
2530 San Pablo Avenue Berkeley,CA. 94702 _. . 

415/549-3854 • TELEX 172029 SPX 

CPU/68000 

USER'S MANUAL 

68000-BASED 

CENTRAL PROCESSING UNIT BOARD 

FOR THE I.E.E.E. 696/5-100 BUS 

Dual Systems Control Corp. 

2530 San Pablq AveDue 

Berkeley, CA 94702 

COPYRIGHT @ 1982 BY DUAL SYSTEMS CONTROL CORP. 
ALL RIGHTS RESERVED 

Rev. B 



Dual Systems CPU/68ooo User's Manual 

Introduction 

Specifications 

Table of Contents 

· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Booting with the Monitor 

On-Board ROM 

Address Bus 

Data Bus 

· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TMA Control 

Interrupt Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Appendix A. Selecting ROMs . . . . . . . . . . . . . . . . . . . . . 
Appendix B. Details of S-100 interface . . . . . . . . . 
Appendix C. Special Configurations . . . . . . . . . . . . . 
Appendix D. A Few Programs . . . . . . . . . . . . . . . . . . . . . 

1 

2 

3 

4 

8 

12 

14 

14 

15 

16 

17 

18 

19 



INTRODUCTION 

The Dual Systems CPU/68oo0 is a high-performance CPU board 
combining the Motorola MC68000 chip, the logic circuitry 
necessary for interfacing to the S-100 bus in full compliance 
with the IEEE-696 specification, and ROMs containing a powerful 
monitor. Among its highlights are: 

o 8 MHz 68000 microprocessor 
o 4 MHz S-100 bus operation 
o 24 bit extended address bus 
o 16 bit data transfers 
o 8 bit transfers for compatibility with older peripherals 
o On chip interrupt controller 
o Operation with up to 16 DMA devices 
o Up to 8 Kilobytes of on board ROM 
o Supports I/O mapped peripherals 

The Dual Systems CPU/68000 board is based on the Motorola 
68000 processor, a high-performance microprocessor wi th 32-bi t 
internal architecture and a large, uniform memory space. The 
68000 features 16 32-bit registers, eight for addresses and eight 
for data. Data can be accessed in byte, word, and long word 
(32 Bit) quantities. 

The board is designed to take' full advantage of new IEEE-696 
S-100 features. 16 bit memory accesses double the effective 
transfer rate of the 4 MHz S-100 bus. The processor fully 
complies with IEEE specifications for a permanent bus master and 
supports temporary bus master operation. Twenty-four address 
lines allow direct access to 16 Megabytes of memory. 

2 



SPECIFICATIONS 

Processor: Motorola MC68000-L8 

Clock Speed: 8 Megahertz 

Bus: Meets all requirements of IEEE-696 (S-100) 

Address Bus: 24 bits; conforms to S-100 extended addressing 
specifications (16 Megabytes) 

Data Bus: 16 bit bidirectional data transfers. Also 
supports byte data transfers to eight-bit 
peripherals. 

ROM: Two sockets are provided on board for up to 
8K of ROM. This ROM can be used for program 
storage or excepti?n vectors or both. 

Control: Configured as bus master, provides TMA proto
col per IEEE-696. Provides automatic 8/16 bit 
data path selection. (requires 16 bit memory 
for program execution). Provides 64k 
programmable I/O space. 

Machine Cycle Time:Standard S-100 cycle: 750nS (min) 
Fast Mode: 500nS (min) 

Memory Speed: Memory must have data on the bus no later than 
450 nS after address is valid on bus. 

Status Indicators: RUN (Green LED) 
HALT (Red LED) 
HOLD (Yellow LED) 

PC board: High quality epoxy, solder masked both sides, 
screened component legend, plated through 
holes, gold plated edge connector fingers. 

Sockets: Provided for all IC's 

Power Consumption: 950 rnA nominal at 5 V. 

User-Selectable 
Options: Hardware relocatable boot and exception vectors. 

AO line of address bus may be asserted for 
high byte or low byte. 

Phantom line asserted while in USER mode. 
(for example disk controller may be disabled 
while not in SYSTEM mode.) 

3 



Booting the CPU/68000 with Macsbug' 

The CPU'/68000 comes wi th the Macsbug 1 moni tor installed in 
the on-board ROM sockets. The monitor is factory configured for 
use with a Godbout Interfacer· I serial I/O board. If the 

, Cpu/68000 is ordered with the Interfacer2 and CMEM memory cards, 
then the system can be brought up immediately. 

Set the dip-switches on the CPU/68000, Interfacer2, and CMEM 
cards as shown in figures 1, 2, and 3. 

After the dip-switches 'have been set properly, insert the 
CPU/68000, the Interfacer, and the CMEM boards into the S-100 
card cage. Then connect the serial I/O cables between the 
Interfacer card and the terminal. Be sure to connect pin 1 on the 
ri bbon cable by the index on the edge connector. Set the 
terminal tor 9600 BAUD and upper case only. Now apply power. If 
everything was done properly, you should see the Macsbug prompt 
on the terminal: 

MACSBUG 1.31 
• 

If this does not appear, turn off the power and recheck all 
connections and dip-switch settings. Be sure the Interfacer and 
the terminal are set for identical BAUD rates. Try again. If 
there is still no response please call Dual Systems. 

The dip-switch settings on the CPU/68000 map the monitor 
program to location 020000H and provide for the boot vectors to 
be read from the ROMs. These switches are described fully in 
this manual. 

The Interfacer2 switch setting define the first port to be 
at I/O location OH and the second port (for printer or host 
computer) at I/O location 2H. 

In order to configure the board for use wi th your terminal 
and printer, the port 1 baud rate must be set for the speed of 
the console terminal and the Port 2 baud rate must match the 
speed of the printer or the connection to the host computer. In 
the figure these rates are 9600 and 300 respectively. Parity and 
stop bi ts are set for use wi th an ADM 3A or ADM 5 terminal. For 
more information regarding baud rates, stop bits, parity etc., 
refer to the Godbout Interfacer I manual. 

The CMEM is set to span memory locations OH to 7FFFH. The 
stacks reside in the top 1 Kbyte of this memory, the exeptlon 
vectors in the low 1 Kbytes and the middle is available for user 
programs. The remaining switches are set to enable extended 
addressing, initially enable the board, and to allow writing to 
the board. For more details refer to the CMEM manual. 

1 Macsbug is a trademark of Motorola. 
2 Interfacer is a trademark of Godbout Electronics 

4 



RI§ R2 
RS 

·VAI 

CIO 

o 00 

5 II ROM ADOR. 
5ET FOR ~2~~~~H 

41 49 tAlE IN TI£ U. S. A. REV. _ 

Figure 1. Factory settings for switches 51 and 52, and jumpers on CPU/68000 board. 



PORT B CONFIG: 
~- ALTERNATE CONFIGURATION - PORT B AS PRINTER PORT 

FACTORY CONFIGURATION - PORT B USED FOR COMMUNICATION WITH HOSr 

+INTCRFACCR+ AGmpuPro'MprOduct from ®ID~@(!)m~ 
DUAL CHANNEL RS232 SERIAL liD 

PORT A CONFIG: 

tx3~ J3 A J4 J 1 J5 B J6 J2 OJ --

I rr - ex> ..- ~ I'- --: G ex> ---: ~ 

~ IC2-1489 ~- 0 ~~~~ IC6-1489 ~ 0 02 51 ~. U> ---: ~ 
() 0 01 lX)OO 0 1 =lO;i, ". ~ 0 • .0 ~I 

I C1 +] PORT A: 9600 BAUD ~,.' ~ ~N"" ~ ,_ 
OOT .... m 0 ..----- ..-

IC30-7805 ~ . . { 0". 0 ~ -, • - -, • ~ 
o -ffD3 Ci PORT B: 300 BAUD ~~ : U "'-_---J 

c=:::J ' UI , III • IC11-1602 COPYRIGHT 1979 GODBOUT ELECTRONICS IC18-1602 

M ~ c=::::>, . . . . . . . .) PO RT A c:::::> c::=) to c::::::>R 17 c::::::::> c::::::::> C==> c:::> c:::=J 

I C2 +) U U g ~ ~~~~~~~~ J ADDR=OO ,01 !O 10 to Oi ~ ~ i ~ 

ED- (3 <3 -, R1:~DE IN USA !,C20-25LS2521 em J,~ ABC§ 'ABCJ1~ 
IC32-7812 10 20 40 30 

Figure 2. Factory configuration of serial I/O board for operation with CPU/68000. 



EXTENDED 
ADDRESSING 
ENABLED 

[/16 BIT OPERATION ENABLED 

ALL 32K ENABLED 

Figure 3. Switch and jumper settings for CMEM series nonvolatile memories when used with CPU/68000. 



ON-BOARD ROM 

Two ROM sockets are available on the CPU board to store up 
to 8K bytes of data. The ROMs can be used to store programs, 
interrupt vectors, or both. A variety of fi ve vol t only, 8 bi t 
EPROMs or ROMs may be used. The CPU/68000 is factory configured 
for use with 2732 EPROMs, see Appendix A for jumper installation 
for alternate EPROMs. 

