

TTL MEMORY 93400•93400B•93401 256-BIT READ/WRITE MEMORY \& DECODER/DRIVER FORMERLY $4100 \cdot 4100 B \cdot 4101$

DESCRIPTION - The 93400 256-Bit Read/Write Memory and the 93401 Decoder/Driver are components for use in high speed memory systems. The 93400 is a fast 256×1 random access read/write memory which is addressed with a partiaily decoded $x-y$ coincident selection scheme. There are two device grades, with the 93400B having a slower access time than the 93400 . The companion decoder and buffer driver, 93401 , converts binary addresses into the partially decoded form required by the 93400 , and provides sufficient drive to connect to 3293400 's. Both devices are supplied in 16 -lead Dual In-Line Packages.

93400/93400B

- ttL Compatible
- 16-LEAD PACKAGE
- OUTPUT WIRED-OR CAPABILITY
- 70 ns TYPICAL ACCESS TIME (93400)
- 125 ns TYPICAL ACCESS TIME (93400B)
- LOW INPUT LOADING

93401

- tTL COMPATIBLE
- 16-LEAD PACKAGE
- 20 ns TYPICAL through delay
- LOW INPUT LOADING
- 4 ENABLE INPUTS FOR CHIP SELECTION
- DRIVES UP TO 32 93400's

ABSOLUTE MAXIMUM RATINGS

$V_{C C}$ Pin Potential to Ground Pin Input Voltage
Voltage Applied to Output when Output is HIGH
Current into Output when Output is LOW
Storage Temperature
-0.5 V to +7.0 V
-0.5 V to +5.25 V
$-0.5 \vee$ to $+V_{C C}$
$+25 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

LOGIC DIAGRAM

$O=$ PIN NUMBERS

FUNCTIONAL DESCRIPTIONS

The 93400 and 93400 B contain 256 bipolar storage cells arranged in a 16 by 16 format. Any one of the 256 cells may be accessed by supplying an address code on the X address inputs and the Y address inputs. Internal decoders decode the X and Y addresses into one of 16 rows and one of 16 columns in the matrix of storage cells. Data may be written into or read out from the cell lying at the intersection of the selected row and column.
The X and Y addresses supplied to the 93400 and 93400 B are partially decoded in a " 3 of 6 ' code. Of the six X address lines and the six V address lines there are always three lines HIGH and three lines LOW. There are 20 such combinations, 16 are decoded by the internal row and column decoders. The four unused combinations of 3 of 6 will not select any row or column. If there are more than three lines HIGH in either the X or Y address, then multiple row or column selection will occur. The sixteen 3 of 6 codes used by the 93400 and $93400 B$ are generated by the 93401 decoder/driver.
Data enters and leaves the memory on a single input/output (I/O) line (pin 7). The I/O line is an open collector output, so many 93400 I/O lines can be connected together in a wired-OR configuration. Input data must be applied to the I/O lines through an open collector gate. Each I/O line requires a pull-up resistor to $V_{C C}$. The magnitude of the pull-up resistor is determined by the number of 93400 I/O lines tied together. The //O of a 93400 which is not addressed will be HIGH.
Read/Write selection is determined by the state of pin 9 , the active HIGH write enable. When WE is HIGH, the data on the $1 / \mathrm{O}$ line will be written into the selected address in the 93400 . When the Write Enable line is LOW, data will be read out of the addressed location.
The 93401 is a partial decoder and driver for the 93400 . It accepts a 4-bit binary code on the address inputs ($A_{0}-A_{3}$) and produces a 3 of 6 code on the six output.pins $\left(\mathrm{O}_{0}-\mathrm{O}_{5}\right)$. The decoder also features four separate enables, two active HIGH and two active LOW. All four enables must be active before the decoder will produce a 3 of 6 code. Since two of the enables are HIGH and two are LOW, it is possible to route two binary coded lines to four different 93401's to get two additional bits of decoding with no extra packages.

Ordinarily in memory systems, 93400 memory devices will be arranged in a matrix of rows and columns. Each column will store a particular bit and each row of 93400's will be 256 words. A 93401 driver will be used for each row and each column in the matrix. One 93401 can drive up to 3293400 X or Y address lines. The usual driving scheme is to connect the four LSB's of address to each of the column decoders. The next four bits of address are connected to each of the row decoders. Additional address bits are decoded to the chip selects on the row decoders. Each column decoder drives the Y address lines on up to 32 93400's in a column. Each row decoder drives the address lines on up to 32 93400's in a row.

THE THREE OF SIX CODE

The " 3 of 6 " code used in the 93400 and produced by the 93401 is a tradeoff between memory chip complexity and pin count. The simplest 256 -bit memory chip would be a 16 by 16 matrix of storage cells, with all 16 rows and 16 column select lines brought off chip. The lowest pin count for a 256 -bit memory chip would be achieved by fully decoded X and Y select lines reducing the 32 lines of the simple scheme to only 8 lines. However, full binary decoding of the X and Y lines on chip significantly increases to complexity of the memory chip. The 93400 and 93401 are designed to gain the good features of both alternatives. The 16 X and Y lines are decoded into 6 lines each, allowing the memory to fit into a 16 -lead package and still keeping the memory chip fairly simple, since the 3 of 6 code does not require a complex decoder. The table on the right below shows the conversion of 4 -bit binary to 3 of 6 code by the 93401 , and also the internal column or row selected by the 3 of 6 to 1 of 16 decoder inside the 93400 .

TTL LOAD AND DRIVE FACTORS

$O_{1}=\left(\overline{\left.A_{1}+A_{0}\right)\left(\overline{A_{3}}+A_{1}\right)\left(\overline{A_{2}}+A_{0}\right.}\right)$
$O_{2}=\left(\overline{\left.A_{1}+\overline{A_{0}}\right)\left(\overline{A_{3}}+\overline{A_{0}}\right)\left(A_{2}+\overline{A_{1}}\right)}\right.$
$O_{3}=\left(\overline{\overline{A_{1}}+A_{0}}\right)\left(\overline{A_{3}}+A_{0}\right)\left(\overline{A_{2}}+\overline{A_{1}}\right)$
$O_{4}=\left(\overline{A_{1}}+\overline{A_{0}}\right)\left(\overline{A_{3}}+\overline{A_{1}}\right)\left(\overline{A_{2}}+\overline{A_{0}}\right)$
$\mathrm{O}_{5}=\overline{\mathrm{A}_{2}}$
NOTE: Enables on 93401 must be LLHH. Any other state on the enable inputs causes 93401 outputs to go LOW, and addresses no internal row or column in the $\mathbf{9 3 4 0 0}$ memory matrix.
$93400 \bullet 93400 B$ ELECTRICAL CHARACTERISTICS $\left(T_{C}=0^{\circ} \mathrm{C}\right.$ to $75^{\circ} \mathrm{C}$ in operation; $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$) (Part No. $93400 \times \mathrm{C} / 93400 \mathrm{BXC}$)*

93401 ELECTRICAL CHARACTERISTICS $\left(T_{C}=0^{\circ} \mathrm{C}\right.$ to $75^{\circ} \mathrm{C}$ in operation; $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$) (Part No. $93401 \times \mathrm{C}$)*

SYMBOL	PARAMETER	LIMITS					UNITS	CONDITIONS	
		$\begin{gathered} 0^{\circ} \mathrm{C} \\ \text { MIN. MAX. } \\ \hline \end{gathered}$	$+25^{\circ} \mathrm{C}$			$+75^{\circ} \mathrm{C}$			
			MIN.	TYP.	MAX.	MIN. MAX.			
V_{OH}	Output HIGH Voltage	2.4	2.4	3.0		2.4	Volts	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{~V}_{1 \mathrm{~L}}=\text { value inc } \\ & \text { table } \end{aligned}$	$\mathrm{IOH}^{2}=1.0 \mathrm{~mA}$ icated below on this
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	0.45		0.3	0.45	0.45	Volts	$\mathrm{V}_{\mathrm{CC}}=4.75$	L $=10 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0	2.0			2.0	Volts	Guaranteed in for all inputs	ut HIGH threshold
$V_{1 L}$	Input LOW Voltage	0.85			0.85	0.85	Volts	Guaranteed in for all inputs	LOW threshold
${ }^{\prime}{ }_{\text {FA }}$	Add. Input Load Current	-0.4			-0.4	-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	$\mathrm{V}_{\mathrm{F}}=0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=$
TFE	Enable Input Load Current	-0.4			-0.4	-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	4.5 V on other inputs
$\mathrm{I}_{\text {RA \& }} \mathrm{I}_{\text {RE }}$	Input Leakage Current	20			20	20	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \text {, } \\ & \text { other inputs } \end{aligned}$	$\mathrm{V}_{\mathrm{R}}=4.5 \mathrm{~V} \text {, Gnd. on }$
${ }^{\text {ICC }}$	Power Supply Current	140		120	140	140	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	all inputs at ground

*X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product. 93401 SWITCHING CHARACTERISTICS $\left(V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ (See Fig. 2)

SYMBOL	PARAMETER	LIMITS				UNITS
		$\begin{gathered} \mathrm{C}_{\mathrm{L}}=90 \mathrm{pF} \text { (Equiv. to } \\ 32 \times \text { Lines) } \end{gathered}$		$\begin{gathered} \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF} \text { (Equiv. to } \\ 32 \mathrm{Y} \text { Lines) } \end{gathered}$		
		TYP.	MAX.	TYP.	MAX.	
$\begin{aligned} & \mathrm{t}_{\mathrm{t}^{++}}, \mathrm{t}_{\mathrm{A}}{ }^{+-} \\ & \mathrm{t}_{\mathrm{A}}{ }^{-+}, \mathrm{t}_{\mathrm{A}} \mathrm{~A}^{-} \end{aligned}$	Delay from address going LOW or HIGH to output going LOW or HIGH	20	25	30	40	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{E}}^{++}, \mathrm{t}_{\mathrm{E}} \mathrm{E}^{+-} \\ & \mathrm{E}_{\mathrm{E}}+{ }^{-+}, \mathrm{t}^{--} \end{aligned}$	Delay from enable going active or inactive to output going HIGH or LOW	20	25	30	40	ns

