
'NEVADA
FORTRA · TM

ELLIS COMPUTING ™

SOFTWARE TECHNOLOGY

NEVADA FORTRAN (TM)
Version 3.0

PROGRAMMER'S REFERENCE MANUAL

Copyright (C) 1979, 1980, 1981, 1982, 1983
Ian D. Kettleborough

Published by

Ellis Computing, Inc.
3917 Noriega Street

San Francisco, CA, 94122
(415) 753-0186

COPYRIGHT

Copyright (C), 1979, 1980, 1981, 1982, 1983 by Ian D.
Kettleborough. All rights reserved worldwide. No part of
the publication may be reproduced, transmitted, transcribed,
stored in a retrieval system or translated into any human or
computer language in any form or by any means, electronic;
mechanical, magnetic, optical, chemical, manual or
otherwise, without the express written permission of Ian D.
Kettleborough.

TRADEMARKS

NEVADA FORTRAN (tm), NEVADA COBOL (tm), NEVADA PILOT (tm),
NEVADA EDIT (tm) and Ellis Computing(tm) are trademarks of
Ellis Computing, Inc. CP/M is a registered trademark of
Digitial Research, Inc.

DISCLAIMER

All Ellis Computing computer programs are distributed on an
liAS IS" basis without warranty.

Ellis Computing, Inc. makes no warranties, expressed or
implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular
purpose. In no event will Ellis Computing, Inc. be liable
for consequential damages even if Ellis Computing, Inc. has
been advised of the possibility of such damages.

Printed in the U.S.A.

TAB L E o F CONTENTS

1. GETTING STARTED ••••••••••••••••••••••••••••••••••••••• 2
1.1. Configuring the NEVADA FORTRAN system •••••••••••• 4

1.1.1. Generating the error file FORT.ERR •••••••• 4
1.1.2. Configuring the FORTRAN system •••••••••••• 4

2. COMPILING AND EXECUTING A PROGRAM ••••••••••••••••••••• 5
2.1. CREATING A PROGRAM ••••••.•••••••••••••••.•••••••• 5
2.2. RUNNING THE COMPILIER •••••.•••••••.•••••••••••••• 5
2.3. COMPILE OPTIONS •••••••••••••••••••••••••••••••••• 6
2 • 4. EXECUT ING A PROGRAM ••••••••.••••••••••.•••••••.•• 8
2.5. CREATING A COM FILE •••••••••.•••••••.•.•••••••••• 9

3. THE FORTRAN LANGUAGE ••••••••••••••••••••••••••••••••• 10
3.1. The FORTRAN Character Set ••••.•••••••••••••••••• 10
3.2. FORTRAN Program Structure ••••••••••••••••••••••• 11
3.3. FORTRAN Statements ••.••••••..••••••••••••••••••. 13
3. 4. Multi-statements •••••••••••.••••••••••••••••••.• 14
3.5. FORTRAN Program Preparation ••••••••••••••••••••• 15
3.6. The COPY Statement •••••••••••••••••••••••••••••• 16
3.7. The Options Statement ..•••..••.•••••.••••••••••• 17

4. NUMBER SySTEM •• 20
4.1. Internal Format of Numbers •••••••••••••••••••••• 20
4.2. Number Ranges ••••••••••••••••••••••••••••••••••• 20
4.3. Constants ••••••••••••••••••••••••••••••••••••••• 21

4.3.1. Numerical Constants •••••••••••••••••••••• 21
4.3.2. String Constants ••••••••••••••••••••••••• 22
4.3.3. Logical constants •••••••••••••••••••••••• 22

4.4. Variable Names ••••••••••••••.••••••••••••••••••• 23
4.5. Type Specification •••••••••••••••••••••••••••••• 24

4 • 5 • 1 • INTEGER ••••••••••••••.••••••••••••••••••• 25
4 • 5 • 2 • LOG I CAL. • 2 6
4 • 5 • 3. REAL..................................... 2 7
4.5.4. DOUBLE PRECISION ••••••••••••••••••••••••. 28

4 • 6. Da ta Sta temen t •••••••••••••••••••••••••••••••••• 29
4. 7. Common Blocks ••••••••••••••••••••••••••••••••••• 30
4.8. Implicit Statement •..•••••••...••••••.•••.•••••• 32

5. Expressions •• 33
5.1. Hierarchy of Operators •••••••••••••••••••••••••• 33
5.2. Expression Evaluation •••••••.••••••••••••••••••• 34
5.3. Integer Operations ••••.•••••••••••••••••••••••••• 35
5.4. Real Operations ••••••••••••••••••••••••••••••••• 36
5.5. Logical Operations ••••••••••.••••••••••••••••••• 37
5.6. Mixed Expressions ••••••••••••••••••••••••••••••• 39

6. Control Statements ••••••.•.••••••••••••••••••.•.••••• 40
6.1. Unconditional GO TO Statement ••••••••••••••••••• 41
6.2. Computed GO TO Statement •••••••••••••••••••••••• 42
6.3. Assigned GO TO ••••••••••••••.••••••••••••••••••• 43
6.4. ASSIGN •• 44
6.5. Arithmetic IF Statement ••••••••••••••••••••••••• 45
6.6. Logical IF Statement •••••••••••••••••••••••••••• 46
6.7. IF-THEN-ELSE .••••••..•••••••.••••••••••••••••••• 47

6.8. DO-LOOPS •.•••••••••••••••••••••••••••••••••••••• 49
6.9. CONTINUE Statement •••••••••••••••••••••••••••••• 50
6 • 10. ERROR TRAPP ING ••••••••••••••••••••••••••••••••• 51
6. 11. CONTROL/ C CONTROL •••••••••••••••••••••••••••••• 53
6.12. TRACING •• 54
6.13. DUMP statement ••••••••••••••••••••••••••••••••• 55

7. Program Termination Statements ••••••••••••••••••••••• 56
7. 1. PAUSE Statement ••••••••••••••••••••••••••••••••• 56
7.2. STOP Statement •••••••••••••••••••••••••••••••••• 57
7.3. END Statement ••••••••••••••••••••••••••••••••••• 58

8. Array Specification •••••••••••••••••••••••••••••••••• 59
8.1. Dimension Statement ••••••••••••••••••••••••••••• 60
8.2. Subscripts •••••••••••••••••••••••••••••••••••••• 62

9. Subprograms •• 63
9 • 1. SUB ROUT INE Sta temen t •••••••••••••••••••••••••••• 64
9.2. FUNCTION Statement •••••••••••••••••••••••••••••• 65
9 • 3. CALL Sta ten;ten t •••••••••••••••••••••••••••••••••• 66
9 • 4. RETURN Statement •••••••••••••••••••••••••••••••• 67
9.5. Multiple return ••••••••••••••••••••••••••••••••• 68
9.6. BLOCK DATA SUBPROGRAM ••••••••••••••••••••••••••• 69

10. Input/Output ••• 70
10.1. Introduction to FORTRAN 1/0 •••••••••••••••••••• 70

10.1.1. General Information •••••••••••••••••••• 70
10.1.2. I/O List Specification ••••••••••••••••• 72

10.2. READ Statement ••••••••••••••••••••••••••••••••• 74
10.3. WRITE Statement •••••••••••••••••••••••••••••••• 76
10.4. MEMORY TO MEMORY I/O statements •••••••••••••••• 77

10.4.1. DECODE statement •••••• ;. •••••••••••••••• 78
10.4.2. ENCODE statement ••••••••••••••••••••••• 79

10.5. Format Statement and Format Specifications ••••• 80
10. 5.1. X-Type (wX) •.•••••••••••••••••••••••••• 81
10 • 5 • 2. I -Type (Iw) •••••••••••••••••••••••••••• 81
10.5.3. A-Type (Aw) •••••••••••••••••••••••••••• 81
10 • 5 • 4 • / -TYPE (/) •••••••••••••••••••••••••• •• 82
10.5.5. Z-Type ••••••••••••••••••••••••••.•••••• 82
10.5.6. L-Type (Lw) •••••••••••••••••••••••••••• 83
10 • 5 • 7. T-Type _ (Tw) • 83
10.5.8. K-Type (Kw) •••••••••••••••••••••••••••• 84
10.5.9. F-Type (Fw.d) •••••••••••••••••••••••••• 85
10.5.10. E-Type (Ew.d) ••••••••••••••••••••••••• 86
10. 5.11. D-Type (Dw . d) •.•••••.••••••••••••••••• 86
10.5.12. G-Type (Gw.d) ••••••••••••••••••••••••• 87
10.5.13. Repeating field specifications •••••••• 88
10.5.14. String Output ••••••••••••••••••••••••• 89

10.6. Free Format I/O •••••••••••••••••••••••••••••••• 90
10.6.1.INPUT •••••••••••••••••••••••••••••••••• 90
10.6.2. OUTPUT ••••••••••••••••••••••••••••••••• 90

10.7. BINARY 1/0 ••••••••••••••••••••••••••••••••••••• 92
10.8. REWIND Statement ••••••••••••••••••••••••••••••• 93
10.9. BACKSPACE Statement ••••••••••.••••••••••••••••• 94
10.10. ENDFILE Statement ••••••••••••••••••••••••••••• 95
10.11. GENERAL COMMENTS ON FORTRAN I/O UNDER CP/M •••• 96

11.

10.12. SPECIAL CHARACTERS DURING CONSOLE I/O. • .97

General Purpose SUBROUTINE/FUNCTION Library •• . •• 98
11.1. OPEN •• .100
11 • 2. LOPEN •••••••••••
11.3. CLOSE ••••••••••.

• •••••••••..• 1"2

11.4.
11.5.
11.6.
11.7.
11.8.

. 104
DELETE ••••••••••••••••••••••• ' •••••••••••• .104

.105

.1"5

.106

SEEK •••••••••••••••••••
RENAME ••••••••••••••••••
CHAIN.
LOAD .•••••••••••••••••••• le6

11 . 9. EXIT .. . • 107
.1"7
• 108
.108

11.1". MOVE ••••••••••••••••••••..•••••••••••••••••.
11 . 11 . DELAy...................................... .
11.12. CIN ••••••••••••••••••••••••••••••.•••••••••.
11.13.
11.14.
11.15.
11.16.
11.17.
11.18.
11.19.
11.2".

CTEST •••••••••••••
OUT •••••••••••••••
SETIO ••••••••••.
RESET •••••••
POKE ••••••••
BIT •••••••••••••••
PUT •••••••••••••••

· 109
· 110

.110

.111

.111
·•................ . 112
· 112

CHAR •••••••••••••••••••••••••••• • ••••••.• 113
11.21.INP •.••••••••••••••••••••.•••••• • •••••..• 113
11.22.
11.23.
11.24.

CALL ••••••
CBTOF ••
PEEK ••••••

11 . 25. COMP ...••..................•............•...

.113

.114

.114
• 115

Appendices

A. Sta temen t Summary •••••••••••••••.•••••••.••••••••••. 116

B. Summary of System Function •••••••••••••••••••••.•.•. 120

C. Summary of System Subroutines •••••••••••••••••••.••• 121

D. RUNTIME ERRORS ••••••••• '123

E. COMPILE TIME ERRORS •••••••••••••.• • 128

F. ASSEMBLY LANGUAGE INTERFACE ••••••• .132

G. GENERAL COMMENTS •••••••••••••••••• .133

H. USE OF THE NORTH STAR FLOATING POINT BOARD •••••••••• 135

I. COMPARISON OF NEVADA FORTRAN AND ANSI FORTRAN ••••••• 136

J. SAMPLE PROGRAMS ••••••••••••••••••••••••••••••••••••• 137

K. SAMPLE PROGRAM COMPILATIONS AND EXECUTION ••••••••••. 150

L. SUGGESTED FURTHER READING ••••••••••••••••••••••••••• 158

06-21-83 NEVADA FORTRAN PAGE 1

PREFACE

This is an 8080/8085/Z80 version of FORTRAN IV. It is a
powerful subset implementation of this widely used language.
The compiler works from disk (also using the assembler) to
produce 8080/8085/Z80 machine code that executes at maximum
CPU speed.

A source program is entered as FORTRAN IV program
statements. These statements must follow the conventions
outlined in this document or errors may result. The
compiler acts upon the source statements to produce assembly
code. At this stage any mistakes are flagged with error
messages. If an error should occur, the source may be
corrected at this time and recompiled. After the program
has been compiled without any errors, the final step
(normally transparent to the user) is to assemble the
intermediate code into 8080 object code. The object module
is then ready for execution under CP/M (or compatible
operating system).

This manual is intended as a guide to using this
version of FORTRAN and is not intended to be a complete
instruction manual on the use of FORTRAN. This manual
assumes that you already know how to program in FORTRAN and
have read the CP/M operating system manuals. If you do not
know FORTRAN there are many books that explain the syntax
and semantics of the FORTRAN language. This manual explains
the subset that is implemented in NEVADA FORTRAN.

This manual describes versions 3.0 and later of the
NEVADA FORTRAN compilier.

I would like to thank Colegate V. Spinks for his help
and work in developing the initial release of the compiler,
runtime and manual for this FORTRAN implementation.

06-21-83 NEVADA FORTRAN PAGE 2

1. GETTING STARTED

HARDWARE REQUIRED

1. 8080/8085/Z80 processor
2. A minimum of 48K of RAM for the compiler
3. At least one disk drive

SOFTWARE REQUIRED

1. CP/M Operating System
2. Any text editor

FILES ON THE DISTRIBUTION DISK

is the FORTRAN compiler
is the runtime execution package

FORT.COM
FRUN.COM
CONFIG.COM

ERRORS
READ. ME

is a program to generate the error file
and setup compiler and runtime defaults.
is the error text file used by CONFIG.
maybe on the disk and contains information
and updates to this manual.

If room premits, there maybe some sample programs on
the disk.

(Also see the NEVADA Assembler Manual for other files
not listed here)

GETTING STARTED

If the master disk is not write protected, do it now!!

The very first thing that you should do is to make at
least one backup copy of your NEVADA FORTRAN diskette. The
orig inal diske.tte should be kept in a safe place in case it
is ever needed in the future.

1. NEVADA FORTRAN is distributed on a DATA DISK without the
CP/M operating system. This disk will not "boot Up".

2. On computer systems with the ability to read several disk
formats, such as the KayPro computer, the master diskette
must be in disk drive B.

3. Do not try to copy the master diskette with a COpy
program! On most systems it won't work. You must use the
CP /M PIP command to copy the files.

06-21-83 NEVADA FORTRAN PAGE 3

4. You must first, pr~pare a CP/M diskette for use as your
NEVADA FORTRAN' operations diskette. Usually you will use
your system's FORMAT program (sometimes the COpy program
will format the diskette) to prepare this diskette.

5. You should now use PIP to make copies of the original
NEVADA FORTRAN diskette. To use PIP use the command:

PIP A:=B:*.*[V]

(this specifies that the NEVADA FORTRAN distribution disk is
in drive B and the disk to copy onto is in drive A.)

On 5 1/4" diskettes you may have to remove (erase)
other programs to make room for all the NEVADA FORTRAN
programs, before the next step. Make sure the default drive
has at least 8K of available space. If it does not, you
will get a BOOS write error - CP/M's way of letting you know
the

Disk is full!. ---
In some cases you will have to temporarily remove some of
the FORTRAN example programs to make the space available.

NOTE: The NEVADA assembler, ASSM.COM, must be on the same
disk which contains the FORTRAN compiler

06-21-83 NEVADA FORTRAN PAGE 4

1.1. Configuring the NEVADA FORTRAN system

1.1.1. Generating the error file FORT.ERR

The program CONFIG reads the text file ERRORS which
contains the compiler error messages. These messages may be
changed with the restriction that they can only be one line,
the first 2 characters ar€ the error number followed by a
blank followed by the text of the error message. To generate
the error file, just enter CONFIG at the CP/M prompt and
reply Y to the question about generating the error file.
You will then be asked to specify which drive contains the
file ERRORS and which drive the file FORT.ERR is to be
written to. Reply with a valid drive letter (A, B, ...) for
your system. You must generate the error file as it is not
supplied on the disk. This only needs to be done once or
whenever any of the error text is changed.

1.1.2. Configuring the FORTRAN system

The CONFIG program also allows you to set certain
default val pes in both the compiler and the runtime package.
Just enter carriage return (or ENTER) to leave the default
as it is, or enter the new default value. You will be asked
to enter the drive that contains the compiler (FORT.COM).
The default sizes of the parameters that can be changed with
an OPTIONS statement can be modified along with the
character used to delimit hexadecimal constants in strings.
You will also be able to specify if your system console can
handle lowercase letters. Enter Y if it can or N if it
cannot.

Next, certain parameters in the runtime package can be
set. You must first specify which drive contains the
runtime package (FRUN.COM). The method that the runtime
package performs CP/M console I/O can be specified as either
CP/M function 1&2, CP/M function 6 (for CP/M rev 2.0 only)
or direct BIOS calls. Specifing CP/M functions 1&2 allows
you to use control-P to send a copy of your FORTRAN output
to the printer. You will also be able to specify if your
system console can handle lowercase letters. Enter Y if it
can or N if it cannot.

Since NEVADA FORTRAN supports the North Star floating
point board, you must specify the address of the board if
you have one and want FORTRAN to use it.

After creating FORT. ERR you can erase the files
CONFIG.COM and ERRORS if you need the disk space.

06-21-83 NEVADA FORTRAN PAGE 5

2. COMPILING AND EXECUTING A PROGRAM

2.1. CREATING A PROGRAM

A program can be created with any of the numerous
available text editors. The name of the FORTRAN source
program should have the filename extension of .FOR, such as
PROG.FOR. Refer to section 3.2 for a detailed description
of the format of each source statement. Programs are created
with a text editor and are later, in a separate step,
compiled.

2.2. RUNNING THE COMPILIER

The general format of the command to compile a FORTRAN
program is:

FORT U:PGM.LAO $OPTIONS
where:

FORT is FORT.COM, the FORTRAN compiler

PGM is the FORTRAN source program to compile and has the
extension .FOR.

U: is the drive where PGM.FOR is located (if not present,
the default drive is used).

L is the drive for the listing as follows:

A-P uses that drive for the listing
X listing to CP/M console
Y listing to CP/M LST: device
Z do not generate a listing

The listing will have the same filename as the source
file but with the extension .LST.

A is the drive for the intermediate assembly file as
follows:

A-P uses that drive
Z do not generate an assembly file.

The assembly file will have the same filename as the
source file but with the extension .ASM. This file is
normally deleted by the FORTRAN compiler.

o is the drive for the final obj ect program as follows:

A-P uses that drive
Z don't generate an object file

06-21-83 NEVADA FORTRAN PAGE 6

The object program will have the same filename as the
source file but with the extension .OBJ.

Notes:

If Z if specified in either the assembly or object
drive position, no object program will be generated.

If the three drive specifiers are not specified, then
the default drive will be used.

The files FORT.ERR and ASSM.COM must be present on the
default drive when the compiler is run.

If the 0 is not specified as Z, then the assembly file
will be automatically assembled and the intermediate .ASM
file will be deleted. If Z is specified, then the file will
not be assembled and the intermediate .ASM will remain on
the disk.

2.3. COMPILE OPTIONS

Options that effect the compilation of the FORTRAN
program can be specified on the command line by preceding
the option string with dollar sign ($). For example:

FORT U:PGM.LAO $NP2

The following options can be specified:

N

No assembly file will be produced (and no object file also).

P

The listing file (if specified) will be paginated (66 lines
to a page). Each new FORTRAN routine will start on a new
page.

1

Source statements will be blank padded to 64 characters.

2

Source statements will be blank padded to 72 characters.

06-21-83 NEVADA FORTRAN PAGE 7

NOTE: Normally source statements are not blank padded.
This may cause a problem where blanks are wanted inside a
literal string and the string is started on one statement
and continued over one or more continuation statements.
Without the pad option, the trailing blanks may be lost (of
course you could break the continued literal into several,
making sure that there is a quote after any blanks at the
end of a statement). For example:

WRITE (1,10)
10 FORMAT ('THIS IS

*A TEST I)

Produces: THIS IS A TEST
without blank padding and

THIS IS
with blank padding.

A TEST

If the last form is desired then this could be written as:

WRITE (1,10)
10 FORMAT ('THIS IS

* 'A TEST I)

to produce the same results as with the blank padding
specified.

H

This option is used in conjunction with the P option to
suppress the heading in the listing.

C=XXXX

This option specifies the maximum number of COMMON blocks
that may be defined in the program to be compiled. The
default is 15.

B=XXXX

This option specifies the size of the input statement
buffer. The default is 530 characters and the buffer must
be large enough to contain a complete statement (first
record plus all continuations).

M=XXXX

This option specifies the memory address at which blank
COMMON will end. In other words, blank COMMON will be
allocated downward in memory from the specified address.
The address specified must be in hexadecimal.

06-21-83 NEVADA FORTRAN PAGE 8

This option is useful in forcing blank COMMON to be
allocated at the same address in memory for passing data
between routines that CHAIN to each other.

Examples

FORT MYFROG $C=20

Compiles MYPROG.FOR from the default drive, generating
MYPROG.ASM, MYPROG.LST and MYPROG.OBJ on the default drive
and allowing for the definition of up to 20 COMMON blocks.

FORT B:READ.XCD $P2

Compiles READ.FOR from drive B, generating READ.ASM on drive
C and the listing to the console. The listing will be
paginated and source statements will be padded to 72
characters.

FORT TEST. YZZ $P

Compiles TEST.FOR from the default drive, no .ASM or .OBJ
file will be produced but a paginated listing will go to the
CP/M list (LST:) device.

FORT UPDATE.XBZ $PH

Compiles UPDATE.FOR from the default drive, generating
UPDATE.ASM on drive B, a paginated listing minus the heading
line to the console and no .OBJ file.

2.4. EXECUTING A PROGRAM

Once the object file has been produced, the program can be
executed by simply typing:

FRUN u:filename

Where u: is optional and if not present, the default drive
is used. The FORTRAN runtime package, FRUN occupies memory
from 100H to 3FFFH. It will load the program to be executed
starting at 4000H. The program is then executed and
continues until either it terminates normally or a runtime
error occurs.

Example

To compile and run the program GRAPH (listing in the
sample programs section) the commands would be:

FORT GRAPH
FRUN GRAPH

(listing, object to default disk)
(will execute the program)

06-21-83 NEVADA FORTRAN PAGE 9

2.5. CREATING A COM FILE

A CP/M .COM file c"an be created that contains a copy of
the runtime package and the program to be executed. This
has the advantage that just the filename need be entered to
execute the program. Each program generated in this way
will be at least 16K in length, that being the size of the
FORTRAN runtime package. To create a COM file just add .C
to the end of the FRUN command. The command to turn
GRAPH.OBJ into GRAPH.COM would be:

FRUN GRAPH.C

Then to execute it, all that is needed is the command:

GRAPH

06-21-83 NEVADA FORTRAN PAGE 10

3. THE FORTRAN LANGUAGE

3.1. The FORTRAN Character Set

The FORTRAN character set is composed of the following
characters:

The letters:

A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

The numbers:

0,1,2,3,4,5,6,7,8,9

The special characters:

blank
equal sign (for replacement operations)

+ plus sign
minus sign

* asterisk
/ slash
(left parenthesis
) right parenthesis

comma
decimal point

$ dollar sign
:# number sign
& ampersand
\ backs lash

NOTE: Lowercase letter will be converted to uppercase except
when lowercase appears in string literals.

06-21-83 NEVADA FORTRAN PAGE 11

The following is a list of the meanings of the special
characters used in this version of FORTRAN:

$ Preceding a constant with a dollar sign indicates
that it is a hexadecimal constant.

Preceding a constant with a number sign indicates
that it is a hexadecimal constant that is to be
stored internally in binary format.

& The & has two functions:
1) if used in a FORMAT statement contains an
ampersand, the character following the ampersand
is interpreted as a control character (unless it
is also an &).
2) used to indicate that a statement label is
being passed to a SUBROUTINE for use in a
multiple RETURN statement.

\ A constant enclosed in backslashes in a character
string is assumed to be the hexadecimal code for
an ASCII character.

3.2. FORTRAN Program Structure

A FORTRAN program is comprised of statements.
statement must be of the following format.

Every

1) The first 5 characters of the statement may contain a
statement label if the statement is to be branched to.

2) The sixth character is used to indicate a continuation of
the previous statement. Continuation is indicated by placing
any character except a BLANK or ZERO in column 6 of the
continuation statement.

3) Column 7 to the end of the line is used for the body of
the statement. This is anyone of the following statements
which will be described later. All statements are terminated
by a CR (Carriage Return) or semicolon (not enclosed in a
character string) in the case of multiple statements per
line. A statement may be of any length, but only the first
72 characters are retained during compilation. Statements
will be processed until the carriage return is encountered.
The character positions between the carriage return and
character position 72 will NOT be padded with BLANKS as some
FORTRAN systems will do, unless the 1 or 2 option is
specified This means that if a character string is started
on a line, and must be continued, the co~tinuation logically
starts immediately after the last character of the previous
line.

06-21-83 NEVADA FORTRAN PAGE 12

4) Column 73 through 80 are used for identification
purposes and are ignored.

5) A comment line is indicated by place a C in col umn L A
comment line has no effect on the program and is ignored.
It is only for documentation purposes.

Example

1-- Column 1
1

V

WRITE (1,2)
2 FORMAT ('THIS IS AN
* EXAMPLE CHARACTER STRING ')

will output: THIS IS AN EXAMPLE CHARACTER STRING

Uppercase and lowercase letters can be intermixed in a
FORTRAN statement. Lowercase letters are retained ONLY when
they appear between QUOTES or in the H FORMAT specification
in a FORMAT statement. Otherwise they will be converted to
uppercase internally. Thus the variables QUANTITY and
quantity and QuAnTiTy represent the same variable.

There are four types of statements in FORTRAN:

1) Declaration
2) Assignment
3) Control
4) Input/Output.

These statement types are described in the following
sections of this manual.

06-21-83 NEVADA FORTRAN PAGE 13

3.3. FORTRAN Statements

A statement may contain a statement label. A statement
label is placed in columns 1 through 5 of the statement.

All labels on statements must be integers ranging
between 1 and 99999. Leading zeros will be ignored.

Statement labels are not required to be in any
sequence, and they will not be put in order.

In any program, a statement label can be used only once
as a label.

A statement may contain no more than 530 characters
excluding blanks (other than those between single quotes),
unless the B= option is specified.

During compilation, blanks are ignored, except between
single quotes and in H FORMAT specification.

Comments are indicated by placing a C in column 1; the
remaining part of the statement may be in any format and is
ignored by the compiler.

06-21-83 NEVADA FORTRAN PAGE 14

3.4. MUlti-statements

Statements may be compacted more than one logical
statement per line. Statements are separated from each
other with a semicolon and a colon is used to separate the
label, if any.

Example

A=l
3 CONTINUE

A=A+l
TYPE A
GO TO 3
END

could be written as:

A=1;3:CONTINUE;A=A+l;TYPE A;GOTO 3;END

06-21-83 NEVADA FORTRAN PAGE 15

3.5. FORTRAN Program Preparation

A FORTRAN source program is prepared using one of the
available CP/M text editors. The FORTRAN file must be in the
following format:

Position 1 ..• 5 •••• 0 ••.. 5 ...• 0 ••.• 5 •..• 0 .••• 5 ..•• 0 •••• 5
OPTIONS

FORTRAN program

END
OPTIONS

SUBROUTINE X

FORTRAN routine

END

All FORTRAN routines are required to be compiled at one
time.

06-21-83 NEVADA FORTRAN PAGE 16

3.6. The COPY Statement

A FORTRAN program can contain COpy statements. The COPY
statement contains the word COpy followed by at least one
blank, followed by the FILENAME to be inserted at that
point. COpy files may contain complete programs or 1ust
sections of programs. Copied files may not themselves
contain COpy statements.

Example

DIMENSION A(l)
COPY ALLDEFS
READ (l, 10) I

A=l
T=5
CALL ADDIT
STOP
END
COPY B:ADDIT

106-21-83 NEVADA FORTRAN PAGE 17

3.7. The Options Statement

This is an optional statement of each program and/or
subprogram which is to be compiled. If present, the OPTIONS
statement must appear as the first statement in main program
and prior to the SUBROUTINE or FUNCTION statement in each
subprogram. The options statement allows the specification
of various parameters to be used by the compiler during
compilation of a particular routine. The options that are
specified on an options statement are only in effect for
that routine and revert back to the default unless an
OPTIONS statement appears on subsequent routines. Options
available are as follows:

S=n

n -> Is a decimal number indicating the number of allowable
symbols. The default is 510. Each entry requires 8 bytes. (n
may be greater than 255). This default can be changed using
the CONFIG program.

L=n

n -> Is a decimal number indicating the number of allowable
labels. The default is 510. Each entry requires 6 bytes. (n
may be greater than 255). This default can be changed using
the CONFIG program.

T=n

n -> Is a decimal number indicating the maximum number of
temporary variables that are available during EXPRESSION
evaluation. Default table size is 15; each variable requires
1 byte. This default can be changed using the CONFIG
program.

D=n

n -> Is a decimal number which indicates the maximum
allowable nesting of DO loops. Default is 5, each entry
requires 4 bytes. This default can be changed using the
CONFIG program.

06-21-83 NEVADA FORTRAN PAGE 18

A=n

n -> Is a decimal number which indicates the maximum number
of arrays. Default is a maximum of IS; each entry requires
4 bytes. This defaul t can be changed using the CONF IG
program.

O=n

n -> Is a decimal number which indicates the maximum number
of operators ever pushed on the internal stack while doing a
prefix translation of input expression. Note functions and
array subscripting require a double entry. Default is 40;
each entry is 2 bytes long. This default can be changed
using the CONFIG program.

P=n

n -> Is a decimal number which indicates the maximum number
of variables and/or constants ever pushed on the internal
stack in evaluation. Default is 40; each entry is 2 bytes
long. This default can be changed using the CONFIG program.

I=n

n -> Is a decimal number specifying the depth that IF-THEN
ELSE's may be nested. The default nesting is 5. This
default can be changed using the CONFIG program.

E

Instructs the compiler to list, as comments, a reference
table equating user symbols, constants, and labels to
internally generated ones.

G

Instructs the compiler to list all compile errors as error
numbers, instead of explicit error statements. See Appendix
11.6.0 for a list of error numbers and their meanings.

06-21-83 NEVADA FORTRAN PAGE 19

x

Instructs the compiler to generate code which will give
explicit runtime errors. In this mode each statement has an
extra 5 bytes of overhead to keep track of the statement
number of the statement currently being executed.

N

Check for FORTRAN errors only. Do not output an assembly
code file.

B

The FORTRAN source statement is included in the assembly
file as a comment.

Q

This option must be used whenever the program expects to
trap runtime errors. It causes code to be generated for
handling user trapping of runtime errors.

n is less than or equal to 255 unless otherwise stated.

Example

$OPTIONS X,G,S=200,L=100

Options used will be:
EXPLICIT runtime errors will be generated
EXPLICIT compile errors are not generated
the SYMBOL table has room for 200 symbols, and
the LABEL table has room for 100 statement labels.

06-21-83 NEVADA FORTRAN PAGE 20

4. NUMBER SYSTEM

4.1. Internal Format of Numbers

Numbers are stored internally as a 6 byte BCD number
containing 8 digits, a one byte exponent, and a sign byte.
This allows for the number to range from .10000000E-127 to
0.99999999E+127. The sign byte contaius the sign of the
number: 0 indicating a positive number and 1 indicating a
negative number. The exponent is stored in excess 128. A
one for the sign of the BCD number indicates a negative
number. The number ZERO is stored as an exponent of zero:
the rest of the number is ignored.