Switches 81 and 82 determine the ROMs base address and their 
mode of operation. Ei ther one of two condi tions may enable the 
ROMs: 

Using the ROMs to 8tore Programs: 

The ROMs may be selected on any read from the address space 
starting at the address specified by 81. This mode is selected 
if 82-3 is on. 8ince only the most significant 8 address bits 
are decoded the ROMS occupy a full 64 kilobytes of memory. 

Hardware relocation of the Exception Vectors: 

The ROMs can be enabled on memory reads to the exception 
vector address space. The MC68000 expects to find the exception 
vectors stored in the first 1024 bytes of memory. Typically it 
is desirable to store most vectors in RAM to allow software 
control of traps, interrupts etc. However, the power on 
sequence requires two 32 bit vectors for the initial stack 
pointer and program counter. The 68000 expects these 8 bytes at 
memory locations zero (0) through 7 and they should be stored in 
ROM to ensure their validity on power up. 

Switch 82-1 ("EV", Enable for Vectors) determines whether 
the vectors are read from on-board ROM or off-board memory 
(usually ROM). If switch 82-1 is ON the on-board ROMs will be 
accessed on a read from the exception vector space. If switch 
82-1 is OFF, the vectors will be read from off-board memory. 

Switch 82-2 ("XV", eXception Vectors) determines which 
exception vectors enable the ROMs. 82-2 in an ON position 
enables the ROMs only for the two reset vectors. 82-2 in an OFF 
position enables the ROMs for the first 64 exception vectors. 
Normally 82-2 is kept in an on position. However, for some 
dedicated applications it may be desirable to store the many 
system exception vectors (divide by zero, trap, interrupt etc.) 
in ROM. 

If one desires to store exception vectors in an off-board ROM 
(i.e. 82-1 off) 81 determines the new starting address of the 
vectors. 

8 



If the address translation feature is not desired, 81 should 
be set to all zeros. In this case the address appearing on the 
bus is identical to the processor's address lines. The user 
must not disable this feature unless non-volatile (and 
previously set) memory resides in the first 8 bytes of memory. 

Switch 2 

1) "EV" 

2 ) "XV" 

3) "R" 

4) 

OFF 

Read vectors from 
OFF-BOARD memory 
at 31 address 

Enable for ALL 
system vectors. 

ROMs for vectors 
only. 

Unused. 

Summary 

ON 

Read vectors from 
ON-BOARD ROMS 

Enable ONLY for reset 
vectors. 

Enable ROMs when reading from 
address space set by switch 1. 

Unused. 

The possible configurations are: 

S2-1 32-3 Effect 

OFF OFF Read exception vectors from off-board memory 
starting at S1 address. 

OFF ON Read exception vectors from off board memory 
and program starting at 31 address from ROM. 

ON OFF Read vectors only from ROM. 

ON ON Read vectors and programs from ROM. Program 
starts at 31 address. 

For each of these configurations, if 32-2 is ON then 
"vectors" only means the first two· boot vectors, otherwiS'e all 
the system vectors (the first 64) are referred to. 

Note that even though the program address space starts at 
the 31 address, you must not overlap the program with the 
exception vectors. If S2-2 is ON then the program can start at 
location 08H, if 32-2 is OFF then the program must start after 
location OFFH. 

9 



Exception Vector Assignment 

Vector Address 
Number(s) Dec Hex Space Assignment 

0 .0 000 SP Reset: I nitial SSP 
4 004 SP Reset: Initial PC 

2 8 008 SD Bus Error 
3 12 DOC SO Address Error 
4 16 010 SO Illegal Instruction 
5 20 014 SO Zero Divide 
6 24 018 SO CHK Instruction 
7 28 OlC SD TRAPV Instruction 
8 32 020 SO Privilege Violation 
9 36 024 SO Trace 
10 40 028 SO Line 1010 Emulator 
11 44 02C SO Line 1111 Emulator 
12* 48 030 SO (Unassigned reserved) 
13* 52 034 SO (Unassigned, reserved) 
14* 5f) 038 SO :Unassigned, reserved) 
15* 60 03C SO Unassigned reserved) 

16·23* 64 040 SO Unassigned reserved) 
95 05F -

24 96 060 SO Spurious Interrupt 
25 100 064 SO Level 1 Interru pt Autovector 
26 104 068 SO Level 2 Interrupt Autovector 
27 108 06C SO Level 3 Interrupt Autovector 
28 112 070 SO Level .:t Interrupt Autovector 
29 116 074 SO Level 5 Interrupt Autovector 
30 120 078 SO Level 6 Interrupt Autovector 
31 124 07C SO Leve I 7 I nterru pt Autovector 

32·47 128 080 SO TRAP Instruction Vectors 
191 OSF -

48·63* 192 OCO SO (Unassigned, reserved) 
255 OFF -

64·255 256 100 SO User Interrupt Vectors 
1023 3FF -

*Vector numbers 12 through 23 and 48 through 63 are reserved for future enhancements by 
Motorola. No user peripheral devices should be assigned these numbers. 

Figure 4. Exception Vector Ass1gnment 

Level 1 interrupt autovector: VI5 
Level 2 interrupt autovector: VI4 
Level 3 interrupt autovector: VI3 
Level 4 interrupt autovector: VI2 
Level 5 interrupt autovector: VI1 
Level 6 interrupt autovector: VIO 
Level 7 interrupt autovector: NMI 

The SYSTEM vectors are vector numbers 0 through 63, at 
addresses 0 through OFF (255). 

10 



What happens on Power Up 

After power up the 68000 loads the system stack pointer 
and program counter from the first two exception vectors. These 
two 32 bit vectors are stored in the least significant eight 
bytes of memory. Since these vectors are required when power is 
first applied, they should be stored in ROM. In this example, 
the program counter vector points to location 020008H which is 
the first instruction in the program in ROM, (after the boot 
vectors). 

If you wish to modify the moni tor, you could copy the 
contents of the ROMS into another memory board, preferably 
non-volatile RAM. (To read the ROMS, simply read from locations 
20000 through 21 FFF.) Then you can modi fy the copy in RAM. To 
execute the new version you must relocate the RAM to location 
20000 and set S2-1 and S2-3 to OFF, so the monitor and the boot 
vectors are read from the RAM. A sample program for a block move 
is listed in Appendix D. 

Format of Data Stored in ROMs 

Since the ROMs support word transfers, sequential addresses 
are stored in alternate ROMs. That is, one ROM (U2) holds the low 
byte of each word and the other (U 1) holds the hi gh byte of each 
word. 

NOTE: 
If S2-3 is ON (so that the S1 address is mapped to the ROMS) 

you must make sure that no other memory lies in the address space 
of the 64K block of memory starting at the S1 address. 

1 1 



ADDRESS BUS 

The processor board supports an extended 24 bit address bus. 
This allows the CPU to directly address up to 16 megabytes of 
memory. Such a vast address space eliminates the need for 
cumbersome bank select schemes. Older boards responding to only 
the 16 bit address bus may be used with this CPU but this would 
restrict the total system address space to 64 kilobytes. 

1/0 Space vs. Memory Space 

The 68000 instruction set does not have an explicit 
Input/Output instruction. Motorola archi tects intended for all 
68000 I/O to be memory mapped. Memory mapped I/O takes advantage 
of the many powerful addressing modes for fast, efficient I/O 
routines. 

To support S-100 I/O mapped peripherals the processor board 
dedicates the most significant 64 kilobytes of memory to I/O. As 
a result, any memory access to hex address FFOOOO through FFFFFF 
results in an I/O bus cycle. That is, such an access asserts 
status outputs sINP or sOUT. This configuration allows efficient 
memory mapped software while maintaining full compatibility with 
existing I/O devices. 

For example, hex address FF0002 corresponds to I/O port with 
address 02. So the 68000 instruction: 

MOVE.B OFF0002H,DO 

is similar to the 8080 instruction: 

IN 02H 

Note that 64 kilobytes of address space are dedicated to I/O 
devices. This allows over 64 thousand input and output ports. 
To support this many ports requires that I/O devices decode the 
least significant 16 address bits. The IEEE specification allows 
extended I/O addressing but does not require it. 

The majority of current I/O boards decode only the least 
significant 8 address bits. This gives 256 input and output 
ports. The processor board can be used with such an I/O device. 
Since the I/O board does not decode the full 16 bit I/O address 
its ports address is replicated throughout the 64 kilobyte I/O 
address space. The processor board functions quite well with 
existing I/O boards and is capable of fully supporting future 
extended I/O address boards as well. 

If you are using an I/O board which only decodes the low 
eight bits of the address then you can use the 16-bit word 
addressing mode of the 68000. Since to the I/O board address 
OFF0002 is indistinguishable from OFFFF02, and the 68000 sign 
extends the word long address, you can also use the address 

12 



OFF02. So the above example could also be coded: 
MOVE.B OFF02.W,DO 

AO 
The 68000 address bus directly drives A1 through A23. The 

CPU / 68000 comes factory j umpered for the updated IEEE-696 
standard. That is, the most significant byte of each word is 
stored at an even address and the least significant byte is 
stored at the next odd address. Note that instructions, operands, 
stack data, address vectors etc. are all stored at even 
addresses. 

