

Introduction

Fairchild's F100K ECL family has gained acceptance as the industry's performance leader. Before publishing this book, additional characterization data was taken that enabled the parametric specifications to be greatly expanded. DC parameters are now specified at $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ case temperature and over a -4.2 V to -4.8 V V_{EE} instead of only at -4.5 V . AC parameters are also specified over the same ranges of V_{EE} and temperature instead of only at -4.5 V and $25^{\circ} \mathrm{C}$.

Future characterization efforts will be aimed at expanding the $V_{E E}$ range and the temperature range.

For the user's convenience, the F10K memory products are also included in this databook.

Additionally, Fairchild's F100K ECL User's Handbook is available for more information concerning design considerations.

Chapter 1 Product Index, Selection Guide and Definitions

The Product Index is a numerical list of all device types contained in this book. The Selection Guide groups the products by function. Also included are definitions of commonly used terms.

Chapter 2 Family Overview

Discusses F100K design philosophy and actualization and summarizes the key F100K features and advantages in high speed systems.

Chapter 3 F100K Data Sheets

Contains a DC family data sheet for the F100K family and individual data sheets for the F100K devices.

Chapter 4 F10K Data Sheets
Contains a DC family data sheet for the F10K family and individual data sheets for the F10K memory devices.

Chapter 5 Ordering Information and Package Outlines
Chapter 6 Field Sales Offices, Distributor Locations

Table of Contents

Chapter 1 Product Index, Selection Guide, and Definitions
Product Index 1-3
Selection Guide 1-5
Terms and Definitions 1-7
Chapter 2 Family Overview
Introduction 2-5
Design Philosophy 2-5
Process Technology 2-6
Compensation Network 2-7
Characteristics 2-8
System Aspects 2-10
Features 2-10
System Benefits 2-12
Process Benefits 2-12
Radiation Tolerance 2-13
Packaging 2-13
References 2-13
Chapter 3 F100K Data Sheets 3-3
Chapter 4 F10K Data Sheets 4-3
Chapter 5 Ordering Information and Package Outlines
Ordering Information 5-3
Package Outlines 5-5
Chapter 6 Field Sales Offices and Distributor Locations 6-3

Ordering Information and Package Outlines $=5$

Numerical Index of Devices

Page
F100K Series ECL
DC Family Electrical Specifications 3-3*
100101 Triple 5 OR/NOR 3-5
100102 Quint 2 OR/NOR 3-7
100107 Quint Exclusive OR/NOR 3-10
100112 Quad Driver 3-13
100113 Quad Driver 3-16
100114 Quint Line Receiver 3-19
100117 Triple 2-Wide OA/OAI 3-22
100118 5-Wide 5, 4, 4, 4, 2 OA/OAI 3-25
100122 9-Bit Buffer 3-27
100123 Hex Bus Driver 3-29
100124 Hex TTL-to-100K ECL Translator 3-32
100125 Hex 100K ECL-to-TTL Translator 3-35
100126 9-Bit Backplane Driver 3-39
100130 Triple D Latch 3-41
100131 Triple D Flip-Flop 3-47
100136 4-Stage Counter/Shift Register 3-54
100141 8-Bit Shift Register 3-63
1001424×4 Content Addressable Memory 3-68
10014516×4 Read/Write Register File 3-75
100150 Hex D Latch 3-82
100151 Hex D Flip-Flop 3-88
100155 Quad Mux/Latch 3-94
100156 Mask-Merge/Latch 3-100
100158 8-Bit Shift Matrix 3-107
100160 Dual Parity Checker/Generator 3-114
100163 Dual 8-Input Multiplexer 3-118
100164 16-Input Multiplexer 3-122
100165 Universal Priority Encoder 3-126
100166 9-Bit Comparator 3-133
100170 Universal Demux/Decoder 3-137
100171 Triple 4-Input Mux with Enable 3-142
100179 Carry Lookahead 3-146
100180 Fast 6-Bit Adder 3-152
100181 4-Bit Binary/BCD ALU 3-156
100182 9-Bit Wallace Tree Adder 3-164
1001832×8 Recode Multiplier 3-171
100194 Quint Duplex Bus Driver (Transceiver) 3-182
10040216×4 Register File (RAM) 3-191
100414256×1-Bit Static RAM 3-195
1004151024×1-Bit Static RAM 3-201
100416256×4-Bit PROM 3-207
100422256×4-Bit Static RAM 3-211
1004704096×1-Bit Static RAM 3-216
1004741024×4-Bit Static RAM 3-221
F10K Memories
DC Family Electrical Specifications 4-3
10145A 16×4 Register File (RAM) 4-5
1040216×4 Register File (RAM) 4-10
10414256×1-Bit Static RAM 4-14
104151024×1-Bit Static RAM 4-20
10416256×4-Bit PROM 4-26
10422256×4-Bit Static RAM 4-31
104704096×1-Bit Static RAM 4-36
104741024×4-Bit Static RAM 4-41

Selection Guide

	Device	Page		Device	Page
Or/Nor Gates					
Triple 5-Input	100101	3-5	Dual 9-Bit Parity Checker/Generator	100160	3-114
Quint 2-Input	100102	3-7	8-Bit Shift Matrix	100158	3-107
			2×8 Recode Multiplier	100183	3-171
Exclusive Or/Nor Gates			4-Bit Mask-Merge/Latch	100156	3-100
Quint Ex Or/Nor	100107	3-10			
			Line Bus Drivers/Transceivers/Receive		
Or-And/Or-And-Invert Gates			Quad Line Driver	100113	3-16
5-Wide 5,4,4,4,2 Input OA/OAI	100118	3-25	Quad Line Driver	100112	3-13
Triple 2-Wide OA/OAI	100117	3-22	Hex Bus Driver	100123	3-29
			Quint Duplex Transceiver	100194	3-182
Buffers			Quint Differential Line Receiver	100114	3-19
9-Bit Buffer	100122	3-27			
9-Bit Backplane Driver	100126	3-39	Special Functions		
			8-Bit Shift Matrix	100158	3-107
Flip-Flops			16×4-Bit Register File (RAM)	100402	3-191
Triple D (Async Set/Reset)	100131	3-47	4×4 Content Addressable Memory	100142	3-68
Hex D (Async Reset)	100151	3-88	16×4-Bit Register File (RAM)	100145	3-75
			16×4-Bit Register File (RAM)	10402	4-10
Latches					
Triple D (Async Set/Reset)	100130	3-41	Shift Registers		
Hex D (Async Reset)	100150	3-82	4-Bit Bidirectional	100136	3-54
Quad 2-Input Mux/Latch (Async Reset)	100155	3-94	8-Bit Bidirectional	100141	3-63
Multiplexers			MEMOR		
Dual 8-Input	100163	3-118	RAMS		
Triple 4-Input (W/Enable)	100171	3-142	16×4-Bit RAM	10145A	4-5
Quad 2-Input Mux/Latch (Async Reset)	100155	3-94	16×4-Bit RAM	100145	3-75
16-Input Mux	100164	3-122	16×4-Bit RAM	10402	4-10
			16×4-Bit RAM	100402	3-191
Demultiplexer/Decoders			256×1-Bit RAM	10414	4-14
Universal (Dual 1 of 4/Single 1 of 8)	100170	3-137	256×1-Bit RAM	100414	3-195
			256×4-Bit RAM	10422	4-31
Translators			256×4-Bit RAM	100422	3-211
Hex TTL-100K ECL	100124	3-32	1024×1-Bit RAM	10415/A	4-20
Hex 100K ECL-TTL	100125	3-35	1024×1-Bit RAM	100415	3-201
			1024×4-Bit RAM	10474	4-41
Counters/Prescalers			1024×4-Bit RAM	100474	3-221
4-Bit Binary (Count Up/Down)	100136	3-54	4096×1-Bit RAM	10470/A	4-36
			$4096 \times$ 1-Bit RAM	100470/A	3-216
Arithmetic Operators					
High Speed 6-Bit Adder	100180	3-152	PROMs		
9 -Bit Wallace Tree Adder	100182	3-164	256×4-Bit PROM	10416	4-26
Carry Lookahead	100179	3-146	256×4-Bit PROM	100416	3-207
4-Bit Binary/BCD ALU	100181	3-156			
9-Bit Comparator	100166	3-133	Content Addressable Memory		
8-Input Priority Encoder	100165	3-126	4×4-Bit Content Addressable Memory	100142	3-68

AC Switching Parameters

fcount (Count Frequency/Toggle Frequency/Operating Frequency) - The maximum repetition rate at which clock pulses may be applied to a sequential circuit. Above this frequency the device may cease to function.
$t_{\text {AA }}$ (Address Access Time) - 50% points of address input pulse to data output pulse.
tacs (Chip Select Access Time) - 50% points of select pulse to data output pulse/leading edges.
th (Hold Time) - The interval immediately following the active transition of the timing pulse (usually the clock pulse) or following the transition of the control input to its latching level, during which the data to be recognized must be maintained at the input to ensure its continued recognition.
tPLH (Propagation Delay Time) - The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined LOW level to the defined HIGH level.
tPHL (Propagation Delay Time) - The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined HIGH level to the defined LOW level.
tres (Chip Select Recovery Time) - Data output pulse/trailing edges.
ts (Setup Time) - The interval immediately preceding the active transition of the timing pulse (usually the clock pulse) or preceding the transition of the control input to its latching level, during which the data to be recognized must be maintained at the input to ensure its recognition.
ts (Release Time) - The interval immediately preceding the active transition of the timing pulse (usually the clock pulse) or preceding the transition of the control input to its latching level, during which the master set or reset must be released (inactive) to ensure valid data is recognized.
ttil (Transition Time, LOW to HIGH) - The time between two specified reference points on a waveform which is changing from LOW to HIGH.
tthl (Transition Time, HIGH to LOW) - The time between two specified reference points on a waveform which is changing from HIGH to LOW.
$\mathrm{t}_{\mathbf{w}}$ (Pulse Width) - The time between 50 percent amplitude points on the leading and trailing edges of a pulse.
tw (Write Pulse Width) - 50% points of write enable input pulse.
twha (Address Hold Time) - 50% points of address pulse to trailing edge of write enable pulse.
twhis (Chip Select Hold Time) - 50\% points of trailing edges of chip select pulse to write enable pulse.
twhd (Data Hold Time After Write) - 50% points of trailing edges of data input pulse to write enable pulse.
twr (Write Recovery Time) - 50% points of trailing edges of write enable pulse to data output pulse.
tws (Write Disable Time) - 50% points of leading edges of write enable pulse to data output pulse.
tWSA (Address Setup Time) - 50% points of address pulse to leading edge of write enable pulse.
twscs (Chip Select Setup Time) - 50% points of leading edges of chip select pulse to write enable pulse.
twsd (Data Setup Time Prior to Write) - 50% points of leading edges of data input pulse to write enable pulse.

TTL Loading

U.L. (Unit Loads) - One unit load in the HIGH state is defined as $40 \mu \mathrm{~A}$; thus both the input HIGH leakage current, I_{H}, and the output HIGH current sourcing capability, Іон, are normalized to $40 \mu \mathrm{~A}$. Similarly, one unit load in the LOW state is defined as 1.6 mA and both the input LOW current, ILL, and the output LOW current sinking capability, loL, are normalized to 1.6 mA .

Currents

Positive current is defined as conventional current flow into a device lead. Negative current is defined as conventional current flow out of a device lead.

Iee (Power Supply Current) - The current required by each device from the VEE supply. This value represents only the internal current required by the specified device, and does not include the current required for loads or terminations.
$I_{I H}$ (Input Current HIGH) - The current flowing into a device lead with the specified $V_{I H}$ applied to the input. This value represents the worst case dc input load that a device presents to a driving element.

IL. (Input Current LOW) - The current flowing into a device lead with the specified VIL applied to the input.

Voltages

All voltage values are referenced to $V_{C C}$ (or ground) which is the most positive potential in an ECL system.

VBB (Bias Voltage) - The internally generated reference voltage which is used to set the input and output threshold levels.

Vcc (Circuit Ground) - This is the most positive potential in the ECL system and it is used as the reference level for other voltages.

Vcs (Current Source Voltage) - The internally generated potential used to control the level of the active current source.

Vee (Power Supply Voltage) - This potential is the system power supply voltage and it is the most negative potential in the system.
$\mathbf{V}_{\mathbf{I H}}$ (Input Voltage HIGH) - The range of input voltages that represents a logic HIGH level in the system.
$\mathbf{V I H}_{(\max)}$ - The most positive V_{IH}.
$\mathbf{V}_{\mathbf{I H}}(\mathbf{m i n})$ - The most negative V_{IH}. This value represents the guaranteed input HIGH threshold for the device.

VIL (Input Voltage LOW) - The range of input voltages that represents a logic LOW level in the system.

VIL(max) - The most positive VIL. This value represents the guaranteed input LOW threshold for the device.

VIL(min) - The most negative VIL.
Vor (Output Voltage HIGH) - The range of voltages at an output terminal with the specified output loading and with the inputs conditioned to establish a HIGH level at the output.

VOH(max) - The most positive $\mathrm{VOH}_{\mathrm{OH}}$ under the specified input and loading conditions.
$\mathrm{VOH}($ min $)$ - The most negative VOH under the specified input and loading conditions.

Vонс - The output HIGH corner point or guaranteed HIGH threshold voltage with the inputs set to their respective threshold levels.

Vol (Output Voltage LOW) - The range of voltages at an output terminal with the specified output loading and with the inputs conditioned to establish a LOW level at the output.

VOL(max) - The most positive Vol under the specified input and loading conditions.

VOL(min) - The most negative Vol under the specified input and loading conditions.

Volc - The output LOW corner point or guaranteed LOW threshold voltage with the inputs set to their respective threshold levels.

VNH (HIGH Level Noise Margin) - Noise margin between the output HIGH level of a driving circuit and the input HIGH threshold level of its driven load. A conservative value for V_{NH} is the difference between $\mathrm{V}_{\mathrm{OHC}}$ and $\mathrm{V}_{\mathrm{IH}}($ min $)$.

VNL (LOW Level Noise Margin) - Noise margin between the output LOW level of a driving circuit and the input LOW threshold level of its driven load. A conservative value for V_{NL} is the difference between $\mathrm{V}_{\mathrm{IL}}(\max)$ and Volc.

Chapter 2 Family Overview

- Introduction
- Design Philosophy
- Process Technology
- Compensation Network
- Characteristics
- System Aspects
- Features
- System Benefits
- Process Benefits
- Radiation Tolerance
- Packaging
- References

Family Overview

Introduction

Systems designers have found that Emitter Coupled Logic (ECL) circuits offer significant advantages to high-speed systems. These advantages include high switching rates with moderate power consumption, low propagation delays with moderate edge rates, and the ability to drive low impedance transmission lines.

The F100K ECL family is the realization of refinements made on ECL design to produce a family of logic components which are not only capable of providing ultimate performance for packaged $\mathrm{SSI} / \mathrm{MSI}$ but which are easy to use and cost effective.

F100K ECL has been accepted as the standard subnanosecond logic family used in high-speed, next generation systems. The advance into complex LSI and gate arrays is fully supported by the F100K SSI/MSI parts.

Design Philosophy

F100K was designed to meet four key requirements: high speed at reduced power, high level of on-chip integration, flexible logic functions, and optimum I/O pin assignment.

Subnanosecond Gate Delays

The subnanosecond internal gate delays of F100K are obtained by the use of ECL design techniques and the advanced Isoplanar II process. Many circuit approaches were carefully considered prior to selecting the optimum gate configuration for the F100K family. The emitterfollower current-switch (E2CL) and current-mode logic (CML) gates were eliminated mainly because of poor capacitive drive and lack of output wired-OR capability; the CML gate has low noise margins. The 2-1/2D, EFL, DCTTL and hysteresis gates were eliminated due to the lack of simultaneous complementary outputs along with difficult temperature and voltage compensation characteristics that lead to the loss of system noise immunity.

The choice narrowed down to the current-switch emitter-follower ECL gate which offers the following characteristics:

- High fan-out capability
- Simultaneous complementary outputs
- Excellent ac characteristics
- Compatibility with existing ECL logic and memories
- Internal series gating capability
- Good noise immunity
- Amenable full compensation and extended temperature characteristics
- External wired-OR capability

In order to ease drive requirements all circuit inputs were designed to have similar loading characteristics; i.e., buffers are incorporated where an input pin would normally drive more than one on-chip gate. The on-chip delay incurred by buffering is less than the system delay caused by an output which drives a capacitance of higher than three unit loads. Full compensation was selected for the F100K family to provide improved switching characteristics. Full compensation results in relatively constant signal levels and thresholds and in improved noise margins over temperature and voltage variations from chip to chip, and thus a tighter ac window in the system environment. A comparison of fully compensated ECL to conventional ECL shows a 2:1 improvement in system ac performance due solely to full compensation (Figure 1-1). And, the improved speed has been achieved at reduced power. This power reduction is accomplished by the use of advanced process technology that reduces parasitic capacitances and improves tolerances, by optimum circuit designs using series gating and collector and emitter dotting, and by designing for the use of a -4.5 V VEE power supply. While a $-5.2 \mathrm{~V} \pm 10 \%$ power supply can be used to interface with 2 ns ECL families, F100K is only specified at a $V_{E E}$ power supply of -4.2 V to -4.8 V .

Fig. 2-1 Comparison of Propagation Delays

Family Overview

High On-Chip Integration

Higher on-chip integration is made possible by using the 24-pin package to increase the number of signal pins by 62% over the conventional 16-pin package. The emphasis in F100K is to minimize the number of SSI functions and maximuze the use of MSI and LSI to reduce wiring delays and thus make more efficient use of the fast on-chip switching technology. Only 10 SSI functions are needed to serve the system needs presently requiring 25 functions in the ECL 10K family.

Flexibility and Pin Assignment

F100K was planned to minimize the total number of logic functions by increasing the flexibility of each function and by making use of more I/O pins. Since next-generation system performance and ease of system designs are major F100K goals, pin assignment is important and was planned to minimize crosstalk, noise coupling and feedthrough, to facilitate OR-ties and to ease power-bus routing. Some of the key considerations in selecting the F100K pin assignments were:

- Locate power pins in the center on opposite sides of the DIP package to ease system design and to provide low-inductance connections to the chip.
- Provide two Vcc pins, one for the internal circuit and one for the output buffers, to minimize noise coupling.
- Locate inverting outputs of logically independent gates adjacent to each other. This provides the ability to wire AND-OR-Invert functions with ease.
- Locate common pins such as common Reset and common Clock at pin number 22 and Address or control inputs at pins 19 and 20 for flatpaks. This is to maximize use of Computer Aided Design (CAD) for board layouts.
- When feasible, mode control pins are used to create multipurpose devices.

Process Technology

The F100K family is fabricated using the advanced Isoplanar II process, which provides transistors with very-high, well-controlled switching speeds, extremely small parasitic capacitances and $\mathrm{f} T$ in excess of 5 GHz .

The technology can best be described by comparing the integrated circuit transistor structures of the conventional Planar process and that of the Isoplanar II process (Figure 1-2). The top view shows the area needed for each structure; the dashed area is the center of the isolation area.

Fig. 2-2 Transistor Structures

PLANAR
AREA $=4.8 \mathrm{mil}^{2}$

In the Isoplanar process, a thick oxide is selectively grown between devices, instead of the P^{+}region which is present in the Planar process. Since this oxide needs no separation from the base-collector regions, a substantial reduction in device and chip size can be realized. The base and emitter ends terminate in the oxide wall; therefore, the masks can overlap into the isolation oxide. This overlap feature means that base and emitter masking does not have to meet the extremely close tolerances that might otherwise be necessary, and standard photolithographic processes can be used.

Family Overview

The "walled emitter" structure allows over a 70\% reduction of the transistor silicon area compared to that of a conventional Planar transistor. For a given emitter size, the collector-base area is also reduced by more than 60\%. The reduced junction areas result in corresponding reductions in collector-base and collector-substrate capacitances, thereby allowing higher speeds.

Since the active transistor area is only under the emitter, all capacitance and resistance values outside this area are reduced. Parasitic values are further reduced by taking advantage of the masking alignment latitude resulting from the self-aligning nature of the structure.

As is the case with other modern LSI processes, the shallower diffusions and thinner oxides make ECL devices more susceptible to damage from electrostatic discharge than are devices of earlier TTL families. Users should take the usual precautions when handling ECL devices: avoid placing them on non-conductive plastic surfaces or in plastic bags, make sure test equipment and fixtures are grounded, individuals should be grounded before handling the devices, etc.

Compensation Network

The heart of F100K is fully compensated ECL. 1 The basic gate consists of three blocks - the current switch, the output emitter-followers, and the reference or bias network (Figure 1-3). The current switch allows both conjunctive and disjunctive logic. The output emitterfollowers provide high drive capability through impedance transformation and allows for increased logic swing. The bias network sets dc thresholds and currentsource bias voltages. Temperature compensation at the
gate output is achieved by incorporating a cross-connect branch between the complementary collector nodes of the current switch and driving the current source with a temperature insensitive bias network2 (Figure 1-4).

Fig. 2-4 Temperature Compensation

As junction temperature increases and the forward base-emitter voltage of the output emitter-follower decreases, the collector node of the current switch must become more negative. Since the current-source bias voltage, VCs, is independent of temperature, the switch current increases with temperature due to the temperature dependence of $\mathrm{V}_{\mathrm{BEC}}$. The combination of temperature controlled current, I_{E}, and the cross-connect branch current, Ix, forces the proper temperature coefficient at the collector node of the current switch to null out the VBEO tracking coefficient. ${ }^{3}$

Fig. 2-3 ECL Gate

Family Overview

The schematic for the reference network displays a $\mathrm{V}_{\mathrm{BE}} 1$ amplifier in the bottom left corner (Figure 1-5). Two base-emitter junctions are operated at different current densities, J1 and J2. The resulting voltage difference, VBE1 minus VBE2, appears across R1 and is amplified by the ratio R2/R1. Note that R2 is used twice, once to generate $V_{C S}$ and once to generate $V_{B B}$. The different current densities, J1 and J2, result in a positive temperature tracking coefficient across R2, which cancels the negative diode-tracking coefficient of $V_{B E 3}$ and $V_{B E 4}$. The $V_{C S}$ and the $V_{B B}$ thus generated are temperature insensitive at the extrapolated bandgap voltage of silicon 1,2 (approximately 1300 mV). $4 \mathrm{R}_{\mathrm{x}}$ in the $V_{B E}$ amplifier compensates for process variations of β and $\Delta V_{B E} .5$ Voltage regulation is achieved through a shunt regulator shown at the right side of the schematic.

Fig. 2-5 Reference Network

Characteristics

F100K compatibility with existing ECL logic families and memories permits direct interface with slower logic families and ensures immediate memory availability. The typical logic swing is 800 mV (Figure 1-6) and all voltage levels are specified with a 50Ω load to -2 V at all outputs to provide transmission line drive capability. However, the inherently low output impedance (Figure 1-7) and maximum specified output current, 50 mA , make 25Ω
drive possible at any or all outputs. Alternately, of course, higher termination impedances or other termination schemes are also useful.

Fig. 2-6 Transfer Characteristics

Fig. 2-7 Output Characteristic vs Output Terminations

F100K exhibits relatively constant output levels and thresholds over the $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ specified temperature range and -4.2 V to -4.8 V specified voltage range (Figure 1-8). VEE power supply current is also constant over the specified voltage range (Figure 1-9); therefore:

Family Overview

Fig. 2-8 Transfer Characteristics

- Propagation delay is relatively constant versus power supply voltage variations thus tightening the ac window.
- Power dissipation is a linear function of the supply voltage, reducing worst-case power consumption.

The typical propagation delay of an SSI gate function driving a 50Ω transmission line is 0.75 ns , including package, with a power dissipation of 40 mW resulting in a speed-power product of 3 pJ . For optimized MSI functions, the internal gates can dissipate $<10 \mathrm{~mW}$ with average propagation delay of $<0.5 \mathrm{~ns}$, giving a power-speed product of $<5 \mathrm{pJ}$.

Family Overview

Fig. 2-9 Change In IEe vs Change In Vee

F100K has a tighter ac window over the wide range of environmental conditions; thus, the system timing requirements are eased and maximum system clock rates are increased. At the sacrifice of ac performance, the small-signal input impedance was conservatively designed to be positive-real over the frequency range encountered by any circuit input. This provides adequate damping to insure ac stability within the system.

System Aspects

F100K provides high-density digital functions that outperform all other families on the market today. How does this increased circuit performance and higher on-chip density improve system performance?

Propagation delay and transition times vary (ac windows) when functions are operated at the extremes of the specified environmental ranges. With F100K, these variations are reduced and more predictable system timing is achieved. For synchronous machines and very high speed asynchronous systems, timing and its predictability are of utmost importance. Due to F100K constant supply current versus power supply voltage and because of nearly constant levels and thresholds with respect to temperature, voltage variations and gradients, speed skews are minimized.

Not only timing but also maximum system clock rate is affected by the tighter ac window. Thus, with F100K the
system designer can use a higher speed value in his worst-case calculations. This can be translated into higher possible system clock rates. Therefore, a machine can perform at up to twice the frequency, solely due to the F100K compensation features. Noise immunity will be of utmost importance in next generation computers, since much of the noise generated within the system is inversely proportional to the switching transition time of the circuits. The F100K transition time is typically 0.7 ns as compared to 2.0 ns in other ECL families and should therefore increase system crosstalk by the same ratio.

F100K combats the increased system noise by maintaining a virtually invariant noise immunity with variations and gradients in power supply voltage, ambient and junction temperatures. The variation in junction temperatures is much larger than in earlier computer systems because of the mixture of LSI and SSI functions on the same boards.

Features

F100K ECL logic components are designed to be used in high-speed, low-noise systems and offer significant advantages over other logic families. Some of the important features and advantages are summarized below:

Low Propagation Delay

F100K ECL features gate delays which are typically 0.75 ns (750 picoseconds) with counters, registers and flip-flops operating in the $400-500 \mathrm{MHz}$ range. When compared to other logic families such as Schottky TTL or slower ECL families, system performance can be doubled or tripled.

Moderate Edge Rates

Because of the nature of current mode switching which uses differential comparison techniques and avoids transistor storage delays, rise times can be controlled by internal time constants without sacrificing throughput delays. Slower rise times minimize ringing and reflections on interconnection wiring and simplify physical design. The typical edge rate for F100K ECL is $1 \mathrm{~V} / \mathrm{ns}$, only about 80% of the edge rate of Schottky TTL. It can be shown that for ECL circuits, the natural rise and fall times are approximately equal to the propagation delay. This relationship is considered optimum for use in high-speed systems.

Family Overview

Wired-OR Capability

ECL outputs can be wired together where wiring rules permit, to form the positive logic-OR function, thus achieving an extra level of gating at no parts count expense. Data bussing and party line operations are facilitated by this feature.

Complementary Outputs

A majority of F100K ECL logic elements have complementary outputs, providing numerous opportunities for reduction of package count and power consumption when mechanizing logic equations. Further, the system incurs no extra penalty in time delay since the complementary ECL outputs switch simultaneously.

A significant advantage to complementary outputs is that, since both the true and complement logic functions are available, Icc imbalance can be minimized either by using both outputs in the design or merely terminating unused outputs. In this way, the constant current characteristic of ECL is not compromised and power supply noise is minimized.

Low Output Impedance, High Current Capacity

 As operating speeds are increased to achieve the higher performance levels demanded of digital systems, ordinary wiring begins to exhibit distributed parameter characteristics, as opposed to a lumped capacitance nature at low speeds.Characteristic impedances of normal wiring and printed circuit interconnections generally fall in the 50 to 250Ω range. With these low impedance lines and fast transitions, the signals are attenuated by the voltage divider action between the circuit output impedance and the characteristic impedance of the interconnection.

Voltage mode circuits have a HIGH state output impedance of from 50 to 150Ω and thus exhibit an output stepped characteristic, first reaching about 50% of final value and later reaching the final value in another step. F100K ECL output impedances under 10Ω insure a complete, full valued, signal into a transmission line. Also, F100K ECL outputs are specified to drive a 50Ω load (some devices are specified to drive a 25Ω load). Outputs are capable of supplying 50 mA or more and can thus support the quiescent current required for passive terminations.

Convenient Daía Transmission

The complementary high-current outputs of F100K ECL elements are well suited for driving twisted pair or other balanced lines in a differential mode, thereby enhancing field cancellation and minimizing crosstalk between subsystems.

High Common-Mode Noise Rejection

Differential line receivers provide common-mode noise rejection of 1 V or more for induced and ground noise. Differential receiving requires less signal swing than single ended and thus allows more reliable interpretation of low signal swings.

Constant Supply Current

The supply current drain of F100K ECL elements is governed by one or more internal constant current sources supplying operating current for differential switches and level shifting networks. Since the current drain is the same regardless of the state of the switches, F100K ECL circuits present constant current loads to power supplies (see Complementary Outputs).

Low Power Loss in Stray Capacitance

Energy is consumed each time a capacitor is charged or discharged so the energy loss rate, or power, goes up with switching frequency. Since the energy stored in a capacitor is proportional to the square of the voltage and F100K ECL signal swings are four to five times less than those of TTL, power loss in stray capacitance may be an order of magnitude less than that of TTL.

Low Noise Generation

In ECL systems, power supply lines are not subjected to the large current spikes common with TTL designs. Inherently, ECL is a constant current family without the totem-pole structures found in TTL circuits which generate the large current spikes. Since ECL voltage swings are much smaller than TTL, the current spikes caused by charging and discharging stray capacitances are much smaller with ECL than with TTL of comparable edge rates.

Low Crosstalk

Induced noise signals are proportional to signal swings and edge rates. The lower swing and slower edge rate of F100K ECL result in low levels of crosstalk.

Family Overview

System Benefits

The Fairchild F100K family offers improvements over other ECL families such as voltage and temperature compensation, higher integration levels, improved packaging, planned pinouts, lower propagation delay and more complementary outputs. These improvements cause measurable advantages to accrue to the design(er) of high-performance systems.

Easier Engineering

Designers have increased confidence that designs realized in F100K will operate with good margins over voltage and temperature variations in prototypes, production models and field installations. Less effort need be expended doing detailed voltage and temperature calculations and testing. With noncompensated ECL, noise margins cannot be guaranteed unless both the receiving and transmitting circuit operate at the same temperature and $V_{E E}$. This can cause a problem when attempting to transfer a breadboard or prototype system to production.

Since output swings and input thresholds remain almost constant over temperature and VEE variations, complex control systems for power supply levels and more-than-adequate cooling are not necessary with F100K. This results in a more economical and better operating system.

Circuit Design

F100K ECL benefits from sound, well-engineered circuit designs. All input pins exhibit positive/real input impedance to eliminate system oscillations. Input buffering is used to reduce loads on lines which drive multiple internal gates.

High Performance

The regulation and control of dc and ac parameters achieved by F100K ECL assures that signal timing and propagation delays in critical paths are relatively insensitive to changes or gradients of temperature and supply voltage. Guardbands can be narrower, yet provide a higher degree of confidence due to the elimination of skew between output levels at one location and input thresholds at another.

The consistency of response and security of noise margins permit operation at higher clock rates and thus increase system performance.

Easier Debugging

With F100K, debugging of systems can proceed more rapidly than with uncompensated ECL. When a cabinet or enclosure is opened for access in debugging, the resultant change in thermal conditions has almost no effect on F100K signal swings, propagation delays, edge rates or noise margins.

Flexibility

F 100 K is designed to operate at -4.5 V for reduced power dissipation. If compatibility with other ECL families is a requirement, F100K will operate between -4.2 and -5.7 V due to the unique voltage compensation features. When operating at voltages other than -4.5 V , ac and dc parameters will vary slightly from specified values.

Fan-In/Fan-Out

All F100K ECL outputs are specified to drive 50Ω transmission lines; this makes them suitable for driving very-high fan-out loads. In addition, some F100K outputs are specified to drive 25Ω lines, which would be the case if a 50Ω party-line bus terminated at both ends were being driven.

System Design

F100K ECL was designed to be the ultimate standard packaged IC logic family. System design constraints were considered and the F100K family was designed for overall ease of system design and use while making the maximum use of the very fast propagation delays available.

Process Benefits

F100K ECL SSI/MSI parts are made using the Isoplanar II process. This process makes possible subnanosecond logic delays and very tightly controlled switching characteristics.

Expansion of the F100K family will take place by moving into LSI functions of 500 to 4000 gates. The evolution of the Isoplanar II process will enable such growth and give much increased performance.

It is by moving into LSI that subnanosecond delays can be fully utilized and overall system performance increased with decreased power consumption and parts count.

Family Overview

Radiation Tolerance

F100K ECL manufactured using Isoplanar II processes is one of the most radiation-hard integrated circuit families in production. Radiation hardness can extend system lifetimes up to 50% in some applications requiring radiation tolerance. (Reference Table 1.)

Packaging

The initial package selected for the F100K is a 24 -pin Flatpak, 0.375 inches square, with leads on $50-\mathrm{mil}$ centers, 6 leads per side. This package was chosen
because it offers minimum performance degradations of circuit and system and uses a somewhat conventional packaging technology. More common packaging such as the dual in-line packages, while available, do not provide optimum performance due to the loss in speed entering and leaving the package as well as a decrease in system density. With the F100K packaging technique and higher chip complexities within the family, the system density is two to three times higher than that possible with other available ECL families.

Table 1 Summary of Semiconductor Vulnerability Assessment

Radiation Environment	Bipolar Trans. \& J-FET. Discretes	SCR	TTL	LSTTL	Analog IC	CMOS	NMOS	LED	$\begin{aligned} & \text { ISO } \\ & \text { II } \\ & \text { ECL } \end{aligned}$
Neutrons $\mathrm{n} / \mathrm{cm}^{2}$	1010-1012	1010-1012	1014	1014	1013	1015	1015	1013	> 1015
Ionizing Total Dose Rads (Si)	> 104	104	106	106	$\begin{aligned} & 5 \times 104 \\ & 105 \end{aligned}$	$\begin{aligned} & 103 \\ & 104 \end{aligned}$	103	>105	107
Transient Dose Rate Rads (Si)/seconds (Upset or Saturation)		103	107	5×107	106	107	105		> 108
Transient Dose Rate Rads (Si)/seconds (Survival)	1010	1010	> 1010	> 1010	> 1010	109	1010	> 1010	> 1011
Dormant Total Dose (Zero Bias)	> 104	104	106	106	105	106	104	> 105	> 107

References

1. H.H. Muller, W.K. Owens, and P.W.J. Verhofstadt, "Fully Compensated Emitter-Coupled Logic: Eliminating the Drawbacks of Conventional ECL", IEEE Journal of Solid-State Circuits, October 1973, pp. 362-367.
2. R.R. Marley, "On-chip Temperature Compensation for ECL", Electronic Products, March 1, 1971.
3. V.A. Dhaka, J.E. Muschinske, and W.K. Owens, "Subnanosecond Emitter-Coupled Logic Gate Circuit Using Isoplanar II", IEEE Journal of Solid-State Circuits, October 1973, pp. 368-372.
4. R.J. Widlar, "New Developments in IC Voltage Regulators", ISSCC Digital Technical Papers, February 1970, pp. 157-159.
5. W.K. Owens, "Temperature Compensated Voltage Regulator Having Beta Compensating Means", United States Patent, No. 3,731,648, December 25, 1973.

F100K DC Family Specification

DC characteristics for the F100K series family parametric limits listed below are guaranteed for the entire F100K ECL family unless specified on the individual data sheet.

Absolute Maximum Ratings: Above which the useful life may be impaired 1

Storage Temperature
Maximum Junction Temperature (T_{J})
Case Temperature Under Bias (TC)
VEE Pin Potential to Ground Pin Input Voltage (dc)
Output Current (dc Output HIGH) Operating Range ${ }^{2}$

$$
\begin{gathered}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V} \\
\mathrm{~V} \text { EE to }+0.5 \mathrm{~V} \\
-50 \mathrm{~mA} \\
-5.7 \mathrm{~V} \text { to }-4.2 \mathrm{~V}
\end{gathered}
$$

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Note 3

Symbol	Characteristic	Min	Typ	Max	Unit	Conditions 4	
VOH	Output HIGH Voltage	-1025	-955	-880	mV	$V_{I N}=V_{\text {IH }}$	Loading with 50Ω to - 2.0 V
Vol	Output LOW Voltage	-1810	-1705	-1620	mV	or VIL (min)	
VOHC	Output HIGH Voltage	-1035			mv	$\begin{aligned} & V_{I N}=V_{I H}(\min) \\ & \text { or } V_{I L}(\max) \end{aligned}$	
Volc	Output LOW Voltage			-1610	mV		
VIH	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{min})$	

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Note 3

Symbol	Characteristic	Min	Typ	Max	Unit	Conditions 4	
VOH	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\max)} \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\min) \end{aligned}$	Loading with 50Ω to - 2.0 V
VOL	Output LOW Voltage	-1810		-1605	mV		
Vohc	Output HIGH Voltage	-1030			mv	$\begin{aligned} & V_{I N}=V_{I H}(\min) \\ & \text { or } V_{I L}(\max) \end{aligned}$	
Volc	Output LOW Voltage			-1595	mV		
V_{IH}	Input HIGH Voltage	-1150		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{min})$	

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Note 3

Symbol	Characteristic	Min	Typ	Max	Unit	Conditions ${ }^{4}$	
V OH	Output HIGH Voltage	-1035		-880	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { max }}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
Vol	Output LOW Voltage	-1830		-1620	mV	or VIL(min)	
VOHC	Output HIGH Voltage	-1045			mv	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { min })} \\ & \text { or } \mathrm{V}_{\mathrm{IL}(\max)} \end{aligned}$	
Volc	Output LOW Voltage			-1610	mV		
V_{H}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1490	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}($ min $)$	

1. Unless specified otherwise on individual data sheet.
2. Parametric values specified at -4.2 V to -4.8 V .
3. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

F100101
 Triple 5-Input OR/NOR Gate

F100K ECL Product

Description

The F100101 is a monolithic triple 5 -input OR/NOR gate. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Pin Names

$\mathrm{D}_{n a}, \mathrm{D}_{n b}, \mathrm{D}_{n c}$	Data Inputs
$\mathrm{O}_{\mathrm{a}}, \mathrm{O}_{\mathrm{b}}, \mathrm{O}_{\mathrm{c}}$	Data Outputs
$\overline{\mathrm{O}_{\mathrm{a}}}, \overline{\mathrm{O}_{b}}, \overline{\mathrm{O}_{\mathrm{c}}}$	Complementary Data Outputs

Logic Symbol

$V_{C C}=\operatorname{Pin} 6(9)$
$V_{C C A}=\operatorname{Pin} 7(10)$
$\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 18$ (21)
()$=$ Flatpak

Ordering Information (See Section 5)		
Package	Outline	Order Code
Ceramic DIP	$6 Y$	DC
Flatpak	4 V	FC

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IIH	Input HIGH Current			350	$\mu \mathrm{~A}$	$\mathrm{VIN}=\mathrm{V}$ IH(max $)$
IEE	Power Supply Current	-38	-26	-18	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}^{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tpHL	Propagation Delay Data to Output	0.50	1.15	0.50	1.15	0.55	1.30	ns	igures 1 and 2
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.30	0.45	1.20	0.45	1.20	ns	

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T} \mathrm{C}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tpHL	Propagation Delay Data to Output	0.50	0.95	0.50	0.95	0.55	1.10	ns	
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.20	0.45	1.10	0.45	1.10	ns	

*See Family Characteristics for other dc specifications.

Fig. 1 AC Test Circuit

Notes

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 V$
$L 1$ and $L 2=$ equal length 50Ω impedance lines $\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND $C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Fig. 2 Propagation Delay and Transition Times

F100102
 Quint 2-Input
 OR/NOR Gate

F100K ECL Product

Description

The F100102 is a monolithic quint 2-input OR/NOR gate with common enable. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Pin Names

$D_{n a}-D_{n e}$	Data Inputs
E	Enable Input
$\mathrm{O}_{\mathrm{a}}-\mathrm{O}_{\mathrm{e}}$	Data Outputs
$\overline{\mathrm{O}_{\mathrm{a}}}-\overline{\mathrm{O}_{e}}$	Complementary Data Outputs

Logic Symbol

$V_{C C}=\operatorname{Pin} 6(9)$
$V_{C C A}=\operatorname{Pin} 7(10)$
$\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 18$ (21)
() = Flatpak

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

Connection Diagrams

24-Pin DIP (Top View)

F100102

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V} \mathrm{CC}=\mathrm{VCCA}^{2}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
I IH	Input HIGH Current			350		
	Data			3 A	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\max)}$	
	Enable					
IEE	Power Supply Current	-80	-55	-38	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay Data to Output	0.45	1.35	0.45	1.15	0.45	1.40	ns	Figures 1 and 2
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay Enable to Output	0.95	2.15	0.95	2.15	0.95	2.20	ns	
$\begin{aligned} & \text { tTLH } \\ & \text { t } \begin{array}{l} \text { THL } \end{array} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.30	0.45	1.20	0.45	1.20	ns	

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}^{\text {C }}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tPHL	Propagation Delay Data to Output	0.45	1.15	0.45	0.95	0.45	1.20	ns	Figures 1 and 2
tpLH tphL	Propagation Delay Enable to Output	0.95	1.95	0.95	1.95	0.95	2.00	ns	
ttin tTHL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.20	0.45	1.10	0.45	1.10	ns	

*See Family Characteristics for other dc specifications.

Fig. 1 AC Test Circuit

Notes

$V_{C C}, V_{C C A}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Fig. 2 Propagation Delay and Transition Times

F100107
 Quint Exclusive OR/NOR Gate

F100K ECL Product

Description

The F100107 is a monolithic quint exclusive-OR/NOR gate. The Function output is the wire-OR of all five exclusive-OR outputs: $F=\left(D_{1 a} \oplus D_{2 \mathrm{a}}\right)+\left(D_{1 \mathrm{~b}} \oplus \mathrm{D}_{2 \mathrm{~b}}\right)$ $+\left(D_{1 c} \oplus D_{2 c}\right)+\left(D_{1 d} \oplus D_{2 d}\right)+\left(D_{1 e} \oplus D_{2 e}\right)$.

