

© 1982 Fairchild Camera and Instrument Corporation Digital Products Division

333 Western Avenue • South Portland, Maine 04106 207/775-8100 • Telex 710-221-1980

A Schlumberger Company

Introduction

Fairchild Advanced Schottky TTL, FAST, is a family of TTL circuits that exhibits a combination of performance and efficiency unapproached by any other TTL family. Made with the proven Isoplanar process, 54F/74F circuits offer the switching speed and output drive capability of Schottky TTL, with superior noise margins and only one-fourth the power consumption.

Section 1 Product Index and Selection Guide

Lists 54F/74F circuits currently available, in design or planned. The Selection Guide groups the circuits by function.

Section 2 Circuit Characteristics

Discusses FAST technology, circuit configurations and characteristics.

Section 3 Ratings, Specifications and Waveforms

Contains common ratings and specifications for FAST devices, as well as ac test load and waveforms.

Section 4 Data Sheets

Contains data sheets for currently available and pending new products.

Section 5 New Products

Contains brief descriptions of new products currently planned.

Section 6 Ordering Information and Package Outlines

Explains simplified purchasing code which identifies not only device type but also the package type and temperature range. Contains detailed physical dimension drawings for each package.

Section 7 Field Sales Offices, Representatives and Distributor Locations

Table of Contents

Product Ind Gates Dual Edge- Multiple FI Latches Multiplexe Decoders/I Shift Regis Synchrono	Triggered Flip-Flops ip-Flop/Registers Demultiplexers ters/FIFOs us Presettable Counters fer/Line Driver/Transceivers Operators	1-3 1-6 1-6 1-7 1-7 1-7 1-8 1-8 1-9 1-10 1-11 1-11 1-11
Section 2 FAST Tech FAST Circu Output Char Input Char 3-State Out	uitry aracteristics acteristics	2-3 2-4 2-6 2-8 2-10
Recommer 54F/74F Fa		r ms 3-3 3-3 3-3 3-4* 3-5
Section 4	Data Sheets	4-3
Section 5	New Products	5-3
Section 6 Ordering In Package O		6-3 6-4
Section 7	Sales Offices, Representatives and Distributor Locations	7-3

*Also shown on inside back cover.

n an an an Anna Anna an Anna an

na series de la companya de la comp A companya de la comp

Section 1

j.

Product Index and Selection Guide

Product Index		
Device No.	Description	Page No.
29F01	4-Bit Bipolar Microprocessor Slice	5-3
29F10	Microprogram Controller	5-4
29F705	16-Word by 4-Bit, 2-Port Random Access Memory	5-5
54F/74F00	Quad 2-Input NAND Gate	4-3
54F/74F02	Quad 2-Input NOR Gate	4-4
54F/74F04	Hex Inverter	4-5
54F/74F08	Quad 2-Input AND Gate	4-6
54F/74F10	Triple 3-Input NAND Gate	4-7
54F/74F11	Triple 3-Input AND Gate	4-8
54F/74F20	Dual 4-Input NAND Gate	4-9
54F/74F32	Quad 2-Input OR Gate	4-10
54F/74F64	4-2-3-2-Input AND OR-Invert Gate	4-11
54F/74F74	Dual D-Type Positive Edge-Triggered Flip-Flop	4-12
54F/74F86	Quad 2-Input Exclusive-OR Gate	4-15
54F/74F109	Dual JK Positive Edge-Triggered Flip-Flop	4-16
54F/74F112	Dual JK Negative Edge-Triggered Flip-Flop	4-19
54F/74F113	Dual JK Edge-Triggered Flip-Flop	4-22
54F/74F114	Dual JK Negative Edge-Triggered Flip-Flop	4-25
54F/74F138	1-of-8 Decoder/Demultiplexer	4-28
54F/74F139	Dual 1-of-4 Decoder	4-31
54F/74F148	8-Line to 3-Line Priority Encoder	4-34
54F/74F151	8-Input Multiplexer	4-38
54F/74F153	Dual 4-Input Multiplexer	4-41
54F/74F157	Quad 2-Input Multiplexer	4-44
54F/74F158	Quad 2-Input Multiplexer	4-47
54F/74F160	Synchronous Presettable BCD Decade Counter	4-50
54F/74F161	Synchronous Presettable Binary Counter	4-54
54F/74F162	Synchronous Presettable BCD Decade Counter	4-50
54F/74F163	Synchronous Presettable Binary Counter	4-54
54F/74F164	Serial-In Parallel-Out Shift Register	4-58
54F/74F168	4-Stage Synchronous Bidirectional Counter	4-61
54F/74F169	4-Stage Synchronous Bidirectional Counter	4-61
54F/74F174	Hex D Flip-Flop	4-65
54F/74F175	Quad D Flip-Flip	4-68
54F/74F181	4-Bit Arithmetic Logic Unit	4-71
54F/74F182	Carry Lookahead Generator	4-75
54F/74F189	64-Bit Random Access Memory	4-79
54F/74F190	Up/Down Decade Counter	4-82
54F/74F191	Up/Down Binary Counter	4-86
54F/74F192	Up/Down Decade Counter	4-91

1

Product Index (Cont'd)

Device No.	Description	Page No.
54F/74F193	Up/Down Binary Counter	4-95
54F/74F194	4-Bit Bidirectional Universal Shift Register	4-99
54F/74F211	144-Bit Random Access Memory	5-5
54F/74F212	144-Bit Random Access Memory	5-6
54F/74F213	192-Bit Random Access Memory	5-6
54F/74F219	64-Bit Random Access Memory	4-102
54F/74F240	Octal Buffer/Line Driver	4-105
54F/74F241	Octal Buffer/Line Driver	4-105
54F/74F242	Quad Bus Transceiver	4-107
54F/74F243	Quad Bus Transceiver	4-107
54F/74F244	Octal Buffer/Line Driver	4-105
54F/74F245	Octal Bidirectional Transceiver	4-110
54F/74F251	8-Input Multiplexer	4-112
54F/74F253	Dual 4-Input Multiplexer	4-115
54F/74F257	Quad 2-Input Multiplexer	4-118
54F/74F258	Quad 2-Input Multiplexer	4-121
54F/74F269	8-Bit Bidirectional Binary Counter	5-7
54F/74F280	9-Bit Parity Generator/Checker	4-124
54F/74F283	4-Bit Binary Full Adder	4-127
54F/74F289	64-Bit Random Access Memory	4-131
54F/74F299	8-Input Universal Shift/Storage Register	4-134
54F/74F311	144-Bit Random Access Memory	5-7
54F/74F312	144-Bit Random Access Memory	5-8
54F/74F313	192-Bit Random Access Memory	5-8
54F/74F319	64-Bit Random Access Memory	4-138
54F/74F322	8-Bit Serial/Parallel Register	4-141
54F/74F323	8-Bit Universal Shift/Storage Register	4-145
54F/74F350	4-Bit Shifter	4-149
54F/74F352	Dual 4-Input Multiplexer	4-153
54F/74F353	Dual 4-Input Multiplexer	4-156
54F/74F373	Octal Transparent Latch	4-159
54F/74F374	Octal D-Type Flip-Flop	4-162
54F/74F378	Parallel D Register	4-164
54F/74F379	Quad Parallel Register	4-167
54F/74F381	4-Bit Arithmetic Logic Unit	4-170
54F/74F382	4-Bit Arithmetic Logic Unit	4-175
54F/74F384	8-Bit Serial/Parallel Twos Complement Multiplier	4-180
54F/74F385	Quad Serial Adder/Subtractor	4-185
54F/74F398	Quad 2-Port Register	4-188
54F/74F399	Quad 2-Port Register	4-188
54F/74F401	Cyclic Redundancy Check Generator/Checker	5-9
54F/74F402	Expandable Cyclic Redundancy Check Generator/Checker	5-9
54F/74F403	16 X 4 First-In First-Out Buffer Memory	5-10
54F/74F412	Multi-mode Buffered Latch	5-10
54F/74F413	64 X 4 First-In First-Out Buffer Memory	5-11

Product Index (Cont'd)

Device No.	Description	Page No.
54F/74F416	16-Bit Memory Error Detection And Correction Circuit	5-11
54F/74F418	32-Bit Memory Error Detection And Correction Circuit	5-12
54F/74F430	Cyclic Redundancy Checker/Corrector	5-13
54F/74F432	Multi-mode Buffered Latch	5-13
54F/74F433	64 X 4 First-In First-Out Buffer Memory	5-14
		••••
54F/74F500	6-Bit Analog-to-Digital Converter	5-14
54F/74F505	8-Bit Analog-to-Digital Converter	5-15
54F/74F521	8-Bit Identity Comparator	4-192
54F/74F524	8-Bit Registered Comparator	4-195
54F/74F525	16-Stage Programmable Counter/Timer	5-15
54F/74F533	Octal Transparent Latch	4-201
54F/74F534	Octal D-Type Flip-Flop	4-203
54F/74F537	1-of-10 Decoder	4-206
54F/74F538	1-of-8 Decoder	4-209
54F/74F539	Dual 1-of-4 Decoder	4-212
	O de la Destidación de Tanación de	4.045
54F/74F543	Octal Registered Transceiver	4-215
54F/74F544	Octal Registered Transceiver	4-215
54F/74F545	Octal Bidirectional Transceiver	4-219
54F/74F547	Octal Decoder/Demultiplexer	4-222
54F/74F548	Octal Decoder/Demultiplexer	4-226
54F/74F550	Octal Registered Transceiver	4-229
54F/74F551	Octal Registered Transceiver	4-229
54F/74F557	8-Bit By 8-Bit Multiplier	4-234
54F/74F558	8-Bit By 8-Bit Multiplier	4-234
54F/74F559	Expandable 8-Bit Twos Complement Multiplier/Divider	4-234 5-16
54F/74F559	Expandable o-bit Twos Complement Multiplier/Divider	5-10
54F/74F568	4-Bit Bidirectional Counter	4-240
54F/74F569	4-Bit Bidirectional Counter	4-240
54F/74F579	8-Bit Bidirectional Binary Counter	5-16
54F/74F582	4-Bit BCD Arithmetic Logic Unit	5-17
54F/74F583	4-Bit BCD Adder	5-17
54F/74F588	Octal Bidirectional Transceiver	4-247
54F/74F604	Dual Octal Register	5-18
54F/74F605	Dual Octal Register	5-18
54F/74F606	Dual Octal Register	5-18
54F/74F607	Dual Octal Register	5-18
54F/74F610	Memory Mapper	5-19
54F/74F611	Memory Mapper	5-20
	Memory Mapper	
54F/74F612		5-21
54F/74F613	Memory Mapper	5-22
54F/74F630	16-Bit Error Detection And Correction Circuit	5-23
54F/74F631	16-Bit Error Detection And Correction Circuit	5-23
54F/74F673	16-Bit Shift Register	4-250
54F/74F674	16-Bit Shift Register	4-254
54F/74F675	16-Bit Shift Register	4-257
54F/74F676	16-Bit Shift Register	5-24
54F/74F779	8-Bit Bidirectional Binary Counter	5-25
54F/74F784	8-Bit Serial/Parallel Multiplier	5-25

Selection Guide

Gates

Function	Device No.	Page No.	Function	Device No.	Page No.	
NANĎ			OR/NOR/Exclusive-OR			
Quad 2-Input	54F/74F00	4-3	Quad 2-Input OR	54F/74F32	4-10	
Triple 3-Input	54F/74F10	4-7	Quad 2-Input NOR	54F/74F02	4-4	
Dual 4-Input	54F/74F20	4-9	Quad 2-Input Exclusive-OR	54F/74F86	4-15	
AND			Invert/AND-OR-Invert			
Quad 2-Input	54F/74F08	4-6	Hex Inverter	54F/74F04	4-5	
Triple 3-Input	54F/74F11	4-8	AND-OR-Invert	54F/74F64	4-11	

Dual Edge-Triggered Flip-Flops

Function	Device No.	Inputs	Clock Edge	Direct Set	Direct Clear	Maximum Clock Frequency @25°C MHz (Min)	Page No
Dual D	54F/74F74	D	<u>۲</u>	Yes	Yes	100	4-12
Dual JK	54F/74F109	J, K	L 1	Yes	Yes	90	4-16
Dual JK	54F/74F112	J,K	1 2	Yes	Yes	100	4-19
Dual JK	54F/74F113	J,K	1 1	Yes	No	100	4-22
Dual JK	54F/74F114	J,K	1 2	Yes	Yes	100	4-25

Multiple Flip-Flop/Registers

Function	Device No.	Data Inputs	Common Clear (Level)	CP Inputs (Level)	Maximum Clock Frequency @25°C MHz (Min)	Page No.
4-Bit D Flip-Flop	54F/74F175	4 x D	1(L)	1(」)	100	4-68
4-Bit D Flip-Flop	54F/74F379	4 x D		1()	100	4-167
6-Bit D Flip-Flop	54F/74F174	6 x D	1(L)	1(」)	1002	4-65
6-Bit D Flip-Flop	54F/74F378	6 x D		1 ()	1002	4-164
8-Bit D Flip-Flop (3S) ¹	54F/74F374	8 x D		1(」)	100	4-162
8-Bit D Flip-Flop (3S) ¹	54F/74F534	8xD			100	4-203
Dual 8-Bit Register (3S)1	54F/74F604	2(8 x D)			NA	5-18
Dual 8-Bit Register (OC)1	54F/74F605	2(8 x D)		1 ()	NA	5-18
Dual 8-Bit Register (3S)1	54F/74F606	2(8 x D)		1()	NA	5-18
Dual 8-Bit Register (OC)1	54F/74F607	2(8 x D)			NA	5-18
Quad 2-Port Register	54F/74F398	$2(4 \times D)$			100	4-188
Quad 2-Port Register	54F/74F399	2(4 x D)		1 ()	100	4-188
Octal Registered Transceiver (3S) ¹	54F/74F550	2(8 x D)		2()		4-229
Octal Registered Transceiver (3S) ¹	54F/74F551	2(8 x D)		2 ()	1.	4-229

1. 3S = 3-state

2. Preliminary

3. NA = Data not available

Latches

Function	Device No.	Data Inputs	Common Clear (Level)	Enable Inputs (Level)	Enable Pulse Width @25°C ns (Min)	Enable to Output Delay @25°C ns (Max)	Page No.
Octal D (3S)*	54F/74F373	8 x D		1 (H)	6.0	11.5	4-159
Octal D (3S)*	54F/74F533	8 x D	}	1 (H)	6.0	11	4-201
Octal D (3S)* w/Interrupt	54F/74F412	8 x D	1 (L)				5-10
Octal D (3S)* w/Interrupt	54F/74F432	8 x D	1 (L)				5-13
Octal D Registered Transceiver (3S)*	54F/74F543	2(8 x D)		2 (L)		12**	4-215
Octal D Registered Transceiver (3S)*	54F/74F544	2(8 x D)		2 (L)		12**	4-215

1

Multiplexers

Function	Device No.	Enable Inputs (Level)	True Output	Complement Output	Page No.
4-Input (3S)*	54F/74F350	1 (L)	Yes	No	4-149
8-Input	54F/74F151	1 (L)	Yes	Yes	4-38
8-Input (3S)	54F/74F251	1 (L)	Yes	Yes	4-112
Dual 4-Input	54F/74F153	2 (L)	Yes	No	4-41
Dual 4-Input (3S)*	54F/74F253	2 (L)	Yes	No	4-115
Dual 4-Input	54F/74F352	2 (L)	No	Yes	4-153
Dual 4-Input (3S)*	54F/74F353	2 (L)	No	Yes	4-156
Quad 2-Input	54F/74F157	1 (L)	Yes	No	4-44
Quad 2-Input	54F/74F158	1 (L)	No	Yes	4-47
Quad 2-Input (3S)*	54F/74F257	1 (L)	Yes	No	4-118
Quad 2-Input (3S)*	54F/74F258	1 (L)	No	Yes	4-121
Quad 2-Input	54F/74F398		Yes	Yes	4-188
Quad 2-Input	54F/74F399		Yes	No	4-188

Decoders/Demultiplexers

Function	Device No.	Address Inputs	Active- LOW Enable	Active- HIGH Enable	Active- LOW Output Enable	Active- LOW Outputs	Active- HIGH Outputs	Page No.
Dual 1-of-4	54F/74F139	2 + 2	1+1			4 + 4		4-31
Dual 1-of-4 (3S)*	54F/74F539	2+2	1+1		1+1		4+4	4-212
1-of-8	54F/74F138	3	2	1		8		4-28
1-of-8 (3S)*	54F/74F538	3	2	2	2		8	4-209
1-of-8 w/Address Latches	54F/74F547	3	1	2		8		4-222
1-of-8	54F/74F548	3	2	2		8		4-226
1-of-10 (3S)*	54F/74F537	4	1	1	1		10	4-206

*3S = 3-State; OC = Open-collector

** Preliminary

Shift Registers/FIFOs

Function	Device No.	No. of Bits	Serial Entry	Clock Edge	Maximum Clock Frequency @25°C MHz (Min)	Page No.
Shift Right, Serial-in/Parallel-out	54F/74F164	8	2		80	4-58
Shift Right, Serial/Parallel-in, Parallel/Serial-out (3S)1	54F/74F322	8	2		703	4-141
Shift Right, Serial-in, Serial/Parallel-out	54F/74F673	16	1		1003	4-250
Shift Right, Serial/Parallel-in, Serial-out	54F/74F674	16	1		100 ³	4-254
Shift Right, Serial-in, Serial/Parallel-out	54F/74F675	16	1		1003	4-257
Shift Right, Serial/Parallel-in, Serial-out	54F/74F676	16	1		1003	5-24
Bidirectional, Serial/Parallel-in, Parallel/Serial-out	54F/74F194	4	2		105	4-99
Bidirectional, Serial/Parallel-in, Parallel/Serial-out (3S)1	54F/74F299	8	2		703	4-134
Bidirectional, Serial/Parallel-in, Parallel/Serial-out (3S)1	54F/74F323	8	2		703	4-145
16 x 4 FIFO, Serial/Parallel-in, Serial/Parallel-out (3S)1	54F/74F403	4	1			5-10
64 x 4 FIFO, Parallel-in/Parallel-out	54F/74F413	4				5-11
64 x 4 FIFO, Serial/Parallel-in, Serial/Parallel-out (3S)1	54F/74F433	4	1			5-14

Synchronous Presettable Counters

Function	Device No.	Modulus	No. of Bits	Parallel Entry ²	Maximum Clock Frequency @25°C MHz (Min)	Page No.
BCD Count-Up	54F/74F160	10	4	S	1003	4-50
BCD Count-Up	54F/74F162	10	4	S	1003	4-50
BCD Up-Down	54F/74F168	10	4	S	753	4-61
BCD Up-Down	54F/74F190	10	4	A	80	4-82
BCD Up-Down	54F/74F192	10	4	A	803	4-91
BCD Up-Down (3S)1	54F/74F568	10	4	s	753	4-240
Binary Count-Up	54F/74F161	16	4	S	100 ³	4-54
Binary Count-Up	54F/74F163	16	4	S	100 ³	4-54
Binary Up-Down	54F/74F169	16	4	s	753	4-61
Binary Up-Down	54F/74F191	16	4	A	80	4-86
Binary Up-Down	54F/74F193	16	4	A	80	4-95
Binary Up-Down (3S)1	54F/74F569	16	4	S	753	4-240
Binary Up-Down	54F/74F269	256	8	S	100 ³	5-7
Binary Up-Down (3S)1	54F/74F579	256	8	S	1003	5-16
Binary Up-Down (3S)1	54F/74F779	256	8	S	1003	5-25

1. (3S) = 3-state

2. S = Synchronous; A = Asynchronous

3. Preliminary

3-State Buffer/Line Driver/Transceivers

Function	Device No.	Enable Inputs (Level)	Current Sinking Side A/Side B mA	Page No.
Octal Buffer/Line Driver	54F/74F240	2(L)	64	4-105
Octal Buffer/Line Driver	54F/74F241	1(L) + 1(H)	64	4-105
Octal Buffer/Line Driver	54F/74F244	2(L)	64	4-105
Quad Bus Transceiver	54F/74F242	1(L) + 1(H)	64/64	4-107
Quad Bus Transceiver	54F/74F243	1(L) + 1(H)	64/64	4-107
Octal Bus Transceiver	54F/74F245	• 1(L)	20/64	4-110
Octal Bus Transceiver	54F/74F545	1(L)	20/64	4-219
Octal Registered Transceiver	54F/74F543	2(L)	20/64	4-215
Octal Registered Transceiver	54F/74F544	2(L)	20/64	4-215
Octal Registered Transceiver	54F/74F550	2(L)	20/64	4-229
Octal Registered Transceiver	54F/74F551	2(L)	20/64	4-229
GPIB Octal Transceiver	54F/74F588	1(L)	20/64	4-247

Arithmetic Operators

Function	Device No.	Description	No. of Bits	Page No.
Adder	54F/74F283	Full Binary 4-Bit with Fast Carry	4	4-127
Adder	54F/74F583	Full BCD with Fast Carry	4	5-17
Adder/Subtractor	54F/74F385	Quad Serial with Carry-Save	4 x 1	4-185
Adder/Subtractor	54F/74F582	BCD Add/Subtract/Compare with Ripple and Lookahead Carry	4	5-17
Arithmetic Logic Unit	29F01	4-Bit Slice ALU with 2-Port RAM	4	5-3
Arithmetic Logic Unit	54F/74F181	ALU with Ripple and Lookahead Carry	4	4-71
Arithmetic Logic Unit	54F/74F381	ALU with Lookahead Carry	4	4-170
Arithmetic Logic Unit	54F/74F382	ALU with Ripple Carry and Overflow	4	4-175
Carry Lookahead	54F/74F182	CLA for 4 ALUs		4-75
Comparator	54F/74F521	8-Bit Equality Comparator	2 x 8	4-192
Comparator	54F/74F524	8-Bit Registered Full Comparator	2 x 8	4-195
Controller	29F10	Microprogram Controller with Counters and Stack	12	5-4
Encoder	54F/74F148	8-Bit Priority Encoder	8	4-34
Error Detect	54F/74F401	16-Bit CRC Generator/Checker	16	5-9
Error Detect	54F/74F402	Expandable 16-Bit CRC Generator/Checker	16	5-9
Error Detect/Correct	54F/74F630	16-Bit Parallel Data Error Detect/Correct/ Syndrome Generator (3S)*	16	5-23
Error Detect/Correct	54F/74F631	16-Bit Parallel Data Error Detect/Correct/ Syndrome Generator(OC)*	16	5-23
Error Detect/Correct	54F/74F416	16-Bit Parallel Data Error Detect/Correct(3S)*	16	5-11
Error Detect/Correct	54F/74F418	32-Bit Parallel Data Error Detect/Correct (3S)*	32	5-12
Error Detect/Correct	54F/74F430	Serial Burst Error Detect/Correct	32	5-13
Multiplier	54F/74F384	8-Bit Serial/Parallel Sequential	1 x 8	4-180
Multiplier	54F/74F784	8-Bit Serial/Parallel Sequential with Adder/Subtractor	1 x 8	5-25
Multiplier	54F/74F557	8 × 8 Bit Parallel with Latches (3S)*	8 x 8	4-234
Multiplier	54F/74F558	8 x 8 Bit Parallel (3S)*	8 x 8	4-234
Multiplier/Divider	54F/74F559	8 × 8 Bit Expandable	8 x 8	5-16
Parity	54F/74F280	9-Bit Parity Generator/Checker	9	4-124
Shifter	54F/74F350	Expandable 4-Bit Shifter	4	4-149

*3S = 3-State; OC = Open-collector

Memory

Organization	Device No.	Address Access Time ns (Max) Mil/Com	Chip Select Access Time ns (Max) Mil/Com	Page No.	
16 x 4 RAM (3S)*	54F/74F189	22/18	14/11.5	4-79	
16 x 4 RAM (3S)*	54F/74F219	18/18	11.5/14	4-102	
16 x 4 RAM (OC)*	54F/74F289	18**	8.0**	4-131	
16 x 4 RAM (OC)*	54F/74F319	18**	8.0**	4-138	
16 x 4 RAM (3S)*	29F705	30**		5-5	
16 x 9 RAM (3S)*	54F/74F212	15**	8.0**	5-6	
16 x 9 RAM w/Latch (3S)*	54F/74F211	15**	8.0**	5-5	
16 x 9 RAM (OC)*	54F/74F312	15**	8.0**	5-8	
16 x 9 RAM w/Latch (OC)*	54F/74F311	15**	8.0**	5-7	
16 x 12 RAM (3S)*	54F/74F213	15**	8.0**	5-6	
16 x 12 RAM (OC)*	54F/74F313	15**	8.0**	5-8	

Memory Peripherals

Description	Device No.	Page No.	
Memory Mapper (3S)*	54F/74F612	5-12	
Memory Mapper w/Latched Outputs (3S)*	54F/74F610	5-19	
Memory Mapper (OC)*	54F/74F613 5-22		
Memory Mapper w/Latched Outputs (OC)*	54F/74F611	5-20	
16-Bit Error Detection/Correction (3S)*	54F/74F630	5-23	
16-Bit Error Detection/Correction (OC)*	54F/74F631	5-23	
32-Bit Error Detection/Correction	54F/74F418	5-12	
Serial Burst Error Detecton/Correction	54F/74F430	5-13	

Specialized LSI

Description	Device No.	Page No.
Cyclical Redundancy Check (CRC) Generator/Checker	54F/74F401	5-9
Expandable Cyclical Redundancy Check (CRC) Generator/Checker	54F/74F402	5-9
Serial Burst Error Detection/Correction	54F/74F430	5-13
6-Bit A/D Flash Converter	54F/74F500	5-14
8-Bit A/D Converter (Successive Approximation)	54F/74F505	5-15
16-Stage Programmable Counter/Divider	54F/74F525	5-15
4-Bit Microprocessor Slice	29F01	5-3
Microprogram Controller	29F10	5-4

*3S = 3-State; OC = Open-collector

** Preliminary

a series de la companya de la compan La companya de la comp La companya de la comp

Section 2

Circuit Characteristics

FAST Technology

FAST is an acronym for Fairchild Advanced Schottky TTL. FAST circuits are made with the advanced Isoplanar II process, which produces transistors with very high, well-controlled switching speeds, extremely small parasitic capacitances and f_T in excess of 5 GHz. Isoplanar is an established Fairchild process, used for years in the manufacture of bipolar memories, CMOS, subnanosecond ECL and I³L[™] (Isoplanar Integrated Injection Logic) LSI devices.

In the Isoplanar process, components are isolated by a selectively grown thick oxide rather than the P⁺ isolation region used in the Planar process. Since this oxide needs no separation from the base-collector regions, component and chip sizes are substantially reduced. The base and emitter ends terminate in the oxide wall; masks can thus overlap the device area into the isolation oxide. This overlap feature eliminates the extremely close tolerances normally required for base and emitter masking, and the standard photo-lithographic processes can be used. Figure 2-1 shows the relative size of phase-splitter transistors (Q2 in Figure 2-3) used in Schottky, Low Power Schottky and FAST circuits. The LS-TTL transistor is smaller than that of S-TTL because of process refinements, shallower diffusions and smaller operating currents. The relative size of the FAST transistor illustrates the remarkable reduction afforded by the Isoplanar process. This in turn reduces junction capacitances, while the oxide isolation reduces sidewall capacitance. The effect of these reductions is an increase in frequency response by a factor of three or more. Figure 2-2 shows the frequency response of two sizes of transistors made with the Isoplanar II process. Because they have modest, well-defined loads and thus can use smaller, faster transistors, internal gates of MSI devices are faster than SSI gates such as the 74F00 or 74F02. SSI gates, on the other hand, are designed to have high output drive capability and thus use larger transistors.

As is the case with other modern LSI processes, the shallower diffusions and thinner oxides make FAST

Fig. 2-1 Relative Transistor Sizes in Various TTL Families

devices more susceptible to damage from electrostatic discharge than are devices of earlier TTL families. Users should take the usual precautions when handling FAST devices: avoid placing them on nonconductive plastic surfaces or in plastic bags, make sure test equipment and jigs are grounded, individuals should be grounded before handling the devices, etc.

Fig. 2-2 Isoplanar Transistor Frequency Response

Fig. 2-3 Basic FAST Gate Schematic

FAST Circuitry

The 2-input NAND gate, shown in Figure 2-3, has three stages of gain (Q1, Q2, Q3) instead of two stages as in other TTL families. This raises the input threshold voltage and increases the output drive. The higher threshold makes it possible to use pn diodes for the input AND function (D1 and D2) and still achieve an input threshold of 1.5 V. The capacitance of these diodes is comparatively low, which results in improved ac noise immunity. The effect of the threshold adjustment can be seen in the voltage transfer characteristics of Figure 2-4, 2-5 and 2-6. At 25°C (Figure 2-5) the FAST circuit threshold is nearly centered between the 0.8 V and 2.0 V limits specified for TTL circuits. This gives a better balance between the HIGH- and LOW-state noise margins. The +125°C characteristics (Figure 2-6) show that the FAST circuit threshold is comfortably above the 0.8 V specification. more so than in S-TTL or LS-TTL circuits. At -55°C. the FAST circuit threshold is still well below the 2.0 V specification, as shown in Figure 2-4.

FAST circuits contain several speed-up diodes to help discharge internal capacitances. Referring again to *Figure 2-3*, when a HIGH-to-LOW transition occurs at the D1 input, for example, Schottky diode D3 acts as a low-resistance path to discharge the several parasitic capacitances connected to the base of Q2. This effect

2-4

only comes into play, however, as the input signal falls below about 1.2 V; D3 does not act as an entry path for negative spikes superimposed on a HIGH input level. When Q2 turns on and its collector voltage falls, D7 provides a discharge path for capacitance at the base of Q6. Whereas D3, D4 and D7 enhance switching speed by helping to discharge internal nodes, D8 contributes to the ability of a FAST circuit to rapidly discharge load capacitance. Part of the charge stored in load capacitance passes through D8 and Q2 to increase the base current of Q3 and increase Q3's current sinking capability during the HIGH-to-LOW output voltage transition.

In addition to the 2K-Q4-3K squaring network, which is standard for Schottky-clamped TTL circuits, FAST circuits contain a network D9-D10-D11-Q7 whose purpose is to provide a momentary low impedance at the base of Q3 during an output LOW-to-HIGH transition. The rising voltage at the emitter of Q5 causes displacement current to flow through varactor diode D9 and momentarily turn on Q7, which in turn pulls down the base of Q3 and absorbs the displacement current that flows through the collector-base capacitance (not shown) of Q3 when the output voltage rises. Without the D9-Q7 network, the displacement current through the collector-base capacitance acts as base current, tending to prolong the turn-off of Q3 and allow current to flow from Q6 to around through Q3.

The collector-base capacitance of Q3, although small, is effectively multiplied by the voltage gain of Q3. This phenomenon, first identified many years ago with vacuum tube triodes, is called the Miller effect. Thus the D9-Q7 network (patent applied for) is familiarly

Fig. 2-4 Transfer Functions at Low Temperature

called the "Miller killer" circuit and its use improves the output rise time and minimizes power consumption during repetitive switching at high frequencies. Diode D10 completes the discharge path for D9 through D7 when Q2 turns on. D11 limits how low Q7 pulls down the base of Q3 to a level adequate for the intended purpose, without sacrificing turn-on speed when a circuit is cycled rapidly.

Also shown in *Figure 2-3* is a clamp diode D12 at the output. This diode limits negative voltage excursions due to parasitic coupling in signal lines or transmission line effects.

The Schottky clamping diodes built into the transistors prevent saturation, thereby eliminating storage time as a factor in switching speed. Similarly, the speed-up diodes tend to minimize the impact of other variables on switching speed. The overall effect is to minimize variation in switching speed of FAST circuits with variations in supply voltage and ambient temperature (*Figures 2-7* and *2-8*). Propagation delay is specified not only under nominal supply voltage and temperature conditions, but also over the recommended operating range of Vcc and T_A for both military and commercial grade devices.

The internal switching speed of a logic circuit is only one aspect of the circuit's suitability for high-speed operation at the system or subsystem level; the other aspect is the ability of the circuit to drive load capacitance. FAST circuit outputs are structured to sink at least 20 mA in the LOW state, the same as S-TTL. This capability plus the effect of the aforementioned feedback through D8 assures that the circuit can rapidly discharge capacitance. During a

Fig. 2-5 Transfer Functions at Room Temperature

LOW-to-HIGH transition, the pull-up current is limited by the 45 Ω resistor, versus 55 Ω for S-TTL. Therefore, FAST circuits are inherently more capable than S-TTL of charging load capacitance.

Figure 2-9 shows the effects of load capacitance on propagation delays of FAST, S-TTL and LS-TTL NAND gates. The curves show that FAST gates are not only faster than those of earlier families, but also are less affected by capacitance and exhibit less skew between the LOW-to-HIGH and HIGH-to-LOW delays. These improved characteristics offered by FAST circuits make it easier to predict system performance early in the design phase, before loading details are precisely known. The curves show that the skew between HIGH-to-LOW and LOW-to-HIGH delays for

Fig. 2-6 Transfer Functions at High Temperature

Fig. 2-7 Propagation Delay vs VCC

the FAST gate is only about 0.5 ns, over a broad range of load capacitance, whereas the skew for the S-TTL gate is 1 ns or greater, depending on loading.

Output Characteristics

Figure 2-10 shows the current-voltage characteristics of a FAST gate with the pull-down transistor Q3 turned on. These curves illustrate instantaneous conditions in discharging load capacitance during an output HIGHto-LOW transition. When the output voltage is at about 3.5 V, for example, the circuit can absorb charge from the load capacitance at a 500 mA rate at +25°C. From this level the rate decreases steadily down to about 100 mA at 1.5 V. In this region from 3.5 V to 1.5 V, part of the charge from the load capacitance is fed back through D8 (*Figure 2-3*) and Q2 to provide extra base

Fig. 2-8 Propagation Delay vs Temperature

Fig. 2-9 Propagation Delay vs Load Capacitance

current for Q3, boosting its current-sinking capability and thus reducing the fall time. Below the 1.5 V level, Q3 continues to discharge the load capacitance, but without extra base current from D8. At about 0.5 V the integral Schottky clamp diode from base to collector of Q3 starts conducting and prevents Q3 from going into deep saturation.

On a greatly expanded scale, the output LOW characteristics of a gate are shown in *Figure 2-11*. With no load, the output voltage is about 0.1 V, increasing with current on a slope of about 7.5 Ω . When the load current increases beyond the current-sinking capability of Q3, the output voltage rises steeply. It can be seen that the worst-case specification of 0.5 V max at 20 mA load is easily met. Similar charac-

Fig. 2-11 Output LOW Characteristics - 'F00

teristics for a buffer are shown in *Figure 2-12*, over a broader current range. The curves are well below the output LOW voltage specification of 0.55 V max at 48 mA over the Military temperature range or 64 mA over the Commercial temperature range.

The output HIGH characteristics of a FAST gate are shown in *Figure 2-13*. At low values of output current the voltage is approximately 3.5 V. This value is just the supply voltage minus the combined base-emitter voltages of the Darlington pull-up transistors Q5 and Q6 (*Figure 2-3*). For load currents above 16 or 18 mA, the voltage drop across the 45 Ω Darlington collector resistor becomes appreciable and the Darlington saturates. For greater load currents the output voltage decreases with a slope of about 50 Ω , which is largely

Fig. 2-12 Output LOW Characteristics — 'F244

Fig. 2-13 Output HIGH Characteristics — 'F00

2-7

due to the 45 Ω resistor. The value of current where a characteristic intersects the horizontal axis is the short-circuit output current Ios. This is guaranteed to be at least 60 mA for a FAST gate, compared to 40 mA for S-TTL. This parameter is an important indicator of the ability of an output to charge load capacitance. Thus the FAST specifications insure that an output can charge load capacitance faster, or force a higher LOW-to-HIGH voltage step into the dynamic impedance of a long interconnection.

The output HIGH characteristics of a buffer are shown in *Figure 2-14*. These are similar in shape to *Figure 2-13* but at higher levels of current. The output HIGH voltage of a buffer is guaranteed at two different levels of load current. With a 3 mA load, V_{OH} is guaranteed to be at least 2.4 V for both Military and Commercial devices. V_{OH} is also guaranteed to be at least 2.0 V with a 12 mA load for Military or 15 mA load for Commercial devices. In addition, the short-circuit output current of a buffer is guaranteed to be at least 100 mA.

When an output is driving a long interconnection, the initial LOW-to-HIGH transition is somewhat less than the final, quiescent HIGH level because of the loading effect of the line impedance. The full HIGH voltage level is only reached after the reflection from the far end of the line returns to the driver. The initial LOW-to-HIGH voltage step that an output can force into a line is determined by drawing a load line on the graph containing the output HIGH characteristic and noting the voltage value where the load line intersects the characteristic. For example, if a FAST gate is driving a

100 Ω line, a straight line from the lower left origin up to the point 5 V, 50 mA intersects the characteristic curve at about 2.8 V. This indicates that the gate output voltage will rise to 2.8 V initially, and the 2.8 V signal, accompanied by 28 mA of current, will travel to the end of the line. If not terminated, the 28 mA is forced to return to the driver, whereupon it unloads the driver and the output voltage rises to the maximum value. Similarly, a 50 Ω load line drawn on the buffer characteristic shows an intercept voltage of 2.5 V. In both cases, the initial voltage step is great enough to pass through the switching region of any inputs that might be located near the driver end of the line, and thus would not exhibit any exaggerated propagation delay due to the loading effect of the line impedance on the driver output. Thus the FAST output characteristics insure better system performance under adverse loading conditions.

Input Characteristics

The input of a FAST circuit represents a small capacitance, typically 4 to 5 pF, in parallel with an I-V characteristic that exhibits different slopes over different ranges of input voltage. *Figure 2-15* shows the input characteristic of a FAST gate at three temperatures. In the upper right, the flat horizontal portion is the VIH – IIH characteristic. In this region, all of the current from the 10K input resistor (*Figure 2-3*) is flowing into the base of Q1 and the only current flowing in the input diode is the leakage current IIH. When the input voltage decreases to about 1.7 V (+25°C), current starts to flow out of the input diode and the curve shows a knee. At this point some of the current from the 10K resistor is diverted from the base of Q1. When

Fig. 2-14 Output HIGH Characteristics — 'F244

Fig. 2-15 Input Characteristics — 'F00

2-8

the input voltage declines to about 1.4 V the curve shows another knee; at this point, substantially all of the current from the 10K resistor flows out of the input diode. The portion of the curve between 1.4 V and 1.7 V input voltage is the active region, essentially corresponding to the FAST transfer function in *Figure 2-5*.

Below 1.4 V input, the characteristic has the slope of the 10K input resistor. When the input voltage declines to about -0.3 V, the Schottky clamping diode starts conducting and the current increases rapidly as the input voltage decreases further.

The input characteristics of a buffer, shown in *Figure 2-16*, differ from those of a gate in two respects. One is the location of the transition region along the horizontal axis. A buffer input has a hysteresis characteristic about 400 mV wide, such that the transition region shifts left or right accordingly as the input voltage transition is HIGH-to-LOW or LOWto-HIGH, respectively. The curves in *Figure 2-16* apply to the HIGH-to-LOW input voltage transition. The other difference between buffer and gate characteristics is the slope of the curves below the transition region. The input resistor of a buffer is 4 K Ω , and the slope of the characteristic follows this value, rather than the 10 K Ω slope of a gate input.

The characteristics of an input Schottky clamp diode are shown in *Figure 2-17*, for much larger values of current than those of *Figures 2-15* and 2-16. The purpose of the clamp diode is to limit undershoot at

0 + 25°C ł - 400 125°C $V_{CC} = 5.0 V$ 55°C - 800 1200 - 1600 0 1.0 2.0 3.0 4.0 VI-INPUT VOLTAGE - V

Fig. 2-16 Input Characteristics - 'F244

the end of a line following a HIGH-to-LOW signal transition. For example, an output signal change from +3.5 V to +0.5 V into a 100 Ω line propagates to the end of the line, accompanied by a 30 mA current change. If the line is terminated in a high impedance the 3 V signal change doubles, driving the terminal voltage down to -2.5 V. With the clamp diode, however, the negative excursion would be limited to about -0.7 V. The same HIGH-to-LOW signal change on a 50 Ω line would be clamped at about -1.0 V. Figure 2-18 shows the typical breakdown characteristics for a FAST input.

-15 - 10 - 0.5 0 0.5

VI-INPUT VOLTAGE - V

Fig. 2-18 Input Characteristics -- 'F00 or 'F244

1.0 1.5

Fig. 2-17 Input Characteristics - 'F00 or 'F244

2-9

50

3-State Outputs

A partial schematic of a circuit having a 3-state output is shown in *Figure 2-19*. When the internal Output Enable (OE) signal is HIGH, the circuit operates in the normal fashion to provide HIGH or LOW output drive characteristics. When OE is LOW, however, the bases of Q1, Q2 and Q5 are pulled down. In this condition the output is a high impedance. In this high-Z condition the output leakage is guaranteed not to exceed 50 μ A. In the case of a transceiver, each data pin is an input as well as an output and the leakage specification is increased to 70 μ A. In the high-Z state, output capacitance averages about 5 pF for a 20 mA output and about 12 pF for a 64 mA output.

Fig. 2-19 Typical 3-State Output Control

. .

_____.

Section 3

Ratings, Specifications and Waveforms

Unit Loads (U.L.)

For convenience in system design, the input loading and fan-out characteristics of each circuit are specified in terms of unit loads. One unit load in the HIGH state is defined as 40 μ A; thus both the input HIGH leakage current I_{IH} and the output HIGH current-sourcing capability I_{OH} are normalized to 40 μ A. The specified maximum I_{IH} for a standard FAST input is 20 μ A, or 0.5 U.L., while the I_{OH} rating for a standard output is 1.0 mA, or 25 U.L. Similarly, one unit load in the LOW state is defined as 1.6 mA and both the input LOW current I_{IL} and the output LOW current-sinking capability I_{OL} are normalized to 1.6 mA. The specified maximum I_{IL} for a standard FAST input is 0.6 mA, or 0.375 U.L., while the I_{OL} rating for a standard output is 20 mA, or 12.5 U.L. On the data sheets, the input and output load factors are listed in the Input Loading/Fan-Out table. The table from the 54F/74F04 Hex Inverter is reproduced below.

In the right-hand column the input HIGH/LOW load factors are 0.5/0.375, with the first number representing I_{IH} and the second representing I_{IL}. For testing or procurement purposes, these load factors can easily be translated to actual test limits by multiplying them by 40 μ A and 1.6 mA, respectively. The second set of numbers represents the rated output HIGH/LOW load currents I_{OH} and I_{OL}, respectively. The indicated HIGH/LOW drive factors of 25/12.5 translate to 1.0 mA and 20 mA by multiplying them by 40 μ A and 1.6 mA, respectively.

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW		
	Inputs Outputs	0.5/0.375 25/12.5		

Absolute Maximum Ratings¹

(beyond which useful life may be impaired)

Storage Temperature	-65°C to +150°C
Ambient Temperature	-55°C to +125°C
under Bias	
Junction Temperature	-55°C to +175°C
under Bias	
Vcc Pin Potential to Ground Pin	–0.5 V to +7.0 V
Input Voltage ²	–0.5 V to +7.0 V
Input Current ²	-30 mA to +5.0 mA
Voltage Applied to Output in	
HIGH State:	
Standard Output	-0.5 V to Vcc Value
3-State Output	-0.5 V to +5.5 V
(with $V_{CC} = 0 V$)	
Current Applied to Output in	twice the rated IOL
LOW State (Max)	

1. Unless otherwise restricted or extended by detail specifications.

Either input voltage or current limit sufficient to protect inputs.

Recommended Operating Conditions1

	Min	Max
Free Air Ambient Temperature		
Military (XM)	-55°C	+125°C
Commercial (XC)	0°C	+70°C
Supply Voltage		
Military (XM)	+4.5 V +4.75 V	+5.5 V
Commercial (XC)	+4.75 V	+5.25 V

54F/74F	Family DC Characte	eristics	-					
Symbol	Parameter		Limits ²			Units	Vcc ⁴	Conditions ²
			Min	Тур3	Max		•00*	Conditions-
Viн	Input HIGH Voltag	2.0			v		Recognized as a HIGH Signal over Recommended V _{CC} and T _A Range	
VIL	Input LOW Voltage				0.8	v		Recognized as a LOW Signal over Recommended V _{CC} and T _A Range
Vcd	Input Clamp Diode	Voltage			-1.2	V	Min	l _{IN} = -18 mA
Vон	Output HIGH Voltage	Std 6 Mil Std 6 Com	2.5 2.7	3.4 3.4		V	Min	$I_{OH} = 40 \ \mu A$ Multiplied by Output HIGH U.L. Shown on Data Sheet
Vol	Output LOW Volta		0.35	0.5	v	Min	I _{OL} = 1.6 mA Multiplied by Output LOW U.L. Shown on Data Sheet	
Ін	Input HIGH Currer	0.5 U.L. 1.0 U.L. n U.L.			20 40 n(40)	μA	Max	$I_{IH} = 40 \ \mu A$ Multiplied by Input HIGH U.L. Shown on Data Sheet; $V_{IN} = 2.7 \ V$
	Input HIGH Current, Breakdown Test, All Inputs				100	μA	Мах	V _{IN} = 7.0 V
ΙĽ	Input LOW Current	0.375 U.L. 0.75 U.L. n U.L.			-0.6 -1.2 (n(-1.6)	mA	Мах	$I_{IL} = -1.6$ mA Multiplied by Input LOW U.L. Shown on Data Sheet; $V_{IN} = 0.5$ V
lozн	3-State Output OFF Current HIGH				50	μA	Max	V _{OUT} = 2.4 V
lozl	3-State Output OFF Current LOW		s.		-50	μA	Max	V _{OUT} = 0.5 V
los ⁵	Output Short-	Standard ⁶ / 3-State	-60		-150	mA	Мах	Vout = 0 V
	Circuit Current	Buffers/ Line Dvrs	-100		-225			

1. Unless otherwise noted, conditions and limits apply throughout the temperature range for which the particular device type is rated. The ground pin is the reference level for all applied and resultant voltages.

2. Unless otherwise stated on individual data sheets.

3. Typical characteristics refer to $T_A = +25^{\circ}C$ and $V_{CC} = +5.0 V$.

4. Min and Max refer to the values listed in the table of recommended operating conditions.

5. For testing IOS, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a HIGH output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, IOS tests should be performed last.

6. Standard refers to the totem-pole pull-up circuitry commonly used for the particular family, as distinguished from buffers, line drivers or 3-state outputs.

AC Loading and Waveforms

Figure 3-1 shows the ac loading circuit used in characterizing and specifying propagation delays of all FAST devices, unless otherwise specified in the data sheet of a specific device. The use of this load, which differs somewhat from previous practice, provides more meaningful information and minimizes problems of instrumentation and customer correlation. In the 1980 edition of the FAST data book, the +25°C propagation delays were specified with a load of 15 pF to around: this required areat care in building test jigs to minimize stray capacitance, and implied the use of high-impedance, high-frequency scope probes. Changing to 50 pF of capacitance allows more leeway in stray capacitance and also loads the device during rising or falling output transitions, which more closely resembles the loading to be expected in average applications and thus gives the designer more useful delay figures. The net effect of the change in ac load is to increase the observed propagation delay by an average of about 1 ns.

The 500 Ω resistor to ground, in *Figure 3-1*, acts as a ballast, to slightly load the totem-pole pull-up and limit the quiescent HIGH-state voltage to about +3.5 V. Otherwise, an output would rise quickly to about +3.5 V but then continue to rise very slowly on up to about +4.4 V. On the subsequent HIGH-to-LOW transition the observed tPHL would vary slightly with duty cycle, depending on how long the output voltage was allowed to rise before switching to the LOW state. Perhaps more importantly, the 500 Ω resistor to ground can be a high frequency passive probe for a sampling scope, which costs much less than the equivalent high-impedance probe. Alternatively, the 500 Ω load to ground can simply be a 450 Ω resistor feeding into a 50 Ω coaxial cable leading to a sampling scope input connector, with the internal 50 Ω termination of the scope completing the path to ground. Note that with this scheme there should be a matching cable from the device input pin to the other input of the sampling scope; this also serves as a 50 Ω termination for the pulse generator that supplies the input signal.

Also shown in *Figure 3-1* is a second 500 Ω resistor from the device output to a switch. For most measurements this switch is open; it is closed for measuring a device with open-collector outputs and for measuring one set of the Enable/Disable parameters (LOW-to-OFF and OFF-to-LOW) of a 3-state output. With the switch closed, the pair of 500 Ω resistors and the +7.0 V supply establish a quiescent HIGH level of +3.5 V, which correlates with the HIGH level discussed in the preceding paragraph. Another change from the 1980 FAST data book involves the measurement criteria for the Disable times of 3-state outputs. Figures 3-12 and 3-13 show that the Disable times are measured at the point where the output voltage has risen or fallen by 0.3 V from the quiescent level (i.e., LOW for tPLz or HIGH for tPHz), compared to a ΔV of 0.5 V used in previous practice. This change enhances the repeatability of measurements and gives the system designer more realistic delay times to use in calculating minimum cycle times. Since the rising or falling waveform is RC-controlled, the first 0.3 V of change is more linear than the first 0.5 V and is less susceptible to external influences. More importantly, perhaps, from the system designer's point of view, a ΔV of 0.3 V is adequate to ensure that a device output has turned OFF: measuring to a ΔV of 0.5 V merely exaggerates the apparent Disable time and thus penalizes system performance, since the designer must use the Enable and Disable times to devise worst-case timing signals to ensure that the output of one device is disabled before that of another device is enabled.

Good high-frequency wiring practices should be used in constructing test jigs. Leads on the load capacitor should be as short as possible, to minimize ripples on the output waveform transitions and to minimize undershoot. Generous ground metal (preferably a ground plane) should be used, for the same reasons. A V_{CC} bypass capacitor should be provided at the test socket, also with minimum lead lengths. Input signals should have rise and fall times of 2.5 ns and signal swing of 0 V to +3.0 V. A 1.0 MHz square wave is recommended for most propagation delay tests. The repetition rate must necessarily be increased for testing f_{max}. Two pulse generators are usually required for testing such parameters as setup time, hold time, recovery time, etc.

Precautions should be taken to prevent damage to devices by electrostatic charge. Static charge tends to accumulate on insulated surfaces, such as synthetic fabrics or carpeting, plastic sheets, trays, foam, tubes or bags, and on ungrounded electrical tools or appliances. The problem is much worse in a dry atmosphere. In general, it is recommended that individuals take the precaution of touching a known ground before handling devices. In extremely adverse environments, it may be necessary for individuals to wear a grounded wrist strap when handling devices.

*INCLUDES JIG AND PROBE CAPACITANCE

Fig. 3-3 Waveform for Inverting Functions

Fig. 3-4 Waveform for Non-inverting Functions

Fig. 3-7 Propagation Delays from Rising-edge Clock or Enable

Fig. 3-8 Propagation Delays from Falling-edge Clock or Enable

Fig. 3-9 Propagation Delays from Set and Clear (or Reset)

Fig. 3-10 Whether Response Is Inverting or Non-Inverting Depends on Specific Truth Table Conditions

3

Fig. 3-11 Asynchronous Set, Reset, Parallel Load or Clear, Active Rising-edge Clock or Active-LOW Enable

Fig. 3-12 3-State Output LOW Enable and Disable Times

Fig. 3-14 Setup and Hold Times to Active-LOW Enable or Parallel Load

Fig. 3-15 Setup and Hold Times to Active-HIGH Enable or Parallel Load

Fig. 3-16 Storage Address Setup and Hold Times

Connection Diagram

54F/74F00

Quad 2-Input NAND Gate

1 2 3 4 5 6 7	, , ,	14 V _{CC} 13 12 11 10 9
ND 7	¥	8

Ordering Code: See Section 6

				5
	Commercial Grade	Military Grade	Pkg	6
Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%, \\ T_A = 0^{\circ} \text{C to } +70^{\circ} \text{C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_{A} = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$	Туре	GND 7
Plastic DIP (P)	74F00PC		9A	
Ceramic DIP (D)	74F00DC	54F00DM	6A	
Flatpak (F)		54F00FM	31	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
	Inputs Outputs	0.5/0.375 25/12.5

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter		54F/74F		Units	Conditions		
-,		Min	Тур	Max	- Cinto			
Іссн Іссь	Power Supply Current		1.9 6.8	2.8 10.2	mA			

			54F/74F			54F		IF		
Symbol	Parameter	Vcd	= +25 c = +5 = 50	.0 V	N	/cc = 1il 50 pF	Co	/cc = om 50 pF	Units	Fig. No.
н 1		Min	Тур	Max	Min	Max	Min	Мах		
tplh tphl	Propagation Delay	2.4 2.0	3.7 3.2	5.0 4.3	2.0 1.5	7.0 6.5	2.4 2.0	6.0 5.3	ns	3-1 3-3

02

Quad 2-Input NOR Gate

Connection Diagram

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ} C \text{ to } +125^{\circ} C$	Туре
Plastic DIP (P)	74F02PC		9A
Ceramic DIP (D)	74F02DC	54F02DM	6A
Flatpak (F)		54F02FM	31

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW		
	Inputs Outputs	0.5/0.375 25/12.5		

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter		54F/74F		Units	Conditions		
		Min	Тур	Max				
Iссн Iсс∟	Power Supply Current		3.7 8.7	5.6 13	mA	V _{IN} = Gnd	V _{CC} = Max	

AC Characteristics: See Section 3 for waveforms and load configurations

			54F/74	F	- 54	4F	74	4F	-	
Symbol	Parameter	Vc	= +25 c = +5 _ = 50	.0 V	N	/cc = /il 50 pF	C	/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Мах	Min	Мах	Min	Max		and the second
tPLH tPHL	Propagation Delay	2.5 2.0	4.4 3.2	5.5 4.3	2.5 1.5	7.5 6.5	2.5 2.0	6.5 5.3	ns	3-1 3-3

*Measured with one input HIGH, one input LOW for each gate.

04

Connection Diagram

54F/74F04

Hex Inverter

Pkg Type	1 2 3 4 5 5 7 8 00 7 8)C
9A		

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg	
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ} C \text{ to } +125^{\circ} C$	Туре	G
Plastic DIP (P)	74F04PC		9A	
Ceramic DIP (D)	74F04DC	54F04DM	6A	
Flatpak (F)		54F04FM	31	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
	Inputs Outputs	0.5/0.375 25/12.5

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter		54F/74F		Units	Conditions		
-,		Min	Тур	Max				
ICCH ICCL	Power Supply Current		2.8 10.2	4.2 15.3	mA	V _{IN} = Gnd V _{IN} = Open	V _{CC} = Max	

	~	5	54F/74	F	54	4F	74	ŧF		
Symbol	Parameter	Vcd	= +25 c = +5 _ = 50	.0 V	N	/cc = 1il 50 pF	C	/ _{CC} = om 50 pF	Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Мах		
tplh tphl	Propagation Delay	2.4 2.0	3.7 3.2	5.0 4.3	2.0 1.5	7.0 6.5	2.4 2.0	6.0 5.3	ns	3-1 3-3

Quad 2-Input AND Gate

Connection Diagram

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg	1
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$	Туре	GN
Plastic DIP (P)	74F08PC		9A	
Ceramic DIP (D)	74F08DC	54F08DM	6A	
Flatpak (F)		54F08FM	31	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
	Inputs Outputs	0.5/0.375 25/12.5

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter .		54F/74F		Units	Conditions	
eyniber		Min	Тур	Мах			
Iссн Iccl	Power Supply Current		5.5 8.6	8.3 12.9	mA	$\frac{V_{IN} = Open}{V_{IN} = Gnd} V_{CC} = Max$	

			54F/74F		54F		74F			
Symbol	Parameter	Vc	= +25 c = +5 _ = 50	.0 V	N	/cc = 1il 50 pF	C	/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Max	Min	Мах	Min	Max		
tplh tphl	Propagation Delay	3.0 2.5	4.2 4.0	5.6 5.3	2.5 2.0	7.5 7.5	3.0 2.5	6.6 6.3	ns	3-1 3-4

Connection Diagram 54F/74F10 Triple 3-Input NAND Gate 14 Vcc T 13 2 3 12 4 11 Ordering Code: See Section 6 10 5 **Commercial Grade Military Grade** 9 Pkg 6 Pkgs $V_{CC} = +5.0 V \pm 5\%$, $V_{CC} = +5.0 V \pm 10\%$, Туре 8 GND 7 $T_A = -55^{\circ} C \text{ to } +125^{\circ} C$ $T_A = 0^\circ C$ to $+70^\circ C$ Plastic 74F10PC 9A DIP (P) Ceramic 74F10DC 54F10DM 6A DIP (D) Flatpak 54F10FM 31 (F)

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
	Inputs Outputs	0.5/0.375 25/12.5

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter .		54F/74F		Units	Conditions		
		Min	Тур	Max				
ICCH ICCL	Power Supply Current		1.4 5.1	2.1 7.7	mA	V _{IN} = Gnd V _{IN} = Open	V _{CC} = Max	

		5	54F/74	F	54	1F	74	4F		
Symbol	Parameter	Vcd	= +25 c = +5 _ = 50	.0 V	N	/cc = 1il 50 pF	C	/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Мах		
tplh tphl	Propagation Delay	2.4 2.0	3.7 3.2	5.0 4.3	2.0 1.5	7.0 6.5	2.4 2.0	6.0 5.3	ns	3-1 3-3

11

Connection Diagram

54F/74F11

Triple 3-Input AND Gate

Ordering Code: See Section 6

	Commercial Grade	Military Grade	_ Pkg	
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ} C \text{ to } +125^{\circ} C$	Туре	0
Plastic DIP (P)	74F11PC		9A	
Ceramic DIP (D)	74F11DC	54F11DM	6A	
Flatpak (F)		54F11FM	31	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
·	Inputs Outputs	0.5/0.375 25/12.5

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter .		54F/74F		Units	Conditions	
		Min	Тур	Max			
ICCH ICCL	Power Supply Current		4.1 6.5	6.2 9.7	mA	V _{IN} = Open V _{IN} = Gnd	V _{CC} = Max

			54F/74F		54F		74F			
Symbol	Parameter	Vcd	= +25 c = +5 _ = 50	0 V	N	/cc = 1il 50 pF	Co	/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Мах	Min	Мах	Min	Мах		
tplh tphl	Propagation Delay	3.0 2.5	4.2 4.1	5.6 5.5	2.5 2.0	7.5 7.5	3.0 2.5	6.6 6.5	ns	3-1 3-4

Connection Diagram 54F/74F20 **Dual 4-Input NAND Gate** 14 Vcc 1 13 2 12 NC 3 11 NC 4 Ordering Code: See Section 6 10 5 **Commercial Grade Military Grade** 9 Pkg 6 Pkgs $V_{CC} = +5.0 V \pm 5\%$ $V_{CC} = +5.0 \text{ V} \pm 10\%$ Type GND 7 8 $T_A = 0^\circ C$ to $+70^\circ C$ $T_A = -55^{\circ} C \text{ to } +125^{\circ} C$ Plastic 74F20PC 9A DIP (P) Ceramic 74F20DC 54F20DM 6A DIP (D) Flatpak 54F20FM 31 (**F**)

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
·	Inputs Outputs	0.5/0.375 25/12.5

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter .		54F/74F		Units	Conditions	
		Min	Тур	Max			
Іссн Іссі	Power Supply Current		0.9 3.4	1.4 5.1	mA	V _{IN} = Gnd V _{IN} = Open	V _{CC} = Max

		54F/74F			54F		74F			
Symbol	Parameter	Vcd	= +25 c = +5 = 50	.0 V	N	/cc = 1il 50 pF	C	/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Мах		
tplh tphl	Propagation Delay	2.4 2.0	3.7 3.2	5.0 4.3	2.0 1.5	7.0 6.5	2.4 2.0	6.0 5.3	ns	3-1 3-3

32

54F/74F32

Quad 2-Input OR Gate

Connection Diagram

1 vcc 2 13 3 12 4 11 5 10 6 9 GND 7 8

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg	
Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%,$ $T_A = 0^{\circ}\text{C} \text{ to } +70^{\circ}\text{C}$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ} C \text{ to } +125^{\circ} C$	Туре	GND
Plastic DIP (P)	74F32PC		9A	
Ceramic DIP (D)	74F32DC	54F32DM	6A	
Flatpak (F)		54F32FM	31	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
	Inputs Outputs	0.5/0.375 25/12.5

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter .		54F/74F		Units	Conditions	
		Min	Тур	Max			
Iссн IссL	Power Supply Current		6.1 10.3	9.2 15.5	mA	V _{IN} = Open V _{IN} = Gnd	V _{CC} = Max

		54F/74F		54F		74F				
Symbol	Parameter	Vcd	= +25 c = +5 = 50	.0 V	- N	/cc = /ii 50 pF	Co	/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Мах	Min	Max	Min	Max		
tplh tphl	Propagation Delay	3.0 3.0	4.2 4.0	5.6 5.3	3.0 2.5	7.5 7.5	3.0 3.0	6.6 6.3	'ns	3-1 3-4

Connection Diagram

54F/74F64

4-2-3-2-Input AND OR-Invert Gate

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg	
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	Туре	
Plastic DIP (P)	74F64PC		9A	
Ceramic DIP (P)	74F64DC	54F64DM	6A	
Flatpak (F)		54F64FM	31	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
	Inputs	0.5/0.375
	Outputs	25/12.5

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter		54F/74F		Units	Conditions	
		Min	Тур	Max			
Iссн Iccl	Power Supply Current		1.9 3.1	2.8 4.7	mA	V _{IN} = Gnd *	∳cc = Max

AC Characteristics: See Section 3 for waveforms and load configurations

		5	54F/74	F	54	4F	74	4F		
Symbol	Parameter	Vcd	= +25 c = +5 _ = 50	.0 V	N	/cc = 1il 50 pF	Co	/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Max		
tPLH tPHL	Propagation Delay	2.5 2.0	4.6 3.2	6.0 4.5	2.5 1.5	8.0 6.5	2.5 2.0	7.0 5.5	ns	3-1 3-3

*ICCL is measured with all inputs of one gate open and remaining inputs grounded.

