## SORCERER 2 TECHNICAL MANUAL

COPYRIGHT 1979 by EXIDY INCORPORATED ALL RIGHTS RESERVED 39@ Java Drive Sunnyvale, California 94086
SECOND EDITION DECEMBER 1979

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system (e.g., in memory or disk) or be transmitted by any means, electronic, mechanical. photocopy, recording or otherwise, without prior written permission from the publisher.

PRINTED IN U.S.A.


## SORCERER 2 TECHNICAL MANUAL CONTENTS

FOREWORD ..... 1
PART ONE--SOFTWARE
I MEMORY ADDRESSING AND ALLOCATION
Address, Input/Output Port, and Data Notation ..... 2
Sorcerer Memory Map ..... 4
Screen RAM ..... 4
II POWER-ON MONITOR
General Description ..... 6
Monitor Command Set ..... 6
Entry Points (Jump Table) ..... 6
III RELOCATING THE MONITOR STACK
Introduction ..... 7
Reasons to Relocate the Stack ..... 7
How to Relocate the Stack ..... 8
PART TWO--HARDWARE
I HARDWARE DESIGNATIONS ..... 12
II HARDWARE MODIFICATIONS
110 V 60 Hz to 220 V 50 Hz ..... 11
EPROM - ROM Conversion ..... 11
Internal Memory Expansion ..... 11
Dip Switch setting guide ..... 14
III PERFORMANCE TESTSLogic Board15
IV CASSETTE INTEREACE LOGIC ..... 15
V CASSETTE INPUT/OUTPUT TROUBLE-SHOOTING HINTS ..... 18
VI SORCERER INTERFACE CONNECTORS, SPECIFICATIONS ..... 20
VII DATA CABLES ..... 21
VII THEORY OF OPERATION, LOGIC BOARD ..... 26
VIII THEORY OF OPERATION, TAPE INTERFACE BOARD ..... 30
IX TIMING DIAGRAMS ..... 34
X SCHEMATICS .Following ..... 37
XI PARTS LISTS

$\because$
.

## ILLUSTRATIONS

Frontispiece Sorcerer Computer Configuration Diagram ..... 2
Figure 1 Sorcerer Memory Map ..... 5
Figure 2 Screen RAM Addresses for the Corners of the Screen.. 6
Figure 3 EPROM - ROM Jumpers ..... 12
Figure 4 RAM Sockets and RAM DIP SWITCH, locations. ..... 13
Figure 5 DIP Switch settings ..... 14
Figure 6 Attenuator Plug. ..... 20
Figure 7 Serial Data Cable, Assembly Diagram. ..... 23
Figure 8 Serial Data Cable, Schematic ..... 24
Figure 9 Logic Board Block Diagram. ..... 27
Figure 10 Video Generator Block Diagram. ..... 27
Figure ll Parallel Port Timing System. ..... 31
Figure 12 Tape Interface Block Diagram ..... 31
Figure 13 UART and Cassette Data Formats. ..... 33
Figure 14 Memory Timing Diagram ..... 34
Figure 15 Clock Generation ..... 34
Figure 16 ROM Decode ..... 35
Figure 17 Parallel Output ..... 36
Figure 18 Parallel Input ..... 36
Figure 19 Serial and Cassette. ..... 36
Figure 29 Expansion Unit ..... 37
TABLES
Table 1 Serial Interface, Pinouts ..... 20
Table 2 Parallel Interface, Pinouts ..... 20
Table 3 Sorcerer 50-pin Edge Connector, Pinouts. ..... 21
Table 4 Parallel Data Cable, Pinouts ..... 21
Table 5 Hexadecimal - Decimal Conversion.

## FOREWORD

This is the manual for use with the Sorcerer 2. There is a silver label on the bottom of your Sorcerer that gives important information about your computer. The first five digits of the serial number give the date of manufacturer. The next several digits are specific to the individual unit, and then, if you have a Sorcerer 2, there are the letters II. Next comes the voltage designation. For example, serial number 10299528 II 220 V indicates a Sorcerer 2, manufactured on 10/29/79, unit number 528, of 220 volts. A serial number of 10299-529 110V indicates a Sorcerer 1, and you should have the manual whose Catalog Number is DP 5003.

Readers of this manual are referred to the Sorcerer's operating manual. A Guided Tour of Personal Computing, the Sorcerer Developmeñt PAC instruction manual, or any standare 288 Assembly Language reference manual. Readers are also referred to the Sorcerer Software Manual (33-5018).

Hardware material in this manual is written for highly experienced technicians, although some of this information is useful to all Sorcerer owners. We assume the reader is as qualified as our own test and service personnel. We strongly recommend that owners not attempt to repair or modify their own units.

All service should be done by an authorized Sorcerer dealer; unauthorized service will void our warranty.

## PART ONE SOFTWARE



## NOTE

For more information about software, see the SORCERER SOFTWARE MANUAL (Exidy P/N DP5008).

ADDRESS, INPUT/OUTPUT PORT AND DATA NOTATION

The Sorcerer's 280 CPU has sixteen address lines; every memory storage location has a sixteen digit binary number as its address. This means that the Sorrerer will recognize up to 65536 different memory addresses. (65535 is the largest number which can be written in no more than sixteen binary digits; but we start numbering the addresses at 0 , instead of $l$, so the total number is 65536).

It is more convenient to refer to these addresses in hexadecimal (base 16) notation than in binary (base 2) or decimal (base 10) notation. Any binary number with sixteen or fewer digits can be written as a hexadecimal number with four or fewer digits. Whenever we refer to a memory address we will always use a four digit hexadecimal number. To avoid confusion, we write the letter $H$ at the end of the number to indicate hexadecimal notation. If the address is lower than 1000 H , we add zeros on the left to make four digits total. (Example: the second address in memory is goblH.)

The 280 has eight data lines--one for each bit of storage in a memory location. Every memory location contains a number from \& to 255. Eight bits constitute one byte. (255 is the largest number which can be written in eight or fewer binary digits.) Again we use hexadecimal notation for the memory contents; we write each such number as two hexadecimal digits, followed by an $H$. If the number is less than 10 H , we add a zero on the left to make two digits total. (Example: we write 12 decimal as 0 CH.$)$

## NOTE

If the 280 is instructed to read a memory address which is not connected to any RAM or ROM, it usually assumes the data is FFH.

Similarly, the first eight address lines can designate input/output port (I/O port). Since these eight lines can be set to any number. from to 255, there are 256 I/O ports. We number them in hexadecimal. 00H to FFH.

Figure 1 shows the Sorcerer's memory allocations. Column A is the standard configuration (l6K internal RAM and an 8 K ROM PAC): the diagram is not drawn to scale. Column $B$ is the same as Column $A$, but redrawn to approximate scale.

Columns $C$ and $D$ show alternate configurations. The lower portions show the addresses of internal RAM in the 32 K and 48 K Sorcerers, while the upper portions show the adcresses of the $4 K$ and 16 K ROM PACs.

The cnassigned addresses between the $=0 p$ of internal RAM and the bottom of the ROM PAC can be given to the S-100 Expansion Unit. If the ROM PAC is unplugged, its address space is also available to the $s-100$ Unit.

The Monitor stack, consisting of the Monitor RAM and the stack proper, is shown at the top of the internal RAM, the position it usually takes at power-on or reset isee Relocating the Monitor Stack, for details). But, note that if a block of expansion memory is assigned immediately above internal RAM, the stack will go to the top of that block.

