PenPoint activates the
instance, then the system opens the document.

PenPoint sends msgAppMgrActivate to your application class, followed by
msglnit to your application object when it receives a request to activate a
dormant instance of your application.

113

The Application Framework

Opening

As we indicated in the preceding section, opening an application (from the
user's perspective, a document) is a logical continuation of the process
started with the activation of your application's instance. During this step, the
contents of the document become visible to the user.

You must respond to msgAppOpen to handle the processing involved in
opening your application instance.

Closing

When the user turns away from a page containing an instance of your
application, PenPoint sees this as a request by the user to close that instance.
Notice that this is true even if the user is moving to another page in the Note
book that is an instance of the same application.

PenPoint sends msgAppClose; you respond to that message to handle any
processing you wish.

Terminating

PenPoint may terminate your application instance when it closes it. In other
words, termination is a logical continuation of closing in much the same way
that opening is a logical continuation of activation. There are times, however,
when your application must remain active. For example, if it is handling a
background task such as a long file transfer, the user may turn away from it
but not want to terminate its operation. Applications can avoid being termi
nated by being in hot mode (in other words, being defined as a process that is
always running). Only user deletion ends a hot-mode application. Closing and
terminating messages require application compliance and are asynchronous
with page turns. This allows you to finish ongoing computations off-screen
before terminating the application, even after the user has turned the page
away from your instance.

You must respond to msgFree and msgSave to handle the processing
involved in terminating an instance of your application.

114

The Power of Pen Point

Destruction

When the user deletes a document, usually via the Notebook Table of
Contents, PenPoint removes the application instance associated with that
document. You don't need to do anything extra to handle this step; PenPoint
deals with it automatically.

Summary

This chapter has described the Application Framework, where the tools
reside that permit you to handle a close-knit interaction between the applica
tions you build and the operating system. As we have seen, this aspect of
PenPoint supports important common application behaviors such as

• installation

• creation of application instances (new documents)

• activation of instances

• saving and restoring application data

• deactivation and deletion of application instances

• deinstallation

The Application Framework consists of some 15 classes, eight of which will
be of most interest to you as a developer. This framework also provides sup
port for a set of standard elements of which all PenPoint applications consist,
including application code, installation behavidr, document directories, pro
cesses, application objects, resource files, and main windows.

This chapter has examined a number of standard application behaviors and
seen how they are largely implemented in your applications by inheritance
from built-in PenPoint classes and their behaviors. In addition, it looked in
depth at the PenPoint application life cycle.

7
The PenPoint Windowing

System

Windows are the most visible part of the PenPoint user interface. Windows
are everywhere in PenPoint; even some design elements you don't intuitively
think of as windows, such as menus and buttons, are windows.

It should be clear, then, that the windows we talk about in this chapter are
not what the user often thinks of as windows. To the PenPoint programmer, a
window is a rectangular region of the screen with the capability for customized
display and input behaviors. Furthermore, every window has a well-defined
relationship with all other windows: position, overlq,p order, opaqueness or
transparency, and so forth. PenPoint windows themselves are invisible to the
user; only their displayed contents are visible. What the PenPoint user calls a
window we will call a document frame. This term refers to the rectangular
border, document title, scrollbars, and menu surrounding a document. The
document frame is a complex assemblage of parts, each of which uses one or
more windows.

You can, of course, write PenPoint applications without creating your own win
dows. If your program doesn't need to interact with the user (as a device driver may
not, for example), then you won't need to create windows. But it is safe to say that if
your application has a user interface, it is likely to use windows.

All drawing, including text display, takes place within a window. Most windows
have an associated drawing context (discussed in Chapter 9), which handles the
drawing of images on the screen in response to user and program control. Thus if
your application displays any information on the screen or expects the user to
provide any pen input, it will use one or more windows.

115

116

The Power of PenPoint

Windows execute four types of operations

• input and hit detection (see Chapter 13)

• painting and repainting (placing images in a window and refreshing the
images when needed) (see Chapter 9)

• obscuring (overlapping windows)

• clipping (preventing windows from drawing outside their confines)

The last two of these are closely related automatic behaviors.
As with most of PenPoint application development, the basic behavior of

windows is built into the extensive class library. PenPoint windows feature
multiple coordinate systems, clipping, and protection. They are integrated with
PenPoint's input system (see Chapter 13) so that pen input events are auto
matically directed to the proper window. The windowing system also supports
a separate screen display plane, called the acetate plane, where the system
displays a representation of pen ink as the user moves the pen across the
display surface. To produce this behavior and use the windowing system
features described in this chapter, all you generally have to do is subclass
existing PenPoint window classes and provide your application-specific
behavior. As usual in PenPoint, you describe this additional behavior by
overriding messages and supplying information in special data structures.

As you might expect, the fact that windows can contain embedded windows
that may belong to other applications (see Chapter 8) complicates the kind of
support needed for windowing in PenPoint. PenPoint structures windows into a
tree hierarchy. This relationship is described as a parent-child window rela
tionship, beginning with a root window that corresponds to the physical
screen. By designing windows this way, PenPoint gives you and the system

117

The Pen Point Windowing System

maximum flexibility regarding the placement, use, and management of win
dows. We will have much more to say about this as the chapter develops.

This chapter discusses windows in a logical progression, beginning with basic
concepts behind windows and then moving to the programming considerations
involved in creating, showing, laying out, managing, and filing windows.

Note that in this chapter we do not discuss the process of placing contents into
the windows. Drawing in a window is part of the graphics component discussed in
Chapter 9. Windowing and graphics are so closely related that the PenPoint devel
oper documentation discusses them as a single topic, referring to them together as
the windowing and graphics subsystem.

118

The Power of Pen Point

Basic Concepts

The PenPoint document frame has many constituent parts, each of which is
at least one window. Figure 7-1 shows the various components of such a
document frame. This is the type of document frame the user understands by
the term "window." Of course, as we have already indicated, there are many
other windows in a PenPoint application that the user would not be as likely to
recognize as a window.

title line

menu bar

Proof .. .

Find .. . i ~ scrollbar

bodyo~
document

Spell .. .

resize
handles!

ma~~~~---""'I-···"""""""""'''''""''-··_·······_·····+~
Figure 7-1 Typical Window and Its Parts

You can choose not to use some of these parts, depending on your
window's functions. Within an application, you may have several windows,
each of which uses different elements of a typical window. You make deci
sions regarding which parts to use; it's a matter of choosing the right class to
subclass or instantiate.

119

The Pen Point Windowing System

Figure 7-2 shows the windowing portion of PenPoint's class hierarchy. As
you can see, it is quite complex. On closer examination, however, you can see
that typical parent windows (those that contain other windows shown in Figure
7 -2) are derived from the top level of the hierarchy. The class clsGWin is a
gesture-interpreting window class; clsEmbeddedWin supports embedded
windows.

(TheRootWindow ~ clsWin

cls()Nin

Figure 7-2 Windows Class Hierarchy

Notice that there is a special instance of clsWin called theRootWin in Figure 7-2.
This window is always present in the PenPoint windows hierarchy because it is
part of the way the system organizes itself. You can think of theRootWin as the
display of your system.

While windows are normally thought of in relation to a computer display,
PenPoint window trees can be rooted to any image device. As a result, win
dow trees can be used to create virtual, in-memory displays. An important
consequence of this design is that window trees can be rooted on printing
devices. The printed image is constructed in memory as a window tree with
graphics in each window, and the entire page image is then sent to the printer.

120

The Power of PenPoint

Because PenPoint allows the same window and graphics systems to be used
for printers and displays, applications get printing behavior at virtually no cost.

It is generally not terribly useful to create instances of clsWin because this
class does not know how to process input or repaint itself. You will probably
find yourself most often creating a subclass of clsView or clsEmbeddedWin
when you create your application's main window.

As we indicated earlier, windows do not know how to draw on the screen
directly. You can view them as canvases, which can display themselves, and
assuming you give them the appropriate behavior by subclassing or overrid
ing, repaint"themselves on demand. But they do not know anything about how
to display images on the screen.

Drawing is handled via something called a drawing context. You create a
drawing context and bind it to a window, then send drawing messages to the
context, which translates those messages into ink on the display within the
window to which it is connected. There are a number of significant advantages
to this approach, three of which are worth mentioning here

• It minimizes memory consumption. PenPoint windows are lightweight (occu
pying about 100 bytes each), which means you can afford many of them.
Drawing contexts, on the other hand, take a minimum of about 500 bytes.

• It allows you to carry drawing state from window to window. You simply bind
an existing drawing context to a different window.

• It sets the stage for image-model independence. If for some reason you
wanted to draw with an imaging model other than the PenPoint default drawing
context (for example, a custom model of your own) you can do so. This provides
a measure of flexibility not usually offered by other windowing systems.

The PenPoint windowing system involves the use of five different coordinate
systems, four of which will be of some concern to you as a designer. Figure 7-3
shows the five coordinate systems with a sample application running.

There are five coordinate systems because different levels of software have
different needs and it is most efficient for code to deal with a coordinate system that
accurately maps into its needs. Otherwise, expensive mathematical conversions
would have to be performed too frequently. To understand each coordinate sys
tem, you must know both its user and its unit of measurement.

LUC (Logical Unit Coordinates)
Coordinate system of drawing
context. Use whatever units,
origin, and rotation that are most
convenient for your drawing.

LWC (Logical Window Coordinates)
Coordinates in device units relative
to your window: (0,0) is its lower left
corner.

PWC (Parent Window Coordinates)
Coordinates in device units relative to
parent window.

LDC (Logical Device Coordinates)
Device units transformed so that
origin is in lower left corner). Takes
into account rotation of the Lombard
(Landscape mode).

DU4 (Device Units 4th Quadrant)
The coordinate system used by the
imaging primitives and the display
hardware.

Figure 7-3 Window System Coordinates

121

The PenPolnt Windowing System

122

The Power of Pen Point

The two lowest-level coordinate systems (OU4 and LOC) are really only of
concern to PenPoint; we will not deal with them here.

Of greatest interest to you, since they're used for most drawing, rendering,
and general measurements within your own window, are Logical Unit Coordi
nates (LUCs). This is the coordinate system that the drawing context uses. It
can measure in much higher resolution than pixels, which permits it to perform
transformations with minimal rounding errors and allows it to render accurately
on high-resolution output devices such as laser printers.

Furthermore, LUCs are very flexible because you can

• set the size of LUC units to whatever is most convenient and efficient for
you, choosing from such measurements as points, metric, mils, twips,
screen pixels, and pen-tracking pixels

• scale LUC units (so that one unit equals one inch, for example)

• change the origin (0,0) to a point other than the default lower left corner of
the window (a process referred to as translation of the origin)

• rotate the coordinate system

All of this flexibility is well beyond what is necessary to describe the posi
tions of windows, which cannot be translated, rotated, or scaled, and which do
not need fine precision in their placement. As a result, windows use pixels for
their measurements.

Window coordinates come in two flavors: logical and parent. Logical Win
dow Coordinates (LWCs) are local to the window in question; they describe
the position of an object (typically a child window) inside the window. If you
want to measure where your window is relative to its parent, use Parent Win
dow Coordinates, which are nothing more than your parent window's LWCs.
Your parent window would, of course, use its parent LWCs, and so on up the
window hierarchy.

Working with Windows

As a designer, your work with windows in PenPoint involves creating them
and inserting them into the window hierarchy, showing and hiding them, laying
them out, managing them in the context of your application, and filing them.

123

The Pen Point Windowing System

Creating a Window

As we have indicated previously, you generally will start the window-creation
process by creating a subclass of clsWin or by using an existing subclass.
You may also subclass or create a subclass of clsGWin, particularly if your
application needs to respond to gestures the user makes with the pen.

Once you have decided which class to work with, you create a new window
by sending that class the message msgNew. The class returns a window (or
WIN) object. When you send msgNew, you must supply a WIN_METRICS
structure as an argument. Although we discuss this data structure later in the
chapter in detail, it is useful for you to know the kind of information it requires
you to furnish. At a minimum you must tell PenPoint the following information
about your new window:

• its parent or device

• its size and location (bounds) relative to its parent

• flag settings that determine such things as how layout, clipping, and
repainting are to be handled, and what kind of input it may receive

Now that you have created this new window, it is only an object. You must
insert it into the window hierarchy. You do this by sending message
msgWinlnsert, supplying a WIN_METRICS structure for the window as an
argument. This inserts your window as a child window; if you wish it to be a
sibling window (in other words, at the same level as another window in the
hierarchy), then you can send msgWinlnsertSibling. Generally, when you are
inserting a subtree of a window tree, you should create the window that will be
the root of the subtree first, without inserting it. Next, create its children and
insert them into it. Only when the entire subtree has been created should you
insert its root window. When the parent window is inserted then its child win
dows appear on the display. This has the effect of allowing you to create all
your windows off-screen and to then display them simultaneously.

124

The Power of Pen Point

Showing Windows

Just because you've created a window and inserted it into the hierarchy, its
graphic contents are not automatically visible. You must ensure that the
wsVisible flag in the WIN_METRICS structure described later in the chapter is
set to True if you want the window to appear on the display.

Furthermore, child windows are only visible if their parent window is visible.
Therefore, you must make sure that the parent window is visible first, even
when the child window's wsVisible flag has been set. This is due in part to two
basic rules about parent and child windows

• Children are always on top of the parent.

• Drawing in a child window is always clipped by the parent. (We'll have more
to say on this later.)

By the way, this chain of windows into which all windows are inserted goes
all the way back up the hierarchy to theRootWin, which we mentioned earlier.

With your windows properly inserted into this hierarchy, PenPoint can now
give you a great deal of help in managing your windows, as we'll see later. For
example, it keeps track at all times of which windows are "dirty" (that is, those
that need repainting) because they have been moved or resized or obscured
or revealed after being obscured or had other events happen to them.

PenPoint includes a flag in WIN_METRICS that is particularly interesting as we
discuss the tree hierarchy of windows. If you insert a window into the hierarchy and
later remove it (when the user closes it, for example), it may uncover a window that
had been beneath the newly removed window. This now unobscured window must
be repainted. This process can take time, but you can save time by setting the

. wsSaveUnder flag in WIN_METRICS to True. When this is set, the window creates a
copy of the physical screen region underneath the screen area where newly
inserted window will be displayed. This means that when it is time to repaint the
screen area under the newly inserted window, PenPoint doesn't need to send a
message to the formerly obscured window or wait for it to process such a mes
sage. It simply copies the bit image stored when it was inserted. You can see this
process in operation when you retract a PenPoint menu; the screen beneath the
menu window is instantly redrawn. It is better to use this flag for windows that you
expect to be on the screen for a brief time and only when you are sure the contents
of the windows under yours will not change while your window is displayed.

Laying Out a Window

» .···.··)i>··i•.. ··(........ i) ••.•• ••· •••••••••.•..••.•.•..•.. > ..••••...••...••••••••.••••••..•.•.•••. • •.••••..••••..•..•••••••••••••..•••.•..••.•.. } ••. i.. i i.)\<. :.. • ;;.;.{\\(
;,

..

.....

i
............... / ·····.i>

125

The Pen Point Windowing System

iI Fri. \ •••••

i.

.. ,

.....

..~.......................•. i.- ..•
..•••.•.• <>/ >.;;

........> ...•...
1.-.

. B. •. }i
,. T'lt<\

..•
t (j.la· ...•.

.......> ..)< ••
)

'•.....•
2\}()'

[~.~>
•• < •..•.••..

.........\ <.. ·i
•.••••..•••..•.••••••.•••••••••••••••.••.•••••••.••••••••.•.•••• : •.••••••.••.• ? •••••..••••.••.•..•••••••.••..••..••.••..•••••••••••••.••••..•••..•.••..••••• ~

Because the layout of child windows is controlled by the parent, the over
riding issue in window layout is the relative positioning of children within a
parent. Like any good parent-child relationship, this process involves negotia
tion. There are three attitudes a parent window can be designed to take
toward how child windows lay themselves out within its borders

• Permissive. Using this model, the parent window is set up so that child
windows can display themselves anywhere, even to the point of completely
covering the parent window.

• Strict. With this approach, the parent makes all the decisions. The parent
window is given an opportunity to intercept and veto all messages to its
child windows that could affect layout.

• Flexible. If you program this attitude into your parent window, it will attempt
to meet child windows' layout requests but can override them if those mes
sages result in layout conflicts that the parent window has been designed to
prevent.

126

The Power of Pen Point

Window layout is far more complex than meets the eye. Much of the work in
this area of your PenPoint design is handled through the User Interface Toolkit,
particularly its clsLayout (see Chapter 10), so we will not attempt to deal with
the issue in depth here.

Managing Windows

Because of the object-oriented way PenPoint deals with window layout, you'll find
that handling such things as the resizing of your windows is straightforward. As far
as the system is concerned, such activities require laying out thewindow anew. So
the process of repainting the screen after a window is resized is for all practical
purposes, identical to the original process of laying out the window.

Sometimes you will want to adjust or modify some or all of the child windows
in your parent window. You can use the process of enumeration to obtain a list
of all immediate child windows or all windows (recursively, including grand
children, great-grandchildren, and so forth) contained in your parent window.
Depending on how you ask for this information, you can also obtain basic
information about these windows (such as their UIDs and the style flags).

There are times when you want to arrange child windows in a predetermined
sequence. In that case, PenPoint supplies a message, msgWinSort, that
permits you to do so. You tell PenPoint how you want the sort handled by
providing a callback routine that compares two windows. PenPoint then will
rearrange the child windows according to the instructions in that routine.

Filing Windows

When the user turns away from a page in the Notebook or closes a floating
window, a parent window may need to file its state and contents. When you file a
window in PenPoint, you usually file its child windows as well. This means that you
often may find yourself filing many more windows than you thought you were filing.

127

The PenPoint Windowing System

Some child windows may set a style flag that prevents their being filed. This
, is done, for example, with temporary windows that are going to be re-created

the next time they are needed. The important thing to remember is that all
windows are given the opportunity to file when your application is told to save
its state.

PenPoint keeps track of the window environment (such as the orientation of
the device, pixel size, default system font and size, and other data) for you.
When your application must open a window it previously saved, it has access
to this environmental information so that recalculating position and orientation
is simple if you even need to use it. If nothing has changed since the window
was saved, you do not need to do anything.

128

The Power of Pen Point

Summary

This chapter has examined the windowing system in PenPoint, focusing on
the most common behaviors of this most visible element of the user interface.
It has examined the basic components of windows and the various coordinate
systems used to identify the locations of objects within the system.

As a designer, your involvement with windows includes their creation,
insertion into a window hierarchy, showing and hiding them, laying them out,
managing them, and filing them.

8
Recursive Live Embedding

of Applications

The concept of embeddable applications is one of PenPoint's most impor
tant and useful distinguishing characteristics. PenPoint users can embed, or
nest, documents inside one another without having to know anything about the
application responsible for creating and managing the document. This power
is unique to PenPoint.

Supporting a function so complex obviously requires extensive program
matic support, all of which is built into the Application Framework. As you'll
see, you don't have to do anything to make your programs embeddable and it
takes very little work to permit them to accept other embedded applications.
However, you do need to have knowledge of actions that must take embed
ded documents into account.

PenPoint provides you with a carefully designed set of classes to deal with these
issues. We will discuss those classes, their metrics, and their messages, later in
this chapter. But first, we must take a close look at this unfamiliar new concept.

What It Is

PenPoint's ability to support embedded applications and their documents
begins with the fundamental notion built deeply into the operating system that
there is an essential correspondence between applications and their documents.

129

130

The Power of Pen Point

Every document has an identifier that tells PenPoint which application to run
when the user turns to a page containing that document. Without this intimate
connection between documents and applications, embedding programs
inside one another would be difficult at best.

PenPoint's embedding capability is recursive: The user can embed an
application inside an application that has already been embedded inside
another application. Theoretically (that is, within memory limits), this recursive
embedding can be made arbitrarily deep. To simplify discussions of embed
ding, this chapter refers to the application hosting the embedded application
as either the embedder or the parent and to the hosted application as the
child or embeddee.

As you will also notice from the title of this chapter, embedding is "live." What do
we mean by that? In this context, the word "live" has two important connotations

• It means that the embedding takes place dynamically, "on the fly," while the
application in which another application is about to be embedded contin
ues to run. This makes the embedding process transparent to the user.

• It also means that the applications actually execute inside one another. This
is not a process of copying documents or compound document support via
established clipboard/scrapbook metaphors. When the user embeds a
document inside another, the embedded document's application is running
just as the host document's application is running.

Traditional operating systems that support the notion of multiple applications
running at the same time (such as Microsoft Windows 3.0 and the Apple
Macintosh system) require that every application be in immediate contact with
the operating system. Stated another yvay, only the operating system can act
as the host to an application. Figure 8-1 shows this situation. The word proces
sor and drawing program are both running, but the user must choose between
them by selecting one to be active. Generally, the user does this by activating
a window belonging to the desired application.

131

Recursive Live Embedding of Applications

Word Drawing
Processor App.

OS

Architectural View User's View

Figure 8-1 Traditional Operating System with Two Applications Running

In PenPoint, any application can host another application. In fact, as you will
see in detail later in this chapter, every application actually is embedded in the
PenPoint Notebook application. Figure 8-2 depicts this. The word processor
document, which is embedded in the Notebook, is running when the user
decides to incorporate a drawing into the document. By creating an instance
of the drawing application, the user embeds the drawing program and its
document directly inside the word processor. There is no need to choose an
application - or even to be aware that there is more than one application
running. To draw, the user draws in the drawing document. To edit text, the
use draws gestures in the word processing document.

Why It's Important

As computer power on the desktop has increased in the past few years, users
have come to demand more and more robustness and to expect the ability to
solve more complex problems. At the same time, the emergence of graphical
user interfaces has led users to demand more simplicity of operation. Designing
programs that are more powerful and easier to use than last generation's is a
major challenge, one that the software industry has seen as its Gordian Knot.
PenPoint's architecture suggests that the right way to approach this problem is

132

The Power of Pen Point

not by building larger, more integrated, more robust applications but by
providing an environment in which building-block applications with specialized
capabilities car coexist transparently.

.... yll?.P.~.~~~~~~.I?.~~i~':l .. @@@~.L ..
Docume nt Edit Insert Case Format

Mr. Richard Hopkins
New World Foods
19271 Palm Blyd.
Los .A.ngeles! CA 90036

RE: New package design

Dear Mr. Hopkins:

< 18 >

rYe received our department's most recent proposal for
the New World Food's bottle design. They recommend a
common resin! polyethylene terephthalate (PET)! which
is recyclable! lightweight! and achieves your breaking
resistance goal. Svcritching to this resin also has the
advantage of giving us greater design flexibility.

". Bottle Design Sketch

0>='''' .. '''''''''''+ ... ----------------
I faxed your packaging consultant this latest revision and
received his comments by fax yesterday.
Ij Revise d Bottle FaH

We can go oyer these recommendations when we meet
next Tuesday. In the meantime! don'thesitate to call me ---... 1J ~Ii ~ DU ill ~I QI.!' .!.
Help Ptefetences Tools Statbnery Disks Keyboatd Installer In Out

Figure 8-2 Pen Point With Two Applications Running

133

Recursive Live Embedding of Applications

Compound documents are becoming commonplace. What was only a
dream a few years ago - being able to prepare published reports combining
text, database reports, spreadsheet data, and graphics - is now an everyday
expectation in many business offices around the world.

Creating compound documents, however, is not as transparent as users
would like. Traditional operating systems, even in more modern garb, force
users to launch an application, typically with a blank document, then choose
the document with which they want to work. They can also select the docu
ment they want to work with from their system's file directory and, if the docu
ment knows which application was used to create it, they can launch the right
program that way. But notice that in each case, the user must have some
knowledge of the system. The process is not transparent.

The problem is worsened when the user wants to move information from one
document to another in an effort to create a compound document. Most
operating systems handle this interaction by means of automated clipboard
integration. As a result, data gets converted to its lowest common denomina
tor, losing some or all of its richness and formatting in the process of being
moved. In addition, this architecture builds on the notion of a separate file for
each portion of a compound document. This, again, requires that the user be
more aware of operational details of the system.

Users want to create documents, not run programs. They don't want to know
about programs, files, directories and subdirectories, and the other myriad
details that make up a minimal level of knowledge needed to run even the
most user-friendly systems on today's microcomputers. PenPoint permits the
user to operate the environment and to see everything in terms of documents
and solutions.

What the User Sees

To the user, the process of embedding applications has a natural feel to it.
Users can choose to combine documents from two or more programs in either
of two ways:

134

The Power of PenPoint

• by creating the documents on separate Notebook pages and then copying
or moving them to a destination document, with no loss of content or formatting

• by embedding applications on the fly, cr~ating new documents within
existing documents as needed to build the compound result

Either way, the embedded applications appear in embedded windows that
are instances of clsEmbeddedWin. We took a brief look at this class in Chap
ter 7, but we'll spend more time examining it in detail later in this chapter.
Users, of course, are unaware of the existence of this class; what they see are
embedded windows they can control (by choosing to show or hide borders,
for example).

Embedded windows can be in-line, overlapping, or even take up the entire
application frame. We will examine some of the programming issues involved
in these placement decisions later in the chapter.

The purpose of embedding applications should be clear. The user need not
be aware on any level of doing anythi.ng other than creating documents to meet
needs and solve problems. PenPoint will determine which program to run based
on the document type chosen by the user, and will take care of the filing details.

How It's Done

The major obstacle to the implementation of an architecture such as PenPoint's is
how to deal with embedded documents when the user requests an action that
should cross traditional application borders. Commands issued to an embed
der should transparently apply to all embeddees. In a classic operating sys
tem, if the user has two kinds of documents open, performing operations like
printing, proofreading, and filing data requires separate actions and files for
each application. If Pen Point required the same kind of user involvement and
awareness, it would lose most of the value of embeddable" applications.

Solving this problem requires PenPoint to incorporate a number of features
and capabilities, outlined in this section.

135

Recursive Live Embedding of Applications

The Problem of Data Storage

A classic problem with compound documents involves the question of filing
their contents. Do you reduce contents to a least common denominator so you
can file all of a document in one place? Or do you create separate files for
each type of document and then leave it to the user to try to reassemble them
when needed? Traditional operating systems create a separate file for each
type of document. PenPoint, as you know, stores each embedded document
as a separate directory. Embeddee contents are therefore placed into a
subdirectory of the parent document's file system subdirectory.

With this approach, PenPoint is able to treat every embedded application
(recall that this includes all applications, since even top-level documents are
embedded in the Notebook application) as a cohesive whole containing all of
its embedded windows regardless of the application responsible for the
contents of those windows.

Basic Concepts

To understand how embedding works we must clearly distinguish among
three separate, but parallel dimensions. What the user sees as a single docu
ment hierarchy is implemented at runtime by a dynamic combination of entities
in each of these three dimensions. The three parallel dimensions are the file
system, process space, and window hierarchy.

The file-system dimension is a hierarchy of document directories with one
document directory for every embedded application, regardless of whether it
is currently running or opened. Because the file system even has entries that
correspond to closed and terminated applications (that is, off-screen docu
ments), it is the only dimension of the three that fully captures the entire hierar
chy of embedding at all times.

The process-space dimension consists of processes that correspond to
running application instances. The set of running processes is driven by the
embedding hierarchy in which every activated (running) embedded child
application has its own process. Terminated (not running) applications do not
have a process associated with them. Furthermore, since PenPoint processes
do not have hierarchical relationships with other processes, the process

136

The Power of Pen Point

dimension is a "flat space" in which processes are created in response to
traversals of the hierarchy in the file system, but the processes themselves do
not have a direct parent-child relationship.

The window hierarchy dimension consists of windows that subclass
clsEmbeddedWin. This window hierarchy captures the hierarchical visual
relationship of the embedder and embeddee applications.

Of the three dimensions the windowing relationships may seem most
straightforward, but windows build upon the file system and process dimen
sions. We will therefore discuss those two dimensions first, and then discuss
how embedded windows "front end" this complex assemblage of behavior.

File System Hierarchy

The simple hierarchy in Figure 8-3 shows the file system's representation of
application C embedded inside application A. As we mentioned earlier, the file
system contains a document directory for every embedded application. Each
document directory contains files that belong directly to that application
instance (data files, resource files). In addition, each document directory contains
attributes that record the class of application associated with the directory, the
Unique Identifier (UIO) of the application (if it's running), the current state of
the application (active or open), and the Universal Unique Identifier (UUIO) of
the document itself (so that other objects can point uniquely to this document).

I Di~A I
I I I I

(Files Local to A) ~

(Files Local to C)

Figure 8-3 File System's View of Embedding

137

Recursive Live Embedding of Applications

Process Space

Figure 8-4 shows that applications A and C have their own processes, and
that these processes are not directly related to each other. Within each process
are the windows that are owned by that process: windows A and B (B will be
explained shortly) are owned by process A; window C is owned by process C.

Every running application must have a process, but PenPoint cannot have
every off-screen page be running simultaneously, since hundreds of pro
cesses use too much memory and processor time and since users will want
notebooks with hundreds or thousands of pages. PenPoint therefore shuts down
off-screen processes. As a result, only processes for on-screen applications
run (with the exception of server applications, special system processes, "hot
mode" applications, and the application that currently holds the selection).

Process A Process C

Figure 8-4 Process Space View of Embedding

Embedded Windows

The on-screen relationship of the hierarchy of windows for applications A
and C is depicted in Figure 8-5. As you can see, C is nested inside A. But
surprisingly, there is an intermediate window B inside A that encloses C. Both
Band C are embedded windows: B is embedded inside A, and C inside B.

138

The Power of PenPoint

A

B

Figure 8-5 Window Hierarchy in Embedding

Why does PenPoint include this extra level in the window hierarchy when it is
not present in the user's model or in the file system? To explain, it is first important
to mention that PenPoint's user interface allows the user to close an embed
ded application into a small icon. When this has been done, the embedded
application is no longer running.

Close examination of Figure 8-4 explains why the extra level of window B is
necessary. Notice that window B belongs to (in other words, is in address
space of) process A, while window C belongs to process C. Embedder appli
cations always need an embedded window, even when the embedded appli
cation is shut down. The extra window B serves as an embedded window that
wraps the embedded application and hides its changes in state from the host
embedder application. Because window B belongs to process A, B will always
be available to A, even when process C has been shut down (and window C
therefore destroyed) after the embedded application C has been shut down to
an icon by the user.

That explains everything except why the host embedder applications always
need an embedded window. To answer this, we must discuss the typical
relationship between embedder windows and embedded windows. Remem
ber that windows are essentially objects that support the cooperative partition
ing (sharing) of screen display space. Indeed, this is the major purpose of the
embedding window relationships: the host embedder and the embeddee must
frequently communicate about the embeddee's exact location and current

139

Recursive Live Embedding of Applications

size. They do this chiefly through four important messages: msgWinlnsertOk,
msgWinFreeOk, msgWinExtractOk, and msgWinDeltaOK. The embedder
window can (and often does) choose to intercept these messages before they
take effect; it can then approve, modify, or refuse their intended operations.

To make this clearer, consider Figures 8-6 and 8-7, which depict a drawing
program embedded inside of PenPoint's MiniText application. In Figure 8-6,
the drawing program is closed; therefore it is represented by a small icon.
Unbeknownst to the user, this icon is actually wrapped by an embedded
window (8 in our example) that represents it to MiniText's main view window
(which is itself an embedded window).

.. ~r:?p.c:l~E3~~E3"'..I?E:l~i~~@@@n ' 18 /
Docume nt Edit Insert Case Format

Mr, Richard Hopkins
New World Foods
19271 Palm Blvd,
Los Angeles, CA 90036

RE: New package design

Dear Mr, Hopkins:

live received our department's most recent proposal for
the New World Food's bottle design, They recommend a
common resin, polyethylene terephthalate (PET), which
is recyclable, lightweight, and achieves your breaking
resistance goal. Switching to this resin also has the
advantage of giving us greater design flexibility,

~ ~l
BoffeB 1 Ii i
I faxed your packaging consultant this latest revision and I· ~
'a:~:~:~::~:::':~~'~7J~~·~r-.:£~clQYI' " .. ",-"" .,,' '~·l r

ii i;l

We can go over these recommendations when we meet n "i
next Tuesday, In the meantime, don't hesitate to call me oE

if you've any questions (915-893-9877), ~
~
45· Sincerely,
:..

w
~;:.

Elena Huerta
New Product Supervisor

.1..1 ~:: .~ ~!i mi .~j Qj.. !..!.
Heolp PoefEi'oenceos Tools Statbneory Disks: Keoyboald Inslaler In Out

Figure 8-6 Embedded Drawing Program Closed

140

The Power of Pen Point

.. ,,,,,,,".",",",,,,,,~,,,,",,,,,",,~~~~;,,e,;;,~~"~,,,~,~;~,~,".,,""''''''''
if

~:~1J1
-- Heel --- .a.

<p="'"'' .. ,""''''''''''''''''''''<? .I

Figure 8-7 Embedded Drawing Program Open

When the user taps on the icon and PenPoint opens the drawing program, its
window obviously must get much larger, as shown in Figure 8-7. It is exactly
this kind of change in size and state of an embedded window that must be carefully
worked out between embedder and embeddee. In this case, MiniText intercepts
the messages that change the size of the embed dee wrapping the icon and
learns that this embedded window is about to get much larger. MiniText approves,
but, because it was warned of the change before it occurred, MiniText can
cooperate and make room on the screen for the larger window (notice how the
text paragraphs are further apart in Figure 8-7 than they were in Figure 8-6).

clsApp

The window dimension in embedding is, as we have seen, handled by
clsEmbeddedWin. This leaves the process and file system dimensions, which
are both handled by clsApp. This class defines all file system and process
behavior your application needs to be either an embeddee or embedder.

clsApp handles the startup and shutdown of processes for embedded
applications. Its default behavior is to run all embedded applications when
ever the embedder is running. That is, when the user turns to a page, not only
is the document on that page run (opened), but corresponding processes for
all embedded documents within it are also opened.

141

Recursive Live Embedding of Applications

Lightweight Embedding with Components

Now that we've demonstrated how embedded applications work, we must
point out the drawbacks of this approach so we can explain the concept of
components in PenPoint. From the preceding discussion it should be clear to
you that embedded applications are somewhat costly in memory and proces
sor cycles: each embedded application requires its own process and a sepa
rate document directory. (These are not costs without merit: because the
embedded applications run in their own processes, even if they crash, the
embedder can continue running.) While these are perfectly reasonable for
normal embedded applications (for example, embedding a drawing or table
inside a word processor), they are too costly for embedded data types entail
ing a small amount of application instance datR

PenPoint components, on the other hand, are a lighter-weight alternative to
embedded applications. Because components execute within their host
application's process and file their data in the host application's data file, they
don't need a process or document directory of their own. Components are
instances of subclasses of clsEmbeddedWin and are therefore embedded
windows themselves. PenPoint includes three predefined components:
clsAppWin (the class used for the wrapper window B in our example), Goto
buttons, and Signature Pads. Applications may define their own additional
components.

