

GenRad Corp. futuredata PROGRAMMING THE AMDS

GenRad FUTUREDATA COMPUTER CORPORATION 5730 BUCKINGHAM PARK WAY CULVER CITY, CA 90230

PREFACE

This manual provides information on the AMDS memory structure, utility subroutines, and direct I/O programming, and is organized in three sections as follows:

- "Debugger Memory Usage" describes memory configuration and the essentials of Debugger operation.
- "I/O Service Subroutines" explains the calling conventions and operation of the system I/O routines contained on the AMDS Utility Source Package diskette. The I/O subroutine calls provide access to system resources.
- 3) "Direct I/O Programming" provides a detailed discussion of the AMDS I/O structure. This information is helpful for the user who wishes to write custom utility programs for interfacing with specialized devices.

i

TABLE OF CONTENTS

Section	Pa
1	Programming the AMDS
	MEMORY CONFIGURATION
	DEBUGGER INTERRUPT VECTOR USAGE
	DEBUGGER USE OF THE CPU STACK
2	I/O Service Subroutines
	KEYBOARD INPUT/CRT OUTPUT
	Keyboard and CRT Display Functions
	MSGIN
	MSGOUT
	KEYIN
	ΤVΟUΤ
	DISPCUR
	OUTCUR
	BLNKCUR
	KBDIN
	KBDTST
	DISK INPUT/OUTPUT
	File Control Block
	Diskette Directory
	Error Return Codes
	Function Definitions
	Open
	Read
	Write
	Close
	Create
	Delete
	Rename
	Change Attributes
	Free Space
	Overlapped I/O
	Examples
	Reading From a File
	Writing Into a File

ii

TABLE OF CONTENTS (Concluded)

Section		Page
	EIA INPUT/OUTPUT	. 31
	Definitions	. 31
	EIASET	. 31
	EIAIN	. 31
	EIAOUT	. 31
	ECBRATE	. 32
	ECBLEN	. 32
	ECBUNIT	. 32
	Examples	. 33
	ASCII Data Configuration	. 33
	ECB Communication	. 33
	CASSETTE TAPE INPUT/OUTPUT	. 35
	Error Recovery	. 35
	WRITE	. 35
	READ	. 37
	READR	. 39
	Cassette Rewind Routine	. 39
3	Direct I/O Programming	. 40
	KEYBOARD INPUT	41
	BREAK KEY	42
	CRT DISPLAY SELECT	43
	CRT DISPLAY OUTPUT	. 44
	MEMORY PROTECTION	46
	REAL-TIME CLOCK	. 48
	SERIAL I/O PORTS	. 49
	DISK I/O PORT	. 55
	PRINTER PORT	. 56
	BOARD STATUS PORT	. 57
	BOARD COMMAND PORT	. 58
	JUMPER SELECTION	. 59
	AMDS I/O PORT ADDRESSES	. 61

.

LIST OF TABLES

<u>Table</u>	Page
1-1.	Debugger Address and Vector Allocation
2-1.	I/O Service Subroutine Functions
2-2.	CRT Display Control Command Functions 6
2-3.	Disk File Control Block Fields
2-4.	Disk File Management Functions and FCB Fields
2-5.	Disk File Management Error Return Codes
2-6.	EIA Send-Control Block
2-7.	EIA Baud Rate Select Codes
2-8.	Tape Write Control Block
2-9.	Tape Read-Control Block
2-10.	Tape Read Routine Error Codes
3-1.	Keyboard Input Commands
3-2.	BREAK Key Commands
3-3.	CRT Display Select
3-4.	CRT Field Attributes
3-5.	CRT Display Line Offsets
3-6.	Protect Command Bit Assignments
3-7.	Memory Protect Commands
3-8.	Real-Time Clock Commands
3-9.	Serial Port 1 Read Commands
3-10.	Serial Port 1 Write Commands
3-11.	Serial Port 2 Read Commands
3-12.	Serial Port 2 Write Commands
3-13.	Disk I/O Port Commands
3-14.	Printer I/O Commands
3-15.	Board Status Port Commands
3-16.	Board Command Port Commands
3-17.	Jumper Functions
3-18.	Summary of I/O Port Addresses

DEBUGGER USE OF THE CPU STACK

Upon entry to the Debugger, the stack pointer is set to a valid (nonprotected RAM) address. When program execution is interrupted by the BREAK key or a breakpoint instruction, control is transferred to the Debugger which stores the machine status and registers on the stack and saves the stack pointer address. The user may or may not reset the stack pointer after the interrupt; Debugger execution will continue automatically in either case. Note, however, that if the user resets the stack pointer to an invalid address, the machine status display may show incorrect data.

The Debugger Execute command (E) stores the starting address on the stack, reloads the registers, and executes a return instruction. The return instruction transfers control to the execute address which is stored on the stack. If the stack pointer is not valid, the execute command will fail and the message "SP NOT IN RAM" will be displayed.

The "Z S=n" command is used to reset the stack pointer. Since the Debugger generates the machine status display from the data on the stack, the display changes each time the "Z S=n" command is entered.

Upon Debugger entry or upon re-entry (after hitting the RESET key), the stack pointer is set to the first byte in memory below the Debugger. When a program is executed using the "E" command, this value is loaded into the stack pointer register. The user may use this value or may load a new one.

Section 2 I/O Service Subroutines

Relocatable subroutines, including a number of I/O service subroutines, are available to the user. Service subroutines greatly simplify input/ output operations to standard peripheral devices. These subroutines may be actuated by execution of a CALL instruction (for 8080/85A/Z8O) or JSR instruction (6800/02) to the appropriate entry point, as shown in Table 2-1.

I/O subroutines are provided for keyboard input/CRT display output, disk input/output, EIA send/receive, and cassette tape read/write functions. The routines have convenient calling conventions for use with the I/O devices. The routines interpret user requests and perform the detailed low-level I/O operations required to accomplish the requested operations.

The I/O service subroutines are listed in Table 2-1 and are described in detail on the following pages.

I/O Service Subroutines

I/O Type 🛛 🛛	Global Label	File	Service Function
Keyboard/	KEYIN	KEYIN.R	Read a character from the key-
CRT Display			board or command file
	MSGOUT	KIO.R	Write a message a line at a time
			to the CRT display
	MSGIN		Read and echo a line from the
			keyboard
	TVOUT		Write a character to the CRT
			display
	DISPCUR		Display the cursor
	OUTCUR		Display the cursor
	BLNKCUR		Blank the cursor
	KBDIN		Read a character from the keyboard
	KBDTST		Test for keyboard input
Disk	DISK	DIO.R	Entry to the disk routines
	DISKW		Wait for completion of disk I/O
EIA	EIASET	EIA.R	Set EIA parameters
	EIAIN		Input a character from the EIA
			port
	EIAOUT		Send a character to the EIA port
Tape	READ	TIO.R	Read a record from tape
:	READR		Re-entry read from tape
	WRITE		Write a record to tape
	REWIND	:	Rewind tape Unit(s)

KEYBOARD INPUT/CRT DISPLAY OUTPUT

The keyboard and CRT display terminal may be addressed directly (see Section 3). However, a much easier method of accessing them is obtained by use of MSGIN and MSGOUT which access a line at a time; KEYIN and TVOUT which access a character at a time; the cursor display routines (DISPCUR, OUTCUR, and BLNKCUR); and the bypass command file routines (KBDTST and KBDIN).

The TVOUT routine operates the CRT display in the following manner. The cursor is first initialized to the top left display location by outputting a clear (DLE=X'10') character. The ASCII representation of the character to be displayed is then loaded into the accumulator* prior to calling the TVOUT routine. A cursor is displayed at the next character position. When that character is stored, the cursor is advanced, moving from the last character of the line to the first character of the following line. When the last character of the bottom line is reached, it moves to the first character of the top line.

A horizontal dividing line below the cursor (consisting of underline (__) characters) separates the data most recently displayed (above the line) from older data (below the line). As new data are received and entered onto the display, the dividing line moves down. At the bottom of the screen it wraps around to the top so that the data remain on the screen until they are written over on the next cycle. All registers and flags are saved.

The most commonly used control commands are interpreted as shown in Table 2-2.

Table 2-2.	CRT Display Control Command Functions
Character	Function
Carriage Return	Moves the cursor to the left of the current
	line.
Line-Feed	Moves the cursor down one line.
Backspace	Moves the cursor back one space.
DLE(X'10')	Clears the screen and leaves the cursor at
	the top left corner.

* In this document the word "accumulator" refers to the "A" register in 8080/85A/Z80 systems and to accumulator "A" in 6800/02 systems.

Keyboard Input/CRT Display Output

Keyboard and CRT Display Functions. The nine keyboard CRT I/O functions are defined below.

MSGIN

MSGIN reads a line at a time from the keyboard or command file and echoes the data on the display. MSGIN uses routines in the KEYIN.R, LINEIN.R and KIO.R files.

MSGOUT

Displays a line at a time. When MSGOUT is called, a message is written to the CRT display refresh page. The address of the message is passed in the HL register pair (or Index register for 6800/02 systems). The message is terminated by X'00'.

KEYIN

KEYIN reads a character at a time from the keyboard or command file and returns it in the accumulator. If the accumulator is zero when the routine is called, the character is converted to upper case; if non-zero, lower case characters can be read. The Command File Processor and KEYIN use memory from X'D600' to X'D7FF' for the command file workspace. The user should not alter this region if KEYIN is used. KEYIN uses the LINEIN routine (in file LINEIN.R) and routines in file DIO.R.

TVOUT

Displays a character at a time. The accumulator must contain the character to be displayed; no other parameters are used.

DISPCUR

When called, this routine displays the cursor. If the content of the HL register pair/Index register is zero, the cursor is displayed at the next location to be used by TVOUT. If the HL register pair/Index register has a non-zero value, this value is assumed to be a display refresh page address at which the cursor will be displayed. This entry point assumes there are no field attribute characters in the display refresh page.

OUTCUR

OUTCUR is used to display the cursor when field attribute characters are present in the display refresh page (see Section 3) or when the cursor location is in row-column form. At the time of invocation, the accumulator should contain the column number and the B register/accumulator B should contain the row number.

BLNKCUR

This routine blanks the cursor. No parameters are used.

KBDIN

KBDIN reads a character from the keyboard and returns the result in the accumulator. This routine can be used to read from the keyboard even if command file processing is active.

KBDTST

This routine tests the keyboard status register. If new data are available, the accumulator will be non-zero on return. If a keystroke has not been detected, the accumulator will be zero.

I/O Service Subroutines

Disk Input/Output

DISK INPUT/OUTPUT

FUTUREDATA RDOS allows user programs to implement all of the disk file management functions. These functions (Create, Delete, Open, Close, Read, Write, Rename, Change Attributes, and Free Space) are made available through a single entry point in the relocatable disk I/O package DIO (residing in file NDIO.R).

<u>File Control Block</u>. The Disk I/O service routines are invoked by executing a call to the entry point, DISK. The instruction, CALL DISK (or JSR DISK for 6800/02 systems), invokes the disk I/O package. The address of a 26-byte parameter list (see Table 2-3) which is passed in the HL register pair/Index register, completely specifies the operation to be performed. This list is called a File Control Block (FCB), and should be built in any convenient area in read/write memory. The FCB is used to determine the required function, file name, location of the I/O buffers, etc.

The Disk I/O routines return a completion code in the accumulator to indicate whether the operation was performed successfully, or if an abnormal condition was detected. When errors are detected, the HL register pair/ Index register points to the address of an ASCII message giving the nature of the error. This message is terminated by a byte of zero and may be displayed by calling the MSGOUT I/O service subroutines.

The 13 fields contained within the FCB are listed in Table 2-3. Table 2-4 shows the file management functions and how they relate to the FCB fields.

	Table 2-3.	File Control Block Fields
Field	Bytes	Function
CBFLO	1	X'00' - perform function defined by FCBFL1
		X'02' - create file
		X'04' - open file
		X'08' - close file
		X'10' - delete file
		X'20' - rename file
		X'40' - change file attributes

X'80' - free unused space

Table	2-3. Fi	le Control	Block Fields	(Continued)
 Field	<u>Bytes</u>			Function
FCBFL1	1		Read-Write Fund	ctions
			<u>Bit</u> *	Function
			0	Read Sector
			1	Write Sector
			2	Perform Write Check
			3	Unused
			4	Automatically increment
				sector number
			5	Read or Write Object Data
			6	Unused
			7	Do not wait for completion
FCBADR	2		Address of dat	a block in main memory to
			be transferred	to (from) diskette. For Č
			the 8080/85A/Z	80, the address is in low-
			high format; f	or the 6800/02 the address
			is in high-low	format.
FCBLEN	2		Length of data	block in main memory to be
			transferred to	(from) diskette. For
			8080/85A/Z80,	the length is in low-high
			format; high-l	ow format for 6800/02. The
			maximum allowa	ble length is the sector
				skette, 128 bytes.
FCBSEC	2			sector to be read or written.
				or is designated as l. The
				ative to the beginning of the
				ated as "n". For 8080/85A/Z80
			·	is stored in low-high format;
			high-low forma	
FCBUN	1		Selects drive	0 (X'00') or drive 1 (X'01').
*Low-order	(rightmo	st) bit is	zero.	

	Tab	le 2-3. Fi	le Contr	ol Block Fields (Concluded)
	Field	Bytes		Function
	FCBDIR]		Directory entry location. This field
			:	is set and used by the Disk I/O routines.
	FCBNAM	10		Alphanumeric file name, left-justified
				in the field, i.e., if the file name is
				less than 10 characters long, it must be
				followed by a sufficient number of space
				characters (X'20') to fill the field.
	FCBREF	1		First track of file. This field is set
				and used by the Disk I/O routines.
	CBATR]		File attributes.
				Bit Function
				0 Write Protect
				1 Permanent File
				2 Source File
				3 Object File
				4 Relocatable File
				5 Command File
				6 Blind File
				7 System File
	FCBEOF	2		Specifies end of file (one greater than
				the number of sectors within a file).
				An empty file is shown as X'0001'. This
-12 ¹⁴ - 1				field is stored in a normal high-low format.
				When a file is opened for output, the high
				order bit is set; the bit is reset when the
				file is closed.
	FCBINT	1		Initial file size, specified in tracks.
				This field is required only for Create.
				The minimum size is 1 (X'Ol'), and the
				maximum size is 76 (X'4C').
	FCBEXT	1		Extension size in tracks. Used when file
				must expand. Allowable values are the same
				as the initial allocation.
				11

		Table 2-4. File Management Functions	and FCB Fields
		FCBFLO - 1 byte	FCBFL1 - 1 byte
Function	Value	Function Description	Function Description
Open	X'04'	Selects the Open function.	Bits 0* and 1 are examined to determine
			whether file is to be opened for reading
			or writing, respectively.
Read	X'00'	Causes function specified by	Bit O is set to designate a Read opera-
		FCBFL1 to be performed.	tion. Bit 4 is optionally set to indicate
	анан сайтаан ал		sequential reading of the file.
Write	X'00'	Causes function specified by	Bit 1 is set to perform a Write. Bit 2
		FCBFL1 to be performed.	is set to perform a Write Check. Bit 4
			specifies that FCBSEC is automatically
			incremented before each Write for writing
			sequentially.
Close	X'08'	Selects Close function.	Bits O and 1 are set to indicate that
			the file was opened for reading or writ-
	· · ·		ing, respectively.
Create	X'02'	Selects Create function.	Bits 0 and 1 are set to indicate that
			the file was opened for reading or writ-
			ing, respectively.
Delete	X'10'	Selects Delete function.	
Rename	X'20'	Selects Rename function.	
Change	X'40'	Selects Change Attributes	
Attributes		function.	
Free Space	X'80'	Selects Free Space function.	

*Bit zero is the rightmost bit.

12

Disk Input/Output

Table 2-4. File Management Functions and FCB Fields (Continued) FCBADR - 2 bytes FCBLEN - 2 bytes

Function Description

Gives address of buffer to which data is to be transferred. Stored in low-high (8080/85A/Z80) or high-low (6800/02).

Specifies the address from which data for

Stored in low-high (8080/85A/Z80); high-

Write operations are to be obtained.

low (6800/02).

Write

Function

0pen

Read

Close Create Delete Rename Change Attributes Free Space

3

Specifies number of bytes in buffer to be transferred, maximum of 128 bytes.

Function Description

Stored in low-high format (8080/85A/Z80); high-low (6800/02).

Indicates size of data area to be transferred. Low-high format (8080/85A/Z80); high-low (6800/02).

Service Subroutines

I/0

	FCBSEC - 2 bytes	FCBUN - 1 bvte
unction	Function Description	Function Description
Open		Specifies disk drive to be accessed.
Read	Specifies number of sector to be read. Stored in low-high format (8080/85A/Z80); high-low (6800/02).	Drive number; field set prior to Open
lrite	Designates number of sector to be written. Low-high (8080/85A/Z80); high-low (6800/02).	Field set prior to Open.
Close		Field set prior to Open.
reate		Selects disk drive to be accessed.
elete		Field set prior to Open.
lename		Field set prior to Open.
hange Ittributes		Field set prior to Open.
ree Space		Field set prior to Open.

	Table 2-4. File Management FCBDIR - 1 byte	t Functions and FCB Fields (Continued)	
Function	Function Description	· · · · · · · · · · · · · · · · · · ·	
Open		Function Description Specifies 10-character name of file to be opened.	
open	i i	Spectries to-character halle of the to 2	
en a secondar a	1	be opened.	
Read		ut ut	
Write	Field set by Open.		
Close	Field set by Open.	Field set prior to Open.	
Create		Specifies name of file to be created.	
Delete	Field set by Open.		
Rename	Field set by Open.	Contains new file name.	
Change	Field set by Open.	Field set by Open.	
Attributes			
Free Space	Field set by Open.	Field set by Open.	

	FCBREF - 1 byte	FCBATR - 1 byte
Function	Function Description	Function Description
0pen		
Read	Field set by Open.	
Write	Field set by Open.	Field set by Open.
Close	Field set by Open.	Field set by Open. May be reset prior
		to Close if attributes are to be changed.
Create		Indicates which attributes are to be
		initially assigned to the new file.
Delete	Field set by Open.	Field set by Open.
Rename	Field set by Open.	Field set by Open.
Change	Field set by Open.	Field set by Open. May be updated prior
Attributes		to execution of Change Attributes functio
Free Space	Field set by Open.	Field set by Open.

Disk Input/Output

	Table 2-4. File Management Functions	and FCB Fields (Continued)
	FCBEOF - 2 bytes	FCBINT - 1 byte
Function	Function Description	Function Description
Open		
Read	Field set by Open.	
Write	Field set by Open.	
Close	Field set by Open and updated during Write.	
Create		Number of tracks to be allocated to file.
Delete		
Rename	Field set by Open.	
Change	Field set by Open. May be updated prior to	
Attributes	execution of Change Attributes function.	
Free Space	Field set by Open.	

Table 2-4. File Management Functions and FCB Fields (Concluded)
FCBEXT - 1 byte
Function Description
Field set by Open.
Field set by Open.
Number of tracks to be taken during a Write
when additional space is required.
Field set by Open.
Field set by Open.
Field set by Open. Used to determine amount
of space used in file.

<u>Diskette Directory</u>. All diskettes used with FUTUREDATA RDOS must have a directory located on physical track zero. The directory is created when the diskette is initialized with the "I" command in the File Manager. The file name "DIR" is entered for the directory. DIR is given the "permanent" and "write protect" attributes. The purpose of the directory is to store the name of each file, its location on the diskette, its attributes, its current end-of-file location, and size of expansion when additional space is required.

The directory is made up of one sector containing a track map and ten sectors containing file name information. The track map maintains a list of both unallocated tracks and those allocated to existing files. The file name sectors contain one entry for each file allocated on the diskette. Each name entry is 16 bytes long. Eight entries fit into each 128-byte sector; thus, ten sectors can accommodate a maximum of 80 entries, with a maximum of 76 usable sectors.

The following FCB fields are contained in each file name entry: FCBNAM (10 bytes), FCBREF (1 byte), FCBATR (1 byte), FCBEOF (2 bytes), FCBINT (1 byte), and FCBEXT (1 byte).

The file name entries are initialized with the Create function, removed with the Delete function, and changed with the Rename function. The file attributes, end-of-file, and expansion size can be modified with the Change Attributes function.

Error Return Codes. A completion code is loaded into the accumulator upon return from the Disk I/O routines. This code indicates whether the requested function executed successfully, or whether an error condition was encountered. The accumulator is set to zero if no errors have been found. If an error has been detected, an error code is placed in the accumulator, and the HL register pair/Index register is set to point to an ASCII message describing the error. The error message is stored in memory as a sequence of ASCII characters followed by a zero byte indicating the end of the message. The error message may be displayed by the calling program.

The I/O error messages and the data file management functions that generate them are shown in Table 2-5.

			1	1	1		nent Func	1		
I/O Routine Messag		0pen	Read	Write	Close	Create	Delete	Rename	Change Attributes	Free Spac
eturn Code	Definition						 -			1
	Function completed successfully.	X	X	X	Х	X	X	X	X	X
- PERM I/O ERR	Unrecoverable error.	Х	X	Х	Х	Х	Х	X	X	X
- END FILE	Reading of a sector beyond the end-of-file was requested.		X		`			· · · ·		
- DISK FULL	No space is available to expand the size of the file.			Х	•• v	X		· · · ·		
- FILE NOT FOUND	Specified file was not found in diskette directory.	X	•					•		
- DUPLICATE NAME	File name specified is already used on the diskette.					X		X		
– PARM ERR	Invalid field in FCB.	Х	X	Х	X	Х	Х	X	X	X
- DRIVE NOT UP	Selected disk drive not ready.	Х	X	Х	X	Х	X	Х	X	Х
- PERM FILE	File requested for deletion has the permanent attribute.						Х		· · · · ·	
- WRITE PROTECT	Attempt was made to open a file with the Write Protect attri- bute.	X		Х	•					
O - FILE NOT OPEN	File has not been opened.		Х	Х	Х		Х	X	Х	Х

2]

Table 2-5. Disk File Management Error Return Codes

<u>Function Definitions</u>. The file management functions are described in the paragraphs below.

<u>Open Function</u>. Before a file can be accessed on diskette, it must be "opened". The Open function uses the ASCII file name given in the FCB to locate the file name entry in the diskette directory. This entry provides the information necessary for file access such as location on the diskette, end-of-file, etc.

<u>Read Function</u>. The Read function causes the disk unit to seek the requested file sector. Data from the sector are then transferred into the memory buffer specified by the FCBADR field of the FCB. The diskette sectors contain 128 bytes; the length to be transferred to memory (up to 128 bytes) can be explicitly specified in the FCB.

File sectors are numbered sequentially, starting with the number 1. The sector to be read is contained in the FCBSEC field of the FCB. Even though a file may be composed of a number of non-contiguous tracks, the Disk I/O routines automatically compute the location of the requested sector.

When a file is first opened, the FCBSEC field is set to zero. If direct access to file sectors is required, the program must enter the sector numbers in the FCBSEC field prior to each read request. If sequential accessing to file sectors is desired, bit 4 of the FCBFL1 field may be set so that FCBSEC will be incremented by the Disk I/O routines. The first Read request reads the first sector of the file, the second request reads the second sector, etc. Bit 4 specifies that the current value of the FCBSEC field will be automatically incremented by one, prior to each Read request.

Prior to each Read operation, the Disk I/O routines compare the requested sector number with the end-of-file sector number in the FCBEOF field. If a sector beyond the end-of-file is requested, the Read function returns with code in the accumulator specifying an "end-file" condition.

<u>Write Function</u>. Writing to a diskette sector consists of two physical operations. First, the data from memory are written to the diskette. That sector is then read to insure that the data have been successfully written. This secondary Read is known as a "Write Check" operation.