The definition of AO may be reversed by carefully cutting 
the trace marked LO (Low Odd) and installing a jumper to the 
pad marked LE (Low Even). 

13 



DATA BUS 

The 68000 transfers data over a single 16 bit bidirectional 
bus. Programs must reside in ,16 bit memory, however, data bytes 
may be accessed from byte wide memory. Long words must be 
transferred in sequential 16 bit bus cycles. Byte data is 
transferred over the corresponding data lines; high order (even 
address) bytes on D15-DB, low order (odd address) bytes on D7-DO. 

The S-100 bus has two 8 bit data paths, Data Odd and Data 
Even). For byte transfers data is sent over the Data Even bus 
for write operations and over the Data Odd bus for read 
operations. For word transfers Data Even and Data Odd are 
ganged, forming a 16 bit bidirectional bus. During word bus 
cycles the even (AO=O) byte is transferred over the Data Even bus 
and the odd (AO= 1) byte over the Data Odd bus. On the 68000 the 
even byte is most significant (D15-D8). If you have changed the 
AO jumper on the CPU board then these definitions are reversed. 

TEMPORARY BUS MASTER INTERFACE (TMA CONTROL) 

The 68000 processor board functions as a permanent bus 
master as specified in the IEEE proposed S100 standard. 
Temporary bus masters (DMA devices) request the bus by asserting 
control input HOLD. They receive control of the bus when the bus 
master (68000 CPU) asserts control output hold acknowledge 
(pHLDA) • 

Upon receipt of HOLD the 68000 completes the current bus 
cycle and then asserts pHLDA. The 68000 suspends all processing 
until HOLD is released. A temporary master may now disable the 
permanent bus masters address, data, status and control buses by 
asserting the four disable lines ADSB, DODSB, SDSB and CDSB. The 
temporary master now has complete control of the bus for as long 
as it wishes. When the bus is no longer needed control is 
returned to the permanent ma~ter by releasing the bus disable 
signals and finally, releasing HOLD. 

The method of transferring the bus from the permanent bus 
master to a temporary master is explicitly specified in the IEEE 
bus standard section 2.8. Of significance is the method used to 
transfer ownership of the control output bus. To ensure gl itch 
free transfer, both the permanent and temporary master drive the 
control output bus during the transfer period. Except for pHLDA, 
all lines are driven at their non-asserted levels. After a 
specified time (125 nanoseconds) the temporary master asserts 
CDSB, disabling the permanent master,s control output bus drivers 
and acquiring control of the bus. 

Up to 16 temporary masters may coexist in a system. A 
distributed arbitration scheme determines the highest priority 
device which then takes control of the bus upon assertion of 
pHLDA. 

14 



In general, ,the 68000 will relinquish control of the bus 
after the current bus cycle. However, if HOLD is received just 
before the start of a bus cycle, the 68000 will go ahead with the 
bus cycle, relinquishing control after its completion. 

The 68000 instruction TAS (Test And Set) results in 
different CPU timing than other instructions. Motorola defines 
it as a read-modify write cycle. The instruction results in 
sequential read and write cycles on the S-100 bus. The two 
cycles are indivisible, that is, the write cycle must follow the 
read cycle. This type of instruction allows meaningful 
communications wi thin a mu1 tiprocessor or mul tiprocessing 
environment. TAS is designed to prevent transfer of bus control 
until the entire instruction has completed execution. Note that 
two distinct S-100 cycles are completed, but no interrupts or bus 
requests will be accepted until the second cycle has completed. 

INTERRUPTS 

The 68000 has a powerful internal interrupt controller. 
There are seven levels of interrupt priority. All except the 
non-maskable interrupt are software maskable via the system 
status word. 

The processor board is configured to accept seven of the 
S-100 interrupt signals, VI5 through VIa and NMI, where VI5 has 
the lowest priority. Note that NMI will always generate an 
interrupt when asserted. VI6 and VI7 are not supported. The S
lOa interrupt signals correspond to the MC68000 IPL interrupt 
levels as follows: 

S-100 definition: 
68000 CPU notation: 

VI5 VI4 VI3 VI2 Vll VIO NMI 
IPl IP2 IP3 IP4 IP5 IP6 IP7 

After receiving an interrupt with priority greater than that 
specified by the system status word, the 68000 loads the program 
counter from the appropriate exception vector (a 32-bit address) 

'and begins execution of the interrupt routine. The seven 
autovectors are vector numbers 25 through 31 (decimal) and reside 
at locations 100 through 124 (hex). No interrupt acknowledge 
cycle is needed. 

15 



Appendix A 

Selecting ROMS 

The ROM type is selected by jumpers on H1. ROMs supported 
are the 2716, 2732, 2516, and 2532. The CPU comes 
configured for use wi th 2732 ROMs. Following is a diagram of H1: 

G P P P ROM pins 
N e 2 2 
D 0 1 

• • • • 
• • • • 
A A E + EN is active low 
1 1 N ~ 3 2 

Examples: 

:-: I I 
, 
~ :-: I I : I I 1 • 

2716 2732 2516 2532 

16 



Appendix B 

Details of the S-100 bus Interface for the 68000 

FUNCTION OF M1 

Status signal sM1 is asserted during any program (as opposed 
to data) fetch. Historically, sM1 indicated that the current bus 
cycle would require four clock periods instead of three clock 
periods. The extra clock period, required for instruction 
decode, allowed time to refresh dynamic memory. With the 68000, 
no assumption can be made about the length of a bus cycle based 
on the level of sM1. 

SIXTN Line 

The CPU/68000 does not support seqential byte operations to 
implement a sixteen-bit data transfer. Therefore it has no need 
for the SIXTN line on the S-100 bus and it is ignored. 

17 



Appendix C 
Special Configurations 

Faster Memory Access When Used with Dual Systems Memories 

When the CPU/68000 is used with the Dual Systems line of 
FAST CMEM (Rev. B and later) memories, memory cycle time is 
decreased by 25%. This allows the CPU/68000 to run at absolutely 
full speed with no CPU wait states. This increased speed is 
possible through the use of an asynchronous bus transfer 
protocol. When the CPU commences a memory cycle, the CMEM 
memories respond to a valid address on the·bus by asserting a 
manufacturer-definable line (166) called FASTACK* and either 
gates data onto or latches the data from the data bus. 
Immediately after the CPU detects that FASTACK* has been 
asserted, the processor completes the cycle. 

If the memories being accessed do not respond with FASTACK* 
a standard S-100 bus cycle is completed. Thus, both Dual FAST 
CMEM and regular 16 bi t S-100 memories may be used in the same 
system. 

The CPU/68000 must have the pins 1abled "FAST" and "66" 
jumpered together to enable fast mode. 

Using the Phantom Line for System Protection 

The 68000 is always in one of two modes: system mode or user 
mode. When in user mode, it is usually desirable to not allow 
the user access to anything which might impair the integrity of 
the operating system or file system. 

The CPU/68000 is capable of supporting a simple protection 
scheme. Install a jumper between the pads marked "USER" and "PIt 
(Phantom). When this jumper is installed, the Phantom line will 
be asserted whenever the CPU is in user mode. Then any I/O 
(especially disks) which should only be acessed when in system 
mode can be set to disable themselves when the Phantom line is 
asserted. In addi tion, memory that should only be seen read or 
changed by the operating system- directly, can also be set to be 
disabled when the phantom line is asserted. 

18 



Appendix D 
A Few Utility Programs 

This program performs a block move, enter it with: 
AO Starting address of source 
A1 Starting address of destination 
A2 Last address to move +, 1 

0000 
0002 
0004 
0006 

32DB LP1: MOVW AO@+,A2@+ 
B1CA CMPL A2,AO 
6DFA BLTS·LP1 
4EF9 0002 OODB JMP /200DB 

This fills a block with a word. 
AO ADDRESS of word to fill with 
A1 Starting address of block 
A2 Last address of block + 1 

0000 
0002 
0004 
0006 

32DO LP2: MOVW AO@,A1@+ 
B3CA CMPL A2,A1 
6DFA BLTS LP2 
4EF9 OOa2 OODB JMP /200DB 

MOVE A WORD 
DONE? 
REPEAT 

.RETURN TO MACSBUG 

MOVE A WORD 
DONE? 
REPEAT 
RETURN TO MACSBUG 

For testing hardware with a scope, this repeatedly sends a 
byte to any address (could be an I/O port). Sends the byte in DO 
to the address pointed to by AO. 

10BO LP3: MOVB DO,AO@ 
60FC BRAS LP3 

This reads from the address in AO and puts the result in DO. 

