

NEVADA

ELLIS COMPUTING
SOFTWARE TECHNOLOGY

NEVADA FORTRAN (TM)

PROGRAMMER'S REFERENCE MANUAL

Copyright (C) 1979, 1980, 1981, 1982 Ian Kett1eborough

Published by

ELLIS Computing
3917 Noriega Street

San Francisco, CA, 94122
(41S) 753-0186

NEVADA FORTRAN is a trademark of ELLIS Computing
ELLIS Computing is a trasdemark of ELLIS Computing

DISCLAIMER

All Ellis Computing computer programs are distributed on an
"AS IS" basis without warranty.

ELLIS COMPUTING makes no warranties, expressed or implied,
including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. In no
event will ELLIS COMPUTING be liable for consequential
damages even if ELLIS COMPUTING has been advised of the
possibility of such damages.

1

2

3

4

TABLE OF CONTENTS

Abstract

FORTRAN Language
1.1.0 FORTRAN character set
1.2.0 Program Structure
1.3.0 Statements
1.4.0 Program preparation •
1.5.0 Options statement

Number Systems • •

2.1.0
2.2.0
2.3.0

2.4.0
2.5.0

2.6.0
2.7.0
2.8.0

Internal Format
Number Ranges
Constants
2.3.1 Numeric Constants
2.3.2 String Constants
2.3.3 Logical Constants
Variable Names
Type Specification
2.5.1 INTEGER.
2.5.2 REAL
2.5.3 LOGICAL.
Data Statement
Common Blocks
Implicit statement

Expressions

3.1.0
3.2.0
3.3.0
3.4.0
3.5.0
3.6.0

Hierarchy of Operators
Expression Evaluation-.
Integer Operations
Real Operations
Logical Operations
Mixed Expressions

Control Statements

4.1.0
4.2.0
4.3.0
4.4.0
A r- n
~.:>.u

4.6.0
4.7.0
4.8.0
4.9.0
4.10.0
4.11.0
4.12.0
4.13.0

GO TO Statement
Computed GO TO Statement
Assigned GO TO Statement
Assign statement
Arithmetic IF
Logical IF •
If-Then-Else
DO loops
CONTINUE
Error Trapping
CONTROL/C control
Tracing
Dump Statement

•

•

•

1

2
2
3
5
6
7

9

9
9

10
10
11
11
12
13
14
15
16
17
18
20

21

22
23
24
25
26
28

29

30
31
32
33
"lA
.J"'Z

35
36
37
38
39
41
42
43

5 Program Termination Statements • • • • • 44

5.1.0 PAUSE Statement · • • 44
5.2.0 STOP Statement • • • 45
5.3.0 END Statement . • • • 46

6 Array Specification • • • 47

6.1.0 DIMENSION Statement · 48
6.2.0 Subscripts • • • • 50

7 Subprograms • • • 51

7.1.0 SUBROUTINE Statement • 52
7.2.0 FUNCTION Statement 53
7.3.0 CALL Statement • 54
7.4.0 RETURN Statement • • 55

7.4.1 Normal Return 55
7.4.2 Multiple Return • • 56

7.5.0 Block Data Subprogram • • 57

8 Input/Output . • 58

8.1.0 Introduction to FORTRAN I/O • • • • • • • • 58
8.1.1 General Information • • • 58
8.1.2 1/0 List Specification · • 60

8.2.0 READ Statement • 61
8.3.0 WRITE Statement • 63
8.4.0 Memory to memory I/O statements · • 64

8.4.1 DECODE Statement · 65
8.4.2 ENCODE Statement · • • 66

8.5.0 FORMAT Statement and Format Specifications • 67
8.5.1 X-Type • 68
8.5.2 I-Type • • 68
8.5.3 F-Type • 69
8.5.4 E-Type • • • ~ 70
8.5.5 A-Type 71
8.5.6 /-Type • 71
8.5.7 Z-Type • • • • 71
8.5.8 L-Type 72
8.5.9 T-Type 72
8.5.10 K-Type 73
8.5.11 G-Type • • • 74
8.5.12 Repeating Field Specifications 75
8.5.13 String Output · 76

8.6.0 FREE FORMAT I/O • • • • 77
8.6.1 INPUT • 77
8.6.2 OUTPUT • • 77

8.7.0
8.8.0
8.9.0
8.10.0
8.11.0
8.12.0

BINARY 1/0 • •
REWIND statement
BACKSPACE Statement •
ENDFILE Statement •

• •
• • •

General Comments on FORTRAN 1/0 under CPIM
Special characters during console 110 •

78
79
80
81
82
83

9 Operation • • • • 84

9.1.0
9.2.0
9.3.0
9.4.0

Getting Started •
Compiling a Program •
Compile Options •
Executing a Program •

•
•
•

• •

•
•

84
85
87
89

10 General Purpose Subroutine Library • 90

OPEN
LOPEN · CLOSE •
DELET •
SEEK
RENAME
CHAIN · LOAD
EXIT • •
MOVE
DELAY •
CIN .
CTEST •
OUT .
SETIO · INP .
CALL
CBTOF ·

• •
•

•
• • •

•

•

• •
• •
•
•

•

•
•

•

•
•

• •

• •
• •

• ••
•

•

91
92
93
93
93
93
94
94
94
95
95
95
96
96
96
97
97
97

11 Appendix 98

11.1.0
11.2.0
11.3.0
11.4.0
11.5.0
11.6.0
11.7.0
11.8.0
11.9.0

11.10.0
11.11.0
11.12.0
11.13.0

Statement Summary. 98
Non-standard Functions. • • 101
Avaliable Functions • • 103
Summary of System Subroutines • 104
Runtime Er rors. • • • 106
Compile errors • • 110
Assembly Language Interface • 114
General Comments • • 115
Use of North Star floating point board. • 117
Comparision of NEVADA FORTRAN and ANSI • 118
Sample programs • 119
Sample program compilations and executions • 129
Suggested Futher Reading • • 137

CPIM is a registered trademark of
Digitial Research Corporation

10-01-82 NEVADA FORTRAN PAGE 1

ABSTRACT

This is an 8080/808S/Z80 version of FORTRAN IV. It is a
powerful subset implementation of this widely used language.
The compiler works from disk (also using the assembler) to
produce 8080/808S/Z80 machine code that executes at maximum
CPU speed.

A source program is entered as FORTRAN IV program
statements. These statements must follow the conventions
outlined in this document or errors may result. The
compiler acts upon the source statements to produce assembly
code. At this stage any mistakes are flagged with error
messages. If an error should occur, the source may be
corrected at this time and recompiled. After the program
has been compiled without any errors, the final step
(normally transparent to the user) is to assemble the
intermediate code into 8080 object code. The bbject module
is then ready for execution under CP/M (or compatible
operating system).

This manual is intended as a guide to using this version of
FORTRAN and is not intended to be a complete instruction
manual on the use of FORTRAN. There exists many books that
explain the syntax and semantics of the FORTRAN language.
This manual explains the subset that is implemented in
Nevada FORTRAN.

10-01-82 NEVADA FORTRAN PAGE 2

1.0.0 FORTRAN LANGUAGE

1.1.0 FORTRAN Character Set

The FORTRAN character set is composed of the following
characters:

The letters:

A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

The numbers:
0,1,2,3,4,5,6,7,8,9

The special characters:

=
+

*
/
(
)

,

$

&
\

blank
equal sign (for replacement operations)
plus sign
minus sign
asterisk
slash
left parenthesis
right parenthesis
comma
decimal point
dollar sign
number sign
ampersand
backslash

The following is a list of the meanings of the special
characters used in ~ version of FORTRAN:

$ Preceding a constant with a dollar sign indicates
that it is a hexadecimal constant.

Preceding a constant with a number sign indicates
that it is a hexadecimal constant that is to be
stored internally in binary format.

& The & has two functions:
1) if used in a FORMAT statement contains an
ampersand, the character following the ampersand
is interpreted as a control character (unless it
is also an &).
2) used to indicate a statement label is being
passed to a SUBROUTINE for use in a multiple
RETURN statement

\ A constant enclosed in backslashes in a character
string is assumed to be the hexadecimal code for
an ASCII character.

10-01-82 NEVADA FORTRAN PAGE 3

1.2.0 Program Structure

A FORTRAN program is comprised of statements. Every
statement must be of the following format.

1) The first 5 characters of the statement may contain a
statement label if the statement is to be branched to.

2) The sixth character is used to indicate a continuation of
the previous statement. Continuation is indicated by placing
any character except a BLANK or ZERO in column 6 of the
continuation statement.

3) Column 7 to the end of the line is used for the body of
the statement. This is anyone of the following statements
which will be described later. All statements are terminated
by a CR (Carriage Return) or semi-colon in the case of
multiple statements per line. A statement may be of any
length, but only the first 72 characters are retained.
Statements will be processed until the carriage return is
encountered. The character positions between the carriage
return and character position 72 will ROT be padded with
BLANKS as some FORTRAN systems will do, unless the '1' or
'2' option is specified. This means that if a character
string is started on a line, and must be continued, the
continuation logically starts immediately after the last
character of the previous line.

4) Column 73 through 80 are used for identification
purposes and are ignored by this compiler.

5) A comment line is indicated by place a C in column 1. A
comment line has no effect on the program and is ignored.
It is only for documentation purposes.

Example

1-- Column 1
1

V

WRITE (1,2)
2 FORMAT ('THIS IS AN
* EXAMPLE CHARACTER STRING')

will output: THIS IS AN EXAMPLE CHARACTER STRING

10-01-82 NEVADA FORTRAN PAGE 4

Upper and lower case letters can be intermixed in a
FORTRAN statement. Lower case letters are retained ONLY when
they appear between QUOTES or in the 8 format specification
in a FORMAT statement. Otherwise they will be converted to
upper case internally. Thus the variables QUANTITY and
quantity and QuAnTiTy represent the same variable.

There are four types of statements in FORTRAN:

1) Declaration
2) Assignment
3) Control
4) Input/Output.

These statement types are described in the following
sections of this manual.

10-01-82 NEVADA FORTRAN PAGE 5

1.3.0 Statements

A statement may contain a statement label. A statement
label is placed in columns 1 through 5 of the statement.

All labels on statements must be integers ranging between 1
and 99999. Leading zeroes will be totally ignored.

statement numbers are not required to be in any sequence,
and they will not be put in order.

In any program, a statement number can be used only once as
a label.

A statement may contain no more than 530 characters
excluding blanks, unless the B= option is specified.

During compilation, blanks are ignored, except between
single quotes and in B format specification.

Comments are indicated by placing a C in column 1; the
remaining part of the statement may be in any format and is
totally ignored by the compiler.

Multi-statements

Statements may be compacted more than one logical statement
per line. statements are separated from each other with a
semicolon and a colon separates the label if any. For
example;

A=l
3 CONTINUE

A=A+l
TYPE A
GO TO 3
END

could be written as:

A=1;3:CONTINUE;A=A+l;TYPE A:GOTO 3;END

10-01-82 NEVADA FORTRAN PAGE 6

1.4.0 Program Preparation

A FORTRAN source program is prepared using one of the
available CP/M text editors. The FORTRAN file must be in the
following format:

Position 1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5
OPTIONS . .

FORTRAN program

END
$OPTIONS

SUBROUTINE X

FORTRAN routine

END

All FORTRAN routines are reguired to be compiled at one
time.

A FORTRAN program can contain COpy statements. The COpy
statement contains the word COpy in columns 7-10 followed by
a blank followed by the FILENAME to be inserted at that
point. COpy files may contain complete programs or just
sections. Copied files may not themselves contain COpy
statements.

Example
DIMENSION A(l}
COpy ALLDEFS
READ (1,10) I

10-01-82 NEVADA FORTRAR

1.5.0 Options Statement

$OPTIONS or OPTIONS (The $ is optional)

PAGE 7

This is an optional statement of each program and/or
subprogram which is to be compiled. If present, the OPTIONS
statement must appear as the first statement in main program
and prior to the SUBROUTINE or FUNCTION statement in each
subprogram. The options statement allows the user to
specify various parameters used by the compiler during
compilation. Options available are as follows:

S=n

n -) Is a decimal number indicating the number of allowable
symbols. The default is 50. Each entry requires 8 bytes. (n
may be greater than 255.)

L=n

n -) Is a decimal number indicating the number of allowable
labels. The default is 50. Each entry requires 6 bytes. (n
may be greater than 255.)

T=n

n -) Is a decimal number indicating the maximum number of
temporary variables that are ~vailable during EXPRESSION
evaluation. Default table size is 15; each variable requires
1 byte.

D=n

n -) Is a decimal number which indicates the maximum
allowable nesting of DO loops. Default is 5, each entry
requires 4 bytes.

A=n

n -) Is a decimal number which indicates the maximum number
of arrays. Default is a maximum of 15; each entry requires
4 bytes.

O=n

n -) Is a decimal number which indicates the maximum number
of operators ever pushed on the internal stack while doing a
prefix translation of input expression. Note functions and
array subscripting require a double entry. Default is 40;
each entry is 2 bytes long.

10-01-82 NEVADA FORTRAN PAGE 8

P=n

n -) Is a decimal number which indicates the maximum number
of variables and/or constants ever pushed on the internal
stack in evaluation. Default is 40; each entry is 2 bytes
long.

I=n

n -) Is a decimal number specifying the depth that IF-THEN
ELSE's may be nested. The default nesting is 5.

E

Instructs the compiler to list as comments a reference table
equating user symbols, constants, and labels to internally
generated ones.

G

Instructs the compiler to list all compile errors as error
numbers, instead of explicit error statements.

x

Instructs the compiler to generate code which will give
explicit runtime errors. In this mode each statement has 5
bytes overhead.

N

Check for FORTRAN errors only. Do not output an assembly
code file.

B

Output source statement to assembly file.

Q

This options must be used whenever the program expects to
trap runtime errors. It causes code to be generated for
handling user trapping of runtime errors.

n is less than or equal to 255 unless otherwise stated.

Example

$OPTIONS X,G,S=200,L=100

Options used will be:
EXPLICIT runtime errors will be generated
EXPLICIT compile errors are not generated
the SYMBOL table has room for 200 symbols, and
the LABEL table has room for 100 statement labels.

10-01-82 NEVADA FORTRAN PAGE 9

2.0.0 BOMBER SYSTEM

2.1.0 Internal Format of Numbers

Numbers are stored internally as a 6 byte BCD number
containing 8 digits, a one byte exponent, and a sign byte.
This allows for the number to range from .lE-127 to
numbei; 0 indicating a positive number and 1 indicating a
negative number. The exponent is stored in excess 128. A
one for the sign of the BCD number indicates a negative
number. The number ZERO is stored as an exponent of zero;
the rest of the number is ignored.

All numbers in FORTRAN are stored in the following format:

+-----+-----+-----+-----+-----+-----+
! 9 9 ! 9 9 ! 9 9 ! 9 9 ! 0 S ! F F !
+-----+-----+-----+-----+-----+-----+

. . BCD Number : Sgn : Exp :

2.2.0 Number Ranges

Integer variables and constants can have any value from
-99999999 to +99999999. Real variables and constants can
take any value between -.99999999E-127 and .99999999E+126.
Integer variables and constants are stored internally in the
~ format.

10-01-82 NEVADA FORTRAN PAGE 10

2.3.0 Constants

A constant is a quantity that has a fixed value. A
numerical constant is an integer or real number; a string
constant is a sequence of characters enclosed in single
quotes. A logical constant has a value of .TRUE. or .FALSE.

2.3.1 Numerical Constants

Numerical constants can be either integer or real as
follows:

Integer
Real

1, 3099, -70
1.34, -5.98, 1.4EIO

A hexadecimal constant can be specified by preceding the
number with a dollar sign. A hexadecimal constant is
converted internally into an integer and stored that way.
The maximum value for a hexadecimal constant is $FFFF.

Example

$8050
1=$1000
z=-$CCOO

Another way to specify a hexadecimal constant is to preceded
the constant with a # sign. This way of representing a
hexadecimal number differs in that the number is NOT
converted to integer format and is stored in binary in the
first two bytes of the constant. The number is stored high
byte followed by low byte.

Example

#0000
i=#127F

$805F is stored internally as: 32 86 30 00 00 85
#805F is stored internally as: SF 80 00 00 00 00

10-01-82 NEVADA FORTRAN PAGE 11

2.3.2 String Constants

A string constant is specified by enclosing a sequence of
characters in single quotes. A single quote within a
character string must be represented by TWO quotes in a row.
By specifying a hexadecimal number with backslashes, any
character (even unprintable ones) can be generated.

Example

'This is a string constant'
'This string constant' 'contains a single quote'
'Good\21\' is equivalent to 'Good!'
'\7F\' is equivalent to a rubout

Warning: Never include \0\ as part of a string constant as
that character is used internally to indicate the end of a
string.

NOTE The character used to delimit a hexadecimal number
(default is \) can be changed using the CONFIG program.

2.3.3 Logical constants

The two logical constants are .TRUE. and .FALSE ••
Numerically, a value of .TRUE. has the value of 1 and
considered as .TRUE. Logical operations always return a
value of 0 or 1. These logical constants can be assigned to
any variable, but is usually used as part of a logical
expressionQ

Example

I=.TRUE.
I= (J .and. .TRUE)

10-01-82 NEVADA FORTRAN PAGE 12

2.4.0 Variable Names

A variable is a symbolic name given to a quantity which
may change depending upon the operation of a program. A
variable consists of from 1 to 6 alphanumeric characters,
the first of which must be a letter.

An INTEGER variable is a variable that starts with I,
J, K, L, M or N by default or explicitly typed INTEGER
through the use of ap INTEGER or IMPLICIT statement.

A REAL variable is a variable that starts with other
than I, J, K, L, M or N by default or explicitly typed REAL
through the use of a REAL or IMPLICIT statement.

A LOGICAL variable must be explicitly typed LOGICAL
with a LOGICAL or IMPLICIT statement.

There are three types of variables supported: IN~EGER,
REAL, and LOGICAL.