All numbers in FORTRAN are stored in the following format:

+-----+-----+-----+-----+-----+-----+
199! 99199199! 0 S! FF 1
+-----+-----+-----+-----+---~-+-----+

BCD Number : Sgn : Exp :

4.2. Number Ranges

Integer variables and constants can have any value
from -99999999 to +99999999. Real variables and constants
can take any value between -0.99999999E-127 and
0.99999999E+126. Integer variables and constants are
stored internally in the same format.

06-21-83 NEVADA FORTRAN PAGE 21

4.3. Constants

A constant is a quantity that has a fixed value. A
numerical constant is an integer or real number~ a string
constant is a sequence of characters enclosed in single
quotes. A logical constant has a value of .TRUE. or .FALSE.

4.3.1. Numerical Constants

Numerical constants can be either integer or real as
follows:

Integer
Real

1, 3099, -70
1.34, -5.98, 1.4E10

A hexadecimal constant can be specified by preceding
the number with a dollar sign. A hexadecimal constant is
converted internally into an integer and stored that way.
The maximum value for a hexadecimal constant is $FFFF.

Example

$8050
1=$1000
z=-$CC00

Another way to specify a hexadecimal constant is to
preceded the constant with a # sign. This way of
representing a hexadecimal number differs in that the number
is NOT converted to integer format and is stored in binary
in the first two bytes of the constant. The number is
stored high byte followed by low byte.

Example

#0000
i=#l27F

$80SF is stored internally as: 32 86 30 00 00 85
#805F is stored internally as: SF 80 00 00 00 00

06-21-83 NEVADA FORTRAN PAGE 22

4.3.2. String Constants

A string constant is specified by enclosing a sequence
of characters in single quotes. A single quote within a
character string must be represented by TWO quotes in a row
(with no space between these two quotes). By specifying a
hexadecimal number wi thin backslashes, any character (even
unprintable ones) can be generated.

Example

'This is a string constant'
'This string constant' 'contains a single quote'
'Good\2l\' is equivalent to 'Goodll
'\7F\' is equivalent to a rubout

Warning: Never include \0\ as part of a string constant as
that character is used internally to indicate the end of a
string.

NOTE The character used to delimit a hexadecimal number
(default is \) can be changed using the CONFIG program.

4.3.3. Logical constants

The two logical constants are .TRUE. and .FALSE •.
Numerically, .FALSE. has the value 0 (zero) and .TRUE. has
the value of 1 however any non-zero value will be considered
as .TRUE. Logical operations always return a value of 0 or
1. These logical constants can be assigned to any variable,
but is usually used as part of a logical expression.

Example

1=. TRUE.
I=(J .and .. TRUE)

06-21-83 NEVADA FORTRAN PAGE 23

4.4. Variable Names

A variable is a symbolic name given to a quantity which
may change depending upon the operation of a program. A
variable consists of from 1 to 6 alphanumeric characters,
the first of which must be a letter.

An INTEGER variable is a variable that starts with I,
J, K, L, M or N by default or explicitly typed INTEGER
through the use of an INTEGER or IMPLICIT statement.

A REAL variable is a variable that starts with other
than I, J, K, L, M or N by default or explicitly typed REAL
through the use of a REAL or IMPLICIT statement.

A DOUBLE PRECISION variable must be explicitly typed
DOUBLE PRECISION with a DOUBLE PRECISION or IMPLICIT
statement.

A LOGICAL variable must be explicitly typed LOGICAL
with a LOGICAL or IMPLICIT statement.

There are four types of variables supported: INTEGER,
REAL, DOUBLE PRECISION and LOGICAL.

Example

110, ALPHA, BETA, I, MAXIM, MINII
IX=34
ALPHA=56.34
ZLOG=.TRUE.

06-21-83 NEVADA FORTRAN PAGE 24

4.5. Type Specification

There are three type specification statements that can
be used to override the default types of variables.
Remember that variables that begin with the letters
I,J,K,L,M,N (unless changed by an IMPLICIT statement) will
be of type INTEGER. All others will be of type REAL. The
type specification statement overrides the default type of a
variable.

Note an array can also be specified in a type statement.

Example

INTEGER A,ZOT,ZAP(10)
REAL INT
LOGICAL LOGl,LOG2

06-21-83 NEVADA FORTRAN PAGE 25

4.5.1. INTEGER

The general format of the INTEGER statement is:

INTEGER vI, v2

The INTEGER statement is used to explicitly override the
default type of the variable. Should a variable occur in
the declaration string, the type is automatically set to
integer. This works for both subscripted and nonsubscripted
variables. A variable can appear only ONCE in a type
speci~ication statement.

Example

INTEGER MODE, K453, NUMBER(40) ,MAXNUM
INTEGER ZAPIT

06-21-83 NEVADA FORTRAN PAGE 26

4.5.2. LOGICAL

The general format of the LOGICAL statement is:

LOGICAL vl,v2

The LOGICAL statement is used to override the defaul t
specification and type a variable as Logical. A logical
variable's value is interpreted as:

.TRUE. if the variable has a non-zero value .
• FALSE. if the variable has a zero value.

Example

LOGICAL FTIME,LTIME
LOGICAL FLAG

06-21-83 NEVADA FORTRAN PAGE 27

4.5.3. REAL

The general format of the REAL statement is:

REAL vl,v2

The REAL statement is used to explicitly override the
default type of the variable. Should a variable ~ccur in
the declaration string, the type is automatically set to
real. This works for both subscripted and. nonsubscripted
variables. A variable can appear only ONCE in a type
specification statement.

Example

REAL ALPHA,BETA(56),INIT,FIRST,ZAPIT,HI

06-21-83 NEVADA FORTRAN PAGE 28

4.5.4. DOUBLE PRECISION

The general format of the DOUBLE PRECISION statement is:

DOUBLE PRECISION vl,v2

The DOUBLE PRECISION statement is used to explicitly
override the default type of the variable. Should a
variable occur in the declaration string, the type is
automatically set to real. This works for both subscripted
and nonsubscripted variables. A variable can appear only
ONCE in a type specification statement.

Example

DOUBLE PRECISION ALPHA,BETA(56),INIT,FIRST,ZAPIT,HI
DOUBLE PRECISION VALUEl,VALUE2

WARNING: Even though the DOUBLE PRECISION statement is
supported, double precision arithmetic is NOT. All DOUBLE
PRECISION variables will be treated as if they where REAL.
A warning will be issued each time a DOUBLE PRECISION
statement is encountered.

06-21-83 NEVADA FORTRAN PAGE 29

4.6. Data Statement

The DATA statement is used to initialize variables or
arrays to a numeric value or character string. The general
format is:

DATA 1 ist/ nl, n2 ..•• / ,Ii stl/nl, n2/

where list is a list of variables (or array elements)
to be initialized and nl, n2.. are numbers or strings
(constants) that the corresponding item of list will be
initialized to. An exception to this is the array name. If
only the name of the array (no subscripts) appears in list,
the whole array will be initialized. It is expected that
enough constants will be listed to completely fill the
array. If not enough constants are supplied to fill the
entire array, then portions of the array will be undefined.
Subprogram arguments may not appear in list. When a DATA
statement is encountered during compilation, it is stored in
memory and ALL DATA statements are processed when the END
statement for the particular routine is encountered. If
there are more DATA statements than can be stored in the
available memory, a fatal compile error will result and
compilation will terminate. Since DATA statements are
processed when the END statemept is encountered: errors in a
DATA statement will be printed after the END statement.
These errors will include the four digit FORTRAN assigned
line number and the variable in the DATA statement being
processed when the error occurred.

Example

DIMENSION B(3),C(3)
DATA A/l/,B/l,2,3/,C/3*0/
DATA LIST/'THIS IS A CHARACTER STRING ' /

The above statement will assign the value 1 to A and
the values 1 to B(l), 2 to B(2) and 3 to B(3). The asterisk
is used to indicate a repeat count: thus the array C will be
set to zeroes. An error will result if a variable in a DATA
statement is not used elsewhere in a program.

NOTE: The other form of the DATA statement:

DATA A,B,C/l,2,3/

is not supported by NEVADA FORTRAN and must be rewritten as:

DATA A/l/, B/2/, C/3/

06-21-83 NEVADA FORTRAN PAGE 30

4. 7. Common Blocks

The COMMON block declaration sets aside memory (variable
space) to be shared between routines (SUBROUTINES, FUNCTIONS
and the main program). Common blocks are associated with a
name which is used by each declaring routine to point to a
specific COMMON block.

The general form of a COMMON statement is:

COMMON /namel/ listl /name2/ list2

where namel and name2 are the COMMON block names associated
with the corresponding listl and list2.

Example

DIMENSION X(100)
COMMON /ZZZ/ FIRST,LAST,X
CALL ADDEM

END

SUBROUTINE ADDEM
REAL NUMBER
COMMON /ZZZ/ F,L,NUMBER(100)

END

An array declaration may be incl uded in a COMMON
statement as shown in the subroutine above. The use of
common blocks allow data to be passed to and from a
subprogram, but without passing it as arguments (in a
heavily called routine, this method can save execution
time). If an array is to be incl uded in a common
declaration, it must either be declared previously or
declared in the COMMON statement.

06-21-83 NEVADA FORTRAN PAGE 31

If the name is omitted or the name is null (i.e. II)
then it is called blank COMMON.

Example

COMMON A, B, C, 0
COMMON I I A,B,C,D are equivalent statement~

Blank COMMON differs from named COMMON in the following
ways:

1) variables in blank common are allocated their actual
memory addresses at runtime and therefore cannot be
initialized with a DATA statement.

2) blank common is allocated at runtime directly below the
BOOS (at the top of the TPA) in CpIM or at a user specified
address. To override the default placing of the blank common
block in memory, use the M= compiler option when the program
is compilied. If the size of blank common blocks is the
same, then blank common can be used to pass data between
routines that CHAIN as the blank common variables will

. occupy the same place in memory.

NOTE: The name of a named COMMON block must not be the same
as a SUBROUTINE or FUNCTION name.

06-21-83 NEVADA FORTRAN PAGE 32

4.8. Implicit Statement

The IMPLICIT statement is used to change the default
INTEGER, REAL, DOUBLE PRECISION and LOGICAL typing.

The general format of the IMPLICIT statement is:

IMPLICIT type (range), type(range)

where:

Type is one of INTEGER, REAL, LOGICAL, DOUBLE PRECISION.
Range is either a single letter or a range of letters in
alphabetical order. A range is denoted by the first and last
letter of the range separated by a hyphen or a sequence of
single letters separated by commas.

Example

IMPLICIT INTEGER (Z) ,REAL (A,B,C,D,E,G),INTEGER (M-S)
IMPLICIT REAL (I,J)
IMPLICIT REAL (A-Z)

An IMPLICIT statement specifies the type of all
variables, arrays and functions that begin with any letter
that appears in the specification. Type specification by an
IMPLICIT statement may be overridden for any particular
variable, array or function name by the appearance of that
name in a type statement.

The IMPLICIT statement must appear before all other
statements in a particular routine: that is immediately
after the SUBROUTINE or FUNCTION statement or before the
first statement of the main program.

WARNING: Even though the DOUBLE PRECISION specification is
supported, double precision arithmetic is NOT. All DOUBLE
PRECISION variables will be treated as if they where REAL.
A warning will be issued each time a DOUBLE PRECISION
statement is encountered.

06-21-83 NEVADA FORTRAN PAGE 33

5. Expressions

An expression is a combination of variables, functions
and constants, joined together with one or more operators.

Arithmetic Operators

** or
*
/
+

Exponentiation
Multiplication
Division
Addition
Subtraction

Comparison Operators

.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.LT. Less than

.GE. Greater than or equal

.LE. Less than or equal to

Logical Operators

.NOT. Logical Negation

.AND. Logical and

.OR. Logical or

.XOR. Logical exclusive or

The .NOT. and unary minus (-) operators preceded an
operand. All other operators appear between two operands.

5.1. Hierarchy of Operators

The following is the table of operator hierarchy and the
correct FORTRAN symbolic representation to be used in
coding:

Highest

Lowest

System and User Functions

* * OR " (uparrow)
* and /
+ and - (including unary -)
. LT., . LE., . NE., • EQ., . GE., • GT •
. NOT .
• AND •
. OR. and .XOR.
Replacement (=)

06-21-83 NEVADA FORTRAN PAGE 34

5.2. Expression Eva1uation

FORTRAN expressions are evaluated as follows:

1. Parenthesised expressions are always evaluated first,
with the inner most set being evaluated first.

2. Within parentheses (or whenever there are none) the
order of expression evaluation is:

a. FUNCTION references
b. Exponentiation
c. Multiplication and division
d. Addition and subtraction

3. Operators of the same precedence are evaluated from left
to right during expression evaluation.

Example

A+l+Z*5 will be evaluated as:

((A+(1+(Z*5))

VAL*Z+(T+4)/6*X**Y will be evaluated as:

((VAL*Z)+(((T+4)/6)*(X**Y»)

NOTE: Operators of equal precedence are executed from left
to right.

06-21-83 NEVADA FORTRAN PAGE 35

5.3. Integer Operations

A fundamental difference between INTEGER and REAL
arithmetic operation, is the manner in which rounding
occurs. If you were to divide 3.0 by 2.0 using floating
point arithmetic, the answer would be L 5. However, if the
same operation were to be performed using integer
arithmetic, 3/2 would equal 1.

Note in using integer arithmetic, the fractional part of
the number is truncated. Another example is in the
multiplication of two r~al numbers. 2.9 times 4.8 would
equal 13.92. However in integer mode, the result is be 13.
Also, no more than 8 digits of accuracy are maintained.
Should more than 8 digits be generated by an integer
operation, a runtime error of INT RANG will result.

Example

6/3=2
but 7/3=2 (NOTE: no fraction is retained) and 7/9=0

99999999+5=? integer overflow

06-21-83 NEVADA FORTRAN PAGE 36

5.4. Real Operations

Unlike integers, Real operations and their results have
a precision of eight significant digits plus an exponent
(base 10) between -127 and +127.

Example

12/6.0=2.0
15.0/2=7.5
1./2.=0.5

06-21-83 NEVADA FORTRAN PAGE 37

5.5. Logical Operations

Logical operations are unlike INTEGER and REAL
operations in that they always return a value of zero (0) or
one (1). All the logical operations will return a one for a
TRUE condition, however any NON-ZERO value will be
interpreted as TRUE. If the logical operation is a
logically true statement, the result is a one, if the
statement is false, a zero is returned.

Example

A 1 .GT. 2
A = 1 .EQ. 1
AI. LT. 2

(false)
(true)
(true)

A would evaluate to 0
A would evaluate to 1
A would evaluate to 1

The relational operator abbreviations in the previous
table represent the following operations:

Example

. LT.

.LE.

.NE.

.EQ.

. GE.

.GT.

• AND.
. OR.
. XOR.

Less Than
Less Than or Equal
Not Equal
Equal
Greater Than or Equal
Greater Than

True only if both operands are true .
True if either operand is true .
True if operands are different .

IF (A .EQ. B) GO TO 500
IF (A .EQ. B.OR.K .EQ. D)STOP

Logical variables can also be used in assignment
statements:

A=A .AND. B
I=(A .OR. B).XOR.«T .EQ. 35.4).OR.(T .EQ. 39»

06-21-83 NEVADA FORTRAN PAGE 38

The following logical operators are also available, as
listed in the following truth charts.

• AND. • OR • .XOR •

AlB 1 R ALB 1 R ALB 1 R
=====#=====#===== =====#=====#===== =====#=====#=====
01010 01010 o 1 0 1 0

-----+-----+----- -----+-----+----- -----+-----+-----
01110 01111 01111

-----+-----+----- -----+-----+----- -----+-----+-----
11010 11011 11011

-----+-----+----- -----+-----+----- -----+-----+-----
11111 11111 11110

.NOT.

AIR
=====#=====

o 1 1

-----+-----
1 1 0

06-21-83 NEVADA FORTRAN PAGE 39

are:

5.6. Mixed Expressions

The standard FORTRAN rules for mixed mode expressions

integer <op> integer gives an integer result

real <op> integer gives a real result (with the
integer being converted to
real before the operation is
per formed) •

real <op> real

integer <op> real

integer = real

real = integer

gives a real result

gives a real result, with the
integer being converted to
REAL before the operation is
per formed.

will cause truncation of any
fractional part of real and an
error if the truncated result
is outside the range of'
integers.

will cause integer to be
converted to real.

In general, in a mixed expression, integers are
converted to real before the operation take place, giving a
real result (unless both operands are integer).

<op> represents one of the operators: + - / *

06-21-83 NEVADA FORTRAN PAGE 40

6. Control Statements

There are several different statements that control the
execution flow of a FORTRAN program:

These are:

1. GO TO statements
a. Unconditional GO TO
b. Computed GO TO
c. Assigned GO TO

2. IF statements
a. Arithmetic IF
b. Logical IF
c. IF-THEN-ELSE

3. DO

4. CONTINUE

5. PAUSE

6. STOP

7. CALL

8. RETURN
a. explicit RETURN
b. multiple RETURN

06-21-83 NEVADA FORTRAN PAGE 41

6.1. Unconditional GO TO Statement

The general format of the unconditional GO TO is:

GO TO n

where n is a label on an executable statement.

The unconditional GO TO Statement performs a transfer
of control to the statement number specified as the object
of the branch. If the statement number does not exist, an
undefined label error will occur; this error is detected
during compilation.

Note: Labels on FORMAT statements in most FORTRAN systems
may not receive transfer of control. This is not true in
this implementation of FORTRAN. FORMAT statements act the
same as a CONTINUE statement which will be discussed later.

Example

GO TO 10
GO TO 400

10 CONTINUE
400 FORMAT (IX)

06-21-83 NEVADA FORTRAN PAGE 42

6.2. Computed GO TO Statement

The general format of the COMPUTED GO TO is:

GO TO (n 1, n 2, ••• nm) , i

The computed GO TO statement works in a manner similar
to the GO TO statement. However, one of the distinct
advantages is that under program control, you may direct
which statement is the ne~t to be executed, based on the
value of i. The computed GO TO works as follows:

Computed GO TO
Statement

Present Value
of Variable

GO TO (1,5,98,167,4},K2
GO TO (44, 28) , J
GO TO (51,6,7,1,46),M
GO TO (1,1,1,1,2,2},LOOT

K2=5
J=l
M=4

LOOT=3

Next Executed
Statement

4
44

1
1

If the value of i exceeds the number of statement labels
in the computed GOTO, a runtime error COM GOTO will be
generated. If the value of i is less than 1, a runtime error
will also be generated.

06-21-83 NEVADA FORTRAN PAGE 43

6.3. Assigned GO TO

The general format of the assigned GO TO is:

GO TO v,{nl,n2, •••)

where v is the variable used in an ASSIGN statement and nl,
n2 are statement labels.

Example

GO TO LABL,(100,400,500)
GO TO K,(l,2,3,4,5)

06-21-83 NEVADA FORTRAN PAGE 44

6.4. ASSIGN

The general format of the ASSIGN statement is:

ASSIGN n TO V

where n is the statement label to be ASSIGNed to v. The
ASSIGN statement assigns a statement label to be used in
conjunction with the ASSIGNED GO TO statement.

Example

ASSIGN 20 TO LABEL

IF (KNT .GT. l0)ASSIGN 10 TO LABEL

GO TO LABEL, (10,20)

06-21-83 NEVADA FORTRAN PAGE 45

6.5. Arithmetic IF Statement

The Arithmetic IF allows the programmer to evaluate an
expression which may be any combination of integer, real, or
logical operators, and based upon its relationship to zero,
transfers control to one of three specified statements.

The general form of the ari thmetic IF is:

IF (e) nl,n2,n3

where e is an arithmetic expression which when evaluated is
used to determine the next statement to be executed.

If e is: next statement

<0
=0
>0

nl
n2
n3

Example

IF (A) 1,2,3
IF (BETA*SIN(BETA/DEGREE»100,150,432
IF (A-l)1,1,99
IF (.NOT. FLAG)1,5,7

06-21-83 NEVADA FORTRAN PAGE 46

6.6. Logical IF Statement

The general format of the Logical IF is:

IF (e) s

The logical IF statement operates as follows:

1. The expression e is evaluated, and a logical result is
derived, .TRUE. or .FALSE. (numerically 1 or 0,
respectively) .

2. Depending on the value which is derived, one of the
following two conditions occurs:

If e is evaluated as .TRUE. then the statement s is
executed, and once the IF has completed, transfer is then
passed to the next consecutive statement.

If e is evaluated as .FALSE. the statement s is NOT
executed and control is then passed to the next sequential
executable statement.

The statement s can be any statem ent other than an END,
another Logical IF or a DO.

Example

IF (DEGREE .EQ. l00)WRITE (1,*) RADIAN
IF «A .EQ. l2).OR.(LOOP .LE. 500»RETURN
IF (SIN(30)/WHERE-.00005 .LT .• 00004)STOP
IF (A .NE. B)GO TO 500
IF (A .EQ. l)GO TO (1,2,3),J
IF (VALUE .EQ. 6)IF (J)99,33,67
IF (I .GE. 500)J=I+20/8
IF (FLAG) A=2*A+5

06-21-83 NEVADA FORTRAN PAGE 47

6.7. IF-THEN-ELSE

The general format of the IF-THEN-ELSE statement is:

IF (e) THEN
statement 1
statement 2

ELSE
statement 3
j::t+·;'I+-~m~n+- A.

ENDIF

The IF-THEN-ELSE is an extension of the logical IF with
two additions:

1) there can be more than 1 statement to execute if the IF
is true

2) there is the provision of specifying one or more
statements to be executed if the IF is false.

The ENDIF is required to indicate the end of the
complete IF-THEN-ELSE statement.

To indicate an IF-THEN-ELSE the s part of the logical IF
is replaced with the THEN statement. All statements between
the THEN and the matching ELSE or ENDIF will be executed if
the specified condition is true. All statements between the
ELSE and ENDIF will be executed if the specified condition
is false. The ELSE is optional and if the condition is
false, all statements between the THEN and ENDIF will be
skipped.

If no ELSE condition is to be specified, then the THEN
can be terminated with an ENDIF. For example:

If (e) THEN
statement 1
statement 2
ENDIF

The statements to be executed can be any statement
including another IF-THEN-ELSE.

06-21-83 NEVADA FORTRAN PAGE 48

Note: THEN, ELSE and ENDIF are individual statements
terminated by either a carriage return or semicolon.

Example
IF (I .EO. 0) THEN

L=K+l
K=I
ELSE
K=0
ENDIF

IF (J .LT. 7) THEN
LL=L+l
ELSE
IF {A .EO. B)THEN

0=0

ENDIF

D=N
ELSE
TYPE 'ERROR'
STOP
ENDIF

06-21-83 NEVADA FORTRAN PAGE 49

6.8. DO-LOOPS

The general format for a DO loop is:

DO n i=ml,m2,m3

The DO loop is the basic loop structure in FORTRAN. It
works in a manner similar to the FOR-NEXT loop in BASIC.
The DO Loop works as follows:

1) i is set to the value of mI.

2) After each pass through the loop (which ends with the
statement labelled n), the step value, m3 is added to i. If
the m3 term (step value), is omitted, then the step value is
assumed to be one. Unlike other versions of FORTRAN the i
and m terms do not have to be INTEGER values and the step
may be negative. This allows fractional increments of the
DO loop index, i. The ability of a negative increment, m3,
allows loop to step in a downward direction. If the step
value is positive, the loop continues until the value of i
is greater than that of m2. If the step value is negative,
the loop continues until the value of i is less than that of
mI. n in the DO loop specifies the range of the DO loop.
This is the statement number of the last statement of the, DO
loop.

Irrespective of the relation of the initial and ending
values, the DO will always be executed once.

Note that 2 or more DO loops may end on the same statement.

DO loops may not terminate on GO TO, STOP, IF-THEN-ELSE, END
or RETURN statements. A common way to terminate a DO is with
a CONTINUE statement.

Example

DO 800 I=l,100
DO 1 J=I,END,.005
DO 99 A=START,END,AINCR

DO 10 I=1,5
DO 20 J=3,99

20 CONTINUE

10 CONTINUE

06-21-83 NEVADA FORTRAN PAGE 50

6.9. CONTINUE Statement

The format of the CONTINUE statement is:

CONTINUE

The CONTINUE statement is an executable FORTRAN
statement. It generates no code and is generally used as
the terminal statement of a DO loop.

Example

DO 100 1=1,50

100 CONTINUE

The CONTINUE statement simply serves to mark the range
of the DO. It is also used for transfer of contrql i.e. you
can GO TO it.

06-21-83 NEVADA FORTRAN PAGE 51

6. 10. ERR 0 R T RAPPIN G

Normally when an error occurs during the execution of a
FORTRAN program a runtime error message will be generated.
However using the ERRSET and ERRCLR statements it is
possible to control and trap runtime errors.

The general format of these statements is:

ERRSET n,v
ERRCLR

where n is the label of the statement to go to, if a runtime
error occurs. And v is the variable to contain the error
code of the runtime error that occurred.

The ERRSET statement causes control to be transferred to
the statement labeled n when a runtime error occurs. No
runtime error message will be.; printed if the error is
trapped with an ERRSET statement. The ERRSET statement can
only be used if the 0 option was specified on the OPTIONS
statement for the routine in which' the error occurred. If an
ERRSET or ERRCLR statement is encountered and the Q option
was not specified, a compilation error will be generated.

The value placed in the variable v 'corresponds to the
runtime error that occurred as follows:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Integer overflow
Convert error
Argument count error
Computed GOTO index out of range
Overflow
Division by zero
Square root of negative number
Log of negative number
Call stack push error
Call stack pop error
CHAIN/LOAD error
Illegal FORTRAN logical unit number
Unit already open
Disk full
Unit not open
Binary I/O to system console
Line too long on READ or WRITE
FORMAT error
Input/Output error in READ or WRITE
Invalid character on input
Invalid input/output list (impossible)
Assigned GOTO error
CONTROL/C abort
Illegal character in input

06-21-83 NEVADA FORTRAN PAGE 52

25 File operation error
26 Seek error

If more than one ERRSET statement is executed in a
routine, then the last one executed is the one in effect.
If a runtime error should be trapped with an ERRSET
statement, the ERRSET statement is automatically cleared
after control has transferred to the statement n.

The ERRCLR statement clears the effect of the ERRSET
statement that was last executed in the routine in which the
ERRCLR is executed.

Example

OPTIONS Q

ERRSET 10,CODE

ERRCLR

STOP
10 TYPE 'ERROR ,ERROR CODE = ',CODE

END

06-21-83 NEVADA FORTRAN PAGE 53

6.11. CONTROL/c CONTROL

At the beginning of each READ or WRITE statement the
state of the CONTROL/c abort flag is tested. If the
CONTROL/c abort flag is set, then the console is tested to
see if CONTROl/c has been hit. If CONTROL/c has been hit,
then one of two actions will occur:

1) if there is an ERRSET in effect, the error branch will
be taken with a CONTRL/c error.

2) otherwise a runtime error of CONTRL/c will be generated.

The user has control of the CONTROL/c flag through the
CTRL ENABLE and CTRL DISABLE statements. CTRL ENABLE sets
the CONTROL/c flag and allows a CONTROL/c from the console
to abort the program. CTRL DISABLE resets the flag and
causes the CONTROL/c to be ignored.

Example

DO 1 I=1,100
IF (I .EQ. 51)CTRL DISABLE

1 TYPE I
END

The above program will only abort if CONTROL/e is
entered while the first 50 numbers are being typed.

When program execution starts, the CONTROL/c flag will
be set which allows CONTROL/c to abort the program.

Note: The CONTROL/c error, if enabled, can be trapped with
an ERRSET statement. However, the CIN function will return a
control-C to the caller, regardless of the setting of the
CONTROL/c flag

06-21-83 NEVADA FORTRAN PAGE 54

6.12. TRACING

There are two statements that are used to trace a program:

TRACE ON
TRACE OFF

When program execution begins, tracing is initially off
and must be explicitly turned on. Once tracing is on, it
remains on until the program terminates or a TRACE OFF
statement is executed. The effect of the both trace
statements is global over the whole program and tracing does
not have to be turned on in each subroutine. The trace
function will output the line number of the FORTRAN
statement before execution only if the X option was
specified on the options statement for this routine.
Otherwise the program will be traced only up to the entrance
to the subroutine. It should be noted that the line number
for any entrance to a subroutine (either SUBROUTINE or
FUNCTION) will always be output as 1111 regardless of the
state of the X option.

Example

IF (FLAG .EQ. 0)TRACE ON
TRACE OFF

DO 1 1=1,100
IF (I .EQ. 50)TRACE ON

1 TYPE I

06-21-83 NEVADA FORTRAN PAGE 55

6.13. DUMP statement

The general format of the DUMP statement is:

DUMP /ident/ output list

where ident is up to a 10 character identifier for this DUMP
statement and output list is a standard WRITE output list
that may contain variables, constants, character strings,
array elements, array names and implied DO loops.

The DUMP statement is used to display information when
a runtime error occurs that is not trapped by an ERRSET
statement.

More than one DUMP statement may be executed in a
routine and the last one executed is the one that will be
output on a runtime error. Each subprogram may contain its
own DUMP statement, but only the last DUMP statement
executed in a particular routine will be saved and output if
a runtime error occurs.

Example

DUMP /AFTER-DIV/ 'Index after divide is ',K

A=K/I

END

will cause the dump statement to output if I is zero.

06-21-83 NEVADA FORTRAN PAGE 56

7. Program Termination Statements

7.1. PAUSE Statement

The general format of the PAUSE statement is:

PAUSE lany char string '

This statement causes the program to wait for any input
from the system console. To continue execution, press any
key on the system keyboard. If the character string option
is specified, the string will be displayed on the system
console. The string is enclosed in single quotes ('). To
output a quote, two quotes in a row must be entered: e.g.
(") outputs as ('). The quotes surrounding the text are
not displayed.

Example

PAUSE
PAUSE 'DATA OUT OF SEQUENCE, IGNORED'
PAUSE 'THIS IS A SINGLE QUOTE (")

ISUM=0
DO 10 1=1,10
ISUM=ISUM+I
IF (ISUM .EQ. 5) PAUSE 'SUM = 5'

10 CONTINUE
STOP
END

1216-21-83 NEVADA FORTRAN

7.2. STOP Statement

The general format of the STOP statement is:

STOP 'any char string'
STOP n

PAGE 57

When a STOP statement is executed, termination of the
executing program will occur. If the character string is
specified it will be printed on the system console when the
statement is executed. After the character string is
output, the program terminates and returns to CP/M. The
string is enclosed in single quotes. To output a quote, two
quotes in a row must be entered. The quotes surrounding the
text will not be output.

In the second form, n is a 1 to 5 dig it integer number
that will display. n is optional.

To terminate a program without the STOP being typed on
the console, use the EXIT subroutine.

Example

STOP 'PROGRAM COMPLETE'
STOP 1267
STOP
STOP 'ERROR OCCURRED, CHECK OUTPUT'

IF (ERROR .NE. f2J)STOP 'ERROR'
IF (FLAG .AND. STOPIT)STOP 'ALL DONE'

06-21-83 NEVADA FORTRAN PAGE 58

7.3. END Statement

The format of the END statement is:

END

This is a required statement for every FORTRAN routine.
It is used by the compiler to indicate the end of one
logical routine. If an END statement is executed, then the
message STOP END IN - XXXXX will be output to the system
console, with XXXXX being replaced by the name of the
FORTRAN routine in which the END statement was executed and
the program will terminate.