4-11

4-12

74

54F/74F74

Dual D-Type Positive Edge-Triggered Flip-Flop

Description

Truth Table

(Each Half)

INPUT

@ t_n

D

L

н

The 'F74 is a dual D-type flip-flop with Direct Clear and Set inputs and complementary $(\mathbf{Q}, \overline{\mathbf{Q}})$ outputs. Information at the input is transferred to the outputs on the positive edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. After the Clock Pulse input threshold voltage has been passed, the Data input is locked out and information present will not be transferred to the outputs until the next rising edge of the Clock Pulse input.

> Asynchronous Inputs: LOW input to \overline{S}_D sets Q to HIGH level LOW input to \overline{C}_D sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW_on \overline{C}_D and \overline{S}_D

makes both Q and \overline{Q} HIGH

н	=	HIGH Voltage Leve
L	=	LOW Voltage Level

- $t_n = Bit time before clock pulse$
- t_{n+1} = Bit time after clock pulse

Logic Symbol

Ordering Code: See Section 6

OUTPUTS

@ tn + 1

ō

н

L

Q

L

н

	Commercial Grade	Military Grade	Pkg	
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$	Туре	
Plastic DIP (P)	74F74PC		9A	V _{CC} = Pin 14
Ceramic DIP (D)	74F74DC	54F74DM	6A	GND = Pin 7
Flatpak (F)		54F74FM	31	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
D ₁ , D ₂	Data Inputs	0.5/0.375
CP ₁ , CP ₂	Clock Pulse Inputs (Active Rising Edge)	0.5/0.375
$\overline{C}_{D1}, \overline{C}_{D2}$	Direct Clear Inputs (Active LOW)	0.5/1.125
SD1, SD2	Direct Set Inputs (Active LOW)	0.5/1.125
$Q_1, \overline{Q}_1, Q_2, \overline{Q}_2$	Outputs	25/12.5

Connection Diagram

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter	54F/74F			54F/74F		Units	Conditions
ey		Min	Тур	Max	00			
lcc	Power Supply Current		10.5	16	mA	$V_{CC} = Max, V_{CP} = 0 V$		

		5	54F/74F		54F		74F			
Symbol	Parameter	Vcd	= +25 c = +5 _ = 50	.0 V	`∧	/cc = 1il 50 pF	Co	/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Max	Min	Мах	Min	Мах		
f _{max}	Maximum Clock Frequency	100	125		100		100		MHz	3-1, 3-7
tplH tpHL	Propagation Delay CP_n to Q_n or \overline{Q}_n	3.8 4.4	5.3 6.2	6.8 8.0	3.8 4.4	8.5 10.5	3.8 4.4	7.8 9.2	ns	3-1 3-7
tpLH tpHL	Propagation Delay \overline{C}_{Dn} or \overline{S}_{Dn} to Q_n or \overline{Q}_n	3.2 3.5	4.6 7.0	6.1 9.0	3.2 3.5	8.0 11.5	3.2 3.5	7.1 10.5	ns	3-1 3-9

		54F/74F	54F		74	4F			
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0$ V	T _A , V _{CC} = Mil		T _A , V _{CC} = Com		Units	Fig. No.	
		Min Typ M	ax	Min	Мах	Min	Мах		
$\begin{array}{c} t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW D_n to CP_n	2.0 3.0		3.0 4.0		2.0 3.0		ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW Dn to CPn	1.0 1.0		2.0 2.0		1.0 1.0			
t _w (H) t _w (L)	CP _n Pulse Width, HIGH or LOW	4.0 5.0		4.0 6.0		4.0 5.0		ns	3-7
tw (L)	C _{Dn} or S _{Dn} Pulse Width LOW	4.0		4.0		4.0		ns	3-9
trec	Recovery Time C _{Dn} or S _{Dn} to CP	2.0		3.0		2.0		ns	3-11

AC Operating Requirements: See Section 3 for waveforms

	Input Exclusive-OF	R Gate		
Ordering Co	de: See Section 6 Commercial Grade	Military Grade	Dka	
Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%,$ $T_A = 0^{\circ} \text{C} \text{ to } +70^{\circ} \text{C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{C} \text{ to } +125^{\circ} \text{C}$	Pkg Type	
Plastic DIP (P)	74F86PC		9A	
Ceramic DIP (D)	74F86DC	54F86DM	6A]
Flatpak (F)		54F86FM	31	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

54F/74F86

Pin Names	Description	54F74F (U.L.) HIGH/LOW
	Inputs Outputs	0.5/0.375 25/12.5

DC Characteristics Over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter		54/74LS		Units	Conditions		
		Min	Тур	Max	00			
lcc	Power Supply Current		15 18	23 28	mA	Inputs LOW Inputs HIGH Vcc = Max		

AC Characteristics: See Section 3 for waveforms and load configurations

<u> </u>			54F/74F			54/F		4F		
Symbol	Parameter	Vcd	= +25 c = +5 _ = 50	.0 V	N	/cc = /il 50 pF	Co	/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Мах	Min	Max	Min	Мах		
tPLH tPHL	Propagation Delay (Other Input LOW)	3.0 3.0	4.0 4.2	5.5 5.5	3,0 3.0	7.0 7.0	3.0 3.0	6.5 6.5	ns	3-1 3-4
tplh tphl	Propagation Delay (Other Input HIGH)	3.5 3.0	5.3 4.7	7.0 6.5	3.5 3.0	8.5 8.0	3.5 3.0	8.0 7.5	ns	3-1 3-3

Test limits in screened columns are preliminary.

Connection Diagram

109

54F/74F109

Dual JK Positive Edge-Triggered Flip-Flop

Description

The 'F109 consists of two high-speed, completely independent transition clocked $J\overline{K}$ flip-flops. The clocking operation is independent of rise and fall times of the clock waveform. The $J\overline{K}$ design allows operation as a D flip-flop (refer to 'F74 data sheet) by connecting the J and \overline{K} inputs together.

Truth Table

INPUTS	OUTPUTS
@ t _n	@ t _{n + 1}
JK	Q Q
LH	No Change
	LH
нн	Ĥ L
Lu i	Toggles

Asynchronous Inputs:

- LOW input to \overline{S}_D sets Q to HIGH level LOW input to \overline{C}_D sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on \overline{C}_D and \overline{S}_D makes both Q and \overline{Q} HIGH
- $t_n = Bit$ time before clock pulse $t_{n+1} = Bit$ time after clock pulse H = HIGH Voltage Level L = LOW Voltage Level

Connection Diagram

Logic Symbol

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg	3-0K CD 00-
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C to +70^{\circ}C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	Туре	1
Plastic DIP (P)	74F109PC		9B	V _{CC} = Pin 16 GND = Pin 8
Ceramic DIP (D)	74F109DC	54F109DM	6B	
Flatpak (F)		54F109FM	4L	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW		
$J_1, J_2, \overline{K}_1, \overline{K}_2$	Data Inputs	0.5/0.375		
CP ₁ , CP ₂	Clock Pulse Inputs (Active Rising Edge)	0.5/0.375		
$\overline{C}_{D1}, \overline{C}_{D2}$	Direct Clear Inputs Active LOW	0.5/1.125		
SD1, SD2	Direct Set Inputs (Active LOW)	0.5/1.125		
$Q_1, Q_2, \overline{Q}_1, \overline{Q}_2$	Outputs	25/12.5		

Logic Diagram (one half shown)

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics over Operating Temperature Range (un	ess otherwise specified)
---	--------------------------

Symbol Parameter		54F/74F			Units	Conditions	
0,		Min	Тур	Max			
lcc	Power Supply Current		11.7	17	mA	$V_{CC} = Max, V_{CP} = 0 V$	

AC Characteristics: See Section 3 for waveforms and load configurations

		5	54F/74F		54F		74F			
Symbol	Parameter	Vcd	= +25 c = +5 _ = 50	.0 V	N	/cc = /il 50 pF	Co	/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Max		
f _{max}	Maximum Clock Frequency	90	125		90		90		MHz	3-1, 3-7
tplh tphl	Propagation Delay CP_n to Q_n to \overline{Q}_n	3.8 4.4	5.3 6.2	7.0 8.0	3.8 4.4	9.0 10.5	3.8 4.4	8.0 9.2	ns	3-1 3-7
tplh tphl	Propagation Delay \overline{C}_{Dn} or \overline{S}_{Dn} to Q_n or \overline{Q}_n	3.2 3.5	5.2 7.0	7.0 9.0	3.2 3.5	9.0 11.5	3.2 3.5	8.0 10.5	ns	3-1 3-9

Test limits in screened columns are preliminary.

		54F/74F	54F	74F	Units	Fig. No.
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com		
		Min Typ Max	Min Max	Min Max		
ts (H) ts (L)	Setup Time, HIGH or LOW J_n or \overline{K}_n to CP_n	3.0 3.0	3.0 3.0	3.0 3.0	ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW J_n or \overline{K}_n to CP_n	1.0 1.0	1.0 1.0	1.0 1.0	115	
$t_w(H) = t_w(L)$	CP _n Pulse Width, HIGH or LOW	4.0 5.0	4.0 5.0	4.0 5.0	ns	3-7
t _w (L)	\overline{C}_{Dn} or \overline{S}_{Dn} Pulse Width LOW	4.0	4.0	4.0	ns	3-9
t _{rec}	Recovery Time C _{Dn} or S _{Dn} to CP	2.0	2.0	2.0	ns	3-11

AC Operating Requirements: See Section 3 for waveforms

Test limits in screened columns are preliminary.

Dual JK Negative Edge-Triggered Flip-Flop

Connection Diagram

Description

The 'F112 contains two independent, high-speed JK flip-flops with Direct Set and Clear inputs. Synchronous state changes are initiated by the falling edge of the clock. Triggering occurs at a voltage level of the clock and is not directly related to the transition time. The J and K inputs can change when the clock is in either state without affecting the flip-flop, provided that they are in the desired state during the recommended setup and hold times relative to the falling edge of the clock. A LOW signal on $\overline{S_D}$ or $\overline{C_D}$ prevents clocking and forces Q or \overline{Q} HIGH, respectively. Simultaneous LOW signals on $\overline{S_D}$ and $\overline{C_D}$ force both Q and \overline{Q} HIGH.

Truth Table

IN	PUTS	OUTPUT
@ t _n		@ t _{n + 1}
J	к	Q
L	L	Qn
L	н	L
Н	L	н
н	н	Qn

Asynchronous Inputs:

LOW input to \overline{S}_D sets Q to HIGH level LOW input to \overline{C}_D sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on \overline{C}_D and \overline{S}_D makes both Q and \overline{Q} HIGH

 $\begin{array}{l} t_n = Bit \mbox{ time before clock pulse } \\ t_{n+1} = Bit \mbox{ time after clock pulse } \\ H \quad HIGH \mbox{ Voltage Level } \\ L = LOW \mbox{ Voltage Level } \end{array}$

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkq	
Pkgs		$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ} C \text{ to } +125^{\circ} C$	Туре	
Plastic DIP (P)	74F112PC		9B	Vcc GN
Ceramic DIP (D)	74F112DC	54F112DM	6B	
Flatpak (F)	,	54F112FM	4∟	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
J ₁ , J ₂ , K ₁ , K ₂	Data Inputs	0.5/0.375
CP1, CP2	Clock Pulse Inputs (Active Falling Edge)	0.5/1.5
$\overline{C}_{D1}, \overline{C}_{D2}$	Direct Clear Inputs (Active LOW)	0.5/1.875
SD1, SD2	Direct Set Inputs (Active LOW)	0.5/1.875
$Q_1,\ Q_2,\ \overline{Q}_1,\ \overline{Q}_2$	Outputs	25/12.5

V_{CC} = Pin 16 GND = Pin 8

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics over Operating Temperature	Range (unless otherwise specified)
--	------------------------------------

Symbol	Parameter	54F/74F			Units	Conditions	
		Min	Тур	Max			
lcc	Power Supply Current		12	19	mA	V _{CC} = Max, V _{CP} - 0	

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74F	54Ė	74F			
Symbol	Parameter	$ \begin{array}{l} T_{A} = +25^{\circ}C, \\ V_{CC} = +5.0 \ V \\ C_{L} = 50 \ pF \end{array} $	$T_{A}, V_{CC} = Mil \\ C_{L} = 50 \text{ pF}$	$\begin{array}{l} T_{A},\ V_{CC}=\\ Com\\ C_{L}=50\ pF \end{array}$	Units	Fig. No.	
		Min Typ Max	Min Max	Min Max			
f _{max}	Maximum Clock Frequency	100 125			MHz	3-1, 3-8	
tplh tphl	Propagation Delay \overline{CP}_n to Q_n or \overline{Q}_n	3.35.57.73.35.57.7	1		ns	3-1, 3-8	
tplh tphl	Propagation Delay \overline{C}_{Dn} or \overline{S}_{Dn} to Q_n or \overline{Q}_n	3.05.07.03.35.57.7			ns	3-1, 3-9	

Test limits in screened columns are preliminary.

		54F/74F	54F	74F	Units	Fig. No.
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com		
		Min Typ Max	Min Max	Min Max		
ts (H) ts (L)	Setup Time Jn or Kn to CPn	3.0 3.0			ns	3-6
t _h (H) t _h (L)	Hold Time J_n or K_n to \overline{CP}_n	0			110	
tw (H) tw (L)	\overline{CP}_n Pulse Width	5.0 5.0			ns	3-8
t _w (L)	C _{Dn} or S _{Dn} Pulse Width LOW	5.0	8		ns	3-9

AC Operating Requirements: See Section 3 for waveforms

Test limits in screened columns are preliminary.

4

Dual JK Edge-Triggered Flip-Flop

Description

The 'F113 offers individual J, K, Set and Clock inputs. When the clock goes HIGH the inputs are enabled and data may be entered. The logic level of the J and K inputs may be changed when the clock pulse is HIGH and the bistable will perform according to the Truth Table as long as minimum setup and hold times are observed. Input data is transferred to the outputs on the falling edge of the clock pulse.

Truth Table

11	NPUTS	OUTPUT
	@ t _n	@ t _{n + 1}
J	к	Q
L	L	Qn
L	н	L
H	L	н
н	н	

Asynchronous Input: LOW input to SD sets Q to HIGH level Set is independent of clock

tn = Bit time before clock pulse tn + 1 = Bit time after clock pulse H = HIGH Voltage Level

L = LOW Voltage Level

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$	Туре
Plastic DIP (P)	74F113PC		9A
Ceramic DIP (D)	74F113DC	54F113DM	6A
Flatpak (F)		54F113FM	31

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
J ₁ , J ₂ , K ₁ , K ₂	Data Inputs	0.5/0.375
CP1, CP2	Clock Pulse Inputs (Active Falling Edge)	0.5/1.50
SD1, SD2	Direct Set Inputs (Active LOW)	0.5/1.875
$Q_1, Q_2, \overline{Q}_1, \overline{Q}_2$	Outputs	25/12.5

CP1 1 14 Vcc 13 CP2 K1 2 ICP 12 K₂ $J_1 \boxed{3}$

5 KCP

11 J2

10 S_{D2}

9 Q2

8 Q2

Connection Diagram

Sn

SD1 4

Q1 5

Ō۱

GND 7

Logic Diagram (one half shown)

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter	54F/74F			Units	Conditions	
-,		Min	Тур	Max	••••••		
lcc	Power Supply Current		12	19	mA	V _{CC} = Max, V _{CP} = OV	

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74F	54F	74F	Units	Fig. No.
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$ $C_L = 50 pF$	T _A , V _{CC} = Mil C _L = 50 pF	$\begin{array}{l} T_{A},V_{CC}=\\ Com\\ C_{L}=50\ pF \end{array}$		
		Min Typ Max	Min Max	Min Max		
f _{max}	Maximum Clock Frequency	100 125			MHz	3-1, 3-8
tplh tphl	Propagation Delay $\overline{CP_n}$ to Q_n or $\overline{Q_n}$	3.35.57.73.35.57.7			ns	3-1 3-8
tрцн tpнL	Propagation Delay $\overline{S_{DN}}$ to Q_n or $\overline{Q_n}$	3.05.07.03.35.57.7			ns	3-1 3-9

Test limits in screened columns are preliminary.

Symbol		54F/74F	54F	74F		
	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$		Units	Fig. No.	
		Min Typ Max	Min Max	Min Max		
ts(H) ts(L)	Setup Time J _n or K _n to CP _n	3.0 3.0			ns	3-6
t _h (H) t _h (L)	Hold Time J_n or K_n to \overline{CP}_n	0 0			110	
t _w (H) t _w (L)	CPn Pulse Width	5.0 5.0			ns	3-8
t _w (L)	SDN Pulse Width LOW	5.0			ns	3-9

AC Operating Requirements: See Section 3 for waveforms

Test limits in screened columns are preliminary.

Dual JK Negative Edge-Triggered Flip-Flop (With Common Clocks and Clears)

Ē₀[14 VCC 13 CP K₁ сn Sn J1 3 12 K₂ 11 J2 SD1 4 10 SD2 Q1 5 CD Sn Q1 6 9 Q2 o GND 7 8 ā2

Connection Diagram

Description

The 'F114 contains two high-speed JK flip-flops with common clock and Clear inputs. Synchronous state changes are initiated by the falling edge of the clock. Triggering occurs at a voltage level of the clock and is not directly related to the transition time. The J and K inputs can change when the clock is in either state without affecting the flip-flop, provided that they are in the desired state during the recommended setup and hold times relative to the falling edge of the clock. A LOW signal on $\overline{S_D}$ or $\overline{C_D}$ prevents clocking and forces Q or \overline{Q} HIGH, respectively. Simultaneous LOW signals on $\overline{S_D}$ and $\overline{C_D}$ force both Q and \overline{Q} HIGH.

Tru	Truth Table				
INF	PUTS	OUTPUT			
@ t _n		@ t _{n + 1}			
J	ĸ	Q			
L	L	Qn			
L	н	L			
н	L	н			
н	н	- Q _n			

Asynchronous Inputs:

LOW input to \overline{S}_D sets Q to HIGH level LOW input to \overline{C}_D sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on \overline{C}_D and \overline{S}_D makes both Q and \overline{Q} HIGH

H = HIGH Voltage Level

- L = LOW Voltage Level
- $t_n = Bit time before clock pulse$
- $t_{n+1} = Bit time after clock pulse$

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg	
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$	Туре	1
Plastic DIP (P)	74F114PC		9A	G G
Ceramic DIP (D)	74F114DC	54F114DM	6A	
Flatpak (F)		54F114FM	31	

V_{CC} = Pin 14 GND = Pin 7

Logic Symbol

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
J ₁ , J ₂ , K ₁ , K ₂	Data Inputs	0.5/0.375
CP	Clock Pulse Input (Active Falling Edge)	0.5/1.50
CD	Direct Clear Input (Active LOW)	0.5/1.875
SD1, SD2	Direct Set Inputs (Active LOW)	0.5/1.875
$Q_1, Q_2, \overline{Q}_1, \overline{Q}_2$	Outputs	25/12.5

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics over Operating Temperat	ure Range (unless otherwise specified)
--	--

Symbol	Parameter	54F/74F	Units	Conditions	
-,		Min Typ Ma	K L		
lcc	Power Supply Current	12 19	mA	$V_{CC} = Max, V_{CP} = 0$	

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74F	54F	74F		Fig. No.
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$ $C_L = 50 pF$	T _A , V _{CC} = Mil C _L = 50 pF	T _A , V _{CC} = Com C _L = 50 pF	Units	
		Min Typ Max	Min Max	Min Max		
f _{max}	Maximum Clock Frequency	100 125			MHz	3-1, 3-8
tplh tphl	Propagation Delay CP to Qn or Qn	3.35.57.73.35.57.7			ns	3-1, 3-8
tplh tphl	Propagation Delay \overline{C}_D or \overline{S}_{Dn} to Q_n or \overline{Q}_n	3.05.07.03.35.57.7	· · · ·		ns	3-1, 3-9

Test limits in screened columns are preliminary.

Symbol		54F/74F	54F	74F		
	Parameter	$\begin{array}{c} T_{A}=+25^{\circ}C, & T_{A}, V_{CC}\\ V_{CC}=+5.0 V & Mil \end{array}$		T _A , V _{CC} = Com	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
t _s (H) t _s (L)	Setup Time J_n or K_n to \overline{CP}	3.0 3.0		,	ns	3-6
t _h (H) t _h (L)	Hold Time J_n or K_n to \overline{CP}	0 0			113	0.0
t _w (H) t _w (L)	CP Pulse Width	5.0 5.0			ns	3-8
tw	C _D or S _{Dn} Pulse Width	5.0			ns	3-9

AC Operating Requirements: See Section 3 for waveforms

Test limits in screened columns are preliminary.

4

1-of-8 Decoder/Demultiplexer

Connection Diagram

		-
A0 1	۲ <u>ـ</u> ۲	16 Vcc
A1 2		15 ō ₀
A2 3		14 O 1
Ē14		13 O 2
E 2 5		12 O 3
E 3 6		11 ō ₄
ठ 7 7		10 ō ₅
GND 8		9 ō 6

Logic Symbol

A₀ A₁ A₂

E1 E2 E3

Description

The 'F138 is a high-speed 1-of-8 decoder/demultiplexer. This device is ideally suited for high-speed bipolar memory chip select address decoding. The multiple input enables allow parallel expansion to a 1-of-24 decoder using just three 'F138 devices or a 1-of-32 decoder using four 'F138 devices and one inverter.

- FAST Process for High Speed
- Demultiplexing Capability
- Multiple Input Enable for Easy Expansion
- Active-LOW Mutually Exclusive Outputs

Ordering Code: See Section 6

Ordering Co	$0_0 0_1 0_2 0_3 0_4 0_5 0_6 0_7$			
	Commercial Grade	Military Grade	Pkg	• • • • • • • •
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	Туре	15 14 13 12 11 10 9 7
Plastic DIP (P)	74F138PC		9В	V _{CC} = Pin 16 GND = Pin 8
Ceramic DIP (D)	74F138DC	54F138DM	6B	
Flatpak (F)		54F138FM	4L	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
A ₀ - A ₂	Address Inputs	0.5/0.375
$\overline{E}_1, \overline{E}_2$	Enable Inputs (Active LOW)	0.5/0.375
E ₃	Enable Input (Active HIGH)	0.5/0.375
$\overline{O}_0 - \overline{O}_7$	Outputs (Active LOW)	25/12.5

Functional Description

The 'F138 high-speed 1-of-8 decoder/multiplexer. fabricated with the FAST process. The decoder accepts three binary weighted inputs (A₀, A₁, A₂) and, when enabled, provides eight mutually exclusive active-LOW outputs ($\overline{O}_0 - \overline{O}_7$). The 'F138 features three Enable inputs, two active LOW ($\overline{E}_1, \overline{E}_2$) and one active HIGH (E₃). All outputs will be HIGH unless \overline{E}_1 and \overline{E}_2 are LOW and E₃ is HIGH. This multiple enable function allows easy parallel expansion of the device to a 1-of-32 (5 lines to 32 lines) decoder with just four 'F138 devices and one inverter (See *Figure a*). The 'F138 can be used as an 8-output demultiplexer by using one of the active-LOW Enable inputs as the data input and the other Enable inputs as strobes. The Enable inputs which are not used must be permanently tied to their appropriate active-HIGH or active-LOW state.

Truth Table

	INPUTS				OUTPUTS								
Ē1	Ē2	E3	A ₀	A 1	A ₂	Ō0	Ō1	Ō2	ō₃	Ō4	Ō5	\overline{O}_6	Ō7
H X X	X H X	ХХL	X X X	X X X	X X X	H H H	H H H	H H H	H H H	H H H	H H H	H H H	н н н
	L L L	нттт	L H L H	L L H H	L L L	L H H	H L H H	H H L H	H H L	H H H H	H H H H	ннн	н н н н
	L L L	нттт		L L H H	H H H H	н н н н н	н н н н	н н н н	H H H H	L H H	H L H H	H H L H	H H L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Logic Diagram

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter	54F/74F			Units	Conditions	
0,		Min	Тур	Мах			
lcc	Power Supply Current		13	20	mA	V _{CC} = Max	

		54F/74F		54F		74F				
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$ $C_L = 50 pF$		T _A , V _{CC} = Mil C _L = 50 pF		$T_{A}, V_{CC} = Com$ $C_{L} = 50 \text{ pF}$		Units	Fig. No.	
		Min	Тур	Мах	Min	Max	Min	Мах		
tplh tphl	Propagation Delay A_n to \overline{O}_n	3.5 4.0	5.6 6.1	7.0 8.0	3.5 4.0	12 9.5	3.5 4.0	8.0 9.0	ns	3-1, 3-10
tplh tphl	Propagation Delay \overline{E}_1 or \overline{E}_2 to \overline{O}_n	3.5 3.0	5.4 5.3	7.0 7.0	3.5 3.0	11 8.0	3.5 3.0	8.0 7.5	ns	3-1, 3-4
tplh tphl	Propagation Delay E ₃ to On	4.0 3.5	6.2 5.6	8.0 7.5	4.0 3.5	12.5 8.5	4.0 3.5	9.0 8.5	ns	3-1, 3-3

Dual 1-of-4 Decoder

Connection Diagram

Description

The 'F139 is a high-speed, dual 1-of-4 decoder/demultiplexer. The device has two independent decoders, each accepting two inputs and providing four mutually exclusive active-LOW outputs. Each decoder has an active-LOW Enable input which can be used as a data input for a 4-output demultiplexer. Each half of the 'F139 can be used as a function generator providing all four minterms of two variables.

- Multifunction Capability
- Two Completely Independent 1-of-4 Decoders
- Active LOW Mutually Exclusive Outputs

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg] [
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	Туре	
Plastic DIP (P)	74F139PC		9B	v G
Ceramic DIP (D)	74F139DC	54F139DM	6B	
Flatpak (F)		54F139FM	4L]

Logic Symbol

14 13

V_{CC} = Pin 16 GND = Pin 8

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
A ₀ , A ₁	Address Inputs	0.5/0.375
Ē	Enable Inputs (Active LOW)	0.5/0.375
$\overline{O}_0 - \overline{O}_3$	Outputs (Active LOW)	25/12.5

Functional Description

The 'F139 is a high-speed dual 1-of-4 decoder/demultiplexer. The device has two independent decoders, each of which accepts two binary weighed inputs (A₀, A₁) and provides four mutually exclusive active-LOW outputs ($\overline{O}_0 - \overline{O}_3$). Each decoder has an active LOW enable (\overline{E}). When \overline{E} is HIGH all outputs are forced HIGH. The enable can be used as the data input for a 4-output demultiplexer application. Each half of the 'F139 generates all four minterms of two variables. These four minterms are useful in some applications, replacing multiple gate functions as shown in *Figure a*, and thereby reducing the number of packages required in a logic network.

Truth Table

INPUTS			OUTPUTS					
Ē	A ₀	A1	ō0	Ō1	Ō2	Ō3		
н	х	Х	н	н	н	н		
Ľ	L	L	L	н	н	н		
L	н	L	н	L	н	н		
L	L	н	н	н	L	Н		
Ľ	н	н	н	н	Н	L		

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Fig. a Gate Functions (each half)

Logic Diagram

4-32

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter	54F/74F			Units	Conditions	
		Min	Тур	Мах			
lcc	Power Supply Current		13	20	mA	V _{CC} = Max	

		54F/74F		54F		74F					
Symbol	Parameter	$ \begin{array}{l} {\sf T}_{\sf A}=+25^{\circ}{\sf C},\\ {\sf V}_{\sf CC}=+5.0{\sf V}\\ {\sf C}_{\sf L}=50{\sf pF} \end{array} $			T _A , V _{CC} = Mil C _L = 50 pF		$\begin{array}{l} T_{A},V_{CC}=\\ Com\\ C_{L}=50\ pF \end{array}$		Units	Fig. No.	
		Min	Тур	Max	Min	Max	Min	Max			
tPLH tPHL	Propagation Delay A_0 or A_1 to \overline{O}_n	3.5 4.0	5.3 6.1	7.0 8.0	2.5 3.5	9.5 9.5	3.0 4.0	8.0 9.0	ns	3-1, 3-10	
tр∟н tрн∟	Propagation Delay \overline{E}_1 to \overline{O}_n	3.5 3.0	5.4 4.7	7.0 6.5	3.0 2.5	9.0 8.0	3.5 3.0	8.0 7.5	ns	3-1, 3-4	

8-Line to 3-Line Priority Encoder

Connection Diagram

17 EI

Logic Symbol

10

lo l1 l2 l3 l4 l5 l6

Description

The 'F148 provides three bits of binary coded output representing the position of the highest order active input, along with an output indicating the presence of any active input. It is easily expanded via input and output enables to provide priority encoding over many bits.

- Encodes Eight Data Lines in Priority
- Provides 3-Bit Binary Priority Code
- Input Enable Capability
- Signals When Data Present on Any Input
- Cascadable for Priority Encoding of n Bits

Ordering Code: See Section 6

	Commercial Grade	cial Grade Military Grade			A 0	A 1	A 2	GS
Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%,$ $T_A = 0^{\circ} \text{C} \text{ to } +70^{\circ} \text{C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$	Pkg Type	15	9 9	ļ 7	6	0 14
Plastic DIP (P)	74F148PC		9B	Vcc = F	2in 16			
Ceramic DIP (D)	74F148DC	54F148DM	6B	GND =				
Flatpak (F)		54F148FM	4L					

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
	Priority Inputs (Active LOW)	0.5/0.375
E	Enable Input (Active LOW)	0.5/0.375
EO	Enable Output (Active LOW)	25/12.5
GS	Group Select Output (Active LOW)	25/12.5
$\overline{A_0} - \overline{A_2}$	Address Outputs (Active LOW)	25/12.5

Functional Description

The 'F148 8-input priority encoder accepts data from eight active-LOW inputs $\overline{(I_0 - I_7)}$ and provides a binary representation on the three active-LOW outputs. A priority is assigned to each input so that when two or more inputs are simultaneously active, the input with the highest priority is represented on the output, with input line 7 having the highest priority. A HIGH on the Enable Input (EI) will force all outputs to the inactive (HIGH) state and allow new data to settle without producing erroneous information at the outputs. A Group Signal output (GS) and Enable Output (EO) are provided along with the three priority data outputs $(\overline{A_2}, \overline{A_1}, \overline{A_0})$. \overline{GS} is active LOW when any input is LOW; this indicates when any input is active. EO is active LOW when all inputs are HIGH. Using the Enable Output along with the Enable Input allows cascading for priority encoding on any number of input signals. Both EO and GS are in the inactive HIGH state when the Enable Input is HIGH.

Logic Diagram

Truth Table

	INPUTS										UTP	UTS	
ĒĪ	To	T ₁	T ₂	T ₃	Ī4	T5	T ₆	ī 7	GS	\overline{A}_0	Ā1	Ā2	ĒŌ
HLLL	х н х х х	X H X X X	X H X X X	X H X X X	X H X X X	X H X X L	X H X L H	X H L H H	HHLLL	H H L H L	H H L H	H H L L	тытт
	X X X L	X X L H	X X L H H	ХLННН		ΙΙΙΙ	ΙΙΙΙ	ΤΙΤΙ		HLHLH	H L L H H	LHHHH	ттттт

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter		54F/74F		Units	Conditions	
		Min	Тур	Max			
lcc	Power Supply Current		23	35	mA	V _{CC} = Max	

AC Characteristics: See Section 3 for waveforms and load configurations

		5	4F/74	F	5	4F	7	4F		
Symbol	Parameter	Vcc	$T_{A} = +25^{\circ}C, \\ V_{CC} = +5.0 V \\ C_{L} = 50 \text{ pF}$			T _A , V _{CC} = Mil C _L = 50 pF		/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Max	Min	Мах	Min	Мах		
tplh tphl	Propagation Delay $\overline{T_n}$ to $\overline{A_n}$	3.0 3.0	7.0 7.0	10.5 10.5					ns	3-1, 3-10
tplH tpHL	Propagation Delay	2.5 2.0	3.5 3.5	5.0 4.5		,			ns	3-1, 3-3
tplh tphl	Propagation Delay	3.0 3.0	5.0 5.0	7.0 7.0					ns	3-1, 3-4
tplh tphl	Propagation Delay El to An	3.5 3.5	6.0 6.0	8.5 8.5					ns	3-1, 3-4
tplh tphl	Propagation Delay El to GS	3.0 3.0	5.0 5.0	7.0 7.0					ns	3-1, 3-4
tplh tphl	Propagation Delay EI to EO	2.0 2.0	5.0 5.0	7.0 7.0					ns	3-1, 3-4

Test limits in screened columns are preliminary.

Application

151

54F/74F151 8-Input Multiplexer

Connection Diagram

Description

The 'F151 is a high-speed 8-input digital multiplexer. It provides in one package, the ability to select one line of data from up to eight sources. The 'F151 can be used as a universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg						
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	Туре						
Plastic DIP (P)	74F151PC		9B						
Ceramic DIP (D)	74F151DC	54F151DM	6B						
Flatpak (F)		54F151FM	4L						
				L					

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
10 - 17	Data Inputs	0.5/0.375
$S_0 - S_2$	Select Inputs	0.5/0.375
Ē	Enable Input (Active LOW)	0.5/0.375
Z	Data Output	25/12.5
Z	Inverted Data Output	25/12.5

Logic Symbol

4-38

The 'F151 is a logic implementation of a single pole, 8-position switch with the switch position controlled by the state of three Select inputs, S₀, S₁, S₂. Both assertion and negation outputs are provided. The Enable input $\overline{(E)}$ is active LOW. When it is not activated, the negation output is HIGH and the assertion output is LOW regardless of all other inputs. The logic function provided at the output is:

 $Z = \overline{E} \bullet (I_0 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_1 \bullet S_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_2 \bullet \overline{S}_0 \bullet S_1 \bullet \overline{S}_2 + I_3 \bullet S_0 \bullet S_1 \bullet \overline{S}_2 + I_4 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet S_2 + I_5 \bullet S_0 \bullet \overline{S}_1 \bullet S_2 + I_6 \bullet \overline{S}_0 \bullet S_1 \bullet S_2 + I_7 \bullet S_0 \bullet S_1 \bullet S_2)$

The 'F151 provides the ability, in one package, to select from eight sources of data or control information. By proper manipulation of the inputs, the 'F151 can provide any logic function of four variables and its negation. Truth Table

	•				
	OUTPUTS				
Ē S ₂ S ₁ S ₀ Ž Z					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter		54F/74F		Units	Conditions	
•,		Min	Тур	Max			
lcc	Power Supply Current		13.5	21	mA	$V_{CC} = Max, V_{IN} = 4.5 V$	

AC Characteristics: See Section 3 for waveforms and load configurations

		. 5	54F/74F		54	IF.	74F			
Symbol	Parameter	$V_{CC} = +5.0 V$			$T_{A}, V_{CC} = Mil \\ C_{L} = 50 \text{ pF}$		$\begin{array}{c} T_{A}, \ V_{CC} = \\ Com \\ C_{L} = 50 \ pF \end{array}$		Units	Fig. No.
		Min	Тур	Max	Min	Мах	Min	Max		
tplh	Propagation Delay	4.5	6.2	8.0	4.0	10	4.5	9.0	ns	3-1
tphl	Sn to Z	3.2	5.6	6.1	3.0	8.0	3.2	7.0		3-10
tplн	Propagation Delay	4.5	9.9	13	4.5	17.5	4.5	15	ns	3-1
tpнL	S _n to Z	5.0	7.1	9.0	4.5	11.5	5.0	10.5		3-10
tplн	Propagation Delay	3.4	4.8	6.1	3.4	7.5	3.4	7.0	ns	3-1
tpнL	E to Z	4.5	6.8	8.5	4.0	10.5	4.5	10		3-4
tplh	Propagation Delay	5.0	7.3	9.5	4.5	14.5	5.0	11	ns	3-1
tphl	E to Z	3.8	5.4	7.0	3.5	9.5	3.8	8.0		3-3
tplh	Propagation Delay	3.0	4.3	5.7	2.5	7.5	3.0	6.5	ns	3-1
tphl	I _n to Z	2.0	2.9	4.0	1.5	6.0	2.0	5.0		3-3
tplh	Propagation Delay	4.0	7.6	9.5	3.5	11	4.0	11	ns	3-1
tphl	In to Z	3.7	5.2	6.5	3.5	8.0	3.7	7.5		3-4

4-40

Connection Diagram

54F/74F153

Dual 4-Input Multiplexer

Description

The 'F153 is a high-speed dual 4-input multiplexer with common select inputs and individual enable inputs for each section. It can select two lines of data from four sources. The two buffered outputs present data in the true (noninverted) form. In addition to multiplexer operation, the 'F153 can generate any two functions of three variables.

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg Type	
Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%,$ $T_A = 0^{\circ} \text{ C to } +70^{\circ} \text{ C}$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$		
Plastic DIP (P)	74F153PC		9B	
Ceramic DIP (D)	74F153DC	54F153DM	6B	
Flatpak (F)		54F153FM	4L	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
I _{0a} – I _{3a}	Side A Data Inputs	0.5/0.375
106 - Ізь	Side B Data Inputs	0.5/0.375
S ₀ , S ₁	Common Select Inputs	0.5/0.375
Ea	Side A Enable Input (Active LOW)	0.5/0.375
Eb	Side B Enable Input (Active LOW)	0.5/0.375
Za	Side A Output	25/12.5
Zb	Side B Output	25/12.5

Logic Symbol

GND = Pin 8

The 'F153 is a dual 4-input multiplexer. It can select two bits of data from up to four sources under the control of the common Select inputs (S₀, S₁). The two 4-input multiplexer circuits have individual active-LOW Enables (\overline{E}_a , \overline{E}_b) which can be used to strobe the outputs independently. When the Enables (\overline{E}_a , \overline{E}_b) are HIGH, the corresponding outputs (Z_a, Z_b) are forced LOW. The 'F153 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two Select inputs. The logic equations for the outputs are shown below.

$$\begin{aligned} & Z_a = \overline{E}_a \ \bullet (I_{0a} \ \bullet \overline{S}_1 \ \bullet \overline{S}_0 + I_{1a} \ \bullet \overline{S}_1 \ \bullet S_0 + I_{2a} \ \bullet \overline{S}_1 \ \bullet S_0 + I_{2a} \ \bullet \overline{S}_1 \ \bullet \overline{S}_0 + I_{3a} \ \bullet \overline{S}_1 \ \bullet S_0) \\ & Z_b = \overline{E}_b \ \bullet (I_{0b} \ \bullet \overline{S}_1 \ \bullet \overline{S}_0 + I_{1b} \ \bullet \overline{S}_1 \ \bullet S_0 + I_{2b} \ \bullet S_1 \ \bullet \overline{S}_0 + I_{3b} \ \bullet S_1 \ \bullet S_0) \end{aligned}$$

The 'F153 can be used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the Select inputs. A less obvious application is as a function generator. The 'F153 can generate two functions of three variables. This is useful for implementing highly irregular random logic.

Logic Diagram

Truth Table

1	ECT		INP	UTS	. р)	OUTPUT	
S ₀	S1	Ē	lo	11	12	l3	Z
X	х	н	х	Х	Х	х	L
L	L .	L	L	Х	Х	X	L
L	L	L	н	Х	Х	х	н
н	L	L	х	L	Х	х	L
н	L	L	х	н	х	х	Н
L	H	L	Х	Х	L	х	s s L
L	н	L	Х	Х	н	Х	н
H	н	L	Х	Х	X	Ľ	L
н	Н	L	X	х	х	н	н

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

DC Charac	DC Characteristics over Operating Temperature Range (unless otherwise specified)									
Symbol	Description		54F/74F		Units	Conditions				
		Min	Тур	Max						
lcc	Power Supply Current		12	20	mA	V _{CC} = Max, V _{IN} = Gnd				

AC Characteristics: See Section 3 for waveforms and load configurations

			54F/74F T _A = +25°C, V _{CC} = +5.0 V			54F T _A , V _{CC} = Mil		4F /cc = om		Fig.
Symbol	Parameter		C _L = 50 pF		C _L = 50 pF				Units	No.
		Min	Тур	Max	Min	Max	Min	Max		
tplh tphl	Propagation Delay S _n to Z _n	5.5 4.0	8.1 7.0	10.5 9.0		14 11	5.5 4.0	12 10.5	ns	3-1, 3-10
tplh tphl	Propagation Delay \overline{E}_n to Z_n	5.0 4.0	7.1 5.7	9.0 7.0		11.5 9.0	5.0 4.0	10.5 8.0	ns	3-1, 3-3
tplh tphl	Propagation Delay I _n to Z _n	4.0 3.0	5.3 5.1	7.0 6.5		9.0 8.0	4.0 3.0	8.0 7.5	ns	3-1, 3-4

4

153

54F/74F157

Quad 2-Input Multiplexer

Description

The 'F157 is a high-speed quad 2-input multiplexer. Four bits of data from two sources can be selected using the common Select and Enable inputs. The four buffered outputs present the selected data in the true (non-inverted) form. The 'F157 can also be used to generate any four of the 16 different functions to two variables.

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	Туре
Plastic DIP (P)	74F157PC		9B
Ceramic DIP (D)	74F157DC	54F157DM	6B
Flatpak (F)		54F157FM	4L

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
l _{0a} – l _{0d}	Source 0 Data Inputs	0.5/0.375
l1a-l1d	Source 1 Data Inputs	0.5/0.375
Ē	Enable Input (Active LOW)	0.5/0.375
S	Select Input	0.5/0.375
Za-Zd	Outputs	25/12.5

Logic Symbol

Connection Diagram

The 'F157 is a quad 2-input multiplexer. It selects four bits of data from two sources under the control of a common Select input (S). The Enable input $\overline{(E)}$ is active LOW. When E is HIGH, all of the outputs (Z) are forced LOW regardless of all other inputs. The 'F157 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

 $\begin{array}{ll} Z_a = \overline{E} \bullet (I_{1a} \bullet S + I_{0a} \bullet \overline{S}) & Z_b = \overline{E} \bullet (I_{1b} \bullet S + I_{0b} \bullet \overline{S}) \\ Z_c = \overline{E} \bullet (I_{1c} \bullet S + I_{0c} \bullet \overline{S}) & Z_d = \overline{E} \bullet (I_{1d} \bullet S + I_{0d} \bullet \overline{S}) \end{array}$

A common use of the 'F157 is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The 'F157 can generate any four of the 16 different functions of two variables with one variable common. This is useful for implementing highly irregular logic.

Logic Diagram

Truth Table

	INP	OUTPUT		
Ē	S	lo	h	Z
н	Х	х	х	L
L	н	X	L	L
L	н	Х	н	н
L	L	L	X	L
L	Ļ	н	X	н

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

DC Characteristics	over Operating	I Temperature Rang	otherwise specifie	d)

Symbol	Parameter		54F/74F	ta itali	Units	Conditions		
		Min	Тур	Max				
lcc	Power Supply Current	· .	15	23	mA	V _{CC} = Max, All Inputs = 4.5 V		

AC Characteristics: See Section 3 for waveforms and load configurations

Symbol	Parameter	$\begin{array}{c} {\bf 54F/74F} \\ \\ T_A = +25^{\circ}C, \\ V_{CC} = +5.0 \ V \\ C_L = 50 \ pF \end{array}$			54F T _A , V _{CC} = Mil C _L = 50 pF		Com		Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Мах		
tplH	Propagation Delay	4.5	10.1	13	3.5	17	4.5	15	ns	3-1
tpHL	S to Z _n	3.5	6.3	8.0	3.5	11.5	3.5	9.0		3-10
tplh	Propagation Delay	5.0	7.6	10	5.0	15	5.0	11.5	ns	3-1
tphl	E to Z _n	3.8	5.3	7.0	3.8	8.5	3.8	8.0		3-3
tplh	Propagation Delay	3.8	5.5	7.0	3.5	10	3.8	8.0	ns	3-1
tphl	In to Zn	2.5	4.6	5.5	2.5	7.5	2.5	7.0		3-4

Connection Diagram

54F/74F158

Quad 2-Input Multiplexer

Description

The 'F158 is a high-speed quad 2-input multiplexer. It selects four bits of data from two sources using the common Select and Enable inputs. The four buffered outputs present the selected data in the inverted form. The 'F158 can also generate any four of the 16 different functions of two variables.

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg
Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%,$ $T_A = 0^{\circ} \text{ C} \text{ to } +70^{\circ} \text{ C}$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	Туре
Plastic DIP (P)	74F158PC		9B
Ceramic DIP (D)	74F158DC	54F158DM	6B
Flatpak (F)		54F158FM	4L

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
10a - 10d	Source 0 Data Inputs	0.5/0.375
1a - 1d	Source 1 Data Inputs	0.5/0.375
Ē	Enable Input (Active LOW)	0.5/0.375
S	Select Input	0.5/0.375
$\overline{Z}_a - \overline{Z}_d$	Inverted Outputs	25/12.5

Logic Symbol

 $V_{CC} = Pin 16$ GND = Pin 8

The 'F158 quad 2-input multiplexer selects four bits of data from two sources under the control of a common Select input (S) and presents the data in inverted form at the four outputs. The Enable input (\overline{E}) is active LOW. When \overline{E} is HIGH, all of the outputs (\overline{Z}) are forced HIGH regardless of all other inputs. The 'F158 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input.

A common use of the 'F158 is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The 'F158 can generate four functions of two variables with one variable common. This is useful for implementing gating functions.

Logic Diagram

Truth Table

	INF	UTS	OUTPUTS	
Ē	S	lo	l1 -	Z
н	X	Х	х	н
L	L	L	Х	н
L	L	н	Χ.	L
L	н	X	L	н
L	н	х	н	L

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter		54F/74F		Units	Conditions	
e y iniser		Min	Тур	Max			
lcc	Power Supply Current		10	15	mA	V _{CC} = Max*	

AC Characteristics: See Section 3 for waveforms and load configurations

Symbol Parameter		T _A Vco	54F/74F T _A = +25° C V _{CC} = +5.0 V C _L = 50 pF			54F T _A , V _{CC} = Mil C _L = 50 pF		Com		Fig. No.
-,		Min	Тур	Max	Min	Max	Min	Max	Units	
tplh tphL	Propagation Delay S to \overline{Z}	4.0 4.0	6.4 6.9	8.5 9.0	4.0 4.0	10.5 10.5	4.0 4.0	9.5 10.5	ns	3-1 3-10
tplh tphl	Propagation Delay E to Z	4.5 3.5	6.2 6.4	8.0 8.5	4.5 3.5	9.5 9.5	4.5 3.5	9.0 9.5	ns	3-1 3-4
tplh tphL	Propagation Delay In to Z	3.0 2.0	4.4 3.3	5.9 4.5	2.5 2.0	8.5 6.0	3.0 2.0	7.0 5.5	ns	3-1 3-3

*Icc measured with outputs open and 4.5 V applied to all inputs.

160 • 162

54F/74F160 • 54F/74F162

Synchronous Presettable BCD Decade Counter

Description

The 'F160 and 'F162 are high-speed synchronous decade counters operating in the BCD (8421) sequence. They are synchronously presettable for application in programmable dividers and have two types of Count Enable inputs plus a Terminal Count output for versatility in forming synchronous multistage counters. The 'F160 has an asynchronous Master Reset input that overrides all other inputs and forces the outputs LOW. The 'F162 has a Synchronous Reset input that overrides counting and parallel loading and allows all outputs to be simultaneously reset on the rising edge of the clock.

- Synchronous Counting and Loading
- High-speed Synchronous Expansion
- Typical Count Rate of 125 MHz

Ordering Co	ode: See Section 6	PE P ₀ P ₁ P ₂ P ₃		
	Commercial Grade	Military Grade Pkg		1 7 CEP 10 CET TC 15
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$	Туре	2 CP *R Q0 Q1 Q2 Q3
Plastic DIP (P)	74F160PC, 74F162PC		9B	
Ceramic DIP (D)	74F160DC, 74F162DC	54F160DM, 54F162DM	7B	$V_{CC} = Pin 16 \qquad * \overline{MR} \text{ for '160} \\ GND = Pin 8 \qquad * \overline{SR} \text{ for '162}$
Flatpak (F)		54F160FM, 54F162FM	4L	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
CEP	Count Enable Parallel Input	0.5/0.375
CET	Count Enable Trickle Input	0.5/0.75
CP	Clock Pulse Input (Active Rising Edge)	0.5/0.375
MR ('F160)	Asynchronous Master Reset Input (Active LOW)	0.5/0.375
SR ('F162)	Synchronous Reset Input (Active LOW)	0.5/0.75
Po - P3	Parallel Data Inputs	0.5/0.375
PE	Parallel Enable Input (Active LOW)	0.5/0.75
Q0 - Q3	Flip-flop Outputs	25/12.5
тс	Terminal Count Output	25/12.5

Connection Diagram

* MR for '160 *SR for '162

Logic Symbol

The 'F160 and 'F162 count modulo-10 in the BCD (8421) sequence. From state 9 (HLLH) they increment to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master Reset of the 'F160) occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset ('F160), synchronous reset ('F162), parallel load, count-up and hold, Five control inputs - Master Reset (MR. 'F160). Synchronous Reset (SR, 'F162), Parallel Enable (PE), Count Enable Parallel (CEP) and Count Enable Trickle (CET) — determine the mode of operation, as shown in the Mode Select Table. A LOW signal on MR overrides all other inputs and asynchronously forces all outputs LOW. A LOW signal on SR overrides counting and parallel loading and allows all outputs to go LOW on the next rising edge of CP. A LOW signal on PE overrides counting and allows information on the Parallel Data (Pn) inputs to be loaded into the flip-flops on the next rising edge of CP. With PE and MR ('F160) or SR ('F162) HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.

Mode Select Table

*SR	PE	CET	CEP	Action on the Rising Clock Edge (1)
LHHHH	XLHHH	X X H L X	X X H X L	$\begin{array}{l} \text{RESET (Clear)} \\ \text{LOAD }(P_n \rightarrow Q_n) \\ \text{COUNT (Increment)} \\ \text{NO CHANGE (Hold)} \\ \text{NO CHANGE (Hold)} \end{array}$

* For the 'F162 only

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

The 'F160 and 'F162 use D-type edge-triggered flipflops and changing the SR, PE, CEP and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.

The Terminal Count (TC) output is HIGH when CET is HIGH and the counter is in state 9. To implement synchronous multistage counters, the TC outputs can be used with the CEP and CET inputs in two different ways. Please refer to the 'F568 data sheet. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, counters or registers. In the 'F160, 'F162 decade counters, the TC output is fully decoded and can only be HIGH in state 9. If a decade counter is preset to an illegal state, or assumes an illegal state when power is applied, it will return to the normal sequence within two counts, as shown in the State Diagram.

Logic Equations: Count Enable = CEP • CET • PE $TC = Q_0 • \overline{Q}_1 • \overline{Q}_2 • Q_3 • CET$

State Diagram

160 • 162

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

	DC Characteristics over	Operating 1	Temperature Range	(unless otherwise specified)
--	-------------------------	--------------------	-------------------	------------------------------

Symbol	Parameter	54F/74F			Units	Conditions	
		Min	Тур	Max			
lcc	Power Supply Current		33	50	mA	Vcc = Max	

AC	Characteristics: S	See Sectio	n 3 for	waveforms	and load	configurations

		54F/74F	54F	74F	Units	Fig. No.
Symbol	Parameter	TA = +25° C, V _{CC} = +5.0 V C _L = 50 pF	T _A , V _{CC} = Mil C _L = 50 pF	$T_{A}, V_{CC} = Com$ $C_{L} = 50 \text{ pF}$		
		Min Typ Max	Min Max	Min Max		
f _{max}	Maximum Count Frequency	100 125			MHz	3-1, 3-7
tPLH tPHL	Propagation Delay CP to Qn (PE Input HIGH)	3.05.07.04.07.010			ns	3-1
tPLH tPHL	Propagation Delay CP to Qn (PE Input LOW)	4.07.0105.08.011			110	3-7
tPLH tPHL	Propagation Delay CP to TC	6.010145.59.012.5			ns	3-1 3-7
tрцн tpнL	Propagation Delay CET to TC	2.54.05.53.05.07.0	k.		ns	3-1 3-4
tрнL	Propagation Delay MR to Qn ('F160)	6.0 10 14			ns	3-1 3-11

AC Operating Requirements: See Section 3 for waveforms

	·	54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ} C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com	Units	Fig. No.
	· · · · · ·	Min Typ Max	Min Max	Min Max		
ts(H) ts(L)	Setup Time, HIGH or LOW P_n to CP	3.0 5.0		e	ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW P_n to CP	3.0 3.0				5-5
ts(H) ts(L)	Setup Time, HIGH or LOW PE or SR to CP	10 7.0			ns	3-5
th(H) th(L)	Hold Time, HIGH or LOW PE or SR to CP	2.0 0				
ts (H) ts (L)∠	Setup Time, HIGH or LOW CEP or CET to CP	10 4.0			ns	3-5
th.(H) th.(L)	Hold Time, HIGH or LOW CEP or CET to CP	0 0				
t _w (H) t _w (L)	Clock Pulse Width, HIGH or LOW	4.0 5.0			ns	3-7
t _w (L)	MR Pulse Width LOW ('F160)	6.0			ns	3-11
t _{rec}	Recovery Time MR to CP ('F160)	5.0				511

Test limits in screened columns are preliminary.

161 • 163

54F/74F161 • 54F/74F163

Synchronous Presettable Binary Counter

Description

The 'F161 and 'F163 are high-speed synchronous modulo-16 binary counters. They are synchronously presettable for application in programmable dividers and have two types of Count Enable inputs plus a Terminal Count output for versatility in forming synchronous multistage counters. The 'F161 has an asynchronous Master Reset input that overrides all other inputs and forces the outputs LOW. The 'F163 has a Synchronous Reset input that overrides counting and parallel loading and allows the outputs to be simultaneously reset on the rising edge of the clock.

- Synchronous Counting and Loading
- High Speed Synchronous Expansion
- Typical Count Frequency of 125 MHz

Ordering C	ode: See Section 6			
	Commercial Grade	Military Grade	Pkg	7 CEP 10 CET TC 15
Pkgs	$V_{CC} = +5.0 \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = + 5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	Туре	2 CP *R Q ₀ Q ₁ Q ₂ Q ₃
Plastic DIP (P)	74F161PC, 74F163PC		9B	
Ceramic DIP (D)	74F161DC, 74F163DC	54F161DM, 54F163DM	7B	* MR for '161 V _{CC} = Pin 16 * SR for '163 GND = Pin 8
Flatpak (F)		54F161FM, 54F163FM	4L	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
CEP	Count Enable Parallel Input	0.5/0.375
CET	Count Enable Trickle Input	0.5/0.75
CP	Clock Pulse Input (Active Rising Edge)	0.5/0.375
MR ('F161)	Asynchronous Master Reset Input (Active LOW)	0.5/0.375
SR ('F163)	Synchronous Reset Input (Active LOW)	0.5/0.75
Po - P3	Parallel Data Inputs	0.5/0.375
PE	Parallel Enable Input (Active LOW)	0.5/0.75
Q0 - Q3	Flip-flop Outputs	25/12.5
тс	Terminal Count Output	25/12.5

Connection Diagram

*MR for '161 *SR for '163

Logic Symbol

The 'F161 and 'F163 count in modulo-16 binary sequence. From state 15 (HHHH) they increment to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master Reset of the 'F161) occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset ('F161), synchronous reset ('F163), parallel load, count-up and hold. Five control inputs - Master Reset (MR. 'F161), Synchronous Reset (SR, 'F163), Parallel Enable (PE). Count Enable Parallel (CEP) and Count Enable Trickle (CET) - determine the mode of operation, as shown in the Mode Select Table, A LOW signal on MR overrides all other inputs and asynchronously forces all outputs LOW. A LOW signal on SR overrides counting and parallel loading and allows all outputs to go LOW on the next rising edge of CP. A LOW signal on PE overrides counting and allows information on the Parallel Data (Pn) inputs to be loaded into the flip- flops on the next rising edge of CP. With PE and MR ('F161) or SR ('F163) HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.

Mode Select Table

*SR	PE	CET	CEP	Action on the Rising Clock Edge (_/)
	X L H H H	X X H L X	X X H X L	$\begin{array}{l} \text{RESET} \ (\text{Clear}) \\ \text{LOAD} \ (\text{Pn} \rightarrow \text{Qn}) \\ \text{COUNT} \ (\text{Increment}) \\ \text{NO} \ \text{CHANGE} \ (\text{Hold}) \\ \text{NO} \ \text{CHANGE} \ (\text{Hold}) \end{array}$

* For 'F163 only

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

The 'F161 and 'F163 use D-type edge-triggered flipflops and changing the SR, PE, CEP and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.

The Terminal Count (TC) output is HIGH when CET is HIGH and the counter is in state 15. To implement synchronous multistage counters, the TC outputs can be used with the CEP and CET inputs in two different ways. Please refer to the 'F568 data sheet. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, counters or registers.

Logic Equations: Count Enable = $CEP \bullet CET \bullet PE$ $TC = Q_0 \bullet Q_1 \bullet Q_2 \bullet Q_3 \bullet CET$

161 • 163

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics over Operating Temperature Range (unless	otherwise specified)
---	----------------------

Symbol	Parameter	54F/74F Min Typ Max		54F/74F		54F/74F		Conditions
				Units				
lcc	Power Supply Current		33	50	mA	V _{CC} = Max		

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$ $C_L = 50 pF$	T _A , V _{CC} = Mil C _L = 50 pF	T _A , V _{CC} = Com C _L = 50 pF	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
f _{max}	Maximum Count Frequency	100 125			MHz	3-1, 3-7
tplH tpHL	Propagation Delay CP to Qn (PE Input HIGH)	3.05.07.04.07.010			ns	3-1
tplh tphl	Propagation Delay CP to Qn (PE Input LOW)	4.07.0105.08.011				3-7
tplh tphl	Propagation Delay CP to TC	6.010145.59.012.5		, to an	ns	3-1 3-7
tplh tphl	Propagation Delay CET to TC	2.54.05.53.05.07.0			ns	3-1 3-4
t _{PHL}	Propagation Delay MR to Qn ('F161)	6.0 10 14			ns	3-1 3-11

AC Operating Requirements: See Section 3 for waveforms

		54F/74F	54F	74F	and a second	
Symbol	Parameter	$T_A = +25^{\circ} C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
$\begin{array}{c} t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW P _n to CP	3.0 5.0			ns	3-5
$\begin{array}{l} t_{h} \ (H) \\ t_{h} \ (L) \end{array}$	Hold Time, HIGH or LOW P_n to CP	3.0 3.0				
$\begin{array}{l} t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW PE or SR to CP	10 7.0			ns	3-5
$\begin{array}{c} t_{h} \ (H) \\ t_{h} \ (L) \end{array}$	Hold Time, HIGH or LOW PE or SR to CP	2.0 0				
$t_s (H) \\ t_s (L)$	Setup Time, HIGH or LOW CEP or CET to CP	10 4.0	-		ns	3-5
$\begin{array}{c} t_{h} \ (H) \\ t_{h} \ (L) \end{array}$	Hold Time, HIGH or LOW CEP or CET to CP	0 0				
$t_w (H) = t_w (L)$	Clock Pulse Width, HIGH or LOW	4.0 5.0			ns	3-7
t _w (L)	MR Pulse Width LOW ('F161)	6.0			ns	3-11
t _{rec}	Recovery Time MR to CP ('F161)	5.0				

Test limits in screened columns are preliminary.

164

54F/74F164

Serial-In Parallel-Out Shift Register

Description

The 'F164 is a high speed 8-bit serial-in parallel-out shift register. Serial data is entered through a 2-input AND gate synchronous with the LOW-to-HIGH transition of the clock. The device features an asynchronous Master Reset which clears the register, setting all outputs LOW independent of the clock.

- Typical shift Frequency of 90 MHz
- Asynchronous Master Reset
- Gated Serial Data Input
- Fully Synchronous Data Transfers

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ} C to +125^{\circ} C$	Туре
Plastic DIP (P)	74F164PC		9A
Ceramic DIP (D)	74F164DC	54F164DM	6A
Flatpak (F)		54F164FM	31

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
А, В	Data Inputs	0.5/0.375
CP	Clock Pulse Input (Active Rising Edge)	0.5/0.375
MR	Master Reset Input (Active LOW)	0.5/0.375
Q0 - Q7	Outputs	25/12.5

Logic Symbol

V_{CC} = Pin 14 GND = Pin 7

Connection	Diagram
------------	---------

The 'F164 is an edge-triggered 8-bit shift register with serial data entry and an output from each of the eight stages. Data is entered serially through one of two inputs (A or B); either of these inputs can be used as an active-HIGH Enable for data entry through the other input. An unused input must be tied HIGH.

Each LOW-to-HIGH transition on the Clock (CP) input shifts data one place to the right and enters into Q_0 the logical AND of the two data inputs $(A \bullet B)$ that existed before the rising clock edge. A LOW level on the Master Reset (MR) input overrides all other inputs and clears the register asynchronously, forcing all Q outputs LOW.

Mode Select Table

OPERATING		INPUTS			UTPUTS
MODE	MR	Α	В	Q ₀	Q1 — Q7
Reset (Clear)	L	х	Х	L	L-L
Shift	TTTT	l h h	l h l h	LLH	qo — q6 qo — q6 qo — q6 qo — q6 qo — q6

L (I) = LOW Voltage Levels

H (h) = HIGH Voltage Levels

X = Immaterial

 q_n = Lower case letters indicate the state of the referenced input or output one setup time prior to the LOW-to-HIGH clock transition.