Example

110, ALPHA, BETA, I, MAXIM, MINII
IX=34
ALPHA=56.34
ZLOG=.TRUE.

10-01-82 NEVADA FORTRAN PAGE 13

2.5.0 Type Specification

There are three type specification statements that can be
used to override the default types of variables. Remember
that variables that begin with the letters I,J,K,L,M,N
(unless changed by an IMPLICIT statement) will be of type
INTEGER. All others will be of type REAL. The type
specification statement overrides the default type of a
variable.

Note an array can also be specified in a type statement.

Example

INTEGER A, ZOT,ZAP (10)
REAL INT
LOGICAL LOGl,LOG2

10-01-82 NEVADA FORTRAN PAGE 14

2.5.1 INTEGER

The general format of the INTEGER statement is:

IRTEGER vl,v2

The INTEGER statement is used to explicitly override the
default type 6f the variable. Should a variable occur in
the declaration string, the type is automatically set to
integer. This works for both subscripted and nonsubscripted
variables. A variable can appear only ONCE in a type
specification statement.

Example

INTEGER MODE,K453,NUMBER(40),MAXNUM
INTEGER ZAPIT

10-01-82 NEVADA FORi'RAR PAGE 15

2.5.2 REAL

The general format of the REAL statement is:

REAL vl,v2

The REAL statement is used to explicitly override the
default type of the variable. Should a variable occur in
the declaration string, the type is automatically set to
real. This works for both subscripted and nonsubscripted
variables. A variable can appear only ONCE in a type
specification statement.

Example

REAL ALPHA,BETA(s6),INIT,FIRST,ZAPIT,HI

10-01-82 NEVADA FORTRAN PAGE 16

2.5.3 LOGICAL

The general format of tpe LOGICAL statement is:

LOGICAL vl,v2

The Logical statement is used to override the default
specification and type a variable as Logical. A logical
variable's value is interpreted as:

.TRUE. if the variable has a non-zero value •
• FALSE. if the var iable has a zero value.

Example

LOGICAL FTIME,LTIME

10-01-82 NEVADA FORTRAN PAGE 17

2.6.0 Data statement

The DATA statement is used to initialize variables or
arrays to a numeric value or character string. The general
format is:

DATA list/nl ,n2 •••• 1 ,listl/nl,n21

where list is the list of variables (or array elements) to
be initialized and nl, n2 •• are numbers or strings
(constants) that the corresponding item of list will be
initialized to. An exception to this is the array name. If
only the name of the array (no subscripts) appears in list#
the whole array will be initialized. It is expected that
enough constants will be listed to completely fill the
array. Dummy subroutine arguments may not appear in list. A
restriction exists on DATA statements in that all the DATA
statements are stored in memory during compilation of a
particular routine and actually compiled after the END
statement of the that routine. As such, you may receive a
fatal error if you use more memory than available for
storing of the DATA statements and error messages will be
printed after the END statement of that routine.

Example

DIMENSION B(3) ,C(3)
DATA A/l/,B/l,2,3/,C/3*0/
DATA LIST/'THIS IS A CHARACTER STRING'/

The above statement will assign the value 1 to A and the
values 1 to B(l), 2 to B(2) and 3 to B(3). The asterisk is
used to indicate a repeat count; thus the array C will be
set to zeroes. An er ror will resul t if a var iable in a DATA
statement is not used elsewhere in a program. DATA
statements are processed when the END statement is
encountered; thus errors in a DATA statement will occur
after the END statement. These errors will include the four
digit FORTRAN assigned statement number and the variable in
the DATA statement being processed when the error occurred.

10-01-82 NEVADA FORTRAN PAGE 18

2.7.0 Common Blocks

The COMMON block d-eclarat-ioR sets aside memory {vat" iable
spa c e) to be s h are d bet wee n r 0 uti n e s (SUB RO UTI N E S ,
FUNCTIONS). Common blocks are associated with a name which
is used by each declaring routine to point to a specific
COMMON block.

The general form of a COMMON statement is:

COMMON /namel/ listl /name2/ list2

where namel and naae2 are the COMMON block names associated
with the corresponding listl and list2.

Example
DIMENSION X(lOO)
COMMON /ZZZ/ FIRST,LAST,X
CALL ADDEM

•

END

SUBROUTINE ADDEM
REAL NUMBER
COMMON /ZZZ/ F,L,NUMBER(lOO)

END

An array declaration may be included in a COMMON
statement as shown in the subroutine. The use of common
blocks allows data to be passed to and from a subprogram,
but without passing it as arguments (in a heavily called
routine, this method can save execution time). If an array
is to be included in a common declaration, it must ei ther be
declared previously or declared in the COMMON statement.

10-01-82 NEVADA FORTRAN PAGE 19

If the name is omitted or the name is null (i.e. II)
then it is called blank COMMON.

Example

COMMON A,B,C,D
COMMON II A,B,C,D are equivalent statements

Blank COMMON differs from named COMMON in the following
ways:

1) variables in blank common are allocated their actual
memory addresses at runtime and therefore cannot be
initialized with a DATA statement.

2) blank common is allocated at runtime directly below the
TPA in cpIM or at a user specified address (see M= parameter
when program is compiled). If the size of blank common
blocks is the same, then blank common can be used to pass
data between routines that CHAIN as the blank common
variables will occupy the same place in memory.

NOTE: The name of a named COMMON block can not be the same
as a SUBROUTINE or FUNCTION name."

\

10-01-82 NEVADA FOR'1'RAH PAGE 20

2.8.0 Implicit statement

The IMPLICIT statement is used to change the default
integer, real and logical typing.

The general format of the IMPLICIT statement is:

IMPLICIT type (range), type (range)

where:

Type is one of INTEGER, REAL or LOGICAL. Range is either a
single letter or a range of letters in alphabetical order. A
range is denoted by the first and last letter of the range
separated by a hyphen or a sequence of single letters
separated by commas.

Example

IMPLICIT INTEGER (Z) ,REAL (A,B,C,D,E,G),INTEGER (M-S)
IMPLICIT REAL (I,J)
IMPLICIT REAL (A-Z)

An IMPLICIT statement specifies the type of all
variables, arrays and functions that begin with any letter
that appears in the specification. Type specification by an
IMPLICIT statement may be overridden for any particular
variable, array or function name by the appearance of that
name in a type statement.

The IMPLICIT statement must appear before all other
statements in a particular routine: that is immediately
after the SUBROUTINE or FUNCTION statement or before the
first statement of the main program.

10-01-82 NEVADA FORTRAN PAGE 19

If the name is omitted or the name is null (i.e. II)
then it is called blank COMMON.

Example

COMMON A,B,C,D
COMMON II A,B,C,D are equivalent statements

Blank COMMON differs from named COMMON in the following
ways:

1) variables in blank common are allocated their actual
memory addresses at runtime and therefore cannot be
initialized with a DATA statement.

2) blank common is allocated at runtime directly below the
TPA in CPIM or at a user specified address (see M= parameter
when program is compiled). If the size of blank common
blocks is the same, then blank common can be used to pass
data between routines that CHAIN as the blank common
variables will occupy the same place in memory.

NOTE: The name of a named COMMON block can not be the same
as a SUBROUTINE or FUNCTION name.

10-01-82 NEVADA FORTRAN PAGE 20

2.8.0 Implici t Statement

The IMPLICIT statement is used to change the default
integer, real and logical typing.

The general format of the IMPLICIT statement is:

IRPLICIT type (range), type (range)

where:

Type is one of INTEGER, REAL or LOGICAL. Range is either a
single letter or a range of letters in alphabetical order. A
range is denoted by the first and last letter of the range
separated by a hyphen or a sequence of single letters
separated by commas.

Example

IMPLICIT INTEGER (Z),REAL (A,B,C,D,E,G),INTEGER (M-S)
IMPLICIT REAL (I,J)
IMPLICIT REAL (A-Z)

An IMPLICIT statement specifies the type of all
variables, arrays and functions that begin with any letter
that appears in the specification. Type specification by an
IMPLICIT statement may be overridden for any particular
variable, array or function name by the appearance of that
name in a type statement.

The IMPLICIT statement must appear before all other
statements in a particular routine: that is immediately
after the SUBROUTINE or FUNCTION statement or before the
first statement of the main program.

10-01-82 NEVADA FORTRAN PAGE 21

3.0.0 Expressions·

An expression is a combination of variable, functions and
constants, joined together with one or more operators.

Arithaetic Operators

** or A Exponentiation
* Multiplication
/ Division
+ Addition

Subtraction

Comparison Operators

.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.LT. Less than

.GE. Greater than or equal

.LE. Less than or equal to

Logical Operators

.NOT. Logical Negation

.AND. Logical and

.OR. Logical or

.XOR. Logical exclusive or

The .NOT. and unary minus (-) operators preceded an
operand. All other operators join two operands.

10-01-82 NEVADA FOR'l'RAR PAGE 22

3.1.0 Hierarchy of Operators

The following is the table of operator hierarchy and the
correct FORTRAN symbolic representation to be used in
coding:

Highest

Lowest

System and User Functions

** OR A (up arrow)
* and /
+ and - (including unary -)
.LT., .LE. , .NE. , .EQ. , .GE. , .GT •
• NOT •
• AND •
• OR. and .XOR.
Replacement (=)

10-01-82 NEVADA FOR-rRAN PAGE 23

3.2.0 Expression Evaluation

FORTRAN expressions are evaluated as follows:

1. Parenthesised expressions are always evaluated first,
with the inner most set being evaluated first.

2. within parentheses (or whenever there are none) the
order of expression evaluation is:

a. FUNCTION references
b. Exponentiation
c. Multiplication and division
d. Addition and subtraction

Example

A+l+Z*5 will be evaluated as:

«A+(1+(Z*5))

VAL*Z+(T+4)/6*X**Y will be evaluated as:

«VAL*Z)+«(T+4)/6)*(X**Y»)

10-01-82 NEVADA FORTRAN PAGE 24

3.3.0 Integer Operations

A fundamental difference between integer and real
arithmetic operation, is the manner in which rounding
occurs. If you were to divide 3.0 by 2.0 using floating
point arithmetic, the answer would be 1.5. However, if the
same operation were to be performed using integer
arithmetic, 3/2 would equal 1. Note in using integer
arithmetic, the fractional part of the number is truncated.
Another example would be in the multiplication of two real
numbers. 2.9 times 4.8 would equal 13.92. However in integer
mode, the resul t would be 13. Also, no more than 8 digi ts
of accuracy are maintained. Should more than 8 digits be
generated by an integer operation, a runtime error will
result.

Example

6/3=2
but 7/3=2 (NOTE: no fraction is retained) and 7/9=0

99999999+5=1 integer overflow

10-01-82 NEVADA FOR~ PAGE 25

3.4.0 Real Operations

Unlike integers, Real operations and their results have
a precision of eight significant digits plus an exponent
(base 10) between -127 and +127.

Example

12/6.0=2.0
15.0/2=7.5
1./2.=0.5

10-01-82 NEVADA FORTRAN PAGE 26

3.5.0 Logical Operations

Logical operations are unlike integer and real
operations in that they always return a value of zero CO) or
one (1). All the logical operations will return a one for a
TRUE condition, however any NON-ZERO value will be
interpreted as TRUE. If the logical operation is a
logically true statement, the result is a one, if the
statement is false, a zero is returned.

Example

A = 1 .GT. 2
A = 1 • EQ. 1
A = 1 .LT. 2

(false)
(true)
(true)

A would evaluate to 0
A would evaluate to 1
A would evaluate to 1

The relational operator abbreviations in the previous
table represent the following operations:

Example

.LT. Less Than

.LE. Less Than or Equal

.NE. Not Equal

.EQ. Equal

.GE. Greater Than or Equal

.GT. Greater Than

.AND. True only if both operands are true •
• OR. True if either operand is true •
• XOR. True if operands are different.

IF (A .EQ. B) GO TO 500
IF (A .EQ. B.OR.K .EQ. D)STOP

Logical variables can also be used in assignment
statements:

A=A .AND. B
I=(A .OR. B).XOR.{{T .EQ. 35.4).OR.{T .EQ. 39»

10-01-82 NEVADA FOR'rRAN PAGE 27

The following logical operators are also available, as
listed in the following truth charts •

• AND. • OR. .XOR •

A B R A B R A B R
=====i=====i===== =====i=====i===== =====i=====i=====
000 000 o 0 0

-----+-----+----- -----+-----+----- -----+-----+-----o ! 1 ! 0 o ! 1 ! 1 011
-----+-----+----- -----+-----+----- -----+-----+-----
100 101 1 0 1

-----+-----+----- -----+-----+----- -----+-----+-----
III 111 110

.NOT.

A R
=====i=====

o 1
-----+-----

1 0

10-01-82 NEVADA FORTRAN PAGE 28

3.6.0 Mixed Expressions

The standard FORTRAN rules for mixed mode expressions are:

integer <*op> integer gives an integer result

real <*op> integer gives a real result (with the
integer being converted to
real before the operation is
performed).

real <*op> real

integer <*op> real

integer = real

real = integer

gives a real result

gives a real result, with the
integer being converted to
REAL before the operation is
performed.

will cause truncation of any
fractional part of real and an
error if the truncated result
is outside the range of
integers.

will cause integer to be
converted to real.

In general, in a mixed expression, integers are converted to
real before the operation take place, giving a real result
(unless both operands are integer).

.Lv-U.L-82 NEVADA FORTRAN PAGE 29

4.0.0 Control Statements

There are several different statements that control the
execution flow of a FORTRAN program:

These are:

1. GO TO statements
a. Unconditional GO TO
b. Computed GO TO
c. Assigned GOTO

2. If statements
a. Arithmetic IF
b. Logical IF
c. IF THEN ELSE

3. DO

4. CONTINUE

5. PAUSE

6. STOP

7. CALL

8. RETURN
a. explicit RETURN
b. multiple RETURN

I

10-01-82 NEVADA FORT1<AD

4.1.0 Unconditional GO TO Statement

The general format of the unconditional GO TO is:

GO TO n

where n is a label on an executable statement.

The unconditional GO TO statement performs an absolute
transfer of control to the statement number specified as the
Object of the branch. If the statement number does not
eXist, an undefined label error will occur; this error is
detected during compilation.

Note: Labels on format statements in most FORTRAN systems
may not receive transfer of control. This is not true in
this implementation of FORTRAN. Format statements act the
same as a CONTINUE statement which will be discussed later.

Example

GO TO 10
GO TO 400

10 CONTINUE
400 FORMAT (IX)

10-01-82 NEVADA FORTRAN PAGE 29

4.0.0 Control StateDlents

There are several different statements that control the
execution flow of a FORTRAN program:

These are:

1.

2.

3.

4.

GO TO statements
a. Unconditional GO
b. Computed GO TO
c. Assigned GOTO

If statements
a. Arithmetic IF
b. Logical IF
c. IF THEN ELSE

DO

CONTINUE

5. PAUSE

6. STOP

7. CALL

8. RETURN

TO

a. explicit RETURN~ ______ _
b. multiple RETURN

10-01-82 NEVADA FORTRAN PAGE 30

4.1.0 Unconditional GO TO Statement

The general format of the unconditional GO TO is:

,.- --. -
UV .LV 11

where n is a label on an executable statement.

The unconditional GO TO Statement performs an absolute
transfer of control to the statement number specified as the
object of the branch. If the statement number does not
exist, an undefined label error will occur; this error is
detected during compilation.

Note: Labels on format statements in most FORTRAN systems
may not receive transfer of control. This is not true in
this implementation of FORTRAN. Format statements act the
same as a CONTINUE statement which will be discussed later.

Example

GO TO 10
GO TO 400

10 CONTINUE
400 FORMAT (IX)

10-01-82 NEVADA FORTRAN PAGE 31

4.2.0 Computed GO ro Statement

The general format of the COMPUTED GO TO is:

GO TO (nl,n2, ••• nm),i

The computed GO TO statement works in a manner similar
to the GO TO sta tement. However, one of the distinct
advantages is that under program control, you may direct
which is the next instruction to be executed, based on the
value of i. The computed GO TO works as follows:

Computed GO TO
statement

Present Value
of Variable

GO TO (1,5,98,167,4),K2
GO TO (44,28),J
GO TO (5l,6,7,1,46),M
GO TO (1,1,1,1,2,2),LOOT

K2=5
J=l
M=4

LOOT=3

Next Executed
Statement

4
44
1
1

If the value of i exceeds the number of sta tement labels
in the computed GOTO, then a runtime error is produced. If
the value of i is less than 1, a runtime error is produced.

10-01-82 NEVADA FORTRAN

4.3.0 Assigned GO TO

The general format of the ASSIGNED GO TO is:

GO TO v, (nl , n2 , •••)

PAGE 32

where v is the variable used in an ASSIGN statement and nl,
n2 are statement labels.

Example

GO TO LABL,(100,400,SOO)
GO TO K,(1,2,3,4,S)

10-01-82 NEVADA FORTRAN PAGE 33

4.4.0 ASSIGN

The general format of the ASSIGN statement is:

ASSIGN n TO V

where n is the statement label to be ASSIGNed to v. The
ASSIGN statement assigns a statement label to be used in
conjunction with the ASSIGNED GO TO statement.

Example

ASSIGN 20 TO LABEL

IF (KNT .GT. 10)ASSIGN 10 TO LABEL

GO TO LABEL, (10,20)

10-01-82 NEVADA FORTRAN PAGE 34

4.5.0 Arithmetic IF statement

The Arithmetic IF allows the programmer to evaluate an
expression which may be any combination of integer, real, or
logical operators, and based on its relationship to zero
perform a transfer of control operation.

The general form of the arithmetic IF is:

IF (e) n1,n2,n3

where a is an arithmetic expression which when evaluated is
used to determine the next statement to be executed.