$93400 \bullet 93400 B$ SWITCHING CHARACTERISTICS $\left(V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}.\right) \mathrm{C}_{\mathrm{L}}=47 \mathrm{pF}$; Equivalent to eight OR-tied 4100 outputs

SYMBOL	PARAMETER	93400			934008			UNITS
		LIMITS			LIMITS			
		MIN	TYP	MAX	MIN	TYP	MAX	
${ }^{t} A X$	Read Access Time. Time from good X address to good data at output	30	70	100	30	100	200	ns
${ }^{t} A Y$	Read Access Time. Time from good Y address to good data at output	15	45	65		45	100	ns
${ }^{\text {tr }}$ R	Read Recovery Time. Time for output to go HIGH after removal of address.			100			150	ns
${ }^{\text {twP }}$	Write Pulse Width. Width of pulse on WE required to write data into memory.	80			100			ns
${ }^{\text {t }} \mathrm{SH}$	Data Setup Time. Time HIGH or LOW data must be present before end of write pulse to write proper data into memory.			$\begin{aligned} & { }^{\mathrm{t}} \mathrm{WP}+10 \\ & 70 \\ & \text { (Note 2) } \end{aligned}$			100	ns
${ }^{\text {t }}$ SL							$\begin{aligned} & 70 \\ & \text { (Note 3) } \end{aligned}$	ns
${ }^{\text {trin }}$	Data Release Time. This is the minimum set-up time. Removal of data after the release time will not affect the data written into the memory. See note 1 .							ns
${ }^{\text {t }}$ RL		10			10			ns
C_{O}	Output Capacitance		7.0			7.0		pF
$\mathrm{C}_{\text {AX }}$	Input Capacitance for X address line		3.0			3.0		pF
$\mathrm{C}_{\text {AY }}$	Input Capacitance for Y address line		15			15		pF
${ }^{t}$ AS	Address Set Up Time. Time address must be good before end of write pulse during write operation. (See Fig. 3b)	80			80			ns
${ }^{t} A P$	Address Pulse Width. Time that address must remain good for write operation. (See Fig. 3b)	100			100			ns
${ }^{t}$ WR	Write Recovery Time. Time in write-read cycle from end of write pulse to valid output data.			120			120	ns

NOTES:

(1) The set up and release times define a window during which devices are responding to the data and/or address. Inputs must remain good at all times in between the set up and release time limits.
(2) Applies for write pulse less than 150 ns
(3) Applies for write pulse more than 160 ns .

Fig. 1a-93400 TYPICAL READ CYCLE

${ }^{\mathrm{t}} \mathrm{AX}, \mathrm{Y}$ is the time from a good address to good data on the output. Note that the access time may be overlapped with the recovery time to improve speed on consecutive read operations.

Fig. 1b-93400 WRITE CYCLE

The address must be maintained for 100 ns. The simplest write cycle is achieved by applying the data, then simultaneously raising the address and write pulses for 100 ns . If the write pulse width is less than 100 ns , then the address should come up at about the same time as the write pulse and should be held on after the write pulse. The address should not be applied more than 25 ns before the write pulse, because an early address will cause a read operation to begin disrupting data on the I/O lines (see tRR). For a longer write pulse the address pulse may appear anytime as long as it starts before t AS and lasts at least tAP.

Fig. 2-93401 SWITCHING WAVEFORMS AND TEST LOAD CONDITIONS

The timing curves in Figures 8 through 13 are obtained using the pulse shape in Figure 6 and the loading in Figure 5 . In Figures 12 and 13 the C_{L} value in the load is varied.

Fig. 6
INPUT THRESHOLD VOLTAGE VERSUS TEMPERATURE

Fig. 9

Fig. 7
X Access time VERSUS TEMPERATURE

Fig. 10

Fig. 8
Y ACCESS TIME VERSUS TEMPERATURE

Fig. 11

TTL MEMORY 93402 16-BIT ASSOCIATIVE/CONTENT ADDRESSABLE MEMORY
 FORMERLY 4102

DESCRIPTION - The 93402 is a high speed 16-Bit Associative Random Access Memory. It is a linear select 4 -word by 4-bit array which performs the equality search on all bits in parallel. The 93402 is TTL compatible.

With the bit enable lines $\left(\bar{E}_{0}-\bar{E}_{3}\right)$ LOW, the outputs $\left(M_{0}-M_{3}\right)$ go HIGH if associated stored data matches the descriptor bits $\left(\bar{D}_{0}-\bar{D}_{3}\right)$. If a bit enable line is held HIGH, a match is forced on the corresponding bit in all the words regardiess of the state of the descriptor bit ($\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}$). An inverter is connected to the match output M_{0} to give its negation \bar{M}_{0}.
A word is addressed by having an active LOW on the appropriate address line ($\bar{A}_{0}-\bar{A}_{3}$). Any number of words may be addressed simultaneously.
Data can be written into the memory through the data inputs ($\bar{D}_{0}-\bar{D}_{3}$) under control of the address inputs and the appropriate bit enable ($\mathrm{E}_{0}-\mathrm{E}_{3}$) when the write enable(WE) is LOW.

Reading can occur either during an equality search or a write operation. If a single word is addressed that word will appear at the data outputs $\left(\bar{O}_{0}-\bar{O}_{3}\right)$. If multiple addressing is used, the word appearing at the data output is the AND (positive logic) or the OR (negative logic) of the addressed words.

All outputs are uncommitted collectors allowing maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many 93402's can be tied together. In other applications, the wired-OR is not used. In either case an external pull up resistor must be used to attain a HIGH at an output.

- 25 ns TYPICAL MATCH TIME
- MULTIPLE MATCHING AND ADDDRESSING
- UNCOMMITTED COLLECTOR OUTPUTS FOR WIRED-OR CAPABILITY
- LINEAR SELECT ADDRESSING
- BIT MASKING

FAIRCHILD TTL MEMORY • 93402

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)
Storage Temperature
Temperature (Ambient) Under Bias
$V_{\text {CC }}$ Pin Potential to Ground
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Input Pin Voltage
-0.5 V to +7.0 V
Current into Output Terminal
Output Voltage
-0.5 V to +5.5 V
50 mA

FAIRCHILD TT!. MEMORY •

SWITCHING CHARACTERISTICS ($T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

SYMBOL	PARAMETER	LIMIT (ns)		LOAD	$\begin{gathered} \text { CONDITIONS } \\ c \end{gathered}$	NOTE
		TYP.	MAX.			
	Address to Output Turn-On Delay	20	30	10 mA	30 pF	1
$\mathrm{t}_{\mathrm{AO}}+$	Address to Output Turn-Off Delay	25	35	10 mA	30 pF	1
${ }^{\text {t }}$ M +	Descriptor to Output Match Turn-On Delay	25	35	10 mA	30 pF	2
tDM-	Descriptor to Output Match Turn-Off Delay	30	40	10 mA	30 pF	2
twp	Write Pulse Width Required to Write	33	40	10 mA	30 pF	
two	Write Delay	50	80	10 mA	30 pF	
$\mathrm{t}_{\text {s }}$	Maximum Set-up Time on Data Input	33	40	10 mA	30 pF	3
t_{r}	Release Time (Minimum Set-up Time) on Data Input	0	19	10 mA	30 pF	3

NOTES:

(1) To test $\mathrm{t}_{\mathrm{AO}}+$ and $\mathrm{tAO}_{\mathrm{A}}$ a LOW must be stored in the cell under test.
(2) To test tDM_ and tDM+, a mismatch must occur in at least one bit of the word under test
(3) Setup and release times are measured with respect to the rising edge of the Write enable. To guarantee writing in the correct data, the data input must be good by t_{s} and remain good until after t_{r}.
The typical capacitance of one 93402 output is 7.0 pF.

SWITCHING WAVEFORMS

TYPICAL ELECTRICAL CHARACTERISTICS

output load capacitance - pf

WORST CASE WRITE PULSE WIDTH VERSUS AMBIENT TEMPERATURE

TTL MEMORY 93403 64-BIT FULLY DECODED READ/WRITE MEMORY

FORMERLY 4103

DESCRIPTION - The 93403 is a high speed 64-Bit Read/Write Memory organized 16 words by four bits. Four address lines are buffered and decoded "on chip" for word selection. The 93403 is made with TTL circuitry and all inputs are equivalent to one TTL load.

OPERATION - When the 93403 receives a LOW at the Chip Select ($\overline{\mathrm{CS}}$) input, the binary address (A_{0}, A_{1}, A_{2} and A_{3}) is decoded to select one of sixteen 4-bit words. If the Write Enable ($\bar{W} E$) is at a HIGH level, the contents of the selected word are non-destructively read out and the sense amplifier outputs ($\overline{\mathrm{O}_{0}}, \overline{\mathrm{O}_{1}}, \overline{\mathrm{O}_{2}}$ and $\overline{\mathrm{O}_{3}}$) reflect the state of the stored data in the four bits of the selected word. If the Write Enable is LOW, the data present on the Data Input lines ($\mathrm{D}_{0}, \mathrm{D}_{1}, \mathrm{D}_{2}$ and D_{3}) is written into the four bits of the selected word. Note that there is inversion through the device in a read operation.