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter		54F/74F		Units	Conditions
Cymbol		Min	Тур	Max		
lcc	Power Supply Current		35	55	mA	A, B = GND, V_{CC} = Max, CP = 2.4 V, \overline{MR} = $\neg \Gamma$

- ----

AC Characteristics: See Section 3 for waveforms and load configurations

		5	54F/74	F	54	4F	74	4F		
Symbol	Parameter	Vcd	= +25 c = +5 = 50	0 V 0.	N	/cc = 1il 50 pF	Co	/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Мах		
f _{max}	Maximum Clock Frequency	80	90				80		MHz	3-1, 3-7
tpLH tpHL	Propagation Delay CP to Q _n	4.5 5.0	6.0 7.5	8.0 10			4.5 5.0	9.0 11	ns	3-1, 3-7
tPHL .	Propagation Delay MR to Qn	5.5	10.5	13			8.5	14	ns	3-1, 3-11

AC Operating Requirements: See Section 3 for waveforms

		5	54F/74	F	54	4F	74	1F		
Symbol	Parameter	1	= +25 c = +5	'		/cc = Iil		/ _{CC} = om	Units	Fig. No.
		Min	Тур	Max	Min	Мах	Min	Мах		
$\begin{array}{c} t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW A or B to CP	7.0 7.0					7.0 7.0		ns	3-5
$t_h (H) \\ t_h (L)$	Hold Time, HIGH or LOW A or B to CP	1.0 1.0					1.0 1.0			
t_w (H) t_w (L)	CP Pulse Width, HIGH or LOW	4.0 7.0					4.0 7.0		ns	3-7
t _w (L)	MR Pulse Width LOW	7.0					7.0		ns	3-11
trec	Recovery Time MR to CP	7.0					7.0		ns	3-11

54F/74F168 • 54F/74F169

4-Stage Synchronous Bidirectional Counters

Connection Diagram

Logic Symbol

PE P0 P1 P2 P3

тс

Q₃

12 11

15

Description

The 'F168 and 'F169 are fully synchronous 4-stage up/down counters. The 'F168 is a BCD decade counter; the 'F169 is a modulo-16 binary counter. Both feature a preset capability for programmable operaton, carry lookahead for easy cascading and a U/\overline{D} input to control the direction of counting. All state changes, whether in counting or parallel loading, are initiated by the LOW-to-HIGH transition of the Clock.

- Synchronous Counting and Loading
- Built-in Lookahead Carry Capability
- Presettable for Programmable Operation

Ordering Co	ode: See Section 6			7
<u></u>	Commercial Grade	Military Grade	Pkg	10
Pkgs	$V_{CC} = +5.0 \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$\label{eq:VCC} \begin{array}{l} V_{CC} = + \; 5.0 \; V \; \pm 10\%, \\ T_{A} = -55^{\circ} C \; to \; + 125^{\circ} C \end{array}$	Туре	2 CP Q ₀ Q ₁
Plastic DIP (P)	74F168PC, 74F169PC		9B	14 13
Ceramic DIP (D)	74F168DC, 74F169DC	54F168DM, 54F169DM	6B	Vcc = Pin 16 GND = Pin 8
Flatpak (F)		54F168FM, 54F169FM	4L	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
CEP	Count Enable Parallel Input (Active LOW)	0.5/0.375
CET	Count Enable Trickle Input (Active LOW)	0.5/0.750
CP	Clock Pulse Input (Active Rising Edge)	0.5/0.375
P0 - P3	Parallel Data Inputs	0.5/0.375
PE	Parallel Enable Input (Active LOW)	0.5/0.375
U/D	Up-Down Count Control Input	0.5/0.375
Q0 - Q3	Flip-flop Outputs	25/12.5
TC	Terminal Count Output (Active LOW)	25/12.5

168 • 169

Logic Diagrams

- ------

The 'F168 and 'F169 use edge-triggered J-K-type flipflops and have no constraints on changing the control or data input signals in either state of the Clock. The only requirement is that the various inputs attain the desired state at least a setup time before the rising edge of the clock and remain valid for the recommended hold time thereafter. The parallel load operation takes precedence over the other operations, as indicated in the Mode Select Table. When \overline{PE} is LOW, the data on the $P_0 - P_3$ inputs enters the flip-flops on the next rising edge of the Clock. In order for counting to occur, both CEP and CET must be LOW and PE must be HIGH; the U/D input then determines the direction of counting. The Terminal Count $\overline{(TC)}$ output is normally HIGH and goes LOW, provided that CET is LOW, when a counter reaches zero in the Count Down mode or reaches 9 (15 for the 'F169) in the Count Up mode. The TC output state is not a function of the Count Enable Parallel (CEP) input level. The TC output of the 'F168 decade counter can also be LOW in the illegal states 11, 13 and 15, which can occur when power is turned on or via parallel loading. If an illegal state occurs, the 'F168 will return to the legitimate sequence within two counts. Since the TC signal is derived by decoding the flip-flop states, there exists the possibility of decoding spikes on TC. For this reason the use of TC as a clock signal is not recommended (see logic equations below).

1) Count Enable = $\overline{CEP} \bullet \overline{CET} \bullet \overline{PE}$

2) Up: $\overline{TC} = Q_0 \bullet Q_3 \bullet (U/\overline{D}) \bullet \overline{CET}$

3) Down: $\overline{\mathsf{TC}} = \mathsf{Q}_0 \bullet \mathsf{Q}_1 \bullet \mathsf{Q}_2 \bullet \mathsf{Q}_3 \bullet (\mathsf{U}/\overline{\mathsf{D}}) \bullet \overline{\mathsf{CET}}$

Mode Select Table

PE	CEP	CET	U/D	Action on Rising Clock Edge
	X L L H X	X L L X H	H L	$\begin{array}{l} Load \ (P_n \rightarrow Q_n) \\ Count \ Up \ (Increment) \\ Count \ Down \ (Decrement) \\ No \ Change \ (Hold) \\ No \ Change \ (Hold) \end{array}$

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

State Diagrams

'F168

'F169

----- Count Up

168 • 169

DC Characteristics over Operat	ing Temperature Range	(unless otherwise specified)
Do onalactioned over operat	ing remperature mange	(annobe office opeoniou)

Symbol	Parameter	54F/74F			Units	Conditions	
o y insor		Min	Тур	Max			
lcc	Power Supply Current		35	52	mA	V _{CC} = Max	

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$ $C_L = 50 pF$	T _A , V _{CC} = Mil C _L = 50 pF	T _A , V _{CC} = Com C _L = 50 pF	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
f _{max}	Maximum Clock Frequency	75			MHz	3-1, 3-7
tplh tphL	Propagation Delay CP to Qn (PE HIGH or LOW)	4.07.0105.59.012.5			ns	3-1, 3-7
tplh tphL	Propagation Delay CP to TC	6.510.5156.510.515			ns	3-1, 3-7
tPLH tPHL	Propagation Delay CET to TC	4.06.59.03.55.58.0			ns	3-1, 3-4
tplh tphl	Propagation Delay U/D to TC	4.06.59.04.57.510			ns	3-1, 3-10

AC Operating Requirements: See Section 3 for waveforms

		54F/74F 54F		74F		
Symbol	Parameter	$T_A = +25^{\circ} C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
t _s (H) t _s (L)	Setup Time, HIGH or LOW Pn to CP	5.0 7.0			ns	3-5
t _{h.} (H) t _{h.} (L)	Hold Time, HIGH or LOW Pn to CP	3.0 3.0				
ts (H) ts (L)	Setup Time, HIGH or LOW CEP or CET to CP	10 10			ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW CEP or CET to CP	0 0			. 115	
ts (H) ts (L)	Setup Time, HIGH or LOW U/D or PE to CP	14 14			ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW U/D or PE to CP	0 0				
$\begin{array}{c} t_{w} \ (H) \\ t_{w} \ (L) \end{array}$	CP Pulse Width, HIGH or LOW	4.5 6.5			ns	3-7

Test limits in screened columns are preliminary.

54F/74F174

Hex D Flip-Flop (With Master Reset)

11 13 14

6

D0 D1 D2 D3 D4 D5

Logic Symbol

CP MB

Description

The 'F174 is a high-speed hex D flip-flop. The device is used primarily as a 6-bit edge-triggered storage register. The information on the D inputs is transferred to storage during the LOW-to-HIGH clock transition. The device has a Master Reset to simultaneously clear all flip-flops.

- Edge-Triggered D-Type Inputs
- Buffered Positive Edge-Triggered Clock
- Asynchronous Common Reset

Ordering Co	de: See Section 6	1O MR Q0 Q1 Q2 Q3 Q4 Q5			
	Commercial Grade	Military Grade	Pkg		
Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%, \\ T_A = 0^{\circ} \text{ C to } +70^{\circ} \text{ C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$	Туре	 2 5 7 10 12 15	
Plastic DIP (P)	74F174PC		9B	V _{CC} = Pin 16 GND = Pin 8	
Ceramic DIP (D)	74F174DC	54F174DM	6В		
Flatpak (F)		54F174FM	4L		

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
D ₀ - D ₅	Data Inputs	0.5/0.375
CP	Clock Pulse Input (Active Rising Edge)	0.5/0.375
MR	Master Reset Input (Active LOW)	0.5/0.375
Q0 - Q5	Outputs	25/12.5

The 'F174 consists of six edge-triggered D flip-flops with individual D inputs and Q outputs. The Clock (CP) and Master Reset (\overline{MR}) are common to all flipflops. Each D input's state is transferred to the corresponding flip-flop's output following the LOWto-HIGH Clock (CP) transition. A LOW input to the Master Reset (\overline{MR}) will force all outputs LOW independent of Clock or Data inputs. The 'F174 is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

Truth Table

INPUTS	OUTPUTS		
@ t_n , $\overline{MR} = H$	@ t _{n + 1}		
Dn	Qn		
н	н		
L	L		

tn = Bit time before clock pulse

 $t_{n+1} = Bit time after clock pulse$

H = HIGH Voltage Level

L = LOW Voltage Level

Logic Diagram

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter	54F/74F			Units	Conditions	
		Min	Тур	Max	•		
lcc	Power Supply Current		30	45	mA	$V_{CC} = Max,$ $D_n = \overline{MR} = 4.5 V$ $CP = \int$	

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$ $C_L = 50 pF$	T _A , V _{CC} = Mil C _L = 50 pF	$\begin{array}{l} T_{A},V_{CC}=\\ Com\\ C_{L}=50pF \end{array}$	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
f _{max}	Maximum Clock Frequency	100 140			MHz	3-1, 3-7
tplh tphl	Propagation Delay CP to Qn	3.55.58.04.57.010			ns	3-1, 3-7
tрнL	Propagation Delay MR to Qn	5.0 10 14			ns	3-1, 3-11

AC Operating Requirements: See Section 3 for waveforms

	·	54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
$\begin{array}{l} t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW D_n to CP	4.0 4.0			ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW D _n to CP	1.0 1.0				
t _w (H) t _w (L)	CP Pulse Width, HIGH or LOW	4.0 5.0			ns	3-7
t _w (L)	MR Pulse Width LOW	5.0			ns	3-11
t _{rec}	Recovery Time MR to CP	5.0			ns	3-11

Test limits in screened columns are preliminary.

54F/74F175

Quad D Flip-Flop

13

D3

12

 D_2

D₁

D₀ СР

Logic Symbol

Description

The 'F175 is a high-speed quad D flip-flop. The device is useful for general flip-flop requirements where clock and clear inputs are common. The information on the D inputs is stored during the LOW-to-HIGH clock transition. Both true and complemented outputs of each flip-flop are provided. A Master Reset input resets all flip-flops, independent of the Clock or D inputs, when LOW.

- Edge-triggered D-Type Inputs
- Buffered Positive Edge-triggered Clock
- Asynchronous Common Reset
- True and Complement Output

Ordering Co	ode: See Section 6	1O MR		
	Commercial Grade	Military Grade	Pkg	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%,$ $T_A = 0^{\circ} \text{ C to } +70^{\circ} \text{ C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$	Туре	 3 2 6 7 11 10 14 15
Plastic DIP (P)	74F175PC		9B	V _{CC} = Pin 16 GND = Pin 8
Ceramic DIP (D)	74F175DC	54F175DM	6B	
Flatpak (F)		54F175FM	4L	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
D ₀ - D ₃	Data Inputs	0.5/0.375
CP	Clock Pulse Input (Active Rising Edge)	0.5/0.375
MR	Master Reset Input (Active LOW)	0.5/0.375
$Q_0 - Q_3$	True Outputs	25/12.5
$\overline{Q}_0 - \overline{Q}_3$	Complement Outputs	25/12.5

The 'F175 consists of four edge-triggered D flip-flops with individual D inputs and Q and \overline{Q} outputs. The Clock and Master Reset are common. The four flipflops will store the state of their individual D inputs on the LOW-to-HIGH clock (CP) transition, causing individual Q and \overline{Q} outputs to follow. A LOW input on the Master Reset (\overline{MR}) will force all Q outputs LOW and \overline{Q} outputs HIGH independent of Clock or Data inputs. The 'F175 is useful for general logic applications where a common Master Reset and Clock are acceptable.

Logic Diagram

Truth Table

INPUTS	Ουτ	PUTS
@ t _n , MR = H	@	tn <u>.</u> + 1
Dn	Qn	Q n
L	L	н
Н	н	L

 $\begin{array}{l} t_n = Bit \mbox{ time before clock positive-going transition} \\ t_{n+1} = Bit \mbox{ time after clock positive-going transition} \\ H = HIGH \mbox{ Voltage Level} \\ L = LOW \mbox{ Voltage Level} \end{array}$

MR СР D₃ D2 \mathbf{D}_1 \mathbf{D}_0 D n Q D o C C n င၉၂၀ CP Q CP a CP o . CD CD CD **Q**₃ **Q**₃ Q2 Q2 Q1 Q1 $\bar{\mathbf{Q}}_0 \ \mathbf{Q}_0$

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics over Operating Temperature Range (unless otherwise specified)						
Symbol	Parameter		54F/74F		Units	Conditions
		Min	Тур	Max		
lcc	Power Supply Current		22.5	34	mA	$V_{CC} = Max$ $D_n = \overline{MR} = 4.5 V$ $CP = \Box$

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74F		54F		74F				
Symbol	Parameter	Vcc	= +25 c = +5 = 50	.0 V	N	'cc = 1i1 50 pF	C	/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Мах		
f _{max}	Maximum Clock Frequency	100	140		100		100		MHz	3-1, 3-7
tplh tphl	Propagation Delay CP to Q_n or \overline{Q}_n	4.0 4.0	5.0 6.5	6.5 8.5	3.5 4.0	8.5 10.5	4.0 4.0	7.5 9.5	ns	3-1 3-7
tPHL	Propagation Delay MR to Qn	4.5	9.0	11.5	4.5	15	4.5	13	ns	3-1 3-11
tрLH	Propagation Delay \overline{MR} to \overline{Q}_n	4.0	6.5	8.0	4.0	10	4.0	9.0	ns	3-1 3-11

AC Operating Requirements: See Section 3 for waveforms

		5	54F/74	F	54	4F	74	1F		
Symbol	Parameter	1	= +25 c = +5	'		/cc = 1il		/cc = om	Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Мах		
$\begin{array}{c} t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW D_n to CP	3.0 3.0			3.0 3.0		3.0 3.0		ns	3-5
$\begin{array}{l} t_{h} \left(H \right) \\ t_{h} \left(L \right) \end{array}$	Hold Time, HIGH or LOW D _n to CP	1.0 1.0			1.0 1.0		1.0 1.0		113	
t _w (H) t _w (L)	CP Pulse Width HIGH or LOW	4.0 5.0			4.0 5.0		4.0 5.0		ns	3-7
t _w (L)	MR Pulse Width LOW	5.0			5.0		5.0		ns	3-11
t _{rec}	Recovery Time MR to CP	5.0			5.0		5.0		ns	3-11

- -

Connection Diagram

54F/74F181

4-Bit Arithmetic Logic Unit

Description

The 'F181 is a 4-bit Arithmetic Logic Unit (ALU) which can perform all the possible 16 logic operations on two variables and a variety of arithmetic operations. It is 40% faster than the Schottky ALU and only consumes 30% as much power.

- Provides 16 Arithmetic Operations Add, Subtract, Compare, Double, Plus Twelve other Arithmetic Operations
- Provides All 16 Logic Operations of Two Variables Exclusive-OR, Compare, AND, NAND, OR, NOR, Plus Ten Other Logic Operations
- Full Lookahead for High-speed Arithmetic Operation on Long Words

Ordering	Code:	See	Section	6
Ordening	ouue.	000	00001011	0

•	Commercial Grade	Military Grade	Pkg
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	Туре
Plastic DIP (P)	74F181PC		9N
Ceramic DIP (D)	74F181DC	54F181DM	6N
Flatpak (F)		54F181FM	4M

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
$\overline{A_0} - \overline{A_3}$	A Operand Inputs (Active LOW)	0.5/1.125
B0 - B3	B Operand Inputs (Active LOW)	0.5/1.125
S ₀ – S ₃	Function Select Inputs	0.5/1.50
Μ	Mode Control Input	0.5/0.375
Cn	Carry Input	0.5/1.875
F0-F3	Function Outputs (Active LOW)	25/12.5
A = B	Comparator Output	OC*/12.5
G	Carry Generate Output (Active LOW)	25/12.5
P	Carry Propagate Output (Active LOW)	25/12.5
C n + 4	Carry Output	25/12.5

*OC-Open Collector

Logic Symbols

THE TRUE IN

4-72

Functional Description

The 'F181 is a 4-bit high-speed parallel Arithmetic Logic Unit (ALU). Controlled by the four Function Select inputs $(S_0 - S_3)$ and the Mode Control input (M), it can perform all the 16 possible logic operations or 16 different arithmetic operations on active-HIGH or active-LOW operands. The Function Table lists these operations.

When the Mode Control input (M) is HIGH, all internal carries are inhibited and the device performs logic operations on the individual bits as listed. When the Mode Control input is LOW, the carries are enabled and the device performs arithmetic operations on the two 4-bit words. The device incorporates full internal carry lookahead and provides for either ripple carry between devices using the $C_n + 4$ output, or for carry lookahead between packages using the signals \overline{P} (Carry Propagate) and \overline{G} (Carry Generate). In the Add mode, \overline{P} indicates that \overline{F} is 15 or more, while \overline{G} indicates that \overline{F} is 16 or more. In the Subtract mode, \overline{P} indicates that \overline{F} is zero or less, while \overline{G} indicates that \overline{F} is less than zero. \overline{P} and \overline{G} are not affected by carry in. When speed requirements are not stringent, it can be used in a simple Ripple Carry mode by connecting the Carry output $(C_n + 4)$ signal to the Carry input (Cn) of the next unit. For highspeed operation the device is used in conjunction with a carry lookahead circuit. One carry lookahead package is required for each group of four 'F181

devices. Carry lookahead can be provided at various levels and offers high speed capability over extremely long word lengths.

The A = B output from the device goes HIGH when all four \overline{F} outputs are HIGH and can be used to indicate logic equivalence over four bits when the unit is in the Subtract mode. The A = B output is open collector and can be wired-AND with other A = B outputs to give a comparison for more than four bits. The A = B signal can also be used with the C_{n + 4} signal to indicate A > B and A < B.

The Function Table lists the arithmetic operations that are performed without a carry in. An incoming carry adds a one to each operation. Thus, select code LHHL generates A minus B minus 1 (2s complement notation) without a carry in and generates A minus B when a carry is applied. Because subtraction is actually performed by complementary addition (1s complement), a carry out means borrow; thus a carry is generated when there is no underflow and no carry is generated when there is underflow. As indicated, this device can be used with either active-LOW inputs producing active-LOW outputs or with active-HIGH inputs producing active-HIGH outputs. For either case the table lists the operations that are performed to the operands labeled inside the logic symbol.

м					/E-LOW OPERANDS & Fn OUTPUTS	ACTIVE-HIGH OPERANDS & Fn OUTPUTS		
S3	S2	S1	S ₀		LOGIC ARITHMETIC ^{**} $(M = H)$ $(M = L)$ $(C_n = L)$		ARITHMETIC ^{**} ($M = L$) ($C_n = H$)	
L L L	L L L	L L H H	L H L H	Ā ĀB Ā ⊕ B Logic 1	A minus 1 AB minus 1 AB minus 1 minus 1	Ā A + B ĀB Logic 0	A A + B A + B minus 1	
	нннн	L L H H	L H L H	$\overline{\overline{A} + B} = \overline{\overline{B}} = \overline{A + B} = \overline{A + B}$	A plus (A + \overline{B}) AB plus (A + \overline{B}) A minus B minus 1 A + \overline{B}	AB B A⊕B AB	A plus AB (A + B) plus AB A minus B minus 1 AB minus 1	
ннн	L L L	L L H H	L H L H	АВ А⊕В В А+В	A plus (A + B) A plus B AB plus (A + B) A + B	<u>Ā + B</u> A ⊕ B B AB	A plus AB A plus B (A + B) plus AB AB minus 1	
н н н н	H H H H	L H H	L H L H	Logic 0 AB AB A	A plus A* AB plus A AB minus A A	Logic 1 A + B A + B A	A plus A^* (A + B) plus A (A + B) plus A A minus 1	

Function Table

*each bit is shifted to the next more significant position **arithmetic operations expressed in 2s complement notation H = HIGH Voltage Level L = LOW Voltage Level

DC Characteristics Over Operating Temperature Range	(unless otherwise specified)
--	------------------------------

Symbol	Parameter		54F/74	F	Units	Conditions	
		Min	Тур	Мах			
Юн	Output HIGH Current			250	μΑ	V _{OH} = 4.5 V, V _{CC} = Min, A = B	
lcc	Power Supply Current		43	65	mA	V _{CC} = Max	

AC Characteristics: See Section 3 for waveforms and load configurations

			5	54F/74	F	5	4F	74	4F		
Symbol	Parameter		Vcd	$T_A = +25^{\circ} C,$ $V_{CC} = +5.0 V$ $C_L = 50 pF$		٨	/cc = 1il 50 pF	T _A , V _{CC} = Com C _L = 50 pF		Units	Fig. No.
	Path	Mode	Min	Тур	Max	Min	Мах	Min	Max		
tPLH tPHL	Cn to Cn + 4		3.0 3.0	6.4 6.1	8.5 8.0	3.0 3.0	12 11.5	3.0 3.0	9.5 9.0	ns	3-1 3-4
tPLH tPHL	\overline{A} or \overline{B} to $C_n + 4$	Sum	7.0 7.0	10 9.4	13 12	7.0 7.0	18 17	7.0 7.0	14 13	ns	3-1 3-3
tPLH tPHL	A or B to Cn + 4	Dif	7.0 7.0	10.8 10	14 13	7.0 7.0	19.5 18	7.0 7.0	15 14	ns	3-1 3-3
tplh tphl	C _n to F	Any	3.0 3.0	6.7 6.5	8.5 8.5	3.0 3.0	12 12	3.0 3.0	9.5 9.5	ns	3-1 3-4
tplh tphl	A or B to G	Sum	3.0 3.0	5.7 5.8	7.5 7.5	3.0 3.0	10.5 10.5	3.0 3.0	8.5 8.5	ns	3-4 3-4
tPLH tPHL	$\overline{A} \text{ or } \overline{B} \text{ to } \overline{G}$	Dif	3.0 3.0	6.5 7.3	8.5 9.5	3.0 3.0	12 13.5	3.0 3.0	9.5 10.5	ns	3-1 3-3
tpLH tpHL	A or B to P	Sum	3.0 3.0	5.0 5.5	7.0 7.5	3.0 3.0	10 10.5	3.0 3.0	8.0 8.5	ns	3-1 3-3
tpLH tpHL	A or B to P	Dif	4.0 4.0	5.8 6.5	7.5 8.5	4.0 4.0	10.5 12	4.0 4.0	8.5 9.5	ns	3-1 3-3
tplH tpHL	Ai to Bi to Fi	Sum	4.0 4.0	7.0 7.2	9.0 10	4.0 4.0	12.5 14	4.0 4.0	10 10	ns	3-1, 3-3 3-4
tplH tpHL	Ai or Bi to Fi	Dif	4.5 4.5	8.2 5.0	11 11	4.5 4.5	15.5 15.5	4.5 4.5	12 12	ns	3-1, 3-3 3-4
tplH tpHL	Any A or B to Any F	Sum	4.0 4.0	8.0 7.8	10.5 10	4.0 4.0	15.5 14	4.0 4.0	11.5 11	ns	3-1, 3-3 3-4
tplH tpHL	Any A or B to Any F	Dif	4.5 4.5	9.4 9.4	12 12	4.5 4.5	17 17	4.5 4.5	13 13	ns	3-1, 3-3 3-4
tplh tphl	A or B to F	Logic	4.0 4.0	6.0 6.0	9.0 10	4.0 4.0	12.5 14	4.0 4.0	10 11	ns	3-1, 3-3 3-4
tplh tphl	\overline{A} or \overline{B} to $A = B$	Dif	11 7.0	18.5 9.8	27 12.5	11 7.0	35 17.5	11 7.0	29 13.5	ns	3-1, 3-3 3-4

Connection Diagram

54F/74F182

Carry Lookahead Generator

Description

The 'F182 is a high-speed carry lookahead generator. It is generally used with the 'F181, 'F381 or 29F01 4-bit arithmetic logic unit to provide high-speed lookahead over word lengths of more than four bits.

- Provides Lookahead Carries across a Group of Four ALUs
- Multi-level Lookahead High-speed Arithmetic Operation over Long Word Lengths

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ}\text{C} \text{ to} +125^{\circ}\text{C}$	Туре
Plastic DIP (P)	74F182PC		9B
Ceramic DIP (D)	74F182DC	54F182DM	7B
Flatpak (F)		54F182FM	4L

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW		
Cn	Carry Input	0.5/0.75		
$\overline{G}_0, \overline{G}_2$	Carry Generate Inputs (Active LOW)	0.5/5.25		
G ₁	Carry Generate Input (Active LOW)	0.5/6.0		
G ₃	Carry Generate Input (Active LOW)	0.5/3.0		
P0, P1	Carry Propagate Inputs (Active LOW)	0.5/3.0		
P ₂	Carry Propagate Input (Active LOW)	0.5/2.25		
P ₃	Carry Propagate Input (Active LOW)	0.5/1.5		
$C_n + x - C_n + z$	Carry Outputs	25/12.5		
G	Carry Generate Output (Active LOW)	25/12.5		
P	Carry Propagate Output (Active LOW)	25/12.5		

Logic Symbol

Functional Description

The 'F182 carry lookahead generator accepts up to four pairs of active-LOW Carry Propagate $(\overline{P}_0 - \overline{P}_3)$ and Carry Generate $(\overline{G}_0 - \overline{G}_3)$ signals and an active-HIGH Carry input (C_n) and provides anticipated active-HIGH carries $(C_n + x, C_n + y, C_n + z)$ across four groups of binary adders. The 'F182 also has active-LOW Carry Propagate (\overline{P}) and Carry Generate (\overline{G}) outputs which may be used for further levels of look-ahead. The logic equations provided at the outputs are:

 $\begin{array}{l} C_{n+x} = G_0 + P_0 C_n \\ C_{n+y} = G_{1+} P_1 G_0 + P_1 P_0 C_n \\ C_{n+z} = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_n \\ G &= \overline{G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0} \\ P &= \overline{P_3 P_2 P_1 P_0} \end{array}$

Also, the 'F182 can be used with binary ALU's in an active-LOW or active-HIGH input operand mode. The connections (*Figure a*) to and from the ALU to the carry lookahead generator are identical in both cases. Carries are rippled between lookahead blocks. The critical speed path follows the circled numbers. There are several possible arrangements for the carry interconnects, but all achieve about the same speed. A 28-bit ALU is formed by dropping the last 'F181 or 'F381.

*ALUs may be either 'F181, 'F381 or 2901A

Logic Diagram

4-76

4

Truth Table

			IN	IPUT	S					OU	TPUT	S	
Cn	Ē₀	₽₀	G ₁	₽1	Ğ₂	P ₂	Ğ₃	₽ ₃	Cn+x	Cn+y	Cn+z	G	P
X L X H	H H L X	H X X L							L L H H				
X X L X H	X H H X L X	X H X X L	H H H L X X	H X X L L						L L H H H			
X X X L X X H	X X H H X L X	X	X H H H X L X X	X H X X X L L	H H H L X X X	H X X X L L L							
	X		X	X	X H H H X L X X	X H X X X L L	H H H L X X X	H X X X L L L				HHHLLL	
		H X X L		X H X L		X X H X L		X X X H L					ΗΗΗΙ.

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

Symbol	Parameter		54F/74F		Units	Conditions	
	i arameter	Min	Тур	Мах	Units		
Іссн	Power Supply Current (All Outputs HIGH)		18.4	28	mA	$V_{CC} = Max; \overline{P}_3, \overline{G}_3 = 4.5 V$ All Other Inputs = Gnd	
ICCL	Power Supply Current (All Outputs LOW)		23.5	36	mA	$\label{eq:VCC} \begin{array}{l} V_{CC} = Max;\\ \overline{G}_0, \ \overline{G}_1, \ \overline{G}_2 = 4.5 \ V\\ \mbox{All Other Inputs} = \ \mbox{Gnd} \end{array}$	

DC Characteristics over Operating Temperature Range (unless otherwise specified)

AC Characteristics: See Section 3 for waveforms and load configurations

				F	54	1F	74	4F		
Symbol	Parameter		$V_{CC} = +5.0 V$			$T_{A}, V_{CC} = Mil \\ C_{L} = 50 \text{ pF}$		/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Мах	Min	Max	Min	Мах		
tplh tphl	Propagation Delay C _n to C _n + _x , C _n + _y , C _n + _z	3.0 3.0	6.6 6.8	8.5 9.0	3.0 3.0	10.5 11	3.0 3.0	9.5 10	ns	3-1 3-4
tplh tphl	Propagation Delay Po, P1 or P2 to Cn + x, Cn + y, Cn + z	2.5 2.0	6.2 3.7	8.0 5.0	2.5 2.0	10.7 6.5	2.5 2.0	9.0 6.0	ns	3-1 3-3
tplh tphl	Propagation Delay G0, G1 or G2 to Cn + x, Cn + y, Cn + z	2.5 2.0	6.5 3.9	8.5 5.2	2.5 2.0	10.5 6.5	2.5 2.0	9.5 6.0	ns	3-1 3-3
tplh tphl	Propagation Delay $\overline{P}_1, \overline{P}_2$ or \overline{P}_3 to \overline{G}	3.0 3.0	7.9 6.0	10.0 8.0	3.0 3.0	12.5 9.5	3.0 3.0	11 9.0	ns	3-1 3-4
tplh tphl	Propagation Delay \overline{G}_n to \overline{G}	3.0 3.0	8.3 5.7	10.5 7.5	3.0 3.0	12.5 9.5	3.0 3.0	11.5 8.5	ns	3-1 3-4
tplн tpнL	Propagation Delay \overline{P}_n to \overline{P}	3.0 2.5	5.7 4.1	7.5 5.5	3.0 2.5	11 7.5	3.0 2.5	8.5 6.5	ns	3-1 3-4

54F/74F189

64-Bit Random Access Memory (With 3-State Outputs)

Connection Diagram

Logic Symbol

cs

۹ Δ.

A₂ A₃ D1 D2 D3 D4

01 02 03 04

WE

Description

The 'F189 ia a high-speed 64-bit RAM organized as a 16-word by 4-bit array. Address inputs are buffered to minimize loading and are fully decoded onchip. The outputs are 3-state and are in the high-impedance state whenever the Chip Select (CS) input is HIGH. The outputs are active only in the Read mode and the output data is the complement of the stored data.

- 3-State Outputs for Data Bus Applications
- Buffered Inputs Minimize Loading
- Address Decoding On-chip
- Diode Clamped Inputs Minimize Ringing

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg	14 A ₂ 13 A ₃
Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%, \\ T_A = 0^{\circ} \text{ C to } +70^{\circ} \text{ C}$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	Туре	
Plastic DIP (P)	74F189PC		9B	V _{CC} = Pin 16
Ceramic DIP (D)	74F189DC	54F189DM	6B	GND = Pin 8
Flatpak (F)		54F189FM	4L	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
A0 - A3	Address Inputs	0.5/0.375
CS	Chip Select Input (Active LOW)	0.5/0.75
WE	Write Enable Input (Active LOW)	0.5/0.75
D1 - D4	Data Inputs	0.5/0.375
$\overline{O}_1 - \overline{O}_4$	Inverted Data Outputs	25/12.5

4-79

Function Table

INP	JTS	OPERATION	CONDITION OF OUTPUTS			
CS	WE	0. 2				
L L H	L H X	Write Read Inhibit	High Impedance Complement of Stored Data High Impedance			

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Logic Diagram

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol Parame	Parameter	54F/74F			Units	Conditions	
		Min	Тур	Мах			
lcc	Power Supply Current		37	55	mA	V _{CC} = Max; WE, CS, Gnd	

AC Characteristics: See Section 3 for waveforms and load configurations

		Ę	54F/74	F	5	4F	74	4F		
Symbol	Parameter	Vcd	= +25 c = +5 _ = 50	.0 V	٨	/cc = /il 50 pF	Co	/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Мах	Min	Max	Min	Max		
tplh tphl	Access Time, HIGH or LOW A_n to \overline{O}_n	8.0 8.0	12 12	15.5 15.5	8.0 8.0	22 22	8.0 8.0	18 18	ns	3-1 3-10
tpzh tpzL	Access Time, HIGH or LOW	3.5 5.5	5.0 8.0	6.5 10	3 .5 5.5	9.0 14	3.5 5.5	7.5 11.5	ns	3-1, 3-12 3-13
tphz tplz	Disable Time, HIGH or LOW \overline{CS} to \overline{O}_n	2.0 2.5	3.5 4.2	4.7 5.6	2.5 2.5	7.0 8.0	2.0 2.5	5.5 6.5	ns	3-1, 3-12 3-13
tpzh tpzL	Write Recovery Time, HIGH or LOW \overline{WE} to \overline{O}_n	9.0 6.5	13.5 9.2	17 12	9.0 6.5	24 17	9.0 6.5	19.5 14	ns	3-1, 3-12 3-13
tphz tplz	Disable Time, HIGH or LOW \overline{WE} to \overline{O}_n	3.5 4.5	5.0 6.5	6.5 8.5	3.5 4.5	9.0 12	3.5 4.5	7.5 9.5	ns	3-1, 3-12 3-13

AC Operating Requirements: See Section 3 for waveforms

		5	64F/74	F	54	4F	74	ŧF -		
Symbol	Parameter		= +25 c = +5			/cc = 1ii		/cc = om	Units	Fig. No.
		Min	Тур	Мах	Min	Max	Min	Max		
$\begin{array}{c} t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW A_n to WE	0 0			0 0		0 0		ns	3-16
t _h (H) t _h (L)	Hold Time, HIGH or LOW A_n to \overline{WE}	0 0			0 0		0 0			
ts (H) ts (L)	Setup Time, HIGH or LOW D_n to \overline{WE}	10 10			10 10		10 10		ns	3-14
$t_h (H) \\ t_h (L)$	Hold Time, HIGH or LOW D_n to \overline{WE}	0			0 0		0 0			0-14
t_s (L)	Setup Time LOW CS to WE	6.0			6.0		6.0		ns	3-14
t _h (L)	Hold Time, LOW CS to WE	0			0		0		10	0.14
t _w (L)	WE Pulse Width LOW	6.0			6.0		6.0		ns	3-16

54F/74F190

Up/Down Decade Counter (With Preset and Ripple Clock)

Description

The 'F190 is a reversible BCD (8421) decade counter featuring synchronous counting and asynchronous presetting. The preset feature allows the 'F190 to be used in programmable dividers. The Count Enable input, the Terminal Count output and the Ripple Clock output make possible a variety of methods of implementing multistage counters. In the counting modes, state changes are initiated by the rising edge of the clock.

- High-speed 110 MHz Typical Count Frequency
- Synchronous Counting
- Asynchronous Parallel Load
- Cascadable

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg	4O CE 14
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$	Туре	Q ₀ Q ₁ Q ₂ Q ₃
Plastic DIP (P)	74F190PC		9B	3 2 6 7
Ceramic DIP (D)	74F190DC	54F190DM	7B	Vcc = Pin 16 GND = Pin 8
Flatpak (F)		54F190FM	4L	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW		
CE	Count Enable Input (Active LOW)	0.5/1.125		
CP	Clock Pulse Input (Active Rising Edge)	0.5/0.375		
P0 - P0	Parallel Data Inputs	0.5/0.375		
PL	Asynchronous Parallel Load Input (Active LOW)	0.5/0.375		
Ū/D	Up/Down Count Control Input	0.5/0.375		
Q0 - Q3	Flip-flop Outputs	25/12.5		
RC	Ripple Clock Output (Active LOW)	25/12.5		
тс	Terminal Count Output (Active HIGH)	25/12.5		

Logic Symbol

Connection Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Functional Description

The 'F190 is a synchronous up/down BCD decade counter containing four edge-triggered flip-flops. with internal gating and steering logic to provide individual preset, count-up and count-down operations. It has an asynchronous parallel load capability permitting the counter to be preset to any desired number. When the Parallel Load (PL) input is LOW, information present on the Parallel Data inputs $(P_0 - P_3)$ is loaded into the counter and appears on the Q outputs. This operation overrides the counting functions, as indicated in the Mode Select Table. A HIGH signal on the CE input inhibits counting. When CE is LOW, internal state changes are initiated synchronously by the LOW-to-HIGH transition of the clock input. The direction of counting is determined by the \overline{U}/D input signal, as indicated in the Mode Select Table. \overline{CE} and \overline{U}/D can be changed with the clock in either state, provided only that the recommended setup and hold times are observed.

Two types of outputs are provided as overflow/ underflow indicators. The Terminal Count (TC) output is normally LOW and goes HIGH when a circuit reaches zero in the count-down mode or reaches 9 in the count-up mode. The TC output will then remain HIGH until a state change occurs, whether by counting or presetting or until \overline{U}/D is changed. The TC output should not be used as a clock signal because it is subject to decoding spikes. The TC signal is also used internally to enable the Ripple Clock (RC) output. The RC output is normally HIGH. When CE is LOW and TC is HIGH, the RC output will go LOW when the clock next goes LOW and will stay LOW until the clock goes HIGH again. This feature simplifies the design of multistage counters. For a discussion and illustrations of the various methods of implementing multistage counters, please see the 'F191 data sheet.

Mode Select Table

	INP	UTS		MODE
ΡĹ	ĈĒ	Ū/D CP		
H H L H	L L X H	L H X X	х х Г	Count Up Count Down Preset (Asyn.) No Change (Hold)

RC Truth Table

	INPUT	S	OUTPUT		
CE	тс∗	СР	RC		
L	н	ъ	υ		
н	х	Х	н		
х	L	х	н		

*TC is generated internally

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

State Diagram

DC Characteristics Over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter	54F/74F			Units	Conditions	
		Min	Тур	Max			
lcc	Power Supply Current		38	55	mA	V _{CC} = Max	

			54F/74	F	54	4F	7	4F		
Symbol	Parameter	Vc	= +25 c = +5 _ = 50	.0 V	N	/cc = 1il 50 pF	C	/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Мах	Min	Max	Min	Max		
f _{max}	Maximum Count Frequency	80	110		80		80		MHz	3-1, 3-7
tplH tpHL	Propagation Delay CP to Q _n	3.0 3.0	5.5 6.5	9.0 10	3.0 3.0	12.5 14	3.0 3.0	10 11	ns	3-1
tplH tpHL	Propagation Delay CP to TC	8.0 5.0	12.5 9.5	16 13	8.0 5.0	22.5 18	8.0 5.0	17 14	113	3-7
tplh tphl	Propagation Delay CP to RC	4.0 3.0	7.0 5.0	9.5 8.0	4.0 3.0	13.5 11	4.0 3.0	10.5 9.0	ns	3-1
tPLH tPHL	Propagation Delay CE to RC	3.0 3.0	4.6 4.5	7.0 7.0	3.0 3,0	10 10	3.0 3.0	8.0 8.0		3-4
t₽LH tPHL	Propagation Delay U/D to RC	7.0 5.0	11 9.0	18 12	7.0 5.0	25.5 17	7.0 5.0	19 13	ns	3-1
tPLH tPHL	Propagation Delay U/D to TC	3.0 3.0	6.0 6.5	11 11	3.0 3.0	15.5 15.5	3.0 3.0	12 12	3-2	3-2
tplh tphl	Propagation Delay Pn to Qn	3.0 8.0	4.6 13.4	7.0 17	3.0 8.0	10 24	3.0 8.0	8.0 18	ns	3-1 3-4
tPLH tPHL	Propagation Delay PL to Q _n	3.0 4.0	6.7 7.2	11 15	3.0 4.0	15.5 21	3.0 4.0	12 16	ns	3-1 3-11

AC Characteristics: See Section 3 for waveforms and load configurations

AC Operating Requirements: See Section 3 for waveforms

		54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ} C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
$\begin{array}{c} t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW P_n to \overline{PL}	5.0 8.0	5.0 8.0	5.0 8.0	ns	3-14
$\begin{array}{l} t_{h} \ (H) \\ t_{h} \ (L) \end{array}$	Hold Time, HIGH or LOW P_n to \overline{PL}	3.0 3.0	3.0 3.0	3.0 3.0		0.11
ts (L)	Setup Time LOW CE to CP	10	10	10	ns	3-5
t _h (L)	Hold Time LOW CE to CP	0	0	0		
t _w (L)	PL Pulse Width LOW	6.0	6.0	6.0	ns	3-11
t_w (L)	CP Pulse Width LOW	6.0	6.0	6.0	ns	3-7
t _{rec}	Recovery Time PL to CP	7.0	7.0	7.0	ns	3-11

54F/74F191

Up/Down Binary Counter (With Preset and Ripple Clock)

Description

The 'F191 is a reversible modulo-16 binary counter featuring synchronous counting and asynchronous presetting. The preset feature allows the 'F191 to be used in programmable dividers. The Count Enable input, the Terminal Count output and the Ripple Clock output make possible a variety of methods of implementing multistage counters. In the counting modes, state changes are initiated by the rising edge of the clock.

- High-Speed 110 MHz Typical Count Frequency
- Synchronous Counting
- Asynchronous Parallel Load
- Cascadable

Ordering Code: See Section 6

orgening of				
	Commercial Grade	Military Grade	Pkg	- 4O CE 14 CP T
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$	Туре	Q ₀ Q ₁ Q ₂ Q ₃
Plastic DIP (P)	74F191PC		9B	3 2 6 7
Ceramic DIP (D)	74F191DC	54F191DM	7B	V _{CC} = Pin 16 GND = Pin 8
Flatpak (F)		54F191FM	4L	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW		
CE	Count Enable Input (Active LOW)	0.5/1.125		
CP	Clock Pulse Input (Active Rising Edge)	0.5/0.375		
P0 - P3	Parallel Data Inputs	0.5/0.375		
PL	Asynchronous Parallel Load Input (Active LOW)	0.5/0.375		
Ū/D	Up/Down Count Control Input	0.5/0.375		
Q0 - Q3	Flip-flop Outputs	25/12.5		
RC	Ripple Clock Output (Active LOW)	25/12.5		
тс	Terminal Count Output (Active HIGH)	25/12.5		

P1 1 16 Vcc Q1 2 15 P0 Q0 3 14 CP CE 4 13 RC Ū/D 5 12 TC

11 PL

10 P2

9 P3

Connection Diagram

Q2 6

Q3 7

Logic Symbol

GND 8

4-86

Functional Description

The 'F191 is a synchronous up/down 4-bit binary counter. It contains four edge-triggered flip-flops, with internal gating and steering logic to provide individual preset, count-up and count-down operations.

Each circuit has an asynchronous parallel load capability permitting the counter to be preset to any desired number. When the Parallel Load $\overline{(PL)}$ input is LOW, information present on the Parallel Data inputs $(P_0 - P_3)$ is loaded into the counter and appears on the Q outputs. This operation overrides the counting functions, as indicated in the Mode Select Table.

A HIGH signal on the \overline{CE} input inhibits counting. When \overline{CE} is LOW, internal state changes are initiated synchronously by the LOW-to-HIGH transition of the clock input. The direction of counting is determined by the \overline{U}/D input signal, as indicated in the Mode Select Table. \overline{CE} and \overline{U}/D can be changed with the clock in either state, provided only that the recommended setup and hold times are observed.

Mode Select Table

	INP	UTS		MODE
PL	ĈĒ	Ū/D	СР	
н	L	L	7	Count Up
H L	X	H J X X		Count Down Preset (Asyn.)
н	н	х	х	No Change (Hold)

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Two types of outputs are provided as overflow/ underflow indicators. The Terminal Count (TC) output is normally LOW and goes HIGH when a circuit reaches zero in the count-down mode or reaches 15 in the count-up mode. The TC output will then remain HIGH until a state change occurs, whether by counting or presetting or until \overline{U}/D is changed. The TC output should not be used as a clock signal because it is subject to decoding spikes.

The TC signal is also used internally to enable the Ripple Clock $\overline{(RC)}$ output. The \overline{RC} output is normally

HIGH, When CE is LOW and TC is HIGH, the RC output will go LOW when the clock next goes LOW and will stay LOW until the clock goes HIGH again. This feature simplifies the design of multistage counters, as indicated in Figures a and b. In Figure a, each RC output is used as the clock input for the next higher stage. This configuration is particularly advantageous when the clock source has a limited drive capability, since it drives only the first stage. To prevent counting in all stages it is only necessary to inhibit the first stage, since a HIGH signal on CE inhibits the RC output pulse, as indicated in the RC Truth Table. A disadvantage of this configuration, in some applications, is the timing skew between state changes in the first and last stages. This represents the cumulative delay of the clock as it ripples through the preceding stages.

RC Truth Table

11	NPUT	OUTPUT	
ĈĒ	TC*	СР	RC
L	н	ъ	ъ
н	Х	Х	н
X	L	Х	н

^{*}TC is generated internally

A method of causing state changes to occur simultaneously in all stages in shown in *Figure b*. All clock inputs are driven in parallel and the \overline{RC} outputs propagate the carry/borrow signals in ripple fashion. In this configuration the LOW state duration of the clock must be long enough to allow the negativegoing edge of the carry/borrow signal to ripple through to the last stage before the clock goes HIGH. There is no such restriction on the HIGH state duration of the clock, since the \overline{RC} output of any device goes HIGH shortly after its CP input goes HIGH.

The configuration shown in *Figure c* avoids ripple delays and their associated restrictions. The \overline{CE} input for a given stage is formed by combining the TC signals from all the preceding stages. Note that in order to inhibit counting an enable signal must be included in each carry gate. The simple inhibit scheme of *Figures a* and *b* doesn't apply, because the TC output of a given stage is not affected by its own \overline{CE} .

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Fig. a N-Stage Counter Using Ripple Clock

Fig. c Synchronous N-Stage Counter with Parallel Gated Carry/Borrow

DC Characteristics Over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter	54F/74F		Units	Conditions	
• • • • • • • • • • • • • • • • • • • •		Min	Тур	Мах		
lcc	Power Supply Current		38	55	mA	V _{CC} = Max

AC Characteristics: See Section 3 for waveforms and load configurations

			$54F/74F \\ T_A = +25^{\circ}C, \\ V_{CC} = +5.0 V \\ C_L = 50 \text{ pF} \\ \end{cases}$			4F	7	4F		
Symbol	Parameter	Vc				$T_{A}, V_{CC} = Mil \\ C_{L} = 50 \text{ pF}$		/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Мах	Min	Мах	Min	Max		
f _{max}	Maximum Count Frequency	80	110		80		80		MHz	3-1, 3-7
tplh tphL	Propagation Delay CP to Q _n	3.0 3.0	5.5 6.5	9.0 10	3.0 3.0	12.5 14	3.0 3.0	10 11	ns	3-1
tPLH tPHL	Propagation Delay CP to TC	8.0 5.0	12.5 9.5	16 13	8.0 5.0	22.5 18	8.0 5.0	17 14		3-7
tpLH tpHL	Propagation Delay CP to RC	4.0 3.0	7.0 5.0	9.5 8.0	4.0 3.0	13.5 11	4.0 3.0	10.5 9.0	ns	3-1 3-4
tplh tphL	Propagation Delay CE to RC	3.0 3.0	4.6 4.5	7.0 7.0	3.0 3.0	10 10	3.0 3.0	8.0 8.0		
tplH tpHL	Propagation Delay U/D to RC	7.0 5.0	11 9.0	18 12	7.0 5.0	25.5 17	7.0 5.0	19 13	ns	3-1
tplh tphL	Propagation Delay U/D to TC	3.0 3.0	6.0 6.5	11 11	3.0 3.0	15.5 15.5	3.0 3.0	12 12	110	3-2
tplh tphL	Propagation Delay P _n to Q _n	3.0 8.0	4.6 13.4	7.0 17	3.0 8.0	10 24	3.0 8.0	8.0 18	ns	3-1 3-4
tplh tphl	Propagation Delay PL to Q _n	3.0 4.0	6.7 7.2	11 15	3.0 4.0	15.5 21	3.0 4.0	12 16	ns	3-1 3-11

		54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
$\begin{array}{c} t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW Pn to PL	5.0 8.0	5.0 8.0	5.0 8.0	ns	3-14
$\begin{array}{l} t_{h} \ (H) \\ t_{h} \ (L) \end{array} .$	Hold Time, HIGH or LOW Pn to PL	3.0 3.0	3.0 3.0	3.0 3.0	113	
ts (L)	Setup Time LOW CE to CP	10	10	10	ns	3-5
t _h (L)	Hold Time LOW CE to CP	0	0	0		3-5
t_w (L)	PL Pulse Width, LOW	6.0	6.0	6.0	ns	3-11
t _w (L)	CP Pulse Width, LOW	6.0	6.0	6.0	ns	3-7
t _{rec}	Recovery Time PL to CP	7.0	7.0	7.0	ns	3-11

AC Operating Requirements: See Section 3 for waveforms

54F/74F192

Up/Down Decade Counter (With Separate Up/Down Clocks)

Connection Diagram

Description

The 'F192 is an up/down BCD decade (8421) counter. Separate Count Up and Count Down Clocks are used, and in either counting mode the circuits operate synchronously. The outputs change state synchronously with the LOW-to-HIGH transitions on the clock inputs.

Separate Terminal Count Up and Terminal Count Down outputs are provided that are used as the clocks for a subsequent stage without extra logic, thus simplifying multistage counter designs. Individual preset inputs allow the circuit to be used as a programmable counter. Both the Parallel Load $\overline{(PL)}$ and the Master Reset (MR) inputs asynchronously override the clocks.

Logic Symbol

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg	4 — C
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	Туре	L
Plastic DIP (P)	74F192PC		9B	
Ceramic DIP (D)	74F192DC	54F192DM	6B	V _{CC} = F GND =
Flatpak (F)		54F192FM	4L	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
CPU	Count Up Clock Input (Active Rising Edge)	0.5/0.75
CPD	Count Down Clock Input (Active Rising Edge)	0.5/0.75
MR	Asynchronous Master Reset Input (Active HIGH)	0.5/0.375
PL	Asynchronous Parallel Load Input (Active LOW)	0.5/0.375
P0 - P3	Parallel Data Inputs	0.5/0.375
Q0 - Q3	Flip-flop Outputs	25/12.5
TCD	Terminal Count Down (Borrow) Output (Active LOW)	25/12.5
TCU	Terminal Count Up (Carry) Output (Active LOW)	25/12.5

Functional Description

The 'F192 is an asynchronously presettable decade counter. It contains four edge-triggered flip-flops, with internal gating and steering logic to provide master reset, individual preset, count up and count down operations.

A LOW-to-HIGH transition on the CP input to each flip-flop causes the output to change state. Synchronous switching, as opposed to ripple counting, is achieved by driving the steering gates of all stages from a common Count Up line and a common Count Down line, thereby causing all state changes to be initiated simultaneously. A LOW-to-HIGH transition on the Count Up input will advance the count by one; a similar transition on the Count Down input will decrease the count by one. While counting with one clock input, the other should be held HIGH, as indicated in the Function Table. Otherwise, the circuit will either count by twos or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either clock input is LOW.

The Terminal Count Up (\overline{TC}_U) and Terminal Count Down (\overline{TC}_D) outputs are normally HIGH. When the circuit has reached the maximum count state 9, the next HIGH-to-LOW transition of the Count Up Clock

Function Table

MR	PL	CPu	CPD	MODE
н	х	X	Χ.	Reset (Asyn.)
L	L	X	Х	Preset (Asyn.)
L	н	н	н	No Change
L	н		н	Count Up
L	н	н		Count Down

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial will cause $\overline{TC_U}$ to go LOW. $\overline{TC_U}$ will stay LOW until CP_U goes HIGH again, thus effectively repeating the Count Up Clock, but delayed by two gate delays, Similarly, the $\overline{TC_D}$ output will go LOW when the circuit is in the zero state and the Count Down Clock goes LOW. Since the \overline{TC} outputs repeat the clock waveforms, they can be used as the clock input signals to the next higher order circuit in a multistage counter.

 $\overline{\mathsf{TC}_{\mathsf{U}}} = \overline{\mathsf{Q}}_0 \bullet \overline{\mathsf{Q}}_3 \bullet \overline{\mathsf{CP}}_{\mathsf{U}}$ $\overline{\mathsf{TC}_{\mathsf{D}}} = \overline{\mathsf{Q}}_0 \bullet \overline{\mathsf{Q}}_1 \bullet \overline{\mathsf{Q}}_2 \bullet \overline{\mathsf{Q}}_3 \bullet \overline{\mathsf{CP}}_{\mathsf{D}}$

The 'F192 has an asynchronous parallel load capability permitting the counter to be preset. When the Parallel Load (PL) and the Master Reset (MR) inputs are LOW, information present on the Parallel Data input $(P_0 - P_3)$ is loaded into the counter and appears on the outputs regardless of the conditions of the clock inputs. A HIGH signal on the Master Reset input will disable the preset gates, override both clock inputs, and latch each Q output in the LOW state. If one of the clock inputs is LOW during and after a reset or load operation, the next LOW-to-HIGH transition of that clock will be interpreted as a legitimate signal and will be counted.

---> COUNT DOWN

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics over Operating	J Temperature Range	(unless otherwise specified)
-----------------------------------	---------------------	------------------------------

Symbol	Parameter	54F/74F			Units	Conditions	
Symbol		Min	Тур	Max			
lcc	Power Supply Current		30	45	mA	V _{CC} = Max	

AC Characteristics: See Section 3 for waveforms and load configurations

Symbol Parar		54F/74F	54F	74F		
	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$ $C_L = 50 pF$	T _A , V _{CC} = Mil C _L = 50 pF	T _A , V _{CC} = Com C _L = 50 pF	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
f _{max}	Maximum Count Frequency	80			MHz	3-1, 3-7
tpLH tpHL	Propagation Delay CP_U or CP_D to TC_U	3.06.59.03.06.59.0			ns	3-1 3-4
tpLH tpHL	Propagation Delay CP∪ or CP _D to Q _n	5.09.0133.56.08.5			ns	3-1 3-7

Symbol		54F/74F	54F	74F		
	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$ $C_L = 50 pF$	T _A , V _{CC} = Mil C _L = 50 pF	T _A , V _{CC} = Com C _L = 50 pF	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
tpLH tpHL	Propagation Delay P _n to Q _n	3.05.07.05.09.012.5			ns	3-1 3-4
tPLH tPHL	Propagation Delay PL to Q _n	4.07.0104.57.510.5			ns	3-1 3-10
tphL	Propagation Delay MR to Qn	5.5 9.5 13.5				
tрLн	Propagation Delay MR to TC _U	7.5 13 18			ns	3-1 3-11
tрнL	Propagation Delay MR to TC _D	7.0 12 17				
tplh tphl	$\frac{Propagation Delay}{PL to TC_U or TC_D}$	7.513186.01014			ns	3-1 3-10
tPLH tPHL	Propagation Delay Pn to TCu or TCD	9.0 15 21 6.5 11 15.5			ns	3-1 3-10

AC Characteristics (Cont'd): See Section 3 for waveforms and load configurations

AC Operating Requirements: See Section 3 for waveforms

		54F/74F	54F	74F	Units	
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com		Fig. No.
		Min Typ Max	Min Max	Min Max		
$\begin{array}{c} t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW P_n to PL	5.0 8.0			ns	3-14
$\begin{array}{l} t_{h} \ (H) \\ t_{h} \ (L) \end{array}$	Hold Time, HIGH or LOW P_n to \overline{PL}	3.0 3.0				
t _w (L)	PL Pulse Width LOW	12			ns	3-11
t _w (L)	CP_U or CP_D Pulse Width LOW	8.0			ns	3-7
t _w (H)	MR Pulse Width HIGH	8.0			ns	3-11
trec	Recovery Time PL to CP _U or CP _D	10			ns	3-11
trec	Recovery Time MR to CP _U or CP _D	6.0			ns	3-11

54F/74F193

Up/Down Binary Counter (With Separate Up/Down Clocks) Connection Diagram

10

του

P0 P1 P2 P3

Logic Symbol

PL

CPu

Description

The 'F193 is an up/down modulo-16 binary counter. Separate Count Up and Count Down Clocks are used, and in either counting mode the circuits operate synchronously. The outputs change state synchronously with the LOW-to-HIGH transitions on the clock inputs. Separate Terminal Count Up and Terminal Count Down outputs are provided that are used as the clocks for subsequent stages without extra logic, thus simplifying multistage counter designs. Individual preset inputs allow the circuit to be used as a programmable counter. Both the Parallel Load $\overline{(PL)}$ and the Master Reset (MR) inputs asynchronously override the clocks.

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg	4
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	Туре	
Plastic DIP (P)	74F193PC		9B	14 3 2 6 7
Ceramic DIP (D)	74F193DC	54F193DM	6B	V _{CC} = Pin 16 GND = Pin 8
Flatpak (F)		54F193FM	4L	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
CPU	Count Up Clock Input (Active Rising Edge)	0.5/0.75
CPD	Count Down Clock Input (Active Rising Edge)	0.5/0.75
MR	Asynchronous Master Reset Input (Active HIGH)	0.5/0.375
PL	Asynchronous Parallel Load Input (Active LOW)	0.5/0.375
P0 - P3	Parallel Data Inputs	0.5/0.375
Q0 - Q3	Flip-flop Outputs	25/12.5
TCD	Terminal Count Down (Borrow) Output (Active LOW)	25/12.5
TCU	Terminal Count Up (Carry) Output (Active LOW)	25/12.5

Function Description

The 'F193 is a 4-bit binary synchronous up/down (reversible) counter. It contains four edge-triggered flip-flops, with internal gating and steering logic to provide master reset, individual preset, count up and count down operations.

A LOW-to-HIGH transition on the CP input to each flip-flop causes the output to change state. Synchronous switching, as opposed to ripple counting, is achieved by driving the steering gates of all stages from a common Count Up line and a common Count Down line, thereby causing all state changes to be initiated simultaneously. A LOW-to-HIGH transition on the Count Up input will advance the count by one; a similar transition on the Count Down input will decrease the count by one. While counting with one clock input, the other should be held HIGH, as indicated in the Function Table. Otherwise, the circuit will either count by twos or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either clock input is LOW.

The Terminal Count Up (\overline{TC}_U) and Terminal Count Down (\overline{TC}_D) outputs are normally HIGH. When the circuit has reached the maximum count state 15, the next HIGH-to-LOW transition of the Count Up Clock

Function Table

MR	PL	CPu	CPD	MODE
н	Х	X	Х	Reset (Asyn.)
L	L	X	X	Preset (Asyn.)
L	н	н	н	No Change
L	н	1	н	Count Up
L	Н	н		Count Down

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

will cause $\overline{TC_U}$ to go LOW. $\overline{TC_U}$ will stay LOW until CPU goes HIGH again, thus effectively repeating the Count Up Clock, but delayed by two gate delays. Similarly, the $\overline{TC_D}$ output will go LOW when the circuit is in the zero state and the Count Down Clock goes LOW. Since the \overline{TC} outputs repeat the clock waveforms, they can be used as the clock input signals to the next higher order circuit in a multistage counter.

 $\overline{ \textbf{TC}_U} = \underline{Q}_0 \bullet \underline{Q}_1 \bullet \underline{Q}_2 \bullet \underline{Q}_3 \bullet \overline{ \textbf{CP}_U} \\ \overline{ \textbf{TC}_D} = \overline{Q}_0 \bullet \overline{Q}_1 \bullet \overline{Q}_2 \bullet \overline{Q}_2 \bullet \overline{Q}_3 \bullet \overline{ \textbf{CP}_D}$

The 'F193 has an asynchronous parallel load capability permitting the counter to be preset. When the Parallel Load $\overline{(PL)}$ and the Master Reset (MR) inputs are LOW, information present on the Parallel Data input (P₀ – P₃) is loaded into the counter and appears on the outputs regardless of the conditions of the clock inputs. A HIGH signal on the Master Reset input will disable the preset gates, override both clock inputs, and latch each Q output in the LOW state. If one of the clock inputs is LOW during and after a reset or load operation, the next LOW-to-HIGH transition of that clock will be interpreted as a legitimate signal and will be counted.