The RDOS Disk I/O routines allow the Write and the Write Check to be performed either by one call, or by separate calls. Bits 1 and 2 of the

Disk Input/Output

FCBFL1 field specify which operations are to be performed. Normally, both bits 1 and 2 should be set so that the Write and Write Check operations will be performed. However, if both operations are performed by one call, there is a delay of one diskette revolution (167 ms) between the Write and the Write Check, since the same sector must be accessed twice.

In some circumstances, it is possible to design a program so that a large amount of data can be written sequentially from memory. In this case, a significant amount of write time can be saved if all of the Write operations are performed first. FCBSEC must then be reset to the first written sector to perform the Write Checks.

When the Write and Write Check operations are performed separately, it is possible to write five sectors per revolution (30 sectors per second) and to Write Check five sectors per revolution.

As with the Read function, the file must be opened before a Write operation can occur. The Write function requires the FCBADR field (specifying the address) and the FCBLEN field (specifying the file size) to define the memory buffer to be written to diskette.

FCBSEC designates the number of the sector to be written into. FCBSEC is initialized to zero when the file is first opened. For direct writing, FCBSEC is set by the program prior to initiating the Write operation. For sequential writing, bit 4 of FCBFL1 must be set; the Disk I/O routines will then automatically increment FCBSEC prior to each Write operation.

Before writing to the diskette, the Disk I/O routines check that the sector number specified by FCBSEC is less than the end-of-file reference in FCBEOF. Before a sector is sequentially written, FCBSEC is incremented by one. If FCBSEC becomes greater than FCBEOF, the Disk I/O routines attempt to allocate more space for the file. The number of tracks obtained when an allocation extension is made is given by the value in FCBEXT. Sector allocation may continue until free space on the diskette is unavailable.

When the user wishes to shorten an existing file, the FCBEOF field must be reset to a value one sector greater than the number of the last used sector. When a previously written file is to be rewritten sequentially, the FCBEOF field should be reset to X'0001' immediately after the file is opened. The field will then be automatically incremented to keep track of the new end-of-file.

<u>Close Function</u>. The Close function updates the diskette directory with new or modified information, such as file attributes and end-of-file location. If a file has been opened for reading only and no changes were made to its directory entry (this is the usual case), the Close function is not manditory. However, if the file has been opened for writing, it is recommended that the file be closed since there is a possibility that information about the file or file length has changed.

The Close function can be used to set or change file attributes. This is accomplished by changing the FCBATR field prior to execution of the function.

<u>Create Function</u>. The Create function is used to set up new files on a diskette. Create automatically opens the file so that other functions can be performed directly after creation.

The size of the new file is specified by the FCBINT field. When the file is created, the attributes specified in FCBATR and the extension size specified in FCBEXT are stored in the file's diskette directory entry for later use.

<u>Delete Function</u>. The Delete function is used to erase an existing file, return the previously allocated space to the free track pool, and remove the file's directory entry.

<u>Rename Function</u>. The Rename function is used to change the name of an existing file.

Change Attributes Function. The Change Attributes function allows the attributes of an existing file to be modified. The following FCB fields may be affected by this function: the attribute field (FCBATR), the end-offile field (FCBEOF), and the expansion size field (FCBEXT).

<u>Free Space Function</u>. The Free Space function can be used to return unused tracks to the free track pool. When an existing file is rewritten, the new data may occupy less space than the data originally stored in the file. The Free Space function uses the current end-of-file, as specified by the FCBEOF field, and returns all tracks not needed by the new file to the free track pool. If all of the tracks are used, the Free Space function makes no changes.

<u>Overlapped I/O</u>. The Disk I/O routines provide for processor execution overlapped with disk reading or writing. Overlapped I/O is selected by setting the high-order bit of the FCBFL1 field. When overlapped I/O is specified, the Disk I/O routines return to the calling program upon execution of the disk Read or Write commands. To check for completion of the requested operation, the user program must call the Disk routines a second time.

When a Read operation is desired, the first call to the Disk I O routines checks the parameters, starts the read function, and returns control to the calling program. The read operation transfers data from diskette into a sector-sized buffer contained in the disk control unit. The second call to the Disk routines checks for completion of the Read. If the Read operation has not been completed, the program waits. If the operation has been completed, the data are transferred from the control unit buffer into the buffer specified in the FCB.

The Write operation is begun by the Disk routines' transfer of data from the buffer specified in the FCB to the disk control unit sector buffer. The Disk routines return to the calling program, and a second call is made to the Disk routines. If the Write operation has not been completed, the program waits. If the Write has been completed, the Disk routines return to the calling program.

The Write Check process is similar to that of the Write operation. When overlapped I/O is selected, only one operation can be performed by a single call to the Disk I/O routines. If both the Write and Write Check functions are selected, only the Write operation will be performed.

The first call to the Disk routines, which initiates overlapped I/O, is performed in the same fashion as calls for non-overlapped functions. For the 8080/85A/Z80, the HL register pair contains the address of the FCB, and the Call instruction references the Disk I/O entry point (DISK). For the 6800/02, the Index Register contains the address of the FCB, and the JSR instruction references the Disk I/O entry point (DISK).

The second call to the Disk routines, which completes the function, references a secondary entry point (DISKW). The wait entry does not require that the FCB address be loaded into the HL register pair/Index register, since the FCB referenced when the operation was initiated is used. However, the

accumulator must be set to indicate one of the following actions: 1) if the accumulator is set to zero, normal processing will occur as described above; 2) if the accumulator is set to non-zero (e.g., X'Ol'), the I/O operation in progress will be terminated immediately.

Since both disk drives are accessed through the same control unit, it is not possible to perform concurrent operations to both disk drives. Thus, if the second disk drive must be accessed while operation is in progress on the first, one of two actions must be taken: 1) the operation on the first drive must be completed by a call with the accumulator set to zero, or 2) the operation must be aborted by a call with the accumulator set to non-zero. In the latter case, the operation must be restarted if the data are needed.

Return codes are generated by both the first and second calls to the Disk routines. An error check must be made following both the initial call and the call completing the operation. If an I/O error is detected during the second call to the Disk routines, automatic error recovery is attempted. The operation is re-tried ten times without returning to the calling program. During error recovery, overlapped execution is temporarily suspended. If the error is recoverable, the return code indicates successful completion; if not, the I/O error return code is generated.

Disk Input/Output

I/O Service Subroutines

Examples. The following paragraphs contain example sequences for creating, opening, reading, writing, and closing files using the 8080/85A/ Z80. When using the 6800/02, two-byte fields in the File Control Block (B-type addresses) must be in high-low format (A-type addresses).

<u>Reading From a File</u>. In order to read from an existing file, the file must be opened. This is accomplished by calling the Disk routines with the Open function selected by an X'O4' in the first byte of the FCB. In the example below, the FCB has the symbolic name "RFCB". RFCB is set up in memory using Define Constant (DC) Assembler directives. The fields required by Open and Read are initialized in RFCB.

The instruction sequence for opening the file is as follows. Note: the GLBL Disk directive must occur once (and only once) in an assembly that calls the Disk I/O routines.

	(GLBI	DISK					EXTERNAL ENTRY POINT)
	LXI H	I,RFCB					LOAD H,L WITH FCB ADDR
	MVI N	1,X'04'					SELECT OPEN FUNCTION
	CALL	DISK					CALL DISK ROUTINE
	ORA A	Ę					CHECK RETURN CODE
	JNZ B	ERROR					HANDLE ERROR RETURN
	MVIN	1,0					SELECT READ FUNCTION FOR LATER
Sect	ors t	from the	open f	ile c	an b	e s	sequentially read by the following:
	(GLBI	_ DISK					EXTERNAL ENTRY POINT)
	XI H	, RFCB					LOAD H,L WITH ADDR OF RFCB
	CALL	DISK					CALL DISK ROUTINE
	ORA A	A T					CHECK RETURN CODE
	JNZ E	ERROR					HANDLE ERROR CONDITION
The	File	Contro1	Block	for t	he a	bo	ve operations is as follows:
RFCE	B DC	0					FUNCTION IS SET LATER
	DC	X'11'					SELECT READ & INCREMENT
	DC	B(IBUF)					ADDR OF READ BUFFER
	DC	B(128)					LENGTH OF READ BUFFER
	DC	B(0)					SECTOR # INIT BY OPEN

SHLD FCBEOF

•

.

DC	0	SELECT UNIT ZERO
DC	0	FIELD SET BY OPEN
DC	'FILENAME '	FILE NAME
DC	0	FIELD SET BY OPEN
DC	0	ATTRIBUTE SET BY OPEN
DC	A(0)	EOF SET BY OPEN
DC	0	ALLOCATE SET BY OPEN
DC	0	EXTENSION SIZE SET BY OPEN
IBUF DS	128	READ BUFFER
	Writing Into a File. The	example below shows the procedure for
creating	and writing into a file.	First, the file is created with the
followin	g sequence:	
(GLB	L DISK	EXTERNAL ENTRY POINT)
LXI	H,WFCB	LOAD FCBADDR
MVI	M,X'02'	SELECT CREATE
CALL	DISK	CALL DISK ROUTINE
ORA	А	CHECK RETURN CODE
JNZ	ERROR	HANDLE ERROR CONDITION
MVI	Μ,Ο	SELECT WRITE FUNCTION
If the u	user wishes to write into a	n existing file, the file can be opened
by selec	tion of the Open function	(X'04') rather than the Create function.
When the	file is being rewritten,	the end-of-file field must be reset as
follows:		
• •		
LXI	H,X'0100'	X'0001' REVERSED

In order to sequentially write the next sector each time, the following calling routine can be used:

SET TO X'0001'

I/O Service Subroutines

(GLBL DISK EXTERNAL ENTRY POINT) • LXI H,WFCB LOAD FCBADDR CALL DISK CALL DISK ROUTINE ORA A CHECK RETURN CODE JNZ ERROR HANDLE ERROR CONDITION . • After writing is completed, the file must be closed, as shown below. (GLBL DISK EXTERNAL ENTRY POINT) . • LXI H,WFCB ADDR OF FCB MVI M,X'08' SELECT CLOSE CALL DISK CALL DISK ORA A CHECK RETURN CODE JNZ ERROR HANDLE ERROR CONDITION . The FCB for writing is initialized by the following: WFCB DC 0 FILLED IN DURING EXECUTION DC X'16' SELECT WRITE AND CHECK DC B(OBUF) ADDR OF WRITE BUFFER DC B(128) LENGTH OF WRITE BUFFER DC B(0)SECTOR # SET BY OPEN DC 1 WRITE TO UNIT 1 DC 0 SET BY OPEN DC 'WRITEFILE ' FILE NAME DC 0 SET BY OPEN DC O ATTRIBUTES

ECBRATE. The ECBRATE field of the ECB contains a code which selects the transmission and reception (Baud) rate. Sixteen rate codes are allowed as shown in Table 2-7. Note: Using rate codes not listed in the table produces unpredictable effects.

ECBLEN. The ECBLEN field specifies the number of bits in the data to be transmitted and received. Usual values are 5, 6, 7, or 8; other character lengths cause unpredictable results. Transmission of the byte passed in the accumulator begins with the low-order bit; e.g., when 7 is specified as the length, the low-order 7 bits are transmitted.

ECBUNIT. The ECBUNIT field selects which EIA port is to be initialized. A value of one selects EIA port 1; a value of two selects EIA port 2. The EIA routines assume that port 1 is configured to simulate a terminal and port 2, a modem. After initialization by EIASET. port 1 holds its Request to Send and Data Terminal Ready lines high (see Section 3 for more information).

	Table 2-6.	. EIA	Send-Contr		lock
Field	= of Bytes				Functions
ECBFLAG	1		Contains	flag	bits having the following
	:		meaning:		
			Bit		Function
			0		Send break. Used by EIAOUT.
			1		Selects two stop bits for TTY.
			2		Disables parity bit generation/
					checking.
			3		Selects odd parity.
			4-7		Unused:
ECBRATE	1		Transmiss	ion/w	reception rate select code
			(see Tabl	e 2-7	7).
ECBLEN	1		Length (i	n bit	ts) of characters to be
			transmitt	ed/re	eceived.
ECBUNIT	1		EIA line	Seleo	ct (1 or 2).

EIA Input/Output

I/O Service Subroutines

	Table 2-7.	EIA Baud Rate Select Codes	
a the second	Code	Rate (Bits/Second)	
	0	50	
]	75	
	2	110	
	3	134.5	
	4	150	
	5	300	
	6	600	
	7	600	
	8	1200	
	9	1800	
	A A	2400	
	В	3600	
	С	4800	
	D	7200	
	E	9600	
	· F	19200	

Examples.

<u>ASCII Data Configuration</u>. The most common application for the EIA send/receive routines is ASCII character data exchange. ASCII data have the following specifications:

Parity	Yes/Even							
Stop Bits	Two for TTY, one otherwise							
Length	7 bits							

ECB Communication. The EIA control block (ECB) configuration for communication with a Teletype on EIA line 2 is as follows:

SCBFLAG = X'02' SCBRATE = 2 SCBLEN = 7 SCBUNIT = 2

The EIA control block configuration for communication with a modem at 300 Baud on EIA line 1 is as follows:

- SCBFLAG = X'00' SCBRATE = 5 SCBLEN = 7
- SCBUNIT = 1

If it is necessary to control the Request to Send or Data Terminal Ready bits or to read the Clear to Send or Data Carrier Detect status on port 1, direct I/O programming is used. For further information, refer to Section 3.

Cassette Tape Input/Output

CASSETTE TAPE INPUT/OUTPUT

The cassette I/O service routines provide for reading, writing, and rewinding of cassette tapes. Data on cassette are formatted as fixed-length records separated by inter-record gaps. The gaps are sufficiently long to allow the tape to be stopped at the end of a record and restarted to read the next record. The tape I/O routines read or write a record at a time and automatically turn the tape units on and off.

The cassette tapes begin with a short length of plastic leader which must be bypassed before reading or writing begins. A flag bit indicating the first Read or Write causes the I/O routines to automatically space past the leader.

Parameters are passed to the I/O routines in the form of a 7-byte writecontrol block (WCB) and a 6-byte read-control block (RCB). The control block address must be loaded into the HL register pair/Index register prior to calling the Read or Write subroutines.

<u>Error Recovery</u>. For increased reliability, the I/O routines provide for redundant recording of data records. Any number of copies of each record can be specified and will automatically be written by the cassette Write routine. During reading, if an error is detected, the Read routine tries to read the record again. If another copy is available, it is possible to recover from the error. If the Read routine cannot find another copy, it returns with an error code.

The error recovery scheme uses sequence numbers which are recorded with the data of each record. Thus, when an error occurs, subsequent data can be automatically identified as another copy of the desired record. If the tape is manually backed up for re-try, the sequence numbers are again used to identify the desired record.

<u>WRITE</u>. The WCB contains the fields shown in Table 2-8. These fields represent seven sequential bytes in memory and provide the cassette Write routine with the information necessary to process the request. For the first Write, bit 0 (low-order) of WCBFLAG is set to one so that a leader is written, and automatically reset to zero afterward. Bits 1 and 2 of WCBFLAG are used in those cases where sequences of records are to be written without inter-record gaps. When bit 1 is set to one, the Write routine leaves the cassette unit on. (Normally, the unit is turned on before writing a record and off afterwards). In conjunction with Bit 2, which suppresses the writing of an inter-record gap, multiple records can be formatted without gaps. The gap in front of the data is usually necessary to allow the tape unit sufficient time to come up to speed.

The WCBADR field of the WCB specifies that the beginning data block address be written to tape. The length of this block is specified by WCBLEN. Both WCBADR and WCBLEN are 2-byte (16-bit) fields with the low-order byte stored before the high-order (8080/85A/Z80) or high-low (6800/02) byte. The WCBUNIT field specifies the tape unit to be addressed, either 1 or 2. Finally, the WCBCOPY field specifies the number of record copies to be written. For maximum data density without automatic error recovery, one copy may be specified. For most other applications, two copies (providing a hard error rate of about one in 1xE12 bits) are adequate. All registers and flags in 8080/85A/Z80 systems are saved and restored by the cassette write routine. The 6800/02 version does not save the flags.

		Table 2-8.	Write Co	ontrol B	lock
Field	Bytes				Function
WCBFLAG	1		Bits	in this	field request special functions
			as fo	ollows:	
				Bit	Function
				0	Flags Write of first record.
]	Leaves tape unit on after Write.
				2	Suppresses writing an inter-
					record gap ahead of data.
				3-7	Unused; should be zero.

I/O Service Subroutines

Cassette Tape Input/Output

	Table 2-8.	Write Control Block (Concluded)
Field	Bytes	Function
WCBADR	2	Address of data block to be written.
		Address is stored in low-order byte format
9 19		followed by high-order byte (8080/85A/Z80),
		or high-low format (6800/02).
WCBLEN	2	Length of data block to be written.
		Length is stored as low-order byte, followed
		by high-order byte (8080/85A/Z80), or high-
		low (6800/02).
WCBUNIT	1	Write unit (1 or 2).
WCBCOPY	,1	Number of copies of data to be written.

<u>READ</u>. The read-control block contains the fields shown in Table 2-9. These fields represent six sequential bytes in memory and provide the Read routine with the information necessary to process the request. As with the Write routine, the control block address must be loaded into the HL register/ Index register prior to calling. For the first tape read, bit 0 of RCBFLAG is set to one. This causes the Read routine to reset the record sequence number counter to zero in order to begin reading a new tape. The bit is automatically reset to zero after the first read. Bit 1 of RCBFLAG specifies that the cassette unit is to remain on after the Read, allowing Reads where inter-record gaps are not written.

Normally, the Read routine expects the records to have sequential record numbers beginning with zero. However, under some conditions, it is useful to suppress sequential number checking and to reset the sequence number counter to the number of the next record read. Bit 2 of RCBFLAG performs this function. Once a record is read and the sequence counter is reset, zeroing bit 2 allows normal reading of sequential records.

Cassette Tape Input/Output

		Table 2-9. Read-Control Block
Field	Bytes	Function
RCBFLAG	1	Bits of this field request special func-
		tions as follows:
		Bit Function
		0 Flags Read of first record.
		1 Leaves tape unit on after
		Read.
		2 Accepts record with any
		sequence number.
		3-7 Unused; should be 0.
RCBADR	2	Address of data block into which data fro
		tape is to be placed. Address is stored
		as low-order byte, followed by high-order
		byte (8080/85A/Z80) or high-low (6800/02)
RCBLEN	2	Length of data block. Length is stored a
		low-order byte followed by high-order byt
		(8080/85A/Z80) or high-low (6800/02).
RCBUNIT	1	Read unit (1 or 2).

The RCBADR and RCBLEN fields specify the address and length of the read memory area. Both fields are two bytes (16 bits) long, and values are stored with the low-order byte first. RCBUNIT specifies the read unit; either 1 or 2.

Upon return from the Read routine, the accumulator contains a completion code: zero for success, non-zero for error. Several types of errors are classified by the value of the return code as follows:

	Table 2	-10. Tape Read Routine Error Codes
<i>272</i> - 2000	Code	Definition
	1	Checksum error, normal re-try should be attempted.
• • • • • •	2	Data on tape are not recognizable, and re-try probably
		will not be successful. This code results when the
		tape data have a different record size than specified
		by the RCB.

Table 2-10.	Tape Read Routine Error Codes (Concluded)
Code	Definition
3	No data have been read from the tape for an unusual
	length of time. Possibly, a blank tape is being read.

All registers except the accumulator and the flag bits are saved and restored by the cassette Read routine. For the 6800/02, the Index register is saved.

<u>READR</u>. If a type "1" error is detected, recovery should be attempted as follows. After the operator manually rewinds the tape for several seconds, the cassette Read re-try routine should be called. This call requires no parameters. It causes the Read routine to search for the record by sequence number, and then attempts to reread the data. The re-try routine also returns a completion code. An error detected after re-try probably indicates an unrecoverable error. The bad record can be skipped by calling the regular Read routine again.

The re-try routine saves and restores all registers except the accumulator and the flag bits in 8080/85A/Z80 systems. The 6800/02 saves only the Index register.

<u>Cassette Rewind Routine</u>. When called, the Rewind routine turns on the selected tape for rewinding and waits for operator acknowledgement of completion (pressing the RETURN key). When this signal is received, the unit turns off.

Rewind requires the address of an RCB or WCB in the HL register pair/ Index register. The control block specifies the tape unit to be rewound. The routine also sets bit 0 of the control block to prepare for reading or writing of a new tape. The assumption is made that since the current tape has been rewound, a new tape will follow.

For 8080/85A/Z80 systems all registers and flags are saved and restored by the rewind routine. Flags are not saved for 6800/02 systems.

Section 3 Direct I/O Programming

The I/O service routines in KIO.R, KEYIN.R, LINEIN.R, DIO.R, EIA.R, and TIO.R provide high-level interfaces for the standard peripheral devices. However, for some applications, it may be necessary to access these devices directly. Section 3 contains the information needed to perform this task. The I/O addresses shown on the following pages apply to 8080/85A/Z80 systems. 6800/02 addresses must be mapped into memory.

All 6800/02 I/O addresses are located between X'DOOO' and X'DFFF'; e.g., the equivalent of an 8080/85A/Z80 IN X'FO' command is LDAA X'DOFO'. Similarly, an OUT X'F3' command is translated to STAA X'DOF3' for 6800/02 systems. All of the 6800/02 memory reference instructions may be used with the I/O devices. However, output-like commands (CLR for example) may cause problems. Commands of this type generate a read cycle at the designated I/O address. In some cases, the read I/O commands are used as reset signals. For example, the X'F2' and IN X'F3' commands are used as status latch reset pulses; thus, a CLR command at the corresponding output addresses would reset the status latches.

Direct I/O Programming

Keyboard Input

KEYBOARD INPUT

A status bit, interrupt mask bit and four I/O commands are associated with the keyboard. The I/O commands are summarized in Table 3-1.

Table 3-1. Keyboard Input Commands I/O CMD Function I/O Bit Assignments 6 7 5 4 3 2 1 0 IN X'FO' Read data Data Data Data Data Data Data Data 7 6 5 4 3 2 1 0 IN X'F1' Read status jmpr brk _ stat IN X'F2' Reset status _ -_ _ OUT X'F1' Set mask act kbd brk key led led mask mask

When a key is depressed, the keyboard status bit is set to one. The IN X'F1' command reads the status and moves it to the low-order bit of the accumulator, where it can be read by the IN X'F0' command. Keyboard data are valid only during the time that keys are depressed; therefore, data must be read within approximately 100 ms from the time the status bit is set to one. The status bit remains set until reset by the IN X'F2' command. The low-order seven bits of the data byte from the keyboard contain the ASCII encoding of the character entered.

The interrupt mask bit can be used to enable interrupts from the keyboard status bit. When the master system reset is generated at power-on or by the RESET key, the mask bit is cleared and keyboard interrupts are disabled. The keyboard interrupts are enabled when the "set mask" command (OUT X'F1') outputs an X'O1'. CPU interrupts must be enabled by an "EI" instruction (CLI for 6800/02) before they can be accepted.

The interrupt causes a CALL to location X'0028' for 8080/85A/Z80 systems or a JSR to location X'FFF8' for 6800/02 systems. CPU interrupt processing results in interrupt disablement. The "reset status" command (IN X'F2') must, therefore, be executed before the next EI instruction. Keyboard interrupts are also disabled when the "set mask" command outputs an X'00'.

BREAK KEY

The BREAK key is provided as an interrupt-generating escape key and is used by the Debugger for this function. Note: the status and mask bits are separate from those of other keyboard characters. A status bit, an interrupt mask, and three I/O commands are provided for the BREAK key as summarized in Table 3-2.

	Table 3-	2. B	reak Ke	ey Com	mands				
I/O CMD	Function				I/∩ B-	it Assi	anmen	ts	•
		7	6	5	4	3	2	1	0
IN X'F1'	Read status	-	-	-	-	-	-	stat	-
IN X'F3'	Reset status	-	-	-	-	-	-	-	-
OUT X'F1'	Set mask	-	-	-	-	-	-	mask	-

When the BREAK key is depressed, the break status bit is set to one. The IN X'F1' command moves the status bit into bit 1 of the accumulator. The IN X'F3' command resets the status bit.