1010 LP4: MOVB AO@,DO 
60FC BRAS LP4 

All of these routines are relocatable. They can be entered 
into any free area of memory (such as 2000) with the MACSBUG OP 
command. The entry parameters can be directly placed in the 
registers, and the routine executed with the G command. 

19 



MACSBUG OPERATING INSTRUCTIONS 

1. INTRODUCTION 

This document describes the operation of the MACSbug monitor after it has 
been installed. It includes a complete description of all the commands 
and examples of its use. 

2. OPERATIONAL PROCEDURE 

After the CPU/68000 board has been installed, as per the manual, the user 
should perform the following: 

a. Turn power ON to the system. 

b. Depress the RESET (black) button. -

The system should initialize and print: 

MACSBUG 1.31 
* 

If these two lines do not print out, go back and check the CPU/68000 manual. 
Check especially that the terminal and I/O board have the same BAUD rates. 

3. CO~~D LINE FORMAT 

Commands are entered the same as in most other buffer organized computer 
systems. A standard input routine controls the system while the user types 
a line of input. The delete (RUBOUT) key or control 'H' will delete the 
last character entered. A control 'X' will cancel the entire line. 
Control '0' will redisplay the line. Processing begins only after the 
carriage return has been entered. 

During output to the console the control 'W' will suspend the output until 
another character is entered. The BREAK key will abort most commands. 

The format of the command line is: 

*COmmand parameters; options 

where: * is the prompt from the monitor. The user does not 
enter this. In the examples given, the lines beginning 
with this character are lines where the user entered 
a command. 

1. 



co 

mmand 

parameters 

joptions 

is the necessary input for the command. Each 
command has one or two upper case letters necessary 
in its syntax. In the examples, the entire command 
may be used, but only those letters in upper case 
in the syntax definition are necessary. 

is the unnecessary part of the command. It is given 
in the syntax definition only to improve readability. 
If this part of the command was actually entered on 
the command line, it would be ignored. 

depends upon the particular command. Data is usually 
in hex but most printable ASCII characters may be 
entered if enclosed in single quotes. The system 
also supports a limited symbolic feature allowing 
symbols to be used interchangeably with data values. 

modifies the nature of the command. A typical option 
might be to disregard the checksum while reading a file. 

Note: MACSbug requires all commands to be entered in upper case letters. 
If lower case letters are used, MACSbug will respond with 

WHAT? 

* 

4. EXAMPLE OF COMMAND PROCEDURES 

MACSBUG 1.0 Power up or reset condition 
*P2 MACSbug prompts with '*' user enters P2 to enter 

transparent mode. (see page 3-19) 
*TRAN SPARE NT * Message printed to indicate user is now directly 

connected with host system 
User may now communicate directly with the host system. Typing a 
control A at any time will exit to MACSbug. 

(Control A) 
*MACSBUG* 

*READ ;=COPY FILE.MX,#CN 
*DM 1000 
001000 70 01 70 02 70 03 70 04 
*PC 1000 
*TD CLEAR 
*TD PC.22 00.1 
*TD 
PC=lOOO 00=00 
*BR 1004 
*T TILL 0 
PC=1002 00=01 
PC=1004 00=02 
:*GO 
PC=1004 00=02 
* 

Message put out by MACSbug to indicate user is 
now in MACSbug command mode 
Download from EXORciser host 
Display memory 

70 OS 4E F8 10 00 FF FF p.p.p.p.p.N ••••• 
Set program counter to START 
Clear the trace display 
Specify which registers to print in display 
Print the trace display 

Set a breakpoint 
Trace command 

Stopped at breakpoint 

Stopped at breakpoint 
Program is ready to run 

2. 



3.6 MACSbug COMMAND SUMMARY 

COMMAND 

reg# 
reg # hexdata 
reg # 'ASCII' 
reg#: 
class 
class: 
OM start end 
SM address data 
OPen address 
SYmbol NAME value 
W# 
W#. len EA 
M# data 
Go 
Go address 
Go TILL add 
BReakpoint 
BR add: count 
BR -address 
BR CLEAR 
TO 
TD reg#. format 
TD Clear 
TDAU 
TD A. 1 D. 1 L c 
T 
T count 
T TILL Address 
:*(CR) 
OFfset address 
CV decimal 
CV $hex 
CV value, value 
REad; =text 
VErify; =text 
PUnch start end 
FOrmat hex 
NUll hex 

I CR hex 
TErminal baud 
CAli address 
P2 
* .. data .. 

Break 
CTL·A 
CTL·D 
CTL·H 
CTL·W 
CTL·X 
Rubout 
Del 

DESCRIPTION 

Print a register 
Put a hex value in the register 
Put hex·equivalent characters in register 
Print the old value and request new value 
Print all registers of a class (A or D) 
Sequence through-print old value request new 
Display memory, hex-ASCII memory dump 
Set memory with data 
Open memory for read/change 
Define and print symbols 
Print the effective address of the window 
Define window length and addressing mode 
Memory in window, same syntax as register 
Start running from address in program counter 
Start running from this address 
Set temporary breakpoint and start running 
Print all breakpoint addresses 
Set a new breakpoint and optional count 
Clear a breakpoint 
Clear all breakpoints 
Print the trace display 
Put a register in the display 
Take all registers out of the display 
Set all registers to appear in the display 
Set register blocks or line separator 
Trace one instruction 
Trace the specified number of instructions 
Trace until this address 
Carriage return-trace one instruction 
Define the global offset 
Convert decimal number to hex 
Convert hex to decimal 
Calculate offset or displacement 
Expect to receive'S' records 
Check memory against'S' records 
Print'S' records (tape image) 
Program/initialize an ACIA 
Set character null pads 
Set carriage return null pads 
Set terminal null pads to default values 
JSR to user utility routine 
Enter transparent mode 
Transmit command to host 

) 

The BREAK key will abort most commands 
The control A key ends transparent mode 
The control 0 key redisplays the line 
The control H key deletes the last character entered 

PAGE 

3·5 

3-6 

3-7 
3·8 
3-9 

3-10 

3-11 

3-12 
3-13 

3·14 
3-15 

3-16 

3·17 

3·18 
3·19 

The control W key suspends output until another character is entered 
The control X key cancels the entire line 
The RUBOUT key deletes the last character entered 
The DEL key deletes the last character entered 

3·4 



3.6.1 Set and Display Registers 

68000 REGISTER MNEMONICS 

00,01,02,03,04,05,06,07 
AO,A1,A2,A3,A4,A5,A6,A7 

PC 
SR 
SS 
US 

COMMAND FORMATS 

reg# hexdata 
reg# 'ascii data' 
reg#: 
reg# 
class (where class=O or A) 
class: 

EXAMPLES 

-A5123 
-A5 
A5=00000123 
-04 FFFFFF 
-DO: 
DO=~=?45FE 
-0: 
DO=000045FE=?9EAB3 
Dl=~=?(CR) 
D2=~=?(CR) 
D3=~=?(CR) 
D4=OOF F FFFF =? (CR) 
D5=~=? 55555 
D6=~=?(CR) 
D7=~=?(CR) 

DESCRIPTION 

Data registers 
Address registers 
Program counter 
Status register (condition codes) 

REGISTER DISPLAY 

Supervisor stack pointer (A7 in supervisor mode) 
User stack pointer (A7 in user mode) 

DESCRIPTION 

Put a hex value into register 'reg#' 
Put ASCII value into register 'reg#' 
Print register value and take in new value 
Print register value 
Print values of all registers in the class 
Cycle through all registers in the class printing old value 

and requesting new value 

COMMENTS 

Set address register A5 to hex value 123 
Command to print the value of register A5 
Computer response 
Set a data register 
Command to print old value and take in new value 
Computer prompts with old value; new value entered 
Command to cycle through all data registers 
Change value of register DO from 45FE to 9EAB3 
Carriage return (null line) means the value remains the same. 

Change register 05 to a new value 

-0 Display all data registers 
DO=OOO9EAB3 ol=~ 02=~ 03=00000000 
D4=OOFFFFFF 05=00055555 06=00000000 07=00000000 
-PC: Display and request input for program counter 
PC=OOO8B3=? 2561 Set the program counter to new value 
-SR 0 Set status register to zero (user mode) 
-A74321 Set address register (same as US now) 
-US Display user stack pointer 
US=00004321 
-SS 7FFF 
-SR 2000 
-A7 
A7 =OOOO7FFF 

-

Set supervisor stack pointer 
Set status register to supervisor mode 
Print A7 which is now the SS register 

3·5 



3.6.2 Display and Set Memory MEMORY DISPLAY 

COMMAND FORMAT 

OM start end 
OM start count 
OM2 start end 
SM address data 
SM address 'ASCII" 
SM address data N 

EXAMPLES 

-SM 2000 'ABC' 
·SM 2003444546 'G' 
-OM 2000 2010 

DESCRIPTION 

Display Memory in hex and ASCII where start < end 
Where start> count 
Send output to PORT 2 
Set Memory to hex 
Set Memory to ASCII 
The 'N' as the last character means start a new line; the system will 
prompt with the current address 

COMMENTS 

Set memory to some ASCII data 
Set some more locations 
Command to dump memory 

002000 41 424344 4546 4700 00 00 00 00-00 00 00 00 ABCDEFG ........ . 
002010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

-OM 200312 

In this version of the command the second number is smaller 
than the first so it is decoded as a count 

002003 44 45 46 47 00 00 00 00 00 00 00 00 00 00 00 00 DEFG ........... . 
002013 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ . 