If e is: next statement

<0
=0
>0

nl
n2
n3

Example

IF (A) 1,2,3
IF (BETA*SIN(BETA/DEGREE»100,150,432
IF (A-l)1,1,99

10-01-82 NEVADA FORTRAN PAGE 35

4.6.0 Logical IF Statement

The general form of the Logical IF is:

IF (e) s

The logical IF statement operates as follows:

1. The expression e is evaluated, and a logical result is
derived, zero or one.

2. Depending on the value which is derived, one of the
following two conditions occurs:

If e is evaluated as .TRUE. then the statement s is
executed, and once the IF has completed, transfer is then
passed to the next consecutive statement.

If e is evaluated as .FALSE. the statement s is not executed
and control is then passed to the next sequential executable
statement.

Example

IF (DEGREE .EQ. 100)WRITE (1,*) RADIAN
IF «A .EQ. l2).OR.(LOOP .LE. 500»RETURN
IF (SIN(30)/WHERE-.00005 .LT •• 00004)STOP
IF (A .NE. B)GO TO 500
IF (A .EQ. l)GO TO (l,2,3),J
IF (VALUE .EQ. 6)IF (J)99,33,67
IF (1 .NE. O)CONTINUE

10-01-82 NEVADA FORTRAN

4.7.0 IF-THEN-ELSE

The general format of this statement is

IF (e) THEN
state.ent 1
state.ent 2

ENDIF

•••
ELSE
state.ent 3
state.ent 4
...

PAGE 36

The IF-THEN-ELSE is an extension of the logical IF with
2 additions:

1) there can be more than 1 statement to execute if the IF
is true

2) there is the provision of specifying one or more
statements to be executed if the IF is false.

The ENDIF is required to indicate the end of the
complete IF-THEN-ELSE statement.

To indicate an IF-THEN-ELSE the s part of the logical IF
is replaced with the THEN statement. All statements between
the THEN and the matching ELSE or ENDIF will be executed if
the specified condition is true. All statements between the
ELSE and ENDIF will be executed if the specified condition
is false. The ELSE is optional and if the condition is
false, all statements between the THEN and ENDIF will be
skipped.

If no ELSE condition is to be specified, then the THEN
can be terminated with an ENDIF. For example:

I f (e) THEN
statement I
statement 2
ENDIF

Note: THEN, ELSE and ENDIF are individual statements
terminated by either a carriage return or semicolon.

Example

IF (I .EQ. 0) THEN
L=K+I
K=I
ELSE
K=O
ENDIF

10-01-82 NEVADA FORTRAN PAGE 37

4.8.0 DO-LOOPS

The general format for a DO loop is:

DO n i=ml,m2,m3

The DO statement works in the similar manner as the
FOR, NEXT loop in BASIC. The DO Loop works as follows:

1) i is set to the value of mI.

2) After each pass through the loop (which ends with the
statement labelled n), the step value, m3 is added to i. If
the m3 term (step value), is omitted, then the step value is
assumed to be one. Unlike other versions of FORTRAN the i
and m terms do not have to be INTEGER values and the step
may be negative. This allows fractional increments of the
DO loop index, i. The ability of a negative increment, m3,
allows loop to step in a downward direction. If the index
is positive, the loop continues until the value of i is
greater than that of mI. If the index is negative, the loop
continues until the value of i is less than that of m2. n in
the DO loop specifies the range of the DO loop. This is the
statement number of the last statement of the DO loop.

Irrespective of the relation of the initial and ending
values, the DO will always be executed once.

Note tha t 2 or more DO loops may end on the same sta tement.

DO loops may not terminate on GO TO, STOP, IF-TBEN-ELSE, END
or RETURN statements.

Example

DO 800 1=1,100
DO 1 J=I,END,.005
DO 99 A=START,END,AINCR

10-01-82 NEVADA FORTRAN PAGE 38

4.9.0 CONTINUE statement

The format of the CONTINUE statement is:

CONTINUE

The CONTINUE statement is an executable FORTRAN
statement. It generates no code in the object file, and is
generally used as the terminal statement of a DO loop.

Example

DO 100 1=1,50

100 CONTINUE

The CONTINUE statement does nothing. It simply serves to
mark the range of the DO. It is also used for transfer of
control i.e. you can GOTO it.

10-01;"82 NEVADA FORTRAN PAGE 39

4.10.0 ERROR TRAPPING

Normally when an error occurs during the execution of a
FORTRAN program a runtime error message will be produced.
However using the ERRSET and ERRCLR statements it is
possible to control and trap runtime errors.

The general format of these statements is:

ERRSE'.r n,v
ERRCLR

where n is the label of the statement to transfer to if
a runtime error occurs and v is the variable to contain the
error code of the runtime error that occurred.

The ERRSET statement causes control to be transferred to
the statement labeled n when a runtime error occurs. No
runtime error message will be printed if the error is
trapped with an ERRSET statement. The ERRSET statement can
only be used if the Q option was specified on the $options
statement. If an ERRSET or ERRCLR statement is encountered
and the Q option was not specified, a compilation error will
be generated.

The value placed in the variable v corresponds to the
runtime error that occurred as follows:

1 Integer overflow
2 Convert error
3 Argument count error
4 Computed GOTO index out of range
5 Overflow
6 Division by zero
7 Square root of negative number
8 Log of negative number
9 Call stack push error

10 Call stack pop error
11 CHAIN/LOAD error
12 Illegal FORTRAN logical unit number
13 Unit already open
14 Disk full
15 Unit not open
16 Binary I/O to system console
17 Line too long on READ or WRITE
18 Format error
19 Input/Output error in READ or WRITE
20 Invalid character on input
21 Invalid input/output list (impossible)
22 Assigned GOTO error
23 CONTROL/C abort
24 Illegal character in input
25 File operation error
26 Seek error

10-01-82 NEVADA FORTRAR PAGE 40

If more than one ERRSET statement is executed in a
routine, then the last one executed is the one in effect.
If a runtime error should be trapped with an ERRSET
statement, the ERRSET statement is automatically cleared
after control has transferred to the statement D.

The ERRCLR statement clears the effect of the ERRSET
statement in effect.

Example

$OPTIONS Q

ERRSET 10,CODE

ERRCLR

STOP
10 TYPE 'ERROR ,ERROR CODE = ',CODE

END

10-01-82 NEVADA FOR'l'RAII PAGE 41

4.11.0 CONTROL/C CONTROL

At the beginning of each READ or WRITE statement the
state of the CONTROL/C abort flag is tested. If the
CONTROL/C abort flag is set, then the console is tested to
see if CONTROI/C has been hit. If CONTROL/C has been hit,
then one of two actions will occur:

1) if there is an ERRSET in effect, the error branch will
be taken with a CONTRL/C error.

2) otherwise a runtime error of CORTRL/C will occur.

The user has control of the CONTROL/C flag through the
CTRL ENABLE and CTRL DISABLE statements. CTRL ENABLE set
the CONTROL/C flag and allows a CONTROI/C from the console
to abort the program. CTRL DISABLE resets the flag and
causes the CONTROL/e to be ignored.

Example

DO 1 I=l,lOO
IF (I .EQ. 51)CTRL DISABLE

1 TYPE I
END

The above program will only abort if CONTROL/C is hit
while the first 50 numbers are being output.

When program execution starts, the CONTROL/C flag will
be set which allows CONTROL/C to abort the program.

Note: The CONTROL/C error, if enabled, can be trapped with
an ERRSET statement. Also, the CIN function will return a
control-C to the caller, regardless of the setting of the
CONTROL/C flag

10-01-82 NEVADA FORTRAN PAGE 42

4.12.0 TRACING

There are two statements that are used to trace a program:

TRACE ON
TRACE OFF

When program execution begins tracing is initially off
and must be explicitly turned on. Once tracing is on, it
remains on until the program terminates or a TRACE OFF
statement is executed. The effect of the trace statements
is global over the whole program and tracing does not have
to be turned on in each subroutine. The trace function will
output the line number of the FORTRAN statement before
execution only if the X option was specified on the options
statement for this routine. Otherwise the program will be
traced only up to the entrance to the subroutine. It should
be noted that the line number for any entrance to a
subroutine (either SUBROUTINE or FUNCTION) will always be
output as 1111 regardless of the state of the X option.

Example

IF (FLAG .EQ. O)TRACE ON
TRACE OFF

DO 1 I=l,lOO
IF (I .EQ. 50)TRACE ON

1 TYPE I

10-01-82 NEVADA FORTRAN PAGE 43

4.13.0 DUMP statement

The general format of the DUMP statement is:

DUMP /ident/ output list

where ident is up to a 10 character identifier for this DUMP
statement and output list is a standard WRITE output list
that may contain variables, constants, character strings,
array elements, array names and implied DO loops.

The DUMP statement is used to display information when a
runtime error occurs that is not trapped by an ERRSET
statement.

Example

DUMP /AFTER-DIVIDE/ 'Index after divide is ',K

More than one DUMP statement may be executed in a routine
and the last one executed is the one that will be output on
a runtime error. Each subprogram may contain its own DUMP
statement, but only the last DUMP statement executed in a
particular routine will be output.

10-01-82 NEVADA FORTRAN PAGE 44

5.0.0 Program Termination Statements

5.1.0 PAUSE State.ent

The general format of the PAUSE statement is:

PAUSE 'any char string'

This statement causes the program to wait for any input
from the system console. To continue execution, press any
character on the system keyboard. If the character string
option is specified, the string will be displayed on th~
system console. The string is enclosed in single quotes (I).
To output a quote, two quotes in a row must be entered; e.g.
(II) outputs as (I). The quotes surrounding the text are
not output.

Example

PAUSE 'HIT ANY KEY TO CONTINUE'
PAUSE
PAUSE 'DATA OUT OF SEQUENCE, IGNORED'
PAUSE 'THIS IS A SINGLE QUOTE (")

10-01-82 NEVADA FORTRAN

5.2.0 STOP State.ent

The general format of the STOP statement is:

STOP lany char stringl
srop n

PAGE 45

When a STOP statement is encountered, it causes
termination of the executing program. If the character
string is specified it will be printed on the system console
when the statement is executed. After the character string
is output, the program terminates and returns to CP/M. The
string is enclosed in single quotes. To output a quote, two
quotes in a row must be entered. The quotes surrounding the
text will not be output.

In the second form, n is a 1 to 5 digit integer number
that will display. n is optional.

Example

STOP 'PROGRAM COMPLETE'
STOP 1267
STOP
STOP 'ERROR OCCURRED, CHECK OUTPUT'

10-01-82 NEVADA FORTRAN PAGE 46

5.3.0 END Statement

The format of the END statement is:

Elm

This is a required statement for every FORTRAN routine.
It is used by the compiler to indicate the end of one
logical routine. If an END statement is encountered during
execution, then the message END IN - XXXXX will be output to
the system console, with XXXXX being replaced by the name of
the FORTRAN routine in which the END statement was executed.

10-01-82 NEVADA FORTRAR PAGE 47

6.0.0 Array Specification

An array is a collection of values that are referenced by
the same name and the particular element is specified by a
subscript. Subscripts can be real or integer expressions or
constants and will be truncated to ari integer value after
the expression is evaluated.

An array may have from one to seven dimensions.

Example

If GRADE has 3 elements then:

GRADE(l)
GRADE (2)
GRADE (3)

refers to the first element
refers to the second element
refers to the third element

NO~E: Subscripted variables cannot be used as subscripts,
thus GRADE(A(I» is invalid, where both GRADE and A are
arrays.

10-01-82 NEVADA FOR'rRAN PAGE 48

6.1.0 Dimension state.ent

The general format for a DIMENSION statement is:

DIMENSION v(nl,n2, •• ,nm) , ••

The DIMENSION statement is used to define an array. The
rules for using the DIMENSION statement are as follows:

1) Every subscripted variable must appear in a DIMENSION
statement whether explicit (in a dimension statement) or
implied (in a REAL, INTEGER, LOGICAL or COMMON statement)
prior to the use of the first executable statement.

2) A DIMENSION specification must contain the maximum
dimensions for the array being defined.

3) The dimensions specified in the statement must be numeric
in the main routine. However, in subroutines the subscripts
may be integer variables. Hence the following statement is
valid only in a subroutine:

DIMENSION A(I,J)

In the case where the dimensions of an array are specified
as variables, the value of the variable at runtime will be
used in computing the position within the array to be
accessed.

4) All arrays passed to subprograms must be DIMENSIONED in
the subprogram as well as in the main program. If the
arguments in the subprogram differ from those in the main
program, then only those sections of the array specified by
the DIMENSION statement in the subprogram will be accessible
in the subprogram.

5) The number of dimensions specified for a particular
array cannot exceed 7.

6) No single array can exceed 32,767 bytes in size.

See the following for examples of the DIMENSION
statement used both in the direct and indirect mode.

DIMENSION A(3,2,3),C(10),ZOT(10,10)
INTEGER SWITCH(15)

"A" would require 3*2*3*(6) = 108 bytes
nCR would require 10*(6) = 60 bytes
"ZOT" would require 10*10*(6) = 600 bytes
"SWITCH" would require 15*(6) = 90 bytes

WARNING: No subsc r ipt range check ing is perf ormed at
runtime.

10-01-82 NEVADA FORTRAN

Example

DIMENSION GUN(S,E)
DIMENSION A(2,2),B(10)
DIMENSION ZIT(lO)
REAL APPLE(lO)
LOGICAL FUNCT(lOO)

PAGE 49

In calculating the memory used by an array, multiply
each of the dimensions times each other, then times 6. The
result will be the number of bytes used by the array for
storage. In the above examples of the dimension statement,
the arrays would require the following storage.

10-01-82 NEVADA FORTRAN PAGE 50

6.2.0 Subscripts

Subscripts are used to specify an entry into an array
(i.e. the value specified in the subscript is the element of
the array referenced). Subscripts may be integers, real
(fractions are truncated), logical expressions or any other
valid expression. Expressions are evaluated as explained in
the EXPRESSION section (3.2.0).

Example

ZIT (8)
A(1+2)
ORANGES (I+5-(K*10)/2)
APPLE(5)

10-01-82 NEVADA FORTRAN PAGE 51

7.0.0 Subprograms

Subprograms provide a means to define often needed sections
of code that can be considered as a unit. FORTRAN provides
the means to execute these subprograms whenever they are
referenced.

There are 3 types of subprograms supported in this version
of FORTRAN:

1) SUBROUTINE subprograms

2) FUNCTION subprograms

3) Built in library functions

The major differences between FUNCTIONS and SUBROUTINES are
listed below.

1) FUNCTIONS are used in expressions, while SUBROUTINES must
be CALLed.

2) FUNCTIONS require at least one parameter; SUBROUTINES do
not require any.

3) The name on the FUNCTION statement must be the object of
a replacement statement somewhere in the FUNCTION; this is
not the case for a SUBROUTINE.

WARRING: If a constant is passed as an argument in ei ther a
CALL or FUNCTION reference, and the corresponding parameter
in the SUBROUTINE or FUNCTION is modified, then the value of
the constant that was passed will be changed, and remain
that of the new value.

NO~E: All SUBROUTINES and FUNCTIONS must be compiled at the
same time. Also SUBROUTINE and FUNCTION names are only
significant to the first 5 characters.

10-01-82 NEVADA FORTRAN PAGE 52

7.1.0 SUBROUTINE Statement

The general format of the SUBROUTINE statement is:

SUBROUTINE naaeClist)

The SUBROUTINE statement is required to identify the
beginning of a logical routine. This statement, or one of
similar function is required at the beginning of every
SUBROUTINE. The list that is to receive the values being
passed to the subroutine is optional if no parameters are to
be passed.

Example

SUBROUTINE ADDIT (RESULT,X,Y)
RESULT=X+Y
RETURN
END

10-01-82 NEVADA FORTRAN PAGE 53

7.2.0 FUNCTION Statement

The general format of the FUNCTION statement is:

FUNCTION na.eClist)

A FUNCTION statement is used to define a logical section
of code as a FUNCTION. The type of result of a FUNCTION can
be specified by preceding the FUNCTION with REAL, INTEGER or
LOGICAL or the name of the FUNCTION may appear in a type
statement within the FUNCTION.

Example

FUNCTION SWAP (A)
SWAP=A
RETURN
END

INTEGER FUNCTION SWAP (A)
SWAP=IFIX(A)
RETURN
END

FUNCTION SWAP (A)
INTEGER SWAP
SWAP=A/2
RETURN
END

10-01-82 NEVADA FOR'.rRAR PAGE 54

7.3.0 CALL Statement

The general format of the CALL statement is:

CALL name (list)

The CALL statement is used to transfer control to a
SUBROUTINE. List specifies the parameters to be passed to
the SUBROUTINE and may be omitted if no parameters are to be
passed.

The number of parameters in a CALL and SUBROUTINE
statement referring to the same subprogram must be the same,
otherwise a runtime error will result.

Example

CALL XSWAP (NUMl,NUM2,TOTAL)
CALL XSWAP

10-01-82 NEVADA FORTRAN PAGE 55

7.4.0 RETURN State.ent

There are 2 types of RETURN statements:

1) normal RETURN

2) multiple RETURN

7.4.1 Normal return

RETURN

The RETURN statement is used to terminate execution of a
subprogram whether it is a FUNCTION or a SUBROUTINE. Return
is transferred to the next statement following the CALL
statement, or in the case of a FUNCTION, return is
transferred back to the point where it was called with the
value of the FUNCTION returned. A RETURN statement is not
valid in the MAIN routine and will cause an error during
compilation.

Example

SUBROUTINE ZERO(I,J)
1=0
J=O
RETURN
END

10-01-82 NEVADA FORTRAN PAGE 56

7.4.2 Multiple return

The general format of the multiple RETURN statement is:

RETURN I

This variation of the RETURN statement is used to
transfer back from a SUBROUTINE to a point other than the
statement that immediately follows the CALL. The I in the
RETURN is the name of a var iable in the argument Ii st of the
subroutine and must have been passed as a label in the CALL.
The CALL statement that invokes a routine that contains a
multiple return must pass the label as one of the
parameters. The statement label is indicated in the
argument list by preceding the label with an ampersand (&).