What Your Application Must Do

Don't be too concerned if all this seems like a lot of work: it would be if not
for PenPoint's strong object orientation. But clsApp and clsEmbeddedWin
handle virtually all of the work for you with appropriate default behavior. You
don't need to do any work whatsoever to be an embeddee. To embed, the
typical embedder needs to respond only to the four clsEmbeddedWin mes
sages mentioned earlier.

Embedder applications only rarely need to modify the default clsApp behav
ior for starting and stopping processes. One exception is an embedder that
hosts dozens or hundreds of embeddees. Such an embedder would probably

142

The Power of Pen Point

want to manage the startup and shutdown processes of its embeddees. Otherwise,
it would find all embeddees running all the time. This is just what clsSectApp
(the Notebook's Table of Contents) does: it modifies startup behavior to be the
opposite of the running process for every embeddee. In this way the only
embeddee with a process is the current page (and any floating pages).

Embedded Window Marks

PenPoint keeps track of embedded documents using embedded window
marks. A mark is a special data structure containing

• the UUID of the document containing the mark

• the UUID of the component within the document

• a component-specific token that specifies a location within the component

• a label for the mark

Both Goto buttons and the traversal engine use these marks to point to
embedded windows.

The Problem of Traversal

Many document operations must include and take into account the contents
of child embedded windows. The three most common such operations are
search (and its relative, search and replace), print, and spell check, but there
could conceivably be many others. In each case, the parent application must
know something about the contents of the windows created by other applica
tions and embedded within the parent. At the very least the parent application
must be able to find out if the child application defines behavior for the task at
hand. For example, it is unlikely (although not impossible) that a painting
program would include the notion of spelling checks, because its contents
normally are not viewed as text. Such an application might simply tell a proof
reading process to skip over it. But its contents determine this.

This need poses some obvious problems with windows containing docu
ments of different types. Content-dependent behavior is simple in a simple

143

Recursive Live Embedding of Applications

document, but it becomes increasingly complex when we deal with compound
documents. PenPoint's answer to the problem is the notion of traversal. Tra
versal works with both the window and file system hierarchies to visit all user
data in the correct order regardless of the complexity of the embedding.

Traversal is actually implemented in PenPoint using a driver-slave model
(see Figure 8-8).

The process shown in Figure 8-8 is a typical one, but is not necessarily
indicative of the way all traversals are handled. For example, some traversals
might not require the slave to locate any data. In that case, the steps associ
ated with that processing are of course eliminated from the steps shown in the
figure. Regardless of the details, the driver (the object requesting traversal,
generally an application or the PenPoint traversal engine which we'll discuss
later) and the slave (either a document or a component) interact to visit all
embedded documents and scan all data within a specified range.

In many cases, the user determines the scope or method of traversal by
choices or commands. The user is not aware of the traversal issue, but by
selecting operations to be performed and defining their scope, the user can
playa role in determining the behavior of the process.

As you can see from Figure 8-8, the driver-slave model keeps the traversal
process in synchronization through a mechanism called a traversal context.
This context is a protocol between the driver and all the slaves it encounters
as it carries out its processing on a parent document and its child embedded
windows. You can think of this context as a structure that contains the scope
of the traversal and its direction as well as the current position within the
scope. As traversal processing takes place, the current position is updated to
keep the driver and slave in synch.

The traversal process, like most PenPoint processing, uses a message
sending model. The driver sends messages to each slave it encounters.
Slaves respond to these messages, depending on the traverse style defined in
the traversal context. The four types of behavior an application can define for
its instances are

• Don't enter any embedded windows.

• Enter all open embedded windows.

• Enter all embedded windows.

• Invoke a call-back routine.

144

The Power of PenPoint

Driver

Encounters a child
embedded window

Sends message telling
slave to find data

Sends message telling slave
what to do with found data

Transversal ends

Slave

Is end of
scope

reached?

Carries out operation;
notifies driver

Yes Terminates and notifies driver

Figure 8-8 Driver-Slave Traversal Model

The Notebook as an Example

Understanding the concept of embedding applications will be much easier
after we have looked carefully at an example. The best example to use is the
Notebook application, which is integral to PenPoint's organization and behavior.

Each element of the Notebook is a document of some type. Even some items
that don't appear to be documents (such as sections) 'really are documents.
They just have a slightly different purpose from what we usually think of as a
document's purpose, serving an organizational rather than data-related role.

PenPoint's Notebook is written using the Application Framework (see Chap
ter 6) and is a child embedded application of the Bookshelf, which is the top
level organizer of the PenPoint system. The Notebook's primary role is to act
as an organizing vehicle for all other applications running on the system. Like
all PenPoint applications, therefore, the Notebook can be looked at from
several perspectives. We focus on the two that are most important for an
understanding of recursive live embedding.

145

Recursive Live Embedding of Applications

Figure 8-9 shows the visual representation of the Notebook as a document.
Actually, there are five applications visible on the screen in Figure 8-9: the Book
shelf (across the bottom of the screen), the Notebook, the Notebook Contents, a
text-based application called New Product Ideas, and a graphics application
called Charting Paper. As you can see from the Table of Contents, New Prod
uct Ideas is a document in the Samples subdirectory.

No te book: Co nte nts < 1 > "

Doeume nt Ed it Cre ate View Show So rt

El First Expe rie nee· 2

m Samples:........... 3

EI New Prod uet Ide as . '" '" 4

El Package Design Letter....... 5

D Charting Pape r.. 6

El rtJl .. rnn 7

".. New Prod uet Ide as 4

Doeume nt Edit Insert Case Format

SoaI:1rwesIem ClIDYsaace
This is essentially a barbecue sauce. Grilling or barb::cuing vega
and other squash has l::Ecome very}X)pWar in the West lately. Y (
vegetables as you gtill them. Pete in the lest kitchens came up VI:

sauce is th:i.ck enough to stay on the vegetables yet thin enough b

~ '?~.~~.i.~.~ ... ~~p.~.r.
Doeume nt Ed it View Tiling

~
S~,~:~~h ur

Zu cc 'V:', :::\ ry
::.:.:-:-:.:-:.:.:::
.......
.......... .
........ .

Eggpla~t' St eaks

Ea!P.aJd paste
We really need a new name for this one, but it's actually a great 1

______ ..1

.. Z,I .til ~ 1)1 -iii .~J I}.s.!..!.
He Ip Plefe Ie noes Too Is StatD ne ty Disks Keyboald Installer In Out

Figure 8-9 The Notebook: A Visual Representation

146

The Power of Pen Point

We can also look at the compound document of Figure 8-9 from the perspective
of the File System. This viewpoint is depicted in Figure 8-10. As you can see, the
root directory is called Bookshelf. The Notebook application is a subdirectory of the
Bookshelf. Notebook Contents is in turn a subdirectory of Notebook. You can
see by examining Figure 8-10 that this hierarchical approach is followed
through to the most deeply embedded child document, Charting Paper. Each
document has at least two files associated with it. One of these files holds the
document's contents and the other holds its display state.

Bookshelf

tdoc.res
doc.state.res
Notebook

tdoc.res
docstate.res
Notebook Contents

doc. res
docstate. res
Samples

tdoc.res
docstate.res
New Product Ideas

Memo
etc

tdoc.res
docstate. res

Charting Paper
~doc.res
L docstate. res

Figure 8-10 The Notebook: A File Representation

How You Program for Application Embedding

On one level, you don't have to do much to support recursive live embed
ding. Your application automatically supports this behavior because it's a
PenPoint application. But to strengthen your application's support, you need to
think about three issues

147

Recursive Live Embedding of Applications

• placement of embeddee windows

• moving and copying information between applications

• traversal support specific to your application

Where to Place Embedded Windows

When the user creates an instance of an application inside your application,
you must consider the placement of the embedded window that contains the
document. There are two ways to place such a window: unconstrained and
constrained.

Unconstrained placement of the window is the easiest way to handle embed
ding. Using this method, the new window acts like a floating window atop your
main document window, which is its parent. Since every window already
keeps track of its position relative to its parent, this placement style takes no
work on the parent's part. This is the default behavior for clsEmbeddedWin.

Constrained window placement requires more parental control. To some
degree, this approach means you must determine where to place the child
embedded window based on the kind of display item it represents. For example,
a drawing document embedded in a text document could be treated as a
large single character appearing immediately adjacent to the character in the
document after which it is inserted, or it might be handled as an item that
should only appear on a line by itself. In any event, your application, as the
parent, will choose where to position the child window when the user embeds it.

Move/Copy Protocol

You must implement a move/copy protocol for your application object. If the
system default move/copy behavior is acceptable, you can, of course, simply
use the inherited approach. Otherwise, you should plan to write your own protocol.

Users can begin a move or copy process between embedded windows by
selecting the information to be moved or copied and then issuing the move or
copy command via menu or gesture. Once movement or copying is initiated,
the system generates a move/copy icon (an animated border around the

148

The Power of PenPoint

object or a symbol for the object being moved or copied). The user then
indicates a position to which the object should be moved or copied; the
system handles the rest of the processing transparently to the user.

Once the user has indicated what is to be moved or copied and its destina
tion, there are two locations for this object: the source (where it starts) and the
destination (where it ends up). Obviously, if the user is copying rather than
moving, then the source and destination will both have copies of the object
when the process is complete. If the user is copying or moving data within a
single instance of a document, then the source and destination object are
identical, and many of the messages we refer to later in the chapter will be
sent to the special symbol, self. The source sends a message to the destina
tion object instructing it to move or copy the selection data.

The destination determines the type of data that the source has selected
and, if it is a data type it understands, tells the source to send the data. The
source now knows what type of object the destination is and it can determine
whether it wishes to move its data into an instance of that type of application or
not. For example, a graphics program may reject the idea of sending its data
to a text program.

Assuming both parties agree to the data move or copy, the source deter
mines the location of the destination in the PenPoint file system. With this setup
processing complete, the source moves or copies the data. The destination
then determines precisely where to put the data, which mayor may not be
identical to the user's requested location.

Viewed at the message-protocol level, Figure 8-11 shows the processing
involved.

T raversa I Protocol

Although it is not mandatory that your application support traversal, we
strongly recommend that it do so. Another major benefit of implementing
traversal is that PenPoint's built-in support for printing, spell checking, and
search and replace are available to your application with little additional
programming. If you choose not to implement traversal, you should have a

149

Recursive Live Embedding of Applications

very good reason for not doing so. Some specialized applications, such as
device drivers, may choose not to support traversal, but if your program has a
user interface, it probably should support traversal.

You can support traversal as a driver application, as a slave application, or
as both. Appendix A defines the messages involved in each case.

Creating a Traversal Driver

If your application defines some behavior that will require it to traverse
embedded child documents, you will have to create a class to handle the
traversal. Most of the time, you will use clsStdTE, the standard traversal engine
class. There are two other possible classes: clsTraverse and clsTE, a general
ized traversal driver that implements the protocols described by clsTraverse.
You will normally use clsStdTE because it automatically creates a traversal
context as well as an instance of cis TE.

If you write a traversal driver, your driver will send messages defined in
clsTraverse.

You will also have to create an initial traversal context. There are five ways
you can accomplish this

• for a specific document

• using the current selection

• in response to a gesture

• in response to a gesture over a word

• containing a specific embeddee

Each of these approaches corresponds to a message in the traversal proto
col described in detail in Appendix A.

Traversal drivers merely send these messages and receive responsive
messages and data from the slave processes.

150

The Power of Pen Point

Source
Agent

Source
Embedded

Window

If the user taps on Edit/Move" OR the user holds the pen on the:
clsApp sends selection. Selection owner :
msgAppMoveSel to self. When receives a msgPenHoldTimout :
clsApp receives and sends msgSelBeginMove to :
msgAppMoveSelf, it sends self. .
msgSelBeginMove to the
selection owner r msgSelBeginMove
msgSelBeginMove --. - •

Identify the selection and pen
offset.

r, mSgEm~dedWinBeginMOve .

Source
Embedded

Window
Destination

Agent

Create Move/Copy Icon or :
marquee and let the user identifY ~ Or the destination provides a
the destination' : Paste command in the Edit

User identifies the destination : menu. The user taps on
by pen. clsMoveCopylcon , Edit/Paste, some agent sends
sends msgSelMoveSelection : msgSelMoveSelection to
to destination. : destination.
MsgSeIMoveSelectionl-----------------!"--.~~ ------!-. -- msgSelMoveSelection

: Determine the transfer type .
........ -------+-: --- msgXferGetList

: Tell the source to move the

.... : selection .
msgEmbeddedWinMove

the move r msgEmbeddedWinMoveCopyOk
- .

Get the destination's locator an~
sequence.
msgEmbeddedWinGetDest --i----..... ~~
Move the selection.
msgEmbeddedWinMoveChiid ..

or
msgEmbeededWinlnsertChild -+-----t~~

or
File the child, then:
msgEmbeddedWinRestoreChild +-----t~~
msgEmbeddedWinlnsertChiid --!--_-I ... ~

1 ;

i Get the pen offset from the i
: corner of the move/copy icon :

........ -----, msgEmbeddedWinGetPenOffset

Figure 8-11 Move/Copy Protocol Messages

151

Recursive Live Embedding of Applications

Supporting Traversal as a Slave

If your application is to support traversal as recommended by GO Corpora
tion, then you should define methods in your class to respond to clsTraverse
messages. Alternatively, you can subclass an existing class that already
handles clsTraverse messages. Fortunately, clsEmbeddedWin includes such
support, so making your application's view class a subclass of
clsEmbeddedWin accomplishes traversal processing support automatically.

Summary

This chapter has examined. one of the most important new ideas in PenPoint:
recursive live embedding of applications and documents. After examining
what this concept means and why it is important, we looked at embedding
from the user's perspective.

As we saw, embedding applications involves subclassing and using in
stances of clsEmbeddedWin as well as some aspects of clsApp. Embedded
applications create compound documents that can be viewed from the per
spectives of file system, process, or window relationships. You must be aware
of the need for traversal operations, which require a particular operation such
as spellchecking to operate across embedded documents created using
different applications.

To clarify the meaning and use of embedding, we examined the PenPoint
Notebook as an example of its implementation.

(

9
ImagePoint: Graphics and
Imaging System

PenPoint is based on a graphical user interface. Everything that appears on
the display of a computer running the PenPoint operating system is created
using graphics techniques. PenPoint uses these techniques to implement a
powerful graphical user interface tuned to the needs of the pen.

Because of the way graphics have been implemented in PenPoint, however,
graphically produced elements are more powerful and flexible than you may
be accustomed to seeing in older operating systems, even those with a strong
graphic orientation. For example, text is fully unified with all other graphics in
PenPoint, and all images can be scaled, rotated, translated, and used for both
screen display and printing. PenPoint graphics are most like PostScript, but
with a message-based API rather than a language-based API.

As you probably know, the basic common building block of all graphical
computer displays is the pixel. A pixel can be thought of as a single definable
location on the display, a dot of the smallest possible size that the system

153

154

The Power of PenPoint

hardware is capable of controlling. The word comes from the term "picture
element," which has long since fallen into disuse.

In this chapter, we look at PenPoint graphics first in overview, then from the
perspective of drawing contexts (a concept introduced in Chapter 7). With that
background, we can examine, in turn, the following graphics topics:

• the clipping and repainting of windows

• graphics primitives

• color
• dealing with prestored images

• fonts
• drawing text

• printing

Overview of Graphics in PenPoint

As we indicated in Chapter 7, all drawing in PenPoint takes place in a
window. However, in PenPoint, you don't send drawing messages directly to a
window. Instead, you send drawing messages to a special object called a
drawing context, as in Microsoft Windows. Drawing contexts render your
drawing messages in the window to which they are connected. The concept of
drawing contexts is crucial to PenPoint graphics and is discussed fully in the
next section.

To ensure that your drawing affects only that portion of the screen that is
under your control and within the borders of the target window, the system
enforces clipping.

Pen Point Drawing Primitives

PenPoint defines a number of messages for drawing specific kinds of
shapes. Each of the shapes and its associated message is described later in
this chapter, but a summary will help you understand the scope of PenPoint's
support for graphics.

155

ImagePoint: Graphics and Imaging System

Shapes in PenPoint come in two varieties: closed and open.
A closed shape is any shape that starts and ends at the same point, com

pletely enclosing an area. PenPoint supplies messages for drawing the follow
ing closed shapes:

• rectangles (including those with rounded corners)

• ellipses and circles

• polygons with an arbitrary number of sides

• sectors

• chords

An open shape is essentially a line. But PenPoint's definition of a line is quite
sophisticated, including messages to draw the following open (line) shapes:

• multiple-segment lines (polylines)

• Bezier curves

• arcs

PenPoint also allows you to fill the enclosed areas of closed shapes with a
pattern or solid color.

Painting and Repainting Windows

Drawing becomes visible to the user when your program paints in a window in
response to msgWinRepaint. To an application there is no distinction between
painting and repainting a window; the application cannot determine if this is
the first time it's being asked to repaint itself.

Depending on your application, yoU may find yourself continually repainting
all or a portion of a window(s) or only repainting when some relatively infre
quent and unpredictable event makes it necessary. In the first case, you may,
for example, be building an application in which the user is drawing, writing, or
typing information into a window. As each new stroke or character is received,
you will have to repaint at least that portion of the window in which the drawing
event occurred, or the user will not see the result of his or her actions.

156

The Power of PenPoint

Two events-user input and windowing activity-can result in some or all of
the pixels in your window becoming "dirty." When this happens, your program
must repaint the window.

PenPoint does not automatically remember the contents of your windows; it
is your responsibility to keep track of what your window is displaying and to
redraw to the window when necessary.

Role and Use of System Drawing Contexts

The real meat of graphics on a PenPoint system is the system drawing
context (more commonly called the SysDC, or the DC). From your perspective
as a designer of PenPoint applications, all drawing takes place by sending
messages to a DC. Figure 9-1 depicts this.

~ I

'--...~
~

" Drawing Context

Graphic Device

Figure 9·1 Bird's-Eye View of Graphics Arc~itecture

157

ImagePolnt: Graphics and Imaging System

A DC is always bound to one window at a time. You can change the window
to which a DC is connected so that you can draw similar pictures in multiple
windows, but at anyone time only a single window is bound to a DC. It should
be obvious to you, however, that if you bind a DC to a window, do some
drawing in it, then bind that DC to another window, the drawing you did in the
first window doesn't disappear. It simply won't be updated if you address any
new messages to the DC, because the drawing context is now drawing in a
different window.

As you undoubtedly have gathered by now, you send all drawing messages
to a DC. As we saw in Chapter 7, the reasons for this extra layer of message
processing in PenPoint have to do with memory efficiency and flexibility. A DC
entails a relatively large amount of overhead. In fact, it occupies about five
times as much memory as a window. Since PenPoint DCs allow windows to be
relatively lightweight, applications can use dozens or even hundreds of win
dows to construct and control their user interfaces without consuming too
much memory.

Creating a Drawing Context

Drawing contexts are instances of clsSysDrawCtx. You create a new DC the
same way you create any other object in PenPoint, that is, by sending
msgNewDefaults and then msgNew to the class.

A drawing context can be viewed from a programming perspective as a set
of values that describe the state of the environment in the window to which the
DC is attached. As you may imagine, this results in a fairly complex data
structure. PenPoint defines defaults for all these states. When you create a
new DC, it starts with these default values. Table 9-1 summarizes the elements
of a DC you may often want to modify. It also indicates the default value
assigned to these elements when you create a new DC.

158

The Power of Pen Point

Table 9-1 Important DC Elements and Their Defaults

Element

Units

Drawing mode

Plane mask

Line cap

Line join

Line thickness

Foreground color

Background color

Fill pattern

Line pattern

Font scale

Default font

Default Value and Meaning

Unit = point (1/72 of an inch)

Keep narrow lines visible

Don't draw into the acetate layer where pen ink is "dribbled"

Square off ends of lines

Use miters for line joins

One point

Black ink

White ink

White

Black

One unit

Unknown (no default)

While the listed default values for a DC are probably adequate for most cases,
you should expect to change one or more of these values fairly regularly. As we will
see in Appendix A, PenPoint defines messages that enable you to examine
and change each of these important values individually.

Binding a DC to a Window

To bind a drawing context to a particular window, you send the DC the
message msgDcSetWindow and pass it the ID of the window to which you
want to bind it. PenPoint returns the ID of the window, if any, with which the DC
was formerly associated.

You can also find out the ID of a window to which a DC is bound by sending
it msgOcGetWindow.

A DC must be bound to a window before most of its messages will have any
meaning, and a DC may be bound to only one window at a time. However, a
single window may be bound to multiple DCs, which you might use to create a
particularly complex picture.

159

ImagePoint: Graphics and Imaging System

Drawing with a DC

The process of drawing in a window with PenPoint is relatively simple. It
requires only two steps

1. Ensure that the graphics state is correct (that is, that the DC has all the right
values for the drawing you are about to do).

2. Send the DC one or more drawing messages to create shapes or text.

When the window to which the DC is bound is repainted, the drawing cre
ated by the messages you send will become visible to the user. If you need to
do so, you can make the window repaint by sending it the message
msgWinRepaint.

Storing DC Drawings

It is important to realize that when windows are filed, they don't store the
screen image displayed within their borders. They store just the information
necessary to re-create the window. There are three ways to store actual
window display contexts

• capture a bitmap of the window (a memory-intensive and device-dependent
approach)

• store application data structures from which you can regenerate the display
(usually the best way)

• store your image as a sequence of DC drawing instructions

Sequences of DC drawing messages can be stored in a compact, efficient,
and manageable way so that you can retrieve them later and even modify
them dynamically. To support this use of graphics, PenPoint defines a special
type of object called a picture segment, or PicSeg.

You can think of a PicSeg facility as a recording device that you insert
between your drawing commands and the DC. You create and bind a PicSeg
the same way you set up a DC. In fact, a PicSeg is a subclass of a DC. The

160

The Power of Pen Point

PicSeg remembers all drawing commands you issue. It stores each of these
commands in a special compressed format called a grafic. Each grafic in a
PicSeg contains information to reproduce a single drawing action. Grafics can
be individually manipulated so that the PicSeg's operations can be reordered
or modified without it actually drawing anything.

The PicSeg is an efficient way to store graphic information in the PenPoint
system. PicSegs also can serve as a convenient data structure for your use if
you are creating a drawing program.

In some ways, PicSegs correspond to the meta-files used in other graphics
systems.

Clipping and Repainting Windows

While Chapter 7 covers PenPoint windows in detail, some aspects of win
dow behavior are directly related to the drawing context with which they are
associated. These two types of behavior are clipping and repainting.

Clipping the Drawing Area

If you send a DC one or more drawing messages that result in the creation
of an image that extends beyond the boundaries of the selected window, the
DC draws only the part of the image that is inside the window. This is the most
obvious and common example of the process of clipping, and it happens
automatically.

As a rule, windows cannot draw within one another's boundaries. Such
behavior would be startling to the user, as welL~s difficult to manage. Since
the user is to a great extent in charge of what happens on the screen, the
ordering of windows is only partially under your control. The .drawing context
ensures that drawing will remain confined to the window to which it is bound.

Figure 9-2 depicts two situations in which clipping becomes an issue. In the
first, the target window has no embedded windows, but the user draws out-

161

ImagePoint: Graphics and Imaging System

side its borders. The dashed line portion of the drawing is not displayed.
Nevertheless, all drawings will be captured by PicSegs, even those that are
clipped. The right side of Figure 9-2 shows an "intruder" window overlapping
the window in which drawing is taking place. Note that here, clipping ensures
that the drawing of a continuous line does not disrupt the contents of the
overlapped (and perhaps embedded) windows.

/
./

/

Figure 9-2 Clipping in Two Situations

We saw in Chapter 7 that you can override this normally polite behavior of win
dows within the relationships of a family of windows (parent and children) so
that they share some common drawing area. If you do this and then draw into
a window whose visible area overlaps into a parent or sibling window, the DC
will behave accordingly, drawing in these other windows' boundaries.

There is another way you can alter the clipping region within which drawing
takes place. You can define a subset of your window's total area as the area
for drawing. If you do this, then all draw messages sent to the DC will be
clipped within that defined area.

Ultimately, however, all drawing takes place through a DC and appears
within a clip region that can be an entire window (the common situation), a
larger area (in the case of a family of windows that cooperate to permit such
behavior), or a portion of an entire window.

162

The Power of PenPoint

Repainting a Window

When part of your window gets dirty, it probably will need repainting. For
example, if another window overlaps your window and is moved by the user,
this dirties the previously overlapped portion of your window. Fortunately, you
need not keep careful track of the status of your window in this regard; Pen
Point will notify your window if it requires repainting.

When you receive a message (msgWinRepaint) indicating your window
needs repainting, you send your window msgBeginRepaint. Thereafter, all
drawing operations you perform on the window affect only the dirty region until
you send msgWinEndRepaint. This process of confining repainting to the area
that requires it makes the use of a multiple, overlapped window system more
efficient than it would be if every window completely repainted all its contents
any time any pixel needed repainting. It also reduces to an absolute minimum
any screen flicker or flash the user would see.

You can further control the repainting operation by sending an argument to
the window when you send msgWinBeginRepaint. This is sometimes important
if the drawing you are performing involves a significant amount of computa
tion, because it can accelerate the update process. Normally, however, you
simply don't worry about what portion of your window requires repainting; you
let PenPoint handle it.

It probably appears that repainting your entire window is never necessary or
appropriate unless all of its contents have been made dirty and require updat
ing. While that is generally true, it is not always the case. You can repaint your
window any time you need to without waiting for an instruction from the sys
tem. For instance, you would do this every time the data values or content of
your window changed and needed updating. There may be times when you
want to handle the repainting this way; PenPoint does not get in the way of
your desire to do so. You would simply send msgWinDirtyRect to the window,
followed by msgWinUpdate, msgWinBeginPaint, and msgWinEndPaint.

163

ImagePoint: Graphics and Imaging System

Graphics Primitives

As indicated previously, there are two categories of shapes for which Pen
Point defines primitives: open and closed. There are two other types of graph
ics primitives as well. One relates to displaying text and the other to copying
rectangles of bits. We will look at each of these categories of graphics primi
tives in turn.

Open Shape Primitives

PenPoint includes primitives for drawing lines, curves, and arcs.
You use msgDcDrwPolyline to draw aline that can consist of multiple line

segments. Each segment is a straight line joining two points on the display.
Figure 9-3 shows two sample lines that might be created with msgDcDrawPolyline.
The longer line consists of several shorter line segments, each of which is a
single straight line. The shorter line consists of a single straight line between
two points. In both cases, msgDcDrawPolyline takes as an argument a pointer
to an array containing the points through which the line is to be drawn, as well
as a number that defines the number of points in the array.

Bezier curves can be drawn with the message msgDcDrawBezier. This
command takes a pointer to an array of four points that act as control points
for the curve. Figure 9-4 shows a sample Bezier curve drawn with this command:

The third type of open shape for which PenPoint defines a graphics primitive
is the arc. As you can see from Figure 9-5, an arc is a portion of an ellipse. From
PenPoint's perspective, an arc is defined by a rectangle enclosing the ellipse
of which the curve is a part and the two points that form the end points of the
arc. The message msgOcOrawArcRays produces an arc like the one shown in
Figure 9-5. It takes a pointer to a structure called SYSDC_ARC_RAYS, which
defines the enclosing rectangle and the two points that delimit the arc.

164

The Power of Pen Point

~ __ ~_m"' ____ ' ___ m~_mmmm ___ '~'m_Q!~~J~,~J:~~~, _____ ", __ Wm'~m_'wmm'ww"'ww_:~~:'w
Document Edit Grid Order Options

, ... ,•... ' . ..!' '.'. " . , , .. '"' ; .. :' .;~ ","',
c·· .i .. { . . : .. .:. ..; ;, , ; ... ,. .: . .; .: . .;' .: .. .: . . : . .; .. :

.' '("":"'i
;' .'

"'"'
-.... .i

i::"':':

'"
ja'

, ,
i Ji i i / i

.14 .i .. i. 1.i .. i.i .. i.i .. i -L , ,
0/ I

j i Ii i i i I
,

'" !·:·~i-:·!···i· ''''''i''
)..i".i". i ... i i. "','" ,. ,. i·, •..... j •.. iii .: ... " , .. '"
. i . i . i . . '. .i,

,,, i··"'"
.... c'": ... ~
.... , .. ,"

;, ·i.·.·
....

.... ,

::~':iuj
. '~." ':". .

.. .; .:
'i' .;~

, .~ .. : .~. .,.;.

,"

~~iJi ~~ . ."
; .. : .. , ..

........
, ~ .. ~~~

.: .. .;
. i .. .:.

.... , c·· ,i .. .;.,:

, i , i , iii
. ".~

.i
, , , ,

"'" , , , , ,

Figure 9-3 msgDcDrawPolyline Sample Line Output

~ .. ~ .. r..~~.i.~.!;J. ... ~.~.p.~.r. (23 >
Docume nt Edit Grid Order Options

..i . .. i . . i , , i i.i' i, i i

.i .. .i.
i '" i

,\
\

'/ .. Ii!
v }

ii J / I
\ •... f .i .

...•..... , .. , ... ····· •. ·:-:·.::·::1:-:: •... ... \.. ,

, .
, , i

i .. .i .. i. .. ' . .i":'.i , , ,
iii i

. , ..•... '..! iii i

. \ •... ,... •: "'"tI

. ··0..········-;1 2.
- '~-I-. I

....

, .. ,.. 7: ::7. ... III

r ~
.. /..... ... :(::: i a

.\

, ..

: ' : i: ~
II)
Q..

Z
II)

:lE

Figure 9-4 msgDcDraw8ezier Sample Curve

165

ImagePoint: Graphics and Imaging System

Drawing Paper

Figure 9-5 msgDcDrawArcRays Sample Arc

Closed Shape Primitives

There are six basic PenPoint graphics primitives that produce closed
shapes, which may be filled with a pattern. More precisely, all closed shapes
in PenPoint are filled, but you can make them appear to be "hollow" by using a
transparent pattern as the fill pattern. There are also times when you want to
produce only the filled portion of the rectangle rather than the filled portion and
the line circumscribing the area. In those cases, you can set the width of the
line to zero.

Re'ctangles are produced with msgDcDrawRectangle. It takes a pointer to a
data structure that specifies the origin and size of the rectangle. Whether this
message produces a square-cornered rectangle or a round-cornered rectangle
depends on the setting of the value of the radius. Any value other than zero
produces some rounding at the corners of the rectangle.

166

The Power of PenPoint

Ellipses and circles (which are a type of ellipse) are drawn with
msgDcDrawEilipse. This message takes an argument that contains the rec
tangle within which the ellipse is drawn. If this rectangle is a square, then the
ellipse is a circle.

You can draw an arbitrarily shaped polygon (regular or irregular) by sending
the DC msgDcDrawPolygon. The argument to this message is identical in
structure to that used for msgDcDrawPolyline. The only difference is that this
structure defines an ending point that is equal to the starting point.

The message msgDcDrawSectorRays is similar to msgDcDrawArcRays
except that it encloses the arc by drawing lines from its defining points to the
center of the ellipse, creating an enclosed shape. This is a pie-wedge shape.
This message takes the same arguments as msgDcDrawArcRays.

A chord ray can be produced by sending the DC msgDcDrawChordRays
with the same argument set as you use with both msgDcDrawArcRays and
msgDcDrawSectorRays. A chord ray encloses the arc by drawing a line
between the two end points of the arc rather than from those points to the
center of the ellipse. Figure 9-6 depicts the differences among an arc, a sector
ray, and a chord ray using the same argument in all three cases.

Drawing Paper
NNW~NNN~~NN~~NN~~"N~~MNW~¥NN~~NN __ NN~~NN~_NNN __ NN_~NN"_NN~_

Document Edit Grid Order Options

Figure 9-6 Three Figures Produced with Same Arc Argument

167

ImagePolnt: Graphics and Imaging System

The last closed shape primitive is msgDcFiliWindow. It draws a rectangle
exactly the same size as the window to which the DC is bound. The enclosing
lines fall partly within and partly outside the window (see Figure 9-7). You will
most often use this message to erase everything inside a window. To draw a
bordered window, you will normally use clsBorder (see Chapter 10).

Figure 9-7 msgOcFiliWindow's Line Position

Text Primitive

Window
Border

Fill
Line

All text that appears on the screen of a Pen Point-based system is drawn
using a font. Recall that when we discussed the default contents of the DC at
initialization, we indicated that PenPoint does not supply an automatic font. If
you fail to set the font before attempting to draw text, your text will be drawn
using a default font.

The process of drawing text consists of four steps

1. loading the desired font with msgDcOpenFont

2. scaling the font with msgDcScaleFont

3. initializing SYSDC_ TEXT_OUTPUT

4. drawing the text with msgDcDrawText

168

The Power of Pen Point

With the font set, you can send the DC msgDcDrawText along with a pOinter
to a structure called SYSDC_TEXT _OUTPUT. This structure is defined in detail
in the final section of this chapter, but for now you simply need to know that it
contains styling information, a pointer to the string itself, the length of the
string, the starting position for the string, and other information that helps
PenPoint draw the text as you want it.

We will have much more to say about fonts and about the contents and use
of a SYSDC_ TEXT _OUTPUT structure in Appendix A.

CopyRect and CopyPixels Operations

ImagePoint provides two types of pixel copy operations which other
systems sometimes call "bit blits." You may move the rectangular pixel im
ages between image devices with msgDCCopyPixels and within a window
with msgWinCopyRect.

Image devices are in-memory windows into which you can render your
drawing operation. The resulting image can then be copied nearly instanta
neously from memory to the actual screen with msgDCCopyPixels. This tech
nique is, in essence, a method of caching the actual pixel image. If you are
displaying an image repeatedly this can be a useful technique for speeding its
display.

When you need to relocate a portion of your on-screen image to a different
position on the screen, use msgWinCopyRect. This technique is most often
used when your window has been repositioned on the screen due to the user
dragging the window or scrolling its contents. Rather than completely
redrawing your window, it is most efficient to copy the window contents from
one place on the screen to another. ImagePoint's msgWinCopyRect not only
performs the underlying "bit blit" operation of copying the pixels, but will also
handle all window regions from the source. You can, therefore, think of
msgWinCopoyRect as a window-aware bit-blit operation.

169

ImagePoint: Graphics and Imaging System

Color Graphics Interface

PenPoint supports the use of color on hardware platforms capable of dis
playing graphics in color. In fact, it treats even monochrome screens as color
capable by simply treating black, white, and optional shades of gray as if they
were colors (which, of course, they are, even though we are accustomed to
thinking of-colors as being everything that isn't black or white or gray).

The PenPoint color metaphor uses the concepts of foreground and back
ground. Most drawing takes place in the foreground as the pen creates lines
using a color that contrasts with the color of the background and therefore
produces visible output. It is possible that a single drawing operation can use
both the foreground and background colors at the same time.

As you build PenPoint applications, you can rest assured that all platforms
on which your programs will run support a minimum of four colors. Translation
of programs that use more than four colors to appropriate shading on a four
color system is handled automatically by PenPoint. If you follow the instruc
tions for handling color in your programs, they will run suitably on all PenPoint
based systems.