-SM 1000 1 23456 7890 ABCDE 12345678 Size can be up to 8 characters 
-OM 1000 
001000 01 23 04 56 78 90 OA Be DE 12 34 56 78 00 00 00 ............... . 

-SM 1000 'TABLE 

oooolOOC ? 'START 

-OM 100020 

• 00005678N 

, 00023456 

Use of the 'N' parameter to 
start a new line 

001000 54 41 42 4C 45 20 20 200000 56 78 53 54 41 52 TABLE ..... VxSTAR 
001010 54 20 20 20 00 02 34 5600 00 00 00 00 00 00 00 T ..... 4V ....... . 

-OFFSET 2030 Global offset will be added to command parameters 
-OM 1000 A 

003030 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ................ 

·SM 1005 1234 N 
00003037 ? AB 
-OM 1000 

Global offset added to address 1005 

003030 FF FF FF FF FF 12 34 AB FF FF FF FF FF FF FF FF ................ 

-SM 20000 AB CD EF 
ERROR 
• 

Trying to set ROM 
Error message 

3·6 



3.6.3 Open Memory for Read/Change OPEN MEMORY 

COMMAND FORMAT DESCRIPTION 

OPen address Open memory at specified address and enter subcommand mode 

SUBCOMMAND FORMAT 

USER 
ADDRESS CONTENT ENTERS COMMENTS 

·OP 1000 Open memory location 1000 
001000 = FF? 12 User enters data and system goes to next location 
001001 = AB? (CR) Carriage return means go to the next location 
001002 = 44 ? 341 Up arrow means go to previous location 
001001 = AB? l Can be entered without data 
001000 = 12 ? 77= Equal sign means stay at same address 
001000 = 77 ? = Can be used without any data 
001000 = 77? Period means return to MACSbug 
* Returns to command level 
*OP 1234 
021234 = FF? 99= Example of trying to change ROM 
**NOCHANGE** Warning message 
021234 == FF? Does not abort command 

3-7 



3.6.4 Define and Print Symbols SYMBOLS 

COMMAND FORMAT 

SYmbol name hex value 

SY -name 
SY name 
SY value 
SY 

DESCRIPTION 

Put a symbol in the symbol table with a hex value or assign a new 
value to a previously defined one. NAME can be 8 characters 
long, consisting of: A·Z, 0·9, (period), and $ (dollar sign). It must 
begin with letter (A·Z) or period. 

Remove a symbol from the symbol table 
Print the current value of the symbol (absolute) 
Print the first symbol with the given value 
Print the sorted symbol table 

NOTE 

Offset is not used by this command. Some commands rec· 
ognize the words TILL, ALL, and CLEAR as key words and will 
not interpret them as symbols. 

EXAMPLES 

·SY XYZ 5000 
·SY XYZ 
XYZ =5000 
·SY XYZ 123 
·SY ABC34 2500 
·SY Z17.RTS XYZ 
·SY 123 
XYZ =123 
·SY B$67ABC 4300 
·SY RFLAG 2300 
·SY MVP2 9990 
·SY 
ABC34 00002500 
RFLAG 00002300 

·SYnT 
T IS NOT A HEX DIGIT 
·SYS67 
00000567 =567 

SYNTAX EXAMPLES 

-SRMVP2 
-CALLRFLAG 
-PCABC34 
-OM MVP210 

COMMENTS 

Puts the symbol in the table 
Command prints out the symbol's current value 

Change a symbol's value 
Define another symbol 
Define a symbol with value from another symbol 
Print first symbol with value of 123 

Define some more symbols 

Print the sorted symbol table 
B$67ABC 00004300 MVP2 00009990 
XYZ 00000123 Z17.RT5 00000123 

Print a value for symbol not in table, when not found, it tries to 
convert parameter to number 

Attempt to print value for symbol not in table 

COMMENTS 

Set a symbolic breakpoint 
User defined routine 
Set a register 
Display some memory 

EXAMPLES OF KEY WORDS IN COMMANDS 

·BRCLEAR 
-GO TILL Z17.RTS 
·T TILL ABC34 

The word CLEAR is not considered a symbol here 
The word TILL is part of the command 
The word TILL is part of the command 

3·8 



3.6.5 Displaying and Accessing Memory through Windows WINDOWS 

A "window" is an effective address through which the user can "see" memory. The windows are 
labeled WO to W7 and are defined using the syntax listed below. The windows address corresponding 
memory locations labeled MO to M7 which use the same syntax as registers. These memory locations 
can be examined, set or defined in the display the same as a register. 

COMMAND FORMAT 

W# 
W#.len EA 

M# data or 'ASCII' 

EA SYNTAX EXAMPLES 

EXAMPLES 

·W3.4 (A6) 
·A62ooo 
·W3 

FE84 
(A6) 

1 00 (A6) 
-10(A6,D2) 

-100(*) 
10(*,A4) 

W3.4 (A6) =2000 
·M387342 
·M3 
M3=OOO87342 

DESCRIPTION 

Print the effective address of a given window 
Define a window size and effective address 

# is the window number 0 to 7 
len is the. length in bytes 
l=byte; 2=word; 3=3 bytes; 4=long word 
O=close a window (undefine it) 

EA is Effective Addressing mode 
(see EA SYNTAX EXAMPLES in table below) 

Pseudo registers have same syntax as registers 

DESCRIPTION 

Absolute address 
Address register indirect 
Indirect with displacement 
Indirect with index and displacement 
Program counter with displacement 
Program counter with index and displacement 

COMMENTS 

Define a window 
Enter a value for the address register 
Print the effective address of a window 

Set memory through the window 
Command to print memory through the window 

·DM 2000 Display a line of memory 
002000 00 08 73 42 00 00 00 00 00 00 00 00 00 00 00 00. . sB ........... . 
·TD CLEAR Clear all registers from the trace display 
·TD PC. 2 A6. 3 M3. 1 Define some registers for the display 
·TD Command to print the trace display 
PC=OOA2 A6=002000 M3=42 NOTE: W3. 4 and M3. 1 only lowest byte displayed 
·W3. 2 (A6) Change width of window 
·TD M3. 2 Change width of display 
·TD 
PC=OOA2 A6=002ooo M3=OOO8 
·WO. 1 10(* ,A6) 
·WO 
WO.II0(*,A6)=20B2 
·W3.0 
·TD 
PC=OOA2A6=002000 

Define a new window: PC+A6+ 10 
Print effective address of window WO 

Close window W3, undefine it 

Closed/undefined windows are not in the display 

3-9 



3.6.6 GO and Breakpoints 

COMMAND FORMAT 

Go 
Go address 

DESCRIPTION 

Begin execution at address in PC register 
Begin execution at this address 

GO,BREAKPOINT 

Go TILL address Set a temporary breakpoint at the address and run until a break· 

BR 
BR address 
BR -address 
BR address;count 
BR CLEAR 

point is encountered 
Print the address of all breakpoints (8 maximum) 
Set a breakpoint at this address 
Remove the breakpoint at this address 
Set a breakpoint at this address with a count 
Remove all breakpoints 

EXAMPLES COMMENTS 
(see example program on page 3·3) 

·PC 1000 
·TDCLEAR 
·TD PC. 2 DO. 1 
·TD 
PC=l000 00=00 
·G TILL 1008 
PC=1008DO=04 
·BR 1002 
·G 
PC=1002DO=01 
·BR 1008: 4 
·BR 
BRKPTS= 1002 1008: 4 

Set program counter to starting address 

Set trace display format 
Print trace display 

Run until address 
System displays when it stops 
Set a breakpoint 
Run until breakpoint 
Trace display 
Set a breakpoint with' a count 
Print the breakpoints 

·G Run 
PC= 1000 00=4 Decrements count prints display, continues 
PC= 1002 00= 1 Stops at breakpoint with zero count 
·BR Print the breakpoints 
BRKPTS= 1002 1008: 3 Count has been decremented by one 
·BR -1002 Remove a breakpoint 
·G Run 
PC=l000 00=4 Count from 3 to 2 ... 
PC= 1008 00=4 ... 2 to 1 ... 
PC=lOO8 00=4 ... 1 to 0 and it stops here 
·BR Print the breakpoints 
BRKPTS= 1008 No count for this breakpoint 
·BR 1000 Set another breakpoint 
·G 1000 Start running from 1000, bypass breakpoint at starting address 
PC= 1008 00=4 and stop at next breakpoint 
·SY JUMPER l00A Define a symbol 
·BR JUMPER: 5 Set a breakpoint at a symbolic address 
·BR 123456: 7897 11 223344 55 66 Try to overflow table .. (holds 8) 
TABLE FULL BRKPTS= 1008 1000 100A: 5 123456: 7897 11 22 3344 
·OFFSET 3000 
·BRCLEAR 
·BR50 
·BR 
BRKPTS= 3050 