Example:
In the 16 K Sorcerer at power-on or reset, the Monitor stack occupies addresses 3 F 50 H to 3 FFFH . If 4 K of memory (1000H addresses) is added to the Expansion Unit and assigned addresses 4000 H through 4 FFFH , the Monitor stack will occupy 4F50H through 4 FFFiH at power-on. However, if the new memory is assigned to $5000 H$ through 5 FFFH instead, the stack will remain at 3 F 50 H to 3 FFFH .

Screen RAM

Every charcter (alphanumeric, graphic or user-defined) is printed on the screen as an $8 \times 8$ array of dots. Each dot can be either $O \mathbb{N}$ (a white spot on the screen) or OFF (a dark spot). The exact shape of the character depends on which dots are turned on, and which are turned off.

Each row of the charcter is stored in the Sorcerer's character generator, in a separate memory address, with each dot of the row stored as one bit of that address. A bit means OFF (black) and a 1 bit means ON (white).

To write a character onto the Sorcerer's screen, put its ASCII number into the screen RAM. The exact address you use determines where the character appears on the screen. The ASCII number directs the Sorcerer to eight successive addresses
in the RAM or ROM character generator. These addresses store the eight lines of the character's dot matrix.

Each text line on screen is 54 characters long (4QH) and there are 3 C lines in all (lEH). The first adतress in screen RAM ( FO 0 OH ) is for the upper left corner of the screen. The next adcress (Fe8lh) is for the second column in the first line, and so on to the end of the line (FGBFH). The pattern continues with the first column on the second line ( FQCOH ) and so forth. The last address (F7FFH) is for the lower right corner of the screen.



POWER-ON MONITOR

General Description

The Power-On Monitor (or Monitor, for short) is the Sorcerer's software operating system; it gives easy access to the 280 microprocessor and control of peripheral devices. The Monitor occupies 4 K of ROM, addresses EQ日@H to EFFFH, and contains full software drivers for the keyboard and video, cassette tape units a Centronics printer, and more. The Monitor's command set includes tape unit batch commands, which allow automatic processing. Monitor routines find the top of RAM and use the top 176 bytes (approximately) as the Monitor storage stack; this stack can be relocated anywhere in RAM.

The Power-On Monitor Command Set: See A GUIDED TOUR OF $\overline{P E R S O N A L ~ C O M P U T I N G ~(D P 5 ब ® 1) . ~ p a c k e d ~ w i t h ~ e a c h ~ S o r c e r e r . ~ F o r ~}$ I/O port assignments and information on the Monitor batch system, also see the G.UIDED TOUR manual.

Entry Points (Jump Table)--Initial Entry and I/O Entry Points: See the SORCERER SOFTWARE MANUAL (Exidy P/N DP50日8). Also see the SOFTWARE MANUAL for information on tape unit entry points, intarfacing programs (passing control between user programs and the Monitor, general input and output, cassette I/O routines).

## Introduction

The stack is a term which loosely denotes three separate areas of memory in the Sorcerer:

- The Monitor RAM
- The Monitor stack proper
- The stack pointer

To relocate the stack means to simultaneously move the Monitor RAM and stack proper, and reset the stack pointer.

The Monitor runs in ROM, but needs temporary scratchpad storage in RAM; this storage is the Monitor RAM, which is used to hold intermediate values during Monitor routines. The Monitor stack proper is used for temporary storage of $\mathbf{Z 8 0}$ registers (using PUSH and POP instructions), and to store return locations for 280 CALL instructions. The stack pointer is a two byte register in the CPU which holds the lowest address currently used for stack storage.

At power-on, the Sorcerer searches RAM for the top RAM address. The 112 addresses ( 7 hH ) from the top downward are used as the Monitor RAM; the next 64 addresses approximately (40H) are the Monitor stack proper.

Reasons to Relocate the Stack

If the stack is disturbed, the system may crash. This can happen in three ways:

1. A tape or disk file can overwrite the stack (the file header
2. A user program may overwrite the stack.
3. A user program may disturb the stack if it calls the Monitor I/O etriry points.

You an recover from the crash by hitting the RESET] keys, but you will still lose the contents of all RAM. To prevent a crash in any of these cases, you must relocate the stack to an area of RAM which won't be used by your program or tape file. This area must contain at least 176 bytes ( B 0 H ) --112 bytes for Monitor RAM storage and 64 bytes for the Monitor stack proper.

You must also relocate the stack before using the Monitor RAM test (cominand TE) on the area of RAM occupied by the stack.

## How to Relocate the Stack

First, choose a suitable address XXYY for the top of the Monitor RAM; here, $X X$ and $Y Y$ are the high order and low order bytes of the address, respectively. Second, use the Monitor EN command to put these 280 instructions into the addresses 0000 to 0005H:

## 21 YY XX C3 66 Eg

This 280 program loads the address XXYY into the HL register pair and then jumps to the Monitor USER entry point. Finally, give the command GO 0000. (And note that the address loaded is in the reverse order as appears in the program.)

Example:
To move the stack so that the top of RAM is at 9750H:
You type: EN 0000
Sorcerer replies: 0000:
You type: $215007 \mathrm{C} 306 \mathrm{Eg/}$
Then type: GO 0000
The Sorcerer moves the stack and prints this message:
EXIDY STANDARD MONITOR
VERSION 1.X
COPYRIGHT (C) 19XX BY EXIDY INC.
THE TOP OF RAM IS 0750 HEX.
STACK BEGINS FROM 月6El HEX.

## PART TWO <br> HARDWARE:

We refer to an IC device by its location on the board. Thus 1A is the devicef in column 1, row $A$ of the board. Context will make clear which board is intended.

We refer to a pin of an IC device (and sometimes the signal at that pin) by a hyphenated number following the location. Thus 1A-5 is pin 5 of device 1A.

If an IC chip contains more than one device, we refer to each by one of its pins. Thus $1 A-5$ also designates one of the device on chip lA--the one containing pin 5. Context will make clear whether a designation such as $1 A-5$ refers to a pin or to a device.

## NOTE

All service should be done by an authorized Sorcerer dealer; unauthorized service will void our warranty.

110 V 60 Hz to 220 V 50 Hz Conversion
For use in the USA, the Sorcerer is wired for 110 V 60 Hz power. To convert to 220 V 50 Hz , both the power supply and the vertical sync generator must be modified.

1. For 100 V , the power supply transformer primary windings are connected in parallel; to convert to 220 V , disconnect them and rewire in series. Do this by cutting the black-yellow and black-red wires at the line filter, and soldering them together.
2. The vertical sync generator is configured by setting switch 1 at location 1lA off for 6 ghz and on for 50 hz .

## EPROM - ROM Conversion

The Sorcerer logic board accepts either EPROMS or ROMs in sockets 1E, $2 E$ and $21 D$ the Power-On monitor and character Generator). However, the board must be modified when switching from one type of device to the other. There are several jumper locations which select between EPROMs and ROMs (see Figure 3).

In early model Sorcerers the Power-On Monitor is EPROMresident; and printed jumpers configure the board for EPROMS. In the later model Sorcerers, the Monitor is ROM-resident, and the board is configured for ROMs. If the owner of a later model Sorcerer wishes to put his own operating system on EPROMS, he must have the logic board rejumpered; cut the printed traces and rewire as shown in Figure 3.

Internal Memory Expansion
The Sorcerer computer normally has 16 K of internal RAM; this is expandable to 32 K or 48 K . The RAM sockets are located in three rows in the upper left corner of the logic PC board (see figure 4).