Pin Names

$D_{n a}-D_{n e}$	Data Inputs
F	Function Input
$\mathrm{O}_{\mathrm{a}}-\mathrm{O}_{e}$	Data Outputs
$\overline{\mathrm{O}_{\mathrm{a}}}-\overline{\mathrm{O}_{e}}$	Complementary Data Outputs

Logic Symbol

$V_{C C}=\operatorname{Pin} 6(9)$
$V_{C C A}=\operatorname{Pin} 7$ (10)
$V_{E E}=\operatorname{Pin} 18$ (21)
() = Flatpak

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

F100107

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$I_{I H}$	Input HIGH Current					
	$D_{2 a}-D_{2 e}$			250		$V_{I N}=V_{I H(m a x)}$
	$D_{1 a}-D_{1 e}$			350		
$I_{E E}$	Power Supply Current	-96	-66	-46	$m A$	Inputs Open

Ceramic Dual In-line Package $A C$ Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{TC}=+25^{\circ} \mathrm{C}$		$\mathrm{T}^{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tphL	Propagation Delay $D_{2 a}-D_{2 e} \text { to } O, \bar{O}$	0.55	1.90	0.55	1.80	0.55	1.90	ns	Figures 1 and 2
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay $\mathrm{D}_{1 \mathrm{a}}-\mathrm{D}_{1 \mathrm{e}}$ to $\mathrm{O}, \overline{\mathrm{O}}$	0.55	1.70	0.55	1.60	0.55	1.70	ns	
tpLH tpHL	Propagation Delay Data to F	1.15	2.75	1.15	2.75	1.15	3.00	ns	
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.80	0.45	1.65	0.45	1.80	ns	

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tpHL	Propagation Delay $\mathrm{D}_{2 \mathrm{a}}-\mathrm{D}_{2 \mathrm{e}} \text { to } \mathrm{O}, \overline{\mathrm{O}}$	0.55	1.70	0.55	1.60	0.55	1.70	ns	Figures 1 and 2
tpLH tpHL	Propagation Delay $\mathrm{D}_{1 \mathrm{a}}-\mathrm{D}_{1 \mathrm{e}} \text { to } \mathrm{O}, \overline{\mathrm{O}}$	0.55	1.50	0.55	1.40	0.55	1.50	ns	
tpLH tpHL	Propagation Delay Data to F	1.15	2.55	1.15	2.55	1.15	2.80	ns	
ttin tTHL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.55	0.45	1.70	ns	

[^0]Fig. 1 AC Test Circuit

Notes

$\mathrm{V}_{C C}, \mathrm{~V}_{C C A}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Fig. 2 Propagation Delay and Transition Times

F100112
 Quad Driver

F100K ECL Product

Description

The F100112 is a monolithic quad driver with two OR and two NOR outputs and common enable. The common input is buffered to minimize input loading. If the D inputs are not used the Enable can be used to drive sixteen 50Ω lines. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Pin Names

$\mathrm{D}_{\mathrm{a}}-\mathrm{D}_{\mathrm{d}}$	Data Inputs
E	Enable Input
$\mathrm{O}_{\text {na }}-\mathrm{O}_{n d}$	Data Outputs
$\overline{\mathrm{O}}_{\text {na }}-\overline{\mathrm{O}}_{n d}$	Complementary Data Outputs

Logic Symbol

$V_{\mathrm{CC}}=\operatorname{Pin} 6(9)$
$V_{C C A}=\operatorname{Pin} 7$ (10)
$\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 18(21)$
() = Flatpak

Ordering Information (See Section 5)		
Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

F100112

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{VCC}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IIH	Input HIGH Current					
	Data			550	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{max})}$
			450			
IEE	Power Supply Current	-106	-73	-51	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}^{\prime}=0^{\circ} \mathrm{C}$		$\mathrm{TC}=+25^{\circ} \mathrm{C}$		$\mathrm{T}^{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tPHL	Propagation Delay Data to Output	0.55	1.50	0.55	1.40	0.45	1.60	ns	Figures 1 and 2
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Enable to Output	0.65	2.00	0.65	1.90	0.65	2.00	ns	
ttLH tTHL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.60	0.45	1.50	0.45	1.60	ns	

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		$\mathrm{T}^{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay Data to Output	0.55	1.30	0.55	1.20	0.45	1.40	ns	Figures 1 and 2
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Enable to Output	0.65	1.80	0.65	1.70	0.65	1.80	ns	
trin tTHL	Transition Time 20\% to 80\%, 80\% to 20\%	0.45	1.50	0.45	1.40	0.45	1.50	ns	

*See Family Characteristics for other dc specifications.

Fig. 1 AC Test Circuit

Fig. 2 Propagation Delay and Transition Times

F100113
 Quad Driver

F100K ECL Product

Description

The F100113 is a monolithic quad driver with two OR and two NOR outputs and common enable. The common input is buffered to minimize input loading. If the D inputs are not used the Enable can be used to drive sixteen 50Ω lines. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Pin Names

$\mathrm{D}_{\mathrm{a}}-\mathrm{D}_{\mathrm{d}}$	Data Inputs
E	Enable Input
$\mathrm{O}_{n a}-\mathrm{O}_{n d}$	Data Outputs
$\bar{O}_{n a}-\bar{O}_{n d}$	Complementary Data Outputs

Logic Symbol

$$
\begin{aligned}
& V_{C C}=\operatorname{Pin} 6(9) \\
& V_{C C A}=\operatorname{Pin} 7(10) \\
& V_{E E}=\operatorname{Pin} 18(21) \\
& (\quad)=\text { Flatpak }
\end{aligned}
$$

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

F100113

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IIH	Input HIGH Current					
	Data			550		$V_{I N}=V_{I H(\max)}$
	Enable			350		
IEE	Power Supply Current	-116	-80	-56	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{Tc}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tpHL	Propagation Delay Data to Output	0.45	1.40	0.45	1.35	0.45	1.40	ns	Figures 1 and 2
tpLH tphL	Propagation Delay Enable to Output	0.55	1.90	0.55	1.90	0.55	1.90	ns	
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.60	0.45	1.50	0.45	1.60	ns	

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T} \mathrm{C}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay Data to Output	0.45	1.20	0.45	1.15	0.45	1.20	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay Enable to Output	0.55	1.70	0.55	1.70	0.55	1.70	ns	Figures 1 and 2
tTLH tTHL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.50	0.45	1.40	0.45	1.50	ns	

*See Family Characteristics for other dc specifications.

Fig. 1 AC Test Circuit

Fig. 2 Propagation Delay and Transition Times

F100114
 Quint Differential Line Receiver

F100K ECL Product

Description

The F100114 is a monolithic quint differential line receiver with emitter-follower outputs. An internal reference supply (V_{BB}) is available for single-ended reception. When used in single-ended operation the apparent input threshold of the true inputs is 25 to 30 mV higher (positive) than the threshold of the complementary inputs. Unlike other F100K ECL devices, the inputs do not have input pull-down resistors.

Active current sources provide common-mode rejection of 1.0 V in either the positive or negative direction. A defined output state exists if both inverting and non-inverting inputs are at the same potential between V_{EE} and V_{CC}. The defined state is logic HIGH on the $\overline{\mathrm{O}_{\mathrm{a}}}-\overline{\mathrm{O}_{\mathrm{e}}}$ outputs.

Pin Names

$\frac{D_{a}}{}-D_{e}$	Data Inputs
$\bar{D}_{a}-\overline{D_{e}}$	Inverting Data Inputs
$\mathrm{O}_{\mathrm{a}}-\mathrm{O}_{e}$	Data Outputs
$\overline{\mathrm{O}_{\mathrm{a}}}-\overline{\mathrm{O}_{e}}$	Complementary Data Outputs

Logic Symbol

[^1]
Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

F100114

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{Tc}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay Data to Output	0.55	1.70	0.60	1.80	0.70	2.20	ns	Figures 1 and 2
ttLh tTHL	Transition Time 20\% to 80\%, 80\% to 20\%	0.55	1.20	0.45	1.10	0.45	1.30	ns	

[^2]Fig. 1 AC Test Circuit

Notes

$V_{C C}, V_{C C A}=+2 \mathrm{~V}, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{VCC}_{\mathrm{C}}$ and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Fig. 2 Propagation Delay and Transition Times

F100117
 Triple 2-Wide
 OA/OAI Gate

F100K ECL Product

Description

The F100117 is a monolithic triple 2-wide OR/AND gate with true and complement outputs. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Pin Names

$D_{n a}-D_{n c}$	Data Inputs
$E_{a}-E_{c}$	Enable Inputs
$\mathrm{O}_{\mathrm{a}}-\mathrm{O}_{\mathrm{c}}$	Data Outputs
$\mathrm{O}_{\mathrm{a}}-\overline{\mathrm{O}_{\mathrm{c}}}$	Complementary Data Outputs

Logic Symbol

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IIH	Input HIGH Current All Inputs			260	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\max)}$
IEE	Power Supply Current	-79	-54	-37	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	TC $=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tPLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay Data to Output	0.90	2.60	0.90	2.50	0.90	2.60	ns	Figures 1 and 2
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay Enable to Output	0.45	1.40	0.45	1.30	0.45	1.40	ns	
$\overline{\text { tTLH }}$ tTHL	Transition Fime 20% to $80 \%, 80 \%$ to 20%	0.45	1.30	0.45	1.20	0.45	1.30	ns	

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}^{\text {c }}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \end{aligned}$	Propagation Delay Data to Output	0.90	2.40	0.90	2.30	0.90	2.40	ns	Figures 1 and 2
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Enable to Output	0.45	1.20	0.45	1.10	0.45	1.20	ns	
tTLH tTHL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.20	0.45	1.10	0.45	1.20	ns	

*See Family Characteristics for other dc specifications.

Fig. 1 AC Test Circuit

Notes

$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Fig. 2 Propagation Delay and Transition Times

F100118
 5-Wide 5, 4, 4, 4, 2
 OA/OAI Gate

F100K ECL Product

Description

The F100118 is a monolithic 5 -wide 5, 4, 4, 4, 2 OR/AND gate with true and complementary outputs. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Pin Names

$D_{n a-}-D_{n e}$	Data Inputs
$0, \bar{O}$	Data Outputs

Logic Symbol

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

F100118

DC Characteristics: $V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$I_{I H}$	Input HIGH Current All Inputs			350	μA	$V_{I N}=V_{I H(\max)}$
IEE	Power Supply Current	-92	-69	-42	$m A$	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V} C \mathrm{C}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		$T^{\prime} \mathrm{C}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay Data to Output	0.85	3.20	0.95	3.20	0.95	3.40	ns	Figures 1 and 2
tTLH tTHL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.60	0.45	1.50	0.45	1.60	ns	

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tpHL	Propagation Delay Data to Output	0.85	3.00	0.95	3.00	0.95	3.20	ns	gures 1 and 2
ttLH tTHL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.50	0.45	1.40	0.45	1.50	ns	

*See Family Characteristics for other dc specifications.

Fig. 1 AC Test Circuit

Notes

$V_{C C}, V_{C C A}=+2 \mathrm{~V}, V_{E E}=-2.5 \mathrm{~V}$
L1 and L2 $=$ equal length 50Ω impedance lines $R_{T}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND $C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Fig. 2 Propagation Delay and Transition Times

F100122 9-Bit Buffer

F100K ECL Product

Description

The F100122 is a monolithic 9-bit buffer. The device contains nine non-inverting buffer gates with single input and output. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Pin Names

$\mathrm{D}_{1}-\mathrm{D}_{9}$
Data Inputs
$\mathrm{O}_{1}-\mathrm{O}_{9}$
Data Outputs

Logic Symbol


```
\(V_{C C}=\operatorname{Pin} 6(9)\)
\(V_{C C A}=\operatorname{Pins} 1\) (4), 7 (10), 13 (16), 19 (22)
\(V_{E E}=\operatorname{Pin} 18(21)\)
()\(=\) Flatpak
```

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

F100122

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IIH	Input HIGH Current			350	$\mu \mathrm{~A}$	$\mathrm{VIN}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\max)}$
IEE	Power Supply Current	-96	-70	-46	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tphL	Propagation Delay Data to Output	0.45	1.60	0.45	1.45	0.45	1.60	ns	
ttLH tTHL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.50	0.45	1.40	0.45	1.40	ns	

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{Tc}=0^{\circ} \mathrm{C}$		$\mathrm{T}^{\text {C }}=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay Data to Output	0.45	1.40	0.45	1.25	0.45	1.40	ns	gures 1 and 2
ttLH tTHL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.40	0.45	1.30	0.45	1.30	ns	

*See Family Characteristics for other dc specifications

Fig. 1 AC Test Circuit

Notes

$V_{C C}, V_{C C A}=+2 \mathrm{~V}, V_{E E}=-2.5 \mathrm{~V}$

$L 1$ and $L 2=$ equal length 50Ω impedance lines
$\mathrm{RT}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Fig. 2 Propagation Delay and Transition Times

F100123
 Hex Bus Driver

F100K ECL Product

Description

The F100123 is a monolithic device containing six bus drivers capable of driving terminated lines with terminations as low as 25Ω. To reduce crosstalk, each output has its respective ground connection. Transition times were designed to be longer than on other F100K devices. The driver itself performs the positive logic AND of a data input ($D_{1}-D_{6}$) and the OR of two select inputs (E and either $D E_{1}, D E_{2}$, or $D E_{3}$). Enabling of data is possible in multiples of two, i.e., 2,4 , or all 6 paths.

The output voltage LOW level is designed to be more negative than normal ECL outputs (cut off state). This allows an emitter-follower output transistor to turn off when the termination supply is -2.0 V and thus present a high impedance to the data bus.

Pin Names

D_{1} - D_{6}
$D E_{1}-D E_{3}$
E
Data Inputs
Dual Enable Inputs
$\mathrm{O}_{1}-\mathrm{O}_{6}$
mon Enable Input

Logic Symbol

$\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 6(9)$
$V_{C C A}=$ Pins 1 (4), 3 (6), 5 (8), 7 (10), 9 (12), 11 (14)
$V_{E E}=\operatorname{Pin} 18(21)$
() = Flatpak

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	$6 Y$	DC
Flatpak	$4 Q$	FC

F100123

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{VCC}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
VOH	Output HIGH Voltage		-955	$\begin{aligned} & -880 \\ & -870 \end{aligned}$	mV	$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ max $)$ or VIL(min), Loaded with 25Ω to -2.0 V
		-1035			mV	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \text { to }-4.8 \mathrm{~V} \end{aligned}$	
VOHC	Output HIGH Corner Voltage				mV	$V_{E E}=-4.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{min})}$ or VIL(max), Loaded with 25Ω to -2.3 V
		-1045			mV	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \text { to }-4.8 \mathrm{~V} \end{aligned}$	
Vol	Output LOW Voltage Cut-off State			-2200	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\min)}$ or $\mathrm{V}_{\mathrm{IL}(\text { max })}$ Loaded with 25Ω to -2.3 V	
IH	Input HIGH Current Common Enable Data and Dual Enable			$\begin{aligned} & 330 \\ & 260 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\max)$	
IEE	Power Supply Current	-235	-170	-113	mA	Inputs Open	

*See Family Characteristics for other dc specifications.
Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}^{\prime} \mathrm{C}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tple	Propagation Delay	2.00	4.30	1.95	4.30	2.00	4.60	ns	Figures 1 and 2
tPHL	Data to Output	1.00	2.40	1.00	2.40	1.10	2.60		
tPLH	Propagation Delay	2.30	4.70	2.00	4.70	2.30	5.10	ns	
tPHL	Dual Enable to Output	1.40	3.00	1.40	3.00	1.40	3.40		
tplH	Propagation Delay	2.60	5.40	2.50	5.30	2.80	5.80	ns	
${ }_{\text {tPHL }}$	Common Enable to Output	1.50	3.20	1.50	3.30	1.50	3.60		
tTLH	Transition Time	0.70	2.10	0.70	1.80	0.70	2.20	ns	
tTHL	20\% to 80%, 80% to 20%	0.45	1.40	0.45	1.30	0.45	1.40		

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tPLH	Propagation Delay	2.00	4.10	1.95	4.10	2.00	4.40	ns	Figures 1 and 2
tPHL	Data to Output	1.00	2.20	1.00	2.20	1.10	2.40		
tPLH	Propagation Delay	2.30	4.50	2.00	4.50	2.30	4.90	ns	
tPHL	Dual Enable to Output	1.40	2.80	1.40	2.80	1.40	3.20		
tPLH	Propagation Delay	2.60	5.20	2.50	5.10	2.80	5.60	ns	
tPHL	Common Enable to Output	1.50	3.00	1.50	3.10	1.50	3.40		
ttLH	Transition Time	0.70	2.00	0.70	1.70	0.70	2.10	ns	
tTHL	20\% to $80 \%, 80 \%$ to 20%	0.45	1.30	0.45	1.20	0.45	1.30		

F100123

Fig. 1 AC Test Circuit

Notes

$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{VCC}_{\mathrm{C}}$ and VEE
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

Fig. 2 Propagation Delay and Transition Times

Description

The F100124 is a hex translator, designed to convert TTL logic levels to 100K ECL logic levels. The inputs are compatible with standard or Schottky TTL. A common Enable input (E), when LOW, holds all inverting outputs HIGH and holds all true outputs LOW. The differential outputs allow each circuit to be used as an inverting/non-inverting translator or as a differential line driver. The output levels are voltage compensated.

When the circuit is used in the differential mode, the F100124, due to its high common mode rejection, overcomes voltage gradients between the TTL and ECL ground systems. The $V_{E E}$ and $V_{T t L}$ power may be applied in either order.

TTL Unit Load (U.L.)
Pin Names Description
Do-D5
E Enable Input
$Q_{0}-Q_{5}$
$\bar{Q}_{0}-\bar{Q}_{5}$ Data Outputs
Complementary Data Outputs

Logic Symbol

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

F100124

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tphL	Propagation Delay Data to Output	0.50	3.00	0.50	2.90	0.50	3.00	ns	Figures 1 and 2
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.80	0.45	1.80	0.45	1.80	ns	

Flatpak $A C$ Characteristics: $V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tphL	Propagation Delay Data to Output	0.50	2.80	0.50	2.70	0.50	2.80	ns	Figures 1 and 2
$\begin{aligned} & \text { tTLH } \\ & \text { t } T H L \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.70	0.45	1.70	ns	

[^3]Fig. 1 AC Test Circuit

Fig. 2 Propagation Delay and Transition Times

F100125
 Hex ECL-to-TTL Translator

F100K ECL Product

Description

The F100125 is a hex translator for converting F100K logic levels to TTL logic levels. Differential inputs allow each circuit to be used as an inverting, non-inverting or differential receiver. An internal reference voltage generator provides V_{BB} for single-ended operation or for use in Schmitt trigger applications. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors; therefore, the outputs will go LOW when the inputs are left unconnected.

When used in the differential mode, the inputs have a common mode rejection of +1 V , making this device tolerant of ground offsets and transients between the signal source and the translator. The $V_{E E}$ and $V_{T T L}$ power may be applied in either order.

TTL Unit Load (U.L.)

Pin Names

$D_{0}-D_{5}$
$D_{0}-\bar{D}_{5}$
$Q_{0}-Q_{5}$

Logic Symbol

$V_{\text {TTL }}=\operatorname{Pins} 4(7), 5(8)$
$V_{C C}=$ Pins 6 (9), 7 (10)
$\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 18$ (21)
() = Flatpak

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

F100125

Truth Table

Inputs		Outputs
$\mathbf{D}_{\boldsymbol{n}}$	$\overline{\mathbf{D}}_{\boldsymbol{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$
L	H	L
H	L	H
L	L	U
H	H	U
Open	Open	L
$V_{E E}$	$V_{E E}$	L
L	$V_{B B}$	L
H	$V_{B B}$	H
$V_{B B}$	L	H
$V_{B B}$	H	L

$H=H I G H$ Voltage Level
$L=$ LOW Voltage Level
$U=$ Undefined

Absolute Maximum Ratings1 Above which the useful

 life may be impaired$V_{\text {TtL }}$ Pin Potential to Ground Pin

$$
+6.0 \mathrm{~V} \text { to }-0.5 \mathrm{~V}
$$

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{GND}$,
$\mathrm{V}_{\mathrm{TTL}}=+4.5$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
VOH	Output HIGH Voltage	2.5			V	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{IH}}(\max)$ or $V_{I L}$ (min)
VOL	Output LOW Voltage			0.5	V	$\mathrm{loL}=20 \mathrm{~mA}$	
V_{IH}	Single-ended Input HIGH Voltage	$\begin{aligned} & -1165 \\ & -1150 \end{aligned}$		$\begin{aligned} & -880 \\ & -880 \end{aligned}$	mV		Guaranteed HIGH Signal for All Inputs?
					mV	$\begin{aligned} & \mathrm{VEE}_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \text { to }-4.8 \mathrm{~V} \end{aligned}$	
VIL	Single-ended Input LOW Voltage	$\begin{aligned} & -1810 \\ & -1810 \end{aligned}$		$\begin{aligned} & -1475 \\ & -1490 \end{aligned}$	mV	$V_{\mathrm{EE}}=-4.5 \mathrm{~V}$	Guaranteed LOW Signal for All Inputs?
					mV	$\begin{aligned} & \mathrm{VEE}=-4.2 \mathrm{~V} \\ & \text { to }-4.8 \mathrm{~V} \end{aligned}$	
VBB	Output Reference Voltage	$\begin{aligned} & -1380 \\ & -1396 \end{aligned}$	$\begin{aligned} & -1320 \\ & -1320 \end{aligned}$	$\begin{aligned} & -1260 \\ & -1244 \end{aligned}$	mV	$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	Tie Pins 12 (15), 14 (17), 19 (22), 21 (24), 23 (2) to Pin 17 (20)
					mV	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \text { to }-4.8 \mathrm{~V} \end{aligned}$	

[^4]
F100125

DC Characteristics (Cont'd): $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{GND}$,
$\mathrm{V}_{\mathrm{TtL}}=+4.5$ to $+5.5 \mathrm{~V}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
V DIFF	Input Voltage Differential	150			mV	Required for Full Output Swing
VCM	Common Mode Voltage			1.0	V	Permissible \pm VCM with Respect to $V_{B B}$
IIH	Input HIGH Current			350	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=V_{I H}(\max), D_{0}-D_{5}=V_{B B}, \\ & \bar{D}_{0}-\overline{D_{5}}=V_{I L}(\min) \end{aligned}$
IIL	Input LOW Current	0.5			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}}(\mathrm{min}), \mathrm{D}_{0}-\mathrm{D}_{5}=\mathrm{V}_{\mathrm{BB}}$
los	Output Short-circuit Current	-100		-40	mA	Vout $=$ GND*
IEE	Vee Power Supply Current	-85	-60	-40	mA	$\mathrm{D}_{0}-\mathrm{D}_{5}=V_{\text {BB }}$
Ittl	VTTL Power Supply Current		75	115	mA	$\mathrm{D}_{0}-\mathrm{D}_{5}=V_{\text {BB }}$

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V} C \mathrm{C}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}^{\prime}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tPHL	Propagation Delay Data to Output	0.80	3.50	0.90	3.70	1.00	4.00	ns	Figures 1 and 2
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 10% to $90 \%, 90 \%$ to 10%	0.50	2.60	0.50	2.60	0.50	2.60	ns	

Flatpak AC Characteristics: $\mathrm{VEE}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TLL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay Data to Output	0.80	3.30	0.90	3.50	1.00	3.80	ns	igures 1 and 2
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 10% to $90 \%, 90 \%$ to 10%	0.50	2.50	0.50	2.50	0.50	2.50	ns	

*Test one output at a time.

Fig. 1 AC Test Circuit

Fig. 2 Propagation Delay and Transition Times

F100126
 9-Bit Backplane Driver

F100K ECL Product

Description

The F100126 contains nine independent, high-speed, buffer gates each with a single input and a single output. The gates are non-inverting. These buffers are useful in bus-oriented systems where minimal output loading or bus isolation is desired. The output transition times are longer to minimize noise when used as a backplane driver.

Pin Names
$\mathrm{D}_{1}-\mathrm{D} 9$
Data Inputs
$\mathrm{O}_{1}-\mathrm{O}_{9}$
Data Outputs

Logic Symbol

$V_{C C}=\operatorname{Pin} 6(9)$
$V_{C C A}=\operatorname{Pin} 1$ (4), 7 (10), 13 (16), 19 (22)
$\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 18$ (21)
() = Flatpak

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

F100126

DC Characteristics: $\mathrm{V}_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$I_{I H}$	Input HIGH Current			350	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\max)}$
IEE	Power Supply Current	-96	-70	-46	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tPLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Output	1.05	2.75	1.05	2.75	1.05	2.75	ns	Figures 1 and 2
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	1.15	3.40	1.15	3.40	1.05	3.40	ns	

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tPHL	Propagation Delay Data to Output	1.05	2.55	1.05	2.55	1.05	2.55	ns	Figures 1 and 2
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	1.15	3.30	1.15	3.30	1.05	3.30	ns	

*See Family Characteristics for other dc specifications.

Fig. 1 AC Test Circuit

Notes

$V_{C C}, V_{C C A}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{CL}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Fig. 2 Propagation Delay and Transition Times

F100130
 Triple D Latch

F100K ECL Product

Description

The F100130 contains three D-type latches with true and complement outputs and with Common Enable (\bar{E}_{C}), Master Set (MS) and Master Reset (MR) inputs. Each latch has its own Enable (\bar{E}_{n}), Direct Set ($S D_{n}$) and Direct Clear (CDn) inputs. The Q output follows its Data (D) input when both \bar{E}_{n} and \bar{E}_{C} are LOW (transparent mode). When either \bar{E}_{n} or \bar{E}_{C} (or both) are HIGH, a latch stores the last valid data present on its D_{n} input before \bar{E}_{n} or \bar{E}_{C} goes HIGH.

Both Master Reset (MR) and Master Set (MS) inputs override the Enable inputs. The individual $C D_{n}$ and $S D_{n}$ also override the Enable inputs.

Pin Names
$\mathrm{CD}_{0}-\mathrm{CD}_{2} \quad$ Individual Direct Clear Inputs
SDo-SD2 Individual Direct Set Inputs
$\bar{E}_{0}-\bar{E}_{2}$
\bar{E}_{C}
Individual Enable Inputs (Active LOW)
Common Enable Input (Active LOW)
$D_{0}-D_{2}$
Data Inputs
MR Master Reset Input
MS Master Set Input
$Q_{0}-Q_{2}$
$\bar{Q}_{0}-\bar{Q}_{2}$
Data Outputs
Complementary Data Outputs
Logic Symbol

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

Logic Diagram

Truth Tables (Each Latch)

Latch Operation

Inputs					Outputs
Dn	\bar{E}_{n}	Ec	$\begin{aligned} & \text { MS } \\ & \text { SD } \end{aligned}$	$\begin{aligned} & M R \\ & C D_{n} \end{aligned}$	Qn
L	L	L	L	L	L
H	L	L	L	L	H
X	H	X	L	L	Latched*
X	X	H	L	L	Latched*

Asynchronous Operation

Inputs					Outputs
$\mathbf{D}_{\mathbf{n}}$	$\bar{E}_{\boldsymbol{n}}$	$\bar{E}_{\mathbf{C}}$	MS $\mathbf{S D}_{\boldsymbol{n}}$	MR $\mathbf{C D}_{\boldsymbol{n}}$	$\mathbf{Q}_{\mathbf{n}}$
X	X	X	H	L	H
X	X	X	L	H	L
X	X	X	H	H	U

*Retains data presented before \bar{E} positive transition
H = HIGH Voltage Level
L = LOW Voltage Level
X $=$ Don't Care
$U=$ Undefined

F100130

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
I_{H}	Input HIGH Current					
	D_{n}			350		
	$\mathrm{CD}_{n}, \mathrm{SD}_{n}$			530	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\max)}$
	E_{n}	$\mathrm{E}_{\mathrm{C}}, \mathrm{MR}, \mathrm{MS}$			240	
IEE	Power Supply Current	-149	-106	-74	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	TC $=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tplh tphL	Propagation Delay Dn to Output (Transparent Mode)	0.50	1.80	0.50	1.70	0.50	1.90	ns	Figures 1 and 2
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay \bar{E}_{C} to Output	0.65	2.10	0.75	2.00	0.75	2.10	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay $C D_{n}, S D_{n}, \bar{E}_{n}$ to Output	0.50	2.00	0.60	1.75	0.60	2.00	ns	Figures 1, 2 and 3
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay MS, MR to Output	1.10	2.50	1.10	2.40	1.10	2.60	ns	Figures 1 and 2
ttin tthl	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.60	0.45	1.60	0.45	1.60	ns	Figures 1 and 2
$\mathrm{t}_{\text {s }}$	Setup Time $\mathrm{D}_{0}-\mathrm{D}_{2}$ $\mathrm{CD}_{\mathrm{n}}, \mathrm{SD}_{\mathrm{n}}$ (Release Time) MR, MS (Release Time)	$\begin{aligned} & 0.90 \\ & 1.20 \\ & 1.90 \end{aligned}$		$\begin{array}{\|l} 0.70 \\ 1.10 \\ 1.90 \\ \hline \end{array}$		$\begin{aligned} & 0.90 \\ & 1.40 \\ & 2.00 \end{aligned}$		ns	Figures 3 and 4
th	Hold Time $\mathrm{D}_{0}-\mathrm{D}_{2}$	0.60		0.60		0.80		ns	Figure 4
$t_{\text {pw (}}(\mathrm{L})$	Pulse Width LOW \bar{E}_{n}, \bar{E}_{c}	2.00		2.00		2.00		ns	Figure 2
$t_{\text {pw }}(\mathrm{H})$	Pulse Width HIGH $C D_{n}, S D_{n}, M R, M S$	2.00		2.00		2.00		ns	Figure 3

[^5]
F100130

Flatpak AC Characteristics: $V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		$\mathrm{T}^{\prime}=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tphL	Propagation Delay D_{n} to Output (Transparent Mode)	0.50	1.60	0.50	1.50	0.50	1.70	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay \bar{E}_{C} to Output	0.65	1.90	0.75	1.80	0.75	1.90	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay $C D_{n}, S D_{n}, \bar{E}_{n}$ to Output	0.50	1.80	0.60	1.55	0.60	1.80	ns	Figures 1, 2 and 3
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay MS, MR to Output	1.10	2.30	1.10	2.20	1.10	2.40	ns	Figures 1 and 3
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.50	0.45	1.50	0.45	1.50	ns	Figures 1 and 2
$\mathrm{t}_{\text {s }}$	Setup Time $\mathrm{D}_{0}-\mathrm{D}_{2}$ $C D_{n}, S D_{n}$ (Release Time) MR, MS (Release Time)	$\begin{aligned} & 0.80 \\ & 1.10 \\ & 1.80 \end{aligned}$		$\begin{aligned} & 0.60 \\ & 1.00 \\ & 1.80 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 1.30 \\ & 2.00 \end{aligned}$		ns	Figures 3 and 4
th	Hold Time $D_{0}-D_{2}$	0.50		0.50		0.70		ns	Figure 4
$t_{\text {pw }}(\mathrm{L})$	Pulse Width LOW $\bar{E}_{\mathrm{n}}, \bar{E}_{\mathrm{C}}$	2.00		2.00		2.00		ns	Figure 2
$t_{p w}(H)$	Pulse Width HIGH CDn, SDn, MR, MS	2.00		2.00		2.00		ns	Figure 3

Fig. 1 AC Test Circuit

[^6]Fig. 2 Enable Timing

Fig. 3 Reset Timing

F100130

Fig. 4 Data Setup and Hold Time

Notes
t_{s} is the minimum time before the transition of the enable that information must be present at the data input
$t h$ is the minimum time after the transition of the enable that information must remain unchanged at the data input

F100131
 Triple D Flip-Flop

F100K ECL Product

Description

The F100131 contains three D-type, edge-triggered master/slave flip-flops with true and complement outputs,
a Common Clock (CPC), and Master Set (MS) and Master Reset (MR) inputs. Each flip-flop has individual Clock ($C P_{n}$), Direct Set ($S D_{n}$) and Direct Clear ($C D_{n}$) inputs. Data enters a master when both $C P_{n}$ and $C P_{C}$ are LOW and transfers to a slave when CP n or CPC (or both) go HIGH. The Master Set, Master Reset and individual $C D_{n}$ and $S D_{n}$ inputs override the Clock inputs.

Pin Names

$\mathrm{CP}_{0}-\mathrm{CP}_{2}$ Individual Clock Inputs
CPc Common Clock Input
Do-D2
$C D_{0}-\mathrm{CD}_{2}$
SD n
MR
MS
Data Inputs
Individual Direct Clear Inputs Individual Direct Set Inputs
Master Reset Input
Master Set Input
$Q_{0}-Q_{2}$
Data Outputs
$\bar{Q}_{0}-\bar{Q}_{2}$

Connection Diagrams

24-Pin DIP (Top View)

Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

24-Pin Flatpak (Top View)

Ordering Information (See Section 5)

Logic Symbol

[^7]
Logic Diagram

Truth Tables (Each Flip Flop)
Synchronous Operation

Inputs					Outputs
Dn	CPn	CPC	$\begin{aligned} & \text { MS } \\ & \text { SD } \end{aligned}$	$\begin{aligned} & \text { MR } \\ & C D_{n} \end{aligned}$	$Q_{n}(t+1)$
L	5	L	L	L	L
H	\checkmark	L	L	L	H
L	L	5	L	L	L
H	L	5	L	L	H
X	L	L	L	L	$Q_{n}(t)$
X	H	X	L	L	$Q_{n}(t)$
X	X	H	L	L	$Q_{n}(t)$

Asynchronous Operation

Inputs					Outputs
			MS	MR	
D_{n}	CP $_{n}$	CPc	SD $_{n}$	CD $_{n}$	$\mathbf{Q}_{n}(t+1)$
X	X	X	H	L	H
X	X	X	L	H	L
X	X	X	H	H	U

[^8]DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
Іı	Input HIGH Current $C P_{n}, D_{n}$ MS, MR, CPC $C D_{n}, S D_{n}$			$\begin{aligned} & 240 \\ & 450 \\ & 530 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathbf{I H}(\text { max }}$
IEE	Power Supply Current	-149	-106	-74	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V, $\mathrm{VCC}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	TC $=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}^{\prime}=+85^{\circ} \mathrm{C}$		Unit	Condition	
		Min	Max	Min	Max	Min	Max			
$f_{\text {max }}$	Toggle Frequency	325		325		325		MHz	Figures 2 and 3	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay CPc to Output	0.75	2.40	0.75	2.15	0.70	2.30	ns	Figures 1 and 3	
$\begin{aligned} & \text { tPLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay CPn to Output	0.70	2.20	0.70	2.00	0.70	2.20	ns		
tpLH tPHL	Propagation Delay $C D_{n}, S D_{n}$ to Output	0.70	1.90	0.70	1.70	0.70	1.80	ns	$\mathrm{CP}_{\mathrm{n}}, \mathrm{CP} \mathrm{P}_{\mathrm{C}}=\mathrm{L}$	Figures 1 and 4
tpLH tPHL		0.70	2.10	0.70	2.00	0.70	2.20		$\mathrm{CP}_{\mathrm{n}}, \mathrm{CPC}=\mathrm{H}$	
tpLH tPHL	Propagation Delay MS, MR to Output	1.10	2.70	1.10	2.60	1.10	2.70	ns	$\mathrm{CP}, \mathrm{CPc}=\mathrm{L}$	
tpli tPHL		1.05	3.05	1.05	2.95	1.05	3.05		$\mathrm{CP}, \mathrm{CPc}=\mathrm{H}$	
$\begin{aligned} & \text { tTLH } \\ & \text { t } \mathbf{t h L} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.20	0.45	1.80	0.45	1.90	ns	Figures 1, 3 and 4	
t_{s}	Setup Time Dn $C D_{n}, S D_{n}$ (Release Time) MS, MR (Release Time)	$\begin{array}{\|l\|} 0.90 \\ 1.50 \\ 2.50 \end{array}$		$\begin{array}{\|l} 0.70 \\ 1.30 \\ 2.30 \end{array}$		$\begin{aligned} & 0.90 \\ & 1.50 \\ & 2.50 \end{aligned}$		ns	Figure 5	
th	Hold Time D_{n}	0.60		0.60		0.80		ns	Figure 5	
$t_{p w}(\mathrm{H})$	Pulse Width HIGH $C P_{n}, C P_{c}, C D_{n}$, SDn, MR, MS	2.00		2.00		2.00		ns	Figures 3 and 4	

[^9]Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Fig. 1 AC Test Circuit

Fig. 2 Toggle Frequency Test Circuit

Notes

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Fig. 3 Propagation Delay (Clock) and Transition Times

Fig. 4 Propagation Delay (Resets)

F100131

Fig. 5 Data Setup and Hold Time

Notes

t_{s} is the minimum time before the transition of the clock that information must be present at the data input
t_{h} is the minimum time after the transition of the clock that information must remain unchanged at the data input

F100136

4-Stage Counter/ Shift Register

F100K ECL Product

Description

The F100136 operates as either a modulo-16 up/down counter or as a 4-bit bidirectional shift register. Three Select $\left(S_{n}\right)$ inputs determine the mode of operation, as shown in the Function Select table. Two Count Enable $\overline{(C E P}, \overline{C E T})$ inputs are provided for ease of cascading in multistage counters. One Count Enable ($\overline{\mathrm{CET}}$) input also doubles as a Serial Data (D_{0}) input for shift-up operation. For shift-down operation D_{3} is the Serial Data input. In counting operations the Terminal Count (TC) output goes LOW when the counter reaches 15 in the count/up mode or 0 (zero) in the count/down mode. In the shift modes, the TC output repeats the Q_{3} output. The dual nature of this $\overline{T C} / Q_{3}$ output and the $D_{0} / \overline{C E T}$ input means that one interconnection from one stage to the next higher stage serves as the link for multistage counting or shift-up operation. The individual Preset $\left(P_{n}\right)$ inputs are used to enter data in parallel or to preset the counter in programmable counter applications. A HIGH signal on the Master Reset (MR) input overrides all other inputs and asynchronously clears the flip-flops. In addition, a synchronous clear is provided, as well as a complement function which synchronously inverts the contents of the flip-flops.

Pin Names

$\mathrm{CP} \quad$ Clock Pulse Input
$\overline{\text { CEP }} \quad$ Count Enable Parallel Input (Active LOW)
Do/CET Serial Data Input/Count Enable
Trickle Input (Active LOW)
$\mathrm{S}_{0}-\mathrm{S}_{2} \quad$ Select Inputs
MR Master Reset Input
$\mathrm{P}_{0}-\mathrm{P}_{3} \quad$ Preset Inputs
$\mathrm{D}_{3} \quad$ Serial Data Input
TC Terminal Count Output
$\mathrm{Q}_{0}-\mathrm{Q}_{3} \quad$ Data Outputs
$\bar{Q}_{0}-\bar{Q}_{3} \quad$ Complementary Data Outputs

Logic Symbol

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	$6 Y$	DC
Flatpak	4 Q	FC

$V_{C C}=\operatorname{Pin} 6(9)$
$V_{C C A}=\operatorname{Pin} 7$ (10)
$\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 18$ (21)
() = Flatpak

Function Select Table

$\mathbf{S o}_{\mathbf{0}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	Function
L	L	L	Parallel load
L	L	H	Count Down
L	H	L	Shift Left
L	H	H	Count Up
H	L	L	Complement
H	L	H	Clear
H	H	L	Shift Right
H	H	H	Hold

Truth Table

Inputs								Outputs					
MR	So	S_{1}	S_{2}	$\overline{C E P}$	Do/CET	D3	CP	Qo	Q1	Q2	Q_{3}	TC	Mode
L	L	L	L	X	X	X	5	P0	P_{1}	P_{2}	P_{3}	L	Preset (Parallel Load)
L	L	L	H	L	L	X	\checkmark		0-3)	minu		(1)	Count Down
L	L	L	H	H	L	X	X	Qo	Q1	Q2	Q3	(1)	Count Down with $\overline{C E P}$ not active
L	L	L	H	X	H	X	X	Qo	Q1	Q2	Q3	H	Count Down with $\overline{\text { CET }}$ not active
L	L	H	L	X	X	X	\checkmark	Q1	Q2	Q3	D_{3}	D3	Shift Left
L	L	H	H	L	L	X	-	(Q-3)	plus	1	(2)	Count Up
L	L	H	H	H	L	X	X	Qo	Q_{1}	Q2	Q3	(2)	Count Up with $\overline{C E P}$ not active
L	L	H	H	X	H	X	X	Q0	Q1	Q2	Q3	H	Count Up with $\overline{\text { CET }}$ not active
L	H	L	L	X	X	X	厂	Qo	\bar{Q}_{1}	\bar{Q}_{2}	\bar{Q}_{3}	L	Invert
L	H	L	H	X	X	x	-	L	L	L	L	H	Clear
L	H	H	L	X	X	X	Ј	Do	Q0	Q1	Q2	Q3	Shift Right
L	H	H	H	X	X	X	X	Q0	Q1	Q2	Q3	H	Hold
H	L	L	L	X	X	x	x	L	L	L	L	L	
H	L	L	H	X	L	X	X	L	L	L	L	L	
H	L	L	H	X	H	X	X	L	L	L	L	H	
H	L	H	L	X	X	X	x	L	L	L	L	L	
H	L	H	H	X	X	X	X	L	L	L	L	H	Asynchronous
H	H	L	L	X	X	X	X	L	L	L	L	L	Master Reset
H	H	L	H	X	X	X	X	L	L	L	L	H	
H	H	H	L	X	X	X	X	L	L	L	L	L	
H	H	H	H	X	X	X	X	L	L	L	L	H	

(1) $=L$ if $Q_{0}-Q_{3}=L L L L$

H if $\mathrm{Q}_{0}-\mathrm{Q}_{3} \neq \mathrm{LLLL}$
(2) $=L$ if $Q_{0}-Q_{3}=H H H H$ H if $\mathrm{Q}_{0}-\mathrm{Q}_{3} \neq \mathrm{HHHH}$
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Don't Care
$\zeta=$ LOW-to-HIGH Transition

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IIH	Input HIGH Current P_{n}, S_{n} CEP MR D3 CP Do/CET			$\begin{aligned} & 180 \\ & 200 \\ & 240 \\ & 280 \\ & 390 \\ & 530 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ max $)$
Iee	Power Supply Current	-283	-195	-136	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}^{\text {c }}=0^{\circ} \mathrm{C}$		$\mathrm{TC}=+25^{\circ} \mathrm{C}$		$\mathrm{T} \mathrm{C}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {shift }}$	Shift Frequency	250		250		250		MHz	Figures 2 and 3
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay $C P$ to Q_{n}, \bar{Q}_{n}	0.85	2.10	0.85	2.10	0.85	2.25	ns	Figures 1 and 3
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay CP to TC	1.90	4.80	1.90	4.60	1.90	5.20	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay $M R$ to Q_{n}, \bar{Q}_{n}	1.20	2.95	1.35	2.95	1.20	3.10	ns	Figures 1 and 4
tPLH tPHL	Propagation Delay MR to TC	2.20	4.80	2.20	4.80	2.20	5.30	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tphl } \end{aligned}$	Propagation Delay Do/CET to TC	1.40	3.20	1.40	3.20	1.40	3.50	ns	Figures 1 and 5
tpLH tpHL	Propagation Delay S_{n} to TC	1.70	4.60	1.80	4.60	1.80	5.10	ns	
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.80	0.45	1.80	0.45	1.80	ns	Figures 1 and 3
$\mathrm{t}_{\text {s }}$	Setup Time D3 Pn Do/CET, CEP S_{n} MR (Release Time)	$\begin{aligned} & 1.20 \\ & 1.70 \\ & 1.45 \\ & 3.30 \\ & 2.60 \end{aligned}$		$\begin{aligned} & 1.20 \\ & 1.70 \\ & 1.45 \\ & 3.30 \\ & 2.60 \end{aligned}$		$\begin{aligned} & 1.20 \\ & 1.70 \\ & 1.45 \\ & 3.30 \\ & 2.60 \end{aligned}$		ns	Figure 6
th	Hold Time D3 P_{n} Do/CET, CEP S_{n}	$\begin{array}{r} 0.20 \\ 0.10 \\ 0.20 \\ -0.90 \\ \hline \end{array}$		$\begin{array}{r} 0.20 \\ 0.10 \\ 0.20 \\ -0.90 \\ \hline \end{array}$		$\begin{array}{r} 0.20 \\ 0.10 \\ 0.20 \\ -0.90 \\ \hline \end{array}$		ns	Figure 6
$t_{\text {pw }}(\mathrm{H})$	Pulse Width HIGH CP, MR	2.00		2.00		2.00		ns	Figures 3 and 4

F100136

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{VCC}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {shift }}$	Shift Frequency	250		250		250		MHz	Figures 2 and 3
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay $C P$ to Q_{n}, \bar{Q}_{n}	0.85	1.90	0.85	1.90	0.85	2.05	ns	Figures 1 and 3
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CP to TC	1.90	4.60	1.90	4.40	1.90	5.00	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay MR to Q_{n}, \bar{Q}_{n}	1.20	2.75	1.35	2.75	1.20	2.90	ns	Figures 1 and 4
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay MR to TC	2.20	4.60	2.20	4.60	2.20	5.10	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay Do/CET to TC	1.40	3.00	1.40	3.00	1.40	3.30	ns	Figures 1 and 5
tpLH tphl	Propagation Delay S_{n} to TC	1.70	4.40	1.80	4.40	1.80	4.90	ns	
ttich tthl	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.70	0.45	1.70	ns	Figures 1 and 3
$\mathrm{t}_{\text {s }}$	Setup Time D_{3} Pn Do/CET, CEP S_{n} MR (Release Time)	$\begin{aligned} & 1.10 \\ & 1.60 \\ & 1.35 \\ & 3.20 \\ & 2.50 \end{aligned}$		$\begin{aligned} & 1.10 \\ & 1.60 \\ & 1.35 \\ & 3.20 \\ & 2.50 \end{aligned}$		$\begin{aligned} & 1.10 \\ & 1.60 \\ & 1.35 \\ & 3.20 \\ & 2.50 \\ & \hline \end{aligned}$		ns	Figure 6
th	Hold Time D_{3} P_{n} Do/CET, CEP S_{n}	$\begin{array}{\|r} 0.10 \\ 0 \\ 0.10 \\ -1.00 \\ \hline \end{array}$		$\begin{array}{r} 0.10 \\ 0 \\ 0.10 \\ -1.00 \end{array}$		$\begin{array}{\|r} 0.10 \\ 0 \\ 0.10 \\ -1.00 \\ \hline \end{array}$		ns	Figure 6
$t_{\text {pw }}(\mathrm{H})$	Pulse Width HIGH CP, MR	2.00		2.00		2.00		ns	Figures 3 and 4

Fig. 1 AC Test Circuit

Notes

$V_{C C}, V_{C C A}=+2 \mathrm{~V}, V_{E E}=-2.5 \mathrm{~V}$
$L 1, L 2$ and $L 3=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{C C}$ and V_{EE} All unused outputs are loaded with 50 s to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

Fig. 2 Shift Frequency Test Circuit (Shift Left)

Fig. 3 Propagation Delay (Clock) and Transition Times

Fig. 4 Propagation Delay (Reset)

Fig. 5 Propagation Delay (Serial Data, Selects)

Fig. 6 Setup and Hold Time

Notes

t_{s} is the minimum time before the transition of the clock that information must be present at the data input
t_{h} is the minimum time after the transition of the clock that
information must remain unchanged at the data input

F100136

Application

3-Stage Divider, Preset Count Down Mode

Note
If $\mathrm{S}_{0}=\mathrm{S}_{1}=\mathrm{S}_{2}=$ LOW, then $\mathrm{T}_{\mathrm{C}}=$ LOW
Slow Expansion Scheme

Fast Expansion Scheme

F100141
 8-Bit Shift Register

F100K ECL Product

Description

The F100141 contains eight edge-triggered, D-type flip-flops with individual inputs (P_{n}) and outputs $\left(Q_{n}\right)$ for parallel operation, and with serial inputs (D_{n}) and steering logic for bidirectional shifting. The flip-flops accept input data a setup time before the positive-going transition of the clock pulse and their outputs respond a propagation delay after this rising clock edge.