You can describe and set color values in two ways. You can use a palette of
colors and index into it for the color you wish to use, or you can use RGB (red,
green, blue) color combinations. We strongly recommend you use the latter
method, for the following reasons:

• It is more compatible with printer support. If you use a palette and index into
it, and the user connects to a printer that doesn't recognize the palette,
output is likely to be less than acceptable.

• As we indicated earlier, PenPoint automatically handles the translation from
RGB color values to appropriate and usable colors on a minimum-color
system. PenPoint even dithers the colors in a color window before sending
its contents to a printer that produces only gray-scale output.

• You can achieve device independence not only at the printer level, but also
with various displays that might be connected to a PenPoint-based system.

If you use RGB values for your colors, you will use numbers from 0 to 255 to
define the brightness of each RGB component.

170

The Power of PenPoint

Dealing with Prestored Images

By nature of their design and intended uses, many PenPoint-based com
puter systems must deal with a wide range of images. This includes not only
images that are produced by the system on which PenPoint is running and by'
other PenPoint systems (generally using PicSegs as described previously) but
also images produced in other standard formats as well as those that are for
some reason incompatible with PenPoint's graphics operations.

An example of the latter is the digitized image of a facsimile that might be
received via a fax modem built into a Pen Point-based computer system. Its
resolution, aspect ratio, and other characteristics may make it impossible to
work with directly as text on the PenPoint-based computer system.

But PenPoint includes powerful high-level support for dealing with such
images, in the form of its Sampled Image Operator (SIO). These images are
pixel-based. Even relatively straightforward translations (such as a resolution
conversion that converts every pixel to four to increase its visibility on an
incompatible platform) tend not to work very well. To display a pixel-oriented
image at anything other than its original resolution and density requires image
processing. PenPoint's SIO handles simulated analog image processing.

SIO performs relatively sophisticated mapping of source pixels into destina
tion pixels and source gray levels into destination gray levels. It also supports
run-length-compressed sources and allows easy scaling and rotation of pixel
based images.

Obviously, such pixel-based images are not editable in the same way as
images constructed from PenPoint's graphics routines. However, you can
design PenPoint applications that have an effect similar to editing. It is pos
sible, for example, to simulate document markup with a prestored image by
capturing and storing user ink separately and just OR-ing it onto the screen.

Fonts

PenPoint supports a sophisticated font model. But fonts can be extremely
memory-intensive, and on a pen-based computer that relies on memory for
most of its active storage, the system must find ways around this problem.

171

ImagePoint: Graphics and Imaging System

PenPoint addresses this problem in two ways. First, it synthesizes some font
attributes to save memory. For example, rather than store a bold version of a
font, PenPoint's DC defines a flag that the system uses to underline text as if it
were a separate font. Second, PenPoint stores fonts as outlines, which are far more
memory-efficient than the alternative bitmapped images of the font characters.

Using outline fonts has another distinct advantage. The outlines are easily
scalable to any point size, which fits nicely with the fundamental graphics
concept in PenPoint that everything is scalable. Because ImagePoint can
render fonts in a wide range of point sizes, even PenPoint's system user
interface takes advantage of scalable fonts by allowing the user to choose the
size of the system-wide PenPoint font.

When a font is specified in a DC, PenPoint will always find the closest pos
sible match to that font. Using font metrics described later in this section,
Pen Point interprets your font request and determines which available font
comes closest to matching those metrics.

If the system has a bitmapped font of the same name and/or 10 as the font
requested, it will use that font. Otherwise, it will examine its outline font library
for the best match, transforming and simulating attributes as necessary.

All fonts have standard 16-bit IDs that are registered with GO Corporation
and are valid on all PenPoint-based computer systems. Thus, moving applica
tions from one system to another should not result in font display problems.

Table 9-2 summarizes the attributes of a font that describe its appearance in
terms that PenPoint can understand in its efforts to match a font specification.

Table 9-2 Font Attributes

Attribute

Typeface

Character weight

Aspect

Italic

Description

Name of the family to which the font belongs (Roman, Old
English, and so forth)

Bold, normal, light, extra-bold, and so forth

Condensed, normal, or extended

Indication whether or not font is italicized

172

The Power of Pen Point

Note that the size of the character is not a font attribute. In modern typogra
phy it is understood, for example, that Helvetica is a different font from Helvetica
Bold or Helvetica Bold Condensed, but 24-point Helvetica and 12-point Helvetica
are the same font, with different character sizes.

Font attributes are stored, along with a great deal of other information, in a
structure called SYSOC_FONT _SPEC. One of the fields in this structure defines
the group to which the font belongs. In PenPoint, a group is a broad categoriza
tion that describes whether the font looks more like newspaper headlines, type
set in a book, handwriting, or other basic types of font "looks." If you want to
use the system default font, you can define this group as sysOcGroupOefault.
In that case, PenPoint uses the current system font.

Opening a Font

Since, as pointed out in the previous section, all fonts have unique 16-bit
identifiers, you might expect that opening a font would be a simple matter of
passing that identifier as a parameter in a message to open that font. How
ever, that simplistic approach would ignore the probability that the user of a
particular system may never have installed the font in question or may have
removed it for some reason. As a result, it is not sufficient simply to supply the
10 of the font; you must also define its font attributes (see Table 9-2).

Once you have set up the font attributes correctly, you can open the font with
msgOcOpenFont. PenPoint then uses the font whose 10 you provide, if it has it
available. If not, it uses the group to find the font that is closest to your request.

Because PenPoint's font system is flexible in matching font requests and
b~cause PenPoint can synthesize certain font attributes, both users and program
mers are freed from being concerned with font management and determining
exactly what fonts are currently loaded. For example, if you load a font that is
not italic but specify in its font-attributes setting that it should be italicized,
PenPoint will synthetically italicize the font as it opens it. The result is that the
programmer should ask for the desired font; PenPoint will do the right thing.

173

ImagePoint: Graphics and Imaging System

Font Metrics and Character Geometry

Quite often when you are drawing text with a font, you need some informa
tion about the font. For example, the width of spaces differs from font to font
and in some situations you may need to know precisely how wide a space is in
a specific font. Similarly, the height of ascenders and the length of descenders
can become important in vertically spacing text.

Such font information is stored in the structure SYSDC_FONT _METRICS,
which is described in detail in Appendix A. You can retrieve the values in this
structure by sending your DC the message msgDcGetFontMetrics.

Drawing Text

As you already know, you draw text in PenPoint with the message
msgDcDrawText. This section provides additional details about the process of
drawing text and how PenPoint handles it.

All of the text you draw in a window is drawn using the current foreground
color. Note that you cannot pattern-fill text without appropriately setting the
foreground color. Because all text you draw is simply more graphics content
for the window, it unites with the rest of the images in the window and therefore
will scale and rotate along with the rest of your drawing.

When you send msgDcDrawText, you supply the pointer to a
SYSDC_ TEXT _OUTPUT structure. While all characters appear on the display
as bitmapped images, PenPoint actually stores most fonts in outline form. Font
outlines are superior to bitmapped fonts because outlines are more device
independent and compact for larger point sizes.

When PenPoint needs to display a character in a particular font, it looks up
the character in an internal bitmap character cache. If the character is
present, it is copied to the screen. If it is not present, a fault occurs and Pen
Point will render the requested character into the bitmap character cache. The
rendering logic uses an installed font, which can be either in outline form (most
common) or bitmap (typically for very small point sizes). If the installed font is
in outline form, the requested character is rasterized as an actual bitmap at
the requested point size. Characters are rendered into the cache with all
attributes (such as weight and aspect ratio) and rotation.

174

The Power of Pen Point

Text Calculations

You can control some aspects of the way text is displayed in PenPoint by
performing certain calculations. PenPoint provides a number of messages that
permit you to gain access to information about the font and text you are using
and to perform useful calculations on those results. For example, you may
want to customize the horizontal spacing to justify a line. Since information
such as the width of characters in the font is available to you, this is relatively
straightforward.

Another calculation you may need to perform is determining the length of
the text to be displayed. Since it tends to vary with the font and size of text in
use, PenPoint provides messages that help you calculate this value.

Printing

Application printing comes almost for free in PenPoint. The ImagePoint
imaging model can be used by the application to print as well as to display to
the screen. Since there's a single API used to render to both screen and
printers, an application need only write display and layout code once.

Printed pages are collections of windows. Therefore, the printing process
essentially consists of your application displaying itself to a different image
device (a printer image device that PenPoint provides to you). All UI Toolkit
components (see Chapter 2) print nicely, so you can use them freely at print
time as well as on the screen (for example, if you embed a button in your
application data that you are printing, you needn't worry that it might not print
correctly).

PenPoint handles the user interface for printing and pagination issues. The
Document menu for every application contains standard Print and Print Setup
commands which bring up Option Sheets. The print sheet controls print-time
settings such as which printer to use, number of copies, and the like. The Print
Setup sheet controls page size, orientation, headers, and footers.

Under PenPoint, print commands may be given at any time, even if there is
not printer connected to the PenPoint machine directly or through a network or

175

ImagePoint: Graphics and Imaging System

pc. PenPoint uses the Out Box to defer printing operations (see Chapter 16 for
more information on the Out Box). The Print command copies the document
into the Out Box.

When the targeted printer is available, six things occur

• PenPoint creates an image device for that printer (recall that image devices
are the object onto which ImagePoint (SysDC) renders graphics) and
creates a root window on this image device.

• The document in the Out Box receives a msgAppOpen, with one of the
message's parameters set to indicate that the application is being opened
for printing.

• The printer image device root window is laid out with the optional headers
and footers and with the application's first page of data filling the bulk of the
page. This root window is then dirtied to cause a msgWinBeginRepaint,
which, in turn, causes the display to the printer by the application.

• If a bitmap-oriented printer (such as dot matrix) is being used, the fully
rendered page image is then sent to the printer in bands. If a more intelli
gent printer is being used, ImagePoint downloads its outline fonts into the
printer and uses the printer's imaging engine to render most ImagePoint
primitives.

• The page layout and print process repeats for as many pages as the appli
cation has data to print.

• When the print job is successfully concluded, the Out Box deletes its copy
of the document.

By default, the Application Framework prints a document exactly as it
appears on the screen. For many applications, this is all that's necessary.
Other applications, however, might want to format differently for the printer
than for the screen. Report generators, spreadsheets and word processors
are good examples of this class of application. Such applications should
check their response to msgAppOpen and use print-specific formatting and
layout logic when they've been opened to print.

176

The Power of PenPoint

Summary

This chapter has examined ImagePoint, the graphical heart of PenPoint. It
explained that graphics in PenPoint involve the use of an object called a
drawing context, or DC. All drawing messages are sent to this object rather
than directly to the window or screen in which drawing takes place. Your
application must create these DCs, bind them to windows, draw with them,
and, under some circumstances, file the drawings they create.

PenPoint windows support clipping, to ensure that drawing stays within
appropriate borders, and painting/repainting cycles to minimize screen flicker
during refresh of window contents as windows are moved, resized, created,
opened, closed, and changed.

There are several graphics primitives in ImagePoint, including those that
create open and closed shapes, a text primitive, and image movement opera
tions. Color graphics and prestored images can also be manipulated within
ImagePoint.

ImagePoint supports a sophisticated font model that adapts to the needs of
a pen-based computer that relies on memory for most of its active storage.

Drawing text and printing are also parts of the ImagePoint environment.

10
The User Interface Toolkit

The User Interface Toolkit has the largest and most complex application
programming interface (API) in the PenPoint Software Developer's Kit. It
encompasses more than a dozen classes and hundreds of messages.

Broadly speaking, the User Interface Toolkit (which we'll refer to variously as
the UI Toolkit or simply the Toolkit) has one main purpose: to help you con
struct the consistent, easy-to-use interfaces that users of PenPoint-based
notebook computers will come to expect. In Chapter 7, we touched briefly on
how to layout a window. In this chapter, you'll see all the various items that
can go into a window and how PenPoint assists you in laying out windows
quickly and easily while allowing you to create visually pleasing interfaces.

The UI Toolkit: An Overview

The basic principle at work in the PenPoint user interface is that all of the ele
ments that appear in a window can be (and usually are) themselves windows .

. Recall from Chapter 7 our discussion of parent and child window hierarchies. All
the UI Toolkit-based design elements that you place into a client window of your
application will be child windows to that window.

Laying out a window involves arranging these windows in such a way that
when you display the window, all its child windows appear and are usable in

177

178

The Power of Pen Point

the way you intend and the way the user expects. Because some of the child
windows in your application may also contain child windows, you can appreci
ate the complexity that would be involved in displaying a window if you had to
handle all of these windows individually. PenPoint's UI Toolkit supports you so
that you need only provide high-level directives that arrange the windows and
then tell the parent window to lay itself out. The system takes care of the rest of
the work for you, including the recursion involved in having child windows first
layout their child windows, and so on, arbitrarily deep into the tree hierarchy.

At the top level of the user interface classes are four basic categories or groups
of classes with which you need to be concerned: border classes, layout classes,
message dispatching classes, and presentation/interaction behavior classes .

. Borders around a window are handled by clsBorder, which supports all of
the many border styles defined by PenPoint.

You'll see that two related classes, clsTableLayout and clsCustomLayout,
provide you with the tools for virtual automatic layout of your windows. These
classes enable you to create windows as complex as your application needs
(and your user can deal with) without being concerned about the complica
tions of displaying such a window.

User interface events that take place within the elements of a PenPoint
application's window are filtered and processed using messages defined in
clsControl. This class plays a key role in the entire construction and manage
ment of a user interface.

The display of and interaction with the various types of controls are handled
through clsLabel.

You can nest controls inside controls, enabling you to create arbitrarily robust
interfaces from a relatively small number of types of controls. Controls are often
collected in a Toolkit Table, a concept that is so central to PenPoint that it has its
own class (clsTkTable). This approach facilitates your construction of interface
components that contain many controls but that can be treated as an integral whole
for many programming and user interface purposes.

All UI components can be filed using the same techniques that we dis
cussed in Chapter 7 for filing other types of windows. Once again, the consis
tency of the PenPoint deSign means that there is less for you to learn about
how to get things done so you can spend more time achieving your program's
objectives.

Figure 10-1 is a class diagram for the UI Toolkit.

179

The User Interface Toolkit

Figure 10-1 Class Diagram for User Interface Toolkit

Automatic Layout

The automatic layout of the user interface through layout windows is a major
point of differentiation between PenPoint and traditional operating systems.
Chapter 7 discusses this subject from a broad perspective. This chapter focuses
on more of the implementation details of the layout process in PenPoint.

PenPoint provides both tabular and custom window layout support. It does
this by means of two separate but related classes, clsTableLayout and
clsCustomLayout. Both are descendants of clsBorder, as you can see in
Figure 10-1. As their names indicate, clsTableLayout defines messages that

. enable you to layout a window in a tabular form (see Figure 10-2 for an
example of such a layout), while clsCustomLayout permits you to define an
irregular layout. In both cases, you define how the parent window should lay
out its child windows; the difference lies in the amount and kind of parametric
data you supply to PenPoint.

180

The Power of Pen Point

Warning Beep:

I
On

./ Off

./ I Allowed
Not Allowed

Floating Documents:

./ I Allowed
Not Allowed

Zooming Documents:

I
Ves

./ No
Auto Shut Off

Figure 10-2 Sample Table Layout

If you are laying out a tabular window, you define the number of rows and
columns, the height of each row, and the width of each column. You can also
instruct clsTableLayout to adjust the size of each column to fit its members.
This means you can specify layouts such as

• three rows by two columns

• ten-unit-tall rows, as many columns wide as will fit, with all columns as wide
as the widest entry in each

• two columns of menu buttons sized so that all buttons in each column are
the width of the widest button in the column

Menus are simple table layout windows that arrange their child windows
(menu buttons) in a row (as in the case of the menu bar across the top of most
main windows) or in columns (as in the case of the pull-down menus).

When you define custom layouts using clsCustomLayout, you must supply a
layout description for each child window you insert into the parent window

181

The User Interface Toolkit

handling the layout. This description provides the parent window with a set of
constraints for each child window. These constraints define such things as

• the x-y coordinate position of the child window

• the width and height of the child window

• an indication of the object to which relative values are to be calculated (for
example, whether the x-y position is relative to the edge of the window or is
an absolute position)

Frames are good examples of custom layout windows in PenPoint. They
have a non-tabular appearance.

Types of UI Components

Earlier in this chapter, we divided the UI Toolkit classes into four groups, or
categories. As we move into a deeper examination of the Toolkit and its con
tents, we will deal with twelve types of controls

• labels

• buttons

• menu buttons and menus

• list boxes

• scroll bars

• fields

• notes

• frames

• frame decorations

• Option Sheets

• icons

• Toolkit Tables

182

The Power of Pen Point

We will discuss each type of control in the order in which it is listed, except
that we discuss frames and frame decorations in the same section because of
their close relationship. But first we will discuss types of behavior that are
common to all of these types of control.

Common Control Behavior

PenPoint controls are all created in nearly identical ways. In addition, most
of them exhibit notification and preview behavior, which we consider together
as responsive behaviors.

Creating Controls

All controls in a PenPoint application are instances of one of the subclasses
of clsControl. As you can see from ,Figure 10-1, clsControl ultimately descends
from a number of parent classes, including clsGWin, the class where windows
that respond to gestures are defined. By extension, then, all controls respond
to gestures by the user.

Controls respond to user input, in general terms, by sending themselves
messages. You implement behavior for these messages that describes how
you want the application to respond when the user activates a control with a
gesture. Different controls respond to different gestures. For example, while
you would expect buttons to respond to the tap gesture, some (such as the
pop-up choice) also respond to flick gestures.

To create a control, you store descriptive information in two data structures,
CONTROL_METRICS and CONTROL_STYLE. The former defines the control's
client (that is, the object that will receive all notifications from the control when
something, such as a gesture, causes it to provide such notification), and the
latter defines the appearance and behavior of the control.

183

The User Interface Toolkit

Once you have defined these data structures for a particular control you
want to create, you create an instance the same way you create all other
PenPoint objects, that is, by sending msgNewDefaults followed by msgNew to
the class you want to instantiate.

Responsive Behaviors

Each control can have only one client to which it reports user interaction
taking place within its borders. The end result of the user interacting with a
control is usually, but not always, an action-taking command. For example, if
the user taps on a button indicating a desire to quit your application and
you've defined msgMyAppQuit, that message is sent when the user activates
the appropriate button.

This interaction is more complex than it sounds. Figure 10-3 shows the
broad outline of the processing that takes place when the user interacts with a
control.

Notice that when the user selects a control (by tapping or gesturing on the
control and thereby creating a msgPenDown event) the control first enters a
preview mode. Different controls respond to this mode in different ways. For
example, most buttons simply invert themselves so that they provide the user
with some visual feedback that they have been selected. Toggles may turn a
checkmark or other decoration on or off, and scrollbars respond by inverting
their scroll handles. We will describe the preview behavior engaged in by
each control when we discuss the individual controls later in the chapter.

184

The Power of Pen Point

User selects
control

Control enters
preview mode

User accepts previous
condition or action

Control notifies client
of user request

Figure 10-3 Interactive Process in Control

Labels

Labels ar~ the simplest of controls. They display text strings or windows.
Labels do not exhibit notification or preview behavior; they are passive design
elements.

In the PenPoint class hierarchy, however, buttons, menu buttons, and frame
title bars are all descendants of clsLabel. All these subclasses implement
some notification and preview behavior; we will discuss those behaviors when
we describe each of these types of control later in the chapter.

Labels can contain text or child windows as their visible "label." A child
window might appear, for example, in a print Options Sheet to ask the user to
enter the starting and ending page numbers to print. In that case, the "From _
To _" construct is a label with a Toolkit Table as a child window. The Toolkit
Table comprises the two blanks the user must fill in.

185

The User Interface Toolkit

The LABEL_METRICS structure provides the label's string or, if it is a child
window, its window UID. It also includes information about the font to be used,
the scale at which to draw the label, and the number of rows and columns in
the label. Part of LABEL_METRICS is the LABEL_STYLE structure, which
defines such parameters as

• whether the label is a string or a window

• alignment

• rotation

• text style (underline, strike-through, and so forth)

• decoration, if any

• method for determining number of rows and columns in the label

• style of boxes around label characters, if any

• word wrap

• whether the label's text is selectable

If a label's contents are a text string, the only behavior it exhibits relates to
its need to lay itself out in a parent window. You can define whether the label is
to have a constant size, a scaled size, or an application-controlled size that
grows and shrinks as needed.

If a label is defined to have a child window, clsLabel merely inserts the
window as a child of the label. From that point, the label is treated like any
other child window for layout and repainting.

Buttons

A button is an instance of clsButton, a descendant class of clsLabel. You
can think of a button as a label that responds to user activation.

There are three basic types of buttons in PenPoint, differentiated by how
their on and off condition is changed

186

The Power of Pen Point

• Push buttons are momentary switch buttons whose value is changed from
Off to On when they are activated and back to Off when they are released.
Goto buttons are examples of this type of button (see Figure 10-4).

• Toggles are contact switch buttons whose value changes from Off to On
and back again with each push. Checkboxes generally are toggles, but so
are many other kinds of buttons. Figure 10-4 shows a collection of related
toggles decorated with check marks.

• Lock-on buttons are turned on when they are pushed but cannot be turned
off by pushing on them again. Many choices in Option Sheets are lock-on
buttons. This type of button is used when you must have a value for a
particular setting, but only one value is permitted. Figure 10-4 shows three
lock-on buttons in a group forming a typical setting area in an Option Sheet.

(Introduction)

Momentary
Switches

3
3

3

Bold
Italic
Small
Caps
Strike-thru
Underline
Heavy
Underline
Hidden

Toggles

Figure 10-4 Three Types of Pen Point Buttons

Lock-on
Buttons

The BUnON_METRICS structure contains the message to be sent when the
button is activated as well as possible arguments to accompany the message.

BUnON_STYLE describes the following aspects of a button's appearance
and behavior, among others:

187

The User Interface Toolkit

• contact type (that is, push button, toggle, or lock-on, as previously
described)

• how the value of a button is displayed

• the button's On-Off state

• type of message sending and handling expected

• button manager (none, parent, or client)

What constitutes "activation" of a button is directly dependent on button
type. A push button, for example, is not activated (although it is previewed) if
the user taps on it and then moves the pen away from the button while keep
ing the pen on the surface of the display. This allows users to change their
minds about activating a button. Toggles and lock-on buttons, however, are
activated when they are tapped. Actions dictated by such buttons usually take
effect later rather than immediately; thus, users can easily change their minds
by "undoing" the choice either by tapping on the button again in the case of a
toggle or by selecting another alternative in the set of lock-on buttons.

Menu Buttons and Menus

A menu button is an instance of clsMenuButton, which is a descendant
class of clsButton. When a menu button is activated, it receives a message
and can take an action. Most top-level menu buttons display a pop-up menu.
The menu, in turn, can contain other menu buttons, non-menu buttons (see
previous section) or, less frequently, almost any other type of control.

Menu buttons are toggle switches. When you tap on a menu button, it turns
on and displays its pop-up menu. It stays active until the pop-up menu is
dismissed, which happens when the user either makes a choice from the
menu that does not lead to another hierarchical pop-up menu or taps on the
open menu's button or anywhere outside the menu. (See Figure 10-5.)

As you can see, menu buttons and menus are closely related. But they don't
have all behavior in common, so we will discuss them separately.

188

The Power of Pen Point

t/ I Icon
Button

Type
Date
Size

Tab Box

Figure 10-5 Typical Activated Menu Button

Menu Buttons

The metrics for a menu button are quite straightforward. It has the usual
style fields (which we'll discuss shortly) and a single other field, which contains
a pointer to the submenu if one is associated with the button. Most menu
buttons do not have submenus.

The BUTTON_STYLE structure defines four main characteristics of a button
and its submenu

• type of submenu (pull-down, pull-right, pop-up, or none)

• whether the submenu's width is determined dynamically

• whether the submenu contents are provided dynamically by the menu
button's client

• whether the submenu should dynamically determine the activation status of
its controls

There is one special type of pop-up menu called a pop-up choice menu
button. This kind of button leaves its present value displayed when its sub
menu is closed. It also has another interesting behavior: The user can scroll
through the available options without actually opening the submenu of choices
by using scrolling gestures on the button.

189

The User Interface Toolkit

Menus

A PenPoint menu is an instance of clsMenu, which in turn is a descendant of
clsTkTable. (We discuss Toolkit Tables later in the chapter.) This is because menus
are really tabular tables (see previous discussion about automatic layout), generally
one column wide or one row deep, depending on whether the menu is vertical or
horizontal. The menu across the top of most PenPoint windows is a horizontal menu
that is actually a Toolkit Table one row deep and a variable number of columns
wide. The pop-up menus that its buttons display generally are vertical Toolkit
Tables one column wide and a variable number of rows deep.

Built-in behavior in clsMenu automatically positions pop-up menus optimally,
taking into account where they appear on the display, the number of entries
they contain, and other factors such as physical screen size. Figure 10-6, for
example, shows how PenPoint positions the pop-up menu in the Preferences
application differently, depending on the current choice.

The structure MENU_METRICS contains only style fields and in-line storage
for a MENU~BUTTON_METRICS structure. The contents of the menu are
specified in a TK_TABLE_ENTRY array, which we will discuss when we look at
Toolkit Tables later in the chapter.

Scrollbars

Pen Point scroll bars have two primary purposes: to permit users to change
the portion of a document they are viewing when that document is larger than
the window and to allow users to see at a glance approximately how far into
the document their current view is positioned. Together with the window itself,
scrollbars give the user the illusion of moving the window around to look at
different portions of the document.

190

The Power of Pen Point

PenPoint
Handwriting
Pen
Fonts & Layout
Time
Date

~ Safeguards

Floating Docu Timeouts
Memory Usage d

Zoom1ng Documen

Auto Shut Off

Figure 10-6 How clsMenu Positions Pop-Up Choices Optimally

Scrollbars are the only type of control in PenPoint that descend directly from
clsControl rather than through clsLabel.

Figure 10-7 shows a typical vertical scrollbar in PenPoint and its constituent
parts. The buttons at the top and bottom of the scrollbar are momentary switch
buttons. The dotted line appears just inside the document frame. The thicker
part of that line is called the scroll handle; it indicates the approximate location
in the total document (the nearer the end of the document you are positioned,
the nearer the bottom of the display the scroll handle appears).

Generally, the client of a scrollbar is the document that is being scrolled.
When the user interacts with the scrollbar, the scrollbar sends a message to
the document indicating that the user has requested a change in the view. The
document responds by scrolling to show the appropriate new contents.

PenPoint scroll bars support a process known as normalization. You can
avoid having the user's scrolling process clip off the tops or bottoms of char
acters or small portions of other kinds of images. This is handled by the simple

191

The User Interface Toolkit

expedient of permitting the client document to send back to the scroll bar an
offset value that is different from the offset value sent to the document by the
scrollbar. This can permit the scrollbars to fine-tune their position and make
scrolling more aesthetically pleasing to the user.

- momentary switch

- scroll handle

- momentary switch

Figure 10-7 Vertical Scrollbar and Its Components

You can support scrolling in your application's documents without display
ing scrollbars. If you use clsScrollWin in your application to handle scrolling,
the user can employ any of the gestures PenPoint recognizes as scrolling
commands. The gestures are all flicks. Your application defines how to re
spond to each flick or multi-flick gesture, although GO Corporation's PenPoint
User Interface Style Guidelines suggest that a single flick always reposition the
object on the line on which the gesture occurs. Typical uses of these gestures
are as follows:

192

The Power of Pen Point

• single flick repositions the line on which it starts (moving it to the top of the
screen if the user flicks up, to the bottom of the screen if the user flicks down)

• double flick moves to the top of the document if the user flicks up, to the
bottom if the user flicks down

• triple and quadruple flicks are available for application-specific interpretation

PenPoint also recognizes a quadruple-flick gesture for applications that may
involve more complex scrolling (spreadsheets, for example). These gestures
can be made on the scrollbar or in the document itself, assuming of course
that the document window has as an ancestor clsGWin so that it recognizes
gestures. Even if the gestures are performed on the document window, the
resulting scrolling message comes from the scrollbar, which greatly simplifies
application coding.

You may often want to implement scrolling in your document by creating an
instance of clsScrollWin, a descendant of clsBorder. This type of window is
useful when the scrolling your application needs is relatively straightforward,
requiring simply a shift in the portion of a single window the user is viewing.
Although it can't handle line-by-line scrolling without your application's help, it
can respond to page .. up and page-down scrolling with no intervention on your part.

If you use an instance of clsScrollWin to implement scrolling, this instance inserts
your window as its child, repositions your window in response to scrolling mes
sages, and isolates your window from the scroll bar interface. All you have to do is
repaint when you're requested to do so, and scrolling is automatic.

193

The User Interface Toolkit

List Boxes

A list box is a scrolling window that can contain a large number of entries. It
is most often used to provide the user with a way to choose from among many
options. In fact, one type of choice the user often makes from such a window
is a font. This need is so frequent in PenPoint that the system de~ines a special
class for a list box that automatically handles font display and selection.

List boxes descend from clsScrollWin. They differ from instances of their
parent class in that you need not supply the client window to be scrolled;
PenPoint maintains that window for you, creating it from the choices you
provide.

List boxes in most operating systems restrict their contents to strings.
PenPoint's list box is a list of windows. Of course, windows can also display
strings. But the windows could display any object the application wants to
place in a list box. In fact, each element in the list can be of a different type
and a different height.

Window List Boxes

Window list boxes contain a list of windows. Since windows can contain
virtually any object or application, window list boxes can contain a list of any
kind of object. Recognizing that lists of such object windows consume a large
amount of memory, you can see how window list boxes can be great memory
savers by dynamically updating during scrolling. In the process, they release
memory no longer needed by windows that have scrolled outside the
window's borders. Thus, you need not keep a separate window around for
each of several dozen choices (for example, if you're only going to show the
user a window with six choices at a time).

Each item in a window list box is called a list box entry.
The contents of the LIST _BOX_METRICS structure describe the client to

which the list box sends messages, the total number of entries in the list, and
the number of entries to be shown at one time in the window. Unlike most other
controls, you don't supply the contents of the list box when you create it; it
gets that information from your application dynamically.

194

The Power of PenPoint

Because a list box is not a layout window, you have little control over and no
involvement in the appearance of the list box. The LIST _BOX_STYLE data
structure contains only information about how the list box should be filed.

String List Boxes

A string list box is a much simpler type of control than a list box, from which
it inherits directly. Only text strings can be placed into such a list box.

The data structure STRLB_METRICS contains an initial value, if the string
has one. The STRLB_STYLE structure defines the overall behavior of the list
box as well as how entries are displayed when they have been selected.

The behavior of a string list box can be set up so that it acts as any of the
following types of controls:

• toggle table (zero, one, or more entries can be selected)

• choice (zero or one entry can be selected)

• choice (only one entry always selected)

You can instruct the system to highlight (invert) or decorate selected items
(for example, with a check mark) in a string list box.

Font List Box

A special use of the string list box described in the previous section is to
display strings that are the names of the fonts known to the system (that is,
currently installed fonts). This is a simple class to use; you don't have to
respond to any messages.

The FONTLB_METRICS data structure is the same as that for a string list
box except that it adds a style field specifically for font list boxes. The only
field in FONTLB_STYLE is a pruning control that determines whether your user
will see all fonts or whether you will remove from the list of fonts all from the
same family. You may also remove symbol fonts from the display.

195

The User Interface Toolkit

Fields

A field is an instance of clsField, which in turn is a subclass of clsLabel.
Fields are editable text fields that accept handwritten input from the user. The
user enters text into a field either by writing directly into the field on the display
or by popping up a special pad containing character boxes. Pads have
specialized editing capabilities that fields lack. Because fields involve user
input through handwriting, they are discussed more fully in Chapter 13.

FIELD_METRICS contains the name of the translator or template to be used
for handwriting recognition in the field, as well as the maximum length of the
text, in characters. FIELD_STYLE describes, among other things

• type of edit field (in-line, overwrite, or pop-up; see following paragraph)

• style of pop-up pad (character box or edit box)

• capitalization information

• whether translation is delayed until the user explicitly requests it

• how and when client notification occurs

• validation information

There are three types of edit fields. In-line fields permit the user to write
directly into the document and appear as blank areas, generally labeled so it
is clear that they are intended for input. The heading portion of a memo is an
example where such a field might appear next to the "To:" label. Overwrite
fields are segmented fields, with dividing lines between character positions.
The user writes directly into these boxes. Option Sheets often use overwrite
fields for entries such as the font size. Pop-up fields do not accept handwriting
or recognize gestures directly in the field; instead, any pen stroke in such a
field creates an insertion pad for editing the field's contents (see Figure 10-8).
The first two field types permit the user to indicate by a gesture a desire to use
an insertion pad rather than writing directly into the field~

196

The Power of Pen Point

Figure 10-8 Typical Pop-Up Insertion Pad

Notes

A note in PenPoint is functionally equivalent to dialog boxes and alerts used
in other windowing systems. Notes are windows that appear, present informa
tion to the user, encourage or require the user to make some response, and
disappear on command by the user. Notes are instances of clsNote, which
inherits from clsCustomLayout.

197

The User Interface Toolkit

Notes can be generated either by the system or by your application. Their
appearances are, or can be, identical. We are concerned here primarily with
application-generated notes.

You specify the contents of a note as an array of Toolkit Table entries (see
the discussion of such tables later in this chapter). Alternatively, you can tell
notes to get their contents from resource files.

PenPoint notes are either modal or modeless. Modal notes require the user
to take some action before they go away, although you can design such notes
to dismiss automatically after a certain amount of time. In either case, the user
cannot perform certain actions while the note is displayed. Modeless notes
permit the user to continue to work inside the application while they are dis
played. In PenPoint, if you need to display information for the user but don't
care if the user continues to use the application while the information is dis
played and the user has not responded to the note, you can use either an
Option Sheet or notes.

A system modal note stops the user from doing anything until the note is
dismissed, either by user action or automatically. Notes asking the user to
confirm actions that have system-level impact are examples of notes requiring
user response. A note that informs the user that the battery is running low might not
need user dismissal; instead, the note can be shown for a certain period of
time or until the user dismisses it, whichever happens first. Despite their name,
system modal notes are not generated only by the system; your application
can generate these notes when it needs to force the user to respond to their
contents and not take any other action before doing so.

Application modal notes, on the other hand, only prevent the user from
performing actions within that application. The rest of the interface, including
embedded applications in the same document, are available to the user while
the note is pending.

There are two major differences between Option Sheets and notes. First,
Option Sheets usually have multiple cards, each dedicated to managing a
particular type of characteristic. Notes, on the other hand, are simple, single
message components. Second, Option Sheets feature a protocol that enables
choices made in the Option Sheets to be applied to the selection.

You can use any kind of control in a note, including pop-up menus, choices,
buttons, and fields.