----- COUNT DOWN

State Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics Over Op	perating Temperature Range	(unless otherwise specified)

Symbol	Parameter		54F/74F		Units	Conditions	
eyer		Min	Тур	Max			
lcc	Power Supply Current		30	45	mA	V _{CC} = Max	

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74F			54F		74F		Units	Fig. No.
Symbol	Parameter		$T_{A} = +25^{\circ} C,$ $V_{CC} = +5.0 V$ $C_{L} = 50 pF$			T _A , V _{CC} = Mil C _L = 50 pF		/cc = om 50 pF		
		Min	Тур	Мах	Min	Max	Min	Мах		· ·
f _{max}	Maximum Count Frequency	80					80		MHz	3-1, 3-7
tplh tphL	Propagation Delay CP_U or CP_D to TC_U	5.0 3.5	9.0 6.0	11.5 8.0			5.0 3.5	12.5 9.0	ns	3-1 3-4
tplh tphL	Propagation Delay CP_U or CP_D to Q_n	3.0 3.0	6.5 6.5	9.5 9.5			3.0 3.0	10.5 10.5	ns	3-1 3-7

	1		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						· T · · · · · · · · · · · · · · · · · ·	Fig. No.
Symbol	Parameter					54F T _A , V _{CC} = Mil C _L = 50 pF		4F /cc = om 50 pF	Units	
		Min	Тур	Max	Min	Max	Min	Max		
tplh tphl	Propagation Delay P _n to Q _n	3.0 8.5	5.0 9.0	6.5 11.5			3.0 5.0	7.5 12.5	ns	3-1 3-4
tpLH tpHL	Propagation Delay PL to Q _n	4.0 4.5	7.0 7.5	9.5 10			4.0 4.5	10.5 11	ns	3-1 3-10
tрнL	Propagation Delay MR to Q _n	5.5	9.5	12			5.5	13		
tрLн	Propagation Delay MR to TCU	8.0	13	17			8.0	18	ns	3-1 3-11
tphL	Propagation Delay MR to TC _D	7.0	12	15.5			7.0	16.5		
tplh tphl	Propagation Delay PL to TCU or TCD	8.0 6.0	13 11	17 15.5			8.0 6.0	18 16.5	ns	3-1 3-10
tpLH tpHL	Propagation Delay Pn to TCU or TCD	9.0 6.5	15 11	18.5 14			9.0 6.5	19.5 15	ns	3-1 3-10

AC Characteristics (Cont'd): See Section 3 for waveforms and load configurations

AC Operating Requirements: See Section 3 for waveforms

			54F/74F			4F	7	4F		
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$			T _A , V _{CC} = Mil		T _A , V _{CC} = Com		Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Мах		
$t_s (H) \\ t_s (L)$	Setup Time, HIGH or LOW P_n to PL	5.0 8.0					5.0 8.0		ns	3-14
$\begin{array}{l} t_{h} \ (H) \\ t_{h} \ (L) \end{array}$	Hold Time, HIGH or LOW Pn to PL	3.0 3.0					3.0 3.0		110	
t _w (L)	PL Pulse Width LOW	12					12		ns	3-11
t _w (L)	CPU or CPD Pulse Width LOW	8.0					8.0		ns	3-7
t _w (H)	MR Pulse Width HIGH	8.0					8.0		ns	3-11
t _{rec}	Recovery Time PL to CP∪ or CPD	10					10		ns	3-11
t _{rec}	Recovery Time MR to CP _U or CP _D	6.0					6.0		ns	3-11

Connection Diagram

54F/74F194

4-Bit Bidirectional Universal Shift Register

Description

Pkgs

The 'F194 is a high-speed 4-bit bidirectional universal shift register. As a highspeed, multifunctional, sequential building block, it is useful in a wide variety of applications. It may be used in serial-serial, shift left, shift right, serialparallel, parallel-serial, and parallel-parallel data register transfers. The 'F194 is similar in operation to the 'S195 universal shift register, with added features of shift left without external connections and hold (do nothing) modes of operation.

Pkq

Type

Ordering Code: See Section 6

Typical Shift Frequency of 150 MHz
Asynchronous Master Reset
Hold (Do Nothing) Mode

Fully Synchronous Serial or Parallel Data Transfers

Commercial Grade

 $V_{CC} = +5.0 V \pm 5\%$

•	$T_A = 0^\circ C$ to $+70^\circ C$	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$		
Plastic DIP (P)	74F194PC		9B	
Ceramic DIP (D)	74F194DC	54F194DM	6B	Vcc = Pin 16 GND = Pin 8
Flatpak (F)		54F194FM	4L	

Military Grade

 $V_{CC} = +5.0 \text{ V} \pm 10\%$

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
S ₀ , S ₁	Mode Control Inputs	0.5/0.375
P0-P3	Parallel Data Inputs	0.5/0.375
Dsr	Serial Data Input (Shift Right)	0.5/0.375
DSL	Serial Data Input (Shift Left)	0.5/0.375
СР	Clock Pulse Input (Active Rising Edge)	0.5/0.375
MR	Asynchronous Master Reset Input (Active LOW)	0.5/0.375
Q0 - Q3	Parallel Outputs	25/12.5

4-99

Functional Description

The 'F194 contains four edge-triggered D flip-flops and the necessary interstage logic to synchronously perform shift right, shift left, parallel load and hold operations. Signals applied to the Select (S_0, S_1) inputs determine the type of operation, as shown in the Mode Select Table. Signals on the Select, Parallel data $(P_0 - P_3)$ and Serial data (D_{SR}, D_{SL}) inputs can change when the clock is in either state, provided only that the recommended setup and hold times, with respect to the clock rising edge, are observed. A LOW signal on Master Reset (MR) overrides all other inputs and forces the outputs LOW.

Mode Select Table

OPERATING			I	NPUTS		OUTPUTS				
MODE	MR	S1	S ₀	Dsr	Dsl	Pn	Q ₀	Q1	Q2	Q3
Reset	L	Х	Х	х	х	х	L	L	L	L
Hold	н	1 -	I.	х	Х	х	q 0	q1	q2	q 3
Shift Left	нн	h h		X X	l h	x x	q 1 q 1	q 2 q 2	q 3 q 3	L H
Shift Right	н н		h h	l h	X X	Х. Х	L H	q 0 q 0	q1 q1	q 2 q 2
Parallel Load	н	ĥ	h	X	х	pn	p0	p1	p ₂	p3

I = LOW voltage level one setup time prior to the LOW-to-HIGH clock transition.

h = HIGH voltage level one setup time prior to the LOW-to-HIGH clock transition.

 $p_n(q_n) =$ Lower case letters indicate the state of the referenced input (or output) one setup time prior to the LOW-to-HIGH clock transition.

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter	54F/74F			Units	Conditions	
•,		Min	in Typ Max		0		
Icc	Power Supply Current		33	46	mA	$V_{CC} = Max$ S _n , \overline{MR} , D _{SR} , D _{SL} = 4.5 V P _n = Gnd, CP = _	

AC Characteristics: See Section 3 for waveforms and load configurations

		5	54F/74	F	5	4F	74	ŧF		
Symbol	Parameter	Vc	= +25 c = +5 _ = 50	.0 V	N	/cc = /il 50 pF	C	/ _{CC} = om 50 pF	Units	Fig. No.
		Min	Тур	Мах	Min	Мах	Min	Мах		
f _{max}	Maximum Shift Frequency	105	150		90		90		MHz	3-1, 3-7
tplh tphl	Propagation Delay CP to Q _n	3.5 3.5	5.2 5.5	7.0 7.0	3.0 3.0	8.5 8.5	3.5 3.5	8.0 8.0	ns	3-1 3-7
t _{PHL}	Propagation Delay MR to Q _n	4.5	8.6	12	4.5	14.5	4.5	14	ns	3-1 3-11

AC Operating Requirements: See Section 3 for waveforms

		5	64F/74	F	54	4F	7	4F		
Symbol	Parameter	Vc	= +25 c = +5 = 50	.0 V	N	/cc = 1il 50 pF	C	/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Мах	Min	Мах	Min	Max	-	
$\begin{array}{l} t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW P_n or D_{SR} or D_{SL} to CP	4.0 4.0			4.0 4.0		4.0 4.0		ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW P_n or D_{SR} or D_{SL} to CP	0 0			1.0 1.0		1.0 1.0			
$t_s (H) \\ t_s (L)$	Setup Time, HIGH or LOW Sn to CP	8.0 8.0			9.5 8.0		9.0 8.0		ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW Sn to CP	0			0 0		0 0			
t _w (H)	CP Pulse Width HIGH	5.0			5.5		5.5		ns	3-7
t _w (L)	MR Pulse Width LOW	5.0			5.0		5.0		ns	3-11
t _{rec}	Recovery Time MR to CP	7.0		,	9.0		8.0		ns	3-11

54F/74F219

64-Bit Random Access Memory (With 3-State Outputs)

Connection Diagram

Logic Symbol

D1 D2 D3 D4

11

Description

The 'F219 is a high-speed 64-bit RAM organized as a 16-word by 4-bit array. Address inputs are buffered to minimize loading and are fully decoded onchip. The outputs are 3-state and are in the high-impedance state whenever the Chip Select $\overline{(CS)}$ input is HIGH. The outputs are active only in the Read mode. This device is similar to the 'F189 but features non-inverting, rather than inverting, data outputs.

- 3-State Outputs for Data Bus Applications
- Buffered Inputs Minimize Loading
- Address Decoding On-chip
- Diode Clamped Inputs Minimize Ringing

Ordering Code: See Section 6

•				
	Commercial Grade	Military Grade	Pkg	$\begin{array}{c} 14 A_2 \\ 13 A_2 \end{array}$
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$	Туре	$\begin{bmatrix} 13 \\ A_3 \\ O_1 \\ O_2 \\ O_3 \end{bmatrix}$
Plastic DIP (P)	74F219PC		9B	579
Ceramic DIP (D)	74F219DC	54F219DM	6B	V _{CC} = Pin 16 GND = Pin 8
Flatpak (F)		54F219FM	4L	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
A ₀ – A ₃	Address Inputs	0.5/0.375
CS	Chip Select Input (Active LOW)	0.5/0.75
WE	Write Enable Input (Active LOW)	0.5/0.75
D1 – D4	Data Inputs	0.5/0.375
O1 - O4	3-State Data Outputs	25/12.5

.

Function Table

IN	PUTS	OPERATION	CONDITION OF OUTPUTS
CS	WE		
L L H	L H X	Write Read Inhibit	High Impedance Complement of Stored Data High Impedance

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

Logic Diagram

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter	54F/74F			Units	Conditions	
		Min	Тур	Max			
lcc	Power Supply Current		37	55	mA	$V_{CC} = Max; \overline{WE}, \overline{CS}, Gnd$	

AC Characteristics: See Section 3 for waveforms and load configurations

		ę	54F/74	F	54	4F	7	4F		
Symbol	Parameter	$\begin{array}{l} T_{A}=+25^{\circ}C,\\ V_{CC}=+5.0V\\ C_{L}=50pF \end{array}$			$T_{A}, V_{CC} = MiI$ $C_{L} = 50 \text{ pF}$		$\begin{array}{c} T_{A}, \ V_{CC} = \\ Com \\ C_{L} = 50 \ pF \end{array}$		Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Max		
tplh tphl	Access Time, HIGH or LOW A_n to O_n	8.0 8.0	12 12	15.5 15.5					ns	3-1 3-10
tpzh tpzl	Access Time, HIGH or LOW CS to On	3.5 5.5	5.0 8.0	6.5 10					ns	3-1, 3-12 3-13
tphz tplz	Disable Time, HIGH or LOW CS to On	2.0 2.5	3.5 4.2	4.7 5.6					ns	3-1, 3-12 3-13
tpzh tpzl	Write Recovery Time, HIGH or LOW WE to On	9.0 6.5	13.5 9.2	17 12					ns	3-1, 3-12 3-13
tpHZ tpLZ	Disable Time, HIGH or LOW WE to On	3.5 4.5	5.0 6.5	6.5 8.5					ns	3-1, 3-12 3-13

AC Operating Requirements: See Section 3 for waveforms

		54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ} C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
$\begin{array}{c} t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW A_n to \overline{WE}	0 0			ns	3-16
$\begin{array}{c} t_{h} \ (H) \\ t_{h} \ (L) \end{array}$	Hold Time, HIGH or LOW A_n to \overline{WE}	0 0				
$\begin{array}{c} \hline t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW D _n to WE	10 10			ns	3-14
${t_{h}}$ (H) t_{h} (L)	Hold Time, HIGH or LOW D _n to WE	0 0				3-14
ts (L)	Setup Time LOW CS to WE	6.0			ns	3-14
t _h (L)	Hold Time, LOW CS to WE	0			ns	3-14
tw (L)	WE Pulse Width LOW	6.0			ns	3-16

54F/74F240 • 54F/74F241 • 54F/74F244

Octal Buffer/Line Driver (With 3-State Outputs)

Connection Diagrams

Description

The 'F240, 'F241 and 'F244 are octal buffers and line drivers designed to be employed as memory address drivers, clock drivers and bus oriented transmitters/receivers which provide improved PC board density.

- Hysteresis at Inputs to Improve Noise Margins
- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- Outputs Sink 64 mA
- 15 mA Source Current

dente a **O**rder Ore Coelies C

• Input Clamp Diodes Limit High-speed Termination Effects

	Commercial Grade	Military Grade	Pkg	
Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%,$ $T_A = 0^{\circ} \text{C} \text{ to } +70^{\circ} \text{C}$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	Туре	
Plastic DIP (P)	74F240PC, 74F241PC 74F244PC		9Z	
Ceramic DIP (D)	74F240DC, 74F241DC 74F244DC	54F240DM, 54F241DM 54F244DM	4E	
Flatpak (F)		54F240FM, 54F241FM 54F244FM	4D	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
OE1, OE2	3-State Output Enable Input (Active LOW)	0.5/0.625
OE ₂	3-State Output Enable Input (Active HIGH)	0.5/0.625
	Inputs ('F240)	0.5/0.625*
	Inputs ('F241, 'F244)	0.5/1.0*
	Outputs	75/40 (30)

*Worst-case ('F240 enabled; 'F241, 'F244 disabled)

240 • 241 • 244

Truth Tables

	'F		
	INPUTS		OUTPUT
	\overline{OE}_1 , \overline{OE}_2	D	
	L	L	н
-	L	н	L
	Н	X	Z
		011	Maltara Laur

1 677						
INPUTS		OUTPUT				
OE1, OE2 D		001101				
L	L	L				
L	н	н				
н	х	Z				

H = HIGH Voltage Level

Z = High Impedance

DC Characteristics over Operating	Temperature Range	(unless otherwise specified)
--	--------------------------	------------------------------

Symbol	Parameter		54F/74F			Units	Conditions	
0,111201			Min	Тур	Max	•		
		XM, XC	2.4			v	$I_{OH} = -3.0 \text{ mA}, V_{IN}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	
Vон	Output HIGH Voltag	e XM XC	2.0 2.0			v	$I_{OH} = -12 \text{ mA}$	$H = 2.0 V$ $V_{CC} = Min$ $V_{IL} = 0.5 V$
Vol	Output LOW Voltage	× XM XC			0.55 0.55	V	$I_{OL} = 48 \text{ mA}$	V _{IN} = V _{IH} or V _{IL} V _{CC} = Min
VT+ - VT-	Hysteresis Voltage		0.2	0.4		V	V _{CC} = Min	
los	Output Short-circuit	Current	-100		-225	mA.	$V_{CC} = Max, V_{OUT} = 0 V$	
Іссн		'F240 'F241, 'F244		19 40	29 60	mA	Outputs HIGH	
ICCL	Power Supply Current	'F240 'F241, 'F244		50 60	75 90	mA	Outputs LOW	V _{CC} = Max
lccz		'F240 'F241, 'F244		42 60	63 90	mA	Outputs OFF	

AC Characteristics: See Section 3 for waveforms and load configurations

		5	54F/74	F	54	1F	74	4F		
Symbol	Parameter		= +25 c = +5 _ = 50	.0 V pF	N CL =	/cc = /il 50 pF	Co CL =	/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Max		
tplh tphl	Propagation Delay Data to Output ('F240)	3.0 2.0	5.1 3.5	7.0 4.7	3.0 2.0	9.0 6.0	3.0 2.0	8.0 5.7	ns	3-1 3-3
tpzh tpzL	Output Enable Time ('F240)	2.0 4.0	3.5 6.9	4.7 9.0	2.0 4.0	6.5 10.5	2.0 4.0	5.7 10	ns	3-1 3-12
tphz tplz	Output Disable Time ('F240)	2.0 2.0	4.0 6.0	5.3 8.0	2.0 2.0	6.5 12.5	2.0 2.0	6.3 9.5	10	3-13
tplh tphl	Propagation Delay Data to Output ('F241, 'F244)	2.5 2.5	4.0 4.0	5.2 5.2	2.5 2.5	6.5 7.0	2.5 2.5	6.2 6.5	ns	3-1 3-4
tpzh tpzl	Output Enable Time ('F241, 'F244)	2.0 2.0	4.3 5.4	5.7 7.0	2.0 2.0	7.0 8.5	2.0 2.0	6.7 8.0	ns	3-1 3-12
tphz tplz	Output Disable Time ('F241, 'F244)	2.0 2.0	4.5 4.5	6.0 6.0	2.0 2.0	7.0 7.5	2.0 2.0	7.0 7.0		3-13

4-106

54F/74F242 • 54F/74F243

Quad Bus Transceiver (With 3-State Outputs)

Connection Diagrams

'F242

4

'F243

Description

The 'F242 and 'F243 are quad bus transmitters/receivers designed for 4-line asynchronous 2-way data communications between data busses.

- Hysteresis at Inputs to Improve Noise Immunity
- 2-Way Asynchronous Data Bus Communication
- Input Clamp Diodes Limit High-speed Termination Effects

	Commercial Grade	Military Grade	Pkg	
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to} +125^{\circ} \text{ C}$	Туре	
Plastic DIP (P)	74F242PC, 74F243PC		9A	
Ceramic DIP (D)	74F242DC, 74F243DC	54F242DM, 54F243DM	6A	
Flatpak (F)		54F242FM, 54F243FM	31]

Ordering Code: See Section 6

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
Ē1	Enable Input (Active LOW)	0.5/0.625
E2	Enable Input (Active HIGH)	0.5/0.625
	Inputs ('F242)	1.75/0.625*
	Inputs ('F243)	1.75/1.0*
	Outputs	75/40 (30)

*Worst-case ('F242 enabled, 'F243 disabled)

Truth Tables

'F242

INPUTS		OUTPUT
Ēı	D	
L	L	н
L	н	L
н	X	Z

JT

'F243

INPUTS Ē1 D		OUTPUT
L	L	L
L	н	н
н	Х	Z

INPUTS		Ουτρυτ
E2	D	
L	х	Z
н	L	L
н	н	н

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance

DC Characteristics over	Operating	Temperature	Range	unless	otherwise specified)
	• •		•		•

Symbol	Parameter			54F/74F	:	Units	Conditions	
		Min	Тур	Мах	0	Containe		
		ХМ, ХС	2.4			V	$I_{OH} = -3.0 \text{ mA}, V_{IN} = V_{IH} \text{ or } V_{IL}$	
Vон	Output HIGH Voltage	XM XC	2.0 2.0	а. А		v	IOH = -12 mA	V _{IH} = 2.0 V V _{CC} = Min V _{IL} = 0.5 V
Vol	Output LOW Voltage	XM XC			0.55 0.55	V	$\frac{I_{OL} = 48 \text{ mA}}{I_{OL} = 64 \text{ mA}}$	V _{IN} = V _{IH} or V _{IL} V _{CC} = Min
VT+ - VT-	Hysteresis Voltage	1 A.	0.2	0.4		V	Vcc = Min	
lн	Input HIGH Current Breakdown Test, All Data Inputs				100	μA	V _{OUT} = 5.5 V, V	_{CC} = Max
Іоzн	Output OFF Current HIGH				70 100	μΑ	$\frac{V_{OUT} = 2.7 V}{V_{OUT} = 5.5 V}$	V _{IN} = V _{IH} or V _{IL} V _{CC} = Max
lozl	Output OFF Current LO	W			-1.6	mA	$\begin{array}{l} V_{CC} = Max, V_{IN} \\ V_{OUT} = 0.4 V \end{array}$	= VIH or VIL
los	Output Short-circuit Cu	rrent	-100		-225	mA	Vcc = Max, Vou	ν 0 = T
Іссн		'F242 'F243		30 64	46 80	mA	Outputs HIGH	
ICCL	Power Supply Current	'F242 'F243		46 64	69 90	mΑ	Outputs LOW	V _{CC} = Max
Iccz		'F242 'F243		42 71	63 90	mA	Outputs OFF	iviax

- - - - - - - -

			$54F/74F \\ T_{A} = +25^{\circ}C, \\ V_{CC} = +5.0 V \\ C_{L} = 50 \text{ pF}$			54F T _A , V _{CC} = Mil C _L = 50 pF		4F	Units	Fig. No.
Symbol	Parameter							/cc = om 50 pF		
		Min	Тур	Max	Min	Max	Min	Max		
tPLH tPHL	Propagation Delay Data to Output ('F242)	3.0 2.0	5.1 3.5	7.0 4.7			3.0 2.0	8.0 5.7	ns	3-1 3-3
tpzh tpzL	Output Enable Time ('F242)	2.0 4.0	3.5 6.9	4.7 9.0			2.0 4.0	5.7 10	ns	3-1 3-12
tPHZ tPLZ	Output Disable Time ('F242)	2.0 2.0	4.0 3.9	5.3 6.5			2.0 2.0	6.3 8.0	, ns	3-13
tPLH tPHL	Propagation Delay Data to Output ('F243)	2.5 2.5	4.0 4.0	5.2 5.2	2.0 2.0	6.5 8.5	2.0 2.0	6.2 6.5	ns	3-1 3-4
tpzh tpzL	Output Enable Time ('F243)	2.0 2.0	4.3 5.8	5.7 7.5	2.0 2.0	8.0 10.5	2.0 2.0	6.7 8.5	ns	3-1 3-12
tPHZ tPLZ	Output Disable Time ('F243)	2.0 2.0	4.5 4.5	6.0 6.0	2.0 2.0	7.5 8.5	2.0 2.0	7.0 7.0	.10	3-13

AC Characteristics: See Section 3 for waveforms and load configurations

245

54F/74F245

Octal Bidirectional Transceiver (With 3-State Inputs/Outputs)

Description

The 'F245 contains eight non-inverting bidirectional buffers with 3-state outputs and is intended for bus-oriented applications. Current sinking capability is 20 mA at the A ports and 64 mA at the B ports. The transmit/ Receive (T/\overline{R}) input determines the direction of data flow through the bidirectional transceiver. Transmit (active HIGH) enables data from A ports to B ports; Receive (active LOW) enables data from B ports to A ports. The Output Enable input, when HIGH, disables both A and B ports by placing them in a high-Z condition.

- Non-Inverting Buffers
- **Bidirectional Data Path**
- B Outputs Sink 64 mA
- Hysteresis on A and B Inputs
- MOS Compatible

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg	L L Bus B Data to Bus A
Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%,$ $T_A = 0^{\circ} \text{ C to } +70^{\circ} \text{ C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to} +125^{\circ} \text{ C}$	Туре	L H Bus A Data to Bus B H X High-Z State
Plastic DIP (P)	74F245PC		9Z	H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial
Ceramic DIP (D)	74F245DC	54F245DM	4E	
Flatpak (F)		54F245FM	4D	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
OE	Output Enable Input (Active LOW)	0.5/1.0
T/R	Transmit/Receive Input	0.5/0.5
A0 - A7	Side A 3-State Inputs or	1.75/0.625*
	3-State Outputs	25/12.5
B ₀ – B ₇	Side B 3-State Inputs or	1.75/0.625*
	3-State Outputs	25/40 (30)

*Worst-case (disabled)

Connection Diagram

Truth Table

INP	UTS	OUTPUT
ŌE	T/R	
L L H	L H X	Bus B Data to Bus A Bus A Data to Bus B High-Z State
L =		I Voltage Level Voltage Level terial

Symbol	Parameter			54F/74F		Units	Conditions	
-,	i ulumeter	Min	Тур	Мах	Onita	Conditions		
Voн		XM XC	2.0 2.0			v	$\frac{I_{OH} = -12 \text{ mA}}{I_{OH} = -15 \text{ mA}}$ V _{CC} = Min	
	Output HIGH Voltage B ₀ – B ₇		2.4	1		V	$I_{OH} = -3.0 \text{ mA}$	
Vol	· · ·	XM XC			0.55 0.55	v	$\frac{I_{OL} = 48 \text{ mA}}{I_{OL} = 64 \text{ mA}} \text{ V}_{CC} = \text{Min}$	
V _{T+} – V _{T-}	Hysteresis Voltage B ₀ – B ₇		200	400		mV	V _{CC} = Min	
Ін	Input HIGH Current Breakdown Test — An, Bn				1.0	mA	$V_{CC} = Max, V_{IN} = 5.5 V$	
Іін + Іогн	3-State Output OFF Current HIGH — A _n , B _n				70	μA	$V_{CC} = Max, V_{OUT} = 2.4 V$	
IIL + IOZL	3-State Output OFF Current LOW — An, Bn				1.0	mA	$V_{CC} = Max, V_{OUT} = 0.5 V$	
los	Output Short-circuit Current B ₀ – B ₇		-100		-225	mA	V _{CC} = Max, V _{OUT} = 0 V	
lcc	Power Supply Current			95	143	mA	V _{CC} = Max	

AC Characteristics: See Section 3 for waveforms and load configurations

			54F/74F			54F		4F		
Symbol	Parameter	Vc	$T_{A} = +25^{\circ}C, V_{CC} = +5.0 V C_{L} = 50 pF$				$\begin{array}{l} T_{A}, \ V_{CC} = \\ Com \\ C_{L} = 50 \ pF \end{array}$		Units	Fig. No.
		Min	Тур	Мах	Min	Max	Min	Max		
tplh tphl	Propagation Delay An to Bn or Bn to An	2.5 2.5	4.2 4.6	5.5 6.0			2.5 2.5	6.5 7.0	ns	3-1 3-4
tpzh tpzl	Output Enable Time	3.0 4.5	5.3 7.9	7.0 10			3.0 4.5	8.0 11	ns	3-1 3-12 3-13
tphz tplz	Output Disable Time	3.0 2.0	5.0 3.7	6.5 5.0			3.0 2.0	7.5 6.0	. 115	

54F/74F251

8-Input Multiplexer (With 3-State Outputs)

Description

The 'F251 is a high-speed 8-input digital multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. It can be used as universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

- Multifunctional Capability
- On-chip Select Logic Decoding
- Inverting and Non-inverting 3-State Outputs

Ordering Code: See Section 6

•				0E17	and the second
	Commercial Grade	Military Grade	Pkg	GND 8	
Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%,$ $T_A = 0^{\circ} \text{ C} \text{ to } +70^{\circ} \text{ C}$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	Туре	L	
Plastic DIP (P)	74F251PC		9B		e e e
Ceramic DIP (D)	74F251DC	54F251DM	6B		ti alta j
Flatpak (F)		54F251FM	4L		

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
S ₀ – S ₂	Select Inputs	0.5/0.375
OE	3-State Output Enable Input (Active LOW)	0.5/0.375
lo – l7	Multiplexer Inputs	0.5/0.375
Z	3-State Multiplexer Output	25/12.5
Z	Complementary 3-State Multiplexer Output	25/12.5

Connection Diagram

13 1

12

113

0

Z

16 Vcc

15 4

14 15

13 I₆

12 17

11 S0

10 S₁ 9 S₂

Logic Symbol

Functional Description

This device is a logical implementation of a singlepole, 8-position switch with the switch position controlled by the state of three Select inputs, S₀, S₁, S₂. Both assertion and negation outputs are provided. The Output Enable input (\overline{OE}) is active LOW. When it is activated, the logic function provided at the output is:

$$Z = \overline{OE} \bullet (I_0 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_1 \bullet S_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_2 \bullet \overline{S}_0 \bullet S_1 \bullet \overline{S}_2 + I_3 \bullet S_0 \bullet S_1 \bullet \overline{S}_2 + I_4 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet S_2 + I_5 \bullet S_0 \bullet \overline{S}_1 \bullet S_2 + I_6 \bullet \overline{S}_0 \bullet S_1 \bullet S_2 + I_7 \bullet S_0 \bullet S_1 \bullet S_2)$$

When the Output Enable is HIGH, both outputs are in the high impedance (high Z) state. This feature allows multiplexer expansion by tying the outputs of up to 128 devices together. When the outputs of the 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. The Output Enable signals should be designed to ensure there is no overlap in the active LOW portion of the enable voltages.

Truth Table

	INP	UTS	ουτ	PUTS	
ŌĒ	S ₂	S1	S ₀	Z	Z
H L L	X L L	X L L H	X L H L	$\frac{Z}{I_0}$	Z I0 I1 I2
	Lエエエエ	H L L H H		3 4 5 6 7	3 4 5 6 7

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

Symbol	Parameter		54F/74F		Units	Conditions	
			Min	Тур			
lcc	Power Supply Current	ON		15	22	mA	$\frac{I_n, S_n = 4.5 V}{OE = Gnd} V_{CC} = Max$
	Fower Supply Current	OFF		16	24	IIIA	\overline{OE} , I _n = 4.5 V

AC Characteristics: See Section 3 for waveforms and load configurations

		5	54F/74	F	54	4F	74	4F		
Symbol	Parameter	Vcd	= +25 c = +5 _ = 50	0 V	N	/cc = 1il 50 pF	Co	/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Мах		
tplh tphl	Propagation Delay S_n to \overline{Z}_n	4.0 3.2	5.9 5.7	8.0 7.5	3.5 3.2	9.5 9.5	4.0 3.2	9.0 8.5	ns	3-1 3-10
tplh tphl	Propagation Delay S_n to Z_n	4.5 5.0	9.6 6.9	13 9.0	3.5 3.0	16.5 10.5	4.5 4.0	14 10	ns	3-1 3-10
tPLH tPHL	Propagation Delay In to Z	3.0 2.0	4.1 3.0	5.7 4.0	2.5 2.0	8.0 6.0	3.0 2.0	7.0 5.0	ns	3-1 3-3
tplh tphl	Propagation Delay I _n to Z	5.5 3.7	7.2 5.1	9.5 6.5	3.5 3.7	11.5 7.5	5.5 3.7	10.5 7.5	ns	3-1 3-4
tpzh tpzL	Output Enable Time \overline{OE} to \overline{Z}	3.0 3.5	5.4 6.4	7.0 8.5	3.0 3.5	9.5 10.5	3.0 3.5	8.0 9.5	ns	3-1 3-12
tphz tplz	Output Disable Time \overline{OE} to \overline{Z}	3.0 2.0	5.0 3.2	6.5 4.5	3.0 2.0	8.5 7.5	3.0 2.0	7.5 5.5		3-13
tPZH tPZL	Output Enable Time OE to Z	4.0 3.5	6.9 6.0	9.0 8.0	4.0 3.5	10 10	4.0 3.5	10 9.0	ns	3-1 3-12
tphz tplz	Output Disable Time OE to Z	3.0 2.0	4.7 3.5	6.0 4.5	3.0 2.0	7.0 5.5	3.0 2.0	7.0 5.5		3-13

Connection Diagram

54F/74F253

Dual 4-Input Multiplexer (With 3-State Outputs)

Description

The 'F253 is a dual 4-input multiplexer with 3-state outputs. It can select two bits of data from four sources using common select inputs. The outputs may be individually switched to a high-impedance state with a HIGH on the respective Output Enable (OE) inputs, allowing the outputs to interface directly with bus oriented systems.

- FAST Process for High Speed
- **Multifunction Capability** •
- Non-inverting 3-State Outputs

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg	
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C to } +125^{\circ} \text{ C}$	Туре	
Plastic DIP (P)	74F253PC		9B	
Ceramic DIP (D)	74F253DC	54F253DM	6B	
Flatpak (F)		54F253FM	4L	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
I _{0a} – I _{3a}	Side A Data Inputs	0.5/0.375
10b - 13b	Side B Data Inputs	0.5/0.375
S ₀ , S ₁	Common Select Inputs	0.5/0.375
OEa	Side A Output Enable Input (Active LOW)	0.5/0.375
OEb	Side B Output Enable Input (Active LOW)	0.5/0.375
Za, Zb	3-State Outputs	25/12.5

Logic Symbol

 $V_{CC} = Pin 16$ GND = Pin 8

4-115

Functional Description

This device contains two identical 4-input multiplexers with 3-state outputs. They select two bits from four sources selected by common Select inputs (S_0, S_1) . The 4-input multiplexers have individual Output Enable $(\overline{OE}_a, \overline{OE}_b)$ inputs which, when HIGH, force the outputs to a high-impedance (high-Z) state. This device is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two select inputs. The logic equations for the outputs are shown below:

$$Z_{a} = \overline{OE}_{a} \bullet (I_{0a} \bullet \overline{S}_{1} \bullet \overline{S}_{0} + I_{1a} \bullet \overline{S}_{1} \bullet S_{0} + I_{2a} \bullet S_{1} \bullet \overline{S}_{0} + I_{3a} \bullet S_{1} \bullet S_{0})$$

$$Z_{b} = \overline{OE}_{b} \bullet (I_{0b} \bullet \overline{S}_{1} \bullet \overline{S}_{0} + I_{1b} \bullet \overline{S}_{1} \bullet S_{0} + I_{2b} \bullet S_{1} \bullet \overline{S}_{0} + I_{3b} \bullet S_{1} \bullet S_{0})$$

If the outputs of 3-state devices are tied together, all but one device must be in the high-impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so that there is no overlap.

Logic Diagram

Truth Table

	ECT UTS			OUTPUT ENABLE	OUTPUT		
S ₀	S1	lo	11	l2	l3	ŌĒ	Z
х	Х	х	х	х	х	н	(Z)
L	L	L	Х	Х	Х	L	L
L	L	н	Χ.	Х	Х	Ŀ	Н
н	L	X	L	х	X	Ĺ	L
н	L	x	н	х	x	L	н
L	н	X	Х	L	Х	L	L
L	н	X	Х	н	X	L	н
н	н	X	Х	Х	L	L	L
н	н	х	X	Х	н	۰ L	н

Address inputs S_0 and S_1 are common to both sections. H $\,=\,$ HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

(Z) = High Impedance

Symbol	Parameter		54F/74F		Units	Conditions	
	i di difetteri	Min	Тур	Max		Conditione	
Іссн			11.5	16		$V_{CC} = Max, \overline{OE}_n = Gnd$ I ₀ , S _n = 4.5 V; I ₁ - I ₃ = Gnd	
ICCL	Power Supply Current		16	23	mA	$V_{CC} = Max$ I _n , S _n , $\overline{OE_n} = Gnd$	
lccz			16	23		$V_{CC} = Max, \overline{OE}_n = 4.5 V$ I _n , S _n = Gnd	

AC Characteristics: See Section 3 for waveforms and load configurations

			54F/74F		5	4F	74	4F		
Symbol	Parameter	Vcd	= +25 c = +5 _ = 50	.0 V	N	/cc = /il 50 pF	Co	/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Мах	Min	Мах	Min	Max		
tplh tphl	Propagation Delay S _n to Z _n	5.5 4.5	10.1 9.2	12.5 11	3.5 2.5	15 12	4.5 3.5	13.5 12	ns	3-1 3-10
tplh tphl	Propagation Delay I _n to Z _n	3.0 3.0	5.5 5.5	7.0 7.0	2.5 2.5	9.0 8.0	3.0 3.0	8.0 8.0	ns	3-1 3-4
tpzh tpzl	Output Enable Time	3.0 3.0	6.8 7.2	9.0 9.5	2.5 2.5	10.5 11	3.0 3.0	10 10.5	ns	3-1 3-12
tphz tplz	Output Disable Time	2.0 2.0	3.7 4.4	5.0 6.0	2.0 2.0	6.5 9.0	2.0 2.0	6.0 7.0		3-13

. . . .

Test limits in screened columns are preliminary.

Connection Diagram

Quad 2-Input Multiplexer (With 3-State Outputs)

Description

54F/74F257

The 'F257 is a quad 2-input multiplexer with 3-state outputs. Four bits of data from two sources can be selected using a Common Data Select input. The four outputs present the selected data in true (non-inverted) form. The outputs may be switched to a high impedance state with a HIGH on the common Output Enable (\overline{OE}) input, allowing the outputs to interface directly with bus oriented systems.

- Multiplexer Expansion by Tying Outputs Together
- Non-inverting 3-State Outputs
- Input Clamp Diodes Limit High-speed Termination Effects

Commercial Grade Military Grade Pkg GND 8 Pkgs $V_{CC} = +5.0 V \pm 5\%$ $V_{CC} = +5.0 \text{ V} \pm 10\%$ Type $T_A = 0^\circ C$ to $+70^\circ C$ $T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ Plastic 74F257PC 9B DIP (P) Ceramic 74F257DC 54F257DM 6B DIP (D) Flatpak 54F257FM 4L (**F**)

Ordering Code: See Section 6

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
S	Common Data Select Input	0.5/0.375
ŌĒ	3-State Output Enable Input (Active LOW)	0.5/0.375
loa - lod	Data Inputs from Source 0	0.5/0.375
l _{1a} – l _{1d}	Data Inputs from Source 1	0.5/0.375
Za – Zd	3-State Multiplexer Outputs	25/12.5

Logic Symbol

Functional Description

The 'F257 is a quad 2-input multiplexer with 3-state outputs. It selects four bits of data from two sources under control of a Common Data Select input. When the Select input is LOW, the I_{0x} inputs are selected and when Select is HIGH, the I_{1x} inputs are selected. The data on the selected inputs appears at the outputs in true (non-inverted) form. The device is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

$Z_a = \overline{OE}$	• (I 1a	$\bullet S + I_{0a}$	$\bullet \ \overline{S})$
$Z_b = \overline{OE}$	• (l1b	$\bullet ~S + I_{0b}$	• <u>S</u>)
$Z_c = \overline{OE}$	• (I1c	$\bullet ~S + I_{0c}$	$\bullet \ \overline{S})$
$Z_d = \overline{OE}$	• (I 1d	$\bullet \ S + I_{0d}$	• <u>S</u>)

When the Output Enable input (\overline{OE}) is HIGH, the outputs are forced to a high impedance OFF state. If the outputs are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure the Output Enable signals to 3-state devices whose outputs are tied together are designed so there is no overlap.

Logic Diagram

Truth Table

OUTPUT ENABLE	SELECT INPUT	DATA INPUTS		OUTPUTS
ŌE	S	lo	l ₁	Z
н	х	х	х	(Z)
L	н	х	L	L
L	н	х	н	н
L	L	L	х	L
L	L	н	Х	н

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

(Z) = High Impedance

DC Characteristics over Operating Temperature Range (unless otherwise specified) 54F/74F Symbol Parameter Units Conditions Min Тур Мах $V_{CC} = Max; S, I_{1x} = 4.5 V$ HIGH 9.0 15 \overline{OE} , $I_{0x} = Gnd$ $V_{CC} = Max; I_{1x} = 4.5 V$ Power Supply Icc LOW 14.5 22 mΑ \overline{OE} , I_{0x} , S = Gnd Current $V_{CC} = Max; S, I_{0x} = Gnd$ OFF 15 23 \overline{OE} , $I_{1x} = 4.5 V$

AC Characteristics: See Section 3 for waveforms and load configurations

•••••••••••••••••••••••••••••••••••••••	·	5	54F/74F		54F		74F			
Symbol	Parameter	Vcd	= +25 c = +5 _ = 50	.0 V	N	/cc = 1il 50 pF	Co	/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Мах		
tplh tphl	Propagation Delay I _n to Z _n	3.0 2.5	4.5 4.2	6.0 5.5	3.0 2.5	8.0 8.0	3.0 2.5	7.0 6.5	ns	3-1 3-4
tplh tphl	Propagation Delay S to Z _n	4.5 3.5	10.1 6.5	13 8.5	4.5 3.5	15.5 10.5	4.5 3.5	15 9.5	ns	3-1 3-10
tpzh tpzl	Output Enable Time	3.0 3.0	5.9 5.5	7.5 7.5	3.0 3.0	9.5 10	3.0 3.0	8.5 8.5	ns	3-1 3-12
tphz tplz	Output Disable Time	2.0 2.0	4.3 4.5	6.0 6.0	2.0 2.0	7.0 9.5	2.0 2.0	7.0 7.0		3-13

4-120

Connection Diagram

54F/74F258

Quad 2-Input Multiplexer (With 3-State Outputs)

Description

The 'F258 is a quad 2-input multiplexer with 3-state outputs. Four bits of data from two sources can be selected using a common data select input. The four outputs present the selected data in the complement (inverted) form. The outputs may be switched to a high-impedance state with a HIGH on the common Output Enable (\overline{OE}) input, allowing the outputs to interface directly with bus oriented systems.

- Multiplexer Expansion by Tying Outputs Together
- Inverting 3-State outputs

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg	
Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%,$ $T_A = 0^{\circ} \text{ C to } +70^{\circ} \text{ C}$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C to + 125^{\circ}C$	Туре	
Plastic DIP (P)	74F258PC		9B	
Ceramic DIP (D)	74F258DC	54F258DM	6B	
Flatpak (F)		54F258FM	4L	

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
S	Common Data Select Input	0.5/0.375
OE	3-State Output Enable Input (Active LOW)	0.5/0.375
l0a – l0d	Data Inputs from Source 0	0.5/0.375
l1a - l1d	Data Inputs from Source 1	0.5/0.375
$\overline{Z}_a - \overline{Z}_d$	3-State Inverting Data Outputs	25/12.5

Logic Symbol

V_{CC} = Pin 16 GND = Pin 8

Functional Description

The 'F258 is a quad 2-input multiplexer with 3-state outputs. It selects four bits of data from two sources under control of a common Select input (S). When the Select input is LOW, the I_{0x} inputs are selected and when Select is HIGH, the I_{1x} inputs are selected. The data on the selected inputs appears at the outputs in inverted form. The 'F258 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

$\overline{Z}_a = \overline{OE}$	• (I _{1a}	•	S +	l0a	•	S)
$\overline{Z}_b = \overline{OE}$	• (I1b	٠	S +	lob	•	S)
$\overline{Z}_{c} = \overline{OE}$	• (l1c	٠	S +	loc	•	S)
$\overline{Z}_d = \overline{OE}$	• (I1d	•	S +	l0d	•	S)

When the Output Enable input (\overline{OE}) is HIGH, the outputs are forced to a high-impedance OFF state. If the outputs of the 3-state devices are tied together, all but one device must be in the high-impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so there is no overlap.

Logic Diagram

Truth Table

OUTPUT ENABLE	SELECT INPUT	DATA INPUTS				OUTPUTS
ŌĒ	S	lo	Ы	Ī		
н	х	х	Х	Z		
L	н	Х	L	н		
L	н	Х	н	L		
L	L	L	X	н		
L	. L	н	Х	L		

H = HIGH Voltage Level

L = LOW Voltage Level

 $\mathbf{X} = \mathbf{Immaterial}$

Z = High Impedance

Symbol	Parameter 54F/74F		74F Units		Conditions	
Symbol	i arameter	Min Typ Max	Onits	Contanions		
Іссн			6.2	9.5		$\frac{V_{CC} = Max; S, I_{1x} = 4.5 V}{\overline{OE}, I_{0x} = Gnd}$
ICCL	Power Supply Current		15.1	23	mA	$V_{CC} = Max; I_{1x} = 4.5 V$ $\overline{OE}, I_{0x}, S = Gnd$
lccz			11.3	17		$\frac{V_{CC} = Max; S, I_{0x} = Gnd}{OE, I_{1x} = 4.5 V}$

AC Characteristics: See Section 3 for waveforms and load configurations

		5	54F/74F		54F		74F			
Symbol	Symbol Parameter		$T_{A} = +25^{\circ}C, \\ V_{CC} = +5.0 V \\ C_{L} = 50 \text{ pF}$		$\begin{array}{l} T_{A}, V_{CC} = \\ Mil \\ C_{L} = 50 pF \end{array}$		Com		Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Мах		
tplh tphl	Propagation Delay In to Zn	2.5 2.0	4.0 3.5	5.3 4.7	2.0 1.5	7.5 6.0	2.5 2.0	6.0 5.5	ns	3-1 3-3
tplh tphl	Propagation Delay S to Zn	4.0 4.0	6.5 7.3	8.5 9.5	4.0 4.0	12 11.5	4.0 4.0	9.5 11	ns	3-1 3-10
tpzh tpzL	Output Enable Time	3.0 3.0	5.9 5.5	7.5 7.5	3.0 3.0	11 9.5	3.0 3.0	8.5 8.5	ns	3-1 3-12
tрнz tplz	Output Disable Time	2.0 2.0	4.3 4.5	6.0 6.0	1.5 2.0	7.0 9.0	2.0 2.0	7.0 7.0		3-13

54F/74F280

9-Bit Parity Generator/Checker

Description

Pkgs

Plastic

DIP (P)

Ceramic

DIP (D)

Flatpak

(**F**)

The 'F280 is a high-speed parity generator/checker that accepts nine bits of input data and detects whether an even or an odd number of these inputs is HIGH. If an even number of inputs is HIGH, the Sum Even output is HIGH. If an odd number is HIGH, the Sum Even output is LOW. The Sum Odd output is the complement of the Sum Even output.

Logic Symbol

Ordering Code: See Section 6

Commercial Grade

 $V_{CC} = +5.0 V \pm 5\%$

 $T_A = 0^\circ C$ to $+70^\circ C$

74F280PC

74F280DC

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
10 - 18	Data Inputs	0.5/0.375
Σο	Odd Parity Output	25/12.5
Σε	Even Parity Output	25/12.5

Military Grade

 $V_{CC} = +5.0 \text{ V} \pm 10\%$

 $T_A = -55^{\circ} C \text{ to } +125^{\circ} C$

54F280DM

54F280FM

Truth Table

NUMBER OF INPUTS	OUTPUTS			
I0 - I8 THAT ARE HIGH	Σ EVEN	Σ ODD		
0, 2, 4, 6, 8	н	L		
1, 3, 5, 7, 9	L	н		

H = HIGH Voltage Level

L = LOW Voltage Level

4-124

Connection Diagam

Symbol	Parameter	54F/74F			Units	Conditions	
-,		Min	Тур	Max			
lcc	Power Supply Current		23	34.5	mA	V _{CC} = Max	

and the second second

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74F	54F	74F			
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$ $C_L = 50 pF$	T _A , V _{CC} = Mil C _L = 50 pF	$T_{A}, V_{CC} = Com$ $C_{L} = 50 \text{ pF}$	Units	Fig. No.	
		Min Typ Max	Min Max	Min Max			
tplh tphl	Propagation Delay I_n to Σ_E	6.010146.51115.5		-	ns	3-1 3-10	
tplh tphl	Propagation Delay In to Σ_O	6.010146.51115.5			ns	3-1 3-10	

Test limits in screened columns are preliminary.

Connection Diagram

54F/74F283

4-Bit Binary Full Adder (With Fast Carry)

Description

The 'F283 high-speed 4-bit binary full adder with internal carry lookahead accepts two 4-bit binary words $(A_0 - A_3, B_0 - B_3)$ and a Carry input (C_0) . It generates the binary Sum outputs $(S_0 - S_3)$ and the Carry output (C_4) from the most significant bit. The 'F283 will operate with either active-HIGH or active-LOW operands (positive or negative logic).

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg	G
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to} + 125^{\circ} \text{ C}$	Туре	
Plastic DIP (P)	74F283PC		9B	
Ceramic DIP (D)	74F283DC	54F283DM	6В	
Flatpak (F)		54F283FM	4L	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin _{Names}	Description	54F/74F (U.L.) HIGH/LOW
A0 - A3	A Operand Inputs	0.5/0.75
B0 - B3	B Operand Inputs	0.5/0.75
C ₀	Carry Input	0.5/0.375
S ₀ – S ₃	Sum Outputs	25/12.5
C4	Carry Output	25/12.5

Logic Symbol

 $V_{CC} = Pin 16$ GND = Pin 8

Functional Description

The 'F283 adds two 4-bit binary words (A plus B) plus the incoming carry C₀. The binary sum appears on the Sum $(S_0 - S_3)$ and outgoing carry (C_4) outputs. The binary weight of the various inputs and outputs is indicated by the subscript numbers, representing powers of two.

 $\begin{array}{l} 20 \ (A_0 + B_0 + C_0) + 21 \ (A_1 + B_1) \\ + \ 2^2 \ (A_2 + B_2) + 23 \ (A_3 + B_3) \\ = \ S_0 + 2S_1 + 4S_2 + 8S_3 + 16C_4 \\ Where \ (+) = plus \end{array}$

Interchanging inputs of equal weight does not affect the operation. Thus C_0 , A_0 , B_0 can be arbitrarily assigned to pins 5, 6 and 7. Due to the symmetry of the binary add function, the 'F283 can be used either with all inputs and outputs active HIGH (positive logic) or with all inputs and outputs active LOW (negative logic). See *Figure a*. Note that if C_0 is not used it must be tied LOW for active-HIGH logic or tied HIGH for active-LOW logic.

Due to pin limitations, the intermediate carries of the 'F283 are not brought out for use as inputs or outputs. However, other means can be used to effectively insert a carry into, or bring a carry out from, an intermediate stage. Figure b shows how to make a 3-bit adder. Tying the operand inputs of the fourth adder (A₃, B₃) LOW makes S₃ dependent only on, and equal to, the carry from the third adder. Using somewhat the same principle, Figure c shows a way of dividing the 'F283 into a 2-bit and a 1-bit adder. The third stage adder (A2, B2, S2) is used merely as a means of getting a carry (C_{10}) signal into the fourth stage (via A_2 and B_2) and bringing out the carry from the second stage on S2. Note that as long as A_2 and B_2 are the same, whether HIGH or LOW, they do not influence S₂. Similarly, when A₂ and B₂ are the same the carry into the third stage does not influence the carry out of the third stage. Figure d shows a method of implementing a 5-input encoder. where the inputs are equally weighted. The outputs

 S_0 , S_1 and S_2 present a binary number equal to the number of inputs $I_1 - I_5$ that are true. *Figure* e shows one method of implementing a 5-input majority gate. When three or more of the inputs $I_1 - I_5$ are true, the output M_5 is true.

Fig. b 3-Bit Adder

Fig. c 2-Bit and 1-Bit Adders

	C ₀	A ₀	A1	A2	A3	Bo	Bı	B ₂	B3	S ₀	S1	S2	S3	C4
Logic Levels	L	L	Н	L	н	Ή	L	L	н	н	н	L	L	н
Active HIGH	0	0	1	0	1	1	0	0	1	1	1	0	0	1
Active LOW	1	1	0	1	0	0	1	1	0	0	0	1	1	0

Active HIGH: 0 + 10 + 9 = 3 + 16

Active LOW: 1 + 5 + 6 = 12 + 0

Fig. e 5-Input Majority Gate

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

4-129

Symbol	Parameter	54F/74F			Units	Conditions
		Min	Тур	Max	•	
lcc	Power Supply Current		36	55	mA	V _{CC} = Max Inputs = 4.5 V

AC Characteristics: See Section 3 for waveforms and load configurations

			54F/74	F	5	4F	74	4F		
Symbol	Parameter	Vc	$ \begin{array}{c} {\sf T}_{\sf A} = +25^{\circ}{\sf C},\\ {\sf V}_{\sf CC} = +5.0{\sf V}\\ {\sf C}_{\sf L} = 50{\sf pF} \end{array} $			$T_{A}, V_{CC} = MiI$ $C_{L} = 50 \text{ pF}$		/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Max		
tplh tphl	Propagation Delay C ₀ to S _n	4.0 4.5	7.0 7.0	10 10	3.5 4.0	13.5 13.5	3.5 4.0	10.5 10.5	ns	3-1 3-10
tplh tphl	Propagation Delay An or Bn to Sn	3.0 3.5	7.0 7.0	10 10	4.0 3.5	13.5 13.5	4.0 3.5	10.5 10.5	ns	3-1 3-10
tplh tphL	Propagation Delay C ₀ to C ₄	3.0 3.5	5.7 5.4	6.5 6.5	3.5 3.0	10.5 10	3.5 3.0	8.5 8.0	ns	3-1 3-4
tplh tphl	Propagation Delay A_n or B_n to C ₄	3.5 3.5	5.7 5.3	6.5 6.5	3.5 3.0	10.5 10	3.5 3.0	8.5 8.0	ns	3-1 3-4

Test limits in screened columns are preliminary.

54F/74F289

64-Bit Random Access Memory (With Open-Collector Outputs)

Connection Diagram

Description

The 'F289 is a high-speed 64-bit RAM organized as a 16-word by 4-bit array. Address inputs are buffered to minimize loading, and addresses are fully decoded on-chip. Outputs are open-collector type and are in the OFF (HIGH) state whenever the Chip Select $\overline{(CS)}$ input is HIGH. The outputs are active only in the Read mode; output data is the complement of the stored data. This device is similar to the 'F319 but features inverting, rather than non-inverting, data outputs.

- Open-collector Outputs for Wired-AND Applications
- Buffered Inputs Minimize Loading
- Address Decoding On-chip
- Diode Clamped Inputs Minimize Ringing

Ordering Code: See Section 6 15 **A**1 14 A₂ **Commercial Grade Military Grade** Pkg 13 **A**3 Pkgs $V_{CC} = +5.0 V \pm 5\%$, $V_{CC} = +5.0 \text{ V} \pm 10\%$ Type **O**₁ **O**₂ **O**₃ **O**₄ $T_A = 0^\circ C$ to $+70^\circ C$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ Plastic 74F289PC 9B DIP (P) Vcc = Pin 16 Ceramic GND = Pin 8 74F289DC 54F289DM 6B DIP (D) Flatpak 54F289FM 4L (**F**)

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
A ₀ – A ₃	Address Inputs	0.5/0.375
CS	Chip Select Input (Active LOW)	0.5/0.75
WE	Write Enable Input (Active LOW)	0.5/0.75
D1 - D4	Data Inputs	0.5/0.375
$\overline{O}_1 - \overline{O}_4$	Inverted Data Outputs	OC*/12.5

*OC - Open Collector

Logic Symbol

Function Table

	PUTS	OPERATION	CONDITION OF OUTPUTS
L	L	Write	Off (HIGH)
L	H	Read	Complement of Stored Data
H	X	Inhibit	Off (HIGH)

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Logic Diagram

Symbol	Parameter	54F/74F			Units	Conditions	
oyinbor		Min	Тур	Max			
lcc	Power Supply Current		37	55	mA	$V_{CC} = Max; \overline{WE}, \overline{CS} = Gnd$	

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$ $C_L = 50 pF$	T _A , V _{CC} = Mil C _L = 50 pF	T _A , V _{CC} = Com C _L = 50 pF	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
tPLH tPHL	Access Time, HIGH or LOW A_n to \overline{O}_n	1118258.01420	· .		ns	3-1 3-10
t PHL	Access Time CS to On	4.5 8.0 11			ns	3-1
tр∟н	Disable Time CS to On	6.0 10.2 14				3-4
t PHL	Write Recovery Time WE to On	8.0 13.5 19			ns	3-1
tplH	Disable Time WE to On	8.0 13.5 19				3-3

AC Operating Requirements: See Section 3 for waveforms

		54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
ts (H) ts (L)	Setup Time, HIGH or LOW A_n to WE	0 0			ns	3-16
t _h (H) t _h (L)	Hold Time, HIGH or LOW An to WE	0 0				
ts (H) ts (L)	Setup Time, HIGH or LOW D _n to WE	10 10			ns	3-14
$t_h (H) \\ t_h (L)$	Hold Time, HIGH or LOW D _n to WE	0 0				
ts (L)	Setup Time LOW CS to WE	6.0			ns	3-14
t _h (L)	Hold Time LOW CS to WE	0				
t _w (L)	WE Pulse Width LOW	6.0			ns	3-16

Test limits in screened columns are preliminary.

299

54F/74F299

8-Input Universal Shift/Storage Register (With Common Parallel I/O Pins)

Description

The 'F299 is an 8-bit universal shift/storage register with 3-state outputs. Four modes of operation are possible: hold (store), shift left, shift right and load data. The parallel load inputs and flip-flop outputs are multiplexed to reduce the total number of package pins. Additional outputs are provided for flip-flops Q_0 and Q_7 to allow easy serial cascading. A separate active-LOW Master Reset is used to reset the register.

- Common Parallel I/O for Reduced Pin Count
- Additional Serial Inputs and Outputs for Expansion
- Four Operating Modes: Shift Left, Shift Right, Load and Store
- 3-State Outputs for Bus Oriented Applications

Ordening Co	de. See Section o			
<u>k</u>	Commercial Grade	Military Grade	Pkg	
Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%, \\ T_A = 0^{\circ} \text{ C to } +70^{\circ} \text{ C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ}\text{C} \text{ to} +125^{\circ}\text{C}$	Туре	
Plastic DIP (P)	74F299PC		9Z	
Ceramic DIP (D)	74F299DC	54F299DM	4E	
Flatpak (F)		54F299FM	4D	

Ordering Code: See Section 6

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
CP	Clock Pulse Input (Active Rising Edge)	0.5/0.375
DS ₀	Serial Data Input for Right Shift	0.5/0.375
DS7	Serial Data Input for Left Shift	0.5/0.375
S ₀ , S ₁	Mode Select Inputs	0.5/0.75
MR	Asynchronous Master Reset Input (Active LOW)	0.5/0.375
OE1, OE2	3-State Output Enable Inputs (Active LOW)	0.5/0.375
I/O ₀ – I/O ₇	Parallel Data Inputs or	0.5/0.375
	3-State Parallel Outputs	25/12.5
Q ₀ , Q ₇	Serial Outputs	25/12.5

20 Vcc So 1 19 S1 OE1 2 OE₂3 18 DS7 1/06 4 17 Q7 1/04 5 16 I/O7 15 I/O5 1/02 6 14 I/O3 1/00 7 Q0 8 13 1/01 12 CP MR 9 11 DS0 GND 10

Connection Diagram

Functional Description

The 'F299 contains eight edge-triggered D-type flipflops and the interstage logic necessary to perform synchronous shift left, shift right, parallel load and hold operations. The type of operation is determined by S₀ and S₁, as shown in the Mode Select Table. All flip-flop outputs are brought out through 3-state buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q₀ and Q₇ are also brought out on other pins for expansion in serial shifting of longer words.

A LOW signal on MR overrides the Select and CP inputs and resets the flip-flops. All other state changes are initiated by the rising edge of the clock. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP, are observed.

A HIGH signal on either $\overline{OE_1}$ or $\overline{OE_2}$ disables the 3-state buffers and puts the I/O pins in the high impedance state. In this condition the shift, hold, load and reset operations can still occur. The 3-state buffers are also disabled by HIGH signals on both S₀ and S₁ in preparation for a parallel load operation.

GND = Pin 10

Mode Select Table

	INPUTS			RESPONSE
MR	S1	S ₀	СР	
	г ц г ц х	XHHLL	×뉘뉘ㄣ×	Asynchronous Reset; $Q_0 - Q_7 = LOW$ Parallel Load; $I/O_n \rightarrow Q_n$ Shift Right; $DS_0 \rightarrow Q_0$, $Q_0 \rightarrow Q_1$, etc. Shift Left; $DS_7 \rightarrow Q_7$, $Q_7 \rightarrow Q_6$, etc. Hold

4-135

Symbol	Parameter		54F/74F	Units	Conditions
eynise.		Min	Тур Мах		
lcc	Power Supply Current		68 95	mA	$V_{CC} = Max, \overline{OE} = 4.5 V$ CP = HIGH
Ін	Input HIGH Current Breakdown Test, I/O ₀ -I/O ₇		100	μΑ	$V_{CC} = Max$, $V_{IN} = 5.5 V$
liн + lozн	3-State Output OFF Current HIGH, I/O ₀ -I/O ₇		70	μΑ	$V_{CC} = Max, V_{OUT} = 2.4 V$
IIL + IOZL	3-State Output OFF Current LOW, I/O ₀ - I/O ₇		-650	μΑ	$V_{CC} = Max, V_{OUT} = 0.5 V$

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74	F	54	1F	7	4F		
Symbol	Parameter	$T_A = +25^{\circ}C_{,.}$ $V_{CC} = +5.0 V$ $C_L = 50 pF$		T _A , V _{CC} = Mil C _L = 50 pF		$T_{A}, V_{CC} = Com$ $C_{L} = 50 \text{ pF}$		Units	Fig. No.
		Min Typ	Max	Min	Max	Min	Max		
f _{max}	Maximum Input Frequency	70						MHz	3-1, 3-7
tplh tphl	Propagation Delay CP to Q_0 or Q_7	5.5 10 5.5 10	14 14					ns	3 . 1
tplh tphl	Propagation Delay CP to I/On	5.5 10 5.5 10	14 14		2		-14-1	. 115	3-7
tphl	Propagation Delay \overline{MR} to Q_0 or Q_7	6.5 12	16					ns	3-1
tphl	Propagation Delay MR to I/On	6.5 12	16						3-11
tpzh tpzL	Output Enable Time	6.0 10 6.0 10	14 14		η.			ns	3-1 3-12
tphz tplz	Output Disable Time	4.0 7.0 4.0 7.0	10 10						3-13

Test limits in screened columns are preliminary.

		54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
$\begin{array}{c} t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW S_0 or S_1 to CP	12 12			ns	3-5
t_{h} (H) t_{h} (L)	Hold Time, HIGH or LOW S_0 or S_1 to CP	0 0				
$\begin{array}{c} t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW I/On, DS ₀ , DS ₇ to CP	5.0 5.0			ns	3-5
$\begin{array}{c} t_{h} \ (H) \\ t_{h} \ (L) \end{array}$	Hold Time, HIGH or LOW I/On, DS ₀ , DS ₇ to CP	0 0				0-0
$\begin{array}{c} t_{w} \ (H) \\ t_{w} \ (L) \end{array}$	CP Pulse Width, HIGH or LOW	7.0 7.0			ns	3-7
t_w (L)	MR Pulse Width LOW	7.0			ns	3-11
t _{rec}	Recovery Time MR to CP	5.0			ns	3-11

AC Operating Requirements: See Section 3 for waveforms

Test limits in screened columns are preliminary.

54F/74F319

64-Bit Random Access Memory (With Open-Collector Outputs)

Connection Diagram

10 12 3

CS D1 D2 D3 D4 WE

Logic Symbol

Description

The 'F319 is a high-speed 64-bit RAM organized as a 16-word by 4-bit array. Address inputs are buffered to minimize loading, and addresses are fully decoded on-chip. Outputs are open-collector type and are in the OFF (HIGH) state whenever the Chip Select $\overline{(CS)}$ input is HIGH. The outputs are active only in the Read mode. This device is similar to the 'F289 but features non-inverting, rather than inverting, data outputs.