## There are two options for internal memory expansion:

- Install RAMs in two or three rows of RAM sockets.
- Use either 4 K RAMs or 16 K RAMs.

This gives three possibilities:


| No. <br> Rows | RAM <br> Size. | Total RAM <br> (Bytes) |
| :---: | :---: | :---: |
| 1 | 16 K | 16 K |

The Sorcerer Memory Expansion Kit contains eight l6K RAMs-enough to increase the Sorcerer's memory from 16 K to 32 K or from 32 K to 48 K . To increase memory from 16 K to 48 K use two Expansion Kits.

There are DIP switches at location IIA on the logic PC board (see Figures 4 and 5).


Figure 4 RAM Sockets and RAM DIP SWITCH, locations


Figure 5 DIP Switch settings

## DIP Switch setting guide

Switch 1 on $=50 \mathrm{hz}$
Switch 2 on $=3$ rows of RAM
Switch 3 on $=16 \mathrm{~K}$ RAMs
Switch 4 on $=2$ rows of RAM

Switch 1 off $=60 \mathrm{hz}$
Switch 2 off $=2$ rows of RAM
Switch 3 off $=4 \mathrm{~K}$ RAMs
Switch 4 off $=1$ row of RAM

NOTE
If only one row is used, the RAMs must be installed in Row 3. Do not insert a RAM upside down; this will destroy the RAM, and may damage the rest of the logic board. Pin is at the upper left of each socket.

## PERFORMANCE TESTS

The following tests will determine whether the Sorcerer is functioning properly, and will help locate malfunctions. The numbered headings describe the tests; where necessary, lettered subheadings give step-by-step instructions for the tests.

1. Parallel I/O--connect the output to the input and check whether the unit reads and writes properly. See Table 2 for the parallel interface connector pinouts.
2. RAM bit test--Use the Monitor TE command to test the screen RAM, character generator RAM and main RAM (see the memory map, Figure l, for the addresses). You must test the screen RAM in two steps:

- First, put the cursor into the top half of the screen, and run the bit test on addresses $F 400 \mathrm{H}$ to F 7 FFH .
- Second, put the cursor into the bottom half of the screen, and run the test on addresses $F D 02 \mathrm{H}$ to F 3 FFH .

Do not use the bit test on addresses F000H and.F00lH.
Before testing the main RAM, relocate the Monitor stack to another section of RAM. See Page 8 and Software Manual.

## Cassette Interface Logic

These tests require a Serial Data Cable (Exidy Part No. DP4005) and an oscilloscope with a 50 mV per cm . setting.

1. Check both recorder remote-control outputs.
a. Plug the REM 1 of the Serial Data Cable into the recorder remote-control jack. The recorder is now under computer control and should not be able to run. If the recorder is one you haven't run before and it runs continually, there may be a polarity problem. Reversing the leads on the REM plug will solve the polarity problem. Wrong polarity will not harm the computer or the recorder.
b. Use the Monitor FI 1 command to turn the recorder on. Hit [RESET] to turn it off.
c. Repeat step $b$, using the REM 2 plug and the $F I 2$ command.
d. Hit [RESET]. This resets the baud rate to 1200 ; however the Sorcerer will not actually send the 1200 baud carrier until you give a Monitor tape command (such as LO, SA or FI). Until then, Sorcerer sends the 300 baud carrier signal.
e. Give the Monitor command FI (this activates the 1200 baud carrier).
2. At 300 baud, check all of the MIC and and AUX outputs, for proper voltage levels and freedom from noise.
a. The correct voltages are $40+5 \mathrm{mV} p-\mathrm{p}$ for MIC and $210+20$ $m V$ p-p for AUX. These values are lower than the nominal 50 mV and 250 mV , since the tape interface attenuates the 300 baud carrier more than the 1200 baud carrier.
b. If there is excessive noise on either of the AUX outputs, write a 1200 baud file onto tape using the noisy output, and then read the file back to insure there were no errors. The length of the file should be 4 K (EOQOH to EFFFH). Be sure that the AUX output is plugged into the AUX input on the recorder and not into the MIC input.
c. Reset the Sorcerer to insure the 300 baud carrier.
d. Use a ground clip on the scope probe.
e. Make sure no MIC or AUX cables are plugged into a recorder (otherwise the signal will be loaded down).
f. Check MIC 1 both from the phono jack and from the $25-\mathrm{p}$ in serial interface connector.
g. Check MIC 2, AUX 1 and AUX 2 from the 25-pin connector.
3. Write and read a 300 baud, 128 byte file (E000H to E07FH) using MIC 2 and EAR 2 from the 25 -pin serial interface connector.
a. Plug the EAR 2 plug of the Serial Data Cable into the EAR jack on the recorder.
b. Put the Sorcerer into the Power-On Monitor and type SE $\mathrm{T}=1$ 。
c. Put a scratch tape into the recorder and make sure it's rewound completely, otherwise you will get errors.
d. Put the recorder in record.
e. Type SAVE TEST Eg00 E080, but don't hit [RETURN].
f. Wait until the tape leader is past the record head and then hit [RETURN]. (The command records pseudo-random data taken from addresses E000H through E080H.)
g. When the recording is finished, rewind the tape and load it back in with the Monitor command LO.
h. If you get a prompt character, and the message ERROR did not appear, the read was good.
4. When the UART is not sending data, the CASSWRIT signal goes high. The tape interface manchester encoder translates this as a steady stream of logic ls--this is the normal cassette carrier signal. Connect EAR 2 and AUX 2 and check for this carrier at 1200 and at 300 baud. (Use AUX 2 rather than MIC 2 because the 50 mV MIC 2 signal is too weak.)
5. Test the tape interface's ability to write and read data generated by diagnostic program.
a. Enter the following 280 program into address 000 to 0048H:

| Addr | Obj Code | Label Mnemonic |  | Commerits |
| :---: | :---: | :---: | :---: | :---: |
|  | Q030 | TAPES: | EQU 3DH |  |
|  | 0045 | CMTRFG: | EQU 45H |  |
|  | E00\% | WARM: | EQU OE003H |  |
|  | E1A 2 | GETIY: | EQU DEIA 2 H |  |
|  | E015 | QUIKCK: | EQU DEDI5H |  |
|  | E0BF | INTAPE: | EQU DEDOFH |  |
|  | E®12 | OUTAPE: | EQU OEOL2H |  |
|  | EO1B | VIDEO: | EQU DEOIBH |  |
| 0000 | 1827 | WRITE: | JR WR-S | ;START-POINT FOR WRITING |
|  |  | ; READING ROUTINE |  |  |
| 0002 | CD 3301 | READ: | CALl baud | ; START-POINT FOR READING |
| 0005 | CD ©F Eb |  | CALl Intape |  |
| 0008 | FE E2 |  | CP OE2H |  |
| OQOA | 20 DC |  | JR NZ, ERRO | -\$ |
|  |  | ; PRINT | FLASHING ASTER | ISKS |
| ODOC | 3 E 2A |  | LD A, '*' |  |
| 000E | CD 1beg |  | Call video |  |
| 0011 | 3E 08 |  | LD A,08H | ; BACKSPACE |
| 0013 | CD 1B Eg |  | CALl Video |  |
| 0016 | 18 EA |  | JR READ-\$ |  |
|  |  | ; PRINT "E" |  |  |
| 0018 | 3E 45 | ERROR: | LD A, 'E' |  |
| 001 A | CD 1B E® |  | CALL VIDEO |  |
| 0010 | CD 3301 | LOOP: | CALL BAUD |  |
| 0020 | CD OF E® |  | CALL INTAPE |  |
| 0023 | FE E2 |  | CP OE2H |  |
| 0025 | 20 F6 |  | JR NZ,LOOP |  |
| 0027 | 18 D9 |  | JR READ-\$ |  |
|  |  | ; WRITING ROUTINE |  |  |
| 0029 | CD 3301 | WR : | CALL BAUD |  |
| 002 C | 3E E2 |  | LD A,0E2H |  |
| 002 E | CD 12 E 0 |  | Call outape |  |
| 0031 | 18 F6 |  | JR WR-\$ |  |
|  |  | ; BAUD RATE AHD EXIT-CHECK SUBROUTINEBAUD: PUSH IY |  |  |
| 0033 | FD E5 |  |  |  |
| 0035 | CD A2 El |  | CALl Getiy | ; A MONITOR SUBROUTINE |
| 0038 | FD 7E 3D |  | LD A, (IY+T | APES) |
| 0038 | FD 7745 |  | LD (IY+CMT | RFG) , A |
| 003 E | D3 FE |  | OUT (OFEH) |  |
| 0040 | FD El |  | POP IY |  |
| 0042 | CD 15 E0 |  | CALL QUIKCK |  |
| 0045 | C2 03 E0 |  | JP NZ,WARM |  |
| 0048 | C9 |  | RET |  |