Example

CALL X(&1,Y,2,&2}

SUBROUTINE X(I,A,IC,J}

C
C THE FOLLOWING RETURN WILL TRANSFER TO THE STATEMENT
C LABELLED 'I' IN THE CALLING PROGRAM.
C

RETURN I

C
C THE FOLLOWING RETURN WILL TRANSFER TO THE STATEMENT
C LABELLED '2' IN THE CALLING PROGRAM.
C

RETURN J
END

NOTE: Multiple RETURNS are only valid for SUBROUTINES.

10-01-82 NEVADA FORTRAN PAGE 57

7.5.0 BLOCK DATA SUBPROGRAM

The BLOCK DATA subprogram is used to initialize
variables in naaed COMMON. The BLOCK DATA subprogram must
contain no executable statements but may contain only
declaration statements for specifing variable types, array
dimensions, COMMON blocks and DATA statements.

Example

BLOCK DATA
INTEGER FIRST,LAST
COMMON IONEI NAMES(lOO) ITWOI FIRST,LAST
DATA FIRST Ill, LAST/IOI
DATA NAMES 11,2.0,4,5,6,7,8,9,10,90*999991
END

It should be noted that the variable in named COMMON can
be initialized in any routine and the BLOCK DATA subprogram
appears only for compatibility with other FORTRAN systems.

10-01-82 NEVADA FORTRAN PAGE 58

8.0.0 Input/Output

8.1.0 Introduction to FORTRAN I/O

8.1.1 General Information

Input and Output (lID) under FORTRAN may take one of the
following forms:

1) Standard Formatted lID
2) Free Format lID
3) Binary lID

In formatted lID, input and output is defined in terms
of fields which are right justified on the decimal point,
with zero suppression. In a FORMAT statement, no more than
three levels of nested parenthesis are allowed (outer set
and two nested inner sets).

Free Format lID is used as in BASIC. All the values are
entered using commas (,) or carriage returns to delimit the
numbers.

Binary lID is a third option that allows passing of
large files between FORTRAN programs, with the minimal
amount of wasted disk space. Each variable written in binary
format uses six bytes of disk space.

FORTRAN logical units 0 and 1 are dedicated to console
input and output and cannot be either opened or closed. An
attempt to open or close 0 or 1 will result in a runtime
error. Logical unit 0 is used for console input and logical
unit 1 is used for console output. Binary lID cannot be
specified for logical units 0 or 1 and doing so will result
in a runtime error.

There are two special lID statements:

TYPE
ACCEPT

Both of these are followed by a standard lID list. TYPE is
equivalent to WRITE (1,*) and ACCEPT to READ (0,*). This is
just a convenient method of doing console lID.

Example

TYPE I,J,(A(I),I=l,lO)
ACCEPT 'INPUT THE MAX COUNT' I COUNT

10-01-82 NEVADA FORTRAN PAGE 59

A RUNTIME format can be specified for any formatted IIO
statement by substituting an ARRAY name for the FORMAT
number. At runtime, the array is assumed to contain a valid
FORTRAN format (complete with its outer set of parentheses).
This allows a FORMAT statement to be input at runtime and
then to be used. The format should be input using an A6
format specification as imbedded blanks (added in using less
than an A6) will cause a runtime error.

Example

DIMENSION FORM(lO}
READ (0,10) 'ENTER DATA FORMAT ',FORM

10 FORMAT (10A6)

READ (4,FORM) A,B,C

WRITE (lO,FORM) Rl,R2,R3

10-01-82 NEVADA FORTRAN PAGE 60

8.1.1 1/0 List Specification

The I/O List is used to specify which variables are to
be READ or WRITTEN in a particular I/O statement. The list
has the same form for both READ and WRITE statements. The
list can be composed of one or more of the following:

1) simple (non-subscripted) variable
2) array element
3) array name
4) implied DO loop
5) literal
6) constant (WRITE only)

The above types are combined to form the I/O list
specification. Items 1-4 are self explanatory, however item
4, the implied DO loop is explained further below:

The implied DO loop is used mainly to output sections of
one or more arrays and functions in the same way as does a
regular DO loop. An example of an implied DO loop is:

WRITE (1,*) (F(I),I=1,3,1)

It should be noted that the outer parentheses and the
comma preceding the DO index are always necessary when using
an implied DO loop. Nested loops can be used. Each loop
must be enclosed in parentheses. An example follows:

WRITE (1,*) (J,(F(I,J),I=1,4),J=1,30,2)

The inner DO (I) is performed for each iteration of the
outer DO (J). Note that other than array elements can be
included within the range of an implied DO. Implied DO's
can be nested to any depth, each within its own set of
parenthesis.

LITERALS (character str ings enclosed in quotes) can be
used in any WRITE statement and in READ statements that
reference the system console. The Ii terals can be used as
prompts for input or identification on output.

Example

WRITE (1,*) 'A= ',A
TYPE 'The answer is ',ANS
WRITE (10,3) 'X= ',X

READ (0,*) 'A= ',A,' B= ',B
ACCEPT 'Enter quantity ',QUANT

An attempt to use a literal in a READ statement that doesn't
reference the console will result in an INPU~ ERR runtime
error.

10-01-82 NEVADA FORTRAN PAGE 61

8.2.0 READ Statement

READ(unit{,format} {,END=end} {,ERR=error}) 1/0 list

The READ Statement is required in order for the user to
do input through the FORTRAN system. If a unit number of 0
is used there is no need to open this file as it is assumed
to be system console input. Note: do not use 1 as the
logical unit as it is reserved for the system console
output. Any other unit number must first have been opened
by the user through the OPEN or LOPEN subroutine. The FORMAT
entry may take one of the following forms:

1) The FORMAT number is the label on the FORMAT statement
which is to be used.

2) An asterisk (*) indicates that input is to be free
format. The exact format of the output depends on the value
of the number being output and is determined at runtime.

3) If this entry is left blank (or not specified), binary
input is assumed.

4) The name of an array that contains the format to be used.

END= is the label to which transfer of control is to be made
should an end of file condition be encountered. ERR= is the
label to which control will be transferred, should an error
other than end of file occur during input. 1/0 list is the
string of variables which accept the data to be read.

10-01-82

Example

READ (0,2) A

READ (0,*) A

READ (4) A

READ (4"END=10) A

NEVADA FORTRAN PAGE 62

read from the system console the
variable 'A' under format number 2

read from the s.ystem console the
variable 'A' in free format.

read from logical file 4, the
variable A in binary.

read from logical file 4, the
variable A, in binary, and if end
of-file is encountered, go to
statement label 10

READ (4,*,END=10,ERR=100) A

READ (4"ERR=100) A

read from logical file 4, the
variable A in free format, should
end-of-file be encountered, go to
statement label 10. If an error
occurs, go to statement label 100.

read from logical file 4, the
variable A in binary format, and if
an error occurs, go to statement
label 100.

The END= and ERR= parameters are optional and can appear in
any order.

10-01-82 NEVADA FORTRAN PAGE 63

8.3.0 WRITE Statement

WRITE (unit{,forlDat} {,ERD=end} {,ERR=error}) 1/0 list

The WRITE statement is the opposite of the READ
statement in that it converts the values of the variables
specified to a format that is understandable to the user.
The 1/0 list is specif ied exactly the same as for the READ
statement with the exception that a string can always be
used in the 1/0 list. However the END= serves no function
and will never be used by the WRITE statement.

Example

WRITE (1,2) I,J,PAY,WITHOLD
WRITE (1) (1,1=1,10)
WRITE (10,*) THIS
WRITE (6,12,END=99,ERR=66) LOOP,COUNT

10-01-82 NEVADA FORTRAN PAGE 64

8.4.0 MEMORY TO MEMORY I/O statements

The ENCODE and DECODE statements allow 1/0 to be
performed to or from a specified memory location. This
allows data in memory to be read (using DECODE) with perhaps
a different format code depending on the data itself. The
ENCODE statement is similar to a WRITE statement in that
data is formatted according to the specified format type,
but instead of being output to a file it will be placed in
memory at the specified location for further processing.

10-01-82 NEVADA FORTRAN PAGE 65

8.4.1 DECODE state.ent

The general form of the DECODE statement is:

DECODE (variable,length,for.at) I/O list

The DECODE statement is similar to a READ statement in
that it causes data to be converted from external ASCII
format to internal FORTRAN type. Variable is either an
unsubscripted variable name or an array name. Length is the
number of bytes to process for this READ starting at
variable. If multiple records are required by the 1/0 list,
successive records of length will be retrieved from memory.
Input records will be blank padded on the right end as
necessary as in a READ statement. For.at is either an
asterisk for free formatting or the number of a FORMAT
statement.

Example

DIMENSION A(15)
READ (1,10) A

10 FORMAT (15A6)
DECODE (A,80,11) KNTl,KNT2,CNT3

11 FORMAT (IlO,I3,FlO.5)

10-01-82 NEVADA FORTRAN PAGE 66

8.4.2 ENCODE statement

The general form of the ENCODE statement is:

ENCODE (variable,length,format) 1/0 list

The ENCODE statement is similar to a WRITE statement in
that it is used for a memory to memory formatted WRITE.
Variable is either an unsubscripted variable name or an
array name. Length is the number of bytes (or characters)
that the output record is to contain. If the number of
characters generated by the ENCODE statement is less than
length, then the record will be blank padded to length. If
the number of characters in the generated record is greater
than length, then the record will be truncated after the
length character. If multiple output records are generated,
successive records of length character will be placed in
memory starting at variable. Format is either an asterisk
for free formatting or the number of a FORMAT statement.

Example

DIMENSION A(15)
ENCODE (A,80,*) (1,1=1,5)

10-01-82 NEVADA FORTRAN PAGE 67

8.5.0 Format statement and Format Specifications

The general form of the FORMAT statement is:

n FORMAT (sl ,s2 , ••• sn)

The FORMAT Statement is used in FORTRAN to do formatted
input and output. Through the use of this statement the
programmer has the ability to select the fields in which to
read, or specify the columns on which to write. It is the
use of this statement which gives FORTRAN its 1/0 power. On
FORMATTED input, blanks are treated as if they were zeroes
except when reading in A format. A constant enclosed in
backslashes can be used to enter a binary constant from a
string within a FORMAT statement.

If a number cannot be written in the specified field
width, then the entire field will be filled with asterisks
(*) to indicate the error condition. Note: some FORTRANS
will print a negative number, even when there is not room
enough to place the nega ti ve sign in the field by omi tting
the negative sign. In this case, NEVADA FORTRAN will
asterisk fill the field. The asterisk filling of a field
that is not large enough to output a number applies on all
output specifications. A ZERO will always be printed as 0.0
under a F or E field specification. If a field is printed
as 0.000 ••• this indicates that the digits have been
truncated because the d portion of the field specification
was not large enough.

All floating numbers output using the F and E (and G
with a floating point number) specifications will be rounded
to the appropriate number of digits specified by the d
portion of the field specifier.

10-01-82 NEVADA FORTRAN PAGE 68

8.5.1 X-Type (vX)

The X-Type specification is used to space over any
number of columns with a maximum of 255 character positions.
v may have any value from 1 to 255.

On output the columns spaced over will be set to blanks. On
input v characters of the input record will be skipped.

Example

10 FORMAT (lOX,IlO)

8.5.2 I-Type (Iv)

The I-Type specification is used as a method of
performing I/O with integer numbers. On input, the number
must be right justified in the specified field with leading
zeros or blanks. On output the leading zeroes are replaced
by blanks, and the number is right justified in the field.

Example

10 FORMAT (10110)

10-01-82 NEVADA FORTRAN PAGE 67

8.5.0 Format Statement and Format Specifications

The general form of the FORMAT statement is:

n FORMAT (sl,s2, ••• sn)

The FORMAT Statement is used in FORTRAN to do formatted
input and output. Through the use of this statement the
programmer has the ability to select the fields in which to
read, or specify the columns on which to write. It is the
use of this statement which gives FORTRAN its IIO power. On
FORMATTED input, blanks are treated as if they were zeroes
except when reading in A format. A constant enclosed in
backslashes can be used to enter a binary constant from a
string within a FORMAT statement.

If a number cannot be written in the specified field
width, then the entire field will be filled with asterisks
(*) to indicate the error condition. Note: some FORTRANS
will print a negative number, even when there is not room
enough to place the nega ti ve sign in the field by omi tting
the negative sign. In this case, NEVADA FORTRAN will
asterisk fill the field. The asterisk filling of a field
that is not large enough to output a number applies on all
output specifications. A ZERO will always be printed as 0.0
under a F or E field specification. If a field is printed
as 0.000 ••• this indicates that the digits have been
truncated because the d portion of the field specification
was not large enough.

All floating numbers output using the F and E (and G
with a floating point number) specifications will be rounded
to the appropriate number of digits specified by the d
portion of the field specifier.

10-01-82 NEVADA FORTRAN PAGE 68

8.5.1 X-Type (vX)

The X-Type specification is used to space over any
number of columns with a maximum of 255 character positions.
v may have any value from 1 to 255.

On output the columns spaced over will be set to blanks. On
input v characters of the input record will be skipped.

Example

10 FORMAT (lOX,IIO)

8.5.2 I-Type (Iv)

The I-Type specification is used as a method of
performing 1/0 with integer numbers. On input, the number
must be right justified in the specified field with leading
zeros or blanks. On output the leading zeroes are replaced
by blanks, and the number is right justified in the field.

Example

10 FORMAT (10110)

10-01-82 NEVADA FORTRAN PAGE 69

8.5.3 F-Type (Fw.d)

The F-Type specification is one of several
specifications for performing 1/0 with floating point
numbers. The digit portion of the decimal number works the
same as in the I-Type format. The fractional part of the
number is always printed, including trailing zeroes. During
input, the decimal point is assumed to be at the indicated
position, unless explicitly overridden in the input field.
The number ZERO will always print as 0.0 (with the decimal
point aligned where specified) regardless of the field width
or decimal digits specified. Remember to consider the
decimal point and negative sign of the number when specifing
the width of the output field.

Example

F4.1
F7.S
F2.0
F7.2

F7.2
F2.1
F7.S
F4.1

Output

Input

32.2 (--------------+
0.00001 (--------+
7. (------+
bbb4.S0 (-+

• • • • • • • • •• !
b4.Sbbb (-+
70 (-------+
bbbbOOl (--------+
32.2 (-------------+

NOTE: b is used to indicate a blank position.

During input the F field specifier reads w characters. If
there is not a decimal point in the field read, a decimal is
inserted d digits from the right. A decimal point in the
input field overrides the field specification.

10-01-82 NEVADA FORTRAN PAGE 70

8.5.4 E-Type (Ew.d)

The E-Type specification is another method of performing
1/0 with floating point (real) numbers. It is throuah this
specification that-the programmer may perform 1/0 using an
exponential format. That is a mantissa followed by an
exponent of ten. Again as with the F type, the decimal point
is assumed to be at the indicated position if not overridden
in the input field. The exponent part of the input number
can be omitted, in which case it is treated as if it were an
F type specification. The number will be printed as d
digits followed by the letter E, exponent sign, and a three
digi ts exponent.

Example

E9.2
E9.2
EIO.O

ElO.O
E9.2
E9.2

output

Input

.
O.OOE+OOO (---------+
1.23E+004 (------+

100.E+00l (---+

.
1000.
1.23E+004

O.

(---+ !
(------+
(-------- +

Data can be read in the F format using the E format
specification without causing an error.

10-01-82 NEVADA FORTRAN PAGE 71

8.5.5 A-Type (Aw)

The A-Type specification is used to perform the input of
alphanumeric data in ASCII character form. Up to 6 ASCII
characters may be stored per variable name. However, this is
entirely under program control. For example the user may
choose to store only one character per variable in a
dimensioned array, in order to do character manipulation.
Characters are stored in the variable left justified and
zero filled. On output these padding zeroes will be printed
as blanks. It is not advisable to perform any arithmetic
operations on a variable that contains character data
because unpredicatable results may occur.

Example

10 FORMAT (AlO,IlO,A6)

8.5.6 I-TYPE (I)

The /-Type specification is used to cause I/O to skip to
the next record. During input this causes a new input
record to be read, even though the previous one was not
fully used. On output the slash will cause the current line
to be written out to the associated file.

Example

54 FORMAT (110/)

WRITE (1,100) 1,20,45
100 FORMAT (13/213)

will generate

1
20 45

8.5.7 Z-Type

The Z-Type specification is used only for output, to
indicate to the system that a carriage return/line feed is
not to be written at the end of the record. The Z
specification is ignored on input.

Example

WRITE (1,10)
10 FORMAT ('INPUT X I,Z)

READ (0,*) X

10-01-S2 NEVADA FOR'l'RAN PAGE 72

8.5.8 L-Type (Lv)

The L-Type specification is used with LOGICAL variables,
where v is the width of the field. On output:- the letter T
or F is printed (for TRUE or FALSE respectively). The T or
F will be right justified in the field. On input, the field
is scanned from left to right until a T or F is found (again
for TRUE or FALSE). The T or F can be located anywhere in
the field and all characters that follow the T or F in the
remainder of the field are ignored. If the first character
found is not a T or F an error will be generated. If the
input field is completely blank, then a FALSE value will be
used.

Example

LOGICAL WHICH
WRITE (I,ll) WHICH

11 FORMAT (SLlO)

8.5.9 T-Type (Tv)

The T-Type code can be used on both input and output. It
is used to move to a explicit column within the input or
output buffer. W specifies an absolute column number that
the next character is to be read from (on input) or to be
placed to (on output). The first column number is 1. On
input the T format code can be used to re-read a particular
set of columns in different format codes in the same read
statement. Tabbing beyond the end of the input record causes
the input record to be blank padded. On output, the output
cursor can be moved back (to the left) over text already
inserted into the output buffer, thus causing text and ready
there to be over written with new data. Tabbing beyond the
maximum character inserted into the output buffer will cause
blanks to be inserted into the output buffer to the
indicated column. The maximum value of w is 255.

Example

WRITE (1,56) I,LOT
56 FORMAT (IlO,T50,I4)

10-01-82 NEVADA FORTRAN PAGE 73

8.5.10 K-Type (Kw)

The K-Type format code is used to transmit data in
hexadecimal format. Each byte of internal memory occupies 2
hexadecimal characters. If w is less than the 12 (6
bytes/variable, 2 hex characters/byte), the hexadecimal
characters will be either input or output starting from the
low order memory address (beginning of the variable).