- Open-collector Outputs for Wired-AND Applications
- Buffered Inputs Minimize Loading
- Address Decoding On-chip
- Diode Clamped Inputs Minimize Ringing

Ordering Co	de: See Section 6	14 — A ₂					
	Commercial Grade	Military Grade	Pkg	$13 \longrightarrow A_3 \qquad O_1 O_2 O_3 O_4$			
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ} C \text{ to } +125^{\circ} C$	Туре	5 7 9 11			
Plastic DIP (P)	74F319PC		9B				
Ceramic DIP (D)	74F319DC	54F319DM	6B	V _{CC} = Pin 16 GND = Pin 8			
Flatpak (F)		54F319FM	4L				

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
A0 - A3	Address Inputs	0.5/0.375
CS	Chip Select Input (Active LOW)	0.5/0.75
WE	Write Enable Input (Active LOW)	0.5/0.75
D1 - D4	Data Inputs	0.5/0.375
O1 - O4	Data Outputs	OC*/12.5

*OC-Open Collector

Function Table

INF	PUTS	OPERATION	CONDITION OF OUTPUTS		
ĊŚ	WE	OPERATION			
L	L	Write	Off (HIGH)		
L	н	Read	Complement of Stored Data		
н	Х	Inhibit	Off (HIGH)		

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Logic Diagram

Symbol	Parameter	54F/74F			Units	Conditions	
oyooi		Min	Тур	Мах			
lcc	Power Supply Current		37	55	∞ mA	$V_{CC} = Max; \overline{WE}, \overline{CS} = Gnd$	

100

- your to the there was an and the

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74F	54F	74F		1
Symbol	Parameter	$T_{A} = +25^{\circ}C, \\ V_{CC} = +5.0 V \\ C_{L} = 50 \text{ pF}$	T _A , V _{CC} = Mil C _L = 50 pF	T _A , V _{CC} = Com C _L = 50 pF	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
tplh tphl	Access Time, HIGH or LOW An to On	1118258.01420			ns	3-1 3-10
tphL	Access Time CS to On	4.5 8.0 11			ns	3-1
t _{PLH}	Disable Time CS to On	6.0 10.2 14				3-4
t _{PHL}	Write Recovery Time WE to On	8.0 13.5 19			ns	3-1
tpLH	Disable Time WE to On	8.0 13.5 19				3-3

AC Operating Requirements: See Section 3 for waveforms

		54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
ts (H) ts (L)	Setup Time, HIGH or LOW An to WE	0 0			ns	3-16
$t_h (H) \\ t_h (L)$	Hold Time, HIGH or LOW An to WE	0 0				
$\begin{array}{c} \hline t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW Dn to WE	10 10			ns	3-14
$\begin{array}{c} t_{h} \ (H) \\ t_{h} \ (L) \end{array}$	Hold Time, HIGH or LOW D _n to WE	0 0				0-14
ts (L)	Setup Time LOW CS to WE	6.0			ns	3-14
t_h (L)	Hold Time LOW CS to WE	0				0-14
t _w (L)	WE Pulse Width LOW	6.0			ns	3-16

Test limits in screened columns are preliminary.

Connection Diagram

54F/74F322

8-Bit Serial/Parallel Register (With Sign Extend)

Description

The 'F322 is an 8-bit shift register with provision for either serial or parallel loading and with 3-state parallel outputs plus a bi-state serial output. Parallel data inputs and parallel outputs are multiplexed to minimize pin count. State changes are initiated by the rising edge of the clock. Four synchronous modes of operation are possible: hold (store), shift right with serial entry, shift right with sign extend and parallel load. An asynchronous Master Reset (MR) input overrides clocked operation and clears the register.

- Multiplexed Parallel I/O Ports
- Separate Serial Input and Output
- Sign Extend Function
- 3-State Outputs for Bus Applications

RE 1	<i>`</i> ب'	20 V cc
S/P 2		19 S
D0 3		18 SE
1/07 4		17 D1
I/O₅ 5		16 I/O 6
I/O3 6		15 I/O ₄
1/01 7		14 I/O2
OE 8		13 I/O 0
MR 9		12 Q 0
GND 10		11 CP
L	· · · · · · · · · · · · · · · · · · ·	J

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg Type	
Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%,$ $T_A = 0^{\circ} \text{C} \text{ to } +70^{\circ} \text{C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$		
Plastic DIP (P)	74F322PC		9Z	
Ceramic DIP (D)	74F322DC	54F322DM	4E	
Flatpak [®] (F)		54F322FM	4D	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW 0.5/0.375			
RE	Register Enable Input (Active LOW)				
S/P	Serial (HIGH) or Parallel (LOW) Mode Control Input	0.5/0.375			
SE	Sign Extend Input (Active LOW)	0.5/1.125			
S	Serial Data Select Input	0.5/0.75			
D ₀ , D ₁	Serial Data Inputs	0.5/0.375			
СР	Clock Pulse Input (Active Rising Edge)	0.5/0.375			
MR	Asynchronous Master Reset Input (Active LOW)	0.5/0.375			
ŌE	3-State Output Enable Input (Active LOW)	0.5/0.375			
Q ₀	Bi-state Serial Output	25/12.5			
I/O ₀ – I/O ₇	Multiplexed Parallel Data Inputs or	0.5/0.375			
	3-State Parallel Data Outputs	25/12.5			

4-141

JZZ

1 1 4 4 4 4 1 a set of the set of

Functional Description

The 'F322 contains eight D-type edge triggered flipflops and the interstage gating required to perform right shift and the intrastage gating necessary for hold and synchronous parallel load operations. A LOW signal on RE enables shifting or parallel loading, while a HIGH signal enables the hold mode. A HIGH signal on S/P enables shift right, while a LOW signal disables the 3-state output buffers and enables parallel loading. In the shift right mode a HIGH signal on SE enables serial entry from either D₀ or D₁, as determined by the S input. A LOW signal on SE enables shift right but Q7 reloads its contents, thus performing the sign extend function required for the 'LS384 Twos Complement Multiplier. A HIGH signal on OE disables the 3-state output buffers, regardless of the other control inputs. In this condition the shifting and loading operations can still be performed.

Logic Diagram

Mode Select Table

MODE	INPUTS					OUTPUTS										
	MR	RE	S/P	SE	S	0E*	СР	I/O7	I/O6	I/O5	I/O4	I/O ₃	I/O2	I/O1	I/O ₀	Q ₀
Clear	L L	X X	X X	x	X X	LH	X X	L Z	L Z	L Z	L Z	L Z	L Z	L Z	L Z	L L
Parallel Load	н	L	L	х	х	x	L	I7	16	l5	14	l3	12	h	lo	lo
Shift Right	нн	L L	тт	нн	L H	L	L L	Do D1	07 07	O6 O6	O5 O5	O4 O4	O3 O3	O2 O2	01 01	01 01
Sign Extend	н	L	н	L	x	L	r	07	07	O6	O5	O4	O ₃	O2	O 1	01
Hold	н	н	х	Х	Х	L	L	NC	NC	NC	NC	NC	NC	NC	NC	NC

*When the OE input is HIGH, all I/On terminals are at the high-impedance state; sequential operation or clearing of the register is not affected

1. $I_7 - I_0 =$ The level of the steady-state input at the respective I/O terminal is loaded into the flip-flop while the flip-flop outputs (except Q_0) are isolated from the I/O terminal.

2. D_0 , D_1 = The level of the steady-state inputs to the serial multiplexer input.

3. $O_7 - O_0$ = The level of the respective Q_n flip-flop prior to the last Clock LOW-to-HIGH transition.

NC = No change Z = High-Impedance Output State H = HIGH Voltage Level L = LOW Voltage Level

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter		54F/74F	-	Units	Conditions		
		Min	Тур	Max		Conditions		
lcc	Power Supply Current		60	84	mA	V _{CC} = Max, CP = HIGH Output Disabled		
Ін	Input HIGH Current Breakdown Test, I/O ₀ – I/O ₇			100	μΑ	$V_{CC} = Max, V_{IN} = 5.5 V$		
Iiн + Iozh	3-State Output OFF Current HIGH, I/O ₀ – I/O ₇			70	μΑ	$V_{CC} = Max, V_{OUT} = 2.4 V$		
IIL + IOZL	3-State Output OFF Current LOW, I/O ₀ -I/O ₇			-650	μA	$V_{CC} = Max, V_{OUT} = 0.5 V$		

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74F	54F	74F	Units	Fig. No.
Symbol	Parameter	T _A = +25°C, V _{CC} = +5.0 V C _L = 50 pF	$T_{A}, V_{CC} = Mil \\ C_{L} = 50 \text{ pF}$	T _A , V _{CC} = Com C _L = 50 pF		
		Min Typ Max	Min Max	Min Max		
f _{max}	Maximum Clock Frequency	70			MHz	3-1, 3-7
tplh tphl	Propagation Delay CP to I/On	5.5 10 14 5.5 10 14	·		ns	3-1
tplh tphl	Propagation Delay CP to Q_0	5.510145.51014			110	3-7
t _{PHL}	Propagation Delay MR to I/On	6.5 12 16			ns	3-1 3-11

Test limits in screened columns are preliminary.

		54F/74F	54F	74F		
Symbol	Parameter	$ \begin{array}{l} T_{A} = +25^{\circ}C, \\ V_{CC} = +5.0 \ V \\ C_{L} = 50 \ pF \end{array} $	TA, VCC = Mil CL = 50 pF	$T_{A}, V_{CC} = Com$ $C_{L} = 50 \text{ pF}$	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
tрнL	Propagation Delay MR to Q ₀	6.5 12 16			ns	3-1 3-11
tpzh tpzL	Output Enable Time OE to I/On	6.010146.01014			ns	3-1 3-12
tphz tplz	Output Disable Time OE to I/On	4.07.0104.07.010				3-13
tpzh tpzL	Output Enable Time S/P to I/On	6.010146.01014		-	ns	3-1 3-12
tphz tplz	Output Disable Time S/P to I/On	4.07.0104.07.010				3-13

AC Characteristics(cont'd): See Section 3 for waveforms and load configurations

AC Operating Requirements: See Section 3 for waveforms

		54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
$\begin{array}{l} t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW RE to CP	12 12			ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW RE to CP	0 0			FIC	00
t _s (H) t _s (L)	Setup Time, HIGH or LOW D_0 , D_1 or I/O _n to CP	5.0 5.0			ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW D_0 , D_1 or I/O_n to CP	0 0				
ts(H) ts(L)	Setup Time, HIGH or LOW SE to CP	12 12			ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW SE to CP	0 0				
t _s (H) t _s (L)	Setup Time, HIGH or LOW S/P to CP	12 12				
ts(H) ts(L)	Setup Time, HIGH or LOW S to CP	12 12			ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW S or S/P to CP	0 0				
t _w (H)	CP Pulse Width HIGH	7.0			ns	3-7
t _w (L)	MR Pulse Width LOW	7.0			ns	3-11
t _{rec}	Recovery Time MR to CP	5.0			ns	3-11

Test limits in screened columns are preliminary.

Connection Diagram

8-Bit Universal Shift/Storage Register (With Synchronous Reset and Common I/O Pins)

Description

The 'F323 is an 8-bit universal shift/storage register with 3-state outputs. Its function is similar to the 'F299 with the exception of Synchronous Reset. Parallel load inputs and flip-flop outputs are multiplexed to minimize pin count. Separate serial inputs and outputs are provided for Q_0 and Q_7 to allow easy cascading. Four operation modes are possible: hold (store), shift left, shift right and parallel load.

- Common Parallel I/O for Reduced Pin Count
- Additional Serial Inputs and Outputs for Expansion
- Four Operating Modes: Shift Left, Shift Right, Load and Store
- 3-State Outputs for Bus Oriented Applications

Ordering Code: See Section 6								
	Commercial Grade	Military Grade	Pkg					
Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%,$ $T_A = 0^{\circ} \text{C} \text{ to } +70^{\circ} \text{ C}$	$\label{eq:VCC} \begin{array}{l} V_{CC} = +5.0 \ V \ \pm 10\%, \\ T_{A} = -55^{\circ} C \ to \ +125^{\circ} C \end{array}$	Туре					
Plastic DIP (P)	74F323PC		9Z					
Ceramic DIP (D)	74F323DC	54F323DM	4E					
Flatpak (F)		54F323FM	4D					

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
CP	Clock Pulse Input (Active Rising Edge)	0.5/0.375
DS ₀	Serial Data Input for Right Shift	0.5/0.375
DS7	Serial Data Input for Left Shift	0.5/0.375
S ₀ , S ₁	Mode Select Inputs	0.5/0.75
SR	Synchronous Reset Input (Active LOW)	0.5/0.375
OE1, OE2	3-State Output Enable Inputs (Active LOW)	0.5/0.375
I/O ₀ - I/O ₇	Multiplexed Parallel Data Inputs or	0.5/0.75
	3-State Parallel Data Outputs	25/12.5
Q0, Q7	Serial Outputs	25/12.5

323

Functional Description

The 'F323 contains eight edge-triggered D-type flipflops and the interstage logic necessary to perform synchronous reset, shift left, shift right, parallel load and hold operations. The type of operation is determined by S₀ and S₁ as shown in the Mode Select Table. All flip-flop outputs are brought out through 3-state buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q₀ and Q₇ are also brought out on other pins for expansion in serial shifting of longer words.

A LOW signal on SR overrides the Select inputs and allows the flip-flops to be reset by the next rising edge of CP. All other state changes are also initiated by the LOW-to-HIGH CP transition. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP, are observed.

A HIGH signal on either $\overline{OE_1}$ or $\overline{OE_2}$ disables the 3-state buffers and puts the I/O pins in the high impedance state. In this condition the shift, load, hold and reset operations can still occur. The 3-state buffers are also disabled by HIGH signals on both S₀ and S₁ in preparation for a parallel load operation.

Mode Select Table

	INP	JTS		RESPONSE		
SR	S ₁	S ₀	СР	neor once		
	ХНГНН	ХННЧН	x	Synchronous Reset; $Q_0 - Q_7 = LOW$ Parallel Load; $I/O_n \rightarrow Q_n$ Shift Right; $DS_0 \rightarrow Q_0$, $Q_0 \rightarrow Q_1$, etc. Shift Left; $DS_7 \rightarrow Q_7$, $Q_7 \rightarrow Q_6$, etc. Hold		

GND = Pin 10

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

Logic Diagram

Symbol	Parameter	54F/74F			Units	Conditions	
		Min	Тур	Мах	Cinto	Conditione	
lcc	Power Supply Current		66	92	mA	V _{CC} = Max, CP = HIGH Outputs Disabled	
Ιн	Input HIGH Current Breakdown Test, I/O ₀ – I/O ₇		. <u></u>	100	μA	$V_{CC} = Max, V_{IN} = 5.5 V$	
Іін + Іогн	3-State Output OFF Current HIGH, I/O ₀ – I/O ₇			70	μA	$V_{CC} = Max, V_{OUT} = 2.4 V$	
IIL + IOZL	3-State Output OFF Current LOW, I/O ₀ – I/O ₇			-650	μA	$V_{CC} = Max, V_{OUT} = 0.5 V$	

DC Characteristics over Operating Temperature Range (unless otherwise specified)

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25 \circ C,$ $V_{CC} = +5.0 V$ $C_L = 50 pF$	$\begin{array}{l} T_{A}, \ V_{CC} = \\ Mil \\ C_{L} = 50 \ pF \end{array}$	$\begin{array}{l} T_{A},V_{CC}=\\ Com\\ C_{L}=50\ pF \end{array}$	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
f _{max}	Maximum Input Frequency	70			MHz	3-1, 3-7
tplh tphl	Propagation Delay CP to Q_0 or Q_7	5.510145.51014			ns	3-1
tPLH tPHL	Propagation Delay CP to I/O _n	5.510145.51014			110	3-7
tpzh tpzL	Output Enable Time	6.010146.01014			ns	3-1 3-12
tphz tplz	Output Disable Time	4.07.0104.07.010			.15	3-13

ma a a m

Test limits in screened columns are preliminary.

		54F/74F	54F	74F	Units	Fig. No.
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com		
		Min Typ Max	Min Max	Min Max		
ts (H) ts (L)	Setup Time, HIGH or LOW S_0 or S_1 to CP	12 12			ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW S_0 or S_1 to CP	0 0				00
ts (H) ts (L)	Setup Time, HIGH or LOW I/On, DS ₀ , DS ₇ to CP	5.0 5.0			ns	3-5
$t_h (H) = t_h (L)$	Hold Time, HIGH or LOW I/On, DS ₀ , DS ₇ to CP	0 0				
t _{s.} (H) t _{s.} (L)	Setup Time, HIGH or LOW	15 15	-		ns	3-5
$t_h (H) \\ t_h (L)$	Hold Time, HIGH or LOW	0 0				0
t _w (H) t _w (L)	CP Pulse Width, HIGH or LOW	7.0 7.0			ns	3-7

.

100 C 100 C

- ---

..... Sontia - - 4 _ .

Test limits in screened columns are preliminary.

4-Bit Shifter (With 3-State Outputs)

Description

The 'F350 is a specialized multiplexer that accepts a 4-bit word and shifts it 0, 1, 2 or 3 places, as determined by two Select (S_0, S_1) inputs. For expansion to longer words, three linking inputs are provided for lower-order bits; thus two packages can shift an 8-bit word, four packages a 16-bit word, etc. Shifting by more than three places is accomplished by paralleling the 3-state outputs of different packages and using the Output Enable (\overline{OE}) inputs as a third Select level. With appropriate interconnections, the 'F350 can perform zero-backfill, sign-extend or end-around (barrel) shift functions.

- Linking Inputs for Word Expansion
- 3-State Outputs for Extending Shift Range

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg
Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%, \\ T_A = 0^{\circ} \text{C to} +70^{\circ} \text{C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to} +125^{\circ} \text{ C}$	Туре
Plastic DIP (P)	74F350PC		9B
Ceramic DIP (D)	74F350DC	54F350DM	6B
Flatpak (F)		54F350FM	4L

Logic Symbol

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
S ₀ , S ₁	Select Inputs	0.5/0.75
I_3 - I3	Data Inputs	0.5/0.75
I ₋₃ - I ₃ OE	Output Enable Input (Active LOW)	0.5/0.75
<u>O</u> ₀ – O ₃	3-State Outputs	25/12.5

350

Functional Description

The 'F350 is operationally equivalent to a 4-input multiplexer with the inputs connected so that the select code causes successive one-bit shifts of the data word. This internal connection makes it possible to perform shifts of 0, 1, 2 or 3 places on words of any length.

A 7-bit data word is introduced at the I_n inputs and is shifted according to the code applied to the select inputs S₀, S₁. Outputs O₀ – O₃ are 3-state, controlled by an active-LOW output enable (\overline{OE}). When \overline{OE} is LOW, data outputs will follow selected data inputs; when HIGH, the data outputs will be forced to the high-impedance state. This feature allows shifters to be cascaded on the same output lines or to a common bus. The shift function can be logical, with zeros pulled in at either or both ends of the shifting field; arithmetic, where the sign bit is repeated during a shift down; or end around, where the data word forms a continuous loop.

Logic Equations

 $\begin{array}{l} O_0 = \overline{S_0} \ \overline{S_1} \ l_0 + S_0 \ \overline{S_1} \ l_{-1} + \overline{S_0} \ S_1 \ l_{-2} + S_0 \ S_1 \ l_{-3} \\ O_1 = \overline{S_0} \ \overline{S_1} \ l_1 + S_0 \ \overline{S_1} \ l_0 + \overline{S_0} \ S_1 \ l_{-1} + S_0 \ S_1 \ l_{-2} \\ O_2 = \overline{S_0} \ \overline{S_1} \ l_2 + S_0 \ \overline{S_1} \ l_1 + \overline{S_0} \ S_1 \ l_0 + S_0 \ S_1 \ l_{-1} \\ O_3 = \overline{S_0} \ \overline{S_1} \ l_3 + S_0 \ \overline{S_1} \ l_2 + \overline{S_0} \ S_1 \ l_1 + S_0 \ S_1 \ l_0 \end{array}$

Truth Table

INPUTS				OUTPUTS				
ŌE	S1	S ₀	O0	O1	O2	O3		
н	Х	Х	z	Z	Z	Z		
L	L	L	lo	11	l2	l3		
L	L	н	I_1	lo	l1	l2		
L	н	L	1-2	I_1	lo	11		
L	н	н	I3	I-2	I_1	ю		

H=HIGH Voltage Level

L = LOW Voltage Level

Z = High Impedance

X = Immaterial

Logic Diagram

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter	54F/74F			Units	Conditions	
		Min	Тур	Мах	01110		
Iссн Iсс∟ Iccz	Power Supply Current		22 26 26	35 41 42	mA	Outputs HIGH Outputs LOW Outputs OFF	

AC Characteristics: See Section 3 for waveforms and load configurations

		5	54F/74	F	54	ŧF	74	ŧF		
Symbol	Parameter	Vcd	= +25 c = +5 _ = 50	.0 V	T _A , V _{CC} = Mil C _L = 50 pF		$T_{A}, V_{CC} = C_{Com}$ $C_{L} = 50 \text{ pF}$		Units	Fig. No.
		Min	Тур	Мах	Min	Max	Min	Мах		
tplh tphl	Propagation Delay In to On	3.0 2.5	4.5 4.0	6.0 5.5	3.0 2.5	7.5 7.0	3.0 2.5	7.0 6.5	ns	3-1 3-4
tplh tphl	Propagation Delay S _n to O _n	4.0 3.0	7.8 6.5	10 8.5	4.0 3.0	13 10	4.0 3.0	11 9.5	ns	3-1 3-10
tpzh tpzL	Output Enable Time	2.5 4.0	5.0 7.0	7.0 9.0	2.5 4.0	8.5 11	2.5 4.0	8.0 10	ns	3-1
tphz tplz	Output Disable Time	2.0 2.0	3.9 4.0	5.5 5.5	2.0 2.0	7.0 8.5	2.0 2.0	6.5 6.5		3-12 3-13

Test limits in screened columns are preliminary.

Applications

16-Bit Shift-Up 0 to 3 Places, Zero Backfill

0, 00

L L NO SHIFT

L H SHIFT 1 PLACE

H L SHIFT 2 PLACES

H H SHIFT 3 PLACES

L L L NO SHIFT L L H SHIFT END AROUND 1 L H L SHIFT END AROUND 2 L H H SHIFT END AROUND 3 H L L SHIFT END AROUND 4 H L H SHIFT END AROUND 5 H H L SHIFT END AROUND 6 H H H SHIFT END AROUND 6

12 11 10 9 8 7 8 5 3 2 1 s I_3 I_1 I0 I1 I2 I3 0 I_2 I_3 S₀ I_2 1-1 lo l1 l2 l3 $S_0 I_{-2} I_{-1} I_0 I_1 I_2$ 13 S₀ S1 S₁ S1 OE OE Y₁ Y₂ Y₃ Y₂ Y₃ Υn Y۱ Y_2 Y₃ Ϋ́ο Y₁ -S₀ S₁ ż 12 11 10 9 8 Ġ 5 SCALE S1 S₀ LL÷8 1/8 1/4 L H÷4 HL÷2 1/2 H H NO CHANGE 1

13-Bit Twos Complement Scaler

Connection Diagram

54F/74F352

Dual 4-Input Multiplexer

Description

The 'F352 is a very high speed dual 4-input multiplexer with common Select inputs and individual Enable inputs for each section. It can select two bits of data from four sources. The two buffered outputs present data in the inverted (complementary) form. The 'F352 is the functional equivalent of the 'F153 except with inverted outputs.

- Inverted Version of the 'F153
- Separate Enables for Each Multiplexer
- Input Clamp Diode Limits High Speed Termination Effects

	Commercial Grade	Military Grade	Pkg	
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ} C \text{ to } +125^{\circ} C$	Туре	
Plastic DIP (P)	74F352PC		9B	
Ceramic DIP (D)	74F352DC	54F352DM	6B	
Flatpak (F)		54F352FM	4L	

Pin Names	Description	54F/74F (U.L.) HIGH/LOW			
1 _{0a} - 1 _{3a}	Side A Data Inputs	0.5/0.375			
10ь – Ізь	Side B Data Inputs	0.5/0.375			
S0, S1	Common Select Inputs	0.5/0.375			
Ēa	Side A Enable Input (Active LOW)	0.5/0.375			
Ēb	Side B Enable Input (Active LOW)	0.5/0.375			
$\overline{Z}_a, \overline{Z}_b$	Multiplexer Outputs (Inverted)	25/12.5			

Logic Symbol

 $V_{CC} = Pin 16$ GND = Pin 8

4 4 5 0

Functional Description

The 'F352 is a dual 4-input multiplexer. It selects two bits of data from up to four sources under the control of the common Select inputs (S₀, S₁). The two 4-input multiplexer circuits have individual active-LOW Enables (\overline{E}_a , \overline{E}_b) which can be used to strobe the outputs independently. When the Enables (\overline{E}_a , \overline{E}_b) are HIGH, the corresponding outputs (\overline{Z}_a , \overline{Z}_b) are forced HIGH.

The logic equations for the outputs are shown below:

$$\overline{Z}_{a} = \overline{E_{a} \cdot (I_{0a} \cdot \overline{S}_{1} \cdot \overline{S}_{0} + I_{1a} \cdot \overline{S}_{1} \cdot S_{0} + I_{1a} \cdot \overline{S}_{1} \cdot S_{0} + I_{2a} \cdot S_{1} \cdot \overline{S}_{0} + I_{3a} \cdot S_{1} \cdot S_{0})}$$

$$\overline{Z}_{b} = \overline{E_{b} \cdot (I_{0b} \cdot \overline{S}_{1} \cdot \overline{S}_{0} + I_{1b} \cdot \overline{S}_{1} \cdot S_{0} + I_{2b} \cdot S_{1} \cdot \overline{S}_{0} + I_{3b} \cdot S_{1} \cdot S_{0})}$$

The 'F352 can be used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the Select inputs. A less obvious application is as a function generator. The 'F352 can generate two functions of three variables. This is useful for implementing highly irregular random logic.

Logic Diagram

Truth Table

	ECT UTS		INP	OUTPUT			
S ₀	S1	Ē	Ìo	11	12	13	Ī
х	Х	н	х	Х	х	X	н
L	L	L	L	X	Х	х	H
L	L	L	н	Х	Х	х	L
н	L	L	х	L	х	X	н
н	L	L	х	н	х	X	L
L	н	L	. X	Х	L	х	н
L	н	L	Х	Χ.	н	х	L
н	н	L	Х	Х	Х	L	н
н	н	L	х	Х	х	н	L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

DC Characteristics Over Operating Temperature Range (unless otherwi

Symbol	Parameter		54F/74F		Units	Conditions		
		Min	Тур	Max	•	Contailond		
Іссн Іссь	Power Supply Current		9.3 13.3	14 20	mA	V _{IN} = Gnd V _{IN} = HIGH	V _{CC} = Max	

AC Characteristics: See Section 3 for waveforms and load configurations

			54F/74	F	54	IF	74	4F		
Symbol	Parameter	Vc	= +25 c = +5 = 50	.0 V	N	'cc = lil 50 pF	Co	/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Max		
tplh tphL	Propagation Delay S_n to \overline{Z}_n	4.0 4.0	7.4 7.0	13 13	3.5 3.5	14.5 15	4.0 4.0	14 14	ns	3-1 3-10
tplh tphl	Propagation Delay \overline{E}_n to \overline{Z}_n	5.0 4.0	8.7 8.6	14 11	4,5 4.0	17 13	5.0 4.0	15 12	ns	3-1 3-4
tplh tphl	Propagation Delay I _n to Z _n	2.0 2.0	4.9 3.0	7.0 6.0	2.0 2.0	9.0 7.5	2.0 2.0	8.0 7.0	ns	3-1 3-3

Test limits in screened columns are preliminary.

353 **Connection Diagram** 54F/74F353 **Dual 4-Input Multiplexer** (With 3-State Outputs) Description The 'F353 is a dual 4-input multiplexer with 3-state outputs. It can select two bits of data from four sources using common Select inputs. The outputs may be individually switched to a high impedance state with a HIGH on the OE_a 1 16 Vcc respective Output Enable (\overline{OE}) inputs, allowing the outputs to interface directly with bus oriented systems. 15 OE S₁[2 14 So I3a 3 Inverted Version of 'F253 **Multifunction Capability** 13 I3b 12a 4 Separate Enables for Each Multiplexer 12 I2b 11a 5 11 I1b 10a 6 Ordering Code: See Section 6 **Z**a 7 10 IOb **Commercial Grade Military Grade** 9 Zb GND 8 Pkq $V_{CC} = +5.0 V \pm 5\%$ Pkg $V_{CC} = +5.0 V \pm 10\%$, Type $T_A = 0^\circ C$ to $+70^\circ C$ $T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ Plastic 74F353PC 9B DIP (P) Ceramic 74F353DC 54F353DM 6B DIP (D) Flatpak 54F353FM 4L (**F**)

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
10a - 13a	Side A Data Inputs	0.5/0.375
10b - 13b	Side B Data Inputs	0.5/0.375
S ₀ , S ₁	Common Select Inputs	0.5/0.375
OEa	Side A Output Enable Input (Active LOW)	0.5/0.375
OEb	Side B Output Enable Input (Active LOW)	0.5/0.375
Za, Zb	3-State Outputs (Inverted)	25/12.5

Logic Symbol

Functional Description

The 'F353 contains two identical 4-input multiplexers with 3-state outputs. They select two bits from four sources selected by common Select inputs (S_0 , S_1). The 4-input multiplexers have individual Output Enable (\overline{OE}_a , \overline{OE}_b) inputs which, when HIGH, force the outputs to a high impedance (high Z) state. The logic equations for the outputs are shown below:

$$\overline{Z}_a = \overline{OE}_a \bullet (I_{0a} \bullet \overline{S}_1 \bullet \overline{S}_0 + I_{1a} \bullet \overline{S}_1 \bullet S_0 + I_{2a} \bullet S_1 \bullet \overline{S}_0 + I_{3a} \bullet S_1 \bullet S_0)$$

$$\overline{Z}_b = \overline{OE}_b \bullet (I_{0b} \bullet \overline{S}_1 \bullet \overline{S}_0 + I_{1b} \bullet \overline{S}_1 \bullet S_0 + I_{2b} \bullet S_1 \bullet \overline{S}_0 + I_{3b} \bullet S_1 \bullet S_0)$$

If the outputs of 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so that there is no overlap.

Truth Table

		_					
	ECT UTS			OUTPUT ENABLE	Ουτρύτ		
S ₀	S ₁	lo	l1	l2	I 3	ŌĒ	Z
x	Х	x	х	x	X	Н	(Z)
L	L	L	Х	Х	Х	L	н
L	L	н	Х	Х	Х	L	L
н	L	X	L	х	х	L	н
н	L	x	н	х	х	L ·	7 L
L	н	X	Х	L	Х	L	н.
L	н	X	Х	н	Х	L	L
н	н	X	х	Х	L	L	н
н	Н	X	х	х	Н	L	L

Address inputs S₀ and S₁ are common to both sections.

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

(Z) = High Impedance

DC Characteristics Over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter		54F/74F	1 - 1 	Units	Conditions		
		Min	Тур	Max				
Iссн IссL Iccz	Power Supply Current		9.3 13.3 15	14 20 23	mA	$\label{eq:constraint} \begin{array}{c c} I_n, \ S_n, \ \overline{OE}_n = Gnd \\ \hline I_n, \ S_n = Gnd \\ \overline{OE}_n = 4.5 \ V \end{array} \\ \end{array} \\ \begin{array}{c} V_{CC} = Max \\ \end{array}$		

AC Characteristics: See Section 3 for waveforms and load configurations

			54F/74	F	54	4F	74	4F		
Symbol	Parameter	$ \begin{array}{l} {\sf T}_{\sf A} = +25^{\circ}{\sf C}, \\ {\sf V}_{\sf C{\sf C}} = +5.0{\sf V} \\ {\sf C}_{\sf L} = 50{\sf p}{\sf F} \end{array} $			$T_{A}, V_{CC} = Mil \\ C_{L} = 50 \text{ pF}$		$T_{A}, V_{CC} = C_{OM}$ $C_{L} = 50 \text{ pF}$		Units	Fig. No.
		Min	Тур	Мах	Min	Мах	Min	Мах		
tplh tphl	Propagation Delay S_n to \overline{Z}_n	5.0 4.0	8.8 7.4	14 11	5.0 4.0	16 14	5.0 4.0	15 12	ns	3-1 3-10
tplh tphl	Propagation Delay In to Zn	3.0 2.0	5.6 2.8	7.0 6.0	3.0 2.0	9.0 7.5	3.0 2.0	8.0 7.0	ns	3-1 3-3
tpzh tpzL	Output Enable Time	3.0 3.0	6.8 7.2	9.0 9.5	3.0 3.0	11 12	3.0 3.0	10 10.5	ns	3-1 3-12
tphz tplz	Output Disable Time	2.0 2.0	3.7 4.4	5.0 6.0	2.0 2.0	6.5 8.5	2.0 2.0	6.0 7.0	.10	3-13

Test limits in screened columns are preliminary.

54F/74F373

Octal Transparent Latch (With 3-State Outputs)

Connection Diagram

Logic Symbol

 D_0 D_1 D_2 D₃ D_4 **D**5 D_6 D7

01 **O**₂ 02 04 05

LE

Description

The 'F373 consists of eight latches with 3-state outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable $\overline{(OE)}$ is LOW. When OE is HIGH the bus output is in the high impedance state.

- Eight Latches in a Single Package
- 3-State Outputs for Bus Interfacing

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg	
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ} C \text{ to } +125^{\circ} C$	Туре	2 5
Plastic DIP (P)	74F373PC		9Z	V _{CC} = Pin 20 GND = Pin 10
Ceramic DIP (D)	74F373DC	54F373DM	4E	
Flatpak (F)		54F373FM	4D	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
D0 - D7	Data Inputs	0.5/0.375
LE	Latch Enable Input (Active HIGH)	0.5/0.375
OE	Output Enable Input (Active LOW)	0.5/0.375
00-07	3-State Latch Outputs	25/12.5

17

O₆ **O**₇

16 19

12 15

Functional Description

The 'F373 contains eight D-type latches with 3-state output buffers. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-state buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the buffers are in the bi-state mode. When \overline{OE} is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter 54F/74F		Parameter 54F/74F		Units	Conditions	
eyinbol		Min	Тур	Max			
lccz	Power Supply Current (All Outputs OFF)		35	55	mA	$V_{CC} = Max, \overline{OE} = 4.5 V$ D _n , LE = Gnd	

AC Characteristics: See Section 3 for waveforms and load configurations

		5	4F/74	F	54	4F	74	1F		- · · ·
Symbol	Parameter		$V_{CC} = +5.0 V$			T _A , V _{CC} = Mil C _L = 50 pF		/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Max	Min	Мах	Min	Max		-
tplh tphl	Propagation Delay D_n to O_n	3.0 2.0	5.3 3.7	7.0 5.0	3.0 2.0	8.5 6.0	3.0 2.0	8.0 6.0	ns	3-2 3-4
tplh tphl	Propagation Delay LE to O _n	5.0 3.0	9.0 5.2	11.5 7.0	5.0 3.0	15 8.5	5.0 3.0	13 8.0	ns	3-2 3-7
tpzh tpzL	Output Enable Time	2.0 2.0	5.0 5.6	11 7.5	2.0 2.0	13.5 10	2.0 2.0	12 8.5	ns	3-2 3-12 3-13
tphz tplz	Output Disable Time	2.0 2.0	4.5 3.8	6.5 5.0	2.0 2.0	10 7.0	2.0 2.0	7.5 6.0	ns	3-2 3-12 3-13

AC Operating Requirements: See Section 6 for waveforms

		54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ} C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
$\begin{array}{c} t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW Dn to LE	2.0 2.0	2.0 2.0	2.0 2.0	ns	3-15
$t_h (H) \\ t_h (L)$	Hold Time, HIGH or LOW D _n to LE	3.0 3.0	3.0 3.0	3.0 3.0	110	0 10
t _w (H)	LE Pulse Width HIGH	6.0	6.0	6.0	ns	3-7

374

54F/74F374

Octal D-Type Flip-Flop (With 3-State Outputs)

Description

The 'F374 is a high-speed, low-power octal D-type flip-flop featuring separate D-type inputs for each flip-flop and 3-state outputs for bus oriented applications. A buffered Clock (CP) and Output Enable (\overline{OE}) are common to all flip-flops.

• Edge-triggered D-Type Inputs

Ordering Code: See Section 6

- Buffered Positive Edge-triggered Clock
- 3-State Outputs for Bus Oriented Applications

OE 1 20 Vcc 19 07 00 2 18 D7 **D**0 3 17 D6 D1 4 16 O₆ 01 5 **15 O**5 02 6 14 D5 D2 7 13 D4 D3 8 12 0₄ 03 9 11 CP GND 10

Connection Diagram

	Commercial Grade	Military Grade	Pkg	- 3 4 7 8 13 14 17 18
Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%, \\ T_{A} = 0^{\circ} \text{C to} +70^{\circ} \text{C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$	Туре	D ₀ D ₁ D ₂ D ₃ D ₄ D ₅ D ₆ D ₇ 11
Plastic DIP (P)	74F374PC		9Z	1O OE O ₀ O ₁ O ₂ O ₃ O ₄ O ₅ O ₆ O ₇
Ceramic DIP (D)	74F374DC	54F374DM	4E	2 5 6 9 12 15 16 19
Flatpak (F)		54F374FM	4D	Vcc = Pin 20 GND = Pin 10

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
D0-D7	Data Inputs	0.5/0.375
CP	Clock Pulse Input (Active Rising Edge)	0.5/0.375
OE	3-State Output Enable Input (Active LOW)	0.5/0.375
O ₀ - O ₇	3-State Outputs	25/12.5

Logic Diagram

Functional Description

The 'F374 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-state true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When the \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE} input does not affect the state of the flip-flops.

Truth Table

INP	UTS	OU.	TPUTS
Dn	СР	ŌĒ	On
н	7	L	н
L	5	L	L
Х	х	н	Z
х	х	н	Z

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Z = High Impedance

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter	54F/74F			Units	Conditions	
e y inser		Min	Тур	Max			
ICCL	Power Supply Current (All Outputs OFF)		55	86	mA	$V_{CC} = Max, D_n = Gnd$ $\overline{OE} = 4.5 V$	

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74F			54F		74F			
Symbol	Parameter	Vcd	= +25 c = +5 _ = 50	.0 V	N	/cc = /il 50 pF	C	/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Max		
f _{max}	Maximum Clock Frequency	100			60		70		MHz	3-1, 3-7
tplн tpнL	Propagation Delay CP to O _n	4.0 4.0	6.5 6.5	8.5 8.5	4.0 4.0	10.5 11	4.0 4.0	10 10	ns	3-1 3-7
tpzh tpzl	Output Enable Time	2.0 2.0	9.0 5.8	11.5 7.5	2.0 2.0	14 10	2.0 2.0	12.5 8.5	ns	3-1 3-12
tрнz tplz	Output Disable Time	2.0 2.0	5.3 4.3	7.0 5.5	2.0 2.0	8.0 7.5	2.0 2.0	8.0 6.5		3-13

AC Operating Requirements: See Section 3 for waveforms

		5	54F/74	F	54F		74F T _A , V _{CC} = Com		Units	Fig. No.
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$,		/cc = ⁄iil					
		Min	Тур	Max	Min	Max	Min	Max		
t _s (H) t _s (L)	Setup Time, HIGH or LOW D _n to CP	2.0 2.0			2.5 2.0		2.0 2.0		ns	3-5
th (Ĥ) th (L)	Hold Time, HIGH or LOW D _n to CP	2.0 2.0			2.0 2.5		2.0 2.0			
t _w (H) t _w (L)	CP Pulse Width, HIGH or LOW	7.0 6.0			7.0 6.0		7.0 6.0		ns	3-7

54F/74F378

Parallel D Register (With Enable)

Connection Diagram

Description

The 'F378 is a 6-bit register with a buffered common enable. This device is similar to the 'F174, but with common Enable rather than common Master Reset.

- 6-Bit High-speed Parallel Register
- Positive Edge-Triggered D-Type Inputs •
- Fully Buffered Common Clock and Enable Inputs
- Input Clamp Diodes Limit High Speed Termination Effects
- Full TTL and CMOS Compatible •

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$	Туре
Plastic DIP (P)	74F378PC		9B
Ceramic DIP (D)	74F378DC	54F378DM	6B
Flatpak (F)		54F378FM	4L

13

Logic Symbol

= Pin 16 = Pin 8

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
Ē	Enable Input (Active LOW)	0.5/0.375
D0 - D5	Data Inputs	0.5/0.375
CP	Clock Pulse Input (Active Rising Edge)	0.5/0.375
Q0 - Q5	Outputs	25/12.5

Functional Description

The 'F378 consists of eight edge-triggered D-type flip-flops with individual D inputs and Q outputs. The Clock (CP) and Enable $\overline{(E)}$ inputs are common to all flip-flops.

When the \overline{E} input is LOW, new data is entered into the register on the LOW-to-HIGH transition of the CP input. When the E input is HIGH the register will retain the present data independent of the CP input.

Truth Table

	INPU	гs	OUTPUT
Ē	СР	Dn	Qn
H L L	$\neg \neg \neg$	X H L	No change H L

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Logic Diagram

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter		54F/74F		Units	Conditions	
		Min	Тур	Max			
lcc	Power Supply Current		30	45	mA	$V_{CC} = Max, V_{CP} = 0$	

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74F	54F	74F		Fig. No.
Symbol	Parameter	$T_A = +25 \circ C,$ $V_{CC} = +5.0 V$ $C_L = 50 pF$	T _A , V _{CC} = Mil C _L = 50 pF	$\begin{array}{c} T_{A},V_{CC}=\\ Com\\ C_{L}=50\ pF \end{array}$	Units	
		Min Typ Max	Min Max	Min Max		
f _{max}	Maximum Input Frequency	100 140			MHz	3-1, 3-7
tplh tphl	Propagation Delay CP to Q _n	3.55.58.04.57.010			ns	3-1, 3-7

AC Operating Requirements: See Section 3 for waveforms

		54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com	Units	Fig. No.
		Min Typ Max	Min Max	Min Max	х. 	
$egin{array}{ccc} t_{s} \ (H) & \cdot \ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW D_n to CP	4.0 4.0			ns	3-5
$\begin{array}{l}t_{h}\left(H\right)\\t_{h}\left(L\right)\end{array}$	Hold Time, HIGH or LOW D_n to CP	1.0 1.0				
ts (H) ts (L)	Setup Time, HIGH or LOW E to CP	6.0 6.0			ns	3-5
$\begin{array}{l} t_{h} \ (H) \\ t_{h} \ (L) \end{array}$	Hold Time, HIGH or LOW E to CP	0 0				
$\begin{array}{c} t_{w} \ (H) \\ t_{w} \ (L) \end{array}$	CP Pulse Width, HIGH or LOW	4.0 5.0			ns	3-7

Test limits in screened columns are preliminary.

54F/74F379

Quad Parallel Register (With Enable)

Description

The 'F379 is a 4-bit register with buffered common Enable. This device is similar to the 'F175 but features the common Enable rather than common Master Reset.

- Edge-triggered D-Type inputs
- Buffered Positive Edge-triggered Clock
- Buffered Common Enable Input
- True and Complement Outputs

Ordering Co	de: See Section 6	9 — CP		
	Commercial Grade	Military Grade	_ Pkg	Q ₀ Q ₁ Q ₂ Q ₃
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to} + 125^{\circ} \text{ C}$	Туре	O O O O O 3 2 6 7 11 10 14 15
Plastic DIP (P)	74F379PC		9B	V _{CC} = Pin 16
Ceramic DIP (D)	74F379DC	54F379DM	6B	GND = Pin 8
Flatpak (F)		54F379FM	4L	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
Ē	Enable Input (Active LOW)	0.5/0.375
D0 - D3	Data Inputs	0.5/0.375
CP	Clock Pulse Input (Active Rising Edge)	0.5/0.375
Q0 - Q3	Flip-flop Outputs	25/12.5
$\overline{Q}_0 - \overline{Q}_3$	Complement Outputs	25/12.5

Logic Symbol

Functional Description

The 'F379 consists of four edge-triggered D-type flipflops with individual D inputs and Q and \overline{Q} outputs. The Clock (CP) and Enable $\overline{(E)}$ inputs are common to all flip-flops. When the E input is HIGH, the register will retain the present data independent of the CP input. The D_n and \overline{E} inputs can change when the clock is in either state, provided that the recommended setup and hold times are observed.

Truth Table

1				
INPUTS			OUTF	PUTS
E	СР	Dn	Qn	Qn
Н	L	х	NC	NC
L		н	н	L ·
L	Г	L	L	Н

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial NC = No Change

CP

Logic Diagram

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter		54F/74F		Units Conditions	
eybei		Min	Тур	Мах		Conditions
lcc	Power Supply Current		28	40	mA	V _{CC} = Max; D, Ē = Gnd CP = _J

AC Characteristics: See Section 3 for waveforms and load configurations

	·	54F/74F 54F		4F	74F TA, VCC = Com CL = 50 pF			Fig. No.		
Symbol	Parameter		$T_{A} = +25^{\circ}C, V_{CC} = +5.0 V C_{L} = 50 pF$				T _A , V _{CC} = Mil C _L = 50 pF		Units	
		Min	Тур	Мах	Min	Мах	Min	Max	· · .·	-
f _{max}	Maximum Clock Frequency	100	140				100		MHz	3-1, 3-7
tрцн tрнц	Propagation Delay CP to Q _n , Q _n	4.0 5.0	5.0 6.5	6.5 8.5	ħ.	-	4.0 5.0	7.5 9.5	ns	3-1 3-7

AC Operating Requirements: See Section 3 for waveforms

		54F/74F	54F	74F			
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com	Units	Fig. No.	
		Min Typ Max	Min Max	Min Max			
t _s (H) t _s (L)	Setup Time, HIGH or LOW D _n to CP	3.0 3.0		3.0 3.0	ns	ns	3-5
th(H) th(L)	Hold Time, HIGH or LOW D _n to CP	1.0 1.0	2 - 192 193	1.0 1.0		0.0	
ts (H) ts (L)	Setup Time, HIGH or LOW E to CP	6.0 6.0		6.0 6.0	ns	3-5	
t _h (H) t _h (L)	Hold Time, HIGH or LOW E to CP	0 0		0			
t _w (H) t _w (L)	CP Pulse Width, HIGH or LOW	4.0 5.0		4.0 5.0	ns	3-7	

381

54F/74F381

4-Bit Arithmetic Logic Unit

Description

The 'F381 performs three arithmetic and three logic operations on two 4-bit words, A and B. Two additional Select input codes force the Function outputs LOW or HIGH. Carry Propagate and Generate outputs are provided for use with the 'F182 Carry Lookahead Generator for high-speed expansion to longer word lenghts. For ripple expansion, refer to the 'F382 ALU data sheet.

- Low Input Loading Minimizes Drive Requirements
- Performs Six Arithmetic and Logic Functions
- Selectable Low (Clear) and High (Preset) Functions
- Carry Generate and Propagate Outputs for use with Carry Lookahead Generator

Ordering	Code:	See	Section 6

1	Commercial Grade	Military Grade	Pkg
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 \text{ V} \pm 10\%, \\ T_A = -55^{\circ} \text{ C to } +125^{\circ} \text{ C}$	Туре
Plastic DIP (P)	74F381PC		9Z
Ceramic DIP (D)	74F381DC	54F381DM	4E
Flatpak (F)		54F381FM	4D

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
A0 - A3	A Operand Inputs	0.5/1.50
Bo - B3	B Operand Inputs	0.5/1.50
S ₀ – S ₂	Function Select Inputs	0.5/0.375
Cn	Carry Input	0.5/1.50
Cn G	Carry Generate Output (Active LOW)	25/12.5
P ·	Carry Propagate Output (Active LOW)	25/12.5
Fo - F3	Function Outputs	25/12.5

Logic Symbol

Connection Diagram

- --

4-171

4

381

Functional Description

Signals applied to the Select inputs $S_0 - S_2$ determine the mode of operation, as indicated in the Function Select Table. An extensive listing of input and output levels is shown in the Truth Table. The circuit performs the arithmetic functions for either active-HIGH or active-LOW operands, with output levels in the same convention. In the Subtract operating modes, it is necessary to force a carry (HIGH for active-HIGH operands, LOW for active-LOW operands) into the C_n input of the least significant package.

The Carry Generate (\overline{G}) and Carry Propagate (\overline{P}) outputs supply input signals to the 'F182 carry lookahead generator for expansion to longer word length, as shown in *Figure a*. Note that an 'F382 ALU is used for the most significant package. Typical delays for *Figure a* are given in *Figure b*.

Function Select Table

	SELECT		OPERATION
S ₀	S1	S2	
L H L H	L L H H	L L L	Clear B Minus A A Minus B A Plus B
L H L H	L L H H	H H H H	A⊕B A + B AB Preset

H = HIGH Voltage Level L = LOW Voltage Level

Fig. b 16-Bit Delay Tabulation

PATH SEGMENT	TOWARD F	OUTPUT Cn + 4, OVR
$ \begin{array}{c} A_i \mbox{ or } B_i \mbox{ to } \overline{P} \\ \overline{P}_i \mbox{ to } C_n \mbox{ + }_j \mbox{ ('F182)} \\ C_n \mbox{ to } F \\ C_n \mbox{ to } C_n \mbox{ + }_4, \mbox{ OVR} \end{array} $	7.2 ns 6.2 ns 8.1 ns	7.2 ns 6.2 ns — 8.0 ns
Total Delay	21.5 ns	21.4 ns

Truth Table										· .		
			INP	UTS				. 4	ουτι	PUT	5	
FUNCTION	S ₀	S1	S2	Cn	An	Bn	Fo	Fi	F2	F3	G	P
CLEAR	0	0	0	Х	х	Х	0	0	0	0	0	0
				0 0	0 0	0 1	1 0	1	1 1	1	1 0	0 0
				0	1	0	0	Ó	Ō	0	1	1
B MINUS A	1	0	0	0	1	1	1	1	.1	1	1	0
					0 0	0 1		0 1	0	0 1	1	0 0
				1	1	Ō	1	Ó	0	0	1	1
				1	1	1	0	0	0	0	1	0
				0	0	0	1	1.	1	1	1	0
				0	0 1	1 0	0	· 0 1	0 1	0 1	1	1 0
A MINUS B	0	1	0	ō	1	1	1	1	1	1	1	Ő
				1	0	. 0	0	0	0	0	1	0
				1	0	1		0	0	0		1
				1	1 1	0 1	1	1 0	1 0	1 0	0	0 0
				0 -	0	0	0	0	0	0	1	1
				0	0	1	1	1	1	1	1	0
	1	4	0	0	1 1	0 1	1	1	1 1	1 1	1	0
A PLUS B	'	1.	U	0	0	0	0	1 0	0	0	0	0 1
				1	õ	1	o l	õ	õ	õ	i	0 0
				1	1	0	0	0	0	0	1	0
· · · · · · · · · · · · · · · · · · ·				1	1	1	1	1	1	1	0	0
				X X	0 0	0 1	0	0 1	0 1	0 1	0	0
A⊕B	0	0	1	Â	1	0		1	1	1		0
				x	1	1	Ó	0	Ó	0	ò	0
				Х	0	0	0	0	0	0	0	0
A + B	1	0	1	X X	0 1	1 0	1	1 1	1 1	1 1		1 1
				x	1	1	1	1	1	1		Ő
				x	0	0	0	0	0	0	0	0
AB	0	1	1	X	0	1	0	0	0	0	1	1
				X X	1 1	0 1	0	0 1	0 1	0 1	0	0 0
				x	0	0	1	1	1	1	1	1
PRESET	1	1	1	X	0	1	1	1	1	1	1	1
		•	•	X	1	0 1		1	1	1		1
				Х	1	1	1	1	1	1	1	0

1 = HIGH Voltage Level

0 = LOW Voltage Level

X = Immaterial

DC Characteristics over Operating Temperature Range (unless otherwise specified)								
Symbol	Parameter		54F/74F		Units	Conditions		
		Min	Тур	Max				
lcc	Power Supply Current		59	89	mA	$V_{CC} = Max, S_0 - S_3 = Gnd;$ Other Inputs HIGH		

AC Characteristics: See Section 3 for waveforms and load configurations

			54F/74			54	4F	- 74	4F			
Symbol	Parameter	N	$T_{A} = +25^{\circ}C, \\ V_{CC} = +5.0 V \\ C_{L} = 50 \text{ pF}$			T _A , V _{CC} = Mil C _L = 50 pF		T _A , V _{CC} = Com C _L = 50 pF		Units	Fig. No.	
			Min	Тур	Мах	Min	Max	Min	Max	4		
tPLH tPHL	Propagation Delay C _n to F _i		2.5 2.5	8.1 5.7	10.5 8.0	2.5 2.5	15 11.5	2.5 2.5	11.5 9.0	ns	3-1 3-10	
tplh tphL	Propagation Delay Any A or B to Any F		4.0 3.5	10.4 8.2	13.5 11	4.0 3.5	19 15.5	4.0 3.5	14.5 12	ns	3-1 3-10	
tplh tphL	Propagation Delay Si to Fi		4.5 4.0	8.3 8.2	11 11	4.5 4.0	15.5 15.5	4.5 4.0	12 12	ns	3-1 3-10	
tplh tphl	Propagation Delay A_i or B_i to \overline{G}	÷.	3.5 4.0	6.4 6.8	9.0 10	3.5 4.0	12.5 14	3.5 4.0	10 11	ns	3-1 3-10	
tplH tpHL	Propagation Delay Ai or Bi to P		4.0 3.5	7.2 6.5	10.5 9.5	4.0 3.5	15 13	4.0 3.5	11.5 10.5	ns	3-1 3-10	
tplh tphl	Propagation Delay S _i to G or P		4.0 4.5	7.8 10.2	10.5 13.5	4.0 4.5	15 19	4.0 4.5	11 [.] .5 14.5	ns	3-1 3-10	

Test limits in screened columns are preliminary.

Connection Diagram

54F/74F382

4-Bit Arithmetic Logic Unit

Description

The 'F382 performs three arithmetic and three logic operations on two 4-bit words, A and B. Two additional Select input codes force the Function outputs LOW or HIGH. An Overflow output is provided for convenience in twos complement arithmetic. A Carry output is provided for ripple expansion. For high-speed expansion using a Carry Lookahead Generator, refer to the 'F381 data sheet.

- Performs Six Arithmetic and Logic Functions
- Selectable Low (Clear) and High (Preset) Functions
- Low Input Loading Minimizes Drive Requirements
- Carry Output for Ripple Expansion
- Overflow Output for Twos Complement Arithmetic

Commercial Grade

Ordering Code: See Section 6

Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%,$ $T_A = 0^{\circ} \text{C} \text{ to } +70^{\circ} \text{C}$	Туре	GND 10	
Plastic DIP (P)	74F382PC		9Z	
Ceramic DIP (D)	74F382DC	54F382DM	4E	
Flatpak (F)		54F382FM	4D	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
A0 - A3	A Operand Inputs	0.5/1.50
B0 - B3	B Operand Inputs	0.5/1.50
S0 - S2	Function Select Inputs	0.5/0.375
Cn	Carry Input	0.5/1.875
Cn + 4	Carry Output	25/12.5
OVR	Overflow Output	25/12.5
F0 - F3	Function Outputs	25/12.5

Military Grade

Pka

Logic Symbol

a the two many departure on the same

Functional Description

Signals applied to the Select inputs $S_0 - S_2$ determine the mode of operation, as indicated in the Function Select Table. An extensive listing of input and output levels is shown in the Truth Table. The circuit performs the arithmetic functions for either active-HIGH or active-LOW operands, with output levels in the same convention. In the Subtract operating modes, it is necessary to force a carry (HIGH for active-HIGH operands, LOW for active-LOW operands) into the C_n input of the least significant package. Ripple expansion is illustrated in *Figure a*. The Overflow output OVR is the Exclusive-OR of C_n + 3 and C_n + 4; a HIGH signal on OVR indicates overflow in twos complement operation. Typical delays for *Figure a* are given in *Figure b*.

	SELECT		OPERATION
S ₀	S1	S ₂	
L	L	L	Clear
н	L	L	B Minus A
L L	н	L	A Minus B
н	н	L	A Plus B
L	L	н	A⊕B
н	L	н	A + B
L	н	н	AB
н	н	н	Preset

H = HIGH Voltage Level L = LOW Voltage Level

Fig. a 16-Bit Ripple Carry ALU Expansion

Fig. b 16-Bit Delay Tabulation

PATH SEGMENT	TOWARD F	OUTPUT Cn + 4, OVR
Ai or Bi to C _n + 4 C _n to C _n + 4 C _n to C _n + 4 C _n to F C _n to C _n + 4, OVR	6.5 ns 6.3 ns 6.3 ns 8.1 ns —	6.5 ns 6.3 ns 6.3 ns
Total Delay	27.2 ns	27.1 ns

382

Truth Table

			IN	IPUT	s		OUTPUTS					
FUNCTION	S ₀	S ₁	S ₂	Cn	An	Bn	Fo	F ₁	F ₂	F3	OVR	Cn + 4
CLEAR	0	0	0	0 1	X X	x x	0 0	0 0	0 0	0 0	1 1	1 1
B MINUS A	1	0	0	0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1 0	1 0 1 0 1 1 0	1 0 1 0 1 0 0	1 1 0 1 0 1 0	1 1 0 1 0 1 0	0 0 0 0 0 0 0	0 1 0 1 1 0 1
A MINUS B	0	1	0	0 0 1 1 1	0 0 1 0 0 1 1	0 1 0 1 0 1	1 0 1 0 1 1 0	1 1 1 0 1 0	1 0 1 0 0 1	1 0 1 0 0 1 0		0 1 0 1 0 1
A PLUS B	1	1	0	0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1 0	0 1 0 1 0 0 1	0 1 1 0 0 0	0 1 1 0 0 0	0 1 1 0 0 0		0 0 1 0 1 1
А⊕В	0	0	1	X X 0 X 1	0 0 1 1 1	0 1 0 1 0	0 1 1 0 1	0 1 1 0 1	0 1 1 0 1	0 1 1 0 1	0 0 0 1	0 0 1 1
A + B	1	0	1	X X X 0 1	0 0 1 1 1	0 1 0 1	0 1 1 1	0 1 1 1	0 1 1 1	0 1 1 1	0 0 0 0 1	0 0 0 1
АВ	0	1	1	X X X 0 1	0 0 1 1 1	0 1 0 1	0 0 1 1	0 0 1 1	0 0 1 1	0 0 1 1	1 0 1 0 1	1 0 1 0 1
	1	1	1	X X 0 1	0 0 1 1 1	0 1 0 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	0 0 0 0 1	0 0 0 1

new more serviced teacogoes lands' size term

1 = HIGH Voltage Level 0 = LOW Voltage Level X = Immaterial

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter		54F/74F		Units	Conditions	
	i urumeter	Min	Тур	Мах			
lcc	Power Supply Current		62	93	mA	V _{CC} = Max; S ₀ , C _n = HIGH Other Inputs Gnd	

AC Characteristics: See Section 3 for waveforms and load configurations

	Parameter	54F/74F T _A = +25°C, V _{CC} = +5.0 V C _L = 50 pF			54F T _A , V _{CC} = Mil C _L = 50 pF		74F T _A , V _{CC} = Com C _L = 50 pF		Units	Fig. No.
Symbol										
		Min	Тур	Мах	Min	Max	Min	Max		
tplh tphl	Propagation Delay C _n to Fi	3.0 2.5	8.1 5.7	11.5 8.0			3.0 2.5	12.5 9.0	ns	3-1 3-10
tplh tphl	Propagation Delay Any A or B to Any F	4.0 3.5	10.4 8.2	13.5 11			4.0 3.5	14.5 12	ns	3-1 3-10
tPLH tPHL	Propagation Delay Si to Fi	6.5 4.0	11 8.2	15 11			6.5 4.0	16 12	ns	3-1 3-10
tPLH tPHL	Propagation Delay Ai or Bi to Cn + 4	3.5 3.5	6.0 6.5	8.5 9.0			3.5 3.5	9.5 10.5	ns	3-1 3-10
tplh tphl	Propagation Delay S _i to OVR or C _n + 4	7.0 5.0	12.5 9.0	16.5 12			7.0 5.0	17.5 13	ns	3-1 3-10
tPLH tPHL	Propagation Delay C _n to C _n + 4	3.5 4.0	5.6 6.3	8.0 9.0			3.5 4.0	9.0 10	ns	3-1 3-10
tpLH tpHL	Propagation Delay C _n to OVR	5.0 4.5	8.0 7.1	11 10			5.0 4.5	12 11	ns	3-1 3-10

384

54F/74F384

Connection Diagram

Description

The 'F384 is an 8-bit by 1-bit sequential logic element that multiplies two numbers represented in twos complement notation. The device implements Booth's algorithm internally to produce a twos complement product that needs no subsequent correction. Parallel inputs accept and store an 8-bit multiplicand $(X_0 - X_7)$. The multiplier word is applied to the Y input in a serial bit stream, least significant bit first. The product is clocked out at the SP output, least significant bit first.

8-Bit Serial/Parallel Twos Complement Multiplier

The K input is used for expansion to longer X words, using two or more 'F384 devices. The Mode Control (M) input is used to establish the most significant device. An asynchronous Parallel Load (\overline{PL}) input clears the internal flip-flops to the start condition and enables the X latches to accept new multiplicand data.