- OUTPUT WIRED-OR CAPABILITY
- ON CHIP DECODING
- NON-DESTRUCTIVE READOUT
- CHIP SELECT FOR SYSTEM WORD EXPANSION
- TTL COMPATIBLE

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature
Temperature (Case) Under Bias
V_{CC} Pin Potential to Ground
Input Pin Voltage
Current Into Output Terminal
Output Voltage (external circuit dependent)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ -0.5 V to +8.0 V
-1.5 V to +5.5 V
100 mA
-0.5 V to +8.0 V

BLOCK DIAGRAM

FLATPAK (TOP VIEW)

FAIRCHILD TTL MEMORY • 93403

ELECTRICAL CHARACTERISTICS $\left(T_{\text {case }}=0^{\circ} \mathrm{C}\right.$ to $75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$ (units are pulse tested) (Part No. 93403XC)

SYMBOL	TEST	LIMITS						UNITS	CONDITIONS
		$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+75^{\circ} \mathrm{C}$			
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
${ }^{\prime} \mathrm{FA}$	Address Input Load Current		-1.6		-1.6		-1.6	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=0.45 \mathrm{~V}$
${ }^{\text {F FCS }}$	Chip Select Load Current		-1.6		-1.6		-1.6	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CS}}=0.45 \mathrm{~V}$
${ }^{\text {'FWE }}$	Write Enable Load Current		-1.6		-1.6		-1.6	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{W}}=0.45 \mathrm{~V}$
$I_{\text {FD }}$	Date Input Load Current		-1.6		-1.6		-1.6	mA	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0.45 \mathrm{~V}$
${ }^{1} \mathrm{RA}$	Address Input Leakage Current		60		60		60	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=4.5 \mathrm{~V}$
${ }^{\prime} \mathrm{RCS}$	Chip Select Input Leakage Current		60		60		60	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CS}}=4.5 \mathrm{~V}$
$I_{\text {RWE }}$	Write Enable Leakage Current		60		60		60	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{W}}=4.5 \mathrm{~V}$
'RD	Data Input Leakage Current		60		60		60	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V}$
ICEX	Output Leakage Current		100		100		100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CEX}}=5.25 \mathrm{~V} \\ & 3.0 \text { on Chip Select } \end{aligned}$
V_{OL}	Output LOW Voltage		0.45		0.45		0.45	v	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \overline{\mathrm{CS}}=\mathrm{V}_{I L}, \overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$
$V_{\text {IL }}$	Input LOW Voltage		0.85		0.85		0.85	v	$v_{c C}=5.0 \mathrm{~V},$ Monitor Appropriate Output To Guarantee This Test Limit
$V_{1 H}$	Input HIGH Voltage	2.0		2.0		2.0		v	$v_{C C}=5.0 \mathrm{~V},$ Monitor Appropriate Output To Guarantee This Test Limit
${ }^{\text {I C }}$	Supply Current		110		110		110	mA	$V_{c \mathrm{Cc}}=5.25 \mathrm{~V}$ Write Enable $=3.0 \mathrm{~V}$, other inputs Grounded
V_{CD}	Clamp Diode Voltage, All Inputs		-1.0		-1.0		-1.0	v	${ }^{\prime}{ }^{\prime}{ }^{\prime}=-5.0 \mathrm{~mA}$
BV_{X}	Breakdown Voltage, All Inputs	5.5		5.5		5.5		V	${ }^{1} \mathrm{X}=1.0 \mathrm{~mA}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product. SWITCHING CHARACTERISTICS

SYMBOL	CHARACTERISTIC	DEFINITION	LIMITS			UNITS
				$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \text { TYP. } \end{aligned}$	MAX.	
${ }^{t}$ A	Read Access Time	Time From Switching Address Or Chip Select To Data At Output		45	60	ns
${ }^{\text {t }}$ SR	Sense Recovery Time	Time From Switching Address Or Chip Select To Output HIGH		45	60	ns
${ }^{\text {t }}$ WP	Write Pulse	Write Pulse Width - Width of Pulse Guaranteed to Write	45	30		ns
${ }^{\text {t }}$ WR	Write Recovery Time	Time From Write Pulse Going HIGH to Output LOW			65	ns
tDH	Data Hold Time	Time From Write Pulse Going HIGH to Change Data Or Address			5.0	ns
${ }^{\text {t }}$ DS	Data Set-Up Time	Time Data Must Be Present Before Write Pulse	5.0	0		ns
t AS	Address Strobe Time	Time Address Must Be Present in Order to Write	5.0	10	45	ns

WAVEFORMS

TYPICAL ELECTRICAL CHARACTERISTICS

WRITE PULSE WIDTH (twp) VERSUS TEMPERATURE

WRITE RECOVERY TIME (twR) VERSUS TEMPERATURE

tTL LOADING RULES

	HIGH LEVEL	LOW LEVEL
Address	$1 \mathrm{U} . \mathrm{L}$.	$1 \mathrm{U} . \mathrm{L}$.
Chip Select	$1 \mathrm{U} . \mathrm{L}$.	$1 \mathrm{U} . \mathrm{L}$.
Write Enable	$1 \mathrm{U} . \mathrm{L}$.	$1 \mathrm{U} . \mathrm{L}$.
Data Input	$1 \mathrm{U} . \mathrm{L}$.	$1 \mathrm{U} . \mathrm{L}$.
Data Output	Open Collector	$10 \mathrm{U} . \mathrm{L}$.

> 1 LOW Level TTL Unit Load (U.L.) $=1.6 \mathrm{~mA}$
> 1 HIGH Level TTL Unit Load (U.L.) $=60 \mu \mathrm{~A}$

Uncommitted collector outputs are provided on the 93403 to allow maximum flexibility in output connection. In many applications such as memory exparision, the outputs of many 93403 can be tied together. In other applications the wired-OR is not used. In either case an external pullup resistor of value R_{L} must be used to provide a HIGH at the output when it is off. Any value of R_{L} within the range specified below may be used.
$\frac{5.05}{16-\text { F.O. (1.6) }} \leqslant R_{L} \leqslant \frac{2.1}{N(0.1)+\text { F.O. (0.06) }}$

$$
\begin{aligned}
& R_{L} \text { is in } k \Omega \\
& N=\text { number of wired-OR outputs } \\
& \text { F.O. }=\text { number of } T T L \text { loads driven } \\
& V_{C C}=5.0 \mathrm{~V} \pm 10 \%
\end{aligned}
$$

The minimum value of R_{L} is limited by output current sinking ability. The maximum value of R_{L} is determined by the output and input leakage current (ICEX and I_{R}) which must be supplied to hold the output at 2.4 V .

TRUTH TABLE

WE	CS	OUTPUT	MODE
H	H	HIGH No Glitches	Not Read
L	H	Indeterminate Output	Not Write
H	L	Function of Data Stored in Cell	Read
L	L	Indeterminate Output	Write

SWITCHING TEST CIRCUIT
15 mA LOAD

TTL MEMORY 93406 1024-BIT READ ONLY MEMORY

DESCRIPTION - The Fairchild 93406 is a 1024-bit Bipolar Read Only Memory organized 256 words by four bits. An 8-bit binary address is used to select the desired word. The four outputs are uncommitted collectors which permit "OR" tying of the outputs for expanding the memory in the word direction. The customer can specify the active level of the 2 -input chip select gate. $\overline{\mathrm{CS}}_{1}$ and $\overline{\mathrm{CS}}_{2}$ both will be active LOW unless otherwise specified by the customer. The programmable enable feature allows expansion of the memory to 1024 words without any external gates.

The contents of the memory are mask programmed to the customers specification. The customer can specify the desired ROM code on either the 93406 Coding Form(s) or by punched cards using the 93406 Data Card Format.

- DTL AND TTL COMPATIBLE
- ACCESS TIME - $\mathbf{5 0}$ ns MAX
- FULLY DECODED - ON CHIP ADDRESS DECODER AND BUFFER
- 2 CHIP SELECT INPUTS PROVIDING EASY MEMORY EXPANSION
- PROGRAMMABLE CHIP SELECTS
- OR-TIE CAPABILITY
- standard 16-Lead dual in-line package

PIN NAMES

A_{0} to A_{7}
$\mathrm{CS}_{1}, \overline{\mathrm{CS}}_{2}$
$\overline{\mathrm{O}}_{0}$ to $\overline{\mathrm{O}}_{3}$

Address Inputs
Chip Select Inputs
$\overline{\mathrm{O}}_{0}$ to $\overline{\mathrm{O}}_{3}$
Data Outputs

[^0]LOGIC SYMBOL

$$
\begin{aligned}
& V_{C C}=P I N 16 \\
& G N D=P I N 8
\end{aligned}
$$

*Chip selects active level may be programmed per customer requirements. If not specified both CS will be active low.

CONNECTION DIAGRAM

DIP (TOP VIEW)

93406 DATA CARD FORMAT

The most efficient method of ordering the 93406 is to punch the desired truth table on a punched card in the format described below. Fairchild will generate mask and test program data directly from these inputs. This eliminates the chance of error when transcribing inputs from a hand written truth table.
Data should be provided on a deck of 34 standard 80 column cards containing the following information.

CARD NO. 1 - Customer Identification
Column Content
1 Blank
2-28 Customer Name, Drawing or Specification control number.
29-32 Blank
33-39 FAIRCHILD PART NUMBER. This part number is supplied by the factory through your Fairchild sales representative.
40-64 Blank
65-72 Date
73-80 Blank

CARD NO. 2 - Chip Select Option

Column	Content
1-11	Punch "Chip Select"
12	Blank
13, 14	Punch Charts ' 00^{\prime}, ' 01^{\prime} ', ' 10 ' or ' 11^{\prime} ', depending on the chip select code option. (First bit represents $\mathrm{CS}_{\boldsymbol{1}}$ input, second bit represents CS_{2} input. ' 0 ' = LOW, ' 1 ' = HIGH.)
15-32	Blank
33-39	Repeat FAIRCHILD PART NUMBER (This is used for positive identification).
40-80	Blank

CARDS NO. 3 through 34 - Truth Table Deck

Each card will contain instructions for the output levels for 8 input words.

Column Content

1-7 Punch the numerals representing the first and last words on that card (i.e.: 000-007, 008-015, 016-023. . 248-255). Word order is determined by the value of the binary address $-A_{7}=M S B, A_{0}=$ LSB.
8-9 Blank
10-13 Punch the desired combination of " 1 ' s " and " 0 's" representing the output levels for outputs $\mathrm{O}_{3}, \mathrm{O}_{2}, \mathrm{O}_{1}$ and O_{0} (in that order), for the first word on the card, ' 0 ' = LOW, ' 1 ' = HIGH.
14 Blank
15-18 Punch the desired combination of " 1 's" and " 0 ' s " representing the output levels for the second word on the card.
19 Blank
20-23 Punch the desired combination of " 1 ' s " and " 0 ' s " representing the output levels for the third word on the card. 24 Blank
25-28 Punch the desired combination of " 1 's" and " 0 's" representing the output levels for the fourth word on the card. 29 Blank
30-33 Punch the desired combination of " 1 's" and " 0 ' s " representing the output levels for the fifth word on the card. 34 Blank

FAIRCHILD TTL MEMORY • 93406

CARDS NO. 3 through 34 - Truth Table Deck (cont'd)
Column Content
35-38 Punch the desired combination of " 1 ' s " and " 0 ' s " representing the output levels for the sixth word on the card.
39 Blank
40-43 Punch the desired combination of " 1 ' s " and " 0 ' s " representing the output levels for the seventh word on the card.
44 Blank
45-48 Punch the desired combination of " 1 ' s " and " 0 ' s " representing the output levels for the eighth word on the card.
49 Blank
50-51 Repeat chip select code option as in columns 13 and 14 of card number 2.
52-59 Blank
60-66 Repeat FAIRCHILD PART NUMBER (this number is used for positive identificaiton).
67 Blank
68-80 Use optional.