b. Use the Monitor command $S E$ to set the baud rate to 300 or 1200.
c. Turn on the recorder and give the command GO 0000.
d. Let the progran write Eor at least 60 seconds. Then stop the recorder, and halt the program with [CTRL] [C1. [ESC] or [RUN STOP].
-. Rewind the tape and start the recorder playing. Give the command GO gø日2; this causes the program to read the recorded data.
f. The Sorcerer prints:

- A flashing asterisk (*) if it reads the data correctly.
- An E, for each error.
- Nothing, if it sees no data.

7. Use the diagnostic program in Step 6 above to write and read data, while you adjust the recorder's tone and volume controls. You should be able to read and write correctly over at least half of each control's tuning range (it doesn't matter which half).

## CASSETTE INPUT/OUTPUT

 TROUBLE-SHOOTING HINTS1. Make sure the tape is well past the leader before starting to record.
2. Make sure thë two cassette cables are firmly plugged into the jacks on the recorder and the Sorcerer.
a. First, plug the Sorcerer MIC output (at the RCA jack) to the recorder's MIC input.
b. Then try connecting the Sorcerer's MIC and AUX outputs to the recorder's MIC and AUX inputs, in all possible combinations. MIC 2 and and the two AUX outputs are on the serial interface connector (see Table l).
c. In all cases, connect the recorder's EAR output to the Sorcerer's EAR input.
3. If the recorder is running on batteries, try using a line cord instead. If the recorder is running on a line cord, try using batteries (the power supply may filter poorly).
4. Try a different tape cassette, preferably low noise, high output, 15 to 20 minutes to a side. Longer tapes usually are satisfactory, but have more internal drag, and therefore don't run at uniform speed. Also, slight imperfections not normally a problem with audio recording can cause errors when recording data; it's best to use certified tape.
5. Use this procedure to check the Sorcerer's ability to sync onto incoming tape data:
a. Give the Monitor command FI; this outputs a 1200 baud carrier signal. (The Monitor command SE $T=0$ will set the tape information rate to 1200 baud, but no carrier signal wil be sent until another tape command is given.)
b. Record the 1200 baud carrier for 30 to 60 seconds.
c. Locate the tape interface LED at the back of the Sorcerer. This LED is visible through the back grill behind the EAR jack, and should be on except when data is being played from the recorder.
d. Play back the recorded 1200 baud carrier; the LED should go out (or flicker very faintly). If this does not happen, try different combinations of tone and volume setting. If the LED still stays on, try plugging the MIC cable into the recorder's AUX input.
e. As a last resort, locate the potentiometer VRI on the tape interface section (location 15H). There are two ways to adjust VRI:

- Play the recorded 1200 baud carrièr while moving VRI back and forth over its entire range. The LED should stay out for at least half the range. Determine which subrange of settings turn the LED off and set VRl to the middle of that subrange.
- Disconnect the recorder, and jumper one of the Sorcerer's AUX outputs to one of its EAR inputs. Now adjust VRI against the LED at both 300 and 1200 baud. Note that this method is independent of your recorder's idiosyncracies.

7. Some recorders have very sensitive MIC inputs which are overloaded by the Sorcerer's 50 mV MIC input. You can usually get good results by connecting the recorder's AUX input to one of the Sorcerer's AUX outputs; however, the recorder's AUX may not work with the Sorcerer's MIC. If you wish to use the Sorcerer MIC output, you must use an attenuator plug, which reduces the 50 mV output to a level the recorder's MIC will accept. Figure 6 shows how to make an attenuator plug.


## SURCERER INTERFACE CONNECTORS-SPECIFICATIONS

The audio and video connectors are female RCA jacks, and mate with standard male RCA jacks. The serial and parallel interface connectors are standard female 25-pin D connectors and mate with standard male $25-\mathrm{pin}$ plugs; the pinouts are given in Tables 1 and 2. The S-100 interface connector is a 50-pin male connector (dual 25 on .1 centers) printed onto the edge of the logic boardi it mates with a fenale 50-pin edge connector. The pinouts for the $S-100$ interface are given in Table 3.

| Pin \# | Signal | Pin \# | Signal |
| :---: | :--- | :---: | :--- |
| 1 | Shield 1 | 13 | Motor \#2 + |
| 2 | RS232 OUT | 14 | Shield 2 |
| 3 | RS232 $\mathbb{N}$ | 15 | MiC 1 |
| 4 | Ground | 16 | MIC 2 |
| 5 | AUX 1 | 17 | Ground |
| 6 |  |  |  |
| 7 |  |  |  |
| 8 | Ground |  | 18 |
| 9 | AUX 2 |  |  |
| 9 | +12 Volts | 20 | Ground |
| 10 | Unused | 21 | EAR 1 2 |
| 11 | RS232 $\mathbb{N}$ | 22 | Unused |
| 12 | Motor \#1 + | 23 | RS232 OUT |
|  |  | 24 | Motor \# 1- |

Table 1 Serial Interface, Pinouts

| Pin \# | Signal | Pin \# | Signal |
| :---: | :--- | :---: | :--- |
| 1 | Ground | 13 | Iriput Bit 6 |
| 2 | Output data accepted | 14 | Unused |
| 3 | Output data available | 15 | +5 volts |
| 4 | Output bit 7 | 16 | Output bit 0 |
| 5 | Output bit 6 | 17 | Output bit 1 |
| 6 | Output bit 5 | 18 | Output bit 2 |
| 7 | Output bit 4 | 19 | nutput bit 3 |
| 8 | Ground | 20 | +5 volts |
| 9 | Input data available | 21 | Input data accepted |
| 10 | Input bit 0 | 22 | Input bit 1 |
| 11 | Input bit 2 | 23 | Input bit 3 |
| 12 | Input bit 4 | 24 | Input bit 5 |

