
September 1988 Product Description

SPARCTM
MB86901 (S-25)
High Performance
32-Bit RIse Processor

FUJITSU

(
SPARCTM
MB86901 (S-25)
High Performance

--32-Bit RISC Processor--+--------

Fujitsu Limited

Fujitsu Microelectronics, Inc.

Fujitsu Mikroelektronik GmbH

Fujitsu Microelectronics Pacific Asia ltd.

Copyright © 1988 Fujitsu Limited and Fujitsu Microelectronics, Inc.

This publication contains information considered proprietary by Fujitsu
Limited and Fujitsu Microelectronics, Inc. No part of this document may be
copied or reproduced in any form or by any means or transferred to any third
party without the prior written consent of Fujitsu Microelectronics, Inc.

SPARC is a trademark of Sun Microsystems, Inc.

Product
Description

Copyright © 1988 Fujitsu Limited and Fujitsu Microelectronics, Inc.

All rights reserved.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Consequently,
complete information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be entirely accurate. However, Fujitsu
Limited and Fujitsu Microelectronics, Inc. assume no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and
owned by Fujitsu Limited or its subsidiaries.

Fujitsu Limited and its subsidiaries reserve the right to change products or specifications without notice.

This document is published by the marketing department of Fujitsu Microelectronics, Inc.'s Advanced Products Division, 50 Rio Robles,
Bldg. 3, San Jose, California, U.S.A. 95134-1804

Printed in the U.S.A.

SPARC is a trademark of Sun Microsystems, Inc.
VAX is a trademark of Digital Equipment Corp.

\

"--

/

''''-- /

11

FUJITSU

MB86901 11

Table of Contents

(1. Introduction•......•.......... 2 5. Trap and Exception Handling .•.•.••.•...• 31

2. CPU••.•.••...•• 2 5.1. Synchronous Traps 31

2.1. Instruction Pipeline 2
2.1.1. Fetch Stage 2
2.1.2. Decode Stage 2
2.1 .3. Execute Stage 4
2.1.4. Write Stage 4
2.1.5. Pipeline Examples 4
2.1.6. Delayed Control Transfers 5

5.2. Floating Point Traps 31
5.3. Asynchronous Traps 32
5.4. Trap Addressing 32
5.5. Trap Priorities 32
5.6. Trap Processing 32
5.7. Interrupt Detection 33
5.8. Trap Definitions 33

2.2. Execution Unit 7 6. Reset•.......•........... 34
2.3. Address Generation Unit 7
2.4. Address Space Organization 10
2.4.1. Processor Data Types 11
2.4.2. Addressing Conventions 11
2.5. Registers 12
2.5.1. Register File 12
2.5.1.1. Window Selection 14
2.5.1.2. Register Window Use 15
2.5.2. Special Purpose Registers 16
2.5.2.1. Processor State Register (PSR) 16
2.5.2.2. Window Invalid Mask Register (WIM) .18
2.5.2.3. Trap Base Register (TBR) 18
2.5.2.4. Y Register 18
2.5.3. Program Counters 18

7. Bus Signals•...... 34
7.1. System Interface40
7.1 .1. Basic Timing42
7.1.2. Basic Data Transfer Timing42
7.1.3. Cache Miss Timing49
7.1.4. Memory Exception Timing49
7.1.5. SpeCial Timing49
7.2. Floating Point Interface 62
7.2.1. FPOP Instruction Transfer Timing 62
7.2.2. FP Load And Store Timing 62
7.2.3. Cache Miss and Exception Timing 62
7.3. System Configuration 78

8. System Design Considerations 79

3. Instruction Set•....•. 19
3.1. Data Transfer Instructions 22

(8.1. Clock Generator 79
8.2. External Address Pipeline 79

3.1.1. Multiprocessor Support Instructions 23 9. Processor Specifications••••.. 80

3.2. Arithmetic/Logical/Shift Instructions 23 10. Errata ..•...•••..•...............•••.. 94
3.2.1. Add and Subtract 23
3.2.2. Tagged Add and Subtract 24
3.2.3. Multiply Step Instruction 24
3.2.4. Logical Instructions 25
3.2.5. Shift Instructions 25
3.2.6. Save and Restore Instructions 26
3.2.7. SETHI Instruction 26
3.3. Control Transfer Instructions 26
3.3.1. Branch on Integer Condition Instructions 27
3.3.2. CALL Instruction 27
3.3.3. Jump and Link Instruction 29
3.3.4. Trap on Integer Condition Codes 29
3.3.5. Return from Trap Instruction 29
3.4. ReadlWrite Control Register Instructions .30
3.4.1. Read State Register Instructions 30
3.4.2. Write State Register Instructions 30

4. Floating Point Operations .••...•••.•••... 31

11

FUJITSU

11I111111111 MB86901

List of Figures

Figure 2.1
Figure 2.2
Figure 2.3

Block Diagram 3
Pipeline Registers 3
Single-cycle Instruction Pipeline
Progression 4

Figure 2.4 Two-cycle Instruction Pipeline
Progression 5

Figure 2.4.1 Three-cycle Instruction Pipeline
Progression 6

Figure 2.4.2 Illustration of Register Interlock 6
Figure 2.4.3a Delay Instruction Executed

During Branch Taken (a=O) 8
Figure 2.4.3b Delay Instruction Annulled (a=1)

During Branch Not Taken 8
Figure 2.4.4 Instruction Fetch

Figure 2.4.5
Figure 2.5
Figure 2.5.1
Figure 2.6
Figure 2.7
Figure 2.7.1
Figure 2.8
Figure 3.1
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11
Figure 7.12

(Cache Miss) 9
Trap Handling in Pipeline 9
Data Types 10
Addressing Conventions 11
Programming Model 12
Register File with Windows 13
Register Windows 14
Program Counter Sequencing 18
Instruction Formats 22
Processor Signals 34
Basic Timing (Cache Hit) 43
Load (Cache Hit) 44
Store (Cache Hit) 45
Load Double Word (Cache Hit) ... 46
Store Double Word (Cache Hit) ... 47
Atomic Load-Store (Cache Hit) ... 48
Instruction Fetch (Cache Miss) 50
Load (Cache Miss) 51
Store (Cache Miss) 52
Load Double (Cache Miss) ... 53 (94)
Atomic Load-Store
(Cache Miss) 54

Figure 7.13 I nstruction Fetch Memory

Figure 7.14
Figure 7.15
Figure 7.16

Figure 7.17
Figure 7.18
Figure 7.19
Figure 7.20
Figure 7.21
Figure 7.22
Figure 7.23
Figure 7.24
Figure 7.25
Figure 7.26

Exception 55
Load Memory Exception 56
Store Memory Exception 57
Atomic Load-Store Memory
Exception 58
Bus Request 59
Error and Reset 60
Asynchronous Trap (Interrupt) 61
FPOP Instruction Transfer 63
FPOP Instruction Hold 64
FP Load (Cache Hit) 65
FP Store (Cache Hit) 66
FP Load Double (Cache Hit) 67
FP Store Double (Cache Hit) 68
FP Store (Hold and Cache Miss) .. 69

Figure 7.27
Figure 7.28
Figure 7.29

Figure 7.30
Figure 7.31
Figure 7.32

Figure 7.33

Figure 7.34
Figure 7.35
Figure 8.1
Figure 8.2
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5

Figure 9.6
Figure 9.7
Figure 9.8
Figure 9.9
Figure 9.10
Figure 9.11

Figure 9.12

Figure 9.13
Figure 9.14

FP Load Double (Cache Miss) 70
FP Store Double (Cache Miss) 71
FP Store Double (Hold and
Cache Miss) 72
FP Load Exceptions 73
FP Store Exceptions 74
FP Load Double Memory
Exception 75
FP Store Double Memory
Exception 76
FPOP Floating Point Exception ... 77
Basic System Configuration 78
Clock Circuit 79
External Address Pipeline 80
Signal AC Measurement Points ... 82
Clock AC Measurement Points 82
Clocks Timing Diagram 83
Address and Data Bus 84
Address, Data and Control
Tri-state 85
Control Signals, Output 86
Control Signals, Input 87
FP Bus, Output 88
FP Bus, Input 89
Signal Output Test Load 90
Maximum Output Delay vs.
Capacitance Loading 90
179-Lead Plastic Pin Grid Array
Package 91
Pin Assignment 92
MB86901 Pin Out by Pin Number .93

List of Tables

Table 3.1 Instruction Set by Function 19
Table 3.2 Instruction Set 20
Table 3.3 Integer Branch Conditions 28
Table 3.4 Integer Trap Conditions 28
Table 5.1 Trap Priorities and tt Assignments 32
Table 7.1 Bus Signal Descriptions 35
Table 9.1 Absolute Maximum Ratings 81
Table 9.2 Recommended Operating

Conditions .. ~ 81
Table 9.3 Capacitance & Termination 81
Table 9.4 AC Characteristics 83

(
111

FUJITSU

111

High Performance
32-Bit RISC Processor

SPARC™
MB86901

FEATURES

• Architecture supports scalability towards faster
technologies

• 15 times VAXTM 11/780 equivalent MIPS typical
performance

• 25 MHz (40 ns/cycle) operating frequency

• Single-cycle execution for majority of instructions

• Separate 32-bit address and data buses

• 120 registers organized into seven register
windows and eight global registers

• Load/store architecture

• 100 MBytes/sec. maximum memory bandwidth

• 256 alternate address spaces, each four
gigabytes

• Address presentation which supports high­
performance cache

• Three-operand instruction format

• Tagged operands which support AI

• Floating point interface

• Concurrent floating point operation with MB86911

• 4-stage instruction pipeline

• Delayed branch handling

• 179-pin plastic pin grid array packaging

• High-level language support

The Fujitsu MB86901 has been designed for speed. It is a high-performance, 32-bit RISC (Reduced Instruc­
tion Set Computer) processor which can be used in a wide variety of system applications including worksta­
tions, minicomputers, and real-time systems.

The MB86901 features a high-bandwidth, 32-bit bus interface with separate data and address buses, an op­
timized four-stage instruction pipeline, and an execution unit comprised of a CPU, a barrel shifter, two data
aligners, and a three-port register file consisting of 120 registers. A floating point interface supports concurrent
floating point instruction execution.

SPARC is a trademark of Sun Microsystems, Inc.
VAX is a trademark of Digital Equipment Corp.

11

FUJITSU

11 MB86901

1. Introduction

The Fujitsu MB86901 SPARC is a high-perform­
ance, 32-bit, RISC-architecture processor which ex­
ecutes with 25 MIPS peak, and 15 MIPS sustained
performance.

The MB86901 instruction set is streamlined and
hardwired for fast execution, with the majority of in­
structions executing in a single cycle. The processor
features a four-stage instruction pipeline which has
been designed to handle data interlocks, an op­
timized branch handler for efficient control transfers,
and a bus interface that supports single-cycle
memory accesses.

The processor execution unit consists of a three­
port ALU, a data aligner, and a barrel shifter. These
units provide fast arithmetic, logical, and shift opera­
tions. A separate Address Generation Unit calcu­
lates load/store and branch addresses, enhancing
processor performance by allowing the ALU to
operate concurrently on data.

An internal register file comprised of 120 registers
oiganized into seven windows minimizes accesses
to memory during procedure linkages and faCilitates
passing of parameters and assignment of variables.
By reducing external memory accesses with their in­
herent cycle overhead, the windowed register file
significantly improves SPARC throughput.

Separate data and address buses allow fast
memory and I/O accesses without the delay and de­
sign difficulties inherent in multiplexed buses. The
32-bit data bus supports single cycle data transfers.
The 32-bit address bus allows direct access to 4
gigabytes of address space. Timing of the address
presentation supports a high-performance cache. A
separate floating point port directly interfaces to the
MB86911 RISC Floating Point Controller which, to­
gether with the TI SN74ACT8847 floating point chip,
allows concurrent floating point instruction execu­
tion.

These features combine to give the MB86901 supe­
rior speed, power, and flexibility which can be easily
utilized by the deSigner of high performance sys­
tems.

2. CPU

The MB86901 processor is comprised of four pri­
mary functional units: the Control Unit, the Execu-

2

tion Unit, the Address Generation Unit, and the Reg­
ister File. These units are supported by various reg­
isters and interface logic, as shown in Figure 2.1.

Three software-accessible registers configure and
control operation of the processor. These are the
Processor State Register (PSR), the Window Invalid
Mask Register (WIM), and the Trap Base Register
(TBR).

A fourth software-accessible register, the Y register,
supports 32 x 32-bit multiplication with 64-bit result.

2.1. Instruction Pipeline

The MB86901 uses a four-stage instruction pipeline
to achieve an instruction execution rate approaching
one instruction per clock cycle. A "single cycle" in­
struction, i.e. one which occupies each stage of
the pipeline for only one clock cycle, does not
complete in one cycle. It enters the pipeline and
completes four cycles later. During these four cy­
cles, three more instructions may enter the pipeline.
Once the pipeline is full, it is possible for one (single
cycle) instruction to enter and one (single cycle) in­
struction to exit the pipeline every clock cycle. The
stages of the MB86901 instruction pipeline are the
Fetch Stage, the Decode Stage, the Execute Stage,
and the Write Stage. Each stage utilizes one or
more corresponding instruction registers, as shown
in Figure 2.2. It should be pOinted out that in the
most general sense, instruction decoding is not con­
fined exclusively to the Decode Stage-in each
stage of the pipeline, the processor determines how
the associated resources are to be utilized.

2.1.1. Fetch Stage

During the Fetch Stage, the processor outputs an
instruction address, inputs the instruction via the
data bus, and transfers it to the Instruction (Decode)
Register to be decoded. In the event that this regis­
ter cannot accept the instruction immediately be­
cause of a pipeline delay-possibly due to a
preceding multi-cycle instruction being executed­
the instruction is queued in the Instruction Buffer,
which holds instructions until pipeline forwarding
recommences. These buffer registers are used only
as necessary to keep the pipeline full and fully util­
ize the external bus bandwidth.

2.1.2. Decode Stage

During the Decode Stage, the processor computes (
the register file addresses of required source oper- ~ __

(

11

FUJITSU

MB86901 11

Figure 2.1 Block Diagram

D.

- ~

L Instruction Register
~ - ~ 120 x 32

'----
~ T ~~:1

Reg. File

Immediate

81~~ - ~rr I
Help Control J=: '--f.-.t -u... J

Instruction
A I

1 ~r ..1

, ALU +
Addr.Gen. y

ADR. I RA! \lIt I

t Special Reg.

ADR I ! ! ! !
I y II TBR II WIM II PSR I

t t • •
I np(I

I-----.
(PCs) lEW / Align /

IWP

t...

F.

•
W
I

Figure 2.2 Pipeline Registers

B1

Instruction Instruction
Buffer 1 Buffer 2

Decode
Register

Execute
Register

Help instructions
(Internal opcodes/lOPs)

Control

R I

w !
/ Shifter /

+
Bypass-1

Bypass-2

W 1----+

Write
Register

3

I

I.
j~

11

FUJITSU

11 MB86901

ands, reads the source operands from the register
file, and computes the next instruction address.
Source operands are available to the processor for
use during instruction execution.

2.1.3. Execute Stage

During the Execute Stage, arithmetic and logical
operations are performed, and the results are saved
in (the processor's) temporary registers. Integer
arithmetic, logical, and shift operations are executed
in the processor's integer ALU; floating point opera­
tions are executed in a separate floating point co­
processor.

2.1.4. Write Stage

During the Write Stage, the processor stores the
operation results in the destination register. This up­
date of the register file can occur only if no traps or
exceptions have occurred during execution. If in­
struction execution results in a trap, the write to the
register file is aborted.

Note that all operands are read from the processor
register file, and all execution results are written into
the register file. This Load/Store architecture, which

is characteristic of RISC processors in general, dic­
tates that data transfers between the processor and
memory occur only through the use of Load and
Store instructions.

2.1.5. Pipeline Examples

A peak instruction execution rate of one instruction
per cycle is achieved by the processor when a
sequence of single-cycle instructions-those which
occupy each pipeline stage for only one clock cycle
(see Table 3.2)-passes through the pipeline.

Figure 2.3 shows single-cycle instructions, none of
which require memory access, moving through the
instruction pipeline. Each instruction passes through
each of the four pipeline stages in one cycle. Note
that the instructions are fetched during consecutive
clock cycles.

Multiple-cycle instructions and instructions which
access memory require more than four cycles to
pass through the pipeline. Figure 2.4 shows a pipe­
line example in which the first instruction, a 2-cycle
Load instruction fetched during clock cycle #1, re­
quires one extra cycle to complete. Extra cycles are

Figure 2.3 Single-cycle Instruction Pipeline Progression

CLOCK CYCLE

1 2 3 4 5 6 7

Fetch Decode Execute Write
n n n n

Fetch Decode Execute Write
n + 1 n + 1 n + 1 n + 1

Fetch Decode Execute Write
n + 2 n + 2 n + 2 n + 2

Fetch Decode Execute Write
n + 3 n + 3 n + 3 n + 3

4

(

(

required when the processor needs to use the bus
for something other than fetching the next instruc­
tion. These extra cycles of multi-cycle instructions
are actually generated by internal opcodes (lOPs)
which are inserted into the pipeline as needed (see
Figure 2.4.1 in which a store instruction requires 2
extra cycles). A two-stage Instruction Buffer is used
to hold instructions prior to decoding, so that the
processor may continue to fetch additional instruc­
tions while internal opcodes are injected into the
pipeline (see Figure 2.2). Only two stages are re­
quired because a maximum of two extra cycles will
elapse between the issue of a multicycle instruction
and the presentation of an address for bus access.

With pipelined execution, it is possible that an in­
struction may try to use the contents cif a register
that is in the process of being updated by a previous
instruction. Special bypass paths in the MB86901
make the correct data available to following instruc­
tions for all internal register to register operations

11

FUJITSU

MB86901 11

(see Figure 2.1), but do not solve the problem for
loads to the registers from external memory. Inter­
lock hardware prevents an instruction following a
Load instruction from reading the register being
loaded until the load is complete. This is accom­
plished by the processor generating a one-cycle
delay as shown in Figure 2.4.2.

While this operation is transparent to software, com­
pilers and assembly language programmers should
avoid Loads followed immediately by instructions
using the register contents.

2.1.6. Delayed Control Transfers

Instructions are fetched and executed from sequen­
tial memory locations until a control transfer occurs.
A control transfer results from execution of a
Branch, Jump, Call, or Return From Trap instruction
or from a trap.

Figure 2.4 Two-cycle Instruction Pipeline Progression

CLOCK CYCLE

1 2 3 4 5 6 7 8

Fetch Decode Execute Write Load Instruction
n n n n

Fetch Decode Execute Write
n + 1 Help Inst.1 Help Inst.1 Help Inst.1

n n n

Fetch Decode Execute Write
n + 2 n + 1 n + 1 n + 1

Load Decode Execute Write
DATA n + 2 n + 2 n + 2

Fetch Decode Execute Write
n + 3 n + 3 n + 3 n + 3

5

I·
I

I'

I

I

I

,
~

11

FUJITSU

11 MB86901

Figure 2.4.1 Three-cycle Instruction Pipeline Progression

C
CLOCK CYCLE

1 2 3 4 5 6 7 8 9

Fetch Decode Execute Write Store Instruction
n n n n

Fetch Decode Execute Write
n + 1 Help Inst.1 Help Inst.1 Help Inst.1

n n n

Fetch Decode Execute Write

n + 2 Help Inst.2 Help Inst.2 Help Inst.2
n n n

Tag Check Decode Execute Write
n + 1 n + 1 n + 1

Store Decode Execute Write
DATA n + 2 n + 2 n + 2

Fetch Decode Execute Write
n + 3 n + 3 n + 3 n + 3

Figure 2.4.2 Illustration of Register Interlock

CLOCK CYCLE

1 2 3 4 5 6 7 8 9

Fetch Decode Execute Write Load Instruction
n n n n

Fetch Decode Execute Write
n + 1 Help Inst.1 Help Inst.1 HelPdnst.1 n n

Fetch Decode Execute Write Register Read
n + 2 n + 1 (n + 1)x (n + 1)x

Data
Decode Execute Write

n + 1 n + 1 n + 1

Data Decode Execute Write
n + 2 n + 2 n + 2

Fetch Decode Execute Write
n + 3 n + 3 n+3 n + 3

X null =

6

(

(

(

Traditional processors execute the first instruction of
a branch target immediately after executing the in­
struction which causes the transfer. However, this
method of control transfer is not very efficient in
pipelined RISC architectures, since instructions
which are in the pipeline when a control transfer oc­
curs must be "flushed". Thus, instructions which
have been fetched after a control transfer instruction
would normally be discarded, and the pipeline "re­
filled" with instructions from the branch target-re­
sulting in wasted cycles.

The MB86901, however, optimizes instruction pipe­
line utilization by providing delayed control transfer
for the Branch, Call, Jump and Link, and Return
From Trap instructions. The processor always
fetches the instruction, called a delay instruction,
which follows a delayed control transfer instruction.
This delayed branch instruction feature of the
MB86901 allows branches (whether taken or not) to
occur without causing any flushes of the pipeline as
shown in Figure 2.4.3a. If the compiler or program­
mer cannot place an appropriate instruction-Leo
one which is suitable whether the branch is taken or
not-in the delay slot, the instruction fetched may
be annulled as shown in Figure 2.4.3b. (See discus­
sion of Annul Bit under Section 3.3.1.) Figure 2.8 in
Section 2.5.3 shows an example of delay instruction
execution.

Whenever the processor pipeline is frozen as the re­
sult of an externally generated hold input such as
MHOLD or BHOLD, the pipeline stalls in the ex­
ecute phase of the instruction which caused the
hold as shown in Figure 2.4.4.

Pending traps, either synchronous or asynchronous,
are prioritized and taken during the write phase of
each instruction as shown in Figure 2.4.5. Instruc­
tions in the pipeline are annulled following the in­
struction which trapped.

2.2. Execution Unit

The MB86901 Execution Unit includes a fast, 32-bit
carry-look-ahead integer Arithmetic Logic Unit
(ALU), a 32-bit barrel shifter, and a Data Aligner as
shown in Figure 2.1.