When setting breakpoints the global offset is added to the 
parameter but all addresses printed are absolute 

3·10 



3.6.7 Set the Trace Display Format (Individual Registers) TRACE DISPLAY 

COMMAND FORMAT 

TO 
TO CLear 
TO ALI 
TO reg#. format 

EXAMPLES 

·TDCLEAR 
·TO PC. 3 01. 1 
·TO 
PC=OOOOOO 01=05 
·TD PC. OA6 
·TO 
01=05 A6=OOOOOO8F 
·W3. 2 2000 
·M320 
·TO M3. 2 
·TO 

DESCRIPTION 

Print the trace display 
Take everything out of the display 
Put all registers in display (see page 3-12) 
Add or delete registers in display where reg# is 00-07, AO-A7, WO-W7, 

MO-M7, PC. SR. US, SSt A, 0, or L (see page 3-12 for A,D,L) . format 
can be 0,1,2,3,4,Z,0,R, or 5 

O=remove the item from the display 
1,2,3,4=print this number of bytes as hex characters, include 

all leading zeros 
Z=signed long word hex with zero suppress 
O=signed long word decimal with zero suppress 
R=subtract offset (see OFfset command) then print 

with Z format with letter 'R' at end 
S=search symbol table for 4 byte value, 

if found print symbol name as 8 characters, 
if not found print hex value as 8 characters 

COMMENTS 

Turn off all the registers in display 
Define PC as 3 bytes and 01 as one 
Command to display 
This is the trace display 
Remove PC and add A6 which defaults to 4 bytes 
Display 
Display with two new registers 
Define a window 
Set value of memory pseudo register 
Add a memory pseudo register to the display 
Display 

01=05 A6=OOOOOO8F M3=OO20 
·TD A6. 1 01. 3 M3. Z 

New display 
Change length of registers already in display 
Display ·TO 

01=000005 A6=8F M3=20 
·TD 01. R M3. 0 
·OFFSET 12345 
·TO 
01 =-12340R A6=8F M3=32 
·SYTABLE 8F 
·TO A6. 5 M3. 0 
·TO 
01=-12340R A6=TABLE 
·A6123 
·TD 
01 =-12340R A6=OOOOO123 

New display, M3 now suppresses leading zeroes 
01 is relative and M3 is decimal 
Set the offset (see OFfset command) 
Display 
5-offset=-12340R; 20 hex = 32 decimal 
Define a symbol (see SYmbol command) 
Make A6 print symbol if value is in table 

Prints symbolic value 
Set A6 to a value NOT in symbol table 

A6 prints value with 4 byte format 

3·11 



3.6.8 Set the Trace Display Format (Blocks of Re&isters) TRACE DISPLAY 

COMMAND FORMAT DESCRIPTION 

Take everything out of the display 
Put all data registers in display as a block 

TO CLear 
TO 0.1 
TO A. 1 Put all address registers in display as a block (for O. 1 and A. 1 

the format is fixed at 4 bytes) 
TO L character 

TO ALI 

EXAMPLES 

Define a line separator at the end of display (,0 will reverse A. 1, 
D. 1. and L char commands) 

Same as keying in: 
·TO PC. 3 SR. 2 US. 4 SS. 4 O. 1 A. 1 L -
does not affect other registers and windows that have been 
previously defined to display 

COMMENTS 

·TO CLEAR Clear the display 
·TO 0.1 Define all data registers in a block 
·TO Print the trace display 
00=00000000 01=00000000 02 =00000000 03 =00000000 
04=00000000 05=00000000 06=00000000 07=00000000 

. ·TDCLEAR 
·TD A. 1 Define all address registers in a block 
·TO 
AO=OOOOOOOO Al =00000000 A2=00000000 A3=OOOOOOOO 
A4=OOOOOOOO A5=OOOOOOOO A6=OOOOOOOO A7=00007FFE 
·TO L @ Oefine a line separator (a row of ,@,) 

·TO 
AO=OOOOOOOO Al =00000000 A2=00000000 A3=OOOOOOOO 
A4=00000000 A5=OOOOOOOO A6=00000000 A7=OOOO7FFE 
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
·TO L & Define a line separator (a row of '&') 
-TO 
AO=OOOOOOOO A1=OOOOOOOO A2=OOOOOOOO A3=00000000 
A4=00000000 A5=00000000 A6=OOOOOOOO A7=OOOO7FFE 
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
·TO ALL Turn on commonly used registers ... 
·TO ... this is also the default or reset condition 
pc=OOOOOO SR=2000 US=OOOO7FOO SS=OOOO7FFE 
00=00000000 01=00000000 02=00000000 03=00000000 
04=00000000 05=00000000 06=00000000 07=00000000 
AO=OOOOOOOO Al=OOOOOOOO A2.=00000000 A3=00000000 
A4=00000000 A5=00000000 A6=00000000 A7=OOOO7FFE 

• 

3·12 



3.6.9 Tracine 

COMMAND FORMAT 

Trace 
Trace count 
Trace TILL address 

:* (CR) 

DESCRIPTION 

Execute one instruction and print trace display 
Trace specified number of instructions 
Trace to the given address 

(breakpoint will stop the trace) 

TRACE 

A colon (:) before the prompt indicates a special trace mode is in 
effect a carriage return will trace the next instruction 

EXAMPLES COMMENTS 
(see example program on page 3·3) 

·DM 1000 Example program in memory 
001000 70 01 70 02 70 03 70 04 70 05 4E F8 10 00 FF FF p.p.p.p.p.N. 

·PC 1000 
·TO 
PC=looo 00=00 
*T 
PC= 1002 00=01 
:* (CR) 
PC=I004 00=02 
:*T 3 
PC=l006 00=03 
PC=100800=04 
PC=IOOA 00=05 
:*T TILL 1004 
PC=I000 00=05 
PC=I002oo=01 
PC=IOO4 00=02 
.* 

Set the program counter 
Print the trace display 

Trace one instruction 

Special prompt appears, carriage return will trace the next 
instruction 

Trace three instructions 

Trace till instruction at address 1004 

3-13 



3.6.10 Offset OFFSET 

The 68000 instruction set lends itself to relocatability and position independence. A general purpose, 
global offset feature has been provided. The single offset address applies to all of the commands 
listed below. Registers displayed in the trace display may have the offset subtracted by using 'R' as 
the format See paragraph 3.6.7 on trace display. 

The offset may be overriden by entering a comma and alternate offset All commands do not use the 
offset but any number can be forced to be relative (have the offset added) by entering an 'R' as the 
last character of the number. 

WARNING: This is a very simple offset feature and may not be able to solve complex relocation prob
lems. The user is encouraged to experiment with the global offset and the window features to deter
mine their limitations and usefulness in a particular application. 

COMMAND FORMAT DESCRIPTION 

OFfset 
OFfset hex value 
OFfset 0 

Display offset 
Set the offset to a given value 

command data,alternate 
command data, 
command data,OR 

Set the offset to zero - begin absolute addressing 
Disregard offset add alternate offset to data 
Data is absolute, no offset added 
Used in commands that do not normally use offset adds offset to 

data 

The offset affects the following commands: 

TO reg.R 
BReakpoint 
Go 
SM 
OM 
PUnch 
REad 

EXAMPLE 

-PC 2010 
-TO PC.R 
-TO 
PC=2010R 
-OF 2000 
-TO 
PC=10R 
-BR6 
-BR 
BRKPTS=2006 
*BR 24,3000 
*BR 

Trace display, subtract offset from register value 
Set breakpoint (display is in absolute) 
All addresses 
All addresses 
All addresses (display is in absolute) 
All addresses 
All addresses 

COMMENTS 

Set the program counter 
Set trace display .R means hex long word minus offset 
Display , 
Displayed relative to offset (zero now) 
Set the offset to 2000 
Display 
PC - offset = 2010-2000 = 10 Relative 
Set a breakpoint: hex data+offset = 6+2000 = 2006 
Display breakpoint 
Breakpoints are always displayed as absolute hex 
Set a breakpoint with alternate offset 24+3000 

BRKPTS=2006 3024 

3·14 



3.6.11 Number Base Conversion 

COMMAND FORMAT 

CV decimal 
CV $hex 
CV symbol 
CV value,offset 

DESCRIPTION 

Decimal to hex conversion 
Hex to decimal conversion 
Use value from symbol table 
Calculate offset or displacement 

NOTE 

NUMBER CONVERSION 

This command DOES NOT automatically use the global 
offset. The default base for this command only is decimal. 
All numbers are signed 32 bit values. 