06-21-83 NEVADA FORTRAN PAGE 59

8. Array Specification

An array is a collection of values that are referenced
by the same name and the particular element is specified by
a subscript. Subscripts can be real or integer expressions
or constants and will be truncated to an integer value after
the expression is evaluated.

Every array that is to be used must be dimensioned.

An array may have from one to seven dimensions.

Example

If GRADE has 3 elements then:

GRADE (1)
GRADE (2)
GRADE (3)

refers to the first element
refers to the second element
refers to the third element

NOTE: Subscripted variables cannot be used as subscripts,
thus GRADE(A(I» is invalid, where both GRADE and A are
arrays.

06-21-83 NEVADA FORTRAN PAGE 60

8.1. Dimension Statement

The general format for a DIMENSION statement is:

DIMENSION v(nl,n2, .. ,nm), ..

Where v us the array name and NI, N2, .. are the size of each
of the dimensions of the array v.

The DIMENSION statement is used to define an array. The
rules for using the DIMENSION statement are as follows:

1) Every subscripted variable must appear in a DIMENSION
statement whether explicit (in a dimension statement) or
implied (in a REAL, DOUBLE PRECISION, INTEGER, LOGICAL or
COMMON statement) prior to the use of the first executable
statement.

2) A DIMENSION specification must contain the maximum
dimensions for the array being defined.

3) The dimensions specified in the statement must be numeric
in the main routine. However, in subprograms the subscripts
may be integer variables. Hence the following statement is
valid only in a SUBROUTINE or FUNCTION:

DIMENSION A(I,J)

In the case where the dimensions of an array are speci fied
as variables, the value of the variable at runtime will be
used in computing the position within the array to be
accessed.

4) All arrays passed to subprograms must be DIMENSIONED in
the subprogram as well as in the main program. If the
arguments in the subprogram differ from those in the main
program, then only those sections of the array specified by
the DIMENSION statement in the subprogram will be accessible
in the subprogram.

5) The number of dimensions specified for a particular
array cannot exceed 7.

6) No single array can exceed 32,767 bytes in size (5461
elements) .

06-21-83 NEVADA FORTRAN PAGE 61

Note: The following is a method that can be used to get
around the size limit of arrays. Allocate the large array
in a named common block as 2 or more sequential arrays. Use
just the first array and subscript out of it as neccessary.
The way that common blocks are allocated will assure you
that the arrays are allocated sequentially in memory. For
example, if you want an array of 7000 elements, it can be
defined as:

COMMON /DUMMY/ TABLE(4000),TABLE1(3000)

Then you would just use the array TABLE. To access the
4945th element, just use TABLE(4945) (which is actually the
945th element of TABLE1).

Example

DIMENSION GUN(S,E)

DIMENSION A(2,2),B(10)
DIMENSION ZIT(10)
REAL APPLE (10)
LOGICAL FUNCT(100)

(this statement is valid only
in a subprogram as it uses
variable dimensions).

DOUBLE PRECISION ARR(10),B(8),A(SIZE)

DIMENSION A(3,2,3),C(10),ZOT(10,10)
INTEGER SWITCH(15)

"A" would require 3*2*3*(6) = 108 bytes
"c" would require 10*(6) = 60 bytes
"ZOT" would require 10*10*(6) 600 bytes
"SWITCH" would require 15*(6) = 90 bytes

In calculating the memory used by an array, multiply
each of the dimensions times each other, then times 6. The
result will be the number of bytes used by the array for
storage.

WARNING: No subscript range checking is performed at
runtime.

06-21-83 NEVADA FORTRAN PAGE 62

8.2. Subscripts

Subscripts are used to specify an entry into an array
(i.e. the value specified in the subscript is the element of
the array referenced). Subscripts may be integers, real
(fractions are truncated), logical expressions or any other
valid expression. Expressions are evaluated as explained in
the EXPRESSION section (5.2.0).

Example

ZIT(8)
A(1+2)
ORANGES (I+5-(K*10)/2)
APPLE(5)

06-21-83 NEVADA FORTRAN PAGE 63

9. Subprograms

Subprograms provide a means to define often needed sections
of code that can be considered as a unit. FORTRAN provides
the means to execute these subprograms whenever they are
referenced.

There are 3 types of subprograms supported in this version
of FORTRAN:

1) SUBROUTINE subprograms

2) FUNCTION subprograms

3) Built in library functions

The major differences between FUNCTIONS and SUBROUTINES are
listed below.

1) FUNCTIONS are used in expressions, while SUBROUTINES must
be CALLed.

2) FUNCTIONS require at least one parameter; SUBROUTINES do
not require any.

3) The name on the FUNCTION statement must be the object of
a replacement statement somewhere in the FUNCTION; this is
not the case for a SUBROUT INE.

WARNING: If a constant is passed as an argument in ei ther a
CALL or FUNCTION'reference, and the corresponding parameter
in the SUBROUTINE or FUNCTION is modified, then the value of
the constant that was passed will be changed, and remain
that of the new value.

NOTE: All SUBROUTINES and FUNCTIONS must be compiled at the
same time.

06-21-83 NEVADA FORTRAN PAGE 64

9.1. SUBROUTINE Statement

The general format of the SUBROUTINE statement is:

SUBROUTINE name(list)

The SUBROUTINE statement is used to identify the
beginning of a logical routine. This statement is required
at the beginning of every SUBROUTINE. The list that is to
receive the values being passed to the subroutine is
optional if no parameters are to be passed.

Example

SUBROUTINE ADDIT (RESULT,X,Y)
RESULT=X+Y
RETURN
END

06-21-83 NEVADA FORTRAN PAGE 65

9.2. FUNCTION Statement

The general format of the FUNCTION statement is:

FUNCTION name(list)

A FUNCTION statement is used to define a logical routine
as a FUNCTION. The type of result of a FUNCTION can be
specified by preceding the FUNCTION with REAL, DOUBLE
PRECISION, INTEGER, or LOGICAL; or the name of the FUNCTION
may appear in a type statement within the FUNCTION.

Example

FUNCTION SWAP(A)
SWAP=A
RETURN
END

INTEGER FUNCTION SWAP (A)
SWAP=IFIX(A)
RETURN
END

FUNCTION SWAP (A)
INTEGER SWAP
SWAP=A!2
RETURN
END

DOUBLE PRECISION VALUE(WHAT)
VALUE=WHAT!4*7+5
RETURN
END

06-21-83 NEVADA FORTRAN PAGE 66

9.3. CALL Statement

The general format of the CALL statement is:

CALL name(list)

The CALL statement is used to transfer control to a
SUBROUTINE. List specifies the parameters to be passed to
the SUBROUTINE and may be omitted if no parameters are to be
passed.

The number of parameters in a CALL and SUBROUTINE
statement referring to the same subprogram must be the same,
otherwise a runtime error will result.

Example

CALL XSWAP (NUM1,NUM2,TOTAL)
CALL XSWAP

06-21-83 NEVADA FORTRAN PAGE 67

9.4. RETURN Statement

There are 2 types of RETURN statements:

l} normal RETURN

2} multiple RETURN

9.4.1 Normal return

RETURN

The RETURN Statement is used to terminate execution of a
subprogram whether it is a FUNCTION or a SUBROUTINE. Return
is transferred to the next statement following the CALL
statement, or in the case of a FUNCTION, return is
transferred back to the point where it was called with the
value of the FUNCTION returned. A RETURN statement is not
valid in the MAIN routine and will cause an error during
compilation if encountered in the MAIN routine.

Example

SUBROUTINE ZERO{I,J)
I=0
J=0
RETURN
END

FUNCTION ZZ{VAL)
COMMON /A/ A,B,C
ZZ=A+B/C-VAL
RETURN
END

06-21-83 NEVADA FORTRAN PAGE 68

9.5. Multiple return

The general format of the multiple RETURN statement is:

RETURN I

This variation of the RETURN statement is used to
transfer back from a SUBROUTINE to a point other than the
statement that immediately follows the CALL. The I in the
RETURN is the name of a variable in the argument list of the
subroutine and must have been passed as a label in the CALL.
The CALL statement that invokes a routine that contains a
multiple return must pass the label as one of the
parameters. The statement label is indicated in the
argument list by preceding the label with an ampersand (&).

Example

CALL X(&1,Y,2,&2)

SUBROUTINE X(I,A,IC,J)

C
C THE FOLLOWING RETURN WILL TRANSFER TO THE STATEMENT
C LABELLED III IN THE CALLING PROGRAM.
C

RETURN I

C
C THE FOLLOWING RETURN WILL TRANSFER TO THE STATEMENT
C LABELLED 121 IN THE CALLING PROGRAM.
C

RETURN J
END

NOTE: Multiple RETURNS are only valid for SUBROUTINES.

06-21-83 NEVADA FORTRAN PAGE 69

9.6. BLOCK DATA SUBPROGRAM

The BLOCK DATA subprogram is used to initialize
variables in named COMMON. The BLOCK DATA subprogram must
contain no executable statements. It may contain only
declaration statements for specifing variable types, array
dimensions, COMMON blocks and DATA statements.

Example

BLOCK DATA
INTEGER FIRST, LAST
COMMON /ONE/ NAMES(100) /TWO/ FIRST, LAST
DATA FIRST /1/, LAST/10/
DATA NAMES /1,2.0,4,5,6,7,8,9,10,90*99999/
END

NOTE: The variable in named COMMON can be initialized in any
routine. The BLOCK DATA subprogram appears only for
compatibility with other FORTRAN systems.

06-21-83 NEVADA FORTRAN PAGE 70

10. Input/Output

10.1. Introduction to FORTRAN I/O

10.1.1. General Information

Input and Output (I/O) under FORTRAN may take one of the
following forms:

1) Standard Formatted I/O
2) Free Format I/O
3) Binary I/O

In formatted I/O, input and output is defined in terms
of fields which are right justified on the decimal point,
with zero suppression. In a FORMAT statement, no more than
three levels of nested parentheses are allowed (outer set
and two nested inner sets).

Free Format I/O is used as in BASIC. All the values are
entered using commas (,) or carriage returns to delimit the
numbers.

Binary I/O is a third option that allows passing of
large files between FORTRAN programs, with the minimal
amount of wasted disk space. Each variable written in binary
format uses six bytes of disk space.

FORTRAN logical units 0 and 1 are dedicated to console
input and output and cannot be either opened or closed. An
attempt to open or close 0 or 1 will result in a runtime
error. Logical unit 0 is used for console input and logical
unit 1 is used for console output. Binary I/O cannot be
specified for logical units 0 or 1 and doing so will result
in a runtime error.

There are two special I/O statements:

TYPE
ACCEPT

Both of these are followed by a standard I/O list.
equivalent to WRITE (1,*) and ACCEPT to READ (0,*).
just a convenient method of doing console I/O.

Example

TYPE I,J,(A(I),I=l,10)
ACCEPT 'INPUT THE MAX COUNT' ,COUNT

TYPE is
This is

06-21-83 NEVADA FORTRAN PAGE 71

A RUNTIME FORMAT can be specified for any formatted I/O
statement by substituting an ARRAY name for the FORMAT
number. At runtime, the array is assumed to contain a valid
FORTRAN FORMAT (complete with its outer set of parentheses).
This allows a FORMAT statement to be input at runtime and
then to be used in either READ or WRITE statements within
the program. Thus a particular. FORMAT can be changed at
runtime instead of having to recompile the program. The
FORMAT should be input using an A6 format specification as
imbedded blanks (added if using less than an A6) will cause
a runtime error.

Example

DIMENSION FORM(l0}
READ (0,10) 'ENTER DATA FORMAT ',FORM

10 FORMAT (10A6)

READ (4,FORM) A,B,C

WRITE (5, FORM} R1,R2,R3

06-21-83 NEVADA FORTRAN PAGE 72

10.1.2. I/O List Specification

The I/O List is used to specify which variables are to
be READ or WRITTEN in a particular I/O statement. The list
has the same form for both READ and WRITE statements. The
list can be composed of one or more of the following:

1) simple (non-subscripted) variable
2) array element
3) array name
4) implied DO loop
5) literal
6) constant (WRITE only)

The above types are combined to form the I/O 1 ist
specification. Items 1-4 are self explanatory, however item
4, the implied DO loop is explained further below:

The implied DO loop is used mainly to output sections of
one or more arrays and functions in the same way as does a
regular DO loop. An example of an implied DO loop is:

WRITE (1,*) (F(I),I=1,3,1)

It should be noted that the outer parentheses and the
comma preceding the DO index are always necessary when using
an implied DO loop. Nested loops can be used. Each loop
must be enclosed in parentheses. An example follows:

WRITE (1,*) (J,(F(I,J),I=1,4),J=l,30,2)

The inner DO (I) is performed for each iteration of the
outer DO (J). Note that other than array elements can be
included within the range of an implied DO. Implied DO's
can be nested to any depth, each within its own set of
parentheses.

06-21-83 NEVADA FORTRAN PAGE 73

LITERALS (character strings enclosed in quotes) can be
used in any WRITE statement and in READ statements that
reference the system console. The literals can be used as
prompts for input or identification on output.

Example

WRITE (1,*) 'A= ',A
TYPE 'The answer is' ,ANS
WRITE (5,3) 'X= ',X

READ (0,*) 'A= ',A,' B= ',B
ACCEPT 'Enter quantity ',QUANT

NOTE: An attempt to use a literal in a READ statement that
doesn't reference the console will result in an INPUT ERR
runtime error.

06-21-83 NEVADA FORTRAN PAGE 74

1~.2. READ Statement

READ(unit{,format} {,END=end} {,ERR=error}) I/O list

The READ statement is required in order for the user to
do input through the FORTRAN system. If a unit number of 0
is used there is no need to open this file as it is assumed
to be system console input. Note: do not use 1 as the
logical unit as it is reserved for the system console
output. Any other unit number must first have been opened
by the user through the OPEN or LOPEN subroutine. The FORMAT
entry may take one of the following forms:

l} The FORMAT number is the label on the FORMAT statement
which is to be used.

2} An asterisk (*) in the FORMAT entry indicates that
input is to be free format. The exact format of the output
depends on the value of the number being output and is
determined at runtime.

3) If the FORMAT entry is left blank (or not specified),
binary input is assumed.

4} The name of an array that contains the FORMAT to be used.

END= is the label to which transfer of control is to be made
should an end of file condition be encountered. ERR= is the
label to which control will be transferred, should an error
other than end of file occur during input, such as a bad
sector. The ERR= does not handle input format errors (such
as decimal point in a integer field). Use ERRSET to handle
these input errors. I/O list is the string of variables
which accept the data to be read.

Example

READ (0,2) A

READ (0,*) A

READ (4) A

read from the system console the
variable IAI under FORMAT number 2

read from the system console the
variable IAI in free format.

read from logical file 4, the
variable A in binary.

06-21-83

READ (4"END=10) A

NEVADA FORTRAN PAGE 75

read from logical file 4, the
variable A, in binary, and if end
of-file is encountered, go to
statement label 10

READ (4,*,END=10,ERR=100) A

READ (4"ERR=100) A

read from logical file 4, the
variable A in free format, should
end-of-file be encountered, go to
statement label 10. If an error
occurs, go to statement label 100.

read from logical file 4, the
variable A in binary format, and if
an error occurs, go to statement
label 100.

NOTE: The END= and ERR= parameters are optional and can
appear in any order.

06-21-83 NEVADA FORTRAN PAGE 76

10.3. WRITE Statement

WRITE (unit{,format} {,END=end} {,ERR=error}) I/O list

The WRITE statement is used to output to either disk
files or the console. It performs a function that is the
opposite of the READ statement. The I/O list is specified
exactly the same as for the READ statement with the
exception that a string can always be used in the I/O list.
However the END= serves no function and will never be used
by the WRITE statement.

Example

WRITE (1,2) I,J,PAY,WITHOLD
WRITE (1) (I, I=l, 10)
WRITE (10,*) THIS
WRITE (6,12,END=99,ERR=66) LOOP,COUNT

06-21-83 NEVADA FORTRAN PAGE 77

10.4. MEMORY TO MEMORY I/O statements

The ENCODE and DECODE statements allow I/O to be
performed to or from a specified memory location. This
allows data in memory to be read (using DECODE) with perhaps
a different format code depending on the data itself. The
ENCODE statement is similar to a WRITE statement in that
data is formatted according to the specified format type,
but instead of being output to a file it will be placed in
memory at the specified location for further processing.

06-21-83 NEVADA FORTRAN PAGE 78

10.4.1. DECODE statement

The general form of the DECODE statement is:

DECODE (variable, length, format) I/O list

The DECODE statement is similar to a READ statement in
that it causes data to be converted from external ASCII
format to internal FORTRAN type. Variable is either an
unsubscripted variable name or an array name. Length is the
number of bytes to process for this READ starting at
variable. If multiple records are required by the I/O list,
successive records of length will be retrieved from memory.
Input records will be blank padded on the right end as
necessary as in a READ statement. FORMAT is either an
asterisk for free formatting or the number of a FORMAT
statement.

Example

DIMENSION A(15)
READ (1,10) A

10 FORMAT (l5A6)
DECODE (A,80,ll) KNTl,KNT2,CNT3

11 FORMAT (I10,I3,F10.5)

06-21-83 NEVADA FORTRAN PAGE 79

10.4.2. ENCODE statement

The general form of the ENCODE statement is:

ENCODE (variable, length, format) I/O list

The ENCODE statement is similar to a WRITE statement in
that it is used for a memory to memory formatted WRITE.
Variable is either an unsubscripted variable name or an
array name. Length is the number of bytes (or characters)
that the output record is to contain. If the number of
characters generated by the ENCODE statement is less than
length, then the record will be blank padded to length. If
the number of characters in the generated record is greater
than length, then the record will be truncated after the
length character. If multiple output records are generated,
successive records of length character will be placed in
memory starting at variable. FORMAT is either an asterisk
for free formatting or the number of a FORMAT statement.

Example

DIMENSION A(15)
ENCODE (A, 80, *) (I, I=l, 5)

06-21-83 NEVADA FORTRAN PAGE 80

10.5. Format Statement and Format Specifications

The general form of the FORMAT statement is:

n FORMAT (sl,s2, ••. sn)

The FORMAT statement is used in FORTRAN to do formatted
input and output. Through the use of this statement the
programmer has the ability to select the fields in which to
read, or specify the columns on which to write. It is the
use of this statement which gives FORTRAN its I/O power. On
FORMATTED input, blanks are treated as if they were zeros
except when reading in A format. A constant enclosed in
backslashes (eg \A\) can be used to enter a binary constant
from a string within a FORMAT statement.

If a number cannot be written in the specified field
width, then the entire field will be filled with asterisks
(*) to indicate the error condition. Note: some FORTRANS
will print a negative number, even when there is not room
enough to place the negative sign in the field, by omitting
the negative sign. In this case, NEVADA FORTRAN will fill
the field with aste+isks. Asterisk filling of a field that
is not large enough to output a number applies on all output
specifications.

A ZERO will always be printed as 0.0 under a F, E or D
field specification. If a field is printed as 0.000 .•• this
indicates that the digits have been truncated because the d
portion of the field specification was not large enough.

All floating numbers output using the F, E or D (and G
with a floating point number) specifications will be rounded
to the appropriate number of digits specified by the d
portion of the field specifier.

06-21-83 NEVADA FORTRAN PAGE 81

10.5.1. X-Type (wX)

The X-Type specification is used to space over any
number of columns with a maximum of 255 character positions.
w may have any val ue from 1 to 255.

On output the columns spaced over will be set to blanks. On
input w characters of the input record will be skipped.

Example

10 FORMAT (10X,I10,3X,I5)
99 FORMAT (IX, 'THIS IS A LITERAL',5X,'$$$$')

10.5.2. I-Type (Iw)

The I-Type specification is used as a method of
performing I/O with integer numbers. On input, the number
must be right justified in the specified field with leading
zeros or blanks. On output the leading zeros are replaced
by blanks, and the number is right justified in the field.

Example

10 FORMAT (10I10)

10.5.3. A-Type (Aw)

The A-Type specification is used to perform the input of
alphanumeric data in ASCII character form. Up to 6 ASCII
characters may be stored per variable name. However, this is
entirely under program control. For example the user may
choose to store only one character per variable in a
dimensioned array, in order to do character manipulation.
Characters are stored in the variable left justified and
zero filled. On output these padding zeros will be printed
as blanks. It is not advisable to perform any arithmetic
operations on a variable that contains character data as
unpredicatable results may occur. A format code of A6 is the
maximum field width for both input and output.

Example

10 FORMAT (Al0,I10,A6)

06-21-83 NEVADA FORTRAN PAGE 82

10.5.4. /-TYPE (/)

The /-Type specification is used to cause I/O to skip to
the next record. During input this causes a new input
record to be read, even though the previous one was not
fully used. On output the slash will cause the current line
to be written out to the associated file.

Example

.54 FORMAT (110/)

WRITE (1,100) 1,20,45
100 FORMAT (13/213)

will generate

1
20 45

10.5.5. Z-Type

The Z-Type specification is used only for output, to
indicate to the system that a carriage return/ line feed is
not to be written at the end of the record. The Z
specification is ignored on input.

Example

WRITE (1,10)
10 FORMAT ('INPUT X ',Z)

READ (0,*) X

06-21-83 NEVADA FORTRAN PAGE 83

10.5.6. L-Type (Lw)

The L-Type specification is used with LOGICAL variables,
where w is the width of the field. On output, the letter T
or F is printed (for .TRUE. or .FALSE. respectively). The T
or F will be right justified in the field. On input, the
field is scanned from left to right until a T or F is found.
The T or F can be located anywhere in the field and all
characters that follow the T or F in the remainder of the
field are ignored. If the first character found is not a T
or F an error will be generated. If the input field is
completely blank, then a .FALSE. value will be used.

Example

LOGICAL WHICH
WRITE (I,ll) WHICH

11 FORMAT (8L10)

10.5.7. T-Type (Tw)

The T-Type code can be used on both input and output. It
is used to move to a explicit column within the input or
output buffer. W specifies an absolute column number that
the next character is to be read from (on input) or to be
placed upon (on output). The first col umn number is L On
input the T format code can be used to re-read a particular
set of columns in different format codes in the same read
statement. Tabbing beyond the end of the input record causes
the input record to be blank padded. On output, the output
cursor can be moved back (to the left) over text already
inserted into the output buffer, thus causing text already
there to be over written with new data. Tabbing beyond the
maximum character inserted into the output buffer will cause
blanks to be inserted into the output buffer to the
indicated column. The maximum value of w is 255.

Example

WRITE (1,56) I,LOT
56 FORMAT (I10,T50,I4)

J=1234
WRITE (1, 34) J

34 FORMAT ('$$$$$$$$$$',T5,I4)

will produce:

$$$$$1234$

06-21-83 NEVADA FORTRAN PAGE 84

10.5.8. K-Type (Kw)

The K-Type format code is used to transmit data in
hexadecimal format. Each byte of internal memory occupies 2
hexadecimal characters. If w is less than 12 characters (6
bytes/variable, 2 hex characters/byte), the hexadecimal
characters will be either input or output starting from the
low order memory address (beginning of the variable).

Example

WRITE (1,99) 1
99 FORMAT (K12)

will output the line:

100000000081

06-21-83 NEVADA FORTRAN PAGE 85

10.5.9. F-Type (Fw.d)

The F-Type specification is one of several
specifications for performing I/O with floating point
numbers. The digit portion of the decimal number works the
same as in the I-Type format. The fractional part of the
number is always printed, including trailing zeros. During
input, the decimal point is assumed to be at the indicated
position, unless explicitly overridden in the input field.
The number ZERO will always print as 0.0 (with the decimal
point aligned where specified) regardless of the field width
or decimal digits specified. Remember to consider the
decimal point and negative sign of the number when specifing
the width of the output field.

Example

F4.l
F7.5
F3.0
F7.2

F7.2
F2.l
F7.5
F4.l

Output

Input

32.2
0.00001
7.
bbb4.50

b4.5bbb
70
bbbb001
32.2

NOTE: b is used to indicate a blank position.

During input the F field specifier reads w characters. If
there is not a decimal point in the field read, a decimal is
inserted d digits from the right. A decimal point in the
input field overrides the field specification.

06-21-83 NEVADA FORTRAN PAGE 86

10.5.10. E-Type (Ew.d)

The E-Type specification is another method of performing
I/O with floating point (real) numbers. It is through this
specification that the programmer may perform I/O using an
exponential format. That is a mantissa followed by an
exponent of ten. Again as with the F type, the decimal point
is assumed to be at the indicated position if not overridden
in the input field. The exponent part of the input number
can be omitted, in which case it is treated as if it were an
F type specification. The number will be printed as d
digits followed by the letter E, exponent sign, and a three
digits exponent. The d part cannot be zero for output.

Example

E9.2
E9.2
E10.0

E10.0
E9.2
E9.2

Output

Input

0.00E+000
0.l2E+004
invalid

1000.
1.23E+004

0.

NOTE: Data can be read in the F format using the E or D
format specification without causing an error.

When the E format is used for input, the data must be right
justified in the field. If it is not, then the blanks
appearing in the exponent field will be interpreted as
zeros.

10.5.11. D-Type (Dw.d)

The D-Type format is treated exactly the same way as the E
format code, except on output a D is inserted into the
number instead of an E. On input they are treated exactly
the same.

06-21-83 NEVADA FORTRAN PAGE 87

10.5.12. G-Type (Gw.d)

The G-Type can be used on either input or output and for
both integer and real values where wand d have the same
meaning as in the E, D and F type formats. The G format is
treated as follows:

Output

If the output element is of type integer, then the
format code used will be Iw.

If the output element is of type real, the actual format
code used depends on the value of the number being output:

Ew.d will be used if the number is outside the range of
0.1<= number < 10**d, or

F (w-5) . d , 5X
F(w-5) . (d-l), 5X

F (w-5) • I, 5X
F(w-5) .0, 5X

if
if

if
if

.1 <= number <1
1 <= number <10

10**(d-2)<= number< 10**(d-l)
10**(d-l)<= number< 10**d

In general in this range:

F(w-5) .(d-(exponent of number»,5X

Input

If the input element is of type integer: Iw

If the input element is of type real: Ew.d

Example

A=5.67
WRITE (1,34) A

34 FORMAT (GI0.5)

READ (0,9) A
9 FORMAT (G9.3)

06-21-83 NEVADA FORTRAN PAGE 88

1".5.13. Repeating field specifications

A field specification can be repeated in a FORMAT statement
by preceding it with the number of times that it should be
repeated. Thus 4110 is the same as 110,110,110,110. The
following FORMATS are equivalent:

10 FORMAT (3I4,2F10.4)
10 FORMAT (I4,I4,I4,F10.4,F10.4)

A single field specification or a group of field
specifications can be enclosed in parentheses and preceded
by a group count. In this case, the entire group is
.repeated the specified number of times. The following
FORMATS are equivalent:

19 FORMAT (I4,2(I3,F4.1»
19 FORMAT (I4,I3,F4.1,I3,F4.1)

The FORMATS:

10 FORMAT (I5,2(I3,F5.1»
10 FORMAT (I5,I3,F5.1,I3,F5.1)

execute exactly the same for output, but differ for input.
In a FORMAT without group counts, control goes to the
beginning of the FORMAT statement for reading or writing of
additional values. In a FORMAT with group counts,
additional values are read according to the last complete
group.

Example

READ (2,10) KNT,(Z(I),I=l,KNT)
10 FORMAT (I5/(F10.5»

The 15 specification will be used once and the array values
will be read using the F10.5 specification.

Group counts can be nested to a maximum depth of two. Thus:

10
10

FORMAT (2(15,3(110»
FORMAT (2(15,3(110,2(11»)

is ok, 'while
is not legal.

06-21-83 NEVADA FORTRAN PAGE 89

10.5.14. String Output

Character strings are written using a FORMATTED write.
The string to be written is enclosed in SINGLE QUOTES (I)
and may not contain a backslash (\). To output a single
quote within the string, two single quotes in a row must be
entered. The string format type is only valid on output and
if used with a READ will result in a runtime error being
produced.

A character string can also be specified using the H
(or Hollerith) field specification. This is an awkward
method of specifing a character string as the number of
characters in the string must be specified in front of the
H. The H type should be avoided as it can lead to problems.

The hexadecimal code for any character (except 0) can
be inserted in a string by enclosing it in backslashes (\).
The backslash character can be changed using the CONFIG
program.

Placing an ampersand (&) in front of a character in a
string causes the character to be treated as a control
character. To output an ampersand, two ampersands in a row
must be used.

Example

WRITE (l,46)
46 FORMAT ('THIS IS A TEXT STRING ')
65 FORMAT (21HTHIS IS A TEXT STRING)
48 FORMAT ('This is an exclamation point\21\')

generates: This is an exclamation point!

99 FORMAT ('This is a control L: &L')

generates: This is a control L: {followed by a
control/L

11 FORMAT ('This is an ampersand: &&1)

generates: This is an ampersand: &

06-21-83 NEVADA FORTRAN PAGE 90

10.6. Free Format I/O

10.6.1. INPUT

FREE format input is similar to BASIC. Blanks in this
mode of input are ignored completely. Numbers are entered
in any format (F, D, I or E) and can be intermixed as
desired. Numbers must be separated from each other by a
comma or a carriage return. A comma may appear after the
last number on an input line and is ignored if present. If
the I/O list specifies more variables than there are in an
input record, succeeding records will be read until the list
is satisfied. Blank input records and blanks imbedded in
numbers are ignored in this mode. The last number in any
input record does not have to be followed by a comma.

10.6.2. OUTPUT

With FREE format output the exact output format used
depends on the type of the variable or constant being
output. An integer will result in an I type format being
used, and a real will use a G-type. (The actual format used
in this case depends on the value being output).

Example

ACCEPT I
ACCEPT 'PLEASE ENTER ID NUMBER',ID, 'HOW MUCH',AMOUNT
READ (0,*) A,B,C

TYPE 'THE RESULTING VALUE IS ',VALUE
WRITE (0,*) 'THE RESULTING VALUE IS',VALUE
TYPE '1 + 1 =' , 2

06-21-83 NEVADA FORTRAN PAGE 91

Free format I/O can also be used to any file, not just
the console. The file must first be opened using either the
OPEN or LOPEN routine. Then specifing an asterisk as the
FORMAT number will perform free format I/O to the specified
file.

Example

CALL OPEN (2,'INFILE ')
CALL OPEN (4, 'B:FILE')
CALL OPEN (3, 'LST: I)
READ (2,*) (A{I),I=1,10)
WRITE (3,*) (A{I),I=10,1,-1)

06-21-83 NEVADA FORTRAN PAGE 92

10.7. BINARY I/O

BINARY I/O provides a quick and efficient means of
transferring information to and from a file. The variables
are READ or WRITTEN in BINARY format. That is, six bytes for
each item in the I/O list. WRITE causes the item in the I/O
list to be written exactly as it is stored in memory without
any additional conversion. READ does the opposite, reading
six bytes directly into the I/O list item. No conversion or
check is made on the data being read.

Example

WRITE (1) (I, 1=1, 100)
WRITE (l"ERR=66) ARRAY

READ (l"END=99) VALUE
READ (1) THIS,IS,IT

NOTE: the binary READ and WRITE transfers 6 bytes from the
file specified directly to the variable in the I/O list. No
check on the validity of the data is performed and the user
should be sure that the variable contains valid numerical
data before any ari thmetic operations are done on the
variable. An end-of~file is indicated by either the
physical end of the file or a six byte field of all FF
(hex). This is the value that ENDFILE will place at the end
of a file that has had binary writes performed on it.