198

The Power of Pen Point

The NOTE_METRICS structure includes several pieces of information. The
three most important, other than the style flags, are

• the message the note returns or sends if and when it is dismissed

• the time before a note auto-dismisses

• the note's client

Note style flags contained in NOTE_STYLE describe the following character
istics of a note, among others:

• whether the note is a system modal note

• how to label the note (see following paragraph)

• how the note should be disposed of when it is dismissed

When a note is displayed (see Figure 10-9 for an example), it includes a
label that tells the user its origin. You can tell the note to use the system name
or the application's default document name in this label.

Note from PenPoint ...

OK to delete
document?

Figure 10-9 Sample Notes Showing Origin

199

The User Interface Toolkit

Frames and Frame Decorations

As we indicated in Chapter 7, users often think document frames are win
dows. While its name may lead you to think of it as consisting of only the
border of the window, the frame contains a number of child windows common
to all windows by default. Your application can of course override this default
behavior. Unless it does, however, the frame consists of the border that con
tains your client window, along with the following decoration windows:

• a close box (triangular corner at the left of the title bar that appears only in
frames that do not occupy the entire display area)

• a title bar at the top

• a page number (unless, your application is embedded inside another docu
ment, in which case it has no page number)

• a menu bar

• a tab bar to the right of the window

Figure 10-10 shows a frame- with all of its constituent parts labeled. Frames
receive messages only through their decorations, but they do not understand
most messages that controls can send. It is therefore unwise to make the
frame the client for your application's controls. Instead, make your application
object the client. Frames can be selected, zoomed, closed, floated, and
deleted.

Unless you need more than one frame in an application, you normally will
not find it necessary to create a frame explicitly. The Application Framework
(see Chapter 6) creates a frame for your application during initialization pro
cessing without additional effort on your part. The FRAME_METRICS structure
contains fields for all of the UIDs of the child decoration windows it contains.
FRAME_STYLE, on the other hand, is a compact structure containing a single
bit for each such window indicating whether or not that window's frame is
visible (recall that the user can control the visibility of window frames through
the document's Options Sheet).

Frames file their state and all their windows in much the same way all other
PenPoint windows are filed (see Chapter 7 for details).

200

The Power of Pen Point

bodyo~
document

Find .. .
Spell .. .

resizel
handles i

ma~~~~---"'·····""""',','~
Figure 10-10 Typical Document Frame Components

Option Sheets

title line

menu bar

~scrOlibar

As we have seen in Chapter 2, the user interface in PenPoint relies heavily
on the selection-oriented paradigm that involves the user selecting an object
and then performing some action on that object. This approach lends itself
well to the use of Option Sheets. Most objects in PenPoint have (or may have)
Option Sheets associated with them. The user indicates with a gesture a
desire to examine an object's Option Sheet. The user can then modify the
appearance, location, behavior, and other information about the object by
altering settings in the Option Sheet.

Option Sheets are a special type of frame, andclsOption is a subclass of
clsFrame. Figure 10-11 shows a typical Option Sheet. You should notice
several things about it.

CONTRACT <21 >
Document Edit Insert Case Format

Dear Ms, Huerta:

This is our agreement concerning your involvement in a
new bottle design for New World Foods, Inc,

1, You agree to supply design services and technical
drawings to New World, The designs and drawings
become the property of New World upon payment for
your services,

2, Your cost estimates must be submitted •• I:':]!I1:j
every Hopkins before

:SmallCaps
! Strike -thru
, Underline
: Heavy Underline
iHidden

to withstand the
have guaranteed
charge, New

uate testing
, We will thus

not hold you liable for any losses incurred once we have
approved the design and started production,

Please sign a copy of this agreement and fax it back to
me,

.. ?.j ~il ~ rs11 iii .~J QI+'! .!.
Help Poefeoences Tools S1atbnery Disks Keyboaod Ins1aler In Out

Figure 10-11 Typical Option Sheet

201

The User Interface Toolkit

First, notice that this Opti()n Sheet consists of more than one type of property the
user can set. Each set of properties corresponds to a card and may be selected
from the pop-up choice that appears in response to a user tap on the button
next to the name of the current property type in the title bar, You could of
course design and construct your own types of Option Sheets, But PenPoint's
User Interface Style Guidelines encourage you to use clsOption, since that
class already handles all layout necessary for your application's style to be
consistent with the style of presentation of other PenPoint Option Sheets.

Second, an Option Sheet comes equipped with three buttons at the bottom:
Apply, Apply & Close, and Close.

202

The Power of PenPoint

Finally, notice that any type of control can appear in an Option Sheet. Once
the user makes a choice here, this floating window will disappear, and the
choice will be listed in the option card.

Option Sheets can be left open while the user changes the selection to
which they apply. This is a very powerful idea that permits the user to under
take a kind of property-copying process. For example, the user might select
some text, open an Option Sheet, change the text to bold, and then scroll in
the document to more text to be changed to bold. The Option Sheet need not
be closed between such operations, as is often the case in other windowing
systems that use a different type of paradigm for setting properties.

The OPTION_METRICS data structure contains, in addition to the style field
in OPTION_STYLE, an optional pointer to descriptive information that overrides
the default set of buttons contained in an Option Sheet. (If you do modify these
buttons, the resulting user interface element is sometimes referred to as a
Command Sheet rather than an Option Sheet.) OPTION_STYLE has two entries:
one determines whether the Option Sheet should interact with the Selection,
and the other gives the modality style of the sheet. A third data structure,
OPTION_CARD, applies to each card in an Option Sheet. It contains

e a label to be used in the Option Sheet's pop-up choice

e the UID of the card's windo\fl{

ea tag (which serves as a unique identifier for this card)

e the client of the card (that is, the object that processes messages regarding
application of the Option Sheet's settings)

Icons

An icon (see Figure 10-12) is a square object that may act either as a button
or as a menu button. Normally, an icon consists of a picture and some text
drawn in a label, but icons can exist without a picture and/or without text.
Icons are instances of clslcon, which inherits from clsMenuButton.

203

The User Interface Toolkit

Tools

Figure 10-12 Button Icon

You can specify whether the picture associated with an icon is a bitmap or a
pixelmap. When you create an icon, however, you don't define its picture, only
its type. The text label, if any, for the icon, is maintained by clsLabel, and you
specify it in a label metric. The data structure ICON_METRICS specifies the
style of the icon and its size. The style, contained in an ICON_STYLE structure,
defines the type of background (transparent or opaque) and the type of
picture, among other things.

If the picture is a bitmap, then you will probably store it as a resource and
provide it to the application when clslcon requests it from the icon's client. If it
is a pixelmap, you can instruct clslcon to create its pictures by copying the
pixels of some window.

Toolkit Tables

As you have probably gathered by now, a Toolkit Table is a place where you
can group other UI controls. Typically, such a table contains buttons or other
descendants of clsButton. PenPoint creates all of the items in a table at once.
The components of such a table can be from different classes and are even
allowed to be tables themselves. This permits you to create many kinds of user
interface elements.

In fact, PenPoint makes extensive use of Toolkit Tables. Menus, choices,
option tables, tab bars, and command bars, for example, are all Toolkit Tables
composed of collections of labels and buttons.

To create a Toolkit Table, you supply information that is common to all of the
components, along with a pointer to an array structure containing data for
each child. Common information stored in TK_ TABLE_METRICS includes such

204

The Power of Pen Point

descriptive detail as the table's client and manager as well as its style. Infor
mation describing each button or other component in the table is contained in
an array of TK_ TABLE_ENTRY structures. This information varies depending
on the type of child involved. In the case of a button, for example, the first
argument is the name of the button, the second is the message it sends when
activated, and the third is optional data to accompany the message. These
arrays also contain window tags, a set of flags that determine the style of the
individual component (and which are dependent on the type of element
involved), and an optional but recommended help 10 for the object.

These structures can become somewhat complex since it is perfectly per
missible to include within a Toolkit Table a control such as a choice that calls
for a number of other arrays to describe its contents and behaviors.

There are several specialized types of Toolkit Tables, all of which are sub
classes of clsTkTable. The two most important are toggle tables and choices.
A toggle table has up to 32 independent toggle buttons, each of which may be
turned on or off, and which act as a control panel. A choice is similar to a toggle
table except that it is designed so that only one button can be on at a time.

Summary

This chapter has examined the User Interface Toolkit portion of the PenPoint
development environment. This is the largest and most complex API in the
SDK, encompassing more than a dozen classes and hundreds of messages.

As we saw, PenPoint includes the ability to layout the user interface through
layout windows almost automatically through behavior supplied in
clsTableLayout and clsCustomLayout.

There are twelve types of controls in the UI Toolkit, each of which is repre
sented by a class with related behaviors. These controls share some behav
iors but have many unique capabilities as well.

11
The File System

The file system is a crucial component of PenPoint. Much of the functionality
of the operating system is built around or depends upon it. A pen-based computer
obviously must maintain data connectivity and compatibility with existing
computers and networks. As a re$ult, PenPoint's file system is designed for
compatibility with existing file systems, particularly MS-DOS, and includes full
support for reading and writing MS-DOS-formatted disks.

The PenPoint file system provides many of the standard features of tradi
tional file systems, including hierarchical directories, as well as extended
features such as 32-character file names; memory-mapped files; object
oriented application programming interfaces (APls), and general, application
specific attributes for files and directories.

Throughout this book, you will notice the important role of the file system. For
example, in Chapter 16, you can see how the whole process of remote file
transfer is built integrally around the notion of a hierarchical system of directo
ries and files. Similarly, automatic installation (see Chapter 6) and the interface
to device drivers (see Chapter 15) are based on this file architecture.

205

206

The Power of Pen Point

Pen Point's file system is built around the notion of a volume. There are three
types of volumes in PenPoint

• memory-resident

• local disks

• remote disks and servers

207

The File System

The memory-resident volume in a PenPoint system is named RAM. It is the
only volume your application can be sure is always available, since the user
cannot disconnect it.

(Note that on two-tier memory architectures, the RAM volume might actually
reside on the second tier, possibly a hard disk. Think of the RAM volume as
the always-present volume that is hidden from the user. It is always present on
both one- and two-tier memory systems.)

Local disk volumes take advantage of PenPoint's chameleon-like nature as a
file system. Because it defines no native disk format itself, the file system is
designed to reside on a disk using that disk's normal volume organization. In
its first release, PenPoint supports the MS-DOS disk format (with Macintosh HFS
format under development as of this writing); other disk formats may be sup
ported in the future and by other vendors building PenPoint-based systems.

Remote volumes are available over a network or a communications link. A
computer that responds to a remote file access protocol is called a remote file
server. This server can be any type of computer. See Chapter 16 for a more
detailed discussion of this subject.

All volumes have root directories. Generally speaking, PenPoint and appli
cations built for this operating system take extensive advantage of the
subdirectory tree structure of a hierarchical file system to position files in
places where the operating system will be able to find and retrieve them.

To perform file system operations, you send messages to file or directory
handles. Messages you send to file handles affect the file directly. Messages

208

The Power of Pen Point

you send to directory handles usually include other information identifying the
node the message is designed to affect.

You also use the file system to create data files for your application, to read
and write data to and from those files, and to manipulate file and directory
organization.

PenPoint itself uses the file system to store objects and application data.

Traditional File Activities Supported

PenPoint supports a number of file activities that it shares with traditional file
systems. These functions include

• creating, opening, closing, and deleting files on any volume

• copying or renaming files or directories

• moving files and/or directories

• moving the read pointer to a new location with a seek operation

• modifying file and directory attributes

You can also use traditional C stdio library routines to access the PenPoint
fi Ie system.

Unique File Activities Supported

As we have already seen, PenPoint adds the notion of a memory-mapped file to
traditional file structures supported by pen-based computers using the PenPoint
operating system. It also has a chameleon-like approach to its ability to coexist with
other file systems and permits highly transparent user access to remote volumes.
PenPoint supports several other unique file activities.

Every file and directory in the PenPoint system can have application-defined
attributes. These attributes are completely free-form and subject to your program's
management. There is no theoretical limit to how many attributes or what size
attribute information can be associated with a given file or directory.

209

The File System

PenPoint handles the disconnection and reconnection of non-RAM volumes
smoothly. The user can freely relocate the Pen Point-based computer from its base
station (with a built-in floppy disk) to a network and even to more than one network
during the course of a day or week. As we discuss in Chapter 16, activities that
require access to volumes that are not connected at the time the user calls for them
are simply stored until the volume is reconnected. At that point, the system, by
observing what is happening in the environment, detects the presence of the
required volume and, unless disabled by the user from doing so, simply carries out
its assignment as if no time had elapsed. This notion of delayed execution is
essential to the smooth and transparent use of a portable system like a PenPoint
based computer.

Another unique file system activity supported by PenPoint is automatic and
dynamic file compression and decompression. To save valuable RAM space, all
files in PenPoint, unless they are marked as exempt from the process, are automati
cally compressed when closed and decompressed when opened. You can deter
mine not only whether your application's files will be compressed or not (we
strongly recommend that you allow them to be), but what type of compression is to
be used. Some types of compression work better with text files, others with graphic
files. You can choose from several popular types of compression in PenPoint.

If all of this specialized behavior is not enough and your application needs some
very specific file-related support, you can, of course, subclass the file system
classes and extend their capabilities.

Installation

PenPoint's standard for application distribution is 3.5-inch, 1.44 MB MS-DOS
disks. Every Pen Poi nt-based machine has access to a floppy disk drive; it may be
built in, attached via a base station, or through a desktop computer.

When you distribute your PenPoint application, the file hierarchy and contents it
uses are important if you want PenPoint's installers to handle installation automati
cally for the user. If you follow the file structure depicted in Figure 11-1, you can be
sure that when the user wants to install your application on a PenPoint-based
system, the process will be as automatic as possible.

210

The Power of Pen Point

An Application

app.res

.dll files

.dle file

.exe files

Stationry Templates

Help Templates

Mise

Figure -11-1 File Hierarchy for Application Installation

If you include a quick installer file on your distribution medium and the user
inserts the disk containing your product into a disk drive connected to the
Pen Point-based system, the operating system will not only detect the pres
ence of the disk, but also determine that the user wants to install the applica
tion and handle all of the processing transparently and automatically.

The user also can choose to install an application starting from the Installer
icon in the Bookshelf at the top level of the Notebook. In addition, users can
simply drag objects around to install and deinstall applications and other
installable objects, in which case PenPoint carries out at least basic verifica
tion of the correct placement and usage of these objects.

Application Framework's Default File System Usage

As we have intimated several times, the Pen Point Application Framework makes
extensive use of the file system in several important ways. For instance, it uses
the file system for installation, activation, and deactivation. See Chapter 6 for
details of this usage.

211

The File System

Interaction with Other File Systems

The PenPoint file system is in many ways a superset of other systems. It is
hierarchical, based on volumes and root directories, and ultimately contains
documents. This nearly parallel architecture permits a high degree of interac
tion between PenPoint files and those of other systems to which a PenPoint
based system might be connected.

The superset information contained in a PenPoint file and not in other file
systems includes the following items:

• longer file names than MS-DOS permits

• Pen Point-specific attributes

• application-defined attributes

When PenPoint stores its files in other systems, it can either keep this superset
information or strip it.

If the process of storing a PenPoint file on another system retains PenPoint
superset information, it stores this additional data in an extra file in each directory
for which superset information exists in the Pen Point system. This approach is
useful for storing Pen Point documents, sections, and notebooks on pes and
servers for later retrieval into and use by a PenPoint-based system.

If you store a PenPoint file on an external volume and retain its superset
information, PenPoint will recognize this file and its extra encoding when the
disk is mounted and the user opens a Disk Browser on it. It will show this extra
information in the Browser in the form of a document.

When a PenPoint file is stored on a non-PenPoint medium without its
superset information, that information is, of course, lost to that copy of the file
forever. This approach is useful when you want to store a file or collection of
files on a disk in native DOS or Macintosh HFS format, particularly if those files
are intended to be subsequently manipulated from DOS or the Macintosh OS.
These other operating systems would obviously not know what to do with the
superset information.

212

The Power of Pen Point

Files and Compound Documents

One of the key ideas in PenPoint is that of the embedded application, which
the user perceives as an embedded document.

Pen Point handles compound documents (that is, documents consisting of two or
more documents composed in and managed by two or more applications) through
the file system. It does so by storing embedded documents in subdirectories of
their containing documents. This keeps the compound document together as a
single directory in the file system, which makes it possible to move it and copy it
without the user or programmer understanding the details of its contents.

See Chapter 8 for a complete discussion of this subject.

File Import and Export

The import and export of files is not strictly speaking a responsibility of the
file system, but we discuss it here because of its obviously intimate involve
ment with the filing architecture.

If you have designed and built programs on traditional operating systems
where you were required to support file import and export, you know how
difficult this process can be. Generally, each application includes its own set
of filters (routines that process data to convert it from one known format to
another) to support the types of files with which it can exchange data. This
requires a great deal of code, which is difficult to share because your own
application's file format is at least potentially proprietary to it and certainly
unknown to the rest of the system.

In traditional operating systems, the user who needs to import and export
files to and from a system needs to understand the concept of file formats. For
example, moving a document created in a word processing system to a
different word processor, perhaps running in a different operating system,
requires the user to know

• the file formats in which the creating word processor can store its files

• the file formats the target word processor can use as import formats

• what, if any, formatting and other information will be lost in the translation

213

The File System

PenPoint takes a different view of both files and users from this traditional
approach. Files, for the most part, are transparent to users, who really see only
documents (which are, from PenPoint's perspective, instances of applica
tions). PenPoint does not require its users to understand deep-seated details
of file structures and formats. As a result, PenPoint tries to achieve as much
transparency as possible in this process.

The need for data connectivity and compatibility further influences the
design of the import/export process.

PenPoint makes the file transfer process as transparent to the user and as
efficient to the system as possible by two primary means

• It supports sharable filters for data so that each application need not create
its own filters to move from its internal format to a standard or recognized
external format.

• It uses a standard user interface for controlling these formats and their
interactions.

File Import

Any file being imported into PenPoint must "belong" to an application when
it is stored on the RAM volume. Files are not simply "there," as in traditional
operating systems, existing on the disk but unowned. The connection between
applications and files is essential.

As a result, the file import process is different in PenPoint from the way it
works with other systems. When the user nominates a file for import by copy
ing or moving a non-PenPoint file from a Disk Viewer window into the Notebook
Table of Contents, PenPoint queries every application running on the system
to determine whether it can handle the type of file being imported. It then
presents a scrolling list of all candidate applications in a pop-up import dialog
and asks the user to select the one with which the file is to be used.

Your application supports file import by knowing what kinds of files it can
import and by responding to two messages defined in clslmport. When the
user initiates an import, your application is sent msglmportQuery to determine
if it can import the file involved. Your application simply checks the file import

214

The Power of PenPoint

type, which is passed as a parameter to msglmportQuery, against its list of
known file types and responds with True or False. If the user then chooses
your application td be the target for the file import, your application is sent
msglmport to start the import process. Your application creates a new docu
ment and then sends msglmport to that document, which in turn becomes
responsible for reading and translating the data in the original file.

File Export

File export is of necessity less transparent to t~e user than file import. Since
PenPoint cannot know about the file formats used in non-PenPoint files and
systems, the user must supply information about the file format before the
export can take place. Still, PenPoint makes the process somewhat more
automatic than it is with traditional file systems.

When the user selects Export from the Document menu of a PenPoint docu
ment or selects the document in a Browser and chooses the Export option,
PenPoint queries the document to determine the types of formats it can write.
It then creates a scrolling list of these file formats and places this list in a pop-up
export dialog. The user chooses the file format and a destination file and then
initiates the transfer process. From that point, PenPoint handles the file export
automatically.

To support file export, your application must know the file formats it can write and
must respond to three messages defined in clsExport: msgExportGetFormats,
msgExport, and msgExportName.

When your application receives msgExportGetFormats, it responds by
providing a list of the formats it can write, along with some control information
that is used by the translator when the export process is underway.

For each format you support, you will either use an existing translator object
or define your own. In either case, part of that translator's definition is the
abi1ity to propose a file name for the exported file. When the user selects an
export type from the Disk Browser, PenPoint sends msgExportName to the
designated translator, which gives back the proposed name. The Disk
Browser then displays this name. The user may, of course, either accept or
change it.

215

The File System

Once the user chooses a format and instructs the system to start the file
export, your application will receive the msgExport message. This message is
accompanied by information about the source file, destination file, and transla
tor to use.

Summary

This chapter has examined the file system in PenPoint. As we have seen, it
is built on the long-established c0ncepts of hierarchical file systems, but
includes such extended features as

• 32-character file names

• memory-mapped files

• object-oriented APls

• file attributes

The PenPoint file system supports multiple types of volumes to give users
maximum flexibility in connecting to and using networks and external storage
devices. In addition, we saw the roles played by the file system in installation
and in the Application Framework.

File import and export are an integral part of PenPoint, freeing application
developers from concern with the operational details of these frequently
needed functions.

12
Resources and Their
Management

Programs include various types of non-code data such as text strings for
menus, prompts, and error messages, and images for icons. Traditional
operating systems typically leave application developers to their own devices
as to how to store and access this non-code data. Most often, it is compiled
into the program code itself as static data declarations. However, this means
that it is difficult to change the non-code data, and this is problematic. For
eign-language translations must be performed directly on the program source
code, leading to errors and version control problems.

The Macintosh operating system took a step forward by introducing the
concept of resources, which are a repository for all non-code data that a
program or an application instance needs. PenPoint builds on this Macintosh
innovation and has generalized it so that it is useful for a variety of tasks. The
result is PenPoint's Resource Manager.

PenPoint resources are special files that contain resources and nothing else.
The Resource Manager is used to create, find, access, and modify these
resource files. Other parts of PenPoint, such as the Application Framework,
count on and exploit the capabilities of the Resource Manager.

217

218

The Power of Pen Point

Types of Resources

There are two types of resources in PenPoint: objects and data. Any file can
mix both types of resources, although different messages are used to read
and write the two types of resources.

An object resource contains information needed to create or restore a
PenPoint object. The object's class (and its ancestor classes) must be able to
unite and read the object's instance data to and from a resource file. This
capability is so important that it is defined in clsObject itself in the form of
msgSave and msgRestore. Every class you create is responsible for reading
and writing its object instance data in response to these Class Manager
messages. The ApplicaHon Framework maintains one instance data resource
file for each application instance, or document.

All resources have a unique 64-bit resource 10 that your application uses to
locate the resource.

While the information saved in conjunction with objects can be quite varied
in type and format, data resources contain information saved as a stream of
bytes. Data resources are often used for such things as default Option Sheet
settings, default prompt strings, and so forth. Using data resources for these
objects leads to greater transportability and internationalization of your programs.

All resources are read and written through resource agents. Such agents,
designed to deal with specific objects and data structures, help you manage
resources by unpacking and interpreting the formats of the data they read from the
resource file. PenPoint includes several such agents, including a default
resource agent which simply treats a data resource as a stream of bytes
where sequence and position have no particular meaning. There are also
default resource agents to handle null-terminated strings singly and in arrays.

When Are Resources Created?

Resources can be created either at application program compile-time, or at
runtime. You can think of compile-time as being appropriate for relatively static
resources, and runtime for more dynamic resources.

219

Resources and Their Management

Static resources change infrequently and can be completely specified ahead of
time by the programmer. They tend to be part of an application, not of a document
(although documents can override application resources; see the following
section on locating resources). Static resources are used to define the non-code
parts of an application such as user interface elements (option cards, menus),
text strings, and icons. As previously mentioned, these are often stored as
data resources, not as PenPoint objects in a resource file. Static resources are
identified with predefined resource IDs that are declared by the programmer
at compile time. Application resources reside in a file called App.Res.

Resources that cannot be specified ahead of time are inherently dynamic and
therefore can be created only at runtime. They can be stored in resource files
created for this purpose through the Resource Manager. Dynamic resources are
identified with resource IDs allocated at runtime. The Application Framework
provides a default file for dynamically created resources called DocState.Res.
This is the default resource file for all objects belonging to a particular docu
ment (application instance).

Locating Resources

The Resource Manager insulates your application not only from having to
know the precise location of a resource within a given file, but from knowing
precisely the file in which the resource is located. The Resource Manager
does this through Resource File Lists.

Resource File Lists are instances of clsResList. Entries in this list can be
resource file handles or other -Resource File Lists. When you send a read or a
find message to such a list object, it sends the message to each object in the list
until the message returns a value indicating the instruction has been carried out.

Every document class in PenPoint has a default Resource File List with three
elements (see Figure 12-1). These elements are

• the PenPoint system resource file (PenPoint.Res)

• the application resource file (common to all application instances) (App.Res)

• the document resource file (unique to one instance of this application)
(Doc.Res)

220

The Power of Pen Point

Pen Point

Application

Figure 12-1 Resource File Hierarchy

App.Res

Document

DocState. Res

Document State
Resource File

Doc.Res

Optional Document
Resource

Since the Resource Manager automatically searches a'Resource File List
until it finds a resource or runs out of places to look, you can see that every
PenPoint document's resources can come from one of at least three locations:
the document, the application that implements that document, or the system.

This flexibility is invaluable in providing efficient sharing and overriding of
resources. For example, applications can use some system resources unchanged
(such as standard fonts, Option Sheets, or error messages) without the need
to provide these resources in their application resource file. An application might
override other system resources or create new applicationwide resources and
place these in the application resource file. Finally, applications could allow a
user to attach specific versions of resources to in'dividual documents.

Figure 12-1 shows two resource files for a document. Since a document
instance is represented as a directory in the file system, you could actually
create more than two resource files for each document, if that was useful for
your application. The two resource files DocState.Res and Doc.Res are
PenPoint's default behavior, which is adequate for most applications.

221

Resources and Their Management

As mentioned in the previous section, DocState.Res is the resource file that
contains the document's runtime state - that is, objects belonging to that
application instance. It is therefore a resource file that stores objects (not
data), and that is created dynamically.

Doc.Res is an optional resource file. It is created by PenPoint only if the
document overrides an application resource with a local, or tailored version.
For instance, if an application provides the user with the option of customizing
application menus on a document basis, the customized version of an appli
cation menu would be stored in Doc.Res, which PenPoint would automatically
create the first time there was a need to store a document-specific copy of an
application resource.

To find a resource and its agent, you send a message either to a resource
file handle or to a resource file list. In both cases, the message returns a
handle to the file and the location in the file of the resource for which you are
searching unless, of course, it cannot find the resource. In that case, it returns
a special status code.

When you need to process all available resources of a particular class (such
as all font resources), you can use a special message that enumerates over all
of the resources in a resource file or resource file list and returns two parallel
arrays containing the file in which the resource was found and the resource 10
of the located resource.

Resource File Formats

As we pointed out earlier, many resources can exist in a single file. The
Resource Manager makes it relatively easy to locate a particular resource and
then to read it, because the layout of the resource file is highly flexible, yet
known to the system.

Many resources can coexist in a single file, all laid out as one long stream.
In fact, they are implemented as a stream; I/O in such files is handled by
clsStream. PenPoint keeps track of where each resource begins and what its
size is and automatically prevents accidental overwrites of data while keeping
the data elements next to each other in a file.

222

The Power of PenPoint

If you store all of your instance data in objects that respond to the standard
clsObject messages msgSave and msgRestore from the Application Frame
work, then loading and saving files are handled automatically. You need not
even be aware of the file system or how it handles this type of file management.

Figure 12-2 shows how a file containing objects and instance data could be
structured in a typical layout.

Figure 12-2 Typical Resource File Layout

The Resource Manager also permits non-linear retrieval of resources. As
indicated earlier, when you ask PenPoint to find a particular resource, it returns
the file name and the location of that resource in the file. You can then use this
information to retrieve the resource.

Managing Resources

Aside from reading and writing, there are two other resource-related tasks
with which your application may have to deal: creating resources and com
pacting resource files.

Creating Resources

As we have seen, application instance data may be written as a resource
file. The actual updating of the file occurs when the application instance
receives msgAppSave. This behavior is included automatically with all appli
cations as a result of the Application Framework and its default behaviors (see
Chapter 6).

Some resources, however, are essentially static and don't need to be written
out each time the application terminates. For example, user interface compo
nent resources seldom if ever change between runs of the program. For these

223

Resources and Their Management

resource types, you typically build resource files at compile time on your
development P.C using the resource compiler in the Software Developers Kit
(SDK). This compiler creates a standard C Source file which you then compile
and link. When the resulting MS-DOS program executes, it writes a complete
resource file containing all the static resources you defined in the source code.

Compacting Files

Resources may be deleted during program execution. When they are
deleted, they leave "holes" in the resource file. PenPoint provides a semiauto
matic compaction facility to remove this unused space, which is important
because such fragmentation can lead to reduced performance and wasted
storage space.

You can explicitly compact a resource file, but it is more likely that you will simply
design the file in such a way that it is automatically compacted. You can do this by
specifying when you create a resource file handle that it is to be compacted
on file closure. This compaction can be unconditional or it can be based on an
assessment that reveals that the file is becoming fragmented. The latter ap
proach uses a combination of determining the number of resources and the
ratio of deleted resources to the file total. You specify the ratio beyond which
you want the file to be compacted. This is probably the most-efficient use of
the resource management system's automatic compaction process.

Application Instance Data

The PenPoint file system, discussed in Chapter 11, is the most obvious way
for you to store application data. But it may not always be the most efficient or
effective way to store and manage information. Resources afford you a higher
level interface that you may want to use rather than the more traditional, low
level access available through the file system.

If you store data in raw files, not only must you keep track of where the file is
stored so that you can open it on demand, you must also invent the file format.
If your data is at all repetitive or large, you must design compact file formats.

224

The Power of Pen Point

PenPoint's built-in compression (discussed in Chapter 11) relieves you of the
undue effort required to minimize the size of your filed data. Furthermore, you
have the programming responsibility of knowing precisely where in the file
each piece of information is stored. If a new piece of data is to replace an
existing one, you must take care that the new data doesn't grow beyond the
size allocated to the data it is replacing and thereby corrupt the file. In a
traditional operating system, this requires yet another layer of management
from your code.

These and a host of other details mean that you may spend as much time
coding the portion of your application that deals with the relatively mundane
issue of file storage as you do on the functional parts of the program.

Resources solve these problems. As we've seen, a" application objects
automatically receive a msgSave when the application receives a msgAppSave.
The result is automatic filing behavior for your application. If your application
keeps a" of its dynamic data as objects, think firstof resources when you need
file storage; resort to the file system only when resources are inappropriate for
a specific reason.

Summary

This chapter has examined resources in PenPoint. Resources can include
such things as menus, dialog boxes, application code, and other objects.
They are stored in special files ,managed by the Resource Manager.

We have examined the creation, storage, location, and use of resources, as
we" as the typical file format for these special elements of PenPoint applications.

13

Input and Handwriting
Recognition

Clearly, if you had to name one thing that sets PenPoint apart from earlier
operating systems, your attention would tend to focus on the pen. Where other
operating systems obtain their input - both in terms of data and in terms of
command and control- from users via keyboards and mice, PenPoint is
designed to work most smoothly with a pen. It will, as we have seen, support a
keyboard for text entry, but its primary interaction takes place through the pen.

Designing an operating system to work primarily with a pen poses some
interesting issues and imposes some unique requirements.

The most interesting and challenging of these issues relates to the observa
tion that a pen is a two-way communications channel, unlike keyboards and
mice, which are one-way devices. With a traditional input system, the device
sends events to its operating system, which then deals with them. But with a
pen-based system, ink patterns must be "recognized." A two-way channel is
required. Whenever possible, the user interface provides context to guide the
operating system's gesture and handwriting recognition algorithms. As you will
see later in the chapter, applications do not literally pass text or numbers into
the input subsystem. Rather, the input operations (called "scribbles") are
given to the application's user interface code, which is in full control of whether
and how to translate the scribble, including the context for the translation.

In PenPoint, the location of a gesture controls its intended meaning. This is
made possible by the input subsystem's support for user interfaces to control
the recognition process.

For example, a circular motion with the pen can mean any of the following,
depending on its context (see Figure 13-1): 225

226

The Power of Pen Point

• the letter "0"

• a command to edit selected text

• a circle graphical shape

~ ~ ... ~ y : e : co: : :
N ~ .. ,.w , ... w ••• w •• £.w ~ .. ~~ ;N w , ~., ,.~ :

~ '.H..~~~~.!;J~.I?~.~i.~~~~r. ..
Document Edit Insert Case Format

Dear Ms. Huerta:

We need a new design for the plastic _ for our
condiments.

< 17·

Recently, an executive of a supermarket chain took a box
of our samples home in order to try them before ordering
our line. He briefly left the box on the kitchen floor where
his son ran into it with a tricycle.

noor.

The executive never got a chance to try our product

Figure 13-1 Three Interpretations of a Circular Motion

t

227

Input and Handwriting Recognition

The operating system's interpretation of a circular motion, then, is context
dependent. There is therefore a two-way communication between the pen's
actions and the operating system's reactions. An operation is triggered by a
pen action, processed by the operating system based on the window in which
the pen first touched down, andthe resulting scribble is passed to the user
interface owning the window for it to control translation. The application con
trols translation by passing the scribble and control parameters (context) back
down into the handwriting recognition (HWX) portion of the input subsystem.
Finally, the input subsystem passes recognition results back up to the user
interface, where the user sees the results of the operation.

Another challenge involved in designing an operating system for pen-based
input and control is that the pen must be able to dribble ink anywhere over the
screen, but the system must support rapid cleanup and interpretation of the
pen motions. It would not do to have the ink "spilled" all over the screen for a
prolonged period while the operating system figures out what the user meant
or laboriously repaints the screen to erase the ink.

We'll see later in the chapter how PenPoint responds to these and other
challenges. For the moment, it's safe to say that the old computer adage "Easy
to use is easy to say" was never more accurately said than it is in relation to
pen-based operating systems.

Overview of Input

Input processing in PenPoint is the user's most visible contact with the
operating system. This is because everything the user can do in PenPoint can
be done with the pen. Compare this with traditional desktop operating sys
tems, which use both keyboard and mouse but have a requirement that every
thing must be accessible to the user via the keyboard so that a mouse less
environment can be supported. PenPoint relegates the keyboard to a second
ary role; everything must be attainable via the pen, but the keyboard is an
optional accessory.

Your applications can, of course, make more-extensive use of the keyboard.
PenPoint provides full support for the user of physical keyboards for high
speed data entry. It can also use other device drivers to provide another kind

228

The Power of Pen Point

of interaction where appropriate. But, ultimately, users will see Pen Point-based
systems as pen-based systems. As a prelude to discussing the details of how
input is processed in PenPoint, let's take a look at how input looks to the user
and what advantages it provides.

What the User Sees

Users touch the pen to the screen and things happen. In fact, some things
happen without the user touching the screen, when the pen is in close proxim
ity to the surface of the display.

Direct input of data (via handwriting recognition and direct drawing), com
mands (through the interpretation of gestures), and control (such as the direct
manipulation of objects on the screen) are all handled through the pen inter
face. The user sees the pen as the sole or primary means of interacting with
the system.