The ALU executes all processor arithmetic and logic
operations in one cycle, and sets the processor In­
teger Condition Code flags (icc<23:20> in the Pro-

11

FUJITSU

MB86901 11

cessor State Register, see Section 2.5.2.1) accord­
ing to operation results. It has two input ports, and
one output port.

The ALU receives inputs from the A and B Operand
registers. By means of multiplexers, these registers
may receive source operands from the register file
or pipeline bypasses or instruction immediate oper­
ands from instruction pipeline registers. The ALU re­
sult is captured in the Result register, from which
data is transferred to the register file via the Data
Aligner.

Two data bypasses are used to handle data de­
pendencies between consecutive instructions (see
Figure 2.1).

One bypass transfers the output of the ALU directly
to the Operand registers, bypassing the Result reg­
ister. This bypass is used when a source operand of
an instruction depends on the result of the previous
instruction.

The second bypass transfers the output of the Re­
sult register directly to the Operand registers. This
bypass is used when an instruction source operand
depends on the result of the instruction two cycles
previous.

The Data Aligner is used during Load instruction ex­
ecution to align bytes and halfwords transferred to
the register file.

Closely related to the ALU is the barrel shifter which
shifts, in one cycle, 32-bit data by the count
specified by instructions, and is used during Store
instruction execution to align bytes and halfwords
transferred to the system data bus.

2.3. Address Generation Unit

The Address Generation Unit contains logic which
calculates addresses according to instruction format
and address mode selection, relieving the integer
ALU of the task. The unit calculates addresses util­
izing instruction displacement data for Format 1 in­
structions, immediate data for Format 2a in­
structions, displacement data for Format 2b instruc­
tions, register file data or register file and immediate
data, respectively, for Format 3a and Format 3b in­
structions, and Trap Base Register data for trap
address calculation (see Section 3 for a detailed dis­
cussion of Instruction Formats).

7

11

FUJITSU

11 MB86901

1

Fetch
n

1

Fetch
n

8

. Figure 2.4.3a Delay Instruction Executed During Branch Taken (a=O)

CLOCK CYCLE

2 3 4 5 6 7 8

Decode Execute Write Branch Instru ction
n n n

Fetch Decode Execute Write
Delay Instruct n + 1 n + 1 n + 1 n + 1 ion

(
\
"---/

Fetch Decode Execute Write
First Instructi t t t t on of Target

Fetch Decode Execute Write
t + 1 t + 1 t + 1 t + 1

Fetch Decode Execute Write
t + 2 t + 2 t + 2 t + 2

Figure 2.4.3b Delay Instruction Annulled (a=1) During Branch Not Taken

CLOCK CYCLE

2 3 4 5 6 7 8

Decode Execute Write Branch Instr uction
n n n

Fetch Decode Execute Write
Annulled Del n + 1 n + 1 n + 1 n + 1 Annulled Annulled Annulled

ay Instruction

Fetch Decode Execute Write
First Instructi t t t t

Annulled Annulled Annulled
on of Target

Fetch Decode Execute Write
n + 2 n + 2 n + 2 n + 2

Fetch Decode Execute Write
n + 3 n + 3 n + 3 n + 3

11

FUJITSU

MB86901 11

(
Figure 2.4.4 Instruction Fetch (Cache Miss)

CLOCK CYCLE

1 2 3 4 5 6 7 8

Fetch Decode Execute Write Cache Miss In struction
n nx nx nx

Fetch Decode Execute Write
x nx nx nx

Fetch Decode Execute Write
x nx nx nx

Fetch Decode Execute Write
-- Carr n n n n ect Instruction

Fetch Decode Execute Write

I I n + 1 n + 1 n + 1 n + 1

External Hold

x:::: null

Figure 2.4.5 Trap Handling in Pipeline

CLOCK CYCLE

1 2 3 4 5 6 7 8

TRAP

Fetch Decode Execute Write
n Instruct ion Annulled

n n n Annulled

Fetch Decode Execute Write
n + 1 n + 1 n + 1 n + 1 Instruct Annulled Annulled ion Annulled

Fetch Decode Execute Write

n + 2
n + 2 n + 2 n + 2 Instruct

Annulled Annulled Annulled
ion Annulled

Fetch Decode Execute Write
An +JlrArl A~I1~II~rl Ar:,~1 J~Arl A~n;"rArl - Instruct ,nmJ ion Annulled

First Instruction at Fetch Decode Execute Write • tt tt tt tt Tra Tar et p g

9

11

FUJITSU

11 MB86901

Included in the Address Generation Unit are four
program counter registers. Two of the registers, The
Program Counter and Next Program Counter regis­
ters, are saved during trap servicing to allow re­
sumption of program execution after traps are
serviced.

2.4. Address Space Organization

The MB86901 processor is capable of supporting up
to 256 address spaces of 4 gigabytes each. The ex­
ternal system distinguishes these spaces by means
of an address space identifier (asi) generated by the

processor. These spaces can include system control
registers, main memory, etc. The SPARC architec­
ture defines four address spaces and their asi
values as follows:

Address Space
Identifier (asl) Address Space

00001000
00001001
00001010
00001011

User Instruction
Supervisor Instruction
User Data
Supervisor Data

Figure 2.5 Data Types

10

Byte

Unsigned Byte

Halfword

Unsigned Halfword

Word

Unsigned Word

Double Word

Single Precision
Floating Point

Double Precision
Floating Point

Extended Precision
Floating Point

7 6
151
7
I

15 14
lsi

15
I

31 30
I § I

31
I

31

{' 31

I
31 30

Is I
31 30

{lSI 31
I

31 30
151

31 30
I j I

31
I

31

I

0
I

0
I

0
I

0
I

0
I

0
I

0
I

0
I

23 22 0
exponent I fraction I

20 19 0
exponent I fraction· msb I

0
fraction· Isb I

16 15 0
exponent I reserved I

0
fraction· msb I

0
fraction· Isb I

0
reserved I / "

~

(
These four asi values indicate to the external sys­
tem whether the processor is in user or supervisor
mode, as indicated by the Processor State Register
(see Section 2.5.2.1), and whether the access is an
instruction or data reference. Load/store instructions
normally generate an asi of either 00001010 (user
mode) or 00001011 (supervisor mode) for data
access. However, load from alternate space and
store into alternate space instructions, which are
privileged instructions executable only in supervisor
mode, use the asi value supplied by the instruction
itself (see Section 3.1). This asi value may be one of
the remaining 252 which are implementation defi­
nable.

Address spaces are selected by the ASk7:0> bus
interface signals as follows:

ASI<7:0>

0-7
8
9
10
11

12-255

Address Space

Implementation Definable
User Instruction Space
Supervisor Instruction Space
User Data Space
Supervisor Data Space
Implementation Definable

2.4.1. Processor Data Types

The MB86901 processor supports seven integer
and three ANSI/IEEE 754-1985 standard floating
point data types, as shown in Figure 2.5. The in­
teger data types include byte, unsigned byte, half­
word, unsigned halfword, word, unsigned word, and
double word. Floating point types include single,
double, and extended precision.

The floating point double type includes two sub­
fields: 1) the double-e, which contains the sign, ex­
ponent, and high-order fraction, and 2) the
double-f, which includes the low order fraction. The
floating pOint extended type includes four subfields:
1) the extended-e, which contains the sign and ex­
ponent, 2) the extended-f, which contains the in­
teger part of the mantissa, and the high order part of
the fraction, 3) the extended-f-Iow, which contains
the low-order fraction, and 4) the extended-u, which
is unused.

Tagged data for arithmetic operations on dynami­
cally allocated variables is also supported. This type
of data is useful in Lisp and Smalltalk programming
environments.

11

FUJITSU

MB86901 11

2.4.2. Addressing Conventions

Load and store instructions follow the big end ian ad­
dressing convention:

Bytes
For load and store byte instructions, increasing
the address means decreasing the significance of
the byte within the word. The most significant
byte (MSB) of a word is accessed when address
bits <1 :0> = 0, and the least significant byte is
accessed when <1 :0> = 3.

Halfwords
For load and store halfword instructions, the most
significant halfword is accessed when address bit
<1> = 0, and the least significant halfword is
accessed when <1> = 1.

Doublewords
For load and store doubleword instructions, the
most significant word is accessed when address
bit <2> = 0, and the least significant word is
accessed when <2> = 1.

In general, the address of a doubleword, word, or
halfword is the address of its most significant byte. A
doubleword datum is located at a doubleword
address, which must be evenly divisible by eight. A
word datum is located at a word address, which
must be evenly divisible by four. A halfword datum is
located at a halfword address, which must be evenly
divisible by two. If a doubleword, word, or halfword
load or store instruction generates an improperly
aligned address, a "memory address not aligned"
trap occurs.

Figure 2.5.1 Addressing Conventions

By'"

addreMc1:(b. a 2

17 + + 017 01
Msa Lsa

HolIWord.

.dd b r"11-5 --o---o,...b5----~01

Word

131 o I

D_
addreNc2:!..

~I: ~I

11

11

FUJITSU

11 MB86901

2.5. Registers

The MB86901 (IU) features two types of registers:
working registers (called r registers), which are
used for normal operations, and control/status regis­
ters, which keep track of and control the state of the
IU. All r registers are 32 bits wide. They are divided
i~to eight global registers and a number of overlap­
ping blocks called windows. Each window contains
24 registers. Because of the overlap, 16 registers
are counted for each window. Therefore, with 7 win­
dows and eight global registers, the MB86901 has a
total of 120 working registers.

The IU's control/status registers are all 32-bit
read/write registers unless specified otherwise.
They include the program counters (PC and nPC),
the Processor State Register (PSR), the Window In­
valid Mask Register (WIM), the Trap Base Register
~TBR), and the multiply-step (Y) register. These reg­
Isters are discussed in detail in Section 2.5.2, and
are shown in Figure 2.6.

12

2.5.1. Register File

The MB86901 register file contains 120, 32-bit reg­
isters.

Figure 2.6 Programming Model

31 28 27 24 23 20 19 14 13 12 11 8 7 6 S 4 0

I impl I ver I Icc I res I EC I EF I PIL I siPS I ET I CWP I
Processor State Register

31 7 6 S 4 3 2 1 0

I reserved I w61 Wsl W41 w31 W21 w1 I wo I
Window Invalid Mask Register

31 12 11 4 3 0

TBA tt I Null I
Trap Base Register

31 o

Y Register

31 o

112 Stack Registers

r7
8 Global Registers

~ __________________________________ --JrO

Register File

(

C

('

Eight of the registers, rO-r7, are global general-pur­
pose registers which are accessible at all times. 112
of the registers are grouped into seven windows
which overlap to form a circular stack, with only one
window, the active window, accessible at any time.

Figures 2.7 and 2.7.1 show a representation of the
register windows, which are numbered contiguously
from 0 to 6. In general, the number of windows
(NWINDOWS) could range from 2 to 32, depending
on the implementation. Implemented windows must
be numbered contiguously from 0 to NWINDOWS-
1. The windows are addressed by the CWP (Current
Window Pointer), a field of the Processor State Reg-

11

FUJITSU

MB86901 11

ister. The active window is defined as the one cur­
rently pOinted to by the CWP. At most 6 (NWIN­
DOWS - 1, in general) are available to user code
since one window must be available for trap han­
dlers.

At any given time, there are 32 working registers
available to a given process. Registers rO-r7 are
global registers which are equally available from all
windows. The active window provides an additional
24 registers designated rS-r31. These registers are
segmented into OUT registers (r8-r15), LOCAL reg­
isters (r16-r23), and IN registers (r24-r31).

Figure 2.7 Register File with Windows

IN
r31 r1S

r24 r8
OUT } WO

r23
W6 LOCAL

r16
r15 r31

OUT IN
r8 r24

r23
LOCAL W5

r16
r31 r15

IN OUT
r24 r8
r23

W4 LOCAL
r16
r15 r31

OUT IN
ra r24

r23
LOCAL W3

r16
r31 r15

IN OUT
r24 ra
r23

W2 LOCAL
r16
r15 r31

OUT IN
r8 r24

r23
LOCAL W1

r16

{ IN
WO

LOCAL

r31 r15

r24 ra
r23

r16

OUT

Global { Registers I:

13

11

FUJITSU

11 MB86901

The LOCAL registers are unique to each window.
The IN and OUT registers, however, are shared be­
tween adjacent windows. The OUTS from a pre­
vious window (CWP + 1) are the INS of the active
(current) window, and the OUTS from the active win­
dow are the INS of the next window (CWP -1). The
windows are joined together in a circular stack,
where the highest numbered window is adjacent to
the lowest: the INS of window 6 are the OUTS of
window O.

The number of registers in the IN, LOCAL, and OUT
window segments may be varied by software con­
vention, but the total number of registers in the win-

dow may not exceed 24. The number of IN or OUT
registers must be no greater than eight, and the
number of IN and OUT registers must be equal. For
instance, rS-r12 can be designated OUT registers,
r13-r26 can be designated LOCAL registers, and
r27-r31 can be designated IN registers for a total of
5 OUT registers, 14 LOCAL registers, and 5 IN reg­
isters.

2.5.1.1. Window Selection

The CWP field (bits <4:0» of the Processor State
Register (see Section 2.5.2.1) acts as a pOinter to
the active window. This field is written with the
WRPSR (Write Processor State Register) instruc-

Figure 2.7.1 Register Windows

Trap Registers

14

WIM
(Oldest Window)

\.

(

(

tion, is decremented by the SAVE instruction, and is
incremented by the RESTORE and RETT (Return
From Trap) instructions. The CWP cannot point to
an unimplemented window; therefore arithmetic
done on the CWP is done modulo the number of im­
plemented windows (7 for the MB86901, NWIN­
DOWS in general). The WRPSR instruction does
not write the PSR and causes an "illegal instruction"
trap if the result would cause the CWP field to point
to an unimplemented window.

The Window Invalid Mask (WIM) Register is a regis­
ter which, under software control, detects the occur­
rence of IU register file overflows and underflows.
This register is further described in Section 2.5.2.2.

2.5.1.2. Register Window Use

In a conventional, non-windowed architecture, there
is significant overhead associated with procedure
call linkage. This overhead is the time and bus traf­
fic required to save register contents and transfer
parameters on entry to a procedure and to restore
previous register contents and transfer results on re­
turn from the called procedure.

In the windowed architecture of the MB86901, the
general registers visible to the user are a "window"
into the larger register file. A procedure linkage
mechanism can effectively "save" local variables in
registers by simply moving the "window" to a fresh
set of registers for the called procedure. This is ac­
complished by decrementing the CWP. Similarly, the
previous register contents can be restored by
changing the window pOinter to indicate the original
window. Since only a pOinter is changed to bring
about save and restore operations, procedure link­
age overhead is greatly reduced.

Because the processor logically provides new locals
and outs after every procedure call, register local
values need not be saved and restored across calls.
For instance, the local variables of a procedure in
window "n" remain unaltered during trap servicing
because the trap service routine uses window "n-1",
with its own set of local registers. Once trap servic­
ing is complete and the Return From Trap instruc­
tion is executed, the procedure continues with
window "n" active again and containing the unal­
tered local values.

The overlapping registers also minimize the over­
head of passing and returning parameters. In pre­
paration for a call, a procedure can move para-

11

FUJITSU

MB86901 11

meters required by the called routine into the cal­
ler's OUT registers. After the CALL, the CWP is
decremented with the SAVE instruction, and what
was the "next" window becomes the active window
with the parameters directly accessible to the called
routine in its IN registers, Since the OUT registers of
the caller's register window are the IN registers of
the called routine's register window.

Likewise, in preparing for a procedure return, the
called routine can then move its results into its IN
registers. After the CWP is incremented via the RE­
STORE instruction what was the "previous" window
becomes the active window once again with the re­
sults available to the calling procedure, since the IN
registers of the called routine's register window be­
come the OUT registers of the calling procedure's
register window. Note that the terms IN and OUT
are defined relative to calling, not returning.

Window Overflow/Underflow

Since only a finite number of register windows are
available, the register file can fill if the number of
procedure calls exceeds the number of procedure
returns by 6 (NWINDOWS - 1, in general). A sub­
sequent call results in a Window Overflow trap (see
Table 5.1). The overflow trap service routine must
move one or more windows from the register file to
memory (IN and LOCAL registers only) to release
register window(s) for use.

Similarly, the register file can become empty if the
number of procedure returns exceeds the number of
calls by 6 (NWINDOWS - 1, in general). A sub­
sequent return results in a Window Underflow trap.
The underflow trap service routine can move pre­
viously saved windows from memory into the regis­
ter file.

The SAVE instruction automatically checks for win­
dow overflow, and the RESTORE instruction auto­
matically checks for window underflow according to
the contents of the Window Invalid Mask Register.
The Window Invalid Mask Register and its as­
sociated traps are further discussed in Section
2.5.2.2.

The representation of the register windows in Figure
2.7.1 illustrates the seven windows. Assume W6 is
the oldest window, and WO is the newest and corre­
sponds to a procedure that attempted to execute a
SAVE instruction and generated a window-overflow

15

11

FUJITSU

11 MB86901

trap. The trap handler cannot use W6's ins or W1 's
outs, but it is always guaranteed WO's locals.

Dedicated Register File Registers

Several registers have special uses which must be
considered when using the register file.

If global register rO is addressed as a source oper­
and (rs1 or rs2 = 0), the operand value of 0 is re­
turned. If rO is addressed as a destination operand
(rd = 0), no register is modified (see Instruction For­
mats, Section 3.1, for operand addressing descrip­
tions). The rO register is therefore a convenient
source of 0 value for software, and a convenient
destination register for instructions which are ex­
ecuted for condition code results only.

When a CALL instruction is executed, the current
value of PC, which pOints to the CALL itself, is
saved in Register 15 (r15) of the active window prior
to the transfer of control to the CALL target. The
called routine returns by a Jump and Link (JMPL) in­
struction (see Section 3.3.3) to the value in r15, plus
an offset to account for the CALL and its delay in­
struction. In other words, the typical return address
is the value in r15 plus 8. Note that the called
routine must not use r15 without first saving the re­
turn address contained within.

Each trap saves the program counters (PC and
nPC) into registers r17 and r18, respectively, of the
"next" window for use in returning from the traps.
These registers must therefore not be used by the
trap service routines unless they are first saved in
memory.

2.5.2. Special Purpose Registers

The MB86901 has four 32-bit, read/write registers
which are used for special purposes. The Processor
State Register (PSR), the Window Invalid Mask reg­
ister (WIM), and the TRAP Base Register (TBR), are
control/status registers. The fourth register, the Y
register, is used during multiplication to create 64-bit
products.

2.5.2.1. Processor State Register (PSR)

The Processor State Register is the primary proces­
sor control and status register. It contains 11 mode
and status fields which configure the processor and
report processor status and execution results. The
mode fields, shown in upper case in the following
PSR register diagram, are set by the operating sys­
tem to configure the processor. The status fields,
shown in lower case, are set by the processor to in­
dicate effects of instruction execution.

The PSR, with the exception of several fields de­
scribed below, is written and read directly with the
privileged WRPSR (Write PSR) and RDPSR (Read
PSR) instructions. It is modified by the SAVE, RE­
STORE, Ticc,and RETT instructions, as well as in­
structions which affect the Integer Condition Code
(icc) flags-bits <23:20>.

The PSR fields and their respective bits are:

Impl<31 :28>: Implementation
This field identifies the implementation number of
the processor; it is hardwired to 0 in the MB86901
processor.

ver<27:24>: Version Number
This field identifies the processor version, and is in­
tended for factory use. This field is hardwired to 0 in
the MB86901 processor and can be read, but can­
not be written.

Icc<23:20>: Integer Condition Codes
This field contains the negative (n), zero (z), over­
flow (v), and carry (c) integer condition code flags.
These bits are modified by the WRPSR instruction,
and by arithmetic and logical instructions whose
names end with the letters cc (for example, ANDcc).
The Bicc and Ticc instructions base their control
transfers on these bits, which are defined as fol­
lows:

31 28 27 24 23 20 19 14 13 12 11 8 7 6 5 4 o
Impl

Icc
reserved EC EF PIL S PS ET CWP ver

nlzlvlc

Processor State Register (PSR)

16

(

(

n<23> -Set equal to 1 if the ALU result was
negative for the last instruction that modified the
icc field; equal to 0 otherwise.

z<22> -Set equal to 1 if the ALU result was zero
for the last instruction that modified the icc field;
equal to 0 otherwise.

v<21> -If this bit equals 1, an arithmetic over­
flow occurred during the last instruction that
modified the icc field; equal to 0 otherwise. Logi­
cal instructions that modify the icc field always
set the overflow bit equal to O.

c<20> -If this bit equals 1, either an arithmetic
carry out of bit 31 occurred as the result of the
last addition that modified the icc, or a borrow
into bit 31 occurred as the result of the last sub­
traction that modified the icc; equal to 0
otherwise. Logical operations that modify the icc
field always set the carry bit to O.

reserved<19:13>: Reserved Field
This field is reserved and should only be written to 0
with the WRPSR instruction.

EC: Enable Coprocessor
This bit determines whether the coprocessor is
enabled or disabled. 1 = enabled, 0 = disabled.

EF: Enable Floating Point Unit
This bit determines whether the floating point unit is
enabled, or disabled. 1 = enabled, 0 = disabled.

If the FPU is either disabled, or enabled and not
present, an FPop, FPfcc, or floating point load/store
instruction causes an fp disabled trap. Similarly, if
the coprocessor (CP) is either disabled, or enabled
and not present, a CPop, CPccc, or coprocessor
load/store instruction causes a cp disabled trap.

When the FPU (or CP) is disabled, it retains its state
until it is reenabled or reset. When disabled, the
FPU can continue to execute instructions in its
queue. The CP can also, if it has a queue.

When the FPU is present, software can use the EF
bit to determine whether a particular process uses
the FPU. If a process does not use the FPU, the
FPU's registers need not be saved and restored
across context switches. Also, if the FPU is not pre­
sent, (as indicated by the bp_FPUJ)resent signal),
the fp disabled trap can be used to emulate the

11

FUJITSU

MB86901 11

floating point instruction set. (This also applies to
the coprocessor.)

PIL<11 :8>: Processor Interrupt Level
This field identifies the processor interrupt level,
with the processor accepting only interrupts with
level 15 (non-maskable interrupts), or with levels
higher than the value in the PIL field (maskable in­
terrupts). Bit 11 is the most significant bit, and bit 8
is the least significant bit.