EXAMPLES 

·CV 128 
$80=&128 
·CV$20 
$20=&32 
·CV -$81 
$FFFFFF7F=-$81 =-&129 
·CV $444, III 
$555=&1365 
·CV $444, -Ill 
$333=&819 
·CV $111,-444 
$FFFFFBBC= -$333= -&819 
·SYTEN &10 
·SY THIRTY &30 
·CVTEN 
$A=&10 
·CV -TEN 
$FFFFFFF6=-$A=-&10 
·CV THIRTY, -TEN 
$14=&20 
·OF 2000 
·CV $123R 
$2123=&8483 
·CVTEN,OR 
$200A=&8202 

COMMENTS 

Command to convert decimal to hex 
Computer response 
Hex to decimal 

Negative numbers 

Adding an offset (second number's base defaults to first num
ber's) 

Subtracting an offset (forward displacement) 

Backward displacement 

Defining a symbolic decimal constant 

Command can be used with symbols 

Define a global offset 
'R' at the end of a number means add the global offset 

Symbolic relative 

3·15 



3.6.12 Upload, Download and Verify 

COMMAND FORMAT 

REad ; -CX =text 

DESCRIPTION 

Load'S' records·default PORT 2 
option -C means ignore checksum; 
option X means display data being read; 

LOAD 

if equal sign is used in this command line everything after it is sent 
to PORT 2 

VErify ; =text 

PUnch add. add. 
PU address count 

Verify memory with '5' records'print difference; verify does not use 
checksum 

Write'S' records between address range 
Write specified number of bytes where count < address 

NOTE 

These commands use the offset. No attempt is made to con· 
trol the host transmissions. For the REad and VErify, any line 
received not beginning with an '5' is ignored. If an error oc· 
curs causing the system to take the time to print out an error 
message, one or more lines sent during the error message 
may have been ignored. 

EXAMPLE COMMENTS 
(See example program on page 3·3) 

*READ ;=COPV FILE. MX,#CN Download from an EXORciser 
*DM 1000 10 Check to see if data was loaded 
001000 7001 7002 7003 7004 7005 4E F8 1000 FF FF p.p.p.p.p.N ..... 
*VERIFY ;=COPV FILE. MX,#CN Normal verify returns with prompt 
*SM 1005 FF Deliberately change memory to show verify 
*DM 1000 Verify that 03 was changed to FF 
001000 70 01 70 02 70 FF 70 04 70 05 4E F8 10 00 FF FF p.p.p.p.p.N ..... 
*VERIFY ;=COPV FILE. MX,#CN 
S1111000 03 Displays only nonmatching data bytes 
*RE ;=COPV FILE!. MX,#CN Example of file with bad character 
SIIII0007001700270/3700470054EF8100049 NOT HEX=/ 
*RE ;=COPV FILE2. MX,#CN Example of file with bad checksum 
SIIII000700170027003700470054EF8100039 CHKSUM=49 
*RE ;=COPV FILE. MX,#CN Normal read returns with prompt 
*PUNCH 1000 0 Print'S' records on console 
SOO 1 0000 FE Header 
S1111000700170027003700470054EF8100049 Data with address of 1000 
S9120000A4 End·of·file 
*OF 1000 Define a global offset 
*PUNCHOD,O 
SOOI0000FE 
SI110000700170027003700470054EF8100049 
S9120000A4 
*OF5423 
*RE ;=COPV FILE. MX,/lCN Download with offset 

Header 
Data with address at zero 
End·ot·file 

*DM 1000 Display memory, adds offset to parameters 
006423 70 01 70 02 70 03 70 04 70 05 4E Fa 10 00 FF FF p.p.p.p.p.N ..... 

3·16 



3.6.13 Configure Ports SET TERMINALS 

There are two serial ports numbered 1 and 2. The following commands 
may program a specific port or if a port number is not used in the 
command, both ports will be set by the cOl11T1and. 

For port commands shown below, '#' may be either 1 for PORT 1 (console), or 2 for PORT 2 (host). If 
the '#' field is left blank, the command applies to both ports. 

COMMAND FORMAT DESCRIPTION 

FO# 

NU# 
CR# 
TE# 

EXAMPLE 

*NU15 
*NU 

hex 

hex 
hex 
baud 

NU1=5 NU2=O 
*TE21200 
*NU 
NU1=5 NU2=3 
*CR 
CR1=O CR2=17 
*TE 2400 
·CR 
CR=2F 
*NU 
NU=7 
*NU8 
*NU 
NU=8 
*CR2 FF 

* 

FOrmat - initialize ACIA 
(default=$15 = 8 bit words, no parity, 1 stop bit and clock/16.) 

NUll pads; nulls sent after each character 
Carriage return null pads sent after each CR 
TErminal format; set NU and CR null parameters for TI 700 series ter· 

minals 

BAUD NU CR 

110 0 0 (default) 
300 0 4 

1200 3 $17 
2400 7 $2F 

NOTE 

The TE command does not change the hardware BAUD rate. 
Port BAUD rates are changed by swi tche s on the seri a 1 I/O board. 

COMMENTS 

Set character null padding on PORT #1 to 5 nulls 
Print out current NU parameters 
Zero is the default at system restart 
Set PORT #2 to 3 character nulls and $17 CR nulls 
Print null parameters. . . the NU and CR parameters for PORT #2 were set 

by the TE2 command 

Change both ports to 2400 baud null pattern 
Print the CR parameters 
If both ports have the same parameter, one number is printed 

Change null values for both ports 
When no port #specified, both ports are changed. 

Send $FF nulls to PORT 2 (host) after every carriage return, this is the max· 
imumvalue 

3·17 



3.6.14 The CALL Command and Adding Commands to MACSbug CALL 

There are two ways for the user to add commands. The simplest way is for the user to write the new 
command as a subroutine which ends with an RTS. The user can then use the CAli command. 

This command does not affect the user's registers and is not to be confused with the GO command. 
The user may use a symbol as the command parameter instead of an absolute starting address. Reg· 
isters A5 and A6 point to the start and end of the liD BUFFER (see RAM equate file listing, paragraph 
3.11) so the user may pass additional parameters on the command line. 

COMMAND FORMAT 

CAli address 

EXAMPLE 

·CALL 3000 23 45 ZZ 

·SY FIXUP 2300 
·CALLFIXUP 

DESCRIPTION 

JSR to user subroutine, routine ends with RTS 

COMMENTS 

JSR to user routine at location 3000 
note that 23 45 & ZZ may be additional parameters that the 
user's subroutine will decode and are ignored by MACSbug 

Define a symbol as absolute address 2300 
JSR to symbolic address 

The second method of adding commands involves MACSbug's command table. There is a RAM loca· 
tion CMDTABLE that is MACSbug's pointer to the start of the command table. The user may wish to 
copy this table into RAM, add his own commands or change the names of the existing ones, and 
change CMDTABLE to point to the new table. 

The format of the table is very simple. Each command occupies six bytes in the table. The first two 
bytes are the command name and the next four bytes are the starting address of the code. The com· 
mands are not subroutines and all end by reentering the command decoder routine. The last entry in 
the table has $FFFF as the two byte name. 

There are two special characters that may be used in the name field. The '@' means that the com· 
mand must contain an ASCII digit from 0 to 7 in that character position. The'·' is a wild character that 
will match anything. For example, the use of the wild character '.' must follow after and not before a 
similar command, such as 'TE' then 'T·'in the table. 

3-18 



3.6.15 Transparent Mode and Host Communication TRANSPARENT 

COMMAND FORMAT 

P2 

(control A) 

* ... data ... 

EXAMPLES 

MACSBUG 1.0 
*P2 

*TRANSPARENT* 

DESCRIPTION 

Enter transparent mode: 
Transparent mode sends all characters typed at the terminal to the 

host computer. All transmissions from the host are typed on the 
local terminal. For this mode to work properly, the BAUD rate of 
the host connection MUST be slower than than the terminal. 
Control ·A' ends the transparent mode 

Asterisk, '*', as the first character of the console input buffer means 
transmit the rest of the buffer to the host (PORT2), the BAUD rates 
DO NOT have to be the same 

COMMENTS 

Start up or reset condition 
Command to enter transoarent mode 
(NOTE: the BAUD rate of the host must be slower than the terminal) 
MACSbug prints this 

User talks directly to the host uses the editor, assembler, etc. 

(CONTROL A) 

*MACSBUG* 

**MAID 
**E800;G 

Ends the transparent mode 

MACSbug prints this and system is ready for new command 

System prompts with '.' and user enters ·*MAID' 
(NOTE: the BAUD rates DO NOT have to be the same) 

3·19 



3.7 1/0 SPECIFICATIONS 

Provision has been made for the user to substitute his own 1/0 routines and direct the 1/0 for some 
commands to these routines. There are three pairs of locations in RAM that hold the addresses of the 
1/0 routines. (See paragraph 3.11 on the equate file of RAM locations used by MACSbug.) They are 
initialized when the system is reset to contain the addresses of the default ACIA routines in ROM. 

INPORTI and OUTPORTI are defaulted to ACIA #1 (PORT 1) which is the system console. The system 
prompt, command entry, all error messages, and all other unassigned 1/0 use these addresses to find 
the 1/0 routines. Most commands do .not need a port specifier to use PORT l. The REad and VErify 
commands, however. default to PORT 2. 