06-21-83 NEVADA FORTRAN PAGE 93

10.8. REWIND Statement

The general format of the REWIND statement is:

REWIND unit

The REWIND Statement is used to position the file
pointer associated with unit to the beginning of the file.
Essentially this statement closes and then re-opens the file
at the beginning.

Example

REWIND 3
REWIND INFILE
REWIND OUTF

06-21-83 NEVADA FORTRAN PAGE 94

10.9. BACKSPACE Statement

The general format of the BACKSPACE statement is:

BACKSPACE unit{,error}

The BACKSPACE statement is currently not implemented and
will produce a message to that effect if encountered at
runtime.

06-21-83 NEVADA FORTRAN PAGE 95

10.10. ENDFILE Statement

The general format of the ENDFILE statement is:

ENDFILE unit

The ENDFILE statement is used to force an end-of-file on
unit. Any data that existed beyond the point in the file
where the ENDFILE was executed will be lost.

Note: The ENDFILE file statement will also CLOSE the
specified file. Essentially the ENDFILE is equivalent to
just closing the file: both do the same thing.

Example

ENDFILE 4
ENDFILE FILE

06-21-83 NEVADA FORTRAN PAGE 96

l~.ll. GENERAL COMMENTS ON FORTRAN I/O UNDER CP/M

The OPEN or LOPEN subroutine is used to associate a
f i 1 e wit h a FOR T RA N log i cal un it. E i g h t f i 1 e s are
available, numbered 0 through 7 with 0 being permanently
open and associated with input from the CP/M console,
logical file 1 also is permanently open and is associated
with output to the CP/M console. Logical files 0 and 1
cannot be opened or closed. Additionally any log ical unit
associated with the CP/M console (through the use of the
filename CON:) cannot have binary I/O done to it, cannot be
rewound (using REWIND), endfiled (using ENDFILE) or seeked
(using the SEEK routine).

A file that is going to be written on should be
deleted, using the DELETE subroutine, before the file is
opened. The OPEN routine does not delete a file as it does
not know what type of I/O will be performed on it.

The CLOSE routine will not place any end-of-file
indicator in a file that was written to: the ENDFILE
statement must be used to write an end-of-file indicator to
a file. The ENDFILE statement will write the normal CP/M
end-of-file indicator (control-Z) if the file specified in
the ENDFILE has been written to and no binary I/O was done
to the file. If binary I/O has been done to the file, then
an end-of-file of 6 bytes of FF (hex) will be written
instead. If a file is written and then read without being
ENDFILEd, it is possible to encounter unwritten data of
unknown characters that may cause an error during the READ
(illegal character, end-of-file, etc). All files that are
written to should be ENDFILEd.

When SEEKing within a file, remember that it is a BYTE
position that is specified in the call to SEEK. Each record
written to a file will contain a carriage return and line
feed appended to the end of it. Remember that the carriage
return and line feed MUST be incl uded in the count of
characters that make up-a record. If SEEKing on a record,
it is up the user to insure that each record written
contains the same number of characters. If the records do
not contain the same number, SEEKing can become a very
complicated task.

06-21-83 NEVADA FORTRAN PAGE 97

18.12. SPECIAL CHARACTERS DURING CONSOLE I/O

Entering a control-X during input from the CP/M console
will cancel the current line and echo an exclamation point
(!) followed by a carriage return and line feed.

End-of-file from the CP/M console is indicated by a
control-Z being entered as the first character of an input
line during console r/o.

Entering a DELETE (7F hex) or control-H will erase the
last character entered.

06-21-83 NEVADA FORTRAN PAGE 98

11. General Purpose SUBROUTINE/FUNCTION Library

The following list of subroutines are available for the
user of FORTRAN.

SUBROUTINE Name

OPEN
LOPEN
CLOSE
DELETE
SEEK
RENAME
SETUNT
MOVE
CHAIN
LOAD
EXIT
DELAY
CIN
CTEST
OUT
SETIO
RESET
POKE
BIT
PUT

FUNCTION Name

CHAR
INP
CALL
CBTOF
PEEK
COMP

For details as to the parameters required, see the following
descriptions of the individual routines.

06-21-83 NEVADA FORTRAN PAGE 99

If the error is present in the CALL statement and a CP/M
error should occur, return will be to the statement
following the call and error will contain the appropriate
error code as listed below. If error is present and the
routine completes successfully, then a zero will be returned
for error. However if error is not specified and th~ rQutine
encounters an error, the program will terminate with a
run tim e error.

The following is a list of possible errors that may returned
through the optional error parameter.

0 = OK
1 = specified file not found
2 disk is full
3 = end of file encountered
4 = new filename for RENAME already exists
5 = seek error
6 = seek error (but file is closed)
7 = fonnat error in CHAIN or LOAD file

06-21-83 NEVADA FORTRAN PAGE 100

11.1. OPEN

CALL OPEN (uni t,' file' { , error})

The OPEN routine is used to open a CP/M file the user
may wish to access. unit and file are required entries. If
the CP/M file does not exist and error is not specified,
then the file will be cr~ated. However, if error is
specified and the file does not exist, the appropriate CP/M
error code will be returned and the file will not be opened.

There are 2 special filenames that are recognized by
the OPEN routine:

CON: used to specify either CP/M console input or
output

LST: used to specify CP/M list device

Example

CALL OPEN (3,'CON: ')
WRITE (3, *) , A= " A

will output the text to the system console.
with the name ·CON: can also use a literal
statement such as:

CALL OPEN (4,' CON: ')
READ (4,*) 'INPUT QUANTITY ',QUANT

Files opened
in an input

Output can be directed to the CP /M LST dev ice by opening the
file LST: as in:

CALL OPEN (2,'LST: ')
WRITE (2, *) (I, I=l, 123)

06-21-83 NEVADA FORTRAN PAGE 101

To open a disk file, just the filename needs to be specified
such as:

CALL OPEN (4, 'C:FILE.BAS')
CALL OPEN (2, 'DISKFILE')
CALL OPEN (3, 'B:INPUT')
READ (3,*) VALUE
WRITE (2,22) VALUE

22 FORMAT (F10.4)
WRITE (4,55)

55 FORMAT ('THIS LINE WILL BE WRITTEN TO THE FILE')

To open a file and check if the file exists, the optional
error parameter must be specified such as:

CALL OPEN (3,'INPUT',IERROR)
IF (IERROR .NE.0)THEN

TYPE 'CANNOT OPEN INPUT FILE'
STOP 'RUN ABORTED'
ENDIF

NOTE: The filename (whether a character string or array
name) is defined as terminating when:

1) 13 characters are encountered.

2) a NULL is encountered.

06-21-83 NEVADA FORTRAN PAGE 102

11.2. LOPEN

CALL LOPEN(unit,'file'{,error})

This subroutine is functionally the same as OPEN in that
it associates a FORTRAN unit with a CP/M file except that
the first character of all output records will be processed
as the printer's carriage control. This is usually used for
a listing device such as a printer. The first character of
the record will not be output to the file but processed as
follows:

first character

+
blank (space)
o

1

action

overprint the last record
single skip
double skip
triple skip
page eject

If none of the above characters is present, then single
line spacing will be assumed. Overprinting is implemented
by only generating a carriage return at the end of the line
(not followed by a line feed). A page eject generates a
form feed character (0CH).

The output device that finally prints the output from
this file must respond in the following manner:

0DH (carriage return)
0AH (line feed)

0CH (form feed)

return to beginning of this line
space 1 line, do not return to
beginning of line

space to the top of the next page

A carriage return must cause the line to be printed on a
line oriented device.

06-21-83 NEVADA FORTRAN

Example

CALL LOPEN (2,'LST: I)
C
C PAGE EJECT TO TOP OF NEW PAGE
C

WRITE (2,1)

PAGE 103

1 FORMAT ('1THIS SHOULD BE ON THE TOP OF A NEW PAGEl)
C

WRITE (2,2)
2 FORMAT ('00NE BLANK LINE ABOVE THIS ONE'/

* '+1 ,'THIS LINE WILL OVERPRINT THE ONE ABOVE ' /
* '-',5X,'THIS LINE WILL HAVE 2 LINES ABOVE IT')

STOP
END

06-21-83 NEVADA FORTRAN PAGE 104

11.3. CLOSE

CALL CLOSE(unit)

The CLOSE routine is used as a method of closing FORTRAN
files which were previously opened through the OPEN or LOPEN
routine. Once the file has been closed, the file number is
then available for reuse.

Example

CALL CLOSE (3)
CALL CLOSE (FILE)

11.4. DELETE

CALL DELETE ('file'{,error})

The DELETE routine is used by the FORTRAN user to remove
a file from the CP/M system. Note that once a file is
deleted it cannot be recovered. No error is generated if
the file does not exist and the error is not present.

Example

CALL DELETE('OUTFILE')
CALL DELETE ('OUTFILE', ERROR)
CALL DELETE (FILE)

06-21-83 NEVADA FORTRAN PAGE 105

11.5. SEEK

CALL SEEK (unit,position{,error})

The SEEK routines allow random positioning within a
file. The file associated with unit will be positioned to
position which specifies a displacement in bytes from the
beginning of the file. If error is specified, there are two
possible val ues that may be returned on a seek error. A 5
indicates a seek to a part of the file that doesn't exist,
and a 6 indicates a seek to an extent of the file that does
not exist. The difference between the two is that if error
code 6 is return, the file associated with unit is closed.
The file will have to be re-opened before it can be used
again.

Example

CALL SEEK (FILE, IPOS*10+4)
CALL SEEK (3,100, ERROR)

11.6. RENAME

CALL RENAME('old file','new file',{error})

The RENAME routine will rename old file to new file. A
runtime error occurs if old file does not exist and error is
not specified or new file already exists.

Example

CALL RENAME ('OLD','NEW')

DIMENSION OFILE(2),NFILE(2)
READ (0,1) OFILE,NFILE

1 FORMAT (2A6/2A6)
CALL RENAME (OFILE, NFILE, ERROR)

06-21-83 NEVADA FORTRAN PAGE 106

11.7. CHAIN

CALL CHAIN('program name' {,error})

The CHAIN routine is used to load in another program
overwriting the existing one in memory. This is NOT an
overlay, the program that issues the CALL CHAIN will be
overwritten by the new program. If program name specified
does not exist; and error, was not specified, a CHAIN FL
runtime error will be produced. If the format of the program
name file is incorrect, program execution will be
terminated. The new program to be loaded is assummed to have
the .OBJ extension. The CHAIN routine will NOT close any
files that may be open. Thus the new routine will be able
to use the same files as the routine that issued the CHAIN
without having to reopen them.

Example

CALL CHAIN ('GRAPH')
CALL CHAIN ('NXTPGM I, ERROR)
CALL CHAIN (NEXT)

11.8. LOAD

CALL LOAD (' file to load', load-type { ,error})

The LOAD routine is used to load either a standard CP/M
.HEX file or a NEVADA ASSEMBLER .OBJ file. If load-type is
zero, then the type of the file to be loaded will be .HEX,
if load-type is non-zero, then the type will be .OBJ. This
routine can be used to load assembly language routines into
memory that can then be accessed through the CALL function.
No check is made during the loading process to see whether
the object code being read into memory overlays the program
or runtime package.

It is left up to the user to insure that it does not occur.
Normally the runtime package occupies memory from l00H to
4000H. If file to load does not exist and error is not
specified a CHAIN FL runtime error will be produced. If the
format of the program name file i. incorrect, program
execution will be terminated.

06-21-83 NEVADA FORTRAN PAGE 107

Example

CALL LOAD ('ASMFILE',0)
CALL LOAD ('ASMOBJ I, 1, ERROR)

11.9. EXIT

CALL EXIT

The EXIT routine will terminate execution of the
FORTRAN program in the same manner as the STOP statement,
except that EXIT does not output STOP to the system console.

Example

CALL EXIT

11.10. MOVE

CALL MOVE(count,from,displacement,to,displacement)

The MOVE routine allows direct access to memory for both
reads and writes. The count specifies the number of bytes
to be moved. The arguments from and to specify either a
memory address to be used or a character string to be moved.
Which interpretation of, from, and to is based on the
respective displacement. If the displacement is negative,
then the associated from or to specifies an address to be
used in memory access. If the displacement is positive then
the from or to that is associated with it is a string.

Example

CALL MOVE(2,A,-1,$CC00,-1)
This MOVES 2 bytes from the address specified by
A to addres s CC00 (HEX).

06-21-83 NEVADA FORTRAN PAGE 108

CALL MOVE (6, 's T R I N G' , 0, $ C C 0 0, -1)
This MOVES 6 bytes of the string 'STRING' to
address CC00 (HEX) .

CALL MOVE (1024, $CC00, -1, A, 0)
This MOVES 1024 bytes from address CC00 (HEX)
to the address of A.

NOTE: The DOLLAR ($) sign indicates a hexadecimal constant.
This hexadecimal constant is converted to floating point
notation internally.

11.11. DELAY

CALL DELAY(wait time)

The DELAY routine enables the user to implement a time
DELAY of 1/100 of a second to 655.36 seconds. wait time
must be in range of 0 to 65535 with 0 being the maximum
delay time, 1 being the shortest and 65535 being 1/100 less
than 0. This time is based on a 2 MHZ 8080 processor.

Example

CALL DE LA Y(10)
CALL DELAY (HOWMUCH)
CALL DELAY (WAIT)

11.12. CIN

CALL CIN(variable)

The CIN routine enables the user to obtain a single
character from the system console. The character is
returned as the left most byte of variable. The left most
bit of value read will be zeroed. The other 5 bytes of
variable remain unchanged.

06-21-83 NEVADA FORTRAN PAGE 109

Example

C WAIT FOR A CARRIAGE RETURN (ODH) FROM THE CONSOLE
C BEFORE CONTINUING.

80 CALL CIN(CHAR)
IF (COMP(CHAR,#0D00,1) .NE. 0)GO TO 80

In the above example, #D000 must be specified like this as
the # operator stores the number as 0D 00 00 00 00 00 in
memory. This forces the hex value of a carriage return (0D)
to be placed in the left most byte for the COMP routine.

11.13. CTEST

CALL CTEST(status)

The CTEST routine is used to test the status of the
system console. A zero is returned in status if there is no
character ready to input on the system console. A one is
returned if there is a character.

Example

C WAIT IN A LOOP UNTIL A CHARACTER IS HIT ON THE
C SYSTEM CONSOLE, THEN CHECK THE CHARACTER FOR A
C LINE FEED (0AH) BEFORE CONTINUING.

C

ARAND=.3478
10 ARAND=RAND(ARAND)

CALL CTEST(STATUS)
IF (STATUS .EO. 0)GO TO 10

C CHARACTER HIT, READ IT
C

CALL CIN(CHAR)
IF (COMP(CHAR,#0A00,1) .NE. 0)GO TO 10

06-21-83 NEVADA FORTRAN PAGE 110

11.14. OUT

CALL OUT (port,value)

This routine allows access to the 8080/8085/Z80 output
ports. Value will be converted to an 8 bit number and
output to port.

Example

CALL OUT(10,1)
CALL OUT (PORT, 10)
CALL OUT (CONTROL,BITVL)

11.15. BETIO

CALL BETIO(new I/O)

This routine allows changing how the runtime package
performs console I/O. The default method is setup using the
CONFIG program, however it can be changed as follows:

new I/O = 0 to use direct BIOS I/O
new I/O = 2 to use CP /M function 1&2
new I/O <> 0 or 2 to use CP/M function 6

(should be used with CP/M 2.X only).

The use of CP/M functions 1&2 permits the use of the
control-p ability of CP/M to echo all the console output to
the LST device. Use of other options will bypass this
ability.

Example

CALL SETIO (2)
CALL SETIO (10)

06-21-83 NEVADA FORTRAN PAGE III

11.16. RESET

CALL RESET

The RESET routine is used to inform CP/M that a
diskette has been changed at runtime. This routine must be
called if a diskette is changed and you wish to write on the
new diskette. If the RESET routine is not called, then a
BOOS: RIo will occur and the program will abort if a write
is attempted on the changed diskette. This routine will
prompt for a change in diskette and wait for the change to
occur. Also, all open files on the diskette to be changed
should be closed (using the CLOSE routine) before RESET is
called. The programmer is responsible for closing the file
They can be done as follows:

Example

C

CALL CLOSE (4)
CALL CLOSE (5)

C THE "RESET" ROUTINE WILL PROMPT FOR THE CHANGE
C

CALL RESET

11.17. POKE

CALL POKE(memory location, value)

This routine allows chang ing of memory locations.
Value will be converted to an 8 bit quantity and stored at
the location specified by memory location.

Example

CALL POKE (0,34)
CALL POKE (l,PEEK(l)+l)

The last example will increment the contents of memory
location 0001.

06-21-83 NEVADA FORTRAN

11.18. BIT

CALL BIT(variable,bit displacement,'S'
'R'
'F'

PAGE 112

'T' ,value

The BIT subroutine allows the setting (S), resetting
(R), flipping (F), or testing (T) of individual bits.

The bit at bit displacement from the start of variable
will be set if S is specified, reset if R is specified,
flipped (1 will become 0 and ° will become 1) if F is
specified; and, finally, the value of the selected bit will
be returned in value if T is specified. Value must be
present only for T. Displacement is specified starting with
the leftmost bit.

Example

CALL BIT (ZAPIT,0, IS')
CALL BIT (ZAPIT,0,'T ' ,VALUE)

11.19. PUT

CALL PUT(value)

The PUT routine is used to output a character to the
console without the FORTRAN system interpreting it. Using
this routine it is possible to do such things as control the
position of the cursor. Value must be a number or varable
and cannot be a string.

Example

CALL PUT(27)
CALL PUT (6l) will clear the screen on an ADM 3A

CALL PUT (CHAR('A ' ,0» will output an A

06-21-83 NEVADA FORTRAN PAGE 113

11.2~. CHAR

A=CHAR(variable,displacement)

The CHAR routine is used to return the numerical value
of an ASCII character located at variable+displacement where
displacement is a byte displacement from the beginning of
variable. For example:

Example

A='ABCDEF '
B=CHAR(A,~)
B=CHAR(A,l)
B=CHAR(A,5)

returns 61
returns 62
returns 66

11.21. INP

A=INP(port)

This routine allows access to the 8~8~/8085/Z80 input
ports. This is a function whose val ue is the current
setting of the input port specified by port. No wait is
done using the INP routine, it will return the current value
that the input port contains.

Example

I=INP(10)
10 IF (INP(CONSOLE) .NE. 0)GO TO 10

VALID=INP(CLOCK) .AND. 48

11.22. CALL

A=CALL(address,argument)

The CALL function causes execution of assembly language
routines that have been loaded into memory (usually by the
LOAD subroutine). Address is the memory location to be
CALLed. Argument will be converted to a 16 bit binary
number and then passed to the called routine in both the BC
and DE register pairs. The assembly routine places the
val ue to be returned in reg ister pair HL. The return
address is placed on the 8080 stack and the call'ed routine
can just issue a standard RET instruction to return to the

06-21-83 NEVADA FORTRAN

FORTRAN program.

Example

CALL LOAD (I ASMFILE 1,1)
A=CALL ($DE00,VALUE)

11.23. CBTOF

A=CBTOF(from,displacement{,8-bit})

PAGE 114

The CBTOF function is used to convert either a 16 bit or
8 bit binary number to its equivalent floating point value.
The number to be converted is located at from+displacement
if displacement is positive. If displacement is negative,
then from contains the address to be used. The number is
assumed to be 16 bit value (store in standard 8080 format)
unless 8-bit is present, in which case it will be assumed to
be an 8 bit value. The binary number is considered to be
unsigned.

Example

BIOS=CBTOF($0006,1)-3

gets the base address of the CP/M bios jump table by
reading the 16 bit address at location 0001 and subtracting
3 from it.

11.24. PEEK

A=PEEK(memory location)

The PEEK routine is used to read an 8 bit value from a
memory location. The byte at the address specified by
memory location will be returned as the val ue of the
function.

Example

BIOS=(PEEK(l)+PEEK(2)*256)-3

This is equivalent to the example of using CBTOF.

06-21-83 NEVADA FORTRAN PAGE 115

11.25. COMP

A=COMP(stringl, string2, length)

The COMP routine is used to compare character strings in
the following manner:

A=COMP('stringl ','string2 ',length) •

The strings will be compared on a byte basis for a byte
count of length. The routine returns the following:

-1 if string! < string2
o if stringl string2

+1 if stringl > string2

06-21-83 NEVADA FORTRAN PAGE 116

A. Statement Summary

variable = expression
Assigns the value of the expression to the
variable.

ACCEPT input list
Reads values from the system console and assigns
them to the variables in the input list.

ASSIGN n TO V
Assigns a statement label to a variable to be used
in an ass igned go to.

BACKSPACE unit
Positions the specified unit to the beginning of
the previous record.

BLOCK DATA
Begin a BLOCK DATA subprogram for initializing
variables in COMMON.

CALL name(argument list)
Call the subroutine passing the argument list.

COMMON /labell/listl /labeI2/list2

CONTINUE

Declares the variables and array that are to be
placed in COMMON with the various routines.

Causes no action to take place, usually used as
the obj ect of a GOTO or DO loop.

COpy filename
The specified filename is inserted into the source
at the point of the COpy statement.

CTRL DISABLE
Disables program termination by control/c from the
console.

CTRL ENABLE
Enables program termination by control/C from the
console.Control C being enabled is the default.

DATA /varl/constl,const2/var2/cl,c2, ••• /
Initializes the specified variable, array element
or arrays to the specified constants.

DIMENSION v(nl,n2, ••),v2(nl,n2, ••)
Sets aside space for arrays v and v2.

06-21-83 NEVADA FORTRAN PAGE 117

DO n i=nl,n2,n3
Executes statements from DO to statement n, using
i as index, increasing or decreasing from nl to n2
by steps of n3.

DOUBLE PRECISION vl,v2, ••
Declares vI, v2, etc, to be double precision
variables.

DUMP lidl output list

END

When a runtime error occurs, displayed id and
items in output list.

This statement must be the last statement of every
routine.

ENDFILE unit

ERRCLR

ERRSET n,v

Write an end of file at the current position of
unit.

Clears the effect of the ERRSET statement.

When a runtime error occurs, control goes to the
statement labeled n with variable v containing the
error code.

FORMAT (field specifications)
Used to specify input and output record formats.

FUNCTION name(argument list)
Begins the definition of a function subprogram.

GO TO n
Transfer control to the statement labelled n.

GO TO v,(nl,n2, •••),v
The COMPUTED GOTO transfers control to nl if v=l,
n2 if v=2, etc.

GO TO v,(nl,n2, ••)
The ASSIGNED GOTO transfers control to statement
nl, n2, •. depending on the value of v. V must
have appeared in an ASSIGN statement.

IF (e)nl,n2,n3
The arithmetic IF transfers control to nl if e<0,
n2 if e=0 or n3 if e>0.

IF (e) statement
The logical IF executes statement if the value of
expression e is true (non-zero).

06-21-83 NEVADA FORTRAN PAGE 118

IF (e) THEN statementl ELSE statement2 ENDIF
The IF-THEN-ELSE executes blocks of statements
statementl if e is true, or blocks of statements
statement2 if e is false.

IMPLICIT type(letter list)
Changes the default type of variables that start
with the letters in the letter list.

INTEGER vl, v2, .•
Declares vl, v2, etc, to be integer variables.

LOGICAL vl,v2, •••
vl, v2, etc, to be logical variables.

PAUSE 'character string'
Suspends program execution until any key is hi t,
displaying PAUSE and character string.

READ (unit,format{,ERR=} {,END=}) input list
Reads values from unit according to format and
assigns them to the variables in input list.

REAL vl, v2, ••

RETURN

RETURN i

Declares vl, v2, etc, to be real variables.

Returns control from a subprogram to the
statement following either the call or the
function reference.

The multiple return statement returns control from
a subprogram to statement i in the calling
routine.

REWIND unit
The file associated with unit is closed, then
reopened at the beginning of the same file.

STOP 'character string'

STOP n

Terminates program execution and displays
character string on the system console.

Terminates program execution and displays n on the
system console.

SUBROUTINE name(argument list)
Begins the definition of a subroutine subprogram.

TRACE OFF
Turns statement tracing off.

06-21-83 NEVADA FORTRAN PAGE 119

TRACE ON
Turns statement tracing on.

TYPE output list
Displays the value of the variables in output list
on the system console.

WRITE (unit,format{,ERR=}) output list
Writes the values of the variable in output list
to unit according to format.

06-21-83 NEVADA FORTRAN PAGE 120

Name

SIN
COS
TAN
ATAN
ATAN2
ALOG
ALOG10
MOD
AMOD
SQRT
FLOAT
lFlX
ABS
lABS
RAND
EXP
COMP
CALL
AMAX0
AMAXI
MAX0
MAXI
AMIN0
AMIN0
MIN0
MINI
BIT
SIGN
ISIGN
DIM
IDIM

CHAR
CALL
INP
CBTOF
COMP
PEEK

B. Summary of System Function

Function

1 Sine(x) 1
1 Cosine(x) 1
1 Tangent(x) 1
1 Arctangent(x) 1
1 Arctangent{y/x) 1
1 Log base e (x) 1
1 Log base 10 (x) 1
1 Remainder (x/y) 1
1 Remainder (x/y) 1
1 Square Root (x) 1
1 Make real (x) 1
1 Truncate (x) 1
1 Absolute (x) 1
1 Absolute (x) 1
1 Random Number (x) 1
1 e**{x) 1
1 Compare strings 1
1 CALL assembly pgm 1
1 Maximum 1
1 Maximum 1
1 Maximum 1
1 Maximum 1
1 Minimum 1
1 Minimum 1
1 Minimum 1
1 Minimum 1
1 Bit handling 1
1 Transfer of sign 1
1 Transfer of sign 1
1 Positive difference 1
1 positive difference 1

1 character value
1 execute asm pgm
1 input from a port
1 convert to real
1 compare strings
1 examine mem loco

Arg result

1 1 real
1 1 real
1 1 real
1 1 real
2 1 real
1 1 real
1 1 real
2 1 integer
2 1 real
1 1 real
1 1 real
1 1 integer
1 1 real
1 1 integer
1 1 real
1 1 real
3 1 either
2 1 either

<2551 either
<2551 either
<2551 either
<2551 either
<2551 either
<2551 either
<2551 either
<2551 either
3/4 1 either

2 1 real
2 1 integer
2 1 real
2 1 real

1
2
1

2/3
3
1

1 either
1 either
1 either
1 real
1 either
1 either

argument

1 real
1 real
1 real
1 real
1 real
1 real
1 real
1 integer
1 real
1 real
1 integer
1 real
1 real
1 integer
1 real 0.0<R<1.0
1 real
1 real
1 real
1 either
1 either
1 either
1 either
1 either
1 either
1 either
1 either
1 either
1 real
1 integer
1 real
1 real

1 character
1 either
1 either
1 both
1 either
1 either

Most of the above functions are ANSI standard except for
RAND. This function behaves as if it were returning an
entry from a table of random numbers. The argument of RAND
determines which entry of this table will be returned:

Rand Arg.

o
-1

n

Value returned for RAND

The next entry in the table
The first entry in the table. Also the
pointer for the next entry (arg=0) is
reset to the second entry in the table.
Returns the table entry following n.

06-21-83 NEVADA FORTRAN PAGE 121

C. Summary of System Subroutines

CALL BIT (variable,disp,code)
Set, resets or flips bit 0+disp of variable
according the code.

CALL CBTOF(locl,displ,loc2{,flag})
Converts a binary number to its floating point
equivalent.

CALL CHAIN('program name' (,error})
Loads another program and executes it.

CALL CIN(var)
Reads a single character from the system console.

CALL CLOSE (uni t)
Close the file associated with unit.

CALL CTEST(status)
Determines if a character has been entered on the
system console.

CALL DELAY(time)
Delays execution the specified time in one
hundreds of a second.

CALL DELETE (' filename' {, error})
Delete the specified filename from the disk.

CALL EXIT
Terminates program execution.

CALL MOVE(n,locl,displ,loc2,disp2)
Moves n bytes from locI to loc2.

CALL OPEN(unit,' filename' {, error})
Opens the specified filename and associates it
with unit.

CALL LOAD(' filename' ,load-type { ,error})
This routine is used to load a file of type .HEX
or .OBJ into memory depending on the value of
load-type. It is usually used to load assembly
language routines into memory. No check is made
to see if the code that is loaded into memory
would overwrite the program or CP/M.

CALL LOPEN(unit,' filename' { ,error})
Opens the specified filename and associates it
with unit. This file is also treated as a printer
file with the first character of each output
record controlling paper movement.

06-21-83 NEVADA FORTRAN PAGE 122

CALL POKE (LOCATION, VALUE)
The POKE routine is used to change a memory
location. Value will be stored in memory at
location.

CALL OUT(port,value)
value is converted to an 8 bit number and output
to port port.

CALL PUT(CHARACTER)
The PUT routine is used to output a character to
the system console directly. It is commonly used
to do such things as clear the screen or posi tion
the cursor.

CALL RENAME('old name','new name'{,error})
Rename s old name to be new name.

CALL RESET
The RESET routine allows for the changing of a
diskette at runtime and then being able to write
on the changed diskette. Without using this
function, an attempt to write on a diskette that
has been changed will result in a BOOS read only
error.

CALL SEEK (unit,position)
Positions the file associated with unit to the
byte position specified by position.

CALL SETIO (new I/O)
Allows changing the way that console I/O is
performed during program execution.

06-21-83 NEVADA FORTRAN PAGE 123

D. RUNTIME ERRORS

During execution of a program, there are numerous
condi tions that can occur which cause program termination.
When one of these conditions is encountered, a RUNTIME ERROR
message will be generated to the system console file. The
message has the format:

Runtime error: XXXXXXXX, called from loco YYYYH

pgm was executing line LLLL in routine NNNN

where: XXXXXXXX is the ERROR, YYYY is the memory location of
the CALL to the runtime package in which the error occurred.

The second line of the error message will be generated
as a traceback of CALL statements that have been executed.
The LLLL is the FORTRAN generated line number (shown on the
listing of the source from the compiler) of the statement
which caused the error, and NNNN if the name of the routine
in which that line number corresponds. The line number will
be output as ???? if the X option was not specified on the
$OPTIONS statement for a given routine. If multiple 'PGM
WAS .•• I lines are printed, the first one specifies the line
in which the error actually occurred.

06-21-83

INT RANG

CONVERT

ARG CNT

COM GOTO

OVERFLOW

DIV ZERO

NEVADA FORTRAN PAGE 124

Runtime Errors

INTEGER OVERFLOW: a result greater than 8 digits
has been generated in an expression.

16 BIT CONVERSION ERROR: in converting a number
from integer to internal 16 bit binary, an
overflow has occurred. This can occur on all
statements associated with I/O (unit number),
subscript evaluation and anywhere that a number
has to be converted from floating to 16 BIT
binary. Also subscripting outside of the
DIMENSIONED space for an array can cause this
error.

ARGUMENT COUNT ERROR: a subprogram call had too
many or too few arguments. In other words, the
number of arguments in the CALL or function
reference is not the same as the number of
parameters specified for this SUBROUTINE or
FUNCTION.

COMPUTED GO TO INDEX OUT OF RANGE: the variable
specified in a computed GOTO is either zero or
greater than the number of statement labels that
where specified.

FLOATING POINT OVERFLOW: the result of a floating
point operation has resulted in a number whose
value is too large to be stored.