S<7>: Supervisor Mode
This mode bit determines whether the processor is
in supervisor or user mode: when S = 1, the proces­
sor is in supervisor mode.

Note that because the instructions to write the PSR
are available only in supervisor mode, the supervi­
sor mode can be entered from only by hardware
reset, or by a software or hardware trap.

PS<6>: Prior S State
The PS bit records the state of the S bit when each
trap is entered so that the processor can return from
the trap in the proper supervisor or user mode.

Processor hardware changes the PS bit to the state
of the S bit when entering a trap, then changes the
S bit to the state of the PS bit when returning from
the trap.

ET<5>: Enable Traps
Traps are enabled when ET = 1. When ET = 0, traps
are disabled and all asynchronous traps (interrupts)
are ignored. Synchronous traps and floating
point/coprocessor traps cause the IU to halt and
enter error mode (see ERROR description, Table
7.1).

CWP<4:0>: Current Window Pointer
The CWP field points to the register window which
is currently active. CWP is written and read with the
WRPSR and RDPSR instructions, is decremented
by traps and the SAVE instruction, and is incre­
mented by the RESTORE and RETT instructions.
The CWP cannot point to an unimplemented win­
dow. Attempting to write a value to the CWP field
which pOints to an unimplemented window results in
an "illegal instruction" error. Therefore, arithmetic
done on the CWP is done modulo 7 to ensure that it
always pOints to one of the seven implemented win­
dows.

17

11

FUJITSU

11 MB86901

31 76543210

I reserved

Window Invalid Mask Register (WIM)

31 12 11 4 3 0

I TBA H

Trap Base Register (TRB)

2.5.2.2. Window Invalid Mask Register (WIM)

The WIM register contains seven register window
mask bits, each of which corresponds to an imple­
mented register window. If a SAVE, RESTORE, or
RETT would cause the CWP to point to a window
whose corresponding WIM bit equals 1, it causes a
Window Overflow (SAVE) or Window Underflow
(RESTORE, RETT) trap.

The WIM register can be written with the WRWIM
instruction, and the register can be read with the
RDWIM instruction. Bits corresponding to unimple­
mented windows are read as zeroes, and values
written to unimplemented bits are ignored.

The WIM provides the following fields:

reserved<31 :7>: Reserved Field
This field is reserved for potential future expansion
to additional windows.

W6·WO<6:0>: Window Masks
Each of these bits is a register window mask bit,
with WO the mask bit for Window 0, W1 the mask bit
for Window 1, etc.

2.5.2.3. Trap Base Register (TBR)

The Trap Base Register contains three fields which
generate the address of the trap handler when a
trap occurs. These are:

TBA<31 :12>: Trap Base Address
The TBA field contains the base address of the Trap
Dispatch Table, which is controlled by software. The
most significant 20 bits of the trap table base
address are written into the TBA field with the
WRTBR instruction. Note that the reset trap is an
exception; it traps to address O.

18

tt<11:4>: Trap Type
Each trap is identified by a unique 8-bit trap type
number. The processor writes the appropriate trap
type number into the tt field of the TBR when it rec­
ognizes a trap, then uses the number as an offset
into the Trap Dispatch Table. The tt field remains un­
changed until the next trap occurs. The WRTBR in­
struction does not affect the tt field.

null<3:0>: Null Field
This field is hardwired to 0 to force word access in
the Trap Dispatch Table. The WRTBR instruction
does not affect this field.

The entire TBR register can be read with the
RDTBR instruction. Use of the TBR is further de­
scribed in Section 5.4, Trap Addressing.

2.5.2.4. Y Register

The multiply step instruction (MULScc) uses the 32-
bit Y register to generate 64-bit products. Use of the
Y register is further described in Section 3.2.3.

The Y register can be written with the WRY instruc­
tion, and read with the ROY instruction.

2.5.3. Program Counters

Two registers, the Program Counter (PC) and the
Next Program Counter (nPC), are used by the pro­
cessor for instruction addressing.

Figure 2.8 Program Counter Sequencing

PC NPC Instruction

8 12 Load
12 16 Branch To 40
16 40 Store
40 44 Add

(
The PC register contains the word address of the in­
struction currently being executed by the IU, and the
nPC register contains the word address of the next
instruction to be executed, assuming a trap does not
occur. In delayed control transfers (see Section 3.3),
the instruction that immediately follows a control
transfer (the delay instruction) may be executed
before control is transferred to the target. The nPC
is necessary to implement this feature. Most instruc­
tions complete by copying the contents of the nPC
into the PC, then either increment nPC by 4, or, if
the instruction implies a control transfer, write the
computed target address into nPC. The PC now
points to the instruction which will be executed next,
and the nPC points to the instruction which will be
executed after the next one; in other words, two in­
structions hence.

Figure 2.8 shows PC and NPC changes during in­
struction execution. Note that the delay instruction is
executed before the control transfer occurs.

The PC and NPC registers cannot be directly written
or read.

3. Instruction Set

The Fujitsu MB86901 instruction set is comprised of
66 basic instructions which are categorized into four
main functional groups as shown in Table 3.1.

Mnemonics for the complete MB86901 instruction
set may be obtained from the above table of basic
instructions by forming all possible combinations of
boldface letters. For example, the complete set of
load instructions is:

lOSB
lOSBA
lOSH
lOSHA
lOUB
lOUBA
lOUH
lOUHA
lO
lOA
lOO
lODA

load Sig ned Byte
load Signed Byte from Alternate space
load Signed Halfword
load Signed Halfword from Alternate space
load Unsigned Byte
load Unsigned Byte from Alternate space
load Unsigned Halfword
load Unsigned Halfword from Alternate space
load word
load word from Alternate space
load Ooubleword
load Ooubleword from Alternate space

11

FUJITSU

MB86901 11

Table 3.1 Instruction Functional Groups

DATA TRANSFER:
LoaD Signed Byte

Unsigned Halfword

LoaD word
Doubleword

STore Byte
Halfword
word
Doubleword

atomic SWAP word
atomic Load-Store Unsigned Byte

ARITHMETIC/LOGICAUSHIFT:
ADD
SUB

AND
OR
XOR

Shift Left Logical
Shift Right Logical
Shift Right Arithmetic

normal
eXtended

normal
Not

Tagged ADD set CC normal

normal
Alternate

normal
Alternate

normal
Alternate

normal
set CC

normal
set CC

SUB set CC Trap oVerflow

MUltiply Step set CC
SET High
SAVE
RESTORE

CONTROL TRANSFER:
Branch on Integer Condition Code
CALL
JuMP and Link
RETurn from Trap
Trap on Integer Condition Code

READIWRITE CONTROL REGISTER:
ReaD PSR
WRite TBR

WIM
Y

8

4

8

2

8

12

3

4

4

5

8

TOTAL NUMBER OF INSTRUCTIONS: 66

19

I
1:
,

I~
I"'l ~

I

11

FUJITSU

II MB86901

Table 3.2 Instruction Set
/

Instruction Mnemonic Format OP OP2 OP3 opr Cycles

Absolute Value ** FABS 3c 2 34 009
Add ADD 3a13b 2 00
Add and Set Condition Code ADDCC 3a13b 2 10
Add with Carry ADDX 3a13b 2 08
Add with Carry and Set Condition Code ADDXCC 3a13b 2 18
Add Double" FADDD 3c 2 34 042
Add Single ** FADDS 3c 2 34 041
And AND 3a13b 3 01
And and Set Condition Code ANDCC 3a13b 3 11
And Not ANDN 3a13b 3 05
And Not and Set Condition Code ANDNCC 3a13b 3 15 1
Atomic Load-Store Unsigned Byte LDSTUB 3a13b 3 OD 4
Atomic Load-Store Unsigned Byte In
Alternate Space * LDSTUBA 3a13b 3 1D 4
Branch on Integer Condition Code BICC 2b 0 2 1_2(1)

Branch on Floating Point Condition Code FBFCC 2b 0 6 1_2(1)

Call CALL 1
Compare Double ** FCMPD 3c 2 35 052
Compare Double and Exception if Unordered ** FCMPED 3c 2 35 056
Compare Single ** FCMPS 3c 2 35 051
Compare Single and Exception if Unordered ** FCMPES 3c 2 35 055
Convert Double to Integer ** FDTOI 3c 2 34 OD2
Convert Double to Single ** FDTOS 3c 2 34 OC6
Convert Integer to Double •• FITOD 3c 2 34 OC8
Convert Integer to Single •• FITOS 3c 2 34 OC4
Convert Single to Double *. FSTOD 3c 2 34 OC5 /

Convert Single to Integer .* FSTOI 3c 2 34 OD1
.Divide Double ** FDIVD 3c 2 34 04E

,~/

Divide Single .* FDIVS 3c 2 34 04D
Exclusive Nor XNOR 3a13b 3 07
Exclusive Nor and Set Condition Code XNORCC 3a13b 3 17
Exclusive Or XOR 3a13b 3 03
Exclusive Or and Set Condition Code XORCC 3a13b 3 13
Inclusive Or OR 3a13b 3 02
Inclusive Or and Set Condition Code ORCC 3a13b 3 12
Inclusive Or Not ORN 3a13b 3 06
Inclusive Or Not and Set Condition Code ORNCC 3a13b 3 16 1
Jump and Link JMPL 3a13b 2 38 2
Load Double Word LDD 3a13b 3 03 3
Load Double Word From Alternate space • LDDA 3a13b 3 13 3
Load Double Floating Point Register LDDF 3a13b 3 23 3
Load Floating Point Register LDF 3al3b 3 20 2
Load Floating Point Status Register LDFSR 3a13b 3 21
Load Signed Byte LDSB 3a13b 3 09 2
Load Signed Byte From Alternate space • LDSBA 3a13b 3 19 2
Load Signed Halfword LDSH 3a13b 3 OA 2
Load Signed Halfword From Alternate space * LDSHA 3a13b 3 1A 2
Load Unsigned Byte LDUB 3a13b 3 01 2
Load Unsigned Byte From Alternate space * LDUBA 3a13b 3 11 2
Load Unsigned Halfword LDUH 3a13b 3 02 2
Load UnSigned Halfword From Alternate space * LDUHA 3a13b 3 12 2
Load Word LD 3a13b 3 00 2
Load Word From Alternate space * LDA 3a13b 3 10 2

/
i
~.

20

11

FUJITSU

MB86901 111111111I111I1111111111I111111111111111111111111111

(-
Table 3.2 Instruction Set (cont.)

Instruction Mnemonic Format OP OP2 OP3 opr Cycles

Move •• FMOVS 3c 2 34 001
Multiply Double •• FMULD 3c 2 34 04A
Multiply Single •• FMULS 3c 2 34 049
Multiply Step and Set Condition Code MULSCC 3a13b 3 24
Negate •• FNEGS 3c 2 34 005
Read Processor State Register • RDPSR 3(2) 2 29
Read Trap Base Register RDTBR 3(2) 2 2B
Read Window Invalid Mask Register· RDWIM 3(2) 2 2A
Read Y Register RDY 3(2) 2 28
Restore RESTORE 3a13b 2 3D 1
Return from Trap· RETT 3a13b 2 39 2
Save SAVE 3a13b 2 3C 1
Set r Register High 22 bits SETHI 2a 0 4
Shift Left Logical SLL 3a13b 3 25
Shift Right Arithmetic SRA 3a13b 3 27
Shift Right Logical SRL 3a13b 3 26
Store Byte STB 3a13b 3 05 3
Store Byte to Alternate space· STBA 3a13b 3 15 3
Store Double Floating Point Queue STDFQ 3a13b 3 26 4
Store Double Floating Point STDF 3a13b 3 27 4
Store Double Word STD 3a13b 3 07 4
Store Double Word to Alternate space· STDA 3a13b 3 17 4
Store Floating Point Register STF 3a/3b 3 24 3
Store Floating Point Status Register STFSR 3a13b 3 25 4
Store Halfword STH 3a13b 3 06 3

(- Store Halfword to Alternate space· STHA 3a13b 3 16 3
Store Word ST 3a13b 3 04 3
Store Word to Alternate space· STA 3a13b 3 14 3
Subtract SUB 3a13b 3 04
Subtract and Set Condition Code SUBCC 3a13b 3 14
Subtract with Carry SUBX 3a13b 3 OC
Subtract with Carry and Set Condition Code SUBXCC 3a13b 3 1C
Subtract Double •• FSUBD 3c 2 34 046
Subtract Single •• FSUBS 3c 2 34 045
Tagged Add and Set Condition Code TADDCC 3a13b 3 20
Tagged Add and Set Condition Code and Trap
on Overflow TAD DCCTV 3a13b 3 22
Tagged Subtract and Set Condition Code TSUBCC 3a/3b 3 21
Tagged Subtract and Set Condition Code and
Trap on Overflow TSUBCCTV 3a/3b 3 23 1
Trap on Integer Condition Code TICC 3a13b 2 3A 1_4(3)

Write Processor State Register· WRPSR 3a13b 2 31 1
Write Trap Base Register· WRTBR 3a13b 2 33
Write Window Invalid Mask Register· WRWIM 3a13b 2 32
Write Y Register WRY 3a/3b 2 30

• Privileged Instruction
•• Floating Point Operate Instruction

Notes:
/'

(1) One cycle if branch taken; two cycles if branch not taken.
(2) Fields other than op, rd, and op3 are ignored.

(-- (3) Four cycles if trap taken; one cycle if trap not taken.

21

11

FUJITSU

11 MB86901

3.1. Data Transfer Instructions

The Load and Store instructions are the only in­
structions which access main memory, using two IU
registers (Format 3a) or an IU register and a signed
immediate value (Format 3b) to calculate the 32-bit
byte address in memory. In addition to the address,
the processor always generates an address space
identifier, or asi (see Section 2.4). The instruction's
destination field specifies either an IU register, an
FPU register, or a coprocessor register to supply the
data for a store or receive the data from a load. I/O
device registers are accessed via load/store instruc­
tions.

Mnemonic op op3 operation
LDSB 11 001001 Load Signed Byte
LDSBA 11 011001 Load Signed Byte from

Alternate space

LDSH 11 001010 Load Signed Halfword
LDSHA 11 011010 Load Signed Halfword

from Alternate space

LDUB 11 000001 Load Unsigned Byte
LDUBA 11 010001 Load Unsigned Byte

from Alternate space

LDUH 11 000010 Load Unsigned
Halfword

LDUHA 11 010010 Load Unsigned
Halfword from
Alternate space

LD 11 000000 Load word
LDA 11 010000 Load word from

Alternate space
LDD 11 000011 Load Doubleword
LDDA 11 010011 Load Doubleword

from Alternate space

STB 11 000101 Store Byte
STBA 11 010101 Store Byte into

Alternate space
STH 11 000110 Store Halfword
STHA 11 010110 Store Halfword into

Alternate space
ST 11 00100 Store Word
STA 11 010100 Store Word into

Alternate space
STD 11 000111 Store Doubleword
STDA 11 010111 Store Doubleword

into Alternate space

22

Figure 3.1 Instruction Formats

dlsp30
31 30 28

Format 1 (Call Instruction)

(O)IOpl rd I OP2 1
(b) op a I cond op2

31 30 28 28 25 Z4 2Z 21

Imm22

dlsp22

Format 2 (SETHI and Branch instructions)

(0) op rd op3 rs1 I I asl I rs2

(b) op rd op3 rs1 I I slmm13

(e) op rd op3 rs1 opt I rs2
31 30 28 25 Z4 1. 18 1. 13 12 5.

Format 3 (Instructions other than Call , SETHI, and Branch)

o

I
o

o

The effective address for a load or store instruction
is either "r[rs1] = r[rs2]" if the I field is zero, or
"r[rs1] + slmm13" if the I field is one. Instructions
which load from or store to an alternate address
space must have zero in the I field and the address
space identifier to be used in the asl field. Other­
wise, the address space indicated is either a user or
system data space, according to the S bit of the
PSR (see Section 2.5.2.1).

Note that the load/store alternate instructions are
privileged; they can only be executed in the supervi­
sor mode.

rei I op3 asl
31 30 211 25 24 111 18 14 13 12 5 4 0

Format3a

rd I op3 slmm13
31 30 211 2524 111 18 14 13 12 o

Format3b

, ,
'-- /

(

3.1.1. Multiprocessor suppon Instructions

The special instruclion "atomic load and store un­
signed byte" (LDSTUB) supports tightly coupled
multiprocessors. The LDSTUB instruclion reads a
byte from memory into an IU register and the re­
writes the same byte in memory to all ones, while
also precluding intervening accesses on the
memory or I/O bus. The LDSTUB instruclion may be
used to construct semaphores. It has byte, rather
than word, addressing because word-wide registers
may not be aligned at word addresses in general
purpose I/O buses.

Mnemonic op op3
LDSTUB 11 001101

LDSTUBA 11 011101

111 1 rd
1

op3
1

31 30 211 2524 ,. 18

rs1

operation
Atomic Load-Store

Unsigned Byte
Atomic Load-Store

Unsigned Byte into
Alternate space

11=01 asl
1 rs2

14 13 12 5 4

Format3a

111 1 rd 1 op3 1 rs1 11=1 1 slmm13
31 30 211 25 24 ,. 18 14 13 12

Format3b

I
0

I
0

These instructions move a byte from memory into
the r register specified by the rd field, rewriting the
same byte to memory to all ones without allowing in­
tervening asynchronous traps. In a multiprocessor
system, two or more processors executing atomic
load-store instructions addressing the same byte
simultaneously are guaranteed to execute them in
some serial order.

The effective address for a load or store instruclion
is either "r[rs1] = r[rs2]" if the I field is zero, or
"r[rs1] + slmm13" if the I field is one. LDSTUBA
must have zero in the I field, or an illegal instruction
trap occurs. The address space identifier used for
the memory accesses is taken from the asl field.
For LDSTUB, the address space indicates either a
user or system data space access, according to the
S bit in the PSR.

11

FUJITSU

MB86901 11

If an atomic load-store instruction traps, memory re­
mains unchanged. However, an implementation may
cause a "data access exception" trap during the
store memory access, but not during the load
access. In this case, the destination register can be
changed.

3.2. Arithmetic/Logical/Shift Instructions

The Arithmetic/Logical/Shift instructions, with the ex­
ception of SETHI, compute a result that is a funclion
of two source operands, and either write the result
into a destination register, r{rd], or discard it. One of
the operands is always register r[rs1]. The other
operand depends on the I bit in the instruction for­
mat: if I = 0, the operand is register r[rs2], but if I =
1, the operand is a 13-bit sign-extended constant,
slmm 13.

3.2.1. Add and Subtract

Mnemonic op op3 operation
ADD 10 000000 Add
ADDcc 10 010000 Add and modify icc
ADDX 10 001000 Add with carry
ADDXcc 10 011000 Add with carry and

modify icc
SUB 10 000100 Subtract
SUBcc 10 010100 Subtract and modify icc
SUBX 10 001100 Subtract with carry
SUBXcc 10 011100 Subtract with carry

and modify icc

110 1
rd

1
op3

1
rs1 1 1=01 Ignored 1 rs2 I

31 30 211 2524 ,. 18 14 13 12 5 4 0

Format3a

110 1 rd 1 op3 1 rs1 11=1 1 slmm13 I
31 30 211 25 24 ,. 18 14 13 12 0

Format3b

23

i
I
I,

\

I

11

FUJITSU

11 MB86901

ADD and ADDcc (SUB and SUBcc) compute either
"r[rs1] + (-) r[rs2]" if I = 0, or "r[rs1] + (-) slmm13" if
I = 1, and place the result in the r register specified
in the rd field.

ADDX and ADDXcc (SUBX and SUBXcc) add (sub­
tract) the PSR's carry bit c also; that is, they
compute "r[rs1] + (-) r[rs2] + (-) cIt or "r[rs1] + (-)
slmm13 + (-) c", if I = 0 or I = 1, respectively, and
place the result in the r register specified in the rd
field.

ADDcc and ADDXcc (SUBcc and SUBXcc) modify
all the integer condition codes.

3.2.2. Tagged Add and Subtract

Mnemonic op op3 operation
TADDcc 10 100000 Tagged Add and

modify icc
TADDccTV 10 100010 Tagged Add, modify

icc, Trap on Overflow
TSUBcc 10 100001 Tagged Subtract, and

modify icc
TSUBccTV 10 100011 Tagged Subtract,

modify icc, Trap on
Overflow

110 1
rd

1
op3

1
rs1 1 1=01 Ignored 1 rs2 I

31 30 28 25 24 18 I. 14 13 12 5 4 0

Format3a

110 1 rd 1 op3 1 rs1 11=1 1 slmm13 I
31 30 28 2524 18 1. 14 1$ 12 0

Format3b

. Tagged add and subtract instructions operate on
tagged data where the tag is the least significant
two bits of data. TADDcc and TADDccTV (TSUBcc
and TSUBccTV) compute either "r[rs1] + (-) r[rs2]"
if I = 0, or "r[rs1] + (-) slmm13" if I = 1, and place
the result in the r register specified in the rd field. If
either of the source operands has a nonzero tag,
the overflow bit, v, of the PSR is set. This bit is also
set if the addition (subtraction) generates an arith­
metic overflow.

24

If a TADDccTV (TSUBccTV) results in an overflow
condition, a ''tag overflow" trap is generated and the
destination register and condition codes remain un­
changed. If a TADDccTV (TSUBccTV) does not
result in an overflow condition, all the integer condi­
tion codes are updated (in particular, the overflow v
bit is set to 0), and the result of the addition (sub­
traction) is written into the r register specified by the
rd field.

If a TADDcc (TSUBcc) results in an overflow condi­
tion, the overflow bit v of the PSR is set; if the
instruction does not result in an overflow, the bit is
cleared. In either case, the remaining integer condi­
tion codes are also updated and the result of the
addition (subtraction) is written into the r register
specified by the rd field.

The tagged arithmetic instructions can be used by
languages such as Lisp, Smalltalk, and Prolog
which benefit from tags. Normally, a tagged
add/subtract instruction is followed by a conditional
branch, which, if the overflow bit has been set,
transfers control to code which further deCiphers the
operand types. The two variants, TADDccTV and
TSUBccTV, which trap when the overflow bit has
been set, can be used for error checking when the
compiler knows the operand types.