The circuit operating mode is determined by the Select inputs S_{0} and S_{1}, which are internally decoded to select either "parallel entry", "hold", "shift left" or "shift right" as described in the Truth Table.

Pin Names

$C P$	Clock Input
S_{0}, S_{1}	Select Inputs
D_{0}, D_{7}	Serial Inputs
$P_{0}-P_{7}$	Parallel Inputs
$Q_{0}-Q_{7}$	Data Outputs

Logic Symbol

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 6(9) \\
& \mathrm{V}_{\mathrm{CCA}}=\operatorname{Pin} 7(10) \\
& \mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 18(21) \\
& (\quad)=\text { Flatpak }
\end{aligned}
$$

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	$6 Y$	DC
Flatpak	$4 Q$	FC

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

F100141

Logic Diagram

Truth Table

	Inputs					Outputs							
Function	D7	Do	S_{1}	So	CP	Q7	Q6	Q5	Q_{4}	Q_{3}	Q2	Q_{1}	Qo
Load Register	X	X	L	L	5	P_{7}	P6	P_{5}	P_{4}	P_{3}	P_{2}	P_{1}	Po
Shift Left Shift Left	$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\sqrt{5}$	$\begin{aligned} & \text { Q6 } \\ & \text { Q6 } \end{aligned}$	$\begin{aligned} & Q_{5} \\ & Q_{5} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{4} \\ & \mathrm{Q}_{4} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{3} \\ & \mathrm{Q}_{3} \end{aligned}$	$\begin{aligned} & Q_{2} \\ & Q_{2} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{1} \\ & \mathrm{Q}_{1} \end{aligned}$	$\begin{aligned} & Q_{0} \\ & Q_{0} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
Shift Right Shift Right	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	J	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & Q_{7} \\ & Q_{7} \end{aligned}$	$\begin{aligned} & \text { Q6 } \\ & \text { Q6 } \end{aligned}$	$\begin{aligned} & Q_{5} \\ & Q_{5} \end{aligned}$	$\begin{aligned} & Q_{4} \\ & Q_{4} \end{aligned}$	$\begin{aligned} & Q_{3} \\ & Q_{3} \end{aligned}$	$\begin{aligned} & Q_{2} \\ & Q_{2} \end{aligned}$	$\begin{aligned} & Q_{1} \\ & Q_{1} \end{aligned}$
Hold Hold Hold	$\begin{aligned} & X \\ & X \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & H \\ & X \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$								

$H=H I G H$ Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Don't Care
$J=$ LOW-to-HIGH transition
DC Characteristics: $V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
I_{IH}	Input HIGH Current					
	$\mathrm{D}_{\mathrm{n}}, \mathrm{P}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}$			220	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\max)}$
	CP			550		
IEE	Power Supply Current	-238	-170	-119	mA	Inputs Open

[^10]Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V} C \mathrm{C}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		$T_{C}=+25^{\circ} \mathrm{C}$		$T \mathrm{C}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {shift }}$	Shift Frequency	275		275		255		MHz	Figures 2 and 3
tpLH tPHL	Propagation Delay CP to Output	0.90	2.40	1.10	2.30	1.10	2.50	ns	
$\begin{aligned} & \text { tTLH } \\ & \text { t } T H L \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.50	0.45	1.40	0.45	1.50	ns	
t_{s}	Setup Time D_{n}, P_{n} S_{n}	$\begin{aligned} & 0.85 \\ & 2.20 \end{aligned}$		$\begin{aligned} & 0.85 \\ & 2.20 \end{aligned}$		$\begin{aligned} & 0.85 \\ & 2.20 \end{aligned}$		ns	Figure 4
t_{n}	Hold Time $\mathrm{D}_{\mathrm{n}}, \mathrm{P}_{\mathrm{n}}$ S_{n}	$\begin{aligned} & 0.60 \\ & 0.10 \end{aligned}$		$\begin{array}{\|l\|} \hline 0.60 \\ 0.10 \\ \hline \end{array}$		$\begin{aligned} & 0.60 \\ & 0.10 \end{aligned}$		ns	
$t_{p w}(H)$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figure 3

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}^{\text {c }}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {shift }}$	Shift Frequency	300		300		280		MHz	Figures 2 and 3
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay CP to Output	0.90	2.20	1.10	2.10	1.10	2.30	ns	Figures 1 and 3
$\begin{aligned} & \text { t TTL } \\ & \text { t } \mathrm{t} H \mathrm{~L} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.40	0.45	1.30	0.45	1.40	ns	
$\mathrm{t}_{\text {s }}$	Setup Time D_{n}, P_{n} S_{n}	$\begin{aligned} & 0.75 \\ & 2.10 \end{aligned}$		$\begin{array}{\|l\|l} 0.75 \\ 2.10 \end{array}$		$\begin{array}{\|l} 0.75 \\ 2.10 \end{array}$		ns	Figure 4
th	Hold Time $\mathrm{D}_{\mathrm{n}}, \mathrm{P}_{\mathrm{n}}$ S_{n}	$\begin{array}{r} 0.50 \\ 0 \end{array}$		$\begin{array}{r} 0.50 \\ 0 \end{array}$		0.50 0		ns	
$t_{p w}(\mathrm{H})$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figure 3

Fig. 1 AC Test Circuit

Fig. 2 Shift Frequency Test Circuit (Shift Left)

Notes

1. For shift right mode pulse generator connected to S_{0} is moved to S_{1}.
2. Pulse generator connected to S_{1} has a LOW frequency 99% duty cycle, which allows occasional parallel load.
3. The feedback path from output to input should be as short as possible.

Fig. 3 Propagation Delay and Transition Times

Fig. 4 Setup and Hold Times

Notes

t_{s} is the minimum time before the transition of the clock that information must be present at the data input
t_{h} is the minimum time after the transition of the clock that information must remain unchanged at the data input

F100142
 4×4-Bit Content Addressable Memory

F100K ECL Product

Description

The F100142 is a 4 word $\times 4$-bit Content Addressable Memory (CAM). Each word location has its own address select line. Reading or writing is accomplished when the address select line is LOW. In the Read mode, data from the addressed location appears at the Data (Q_{n}) outputs. In the Write mode, data is stored in the addressed location. A LOW Write Strobe selects the Read mode. Each Data input has its own Mask input that blocks data storage when the Mask is HIGH. The Data input word is simultaneously compared with each of four memory words. If a search compare results in a match, then the match output will go LOW. A HIGH Mask input on any bit forces a match of that bit. Each input has a $50 \mathrm{k} \Omega$ (typical) pull-down resistor tied to V_{EE}.

Pin Names

$M_{0}-M_{3}$	Data Mask Inputs
$A_{0}-A_{3}$	Address Inputs
$D_{0}-D_{3}$	Data Inputs
$\overline{W S}$	Write Strobe Input
$M_{0}-M_{3}$	Match Outputs
$Q_{0}-Q_{3}$	Data Outputs

Logic Symbol

[^11]
Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	$6 Y$	DC
Flatpak	$4 Q$	FC

F100142

Truth Table

Operation	Inputs				Flip-Flop	Outputs	
	WS	A_{i}	D_{j}	MK ${ }_{\mathbf{j}}$	$\mathbf{Q i j}^{\text {j }}$	Mi	Q_{j}
	$\overline{W S}$	$\begin{aligned} & \mathrm{A}_{0} \\ & \mathrm{~A}_{1} \\ & \mathrm{~A}_{2} \\ & \mathrm{~A}_{3} \end{aligned}$	$\begin{aligned} & D_{0} \\ & D_{1} \\ & D_{2} \\ & D_{3} \end{aligned}$	MK_{0} MK_{1} MK_{2} MK3		Mo M_{1} M_{2} M_{3}	$\begin{aligned} & Q_{0} \\ & Q_{1} \\ & Q_{2} \\ & Q_{3} \end{aligned}$
Write Disabled	$\begin{aligned} & X \\ & X \\ & \text { X } \end{aligned}$	H L L	X X X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	NC NC NC	$\begin{aligned} & X \\ & \mathrm{~L} \\ & \mathrm{X} \end{aligned}$	$\begin{gathered} \stackrel{L}{L} \\ Q_{i j n-1} \\ Q_{i j n} n-1 \end{gathered}$
Write	$\begin{aligned} & L \\ & L \end{aligned}$	L	H L	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$
Read	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$
Match Masked	H	X	X	H	NC	L	X
Match Not Satisfied	$\begin{aligned} & H \\ & H \\ & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & H \\ & H \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & H \end{aligned}$
Match Satisfied	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & H \\ & H \\ & \text { L } \\ & \text { L } \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & H \\ & H \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	H L L L
$H=H I G H$ Voltage Level L = LOW Voltage Level X = Don't Care $N C=$ No Change from Previous State $\overline{\mathrm{WS}}=$ Write Strobe $\mathrm{MK}_{\mathrm{j}}=$ Data Mask for jth Bit H = Mask $\mathrm{Q}_{\mathrm{ij}}=$ Cell State for ith Word, jth Bit $M_{i}=$ Match Output of ith Word $\mathrm{L}=$ True	$\begin{aligned} M K_{j}= & \text { Data Mask for } j \text { th Bit } \\ & H=\text { Mask } \\ Q_{i j}= & \text { Cell State for ith Word, } \\ & j \text { th Bit } \end{aligned}$						

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
I_{IH}	Input HIGH Current All Inputs			200	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\max)}$
I_{EE}	Power Supply Current	-288	-190	-114	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T} \mathrm{C}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T} \mathrm{C}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$t_{\text {AD }}$	Address to Data Out	1.20	4.40	1.20	4.30	1.20	4.50	ns	Figures 2 and 3
t DM	Data In to Match Out Time	1.60	3.70	1.60	3.60	1.60	3.80	ns	Figure 5
tmm	Mask In to "Enable Partial" Match Out Time	1.20	3.90	1.20	3.90	1.20	4.00	ns	
tod	Data In to New Data Out	1.70	4.40	1.70	4.40	1.70	4.60	ns	Figure 2
twD	Write to New Data Out	2.50	5.40	2.50	5.20	2.30	5.10	ns	
$t_{\text {AM }}$	Address to Match	2.50	4.60	2.50	4.60	2.50	4.90	ns	
tMD	Mask to Data	2.20	4.90	2.20	4.80	2.20	5.00	ns	
twSM	$\overline{\text { WS }}$ to Match	2.80	4.90	2.80	4.80	2.80	5.10	ns	
tw	Write Pulse Width	1.30		1.30		1.30		ns	Figure 1
$t_{\text {AS }}$	Address Setup before Write Time	1.40		1.40		1.40		ns	
${ }^{\text {taH }}$	Address Hold after Write Time	1.40		1.40		1.40		ns	
tDS	Data In Setup before Write Time	0.60		0.60		0.60		ns	
$t_{\text {DH }}$	Data In Hold after Write Time	1.10		1.10		1.10		ns	
t_{MH}	Mask In Hold Write Time	2.50		2.50		2.50		ns	
t_{MS}	Mask In Setup Write Time	1.10		1.10		1.10		ns	
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.50	2.30	0.50	2.30	0.50	2.30	ns	Figure 2

[^12]Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		$\mathrm{T}^{\text {C }}=+25^{\circ} \mathrm{C}$		$\mathrm{T}^{\prime} \mathrm{C}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$t_{\text {AD }}$	Address to Data Out	1.20	4.20	1.20	4.10	1.20	4.30	ns	Figures 2 and 3
tDM	Data In to Match Out Time	1.60	3.50	1.60	3.40	1.60	3.60	ns	Figure 5
tMM	Mask In to "Enable Partial" Match Out Time	1.20	3.70	1.20	3.70	1.20	3.80	ns	
tod	Data In to New Data Out	1.70	4.20	1.70	4.20	1.70	4.40	ns	Figure 2
twD	Write to New Data Out	2.50	5.20	2.50	5.00	2.30	4.90	ns	
$\mathrm{t}_{\text {AM }}$	Address to Match	2.50	4.40	2.50	4.40	2.50	4.70	ns	
t_{MD}	Mask to Data	2.20	4.70	2.20	4.60	2.20	4.80	ns	
tWSM	$\overline{\text { WS }}$ to Match	2.80	4.70	2.80	4.60	2.80	4.90	ns	
tw	Write Pulse Width	1.20		1.20		1.20		ns	Figure 1
$t_{\text {AS }}$	Address Setup before Write Time	1.30		1.30		1.30		ns	
$t_{\text {AH }}$	Address Hold after Write Time	1.30		1.30		1.30		ns	
$t_{\text {d }}$	Data In Setup before Write Time	0.50		0.50		0.50		ns	
$t_{\text {DH }}$	Data In Hold after Write Time	1.00		1.00		1.00		ns	
$t_{\text {M }}$	Mask In Hold Write Time	2.40		2.40		2.40		ns	
tMS	Mask In Setup Write Time	1.00		1.00		1.00		ns	
$\begin{aligned} & \text { t TLH } \\ & \text { t THL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.50	2.20	0.50	2.20	0.50	2.20	ns	Figure 2

Switching Waveforms

Fig. 1 AC Test Circuit

Notes
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1, L 2$ and $L 3=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $V_{C C}$ and $V_{E E}$
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Fig. 2 Output Rise and Fall Times and Waveforms

Fig. 3 Write Mode and Read/Write Mode Waveforms

Fig. 4 Read Mode Waveforms

Fig. 5 Search Mode Waveforms

F100145
 16×4-Bit Read/Write
 Register File

F100K ECL Product

Description

The F100145 is a 64-bit register file organized as 16 words of four bits each. Separate address inputs for Read ($A R_{n}$) and Write ($A W_{n}$) operations reduce overall cycle time by allowing one address to be setting up while the other is being executed. Operating speed is also enhanced by four output latches which store data from the previous read operation while writing is in progress. When both Write Enable ($\overline{\mathrm{WE}})$ inputs are LOW, the circuit is in the Write mode and the latches are in a Hold mode. When either WEinput is HIGH, the circuit is in the Read mode, but the outputs can be forced LOW by a HIGH signal on either of the Output Enable ($\overline{\mathrm{OE}})$ inputs. This makes it possible to tie one $\overline{\mathrm{WE}}$ input and one $\overline{\mathrm{OE}}$ input together to serve as an active-LOW Chip Select $(\overline{\mathrm{CS}})$ input. When this wired $\overline{\mathrm{CS}}$ input is HIGH, reading will still take place internally and the resulting data will enter the latches and become available as soon as the $\overline{\mathrm{CS}}$ signal goes LOW, provided that the other $\overline{\mathrm{OE}}$ input is LOW. A HIGH signal on the Master Reset (MR) input overrides all other inputs, clears all cells in the memory, resets the output latches, and forces the outputs LOW.

Pin Names

$A R_{0}-A R_{3}$
Read Address Inputs
$\mathrm{AW}_{0}-\mathrm{AW}_{3} \quad$ Write Address Inputs (Active LOW)
$\overline{W E}_{1}, \overline{W E}_{2} \quad$ Read Enable Inputs (Active LOW)
$\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2} \quad$ Output Enable Inputs (Active LOW)
D0-D3
MR
$Q_{0}-Q_{3}$

Data Inputs
Master Reset Input
Data Outputs

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

Logic Symbol and Logic Diagram

Note that this diagram is provided for understanding of logic operation only. It should not be used for evaluation of propagation delays as many internal functions are achieved more efficiently than indicated.

F100145

DC Characteristics: $V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$I_{I H}$	Input HIGH Current All Inputs		240	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\max)}$	
IEE	Power Supply Current	-247	-170	-119	mA	Inputs Open

*See Family Characteristics for other dc specifications.

Ceramic Dual In-line Package $A C$ Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}^{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
	Access/Recovery Timing								Figures 1 and 2a Figures 1 and $2 e$
$t A A$	Address Access	2.20	6.70	2.20	6.70	2.20	7.40	ns	
tor	Output Recivery	1.00	2.90	1.10	2.90	1.10	3.20	ns	
tod	Output Disable	1.00	2.90	1.10	2.90	1.10	3.20	ns	
	Read Timing								Figures 1 and 2b
trsa1	Address Setup	1.10		1.10		1.10		ns	
tWEQ	Output Delay	2.00	6.10	2.00	6.10	2.00	6.60	ns	
	Output Latch Timing								Figures 1 and 2c Figures 1 and 2d
$t_{\text {RSA2 }}$	Address Setup	4.10		4.10		5.60		ns	
$t_{\text {RHA }}$	Address Hold	0.10		0.10		0.10		ns	
	Write Timing								$\mathrm{tw}=6.0 \mathrm{~ns}$ Figures 1 and 3
t WSA	Address Setup	0.10		0.10		0.10		ns	
t WHA	Address Hold	1.10		1.60		1.60		ns	
tWSD	Data Setup	4.10		5.60		8.30		ns	
tWHD	Data Hold	1.10		1.60		1.90		ns	
tw	Write Pulse Width, LOW	4.60		6.60		11.60		ns	
	Master Reset Timing								Figures 1 and 4a
tm_{M}	Reset Pulse Width, LOW	5.60		5.60		7.60		ns	
tMHW	WE Hold to Write	6.30		7.10		10.50		ns	
t_{MQ}	Output Disable	2.80		2.80		3.20		ns	Figures 1 and 4b
$\begin{aligned} & \text { tTLH } \\ & \text { t THL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.50	2.30	0.50	2.30	0.50	2.30	ns	

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}^{\text {C }}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
taA tor tod	Access/Recovery Timing Address Access Output Recivery Output Disable	$\begin{aligned} & 2.20 \\ & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 6.50 \\ & 2.70 \\ & 2.70 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 1.10 \\ & 1.10 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 6.50 \\ 2.70 \\ 2.70 \end{array}$	$\begin{aligned} & 2.20 \\ & 1.10 \\ & 1.10 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.20 \\ & 3.00 \\ & 3.00 \end{aligned}$	ns ns ns	Figures 1 and 2a Figures 1 and $2 e$
trsA1 tWEQ	Read Timing Address Setup Output Delay	$\begin{aligned} & 1.00 \\ & 2.00 \end{aligned}$	5.90	$\begin{aligned} & 1.00 \\ & 2.00 \end{aligned}$	5.90	$\begin{aligned} & 1.00 \\ & 2.00 \end{aligned}$	6.40	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Figures 1 and 2b
$\begin{aligned} & \text { trsA2 } \\ & \text { t RHA }^{2} \end{aligned}$	Output Latch Timing Address Setup Address Hold	$\begin{array}{r} 4.00 \\ 0 \end{array}$		$\begin{array}{r} 4.00 \\ 0 \end{array}$		$\begin{array}{r} 5.50 \\ 0 \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Figures 1 and 2c Figures 1 and 2d
twsA twHA twSD tWHD tw	Write Timing Address Setup Address Hold Data Setup Data Hold Write Pulse Width, LOW	$\begin{array}{r} 0 \\ 1.00 \\ 4.00 \\ 1.00 \\ 4.50 \end{array}$		$\begin{array}{r} 0 \\ 1.50 \\ 5.50 \\ 1.50 \\ 6.50 \end{array}$		$\begin{array}{r} 0 \\ 1.50 \\ 8.20 \\ 1.80 \\ 11.50 \end{array}$			$\mathrm{tw}=6.0 \mathrm{~ns}$ Figures 1 and 3
tM $\mathrm{t}_{\mathrm{MHW}}$	Master Reset Timing Reset Pulse Width, LOW WE Hold to Write	$\begin{array}{\|l\|} \hline 5.50 \\ 6.20 \\ \hline \end{array}$		$\begin{aligned} & 5.50 \\ & 7.00 \\ & \hline \end{aligned}$		$\begin{array}{r} 7.50 \\ 10.40 \\ \hline \end{array}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Figures 1 and 4a
tMQ	Output Disable	2.60		2.60		3.00		ns	Figures 1 and 4b
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.50	2.20	0.50	2.20	0.50	2.20	ns	

Fig. 1 AC Test Circuit

Notes

$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

F100145

Fig. 2 Read Timing

2b Address Setup Time before $\overline{W E}$, to Ensure Minimum Delay (unpulsed $\overline{\mathrm{WE}}=\overline{\mathbf{O E}}{ }_{1}=$ $\overline{\mathrm{OE}} \mathrm{E}_{2}=$ LOW)

2c Address Setup Time to Ensure Latching Data from New Address (unpulsed $\overline{W E}=$ LOW)

2d Address Hold Time to Ensure Latching Data from Old Address (unpulsed $\overline{W E}=$ LOW)

2e Output Recovery/Disable Times, $\overline{O E}$ to Q_{n} (unpulsed $\overline{\mathrm{OE}}=$ LOW)

F100145

Fig. 3 Write Timing
Address and Data Setup and Hold Times; Write pulse Width (unpulsed $\overline{\mathrm{WE}}=$ LOW)

Fig. 4 Master Reset Timing
4a Reset Pulse Width; $\overline{W E}$ Hold Time for Subsequent Writing (address already setup, unpulsed $\overline{W E}=$ LOW)

4b Output Reset Delay, MR to $\mathbf{Q n}_{\mathbf{n}}$

F100150 Hex D Latch

F100K ECL Product

Description

The F100150 contains six D-type latches with true and complement outputs, a pair of Common Enables (E_{a} and \bar{E}_{b}), and a common Master Reset (MR). A Q output follows its D input when both \bar{E}_{a} and \bar{E}_{b} are LOW. When either \bar{E}_{a} or $\overline{\mathrm{E}}_{\mathrm{b}}$ (or both) are HIGH, a latch stores the last valid data present on its D input before \bar{E}_{a} or \bar{E}_{b} went HIGH. The MR input overrides all other inputs and makes the Q outputs LOW.

Pin Names

$D_{0}-D_{5}$
$\mathrm{E}_{\mathrm{a}}, \mathrm{E}_{\mathrm{b}}$
$M R$
$\mathrm{Q}_{0}-\mathrm{Q}_{5}$
$\mathrm{Q}_{0}-\mathrm{Q}_{5}$

Data Inputs
Common Enable Inputs (Active LOW)
Asynchronous Master Reset Input
Data Outputs
Complementary Data Outputs

Logic Symbol

Ordering Information (See Section 5)		
Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 Q	FC

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Logic Diagram

Truth Tables (Each Latch)
Latch Operation

Inputs				Outputs
D	\bar{E}_{a}	\bar{E}_{b}	MR	Qn
L	L	L	L	L
H	L	L	L	H
X	H	X	L	Latched*
X	X	H	L	Latched*

Asynchronous Operation

Inputs				Outputs
$D_{\mathbf{n}}$	$\bar{E}_{\mathbf{a}}$	$\overline{\mathrm{E}}_{\mathrm{b}}$	MR	$\mathbf{Q}_{\mathbf{n}}$
X	X	X	H	L

*Retains data present before \bar{E} positive transition
H = HIGH Voltage Level
$\mathrm{L}=\mathrm{LOW}$ Voltage Level
X $=$ Don't Care

F100150

DC Characteristics: $\mathrm{VEE}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$I_{I H}$	Input HIGH Current					
	MR			450		
	D_{n}			340		$\mathrm{~V}_{\mathrm{IN}}(\max)$
	$\mathrm{E}_{\mathrm{a}}, \mathrm{E}_{\mathrm{b}}$			520		
IEE	Power Supply Current	-159	-113	-79	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Dn to Output (Transparent Mode)	0.45	1.50	0.50	1.40	0.50	1.50	ns	Figures 1 and 2
tpLH tPHL	Propagation Delay \bar{E}_{a}, \bar{E}_{b} to Output	0.75	2.05	0.75	1.85	0.75	2.05	ns	
tpLH tPHL	Propagation Delay MR to Output	0.80	2.40	0.90	2.40	0.90	2.60	ns	Figures 1 and 3
$\begin{aligned} & \text { tTLH } \\ & \text { t }{ }^{2} H L \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.60	0.45	1.60	ns	Figures 1 and 2
$\mathrm{t}_{\text {s }}$	Setup Time Do-D5 MR (Release Time)	$\begin{aligned} & 0.70 \\ & 2.10 \end{aligned}$		$\begin{aligned} & 0.70 \\ & 2.10 \end{aligned}$		$\begin{aligned} & 0.70 \\ & 2.10 \end{aligned}$		ns	Figures 3 and 4
th	Hold Time D0-D5	0.70		0.70		0.70		ns	Figure 4
tpw (L)	Pulse Width LOW \bar{E}_{a}, \bar{E}_{b}	2.00		2.00		2.00		ns	Figure 2
$t_{p w}(H)$	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3

[^13]
F100150

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		$\mathrm{T}^{\prime} \mathrm{C}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tPHL	Propagation Delay Dn to Output (Transparent Mode)	0.45	1.30	0.50	1.20	0.50	1.30	ns	Figures 1 and 2
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay \bar{E}_{a}, \bar{E}_{b} to Output	0.75	1.85	0.75	1.65	0.75	1.85	ns	
tplH tPHL	Propagation Delay MR to Output	0.80	2.20	0.90	2.20	0.90	2.40	ns	Figures 1 and 3
tTLH tTHL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.60	0.45	1.50	0.45	1.50	ns	Figures 1 and 2
$t_{\text {s }}$	Setup Time $D_{0}-D_{5}$ MR (Release Time)	$\begin{aligned} & 0.60 \\ & 2.00 \end{aligned}$		$\begin{aligned} & 0.60 \\ & 2.00 \end{aligned}$		$\begin{aligned} & 0.60 \\ & 2.00 \end{aligned}$		ns	Figures 3 and 4
th	Hold Time $D_{0}-D_{5}$	0.60		0.60		0.60		ns	Figure 4
tpw (L)	Pulse Width LOW $\overline{E_{a}}, \bar{E}_{b}$	2.00		2.00		2.00		ns	Figure 2
$t_{\text {pw }}(\mathrm{H})$	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3

Fig. 1 AC Test Circuit

Notes

$V_{C C}, V_{C C A}=+2 \mathrm{~V}, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines $R_{T}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND $\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

F100150

Fig. 2 Enable Timing

Fig. 3 Reset Timing

Fig. 4 Data Setup and Hold Time

Notes
t_{s} is the minimum time before the transition of the enable that information must be present at the data input.
t_{h} is the minimum time after the transition of the enable that information must remain unchanged at the data input.

F100151
 Hex D Flip-Flop

F100K ECL Product

Description

The F100151 contains six D-type edge-triggered, master/slave flip-flops with true and complement outputs, a pair of Common Clock inputs ($\mathrm{CPa}_{\mathrm{a}}$ and $\mathrm{CPb}_{\mathrm{b}}$) and common Master Reset (MR) input. Data enters a master when both CPa and CP_{b} are LOW and transfers to the slave when $\mathrm{CPa}_{\mathrm{a}}$ and CP_{b} (or both) go HIGH . The MR input overrides all other inputs and makes the Q outputs LOW.

Pin Names
$\mathrm{D}_{0}-\mathrm{D}_{5}$
Data Inputs
$\mathrm{CPa}, \mathrm{CP}_{\mathrm{b}}$
MR
$Q_{0}-Q_{5}$
$\bar{Q}_{0}-\bar{Q}_{5}$
Common Clock Inputs
Asynchronous Master Reset Input
Data Outputs
Complementary Data Outputs

Logic Symbol

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	$6 Y$	DC
Flatpak	$4 Q$	FC

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Logic Diagram

Truth Tables (Each Flip-flop)
Synchronous Operation

Inputs				Outputs
D ${ }^{\text {n }}$	CPa	CPb	MR	$Q_{n}(t+1)$
L	5	L	L	L
H	5	L	L	H
L	L	5	L	L
H	L	5	L	H
X	H	5	L	$Q_{n}(t)$
X	5	H	L	$Q_{n}(t)$
X	L	L	L	$Q_{n}(t)$

Asynchronous Operation

Inputs				Outputs
$\mathbf{D}_{\mathbf{n}}$	$\mathbf{C P a}$	$\mathbf{C P b}$	$\mathbf{M R}$	$\mathbf{Q}_{\mathbf{n}}(\mathbf{t + 1})$
X	X	X	H	L

$H=$ HIGH Voltage Level
L = LOW Voltage Level
X $=$ Don't Care
$t=$ Time before CP positive transition
$t+1=$ Time after CP positive transition
$\Sigma=$ LOW-to-HIGH transition

DC Characteristics: $\mathrm{V}_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$I_{I H}$	Input HIGH Current					
	MR			450	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{IH}(\max)}$
	$\mathrm{D}_{0}-\mathrm{D}_{5}$			225		
	$C P_{a}, C_{\mathrm{b}}$					
$I_{\text {EE }}$	Power Supply Current	-210	-155	-98	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$f_{\text {max }}$	Toggle Frequency	375		375		375		MHz	Figures 2 and 3
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay $\mathrm{CPa}, \mathrm{CPb}$ to Output	0.80	2.20	0.80	2.20	0.90	2.40	ns	Figures 1 and 3
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay MR to Output	1.20	2.90	1.30	3.00	1.20	3.10	ns	Figures 1 and 4
tTLH tTHL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.80	0.45	1.70	0.45	1.80	ns	Figures 1 and 3
t_{s}	Setup Time $\mathrm{D}_{0}-\mathrm{D}_{5}$ MR (Release Time)	$\begin{aligned} & 0.70 \\ & 2.30 \end{aligned}$		$\begin{aligned} & 0.70 \\ & 2.30 \end{aligned}$		$\begin{aligned} & 0.70 \\ & 2.60 \end{aligned}$		ns	Figure 5
									Figure 4
t_{n}	Hold Time D0-D5	0.70		0.70		0.70		ns	Figure 5
$t_{\text {pw }}(\mathrm{H})$	Pulse Width HIGH $\mathrm{CP}=\mathrm{CP}$ b, MR	2.00		2.00		2.00		ns	Figures 3 and 4

[^14]
F100151

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{VCC}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Toggle Frequency	375		375		375		MHz	Figures 2 and 3
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$ to Output	0.80	2.00	0.80	2.00	0.90	2.20	ns	Figures 1 and 3
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay MR to Output	1.20	2.70	1.30	2.80	1.20	2.90	ns	Figures 1 and 4
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.60	0.45	1.70	ns	Figures 1 and 3
$\mathrm{t}_{\text {s }}$	Setup Time $\mathrm{D}_{0}-\mathrm{D}_{5}$ MR (Release Time)	$\begin{aligned} & 0.60 \\ & 2.20 \end{aligned}$		$\begin{aligned} & 0.60 \\ & 2.20 \end{aligned}$		$\begin{aligned} & 0.60 \\ & 2.50 \end{aligned}$		ns	Figure 5
th	Hold Time Do-D5	0.60		0.60		0.60		ns	Figure 5
$t_{p w}(H)$	Pulse Width HIGH CPa, CPb, MR	2.00		2.00		2.00		ns	Figures 3 and 4

*See Family Characteristics for other dc specifications.
Fig. 1 AC Test Circuit

Notes

$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Fig. 2 Toggle Frequency Test Circuit

Notes

$V_{C C}, V_{C C A}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{CL}_{\mathrm{L}}=\mathrm{Jig}$ and stray capacitance $\leq 3 \mathrm{pF}$

Fig. 3 Propagation Delay (Clock) and Transition Times

Fig. 4 Propagation Delay (Reset)

Fig. 5 Setup and Hold Time

Notes

t_{s} is the minimum time before the transition of the clock that information must be present at the data input
t_{n} is the minimum time after the transition of the clock that
information must remain unchanged at the data input

F100155
 Quad Multiplexer/Latch

F100K ECL Product

Description

The F100155 contains four transparent latches, each of which can accept and store data from two sources. When both Enable (\bar{E}_{n}) inputs are LOW, the data that appears at an output is controlled by the Select (S_{n}) inputs, as shown in the Operating Mode table. In addition to routing data from either D_{0} or D_{1}, the Select inputs can force the outputs LOW for the case where the latch is transparent (both Enables are LOW) and can steer a HIGH signal from either D_{0} or D_{1} to an output. The Select inputs can be tied together for applications requiring only that data be steered from either D_{0} or D_{1}. A positive-going signal on either Enable input latches the outputs. A HIGH signal on the Master Reset (MR) input overrides all the other inputs and forces the Q outputs LOW.

Pin Names

\bar{E}_{1}, \bar{E}_{2}	Enable Inputs (Active LOW)
$\overline{S_{0}}, S_{1}$	Select Inputs
$M R$	Master Reset
$D_{n a}-D_{n d}$	Data Inputs
$Q_{a}-Q_{d}$	Data Outputs
$\bar{Q}_{a}-\bar{Q}_{d}$	Complementary Data Outputs

Logic Symbol

$V_{C C}=\operatorname{Pin} 6(9)$
$V_{C C A}=\operatorname{Pin} 7(10)$
$V_{E E}=\operatorname{Pin} 18(21)$
$(\quad)=$ Flatpak

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

Logic Diagram

Operating Mode Table

Controls				Outputs
\bar{E}_{1}	\bar{E}_{2}	\mathbf{S}_{1}	$\overline{\mathbf{S}}_{0}$	Q $_{n}$
H	X	X	X	Latched *
X	H	X	X	Latched *
L	L	L	L	$D_{0 x}$
L	L	H	L	$D_{0 x}+D_{1 x}$
L	L	L	H	L
L	L	H	H	$D_{1 x}$

*Stores data present before \bar{E} went HIGH
H = HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
X = Don't Care

Truth Table

Inputs								
MR	\bar{E}_{1}	$\bar{E}_{\mathbf{2}}$	\mathbf{S}_{1}	$\overline{\mathbf{S}}_{\mathbf{0}}$	$\mathbf{D}_{1 \times}$	$\mathbf{D}_{\mathbf{0 x}}$	Outputs	
H	X	X	X	Q	X	X	H	L
L	L	L	H	H	H	X	L	H
L	L	L	H	H	L	X	H	L
L	L	L	L	L	X	H	L	H
L	L	L	L	L	X	L	H	L
L	L	L	L	H	X	X	H	L
L	L	L	H	L	H	X	L	H
L	L	L	H	L	X	H	L	H
L	L	L	H	L	L	L	H	L
L	H	X	X	X	X	X	Latched*	
L	X	H	X	X	X	X	Latched	

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} *$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
I_{H}	Input HIGH Current					
	$\mathrm{S}_{0}, \mathrm{~S}_{1}$			220		
	$\mathrm{E}_{1}, \mathrm{E}_{2}$			350	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\max)}$
	$\mathrm{D}_{\text {na }}-\mathrm{D}_{\text {nd }}$					
	MR			430		
IEE	Power Supply Current	-133	-95	-66	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{VEE}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V, $\mathrm{VCC}_{\mathrm{C}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	TC $=0^{\circ} \mathrm{C}$		$\mathrm{T}^{\prime}=+25^{\circ} \mathrm{C}$		$\mathrm{T} \mathrm{C}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay Dna-D $n d$ to Output (Transparent Mode)	0.50	1.90	0.60	1.85	0.50	1.90	ns	Figures 1 and 2
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay $\overline{\mathrm{S}}_{0}, \mathrm{~S}_{1}$ to Output (Transparent Mode)	1.50	3.50	1.50	3.40	1.50	3.50	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay \bar{E}_{1}, \bar{E}_{2} to Output	0.90	2.50	1.00	2.40	1.00	2.50	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tphe } \end{aligned}$	Propagation Delay MR to Output	0.90	3.00	0.90	2.90	0.90	3.00	ns	Figures 1 and 3
$\begin{aligned} & \text { t TtL } \\ & \text { t } \mathrm{THL} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.60	2.30	0.60	2.20	0.45	2.30	ns	Figures 1 and 2
t_{s}	Setup Time Dna-Dnd \bar{S}_{0}, S_{1} MR (Release Time)	$\begin{aligned} & 0.99 \\ & 2.40 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 2.40 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 2.70 \\ & 1.50 \end{aligned}$		ns	Figure 4
		1.50							Figure 3
th	Hold Time Dna-Dnd $\overline{\mathrm{S}} \mathrm{O}_{\mathrm{o}}, \mathrm{S}_{1}$	$\begin{array}{\|r\|r\|} 0.40 \\ -0.70 \end{array}$		0.40 -0.70		0.40 -0.70		ns	Figure 4
$t_{\text {pw }}(\mathrm{L})$	Pulse Width LOW \bar{E}_{1}, \bar{E}_{2}	2.00		2.00		2.00		ns	Figure 2
$t_{\text {pw }}(\mathrm{H})$	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3

[^15]
F100155

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	Tc $=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	$\boldsymbol{M a x}$	Min	Max		
tpLH tPHL	Propagation Delay Dna-Dnd to Output (Transparent Mode)	0.50	1.70	0.60	1.65	0.50	1.70	ns	
tpLH tphL	Propagation Delay $\overline{\mathrm{S}}_{0}, \mathrm{~S}_{1}$ to Output (Transparent Mode)	1.50	3.30	1.50	3.20	1.50	3.30	ns	Figures 1 and 2
tPLH tPHL	Propagation Delay \bar{E}_{1}, \bar{E}_{2} to Output	0.90	2.30	1.00	2.20	1.00	2.30	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay MR to Output	0.90	2.80	0.90	2.70	0.90	2.80	ns	Figures 1 and 3
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.60	2.20	0.60	2.10	0.45	2.20	ns	Figures 1 and 2
$\mathrm{t}_{\text {s }}$	Setup Time Dna-Dnd \bar{S}_{0}, S_{1} MR (Release Time)	$\begin{aligned} & 0.80 \\ & 2.30 \\ & 1.40 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 2.30 \\ & 1.40 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 2.60 \\ & 1.40 \end{aligned}$		ns	Figure 4 Figure 3
th	Hold Time Dna-Dnd $\mathrm{S}_{0}, \mathrm{~S}_{1}$	$\begin{array}{r} 0.30 \\ -0.80 \end{array}$		$\left\|\begin{array}{r} 0.30 \\ -0.80 \end{array}\right\|$		$\left\|\begin{array}{r} 0.30 \\ -0.80 \end{array}\right\|$		ns	Figure 4
$t_{\text {pw }}(\mathrm{L})$	Pulse Width LOW \bar{E}_{1}, \bar{E}_{2}	2.00		2.00		2.00		ns	Figure 2
$t_{p w}(H)$	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3

F100155

Fig. 1 AC Test Circuit

Notes

$V_{C C}, V_{C C A}=+2 \mathrm{~V}, V_{E E}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

Fig. 2 Enable Timing

Fig. 3 Reset Timing

Fig. 4 Setup and Hold Times

Notes

t_{s} is the minimum time before the transition of the enable that information must be present at the data input
t_{h} is the minimum time after the transition of the enable that information must remain unchanged at the data input

F100156
 Mask-Merge/Latch

F100K ECL Product

Description

The F100156 merges two 4-bit words to form a 4-bit output word. The $A M_{n}$ enable allows the merge of A into B by one, two or three places (per the $A S_{n}$ value) from the left. The $B M_{n}$ enable similarly allows the merge of B into A from the left (per the $B S_{n}$ value). The B merge overrides the A merge when both are enabled. This means A first merges into B and B then merges into the A merge. If the B address is equal to or greater than the A address, then outputs are forced to B.

The merge outputs feed four latches, which have a common enable (\bar{E}) input. All inputs have a $50 \mathrm{k} \Omega$ (typical) pull-down resistor tied to VEE. All four outputs do not have pull-down resistors; they have wired-OR capability and will require external resistors.

Pin Names

\bar{E}	Latch Enable Input (Active LOW)
$A_{0}-A_{3}$	A Data Inputs
$B_{0}-B_{3}$	B Data Inputs
$A_{0}, A M_{1}$	A Merge Enable Inputs
B_{0}, B_{1}	B Merge Enable Inputs
$A_{0}, A S_{1}$	A Address Inputs
B_{0}, B_{1}	B Address Inputs
$Q_{0}-Q_{3}$	Data Outputs

Logic Symbol

$V_{C C}=\operatorname{Pin} 6(9)$
$V_{C C A}=\operatorname{Pin} 7(10)$
$V_{E E}=\operatorname{Pin} 18(21)$
$(\quad)=$ Flatpak

Note

When \bar{E} is HIGH, Q_{n} outputs do not change.
When \bar{E} is LOW, $Q_{n}=A$ or B depending on which is selected.