93406 Address Scheme

The 93406 is organized 256 words by 4 -bits. The words are numbered 0 through 255 and are addressed using sequential addressing of address inputs A_{0} through A_{7}, with A_{0} as the least significant digit.

	INPUTS							
WORD	Pin 15	Pin 1	Pin 2	Pin 3	Pin 4	Pin 7	Pin 6	Pin 5
	A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}
WORD 0	0	0	0	0	0	0	0	0
WORD 1	0	0	0	0	0	0	0	1
WORD 2	0	0	0	0	0	0	1	0
WORD 3	0	0	0	0	0	0	1	1
1	1	1	1	1	1	1	1	1
WORD 255	1	1	1	1	1	1	1	1

ABSOLUTE MAXIMUM RATINGS Storage Temperature Temperature (Ambient) Under Bias V_{CC} Pin Potential to Ground Input Pin Voltage Current into Output Terminal Output Voltages					$\begin{array}{r} -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ -0.5 \mathrm{~V} \text { to }+8.0 \mathrm{~V} \\ -1.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\ 100 \mathrm{~mA} \\ -0.5 \mathrm{~V} \text { to } \mathrm{V} \text { CC Value } \end{array}$	
DC ELECTRICAL CHARACTERISTICS ($T_{\text {A }}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 5 \%$)						
SYMBOL	CHARACTERISTIC	LIMITS			UNITS	CONDITIONS
		MIN.	TYP.	MAX.		
ICEX	Output Leakage Current			40	$\mu \mathrm{A}$	$v_{C C}=5.25 \mathrm{~V}, v_{C E X}=5.25 \mathrm{~V}$ Address any HIGH output
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.45	Volts	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{IOL}=15 \mathrm{~mA}$ Address any LOW output
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0			Volts	Guaranteed Input HIGH Voltage for All Inputs
$V_{\text {IL }}$	Input LOW Voltage			0.85	Volts	Guaranteed Input LOW Voltage for All Inputs
${ }^{1} \mathrm{~F}$	Input LOW Current ${ }^{\text {I FA }}$ (Address Inputs) IFCS (Chip Select Inputs)			$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	mA	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{F}}=0.45 \mathrm{~V}$
${ }^{\prime} \mathrm{R}$	Input HIGH, Current IRA (Address Inputs) IRCS (Chip Select Input)			$\begin{array}{r} 40 \\ 40 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=4.5 \mathrm{~V}$
Icc	Power Supply Current		114	130	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$, Outputs open Inputs Grounded and Chip Selected
C_{0}	Output Capacitance		6.5		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$
$\mathrm{v}_{\text {CD }}$	Input Clamp Diode Voltage		-0.8	-1.0	Volts	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-5.0 \mathrm{~mA}$

tTL LOADING RULES

1 U.L. $=40 \mu \mathrm{~A} \mathrm{HIGH} / 1.6 \mathrm{~mA}$ LOW

OUTPUTS	DRIVE FACTOR	
	HIGH	LOW
O_{0} to O_{3}	OPEN COLLECTOR	9.3

TYPICAL ELECTRICAL CHARACTERISTICS

$V_{I N}$ - INPUT VOLTAGE - VOLTS

vout-OUTPUT VOLTAGE - VOLTS

POWER SUPPLY CURRENT VERSUS AMBIENT TEMPERATURE

TA - AMBIENT TEMPERATURE - ${ }^{\circ} \mathrm{C}$

FAIRCHILD TTL MEMORY • 93406

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS	CONDITION
${ }^{\text {tpd++ }}$	Propagation Delay Time, LOW to HIGH Output from Chip Select (or Address) LOW to HIGH		30	50	ns	$\begin{aligned} & C_{L}=30 \mathrm{pF} \\ & R_{\mathrm{L} 1}=300 \Omega \\ & R_{\mathrm{L} 2}=600 \Omega \end{aligned}$ See Fig. 1
${ }^{\text {p }}$ d+-	Propagation Delay Time, HIGH to LOW Output from Chip Select (or Address) LOW to HIGH		30	50	ns	
${ }^{\text {tpd-+ }}$	Propagation Delay Time, LOW to HIGH Output from Chip Select (or Address) HIGH to LOW		30	50	ns	
${ }^{\text {pd-- }}$	Propagation Delay Time, HIGH to LOW Output from Chip Select (or Address) HIGH to LOW		30	50	ns	

NOTE:
First + or - of $t_{p d}$ indicates change in chip select, or address line. Second + or - indicates change in output.

> " + " \equiv Low Voltage to High Voltage
> "'-" \equiv High Voltage to Low Voltage

NOTES:
(1) To test CS delay, apply input pulse to CS input. The word selected must contain a ' 0^{\prime} in the bit under test.
(2) To test $t_{p d++}$ and $t_{p d-}$ delay, apply input pulse to the address input under test. The word selected must contain ' 0 ' when the input pulse is LOW, and a ' 1 ' when the input pulse is HIGH in the bit under test.
(3) To test $t_{p d+-}$ and $t_{p d-+}$ delay, apply input pulse to the address input under test. The word selected must contain a ' 1 ' when the input pulse is LOW, and a ' O ' when the input pulse is HIGH in the bit under test.

SWITCHING TEST OUTPUT LOAD

SWITCHING TIME VERSUS AMBIENT TEMPERATURE

CHIP SELECT DELAY TIME VERSUS AMBIENT TEMPERATURE (CS $\mathbf{1}_{\mathbf{1}}$ TO \mathbf{O}_{0})

Fig. 1

SWITCHING WAVEFORMS

TTL MEMORY 93406
 1024-BIT READ ONLY MEMORY
 CUSTOMER CODING FORM

CUSTOM ROM TRUTH TABLE

CUSTOMER \qquad Location \qquad
Cust. P/N \qquad Cust. Dwg. \# \qquad
Function \qquad SL \# \qquad

Chip Select Code $-\mathrm{CS}_{1}(13)=\ldots, \mathrm{CS}_{2}(14)=\ldots .{ }^{*}$
*If not specified, ship select code will be '00'. Package pin numbers are shown in parenthesis.

Input									Output				
MSB								Word		SB			
								\#		3	O_{2}	O_{1}	O_{0}
0	0	0	0	0	0	0	0	0					
0	0	0	0	0	0	0	1	1					
0	0	0	0	0	0	1	0	2					
0	0	0	0	0	0	1	1	3					
0	0	0	0	0	1	0	0	4					
0	0	0	0	0	1	0	1	5					
0	0	0	0	0	1	1	0	6					
0	0	0	0	0	1	1	1	7					
0	0	0	0	1	0	0	0	8					
0	0	0	0	1	0	0	1	9					
0	0	0	0	1	0	1	0	10					
0	0	0	0	1	0	1	1	11					
0	0	0	0	1	1	0	0	12					
0	0	0	0	1	1	0	1	13					
0	0	0	0	1	1	1	0	14					
0	0	0	0	1	1	1	1	15					
15	1	2	3	4	7	6	5	kg. Pin	9	910	01	11	12

TTL MEMORY 93406

TTL MEMORY 93407•93433 16-BIT COINCIDENT SELECT READ/WRITE MEMORY FORMERLY 5033 • 9033

DESCRIPTION - These devices are Planar* epitaxial integrated 16-bit, bit-oriented, non-destructive readout memory cells, compatible with Fairchild TTL. These memory cells, organized as 16 words by one bit, are designed for high speed scratch-pad memory applications. The 93407 and 93433 are electrically identical, but with different pin configurations. Both devices are available in two fan out options, $40 \mathrm{~mA}(\mathrm{~A})$ and $20 \mathrm{~mA}(\mathrm{~B})$ for Industrial/Commercial temperature range.

OPERATION - The memory cell consists of 16 RS flip-flops arranged in an addressable four-by-four matrix. The desired bit location is selected by raising the coincident $X-Y$ address lines to a logic " H " level (>2.1 volts) and holding the non-selected address lines at logic " L " level (<0.7 volts). As many as four locations may be addressed simultaneously without destroying stored information. The stored data and its complement at the addressed bit location may be read at the output terminals. If the addressed bit location contains a "1", the $\overline{S_{1}}$ output will be LOW and the $\overline{S_{0}}$ output will be HIGH. If the addressed bit location contains a " 0 ', the $\overline{\mathrm{S}_{1}}$ otuput will be HIGH and the $\overline{\mathrm{S}_{0}}$ output will be LOW.
Writing is accomplished by activating one of the write amplifiers. To write a " 1 ", the desired bit location is addressed and the input of the "write one" $\left(W_{1}\right)$ amplifier is raised to a HIGH level. To write a " 0 ', the input of the "write zero" (W_{0}) amplifier is raised to a HIGH Level.

The outputs are open-collector, which may be wired OR for word expansion. (The output transistors are off when none of the bits are selected.) An external resistor should be returned to V_{CC} to pull-up the wired OR outputs.

- TTL COMPATIBLE
- OUTPUT WIRED-OR CAPABILITY
- TRUE AND COMPLENENTARY OUTPUTS ARE PROVIDED
- NON DESTRUCTIVE READ OUT
- FAN OUT AVAILABLE IN TWO GRADES: $A=40 \mathrm{~mA}, \mathrm{~B}=20 \mathrm{~mA}$ FOR INDUSTRIAL/ COMMERCIAL TEMPERATURE RANGE

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias
$V_{\text {CC }}$ Pin Potential to Ground
Input Pin Voltage
Current Into Output Terminal
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-0.5 V to +8.0 V

Output Voltage
100 mA
-0.5 V to +8.0 V

LOGIC DIAGRAM

$X, Y-$ Address

W - Write Input
S - Sense Output

Each square represents one bit of storage.