3.2.3. Multiply Step Instruction

Mnemonic op op3
MULScc 10 100100

110 1 rd 1 op3 1
31 30 28 25 24 18 1.

rs1

operation
Multiply Step

and modify icc

11=0 1 Ignored 1
14 13 12 5 4

Format3a

rs2

110 1 rd 1 op3 1 rs1 1 1=1 1 slmm13
31 30 28 25 24 18 I. 14 13 12

Format3b

I
0

I
0

(

(

The multiply step instruction can be used to
generate the 64-bit product of two signed or un­
signed words. In the following description, the
incoming partial product is located in register r[rs1],
and the multiplicand is either the contents of register
r[rs2] (if I = 0) or the sign extended slmm13 (if I =
1). The instruction operates as follows:

(1) The value obtained by shifting the incoming
partial product right by one bit and replacing its
high-order bit by n XOR v (the sign of the pre­
vious partial product-see Section 2.5.2.1
Integer Condition Codes) is computed.

(2) If the least significant bit of the Y register (the
multiplier) is set, the value from step (1) is added
to the multiplicand. If the LSB of the Y register is
not set, then zero is added to the value from step
(1). .

(3) The result from step (2), the outgoing partial
product, is written into r[rd]. The integer condition
codes in the Processor State Register are up­
dated according to the addition performed in step
(2).

(4) The Y register (the multiplier) is shifted right
by one bit, and its high-order bit is replaced by
the least significant bit of the incoming partial pro­
duct.

3.2.4. Logical Instructions

Mnemonic op op3 operation
AND 10 000001 And
ANDcc 10 010001 And and modify icc
ANON 10 000101 And Not
ANDNcc 10 010101 And Not and modify icc
OR 10 000010 Inclusive Or
ORce 10 010010 Inclusive Or and

modify ice
ORN 10 000110 Inclusive Or Not
ORNcc 10 010110 Inclusive Or Not

and modify ice
XOR 10 000011 Exclusive Or
XORcc 10 010011 Exclusive Or

and modify ice
XNOR 10 000111 Exclusive Nor
XNORcc 10 010111 Exclusive Nor

and modify icc

11

FUJITSU
MB86901 11

110 1 rd 1 op3 1 rs1 11=0 1 Ignored 1 rs2 I
81 30 28 2524 " 18 14 13 12 5 4 0

Format3a

110 1 rd 1 op3 1 rs1 11=1 1 simm13 I
813028 25 24 ,. 18 14 13 12 0

Format3b

These instructions implement the bitwise logical
operations. With op denoting the generic logical
operation, these instructions compute either r[rs1]
op r[rs2] (if i = 0) or r[rs1] op slmm13 (if I = 1).

ANDcc, ANDNcc, ORee, ORNcc, XORcc, and
XNORcc modify all the integer condition codes as
described in Section 2.5.2.1.

3.2.5. Shift Instructions

Mnemonic op
SLL 10
SRL 10
SRA 10

rd 1
813028 2524

rd
813028 2524

op3
100101
100110
100111

operation
Shift Left Logical
Shift Right Logical
Shift Right Arithmetic

op3 1 rs1 1 1=0 1 ignored 1 rs2 I
18 18 14 13 12 5 4 0

Format3a

op3 slmm13
" 18 14 13 12 o

Format3b

The shift count for these instructions is either the
least significant five bits of r[rs2] (if I = 0) or the
least significant five bits of slmm13 (if I = 1).

SLL shifts the value of r[rs1] left by the number of
bits implied by the shift count.

SRL and SRA shift the value of r[rs1] right by the
number of bits implied by the shift count.

SLL and SRL replace vacated positions with zeroes,
whereas SRA fills vacated positions with the most
significant bit of r[rs1]. No shift occurs when the
shift count is zero.

25

I

11

FUJITSU

11 MB86901

All of these instructions place the shifted result in
r[rd]. These instructions do not modify the integer
condition codes.

3.2.6. Save and Restore Instructions

Mnemonic op op3 operation
SAVE 10 111100 Save caller's window
RESTORE 10 111101 Restore caller's

window

110 1 rd 1 op3 1 ra1 11=0 1 Ignored 1 rs2 I
31 ao 211 2524 1. 18 14 13 12 5 4 0

Format3a

rd 1 op3 1 ra1 11=1 1 aimm13
31 ao 211 2524 1. 18 14 13 12 o

Format3b

The SAVE instruction subtracts one from the CWP
(modulo 7) and compares this value, the "new
CWP", against the Window Invalid Mask (WIM) reg­
ister. If the WIM bit corresponding to the "new CWP"
is set, then a window overflow trap is generated. If
the corresponding WIM bit is reset, then a window
overflow trap is not generated and "new CWP" is
written into CWP. This causes the active window to
become the previous window, thereby saving the
caller's window.

The RESTORE instruction adds one to the CWP
(modulo 7) and compares this value, the "new
CWP", against the Window Invalid Mask (WIM) reg­
ister. If the WIM bit corresponding to the "new CWP"
is set, then a window underflow trap is generated. If
the corresponding WIM bit is reset, then a window
underflow trap is not generated and "new CWP" is
written into CWP. This causes the previous window
to become the active window, thereby restoring the
caller's window.

Furthermore, if an overflow or underflow trap is not
generated, SAVE and RESTORE behave like nor­
mal ADD instructions, except that the operands
r[rS1] or r[rs2] are read from the old window (Le.,
the window addressed by the original CWP) and the
result is written into r[rd] of the new window (Le.,
the window addressed by the new CWP).

Note that CWP arithmetic is performed modulo 7.

26

3.2.7. SETHI Instruction

Mnemonic op op2
SETHI 00 100

100 1 rd 1100 1
31 30 211 25 24 22 21

operation
Set High

Imm22

Format2a
o

The SETHI instruction is a special instruction that
can be used in combination with a standard arith­
metic instruction to construct a 32-bit constant in
two instructions. It loads a 22-bit immediate value,
Imm22, into the high order bits of the destination
register r[rd] and zeroes the least significant 10 bits.
The integer condition codes are not affected.
Another instruction is used to load the low 10 bits.
Because other arithmetic/logical instructions have a
13-bit signed immediate value, the 22-bit SETHI
value implies an overlap of 2 bits in the result. In
combination with a load or store instruction, SETHI
can also be used to construct a 32-bit load/store
address. The SETHI instruction uses Format 2a,
shown.

It is suggested that sethi 0, %0, where %0 stands
for global register 0, be used as the preferred NOP,
since it will not cause an increase in execution time
if it follows a load instruction.

3.3. Control Transfer Instructions

Control transfer instructions change the values of
PC and nPC. There are five types of control transfer
instructions:

(1) Conditional branch (Bicc)
(2) Call (CAll)
(3) Jump and link (JMPl)
(4) Trap (Ticc)
(5) Return from trap (RETT)

Each of these instructions can be further catego­
rized according to whether it is 1) PC (program
counter)-relative or register-indirect, or 2) delayed or
non-delayed. A PC-relative control transfer com­
putes its target address by adding the (shifted)
sign-extended immediate displacement to the pro­
gram counter. A register-indirect instruction com­
putes its target address as either r[rs1] + r[rs2] (if I
= 0), or r[rs1] + slmm13 (if I = 1). A control transfer

instruction is delayed if it transfers control to the tar­
get after a one-instruction delay. In summary:

Instruction
Bicc, CALL
JMPL, RED
lice

Characteristic
PC-relative
register-indirect
register-indirect

Delayed
Yes
Yes
No

The rationale behind the use of delayed control
transfers is explained in Section 2.1.5 under the dis­
cussion of the MB86901 pipeline. The mechanics of
the operation is explained in Section 2.5.3 Program
Counters.

3.3.1. Branch on Integer Condition Instructions

Mnemonic op op2
Bicc 00 010

operation
See Table 3.3

I 00 I a Icond I 010 I dlsp22
31 30 28 28 25 Z4 22 21

Format2b
o

A Bicc instruction (except BA and BN) evaluates the
integer condition codes (Icc) of the Processor State
Register (PSR) according to the cond field. If the
condition codes evaluate to true, the branch is
taken, and the instruction causes a PC-relative,
delayed control transfer to the address "PC +
(4*sign_ext(dlsp22))". If the condition codes eval­
uate to false, the branch is not taken.

The annul bit a changes the behavior of the delay
instruction. This bit is only available on conditional
branch instructions (Bicc). The effect of the annul bit
may be summarized as follows:

If a = 1, and the branch in a conditional branch is
taken, then the delay instruction which follows is
executed.

If a = 1, and the branch is not taken, then the
delay instruction is annulled (not executed).

Branch Never (BN) acts like a NOP except that if
a = 1, the delay instruction is annulled (not ex­
ecuted).

Branch Always (BA) causes transfer of control re­
gardless of the value of the condition code bits. If
a = 1, the delay instruction is annulled (not ex­
ecuted).

11

FUJITSU

MB86901 11

In every case, if a = 0, the delay instruction is ex­
ecuted.

Execution of Delay Instruction

ConditionallTaken
Conditional/Not Taken
BA
BN

LE...O. La.1
YES YES
YES NO
YES NO
YES NO

Note that the result for BA with a = 1 is the reverse
of what might be expected. The delay instruction is
NOT executed even though the branch IS taken.

An annulled instruction has no effect on the state of
the IU, nor can any trap occur during an annulled in­
struction.

3.3.2. CALL Instruction

Mnemonic op
CALL 01

31 30 28

disp30

operation
Call

Format 1
o

A procedure that requires a register window is in­
voked by executing both a CALL and a SAVE (see
Section 3.2.6) instruction. A procedure which does
not need a register window, a so-called "leaf"
routine, is invoked by executing only a CALL instruc­
tion. Leaf routines can use only the out registers.

The CALL instruction stores the PC, which pOints to
the CALL itself, into out register r[15]. The CALL in­
struction then causes an unconditional, delayed,
PC-relative control transfer to address "PC + (4 *
dlsp30)". The PC-relative displacement is formed by
appending two low order zeroes to the instruction's
30-bit word displacement field. Since the word dis­
placement (dlsp30) field is 30 bits wide, the target
address can be arbitrarily distant.

A JMPL instruction (see Section 3.3.3) with rd = 15
can be used as a register indirect CALL.

27

11

FUJITSU

11 MB86901

Mnemonic cond

BA 1000

BN 0000

BNE 1001

BE 0001

BG 1010

BLE 0010

BGE 1011

BL 0011

BGU 1100

BLEU 0100

BCC 1101
BCS 0101

BPOS 1110

BNEG 0110

BVC 1111
BVS 0111 .

• Greater Than or Equal, Unsigned
•• Less Than, Unsigned

Mnemonic cond

28

TA 1000
TN 0000

TNE 1001

TE 0001

TG 1010
TLE 0010

TGE 1011

TL 0011
TGU 1100
TLEU 0100

TCC 1101

TCS 0101

TPOS 1110
TNEG 0110

TVC 1111
TVS 0111

• Greater Than or Equal, Unsigned
•• Less Than, Unsigned

Table 3.3 Integer Branch Conditions

Operation Icc Test

Branch Always 1

Branch Never 0

Branch on Not Equal not z

Branch on Equal z

Branch on Greater not (z or (n xor V»

Branch on Less or Equal z or (n xor v)

Branch on Greater or Equal not (n xor v)

Branch on Less n xorv

Branch on Greater Unsigned not (c or z)

Branch on Less or Equal Unsigned (c or z)

Branch on Carry Clear • not c

Branch on Carry Set •• c

Branch on Positive not n

Branch on Negative n

Branch on Overflow Clear not v

Branch on Overflow Set v

Table 3.4 Integer Trap Conditions

Operation Icc Test

Trap Always 1
Trap Never 0

Trap on Not Equal not z

Trap on Equal z

Trap on Greater not (z or (n xor v»

Trap on Less or Equal z or (n xor v)

Trap on Greater or Equal not (n xor v)

Trap on Les$. n xorv

Trap on Greater Unsigned not (c or z)

Trap on Less or Equal Unsigned (c or z)

Trap on Carry Clear * not c

Trap on Carry Set •• c

Trap on Positive not n

Trap on Negative n

Trap on Overflow Clear not v

Trap on Overflow Set v

(

3.3.3. Jump and Link Instruction

Mnemonic op op3
JMPL 10 111000

operation
Jump and Link

rd I op3 I rs1 I 1=0 I Ignored I rs2 I
31 30 29 25 24 19 18 14 13 12 5 4 0

Format3a

rd I op3 I rs1 I 1=1 I slmm13
31 so 21 2524 19 18 14 13 12 D

Format3b

A procedure which uses a register window returns
by executing both a RESTORE (see Section 3.2.6)
and a JMPL instruction. A leaf procedure returns by
executing a JMPL only. The JMPL instruction typi­
cally returns to the instruction following the CALL's
delay instruction. In other words, the typical return
address is 8 plus the address saved by the CALL.

The JMPL instruction causes a register indirect con­
trol transfer to an address specified by either r[rs1]
+ r[rs2] (if I = 0), or r[rs1] + slmm13 (if I = 1). The
JMPL instruction writes the PC, which contains the
address of the JMPL instruction, into the destination
register specified in the rd field. If either of the two
low order bits of the jump address is nonzero, a
"mem address not aligned" trap occurs.

3.3.4. Trap on Integer Condition Codes

Mnemonic op op3
Ticc 10 111010

operation
See Table 3.4

rd I op3 I rs1 I 1=0 I Ignored I
31 so 21 25 24 " 18 '" 13 12 5 ..

Format3a

rs2 I
D

rd op3 slmm13
31 30 21 2524 ,. 18 14 13 12 D

Format3b

A Ticc instruction evaluates the integer condition
codes (Icc) of the Processor State Register accord­
ing to the cond field. If the condition codes evaluate
to true, and there are no higher priority traps pend­
ing, then a ''trap instruction" trap is generated with

11

FUJITSU

MB86901 11

no delay instruction. If the condition codes evaluate
to false, it executes as a NOP.

If a trap is generated, the tt field of the Trap Base
Register (TBR) is written with 128 plus the least sig­
nificant seven bits of either r[rs1] + r[rs2] (if I = 0),
or r[rs1] + slmm13 (if I = 1). The processor enters
the supervisor mode, disables traps, decrements
the CWP, and saves PC and nPC into local registers
r[17] and r[18] (respectively) of the new window.
Ticc can be used to implement kernel calls, break­
pointing, and tracing. It can also be used for
run-time checks, such as out of range indices, in­
teger overflow, etc.

See Section 5 on Traps, Exceptions, and Error
Handling for a more complete discussion of traps.

3.3.5. Return from Trap Instruction

Mnemonic op op3
RETT 10 111001

operation
Return from Trap

The RETT instruction uses either Format 3a or For­
mat 3b, as described in Section 3.3.4. The RETT
instruction adds one to the CWP (modulo 7) and
compares this value, the "new CWP", against the
Window Invalid Mask (WIM) register. If the WIM bit
corresponding to the "new CWP" is set, then a win­
dow underflow trap is generated. If the
corresponding WIM bit is reset, then a window un­
derflow trap is not generated and "new CWP" is
written into CWP. This causes the previous window
to become the active window, thereby restoring the
window that existed at the time of the trap.

If a window underflow trap is not generated, RETT
causes a delayed control transfer to the target
address. The target address is either r[rs1] + r[rs2]
(if I = 0), or r[rs1] + slmm13 (if i = 1). Furthermore,
RETT restores the S field of the PSR from the PS
field, and sets the ET field to one (see Section
2.5.2.3).

If traps are enabled (ET = 1), an illegal instruction
trap occurs. If traps are disabled (ET = 0), and the
processor is not in supervisor mode (S = 0), or if a
window underflow condition is detected, or if either
of the two low order bits of the target address is
nonzero, a reset trap occurs. If a reset trap occurs,
the tt field of the TBR encodes the trap condition:
privileged instruction, window overflow, or memory
address not aligned. .

29

11

FUJITSU

11I1111I1111I11111111111II1I1I11I1I1111111I11I1I111I MB86901

The instruction executed immediately before a
RETT must be a JMPL instruction. If it is not, the lo­
cation where execution continues is not necessarily
within the address space implied by the PS bit of the
PSR. Trap handlers complete execution by execut-
ing the" JM PL, RETT" couple. .

3.4. ReadIWrlte Control Register Instructions

These instructions read or write the contents of the
programmer visible control registers. This category
includes instructions to read and write the PSR, the
WIM, the TBR, the Y register (see Section 2.5.2), as
well as the Floating point State Register (FSR) and
the Coprocessor State Register (CSR). These in­
structions are all privileged (available in supervisor
mode only), except those that read and write the Y
register, the FSR, and the CSR.

3.4.1. Read State Register Instructions

Mnemonic op
ROY 10
ROPSR 10

ROWIM 10

ROTBR 10

rd 1
31 30 21 2524

op3 operation
101000
101001

101010

101011

op3 1
11 18

Format3a

Read Y register
Read Processor State

Register
Read Window Invalid

Mask register
Read Trap Base

Register

Ignored

These instructions read the specified IU state regis­
ters into the r register specified in the rd field

3.4.2. Write State Register Instructions

Mnemonic op op3 operation
WRY 10 110000 Write Y register
WRPSR 10 110001 Write Processor

State Register
WRWIM 10 110010 Write Window Invalid

Mask register
WRTBR 10 110011 Write Trap Base

Register

110 1 Ignored 1 op3 1 r81 11=0 1 Ignored I r82 I
31 30 21 25 24 18 18 14 13 12 5 4 0

Format3a

30

110 1 Ignored 1 op3 81mm13
31 30 28 25 24 18 18 14 13 12 o

Format3b

These instructions write either r[rs1] XOR r[rs2] (if I
= 0), or r[rs1] XOR slmm13 (if I = 1), to those sub­
fields of the specified I U state register which may be
written. WRPSR does not write the PSR and causes
an illegal instruction trap if the result would cause
the CWP field of the PSR to point to an unimple­
mented window.

These instructions are delayed-write instructions:

(1) If any of the three instructions after a WRPSR
uses any field of the PSR that is changed by the
WRPSR, the value of that field is unpredictable.
(Note that any instruction which references a
non-global register implicitly uses the CWP.)

(2) If a WRPSR instruction is updating the PSR's
PIL to a new value and is simultaneously setting
ET to 1, this can result in an interrupt trap at a
level equal to the old value of the PIL. Two
WRPSR instructions should be used when ena­
bling traps and changing the value of the PIL.
The first WRPSR should specify ET = 0 with the
new PIL value, and the second WRPSR should
specify ET = 1 and the new PIL value.

(3) If any of the three instructions after a WRWIM
is a SAVE, RESTORE, or RETT, the occurrence
of window overflow and window underflow traps
is unpredictable.

(4) If any of the three instructions which follow a
WRY is a MULScc or ROY, the value of Y used is
unpredictable.

(5) If any of the three instructions which follow a
WRTBR causes a trap, the trap base address
(TBA) used may be either the old or the new
value.

(6) If any of the three instructions after a write
state register instruction reads the modified state
register, the value read is unpredictable.

(7) If any of the three instructions after a write
state register instruction is trapped, a subsequent
read state register instruction in the trap handler
will get the register's new value.

(

(~/

4. Floating Point Operations

The MB86901 executes all SPARC instructions ex­
cept for Floating Point Operate (FPop) instructions.
All the floating point operations are actually dis­
patched through the F<31 :0> bus to the MB86911
Floating Point Controller (FPC). Here, they enter a
First In First Out (FIFO) floating point queue to await
actual floating point processing done by the TI
SN74ACT8847 Floating Point Processor (FPP). In
addition to the floating point queue, the MB86911
also includes the data register file, status register,
and control circuitry for mastering floating point ex­
ceptions. The FPC and the FPP are collectively re­
ferred to as the Floating Point Unit (FPU).

The IU and the FPU operate concurrently, assuming
that the floating pOint queue remains in a non-over­
flow status. If the FPU encounters a floating point
operate instruction that doesn't fit in the queue, the
IU stalls untils the required FPU resource becomes
available. The architecture hides floating point con­
currency from the programmer by means of appro­
priate register interlocks. Hence, a program in­
cluding floating point computations will generate the
same results as if all instructions were executed
sequentially.

The "F-bus" is used only to transfer floating point in­
structions and associated instruction Program
Counter (PC) values to the FPC. Any data transfer
to or from the FPC is done through the FPC memory
data bus. Floating point load/store instructions are
used to facilitate this scheme. The MB86901 IU
generates a memory address and the FPU either
sources or sinks the data.

Note that floating pOint loads and stores are not
Floating Point operate (FPop) instructions.

The MB86901 Floating POint Interface includes
floating point condition code, trap reporting, and
handshake signals, to maintain coordination be­
tween the IU and the FPU. This interface is dis­
cussed further in Section 7.2. The MB86911 and
TI SN74ACT8847 data sheets should be consulted
for a complete discussion of these chips.

5. Trap and Exception Handling

The MB86901 provides three types of traps: syn­
chronous, floating pOint, and asynchronous. A trap is
like a random procedure call which, as a side effect,
causes the processor to enter the supervisor state.

11

FUJITSU

MB86901 1II1I11I11I11I11I11I1111111111111I11111111II111I11I1

Synchronous traps are caused by an IU instruction
or a floating point load/store instruction, and occur
before the instruction is completed. Floating point
traps are caused by a Floating Point Operate
(FPop) instruction and occur before the instruction
is completed. However, due to the concurrent opera­
tion of the IU and the FPU, other non-floating point
instructions may have executed in the meantime.
Asynchronous traps (also called interrupts) occur
when an external event interrupts the processor.
They are not related to any particular instruction,
and occur between the execution of instructions.

5.1. Synchronous Traps

A Synchronous trap is defined to be a trap that oc­
curs during the course of an instruction execution,
prior to the alteration of any processor or system
state visible to the programmer. Instructions which
access memory twice (double loads and stores and
atomic instructions) are the only exceptions. If multi­
ple traps occur during one instruction, the highest
priority trap is taken. Lower priority traps are ignored
because the traps are arranged under the assump­
tion that the lower priority traps perSist, recur, or are
meaningless due to the presence of the higher prior­
ity trap.

The ET bit in the PSR (see Section 2.5.2.1) must be
set for synchronous traps to occur normally. Should
a synchronous trap occur while traps are disabled,
the processor halts and enters an error state. A syn­
chronous trap may originate due to either internal or
external events.