The mask bit can be used to enable interrupts from the break status bit. BREAK key interrupts are disabled when the master system Reset clears the break mask bit, or when the OUT X'F1' command outputs an X'OO'. When the OUT X'F1' command sets the mask bit to one, BREAK key interrupts are enabled. An "EI" instruction enables the CPU for recognition of the interrupts in 8080 systems. A "SIM" instruction enables RST 5.5 in the 8085A and allows the interrupt to be recognized. In 6800, 6802 and Z80 systems, BREAK key interrupts are vectored through the Non-Maskable Interrupt; thus, the "SEI" and "CLI" or "EI" and "DI" instructions have no effect.

The BREAK key interrupt causes a CALL (or JSR) to location X'0020' in 8080 systems, X'FFFC' (Non-Maskable Interrupt) in 6800 systems, X'66' in Z80 systems and X'2C' in 8085A systems. The interrupt remains set at these locations, pending a reset of the status bit. CRT Display Select

CRT DISPLAY SELECT

The CRT display interface is able to refresh the display from any 2K page in memory. The display page is selected as shown below in Table 3-3. Table 3-3. CRT Display Select I/O CMD Function I/O Bit Assignments 1 5 4 3 2 7 6. 0 OUT X'FO' Addr slct Addr Addr Addr Addr Addr Addr 12 15 14 13 11 10

CRT display address selection is accomplished by loading the accumulator with the high-order byte of the display page address and executing the OUT X'FO' command.

Note that the CRT display must be refreshed from a page of memory beginning on an integral 2K boundary, rather than an arbitrary 2K memory block.

CRT DISPLAY OUTPUT

Since the CRT display is refreshed from memory, direct output is accomplished by storing data in the memory page selected for refresh. Data are converted by the CRT display module into a video signal which represents each ASCII code as a 9 x 7 dot matrix. Since only 128 displayable characters are generated, only the low-order seven bits of each byte are required for the display. The high order bit is used to select display field attributes as shown in Table 3-4.

Table 3-4.	CRT Field Attributes
Display Code	Function
X'80'	Reset display to normal mode
X'81'	Highlight display
X'82'	Blink display
X'90'	Reverse video display
X'83'	Blink and highlight
X'91'	Reverse and highlight
X'92'	Reverse and blink
X'93'	Reverse, blink and highlight

Each field attribute character occupies one memory location, but does not occupy any of the display locations. Thus, the CRT display buffer size is fixed only if the number of display attribute codes is fixed.

When there are no field attribute codes, the display is formatted from the CRT refresh memory as follows. The character at the top left of the screen is generated from the first byte. Subsequent bytes correspond to sequential characters across the 80-character line, with the next line using the next 80 characters, etc. Table 3-5 shows the offsets from the beginning of the display page, corresponding to the first character of each line (assuming there are no field attribute characters). As noted above, the CRT display can be selected to refresh from any 2K memory page.

CRT Display Output

. *	Table	3-5. CRT	Display Line	Offsets	
Line	<u>Offset</u>	Line	Offset	Line	Offset
1	+0	9	+640	17	+1280
2	+80	10	+720	18	+1360
3	+160	11	+800	19	+1440
4	+240	12	+880	20	+1520
5	+320	13	+960	21	+1600
6	+400	14	+1040	22	+1680
7	+480	15	+1120	23	+1760
8	+560	16	+1200	24	+1840

AMDS system routines set the display page to the last 2K page in memory (X'D800'). For the 6800/02 the corresponding page begins at X'F800'.

MEMORY PROTECTION

Each 8K memory block contains an 8-bit protection register which can be read and reset by I/O commands. Each register bit indicates the writeprotect status of a 1K page of the block. The protection I/O commands are summarized in Tables 3-6 and 3-7.

T	able 3-6. I	Protect (Command E	it Assig	Inments	
7 6	5	4	3	2	1	0
Page 7 Pag	e 6 Page 5	Page 4	Page 3	Page 2	Page 1	Page O
	Table 3-	7. Memor	ry Protec	t Commar	nds	
I/O_CMD				Func	tion	
IN X'1F'			read mod	lule 0 pr	rotectior	n (X'0000'-X'1F
IN X'3F'			read mod	ule 1 pr	rotectior	n (X'2000'-X'3F
IN X'5F'			read mod	lule 2 pr	rotectior	n (X'4000'-X'5F
IN X'7F'			read mod	lule 3 pr	rotectior	n (X'6000'-X'7F
IN X'9F'			read mod	lule 4 pr	rotectior	n (X'8000'-X'9F
IN X'BF'			read mod	lule 5 pr	rotectior	n (X'AOOO'-X'BF
IN X'DF'			read mod	lule 6 pr	rotectior	(X'COOO'-X'DF
		6800	read mod	ule 6 pr	otection	(X'E000'-X'FF
OUT X'lF'			set modu	le O pro	otection	(X'0000'-X'1FF
OUT X'3F'			set modu	le l pro	tection	(X'2000'-X'3FF
OUT X'5F'			set modu	ile 2 pro	otection	(X'4000'-X'5FF
OUT X'7F'			set modu	ile 3 pro	otection	(X'6000'-X'7FF
OUT X'9F'			set modu	ile 4 pro	otection	(X'8000'-X'9FF
OUT X'BF'			set modu	ile 5 pro	otection	(X'A000'-X'BFF
OUT X'DF'			set modu	ile 6 pro	otection	(X'COOO'-X'DFF
		6800	set modu	le 6 pro	tection	(X'E000'-X'FFF

The low-order bit of the protection register is assigned to the first 1K page of the block, the high-order bit is assigned to the last 1K page, and the other bits are assigned to respective 1K pages. A bit set to one causes a write request to be inhibited at any address in the corresponding 1K page. A bit set to zero allows writing into memory. Execution of the boot PROM program clears all protection registers and leaves memory unprotected.

Each memory block has one input command to read the protection register and one output command to reset the protection register. These commands along with the range of memory addresses controlled by each I/O command are listed in Table 3-7. Note: Module 7 of the 8080 processor is assigned to the bootstrap loader PROM in the AMDS and cannot be implemented. REAL-TIME CLOCK

The Multipurpose I/O card (MPIO) contains a three-channel real-time clock. Two channels are dedicated to the high speed serial data link and are not directly available to the user. The third channel is available to the user as a programmable clock or interval timer. The I/O ports associated with the real-time clock are shown in Table 3-8.

unction	Command	Bit(s)	Bit Function
READ RTC	IN X'CA'	0-7	COUNTER LSB'S
READ RTC	IN X'CA'	0-7	COUNTER MSB'S
LOAD RX CLOCK	OUT X'C8'	0-7	COUNTER LSB'S
LOAD RX CLOCK	OUT X'C8'	0-7	COUNTER MSB'S
LOAD TX CLOCK	OUT X'C9'	0-7	COUNTER LSB'S
LOAD TX CLOCK	OUT X'C9'	0-7	COUNTER MSB'S
LOAD RTC	OUT X'CA'	0-7	COUNTER LSB'S
LOAD RTC	OUT X'CA'	0-7	COUNTER MSB'S
LOAD CTL WORD	OUT X'CB'	0	1 = BCD, 0 = HEX
		1-3	COUNTER MODE
		4,5	MSB, LSB SELECT
		6,7	COUNTER SELECT
TRIGGER RTC	IN X'CE'	-	NO FUNCTION

For additional information on the real-time clock, see the 8253 "Programmable Interval Timer" specifications in the Appendix.

Serial I/O Ports

SERIAL I/O PORTS

The MPIO card includes two serial I/O ports which are implemented by LSI USART's. There are four input and four output addresses associated with each port. Port 1 uses X'C1' through X'C3', and port 2 uses X'C4' through X'C7'. The functions for both ports are listed in Tables 3-9 through 3-12. For more information on serial I/O port programming, refer to the 2651 "Programmable Communications Interface" specifications in the appendix.

Function	Command	<u>Bit(s)</u>	Bit Function
READ DATA	IN X'CO'	0-7	INPUT DATA
READ STAT REG	IN X'C1'	0	TX REG EMPTY
SYNC		1	RX REG EMPTY
:		2	CHANGE IN DCD OR DSR
	4.	3	PARITY ERROR OR DLE
		4	OVERRUN
		5	SYNC DETECT
		6	DCD HIGH
		7	DSR HIGH
READ STAT REG	IN X'Cl'	0	TX REG EMPTY
ASYNC		1	RX REG EMPTY
		2	CHANGE IN DCD OR DSR
		3	PARITY ERROR
7		4	OVERRUN
		5	FRAMING ERROR
		6	DCD HIGH
		7	DSR HIGH
READ MODE REG	IN X'C2'	0-1	MODE AND BAUD RATE MPL
SYNC(REG1)		2-3	CHARACTER LENGTH
		4	PARITY ENABLE
		5	PARITY EVEN
		6	1 = TRANSPARENCY MODE
		7	1 = SINGLE SYNC

Tai	ble 3-9. Ser	ial Port 1	Read Commands	(Concluded)
Funct	ion	Command	Bit(s)	Bit Function
READ	MODE REG	IN X'C2'	0-1	MODE AND BAUD RATE MPLY
	ASYNC(REG1)		2-3	CHARACTER LENGTH
			4	PARITY ENABLE
			5	PARITY EVEN
			6-7	NUMBER STOP BITS
READ	MODE REG	IN X'C2'	0-3	BAUD RATE SELECTION
	(REG2)		4-5	MUST BE 1
			6-7	NO FUNCTION
READ	CMD REG	IN X'C3'	0	TX ENABLE
	SYNC		1	FORCE DTR HIGH
			2	RX ENABLE
			3	SEND DLE
			4	RESET ERROR CONDITION
			5	FORCE RTS HIGH
			6-7	OPERATING MODE
READ	CMD REG	IN X'C3'	0	RX ENABLE
	ASYNC		1	FORCE DTR HIGH
			2	RX ENABLE
			3	SEND BREAK
			4	RESET ERROR CONDITION
			5	FORCE RTS HIGH
			6-7	OPERATING MODE

Table 3-1	0. Serial P	ort 1 Writ	e Commands
Function	Command	Bit(s)	Bit Function
WRITE DATA	OUT X'CO'	0-7	TRANSMIT DATA
WRITE SYN1	OUT X'C1'	0-7	SYNC CHARACTER 1
WRITE SYN2	OUT X'C1'	0-7	SYNC CHARACTER 2
WRITE DLE	OUT X'Cl'	0-7	DATA LINK ESCAPE CHAR
WRITE MODE	OUT X'C2'	0-1	MODE AND BAUD RATE MPLY
REG1(SYNC)	v.	2-3	CHARACTER LENGTH
	and a second	4	PARITY ENABLE
		5	PARITY EVEN
		6	1 = TRANSPARENCY MODE
		7	1 = SINGLE SYNC CHAR.
WRITE MODE	OUT X'C2'	0-1	MODE AND BAUD RATE MPLY
REG1(ASYNC)		2-3	CHARACTER LENGTH
		4	PARITY ENABLE
		5	PARITY EVEN
		6-7	NUMBER STOP BITS
WRITE MODE	OUT X'C2'	0-3	BAUD RATE SELECT
REG2		4-5	MUST BE 1
		6-7	DON'T CARE
WRITE CMD REG	OUT X'C3'	0	TX ENABLE
SYNC		1	FORCE DTR HIGH
		2	RX ENABLE
		3	SEND DLE
		4	RESET ERROR
		5	FORCE RTS HIGH
		6-7	SELECT OPER MODE
WRITE CMD REG	OUT X'C3'	0	TX ENABLE
ASYNC		1	FORCE DTR HIGH
		2	RX ENABLE
		- 3	SEND BREAK
		4	RESET ERROR
		5	FORCE RTS HIGH
		6-7	SELECT OPER MODE

-

Table 3-11. Serial	I Port 2 Read	Commands
Function Command	Bit(s)	Bit Function
READ DATA IN X'C4'	0-7	INPUT DATA
READ STAT REG IN X'C5'	0	TX REG EMPTY
SYNC	1	RX REG EMPTY
	2	CHANGE IN DCD OR DSR
	3	PARITY ERROR OR DLE
	4	OVERRUN
	5	SYNC DETECT
	6-7	NO FUNCTION
READ STAT REG IN X'C5'	0	RX REG EMPTY
ASYNC	1	RX REG EMPTY
	2	CHANGE IN DCD OR DSR
	3	PARITY ERROR
	4	OVERRUN
	5	FRAMING ERROR
	6-7	NO FUNCTION
READ MODE REG IN X'C6'	0-1	MODE AND BAUD RATE MPLY
SYNC(REG1)	2-3	CHARACTER LENGTH
	4	PARITY ENABLE
	5	PARITY EVEN
	6	1 = TRANSPARENCY MODE
	7	1 = SINGLE SYNC
READ MODE REG IN X'C6'	0-1	MODE AND BAUD RATE MPLY
ASUNC(REG1)	2-3	CHARACTER LENGTH
	4	PARITY ENABLE
	5	PARITY EVEN
	6-7	NUMBER STOP BITS
READ MODE REG IN X'C6'	0-3	BAUD RATE SELECTION
	4	1 = INTERNAL RX CLOCK
	5	1 = INTERNAL TX CLOCK
	6-7	NO FUNCTION

52

1

Table	3-11. S	erial Port 2	Read Comman	ds (Concluded)
Function	n	Command	Bit(s)	Bit Function
READ CMI	D REG	IN X'C7'	0	TX ENABLE
SYI	VC	a di wa	1_{i} , 1_{i}	FORCE DTR LOW
			2	RX ENABLE
			3	SEND DLE
·			4	RESET ERROR CONDITION
			5	NO FUNCTION
			6-7	OPERATING MODE
READ CM	D REG	IN X'C7'	0	TX ENABLE
AS	YNC		1	FORCE DTR LOW
			2	RX ENABLE
			3	SEND BREAK
			4	RESET ERROR CONDITION
	• • • •		5	NO FUNCTION
			6-7	OPERATING MODE
· · · · · · · ·	• • • • • • • •	12. Serial F	**************************************	
Function	n	Command	Bit(s)	Bit Function
Function WRITE D	n ATA	Command OUT X'C4'	Bit(s) 0-7	Bit Function TRANSMIT DATA
Function WRITE D/ WRITE S	n ATA YN1	Command OUT X'C4' OUT X'C5'	Bit(s) 0-7 0-7	Bit Function TRANSMIT DATA SYNC CHARACTER 1
Function WRITE D/ WRITE S' WRITE S'	n ATA YN1 YN2	Command OUT X'C4' OUT X'C5' OUT X'C5'	Bit(s) 0-7 0-7 0-7	Bit Function TRANSMIT DATA SYNC CHARACTER 1 SYNC CHARACTER 2
Function WRITE D/ WRITE S' WRITE S' WRITE D	n ATA YN1 YN2 LE	Command OUT X'C4' OUT X'C5' OUT X'C5' OUT X'C5'	Bit(s) 0-7 0-7 0-7 0-7	Bit Function TRANSMIT DATA SYNC CHARACTER 1 SYNC CHARACTER 2 DATA LINK ESCAPE CHAR.
Function WRITE D/ WRITE S' WRITE S' WRITE DI WRITE M	n ATA YN1 YN2 LE ODE	Command OUT X'C4' OUT X'C5' OUT X'C5'	Bit(s) 0-7 0-7 0-7 0-7 0-7 0-1	Bit Function TRANSMIT DATA SYNC CHARACTER 1 SYNC CHARACTER 2 DATA LINK ESCAPE CHAR. MODE AND BAUD RATE MPLY
Function WRITE D/ WRITE S' WRITE S' WRITE DI WRITE M	n ATA YN1 YN2 LE	Command OUT X'C4' OUT X'C5' OUT X'C5' OUT X'C5'	Bit(s) 0-7 0-7 0-7 0-7 0-1 2-3	Bit Function TRANSMIT DATA SYNC CHARACTER 1 SYNC CHARACTER 2 DATA LINK ESCAPE CHAR. MODE AND BAUD RATE MPLY CHARACTER LENGTH
Function WRITE D/ WRITE S' WRITE S' WRITE DI WRITE M	n ATA YN1 YN2 LE ODE	Command OUT X'C4' OUT X'C5' OUT X'C5' OUT X'C5'	Bit(s) 0-7 0-7 0-7 0-7 0-1 2-3 4	Bit Function TRANSMIT DATA SYNC CHARACTER 1 SYNC CHARACTER 2 DATA LINK ESCAPE CHAR. MODE AND BAUD RATE MPLY CHARACTER LENGTH PARITY ENABLE
Function WRITE D/ WRITE S' WRITE S' WRITE DI WRITE M	n ATA YN1 YN2 LE ODE	Command OUT X'C4' OUT X'C5' OUT X'C5' OUT X'C5'	Bit(s) 0-7 0-7 0-7 0-7 0-1 2-3	Bit Function TRANSMIT DATA SYNC CHARACTER 1 SYNC CHARACTER 2 DATA LINK ESCAPE CHAR. MODE AND BAUD RATE MPLY CHARACTER LENGTH PARITY ENABLE PARITY EVEN
Function WRITE D/ WRITE S' WRITE S' WRITE DI WRITE M	n ATA YN1 YN2 LE ODE	Command OUT X'C4' OUT X'C5' OUT X'C5' OUT X'C5'	Bit(s) 0-7 0-7 0-7 0-7 0-1 2-3 4 5 6	Bit Function TRANSMIT DATA SYNC CHARACTER 1 SYNC CHARACTER 2 DATA LINK ESCAPE CHAR. MODE AND BAUD RATE MPLY CHARACTER LENGTH PARITY ENABLE PARITY EVEN 1 = TRANSPARENCY MODE
Function WRITE D/ WRITE S' WRITE D WRITE D WRITE M REC	n ATA YN1 YN2 LE ODE G1(SYNC)	Command OUT X'C4' OUT X'C5' OUT X'C5' OUT X'C5' OUT X'C6'	Bit(s) 0-7 0-7 0-7 0-7 0-1 2-3 4 5 6 7	Bit Function TRANSMIT DATA SYNC CHARACTER 1 SYNC CHARACTER 2 DATA LINK ESCAPE CHAR. MODE AND BAUD RATE MPLY CHARACTER LENGTH PARITY ENABLE PARITY EVEN 1 = TRANSPARENCY MODE 1 = SINGLE SYNC CHAR
Function WRITE D/ WRITE S' WRITE D WRITE M REC	n ATA YN1 YN2 LE ODE G1(SYNC)	Command OUT X'C4' OUT X'C5' OUT X'C5' OUT X'C5' OUT X'C6'	Bit(s) 0-7 0-7 0-7 0-7 0-1 2-3 4 5 6 7 0-1	Bit Function TRANSMIT DATA SYNC CHARACTER 1 SYNC CHARACTER 2 DATA LINK ESCAPE CHAR. MODE AND BAUD RATE MPLY CHARACTER LENGTH PARITY ENABLE PARITY EVEN 1 = TRANSPARENCY MODE 1 = SINGLE SYNC CHAR MODE AND BAUD RATE MPLY
Function WRITE D/ WRITE S' WRITE D WRITE M REC	n ATA YN1 YN2 LE ODE G1(SYNC)	Command OUT X'C4' OUT X'C5' OUT X'C5' OUT X'C5' OUT X'C6'	Bit(s) 0-7 0-7 0-7 0-7 0-1 2-3 4 5 6 7	Bit Function TRANSMIT DATA SYNC CHARACTER 1 SYNC CHARACTER 2 DATA LINK ESCAPE CHAR. MODE AND BAUD RATE MPLY CHARACTER LENGTH PARITY ENABLE PARITY EVEN 1 = TRANSPARENCY MODE 1 = SINGLE SYNC CHAR MODE AND BAUD RATE MPLY CHARACTER LENGTH
Function WRITE D/ WRITE S' WRITE D WRITE M REC	n ATA YN1 YN2 LE ODE G1(SYNC)	Command OUT X'C4' OUT X'C5' OUT X'C5' OUT X'C5' OUT X'C6'	Bit(s) 0-7 0-7 0-7 0-7 0-1 2-3 4 5 6 7 0-1	Bit Function TRANSMIT DATA SYNC CHARACTER 1 SYNC CHARACTER 2 DATA LINK ESCAPE CHAR. MODE AND BAUD RATE MPLY CHARACTER LENGTH PARITY ENABLE PARITY EVEN 1 = TRANSPARENCY MODE 1 = SINGLE SYNC CHAR MODE AND BAUD RATE MPLY
Function WRITE D/ WRITE S' WRITE D WRITE M REC	n ATA YN1 YN2 LE ODE G1(SYNC)	Command OUT X'C4' OUT X'C5' OUT X'C5' OUT X'C5' OUT X'C6'	Bit(s) 0-7 0-7 0-7 0-7 0-1 2-3 4 5 6 7 0-1 2-3	Bit Function TRANSMIT DATA SYNC CHARACTER 1 SYNC CHARACTER 2 DATA LINK ESCAPE CHAR. MODE AND BAUD RATE MPLY CHARACTER LENGTH PARITY ENABLE PARITY EVEN 1 = TRANSPARENCY MODE 1 = SINGLE SYNC CHAR MODE AND BAUD RATE MPLY CHARACTER LENGTH

d Common ا م م ا . 0 D 1 г . -

Serial I/O Ports

Table 3-12.	Serial Port 2	Write Comma	unds (Concluded)
Function	Command	Bit(s)	Bit Function
WRITE MODE	OUT X'C6'	0-3	BAUD RATE SELECT
REG2	an an an Arthur an Arthur An Arthur	4-5	MUST BE 1
na series de la companya de la comp Na companya de la comp	· .	6-7	DON'T CARE
WRITE CMD REG	OUT X'C7'	0	TX ENABLE
SYNC		1	NO FUNCTION
		2	RX ENABLE
		3	SEND DLE
a se si s		4	RESET ERROR
		5	NO FUNCTION
		6-7	SELECT OPER MODE
WRITE CMD REG	OUT X'C7'	0	TX ENABLE
ASYNC		1	NO FUNCTION
AN AN THE AND		2	RX ENABLE
		3	SEND BREAK
		4	RESET ERROR
		5	NO FUNCTION
		6-7	SELECT OPER MODE

Disk I/O Port

DISK I/O PORT

The disk I/O port is parallel, bi-directional, and capable of transmitting and receiving data. Write data are guaranteed stable at the trailing (rising) edge of WRST-. Neither write nor read data are latched. Table 3-13 lists the I/O commands associated with the disk I/O port.

Tabl	e 3-13. Disk	I/O Port C	mmands
Function	Command	Bit(s)	Bit Function
READ STATUS	IN X'D8'	0-7	INPUT STATUS
READ DATA	IN X'D9'	0-7	INPUT DATA
WRITE COMMAND	OUT X'D8'	0-7	OUTPUT COMMAND
WRITE DATA	OUT X'D9'	0-7	OUTPUT DATA
DISK RESET	OUT X'CE'	-	NO FUNCTION

PRINTER PORT

A "Centronics"-compatible parallel interface with latched output data is provided by the printer port. Data are guaranteed stable both before and after DATA STROBE-.

The I/O commands associated with the printer are listed in Table 3-14.

_	Та	ble 3-14. Prir	nter I/O Com	mands	
	Function	Command	Bit(s)	Bit Function	
	WRITE DATA	OUT X'CD'	0-7	OUTPUT DATA	
	READ STATUS	IN X'CD'	6	PAPER OUT	
,			7	PRINTER BUSY	

BOARD STATUS PORT

The AMDS provides an overall board status port that inputs status for the disk I/O ports, serial port 1, RTC, two user-definable pins and the printer port. The I/O command for the port is shown in Table 3-15.