DIVIDE BY ZERO:
div ide by zero.

an attempt has been made to

06-21-83

SQRT NEG

LOG NEG

CALL PSH

CALL POP

CHAIN FL

ILL UNIT

UNIT OPN

DSK FULL

NEVADA FORTRAN PAGE 125

SQRT OF NEGATIVE NUMBER: argument of the square
root function is negative.

LOG OF NEGATIVE NUMBER: argument of the log
either (ALOG or ALOG10) function is negative.

CALL STACK PUSH ERROR: this error is caused by a
recursive subprogram CALLS of depth greater than
36. Only in very special cases should a subprogram
CALL itself or one of those that has CALLED it.

CALL STACK POP ERROR: this error should never
occur (This means that a RETURN has been executed
that does not have a corresponding CALL or
FUNCTION reference. Usually caused by user
assembly language programs).

CHAIN FILE ERROR: the filename specified in a call
to the CHAIN or LOAD routine was not found on the
disk.

ILLEGAL UNIT NUMBER «2 OR >7): the unit number in
a READ, WRITE, OPEN, LOPEN, REWIND, CLOSE, SEEK is
either < 2 or greater than 7.

UNIT ALREADY OPEN: this is generated by the OPEN
or LOPEN routine when an attempt to open a file on
an already open FORTRAN logical unit. This error
will also occur is units 0 or 1 is specified in
the OPEN or LOPEN call.

DISK FULL: either the disk is full or the
directory is full.

06-21-83

UNIT CLO

CON BIN

LINE LEN

FORMAT

I/O ERR

ILL CHAR

I/O LIST

NEVADA FORTRAN PAGE 126

UNIT CLOSED: the unit number passed to the CLOSE
routine specifies a unit number that has not been
OPENed.

BINARY I/O TO CONSOLE: binary I/O is not supported
to the system console.

LINE LENGTH ERROR: an attempt has been made to
READ or WRITE a record whose length exceeds 250
characters. This count also includes a carriage
return at the end of the line.

FORMAT ERROR: an unrecognized or invalid FORMAT
specification has been encountered in a FORMATTED
READ or WRITE. The most likely error is an
unrecognized format specification or blanks in a
variable format.

I/O ERROR: an error occurred during a READ or
WRITE operation and the ERROR label was not
specified in the statement. It will also be
generated during a READ if END OF FILE is
encountered and an EOF label was not specified.

ILLEGAL CHARACTER: an illegal character has been
encountered during a READ.

INVALID I/O LIST: this error indicates an error
in the I/O list specification of a formatted WRITE
or READ. This error will not normally occur.

06-21-83

ASN GOTO

eONTRL/e

INPT ERR

FILE OPR

SEEK ERR

NEVADA FORTRAN PAGE 127

ASSlGNED GO TO ERROR: the value of the variable
specified in an ASSIGNED GO TO does not match that
of one of the statement labels listed.

CONTROLle error: CONTROLlc was hit and the
CONTROLlc was not trapped.

INPUT ERROR: during a READ an invalid character
has been encountered for the number being
processed. This will be generated for such things
as: two decimal points in a number, an E in an F
type field, decimal point in an I type field, etc.

FILE OPERATION ERROR: an error has occurred while
trying to do some file operation, such as renaming
when the new file already exists.

SEEK ERROR: an error has occurred while
positioning a file to the specified position and
no error variable was specified in the CALL.

06-21-83 NEVADA FORTRAN PAGE 128

E. COMPILE TIME ERRORS

The following is a list of errors that may occur during the
compilation of a FORTRAN program. If the G option is not
selected a two digit error number will be printed instead.
This number can be found at the beginning of each line.

00 *FATAL* compiler error
01 Syntax error, 2 operators in a row
02 unexpected continuation (column 6 not blank or 0)
03 input buffer overflow (increase B= compiler option)
04 invalid character for FORTRAN statement
05 unmatched parenthesis
06 statement label > 99999
07 invalid character encountered in statement label
08 invalid HEX digit encountered in constant
09 expected constant or variable not found
0A 8 bit overflow in constant
0B unidentifable statement
0C statement not implemented
0D quote missing
0E SUBROUTINE/FUNCTION/BLOCK DATA not first statement in

routine
0F columns 1-5 of continuation statement are not blank
10 cannot initialize BLANK COMMON
11 RETURN is not valid in main program
12 syntax error on unit specification
13 missing comma after) in COMPUTED GO TO
14 missing variable in COMPUTED GO TO
15 invalid variable in ASSIGNED/COMPUTED GO TO
16 invalid LITERAL, no beginning quote
17 number of subscripts exceeds maximum of 7
18 invalid SUBROUTINE or FUNCTION name
19 subscript not POSITIVE INTEGER CONSTANT
lA FUNCTION requires at least one argument
lB syntax error
lC invalid argument in SUBROUTINE/FUNCTION call
lD first character of variable not alphabetic
IE ASSIGNED/COMPUTED GOTO variable not integer
IF label has already defined
20 specification of array must be integer
21 invalid variable name
22 invalid DIMENSION specification
23 dimension specification is invalid
24 variable has already appeared in type statement
25 invalid subroutine name in CALL
26 SUBPROGRAM argument cannot be initialized
27 improperly nested DO loops
28 unit not integer constant or variable
29 Array size exceeds 32K
2A invalid use of unary operator
2B variable DIMENSION not valid in MAIN program
2C variable dimensioned array must be argument
2D DO/END/LOGICAL IF cannot follow LOGICAL IF
2E undefined label

06-21-83 NEVADA FORTRAN

2F unreferenced label
30 FUNCTION or ARRAY missing left parenthesis
31 invalid argument of FUNCTION or ARRAY

PAGE 129

32 DIMENSION specification must precede first executable
statement

33 unexpected character in expression
34 unrecognized logical opcode
35 argument count for FUNCTION or ARRAY wrong
36 *COMPILER ERROR* poped off bottom of operand stack
37 expecting end of statement, not found
38 statement too complex; increase P and/or 0 table
39 invalid delimiter in ARITHMETIC IF
3A invalid statement number in IF
3B HEX constant > FFFF (HEX)
3C replacement not allowed within IF
3D multiple assignment statement not implemented
3E subscripted-subscripts not allowed
3F subscript stack overflow; increase P= or 0=
40 missing left { in READ/WRITE
41 invalid unit specified
42 invalid FORMAT, END= or ERR= label
43 invalid element in I/O list
44 built-in function invalid in I/O list
45 cannot subscript a constant
46 variable not dimensioned
47 invalid subscript
48 missing comma
49 index in IMPLIED DO must be a variable
4A invalid starting value for IMPLIED DO
4B invalid ending value of IMPLIED DO
4C invalid increment of IMPLIED DO
4D illegal use of built-in function
4E variable cannot be dimensioned in this context
4F invalid or multiple END= or ERR=
50 invalid constant
51 exponent overflow in constant
52 invalid exponent
53 character after • invalid
54 integer overflow
55 integer underflow (too small)
56 missing = in DO
57 string constant not allowed
58 invalid variable in DATA list
59 DATA symbol not used in program, line
SA invalid constant in DATA list
5B error in DATA list specification
5C FUNCTION invalid in DATA list
5D no filename specified on COpy
5E runtime format not array name
SF DUMP label invalid or more than 10 characters
60 more than 1 IMPLICIT is not allowed
61 IMPLICIT not first statement in MAIN, 2nd statement in

SUBPROGRAM
62 data type not REAL, INTEGER or LOGICAL
63 illegal IMPLICIT specification
64 improper character sequence in IMPLICIT

06-21-83 NEVADA FORTRAN

65 variable already DIMENSIONED
66 Q option must be specified for ERRSET/ERRCLR
67 Hex constant of zero (0) invalid in I/O stmnt
68 Argument cannot also be in COMMON
69 Illegal COMMON block name
6A Variable already in COMMON
6B Array specification must precede COMMON
6C Executable statement invalid in BLOCK DATA
6D Hex constant of 27H (I) invalid in FORMAT
6E Invalid number following STOP or PAUSE
6F invalid TRACE statement (operand not ON/OFF)
70 invalid IOSTAT= variable
71 missing , in ENCODE/DECODE
72 invalid label in ASSIGNED GOTO
73 invalid variable in ASSIGNED GOTO
74 label not allowed on this statement
75 multiple RETURN not valid in FUNCTION
76 UNUSED
77 no matching IF-THEN for ELSE or ENDIF
78 invalid ELSE or ENDIF
79 missing ENDIF
7A initialization of non-COMMON variable

PAGE 130

7B "DOUBLE PRECISION" not supportted, treated as "REAL"
7C UNUSED
7D UNUSED
7E UNUSED
7F UNUSED

06-21-83 NEVADA FORTRAN

80 *FATAL* no program to compile
81 * FATAL * missing $OPTIONS statement
82 *FATAL* missing = in $OPTIONS statement
83 *FATAL* invalid digit in number in $OPTIONS
84 *FATAL* value exceeds 255 in $OPTIONS
85 * FATAL * COMMON table overflow, increase c=
86 *FATAL* unknown option (letter before =)
87 *FATAL* missing END statement
88 *FATAL* LABEL TABLE overflow, increase L=
89 *FATAL* SYMBOL TABLE overflow, increase S=
8A *FATAL* ARRAY STACK overflow, increase A=
8B *FATAL* DO LOOP STACK overflow, increase 0=
8C *FATAL* stack overflow (compiler error)
80 *FATAL* stack overflow (compiler error)
8E *FATAL* internal tables exceed user memory
8F *FATAL* MEMORY ERROR
90 *FATAL* OPEN error on COpy file
91 *FATAL* too many routines to compile (> 62)
92 *FATAL* no more room to store DATA statements
93 *FATAL* IF-THEN stack overflow, increase I=
94 * FATAL * Nested "COpy" statements not permitted
95 * FATAL * Disk write error (disk probably full)
96 *FATAL* Cannot close file (disk probably full)
97 *FATAL* Input file not found
98 *FATAL* Invalid drive specifier
99 *FATAL* No filename found on COPY statement
9A *FATAL* File specified on COpy not found

PAGE 131

06-21-83 NEVADA FORTRAN PAGE 132

F. ASSEMBLY LANGUAGE INTERFACE

ASSEMBLY statements can be directly inserted into a
FORTRAN program by preceding the statement with an ASTERISK
(*). The line that contains that asterisk will be directly
output to the assembly file without further processing (the
asterisk is deleted first). Because of the nature of the
FORTRAN compiler (it actually reaqs one statement ahead of
where it is processing) it is ALWAYS a good idea to put a
CONTINUE statement immediately preceding the first assembly
statement in each separated group of assembly statements.
The CONTINUE will cause the assembly statements to be
inserted at the expected place. FORTRAN maintains nothing
in the registers between statements, but does use the 8080
stack for saving RETURN addresses for user called FUNCTIONS
and SUBROUTINES.

Example

CONTINUE
* MVI A, 'A I
* STA STRING

06-21-83 NEVADA FORTRAN PAGE 133

G. GENERAL COMMENTS

1. In the description of the individual routines,
anywhere that a character string is specified, a variable or
array name can be used. The variable or array can be set to
the desired character string.

2. A variable can be set to a character string using
an assignment statement such as:

A='STRING'

No more than 6 characters will be retained for any variable
and if less than 6 will be zero filled in the low order
bytes of the variable.

3. If a variable or array name is used to reference a
CP/M file (such as in the OPEN routine) the filename itself
within the variable (or array) is terminated after:

1) the first 15 characters,

2) a NULL is encountered.

4. Hexadecimal constants can be used anywhere that a
constant or variable is permitted. A hexadecimal constant
is specified by preceding it by a dollar sign ($). Examples
are:

A=$E060
A=-$CC00

Hexadecimal constants are limited to a maximum value of
FFFF. An error is generated if a hexidecirnal constant
exceeds this limit. Internally a hexadecimal constant is
treated as any other INTEGER constant would be.

06-21-83 NEVADA FORTRAN PAGE 134

5. A hexadecimal constant that is preceded by a #
instead of a $ will be stored internally in binary format in
the first two bytes of the variable. Numbers of this form
should not be used in any expression as they are not stored
in the normal floating point format. The number is stored in
standard 8080 format (HIGH byte followed by LOW byte).

6. A backslash (\) can be used in a literal to specify
an 8 bit binary constant to be inserted at that point. The
constant is enclosed in backslashes and is assumed to be a
hexidecimal constant. The backslash can be changed using
the CONFIG program supplied.

Example

A='THIS \32\ IS AN EXAMPLE'

CALL OUTIT{3,l,'\7F\\FF\',2,32)

10 FORMAT ('IT IS ALLOWED \1 \ HERE \FF\ ALSO')

NOTE The backslash is the default character and can be
changed using the CONFIG program.

7. 8 Fortran files may be open at anyone time (file
numbers 0-7). Remember that files 0 and 1 are permanently
open.

06-21-83 NEVADA FORTRAN PAGE 135

H. USE OF THE NORTH STAR FLOATING POINT BOARD

A feature of NEVADA FORTRAN is that it will directly
use the North Star floating point board if one is installed
in the computer upon which the program is executed. Use the
CONFIG program to specify the 2 memory addresses that the
floating point board uses. If you should specify that you
have a floating point board, at runtime the runtime package
checks to see if the floating point board is actually in the
system and if not, then uses the software floating point
routines instead of the hardware. One disadvantage of using
the floating point board is that the range of real number
decreases to 10**-63 to 10**+63. Any number generated
outside this range will produce an overflow error message.

06-21-83 . NEVADA FORTRAN PAGE 136

I. COMPARISON OF NEVADA FORTRAN AND ANSI FORTRAN

NEVADA FORTRAN includes the following extensions to version
X3.9-1966 of ANSI Standard FORTRAN:

1. Free-format input and output.
2. IMPLICIT statement for setting default variable types
3. Options end-of-file and error branches in READ and

WRITE statements.
4. COpy statement to insert source files into a FORTRAN

program.
5. Direct inline assembly language.
6. Access to file system for such functions as creating,

deleting and renaming files.
7. Random access on a byte level to files.
8. Access to absolute memory locations.
9. Program controlled time delay.

10. A pseudo random number generator function.
11. Program control of runtime error trapping.
12. Ability to chain a series of programs.
13. Ability to load object code into memory.
14. CALL function to execute previously loaded code.
15. Program tracing.
16. IF-THEN-ELSE statement.
17. Enabling and disabling console abort of program.
18. ENCODE and DECODE memory to memory I/O.
19. Multiple returns from subroutines.
20. K format specification.

NEVADA FORTRAN does not included the following features of
ANSI standard FORTRAN:

1. Double precision, double precision functions.
(Double precision is treated as single precision).

2. Complex numbers, complex statements and functions.
3. EQUIVALENCE statement.
4. Extended DATA statement of the form:

DATA A,B,C/l,2/3/

5. The P format specifications.
6. Statement functions.
7. The following are reserved names and cannot be used for

functions, subroutines, or COMMON block names:

A, B, C, D, E, H, L, M, SP, PSW

8. EXTERNAL statement.
9. Subscripted subscripts.

10. Certain of the numerical library functions such as the
hyperbolic functions and others.

06-21-83 NEVADA FORTRAN PAGE 137

J. SAMPLE PROGRAMS

On the following pages you will find listings of the sample
programs that may have been included on your diskette.

C
C "CHAIN.FOR II

C
C THIS ROUTINE DEMONSTRATED THE 'CHAIN' FUNCTION, ALL IT
C DOES IS REQUEST THE NAME OF THE PROGRAM TO CHAIN TO
C AND THEN CHAIN.
C

C
C
C

1
C
C
C

C
C
C

DIMENSION IF(3)
TYPE 'FILE? '

GET THE FILENAME TO CHAIN TO

CHAIN

ONLY

READ (0, 1) IF
FORMAT (3A6)

TO IT

CALL CHAIN (IF, IER)

GETS HERE IF AN ERROR HAPPENS

TYPE 'ERROR FROM CHAIN = ',IER
CALL EXIT
END

06-21-83

OPTIONS X
C
C "DUMP. FOR"
C

NEVADA FORTRAN PAGE 138

C THIS PROGRAM DEMONSTRATED THE USE OF THE DUMP STATEMENT.
C
C CALL 'X' FOR TRACEBACK PRINTOUT (JUST FOR SHOW)
C

CALL X
END

OPTIONS X
SUBROUTINE X

C
C DEFINE THE DUMP STATEMENT TO BE USED IN CASE OF AN
C ERROR, WITH DUMP ID OF 'ROUTINE-X'
C

C

DUMP !ROUTINE-X! I,J,K
I=l
J=2
K=I+J

C CREATE AN ERROR TO CAUSE DUMP STATEMENT TO BE ACTIVE
C

Z=1!0
END

06-21-83

OPTIONS X
C
C II GRAPH • FOR n

C

NEVADA FORTRAN PAGE 139

C GRAPH SINE FUNCTION FROM -PI TO PI IN INCREMENT OF .12
C

C

DIMENSION LINE(70)
INTEGER WHERE

C OPEN UNIT 6 TO WRITE TO CONSOLE
C

CALL OPEN (6, 'CON: ')
C
C WRITE TITLE
C

WRITE (6,2)
2 FORMAT (28X,'GRAPH OF SIN')

TYPE
TYPE

C
C SET PI AND -PI
C

C

PI=3.1415926
MPI=-PI

C MAIN LOOP
C

DO 100 ANGLE=MPI,PI, .12
C
C FIGURE OUT WHICH ELEMENT IN ARRAY SHOULD BE SET TO *,
C SIN RETURNS -1 TO 1 WHICH IS CONVERTED TO -35 TO 35
C AND THEN OFFSET SO FINAL RANGE IS 1 TO 70
C

WHERE=SIN(ANGLE)*35+35
C
C FIGURE OUT HOW MUCH TO BLANK IN THE OUTPUT ARRAY
C

IBLANK=MAX0(35,WHERE)
C
C AND BLANK IT
C

DO 15 I=I,IBLANK
15 LINE(I)="
C
C HMM .•• WHICH SIDE OF ZERO ARE WE ON?
C

IF (WHERE .GT. 35) THEN
C
C RIGHT SIDE
C

20
DO 20 I=36,WHERE
LINE(I)='*'

ELSE

06-21-83

C
C LEFT SIDE
C

NEVADA FORTRAN

DO 30 I=WHERE,35
30 LINE(I)='*'

ENDIF
C
C SET "ZERO"
C

LINE(35)='+'
C
C AND THE SIN VALUE
C

LINE(WHERE)='*'
C

PAGE 140

C IF THIS VALUE IS < 35, SET SO WE OUTPUT TO ZERO LINE
C

IF {WHERE .LE. 35)WHERE=35
C
C AND FINALLY OUTPUT THE LINE
C

WRITE (6,21) (LINE(I),I=l,WHERE)
21 FORMAT (70A1)
100 CONTINUE

CALL EXIT
END

06-21-83

C
C "LOAD. FOR"
C

NEVADA FORTRAN PAGE 141

C THIS ROUTINE DEMONSTRATED THE USE OF THE 'LOAD' ROUTINE
C TO LOAD AN ASSEMBLY LANGUAGE FILE INTO MEMORY AND
C THEN CALL IT FORM FORTRAN
C

INTEGER A
C
C FIND OUT WHICH ONE TO LOAD
C

C

C

TYPE 'Enter 0 to "LOAD" LD.HEX'
TYPE 'Enter 1 to "LOAD" LD.OBJ '
ACCEPT 'Which one: ',LTYPE

IF (LTYPE .EQ. 0) THEN
TYPE '''LOAD'' ing "LD. HEX'"

ELSE
TYPE '''LOAD'' ing "LD.OBJ" ,

ENDIF

C MUST LOAD "LD.HEX" OR "LD.OBJ" INTO MEMORY
C BEFORE WE CAN CALL IT
C

CALL LOAD (' LD' , LTYPE, IER)
C

TYPE 'ERROR FOR LOAD=',IER
C
C CHECK THE RETURNED ERROR CODE FROM LOAD
C

IF (IER .NE. 0)STOP 'LOAD ERROR'
C
C "CALL" THE ROUTINE
C

A=CALL ($8000,1)
C
C RESULT SHOULD BE 2
C

TYPE 'THE RESULT OF THE ASSEMBLY ROUTINE IS: ',A
CALL EXIT
END

"LD.ASM"

THIS ROUTINE IS USED BY "LOAD.FOR", ALL IT DOES IS TO
DOUBLE THE NUMBER SENT TO IT
NUMBER IS PASSED IN DE FROM FORTRAN PROGRAM AND RESULT
IS PASSED BACK IN HL TO FORTRAN PROGRAM

ORG
PUSH
POP
DAD
RET

8000H
D
H
H

:NUMBER FROM FORTRAN PROGRAM
:GET IT TO HL
:HL*2
:RETURN IT

06-21-83

OPTIONS X,Q
C
C IlRAND.FOR II

C

NEVADA FORTRAN PAGE 142

C THIS PROGRAM GENERATES A SEQUENCE OF RANDOM NUMBERS,
C DIVIDES THEM INTO 10 INTERVALS AND COUNTS HOW MANY
C RANDOM NUMBER FALL INTO EACH INTERVAL. FINALLY IT
C PRINTS OUT THE COUNTS OF EACH INTERVAL.
C

DIMENSION NUM(10)
DATA NUM/10*0/
INTEGER T,A,D,FLAG,TIME(6),DATE(6) ,START, END

99 DO 50 1=1,10
50 NUM(I)=0

ACCEPT 'How many? ',K
DO 1 I=1, K
L=RAND(0)*10+1

1 NUM(L)=NUM(L)+1
TYPE NUM
GO TO 99
END

136-21-83

OPTIONS X,Q
C
C "SEEK. FOR"
C

NEVADA FORTRAN

C THIS PROGRAM DEMONSTRATES RANDOM ACCESS I/O
C

PAGE 143

C IT FIRST WRITES A FILE OF NUMBERS, THEN REQUESTS
C A RECORD, READ NUMBER THAT THE RECORD CONTAINS,
C ADDS 1 TO THE NUMBER READ AND WRITES IT BACK INTO
C THE SAME RECORD
C

ERRSET 51313,1
CALL DELETE ('TEST')

C
C OPEN THE TEST FILE
C

CALL OPEN (2,'TEST')
C
C READ HOW MANY RECORDS TO CREATE
C

ACCEPT 'HOW MANY RECORDS?
C
C WRITE THE FILE
C

DO 1 I=13,K
1 WRITE (2,2) I
2 FORMAT (IS)

C

TYPE 'FILE WRITTEN'
TYPE
REWIND 2
GO TO 113
CALL OPEN(2,'TEST')

C REQUEST RECORD TO DISPLAY
C
113 ACCEPT 'WHICH RECORD? ',K
C

, ,K

C POSITION THE FILE (EACH RECORD IS 7 CHARACTERS,
C 5 FOR NUMBER, 1 FOR CARRIAGE RETURN AND 1 FOR LINE FEED
C

CALL SEEK (2,7*K,IER)
C
C CHECK THE ERROR CODE
C

IF (IER .NE. 13) THEN
TYPE 'SEEK ERROR, CODE= ',IER
CALL CLOSE (2)
CALL DELETE ('TEST')
STOP
ENDIF

06-21-83

C
C READ THE CURRENT VALUE
C

READ (2,2) I

NEVADA FORTRAN PAGE 144

TYPE 'CURRENT VALUE OF RECORD ',K,' IS ',I
C
C POSITION BACK TO THE SAME RECORD
C

C

CALL SEEK(2,7*K)
I=I+l

C WRITE THE UPDATED VALUE
C

C

WRITE (2,2) I
GO TO 10

C TRAP ERROR
C
500 TYPE '*** ERROR TRAPPED ***'

TYPE 'ERROR CODE = ',I
CALL CLOSE (2)
CALL DELETE ('TEST')
STOP 'ERROR EXIT'
END

06-21-83

C
C IISORT.FOR II
C

NEVADA FORTRAN

C THIS ROUTINE IS A DEMONSTRATION OF A SHELL SORT
C

PAGE 145

INTEGER T,A,D,FLAG,TIME(6),DATE(6),START,END
DIMENSION A(2000)
TYPE IShe11 sortl
TYPE

C
C GET HOW MANY NUMBERS TO SORT
C
88 ACCEPT IHow many numbers (2-2000) I,NN

IF (NN .LT. 2.0R.NN .GT. 2000)STOP
C
C GENERATE ARRAY OF NUMBERS TO SORT
C

DO 10 I=l,NN
10 A(I)=(RAND(0)*NN)+1

C

TYPE IStarting sort l
D=NN
FLAG=0

100 D=IFIX«D+1)/2)
C
C TYPE OUT INTERMEDIATE STUFF
C

TYPE ID=I,D
C
110 ND=NN-D

C

DO 150 N=l,ND
IF (A(N) .LE. A(N+D))GO TO 150
NPD=N+D
T=A(N)
A(N)=A(NPD)
A(NPD)=T
FLAG=l

150 CONTINUE

C

IF (FLAG .EQ. l)THEN
FLAG=0
GO TO 110
ENDIF

IF (D .GT. l)GO TO 100
TYPE IAll done I
TYPE

C TYPE OUT SORTED ARRAY
C

TYPE (A(I),I=l,NN)
GO TO 88
END

06-21-83

OPTIONS X"Q
C
C "TRACE.FORn

C

NEVADA FORTRAN PAGE 146

C THIS ROUTINE DEMONSTRATES THE USE OF THE 'TRACE' AND
C 'ERROR' TRAPPING FUNCTIONS
C

TYPE 'STARTING EXECUTION'
C
C SET ERROR TRAPPING: ON ERROR GO TO STATEMENT 500 WITH
C ERROR CODE IN VARIABLE I
C

ERRSET 500,1
10 CONTINUE
C
C TURN TRACING OFF
C

TRACE OFF
C
C GET AN INPUT # FROM THE USER
C

ACCEPT '#: " K
C
C IF <0, TERMINATE
C

IF (K .LE. 0)GO TO 99
C
C IF INPUT # > 100, THEN TURN
C

TRACING

IF (K .GT. 1(0)TRACE ON
C

ON

C AND OUTPUT THE NUMBERS, TO SEE EFFECT OF THE
C ERROR TRAPPING, HIT CONTROL-C
C

DO 20 I=l,K
20 TYPE I

GO TO 10
C
99 TYPE 'DONE'

STOP
C
C ERROR TRAPPING HAPPENS HERE
C
500 TYPE 'ERROR TRAPPED, IER= ',I

END

06-21-83 NEVADA FORTRAN

C
C THIS SAMPLE PROGRAM SHOWS HOW TO HANDLE THE
C CURSOR AND CLEAR SCREEN FUNCTIONS OF A CRT
C

C

PAUSE 'CLEAR SCREEN I

CALL SCREEN (1,0,0)

C WRITE THE LINE NUMBERS OUT FROM THE BOTTOM
C LINE TO THE TOP
C

2
10
C

DO 10 1=23,0,-1
CALL SCREEN (2,0,1)
WRITE (1, 2) I
FORMAT ('LINE ',I2,Z)
CONTINUE

C WAIT 5 SECONDS
C

CALL DELAY (500)
C
C CLEAR THE SCREEN AGAIN
C

CALL SCREEN(1,0,0)
ACCEPT 'ENTER ANY NUMBER
I=AMOD(A,300)+1
00 99 J=1, I

99 Z=RAND(0)
C
C AGAIN CLEAR IT
C

CALL SCREEN(1,0,0)
C

I ,A

C NOW PUT RANDOM PLUS SIGNS ALL OVER THE SCREEN
C

DO 40 1=1,400
C
C GET NEXT SCREEN POSITION AND GO THERE
C

PAGE 147

CALL SCREEN(2,IFIX(RAND(0)*80),IFIX(RAND(0)*23»
C
C PUT THE + ON THE SCREEN
C
40 CALL PUT (CHAR (I + I , 0))
C

CALL DELAY(500)
C
C OUTPUT A BELL
C

CALL SCREEN(5,0,0)
C
C CLEAR IT NOW
C

CALL SCREEN(1,0,0)
CALL EXIT
END

06-21-83 NEVADA FORTRAN PAGE 148

SUBROUTINE SCREEN(FUNCT,X,Y)
C
C THIS IS A SAMPLE SCREEN DRIVER FOR AN ADM-3A TERMINAL
C

INTEGER FUNCT,X,Y
IF (FUNCT .LE. 0.0R.FUNCT .GT. 5)RETURN

c
C FUNCTION:
C
C
C
C
C
C
C

C

l=CLEAR SCREEN
2=POSITION CURSOR
3=SET REVERSE VIDEO
4=SET NORMAL VIDEO
5=BELL

GO TO (100,200,300,400,500),FUNCT

C CLEAR SCREEN
C
100 CALL PUT (12)

RETURN
C
C SET CURSOR TO X,Y
C
200 CALL PUT(27)

CALL PUT(102)
CALL PUT(X+32)
CALL PUT(Y+32)
RETURN

C
C SET REVERSE VIDEO
C
300
C

RETURN

C SET NORMAL VIDEO
C
400
C

RETURN

C OUTPUT A BELL
C
500 CALL PUT(7)

RETURN
END

06-21-83 NEVADA FORTRAN PAGE 149

C
C THIS PROGRAM DEMOSTRATES THE USE OF THE SET FUNCTION OF
C THE "BIT" ROUTINE. YOU ENTER THE BIT TO BE SET AND
C CAN SEE EXACTLY WHICH BIT IS CHANGED.
C
1

C

A=0
ACCEPT 'BIT? ',B
IF (B .GT. 47) THEN

TYPE 'INVALID
GO TO 1
ENDIF

IF (B .LT. 0)STOP

C SET THE BIT
C

CALL BIT (A,B, '5')
C

BIT NUMBER, ONLY 0-47'

C OUTPUT THE WORD IN HEX FORMAT
C

WRITE (1,2) A
2 FORMAT (K12)

GOTO 1
END

06-21-83 NEVADA FORTRAN PAGE 150

K. SAMPLE PROGRAM COMPILATIONS AND EXECUTION

On the following pages you will find examples of the
compilation and execution of several of the sample programs
listed above. The following notes refer to the next few
pages:

1) input is underlined.

2) CP/M output is printed in bold.

3) FORTRAN output (either compiler or execution) is neither
underlined or bold.

4) notes are in {}.

06-21-83 NEVADA FORTRAN PAGE 151

B>FORT GRAPH.XBB {compile with listing to console,
.ASM and .OBJ to drive B}

NEVADA FORTRAN 3.0 (MOD 0)
Copyright (C) 1979, 1980, 1981, 1982, 1983 Ian Kettleborough

***** NEVADA Fortran 3.0 (Mod 0) ** Compiling File:
GRAPH. FOR *****

0001

0002
0003

0004

0005
0006
0007
0008

0009
0010

0011

0012

0013

OPTIONS X
C
C GRAPH SINE FUNCTION FROM -PI TO PI IN
C INCREMENT OF .12
C

DIMENSION LINE(70)
INTEGER WHERE

C
C OPEN UNIT 6 TO WRITE TO CONSOLE
C

C
C
C

2

C
C
C

C

CALL OPEN (6, 'CON: ')

WRITE TITLE

WRITE (6,2)
FORMAT (28X, 'GRAPH OF SIN')
TYPE
TYPE

SET PI AND -PI

PI=3.1415926
MPI=-PI

C MAIN LOOP
C

DO 100 ANGLE=MPI,PI, .12
C
C FIGURE OUT WHICH ELEMENT IN ARRAY SHOULD BE SET TO *,
C SIN RETURNS -1 TO 1 WHICH IS CONVERTED TO -35 TO 35
C AND THEN OFFSET SO FINAL RANGE IS ITO 70
C

WHERE=SIN(ANGLE) *35+35
C
C FIGURE OUT HOW MUCH TO BLANK IN THE OUTPUT ARRAY
C

IBLANK=MAX0(35,WHERE)
C
C AND BLANK IT
C

0014
0015 15

C
C
C

DO 15 I=l,IBLANK
LINE (1)=' ,

HMM .•• WHICH SIDE OF ZERO ARE WE ON?