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	$6 Y$	DC
Flatpak	$4 Q$	FC

F100156

Logic Diagram

F100156

Truth Table

Inputs									Outputs				Remarks
Merge Enables				Addresses									
BM1	BMo	AM1	AM0	BS 1	BSo	AS 1	ASo	\bar{E}	Qo	Q_{1}	Q2	Q3	
$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{aligned} & H \\ & X \end{aligned}$	$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{0} \\ & \mathrm{~B}_{0} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{1} \\ & \mathrm{~B}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{2} \\ & \mathrm{~B}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{3} \\ & \mathrm{~B}_{3} \end{aligned}$	Select B				
L	L	L	L	X	X	X	X	L	A0	A_{1}	A_{2}	A3	Select A
$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & X \\ & X \\ & X \\ & X \end{aligned}$	$\begin{aligned} & X \\ & X \\ & X \\ & X \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	Bo A0 Ao A0	$\begin{aligned} & \mathrm{B}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~A}_{1} \\ & \mathrm{~A}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~A}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{3} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{3} \end{aligned}$	Merge $A \rightarrow B$
$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & X \\ & X \\ & X \\ & X \end{aligned}$	$\begin{aligned} & X \\ & X \\ & X \\ & X \\ & X \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	Ao Bo Bo B0	A_{1} A_{1} B_{1} B1	A_{2} A_{2} A_{2} B_{2}	A_{3} A3 A3 A3	Merge $B \rightarrow A$
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	L L L	A0 Ao A0	B1 A_{1} A_{1}	B_{2} B2 A_{2}	B_{3} B3 B3	Merge $A \rightarrow B$
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L L L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L L L	$\begin{aligned} & \mathrm{B}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~B}_{0} \end{aligned}$	A_{1} A_{1} B_{1}	B_{2} A_{2} A_{2}	B3 B_{3} B3	Merge $A \rightarrow B$ then Merge $B \rightarrow A$
$\begin{aligned} & L \\ & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & H \\ & H \\ & H \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & H \\ & L \end{aligned}$	$\begin{aligned} & H \\ & H \\ & L \\ & L \\ & H \end{aligned}$	$\begin{aligned} & H \\ & L \\ & H \\ & L \\ & L \end{aligned}$	L L L L L	$\begin{aligned} & \mathrm{B}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~B}_{0} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~B}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}^{2} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{3} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{3} \end{aligned}$	
$\begin{aligned} & L \\ & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & H \\ & H \\ & H \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & H \\ & H \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & H \\ & L \\ & H \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~B}_{0} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~B}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}^{2} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{3} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{3} \end{aligned}$	Address \geq A Address
X	X	X	X	X	X	X	X	H	Q0	Q1	Q2	Q3	Latch
Before Start	At Start	After End	$\begin{aligned} & \text { At } \\ & \text { End } \end{aligned}$										

[^16]DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
I_{H}	Input HIGH Current $\mathrm{A}_{n}, \mathrm{~B}_{\mathrm{n}} \mathrm{BM}, \mathrm{AM}$, $\mathrm{BS}_{\mathrm{n}}, \mathrm{AS}_{\mathrm{n}}, \mathrm{E}$			265	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\max)}$
IEE	Power Supply Current	-235	-161	-107	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V , $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=$ GND

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T} \mathrm{C}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tphL	Propagation Delay A_{n}, B_{n} to Outputs (Transparent Mode)	0.45	1.90	0.50	1.80	0.50	2.00	ns	Figures 1 and 2
tpLH tphl	Propagation Delay E to Outputs	1.00	2.50	1.00	2.40	1.00	2.50	ns	
tpLH tphL	Propagation Delay $A M_{n}, B M_{n}, A S_{n}, B S_{n}$ to Outputs (Transparent Mode)	1.20	3.70	1.20	3.70	1.20	3.80	ns	
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.90	0.45	1.80	0.45	1.90	ns	
$\mathrm{ts}_{\text {s }}$	Setup Time A_{n}, B_{n} $A M_{n}, B M_{n}, A S_{n}, B S_{n}$	$\begin{aligned} & 0.80 \\ & 2.90 \\ & \hline \end{aligned}$		$\begin{array}{r} 0.80 \\ 2.90 \\ \hline \end{array}$		$\begin{aligned} & 0.80 \\ & 2.90 \\ & \hline \end{aligned}$		ns	Figure 3
th	Hold Time A_{n}, B_{n} $A M_{n}, B M_{n}, A S_{n}, B S_{n}$	$\begin{aligned} & 2.10 \\ & 0.80 \end{aligned}$		$\begin{aligned} & 2.10 \\ & 0.80 \end{aligned}$		$\begin{aligned} & 2.10 \\ & 0.80 \end{aligned}$		ns	
$t_{\text {pw }}(\mathrm{L})$	Pulse Width LOW \bar{E}	2.00		2.00		2.00		ns	Figure 2

[^17]| Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$ | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Characteristic | $\mathrm{TC}=0^{\circ} \mathrm{C}$ | | TC $=+25^{\circ} \mathrm{C}$ | | $\mathrm{T}^{\mathrm{C}}=+85^{\circ} \mathrm{C}$ | | Unit | Condition |
| | | Min | Max | Min | Max | Min | Max | | |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay A_{n}, B_{n} to Outputs (Transparent Mode) | 0.45 | 1.70 | 0.50 | 1.60 | 0.50 | 1.80 | ns | |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay
 \bar{E} to Outputs | 1.00 | 2.30 | 1.00 | 2.20 | 1.00 | 2.30 | ns | Figures 1 and 2 |
| tpLH tPHL | Propagation Delay
 $A M_{n}, B M_{n}, A S_{n}, B S_{n}$ to Outputs (Transparent Mode) | 1.20 | 3.50 | 1.20 | 3.50 | 1.20 | 3.60 | ns | |
| $\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$ | Transition Time 20% to $80 \%, 80 \%$ to 20% | 0.45 | 1.80 | 0.45 | 1.70 | 0.45 | 1.80 | ns | |
| t_{s} | Setup Time
 A_{n}, B_{n}
 $A M_{n}, B M_{n}, A S_{n}, B S_{n}$ | $\begin{aligned} & 0.70 \\ & 2.80 \end{aligned}$ | | $\begin{aligned} & 0.70 \\ & 2.80 \end{aligned}$ | | $\begin{array}{l\|l} 0.70 \\ 2.80 \end{array}$ | | ns | Figure 3 |
| th | Hold Time
 A_{n}, B_{n}
 $A M_{n}, B M_{n}, A S_{n}, B S_{n}$ | $\begin{array}{\|l\|} \hline 2.00 \\ \hline 0.70 \\ \hline \end{array}$ | | $\begin{aligned} & 2.00 \\ & 0.70 \end{aligned}$ | | $\begin{array}{l\|l} 2.00 \\ 0.70 \end{array}$ | | ns | |
| $t_{p w}(\mathrm{~L})$ | $\frac{P u l s e ~ W i d t h ~ L O W ~}{E}$ | 2.00 | | 2.00 | | 2.00 | | ns | Figure 2 |

F100156

Fig. 1 AC Test Circuit

Notes

$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to VCC and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

Fig. 2 Enable Timing

Fig. 3 Data Setup and Hold Times

Notes

t_{s} is the minimum time before the transition of the enable that information must be present at the designated input
t_{h} is the minimum time after the transition of the enable that
information must remain unchanged at the designated input

F100158
 8-Bit Shift Matrix

F100K ECL Product

Description

The F100158 contains a combinatorial network which performs the function of an 8-bit shift matrix. Three control lines $\left(S_{n}\right)$ are internally decoded and define the number of places which an 8-bit word present at the inputs (D_{n}) is shifted to the left and presented at the outputs $\left(Z_{n}\right)$. A Mode Control input (M) is provided which, if LOW, forces LOW all outputs to the right of the one that contains D_{7}. This operation is sometimes referred to as LOW backfill. If M is HIGH , an end-around shift is performed such that D_{0} appears at the output to the right of the one that contains D_{7}. This operation is commonly referred to as barrel shifting.

Pin Names

$D_{0}-D_{7}$	Data Inputs
$S_{0}-S_{2}$	Select Inputs
M	Mode Control Input
$Z_{0}-Z_{7}$	Data Outputs

Logic Symbol

$V_{C C}=\operatorname{Pin} 6(9)$
$\mathrm{V}_{\text {CCA }}=\operatorname{Pin} 5$ (8), 7 (10)
$\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 18$ (21)
() = Flatpak
Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	$6 Y$	DC
Flatpak	$4 Q$	FC

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Logic Diagram

Truth Table

Inputs				Outputs							
M	So	S_{1}	S_{2}	Z_{0}	Z_{1}	Z_{2}	Z_{3}	Z_{4}	Z_{5}	Z_{6}	Z_{7}
X	L	L	L	Do	D_{1}	D_{2}	D3	D4	D5	D6	D7
L	H	L	L	D1	D_{2}	D3	D4	D5	D6	D7	L
L	L	H	L	D_{2}	D3	D4	D5	D6	D7	L	L
L	H	H	L	D3	D4	D_{5}	D6	D7	L	L	L
L	L	L	H	D4	D5	D_{6}	D7	L	L	L	L
L	H	L	H	D5	D6	D7	L	L	L	L	L
L	L	H	H	D6	D_{7}	L	L	L	L	L	L
L	H	H	H	D_{7}	L	L	L	L	L	L	L
H	H	L	L	D1	D_{2}	D_{3}	D4	D5	D6	D7	Do
H	L	H	L	D_{2}	D3	D4	D5	D6	D7	Do	D_{1}
H	H	H	L	D3	D4	D5	D6	D7	D_{0}	D1	D_{2}
H	L	L	H	D4	D5	D6	D7	Do	D_{1}	D_{2}	D3
H	H	L	H	D5	D6	D7	Do	D_{1}	D_{2}	D3	D4
H	L	H	H	D6	D7	Do	D_{1}	D_{2}	D3	D4	D5
H	H	H	H	D7	Do	D1	D2	D3	D4	D5	D6

[^18]DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{VCC}=\mathrm{VCCA}^{\mathrm{C}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IIH	Input HIGH Current All Inputs			220	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { max })}$
IEE	Power Supply Current	-205	-140	-95	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tpHL	Propagation Delay Dn to Output	1.10	2.80	1.10	2.70	1.10	2.80	ns	Figures 1 and 2
tpLH tPHL	Propagation Delay M to Output	1.15	4.20	1.25	4.20	1.15	4.20	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay S_{n} to Output	1.70	4.20	1.70	4.20	1.70	4.20	ns	
$\begin{aligned} & \text { tTLH } \\ & \text { t tohl } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.50	2.30	0.50	2.30	0.50	2.30	ns	

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$	Propagation Delay Dn to Output	1.10	2.60	1.10	2.50	1.10	2.60	ns	Figures 1 and 2
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay M to Output	1.15	4.00	1.25	4.00	1.15	4.00	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay S_{n} to Output	1.70	4.00	1.70	4.00	1.70	4.00	ns	
$\begin{aligned} & \text { tTLH } \\ & \text { t } \mathrm{thL} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.50	2.20	0.50	2.20	0.50	2.20	ns	

*See Family Characteristics for other dc specifications.

Fig. 1 AC Test Circuit

Notes

$V_{C C}, V_{C C A}=+2 \mathrm{~V}, \mathrm{~V}_{E E}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP refer to logic symbol
Fig. 2 Propagation Delay and Transition Times

Applications

The following technique uses two ranks of F100158s to shift a 64-bit word from 0 to 63 places. Although two stage delays are required (one for each rank), the total shift takes only about 4 ns . This technique performs a bit shift on each 8-bit byte in the first rank and then a modulo- 8 byte shift on the 64 bit word in the second rank.

Basic 16-Bit 0-7 Place Shifter
Figure 3 shows the basic 0-7 place shift technique which can be expanded to accommodate any word
length. Each 8-bit byte requires a pair of F100158s operating in the LOW backfill mode. The address lines for each pair of ICs are driven out of phase by three OR gates. Inputs for the two ICs are taken from two bytes transposed in order; outputs are transposed and emitter-OR tied. One device shifts right from location 0 and the other shifts left from location 7. The bits shifted off one pair are picked up by the next pair of F100158s or - in the case of the last one in the rank - returned to the first device. The net result is a 0-7 place shift of the entire word.

Fig. 3 Basic 16-Bit 0-7 Place Shifter

Expanding to 64-Bit Word and 64-Place Shift

The basic 0-7 place shift technique can be expanded to accommodate a 64-bit word shifted from 0 to 63 places, however, two ranks of F100158s are required (Figure 4). The first rank is identical to the one illustrated in Figure 3 except it contains a total of 16 devices. The second rank consists of eight additional F100158s connected in the modulo-8 configuration shown in Figure 5.

The modulo-8 rank is used to simulate an 8-bit simultaneous shift since the F100158 cannot shift in 8-bit jumps. The modulo- 8 configuration is achieved by wiring the first rank and the output device to the second rank as illustrated in Figure 5. The LSB of each output byte in the first rank is wired to one of the eight inputs of
the first F100158 in the second rank. The next least significant bit of each first-rank F100158 pair, however, is connected to the inputs of the second F100158 in the second rank. The other first-ranked outputs are connected in a similar fashion to the remainder of the second-rank inputs. Ultimately, the outputs of the second rank must then be connected to reform the final usable 64-bit word so that the bits are again ordered from 0-63.

The effect is that each single-location shift in the second rank appears to be an eight place shift in the final word due to the way the inputs and outputs of the second rank are connected. The combination of the two ranks produces the 64-place shift of the entire word.

Fig. 4 64-Bit 0 - Place Barrel Shifter

F100158

Fig. 5 Modulo-8 Shift

F100160
 Dual Parity
 Checker/Generator

F100K ECL Product

Description

The F100160 is a dual parity checker/generator. Each half has nine inputs; the output is HIGH when an even number of inputs are HIGH. One of the nine inputs (la or $\left.I_{b}\right)$ has the shorter through-put delay and is therefore preferred as the expansion input for generating parity for 16 or more bits. The F100160 also has a Compare $\overline{(\bar{C})}$ output which allows the circuit to compare two 8-bit words. The $\overline{\mathrm{C}}$ output is LOW when the two words match, bit for bit.

Pin Names

$I_{a}, I_{b}, I_{n a}, I_{n b}$	Data Inputs
Z_{a}, Z_{b}	Parity Odd Outputs
C	Compare Output

Logic Symbol

$V_{C C}=\operatorname{Pin} 6(9)$
$V_{C C A}=\operatorname{Pin} 7(10)$
$V_{E E}=\operatorname{Pin} 18(21)$
$(\quad)=$ Flatpak
Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Logic Diagram

Truth Table (Each Half)

Sum of HIGH Inputs	Output \mathbf{Z}
Even	HIGH
Odd	LOW

Comparator Function

$$
\begin{aligned}
\bar{C}= & \left(I_{0 a} \oplus I_{1 a}\right)+\left(I_{2 a} \oplus I_{3 a}\right)+\left(I_{4 a} \oplus I_{5 a}\right)+ \\
& \left(I_{6 a \oplus} I_{7 a}\right)+\left(I_{0 b} \oplus I_{1 b}\right)+\left(I_{2 b} \oplus I_{3 b}\right)+ \\
& \left(I_{4 b} \oplus I_{5 b}\right)+\left(I_{6 b} \oplus I_{7 b}\right)
\end{aligned}
$$

F100160

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\mathrm{IIH}_{\mathrm{H}}$	Input HIGH Current					
	$\mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}$					
	$\mathrm{I}_{\mathrm{na}}, \mathrm{Inb}$			340 240	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{max})}$
I_{EE}	Power Supply Current	-115	-82	-57	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{VEE}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{VCC}=\mathrm{VCCA}=\mathrm{GND}$

Symbol	Characteristic	TC $=0^{\circ} \mathrm{C}$		$\mathrm{TC}^{\prime}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Ina, Inb to Z_{a}, Z_{b}	1.30	4.30	1.30	4.10	1.30	4.30	ns	Figures 1 and 2
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay Ina, Inb to C	1.20	3.30	1.20	3.10	1.20	3.30	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Ina, $I_{n b}$ to Z_{a}, Z_{b}	0.50	1.60	0.50	1.50	0.50	1.60	ns	
$\begin{aligned} & \text { t TtL } \\ & \text { t } \operatorname{thL} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.60	0.45	1.50	0.45	1.60	ns	

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{VCC}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		$\mathrm{TC}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tPLH tphL	Propagation Delay $\mathrm{Ina}_{\mathrm{n}}, \mathrm{Inb}_{\mathrm{nb}}$ to $\mathrm{Z}_{\mathrm{a}}, \mathrm{Z}_{\mathrm{b}}$	1.30	4.10	1.30	3.90	1.30	4.10	ns	Figures 1 and 2
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Ina, Inb to $\overline{\mathrm{C}}$	1.20	3.10	1.20	2.90	1.20	3.10	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay $\mathrm{la}, \mathrm{Ib}_{\mathrm{b}}$ to $\mathrm{Z}_{\mathrm{a}}, \mathrm{Z}_{\mathrm{b}}$	0.50	1.40	0.50	1.30	0.50	1.40	ns	
$\begin{aligned} & \text { t TtL } \\ & \text { t } \mathrm{thL} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.50	0.45	1.40	0.45	1.50	ns	

[^19]Fig. 1 AC Test Circuit

Notes

$V_{C C}, V_{C C A}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol
Fig. 2 Propagation Delay and Transition Times

F100163
 Dual 8-Input Multiplexer

F100K ECL Product

Description

The F100163 is a dual 8 -input multiplexer. The Data Select (S_{n}) inputs determine which bit (A_{n} and B_{n}) will be presented at the outputs (Z_{a} and Z_{b} respectively). The same bit ($0-7$) will be selected for both the Z_{a} and Z_{b} output.

Pin Names

$\mathrm{S}_{0}-\mathrm{S}_{2}$	Data Select Inputs
$\mathrm{A}_{0}-\mathrm{A}_{7}$	A Data Inputs
$\mathrm{B}_{0}-\mathrm{B}_{7}$	B Data Inputs
$\mathrm{Z}_{\mathrm{a}}, \mathrm{Z}_{\mathrm{b}}$	Data Outputs

Logic Symbol

$V_{C C}=\operatorname{Pin} 6(9)$
$V_{C C A}=\operatorname{Pin} 7(10)$
$\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 18$ (21)
() = Flatpak
Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Logic Diagram

Truth Table

Inputs											Outputs
Select			Data								
S2	S_{1}	So	$\begin{aligned} & A_{7} \\ & B_{7} \end{aligned}$	$\begin{aligned} & A_{6} \\ & B_{6} \end{aligned}$	$\begin{aligned} & A_{5} \\ & B_{5} \end{aligned}$	A4 B4	$\begin{aligned} & \mathbf{A}_{3} \\ & \mathbf{B}_{3} \end{aligned}$	$\begin{aligned} & A_{2} \\ & B_{2} \end{aligned}$	$\begin{aligned} & \mathbf{A}_{1} \\ & \mathbf{B}_{1} \end{aligned}$	$\begin{aligned} & A_{0} \\ & B_{0} \end{aligned}$	$\begin{aligned} & Z_{a} \\ & Z_{b} \end{aligned}$
L	L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$								$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & \mathrm{H} \end{aligned}$
L	L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$							L		$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$						$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$			$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$					$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$				$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$				$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$					$\begin{aligned} & L \\ & H \end{aligned}$
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & H \\ & H \end{aligned}$			$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$						$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$		$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$							$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$								$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$

F100163

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{VCC}=\mathrm{VCCA}^{\mathrm{C}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$I_{I H}$	Input HIGH Current					
	S_{n}			265	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\max)}$
	$\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$			340		
IEE	Power Supply Current	-153	-110	-76	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tPHL	Propagation Delay $\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$ to Output	0.55	1.65	0.60	1.70	0.65	1.80	ns	Figures 1 and 2
tplH tpHL	Propagation Delay So-S 2 to Output	1.10	2.80	1.10	2.80	1.20	3.10	ns	
ttlin tTHL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.50	1.85	0.55	1.80	0.50	1.80	ns	

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tPHL	Propagation Delay $\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$ to Output	0.55	1.45	0.60	1.50	0.65	1.60	ns	Figures 1 and 2
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay $\mathrm{S}_{0}-\mathrm{S}_{2}$ to Output	1.10	2.60	1.10	2.60	1.20	2.90	ns	
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.50	1.75	0.55	1.70	0.50	1.70	ns	

*See Family Characteristics for other dc specifications.

Fig. 1 AC Test Circuit

Notes

$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{Cl}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol
Fig. 2 Propagation Delay and Transition Times

F100164
 16-Input Multiplexer

F100K ECL Product

Description

The F100164 is a 16 -input multiplexer. Data paths are controlled by four Select lines ($\mathrm{S}_{0}-\mathrm{S}_{3}$). Their decoding is shown in the truth table. Output data polarity is the same as the selected input data.

Pin Names

$\mathrm{I}_{0}-\mathrm{I}_{15}$	Data Inputs
$\mathrm{S}_{0}-\mathrm{S}_{3}$	Select Inputs
Z	Data Output

Logic Symbol

$$
\begin{aligned}
& \mathrm{VCC}_{\mathrm{C}}=\operatorname{Pin} 6(9) \\
& \mathrm{V}_{\mathrm{CCA}}=\operatorname{Pin} 7(10) \\
& \mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 18(21) \\
& (\quad)=\text { Flatpak }
\end{aligned}
$$

Ordering Information (See Section 5)		
Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Logic Diagram

Truth Table

Select Inputs				Output
So	S1	S_{2}	S3	Z
L	L	L	L	10
H	L	L	L	11
L	H	L	L	12
H	H	L	L	13
L	L	H	L	14
H	L	H	L	15
L	H	H	L	16
H	H	H	L	17
L	L	L	H	18
H	L	L	H	19
L	H	L	H	110
H	H	L	H	111
L	L	H	H	112
H	L	H	H	113
L	H	H	H	114
H	H	H	H	115
$=\text { HIGI }$	Leve e Leve			

F100164

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	$\boldsymbol{M a x}$	Unit	Condition
IH	```Input HIGH Current In So, S1 \(\mathrm{S}_{2}, \mathrm{~S}_{3}\)```			$\begin{aligned} & 280 \\ & 240 \\ & 200 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { max }}$
IEE	Power Supply Current	-105	-70	-49	mA	Inputs Open

Ceramic Dual In-line Package $A C$ Characteristics: $\mathrm{VEE}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$T_{C}=+25^{\circ} \mathrm{C}$		$\mathrm{T}^{\prime} \mathrm{C}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tpHL	Propagation Delay $\mathrm{I}_{0}-\mathrm{I}_{15}$ to Output	0.80	2.20	0.90	2.35	0.90	2.55	ns	Figures 1 and 2
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to Output	1.45	3.10	1.45	3.20	1.55	3.60	ns	
tPLH tphL	Propagation Delay $\mathrm{S}_{2}, \mathrm{~S}_{3}$ to Output	1.10	2.45	1.10	2.50	1.20	2.80	ns	
$\begin{aligned} & \text { tTLH } \\ & \text { t THL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.70	0.45	1.70	ns	

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		$\mathrm{T}^{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}^{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tphL	Propagation Delay $\mathrm{I}_{0}-\mathrm{I}_{15}$ to Output	0.80	2.00	0.90	2.15	0.90	2.35	ns	Figures 1 and 2
tpLH tpHL	Propagation Delay So, S_{1} to Output	1.45	2.90	1.45	3.00	1.55	3.40	ns	
tpLH tPHL	Propagation Delay $\mathrm{S}_{2}, \mathrm{~S}_{3}$ to Output	1.10	2.25	1.10	2.30	1.20	2.60	ns	
$\begin{aligned} & \text { tTLH } \\ & \text { t } \mathrm{THL} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.60	0.45	1.60	0.45	1.60	ns	

[^20]Fig. 1 AC Test Circuit

Notes
$V_{C C}, V_{C C A}=+2 \mathrm{~V}, V_{E E}=-2.5 \mathrm{~V}$
L1 and L2 $=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol
Fig. 2 Propagation Delay and Transition Times

Description

The F100165 contains eight input latches with a common Enable (\bar{E}) followed by encoding logic which generates the binary address of the highest priority input having a HIGH signal. The circuit operates as a dual 4-input encoder when the Mode Control (M) input is LOW, and as a signal 8-input encoder when M is HIGH . In the 8-input mode, Q_{0}, Q_{1} and Q_{2} are the relevant outputs, I_{0} is the highest priority input and GS_{1} is the relevant Group Signal output. In the dual mode, Q_{0}, Q_{1} and GS_{1} operate with $\mathrm{I}_{0}-\mathrm{I}_{3} . \mathrm{Q}_{2}, \mathrm{Q}_{3}$ and GS_{2} operate with $\mathrm{I}_{4}-\mathrm{I}_{7}$. A GS output goes LOW when its pertinent inputs are all LOW.

Inputs are latched when $\overline{\mathrm{E}}$ goes HIGH . A HIGH signal on the Output Enable $(\overline{\mathrm{OE}})$ input forces all Q outputs LOW and GS outputs HIGH. Expansion to accommodate more inputs can be done by connecting the GS output of a higher priority group to the $\overline{\mathrm{OE}}$ input of the next lower priority group.

Pin Names

$\frac{I_{0}-I_{7}}{\mathrm{E}}$	Data Inputs
$\frac{\text { Enable Input (Active LOW) }}{\mathrm{OE}}$	Output Enable Input (Active LOW)
M	Mode Control Input
$\mathrm{GS}_{1}-\mathrm{GS}_{2}$	Group Signal Outputs
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Data Outputs
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Complementary Data Outputs

Logic Symbol

$V_{C C}=\operatorname{Pin} 6(9)$
$V_{C C A}=\operatorname{Pin} 7(10)$
$V_{E E}=\operatorname{Pin} 18$ (21)
() = Flatpak

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

F100165

Logic Diagram

Truth Table

Inputs											Outputs					
\bar{E}	$\overline{O E}$	M	10	11	12	13	14	15	16	17	Qo	\mathbf{Q}_{1}	Q2	Q3	GS 1	GS2
L	L	L	H	X	X	X						L			H	
L	L	L	L	H	X	X					H	L			H	
L	L	L	L	L	H	X					L				H	
L	L	L	L	L	L	H					H				H	
L	L	L	L	L	L	L					L	L			L	
L	L	L					H	X	X	X			L	L		H
L	L	L					L	H	X	X			H	L		H
L	L	L					L	L	H	X			L	H		H
L	L	L					L	L	L				H	H		H
L	L	L					L	L	L	L			L	L		L
L	L	H	H	X	X	X	X	X	X	X	L	L	L	L	H	H
L	L	H	L	H	X	X	X	X	X	X	H	L	L	L	H	H
L	L	H	L	L	H	X	X	X	X	X	L	H	L	L	H	H
L	L	H	L	L	L	H	X	X	X	X	H	H	L	L	H	H
L	L	H	L	L	L	L	H	X	X	X	L	L	H	L	H	H
L	L	H	L	L	L	L	L	H	X	X	H	L	H	L	H	H
L	L	H	L	L	L	L	L	L	H	X	L	H	H	L	H	H
L	L	H	L	L	L	L	L	L	L	H	H	H	H	L	H	H
L	L	H	L	L	L	L	L	L	L	L	L	L	L	L	L	H
X	H	X	X	X	X	X	X	X	X	x	L	L	L	L	H	H
H	L	L	X	X	X	X	X	X	X	X	Given by $10-17$ when \bar{E} was LOW and $M=L$					
H	L	H	X	X	X	X	X	X	X	X	Given	by 10	whe	E was	LOW	M $=\mathrm{H}$

$H=H I G H$ Voltage Level
L = LOW Voltage Level
Blank $=X=$ Don't Care

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{\star}$						
Symbol	Characteristic	Min	Typ	Max	Unit	Condition
I_{IH}	Input HIGH Current All Inputs			230	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\max)}$
IEE	Power Supply Current	-200	-140	-77	mA	Inputs Open

[^21]
F100165

Ceramic Dual In-line Package $A C$ Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	TC $=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		$\mathrm{T}^{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpli tPHL	Propagation Delay $I_{0}-I_{7}$ to $Q_{0}-Q_{3}, \bar{Q}_{0}-\bar{Q}_{3}$ (Transparent Mode)	1.10	4.10	1.10	4.10	1.10	4.60	ns	Figures 1 and 3
tpLH tPHL	Propagation Delay $\mathrm{I}_{0}-\mathrm{I}_{7}$ to $\mathrm{GS}_{1}-\mathrm{GS} 2$ (Transparent Mode)	1.30	3.90	1.30	3.90	1.30	4.20	ns	
tple tPHL	Propagation Delay $\overline{\mathrm{OE}}$ to $\mathrm{Q}_{0}-\mathrm{Q}_{3}, \overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}$	1.00	3.00	1.00	3.00	1.10	3.30	ns	
tpLH tPHL	Propagation Delay $\overline{\mathrm{OE}}$ to $\mathrm{GS}_{1}-\mathrm{GS} 2$	1.10	2.60	1.10	2.60	1.20	2.80	ns	Figures 1 and 2
tpLH tPHL	Propagation Delay M to $Q_{0}-Q_{3}, \bar{Q}_{0}-\bar{Q}_{3}$	0.90	3.60	1.00	3.60	1.00	3.80	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay \bar{E} to $Q_{0}-Q_{3}, \bar{Q}_{0}-\bar{Q}_{3}$	1.50	4.70	1.50	4.60	1.50	5.00	ns	Figures 1 and 3
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.50	0.45	1.40	0.45	1.50	ns	Figures 1, 2 and 3
$\mathrm{t}_{\text {s }}$	Setup Time $10-I_{7}$	1.00		0.90		1.00		ns	Figure 4
th	Hold Time $\mathrm{I}_{0}-\mathrm{I}_{7}$	1.20		1.20		1.20		ns	

F100165

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tpHL	$\begin{aligned} & \text { Propagation Delay } \\ & I_{0}-I_{7} \text { to } Q_{0}-Q_{3}, \bar{Q}_{0}-\bar{Q}_{3} \\ & \text { (Transparent Mode) } \end{aligned}$	1.10	3.90	1.10	3.90	1.10	4.40	ns	Figures 1 and 3
tpLH tpHL	Propagation Delay $\mathrm{I}_{0}-\mathrm{I}_{7}$ to $\mathrm{GS}_{1}-\mathrm{GS}_{2}$ (Transparent Mode)	1.30	3.70	1.30	3.70	1.30	4.00	ns	
tpLH tpHL	Propagation Delay $\overline{\mathrm{OE}}$ to $\mathrm{Q}_{0}-\mathrm{Q}_{3}, \overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}$	1.00	2.80	1.00	2.80	1.10	3.10	ns	Figures 1 and 2
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay OE to GS 1 -GS 2	1.10	2.40	1.10	2.40	1.20	2.60	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay M to $Q_{0}-Q_{3}, \bar{Q}_{0}-\bar{Q}_{3}$	0.90	3.40	1.00	3.40	1.00	3.60	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay $\overline{\mathrm{E}}$ to $\mathrm{Q}_{0}-\mathrm{Q}_{3}, \overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}$	1.50	4.50	1.50	4.40	1.50	4.80	ns	Figures 1 and 3
tTLH tTHL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.40	0.45	1.30	0.45	1.40	ns	Figures 1, 2 and 3
ts_{s}	Setup Time 10-17	0.90		0.80		0.90		ns	Figure 4
t_{n}	Hold Time 10-I7	1.10		1.10		1.10		ns	

Fig. 1 AC Test Circuit

Notes

$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

Fig. 2 Propagation Delay ($\mathrm{M}, \overline{\mathrm{OE}}$) and Transition Times

Fig. 3 Enable Timing

Fig. 4 Setup and Hold Times

Notes

t_{s} is the minimum time before the transition of the enable that information must be present at the data input
t_{h} is the minimum time after the transition of the enable that information must remain unchanged at the data input

F100166
 9-Bit Comparator

F100K ECL Product

Description

The F100166 is a 9-bit magnitude comparator which compares the arithmetic value of two 9-bit words and indicates whether one word is greater than, or equal to, the other. Other functions can be generated by the wire-OR of the outputs.

Pin Names

$A_{0}-A_{8}$	A Data Inputs
$B_{0}-B_{8}$	B Data Inputs
$A>B$	A Greater than B Output
$B>A$	B Greater than A Output
$A=B$	Complement A Equal to B Output (Active LOW)

Logic Symbol

$V_{c c}=\operatorname{Pin} 6(9)$
$V_{C C A}=\operatorname{Pin} 7$ (10)
$\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 18$ (21)
() = Flatpak
Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	$6 Y$	DC
Flatpak	$4 Q$	FC

Connection Diagrams

Logic Diagram

Truth Table

Inputs									Outputs		
$\mathrm{A}_{8} \mathrm{~B}_{8}$	$A_{7} B_{7}$	$\mathrm{A}_{6} \mathrm{~B}_{6}$	$\mathrm{A}_{5} \mathrm{~B}_{5}$	$A_{4} B_{4}$	$\mathrm{A}_{3} \mathrm{~B}_{3}$	$A_{2} B_{2}$	$A_{1} B_{1}$	$\mathrm{A}_{0} \mathrm{~B}_{0}$	A>B	B $>$ A	$\overline{A=B}$
$\begin{gathered} H \quad L \\ L \\ H \\ A_{8}=B_{8} \\ A_{8}=B_{8} \end{gathered}$	$\begin{array}{ll} H & L \\ L & H \end{array}$								$\begin{aligned} & H \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & H \\ & H \\ & H \\ & H \\ & H \end{aligned}$
$\begin{aligned} & \mathrm{A}_{8}=\mathrm{B}_{8} \\ & \mathrm{~A}_{8}=\mathrm{B}_{8} \\ & \mathrm{~A}_{8}=\mathrm{B}_{8} \\ & \mathrm{~A}_{8}=\mathrm{B}_{8} \end{aligned}$	$\begin{aligned} & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \end{aligned}$	$\begin{array}{cc} H & L \\ L & H \\ A_{6} & =B_{6} \\ A_{6} & =B_{6} \end{array}$	$\begin{array}{ll} H & L \\ L & H \end{array}$						$\begin{aligned} & H \\ & L \\ & H \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
$\begin{aligned} & \mathrm{A}_{8}=\mathrm{B}_{8} \\ & \mathrm{~A}_{8}=\mathrm{B}_{8} \\ & \mathrm{~A}_{8}=\mathrm{B}_{8} \\ & \mathrm{~A}_{8}=\mathrm{B}_{8} \end{aligned}$	$\begin{aligned} & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \end{aligned}$	$\begin{aligned} & A_{6}=B_{6} \\ & A_{6}=B_{6} \\ & A_{6}=B_{6} \\ & A_{6}=B_{6} \end{aligned}$	$\begin{aligned} & A_{5}=B_{5} \\ & A_{5}=B_{5} \\ & A_{5}=B_{5} \\ & A_{5}=B_{5} \end{aligned}$	$\begin{array}{cc} H & L \\ L & H \\ A_{4} & =B_{4} \\ A_{4} & =B_{4} \end{array}$	$\begin{array}{ll} H & L \\ L & H \end{array}$				$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
$\begin{aligned} & \mathrm{A}_{8}=\mathrm{B}_{8} \\ & \mathrm{~A}_{8}=\mathrm{B}_{8} \\ & \mathrm{~A}_{8}=\mathrm{B}_{8} \\ & \mathrm{~A}_{8}=\mathrm{B}_{8} \end{aligned}$	$\begin{aligned} & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \end{aligned}$	$\begin{aligned} & A_{6}=B_{6} \\ & A_{6}=B_{6} \\ & A_{6}=B_{6} \\ & A_{6}=B_{6} \end{aligned}$	$\begin{aligned} & A_{5}=B_{5} \\ & A_{5}=B_{5} \\ & A_{5}=B_{5} \\ & A_{5}=B_{5} \end{aligned}$	$\begin{aligned} & A_{4}=B_{4} \\ & A_{4}=B_{4} \\ & A_{4}=B_{4} \\ & A_{4}=B_{4} \end{aligned}$	$\begin{aligned} & A_{3}=B_{3} \\ & A_{3}=B_{3} \\ & A_{3}=B_{3} \\ & A_{3}=B_{3} \end{aligned}$	$\begin{array}{cc} H & L \\ L & H \\ A_{2} & =B_{2} \\ A_{2} & =B_{2} \end{array}$	$\begin{array}{ll} H & L \\ L & H \end{array}$		$\begin{aligned} & H \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
$\begin{aligned} & \mathrm{A}_{8}=\mathrm{B}_{8} \\ & \mathrm{~A}_{8}=\mathrm{B}_{8} \\ & \mathrm{~A}_{8}=\mathrm{B}_{8} \end{aligned}$	$\begin{aligned} & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \end{aligned}$	$\begin{aligned} & A_{6}=B_{6} \\ & A_{6}=B_{6} \\ & A_{6}=B_{6} \end{aligned}$	$\begin{aligned} & A_{5}=B_{5} \\ & A_{5}=B_{5} \\ & A_{5}=B_{5} \end{aligned}$	$\begin{aligned} & A_{4}=B_{4} \\ & A_{4}=B_{4} \\ & A_{4}=B_{4} \end{aligned}$	$\begin{aligned} & A_{3}=B_{3} \\ & A_{3}=B_{3} \\ & A_{3}=B_{3} \end{aligned}$	$\begin{aligned} & A_{2}=B_{2} \\ & A_{2}=B_{2} \\ & A_{2}=B_{2} \end{aligned}$	$\begin{aligned} & \mathrm{A}_{1}=\mathrm{B}_{1} \\ & \mathrm{~A}_{1}=\mathrm{B}_{1} \\ & \mathrm{~A}_{1}=\mathrm{B}_{1} \end{aligned}$	$\begin{array}{cc} H & L \\ L & H \\ A_{0} & =B_{0} \end{array}$	H L L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$

$H=H I G H$ Voltage Level

F100166

DC Characteristics: $V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$I_{I H}$	Input HIGH Current All Inputs		250	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\max)}$	
I_{EE}	Power Supply Current	-238	-170	-119	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$		$\mathrm{T}^{\prime}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tpHL	Propagation Delay Data to Output	1.40	3.50	1.40	3.50	1.40	3.90	ns	Figures 1 and 2
ttin tTHL	Transition Time 20\% to 80\%, 80\% to 20\%	0.45	1.55	0.45	1.50	0.45	1.50	ns	

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tPHL	Propagation Delay Data to Output	1.40	3.30	1.40	3.30	1.40	3.70	ns	
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.45	0.45	1.40	0.45	1.40	ns	

[^22]Fig. 1 AC Test Circuit

Notes

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 V$
L1 and L2 $=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

Fig. 2 Propagation Delay and Transition Times

F100170
 Universal Demultiplexer/ Decoder

F100K ECL Product

Description

The F100170 universal demultiplexer/decoder functions as either a dual 1-of-4 decoder or as a single 1-of-8 decoder, depending on the signal applied to the Mode Control (M) input. In the dual mode, each half has a pair of active-LOW Enable (\bar{E}) inputs. Pin assignments for the \bar{E} inputs are such that in the 1 -of -8 mode they can easily be tied together in pairs to provide two activeLOW enables $\bar{E}_{1 a}$ to $\bar{E}_{1 b}, \bar{E}_{2 a}$ to $\bar{E}_{2 b}$). Signals applied to auxiliary inputs $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}$ and H_{c} determine whether the outputs are active HIGH or active LOW. In the dual 1 -of -4 mode the Address inputs are $A_{0 a}, A_{1 a}$ and $A_{0 b}$, $A_{1 b}$ with $A_{2 a}$ unused (i.e., left open, tied to $V_{E E}$ or with LOW signal applied). In the 1-of-8 mode, the Address inputs are $A_{0 a}, A_{1 a}, A_{2 a}$ with $A_{0 b}$ and $A_{1 b}$ LOW or open.

Pin Names

$A_{n a}, A_{n b}$	Address Inputs
$\bar{E}_{n a}, \bar{E}_{n b}$	Enable Inputs
M	Mode Control Input
H_{a}	$\left.Z_{0}-Z_{3} \overline{(Z}_{0 a}-\bar{Z}_{3 a}\right)$ Polarity Select Input
H_{b}	$\left.Z_{4}-Z_{7} \overline{(Z}_{0 b}-Z_{03}\right)$ Polarity Select Input
H_{c}	Common Polarity Select Input
$Z_{0}-Z_{7}$	Single 1-of-8 Data Outputs
$Z_{n a}, Z_{n b}$	Dual 1-of-4 Data Outputs

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

Logic Symbols

Single 1-of-8 Application

Dual 1-of-4 Application

$$
\begin{aligned}
& V_{C C}=\operatorname{Pin} 6(9) \\
& V_{C C A}=\operatorname{Pin} 7(10) \\
& V_{E E}=\operatorname{Pin} 18(21) \\
& (\quad)=\text { Flatpak }
\end{aligned}
$$

Connection Diagrams

24-Pin Flatpak (Top View)

Logic Diagram

Note
(Z_{n}) for 1-of-4 applications

Truth Tables

Dual 1-of-4 Mode $\left(M=A_{2 a}=H_{c}=L O W\right)$

Inputs				Active HIGH Outputs (H_{a} and H_{b} inputs HIGH)				Active LOW Outputs (H_{a} and H_{b} inputs LOW)			
$\frac{\bar{E}_{1 a}}{E_{1 b}}$	$\begin{aligned} & \bar{E}_{2 a} \\ & E_{2 b} \end{aligned}$	$\begin{aligned} & A_{1 a} \\ & \mathbf{A}_{1 b} \end{aligned}$	A0a Aob	$\begin{aligned} & Z_{0 a} \\ & Z_{0 b} \end{aligned}$	$\begin{aligned} & Z_{1 a} \\ & Z_{1 b} \end{aligned}$	$\begin{aligned} & \mathbf{Z}_{2 a} \\ & Z_{2 b} \end{aligned}$	$\begin{aligned} & Z_{3 a} \\ & Z_{3 b} \end{aligned}$	$\begin{aligned} & Z_{0 a} \\ & Z_{0 b} \end{aligned}$	$\begin{aligned} & Z_{1 a} \\ & Z_{1 b} \end{aligned}$	$\begin{aligned} & Z_{2 a} \\ & Z_{2 b} \end{aligned}$	$\begin{aligned} & \mathbf{Z}_{3 a} \\ & \mathbf{Z}_{3 b} \end{aligned}$
H	X	X	X	L	L	L	L	H	H	H	H
X	H	X	X	L	L	L	L	H	H	H	H
L	L	L	L	H	L	L	L	L	H	H	H
L	L	L	H	L	H	L	L	H	L	H	H
L	L	H	L	L	L	H	L	H	H	L	H
L	L	H	H	L	L	L	H	H	H	H	L

Single 1-of-8 Mode $(M=H I G H ;$
$\left.A_{0 b}=A_{1 b}=H_{a}=H_{b}=L O W\right)$

Inputs					Active HIGH Outputs* (H_{c} Input HIGH)							
\bar{E}_{1}	E_{2}	A2a	A1a	A0a	Zo	Z_{1}	Z_{2}	Z_{3}	Z_{4}	Z_{5}	Z_{6}	Z_{7}
H	X	X	X	X	L	L	L	L	L	L	L	L
X	H	X	X	X	L	L	L	L	L	L	L	L
L	L	L	L	L	H	L	L	L	L	L	L	L
L	L	L	L	H	L	H	L	L	L	L	L	L
L	L	L	H	L	L	L	H	L	L	L	L	L
L	L	L	H	H	L	L	L	H	L	L	L	L
L	L	H	L	L	L	L	L	L	H	L	L	L
L	L	H	L	H	L	L	L	L	L	H	L	L
L	L	H	H	L	L	L	L	L	L	L	H	L
L	L	H	H	H	L	L	L	L	L	L	L	H

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Don't Care
*for $\mathrm{H}_{\mathrm{c}}=$ LOW, output states are complemented
$\bar{E}_{1}=\bar{E}_{1 a}$ and $\bar{E}_{1 b}$ wired; $\bar{E}_{2}=\bar{E}_{2 a}$ and $\bar{E}_{2 b}$ wired

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\mathrm{IIH}_{\mathrm{H}}$	Input HIGH Current					
	$\mathrm{H}_{\mathrm{c}}, \mathrm{A}_{0 \mathrm{a}}, \mathrm{A}_{1 \mathrm{a}}, \mathrm{A}_{2 \mathrm{a}}$					
	All Others			$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{max})}$		
IEE	Power Supply Current	-153	-109	-76	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	TC $=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay $\bar{E}_{n a}, \bar{E}_{n b}$ to Output	0.90	2.30	0.90	2.20	0.90	2.30	ns	Figures 1 and 2
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay $A_{n a}, A_{n b}$ to Output	1.00	2.80	1.00	2.70	1.00	2.90	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}$ to Output	1.00	3.00	1.00	2.90	1.00	3.00	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay M to Output	1.50	3.90	1.60	3.80	1.60	3.90	ns	
$\begin{aligned} & \text { tTLL } \\ & \text { tThl } \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.70	0.45	1.80	ns	

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{VCC}=\mathrm{VCCA}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{Tc}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay $\bar{E}_{n a}, \bar{E}_{n b}$ to Output	0.90	2.10	0.90	2.00	0.90	2.10	ns	Figures 1 and 2
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay $A_{n a}, A_{n b}$ to Output	1.00	2.60	1.00	2.50	1.00	2.70	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tph } \end{aligned}$	Propagation Delay $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}$ to Output	1.00	2.80	1.00	2.70	1.00	2.80	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay M to Output	1.50	3.70	1.60	3.60	1.60	3.70	ns	
$\begin{aligned} & \text { ttLh } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.60	0.45	1.60	0.45	1.70	ns	

[^23]Fig. 1 AC Test Circuit

Notes

$V_{C C}, V_{C C A}=+2 \mathrm{~V}, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50 s 2 impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

Fig. 2 Propagation Delay and Transition Times

F100171
 Triple 4-Input Multiplexer with Enable

F100K ECL Product

Description

The F100171 contains three 4-input multiplexers which share a common decoder (inputs S_{0} and S_{1}). Output buffer gates provide true and complement outputs. A HIGH on the Enable input (E) forces all true outputs LOW (see Truth Table).