Example

WRITE (1,99) 1
99 FORMAT (K12)

will output the line:

100000000081

10-01-82 NEVADA FORTRAN PAGE 74

8.5.11 G-Type (Gw.d)

The G-Type can be used on either input or output and for
both integer and real values. The G format is treated as
follows:

Output

If the output element is of type integer, then the
format code used will be Iw.

If the output element is of type real, the actual format
code used depends on the value of the number being output:

Ew.d will be used if the number is outside the range of

F(w-S).d,SX
p(w-S) .(d-l),SX

p(w-S) .1,SX
F(w-S).O,SX

if
if
•

if
if

.1 <= number <1
1 <= number <10

10**(d-2)<= number< 10**(d-l)
10**(d-l)<= number< lO**d

In general in this range:

F(W-S).(d-(exponent of number» ,SX

Input

If the input element is of type integer: Iw
If the input element is of type real: Ew.d

Example

A=S.67
WRITE (1,34) A

34 FORMAT (GIO.S)

READ (0,9) A
9 FORMAT (G9.3)

10-01-82 NEVADA FORTRAN PAGE 75

8.5.12 Repeating field specifications

A field specification can be repeated in a FORMAT statement
by preceding it with the number of times that it should be
repeated. Thus 4110 is the same as 110,110,110,110. The
following FORMATS are equivalent:

10 FORMAT (3I4,3FIO.4)
10 FORMAT (I4,I4,I4,FIO.4,F10.4)

A single field specification or a group of field
specifications can be enclosed in parentheses and preceded
by a group count. In this case, the entire group is
repeated the specified number of times. The following
FORMATS are equivalent:

19 FORMAT (I4,2(I3,F4.1»
19 FORMAT (I4,I3,F4.1,I3,F4.1)

The FORMATS:

10 FORMAT (I5,2(I3,F5.1»
10 FORMAT (I5,I3,F5.1,I3,F5.1)

execute exactly the same for output, but differ for input.
In a FORMAT without group counts, control goes to the
beginning of the FORMAT statement for read or writing of
additional values. In a FORMAT with group counts,
additional values are read according to the last complete
group.

Example

READ (2,10) KNT,(Z(I) ,I=l,KNT)
10 FORMAT (IS/(FI0.S»

The IS specification will be used once and the array values
will be read using the FIO.S specification.

~roup counts can be nested to a maximum depth of two. Thus:

10
10

FORMAT (2(15,3(110»
FORMAT (2(15,3(110,2(11»)

is ok, while
is not legal.

10-01-82 NEVADA FORTRAN PAGE 76

8.5.13 String Output

Character strings are written using a FORMATTED write.
The string to be written is enclosed in SINGLE QUOTES (I)
and may not contain a backslash. To output a single quote
within the string, two single quotes in a row must be
entered. The string format type is only valid on output and
if used with a READ will result in a runtime error being
produced.

A character string can also be specified using the B
(or Hollerith) field specification. This is an awkward
method of specifing a character string as the number of
characters in the string must be specified in front of the
B. The B type should be avoided as it can lead to problems.

The hexadecimal code for any character (except 0) can
be inserted in a str ing by enclosing it in backslashes (\).
The backslash character can be changed using the CONFIG
program.

Placing an ampersand in front of a character in a
string causes the character to be treated as a control
character. To output an ampersand, two ampersands in a row
must be used.

Example

WRITE (1,46)
46 FORMAT ('THIS IS A TEXT STRING ')
65 FORMAT (21HTHIS IS A TEXT STRING)
48 FORMAT ('This is an exclamation point\2l\')

generates: This is an exclamation point!

99 FORMAT ('This is a control L: &L')

generates: This is a control L: (followed by a
control/L

11 FORMAT ('This is an ampersand: &&')

generates: This is an ampersand: &

10-01-82 NEVADA FORTRAN

8.6.0 Free Format 1/0
8.6.1 INPUT

PAGE 77

FREE format input is similar to BASIC. Blanks in this
mode of input are ignored completely. Numbers are entered
in any format (F, I or E) and can be intermixed as desired.
Numbers must be separated from each other by a comma or a
carriage return. A comma may appear after the last number on
an input line and is ignored if present. If the 1/0 list
specifies more variables than there are in an input record,
succeeding records will be read until the list is satisfied.
Blank input records and blanks imbedded in numbers are
ignored in this mode. The last number in any input record
does not have to be followed by a comma.

8.6.2 OUTPUT

The type of output format used depends on the type of
the variable or constant being output. An integer will
result in an I type format being used, and a real will use a
G type. (The actual format used in this case depends on the
value being output).

10-01-82 NEVADA FORTRAN PAGE 78

8.7.0 BINARY I/O

BINARY liD provides a quick arid efficient means of
transferring information to and from a file. The variables
are READ or WRITTEN in BINARY format. That is, six bytes for
each i tern in the liD Ii st. WRITE causes the i tern in the liD
list to be written exactly as it is stored in memory wi~hout
any additional conversion. READ does the opposite, reading
six bytes directly into the liD list item. No conversion or
check is made on the data being read.

Example

WRITE (1) (1,1=1,100)
WRITE (1"ERR=66) ARRAY

READ (1"END=99) VALUE
READ (1) THIS,IS,IT

warning: the binary READ and WRITE transfers 6 bytes from
the file specified directly to the variable in the liD list.
No check on the validity of the data is performed and the
user should be sure that the variable contains valid
numerical data before any arithmetic operations are done on
the variable. An end-of-file is indicated by either the
physical end of the file or a six byte field of all FF
(hex). This is the value that ENDFILE will place at the end
of a file that has had binary writes performed on it.

10-01-82 NEVADA FORTRAN PAGE 79

8.8.0 REWIND State.ent

The general format of the REWIND statement is:

REWIND unit

The REWIND Statement is used to posi tion the file
associated with unit to the beginning of the file.
Essentially this statement closes and then re-opens the file
at the beginning.

10-01-82 NEVADA FORTRAN PAGE 80

8.9.0 BACKSPACE State.ent

The general format of the BACKSPACE statement is:

BACKSPACE unit{,error}

The BACKSPACE statement is used to backspace unit one
record. Error will contain the error code if the BACKSPACE
fails. The BACKSPACE statement is currently not implemented
and will produce a message to that effect if encountered at
runtime.

10-01-82 ,NEVADA FORTRAN PAGE 81

8.10.0 ENDFILEStatement

The general format of the ENDFILE statement is:

ENDFILE unit

The ENDFILE statement is used to force an end-of-file on
unit. Any data that existed beyond the point in the file
where the ENDFILE was executed will be lost.

10-01-82 NEVADA FORTRAN PAGE 82

8.11.0 GENERAL COMMENTS ON FORTRAN I/O UNDER CP/M

The OPEN subroutine is used to associate a file with a
FORTRAN logical unit. Eight files are available, numbered 0
through 7 with 0 being permanently open and associated with
input from the CP/M console, logical file 1 also is
permanently open and is associated with output to the CP/M
console. Logical files 0 and 1 cannot be opened or closed.
Additionally any logical unit associated with the CP/M
console (through the use of the filename CON:) cannot have
binary I/O done to it, cannot be rewound (using REWIND),
endf iled (using ENDFILE) or seeked on (using the SEEK
routine).

A file that is going to be written on should be
deleted, using the DELETE subroutine, before the file is
opened. The OPEN routine does not delete a file as it does
not know what type of I/O will be performed on it.

The CLOSE routine will not place any end-of-file
indicator in a file that was written to; the ENDFILE
statement must be used to write an end-of-file indicator to
a file. The ENDFILE statement will write the normal CP/M
end-of-file indicator (control-Z) if the file specified in
the ENDFILE has been written to and no binary I/O was done
to the file. If binary I/O has been done to the file, then
an end-of-file of 6 bytes of FF (hex) will be written
instead. If a file is written and then read without being
ENDFILEd, it is possible to encounter unwritten data of
unknown characters that may cause an error during the READ
(illegal character, end-of-file, etc). All files that are
written to should be ENDFILEd.

When SEEKing on a file, remember that it is a BYTE
position that is specified in the call to SEEK. Each record
written to a file will contain a carriage return and line
feed appended to the end of it. Remember that the carriage
return and line feed KllS7 be included in the count of
characters that make up a record. If SEEKing on a record
basis, it is up the programmer to insure that each record
written contains the same number of characters. If the
records do not contain the same number, SEEKing can become a
very complicated task. Calling the SEEK routine with a
negative byte position will result in the file being
positioned to its end-of-file position. The file can then
be extended by ordinary WRITE statements. A READ after a
position to end-of-file results in an immediate end-of-file
condition being returned.

10-01-82 NEVADA FORTRAN PAGE 83

8.12.0 SPECIAL CBARAcr'ERS DURING CONSOLE I/O

Entering a control-X during input from the CP/M console
will cancel the current line and echo an exclamation point
(1) followed by a carriage return and line feed.

End-of-file from the CP/M console is indicated by a
control~Z being entered as the first character of an input
line during console I/O.

Entering a DELETE (7F hex) or control-H will erase the
last character entered.

10-01-82 NEVADA FORTRAN

9.0.0 OPERATION

9.1.0 Getting Started

Hardware required

1. 8080/808S/Z80 processor
2. Minimum of 48K of RAM for the compiler
3. At least one disk drive

Software Required

1. CP/M
2. Any text editor

Files on the Distribution Disk

FORT. COR is the FORTRAN compiler

PAGE 84

FRUN.COR is the runtime execution package
FORT.ERR is the compiler error text file.
CONFIG.COR is a program to generate the error file

and setup compiler and runtime defaults.
ERRORS is the error text file used by COHFIG.
(Also see the Nevada Assembler Manual for other files

not listed here)

GE'rTIRG STARftD

The very first thing that you should do is to make at
least one backup copy of your Nevada FORTRAN diskette. The
original diskette should be kept in a safe place in case its
ever needed in the future.

You can use your systems disk copy program or PIP to
make copie~ of the original Nevada FORTRAN diskette.

On S 1/4" diskettes you may have to remove (erase)
other programs to make room for all the Nevada FORTRAN
programs, before the next step. Make sure the default drive
has at least 8K of available space. If it does not, you
will get a BDOS write error - CP/M's way of letting you know
the ~~~k ~~ ~~~Ll. In some cases you will have to
temporarily remove some of the FORTRAN example programs to
make the space available.

NOTE: The Nevada assember ASSM.COM must be on the same disk
which contains the FORTRAN compiler

Generating the coapiler error file FORT.ERR

The program CONFIG reads the text file ERRORS which
contains all the compiler error messages. These messages
may be changed with the restriction that they can only be
one line, the first 2 characters are the error number
followed by a blank. To generate the error file, just enter

10-01-82 NEVADA FORTRAN PAGE 85

CONFIG at the CP/M prompt and reply y to the question about
generating the error file. You must generate the error file
as it is not supplied on the disk. This only needs to be
done once or whenever any of the error text is changed.

Certain default compiler and runtime parameters can be
set by the same program. Just enter carriage return (or
ENTER) to leave the default as it is, or enter the new
default value. The character used to delimit hexadecimal
constants in strings can also be changed. Also the method
that the runtime package performs CP/M console I/O can be
specified as either CP/M function 1&2, CP/M function 6 (for
2.0 only) or direct BIOS calls. Specifing CP/M functions 1&2
allows you to use control-P to send a copy of your FORTRAN
output to the printer.

Since NEVADA FORTRAN supports the North Star floating
point board, you must specify the address of the board if
you have one and want FORTRAN to use it (see section
11.9.0) •

After creating FORT.ERR you can erase CONFIG.COM and
ERRORS if you need the disk space.

Creating a Program

A program can be created with any of the numerous
available text editors. The name of the FORTRAN source
program should have the filename extension of .FOR, such as
PROG.FOR. Refer to section 1.3.0 for a detailed description
of the format of each source statement.

9.2.0 COMPILING A PROGRAM

The general format of the command to compile a FORTRAN
program is:

FORT U:PGM.LAO $OPTIONS
where:

FORT is FORT.COM, the FORTRAN compiler

PGM is the FORTRAN source program to compile and has the
extension .FOR.

U: is the drive where PGM.FOR is located (if not present,
the default drive is used).

L is the drive for the listing as follows:

A-P uses that drive for the listing
X listing to CP/M console
Y listing to CP/M 1st: device
Z do not generate a listing

10-01-82 NEVADA FOR'l'RAR PAGE 86

The listing will have the same filename as the source
file but with the extension ~.

A is the drive for the intermediate assembly file as
follows:

A-P uses that drive
Z do not generate an assembly file.

The assembly file w ill have the same filename as the
source file but with the extension .ASM. This file is
normally deleted by the FORTRAN compiler.

o is the drive for the final object program as follows:

A-P uses that drive
Z don't generate an object file

The object program will have the same filename as the
source file but with the extension .OBJ.

Notes:

If Z if specified in either the assembly or object
drive position, no object program will be generated.

If the three drive specifiers are not specified, then
the default drive will be used.

Both FORT.COM and FORT.BRR (the error file) must be
present on the default drive.

If the 0 is not specified as Z, then the assembly file
w ill be automatically assembled and the intermedia te .ASM
file will be deleted.

10-01-82 NEVADA FORTRAN PAGE 87

9.3.0 COMPILE OPTIONS

Options that effect the compilation of the FORTRAN
program can be specified on the command line by preceding
the option string with dollar sign ($). The following
options can be specified:

N

No assembly file will be produced' (and no object file also).

p

The listing file (if specified) will be paginated (66 lines
to a page). Each new FORTRAN routine will start on a new
page.

1

Source statements will be blank padded to 64 characters.

2

Source statements will be blank padded to 72 characters.

NOTE: Normally source statement are not blank padded. This
may cause a problem where blanks are wanted inside a literal
string and the string is started on one statement and
continued over one or more continuation statements. without
the pad option, the trailing blanks may be lost (of course
you could break the continued literal into several, making
sure that there is a quote after any blanks at the end of a
statement). For example:

WRITE (1,10)
10 FORMAT ('THIS IS

*A TEST')

Produces: THIS IS A TEST
without blank padding and

THIS IS
with blank padding.

This could be written as:

WRITE (1,10)
10 FORMAT ('THIS IS

*' A TEST')

A TEST

,

to produce the same resul ts as with the blank padding
specified.

10-01-82 NEVADA FORTRAN PAGE 88

B

This option is used to conjunction with the P option to
suppress the heading in the listing.

C=XXXX

This option specif ies the maximum number of COMMON blocks
that may be defined in the program to be compiled. The
defaul t is 15.

B=XXXX

This option specifies the size of the input statement
buffer. The default is 530 characters and the buffer must
be large enough to contain a complete statement (first
record plus all continuations).

M=XXXX

This option specifies the memory address at which blank
COMMON will end. In other words, blank COMMON will be
allocated downward in memory from the specified address.
The address specified must be in hexadecimal.

This option is useful in forcing blank COMMON to be
allocated at the same address in memory for passing data
between routines that CHAIN to each other.

Examples

FORT MYPROG $C=20

Compiles MYPROG.FOR from the default drive, generating
MYPROG.ASM, MYPROG.LST and MYPROG.OBJ on the default drive
and allow ing for the def ini tion of up to 20 COMMON blocks.

FORT B:READ.XCD $P2

Compiles READ.FOR from drive B, generating READ.ASM on drive
C and the listing to the console. The listing will be
paginated and source statements will be padded to 72
characters.

FORT TEST.YZZ $P

Compiles TEST.FOR from the default drive, no .ASM or .OBJ
file will be produced but a paginated listing will go to the
CP/M list (LST:) device.

FORT UPDATE.XBB $PH

Compiles UPDATE.FOR from the default drive, generating
UPDATE.ASM on drive B, a paginated listing minus the heading
line to the console and no .OBJ file.

10-01-82 NEVADA FORTRAN PAGE 89

9.4.0 EXECUTING A PROGRAM

Once the object file has been produced, the program can be
executed by simply typing:

FRUN u:filenaae

where u: is optional and if not present, the default drive
is used. The FORTRAN runtime package, FRUN occupies memory
from 100H to 3FFFH. It will load the program to be executed
starting at 4000H. The program is then executed and
continues until either it terminates normally or a runtime
error occurs.

10-01-82 NEVADA FORTRAN PAGE 90

10.0.0 General Purpose SUBROUTINE/FUNCTION Library

The following list of subroutines are available for the
user of FORTRAN.

SUBROUTINE Name

OPEN
LOPEN
CLOSE
CREATE
KILL
SEEK
RENAME
SETUNT
MOVE
CHAIN
LOAD
EXIT
DELAY
CIN
CTEST
OUT
SETIO

FUNCTION Name

INP
CALL
CBTOF

All SUBROUTINES are accessed through the CALL statement
described previously. For details as to the parameters
required, see the following descriptions of the individual
routines. If error is present and a CP/M error should occur,
return will be to the statement following the call and error
will contain the appropriate error code as listed below.
If error is present and the routine completes successfully,
then a zero will be returned for error. However if error is
not specified and the routine encounters an error, the
program will terminate with a runtime error.

The following is a list of possible errors that may returned
through the optional error parameter.

o = OK
1 = specified file not found
2 = disk is full
3 = end of file encountered
4 = new filename for RENAME already exists
5 = seek error
6 = seek error (but file is closed)
7 = format error in CHAIN or LOAD file

10-01-82 NEVADA FORTRAN PAGE 91

CALL OPEN(unit,'file'{,error})

The OPEN routine is used to open a CP/M file the user
may wish to access. unit and file are required entries. If
the CP/M file does not exist and error is not specified,
then the file will be created. However, if error is
specified and the file does not exist, the appropriate CP/M
error code will be returned and the file will not be opened.