06-21-83 NEVADA FORTRAN

0016 IF (WHERE • GT • 35) THEN
C
C RIGHT SIDE
C

0017
0018 20
0019

C
CLEFT
C

0020
0021 30
0022

C
C SET
C

0023
C
C AND
C

0024
C

SIDE

"ZERO"

LINE(35)='+'

THE SIN VALUE

LINE(WHERE)='*'

DO 20 I=36,WHERE
LINE(I)='*'

ELSE

DO 30 I=WHERE,35
LINE(I)='*'

ENDIF

PAGE 152

C IF THIS VALUE IS < 35, SET SO WE OUTPUT TO ZERO LINE
C

0025 IF (WHERE .LE. 35)WHERE=35
C
C AND FINALLY OUTPUT THE LINE
C

0026
0027 21
0028 100
0029
0030
** Generated

WRITE (6,21) (LINE(I),I=l,WHERE)
FORMAT (70A1)
CONTINUE
CALL EXIT
END
Code

** Array Area =
687 (Decimal), 02AF (Hex) Bytes
420 (Decimal), 01A4 (Hex) Bytes

No Compile errors

NO ASSEMBLY ERRORS. 175 LABELS WERE DEFINED.

06-21-83

B>FRUN GRAPH

NEVADA FORTRAN

{execute the program}
GRAPH OF SIN

***+
********+

************+
***************+

*******************+
**********************+

*************************+
******~*********************+

******************************+
*******************************+

********************************+
********************************+
********************************+
********************************+
********************************+

*******************************+
*****************************+

**************************~+
*************************+

**********************+
******************+

***************+
***********+

*******+
***+

*
+**
+******
+**********

PAGE 153

+**************
+*****************
+*********************
+************************
+**************************
+****************************
+******************************
+*******************************
+********************************
+********************************
+********************************
+*******************************
+*******************************
+*****************************
+***************************
+************************
+*********************
+******************
+**************
+***********
+*******
+**

06-21-83 NEVADA FORTRAN PAGE 154

B>FORT LOAD.X {compile, listing to console, .ASM
and .OBJ to default drive}

NEVADA FORTRAN 3.0 (MOD 0)
Copyright (C) 1979, 1980, 1981, 1982, 1983 Ian Kett1eborough

***** NEVADA Fortran 3.0 (Mod 0) ** Compiling File: LOAD.FOR

0001 C

0002

0003
0004
0005

0006
0007
0008
0009
0010

0011

0012

0013

0014

C "LOAD:FOR"
C
C THIS ROUTINE DEMONSTRATED THE USE
C OF THE 'LOAD' ROUTINE
C TO LOAD AN ASSEMBLY LANGUAGE FILE INTO MEMORY AND
C THEN CALL IT FORM FORTRAN
C

INTEGER A
C
C FIND OUT WHICH ONE TO LOAD
C

C

C
C
C
C

C

C
C
C

C
C
C

C
C
C

TYPE 'Enter 0 to "LOAD" LD.HEX'
TYPE 'Enter 1 to "LOAD" LD.OBJ'
ACCEPT 'Which one: ',LTYPE

IF (LTYPE .EQ. 0) THEN
TYPE '''LOAD'' ing "LD.HEX" ,

ELSE
TYPE '''LOAD'' ing "LD.OBJ" ,

ENDIF

MUST LOAD "LD.HEX" OR "LD.OBJ" INTO MEMORY
BEFORE WE CAN CALL IT

CALL LOAD ('LD' , LTYPE, IER)

TYPE 'ERROR FOR LOAD=',IER

CHECK THE RETURNED ERROR CODE FROM LOAD

IF {IER .NE. 0)STOP 'LOAD ERROR'

"CALL" THE ROUTINE

A=CALL ($8000,1)

RESULT SHOULD BE 2

0015 TYPE 'THE RESULT OF THE ASSEMBLY ROUTINE ',A
0016 CALL EXIT
0017 END
** Generated Code = 405 (Decimal), 0195 (Hex) Bytes

NO ASSEMBLY ERRORS. 135 LABELS WERE DEFINED.

06-21-83 NEVADA FORTRAN

B>FRUN LOAD {execute the program}

Enter 0 to "LOAD" LD.HEX
Enter 1 to "LOAD" LD.OBJ
Which one: 0
"LOAD"ing "LD.HEX"
ERROR FOR LOAD= 0
THE RESULT OF THE ASSEMBLY ROUTINE IS:

PAGE 155

2

06-21-83 NEVADA FORTRAN PAGE 156

B>FORT TRACE.ZCC {compile with no listing, .ASM and
.OBJ to drive C}

B>FRUN TRACE {execute the program}
STARTING EXECUTION
41=: 4

41=: 140

1
2
3
4

Pgm--rs executing line 0009 in routine MAIN
Pgm is executing line 0010 in routine MAIN

1
pgm is executing line 0010 in routine MAIN
Pgm is executing line 0014 in routine MAIN
ERROR TRAPPED, IER= 23
STOP END IN - MAIN

06-21-83 NEVADA FORTRAN PAGE 157

B>FORT SORT.BBB {compile with listing, .ASM and
.OBJ files to drive B}

B>FRUN SORT {execute the program}
Shell sort

How many numbers (2-2000) 100
Starting sort
D= 50
D= 25
D= 13
D= 7
D= 4
D= 2
D= 1
All done

2 6 6 6 7 8
8 9 9 12 12 14

14 18 19 21 21 21
21 22 25 27 28 28
29 29 30 32 33 33
34 34 37 38 39 40
40 41 46 46 48 48
48 49 50 51 52 54
58 58 59 60 60 61
62 62 64 64 65 65
66 67 68 70 70 71
73 74 75 76 76 77
80 80 82 82 83 84
85 86 88 89 89 91
91 91 93 93 93 93
94 96 96 96 97 98
99 99 100 100

How many numbers (2-2000) 0
STOP
B>

06-21-83 NEVADA FORTRAN PAGE 158

L. SUGGESTED FURTHER READING

SOFTWARE TOOLS
Brian W. Kernigham and P. J. Plauger
Addison-Wesley Publishing Co. 1976~

A GUIDE TO FORTRAN PROGRAMMING
Daniel D. McCracken
Addison-Wesley Publishing Co. 1961.

FORTRAN IV WITH WATFOR AND WATFIV
Cress, Dirksen, and Graham
Prentice-Hall, Inc. 1970v

FORTRAN IV
Elliot I. Organick and Loren P. Meissner
Addision-Wesley Publishing Co. 1966.

PROGRAMMING PROVERBS FOR FORTRAN PROGRAMMERS
Henry F. Ledg ard
Hayden, 1975.

ELLIS C.,
COMPUTING,

NEVADA COBOL Application Package Bookl,
INC., 1980.

ELLIS

Ellis, C & Starkweather, NEVADA EDIT, ELLIS COMPUTING, INC.,
1982.

ELLIS COMPUTING, NEVADA SORT, ELLIS COMPUTING, INC., 1982.

Ellis, C, NEVADA COBOL, ELLIS COMPUTING, INC., 1979.

ELLIS COMPUTING, NEVADA BASIC, ELLIS COMPUTING, INC., 1983.

Ian D. Kettleborough, FORTRAN SELF-TEACHING COURSE,
ELLIS COMPUTING, INC., 1983.

Starkweather, J., NEVADA PILOT, ELLIS COMPUTING, INC., 1982.

06-21-83 NEVADA FORTRAN

Ellis Computing, Inc.
3917 Noriega Street

San Francisco, CA, 94122

SOFTWARE LICENSE AGREEMENT

PAGE 159

IMPORTANT: All Ellis Computing, Inc. programs are sold
only on the condition that the purchaser agrees to the
following license.

Ellis Computing, Inc. agrees to grant to the Customer, and
the Customer agrees to accept on the following terms and
conditions nontransferable and nonexclusive licenses to use
the software program(s) (Licensed Programs) herein delivered
with this Agreement.

TERM:

This Agreement is effective from the date of receipt of the
above-referenced program(s) and shall remain in force until
terminated by the Customer upon one month's prior written
notice, or by Ellis Computing, Inc. as provided below.

Any License under this agreement may be discontinued by the
Customer at any time upon one month's prior written notice.
Ellis Computing, Inc. may discontinue any License or
terminate this Agreement if the Customer fails to comply
with any of terms and conditions of the Agreement.

LICENSE:

Each program License granted under this Agreement authorizes
the Customer to use the Licensed Program in any machine
readable form on any single computer system (referred to as
System). A separate license is require for each System on
which the Licensed Program will be used.

This Agreement and any of the Licenses, program or materials
to which it applies may not be assigned, sublicensed or
otherwise transferred by the Customer without prior written
consent from Ellis Computing, Inc. No right to print or
copy, in whole or part, the Licensed Programs is granted
except as hereinafter expressly provided.

PERMISSION TO COpy OR MODIFY PROGRAMS:

The Customer shall not copy, in whole or part, any Licensed
Programs which are provided by Ellis Computing, Inc. in
printed form under this Agreement. Additional copies of
printed materials may be acquired from Ellis Computing, Inc.

The NEVADA FORTRAN COMPILER Licensed Programs which are
provided by Ellis Computing, Inc. in machine readable form
may be copied, in whole or in part, in machine readable form
in sufficient number for use by the Customer with the
designated System, for back-up purposes, or for archive

06-21-83 NEVADA FORTRAN PAGE 160

purposes. The original, and any copied of the Licensed
Programs, in whole or in part, which are made by the
Customer shall be the property of Ellis Computing, Inc.
This does not imply that Ellis Computing, Inc. owns the
media on which the Licensed Programs are recorded.

The NEVADA FORTRAN Licensed Program call "FRUN" which is
provided by Ellis Computing, Inc. may be distributed to
third parties.

The Customer agrees to reproduce and include the copyright
notice of Ellis Computing, Inc. and Ian D. Kettleborough on
all copies, in whole or in part, in any form, including
partial copies of modification, of Licensed program made
hereunder.

PROTECTION AND SECURITY:

The Customer agrees not to provide or otherwise make
available the NEVADA FORTRAN COMPILER Program including but
not limited to program listings, object code, and source
code, in any form, to any person other than Customer, Ellis
Computing, Inc. employees or Ian D. Kettleborough, except
with the Customer's permission for purposes specifically
related to the Customer's use of the Licensed Program.

DISCLAIMER OF WARRANTY:

Ellis Computing, Inc. makes no warrantes with respect to the
Licensed Programs.

LIMITATION OF LIABILITY:

THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTES,
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTED OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL ELLIS COMPUTING, INC.
BE LIABLE FOR CONSEQUENTIAL DAMAGES EVEN IF ELLIS COMPUTING,
INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

GENERAL:

If any of the provision, or portions thereof, of the
Agreement are invalid under any applicable statute or rule
of law, they are to that extent to be deemed omitted. This
is the complete and exclusive statement of the Agreement
between the parties which supercedes all proposals, oral or
written, and all other communications between the parties
relating to the subject matter of the Agreement. This
Agreement will be governed by the laws of the State of
California.

06-21-83

t
#, 11, 21

$
$, 11

&
&, 11, 68, 89

*
* 33, 74, 80 ,
** 33 ,

+
+, 33

I

33

• AND., 33 , 3 7, 38
.COM, 9
• EQ., 33, 37
.FALSE., 21, 22, 46, 83
· GE., 33, 37
• GT., 33, 37
.HEX, 106
.LE., 33, 37
· LT., 33, 37
.NE., 33, 37
.NOT., 33, 38
· OBJ, 106
.OR., 33, 37, 38
.TRUE., 21, 22, 46, 83
.XOR., 33, 37, 38

I, 33
I-Type, 82

1
1, 6

2
2, 6

A
A-Type, 81
A=n, 18
ABS, 120
ACCEPT, 70, 116
Addition, 33
ALOG, 120
ALOG10, 120
AMAX0, 120

NEVADA FORTRAN PAGE 161

06-21-83

AMAX1, 120
AMIN0, 120
AMOD, 120
Ampersand, 10, 68, 89
ARG CNT, 124

NEVADA FORTRAN

Arithmetic IF, 40, 45, 117
Arithmetic Operators, 33
Array, 30, 59, 71, 72, 74, 78, 133
ASN GOTO, 127
ASSIGN, 43, 44, 116
Assigned GO TO, 40, 43, 44
ASSIGNED GOTO, 117
ASSM.COM, 6
Asterisk, 10, 74, 80
ATAN, 120
ATAN2, 120

B
B, 19
B=XXXX, 7
Backslash, 10, 11, 22, 89, 134
BACKSPACE, 94, 116
Binary I/O, 70, 92
BIT, 112, 120, 121
Blank COMMON, 8, 31
Blank padding, 7
BLOCK DATA, 69, 116

C
C=XXXX, 7
CALL, 40, 66, 67, 68, 113, 116, 120
CALL POP, 125
CALL PSH, 125
CBTOF, 114, 120, 121
CHAIN, 8, 106, 121
CHAIN FL, 125
CHAR, 113, 120
CIN, 53, 108, 121
CLOSE, 95, 104, Ill, 121
Colon, 14
COM GOTO, 124
Comma, 10
Comment, 12, 13
COMMON, 30, 31, 60, 69, 116
COMP, 115, 120
Comparison Operators, 33
Computed GO TO, 40, 42
COMPUTED GOTO, 117
CON BIN, 126
CON:, 100
CONFIG, 4, 110, 134, 135
CONFIG.COM, 2
Constant, 21
Continuation, 11
CONTINUE, 40, 41, 50, 116
CONTRL/C, 127

PAGE 162

06-21-83

Control-H, 97
Control-X, 97
Control-Z, 97
CONTROLlc, 53
CONVERT, 124'
COPY, 16, 116
COS, 120
CTEST, 109, 121
CTRL DISABLE, 53, 116
CTRL ENABLE, 53, 116

D
D-Type, 86
D=n, 17
DATA, 29, 69, 116
Decimal point, 10
DECODE, 77, 78
DELAY, 108, 121
DELETE, 96, 104, 121
DIM, 120
DIMENSION, 60, 116
Disk is full!, 3
DIV ZERO, 124
Division, 33
DO, 40, 46, 49, 50, 117
Dollar, 10

NEVADA FORTRAN

DOUBLE PRECISION, 23, 28, 32, 60, 65, 117
DSK FULL, 125
DUMP, 55, 117

E
E, 18
E-Type, 86
ELSE, 47
ENCODE, 77, 79
END, 29, 46, 58, 117
END=, 74, 76
ENDFILE, 92, 95, 96, 117
ENDIF, 47
Equal sign, 10
ERR=, 74
ERRCLR, 51, 52, 117
ERRORS, 2, 4
ERRSET, 51, 52, 53, 55, 117
EXIT, 57, 107, 121
EXP, 120
Explicit RETURN, 40
Exponentiation, 33
EXPRESSION, 62
Expressions, 34

F
F-Type, 85
FILE OPR, 127
FLOAT, 120

PAGE 163

FORMAT, 12, 41, 70, 71, 74, 78, 79, 80, 88, 117, 126

06-21-83

Formatted I/O, 70
FORT. COM, 2
FORT. ERR, 4, 6
Free format, 74, 78
Free Format I/O, 70
FREE format input, 90
FREE format output, 90
FRUN, 8
FRUN.COM, 2, 4

NEVADA FORTRAN

FUNCTION, 17, 30, 31, 60, 63, 65, 67, 117
FUNCTION statement, 32

G
G, 18
G-Type, 87
GO TO, 50, 117

H
H, 7
Hexadecimal, 11, 21, 22, 84, 89, 108, 133

I
I-Type, 81, 85
I/O ERR, 126
I/O LIST, 126
I=n, 18
lABS, 120
IDIM, 120
IF-THEN-ELSE, 40, 47, 118
IFIX, 120
ILL CHAR, 126
ILL UNIT, 125
IMPLICIT, 24, 32, 118
Implied DO loop, 72
INP, 113, 120
INPT ERR, 127
INT RANG, 124
INTEGER, 23, 25, 32, 35, 37, 49, 60, 65, 118
ISIGN, 120

K
K-Type, 84

L
L-Type, 83
L=, 17
Library functions, 63
LINE LEN, 126
LOAD, 106, 121
LOG NEG, 125
LOGICAL, 23, 26, 32, 60, 65, 118
Logical constants, 22
Logical IF, 40, 46, 117
Logical Operators, 33
Logical unit, 70, 96
LOPEN, 74, 91, 96, 102, 104, 121

PAGE 164

06-21-83

Lowercase, 12
LST:, 100

M
M=XXXX, 7
Main, 30, 32
MAX0, 120
MAX1, 120
MIN0, 120
MIN1, 120
Minus sign, 10

NEVADA FORTRAN

Mixed mode expressions, 39
MOD, 120
MOVE, 107, 121
Multiple RETURN, 11, 40, 68, 118
Multiplication, 33

N
N, 6, 19
Normal return, 67
North Star floating point board, 135
NOT, 32
Number sign, 10
Numerical constants, 21

o
O=n, 18
OPEN, 74, 91, 96, 100, 104, 121
Operator hierarchy, 33
OPTIONS, 17
OUT, 110, 122
OVERFLOW, 124

p
P, 6
P=n, 18
Parenthesised expressions, 34
PAUSE, 40, 56, 118
PEEK, 114, 120
Plus sign, 10
POKE, Ill, 122
PUT, 112, 122

Q

Q, 19
Q option, 51

R
RAND, 120
READ, 53 , 71, 72 , 74 , 78, 92, 118
REAL, 23, 27, 32, 35, 37, 60, 65, 118
RENAME, 105, 122
RESET, 111, 122
RETURN, 67, 118
REWIND, 93, 96, 118

PAGE 165

Runtime error, 35, 42, 51, 53, 55, 66, 89, 105, 106, 123

06-21-83

RUNTIME FORMAT, 71

s
S=, 17
SEEK, 96, 105, 122
SEEK ERR, 127
Semicolon, 14
SETIO, 110, 122
SIGN, 120
SIN, 120
Slash, 10
SQRT, 120
SQRT NEG, 125
Statement label, 11, 13
STOP, 40, 57, 107, 118
String constant, 22
Strings, 89
Subprograms, 63

NEVADA FORTRAN PAGE 166

SUBROUTINE, 11, 17, 30, 31, 32, 60, 63, 64, 66, 67, 68, 118
Subscripts, 59, 62
Subtraction, 33

T
T-Type, 83
T=n, 17
TAN, 120
THEN, 47
TRACE OFF, 54, 118
TRACE ON, 54, 119
TYPE, 70 , 119

U
Unary minus, 33
Unconditional GO TO, 40, 41
UNIT CLO, 126
UNIT OPN, 125

W
WRITE, 53, 55, 71, 72, 76, 79, 92, 119

x
X, 19
X-Type, 81

Z
Z-Type, 82

\
\, 11, 80, 89

, 33

6-6-83 NEVADA ASSEMBLER

NEVADA ASSEMBLER(tm)

Users' Reference Manual

Copyright (C) 1982 by Ellis Computing, Inc.

Ellis Computing, Inc.
3917 Noriega Street

San Francisco, CA 94122

PAGE 1

I

6-6-83 NEVADA ASSEMBLER PAGE 2

COPYRIGHT

Copyright, 1982 by Ellis Computing, Inc. All rights
reserved worldwide. No part of this publication may be
reproduced, transmitted, transcribed, stored in a retrieval
system or translated into any human or computer language in
any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the express
written permission of Ellis Computing, Inc.

TRADEMARKS

NEVADA COBOL(tm), NEVADA FORTRAN (tm) , NEVADA PILOT(tm),
NEVADA EDIT(tm), NEVADA ASSEMBLER(tm) and Ellis
Computing(tm) are trademarks of Ellis Computing, Inc. CP/M
is a registered trademark of Digital Research, Inc.

DISCLAIMER

All Ellis Computing, Inc. computer programs are distributed
on an "AS IS" basis without warranty.

Ellis Computing makes no warranties, expressed or implied,
including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. In no
event will Ellis Computing be liable for consequential
damages even if Ellis Computing has been advised of the
possibility of such damages.

Printed in the U.S.A.

6-6-83

SECTION
1
2

3

NEVADA ASSEMBLER

NEVADA ASSEMBLER

AN ASSEMBLER FOR CP/M

TABLE OF CONTENTS

INTRODUCTION •
OPERATING PROCEDURES

HARDWARE REQUIREMENTS .
SOFTWARE REQUIREMENTS •
FILES ON DISTRIBUTION DISKETTE •
FILE TYPE CONVENTIONS •
GETTING STARTED •
EXECUTING THE ASSEMBLER
STARTUP
EXECUTING THE .OBJ FILE
MEMORY USAGE •
TERMINATION

STATEMENTS
INTRODUCTION •
LINE NUMBERS •
LABEL FIELD
OPERATION FIELD •
OPERAND FIELD

Register Names •
Labels
Constants
Expressions •

4
5
5
5
5
5
5
6
8
9
9

• 10
• 11
• 11
· 11
• 12
• 12
• 13
• 13
• 13
• 14
• 15

High and Low Order byte extraction 15

4
5
6

COMMENT FIELD
PSEUDO-OPERATIONS
ERROR CODES AND MESSAGES •
APPENDICES •

8080 OPERATION CODES
TABLE OF ASCII
SAMPLE ASSEMBLER LISTING •
SAMPLE PROGRAM
REFERENCES

SOFTWARE LICENSE
CORRECTIONS AND SUGGESTIONS
INDEX •

• 16
• 17
• 23
• 25
• 25
• 27
• 29
• 30
• 40
• 41
• 43
• 44

PAGE 3

6-6-83 NEVADA ASSEMBLER PAGE 4

SECTION 1

INTRODUCTION

The assembler translates a symbolic 8080 assembly language
program "source code" into the binary instructions "object
code" required by the computer to execute the program.

The assembler operates on standard CP/M text files. Each
line of a normal text file consists of the characters of
that line followed by a carriage return (OOH) and a line
feed (OAH).

When the assembler is invoked, it is loaded into memory
s tar tin gat I 0 cat ion I 0 0 H • I t pro c e sse s the sou r c e cod e
file in two passes. On the first pass, it builds a symbol
table containing all of the labels defined in the source
program. The symbol table begins at the memory location
immediately following the assembler; each entry in the table
is 7 bytes long. Certain errors may be detected during the
first pass, causing error messages to be output to an error
file (usually the console). On the second pass, the object
code is generated and usually output to an object code file.
In addition, a formatted listing of both source and object
code may be output to a listing file, and the symbol table
may be output to a file. Any errors detected during this
pass cause messages to be output to the error file.

To abort the assembly process at any time, press the Control
and C keys.

After the assembly runs to completion and no errors are
detected, the resulting object code file (type .OBJ) can be
executed by typing RUNA and its name.

EXAMPLE:

RUNA PROG loads and executes a file called PROG.

6-6-83 NEVADA ASSEMBLER PAGE 5

SECTION 2

OPERATING PROCEDURES

HARDWARE REQUIREMENTS

1. 8080/Z80/8085 microprocessor.
Z80 is a trademark of Zilog.

2. A minimum of 32K RAM.
3. Any disk drive.
4. CRT or Video display and keyboard.

SOFTWARE REQUIREMENTS

Digital Research, Incs. CP/M(R) operating system
Version 1.4 or 2.2.
CP/M is a registered trademark of Digital Research,
Inc.

FILES ON THE DISTRIBUTION DISKETTE

ASSM.COM is the assembler program.
RUNA.COM is the runtime loader.

(note: These files are on the Nevada FORTRAN diskette.)

FILE TYPE CONVENTIONS

Assembly source code files
COBOL source code files
FORTRAN source code files
Object code run time files
Printer listing files
Symbol table listing files
Error files
Work files

GETTING STARTED

.ASM

.CBL

.FOR

.OBJ
• PRN
.SYM
.ERR
.WRK

If the master disk is not write protected, do it now!

1. NEVADA ASSEMBLER is distributed on a DATA DISK without
the CP/M operating system. There is no information on the
system tracks, so don't try to "boot it up", it won't work!

2. On computer systems with the ability to read seve;al
disk formats, such as the KayPro computer, the master
diskette must be used in disk drive B.

I

6-6-83 NEVADA ASSEMBLER PAGE 6

3. Do not try to copy the master diskette with a COpy
program! On most systems it won't work. You must use the
CP/M PIP command to copy the files.

4. First, prepare a CP/M system's diskette for use as your
NEVADA ASSEMBLER operations diskette. On 5 1/4 inch
diskettes you may have to remove (use the CP/M ERA command)
most of the files in order to make room for the ASSEMBLER
files. None of the CP/M files are needed for NEVADA
ASSEMBLER, but PIP.COM and STAT.COM are useful if you have
the space. You may want to do a CP/M STAT command on the
distribution disk so you will know how much space you need
on your operational diskette. For more information read the
CP/M manuals about the STAT command.

5. Then insert the newly created CP/M diskette in disk
drive A, and insert the NEVADA ASSEMBLER diskette in drive B
and type (ctl-c) to initialize CP/M. Now copy all the files
from the ASSEMBLER diskette onto the CP/M diskette:

PIP A:=B:*.*[VO]

If you get a BOOS WRITE ERROR message from CP/M during the
PIP operation it usually means the disk is full and you
should erase more files from the operational diskette.

At this point, put the NEVADA ASSEMBLER diskette in a safe
place. You will not need it unless something happens to
your operations diskette. By the way, back up your
operations diskette with a copy each week! If your system
malfunctions you can then pat yourself on the back for
having a safe back up copy of your work.

Now, boot up the newly created NEVADA ASSEMBLER operations
diskette. Notice that CP/M displays the amount of memory
for which this version of CP/M has been specialized. The
amount of memory available determines the size of the
programs that can be assembled. The more memory available
the larger the program that can be assembled.

EXECUTING THE ASSEMBLER

The assembler is invoked by a CP/M command with the
following formats.

FORMAT-I:

ASSM file(CR>

6-6-83 NEVADA ASSEMBLER PAGE 7

FORMAT-2:

ASSM file[.uuu u$#LPO]<CR>

DESCRIPTION:

where:

file [unit:]source-file-name
The name of the source code input file.
This parameter must be present; all others
are optional.

[] optional parameters

unit: = disk drive unit letter. If this parameter is
not included, the default drive is used.

u the disk drive unit letter or the letter "X"
for output to the console, or the letter liZ"
for no output.

u for position one.
This single character code, if present,
represents the drive onto which the listing
file is to be written. If this argument is
absent then the listing will be written on
the default drive. Also, if the character
is an X the listing will be sent to the
console. If the character is a Z then no
listing is produced.

u for position two.
The second letter of the file type
represents the drive for the object (.OBJ)
file. If this argument is absent then the
file will be written on the default drive.
If this character is a Z then no object
code file will be produced.

u for position three.
The third letter of the file type represents
the dr i ve for the error (. ERR) file. If thi s
argument is absent the console will be used
to display the errors. This argument must be
followed by a space or carriage return.

u for position one of the second set.
The first letter of the second set of
arguments represents the drive for the
symbol (.SYM) file. If this argument is
absent no symbol table file will be
produced.

I

6-6-83

<$options)

+L

-L

P

0,1,2, or 3

S

EXAMPLES:

NEVADA ASSEMBLER PAGE 8

Various assembler options may be controlled
by following the $ with one or more of the
following option specifiers. The list of
options is terminated by a carriage return.
For those options that may be preceded by +
or -, the + is optional and will be assumed
if absent.

The source file has line numbers in column
1-4 of each line.
The source file has no line numbers.

If neither of these is specified, the
assembler will examine the first line to
determine if the file has line numbers.

Instructs the assembler to generate its own
line numbers in the listing in place of
those in the source file (if any) •

Instructs the assembler to paginate output
to the listing file. The file name of the
source code file will be printed on the top
left-hand corner of each page. A page
number will be printed on the top right-hand
corner of each page. If a TITL
pseudo-operation occurs in the source code,
a one- ot two-line title will be centered at
the top of each page.

Specifies the spacing on the listing:

o no additional spacing
1 72 column output
2 80 column output (default)
3 132 column output

Specifies output symbol table in format
for SID.

ASSM TST
ASSM TST.AAX A$-L#PO

STARTUP

To assemble your program, type ASSM and the source file
name. The first thing that happens is the copyright message
is displayed on the screen and the disk drive(s) begin
working. When the assembly process is complete, a message

6-6-83 NEVADA ASSEMBLER PAGE 9

will be displayed and machine control will return to the
operating system.

A>ASSM source-file<CR>
NEVADA ASSEMBLER (C) COPYRIGHT 1982
ELLIS COMPUTING, INC.
REV 2.1 ASSEMBLING

NO ASSEMBLY ERRORS.
A>

4 LABELS WERE DEFINED.

EXECUTING THE .OBJ FILE

To execute the program, type RUNA and the file-name. The
assembly process creates a file with the extension type of
(.OBJ). This object program file will be loaded into memory
and executed.

A>RUNA file-name

There are several options that also can be specified with
the RUN A command.

RUNA file-name[.ZLC]

Example:

Z zero memory before loading the .OBJ file.

L load the program but don't execute it.
Control returns to CP/M.

C create a .COM file for later execution.
Control returns to CP/M. Remember .COM files
alway begin execution at location lOOH.

A>RUNA PROG. ZC this will zero memory and create a file
named PROG. COM.

A>RUNA PROG.L this will load PROG but not execute it.

NOTE: These object code files (.OBJ), if properly orged,
~also be loaded and executed by the NEVADA COBOL and
NEVADA FORTRAN run time packages. However, Nevada COBOL and
Nevada FORTRAN generated type (.OBJ) files cannot be
converted to (.COM) files by RUN A because of runtime package
requirements. Please see the Nevada FORTRAN manual for the
procedure to generate a FORTRAN (.COM) file.

MEMORY USAGE

The ASSEMBLER program is read into memory starting at
location lOOH and uses all memory available up to the bottom
of CP/M.

I

6-6-83 NEVADA ASSEMBLER PAGE 10

The runtime package RUNA loads into memory at location lOOH
and relocates itself to just below CP/M and then begins
loading your program.

TERMINATION

The normal termination of the assembly is signaled by the
display of the following messages and return to CP/M.

NO ASSEMBLY ERRORS. 4 LABELS WERE DEFINED.
A>

The assembly process can be interupted at any time by
pressing the Control and C keys.

6-6-83 NEVADA ASSEMBLER PAGE 11

SECTION 3

STATEMENTS

INTRODUCTION

An assembly language program (source code) is a series of
statements specifying the sequence of machine operations to
be performed by the program.

Each statement resides on a single line and may contain up
to four fields as well as an optional line number. These
fields, label, operation, operand, and comment, are scanned
from left to right by the assembler, and are separated by
spaces. The assembler can handle lines up to 80 characters
in length.

LINE NUMBERS

Line numbers in the range 0000-9999 may appear in columns
1-4. Line numbers need not be ordered and have no meaning
to the assembler, except that they appear in listings. Line
numbers may also make it easier to locate lines in the
source code file when it is being edited. The disk and
memory space required for normal text files will be
increased by five bytes per line if line numbers are used;
this may become significant for large files.

If line numbers are not used, the label field starts in
column 1 and the operation field may not start before column
2. If line numbers are used, they must be followed by at
least one space, so the label field starts in column 6 and
the operand many not start before column 7.