Ordering Code: See Section 6

•					
	Commercial Grade	Military Grade	Pkg		
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	Туре		
Plastic DIP (P)	74F384PC		9В		
Ceramic DIP (D)	74F384DC	54F384DM	6B		
Flatpak (F)		54F384FM	4L		

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
CP	Clock Pulse Input (Active Rising Edge)	0.5/0.375
К	Serial Expansion Input	0.5/0.375
М	Mode Control Input	0.5/0.375
PL	Asynchronous Parallel Load Input (Active LOW)	0.5/0.750
X0 - X7	Multiplicand Data Inputs	0.5/0.375
Y	Serial Multiplier Input	0.5/0.375
SP	Serial X • Y Product Output	25/12.5

Logic Symbol

Function Table

		INPUTS			INTERNAL	OUTPUT	FUNCTION	
PL	СР	ĸ	м	Xi	Y	Ya-1	SP	
		L	L					Most Significant Multiplier Device
		CS	н					Devices Cascaded in Multiplier String
L				OP	•	L	∖ L '	Load New Multiplicand and Clear Internal Sum and Carry Registers
н								Device Enabled
н	Г				L.	L	AR	Shift Sum Register
н	1				L	Н	AR	Add Multiplicand to Sum Register and Shift
н	1				н	L	AR	Subtract Multiplicand from Sum Register and Shift
н	Г				н	Н	AR	Shift Sum Register

____ = LOW-to-HIGH transition

CS = Connected to SP output of high order device

 $OP = X_i$ latches open for new data (i = 0.7)

AR = Output as required per Booth's algorithm

Logic Diagram

Functional Description

Referring to the Logic Diagram, the multiplicand $(X_0 - X_7)$ latches are enabled to receive new data when PL is LOW. Data that meet the setup time requirements are latched and stored when PL goes HIGH. The LOW signal on PL also clears the Ya-1 flip-flop as well as the carry-save flip-flops and the partial product register in the arithmetic section. Figure a is a conceptual logic diagram of a typical cell in the arithmetic section, except for the first (X₇) cell, in which K is the B_i input and M is incorporated into the carry logic. The cells use the carry-save technique to avoid the complexity and delays inherent in lookahead carry schemes for longer words.

Figure b is a timing diagram for an 8 x 8 multiplication process. New multiplicand data enters the X latches during bit time To. It is assumed that PL goes LOW shortly after the CP rising edge that marks the beginning of T₀ and goes HIGH again shortly after the beginning of T_1 . The LSB (Y_0) of the multiplier is applied to the Y input during T1 and combines with X₀ in the least significant cell to form the appropriate D input $(X_0 Y_0)$ to the sum flip-flop. This is clocked into the sum flip-flop by the CP rising edge at the beginning of T_2 and this LSB (S₀) of the product is available shortly thereafter at the SP output of the package. The next-least bit Y1 of the multiplier is also applied during T₂. The detailed logic design of the cell is such that during T₂ the D input to the sum flip-flop of the least significant cell contains not only

X₀Y₁ but also, thanks to storage in its carry flip-flop and in the sum flip-flop of the next-least cell, the X_1Y_0 product. Thus the term $(X_1Y_0 + X_0Y_1)$ is formed at the D input of the least significant sum flip-flop during T₂ and this next-least term S₁ of the product is available at the SP output shortly after the CP rising edge at the beginning of T₃. Due to storage in the two preceding cells and in its own carry flip-flop, the D input to the least significant sum flip-flop during T₃ will contain the products X_2Y_0 and X_1Y_1 as well as X₀Y₂. During each succeeding bit time the SP output contains information formed one stage further upstream. For example, the SP output during T9 contains X₇Y₀, which was actually formed during T₁.

The MSB Y_7 (the sign bit Y_S) of the multiplier is first applied to the Y input during T₈ and must also be applied during bit times T₉ through T₁₆. This extension of the sign bit is a necessary adjunct to the implementation of Booth's algorithm and is a built-in feature of the 'F322 Shift Register. Figure c shows the method of using two 'F384s to perform a 12 x n bit multiplication. Notice that the sign of X is effectively extended by connecting X₁₁ to X₄ - X₇ of the most significant package. Whereas the 8 x 8 multiplication required 18 clock periods (m + n to form the product terms plus T₀ to clear the multiplier plus T₁₇ to recognize and store S₁₅), the arrangement of Figure c requires 12 + n bits to form the product terms plus the bit times to clear the multiplier and to recognize and store SPn + 11.

Fig. a Conceptual Carry Save Adder Cell

Fig. c 12-Bit by N-Bit Twos Complement Multiplier

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter	54F/74F			Units	Conditions	
-,		Min	Тур	Max			
lcc	Power Supply Current		67	108	mA	V _{CC} = Max	

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$ $C_L = 50 pF$	T _A , V _{CC} = Mil C _L = 50 pF	T _A , V _{CC} = Com C _L = 50 pF	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
f _{max}	Maximum Clock Frequency	100 70			ns	3-1, 3-7
tpLH tpHL	Propagation Delay CP to SP	3.56.08.53.56.08.5			ns	3-1 3-7
t PHL	Propagation Delay PL to SP	4.0 7.0 10			ns	3-1 3-11

AC Operating Requirements: See Section 3 for waveforms

Symbol		54F/74F	54F	74F	Fig. Units No.	
	Parameter	$T_A = +25^{\circ} C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com		-
		Min Typ Max	Min Max	Min Max		
ts(H) ts(L)	Setup Time, HIGH or LOW K to CP	8.0 8.0	· · ·		ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW K to CP	0 0		· . ·		0-0
ts (H) ts (L)	Setup Time, HIGH or LOW Y to CP	15 15	-	· · · ·	ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW Y to CP	0 0				
t _s (H) t _s (L)	Setup Time, HIGH or LOW X _n to PL	10 10			ns	3-14
t _h (H) t _h (L)	Hold Time, HIGH or LOW X _n to PL	0 0				0.14
t _w (H) t _w (L)	CP Width, HIGH or LOW	7.0 7.0			ns	3-7
t _w (L)	PL Width LOW	5.0			ns	3-11
t _{rec}	Recovery Time PL to CP	7.0			ns	3-11

Test limits in screened columns are preliminary.

Connection Diagram

54F/74F385

Quad Serial Adder/Subtractor

Description

The 'F385 contains four serial adder/subtractors with common clock and clear inputs, but independent operand and mode select inputs. Each adder/subtractor contains a sum flip-flop and a carry-save flip-flop for synchronous operations. Each circuit performs either A plus B or A minus B in twos complement notation, but can also be used for magnitude-only or ones complement operation. The 'F385 is designed for use with the 'F384 and 'F784 serial multipliers in implementing digital filters or butterfly networks in fast Fourier transforms.

- Four Independent Adder/Subtractors
- Twos Complement Arithmetic
- Synchronous Operation
- Common Clear and Clock
- Ones Complement or Magnitude-only Capability

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg	
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	Туре	
Plastic 74F385PC DIP (P)			9Z	
Ceramic DIP (D)	74F385DC	54F385DM	4E	
Flatpak (F)		54F385FM	4D	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
A1 - A4	A Operand Inputs	0.5/0.375
B1 - B4	B Operand Inputs	0.5/0.375
S1 - S4	Function Select Inputs	0.5/0.375
CP	Clock Pulse Input (Active Rising Edge)	0.5/0.375
MR	Asynchronous Master Reset Input (Active LOW)	0.5/0.375
F1 – F4	Sum or Difference Outputs	25/12.5

Logic Symbol

Functional Description

Each adder contains two edge-triggered flip-flops to store the sum and carry, as shown in the Logic Diagram. Flip-flop state changes occur on the rising edge of the Clock Pulse (CP) input signal. The Select (S) input should be LOW for the Add (A plus B) mode and HIGH for the Subtract (A minus B) mode. A LOW signal on the asynchronous Master Reset (MR) input clears the sum flip-flop and resets the carry flip-flop to zero in the Add mode or presets it to one in the Subtract mode.

In the Subtract mode, the B operand is internally complemented. Presetting the carry flip-flop to one completes the twos complement transformation by adding one to "A plus \overline{B} " during the first (LSB) operation after \overline{MR} is released. For ones complement subtraction, the carry flip-flop can be set to zero by making S LOW during the reset, then making S HIGH after the reset but before the next clock.

Truth Table

Truth	1 14	pie				and the second second	<u> </u>
INPUTS*			RNAL RRY	OUTPUT*	FUNCTION		
MR	S	Α	В	С	C ₁	F	
L	L H	x x	X X	L H	L H	L .	Clear
						J T T J T J J T	Add
	ΙΙΙΙΙΙΙ					ΤΙΙΤΙΤΙ	Subtract

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

* = Inputs before CP transition, output after C

 $C_1 = Carry flip-flop state before (C) and after (C_1) clock transition$

TO 3 OTHER ADDER/SUBTRACTORS CLOCK F1 SUM D ۵ SUM СР CLR C1 SET D Q CARRY Ē1 ā СР S. CLR ADD/ SUBTRACT MR MASTER RESET TO 3 OTHER ADDER/SUBTRACTORS

Logic Diagram (one Adder/Subtractor shown)

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter	54F/74F			Units	Conditions	
oymbol		Min	Тур	Max	•		
lcc	Power Supply Current		68	104	mA	V _{CC} = Max	

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74F	54F	74F		
Symbol	Parameter	$T_{A} = +25^{\circ}C, V_{CC} = +5.0 V C_{L} = 50 pF$	T _A , V _{CC} = Mil C _L = 50 pF	$\begin{array}{l} T_{A},V_{CC}=\\ Com\\ C_{L}=50\ pF \end{array}$	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
f _{max}	Maximum Clock Frequency	80 100			MHz	3-1, 3-7
tplh tphĽ	Propagation Delay CP to Fn	3.06.08.53.06.08.5			ns	3-1 3-7
tphl	Propagation Delay MR to Fn	4.0 7.0 10			ns	3-1 3-11

AC Operating Requirements: See Section 3 for waveforms

Symbol		54F/74F 54F		74F		
	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
$\begin{array}{c} t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW An to CP	12 12			ns	3-5
$\begin{array}{c} t_{h} \ (H) & \cdot \\ t_{h} \ (L) \end{array}$	Hold Time, HIGH or LOW An to CP	0 0			, in the second se	00
$\begin{array}{c} t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW B_n or S_n to CP	12 12			ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW B_n or S_n to CP	0 0			113	
$\begin{array}{c} t_{\textbf{w}} \ (\textbf{H}) \\ t_{\textbf{w}} \ (\textbf{L}) \end{array}$	CP Pulse Width, HIGH or LOW	6.0 6.0			ns	3-7
t _w (L)	MR Width LOW	6.0			ns	3-11
t _{rec}	Recovery Time MR to CP	5.0			ns	3-11

Test limits in screened columns are preliminary.

54F/74F398 • 54F/74F399

Quad 2-Port Register

Connection Diagrams

'F398

'F399

S 1

16 V_{CC}

Description

The 'F398 and 'F399 are the logical equivalent of a quad 2-input multiplexer feeding into four edge-triggered flip-flops. A common Select input determines which of the two 4-bit words is accepted. The selected data enters the flip-flops on the rising edge of the clock. The 'F399 is the 16-pin version of the 'F398, with only the Q outputs of the flip-flops available.

- Select Inputs from Two Data Sources
- Fully Positive Edge-triggered Operation
- Both True and Complement Outputs 'F398

Ordering Co	de: See Section 6		1. ¹ .			13 44
E.S.	Commercial Grade	Grade Military Grade		l _{0a} 3		14 lod
Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%,$ $T_A = 0^{\circ} \text{C} \text{ to } +70^{\circ} \text{C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$	Pkg Type	11a 4 11b 5		13 l1d 12 l1c
Plastic DIP (P)	74F398PC 74F399PC		9Z 9B	lob 6 Qb 7		11 l _{0c} 10 Q _c
Ceramic DIP (D)	74F398DC 74F399DC	54F398DM 54F399DM	4E 6B	GND 8	,	9 CP
Flatpak (F)		54F398FM 54F399FM	4D			

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
S	Common Select Input	0.5/0.375
CP	Clock Pulse Input (Active Rising Edge)	0.5/0.375
loa – lod	Data Inputs from Source 0	0.5/0.375
l1a - I1d	Data Inputs from Source 1	0.5/0.375
Qa - Qd	Register True Outputs	25/12.5
Qa - Qd	Register Complementary Outputs ('F398)	25/12.5

Logic Symbols

 $V_{CC} = Pin 20$ GND = Pin 10

Functional Description

The 'F398 and 'F399 are high-speed quad 2-port registers. They select four bits of data from either of two sources (Ports) under control of a common Select input (S). The selected data is transferred to a 4-bit output register synchronous with the LOW-to-HIGH transition of the Clock input (CP). The 4-bit D-type output register is fully edge-triggered. The Data inputs (I_{0x} , I_{1x}) and Select input (S) must be stable only a setup time prior to and hold time after the LOW-to-HIGH transition of the Clock input for predictable operation. The 'F398 has both Q and \overline{Q} outputs.

Function Table

	INPUTS	OUTPUTS			
S	lo	I 1	Q	¯Q⁺	
I	I	X	L _.	н	
1	h	х	н	L	
h	х	1	L	н	
h	Х	h	н	L	

* 'F398 only

I = LOW Voltage Level one setup time prior to the LOW-to-HIGH clock transition

h = HIGH Voltage Level one setup time prior to the LOW-to-HIGH clock transition

L = LOW Voltage Level

H = HIGH Voltage Level

X = Immaterial

Logic Diagram

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter			54F/74F		Units	Conditions
oyor			Min	Тур	Max		
lcc	Power Supply Current	'F398 'F399		25 22	38 34	mA	$V_{CC} = Max, V_{IN} = GND$ CP = \Box

		. 5	54F/74F		54F		74F		Units	Fig. No.
Symbol	Parameter	Vcc	$ \begin{array}{l} {\sf T}_{\sf A} = +25^{\circ}{\sf C}, \\ {\sf V}_{\sf CC} = +5.0{\sf V} \\ {\sf C}_{\sf L} = 50{\sf pF} \end{array} $			T _A , V _{CC} = Mil C _L = 50 pF		/cc = om 50 pF		
		Min	Тур	Мах	Min	Max	Min	Max		
f _{max}	Input Clock Frequency	100	140				100		MHz	3-1, 3-7
tpLH tpHL	Propagation Delay CP to Q or Q	3.5 5.0	6.0 8.5	8.0 11			3.5 5.0	9.0 12	ns	3-1 3-7

AC Operating Requirements: See Section 3 for waveforms

		54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ} C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
ts(H) ts(L)	Setup Time, HIGH or LOW In to CP	4.0 4.0		4.0 4.0	ns	3-1
t _h (H) t _h (L) [≤] ·	Hold Time, HIGH or LOW In to CP	1.0 1.0		1.0 1.0	115	3-5
ts(H) ts(L)	Setup Time, HIGH or LOW S to CP	7.5 7.5		8.5 8.5	ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW S to CP	0 0	-	0 0		5.0
t _w (H) t _w (L)	Clock Pulse Width, HIGH or LOW	6.0 6.0		6.0 6.0	ns	3-7

521

54F/74F521

8-Bit Identity Comparator

Description

The 'F521 is an expandable 8-bit comparator. It compares two words of up to eight bits each and provides a LOW output when the two words match bit for bit. The expansion input $\overline{I}_A = B$ also serves as an active-LOW enable input.

- Compares Two 8-Bit Words in 6.5 ns Typ
- Expandable to Any Word Length
- 20-Pin Package

Ordering Code: See Section 6

ordening of	de. See Section o				
·	Commercial Grade	Military Grade	Pkg	B ₃ 9	2 B4
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C T_0 + 70^{\circ} C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ} C to +125^{\circ} C$	Туре	GND 10	1 A4
Plastic DIP (P)	74F521PC		9Z		
Ceramic DIP (D)	74F521DC	54F521DM	4E		
Flatpak (F)		54F521FM	4D		

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
A0 - A7	Word A Inputs	0.5/0.375
B0 – B7	Word B Inputs	0.5/0.375
ĪA = B	Expansion or Enable Input (Active LOW)	0.5/0.375
ŌA = B	Identity Output (Active LOW)	25/12.5

Logic Symbol

 $V_{CC} = Pin 20$ GND = Pin 10 **Connection Diagram**

Truth Table

	Inputs	Output			
ĪA = B	A, B OA = B				
. L	$A = B^*$	Ŀ			
Ĺ	A ≠ B	н			
Н	$A = B^{\star}$	н			
н	A ≠ B	н			

H = HIGH Voltage Level

L = LOW Voltage Level

 $A_0 = B_0, A_1 = B_1, A_2 = B_2, \text{ etc.}$

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Chara	DC Characteristics over Operating Temperature Range (unless otherwise specified)								
Symbol	Parameter		54F/74F	•	Units	Conditions			
-,		Min	Тур	Max					
Іссн Іссь	Power Supply Current		24 15.5	36 23	mA	V _{CC} = Max, I _A _{= B} = Gnd			

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74F		54F		74F		-		
Symbol Parameter		$T_{A} = +25^{\circ}C, \\ V_{CC} = +5.0 V \\ C_{L} = 50 \text{ pF}$		TA, VCC = Mil CL = 50 pF		T _A , V _{CC} = Com C _L = 50 pF		Units	Fig. No.	
		Min	Тур	Мах	Min	Max	Min	Мах		
tplh tphl	Propagation Delay A_n or B_n to $\overline{O}_A = B$	3.5 4.0	6.5 6.5	9.5 9.0	3.5 4.0	15 12	3.5 4.0	11 10.5	ns	3-1 3-10
tplH tpHL	Propagation Delay $\overline{I}_A = B$ to $\overline{O}_A = B$	3.0 3.5	4.5 5.0	6.5 7.0	3.0 3.5	8.5 9.0	3.0 3.5	7.5 8.0	ns	3-1 3-10

Test limits in screened columns are preliminary.

Applications

Ripple Expansion

Parallel Expansion

54F/74F524

8-Bit Registered Comparator

Description

The 'F524 is an 8-bit bidirectional register with parallel input and output plus serial input and output progressing from LSB to MSB. All data inputs, serial and parallel, are loaded by the rising edge of the input clock. The device functions are controlled by two control lines (S₀, S₁) to execute shift, load, hold and read out.

An 8-bit comparator examines the data stored in the registers and on the data bus. Three true-HIGH, open-collector outputs representing 'register equal to bus', 'register greater than bus' and 'register less than bus' are provided. These outputs can be disabled to the OFF state by the use of Status Enable (SE). A mode control has also been provided to allow twos complement as well as magnitude compare. Linking inputs are provided for expansion to longer words.

- 8-Bit Bidirectional Register with Bus Oriented Input-Output
- Independent Serial Input-Output to Register
- Register Bus Comparator with 'Equal to' 'Greater than' and 'Less than' Outputs
- Cascadable in Groups of Eight Bits
- Open-collector Comparator Outputs for AND-Wired Expansion
- Twos Complement or Magnitude Compare

Ordering Co	Ordering Code: See Section 6								
	Commercial Grade	Military Grade	Pkg						
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	Туре						
Plastic DIP (P)	74F524PC		9Z						
Ceramic DIP (D)	74F524DC	54F524DM	4E						
Flatpak		54F524FM	4D						

0

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Т

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
S0, S1	Mode Select Inputs	0.5/0.375
C/SI	Status Priority or Serial Data Input	0.5/0.375
CP	Clock Pulse Input (Active Rising Edge)	0.5/0.375
SE	Status Enable Input (Active LOW)	0.5/0.375
М	Compare Mode Select Input	0.5/0.375
I/O ₀ - I/O ₇	Parallel Data Inputs or	1.25/0.375
	3-State Parallel Data Outputs	25/12.5
C/SO	Status Priority or Serial Data Output	25/12.5
LT	Register Less Than Bus Output	OC*/12.5
EQ	Register Equal Bus Output	OC*/12.5
GT	Register Greater Than Bus Output	OC*/12.5

OC = Open Collector

20 Vcc S₀ 1 1/00 2 19 S1 1/01 3 18 SE 17 C/SI 1/02 4 16 C/SO 1/03 5 1/04 6 15 EQ I/O₅ 7 14 GT I/O6 8 13 LT 12 M 1/07 9 11 CP GND 10

524

4-195

Logic Symbol

GND = Pin 10

Functional Description

The 'F524 contains eight D-type flip-flops connected as a shift register with provision for either parallel or serial loading. Parallel data may be read from or loaded into the registers via the data bus $I/O_0 - I/O_7$. Serial data is entered from the C/SI input and may be shifted into the register and out through the C/SO output. Both parallel and serial data entry occur on the rising edge of the input clock (CP). The operation of the shift register is controlled by two signals S₀ and S₁ according to the Select Truth Table. The 3-State parallel output buffers are enabled only in the Read mode.

Select Truth Table

S ₀	S1	OPERATION
L	L	HOLD — Retains data in shift register
L	н	READ — Read contents in register onto
		data bus
[H]	L	SHIFT — Allows serial shifting on next
		rising clock edge
н	н	LOAD—Load data on bus into register

H = HIGH Voltage Level

L = LOW Voltage Level

One port of an 8-bit comparator is attached to the data bus while the other port is tied to the outputs of the internal register. Three active-OFF, open-collector outputs indicate whether the contents held in the shift register are 'greater than', (GT), 'less than' (LT), or 'equal to' (EQ) the data on the input bus. A HIGH signal on the Status Enable (SE) input disables these outputs to the OFF state. A mode control input (M) allows selection between a straightforward magnitude compare or a comparison between twos complement numbers.

Number Representation Select Table

М	OPERATION
L	Magnitude compare
H	Twos complement compare

H = HIGH Voltage Level

L = LOW Voltage Level

For 'greater than' or 'less than' detection, the C/SI input must be held HIGH, as indicated in the Status Truth Table. The internal logic is arranged such that a LOW signal on the C/SI input disables the 'greater than' and 'less than' outputs. The C/SO output will be forced HIGH if the 'equal to' status condition exists, otherwise C/SO will be held LOW. These facilities enable the 'F524 to be cascaded for word length greater than eight bits.

Status Truth Table (Hold Mode)

		INPUTS	OUTPUTS				
SE	C/SI	Data Comparison	EQ	GT	LT	C/SO	
H L L	X L L	$X O_A - O_H > I/O_0 - I/O_7 O_A - O_H = I/O_0 - I/O_7$	H L H	H H H	ннн	() Г Н	
		$O_A - O_H < I/O_0 - I/O_7$ $O_A - O_H > I/O_0 - I/O_7$ $O_A - O_H = I/O_0 - I/O_7$ $O_A - O_H < I/O_0 - I/O_7$	L L H L	H H L	H L H	L L H	

1 = HIGH if data are equal, otherwise LOW

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Word length expansion (in groups of eight bits) can be achieved by connecting the C/SO output of the more significant byte to the C/SI input of the next less significant byte and also to its own SE input (see *Figure a*). The C/SI input of the most significant device is held HIGH while the SE input of the least significant device is held LOW. The corresponding status outputs are AND-wired together. In the case of twos complement number compare, only the Mode input to the most significant device should be HIGH. The Mode inputs to all other cascaded devices are held LOW.

Suppose that an inequality condition is detected in the most significant device. Assuming that the byte stored in the register is greater than the byte on the data bus, then the EQ and LT outputs will be pulled LOW whereas the GT output will float HIGH. Also the C/SO output of the most significant device will be forced LOW, disabling the subsequent devices but enabling its own status outputs. The correct status condition is thus indicated. The same applies if the registered byte is less than the data byte, only in this case the EQ and GT outputs go LOW whereas LT output floats HIGH.

If an equality condition is detected in the most significant device, its C/SO output is forced HIGH.

This enables the next less significant device and also disables its own status outputs. In this way, the status output priority is handed down to the next less significant device which now effectively becomes the most significant byte. The worst case propagation delay for a compare operation involving 'n' cascaded 'F524s will be when an equality condition is detected in all but the least significant byte. In this case, the status priority has to ripple all the way down the chain before the correct status output is established. Typically, this will take 35 + 6 (n-2) ns.

Fig. a Cascading 'F524s for Comparing Longer Words

Symbol	Parameter		54F/74F		Units	Conditions	
Symbol	i urumeter	Min	Тур	Мах	Onto		
ин	Input HIGH Current Breakdown Test, I/O ₀ - I/O ₇			1.0	mA	$V_{CC} = Max, V_{IN} = 5.5 V$	
Іон	Output HIGH Current GT, EQ, LT			-100	μA	$V_{CC} = Min, V_{OUT} = 4.5 V$	
lıн + lożн	3-State Output OFF Current HIGH, I/O ₀ – I/O ₇			70	μA	$V_{CC} = Max, V_{OUT} = 2.4 V$	
lil + Iozl	3-State Output OFF Current LOW, I/O ₀ – I/O ₇			600	μA	$V_{CC} = Max, V_{IN} = 0.5 V$	
lcc	Power Supply Current		128	180	mA	S ₀ , S ₁ , SE, C/SI = 4.5 V CP, I/O ₀ - I/O ₇ , Register = LOW	

DC Characteristics over Operating Temperature Range (unless otherwise specified)

AC Characteristics: See Section 3 for waveforms and load configurations

		5	4F/74	F	5	4F	74	4F		
Symbol	Parameter	Vcc	$ \begin{array}{l} {\sf T}_{\sf A} = +25^{\circ}{\sf C},\\ {\sf V}_{\sf CC} = +5.0{\sf V}\\ {\sf C}_{\sf L} = 50{\sf pF} \end{array} $		T _A , V _{CC} = Mil C _L = 50 pF		T _A , V _{CC} = Com C _L = 50 pF		Units	Fig. No.
		Min	Тур	Мах	Min	Мах	Min	Мах		
f _{max}	Maximum Shift Frequency	50	75	· ·			50		MHz	3-1, 3-7
tplH tpHL	Propagation Delay I/On to EQ	9.5 6.0	16 9.4	20 12			9.5 6.0	22.5 13		
tplh tphl	Propagation Delay I/On to GT	8.5 7.0	14.1 11.3	18 14.5			8.5 7.0	19 15.5	ns	3-1 3-10
tplH tpHL	Propagation Delay I/On to LT	7.0 6.0	11.7 10.2	16 14			7.0 6.0	18 15		
tplH tpHL	Propagation Delay I/On to C/SO	9.0 6.0	15.2 10.4	19.5 13			9.0 6.0	21.5 14	ns	3-1 3-10
tplH tpHL	Propagation Delay CP to EQ	10.5 4.0	17.5 7.0	22 9.0		·	10.5 3.5	24.5 10		-
tplh tphL	Propagation Delay CP to GT	10 9.0	16.5 15.3	21 20			10 9.0	22 21.5	ns	3-1 3-7
tPLH tPHL	Propagation Delay CP to LT	9.0 6.0	15.5 9.6	19.5 12.5			9.0 6.0	21 13.5		
tрLH	Propagation Delay CP to C/SO (Compare)	8.5	14.5	18.5			8.5	21.5	ns	3-1
tplh tphl	Propagation Delay CP to C/SO (Serial Shift)	5.0 5.0	8.3 7.6	10.5 10			5.0 5.0	11.5 11		3-7
tplh tphl	Propagation Delay C/SI to GT	9.0 3.5	14.9 6.5	19 8.5			9.0 3.0	20 9.5	ns	3-1
tplh tphl	Propagation Delay C/SI to LT	8.0 4.0	13.5 6.5	17 8.5			8.0 4.0	18 9.5		3-3

		5	54F/74	F	54	4F	74	ŧF.		
Symbol	Parameter	Vcc	= +25 c = +5 _ = 50	.0 V	Ň	/cc = 1il 50 pF	Co	/cc = om 50 pF	Units	Fig. No.
-		Min	Тур	Max	Min	Мах	Min	Max		
tPLH tPHL	Propagation Delay S ₀ , S ₁ to C/SO	7.0 6.0	11.3 9.3	14.5 12			7.0 6.0	15.5 13	ns	3-1 3-10
tPLH tPHL	Propagation Delay SE to EQ	4.0 2.5	6.3 4.6	8.0 6.0			4.0 2.5	9.0 6.5	ns	3-1
tplh tphl	Propagation Delay SE to GT	7.5 3.5	12.5 6.5	16 8.0			7.5 3.5	17 9.0		3-4
tPLH tPHL	Propagation Delay SE to LT	5.0 3.5	8.5 6.2	11 8.0			5.0 3.5	12 9.0	ns	3-1 3-4
tplh tphl	Propagation Delay C/SI to C/SO	4.5 4.0	7.4 7.3	9.5 9.5			4.5 4.0	10.5 10.5	ns	3-1 3-4
tPLH tPHL	Propagation Delay M to GT	8.0 7.0	13.4 12.1	17 15.5			8.0 7.0	18 17	ns	3-1
tPLH tPHL	Propagation Delay M to LT	8.5 5.5	14.4 9.4	19 12	-		8.5 5.5	21 13		3-10
tpzh tpzL	Output Enable Time S ₀ , S ₁ to I/O _n	6.0 6.5	10.1 11.2	13 14.5			6.0 6.5	14 15.5	ns	3-1
tphz tpLz	Output Disable Time S ₀ , S ₁ to I/O _n	5.0 5.5	7.9 9.6	10 12.5		-	5.0 5.5	11 13.5		3-12 3-13

... . .

AC Operating Requirements: See Section 3 for waveforms

		54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ} C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
ts (H) ts (L)	Setup Time, HIGH or LOW I/On to CP	5.0 5.0		5.0 5.0	ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW I/On to CP	0 0		0		
ts(H) ts(L)	Setup Time, HIGH or LOW S ₀ , S ₁ to CP	10 10		10 10	ns	3-5
t _s (H) t _s (L)	Setup Time, HIGH or LOW C/SI to CP	5.0 7.0		5.0 7.0	ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW C/SI to CP	0 0		0		
t _w (H)	Clock Pulse Width HIGH	4.0		4.0	ns	3-7

54F/74F533

Octal Transparent Latch (With 3-State Outputs)

Logic Symbol

Do

LE

D₂ D₁

O₀ **O**₁ **O**₂ **O**₃ **O**₄ **O**₅

Da D4 D₆ D₆ D_7

O6 **O**7

15 16

Description

The 'F533 consists of eight latches with 3-state outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable (\overline{OE}) is LOW. When OE is HIGH the bus output is in the high-impedance state. The 'F533 is the same as the 'F373, except that the outputs are inverted. For description and logic diagram please see the 'F373 data sheet.

- Eight Latches in a Single Package
- 3-State Outputs for Bus Interfacing ٠

Ordering Co	1OE			
	Commercial Grade	Military Grade	Pkg	
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$	Туре	
Plastic DIP (P)	74F533PC		9Z	$V_{CC} = Pin 20$
Ceramic DIP (D)	74F533DC	54F533DM	4E	GND = Pin 10
Flatpak (F)		54F533FM	4D]

· • • • • • • • • • •

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
D0 - D7	Data Inputs	0.5/0.375
LE	Latch Enable Input (Active HIGH)	0.5/0.375
OE	Output Enable Input (Active LOW)	0.5/0.375
$\overline{O}_0 - \overline{O}_7$	Complementary 3-State Outputs	25/12.5

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter	54F/74F			Units	Conditions	
Cymbol		Min	Тур	Max		Conditions	
lccz	Power Supply Current		41	61	mA	$V_{CC} = Max, \overline{OE} = 4.5 V$ D _n , LE = Gnd	

AC Characteristics: See Section 3 for waveforms and load configurations

			54F/74	F	54	4F	7	4F		
Symbol	Parameter	Vc	= +25 c = +5 _ = 50	.0 V	T _A , V _{CC} = Mil C _L = 50 pF		T _A , V _{CC} = Com C _L = 50 pF		Units	Fig. No.
		Min	Тур	Мах	Min	Мах	Min	Мах		
tplh tphl	Propagation Delay D _n to O _n	4.0 3.0	6.9 5.2	9.0 7.0	4.0 3.0	12 9.0	4.0 3.0	10 8.0	ns	3-1 3-3
tplH tpHL	Propagation Delay LE to On	5.0 3.0	8.5 5.6	11 7.0	5.0 3.0	14 9.0	5.0 3.0	13 8.0	ns	3-1 3-7
tpzH tpzL	Output Enable Time	2.0 2.0	7.7 5.1	10 6.5	2.0 2.0	12.5 9.0	2.0 2.0	11 7.5	ns	3-1, 3-12 3-13
tphz tplz	Output Disable Time	2.0 2.0	4.7 4.1	6.0 5.5	2.0 2.0	8.5 7.5	2.0 2.0	7.0 6.5	ns	3-1, 3-12 3-13

AC Operating Requirements: See Section 3 for waveforms

			54F/74	F	54	4F	74	ŧF		
Symbol	Parameter		= +25 c = +5	- /	T _A , V _{CC} = Mil		T _A , V _{CC} = Com		Units	Fig. No.
		Min	Тур	Мах	Min	Мах	Min	Max		
ts(H) ts(L)	Setup Time, HIGH or LOW D _n to LE	2.0 2.0		-	2.0 2.0		2.0 2.0		ns	3-15
t _h (H) t _h (L)	Hold Time, HIGH or LOW D _n to LE	3.0 3.0			3.0 3.0		3.0 3.0		ns	3-15
t _w (H)	LE Pulse Width HIGH	6.0			6.0	un frankrig frankrig som star frankrig som star	6.0		ns	3-7

Λ

54F/74F534

Octal D-Type Flip-Flop (With 3-State Outputs)

Description

The 'F534 is a high-speed, low-power octal D-type flip-flop featuring separate D-type inputs for each flip-flop and 3-state outputs for bus oriented applications. A buffered Clock (CP) and Output Enable (\overline{OE}) are common to all flipflops. The 'F534 is the same as the 'F374 except that the outputs are inverted.

- Edge-triggered D-Type Inputs
- Buffered Positive Edge-triggered Clock
- 3-State Outputs for Bus Oriented Applications

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 \text{ V} \pm 10\%, \\ T_{A} = -55^{\circ} \text{ C to } +125^{\circ} \text{ C}$	Туре
Plastic DIP (P)	74F534PC		9Z
Ceramic DIP (D)	74F534DC	54F534DM	4E
Flatpak (F)		54F534FM	4D

13

14 17 18

$$V_{CC} = Pin 20$$

GND = Pin 10

Logic Symbol

Input Loading/Fan-Out: See Section 3 for U.L. definitons

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
D0 - D7	Data Inputs	0.5/0.375
CP	Clock Pulse Input (Active Rising Edge)	0.5/0.375
OE	3-State Output Enable Input (Active LOW)	0.5/0.375
$\overline{O}_0 - \overline{O}_7$	Complementary 3-State Outputs	25/12.5

Functional Description

The 'F534 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-state true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flipflops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When the \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE} input does not affect the state of the flip-flops.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter		54F/74F		Units	Conditions		
		Min	Тур	Max				
Iccz	Power Supply Current (All Outputs OFF)		55	86	mA	$\frac{V_{CC} = Max, D_n = Gnd}{OE = 4.5 V}$		

AC Characteristics: See Section 3 for waveforms and load configurations

			54F/74	F	5	4F	7	4F		Fig. No.	
Symbol	Parameter	Vc	= +25 c = +5 _ = 50	.0 V	Ν	/cc = /ii 50 pF	$\begin{array}{c} T_{A}, V_{CC} = \\ Com \\ C_{L} = 50 \text{ pF} \end{array}$		Units		
		Min	Тур	Мах	Min	Max	Min	Max			
f _{max}	Maximum Clock Frequency	100			60		70		MHz	3-1, 3-7	
tplh tphl	Propagation Delay CP to \overline{O}_n	4.0 4.0	6.5 6.5	8.5 8.5	4.0 4.0	10.5 11	4.0 4.0	10 10	ns	3-1 3-7	
tpzh tpzl	Output Enable Time	2.0 2.0	9.0 5.8	11.5 7.5	2.0 2.0	14 10	2.0 2.0	12.5 8.5	ns	3-1 3-12	
tphz tplz	Output Disable Time	2.0 2.0	5.3 4.3	7.0 5.5	2.0 2.0	8.0 7.5	2.0 2.0	8.0 6.5		3-13	

AC Operating Requirements: See Section 3 for waveforms

		5	54F/74	F	5	4F	74	4F		
Symbol	Parameter		= +25 c = +5	· · ·	T _A , V _{CC} = Mil		T _A , V _{CC} = Com		Units	Fig. No.
		Min	Тур	Мах	Min	Max	Min	Мах		
ts (H) ts (L)	Setup Time, HIGH or LOW D_n to CP	2.0 2.0			2.5 2.0		2.0 2.0		ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW D_n to CP	2.0 2.0			2.0 2.5		2.0 2.0			
t _w (H) t _w (L)	CP Pulse Width, HIGH or LOW	7.0 6.0			7.0 6.0		7.0 6.0		ns	3-7

Test limits in screened columns are preliminary.

54F/74F537

1-of-10 Decoder (With 3-State Outputs)

Description

The 'F537 is a one-of-ten decoder/demultiplexer with four active-HIGH BCD inputs and ten mutually exclusive outputs. A polarity control input determines whether the outputs are active LOW or active HIGH. The 'F537 has 3-state outputs, and a HIGH signal on the Output Enable (\overline{OE}) input forces all outputs to the high-impedance state. Two input enables, active-HIGH E₂ and active-LOW E1, are available for demultiplexing data to the selected output in either non-inverted or inverted form. Input codes greater than BCD nine cause all outputs to go to the inactive state (i.e., same polarity as the P input).

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg	
Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%,$ $T_A = 0^{\circ} \text{ C to } +70^{\circ} \text{ C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$	Туре	G
Plastic DIP (P)	74F537PC		9Z	
Ceramic DIP (D)	74F537DC	54F537DM	4E	
Flatpak (F)		54F537FM	4D	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
A0 - A3	Address Inputs	0.5/0.375
Ē1	Enable Input (Active LOW)	0.5/0.375
E2	Enable Input (Active HIGH)	0.5/0.375
OE	Output Enable Input (Active LOW)	0.5/0.375
Р	Polarity Control Input	0.5/0.375
O ₀ – O ₉	3-State Outputs	25/12.5

Logic Symbol

Connection Diagram

021

Truth Table

FUNCTION			11	NPUT	s						(сит	Ρυτε	S			
	ŌE	Ē1	E2	A ₃	A2	A1	A ₀	O0	01	O2	O3	O4	O5	O6	07	O8	O9
High Impedance	н	х	х	х	Х	х	х	z	Z	Ζ	Z	Z	Z	Z	Z	Z	Z
Disable	L L	H X	X L	x x	x x	x x	x x			0	utpu	ts Eq	jual F	> Inp	ut		
	L L L	L L L	ннн	L L L	L L L	L H H	L H L	H L L	L H L	L L H L	L L H	L L L	L L L	L L L	L L L	L L L	L L L
Active-HIGH Output (P = L)		L L L	н н н н	L L L	ннн	L L H	L H L	L L L	L L L	L L L	L L L	H L L	L H L	L L H L	L L H	L L L	L L L
	L L L	L L L	ннн нн	H H H H	L L X H	L L H X	L H X X	L L L	L L L	L L L	L L L	L L L	L L L	L L L	L L L	H L L	L H L
		L L L	нттт	L L L	Ĺ L L	L L H H	L H L H	гнн	ΗLΗΗ	H H L H	H H H L	H H H H	нннн	ннн	H H H H	H H H H	нннн
Active-LOW Output (P = H)		L L L	н н н н	L L L	ннн	L H H	L H L H	ннн	н н н н	ннн	ннн	L H H	H L H H	H H L H	H H H L	H H H	H H H H
		L L L	H H H H	H H H H	L L X H	L L H X	L H X X	ннн	н н н н	ннн	H H H	H H H	ннн	н н н н	H H H	L H H	H L H H

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

537

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics over Operating	Temperature Range	(unless otherwise specified)
-----------------------------------	--------------------------	------------------------------

Symbol	Parameter		54F/74F		Units	Conditions		
		Min	Тур	Мах				
lccz	Power Supply Current		44	66	mA	$\begin{array}{l} A_0 - A_3, \ \overline{E_1} = Gnd \\ \overline{OE}, \ E_2, \ P = HIGH \end{array}$		

AC Characteristics: See Section 3 for waveforms and load configurations

		5	4F/74	F	54	4F	74F			· .
Symbol	Parameter	Vcd	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$ $C_L = 50 pF$			$T_{A}, V_{CC} = Mil$ $C_{L} = 50 \text{ pF}$		/cc = om 50 pF	Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Max		
tPLH tPHL	Propagation Delay A _n to O _n	6.0 4.0	11 7.5	16 11			6.0 4.0	17 12	ns	3-1 3-10
tplh tphl	Propagation Delay E ₁ to O _n	5.0 4.0	8.5 6.5	12 9.0			5.0 4.0	13 10		
tplh tphl	Propagation Delay E ₂ to O _n	6.0 5.0	11 10	16 14			6.0 5.0	17 15	ns	3-1
tplh tphl	Propagation Delay P to O _n	6.0 6.0	11.5 11	16 16			6.0 6.0	17 17		3-10
tpzh tpzL	Output Enable Time OE to On	3.0 5.0	5.5 9.0	8.0 13			3.0 5.0	9.0 14	ns	3-1 3-12
tphz tplz	Output Disable Time OE to On	2.0 3.0	4.0 5.0	6.0 7.0			2.0 3.0	7.0 8.0		3-13

1-of-8 Decoder (With 3-State Outputs)

Description

The 'F538 decoder/demultiplexer accepts three Address $(A_0 - A_2)$ input signals and decodes them to select one of eight mutually exclusive outputs. A polarity control input (P) determines whether the outputs are active LOW or active HIGH. A HIGH signal on either of the active-LOW Output Enable (\overline{OE}) inputs forces all outputs to the high-impedance state. Two active-HIGH and two active-LOW input enables are available for easy expansion to 1-of-32 decoding with four packages, or for data demultiplexing to one-of-eight or one-of-16 destinations.

• 3-State Outputs

Pkgs

Plastic

DIP (P) Ceramic

DIP (D)

Flatpak

(**F**)

Output Polarity Control
Data Demultiplexing Capability

Ordering	Code:	See	Section	6
----------	-------	-----	---------	---

Multiple Enables for Expansion

Commercial Grade

 $V_{CC} = +5.0 V \pm 5\%$,

 $T_A = 0^\circ C$ to $+70^\circ C$

74F538PC

74F538DC

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
A0 - A2	Address Inputs	0.5/0.375
E1, E2	Enable Inputs (Active LOW)	0.5/0.375
E3, E4	Enable Inputs (Active HIGH)	0.5/0.375
Р	Polarity Control Input	0.5/0.375
OE1, OE2	Output Enable Inputs (Active LOW)	0.5/0.375
O0 - O7	3-State Outputs	25/12.5

Military Grade

 $V_{CC} = +5.0 V \pm 10\%$

 $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$

54F538DM

54F538FM

4D

FUNCTION				11	NPUT	s						(OUT	PUT	5		
renerien	OE1	OE ₂	Ē1	Ē2	E3	E4	A2	A1	A ₀	O0	O1	O2	O3	O4	O5	O6	07
High Impedance	H X	х н	X X	x x	X X	X X	x x	X X	X	Z Z	Z Z	Z Z	Z Z	Z Z	Z Z	Z Z	Z Z
Disable	L L L	L L L	H X X X	X H X X	X X L X	X X X L	X X X X	X X X X	X X X X		C	utpu	ts Ec	jual I	^{>} Inp	ut	
Active-HIGH Output (P = L)							L L L H									L L L L	
		L	L	L	H H	н Н	н н	н Н	L H	L	L	L	L	L	L	L L L L H L L H L L H H H H	L H
Active-LOW	L L L	L L L		L L L	ннн	H H H	L L L	L L H H	L H L H	L H H H	H L H H	H L H	H H L	H H H H			H H H H
Output (P = H)	L L L	L L L		L L L	ннн	ннн	H H H H	L L H H	L H L H	ннн	ннн	нннн	нннг	L H H H	H L H H	H H L H	H H H L

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

Z = High Impedance

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter		54F/74F		Units	Conditions		
		Min	Тур	Max	•			
lccz	Power Supply Current		37	56	mA	$\frac{A_0 - A_2, \overline{E}_1, \overline{E}_2 = Gnd}{\overline{OE}_1, \overline{OE}_2, E_3, E_4, P = HIGH}$		

AC Characteristics: See Section 3 for waveforms and load configurations

			54F/74	F	54	4F	7	4F			
Symbol Parameter		Vc				T _A , V _{CC} = Mil C _L = 50 pF		V _{CC} = om 50 pF	Units	Fig. No.	
		Min	Тур	Max	Min	Мах	Min	Мах			
tPLH tPHL	Propagation Delay An to On	6.0 4.0	11 7.5	16 11			6.0 4.0	17 12	ns	3-1 3-10	
tplH tpHL	Propagation Delay $\overline{E_1}$ or $\overline{E_2}$ to O_n	5.0 4.0	8.5 6.5	12 9.0			5.0 4.0	13 10			
tplh tphl	Propagation Delay E ₃ or E ₄ to O _n	6.0 5.0	11 10	16 14			6.0 5.0	17 15	ns	3-1	
tPLH tPHL	Propagation Delay P to O _n	6.0 6.0	11.5 11	16 16			6.0 6.0	17 17	. 115	3-10	
tpzh tpzL	Output Enable Time $\overline{OE_1}$ or $\overline{OE_2}$ to O_n	3.0 5.0	5.5 9.0	8.0 13			3.0 5.0	9.0 14	ns	3-1 3-12	
tphz tpLz	Output Disable Time $\overline{OE_1}$ or $\overline{OE_2}$ to O_n	2.0 3.0	4.0 5.0	6.0 9.0			2.0 3.0	7.0 8.0		3-13	

54F/74F539

Dual 1-of-4 Decoder (With 3-State Outputs)

Description

The 'F539 contains two independent decoders. Each accepts two Address (A₀, A₁) input signals and decodes them to select one of four mutually exclusive outputs. A polarity control input (P) determines whether the outputs are active HIGH (P = L) or active LOW (P = H). An active-LOW input Enable $\overline{(E)}$ is available for data demultiplexing; data is routed to the selected output in noninverted form in the active-LOW mode or in inverted form in the active-HIGH mode. A HIGH signal on the active-LOW Output Enable (\overline{OE}) input forces the 3-state outputs to the high impedance state.

Ordering Code: See Section 6

-				1
	Commercial Grade	Military Grade	Pkg	
Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%,$ $T_A = 0^{\circ} \text{ C to } +70^{\circ} \text{ C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$	Туре	G
Plastic DIP (P)	74F539PC		9Z	
Ceramic DIP (D)	74F539DC	54F539DM	4E	
Flatpak (F)		54F539FM	4D	

20 Vcc 02b 1 01b 2 19 O3b 18 A1b OOD 3 17 A0b Pb 4 OE_b 5 16 E_b 15 Ēa A0a 6 14 OEa A1a 7 O3a 8 13 Pa 12 O_{0a} O2a 9 11 O1a ND 10

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
A _{0a} – A _{1a}	Side A Address Inputs	0.5/0.375
A0b - A1b	Side B Address Inputs	0.5/0.375
Ea, Eb	Enable Inputs (Active LOW)	0.5/0.375
OEa, OEb	Output Enable Inputs (Active LOW)	0.5/0.375
Pa, Pb	Polarity Control Inputs	0.5/0.375
O _{0a} - O _{3a}	Side A 3-State Outputs	25/12.5
O _{0b} – O _{3b}	Side B 3-State Outputs	25/12.5
	· · · · · · · · · · · · · · · · · · ·	I

Logic Symbol

Connection Diagram

Truth Table (each half)

FUNCTION		INP	UTS		OUTPUTS			
	ŌĒ	Ē	A 1	A ₀	O0	01	O2	O3
High Impedance	н	х	Х	Х	Z	Z	Z	Ζ
Disable	L	н	Х	Х		On	= P	
Active-HIGH Output (P = L)		L L L	L L H H	L H L	HLLL	L H L	L L H L	L L H
Active-LOW Output (P = H)	L L L	L L L	LLHH	L H L H	L H H H	H L H H	H H L H	H H L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

Logic Diagram (one half shown)

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter		54F/74F		Units	Conditions		
		Min	Тур	Max				
lccz	Power Supply Current (All Outputs OFF)		. 41	62	mA	$\frac{A_0, A_1, \overline{E} = Gnd}{OE, P = HIGH}$		

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ} C,$ $V_{CC} = +5.0 V$ $C_L = 50 pF$	T _A , V _{CC} = Mil C _L = 50 pF	$\begin{array}{c} T_{A}, \ V_{CC} = \\ Com \\ C_{L} = 50 \ pF \end{array}$	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
tplh tphl	Propagation Delay A _n to O _n	6.011.6164.07.511			ns	3-1 3-10
tPLH tPHL	Propagation Delay E to On	6.011165.01014			ns	3-1 3-10
tplH tpHL	Progagation Delay P to O _n	6.011.5166.01116			ns	3-1 3-10
tpzh tpzL	Output Enable Time OE to On	3.05.58.05.09.013			ns	3-1 3-12
tphz tplz	Output Disable Time OE to On	2.04.06.03.05.09.0				3-13

Test limits in screened columns are preliminary.

24 A2

23 A1

22 A0

21 OEAB

20 LEBA

19 EBA

18 GND

17 EAB

16 LEAB

15 OEBA

14 Bo

13 B1

Connection Diagram

('F543 shown*)

A3 1

A4 2

A5 3

A₆4

A7 5

Vcc 6

B7 7

B6 8

B₅9

B4 10

B₃ 11

54F/74F543 • 54F/74F544

Octal Registered Transceiver

Description

The 'F543 and 'F544 octal transceivers each contain two sets of D-type latches for temporary storage of data flowing in either direction. Separate Latch Enable and Output Enable inputs are provided for each register to permit independent control of inputting and outputting in either direction of data flow. The A outputs are guaranteed to sink 20 mA while the B outputs are rated for 64 mA. The 'F543 is non-inverting; the 'F544 inverts data in both directions.

- 8-Bit Octal Transceiver
- Back-to-Back Registers for Storage
- Separate Controls for Data Flow in Each Direction
- A Outputs Sink 20 mA, B Outputs Sink 64 mA
- Inverting and Non-inverting Options

Ordering Code: See Section 6				B ₂ 12 13
	Commercial Grade	Military Grade	_ Pkg	
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	Туре	*'F544 has inverting outputs
Plastic DIP (P)	74F543PC, 74F544PC		9N	
Ceramic DIP (D)	74F543DC, 74F544DC	54F543DM, 54F544DM	6N	
Flatpak (F)		54F543FM, 54F544FM	4M	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
OEAB	A-to-B Output Enable Input (Active LOW)	0.5/0.375
OEBA	B-to-A Output Enable Input (Active LOW)	0.5/0.375
EAB	A-to-B Enable Input (Active LOW)	0.5/0.375
EBA	B-to-A Enable Input (Active LOW)	0.5/0.375
LEAB	A-to-B Latch Enable Input (Active LOW)	0.5/0.375
LEBA	B-to-A Latch Enable Input (Active LOW)	0.5/0.375
A0 - A7	A-to-B Data Inputs or	1.75/0.375
	B-to-A 3-State Outputs	25/12
B0 - B7	B-to-A Data Inputs or	1.75/0.375
	A-to-B 3-State Outputs	25/40 (30)

V_{CC} = Pin 6 GND = Pin 18

Logic Diagram ('F543 shown)

Functional Description

The 'F543 and 'F544 each contain two sets of eight D-type latches, with separate input and output controls for each set. For data flow from A to B, for example, the A-to-B Enable (EAB) input must be LOW in order to enter data from $A_0 - A_7$ or take data from $B_0 - B_7$, as indicated in the Data I/O Control Table. With EAB LOW, A LOW signal on the A-to-B Latch Enable (LEAB) input makes the A-to-B latches

transparent; a subsequent LOW-to-HIGH transition of the LEAB signal puts the A latches in the storage mode and their outputs no longer change with the A inputs. With EAB and OEAB both LOW, the 3-state B output buffers are active and reflect the data present at the output of the A latches. Control of data flow from B to A is similar, but using the EBA, LEBA and OEBA inputs.

Data I/O Control Table†

	INPUTS		LATCH STATUS	OUTPUT BUFFERS
EAB	LEAB	OEAB	A-to-B	B0 - B7
н	х	х	Storing	High Z
X	н	-	Storing	—
X	—	н		High Z
L	L	L	Transparent	Current A Inputs
L	н	L	Storing	Previous* A Inputs

*Before LEAB LOW-to-HIGH Transition H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial † A-to-B data flow shown; B-to-A flow control

is the same, except using EBA, LEBA and OEBA

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter			54F/74F		Units	Conditions	
0,	i urunotor		Min	Тур	Max	Onits	Conditions	
Vон	Output HIGH Voltage B ₀ – B ₇	XM XC	2.0			v	I _{OH} = -12 mA I _{OH} = -15 mA	
Vон	Output HIGH Voltage A _n , B _n		2.4			v	I _{OH} = -3.0 mA	
Vol	Output LOW Voltage B ₀ – B ₇	XM XC			0.55	V _.	I _{OL} = 48 mA I _{OL} = 64 mA	
Ін	Input HIGH Current Breakdown Test — A _n , B _n				100	μA	$V_{CC} = Max, V_{IN} = 5.5 V$	
lıн + lozн	3-State Output OFF Current HIGH — A _n , B _n				70	μA	$V_{CC} = Max, V_{OUT} = 2.4 V$	
lil + Iozl	3-State Output OFF Current LOW — A _n , B _n				0.6	mA	V _{CC} = Max, V _{OUT} = 0.5 V	
los	Output Short-circuit Current B0 - B7	t	-100		-225	mA	V _{CC} = Max	
lcc	Power Supply Current			95	140	mA	V _{CC} = Max	

4

		54F/74F	54F	74F		Fig. No.
Symbol	Parameter	T _A = +25°C, V _{CC} = +5.0 V C _L = 50 pF	T _A , V _{CC} = Mil C _L = 50 pF	T _A , V _{CC} = Com C _L = 50 pF	Units	
		Min Typ Max	Min Max	Min Max		
tplh tphl	Propagation Delay Transparent Mode A _n to B _n or B _n to A _n	4.07.0104.07.010			ns	3-1 3-3 3-4
tpLH tpHL	Propagation Delay LEBA to An	5.59.0125.59.012			ns	3-1 3-8
tplh tphl	Propagation Delay LEAB to Bn	5.59.0125.59.012			ns	3-1 3-8
tpzh tpzL	Output Enable Time OEBA or OEAB to An or Bn	6.010146.01014			ns	3-1 3-12
tphz tplz	Output Disable Time OEBA or OEAB to An or Bn	6.010146.01014				3-13

AC Characteristics: See Section 3 for waveforms and load configurations

AC Operating Requirements: See Section 3 for waveforms

		54F/74F	54F	74F		Fig. No.
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com	Units	
		Min Typ Max	Min Max	Min Max		
$\begin{array}{c} \hline t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW A_n or B_n to LEBA or LEAB	5.0 5.0			ns	3-14
$\begin{array}{c} \hline t_{h} \ (H) \\ t_{h} \ (L) \end{array}$	Hold Time, HIGH or LOW A_n or B_n to LEBA or LEAB	2.0 2.0				

54F/74F545

Octal Bidirectional Transceiver (With 3-State Inputs/Outputs)

Connection Diagram

Description

The 'F545 is an 8-bit, 3-state, high-speed transceiver. It provides bidirectional drive for bus-oriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with 20 mA bus drive capability on the A ports and 64 mA bus drive capability on the B ports.

One input, Transmit/Receive (T/\overline{R}) determines the direction of logic signals through the bidirectional transceiver. Transmit enables data from A ports to B ports; Receive enables data from B ports to A ports. The Output Enable input disables both A and B ports by placing them in a 3-state condition.

- Higher Drive than 8304
- 8-Bit Bidirectional Data Flow Reduces System Package Count
- 3-State Inputs/Outputs for Interfacing with Bus-oriented Systems
- 20 mA and 64 mA Bus Drive Capability on A and B Ports, Respectively
- Transmit/Receive and Output Enable Simplify Control Logic
- Hysteresis on Bus Inputs

Ordering Code: See Section 6 **Commercial Grade Military Grade** Pka $V_{CC} = +5.0 V \pm 10\%$ Pkas $V_{CC} = +5.0 V \pm 5\%$ Type $T_A = 0^\circ C$ to $+70^\circ C$ $T_{A} = -55^{\circ} C \text{ to } +125^{\circ} C$ Plastic 74F545PC 9Z DIP (P) Ceramic 74F545DC 54F545DM 4E DIP (D) Flatpak 54F545FM 4D (**F**)

Logic Symbol

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
OE	Output Enable Input (Active LOW)	0.5/0.875
T/R	Transmit/Receive Input	0.5/0.625
A0 - A7	Side A 3-State Inputs or	1.75/0.625
	3-State Outputs	25/12.5
B0 - B7	Side B 3-State Inputs or	1.75/0.625
	3-State Outputs	25/40 (30)

Truth Table

INPL	JTS	OUTPUTS
OE	T/R	
L S	L H	Bus B Data to Bus A Bus A Data to Bus B
н	Х	High Z

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

Logic Diagram

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter		54F/74F			Units	Conditions	
oyinibor	r drumeter	Min	Тур	Max	Onits	Conditiona		
Vон	Output HIGH Voltage B ₀ – B ₇	XM XC	2.0 2.0	-		v	$\frac{I_{OH} = -12 \text{ mA}}{I_{OH} = -15 \text{ mA}}$ Vcc = M	
	Output HIGH Voltage B ₀ – B ₇		2.4			۷	I _{OH} = -3.0 mA	
Vol	Output LOW Voltage B ₀ – B ₇	XM XC			0.55 0.55	V	$\frac{I_{OL} = 48 \text{ mA}}{I_{OL} = 64 \text{ mA}} \text{ V}_{CC} = \text{N}$	
VT+ - VT-	Hysteresis Voltage B ₀ – B 7		200	400		mV	Vcc = Min	
ιн	Input HIGH Current Breakdown Test — A _n , B _n				100	μA	$V_{CC} = Max, V_{IN} = 5.5 V$	
Іін + Іозн	3-State Output OFF Current HIGH — An, Bn				70	μA	V _{CC} = Max, V _{OUT} = 2.7	
lil + Iozl	3-State Output OFF Current LOW—A _n , B _n			[°] 1.0	mA	V _{CC} = Max, V _{OUT} = 0.5		
los	Output Short-circuit Curren B0 - B7	t	-100		-225	mA	Vcc = Max, V _{OUT} = 0 V	
lcc	Power Supply Current			128	192	mA	V _{CC} = Max	

		54F/74F	54F	74F	Units	Fig. No.
Symbol	Parameter	$ \begin{array}{l} T_{A} = +25^{\circ}C, \\ V_{CC} = +5.0V \\ C_{L} = 50pF \end{array} $	T _A , V _{CC} = Mil C _L = 50 pF	TA, VCC = Com CL = 50 pF		
		Min Typ Max	Min Max	Min Max		
tpLH tpHL	Propagation Delay A_n to B_n or B_n to A_n	3.56.59.13.56.59.1			ns	3-1 3-4
tpzh tpzL	Output Enable Time	4.07.0105.58.514			ns	3-1 3-12
tphz tplz	Output Disable Time	5.58.5144.07.010				3-13

AC Characteristics: See Section 3 for waveforms and load configurations

547

54F/74F547

Octal Decoder/Demultiplexer (With Address Latches and Acknowledge)

Description

The 'F547 is a 3-to-8 line address decoder with latches for address storage. Designed primarily to simplify multiple chip selection in a microprocessor system, it contains one active-LOW and two active-HIGH Enables to conserve address space. Also included is an active-LOW Acknowledge output that responds to either a Read or Write input signal when the Enables are active.

- 3-to-8 Line Address Decoder
- Address Storage Latches
- Multiple Enables for Address Extension
- Open-collector Acknowledge Output

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg	
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ} C \text{ to } +125^{\circ} C$	Туре	
Plastic DIP (P)	74F547PC		9Z	
Ceramic DIP (D)	74F547DC	54F547DM	4E	
Flatpak (F)		54F547FM	4D	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
A ₀ – A ₂	Output Select Address Inputs	0.5/0.375
Ē1	Chip Enable Input (Active LOW)	0.5/0.375
E2, E3	Chip Enable Inputs	0.5/0.375
LË	Latch Enable Input	0.5/0.375
RD	Read Acknowledge Input (Active LOW)	0.5/0.375
WR	Write Acknowledge Input (Active LOW)	0.5/0.375
ACK	Open-collector Acknowledge Output (Active LOW)	OC*/12.5
$\overline{O}_0 - \overline{O}_7$	Decoded Outputs (Active LOW)	25/12.5

*OC = Open Collector

\overline{O}_2 012 ACK 3 WR 4 RD 5 A₀6

20 Vcc

Connection Diagram

Logic Symbol

Functional Description

When enabled, the 'F547 accepts the $A_0 - A_2$ Address inputs and decodes them to select one of eight active-LOW, mutually exclusive outputs, as shown in the Decoder Truth Table. With LE HIGH, the Address latches are transparent and the output selection changes each time the $A_0 - A_2$ address changes. When LE is LOW, the latches store the last valid address preceding the HIGH-to-LOW transition of the LE input signal. For applications in which the separation of latch enable and chip enable functions is not required, LE and \overline{E}_1 can be tied together, such that when HIGH the outputs are OFF and the latches are transparent, and when LOW the latches are storing and the selected output is enabled.

The open-collector Acknowledge (\overline{ACK}) output is normally HIGH (i.e. OFF) and goes LOW when \overline{E}_1 , E_2 and E_3 are all active and either the Read (\overline{RD}) or Write (\overline{WR}) input is LOW, as indicated in the Acknowledge Truth Table.