There are 2 special filenames that are recognized by
the OPEN routine:

CON:
output

LST:

used to specify either CP/M console input or

used to specify CP/M list device

Example

CALL OPEN (lO,'CON:')
WRITE (10,*) 'A= ',A

will output the text to the system console. Files opened
with the name CON: can also use a Ii teral in an input
statement such as:

CALL OPEN (ll,'CON:')
READ (11,*) 'INPUT QUANTITY ',QUANT

NOTE: The filename (whether a character string or array
name) is defined as terminating when:

1) 13 characters are encountered.
2) a NULL is encountered.

10-01-82 NEVADA FORTRAN PAGE 92

CALL LOPEN(unit,'file'{,error})

This subroutine is functionally the same as OPE. in that
it associates a FORTRAN unit with a CP/M file except that
the first character of all output records will be processed
as carriage control. This is usually used for a listing
device such as a printer. The first character of the record
will not be output to the file but processed as follows:

first character

+
blank
o

1

action

overprint the last record
single skip
double skip
triple skip
page eject

If none of the above characters is present, then single
line spacing will be assumed. Overprinting is implemented
by only generating a carriage return at the end of the line
(not followed by a line feed). A page eject generates a
form feed character (OCH).

The output device that finally prints the output from
this file must respond in the following manner:

ODH (carriage return)
OAB (line feed)

OCH (f orm feed)

return to beginning of this line
space 1 line, do not return to
beginning of line

space to the top of the next page

A carriage return must print the line on a line oriented
device.

10-01-82 NEVADA FORTRAN PAGE 93

CALL CLOSE (unit)

The CLOSE routine is used as a method of closing FORTRAN
files which were previously opened through the OPEN routine.
Once the file has been closed, the file number is then
available for reuse.

CALL DELET ('file'{,error})

The DELET routine is used by the FORTRAN user to remove
a file from the CP/M system. Note that once a file is
deleted it cannot be recovered. No error is generated if
the file does not exist and error is not present.

CALL SEEK (unit,position{,error})

The SEEK routines allow random positioning within a
file. The file associated with unit will be positioned to
position which specifies a displacement in bytes from the
beginning of the file. If error is specified, there are two
possible values that may be returned on a seek error. A 6
indicates a seek to a part of the file that doesn't exist,
and a 7 indicates a seek to an extent of the file that does
not exist. The difference between the two is that if error
code 7 is return, the file associated with unit is closed.
The file will have to be re-opened before it can be used
again. If position is negative, then the file will be
positioned to it's end-of-file point. This is normally used
for adding to the end of an already existing file. If a file
is positioned to end-of-file and then a READ is done, an
immediate end-of-file condition will be indicated but a
WRITE can be done to extend the file.

CALL RENAME('old file','new file',{error})

The RENAME routine w ill rename old file to new file. A
runtime error occurs if old file does not exist and error is
not specified or new file already exists.

10-01-82 NEVADA FORTRAN PAGE 94

CALL CBAIN<'program name' {,error})

The CHAIN routine is used to load in another program
overwriting the existing one in memory. This is NOT an
overlay, the program that issues the CALL CHAIN will be
overwritten by the new program. If program name does not
exist or the format of program name is incorrect and error
was-not specified a CHAIN FL runtime error will be produced.

CALL LOAD('file to load' ,load-type{,error})

The LOAD routine is used to load either a standard CP/M .HEX
file or a NEVADA ASSEMBLER .OBJ file. If load-type is zero,
then the type of the file to be loaded will be .HEX, if
load-type is non-zero, then the type will be .OBJ. This
routine can be used to load assembly language routines into
memory that can then be accessed through the CALL function.
No check is made during the loading process to see whether
the object code being read into memory overlays the program
or runtime package. It is left up to the programmer to
insure that it does not occur. Normally the runtime package
occupies memory from 100H to 4000H. If file to load does
not exist or the format of the file is incorrect and error
is not specified a CHAIN FL runtime error will be produced.

CALL EXIT

The EXIT routine will terminate execution of the FORTRAN
program in the same manner as the STOP statement, except
that EXIT does not output STOP to the system console.

10-01-82 NEVADA FORTRAN PAGE 95

CALL MOVE (count,from,displacement,to,displacement)

The MOVE routine allows direct access to memory for both
reads and writes. The count specifies the number of bytes
to be moved. The arguments from and to specify either a
memory address to be used or a character string to be moved.
Which interpretation of from and to is based on the
respective displacement. If the displacement is negative,
then the associated from or to specifies an address to be
used in memory access. If the displacement is positive then
the from or to that is associated with it is a string.

Example

CALL MOVE (2 ,A,-l, $CCOO ,-1)
This MOVES 2 bytes from the address specified by
A to address CCOO (HEX).

CALL MOVE (6,' STRING',O, $CCOO ,-1)
This MOVES 6 bytes of the string 'STRING' to
address CCOO (HEX).

CALL MOVE(1024,$CCOO,-1,A,0)
This MOVES 1024 bytes from address CCOO (HEX)
to the address of A.

NOTE: The DOLLAR ($) sign indicates a HEX constant. This
HEX constant is converted to floating point notation
internally.

CALL DELAY(wait time)

The DELAY routine enables the user to implement a time
DELAY of 1/100 of a second to 635.36 seconds. Wait time
must be in range of 0 to 65535 with 0 being the maximum
delay time, 1 being the shortest and 65535 being 1/100 less
than O. This time is based on a 2 MHZ 8080 processor.

CALL CIN(char)

The LIN rOUt1ne enaOies tne user to obtain a single
character from the system console. The character is
returned as the leftmost byte of char in 8 bit binary
format. The left most bit of value read will be zeroed.

Example

C WAIT FOR A CARRIAGE RETURN (ODH) FROM THE CONSOLE
C BEFORE CONTINUING.

80 CALL CIN(CHAR)
IF (COMP(CHAR,#ODOO,l) .NE. O)GO TO 80

10-01-82 NEVADA FORTRAN PAGE 96

CALL C'.rEST(status)

The CTEST routine is used to test the status of the
system console. A zero is returned in status if there is no
character ready to input on the system console. A one is
returned if there is a character.

Example

C WAIT IN A LOOP UNTIL A CHARACTER IS HIT ON THE
C SYSTEM CONSOLE, THEN CHECK THE CHARACTER FOR A
C LINE FEED (OAH) BEFORE CONTINUING.

ARAND=.3478
10 ARAND = RAND (ARAND)

CALL CTEST{STATUS)
IF (STATUS .EQ. O)GO TO 10

C
C CHARACTER HIT, READ IT
C

CALL CIN{CHAR)
IF (COMP{CHAR,#OAOO,l) .NE. O)GO TO 10

CALL OUT (port,value)

This routine allows access to the 8080 output ports.
Value will be converted to an 8 bit number and output to
port.

Example

CALL OUT{lO,l)

CALL SETIO(new I/O)

This routine allows changing how the runtime package
performs console I/O. The default method is setup using the
CONFIG program, however it can be changed as follows:

new I/O = 0 to use di rect B lOS I/O
new I/O = 2 to use CP/M function 1&2
new I/O <> 0 or 2 to use CP/M function 6 (2.0 only).

10-01-82 NEVADA FORTRAN PAGE 97

A=INP(port)

This routine allows access to the 8080 input ports.
This routine is a function whose value is that which is read
from the port specified as port.

Example

I=INP(lO)

A=CALL(address,argument)

The CALL function causes execution of assembly language
routines that have been loaded into memory (usually by the
LOAD subroutine). Address is the memory location to be
call'ed. argument will be converted to a 16 bit binary
number and then passed to the called routine in both the BC
and DE register pairs. The assembly routine places the
value to be returned in register pair HL. The return
address is placed on the 8080 stack and the call'ed routine
can just issue a standard RET instruction to return to the
FORTRAN program.

A=CB~F(from,displacement{,8-bit})

The .cBTOF function is used to convert either a 16 bit or
8 bit binary number to its equivalent floating point value.
The number to be converted is located at from+displacement
if displacement is positive. If displacement is negative,
then from contains the address to be used. The number is
assumed to be 16 bi t value (store in standard 8080 format)
unless 8-bit is present, in which case it will be assumed to
be an 8 bit value. The binary number is considered to be
unsigned.

Example

BIOS=CBTOF($0006,0)-3

gets the base address of the CPiM bios.

10-01-82 NEVADA FORTRAN PAGE 98

11.0.0 Appendix

11.1.0 Statement Summary

variable = expression

Assigns the value of the expression to the variable.

ACCEPT input list
Reads values from the system console and assigns them to the
variables in the input list.

ASSIGN n TO V
Assigns a statement label to a variable to be used in an
assigned go to.

BACKSPACE unit
positions the specified unit to the beginning of the
previous record.

BLOCK DATA
Begin a BLOCK DATA subprogram for initializing variables
in COMMON.

CALL naae(argument list)
Call the subroutine passing the argument list.

CORMON /labell/listl /labe12/list2
Declares the variables and array that are to be placed in
COMMON amongst the various routines.

CORTINOE
Causes no action to take place, usually used as the object
of a GOTO or DO loop.

COpy filename
The specified filename is inserted into the source at the
point of the COpy statement.

CTRL DISABLE
Disables program termination by control/c from the console.

CTRL ENABLE
Enables program termination by controllC from the console.
Control C being enabled is the default.

DATA /varl/constl,const2/var2/cl,c2, ••• /
Initializes the specified variable, array element or arrays
to the specified constants.

DIMENSION v (n1 ,n2 , ••) ,v2 (nl ,n2 , ••)
sets aside space for arrays v and v2.

10-01-82 NEVADA FORTRAN PAGE 99

00 n i=nl,n2,n3
Executes statements from DO to statement n, using i as
index, increasing or decreasing from nl to n2 by steps of
n3.

DUMP lidl output list
When a runtime error occurs, displayed id and items in
output list.

l
ERn

This statement must be the last statement of every routine.

ERDFILE unit
Write an end of file at the current position of unit.

ERRCLR
Clears the effect of the ERRSET statement.

ERRSET n,v
When a runtime error occurs, control goes to the statement
labelled n with variable v containing the error code.

FORMAT (field specifications)
Used to specify input and output record formats.

FUNCTION naae(argument list)
Begins the definition of a function subprogram.

GO TO n
Transfer control to the statement labelled n.

GO TO (nl ,n2 , •••) ,v
The COMPUTED GOTO transfers control to nl if v=1,n2 if v=2,
etc.

GO TO v, (nl ,n2 , ••)
The ASSIGNED GOTO transfers control to statement nl, n2, ••
depending on the value of v. V must have appeared in an
ASSIGN statement.

IF (e)nl,n2,n3
Transfer control to nl if e<O, n2 if e=O or n3 if e>O.

IF (e)stateaent
Executes statement if the value of expression e is true
(non-zero) •

IF (e) THEN statementl ELSE stateaent2 ERDIF
Executes blocks of statements statementl if e is true, or
block of statements statement2 if e is false.

IMPLICIT type(letter list)
Changes the default type of variable that start with the
letters in the letter list.

10-01-82 NEVADA FORTRAN

INTEGER vl,v2, ••
Declares vI, v2, etc, to be integer variables.

LOGICAL vl~v2 ! __ _

vI, v2, etc, to be logical variables.

PAUSE 'character string'

PAGE 100

Suspends program execution until any key is hit, displaying
PAUSE and character string.

READ (unit,for.at{,ERR=} {,ERD=}) input list
Reads values from unit according to for.at and assigns them
to the variables in input list.

REAL vl,v2, ••
Declares vI, v2, etc, to be real variables.

RETURN
Returns control from a subprogram to the statement
following either the call or the function reference.

RETURN i
Return control from a subprogram to statement i in the
calling routine.

REWIND unit
The file associated with unit is closed, then reopened at
the beginning of the same file.

STOP 'character string'
Terminates program execution and displays character string
on the system console.

STOP n
Terminates program execution and displays n on the system
console.

SUBROUTINE naae(argument list)
Begins the definition of a subroutine subprogram.

TRACE OFF
Turns statement tracing off.

TRACE ON
Turns statement tracing on.

TYPE output list
Displays the value of the variables in output list on the
system console.

WRITE (unit,format{,ERR=}) output list
writes the values of the variable in output list to unit
according to format.

10-01-82 NEVADA FORTRAN PAGE 101

11.2.0 NON-STANDARD FUNCTIONS

A=COKP(string1,string2,1ength)

The COMP routine is used to compare character strings in
the following manner.

A=COMP('stringl','string2',length).

The strings will be compared on a byte basis for a byte
count of length. The routine returns the following:

-1 if string1 < string2
o if string1 = string2

+1 if string1 > string2

10-01-82 NEVADA FORTRAN PAGE 102

A=CALL(address,value)

The CALL routine allows assembly language programs to
be CALLed and to be passed an argument. Value will be
converted to a 16 bit binary number and passed to the
assembly routine (at address) in both REGS BC and DE. The
value of the function is passed back in REG HL. The return
address is on the top of the 8080 stack.

CALL BIT(variable,bit displace.ent,'S')
'R'
, F'
'T' ,value

The BIT subroutine allows the setting (S), resetting
(R), flipping (F) or testing (T) of individual bits.

The bit at bit displace.ent from the start of variable will
be set if S is specified, reset if R is specified, flipped
(1 will become 0 and 0 will become 1) if F is specified and
finally the value of the selected bit will be returned in
value if T is specified. Value must be present only for T.
Displacement is specified starting with the leftmost bit.

10-01-82 NEVADA FORTRAN PAGE 103

Name

SIN
COS
TAN
ATAN
ATAN2
ALOG
ALOGIO
MOD
AMOD
SQRT
FLOAT
IFIX
ABE
lABS
RAND
SGN
EXP
COMP
CALL
AMAXO
AMAXI
MAX 0
MAXI
AMINO
AMAXO
MAX 0
MAXI
BIT

11.3.0 Available Functions

Function

Sine (x)
Cosine(x)
Tangent (x)
Arctangent (x)
Arctangent (y/x)
Log base e (x)
Log base 10 (x)
Remainder' (x/y)
Remainder (x/y)
Square Root (x)
Make real (x)
Truncate (x)
Absolute (x)
Absolute (x)
Random Number (x) 1
Sign of (x)
e**(x)
Compare strings
CALL assembly pgm
Maximum
Maximum

1 Maximum
1 Maximum

Minimum
Minimum
Minimum
Minimum
Bit handling

Arg

1
1
1
1
2
1
1
2
2
1
1
1
1
1
1
1
1
3
2 1
? 1

<2551
<2551
<2551
<2551
<2551
<2551
<2551
3/4 !

result

real
real
real
real
real
real
real
integer
real
real
real
integer
real
integer
real
-1,0,+1
real
either
either
either
either
either
either
either
either
either
either
either

argument

real
real
real
real
real
real
real
integer
real
real
integer

1 real
1 real
! integer

real O.O<R<l.O
real/integer
real
real
real
either
either
either
either
either
either
either
either
either

Most of the above functions as ANSI standard except for
RAND. This function behaves as if it were returning an
entry from a table of random numbers. The argument of RAND
determines which entry of this table will be returned:

Rand Arg.

o
-1

n

Value returned for RAND

The next entry in the table
The first entry in the table. Also the
pointer for the next entry (arg=O) is
reset to the second entry in the table.
Returns the table entry following n.

10-01-82 NEVADA FORTRAN PAGE 104

11.4.0 Summary of System subroutines

CALL BIT (variable,disp,code)
Set, resets or flips bit O+disp of variable according the
code.

CALL CBTOF(locl,displ,loc2{,flag})
Converts a binary number to its floating point equivalent.

CALL CHAIN('program name'{,error})
Loads another program and executes it.

CALL CIR(var)
Reads a single character from the system console.

CALL CLOSE (unit)
Close the file associated with unit.

CALL CTEST(status)
Determines if a character has been entered on the system
console.

CALL DELAY(time)
Delays execution the specified time/IOO seconds.

CALL DELET (' f ilenam.e' {,error})
Delete the specified filename from the disk.

CALL EXIT
Terminates program execution.

CALL MOVE (n,locl,displ,loc2,disp2)
Moves n bytes from locI to loc2.

CALL OPER(uni t, 'filename' {,error})
Opens the specified filename and associates it with unit.

CALL LOAD (' f ilenam.e' ,load-type {,error})
This routine is used to load a file of type .HEX or .OBJ
into memory depending on the value of load-type.lt is
usually used to load assembly language routines into memory.
No check is made to see if the code that is loaded into
memory would override the program or CP/M.

10-01-82 NEVADA FORTRAN PAGE 105

CALL LOPEN(unit,'filename' {,error})
Opens the specified filename and associates it with unit.
This file is also treated as a printer file with the first
character of each output record controlling paper movement.

CALL OUT (port, value)
value is converted to an 8 bit number and output to port
port.

CALL REBAK (' old name', 'new naae' {,error})
Renames old naae to be new name.

CALL SETIO (new I/O)
Allows changing the way that console IIO is performed during
program execution.

CALL SEEK (unit,position)
positions the file associated with unit to the byte position
specified by position. Positions the file to it's end if
position is negative.

10-01-82 NEVADA FORTRAN PAGE 106

11.5.0 RUB'rIM.E ERRORS

During execution of a program, there are numerous
condi tions that can occur which cause proqram termination.
When one of these conditions is encountered~ a RUNTIME ERROR
message will be generated to the system console file. The
message has the format:

Runtime error: XXXXXXXX, called from loc. YYYY8

pgm was executing line LLLL in routine NNNN

where: XXXXXXXX is the ERROR, YYYY is the memory location of
the CALL to the runtime package in which the error occurred.

The second line of the error message will be generated
as a traceback of CALL statements that have been executed.
The LLLL is the FORTRAN generated line number (shown on the
listing of the source from the compiler) of the statement
which caused the error, and NNNN if the name of the routine
in which that line number corresponds. The line number will
be output as 1111 if the X option was not specified on the
$OPTIONS statement for a given routine. If multiple IPGM
WAS ••• 1 lines are printed, the first one specifies the line
in which the error actually occurred.