In a portable computer, this has some powerful implications for the user's
perception of computing. For example, it is unlikely that a portable computer
could be built that would incorporate a full-page-size screen and a usable
keyboard. It would simply be too unwieldy.

Another thing users come to recognize about pen-based computing is that
the interface is not as nearly like a mouse interface as first impressions might
indicate. Besides being more direct (and therefore much easier for many
people who have trouble connecting mouse movements in a horizontal plane
with cursor motion in a vertical plane), it involves different kinds of physical
actions. Because the pen is controllable with a great deal of hand-eye coordina
tion, accurate and direct manipulation, drawing, and gesturing are all the norm with
the pen. These same operations tend to be imprecise and difficult with the mouse.

229

Input and Handwriting Recognition

Terminology

In fact, it is not only the names of pen-related user actions that change in the
transition from traditional operating systems to pen-based computing. There
are a number of other terms, some of which users come to know and others of
which are important for you as a designer to understand.

A "stroke" in PenPoint terms has two meanings. It is both a pen action that
leads to the appearance of ink on the display and a data structure that holds
information about that action. Collections of related strokes (where the mean
ing of the term "related" is application-dependent to a significant -degree) are
called scribbles. Like strokes, scribbles are data structures that can be stored
and manipulated efficiently.

Scribbles that have some meaning in a particular context may be gestures,
characters, or shapes. As we indicated previously, the interpretation of
scribbles is the province of your application, consistent with PenPoint User
Interface Style Guide recommendations.

When users move the pen across the display of a Pen Point-based system,
they see what seems to be ink appearing on the screen. This process, as we
have pointed out earlier, is called dribbling ink.

Finally, by "input focus" PenPoint refers to the question of where input from
the keyboard will be directed. From PenPoint's perspective, there is always
only one selection in the entire system. That selection becomes the input focus
from the user's perspective; keyboard strokes are always sent to the current
selection. Do not let this distr,act you from the fact that gesture commands
typically target (in other words, go to) the data directly beneath where they are
made.

Key Problems and Their PenPoint Solutions

As we mentioned at the beginning of the chapter, designing an operating
system specifically optimized for pen-based computing poses some chal
lenges. Three of the most intriguing from your perspective are

230

The Power of Pen Point

• eliminating flicker and slow response in dealing with pen input

• dealing with the issue of ink dribbles and the windows in the user interface

• providing for flexibility of handwriting recognition technologies

Pens are marking instruments; users expect them to flow ink. When the user
is moving the pen across the surface of the display, the common result is to
"echo" this "ink" that traces the pen's path, regardless of how varied or wide
spread the path becomes. As soon as the pen leaves the screen, however, the
ink must be handed to the user interface and erased from the screen. If the
echoed ink was displayed in the "real" (or normal) screen, considerable flicker
would result from all the repainting.

To address this problem, PenPoint includes an acetate layer, a transparent
overlay atop the display where ink is dribbled and strokes are collected into
scribbles. The operating system can essentially ignore the intermediate move
ments of the pen between the time a scribble is started and the time it ends,
then collect the data points and other information into a scribble data struc
ture. All of the ink in the acetate layer can be quickly and easily erased because
the system need not analyze the impact of such erasure or deal with the need
to refres~ the underlying display as it W?ulP if the ink ~ere d:awn ~irectly on
the user Interface layer of the screen. Figure 13-2 depicts thiS design.

A related problem involves confining ink drawing to the window in which it
originates. While a windowing system normally must contain or clip all display
activities within a window's boundaries, ink display must be allowed to flow
temporarily wherever the pen moves. If the operating system did not allow ink
to echo outside the owning window, the user would find it difficult to draw
gestures that overlap window boundaries or to handwrite a bit larger than the
size of an input field.

PenPoint processes the pen scribbles to the owning window as a separate
step to get around this problem. This is related to the fact that there is an
acetate layer in which the ink dribbles can be displayed as the appropriate
internal stroke and scribble data objects are generated from sampling points.
There is no need for the system to worry about strokes that are drawn outside
the boundaries of a given window; the system just lets the user draw such
strokes, echoes them temporarily in the acetate plane so the user can see the
ink, and then the system hands the scribble data to the application when the
acetate layer is erased.

231

Input and Handwriting Recognition

Ink dribble

Figure 13-2 The Acetate Layer in Pen Point

Finally, PenPoint must recognize two realities about handwriting recognition.
First, the technology to support this aspect of pen-based computing is in a
continual state of evolution. Better printing recognition and, ultimately, cursive
handwriting recognition will undoubtedly emerge. Second, non-Roman (or
script) alphabets, such as Cyrillic and Kanji, require entirely different recogni
tion techniques from those required by Roman letters as used ·in English and,
with minor modifications, in all Romance languages. If PenPoint were to lock in
its handwriting recognition system, it would run the twin risks of obsolescence
and reduced usability internationally.

To solve this problem, PenPoint's handwriting recognition subsystem is
completely replaceable. This enables not only GO. Corporation but hardware
vendors incorporating PenPoint into their computers and third-party develop
ers focused on specific markets to swap new translation subsystems into
PenPoint as the need and opportunity arise.

232

The Power of Pen Point

Handwriting Translation in PenPoint

Pen Point's input subsystem generates low-level input event messages for all pen
activity on the screen. These low-level events are grouped into higher-level aggre
gates (scribbles), which in turn are translated by the handwriting recognition (HWX)
subsystem into either text characters or command gestures.

Characteristics of the HWX Engine

The current HWX engine, developed entirely by GO Corporation, recognizes
hand-printed characters and has the following characteristics:

• handles mixed upper- and lowercase letters, numerals, symbols, and
punctuation

• handles both "boxed" (segmented) and "ruled line" handwriting (at the
user's option)

• operates in real time (three characters per second) on a 16-MHz 80286-
based system

• occupies less than 100 KB of memory (plus another 100 KB for a general
purpose spelling dictionary)

• achieves 80 to 90 percent word-level accuracy, which is equivalent to 90 to
97 percent character-level accuracy

• runs in background mode

• accommodates multiple users with or without each user training the system
to recognize his or her handwriting

• allows non-unique character forms (for example, the letter "0" and the
number zero)

• tolerates inconsistency by the same user (that is, the user shaping the same
character in different ways at different times)

• can accept optional context-sensitive translation aids (such as word lists,
dictionaries, and character templates) provided by the application

• has memory requirements of 64 KB for code,less than 128 KB for static data

233

Input and Handwriting Recognition

How Handwriting Recognition Works

The handwriting recog nition system is based on a blackboard model from
the world of artificial intelligence. Data from multiple knowledge sources is
combined and sorted using a dynamic programming algorithm. These knowl
edge sources include predefined information (for example, specific word lists
for a specific input field). One of these knowledge sources is the character
shape recognizer built into PenPoint.

Strokes are examined as they are received by the recognition engine.
Character recognition is performed by comparing character shapes with a set
of character "prototypes" for each character. PenPoint comes with a
preinstalled set of hundreds of such prototypes that work well for many writers.
Users can train PenPoint's prototypes through brief handwriting training ses
sions in which PenPoint builds additional prototypes for each user's unique
style of shaping characters.

234

The Power of Pen Point

How Input Is Processed

While the actual detailed flow of the input subsystem's handling provides for
sophisticated filtering and routing (all explained later in this section), it is
helpful to take a step back and examine the simple steps involved in the
normal case of the user touching the pen down on an application. When that
happens, the following occurs:

1. The input subsystem sends a "pen down" message to the application.

2. The input subsystem looks at the application's window data structures to
determine its appropriate responses (for example, whether to echo ink or not).
Applications will have set up these data structures when creating their windows.

3. Once the user has finished drawing this event (determined by a combina
tion of time and distance thresholds), the input subsystem hands the result
ing scribble to the application.

4. The application determines what to do with the scribble (for example, store
it as pure ink or translate it).

5. To translate the scribble, the application packages it with control param
eters that describe a context for the scribble, and then sends a translate
message to a handwriting or gesture translator object.

6. The translator object returns a ranked list of translations to the application,
which then determines what to display to the user.

The Processing Pipeline

You can think of input processing in PenPoint as taking place through a
pipeline. Figure 13-3 depicts this pipeline, which is discussed in detail in the
remainder of this section. The portion of the pipeline to the left of the dashed
line corresponds closely to the input processing in traditional operating sys
tems, while the rest of the diagram focuses on concepts and actions that are
new to PenPoint. For the most part, applications hook into and use the activi
ties in the left portion of the diagram while they either reimplement, modify, or
use unmodified the functions in the right portion of the diagram.

235

Input and Handwriting Recognition

INPUT EVENT
GENERATION

(ink echo on
acetate if window

requests)

INPUT EVENT
ROUTING AND

FILTERING

recording

Figure 13-3 The Input Processing Pipeline

Events

SCRIBBLES

collect related
events, store

them, echo on
"real" screen

INK CAPTURE
APPS EXIT

TRANSLATE

Input events can be created in three ways in PenPoint

RESULTS
delete scribble and

clear display

• by software synthesis (that is, by using a message designed to simulate the
event), a process that can be used to replay pen or key strokes in demon
strations, macro playbacks, and tutorials, for example

• by device drivers such as keyboards and other input devices

• by the pen under control of the user

The input subsystem maintains an event queue. Each event is placed into
this queue. The type of information stored depends on the type of event. You
can think of events as being divided broadly into two groups: XY events
(those which take place in the borders of the screen and have a coordinate
associated with them) and non-XY events (such as keyboard events, which do
not relate to a specific point on the display). All events post at least their
associated message name. Optional information includes the coordinate, a
specific listener object, and/or other event-specific data.

When an event is processed by the input subsystem, a return status code
determines what step takes place next. Table 13-1 summarizes and explains
these codes.

236

The Power of Pen Point

Table 13-1 Input Subsystem Status Codes

Status Code

stslnputTerminate

stslnputContinue

stslnputGrab

stsinputGrabTerminate

stslnputGrabContinue

Description

Stops processing the current event

Allows input subsystem to continue processing the current
event normally

Sets the input subsystem's grab object to be the one to
which the original message was sent, effectively terminating
further distribution of the event message

Terminates the current event, then sets the input
subsystem's grab object

Sets a new grab object and permits processing of the
current event to continue

In response to a pen input event, ink is dribbled on the acetate layer. As we
have seen, these dribbles are seen as individual strokes, which are ultimately
collected into scribbles. As you can see in Figure 13-3, it is these scribbles
that are ultimately processed by your application.

Because of the spatial nature of window-based input, PenPoint incorporates
a sophisticated distribution mechanism for event processing. It uses a leaf-to
root (child-to-parent) model of XY distribution so that when an event occurs in
a window, the parent chain is followed back to the root window. Each window
in the chain can either process the event or not. It then has the choice of
passing the event to the next window or terminating the event.

Among other advantages of this model, it permits a "penetration" mode,
whereby a pen event on the screen appears to penetrate through a child
window and is processed by a parent window as if it had occurred at the
same position in the parent window, conceptually behind the child window.

Each window can turn on and off its interest in each type of pen event. There
are messages to handle these status changes, so a window's behavior with
respect to any given pen event can be changed depending on the context.

Although it is possible in PenPoint for you to intercept and handle low-level
pen events directly, this is not a recommended practice. In a cooperative
multitasking environment such as PenPoint, this could be an unfriendly way for
your application to behave. Instead, PenPoint provides several ways in which
you can cooperatively process and pass on input events.

237

Input and Handwriting Recognition

TARGET

Figure 13-4 Input Registry

Filters, Grabbers, and Listeners

At the second stage of processing shown in Figure 13-3, the pen event is
passed to the Input Registry, where all known objects that have expressed
interest in receiving input messages are identified. Figure 13-4 shows this
portion of input event processing schematically.

An input event is routed through the Input Registry starting with any filters
that might exist in the application or system. Filters carry priority ratings from 0
to 255 so that they can avoid conflicts with each other. Normally, filters deal
with low-level events. Sometimes, they remap the event by modifying the data
structure accompanying the message that sends the event into the Input
Registry. You might use a filter, for example, to remap a keyboard event to
emulate a 3270 display terminal.

Grabbers are the next level of Input Registry entry. These objects handle all
subsequent input messages until they release control. Modal Notes and

238
........ ,., '
The Power of PenPoint

menus (see Chapter 10) are examples of grabbers in the PenPoint environ
ment; by grabbing pen input, menus can remove themselves as soon as the
user touches the pen anywhere outside the menu.

Refer again to Figure 13-3. Notice that before any translation occurs, proc
essing stops if the application's only purpose at this point is to capture ink and
not translate or interpret it.

As you can see in Figure 13-4, if an input event is not filtered or grabbed, it
goes to the window hierarchy if it is an XY event (which is most of the time).
Non-window (that is, non-XV) events are sent to a target (which is defined as
the point where the input focus is located when the event is processed).

Translation

There are four types or classes of translation in PenPoint

• text

• numbers

• gestures

• word

239

Input and Handwriting Recognition

You can even call for repeated translations. For example, the Drawing Paper
application created by GO Corporation as a demonstration of Pen Point looks
at scribbles passed to it to determine if there are more than four strokes. If so,
it requests word translation. If the number of strokes is four or fewer, it re
quests gesture translation first, and then looks at the same scribble through a
geometry translation. If it doesn't match at either of these translations, it simply
displays a polyline. Note that it is important here that you pay attention to the
order in which you ask for repeated translations because you may want a
match at anyone level to preclude the processing of the others.

Summary

This chapter has examined the input and handwriting recognition systems in
PenPoint. The context dependence of pen motions has led to the need for a
two-way communication process between pen actions and the operating
system. This contrasts with the one-way linkage between older input devices
(keyboards and pointing devices) and their operating systems.

We have seen how PenPoint deals with user input via the pen to avoid such
problems as excessive flicker, the need for windows to be able to maintain
their own contents, and the need for flexibility in handwriting recognition. The
acetate layer is the key to PenPoint's solution to these problems.

The handwriting recognition (HWX) subsystem translates scribbles, groups
of related pen actions gathered into data structures. We saw how handwriting
recognition works with strokes and scribbles that are compared against
prototype characters.

14
Text Editing and
Related Classes

The text component of PenPoint displays editable text. It is a fairly powerful
formatted-text editor available to all PenPoint application developers for inclu
sion in their applications because the text classes are bundled with PenPoint.
It is also available to PenPoint users because PenPoint includes MiniText, a
small application that delivers the text editor subsystem's functionality. Its
classes allow

• display and storage of plain and formatted text

• user editing of characters and their attributes

• user-directed transfer of all or part of text to and from other objects

• filing of text data objects

• application monitoring of user interaction with text data objects

• embedded objects

This subsystem has another virtue for PenPoint programmers: It serves as a
good example of why and how to implement the view/data observer model
(see Chapter 8).

241

242

The Power of Pen Point

Editable text, of course, differs from text displayed in the graphics sub
system (see Chapter 9). That text cannot be modified by the user because it is
completely under control of the program making the display calls to the graph
ics subsystem (unless, of course, that program implements the text editing).

Basic Approach to Programming

All instances of the text component consist of paired instances of text data
objects and text views.

A text data object is a block of text from zero to approximately 65,000
characters in the Developer's Release. The Commercial Release supports
much larger text blocks. Like all PenPoint objects, text data objects are identi
fied by UIDs so that they can be unambiguously referenced in any context.
Views display text data objects and permit the user to modify them. In other
words, text data objects handle the storage of the characters and attributes
they contain, while text views provide a user interface that permits the user to
modify the characters and attributes.

243

Text Editing and Related Classes

To create a new text view with an empty text data object, you send
msgNewDefaults and msgNew to clsTextView without any initialized object.
This is the normal way of starting an editing session with a blank editing area.
(Actually, you could create an empty text object by sending those messages
to clsText but you wouldn't be able to see the object because it would not
have a view.)

If, however, you want to create a text component instance with existing text
(for example, text selected by the user with the pen), then you send the same
messages to clsTextView, this time accompanying the messages with an
identifier of the text data object to be edited. PenPoint then creates the editing
context with the indicated text available for immediate direct editing.

Text Data Objects

You create text data objects by creating instances of clsText. You are then
responsible for making these objects visible by creating text views on them.

A text data object has default attributes for the formatting of characters,
paragraphs, and entire documents. There are two types of attributes for text
data objects: default attributes and local attributes. Local attributes apply to
contiguous ranges of characters or paragraphs within the document, while
default attributes apply to whatever ranges of characters or paragraphs don't
have local attributes. Therefore, a text data object has only one set of default
attributes but may have a theoretically unlimited number of local attributes
within the limits of the size of the data object and the number of characters
and paragraphs it contains.

When you create a new text data object, PenPoint uses the system resource
fil~ to determine the current default attributes unless your application redefines
this default resource in its own resource file (see Chapter 12).

Character attributes include display and font attributes. The former include
such display characteristics as underlining, small capital letters, and size. The
latter define a character's typeface and weight. Paragraph attributes include
alignment, leading, space before and after, margins, and tab settings.

244

The Power of PenPoint

Text Views

A text view is a special case of an embedded window. In fact, clsTextView
inherits from clsView, which in turn descends from clsEmbeddedWin. Text views
behave quite differently from other views defined as instances or subclasses of
clsView; as a result, clsTextView 'Overrides much of the behavior of clsView.

When you create a text view, it displays the initial portion of the data (as
much as will fit in the view) beginning at the first character of the text data
object. If the text data object contains more characters than can be displayed
in the view, then you are responsible for placing the text and its view into a
scrolling window so that it will have scrollbars. The text component defines a
special function to allow you to create such a view.

Like all views, text views support the saving of their contents. When a text
view receives a msgSave message from the Application Framework, it sends
filing messages to its text data object. Your application must implement behavior
to save the data in a plain text file (see Chapter 11) or in a resource file (see
Chapter 12). This may require little or no work depending on your specific needs;
the default filing behavior in PenPoint is often adequate.

Text Insertion Pads

By default, when you create a text view, PenPoint creates an insertion pad so that
the user can enter new text into the view. You can, of course, override this behavior.

Insertion pads are part of the PenPoint input subsystem, which is discussed
in detail in Chapter 13.

Summary

This chapter has examined text editing in PenPoint. As we have seen,
PenPoint includes a special application called MiniText that incorporates all of
the text editing behavior available in the system.

All instances of the text component in PenPoint consist of paired instances
of text data objects and text views. The former contain the text itself and the
latter permit it to be displayed on the screen.

15
The Service Manager

In PenPoint, a service is a program that enables applications to communi
cate with a hardware device or to access a software function or service of
some kind. Software functions that do not have or require a user interface but
rather run as background processes can be implemented as services.
PenPoint's Service Manager makes these services accessible to any applica
tion in the PenPoint environment.

Traditional operating systems usually invent separate, special-purpose solutions
for device drivers, networking software, background processes, and the like.
Application developers must learn different mechanisms for each new class of
special system service, and none of the classes works very well with the others.

Under PenPoint, each of these areas is unified under the Service Manager
architecture, which generalizes common application operations such as
enumerating, finding, observing, binding to, owning, and opening services. All
these operations work in an environment in which services can be dynamically
installed and deinstalled and in which the underlying hardware connections
can be made and broken by the user at will. In addition, services are defined
in such a way that they can use each other, allowing layering and a high
degree of code sharing.

How do you know whether your software should be written as a service?
Typically, all non-application functionality under PenPoint should be a service.
Remember that PenPoint has a stringent definition of what an application is: It
must subclass clsApp, follow the document model, support multiple instances
via the Stationery menu, and so forth. Service architecture is the alternative to

245

246

The Power of Pen Point

structuring your software as an application. Examples of services include
device drivers, the In Box and Out Box as well as their transfer agents (see
Chapter 16), network protocol stacks, and databases.

Layering Services

The most basic services are those that communicate with a hardware device.
Examples of hardware devices accessed by services include serial and
parallel ports and network adaptor cards. These base services represent a
hardware device; they are similar to device drivers in other operating systems.

PenPoint must obviously provide for a variety of installation, configuration,
and access mechanisms for hardware device services. Where other operating
systems have treated these as a special case, PenPoint's Service Manager
generalizes these operations well beyond the specific needs of hardware
device handling. The result is an important class of services that don't repre
sent hardware devices, instead providing a pure software service.

The most common style of a pure software service is one that accesses
another service. The referenced service is called the target service. When one
service targets another service it is, in essence, layering some added function
ality and abstraction on top of the targeted service. Services may target other
services to any depth. The resulting targeting relationships can be thought of
as a pipeline or target chain. PenPoint provides a great deal of support for this
pipelining method of invoking services.

Pipelining is an excellent way to layer architectures, with services farther up
the chain from the hardware device providing higher levels of abstraction. For
example, networking protocol stacks can be implemented with each protocol
layer corresponding to a service. Alternatively, your application might open a
service designed to interact with an electronic bulletin board. That service may
in turn need to open a serial port service. Your application can safely ignore all
but the service it must open.

Some services reference neither a hardware device nor another service:
These services can be thought of as "the end of the line"; they typically pro
vide specialized data-handling or reconciliation services. A background
database service is a good example of this class; it doesn't access other
services but just stores its data in PenPoint's file system. You can think of it as
targeting a data file rather than a hardware port.

247

The Service Manager

PenPoint's Service Manager provides a common architecture and imple
mentation to allow a variety of services to be accessed by application pro
grammers consistently and modularly. The Service Manager consists of two
key classes: clsService, which defines a service, and clsServiceManger,
which provides access to services.

clsService is of interest only to programmers defining a new service; new
services are implemented by subclassing clsService. Services can belong to
one or more service managers.

clsServiceManager groups together a set of services and provides access
to them. Each of these provides a common core API that is consistent across
each service in that group. clsServiceManager is of interest to any application
programmer who is a client of a service; most PenPoint application developers
will need to use it.

Internally, services are implemented as non-application dynamic link librar
ies (DLLs). A single Service Manager handles a group of related services. For
example, there may be multiple serial ports on a PenPoint-based system, but
they will all be handled by one Service Manager.

Your application is likely to use rather than create services. But if your application
is or contains routines (such as a database engine, for example) that could be
isolated from the main application code and that might be useful to other applica
tions, you may want to consider implementing these modules as services.

Standard Service Managers

PenPoint predefines a number of service managers that are guaranteed to
be available on all PenPoint-based systems. Some examples include

• theAppleTalkDevices

• theSerialDevices

• thePrinterDevices

• thePrinters

• theSendableServices

• theTransportHandlers

• theLinkHandlers

248

The Power of Pen Point

The names of most of these service managers are self-explanatory. The last
three merit at least a brief explanation. A sendable service in PenPoint in
cludes such things as facsimiles and electronic mail. These will appear to the
user in the Send menu option of the Document menu. (See Chapter 16.)
Anything that embodies the idea of being transmitted outside the PenPoint
system is a sendable service. Transports and links are part of the networking
API described in Chapter 16.

If you want to create or add a service to the system and none of these pre
defined Service Managers is suited to its management, then you must build a
new Service Manager. You do this by subciassing clsServiceMgr.

Service Managers provide the following basic functions:

• finding a particular service (for example, the service for a particular printer
or a specific serial port)

• binding to a service (which allows a client to receive notification messages
from that service)

• becoming the exclusive owner of a service

• opening a service for data transfer

• closing a service

Installing and Using Services

Services are dynamically installable and deinstallable. They can be explicitly
installed by the user, by an application, or by another service. The system
Installer ensures that only one copy of a service is stored in the machine. The
system Installer also keeps track of how many clients have asked to install a
particular service and only deinstalls it when the last client is deinstalled.

Your application must be bound to a service before using it. To bind itself to a
service, your application sends a special message to the appropriate Service
Manager. Once this binding connection is established, the service adds your
application to the list of objects it notifies when its status changes. This permits
your application to be constantly aware of the availability of the service.

249

The Service Manager

PenPoint supports the concept of delayed binding. This means that if Ser
vice A targets Service B, they can be installed in any order and everything will
work out correctly. Without delayed binding, Service B would have to be
installed before Service A could be installed. This would force the user to
understand the dependency relationships between services and to install
services in exactly the correct order.

Obviously, a service can be bound to a theoretically unlimited number of
applications. Some services only permit one application to own and open
(access) them at a time. Once you have ownership rights to a service, you can
open it for your application, thereby gaining control over it, which means you
can send it messages. You should open a service when you need to use it and
close it as soon as possible so that lower-level services can be freed.

Since PenPoint is a multitasking operating system, the Service Manager
must support multiple clients sharing the same service. In other words, shared
simultaneous access should be allowed when the service can support it, and
access must be clearly arbitrated (that is, clients take turns) for those cases in
which services cannot be accessed by more than one client at a time.

Services are available to clients either exclusively or shared. If they are
exclusive, clients must gain ownership rights to the service before being allowed to
open it. Exclusive ownership makes particular sense for entities that cannot be
shared, such as a physical serial port. The Service Manager provides proto
cols for clients to transfer ownership among themselves cooperatively.

When a service can be shared, it can have many clients at a time. A good
example of a service being shared is a networking protocol. Such a service
could be used by several applications simultaneously.

Once a client is bound to a service and has ownership of it (if it's an exclu
sive service), the client must open the service. Clients should only open a
service instance when they are ready to send or receive data. Opening a
service provides the client with access to the service object. Open status
indicates that the service is in use and blocks certain other operations. For
instance, an opened service cannot be deinstalled by the user. Clients should
close a service once they have completed data transfer.

Like all installable PenPoint objects, services can be deactivated or
deinstalled whenever they are not in use. This destroys all a service's objects
and removes all of its code.

250

The Power of Pen Point

Connecting and Disconnecting

Unlike desktop computers, mobile, pen-based computers do not have their
phone line, network and printer connections plugged in all day long. They
must therefore gracefully tolerate the connections frequently being made and
broken by the user. You can think of the presence or absence of a particular
physical hardware connection as a connection status. The Service Manager
architecture is where connection status is managed and communicated
among interested PenPoint software parties.

Hardware device services are responsible for determining whether the hardware
is connected. Some hardware provides this information to the software (for
example, they may provide hardware ports or values that indicate the connec
tion status). Other hardware must be polled to determine whether it is present.

Non-hardware services automatically change their connection state when
their targets change connection state. Thus, connection state propagates up
from the hardware to all services that are bound to that hardware. The end
result is that the users win; they are freed from having to perform additional
steps to initiate and terminate software activities before they make and break
connections. A good example of the elegance of this architecture is the In Box
and Out Box architectures described in Chapter 16; they both will automatically
fill and empty their queues whenever the appropriate connections appear.
There is no need for the user to initiate queue filling or emptying.

User Interfaces for Service Managers

A key role of a Service Manager is to allow clients to obtain a list of available
services. Clients often need to do this before they can choose a particular
service and proceed with binding, owning, and opening it. To see this clearly,
imagine a printer Service Manager: If more than one destination printer is
available, a particular one must be chosen as the destination of a print job.

'Service Managers support interrogation by enumerating all the available
service instances. This list is often made available to the end user via a simple
user interface that maps directly onto the Service Manager in question. For
example, PenPoint's printing user interface provides a simple "chooser" style
user interface to allow the user to indicate to which available printer a particu
lar document should be sent.

251

The Service Manager

Designing Services

If you design a new PenPoint service, it will be an instance of a subclass you
create from clsService. Remember that it must also have a service manager
unless one of the existing service managers provides the needed behavior.
Service managers are instances of clsServiceManager.

Summary

This chapter has examined the Service Manager, an element of PenPoint
that coordinates operations of applications that facilitate communication with
hardware devices or some types of software functions. PenPoint includes
several standard services.

The Service Manager deals with the installation, deinstallation, binding, and
operation of services in the system. It also supports a common user interface
for access to these services.

16
Connectivity

Connectivity is an inherent part of PenPoint's design. By nature, a PenPoint
based system will usually coexist with other computers and peripheral devices.
Recognizing this, PenPoint includes full support for a connectivity interface
that is not only robust enough to deal with complex interactions with other
systems, but is also customizable and therefore extensible.

Overview of PenPoint Connectivity Support

PenPoint is designed for mobile connectivity. Not surprisingly, it builds in
standard connectivity APls so that applications can count on a strong founda
tion of connectivity.

PenPoint connectivity is provided by three key layers: remote file systems,
transport interfaces, and link interfaces.

Any kind of connectivity must be built on top of some form of communications
protocols, conventions that two computers agree to follow to communicate over a
physical link. The link is often a wire such as a serial or network cable, but it could
also be a wireless link such as infrared or radio-wave communications.

PenPoint allows true networking protocols to be used for its communications
protocols. These reside in PenPoint's transport and link interfaces. They allow
PenPoint to use a variety of industry-standard protocols to communicate with

253

254

The Power of Pen Point

other computers and networks. These protocols are also available to applica
tions that want to communicate.

Networking protocols are insufficient, however, for widespread connectivity
at the application and user levels, because they require some expertise in net
working protocols. A higher-level, more convenient interface to remote systems
is needed. This is where PenPoint's Remote File system comes into play.

Remote File System

Many key aspects of PenPoint are implemented on top of PenPoint's file
system. For instance, all documents in the Notebook are actually stored in the
file system, and when the user moves, copies, deletes, or imports/exports a
document, these operations are actually performed in the underlying file
system representation.

Because the PenPoint Notebook is based on a file system, all PenPoint
operations based on the file system can extend into the remote environments.

PenPoint's file system is designed to work with a variety of file system types.
Not only can PenPoint file systems reside in the PenPoint computer, they can
also be on locally attached disks (for example, in a base station), and on
devices (that is, on another computer system). Examples of remote file sys
tems include the floppy drives and hard disks in a desktop PC or Macintosh,
and the file server on the network in an office.

A remote file system is accessed through APls running on the PenPoint com
puter that use the networking transport interfaces to communicate with the com
puter on which the file system resides. Other software on the host computer imple
ments file system operations under the "remote control" of the remote file system
APls on the PenPoint computer. The result is that the remote file system appears to
PenPoint clients to behave identically to all other PenPoint file systems.

The Remote File system, therefore, provides the higher-level API PenPoint
needs to make connectivity easy for application programmers and transparent
to the user. It's easy for application programmers because they are familiar
with how to use file system APls: The same messages will read and write files
whether they are local or remote. It's transparent for end users because they
can use the same Table of Contents Browser and Disk Browser to exchange
files with remote file systems as they use for local file operations.

255

Connectivity

Other Types of Remote Connectivity

Remote file system ,access typically meets the bulk of remote connectivity
needs, since it provides a powerful and transparent method for data files to be
uploaded and downloaded. However, there are two other important classes of
connectivity: remote printing and program-to-program communications.

Remote printing is conceptually similar to remote file systems. PenPoint
must make remote printers just as accessible to PenPoint applications and
users as directly attached printers. Whether the printer is attached to your
PenPoint computer, to your desktop PC, or to the network, its location should
be transparent. PenPoint does this via a Remote Printing interface that re
moves the need for its clients to know the exact location of the printer.

Program to program communication takes place when a PenPoint program
communicates with a program running on another computer. The other com
puter might be any type of system: a PenPoint computer, a PC, a Macintosh,
or some other system. The two systems typically communicate to establish
some form of live data connection. Two examples of this would be calendar
programs running on two machines that need to reconcile their calendars, and
a database front-end on the PenPoint machine that needs to send Sal que
ries to a database back-end on another machine (and get data back from it).
PenPoint's networking interfaces offer program-to-program communication
through standard techniques such as remote procedure calls.

The flexibility of network connectivity in PenPoint extends to support for
multiple file system volume types and multiple network protocol stacks, in a
single PenPoint system. As part of its extensibility, you can even define your
own remote file system, transport, or link, completely refashioning the network
ing interface to suit a specific need. A user can take a PenPoint-based com
puter from one network configuration to another (for example, from one field
office to another where the two networks are incompatible) and simply connect
to the network with no special configuration effort.

Key principles involved in PenPoint connectivity include the following:

• a volume connectivity strategy that enables users to install and configure
volumes from many other different file systems on the fly

• use of the Service Manager to enable users to connect, disconnect, install,
deinstall, and configure devices, device drivers, and network protocol
stacks on the fly

256

The Power of PenPoint

• multiple network protocol stacks that can coexist

• a general-purpose document import/export architecture (see Chapter 11),
including a standard interface to file format converters

• In Box and Out Box support (discussed later in this chapter) that allows
deferred document I/O for printing, filing, electronic mail, faxing, and similar
operations

Since PenPoint gives your application such extensive connectivity support
for free, you need to understand this chapter only if you are interested in
creating new remote file systems, transports, or links. If your application is
simply one that intends to make use of PenPoint's inherent connectivity sup
port, you can safely ignore the rest of this chapter.

Remote File Systems

In its initial configuration, PenPoint includes remote file systems to support
several of the most-popular networks and most-popular file access protocols.
It also supports a straightforward file import/export model that permits a
PenPoint-based system to communicate virtually transparently with an IBM PC
or compatible, for example.

Among the networks supported by the early release of PenPoint is TOPS. In
fact, the initial Developer's Release of PenPoint uses TOPS as the primary
means of moving software developed on the PC using the PenPoint Software
Developer's Kit to a running PenPoint-based system for testing and evaluation.
We will look briefly at TOPS and the IBM PC as a networking system using
remote file access, but keep in mind that this is only one of several possible
connectivity configurations for the system.

You can connect a PenPoint-based system to a desktop machine running
TOPS in four different ways

• a direct serial connection between the PenPoint-based system's high
speed serial port and a PC serial port

• AppleTalk between a PenPoint system and an Apple Macintosh

257

Connectivity

• FlashTalk between a PenPoint system and an IBM PC with a TOPS
FlashCard installed

• slower serial connection using modems

Once you connect a Pen Poi nt-based system to a desktop computer using
one of these methods, the PenPoint computer can access any printer or file
system available to the PC or Macintosh.

Transport Layer

The transport API provides access to layers 3 and 4 in the standard seven
layer Open Systems Interface (OSI) network model. (If you are not familiar with
this model and are going to be developing remote file systems, transports, or
links for the PenPoint-based system, you should consult an authoritative book
on the subject. Explanation of that model is beyond the scope of this book.)

Well-established industry-standard transports such as ATP, IPX/SPX, or TCP
can be developed under the transport API by GO Corporation or third parties.

Link Layer

Link protocols are the software layer closest to the physical networking
hardware. PenPoint provides built-in support for both of these as well as
several others.

By nature, links are the closest interface to the hardware of all network
components, residing at Layer 2 of the OSI model.

You can create new links for PenPoint with the Link API, which is explained
in detail in the SDK documentation.

258

The Power of Pen Point

Connectivity-Related Facilities

PenPoint incorporates several subsystems that support the central ideas
behind connectivity. The three most useful and unique of these services are In
and Out Boxes, a Send user interface, and Send address lists. We will take a
look at each of these.

In Box and Out Box

As we explained in Chapter 1, it is essential that a mobile, pen-based
operating system provide support for deferred data transfer. The computer
should allow the user to issue a variety of data transfer commands whenever
the user wants to, regardless of whether there's a connection present. Data
transfer commands should be loosely construed to include printing, sending
electronic mail, faxing, file transfers, and the like.