Decoder Truth Table*

١١	NPUT	s				ουτ	PUT	S		
A ₂	A1	A ₀	\overline{O}_0	\overline{O}_1	\overline{O}_2	\overline{O}_3	\overline{O}_4	\overline{O}_5	Ō6	07
L	Ĺ	L H	L H	Н	н	н н	H H	Н	н	н
	H H	L H	H H	H H	L H	H	H H	H H	H H	H H
H H H H H H H H	L L H H	L H L H	н н н н	нннг	нннн	ннн	L H H H	H L H H	H H L H	H H H L

*Assuming E1, LOW, E2 and E3 HIGH

Latch and Output Status Table

	INP	UTS		LATCH	DECODER
Ē1	E2	E3	LE	STATUS	OUTPUTS
X	х	Х	н	Transparent	
L	н	Н	L	Storing	Selected Output LOW
Н	Х	Х	Х	Storing	All Outputs HIGH
X	L	Х	Х	Storing	All Outputs HIGH
X	Х	L	Х	Storing	All Outputs HIGH

Acknowledge Truth Table

	I	OUTPUT			
Ē1	E2	E3	RD	WR	ACK
H X X	X L X	X X L	X X X	X X X	нтт
L L	H H H	ΗΗ	ΗLX	H X L	H L L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter	54F/74F			Units	Conditions	
oynibol		Min	Тур	Max			
lcc	Power Supply Current		22	33	mA	V _{CC} = Max	

AC Characteristics: See Section 3 for waveforms and load configurations

		1	54F/74	F	54	4F	74	4F		
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$ $C_L = 50 pF$			T _A , V _{CC} = Mil C _L = 50 pF		$\begin{array}{l} T_{A}, \ V_{CC} = \\ Com \\ C_{L} = 50 \ pF \end{array}$		Units	Fig. No.
		Min	Тур	Мах	Min	Max	Min	Мах		
tPLH tPHL	Propagation Delay A_n to \overline{O}_n	3.0 3.0	5.5 5.5	8.0 8.0	х.				ns	3-1 3-10
tPLH tPHL	Propagation Delay $\overline{E_1}$ to $\overline{O_n}$	3.0 3.0	5.5 5.5	8.0 8.0					ns	3-1 3-4
tplh tphl	Propagation Delay LE to On	3.0 3.0	5.5 5.5	8.0 8.0					ns	3-1 3-3
tplh tphl	Propagation Delay E ₂ or E ₃ to O _n	4.0 4.0	6.5 6.5	9.0 9.0					ns	3-1 3-3
tplh tphl	Propagation Delay E1, RD or WR to ACK	9.0 3.0	11.5 5.5	14 8.0					ns	3-1 3-4
tplh tphl	Propagation Delay E ₂ or E ₃ to ACK	10 4.0	12.5 6.5	15 9.0					ns	3-1 3-3

		54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ} C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil			Fig. No.
		Min Typ Max	Min Max	Min Max		
$\begin{array}{c} t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW A_n to LE	2.0 2.0			ns	3-15
$\begin{array}{c} t_{h} \ (H) \\ t_{h} \ (L) \end{array}$	Hold Time, HIGH or LOW An to LE	3.0 3.0			115	
$\begin{array}{c} t_{s} \ (H) \\ t_{s} \ (L) \end{array}$	Setup Time, HIGH or LOW A_n to \overline{E}_1	2.0 2.0			ns	3-14
$\begin{array}{c} t_{h}\left(H\right) \\ t_{h}\left(L\right) \end{array} = \\$	Hold Time, HIGH or LOW A_n to $\overline{E_1}$	3.0 3.0			110	0-14
$egin{array}{ccc} t_{s} & (H) \ t_{s} & (L) \end{array}$	Setup Time, HIGH or LOW An to E ₂ , E ₃	4.0 4.0			ns	3-15
$t_h (H) \\ t_h (L)$	Hold Time, HIGH or LOW An to E ₂ , E ₃	3.0 3.0			115	0-10
tw (H)	LE Pulse Width HIGH	6.0			ns	3-7

AC Operating Requirements: See Section 3 for waveforms

54F/74F548

Octal Decoder/Demultiplexer (With Acknowledge)

Connection Diagram

Description

The 'F548 is a 3-to-8 line address decoder with four Enable inputs. Two of the Enables are active LOW and two are active HIGH for maximum addressing versatility. Also provided is an active-LOW Acknowledge output that responds to either a Read or Write input signal when the Enables are active.

- 3-to-8 Line Address Decoder
- Multiple Enables for Address Extension
- Open-collector Acknowledge Output
- Active-LOW Decoder Outputs

Ordering Code: See Section 6

<u></u>	Commercial Grade	Military Grade	Pkg	
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	Туре	
Plastic DIP (P)	74F548PC		9Z	
Ceramic DIP (D)	74F548DC	54F548DM	4E	
Flatpak (F)		54F548FM	4D	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW 0.5/0.375		
A0 - A2	Output Select Address Inputs			
E1, E2	Chip Enable Inputs (Active LOW)	0.5/0.375		
E3, E4	Chip Enable Inputs	0.5/0.375		
RD	Read Acknowledge Input (Active LOW)	0.5/0.375		
WR	Write Acknowledge Input (Active LOW)	0.5/0.375		
ACK	Open-collector Acknowledge Output (Active LOW)	OC*/12.5		
$\overline{O}_0 - \overline{O}_7$	Decoded Outputs (Active LOW)	25/12.5		

*OC = Open Collector

Logic Symbol

Functional Description

When enabled, the 'F548 accepts the $A_0 - A_2$ Address inputs and decodes them to select one of eight active-LOW, mutually exclusive outputs, as shown in the Decoder Truth Table. When one or more Enables is inactive, all decoder outputs are HIGH. Thus, the 'F548 can be used as a demultiplexer by applying data to one of the Enables.

Decoder Truth Table

			INPUTS	3						OUT	PUTS			
Ē1	Ē2	E3	E4	A ₂	A1	A ₀	\overline{O}_0	\overline{O}_1	\overline{O}_2	\overline{O}_3	0 4	\overline{O}_5	\overline{O}_6	07
н	Х	х	Х	х	х	Х	н	н	н	н	н	н	н	н
X	н	х	Х	X	Х	х	н	. H	н	н	н	н	٠H	н
X	Х	L	Х	X.	Х	Х	н	н	н	н	н	н	н	н
X	х	х	L	X	х	х	н	н	н	н	н	н	H ·	н
L	L	н	н	L	L	L	L.	н	H	н	н	н	н	н
L	L	н	н	L	L	н	н	L	н	н	н	н	н	н
L	L	н	н	L	н	L	н	н	L	н	н	н	н	н
L	L	н	н	L	н	н	н	н	н	L	н	н	н	н
L	L	н	н	н	L	L	н	н	н	н	L	н	н	н
L	L	н	н	н	L	н	н	н	н	н	н	L	н	н
L	L	н	н	н	H	L	н	н	н	н	н	н	L	н
L	L	н	Η·	н	н	н	н	н	н	́н	н	н	н	L

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

The open-collector Acknowledge (\overline{ACK}) output is normally HIGH (i.e. OFF) and goes LOW when the Enables are all active and either the Read (\overline{RD}) or Write (\overline{WR}) input is LOW, as indicated in the Acknowledge Truth Table.

Acknowledge Truth Table

		OUTPUT				
Ē1	Ē2	E3	E4	RD	WR	ACK
H X	Х	X X	X X	X X	X X	н
Â	X	Ĺ	x	x	x	H
x	x	x	L	x	x	н
L	L	н	н	н	н	н
L	L	н	н	L	х	L
L	L	н	н	х	L	L

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter	54F/74F			Units	Conditions	
oyinisoi		Min	Тур	Max			
lcc	Power Supply Current		18	27	mA	V _{CC} = Max	

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74F	54F	74F		
Symbol	Parameter	$ \begin{array}{l} T_{A}=+25^{\circ}C,\\ V_{CC}=+5.0\ V\\ C_{L}=50\ pF \end{array} $	T _A , V _{CC} = Mil C _L = 50 pF	T _A , V _{CC} = Com C _L = 50 pF	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
tpLH tpHL	Propagation Delay A_n to \overline{O}_n	3.05.58.03.05.58.0			ns	3-1 3-10
tplH tpHL	Propagation Delay \overline{E}_1 or \overline{E}_2 to \overline{O}_n	3.05.58.03.05.58.0	н. 1		ns	3-1 3-4
tplh tphL	Propagation Delay E_3 or E_4 to \overline{O}_n	4.06.59.04.06.59.0			ns	3-1 3-3
tpLH tpHL	Propagation Delay E ₁ or E ₂ to ACK	9.011.5143.05.58.0			ns	3-1 3-4
tPLH tPHL	Propagation Delay E ₃ or E ₄ to ACK	1012.5154.06.59.0			ns	3-1 3-3
tpLH tpHL	Propagation Delay RD or WR to ACK	9.011.5143.05.58.0			ns	3-1 3-4

54F/74F550 • 54F/74F551

Octal Registered Transceiver

(With Status Flags)

Description

The 'F550 and 'F551 octal transceivers each contain two 8-bit registers for temporary storage of data flowing in either direction. Each register has its own clock pulse and clock enable inputs, as well as a flag flip-flop that is set automatically as the register is loaded. Each flag flip-flop is provided with a clear input, and each register has a separate output enable control for its 3-state buffers. The separate clocks, flags and enables provide considerable flexibility as I/O ports for demand-response data transfer. The 'F550 is non-inverting; the 'F551 inverts data in both directions.

- 8-Bit Bidirectional I/O Port with Handshake
- Back-to-Back Registers for Storage
- Register Status Flag Flip-Flops
- Separate Edge-detecting Clears for Flags
- Inverting and Non-inverting Versions
- A Outputs Sink 20 mA, B Outputs Sink 64 mA

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg	B₅ 13
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 \text{ V} \pm 10\%, \\ T_{A} = -55^{\circ} \text{ C to } +125^{\circ} \text{ C}$	Туре	B4 14
Plastic DIP (P)	74F550PC, 74F551PC		9Y	*'F551 has inverting outputs
Ceramic DIP (D)	74F550DC, 74F551DC	54F550DM, 54F551DM	8S	
Flatpak (F)		54F550FM, 54F551FM	2E	

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW		
CPA	A-to-B Clock Pulse Input (Active Rising Edge)	0.5/0.375		
СРВ	B-to-A Clock Pulse Input (Active Rising Edge)	0.5/0.375		
CEA	A-to-B Clock Enable Input (Active LOW)	0.5/0.375		
CEB	B-to-A Clock Enable Input (Active LOW)	0.5/0.375		
OEA	A Output Enable Input (Active LOW)	0.5/0.375		
OEB	B Output Enable Input (Active LOW)	0.5/0.375		
CFAB	A-to-B Flag Clear Input (Active Rising Edge)	0.5/0.5		
CFBA	B-to-A Flag Clear Input (Active Rising Edge	0.5/0.5		
A0 - A7	A-to-B Data Inputs or	1.75/0.375		
	3-State B-to-A Outputs	25/12.5		
B0 - B7	B-to-A Data Inputs or	1.75/0.375		
	3-State A-to-B Outputs	25/40 (30)		
FAB	A-to-B Status Flag Output (Active HIGH)	0.5/0.375		
FBA	B-to-A Status Flag Output (Active HIGH)	0.5/0.375		

Connection Diagram

('F550 shown*)

4-229

Logic Symbols

Functional Description

Data applied to the A inputs is entered and stored on the rising edge of the A Clock Pulse (CPA), provided that the A Clock Enable (\overline{CEA}) is LOW; simultaneously, the status flip-flop is set and the A-to-B flag (FAB) output goes HIGH. Data thus entered from the A inputs is present at the inputs to the B output buffers, but only appears on the B I/O pins when the B Output Enable (\overline{OEB}) signal is made LOW. After the B output data is assimilated, the receiving system clears the A-to-B flag flip-flop by applying a LOW-to'F551

HIGH transition to the CFAB input. Optionally, the OEA and CFAB pins can be tied together and operated by one function from the receiving system.

Data flow from B-to-A proceeds in the same manner described for A-to-B flow. Inputs CEB and CPB enter the B input data and set the B-to-A flag (FBA) output HIGH. A LOW signal on OEA enables the A output buffers and a LOW-to-HIGH transition on CFBA clears the FBA flag.

4

550 • 551

Symbol	Parameter		54F/74F			Units	Conditions
Symbol			Min	Тур	Мах	Onits	Conditions
Vон	Output HIGH Voltage B ₀ -B ₇	XM XC	2.0			v	$\frac{I_{OH} = -12 \text{ mA}}{I_{OH} = -15 \text{ mA}}$
Vон	Output HIGH Voltage A _n , B _n	- 	2.4			V	I _{OH} = -3.0 mA
Vol	Output LOW Voltage B ₀ – B ₇	XM XC			0.55	V	I _{OL} = 48 mA I _{OL} = 64 mA
Іін	Input HIGH Current Breakdown Test — A _n , B _n		-		100	μΑ	V _{IN} = 5.5V
liн + lozн	3-State Output OFF Current HIGH — An, Bn				70	μA	$V_{CC} = Max, V_{OUT} = 2.7 V$
IIL + IOZL	3-State Output OFF Current LOW — An, Bn				0.6	mA	V _{CC} = Max, V _{OUT} = 0.5 V
los	Output Short-circuit Currer B0 - B7	nt	-100		-225	mA	V _{CC} = Max
lcc	Power Supply Current			130	190	mA	V _{CC} = Max

DC Characteristics over Operating Temperature Range (unless otherwise specified)

		54F/74F	54F	74F		~
Symbol	Parameter	$T_A = +25^{\circ} C,$ $V_{CC} = +5.0 V$ $C_L = 50 pF$	T _A , V _{CC} = Mil C _L = 50 pF	T _A , V _{CC} = Com C _L = 50 pF	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
tplh tphl	Propagation Delay CPA, CPB to B _n , A _n	6.51115.56.51115.5			ns	3-1 3-7
tplh tphl	Propagation Delay CPA, CPB to FAB, FBA	4.07.0104.07.010			ns	3-1 3-7
tplh tphL	Propagation Delay CFAB, CFBA to FAB, FBA	5.59.012.55.59.012.5			ns	3-1 3-11
tpzh tpzl	Output Enable Time OEA or OEB to An or Bn	6.010146.01014			ns	3-1 3-12
tphz tplz	Output Disable Time OEA or OEB to An or Bn	6.0 10 14 6.0 10 14			113	3-13

AC Characteristics: See Section 3 for waveforms and load configurations

AC Operating Requirements: See Section 3 for waveforms

		54F/74F	54F	74F	Units	Fig. No.
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com		
		Min Typ Max	Min Max	Min Max		
ts (H) ts (L)	Setup Time, HIGH or LOW An, Bn to CPA, CPB	5.0 5.0			ns	3-5
t _h (H) ⁻ t _h (L)	Hold Time, HIGH or LOW A_n , B_n to CPA, CPB	0 0			113	00
t _s (H) t _s (L)	Setup Time, HIGH OR LOW CEA, CEB to CPA, CPB	8.0 8.0			ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW CEA or CEB to CPA or CPB	0 0				
t _w (H) t _w (L)	Pulse Width, HIGH or LOW CPA or CPB	8.0 8.0			ns	3-7
t _w (H)	Pulse Width HIGH CFAB or CFBA	8.0			ns	3-11
t _{rec}	Recovery Time CFAB, CFBA to CPA, CPB	15			ns	3-11

54F//4	4F557 • 54F/74	1F558		Connection Diag	
8-Bit By	/ 8-Bit Multipliers				
With 3-S	tate Outputs)			X0 [1]	40 XM
				X1 2	39 So
				X ₂ 3	38 S1
				X3 4	37 S ₂
				X4 5	36 S ₃
Description	nd 'F558 are high-speed com	hingtorial arrays that multiple		X5 6	35 S4
	ed or signed twos compleme	-		X6 7	34 S5
0	signed product. Each input	•		X7 8	33 S ₆
	it that determines whether th dditional inputs, Rs and R∪ f			(R)Rs 9	32 S7
	of a bit for rounding to the b	0		V _{CC} 10	31 S8
	For expansion during signed mplement outputs of the mos			(LE)R _U 11	30 GI
	utput latches that store the re		ר	Y0 12	29 S ₉
levices nav	e 3-state outputs for bus app	lications.		Y ₁ 13	28 S ₁
	, Signed or Mixed Multiplicat	lion		Y ₂ 14	27 S ₁ .
	it Product Outputs nplement Output for Signed I	Expansion		Y ₃ 15	26 S ₁₂
MSR CON		Induct		Y4 16	25 S ₁₃
	Inputs for Fractional 8-Bit P	Toduct			
	I Inputs for Fractional 8-Bit P	Toduci		Y ₅ 17	24 S ₁₄
Rounding	J Inputs for Fractional 8-Bit P			Y ₆ [18	24 S ₁₄ 23 S ₁₅
Rounding		Military Grade	Pkg	Y6 18 Y7 19	24) S ₁₄ 23) S ₁₅ 22] S ₁₅
Rounding	ode: See Section 6		Pkg Type	Y6 18 Y7 19 Ym 20	24 S14 23 S15 22 S15 21 OE
Rounding Ordering Co	Commercial Grade V _{CC} = +5.0 V ±5%,	Military Grade V _{CC} = +5.0 V ±10%,		Y6 18 Y7 19	24 S14 23 S14 22 S14 21 OE 21 OE parentheses

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
X 0 – X 7	Multiplicand Inputs	0.5/0.5
Yo – Y7	Multiplier Inputs	0.5/0.5
XM	Multiplicand Sign Control Input	0.5/0.5
ΥM	Multiplier Sign Control Input	0.5/0.5
R	Rounding Input ('F557)	0.5/0.5
Rs	Signed Number Rounding Input ('F558)	0.5/0.5
Ru	Unsigned Number Rounding Input ('F558)	0.5/0.5
LE	Latch Enable Input (Active LOW) ('F557)	0.5/0.5
OE	3-State Output Enable Input (Active LOW)	0.5/0.5
S0 - S15	Product Outputs	50/12.5
<u>S</u> 15	MSB Complement Output	50/12.5

Logic Symbol

 $V_{CC} = Pin 10$ GND = Pin 30

Logic Diagram

*Pin 11 is LE for 'F557 and RU for 'F558.

Mode	Select	Table
------	--------	-------

OPERATING	INPUT	MODE CONTROL INPUTS		
MODE	X0-X7	Y0-Y7	Хм	YM
Unsigned	Unsigned	Unsigned	L	L
Mixed	Unsigned	Twos Complement	L	н
, in the second s	Twos Complement	Unsigned	н	L
Signed	Twos Complement	Twos Complement	н	н

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Functional Description

The 'F557 and 'F558 multipliers are 8 x 8 combinatorial logic arrays capable of multiplying numbers in unsigned, signed twos complement or mixed notation. Each 8-bit input operand X and Y has an associated mode control which determines whether the array treats the number as signed or unsigned. If the mode control X_M or Y_M is HIGH, the operand is treated as a twos complement number with the most significant bit having a negative weight; if the mode control is LOW, the operand is treated as an unsigned number.

The multipliers provide all 16 product bits generated by the multiplication. For expansion during signed or mixed multiplication, the most significant product bit has both true and complement available. Therefore, an adder may be used as a subtractor in many applications and the need for SSI circuits is eliminated.

The 'F557 has latches that store the product for pipelined operations. When LE is LOW the latches are transparent and their outputs change with their inputs. When LE is HIGH the latches are in the storage mode and new data cannot enter.

The 3-state output buffers are controlled by the active-LOW Output Enable \overline{OE} input. When \overline{OE} is LOW, the outputs are active; when \overline{OE} is HIGH, the outputs are in a high impedance (high-Z) state. Several multipliers can be connected on a common bus or used in a pipeline system for multiplications in higher speed systems.

Rounding

The 16-bit product can be truncated to eight bits by using the rounding input(s) to add one in either the 27 adder for unsigned numbers or in the 26 adder for signed numbers. The 'F558 has separate rounding

inputs R_S and R_U for signed or unsigned numbers, respectively. The 'F557 has a single rounding input R and develops the proper rounding by internally combining R with X_M and Y_M as follows:

 $\begin{array}{l} R_U = \overline{X}_M \cdot \overline{Y}_M \cdot R = \text{unsigned rounding input to } 2^7 \text{ adder} \\ R_S = (X_M \pm Y_M)R = \text{signed rounding input to } 2^6 \text{ adder} \end{array}$

Rounding input levels and results for the various modes are shown in *Tables 1* and 2. *Figure a* shows how R_S and R_U would normally be used for rounding signed and unsigned fractional multipliers.

Table 1 'F557 Rounding Inputs

	INPUTS		ADDS		
XM	ΥM	R	27	26	
L	L	н	Yes	No	
L	н	н	No	Yes	
Н	ĻL.	н	No	Yes	
н	н	н	No	Yes	
. X	х	L	No	No	

Table 2 'F558 Rounding Inputs

INP	UTS	ADDS		Normally Used Wit	
Ru	Rs	27	26	ХM	ΥM
L	L	No	No	X	х
L	Н	No	Yes	Х _М + Ү	′ _М = Н
н	L	Yes	No	L	L
н	н	Yes	Yes	*	*

* Most rounding applications require a HIGH level for R_{U} or $R_{S},$ but not both.

Signed Expansion

The most significant product bit has both true and complement outputs available. When building larger signed multipliers the partial products, except at the lower stages, are signed numbers. These unsigned and signed partial products must be added to give the correct signed product. For example, to obtain the correct signed product when using MSI adders the "carry" from the previous adder stage must be added to the sum of the two negative most significant partial product bits. The result of this addition must be a positive sum and a negative carry (borrow). The equations are:

$$S = A + B + C$$
$$C_0 = A \cdot B + B \cdot \overline{C} + \overline{C} \cdot A$$

where C is the Carry In and A and B the sign bits of the two partial products.

An adder produces the equations:

S = A + B + C $C_O = A \cdot B + B \cdot C + C \cdot A$

Therefore, if the inversion of A and B is used, then the adder produces the inversion of the negative carry since

 $A \cdot B + B \cdot \overline{C} + \overline{C} \cdot A = \overline{A} \cdot \overline{B} + \overline{B} \cdot C + \overline{A} \cdot C$

and the sum remains the same.

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter	54F/74F			Units	Conditions
		Min	Тур	Мах		
lcc	Power Supply Current		200	280	mA	V _{CC} = Max

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$ $C_L = 50 pF$	T _A , V _{CC} = Mil C _L = 50 pF	$T_{A}, V_{CC} = Com$ $C_{L} = 50 \text{ pF}$	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
tplh tphl	Propagation Delay X_n or Y_n to S_n , \overline{S}_{15}	45 70 45 70			ns	3-1 3-10
tplh tphL	Propagation Delay LE to S _n , S ₁₅ ('F557)	20 20			ns	3-1 3-8
tpzh tpzL	Output Enable Time \overline{OE} to S_n or \overline{S}_{15}	6.010146.01014			ns	3-1
tphz tplz	Output Disable Time \overline{OE} to S _n or \overline{S}_{15}	9.015216.01014			ns	3-12 3-13

Symbol		54F/74F	54F	74F	Units	Fig. No.
	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com		
		Min Typ Max	Min Max	Min Max		
ts(H) ts(L)	Setup Time, HIGH or LOW, X _n or Y _n to LE	65 65			ns	3-14
t _h (H) t _h (L)	Hold Time, HIGH or LOW, Xn or Yn to LE	0 0			113	3-14
t _w (L)	LE Pulse Width LOW	10			ns	3-8

AC Operating Requirements ('F557 Only): See Section 3 for waveforms

Test limits in screened columns are preliminary.

Applications

16 x 16 Twos Complement Multiplier

The 'F558 8 x 8 multiplier can be used with standard MSI adder circuits to build larger multipliers. *Figure b* illustrates the use of four 'F558 multipliers and ten 16-pin 4-bit 54F/74F283 adders to form a 16 x 16-bit twos complement multiplier with a typical multiplication time of 90 ns. The 16-bit operands are split up into 8-bit sections:

 $\begin{aligned} X \cdot Y &= (X_{0-7} + X_{8-15}2^8) \cdot (Y_{0-7} + Y_{8-15}2^8) \\ &= X_{0-7} \cdot Y_{0-7} + 2^8 \left(X_{0-7} \cdot Y_{8-15} + X_{8-15} \cdot Y_{0-7} \right) \\ &+ 2^{16} \left(X_{8-15} \cdot Y_{8-15} \right) \end{aligned}$

Since $X_8 - X_{15}$ and $Y_8 - Y_{15}$ are signed numbers, the most significant bit of all the partial products (except

the first) carries a negative weight. Therefore, at these negative bit positions the partial product bits must be subtracted rather than added. This subtraction is done in the middle of the network at the 215 bit position by using the inverted output of the most significant product bits from the multipliers to obtain a 'borrow' signal from the last sum output of the appropriate 'F283. This 'borrow' is then used to either add zero or minus 1 to the remaining 8-bit adder section. The mode control inputs of the four 'F558 devices are tied to the logic levels required to produce the correctly signed partial products. Rounding to the best 16-bit fractional product is made by tying the Rs input of one of the middle multipliers to Vcc. Appropriate connection of the adders and mode control logic levels will yield 16 x 16 unsigned multiplication.

4

Fig. b High-speed 16 x 16 Twos Complement Multiplication

4-239

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
P0 - P3	Parallel Data Inputs	0.5/0.375
CEP	Count Enable Parallel Input (Active LOW)	0.5/0.375
CET	Count Enable Trickle Input (Active LOW)	0.5/0.75
СР	Clock Pulse Input (Active Rising Edge)	0.5/0.375
PE	Parallel Enable Input (Active LOW)	0.5/0.375
U/D	Up/Down Count Control Input	0.5/0.375
OE	Output Enable Input (Active LOW)	0.5/0.375
MR	Master Reset Input (Active LOW)	0.5/0.375
SR	Synchronous Reset Input (Active LOW)	0.5/0.375
O ₀ – O ₃	3-State Parallel Data Outputs	25/12.5
TC	Terminal Count Output (Active LOW)	25/12.5
CC	Clocked Carry Output (Active LOW)	25/12.5

568 • 569

4-241

568 • 569

State Diagrams

'F569

Functional Description

The 'F568 counts modulo-10 in the BCD (8421) sequence. From state 9 (HLLH) it will increment to 0 (LLLL) in the Up mode; in Down mode it will decrement from 0 to 9. The 'F569 counts in the modulo-16 binary sequence. From state 15 it will increment to state 0 in the Up mode; in the Down mode it will decrement from 0 to 15. The clock inputs of all flipflops are driven in parallel through a clock buffer. All state changes (except due to Master Reset) occur synchronously with the LOW-to-HIGH transition of the Clock Pulse (CP) input signal.

The circuits have five fundamental modes of operation, in order of precedence: asynchronous reset, synchronous reset, parallel load, count and hold. Five control inputs — Master Reset (\overline{MR}), Synchronous Reset (\overline{SR}), Parallel Enable (\overline{PE}), Count Enable Parallel (\overline{CEP}) and Count Enable Trickle (\overline{CET}) — plus the Up/Down (U/ \overline{D}) input, determine the mode of operation, as shown in the Mode Select

Table. A LOW signal on MR overrides all other inputs and asynchronously forces the flip-flop Q outputs LOW. A LOW signal on SR overrides counting and parallel loading and allows the Q outputs to go LOW on the next rising edge of CP. A LOW signal on PE overrides counting and allows information on the Parallel Data (Pn) inputs to be loaded into the flipflops on the next rising edge of CP. With MR, SR and PE HIGH, CEP and CET permit counting when both are LOW. Conversely, a HIGH signal on either CEP or CET inhibits counting.

The 'F568 and 'F569 use edge-triggered flip-flops and changing the \overline{SR} , \overline{PE} , \overline{CEP} , \overline{CET} or U/D inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.

Two types of outputs are provided as overflow/ underflow indicators. The Terminal Count $\overline{(TC)}$

Mode Select Table

		INP	UTS			OPERATING
MR	SR	PE	CEP	CET	U/D	MODE
L	Х	Х	х	х	Х	Asynchronous Reset
н	L	X	X	X	X	Synchronous Reset
н	н	L	x	x	x	Parallel Load
н	н	н	н	x	x	Hold
H	н	н	X	н	X	Hold
н	н	н	L	L	н	Count Up
н	н	н	L	L	L	Count Down

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial output is normally HIGH and goes LOW providing CET is LOW, when the counter reaches zero in the Down mode, or reaches maximum (9 for the 'F568, 15 for the 'F569) in the Up mode. TC will then remain LOW until a state change occurs, whether by counting or presetting, or until U/D or CET is changed. To implement synchronous multistage counters, the connections between the TC output and the CEP and CET inputs can provide either slow or fast carry propagation. Figure a shows the connections for simple ripple carry, in which the clock period must be longer than the CP to TC delay of the first stage, plus the cummulative CET to TC delays of the intermediate stages, plus the CET to CP setup time of the last stage. This total delay plus setup time sets the upper limit on clock frequency. For faster clock rates, the carry lookahead connections shown in Figure b are recommended. In this scheme the ripple delay through the intermediate stages commences with the same clock that causes the first stage to tick over from max to min in the Up

CC Truth Table

	INPUTS						
CEP	CET	TC*	СР				
н	Х	х	Х	Н			
X	H	X	X	н			
X	X	н	X	н			
L	L	. L .	J	Т Т			

* = TC is generated internally

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Fig a Multistage Counter with Ripple Carry

Fig b Multistage Counter with Lookahead Carry

mode, or min to max in the Down mode, to start its final cycle. Since this final cycle takes 10 ('F568) or 16 ('F569) clocks to complete, there is plenty of time for the ripple to progress through the intermediate stages. The critical timing that limits the clock period is the CP to TC delay of the first stage plus the CEP to CP setup time of the last stage. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops. registers or counters. For such applications, the Clocked Carry (CC) output is provided. The CC output is normally HIGH. When CEP, CET and TC are LOW, the CC output will go LOW when the clock next goes LOW and will stay LOW until the clock goes HIGH again, as shown in the CC Truth Table. When the Output Enable (OE) is LOW, the parallel data outputs O₀ - O₃ are active and follow the flipflop Q outputs. A HIGH signal on \overline{OE} forces $O_0 - O_3$ to the high-Z state but does not prevent counting. loading or resetting.

Logic Equations:

Count Enable = CEP • CET • PE
Up ('F568): $\overline{TC} = Q_0 \bullet \overline{Q_1} \bullet \overline{Q_2} \bullet Q_3 \bullet (Up) \bullet \overline{CET}$
$(\mathbf{i'F569}): \mathbf{TC} = \mathbf{Q}_0 \bullet \mathbf{Q}_1 \bullet \mathbf{Q}_2 \bullet \mathbf{Q}_3 \bullet (\mathbf{Up}) \bullet \mathbf{\overline{CET}}$
$Down \ (Both) : \overline{TC} = \overline{Q_0} \bullet \overline{Q_1} \bullet \overline{Q_2} \bullet \overline{Q_3} \bullet (Down) \bullet \overline{CET} \bullet$

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter	54F/74F			Units	Conditions	
Symbol		Min	Тур	Мах	0	Contractions	
lcc	Power Supply Current		40	60	mA	V _{CC} = Max	

AC Characteristics: See Section 3 for waveforms and load configurations

	1		54F/74	F	5	4F	7	4F		
Symbol	Parameter	$T_{A} = +25^{\circ} C, \\ V_{CC} = +5.0 V \\ C_{L} = 50 \text{ pF}$			T _A , V _{CC} = Mil C _L = 50 pF		T _A , V _{CC} = Com C _L = 50 pF		Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Max	н. -	
f _{max}	Maximum Clock frequency	75							MHz	3-1, 3-7
tpLH tpHL	Propagation Delay CP to On (PE HIGH or LOW)	4.0 5.5	7.0 9.0	10 12.5					ns	3-1 3-7
tplH tpHL	Propagation Delay CP to TC	6.5 6.5	10.5 10.5	15 15					ns	3-1 3-7
tplh tphL	Propagation Delay CET to TC	4.0 3.5	6.5 5.5	9.0 8.0					ns	3-1 3-4
tplh tphl	Propagation Delay U/D to TC	4.0 4.5	6.5 7.5	9.0 10					ns	3-1 3-2
tpLH tpHL	Propagation Delay CP to CC	3.5 3.0	6.0 5.0	8.5 7.0					ns	3-1 3-4
tplH tpHL	Propagation Delay CEP, CET to CC	3.5 4.5	6.0 8.0	8.5 12					ns	3-1 3-4
tрнL	Propagation Delay MR to On	6.0	10	14					ns	3-1 3-11
tpzh tpzl	Output Enable Time OE to On	6.0 7.0	10 12	14 17					ns	3-1 3-12
tphz tpLz	Output Disable Time OE to On	3.5 3.5	6.0 6.0	8.5 8.5						3-13

		54F/74F	54F	74F	Ünits	Fig. No.
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com		
		Min Typ Max	Min Max	Min Max		
ts (H) ts (L)	Setup Time, HIGH or LOW P_n to CP	5.0 7.0			ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW P_n to CP	3.0 3.0				
t _s (H) t _s (L)	Setup Time, HIGH or LOW CEP or CET to CP	10 10			ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW CEP or CET to CP	0 0				
ts (H) ts (L)	Setup Time, HIGH or LOW PE to CP	10 7.0			ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW PE to CP	0 0				
ts (H) ts (L)	Setup Time, HIGH or LOW U/D to CP	14 14			ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW U/D to CP	0 0				
t _s (H) t _s (L)	Setup Time, HIGH or LOW	8.0 6.0			ns	3-5
tĥ (Ĥ) t _h (L)	Hold Time, HIGH or LOW SR to CP	3.0 3.0				0-0
t _w (H) t _w (L)	CP Pulse Width, HIGH or LOW	4.5 6.5	*		ns	3-7
t _w (L)	MR Pulse Width LOW	5.0			ns	3-11
t _{rec}	MR Recovery Time	7.0			ns	3-11
trec	SR Recovery Time	8.0			ns	3-11

AC Operating Requirements: See Section 3 for waveforms

4

Octal Bidi				
	rectional Transce	iver		
Description The 'F588 cont puts and is inte tion resistors a capability is 20 Receive (T/R) i tional transceiv ports; Receive	e Inputs/Outputs and I tains eight non-inverting bi ended for bus-oriented app is specified in the IEEE-48i) mA at the A ports and 48 input determines the direc ver. Transmit (active-HIGH (active-LOW) enables data when HIGH, disables both ce condition.	directional buffers with 3-state blications. The B ports have to 3 specifications. Current sinkit mA at the B ports. The Trans tion of data flow through the) enables data from A ports to a from B ports to A ports. The A and B ports by placing the	te out- ermina- ng smit/ bidirec- o B e Output	Ad 1 20 VCC A1 2 19 B0 A2 3 18 B1 A3 4 17 B2 A4 5 16 B3 A5 6 15 B4 A6 7 14 B5 A7 8 13 B6 OE 9 12 B7 GND 10 11 T/R
·	ink 48 mA, Source 15 mA			A0 A1 A2 A3 A4 A5 A6 A7
	Commercial Grade	Military Grade		9
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$	Pkg Type	B ₀ B ₁ B ₂ B ₃ B ₄ B ₅ B ₆ B ₇ B B B B B B B B B B B B B B B B B B B
Plastic DIP (P)	74F588PC		9Z	V _{CC} = Pin 20 GND = Pin 10
Ceramic DIP (D)	74F588DC	54F588DM	4E	
Flatpak (F)		54F588FM	4D	
Input Loading	g/Fan-Out: See Section 3 f	or U.L. definitions		

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
ŌĒ	Output Enable Input (Active LOW)	1.0/0.94
T/R	Transmit/Receive Control Input	0.5/0.47
A0 - A7	A Port Inputs or	1.75/0.41
	3-State Outputs	75/12.5
B0 - B7	B Port Inputs or	T*/2.0
	3-State Outputs	130/30

*T = Restive Termination per IEEE-488 Standard

B Port Input Characteristic with T/R LOW

Truth Table

INPUTS		OUTPUTS					
ŌE	T/R						
L	L	Bus B Data to Bus A					
L	н	Bus A Data to Bus B					
н	X	High Impedance					

4-248

Symbol	Parameter			54F/74F		Units	Conditions
0,	Farameter		Min	Тур	Мах	Onits	Conditions
Vон	Output HIGH Voltage A ₀ – A ₇ , B ₀ – B ₇		2.4			v	$\label{eq:loss} \begin{array}{l} I_{OH} = -3.0 \text{ mA}, \text{ V}_{CC} = \text{Min} \\ V_{IN} = V_{IH}, \ensuremath{\overline{OE}} = \text{LOW}, \\ T/\overline{R} = \text{HIGH} \end{array}$
Vol	Output LOW Voltage B ₀ – B ₇	XM XC			0.55	v	$\begin{array}{c c} I_{OL} = 48 \text{ mA} \\ \hline OE = LOW, \\ I_{OL} = 64 \text{ mA} \\ \hline T/R = HIGH \end{array}$
V _{NL}	No-load Voltage B ₀ - B ₇		2.5		3.7	v	$T/\overline{R} = LOW, I_{OUT} = 0$
VT+ - VT-	Hysteresis Voltage B ₀ – B ₇		0.2				$T/\overline{R}, \overline{OE} = LOW, V_{CC} = Min$
Ін	Input HIGH Current Breakdown Test, A ₀ – A ₇				100	μA	V _{IN} = 5.5 V
Ін	Input HIGH Current B ₀ – B ₇		0.7		2.5	mA	$V_{IN} = 5.0 \text{ V}, \text{ T}/\overline{\text{R}} = \text{LOW}$
۱L	Input LOW Current B ₀ – B ₇		1.3		3.2	mA	$V_{IN} = 0.4 \text{ V}, \text{ T}/\overline{\text{R}} = \text{LOW}$
liн + lozh	3-State Output OFF Current HIGH, A ₀ – A ₇				70	μA	$V_{IN} = 2.7 V, T/\overline{R} = HIGH$ $V_{CC} = Max$
lcc	Power Supply Current			128	192	mA	OE = HIGH, V _{CC} = Max

DC Characteristics over Operating Temperature Range (unless otherwise specified)

AC Characteristics: See Section 3 for waveforms and load configurations

Symbol		54F/74F	54F	74F	Units	Fig. No.
	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$ $C_L = 50 pF$	T _A , V _{CC} = Mil C _L = 50 pF	T _A , V _{CC} = Com C _L = 50 pF		
		Min Typ Max	Min Max	Min Max		
tplн tpнl	Propagation Delay A to B or B to A	3.56.59.13.56.59.1			ns	3-1 3-4
tpzh tpzL	Output Enable Time T/R or OE to A or B	4.07.0105.58.514			ns	3-1 3-12
tрнz tplz	Output Disable Time T/R or OE to A or B	5.58.5144.07.010			113	3-12

54F/74F673

16-Bit Shift Register (Serial-in/Serial-Parallel Out)

Description

The 'F673 contains a 16-bit serial-in/serial-out shift register and a 16-bit parallel-out storage register. A single pin serves either as an input for serial entry or as a 3-state serial output. In the Serial-out mode, the data recirculates in the shift register. By means of a separate clock, the contents of the shift register are transferred to the storage register for parallel outputting. The contents of the storage register can also be parallel loaded back into the shift register. A HIGH signal on the Chip Select input prevents both shifting and parallel transfer. The storage register may be cleared via STMR.

- Serial-to-Parallel Converter
- 16-Bit Serial I/O Shift Register
- 16-Bit Parallel-out Storage Register
- Recirculating Serial Shifting
- Recirculating Parallel Transfer
- Common Serial Data I/O Pin

CS 1	``	24 V _{CC}
SHCP 2		23 Q ₁₅
R/W 3		22 Q14
STMR 4		21 Q ₁₃
STCP 5		20 Q ₁₂
SI/O 6	, ,	19 Q ₁₁
Q0 7	4. A	18 Q ₁₀
Q1 8		17 Q9
Q ₂ 9		16 Q8
Q ₃ 10		15 Q7
Q₄ [1]		14 Q ₆
GND 12		13 Q5
	·	I .

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg
Pkgs	$V_{CC} = +5.0 \text{ V} \pm 5\%,$ $T_A = 0^{\circ} \text{ C to } +70^{\circ} \text{ C}$	V _{CC} = +5.0 V ±10%, T _A = -55° C to +125° C	Туре
Plastic DIP (P)	74F673PC		9N
Ceramic DIP (D)	74F673DC	54F673DM	6N
Flatpak (F)		54F673FM	4M

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW	
CS	Chip Select Input (Active LOW)	0.5/0.375	
SHCP	Shift Clock Pulse Input (Active Falling Edge)	0.5/0.375	
STMR	Store Master Reset Input (Active LOW)	0.5/0.375	
STCP	Store Clock Pulse Input	0.5/0.375	
R/W	Read/Write Input	0.5/0.375	
SI/O	Serial Data Input or	1.75/0.375	
	3-State Serial Output	25/12.5	
Q0 - Q15	Parallel Data Outputs	25/12.5	

Functional Description

The 16-bit shift register operates in one of four modes, as indicated in the Shift Register Operations Table. A HIGH signal on the Chip Select $\overline{(CS)}$ input prevents clocking and forces the Serial Input/Output (SI/O) 3-state buffer into the high-impedance state. During serial shift-out operations, the SI/O buffer is active (i.e., enabled) and the output data is also recirculated back into the shift register. When parallel loading the shift register from the storage register, serial shifting is inhibited.

The storage register has an asynchronous master reset $\overline{(STMR)}$ input that overrides all other inputs and forces the $Q_0 - Q_{15}$ outputs LOW. The storage register is in the Hold mode when either \overline{CS} or the Read/Write (R/ \overline{W}) input is HIGH. With \overline{CS} and R/ \overline{W} both LOW, the storage register is parallel loaded from the shift register.

To prevent false clocking of the shift register, \overline{SHCP} should be in the LOW state during a LOW-to-HIGH transition of \overline{CS} . To prevent false clocking of the storage register, STCP should be LOW during a HIGH-to-LOW transition of \overline{CS} if R/W is LOW, and should also be LOW during a HIGH-to-LOW transition of R/W if \overline{CS} is LOW.

Logic Symbol

GND = Pin 12

Storage Register Operations Table

CONTROL INPUTS			OPERATING	
STMR	CS	R/W	STCP	MODE
L	х	х	х	Reset; Outputs LOW
н	н	X	Х	Hold
н	X	н	Х	Hold
Ĥ	L	L	7	Parallel Load

CONTROL INPUTS SI/O OPERATING MODE R/W CS SHCP STCP STATUS н Х х х High Z Hold х Data In Serial Load L L Serial Output ٦ L н L Data Out with Recirculation Parallel Load: н L н Active L No Shifting

Shift Register Operations Table

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays

Symbol	Parameter		54F/74F			Conditions
Oy	i urumeter	Min	Min Typ Max		Units	Conditions
Іін + Іогн	3-State Output OFF Current HIGH, SI/O			70	μA	$V_{IN} = 2.7 V$, $V_{CC} = Max$
IIL + IOZL	3-State Output OFF Current LOW, SI/O			650	μA	$V_{IN} = 0.5 V$, $V_{CC} = Max$
lcc	Power Supply Current		106	160	mA	V _{CC} = Max

DC Characteristics over Operating Temperature Range (unless other

		54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$ $C_L = 50 pF$	T _A , V _{CC} = Mil C _L = 50 pF	T _A , V _{CC} = Com C _L = 50 pF	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
f _{max}	Maximum Clock Frequency	100 140			MHz	3-1, 3-8
tPLH tPHL	Propagation Delay STCP to Qn	7.5 13 18 9.5 16 22			ns	3-1 3-7
tрнL	Propagation Delay STMR to Qn	6.0 10 14			ns	3-1 3-11
tpLH tpHL	Propagation Delay SHCP to SI/O	4.58.0115.09.012.5			ns	3-1 3-8
tPZH tPZL	Output Enable Time CS or R/W to SI/O	3.05.07.03.05.07.0			ns	3-1 3-12
tphz tplz	Output Disable Time CS or R/W to SI/O	3.05.07.03.05.07.0			113	3-13

AC Characteristics: See Section 3 for waveforms and load configurations

AC Operating Requirements: See Section 3 for waveforms

		54F/74F	54F	74F		· ·
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0$ V	T _A , V _{CC} = Mil	T _A , V _{CC} = Com	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
ts (H) ts (L)	Setup Time, HIGH or LOW CS or R/W to STCP	7.0 7.0			ns	3-5
t _h (H) t _h (L)	Hold Time, HIGH or LOW CS or R/W to STCP	0 0				0-0
t _s (H) t _s (L)	Setup Time, HIGH or LOW SI/O to SHCP	3.0 3.0			ns	3-6
t _h (H) t _h (L)	Hold Time, HIGH or LOW SI/O to SHCP	0 0			10	
t _s (H) t _s (L)	Setup Time, HIGH or LOW CS or R/W to SHCP	5.0 5.0			ns	3-6
t _h (H) t _h (L)	Hold Time, HIGH or LOW CS or R/W to SHCP	0 0				
t _w (H) t _w (L)	SHCP Pulse Width, HIGH or LOW	4.0 5.0			ns	3-8
t _w (H) t _w (L)	STCP Pulse Width, HIGH or LOW	5.0 10			ns	3-7
t _w (L)	STMR Pulse Width LOW	7.0			ns	3-11
t _{rec}	Recovery Time STMR to STCP	10		ţ	ns	3-11

Test limits in screened columns are preliminary.

16-Bit Shift Register

(Serial-Parallel-in/Serial-out)

Description

The 'F674 is a 16-bit shift register with serial and parallel load capability and serial output. A single pin serves alternately as an input for serial entry or as a 3-state serial output. In the Serial-out mode the data recirculates in the register. Chip Select, Read/Write and Mode inputs provide control flexibility.

- 16-Bit Serial I/O Shift Register
- 16-Bit Parallel-in/Serial-out Converter
- Recirculating Serial Shifting
- Common Serial Data I/O Pin

Ordering Code: See Section 6							
	Commercial Grade	Military Grade	Pkg				
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	Туре				
Plastic DIP (P)	74F674PC		9N				
Ceramic DIP (D)	74F674DC	54F674DM	6N				
Flatpak (F)		54F674FM	4M				

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
P0 - P15	Parallel Data Inputs	0.5/0.375
CS	Chip Select Input (Active LOW)	0.5/0.375
CP	Clock Pulse Input (Active LOW)	0.5/0.375
М	Mode Select Input	0.5/0.375
R/\overline{W}	Read/Write Input	0.5/0.375
SI/O	3-State Serial Data Input or	1.75/0.375
	3-State Serial Output	25/12.5

Logic Symbol

 $V_{CC} = Pin 24$ GND = Pin 12 **Connection Diagram**

24 Vcc

23 P15

22 P14

21 P₁₃

20 P12

19 P₁₁

18 P₁₀

17 P9 16 P8

15 P7

14 P6

13 P5

CS 1

CP 2

R/W 3

NC 4

M 5

SI/O 6

P0 7 P1 8

P₂

P3 III

P₄

GND 12

Functional Description

The 16-bit shift register operates in one of four modes, as indicated in the Shift Register Operations Table.

Hold — a HIGH signal on the Chip Select (\overline{CS}) input prevents clocking and forces the Serial Input/Output (SI/O) 3-state buffer into the high-impedance state.

Serial Load — data present on the SI/O pin shifts into the register on the falling edge of \overline{CP} . Data enters the Q₀ position and shifts toward Q₁₅ on successive clocks.

Serial Output — the SI/O 3-state buffer is active and the register contents are shifted out from Q_{15} and simultaneously shifted back into Q_0 .

Parallel Load — data present on $P_0 - P_{15}$ are entered into the register on the falling edge of \overrightarrow{CP} . The SI/O 3-state buffer is active and represents the Q_{15} output.

To prevent false clocking, \overline{CP} must be LOW during a LOW-to-HIGH transition of \overline{CS} .

Shift Register Operations Table

	CONTROL	. INPUTS	6	SI/O	OPERATING MODE
CS	R/W	М	CP	STATUS	
HL	X L	x x	x l	High Z Data In	Hold Serial Load
L	н	L	l	Data Out	Serial Output with Recirculation
L	н	н	l	Active	Parallel Load; No Shifting

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Functional Block Diagram

Symbol	Parameter		54F/74F			Conditions	
	i di di lictor	Min	Тур	Max	Units		
lih + lozh	3-State Output OFF Current HIGH, SI/O			70	μΑ	$V_{IN} = 2.7 V, V_{CC} = Max$	
IIL + IOZL	3-State Output OFF Current LOW, SI/O			650	μA	$V_{IN} = 0.5 V, V_{CC} = Max$	
lcc	Power Supply Current		53	80	mA	V _{CC} = Max	

DC Characteristics over Operating Temperature Range (unless otherwise specified)

AC Characteristics: See Section 3 for waveforms and load configurations

		54F/74F	54F	74F		
Symbol	Parameter	$T_{A} = +25^{\circ}C, \\ V_{CC} = +5.0 V \\ C_{L} = 50 \text{ pF}$	T _A , V _{CC} = Mil C _L = 50 pF	$T_{A}, V_{CC} = Com$ $C_{L} = 50 \text{ pF}$	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
f _{max}	Maximum Clock Frequency	100 140			MHz	3-1, 3-8
tplh tphL	Propagation Delay CP to SI/O	4.58.0115.09.012.5			ns	3-1 3-8
tPZH tPZL	Output Enable Time CS or R/W to SI/O	3.05.07.03.05.07.0			ns	3-1 3-12
tphz tplz	Output Disable Time CS or R/W to SI/O	3.05.07.03.05.07.0			113	3-13

AC Operating Requirements: See Section 3 for waveforms

		54F/74F	54F	74F		
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com	Units	Fig. No.
		Min Typ Max	Min Max	Min Max		
ts(H) ts(L)	Setup Time, HIGH or LOW SI/O to CP	7.0 7.0			ns	3-6
t _h (H) t _h (L)	Hold Time, HIGH or LOW SI/O to CP	0 0				0-0
t _s (H) t _s (L)	Setup Time, HIGH or LOW P_n to \overline{CP}	3.0 3.0			ns	3-6
t _h (H) t _h (L)	Hold Time, HIGH or LOW P_n to \overline{CP}	0 0			110	
ts (H) ts (L)	Setup Time, HIGH or LOW R/\overline{W} or \overline{CS} to \overline{CP}	5.0 5.0			ns	3-6
t _h (H) t _h (L)	Hold Time, HIGH or LOW R/\overline{W} or \overline{CS} to \overline{CP}	0 0				
t _w (H) t _w (L)	CP Pulse Width, HIGH or LOW	4.0 5.0			ns	3-8

Test limits in screened columns are preliminary.

16-Bit Shift Register (Serial-in/Serial-Parallel Out)

Description

The 'F675 contains a 16-bit serial-in/serial-out shift register and a 16-bit parallel-out storage register. Separate serial input and output pins are provided for expansion to longer words. By means of a separate clock, the contents of the shift register are transferred to the storage register. The contents of the storage register can also be loaded back into the shift register. A HIGH signal on the Chip Select input prevents both shifting and parallel loading.

- Serial-to-Parallel Converter
- 16-Bit Serial I/O Shift Register
- 16-Bit Parallel-out Storage Register
- Recirculating Parallel Transfer
- Expandable for Longer Words

Ordering Code: See Section 6

	Commercial Grade	Military Grade	Pkg
Pkgs	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	Туре
Plastic DIP (P)	74F675PC		9N
Ceramic DIP (D)	74F675DC	54F675DM	6N
Flatpak (F)		54F675FM	4M

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	54F/74F (U.L.) HIGH/LOW
SI	Serial Data Input	0.5/0.375
CS	Chip Select Input (Active LOW)	0.5/0.375
SHCP	Shift Clock Pulse Input (Active Falling Edge)	0.5/0.375
STCP	Store Clock Pulse Input (Active Rising Edge)	0.5/0.375
R/W	Read/Write Input	0.5/0.375
SO	Serial Data Output	25/12.5
Q0 - Q15	Parallel Data Outputs	25/12.5

Logic Symbol 4 $1 \longrightarrow 0$ CS $2 \longrightarrow 0$ SHCP $3 \longrightarrow 5$ KCP $Q_0 Q_1 Q_2 Q_3 Q_4 Q_5 Q_6 Q_7 Q_8 Q_9 Q_{10} Q_{11} Q_{12} Q_{13} Q_{14} Q_{15} SO$ 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 23 6

Functional Description

The 16-bit shift register operates in one of four modes, as determined by the signals applied to the Chip Select (\overline{CS} , Read/Write (R/\overline{W}) and Store Clock Pulse (STCP) input. State changes are indicated by the falling edge of the Shift Clock Pulse (\overline{SHCP}). In the Shift-right mode, data enters D₀ from the Serial Input (SI) pin and exits from Q₁₅ via the Serial Data Output (SO) pin. In the Parallel Load mode, data from the storage register outputs enter the shift register and serial shifting is inhibited.

The storage register is in the Hold mode when either $\overline{\text{CS}}$ or R/\overline{W} is HIGH. With $\overline{\text{CS}}$ and R/\overline{W} both LOW, the storage register is parallel loaded from the shift register on the rising edge of STCP.

To prevent false clocking of the shift register, SHCP should be in the LOW state during a LOW-to-HIGH transition of \overline{CS} . To prevent false clocking of the storage register, STCP should be LOW during a HIGH-to-LOW transition of \overline{CS} if R/W is LOW, and should also be LOW during a HIGH-to-LOW transition of R/W if \overline{CS} is LOW.

V_{CC} = Pin 24 GND = Pin 12

Shift Register Operations Table

CONTROL INPUTS				OPERATING
CS	R/\overline{W}	SHCP	STCP	MODE
H L L	X L H	× L L	X X L	Hold Shift Right Shift Right
L	н	l	н	Parallel Load; No Shifting

Storage Register Operations Table

INPUTS			OPERATING MODE		
CS	R∕₩	STCP			
H L L	X H L	Ч× ×	Hold Hold Parallel Load		

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Functional Block Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter	54F/74F			Units	Conditions	
eynise.		Min	Тур	Max	•		
lcc	Power Supply Current		106	160	mA	V _{CC} = Max	

Symbol		54F/74F	54F	74F	Units	Fig. No.
	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$ $C_L = 50 pF$	T _A , V _{CC} = Mil C _L = 50 pF	T _A , V _{CC} = Com C _L = 50 pF		
		Min Typ Max	Min Max	Min Max		
f _{max}	Maximum Clock Frequency	100 140			MHz	3-1, 3-8
tplh tphl	Propagation Delay STCP to Qn	7.513189.51622			ns	3-1 3-7
tpLH tpHL	Propagation Delay SHCP to SO	4.58.0115.09.012.5			ns	3-1 3-8

AC Characteristics: See Section 3 for waveforms and load configurations

AC Operating Requirements: See Section 3 for waveforms

		54F/74F	54F	74F	Units	Fig. No.
Symbol	Parameter	$T_A = +25^{\circ}C,$ $V_{CC} = +5.0 V$	T _A , V _{CC} = Mil	T _A , V _{CC} = Com		
		Min Typ Max	Min Max	Min Max		
ts (H) ts (L)	Setup Time, HIGH or LOW CS or R/W to STCP	7.0 7.0	-		ns	3-5
$\begin{array}{l} t_{h} \ (H) \\ t_{h} \ (L) \end{array}$	Hold Time, HIGH or LOW CS or R/W to STCP	0 0			113	
t _s (H) t _s (L)	Setup Time, HIGH or LOW SI to SHCP	3.0 3.0			ns	3-6
t _h (H) t _h (L)	Hold Time, HIGH or LOW SI to SHCP	0 0				
ts(H) ts(L)	Setup Time, HIGH or LOW R/\overline{W} or \overline{CS} to SHCP	5.0 5.0			ns	3-6
t _h (H) t _h (L)	Hold Time, HIGH or LOW R/W or CS to SHCP	0 0			110	
t _w (H) t _w (L)	SHCP Pulse Width, HIGH or LOW	4.0 5.0			ns	3-8
$\begin{array}{c} t_{w} \ (H) \\ t_{w} \ (L) \end{array}$	STCP Pulse Width, HIGH or LOW	5.0 10			ns	3-7

Test limits in screened columns are preliminary.

29F01

4-Bit Bipolar Microprocessor Slice

Description

The 29F01 4-bit high-speed bipolar microprocessor slice is available in two speed versions, the 29F01-1 and 29F01-2. It features a 16-word by 4-bit dual-port Random Access Memory (RAM), a high-speed 8-function Arithmetic Logic Unit (ALU) and associated shifting, decoding and multiplexing circuitry. The microinstruction word consists of three groups of three bits that respectively control ALU operand source, ALU function and ALU result destination. Width of the data path may be increased by cascading with either ripple or full lookahead carry. Data outputs are 3-state for maximum versatility. Four status flag signals, carry, overflow, zero and sign, are

Logic Symbol

 $V_{CC} = Pin 10$ GND = Pin 30

provided by the ALU. The microprocessor slice is compatible with Fairchild Advanced Schottky TTL (FAST) devices and can be used with FAST parts in microprogrammed systems to minimize cycle times.

The 29F01-1 and 29F01-2 are plug-in replacements for the 2901 series microprocessors.

Isoplanar FAST Technology Plug-in Replacement for Standard 2901 20% to 30% Faster than Standard 2901 in Most System Configurations Clock Pulse LOW Time 20 ns

29F10 Microprogram Controller

Description

The 29F10 is a high-speed bipolar microprogram controller. It is intended for use in controlling the execution sequence of microinstructions stored in microprogram memory. The 29F10 provides a 12-bit address during each clock cycle. This address comes from one of four sources: direct input from $D_0 - D_{11}$, the Register/Counter, the Microprogram Counter-Register, or the 5-deep LIFO Stack. Address outputs are 3-state for maximum versatility.

The microprogram controller is compatible with Fairchild Advanced Schottky TTL (FAST) devices and can be used with FAST parts in microprogrammed systems to minimize cycle times.

Addresses up to 4096 Words of Microcode Directly Loadable Down-counter for Counting Loop Iterations

Provides Count Capacity of 4096

- Up-counter Provides Sequential Microinstruction Execution
- 5-Deep Push/Pop LIFO Stack Provides Subroutine Linkage and Branch Capabilities

All Registers Positive Edge-triggered

Plug-in Replacement for Standard 2910

29F705

16-Word by 4-Bit 2-Port Random Access Memory

Description

The 29F705 is a 16-word by 4-bit Random Access Memory (RAM). It provides two separate output ports to allow simultaneous reading of any two 4-bit words, and has 3-state outputs for bussing.

High-speed Version of 29705 16-Word by 4-Bit, 2-Port RAM Separate 4-Bit Latches on Each Output Port 3-State Outputs

54F/74F211

144-Bit Random Access Memory

(With 3-State Outputs)

Description

The 'F211 is a high-speed 144-bit Random Access Memory (RAM) organized as a 16-word by 9-bit array. It contains output latches that are transparent when the Latch Enable (LE) is HIGH. Inputs are buffered to minimize loading and are fully decoded on chip. The output buffers are active only in the Read mode when Chip Select (\overline{CS}) and Output Enable (\overline{OE}) are LOW, and Write Enable (\overline{WE}) is HIGH; otherwise, the outputs are in the high-impedance state.

3-State Outputs for Bus Applications Buffered Inputs for Minimum Loading Address Decoding on Chip Address Access Time 15 ns Typ Chip Select Access Time 8 ns Typ Supply Current 80 mA Typ Logic Symbol

144-Bit Random Access Memory (With 3-State Outputs)

Description

The 'F212 is a high-speed 144-bit Random Access Memory (RAM) organized as a 16-word by 9-bit array. Address inputs are buffered to minimize loading and are fully decoded on chip. The output buffers are active only in the Read mode when Chip Select (\overline{CS}) and Output Enable (\overline{OE}) are LOW, and Write Enable (\overline{WE}) is HIGH; otherwise, the outputs are in the high-impedance state.

3-State Outputs for Bus Applications Buffered Inputs for Minimum Loading Address Decoding on Chip Address Access Time 15 ns Typ Chip Select Access Time 8 ns Typ Supply Current 80 mA Typ

54F/74F213

192-Bit Random Access Memory

 $V_{CC} = Pin 20$ GND = Pin 10

(With 3-State Outputs)

Description

The 'F213 is a high-speed 192-bit Random Access Memory (RAM) organized as a 16-word by 12-bit array. Inputs are buffered to minimize loading and are fully decoded on chip. The output buffers are active only in the Read mode when Chip Select (\overline{CS}) is LOW and Write Enable (\overline{WE}) is HIGH; otherwise, the outputs are in the high-impedance state.

3-State Outputs for Bus Applications Buffered Inputs for Minimum Loading Address Decoding on Chip Address Access Time 15 ns Typ Chip Select Access Time 8 ns Typ Supply Current 80 mA Typ

8-Bit Bidirectional Binary Counter

Description

The 'F269 is a fully synchronous 8-stage up/down counter featuring a preset capability for programmable operation, carry lookahead for easy cascading and a U/\overline{D} input to control the direction of counting. All state changes, whether in counting or parallel loading, are initiated by the rising edge of the clock.

Synchronous Counting and Loading Built-in Lookahead Carry Capability Count Frequency 100 MHz Typ Supply Current 70 mA Typ Logic Symbol

 $V_{CC} = Pin 19$ GND = Pin 7

54F/74F311

144-Bit Random Access Memory

(With Open-collector Outputs)

Description

The 'F311 is a high-speed 144-bit Random Access Memory (RAM) organized as a 16-word by 9-bit array. It contains output latches that are transparent when the Latch Enable (LE) is HIGH. Inputs are buffered to minimize loading and are fully decoded on chip. The output buffers are active only in the Read mode when Chip Select (\overline{CS}) and Output Enable (\overline{OE}) are LOW, and Write Enable (\overline{WE}) is HIGH; otherwise, the outputs are in the OFF state.

Buffered Inputs for Minimum Loading Address Decoding on Chip Address Access Time 15 ns Typ Chip Select Access Time 8 ns Typ Supply Current 80 mA Typ

144-Bit Random Access Memory (With Open-collector Outputs)

Description

The 'F312 is a high-speed 144-bit Random Access Memory (RAM) organized as a 16-word by 9-bit array. Address inputs are buffered to minimize loading and are fully decoded on chip. The output buffers are active only in the Read mode when Chip Select (\overline{CS}) and Output Enable (\overline{OE}) are LOW, and Write Enable (\overline{WE}) is HIGH; otherwise, the outputs are in the OFF state.

Buffered Inputs for Minimum Loading Address Decoding on Chip Address Access Time 15 ns Typ Chip Select Access Time 8 ns Typ Supply Current 80 mA Typ

54F/74F313

192-Bit Random Access Memory (With Open-collector Outputs)

 $V_{CC} = Pin 20$ GND = Pin 10

Description

The 'F313 is a high-speed 192-bit Random Access Memory (RAM) organized as a 16-word by 12-bit array. Inputs are buffered to minimize loading and are fully decoded on chip. The output buffers are active only in the Read mode when Chip Select (\overline{CS}) is LOW and Write Enable (\overline{WE}) is HIGH; otherwise, the outputs are in the OFF state.