Table 2
Parallel Interface, Pinouts

| Pin | Stgnal | Pin | Stgnal |
| :---: | :---: | :---: | :---: |
| 1 | PRESET (out of Sorcerer) | 26 | Address bit 11 |
| 2 | NT | 27 | Address bit 13 |
| 3 | WATT | 28 | Address bit 14 |
| 4 | Data Bus Enable (into Sorcerer) | 29 | Address bit 0 |
| 5 | BUSRQ | 30 | Address bit 12 |
| 6 | NM | 31 | Address bit 2 |
| 7 | BUSACK | 32 | Address bit 1 |
| 8 | Data Bus Direction (into Sorcerer) | 33 | Address bit 4 |
| 9 | $\overline{\mathrm{RAM}} \overline{\mathrm{DR}}$ or $\overline{\mathrm{ROM}} \overline{\text { ENABLE }}$ | 34 | Address bit 3 |
| 10 | \$1 | 35 | Address bit 6 |
| 11 | ROM PRE | 36 | Address bit 5 |
| 12 | Reset Acknowledge | 37 | Data bit 0 |
| 13 | \$2 (Clock out) | 38 | Address bit 7 |
| 14 | UP8K | 39 | Data bit 2 |
| 15 | MREQ | 40 | Data bit 1 |
| 16 | M1 | 41 | Data bit 4 |
| 17 | $\overline{\mathrm{RD}}$ | 42 | Data bit 3 |
| 18 | $\overline{\text { IORQ }}$ | 43 | Data bit 6 |
| 19 | $\overline{\text { RFSH }}$ | 44 | Data bit 5 |
| 20 | $\overline{W R}$ | 45 | RESET (into Sorcerer) |
| 21 | Address bit 8 | 46 | Data bit 7 |
| 22 | HALT | 47 | Unused |
| 23 | Address bit 10 \} | 48 | IO |
| 24 | Address bit 9 | 49 | Ground |
| 25 | Address bit 15 | 50 | Ground |

Table 3
Sorcerer 5r-pin Edge Connector, Pinouts

| Sorcerer End Pin | Printer End Pin | Stgnal |
| :---: | :---: | :---: |
| 1 | $\left.\begin{array}{l}19 \\ \text { to } \\ 30\end{array}\right\}$ | Ground |
| 2 | 10 | Acknowledge fromi Printer |
| 3 |  | Unused |
| 4 | 1 | Data strube from Sorcerer |
| 5 | 8 | Data bit 6 |
| 6 | 7 | Data bit 5 |
| 7 | 6 | Data bit 4 |
| 8 | $\left.\begin{array}{l}19 \\ \text { to } \\ 30\end{array}\right\}$ | Ground |
| $\left.\begin{array}{l}9 \\ \text { to } \\ 15\end{array}\right)$ |  | Unused |
| 16 | 2 | Data bit 0 |
| 17 | 3 | Data bit 1 |
| 18 | 4 | Data bit 2 |
| 19 | 5 | Data bit 3 |
| $\left.\begin{array}{l}20 \\ \text { to } \\ 24\end{array}\right\}$ |  | Unused |
| 25 | 11 | Busy |
|  | 9 | Unused |
|  | $\left.\begin{array}{\|cc}\text {. } & 11 \\ & \text { to } \\ 18\end{array}\right\}$ | Unused |
|  | $\left.\begin{array}{l}31 \\ \text { to } \\ 36\end{array}\right\}$ | Unused |

Table 4
Parallel Data Cable, Pinouts

DATA CABLES

## Parallel Data Cable (Centronics Printer)

This cable (Exidy part number DP4003) connects the Sorcerer parallel interface to the input of a Centronics or Centronicscompatible printer. Table 4 gives the pinouts for the cable.

The data strobe signal from the Sorcerer is bit 7 of port FFH.
The busy signal from the printer is input to bit 7 of port FFH .
The acknowledge signal from the printer is used to reset the data available bit in the Sorcerer hafdshake latch (8F-8). The data strobe and acknowledge signals are both negative-going; the busy signal is positive-going.

## NOTE

Do not plug the serial cable into the Sorcerer's parallel interface connector, as this will damage the Sorcerer.

## Serial Data Cable (Tape Unit)

This cable (Exidy part number DP4005) connects the Sorcerer's serial interface to one or two cassette recorders or to an RS232 device; when connected to a recorder it allows the Sorcerer to control the recorder's motor. Single-pin Molex connectors in the motor control lines allow you to change the polarity of the motor control signal to suit your recorder.

Figure 7 shows the layout of the cable, and Figure 8 is the schematic.

## NOTE

Do not plug the parallel cable into the Sorcerer's serial interface connector, as this will damage both the printer and the Sorcerer.


Figure 7 Serial Data Cable, Assembly Diagram


Figure 8 Serial Data Cable, Schematic

Theory of Operation Sections

THEORY OF OPERATION, LOGIC BOARD

## Video Clock Generator

The 12.638 MHz crystal,22D-2 and 22D-4 form an oscilyator with 22D-6 as a buffer. The flip-flop 22C divides the clock signal in half, providing CLK 6 ( 6 MHz approximately) and its inversion 5CLK6. The signal 5CLKl2 which comes from 22D-6 is further divided by flip flops $22 B-5$ and $228-9$ to provide the signals CLOCK IN and 01 respectively.

## Hórizontal Sync Generator

22A, 21A and 18A provide the horizontal sync and blanking generation. 22A and 21A form a binary up-counter; the starting count is determined by the state of 18A-6. El through E256 are the horizontal scan element counts. 17A-9 shuts off the video during horizontal blanking; $17 \mathrm{~A}-6$ shuts off the video when the CPU accesses the screen. 20A is part of the video counter buffer.

Vertical Sync Generator
21B, 20B and 17A-9 work similarly to 22A, 21A and 18A; the start of count depends on the state of 18A-7. L1, L2 and L4 are the line counts of the $8 \times 8$ character matrices; 48 through L256 are the line counts for the text lines on screen. 16A and 18B-5 latch the vertical sync. 17 B is part of the video count buffer. $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ operation is selected by multiplexes 13A and 19B.

## CPU Clock Generator

The signal CLOCK IN is fed into a divide by two flip-flop 9A and then inverted by 8 D then fed into the proccessor.


Figure $1 f$ Video Generator Block Diagram

## Video Interface

The pre-programmed 6331 PROM $15 B$ is the heart of the screen controller. $15 B$ controls all the buffers on the page, as follows:

- When the CPU is not addressing the screen RAMs, IlD and 12D go high-impedance.
- When the CPU is writing on the screen, the counter buffer ( 15 C and 15 B ) and the data bus buffer ( 1 hC and 15 C ) go highimpedance.
- When reading the character generator $R O M$, or reading and writing character generator RAM, an adiress comes from the CPU through the $T B$ and $D L$ buses; both data rus buffers are on.


## CPU Circuitry

The - reset circuitry is based on a four-bit counter, 50. The CPU BUSAK signal is buffered by $10 H$ and fed to all the buffers on the page. At BUSAK, they all go hioh-impedance; this allows a Direct Memory Access (DMA) into the Sorcerer.

The CPU is a zilog z8G; refer to the zilog 280 CPU Technical Manual, 2 ilog part number 03-0629-01.

## ROM Circuitry

At restart, the Z 80 begins executing code at address a0月0; however, the Power-On Monitor resides near the top of the memory map. The ROM decode shifts the CPU into the Monitor at reset. The reset signal pulls 12C-5 low; this disables the RAMs and unconditionally enables the ROMS. The first instruction in the Monitor is Jump EQ62H. For any address from E000H to FFFFH, løA-6 gives the UP\&K signal; adiress Eab2H sends $9 \mathrm{D}-15$ low, which sets the latching flip-flop 12C, and enables the bottom RAM.