An example of an internal event is an attempt to ex­
ecute an illegal instruction or to execute a privileged
instruction while the processor is in the User mode.
External events include asserting the MEXC
(Memory EXCeption) line during a given active bus
cycle, thus initiating an instruction access or data
access.

5.2. Floating Point Traps

All floating point instructions are dispatched from
the IU to a floating point instruction queue, in the
FPU, where they execute concurrently with any non­
floating point IU operations. It is therefore typical
that a floating point exception occur sometime after
the dispatch of the floating point instruction that
caused the exception. However, a floating point ex­
ception trap is not taken until another floating point

31

11

FUJITSU

11 MB86901

instruction has been encountered in the IU instruc­
tion stream.

When the FPU recognizes an exception condition, it
enters an "exception pending" state and signals the
IU through assertion of the "FEXC" signal. It re­
mains in this state until the IU takes the floating
point exception trap, whereafter it enters the "excep­
tion mode" state. To exit this state, the floating point
queue must be emptied by one or more "STDFQ" in­
structions.

The PC (Program Counter) that is saved during a
floating point exception trap always pOints to a float­
ing point instruction. However, the exception itself is
always due to a previously executed floating point
instruction. This instruction and the value of the PC
from which it was fetched are in the floating point
queue.

5.3. Asynchronous Traps

All asynchronous traps are signalled to the proces­
sor through the IRL<3:0> (Interrupt Request Level)
bus. They are divided up into two categories: the
maskable interrupts, and the Non-Maskable Inter­
rupt (NMI).

The maskable interrupts must meet two critera for
the processor to initiate an asynchronous trap pro­
cedure. First, the ET (enable trap) bit must be set in
the PSR. Second, the IRL must be greater than the
value in the Processor Interrupt Level (PIL) field of
the PSR. An IRL<3:0> = 0000 value is the standby
mode, and will not result in any action.

The Non-Maskable Interrupt is signalled by IRL<3:0>
= 1111, and can only be disabled by turning off ET.
Any asynchronous interrupts have a lower priority
when arbitrated with pending synchronous traps.

5.4. Trap Addressing

The Trap Base Register (TBR) generates the exact
address of a trap handling routine. When a trap oc­
curs, the hardware writes a value into the Trap Type
(tt) field of the TBR. This uniquely identifies the trap
and serves as an offset into the table whose starting
address is given by the TBA field of the TBR. The 8-
bit wide tt field allows for 256 distinct types of traps.
The lower half is used by hardware initiated traps
while the upper half is dedicated to programmer in­
itiated traps (see Ticc instruction, Section 3.3.4).

32

The MB86901 currently utilizes 26 out of the 128
hardware trap types.

5.5. Trap Priorities

Table 5.1 shows the trap types, priorities, and as­
Signments. Note that "tt" is not affected by the reset
trap.

5.6. Trap Processing

A trap causes the following activities:

• It disables traps (ET = 0)

• It copies the S field of the PSR into the PS field
and then sets the S field to 1.

• It decrements the CWP by 1, modulo the number
of implemented windows.

• It saves the PC and nPC into r[17] and r[18], re­
spectively, of the new window.

• It sets the "tt" field of the TBR to the appropriate
value

Table 5.1 Trap Priorities and tt Assignments

Trap Priority tt

Reset 1 -
Instruction Access Exception 2 1
Illegal Instruction 3 2
Privileged Instruction 4 3
Floating Point Disabled 5 4
Window OVerflow 6 5
Window Underflow 7 6
Memory Address Not Aligned 8 7
Floating Point Exception 9 8
Data Access Exception 10 9
Tag Overflow 11 10
Trap Instruction 12 128-255

Interrupt Level 15 13 31
Interrupt Level 14 14 30
Interrupt Level 13 15 29
Interrupt Level 12 16 28
Interrupt Level 11 17 27
Interrupt Level 10 18 26
Interrupt Level 9 19 25
Interrupt Level 8 20 24
Interrupt Level 7 21 23
Interrupt Level 6 22 22
Interrupt Level 5 23 21
Interrupt Level 4 24 20
Interrupt Level 3 25 19
Interrupt Level 2 26 18
Interrupt Level 1 27 17

(

• If the trap is not a reset, it writes the PC with the
contents of TBR, and the nPC with the contents
of TBR+ 4. If the trap is a reset, it loads the PC
with 0 and nPC with 4.

The MB86901, like all SPARC processors, saves
the volatile S field into the PSR itself and the re­
maining fields are either altered in a reversible way
(ET and CWP), or should not be altered in a trap
handler until the PSR has been saved into memory.
To restore the PSR S-bit and PC/nPC, a trap han­
dier should include "JMPL" and "RETT" as the last
two instructions.

5.7. Interrupt Detection

The MB86901 will latch the IRL <3:0> bus at the ris­
ing edge of every clock cycle. If the output of this
latch equals the current value of the IRL bus by the
following cycle, an asynchronous trap may be in­
itiated if the "ET" and "I PL" criteria are met. The best
case for an interrupt response time is 3 cycles. This
assumes the request arriving within the IU trap arbi­
tration logic at a time when an instruction has just
completed. The worst case is asserting an interrupt
during the execution of a 4 cycle double store. That
would add 3 cycles to the overhead, thus yielding a
response time of 6 cycles. Neither of these esti­
mates include any additional delay caused by asser­
tion of MHOLD/FHOLD or interrupts being disabled.

5.8. Trap Definitions

The following discussion describes the 86901 traps
and the conditions which cause them.

Instruction access exceptlo_n __
This trap occurs when the MEXC signal line has
been strobed during an instruction fetch. It may be
used to indicate error conditions such as page faults
and access violation.

illegal Instruction
This trap occurs when:

(1) the UNIMP instruction is encountered, or

(2) an unimplemented instruction which is not an
FPop is encountered, or

(3) when an instruction is fetched which, if ex­
ecuted, would result in an illegal processor state
(e.g. writing an illegal CWP into the PSR).

Unimplemented FPop instructions generate fp ex­
ception traps.

11

FUJITSU

MB86901 11 I-

privileged Instruction
This trap occurs when a privileged instruction is en­
countered while the processor is in User mode (S =
o in PSR).

fp disabled
This trap occurs when a Floating Point Operate,
Floating Point Branch, or Floating Point Load or
Store instruction is encountered while the ~bit in
the PSR is equal to 0, or no FPC is present (FP = 1).

window overflow
This trap occurs when a SAVE instruction WOUld, if
executed, cause the CWP to point to a window
marked invalid in the WIM.

window underflow
This trap occurs when a RESTORE instruction
would, if executed, cause the CWP to point to a win­
dow marked invalid in the WIM.

mem address not aligned
This trap occurs when a load, store or JMPL instruc­
tion WOUld, if executed, generate a memory address
or a new PC value that is not properly aligned.

fp exception
This trap occurs when the FPU is in exception pend­
ing state and a floating point instruction (FPop, float­
ing point load/store, FBbcc) is encountered.

data access exception
This trap occurs when the MEXC signal line has
been strobed during an instruction fetch. It may be
used to indicate error conditions such as page faults
and access violation.

tag overflow
This trap occurs when a TADDccTV or a TSUBccTV
instruction is executed which causes the overflow bit
of the integer condition codes to be set.

trap Instruction
This trap occurs when a taken Ticc instruction is ex­
ecuted.

Interrupt level<3:0>
A trap of this category occurs during assertion of a
vector on the IRL<3:0> bus. The lower four bits of tt
are equivalent to the vector asserted on the I RL
bus.

33

I'

11

FUJITSU

11 MB86901

6. Reset

A reset trap occurs when the IU leaves reset mode
and enters execute mode. This is controlled by the
RESET signal. The IU enters reset mode upon
asserting RESET, and enters execute mode when
negating RESET. Except in one situation, reset
does not change the value of the tt field of the TBR;
the exception is when a return from trap instruction
is executed while traps are not enabled and the pro­
cessor is not in supervisor mode (see description of
return from trap instruction in 3.3.5). Also, a reset
trap causes the IU to begin execution at location 0,
regardless of the value of the TBR.

Reset traps set the PSR S bit to 1 and the ET bit to
O. All other PSR fields, and all other registers retain
their values from the last execute mode, except that
on power up they are undefined.

7. Bus Signals

The MB86901 features several buses and as­
sociated handshaking and control signals through
which the processor communicates with system
memory, peripheral devices, a floating point unit,
and support logic such as bus arbiters and interrupt
controllers. These buses and signals can be
classified into two major groups: the System Inter­
face, and the Floating Point Coprocessor Interface.
A third group, the Test Interface, is used for factory
testing of the processor.

Figure 7.1 Processor Signals

34

FLOAllNG POINT
COPROCESSOR
INTERFACE

TEST
INTERFACE

INTERRUPT
LEVEL

SPECIAL

{
{

VDD

GND

CLK

Fc31:O>

FEXC

FHOLD

FCCc1:O ..

FCCV

FP

FXACK

FLUSH

FEND

FADR

FINS

iSM
XTEST

XACK

BCK

SOl

SDO

IRLc3:O ..

I 16

,20

I 2

==>
12

¢=) MB86901

2

•

5

~
I

-V
«

ADRc31:eb

ADDRESS BUS

ASlc7:0:.

Dc31:0 .. } DATA BUS

LOCK

} RD

DFETCH BUS CYCLE
DEFlNl1l0N

SlZEc1:O>

LOST

HAL
WE

MDS

AOE

AoiffiE
DOE BUS

CONTROL
MHOLDcA.c ... SHOLD

BHOLD

NULLCYC

IN_NULL

TC

MEXC

\
'-

~

~/

HAL o

WE o

RD o

HOLD ADDRESS LATCH. The HAL signal is used to inhibit latching by the
ADR<31 :0> external latches. HAL is asserted during instruction pipeline inter­
lock activity, during execution of some multiple cycle instructions, and during
assertion of an MHOLD signal.

WRITE ENABLE. The WE signal is asserted during Store operations and during
the store phase of Atomic Load/Store operations to indicate that data to be
stored is present on the Data Bus. Assertion of WE is inhibited while FHOLD is
active, and is terminated when FEXC or MEXC becomes active.

READ. The RD signal remains asserted during Load operations to indicate that
the processor will read data, and is released throughout Store and Atomic
Load/Store operations to indicate that the processor will write data. RD is forced
to a high impedance while AOE is high.

35

11

FUJITSU

11 MB86901

Signal Type

DFETCH o

SIZE<1:0> o

LOCK o

MDS

ADROE

AOE

DOE

36

Table 7.1 Bus Signal Descriptions (cont.)

Description

DATA FETCH. The DFETCH signal is asserted for one cycle at the beginning of
data transfer operations to indicate that data will be transferred. DFETCH re­
mains inactive during instruction fetches and during Floating Point Operate in­
struction transfers. Assertion of NULL_CYC forces release of DFETCH.

DATA SIZE. These signals identify transferred data as follows:

SIZE<1 :0> Data Size
o Byte
1 Halfword
2 Word
3 Double Word*

* (LDD, LDDF, STD, STDF double-word instructions)
The Data Size signals are forced to a high impedance while AOE is high.

BUS LOCK. The LOCK signal is asserted by the processor during Store, Load
Double, Store Double, and Atomic LoacllStore operations to indicate to other bus
masters that the System Interface is busy with multicycle operations. Bus
masters must not try to gain control of the system bus during the cycle following
assertion of LOCK. LOCK is forced to high impedance while AOE is high.

MEMORY DATA STROBE. The MDS strobe is asserted for one or more cycles
while an MHOLD<A-C> signal is asserted during load and instruction fetch
operations to indicate that valid data will be asserted on the Data Bus. The data
must be present on the Data Bus one at least one cycle before MDS is released.

ADDRESS OUTPUT ENABLE. This active low signal controls the output drivers
of the ADR<31 :0> bus. The drivers are enabled when ADROE is low, and dis­
abled to a high impedance when ADROE is high. AOE should be asserted while
the BHOLD signal is active to allow another bus master to gain control of the af­
fected bus signal lines.

ALTERNATE OUTPUT ENABLE. This active low signal controls the output
drivers of the ASk7:0>, RD, SIZE<1 :0>, and LOST signals. The drivers are
enabled when AOE is low, and disabled to a high impedance when AOE is high.
AOE should be asserted while the BHOLD signal is active to allow another bus
master to gain control of the effected bus signal lines.

DATA OUTPUT ENABLE. This active low signal controls the output drivers of
the 0<31 :0> data bus. The drivers are enabled when DOE is low, and disabled
to a high impedance when DOE is high. DOE should be asserted while a
Memory Hold signal is active to allow another bus master to gain control of the
Data Bus.

c

('

Signal

MHOLD<A-C>
SHOLD

BHOLD

IRL<3:0>

RESET

Type

11

FUJITSU

MB86901 11

Table 7.1 Bus Signal Descriptions (cont.)

Description

MEMORY HOLD. Assertion of one or more of the four Memory Hold signals
freezes the processor instruction pipeline, and holds the processor bus signals
in a wait state.

A Memory Hold signal can be asserted to introduce wait states in order to ac­
commodate slow memory or I/O response, and cache misses. All of the Memory
Hold signals are OR'd by processor logic, and function identically. Four Memory
Hold inputs are provided to allow flexibility in system design. The Memory Hold
signals should be latched externally, and should be valid prior to CLK1 falling
edges (see timing diagrams).

Bus Hold freezes the processor pipeline and allows another bus master to gain
control of the data bus. BHOLD is active low. It should be latched externally and
be valid prior to the CLK1 falling edge.

INTERRUPT REQUEST LEVEL. External system logic, typically an interrupt
controller, reports and identifies system interrupts via the IRL<3:0> bus as fol­
lows:

IRL<3:0>
o

11-4
15

Interrupt Request
None
Maskable
Non Maskable

Maskable interrupts are recognized and serviced only if the ET bit is set in the
PSR, and the IRL<3:0> value is greater than the PSR PIL<11 :8> value. The
Nonmaskable Interrupt is always recognized while the ET bit is set.

External logic must prioritize interrupts in cases of simultaneous interrupt re­
quests, and must latch and assert the IRL value corresponding to the highest
pending interrupt until the interrupt request is cleared by software.

IRL<3:0> must be asserted synchronously with respect to CLK1.

RESET. Assertion of RESET initializes the processor as follows:

(1) Supervisor mode is selected (S = 1 in PSR).
(2) The PC is set to O.
(3) The NPC is set to 4.

Other register fields are either undefined (power on), or retain their state at the
time RESET is asserted. The processor fetches the first instruction from address
o at the first rising edge of CLK1 following release of RESET.

37

11

FUJITSU

11 MB86901

Signal Type

ERROR o

o

LDST o

F<31 :0> o

38

Table 7.1 Bus Signal Descriptions (cont.)

Description

TC determines the behavior of the IFLUSH instruction. When TC is high,
IFLUSH executes like a NOP with no side effects. When TC is low, IFLUSH
causes an unimplemented instruction trap.

MEMORY EXCEPTION. The memory or cache controller asserts MEXC to re­
port a memory error. The processor recognizes MEXC during the cycle following
its assertion.

ERROR. The processor asserts ERROR to report to the system that it has
halted in the error state as a result of a synchronous trap it has encountered
while ET = 0 in the PSR. RESET must be asserted for recovery from the error­
state.

NULLIFY CURRENT CYCLE. The processor asserts this signal to indicate that
the address currently latched in the external memory latches is not a valid
address. This occurs when the processor fetches an instruction (such as the tar­
get of an untaken branch) which it doesn't use. The processor also asserts
NULL_CYC when FHOLD or an MHOLD<A-C> signal is asserted.

NULL_CYC should be used by cache logic to eliminate false cache misses due
to invalid addresses. Assertion of NULL_CYC forces release of DFETCH.

INHIBIT NULL CYCLE ENABLE. IN_NULL is an asynchronous input which sys­
tem logic can use to control the assertion of NULL CYC. When IN_NULL = 1,
the processor can assert NULL_CYC; when IN_NULL = 0, NULL_CYC is forced
low.

ATOMIC LOAD/STORE. This signal is asserted to indicate that an atomic Load
or Store operation is in progress. LDST is forced to a high impedance while
AOE is high.

FLOATING POINT INSTRUCTION/ADDRESS BUS. The processor transfers
Floating Point Operate instructions and their addresses to the floating pOint unit
via this dedicated 32-bit floating point bus. The processor first transfers an in­
struction, then transfers the instruction address the following cycle (see
MB86911 data sheet).

FLOATING POINT EXCEPTION. The floating point unit asserts FEXC to report
a floating point error. FEXC must remain asserted until the processor recognizes
the trap and asserts FXACK.

Signal Type

FHOLD

FCC<1:0>

FCCV

FP

FXACK o

FLUSH o

FEND o

(-

11

FUJITSU

MB86901 11

Table 7.1 Bus Signal Descriptions (cont.)

Description

FLOATING POINT HOLD. Assertion of FHOLD halts the processor. The floating
point unit asserts FHOLD when it detects data dependencies which require that
the processor be halted. The processor resumes execution when the floating
point unit releases FHOLD.

FLOATING POINT CONDITION CODE. These are floating point condition code
signals which are asserted by the floating point unit to indicate results of Float­
ing Point Operate instruction executions as follows:

FCC<1 :0> Result Description
o operand 1 = operand 2
1 operand 1 < operand 2
2 operand 1 > operand 2
3 unordered relationship

FLOATING POINT CONDITION CODE VALID. The floating point unit asserts
FCCV to indicate that the floating point condition code asserted on FCC<1 :0> is
valid.

FLOATING POINT UNIT PRESENT. This input is active low when a floating
point coprocessor is present on the floating point interface bus.

The processor checks this signal when it encounters a Floating Point Operate
(FPop) or a floating point Load or Store instruction. The IU acts as follows when
such an instruction is encountered. When FP is asserted, the IU will dispatch
the instruction to the FPC, depending on the state of the EF bit in the PSR (see
Section 2.5.2). When FP is negated, the IU will always initiate an FP disabled
trap, after which, a floating point library routine can emulate the FPop.

FLOATING POINT EXCEPTION ACKNOWLEDGE. TI:!.LQrocessor asserts
FXACK in response to a Floating Point Exception trap (FEXC) to acknowledge
that it has recognized the trap. The floating point unit should release FEXC
when FXACK is asserted.

FLUSH. The FLUSH Signal, when asserted, forces the floating point unit to abort
(flush) the instruction in the current floating point unit write cycle. FLUSH does
not affect instructions in the floating point unit instruction queue.

FLOATING POINT END. The processor asserts this signal to indicate to the
floating point unit that the last cycle of the current processor Floating Point
Operate instruction transfer is in progress. This allows the floating point unit to
synchronize its operation with the processor.

39

11

FUJITSU

11 MB86901

Table 7.1 Bus Signal Descriptions (cont.)

Signal Type Description

FADR 0 FLOATING POINT ADDRESS. The processor asserts this signal to indicate that
a valid address is present on the F<31 :0> bus. The floating point unit should use
FADR to latch floating point addresses.

FINS 0 FLOATING POINT INSTRUCTION. The processor asserts FINS to indicate that
a valid instruction is present on the F<31 :0> bus.The floating point unit should
use FINS to latch floating point instructions.

XACK, SCAN CLOCKS. The scan clocks are used only during processor scan testing,
BCK are intended for factory use, and must be high during normal operation.

XSM, SCAN CLOCKS ENABLE. The XSM and XTEST signals are asserted only
XTEST during processor testing to disable the system clocks and enable the Scan

Clocks, is intended for factory use, and must be high during normal operation.

SOl SCAN DATA INPUT. This is the serial data pattern input signal which is used
only during processor scan testing. It is intended for factory use, and must be
high during normal operation.

SDO 0 SCAN DATA OUTPUT. This is the serial data pattern output signal which is used
only during processor scan testing. It is intended for factory use, and may be left
unconnected.

The AOE, DOE, and IN_NULL input signals are
asynchronous, disabling output drivers or inhibiting
the NULL_CYC signal immediately when released,
without regard to clocks. This allows fast transfer of
essential bus signals to other bus masters (AOE,
DOE), and fast nullification of system addresses
(IN_NULL) without the ''wait'' for clock edges that
would otherwise be required.

7.1. System Interface

The System Interface is comprised of signals and
buses which interface to system logic other than the
floating point unit. These include the Address Bus,
the Data Bus, the Bus Cycle Definition signals, the
Bus Control signals, the Interrupt Request Level
bus, and the RESET and ERROR Special signals
(see Figure 7.1).

All other processor signals are synchronous, allow­
ing the fast addressing and data transfer possible
only in a synchronous system. MHOLD<A-C> are
referenced to the falling edge of CLK1 ; all other sig­
nals are referenced to the rising edge of CLK1.

The MB86901 interface signals are shown in Figure
7.1, Processor Signals, and are fully described in
Table 7.1, Bus Signal Descriptions. The following
sections contain brief descriptions of the signals.

40

The System Interface protocol supports multiple bus
masters, allows wait states to accommodate slow
memory and I/O, and facilitates cache implementa­
tion.

The separate, non-multiplexed Address and Data
buses are designed for single-cycle operation
without the design complexities inherent in the multi­
plexed address/data bus used in other processors.
The Interrupt Level Bus allows fast response to sys­
tem interrupts, and increases the effective band­
width of the Data Bus by allowing it to be used for

(~

\
"--

/

(/

/(.c
\

instruction and data transfer only. The extensive
offering of Bus Cycle Definition and Bus Control sig­
nals in the System Interface allows a high degree of
design flexibility without performance compromise.

These and other System Interface features combine
with the MB86901 RISC architecture to give the pro­
cessor its high throughput.

Address Bus

The Address Bus includes all signals necessary to
locate instructions, data, and 1/0. These include
ASk7:0> which select address spaces and are
used by memory management protection logic
which may be implemented, and the ADR<31 :0>
address bus signals which identify particular loca­
tions in selected address spaces.

The asi signals allow selection of up to 256 address
spaces, with each address space containing as
many as 4 gigabytes, for a maximum combined ac­
cessible space of 1024 gigabytes.

Four of the address spaces are dedicated according
to mode (user or supervisor) and type of access (in­
struction or data). 252 of the address spaces are im­
plementation definable and are selected by the "asi"
field of the Load From Alternate Space, Store Into
Alternate Space, and Atomic Load-Store Into Alter­
nate Space instructions.