10-01-82 NEVADA FORTRAN PAGE 107

Runti.e Errors

11ft RANG
INTEGER OVERFLOW: result greater than 8 digits

CONVERT
16 BIT CONVERSION ERROR: in converting a number from integer
to internal 16 bit binary, an overflow has occurred. This
can occur on all statements associated with IIO (unit
number), subscript evaluation and anywhere that a number has
to be converted from floating to 16 BIT binary.

ARG CN'!'
ARGUMENT COUNT ERROR: a subprogram call had too many or too
few arguments.

COli GO'l'O
COMPUTED GO TO INDEX OUT OF RANGE: the variable specified in
a computed GOTO is either zero or greater than the number of
statement labels specified.

OVERFLOW
FLOATING POINT OVERFLOW: the result of a floating point
operation has resulted in a number whose value is too large
to be stored.

DIV ZERO
DIVIDE BY ZERO: an attempt has been made to divide by zero.

SORT NEG
SQRT OF NEGATIVE NUMBER: argument of the square root
function is negative.

LOG NEG
LOG OF NEGATIVE NUMBER: argument of the log either (ALOG or
ALOGlO) function is negative.

CALL PSH
CALL STACK PUSH ERROR: this error is caused by a recursive
subprogram CALLS of depth greater than 36. Only in very
special cases should a subprogram CALL itself or one of
those that has CALLED it.

CALL pop
CALL STACK POP ERROR: this error should never occur (This
means that a RETURN has been executed that does not have a
corresponding CALL or FUNCTION reference. Usually caused by
user assembly language programs).

CHAIN FL
CHAIN FILE ERROR: the filename specified in a call to the
CHAIN or LOAD routine was not found on the disk.

10-01-82 NEVADA FORTRAN PAGE 108

ILL UNIT
ILLEGAL UNIT NUMBER «2 OR >15): an illegal unit number has
been passed to one of the IIO routines.

UNIT OPN
UNIT ALREADY OPEN: this is generated by the OPEN routine
when an attempt to open a file on an already open FORTRAN
log ical uni t.

DSI{ FULL
DISK FULL: either the disk is full or the directory is full.

UNIT CLO
UNIT CLOSED: a reference has been made to a FORTRAN unit
number that is not OPEN.

CON BIN
BINARY IIO TO CONSOLE: binary IIO is not supportted to the
system console.

LINE LER
LINE LENGTH ERROR: an attempt has been made to READ or WRITE
a record whose length exceeds 250 characters. This count
also includes a carriage return at the end of the line.

FORMAT
FORMAT ERROR: an unrecognized or invalid FORMAT
specification has been encountered in a FORMATTED READ or
WRITE.

I/O ERR
IIO ERROR: an error occurred during a READ or WRITE
operation and the ERROR label was not specified in the
statement. It will also be generated during a READ if END
OF FILE is encountered and an EOF label was not specified.

ILL CHAR
ILLEGAL CHARACTER: an illegal character has been encountered
during a READ.

I/O LIS~
INVALID IIO LIST: this error indicates an error in the IIO
list specification of a formatted WRITE or READ. This error
will only occur if a user assembly program does not
construct the IIO list correctly. It will never occur from
FORTRAN generated code.

ASH GOre
ASSIGNED GO TO ERROR: the value of the variable specified in
an ASSIGNED GO TO does not match that of one of the
statement labels listed.

CONTRL/C
CONTROLIC error: CONTROLIC was hit and the CONTROL/e was not
trapped.

10-01-82 NEVADA FORTRAN PAGE 109

INPT ERR
INPUT ERROR: during a READ an invalid character has been
encountered for the number being processed. This will be
generated for such things as: two decimal points in a
number, an.E in an F type field, decimal point in an I type
field, etc.

FILE OPR
FILE OPERATION ERROR: an error has occurred while trying to
do some file operation, such as renaming when the new file
al ready exi sts.

SEEK ERR
SEEK ERROR: an error has occurred while positioning a file
to the specified position and no error variable was
specified in the CALL.

10-01-82 NEVADA FORTRAN PAGE 110

11.6.0 COMPILE TIME ERRORS

The following is a list of errors that may occur during the
compilation of a FORTRAN program. If the G option is not
selected a two digit error number will be printed instead.
This number can be found at the beginning of each line.

00 *FATAL* compiler error
01 Syntax error, 2 operators in a row
02 unexpected continuation (column 6 not blank or 0)
03 input buffer overflow (increase B= compiler option)
04 invalid character for FORTRAN statement
05 unmatched parenthesis
06 statement label > 99999
07 invalid character encountered in statement label
08 invalid HEX digit encountered in constant
09 expected constant or variable not found
OA 8 bit overflow in constant
OB unidentifable statement
OC statement not implemented
OD quote missing
OE SUBROUTINE/FUNCTION/BLOCK DATA not first statement in

routine
OF columns 1-5 of continuation statement are not blank
10 cannot initialize'BLANK COMMON
11 RETURN is not valid in main program
12 syntax error on unit specification
13 missing comma after) in COMPUTED GO TO
14 missing variable in COMPUTED GO TO
15 invalid variable in ASSIGNED/COMPUTED GO TO
16 invalid LITERAL, no beginning quote
17 number of subscripts exceeds maximum of 7
18 invalid SUBROUTINE or FUNCTION name
19 subscript not POSITIVE INTEGER CONSTANT
lA FUNCTION requires at least one argument
IB syntax error
lC invalid argument in SUBROUTINE/FUNCTION call
ID first character of variable not alphabetic
IE ASSIGNED/COMPUTED GOTO variable not integer
IF label has already defined
20 specification of array must be integer
21 invalid variable name
22 invalid DIMENSION specification
23 dimension specification is invalid
24 variable has already appeared in type statement
25 invalid subroutine name in CALL
26 SUBPROGRAM argument cannot be initialized
27 improperly nested DO loops
28 unit not integer constant or variable
29 Array size exceeds 32K
2A invalid use of unary operator
2B variable DIMENSION not valid in MAIN program
2C variable dimensioned array must be argument
2D DO/END/LOGICAL IF cannot follow LOGICAL IF

10-01-82 NEVADA FORTRAN

2E undefined label
2F unreferenced label
30 FUNCTION or ARRAY missing left parenthesis
31 invalid argument of FUNCTION or ARRAY

PAGE III

32 DIMENSION specification must precede first executable
statement

33 unexpected character in expression
34 unrecognized logical opcode
35 argument count for FUNCTION 'or ARRAY wrong
36 *COMPILER ERROR* poped off bottom of operand stack
37 expecting end of statement, not found
38 statement too complex; increase P and/or 0 table
39 invalid delimiter in ARITHMETIC IF
3A invalid statement number in IF
3B HEX constant > FFFF (HEX)
3C replacement not allowed within IF
3D multiple assignment statement not implemented
3E subscripted-subscripts not allowed
3F subscript stack overflow; increase P= or 0=
40 missing left (in READ/WRITE
41 invalid unit specified
42 invalid FORMAT, END= or ERR= label
43 invalid element in I/O list
44 built-in function invalid in I/O list
45 cannot subscript a constant
46 variable not dimensioned
47 invalid subscript
48 missing comma
49 index in IMPLIED DO must be a variable
4A invalid starting value for IMPLIED DO
4B invalid ending value of IMPLIED DO
4C invalid increment of IMPLIED DO
4D illegal use of built-in function
4E variable cannot be dimensioned in this context
4F invalid or multiple END= or ERR=
50 invalid constant
51 exponent overflow in constant
52 invalid exponent
53 character after • invalid
54 integer overflow
55 integer underflow (too small)
56 missing = in DO
57 string constant not allowed
58 invalid variable in DATA list
59 DATA symbol not used in program, line
SA invalid constant in DATA list
5B error in DATA list specification
5C FUNCTION invalid in DATA list
5D no filename specified on COpy
5E runtime format not array name
SF DUMP label invalid or more than 10 characters
60 morel than 1 IMPLICIT is not allowed
61 IMPLICIT not first statement in MAIN, 2nd statement in

SUBPROGRAM
62 data type not REAL, INTEGER or LOGICAL

10-01-82 NEVADA FORTRAN

63 illegal IMPLICIT specification
64 improper character sequence in IMPLICIT
65 variable already DIMENSIONED
66 Q option must be specified for ERRSET/ERRCLR
67 Hex constant of zero (0) invalid in I/O stmnt
68 Argument cannot also be in COMMON
69 Illegal COMMON block name
6A Variable already in COMMON
6B Array specification must precede COMMON
6C Executable statement invalid in BLOCK DATA
6D Hex constant of 27H (I) invalid in- FORMAT
6E Invalid number following STOP or PAUSE
6F invalid TRACE statement (operand not ON/OFF)
70 invalid IOSTAT= variable
71 missing , in ENCODE/DECODE
72 invalid label in ASSIGNED GOTO
73 invalid variable in ASSIGNED GOTO
75 label not allowed on this statement
75 multiple RETURN not valid in FUNCTION
76 UNUSED
77 no matching IF-THEN for ELSE or ENDIF
78 invalid ELSE or ENDIF
79 missing ENDIF
7A initialization of non-COMMON variable
7B UNUSED
7C UNUSED
7D UNUSED
7E UNUSED
7F UNUSED

PAGE 112

10-01-82 NEVADA FORTRAN

80 *FATAL* no program to compile
81 *FATAL* missing $OPTIONS statement
82 *FATAL* missing = in $OPTIONS statement
83 *FATAL* invalid digit in number in $OPTIONS
84 *FATAL* value exceeds 255 in $OPTIONS
85 *FATAL* COMMON table overflow, increase C=
86 *FATAL* unknown option (letter before =)
87 *FATAL* missing END statement
88 *FATAL* LABEL TABLE overflow, increase L=
89 *FATAL* SYMBOL TABLE overflow, increase S=
8A *FATAL* ARRAY STACK overflow, increase A=
8B *FATAL* DO LOOP STACK overflow, increase 0=
8C *FATAL* stack overflow (compiler error)
80 *FATAL* stack overflow (compiler error)
8E *FATAL* internal tables exceed user memory
8F *FATAL* MEMORY ERROR
90 * FATAL * OPEN error on COpy file
91 *FATAL* too many routines to compile (> 62)
92 *FATAL* no more room to store DATA statements
93 *FATAL* IF-THEN stack overflow, increase I=
94 *FATAL* Nested "COPY" statements not permitted
95 *FATAL* Disk write error (disk probably full)
96 *FATAL* Cannot close file (disk probably full)
97 *FATAL* Input file not found
98 *FATAL* Invalid drive specifier
99 *FATAL* No filename found on COpy statement
9A *FATAL* File specified on COpy not found

PAGE 113

10-01-82 NEVADA FORTRAN PAGE 114

11.7.0 ASSEMBLY LANGUAGE INTERFACE

ASSEMBLY statements can be directly inserted into a
FORTRAN program by preceding the statement with an ASTERISK
(*). The line that contains that asterisk will be directly
output to the assembly file without further processing (the
asterisk is deleted first). Because of the nature of the
FORTRAN compiler (it actually reads one statement ahead of
where it is processing) it is ALWAYS a good idea to put a
CONTINUE statement immediately preceding the first assembly
statement in each separated group of assembly statements.
The CONTINUE will cause the assembly statements to be
inserted at the expected place. FORTRAN maintains nothing
in the registers between statements, but does use the 8080
stack for saving RETURN addresses for user called FUNCTIONS
and SUBROUTINES.

10-01-82 NEVADA FORTRAN PAGE 115

11.8.0 GENERAL COMMENTS

1. In the description of the individual routines,
anywhere that a character string is specified, a variable or
array name can be used. The variable or array can be set to
the desired character string.

2. A variable can be set to a character string using
an assignment statement such as:

A='STRING'

No more than 6 characters will be retained for any variable
and if less than 6 will be zeroed filled in the low order
bytes of the variable.

3. If a variable or array name is used to reference a
CP/M file (such as in the OPEN routine) the filename itself
within the variable (or array) is terminated after:

1) first 13 characters,
2) a NULL is encountered.

4. HEX constants can be used anywhere that a constant
or variable is permitted. A hex constant is specified by
preceding it by a dollar sign ($). Examples follow:

A=$E060
A=-$CCOO

Hex constants are limited to a maximum value of FFFF. An
error is generated is a hex constant exceeds this limit.
Internally a hex constant is treated as any other INTEGER
constant would be.

10-01-82 NEVADA FORTRAN PAGE 116

5. A HEX constant that is preceded by a # instead of a
$ will be stored internally in binary format in the first
two bytes of the variable. Numbers of this form should be
put through the FLOATING MATH package. The number is stored
in standard 8080 format (HIGH byte followed by LOW byte).

6. A backslash (\) can be used in a literal to specify
an 8 bit binary constant to be inserted at that point. The
constant is enclosed in back slashes and is assumed to be a
HEX constant. For example:

A='THIS \32\ IS AN EXAMPLE'

CALL OUTIT(3,1,'\7F\\FF\',2,32)

10 FORMAT (lIT IS ALLOWED \1 \ HERE \FF\ ALSO')
NOTE The backslash is the default character and can be
changed using the CONFIG program.

7. 16 Fortran files may be open at anyone time (file
numbers 0-15). Remember that files 0 and 1 are permanently
open.

10-01-82 NEVADA FOR'l'RAR PAGE 117

11.9.0 USE OF THE NORm STAR FLOATING POIIft BOARD

A feature of NEVADA FORTRAN is that it will directly use the
North star floating point board if one is installed in the
system that the program is executed on. Use the CONFIG
program to specify the 2 memory addresses that the floating
point uses. If you should specify that you have a floating
point board, at runtime the runtime package checks to see if
the floating point board is actually in the system and if
not, then uses the software floating point routines instead
of the hardware. One disadvantage of using the floating
point board is that the range of real number decreases to
10**-63 to 10**+63. Any number generated outside this range
will produce an overflow error message.

10-01-82 NEVADA FORTRAR PAGE 118

11.10.0 COMPARISON OF NEVADA FORTRAN AND ANSI FORTRAN

NEVADA FORTRAN includes the following extensions to version
X3.9-1966 of ANSI Standard FORTRAN:

1. Free-format input and output
2. IMPLICIT statement for setting default variable types
3. Options end-of-file and error branches in READ and

WRITE statements.
4. COpy statement to insert source files into a FORTRAN

program.
5. Direct inline assembly language.
6. Access to file system for such functions as creating,

deleting and renaming files.
7. Random access on a byte leval to files.
8. Access to absolute memory locations.
9. Program controlled time delay.

10. A pseudo random number generator function.
11. Program control of runtime error trapping.
12. Ability to chain a series of programs.
13. Ability to load object code into memory.
14. CALL function to execute previously loaded code.
15. Program tracing.
16. IF-THEN-ELSE statement
17. Enabling and disabling console abort of program.
18. ENCODE and DECODE memory to memory I/O.
19. Multiple returns from subroutines.
20. K format specification.

NEVADA FORTRAN does not included the following features of
ANSI standard FORTRAN:

1. Double Precision, double preclslon functions,
statements, and format specifications.

2. Complex numbers, complex statements and functions.
3. EQUIVALENCE statement.
4. Extended DATA statement of the form:

DATA A,B,C/l,2/31

5. The D and P format specifications.
6. Statement functions.
7. Only the first five characters of function or

subroutine names or COMMON block labels are retained.
In other words, only the first 5 characters of the name
is retained.

8. The following are reserved names for functions,
subroutines or COMMON block names:

A, B, C, D, E, H, L, M, SP, PSW

10-01-82 NEVADA FORTRAN PAGE 119

11.11.0 SAMPLE PROGRAMS

On the following pages you will find listings of the sample
programs that may have been included on your diskette.

C
C nCHAIN.FORn
C
C THIS ROUTINE DEMONSTRATED THE 'CHAIN' FUNCTION, ALL IT
C DOES IS REQUEST THE NAME OF THE PROGRAM TO CHAIN TO
C AND THEN CHAIN.
C

C

DIMENSION IF(3)
TYPE 'FILE?'