## NOTE

The RAM is always enabled, except during the first three instruction fetches after a reset.

## I/O and UART Circuitry

6D and 7D handle I/O requests. 7D-8 gives the I/O request signal, and enables both halves of 6D. The RD and ur signals are the other enables for the first and second halves of 6 D ,
respectively. The following $1 / 0$ port designations come into 6D and $A D$ and $A 1:$

| Signal | Port | Al | AD |  |
| :--- | :--- | :--- | :--- | :--- |
| UART data <br> (serial interface) | FCH | 0 | $\square$ |  |
| UART status <br> Sorcerer | FDH | 0 | 1 | $:$ |
| housekeeping input | FEH | 1 | 0 |  |
| Sorcerer user <br> output (parallel <br> interface) | FFH |  | 1 | 1. |

The Sorcerer input port and the parallel input port are 3-state buffered by $1 D$ and 8 H , respectively. The enable sianals for the buffers come from 5D. The Sorcerer output port and user output port are 8 -bit latched, by 2 D and 9 H , respectively. Figure 16 shows the parallel output port timing signals.

The UART is a General Instruments $A Y-3-1 Q 15$; refer to the manufacturer's technical publications. $10 D$ buffers the UART output.

## Interfaces

Cassette/UART Interface: This circuit communicates with. the tape interface board.

Cassette Motor Drivers: $9 F$ and $Q 2$ form a Darlington pair; the reversed diode CR2 is turnoff protection for Q2. $9 \mathrm{H}, \mathrm{Q} 3$ and CR3 are exactly similar.

Power Supply: The transformer has two primary windings in paralle to convert the power supply to 220 V input, disconnect the windings and reconnect in series (see Hardware Modifications, 110 V 6 f Hz to 220 V 50 Hz ).

Exidy Bus Drivers: The CPU Control, Adतress, and Data signals are bi-directionally buffered by 1 H to 5 H . The bi-directional buffering allows DMA.

S-100 Control: When anything is happening on the logic-board or the tape interface boarc, $1 F$ receives an input. This disconnects the S-10日 Expansion Unit.

## THEORY OF OPERATION,

TAPE INTERFACE

## General

The tape interface translates between the UART data format (non-return to zero) and the tape cassette format (frequency shift). The frequency-shift format uses a high frequency for logic 1 , and a low frequency for logic (see figure ??). At 1200 baud, a logic $l$ is 1 cycle of 1200 Hz and a logic 0 is $1 / 2$ cycle of 600 Hz ; at 300 baud, a logic 1 is 8 cycles of 2400 Hz and a logic is 4 cycles of 1200 Hz . In both cases, the time required to transmit a logic 1 is the same as the time to transmit a logic 0 .

The interface also adjusts the output signal levels to approximately 250 mV p-p for the tape recorder AUX input and approximately 50 mV p-p for the tape MIC input. A jumper at board location 12 H allows a $4 \mathrm{~V} p-\mathrm{p}$ signal instead, for digital recorders (jumper points $A, C$ ).

## Manchester Encoder

Flip-flop l6f synchronizes the input data with the 1200 Hz clock, triggering on the positive edge of the clock pulse. The signal is inverted in passing through l6F, but is otherwise unchanged. $13 F 6$ and $13 F 7$ frequency encode the data, giving a high frequency for logic 1 and a low frequency for logic 0 .

## Level Adjustor/Pulse Shaper

C78 rounds the corners of the square waves (audio recorders don't like square waves): C79, C80, C81 and C82 are DC isolators. The output voltage jumper (location 12 H ) is part of this circuit.

## Clock Selector

This circuit selects a clock rate for the manchester encoder, dependent on the selected baud rate.

Frequency Divider (x 1/55)
13 H and 14 H form a six stage binary up-counter, which counts from 9 to 64 and then sends a lock pulse from 14H-13 and a carry from 14H-15 to 16E-9; the carry starts the count cycle.


Figure ll Parallel Port Timing System


Figure 12 Tape Interface Block Diagram

## Clock Pulse Generator

This circuit is simply a five stage binary up-counter.

## Summing Amplifier/Low Pass Filter

This circuit allows input from two tape units, by preventing the non-operating unit from disturbing the signal of the operating unit. The output is $62 \%$ of the input signal, partially filtered. C77 is a DC isolater; C60 and the parallel l30k ohm resistor (R35) form a 3700 Hz low-pass filter. The 3.3 Megohm resistor (R34) biases $12 \mathrm{~F}-7$ to the center of its range $(+4.5 \mathrm{~V}$ to $-5 \mathrm{~V})$ so that the positive and negative portions of the wave are equally clipped.

Second-Order Linear-Phase High Pass Filter
This circuit removes flutter. C57, C58, R3land R33 determine the high-pass cutoff at 30 Hz .

3400 Hz Low-Pass Filter
This filter reduces high-frequency noise and prevents op-amp oscillation. C62 is a DC isolator.

## Comparator/Low-Pass Filter

This filter converts the analog input signal to digital pulses. C65 and R39 reduce frequencies above 480 Hz . Any input signal above $\quad \mathrm{V}$ is converted to approximately +5 V at output; any input signal below $\sigma$ is converted to approximately $\theta V$ at output.

## Bi-Directional Edge Detector

This circuit provides a positive-going pulse for each transition at the input. The Schmidt-trigger inverter $13 D$ reduces signal noise and squares the pulse edges. 13D-4, 13D-6, R20, and C4l form a delay line, with a delay on the order of a few microseconds. 13 E is an exclusive-OR gate which provides a high-going signal during the time the input signal has not passed through the delay line.

## Manchester Decoder

13E-6 is used as an inverter, to force CASSREAD high when RS232 is chosen. 16D-5 is set by the pulses from the bi-directional edge detector and produces a recovered clock signal. 15D is a binary up-counter which functions as one-shot to reset 16D-1.

150 counts from 4 to 15 beforg firing--this determines critical period during which itd-9 is either set or reset, and thus determines a maximum pulse width. Pulses narrower than this max width are considered ls; wider pulses are 0s. 16D-5 synchronizes the $16 \mathrm{D}-9$ signal with $16 \mathrm{D}-5$ 's recovered clock signal.

Freguency Multiplier
(x 8 or 16 )
$14 F$ is a phase-locked loop and 15 E is a frequency-divider. 14 F has voltage controlled oscillator, which is adjusted so that the signal out of 15 E equals the recovered clock (that is, the signal out of $14 F-4$ is adjusted so that the signal into 14F-14 equals the signal in at 14F-3). 14F locks onto the recovered clock and provides a clock signal for the UART, at 16 times the data rate. 15 F selects the working frequencies, depending on the chosen baud rate. C66 and its 150 K resistor form a low-pass filtered feedback loop for the voltage controlled oscillator; C67, VRl (location 15 H ) and the 68 Kand lank (pin l) resistors set the center frequency and frequency range.

## Sync Indicator

l3E9 acts as a buffer. $14 \mathrm{~F}-1$ is high if the phase-locked loop is in sync. C84 filters out small pulses.

## UART Clock Selector

This circuit selects working clock signals hased on choice of RS232 or cassette, and baud rate.