Table	3-15.	BoardS	tatus	Port	Commands
Function	Comm	and	Bit(s)	Bit Function
READ STATUS	IN X	'CD'	0		DISK SERVICE REQUEST
			1		SERIAL PORT 1 READY
			2		REAL-TIME CLOCK OVERFLOW
	•		3		USER DEFINED FUNCTION
			.4		USER DEFINED FUNCTION
			5		RESERVED FOR DISK EXPANSION
			6		PRINTER PAPER OUT
			7		PRINTER BUSY

Board Command Port

BOARD COMMAND PORT

The overall board command port controls interrupt masks, high-speed data link transmit enable, and disk controller select lines. The two commands associated with this port are shown below in Table 3-16.

Table 3-16. Board Command Port Commands

Function	Command	Bit(s)	Bit Function
WRITE CONTROL	OUT X'CC'	0	SELECT DISK CONTROLLER 1
		1	SELECT DISK CONTROLLER 2
	, .	2	SELECT DISK CONTROLLER 3
$= e_{1}e_{2} + e_{2}e_{3}e_{3} + e_{4}e_{4}e_{3}e_{4}e_{3}e_{4}e_{4}e_{4}e_{4}e_{4}e_{4}e_{4}e_{4$		3	ENABLE NETWORK TX
		4	ENABLE SERIAL PORT 1 INTERRUPT
and a second second Second second		5	ENABLE PRINTER INTERRUPT
		6	ENABLE RTC INTERRUPT
		7	ENABLE DISK INTERRUPT
READ CONTROL	IN X'CC'	0-7	Same as above

58

Direct I/O Programming

Jumper Selection

JUMPER SELECTION

There are 18 jumpers on the MPIO board, most of which are used to reconfigure serial port 1 as a terminal or modem. The remaining jumpers select data inputs to serial port 2, and switch board addresses. Some are mutually exclusive. The jumper functions are listed in Table 3-17.

	Table 3-17. Jumper Functions
Jumper	Function
	Connects TXD to USART1 input data line. Used when
	port 1 is configured as a modem. 6 must be open.
2	Connects TXD to USART1 output data line. Used when
	port 1 is configured as a terminal.
3	Connects USART1 RTS line to RTS. Used when port 1
	is configured as a terminal.
4	Connects DTR to USART1 DTR line. Used when port 1
	is configured as a terminal.
5	Connects RXD to USART1 output line. Used when port
	l is configured as a modem.
6	Connects RXD to USART1 input line. Used when port
	l is configured as a terminal. I must be open.
7	Connects CTS to USART1 C13 input. Used when port 1
	is configured as a terminal. 10 must be open.
8	Connects DCD to USART1 DCD line. Used when port 1
	is configured as a terminal. 9 must be open.
9	Connects DTR to DCD input. 8 must be open.
10	Connects RTS output to CTS input. 7 must be open.
11	Connects port 2 RS232 TXD line to USART2 input line
	if jumper 12 is closed. 14 must be open.
12	Connects RS-232/C TXD or current loop RXD to USART2
	input. 13 must be open.
13	Connects high speed links to USART2 input. 12 must
	be open.
14	Connects current loop RXD to USART2 input if 12 is
	closed. 11 must be open.

· · ·	Table 3-17. Jumper Functions (Concluded)
Jumper	Function
15	User definable bit l
16	User definable bit 2
S5	Maps all I/O addresses into X'AX'.
S6	Maps all I/O addresses into X'CX'.

Summary of I/O Port Addresses

Direct I/O Programming

Port Address	Port Address	Associated Function
8080/85A/Z80	6800/02	
CO-C3	DOCO-DOCO	SERIAL PORT 1
C4-C7	DOC4-DOC7	SERIAL PORT 2
68-68	D0C8-D0C8	REAL-TIME CLOCK
CC	DOCC	MPIO BOARD CONTROL PORT
CD	DOCD	PRINTER PORT
CD	DOCD	MPIO BOARD STATUS PORT
CE	DOCE	DISK RESET
CE	DOCE	TRIGGER RTC
D8-D9	DOD8-DOD9	DISK
F0-F2	DOFO-DOF2	KEYBOARD
FO	DOFO	CRT PAGE SELECT
F1,F3	DOF1,DOF3	BREAK KEY
F4,F5		8080 EMULATOR CONTROL
F6*+		Z80,8085 EMULATOR CONTROL
	FFF4-FFF7*	6800,6802 EMULATOR CONTROL
F8-FE	DOF8-DOFE	DEBUG/PROM PGMR

* These registers alter emulation mode.

+ This I/O register is not available during emulation. Attempts to write into port F6 during emulation may produce unpredictable results.

APPENDIX

Reprint of the 8253/8253-5 data sheets by permission of Intel Corporation, copyright 1979.

Reprint of the 2651 data sheets by permission of Signetics Corporation, copyright 1978.

8253/8253-5 PROGRAMMABLE INTERVAL TIMER

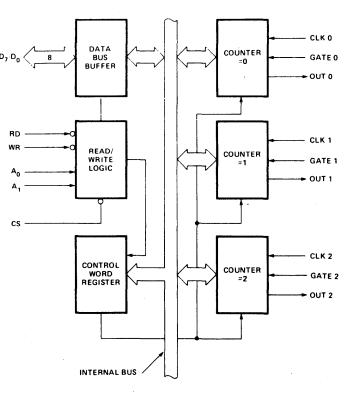
- MCS-85TM Compatible 8253-5 ■ 3 Independent 16-Bit Counters ■ Single + 5V Supply
- Programmable Counter Modes
- 24-Pin Dual In-Line Package

The Intel[®] 8253 is a programmable counter/timer chip designed for use as an Intel microcomputer peripheral. It uses nMOS technology with a single +5V supply and is packaged in a 24-pin plastic DIP.

It is organized as 3 independent 16-bit counters, each with a count rate of up to 2 MHz. All modes of operation are software programmable.

PIN CONFIGURATION

DC to 2 MHz


inte

Ľ.	r	$\overline{}$		L
며, 디	1	-	24	□ v _{cc}
₽¢₫	2		23	D WR
o₅⊑	3		22	I RD
₽₄□	4		21	⊐ cs
₽₃□	5		20	
₽₂□	6	8253	19	
0,0	7		18	CLK 2
₀₀□	8		17	0UT 2
CLK O	9		16	GATE 2
О∪Т 0 🗖	10		15	
GATEO	11		14	GATE 1
	12		13	0UT 1

PIN NAMES

D7.D0	DATA BUS (8-BIT)
CLK N	COUNTER CLOCK INPUTS
GATE N	COUNTER GATE INPUTS
OUT N	COUNTER OUTPUTS
RD	READ COUNTER
WR	WRITE COMMAND OR DATA
CS	CHIP SELECT
A ₀ ·A1	COUNTER SELECT
V _{CC}	+5 VOLTS
GND	GROUND

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

General

The 8253 is a programmable interval timer/counter specifically designed for use with the Intel[™] Microcomputer systems. Its function is that of a general purpose, multi-timing element that can be treated as an array of I/O ports in the system software.

The 8253 solves one of the most common problems in any microcomputer system, the generation of accurate time delays under software control. Instead of setting up timing loops in systems software, the programmer configures the 8253 to match his requirements, initializes one of the counters of the 8253 with the desired quantity, then upon command the 8253 will count out the delay and interrupt the CPU when it has completed its tasks. It is easy to see that the software overhead is minimal and that multiple delays can easily be maintained by assignment of priority levels.

Other counter/timer functions that are non-delay in nature but also common to most microcomputers can be implemented with the 8253.

- Programmable Rate Generator
- Event Counter
- Binary Rate Multiplier
- Real Time Clock
- Digital One-Shot
- Complex Motor Controller

Data Bus Buffer

This 3-state, bi-directional, 8-bit buffer is used to interface the 8253 to the system data bus. Data is transmitted or received by the buffer upon execution of INput or OUTput CPU instructions. The Data Bus Buffer has three basic functions.

- 1. Programming the MODES of the 8253.
- 2. Loading the count registers.
- 3. Reading the count values.

Read/Write Logic

The Read/Write Logic accepts inputs from the system bus and in turn generates control signals for overall device operation. It is enabled or disabled by CS so that no operation can occur to change the function unless the device has been selected by the system logic.

RD (Read)

A "low" on this input informs the 8253 that the CPU is inputting data in the form of a counters value.

WR (Write)

A "low" on this input informs the 8253 that the CPU is outputting data in the form of mode information or loading counters.

A0, A1

These inputs are normally connected to the address bus. Their function is to select one of the three counters to be operated on and to address the control word register for mode selection.

CS (Chip Select)

A "low" on this input enables the 8253. No reading or writing will occur unless the device is selected. The \overline{CS} input has no effect upon the actual operation of the counters.

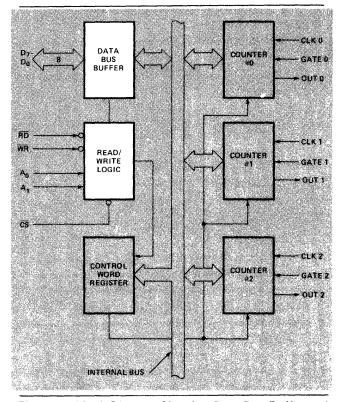


Figure 1. Block Diagram Showing Data Bus Buffer and Read/Write Logic Functions

CS	RD	WR	Α ₁	A ₀	
0	1	0	0	0	Load Counter No. 0
0	1	0	0	1	Load Counter No. 1
0	1	0	1	0	Load Counter No. 2
0	1	0	1	1	Write Mode Word
0	0	1	0	0	Read Counter No. 0
0	0	1	0	1	Read Counter No. 1
0	0	1	1	0	Read Counter No. 2
0	0	1	1	1	No-Operation 3-State
1	X	Х	X	X	Disable 3-State
0	1	1	X	X	No-Operation 3-State

1-42

Control Word Register

The Control Word Register is selected when A0, A1 are 11. It then accepts information from the data bus buffer and stores it in a register. The information stored in this register controls the operational MODE of each counter, selection of binary or BCD counting and the loading of each count register.

The Control Word Register can only be written into; no read operation of its contents is available.

Counter #0, Counter #1, Counter #2

These three functional blocks are identical in operation so only a single Counter will be described. Each Counter consists of a single, 16-bit, pre-settable, DOWN counter. The counter can operate in either binary or BCD and its input, gate and output are configured by the selection of MODES stored in the Control Word Register.

The counters are fully independent and each can have separate Mode configuration and counting operation, binary or BCD. Also, there are special features in the control word that handle the loading of the count value so that software overhead can be minimized for these functions.

The reading of the contents of each counter is available to the programmer with simple READ operations for event counting applications and special commands and logic are included in the 8253 so that the contents of each counter can be read "on the fly" without having to inhibit the clock input.

8253 SYSTEM INTERFACE

The 8253 is a component of the Intel[™] Microcomputer Systems and interfaces in the same manner as all other peripherals of the family. It is treated by the systems software as an array of peripheral I/O ports; three are counters and the fourth is a control register for MODE programming.

Basically, the select inputs A0, A1 connect to the A0, A1 address bus signals of the CPU. The \overline{CS} can be derived directly from the address bus using a linear select method. Or it can be connected to the output of a decoder, such as an Intel® 8205 for larger systems.

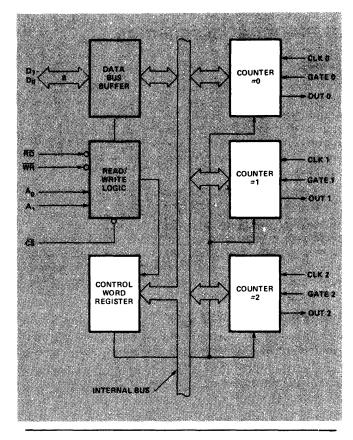


Figure 2. Block Diagram Showing Control Word Register and Counter Functions

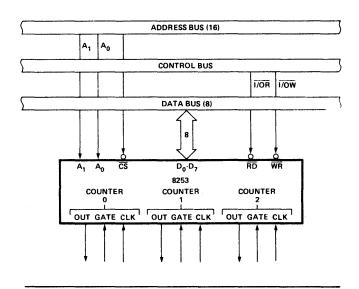


Figure 3. 8253 System Interface

OPERATIONAL DESCRIPTION

General

The complete functional definition of the 8253 is programmed by the systems software. A set of control words must be sent out by the CPU to initialize each counter of the 8253 with the desired MODE and quantity information. These control words program the MODE, Loading sequence and selection of binary or BCD counting.

Once programmed, the 8253 is ready to perform whatever timing tasks it is assigned to accomplish.

The actual counting operation of each counter is completely independent and additional logic is provided on-chip so that the usual problems associated with efficient monitoring and management of external, asynchronous events or rates to the microcomputer system have been eliminated.

Programming the 8253

All of the MODES for each counter are programmed by the systems software by simple I/O operations.

Each counter of the 8253 is individually programmed by writing a control word into the Control Word Register. (A0, A1 = 11)

Control Word Format

	•	D ₅			-	•	•
SC1	SC0	RL1	RL0	M2	M1	М0	BCD

Definition of Control

SC - Select Counter:

SC1	SC0	
0	0	Select Counter 0
0	1	Select Counter 1
1	0	Select Counter 2
1		Illegal

RL - Read/Load:

RL1 RLO

0	0	Counter Latching operation (see READ/WRITE Procedure Section)
1	0	Read/Load most significant byte only.
0	1	Read/Load least significant byte only.
1	1	Read/Load least significant byte first, then most significant byte.

M - MODE:

M2	M1	MO	
0	0	0	Mode 0
0	0	1	Mode 1
Х	1	0	Mode 2
Х	1	1	Mode 3
1	0	0	Mode 4
1	0	1	Mode 5

BCD:

0	Binary Counter 16-bits
1	Binary Coded Decimal (BCD) Counter (4 Decades)

Counter Loading

The count register is not loaded until the count value is written (one or two bytes, depending on the mode selected by the RL bits), followed by a rising edge and a falling edge of the clock. Any read of the counter prior to that falling clock edge may yield invalid data.

MODE Definition

MODE 0: Interrupt on Terminal Count. The output will be initially low after the mode set operation. After the count is loaded into the selected count register, the output will remain low and the counter will count. When terminal count is reached the output will go high and remain high until the selected count register is reloaded with the mode or a new count is loaded. The counter continues to decrement after terminal count has been reached.

Rewriting a counter register during counting results in the following:

- (1) Write 1st byte stops the current counting.
- (2) Write 2nd byte starts the new count.

MODE 1: Programmable One-Shot. The output will go low on the count following the rising edge of the gate input.

The output will go high on the terminal count. If a new count value is loaded while the output is low it will not affect the duration of the one-shot pulse until the succeeding trigger. The current count can be read at any time without affecting the one-shot pulse.

The one-shot is retriggerable, hence the output will remain low for the full count after any rising edge of the gate input.

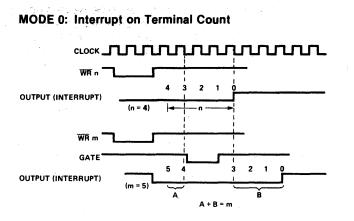
MODE 2: Rate Generator. Divide by N counter. The output will be low for one period of the input clock. The period from one output pulse to the next equals the number of input counts in the count register. If the count register is reloaded between output pulses the present period will not be affected, but the subsequent period will reflect the new value.

The gate input, when low, will force the output high. When the gate input goes high, the counter will start from the initial count. Thus, the gate input can be used to synchronize the counter.

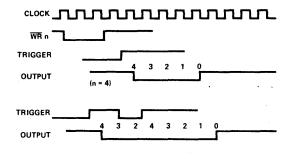
When this mode is set, the output will remain high until after the count register is loaded. The output then can also be synchronized by software.

MODE 3: Square Wave Rate Generator. Similar to MODE 2 except that the output will remain high until one half the count has been completed (for even numbers) and go low for the other half of the count. This is accomplished by decrementing the counter by two on the falling edge of each clock pulse. When the counter reaches terminal count, the state of the output is changed and the counter is reloaded with the full count and the whole process is repeated.

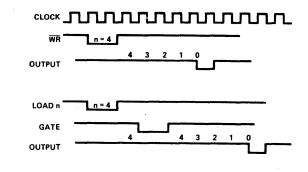
If the count is odd and the output is high, the first clock pulse (after the count is loaded) decrements the count by 1. Subsequent clock pulses decrement the clock by 2. After timeout, the output goes low and the full count is reloaded. The first clock pulse (following the reload) decrements the counter by 3. Subsequent clock pulses decrement the count by 2 until timeout. Then the whole process is repeated. In this way, if the count is odd, the output will be high for (N + 1)/2 counts and low for (N - 1)/2 counts.

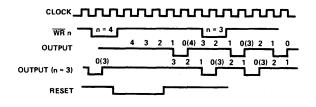

MODE 4: Software Triggered Strobe. After the mode is set, the output will be high. When the count is loaded, the counter will begin counting. On terminal count, the output will go low for one input clock period, then will go high again.

If the count register is reloaded between output pulses the present period will not be affected, but the subsequent period will reflect the new value. The count will be inhibited while the gate input is low. Reloading the counter register will restart counting beginning with the new number.


MODE 5: Hardware Triggered Strobe. The counter will start counting after the rising edge of the trigger input and will go low for one clock period when the terminal count is reached. The counter is retriggerable. The output will not go low until the full count after the rising edge of any trigger.

Modes	Signal Status	Low Or Going Low	Rising	High
0		Disables counting		Enables counting
1			 1) Initiates counting 2) Resets output after next clock 	
2		 Disables counting Sets output immediately high 	Initiates counting	Enables counting
3		 Disables counting Sets output immediately high 	Initiates counting	Enables counting
4		Disables counting		Enables counting
5			Initiates counting	


Figure 4. Gate Pin Operations Summary


MODE 1: Programmable One-Shot

MODE 4: Software Triggered Strobe

MODE 2: Rate Generator

MODE 5: Hardware Triggered Strobe

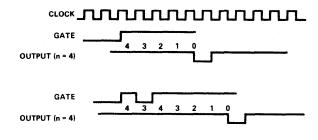
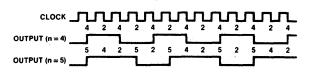



Figure 5. 8253 Timing Diagrams

MODE 3: Square Wave Generator

31 - X 25 - 20 - 2

8253 READ/WRITE PROCEDURE

Write Operations

The systems software must program each counter of the 8253 with the mode and quantity desired. The programmer must write out to the 8253 a MODE control word and the programmed number of count register bytes (1 or 2) prior to actually using the selected counter.

The actual order of the programming is quite flexible. Writing out of the MODE control word can be in any sequence of counter selection, e.g., counter #0 does not have to be first or counter #2 last. Each counter's MODE control word register has a separate address so that its loading is completely sequence independent. (SC0, SC1)

The loading of the Count Register with the actual count value, however, must be done in exactly the sequence programmed in the MODE control word (RL0, RL1). This loading of the counter's count register is still sequence independent like the MODE control word loading, but when a selected count register is to be loaded it <u>must</u> be loaded with the number of bytes programmed in the MODE control word (RL0, RL1). The one or two bytes to be loaded in the count register do not have to follow the associated MODE control word. They can be programmed at any time following the MODE control word loading as long as the correct number of bytes is loaded in order.

All counters are down counters. Thus, the value loaded into the count register will actually be decremented. Loading all zeroes into a count register will result in the maximum count (2¹⁶ for Binary or 10⁴ for BCD). In MODE 0 the new count will not restart until the load has been completed. It will accept one of two bytes depending on how the MODE control words (RL0, RL1) are programmed. Then proceed with the restart operation.

	MODE Control Word Counter n
LSB	Count Register byte Counter n
MSB	Count Register byte Counter n

Note: Format shown is a simple example of loading the 8253 and does not imply that it is the only format that can be used.

Figure 6. Programming Format

			A1	A0
No. 1		MODE Control Word Counter 0	1	1
No. 2		MODE Control Word Counter 1	1	1
No. 3		MODE Control Word Counter 2	1	1
No. 4	LSB	Count Register Byte Counter 1	0	1
No. 5	MSB	Count Register Byte Counter 1	0	1
No. 6	LSB	Count Register Byte Counter 2	1	0
No. 7	MSB	Count Register Byte Counter 2	1	0
No. 8	LSB	Count Register Byte Counter 0	0	0
No. 9	MSB	Count Register Byte Counter 0	0	0

Note: The exclusive addresses of each counter's count register make the task of programming the 8253 a very simple matter, and maximum effective use of the device will result if this feature is fully utilized.

Figure 7. Alternate Programming Formats

Read Operations

In most counter applications it becomes necessary to read the value of the count in progress and make a computational decision based on this quantity. Event counters are probably the most common application that uses this function. The 8253 contains logic that will allow the programmer to easily read the contents of any of the three counters without disturbing the actual count in progress.

There are two methods that the programmer can use to read the value of the counters. The first method involves the use of simple I/O read operations of the selected counter. By controlling the A0, A1 inputs to the 8253 the programmer can select the counter to be read (remember that no read operation of the mode register is allowed A0, A1-11). The only requirement with this method is that in order to assure a stable count reading the actual operation of the selected counter <u>must be inhibited</u> either by controlling the Gate input or by external logic that inhibits the clock input. The contents of the counter selected will be available as follows:

first I/O Read contains the least significant byte (LSB).

second I/O Read contains the most significant byte (MSB).

Due to the internal logic of the 8253 it is absolutely necessary to complete the entire reading procedure. If two bytes are programmed to be read then two bytes <u>must</u> be read before any loading WR command can be sent to the same counter.

Read Operation Chart

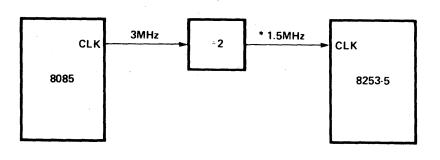
A1	A0	RD	
0	0	0	Read Counter No. 0
0	1	0	Read Counter No. 1
1	0	0	Read Counter No. 2
1 1	1	0	Illegal

Reading While Counting

In order for the programmer to read the contents of any counter without effecting or disturbing the counting operation the 8253 has special internal logic that can be accessed using simple WR commands to the MODE register. Basically, when the programmer wishes to read the contents of a selected counter "on the fly" he loads the MODE register with a special code which latches the present count value into a storage register so that its contents contain an accurate, stable quantity. The programmer then issues a normal read command to the selected counter and the contents of the latched register is available.

MODE Register for Latching Count

A0, A1 = 11


ſ	D7	D6	D5	D4	D3	D2	D1	D0
	SC1	SC0	0	0	Х	х	X	х

SC1,SC0 - specify counter to be latched.

D5.D4 - 00 designates counter latching operation.

X — don't care.

The same limitation applies to this mode of reading the counter as the previous method. That is, it is mandatory to complete the entire read operation as programmed. This command has no effect on the counter's mode.

*If an 8085 clock output is to drive an 8253-5 clock input, it must be reduced to 2 MHz or less.

Figure 8. MCS-85TM Clock Interface*

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias
Storage Temperature
Voltage On Any Pin
With Respect to Ground
Power Dissipation 1 Watt

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS $(T_A = 0^{\circ}C \text{ to } 70^{\circ}C; V_{CC} = 5V \pm 5\%)$

SYMBOL	PARAMETER	PARAMETER MIN.		UNITS	TEST CONDITIONS	
VIL	Input Low Voltage	-0.5	0.8	V		
VIH	Input High Voltage	2.2	V _{CC} +.5V	v		
Vol	Output Low Voltage		0.45	v	Note 1	
V _{OH}	Output High Voltage	2.4		v	Note 2	
կլ	Input Load Current		±10	μA	V _{IN} = V _{CC} to 0V	
IOFL	Output Float Leakage	· · ·	±10	μA	$V_{OUT} = V_{CC}$ to $0V$	
Icc	V _{CC} Supply Current		140	mA		

Note 1: 8253, I_{OL} = 1.6 mA; 8253-5, I_{OL} = 2.2 mA. Note 2: 8253, I_{OH} = -150 μ A; 8253-5, I_{OH} = -400 μ A.