Once the starting column for the label has been established,
the same format must be followed throughout the file: either
all of the lines or none of the lines can have line numbers.
Any other file(s) assembled along with the main file (using
COpy pseudo-operation) must conform to the format of the
main file.

Example of source statements with line numbers:

Column
1234567
0001 LABEL ORA A
0002 JNZ NEXT
0003
0004 LOOP MOV A,B
0005 *

label field must start at column 6.
operation field starts at column 7
(minimum) •
operation field starts one space after
label.

I

6-6-83 NEVADA ASSEMBLER PAGE 12

Example of source statements without line numbers:

Column
1234567
LABEL ORA A

JNZ NEXT
LOOP MOV A,B

LABEL FIELD

label field must start at column 1.
operation field starts at column 2 (minimum).
operation field starts one space after label.

The label field must start in column 1 of the line (column 6
if line numbers are used). A label gives the line a
symbolic name that can be referenced by any statement in the
program. Labels must st~rt with an alphabetic character
(A - Z , a - z), and may con sis t 0 fan y n urn b e r 0 f c h a r act e r s ,
though the assembler will ignore all characters beyond the
sixth; e.g. the labels BRIDGE, BRIDGE2 and BRIDGET cannot be
distinguished by the assembler. A duplicate label error
will occur if any two labels in a program begin with the
same six letters.

A label may be separated from the operations field by a
colon (:) insteat of, or in addition to, a blank.

The labels A, B, C, 0, E, H, L, M, PSW, and SP are
pre-defined by the assembler to serve as symbolic names for
the 8080 registers. They must not appear in the label
field.

An as te r i s k (*) 0 r s ern i - colon (;) in p lac e 0 f a 1 abe 1 in
column 1 (column 6 if line numbers are used) will designate
the entire line as a comment line.

OPERATION FIELD

The operation field contains either 8080 instruction
mnemonics or assembler pseudo-operation mnemonics. Appendix
1 summarizes the standard instruction mnemonics recognized
by the assembler, and Appendix 4 lists several references to
consult if more information on the 8080 machine instructions
is needed. Assembler pseudo-operations are directives that
control various aspects of the assembly process, such as
storage allocation, conditional assembly, file inclusion,
and listing control.

An operation mnemonic may not start before column 2 (column
7 if line numbers are used) and must be separated from a
label by at least one space (or a colon) •

6-6-83 NEVADA ASSEMBLER PAGE 13

OPERAND FIELD

Most machine instructions and pseudo-operations require one
or two operands, either register names, labels, constants,
or arithmetic expressions involving labels and constants.

The operands must be separated from the operator by at least
one space. If two operands are required, they must be
separated by a comma. No spaces may occur within the
operand field, since the first space following the operands
delimits the comments field.

Register Names

Many 8080 machine instructions require one or two registers
or a register paIr to be designated in the operand field.
The symbolic names for the general-purpose registers are A,
B, C, 0, E, Hand L. SP stands for the stack pointer, while
M refers to the memory location whose address is in the HL
register pair. The register pairs BC, DE, and HL are
designated by the symbolic names B, 0, and H, respectively.
The A register and condition flags, when operated upon as a
register pair, are given the symbolic name PSW.

The values assigned to be register names A, B, C, 0, E, H,
L, M, PSW and SP are 7, 0, 1, 2, 3, 4, 5, 6, 6, and 6,
respectively. These constants, or any label or expression
whose value lies in the range 0 to 7, may be used in place
of the pre-defined symbolic register names where a register
name is required; such a substitution of a value for the
pre-defined register name is not recommended, however.

Labels

Any label that is defined elsewhere in the program may be
used as an operand. If a label is used where an 8-bit
quantity is required (e.g., MVI C,LABEL), its value must lie
in the range -256 to 255, or it will be flagged as a value
error.

If a label is used as a register name, its value must lie in
th range 0 to 7, or be 0, 2, 4, or 6 if it designates a
register pair. Otherwise, it will be flagged as a register
error.

During each pass, the assembler maintains an instruction
location counter that keeps track of the next location at
which an instruction may be stored; this is analogous to the
program counter used by the processor during program
execution to keep track of the location of the next
instruction to be fetched.

The special label $ (dollar Sign) stands for the current

I

6-6-83 NEVADA ASSEMBLER PAGE 14

value of the assembler's instruction location counter. When
$ appears within the operand field of a machine instruction,
its value is the address of the first byte of the next
instruction.

EXAMPLE:

FIRST EQU $ The label FIRST is set to the address
TABLE DB ENTRY of the entry in a table and LAST
* points to the location immediately after
* the end of the table. TABLN is then
* the length of the table and will remain
LAST EQU $ correct, even if later additions or
TABLN EQU LAST-FIRST deletions are made in the table.

CONSTANTS

Decimal, hexadecimal, octal, binary and ASCII constants may
be used as operands.

The base for numeric constants is indicated by a single
letter immediately following the number, as follows:

D decimal
H hexadecimal
o octal
Q octal
B binary

If the letter is omitted, the number is assumed to be
decimal. Q is usually perferred for octal constants, since
o is so easily confused with 0 (zero). Numeric constants
must begin with a numeric character (0-9) so that they can
be distinguished from labels; a hexadecimal constant
beginning with A-F must be preceded by a zero.

ASCII constants are one or two characters surrounded by
single quotes ('). A single quote within an ASCII constant
is represented by two single quotes in a row with no
intervening spaces. For example, the expression"", where
the two outer quote marks represent the string itself, i.e.,
the single quote character. A single character ASCII
constant has the numerical value of the corresponding ASCII
code. A double character ASCII constant has the l6-bit
value whose high-order byte is the ASCII code of the first
character and whose low-order byte is the ASCII code of the
second character.

If a constant is used where an 8-bit quantity is required
(e.g., MVI C,lOH), its numeric value must lie in the range
-256 to 255 or it will be flagged as a value error.

If a constant is used as a register name, its numeric value

6-6-83 NEVADA ASSEMBLER PAGE 15

must lie in the range 0 to 7, or be 0, 2, 4, or 6 if it
designates a register pair. Otherwise it will be flagged as
a register error.

Examples:

MVI A,128 Move 128 dec imal to regi ster A.
MVI C,10D Move 10 dec imal to register C.
LXI H,2FH Move 2F hexadec imal to registers HL.
MVI B,303Q Move 303 octal to reg ister B.
MVI A, 'Y' Move the ASC I I val ue for Y to reg A.
MVI A,101B Move 101 binary to reg ister A.
JMP OFFH Jump to address FF hexadecimal.

EXPRESSIONS

Operands may be arithmetic expressions constructed from
labels, constants, and the following operators:

+ addition or unary plus
subtraction or unary minus

* multiplication
/ division (remainder discarded)

Values are treated as 16-bit unsigned 2's complement
numbers. positive or negative overflow is allowed during
expression evaluation, e.g., 32767+1=7FFFH+l=-32768 and
-32768-1=7FFFH=32767. Expressions are evaluated from left
to right; there is no operator precedence.

If an expression is used where an 8-bit quantity is required
(e.g., MVI C,TEMP+IOH), it must evaluate to a value in the
range -256 to 255, or it will be flagged as a value error.

Examples:

MVI A, 255D/IOH-5
LDA POTTS/256*OFFSET
LXI SP,30*2+STACK

High- and Low-order Byte Extraction

If an operand is preceded by the symbol <, the high-order
byte of the evaluated expression will be used as the value
of the operand. If an operand is preceded by the symbol >,
the low-order byte will be used.

Note that the symbols < and> are not operators that may be
applied to labels or constants within an expression. If
more than one < or > appears within an expression, the
rightmost will be used to determine whether to use the high-

6-6-83 NEVADA ASSEMBLER PAGE 16

or low-order byte of the evaluated expression as the value
of the operand. That is, the rightmost < or) is treated as
if it preceded the entire expression, and the others will be
totally ignored.

Examples:

MVI
*
*

MVI
*
*

MVI
MVI

A,)TEST

B,<OCCOOH

C,<1234H
C,)1234H

Loads register A with the least
significant 8 bits of the value of
the label TEST.
Loads register B with the most
significant byte of the l6-bit value
CCOOH, i.e., CCH.
Loads register C with the value l2H.
Loads register C with the value 34H.

COMMENT FIELD

The comment field must be separated from the operand field
(or operation field for instructions or pseudo-operations
that require no operand) by at least one space. Comments
are not processed by the assembler, but are solely for the
benefit of the programmer. Good comments are essential if a
program is to be understood very long after it is written or
is to be maintained by someone other than its author.

An entire line will be treated as a comment if it starts
with an asterisk (*) or semicolon (;) in column 1 (column 6
if line numbers are used) •

Examples:

0001
0002
0003
0004
0005

; is input ready?
LOOP IN STAT input device status

ANI 1 test status bit
JZ LOOP wait for data

*data is now available

If listing file formatting is specified in the ASM command
($=options contains 1, 2, or 3), the comment field must be
preceded by at least two spaces to ensure proper output
formatting. Futhermore, instructions and pseudo-operations
requiring no operand must be followed by a dummy operand (a
peRiod is recommended) •

Examples:

MVI A,lO comments
RZ. comments

6-6-83 NEVADA ASSEMBLER PAGE 17

SECTION 4

PSEUDO-OPERATIONS

Pseudo-operations appear in a source program as instructions
to the assembler and do not always generate object code.
This section describes the pseudo-operations recognized by
the NEVADA assembler.

In the following pseudo-operation formats, <expression>
stands for a constant, label, arithmetic expression
constructed from constants and labels. Optional elements
are enclosed in square brackets [].

Equate <label> EQU <expression>

This pseudo-operation sets a label name to the 16-bit value
that is represented in the operand field. That value holds
for the entire assembly and may not be changed by another
EQU.

Any label that appears in the operand field of an EQU
statement must be defined in a statement earlier in the
program.

Examples:

BELL EQU 7 The value of the label BELL is set to 7.
BELL2 EQU BELL*2 The label BELL2 is ste to 7*2.

Set Origin [<label>] ORG <expression>

This pseudo-operation sets the assembler's instruction
location counter to the 16-bit value specified in the
operand field. In other words, the object code generated by
the statements that follow must be loaded beginning at the
specified address in order to execute properly. The label,
if present, is given the specified l6-bit value.

Any label that appears in the operand field of an ORG
statement must be defined in a statement earlier in the
program.

If no origin is specified at the beginning of the source
code, the assembler will set the origin to lOOH. If no ORG
pseudo-operation is used anywhere in the source program,

I

6-6-83 NEVADA ASSEMBLER PAGE 18

successive bytes of object code will be stored at successive
memory locations.

Examples:

*
*
START
*
*

ORG 4000H Determines that the object code generated
by subsequent statements must be loaded
in locations beginning at 4000H.

ORG 100H Determines that the object code generated
by subsequent statements must be loaded
in locations beginning at 100H.

Set Execution Address XEQ <expression>

This pseudo-operation specifies the entry point address for
the program, i.e., the address at which it is to begin
execution. If a program contains no XEQ pseudo-operation,
the object code file will contain a starting address of
100H. If more than one XEQ appears in a program, the last
will be used.

An example of the difference between ORG and XEQ is that a
program whose first 100 bytes are occupied by data will have
an ORG address 100 bytes lower in memory than its XEQ
address.

Example:

*
XEQ 100H The entry point address for the assembled

program is set to 100H.

Define Storage [<label>] DS <expression>
[<label>] RES <expression>

Either of these pseudo-operations reserves the specified
number of successive memory locations starting at the
current address within the program. The contents of these
locations are not defined and are not initialized at load
time.

Any label that appears in the operand field of a DS or RES
statement must be defined in a statement earlier in the
program.

Examples:

SPEED DS 1
DS 400
RES l77Q

Reserves one byte.
Reserves 400 bytes.
Reserves 177 (octal) bytes.

6-6-83 NEVADA ASSEMBLER PAGE 19

Define byte [<label>] DB <expression>[,<expression>, •••]

This pseudo-operation sets a memory location to an 8-bit
value. If the operand field contains multiple expressions
separated by commas, the expressions will define successive
bytes of memory beginning at the current address. Each
expression must evaluate to a number that can be represented
in 8 bits.

Examples:

DB lone byte is defined.
DB OFFH,303Q,lOOD,110lOOllB,3*BELL,-10 multiple bytes.

TABLE DB 'A' ,'B' ,'C' ,'0' ,0 multiple bytes are defined.

Define Word [<label>] DW <expression>

This pseudo-operation sets two memory locations to a l6-bit
quantity. The least significant (low-order) byte of the
value is stored at the current address and the most
significant byte (high-order) is stored at the current
address + 1.

Examples:

SAVE OW l234H
*
*
YES OW 'OK'
*
*

1234H is stored in memory, 34H in the
low-order byte and 12H in the high-order
byte.
The ASCII value for the letters '0' and 'K'
is stored with the 'K' at the lower memory
address.

Define Double Byte [<label>] DDB <expression>

This pseudo-operation is almost the same as OW, except that
the two bytes are stored in the opposite order: high-order
byte first, followed by the low-order byte.

Example:

FIRST DDB 1234H 1234H is stored in memory, 12H in the
low-order byte and 34H in the high-order
byte.

I

6-6-83 NEVADA ASSEMBLER PAGE 20

Define ASCII String [<label>] ASC '<ASCII string>'
[<label>] ASCZ '<ASCII string>'

The ASC pseudo-operation puts a string of characters into
successive memory locations starting at the current
location. The special symbols * in the format are
"delimiters"; they define the beginning and end of the ASCII
character string. The assembler uses the first non-blank
character found as the delimiter. The string immediately
follows this delimiter, and ends at the next occurence of
the same delimiter, or at a carriage return.

The ASCZ pseudo-operation is the same except that it appends
a NUL (OOH) to the end of the stored string.

Examples:

WORDS ASC "THIS IS AN ASCII STRING"
ASCZ "THIS IS ANOTHER STRING"

Set ASCII List Flag ASCE" 0
ASCF 1

If the operand field contains a 0, the listing of the
assembled bytes of an ASCII string will be suppressed after
the first line (four bytes). Likewise, only the first four
assembled bytes of a DB pseudo-operation with multiple
arguments will be listed. If a program contains many long
strings, its listing will be easier to read if the ASCF
pseudo-operation is used.

If the operand field contains a 1, the assembled form of
subsequent ASCII strings and DB pseudo-operations with
multiple argumrnts will be listed in full. This is the
default condition.
See Appendix 3 for an example of the listing format.

Conditional Assembly IE" <expression>

source code

ENDF

The value of the expression in the operand field governs
whether or not subsequent code up to the matching ENDF will
be assembled. If the expression evaluates to a 0 (false),
the code will not be assembled. If the expression evaluates
to a non-zero value (true), the code will be assembled.
Blocks of code delimited by IF and ENDF ("conditional coden)
may be nested within another block of conditional code.

6-6-83 NEVADA ASSEMBLER PAGE 21

Any label that appears in the operand field of an IF ••• ENDF
pseudo-operation must be defined in a statement earlier in
the program.

Example:

YES EQU 1
NO EQU 0
*

IF YES
MVI A, 'Y'
IF NO
MVI A, 'N'
ENDF
ENDF

Sets the value of the label 'YES' to 1.
Sets the value of the label 'NO' to O.

the expression here is true (1), so the
code on this line will be assembled.
The expression here is false (0), so the
code on this line will not be assembled.
This terminates the NO conditional.
This terminates the YES conditional.

List Conditional code IPLS

This pseudo-operation enables listing of conditional source
code even though no object code is being generated because
of a false IF condition. The assembler will not list such
conditional source code if this pseudo-operation is not
used.

Copy file COpy [<unit:>]<file-name>

This pseudo-operation copies source code from a disk file
into a program being assembled. The code from the copied
file will be assembled starting at the current address.
When the copied file is exhausted, the assembler will
con tin ue to assemble from the or ig inal file. The res ul t i ng
object code will be exactly like what would be generated if
the copied source code were part of the original file, but
the COpy pseudo-operation does not actually alter any source
file.

A copied file may not copy another file. And, all files
that are accessed by the COpy pseudo-operation must be of
the same format as the main source file, i.e., either having
or not having line numbers. The files must be type (.ASM).

EXAMPLES:

COpy FILEI
COpy B:FILE2

I

6-6-83

Listing Control

NEVADA ASSEMBLER

NLST
LST

PAGE 22

The NLST pseudo-operation suppresses all output to the
listing file. Object code will still be output to the
object code file and the lines containing errors will still
be output to the error file. The LST pseudo-operation
re-enables output to the listing file.

Listing Title TITL <first line>"<second line>

If the P option is specified in the ASM command, the one- or
two-line title specified by this pseudo-operation will be
printed centered at the top of each page of the listing.

Page Eject PAGE

If the P option is specified in the ASM command, this
pseudo-operation causes a skip to the top of the next page
of the listing.

End of Source file END

This pseudo-operation terminates each pass of the assembly.
Only one END statement should be in the file or files to be
assembled, and it should be the last statement encountered
by the assembler. Since an end-of-file on the sourec code
input file will also terminate each pass, the END statement
is unnecessary in most cases.

6-6-83 NEVADA ASSEMBLER PAGE 23

SECTION 5

ERROR CODES AND MESSAGES

ASSEMBLER COMMAND ERRORS

A number of console messages may be generated in response to
errors in the ASM command. When an error of this sort
occurs, the assembly is aborted and control returns to CP/M.

EXPECTED NAME The source code input file name is missing.

ILLEGAL OPTION An unrecognized option specifier follows $.

91 ERROR IN EXTENDING THE FILE
92 END OF DISK DATA - DISK IS FULL
93 FINE NOT OPEN
94 NO MORE DIRECTORY SPACE - DISK IS FULL
95 FILE CANNOT BE FOUND
96 FILE ALREADY OPEN
97 READING UNWRITTEN DATA

ASSEMBLY ERRORS

If a statement contains one of the following errors, there
will be a single letter error code in column 19 of the line
output to the listing and/or error files. An error detected
during both the first and the second pass of the assembler
will be flagged twice in the listing(s). If the error is
not an opcode error, NULs will be output as the second and,
if appropriate, third bytes of object code for that
instruction. If the error is an opcode error, the
instruction will be assumed to be a three-byte instruction,
and three NULs will be written to the listing and/or error
files. The error codes are:

I

6-6-83 NEVADA ASSEMBLER PAGE 24

A ARGUMENT ERROR An illegal label or constant appears
in the operand field. This might be
1) a number with a letter in it,
e.g., 2L, 2) a label that starts
with a number, e.g., 3STOP, or 3) an
improper representation of a string,
e.g., "'A'" in the operand field
of a statement containing the ASCII
pseudo-operation.

D DUPLICATE LABEL The source code contains multiple
labels whose first five characters
are iden tical.

L LABEL ERROR The symbol in the label field
contains illegal characters, e.g.,
it starts with a number.

M MISSING LABEL An EQU instruction does not have a
symbol in the label field.

o OPCODE ERROR The symbol in the operation field is
not a valid 8080 instruction
mnemonic or an assembler
pseudo-opera tion mnemon ic •

R REGISTER ERROR An expression used as a register
designator does not have a legal
value.

S SYNTAX ERROR A statement is not in the format
required by the assembler.

U UNDEFINED SYMBOL A label used in the operand field
is not defined, i.e., does not
appear in the label field anywhere
in the program, or is not defined
prior to its use as an operand in
an EQU, ORG, OS, RES, or IF
pseudo-operation.

V VALUE ERROR The value of the operand lies
outside the allowed range.

C2

~Z }

C4 CNZ CO RNZ CF RST 1 OF RRC 59 MOV E,C 81 ADD C A9 XRA C 0\
CA JZ CC CZ C8 RZ 07 RST 2 17 RAL 5A MOV E,O 82 ADD 0 M XRA 0 I
02 JNC 04 CNC DO RNC OF RST 3 1F RAR 5B MOV E,E 83 ADD E AB XRA E 0\
OA JC Adr DC CC Adr 08 RC E7 RST 4 5C MOV E,H 84 ADD H AC XRA H I

CO
E2 JPO E4 CPO EO RPO EF RST 5 50 MOV E,L 85 ADD L AD XRA L W
EA JPE EC CPE E8 RPE F7 RST 6 5E MOV E,M 86 ADD M AE XRA M
F2 JP F4 CP FO RP FF RST 7 CONTROL 5F MOV E,A 87 ADD A AF XRA A
FA JM F=C CM F8 RM
E9 PCHL 00 NOP 60 MOV H,B 88 ADC. B eo ORA B

76 HLT 61 MOV H,C 89 ADC C B1 ORA C

F3 01 62 MOV H,D SA ADC 0 B2 ORA 0

FB EI 63 MOV H,E 8B ADC E B3 ORA E
MOVE Ace LOAD 64 MOV H,H 8C ADC H B4 ORA H
IMMEDIATE IMMEDIATE'" IMMEDIATE STACKOPS 65 MOV H,L 80 ADC L B5 ORA L

66 MOV H.M 8E ADC M B6 ORA M
06 MVI

"l
C6

AD,!
01 LXI B} C5 PUSH B

MOVE 67 MOV H,A 8F AD~ A B7 ORA A
OE MVI C. CE ACI 11 LXI 0, 016 05 PUSH 0

MOV B,B MOV L,B SUB B B8 CMP B 16 MVI D. 06 SUI 21 LXI H. E5 PUSH H 40 68 90

lE MVI E. 08 DE SBI 08 31 LXI SP, F5 PUSH PSW 41 MOV B,C 69 MOV L,C 91 SUB C B9 "CMP C • 26 MVI E6 42 MOV B,O 6A MOV L,D 92 SUB 0 BA CMP 0 Ii'iI H. ANI
SUB BB CMP E ~ 2E MVI L. EE XRI C1 POP B 43 MOV B,E 6B MOV L,E 93 E

36 MVI M. F6 ORI 01 POP 0
44 MOV B,H 6C MOV L,H 94 SUB H BC CMP H » C ~

3E MVI A. FE CPI E1 POP H 45 MOV B,L 60 MOV L,L 95 SUB L BO CMP L ~ l1li
DOUBLE ADDt F1 POP PSW" 46 MOV B,M 6E MOV L.M 96 SUB M BE CMP M m

MOV B,A 6F MOV L,A 97 SUB A BF CMP A Z l1li
09 DAD B 47

C (/l

19 DAD 0 E3 XTHL 70 MOV M,B 98 SBB B
(/l

48 MOV C,B X g 29 DAD H F9 SPHL 49 MOV C.C 71 MOV M,C 99 SBB C PSEUDO
INCREMENT"'''' DECREMENT"'''' 39 DAD SP SBB 0 INSTRUCTION :- 1:1:1 4A MOV C,D 72 MOV M,O 9A

t"'1
4B MOV C.E 73 MOV M,E 9B SBB E t'::I 04 INR B 05 OCR B SPECIALS 4C MOV C,H 74 MaV M,H 9C SBB H ORG Adr tiC

OC INR C 00 OCR C 40 MOV C,L 75 MOV M,L 90 SBB L END
14 INR 0 15 OCR 0 LOAD/STORE EB XCHG 4E MOV C,M 9E SBB M Eau 016
lC INR E 10 OCR E 27 OM" 4F MOV C.A 77 MOV M,A 9F SBB A
74 INR H 25 OCR H OA LOAX B 2F CMA OS 016
2C INR L 20 OCR L 1A LDAX 0 37 STCt 50 MaV D.B 78 MOV A,B AO ANA B DB 08 II
34 INR M 35 OCR M 2A LHLD Adr 3F CMCt 51 MOV D.C 79 MOV A.C A1 ANA C OW 016 II
3C INR A 3D OCR A 3A LOA Adr 52 MOV 0,0 7A MOV A,O A2 ANA 0

53 MeV O,E 7B MaV A,E A3 ANA E
03 INX B OB DCX B 02 STAX B INPUT/OUTPUT 54 MOV D,H 7C MOV A,H A4 ANA H
13 INX 0 1B DCX 0 12 STAX 0 55 MaV D,L 70 MOV A,L A5 ANA L
23 INX H 2B DCX H 22 SHLD Adr 03 OUT 08 56 MOV D,M 7E MOV A,M A6 ANA M
33 INX SP 3B DCX SP 32 STA Adr DB IN 08 57 MOV D,A 7F MOV A,A A7 ANA A ttl

l1li
08 constant. or logical/arithmetic expression that evaluates 016 ~ oonstant, or logicaVarithmetic expression that evaluates

G"l
Adr = 16 bit address tIQ

to an 8 bit data quantity to a 16 bit data quantity. •• = all Rags except CARRY affected; ~
all Flags (C.Z.S.P) affected t = only CARRY affected (exception: INX & DCX affect no Flags) U1 -

00 NOP
01 LXI B.D16
02 STAX B
03 INX B
04 INR B
05 DCR B
06 MVI B.D8
07 RLC
08
09 DAD B
OA LDAX B
08 DCX 8
OC INR C
00 DCR C
OE MVI C.D8
OF RRC
10
11 LXI D.D16
12 STAX D
13 INX D
14 INR D
15 DCR D
16 MVI D.D8
17 MAL
18
19 DAD D
1A LDAX D
18 DCX D
1C INR E
10 DCR E
1E MVI E.D8
'F RAR
20
21 LXI H.D16
22 SHLD ACr
23 INX H
24 INR H
25 DCR H
26 MVI H.D8
27 DAA

28
DAD H

2A LHLD
2B DCX

29
Adr

H
2C INR L
2D DCR L
2E
2F
30

MVI
CMA

L.D8

31 LXI SP.D16
32 STA Adr
33 INX SP
34 INR M
35 DCR M
36 MVI M.DB
37 STC
38
39 DAD SP
3A LDA Adr
38 DCX SP
3C INR A
3D DCR A.
3E M'll A.D8
3F CMC
40 MOV B,B
41 MOV B.C
42 MOV B.D
43 MOV B.E
44 MOV 8.H
45 MOV 8.L
46 MOV B.M
47 MOV B.A
48 MOV C.8
49 MOV C.C
4A MOV C.D
48 MOV C.E
4C MOV C,H
4D MOV C,L
4E MOV C,M
4F MOV C,A

50 MOV D.B
51 MOV D.C
52 MOV D,D
53 MOV D,E
54 MOV D,H
55 MOV D,L
56 MOV D.M
57 MOV D.A
58 MOV E.B
59 MOV E.C
5A MOV E.D
58 MOV E.E
5C MOV E.H
5D MOV E.L
SE MOV E.M
5:- MOV E.A
I'3C Mf)V H.B
61 MOV H.C
62 MOV H.D
63 MOV I-U::
64 MO'; H H

65 MOV H.L
66 MOV HM
67 MOV H.A
68 MOV L,B
69 MOV L.C
SA MOV L.D
6S MOV L.E
5C MOV L.H
6D MOV L.L
6E MOV L.M
SF MO'; L.A
70 MOV M.B
71 MOV M.C
72 MOV M.D
73 MOV M.E
74 MOV M.H
75 MOV M.L
76 HLT
77 MOV M,A

D8 = constant, or logical/arithmetic expression that evaluates
to an 8 bit data quantity

78 MOV A,B
79 MOV A,C
7A MOV A.D
78 MOV A,E
7C MOV A,H
7D MOV A,L
7E MOV A,M
7F MOV A,A
80 ADD B
B1 ADD C
82 ADD 0
B3 ADD E
B4 ADD H
85 ADD L
86 ADD M
87 ADD A
B8 ADC B
B9 ADC C
8A ADC D
88 ADC E
8C ADC H
BD ADC L
BE ADC M
BF ADC A
90 SUB B
91 SUB C
92 SUB D
93 SUB E
94 SUB H
95 SUB L
96 SUB M
97 SUB A
98 SBB B
99 SBB C
9A SB8 D
9S SB8 E
9C SBB H
9D SSB L
9E SSB M
9F SBB A

AO ANA B
A1 ANA C
A2 ANA D
A3 ANA E
A4 ANA H
A5 ANA L
A6 ANA M
A7 ANA A
A8 XRA B
A9 XRA C
AA XRA D
AS XRA E
AC XRA H
AD XRA L
AE XRA M
AF XRA A
BO ORA B
B1 ORA C
B2 ORA D
83 ORA E
84 ORA H
B5 ORA L
B6 ORA M
B7 ORA A
B8 CMP B
89 CMP C
BA CMP D
8B CMP E
BC CMP H
8D CMP L
BE CMP M
BF CMP A
CO RNZ
C1 POP B
C2 JNZ Adr
C3 JMP Adr
C4 CNZ Adr
C5 PUSH B
C6 ADI D8
C7 RST 0

CB RZ
C9 RET
CA JZ
CB
CC CZ Adr
CD CALL Adr
CE ACI D8
CF RST 1
DO RNC
D1 POP D
D2 JNC Adr
D3 OUT D8
D4 CNC Adr
D5 PUSH D
D6 SUI D8
D7 RST 2
D8 RC
D9
DA JC Adr
DB IN D8
DC CC Adr
DD
DE SBI DB
DF RST 3
EO RPO
E1 POP H
E2 JPO Adr
E3 XTHL
E4 CPO Adr
E5 PUSH H
E6 ANI D8
E7 RST 4
E8 RPE
E9 PCHL
EA JPE Adr
EB XCHG
EC CPE Adr
ED
EE XRI D8
EF RST 5

D16 = constant, or logical/arithmetic expression that evaluates
to a 16 bit data quantity.

FO RP
F1 POP PSW
F2 JP Adr
F3 DI
F4 CP Adr
F5 PUSH PSW
F6 ORI D8
F7 RST 6
Fa RM
F9 SPHL
FA JM Adr
FB EI
FC CM Adr
FD
FE CPI D8
FF RST 7

HEX-ASCII TABLE

Non-Printing

00 NULL
07 BELL
09 TAS
OA LF
OB VT
OC
OD

FORM
CR

11 X-ON
12 TAPE

X-OFF 13
14
1B ESC
7D ALT MODE
7F RU8 OUT

Adr = 16 bit address

»
."
."
m
Z
2
X

0'\
I

0'\
I

(X)

W

!ZI
tIiI

~ o
:PI

:PI
(Jl
til

!
~ =c

~
~
N
0'\

6-6-83 NEVADA ASSEMBLER PAGE 27

APPENDIX 2
TABLE OF ASCII CODES (Zero Parity)

Paper tape Upper Octal Octal Decimal Hex Character
123.4567P

0000 000 0 00 ctrl @ NUL

• 0004 001 I 01 ctrl A SOH Start of Heading

• 0010 002 2 02 ctrl B STX Start of Text

•• 0014 003 3 03 ctrl C ETX End of Text · . 0020 004 4 04 ctrl D EOT End of Xmit

• · . 0024 005 5 05 ctrlE ENQ Enquiry ... 0030 006 6 06 ctrl F ACK Acknowledge 0034 007 7 07 ctrlG BEL Audible Signal .. 0040 010 8 08 ctrl H BS Back Space

• .. 0044 011 9 09 ctrl I HT Horizontal Tab I • .. 0050 012 10 OA ctrl J LF Line Feed

•• · . 0054 013 II OB ctrlK VT Vertical Tab ... 0060 014 12 OC ctrl L FF Form Feed

• ... 0064 015 13 OD ctrl M CR Carriage Return

•••• 0070 016 14 OE ctrlN SO Shift Out

••••• 0074 017 15 OF ctrlO SI Shift In

• 0100 020 16 10 ctrl P DLE Data Line Escape

• • 0104 021 17 II ctrl Q DCl XOn

• • 0110 022 18 12 ctrl R DC2 Aux On

•• • 0114 023 19 13 ctrlS DC3 X Off · . • 0120 024 20 14 ctrlT DC4 Aux Off

• · . • 0124 025 21 15 ctrlU NAK Negative Acknowledge

\ ... • 0130 026 22 16 ctrlV SYN Synchronous File
\ • 0134 027 23 17 ctrl W ETB End of Xmit Block

\ ... 0140 030 24 18 ctrl X CAN Cancel
\. ... 0144 031 25 19 ctrl Y EM End of Medium

\ • ... 0150 032 26 lA ctrl Z SllB Substitute
\ 0154 033 27 IB ctrl [ESC Escape

\ 0160 034 28 IC ctrl \ FS File Separator
\. 0164 035 29 lD ctrl] GS Group Separator

\ ••••• 0170 036 30 IE ctrl " RS Record Separator
\ 0174 037 31 IF ctrl US Unit Separator

\ • 0200 040 32 20 Space
\. • 0204 041 33 21 !
\ • • 0210 042 34 22
\ .. • 0214 043 35 23 #
\ · . • 0220 044 36 24 $
\. · . • 0224 045 37 25 %

\ ... • 0230 046 38 26 &
\ • 0234 047 39 27

\ · . • 0240 050 40 28
\. · . • 0244 051 41 29

\ • · . • 0250 052 42 2A * •• · . • 0254 053 43 2B + ... • 0260 054 44 2C

• ... • 0264 055 45 2D

•••• • 0270 056 46 2E

••••• • 0274 057 47 2F /
•• 0300 060 48 30 0

• •• 0304 061 49 31 1

• •• 0310 062 50 32 2
•• •• 0314 063 51 33 3 · . •• 0320 064 52 34 4

• · . •• 0324 065 53 35 5 ... •• 0330 066 54 36 6
\ •• 0334 067 55 37 7
\ •••• 0340 070 56 38 8
\. •••• 0344 071 57 39 9
\ • •••• 0350 072 58 3A
\ .. •••• 0354 073 59 3B

\ ••••• 0360 074 60 3C <
\. ••••• 0364 075 61 3D

\ •••••• 0370 076 62 3E >
\ 0374 077 63 3F ?