Figure 14 Memory Timing Diacrami


Figure 15 Clock Generation


Figure 16 ROM Decode


Figure 17 Farallel Output


Figure 18 Parallel Input


Figure 19 Serial and Cassette


Fioure2f: Expansion Unit

## Complete Assemblies

Part

Logic Board Assembly
Power Supply Assembly Keyboard Assembly
Transformer Assembly
ROM PAC PCB Assembly
(does not include case or PROMs)

Logic Board
Part

Main logic PCB
IC Socket 16 Pin
PC TAB
IC Socket 24 Pin
PC TAB
IC Socket 40 Pin
PC TAB
Connector Molex
10 Pin
Connector Amp 30
Pin
Connector 25 Pin
D Sub.
Connector RCA Phone
Socket 14 Pin
Keyboard
IC 74LSog
1

IC 74LS04
IC 74LS08
IC 74LSI0
IC 74LS11
IC 74LSI4
IC 74LS21
IC 74LS27
IC 74Ls30
IC 74LS32
IC 74LS74
IC 74LS86
IC 74LS112
IC 74LS138
IC 74LS139

Qty/ Exidy Part \#
Sorcerer
1 77-3240-25-A
$1 \quad 77-325$ a $-25-\mathrm{B}$
$1 \quad 77-3140-15-\mathrm{A}$
1 63-403.
1 77-3115.

| IC 74LSIS | 2 | ${ }_{6}^{1} \mathrm{CB}, 14 \mathrm{D}$ | $48-2322$ $48-2325$ |
| :---: | :---: | :---: | :---: |
| IC 74LS 157 | 5 | 8B, 8C, 15F,13A,19B | 48-2323 |
| IC 74LS161 | 11 | 21A,22A,2日B,21B, 5D, 15D, 15E, 13H, | 48-2308 |
| IC 74LSlf6 ${ }^{\circ}$ | 1 | 17D | 48-2309 |
| IC 74LSI74 | 1 | 11C. | 48-2333 |
| IC 74LS241 | 14 | 29A, 16B, 17B, 15C, <br> 15C,1D,4D,10D,6E, <br> $1 \mathrm{~F}, 6 \mathrm{~F}, 1 \mathrm{H}, 6 \mathrm{H}, 8 \mathrm{H}$ | 48-2328 |
| IC 74LS374 | 3 | 21C,2D,9H | 48-2314 |
| 6331 PROM (BRIJCE) | 1 | 15B | 48-6331 |
| (Screen Control) |  |  |  |
| IC 8304 | 7 | $\begin{aligned} & 11 \mathrm{D}, 12 \mathrm{D}, 2 \mathrm{H}, 3 \mathrm{H}, 4 \mathrm{H}, \\ & 5 \mathrm{H}, 7 \mathrm{H} \end{aligned}$ | 48-2327 |
| IC ROM EXMO1-1 | 1 | 1E | 49-1204 |
| IC ROM EXMO1-2 | 1 | 2E | 49-1005 |
| IC PROM EXCHR 1 | 1 | 20D | 49-1006 |
| (Character Generator) |  |  |  |
| IC 280 CPU | 1 | \&E | 48-0280 |
| IC AY51015 | 1 | 9E | 48-2319 |
| IC LM324 | 1 | 12F | 48-2342 |
| TIL 111 Opto Isolator |  |  |  |
|  | 2 | 12Ea, 12Eb | 47-3040 |
| IC 75150 | 1 | 11E | 48-2335 |
| IC CDA046BC | 1 | 14F | 48-2343 |
| DIP Switch |  |  |  |
| 4 Positions | 1 | 11A | 72-3024 |
| IC RAin 2114. | 6 | $\begin{aligned} & 17 \mathrm{C}, 18 \mathrm{C}, 19 \mathrm{C}, 20 \mathrm{C}, \\ & 18 \mathrm{D}, 19 \mathrm{D} \end{aligned}$ | 48-2334 |
| 2N2222 Transistor |  |  |  |
| Q1, Q2, Q3 | 3 | 11H | 47-3039 |
| TIL 220 LED CR5 | 1 | 17H | 46-3040 |
| Zener Diode IN749 |  |  |  |
| CR1 | 1 | 11 E | 46-3051 |
| Diode IN40才2 CR2, |  |  |  |
| CR3,CR 4 | 3 | 11H,11H,5E | 46-3025 |
| RESISTORS: |  |  |  |
| 47 Ohm 1/4 Matt 5\% | 4 | R12,R10,R11,R15 | 59-5149 |
| Resistor PAC Beckman |  |  |  |
| 898-3-R47 3.3K Ohm-1/4 hatt $5 \%$ | 8 | 3D, 8A R13,R14,R17,R27, | 59-5148 $59-5100$ |
| 3.3K Ohm-1.4 hatt 5 |  | $R 28, R 79, R 25, R 55$ |  |
| 2. 2 K Ohm"1/4 Watt 5\% | 14 | R24,R26,R39,R37. | 59-5110 |
|  |  | R47,R48,R49,R50, |  |
|  |  | R51,R52,R53,R54, |  |
|  |  | R5R,R59 |  |
| 120 Ohm $1 / 4$ Watt 59 | 1 | R60 | 59-5139 |
| 220 Ohm 1/4 watt 5\% | 2 | R16,R18 | 59-5138 |
| 330 Ohm 1/4 Watt 5\% | 2 | R19,R20 | 59-5136 |
| 470 Ohm 1/4 watt 5\% | 4 | R21,R22,R64,R79 | 59-5135 |
| 68 Ohm 1/4 watt 5\% | 1 | R82 | 59-5146 |


|  | $\frac{1}{3}$ | R R29,R38,R65 | $59-5025$ $59-588$ |
| :---: | :---: | :---: | :---: |
| 2.7K Ohm 1/4 Watt 5\% | 1 | R29 | 59-5105 |
| 200K Ohm $1 / 4$ Watt 5\% | 2 | R31,R33 | 59-5036 |
| 220 K Ohm 1/4 Watt 5\% | 1 | R40 | 59-5¢34 |
| 1 K Ohm 1/4 Watt 5\% | 3 | R32,R36,R43 | 59-5125 |
| $3.3 \mathrm{Meg} .1 / 4$ Watt $5 \%$ | 1 | R34 | 59-5018 |
| 130 K Ohm 1/4 Watt 5\% | 1 | R35 | 59-5861 |
| 2 K Ohm $1 / 4$ Watt $5 \%$ | 1 | R41 | 59-5194 |
| 22K Ohm 1/4 Watt 5\% | 1 | R42 | 59-5970 |
| 150 K Ohm 1/4 Watt 5\% | 1 | R44 | 59-504の |
| 100 K Ohm 1/4 Watt 5\% | 1 | R45 | 59-5045 |
| 4.7K Ohm 1/4 Watt 5\% | 3 | R45,R80,R81 | 59-5095 |
| 3 K Ohm 1/4 Watt 5 \% | 1 | R61 | 59-5101 |
| 1. 5 K Ohm 1/4 Watt 5\% | 3 | R58, R56,R67 | 59-5116 |
| 13 K Ohm 1/4 watt 5\% | 1 | R62 | 59-5078 |
| Variable Resistor |  |  |  |
| 100k Pot (375 V |  |  |  |
| 184B--Top Adj.) | 1 | VR1 | 54-5023 |
| 100 Ohm 1/4 Watt 5\% | 2 | R63,R68 | 59-5140 |
| 68 K Ohm 1/4 Watt 5\% | 1 | R69. | 59-5059 |
| CAPACITORS: |  |  |  |
| 0.1 uF ceramic disc | 56 | C1,C2,C5, c6, C10, | 23-4035 |
|  |  | C20,C21, C24, C25, | . |
|  |  | C27-C31, С33-C49, |  |
|  |  | C42,C43,C46, C51, |  |
|  |  | C52,C53,C55,C56, |  |
|  |  | C59,C52,C53, C68, |  |
|  |  | C70,C71,C72,C73, |  |
|  |  | C75,C78, С79, $\mathrm{C8} 0$ |  |
|  |  | C84, С86-C9日, С94 |  |
| 33 uF 35 V Dip Tant | 10 | C47,C54, С64, C69, | 21-4919 |
|  |  | C74,C76,C85,C91, |  |
|  |  | C92,C93 |  |
| luF ceramic disc | 12 | C3,C4, 7 , C8, C9, | 23-4032 |
|  |  | C11, C12,C13, C18. |  |
|  |  | C19,C22,C23 |  |
| $330 \mathrm{pF} 5 \%$ ceramic | 3 | C26,C60, 665 | 23-4067 |
| disc |  |  |  |
| $1000 \mathrm{pF} 10 \% \mathrm{Dip}$ |  |  |  |
| silvered mica | 2 | C66,C67 | 25-1015 |
| .001 uF ceramic disc |  |  |  |
| DD102 50V | 1 | C50 | 23-4960 |
| 2200 pF NPO silver |  |  |  |
| mica | 1 | C57 | 25-1003 |
| 3300 pF NPO silver |  |  |  |
| mica | 1 | C58 | 25-1004 |
| . 047 UF X7R | 1 | C61 | 25-1906 |
| . 22 uF Mylar | 1 | C77 | 25-1016 |
| . 01 uF ceramic disc | 3 | C41,C44, C48 | 23-4050 |