The address signals select individual words in
accessed address spaces.

Data Bus

The Data Bus transfers all instructions and data be­
tween the processor, and memory and I/O. It is a
non-multiplexed, 32-bit bus capable of transferring
one word each cycle.

Bus Cycle Definition Signals

The Bus Cycle Definition signals are asserted
during bus operations to identify to the system the
types of operations in progress as follows:

• RD identifies operations as loads (reads) or
stores (writes).

11

FUJITSU

MB86901 IIIIIIIIII!III

• LDST identifies Atomic Load-Store operations.

• LOCK identifies the multi-cycle Load Double and
Store Double operations.

• DFETCH identifies data transfer operations.

• SIZE<1 :0> identifies transferred data as bytes,
halfwords, or words.

Bus Control Signals

The Bus Control signals directly control the state of
the System Interface signals, directly control system
logic associated with the System Interface, and in­
directly control bus operations by supporting bus
protocol as follows:

• WE indicates that data to be stored is present on
the Data Bus.

• MDS indicates that data to be loaded is present
on the Data Bus.

• HAL inhibits latching by the address latches.

• MHOLD<A-C> hold the processor in a wait state.

• NULL_CYC indicates that the address in the ex­
ternal address latches is not a new valid
address, or that FHOLD or one of the
MHOLD<A-C> signals is asserted.

• IN_NULL gates assertion of NULL_CYC.

• TC indicates the presence of a cache.

• MEXC indicates a memory error.

• AOE enables the ASk7:0>, RD, SIZE<1 :0>,
LOCK, and LDST output drivers.

• DOE enables the D<31 :0> output drivers.

Interrupt Request Level Bus

The IRL<3:0> Interrupt Request Level bus is used
by system logic to report both maskable and non­
maskable interrupt service requests, and their level
(see Section 5.1.1).

41

11

FUJITSU

11 MB86901

Special Signals

RESET and ERROR are special signals which are
not normally asserted during operation.

RESET is asserted by system logic to initialize the
processor, then is released to force boot program
execution at location 0 (see Section 6). RESET is
always asserted at power-on, but is usually asserted
during operation only in response to a catastrophic
system failure.

ERROR is asserted by the processor to indicate that
it has halted in the error state in response to a trap
occurrence while ET = 0 in the PSR. RESET must
be asserted for recovery from the error state.

7.1.1. Basic Timing

Basic processor timing is shown in Figure 7.2. The
figure shows fetching of instruction 11, followed by
fetches of sequential instructions 12 and 13, followed
by instruction 11 data transfer (such as a data read
for a Load instruction), followed by instruction 14
fetch.

This timing is typical, showing instruction fetches or
data transfer each cycle, with no delays (wait cy­
cles) due to cache misses or memory exceptions.

The notation with format "S_l" above each clock
cycle identifies the instruction pipeline stage in
which a particular instruction is being processed (S),
and the instruction or instruction operation (I) as fol­
lows:

Pipeline Stage

F .. Fetch Stage
D = Decode Stage
E .. Execute Stage
W .. Write Stage
WH .. Write Stage Hold

Instruction

IX = Instruction X
LD = Load Operation
ST = Store Operation
T = Trap Dispatch

Table Instruction

Note that instruction 11 is decoded and executed in
the instruction pipeline while instructions which fol­
low are fetched.

All instructions are pipelined in this manner.

42

7.1.2. Basic Data Transfer Timing

Figures 7.3-7.7 show timing for the Load, Store,
Load Double Word, Store Double Word, and Atomic
Load-Store operations. These operations are iden­
tified by the assertion of DFETCH and ASI<7:0> at
the beginning of each operation to indicate that
data, rather than an instruction, is to be transferred
via the 0<31 :0> data bus.

The Load operation completes in one cycle as
shown in Figure 7.3.

RD and WE remain released during the operation to
indicate that the processor is to read data.

The Store Operation, shown in Figure 7.4,
completes in two cycles. The processor releases RD
during the first cycle to indicate that it will write data,
then asserts WE during the second cycle to indicate
that the data to be written is asserted on the data
bus. The processor also asserts LOCK to indicate
that a multi-cycle operation is in progress, and HAL
and NULL_CYC to disable the External Instruction
Pipeline and to indicate that the second cycle is
"nulled," since it is not a new operation.

The Load Double Word operation (Figure 7.5) is es-
sentially two back-to-back load operations. The pro- .,---
cessor asserts LOCK during the second cycle to
indicate that the operation is multi-cycle.

The Store Double Word operation (Figure 7.6) is es­
sentially two back-to-back store operations. The
second store completes in one cycle rather than
two, however, so that the entire operation completes
in three cycles. Once again HAL, LOCK, and
NULL_CYC are asserted as in the Store case, with
LOCK held asserted for two cycles to indicate a
three-cycle operation.

The Atomic Load-Store operation (Figure 7.7) is es­
sentially nondivisible-a load followed by a store.
The processor asserts LOST to identify the opera­
tion as an Atomic Load-Store.

•

~
CN

~
•

CLK1

ADR<31:0>

ASI<7:0>

0<31:0>

SIZE<1:0>

.~

Figure 7.2 Basic Timing (Cache Hit)

F_1l D_1l E_1l W_Il F_I4

INSTRUCTION 11 INSTRUCTION 12 INSTRUCTION 13 INSTRUCTION 11 INSTRUCTION 14

FETC~ DATA TRANSFERt FETC:l
(Instr 11 Execute) (Instr 11 Write)

\ I \ I \

t= FETC~ FETC
(Instr 11 Decode)

I \ I \

~~

~ 11 'IlIl!.- 12 'IlIl!.- 13 'IlIl!.- 11 'IlIl!.- 14

~
I

_________ ----'x ;l--y ____ _ 10 10

~

:s::
llJ
Q)
en
(0
o

'Ij

~ .

- -

.j::o.

.j::o.

CLK1

AOR<31 :0>

ASI<7:0>

0<31 :0>

SIZE<l :0>

RO

WE

DFETCH

MHOLD

MDS

HAL

Figure 7.3 Load (Cache Hit)

F_LD F_I2 F_I3 W_LD

j4-- LOAD ~

jL V V \1- \1,----
I I I I I = I I I

~ r-r---r-

~ 11 'IlIl;< 12 'IlIl;< 13 'IlIl;< LO 'IlI1
I I I
~~=Z7ll'!0071l

I I I
10 X LO ~

______ ----1/--. ---_. ---\'---__

j
= =

s:
OJ
CX)
0)
CD
o

.f:>.,
(Jl

,.,....."
...

F_ST

elK,

ADR<31 :0> 11

ASI<7:0>

D<31 :0>

SIZE<l :0>

RD

WE

DFETCH

MHOLD

MDS

HAL

LOCK

NULLCYC

Figure 7.4 Store (Cache Hit)

"-12 F_I3 W_STO W_STl

ST

I l~
I I x::

-" X I" Ir
I~

1

~f~

I , I

1""'''''

s:
OJ
CO
Q)
(0
o

§
~ = =

,l:I.
0>

(\

CLK1

ADRc31:0,.

ASI<7:0,.

0<31:0,.

SIZE<1:0,.

RD

WE

DFETCH

MHOLD

MDS

HAL

LOCK

- ..

Figure 7.5 Load Double Word (Cache Hit)

F_LDW F_12 F_I3 W_LDI W_lD2 ir== LOAD DOUBLE WORD ~

-1 '1 '1 '1 '1 1'---
= I I I I I
~-I-l 'Illlt. U 'Illlt. 13 'Illlt. LD 'Illlt. LD 'Ill1
I I I I I I
=7III'!:IYJ0IIX~Z~Z~
I I I I I I

\~

10 X 11 'C...

______ --JI 1---\'--____ _

________ ----'1-------\'----__

f \
\ /

(--",

3:
CD
00
0)
CD o

~
~

~
--.J

ClK1

ADR<31 :0>

ASI<7:0>

D<31 :0>

SIZE<1:0>

RD

WE

DFETCH

MHOLD

MDS

HAL

lOCK

NUllCYC

- ..,

Figure 7.6 Store Double Word (Cache Hit)

F_SDW F_I2 F_I3 W_STO W_STl W_ST2

I~ STORE DOUBLE WORD ~I

1 1 1 1 1 1 1~-
~~Of'E)(///~O//'/lllXlZ~Z71:!0-

~ 11 '!JIlj, 12 '!JIlj, 13 '!JIlj, ST '!JIlj, ST 'Ill1
I I I I I I
~ZZZ~OZ~ZZZ!G GJ< ST2 'Ill1
I I I I I I

10 X 11 ~

I I
1 1 \ I r

\ ;-1 \

\ I /

_________ -----.Jr - ._-- I \'-----__ _

---------------------------~/ -.~

s:
OJ
Q)
Q)
co
o

j

&

ClK,

ADR<31:0>

ASI<7:0>

0<31:0>

SIZE<1:0>

RD

WE

DFETCH

MHDLD

MDS

HAL

lOCK

NUlLCYC

LDST

('\
i

" "
(\

Figure 7.7 Atomic Load-Store (Cache Hit)

F...ALS F_12 FJ3 W_LDI W_STO W_STI

i, ATOMIC lOAD.STORE ,

111"i11l~-
~=Z7l/'/llljj/Z=
I I I I I I I
~ 11 'IlllX 12 'IlllX 13 'IlllX LOAD 'IlllX STORE 'Ill1
I I I I I I
~~Y:JiYJO~ fr3(lJl
I I I I I I

'0 X ALS x=

------'-------\' r
I

\ r
____ ~/ I \

\ /

-.LJ ----I ----;---\'----

, ,------.:......-

/

/

"
/ \

/ '\ I
i I
\. /

('\

"2 -c::-
= ===~===

c= = =

3:
to
(X)
en
co o ...

•

(

7.1.3. Cache Miss Timing

Figures 7.8-7.12 show timing which results from
cache misses.

The processor first tries to access instructions/data
in the system cache, if a cache is implemented. If an
accessed instruction/data is in the cache, a cache
hit occurs, and the operation proceeds with no
delays as shown in Figures 7.2-7.7.

If an accessed instruction/data is not in the cache, a
cache miss occurs, and the operation proceeds with
delays as shown in Figures 7.8-7.12.

System logic introduces delay during an operation
by asserting MHOLD as shown in the figures, which
holds the processor in a pause state until released.

Note that when MHOLD is asserted, the processor
has advanced to the next instruction. External
latches must therefore capture the bus signal states
which correspond to the "miss" instruction (see Ex­
ternal Address Pipeline, Section 8.2) for the re­
quired memory access.

The system logic strobes MDS during a "held" in­
struction fetch or load operation to indicate to the
processor that the instruction or data is present on
the data bus, then releases MHOLD to complete the
operation. During a store operation, the logic simply
releases MHOLD to indicate that the destination
device (memory or I/O) has latched the data.

Other signal timing is similar to the cache hit cases.

7.1.4. Memory Exception Timing

Memory exception timing for various bus operations
is shown in Figures 7.13-7.16.

I111

FUJITSU

MB86901 11

The operations begin normally. System logic then
asserts MHOLD to hold the processor, asserts
MEXC to report the mem~xception, then re­
leases both MHOLD and MEXC as shown in the
figures to allow the processor to begin exception
servicing. T1 and T2 are Trap Dispatch Table in­
structions which vector the processor to the appro­
priate trap handler.

7.1.5. Special Timing

Bus Request, Error/Reset, and asynchronous trap
(interrupt) timing are shown in Figures 7.17-7.19,
respectively.

A bus arbiter or bus master gains control of the sys­
tem bus by asserting BHOLD to hold the processor
in a wait state, and releasing AOE, ADROE, and
DOE to force essential processor outputs to a high
impedance as shown in Figure 7.17. The new bus

. master drives the three-stated lines while the pro-
cessor output enable signals are released.

The bus arbiter releases BHOLD and the processor
output enable signals once the bus master has
finished operations, thereby allowing the processor
to resume execution.

ERROR and RESET timing are shown in Figure
7.18. Note that RESET must be held asserted for a
minimum of ten processor cycles to assure
complete processor initialization.

Asynchronous interrupt timing is shown in Figure
7.19. IRL<3:0> = 0 indicates no interrupt. Any other
IRL<3:0> state indicates an interrupt which may be
recognized according to the value of the Processor
Interrupt Level in the PSR (see Section 2.5.2).

IRL<3:0> must be held asserted until cleared by
software .

49

01
o

CLK1

AOR<31:0>

ASI<7:0>

0<31 :0>

SIZE<1:0>

RO

WE

MHOLO

MOS

HAL

NULLCYC

•

Figure 7.8 Instruction Fetch (Cache Miss)

F.Jl FH_Il FH_Il F_I2 F_I3

c=NSTRUCTIO~11 INSTRUCTIO~11 INSTRUCTION I1t=NSTRUCTIO~I2 INSTRUCTIO~13
MISS DELAY FETCH/DATA XF FETCH FETCH

I \ I \ I \ I \ I \

~ 13 YJZ~
I

~ 11 'IlllJ.- 12 'IlllJ.- 13

~7I//////71~~

SIZE = 10

\ I /

\ I /

\ /

___ ~/ ____ m_ ____ \~ ___ _

:s:
OJ
ClO
en
co
o
~

j

Figure 7.9 Load (Cache Miss)

W_LDI WH_LDl W_LDI F_I4

t lOAD

I
ClK1

I I I I
ADR<31:0> =ZIX 15 >C

I I I I
ASI<7:0> ~ lD '/llil., 14 >C

I I I I I
0<31:0> ~mzzooOllZOOZ~O~

I I I
SIZE<l :0> X lD X 10

I
RD

I
WE

DFETCH \
I

MHOlD \ /
I

I / MDS \

HAL \ /

01
NUllCYC / \

-"
--~--

s:
m
0)
0)
(0
o
...A.

ci

~

01
I\)

'\
I " / •

(-\

Figure 7.10 Store (Cache Miss)

W_STO WH_STI WH_STI W_STI

STORE

elK1

AORc31:0> =m 14 '!lll
I I I I I

llX'--~Yl1lX ST '!lll ASlc7:0>

I I I I
Oc31:0> lUl;C:) (ST '!lll

I I I
SIZEc1:0> Xr---X ST x=
RO

--_I~\ I r
WE ---------\ I r
OFETCH I

MHOlO i \ ! /
MOS

HAL \ '-----1-----'--/

lOCK ;--- \
~----------------------~----

NUllCYC r-- -------- ~

/\

I "\

'\

"'- J
/' -,

~ -c::-

~ = =

3:
m
CIO
0)
co o

01
U)

·~

WJ.Dl

CLK1

\
'.

(."

Figure 7.11 Store Double (Cache Miss)

WH3.Dl WH_Wl

LOAD DOUBLE

W1U.Dl WH_W2

ADR<31:0> ~~07X 14 ~

I I
ASI<7:0> ~ LDD '!lm. LDD '!lm. 14

I
0<31:0> =OZOOZZZZO!EJjZZZ~ZZ~

I I I
SIZE<1:0>
~X 11 _._ -~

RD

WE

DFETCH \~------------------------
MHOLD

MDS

I I / r I 1 __ _

\ /

HAL

LOCK

. I / -~I-----'\ I
\

NULLCYC ______ ~r \~ ______ _

/

3:
OJ
co
0)
co o
...I.

~

01
~

/ "

ClK1

Alc17:D>

ASlc7:0>

Dc31:0>

SIZEc1:0>

RD

WE

DFETCH

MHOlD

MDS

HAL

lOCK

NUllCYC

lOST

Figure 7.12 Atomic Load-Store (Cache Miss)

W_lDl WICSTO WICSTO W_STO W_STI

1
4 ATOMIC lOAD-STORE ~I

/ 1/ I, I, 1,.----,

=O!IJomzzmmzzoo~
I I I I I I

-=xIllX ALS 'IlIlJ.. ALS X
I I I I

=mll1Oll> ~ ~
I I I I

----,X AlS X

-------,\ 1 /

~--=------~-----..:-----....:....-----,\ 1 /

~\ I I 1

~ I /
~_~_~I\ I/~ ____ ~

\ 1

----,I \~_

1

1,,---------
i' '\

"-. /

,/" ",

\ ..

//--

j
= =

3:
m
00
Q)
co o

01
01

~

Figure 7.13 Instruction Fetch Memory Exception

F_Il FILII FlUl FHJl FJ2 FJ> NULL F_Tl U"2

eLK1

14 INSTRUCTION FETCH OPERATION "I
~ V V V V V~----,
I I I I I I

ADRc31 :o~ 13

I I I I I I
ASlc7:b 11

I I I I I I I I I
D<3".. -=mzllZIOOZZOzzzozommo

I I I I I
SIZE<1:0> .0

RD

WE

MHOLD \ I !
I

MDS

HAL \ I !
I

NULLCYC ----~~/ \ / \~--------
I

MEXC \ /

3:
m
co
0')
co
o
...I.

":I

~ -- c:: = =

01
0> Figure 7.14 Load Memory Exception

W_l.Dl WH_LDI WH_LDl WH_LDl
NULL F_Tl F32

I~ LOAD OP1ERATION lr-------,
CLK1

I I I I I
ADR<31:0. ~~ZIX IS =

I I
ASI<7:0. ~ LD '!lIlJ,.. 14 '!lIlJ,.. T1 '!lIlJ,.. T2 'Il...-

I I I I I
.D<31:0. ~ZZ////////ZZZOZZZZZZZZZZOOOZZOZZOZZZZ~Z~ZZ~

I I I I I
SIZE<1:0> ~X LD X'--______________ _ 10

RD

WE

DFETCH \~~--~--~~-------------

MHOLD

i \ ! /
--'----------

---_I ~I ____ _
\ I / I

MDS

HAL

NULLCYC ____ I I I \'------
MEXC ~

§
~.

. ~
~ -

s:
tD
00
en
(0
o •

~

0'1
"-..I

Figure 7.15 Store Memory Exception

W_STO WH_STI ~STI WH_STI WH_STl F_T1 F_T2

14 STORE OPERATION ~I

I. II II II I, ,r----.....
CLK1

ADR<31:0. ~7II!illlXIIII7X 14 XZ~~71/'00-

ASI<7:0>

0<31:0>

SIZEc1:0>

RD

WE

DFETCH

MHOLD

MDS

HAL

LOCK

NULLCYC

MEXC

I I I I I I I
~ ST YlllX T1 YlllX T2 'IZ
I I I I I => (ST XZZZZ~~
I I ---., X ST X 10

-------'

h 1 1 /

I \ I I /
I' I I
--~I\ 1 I!~---------

I I I!

~ : I I
I \

----~! 1 __ n -- \'----­

~

3:
OJ
Q)
en
co o

":I .

~
= =

01
00

/

\
!

/

Figure 7.16 Atomic Load-Store Memory Exception

W _illl WH_STO WH_STO WH_STO W..8TO F 11 F 1'2

I~ ATOMI1C lOAD-STORE OPER~TION --

ClK1 I I I I I I I I
ADR<31:0. ~7IlflllXIIZ=Z~~!0IJ--

I I I I I I I I
ASI.7:b ~ AlS 'Qllj.. T1 'Qllj.. T2 '!l..

D<31:0. ~Zzzb I c6mzu±xz
I I I I I

SIZE.1:0. ---,X AlS X'----__

RD \ ------__ ~I~/~----
WE

DFETCH \ I ,

MHOlD r ! /
MDs

NUllCYC

I I I / I
\ I I I I \

/ I I I I\~_~
/ I I \ ~

HAL

lOCK, LDST

MEXC

('\
\ .
'. / \"

"Ij

~ = =

s::
OJ
ClO
Q)
co
o

~I

~I

1;)
~I

CD
:::J
C"
CD a:
en
:::J

" m
..... ,..
....:
CD ...
:::J
a
u::

~I

~I

11

FUJITSU

MB86901 11

-- -------

~

o
a: I~ I~ Ii

59

m
o

"

Figure 7.18 Error and Reset

B2 E3 E3 E3 E3 so 51

ERROR t ------+

~ 1- 1
ADRd1:0» T3 :=x=-------'----~:v-: --'------II-~

I I I I
ASlc7:" ~ Tl :~YlIlX: II ~

I I I I I I I I I
Dc31:.. ~mmzmmmmmmoo :IlI10ZZZ0Z00 : mzzzmzozmm~

I I I I I I
u-----~----------

5IZEc1:0> 10 10

ERROR

~ :~~----~~~--~---------

1 u-- h 1.:

1
,

~ Minimum ,. Cyci ••

RESET

(\
: i '" / "

/'

3:
OJ
CO en
(0
o
..a.