SYMBOL	PARAMETER	MIN.	ITS MAX.	UNITS	TEST CONDITIONS
IFX	X Address Input Load Current		11	mA	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{X}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{Y}}=4.5 \mathrm{~V}$, other X inputs grounded
IFY	Y Address Input Load Current		11	mA	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{Y}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{X}}=4.5 \mathrm{~V}$, other Y inputs grounded
${ }_{\text {frx }}$	X Address Input Leakage Current		400	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{X}}=4.5 \mathrm{~V}$, other X and Y inputs grounded
IRY	Y Address Input Leakage Current		400	$\mu \mathrm{A}$	$V_{C C}=5.5 \mathrm{~V}, \dot{V}_{Y}=4.5 \mathrm{~V}$, other X and Y inputs grounded
'fw	Write Input Load Current		1.5	mA	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{W}=0 \mathrm{~V}$
IRW	Write Input Leakage Current		100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{W}}=4.5 \mathrm{~V}$
Icc	Power Supply Current		65	mA	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$. All Inputs Grounded
Ibv	Power Supply Current at $\mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V}$		84	mA	$\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}$, All Inputs Grounded
ICEX	Output Leakage Current		250	$\mu \mathrm{A}$	$V_{C C}=5.5 \mathrm{~V}, V_{\text {CEX }}=5.5 \mathrm{~V}$, all inputs grounded
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage		0.40	\checkmark	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, One Bit Selected $\mathrm{OL}=20 \mathrm{~mA}$
$v_{X Y}(W)$	Address Input Threshold to Prevent Writing		0.75	V*	$V_{C C}=5.0 \mathrm{~V}$, other X and Y grounded. Alternately pulse W_{0} and W_{1}. cell must not change state.
$V_{X Y}(W)$	Address Input Threshold to Insure Writing	2.1		V*	$V_{C C}=5.0 \mathrm{~V}$, other X and Y grounded. Alternately pulse W_{0} and W_{1}, cell state must alternate.
$V_{X Y}(R)$	Address Input Threshold to Prevent Reading		0.8	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, other inputs grounded. Both outputs must be on HIGH state.
$V_{X Y}(R)$	Address Input Threshold to Insure Reading	2.1		V*	$V_{C C}=5.0 \mathrm{~V}$, other X and Y grounded. Alternately pulse W_{0} and W_{1}, cell state must alternate.
$V_{W}(W)$	Write Input Threshold to Prevent Writing		0.8	V*	$V_{C C}=5.0 \mathrm{~V}$, one X and one Y to 4.5 V , other X and Y grounded. One write input to $V_{W}(W)$, pulse the other write input. If W_{0} is pulsed, S_{0} will assume LOW state. If W_{1} is pulsed, S_{1} will assume LOW state.
$V_{W}(\mathbf{W})$	Write Input Threshold to Insure Writing	2.1		V*	$V_{C C}=5.0 \mathrm{~V}$, one X and one Y to 4.5 V , other X and Y grounded. One write input to $V_{W}(W)$, pulse the other write input. If W_{0} is pulsed, S_{1} will assume LOW state. If W_{1} is pulsed, S_{0} will assume LOW state.

ELECTRICAL CHARACTERISTICS ($T_{A}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$ (Part No. $93407 / \mathrm{AXC}, 93407 / \mathrm{BXC}, 93433 / \mathrm{AXC}, 93433 / \mathrm{BXC}$)**

SYMBOL	PARAMETER	LIMITS		UNITS	TEST CONDITIONS
		MIN.	MAX.		
IFX	X Address Input Load Current		11	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{X}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{Y}}=4.5 \mathrm{~V}$, other X inputs grounded
Ify	Y Address Input Load Current		11	mA	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{Y}=0 \mathrm{~V}, \mathrm{~V}_{X}=4.5 \mathrm{~V}$, other X inputs grounded
1 RX	X Address Input Leakage Current		400	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{X}}=4.5 \mathrm{~V}$, other X and Y inputs grounded
IRY	Y Address Input Leakage Current		400	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{Y}}=4.5 \mathrm{~V}$, other X and Y inputs grounded
IFW	Write Input Load Current		1.5	mA	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{W}}=0 \mathrm{~V}$
IRW	Write Input Leakage Current		100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{W}}=4.5 \mathrm{~V}$
${ }^{\text {ICC }}$	Power Supply Current		65	mA	$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}$, All Inputs Grounded
I_{BV}	Power Supply Current at $\mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V}$		95	mA	$\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}$, All inputs Grounded
${ }^{\text {ICEX }}$	Output Leakage Current		250	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {CEX }}=5.5 \mathrm{~V}$, all inputs grounded
VOL	Output LOW Voltage		0.45	\checkmark	$V_{C C}=4.75 \mathrm{~V}$, One bit selected $\mathrm{OL}=20 \mathrm{~mA}$ for $\mathrm{IND} \omega$ grade. $\mathrm{I}_{\mathrm{OL}}=40 \mathrm{~mA}$ for IND A grade.
$V_{X Y}(W)$	Address Input Threshold to Prevent Writing		0.8	V*	$V_{C C}=5.0 \mathrm{~V}$, other X and Y grounded. Alternately pulse W_{0} and W_{1}, cell must not change state.
$V_{X Y}(W)$	Address Input Threshold to Insure Writing	2.0		V*	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, other X and Y grounded. Alternately pulse W_{0} and W_{1}, celi state must alternate.
$V_{X Y}(R)$	Address Input Threshold to Prevent Reading		1.0	v	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, other inputs grounded. Both outputs must be on HIGH state.
$V_{X Y}(R)$	Address Input Threshold to Insure Reading	2.0		V*	$V_{C C}=5.0 \mathrm{~V}$, other X and Y grounded. Alternately pulse W_{0} and W_{1}, cell state must al ternate.
VW(W)	Write Input Threshoid to Prevent Writing		1.0	V*	$V_{C C}=5.0 \mathrm{~V}$, one X and one Y to 4.5 V , other X and Y grounded. One write input to $V_{W}(W)$, pulse the other write input. If W_{0} is pulsed, S_{0} will assume LOW state. If W_{1} is pulsed, S_{1} will assume LOW state.
$V_{\text {W }}(\mathrm{W})$	Write Input Threshold to Insure Writing	2.0		v*	$V_{C C}=5.0 \mathrm{~V}$, one X and one Y to 4.5 V , other X and Y grounded. One write input to $V_{W}(W)$, pulse the other write input. If W_{0} is pulsed, S_{1} will assume LOW state. If W_{1} is pulsed, S_{0} will assume LOW state.

*Amplitude of the pulse $\geq \mathbf{2 . 5} \mathrm{V}$, pulse width $\geq \mathbf{1 0 0} \mathrm{ns}$. The cell state is determined $\mathbf{3 5} \mathrm{ns}$ after pulse disappears.
**X = package type; F for Flatpak, D for Ceramic Dip. See Packaging Information Section for packages available on this product.

TTL LOADING RULES

	HIGH LEVEL	LOW LEVEL
Address Input	6.5 U.L.	6.5 U.L.
Write Input	1.5 U.L.	0.9 U.L.
Sense Output	Open Collector	IND A grade $=25$ U.L.
		MIL or IND B grade $=12.5$ U.L.

1 Unit Load (U.L.) $=60 \mu \mathrm{AHIGH} / 1.6 \mathrm{~mA}$ LOW

FAIRCHILD TTL MEMORY • 93407 • 93433

FAIRCHILD TTL MEMORY • 93407 • 93433

APPLICATION:

A memory utilizing these memory cells may have any desired word length. The number of words in the memory is a multiple of four words. The following example of a 64 word memory illustrates how a number of 16 -bit memory cells may be used to construct a typical memory.
The 64 word memory as shown in Figure A consists of groups of four memory cells. Each of the groups of four memory cells supplies one bit for each of the 64 words stored in the memory. All bits belonging to one word are stored in the same address location. Therefore, the address of a word in the memory is the address of each bit of the addressed word in the groups of four memory cells. The equal outputs of the four memory cells are tied together so that each group of four memory cells has one HIGH and one LOW level output.
The six memory address lines from an external source are decoded at the first level with two 9301 decoders. The fourth input to each of the two decoders can be used as an enable control input to the 64 word memory. If the address enable is at a LOW logic level, one and only one of the eight outputs, 0 to 7 , in the illustration assumes a LOW logic level. If the address enable is at a HIGH logic level, the outputs 0 to 7 of the two decoders assume a HIGH logic level, thus none of the 64 words stored in the memory is addressed. The outputs, 0 to 7 , of the two decoders serve as X -and- Y address lines. The output signals of the decoders are connected to driving transistors which provide the necessary current to address the memory cells.
The example given above is only one of the many organizations and is presented as an illustration. Obviously many address decoding schemes may be utilized depending on memory size, driver fan out, decoder fan out, wiring, heat dissipation, etc.
Figures B through D show alternative schemes to enter data into the memory cell.

TTL ISOPLANAR MEMORY 93410•93410A 256-BIT FULLY DECODED RANDOM ACCESS MEMORY

DESCRIPTION - The 93410 and 93410A are high speed 256 Bit TTL Random Access Memories with full decoding on chip. Each memory, organized as 256 words $\times 1$ bit, is designed for scratch pad, buffer and distributed main memory applications. Both devices have three chip select lines to simplify their use in larger memory systems. Address input pin locations are specifically chosen to permit maximum packaging density and for ease of PC board layout. An uncommitted collector output is provided to permit "OR-ties" for ease of memory expansion.

The 93410 A is a high speed version of the 93410 , offering a 35 ns access time.