Power Supply


Keyboard Assembly

Part

Keyboard PCB
Qty/ Exidy Part 1
1

$$
77-3140-14-A
$$

Key switch pad set-63,
key top set-63, space

| bar | 1 | $72-3050$ |
| :--- | :--- | :--- |
| IN270 germanium diode | 2 | $46-3015$ |
| 7414 | 1 | $48-2350$ |
| 74 L 154 | 1 | $48-2320$ |
| 3.3 K ohm $1 / 4$ watt | 5 | $59-5100$ |
| resistor |  |  |
| Set of 16 numeric |  |  |
| keys with pad | 1 | $72-3051$ |
| l4 pin ribbon cable | 1 | $71-2330$ |

## Transformer Assembly

| Part | $\frac{\mathrm{Qty} /}{\text { Board }}$ | Exidy Part |
| :---: | :---: | :---: |
| Transformer | 1 | 63-4030 |
| Mounting bracket (100-018) |  | 68-7090-1 |
| AC power cord | 1 | 71-2328 |
| Power cord retaining |  |  |
| ring (strain relieve |  |  |
| bushing \#SR-4K-1) | 1 | 74-5050 |
| On-off switch | 1 | 72-3052 |
| Fuse holder (l amp) | 1 | 60-6038 |
| 1 amp fuse (lamp, slo blow |  |  |
|  | 1 | 60-6037 |
| 2Kl line filter | 1 | 90-3000 |
| 6 pin Molex socket |  |  |
| \#09-50-3061 | 1 | 61-8043 |
| Pin contact 198-50-0106 | 6 | 61-8944 |
| Machine screw 6/32 $3 / 8$ |  |  |
| phil. pan hd. | 4 | 74-5181 |
| Kep nut 6/32 | 4 | 74-5176 |
| Shrink tubing 1/4****** | $a / r$ | 88-4004 |
| 110 V (or 220V) tape-on |  |  |
| label | 1 |  |

General Mechanical Parts
Part Sorcy/ Exidy Part E

| Upper Enclosure Assy. | 1 | $37-0003$ |
| :--- | :--- | :--- |
| Lower Enclosure Assy. | 1 | $37-0102$ |
| $6 / 32 \times 3 / 8$ phil. pan |  |  |
| hd. machine screw | 5 | $74-5181$ |
| Video cable | 1 | $71-2326$ |
| Cassette cable | 2 | $71-2327$ |
| Operations manual | 1 | $39-5001$ |
| Carrying case (point |  |  |
| of purchase carton) | 1 | $87-1073$ |
| Write-on label | 1 | $89-1091$ |
| Serial label | 1 | $89-2006$ |
| Rubber bands | 4 |  |


| Upper housing | 1 | 91-4051 |
| :---: | :---: | :---: |
| Heat vent screen | 1 | 68-5001-10 |
| (upper rear) <br> Heat vent screen | 1 | 68-6.el-10 |
| (upper side) | 1 | 68-8861-26 |
| Heat vent screen (lower front) | 2 | 68-6001-20 |
| Heat vent screen (lower side) | 1 | 68-0061-30 |
| 6/32 $\times 1 / 4$ phil. pan |  |  |
| hd. machine screw | 26 | 74-5182 |
| * 6 nylon washer | 1 | 74-5173 |
| Exidy logo overlay | 1 | 89-2000 |
| Keyboard panel |  |  |
| overlay | 1 | 89-2005 |
| Strip front overlay | 1 | 89-2001 |
| Strip rear overlay | 1 | 89-2002 |
| Foam tape $\left(3 M 4^{\circ} \times 6^{\prime \prime} \times 1 / 4^{m}\right)$ | 1 | 88-4017 |
| Microprocessor board assembly | 1 | 37-6104 |
| Power supply board assembly | 1 | 37-0105 |
| Transformer assembly | 1 | 27-0103 |
| Lower enclosure <br> $6 / 32 \times 1 / 2$ threaded | 1 | 91-4002 |
| standoff (aluminum) | 6 | 74-5090 |
| 6/32 x 3/8 screw | 4 | 74-5181 |
| 6/32 kep nut | 4 | 74-5176 |
| 6/32 $\times 1 / 2$ threaded |  |  |
| standoff (nylon) | 4 | 74-5075 |
| Adhesive (IPS weld-on \#1001) | A/R |  |


|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hex | Dec | Hex | Dec | Hex | Dec | Hex | Dec |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 4096 | 1 | 256 | 1 | 16 | 1 | 1 |
| 2 | 8192 | 2 | 512 | 2 | 32 | 2 | 2 |
| 3 | 12288 | 3 | 768 | 3 | 48 | 3 | 3 |
| 4 | 16384 | 4 | 1024 | 4 | 64 | 4 | 4 |
| 5 | 20480 | 5 | 1280 | 5 | 80 | 5 | 5 |
| 6 | 24576 | 6 | 1536 | 6 | 96 | 6 | 6 |
| 7 | 29672 | 7 | 1792 | 7 | 112 | 7 | 7 |
| 8 | 32768 | 8 | 2048 | 8 | 128 | 8 | 8 |
| 9 | 36864 | 9 | 2304 | 9 | 144 | 9 | 9 |
| A | 40960 | A | 2560 | A | 160 | A | 10 |
| B | 45056 | B | 2816 | B | 176 | B | 11 |
| C | 49152 | C | 3072 | C | 192 | C | 12 |
| D | 53248 | D | 3328 | D | 208 | D | 13 |
| E | 57344 | E | 3584 | D | 224 | E | 14 |
| F | 61440 | F | 3840 | F | 240 | F | 15 |
| Bits 47 |  | Bits 0.3 |  | Bits 47 |  | Bits 0-3 |  |
| HIGH ORDER BYTE |  |  |  | LOW ORDER BYTE |  |  |  |