PenPoint's In Box and Out Box provide support for deferred data transfer.
They work with all data in PenPoint, with no special programming on the part
of application developers. (In traditional operating systems many application
developers go to great lengths to build special electronic mail and FAX com
mands into their applications.)

At the bottom of the Notebook (see Figure 16-1) screen is a collection of
icons residing in the Bookshelf. The two icons highlighted in Figure 16-1 are
the In Box and the Out Box.

I I

In Out
Figure 16-1 In Box and Out Box Icons

The In Box and Out Box are specialized, floating PenPoint notebooks that
act as queues for incoming and outgoing documents. They are not capable of

259

Connectivity

performing a transfer operation themselves; rather, they provide a common
user interface and architecture in which application specific transfer services
are grouped and provided to the user. The kinds of transfer operations they
support can be extended by third parties writing new transfer-related services.

There are two halves to a transfer-related service: its implementation and its
user interface. Its implementation is a special service (see Chapter 15) typi
cally called a transfer agent. Its user interface is a section in the In Box or Out
Box notebook called a service section (these sections can provide specialized
user interfaces for configuring the service).

As the user buys and installs transfer-related services, the In Box and/or Out
Box gains new sections. A typical Out Box might contain sections for the two
printers typically prints to, a section for outbound MCI mail, and one for out
bound facsimiles.

Service sections queue documents awaiting a transfer operation by that
service. Because normal documents are queued, PenPoint applications need
not be aware that this queueing is occurring. It takes place at the file system
level using a simple copy of the document (or, if memory is a concern, a virtual
copy of the document in the form of a pointer).

To send a document using a service (a process described in the next
section), the user does not need to know if the service is connected and
available. Instead, the user simply issues the Send or Print command to the
document. A copy of the document is made into the appropriate Out Box
service section; in effect, it is queued. Whenever the connection is available
(including immediately), the transfer agent responsible for that service section
is notified of the connection and it processes each document waiting in its
queue.

It is important to recognize that the queue contains documents, not print or
facsimile jobs, which would contain a bitmap image of the document. This
approach would consume too much memory. The document itself tends to be
quite compact. When the Print and Fax transfer agents empty their queues,
they alert each queued document and send it messages requesting that it
print or send itself.

The user is always in ultimate control of the documents in the Out Box, of
course, until they are sent and removed from the Out Box. The user can
decide not to send a document simply by deleting it from the Out Box.

260

The Power of PenPoint

Any connection that can transfer data can have an In Box transfer agent so
that it can place documents in Pen Point's In Box. When the PenPoint system is
connected to a network or remote file system, it may also receive documents
from other nodes on the network. These documents are transmitted to the Pen
Point-based system's In Box, where the user can dispose of them as desired.

The Send User Interface

PenPoint's Standard Application Menus (see Chapter 2) provide a standard
Send command on every document's Document menu. The Send command
allows the user to use PenPoint's Send User Interface to place the document
into the Out Box.

Like the Out Box itself, the Send User Interface is extensible by third-party
developers. Whenever a new Out Box transfer agent is installed, it will typically
extend the Send User Interface so that the user can use this single, standard
user interface for addressing documents, no matter what transfer technology
is used.

To understand the Send User Interface, let us first consider what occurs in
traditional operating systems. Each electronic mail and facsimile application
provides its own user interface and its own address list. To send something to
John Doe via one electronic mail program, it's done one way. If you choose
another program, the interface is different. In addition, John's name must
appear in multiple address lists.

It would be better if the operating system provided a single address list in
which John's name would only appear once. If John were available via a
facsimile number, an MCI mail box number, and a local network mail name, all
three of these addresses would appear next to John's name in this single list.
To send to John you would choose the appropriate method of transfer.

PenPoint's Send User Interface is built around just such an address list,
called the Send List. It is a miniature address book containing all the people
and places the user might wish to send documents. When new transfer agents
are installed, they extend the Send List by adding to it a new field type for their
particular type of addressing.

261

Connectivity

Users choosing the Send command are presented with a list of the currently
installed sendable services. Once they choose a service, it presents its own
special send user interface (typically based on the Send List name list). They
then choose to whom they want to send the document. A few taps of the pen,
and the user is done; PenPoint has queued the document into the appropriate
Out Box section.

PenPoint has a built-in interface to permit the user to manage the address
book, which is actually a database. The user can transfer this database to
another system, send it to another user, and generally treat it like any other
document.

Summary

This chapter has examined the highly integrated connectivity of PenPoint.
Many key features of connectivity are implemented through the remote file
system, which in turn is built on the PenPoint file system.

Networking connectivity in PenPoint can be looked at as divided into trans
port and link layers.

Deferred connectivity, an important concept in PenPoint, is supported via
the In Box and Out Box interfaces. These elements, in turn, make use of the
Send User Interface which includes a built-in address book database.

Appendix A: Important
Data Structures, Classes,
and Messages

This Appendix includes useful technical information regarding the Pen Point
Operating System and how it is programmed. This data is useful only to pro
grammers interested in developing applications for PenPoint-based systems.
Material in this Appendix is arranged in chapter order as the related topics are
discussed in the main body of the book. For each class, this Appendix describes
key metrics and data structures as well as the most important messages and
their uses.

Full documentation of the PenPoint programming interfaces is included in
the Software Developer's Kit (SDK). This Appendix provides only key data and
is designed to provide you with a sense of the scope and depth of the pro
gramming issues involved in PenPoint rather than with a complete reference to
the system.

263

264

The Power of Pen Point

The Class Manager (Chi 5)

clsMgr Protocols

Because of its position at the root of the hierarchy and its unique role in the
system, clsMgr differs from other classes in PenPoint. The primary difference
is that in addition to object-oriented messages, it aiso contains a reasonabie
amount of procedural interface code.

Table A-1 Important clsMgr Functions

Function

ObjectCall

Ob jectCallAncestor

ObjectPost

Object PostAsync

ObjectSend

ObjectSendUpdate

Description

Sends a synchronous message call

Passes a message to an object's immediate ancestor class

Posts a message to an object by placing the message in
the input subsystem's event queue rather than sending
directly to the object itself

Posts a message asynchronously

Sends a message to an object across task or process
boundaries (that is, to another application) and waits for a
reply

Same as ObjectSend, but returns changed data

265

Appendix A: Important Data Structures, Classes, and Messages

Table A-2 Important clsMgr Macros

Macros

Cis

ObjCallChk

ObjCallJmp

ObjCaliOK

ObjCaliRet

Sts

WKNVer

Description

Extracts the class code from a message or status value to
determine the class to which message was sent

Returns True (1) if an error is reported by the target object

Branches to a Goto label if an error condition arises during
message processing

Evaluates to True (1) if no error condition is reported by the
target object

Returns the status value from a called object if an error
occurs

Extracts the error code from a status value

Returns the version number of a well-known UIO

Table A-3 Important clsMgr Messages

Message

msgAddObserver

msgCan

msgClass

msgOisable

msgEnable

msgGetObservers

msglsA

msgNew

msgNewOefaults

msg NotifyObservers

msgNotUnderstood

Description

Adds an observer to the receiver object's observer list

Returns the state of the requested capability or capabilities
in the receiver

Returns the class of the receiver

Removes capabilities from receiving object

Adds capabilities to receiving object

Returns a list of observer objects in the receiver

Tests if a class appears anywhere in the inheritance
hierarchy of receiving object

Creates an object

Initializes msgNew arguments to default values

Sent to self to cause object to notify all of its observers of a
state change

Sent to self when a message sent to an object was not
handled anywhere in its inheritance hierarchy

266

The Power of Pen Point

Table A-3 Important clsMgr Messages (continued)

Message

msgNumObservers

msgObjectVersion

msg RemoveObserver

Description

Returns the number of observer objects defined in the
receiver's observer list

Returns the version of a well-known object and checks it
against the current version

Removes an observer from the receiver object's observer
list

The Application Framework (Ch, 6)

clsAppMgr

The application manager class clsAppMgr defines messages to keep track
of application classes after installation and to create, activate, and destroy
instances of an application.

From your application's perspective, clsAppMgr provides messages to
create new application classes and to obtain information about any installed
class.

clsAppMgr Metrics

Metrics that pertain to an application class in general are stored in a clsAppMgr
data structure called APP _MGR_METRICS. Among its more important contents are

• the shared application directory for the installed application

• the resource file used by the application documents

• the default position of its window

• the application name

267

Appendix A: Important Data Structures, Classes, and Messages

• your company's name

• the default name for a document the application creates

In addition, APP _MGR_METRICS contains a structure called APP _MGR_FLAGS,
consisting of eight Boolean values. The most important of these tell PenPoint
whether to

• put the application into the Stationery Notebook

• put the application into the Tools Palette

• allow the user to embed child applications in its documents

• ask the user to confirm an attempt to delete the document

• permit the user to deinstall the application

Table A-4 Key clsAppMgr Messages

Message

msgAppMg r Activate

msgAppMgrCreate

msgAppMgrGetMetrics

clsApp

Description

Activates an instance of an application

Creates a new instance of an application

Retrieves the contents of the APP _MGR_METRICS structure
for the class

You can think of clsApp as picking up in the PenPoint application life cycle
where clsAppMgr leaves off. Once a document has an application object and
is ready for the user to manipulate, clsApp becomes the important class.

The messages defined by clsApp handle such tasks as

• instance data initialization, saving, and re-creation

• opening and controlling the instance's windows

• beginning message dispatching to the application instance

268

The Power of Pen Point

• determining various behavioral characteristics of the application instance
(including floating and zooming, for example)

• deleting application instances

clsApp Metrics

The data structure associated with clsApp is called APP _METRICS. Among
other things, it includes

• the document's unique 10

• the document directory

• the document's parent document

• the UID of the main window

• identification of the floating windows, if any

• a list of resource files associated with the document

• a set of flags called APP _FLAGS, discussed below

Within APP _METRICS is a set of flags that determine if the document

• is in hot mode

• is floating

• is read-only

• can be deleted

• can be moved

• can be copied

Table A-5 Key clsApp Messages

Message

msgAppAbout

msgAppACtivate

msgAppClose

Description

Displays information describing the application

Activates an application instance

Closes the main window of an application instance

msgAppCopySel

msgAppCreateClientWin

msgAppDelete

msgAppDeleteSel

msgAppGetMetrics

msgAppHelp

msgApplnit

msgAppMoveSel

m~gAppOpen

msgAppOptionShow

msgAppPrint

msgAppPrintSetup

msgAppRestore

msgAppRestoreFrom

msgAppRevert

msgAppSave

msgAppSave T 0

msgAppSearch

msgAppSelectAIl

msgAppSelOptions

msgAppSetTitleLine

msgAppSpel1

msgApp Terminate

msgAppUndo

269

Appendix A: Important Data Structures, Classes, and Messages

Prepares to copy the selection into this application

Creates a standard application client window, an instance
of clsView

Deletes the instance from the system

Prepares to delete the selection from this document

Retrieves the application's metrics from the
APP _MGR_METRICS structure

Displays help for the selection if help is available

Creates the resource file and main window for an applica
tion instance

Prepares to move the selection into this application

Opens the main window of an application instance, making
its contents visible to the user

Shows or hides an Option Sheet

Prints the application using the selected graphic imaging
device

Asks the user for information to prepare a document for
printing

Retrieves the application's objects from the resource file
named in APP _MGR_METRICS for the class

Retrieves the application's objects from the resource file
supplied as an argument

Replaces the current document and its instance data with
the filed copy of the application

Saves the application's instance data in the resource file
with which the instance was opened

Saves the application's instance data in the resource file
supplied as an argument

Searches the application for a specified string, including
options the user can set and options your program can
determine

Selects all objects in an application instance

Prepares to display an Option Sheet for the selection

Turns the title line of the application's main window on or off

Invokes the spell-checking logic for the application instance

Terminat,es an application, making it dormant

Reverses the effect of the msgAppTerminate

270

The Power of Pen Point

clsEmbeddedWin

Table A-6 Key clsEmbeddedWin Messages

Message

msgEmbeddedWinBeginCopy

msgEmbeddedWinBeginMove

msgEmbeddedWinCopy

msg EmbeddedWinDestroy

msgEmbeddedWinGetDest

msgEmbeddedWinGetMetrics

msgEmbeddedWinMove

Description

Puts an embedded window into copy mode so that it is
prepared to be copied by the user

Puts an embedded window into move mode so that it is
prepared to be moved by the user

Copies an embedded window to a new destination at the
completion of a user's copy operation

Destroys an embedded window and removes all references
to it

Determines the destination point for a move or copy
operation

Retrieves an embedded window's metrics from a structure
called EMBEDDED_WIN_METRICS

Moves an embedded window to a new destination at the
completion of a user's move operation

Table A-7 Key clsView Messages

Message

msgViewGetDataObject

msgViewSetDataObject

clsAppWin

Description

Retrieves the 10 of the object related to a view

Sets or changes the 10 of the object related to a view

clsAppWin is a descendant of clsEmbeddedWin that wraps an embedded
application and provides the interface between the application and the Appli
cation Framework layer. The purpose of clsAppWin is to provide fundamental
gesture behavior for an embedded application window.

271

Appendix A: Important Data Structures, Classes, and Messages

clsAppWin Metrics

clsappWin defines a data structure called APP _WIN_METRICS that contains
basic information describing an application window. This includes the follow
ing data

• the UID for the application

• the icon and label used for the Open button

• a Boolean value indicating whether the window is open or closed

• a Boolean value indicating whether the window is floating or not

• a Boolean value indicating whether the window is the current selection

In addition, it contains a contains a pointer to an APP _WIN_STYLE data
structure, which contains values describing the title bar and document icon
characteristics for the application.

Table A-a Key clsAppWin Messages

Message

msgAppWinClose

msgAppWinGetMetrics

msgAppWinOpen

msgAppWinSetStyle

Description

Closes the application window instance

Retrieves the metrics for the application window from the
APP _WIN_METRICS data structure

Opens the application window instance

Places values into the APP _WIN_STYLE data structure

272

The Power of Pen Point

The PenPoint Windowing System (Ch. 7)

Window Metrics

Much of the state of a window is stored in its WIN_METRICS structure. This
structure contains fields that define such things as

• parent window

• child window

• size and origin of window (bounds)

• device on which window's pixels appear

• window tag, which you define

• various style flags

Table A-9 Key Window Flags

Flag

wsCaptureLayout

wsClipChildren

wsClipSiblings

wsLayoutDirty

wsPaintable

wsSendLayout

wsVisible

Comments

This window must be laid out each time children are moved
or resized

Drawing in this window will not paint over child windows

Drawing in this window will not paint over sibling windows

This window must be laid out each time its contents have
changed or have been revealed after being obscured

This window can be painted

This window must be laid out each time it is resized

This window is not hidden

273

Appendix A: Important Data Structures, Classes, and Messages

Table A-10 Important clsWin Messages

Message

msgWinBeginPaint

msgWinBeginRepaint

msgWinDelta

msgWinEndPaint

msgWinEndRepaint

msgWinEnum

msgWinGetFlags

msgWinGetMetrics

msgWinlnsert

msgWinlnserted

msgWinlnsertOK

msgWinLayout

msgWinLayoutSelf

msgWinMoved

msgWinRepaint

msgWinSetFlags

msgWinSetVisible

msgWinSized

msgWinUpdate

Description

Sets up a window for painting a "dirty" region

Sets up a window for repainting a "dirty" region

Moves and/or resizes a window

Informs the window system that the window has finished
painting

Informs the window system that the window has finished
repainting

Enumerates a window's children

Retrieves only the flag values in the WIN_METRICS data
structure

Retrieves the WIN_METRICS data structure's contents

Inserts a window into the hierarchy as the child of a parent

Advises a window that it has been successfully inserted

Informs a parent that a child has requested to be inserted
into it in the tree hierarchy

Instructs a window and its subwindows to lay themselves
out

Instructs a window to layout its children

Informs a window that it or an ancestor window has been
moved

Tells a window to repaint itself (see Chapter 9 for more
details)

Sets window flags in WIN_METRICS as well as an input
related flag structure described in Chapter 13

Turns window's visibility bit on or off and returns its previous
value

Informs a wihdow that it or an ancestor window has been
resized

Forces a window to repaint immediately, if any portion of it
requires repainting

274

The Power of PenPoint

Recursive Live Embedding Protocol (Ch. 8)

Three classes that define metrics and messages are important to your
support of recursive live embedding and traversal: clsEmbeddedWin, clsTE,
and clsTraverse. A fourth class, clsStdTE, is a convenient package class that
combines support for clsTraverse messages with the creation of a traversal context.

clsEmbeddedWin

This class's purpose is to support common application window behavior
such as responses to gestures and child embedded window actions. We
looked briefly at this class in Chapter 7. As we have indicated, your applica
tion is most likely to be an instance of a subclass of clsEmbeddedWin.

Table A-11 Important clsEml?eddedWin Messages

Message

msgEmbeddedWinBeginCopy

msgEmbeddedWinBeginMove

msgEmbeddedWinCopy

msgEmbeddedWinGetDest

msgEmbeddedWinGetMark

msgEmbeddedWinGotoChild

msgEmbeddedWinGotoMark

Description

Requests initiation of a copying process

Requests initiation of a move process

Carries out the copying process

Gets the destination of a move or copy operation

Returns the mark of an embedded window

Goes to a child embedded window whose UI D is furnished
as an argument

Goes to the embedded window whose mark is supplied as
an argument

msgEmbeddedWinMove Carries out the move process

msgEmbeddedWinMoveCopyOK Authorizes the move or copy operation to proceed

msgEmbeddedWinExtractChild Extracts a child window

msgEmbeddedWinlnsertChiid Inserts a child window

msgEmbeddedWinMoveChild Changes the position of a child window

msgEmbeddedWinRestoreChild Restores a child window from its file

275

Appendix A: Important Data Structures, Classes, and Messages

cisTE

cisTE is the traversal engine class. It is a generalized traversal engine that
implements the protocols defined in clsTraversal.

Table A-12 Important cisTE Messages

Message

msgTEApply

msgTEGetCreateCtxResponse

msgTEGetCtxData

msgTENext

msg TESetCtxData

msgTEUp

clsTraverse

Description

Applies the message to the item at the current position

Gets the embedded response from the current context's
Create processing

Get client data for the current context

Moves the current position to the next item

Changes client data for the current context

Moves the current position up to its parent

The purpose of clsTraverse is to supply the basic protocol for class traversal
engine creation.

Table A-13 Important clsTraverse Messages

Message

msg TraverseApply

msg TraverseCreateCh ildCtx

msg TraverseCreateDocCtx

msg TraverseCreateGestureCtx

msg TraverseCreateSelCtx

msg TraverseCreateWordCtx

msg T raverseGetParent

msg TraverseNext

Description

Applies the current action to the item at the current position

Creates a traversal context over the specified child

Creates a traversal context for a document

Creates a traversal context at the specified gesture

Creates a traversal context for a selection

Creates a traversal context for the word under the specified
gesture

Retrieves the UUIDs of parent

Advances the position to the next item

276

The Power of Pen Point

ImagePoint: Graphics and Imaging System (Ch. 9)

Graphics Metrics

There are one key object and four important structures connected with
graphics in PenPoint. The drawing context itself is the object; the four struc
tures relate to fonts and text.

SysDC

A drawing context defines all of the essential characteristics of a graphic
environment. Among its more important instance data are those defining

• units to be used (pixels, points, inches, and so forth) in measurements

• the matrix that defines what scaling and/or rotation is needed

• type and extent of clipping to be performed (normally defined to clip to the
window boundaries)

• plane mask (whether the window can or does draw on the acetate layer
where pen ink gets dribbled)

• line characteristics (how a line is capped, how two lines are joined, and how
thick the line is)

• radius value for round-cornered rectangles

• foreground color

• background color

• fi" pattern

• line pattern

• font
• miscellaneous flags

277

Appendix A: Important Data Structures, Classes, and Messages

The attributes of a font include the following characteristics:

• font group (sans serif, roman, and so forth)

• stroke weight

• aspect ratio

• italicized flag

• monospaced flag

• type of encoding used

When you combine the 1A-bit font 10 with its SYSOC_FONT_ATTR
structure's values, you get a 32-bit quantity called a SYSOC_FONT _SPEC. You
can file this value along with the text to indicate its formatting. When a font is
opened, if the exact font 10 is not currently installed, the SYSOC_FONT _ATTR
is used to find the best matching installed font.

A SYSOC_ TEXT _OUTPUT structure defines the parameters to draw a single
string of text in the current font. Its most important fields describe

• alignment

• underlining

• a pointer to the text itself

• the length of the text

• where to place the string (x,Y)

• justification metric data (such as width of normal space, how much to add
to it, and so forth)

278

The Power of PenPoint

Table A-14 Key clsSysDrwCtx Messages

Message

msgDcClipRect

msg DcCopyPixels

msgDcDrawArcRays

msgDcDrawBezier

msgDcDrawEllipse

msgDcDrawChordRays

msgDcDrawlmage

msgDcDrawPageTurn

msgDcDrawPolygon

msgDcDrawPolyline

msgDcDrawRectangle

msgDcDrawSectorRays

msgDcDraw Text

msgDcDrawTextRun

msgDcFiliWindow

msgDcGetBackgroundRGB

msgDcGetFillPat

msgDcGetFontMetrics

msgDcGetForegroundRGB

msgDcGetLine

msgDcGetLinePat

msgDcGetMode

msgDcGetWindow

msgDcHitTest

msgDclnitialize

msgDc InvertColors

msgDcMeasureText

Description

Sets or clears clip rectangle

Copies a range of pixels from an image device

Draws an arc using the rays method

Draws a Bezier curve using four points

Draws an ellipse

Draws a chord

Draws an image from sampled data

Draws a page-turn effect over the bound window

Draws an arbitrarily shaped polygon

Draws a potentially multisegmented line

Draws a rectangle

Draws a pie-wedge shape

Draws text in the current font in the current window

Same as msgDcDrawText, but draws using run spacing

Draws a rectangle the size of the window and fills it with a
specified pattern

Returns current background color as RGB value

Gets the pattern in use for filling closed shapes

Gets font metrics for the current font

Returns current foreground color as RGB value

Gets all line attributes if argument is a pointer to a
SYSDC_LlNE structure; otherwise, gets only the line's
thickness as return value

Gets the pattern in use for drawing lines

Gets drawing mode flags

Gets which window the receiver is bound to

Turns hit testing on or off

Resets all fields in the DC to their default values

Swaps background and foreground colors

Computes size of text and advances counter pointer as
needed

msgDcOpenFont

msgDcScaleFont

msgDcSetBackground RG B

msgDcSetFillPat

msg DcSetForeground RG B

msg DcSetLi ne

msg DcSetLi nePat

msg DcSetLine Th ickness

msgDcSetMode

msgDcSetWindow

279

Appendix A: Important Data Structures, Classes, and Messages

Opens a font, finding the one nearest that specified if
system doesn't have specified font

Scales font matrix

Sets background color using an RGB specification (number)

Sets the pattern to be used in filling closed shapes

Sets foreground color using an RGB specification (number)

Sets all line attributes

Sets the pattern to be used in drawing a line

Sets the thickness of the line

Sets the drawing mode

Binds DC to a window

The User Interface Toolkit (Ch 10)

clsButton

Table A-15 Important clsButton Messages

Message

msgButtonGetMsg

msgButtonNotify

msg ButtonSetMsg

Description

Determines the message sent by the button when it is
activated by the user

Sends appropriate message to button's client if one is
specified, with optional arguments

Changes the message sent by the button when it is acti
vated by the user

280

The Power of Pen Point

clsControl

Table A-16 Important clsControl Messages

Message

msgControlEnable

msgControlGetClient

msgControlGetDirty

msgControlGetEnable

msgControlSetClient

msgControlSetDirty

msgControlSetEnable

clsCustomLayout

Description

Forces control to re-evaluate whether it should be enabled

Returns the identification of the client of the control

Determines whether the control has changed since its dirty
condition was last set to False

Determines whether the control is presently enabled or not

Changes the control's client

Resets the control's dirty condition to True or False

Enables or disables a control

Table A-17 Important clsCustomLayout Messages

Message

msgCstmLayoutGetChildSpec

msgCstmLayoutSetChildSpec

Description

Returns the specification for a child window in a custom
layout

Defines the specification for a child window in a custom
layout

281

Appendix A: Important Data Structures, Classes, and Messages

clsField

Table A-18 Important clsFieldMessages

Message

msgFieldAcceptPopup

msgFieldActivate

msgFieldActivatePopup

msgFieldCancelPopup

msgFieldDeactivate

msgFieldFormat

msgFieldGetMaxLen

msgFieldGetXlate

msgFieldModified

msgFieldSetMaxLen

msgFieldSetXlate

msg FieldT ranslateDelayed

clslcon

Description

Accepts the insertion pad's contents and dismisses it

Activates a field for user input

Displays the field's pop-up insertion pad

Dismisses the insertion pad without altering field contents

Deactivates a field

Formats text on the screen

Refrieves the field's maximum text length

Retrieves the field's input translator or template (see
Chapter 13)

Processes a new input value for a field

Changes the field's maximum text length

Sets the field's input translator or template (see Chapter 13)

Translates delayed pen input

Table A-19 Important clslcon Messages

Message

msg I conGetPictureSize

msg IconGetRects

msg I conSetPictureSize

Description

Returns the size of the picture

Returns the bounds for the label and the picture

Defines the picture size

282

The Power of Pen Point

clsLabel

Table A-20 Important clsLabel Messages

Message

msgLabelGetCols

msg LabelGetRows

msgLabelGetString

msg LabelSetCols

msgLabelSetRows

msg LabelSetStri ng

clsMenuButton

Description

Returns the number of columns defined for the label

Returns the number of rows defined for the label

Returns the string defined as the label's content

Changes the number of columns defined for the label

Changes the number of rows defined for the label

Changes the string defined as the label's content

Table A-21 Important clsMenuButton Messages

Message

msgMenuButtonGetMenu

msgMenuButtonProvideMenu

msgMenuButtonSetMenu

msg MenuButtonShowMenu

Description

Returns the pull-right or pull-down menu or null if none is
defined

Provides content of menu to be displayed if metrics call for
dynamic menu generation

Sets the pull-right or pull-down menu

Puts up or takes down the menu

283

Appendix A: Important Data Structures, Classes, and Messages

clsNote

Table A-22 Important clsNote Messages

Message

msgNoteCancel

msgNoteDone

t msgNoteShow

clsOption

Description

Dismisses note and cancels processing

Indicates that the application modal note has been dis
missed

Displays and activates the note

Table A-23 Important clsOption Messages

Message

msgOptionAddCard

msgOptionApply

msgOptionApply AndClose

msgOptionClose

msgOptionGetCard

msgOptionShowCard

msgOption RefreshCard

Description

Adds a card to the Option Sheet

Tells the Option Sheet to apply its top card to the selection

Tells the Option Sheet to apply its top card to the selection
and close

Tells the Option Sheet to close itself

Retrieves information about a card

Displays a given card, making it the current card

Resets card settings based on selection

284

The Power of Pen Point

clsScrollbar

Table A-24 Important clsScrollbar Messages

Message

msgScrollBarHorizScrol1

msgScrollbarProvideHorizlnfo

msgScrollbarProvideVertlnfo

msgScrolibarUpdate

msgScrol1 BarVertScrol1

clsScrollWin

Description

Indicates client should perform a horizontal scrolling
operation

Indicates client should provide horizontal document and
view information

Indicates client should provide vertical document and view
information

Forces the scroll bar to repaint with the most-recent informa
tion about position and offset

Indicates client should perform a vertical scrolling operation

Table A-25 Important clsScrollWin Messages

Message

msgScrollWinGetClientWin

msgScrollWinSetClientWin

msgScrollWinAddClientWin

msgScrollWinRemoveClientWin

msgScrollWinGetVertScrol1 bar

msgScrollWi nGetHorizScrol1 bar

Description

Returns current client window

Changes client window

Adds a new client window to the scrolling window

Removes specified client window from the scrolling window

Returns the value of the vertical scroll bar

Returns the value of the horizontal scrollbar

285

Appendix A: Important Data Structures, Classes, and Messages

clsTkTable

Table A-26 Important clsTkTable Messages

Message

msgTkTableAddAsFirst

msgTkTableAddAsLast

msgTkTableAddAsSibling

msgTkTableAddAt

msgTkTableGetClient

msgTkTableRemove

msgTkTableSetClient

Description

Inserts a specified window as the first child window in the
Toolkit Table

Inserts a specified window as the last child in the Toolkit
Table

Inserts a specified window in front of or behind and existing
child

Inserts a specified window at a specified index position in
the window list of the Toolkit Table

Returns the client of the first child in the Toolkit Table

Removes a specified window from the Toolkit Table

Sets client of each child in the table from an array of
arguments

The File System (Ch. 11)

The File System Protocols

Because of the nature of directories and files in a hierarchical file system like
PenPoint, there are a number of activities (such as copying, moving, and deleting)
that can apply in nearly identical ways to both files and directories. As a result,
several messages are defined in both clsFileHandle and clsDirHandle.We
discuss these shared messages first, then look at messages that are unique to
each class.

286

The Power of Pen Point

Shared Messages

Table A-27 describes the important messages shared by clsFileHandle and
clsDirHandle.

Table A-27 Important Messages in clsDirHandle and clsFileHandle

Message

msgDestroy

msgFSCopy

msgFSDelete

msgFSGetAttr

msgFSGetPath

msgFSMove

msgFSSetAttr

clsDirHandle

Description

Destroys a directory or file handle (note that it does not
affect the file or node itself, only its handle)

Copies a directory (and all its children) or a file to a new
destination, leaving it in its original position as well

Deletes a file or a directory and all of its children

Returns one or more attributes of a file or directory

Returns the path of a directory or the name of a file

Relocates a directory or file to a new destination. In the case
of a directory, moves all children as well

Changes one or more attributes of a file or directory

Table A-28 Important Messages in clsDirHandle

Message

msgFSReadDir

msgFSReadDirFul1

msgFSRead Di rReset

Description

Reads the attributes of the next entry in a directory

Reads all entries in a directory into a buffer

Resets the position for directory reading to the beginning of
the directory

287

Appendix A: Important Data Structures, Classes, and Messages

clsFileHandle

Table A-29 Important Messages in clsFileHandle

Message

msgFSFlush

msgFSGetSize

msgFSSeek

msgFSSetSize

msgStreamRead

msgStreamSeek

msgStreamWrite

Description

Flushes any buffers associated with the file

Returns the size of the file

Changes the current byte position value

Changes or establishes the size of the file

Reads data from the file

Moves to a new position in the file

Writes data to a file

Resources and Their Management (Ch. 12)

Resource Class and Messages

All resource file activities are handled by clsResFile, which inherits from
clsFileHandle. The class includes messages to handle location, reading,
writing, updating, and deleting of specific resource objects; enumerating over
lists of resource files; and compacting resource files.

288

The Power of PenPoint

Table A-30 Important clsResFile Messages

Message

msgResFind

msgResReadData

msgResWriteData

msgResUpdateData

msgResReadObject

msgResWriteObject

msg ResU pdateObject

msgResGetObject

msgResPutObject

msgResDeleteResource

msgResCompact

Description

Locates a resource in a file or file list

Reads a data resource from a file

Writes a data resource to a file

Updates an existing data resource in a file

Reads an object resource from a file

Writes an object resource to a file

Updates an existing object resource in a file

Reads an object resource from the current file position

Places an object resource at the current file position

Deletes a data or object resource from a file

Forces compaction of a resource file

Text Editing and Related Classes (Ch, 14)

Text-Editing Metrics

When you create a new text data object, you must supply a TD_NEW struc
ture. This structure's most important components are:

• a set of metrics for the text data object that define whether the text object is
modifiable and whether editing operations can be undone

• the expected size of the text data object

289

Appendix A: Important Data Structures, Classes, and Messages

The TV_NEW structure associated with creating a new text view has a
number of elements, the most important of which are

• a flag that determines whether the view will be filled with an insertion pad

• the UID of a text data object to view (NULL creates a new, empty data
object)

• a pointer to a TV_STYLE structure that defines the style for the view

The TV_STYLE structure, in turn, includes:

• behavior flags defining such things as whether it is permissible to embed
applications in the view, how text is to be formatted for printer output,
whether word wrap is turned on or not and whether hidden text is to be
displayed

• a character size adjustment, or magnification, value

• a flag indicating whether special characters (line break and paragraph
break, for example) should be shown

• the UID of the destination printer

290

The Power of PenPoint

clsText

Table A-31 Important clsText Messages

Message

msg TextChangeAttrs

msgTextClearAttrs

msg T extEmbedObject

msg TextExtractObject

msgTextGet

msg TextGetAttrs

msg TextGetBuffer

msgTextlnitAttrs

msg TextLength

msgTextModify

msgTextRead

msgTextSpan

msgTextWrite

Description

Modifies either default or local attributes of a text data
object

Removes all local attributes for a defined span of characters
in the text data object

Embeds an object at the specified position in a text data
object

Removes an object from the specified position in a text data
object

Retrieves a specified character

Retrieves default or local attributes in effect at a given index
in the text data object

Retrieves multiple characters

Initializes attributes in preparation for changing them

Returns the number of characters in the text data object

Inserts, deletes, or replaces characters in a text data object

Imports from a file or stream of text

Computes the starting and ending character indices of the
specified span of characters

Exports to a file or stream of text

291

Appendix A: Important Data Structures, Classes, and Messages

clsTextView

Table A-32 Important clsTextView Messages

Message

msgTextViewAddlP

msg T extViewEmbed

Description

Adds an insertion pad to the text view

Adds an embedded object to the text view

msgTextViewGetEmbedded- Metrics Returns the metrics for an embedded object in a text
view

msgTextViewGetStyle Returns the style settings for the text view

msgTextViewResolveXY Determines the character index in a text view based on
the x-y coordinates of a pen tap

msgTextViewScroll Scrolls the text view

msgTextViewSetSelection Converts the current selection to a span of characters on
wh ich an operation can be performed

msgTextViewSetStyle Changes the style settings for the text view

292

The Power of Pen Point

The Service Manager (Chi 15)

Table A-33 Important clsService Messages

Message

msgSvcBindRequested

msgSvcCloseRequested

msgSvcDeactiveReq uested

msgSvcDeinstallRequested

msgSvcGetConnected

msgSvcGetFunctions

msgSvcGetName

msgSvcGetOwner

msgSvcGetStyle

msgSvcGetT arget

msgSvcOpenRequested

msgSvcSetConnected

msgSvcSetStyle

msgSvcSetTarget

msgSvcUnbindRequested

Description

Responds to an attempt to bind the service to an applica
tion

Responds to an attempt to close the service

Responds to an attempt to deactivate the service

Responds to an attempt to deinstall the service

Returns the connection state of the service

Returns a list of the function entry points for the service

Returns the name of the service

Returns the UID of the owner of the service

Returns the style of the service as stored in the SVC_STYLE
data structure

Attempts to access the target device

Responds to an attempt to open the service

Changes the connection state for the service

Changes the style of the service

Defines or redefines the target device

Responds to an attempt to sever the bind between an
application and the service

293

Appendix A: Important Data Structures, Classes, and Messages

clsServiceManager

Table A-34 Important clsServiceManager Messages

Message

msgSMBind

msgSMClose

msgSMConnectedChanged

msgSMGetOpenList

msgSMGetState

msgSMOpen

msgSMOwnerChanged

msgSMSetOwner

msgSMUnbind

Description

Binds the application to a service managed by the manager

Closes a service

Indicates that the connection state of a service managed by
the manager has changed

Returns a list of all objects that have opened the service

Returns the activation and in-use states of a service
managed by the manager

Opens a service

Indicates that the owner of a service managed by the
manager has changed

Changes the owner of a service managed by the manager

Severs the bond between an application and a service
managed by the manager

Appendix B: Things to
Keep in Mind

Memory Is Tight

You cannot squander memory. Your application should use little memory
when active. It must be able to reduce its memory usage further when off
screen. An application that is packed with functionality but consumes a lot of
memory is less likely to be successful than one that covers 70 percent of the
problem while requiring very little memory.