- ORGANIZATION - 256 WORDS $\times 1$ BIT
- THREE HIGH SPEED CHIP SELECT INPUTS
- tYpical access time

$93410 A$	Commercial	35 ns
93410	Commercial	45 ns
93410	Military	45 ns

- NON INVERTED DATA OUTPUT
- ON CHIP DECODING
- POWER DISSIPATION - $1.8 \mathrm{~mW} / \mathrm{BIT}$
- POWER DISSIPATION DECREASES WITH TEMPERATURE

PIN NAMES
LOADING
$\overline{\mathrm{Cs}}_{1} \overline{\mathrm{Cs}}_{2} \mathrm{CS}_{3}$
A_{0} thru A_{7}
DIN
DOUT
WE

Chip Select Input
Address Inputs
Data Input
Data Output Write Enable
(Notes a \& b) 0.5 U.L. 0.5 U.L. 0.5 U.L.

10 U.L.
0.5 U.L.

NOTES:
a. 1 Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/ 1.6 mA LOW
b. 10 U.L. is the output LOW drive factor. An external pull up resistor is needed to provide HIGH level drive capability. This output will sink a maximum of 16 mA at $\mathrm{V}_{\text {out }}=0.45 \mathrm{~V}$.

FAIRCHILD ISOPLANAR TTL MEMORY • 93410 • 93410A

FUNCTIONAL DESCRIPTION

The 93410 and 93410 A are fully decoded 256-bit Random Access Memories organized 256 words by 1 bit. Bit selection is achieved by means of an 8 -bit address, A_{0} thru A_{7}.

Three chip select inputs are provided, two are active LOW ($\overline{\mathrm{CS}}_{1}$ and $\overline{\mathrm{CS}}_{2}$) and the third active HIGH (CS 3) for maximum logic flexibility. This permits memory array expansion up to 2048 words without the need for additional external decoders. For larger memories the fast chip select access time permits the decoding of chip select, CS, from the address without increasing address access time.
The read and write operations are controlled by the state of the active LOW Write Enable $\overline{W E}$ (pin 10). With $\overline{W E}$ held LOW and the chip selected, the data at $D_{I N}$ is written into the addressed location. To read, $\overline{W E}$ is held HIGH and the chip selected. Data in the specified location is presented at DOUT and is non-inverted.

Uncommitted collector outputs are provided to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many 93410 s or 93410 As can be tied together. In other applications the wired-OR is not used. In either case an external pull up resistor of value R_{L} must be used to provide a HIGH at the output when it is off. Any value of R_{L} within the range specified below may be used.

$$
\frac{v_{C C}(M A X)}{16-F .0 .(1.6)} \quad \leqslant R_{L} \leqslant \quad \frac{v_{C C}(M I N)-V_{O H}}{N\left(I I_{C E X}\right)+F .0 .(0.04)}
$$

$$
\begin{aligned}
& R_{\mathrm{L}} \text { is in } k \Omega \\
& \mathrm{~N}=\text { number of wired-OR outputs tied together } \\
& \text { F.O. = number of TTL Unit Loads (U.L.) driven } \\
& \mathrm{I}_{\mathrm{CEX}}=\text { Memory Output Leakage Current in } \mathrm{mA} \\
& \mathrm{~V}_{\mathrm{OH}}=\text { Required Output HIGH level at Output Node }
\end{aligned}
$$

The minimum value of R_{L} is limited by output current sinking ability. The maximum value of R_{L} is determined by the output and input leakage current which must be supplied to hold the output at V_{OH}.

TABLE I - TRUTH TABLE

INPUTS					OUTPUT	MODE
CS			WE	DI	DO	
PIN 5	PIN 6	PIN 7				
H	X	x	X	X	H	Not Selected
X	H	X	X	X	H	Not Selected
X	X	L	X	X	H	Not Selected
L	L	H	L	L	H	Write '0'
L	L	H	L	H	H	Write "1"
L	L	H	H	\times	DO	Read data from addressed location

$\mathrm{H}=\mathrm{HIGH}$ Voltage
L = LOW Voltage
X = Don't Care (HIGH or LOW)

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature				$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias				$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$ Pin Potential to Ground Pin				-0.5 V to +7.0 V
*Input Voltage (dc)				-0.5 V to +5.5 V
*Input Current (dc)				-12 mA to +5.0 mA
**Voltage Applied to Outputs (output HIGH)				0.5 V to +5.50 V
Output Current (dc) (Output LOW)				+20 mA
*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs. ** Output Current Limit Required.				
UARANTEED OPERATING RANGES				
ART NUMBER	SUPPLY VOLTAGE ($V_{C C}$)			BEIENT TEMPERATURE4
	MIN.	TYP.	MAX.	
3410XC, 93410AXC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
3410×M	4.75 V	5.0 V	5.25 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

[^1]
FAIRCHILD ISOPLANAR TTL MEMORY • 93410 • 93410A

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE 1 (uniess otherwise noted)

SYMBOL	PARAMETER			LIMITS ${ }^{2}$		UNITS	CONDITIONS	
			MIN.	TYP. 3	MAX.			
V_{OL}	Output LOW Voltage			0.3	0.45	V		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \mathrm{I}_{\text {OL }}=16 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0	1.6		V		Guaranteed input logical HIGH voltage for all inputs
$V_{\text {IL }}$	Input LOW Voltage			1.5	0.85	V		Guaranteed input logical LOW voltage for all inputs
IIL	Input LOW Current			-530	-800	$\mu \mathrm{A}$		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$., $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
$1 / \mathrm{H}$	Input HIGH Current			1.0	20.	$\mu \mathrm{A}$		$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$
ICEX	Output Leakage Current			1.0	50	$\mu \mathrm{A}$		$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-1.0	-1.5	V		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{I}^{\text {IN }}=-10 \mathrm{~mA}$
${ }^{\text {I Cc }}$	Power Supply Current	93410xC		90	135		$\mathrm{T}_{\mathrm{A}} \geqslant 25^{\circ} \mathrm{C}$	$v_{C C}=\text { MAX }$ All inputs grounded See Power Supply vs Temp. Curve
		93410xC		100	140	mA	$\mathrm{T}_{\mathrm{A}}<25^{\circ} \mathrm{C}$	
		93410XM		90	135		$\mathrm{T} \mathrm{*} \geqslant 25^{\circ} \mathrm{C}$	
				100	145		$\mathrm{T}_{\mathrm{A}}<25^{\circ} \mathrm{C}$	

SWITCHING CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

notes:
(1) Conditions for testing, not shown in the table, are chosen to guarantee operation under "worst case" conditicns.
(2) The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
(3) Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$, and max. loading.
(4) Guaranteed with transverse airflow exceeding 400 linear F.P.M. and 2 minute warm up.

Typical thermal resistance values of the package are:
θ_{JA} (Junction to Ambient) $=50^{\circ} \mathrm{C} / \mathrm{W}$ (at 400 F.P.M. Airflow)
$\theta_{\text {JA }}$ (Junction to Ambient) $=90^{\circ} \mathrm{C} / \mathrm{W}$ (Still Air)
θ_{JL} (Junction to Case) $=25^{\circ} \mathrm{C} / \mathrm{W}$
The $-55^{\circ} \mathrm{C}$ Operating Temperature relates to $\mathrm{a}-30^{\circ} \mathrm{C}$ worst case cold Junction Temperature.
(5) The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudo random testing pattern.

FAIRCHILD ISOPLANAR TTL MEMORY • 93410 • 93410A

Vin - InPut voltage - volts

OUTPUT CURRENT VERSUS OUTPUT VOLTAGE (OUTPUT LOW)

NORMALIZED ADDRESS ACCESS TIME

INPUT CURRENT VERSUS INPUT VOLTAGE

VIN - INPUT VOLTAGE - VOLTS

TTL ISOPLANAR MEMORY 93415 1024-BIT FULLY DECODED RANDOM ACCESS MEMORY

DESCRIPTION - The 93415 is a 1024-Bit Read/Write Random Access Memory organized 1024 words $\times 1$-bit. It has a typical access time of 60 ns and is designed for buffer and control storage and high performance main memory applications.
The 93415 includes full decoding on the chip, has separate data input and data output lines and an active LOW chip select line.

The device is fully compatible with standard DTL and TTL logic families and has an uncommitted collector output for ease of memory expansion.

- NON-INVERTING DATA OUTPUTS
- ORGANIZED 1024 WORDS X 1-BIT
- READ ACCESS TIME 60 ns TYP.
- CHIP SELECT ACCESS TIME 30 ns TYP.
- POWER DISSIPATION $0.5 \mathrm{~mW} / \mathrm{BIT}$ TYP.
- INPUT LOADING 0.25 TTL UNIT LOADS
- UNCOMMITTED COLLECTOR OUTPUT
- POWER DISSIPATION DECREASES WITH INCREASING TEMPERATURE
- TTL COMPATIBLE

PIN NAMES	LOADING	
$\overline{C S}$	Chip Select	0.25 U.L.
A_{O} to $A 9$	Address Inputs	0.25 U.L.
$\overline{W E}$	Write Enable	0.25 U.L.
$D_{I N}$	Data Input	0.25 U.L.
$D_{O U T}$	Data Output	10 U.L.

1 Unit Load (U.L.) $=40 \mu \mathrm{AHIGH} / 1.6 \mathrm{~mA}$ LOW

FUNCTIONAL DESCRIPTION - The 93415 is a fully decoded 1024-bit Random Access Memory organized 1024 words by 1-bit. Bit selection is achieved by means of a 10 -bit address A_{0} to A_{9}.
One chip select input is provided for memory array expansion with the need for one additional external decoder. For larger memories the fast chip select access time permits the decoding of chip select, $\overline{\mathrm{CS}}$, from the address without affecting system performance.
The read and write operations are controlled by the state of the active LOW Write Enable $\overline{W E}$ (pin 14). With $\overline{W E}$ held LOW and the chip selected, the data at DIN is written into the addressed location. To read, $\overline{W E}$ is heid HIGH and the chip selected. Data in the specified location is presented at DOUT and is non-inverted.
Uncommitted collector outputs are provided on the 93415 to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many 93415 can be tied together. In other applications the wired-OR is not used. In either case an external pull up resistor of value R_{L} must be used to provide a HIGH at the output when it is off. Any value of R_{L} within the range specified below may be used.

$$
\begin{array}{ll}
\frac{V_{C C}(\min)}{I_{O L}-F . O .(1.6)} \leqslant R_{L} \leqslant \frac{V_{C C}(\min)-V_{O H}}{N\left(I_{C E X}\right)+F . O .(0.04)} & R_{L} \text { is in } k \Omega \\
& N=\text { number of wired-OR outputs tied together } \\
& \text { F.O. = number of TTL Unit Loads (U.L.) driven } \\
& I_{C E X}=\text { Memory Output Leakage Current }
\end{array}
$$

The minimum value of R_{L} is limited by output current sinking ability. The maximum value of R_{L} is determined by the output and input leakage current which must be supplied to hold the output at V_{OH}.