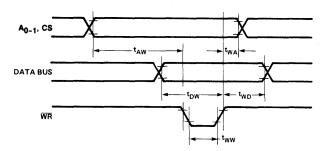
$\label{eq:capacitance} \textbf{CAPACITANCE} \quad \textbf{T}_{A} = 25^{\circ}\text{C}; \ \textbf{V}_{CC} = \text{GND} = 0\text{V}$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
CIN	Input Capacitance			10	рF	fc = 1 MHz
C _{I/O}	I/O Capacitance			20	pF	Unmeasured pins returned to V _{SS}

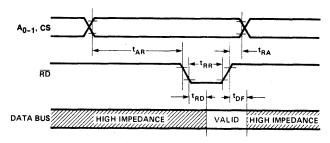
A.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$; $V_{CC} = 5.0V \pm 5\%$; GND = 0V

Bus Parameters (Note 1)

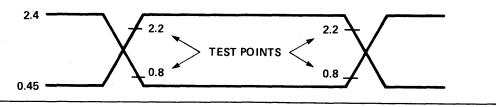
Read Cycle:


SYMBOL		82	253	82		
	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNIT
t _{AR}	Address Stable Before READ	50		30		ns
t _{RA}	Address Hold Time for READ	5		5		ns
t _{RR}	READ Pulse Width	400		300		ns
t _{RD}	Data Delay From READ ^[2]		300		200	ns
t _{DF}	READ to Data Floating	25	125	25	100	ns
t _{RV}	Recovery Time Between READ and Any Other Control Signal	1		1		μs

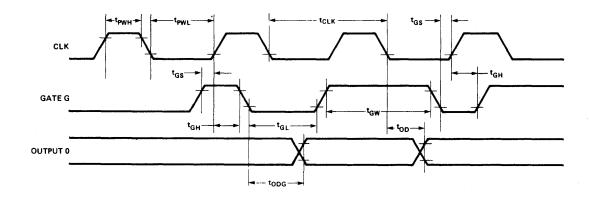
Write Cycle:


		82	253	8253-5			
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNIT	
t _{AW}	Address Stable Before WRITE	50		30		ns	
t _{WA}	Address Hold Time for WRITE	30		30		ns	
t _{WW}	WRITE Pulse Width	400		300		ns	
t _{DW}	Data Set Up Time for WRITE	300	1	250		ns	
twD	Data Hold Time for WRITE	40		30		ns	
t _{RV}	Recovery Time Between WRITE and Any Other Control Signal	1		1		μs	

Notes: 1. AC timings measured at V_{OH} = 2.2, V_{OL} = 0.8 2. Test Conditions: 8253, C_L = 100pF; 8253-5: C_L = 150pF.


Write Timing:

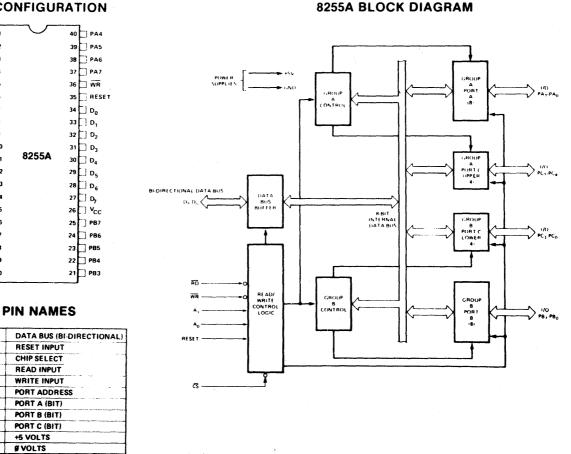
Read Timing:


Input Waveforms for A.C. Tests:

Clock and Gate Timing:

SYMBOL		82	253	82	53-5	
	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNIT
^t CLK	Clock Period	380	dc	380	dc	ns
tpwh	High Pulse Width	230		230 150		ns ns
tpwl	Low Pulse Width	1 50				
tGW	Gate Width High	150		150		ns
tGL	Gate Width Low	100		100		ns
t _{GS}	Gate Set Up Time to CLK↑	100		100		ns
tgн	Gate Hold Time After CLK↑	50		50		ns
t _{OD}	Output Delay From CLK↓ ^[1]		400		400	ns
todg	Output Delay From Gate ^{‡[1]}		300		300	ns

Note 1: Test Conditions: 8253: $C_L = 100pF$; 8253-5: $C_L = 150pF$.



8255A/8255A-5 **PROGRAMMABLE PERIPHERAL INTERFACE**

- MCS-85TM Compatible 8255A-5
- 24 Programmable I/O Pins
- Completely TTL Compatible
- Fully Compatible with Intel[®] Microprocessor Families
- Improved Timing Characteristics

- Direct Bit Set/Reset Capability Easing **Control Application Interface**
- 40-Pin Dual In-Line Package
- Reduces System Package Count
- Improved DC Driving Capability

The Intel® 8255A is a general purpose programmable I/O device designed for use with Intel® microprocessors. It has 24 I/O pins which may be individually programmed in 2 groups of 12 and used in 3 major modes of operation. In the first mode (MODE 0), each group of 12 I/O pins may be programmed in sets of 4 to be input or output. In MODE 1, the second mode, each group may be programmed to have 8 lines of input or output. Of the remaining 4 pins, 3 are used for handshaking and interrupt control signals. The third mode of operation (MODE 2) is a bidirectional bus mode which uses 8 lines for a bidirectional bus, and 5 lines, borrowing one from the other group, for handshaking.

PIN CONFIGURATION

PASE

PAI

PA0 [

cs

GND [

A1 [

A0 [9

PC7 110

PC6 11

PC5 12

PC4 13 PC0 14

PC1

PC2 16

PC3 17

PB0 [18

P81 19

P82

D7-D0 RESET

ĊŜ

RD

WR

A0, A1

PA7-PA0

PB7-PB0

PC7-PC0

Vcc

GND

15

RD

PA2 22

INTEL CORPORATION ASSUMES NO RESPONSIBILITY FOR THE USE OF ANY CIRCUITRY OTHER THAN CIRCUITRY EMBODIED IN AN INTEL PRODUCT. NO OTHER CIRCUIT PATENT LICENSES ARE IMPLIED. © INTEL CORPORATION, 1979 1-52

8255A FUNCTIONAL DESCRIPTION

General

The 8255A is a programmable peripheral interface (PPI) device designed for use in Intel[®] microcomputer systems. Its function is that of a general purpose I/O component to interface peripheral equipment to the microcomputer system bus. The functional configuration of the 8255A is programmed by the system software so that normally no external logic is necessary to interface peripheral devices or structures.

Data Bus Buffer

This 3-state bidirectional 8-bit buffer is used to interface the 8255A to the system data bus. Data is transmitted or received by the buffer upon execution of input or output instructions by the CPU. Control words and status information are also transferred through the data bus buffer.

Read/Write and Control Logic

The function of this block is to manage all of the internal and external transfers of both Data and Control or Status words. It accepts inputs from the CPU Address and Control busses and in turn, issues commands to both of the Control Groups.

(CS)

Chip Select. A "low" on this input pin enables the communiction between the 8255A and the CPU.

(RD)

Read. A "low" on this input pin enables the 3255A to send the data or status information to the CPU on the data bus. In essence, it allows the CPU to "read from" < the 8255A.

(WR)

Write. A "low" on this input pin enables the CPU to write data or control words into the 8255A.

(A₀ and A₁)

Port Select 0 and Port Select 1. These input signals, in conjunction with the RD and WR inputs, control the selection of one of the three ports or the control word registers. They are normally connected to the least significant bits of the address bus (A_0 and A_1).

8255A BASIC OPERATION

A1	A ₀	RD	WR	ĊŚ	INPUT OPERATION (READ)
0	0	0	1	0	PORT A → DATA BUS
0	1	0	1	0	PORT B → DATA BUS
1	0	0	1	0	PORT C ⇒ DATA BUS
		-			OUTPUT OPERATION (WRITE)
0	0	· 1	0	0	DATA BUS ⇒ PORT A
0	1	1	0	0	DATA BUS → PORT B
1	0	1	. 0	0	DATA BUS → PORT C
1	1	1	0	0	DATA BUS → CONTROL
					DISABLE FUNCTION
X	X	X	х	1	DATA BUS ⇒ 3-STATE
1	1	0	1	0	ILLEGAL CONDITION
X	х	1	1	0	DATA BUS → 3-STATE

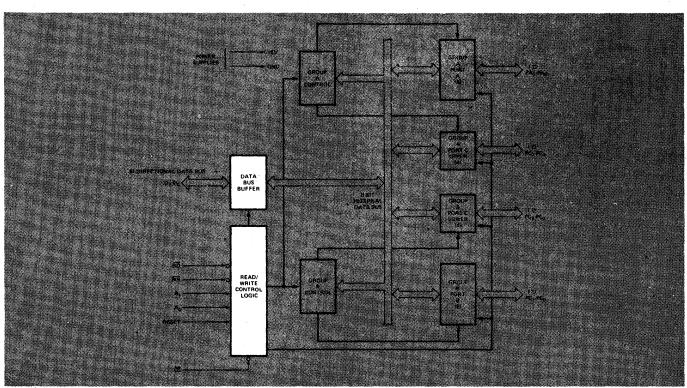


Figure 1. 8255A Block Diagram Showing Data Bus Buffer and Read/Write Control Logic Functions

(RESET)

Reset. A "high on this input clears the control register and all ports (A, C, C) are set to the input mode.

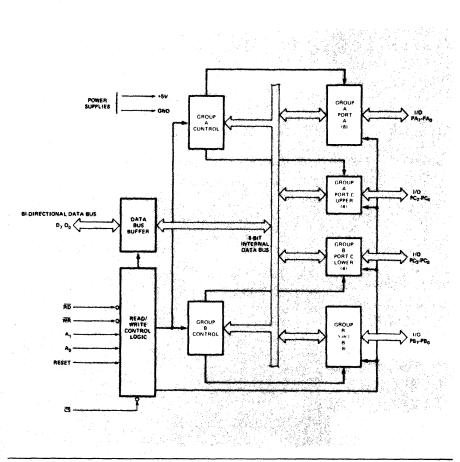
Group A and Group B Controls

The functional configuration of each port is programmed by the systems software. In essence, the CPU "outputs" a control word to the 8255A. The control word contains information such as "mode", "bit set", "bit reset", etc., that initializes the functional configuration of the 8255.

Each of the Control blocks (Group A and Group B) accepts "commands" from the Read/Write Control Logic, receives "control words" from the internal data bus and issues the proper commands to its associated ports.

Control Group A - Port A and Port C upper (C7-C4) Control Group B - Port B and Port C lower (C3-C0)

The Control Word Register can Only be written into. No Read operation of the Control Word Register is allowed.


Ports A, B, and C

The 8255A contains three 8-bit ports (A, B, and C). All can be configured in a wide variety of functional characteristics by the system software but each has its own special features or "personality" to further enhance the power and flexibility of the 8255A.

Port A. One 8-bit data output latch/buffer and one 8-bit data input latch.

Port B. One 8-bit data input/output latch/buffer and one 8-bit data input buffer.

Port C. One 8-bit data output latch/buffer and one 8-bit data input buffer (no latch for input). This port can be divided into two 4-bit ports under the mode control. Each 4-bit port contains a 4-bit latch and it can be used for the control signal outputs and status signal inputs in conjunction with ports A and B.

Figure 2. 8225A Block Diagram Showing Group A and **Group B Control Functions**

PIN CONFIGURATION

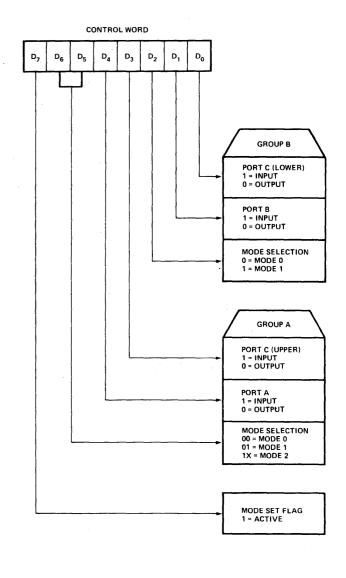
PA3 [1	\sim	40 PA4
PA2	2		39 🗍 PA5
PA1	13		38 🗖 PAG
PAO [4		37 D PA7
RD	5		36 🗖 ₩ 🛱
cs [6		35 🗖 RESE
GND	17		34 🗖 D ₀
A1 [8		33 🗋 D,
A0 []	9		32 🗖 D2
PC7	10		31 🗋 0,
PC6	111	8255A	30 🗋 D4
PC5 [112		29 🗋 D5
PC4	13		28 D 06
PC0 []	14		27 0,
PC1	15		26 VCC
PC2	16		25 PB7
PC 3 🗌	17		24 🗋 P66
P80 [18		23 P85
PB1 [_	19		22 🛄 PB4
PB2 [20		21 PB3

PIN NAMES

GN

	a far an early shares and the second s
D, D ₀	DATA BUS (BI DIRECTIONAL)
RESET	RESET INPUT
CŠ	CHIP SELECT
RD	READ INPUT
WR	WRITE INPUT
A0, A1	PORT ADDRESS
PA7 PA0	PORT A (BIT)
PB7 PB0	PORT B (BIT)
PC7-PC0	PORT C (BIT)
Vcc	+5 VOLTS
GND	ØVOLTS

8255A OPERATIONAL DESCRIPTION

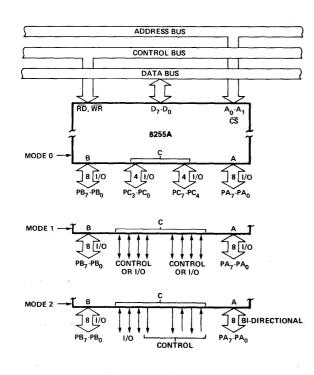

Mode Selection

There are three basic modes of operation that can be selected by the system software:

Mode 0 – Basic Input/Output Mode 1 – Strobed Input/Output Mode 2 – Bi-Directional Bus

When the reset input goes "high" all ports will be set to the input mode (i.e., all 24 lines will be in the high impedance state). After the reset is removed the 8255A can remain in the input mode with no additional initialization required. During the execution of the system program any of the other modes may be selected using a single output instruction. This allows a single 8255A to service a variety of peripheral devices with a simple software maintenance routine.

The modes for Port A and Port B can be separately defined, while Port C is divided into two portions as required by the Port A and Port B definitions. All of the output registers, including the status flip-flops, will be reset whenever the mode is changed. Modes may be combined so that their functional definition can be "tailored" to almost any I/O structure. For instance; Group B can be programmed in Mode 0 to monitor simple switch closings or display computational results, Group A could be programmed in Mode 1 to monitor a keyboard or tape reader on an interrupt-driven basis.



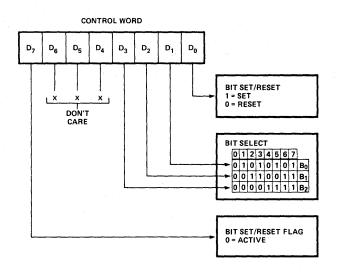

Figure 3. Basic Mode Definitions and Bus Interface

Figure 4. Mode Definition Format

The mode definitions and possible mode combinations may seem confusing at first but after a cursory review of the complete device operation a simple, logical I/O approach will surface. The design of the 8255A has taken into account things such as efficient PC board layout, control signal definition vs PC layout and complete functional flexibility to support almost any peripheral device with no external logic. Such design represents the maximum use of the available pins.

Single Bit Set/Reset Feature

Any of the eight bits of Port C can be Set or Reset using a single OUTput instruction. This feature reduces software requirements in Control-based applications.

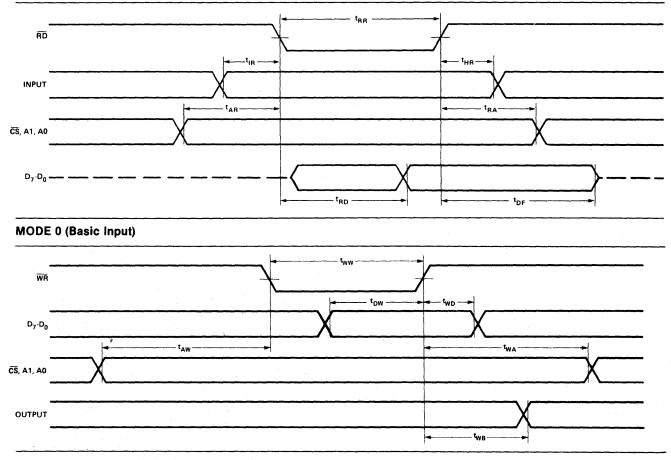
Operating Modes

MODE 0 (Basic Input/Output). This functional configuration provides simple input and output operations for each of the three ports. No "handshaking" is required, data is simply written to or read from a specified port. When Port C is being used as status/control for Port A or B, these bits can be set or reset by using the Bit Set/Reset operation just as if they were data output ports.

Interrupt Control Functions

When the 8255A is programmed to operate in mode 1 or mode 2, control signals are provided that can be used as interrupt request inputs to the CPU. The interrupt request signals, generated from port C, can be inhibited or enabled by setting or resetting the associated INTE flipflop, using the bit set/reset function of port C.

This function allows the Programmer to disallow or allow a specific I/O device to interrupt the CPU without affecting any other device in the interrupt structure.

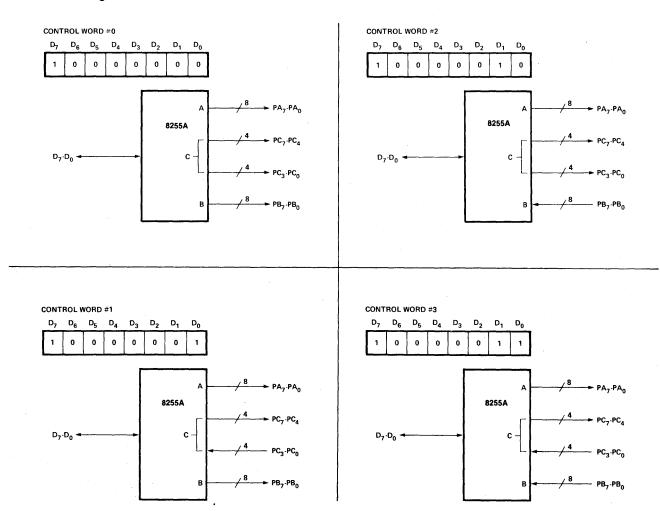

INTE flip-flop definition:

(BIT-SET) – INTE is SET – Interrupt enable (BIT-RESET) – INTE is RESET – Interrupt disable

Note: All Mask flip-flops are automatically reset during mode selection and device Reset.

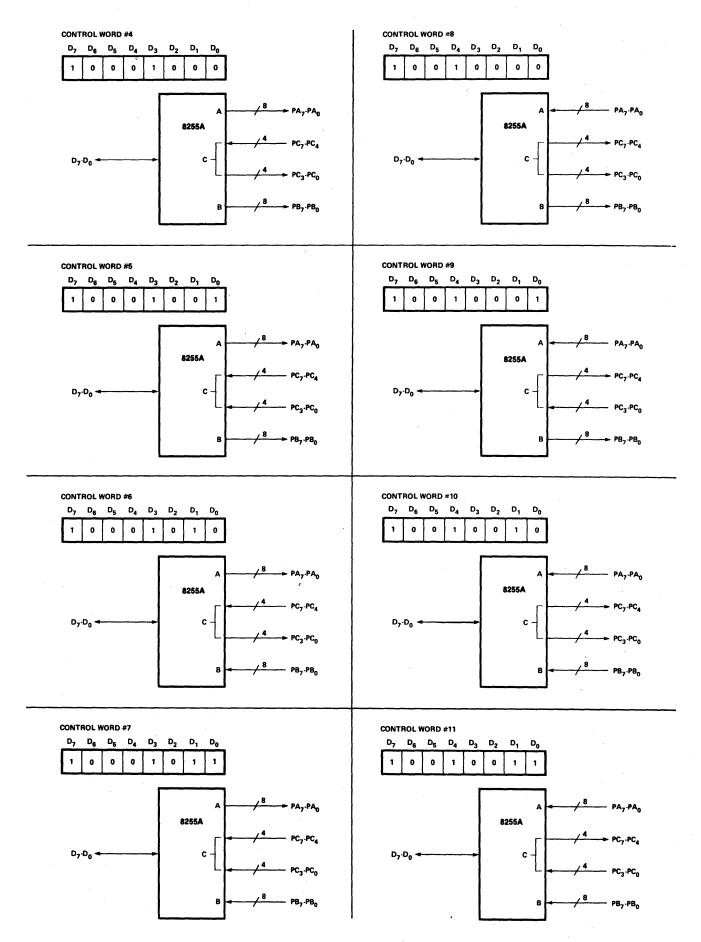
Mode 0 Basic Functional Definitions:

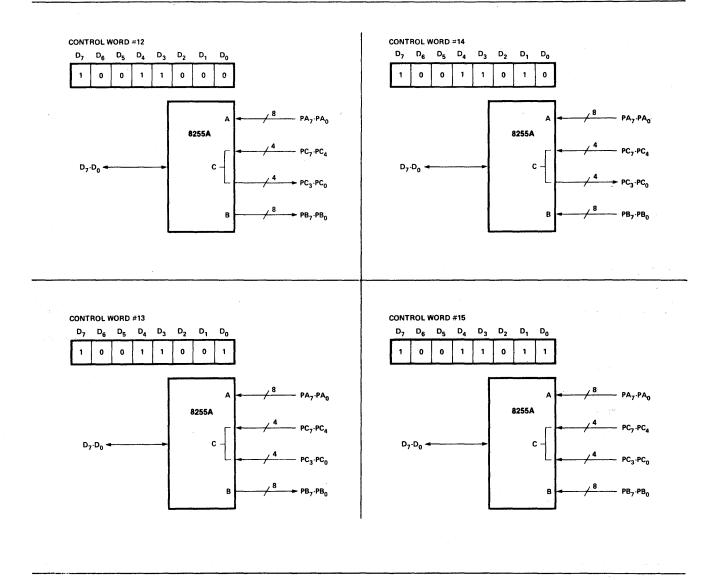
- Two 8-bit ports and two 4-bit ports.
- Any port can be input or output.
- Outputs are latched.
- Inputs are not latched.
- 16 different Input/Output configurations are possible in this Mode.



MODE 0 (Basic Output)

MODE 0 Port Definition


	A	1	в	GROUP A			GRC	UP B
D4	D3	D ₁	D ₀	PORT A	PORT C (UPPER)	#	PORT B	PORT C (LOWER)
0	0	0	0	OUTPUT	OUTPUT	0	OUTPUT	OUTPUT
0	0	0	1	OUTPUT	OUTPUT	1	OUTPUT	INPUT
0	0	1	0	OUTPUT	OUTPUT	2	INPUT	OUTPUT
0	0	1	1	OUTPUT	OUTPUT	3	INPUT	INPUT
0	1	0	0	OUTPUT	INPUT	4	OUTPUT	OUTPUT
0	1	0	1	OUTPUT	INPUT	5	OUTPUT	INPUT
0	1	1	0	OUTPUT	INPUT	6	INPUT	OUTPUT
0	1	1	1	OUTPUT	INPUT	7	INPUT	INPUT
1	0	0	0	INPUT	OUTPUT	8	OUTPUT	OUTPUT
1	0	0	1	INPUT	OUTPUT	9	OUTPUT	INPUT
1	0	1	0	INPUT	OUTPUT	10	INPUT	OUTPUT
1	0	1	1	INPUT	OUTPUT	11	INPUT	INPUT
1	1	0	0	INPUT	INPUT	12	OUTPUT	OUTPUT
1	1	0	1	INPUT	INPUT	13	OUTPUT	INPUT
1	1	1	0	INPUT	INPUT	14	INPUT	OUTPUT
1	1	1	1	INPUT	INPUT	15	INPUT	INPUT


MODE 0 Configurations

00744A

1-57

Operating Modes

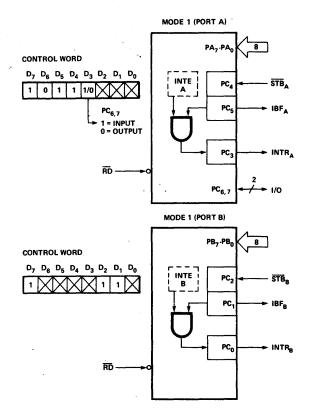
MODE 1 (Strobed Input/Output). This functional configuration provides a means for transferring I/O data to or from a specified port in conjunction with strobes or "handshaking" signals. In mode 1, port A and Port B use the lines on port C to generate or accept these "handshaking" signals. Mode 1 Basic Functional Definitions:

- Two Groups (Group A and Group B)
- Each group contains one 8-bit data port and one 4-bit control/data port.
- The 8-bit data port can be either input or output. Both inputs and outputs are latched.
- The 4-bit port is used for control and status of the 8-bit data port.