Pin Names

$I_{0 x}-I_{3 x}$	Data Inputs
$\frac{S_{0}}{\mathrm{E}}, \mathrm{S}_{1}$	Select Inputs
$\mathrm{Z}_{\mathrm{a}}-\mathrm{Z}_{\mathrm{c}}$	Enable Input (Active LOW)
$\bar{Z}_{\mathrm{a}}-\bar{Z}_{\mathrm{c}}$	Data Outputs
	Complementary Data Outputs

Logic Symbol

$V_{C C}=\operatorname{Pin} 6(9)$
$V_{C C A}=\operatorname{Pin} 7$ (10)
$\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 18$ (21)
() = Flatpak

Ordering Information (See Section 5)		
Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

F100171

Logic Diagram

Truth Table

Inputs			
\bar{E}	S_{0}	$\mathbf{S}_{\mathbf{1}}$	Outputs
L	L	L	$Z_{\boldsymbol{n}}$
L	H	L	$I_{0 x}$
L	L	H	$I_{1 x}$
L	H	H	$I_{2 x}$
H	X	X	$L 3 x$

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V} \mathrm{CC}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current $\begin{aligned} & I_{0 x}-I_{3 x} \\ & S_{0}, S_{1}, \bar{E} \end{aligned}$			$\begin{aligned} & 340 \\ & 300 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\max)$
IEE	Power Supply Current	-114	-80	-56	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tPLH tphL	Propagation Delay Iox-I3x to Output	0.45	1.70	0.45	1.60	0.50	1.70	ns	Figures 1 and 2
tpLH tPHL	Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to Output	0.90	2.40	0.90	2.60	1.00	3.00	ns	
tpLH tPHL	Propagation Delay E to Output	0.65	2.40	0.65	2.30	0.75	2.40	ns	
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.80	0.45	1.60	0.45	1.60	ns	

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tpHL	Propagation Delay I0x-13x to Output	0.45	1.50	0.45	1.40	0.50	1.50	ns	Figures 1 and 2
tpLH tPHL	Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to Output	0.90	2.20	0.90	2.40	1.00	2.80	ns	
tple tPHL	Propagation Delay E to Output	0.65	2.20	0.65	2.10	0.75	2.20	ns	
$\begin{aligned} & \text { tTLH } \\ & \text { tohl } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.50	0.45	1.50	ns	

[^24]Fig. 1 AC Test Circuit

Fig. 2 Propagation Delay and Transition Times

Notes

$V_{C C}, V_{C C A}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and L2 $=$ equal length 50Ω impedance lines $R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and VEE
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

F100179
 Carry Lookahead Generator

F100K ECL Product

Description

The F100179 is a high-speed Carry Lookahead Generator intended for use with the F100180 6-bit fast Adder and the F100181 4-bit ALU.

Pin Names

$\overline{\mathrm{C}}_{n}$
$\overline{\mathrm{P}}_{0}-\overline{\mathrm{P}}_{7}$
$\overline{\mathrm{G}}_{0}-\overline{\mathrm{G}}_{7}$
$\bar{C}_{n+2}, \bar{C}_{n+4}$
$\overline{\mathrm{C}}_{\mathrm{n}}+6, \overline{\mathrm{C}}_{\mathrm{n}}+8$
Carry Input (Active LOW)
Carry Propagate Inputs (Active LOW)
Carry Generate Inputs (Active LOW)
Carry Outputs

Logic Symbol

$$
\begin{aligned}
& V_{C C}=\operatorname{Pin} 6(9) \\
& V_{C C A}=\operatorname{Pin} 7(10) \\
& V_{E E}=\operatorname{Pin} 18(21) \\
& (\quad)=\text { Flatpak }
\end{aligned}
$$

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	$6 Y$	DC
Flatpak	$4 Q$	FC

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Logic Diagram

Truth Tables
$\overline{\mathbf{C}}_{\mathrm{n}+2}$ Output

Inputs					Output
$\overline{\mathbf{C}}_{n}$	$\overline{\mathbf{G}}_{0}$	$\overline{\mathbf{P}}_{0}$	$\overline{\mathrm{G}}_{1}$	${\overline{\mathbf{P}_{1}}}$	$\overline{\mathrm{C}}_{\mathrm{n}+2}$
X	X	X	L	X	L
X	L	X	X	L	L
L	X	L	X	L	L
All other combinations					H

$\left.\bar{C}_{n+2}=\bar{G}_{1} \bullet\left(\bar{P}_{1}+\bar{G}_{0}\right) \cdot \overline{(P}_{1}+\bar{P}_{0}+\overline{\mathrm{C}}_{\mathrm{n}}\right)$
$H=$ HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
\bar{C}_{n+4} Output

Inputs							Output		
$\overline{\mathbf{C}}_{\mathrm{n}}$	$\overline{\mathbf{G}}_{\mathbf{0}}$	$\overline{\mathbf{P}}_{0}$	$\overline{\mathbf{G}}_{\mathbf{1}}$	$\overline{\mathbf{P}}_{\mathbf{1}}$	$\overline{\mathbf{G}}_{\mathbf{2}}$	$\overline{\mathbf{P}}_{\mathbf{2}}$	$\overline{\mathbf{G}}_{3}$	$\overline{\mathbf{P}}_{\mathbf{3}}$	$\overline{\mathbf{C}}_{\mathrm{n}+4}$
X	X	X	X	X	X	X	L	X	L
X	X	X	X	X	L	X	X	L	L
X	X	X	L	X	X	L	X	L	L
X	L	X	X	L	X	L	X	L	L
L	X	L	X	L	X	L	X	L	L
All other combinations									

$$
\begin{aligned}
\overline{\mathrm{C}}_{n+4}= & \overline{\mathrm{G}}_{3} \bullet\left(\overline{\mathrm{P}}_{3}+\overline{\mathrm{G}}_{2}\right) \bullet\left(\overline{\mathrm{P}}_{3}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{G}}_{1}\right) \bullet\left(\overline{\mathrm{P}}_{3}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{P}}_{1}+\overline{\mathrm{G}}_{0}\right) \\
& \bullet{\left.\overline{\left(\bar{P}_{3}\right.}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{P}}_{1}+\overline{\mathrm{P}}_{0}+\overline{\mathrm{C}}_{n}\right)}^{\text {and }} \text {. }
\end{aligned}
$$

Truth Tables (Cont'd)

\bar{C}_{n+6} Output

Inputs													Output
\bar{C}_{n}	\bar{G}_{0}	\bar{P}_{0}	\bar{G}_{1}	\bar{P}_{1}	\bar{G}_{2}	\bar{P}_{2}	$\overline{\mathrm{G}}_{3}$	\bar{P}_{3}	\bar{G}_{4}	\bar{P}_{4}	\bar{G}_{5}	\bar{P}_{5}	\bar{C}_{n+6}
X	X	x	X	X	X	x	x	X	X	x	L	X	L
X	X	X	X	X	X	X	X	X	L	X	X	L	L
x	X	X	x	x	x	x	L	x	x	L	x	L	L
x	x	X	x	X	L	x	x	L	x	L	X	L	L
x	X	X	L	X	x	L	X	L	X	L	X	L	L
X	L	X	X	L	X	L	X	L	x	L	X	L	L
L	X	L	X	L	X	L	X	L	X	L	X	L	L
All other combinations													H

$\bar{C}_{n+6}=\bar{G}_{5} \bullet\left(\bar{P}_{5}+\bar{G}_{4}\right) \bullet\left(\bar{P}_{5}+\bar{P}_{4}+\bar{G}_{3}\right) \bullet\left(\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\overline{\mathrm{G}}_{2}\right)$

- $\left(\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{P}_{2}+\overline{\mathrm{G}}_{1}\right) \bullet\left(\bar{P}_{5}+\overline{\mathrm{P}}_{4}+\overline{\mathrm{P}}_{3}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{P}}_{1}+\overline{\mathrm{G}}_{0}\right)$
- $\left(\bar{P}_{5}+\overline{\mathrm{P}}_{4}+\overline{\mathrm{P}}_{3}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{P}}_{1}+\overline{\mathrm{P}}_{0}+\overline{\mathrm{C}}_{n}\right)$
\bar{C}_{n+8} Output

Inputs																	$\begin{aligned} & \text { Output } \\ & \overline{\mathbf{C}}_{n+8} \end{aligned}$
\bar{C}_{n}	\bar{G}_{0}	\bar{P}_{0}	\bar{G}_{1}	\bar{P}_{1}	$\overline{\mathrm{G}}_{2}$	\bar{P}_{2}	\bar{G}_{3}	\bar{P}_{3}	\bar{G}_{4}	\bar{P}_{4}	\bar{G}_{5}	\bar{P}_{5}	\bar{G}_{6}	\bar{P}_{6}	\bar{G}_{7}	\bar{P}_{7}	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	L	X	L
X	X	X	x	x	X	X	X	X	x	X	X	X	L	X	X	L	L
x	x	x	x	x	x	X	X	x	x	x	L	X	x	L	x	L	L
x	X	x	X	X	X	X	X	x	L	X	X	L	X	L	x	L	L
x	X	x	x	x	X	X	L	X	X	L	X	L	x	L	X	L	L
x	X	x	X	X	L	X	X	L	X	L	X	L	x	L	X	L	L
x	x	x	L	x	x	L	x	L	x	L	x	L	x	L	x	L	L
X	L	X	X	L	X	L	X	L	X	L	X	L	X	L	X	L	L
L	X	L	X	L	X	L	X	L	x	L	X	L	X	L	X	L	L
All other combinations																	H

$$
\begin{aligned}
& \bar{C}_{n+8}=\bar{G}_{7} \bullet\left(\bar{P}_{7}+\bar{G}_{6}\right) \cdot\left(\bar{P}_{7}+\bar{P}_{6}+\bar{G}_{5}\right) \bullet\left(\bar{P}_{7}+\bar{P}_{6}+\bar{P}_{5}+\bar{G}_{4}\right) \\
& \text { - } \left.\bar{P}_{7}+\bar{P}_{6}+\bar{P}_{5}+\bar{P}_{4}+\bar{G}_{3}\right) \cdot\left(\bar{P}_{7}+\bar{P}_{6}+\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{G}_{2}\right) \\
& \text { - }\left(\bar{P}_{7}+\bar{P}_{6}+\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{P}_{2}+\overline{\mathrm{G}}_{1}\right) \\
& \text { - (} \left.\bar{P}_{7}+\bar{P}_{6}+\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{P}_{2}+\bar{P}_{1}+\overline{\mathrm{G}}_{0}\right) \\
& -\left(\bar{P}_{7}+\bar{P}_{6}+\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{P}_{2}+\bar{P}_{1}+\overline{\mathrm{P}}_{0}+\overline{\mathrm{C}}_{n}\right)
\end{aligned}
$$

```
H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
```

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
	Input $^{\mathrm{HIGH}}$ Current					
I_{IH}	$\overline{\mathrm{C}}_{\mathrm{n}}, \overline{\mathrm{G}}_{0}-\overline{\mathrm{G}}_{7}$			250	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\max)}$
$\overline{\mathrm{P}} 0-\overline{\mathrm{P}_{7}}$			340			
IEE	Power Supply Current	-220	-150	-100	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{TC}=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tPHL	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{n}}, \overline{\mathrm{G}}_{0}-\overline{\mathrm{G}}_{7}, \overline{\mathrm{P}}_{0}-\dot{\mathrm{P}}_{7} \text { to } \overline{\mathrm{C}}_{n+x}$	1.10	2.90	1.10	2.90	1.10	3.00	ns	Figures 1 and 2
ttin tTHL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.80	0.45	1.80	0.45	1.80	ns	

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{n}}, \overline{\mathrm{G}}_{0}-\overline{\mathrm{G}}_{7}, \overline{\mathrm{P}}_{0}-\overline{\mathrm{P}}_{7}$ to $\overline{\mathrm{C}}_{\mathrm{n}+\mathrm{x}}$	1.10	2.70	1.10	2.70	1.10	2.80	ns	Figures 1 and 2
$\begin{aligned} & \text { t tolh } \\ & \text { t } \mathrm{thl} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.70	0.45	1.70	ns	

*See Family Characteristics for other dc specifications.

Fig. 1 AC Test Circuit

Notes

$V_{C C}, V_{C C A}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to Vcc and VEE
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol
Fig. 2 Propagation Delay and Transition Times

F100179

Applications

Fast Adder and Carry Lookahead

24-Bit Adder Using One Carry Lookahead

F100180
 High-Speed 6-Bit Adder

F100K ECL Product

Description

The F100180 is a high-speed 6-bit adder capable of performing a full 6-bit addition of two operands. Inputs for the adder are active-LOW Carry, Operand A, and Operand B; outputs are Function, active-LOW Carry Generate, and active-LOW Carry Propagate. When used with the F100179 Full Carry Lookahead as a second order lookahead block, the F100180 provides high-speed addition of very long words.

Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{5}$	Operand A Inputs
$\mathrm{B}_{0}-\mathrm{B}_{5}$	Operand B Inputs
$\overline{\mathrm{C}_{n}}$	Carry Input (Active LOW)
$\overline{\mathrm{G}}$	Carry Generate Output (Active LOW)
$\overline{\mathrm{P}}$	Carry Propagate Output (Active LOW)
$\mathrm{F}_{0}-\mathrm{F}_{5}$	Function Outputs

Logic Symbol

Connection Diagrams
24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Logic Diagram

Logic Equations

$P_{i}=A_{i} \oplus B_{i}$
$\mathrm{G}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}} \mathrm{B}_{\mathrm{i}}$
$i=0,1,2,3,4,5$
$\mathrm{F}_{0}=\mathrm{P}_{0} \oplus \mathrm{C}_{\mathrm{n}}$
$F_{1}=P_{1} \oplus\left(G_{0}+P_{0} C_{n}\right)$
$F_{2}=P_{2} \oplus\left(G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{n}\right)$
$F_{3}=P_{3} \oplus\left(G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{n}\right)$
$F_{4}=P_{4} \oplus\left(G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} C_{n}\right)$
$F_{5}=P_{5} \oplus\left(G_{4}+P_{4} G_{3}+P_{4} P_{3} G_{2}+P_{4} P_{3} P_{2} G_{1}+P_{4} P_{3} P_{2} P_{1} G_{0}+P_{4} P_{3} P_{2} P_{1} P_{0} C_{n}\right)$
$\overline{\mathrm{P}}=\overline{\mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4} \mathrm{P}_{5}}$
$\bar{G}=\overline{G_{5}+P_{5} G_{4}+P_{5} P_{4} G_{3}+P_{5} P_{4} P_{3} G_{2}+P_{5} P_{4} P_{3} P_{2} G_{1}+P_{5} P_{4} P_{3} P_{2} P_{1} G_{0}}$

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IIH	Input HIGH Current All Inputs			220	$\mu \mathrm{~A}$	$\mathrm{VIN}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{max})}$
IEE	Power Supply Current	-290	-195	-135	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	TC $=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \text { tph } \end{aligned}$	Propagation Delay A_{n}, B_{n} to F_{n}	1.10	4.70	1.10	4.60	1.10	4.70	ns	Figures 1 and 2
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay A_{n}, B_{n} to \bar{P}	1.00	3.00	1.00	3.00	1.00	3.30	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay A_{n}, B_{n} to \bar{G}	1.40	3.90	1.40	3.80	1.40	3.90	ns	
tpLH tpHL	Propagation Delay \bar{C}_{n} to F_{n}	1.10	4.00	1.10	3.90	1.10	4.00	ns	
$\begin{aligned} & \text { t tolh } \\ & \text { t } \mathrm{th} \mathrm{~L} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.40	0.45	2.30	0.45	2.40	ns	

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay A_{n}, B_{n} to F_{n}	1.10	4.50	1.10	4.40	1.10	4.50	ns	Figures 1 and 2
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay A_{n}, B_{n} to \bar{P}	1.00	2.80	1.00	2.80	1.00	3.10	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay A_{n}, B_{n} to \bar{G}	1.40	3.70	1.40	3.60	1.40	3.70	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay \bar{C}_{n} to F_{n}	1.10	3.80	1.10	3.70	1.10	3.80	ns	
$\begin{aligned} & \text { t TtL } \\ & \text { t } \mathrm{t} H \mathrm{~L} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.30	0.45	2.20	0.45	2.30	ns	

[^25]Fig. 1 AC Test Circuit

Notes
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $V_{C C}$ and $V_{E E}$
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol
Fig. 2 Propagation Delay and Transition Times

F100181

4-Bit Binary/BCD Arithmetic Logic Unit

F100K ECL Product

Description

The F100181 performs eight logic operations and eight arithmetic operations on a pair of 4 -bit words. The operating mode is determined by signals applied to the Select $\left(S_{n}\right)$ inputs, as shown in the Function Select table. In addition to performing binary arithmetic, the circuit contains the necessary correction logic to perform BCD addition and subtraction. Output latches are provided to reduce overall package count and increase system operating speed. When the latches are not required, leaving the Enable $\overline{(E)}$ input LOW makes the latches transparent.

The circuit uses internal lookahead carry to minimize delay to the F_{n} outputs and to the ripple Carry output, \bar{C}_{n+4}. Group Carry Lookahead Propagate (\bar{P}) and Generate ($\overline{\mathrm{G})}$ outputs are also provided, which are independent of the Carry input \bar{C}_{n}. The \bar{P} output goes LOW when a plus operation produces fifteen (nine for $B C D$) or when a minus operation produces zero. Similarly, \bar{G} goes LOW when the sum of A and B is greater than fifteen (nine for BCD) in a plus mode, or when their difference is greater than zero in a minus mode.

Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{3}$	Word A Operand Inputs
$\mathrm{B}_{0}-\mathrm{B}_{3}$	Word B Operand Inputs
$\overline{\mathrm{C}}_{\mathrm{n}}$	Carry Input (Active LOW)
$\frac{\mathrm{S}_{0}-\mathrm{S}_{3}}{\overline{\mathrm{E}}}$	Function Select Inputs
$\overline{\mathrm{P}}$	Latch Enable Input (Active LOW)
$\overline{\mathrm{G}}$	Carry Lookahead Propagate Output $\overline{\mathrm{C}}_{\mathrm{n}}+4$ $\mathrm{~F}_{0}-\mathrm{F}_{3}$
	Cartive Low)
	(Active LOW)
	Carry Output
Function Outputs	

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	$6 Y$	DC
Flatpak	$4 Q$	FC

Logic Symbol

Logic Diagram

F100181

Block Diagram

Functional Description

There are two modes of operation: Arithmetic and Logic. The S_{3} input controls these two modes:
$S_{3}=$ LOW for Arithmetic mode
$\mathrm{S}_{3}=$ HIGH for Logic mode
The arithmetic mode includes decimal and binary arithmetic operations. S_{2} is the control input: with $\mathrm{S}_{3}=\mathrm{LOW}$,
$\mathrm{S}_{2}=$ LOW for Decimal Arithmetic (BCD)
$\mathrm{S}_{2}=$ HIGH for Binary Arithmetic

Decimal Arithmetic Operation

Addition

$F=A$ plus B plus C_{n}. Arguments A and B are directly applied to the inputs. The circuit automatically performs the " +6 " and " -6 " logic correction internally.

Subtraction

$F=A$ minus B plus C_{n}. Arguments A and B are directly applied to the inputs. The circuit automatically takes the nines complement of B and adds " +6 ". A " -6 " adjustment is made if the subtraction algorithm calls for it. If there is a carry out, the result is a positive number. With no carry out, the result is a negative number expressed in its nines complement form. Therefore, to perform a
subtraction with results in the tens complement form, an initial carry should be forced into the lowest order bit, i.e., set $\overline{\mathrm{C}}_{\mathrm{n}}=$ LOW.
$($ tens complement of $B)=($ nines complement of $B)+1$
$F=B$ minus A plus C_{n}. Operation is similar to and results are the same as $F=A$ minus B plus C_{n}.

Binary Arithmetic Operation

Addition

$F=A$ minus B plus C_{n}. Arguments A and B are directly applied to the inputs.

Subtraction

$F=A$ minus B plus C_{n}. Arguments A and B are directly applied to the inputs. The circuit automatically takes the ones complement of B (by inverting B internally). If there is a carry out the result is a positive number. With no carry out, the result is a negative number expressed in its ones complement form. Therefore, to perform a subtraction with results in the twos complement form, an initial carry should be forced into the lowest order bit, i.e., set $\overline{\mathrm{C}}_{\mathrm{n}}=$ LOW.
$($ twos complement of $B)=($ ones complement of $B)+1$
$F=B$ minus A plus C_{n}. Operation is similar and results are the same as $F=A$ minus B plus C_{n}.

F100181

Function Table

				F_{n} Function	$\begin{gathered} G_{n} \\ (n=0 \text { to } 3) \end{gathered}$	$\begin{gathered} P_{n} \\ (n=0 \text { to } 3) \end{gathered}$	Outputs		
S3	S2	S1	So		Internal Signals		\bar{C}_{n+4}	$\overline{\mathbf{G}}$	$\overline{\mathbf{P}}$
L	L	L	L	$F_{n}=A$ plus B plus $C_{n}(B C D)$	$A_{n} D_{n}$	$A_{n}+D_{n}$	\bar{C}_{n+4}	$\overline{\mathrm{G}}$	$\overline{\mathrm{P}}$
L	L	L	H	$F_{n}=A$ minus B plus C_{n} (BCD)	$A_{n} \bar{B}_{n}$	$A_{n}+\bar{B}_{n}$	\bar{C}_{n+4}	$\overline{\mathrm{G}}$	\bar{P}
L	L	H	L	$F_{n}=B$ minus A plus C_{n} (BCD)	$\bar{A}_{n} B_{n}$	$\bar{A}_{n}+B_{n}$	\bar{C}_{n+4}	$\overline{\mathrm{G}}$	\bar{P}
L	L	H	H	$F_{n}=0$ minus B plus $C_{n}(B C D)$	L	\bar{B}	\bar{C}_{n+4}	H	\bar{P}
L	H	L	L	$F_{n}=A$ plus B plus C_{n} (Binary)	$\mathrm{A}_{n} \mathrm{Bn}_{n}$	$A_{n}+B_{n}$	\bar{C}_{n+4}	$\overline{\mathrm{G}}$	\bar{P}
L	H	L	H	$F_{n}=A$ minus B plus C_{n} (Binary)	$\mathrm{A}_{n} \bar{B}_{n}$	$A_{n}+\bar{B}_{n}$	\bar{C}_{n+4}	$\overline{\mathrm{G}}$	P
L	H	H	L	$F_{n}=B$ minus A plus C_{n} (Binary)	$\bar{A}_{n} B_{n}$	$\bar{A}_{n}+B_{n}$	\bar{C}_{n+4}	$\overline{\mathrm{G}}$	\bar{P}
L	H	H	H	$F_{n}=0$ minus B plus C_{n} (Binary)	L	\bar{B}_{n}	\bar{C}_{n+4}	H	P
H	L	L	L	$F_{n}=A_{n} B_{n}+\bar{A}_{n} \bar{B}_{n}$	$\mathrm{A}_{n} \mathrm{Bn}_{n}$	$A_{n}+B_{n}$	\bar{C}_{n+4}	$\overline{\mathrm{G}}$	P
H	L	L	H	$F_{n}=A_{n} \bar{B}_{n}+\bar{A}_{n} B_{n}$	$A_{n} \bar{B}_{n}$	$A_{n}+\bar{B}_{n}$	\bar{C}_{n+4}	$\overline{\mathrm{G}}$	$\overline{\mathrm{P}}$
H	L	H	L	$F_{n}=A_{n}+B_{n}$	A_{n}	\bar{B}_{n}	\bar{C}_{n+4}	$\bar{G}_{\text {x }}$	P
H	L	H	H	$F_{n}=A_{n}$	A_{n}	H	\bar{C}_{n+4}	$\overline{\mathrm{G}}$	L
H	H	L	L	$\mathrm{F}_{\mathrm{n}}=\bar{B}_{\mathrm{n}}$	L	B_{n}	L	H	\bar{P}
H	H	L	H	$\mathrm{F}_{\mathrm{n}}=\mathrm{B}_{\mathrm{n}}$	L	$\overline{\mathrm{B}}$ n	L	H	\bar{P}
H	H	H	L	$F_{n}=A_{n} B_{n}$	L	$\bar{A}_{n}+\bar{B}_{n}$	L	H	$\overline{\mathrm{P}}$
H	H	H	H	$\mathrm{F}_{\mathrm{n}}=\mathrm{LOW}$	L	H	L	H	L

H = HIGH Voltage Level
L = LOW Voltage Level
$\overline{\bar{P}}=\overline{P_{0}}+\bar{P}_{1}+\overline{P_{2}}+\overline{P_{3}}$
$\bar{G}=\bar{G}_{3}+P_{3} G_{2}+P_{3} P_{2} P_{1}+P_{3} P_{2} P_{1} G_{0}$
$\overline{\mathrm{C}}_{\mathrm{n}+4}=\overline{\mathrm{G}} \cdot\left(\overline{\mathrm{P}}+\overline{\mathrm{C}}_{\mathrm{n}}\right)$
Arithmetic Operations
$\mathrm{F}_{\mathrm{n}}=\overline{\mathrm{G}_{\mathrm{n}}+\overline{\mathrm{P}_{\mathrm{n}}}} \oplus \mathrm{C}_{\mathrm{i}} \quad \mathrm{i}=0$ to 3
Logic Operations
$F_{n}=G_{n}+\bar{P}_{n}$

Internal Equations for Carry Lookahead

$$
\begin{aligned}
& (i \neq 0,1,2,3) \\
& C_{0}=C_{n}+S_{3} \\
& C_{1}=G_{0}+P_{0} C_{n}+S_{3} \\
& C_{2}=G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{n}+S_{3} \\
& C_{3}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{n}+S_{3}
\end{aligned}
$$

Internal Equations for +6 Logic
$\mathrm{D}_{0}=\mathrm{B}_{0}$
$D_{1}=\bar{B}_{1}$
$D_{2}=B_{1} B_{2}+\bar{B}_{1} \bar{B}_{2}$
$D_{3}=B_{1}+B_{2}+B_{3}$
$\bar{G}_{x}=\bar{G}_{3} P_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}$

F100181

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IIH	Input HIGH Current S_{n}, \bar{E} All Others			$\begin{aligned} & 350 \\ & 250 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}($ max $)$
Iee	Power Supply Current	-300	-210	-130	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{VCC}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay A_{n}, B_{n} to F_{n}	2.00	6.90	2.10	6.80	2.30	7.40	ns	Figures 1 and 2
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay A_{n}, B_{n} to \bar{P}, \bar{G}	1.40	4.70	1.40	4.40	1.40	4.70	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay A_{n}, B_{n} to \bar{C}_{n+4}	2.00	6.50	2.00	6.50	2.10	6.80	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$	Propagation Delay \bar{C}_{n} to F_{n}	1.60	5.10	1.60	5.20	1.60	5.50	ns	Figures 1 and 2
$\begin{aligned} & \text { tpLH } \\ & \text { tphiL } \end{aligned}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{n}}$ to $\overline{\mathrm{C}}_{\mathrm{n}}+4$	1.30	3.00	1.40	3.00	1.40	3.10	ns	
tpLH tphL	Propagation Delay S_{n} to F_{n}	1.40	8.80	1.50	8.60	1.50	9.00	ns	Figures 1 and 2
$\begin{aligned} & \text { tpLH } \\ & \text { tphi } \end{aligned}$	Propagation Delay S_{n} to \bar{P}, \bar{G}	1.70	7.40	2.00	5.90	2.00	6.50	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tphi } \end{aligned}$	Propagation Delay S_{n} to \bar{C}_{n+4}	2.70	10.10	2.80	8.50	2.90	8.70	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tph } \\ & \hline \end{aligned}$	Propagation Delay \bar{E} to F_{n}	1.00	3.40	0.90	3.60	1.10	3.80	ns	Figures 1 and 2
$\begin{aligned} & \text { tTLH } \\ & \text { t }{ }^{2} H L \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.70	0.45	2.60	0.45	2.70	ns	Figures 1 and 2
$\mathrm{t}_{\text {s }}$	Setup Time A_{n}, B_{n} S_{n} \bar{C}_{n}	$\begin{array}{\|l} 7.60 \\ 8.70 \\ 4.80 \\ \hline \end{array}$		$\begin{array}{\|l} 7.60 \\ 8.50 \\ 5.00 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 8.10 \\ 9.60 \\ 5.30 \\ \hline \end{array}$		ns	Figure 3
th	Hold Time A_{n}, B_{n} S_{n} \bar{C}_{n}	$\begin{array}{\|l\|} \hline 0.10 \\ 0.60 \\ 0.60 \\ \hline \end{array}$		$\begin{array}{\|l} 0.10 \\ 0.60 \\ 0.60 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 0.10 \\ 0.60 \\ 0.60 \\ \hline \end{array}$		ns	
$t_{p w}(\mathrm{~L})$	Pulse Width LOW E	2.00		2.00		2.00		ns	Figure 2

*See Family Characteristics for other dc specifications.

F100181

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \text { tph } \end{aligned}$	Propagation Delay A_{n}, B_{n} to F_{n}	2.00	6.70	2.10	6.60	2.30	7.20	ns	Figures 1 and 2
$\begin{aligned} & \text { tpLH } \\ & \text { tph } \end{aligned}$	Propagation Delay A_{n}, B_{n} to \bar{P}, \bar{G}	1.40	4.50	1.40	4.20	1.40	4.50	ns	
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tphL } \\ & \hline \end{aligned}$	Propagation Delay A_{n}, B_{n} to \bar{C}_{n+4}	2.00	6.30	2.00	6.30	2.10	6.60	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay \bar{C}_{n} to F_{n}	1.60	4.90	1.60	5.00	1.60	5.30	ns	Figures 1 and 2
$\begin{aligned} & \text { tpLH } \\ & \text { tph } \end{aligned}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{n}}$ to $\overline{\mathrm{C}}_{\mathrm{n}}+4$	1.30	2.80	1.40	2.80	1.40	2.90	ns	
tpLH tPHL	Propagation Delay S_{n} to F_{n}	1.40	8.60	1.50	8.40	1.50	8.80	ns	Figures 1 and 2
tpLH tPHL	Propagation Delay S_{n} to \bar{P}, \bar{G}	1.70	7.20	2.00	5.70	2.00	6.30	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \\ & \hline \end{aligned}$	Propagation Delay S_{n} to \bar{C}_{n+4}	2.70	9.90	2.80	8.30	2.90	8.50	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{E}}$ to F_{n}	1.00	3.20	0.90	3.40	1.10	3.60	ns	
$\begin{aligned} & \text { tTLH } \\ & \text { t } \mathrm{thL} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.60	0.45	2.50	0.45	2.60	ns	Figures 1 and 2
$\mathrm{t}_{\text {s }}$	Setup Time A_{n}, B_{n} S_{n} C_{n}	$\begin{aligned} & 7.50 \\ & 8.60 \\ & 4.70 \end{aligned}$		$\begin{aligned} & 7.50 \\ & 8.40 \\ & 4.90 \end{aligned}$		$\begin{array}{\|l\|} \hline 8.00 \\ 9.50 \\ 5.20 \\ \hline \end{array}$		ns	Figure 3
t. n	Hold Time A_{n}, B_{n} S_{n} \bar{C}_{n}	$\begin{array}{\|r} 0 \\ 0.50 \\ 0.50 \\ \hline \end{array}$		$\begin{array}{r} 0 \\ 0.50 \\ 0.50 \\ \hline \end{array}$		$\begin{array}{\|r} 0 \\ 0.50 \\ 0.50 \\ \hline \end{array}$		ns	
$t_{\text {pw }}(\mathrm{L})$	$\frac{\text { Pulse Width LOW }}{\mathrm{E}}$	2.00		2.00		2.00		ns	Figure 2

Fig. 1 AC Test Circuit

Notes

$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines $R_{T}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

Fig. 2 Enable Timing

Fig. 3 Setup and Hold Times

Notes

t_{s} is the minimum time before the transition of the enable that information must be present at the data input
t_{h} is the minimum time after the transition of the enable that information must remain unchanged at the data input

F100182 9-Bit Wallace Tree Adder

F100K ECL Product

Description

The F100182 is a 9-bit Wallace tree adder. It is designed to assist in performing high-speed hardware multiplication. The device is designed to add 9-bits of data 1-bit-slice wide and handle the carry-ins from the previous slices. The F100182 is easily expanded and still maintains four levels of delay regardless of input string length. In conjunction with the F100183 Recode Multiplier, the F100179 Carry Lookahead, and the F100180 High-speed Adder, the F100182 assists in performing parallel multiplication of two signed numbers to produce a signed twos complement product. See F100183 data sheet for additional information.

Pin Names

$\mathrm{D}_{0}-\mathrm{D}_{8}$	Data Inputs
$\mathrm{Cl}_{1}-\mathrm{Cl}_{3}, \mathrm{Cl}_{\mathrm{n}-2}$	Carry Inputs
$\mathrm{CO}_{1}-\mathrm{CO}_{3}, \mathrm{CO}_{n+2}$	Carry Outputs
PS	Partial Sum Output
PC	Partial Carry Output

Logic Symbol

$V_{c c}=\operatorname{Pin} 6(9)$
$V_{C C A}=\operatorname{Pin} 7(10)$
$V_{E E}=\operatorname{Pin} 18$ (21)
NC = Pins 20 (23), 21 (24)
() = Flatpak
Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	$6 Y$	DC
Flatpak	$4 Q$	FC

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Logic Diagram

Adder Logic Diagram

Adder Truth Table

Inputs			Outputs	
A	B	C	S	CO
L	L	L	L	L
L	L	H	H	L
L	H	L	H	L
L	H	H	L	H
H	L	L	H	L
H	L	H	L	H
H	H	L	L	H
H	H	H	H	H

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$.

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
lin	Input HIGH Current $\mathrm{Cl}_{1}-\mathrm{Cl}_{3}, \mathrm{Cl}_{n-2}$ $\mathrm{D}_{1}, \mathrm{D}_{3}, \mathrm{D}_{4}, \mathrm{D}_{5}, \mathrm{D}_{6}, \mathrm{D}_{8}$			300	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ max $)$
	$\mathrm{D}_{0}, \mathrm{D}_{2}, \mathrm{D}_{7}$			250		
IEE	Power Supply Current	-260	-180	-125	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}^{\prime}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$T_{C}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tPLH tpHL	Propagation Delay D_{n} to $\mathrm{CO}_{\mathrm{n}}+2$	1.40	4.50	1.40	4.50	1.50	4.70	ns	Figures 1 and 2
tpLH tpHL	Propagation Delay D_{n} to CO_{1}	1.30	4.80	1.30	4.70	1.50	5.00	ns	
tpLH tPHL	Propagation Delay D_{n} to CO_{2}	2.20	6.20	2.20	6.10	2.30	6.40	ns	
tpLH tPHL	Propagation Delay D_{n} to CO_{3}	1.30	4.70	1.40	4.70	1.50	5.00	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay D_{n} to PS, PC	2.50	7.20	2.50	7.20	2.70	7.40	ns	
tpLH tphL	Propagation Delay $\mathrm{Cl}_{\mathrm{n}-2}, \mathrm{Cl}_{1}$ to CO_{2}	1.00	3.50	1.00	3.40	1.10	3.70	ns	Figures 1 and 2
tpLH tpHL	Propagation Delay $\mathrm{Cl}_{\mathrm{n}-2}, \mathrm{Cl}_{1}$ to PS, PC	1.50	4.50	1.50	4.45	1.60	4.60	ns	
tpLH tpHL	Propagation Delay $\mathrm{Cl}_{3}, \mathrm{Cl}_{2}$ to PS, PC	0.80	3.30	0.80	3.20	0.90	3.60	ns	
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.60	0.45	1.60	0.45	1.60	ns	Figures 1 and 2

[^26]
F100182

Flatpak AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tpLH tpHL	Propagation Delay D_{n} to $\mathrm{CO}_{\mathrm{n}+2}$	1.40	4.30	1.40	4.30	1.50	4.50	ns	Figures 1 and 2
tpLH tPHL	Propagation Delay D_{n} to CO_{1}	1.30	4.60	1.30	4.50	1.50	4.80	ns	
tpLH tpHL	Propagation Delay D_{n} to CO_{2}	2.20	6.00	2.20	5.90	2.30	6.20	ns	
tpLH tPHL	Propagation Delay D_{n} to CO_{3}	1.30	4.50	1.40	4.50	1.50	4.80	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay D_{n} to PS, PC	2.50	7.00	2.50	7.00	2.70	7.20	ns	
tpLH tpHL	Propagation Delay $\mathrm{Cl}_{\mathrm{n}-2,} \mathrm{Cl}_{1}$ to CO_{2}	1.00	3.30	1.00	3.20	1.10	3.50	ns	Figures 1 and 2
tpLH tpHL	Propagation Delay $\mathrm{Cl}_{n-2}, \mathrm{Cl}_{1}$ to PS, PC	1.50	4.30	1.50	4.25	1.60	4.40	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay $\mathrm{Cl}_{3}, \mathrm{Cl}_{2}$ to PS, PC	0.80	3.10	0.80	3.00	0.90	3.40	ns	
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.50	0.45	1.50	0.45	1.50	ns	Figures 1 and 2

Fig. 1 AC Test Circuit

Fig. 2 Propagation Delay and Transition Times

Application

Typical Horizontal interconnection of 9-Bit Wallace Tree Adders F100182

16-Bit Vertical Expansion of Wallace Tree Adders

F100183
 2×8-Bit
 Recode Multiplier

F100K ECL Product

Description

The F100183 is a 2×8-bit recode multiplier designed to perform high-speed hardware multiplication. In conjunction with the F100182 Wallace Tree Adder, the F100179 Carry Lookahead, and the F100180 High-speed Adder, the F100183 performs parallel multiplication of two signed numbers in twos complement form to produce a signed twos complement product.

Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{2}$	Multiplier (Recode) Inputs
$\mathrm{B}_{0}-\mathrm{B}_{8}$	Multiplicand Inputs
$\mathrm{F}_{0}-\mathrm{F}_{7}$	Partial Product Outputs
\bar{F}_{8}	Sign Extension Output

Logic Symbol

$$
\begin{aligned}
& \mathrm{VCC}_{\mathrm{CC}}=\operatorname{Pin} 6(9) \\
& \mathrm{V}_{\mathrm{CCA}}=\operatorname{Pin} 7(10) \\
& \mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 18(21) \\
& (\quad)=\text { Flatpak }
\end{aligned}
$$

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	$6 Y$	DC
Flatpak	$4 Q$	FC

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

F100183

Logic Diagram

Truth Table

Inputs			Recode Mode	Outputs								
A2	A1	A0		\bar{F}_{8}	F7	F6	F5	F_{4}	F_{3}	F2	F1	Fo
L	L	L	0	H	L	L	L	L	L	L	L	L
L	L	H	+1	\bar{B}_{8}	B_{8}	B_{7}	B_{6}	B5	B_{4}	B_{3}	B_{2}	B_{1}
L	H	L	+1	\bar{B}_{8}	B_{8}	B_{7}	B6	B5	B_{4}	B3	B_{2}	B_{1}
L	H	H	+2	\bar{B}_{8}	B_{7}	B6	B5	B4	B_{3}	B_{2}	B_{1}	B0
H	L	L	-2	B_{8}	$\overline{B_{7}}$	\bar{B}_{6}	$\overline{\mathrm{B}} 5$	$\overline{B_{4}}$	$\overline{B_{3}}$	$\overline{B_{2}}$	$\overline{B_{1}}$	$\overline{B_{0}}$
H	L	H	-1	B8	$\overline{\mathrm{B}}_{8}$	$\overline{B_{7}}$	\bar{B}_{6}	$\overline{\mathrm{B}} 5$	$\overline{\mathrm{B}}_{4}$	$\overline{\bar{B}_{3}}$	$\overline{\mathrm{B}} 2$	$\overline{B_{1}}$
H	H	L	-1	B 8	$\overline{\mathrm{B}}_{8}$	$\overline{\mathrm{B}} 7$	\bar{B}_{6}	\bar{B}_{5}	$\overline{\mathrm{B}}_{4}$	\bar{B}_{3}	$\overline{\mathrm{B}} 2$	$\overline{B_{1}}$
H	H	H	0	H	L	L	L	L	L	L	L	L

$H=H I G H$ Voltage Level
L = LOW Voltage Level
DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\mathrm{IIH}_{\mathrm{H}}$	Input HIGH Current					
	$\mathrm{B}_{0}-\mathrm{B}_{8}$			215		
	$\mathrm{~A}_{0}$			215		
	$\mathrm{~A}_{1}$			285	A	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\max)}$
	A_{2}			310		
$I_{\text {EE }}$	Power Supply Current	-250	-170	-115	mA	Inputs Open

Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay $\mathrm{A}_{0}-\mathrm{A}_{2}$ to $\mathrm{F}_{0}-\mathrm{F}_{7}$	1.10	3.90	1.10	3.80	1.10	4.20	ns	Figure 1 and 2
tpLH tpHL	Propagation Delay $\mathrm{A}_{0}-\mathrm{A}_{2}$ to $\overline{\mathrm{F}}_{8}$	0.90	3.20	1.00	3.10	1.00	3.60	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay $\mathrm{B}_{0}-\mathrm{B}_{8}$ to $\mathrm{F}_{0}-\mathrm{F}_{7}$	0.80	2.20	0.90	2.15	0.90	2.50	ns	Figure 1 and 2
tpLH tPHL	Propagation Delay B_{8} to F_{8}	0.80	2.00	0.90	2.00	0.90	2.50	ns	
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.50	0.45	2.40	0.45	2.60	ns	Figures 1 and 2

[^27]| Symbol | Characteristic | $\mathrm{TC}=0^{\circ} \mathrm{C}$ | | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ | | $\mathrm{T}^{\prime} \mathrm{C}=+85^{\circ} \mathrm{C}$ | | Unit | Condition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Min | Max | Min | Max | Min | Max | | |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\mathrm{A}_{0}-\mathrm{A}_{2}$ to $\mathrm{F}_{0}-\mathrm{F}_{7}$ | 1.10 | 3.70 | 1.10 | 3.60 | 1.10 | 4.00 | ns | Figure 1 and 2 |
| tpLH
 tpHL | Propagation Delay $\mathrm{A}_{0}-\mathrm{A}_{2} \text { to } \overline{\mathrm{F}}_{8}$ | 0.90 | 3.00 | 1.00 | 2.90 | 1.00 | 3.40 | ns | |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\mathrm{B}_{0}-\mathrm{B}_{8}$ to $\mathrm{F}_{0}-\mathrm{F}_{7}$ | 0.80 | 2.00 | 0.90 | 1.95 | 0.90 | 2.30 | ns | Figure 1 and 2 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay B_{8} to F_{8} | 0.80 | 1.80 | 0.90 | 1.80 | 0.90 | 2.30 | ns | |
| t t LH
 tTHL | Transition Time 20% to $80 \%, 80 \%$ to 20% | 0.45 | 2.40 | 0.45 | 2.30 | 0.45 | 2.50 | ns | Figures 1 and 2 |

Fig. 1 AC Test Circuit

Fig. 2 Propagation Delay and Transition Times

Application

F100183 is a 2×8-bit recode multiplier that performs parallel multiplication using twos complement arithmetic. In multiplying, the multiplier is partitioned into recode groups, then each recode group operates on the multiplicand to provide a partial product at the same time. The F100183, 2×8-bit recode multiplier provides partial products in 3.6 ns .