TABLE I - TRUTH TABLE

INPUTS			OUTPUT	MODE
$\overline{\mathrm{CS}}$	WE	DI	Open Collector	
H	X	X	H	NOT SELECTED
L	L	L	H	WRITE " 0 "
L	L	H	H	WRITE " 1 "
L	H	X	D_{0}	READ

$\mathrm{H}=\mathrm{HIGH}$ Voltage
L = LOW Voltage
X = Don't Care (HIGH or LOW)

TYPICAL INPUT AND OUTPUT CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)
Storage Temperature
Temperature (Ambient) Under Bias
VCC Pin Potential to Ground Pin
*Input Voltage (dc)
*Input Current (dc)
Voltage Applied to Outputs (Output HIGH)
Output Current (dc) (Output LOW)
*Either input voltage or input current limit is sufficient to protect the input.

GUARANTEED OPERATING RANGES

PART NUMBER	SUPPLY VOLTAGE (VCC)		AMBIENT TEMPERATURE	
	MIN.	TYP.		(Note 4)
$93415 \times \mathrm{C}$	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

[^2]
TO BE ANNOUNCED

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise noted)

SYMBOL	CHARACTERISTIC	LIMITS			UNITS	CONDITIONS	
		MIN.	TYP. (Note 3)	MAX.			
V_{OL}	Output LOW Voltage		0.3	0.45	Volts	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{IOL}=16 \mathrm{~mA}$	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.1	1.6		Volts	Guaranteed Input HIGH Voltage for all Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		1.5	0.8	Volts	Guaranteed Input LOW Voltage for all Inputs	
IIL	Input LOW Current		-250	-400	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	
			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$	
1 H	Input HIGH Current			1.0	mA	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {IN }}=5.25 \mathrm{~V}$	
ICEX	Output Leakage Current		1.0	50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$	
V_{CD}	Input Diode Clamp Voltage		-1.0	-1.5	Volts	$\mathrm{V}_{\mathrm{CC}}=$ MAX., $\mathrm{I}_{\text {IN }}=-10 \mathrm{~mA}$	
			90	130	mA	$\mathrm{T}^{\mathrm{A}} \geqslant 25^{\circ} \mathrm{C}$	$\overline{\mathrm{V}_{\mathrm{CC}}}=\mathrm{MAX} .,$ All inputs grounded
ICC	Power Supply Current		110	150	mA	$\mathrm{T}_{\mathrm{A}}<25^{\circ} \mathrm{C}$	

NOTES:

1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
2. The specified LIMITS represents the "worst case" value for the parameters. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immuinity and guard banding can be achieved by decreasing the allowable system operating ranges.
3. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$, and max. loading.
4. The Operating Ambient Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up. Typical thermal resistance values of the package are:
$\theta_{\text {JA }}$ (Junction to Ambient) $=50^{\circ} \mathrm{C} /$ Watt (at 400 fom air flow)
$\theta_{\text {JA }}$ (Junction to Ambient) $=90^{\circ} \mathrm{C} / \mathrm{Watt}$ (still air)
θ_{JC} (Junction to Case) $=25^{\circ} \mathrm{C} / \mathrm{Watt}$
The $100^{\circ} \mathrm{C}$ Operating Temperature relates to a "worst case" junction temperature of $125^{\circ} \mathrm{C}$.
5. The maximum address access time is guaranteed to be the "worst case" bit in the memory using a pseudo random testing pattern.

SWITCHING CHARACTERISTICS - OVER OPERATING TEMPERATURE AND VOLTAGE RANGES

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS
READ MODE ${ }^{t}$ ACS ${ }^{t}$ RCS t AA	DELAY TIMES Chip Select Access Time Chip Select Recovery Time Address Access Time		$\begin{aligned} & 30 \\ & 30 \\ & 60 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \\ & 90 \end{aligned}$	ns	See Test Circuit and Waveforms on page 9-30 (Note 5)
WRITE MODE tws ${ }^{t} W R$ tw tWSD tWHD tWSA tWHA twscs twHCS	DELAY TIMES Write Disable Time Write Recovery Time INPUT TIMING REQUIREMENTS Minimum Write Pulse Width Data Set-Up Time Prior to Write Data Hold Time After Write Address Set-Up Time Address Hold Time Chip Select Set-Up Time Chip Select Hold Time		$\begin{aligned} & 35 \\ & 45 \\ & \\ & 30 \\ & 0 \\ & 0 \\ & 20 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	45 65 55 5 5 35 5 5 5	ns ns	See Test Circuit and Waveforms on page 9-30
$\mathrm{CIN}_{\text {IN }}$ Cout	Input Pin Capacitance Output Pin Capacitance		$\begin{aligned} & 4 \\ & 7 \end{aligned}$	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	pF	

TTL MEMORY 93434 256-BIT READ-ONLY MEMORY

FORMERLY 9034

DESCRIPTION - The Fairchild 93434 is a 256 -Bit bipolar TTL Read-Only Memory. The memory is organized as 32 words of eight bits each. The words are selected through five address lines. The eight outputs of the words are uncommitted collectors which may be wired-OR with the outputs of other ROMs. An Enable input is provided for additional decoding flexibility. A HIGH on the Enable input forces all outputs to be HIGH.

The contents of the memory are permanently programmed to customer order. A customer order form is available on request.

- TTL COMPATIBLE
- OUTPUT WIRED-OR CAPABILITY
- SINGLE TTL LOAD INPUTS
- INPUT CLAMP DIODES

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
Temperature (Ambient) Under Bias
$V_{\text {CC }}$ Pin Potential to Ground
Input Pin Voltage
Current Into Output Terminal
Output Voltages
LOGIC DIAGRAM

LOGIC SYMBOL

$V_{C C}=\operatorname{PIN} 16$
GND = PIN 8

CONNECTION DIAGRAMS DIP (TOP VIEW)

ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$ (units are pulse tested) (Part No. $93434 \times \mathrm{M}$)*

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		$\begin{gathered} -55^{\circ} \mathrm{C} \\ \text { MIN. MAX. } \end{gathered}$	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { MIN. MAX. } \end{gathered}$	$\begin{gathered} +125^{\circ} \mathrm{C} \\ \text { MIN. MAX. } \end{gathered}$		
Ifa	Address Input Load Current	-1.6	-1.6	-1.6	mA	$\mathrm{V}_{C C}=5.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{A}}=0.4 \mathrm{~V}$
IFE	Enable Input Load Current	-1.6	-1.6	-1.6	mA	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{E}}=0.4 \mathrm{~V}$
IRA	Address Input Leakage Current	100	100	100	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{A}}=4.5 \mathrm{~V}$
IRE	Enable Input Leakage Current	100	100	100	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{E}}=4.5 \mathrm{~V}$
ICEX	Output Leakage Current	200	200	200	$\mu \mathrm{A}$	$\begin{aligned} & V_{\mathrm{CC}}=5.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{CEX}}=5.5 \mathrm{~V} \\ & \text { Enable input to } 2.0 \mathrm{~V} \end{aligned}$
v_{OL}	Output LOW Voltage	0.4	0.4	0.4	v	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \quad$ IOUT $=10 \mathrm{~mA}$ The word containing a " 0 " bit is selected when performing this test.
$V_{\text {IL }}$	Input LOW Voltage	0.8	0.9	0.8	V	$V_{C C}=5.5 \mathrm{~V}$ Enable input grounded. Monitor appropriate output to guarantee this test.
$V_{1 H}$	Input HIGH Voltage	2.0	1.7	1.4	v	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ Enable input grounded. Monitor appropriate output to guarantee this test.
ICC	Power Supply Current	80	80	80	mA	$v_{C C}=5.5 \mathrm{~V}$ All inputs grounded

ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$ (units are pulse tested) (Part No. 93434 XC)*

SYMBOL	PARAMETER	LIMITS						UNITS	TEST CONDITIONS
		$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+75^{\circ} \mathrm{C}$			
		MIN.	MAX.	MIN.	MAX	MIN.	MAX.		
$I_{\text {FA }}$	Address Input Load Current		-1.6		-1.6		-1.6	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{A}}=0.45 \mathrm{~V}$
IFE	Enable Input Load Current		-1.6		-1.6		-1.6	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{E}}=0.45 \mathrm{~V}$
IRA	Address Input Leakage Current		100		100		100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{A}}=4.5 \mathrm{~V}$
IRE	Enable Input Leakage Current		100		100		100	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=5.25 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{E}}=4.5 \mathrm{~V}$
'CEX	Output Leakage Current		200		200		200	$\mu \mathrm{A}$	$V_{C C}=5.25 \mathrm{~V} \quad V_{C E X}=5.25 \mathrm{~V}$ $\text { Enable input to } 2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage		0.45		0.45		0.45	v	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \quad$ IOUT $=10 \mathrm{~mA}$ The word containing a " 0 " bit is selected when performing this test.
VIL	Input LOW Voltage		0.85		0.85		0.85	v	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$ Enable input grounded. Monitor appropriate output to guarantee this test.
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage	1.9		1.8		1.6		V	$V_{C C}=4.75 \mathrm{~V}$ Enable input grounded. Monitor appropriate output to guarantee this test.
${ }^{1} \mathrm{Cc}$	Power Supply Current		80		80		80	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \text { All inputs grounded } \end{aligned}$

* $X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

SYMBOL	PARAMETER	LIMITS	UNITS	TEST CONDITIONS
		MIN. TYP.MAX.		
\mathbf{t}_{++}	Enable and Address Delay	50	ns	10 mA load. See Note 1.
t--	Enable and Address Delay	* 50	ns	10 mA load. See Note 1.
$\overline{t_{+-}}$	Address Delay	* 50	ns	10 mA load. See Note 2.
t_{-+}	Address Delay	* 50	ns	10 mA load. See Note 2.