Buffered Inputs for Minimum Loading Address Decoding on Chip Address Access Time 15 ns Typ Chip Select Access Time 8 ns Typ Supply Current 80 mA Typ

Cyclic Redundancy Check Generator/Checker

Description

The 'F401 Cyclic Redundancy Check (CRC) generator/checker implements the most widely used error detection scheme in serial digital data handling systems. On transmission, the data stream is encoded by dividing it by a set polynomial. The remainder is appended to the message as check bits. Upon reception, this data stream is divided by the same polynomial and if there is no remainder, there are no detectable errors.

Eight Selectable Polynomials Error Indicator More Efficient than Parity in Checking Errors High-speed Data Rate Supply Current 70 mA Typ

Logic Symbol

 $V_{CC} = Pin 14$ GND = Pin 7

54F/74F402

Expandable Cyclic Redundancy Check Generator/Checker

Description

The 'F402 expandable Cyclic Redundancy Check (CRC) generator/checker is an expandable version of the 'F401. It provides an advanced tool for the implementation of the most widely used error detection scheme in serial digital handling systems. A 4-bit control input selects one-of-six generator polynomials. The list of polynomials includes CRC-16, CRC-CCITT and Ethernet, as well as three other standard polynomials (56th order, 48th order, 32nd order). Individual clear and preset inputs are provided for floppy disk and other applications. The Error output indicates whether or not a transmission error has occurred. The CWG Control input inhibits feedback during check word transmission. The 'F402 is compatible with Fairchild Advanced Schottky TTL (FAST) devices and is fully compatible with all TTL families.

Guaranteed 20 MHz Data Rate Six Selectable Polynomials Other Polynomials Available Separate Preset and Clear Controls

Expandable

Automatic Right Justification Error Output Open Collector Typical Applications Floppy and Other Disk Storage Systems Digital Cassette and Cartridge Systems Data Communication Systems

Logic Symbol

 $V_{CC} = Pin 16$ GND = Pin 8

5-9

16 X 4 First-In First-Out Buffer Memory (With 3-State Outputs)

Description

The 'F403 is an expandable fall-through type First-In First-Out (FIFO) buffer memory, optimized for highspeed disk or tape controllers and communication buffer applications. It is organized as 16 words by four bits and may be expanded to any number of words or bits (in multiples of 16 and 4 respectively). Data may be entered or extracted asynchronously in serial or parallel, allowing economical implementation of buffer memories.

Serial or Parallel Data Rate 10 MHz Serial or Parallel Input/Output Expandable in Width and Depth 3-State Outputs Supply Current 115 mA Typ

54F/74F412

Multi-mode Buffered Latch (With 3-State Outputs)

Description

The 'F412 is an 8-bit latch with 3-state output buffers and control and device selection logic. Also included is a status flip-flop for providing device-busy or request-interrupt commands. Separate Mode and Select inputs allow data to be stored with the outputs enabled or disabled. The device can also operate in a fully transparent mode. The 'F412 is the functional equivalent of the Intel 8212.

3-State Outputs

Status Flip-flop for Interrupt Commands Asynchronous or Latched Receiver Modes Select to Output Propagation Delay 10 ns Typ Supply Current 43 mA Typ

Logic Symbol

 $V_{CC} = Pin 24$ GND = Pin 12

64 X 4 First-In First-Out Buffer Memory

(With Serial and Parallel I/O)

Description

The 'F413 is an expandable fall-through type highspeed First-In First-Out (FIFO) buffer memory organized as 64 words by four bits. The 4-bit input and output registers record and transmit, respectively, asynchronous data in either serial or parallel form. Control pins on the input and output allow for handshaking and expansion. The 4-bit wide, 62-bit deep fall-through stack has self-contained control logic. The outputs are in the high-impedance state when the Output Enable is HIGH.

Separate Input and Output Clocks Serial or Parallel Input and Output Expandable without External Logic 15 MHz Data Rate Supply Current 115 mA Typ

 $V_{CC} = Pin 16$ GND = Pin 8

54F/74F416

16-Bit Memory Error Detection And Correction Circuit

Description

The 'F416 memory Error Detection And Correction (EDAC) circuit contains the logic to generate six check bits on a 16-bit data field, according to a modified Hamming code. The check bits are then stored in memory with the data word. On a subsequent read from memory, the device will detect and correct any single-bit data error, and detect any double-bit error. The 'F416 is a 16-bit version of the 'F418.

Increases Memory System Reliability Corrects Single-bit Errors Detects Double-bit Errors

Logic Symbol

32-Bit Memory Error Detection And Correction Circuit

Description

The 'F418 memory Error Detection And Correction (EDAC) circuit contains the logic to generate seven check bits on a 32-bit data field, according to a modified Hamming code. The check bits are then stored in memory with the data word. On a subsequent read from memory, the device will detect and correct any single-bit data error, and detect any double-bit error.

The 'F418 is fully compatible with all TTL families. Data and check-bit signals are bidirectional 3-state lines.

Increases Memory System Reliability Corrects Single-bit Errors in 60 ns Detects Double-bit Errors in 65 ns

V_{CC} = Pin 36 GND = Pins 13, 37

54F/74F430 Cyclic Redundancy Checker/Corrector

Description

The 'F430 Cyclic Redundancy Checker/Corrector (CRCC) is a serial burst-error detection/correction circuit, using a 32-order polynomial selected by internal Read Only Memory (ROM). When used at the data transmission source, the 'F430 generates a cyclic redundancy check code and appends it to a data block transmission. When the device is placed at the receiving end of a transmission, it is used to verify the integrity of the data block that now contains the appended check code. Should an error be detected, under user control, the device can be made to correct the bits in error. The CRCC is used in high-performance serial data transmission applications such as disk and tape controllers, as well as communications equipment and serial data interfaces between mainframes and peripherals.

Eight Different Polynomials, up to 32nd Order (e.g. Ethernet) Clocking Rate 25 MHz 28-Pin Package

54F/74F432

Multi-mode Buffered Latch (With 3-State Outputs)

Description

The 'F432 is an 8-bit latch with 3-state output buffers and control and device selection logic. Also included is a status flip-flop for providing device-busy or request-interrupt commands. Separate Mode and Select inputs allow data to be stored with the outputs enabled or disabled. The device can also operate in a fully transparent mode.

The 'F432 is the functional equivalent of the Intel 8212, but with inverting outputs.

3-State Inverting Outputs Status Flip-flop for Interrupt Commands Asynchronous or Latched Receiver Modes Select to Output Propagation Delay 10 ns Supply Current 43 mA Typ

Logic Symbol

 $V_{CC} = Pin 24$ GND = Pin 12

64 x 4 First-In First-Out Buffer Memory (With 3-State Outputs)

Description

The 'F433 is an expandable fall-through type First-In First-Out (FIFO) buffer memory, optimized for highspeed disk or tape controllers and communication buffer applications. It is organized as 64 words by four bits and may be expanded to any number of words or bits (in multiples of four). Data may be entered or extracted asynchronously in serial or parallel, allowing economical implementation of buffer memories.

The 'F433 has 3-state outputs for added versatility and is fully compatible with all TTL families.

64 x 4 Version of 'F403 Serial or Parallel Input/Output Expandable without External Logic Serial or Parallel Data Rate 10 MHz 24-Pin Package

54F/74F500

6-Bit Analog-to-Digital Converter

Description

The 'F500 is a 6-bit, fully parallel analog-to-digital converter capable of sampling at rates from 0 to 50 MHz. Conversion is accomplished by 64 comparators spaced one quanta apart on a voltage reference ladder. All comparators measure the analog input against their reference simultaneously. The most significant comparator that finds the analog input to be greater than its reference has its output encoded to a 6-bit, active-HIGH binary number, stored in latches. Two polarity control inputs are provided: PM complements the most significant output bit and PN complements the lesser five output bits. The circuit operates from +5.0 V and -6.0 V supplies and has separate digital and analog grounds. Both ends of the reference ladder are brought out, one to V_{RT} (nominally zero volts) and the other to V_{RB} (nominally -1.0 V).

No Sample and Hold Required Sampling Rate 40 MHz Typ Aperture Time 4.0 ns Typ V_{CC} Supply Current 20 mA Typ V_{EE} Supply Current 102 mA Typ

 $V_{CC} = Pin 7$ $V_{EE} = Pins 1, 6$ $D_{Gnd} = Pin 8$

8-Bit Analog-to-Digital Converter

Description

The 'F505 is an 8-bit A-to-D converter using the successive approximation technique. It contains an 8-bit successive approximation shift register connected internally to an 8-bit D-to-A converter. The converter output drives one input of an on-chip analog comparator. The 'F505 is intended for use where the speed of flash converters is not needed. Its handshaking facilities and 3-state outputs make it microprocessor compatible.

8-Bit Resolution

Single 5 V Power Supply Required Input Range 0.2 V Conversion Time 200 ns Typ Clock Frequency 40 MHz Typ

54F/74F525

16-Stage Programmable Counter/Timer

Description

The 'F525 is a 16-bit multimode programmable timer, divider, and frequency generator. It incorporates a 16-bit presettable counter, a 16-bit latch, crystal oscillator circuit and control circuitry. Modes include programmable timer, divider, one shot and terminal count interrupt.

28-Pin Package 16-Stage Divider Clock Frequency 50 MHz Typ Supply Current 100 mA Typ

Logic Symbol

Expandable 8-Bit Twos Complement Multiplier/Divider (With 3-State Outputs)

Description

The 'F559 implements fast signed twos complement multiplication and division as an asynchronous peripheral in microprocessor and minicomputer systems. It contains an 8-bit ALU, three 8-bit registers, a 4-bit sequence counter and the control logic necessary to perform multiply, rounded multiply, fractional divide and integer divide operations. The two 8-bit operands are entered successively at the I/O ports, whereupon the circuit operates internally at a rate determined by an externally applied clock frequency of up to 25 MHz. Upon completion, and upon command, results are presented at the I/O ports in successive 8-bit words. Linking inputs and outputs are provided for expansion to longer words by using two or more multipliers operating on the same 8-bit bus.

Signed Twos Complement Arithmetic Increases Processor Efficiency Low System Parts Count Expandable in 8-Bit Increments 8-Bit Bus Oriented 3-State I/O 16-Bit Multiply in 1.2 μs Typ 16-Bit Divide in 1.6 μs Typ

54F/74F579 8-Bit Bidirectional Binary Counter

22 21 WF MSS 20 CE Y71 YZB 17 6 PPL PPR 19 C, იე СР тс OE 3. ASS/ MR 1/00 1/01 1/02 1/03 1/04 1/05 1/06 1/07 23 16 15 10 ġ 14 13 11 8

V_{CC} = Pin 24 GND = Pin 12

Logic Symbol

Description

The 'F579 is a fully synchronous 8-stage up/down counter with multiplexed 3-state I/O ports for bus oriented applications. It features a preset capability for programmable operation, carry lookahead for easy cascading and a U/\overline{D} input to control the direction of counting. All state changes, whether in counting or parallel loading, are initiated by the rising edge of the clock.

Multiplexed 3-state I/O Ports Space Saving 20-Pin Package Built-in Lookahead Carry Capability Count Frequency 100 MHz Typ Supply Current 75 mA Typ

Logic Symbol

5-16

54F/74F582 4-Bit BCD Arithmetic Logic Unit

Description

The 'F582 is a 24-pin expandable Arithmetic Logic Unit (ALU) that performs two arithmetic operations (A plus B, A minus B), compare (A equals B), and binary to BCD conversion. In addition to a ripple carry output, carry Propagate $\overline{(P)}$ and Generate $\overline{(G)}$ outputs are provided for use with the 'F182 carry lookahead generator for high-speed expansion to higher decades. It is functionally equivalent to the 82S82.

24-Pin Package

Performs Four BCD Functions P and G Outputs for High-speed Expansion Add/Subtract Delay 14 ns Typ Lookahead Delay 12 ns Typ Supply Current 55 mA Typ

Logic Symbol

 $V_{CC} = Pin 24$ GND = Pin 12

54F/74F583

4-Bit BCD Adder

Description

The 'F583 high-speed 4-bit BCD full adder with internal carry lookahead accepts two 4-bit decimal numbers $(A_0 - A_3, B_0 - B_3)$ and a Carry Input (C_n) . It generates the decimal sum outputs $(S_0 - S_3)$, and a Carry Output (C_{n+4}) if the sum is greater than 9. The 'F583 is the functional equivalent of the 82S83.

Adds Two Decimal Numbers

Full Internal Lookahead Fast Ripple Carry for Economical Expansion Sum Output Delay Time 11 ns Typ Ripple Carry Delay Time 6 ns Typ Input to Ripple Delay Time 9 ns Typ Supply Current 50 mA Typ

Logic Symbol

 $V_{CC} = Pin 16$ GND = Pin 8

54F/74F604 54F/74F606

Dual Octal Registers (With Multiplexed 3-State Outputs)

Description

The 'F604 and 'F606 contain 16 D-type edgetriggered flip-flops with common clock and individual data inputs. Organized as 8-bit A and B registers, the flip-flop outputs are connected by pairs to eight 2-input multiplexers. A Select (SA/B) input determines whether the A or B register contents are multiplexed to the eight 3-state outputs. Data entered from the I_0 inputs are selected when SA/B is LOW; data from the I_1 inputs are selected when SA/B is HIGH. Data enters the flip-flops on the rising edge of the Clock (CP) input, which also controls the 3-state outputs. The outputs are enabled when CP is HIGH and disabled when CP is LOW.

These functions are well suited for receiving 16-bit simultaneous data and transmitting it as two sequential 8-bit words. The 'F606 has glitch-free outputs; the 'F604 has reduced propagation delays.

Stores 16-Bit Wide Data Inputs Multiplexed 8-Bit Outputs High-speed or Glitch-free Version 3-State Outputs Propagation Delay 10 ns Typ Power Supply Current 140 mA Typ

54F/74F605 54F/74F607

Dual Octal Registers (With Multiplexed Open-collector Outputs)

Description

The 'F605 and 'F607 contain 16 D-type edgetriggered flip-flops with common clock and individual data inputs. Organized as 8-bit A and B registers, the flip-flop outputs are connected by pairs to eight 2-input multiplexers. A Select (SA/B) input determines whether the A or B register contents are multiplexed to the eight open-collector outputs. Data entered from the I_0 inputs are selected when SA/B is LOW; data from the I_1 inputs are selected when SA/B is HIGH. Data enters the flip-flops on the rising edge of the Clock (CP) input, which also controls the open-collector outputs. The outputs are enabled when CP is HIGH and disabled when CP is LOW.

These functions are well suited for receiving 16-bit simultaneous data and transmitting it as two sequential 8-bit words. The 'F607 has glitch-free outputs; the 'F605 has reduced propagation delays.

Stores 16-Bit Wide Data Inputs Multiplexed 8-Bit Outputs High-speed or Glitch-free Version Open-collector Outputs Propagation Delay 10 ns Typ Power Supply Current 140 mA Typ

Memory Mapper (With 3-State Outputs and Output Latches)

Description

The 'F610 memory mapper is designed to expand the address capability of a Central Processing Unit (CPU) by eight bits. The device contains 16 map registers, each containing 12 bits, that are loaded by the CPU. Subsequently, the four most significant bits of the memory address select one of the 16 registers. The 12 output bits, plus the four least significant memory address bits, form the expanded address. In this mode the 'F610 output stages may be transparent or latched. The addressable memory space is increased by periodically reloading the map registers.

In the pass mode the address bits on the register select inputs appear as the most significant bits at the map outputs, with LOW levels appearing on the other bit positions.

Increases Addressing Capability by Eight Bits Designed for Paged Memory Mapping Output Latches 3-State Outputs

Logic Symbol

GND = Pin 20

Memory Mapper (With Open-collector Outputs and Output Latches)

Description

The 'F611 memory mapper is designed to expand the address capability of a Central Processing Unit (CPU) by eight bits. The device contains 16 map registers, each containing 12 bits, that are loaded by the CPU. Subsequently, the four most significant bits of the memory address select one of the 16 registers. The 12 output bits, plus the four least significant memory address bits, form the expanded address. In this mode the 'F611 output stages may be transparent or latched. The addressable memory space is increased by periodically reloading the map registers.

In the pass mode the address bits on the register select inputs appear as the most significant bits at the map outputs, with LOW levels appearing on the other bit positions.

Increases Addressing Capability by Eight Bits Designed for Paged Memory Mapping Output Latches Open-collector Outputs

Logic Symbol

GND = Pin 20

Memory Mapper (With 3-State Outputs)

Description

The 'F612 memory mapper is designed to expand the address capability of a Central Processing Unit (CPU) by eight bits. The device contains 16 map registers, each containing 12 bits, that are loaded by the CPU. Subsequently, the four most significant bits of the memory address select one of the 16 registers. The 12 output bits, plus the four least significant memory address bits, form the expanded address. In this mode the 'F612 output stages are transparent. The addressable memory space is increased by periodically reloading the map registers.

In the pass mode the address bits on the register select inputs appear as the most significant bits at the map outputs, with LOW levels appearing on the other bit positions.

Increases Addressing Capability by Eight Bits Designed for Paged Memory Mapping 3-State Outputs

Logic Symbol

GND = Pin 20

Memory Mapper (With Open-collector Outputs)

Description

The 'F613 memory mapper is designed to expand the address capability of a Central Processing Unit (CPU) by eight bits. The device contains 16 map registers, each containing 12 bits, that are loaded by the CPU. Subsequently, the four most significant bits of the memory address select one of the 16 registers. The 12 output bits, plus the four least significant memory address bits, form the expanded address. In this mode the 'F613 output stages are transparent. The addressable memory space is increased by periodically reloading the map registers.

In the pass mode the address bits on the register select inputs appear as the most significant bits at the map outputs, with LOW levels appearing on the other bit positions.

Increases Addressing Capability by Eight Bits Designed for Paged Memory Mapping Open-collector Outputs

Logic Symbol

GND = Pin 20

54F/74F630 16-Bit Error Detection And Correction Circuit (With 3-State Outputs)

Description

The 'F630 is a 16-bit Error Detection And Correction (EDAC) circuit with 3-state outputs. It uses a modified Hamming code to generate a 6-bit check word from a 16-bit data word. This check word is stored along with the data word during the memory write cycle. During the memory read cycle, the 22-bit word from the memory is processed by the EDAC to determine if errors have occurred in memory.

Detects and Corrects Single-bit Errors Detects and Flags Dual-bit Errors Generates Check Word in 20 ns Typ Flags Errors in 25 ns Typ Supply Current 120 mA Typ

GND = Pin 14

54F/74F631 16-Bit Error Detection And

Correction Circuit (With Open-collector Outputs)

Description

The 'F631 is a 16-bit Error Dection And Correction (EDAC) circuit with open-collector outputs. It uses a modified Hamming Code to generate a 6-bit check word from a 16-bit data word. This check word is stored along with the data word during the memory write cycle. During the memory read cycle, the 22-bit word from the memory is processed by the EDAC to determine if errors have occurred in memory.

Detects and Corrects Single-bit Errors Detects and Flags Dual-bit Errors Generates Check Word in 20 ns Typ Flags Errors in 25 ns Typ Supply Current 120 mA Typ

Logic Symbol

16-Bit Shift Register (Serial/Parallel In, Serial Out)

Description

The 'F676 contains 16 flip-flops with provision for synchronous parallel or serial entry and serial output. When the Mode (M) input is HIGH, information present on the parallel data ($P_0 - P_{15}$) inputs is entered on the falling edge of the Clock Pulse (\overline{CP}) input signal. When M is LOW, data is shifted out of the most significant bit position while information present on the Serial (SI) input shifts into the least significant bit position. A HIGH signal on the Chip Select (\overline{CS}) input prevents both parallel and serial operations.

16-Bit Parallel-to-Serial Conversion 16-Bit Serial-in, Serial-out Chip Select Control Power Supply Current 53 mA Typ Shift Frequency 100 MHz Typ

Logic Symbol

54F/74F779

8-Bit Bidirectional Binary Counter

Description

The 'F779 is a fully synchronous 8-stage up/down counter with multiplexed 3-state I/O ports for bus oriented applications. All control functions (hold, count up, count down, synchronous load) are controlled by two mode pins (S_0 , S_1). The device also features carry lookahead for easy cascading. All state changes are initiated by the rising edge of the clock.

Multiplexed 3-State I/O Ports 16-Pin Package for High Packaging Density Built-in Lookahead Carry Capability Count Frequency 100 MHz Typ Supply Current 80 mA Typ

 $V_{CC} = Pin 13$ GND = Pin 4

8-Bit Serial/Parallel Multiplier (With Adder/Subtractor)

Description

The 'F784 is a serial n x 8-bit multiplier with a final stage adder/subtractor for optional use in adding a B bit to obtain S \pm B. A 'B – 1' bit can also be added via an internal flip-flop to achieve a 1-bit delay. The x word is parallel loaded (eight bits wide) into latches and the y word is clocked in serially from a shift register. The 'F784 is particularly useful for high-speed digital filtering or butterfly networks in fast Fourier transforms.

Twos Complement Multiplication Cascadable for any Number of Bits Full Adder and B – 1 Input Included for Maximum Flexibility Maximum Clock Frequency 100 MHz Typ Supply Current 78 mA Typ

Logic Symbol

GND = Pin 10

5

Section 6

Ordering Information/ Package Outlines

Specific ordering codes, as well as the temperature ranges and package types available, are listed on each data sheet in Section 4. The Product Index and Selection Guide given in Section 1 list only the "basic device numbers." This basic number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Temperature Range — Two basic temperature grades are in common use:

C = Commercial 0°C to +70°C M = Military -55°C to +125°C

Package Code — One letter represents the basic package type. Different package outlines exist within each package type to accommodate varying die sizes and number of pins, as indicated below:

- D Ceramic/Hermetic Dual In-line 4E, 6A, 6B, 6N, 7B, 8S
- F Flatpak 2E, 3I, 4D, 4L, 4M, 4W
- P Plastic Dual In-line 9A, 9B, 9L, 9N, 9Y, 9Z

Package Outlines — The package outlines indicated by the codes above are shown in the detailed outline drawings in this section.

2E 28-Pin Ceramic Flatpak

Notes

Pins are tin plated alloy 42 or equivalent Base and cap are alumina, black Cavity size is .200 × .300 (5.08 × 7.62) Package weight is 1.0 gram

31

Notes

Pins are tin-plated 42 alloy Hermetically sealed alumina package Pin 1 orientation may be either tab or dot Cavity size is $.130 \times .130$ (3.30×3.30) Package weight is 0.26 gram

4D 20-Pin Ceramic Flatpak

4E

20-Pin Ceramic Dual In-line

Notes

Pins are tin-plated alloy 42 Cap and base are Al_2O_3 Package weight is 0.8 gram

Notes

- Pins are tin-plated kovar or nickel alloy 42 Pins are intended for insertion in hole rows on .300 (7.62) centers
- They are purposely shipped with "positive" misalignment to facilitate insertion
- Board-drilling dimensions should equal your practice for .030 (0.76) diameter pins
- Hermetically sealed alumina package (black) Cavity size is .140 x .250 (3.56 x 6.35)
- *The .037-.027 (0.94-0.69) dimension does not apply to the corner pins

Package weight is 2.4 grams

4H

24-Pin Slim Ceramic Dual In-line

4L 16-Pin Ceramic Flatpak

Notes

Pins are alloy 42 Package weight is 0.4 gram Hermetically sealed beryllia package

4M 24-Pin Ceramic Flatpak

Notes Pins are tin-plated 42 alloy Cap material is alumina Base material is beryllia Cavity size is .222 × .250 (5.64 × 6.35) Package weight is 0.8 gram

4W

40-Pin Ceramic Dual In-line

Pin material is kovar Package material is alumina Sealing material is vitreous glass Cavity size is .260 × .270 (6.604 × 6.858) Package weight is 12 grams 6

6A

14-Pin Ceramic Dual In-line

Notes

Pins are intended for insertion in hole rows on .300 (7.620) centers

They are purposely shipped with "positive" misalignment to facilitate insertion

Board-drilling dimensions should equal your practice for .020 (0.508) diameter pin Pins are alloy 42

Package weight is 2.0 grams

6**B**

16-Pin Ceramic Dual In-line

Notes

Pins are tin-plated 42 alloy Pins are intended for insertion in hole rows on .300 (7.62) centers They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .020 (0.51) diameter pin Hermetically sealed alumina package Cavity size is .110 x .140 (2.79 x 3.56) Package weight is 2.0 grams 'The .037.027 (0.94-069) dimension does not apply to the corner pins

6N 24-Pin Ceramic Dual In-line

Notes

Pins are tin-plated 42 alloy Package material is alumina Pins are intended for insertion in hole rows on .600 (15.24) centers They are purposely shipped with "positive" misalignment to facilitate insertion Cavity size is .230 x .230 (5.84 x 5.84) Package weight is 6.5 grams

7B

16-Pin Ceramic Dual In-line

Notes

Pins are tin-plated 42 alloy Pins are intended for insertion in hole rows on .300 (7.62) centers They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .020 (0.51) diameter pin Hermetically sealed alumina package Cavity size is .130 × .230 (3.302 × 5.842) *The .037-.027 (0.94-0.69) dimension does not apply to the corner pins Package weight is 2.2 grams

8S

Notes Pins are tin-plated alloy 42 Cap and base are Al₂O₃ Pins are intended for insertion in hole rows on .600 (15.24) centers They are purposely shipped with "positive" misalignment to facilitate insertion Package weight is 7.5 grams

9A

14-Pin Plastic Dual In-line

9B

16-Pin Plastic Dual In-line

Notes

- Pins are tin-plated kovar or alloy 42 nickel Pins are intended for insertion in hole rows on .300 (7.62) centers
- They are purposely shipped with "positive" misalignment to facilitate insertion
- Board drilling dimensions should equal your practice for .0210 (0.51) diameter pin
- *The .037-0.27 (0.94-0.69) dimension does not apply to the corner pins
- **Notch or ejector hole varies depending on the product line
- Package weight is 0.9 grams

9L

40-Pin Plastic Dual In-line

9N

24-Pin Plastic Dual In-line

Notes

Pins are tin-plated kovar Package material is plastic Pins are intended for insertion in hole rows on .600 (15.24) centers They are purposely shipped with "positive" misalignment to facilitate insertion

9Y

28-Pin Plastic Dual In-line

9Z 20-Pin Plastic Dual In-line

Pins are tin-plated alloy 42 copper (olin 195)

Pins are intended for insertion in hole rows on .300 (7.62) centers

They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your

practice for .020 (0.51) diameter pin Package weight is a little over 1.0 gram

6

Product Index and Selection Guide	1
Circuit Characteristics	2
Ratings, Specifications and Waveforms	3
Data Sheets	4
New Products	5
Ordering Information and Package Outlines	6
Sales Offices, Representatives and Distributor Locations	7

.

*

Alabama

Hall Mark Electronics 4900 Bradford Drive Huntsville, Alabama 35807 Tel: 205-837-8700 TWX: 810-726-2187

Hamilton/Avnet Electronics 4692 Commercial Drive Huntsville, Alabama 35805 Tel: 205-837-7210 TWX: 810-726-2162

Arizona

Hamilton/Avnet Electronics 505 South Madison Drive Tempe, Arizona 85281 Tel: 602-231-5100 TWX: 910-950-0077

Kierulff Electronics 4134 East Wood Street Phoenix, Arizona 85040 Tel: 602-243-4101

Wyle Distribution Group 8155 North 24th Avenue Phoenix, Arizona 85021 Tel: 602-249-2232 TWX: 910-951-4282

California

Anthem Electronics, Inc. 21730 Nordhoff Street Chatsworth, California 91311 Tel: 213-700-1000 TWX: 910-493-2083

Anthem Electronics, Inc. 4125 Sorrento Valley Blvd. San Diego, California 92121 Tel: 714-279-5200

Anthem Electronics, Inc. 174 Component Drive San Jose, California 95131 Tel: 408-946-8000

Anthem Electronics, Inc. 2661 Dow Avenue Tustin, California 92680 Tel: 714-730-8000

Arrow Electronics 9511 Ridge Haven Court San Diego, California 92123 Tel: 714-565-4800 TWX: 910-335-1195

Arrow Electronics 521 Weddell Avenue Sunnyvale, California 94086 Tel: 408-745-6600 TWX: 910-339-9371

Avnet Electronics 350 McCormick Avenue Costa Mesa, California 92626 Tel: 714-754-6111 (Orange County) 213-558-2345 (Los Angeles) TWX: 910-595-1928

Bell Industries Electronic Distributor Division 1161 N. Fair Oaks Avenue Sunnyvale, California 94086 Tel: 408-734-8570 TWX: 910-339-9378

Franchised Distributors

Hamilton/Avnet Electronics 3170 Pullman Avenue Costa Mesa, California 92626 Tel: 714-641-1850 TWX: 910-595-2638

Hamilton Electro Sales 10912 West Washington Blvd. Culver City, California 90230 Tel: 213-558-2121 TWX: 910-340-6364

Hamilton/Avnet Electronics 4545 Viewridge Avenue San Diego, California 92123 Tel: 714-571-7527 TWX: 910-335-1216

Hamilton/Avnet Electronics 1175 Bordeaux Drive Sunnyvale, California 94086 Tel: 408-743-3355 TWX: 910-339-9332

**Sertech Laboratories 2120 Main Street, Suite 190 Huntington Beach, California 92647 Tel: 714-960-1403

Wyle Electronics 124 Maryland Street El Segundo, California 90245 Tel: 213-322-8100 TWX: 910-348-7111

Wyle Distributor Group 17872 Cowan Avenue Irvine, California 92714 Tel: 714-641-1600 Telex: 910-595-1572

Wyle Distributor Group 18910 Teller Avenue Irvine, California 92715 Tel: 714-851-9955

Wyle Distribution Group 9525 Chesapeake San Diego, California 92123 Tel: 714-565-9171 TWX: 910-335-1590

Wyle Distribution Group 3000 Bowers Avenue Santa Clara, California 95051 Tel: 408-727-2500 TWX: 910-338-0541

Colorado Arrow Electronics 2121 South Hudson Denver, Colorado 80222 Tel: 303-758-2100 TWX: 910-331-0552

Bell Industries 8155 West 48th Avenue Wheatridge, Colorado 80033 Tel: 303-424-1985 TWX: 910-938-0393

Hamilton/Avnet Electronics 8765 E. Orchard Rd., Suite 708 Englewood, Colorado 80111 Tel: 303-740-1000 TWX: 910-935-0787

Wyle Distribution Group 451 East 124th Avenue Thornton, Colorado 80241 Tel: 303-457-9953 TWX: 910-936-0770

United States and Canada

Connecticut Arrow Electronics 12 Beaumont Road Wallingford, Connecticut 06492 Tel: 203-265-7741 TWX: 710-476-0162

Hamilton/Avnet Electronics Commerce Drive, Commerce Park Danbury, Connecticut 06810 Tel: 203-797-2800 TWX: 710-546-9974

Harvey Electronics 112 Main Street Norwalk, Connecticut 06851 Tel: 203-853-1515 TWX: 710-468-3373

Schweber Electronics Finance Drive Commerce Industrial Park Danbury, Connecticut 06810 Tel: 203-792-3500 TWX: 710-456-9405

Florida Arrow Electronics 1001 Northwest 62nd Street Suite 108 Ft. Lauderdale, Florida 33309 Tel: 305-776-7790 TWX: 510-955-9456

Arrow Electronics 50 Woodlake Drive West Building B Palm Bay, Florida 32905 Tel: 305-725-1480

Hall Mark Electronics 1671 West McNab Road Ft. Lauderdale, Florida 33309 Tel: 305-971-9280 TWX: 510-956-3092

Hall Mark Electronics 7233 Lake Ellenor Drive Orlando, Florida 32809 Tel: 305-855-4020 TWX: 810-850-0183

Hamilton/Avnet Electronics 6801 N.W. 15th Way Ft. Lauderdale, Florida 33309 Tel: 305-971-2900 TWX: 510-955-3097

Hamilton/Avnet Electronics 3197 Tech Drive, North St. Petersburg, Florida 33702 Tel: 813-576-3930 TWX: 810-863-0374

Schweber Electronics 2830 North 28th Terrace Hollywood, Florida 33020 Tel: 305-927-0511 TWX: 510-954-0304

Georgia Arrow Electronics 2979 Pacific Drive Norcross, Georgia 30071 Tel: 404-449-8252 TWX: 810-766-0439

Hall Mark Electronics 6410 Atlantic Blvd., Suite 115 Norcross, Georgia 30071 Tel: 404-447-8000 TWX: 810-766-4510

** This distributor carries Fairchild die products only.

7-3

Hamilton/Avnet Electronics 5825-D Peachtree Corners East Norcross, Georgia 30092 Tel: 404-447-7500 TWX: 810-766-0432

Illinois

Arrow Electronics 492 Lunt Avenue Schaumburg, Illinois 60193 Tel: 312-893-9420 TWX: 910-291-3544

Hall Mark Electronics 1177 Industrial Drive Bensenville, Illinois 60106 Tel: 312-860-3800

Hamilton/Avnet Electronics 1130 Thorndale Avenue Bensenville, Illinois 60106 Tel: 312-860-7780 TWX: 910-227-0060

Kierulff Electronics 1536 Landmeier Road Elk Grove Village, Illinois 60007 Tel: 312-640-0200 TWX: 910-227-3166

Schweber Electronics 1275 Brummel Avenue Elk Grove Village, Illinois 60007 Tel: 312-364-3750 TWX: 910-222-3453

Indiana

Arrow Electronics 2718 Rand Road Indianapolis, Indiana 46241 Tel: 317-243-9353 TWX: 810-341-3119

Graham Electronics Supply, Inc. 133 S. Pennsylvania Street Indianapolis, Indiana 46204 Tel: 317-634-8486 TWX: 810-341-3481

Hamilton/Avnet Electronics 485 Gradle Drive Carmel, Indiana 46032 Tel: 317-844-9333 TWX: 810-260-3966

Pioneer Electronics 6408 Castle Place Drive Indianapolis, Indiana 46250 Tel: 317-849-7300 TWX: 810-260-1794

Kansas Hall Mark Electronics 10815 Lakeview Drive Lenexa, Kansas 66215 Tel: 913-888-4747

Hamilton/Avnet Electronics 9219 Quivira Road Overland Park, Kansas 66215 Tel: 913-888-8900 TWX: 910-743-0005

Maryland Hall Mark Electronics 6655 Amberton Drive Baltimore, Maryland 21227 Tel: 301-796-9300

Hamilton/Avnet Electronics 6822 Oak Hall Lane Columbia, Maryland 21045 Tel: 301-995-3500 TWX: 710-862-1861

Franchised Distributors

Pioneer Electronics 9100 Gaither Road Gaithersburg, Maryland 20760 Tel: 301-948-0710 TWX: 710-828-9784

Schweber Electronics 9218 Gaither Road Gaithersburg, Maryland 20760 Tel: 301-840-5900 TWX: 710-828-9749

Massachusetts

Arrow Electronics Arrow Drive Woburn, Massachusetts 01801 Tel: 617-933-8130 TWX: 710-392-6770

Cadence Electronics 15 Strathmore Road Natick, Massachusetts 01760 Tel: 617-879-3000 TWX: 710-346-0397

Gerber Electronics 128 Carnegie Row Norwood, Massachusetts 02062 Tel: 617-329-2400

Hamilton/Avnet Electronics 50 Tower Office Park Woburn, Massachusetts 01801 Tel: 617-273-7500 TWX: 710-393-0382

Harvey Electronics 44 Hartwell Avenue Lexington, Massachusetts 02173 Tel: 617-861-9200 TWX: 710-326-6617

Schweber Electronics 25 Wiggins Avenue Bedford, Massachusetts 01730 Tel: 617-275-5100 TWX: 710-326-0268

**Sertech Laboratories 1 Peabody Street Salem, Massachusetts 01970 Tel: 617-745-2450

Michigan

Arrow Electronics 3810 Varsity Drive Ann Arbor, Michigan 48104 Tel: 313-971-8220 TWX: 810-223-6020

Hamilton/Avnet Electronics 2215 29th Street S.E. Space A5 Grand Rapids, Michigan 49508 Tel: 616-243-8805 TWX: 810-273-6921

Hamilton/Avnet Electronics 32487 Schoolcraft Livonia, Michigan 48150 Tel: 313-522-4700 TWX: 810-242-8775

Pioneer Electronics 13485 Stamford Livonia, Michigan 48150 Tel: 313-525-1800

Schweber Electronics 33540 Schoolcraft Livonia, Michigan 48150 Tel: 313-525-8100 TWX: 810-242-2983

United States and Canada

Minnesota

Arrow Electronics 5230 West 73rd Street Edina, Minnesota 55435 Tel: 612-830-1800 TWX: 910-576-3125

Hamilton/Avnet Electronics 10300 Bren Road East Minnetonka, Minnesota 55343 Tel: 612-932-0600 TWX: 910-576-2720

Schweber Electronics 7422 Washington Avenue S. Eden Prairie, Minnesota 55344 Tel: 612-941-5280 TWX: 910-576-3167

Missouri Hall Mark Electronics 13789 Rider Trail Earth City, Missouri 63045 Tel: 314-291-5350

Hamilton/Avnet Electronics 13743 Shoreline Court, East Earth City, Missouri 63045 Tel: 314-344-1200 TWX: 910-762-0606

New Hampshire Arrow Electronics 1 Perimeter Road Manchester, New Hampshire 03103 Tel: 603-668-6968 TWX: 710-220-1684

New Jersey Arrow Electronics Pleasant Valley Avenue Moorestown, New Jersey 08057 Tel: 609-235-1900 TWX: 710-897-0829

Arrow Electronics 285 Midland Avenue Saddle Brook, New Jersey 07662 Tel: 201-797-5800 TWX: 710-988-2206

Hall Mark Electronics Springdale Business Center 2091 Springdale Road Cherry Hill, New Jersey 08003 Tel: 609-424-0880

Hamilton/Avnet Electronics 10 Industrial Road Fairfield, New Jersey 07006 Tel: 201-575-3390 TWX: 710-734-4388

Hamilton/Avnet Electronics #1 Keystone Avenue Cherry Hill, New Jersey 08003 Tel: 609-424-0100 TWX: 710-940-0262

Harvey Electronics 45 Route 46 Pinebrook, New Jersey 07058 Tel: 201-575-3510 TWX: 710-734-4382

Schweber Electronics 18 Madison Road Fairfield, New Jersey 07006 Tel: 201-227-7880 TWX: 710-734-4305

Sterling Electronics 774 Pfeiffer Blvd. Perth Amboy, New Jersey 08861 Tel: 201-442-8000 Telex: 138-679

**This distributor carries Fairchild die products only.

New Mexico

Arrow Electronics 2460 Alamo Avenue S.E. Albuquerque, New Mexico 87106 Tel: 505-243-4566 TWX: 910-889-1679

Bell Industries 11728 Linn Avenue N.E. Albuquerque, New Mexico 87123 Tel: 505-292-2700 TWX: 910-989-0625

Hamilton/Avnet Electronics 2524 Baylor Drive, S.E. Albuquerque, New Mexico 87106 Tel: 505-765-1500 TWX: 910-989-0614

New York Arrow Electronics 900 Broadhollow Road Farmingdale, New York 11735 Tel: 516-694-6800 TWX: 510-224-6155 & 510-224-6126

Arrow Electronics 20 Oser Avenue Hauppauge, New York 11787 Tel: 516-231-1000

Arrow Electronics P.O. Box 370 7705 Maltlage Drive Liverpool, New York 13088 Tel: 315-652-1000 TWX: 710-545-0230

*Cadence Electronics 40-17 Oser Avenue Hauppauge, New York 11787 Tel: 516-231-6722

Components Plus, Inc. 40 Oser Avenue Hauppauge, New York 11787 Tel: 516-231-9200 TWX: 510-227-9869

Hamilton/Avnet Electronics 5 Hub Drive Melville, New York 11746 Tel: 516-454-6000 TWX: 510-224-6166

Hamilton/Avnet Electronics 333 Metro Park Rochester, New York 14623 Tel: 716-475-9130 TWX: 510-253-5470

Hamilton/Avnet Electronics 16 Corporate Circle E. Syracuse, New York 13057 Tel: 315-437-2642 TWX: 710-541-1560

Harvey Electronics (mailing address) P.O. Box 1208 Binghampton, New York 13902 (shipping address) 1911 Vestal Parkway East Vestal, New York 13850 Tel: 607-748-8211

Harvey Electronics 60 Crossways Park West Woodbury, New York 11797 Tel: 516-921-8920 TWX: 510-221-2184

Franchised Distributors

Schweber Electronics Jericho Turnpike Westbury, L.I., New York 11590 Tel: 516-334-7474 TWX: 910-222-3660

Summit Distributors, Inc. 916 Main Street Buffalo, New York 14202 Tel: 716-884-3450 TWX: 710-522-1692

North Carolina Arrow Electronics 938 Burke Street Winston Salem, North Carolina 27102 Tel: 919-725-8711 TWX: 510-931-3169

Hall Mark Electronics 1208 Front Street, Bldg. K Raleigh, North Carolina 27609 Tel: 919-823-4465 TWX: 510-928-1831

Hamilton/Avnet Electronics 2803 Industrial Drive Raleigh. North Carolina 27609 Tel: 919-829-8030 TWX: 510-928-1836

Pioneer Electronics 103 Industrial Drive Greensboro, North Carolina 27406 Tel: 919-273-4441

Ohio Arrow Electronics 7620 McEwen Road Centerville, Ohio 45459 Tel: 513-435-5563 TWX: 810-459-1611

Arrow Electronics 6238 Cochran Road Solon, Ohio 44139 Tel: 216-248-3990 TWX: 810-427-9409

Hamilton/Avnet Electronics 954 Senate Drive Dayton, Ohio 45459 Tel: 513-433-0610 TWX: 810-450-2531

Hamilton/Avnet Electronics 4588 Emery Industrial Parkway Warrensville Heights, Ohio 44128 Tel: 216-831-3500 TWX: 810-427-9452

Pioneer Electronics 4800 E. 131st Street Cleveland, Ohio 44105 Tel: 216-587-3600

Pioneer Electronics 4433 Interpoint Blvd. Dayton, Ohio 45424 Tel: 513-236-9900 TWX: 810-459-1622

Schweber Electronics 23880 Commerce Park Road Beachwood, Ohio 44122 Tel: 216-464-2970 TWX: 810-427-9441

Oklahoma Hall Mark Electronics 5460 S. 103rd East Avenue Tulsa, Oklahoma 74145 Tel: 918-665-3200 TWX: 910-845-2290

United States and Canada

Oregon

Hamilton/Avnet Electronics 6024 S.W. Jean Road Building C, Suite 10 Lake Oswego, Oregon 97034 Tel: 503-635-8157 TWX: 910-455-8179

Pennsylvania Arrow Electronics 650 Seco Road Monroeville, Pennsylvania 15146 Tel: 412-856-7000

Pioneer Electronics 261 Gibraltar Road Horsham, Pennsylvania 19044 Tel: 215-674-4000 TWX: 510-665-6778

Pioneer Electronics 259 Kappa Drive Pittsburgh, Pennsylvania 15238 Tel: 412-782-2300 TWX: 710-795-3122

Schweber Electronics 101 Rock Road Horsham, Pennsylvania 19044 Tel: 215-441-0600 TWX: 510-665-6540

Texas Arrow Electronics 13715 Gamma Road Dallas, Texas 75234 Tel: 214-386-7500 TWX: 910-860-5377

Arrow Electronics 10700 Corporate Drive, Suite 100 Stafford, Texas 77477 Tel: 713-491-4100 TWX: 910-880-4439

Hall Mark Electronics 12211 Technology Blvd. Austin, Texas 78759 Tel: 512-258-8848

Hall Mark Electronics 11333 Page Mill Drive Dallas, Texas 75243 Tel: 214-343-5000 TWX: 910-867-4721

Hall Mark Electronics 8000 Westglen Houston, Texas 77063 Tel: 713-781-6100

Hamilton/Avnet Electronics 2401 Rutland Drive Austin, Texas 78758 Tel: 512-837-8911 TWX: 910-874-1319

Hamilton/Avnet Electronics 8750 Westpark Houston, Texas 77063 Tel: 713-780-1771 TWX: 910-881-5523

Hamilton/Avnet Electronics 2111 W. Walnut Hill Lane Irving, Texas 75062 Tel: 214-659-4111 TWX: 910-860-5929

*Minority Distributor

7-5

Schweber Electronics, Inc. 4202 Beltway Drive Dallas, Texas 75234 Tel: 214-661-5010 TWX: 910-860-5493

Schweber Electronics, Inc. 10625 Richmond, Suite 100 Houston, Texas 77042 Tel: 713-784-3600 TWX: 910-881-4836

Sterling Electronics 4201 Southwest Freeway Houston, Texas 77027 Tel: 713-627-9800 TWX: 910-881-5042 Telex: STELECO HOUA 77-5299

Utah

Bell Industries 3639 West 2150 South Salt Lake City, Utah 84120 Tel: 801-972-6969 TWX: 910-925-5686

Hamilton/Avnet Electronics 1585 West 2100 South Salt Lake City, Utah 04119 Tel: 801-972-2800 TWX: 910-925-4018

Washington

Arrow Électronics 14320 N.E. 21st Street Bellevue, Washington 98005 Tel: 206-643-4800 TWX: 910-443-3033

Hamilton/Avnet Electronics 14212 N.E. 21st Street Bellevue, Washington 98005 Tel: 206-453-5844 TWX: 910-443-2469

Radar Electronic Co., Inc. 168 Western Avenue W. Seattle, Washington 98119 Tel: 206-282-2511 TWX: 910-444-2052

Wyle Distribution Group 1750 132nd Avenue N.E. Bellevue, Washington 98005 Tel: 206-453-8300 TWX: 910-444-1379

Wisconsin

Hall Mark Electronics 9657 South 20th Street Oakcreek, Wisconsin 53154 Tel: 414-761-3000

Hamilton/Avnet Electronics 2975 South Moorland Road New Berlin, Wisconsin 53151 Tel: 414-784-4510 TWX: 910-262-1182

Canada

Future Electronics Inc. 4800 Dufferin Street Downsview, Ontario, M3H 5S8, Canada Tel: 416-663-5563

Future Electronics Inc. Baxter Center 1050 Baxter Road Ottawa, Ontario, K2C 3P2, Canada Tel: 613-620-8313

Franchised Distributors

United States and Canada

Future Electronics Inc. 237 Hymus Blvd. Pointe Clare (Montreal), Quebec, H9R 5C7, Canada Tel: 514-694-7710 TWX: 610-421-3251

Hamilton/Avnet Canada Ltd. 6845 Rexwood Road, Units 3-4-5 Mississauga, Ontario, L4V 1R2, Canada Tel: 416-677-7432 TWX: 610-492-8867

Hamilton/Avnet Canada Ltd. 210 Colonnade Road Nepean, Ontario, K2E 7L5, Canada Tel: 613-226-1700 Tlx: 0534-971

Hamilton/Avnet Canada Ltd. 2670 Sabourin Street St. Laurent, Quebec, H4S 1M2, Canada Tel: 514-331-6443 TWX: 610-421-3731

Semad Electronics Ltd. 620 Meloche Avenue Dorval, Quebec, H9P 2P4, Canada Tel: 604-299-8866 TWX: 610-422-3048

Semad Electronics Ltd. 105 Brisbane Avenue Downsview, Ontario, M3J 2K6, Canada Tel: 416-663-5670 TWX: 610-492-2510

Semad Electronics Ltd. 864 Lady Ellen Place Ottawa, Ontario K1Z 5M2, Canada Tel: 613-722-6571 TWX: 610-562-1923

California

Magna Sales, Inc. 3333 Bowers Avenue, Suite 295 Santa Clara, California 95051 Tel: 408-727-8753 TWX: 910-338-0241

Colorado

Simpson Associates, Inc. 2552 Ridge Road Littleton, Colorado 80120 Tel: 303-794-8381 TWX: 910-935-0719

Illinois

Micro Sales, Inc. 54 W. Seegers Road Arlington Heights, Illinois 60005 Tel: 312-956-1000 TWX: 910-222-1833

Maryland

Delta III Associates 1000 Century Plaza, Suite 224 Columbia, Maryland 21044 Tel: 301-730-4700 TWX: 710-826-9654

Massachusetts

Spectrum Associates, Inc. 109 Highland Avenue Needham, Massachusetts 02192 Tel: 617-444-8600 TWX: 710-325-6665

Missouri

Micro Sales, Inc. 514 Earth City Plaza, Suite 314 Earth City, Missouri 63045 Tel: 314-739-7446

Nevada

Magna Sales, Inc. 4560 Wagon Wheel Road Carson City, Nevada 89701 Tel: 702-883-1471

New York

Tri-Tech Electronics, Inc. 3215 E. Main Street Endwell, New York 13760 Tel: 607-754-1094 TWX: 510-252-0891

Tri-Tech Electronics, Inc. 590 Perinton Hills Office Park Fairport, New York 14450 Tel: 716-223-5720 TWX: 510-253-6356

Tri-Tech Electronics, Inc. 6836 E. Genesee Street Fayetteville, New York 13066 Tel: 315-446-2881 TWX: 710-541-0604

Tri-Tech Electronics, Inc. 19 Davis Avenue Poughkeepsie, New York 12603 Tel: 914-473-3880 TWX: 510-253-6356

Oregon

Magna Sales, Inc. 8285 S.W. Nimbus Avenue, Suite 138 Beaverton, Oregon 97005 Tel: 503-641-7045 TWX: 910-467-8742

Sales Representatives

Utah

Simpson Associates, Inc. 7324 South 1300 East, Suite 350 Midvale, Utah 84047 Tel: 801-566-3691 TWX: 910-925-4031

Washington

Magna Sales, Inc. Benaroya Business Park Building 3, Suite 115 300 120th Avenue, N.E. Bellevue, Washington 98004 Tel: 206-455-3190

Wisconsin

Larsen Associates 10855 West Potter Road Wauwatosa, Wisconsin 53226 Tel: 414-258-0529 TWX: 910-262-3160

United States and Canada

Alabama

Huntsville Office 500 Wynn Drive, Suite 511 Huntsville, Alabama 35805 Tel: 205-837-8960

Arizona

Phoenix Office 2255 West Northern Road, Suite B112 Phoenix, Arizona 85021 Tel: 602-864-1000 TWX: 910-951-1544

California

Los Angeles Office* Crocker Bank Bldg. 15760 Ventura Blvd., Suite 1027 Encino, California 91436 Tel: 213-990-9800 TWX: 910-495-1776

San Diego Office* 4355 Ruffin Road, Suite 100 San Diego, California 92123 Tel: 714-560-1332

Santa Ana Office* 1570 Brookhollow Drive, Suite 206 Santa Ana, California 92705 Tel: 714-557-7350 TWX: 910-595-1109

Santa Clara Office* 3333 Bowers Avenue, Suite 299 Santa Clara, California 95051 Tel: 408-987-9530 TWX: 910-338-0241

Colorado

Denver Office 7200 East Hampden Avenue, Suite 206 Denver, Colorado 80224 Tel: 303-758-7924

Connecticut

Danbury Office 57 North Street, #206 Danbury, Connecticut 06810 Tel: 203-744-4010

Florida

Ft. Lauderdale Office Executive Plaza, Suite 112 1001 Northwest 62nd Street Ft. Lauderdale, Florida 33309 Tel: 305-771-0320 TWX: 510-955-4098

Orlando Office* Crane's Roost Office Park 399 Whooping Loop Altamonte Springs, Florida 32701 Tel: 305-834-7000 TWX: 810-850-0152

Georgia

Atlanta Sales Office Interchange Park, Bldg. 2 4183 N.E. Expressway Atlanta, Georgia 30340 Tel: 404-939-7683

Illinois

Itasca Office 500 Park Blvd., Suite 575 Itasca, Illinois 60143 Tel: 312-773-3300

Sales Offices

Indiana

Ft. Wayne Office 2118 Inwood Drive, Suite 111 Ft. Wayne, Indiana 46815 Tel: 219-483-6453 TWX: 810-332-1507

Indianapolis Office 7202 N. Shadeland, Room 205 Castle Point Indianapolis, Indiana 46250 Tel: 317-849-5412 TWX: 810-260-1793

Kansas

Kansas City Office 8600 West 110th Street, Suite 209 Overland Park, Kansas 66210 Tel: 913-649-3974

Maryland

Columbia Office 1000 Century Plaza, Suite 225 Columbia, Maryland 21044 Tel: 301-730-1510 TWX: 710-826-9654

Massachusetts

Framingham Office 5 Speen Street Framingham, Massachusetts 01701 Tel: 617-872-4900 TWX: 710-380-0599

Michigan

Detroit Office* 21999 Farmington Road Farmington Hills, Michigan 48024 Tel: 313-478-7400 TWX: 810-242-2973

Minnesota

Minneapolis Office* 4570 West 77th Street, Room 356 Minneapolis, Minnesota 55435 Tel: 612-835-3322 TWX: 910-576-2944

New Jersey

New Jersey Office Vreeland Plaza 41 Vreeland Avenue Totowa, New Jersey 07511 Tel: 201-256-9006

New Mexico

Albuquerque Office North Building 2900 Louisiana N.E. South G2 Albuquerque, New Mexico 87110 Tel: 505-884-5601 TWX: 910-379-6435

New York

Fairport Office 815 Ayrault Road Fairport, New York 14450 Tel: 716-223-7700

Melville Office 275 Broadhollow Road, Suite 219 Melville, New York 11747 Tel: 516-293-2900 TWX: 510-224-6480

Poughkeepsie Office 19 Davis Avenue Poughkeepsie, New York 12603 Tel: 914-473-5730 TWX: 510-248-0030

United States and Canada

North Carolina Raleigh Office 1100 Navaho Drive, Suite 112 Raleigh, North Carolina 27609 Tel: 919-876-9643

Ohio

Dayton Office 5045 North Main Street, Suite 105 Dayton, Ohio 45414 Tel: 513-278-8278 TWX: 810-459-1803

Oklahoma

Tulsa Office 9810 East 42nd Street, Suite 127 Tulsa, Oklahoma 74145 Tel: 918-627-1591

Oregon

Portland Office 8285 S.W. Nimbus Avenue, Suite 138 Beaverton, Oregon 97005 Tel: 503-641-7871 TWX: 910-467-7842

Pennsylvania

Philadelphia Office* 2500 Office Center 2500 Maryland Road Willow Grove, Pennsylvania 19090 Tel: 215-657-2711

Tennessee Knoxville Office Executive Square II 9051 Executive Park Drive, Suite 502 Knoxville, Tennessee 37923 Tel: 615-691-4011

Texas Austin Office 8240 Mopac Expressway, Suite 270 Austin, Texas 78759 Tel: 512-837-8931

Dallas Office 1702 North Collins Street, Suite 101 Richardson, Texas 75081 Tel: 214-234-3391 TWX: 910-867-4757

Houston Office 9896 Bissonnet-2,, Suite 470 Houston, Texas 77036 Tel: 713-771-3547 TWX: 910-881-8278

Canada

Toronto Regional Office 2375 Steeles Avenue West, Unit 203 Downsview, Ontario M3J 3A8, Canada Tel: 416-665-5903 TWX: 610-491-1283

Australlia

Fairchild Australia Pty Ltd. Branch Office Third Floor F.A.I. Insurance Building 619 Pacific Highway St. Leonards 2065 New South Wales, Australia Tel: (02)-439-5911 Telex: AA20053

Austria and Eastern Europe

Fairchild Electronics A-1010 Wien Schwedenplatz 2 Tel: 0222 635821 Telex: 75096

Benelux

Fairchild Semiconductor Ruysdaelbaan 35 5613 Dx Eindhoven The Netherlands Tel: 00-31-40-446909 Telex: 00-1451024

Brazil

Fairchild Semiconductores Ltda. Caixa Postal 30407 Rua Alagoas, 663 01242 Sao Paulo, Brazil Tel: 66-9092 Telex: 011-23831 Cable: FAIRLEC

France

Fairchild Camera & Instrument S.A. 121, Avenue d'Italie 75013 Paris, France Tel: 331-584-55 66 Telex: 0042 200614 or 260937

Germany

Fairchild Camera and Instrument GmBH Daimlerstrasse 15 8046 Garching Hochbruck Munich, Germany Tel: (089) 320031 Telex: 52 4831 fair d

Fairchild Camera and Instrument GmBH Oeltzenstrasse 15 3000 Hannover W. Germany Tel: 0511 17844 Telex: 09 22922

Fairchild Camera and Instrument GmBH Poststrasse 37 7251 Leonberg W. Germany Tel: 07152 41026 Telex: 07 245711

Hong Kong

Fairchild Semiconductor (HK) Ltd. 135 Hoi Bun Road Kwun Tong Kowloon, Hong Kong Tel: 3-440233 and 3-890271 Telex: HKG-531

Italy

Fairchild Semiconducttori, S.P.A. Via Flamenia Vecchia 653 00191 Roma, Italy Tel: 06 327 4006 Telex: 63046 (FAIR ROM)

Fairchild Semiconducttori S.P.A. Viale Corsica 7 20133 Milano, Italy Tel: 296001-5 Telex: 843-330522

Sales Offices

Japan

Fairchild Japan Corporation Pola Bldg. 1-15-21, Shibuva Shibuya-Ku, Tokyo 150, Japan Tel: 03 400 8351 Telex: 242173

Fairchild Japan Corporation Yotsubashi Chuo Bldg. 1-4-26, Shinmachi Nishi-Ku, Osaka 550, Japan Tel: 06-541-6138/9

Korea

Fairchild Semikor Ltd. K2 219-6 Gari Bong Dong Young Dung Po-Ku Seoul 150-06, Korea Tel: 85-0067 Telex: FAIRKOR 22705

(mailing address) Central P.O. Box 2806

Mexico

Fairchild Mexicana S.A. Blvd. Adolofo Lopez Mateos No. 163 Mexico 19, D.F. Tel: 905-563-5411 Telex: 017-71-038

Scandinavia

Fairchild Semiconductor AB Svartengsgatan 6 S-11620 Stockholm Sweden Tel: 8-449255 Telex: 17759

Singapore

Fairchild Semiconductor Pty. Ltd. No. 11, Lorong 3 Toa Payoh Singapore 12 Tel: 531-066 Telex: FAIRSIN-RS 21376

Taiwan

Fairchild Semiconductor Ltd. Hsietsu Bldg., Room 502 47 Chung Shan North Road Sec. 3 Taipei, Taiwan Tel: 573205 thru 573207

United Kingdom

Fairchild Camera and Instrument Ltd. Semiconductor Division 230 High Street Potters Bar Hertfordshire EN6 5BU England Tel: 0707 51111 Telex: 262835

Fairchild Semiconductor Ltd. 17 Victoria Street Craigshill Livingston West Lothian, Scotland-EH54 5BG Tel: Livingston 0506 32891 Telex: 72629

GEC-Fairchild Ltd. Chester High Road Neston South Wirral L64 3UE Cheshire, England Tel: 051-336-3975 Telex: 629701

International

.

54F/74F Family DC Characteristics¹

Symbol	Parameter		Limits ²			Units	Vcc4	Conditions ²
Symbol			Min	Typ ³	Max		▼ しし [⊸]	Conditions
Vін	Input HIGH Voltage		2.0			v		Recognized as a HIGH Signal over Recommendec V _{CC} and T _A Range
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signal over Recommended Vcc and T _A Range
Vcd	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
Vон	Output HIGH Voltage	Std ⁶ Mil Std ⁶ Com	2.5 2.7	3.4 3.4		v	Min	$I_{OH} = 40 \ \mu A$ Multiplied by Output HIGH U.L. Shown on Data Sheet
Vol	Output LOW Volta	-	0.35	0.5	v	Min	I _{OL} = 1.6 mA Multiplied by Output LOW U.L. Shown on Data Sheet	
Ін	Input HIGH Currer	0.5 U.L. 1.0 U.L. n U.L.			20 40 n(40)	μΑ	Max	$I_{IH} = 40 \ \mu A$ Multiplied by Input HIGH U.L. Shown or Data Sheet; V _{IN} = 2.7 V
	Input HIGH Current, Breakdown Test, All Inputs				100	μA	Max	V _{IN} = 7.0 V
hι	Input LOW Current	0.375 U.L. 0.75 U.L. n U.L.			-0.6 -1.2 n(-1.6)	mA	Мах	$I_{IL} = -1.6$ mA Multiplied by Input LOW U.L. Shown on Data Sheet; $V_{IN} = 0.5$ V
Іогн	3-State Output OFF Current HIGH				50	μA	Max	V _{OUT} = 2.4 V
lozl	3-State Output OFF Current LOW				-50	μA	Max	$V_{OUT} = 0.5 V$
los ⁵	Output Short- Circuit Current	Standard ⁶ / 3-State	-60		-150	mA	Max	V _{OUT} = 0 V
-		Buffers/ Line Dvrs	-100		-225		-	

1. Unless otherwise noted, conditions and limits apply throughout the temperature range for which the particular device type is rated. The ground pin is the reference level for all applied and resultant voltages.

2. Unless otherwise stated on individual data sheets.

3. Typical characteristics refer to $T_A = +25^{\circ}C$ and $V_{CC} = +5.0$ V.

4. Min and Max refer to the values listed in the table of recommended operating conditions.

5. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a HIGH output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

6. Standard refers to the totem-pole pull-up circuitry commonly used for the particular family, as distinguished from buffers, line drivers or 3-state outputs.

A Schlumberger Company

Fairchild reserves the right to make changes in the circuity of specifications in this book at any time without notice. Manufactured under one of the following U.S. Patents: 2981877, 3015048, 3064167, 3108359, 3117260, other patents pending. Fairchild cannot assume responsibility for use of any circuitry described other than circuitry entirely embodied in a Fairchild product. No other circuit patent licences are implied.