INPORT2 and OUTPORT2 are defaulted to ACIA #2 (PORT 2) which is the host system (an EXORciser 
or timesharing system, etc.). Output or input is directed to this port by including a port specifier in 
the command field of the command line. 

For example: ·PU2 1000 50 

The 2 in the command PU2 specifies that the addresses for the 1/0 routines will be found in the RAM 
locations INPUT2 and OUTPUT2. Error messages, however, will be printed on PORT 1 - the system 
console. 

INPORT3 and OUTPORT3 are initialized to the same routine addresses as PORT 1 when the system is 
reset The user can insert the addresses of his own 1/0 routines into these locations. 1/0 can then be 
directed to his configuration by using a 3 in the command field. 

EXAMPLES OF COMMANDS WITH PORT SPECIFIERS: 

·READ3; -C 
·VERIFYI 
·PUNCH25ooo 10 
*DM2508O 

Memory load from PORT 3; checksum ignored 
Verify memory with 'S' records coming in from PORT 1 
Send tape image 'S' records to PORT 2 
Display memory sending output to PORT 2 

3-20 



3.8 USER 1/0 THROUGH TRAP 15 

Format in user program: 

TRAP 15 
DC. W #function 

Function # 

o 
1 
2 
3 
4 

EXAMPLE PROGRAM: 

00002000 
002000 2E7COOOO4oo0 
002006 2A7COOOO201C 
oo200c 2C4D 

oo2ooE 4E4F 
00210 0001 

002012 4E4F 
002014 0002 

002016 4E4F 
002018 0000 
oo201A 6OE4 

oo201C 0200 

oo221C 53 
002228 42 

00002234 
00000570 

000570 0000221C 

Call to MACSbug trap handler 
Valid functions listed below. 
Program resumes with next instruction. 

Destination Function Buffer 

PORT1 console 
PORTI console 
PORT2 host 
PORT2 host 

Coded Breakpoint 
Input line 
Output line 
Read line 
Print line 

A5=A6 is start of buffer. 
A5 to A6·1 is buffer. 
A5=A6 is start of buffer. 
A5 to A6·1 is buffer. 

• 
• TEST OF TRAP 15 USER 1/0 
• 

ORG $2000 PROGRAM STARTS HERE 
START MOVE.L #$4000,A7 INITIAUZE STACK 

MOVE.L #BUFFER,A5 FIX UP A5 & A6 FOR I/O 
MOVE.L A5,A6 

• 
TRAP 15 INPUT BUFFER FROM CONSOLE 
DC.W#1 

• 
TRAP 15 PRINT BUFFER TO CONSOLE 
OC.W#2 

• 
TRAP 15 STOP HERE LIKE BREAKPOINT 
OC.W#O 
BRA START DO IT AGAIN 

• 
BUFFER DS.L 128 THIS IS THE 1/0 BUFFER 
• 
• EXAMPLE OF HOW TO PUT SYMBOLS IN SYMBOL TABLE 
• (SEE RAM EQUATE FILE FOR EXACT VALUE OF STRSYM) 
• 
SYMB OC.L'START ',START 

OC.L 'SUFFER ',SUFFER 
SYMBE EQU· 

ORGSTRSYM MACSBUG'S POINTERS TO 
OC.L SYMB,SYMBE START/ENDOFTABLE 
END 

3·21 



3.9 GENERAL INFORMATION 

The trace display print routine has a CRT screen control feature. There are two four byte parameters, 
SCREENI and SCREEN2, that are listed in the RAM equate file. These parameters are normally null 
but the user may set them to appropriate values for his particular brand of CRT. The four bytes of 
SCREENI are printed before the trace display and the four bytes of 5CREEN2 are printed after the 
display. Motorola EXQRterms use a $CO to 'home' the cursor. If this is put in 5CREENl, it will give the 
effect of a stationary trace display. 

TRAP ERROR is the general message given when an unexpected trap occurs. Nearly all of the low vec
tors including the user traps, interrupts, divide by zero, etc. are initialized during the reset to point to 
this simple error routine. No attempt is made to decipher which trap happened, but the user's regis· 
ters are saved. The system usually retrieves the right program counter from the supervisor stack but 
some exception traps push additional information on to the stack and the system will get the pro· 
gram counter from the wrong place. It is recommended that the user's program reinitialize all unused 
vectors to his own error handler. 

The REad command may have problems in some configurations. No attempt is made to control the 
equipment sending the information. When the system recognizes the end of a line it must process 
the buffer fast enough to be able to capture the first character of the next line. Normally the system 
can download from an EXORciser at 9600 BAUD. If the system is having problems, it might be worth· 
while to experiment with lower BAUD rates. 

The REad and PUnch used with cassette systems may also have speed problems. Typically the 
cassette can record faster than the console can print The user may have to switch null padding 

. profiles with the TErminal command when recording or reading a tape. 

When sending data to the printer with the DM2 or PU2 type commands, additional nulls may be reo 
Quired after each carriage return. The maximum number of nulls is 255 with the CR2 $FF command. 
With high BAUD rates and slow printers. even this may not be enough. The BAUD rate may have to be 
set down in some situations. A 6800 assembly language program is provided in paragraph 3.12 for 
use with EXORciser host systems-that want to use the printer. 

·The REad routine DOES NOT protect any memory locations. The routine will not protect itself from 
programs trying to overlay the I/O buffer. This will, of course. lead to errors during the download. Any 
location in memory can be loaded into, including MACSbug's RAM area. This allows the user to initial· 
ize such locations as the starting and ending address of the symbol table. An example of this is given 
with program listing in paragraph 3.8 on User liD through TRAP 15. All the registers may be 
initialized except the program counter which takes its address from the 58 or S9 record. 

The REad and PUnch commands support the normal SQ, 51, and S9 record formats. Two new formats 
have been added to handle three byte addresses. The 52 record is the new data record, exactly the 
same as the 51 except for an extra address byte. The 58 is the upgraded version of the 59. 

TRAP 15 is used by both the user liD feature and breakpoints. When the program is running, the 
address of the breakpoint routine is normally in the TRAP 15 vector. When program execution is 
stopped, the liD routine address is normally inserted into TRAP 15 vector. If 1/0 is not needed in the 
program, the user may change the vector with the SM command. If breakpoints are not needed, the 
program may change the vector while the program is running. It is recommended, however, that the 
user should use the other 15 vectors (or other programming techniques) and let MACSbug control 
TRAP 15. 

*NOTE: this is an excerpt from a MOTOROLA document, but is still 
applicable to our version of MACSBUG*. 

3·22 



The LOOP feature suppresses the printing of the trace display in a given address range. This feature 
uses two RAM parameters, LOOPRI and LOOPR2, whose locations are listed in the equate file (para· 
graph 3.11). These locations can be set with the SM command and displayed with the OM command. 
The trace display routine will check these locations to see if the program counter is within the range. 
The routine will always print the display whenever it hits a breakpoint with a count, or the program 
stops due to a breakpoint, or counts down to the end of a trace. 

3.10 MACSbug RAM MEMORY MAP 

MACSbug RAM MACSbug RAM 

• .. RESET .. SSP ........ 0 400 REGISTERS 
• .. RESET .. PC ......... 4 PCSR 

.. BUS ERROR ......... 8 00·07 

.. ILL .. ADD ........... C AO·A7 

.. ILL .. INST .......... 10 USSS 

.. DIVZERO ........... 14 
CHK ................ 18 WINDOWS 
TRAP V ............. 1C 
PRIV INS ............ 20 BREAKPOINT 
TRACE ............. 24 ADDRESSES 

.. EML 1010 ........... 28 

.. EML 1111 ........... 2C BREAKPOINT 
CONTENTS 

SPURIOUS 60 
LEVEL 1 64 WORK RAM 
LEVEL 2 68 

etc. 57C 1/0 BUFFER 
LEVEL 7 7C VVV 
TRAP 0 80 
TRAP 1 84 1\/\/\ 

etc. 6B8 STACK 
TRAP 15 BC 

DEFAULT 
USER INTER. 100 SYMBOL 

etc. TABLE 
3FF 6SA VVV 

·NOTE: RESET SSP,PC are actually stored in ROM at addresses 20000 and 20004. 

3·23 



Warranty and Service 
Dual Systems Control Corporation guarantees its products, under 
normal use and service as described in the manufacturer's product 
literature, free from defects in material and workmanship. for a 
period of one year from date of shipment. This warranty is limited to 
the repair or replacement of the product. or any part of the product 
found to be defective at the manufacturer's factory, when retume9 

DUAL SYSTEMS CONTROL CORPORATION 

720 Channing Way • Berkeley, CA 94710 

to Dual Systems Control Corporation, transportation charges pre
paid by customer. This warranty does not apply to any eqUipment 
that has been repaired or altered, except by Dual Systems Control 
Corporation, or which has been misused or damaged by accident. 
In no case shall the manufacturer's liability exceed the original cost 
of the product. 

system reliability/system integrity 