*See Typical Electrical Characteristics curves.

NOTES:

(1) To test Enable delay, apply input pulse to Enable input. The word selected must contain a " 0 " in the bit under test.
To test Address delay, the enable input must be low. Apply the input pulse to the Address input under test. The words selected must contain a "1" when input pulse is low and a " 0 " when input pulse is high in the bit under test.
(2) To test Address delay, the Enable input must be low. Apply the input pulse to the Address input under test. The words selected must contain a " 0 " when input pulse is low and a "1" when input pulse is high in the bit under test.

FAIRCHILD TTL MEMORY • 93434

SWITCHING TIME TEST CONDITIONS AND WAVEFORMS

SWITCHING TEST OUTPUT LOAD

LOADING RULES

TTL INPUT LOAD AND DRIVE FACTORS

INPUTS	LOADING	OUTPUTS	DRIVE FACTOR
LOW Level HIGH Level	1.7 U.L.	All outputs	$\frac{\text { Open Collector }}{6.25}$ U.L.

1 LOW Level TTL Unit Load (U.L.) $=1.6 \mathrm{~mA}$
1 HIGH Level TTL Unit Load (U.L.) $=60 \mu \mathrm{~A}$

TYPICAL ELECTRICAL CHARACTERISTICS

OUTPUT CURRENT VERSUS OUTPUT VOLTAGE

ADDRESS INPUT DELAY
VERSUS
AMBIENT TEMPERATURE

INPUT THRESHOLD VOLTAGE

VERSUS

AMBIENT TEMPERATURE

TTL MEMORY 93435 64-BIT LINEAR SELECT READ/WRITE MEMORY
 FORMERLY 9035

DESCRIPTION - The 93435 is a high speed 64-Bit Read/Write Memory Cell designed for use in high speed scratch pad memories. It is a linear select 16 word by 4-bit array.
The 93435 is available in the hermetically sealed 36 -lead ceramic Dual In-Line package and will operate over the temperature range from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

OPERATION - In addition to 16 address inputs, 4 data outputs, and 4 data inputs, the 93435 has a chip select and a write enable. When the chip select is HIGH, a word may be addressed by a HIGH on one of the address inputs. Data is written into the addressed word location only when the write enable is held LOW. While the address is present, the outputs continuously show the contents of the word selected. Readout is non-destructive.
Up to four words may be addressed and read simultaneously with the OR function of each bit appearing at the outputs. Data can be written into two locations simultaneously.
Uncommitted collector outputs are provided on the 93435 to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many 93435's can be tied together. In other applications the wired-OR is not used. In either case an external pullup resistor of value R must be used to provide a HIGH at the output when it is off. Any value of R within the range specified below may be used.

$$
\frac{5.1}{10-\text { F.O. (1.6) }} \leq R \leq \frac{2.1}{\mathrm{~N}(0.1)+\text { F.O. (0.06) }}
$$

R is in $k \Omega$
$N=$ number of wired-OR outputs
F.O. $==$ number of TTL loads driven

The minimum value of R is limited by output current sinking ability. The maximum value of R is determined by the output and input leakage current ($I_{C E X}$ and I_{R}) which must be supplied to hold the output at 2.4 V .

- 35 ns MAXIMUM ACCESS TIME - 20 ns TYPICAL
- CHIP SELECT AND WRITE ENABLES
- UNCOMMITTED COLLECTOR OUTPUTS FOR WIRED-OR CAPABILITY
- LINEAR SELECT
- ON CHIP ADDRESS LINE BUFFERING
- TTL COMPATIBLE

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
Temperature (Ambient) Under Bias
$V_{C C}$ Pin Potential to Ground
Input Pin Voltage
Current into Output Terminal
Output Voltage

$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-0.5 V to +7.0 V
-0.5 V to +5.5 V
50 mA
-0.5 V to +8.0 V

FAIRCHILD TTL MEMORY • 93435

LOADING RULES

	HIGH LEVEL (TTL Unit Loads)	LOW LEVEL (TTL Unit Loads)
Address	1.67	1
Chip Select	26.7	1 (see note 1)
Write Enable	1.67	1
Data Input	3.34	2
Data Output	Open Collector	6.2

1 LOW Level TTL Unit Load $=1.6 \mathrm{~mA}$
1 HIGH Level TTL. Unit Load $=60 \mu \mathrm{~A}$
ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$) (units are pulse tested) (Part No. $93435 \times \mathrm{M}$)*

SYMBOL	PARAMETER	LIMITS			UNITS	CONDITIONS
		$\begin{gathered} -55^{\circ} \mathrm{C} \\ \text { MIN. MAX. } \end{gathered}$	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { MIN. MAX. } \end{gathered}$	$\begin{gathered} +125^{\circ} \mathrm{C} \\ \text { MIN. MAX. } \end{gathered}$		
IFA	Address Input Load Current	-1.6	-1.6	-1.6	mA	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=0.4 \mathrm{~V}$
IFCS	Chip Select Load Current	-1.6	-1.6	-1.6	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CS}}=0.4 \mathrm{~V} \\ & \text { See Note } 1 \end{aligned}$
IFWE	Write Enable Load Current	-1.6	-1.6	-1.6	mA	$V_{C C}=5.5 \mathrm{~V}, V_{W}=0.4 \mathrm{~V}$
IFD	Data In¢ut Load Current	-3.2	-3.2	-3.2	mA	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0.4 \mathrm{~V}$
'RA	Address Input Leakage Current	100	100	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=4.5 \mathrm{~V}$
IRCS	Chip Select Input Leakage Current	1.6	1.6	1.6	mA	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CS}}=4.5 \mathrm{~V}$
IRWE	Write Enable Leakage Current	100	100	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{W}}=4.5 \mathrm{~V}$
${ }^{\prime}$ RD	Data Input Leakage Current	200	200	200	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V}$
ICEX	Output Leakage Current	100	100	100	$\mu \mathrm{A}$	$V_{C C}=5.5 \mathrm{~V}, V_{\text {CEX }}=5.5 \mathrm{~V}$ Write Enable Input Grounded
V_{OL}	Output LOW Voltage	0.4	0.4	0.4	Volts	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA} \\ & \text { One Word Addressed } \end{aligned}$
$V_{\text {IL }}$	Input LOW Voltage	0.8	0.9	0.8	Volts	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, Monitor Appropriate Output To Guarantee This Test Limit
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.1	2.0	2.0	Volts	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, Monitor Appropriate Output To Guarantee This Test Limit
IPD	Supply Current	118	118	118	mA	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$, One Word Addressed

ELECTRICAL CHARACTERISTICS ($T_{A}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}+5 \%$) (units are puise tested) (Part No. $93435 \times \mathrm{C}$)*

SYMBOL	PARAMETER	LIMITS			UNITS	CONDITIONS
		$\begin{gathered} 0^{\circ} \mathrm{C} \\ \text { MIN. MAX. } \end{gathered}$	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { MIN. MAX. } \end{gathered}$	$+75^{\circ} \mathrm{C}$ MIN. MAX.		
IFA	Address Input Load Current	-1.6	-1.6	-1.6	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=0.45 \mathrm{~V}$
IFCS	Chip Select Load Current	-1.6	-1.6	-1.6	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{CS}}=0.45 \mathrm{~V} \\ & \text { See Note } 1 \end{aligned}$
IFWE	Write Enable Load Current	-1.6	-1.6	-1.6	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{W}}=0.45 \mathrm{~V}$
IFD	Data Input Load Current	-3.2	-3.2	-3.2	mA	$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0.45 \mathrm{~V}$
IRA	Address Input Leakage Current	100	100	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=4.5 \mathrm{~V}$
IRCS	Chip Select Input Leakage Current	1.6	1.6	1.6	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CS}}=4.5 \mathrm{~V}$
$I_{\text {RWE }}$	Write Enable Leakage Current	100	100	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{W}}=4.5 \mathrm{~V}$
IRD	Data Input Leakage Current	200	200	200	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V}$
'CEX	Output Leakage Current	100	100	100	$\mu \mathrm{A}$	$V_{C C}=5.25 \mathrm{~V}, V_{C E X}=5.25 \mathrm{~V}$ Write Enable Input Grounded
V_{OL}	Output LOW Voltage	0.45	0.45	0.45	Volts	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \quad \mathrm{I} \mathrm{OL}=10 \mathrm{~mA}$ One Word Addressed
$V_{\text {IL }}$	Input LOW Voltage	0.85	0.85	0.85	Volts	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, Monitor Appropriate Output To Guarantee This Test Limit
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0	2.0	2.0	Volts	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, Monitor Appropriate Output To Guarantee This Test Limit
IPD	Supply Current	124	124	124	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$, One Word Addressed

${ }^{*} \mathrm{X}=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product. NOTE:
(1) IFCS increases by 1.6 mA for each address input held at a logic 1.

FAIRCHILD TTL MEMORY • 93435

SWITCHING CHARACTERISTICS (TA $\left.=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

SYMBOL	PARAMETER	LIMIT (ns)			CONDITION		
		MIN.	TYP.	MAX.	LOAD	C	NOTE
${ }_{\text {ton }}$	Address to Output Turn-On Delay	10	22	35	10 mA	30 pF	1
toff	Address to Output Turn-Off Delay	10	20	35	10 mA	30 pF	1
twP	Write Pulse Width Required to Write	25	15		10 mA	30 pF	2
tWD	Write Delay	10	30	50	10 mA	30 pF	2

NOTES:
(1) To test $t_{0 n}$ and $t_{\text {off }}$ a LOW must be stored in the cell under test.
(2) One word is selected during the test.
(3) The typical capacitance of one 93435 output is 7.0 pF .

[^0]: *Per customer request. Unless otherwise specified $C S_{1}$ and CS_{2} will be active low.

[^1]: $X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

[^2]: $X=$ package type; F for Flatpak, D for Cerarinc Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