6-6-83 NEVADA ASSEMBLER PAGE 28
APPENDIX 2

TABLE OF ASCII CODES (Cont'd) (Zero Parity)

Paper tape Upper Octal Octal Decimal Hex Character
123 .4567P

I • 0400 100 64 40 @

I· • 0404 101 65 41 A

I • • 0410 102 66 42 B

I·· • 0414 103 67 43 C

I · . • 0420 104 68 44 D

I· · . • 0424 105 69 45 E

I .. . • 0430 106 70 46 F

I··· . • 0434 107 71 47 G

I · . • 0440 llO 72 48 H

I· · . • 0444 III 73 49 I

I • .. • 045,,0 Il2 74 4A J

I·· · . • 0454 Il3 75 48 K
I ... • 0460 114 76 4C L

I· ... • 0464 Il5 77 4D M

I •••• • 0470 116 78 4E N
I •••.• • 0474 Il7 79 4F 0

I • • 0500 120 80 50 P

I· • • 0504 121 81 51 Q

I • • • 0510 122 82 52 R

•• • • 0514 123 83 53 S · . • • 0520 124 84 54 T

• · . • • 0524 125 85 55 U ... • • 0530 126 86 56 V

•••• • • 0534 127 87 57 W

••• • 0540 130 88 58 X

• ... • 0544 131 89 59 y

• ••• • 0550 132 90 5A Z
•• ... • 0554 133 91 58 [.... • 0560 134 92 5C \
• •••• • 0564 135 93 5D]

••••• • 0570 136 94 5E

•••••• • 0574 137 95 5F

•• 0600 140 96 60

• •• 0604 141 97 61 a
• •• 0610 142 98 62 b

•• •• 0614 143 99 63 c · . •• 0620 144 100 64 d

• · . •• 0624 145 101 65 e ... •• 0630 146 102 66 f

•••• •• 0634 147 103 67 9
· . •• 0640 150 104 68 h

• · . •• 0644 151 105 69 i

• · . •• 0650 152 106 6A j
•• · . •• 0654 153 107 68 k ... •• 0660 154 108 6C 1
• ... •• 0664 155 109 6D m
•••• •• 0670 156 IlO 6E n

••••• •• 0674 157 III 6F 0

••• 0700 160 Il2 70 P
• ••• 0704 161 Il3 71 q

• ••• 0710 162 Il4 72 r
•• • •• 0714 163 115 73 s · . • •• 0720 164 Il6 74 t

• · . ••• 0724 165 Il7 75 u ... • •• 0730 166 lI8 76 v
•••• ••• 0734 167 Il9 77 w

••••• 0740 170 120 78 x
• ••••• 0744 171 121 79 Y
• ••••• 0750 172 122 7A z

•• ••••• 0754 173 123 78 {

•••••• 0760 174 124 7C

• •••••• 0764 175 125 7D

••••••• 0770 176 126 7E Prefix

•••••••• 0774 177 127 7F DEL Rubout

6-6-83

0100 E5
0101 41
0102 lA
0103 BE
0104 C2 " 01
0101 23
010d 13
0109 05
010A C2 02 01
010D F6 01
010F El
0110 C9
0111 B1
0112 CA OF 01
0115 13
0116 05
0111 C2 15 01
011A 13
011B 13
011C El
0110 C3 00 01

0120 11 35 01
0123 OE 04
0125 CO 00 01
012~ CA 00 00
012B EB
012C 11 00 00
o 12F 05
0130 1E
0131 23
0132 60
0133 6F
0134 E9

0135 43 4F 4D 31
0139 00 00
013B 43 4F 40 32
013F 00 00
0141 00

NEVADA ASSEMBLER

APPENDIX 3

ASSEMBLER LISTING

&
II £' f! o 0

0000 '
0001 'SEARCH TABLE FOR MATCH TO STRING

PAGE 29

COMMENT

0002 'EACH TABLE SNTRY IS FOLLOWED BY A TWO-BYTE DISPATCH ADDRESS.
0003 'TABLE MUST "HAVE AT LEAST ONE ENTRY AND IS TERMINATED BY A
0004 'ZERO BYTE.
0005 'ON ENTRY: HL POINTS TO STRING

0006 • DE POINTS TO TABLE

0001 • C IS NUMBER OF CHARACTERS IN TABLE ENTRIES
0008 'ON RETURN: ZERO FLAG SET IF NO MATCH, ELSE DE POINTS TO
0009 ' DISPATCH ADDRESS
0010 '
0011 TSRCH PUSH H SAVE STRING ADDRESS
0012 MOV B,C INITIALIZE CHARACTER COUNT
0013 TSl LDAX D COMPARE CHARACTERS
0014 CMP M
0015 JNZ TS3
0016 INX H CHARACTERS MATCH, GO ON TO NEXT
0017 INX D
OOHl DCR B
0019 JNZ TSl
0020 ORI 1 MATCHING ENTRY FOUND
0021 TS2 POP H
0022 RET
0023 TS3 ORA A TEST FOR END OF TABLE
0024 JZ TS2
002, TS4 INX D SKIP TO NEXT ENTRY
0026 DCR B
0021 JNZ TS4
0026 INX D
0029 INX D
0030 POP H
0031 JMP TSRCH
0032 '
0033 'EXAMPLE Of TSRCH USE:

0034 •
0035 '(ASSU~IE ilL POINTS TO A FOUR-CHARACTER COMMAND STRING)
003b LXI D,CTABL DE POINTS TO COMMAND TABLE
0031 MVI C,4 TABLE ENTRIES ARE FOUR CHARACTERS LONG
003d CALL TSRCH
0039 JZ ERHOR COMMAND NOT IN TABLE
0040 XCHG SET UP STACK FOR RETURN TO MAIN ROUTINE
0041 LXI D,COMMAND
00'12 PUSH D
0043 MOV A,M DISPATCH TO APPROPRIATE COMMAND ROUTINE
00'14 INll H
0045 110 V H,M
0046 MOV L,A
0041 PCHL

004b •
0049 'COMMAND TABLE

0050 •
0051 CTABL ASC 'COMl ' fIRST ENTRY
0052 DW SUBl ADDRESS OF SUBl
0053 ASC 'COM2' SECOND ENTRY
0054 DW SUB2 ADDRESS OF SUB2
0055 DB 0 END OF TABLE MARK

SYMBOL TABLE LISTING

Label Addr. Label Addr. Label Addr. Label Addr.
CTABL 0135 TSl 0102 TS2 010F' TS3 0111
TS4 0115 TSRCH 0100

I

6-6-83 NEVADA ASSEMBLER PAGE 30

APPENDIX 4

This is a sample program. The loader source code.

0001 **
0002 *
0003 *
0004 *
0005 *
0006 *
0007 *
0008 *
0009 *
0010 *
0011 *
0012 *
0013 *
0014 *
0015 *
0016 *
0017 *
0018 *

RUNA fi1e-name[.ZCL]

An .OBJ file consists of one or more segments that
have the format:

#BYTES
2

2

Variable

DESCRIPTION
Number of code and data bytes in
segment
Load address of code and data
belonging to the segment.
Code and/or data.

The run time package will load each segment at the
specified address until a starting address is
encountered. A starting address is represented as
load address with a zero byte count.

0019 * **
0020 *
0021 RELOC EQU 0 i4200H FOR TRS-80 MOD 1
0022 BDOS EQU 5+RELOC iCP/M
0023 BLKSIZ EQU 128
0024 OFCB EQU 5CH+RELOC iIN CP/M
0025 OEX EQU OFCB+12
0026 OCR EQU OFCB+32
0027 OBUF EQU 80H+RELOC iIN CP/M
0028 *
0029 CSTART EQU $
0030 LXI SP,STK
0031 MVI C,OCH iRETURN VERSION #
0032 CALL BDOS
0033 MOV A,L
0034 ORA A
0035 JNZ VER2X
0036 LDA 4+RELOC iCPM 1.4 DEFAULT DRIVE
0037 CPI 5
0038 JC SETDF
0039 XRA A
0040 SETDF EQU $ ill-30-81 FOR MP/M II
0041 STA ODRIVE iDEFAULT DRIVE
0042 * GET OPTIONS FROM TYPE FIELD
0043 LXI H,5CH+8
0044 MVI C,4
0045 NEXT EQU $
0046 INX H

6-6-83

0047 DCR C
0048 JZ NOOPTIONS
0049 MOV A,M
0050 CPI ' ,
0051 JZ NOOPTIONS
0052 CPI 'z'
0053 JZ ZEROFIL
0054 CPI 'c'
0055 JZ COMFILE
0056 CPI 'L'
0057 JZ NOEXEC

NEVADA ASSEMBLER

0058 * ERROR ILLEGAL OPTION
0059 LXI H,MESGA
0060 CALL DISPLAY
0061 JMP O+RELOC
0062 * GET SIZE OF INSTRUCTION
0063 GETSZ LXI H,TBL-l
0064 AGAIN MOV A,C
0065 INX H
0066 MOV B,M
0067 ANA B
0068 JZ BYTEI
0069 INX H
0070 MOV B,M
0071 XRA B
0072 INX H
0073 JNZ AGAIN
0074 MOV A,M
0075 RET. EXIT
0076 BYTEI MVI A,l
0077 RET. EXIT
0078 *
0079 REL EQU $ RELOCATION
0080 PUSH H
0081 PUSH D
0082 PUSH PSW
0083 INX H
0084 MOV E,M
0085 INX H
0086 MOV A,M
0087 ORA A WE DON'T RELOCATE BELOW 100+RELOC
0088 JZ NOREL
0089 MOV D,A
0090 PUSH H
0091 LHLD BASE
0092 DAD D ADDRESS IS NOW ADJUSTED
0093 XCHG
0094 POP H
0095 MOV M,D PUT IT BACK
0096 DCX H
0097 MOV M,E
0098 NOREL EQU $
0099 POP PSW
0100 POP D

PAGE 31

I

6-6-83

0101 POP H
0102 RET
0103 *
0104 VER2X EQU $

NEVADA ASSEMBLER

0105 MVI C,19H iGET CPM 2.X DEFAULT DRIVE
0106 CALL BDOS
0107 JMP SETDF
0108 *
0109 MESGA ASC 'ILLEGAL OPTION'
0110 DB ODH,OAH
0111 ASC 'RUN D:FILE.ZCL<CR)'
0112 DB ODH,OAH,O
0113 *
0114 TBL DB -1,11101001B,1
0115 DB -1,11001101B,3
0116 DB 11000111B,11000100B,3
0117 DB -1,11000011B,3
0118 DB 11000111B,11000010B,3
0119 DB 11000111B,11000111B,1
0120 DB -1,11001001B,1
0121 DB 11000111B,11000000B,1
0122 DB 11001111B,1,3
0123 DB 11100111B,00100010B,3
0124 DB 11110111B,11010011B,2
0125 DB 11000111B,6,2
0126 DB 11000111B,11000110B,2
0127 DB 0 END OF TABLE
0128 *

PAGE 32

0129 BASE DW 0 BASE ADJ TO ADD TO ADDRESS TO BE RELOCATED
0130 START DW 0 STARTING ADDR OF RELOCATED CODE
0131 *
0132 ZEROFILL EQU $
0133 STA ZX
0134 JMP NEXT
0135 *
0136 COMFILE EQU $
0137 STA CX
0138 JMP NEXT
0139 *
0140 NOEXEC EQU $
0141 STA LX
0142 JMP NEXT
0143 *
0144 OSET EQU $
0145 LXI D,OBUF
0146 MVI C,26 iSET DMA
0147 CALL BDOS
0148 LDA ODRIVE
0149 MVI D,O
0150 MOV E,A
0151 MVI C,14 iSET DRIVE
0152 CALL BDOS
0153 LXI D,OFCB
0154 RET

6-6-83 NEVADA ASSEMBLER

0155 *
0156 NOOPTIONS EQU $
0157 LXI H,080H+3+RELOC
0158 MOV A,M
0159 CPI ':' iWAS DRIVE REQUESTED?
0160 JNZ DEFDRIVE iDEFAULT IS SET
0161 DCX H
0162 MOV A,M
0163 CPI 'A'
0164 JC DEFDRIVE
0165 SUI 'A'

PAGE 33

0166 STA ODRIVE I
0167 DEFDRIVE EQU $
0168 CALL SETFCB
0169 MVI M,'O'
0170 INX H
0171 MVI M,'B'
0172 INX H
0173 MVI M,'J'
0174 CALL OSET
0175 MVI C,15 iOPEN
0176 CALL BDOS
0177 CPI-1
0178 JZ OERR iOPEN ERROR
0179 XRA A
0180 STA OCR
0181 * RELOCATE CODE TO JUST BELOW CP/M
0182 LHLD 6+RELOC
0183 DCX H HIGHEST ADDR
0184 LXI B,LAST-LOADFILE SIZE OF CODE TO BE RELOCATED
0185 MOV A,L
0186 SUB C
0187 MOV L,A
0188 MOV A,H
0189 SBB B
0190 MOV H,A
0191 i H&L= STARTING ADDRESS
0192 SHLD START
0193 PUSH H
0194 LXI D,LOADFILE
0195 MOV A,L
0196 SUB E
0197 MOV L,A
0198 MOV A,H
0199 SBB D
0200 MOV H,A
0201 SHLD BASE
0202 POP H
0203 LXI B,CONSTANTS-LOADFILE SIZE OF INSTRUCTION MOVE
0204 XCHG
0205 NXTI EQU $
0206 PUSH H
0207 PUSH D
0208 PUSH B

6-6-83 NEVADA ASSEMBLER

MOV C,M GET OPCODE 0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237 *
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250 *

CALL GETSZ GET SIZE OF INSTRUCTION
POP B
POP D
POP H
CPI 3
JC SKPREL
CALL REL RELOCATE ADDR IN THIS 3 BYTE INST

SKPREL EQU $
PUSH B
PUSH PSW
MOV C,A

NXTM EQU
MOV A,M
STAX D
INX H
INX D
DCR C
JNZ NXTM
POP PSW
POP B

SIZE
$

NXTD EQU $
DCX B
DCR A
JNZ NXTD
MOV A,C
ORA B
JNZ NXTI

RELOCATE CONSTANTS
LXI B,LAST-CONSTANTS SIZE OF CONSTANTS

NXTC EQU $
MOV A,M
STAX D
INX H
INX D
DCX B
MOV A,C
ORA B
JNZ NXTC
LHLD START
PCHL. CODE HAS BEEN RELOCATED NOW GO TO IT

PAGE 34

0251 ***
0252 * RUNA A:FILE.OBJ(CR)
0253 *
0254 * MOVE PARAMETERS AND CHECK
0255 ***
0256 *
0257 LOADFILE EQU $
0258 LXI SP,STK SET STACK AFTER RELOCATION
0259 LDA ZX ZERO FILL MEMORY?
0260 ORA A
0261 JZ SKPCLR
0262 LXI D,LOADFILE-1

6-6-83 NEVADA ASSEMBLER

0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285

MVI H,1
MVI L,O

CLEAR EQU $
XRA A
MOV M,A
INX H
MOV A,L
SUB E
MOV A,H
SBB 0
JC CLEAR

SKPCLR EQU $

STARTING ADDR +RELOC

CALL ORO iGET 1ST RECORD OF .OBJ FILE
OLOAO EQU $

CALL GETOP
MAO MOV A,M iMOVE 4 BYTES FROM BUF TO WORK

STAX 0
INX H
INX 0
OCR C
CZ ORO
OCR B
JNZ MAO

0286 i H&L = BUFFER C=COUNT
0287 XCHG
0288 LHLO OWRK iSIZE OF NEXT READ
0289
0290
0291
0292
0293
0294
0295
0296
0297

MOV A,L
ORA H
JZ CLOSE
SHLD OSIZE
LHLD OWRK+2
XCHG

MAOA MOV A,M
STAX D
INX H

0298 INX 0
0299 OCR C
0300 CZ ORO
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311 *

PUSH H
LHLD OSIZE
DCX H
SHLD OSIZE
MOV A, L
ORA H
POP H
JNZ MAOA
CALL SAVOP
JMP OLOAD

iMOVE FROM BUF TO OBJ ADDR

0312 GETOP EQU $ iGET 0 POINTERS
0313 LXI O,OWRK
0314 LHLO OCBA iBUF ADOR
0315 MVI B,4 iLENGTH OF WRK
0316 LOA OCBC iBUF CNT

PAGE 35

I

6-6-83

0317 MOV C,A
0318 RET
0319 *
0320 ORO EQU $
0321 PUSH B
0322 PUSH 0 iOPNT
0323 LXI O,OFCB
0324 MVI C,20 ;REAO
0325 CALL BOOS
0326 POP 0
0327 POP B
0328 ORA A
0329 JNZ RERR
0330 LXI H, OBUF
0331 MVI C,BLKSIZ
0332 RET
0333 *
0334 SAVOP EQU $

NEVADA ASSEMBLER

0335 SHLO OCBA iBUFF AOOR
0336 MOV A,C
0337 STA OCBC ;BUF CNT
0338 LOA HIGH
0339 CMP 0
0340 RNC
0341 MOV A,O
0342 STA HIGH
0343 RET
0344 *
0345 CLOSE EQU $
0346 LXI 0, OFCB
0347 MVI C,16 iCLOSE
0348 CALL BOOS
0349 LOA CX
0350 ORA A
0351 JNZ GENCOM
0352 LOA LX
0353 ORA A
0354 JNZ O+RELOC LOAD BUT DON'T EXECUTE
0355 LHLO OWRK+2 ;STARTING ADDRESS
0356 PCHL
0357 *
0358 SETFCB EQU $
0359 XRA A
0360 STA OFCB
0361 STA OCR
0362 LXI H,OEX
0363 MVI C,4
0364 EXLUP EQU $;10-2-81 ZERO CPM EXT AREA
0365 MOV M,A
0366 INX H
0367 OCR C
0368 JNZ EXLUP
0369 LXI H,OBUF
0370 SHLO OCBA

PAGE 36

6-6-83

0371 MVI A,BLKSIZ
0372 STA OCBC
0373 LXI H,5CH+9+RELOC
0374 RET
0375 *
0376 CREATE EQU $
0377 LXI D,OFCB
0378 MVI C,22 CREATE
0379 CALL BOOS
0380 CPI-1
0381 RNZ
0382 OERR EQU $

NEVADA ASSEMBLER

;CP/M FILE TYPE

0383 LXI H,MESGO OPEN ERROR
0384 CALL DISPLAY
0385 JMP OXT1
0386 *
0387 GENCOM EQU $ GENERATE .COM FILE
0388 CALL SETFCB
0389 MVI M, 'c'
0390 INX H
0391 MVI M,'O'
0392 INX H
0393 MVI M, 'M' .COM IN FCB
0394 *OPEN
0395 LXI D,OFCB
0396 MVI C,15 OPEN .COM FILE
0397 CALL BOOS
0398 CPI-1
0399 CZ CREATE
0400 XRA A
0401 STA OCR
0402 *WRITE
0403 LOA HIGH
0404 OCR A
0405 MOV H,A
0406 MVI L,OFFH
0407 SHLD SIZ OF THIS WRITE
0408 MVI 0,1 STARTING ADDRESS
0409 MVI E,O
0410 LXI H,OBUF BUFFER ADDRESS
0411 MVI C,BLKSIZ BUFFER SIZE
0412 NXTW EQU $
0413 LDAX 0
0414 MOV M,A
0415 INX H
0416 INX 0
0417 OCR C BUFF COUNT
0418 CZ WRITE
0419 PUSH H
0420 LHLD SIZ
0421 DCX H
0422 SHLD SIZ
0423 MOV A,L
0424 ORA H

+RELOC

PAGE 37

I

6-6-83

0425 POP H
0426 JNZ NXTW

NEVADA ASSEMBLER

0427 CALL WRITE LAST BLOCK
0428 * CLOSE
0429 LXI D,OFCB
0430 MVI C,16 CLOSE
0431 CALL BDOS
0432 JMP O+RELOC
0433 *
0434 WRITE EQU $
0435 PUSH D
0436 LXI D,OFCB
0437 MVI C,21 WRITE
0438 CALL BDOS
0439 POP D
0440 ORA A
0441 JNZ ERRW
0442 LXI H, OB UF
0443 MVI C,BLKSIZ
0444 RET
0445 *

PAGE 38

0446 *++***
0447 *$$ DISPLAY A MESSAGE TO THE CONSOLE
0448 * ENTRY H&L CONTAIN STARTING ADDRESS OF THE MESSAGE
0449 * THE MESSAGE TEXT IS TERMINATED BY 0 HEX
0450 * CALL DISPLAY
0451 *--**
0452 *
0453 DISPLAY EQU $
0454 MOV A,M
0455 ORA A
0456 RZ. EXIT TO CALLING ROUTINE **
0457 MOV E,A
0458 MVI C,2
0459 PUSH H
0460 CALL BDOS iPUT THE CHAR TO THE CONSOLE
0461 POP H
0462 INX H
0463 JMP DISPLAY
0464 *
0465 ERRW EQU $
0466 LXI H,MESGW WRITE ERROR
0467 CALL DISPLAY
0468 JMP OXT1
0469 *
0470 RERR EQU $
0471 LXI H,MESGR READ ERROR
0472 CALL DISPLAY
04 7 3 0 XT 1 E QU $
0474 LXI H,OFCB+1 iFILE NAME
0475 CALL DISPLAY
0476 JMP O+RELOC RETURN TO CP/M
0477 ***
0478 CONSTANTS EQU $

6-6-83 NEVADA ASSEMBLER PAGE 39

0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497

HIGH DB 0 HIGHEST PAGE USED FOR .COM
ZX DB 0 DEFAULT NO CLEAR ;Z=ZERO FILL BEFORE LOADING
CX DB 0 DEFAULT NO .COM ;C=.COM FILE
LX DB 0 DEFAULT EXECUTE ;L=LOAD BUT NO EXECUTION
ODRIVE DB 0
OWRK DB 0,0,0,0
OCBA DW OBUF iCURRENT BUFFER ADDRESS
oeBC DB BLKSIZ ;CURRENT BUFFER COUNTER
OSIZE DW 0 ;SIZE OF NEXT OBJ BLOCK
SIZ DW 0 SIZE OF COM FILE CODE
MESGO ASC 'OPEN ERROR '

DB 0
MESGR ASC 'READ ERROR '

DB 0
MESGW ASC 'WRITE ERROR '

DB 0
DS 30

STK DB'S'
LAST DB 0

I

6-6-83 NEVADA ASSEMBLER PAGE 40

APPENDIX 5

REFERENCES

8080/8085 Assembly Language programming Manual, Intel
Corporation, Santa Clara CA., 1977.

Ellis C., NEVADA COBOL Application Packages Book1, Ellis
Computing, Inc., 1980.

Ellis C., & Starkweather,J., NEVADA EDIT, Ellis Computing,
Inc., 1982.

Ellis C., NEVADA COBOL, Ellis Computing, Inc., 1979.

Hogan, T., CPM Users Guide, Osborne, 1981.

Leventhal, Lance A., 8080A/8085 Assembly Language
Programming, Osborne, 1978.

Starkweather, J., NEVADA PILOT, Ellis Computing, Inc., 1981.

6-6-83 NEVADA ASSEMBLER PAGE 41

Ellis Computing, Inc.
3917 Noriega Street, San Francisco, CA 94122

SOFTWARE LICENSE AGREEMENT

IMPORTANT: All Ellis Computing, Inc. programs are sold only
on the condition that the purchaser agrees to the following
License.

Ellis Computing, Inc. agrees to grant and the Customer
agrees to accapt on the following terms and conditions
nontransferable and nonexclusive Licenses to use the
software program(s) (Licensed Programs) herein delivered
with this Agreement.

TERM:

This Agreement is effective from the date of receipt of the
above-referenced program(s) and shall remain in force until
terminated by the Customer upon one month's prior written
notice, or by Ellis Computing, Inc. as provided below.

Any License under this Agreement may be discontinued by the
Customer at any time upon one month's prior written notice.
Ellis Computing, Inc. may discontinue any License or
terminate this Agreement if the Customer fails to comply
with any of the terms and conditions of this Agreement.

LICENSE:

Each program License granted under this Agreement authorizes
the Customer to use the Licensed Program in any machine
readable form on any single computer system (referred to as
System). A separate license is required for each System on
which the Licensed Program will be used.

This Agreement and any of the Licenses, programs or
materials to which it applies may not be assigned,
sublicensed or otherwise transferred by the Customer without
prior written consent from Ellis Computing, Inc. No right
to print or copy, in whole or in part, the Licensed Programs
is granted except as hereinafter expressly provided.

PERMISSION TO COpy OR MODIFY LICENSED PROGRAMS:

The customer shall not copy, in whole or in part, any
Licensed Programs which are provided by Ellis Computing,
Inc. in printed form under this Agreement. Additional
copies of printed materials may be acquired from Ellis
Computing, Inc.

The NEVADA ASSEMBLER-FORTRAN Licensed Programs which are
provided by Ellis Computing, Inc. in machine readable form

I

6-6-83 NEVADA ASSEMBLER PAGE 42

may be copied, in whole or in part, in machine readable form
in sufficient number for use by the Customer with the
designated System, for back-up purposes, or for archive
purposes. The original, and any copies of the Licensed
Programs, in whole or in part, which are made by the
Customer shall be the property of Ellis Computing, Inc. This
does not imply that Ellis Computing, Inc. owns the media on
which the Licensed Programs are recorded.

The NEVADA ASSEMBLER-FORTRAN Licensed Programs called
IIFRUN.COM II and IIARUN.COM II which are provided by Ellis
Computing, Inc. may be distributed to third parties.

The Customer agrees to reproduce and include the copyright
notice of Ellis Computing, Inc. on all copies, in whole or
in part, in any form, including partial copies of
modifications, of Licensed Programs made hereunder.

PROTECTION AND SECURITY:

The Customer agrees not to provide or otherwise make
available the NEVADA ASSEMBLER-FORTRAN Program including but
not limited to program listings, object code and source
code, in any form, to any person other than Customer or
Ellis Computing, Inc. employees, without prior written
consent from Ellis Computing, Inc., except with the
Customer's permission for purposes specifically related to
the Customer's use of the Licensed Program.

DISCLAIMER OF WARRANTY:

Ellis Computing, Inc. makes no warranties with respect to
the Licensed Programs.

LIMITATION OF LIABILITY:

THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES,
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL Ellis Computing, Inc.
BE LIABLE FOR CONSEQUENTIAL DAMAGES EVEN IF Ellis Computing,
Inc. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

GENERAL:

If any of the provisions, or portions thereof, of this
Agreement are invalid under any applicable statute or rule
of law, they are to that extent to be deemed omitted. This
is the complete and exclusive statement of the Agreement
between the parties which supercedes all proposals, oral or
written, and all other communications between the parties
relating to the subject matter of this Agreement. This
Agreement will be governed by the laws of the State of
California.

6-6-83 NEVADA ASSEMBLER PAGE 43

CORRECTIONS AND SUGGESTIONS

All suggestions and problems must be reported in writing.
Please include samples if possible.

ASSEMBLER-FORTRAN VERSION SERIAL # ----
Operating system and version

Hardware configuration ----------

ERRORS IN MANUAL:

SUGGESTIONS FOR IMPROVEMENTS TO MANUAL:

ERRORS IN ASSEMBLER-FORTRAN:

SUGGESTIONS FOR IMPROVEMENT TO ASSEMBLER-FORTRAN:

MAIL TO:

FROM:

Ellis Computing, Inc.
3917 Noriega Street
San Francisco,CA 94122

NAME -------- DATE -------
ADDRESS ____________ . ___________________ _

CITY,STATE,ZIP _______________________________ _

PHONE NUMBER ------------------------------

If you wish a reply include a self-addressed postage-paid
envelope. Thank you.

I

6-6-83

A
ASC 20
ASCF 20
ASCZ 20

NEVADA ASSEMBLER

Assembly Errors 23
Assembler Command Errors 23

C
Comment Field 16
Conditional Assembly 20
Console 6
Constants 14
COPY file 21
Corrections 43
CP/M 4, 5, 6

D
DB 19
DDB 19
Define Double Byte 19
Define Byte 19
Define Word 19
Define Storage 18
Define ASCII String 20
OS 18
OW 19

E
END of Source file 22
ENDF 20
EQU 17
Equate 17
Error (.ERR) file 7
Error Codes 23
Executing the Assembler 6
Executing the .OBJ file 9
Expressions 15

E"
FILES 4-8, 22

G
Getting Started 5

H
Hardware Requirements 5
High-Order Byte Extraction 15

I
IF 20
IFLS 21
In troduction 4

PAGE 44

6-6-83

L
Label Field 12
Labels 13
License Agreement 41
Line Leng th 11
Line Numbers 8 11

NEVADA ASSEMBLER

List Conditional Code 21
Listing Title 22
Listing Control 22
Listing File 6, 8
Loader Source Code 30
Low-Order Byte Extraction 15
LST 22

M
Memory Usage 9
Messages 23

N
NLST 22

o
Object (.OBJ) file 7
OP-Codes 25
Operand Field 13
Operation Field 12
Operating Procedures 5
Options 8
ORG 17

p

Page Ej ect 22
Paginate Output 8
Pseudo-Operations 17

R
References 40
Register Names 13
RES 18
RUNA 9, 30
Sample Program 30
Set ASCII List Flag 20
Set Execution Address 18
Set Origin 17
SID 8
Software Requirements 5
Source Code 11, 30
Startup 8
Statements 11
Suggestions 43
Symbol (.SYM) file 8

PAGE 45

I

6-6-83

or
Termination 10
Text Files 4
TITL 8, 22

x
XEQ 18

NEVADA ASSEMBLER PAGE 46

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