C GET THE FILENAME TO CHAIN TO
C

READ (0,1) IF
1 FORMAT (3A6)
C
C CHAIN TO IT
C

CALL CHAIN (IF,IER)
C
C ONLY GETS HERE IF AN ERROR HAPPENS
C

TYPE 'ERROR FROM CHAIN = ',IER
CALL EXIT
END

10-01-82

OPTIONS X
C
C "DUMP. FOR"
C

NEVADA FORTRAN PAGE 120

C THIS PROGRAM DEMONSTRATED THE USE OF THE DUMP STATEMENT.
C
C CALL 'X' FOR TRACEBACK PRINTOUT (JUST FOR SHOW)
C

CALL X
END

OPTIONS X
SUBROUTINE X

C
C DEFINE THE DUMP STATEMENT TO BE USED IN CASE OF AN
C ERROR, WITH DUMP 10 OF 'ROUTINE-X'
C

C

DUMP /ROUTINE-X/ I,J,K
1=1
J=2
K=I+J

C CREATE AN ERROR TO CAUSE DUMP STATEMENT TO BE ACTIVE
C

Z=1/0
END

10-01-82

OPTIONS X
C
C "GRAPH. FOR"
C

NEVADA FOR-:fRAR PAGE 121

C GRAPH SINE FUNCTION FROM -PI TO PI IN INCREMENT OF .12
C

C

DIMENSION LINE(70)
INTEGER WHERE

C OPEN UNIT 6 TO WRITE TO CONSOLE
C

CALL OPEN (6 , , CON: ')
c
C WRITE TITLE
C

WRITE (6,2)
2 FORMAT (28X,'GRAPH OF SIN')

TYPE
TYPE

c
C SET PI AND -PI
C

C

PI=3.1415926
MPI=-PI

C MAIN LOOP
C

DO 100 ANGLE=MPI, PI, .12'
C
C FIGURE OUT WHICH ELEMENT IN ARRAY SHOULD BE SET TO *,
C SIN RETURNS -1 TO 1 WHICH IS CONVERTED TO -35 TO 35
C AND THEN OFFSET SO FINAL RANGE IS 1 TO 70
C

WHERE=SIN(ANGLE) *35+35
c
C FIGURE OUT HOW MUCH TO BLANK IN THE OUTPUT ARRAY
C

IBLANK=MAXO(35,WHERE)
c
C AND BLANK IT
C

DO 15 I=l,IBLANK
15 LINE(I)=' ,
C
C HMM ••• WHICH SIDE OF ZERO ARE WE ON?
C

IF (WHERE .GT. 35) THEN
C
C RIGHT SIDE
C

20
DO 20 I=36,WHERE
LINE(I)='*'

ELSE

10-01-82

C
C LEFT SIDE
C

NEVADA FORTRAN

DO 30 I=WHERE,35
30 LINE{I)=i*i

ENDIF
C
C SET nZERO n
C

LINE(35)='+'
C
C AND THE SIN VALUE
C

LINE(WHERE)='*'
C

PAGE 122

C IF THIS VALUE IS < 35, SET SO WE OUTPUT TO ZERO LINE
C

IF (WHERE .LE. 35)WHERE=35
C
C AND FINALLY OUTPUT THE LINE
C

WRITE (6,21) (LINE(I) ,1=1 ,WHERE)
21 FORMAT (70A1)
100 CONTINUE

CALL EXIT
END

10-01-82 NEVADA FORTRAN PAGE 123

C
C "LOAD. FOR"
C
C THIS ROUTINE DEMONSTRATED THE USE OF THE 'LOAD' ROUTINE
C TO LOAD AN ASSEMBLY LANGUAGE FILE INTO MEMORY AND
C THEN CALL IT FORM FORTRAN
C

INTEGER A
C
C FIND OUT WHICH ONE TO LOAD
C

C

C

TYPE 'Enter 0 to "LOAD" LD.HEX'
TYPE 'Enter 1 to "LOAD" LD.OBJ'
ACCEPT 'Which one: ',LTYPE

IF (LTYPE .EQ. 0) THEN
TYPE '"LOAD"ing "LD.HEX" ,

ELSE
TYPE '"LOAD"ing "LD.OBJ",

ENDIF

C MUST LOAD "LD.HEX" OR "LD.OBJ" INTO MEMORY
C BEFORE WE CAN CALL IT
C

C
CALL LOAD ('LD',LTYPE,IER)

TYPE 'ERROR FOR LOAD=',IER
C
C CHECK THE RETURNED ERROR CODE FROM LOAD
C

IF (IER .NE. O)STOP 'LOAD ERROR'
C
C "CALL" THE ROUTINE
C

A=CALL ($8000,1)
C
C RESULT SHOULD BE 2
C

TYPE 'THE RESULT OF THE ASSEMBLY ROUTINE IS: ',A
CALL EXIT
END

i
i "LD.ASM"
i
i THIS ROUTINE IS USED BY "LOAD.FOR", ALL IT DOES IS TO
i DOUBLE THE NUMBER SENT TO IT
; NUMBER IS PASSED IN DE FROM FORTRAN PROGRAM AND RESULT
i IS PASSED BACK IN HL TO FORTRAN PROGRAM . ,

ORG
PUSH
POP
DAD
RET

8000H
D
H
H

iNUMBER FROM FORTRAN PROGRAM
iGET IT TO HL
iHL*2
iRETURN IT

10-01-82

OPTIONS X,Q
C
C "RAND. FOR"
C

NEVADA FORi'RAR PAGE 124

C THIS PROGRAM GENERATES A SEQUENCE OF RANDOM NUMBERS,
C DIVIDES THEM INTO 10 INTERVALS AND COUNTS HOW MANY
C RANDOM NUMBER FALL INTO EACH INTERVAL. FINALLY IT
C PRINTS OUT THE COUNTS OF EACH INTERVAL.
C

DIMENSION NUM(10)
DATA NUM/10*0/
INTEGER T,A,D,FLAG,TIME(6) ,DATE(6),START,END

99 DO 50 1=1,10
50 NUM(I)=O

ACCEPT 'How many? ',K
DO 1 I=I,K
L=RAND(O) *10+1

1 NUM(L)=NUM(L)+1
TYPE NUM
GO TO 99
END

10-01-82

OPTIONS X,Q
C
C "SEEK. FOR"
C

NEVADA FORTRAN

C THIS PROGRAM DEMONSTRATES RANDOM ACCESS I/O
C

PAGE 125

C IT FIRST WRITES A FILE OF NUMBERS, THEN REQUESTS
C A RECORD, READ NUMBER THAT THE RECORD CONTAINS,
C ADDS 1 TO THE NUMBER READ AND WRITES IT BACK INTO
C THE SAME RECORD
C

ERRSET 500,1
CALL DELET('TEST')

C
C OPEN THE TEST FILE
C

CALL OPEN (2,'TEST')
C
C READ HOW MANY RECORDS TO CREATE
C

ACCEPT 'HOW MANY RECORDS? ',K
C
C WRITE THE FILE
C

DO 1 I=O,K
1 WRITE (2,2) I
2 FORMAT (IS)

C

TYPE 'FILE WRITTEN'
TYPE
REWIND 2
GO TO 10
CALL OPEN(2,'TEST')

C REQUEST RECORD TO DISPLAY
C
10 ACCEPT 'WHICH RECORD? ',K
C
C POSITION THE FILE (EACH RECORD IS 7 CHARACTERS,
C 5 FOR NUMBER, 1 FOR CARRIAGE RETURN AND 1 FOR LINE FEED
C

CALL SEEK (2,7*K,IER)
C
C CHECK THE ERROR CODE
C

IF {IER .NE. O} THEN
TYPE 'SEEK ERROR, CODE= ',IER
CALL CLOSE (2)
CALL DELET ('TEST')
STOP
ENDIF

10-01-82

C
C READ THE CURRENT VALUE
C

READ (2,2) I

NEVADA FORTRAN PAGE 126

TYPE 'CURRENT VALUE OF RECORD ',K,' IS ',I
C
C POSITION BACK TO THE SAME RECORD
C

C

CALL SEEK(2,7*K)
1=1+1

C WRITE THE UPDATED VALUE
C

C

WRITE (2,2) I
GO TO 10

C TRAP ERROR
C
500 TYPE '*** ERROR TRAPPED ***'

TYPE 'ERROR CODE = ',I
CALL CLOSE (2)
CALL DELET ('TEST')
STOP 'ERROR EXIT'
END

10-01-82

C
C "SORT. FOR"
C

NEVADA FORTRAN

C THIS ROUTINE IS A DEMONSTRATION OF A SHELL SORT
C

PAGE 127

INTEGER T,A,D,FLAG,TIME(6) ,DATE(6) ,START, END
DIMENSION A(2000)
TYPE 'Shell sort'
TYPE

C
C GET HOW MANY NUMBERS TO SORT
C
88 ACCEPT 'How many numbers (2-2000) ',NN

IF (NN .LT. 2.0R.NN .GT. 2000)STOP
C
C GENERAT~ ARRAY OF NUMBERS TO SORT
C

DO 10 I=l,NN
10 A(I)=(RAND(O)*NN)+l

C

TYPE 'Starting sort'
D=NN
FLAG=O

100 D=IFIX«D+l)/2)
C
C TYPE OUT INTERMEDIATE STUFF
C

TYPE 'D=',D
C
110 ND=NN-D

C

DO 150 N=l,ND
IF (A (N) • LE. A (N+D)) GO TO 150
NPD=N+D
T=A (N)
A(N)=A(NPD)
A(NPD)=T
FLAG=l

150 CONTINUE

C

IF (FLAG .EQ. l)THEN
FLAG=O
GO TO 110
ENDIF

IF (0 .GT. l)GO TO 100
TYPE 'All done'
TYPE

C TYPE OUT SORTTED ARRAY
C

TYPE (A(I),I=l,NN)
GO TO 88
END

10-01-82

OPTIONS X,Q
C
C "TRACE. FOR"
C

NEVADA FORTRAN PAGE 128

C THIS ROUTINE DEMONSTRATES THE USE OF THE 'TRACE' AND
C 'ERROR' TRAPPING FUNCTIONS
C

TYPE 'STARTING EXECUTION'
C
C SET ERROR TRAPPING: ON ERROR GO TO STATEMENT 500 WITH
C ERROR CODE IN VARIABLE I
C

ERRSET 500,1
10 CONTINUE
C
C TURN TRACING OFF
C

TRACE OFF
C
C GET AN INPUT # FROM
C

ACCEPT ' # : ' ,K
C
C IF <0, TERMINATE
C

THE USER

IF (K • LE. O)GO TO 99
C
C IF INPUT i > 100, THEN TURN
C

TRACING

IF (K .GT. 100)TRACE ON
C

ON

C AND OUTPUT THE NUMBERS, TO SEE EFFECT OF THE
C ERROR TRAPPING, HIT CONTROL-C
C

DO 20 I=l,K
20 TYPE I

GO TO 10
C
99 TYPE 'DONE'

STOP
c
C ERROR TRAPPING HAPPENS HERE
C
500 TYPE 'ERROR TRAPPED, IER= ',I

END

10-01-82 NEVADA FORTRAN PAGE 129

11.12.0 SAMPLE PROGRAM COMPILATIONS AND EXECUTION

On the following pages you will find examples of the
compilation and execution of several of the sample programs
listed above. The following notes refer to the next few
pages:

1) input is underlined.

2) CP/M output is printed in bold

3) FORTRAN output (either compiler or execution) is neither
underlined or bold.

4) notes are in {}.

10-01-82 NEVADA FORTRAN PAGE 130

B>~ GRAPH.XBB {compile with listing to console,
.ASM and .OBJ to drive B}

NEVADA FORTRAN 2.00 (MOD 0)
Copyright (C) 1979, 1980, 1981, 1982 Ian Kettleborough

***** NEVADA Fortran 2.00 (Mod 0) ** Compiling File: GRAPH.FOR *****

0001 OPTIONS X
C

0002
0003

0004

C GRAPH SINE FUNCTION FROM -PI TO PI IN INCREMENT OF .12
C

C

DIMENSION LINE(70)
INTEGER WHERE

C OPEN UNIT 6 TO WRITE TO CONSOLE
C

CALL OPEN (6,' CON: ')
C
C WRITE TITLE
C

0005
0006 2
0007
0008

WRITE (6,2)
FORMAT (28X,'GRAPH OF SIN')
TYPE
TYPE

0009
0010

0011

0012

0013

C
C SET PI AND -PI
C

PI=3.1415926
MPI=-PI

C
C MAIN LOOP
C

DO 100 ANGLE=MPI,PI,.12
C
C FIGURE OUT WHICH ELEMENT IN ARRAY SHOULD BE SET TO *,
C SIN RETURNS -1 TO 1 WHICH IS CONVERTED TO -35 TO 35
C AND THEN OFFSET SO FINAL RANGE IS 1 TO 70
C

WHERE=SIN(ANGLE) *35+35
C
C FIGURE OUT HOW MUCH TO BLANK IN THE OUTPUT ARRAY
C

IBLANK=MAXO(3S,WHERE)
C
C AND BLANK IT
C

0014 DO 15 I=l,IBLANK
0015 15 LINE(I)=' ,

0016

C
C HMM ••• WHICH SIDE OF ZERO ARE WE ON?
C

IF (WHERE .GT. 35) THEN

10-01-82 NEVADA FORTRAN PAGE 131

C
C RIGHT SIDE
C

0017 DO 20 I=36,WHERE
0018 20 LINE{I)='*'
0019 ELSE

C
CLEFT SIDE
C

0020 DO 30 I=WHERE,35
0021 30 LINE{I)='*'
0022 ENDIF

C
C SET "ZERO"
C

0023 LINE(35)='+'
C
C AND THE SIN VALUE
C

0024 LINE{WHERE)='*'
C
C IF THIS VALUE IS < 35, SET SO WE OUTPUT TO ZERO LINE

0025
C

IF {WHERE .LE. 35)WHERE=35
C
C AND FINALLY OUTPUT THE LINE
C

0026 WRITE (6,21) (LINE{I),I=l,WHERE)
0027 21 FORMAT (70A1)
0028 100 CONTINUE
0029 CALL EXIT
0030 END
** Generated Code =
** Array Area =

No Compile errors

NO ASSEMBLY ERRORS.

687 (Decimal), 02AF (Hex) Bytes
420 (Decimal), 01A4 (Hex) Bytes

175 LABELS WERE DEFINED.

10-01-82

B>.rmrn GRAPH

NEVADA FOR~

{execute the program}
GRAPH OF SIN

*****+
**********+

**************+
*****************+

*********************+
************************+

***************************+
******************************+

********************************+
*********************************+

**********************************+
**********************************+
**********************************+
**********************************+
**********************************+
*********************************+

*******************************+
*****************************+

***************************+
************************+

********************+
*****************+

*************+
*********+

*****+
* +****
+********
+************

PAGE 132

+****************
+*******************
+***********************
+**************************
+****************************
+******************************
+********************************
+*********************************
+**********************************
+**********************************
+**********************************
+**********************************
+********************************
+*******************************
+*****************************
+**************************
+***********************
+********************
+****************
+*************
+*********
+****

10-01-82 NEVADA FORTRAN PAGE 133

B>~ LOAD.X {compile, listing to console, .ASM
and .OBJ to default drive}

NEVADA FORTRAN 2.00 (MOD 0)
Copyright (C) 1979, 1980, 1981, 1982 Ian Kett1eborough

***** NEVADA Fortran 2.00 (Mod 0) ** Compiling File: LOAD.FOR *****

0001 C
C "LOAD. FOR"
C
C THIS ROUTINE DEMONSTRATED THE USE OF THE 'LOAD' ROUTINE
C TO LOAD AN ASSEMBLY LANGUAGE FILE INTO MEMORY AND
C THEN CALL IT FORM FORTRAN
C

0002 INTEGER A

0003
0004
0005

0006
0007
0008
0009
0010

0011

0012

0013

0014

0015
, ,A

C
C FIND OUT WHICH ONE TO LOAD
C

C

C

TYPE 'Enter a to "LOAD" LD.HEX'
TYPE 'Enter 1 to "LOAD" LD.OBJ'
ACCEPT 'Which one: ',LTYPE

IF (LTYPE .EQ. 0) THEN
TYPE '"LOAD"ing "LD.HEX"'

ELSE
TYPE '"LOAD"ing "LD.OBJ",

ENDIF

C MUST LOAD "LD.HEX" OR "LD.OBJ" INTO MEMORY
C BEFORE WE CAN CALL IT
C

C

C

CALL LOAD ('LD',LTYPE,IER)

TYPE 'ERROR FOR LOAD=',IER

C CHECK THE RETURNED ERROR CODE FROM LOAD
C

IF (IER .NE. O)STOP 'LOAD ERROR'
C
C "CALL" THE ROUTINE
C

A=CALL ($8000,1)
C
C RESULT SHOULD BE 2
C

TYPE 'THE RESULT OF THE ASSEMBLY ROUTINE IS:

0016 CALL EXIT
0017 END
** Generated Code = 405 (Decimal), 0195 (Hex) Bytes

NO ASSEMBLY ERRORS. 135 LABELS WERE DEFINED.

10-01-82 NEVADA FORTRAN

B>r.mm L.QAll {execute the program}

Enter 0 to "LOAD" LD.HEX
Enter 1 to "LOAD" LD.OBJ
Which one: .Q.
"LOAD"ing "LD.HEX"
ERROR FOR LOAD= 0
THE RESULT OF THE ASSEMBLY ROUTINE IS:

PAGE 134

2

10-01-82 NEVADA FORTRAN PAGE 135

B>~ TRACE.ZCC {compile with no listing, .ASM and
.OBJ to drive C}

B>ERllN TRACE {execute the program}
STARTING EXECUTION
i: J.

i: l.4.O..

1
2
3
4

pgm is executing line 0009 in routine MAIN
pgm is executing line 0010 in routine MAIN

1
pgm is executing line 0010 in routine MAIN
pgm is executing line 0014 in routine MAIN
ERROR TRAPPED, IER= 23
STOP END IN - MAIN

10-01-82 NEVADA FORTRAN PAGE 136

B>flmX SORT.BBB {compile with listing, .ASM and
.OBJ files to drive B}

B>.£.RIm .s.o.R'I {execute the program}
Shell sort

How many numbers (2-2000) l.O.O.
Starting sort
D= 50
D= 25
D= 13
D= 7
D= 4
D= 2
D= 1
All done

2 6 6 6 7 8
8 9 9 12 12 14

14 18 19 21 21 21
21 22 25 27 28 28
29 29 30 32 33 33
34 34 37 38 39 40
40 41 46 46 48 48
48 49 50 51 52 54
58 58 59 60 60 61
62 62 64 64 65 65
66 67 68 70 70 71
73 74 75 76 76 77
80 80 82 82 83 84
85 86 88 89 89 91
91 91 93 93 93 93
94 96 96 96 97 98
99 99 100 100

How many numbers (2-2000) 0
STOP
b>

10-01-82 NEVADA FORTRAN

11.13.0 SUGGESTED FURmER READING

SOFTWARE TOOLS
Brian W. Kernigham and P. J. P1auger
Addison-Wesley Publishing Co. 1976

A GUIDE TO FORTRAN PROGRAMMING
Daniel D. McCracken
Addison-Wesley Publishing Co. 1961

FORTRAN IV WITH WATFOR AND WATFIV
Cress, Dirksen, and Graham
Prentice-Hall, Inc. 1970

FORTRAN IV
Elliot I. Organick and Loren P. Meissner
Addision-Wesley Publishing Co. 1966

PROGRAMMING PROVERBS FOR FORTRAN PROGRAMMERS
Henry F. Ledgard
Hayden, 1975

PAGE 137

ELLIS COMPUTING, NEVADA COBOL Application Package Bookl,
ELLIS COMPUTING, 1980

ELLIS COMPUTING, NEVADA EDIT, ELLIS COMPUTING, 1982.

ELLIS COMPUTING, NEVADA SORT, ELLIS COMPUTING, 1982.

ELLIS COMPUTING, NEVADA COBOL, ELLIS COMPUTING, 1979.

Starkweather, J., NEVADA PILOT, ELLIS COMPUTING, 1982.

