	APPLIC	CATION		REVISIONS						
_	NEXT ASSY	- USED ON	REV.	DESCRIPTION	DATE	APPROVED				
·			•	•	•					

DATA TECHNOLOGY CORPORATION

DTC510 CONTROLLER SPECIFICATION

PRELIMINARY

June 5, 1981

PROMS WD11*

UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES TOLERANCES ARE: FRACTIONS DECIMALS ANGLES ±	CONTRACT NO.		DIC Data Technology Corporation					:
± .XX± ± .XXX±	APPROVALS DRAWN	DATE				DTC510		
FINISH	CHECKED		size	FSCM NO.	DWG. NO.			REV.
DO NOT SCALE DRAWING			SCAL	E			SHEET	

DTC510 SPEC REVISION RECORD

Revision	Description								
1/16/81	Chg Shugart Tech. to Seagate Tech.; correct section 7.9;								
· · · · · · · · · · · · · · · · · · ·	add Appendices B & C								
1/21/81	Changes or corrections to pages 8, 11, 12, 13, 15, 17, 18								
6/5/81	Revision to section 4.4.2								

Ż

	SIZE	FSCM NO.	DWG. NO.		REV.
DRAWN	A		•	· · ·	
ISSUED	SCAL	E		SHEET	

- 3

TABLE OF CONTENTS

1.0 Introduction

톬

DWG. NO

ai,

- 2.0 DTC510 Controller
 - 2.1 Features
 - 2.2 System Configuration
 - 2.3 Theory of Operation
- 3.0 Host Bus
 - 3.1 Signal Definitions
 - 3.2 Theory of Operation
- 4.0 Commands/Programming
 - 4.1 Command Format
 - 4.2 Status Format
 - 4.3 Logical Address
 - 4.4 Error Code Descriptions
- 5.0 Electrical/Mechanical Specifications
- 6.0 Diagnostic Philosophy
 - 6.1 Error Indicators
 - 6.2 Additional Microdiagnostics (Optional)
- 7.0 Sector Format

APPENDIX A Host I/O Pin Assignment APPENDIX B DTC-510 Controller Power Connections APPENDIX C Parity Jumper Settings

-16-3 ₁₄	DRAWN		FSCM NO.	DWG. NO.				REV.
	ISSUED	SCA	LE			SHEET	1	.

1.0 INTRODUCTION

The DTC510 Controller consists of a microprocessor-based controller with on-board data separator logic, and is able to control a maximum of two Seagate Technology ST506 fixed disk drives, or equivalent.

Commands are issued to the controller over a bidirectional bus connected to the host computer. The data separator/"serdes" logic serializes bytes and converts to MFM data, and deserializes MFM data into 8-bit bytes.

Due to the microprogrammed approach utilized in the controller, extensive diagnostic capabilities are implemented. This methodology increases fault isolation efficiency and reduces system down time. Error detection and correction will tolerate media imperfections up to 4-bit burst errors.

2.0 DTC510 Controller

2.1 Features

2.1.1 The capabilities supplied as standard with the DTC510 are listed below:

AUTOMATIC SEEK AND VERIFY A seek command is implied in every data transfer command (READ, WRITE, CHECK, etc.). If the heads are not positioned over the correct cylinder, a seek is initiated, and a cylinder verification is performed after the seek completes.

FAULT DETECTION

Two classes of faults are flagged to improve error handling:

* Controller faults
* Disk faults

	SIZE	FSCM NO.	DWG.	NO.	•		REV.
DRAWN					at the second second second		
ISSUED	SCAL	.E			SHEET	2	

AUTOMATIC HEAD AND CYLINDER SWITCHING

DATA ERROR SENSING AND CORRECTION

Ż

DWG.

If during a multi-block data transfer the end of a track is reached, the controller automatically switches to the next track. If the end of a cylinder is reached, the controller issues a seek and resumes the transfer.

If a data error is detected during a disk data transfer, the controller indicates whether or not it is correctable. If correctable, either a pointer and mask can be requested by the host for applying the correction or the error can be automatically corrected.

LOGICAL TO PHYSICAL DRIVE CORRELATION

ON BOARD SECTOR BUFFER

EFFICIENT HOST INTERFACE PROTOCOL

SECTOR INTERLEAVE

ODD PARITY

FIXED SECTOR SIZE

NUMBER OF DRIVES Logical unit numbers (LUN's) are independent of physical port numbers. All accesses specify LUN's.

A sector buffer is provided on the controller to eliminate the possibility of data overruns during a data transfer.

A bidirectional bus between the controller and host provides a simple yet efficient communication path. In addition, a high level command set permits effective command initiation.

Sector interleaving is programmable with up to 16 way interleave.

The 8 data bits on the interface bus can have odd parity. Depending on user preference, parity can be disabled.

The sector size is fixed at 256 bytes of data.

The controller will connect to a maximum of two (2) ST506 drives.