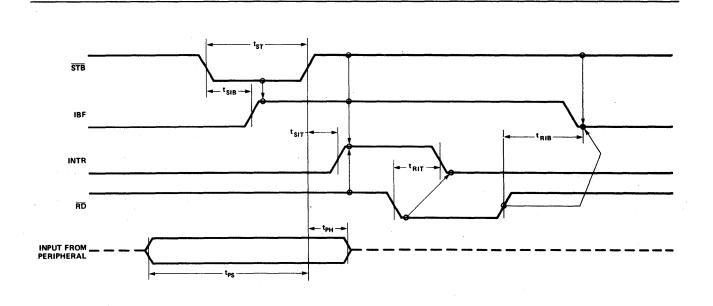
Input Control Signal Definition

STB (Strobe Input). A "low" on this input loads data into the input latch.

IBF (Input Buffer Full F/F)


A "high" on this output indicates that the data has been loaded into the input latch; in essence, an acknowledgement. IBF is set by STB input being low and is reset by the rising edge of the RD input.

INTR (Interrupt Request)


A "high" on this output can be used to interrupt the CPU when an input device is requesting service. INTR is set by the $\overline{\text{STB}}$ is a "one", IBF is a "one" and INTE is a "one". It is reset by the falling edge of $\overline{\text{RD}}$. This procedure allows an input device to request service from the CPU by simply strobing its data into the port.

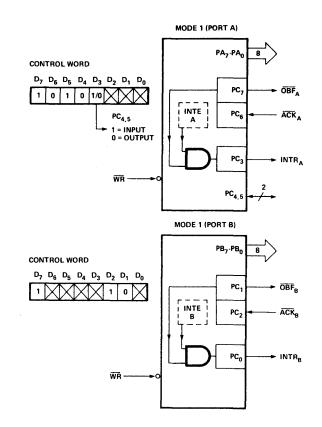
INTE A Controlled by bit set/reset of PC₄. INTE B

Controlled by bit set/reset of PC₂.

Output Control Signal Definition

OBF (Output Buffer Full F/F). The OBF output will go "low" to indicate that the CPU has written data out to the specified port. The OBF F/F will be set by the rising edge of the WR input and reset by ACK Input being low.

ACK (Acknowledge Input). A "low" on this input informs the 8255A that the data from port A or port B has been accepted. In essence, a response from the peripheral device indicating that it has received the data output by the CPU.


INTR (Interrupt Request). A "high" on this output can be used to interrupt the CPU when an output device has accepted data transmitted by the CPU. INTR is set when ACK is a "one", OBF is a "one" and INTE is a "one". It is reset by the falling edge of WR.

Controlled by bit set/reset of PC₆.

INTE B

Controlled by bit set/reset of PC₂.

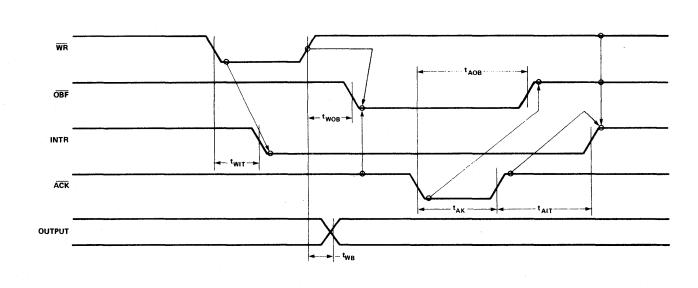


Figure 9. Mode 1 (Strobed Output)

Combinations of MODE 1

Port A and Port B can be individually defined as input or output in Mode 1 to support a wide variety of strobed I/O applications.

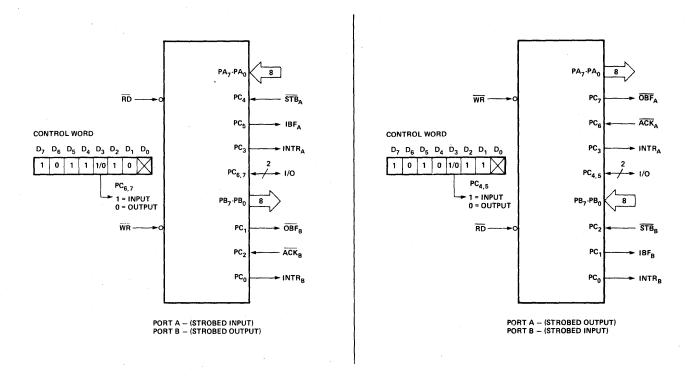


Figure 10. Combinations of MODE 1

Operating Modes

MODE 2 (Strobed Bidirectional Bus I/O). This functional configuration provides a means for communicating with a peripheral device or structure on a single 8-bit bus for both transmitting and receiving data (bidirectional bus I/O). "Handshaking" signals are provided to maintain proper bus flow discipline in a similar manner to MODE 1. Interrupt generation and enable/disable functions are also available.

MODE 2 Basic Functional Definitions:

- Used in Group A only.
- One 8-bit, bi-directional bus Port (Port A) and a 5-bit control Port (Port C).
- Both inputs and outputs are latched.
- The 5-bit control port (Port C) is used for control and status for the 8-bit, bi-directional bus port (Port A).

Bidirectional Bus I/O Control Signal Definition

INTR (Interrupt Request). A high on this output can be used to interrupt the CPU for both input or output operations.

Output Operations

OBF (Output Buffer Ful). The OBF output will go "low" to indicate that the CPU has written data out to port A.

ACK (Acknowledge). A "low" on this input enables the tri-state output buffer of port A to send out the data. Otherwise, the output buffer will be in the high impedance state.

INTE 1 (The INTE Flip-Flop Associated with OBF). Controlled by bit set/reset of PC_6 .

Input Operations

STB (Strobe Input)

STB (Strobe Input). A "low" on this input loads data into the input latch.

IBF (Input Buffer Full F/F). A "high" on this output indicates that data has been loaded into the input latch.

INTE 2 (The INTE Flip-Flop Associated with IBF). Controlled by bit set/reset of PC_4 .

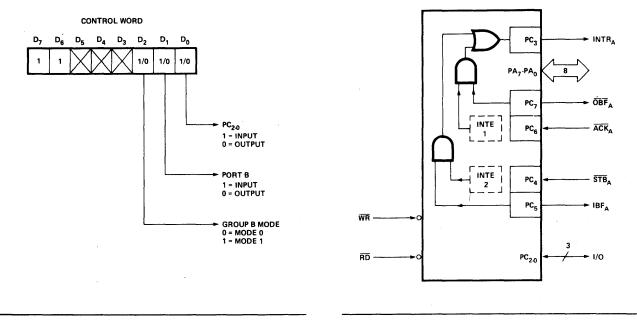


Figure 11. MODE Control Word

Figure 12. MODE 2

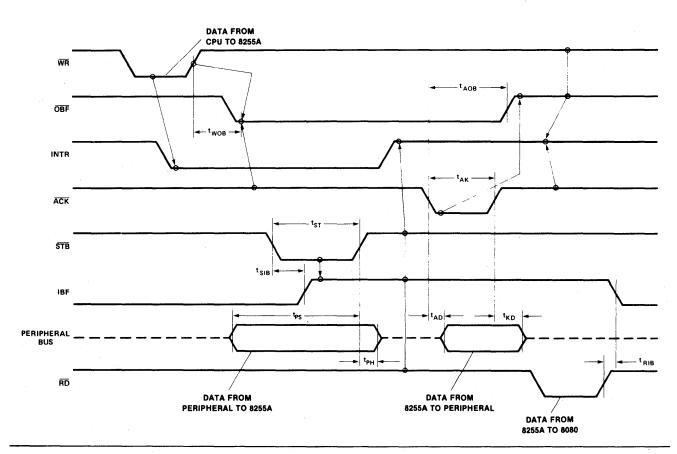
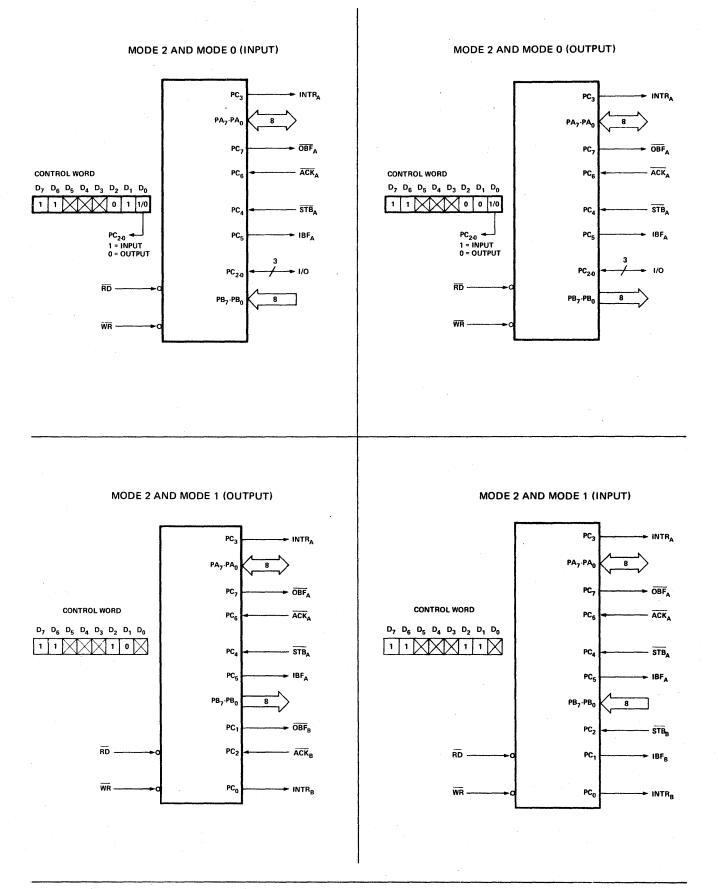



Figure 13. MODE 2 (Bidirectional)

NOTE: Any sequence where \overline{WR} occurs before \overline{ACK} and \overline{STB} occurs before \overline{RD} is permissible. (INTR = IBF • \overline{MASK} • \overline{STB} • \overline{RD} + \overline{OBF} • \overline{MASK} • \overline{ACK} • \overline{WR})

Figure 14. MODE 2 Combinations

00744A

Mode Definition Summary

******	мо	DE 0	ļ	MODE 1		MODE 2	
	IN	OUT	1	IN	OUT	GROUP A ONLY	
PA0	IN	OUT		IN	OUT	<>	
PA1	IN	OUT		IN	OUT	~~~	
PA2	IN	Ουτ		IN	Ουτ		
PA3	IN	OUT		IN	OUT		
PA4	IN	ООТ		IN	Ουτ	<>	
PA5	IN	OUT		IN	OUT		
PA6	IN	OUT		IN	OUT	<>	
PA7	IN	ουτ		IN	OUT		
PBO	IN	оит	1	IN	Ουτ		
PB1	IN	OUT		IN	Ουτ		
PB2	IN	OUT		IN	OUT		
PB3	IN	OUT		IN	Ουτ		MODE 0
PB4	IN	OUT		IN	ΟυΤ		OR MODE 1
PB5	IN	OUT	ļ	IN	OUT		ONLY
PB6	IN	Ουτ		IN	OUT		
PB7	IN	оυт		IN	ουτ		
PC0	IN	OUT		INTRB	INTRB	I/O	
PC1	IN	Ουτ		IBFB	OBFB	1/0	
PC2	IN	OUT		STBB	ACKB	1/0	
PC3	IN	OUT		INTRA	INTRA	INTRA	
PC4	IN	OUT		STBA	1/0	STBA	
PC5	IN	оυт		IBFA	1/0	IBFA	
PC ₆	IN	OUT		1/0	ACKA	ACKA	
PC7	IN	оυт		1/0	OBFA	OBFA	

Special Mode Combination Considerations

There are several combinations of modes when not all of the bits in Port C are used for control or status. The remaining bits can be used as follows:

If Programmed as Inputs -

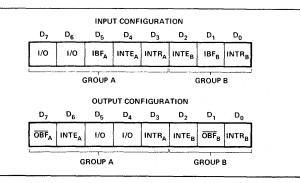
All input lines can be accessed during a normal Port C read.

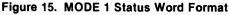
If Programmed as Outputs -

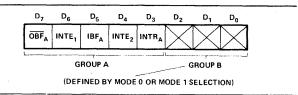
Bits in C upper (PC₇-PC₄) must be individually accessed using the bit set/reset function.

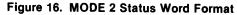
Bits in C lower $(PC_3 - PC_0)$ can be accessed using the bit set/reset function or accessed as a threesome by writing into Port C.

Source Current Capability on Port B and Port C


Any set of <u>eight</u> output buffers, selected randomly from Ports B and C can source 1mA at 1.5 volts. This feature allows the 8255 to directly drive Darlington type drivers and high-voltage displays that require such source current.


Reading Port C Status


In Mode 0, Port C transfers data to or from the peripheral device. When the 8255 is programmed to function in Modes 1 or 2, Port C generates or accepts "hand-shaking" signals with the peripheral device. Reading the contents of Port C


allows the programmer to test or verify the "status" of each peripheral device and change the program flow accordingly.

There is no special instruction to read the status information from Port C. A normal read operation of Port C is executed to perform this function.

APPLICATIONS OF THE 8255A

The 8255A is a very powerful tool for interfacing peripheral equipment to the microcomputer system. It represents the optimum use of available pins and is flexible enough to interface almost any I/O device without the need for additional external logic.

Each peripheral device in a microcomputer system usually has a "service routine" associated with it. The routine manages the software interface between the device and the CPU. The functional definition of the 8255A is programmed by the I/O service routine and becomes an extension of the system software. By examining the I/O devices interface characteristics for both data transfer and timing, and matching this information to the examples and tables in the detailed operational description, a control word can easily be developed to initialize the 8255A to exactly "fit" the application. Figures 17 through 23 present a few examples of typical applications of the 8255A.

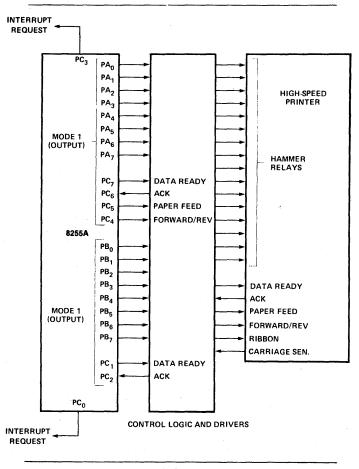


Figure 17. Printer Interface

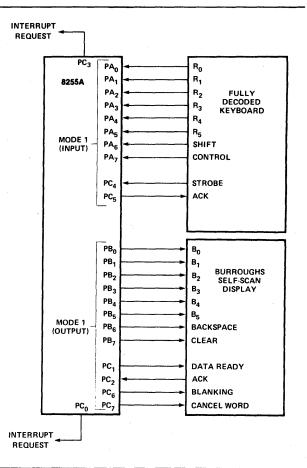


Figure 18. Keyboard and Display Interface

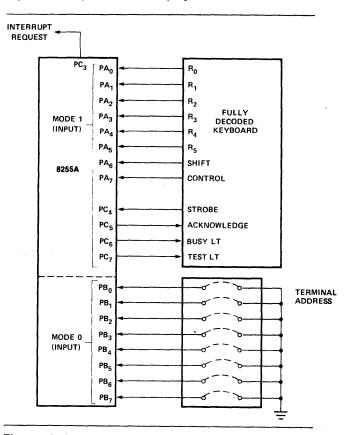


Figure 19. Keyboard and Terminal Address Interface

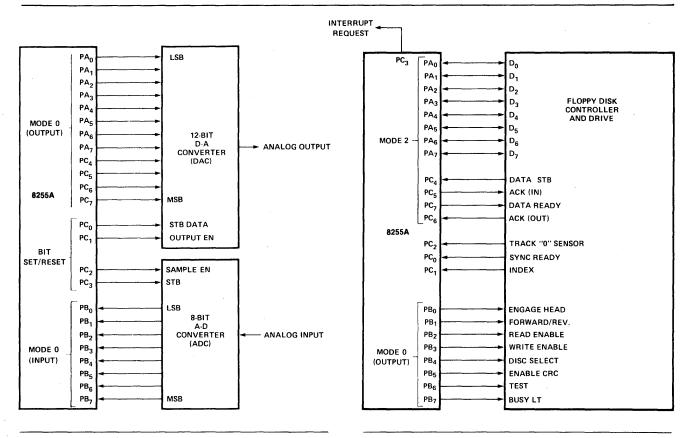


Figure 22. Basic Floppy Disc Interface

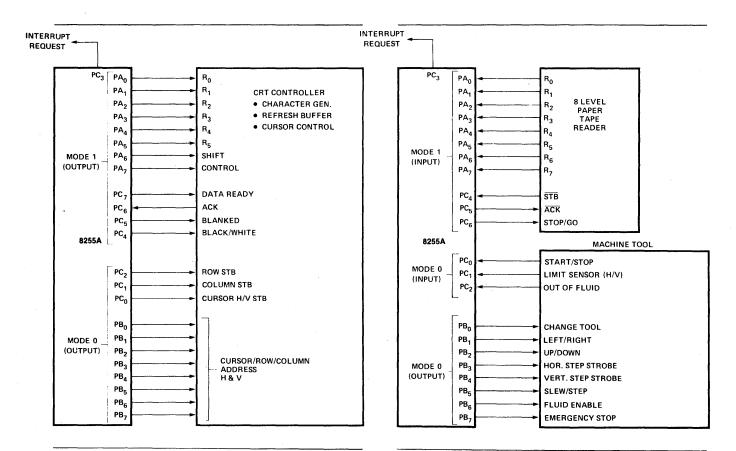


Figure 21. Basic CRT Controller Interface

Figure 23. Machine Tool Controller Interface

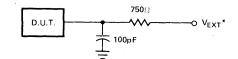
ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias 0° C to 70° C	
Storage Temperature	
Voltage on Any Pin	
With Respect to Ground	
Power Dissipation	

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS

 $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = +5V \pm 5\%$; GND = 0V


SYMBOL	PARAMETER	MIN.	MAX.	UNIT	TEST CONDITIONS
V _{IL}	Input Low Voltage	-0.5	0.8	V	
VIH	Input High Voltage	2.0	V _{CC}	V	
V _{OL} (DB)	Output Low Voltage (Data Bus)		0.45	V	I _{OL} = 2.5mA
V _{OL} (PER)	Output Low Voltage (Peripheral Port)		0.45	V	I _{OL} = 1.7mA
V _{OH} (DB)	Output High Voltage (Data Bus)	2.4		V	I _{OH} = -400μA
V _{OH} (PER)	Output High Voltage (Peripheral Port)	2.4		V	I _{OH} = -200μA
I _{DAR} ^[1]	Darlington Drive Current	-1.0	-4.0	mA	R _{EXT} = 750Ω; V _{EXT} = 1.5V
I _{CC}	Power Supply Current		1 20	mA	
կլ	Input Load Current		±10	μA	$V_{IN} = V_{CC}$ to 0V
IOFL	Output Float Leakage		±10	μA	$V_{OUT} = V_{CC} \text{ to } 0V$

Note 1: Available on any 8 pins from Port B and C.

CAPACITANCE

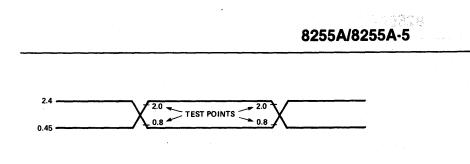
 $T_{A} = 25^{\circ}C; V_{CC} = GND = 0V$

SYMBOL	PARAMETER	MIN.	ΤΥΡ.	MAX.	UNIT	TEST CONDITIONS
CIN	Input Capacitance			10	pF	fc = 1MHz
C _{I/O}	I/O Capacitance			20	pF	Unmeasured pins returned to GND

*VEXT is set at various voltages during testing to guarantee the specification.

NOTE:

A.C. CHARACTERISTICS


 $T_A = 0^{\circ}C$ to $70^{\circ}C$; $V_{CC} = +5V \pm 5\%$; GND = 0V

Parameter ::	8	tions are no	-5 specifica- of final. Some imits are sub- ge.			
		82	55A	825		
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNIT
tAR	Address Stable Before READ	0		0		ns
tRA	Address Stable After READ	0		0		ns
tRR	READ Pulse Width	300		300		ns
tRD	Data Valid From READ ^[1]		250		200	ns
tDF	Data Float After READ	10	150	10	100	ns
tRV	Time Between READs and/or WRITEs	850		850		ns
e:			· · · · · · · · · · · · · · · · · · ·			
		82	55A	-825	5A-5	
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNIT
t _{AW}	Address Stable Before WRITE	0		0		ns
twa	Address Stable After WRITE	20		20		ns
tww	WRITE Pulse Width	400		300		ns
t _{DW}	Data Valid to WRITE (T.E.)	100	1	100		ns
twD	Data Valid After WRITE	30	1	30		ns
er Timings:		82	55A	8255A-5		
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNIT
t _{WB}	WR = 1 to Output ^[1]		350		350	ns
t _{IR}	Peripheral Data Before RD	0		0		ns
t _{HR}	Peripheral Data After RD	0		0 -		ns
t _{AK}	ACK Pulse Width	300		300		ns
tst	STB Pulse Width	500		500		ns
tps	Per. Data Before T.E. of STB	0		0		ns
t _{PH}	Per. Data After T.E. of STB	180		180		ns
tAD	ACK = 0 to Output ^[1]		300		300	ns
t _{KD}	ACK = 1 to Output Float	20	250	20	250	ns
twoв	$WR = 1$ to $OBF = 0^{[1]}$		650		650	ns
t _{AOB}	ACK = 0 to OBF = 1 ^[1] 350		350		350	ns .
t _{SIB}	STB = 0 to IBF = $1^{[1]}$		300		300	ns
t _{RIB}	$RD = 1$ to $IBF = 0^{[1]}$	[·	300		300	ns
tRIT	$RD = 0$ to $INTR = 0^{[1]}$		400		400	ns
tsit	STB = 1 to INTR = $1^{[1]}$		300		300	ns
tAIT	ACK = 1 to INTR = $1^{[1]}$	1	350		350	ns
	WR = 0 to INTR = $0^{[1]}$					

Notes: 1. Test Conditions: 8255A: C_L = 100pF; 8255A-5: C_L = 150pF.

2. Period of Reset pulse must be at least $50\mu s$ during or after power on.

Subsequent Reset pulse can be 500 ns min.