"2

~

m

~ /-

.~ ,/

CLK1

AOR<31:0>

ASI<7:0>

0<31:0>

SIZE<1:0>

NULLCYC

IRL<3:0>

Figure 7.19 Asynchronous Trap (Interrupt)

NUlL F_Tl

~~~ 
I 
~ (n) ~ (n+l) ~ (n+2) ~ T1 

~7I'I:i!YJll~~ 

_______________________ ==x~ 10 

---------'/ \'----

/ 

Not.s: 

(1) IRL<3:0> Is reset to 0 by an Interrupt service routine. 
(2) (n)-(n+1) are user Instructlons/data. 
(3) T1-T2 are supervisor Trap Dispatch Table Instructions. 

as: 
m 
CIO 
Q) 
(0 
o ....... 

~ 
= = 



1111111111111111111111111111111111111111111111111111 

FUJITSU 

1111111111111111111111111111111111111111111111111111 MB86901 

7.2. Floating Point Interface 

The Floating Point Interface directly interfaces the 
processor to the Fujitsu MB86911 Floating Point 
Controller, which in turn directly interfaces to the TI 
SN74ACT8847 Floating Point Processor (FPP). This 
allows use of the MB86911 and the FPP as a Float­
ing Point Unit (FPU) for the MB86901 which ex­
ecutes floating point operations concurrently with 
processor integer operations, as explained in Sec­
tion 4. 

Data transfer between the processor and FPU is via 
the 0<31 :0> System Interface data bus. All other in­
formation transfer between the processor and FPU 
is via Floating Point Interface buses and signals as 
follows: 

• F<31 :0> transfers Floating Point Operate instruc­
tions and their addresses to the FPU. 

• FADR indicates a valid address on the F<31 :0> 
bus. 

• FINS indicates a valid instruction on the F<31 :0> 
bus. 

• FEND indicates the last processor cycle of the 
current instruction transfer. 

• FCC<1 :0> transfers floating point operation con­
dition codes to the processor. 

• FCCV indicates a valid condition code on the 
FCC<1 :0> bus. 

• FEXC indicates a floating pOint exception. 

• FXACK indicates processor recognition of a float­
ing point exception. 

• FHOLD halts the processor. 

• FLUSH forces the unit to abort the current in­
struction. 

• FP indicates the presence of an FPU. 

62 

7.2.1. FPOP Instruction Transfer Timing 

Timing for Floating Point Operate (FPOP) instruction 
transfers are shown in Figures 7.20 and 7.21. 

Figure 7.20 shows FPOP instruction transfer without 
delays. The FPOP instruction is transferred during 
the first cycle, followed by transfer of the FPOP in­
struction address the second cycle. The instruction 
address is latched by the FPU to support recovery 
from faults which may occur (see FPU data sheets). 

The processor asserts FINS during the first cycle to 
indicate to the FPU that it is an instruction cycle, 
asserts FADR during the second cycle to indicate 
that it is an address cycle, and asserts FEND after 
the second cycle to indicate that the operation is 
completed. 

Figure 7.21 shows FPOP instruction transfer timing 
with delay cycles. The FPU has asserted FHOLD 
during the operation as shown in the figure, holding 
the processor in a wait state until FHOLD is re­
leased. 

7.2.2. FP Load And Store Timing 

Timing for the floating point Load, Store, Load 
Double Word, and Store Double Word instructions 
are shown in Figures 7.22-7.25. These instructions, 
containing memory source or destination operand 
addresses, are transferred to the FPU for execution. 

The processor asserts DFETCH at the beginning of 
each operation to indicate that data will be trans­
ferred, transfers the instruction during the first cycle 
of the operation, then transfers the instruction 
address during the second cycle. 

The FPU transfers data to/from memory via the 
0<31 :0> bus as shown in the figures. 

7.2.3. Cache Miss and Exception Timing 

Cache miss timing, memory exception timing, float­
ing point exception timing, and various combinations 
of each are shown in Figures 7.26-7.34. This timing 
is similar to that of non-floating point operations 
(see Sections 7.1.3 and 7.1.4), with floating point 
exceptions resulting in the same timing as memory 
exceptions. 



en 
c..> 

~ 

Figure 7.20 FPOP Instruction Transfer 

E_FP wyP WHJ'P 

ClK1 

t ~~ ~ 
~ \ 

I 
ADR<31:0> ~= 15 X1/~ 

I I I I 
ASlc7:0> ~-1-3 'Qllj., 14 'Qllj., 14 'Qllj., 15 

I I I I I 
D<31:0> =m71'0077~ 

I I I 
SIZEc1:0> 10 

F<31:0> _____ -x (FP~) -X -(-;POP ADDRESS) X X
L 
____ _ 

RD 

WE 

FINS --- " ~ I '----~--~-~ 

FADR ___ ----I \'----___ _ 

FEND 

HAL 

\ ;- I-\~ 

NUllCYC ___ ----'I------··\'--___ ~ 

----------- -.-~-----

3: 
OJ 
Q) 
en 
CO 
o 
-s. 

~ 



0) 
,/:l. 

\'-

Figure 7.21 FPOP Instruction Hold 

E_FP W Yp WHYP WH_FP WH_FP 

I: I, FPOP ·1 
CLK1 I I I 
ADRd1:0> ~~7IX IS >-

I I I I 
ASI.7:0> ~ 13 'Qlh,. 14 'Qlh,. 14 X 

I I I I I 
0<31:0> ~OZ=~ 

I I I I I 
SIZE.1:0> 10 

I I I I 
Fc31:0> X'---(FP-OP) ------'X (FPOP ADDRESS) X X 

I 
RD I 

WE I 
FINS / \ 

'-------------

~~ / \ 
'----------

I 
FEND / \ 

HAL \ / 

NULLCYC / \'---__ ~ __ _ 

I 
~ \ / 

I 

\ , ) \ / 

3: 
m 
co en 
co 
o .... 

I 



0> 
01 

~: 

----- --

~-" 

Figure 7.22 FP Load (Cache Hit) 

Wl-UP WHJ'P 

CLK1 

ADRc31:0> ~~=~ 
I I I I I 

ASlc7:0> ~ 13 'Qlb... LD 'Qlb... 14 'Qlb... IS 

I I 
Dc31:0>=~= 

I I I I I 
\ j ___ -----'x LD X'--___ __ SIZEc1:0> 10 10 

Fc31:0> __ ---'x (LOF) --XJLDFAoDRE~- ------x'--__ _ 
RD 

WE 

FINS ~/ \'---------------

FADR ___ ------l/ \'--___ _ 

FEND ______ ------1(---- \'--__ 

DFETCH ~/ \~------------

3: 
aJ 
co 
en 
CD 
o ...... 

- ~ 



0) 
0) 

/--

Figure 7.23 FP Store (Cache Hit) 

CLK1 

I
. FP STORE 1 

J U U U V,,---
I I I I I 

ADR<31:0> ~ZO~ 

I I I I I 
l~'---

ASle7:0> ~ I3 'QllJ-. ST 'QllJ-. 14 x.:=== 
I I I I 

0<31:0> =xzzzztI:i0 ~~ 
I I I I 

SIZEe1:0> 10 X ST X 10 

I I I I 
Fc31:0> ___ -...JX (STF) X (STF ADDRESS) X X'-_______ _ 

RD \ / 

WE \ / 

FINS --i/ \L--~_~~_ 

FADR I / \L--~_ 
FEND I 

DFETCH l; \'---__ 
HAL \ / 

LOCK ----~~/ \~--~------

NULlCYC ______ ---.JI----\'--'-__ _ 

\, 
, 
',,- ) 

/-- -', 

s: 
m 
Q) 
Q) 
(0 
o 
...a. 

I 



m ...... 

~ 

ClK1 

ADRc31:0> 

ASI<7:0> 

D<31:0> 

SIZEc1:0> 

Fc31:0> 

RD 

WE 

FINS 

FADR 

FEND 

DFETCH 

LOCK 

/..----,," 

Figure 7.24 FP Load Double (Cache Hit) 

E_FP W JlP WH_FP WHJIP t ~~~~ 1 

i 1 1 '1 'i~-
=~~~ 
I I I I I 
~ 13 'IJIlX lD 'IJIlX lD 'IJIlX 14 'Illl 
I I I I 
=~~ 
I I I I I 
____ ----'x 11 X'---__ _ 10 10 

_---'X (LDDF) X (lDDF ADDRESS) X X ~ 

I 

----,I -I\~ ____ _ 

I / \'---__ 

I 

l; \~ ____ _ 
------~/ -\~----------

s: 
OJ 
co 
en 
co o .... 

~ = = 



0) 
(Xl Figure 7.25 FP Store Double (Cache Hit) 

CLK1 

ADRc31:0. ~Z7!llllXlZZ~ 

I I I I I 
~"""""""'j \.r-r-I 

ASI.7:0. -=nm.. 13 'IlJb., ST 'IlJb., ST 'IlJb., ST 'IlJb., 14 X 

0<31:0. ~ I ~mzX±X 
I I I I I I 

SIZEc1:0> 10 X 11 X 10 

~~I~ I I I -----,X (STDF) X (STDF ADDRESS) X X X'--__ Fc31:0> 

I 
RD 

~ I / 
...---------:.-

I \ / WE 

FINS . /r-~\,-------,-_--,---,-_ 

FADR I / \'--~-----.:._----.: 
FEND I 

DFETCH ~ : \'------'---------.:...-----.:. 

HAL \ / 

LOCK _-----'I I \'-----~ __ 

NUlLCYC --------~/ --\'-----

\, 

":I -c::-

~ - -

3: 
OJ 
(X) 
CJ) 
co o 
..a. 



m 
CD 

...... //.---'), 

Figure 7.26 FP Store (Hold and Cache Miss) 

W.J'P WiU'P WiU'P WiU'P WiU'P WiU'P WiU'P WiU'P 

CLK1 

I. FP STORE 'I 
f Uf Uf \j \j Uf Uf Uf Gfr--

ADRc31:0. ~ 12 ~ 
I I I 

-------------.~ ~ r--
ASlc7:O> ~ ST 'IlllI. 12 'Il1l 

I I 
0<31:0> =:J ( ST ~ 

I 
8IZ£<1:0> ~X ST X 10 

I I 
Fc31:0> (,STF) X (STF ADDRESS) X X x= 
RD i \ 1 r 
WE 

FADR 

I \ / 
~ \~-----------------------------------

FEND 1 

DFETCH \~--~------------------~----~----~ 
HAL \ / 
LOCK 

MHOLD 

NULLCYC 

FHOiD 

_------,1 I \ 
I \ I / 

I / , I \ 
-----, '~ 

s:: 
OJ 
Q) 
en 
co o .... 

~ 
~ 



...., 
o 

'-, 

eLK1 

ADRc31:0~ 

A91<7:0> 

Dc31:0> 

SIZEc1:0,. 

Fd1:0:.. 

RD 

Wi 

FADR 

FEND 

DI'ETCH 

HAL 

LOCK 

iiiiOLD 

iiiii 

NULLCYC 

Figure 7.27 FP Load Double (Cache Miss) 

W.J'P WII.J'P WII.J'P Wll...FP WII.J'P WII.J'P WH.J'P 

~~~~ 1 
I, ,---

I
12

I I I

~ LD ~
I I I I I I I

=mzzzmmZZZ7/ZZZZ0= LD2 ~
I I I I I I I =:=x "X 10

I I
~ (LDDF ADDRESS) X X x=

I I

~ \ I
I I
~ I

I \ I I

! I \ I
I \ I I

I \ I!~~I--------
I \

".

3:
m
(X)
en
co o
~

"2

~

~
I

......

Figure 7.28 FP Store Double (Cache Miss)

wyP WlLFP WH_FP WHJ'P WH_FP WHYP WH_FP WH_FP

I: FP STORE DOUBLE I
fYY00YYYGfr--ClKl

ADR.31:o. ~7II!QlZj.j////X sn XlO~
I I I I

ASI.7:o. ~ ST 'Qlb... ST 'Qlb... sn 'Qlb... 12 ~
I I I I

0<31:0. => (STI ~ZZ~
I I

SIZEc1:0> ==x 11 X 10

I
Fc31:0ll> (STDF) X (STDF ADDRESS) X X X 'I:....

RD h I /r--

WE ---'------~\ I /~--

FADR ~/ \ I
FEND I
DFETCH \ I
HAL \ ___________ ~I~r----------
MHOLi)

~/ I I~ __ ----+ __ _
\ \ I \L-__

lOCK \'-------

NUllCYC ------/

s:::
m
CD en
(0
o

~
~

......
I\)

CLKl

ADRdl:0.

ASI.7:0.

0<31:0>

SIZE.l:0.

Fc31:0>

RD

WE

FADR

FEND

DFETCH

HAL

LOCK

MHOLD

NULLCYC

FHOLD

'\

Figure 7.29 FP Store Double (Hold and Cache Miss)

W_FP WICFP WH_FP WICFP WH_FP WICFP WICFP WICFP

I' FP STORE DOUBLE 'I
tVVVVVVVV~-
1 1 1 I 1 1 1 1 1

~ ST2 YJ71Ill:IYJ~
I I I I
~ ST 'IlIlI- ST 'IlIlI- ST 'IlIlI- Il 'Ill1

I 1 I I

~I(STl ~~
10 _-JX 11 X~ __ _

I
~ (STDF ADDRESS) X X X Y:....

\ /

\ I I

LJ \ I

I \~---------
\ I

I

--II I \'------

1\ /

__ ~I \ --.I \~_

--\ I

\ _/ " /

":I =c=

= ==~===

c:: = =

s:
tD
00
0)
(0
o

elK1

ADRc31 :0>

ASlc7:0>

Dc31:0.

SIZEc1:0>

Fe31 :0:-

RD, WE

FADR

FEND

DFETCH

HAL

MHoL:D

MOO

NULLCYC

FHOLD

MEXC

FEXC

FXACK

FLl!SH

......
(,)

Figure 7.30 FP Load Exceptions

it-------------- FPLOADEXCEPTIONS -----------~

,-----,

~ r-r-r-r-r-7\ ,~----

13 T1

I I I I I I
IZ

I I I I I I I I I I

~ZZZZZZZZZZZZZZZZZZZZ~ZZZZZZZ/ZZ/ZZZZZZZZZZZZZZZZZZZZ~
I I I I I I I I I I ==x LD X ,.
I I
~ (LDF ADDRESS) X X X X

I I ~--

L II \ I

! / i II \~----
~ I I
~~\ I /

\ I /~--t

I I / : \
~ /

\ /~~----~-------

I

I
\ /

------------~--~I \~ ____ _
------------~I~/ \~ __ __

3:
OJ
(X)
0)
(0
o
..a.

":1

I

~ Figure 7.31 FP Store Exceptions

t,.------.
eLK1

I I I
AORc31:0:.o 12 ~ T1

I I I ________ ~ ______ ~_
ASld:O> ~ 8T

I I I
DeS. ,0. =:) (ST ~

I I I
SIZEc1:0. ===:x: 8T X 10

I
FeS',o. ~ (aTF ADDRESS) X X X

I ~-------

RD ~~~----------------~--------~----~ /

Wi 1
FADR ~ \1..-_____ "

DFETCH~ I
-I \ 1 I /

I I
HAL

1 1 1 --------\ I

\ 1/ 1

LOOK

"iiiiiiLi)

NULLCYC: I / 1 1 \

~ ~ 1/1

\ / 1 "I
------------~\ /

iiEXc

FEXC

FXACK _______ ~_~l"~ \~ __ _
FWSH , / \'--------

'\
I

~ / \,

s:::
m
Q)
0)
co o

I

~,

CLK1

ADR<31:0>

ASlc7:0>

Dc31:0>

SIZEc1:0>

Fc31:0>

AD

WE

FAD A

DFETCH

HAL

LOCK

iiH&D

MDS

NULLCYC

MEXC

FLUSH
......
U1

Figure 7.32 FP Load Double Memory Exception

W...FP WIU'P WIU'P WH...FP WJl..FP

~ FP LOAD DOUBLE .1

k V \
I I
~ 14 XlO710 0 0-

I I I I I
~ LD1 'IlIlX LD2 'IlIlX T1 'IlIlX T2 'Il

I I I I I I I I

=zmzoom7l/////////////=
I I I I I I I I _---'x 11 X 10

I
~ (LDDFADDRESS) X X X'--__ _

I

----J/ I \ ~----~----~I----~----------
\ I

------~\ I I~~-----------

----J/ n I

1\ !/
_________ I I I \'------­

~

-----_____ ~I----'/ \

s::
OJ
CX)
en
co o

I = =

......
0)

ClK1

ADRc31:D,.

ASlc7:0>

0<31:0>

SIZEc1:0>

Fc31:0>

RD

WE

FADR

DFETCH

HAL

lOCK

MHOlD

NUllCYC

MEXC

FLUSH

Figure 7.33 FP Store Double Memory Exception

W_FP WHjP WH_FP WH_FP WH_FP

FP STORE DOUBLE MEMORY EXCEPTION 'I
:r
I

k V \
I I
~ZIX 5T2 XZZ/Z~ ~ C)-

I I I I
~ ST 'IlllX 5T 'IlllX T1 'IlllX T2 'IZ

~ : (.n X n '~
X 11 X'-----__

I I
(STDF) X (STDF ADDRESS) X X X

'-------

I \ I /

~--~\ I

~/ \ I

\ I
------\ I I /~-----------

I

~/ I \'------
1\ /

------~/ I \'------

~ /

-----------~~/ \~---------

/

:s:
OJ
co en
co
o

~

5
'" ~

......

~,

CLK1

ADRc31:0>

ASI<7:O>

Dc31:0:.

SIZEc1:0,.

Fc31:0>

RD

WE

FINS

FADR

FEND

HAL

'NULLCYC

FHOLD

FEXC

FXACK

FLUSH

('-~'\

Figure 7.34 FPOP Floating Point Exception

FJP DYP E_FP wyp WHYP WH_FP WH_FP ITt ET2

jI------------- FPDP FLOATING POINT EXCEPTION ----------------lj
,---,

15 T1

Jot

1 1 1 1 1 '----1-------,-1 -----:I~ 1 1

=mmZ7IOI/IOZIOZZZmZZI/Zo=
1 1 1 1 1 1 1 1 1 I

_________ ,o _______ ---"X 10 X 10

===x X X (FPDP) X (FPDP ADDRESS) X ==-x X X X'--___ _

/ 1\ 1

- -----!---'/ I \ 1

1 / ~I~\ ____ __ ----------=r~\~I~ / 1
I /1 I \ I I 1 \

-----~=\ 1 I I ___ _

1 /

1--./ \L-__ _
---------11--./ \'--__ _

s:
OJ
ClO
0)
co
o

!

IIIIIIIIIIIIIIIIIIII~IIIIIIIIIIIIIIIIIIIIIIIIIIIIII
FUJITSU

11 MB86901

7.3. System Configuration

Figure 7.35 shows a basic MB86901 system con­
figuration utilizing an FPU, an interrupt controller,
and a bus arbiter. The diagram is for illustration pur­
poses only, and may require modifications such as a
separate cache bus, for instance, to minimize sys­
tem bus loading.

The FPU consists of the Fujitsu MB68911 RISC
Floating Point Controller and the TI SN74ACT88~7
floating point chip, interfaced to the processor via
the processor Floating Point Interface and the Sys­
tem Interface D<31 :0> bus.

Data is transferred between the processor and the
FPU via the processor System Interface D<31 :0>
bus. All other signals are transferred via the Floating
Point Interface as shown.

The Interrupt Controller receives interrupt requests
from system peripheral devices, prioritizes or other­
wise arbitrates multiple interrupt requests, then
asserts the selected interrupt request level number

on the IRL<3:0> bus to alert the processor of the
pending interrupt. The controller holds the level
number asserted until the processor acknowledges
recognition of the request via software, typically by
accessing a location that the Interrupt Acknowledge
Decode LogiC recognizes as an interrupt acknow­
ledge.

The Bus Arbiter receives bus requests from bus
masters for control of the system bus, halts the pro­
cessor and three-states its bus drivers in response
to a bus request, then grants the system bus to the
requesting bus master. The requesting bus master
holds its bus request asserted until finished with the
bus.

The Bus Arbiter halts the processor by asserting
MHOLD. It three-states all of the processor System
Interface output drivers except the DFETCH and
HAL drivers by releasing the AOE, ADROE, and
DOE driver enable signals. The arbiter asserts the
driver enable signals once again when the current
bus master releases its bus request, allowing the
processor to continue execution.

Figure 7.35 Basic System Configuration

_/~

1 Dc31:0.

-
ASlc7:0. f----

FLOAlINO POINT UNIT
L f---- IIEMORY -----------------------------, r-- A I

L T I

~ I-----t S ~ CONTROL

ADRc31:0. A
T

Y fe--t C
~ \----t 8N74AC'111847 _1

H I 1'..:11:0.

T S I
I MB86901 iiAL T CACHE I
I

E
I ---- ------------- ----_ ..

CONTROUCYCLE D£FINmON

I ,---
2 M

1 r iiiOLDI
110

CLOCK CLOCK I
iOE B GENERAlION f.+- BUS REQUE1I11J

osc LOGIC BUS J ADROE AIIIIITER ft+ BUS GRANT'S U 110

iOi S 1

J.+ INTREOUESTS J 110 1- INTlRRIJPI' l CONTROLLER H INT ACK ~cj.-DECODE LOCII

J/~

78

(

Note that ASI<7:0>, ADR<31 :0>, and several Sys­
tem Interface control and cycle-definition signals are
externally latched under control of the HAL proces­
sor signal. These latches, part of the External
Address Pipeline, are explained in Section 8.2.

8. System Design Considerations

System design with the MB86901 is similar to de­
sign with other processors. Two areas of system de­
sign, however, require special consideration: the
clock generation circuit, and the External Address
Pipeline.

Examples of each are described in the following
sections, although other logic which adheres to the
processor timing specifications may be used.

8.1. Clock Generator

To generate CLK1 and CLK2 accurately, a 4x base
clock frequency, operating at 100 MHz (G25), is re­
quired. With today's high frequency crystal oscilla­
tors, and "AS" type TTL flip flops going beyond 100
MHz, this poses no problem.

11

FUJITSU

MB86901 11

Figure 8.1 illustrates an example of such a clock
generator based on the frequency division principle.
The 2 units, U2a and U2b are initially set to op­
posite states. They will maintain this interrelation­
ship indefinitely. The two gates U3a and U3b are
used to derive the 75/25% and 25/75% cycle for
CLK1 and CLK2 respectively.

To minimize any skew between CLK1 & CLK2, U3a
and U3b must be part of a 74AS1000 unit, while
U2a and U2b must occupy one 74AS109 unit.

8.2. External Address Pipeline

Figure 8.2 shows an External Address Pipeline and
associated logic.

The ADR<31 :0> Address Bus is unlatched, and
therefore not valid for the duration of a bus cycle. An
external set of registered latches (U2) is therefore
required to maintain the address bus state
throughout a bus cycle, and drive any cache or
memory subsystem.

Figure 8.1 Clock Circuit

100 MHz

RESET

-
J P Qt---+-e

Ula

_QD--e
C

Q

Ul, U2: 74ASI09
U3: 74ASIOOO

79

11

FUJITSU

11 MB86901

During a cache miss, the processor is typically held
in the cycle following the one that actually caused
the miss. A second set of registered latches (U3) is
therefore required to generate the previous address
and associated cycle parameters.

Clocking of the first level registers is done b~ing
HAL with CLK1. The processor controls HAL to
maintain address integrity on the first set of latches.
To utilize the address setup time, and not exceed
the hold time, CLK1 should also be delayed by one
gate level before entering the processor. Ideally the
gates used to invert CLK1, and gate HAL, would
reside in one package to minimize skew. The first
level registers are only tri-stated during miss pro­
cessing.

The second level registers must be clocked by gat­
ing CLK1 with MHOLD to guarantee a stable
address during miss processing. They are normally
tri-stated as they only are used during miss pro­
cessing.