	DRAWN	SIZE FSCM NO. DWG. NO.	
	ISSUED	SCALE	SHEET
-			

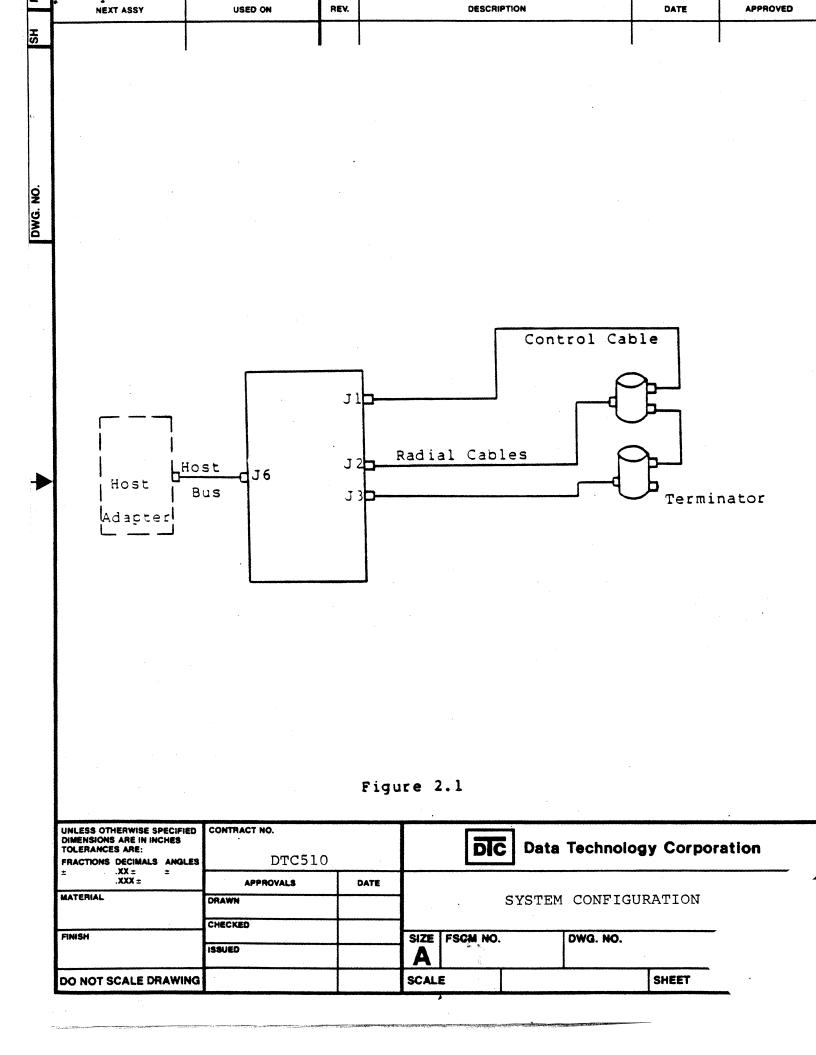
2.2 System Configuration

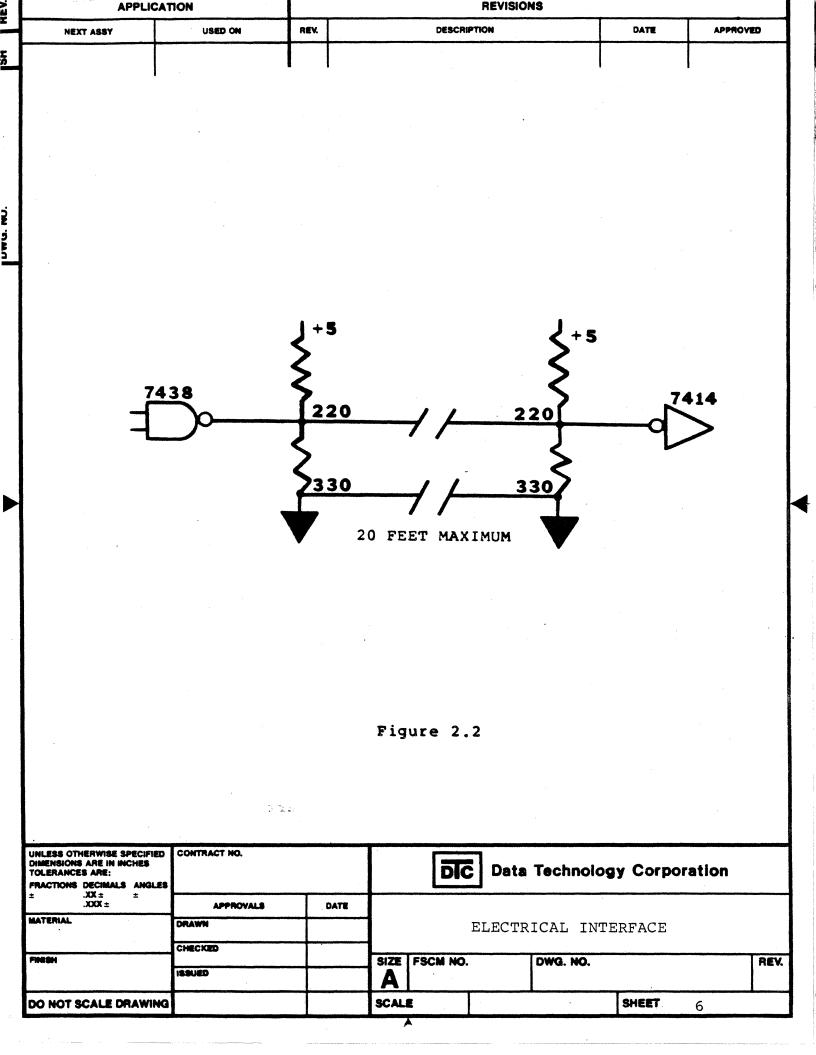
The controller and data separator comprise a single PCB. A maximum of two (2) drives may be connected as shown in Fig. 2.1.