Think Small

Most PC programs stand alone as large monolithic programs that attempt to
do everything. In the cooperative, multitasking PenPointenvironment it makes
more sense to provide programs that present a facet of functionality or that
orchestrate other applications and components. Use existing classes and
components where possible in preference to writing your own from scratch.

295

296

The Power of Pen Point

Modular Components

Consider writing your application as a set of separable components. A compo
nent is a separately loadable module (a DLL) providing software functionality. It has
a well-defined external interface so that other software can reuse it or replace it.
Thus your application becomes an organizing structure that ties together visible
components that can be embedded in other objects. For example, an outliner
application might use a drawing component, a charting component, and a table
entry component; you can license these components to or from other developers.
GO is working to develop a market for third-party components, and itself offers two
components: GrafPaper and the Table Server.

Everything's in Memory

The GO Computer's memory file system coexists with running applications
in the same RAM. Most of the time most GO Computers will not be attached to
any kinds of external media. You should be aware of the occasions when data
in your application's memory space needlessly duplicates data or code that is
also present in the file system. One way to avoid duplication is to use memory
mapped files for your application's data.

There's Only Memory

Because the GO Computer has a memory-resident file system, many of the
trade-ofts appropriate to traditional software design no longer apply. For
example, the decision to read a start-up file "into memory" makes sense when
memory access is several orders of magnitude faster than file access, but the
GO Computer's memory file system ;s memory.

297

Appendix B: Things to Keep in Mind

Your Application Must Recover

, A user may go for weeks or months without backing up his or her GO
Computer's file system. If your application goes wrong, PenPoint will try to halt
it rather than the entire computer, but it is your responsibility to ensure that a
new invocation of your application will be able to recover cleanly using what
ever information it finds in the file system. This precept sometimes conflicts
with avoiding data duplication, since the memory file system is more bullet
proof than the address space of a running application, hence filed state will
usually survive a process crash.

Moreover, most of the time most users will not have the GO Computer boot
disks on hand. You cannot rely on the user being able to press the reset
switch in a jam. PenPoint uses hardware and software protection techniques to
secure against applications unintentionally corrupting the kernel and/or file
system, but it is not foolproof.

Object-Oriented or Else

You don't get to vote on using object-oriented techniques. You have to write
a class for your application which inherits from clsApp. The windows your
application displays on the screen must be instances of clsWin (or some other
class inheriting from cis Win). Of course, there are tremendous payoffs from
PenPoint's object-oriented approach in program size reduction, code sharing,
application consistency, programmer productivity, and elimination of boilerplate
code (large chunks of setup/housekeeping code that appear unchanged in
every application).

Who Runs the Code'? Who Owns the Data?

Think about what other parts of PenPoint need to access your classes, what
tasks need to run the code in them, and who maintains their data. If your
application has a client-server architecture, a separate back-end, ora core

298

The Power of Pen Point

engine you'll need to have the picture in mind when choosing local versus global
memory, dynamic versus well-known objects, process versus subtask execu
tion, protecting shared data with semaphores and queued access, and so on.

Tip

PenPoint is a rich operating system with all these traditional kernel features
available to applications. But a straightforward application may not need to
concern itself with any of these issues. It just interacts with PenPoint sub
systems, which make careful use of these features. For example, none of the
PenPoint tutorial programs really gets involved with any of this.

User Sees Documents, Not Separate Programs
and Program Files

Every document on a page is the conjunction of data and a process running
an application. This leads to a document-centered approach to application
design in place of a program-oriented approach. On a Mac or PC the user
tends to fire up a program and work on a succession of files: under PenPoint,
the user jumps from document to document, and the system unobtrusively
starts up the right program for that document.

There are many ramifications of this: there are typically no Open ... or Save
As ... commands in your application; PenPoint, not the user, saves data and
quits programs; you present application templates and defaults to the user as
stationery; and so on. .

File Format Compatibility Is Important

The PenPoint environment is different from a PC (or Macintosh), and there
are good reasons for many applications to take a different form on a GO
Computer than their PC-based counterparts. However, some GO Computer

299

Appendix B: Things to Keep in Mind

users will transfer data to PC's where they and others will access the data with
PC applications, so it is important to provide compatible file formats or file
import/export support for your PenPoint applications.

Exploit the Pen

Graphical user interfaces built around mice and other pointing devices lead
to flexible program architectures that respond to the user's actions instead of
requiring the user to perform cert~in steps. The pen-oriented notebook inter
face of PenPoint is even more free-form. Just as with a mouse, the user can
"point" to and manipulate (click, drag, stretch, wipe) entities on-screen, but on
a GO Computer the user can also make gestures and handwrite characters
"on" the visual entities. Taking advantage of the pen is a challenge and a
tremendous opportunity.

The Good News

This list of cautions and additional concerns may sound like an intolerable
burden on the developer, especially if it comes on top of learning C and object
oriented programming techniques. The good news is that the software architecture
of PenPoint shoulders much of the load for you. The Class Manager supports the
pervasive use of classes and objects throughout PenPoint not only in the user
interface area, but also in areas such as the file system and the imaging model.
This provides you with ready-made components that you can use as is or custom
ize in your applications. These objects already conserve memory, exploit the pen
interface, cooperate with other processes, and so on. In particular, nearly all of the
work your application needs to do to be a first-class citizen in the GO Computer
Notebook is already implemented by pre-existing classes that comprise GO's
Application Framework.

Appendix C: Evaluating
Pen-Based Computers and
Handwriting Recognition
Technology

This appendix was written by Bob Vallone, manager of User Research, GO
Corporation.

Pen-Based Computing Does Not Equal

Handwriting Recognition

Handwriting recognition technology is only one component of a pen-based
computer operating system. Although it is a critical enabling technology, it is
important to put it in context-many other attributes of a pen-based operating
system are important and should also playa significant role in any comparison
or evaluation of pen-based operating systems. Other important areas to
evaluate are the quality of the user interface of the system, the sophistication
of a wide array of traditional and novel operating system functionality, and the
power of the development environment used by application programmers. In
addition, a wide array of very powerful and useful applications are being
developed for pen-based computers that either do not depend at all on hand
writing recognition technology, or use it for only limited, constrained input.

301

302

The Power of Pen Point

User Interface

A good place to start is to consider the metaphor used to help users orga
nize their knowledge of the system. Some developers of pen-based systems
have chosen to extend metaphors invented decades ago for d.esktop comput
ers. PenPoint features a notebook user interface (NUl) which presents users
with the familiar elements of a three-ring binder with pages of a notebook
organized into sections with tabs for easy access. The familiar notebook
metaphor, the gesture language, and other features of the user interface which
make it possible to avoid presenting users with the difficult concepts of files
and applications combine to make PenPoint computers exceptionally easy to
learn and use-significantly more so than even the most celebrated of today's
mouse-based graphical user interfaces (GUls). The body of this book contains
a great deal of information about PenPoint's new user interface.

Operating System Functionality

It is sometimes easy to forget, especially when focusing on handwriting
recognition technology, that a pen-based computer operating system is first
and foremost an operating system-in particular, one that allows the pen to be
used as an input device in new ways. Potential users, developers, and licens
ees of a pen-based computer operating system should spend at least as
much, if not more, energy understanding and evaluating the design and
functionality provided by the operating system itself, as they do in evaluating
how well the system makes use of the pen, and how good its handwriting
recognition technology is. Operating system functionality grows in significance
especially when one considers that if the handwriting recognition subsystem is
replaceable (as PenPoint's is), the highest quality handwriting recognition
system available at any point in time can be easily integrated into the system.
The body of this book contains a great deal of information about PenPoint's
functionality.

303

Appendix C: Evaluating Pen-Based Computers and Handwriting Recognition Technology

Applications That Don't Rely on Handwriting
Recognition

Many applications with broad horizontal appeal do not require users to enter
significant amounts of handwriting that needs to be recognized (or translated)
by the system. For example, communications applications such as receiving,
marking-up, and sending faxes, or receiving, reviewing, and sending struc
tured replies to electronic mail messages. A wide range of applications can all
be characterized as information access and retrieval (query, sort, search, and
display data from databases and large text documents or manuals). Drawing,
painting, drafting, and layout applications do not require handwriting recogni
tion, nor do applications designed to give computer based interactive presen
tations. Applications designed for notetaking, that do not require recognition,
but rather focus on storing handwriting in a raw form that allows it to be orga
nized, rearranged, moved, copied, edited, and hyperlinked to other data are
also under development. This type of application also lends itself to group
brainstorming and meeting facilitation, especially when combined with screen
projection and shared screen networking.

Another key set of applications with broad appeal involve enabling users to
review and edit files created on other systems, with rounC-trip data integrity
providing the power and use of use of the gesture commands for editing with
the convenience of the mobility and portability of pen-based computers.
Finally, one should consider that many additional horizontal computer applica
tions may only require a limited amount of handwriting recognition. For ex
ample, some applications can make heavy use of highly constrained fields
(like numbers only fields, fields with templates, or word lists) where recognition
rates are very high, or multiple choice fields or pick-lists for choosing fre
quently used input. Examples of applications of this type include spread
sheets, calendaring and scheduling, contract management, and a wide variety
of forms-based applications.

304

The Power of PenPoint

What Dialog between Applications and the

Handwriting Recognition System Is Supported'?

When evaluating a Pen-Based Operating System and its Handwriting Rec
ognition System, it is important to understand what level of communication
between applications and the Handwriting Recognition System is supported.
Are applications in control of the raw input (strokes)? Can they perform their
own analysis or recognition of strokes? When applications pass the raw input
to the Handwriting Recognition System, can they pass along additional infor
mation that the system can use to aid in the recognition process? If so, what
information can be passed to the handwriting system, what can the handwrit
ing system do with this information, and what impact does it have on the
recognition accuracy?

Looking at the subject of communication from the other direction, it is also
important to know what information the Handwriting Recognition System can
make available to applications in addition to the best guess at recognizing the
input. Finally, it is important to understand whether the functionality to support
this dialog between applications and the Handwriting Recognition System is a
feature of the operating system, or is a feature of the particular Handwriting
Recognition System. If the Handwriting Recognition system is replaceable,
must every system provide this functionality, or can a new Shape Matching
Eng ine be integrated and inherit this functionality from the operating system?

PenPoint applications are in control of the raw input; they can process it
themselves, or they can utilize a very rich set of APls that support a dialog with
the Handwriting Recognition System. These APls are a feature of PenPoint and
its Context Management Subsystem-this means that the same dialog will be
supported even if a new shape matching engine is integrated into the system.

The following is a brief overview of what information applications can pro
vide to PenPoint and the Handwriting Recognition System to aid in the recog
nition process:

• Choice of Input UI (Boxed versus ruled input pads, size of boxes, line
height, and so forth.)

• Choice of Editing UI (direct to application's client area with gestures to
bring up edit pads, choice lists, etc., or direct to edit pads, choice lists)

305

Appendix C: Evaluating Pen-Based Computers and Handwriting Recognition Technology

• Choice of context aids or rules which aid the recognition process (e.g.,
spelling dictionary, personal dictionary, lists of acceptable characters, lists
of acceptable words, templates similar to those used in database applica
tions, case heuristics, punctuation rules, spacing rulesY

• Level of Influence that context aids and rules should have in the recognition
process (four levels: enable, propose, veto, and coerce)

• Choice of post-processing aids to the recognition process (e.g., spelling
correction, case correction, space correction)

• Lists of acceptable gestures to aid in gesture recognition

• Choice of where to send strokes (gesture engine, text engine, both, or neither)

• Choice of when to process strokes or send them to a recognition engine
(applications can store raw input and process them at any time)

In addition, PenPoint applications can manipulate strokes independently of
the Handwriting Recognition System. They can: 1) filter strokes before sending
them to any recognition engine, 2) perform their own analysis or recognition of
the strokes, or 3) perform their own post-processing on the output of the
recognition system. They can do any or all of the above in any combination. It
is this flexibility which enables GO's Draw Demo Application to determine
whether a circle should represent a circle, the edit gesture, or the letter o.

PenPoint's Handwriting Recognition System is also capable of providing a
great deal of information to applications that they can use to help interpret
handwriting input. The recognition system can provide to applications:

• lists of possible characters for single character input, not just a best guess
character

• lists of possible words for word input, not just a best guess word

• weightings or probabilities when lists of multiple characters or words are
provided

• size and boundary information per chararter or word (this information can be
used by applications to determine what to do with the input, where to place
the result in its client area, or how large the result should be-especially
important for free-form applications like drawing, notetaking, or outlining)

• size, boundary information, and hot point of gestures

306

The Power of Pen Point

PenPoint also provides several components in the UI Toolkit that exploit this
rich communication functionality with the Handwriting Recognition System by
providing a higher level set of APls that support specific application functional
ity: For example, one component greatly facilitates the process of developing
forms fields with a set of APls that tie together functionality of the input system,
the handwriting recognition system, and the windowing system. Other UI
Toolkit components facilitate the common uses of gestures, and ruled line
input pads. PenPoint's object-oriented architecture encourages the develop
ment of such higher-evel components, and more will undoubtedly be devel
oped over time.

Is the Handwriting Recognition System
Replaceable'?

Some pen-based computers have integrated handwriting recognition tech
nology so tightly that it is not feasible to replace the system with one from
another independent or third party developer. PenPoint is designed with a
clean application programming interface (API) that enables the Shape Match
ing Engine in GO's handwriting recognition system to be easily replaced with
engines from other vendors. Since the Shape Matching Engine is implemented
below the level of Context Management Subsystem, any engine that replaces
it will still benefit from all the powerful functionality that the Context Manage
ment Subsystem provides to applications. In much the same way that some
desktop computer operating systems today can support different manufactur
ers' printers by installing printer drivers, PenPoint will allow handwriting recog
nition systems from independent third party developers to be installed.

This is important because handwriting recognition technology is still evolv
ing and improving. Systems currently under development are based on radi
cally different technologies ranging from neural networks to fuzzy logic algo
rithms. It is possible that one of these technologies may be significantly better
than others at any given point in time over the coming years. The marketplace
that PenPoint computers will create for handwriting recognition systems will

307

Appendix C: Evaluating Pen-Based Computers and Handwriting Recognition Technology

stimulate competition among developers, which will inevitably lead to the
development of more powerful systems.

The capability of replacing GO's handwriting recognition system with other
systems will also enable computer manufactures to bring PenPoint computers
to market in countries that require different character sets (for example, sys
tems that support various European or Asian language character sets). It is
also possible to add support for different symbol sets, enabling applications to
be developed that recognize handwritten mathematical symbols or musical
notation.

Users of PenPoint computers need not worry that they will be locked in to
obsolete handwriting recognition technology. GO has an active program to
recruit and support the efforts of independent thirC-party developers of hand
writing recognition systems. Several developers are currently in the process of
modifying the interfaces of their systems to be installable in PenPoint.

What Capabilities or Features of Handwriting
Recognition Systems Are Important?

Symbols Recognized

Does the system recognize only uppercase characters and numbers (36
symbols), or does it also recognize lowercase characters (a total of 62 sym
bols)? How many punctuation characters does it recognize? GO's handwriting
recognition system recognizes at least 20 punctuation symbols in addition to
upper- and lowercase letters and numbers for a total of at least 82 symbols.

Segmented versus Unsegmented Input

Is the system capable of computing breaks between letters or are users
required to write in boxed or combed fields to indicate letter spacing? Is the
system capable of computing spaces between words, or is the user required

308

The Power of PenPoint

to write a special space character or skip a space in a boxed or combed field
to indicate word spacing? GO's handwriting recognition system is capable of
computing both letter and word spacing-users do not need to write a special
space character or write in boxes or combs to indicate letter and word spac
ing. However, users can choose to write in boxed or combed fields, to help
maintain consistent spacing.

Flexibility of Writing Style

Is the system capable of recognizing a wide variety of printed forms for each
character, or are users required to print characters in one or more standard
ways? Are script forms of characters recognized? Can characters overlap or
connect to each other without the pen being lifted? Can script handwriting be
recognized (all characters connected)? Can a mixture of disconnected and
connected characters (script and printed characters) within a word be recog
nized? GO's handwriting recognition system is capable of recognizing a wide
variety of printed forms for each character (in addition users can train the system
to recognize new shapes, see below). It is also capable of recognizing script
forms of characters. GO's system is also capable of tolerating some overlap
ping as well as connected characters, although better recognition is obtained
if characters are clearly separated. GO's current system is not capable of
recognizing continuous script or mixed script and printed forms of writing.

Customization of Prototypes

Can users customize the handwriting system to recognize their particular
idiosyncratic shapes or methods of forming characters? If the system is
customizable (sometimes called trainable), is this required before the system
can be used, or is it optional? What is the user interface for this customization
process? Can more than one user store their individually customized proto
types on the system at the same time? GO's handwriting recognition system
can be customized by users to recognize their idiosyncratic shapes or forms.
This is optional, not required, as the system is usable for most people prior to
using the customization application. The user interface for customization

309

Appendix C: Evaluating Pen-Based Computers and Handwriting Recognition Technology

prompts users to write specified sentences, and learns how the user writes
individual characters in the context of words and sentences. In addition, users
can choose to focus on customizing only specific individual characters. More
than one customized prototype set can reside on each 'computer, and users
can easily switch between them.

Gestures

Is the handwriting recognition system capable of recognizing a wide variety
of symbols and shapes as gestures, or command accelerators? GO's hand
writing recognition system is capable of recognizing at leas! 50 gestures.

Flexibility in writing size. Can users write in different sizes, or is the system
limited to recognizing characters written within a narrow range of heights and
widths? GO's handwriting recognition system is capable of recognizing writing
over a broad range of height and width.

Stroke Order Independence

Is the system capable of recognizing strokes out of sequence? For example,
can users dot their i's and cross their t's at the end of a word, or on a previous
word, or must they complete each character before writing the next? GO's
handwriting recognition system is capable of recognizing strokes that are
added to characters out of sequence, either at the end of a word, or even on
any previous word in the entire input line.

Flexibility of Handwriting User Interface

Does the system allow users to vary the features of the input pads that they
write into? Can users choose between ruled lines and boxed or combed
fields? Can users vary the line height or the height and width of boxes or
combs? Can users write in multiple lines? Can users vary the number of lines
or rows in the writing pads? GO's handwriting recognition system allows users
to vary all of these features of writing pads.

310

The Power of Pen Point

Gesture Recognition in Writing Pads

Is the system capable of recognizing and responding to gestures in writing
pads (in the same space and at the same time that characters are also being
recognized)? GO's handwriting recognition system is capable of recognizing
certain gestures in writing pads and distinguishing them from text. For example,
users may "scratch-out" handwriting prior to initiating recognition in order to
avoid having the system translate letters or words that the user doesn't wish to
be recognized for whatever reason. In addition, characters in boxed or combed
fields may be deleted, or extra boxes or combs added with gestures.

Flexibility of User Interface for Error Correction

Does the system allow users to determine when to recognize or translate
handwriting? Can users defer the recognition process indefinitely? Can mul
tiple writing pads or input fields be simultaneously left in such a deferred
translation mode? When the user does initiate recognition, does the system
provide choices for how the results of the recognition are presented for verifi
cation and correction, or is there only one user interface that all users must
use regardless of the accuracy rate that they achieve? Does the system
enable users to choose the glyph that will be displayed when it is unable to
recognize a particular character? GO's handwriting recognition system pro
vides a flexible user interface for error correction in each of these respects.

Support for Uppercase Only Writers

Does the handwriting recognition system enable users to write in all upper
case letters and automatically convert the characters to lower case after
recognition? If so, does it do so intelligently, taking into account which charac
ters should remain uppercase, or does it force all characters to lower case?
GO's handwriting recognition system uses heuristics to enable users to write
all upper case characters and have them i(ltelligently converted to lower case,
preserving uppercase when appropriate.

311

Appendix C: Evaluating Pen-Based Computers and Handwriting Recognition Technology

Speed

How fast does the handwriting recognition system recognize characters?
Does the recognition proceed in the background, or does a majority of the
computation take place after the user initiates the recognition process? GO's
handwriting recognition system recognizes characters at about the rate of up
to three characters per second. The recognition proceeds in the background
in multiple line writing pads, so users rarely experience delays of more than
the time required to recognize one line (2-4 sec), regardless of the amount of
writing in the pad.

Interface with applications

See the Section, "What Dialog Between Applications and the Handwriting
Recognition System Is Supported?" earlier in this appendix.

Recognition accuracy

See the Section, "What Metrics Are Available ... " later in this appendix.

Measuring the Accuracy of Handwriting
Recognition Systems

Before the widespread availability of personal computers in the mid 1980s,
handwriting recognition systems existed primarily in research settings at major
universities and a few corporate laboratories. In the mid 1980's the first low
cost, interactive recognition systems built around opaque digitizing tablets
connected as peripherals to Macintosh and IBM compatible pes appeared on
the market. Both the research systems and these early products typically
characterized their accuracy simply in terms of the percentage of characters
written that were translated correctly. This seemed to be sufficient, because

312

The Power of PenPoint

the applications these devices were intended for were typically the collection
of short strings of characters such as those required for entry into fields on
simple forms.

The late 1980's saw the introduction of several personal computers that
combined a digitizer with the viewing screen so that users could "write" on the
glass surface of the screen with an electronic pen that appeared to dribble
electronic ink (e.g., Linus and GridPad). The accuracy of the handwriting
recognition systems used by these computers continued to be evaluated
primarily in terms of simple character accuracy because the computers were
being marketed for the purpose of gathering data on electronic forms in the
context of specific vertical market applications.

GO Corporation's vision of Pen-Based Computing is much broader than
simple data capture on electronic forms. GO has invested heavily not only in
the development of a powerful general purpose handwriting recognition
system, but in a research program chartered with developing real-world
metrics and methods to evaluaJ:e the performance of the system for a wide
variety of tasks. GO's research has discovered that there are four topics that
are very important to enC-users of pen-based computers that have not previ
ously been systematically measured or reported by vendors of handwriting
recognition systems. The User Research Group at GO has worked extensively
with the engineering team for over a year to design and implement improve
ments to the performance of the system in each of the following areas.

First, users are concerned about the acceptability of the handwriting recog
nition system's performance when writing sentences and paragraphs of text
(as opposed to just short strings of characters in form fields). Second, users
want the methods used when gathering data to characterize the system's
performance to be realistic and representative of typical (not ideal) perfor
mance. Third, users are concerned about the acceptability of the total time
(including error correction) it takes to complete a writing task. Fourth, develop
ers of applications making heavy use of data entry fields like those found in
forms need to know how the handwriting recognition system will perform when
users are given various constraints on valid input (e.g., fields that accept
numbers only, or fields that accept only certain uppercase characters).

313

Appendix C: Evaluating Pen-Based Computers and Handwriting Recognition Technology

Metrics for Writing Sentences and Paragraphs of Text

Users' acceptance of handwriting recognition accuracy in this context is
related much more to word level accuracy (the percentage of words translated
correctly) than it is to the percentage of characters translated correctly. Figure
1 shows a paragraph of text with some recognition errors. When asked to rate
whether this level of accuracy would be acceptable, no users say that it would
be, and most guess the character accuracy rate to be between 60 and 75%.
Compare this to Figure C-2 which almost all users rate as acceptable, and
most guess that the character accuracy is between 90 and 95%. In fact the
two paragraphs have exactly the same character accuracy rate (300/333 =

90% correct) but widely different word level accuracy. Figure C-1 has a 500/0
word accuracy rate (28/56 words correct) because the individual character
errors are distributed almost evenly over many words. Figure C-2 has a much
higher 91 % word accuracy rate (51/56 words correct) because the errors tend
to cluster together in words. The difference between character level and word
level accuracy is important when evaluating handwriting recognition systems
because two systems that have similar levels of character accuracy can have
widely different levels of word accuracy.

Mg bvss at Wilcox Resegrch spoke rery kighly
of yoyr cofpany and hecomkended that I aet in
tuuch with yau. I am cuvrently looktng for a
senior marlceting position in a grouth ofiented
hign teoh somqany. I dould be very tnterested in
kearpng your pefspeytive on the ibdustry tnd
which negmehts are vffering good carefr
oploortunities.

Figure C-1 A Sample of Handwriting Recognition with Errors Distributed over Many Words

314

The Power of Pen Point

My boss at Wilcox Rcseaneh spoke very highly
of your company and recommended that I get in
touch with you. I am cnenerfig looking for a
senior marketing position in a growth oriented
high tech company. I would be very ehfoncofca
in hearing your perspective on the industry and
ynlan segments are offering good ednoon oppor
tunities.

Figure C-2 A Sample of Handwriting Recognition with Errors Clustered Together

Figure C-3 illustrates the relationship between word accuracy and character
accuracy for 75 samples of handwriting recognition that GO has observed in
measuring early versions of its handwriting system and other systems currently
available (each of the 75 samples represents a different user writing over 1300
characters). It is clear that high character accuracy rates do not guarantee
high word accuracy rates. Many times, systems with approximately 90%
character accuracy rates produced low word accuracy rates (between 50 and
70%). This level of performance is typical of handwriting recognition systems
that focus primarily on the recognition of individual isolated characters and do
not make effective use of dictionaries and/or other information about the
relative frequencies of combinations of letters.

GO's User Research program has also determined that users' acceptance
of handwriting recognition systems is strongly affected by how easy it is to
correct words. GO's recognition system is capable of providing users with a
list of alternatives for each word, so many words can be corrected simply by
tapping on the correct word in a list. Other words can be corrected simply by
writing over one or two characters. When users are faced with more than one
or two errors in a word, and can't choose the correct word from a list, they
typically choose to re-write the entire word. Another important metric therefore
is the percentage of words that users will re-write vs. the percentage of words
that can be corrected with a simple edit.

100%

95%

90%

A 85%

c

c 80%
u

r
75%

a

c

y 70%

65%

60%

55%

50%

315

Appendix C: Evaluating Pen-Based Computers and Handwriting Recognition Technology

Character Level

Accuracy

Word Level

Accuracy

75 observations (pairs of points)

(each observation is 18 sentences, 1300+ characters)

Figure C-3 The Relationship Between Word Level Accuracy and Caracter Level Accuracy in 75
Samples of Handwriting Recognition

Finally, it is important to measure and report the variance in users' accuracy
rates. How much better than average do some users do, and how much worse
than average do others do? It is useful to know the standard deviation of the
mean (a statistical measure of variance) or to know what the average of the
top 50% of users is as well as the average of the bottom 50%.

316

The Power of Pen Point

Methods for Measuring Typical Performance

Users' acceptance is determined by their own experience with the system. In
order to predict the level of acceptance a system will have, it is important to test it
and obtain metrics that are representative of typical users' experiences. The three
most common ways in which handwriting recognition systems are measured with
inappropriate methods are by using test subjects that are not representative of
typical users, by using test materials (samples of writing) that are not representative
of the material that typical users will usually be writing, and by using levels of
practice prior to measurement that are not representative of typical use.

Samples of subjects used to test handwriting systems are often biased
towards younger and more highly educated users. When interpreting test
results, it is important to know the ages and educational backgrounds of the
subjects. Sometimes systems are measured with samples of writing that
contain only dictionary words, or that contain little if any punctuation. However,
normal business writing includes punctuation and many words not usually in a
dictionary, and this should be taken into account. Sometimes the accuracy of
systems is measured after subjects have been practicing for weeks or months
with the system, or only after they have extensively adapted their handwriting
style. When evaluating results, it is important to understand exactly how much
practice and/or training subjects in a test have had.

Metrics for Total Time to Write (Including Error Correction)

Users' acceptance is affected greatly by the total amount of time it takes to
write a given amount of text. Thus, research data should include the time to
write, the time for the system-to translate the handwriting, and the time it takes
the user to correct any recognition errors. The user interface for writing pads
(areas of the screen that accept handwriting) has a large impact on writing
time. For example, pads that require writing characters in segmented boxes
typically result in increasing writing time by about 25 to 30%. Similarly, the
user interface for error correction has a large impact on the time required to
correct errors. One system may have a lower accuracy rate than another yet
be strongly preferred by users if the total amount of time to enter, translate,
and correct text is lower. A complete suite of metrics should include these time
measurements in characters per second and words per minute.

317

Appendix C: Evaluating Pen-Based Computers and Handwriting Recognition Technology

Metrics for Writing in Fields with Constrained Input

Character level accuracy data should always be reported in conjunction
with the size of the symbol set the recognition was being constrained to. These
metrics are important to understand when designing applications involving
large amounts of data entry into fields. What is the accuracy rate for numbers
in a field that accepts numbers as well as uppercase and lowercase letters (62
symbols)? What is the rate in a field that accepts only numbers (10 symbols)?
Similarly, what are the accuracy rates for upper- and lowercase letters in fields
where 62 symbols are valid, and how does it compa're to fields in which only
26 symbols are valid?

How Accurate Is GO's Handwriting Recognition
System?

The following data was obtained from a study done on internal releases of
PenPoint and GO's handwriting recognition system in October and November
of 1990. This data reflects improvements made to the system after the Alpha
release of Pen Point but prior to all improvements that will be made to the
system in the Developers Release (currently scheduled for the first quarter of
1991). The latest available data will be presented at the GO Developers
Summit in January 1991. Work on GO's handwriting recognition system will
continue in between the Developers Release of PenPoint and the first enC
user release of the system (currently scheduled for fall 1991). The latest test
data and results will be available from GO throughout 1991.

Subjects

Twelve subjects were recruited by a temporary employment agency in the
San Francisco area. Half were male and half were female; about 1/3 were
between the ages of 20 and 25, one third between 25 and 35, and one third
between 35 and 45; about one third had 0-1 yrs post secondary education,
one third had 2-3 years, and one third had 4 or more years.

318

The Power of Pen Point

Materials

For word level metrics, subjects wrote sentences of text that had been
randomly selected from letters to the editor of a major business daily newspa
per. The sentences contained punctuation and names of people, companies,
and products that are not in the system dictionary. For field data entry metrics,
subjects wrote name, address, and part number fields to obtain metrics for
various levels of constraint (size of symbol set).

Practice/Training

Subjects spet:1t three consecutive half days in a group training session
(1 instructor, 6 students) that was modelled after a typical corporate training
session. About 3 hours were spent on Handwriting Customization (customizing
the recognition system to a particular user), 3 hours were spent practicing
writing, 3 hours were spent gathering test data, and 3 hours were spent on
other non-writing tasks to provide rest breaks for subjects.

Results: Word Level

In a test sample of 12 sentences (144 words) the average user achieved a
word level accuracy rate of 78.3% (sd = 8.5%). The average character accu
racy rate was 94.0% (sd = 3.3%). Most words with errors could be corrected
with a simple edit (19.10/0, sd = 6.8%) by either choosing an alternative word
from the proof pad, or by overwriting 1 or 2 characters. An average of only
2.5% (sd = 2.5%) of words were categorized as needing to be re-written (this
is an overestimate becaL!se it counts errors in one and two character words as
re-writes, and because some users will in fact only re-write incorrect charac
ters and not the entire word even when there are more than two errors).

The average of the top 50% of users was 84.6% word accuracy, 96.3%
character accuracy. 14.1 % of words could be corrected with simple edits, and
only 1.40/0 were categorized as needing to be re-written. The average of the
bottom 50% of users was 72.0% word accuracy, 91.70/0 character accuracy.
24.3% of words could be corrected with simple edits, and only 3.7% were
categorized as needing to be re-written.

319

Appendix C: Evaluating Pen-Based Computers and Handwriting Recognition Technology

Results: Time to Enter/Correct

GO's handwriting recognition system accepts handprinted characters on
ruleC-line input pads (boxed input is optional). As a result, the initial text entry
rate averaged about 17 words per minute, or about 1.5 characters per sec
ond. GO's unique user interface for error correction enables words to be
corrected in an average of under 9 seconds per incorrect word. This resulted
in an average total net throughput including writing time, translating time, and
editing time, of about 10 words per minute, or about .8 characters per second.

Results: Field Data Entry

Because of the relatively small sample sizes of our studies, the average
character accuracy rate under various constraints can easily vary up or down
by several percentages from one study to the next. For this reason, and because a
great deal of fine tuning is currently under way prior to completing the Pen
Point Developers Release, we will report the range of accuracy achieved in
our last several studies to provide a sense of the variance we encounter. The
average accuracy rate for numbers in fields constrained to numbers ranged
from 92 to 950/0; the accuracy rate ranged from 90 to 930/0 when numbers were
written in fields that could accept any uppercase characters, lowercase
characters, or numbers (62 symbols).

The average accuracy rate for uppercase characters in fields constrained to
uppercase characters ranged from 85 to 900/0; the accuracy ranged from 82 to
88% when uppercase characters were written in fields that could accept any
of uppercase characters, lowercase characters, or numbers (62 symbols).

The average accuracy rate for lowercase characters in fields constrained to
lowercase characters ranged from 89 to 930/0, the accuracy ranged from 86 to
92% when lowercase characters were written in fields that could accept any
uppercase characters, lowercase characters, or numbers (62 symbols).

320

The Power of Pen Point

Results: Level of Acceptability for Various Tasks

Subjects were asked whether the level of accuracy and the effort required to
correct errors that they experienced was acceptable for the task of filling out
several forms a day. Subjects were also asked whether the level of accuracy
and the effort required to correct errors that they experienced was acceptable
for the task of writing several memos, letters, or notes a day. Typically about
75 to 85% of subjects rated the system as acceptable for these tasks. Sub
jects rating the system as unacceptable were not simply those subjects expe
riencing the lowest handwriting recognition accuracy, although accuracy was
an issue for some of them.

The majority of users experiencing lower than average recognition accuracy
still rate the system as acceptable for these tasks. Reasons cited by subjects
who experience good recognition accuracy yet rate the system unacceptable
seem to be idiosyncratic. For example, we recorded such diverse concerns as
the speed of handwriting compared to typing for skilled typists, the physical
strain of printing large amounts of text by hand, relative unfamiliarity of printing
compared to script, legibility of the screen, etc. To summarize, although 15 to
25% of users rated their experience of the recognition system as unaccept
able for certain tasks, it is important to understand that further improvements in
the recognition accuracy will not guarantee that the system is acceptable by
all users for all tasks.