The F100182, 9-Bit Wallace Tree Adder combines the partial products to obtain the partial sum and partial carries in an additional 10.7 ns . Then the Carry Look-
ahead generator and 6-bit adder combine the results of a 16×16-bit multiply for a total of 24.3 ns . The propagation delays and package count for implementing various size multipliers are listed in Tables 1 and 2.

Multiplication of twos complement binary numbers is accomplished by first obtaining all the partial products. Then the weighted partial products are added together to yield the final result. In the Wallace Tree method of multiplication the sign bit is treated the same as the rest of the bits to obtain a signed result.

F100183

Table 1 Propagation Delay Summation*

Array Size	Recode Multiplier 100183	$\begin{gathered} \text { Wallace } \\ \text { Tree Adder } \\ 100182 \\ \hline \end{gathered}$	High-speed Adder 100180	Carry Lookahead 100179		Total (Max) Delay
16×16	3.6	10.7	7.3	2.7	$=$	24.3 ns
17×17	4	21.4	4	$\sqrt{4}$	$=$	$35.0 \mathrm{~ns}$
$\underbrace{25 \times 25}_{48 \times 48}$				$\underset{5}{5.4}$	$=$ $=$	
	\downarrow	21.4	\downarrow		$=$ $=$	
73×73	3.6	32.1	7.3	10.8	=	53.8 ns

Table 2 Package Count

	$\mathbf{1 0 0 1 0 2}$	100117	100183	100182	100180	100179	
16×16	6	16	32	6	2	$=$	Total
18×18	7	27	38	6	2	$=$	70
24×24	9	36	60	8	2	$=$	115
32×32	11	64	96	11	4	$=$	186
36×36	13	80	116	12	4	$=$	225
64×64	24	256	328	22	6	$=$	634

*Worst case, Flatpak

For a quick review of the twos complement number format see Table 3. Note that subtraction is accomplished by adding the negative number. An example of changing from a positive number to a negative number is shown.

1011 negative number-5

0100 bits inverted

+0001	add one
0101	Results 5

Table 3 Twos Complement Format

Sign Bit	$\mathbf{2 2}$	$\mathbf{2 1}$	$\mathbf{2 0}$	Magnitude
Number				
0	1	1	1	+7
0	1	1	0	+6
0	1	0	1	+5
0	1	0	0	+4
0	0	1	1	+3
0	0	1	0	+2
0	0	0	1	+1
0	0	0	0	0
1	1	1	1	-1
1	1	1	0	-2
1	1	0	1	-3
1	1	0	0	-4
1	0	1	1	-5
1	0	1	0	-6
1	0	0	1	-7
1	0	0	0	-8

Multiplication Algorithm

In the multiplication algorithm used, the multiplier ($Y_{n} \ldots Y_{0}$) is partitioned into recode groups and each recode group operates on the multiplicand ($X_{n} \ldots X_{0}$) as in Figure 4. The F100183, 2×8-bit recode multiplier partitions the multiplier $\left(X_{n} \ldots X_{0}\right)$ into groups of eight and the multiplicand ($Y_{n} \ldots Y_{0}$) into groups of two. Each recode group is two bits wide but requires three bits to determine the partial products. Table 4 lists the significance of the various recode groups. The partial product is $\pm 0, \pm$ multiplicand, or \pm two times the multiplicand. A

Table 4 Recode Product

Recode Group		Recode		
$\mathbf{Y}_{\mathbf{i}+\mathbf{1}}$	$\mathbf{Y}_{\mathbf{i}}$	$\mathbf{Y}_{\mathbf{i}-\mathbf{1}}$	Value	Partial Product
0	0	0	+0	Add zero
0	0	1	+1	Add multiplicand 0
0	1	0	+1	Add multiplicand
+2	1	Add twice the multiplicand Subtract twice the		
1	0	0	-2	multiplicand Subtract the
1	0	1	-1	multiplicand Subtract the multiplicand
1	1	0	-1	-0

forced zero is required to establish the least significant bit of the first recode group. By connecting recode multipliers in parallel the partial products are available at the same time. The weighted partial products ($A_{n} \ldots A_{0}$, $\mathrm{B}_{\mathrm{n}} \ldots \mathrm{B}_{0}$)... are added together using F100182, 9-bit Wallace Tree Adders. The results of the partial sum and partial carry are combined together using Carry Lookahead generators and 6-bit adders. An example of using recode multiplication is shown in Figure 3: multiplier (11710) 01110101 times multiplicand (10510) 01101001. The first recode group 010 requires adding the multiplicand; the second recode group 010 also requires adding the multiplicand; the third group 110 requires subtracting the multiplicand (the same as inverting each digit and adding 1); the fourth group 011 requires adding twice the multiplicand. Combining the results of four groups, 1228510, we have the correct answer.

Fig. 3 Recode Multiplication Example

Forced Zero		
01101001		105
01110101	$=$	117
\sim		735
-1 +1		105
+2 +1		105
0000000001101001	$(+1)$	12285
00000001101001	$(+1)$	
111110010111	(-1)	
0011010010	$(+2)$	
0010111111111101	$=$	12285

Hardware Implementation

For the hardware implementation of the F100183 recode multiplier the sign bit is connected to the B8 input, and B_{7} through B_{0} are the magnitude bits. To extend the word length greater than eight bits, the B_{0} and B_{8} inputs of adjacent devices are connected together (see Figure 7). The device outputs F_{0} through F_{7} are used as the partial products; these correspond to A_{0} through A_{7}, or A_{8} through A_{15}, or B_{0} through B_{7} etc. To reduce the hardware, the \bar{F}_{8} bit (A_{16} in Figure 7) is used as the sign bit of the partial product. The sign bits are extended by using hardware wired logic " 1 s ." The ones are located in front of each partial product with an extra " 1 " at the sign bit of the first partial product as in Figure 4. The logic "1s" are wired as inputs into the Wallace Tree Adders as shown in Figure 6. If the recode group requires the multiplicand to be added, then the F100183 outputs

Fig. 416×16 Multiply

Sign Bit
the correct partial products to be added. But when the recode group requires that the multiplicand be subtracted then the F100183 outputs the ones complement. External gates are required to generate a " 1 " to be added to the ones complement to complete the twos complement for the partial product (Figure 7). These external gates generate the rounding bits, $\mathrm{K}_{0} \ldots \mathrm{~K}_{\mathrm{n}}$, which are input to the Wallace Tree Adder. Figures 4, 6 and 7 show the location. An example of multiplication which has the rounding bits and the hardware wired logic "1s" is shown in Figure 5.

The weighted partial products are added together using F100182, 9-bit Wallace Tree Adders as shown in Figure 6. The output is a partial sum and partial carry which can be reduced to the final product using Carry Lookahead and 6-bit adders. See Figure 8.

Fig. 5 Example of Multiplication Using Rounding Bits

$\sqrt{101101001}$
Hardware-
wired
Logic ones
$1 / \sqrt{010010110}$
 Rounding Bits (external gates)
$1 / \sqrt{11} 1010010$

F100183

Fig. 6 F100182 Hook-up for 16×16 Multiplier

Fig. 7 F100183 Hook-up for 16×16 Multiplier

Fig. 8 Final Summation for 16×16 Multiplier

F100194
 Quint Duplex Bus Driver (Transceiver)

F100K ECL Product

Description

The F100194 is a quint line driver/receiver capable of transmitting and receiving full duplex digital signals on a high-speed bus line. Because of the current source line driver, two independent messages may be transmitted on one line at the same time.

The F100194 is designed to work with a wide line impedance range by connecting a resistor equal to one half the line impedance between $R F_{n}$ inputs and $V_{E E}$. Each driver is capable of driving a double terminated 50Ω impedance line, where each $R_{B u s}$ is 25Ω.

The Enable (E) can be used to take all the devices off the line by putting all the outputs into a high-impedance state.

Pin Names

E	Enable Input
$\mathrm{Dl}_{a}-\mathrm{Dl}_{e}$	Data Inputs
$\mathrm{RF}_{\mathrm{a}}-\mathrm{RF}_{e}$	Reference Resistor Inputs
$\mathrm{BUS}_{a}-\mathrm{BUS}_{e}$	Bus Inputs/Outputs
$\mathrm{DO}_{a}-\mathrm{DO}_{e}$	Data Outputs

Logic Symbol

$\mathrm{V}_{\mathrm{cc}}=\operatorname{Pin} 6(9)$
$V_{c C A}=\operatorname{Pin} 7(10)$
$\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 18$ (21)
() = Flatpak

Ordering Information (See Section 5)		
Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 Q	FC

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Logic Diagram

DBD $=$ Duplex Bus Driver
$V_{C C}=\operatorname{Pin} 6(9)$
$V_{C C A}=\operatorname{Pin} 7$ (10)
$V_{E E}=\operatorname{Pin} 18(21)$
() = Flatpak

Output Equivalent Circuit

DC Logic Level Description

The bus terminal (i.e., BUSa) can be at any one of three possible levels, VOhbh, Volbl or a third level, depending upon the combination of inputs applied. The third level is between Volbh and Vohbl, typically -800 mV . The inputs DI_{x} and E cause the bus terminal to switch between two levels, Vонвн and Volbh, when the external current source Ics2 is OFF and Vohbl and Volbl when the external current source is ON. The bus output threshold voltage levels caused by applying input threshold voltages $\mathrm{V}_{\mathrm{IL}}(\max)$ and $\mathrm{V}_{\mathrm{IH}(\text { min })}$ at E and DI_{x} are also translated depending upon the state of Ics2. These threshold levels are Vонвнс and Volbнс when Ics2 is OFF and Vohblc and Volblc when Ics2 is ON. These relative voltage levels are shown in Figure 1.

The BUS x_{x} output is an open collector in current sinking configuration. The current Ics1 provided to the RBus resistor depends upon the reference resistor RF_{E} The following applies:
$\mathrm{ICS}_{1}=\frac{800 \mathrm{mV}}{\mathrm{RF}_{\mathrm{F}}} ;$
therefore the voltage swing at the BUS x output is
$\xrightarrow[R]{R}$
$\times 800 \mathrm{mV}$.
RF
Truth Table

Inputs				Outputs
E_{x}	DIX	ICs2	BUSx	DOx
L	L	ON	Volbl	H
L	L	OFF	Volbh	L
L	H	ON	Vohbl	H
L	H	OFF	Vohbi	L
H	X	ON	Vohbl	H
H	X	OFF	Vohbi	L

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
X = Don't Care

Fig. 1 Bus Driver and Receiver Voltage Levels

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
Vонвн	Output HIGH Voltage Bus HIGH	-110		0	mV	$\mathrm{ICs2}=\mathrm{OFF}=0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\max)$ or VIL(min)
Volbh	Output LOW Voltage Bus HIGH	-910		-690	mV		
Vohbl	Output HIGH Voltage Bus LOW	-910		-690	mV	$\mathrm{Ics2}=\mathrm{ON}=32.0 \mathrm{~mA}$	
Volbl	Output LOW Voltage Bus LOW	-1710		-1490	mv		
Vонвнс	Output HIGH Corner Voltage Bus HIGH	-130			mV	$\mathrm{Ics2}=\mathrm{OFF}=0 \mathrm{~mA}$	$\begin{aligned} & V_{I N}=V_{I H}(\min) \\ & \text { or } V_{I L}(\max) \end{aligned}$
Volbhc	Output LOW Corner Voltage Bus HIGH			-670	mV		
Vohblc	Output HIGH Corner Voltage Bus LOW	-930			mV	$\mathrm{ICs2}=\mathrm{ON}=32.0 \mathrm{~mA}$	
Volblc	Output LOW Corner Voltage Bus LOW			-1470	mv		
VIHBH	Input HIGH Voltage Bus HIGH	-245		0	mV	Guaranteed HIGH Signal for BUS ${ }_{x}$ Inputs	$\begin{aligned} & \operatorname{ICs} 1=\mathrm{OFF} \\ & \mathrm{E} \text { or } \mathrm{DI} \mathrm{I}_{\mathrm{x}}=\mathrm{V}_{\mathrm{H}} \end{aligned}$
VILBH	Input LOW Voltage Bus HIGH	-800		-555	mV	Guaranteed LOW Signal for BUS \times Inputs	
VIHBL	Input HIGH Voltage Bus LOW	-1045		-800	mV	Guaranteed HIGH Signal for BUS x Inputs	$\begin{aligned} & \operatorname{Ics2}=O N \\ & E, D I_{x}=V_{I L} \end{aligned}$
VILBL	Input LOW Voltage Bus LOW	-1600		-1355	mV	Guaranteed LOW Signal for BUS \times Inputs	

DC Characteristics (Cont'd.): $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{C C}=\mathrm{V}_{C C A}=\mathrm{GND}$,

$$
\mathrm{TC}=0^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}^{\star}
$$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
IIH	Input HIGH Current Data Enable			$\begin{aligned} & 220 \\ & 440 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ max $)$	
IIL	Input LOW Current Data, Enable	0.5			$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {IL }}($ min $)$	
IIHBH	Input HIGH Current Bus HIGH			60	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{IH}} \mathrm{BH}(\max) \\ & \mathrm{E} \text { or } \mathrm{DI} \mathrm{~V}_{\mathrm{X}}=\mathrm{V}_{\mathbb{H}} \end{aligned}$	$\mathrm{RF}_{\mathrm{F}}=25 \Omega$
IILBH	Input LOW Current Bus HIGH	0.5			$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=V_{I L B H}(\min) \\ & E, D I_{x}=V_{I L} \end{aligned}$	
IIHBL	Input HIGH Current Bus LOW (ICs1)		32	27.6	mA	$\begin{aligned} & \mathrm{VIN}_{\mathrm{N}}=\mathrm{V}_{\mathrm{IHBH}}(\max) \\ & \mathrm{E}, \mathrm{DI}_{\mathrm{x}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	
IILBL	Input LOW Current Bus LOW (ICs1)	36.4	32		mA	$\begin{aligned} & V_{I N}=V_{I L B L}(\min) \\ & E, D I_{X}=V_{I L} \end{aligned}$	
IEE	Power Supply Current	-160	-110	-72	mA	Inputs Open, $\mathrm{R}_{\mathrm{F}}=$ Open	

*See Family Characteristics for other dc specifications.
Ceramic Dual In-line Package AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Data to Bus	0.45	1.50	0.45	1.40	0.45	1.50	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Enable to Bus	0.70	1.90	0.70	1.80	0.70	1.90	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Bus to Output	0.45	1.50	0.45	1.40	0.45	1.40	ns	Figures 4 and 6
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t} T \mathrm{HL} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20% BUSa-BUSe	0.30	1.00	0.30	1.00	0.30	1.00	ns	Figures 3 and 5
$\begin{aligned} & \text { tTLH } \\ & \text { t THL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20% $\mathrm{DO}_{\mathrm{a}}-\mathrm{DO}_{\mathrm{e}}$	0.45	1.60	0.45	1.50	0.45	1.60	ns	Figures 4 and 6

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		$T^{\prime} \mathrm{C}=+25^{\circ} \mathrm{C}$		$\mathrm{T}^{\text {C }}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Data to Bus	0.45	1.30	0.45	1.20	0.45	1.30	ns	Figures 3 and 5
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Enable to Bus	0.70	1.70	0.70	1.60	0.70	1.70	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Bus to Output	0.45	1.30	0.45	1.20	0.45	1.20	ns	Figures 4 and 6
t TLH tTHL	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ & \text { BUS }{ }_{\text {a }} \text {-BUS } \end{aligned}$	0.30	0.90	0.30	0.90	0.30	0.90	ns	Figures 3 and 5
t TLH tTHL	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ & \mathrm{DO}_{\mathrm{a}}-\mathrm{DO}_{\mathrm{e}} \end{aligned}$	0.45	1.50	0.45	1.40	0.45	1.50	ns	Figures 4 and 6

Fig. 2 DC Test Circuit

Notes
Ics2 is used to represent second transceiver on bus.
Resistors $\pm 1 \%$

Fig. 3 AC Test Circuit ($D I_{x}, E$ to $B U S x$)

Fig. 4 AC Test Circuit ($\mathrm{BUS}_{\mathrm{x}}$ to DO_{x})

Notes

$V_{C C}, V_{C C A}=+2 \mathrm{~V}, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines $R_{T}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to VCC and VEE All unused outputs are loaded with 50Ω to GND $C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Fig. $5 \mathrm{DI}_{\mathrm{x}}$, E to BUS X_{x} Timing

Application

Two Transceiver System Operation

When a signal is transmitted through Dl_{a}, the bus follows and $\mathrm{DO}_{b}=\overline{\mathrm{D}}_{\mathrm{a}}$; however, DO_{a} does not respond to the signal. Likewise, a signal transmitted through Dl_{b} causes the bus to follow the signal with no response at DO_{b}, and $\mathrm{DO}_{a}=\overline{\mathrm{D}}_{\mathrm{b}}$. Since the bus has three logic levels, transmission and reception of two simultaneous signals is possible.

The common Enable, when HIGH, disables transmission from the five transceivers in the package but does not interfere with reception from an external transceiver.

Fig. 6 BUS $_{x}$ to D_{x} Timing

Transceiver Truth Table

Input						Bus Output	Output	
Transceiver 1			Transceiver 2				Transceiver 1	Transceiver 2
E_{1}	DI1	ICS1	E2	Dl_{2}	ICS2	Bus	DO1	DO2
L	L	ON	L	L	ON	VoLbL	H	H
L	L	ON	L	H	OFF	Volbh	L	H
L	H	OFF	L	L	ON	Vohbl	H	L
L	H	OFF	L	H	OFF	Vohbi	L	L
H	X	OFF	L	L	ON	Vohbl	H	L
H	X	OFF	L	H	OFF	Vohbh	L	L
L	L	ON	H	X	OFF	Volbh	L	H
L	H	OFF	H	X	OFF	Vohbh	L	L
H	X	OFF	H	X	OFF	VohbH	L	L

[^28]Fig. $7 \quad 50 \Omega$ Configuration

Fig. $8 \mathbf{1 0 0} \Omega$ Configuration

F100402
 16×4 Register
 File (RAM)

F100K ECL Product

Description

The F100402 is a high-speed 64-bit Random Access Memory (RAM) organized as a 16 -word by 4-bit array. External logic requirements are minimized by internal address decoding, while memory expansion and data busing are facilitated by the output disabling features of the Chip Select $(\overline{\mathrm{CS}})$ and Write Enable $(\overline{\mathrm{WE}})$ inputs.

A HIGH signal on $\overline{\mathrm{CS}}$ prevents read and write operations and forces the outputs to the LOW state. When $\overline{C S}$ is LOW, the WE input controls chip operations. A HIGH signal on $\overline{W E}$ disables the Data input (D_{n}) buffers and enables readout from the memory location determined by the Address (A_{n}) inputs. A LOW signal on $\overline{W E}$ forces the Q_{n} outputs LOW and allows data on the D_{n} inputs to be stored in the addressed location. Data exists in the same logical sense as presented at the data inputs, i.e., the memory is non-inverting.

Pin Names

$\overline{C S}$	Chip Select Input
$A_{0}-A_{3}$	Address Inputs
$D_{0}-D_{3}$	Data Inputs
$\overline{W E}$	Write Enable Input
$Q_{0}-Q_{3}$	Data Outputs

Logic Symbol

Connection Diagrams

16-Pin DIP (Top View)

16-Pin Flatpak (Top View)

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	4 J	DC
Flatpak	3 L	FC

[^29]
Logic Diagram

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IIH^{2}	Input HIGH Current All Inputs			300	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\max)}$
IEE	Power Supply Current	-170	-110	-70	mA	Inputs Open

[^30]AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$, Applies to Flatpak and DIP Packages

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{ACS}} \\ & \mathrm{t}_{\mathrm{RCS}} \\ & \mathrm{t}_{\mathrm{AA}} \end{aligned}$	Access/Recovery Timing Chip Select Access Chip Select Recovery Address Access	3.00	$\begin{aligned} & 3.30 \\ & 3.30 \\ & 5.00 \\ & \hline \end{aligned}$	3.00	$\begin{aligned} & 3.50 \\ & 3.50 \\ & 5.30 \end{aligned}$	3.50	$\begin{array}{\|l\|} 3.80 \\ 3.80 \\ 6.00 \\ \hline \end{array}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	Figures 1 and 3
twSD twscs twSA tWHD twhCs tWHA	Write Timing, Setup Data Chip Select Address Write Timing, Hold Data Chip Select Address	$\begin{aligned} & 0.50 \\ & 1.50 \\ & 1.00 \\ & \\ & 0.50 \\ & 0.50 \\ & 2.50 \end{aligned}$		$\begin{aligned} & 0.50 \\ & 1.50 \\ & 1.00 \\ & 0.50 \\ & 0.50 \\ & 2.50 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 1.50 \\ & 1.00 \\ & 0.50 \\ & 0.50 \\ & 2.50 \end{aligned}$		ns ns ns ns ns ns	Figures 1 and 2 $\mathrm{tw}=6 \mathrm{~ns}$
$\begin{aligned} & \text { twr } \\ & \text { tws } \end{aligned}$	Write Recovery Time Write Disable Time	$\begin{aligned} & 4.00 \\ & 3.00 \end{aligned}$		$\begin{aligned} & 4.00 \\ & 3.00 \end{aligned}$		$\begin{aligned} & 4.50 \\ & 3.50 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Figures 1 and 3
tw	Write Pulse Width, (LOW)	2.50		2.50		3.00		ns	
tcs	Chip Select Pulse Width, (LOW)	2.50		2.50		3.00		ns	Figures 1 and 2
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20\% to 80\%, 80\% to 20\%	0.50	1.70	0.50	1.70	0.50	1.70	ns	Figures 1 and 3

Fig. 1 AC Test Circuit and Waveforms

F100402

Fig. 2 Write Modes
Write Enable Strobe

CHIP SELECT SET.UP AND HOLD TIMES

Fig. 3 Read Modes
Address Input to Data Output ($\overline{\mathrm{WE}}=\mathrm{HIGH}, \overline{\mathrm{CS}}=$ LOW $)$ ADDRESS ACCESS time

Chip Select Input to Data Output ($\overline{\mathrm{WE}}=\mathrm{HIGH}$)
CHIP SELECT ACCESS AND RECOVERY TIMES

Write Enable Input to Data Output (CS= LOW)
WRITE RECOVERY, DISABLE TIMES

F100414
 256×1-Bit Static Random Access Memory

F100K ECL Product

Description

The F100414 is a 256-bit read/write Random Access Memory (RAM), organized 256 words by one bit. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as three active-LOW Chip Select lines.

- Address Access Time-10 ns Max
- Chip Select Access Time-6.0 ns Max
- Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation-1.8 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names
$\overline{W E}$
$\overline{\mathrm{CS}_{0}}-\overline{\mathrm{CS}_{2}}$
$\mathrm{A}_{0}-\mathrm{A}_{7}$
D Data Input
O
Logic Symbol

[^31]
Connection Diagram

16-Pin DIP (Top View)

Note
The 16-pin Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 D	DC
Plastic DIP	$9 B$	PC
Flatpak	3 L	FC

F100414

Logic Diagram

Functional Description

The F100414 is a fully decoded 256-bit read/write random access memory, organized 256 words by one bit. Bit selection is achieved by means of an 8-bit address, Ao through A7.

Three active-LOW Chip Select inputs are provided for increased logic flexibility. This permits memory array expansion up to 2048 words with the F100170 decoder. For larger memories, the fast chip select access time permits the decoding of Chip Select, $\overline{\mathrm{CS}}$, from the address without affecting system performance.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\mathrm{WE}}$ held LOW and the chip selected, the data at D is written into the addressed location. Since the write function is level triggered, data must be held stable for at least tWSD(min) plus tw (min) to insure a valid write. To read, $\overline{W E}$ is held HIGH and the chip selected. Non-inverted data is then presented at the output (O).

The output of the F100414 is an unterminated emitter follower, which allows maximum flexibility in choosing output connection configurations. In many applications it is desirable to tie the outputs of several F100414 devices together to allow easy expansion. In other applications the wired-OR need not be used. In either case an external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output.

Truth Table

Inputs					Output	Mode
$\overline{\text { CSo }}$	$\overline{\mathrm{CS}} 1$	$\overline{\mathrm{CS}} 2$	$\overline{W E}$	D	0	
X	X	H^{*}	X	X	L	Not Selected
L	L	L	L	L	L	Write "0"
L	L	L	L	H	L	Write "1"
L	L	L	H	X	Data	Read

$\mathrm{L}=\mathrm{LOW}$ Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
$\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal)
$X=$ Don't Care
Data = Previously stored data
*One or more Chip Selects HIGH

F100414

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{VCC}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
1 H	Input HIGH Current			220	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}($ max $)$
ILL	Input LOW Current, $\overline{C S}$ $\overline{W E}, A_{0}-A_{11}, D$	$\begin{array}{r} 0.5 \\ -50 \end{array}$		170	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{min})$
lee	Power Supply Current	-140	-100		mA	Inputs and Outputs Open

AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{VCC}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to $-2.0 \mathrm{~V}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
$\begin{aligned} & \mathrm{t}_{\mathrm{ACS}} \\ & \mathrm{t}_{\mathrm{RCS}} \\ & \mathrm{t}_{\mathrm{AA}} \end{aligned}$	Read Timing Chip Select Access Time Chip Select Recovery Time Address Access Time 2		$\begin{aligned} & 4.0 \\ & 4.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	Figures 3a, 3b	Measured at 50% of Input to Valid Output (VIL(max) for V_{L} or $\mathrm{V}_{\mathrm{IH}(\text { min })}$ for $\mathrm{VOH}_{\mathrm{OH}}$)
tw twsd	Write Timing Write Pulse Width to Guarantee Writing Data Setup Time prior to Write	7.0 1.0	5.0 0		ns	$t_{\text {WSA }}=1 \mathrm{~ns}$ Figure 4	
twsA	Address Setup Time prior to Write	1.0	0		ns		
twha twscs	Address Hold Time after Write Chip Select Setup Time prior to Write	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\mathrm{tw}=7 \mathrm{~ns}$	
twhes tws twr	Chip Select Hold Time after Write Write Disable Time Write Recovery Time	2.0	$\begin{array}{r} 0 \\ 4.0 \\ 5.0 \end{array}$	$\begin{gathered} 8.0 \\ 10 \end{gathered}$	ns ns ns	Figure 4	
t_{r} t_{f}	Output Rise Time Output Fall Time		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Measured between 20\% and 80% or 80% and 20%, Figure 2	
CIN Cout	Input Pin Capacitance Output Pin Capacitance		$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	Measured with a Pulse Technique	

[^32]
F100414

Fig. 1 AC Test Circuit

Notes
All Timing Measurements Referenced to 50% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{\mathrm{L}}=50 \Omega$ to -2.0 V .
Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Chip Select

b Read Mode Propagation Delay from Address

F100414

Fig. 4 Write Mode Timing

Note

Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

Typical Application

4096-Word x n-Bit System

F100415
 1024×1-Bit Static Random Access Memory

F100K ECL Product

Description

The F100415 is a 1024-bit read/write Random Access Memory (RAM), organized as 1024 words by one bit per word and designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as three active-LOW Chip Select line.

- Address Access Time - 20 ns Max
- Chip Select Access Time - 8.0 ns Max
- Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation-0.5 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\overline{\mathrm{WE}}$	Write Enable Inputs (Active LOW)
$\overline{\mathrm{CS}}$	Chip Select Input (Active LOW)
$\mathrm{A} 0-\mathrm{A} 9$	Address Inputs
D	Data Input
O	Data Output

Logic Symbol

[^33]
Connection Diagram

16-Pin DIP (Top View)

Note
The 16-pin Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	$6 D$	DC
Plastic DIP	$9 B$	PC
Flatpak	$3 L$	FC

Logic Diagram

Functional Description

The F100415 is a fully decoded 1024-bit read/write random access memory, organized 1024 words by one bit. Bit selection is achieved by means of a 10 -bit address, Ao through Ag.

One Chip Select input is provided for memory array expansion up to 2048 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of Chip Select, (CS) from the address without affecting system performance.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With WE held LOW and the chip selected, the data at D is written into the addressed location. Since the write function is level triggered, data must be held stable for at least $\mathrm{twSD}_{(\text {min })}$ plus $\mathrm{tw}($ min) to insure a valid write. To read, $\overline{\mathrm{WE}}$ is held HIGH and the chip selected. Non-inverted data is then presented at the output (O).

The output of the F100415 is an unterminated emitter follower, which allows maximum flexibility in choosing output connection configurations. In many applications it is desirable to tie the outputs of several F100415 devices together to allow easy expansion. In other applications the wired-OR need not be used. In either case an external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output.

Truth Table

Inputs			Output	
Mode				
	$\overline{\text { WE }}$	D	\mathbf{O}	
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

[^34]
F100415

DC Characteristics: $V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{VCC}_{\mathrm{C}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { max }}$
IIL	Input LOW Current, $\overline{\mathrm{CS}}$ $\overline{W E}, A_{0}-A_{9}, D$	$\begin{array}{r} 0.5 \\ -50 \end{array}$		170	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}(\text { (min })}$
IEE	Power Supply Current	-150	-105		mA	Inputs and Outputs Open

AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V} C \mathrm{C}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to $-2.0 \mathrm{~V}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
$\begin{aligned} & t_{A C S} \\ & t_{\text {RCS }} \\ & t_{A A} \end{aligned}$	Read Timing Chip Select Access Time Chip Select Recovery Time Address Access Time2		$\begin{array}{r} 5.0 \\ 5.0 \\ 13 \end{array}$	$\begin{array}{r} 8.0 \\ 8.0 \\ 20 \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	Figures 3a, 3b	Measured at 50% of Input to Valid Output (VIL(max) for V_{LL} or $\mathrm{V}_{\mathrm{IH}(\text { min })}$ for $\mathrm{VOH}_{\mathrm{OH}}$
tw tWSD	Write Timing Write Pulse Width to Guarantee Writing Data Setup Time prior to Write	14 4.0	9.0 0		ns ns	$\mathrm{twSA}=5 \mathrm{~ns}$ Figure 4	
tWHD	Data Hold Time after Write	4.0	0		ns		
tWSA	Address Setup Time prior to Write	5.0	3.0		ns		
tWHA	Address Hold Time after Write	3.0	0		ns		
twscs	Chip Select Setup Time prior to Write	4.0	0		ns	$\mathrm{tw}=14 \mathrm{~ns}$	
twhes	Chip Select Hold Time after Write	4.0	0		ns	Figure 4	
tws	Write Disable Time		5.0	10	ns		
twR	Write Recovery Time		7.0	15	ns		
$\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	Output Rise Time Output Fall Time		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns ns	Measured between 20% and 80% or 80% and 20%, Figure 2	
Cin Cout	Input Pin Capacitance Output Pin Capacitance		$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	pF pF	Measured with a Pulse Technique	

1. See Family Characteristics for other dc specifications.
2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50\% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{\mathrm{L}}=50 \Omega$ to -2.0 V .

Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Chip Select

b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Note
Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

F100415

Typical Application
4096-Word x n-Bit System

F100416
 256×4-Bit Programmable Read Only Memory

F100K ECL Product

Description

The F100416 is a 1024-bit field Programmable Read Only Memory (PROM), organized 256 words by four bits per word. It is designed for high-speed control, mapping, code conversion, and logic replacement. The device includes full on-chip address decoding, non-inverting Data output lines, and an active-LOW Chip Select line for easy memory expansion. The device is manufactured with all bits in the logic-HIGH state. Programmed bits will furnish LOW levels at corresponding outputs.

- Address Access Time-20 ns Max
- Chip Select Access Time-8.0 ns Max
- Chip Select Input and Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation-0.46 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\overline{\mathrm{CS}}$	Chip Select Input (Active LOW)
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Address Inputs
$\mathrm{O}_{1}-\mathrm{O}_{4}$	Data Outputs

Logic Symbol

[^35]
Connection Diagram

Notes

V_{CP} (Pin 1) is connected to the Programmer (+10.5 V) during programming only; otherwise, it should be grounded.
The Flatpak version has the same pinout (Connection Diagram) as the Dual In-line Package.

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	$6 D$	DC
Plastic DIP	$9 B$	PC
Flatpak	3 L	FC

Logic Diagram

Functional Description

The F100416 is a fully decoded bipolar field programmable read only memory organized 256 words by four bits per word. An unterminated emitter-follower output is provided to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many F100416 devices can be tied together. An external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is off.

One Chip Select ($\overline{\mathrm{CS})}$ input is provided for memory array expansion up to 512 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of $\overline{\mathrm{CS}}$ from the address without increasing address access time. The device is enabled when $\overline{\mathrm{CS}}$ is LOW. When the device is disabled $(\overline{C S}=\mathrm{HIGH})$, all outputs are forced LOW.

The read function is identical to that of a conventional bipolar ROM. That is, a binary address is applied to the Ao through A_{7} inputs, the chip is selected and data is valid at the outputs after $\mathrm{t}_{\mathrm{A} A}$.

In the unprogrammed state the outputs are HIGH. To program LOW levels follow the procedure outlined in the Programming Specifications table.

Programming

The F100416 is manufactured with all bits in the logic "1" state. Any desired bit (output) can be programmed to a logic " 0 " state by following the procedure shown below. One may build a programmer to satisfy the specifications or purchase any of the commercially available programmers which meet these specifications.

Programming Sequence

1. Apply power to the part: $\mathrm{V}_{\mathrm{cc}}=$ pin $16=\mathrm{GND}$; $\mathrm{V}_{\mathrm{EE}}=\operatorname{pin} 8=-5.2 \mathrm{~V} \pm 5 \%$.
2. Terminate all outputs (pins 11, 12, 14 and 15) with $5 \mathrm{k} \Omega$ resistors to $\mathrm{V}_{\mathrm{T} T}=-2.0 \mathrm{~V}$. Note: all input pins, including $\overline{\mathrm{CS}}$, have internal $50 \mathrm{k} \Omega$ pull-down resistors to V_{EE}.
3. Select the word to be programmed by applying the appropriate voltage levels, as shown in the Programming Specifications table, to the Address pins (2, 3, 4, 5, 6, 7, 9 and 10).
4. After the address levels are set raise $\mathrm{V}_{\mathrm{CP}}=\operatorname{Pin} 1$ from 0 V to $+10.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$.
5. After V_{CP} has reached its HIGH level, select the bit to be programmed by applying a HIGH level of $+3.0 \mathrm{~V} \pm 0.1 \mathrm{~V}$ to the output associated with it, i.e., pins 11, 12, 14 or 15 . Only one bit (output) at a time may be selected for programming. Uncommitted outputs are terminated as outlined in 2.
6. After the HIGH level $(+3.0 \mathrm{~V})$ has been established at the selected output pin, source a current of $-40 \mathrm{~mA} \pm 4 \mathrm{~mA}$ out of the Chip Select input (pin 13) to program the selected bit; this applied current pulse which is 100μ s wide and has an approximate rise time of $1 \mu \mathrm{~s}$ is to be furnished by a current sink which clamps at $\mathrm{V}_{\text {CLAMP }}=-5.9 \mathrm{~V}$.
7. To verify a LOW in the bit just programmed follow this sequence:
(a) Remove current pulse from $\overline{\mathrm{CS}}$ pin.
(b) Remove applied voltage from selected output pin.
(c) Lower $V_{C P}$ from HIGH level to GND.
(d) Keep same address but change its levels to normal ECL levels as outlined in the Programming Specifications table.
(e) Enable the chip by applying a LOW level (VIL) to $\overline{\mathrm{CS}}$ (pin 13), or leave it open.
(f) Sense the level at the selected output pin; a LOW level indicates successful programming whereas a HIGH level is a fail indication; in the latter case reprogramming of the bit can be attempted up to a maximum of eight times.
8. To program other bits in the memory repeat steps 3 through 7.

Programming Timing Sequence

[^36]
F100416

Programming Specifications

Symbol	Characteristic	Min	Recommended Value	Max	Unit	Comments
VCC	Power Supply		0		V	
VEE		-5.46	-5.2	-4.94	V	
$V_{T T}$	Termination Voltage		-2.0		V	Applied to all outputs
V_{IH}	Chip Select (VcLAMP)	-0.1	0	+0.1	V	Max Current is 40 mA during programming
VIL		-5.9	-5.2		V	
VIHP	Address Input Threshold	-0.1	0	+0.1	V	Programming levels
VILP		-3.1	-3.0	-2.9	V	
VIHV	Address Input Threshold	-0.88	-0.87	-0.86	V	Verify levels
VILV		-1.76	-1.75	-1.74	V	
VCP	Program Setup Pulse	10.2	10.5	10.8	V	
Vop	Programming Pulse	2.9	3.0	3.1	V	Applied to output to be programmed
ICS	Chip Select Programming Current	36	40	44	mA	At $V_{\text {CLAMP }}=-5.9 \mathrm{~V}$ Min on the Chip Select pin
$t_{p c s}$	Chip Select Programming Pulse	50	100	180	$\mu \mathrm{S}$	
tres	Chip Select Programming Pulse Rise Time	0.5	1.0	2.0	$\mu \mathrm{s}$	
$t_{\text {pvcp }}$	VCP Programming Pulse	90	140	220	$\mu \mathrm{S}$	
$\mathrm{t}_{\text {rucp }}$	VCP Programming Rise Time	0.5	1.0	2.0	$\mu \mathrm{S}$	
$\mathrm{t}_{\text {setup }}$	Setup Time	20			ns	Start time of V_{CP} pulse after address is selected

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{VCC}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IIH	Input HIGH Current			200	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\max)$
IEE	Power Supply Current	-140	-105		mA	Inputs and Outputs Open

AC Characteristics: $V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{VCC}=\mathrm{GND}$, Output Load 50Ω to $-2.0 \mathrm{~V}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$t_{A A}$	Address Access Time2		11	20	ns	Measured at 50\% Points of both Input and Output
$t_{\text {ACS }}$	Chip Select Access Time		4.0	8.0	ns	Measured at 50\% Points of both Input and Output

1. See Family Characteristics for other dc specifications.
2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

F100422

256×4-Bit Static Random Access Memory

F100K ECL Product

Description

The F100422 is a 1024-bit read/write Random Access Memory (RAM), organized 256 words by four bits per word. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as four active-LOW Bit Select lines.

- Address Access Time-10 ns Max
- Bit Select Access Time-5.0 ns Max
- Four Bits Can be Independently Selected
- Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\overline{\text { WE }}$
Write Enable Input (Active LOW)
$\overline{\mathrm{BS}_{0}}-\overline{\mathrm{BS}_{3}}$
$\mathrm{A}_{0}-\mathrm{A}_{7}$
Bit Select Inputs (Active LOW)
$\mathrm{D}_{0}-\mathrm{D}_{3}$
Address Inputs
$\mathrm{O}_{0}-\mathrm{O}_{3}$
Data Inputs
Data Outputs

Logic Symbol

[^37]
F100422

Logic Diagram

Functional Description

The F100422 is a fully decoded 1024-bit read/write random access memory, organized 256 words by four bits. Word selection is achieved by means of an 8-bit address, Ao through A7.

Four Bit Select inputs are provided for logic flexibility. For larger memories, the fast bit select access time permits the decoding of individual bit selects from the address without increasing address access time.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\mathrm{WE}}$ held LOW and the bit selected, the data at $\mathrm{D}_{0}-\mathrm{D}_{3}$ is written into the addressed location. Since the write function is level triggered, data must be held stable for at least twSD(min) plus tw(min) to insure a valid write. To read, $\overline{W E}$ is held HIGH and the bits selected. Non-inverted data is then presented at the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$.

The outputs of the F100422 are unterminated emitter followers, which allow maximum flexibility in choosing output connection configurations. In many applications it is desirable to tie the outputs of several F100422 devices together to allow easy expansion. In other applications the wired-OR need not be used. In either case an external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output.

Truth Table

Inputs			Outputs	Mode
$\overline{\mathbf{B S}_{\boldsymbol{n}}}$	$\overline{\mathrm{WE}}$	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{O}_{\boldsymbol{n}}$	
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

[^38]DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
1 IH	Input HIGH Current			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathbf{I H}(\text { max })}$
ILL	Input LOW Current, $\overline{\mathrm{CS}}$ $\overline{W E}, A_{0}-A_{11}, D$	$\begin{array}{r} 0.5 \\ -50 \end{array}$		170	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{min})$
leE	Power Supply Current	-230	-180		mA	Inputs and Outputs Open

AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{VCC}=\mathrm{V} C C A=G N D$, Output Load $=50 \Omega$ and 30 pF to -2.0 V , $\mathrm{Tc}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
	Read Timing					Figures 3a, 3b	Measured at 50\% of Input to Valid Output (VIL(max) for V_{OL} or $\mathrm{V}_{\mathrm{IH}(\text { min })}$ for VOH)
$t_{\text {ABS }}$	Bit Select Access Time		3.0	5.0	ns		
trbs	Bit Select Recovery Time		3.0	5.0	ns		
$t_{\text {AA }}$	Address Access Time ${ }^{2}$		7.0	10	ns		
tw	Write Timing Write Pulse Width to Guarantee Writing Data Setup Time prior to Write Data Hold Time after Write Address Setup Time prior to Write Address Hold Time after Write Bit Select Setup Time prior to Write Bit Select Hold Time after Write Write Disable Time Write Recovery Time	7.0	5.0		ns	twSA $=1 \mathrm{~ns}$ Figure 4	
twSD		1.0	0		ns		
tWHD twsA		$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	00		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$		
						$\mathrm{tw}=7 \mathrm{~ns}$ Figure 4	
tWHA		2.0	0		ns		
twsbs		1.0	0		ns		
twhBS		2.0	0		ns		
tws			3.0	5.0	ns		
twr			6.0	12	ns		
tr_{r}	Output Rise Time		3.0		ns	Measured bet	en 20% and
tf_{f}	Output Fall Time		3.0		ns	80\% or 80% an	20\%, Figure 2
CIN	Input Pin Capacitance		4.0	5.0	pF	Measured with	Pulse
Cout	Output Pin Capacitance		7.0	8.0	pF	Technique	

[^39]Fig. 1 AC Test Circuit

Notes
All Timing Measurements Referenced to 50% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{L}=50 \Omega$ to -2.0 V .
Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Bit Select

b Read Mode Propagation Delay from Address

F100422

Fig. 4 Write Mode Timing

Note
Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

F100K ECL Product

Description

The F100470 is a 4096-bit read/write Random Access Memory (RAM), organized 4096 words by one bit per word and designed for high-speed scratchpad, control and buffer storage applications. It is available in two speed versions, the F100470 and F100470A. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as an active-LOW Chip Select line.

- Address Access Time
F100470-35 ns Max

F100470A-25 ns Max

- Chip Select Access Time F100470-15 ns Max F100470A-10 ns Max
- Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation-0.70 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\overline{\text { WE }}$	Write Enable Input (Active LOW)
$\overline{\mathrm{CS}}$	Chip Select Input (Active LOW)
Ao $_{0}-\mathrm{A}_{11}$	Address Inputs
D	Data Input
O	Data Output

Logic Symbol

$V_{E E}=\operatorname{Pin} 9$

Connection Diagram

18-Pin DIP (Top View)

Note
The 18-pin Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	$8 F$	DC
Flatpak	$3 E$	FC

Logic Diagram

Functional Description

The F100470 is a fully decoded 4096-bit read/write random access memory, organized 4096 words by one bit. Bit selection is achieved by means of a 12-bit address, A_{0} through A_{11}.