Figure 25. Input Waveforms for A.C. Tests

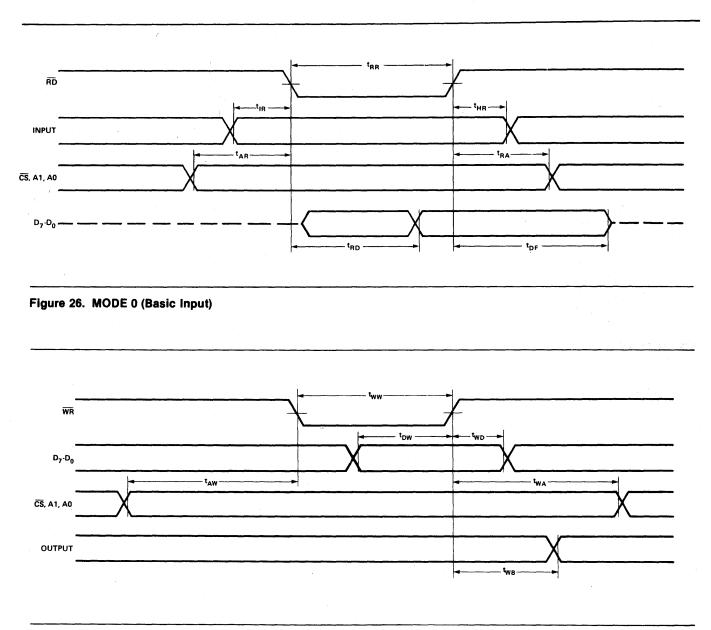
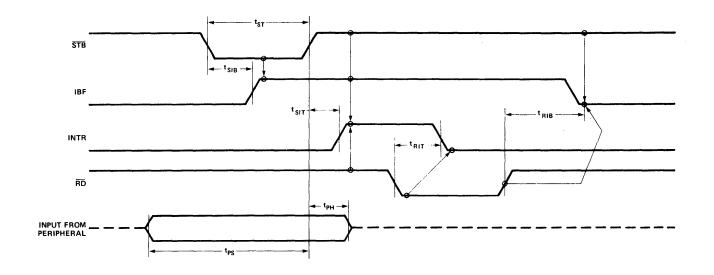



Figure 27. MODE 0 (Basic Output)

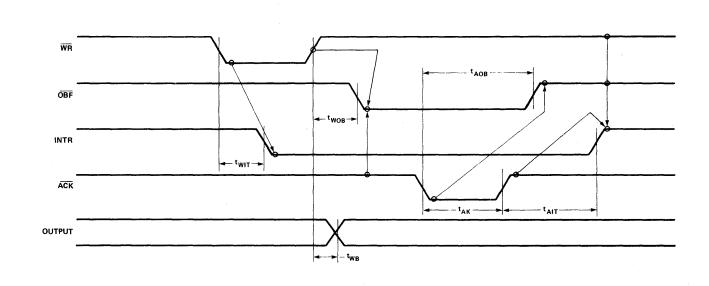


Figure 29. MODE 1 (Strobed Output)

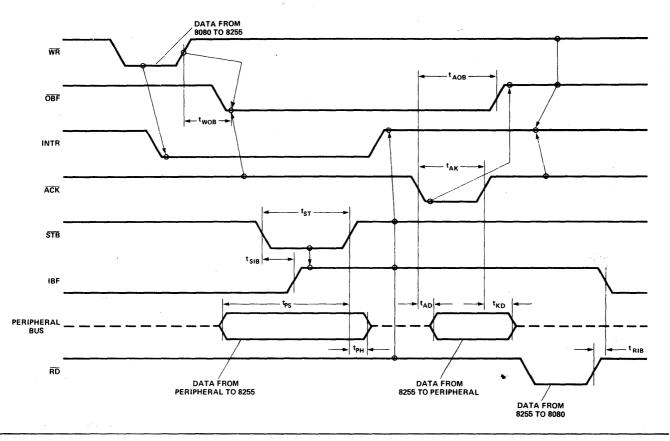
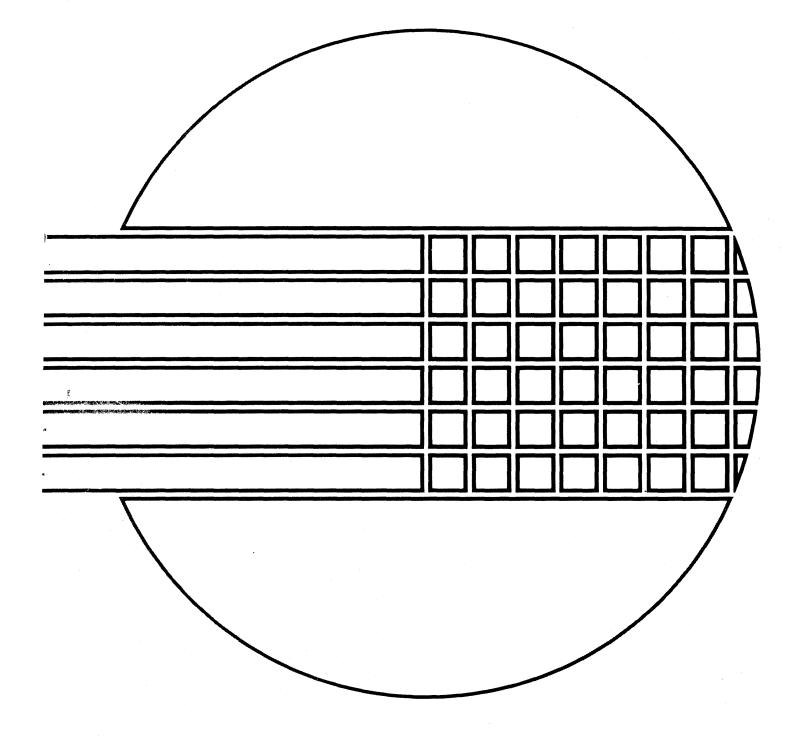



Figure 30. MODE 2 (Bidirectional)

NOTE: Any sequence where \overline{WR} occurs before \overline{ACK} and \overline{STB} occurs before \overline{RD} is permissible. (INTR = IBF • $\overline{MASK} \cdot \overline{STB} \cdot \overline{RD} + \overline{OBF} \cdot \overline{MASK} \cdot \overline{ACK} \cdot \overline{WR}$)

SIGNETICS PROGRAMMABLE COMMUNICATIONS INTERFACE (PCI) 2651

DESCRIPTION

The Signetics 2651 PCI is a universal synchronous/asychronous data communications controller chip designed for microcomputer systems. It interfaces directly to the Signetics 2650 microprocessor and may be used in a polled or interrupt driven system environment. The 2651 accepts programmed instructions from the microprocessor and supports many serial data communication disciplines, synchronous and asynchronous, in the full or half-duplex mode.

The PCI serializes parallel data characters received from the microprocessor for transmission. Simultaneously, it can receive serial data and convert it into parallel data characters for input to the microcomputer.

The 2651 contains a baud rate generator which can be programmed to either accept an external clock or to generate internal transmit or receive clocks. Sixteen different baud rates can be selected under program control when operating in the internal clock mode.

The PCI is constructed using Signetics nchannel silicon gate depletion load technology and is packaged in a 28-pin DIP.

FEATURES

- Synchronous operation
 - 5 to 8-bit characters Single or double SYN operation Internal character synchronization Transparent or non-transparent mode Automatic SYN or DLE-SYN insertion SYN or DLE stripping
 - Odd, even, or no parity Local or remote maintenance loop back mode
 - Baud rate: dc to 1M bps (1X clock)

Asynchronous operation

5 to 8-bit characters 1, 1 1/2 or 2 stop bits

Odd, even, or no parity

Parity, overrun and framing error detection

Line break detection and generation False start bit detection

Automatic serial echo mode

Local or remote maintenance loop back mode

Baud rate: dc to 1M bps (1X clock) dc to 62.5K bps (16X clock) dc to 15.625K bps (64X clock)

OTHER FEATURES


- Internal or external baud rate clock
- 16 internal rates-50 to 19,200 baud
- Double buffered transmitter and receiver
- Full or half duplex operation
- Fully compatible with 2650 CPU
- TTL compatible inputs and outputs
- Single 5V power supply
- No system clock required
- 28-pin dual in-line package

APPLICATIONS

- Intelligent terminals
- Network processors
- Front end processors
- Remote data concentrators
- Computer to computer links
- Serial peripherals

PIN DESIGNATION

PIN CONFIGURATION

PIN NO.	SYMBOL	NAME AND FUNCTION	TYPE
27,28,1,2, 5-8	D0-D7	8-bit data bus	I/O
21	RESET	Reset	1
12,10	A ₀ -A ₁	Internal register select lines	I
13	R∕W	Read or write command	· • •
11	ĈĒ	Chip enable input	1 ⁻
22	DSR	Data set ready	1
24	DTR	Data terminal ready	0
23	RTS	Request to send	0
17	CTS	Clear to send	1
16	DCD	Data carrier detected	1
18	TxEMT/DSCHG	Transmitter empty or data set change	0
9	TxC	Transmitter clock	1/0
25	RxC	Receiver clock	I/O
• 19 •	TxD	Transmitter data	0
3 3	RxD	Receiver data	1
15	TxRDY	Transmitter ready	0
14	RXRDY	Receiver ready	0
20	BRCLK	Baud rate generator clock	1 I
26	Vcc	+5V supply	2 F
4	GND	Ground	I

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
Operating ambient temperature ² Storage temperature	0 to +70 -65 to +150	°C ℃
All voltages with respect to ground ³	-0.5 to +6.0	V

NOTES: 1, 2, 3-SEE PAGE 11

2651-1

2651-I

2651

BAUD RATE	THEORETICAL FREQUENCY 16X CLOCK	ACTUAL FREQUENCY 16X CLOCK	PERCENT ERROR	DIVISOR
50	0.8 KHz	0.8 KHz		6336
75	1.2	1.2		4224
110	1.76	1.76	<u> </u>	2880
134.5	2.152	2.1523	0.016	2355
150	2.4	2.4	<u> </u>	2112
300	4.8	4.8	n in graden dit.	1056
600	9.6	9.6	2 <u></u>	528
1200	19.2	19.2		264
1800	28.8	28.8		176
2000	32.0	32.081	0.253	158
2400	38.4	38.4		132
3600	57.6	57.6	· ·	88
4800	76.8	76.8		66
7200	115.2	115.2		44
9600	153.6	153.6		33
19200 *	307.2	316.8	3.125	16

NOTE

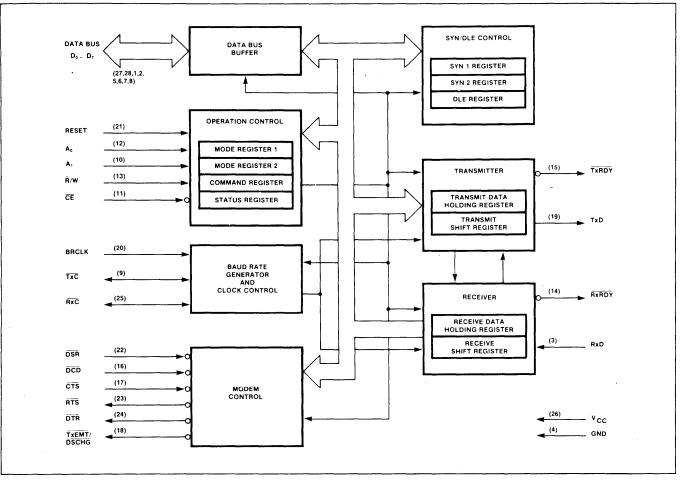

*Error at 19200 can be reduced to zero by using crystal frequency 4.9152MHz 16X clock is used in asynchronous mode. In synchronous mode, clock multiplier is 1X.

Table 1 BAUD RATE GENERATOR CHARACTERISTICS Crystal Frequency = 5.0688MHz

V _{CC} 26I+5V supply inputGND4IGroundRESET21IA high on this input performs a master reset on the 2651. This singly terminates any device activity and clears the Mode, Command	•
RESET 21 I A high on this input performs a master reset on the 2651. This since the last of the last o	•
ly terminates any device activity and clears the Mode, Comman	•
ters. The device assumes the idle state and remains there unti appropriate control words.	
A ₁ -A ₀ 10,12 I Address lines used to select internal PCI registers.	
\vec{R}/W 13 I Read command when low, write command when high.	
CE 11 I Chip enable command. When low, indicates that control and c are valid and that the operation specified by the R/W, A1 and performed. When high, places the D0-D7 lines in the tri-state	A ₀ inputs should be
D ₇ -D ₀ 8,7,6,5, I/O 8-bit, three-state data bus used to transfer commands, data and	
2,1,28,27 and the CPU. D ₀ is the least significant bit; D ₇ the most signi	•
TxRDY 15 O This output is the complement of Status Register bit SR0. When the Transmit Data Holding Register (THR) is ready to accept a the CPU. It goes high when the data character is loaded. This	low, it indicates that data character from
when the transmitter is enabled. It is an open drain output whic interrupt to the CPU.	h can be used as an
RxRDY 14 O This output is the complement of Status Register bit SR1. When	low, it indicates that
the Receive Data Holding Register (RHR) has a character ready	
It goes high when the RHR is read by the CPU, and also v	
disabled. It is an open drain output which can be used as an in	
TxEMT/DSCHG 18 O This output is the complement of Status Register bit SR2. When	
the transmitter has completed serialization of the last character	
or that a change of state of the DSR or DCD inputs has occurre	
high when the Status Register is read by the CPU, if the TxEM	
exist. Otherwise, the THR must be loaded by the CPU for this li	
open drain output which can be used as an interrupt to the C	JPU.

Table 2 CPU-RELATED SIGNALS

BLOCK DIAGRAM

BLOCK DIAGRAM

The PCI consists of six major sections. These are the transmitter, receiver, timing, operation control, modem control and SYN/DLE control. These sections communicate with each other via an internal data bus and an internal control bus. The internal data bus interfaces to the microprocessor data bus via a data bus buffer.

Operation Control

This functional block stores configuration and operation commands from the CPU and generates appropriate signals to various internal sections to control the overall device operation. It contains read and write circuits to permit communications with the microprocessor via the data bus and contains Mode Registers 1 and 2, the Command Register, and the Status Register. Details of register addressing and protocol are presented in the PCI Programming section of this data sheet.

Timing

The PCI contains a Baud Rate Generator (BRG) which is programmable to accept external transmit or receive clocks or to divide an external clock to perform data communications. The unit can generate 16 commonly used baud rates, any one of which can be selected for full duplex operation. See Table 1.

Receiver

The Receiver accepts serial data on the RxD pin, converts this serial input to parallel format, checks for bits or characters that are unique to the communication technique and sends an "assembled" character to the CPU.

Transmitter

The Transmitter accepts parallel data from the CPU, converts it to a serial bit stream, inserts the appropriate characters or bits (based on the communication technique) and outputs a composite serial stream of data on the TxD output pin.

Modem Control

The modem control section provides interfacing for three input signals and three output signals used for "handshaking" and status indication between the CPU and a modem.

SYN/DLE Control

This section contains control circuitry and three 8-bit registers storing the SYN1, SYN2, and DLE characters provided by the CPU. These registers are used in the synchronous mode of operation to provide the characters required for synchronization, idle fill and data transparency.

INTERFACE SIGNALS

The PCI interface signals can be grouped into two types: the CPU-related signals (shown in Table 2), which interface the 2651 to the microprocessor system, and the device-related signals (shown in Table 3), which are used to interface to the communications device or system.

2651-1

2651

PIN NAME	PIN NO.	INPUT/OUTPUT	FUNCTION
BRCLK	20	I .	5.0688MHz clock input to the internal baud rate generator. Not required if external receiver and transmitter clocks are used.
RxC	25	I/O	Receiver clock. If external receiver clock is programmed, this input controls the rate at which the character is to be received. Its frequency is 1X, 16X or 64X the baud rate, as programmed by Mode Register 1. Data is sampled on the rising edge of the clock. If internal receiver clock is programmed, this pin becomes an output at 1X the pro- grammed baud rate. *
TxC	9	1/0	Transmitter clock. If external transmitter clock is programmed, this input controls the rate at which the character is transmitted. Its frequency is 1X, 16X or 64X the baud rate, as programmed by Mode Register 1. The transmitted data changes on the falling edge of the clock. If internal transmitter clock is programmed, this pin be- comes an output at 1X the programmed baud rate. *
RxD	3	1	Serial data input to the receiver. "Mark" is high, "Space" is low.
TxD	19	0	Serial data output from the transmitter. "Mark" is high, "Space" is low. Held in Mark condition when the transmitter is disabled.
DSR	22	t	General purpose input which can be used for Data Set Ready or Ring Indicator con- dition. Its complement appears as Status Register bit SR7. Causes a low output on TxEMT/DSCHG when its state changes.
DCD	16	1	Data Carrier Detect input. Must be low in order for the receiver to operate. Its com- plement appears as Status Register bit SR6. Causes a low output on TxEMT/DSCHG when its state changes.
CTS	17		Clear to Send input. Must be low in order for the transmitter to operate. If it goes high during transmission, the character in the Transmit Shift Register will be transmitted before termination.
DTR	24	0	General purpose output which is the complement of Command Register bit CR1. Normally used to indicate Data Terminal Ready.
RTS	23	0	General purpose output which is the complement of Command Register bit CR5. Normally used to indicate Request to Send.

NOTE

*RxC and TxC outputs have short circuit protection max. CL 100pf

OPERATION

The functional operation of the 2651 is programmed by a set of control words supplied by the CPU. These control words specify items such as synchronous or asynchronous mode, baud rate, number of bits per character, etc. The programming procedure is described in the PCI Programming section of this data sheet.

After programming, the PCI is ready to perform the desired communications functions. The receiver performs serial to parallel conversion of data received from a modem or equivalent device. The transmitter converts parallel data received from the CPU to a serial bit stream. These actions are accomplished within the framework specified by the control words.

Receiver

The 2651 is conditioned to receive data when the DCD input is low and the RxEN bit in the command register is true. In the asynchronous mode, the receiver looks for a high to low transition of the start bit on the RxD input line. If a transition is detected, the state of the RxD line is sampled again after a delay of one-half of a bit time. If RxD is now high, the search for a valid start bit is begun again. If RxD is still low, a valid start bit is

Table 3 DEVICE-RELATED SIGNALS

assumed and the receiver continues to sample the input line at one bit time intervals until the proper number of data bits, the parity bit, and the stop bit(s) have been assembled. The data is then transferred to the Receive Data Holding Register, the RxRDY bit in the status register is set, and the RxRDY output is asserted. If the character length is less than 8 bits, the high order unused bits in the Holding Register are set to zero. The Parity Error, Framing Error, and Overrun Error status bits are strobed into the status register on the positive going edge of RxC corresponding to the received character boundary. If a break condition is detected (RxD is low for the entire character as well as the stop bit [s]), only one character consisting of all zeros (with the FE status bit set) will be transferred to the Holding Register. The RxD input must return to a high condition before a search for the next start bit begins.

When the PCI is initialized into the synchronous mode, the receiver first enters the hunt mode on a 0 to 1 transition of RxEN (CR2). In this mode, as data is shifted into the Receiver Shift Register a bit at a time, the contents of the register are compared to the contents of the SYN1 register. If the two are not equal, the next bit is shifted in and the comparison is repeated. When the two registers match,

the hunt mode is terminated and character assembly mode begins. If single SYN operation is programmed, the SYN DETECT status bit is set. If double SYN operation is programmed, the first character assembled after SYN1 must be SYN2 in order for the SYN DETECT bit to be set. Otherwise, the PCI returns to the hunt mode. (Note that the sequence SYN1-SYN1-SYN2 will not achieve synchronization). When synchronization has been achieved, the PCI continues to assemble characters and transfer them to the Holding Register, setting the RxRDY status bit and asserting the RxRDY output each time a character is transferred. The PE and OE status bits are set as appropriate. Further receipt of the appropriate SYN seguence sets the SYN DETECT status bit. If the SYN stripping mode is commanded, SYN characters are not transferred to the Holding Register. Note that the SYN characters used to establish initial synchronization are not transferred to the Holding Register in any case.

Transmitter

The PCI is conditioned to transmit data when the CTS input is low and the TxEN command register bit is set. The 2651 indicates to the CPU that it can accept a character for transmission by setting the TxRDY

2651-1

2651

status bit and asserting the TxRDY output. **2651 INITIALIZATION FLOW CHART** INITIAL RESET LOAD MODE REGISTER 1 NOTE LOAD Mode Register 1 must be written MODE REGISTER 2 before 2 can be written. Mode Register 2 need not be programmed if external clocks are used SYNCHRONOUS Y LOAD SYN 1 REGISTER NOTE SYN1 Register must be written before SYN2 can be written, and SYN2 before DLE can be written DOUBLE SYNC Y TRANSPAREN MODE? LOAD SYN 2 REGISTER TRANSPAREN MODE LOAD DLE REGISTER IOAD COMMAND REGISTER OPERATE RECONFIGURE DISABL RCVR AND XMTR Figure 1

CE	CE A1 A0 R/W		₽. R∕W	FUNCTION
1	X	X	X	Tri-state data bus
0	0	0	0	Read receive holding register
0	C	0		Write transmit holding register
0	0	1 1	0	Read status register
0	0	1 1		Write SYN1/SYN2/DLE registers
0	1	0	0	Read mode registers 1/2
0	1	0		Write mode registers 1/2
0	1	1 1	0	Read command register
0	1	1		Write command register

NOTE

See AC Characteristics section for timing requirements.

Table 4 2651 REGISTER ADDRESSING

When the CPU writes a character into the Transmit Data Holding Register, these conditions are negated. Data is transferred from the Holding Register to the Transmit Shift Register when it is idle or has completed transmission of the previous character. The TxRDY conditions are then asserted again. Thus, one full character time of buffering is provided.

In the asynchronous mode, the transmitter automatically sends a start bit followed by the programmed number of data bits, the least significant bit being sent first. It then appends an optional odd or even parity bit and the programmed number of stop bits. If, following transmission of the data bits, a new character is not available in the Transmit Holding Register, the TxD output remains in the marking (high) condition and the TxEMT/DSCHG output and its corresponding status bit are asserted. Transmission resumes when the CPU loads a new character into the Holding Register. The transmitter can be forced to output a continuous low (BREAK) condition by setting the Send Break command bit high.

In the synchronous mode, when the 2651 is initially conditioned to transmit, the TxD output remains high and the TxRDY condition is asserted until the first character to be transmitted (usually a SYN character) is loaded by the CPU. Subsequent to this, a continuous stream of characters is transmitted. No extra bits (other than parity, if commanded) are generated by the PCI unless the CPU fails to send a new character to the PCI by the time the transmitter has completed sending the previous character. Since synchronous communication does not allow gaps between characters, the PCI asserts TxEMT and automatically "fills" the gap by transmitting SYN1s, SYN1-SYN2 doublets, or DLE-SYN1 doublets, depending on the state of MR16 and MR17. Normal transmission of the message resumes when a new character is available in the Transmit Data Holding Register. If the SEND DLE bit in the command register is true, the DLE character is automatically transmitted prior to transmission of the message character in THR.

PCI PROGRAMMING

Prior to initiating data communications, the 2651 operational mode must be programmed by performing write operations to the mode and command registers. In addition, if synchronous operation is programmed, the appropriate SYN/DLE registers must be loaded. The PCI can be reconfigured at any time during program execution. However, if the change has an effect on the reception of a character the

265

receiver should be disabled. Alternatively if the change is made 11/2 RxC periods after RxRDY goes active it will affect the next character assembly. A flowchart of the initialization process appears in Figure 1.

The internal registers of the PCI are accessed by applying specific signals to the \overline{CE} , \overline{R}/W , A_1 and A_0 inputs. The conditions necessary to address each register are shown in Table 4.

The SYN1, SYN2, and DLE registers are accessed by performing write operations with the conditions $A_1 = 0$, $A_0 = 1$, and $\overline{R}/W =$ 1. The first operation loads the SYN1 register. The next loads the SYN2 register, and the third loads the DLE register. Reading or loading the mode registers is done in a similar manner. The first write (or read) operation addresses Mode Register 1, and a subsequent operation addresses Mode Register 2. If more than the required number of accesses are made, the internal sequencer recycles to point at the first register. The pointers are reset to SYN1 Register and Mode Register 1 by a RESET input or by performing a "Read Command Register" operation, but are unaffected by any other read or write operation.