To place these findings in perspective, we should ask what percentage of
the population would rate today's computers, user interfaces, and input de
vices acceptable for a wide variety of tasks? We're not aware of any research
indicating that it is as high as 75 to 85%. Of course the best way to do this
type of research is to have users directly compare the ease of performing a
series of tasks on a PenPoint computer to the ease of performing the same
tasks on keyboard/mouse computers. GO's User Research Group has only
recently begun to conduct this type of comparative research. Preliminary data
from studies focusing on the user interface indicate that for a wide variety of
basic operations most users rate PenPoint computers as easier to use than
keyboard/mouse computers. Details of these studies will be available from GO
in the spring of 1991.

321

Appendix C: Evaluating Pen-Based Computers and Handwriting Recognition Technology

Summary

PenPoint is currently available with GO's handwriting recognition system.
This system is highly accurate as measured by a wide array of real-world
metrics and methods, and is rated as acceptable for a wide range of tasks by
most users tested. GO has had an ongoing serious research effort to focus on
real-world use of handwriting recognition systems since the beginning of 1990.
GO's User Research group will continue performing research to improve the
effectiveness of GO's handwriting recognition system over time, as well as
evaluating systems from other independent developers. PenPoint users,
Independent Software Vendors, and licensees can be assured that the best
handwriting recognition system for their application will be available to them
because it is a feature of PenPoint that handwriting recognition systems can
be replaced. GO has an active program of supporting third party developers'
efforts to port their recognition systems to PenPoint.

Finally, it is important not to exaggerate the significance of the performance
of the handwriting recognition system when evaluating an operating system for
pen-based computers. Many applications don't require any (or only very
limited) handwriting recognition. PenPoint is a new operating system that
offers developers and users a great deal of valuable, innovative functionality
and significant benefits in addition to handwriting recognition.

Glossary
of PenPoint Terms

This Glossary defines terms that are used in this book or that are important
to an understanding of Pen Point.

abstract class

accessory

acetate plane,
acetate layer

activation

activation

ancestor

API

A class that defines messages or provides useful functionality, but
is not useful as is; you wouldn't create instances of it.

An accessory document floats on the desktop when active, appear
ing over pages in the Notebook. Most accessories appear in the
Tools auxiliary notebook.

The window system maintains a global, screen-wide display plane;
called the acetate plane, which is where ink from the pen is
normally dribbled by the pen-tracking software as the user writes
on the screen.

The transition of a document to an active state, with a running
process, an application instance, and so forth.

What happen's when the user actually operates a control, often by
lifting the pen up. The user can preview a control without activating it.

Every class has one immediate ancestor. When a class receives a
message, the class can elect to pass the message on to its
immediate ancestor, and in turn the ancestor may pass on the
message to its own ancestor. Hence a class can pick up, or inherit
the behavior of its ancestors.

Application Programmer's Interface-The programmatic interface to
a software system. The PenPbint API is covered in depth in the
Architecture Reference; the functions and messages comprising
the PenPoint API are listed in the API Reference and in the header
files in \penpoint\sdk\inc from which the API Reference was derived.

323

324

The Power of Pen Point

application class

Bezier curve

bind

binding

bitmap

Browser

button

child window

choice

class

Class Manager

client

client window

clipping

clsApp

A PenPoint class that contains the code and initialization data used
to create running applications.

A curved line formed from two end points and two control points,
supported by SysDC.

You must bind a DC to a window (and hence a pixel device) before
you can draw using it.

The process that joins a device driver to a port or another device
driver; for example, a client binding to a service makes the client
known to that service.

An array of pixels, with an optional mask and hot spot.

A component that displays file system contents to the user; used in
disk viewers, installers, and TOCs.

Buttons are labels that the user can activate.

A window that is a child, or grandchild, of another in the window
tree.

A table that displays several alternatives and allows the user to pick
orllyone.

A special kind of object that implements a particular style of
behavior in response to messages. Most classes act as factories
for objects: you can create instances of a class by sending that
class the message msgNew. In the PenPoint Class Manager, a
class has a method table. The method table tells the class which
messages sent to objects of that class to respond to. A class's
processing of a message often involves passing the message to
the class's ancestor in order to inherit appropriate behavior.

The code that supports the object-oriented, message-passing,
class-based programming style used throughout the Pen Point
operating system and in all Pen Point applications. The Class
Manager itself implements two classes, clsObject and clsClass.

(1) The general term for any software using some feature of
PenPoint (2) The object that receives messages from Toolkit
components notifying it of important user actions and events.

Frames and scrollwins manage a window that is supplied by, or of
interest to, the client of the frame or scrollwin.

The process by which drawing operations in a window are
prevented from affecting certain pixels on the windowing device, for
example because those pixels are part of. another window.

Class for all applications; provides a head start framework by
responding to the Pen Point Framework's protocol of messages.

component

component layer

connected

constraints

context

cork margin

current directory entry

current grafic

data object

data resource

DC

deactivate

descendant class

325

Glossary of Pen Point Terms

A piece of system or application software functionality with a well
defined external interface, packaged as a DLL, which can be used
or dynamically replaced by a third-party developer. Some
components are unbundled and must be licensed separately from
PenPoint.

The component layer of PenPoint consists of general-purpose
subsystems offering significant functionality that can be shared
among applications.

A file system volume that is accessible from a PenPoint computer is
connected: a volume may be known yet disconnected.

Specifications for the sizing and positioning of child windows during
layout. The UI Toolkit includes clsTableLayout and
clsCustomLayout, which implement tabular layout and relative
positioning respectively.

(1) Information maintained by the driver and slave in a traversal
engine episode. (2) Information maintained by the Class Manager
to keep track of messages passed up and down the class
hierarchy during message processing. (3) The PenPoint Source
Debugger maintains a context indicating the current procedure
body, which controls the lexical scope of variables.

An optional thin strip in the default application frame which knows
how to embed applications.

Each directory handle maintains a reference to the next directory
entry it will use when the directory is read one entry at a time.

A picture segment maintains an index in its set of grafics which is
the grafic relative to which the next operation will take place.

An object that maintains, manipulates and can recursively file data.
Any descendant of clsObject can do this. Often used in Applica
tions together with a view that observes the data object.

Contains information saved as a stream of bytes; see also object
resource.

Drawing Context-An object that implements, an imaging model; it
draws on the device of the window to which it is bound. GO's
SysDC is the imaging model used by all Pen Point's visual
components.

Deactivating an application removes its code from the user's
PenPoint computer, but the Installer still keeps track of the
application's UID and its home.

A class that inherits from another, either directly or through a chain
of subclasses.

326

The Power of PenPoint

directory handle

dirty layout

dirty window

document

dribble

driver

DU4

embed

embedded document

An object that references either a new or existing directory node in
the file system.

A client can mark a window's layout dirty to indicate that it needs to
be laid out.

The window system marks regions of a window dirty when they
need to be repainted. Dirty windows later receive msgWinRepaint
telling them to repaint their contents. You can mark windows as
dirty yourself to make them repaint.

A filed instance of some application. A document has a directory in
the application hierarchy, but at any given time it may not actuallYi
have a running process and a live application instance. These "
usually are destroyed when the user turns the page. Most docu
ments live in the Notebook, but running copies of floating applica
tions such asthe Calculator and Installer are also documents.

The ink from the pen when the user writes over windows that
support gestures and/or handwriting.

The object requesting the traversal (such as the traversal engine or
the search and replace application); see also slave.

Device Units 4th quadrant-The coordinate system of pixels on the
PenPoint-based screen. Usually you perform window operations in
LWC and specify drawing coordinates in LUC.

The Pen Point Framework provides facilities for applications and
components to display and operate inside other applications and
components without detailed knowledge of each other. For ex
ample, every page in the Notebook is actually a document embed
ded in the Notebook's window. As another example, a business
graphic document or component can be embedded within a text
document.

An embedded document is a document contained within another
, document.

embedded window mark clsEmbeddedWin provides an embedded window mark that
indicates the location of an embedded window.

entries The items in a list box. List boxes are scrolling windows that
support very large numbers of items, not all of which need to exist
as windows at all times.

event The occurrence of some an activity, such as the user moving the
pen or pressing a key.

extract The removal of a window and its children from the tree of windows
on some device. It makes the window invisible but does not destroy it.

fields Labels in which you can handwrite.

file export A mechanism of the browser that presents the user with a choice of
file format translators to export the selection.

file handle

file import

filing

filter

fixed-point numbers

floating

font cache

frame

gesture

global memory

glyph

grab

grafic

graphics state

heap

hot mode

image device

in-line

327

Glossary of Pen Point Terms

The object with which you access a file node and its data (the
handle is not a file itself).

A mechanism of the browser that presents the user with a list of
available applications that can accept the imported file.

Objects must ordinarily file their state in the file system so that the user
is not aware of documents activating and terminating on page turns.

A means of restricting the kinds of messages an object or process
receives.

A 32-bit number composed of an integer and fractional component.

A floating window appears above the main Notebook; unlike
documents on pages in the Notebook, the user can move and
resize a floating window.

After ImagePoint renders a font glyph into a bitmap, it keeps the
bitmap in a font cache to speed future drawing of the character at
that size.

The border surrounding documents and Option Sheets, which often
includes a title bar, resize corner, move box, and so forth.

A simple shape or figure that the user draws on the screen with the
pen to invoke an action or command. (See also scribble.)

Memory accessible from all tasks-you can pass pointers to objects
in global memory between tasks.

A symbol or character in a font.

Getting exclus.ive notification of events in the system, for example
when tracking the pen.

The individual figure drawing operations stored in a picture
segment.

The current scale, rotation, units, foreground and background
colors, line thickness, and so on, maintained by a SysDC object.

A pool of memory; individual chunks of memory in it aren't
protected, but it's cheaper than allocating a segment.

A state in which the PenPoint Framework will not terminate (shut
down) an application.

A windowing device the image memory of which is under the
control of the client (instead of on a screen or printer).

In-line fields provide full handwriting and gesture recognition,
allowing the user to write with the pen directly into the field itself.

328

The Power of Pen Point

In Box

inheritance

insertion pad

installation

instance

instance data

kernel

label

layout

list

list box

local memory

local volume

locator

PenPoint's In Box and Out Box services allow the user to defer and
batch data transfer operations for later execution; they appear as
iconic notebooks.

A class inherits the behavior of its immediate ancestor class. Through
inheritance, all classes form a tree with clsObject at the top.

A window that supports character entry. It may contain windows
supporting different kinds of character entry such as character
boxes, ruled paper, and a virtual keyboard.

Usually refers to the process of installing some item onto a PenPoint
computer, especially an application, but also fonts, handwriting
prototypes, and services.

Every object is an immediate instance of the class that created it. It
is also an instance of that class's ancestors. For example, a button
is an instance of clsButton, but it is also an instance of clsLabel, of
clsWin, and of clsObject.

Data stored in an object; it is normally only accessable by the
object's class, which uses instance data in responding to
messages sent to that object. The class defines the format of the
instance data. Classes often choose to have instance data include
pointers to instance information stored outside the object.

The portion of the PenPoint operating system that interacts directly
with the hardware; the core memory and task management code
that is the first code loaded when PenPoint boots. Most system
services are implemented in the kernel.

A window that displays a string or another window.

The processof sizing and positioning a tree of windows. Windows
and Graphics implement a protocol through which a client can tell
windows to layout, and windows can ask each other for their
desired sizes. Instead of specifying the exact position and size of
all windows, you need only supply a set of constraints on their
relative positions.

An object that holds an ordered collection of items.

A scrolling window that displays a subset of entries from a poten
tially very large set.

Per-process memory; pointers to objects in local memory can only
be passed between tasks in the same task family.

Volumes on hard or floppy disk drives attached to the PenPoint
Computer through its built-in SCSI port.

Specifies a node in the file system; it is a directory handle:path pair,
in which the path is the path from that directory handle to the node.

329

Glossary of Pen Point Terms

LUC Local Unit Coordinates-Arbitrary coordinates associated with a
DC. You can specify different units, scaling, rotation, and transfor
mation for LUC.

LWC Local Window Coordinates-The coordinates of a window in pixels,
with the origin at the lower-left corner of the window.

main window The window of an application that the Pen Point Framework inserts
on-screen in the page location or as a floating window. An
application's main window is usually a frame.

installation manager An installation manager is an instance of clslnstallMgr that
manages the installation, activation, deactivation, and Update from
Home of a set of similar items.

memory-mapped file You can map a file into memory so that you read and write to it
simply by accessing memory.

menu bar A frame has an optional menu bar below its title bar. The PenPoint
Framework defines standard application menu items (SAMS) for an
application's main window frame.

menu button A button that displays a pop-up menu when the user taps on it.

message A 32-bit value you send to an object requesting it to perform some
action. Messages are constants representing some action that an
object can perform. The type message is a tag that identifies the
class defining the message and guarantees uniqueness. When you
send a message to an object, if that message is mentioned in the
class's method table, then the Class Manager calls a message
handler routine in the class's code which responds to the message.

message argument(s) The information needed by a class to respond to a message. Often
themessage argument parameter is a pointer to a separate
message arguments structure: this is the only way a class can pass
back information to the sender.

message handler . A function in a class's code that implements appropriate behavior
for some message or messages; called by the Class Manager in
response to message associated with it in the class's method table.

method Synonym for message handler.

method table An array of message-function name pairs (plus some flags) that
determines which message handler function (if any) will handle
messages sent to objects of that class.

Method Table Compiler DOS program that compiles a file of method tables into an object
file that you link with your class's code.

metrics Information made public about instances of a class is often called
metrics, and many classes provide a pair of messages to set and
get metrics.

330

The Power of Pen Point

node

note

Notebook

notebook metaphor

object

object resource

observer

open

Option Sheet

owner

parent window

Pen Point Framework

picture segment

pixel

pixelmap

point

pop-up

previewing

process

A location in the File System; can be a directory or file. The Pen
Point file system is organized as a tree of nodes.

A window that presents transient information to the user.

The main notebook on-screen, usually the user's personal notebook.

The visual paradigm in PenPoint of a physical notebook containing
pages, documents and sections, with tabs, a page turn-effect, and
soon.

An entity that maintains private data and can receive messages.
Each object is an instance of some class, created by sending
msgNew to the class.

Contains information required for creating or restoring a PenPoint
object; see also data resource.

An object that has asked the Class Manager to notify it when
changes occur to another object. Objects maintain a list of their
observers.

A document currently displayed on-screen.

A floating frame displays attributes of the selection in one or more
card windows.

The process that creates a subtask owns that subtask and any
sibling subtasks created by it.

Every window in the window tree but the root window has a parent
window. Conversely, when you extract a window from the window
tree, it no longer has a parent and so it and all its child windows are
no longer visible on-screen.

Both the protocol supporting multiple, embeddable, concurrent
applications in the Notebook, and the support code that imple
ments most of your application's default response to the protocol
for you. The protocol and code provide a head start for building
applications in the pen-based, document-oriented Notebook
environment.

An object in which you can store and replay sequences of drawing
operations.

A picture element with a value.

A rectangular array of pixels.

1/72 of an inch.

A window (usually a menu or field) that temporarily appears on top
of all other windows.

The feedback provided by a control while the user is manipulating
the control, before the user chooses whether to activate the control.

An operating system context with its own local memory.

prototype

proximity

PWC

recognition

remote volume

repaint

resource

RGB

root directory

root window

row

sampled image

SAMS

scribble

SDK

selection

331

Glossary of Pen Point Terms

A shape template with which sets of strokes are compared in
handwriting recognition.

A state reported by the pen hardware on some Pen Point computers
when the user has the pen near the screen. It's independent of the
pen tip being down. Using a mouse, you simulate this by pressing
the middle mouse button to go out of proximity.

Parent Window Coordinates-The Local Window Coordinates of a
window's parent.

Matching a set of user strokes with the most likely prototype(s)
during handwriting translation.

Volumes available over a network or other communication channel.

The pixels of a window need to be repainted in various
circumstances: when the window first appears on screen, when the
window is covered by another window and then exposed, when the
window changes size, and so on. When a window needs
repainting, the window system marks it dirty. When you repaint a
window, the pixels affected are the visible portions of the dirty
region.

A uniquely identified collection of data. Resources allow
applications to separate data from code in a clean, structured way.

Red, Green, Blue-A means of specifying colors by the amount of
these primary colors.

Top-most node of the file system hierarchy on a volume.

Top of the window tree on a windowing device.

A Table Server table has a fixed number of columns and a variable
number of rows.

An image made up of pixels.

Standard Application Menus-The PenPoint Framework supplies a
set of SAMS (the Document and Edit menus), to which applications
can add their own menu items.

A collection of strokes that translators can translate into either text
characters or command gestures.

Software Developer's Kit-A development package to assist
developers in writing applications for a system. The PenPoint SDK
provides the code required to develop applications, and
documentation and tools to assist development.

PenPointmaintains a system-wide selection, which is the target for
all editing operations. The Notebook UI lets users select applica
tions and icons; applications and components may allow users to
select words, shapes, and other entities within their windows.

332

The Power of Pen Point

self

service

service section

shut down

standard message

stationery

status value

stroke

subclass

subtask

SysDC

system layer

system privilege

The object that originally receives a message. Code that processes
a message is passed the U I D of self.

A general, non-application DLL that enables PenPoint clients to
communicate with a device or to access a function, such as a
database engine.

A section in the In Box or Out Box; each is associated with a
specific service and represents a queue to or from that service.

The PenPoint Framework shuts down a document to conserve
memory by destroying its application object and terminating its
process. Thereafter the document only exists as a directory and
files in the application hierarchy.

A procedural interface to put up standardized notifications,
warnings, and requests to the user in the form of notes. The text of
standard messages is stored in resources.

Application-specific template documents.

Most functions and messages in PenPoint return a value of type
status, indicating success, an error of some sort, or some other
status. Status values are constant tags in order to indicate the class
(or pseudo-class) returning the status, and to guarantee uniqueness.

Data structure that stores the path traced by the pen when the user
holds it against the screen and writes with it. Note that the pen
hardware supplies stroke coordinates at much higher resolution
than that of the ink dribbled by the pen on-screen.

To create a new class that inherits from an existing class. You
subclass a class in order to pick up its behavior, while modifying or
extending its behavior to do what you want.

A task that shares the address space (local memory as well as
global memory) of its parent process.

System Drawing Context-PenPoint's standard DC, which implements
the imaging model used by all of Pen Point's visual components. It
supports polylines, splines, arcs, outline fonts, arbitrary units,
scaling, transformation, and many other features. It unifies text with
other graphics primitives in a single, PostScript-like imaging model.

The system layer of PenPoint provides windowing, graphics, and
user interface support in addition to common operating system
services such as filing and networking.

A high level privilege associated with executing code; particular
segments may only be accessible by tasks running at this level.
Only PenPoint code executes at this level.

tag

tap

task

task family

task 10

TOe

toolkit table

translator

U I component

UI Toolkit

UID

UUID

view

view-data model

volume

333

Glossary of PenPoint Terms

(1) A unique 32-bit number that uses the administered value of a
well-known UID to ensure uniqueness. (2) An arbitrary 32-bit
number that you can associate with any window. You can check a
window's tag and search for a particular tag in the window tree; this
makes tags useful for identifying components in shared option
sheets and menus.

A pen down event followed by a pen up, with no significant motion
in between.

Generic term for a thread of control executing code in PenPoint;
includes software tasks and hardware tasks.

A process and all its subtasks.

Hexadecimal identifier of a task in DB.

Table of Contents-The browser page at the beginning of a notebook
or section that shows its contents.

Workhorse class in the UI Toolkit for a tabular collection of other
components; its descendants include choices, option tables,
menus, tab bars, and command bars. You can define toolkit tables
statically, so they form a simple user interface specification
language.

An object that when hooked up to a handwriting window receives
captured scribbles and translates them into ASCII characters or
gestures.

Any window implemented by one of the UI Toolkit's many classes.

Pen Point's User Interface Toolkit provides many different kinds of
window subclasses to support a wide variety of on-screen controls,
such as labels, buttons, menus, frames, option sheets, and so forth.

Unique Identifier-A 32-bit number that is the handle on an object.
When you send a message to an object, you send it to the object's
UID.

Universal Unique Identifier-A 64-bit number that is guaranteed to
be unique across all PenPoint computers, usually used to identify
resources in resource files.

A window that presents a user interface and observes a data
object; when the data change, the data object notifies its observers
and the view updates its display of the object.

An approach to designing applications and components that
divides the presentation and storage of state into separate view
and data objects.

A physical medium or a network entity that supports a file system.

334

The Power of Pen Point

well-known

window tree

windowing device

(1) An object is well known when its UIO is statically defined for all
PenPoint computers. Access may stdl not be possible if the object
is not correctly installed on a particular PenPoint computer. Most
PenPoint classes and globally accessible objects (such as theScreen
or theWorkingOir) have well-known UIO's.(2) Well-known resource
IDs identify data and object resources that can be used by any client.

The hierarchy of windows formed by a window, its child windows,
their child windows, and so on. The on-screen window tree starts
with a root window on a windowing device.

A pixel device that supports multiple overlapping windows. All
windows are associated with some windowing device, even if the
window is not currently inserted in the window tree on that device.

Index

A

acetate layer, 230-231
activation, 11, 89, 112
alarm subsystem, 70
Application Developer's Course, 57
Application Framework, 10,47,51,

54,87,89,144,175,199,210,217,
219,222

application embedding, 11-12
application instances, 10, 11

activation, 11
closing, 11
creation, 11
destruction, 11, 114
life cycle, 10, 11,88, 111
opening, 11, 113
termination, 11, 113

application life cycle, 10
application object, 99
application software, 3
applications

activation, 11, 89, 112

application instances, 10, 11
closing, 11, 113
communication between, 255
creation, 11
destruction, 11, 114
distribution, 14
embedding, 10, 116
life cycle, 10-11,88,111
opening, 11, 113
termination, 11, 113

AppMain,98
arcs, 163, 166
automatic layout, 179

B

bitmapped font, 171
Bookshelf, 14, 34-35, 44, 93, 210
borders, 178
buttons, 185

335

336
~~~ '~~~~r' ~f' ~~~~~i~~ ........................................................... . 

c 
C++, 51,58 
C, 18,50,57-58,76,96,223 
capability flags, 82 
character recognition, 41 
Class Manager, 57, 61,73,76,80,85 
class hierarchy, 78, 91, 93, 119 
class library, 56 
CLASS_NEW, 83 
classes 

creating, 83 
defining, 76 

Clipboard, 12 
clipping, 116 
closing, 11, 113 
cis Control, 182 
clsApp, 91, 107, 140 
clsAppDir, 91 
clsApplnstallMgr, 102 
clsAppMgr, 91-92 
clsAppMonitor, 91, 102 
cisAppWin,91 
clsButton, 185 
clsClass, 78, 83, 91-92 
clsCustomLayout, 178 
clsEmbeddedWin, 91, 106, 119-120 

134, 140 ' 
clsField, 195 
clsFrame, 200 
clsGWin, 119, 123, 182 
clslmport, 213 
clslmportQuery, 213 
clslnstallMgr, 102 
clsLabel, 184 
clsMenuButton, 187 
clsObject, 78, 92, 218 

clsOption, 200 
clsScrollWin, 191, 193 
clsService, 247 
clsServiceManager, 247 
clsSysDrawCtx, 157 
clsTableLayout, 178 
clsTkTable, 189 
cisView,91 
clsWin, 120 
color, 169 
components, 141 
compound documents, 44, 133 

application embedding, 11 
document model, 11 . 
files, 212 
hyperlinks, 11 

configuration, 10 
connectivity, 15, 42, 46, 253 
CONTROL_METRICS, 182 
CONTROL_STYLE, 182 
controls, 178, 182 
coordinate systems, 116, 120 
copy, 10,43, 107 
CopyPixels, 168 
CopyRect, 168 
cork margin, 42, 44 
crashes, 68, 69 
creation, 11 
curves, 163 

D 

data entry, 2, 40, 41,55,228 
Date and Time Services, 70 
deactivation, 89 
debugger, 58 



337 
......................................................................... ~~~~~ 

deferred data transfer, 6, 209 
deinstallation, 89 
delayed binding, 249 
deletion, 89 
destruction, 11, 114 
detachable networking, 6 
development environment, 7 
Development Process, 52 
device 

dependence, 169 
drivers, 245 

device dependence, 169 
device drivers, 245 
disconnection, 209 
Disk Manager, 35 
disks, 14 
Display PostScript, 5 
display context 

binding, 158 
DLL, see Dynamic Link Libraries 
document directory, 97 
document frame, 23, 44, 118 

decorations, 199 
document model, 11, 12 
document, compound 

application embedding, 11 
document model, 11 
hyperlink, 11, 14, 42, 46, 106 

drawing context, 120, 154 
creating, 157 

drawing primitives, 154 
drawing text, 167 
drawings 

storing, 159 
dynamic data exchange, 12 
Dynamic Link Libraries, 96, i 00 

E 

EDA, see Embedded Document 
Architecture 

EGA, 59 
ellipses, 166 
Embedded Document Architecture, 11, 

42,44 
embedding, 10, 11,44, 130 

live embedding, 10, 130 
events, 235 
EXPORT_LIST, 108 

F 

facsimile, 170 
fields, 195 
file compression, 209 
file decompression, 209 
file export, 107, 212 
file formats, 10 
file import, 107, 212 
file system, 95, 136,205 
file system resource manager, 51 
file, 51,212 
filters, 237 
flick, 192 
floating pages, 42, 46 
fonts, 170 



~~~ ................................................................... '.' ..... . 
The Power of PenPoint

G input focus, 229
input processing, 227-234
installation, 10,89, 102,209

gestures, 2, 10,36-37,42,47,55, 106, Installer, 35

192, 238 installer file, 210
standard set, 39 instance data, 223

global memory, 63 instances, creating, 82, 102, 112
Go Corporation, 5, 41
Goto, see hyperlink
grabbers, 237
graphical user interface, 3, 5, 8, 22,

153
graphics interface, 51
graphics, 22,.153
GUI, see graphical user interface

H

handwriting, 6, 10, 26, 40, 225, 232
hardware, 4, 7, 246
help, 8, 10,34, 103
hyperlink, 11, 14,42,46, 106

icons, 202
image devices, 168
ImagePoint, 153
images, prestored, 170
Imaging, 153
import/export, 10
IMPORT_DOC, 108
In Box, 8, 16,34-35,47,258
ink, 55,229

K

kernel, 61
keyboard, 35-36, 42

software, 35

L

labels, 184
language, 57, 76, 96
laptops, 4
life cycle, 10, 11,88, 111
lines, 163
link interfaces, 253
link layer, 257
list boxes, 193
listeners, 237
live embedding, 10
loader, 69
Logical Unit Coordinates, 122
Logical Window Coordinates, 122

M

Machine Interface Library, 70
Macintosh, 14, 35, 130, 211, 217, 256
main window, 100
market, 50
mass storage, 17
memory, 17, 18,63,96,120
memory scalability, 56
menu buttons, 187
menus, 23, 187
message arguments, 79
messages, 80, 99

sending, 80
Method Tab'les, 83
mgsAppClose, 113
mgsFree, 113
Microsoft Windows, 5, 130, 154
MiniText, 241
mobility, 6
mouse, 22, 36
move, 10, 43, 107
move/copy, 42, 104, 147
MS-DOS laptop, 15
MS-DOS, 8, 14, 16, 17, 58, 59, 205,

211,223
msgAppOpen, 107, 113, 175
msgAppSave, 222
msg8eginRepaint, 162
msgDCCopyPixels, 168
msgDcDrawText, 168
msgDcFiliWindow, 167
msgDcGetWindow, 158
msgDcOpenFont, 171
msgDcSetWindow, 158
msgExport,108,214
msgExportGetFormats, 108, 214

msgExportName, 108, 214
msglmport, 108
msglmportQuery, 108, 213
msgNew,82,83, 123, 157
msgNewDefaults, 82, 157
msgSave, 113
msgWinCopyRect, 168
msgWinDirtyRect, 162
msgWinEndRepaint, 162
msgWinRepaint, 155-162
msgWinSort, 126
msgWinUpdate, 162
multimedia, 12
multitasking, 18,64-65,81,249

N

network protocol stacks, 15
networking, 246
networking protocols, 253
NeXT, 5
Notebook User Interface, 8
notebook, 29, 93, 144

benefits of, 33
Stationery, 42-43

notes, 196

o
ObjCall, 80, 81
Object Pascal, 57, 73
object creating, 76

339

Index

object-oriented design, 54
object-oriented programming, 34, 50

340

The Power of PenPoint

object-oriented, 17-18,51,61,73,75,
101

ObjPostAsync, 80, 81
ObjSend, 80, 81
observer model, 54, 84
observer, 84
opening, 11, 113
option sheets, 23, 47, 200
OS/2, 5, 18, 61
Out Box, 8,16,34-35,47,175,258
outline fonts, 171

p

pages, 29
palette, 169
pen,2,21,228
pen-based computers, 2

market, 3, 50
requirements, 5

PicSeg, 159, 170
picture segment, 159
pipelining, 246
polygon, 166
PostScript, 153
printing, 10, 109, 169, 174,255
process, 62,95, 98,135
processes, 31
programming, 79
properties, 10, 104
protection model, 67
protection, 82

R

reconnection, 209
rectangles, 165
reliability, 18, 67
remote file systems, 253-254
replace, 10
Resource Manager, 99, 217
resources, 51, 62

creating, 218, 222
file formats, 220
file hierarchy, 220
finding, 219
types, 218

RGB, 169
RiSe, 18
root directories, 207

s
Sampled Image Operator, 170
SAMS, see Standard Application Menu

Support
scalability, 17
saving data, 89
scheduler, 65
scribbles, 229
scroll bars, 43, 189
scroll margins, 42, 43
scrolling, 43
SDK, see Software Developer's Kit
search and replace, 109
search, 10
sections, 29,31
semaphores, 63
Send,16,47

· '.' ... ~~1.

Send User Interface, 16,47,260
sending messages, 80
service, 245
Service architecture, 54-55
Service Manager, 11, 245
Smalltalk, 57, 68, 73
Software Developer's Kit, 47, 49, 52-

53, 57, 223, 257
software keyboard, 35
spell-checking, 10, 109
Standard Application Menu Support,

47, 107
stationery, 34, 42, 43, 110
stroke, 229
subtask, 62

T

Table of Contents, 8, 29, 31,43,46,
93, 114,213

tabs, 8, 26, 29
task, 62
terminating, 11, 113
text data object, 243
text editing, 241
text insertion pads, 244
text view, 243
thread,62
Toolkit Tables, 189,203
Tools Palette, 35
TOPS, 256
transport interfaces, 253
transport layer, 257
traversal slave, 151
traversal, 142, 148-149

Index

u
UI Toolkit, see User Interface Toolkit
unique identifiers (UID), 77
Universal UIDs (UUID), 77
UNIX, 5, 61
User Interface Guidelines, 47, 59, 191
User Interface Toolkit, 17,26,51, 116,

177
class hierarchy, 179

User Interface, 47
consistency, 47

v
VGA, 59
view-data model, 10,54
voice recognition, 36
volumes, 206

w
WIN_METRICS, 123
window layout, 125
window marks, 142
windowing system, 115-128
windowing, 22, 51
windows

child, 125
clipping, 116, 160
coordinate systems, 116, 120
filing, 126
graphics, 22, 153

342

The Power of Pen Point

layout, 125
managing, 126
parent, 125
placing, 147
painting, 155, 160
windowing,' 22,51

wireless communications, 15
writing pad, 26, 28, 37, 38

/' '

THE POWER OF !
PENPOINT~

Robert Carr Dan Shafer

"This book contains important information on
PenPoint, an extraordinary new operating system.
It is a must -read for anyone interested in operating
systems, applications development, or the future
of computer software." - Dan Bricklin,
Vice President, Slate Corporation's Boston Area
Development Center

In these pages you will discover the inside informat
on the remarkable new pen-based operating system fr
GO Corporation - PenPoint™. As the principal ar
tect and designer of the PenPoint system, Robert Car
uniquely qualified to reveal its innovative and tr
impressive features. Here you will find a first look at w
programming for PenPoint is like, as well as a guid
making the best use of the software development kit fr
GO Corporation.

"PenPoint is the most state-of-the-art operating
system in the industry today. Anyone who wants
to understand personal computers should be
familiar with what Robert Carr has accomplished."
- Stewart Alsop II, Editor and Publisher,
P'C.LETTER

The Power of PenPoint contains the original sou
information of the architecture, design, and philoso
behind PenPoint and looks at the powerful class lib
that makes up the world's first commercial obje
oriented operating system. The book begins with
overview of Pen Point and then delves into each elem
of the operating system in detail. Topics include:

,.._. __ . ____ NOlebook:Conten~ __ •. _._:..!2.l'o
Docume nt Edit Cree,1e View Show Sort i
t:wna. e-. ~
QJ Reed Me Fi~t i
I] SanpIoos. . 3 f
~ New Product Ide.. I
ij!) Pockoge Design Letter. a

I] IIIIahopoIis I Inc. . 6 1
D Building Directions . 8 r
D Appraisal Form ~
@llnsurance Policy 9

D FIoorplan.. . . 10 ~
D Architectural Detail 11

ij!) Oralio! Letter.. 12

~ ~fterb Professor Garrison. 13

~ Comparables Report... 14

ij!) Org Chart· Western Region 15

D ContoctReport... 16

I] P'eI8onaI 17

1],..... 18

I]~. .H •• 22

1]......... . .. H ••••••• 25
I]F_. 28
I] DIaoirvo·· 31

I] CiIy ~ Co. 34

D Building Directions HH. HHH. H.35

D Appraisal Form H 'HHHHHHHH HHH. H"HH 36

~ Insurance Policy... 37

R FIoorplan. '... :

.!J"'I e.l1ii1~ f)..!..!.
"'Ip P nc.s Tools: Statbnl'ry OIJks K.-,bcM.1Id InstI."r In Old

• windowin classes

5229

780201 577631

ISBN 0-201-57763-1
57763

THE POWER OF ,

PENPOINT.

Dacume nt Edit Cleats V_ Show Sort -D Reid Me Fi,.t

ij -
~ NswProdu::tldsu

~ Packege OaIlgn Le~r
(J~I:a Inc..

[) 8\,uldlr'lg Ot..ct.D,.

D ppra. .. Fonn

~ "-W"1I/'IC8 Poley

D_ ... ""
D lCh~r .. Detail

~ Oreft~Letler
~ I..et8rlD PlOtItnorOem.on

~ Comparables Report

8 Ol'g Chett· W-em Regen

[) Cont.:t Report

ij
ij
ij,
ij
ijF_
ij~

ijCily _eo.
D Buitding DiI8Ctio,. ...•• _...•....•..

D ~ .. Farm

~ lMurance Policy .

~-..,

10

11

12

13 ,.
lS ,.
17

18

22

2S

28

31 ..
35 ..
37

3B

.'"

780201 577631

ISBN 0-201-57763-1