9. Processor Specifications

Figures 9.1-9.10 show MB86901 timing specifica­
tions, test load, and output delay. AC timing parame­
ters are listed in Table 9.4.

All timing parameters are referenced to the 1.SV
midpoint of CLK1 rising edges.

Figure 8.2 External Address Pipeline

MB86901

ASlc7:0>

SIZEc1:0>

AOE

CLK2 CLK2
ADRc31:0>

CLK1 CLK1

80

U2
0 Q

C-CYCLE
(Current Cycle)

0 Q

U3

0 Q

OE

P-CYCLE
(Previous Cycle)

~/

/" (,

(

MB86901

Table 9.1 Absolute Maximum Ratings

Rating Symbol Min. Max. Unit

Supply Voltage V DD Vss - 0.5 6.0

Input Voltage VI V~s-0.5 V nn +0.5

Output Voltage Vo V ss - 0.5 V nn+ 0.5

Temperature Under Bias Ceramic
T bias

-40 125
Plastic -25 85

Storage Temperature

Note: (*)

Ceramic
T stg

-65 150
Plastic -40 125

Permanent device damage may occur if Absolute Maximum Ratings
are exceeded. Functional operation should be restricted to the conditions
as detailed in the operational sections of the data sheet. Exposure to
absolute maximum rating conditions for extended periods may affect
device reliability.

Table 9.2 Recommended Operating Conditions

V

V

V

·C

·C

Parameter Symbol Condition Min Typ Max

Supply Voltage Vnn 4.75 5.0 5.25

Power Supply Current I DDS VIR = Vnn ' VIL = "ss 0 0.2

Output High Voltage VOH IOH= -2 rnA 4.0 Vnn
Output Low Voltage VOL I = 3.2 rnA V,," 0.4

Input High Voltage VIR 2.2 --

Input Low Voltage VIL -- 0.8

Input Leakage Current lIN VIN = 0 to VDD -10 10

Tri-state Leakage Current I IN VIN = 0 to VDD -40 40

Operating Temperature TA 0 70

Table 9.3 Capacitance & Termination

(T - 25 C V - V - 0 Volt Frequency - 1 MHz) - , ·nn- , - , -
Parameter Symbol Min. Typ. Max. Unit

Input Pin Capacitance C'N 16 pF

Output Pin Capacitance C OUT 16 pF

I/O Pin Capacitance CliO 16 pF

Input Pull-Up Resistor VIR = ~D RP 25 100 KO
VIL = 55

11

FUJITSU

11

Units

V

rnA

V

V

V

V

uA

uA

·C

81

11

FUJITSU

11 MB86901

Figure 9.1 Signal AC Measurement Points

CLK1

INPUT

TH,TD~ ~
OUTPUT

1$ V-::-::2•O::-:-"V ----::-c2.0~V V
______________ -'O=.8:....:.V_~ A O.8V

tR ~ ~ ~ ~ tF

Note:

T SU = Setup Time, T H = Hold Time, T D = Delay Time, t R = Rise Time, t F = Fall Time

Figure 9.2 Clock AC Measurement Points

~------ tc ------+1

VDD

Note:

t C = Clock Period, tCH = Clock High Time, tCL = Clock Low Time,
t R = Rise Time, t F = Fall Time

82

> (

\

'-.

(

11

FUJITSU

M886901 11

v = 5V ± 5% cc
• TA = 0 to +70 C

MB86901 Clock requirement

Table 9.4 AC Characteristics

Capacitance = 50 pF

Symbol Parameter 20 MHz 2S MHz
Min Max Min Max

1 System Clock Cycle Time (T) 50 40

2 System Clock Rise Time 3 2

3 System Clock Fall Time 3 2

4 System Clocks (Clkl, Clk2) Skew Time +/- 4 +/- 3

5 System Clock (Clk1) High Time 35 28

6 System Clock (Clkl) Low Time 10 8

7 System Clock (Clk2) High Time 20 16

8 System Clock (Clk2) Low Time 11 9

Figure 9.3 Clocks Timing Diagram

Units

ns

ns

ns

ns

ns

ns

ns

ns

14-------,,:~- CD ------~
........ ,.. -_ -_ -_ -_ -_ -_ ----.;0=5..:-_-_-_ -:._::;. _-_...-----t-I

CLK!

0~
------Q)-------t

CLK2

14----- (2) -----.I

Test
Conditions

Both CLK1 &CLK2
High Time = 37. 5nS
Low Time = 12.5 nS

83

11

FUJITSU

11 MB86901

Table 9.4 AC Characteristics (cont.)

v = 5V ± 5% cc
• TA = 0 to +70 C

MB86901 Address & Data Bus

Capacitance = 50 pF

Symbol Parameter 20 MHz 25 MHz
Min Max Min Max

9 ADR Valid Delay, From eLKl Rising Edge 46 37

10 ADR Hold, From eLKl Rising Edge 7 6

11 AS! Valid Delay, From eLKl Rising Edge 29 23

12 AS! Hold, From eLKl Rising Edge 7 5

13 Read Data Setup, Before eLKl Rising Edge 4 4

14 Read Data Hold, After eLKl Rising Edge 5 4

15 Write Data Valid Delay 33 26
From eLKl Risinl! Edl!e

16 Write Data Hold After eLKI Rising Edge 6 5

17 Write Data Turn Off From eLKI 31 26

17a Write Data Turn On From eLKI 11 27 9 23

Figure 9.4 Address and Data Bus

eLKl

ASI<7:0>

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

D<3l:0> write data }-----{ read data

84

Test
Conditions

@

(

Table 9.4 AC Characteristics (cont.)

v = 5V ± 5% cc
• TA = 0 to +70 C Capacitance = 50 pF

MB86901 Address. Data & Control Tri-State

Symbol Parameter 20 MHz
Min Max

18 I AOE Tum Off Time 6 29

19 I AOE Turn On Time 6 19

20 I ADROE Turn Off Time 6 29

21 I ADROE Turn On Time 6 19

22 IDOE Tum Off Time 8 33

23 IDOE Tum On Time 8 23

25 MHz
Min Max

5 23

5 15

5 23

5 15

5 26

5 18

Figure 9.5 Address, Data and Control Tri·state

ASI<7:0>
RD

IAOE

ADR<31:0>)(t
-1 "@

lAD ROE

D<31:0>

IDOE

I111

FUJITSU

MB86901 11

Units Test
Conditions

ns

ns

ns

ns

ns

ns

)(

)(

85

11

FUJITSU

11 MB86901

Table 9.4 AC Characteristics (cont.)

v = 5V ± 5% cc
• TA = 0 to +70 C

MB86901 Control Signals, Output

Capacitance = 50 pF

Symbol Parameter 20 MHz 25 MHz

24

2S

26

27

28
29
30
31
32

33

34

86

Active Hold Active
SIZE, From CLKI Rising Edge 22 6 18

RD, From CLKI Rising Edge 22 6 18

IWE, From CLKI Rising Edge 23 6 18

LDST, From CLKI Rising Edge 22 6 18

NULL CYC, From CLKI Risin~Edge 40 6 32
-From IMHOLD Fallinll dlle 24 - 19

IHAL From CLKI Risi~ Edge 37 6 30
From IMHOLD allinll Edl!:e 23 - 18

LOCK, From CLKI Rising Edge 25 6 20

DFETCH, From CLKI Rising Edge 32 6 26

IERROR, From CLKI Rising Edge 32 6 26

Figure 9.6 Control Signals, Output

CLKl

IMHOLD

Control
Signal
Output

Timin Relation
Active (1)

Active (2)
Hold(l)

S mbol No.
24, 25, 26, 27, 28
30, 32, 33, 34
29, 31
24, 25, 26, 27, 28
30, 32, 33, 34

Hold

5

5

5

5

5
-
5
-
5

5

5

Units Test
Conditions

ns

ns

ns

ns Max Rating
ns for Active

ns
Min Rating
for Hold

ns

ns

ns

/

(

Table 9.4 AC Characteristics (cont.)

v = 5V ± 5% cc
• TA = 0 to +70 C

MB86901 Control Signals, Input

Symbol Parameter

Capacitance = 50 pF

20 MHz 25 MHz
Setup Hold Setup Hold

3S
36
37
38
39

40

41

42

43

44

4S

IMDS, Before CLK1 Falling Edge 8 1 7
Before CLK1 Risinl! Edl!e 25 - 20

IMEXC, Before CLK1 Falling Edge 8 1 7
Before CLK1 Risinl! Edl!e 25 - 20

IMHOLDA, Before CLK1 Falling Edge 16 0 13

IMHOLDB, Before CLK1 Falling Edge 16 0 13

IMHOLDC, Before CLK1 Falling Edge 16 0 13

ISHOLD, Before CLK1 Falling Edge 16 0 13

IBHOLD, Before CLK1 Falling Edge 16 0 13

IRL, Before CLK1 Rising Edge 11 4 9

IRESET, Before CLK1 Rising Edge 4 5 3
Active Time (cvcles)- min 10 min 10

Figure 9.7 Control Signals, Input

CLKl

Control
Signal
Input

Timin Relation
Setup(l)
Setup (2)

Hold(l)

S mbol No.
36, 38, 44, 45
35, 37, 39, 40, 41
42, 43
35, 37, 39, 40, 41
42, 43, 44, 45

1
-
1
-
0

0

0

0

0

3

4

11

FUJITSU

MB86901 11

Units Test
Conditions

ns

ns
ns
ns

ns Min Rating

ns
for Setuk and Ho d

ns

ns

ns

ns
T

87

II

FUJITSU

1I1111111111111111I11I1I11I111111111111I111111111111 MB86901

Table 9.4 AC Characteristics (cont.)

v = SV ± 5% cc
• TA = 0 to +70 C Capacitance = SO pF

MB86901 FP Bus, Output

Symbol Parameter 20 MHz 25 MHz

46

47

48

49

50

51

88

Active Hold Active
F<31 : 0>, From CLK 1 Rising Edge 41 6 33

FINS, From CLK1 Rising Edge 32 6 26

FADR, From CLK1 Rising Edge 32 6 26

FEND, From CLK! Rising Edge 32 6 26

FLUSH, From CLK! Rising Edge 26 6 22

FXACK, From CLK! Rising Edge 32 6 26

Figure 9.8 FP Bus, Output

eLKl

FP Bus
Signal
Output

l Active 4

Hold

5

5

5

5

5

5

Units Test
Conditions

ns

ns Max Rating
for Active

ns

ns Min Rating
for Hold

ns

ns

(

11

FUJITSU

MB86901 11

Table 9.4 AC Characteristics (cont.)

v = 5V ± 5% cc
• TA = 0 to +70 C

MB86901 FP Bus, Input

Symbol Parameter

Capacitance = 50 pF

20 MHz
Setup Hold

52 IFHOLD, Before CLK! Rising Edge 4 8

53 IFEXC, Before CLK! Rising Edge 4 6

54 IFCC, Before CLK! Rising Edge 4 6

55 FCCV, Before CLK! Rising Edge 4 6

Figure 9.9 FP Bus, Input

eLKl

setup~ ~
FP Bus
Signal zzzmZI/ZO
Input

~

2S MHz Units Test
Setup Hold Conditions

4 7 ns

4 5 ns Min Rating

4 5 ns
for Setup
and Hold

4 5 ns

r
-

~ Hold

89

11

FUJITSU

11 MB86901

T D (ns)

9

8

7

6

5

4

3

2

90

Figure 9.10 Signal Output Test Load

--,
I ,
I Output Pin: CL = 60 pF
, 3-State Output: CL = 65 pF
I Bi-Directional: C L = 85 pF

1VDD

SW1
Closed on Low to/from
3-state Transitions

2K Ohms

2K Ohms

SW2
Closed on high to/from
3-state Transitions

Figure 9.11 Maximum Output Delay vs. Capacitance Loading

+ + + + +

+ + + +

+ + +
To + KCL * C

+ +
K~L. * CL,

+ + + +

+ + To Internal Delay
KCL Slope
C L Load

+ +

+ + + +

+ + + + +
C L (pf)

20 40 60 80 100

/--- ~,

'---.. ~

/---..
;'

INDEX AREA

(

11

FUJITSU

MB86901 11

Figure 9.12 179-Lead Plastic Pin Grid Array Package

179-LEAD PLASTIC
PIN GRID ARRAY PACKAGE
(CASE No.: PGA-179P-M01)

.1 1.540(39.121
1.560(39.62)

00000000000000
000000000000000
000000000000000
000000000000000
00000 00000
0000 0000
0000 0000
0000 0000

1.540(39.12)
1.560(39.62)

J

o 0 0 0 0 0 0 0 INDEX
0000 0000
00000 0000
000000000000000
000000000000000
000000000000000
000000000000000

1.400(35.56)
REF

Dimensions in
inches (millimeters)

91

11

FUJITSU

11 MB86901

Figure 9.13 Pin Assignment

43 42 41 40 39 38 37 36 35 34 33 32 31 30 29
0 • 0 0 0 0 0 0 0 0 0 0 0 0 0

44 93 92 91 90 89 88 87 86 85 84 83 82 81 28
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

45 94 135 134 133 132 131 130 129 128 127 126 125 80 27
0 0 0 0 0 0 0 0 • 0 0 0 0 0 0

46 95 136 169 168 167 166 165 164 163 162 161 124 79 26
0 0 0 0 0 • .. • .. • • 0 0 0 0

47 96 137 170 179 178 160 123 78 25
0 0 0 • 0 0 0 0 0 0

48 97 138 171 159 122 77 24
0 0 0 • • 0 0 0

49 98 139 172 158 121 76 23
0 0 0 ... FUJITSU .. 0 0 0

50 99 140 173 157 120 75 22
0 0 0 • RIT-179 • 0 0 0

51 100 141 174 TOP VIEW 156 119 74 21
0 0 0 0 0 0

52 101 142 175 155 118 73 20
0 0 0 • • 0 0 0

53 102 143 176 Index 177 154 117 72 19
0 0 0 0 • 0 • 0 0 0

54 103 144 145 146 147 148 149 150 151 152 153 116 71 18
0 0 • 0 • • .. • .. • 0 0 0 0 0

55 104 105 106 107 108 109 110 111 112 113 114 115 70 17 ",/
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

56 57 58 59 60 61 62 63 64 65 66 67 68 69 16
0 0 0 0 0 0 0 0 • 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 0 0 0 0 0 0 0 • 0

Pin Group Symbol Pinout

Vee ... 148, 150, 156, 158,
164, 166, 172, 174

GND • 14, 42, 64, 129, 144, 146,
147, 149, 151, 154, 155,
157, 159, 162, 163, 167,
170, 171,173, 175

Signal 0

Index • 180

92

11
I

FUJITSU It
MB86901 11 \

I" '~

Figure 9.14 MB86901 Pin Out by Pin Number I
I

PIN 1/0 NAME PIN 1/0 NAME PIN 1/0 NAME

1 0 ADR10 61 0 ADR27 121 0 ASI3
2 0 ADR02 62 0 ADR25 122 0 ASI6
3 0 ADR13 63 0 ADR28 123 I RESET -
4 0 ADR24 64 - VSS 124 0 DFETCH
5 0 ADR30 65 0 ADR23 125 I FEXC -
6 I FCCV 66 I XTST 126 I AOE -
7 0 ADR20 67 0 ADRll 127 1/0 D03
8 0 ADR21 68 0 ADR16 128 1/0 D30
9 0 ADR19 69 0 ADR08 129 - VSS
10 0 ADR22 70 I TC 130 1/0 D21 -
11 0 ADR06 71 0 RD 131 1/0 D13
12 0 FXACK 72 I MHOLDB 132 1/0 D05 -
13 0 ADR03 73 0 SIZEO 133 110 D24
14 VSS 74 0 ASI2 134 1/0 D04
15 I IRL2 75 1/0 D02 135 0 F18
16 0 ASll 76 I MEXC 136 0 F26 -
17 0 FLUSH 77 0 ASI5 137 0 F02
18 0 WE - 78 I SHOLD - 138 0 F27
19 I IRL3 79 0 FINS 139 0 F07
20 0 HAL_ 80 I DOE - 140 0 F20
21 0 LOCK 81 0 NULL_CYC 141 0 F12
22 0 LDST 82 1/0 D27 142 0 F29
23 I SDI 83 0 SDO 143 I XACK
24 0 ASI4 84 1/0 D26 144 - VSS
25 I MDS 85 - 0 ERROR_ 145 0 ADROl
26 FHOLD 86 1/0 D06 146 - VSS
27 ADROE 87 - 1/0 D25 147 - VSS
28 I IRLO 88 I FP_ 148 - VDD
29 1/0 D15 89 I BCK 149 - VSS
30 1/0 D07 90 1/0 D28 150 - VDD
31 1/0 Dll 91 1/0 D16 151 - VSS
32 1/0 D23 92 I IH_NULL_ 152 I BHOLD -
33 1/0 DOl 93 1/0 D12 153 0 ADR12
34 1/0 D22 94 1/0 D14 154 - VSS
35 1/0 D29 95 0 F06 155 - VSS
36 1/0 D17 96 0 F23 156 - VDD
37 1/0 D19 97 0 F19 157 - VSS
38 1/0 D09 98 0 F03 158 - VDD
39 1/0 D18 99 I CLKl 159 - VSS
40 1/0 D20 100 I FCCO 160 1/0 DOO
41 1/0 D31 101 0 F04 161 0 FEND
42 VSS 102 I CLK2 162 - VSS
43 1/0 Dl0 103 0 F17 163 VSS
44 0 FlO 104 0 F09 164 - VDD
45 0 Fll 105 0 ADR04 165 - VSS
46 0 F15 106 0 F14 166 - VDD
47 FCCl 107 0 ADR09 167 - VSS
48 0 F16 108 0 ADR26 168 1/0 D08
49 0 F28 109 0 ADR29 169 0 F30
50 0 FOO 110 0 ADR18 170 - VSS
51 0 F24 111 0 ADR31 171 - VSS
52 0 F08 112 0 ADR17 172 - VDD
53 0 F21 113 0 ADR07 173 - VSS
54 0 F31 114 0 ADR14 174 - VDD
55 0 F25 115 I IRU 175 - VSS
56 0 F05 116 0 FADR 176 0 F13

(
57 0 FOl 117 0 ASIO 177 0 AD ROO
58 0 ADR15 118 I MHOLDA_ 178 0 ASI7
59 0 ADR05 119 I MHOLDC_ 179 0 F22
60 I XSM 120 0 SIZEl

93

11

FUJITSU

11 MB86901

ERRATA

Page Correction

22,23 On page 22, paragraph 2, line 2, and
page 23, paragraph 3, line 2, replace
"r[rs1] = r[rs2]" with "r[rs1] + r[rs2]".

34 In Figure 7.1, Processor Signals, on the
Bus Control input line for MHOLD <A-C>,
SHOLD, replace the value "5" with a "4".

53 The correct title of Figure 7.11 is: Load
Double (Cache Miss). The correct Store
Double (Cache Miss) figure is shown
below:

54

95

In Figure 7.12, Atomic Load-Store
(Cache Miss), replace "AL<17:0>" with
"ADR<31 :0>".

Under Ordering Information (opposite
errata page), replace "MB86901-APR-G"
with "MB86901ACR-G" and replace
"MB86901-APR-G2S" with
"MB86901 ACR-G2S".

STORE DOUBLE WORD (CACHE MISS)

y \¥ \1 \¥ \¥
~ ~'--J,...----I'--J_I~'--JI r--r-r-r-r-r-r-'--J~I

AOR<31:0> 'BOOlOYllXmmZx ST2 xzomzx'--__
ClK1

I I I I I
ASI<7:O> ~ ST Y:llX ST Y:llf:..

I I I
0<31:0> ~ @ STl X ST2 'ilD--

I
SIZE<1:0> --~~ __ X=

RO ~ __________ ~ ______ ~ ______ ~ ______ ~r--
~ __ ~ ______ ~ ______ ~ ______ ~~r--

OFETCH

'----------------'1

'------------~------~--~I
lOCK \-----------
NUllCYC \"-____ -'1 \

94

(

FUJITSU MICROELECTRONICS, INC. SALES OFFICES

CALIFORNIA
10600 N. DeAnza Blvd., # 225
Cupertino, CA 95014
(408) 996-1600

840 Newport Center Dr.. # 460
Newport Beach, CA 92660-6323
(714)720-9688

GEORGIA
3500 Parkway Lane, # 210
Norcross, GA 30092
(404) 449-8539

ILLINOIS
One Pierce Place, # 910
Itasca, IL 60143-2681
(312) 250-8580

MASSACHUSETTS
75 Wells Ave., # 5
Newton Center, MA 02159-3251
(617) 964-7080

Ordering Information

MINNESOTA
3460 Washington Dr., #209
Eagan, MN 55122-1303
(612) 454-0323

NEW YORK
601 Veterans Memorial Highway. #P
Hauppauge, NY 11788-1054
(516) 361-6565

OREGON
5285 S.W. MEADOWS RD., #222
LAKE OSWEGO, OR 97035-9998
(503) 684-4545

TEXAS
14785 Preston Rd., #670
Dallas, TX 25240
(214) 233-9394

Part Number Clock Speed

MB86901-APR-G 20 MHz

MB86901-APR-G25 25 MHz

(t 1 Advanced Products Division

For further information outside the U.S., please contact

FUJITSU LIMITED
Semiconductor Marketing Furukawa Sogo Bldg, 6-1 Marunouchi,2-chome

Chiyoda-ku, Tokyo 100, Japan
TEL 011-81-3-216-3211 • FAX 011-81-3-216-9771

FUJITSU MIKROELEKTRONIK GmbH
Arabella Center 9.0G'/A
Lyoner Strasse 44-48, D-6ooo, Frankfurt am Main 71, F.R. Germany
TEL 011-49-69-66320 • TELEX 0411963

FUJITSU MICROELECTRONICS PACIFIC ASIA LIMITED
805 Tsimshatsui Centre, 66 Mody Road
Tsimshatsui East, Kowloon, Hong Kong
TEL 3-732-0100 • FAX 3-722-7984 • TELEX 31959 FUJIS HK

FUJITSU MICROELECTRONICS, INC.
Advanced Products Division
50 Rio Robles, San Jose, CA 95134-1804 • TEL (408) 922-9000 • FAX (408) 432-9070
' SPARe is a trademark of Sun Microsystems, Inc.

880925BBGG Printed in U.S.A