One Chip Select input is provided for memory array expansion up to 8196 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of Chip Select, ($\overline{\mathrm{CS}})$ from the address without increasing address access time.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\mathrm{WE}}$ held LOW and the chip selected, the data at D is written into the addressed location. Since the write function is level triggered, data must be held stable for at least twSD(min) plus tw(min) to insure a valid write. To read, $\overline{W E}$ is held HIGH and the chip selected. Non-inverted data is then presented at the output (O).

The output of the F100470 is an unterminated emitter follower, which allows maximum flexibility in choosing output connection configurations. In many applications it is desirable to tie the outputs of several F100470 devices together. In other applications the wired-OR need not be used. In either case an external 50Ω pulldown resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is OFF.

Truth Table

Inputs			Output	Mode
$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	D	O	
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

[^40]
F100470

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{VCC}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\mathrm{liH}^{\text {H }}$	Input HIGH Current			220	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathbf{I H}(\text { max }}$
IIL	Input LOW Current, $\overline{C S}$ WE, $\mathrm{A}_{0}-\mathrm{A}_{11}, \mathrm{D}$	$\begin{array}{r} 0.5 \\ -50 \end{array}$		170	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{min})$
Iee	Power Supply Current	-195	-160		mA	Inputs and Outputs Open

AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V} \mathrm{CC}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to $-2.0 \mathrm{~V}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

[^41]
F100470

Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50\% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{L}=50 \Omega$ to -2.0 V .
Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Chip Select

b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Note
Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

F100K ECL Product

Description

The F100474 is a 4096-bit read/write Random Access Memory (RAM), organized 1024 words by four bits per word. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as an active-LOW Chip Select line.

- Address Access Time-25 ns Max
- Chip Select Access Time-15 ns Max
- Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation-0.70 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\overline{\text { WE }}$	Write Enable Input (Active LOW)
$\overline{\mathrm{CS}}$	Chip Select Input (Active LOW)
$\mathrm{A}_{0}-\mathrm{A}_{9}$	Address Inputs
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data Inputs
$\mathrm{O}_{0}-\mathrm{O}_{3}$	Data Outputs

Logic Symbol

[^42]
Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

Logic Diagram

Functional Description

The F100474 is a fully decoded 4096-bit read/write random access memory, organized 1024 words by four bits. Word selection is achieved by means of a 10-bit address, Ao through Ag.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\mathrm{WE}}$ held LOW and the chip selected, the data at $\mathrm{D}_{0}-\mathrm{D}_{3}$ is written into the addressed location. Since the write function is level triggered, data must be held stable for at least twSD(min) plus tw (min) to insure a valid write. To read, $\overline{\mathrm{WE}}$ is held HIGH and the chip selected. Non-inverted data is then presented at the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$.

The outputs of the F100474 are unterminated emitter followers, which allow maximum flexibility in output connection configurations. In many applications such as memory expansion, the outputs of many F100474
devices can be tied together. In other applicatons the wired-OR need not be used. In either case an external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is OFF.

Truth Table

Inputs			Outputs	Mode
$\overline{\mathbf{C S}}$	$\overline{\mathbf{W E}}$	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{O}_{\boldsymbol{n}}$	
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

[^43]| Symbol | Characteristic | Min | Typ | Max | Unit | Condition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| liH | Input HIGH Current | | | 220 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH (max }}$ |
| ILL | Input LOW Current, $\overline{C S}$ $\overline{W E}, A_{0}-A_{11}, D$ | $\begin{array}{r} 0.5 \\ -50 \end{array}$ | | 170 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{min})$ |
| lee | Power Supply Current | -195 | -160 | | mA | Inputs and Outputs Open |

AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to -2.0 V , $\mathrm{T}_{\mathrm{c}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
tacs trcs $t_{A A}$	Read Timing Chip Select Access Time Chip Select Recovery Time Address Access Time2		10 10 20	$\begin{aligned} & 15 \\ & 15 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	Figures 3a, 3b	Measured at 50\% of Input to Valid Output (VIL(max) for VOL or $\mathrm{V}_{\mathrm{IH}(\text { min })}$ for VOH)
tw twSD	Write Timing Write Pulse Width to Guarantee Writing Data Setup Time prior to Write Data Hold Time after Write Address Setup Time prior to Write Address Hold Time after Write Chip Select Setup Time prior to Write Chip Select Hold Time after Write Write Disable Time Write Recovery Time	16 5.0	10 1.0		ns ns	twSA $=10 \mathrm{~ns}$ Figure 4	
tWHD		5.0	1.0		ns		
tWSA		10	3.0		ns		
tWHA		4.0	1.0		ns		
twscs		5.0	1.0		ns	$\mathrm{tw}=16 \mathrm{~ns}$	
twhcs		5.0	1.0		ns	Figure 4	
tws			6.0	15	ns		
twr			8.0	20	ns		
t_{r} t_{f}	Output Rise Time Output Fall Time		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns ns	Measured between 20% and 80% or 80% and 20%, Figure 2	
CIN Cout	Input Pin Capacitance Output Pin Capacitance		$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	Measured with a Pulse Technique	

1. See Family Characteristics for other dc specifications.
2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50\% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{L}=50 \Omega$ to -2.0 V .
Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Chip Select

b Read Mode Propagation Delay from Address

F100474

Fig. 4 Write Mode Timing

Note
Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

F10K DC Family Specifications

DC characteristics for the F10K series memories.
Parametric limits listed below are guaranteed for all F10K memories, except where noted on individual data sheets.

Absolute Maximum Ratings: Above which the useful life may be impaired

Storage Temperature
Temperature (Ambient) Under Bias Vee Pin Potential to Ground Pin Input Voltage (dc)
Output Current (dc Output HIGH)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-7.0 V to +0.5 V
$V_{E E}$ to +0.5 V
-30 mA to +0.1 mA

Guaranteed Operating Ranges

Supply Voltage (VE)			Ambient Temperature
Min	Typ	Max	
-5.46 V	-5.2 V	-4.94 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$, Output Load $=50 \Omega$ and 30 pF to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C} 1$

Symbol	Characteristic	Min	Typ	Max	Unit	T_{A}	Conditions ${ }^{2}$	
VOH	Output HIGH Voltage	$\begin{array}{r} -1000 \\ -960 \\ -900 \end{array}$		$\begin{aligned} & -840 \\ & -810 \\ & -720 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & V_{I N}=V_{I H(\text { max })} \\ & \text { or } V_{\text {IL }}(\text { min }) \end{aligned}$	Loading is$50 \Omega \text { to }-2.0 \mathrm{~V}$
Vol	Output LOW Voltage	$\begin{aligned} & \hline-1870 \\ & -1850 \\ & -1830 \end{aligned}$		$\begin{aligned} & -1665 \\ & -1650 \\ & -1625 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$		
Vohc	Output HIGH Voltage	$\begin{array}{r} -1020 \\ -980 \\ -920 \end{array}$			mv	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & V_{I N}=V_{I H} \text { (min) } \\ & \text { or } V_{I L}(\text { max }) \end{aligned}$	
Volc	Output LOW Voltage			$\begin{array}{\|l\|} \hline-1645 \\ -1630 \\ -1605 \end{array}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$		
V_{IH}	Input HIGH Voltage	$\begin{aligned} & -1145 \\ & -1105 \\ & -1045 \end{aligned}$		$\begin{aligned} & -840 \\ & -810 \\ & -720 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	Guaranteed Input Voltage HIGH for All Inputs	
VIL	Input LOW Voltage	$\begin{aligned} & \hline-1870 \\ & -1850 \\ & -1830 \end{aligned}$		$\begin{aligned} & -1490 \\ & -1475 \\ & -1450 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	Guaranteed Input Voltage LOW for All Inputs	
IIL	Input LOW Current	0.5		170	$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{min})$	

[^44]
F10145A
 16×4 Register File (RAM)

F10K Voltage Compensated ECL

Description

The F10145A and F10545A are high-speed 64-bit Random Access Memories organized as a 16-word by 4-bit array. External logic requirements are minimized by internal address decoding, while memory expansion and data bussing are facilitated by the output disabling features of the Chip Select $\overline{(\mathrm{CS})}$ and Write Enable $(\overline{W E})$ inputs.

A HIGH signal on $\overline{\mathrm{CS}}$ prevents read and write operations and forces the outputs to the LOW state. When $\overline{\mathrm{CS}}$ is LOW, the $\overline{W E}$ input controls chip operations. A HIGH signal on $\overline{W E}$ disables the Data input (D_{n}) buffers and enables readout from the memory location determined by the Address (A_{n}) inputs. A LOW signal on $\overline{W E}$ forces the Q_{n} outputs LOW and allows data on the D_{n} inputs to be stored in the addressed location. Data exists in the same logical sense as presented at the data inputs, i.e., the memory is non-inverting.

Pin Names

$\overline{C S}$	Chip Select
$A_{0}-A_{3}$	Address
$D_{0}-D_{3}$	Data Inputs
$\overline{W E}$	Write Enables
$Q_{0}-Q_{3}$	Data Outputs

Logic Symbol

Connection Diagrams

16-Pin DIP (Top View)

16-Pin Flatpak (Top View)

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	4 J	DC
Flatpak	3 L	FC

[^45]
Logic Diagram

$V_{C C}=\operatorname{Pin} 16$
$V_{E E}=\operatorname{Pin} 8$

Fig. 1 Switching Circuit and Waveforms

Notes

$\mathrm{V}_{\mathrm{CC}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.2 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND $C_{L}=$ Fixture and stray capacitance $\leq 5 \mathrm{pF}$

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IIH	Input HIGH Current $\overline{\mathrm{CS}}, \mathrm{A}_{0}-\mathrm{A}_{3}$ $\overline{W E}, D_{0}-D_{3}$			$\begin{aligned} & 200 \\ & 220 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathbf{I H}(\text { max })}$
lee	Power Supply Current	-150	-100		mA	Inputs and Outputs Open

AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\begin{aligned} & t_{A C S} \\ & t_{\text {RCS }} \\ & t_{A A} \end{aligned}$	Access/Recovery Times Chip Select Access Chip Select Recovery Address Access	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	Figures 1 and 3
twsD twscs twsA twhD twhCs tWHA	Write Setup Times Data Chip Select Address Write Hold Times Data Chip Select Address	$\begin{array}{r} 4.5 \\ 4.5 \\ 3.5 \\ -1.0 \\ 0.5 \\ 1.0 \end{array}$	$\begin{array}{r} 3.0 \\ 2.5 \\ 1.5 \\ \\ -2.5 \\ 0 \\ -1.0 \end{array}$		ns ns ns ns ns ns	Figures 1 and 2
twR tws	Write Recovery Time Write Disable Time	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Figures 1 and 3
tw	Write Pulse Width, Min	4.0	2.5		ns	Figures 1 and 2
tcs	Chip Select Pulse Width, Min	4.0	2.5		ns	
t CSD tcsw tcsa tCHD tchw tcha	Select Setup Times Data Write Enable Address Write Hold Times Data Write Enable Address	$\begin{array}{r} 4.5 \\ 4.5 \\ 3.5 \\ -1.0 \\ 0.5 \\ 1.0 \end{array}$	$\begin{array}{r} 3.0 \\ 2.5 \\ 1.5 \\ \\ -2.5 \\ 0 \\ -1.0 \end{array}$		ns ns ns ns ns ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t} \mathrm{THL} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	1.5	2.5	3.9	ns	Figures 1 and 3

[^46]Fig. 2 Write Modes

Write Enable Strobe
ADDRESS AND DIN SET UP AND HOLD TIMES ($\overline{C S}=$ LOW)

CHIP SELECT SET-UP AND HOLD TIMES

Chip Select Strobe

ADDRESS AND DIN SET UP AND HOLD TIMES ($\overline{\mathrm{WE}}=\mathrm{LOW}$)

WRITE ENABLE SET-UP AND HOLD TIMES, $\overline{\mathrm{CS}}$ PULSE WIDTH ${ }^{2}$

Fig. 3 Read Modes
Address Input to Data Output ($\overline{\mathrm{WE}}=\mathrm{HIGH}, \overline{\mathbf{C S}}=$ LOW $)$
ADDRESS ACCESS TIME

Chip Select Input to Data Output ($\overline{\mathrm{WE}}=\mathrm{HIGH}$)
CHIP SELECT ACCESS AND RECOVERY TIMES

Write Enable Input to Data Output ($\overline{\mathbf{C S}}=$ LOW) WRITE RECOVERY, DISABLE TIMES

F10402
 16×4 Register
 File (RAM)

F10K ECL Product

Description

The F10402 is a high-speed 64-bit Random Access Memory (RAM) organized as a 16 -word by 4-bit array. External logic requirements are minimized by internal address decoding, while memory expansion and data busing are facilitated by the output disabling features of the Chip Select $(\overline{\mathrm{CS}})$ and Write Enable $(\overline{\mathrm{WE}})$ inputs.

A HIGH signal on CS prevents read and write operations and forces the outputs to the LOW state. When CS is LOW, the WE input controls chip operations. A HIGH signal on $\overline{W E}$ disables the Data input (D_{n}) buffers and enables readout from the memory location determined by the Address (A_{n}) inputs. A LOW signal on WE forces the Q_{n} outputs LOW and allows data on the D_{n} inputs to be stored in the addressed location. Data exists in the same logical sense as presented at the data inputs, i.e., the memory is non-inverting.

Pin Names

$\overline{\mathrm{CS}}$
$\mathrm{A}_{0}-\mathrm{A}_{3}$
Chip Select Input
$D_{0}-D_{3}$
Address Inputs
$\overline{W E}$
Data Inputs

Qo-Q3
Write Enable Input
Data Outputs

Logic Symbol

$V_{C C}=\operatorname{Pin} 16$
$V_{E E}=\operatorname{Pin} 8$

Connection Diagrams

16-Pin Flatpak (Top View)

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	4 J	DC
Flatpak	3 L	FC

Logic Diagram

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ unless otherwise specified *

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$I_{I H}$	Input HIGH Current All Inputs		300	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{max})}$	
IEE	Power Supply Current	-170	-110	-70	mA	Inputs Open

*See Family Characteristics for other dc specifications.

F10402

AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$, Applies to Flatpak and DIP Packages

Symbol	Characteristic	$\mathrm{T}_{\mathrm{c}}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tacs tres $t_{A A}$	Access/Recovery Timing Chip Select Access Chip Select Recovery Address Access	3.00	$\begin{aligned} & 3.30 \\ & 3.30 \\ & 5.00 \end{aligned}$	3.00	$\begin{aligned} & 3.50 \\ & 3.50 \\ & 5.30 \end{aligned}$	3.50	$\begin{aligned} & 3.80 \\ & 3.80 \\ & 6.00 \end{aligned}$	ns ns ns	Figures 1 and 3
twSD twSCS twSA twhD twhes tWHA	Write Timing, Setup Data Chip Select Address Write Timing, Hold Data Chip Select Address	$\begin{aligned} & 0.50 \\ & 1.50 \\ & 1.00 \\ & 0.50 \\ & 0.50 \\ & 2.50 \end{aligned}$		$\begin{aligned} & 0.50 \\ & 1.50 \\ & 1.00 \\ & 0.50 \\ & 0.50 \\ & 2.50 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 1.50 \\ & 1.00 \\ & \\ & 0.50 \\ & 0.50 \\ & 2.50 \end{aligned}$		ns ns ns ns ns ns	Figures 1 and 2 tw $=6 \mathrm{~ns}$
twR tws	Write Recovery Time Write Disable Time	$\begin{aligned} & 4.00 \\ & 3.00 \end{aligned}$		$\begin{aligned} & 4.00 \\ & 3.00 \end{aligned}$		$\begin{aligned} & 4.50 \\ & 3.50 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Figures 1 and 3
tw	Write Pulse Width, (LOW)	2.50		2.50		3.00		ns	
tcs	Chip Select Pulse Width, (LOW)	2.50		2.50		3.00		ns	Figures 1 and 2
$\begin{aligned} & \text { tTLH } \\ & \text { t THL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.50	1.70	0.50	1.70	0.50	1.70	ns	Figures 1 and 3

Fig. 1 AC Test Circuit and Waveforms

Fig. 2 Write Modes

Write Enable Strobe

CHIP SELECT SET-UP AND HOLD TIMES

Fig. 3 Read Modes
Address Input to Data Output ($\overline{\mathrm{WE}}=\mathrm{HIGH}, \overline{\mathrm{CS}}=$ LOW) ADDRESS ACCESS TIME

Chip Select Input to Data Output ($\overline{\mathrm{WE}}=\mathrm{HIGH}$)
CHIP SELECT ACCESS AND RECOVERY TIMES

Write Enable Input to Data Output ($\overline{\mathbf{C S}}=$ LOW)
WRITE RECOVERY, DISABLE TIMES

F10414
 256×1-Bit Static Random Access Memory

F10K ECL Product

Description

The F10414 is a 256-bit read/write Random Access Memory (RAM), organized 256 words by one bit. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as three active-LOW Chip Select lines.

- Address Access Time-10 ns Max
- Chip Select Access Time-6.0 ns Max
- Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation-1.8 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\overline{W E}$
Write Enable Input (Active LOW)
$\overline{\mathrm{CS}_{0}}-\overline{\mathrm{CS}_{2}}$
Chịp Select Inputs (Active LOW)
$\mathrm{A}_{0}-\mathrm{A}_{7}$
Address Inputs
Data Input
Data Output

Logic Symbol

[^47]
Connection Diagram

16-Pin DIP (Top View)

Note

The 16 -pin Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 D	DC
Plastic DIP	$9 B$	PC
Flatpak	3 L	FC

F10414

Logic Diagram

Functional Description

The F10414 is a fully decoded 256-bit read/write random access memory, organized 256 words by one bit. Bit selection is achieved by means of an 8 -bit address, A_{0} through A_{7}.

Three active-LOW Chip Select inputs are provided for increased logic flexibility. This permits memory array expansion up to 2048 words with the F10170 decoder. For larger memories, the fast chip select access time permits the decoding of Chip Select, $\overline{\mathrm{CS}}$, from the address without affecting system performance.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}})$ input. With $\overline{\mathrm{WE}}$ held LOW and the chip selected, the data at D is written into the addressed location. Since the write function is level triggered, data must be held stable for at least twSD(min) plus tw(min) to insure a valid write. To read, $\overline{\mathrm{WE}}$ is held HIGH and the chip selected. Non-inverted data is then presented at the output (O).

The output of the F10414 is an unterminated emitter follower, which allows maximum flexibility in choosing output connection configurations. In many applications it is desirable to tie the outputs of several F10414 devices together to allow easy expansion. In other applications the wired-OR need not be used. In either case an external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output.

Truth Table

Inputs				Output		Mode
$\overline{\overline{\mathbf{C S}}_{\mathbf{0}}}$	$\overline{\mathbf{C S}}_{\mathbf{1}}$	$\overline{\mathbf{C S}_{\mathbf{2}}}$	$\overline{\mathbf{W E}}$	D	\mathbf{O}	
X	X	H^{*}	X	X	L	Not Selected
L	L	L	L	L	L	Write "0"
L	L	L	L	H	L	Write "1"
L	L	L	H	X	Data	Read

$\mathrm{L}=$ LOW Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
$\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal)
$\mathrm{X}=$ Don't Care
Data $=$ Previously stored data
*One or more Chip Selects HIGH

F10414

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V} \mathrm{CC}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
$\mathrm{liH}_{\mathrm{H}}$	Input HIGH Current			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { max }}$	
I/L	Input LOW Current, $\overline{\mathrm{CS}}$ $\overline{W E}, A_{0}-A_{11}, D$	$\begin{array}{r} 0.5 \\ -50 \end{array}$		170	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{min})$	
Iee	Power Supply Current	-140	$\begin{array}{r} -90 \\ -100 \end{array}$		mA	TA $=+75^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	Inputs and Outputs Open

AC Characteristics: $V_{E E}=-5.2 \mathrm{~V} \pm 5 \%, \mathrm{VCC}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
$\begin{aligned} & \mathrm{t}_{\mathrm{ACS}} \\ & \mathrm{t}_{\mathrm{RCS}} \\ & \mathrm{t}_{\mathrm{AA}} \end{aligned}$	Read Timing Chip Select Access Time Chip Select Recovery Time Address Access Time 2		$\begin{aligned} & 4.0 \\ & 4.0 \\ & 7.0 \end{aligned}$	$\begin{array}{r} 6.0 \\ 6.0 \\ 10 \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	Figures 3a, 3b	Measured at 50% of Input to Valid Output (VIL (max) for VOL or $\mathrm{V}_{\mathrm{IH}(\mathrm{min})}$ for $\mathrm{VOH}_{\mathrm{OH}}$)
tw twSD	Write Timing Write Pulse Width to Guarantee Writing Data Setup Time prior to Write Data Hold Time after Write Address Setup Time prior to Write Address Hold Time after Write Chip Select Setup Time prior to Write Chip Select Hold Time after Write Write Disable Time Write Recovery Time	7.0 1.0	4.0 0		ns	$\mathrm{twSA}=1 \mathrm{~ns}$ Figure 4	
tWHD		2.0	0		ns		
tWSA		1.0	0		ns		
twha		2.0	0		ns		
twscs		1.0	0		ns	$\mathrm{tw}=7 \mathrm{~ns}$	
twhCS		2.0	0		ns	Figure 4	
tws			4.0	8.0	ns		
tWR			5.0	10	ns		
t_{r} t_{f}	Output Rise Time Output Fall Time		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Measured between 20% and 80% or 80% and 20%, Figure 2	
CIN Cout	Input Pin Capacitance Output Pin Capacitance		$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	Measured with a Pulse Technique	

1. See Family Characteristics for other dc specifications.
2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

F10414

Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50\% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{L}=50 \Omega$ to -2.0 V .
Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Chip Select

F10414

Fig. 4 Write Mode Timing

Note
Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

F10414

Typical Application
4096-Word x n-Bit System

F10415

1024×1-Bit Static
Random Access Memory
F10K ECL Product

Description

The F10415 is a 1024-bit read/write Random Access Memory (RAM), organized as 1024 words by one bit per word and designed for high-speed scratchpad, control and buffer storage applications. It is available in two speed versions, the F10415 and F10415A. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as an active-LOW Chip Select line.

- Address Access Time

F10415-35 ns Max
F10415A-20 ns Max

- Chip Select Access Time F10415-10 ns Max F10415A-8.0 ns Max
- Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation-0.5 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\overline{\text { WE }}$	Write Enable Input (Active LOW)
$\overline{\mathrm{CS}}$	Chip Select Input (Active LOW)
$\mathrm{A}_{0}-\mathrm{A} 9$	Address Inputs
D	Data Input
O	Data Output

Logic Symbol

[^48]
Connection Diagram

16-Pin DIP (Top View)

Note
The 16-pin Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 D	DC
Plastic DIP	$9 B$	PC
Flatpak	3 L	FC

F10415

Logic Diagram

Functional Description

The F10415 is a fully decoded 1024-bit read/write random access memory, organized 1024 words by one bit. Bit selection is achieved by means of a 10-bit address, A_{0} through A_{9}.

One Chip Select input is provided for memory array expansion up to 2048 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of Chip Select, ($\overline{\mathrm{CS}})$ from the address without affecting system performance.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\mathrm{WE}}$ held LOW and the chip selected, the data at D is written into the addressed location. Since the write function is level triggered, data must be held stable for at least tWSD (min) plus tw(min) to insure a valid write. To read, $\overline{W E}$ is held HIGH and the chip selected. Non-inverted data is then presented at the output (O).

The output of the F10415 is an unterminated emitter follower, which allows maximum flexibility in choosing output connection configurations. In many applications it is desirable to tie the outputs of several F10415 devices together to allow easy expansion. In other applications the wired-OR need not be used. In either case an external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output.

Truth Table

Inputs			Output	
Mode				
	$\overline{\mathbf{W E}}$	\mathbf{D}	\mathbf{O}	
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

[^49]
F10415

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V} C \mathrm{C}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
IIH	Input HIGH Current			220	$\mu \mathrm{A}$	$\left.\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { max }}\right)$	
IIL	Input LOW Current, $\overline{\mathrm{CS}}$ $\overline{W E}, A_{0}-A_{9}, D$	0.5		170	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{min})$	
Iee	Power Supply Current	-150	$\begin{array}{r} -105 \\ -90 \end{array}$		mA	$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	Inputs and Output Open

$A C$ Characteristics: $V_{E E}=-5.2 \mathrm{~V} \pm 5 \%, \mathrm{VCC}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

[^50]Fig. 1 AC Test Circuit

Notes
All Timing Measurements Referenced to 50% of Input Levels
$\mathrm{CL}_{\mathrm{L}}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{L}=50$! to -2.0 V .

Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Chip Select

F10415

Fig. 4 Write Mode Timing

Note
Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

Typical Application
4096-Word x n-Bit System

Description

The F10416 is a 1024-bit field Programmable Read Only Memory (PROM), organized 256 words by four bits per word. It is designed for high-speed control, mapping, code conversion, and logic replacement. The device includes full on-chip address decoding, non-inverting Data output lines, and an active-LOW Chip Select line for easy memory expansion. The device is manufactured with all bits in the logic-HIGH state. Programmed bits will furnish LOW levels at corresponding outputs.

- Address Access Time-20 ns Max
- Chip Select Access Time-8.0 ns Max
- Chip Select Input and Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation-0.56 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\overline{\mathrm{CS}}$

$\mathrm{A}_{0}-\mathrm{A}_{7} \quad$ Address Inputs
$\mathrm{O}_{1}-\mathrm{O}_{4} \quad$ Data Outputs

Logic Symbol

[^51]
Connection Diagram

16-Pin DIP (Top View)

Notes
VCP (Pin 1) is connected to the Programmer (+10.5 V) during programming only; otherwise, it should be grounded.
The Flatpak version has the same pinout (Connection Diagram) as the Dual In-line Package.

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 D	DC
Plastic DIP	$9 B$	PC
Flatpak	3 L	FC

F10416

Logic Diagram

Functional Description

The F10416 is a fully decoded bipolar field programmable read only memory organized 256 words by four bits per word. An unterminated emitter-follower output is provided to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many F10416 devices can be tied together. An external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is off.

One Chip Select $(\overline{\mathrm{CS}})$ input is provided for memory array expansion up to 512 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of $\overline{\mathrm{CS}}$ from the address without increasing address access time. The device is enabled when $\overline{\mathrm{CS}}$ is LOW. When the device is disabled $(\overline{C S}=\mathrm{HIGH}$), all outputs are forced LOW.

The read function is identical to that of a conventional bipolar ROM. That is, a binary address is applied to the A0 through A7 inputs, the chip is selected and data is valid at the outputs after $t_{A A}$.

In the unprogrammed state the outputs are HIGH. To program LOW levels follow the procedure outlined in the Programming Specifications table.

Programming

The F10416 is manufactured with all bits in the logic " 1 " state. Any desired bit (output) can be programmed to a logic " 0 " state by following the procedure shown below. One may build a programmer to satisfy the specifications or purchase any of the commercially available programmers which meet these specifications.

Programming Sequence

1. Apply power to the part: $\mathrm{V}_{\mathrm{CC}}=\operatorname{pin} 16=\mathrm{GND}$; $V_{E E}=\operatorname{pin} 8=-5.2 \mathrm{~V} \pm 5 \%$.
2. Terminate all outputs (pins $11,12,14$ and 15) with $5 \mathrm{k} \Omega$ resistors to $\mathrm{V}_{\mathrm{T} T}=-2.0 \mathrm{~V}$. Note: all input pins, including $\overline{\mathrm{CS}}$, have internal $50 \mathrm{k} \Omega$ pull-down resistors to VEE.

F10416

3. Select the word to be programmed by applying the appropriate voltage levels, as shown in the Programming Specifications table, to the Address pins ($2,3,4,5,6,7,9$ and 10).
4. After the address levels are set raise $\mathrm{V}_{\mathrm{CP}}=\operatorname{Pin} 1$ from 0 V to $+10.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$.
5. After $V_{C P}$ has reached its HIGH level, select the bit to be programmed by applying a HIGH level of $+3.0 \mathrm{~V} \pm 0.1 \mathrm{~V}$ to the output associated with it, i.e., pins 11, 12, 14 or 15 . Only one bit (output) at a time may be selected for programming. Uncommitted outputs are terminated as outlined in 2.
6. After the HIGH level (+3.0 V) has been established at the selected output pin, source a current of $-40 \mathrm{~mA} \pm 4 \mathrm{~mA}$ out of the Chip Select input (pin 13) to program the selected bit; this applied current pulse which is $100 \mu \mathrm{~s}$ wide and has an approximate rise time of $1 \mu \mathrm{~s}$ is to be furnished by a current sink which clamps at $\mathrm{V}_{\text {clamp }}=-5.9 \mathrm{~V}$.
7. To verify a LOW in the bit just programmed follow this sequence:
(a) Remove current pulse from $\overline{\mathrm{CS}}$ pin.
(b) Remove applied voltage from selected output pin.
(c) Lower VCP from HIGH level to GND.
(d) Keep same address but change its levels to normal ECL levels as outlined in the Programming Specifications table.
(e) Enable the chip by applying a LOW level (VIL) to CS (pin 13), or leave it open.
(f) Sense the level at the selected output pin; a LOW level indicates successful programming whereas a HIGH level is a fail indication; in the latter case reprogramming of the bit can be attempted up to a maximum of eight times.
8. To program other bits in the memory repeat steps 3 through 7.

Programming Timing Sequence

[^52]Programming Specifications

Symbol	Characteristic	Min	Recommended Value	Max	Unit	Comment
Vcc	Power Supply		0		V	
VEE		-5.46	-5.2	-4.94	V	
$V_{T T}$	Termination Voltage		-2.0		V	Applied to all outputs
V_{IH}	Chip Select (Vclamp)	-0.1	0	+0.1	V	Max Current is 40 mA during programming
VIL		-5.9	-5.2		V	
VIHP	Address Input Threshold	-0.1	0	+0.1	V	Programming levels
VILP		-3.1	-3.0	-2.9	V	
VIHV	Address Input Threshold	-0.88	-0.87	-0.86	V	Verify levels
VILV		-1.76	-1.75	-1.74	V	
VCP	Program Setup Pulse	10.2	10.5	10.8	V	
Vop	Programming Pulse	2.9	3.0	3.1	V	Applied to output to be programmed
Ics	Chip Select Programming Current	36	40	44	mA	At $\mathrm{V}_{\text {CLAMP }}=-5.9 \mathrm{~V}$ Min on the Chip Select pin
$t_{p c s}$	Chip Select Programming Pulse	50	100	180	$\mu \mathrm{S}$	
tres	Chip Select Programming Pulse Rise Time	0.5	1.0	2.0	$\mu \mathrm{S}$	
$t_{\text {pvcp }}$	VCP Programming Pulse	90	140	220	$\mu \mathrm{S}$	
$t_{\text {rucp }}$	VCP Programming Rise Time	0.5	1.0	2.0	$\mu \mathrm{S}$	
$t_{\text {setup }}$	Setup Time	20			ns	Start time of VCP pulse after address is selected

F10416

Guaranteed Operating Ranges

Part Number	Supply Voltage (VEE)			Ambient Temperature
	Min	Typ	Max	
	-5.46 V	-5.2 V	-4.94 V	$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

$X=$ Package Type
DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V} \mathrm{CC}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	T_{A}	Condition	
VOH	Output HIGH Voltage	$\begin{array}{r} -1060 \\ -960 \\ -890 \end{array}$		$\begin{aligned} & -890 \\ & -810 \\ & -700 \end{aligned}$	mV	$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathrm{N}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{max})$	Loading is$50 \Omega \text { to }-2.0 \mathrm{~V}$
Vol	Output LOW Voltage	$\begin{aligned} & -1890 \\ & -1850 \\ & -1825 \end{aligned}$		$\left\lvert\, \begin{aligned} & -1675 \\ & -1650 \\ & -1615 \end{aligned}\right.$	mV	$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	or VIL(min)	
Vонс	Output HIGH Voltage	$\begin{array}{r} -1080 \\ -980 \\ -910 \end{array}$			mv	$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{I N}=V_{I H}(\min) \\ & \text { or } V_{I L}(\max) \end{aligned}$	
Volc	Output LOW Voltage			$\begin{aligned} & \hline-1655 \\ & -1630 \\ & -1595 \end{aligned}$	mV	$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$		
V_{IH}	Input HIGH Voltage	$\begin{aligned} & -1205 \\ & -1105 \\ & -1035 \end{aligned}$		$\begin{aligned} & 890 \\ & 810 \\ & 700 \end{aligned}$	mV	$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	Guaranteed HIGH signal for All Inputs	
VIL	Input LOW Voltage	$\begin{aligned} & -1890 \\ & -1850 \\ & -1825 \end{aligned}$		$\begin{array}{\|l} -1500 \\ -1475 \\ -1440 \end{array}$	mV	$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	Guaranteed LOW signal for All Inputs	
liH	Input HIGH Current			200	$\mu \mathrm{A}$	$\begin{aligned} & -30^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{VIN}^{(N)} \mathrm{V}_{\mathrm{IH}(\text { max }}$	
IIL	Input LOW Current, $\overline{C S}$	0.5		150	$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}($ min $)$	
Iee	Power Supply Current	-140	-110		mA	$+25^{\circ} \mathrm{C}$	All Inputs and Outputs Open	

AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%, \mathrm{VCC}=\mathrm{GND}$, Output Load 50Ω to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$t_{\text {AA }}$	Address Access Time2		11	20	ns	Measured at 50\% Points of both Input and Output
$t_{\text {ACS }}$	Chip Select Access Time		4.0	8.0	ns	Measured at 50\% Points of both Input and Output

1. See 10 K Family Characteristics for other dc specifications.
2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

256×4-Bit Static Random Access Memory

F10K ECL Product

Description

The F10422 is a 1024-bit read/write Random Access Memory (RAM), organized 256 words by four bits per word. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as four active-LOW Bit Select lines.

- Address Access Time-10 ns Max
- Bit Select Access Time-5.0 ns Max
- Four Bits Can be Independently Selected
- Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation-0.92 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\overline{W E}$
$\overline{\mathrm{BS}_{0}}-\overline{\mathrm{BS}_{3}}$
Write Enable Input (Active LOW)
$\begin{array}{ll}A_{0}-A_{7} & \text { Address Inputs } \\ D_{0}-D_{3} & \text { Data Inputs }\end{array}$
$\mathrm{D}_{0}-\mathrm{D}_{3}$
$\mathrm{O}_{0}-\mathrm{O}_{3}$
Data Outputs

Logic Symbol

Connection Diagrams

24-Pin DIP (Top View)

Note

The 24-pin flatpak version has the same pinout connections as the Dual In-Line package.

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

$V_{C C}=\operatorname{Pin} 24$
$V_{C C A}=\operatorname{Pin} 1$
$\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 12$

:Logic Diagram

Functional Description

The F10422 is a fully decoded 1024-bit read/write random access memory, organized 256 words by four bits. Word selection is achieved by means of an 8-bit address, A_{0} through A7.

Four Bit Select inputs are provided for logic flexibility. For larger memories, the fast bit select access time permits the decoding of individual bit selects from the address without increasing address access time.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With WE held LOW and the bit selected, the data at $\mathrm{D}_{0}-\mathrm{D}_{3}$ is written into the addressed location. Since the write function is level triggered, data must be held stable for at least twsD(min) plus tw(min) to insure a valid write. To read, $\overline{\mathrm{WE}}$ is held HIGH and the bit selected. Non-inverted data is then presented at the output (O).

The outputs of the F10422 are unterminated emitter followers, which allow maximum flexibility in choosing output connection configurations. In many applications it is desirable to tie the outputs of several F10422 devices together to allow easy expansion. In other applications the wired-OR need not be used. In either case an external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output.

Truth Table

Inputs			Outputs	Mode
$\overline{\mathbf{B} \mathbf{S}_{\boldsymbol{n}}}$	$\overline{\mathrm{WE}}$	$\mathrm{D}_{\boldsymbol{n}}$	$\mathbf{O}_{\boldsymbol{n}}$	
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

Each bit has independent $\overline{B S}, \mathrm{D}$, and O , but all have common $\overline{\mathrm{WE}}$.
$L=$ LOW Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
$H=H I G H$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal)
$X=$ Don't Care
Data $=$ Previously stored data

DC Characteristics: $\mathrm{V}_{E E}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IH	Input HIGH Current			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { max }}$
IIL	Input LOW Current, $\overline{\mathrm{BS}}_{0}-\overline{\mathrm{BS}}_{3}$ $\overline{\mathrm{WE}}, \mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{D}_{0}-\mathrm{D}_{3}$	$\begin{array}{r} 0.5 \\ -50 \end{array}$		170	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{min})$
IEE	Power Supply Current	-230	-180		mA	All Inputs and Outputs Open

AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%, \mathrm{~V} \mathrm{CC}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to -2.0 V , $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
$t_{\text {ABS }}$ tRBS t $A A$	Read Timing Bit Select Access Time Bit Select Recovery Time Address Access Time2		$\begin{aligned} & 3.0 \\ & 3.0 \\ & 7.0 \end{aligned}$	$\begin{array}{r} 5.0 \\ 5.0 \\ 10 \end{array}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	Figures 3a, 3b	Measured at 50% of Input to Valid Output (VIL(max) for Vol or V_{IH} (min) for VOH)
tw twSD twhD	Write Timing Write Pulse Width to Guarantee Writing Data Setup Time prior to Write Data Hold Time after Write Address Setup Time prior to Write Address Hold Time after Write Bit Select Setup Time prior to Write Bit Select Hold Time after Write Write Disable Time Write Recovery Time	7.0 1.0 2.0	5.0 0 0		ns ns ns	$\operatorname{tWSA}=1 \mathrm{~ns}$ Figure 4	
tWSA		1.0	0		ns		
tWHA		2.0	0		ns		
twSBS		1.0	0		ns	$\mathrm{tw}=7 \mathrm{~ns}$	
twHBS		2.0	. 0		ns	Figure 4	
tws			3.0	5.0	ns		
twr			6.0	12	ns		
t_{r} t_{f}	Output Rise Time Output Fall Time		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Measured between 20\% and 80% or 80% and 20%, Figure 2	
Cin Cout	Input Pin Capacitance Output Pin Capacitance		$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	pF pF	Measured with a Pulse Technique	

[^53]Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50\% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{\mathrm{L}}=50 \Omega$ to -2.0 V .
Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Bit Select

b Read Mode Propagation Delay from Address

F10422

Fig. 4 Write Mode Timing

Note
Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

F10470
 4096×1-Bit Static
 Random Access Memory

F10K ECL Product

Description

The F10470 is a 4096-bit read/write Random Access Memory (RAM), organized 4096 words by one bit per word and designed for high-speed scratchpad, control and buffer storage applications. It is available in two speed versions, the F10470 and F10470A. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as an active-LOW Chip Select line.

- Address Access Time

F10470-35 ns Max

F10470A-25 ns Max

- Chip Select Access Time

F10470-15 ns Max
F10470A-10 ns Max

- Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation-0.20 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names
$\overline{W E}$
CS Chip Select Input (Active LOW)
$A_{0}-A_{11}$
D Data Input
O Data Output

Logic Symbol

Connection Diagram

18-Pin DIP (Top View)

Note
The 18-pin Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	$8 F$	DC
Flatpak	$3 E$	FC

Logic Diagram

Functional Description

The F10470 is a fully decoded 4096-bit read/write random access memory, organized 4096 words by one bit. Bit selection is achieved by means of a 12 -bit address, A0 through A_{11}.

One Chip Select input is provided for memory array expansion up to 8196 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of Chip Select, (CS) from the address without increasing address access time.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\mathrm{WE}}$ held LOW and the chip selected, the data at D is written into the addressed location. Since the write function is level triggered, data must be held stable for at least ${ }^{\mathrm{twSD}}$ (min) plus tw (min) to insure a valid write. To read, $\overline{\mathrm{WE}}$ is held HIGH and the chip selected. Non-inverted data is then presented at the output (O).

The output of the F10470 is an unterminated emitter follower, which allows maximum flexibility in choosing output connection configurations. In many applications it is desirable to tie the outputs of several F10470 devices together. In other applications the wired-OR need not be used. In either case an external 50Ω pulldown resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is OFF.

Truth Table

Inputs			Output	Mode
$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	D	\mathbf{O}	
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

[^54]DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{VCC}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
$\mathrm{liH}^{\text {H}}$	Input HIGH Current			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { max }}$	
IL	Input LOW Current, $\overline{C S}$ $\overline{W E}, A_{0}-A_{11}, D$	$\begin{array}{r} 0.5 \\ -50 \end{array}$		170	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (min)	
IEE	Power Supply Current	-200	$\begin{aligned} & -145 \\ & -160 \end{aligned}$		mA	$\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	All Inputs and Output Open
						$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	

AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%, \mathrm{VCC}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

1. See Family Characteristics for other dc specifications.
2. The maximum address access time is guaranteed to be the worst case bit in the memory using a psuedorandom testing pattern.

Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50\% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{L}=50 \Omega$ to -2.0 V .

Fig. 2 Input Levels

Fig. 3 Read Mode Timing

b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Note

Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

F10K ECL Product

Description

The F10474 is a 4096-bit read/write Random Access Memory (RAM), organized 1024 words by four bits per word. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as an active-LOW Chip Select line.

- Address Access Time-25 ns Max
- Chip Select Access Time-15 ns Max
- Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation-0.20 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\overline{\overline{W E}}$
$\mathrm{A}_{0}-\mathrm{A}_{9}$
$\mathrm{D}_{0}-\mathrm{D}_{3}$
$\mathrm{O}_{0}-\mathrm{O}_{3}$
Write Enable Input (Active LOW)
Chip Select Input (Active LOW)
Address Inputs
Data Inputs
Data Outputs

Logic Symbol

[^55]
Connection Diagram

24-Pin DIP (Top View)

Note
The 24-pin flatpak version has the same pinout connections as the
Dual In-Line package.
Ordering Information (See Section 5)

Package	Outline	Order Code
Ceramic DIP	6 Y	DC
Flatpak	4 V	FC

Logic Diagram

Functional Description

The F10474 is a fully decoded 4096-bit read/write random access memory, organized 1024 words by four bits. Word selection is achieved by means of a 10-bit address, A_{0} through Ag.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With WE held LOW and the chip selected, the data at $D_{0}-D_{3}$ is written into the addressed location. Since the write function is level triggered, data must be held stable for at least twsD(min) plus $\mathrm{tw}(\min)$ to insure a valid write. To read, $\overline{\mathrm{WE}}$ is held HIGH and the chip selected. Non-inverted data is then presented at the outputs ($\mathrm{O}_{0}-\mathrm{O}_{3}$).

The outputs of the F10474 are unterminated emitter followers, which allow maximum flexibility in output connection configurations. In many applications such as memory expansion, the outputs of many F10474
devices can be tied together. In other applicatons the wired-OR need not be used. In either case an external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is OFF.