The 2651 register formats are summarized in Tables 5, 6, 7 and 8. Mode Registers 1 and 2 define the general operational characteristics of the PCI, while the Command Register controls the operation within this basic frame-work. The PCI indicates its status in the Status Register. These registers are cleared when a RESET input is applied.

Mode Register 1 (MR1)

Table 5 illustrates Mode Register 1. Bits MR11 and MR10 select the communication format and baud rate multiplier. 00 specifies synchronous mode and 1X multiplier. 1X, 16X, and 64X multipliers are programmable for asynchronous format. However, the multiplier in asynchronous format applies only if the external clock input option is selected by MR24 or MR25.

MR13 and MR12 select a character length of 5, 6, 7, or 8 bits. The character length does not include the parity bit, if programmed, and does not include the start and stop bits in asynchronous mode.

MR14 controls parity generation. If enabled, a parity bit is added to the transmitted character and the receiver performs a parity check on incoming data. MR15 selects odd or even parity when parity is enabled by MR14.

In asychronous mode, MR17 and MR16 select character framing of 1, 1.5, or 2 stop bits. (If 1X baud rate is programmed, 1.5 stop bits defaults to 1 stop bits on transmit). In synchronous mode, MR17 controls the number of SYN characters used to establish synchronization and for character fill when the transmitter is idle. SYN1 alone is used if MR17 = 1, and SYN1-SYN2 is used when MR17 = 0. If the transparent mode is specified by MR16, DLE-SYN1 is used for character fill and SYN Detect, but the normal synchronization sequence is used. Also DLE stripping and DLE Detect (with MR14 = 0) are enabled.

Mode Register 2 (MR2)

Table 6 illustrates Mode Register 2. MR23, MR22, MR21, and MR20 control the frequency of the internal baud rate generator (BRG). Sixteen rates are selectable. When driven by a 5.0688 MHz input at the BRCLK input (pin 20), the BRG output has zero error except at 134.5, 2000, and 19,200 baud, which have errors of +0.016%, +0.235%, and +3.125% respectively.

MR17	MR16	MR15	MR14	MR13	MR12	MR11	MR10					
					Parity Type Parity Control		Parity Control	Characte	er Length	Mode and Baud Rate Factor		
ASYNCH: STOP 00 = INVALID 01 = 1 STOP BIT 10 = 11/2 STOP BIT 11 = 2 STOP BIT	BITS	0 = ODD 1 = EVEN	0 = DISABLED 1 = ENABLED	01 = 10 =	5 BITS 6 BITS 7 BITS 8 BITS	10 = ASYNCHR	NOUS 1X RATE DNOUS 1X RATE DNOUS 16X RATE DNOUS 64X RATE					
SYNCH: NUMBER OF SYN CHAR	SYNCH: TRANS- PARENCY CONTROL											
0 = DOUBLE SYN 1 = SINGLE SYN	0 = NORMAL 1 = TRANSPARENT											

NOTE

Baud rate factor in asynchronous applies only if external clock is selected. Factor is 16X if

internal clock is selected. Mode must be selected (MR11, MR10) in any case.

Table 5 MODE REGISTER 1 (MR1)

MR27	MR26	MR25	MR24	MR23	MR22	MR21	MR20
		Transmitter F Clock C			t Ministry		
NOT	USED	0 = EXTERNAL 1 = INTERNAL	0 = EXTERNAL 1 = INTERNAL	0001 0010 0011 0100 0101 0101 0110	= 110 = 134.5 = 150 = 300	1000 = 180 $1001 = 200$ $1010 = 240$ $1011 = 360$ $1100 = 480$ $1101 = 720$ $1110 = 960$ $1111 = 19,3$	0 0 0 0 0

Table 6 MODE REGISTER 2 (MR2)

2651-1

265

MR25 and MR24 select either the BRG or the external inputs \overline{TxC} and \overline{RxC} as the clock source for the transmitter and receiver, respectively. If the BRG clock is selected, the baud rate factor in asynchronous mode is 16X regardless of the factor selected by MR11 and MR10. In addition, the corresponding clock pin provides an output at 1X the baud rate.

Command Register (CR)

Table 7 illustrates Command Register. Bits CR0 (TxEN) and CR2 (RxEN) enable or disable the transmitter and receiver respectively. Disabling the receiver causes RxRDY to go high (inactive). If the transmitter is disabled, it will complete the transmission of the character in the Transmit Shift Register (if any) prior to terminating operation. The TxD output will then remain in the marking state (high) while the TxRDY and TxEMT will go high (inactive). If the receiver is disabled, it will terminate operation immediately. Any character being assembled will be neglected.

Bits CR1 (DTR) and CR5 (RTS) control the DTR and RTS outputs. Data at the outputs is the logical complement of the register data.

In asynchronous mode, setting CR3 will force and hold the TxD output low (spacing condition) at the end of the current transmitted character. Normal operation resumes when CR3 is cleared. The TxD line will go high for a least one bit time before beginning transmission of the next character in the Transmit Data Holding Register. In synchronous mode, setting CR3 causes the transmission of the DLE register contents prior to sending the character in the Transmit Data Holding Register. CR3 should be reset in response to the next TxRDY.

Setting CR4 causes the error flags in the Status Register (SR3, SR4, and SR5) to be cleared. This is a one time command. There is no internal latch for this bit.

The PCI can operate in one of four submodes within each major mode (synchronous or asynchronous). The operational sub-mode is determined by CR7 and CR6. CR7-CR6 = 00 is the normal mode, with the transmitter and receiver operating independently in accordance with the Mode and Status Register instructions.

In asynchronous mode, CR7-CR6 = 01 places the PCI in the Automatic Echo mode. Clocked, regenerated received data is automatically directed to the TxD line while normal receiver operation continues. The receiver must be enabled (CR2 = 1), but the transmitter need not be enabled. CPU to receiver communications continues normally, but the CPU to transmitter link is disabled. Only the first character of a break condition is echoed. The TxD output will go high until the next valid start is detected. The following conditions are true while in Automatic Echo mode:

- Data assembled by the receiver is automatically placed in the Transmit Holding Register and retransmitted by the transmitter on the TxD output.
- 2. Transmit clock = receive clock.
- 3. TxRDY output = 1.
- The TxEMT/DSCHG pin will reflect only the data set change condition.
- 5. The TxEN command (CR0) is ignored.

In synchronous mode, CR7-CR6 = 01 places the PCI in the Automatic SYN/DLE Stripping mode. The exact action taken depends on the setting of bits MR17 and MR16:

- In the non-transparent, single SYN mode (MR17-MR16 = 10), characters in the data stream matching SYN1 are not transferred to the Receive Data Holding Register (RHR).
- 2 In the non-transparent, double SYN mode (MR17-MR16 = 00), characters in the data. stream matching SYN1, or SYN2 if immediately preceded by SYN1, are not transferred to the RHR. However, only the first SYN1 of an SYN1-SYN1 pair is stripped.
- In transparent mode (MR16 =1), characters in the data stream matching DLE, or SYN1 if immediately preceded by DLE, are not transferred to the RHR. However, only the first DLE of a DLE-DLE pair is stripped.

Note that Automatic Stripping mode does not affect the setting of the DLE Detect and SYN Detect status bits (SR3 and SR5).

Two diagnostic sub-modes can also be configured. In Local Loop Back mode (CR7-CR6 = 10), the following loops are connected internally:

- 1. The transmitter output is connected to the receiver input.
- 2. DTR is connected to DCD and RTS is connected to CTS.
- 3. Receive clock transmit clock.
- The <u>DTR</u>, <u>RTS</u> and <u>TxD</u> outputs are held high.
 The <u>CTS</u>, <u>DCD</u>, <u>DSR</u> and <u>RxD</u> inputs are ignored.

Additional requirements to operate in the Local Loop Back mode are that CR0 (TxEN), CR1 (DTR), and CR5 (RTS) must be set to 1. CR2 (RxEN) is ignored by the PCI.

The second diagnostic mode is the Remote Loop Back mode (CR7-CR6 = 11). In this mode:

- Data assembled by the receiver is automatically placed in the Transmit Holding Register and retransmitted by the transmitter on the TxD output.
- 2. Transmit clock receive clock.
- 3. No data is sent to the local CPU, but the error status conditions (PE, OE, FE) are set.
- The RxRDY, TxRDY, and TxEMT/DSCHG outputs are held high.
- 5. CR1 (TxEN) is ignored.
- 6. All other signals operate normally.

Status Register

The data contained in the Status Register (as shown in Table 8) indicate receiver and transmitter conditions and modem/data set status.

SR0 is the Transmitter Ready (TxRDY) status bit. It, and its corresponding output, are valid only when the transmitter is enabled. If equal to 0, it indicates that the Transmit Data Holding Register has been loaded by the CPU and the data has not been transferred to the Transmit Shift Register. If set equal to 1, it indicates that the Holding Register is ready to accept data from the CPU. This bit is initially set when the Transmitter is enabled by CR0, unless a character

CR7	CR6	CR5	CR4	CR3	CR2	CR1	CRO
Operatir	ng Mode	Request to Send	Reset Error	· · · · · · · · · · · · · · · · · · ·	Receive Control (RxEN)	Data Terminal Ready	Transmit Control (TxEN)
00 = NORMA			0 = NORMAL	ASYNCH: FORCE BREAK			
ECHO M SYNCH:	SYN AND/OR	0 = FORCE RTS OUTPUT HIGH 1 = FORCE RTS	ERROR FLAG IN STATUS REG	0 = NORMAL 1 = FORCE BREAK	0 = DISABLE 1 = ENABLE	0 = FORCE DTR OUTPUT HIGH 1 = FORCE DTR	0 = DISABLE 1 = ENABLE
10 = LOCAL I	RIPPING MODE LOOP BACK E LOOP BACK	OUTPUT LOW	(FE, OE, PE/DLE DETECT)	SYNCH: SEND DLE		OUTPUT LOW	
				0 = NORMAL 1 = SEND DLE			

Table 7 COMMAND REGISTER (CR)

2651-1

SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0
Data Set Ready	Data Carrier Detect	FE/SYN Detect	Overrrun	PE/DLE Detect	TxEMT/DSCHG	RxRDY	TxRDY
0 = DSR INPUT IS HIGH 1 = DSR INPUT IS LOW	0 = DCD INPUT IS HIGH 1 =DCD INPUT IS LOW	ASYNCH: 0 = NORMAL 1 = FRAMING ERROR SYNCH: 0 = NORMAL 1 = SYN CHAR DETECTED	0 = NORMAL 1 = OVERRUN ERROR	ASYNCH: 0 = NORMAL 1 = PARITY ERROR SYNCH: 0 = NORMAL 1 = PARITY ERROR OR DLE CHAR RECEIVED	0 = NORMAL 1 = CHANGE IN DSR OR DCD, OR TRANSMIT SHIFT REGIS- TER IS EMPTY	0 = RECEIVE HOLDING REG EMPTY 1 = RECEIVE HOLDING REG HAS DATA	0 = TRANSMIT HOLDING REG BUSY 1 = TRANSMIT HOLDING REG EMPTY

Table 8 STATUS REGISTER (SR)

has previously been loaded into the Holding Register. It is not set when the Automatic Echo or Remote Loop Back modes are programmed. When this bit is set, the TxRDY output pin is low. In the Automatic Echo and Remote Loop Back modes, the output is held high.

SR1, the Receiver Ready (RxRDY) status bit, indicates the condition of the Receive Data Holding Register. If set, it indicates that a character has been loaded into the Holding Register from the Receive Shift Register and is ready to be read by the CPU. If equal to zero, there is no new character in the Holding Register. This bit is cleared when the CPU reads the Receive Data Holding Register or when the receiver is disabled by CR2. When set, the RxRDY output is low.

The TxEMT/DSCHG bit, SR2, when set, indicates either a change of state of the DSR or DCD inputs or that the Transmit Shift Register has completed transmission of a character and no new character has been loaded into the Transmit Data Holding Register. Note that in synchronous mode this bit will be set even though the appropriate "fill" character is transmitted. TxEMT will not go active until at least one character has been transmitted. It is cleared by loading the Transmit Data Holding Register. The DSCHG condition is enabled when TxEN=1 or RxEN=1. It is cleared when the Status Register is read by the CPU. When SR2 is set, the TxEMT/DSCHG output is low.

SR3, when set, indicates a received parity error when parity is enabled by MR14. In synchronous transparent mode (MR16 = 1), with parity disabled, it indicates that a character matching the DLE Register has been received. However, only the first DLE of two successive DLEs will set SR3. This bit is cleared when the receiver is disabled and by the Reset Error command, CR4.

The Overrun Error status bit, SR4, indicates that the previous character loaded into the Receive Holding Register was not read by the CPU at the time a new received character was transferred into it. This bit is cleared when the receiver is disabled and by the Reset Error command, CR4.

In asynchronous mode, bit SR5 signifies that the received character was not framed by the programmed number of stop bits. (If 1.5 stop bits are programmed, only the first stop bit is checked.) If RHR = 0 when SR5 = 1 a break condition is present. In synchronous non-transparent mode (MR16 = 0), it indicates receipt of the SYN1 character is single SYN mode or the SYN1-SYN2 pair in double SYN mode. In synchronous transparent mode (MR16 = 1), this bit is set upon detection of the initial synchronizing characters (SYN1 or SYN1-SYN2) and, after synchronization has been achieved, when a DLE-SYN1 pair is received. The bit is reset when the receiver is disabled, when the Reset Error command is given in asynchronous mode, and when the Status Register is read by the CPU in the synchronous mode.

SR6 and SR7 reflect the conditions of the DCD and DSR inputs respectively. A low input sets its corresponding status bit and a high input clears it.

DC ELECTRICAL CHARACTERISTICS $T_A = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = 5.0V \pm 5\%$ 4.5.6

PARAMETER		TEST CONDITIONS				
		TEST CONDITIONS	Min Typ		Max	UNIT
V _{IL} ViH	Input voltage Low High		2.0		0.8	V
Vol Voн	Output voltage Low High	I _{OL} = 1.6mA I _{OH} = -100μA	2.4		0.4	V
lıL.	Input leakage current	$V_{IN} = 0$ to 5.5V			10	μA
Tristate ILH ILL	Output leakage current Data bus high Data bus low	$V_{O} = 4.0V$ $V_{O} = 0.45V$			10 10	μA
lcc	Power supply current		· · · · ·		150	mA

CAPACITANCE $T_A = 25^{\circ}C, V_{CC} = 0V$

PARAMETER		TEST CONDITIONS		UNIT		
		TEST CONDITIONS	Min	Тур	Max	UNIT
	Capacitance					pF
Cin	Input				20	
Соит	Output	fc = 1MHz Unmeasured pins tied to ground			20	
C _{I/O}	Input/Output	to ground			20	

AC ELECTRICAL CHARACTERISTICS $T_A = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = 5.0V \pm 5\%^{4.5.6}$

	PARAMETER	TEST CONDITIONS	LIMITS				
		TEST CONDITIONS	Min	Тур	Max	Max UNIT	
	Pulse width		1			ns	
tRES	Reset	· · · · · · · · · · · · · · · · · · ·	1000			1	
tce	Chip enable		300	5	Ì		
	Setup and hold time					ns	
tas	Address setup		20			[
tан	Address hold		20				
tcs	R/W control setup		20				
tсн	R/W control hold		20		ļ	ļ	
tos	Data setup for write		225				
tDH	Data hold for write		0			1	
tRXS	Rx data setup		300			}	
trxh	Rx data hold		350				
tDD	Data delay time for read	$C_L = 100 pF$			250	ns	
tDF	Data bus floating time for read	C _L = 100pF			150	ns	
	Input clock frequency				1	MHz	
f BRG	Baud rate generator		1.0	5.0688	5.0738		
f _{R/T} 10	TxC or RxC		dc		1.0)	
	Clock state			1		ns	
tbrh ⁹	Baud rate high		70				
tBRL ⁹	Baud rate low		70			[
tr/тн	TxC or RxC high		500			1	
$t_{\rm R/TL}^{10}$	TxC or RxC low		500				
tTXD	TxD delay from falling edge of TxC	C _L = 100pF			650	ns	
trcs	Skew between TxD changing and falling	$C_L = 100 pF$			0	ns	
	edge of TxC output ⁸				·	l	

NOTES

1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operation section of this specification is not implied.

2. For operating at elevated temperatures, the device must be derated based on +150°C maximum junction temperature and thermal resistance of 60° C/W junction to ambient (IQ ceramic package).

3. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying any voltages larger than the rated maxima.

4. Parameters are valid over operating temperature range unless otherwise specified. $\vec{5.}$ All voltage measurements are referenced to ground. All time measurements are at the V_OH, V_OL, V_IH,

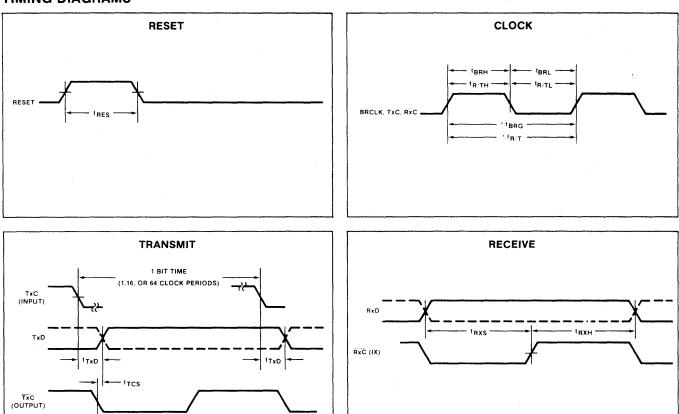
VIL levels as appropriate.

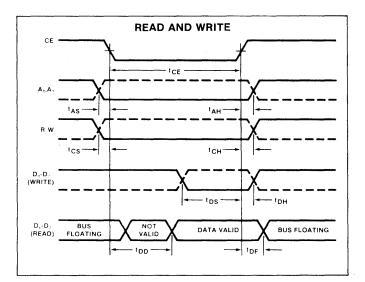
Typical values are at $\pm 25^{\circ}$ C, typical supply voltages and typical processing parameters. TxRDY, RxRDY and TxEMT/DSCHG outputs are open drain. 6.

7.

8. Parameter applies when internal transmitter clock is used.

9. Under test conditions of 5.0688 fBRG

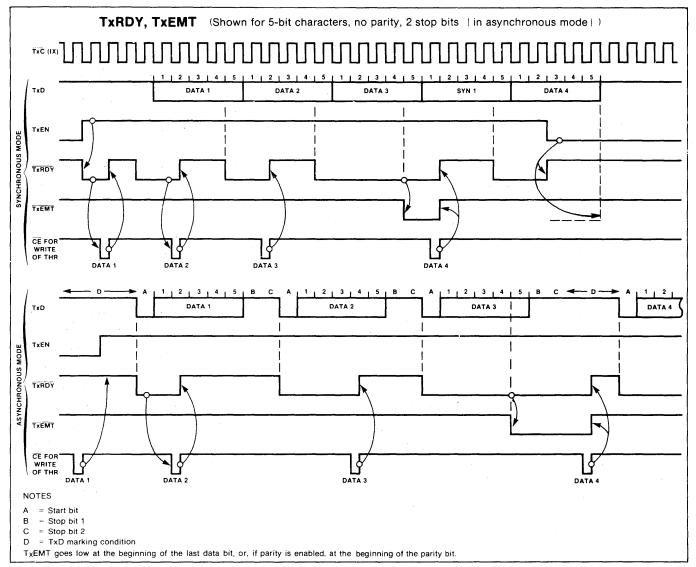

10. f_{R T} and t_{R TL} shown for all modes except Local Loopback. For Local Loopback mode

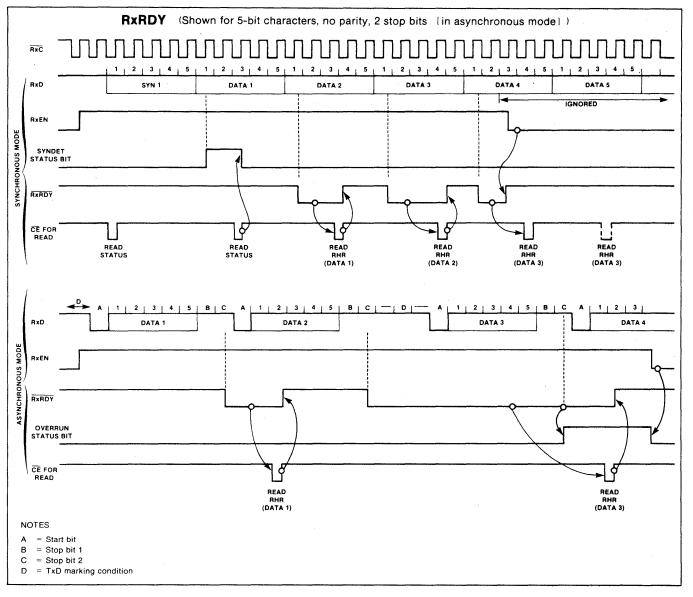

f_{R-T} 0.7 MHz and t_{R-TL} = 700ns min

TIMING DIAGRAMS

2651-1

2651

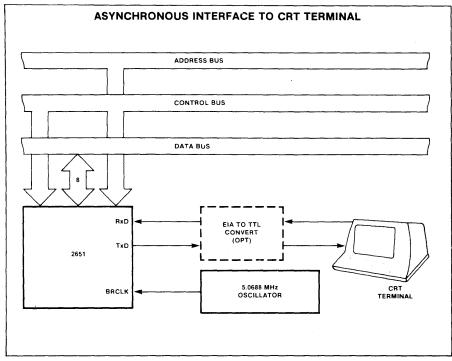


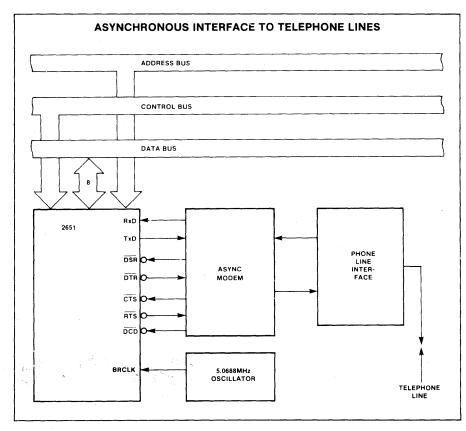

2651-1

2651

TIMING DIAGRAMS (Cont'd)

TIMING DIAGRAMS (Cont'd)

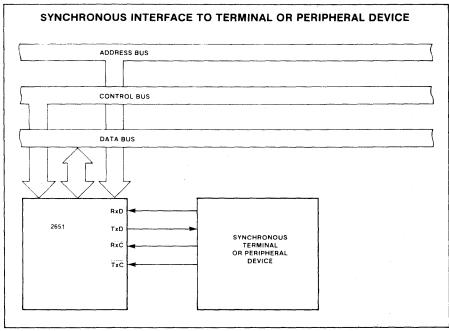


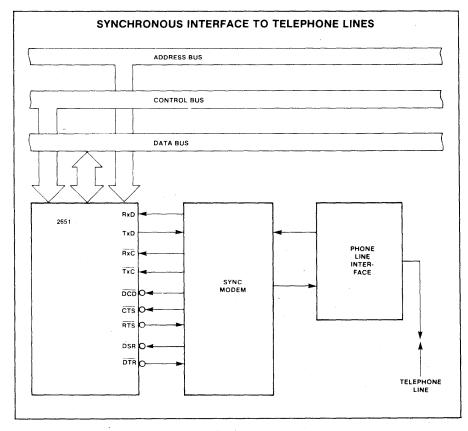

2651

2651-I

signetics

TYPICAL APPLICATIONS




2651-I

2651

signetics

TYPICAL APPLICATIONS (Cont'd)

Manufacturer reserves the right to make design and process changes and improvements.

a subsidiary of U.S. Philips Corporation

Signetics Corporation PO Box 9052 811 East Arques Avenue Sunnyvale California 94086 Telephorie 408/739-7700

2651

2651-1

as 121 m