Truth Table

Inputs			Outputs	
Mode				
	$\overline{\text { WE }}$	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{O}_{\boldsymbol{n}}$	
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

[^56]DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IIH 2	Input HIGH Current			220	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\max)}$
${\hline \multirow{9}{}}{ } }$	Input LOW Current, $\overline{\mathrm{CS}}$ $\overline{\mathrm{WE}, A_{0}-\mathrm{A}_{11}, \mathrm{D}}$	0.5 -50		170	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}(\min)}$
IEE	Power Supply Current	-200	-160		mA	Inputs and Outputs Open

AC Characteristics: $V_{E E}=-5.2 \mathrm{~V} \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to -2.0 V , $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
$\begin{aligned} & \mathrm{t}_{\mathrm{ACS}} \\ & \mathrm{t}_{\mathrm{RCS}} \\ & \mathrm{t}_{\mathrm{AA}} \end{aligned}$	Read Timing Chip Select Access Time Chip Select Recovery Time Address Access Time 2		10 10 20	$\begin{aligned} & 15 \\ & 15 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	Figures 3a, 3b	Measured at 50% of Input to Valid Output (VIL(max) for V_{OL} or $\mathrm{V}_{\mathrm{IH}(\text { min })}$ for $\mathrm{VOH}_{\mathrm{OH}}$)
tw twSD	Write Timing Write Pulse Width to Guarantee Writing Data Setup Time prior to Write	16 5.0	10 1.0		ns ns	twSA $=10 \mathrm{~ns}$ Figure 4	
tWHD	Data Hold Time after Write	5.0	1.0		ns		
tWSA	Address Setup Time prior to Write	10	3.0		ns		
tWHA	Address Hold Time after Write	4.0	1.0		ns		
twscs	Chip Select Setup Time prior to Write	5.0	1.0		ns	$\mathrm{tw}=16 \mathrm{~ns}$	
twhes	Chip Select Hold Time after Write	5.0	1.0		ns	Figure 4	
tws	Write Disable Time		6.0	15	ns		
twR	Write Recovery Time		8.0	20	ns		
$\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	Output Rise Time Output Fall Time		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns ns	Measured between 20\% and 80% or 80% and 20%, Figure 2	
CIN Cout	Input Pin Capacitance Output Pin Capacitance		$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	pF pF	Measured with a Pulse Technique	

[^57]Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50\% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{L}=50 \Omega$ to -2.0 V .

Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Chip Select

b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Note
Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

Chapter 5

Ordering Information/ Package Outlines

Specific ordering codes are listed on each data sheet in Chapters 3 and 4. The Product Index and Selection Guide given in Chapter 1 list only the "basic device numbers." This basic number is used to form part of a simplified purchasing code where the package type is defined as follows:

Temperature Range - One basic temperature grade is specified in this databook:

C = Commercial
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Code - One letter represents the basic package type. Different package outlines exist within each package type to accommodate varying die sizes and number of pins, as indicated below:

D-Ceramic/Hermetic Dual In-line
4J, 6D, 6Y, 8F
F-Flatpak
3E, 3L, 4Q, 4V
P-Plastic Dual In-line
9B

Package Outlines - The package outlines indicated by the codes above are shown in the detailed outline drawings in this section.

Thermal Resistance (Typical)		
	$\boldsymbol{\theta J C}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ Fluid Bath	$\boldsymbol{\theta J A}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ Still Air
3L	18	164
4J	14	78
4Q	8	140
4V	35	190
6D	15	82
6Y	25	75
9B	41	118

Package Outlines

3E 18-Pin Cerpak

3L 16-Pin Cerpak

Notes

Pins are tin-plated alloy 42 or equivalent Cap and base are black alumina ($\mathrm{AL}_{2} \mathrm{O}_{3}$). Package weight is 0.9 Grams.
\dagger These dimensions include misalignment, glass overrun, etc....

Notes

Pins are tin-plated alloy 42 or equivalent Cap and base are black alumina ($\mathrm{AL}_{2} \mathrm{O}_{3}$). Package weight is 0.5 Grams.
\dagger These dimensions include misalignment, glass over-run, etc....

Package Outlines

4J 16-Pin Ceramic DIP

4Q 24-Pin Quad Cerpak

All dimensions in inches bold and millimeters (parentheses).

Package Outlines

4V 24-Pin Quad Cerpak

Notes

Pins are tin-plated alloy 42 or equivalent.
Base and cap is alumina (black).
Package weight is 0.7 grams.
\dagger This dimension includes misalignment, glass over-run, etc....

6D 16-Pin Vitreous Glass MSI DIP

Notes

Pins are tin-plated kovar or nickel alloy 42.
Pins are intended for insertion in hole rows on . 300 (7.62) centers.
Pins are purposely shipped with "positive" misalignment to facilitate insertion. Board-drilling dimensions should equal your practice for .030 (0.76) diameter pins. Hermetically sealed alumina package (black).
*The . 037 -. 027 (0.94-0.68) dimension does not apply to the corner pins. Package weight is 2.2 grams.

Package Outlines

6Y 24-Pin Ceramic DIP

8F 18-Pin Ceramic DIP (LSI)

Notes

Pins are tin-plated alloy 42 or equivalent.
Package material is alumina.
Pins are intended for insertion in rows on .400 (10.16) centers.
Pins are purposely shipped with "positive" misalignment to facilitate insertion.
Package weight is 5.0 grams.
\dagger These dimensions include misalignment, glass over-run, etc....
$\dagger \dagger$ This dimension is measured from CL to CL of pins.

Notes

Pins are tin-plated alloy 42 or equivalent. Pins are intended for insertion in hole rows on . 300 (7.62) centers.
Pins are purposely shipped with "positive" misalignment to facilitate insertion. Board-drilling dimeensions should equal your practice for .030 (.762) diameter holes. Hermetically sealed alumina package.
*Does not apply to the corner pins.
Package weight is 2.7 grams.
\dagger This dimension includes misalignment, glass over-run, etc....

Package Outlines

9B
16-Pin Plastic DIP

Notes
Pins are tin-plated alloy 42 or equivalent. Package material varies depending on the product line.
Pins are intended for insertion in hole rows on $\mathbf{3 0 0}$ (7.62) centers.
Pins are purposely shipped with "positive" misalignment to facilitate insertion.
Board-drilling dimensions should equal your practice for .020 (0.51) diameter pir. The . 037 -. 027 (0.94-0.69) dimension does not apply to the corner pins.
Package weight is 1.0 grams.
Add 7 mils flash on all sides to maximum
 package dimensions.

All dimensions in inches bold and millimeters (parentheses).

Fairchild
 Semiconductor

Franchised Distributors

United States and Canada

Alabama

Hall Mark Electronics
4900 Bradford Drive
Huntsville, Alabama 35807
Tel: 205-837-8700 TWX: 810-726-2187
Hamilton/Avnet Electronics
4692 Commercial Drive
Huntsville, Alabama 35805
Tel: 205-837-7210 TWX: 810-726-2162
Schweber Electronics
2227 Drake Avenue S.W.
Huntsville, Alabama 35805
Tel: 205-882-2200

Arizona

Hamilton/Avnet Electronics
505 South Madison Drive
Tempe, Arizona 85281
Tel: 602-231-5100 TWX: 910-950-0077
Kierulff Electronics
4134 East Wood Street
Phoenix, Arizona 85040
Tel: 602-243-4101 TWX: 910-951-1550
Wyle Distribution Group
8155 North 24th Avenue
Phoenix, Arizona 85021
Tel: 602-249-2232 TWX: 910-951-4282

California

Anthem Electronics, Inc.
21730 Nordhoff Street
Chatsworth, California 91311
Tel: 213-700-1000 TWX: 910-493-2083
Anthem Electronics, Inc.
4125 Sorrento Valley Blvd.
San Diego, California 92121
Tel: 714-279-5200 TWX: 910-335-1515
Anthem Electronics, Inc.
174 Component Drive
San Jose, California 95131
Tel: 408-946-8000 TWX: 910-338-2038
Anthem Electronics, Inc.
2661 Dow Avenue
Tustin, California 92680
Tel: 714-730-8000 TWX: 910-595-1583
Arrow Electronics
19748 Dearborn Street
Chatsworth, California 91311
Tel: 213-701-7500 TWX: 910-493-2086
Arrow Electronics
9511 Ridge Haven Court
San Diego, California 92123
Tel: 714-565-4800 TWX: 910-335-1195

Arrow Electronics

521 Weddell Avenue
Sunnyvale, California 94086
Tel: 408-745-6600 TWX: 910-339-9371
Avnet Electronics
350 McCormick Avenue
Costa Mesa, California 92626
Tel: 714-754-6111 (Orange County)
213-558-2345 (Los Angeles)
TWX: 910-595-1928

Bell Industries

Electronic Distributor Division
1161 N. Fair Oaks Avenue
Sunnyvale, California 94086
Tel: 408-734-8570 TWX: 910-339-9378
Hamilton/Avnet Electronics
3170 Pullman Avenue
Costa Mesa, California 92626
Tel: 714-641-1850 TWX: 910-595-2638
Hamilton Electro Sales
10912 West Washington Blvd.
Culver City, California 90230
Tel: 213-558-2121 TWX: 910-340-6364
Hamilton/Avnet Electronics
4103 North Gate Blvd.
Sacramento, California 95348
Tel: 916-920-3150
Hamilton/Avnet Electronics
4545 Viewridge Avenue
San Diego, California 92123
Tel: 714-571-7527 TWX: 910-335-1216
Hamilton/Avnet Electronics
1175 Bordeaux Drive
Sunnyvale, California 94086
Tel: 408-743-3355 TWX: 910-339-9332
Schweber Electronics
17811 Gillette Avenue
Irvine, California 92714
Tel: 714-556-3880
Sertech Laboratories**
2120 Main Street, Suite 190
Huntington Beach, California 92647
Tel: 714-960-1403
Wyle Distribution Group
124 Maryland Street
El Segundo, California 90245
Tel: 213-322-8100 TWX: 910-348-7140
Wyle Distribution Group
Military Product Division
17872 Cowan Avenue
Irvine, California 92714
Tel: 714-851-9953
Telex: 910-595-1572
Wyle Distribution Group
18910 Teller Avenue
Irvine, California 92715
Tel: 714-851-9955
Wyle Distribution Group
9525 Chesapeake
San Diego, California 92123
Tel: 714-565-9171 TWX: 910-335-1590
Wyle Distribution Group
3000 Bowers Avenue
Santa Clara, California 95051
Tel: 408-727-2500 TWX: 910-338-0541
Zeus Components, Inc.
1130 Hawk Circle
Anaheim, California 92807
Tel: 714-632-6880

Colorado

Arrow Electronics
2121 South Hudson
Denver, Colorado 80222
Tel: 303-758-2100 TWX: 910-331-0552
Bell Industries
8155 West 48th Avenue
Wheatridge, Colorado 80033
Tel: 303-424-1985 TWX: 910-938-0393
Hamilton/Avnet Electronics
8765 E. Orchard Rd., Suite 708
Englewood, Colorado 80111
Tel: 303-740-1000 TWX: 910-935-0787
Wyle Distribution Group
451 East 124th Avenue
Thornton, Colorado 80241
Tel: 303-457-9953 TWX: 910-936-0770

Connecticut

Arrow Electronics
12 Beaumont Road
Wallingford, Connecticut 06492
Tel: 203-265-7741 TWX: 710-476-0162
Hamilton/Avnet Electronics
Commerce Drive, Commerce Park
Danbury, Connecticut 06810
Tel: 203-797-2800 TWX: 710-546-9974
Harvey Electronics
112 Main Street
Norwalk, Connecticut 06851
Tel: 203-853-1515 TWX: 710-468-3373
Schweber Electronics
Finance Drive
Commerce Industrial Park
Danbury, Connecticut 06810
Tel: 203-792-3500 TWX: 710-456-9405

Florida

Arrow Electronics
1001 Northwest 62nd Street
Suite 108
Ft. Lauderdale, Florida 33309
Tel: 305-776-7790 TWX: 510-955-9456
Arrow Electronics
50 Woodlake Drive West
Building B
Palm Bay, Florida 32905
Tel: 305-725-1480 TWX: 510-959-6337
Arrow Electronics
50 Woodlake Drive West
Building B
Palm Bay, Florida 32905
Tel: 305-725-1480 TWX: 510-959-6337
Chip Supply**
1607 Forsyth Road
Orlando, Florida 32807
Tel: 305-275-3810
Hall Mark Electronics
1671 West McNab Road
Ft. Lauderdale, Florida 33309
Tel: 305-971-9280 TWX: 510-956-3092
Hall Mark Electronics
7233 Lake Ellenor Drive
Orlando, Florida 32809
Tel: 305-855-4020 TWX: 810-850-0183
**This distributor carries Fairchild die products only.

Fairchild

 Semiconductor
Franchised Distributors

United States and Canada

Hamilton/Avnet Electronics
6801 N.W. 15th Way
Ft. Lauderdale, Florida 33309
Tel: 305-971-2900 TWX: 510-956-3097
Hamilton/Avnet Electronics
3197 Tech Drive, North
St. Petersburg, Florida 33702
Tel: 813-576-3930 TWX: 810-863-0374
Schweber Electronics
2830 North 28th Terrace
Hollywood, Florida 33020
Tel: 305-927-0511 TWX: 510-954-0304

Georgia

Arrow Electronics
2979 Pacific Drive
Norcross, Georgia 30071
Tel: 404-449-8252 TWX: 810-766-0439

Hall Mark Electronics
6410 Atlantic Blvd., Suite 115
Norcross, Georgia 30071
Tel: 404-447-8000 TWX: 810-766-4510
Hamilton/Avnet Electronics
5825-D Peachtree Corners East
Norcross, Georgia 30092
Tel: 404-447-7500 TWX: 810-766-0432
Schweber Electronics
303 Research Drive
Norcross, Georgia 30092
Tel: 404-449-9170

Illinois

Arrow Electronics
492 Lunt Avenue
Schaumburg, Illinois 60193
Tel: 312-893-9420 TWX: 910-291-3544
Hall Mark Electronics
1177 Industrial Drive
Bensenville, Illinois 60106
Tel: 312-860-3800 TWX: 910-651-0185
Hamilton/Avnet Electronics
1130 Thorndale Avenue
Bensenville, lllinois 60106
Tel: 312-860-7780 TWX: 910-227-0060
Kierulff Electronics
1536 Landmeier Road
Elk Grove Village, Illinois 60007
Tel: 312-640-0200 TWX: 910-227-3166
Schweber Electronics
904 Cambridge Avenue
Elk Grove Village, Illinois 60007
Tel: 312-364-3750 TWX: 910-222-3453

Indiana

Arrow Electronics
2718 Rand Road
Indianapolis, Indiana 46241
Tel: 317-243-9353 TWX: 810-341-3119
Graham Electronics Supply, Inc.
133 S. Pennsylvania Street
Indianapolis, Indiana 46204
Tel: 317-634-8202 TWX: 810-341-3481

Hamilton/Avnet Electronics

485 Gradle Drive
Carmel, Indiana 46032
Tel: 317-844-9333 TWX: 810-260-3966
Pioneer Electronics
6408 Castle Place Drive
Indianapolis, Indiana 46250
Tel: 317-849-7300 TWX: 810-260-1794

Iowa

Arrow Electronics
1930 St. Andrews N.E.
Cedar Rapids, Iowa 52402
Tel: 319-395-7230
Schweber Electronics
5270 N. Park Place N.E.
Cedar Rapids, Iowa 52402
Tel: 319-373-1417

Kansas

Hall Mark Electronics
10815 Lakeview Drive
Lenexa, Kansas 66215
Tel: 913-888-4747 TWX: 910-749-6620
Hamilton/Avnet Electronics
9219 Quivira Road
Overland Park, Kansas 66215
Tel: 913-888-8900 TWX: 910-743-0005
Schweber Electronics
10300 W. 103rd
Kansas City, Kansas 66109
Tel: 816-492-2921

Maryland

Arrow Electronics
4801 Benson Avenue
Baltimore, Maryland 21227
Tel: 301-247-5200 TWX: 710-236-9005

Hall Mark Electronics
6655 Amberton Drive
Baltimore, Maryland 21227
Tel: 301-796-9300 TWX: 710-862-1942
Hamilton/Avnet Electronics
6822 Oak Hall Lane
Columbia, Maryland 21045
Tel: 301-995-3500 TWX: 710-862-1861
Schweber Electronics
9218 Gaither Road
Gaithersburg, Maryland 20760
Tel: 301-840-5900 TWX: 710-828-9749

Massachusetts

Arrow Electronics
Arrow Drive
Woburn, Massachusetts 01801
Tel: 617-933-8130 TWX: 710-392-6770
Gerber Electronics
128 Carnegie Row
Norwood, Massachusetts 02062
Tel: 617-329-2400 TWX: 710-336-1987
Hamilton/Avnet Electronics
50 Tower Office Park
Woburn, Massachusetts 01801
Tel: 617-273-7500 TWX: 710-393-0382

Harvey Electronics
44 Hartwell Avenue
Lexington, Massachusetts 02173
Tel: 617-861-9200 TWX: 710-326-6617
Schweber Electronics
25 Wiggins Avenue
Bedford, Massachusetts 01730
Tel: 617-275-5100 TWX: 710-326-0268
Sertech Laboratories**
1 Peabody Street
Salem, Massachusetts 01970
Tel: 617-745-2450 TWX: 710-347-0223

Michigan

Arrow Electronics
3810 Varsity Drive
Ann Arbor, Michigan 48104
Tel: 313-971-8220 TWX: 810-223-6020

Hamilton/Avnet Electronics
2215 29th Street S.E.
Space A5
Grand Rapids, Michigan 49508
Tel: 616-243-8805 TWX: 810-273-6921
Hamilton/Avnet Electronics
32487 Schoolcraft
Livonia, Michigan 48150
Tel: 313-522-4700 TWX: 810-242-8775

Pioneer Electronics
13485 Stamford
Livonia, Michigan 48150
Tel: 313-525-1800 TWX: 810-242-3271
Schweber Electronics
12060 Hubbard Avenue
Livonia, Michigan 48150
Tel: 313-525-8100 TWX: 810-242-2983

Minnesota

Arrow Electronics
5230 West 73rd Street
Edina, Minnesota 55435
Tel: 612-830-1800 TWX: 910-576-3125
Hall Mark Electronics
7838 12th Avenue South
Bloomington, Minnesota 55420
Tel: 612-854-3233
Hamilton/Avnet Electronics
10300 Bren Road East
Minnetonka, Minnesota 55343
Tel: 612-932-0600 TWX: 910-576-2720
Schweber Electronics
7422 Washington Avenue S.
Eden Prairie, Minnesota 55344
Tel: 612-941-5280 TWX: 910-576-3167

Missouri

Arrow Electronics
2380 Schuetz Road
St. Louis, Missouri 63141
Tel: 314-567-6888 TWX: 910-764-0882
Hall Mark Electronics
13789 Rider Trail
Earth City, Missouri 63045
Tel: 314-291-5350 TWX: 910-762-0672

Fairchild
Semiconductor

Franchised Distributors

United States and Canada

Hamilton/Avnet Electronics
13743 Shoreline Court, East
Earth City, Missouri 63045
Tel: 314-344-1200 TWX: 910-762-0684
Schweber Electronics
502 Earth City Expressway
Earth City, Missouri 63045
Tel: 314-739-0526

New Hampshire

Arrow Electronics
1 Perimeter Road
Manchester, New Hampshire 03103
Tel: 603-668-6968 TWX: 710-220-1684
Schweber Electronics
Bedford Farms Building 2
Kilton and South River Roads
Manchester, New Hampshire 03102
Tel: 603-625-2250

New Jersey

Arrow Electronics
Pleasant Valley Avenue
Moorestown, New Jersey 08057
Tel: 609-235-1900 TWX: 710-897-0829
Arrow Electronics
285 Midland Avenue
Saddle Brook, New Jersey 07662
Tel: 201-797-5800 TWX: 710-988-2206
Arrow Electronics
2 Industrial Road
Fairfield, New Jersey 07006
Tel: 201:575-5300
Hall Mark Electronics
Springdale Business Center
2091 Springdale Road
Cherry Hill, New Jersey 08003
Tel: 609-424-0880 TWX: 710-940-0660
Hamilton/Avnet Electronics
10 Industrial Road
Fairfield, New Jersey 07006
Tel: 201-575-3390 TWX: 710-734-4388
Hamilton/Avnet Electronics
\#1 Keystone Avenue
Cherry Hill, New Jersey 08003
Tel: 609-424-0100 TWX: 710-940-0262
Schweber Electronics
18 Madison Road
Fairfield, New Jersey 07006
Tel: 201-227-7880 TWX: 710-734-4305

New Mexico

Arrow Electronics
2460 Alamo Avenue S.E.
Albuquerque, New Mexico 87106
Tel: 505-243-4566 TWX: 910-989-1679
Bell Industries
11728 Linn Avenue N.E.
Albuquerque, New Mexico 87123
Tel: 505-292-2700 TWX: 910-989-0625
Hamilton/Avnet Electronics
2524 Baylor Drive, S.E.
Albuquerque, New Mexico 87106
Tel: 505-765-1500 TWX: 910-989-0614

New York
Arrow Electronics
900 Broadhollow Road
Farmingdale, New York 11735
Tel: 516-694-6800
TWX: 510-224-6155 \& 510-224-6126

Arrow Electronics
20 Oser Avenue
Hauppauge, New York 11787
Tel: 516-231-1000 TWX: 510-227-6623
Arrow Electronics
P.O. Box 370

7705 Maltlage Drive
Liverpool, New York 13088
Tel: 315-652-1000 TWX: 710-545-0230
Arrow Electronics
30000 Winton Road South
Rochester, New York 14623
Tel: 716-275-0300 TWX: 510-253-4766
Hamilton/Avnet Electronics
5 Hub Drive
Melville, New York 11746
Tel: 516-454-6000 TWX: 510-224-6166
Hamilton/Avnet Electronics
333 Metro Park
Rochester, New York 14623
Tel: 716-475-9130 TWX: 510-253-5470
Hamilton/Avnet Electronics
16 Corporate Circle
E. Syracuse, New York 13057

Tel: 315-437-2642 TWX: 710-541-1560
Harvey Electronics
60 Crossways Park West
Woodbury, New York 11797
Tel: 516-921-8920 TWX: 510-221-2184
Schweber Electronics
Jericho Turnpike
Westbury, L.l., New York 11590
Tel: 516-334-7474 TWX: 510-222-3660
Schweber Electronics
3 Town Line Circle
Rochester, New York 14623
Tel: 716-424-2222
Summit Distributors, Inc.
916 Main Street
Buffalo, New York 14202
Tel: 716-884-3450 TWX: 710-522-1692
Zeus Components, Inc.
100 Midland Avenue
Port Chester, New York 10573
Tel: 914-937-7400 TWX: 710-567-1248
North Carolina
Arrow Electronics
938 Burke Street
Winston Salem, North Carolina 27102
Tel: 919-725-8711 TWX: 510-931-3169
Arrow Electronics
3117 Poplarwood Court, Suite 123
Raleigh, North Carolina 27625
Tel: 919-876-3132 TWX: 510: 928-1856

Hall Mark Electronics

5237 North Blvd.
Raleigh, North Carolina 27604
Tel: 919-872-0712 TWX: 510-928-1831
Hamilton/Avnet Electronics 2803 Industrial Drive
Raleigh, North Carolina 27609
Tel: 919-829-8030 TWX: 510-928-1836

Schweber Electronics
5285 North Blvd.
Raleigh, North Carolina 27604
Tel: 919-876-0000

Ohio

Arrow Electronics
7620 McEwen Road
Centerville, Ohio 45459
Tel: 513-435-5563 TWX: 810-459-1611
Arrow Electronics
6238 Cochran Road
Solon, Ohio 44139
Tel: 216-248-3990 TWX: 810-427-9409
Hall Mark Electronics
175 Alpha Park
Highland Heights, Ohio 44143
Tel: 216-473-2907
Hall Mark Electronics
6130 Sundbury Road, Suite B
Westerville, Ohio 43081
Tel: 614-891-4555
Hamilton/Avnet Electronics
954 Senate Drive
Dayton, Ohio 45459
Tel: 513-433-0610 TWX: 810-450-2531
Hamilton/Avnet Electronics
4588 Emery Industrial Parkway
Warrensville Heights, Ohio 44128
Tel: 216-831-3500 TWX: 810-427-9452
Pioneer Electronics
4800 E. 131st Street
Cleveland, Ohio 44105
Tel: 216-587-3600 TWX: 810-422-2211
Pioneer Electronics
4433 Interpoint Blvd.
Dayton, Ohio 45424
Tel: 513-236-9900 TWX: 810-459-1622
Schweber Electronics
23880 Commerce Park Road
Beachwood, Ohio 44122
Tel: 216-464-2970 TWX: 810-427-9441
Schweber Electronics
7865 Paragon Road
Dayton, Ohio 45459
Tel: 513-439-1800

Oklahoma

Hall Mark Electronics
5460 S. 103rd East Avenue
Tulsa, Oklahoma 74145
Tel: 918-665-3200 TWX: 910-845-2290

Fairchild Semiconductor

Franchised Distributors

United States and Canada

Oregon

Hamilton/Avnet Electronics
6024 S.W. Jean Road
Building C, Suite 10
Lake Oswego, Oregon 97034
Tel: 503-635-8157 TWX: 910-455-8179

Pennsylvania

Arrow Electronics
650 Seco Road
Monroeville, Pennsylvania 15146
Tel: 412-856-7000 TWX: 710-797-3894

Pioneer Electronics
259 Kappa Drive
Pittsburgh, Pennsylvania 15238
Tel: 412-782-2300 TWX: 710-795-3122

Schweber Electronics
101 Rock Road
Horsham, Pennsylvania 19044
Tel: 215-441-0600 TWX: 510-665-6540

Texas

Arrow Electronics
13715 Gamma Road
Dallas, Texas 75234
Tel: 214-386-7500 TWX: 910-860-5377
Arrow Electronics
10700 Corporate Drive, Suite 100
Stafford, Texas 77477
Tel: 713-491-4100 TWX: 910-880-4439
Arrow Electronics
10125 Metropolitan Drive
Austin, Texas 78758
Tel: 512-835-4180 TWX: 910-874-1348
Hall Mark Electronics
12211 Technology Blva.
Austin, Texas 78759
Tel: 512-258-8848 TWX: 910-874-2031

Hall Mark Electronics
11333 Page Mill Drive
Dallas, Texas 75243
Tel: 214-343-5000 TWX: 910-867-4721
Hall Mark Electronics
8000 Westglen
Houston, Texas 77063
Tel: 713-781-6100 TWX: 910-881-2711
Hamilton/Avnet Electronics
2401 Rutland Drive
Austin, Texas 78758
Tel: 512-837-8911 TWX: 910-874-1319
Hamilton/Avnet Electronics 8750 Westpark
Houston, Texas 77063
Tel: 713-780-1771 TWX: 910-881-5523
Hamilton/Avnet Electronics
2111 W. Walnut Hill Lane
Irving, Texas 75062
Tel: 214-659-4111 TWX: 910-860-5929

Schweber Electronics
4202 Beltway Drive
Dallas, Texas 75234
Tel: 214-661-5010 TWX: 910-860-5493

Schweber Electronics
10625 Richmond, Suite 100
Houston, Texas 77042
Tel: 713-784-3600 TWX: 910-881-4836

Schweber Electronics
111 W. Anderson Lane
Austin, Texas 78752
Tel: 512-458-8253

Sterling Electronics
4201 Southwest Freeway
Houston, Texas 77027
Tel: 713-627-9800 TWX: 910-881-5042
Telex: STELECO HOUA 77-5299

Sterling Electronics
23358 Kramer Lane
Austin, Texas 78758
Tel: 512-836-1341

Sterling Electronics
11090 Stemmons Freeway
Dallas, Texas 75229
Zeus Components, Inc.
14001 Goldmark, Suite 250
Dallas, Texas 75240
Tel: 214-783-7010

Utah

Arrow Electronics
4980 Amelia Earhart Drive
Salt Lake City, Utah 84116
Tel: 801-539-1135
Bell Industries
3639 West 2150 South
Salt Lake City, Utah 84120
Tel: 801-972-6969 TWX: 910-925-5686

Hamilton/Avnet Electronics
1585 West 2100 South
Salt Lake City, Utah 04119
Tel: 801-972-2800 TWX: 910-925-4018
Washington
Arrow Electronics
14320 N.E. 21st Street
Bellevue, Washington 98005
Tel: 206-643-4800 TWX: 910-443-3033

Hamilton/Avnet Electronics
14212 N.E. 21st Street
Bellevue, Washington 98005
Tel: 206-453-5844 TWX: 910-443-2469
Radar Electronic Co., Inc.
168 Western Avenue W.
Seattle, Washington 98119
Tel: 206-282-2511 TWX: 910-444-2052
Wyle Distribution Group
1750 132nd Avenue N.E.
Bellevue, Washington 98005
Tel: 206-453-8300 TWX: 910-443-2526

Wisconsin

Arrow Electronics
430 W. Rawson Avenue
Oakcreek, Wisconsin 53154
Tel: 414-764-6600 TWX: 910-262-1193

Hall Mark Electronics
9657 South 20th Street
Oakcreek, Wisconsin 53154
Tel: 414-761-3000
Hamilton/Avnet Electronics
2975 South Moorland Road
New Berlin, Wisconsin 53151
Tel: 414-784-4510 TWX: 910-262-1182
Schweber Electronics
150 Sunnyslope Road, Suite 120
Brookfield, Wisconsin 53005
Tel: 414-784-9020

Canada

Future Electronics Inc.
4800 Dufferin Street
Downsview, Ontario, M3H 5S8, Canada
Tel: 416-663-5563
Future Electronics Inc.
Baxter Center
1050 Baxter Road
Ottawa, Ontario, K2C 3P2, Canada
Tel: 613-820-8313
Future Electronics Inc.
237 Hymus Blvd.
Pointe Clare (Montreal), Quebec, H9R 5C7, Canada
Tel: 514-694-7710 TWX: 610-421-3251

Hamilton/Avnet Canada Ltd.
6845 Rexwood Road, Units 3-4-5
Mississauga, Ontario, L4V 1R2, Canada
Tel: 416-677-7432 TWX: 610-492-8867
Hamilton/Avnet Canada Ltd.
210 Colonnade Road
Nepean, Ontario, K2E 7L5, Canada
Tel: 613-226-1700 Telex: 0534-971
Hamilton/Avnet Canada Ltd.
2670 Sabourin Street
St. Laurent, Quebec, H4S 1M2, Canada
Tel: 514-331-6443 TWX: 610-421-3731
Semad Electronics Ltd
620 Meloche Avenue
Dorval, Quebec, H9P 2P4, Canada
Tel: 604-299-8866 TWX: 610-422-3048

Semad Electronics Ltd
864 Lady Ellen Place
Ottawa, Ontario K1Z 5M2, Canada
Tel: 613-722-6571 TWX: 610-562-1923
Semad Electronics, Ltd
105 Brisbane Avenue
Downsview, Ontario, M3J 2K6, Canada
Tel: 416-663-5650 TWX: 610-492-2510

Fairchild Semiconductor

Sales
Offices

United States and Canada

Alabama

Huntsville Office
555 Sparkman Drive, Suite 1030
Huntsville, Alabama 35805
Tel: 205-837-8960

Arizona

Phoenix Office
2255 West Northern Road, Suite B112
Phoenix, Arizona 85021
Tel: 602-864-1000 TWX: 910-951-1544

California

Los Angeles Office*
Crocker Bank Bldg.
15760 Ventura Blvd., Suite 1027
Encino, California 91436
Tel: 213-990-9800 TWX: 910-495-1776
San Diego Office*
4355 Ruffin Road, Suite 100
San Diego, California 92123
Tel: 714-560-1332
Santa Ana Office*
1570 Brookhollow Drive, Suite 206
Santa Ana, California 92705
Tel: 714-557-7350 TWX: 910-595-1109
Santa Clara Office*
3333 Bowers Avenue, Suite 299
Santa Clara, California 95051
Tel: 408-987-9530 TWX: 910-338-0241

Colorado

Denver Office
7200 East Hampden Avenue, Suite 206
Denver, Colorado 80224
Tel: 303-758-7924

Connecticut

Danbury Office
250 Pomeroy Avenue
Meriden, Connecticut 06450
Tel: 203-634-8722

Florida

Ft. Lauderdale Office
Executive Plaza, Suite 112
1001 Northwest 62 nd Street
Ft. Lauderdale, Florida 33309
Tel: 305-771-0320 TWX: 510-955-4098

Orlando Office*
Crane's Roost Office Park
399 Whooping Loop
Altamonte Springs, Florida 32701
Tel: 305-834-7000 TWX: 810-850-0152

Georgia

Norcross Office
3220 Pointe Parkway, Suite 1200
Norcross, Georgia 30092
Tel: 404-441-2730 TWX: 810-766-4952

Illinois

Itasca Office
500 Park Blvd., Suite 575
Itasca, Illinois 60143
Tel: 312-773-3300

owa

Cedar Rapids Office
373 Collin Road N.E., Suite 200
Cedar Rapids, lowa 52402
Tel: 319-395-0090

Indiana

Indianapolis Office
7202 N. Shadeland, Room 205
Castle Point
Indianapolis, Indiana 46250
Tel: 317-849-5412 TWX: 810-260-1793

Kansas

Kansas City Office
8600 West 110th Street, Suite 209
Overland Park, Kansas 66210
Tel: 913-649-3974

Maryland

Columbia Office
1000 Century Plaza, Suite 225
Columbia, Maryland 21044
Tel: 301-730-1510 TWX: 710-826-9654

Massachusetts

Framingham Office
5 Speen Street
Framingham, Massachusetts 01701
Tel: 617-872-4900 TWX: 710-380-0599

Michigan

Detroit Office*
21999 Farmington Road
Farmington Hills, Michigan 48024
Tel: 313-478-7400 TWX: 810-242-2973

Minnesota

Minneapolis Office*
4570 West 77th Street, Room 356
Minneapolis, Minnesota 55435
Tel: 612-835-3322 TWX: 910-576-2944
New Jersey
New Jersey Office
Vreeland Plaza
41 Vreeland Avenue
Totowa, New Jersey 07511
Tel: 201-256-9006

New Mexico

Albuquerque Office
North Building
2900 Louisiana N.E. South G2
Albuquerque, New Mexico 87110
Tel: 505-884-5601 TWX: 910-379-6435

New York

Fairport Office
815 Ayrault Road
Fairport, New York 14450
Tel: 716-223-7700
Hauppauge Office
300 Wheeler Road
Hauppauge, New York 11788
Tel: 516-348-7777
Poughkeepsie Office
19 Davis Avenue
Poughkeepsie, New York 12603
Tel: 914-473-5730 TWX: 510-248-0030

North Carolina
Raleigh Office
1100 Navaho Drive, Suite 112
Raleigh, North Carolina 27609
Tel: 919-876-9643
Ohio
Cleveland Office
6133 Rockside Road, Suite 407
Cleveland, Ohio 44131
Tel: 216-447-9700
Dayton Office
5045 North Main Street, Suite 105
Dayton, Ohio 45414
Tel: 513-278-8278

Oklahoma

Tulsa Office
9810 East 42nd Street, Suite 127
Tulsa, Oklahoma 74145
Tel: 918-627-1591

Oregon

Portland Office
8196 S.W. Hall Blvd., Suite 328
Beaverton, Oregon 97005
Tel: 503-641-7871 TWX: 910-467-7842
Pennsylvania
Philadelphia Office*
2500 Office Center
2500 Maryland Road
Willow Grove, Pennsylvania 19090
Tel: 215-657-2711

Tennessee

Knoxville Office
Executive Square II
9051 Executive Park Drive, Suite 502
Knoxville, Tennessee 37923
Tel: 615-691-4011

Texas

Austin Office
8240 Mopac Expressway, Suite 270
Austin, Texas 78759
Tel: 512-346-3990
Dallas Office
1702 North Collins Street, Suite 101
Richardson, Texas 75081
Tel: 214-234-3391
Houston Office
9896 Bissonnet-2,, Suite 595
Houston, Texas 77036
Tel: 713-771-3547 TWX: 910-881-8278

Canada

Toronto Regional Office
2375 Steeles Avenue West, Suite 203
Downsview, Ontario M3J 3A8, Canada
Tel: 416-665-5903 TWX: 610-491-1283

F100K DC Family Specification

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Note 3

Symbol	Characteristic	Min	Typ	Max	Unit	Conditions ${ }^{4}$	
VOH	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\max) \\ & \text { or } V_{I L}(\min) \end{aligned}$	Loading with$50 \Omega \text { s to }-2.0 \mathrm{~V}$
VOL	Output LOW Voltage	-1810	-1705	-1620	mV		
Vohc	Output HIGH Voltage	-1035			mv	$\begin{aligned} & V_{I N}=V_{I H}(\text { min }) \\ & \text { or } V_{I L}(\max) \end{aligned}$	
Volc	Output LOW Voltage			-1610	mV		
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IL	Input LOW Current	0.50			$\mu \mathrm{A}$	$V_{I N}=V_{\text {IL }}($ min $)$	

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Note 3

Symbol	Characteristic	Min	Typ	Max	Unit	Conditions 4	
VOH	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\text { max }) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\text { min }) \end{aligned}$	Loading with 50Ω to -2.0 V
Vol	Output LOW Voltage	-1810		-1605	mV		
VohC	Output HIGH Voltage	-1030			mv	$\begin{aligned} & V_{I N}=V_{I H}(\text { min }) \\ & \text { or } V_{I L}(\text { max }) \end{aligned}$	
Volc	Output LOW Voltage			-1595	mV		
VIH	Input HIGH Voltage	-1150		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}($ min $)$	

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{VCC}=\mathrm{V} C C A=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Note 3

Symbol	Characteristic	Min	Typ	Max	Unit	Conditions ${ }^{4}$	
VOH	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\max) \\ & \text { or } V_{I L}(\min) \end{aligned}$	Loading with$50 \Omega \text { s to }-2.0 \mathrm{~V}$
Vol	Output LOW Voltage	-1830		-1620	mV		
Vohc	Output HIGH Voltage	-1045			mv	$\begin{aligned} & V_{I N}=V_{I H}(\text { min }) \\ & \text { or } V_{I L}(\max) \end{aligned}$	
Volc	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1490	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}($ min $)$	

[^58]A Schlumberger Company

[^0]: *See Family Characteristics for other dc specifications.

[^1]: $V_{C C}=\operatorname{Pin} 6(9)$
 $V_{C C A}=\operatorname{Pin} 7$ (10)
 $V_{E E}=\operatorname{Pin} 18(21)$
 () = Flatpak

[^2]: *One input tied to VBB

[^3]: *See Family Characteristics for other absolute maximum ratings and dc specifications.

[^4]: Notes

 1. See Family Characteristics for other absolute maximum ratings
 2. One input tied to $V_{B B}$
[^5]: *See Family Characteristics for other dc specifications.

[^6]: Notes
 $V_{C C}, V_{C C A}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
 $L 1$ and $L 2=$ equal length 50Ω impedance lines $\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{Cc} and V_{EE} All unused outputs are loaded with 50Ω to GND $\mathrm{CL}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

[^7]: $V_{c c}=\operatorname{Pin} 6$ (9)
 $V_{C C A}=\operatorname{Pin} 7(10)$
 $\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 18(21)$
 () = Flatpak

[^8]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Level
 L = LOW Voltage Level
 X = Don't Care
 $\mathrm{U}=$ Undefined
 $t=$ Time before CP positive transition
 $t+1=$ Time after CP positive transition
 $\Sigma=$ LOW to HIGH transition

[^9]: *See Family Characteristics for other dc specifications.

[^10]: *See Family Characteristics for other dc specifications.

[^11]: $V_{C C}=\operatorname{Pin} 6(9)$
 $V_{\text {CCA }}=\operatorname{Pin} 7$ (10)
 $V_{E E}=\operatorname{Pin} 18(21)$
 () = Flatpak

[^12]: *See Family Characteristics for other dc specifications.

[^13]: *See Family Characteristics for other dc specifications.

[^14]: *See Family Characteristics for other dc specifications.

[^15]: *See Family characteristics for other dc specifications

[^16]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Level
 $\mathrm{L}=$ LOW Voltage Level
 $\mathrm{X}=$ Don't Care

[^17]: *See Family Characteristics for other dc specifications

[^18]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Level
 L = LOW Voltage Level
 X $=$ Don't Care

[^19]: *See Family Characteristics for other dc specifications.

[^20]: *See Family Characteristics for other dc specifications.

[^21]: *See Family Characteristics for other dc specifications.

[^22]: *See Family Characteristics for other dc specifications.

[^23]: *See Family Characteristics for other dc specifications.

[^24]: *See Family Characteristics for other dc specifications.

[^25]: *See Family Characteristics for other dc specifications.

[^26]: *See Family Characteristics for other dc specifications.

[^27]: *See Family Characteristics for other dc specifications.

[^28]: $H=H I G H$ Voltage Level
 L = LOW Voltage Level
 $X=$ Don't Care

[^29]: $V_{c c}=\operatorname{Pin} 16$
 $V_{E E}=\operatorname{Pin} 8$

[^30]: *See Family Characteristics for other dc specifications.

[^31]: $V_{C C}=\operatorname{Pin} 16$
 $V_{E E}=\operatorname{Pin} 8$

[^32]: 1. See Family Characteristics for other dc specifications.
 2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
[^33]: $V_{c c}=\operatorname{Pin} 16$
 $V_{E E}=\operatorname{Pin} 8$

[^34]: $L=$ Low voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
 $\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal)
 x = Don't Care
 Data $=$ Previously stored data

[^35]: $V_{C P}=\operatorname{Pin} 1$
 $V_{C C}=\operatorname{Pin} 16$
 $V_{E E}=\operatorname{Pin} 8$

[^36]: *Input pins A_{1} and A_{7} cannot be lower than $\mathrm{V}_{\mathrm{IL}(\text { (min) }}$

[^37]: $\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 6(9)$
 $V_{C C A}=\operatorname{Pin} 7$ (10)
 $\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 18$ (21)
 () = Flatpak

[^38]: Each bit has independent $\overline{\mathrm{BS}}, \mathrm{D}$, and O , but all have common $\overline{\mathrm{WE}}$.
 $\mathrm{L}=$ LOW Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
 $\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal)
 X = Don't Care
 Data $=$ Previously stored data

[^39]: 1. See Family Characteristics for other dc specifications.
 2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
[^40]: $\mathrm{L}=$ LOW Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
 $\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal $)$
 X = Don't Care
 Data $=$ Previously stored data

[^41]: 1. See Family Characteristics for other dc specifications.
 2. The maximum address access time is guaranteed to be the worst case bit in the memory using a psuedorandom testing pattern.
[^42]: $V_{C C}=\operatorname{Pin} 6(9)$
 $V_{C C A}=\operatorname{Pin} 7(10)$
 $\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 18$ (21)
 () = Flatpak

[^43]: $\mathrm{L}=\mathrm{LOW}$ Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
 $\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}($ Nominal $)$
 X = Don't Care
 Data $=$ Previously stored data

[^44]: 1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
 2. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.
[^45]: $V_{C C}=\operatorname{Pin} 16$
 $V_{E E}=\operatorname{Pin} 8$

[^46]: *See Family Characteristics for other dc specifications.

[^47]: $V_{C C}=P$ in 16
 $V_{E E}=\operatorname{Pin} 8$

[^48]: $V_{C C}=\operatorname{Pin} 16$
 $V_{E E}=\operatorname{Pin} 8$

[^49]: $\mathrm{L}=$ LOW Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
 $\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal)
 X = Don't Care
 Data $=$ Previously stored data

[^50]: 1. See Family Characteristics for other dc specifications.
 2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
[^51]: $V_{C P}=P$ in 1
 $V_{C C}=\operatorname{Pin} 16$
 $V_{E E}=\operatorname{Pin} 8$

[^52]: *Input pins A_{1} and A_{7} cannot be lower than $V_{I L}($ min $)$.

[^53]: 1. See Family Characteristics for other dc specifications.
 2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
[^54]: $\mathrm{L}=\mathrm{LOW}$ Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
 $H=$ HIGH Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal)
 X = Don't Care
 Data $=$ Previously stored data

[^55]: $V_{C C}=\operatorname{Pin} 24$
 $V_{C C A}=\operatorname{Pin} 1$
 $V_{E E}=\operatorname{Pin} 12$
 $N C=\operatorname{Pin} 10$

[^56]: $\mathrm{L}=\mathrm{LOW}$ Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
 $\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}($ Nominal $)$
 X = Don't Care
 Data $=$ Previously stored data

[^57]: 1. See Family Characteristics for other dc specifications.
 2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
[^58]: 1. Unless specified otherwise on individual data sheet.

 Parametric values specified at -4.2 V to -4.8 V .
 3. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes. additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
 4. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