2.3 Theory of Operation

Disk commands are issued to the DTC510 via the host bus following a defined protocol. The host initiates a command sequence by selecting the controller on the bus. If the controller is not busy, it requests command bytes from the host for task execution. (Command structure is described in Section 4.0). Depending on the type of command, the controller will request up to 10 bytes. Upon reception of the last command byte, the controller begins execution of the command.

For the data transfer commands, a check is performed on the disk address and status flagged if it exceeds the drive limits. The data is stored in a sector buffer before transfer to the host or disk drive. This buffer eliminates any possibility of data overruns between the host and the disk.


Upon completion of the command, the controller will send completion status to the host. (Further delineation of the completion status may be requested by issuing the appropriate sense commands.)


Odd parity is generated by the DTC510 for all information that it puts on the I/O bus. If enabled, the DTC510 flags all information that it receives with bad parity.

2.3.1 Electrical Interface

The electrical interface to the ST506 will conform to the requirements described in the ST506 interface specification. The electrical interface to the DTC510 Host Bus is shown in Fig. 2.2.

DRAWN	Å	FSCM NO.	DWG. NO.			REV.
ISSUED	SCAL	E		SHEET	4	

3.0 DTC510 HOST BUS

The DTC510 Host Bus is a negative-logic, bidirectional 8-bit data bus utilizing odd parity. The electrical interface consists of an open collector bus terminated on each end by a 220/330 ohm resistor network. The controller regulates transfers across the bus which eliminates data overruns that could occur during data transfers.

The term "asserted" means that the signal on the host bus is between OV and 0.8V. The term "deasserted" means that the signal on the host bus is between 2.5V and 3.5V (Negative or Low True logic).

3.1 Signal Definition

DWG. NO.

3.1.1 Unidirectonal Signals Driven By Controller

I/0

Input/Output

When asserted, the data on the bus is driven by the controller. When deasserted, the data on the bus is driven by the host adapter. The host adapter will use this line to enable its drivers onto the data bus.

C/D

Command/Data

When asserted, the data transmitted across the bus will be the command bytes. When deasserted, the data will be the disk data bytes.

BUSY This bit is asserted as a response to the SEL line from the host adapter and to indicate that the host bus is currently in use.

MSG Message

When asserted, indicates that the command is completed. This bit is always followed with the assertion of I/O, and the assertion of REQ.

REQ

Request

This bit operates in conjunction with I/O, C/D, & MSG. When asserted and I/O is asserted, REQ will mean that the data on the host bus is driven by the controller. When asserted and I/O is deasserted, REQ will mean that the data is driven by the host adapter (H/A).

DRAWN	SIZE			DWG. NO.			
ISSUED	SCALE				SHEET	\mathbf{i}	
		Å				7	7

1/0	C/D	MSG		Meaning
đ	a	d	G	et command from H/A
đ	đ	đ	G	et data from H/A
a	đ	đ	S	end data to H/A
a	a	đ		end status byte to H/A
a	a	a	C	ommand done to H/A
a =	asse	rted,	d = d	easserted

3.1.2 Unidirectional Signals Driven By Host Adapter

ACK

Acknowledge

This bit is asserted as a response to REQ from the controller. The timing requirements on this signal with respect to the data is described in REQuest section. ACK must be returned for each REQ assertion.

RST Reset

When asserted, this bit forces the controller to the beginning of its microcode. Any error status request will result in invalid information after RST has been asserted. All signals to the drives are deasserted. RST must be asserted for a minimum of 250ns and a maximum of 10us.

SEL

Select

When asserted, indicates the beginning of the command transaction. The H/A asserts SEL to gain the attention of the controller. A data bit on the host host bus must also be asserted during SEL time to determine which controller is selected. SEL must not be asserted on the host bus before the data bit. The controller will return BUSY within lus. After the assertion of BUSY, the H/A will deassert SEL.

DRAWN	SIZE FSCM N	DWG. NO.	DWG. NO.			
ISSUED	SCALE		SHEET	8		

3.1.3 Bidirectional Data

S

Ż

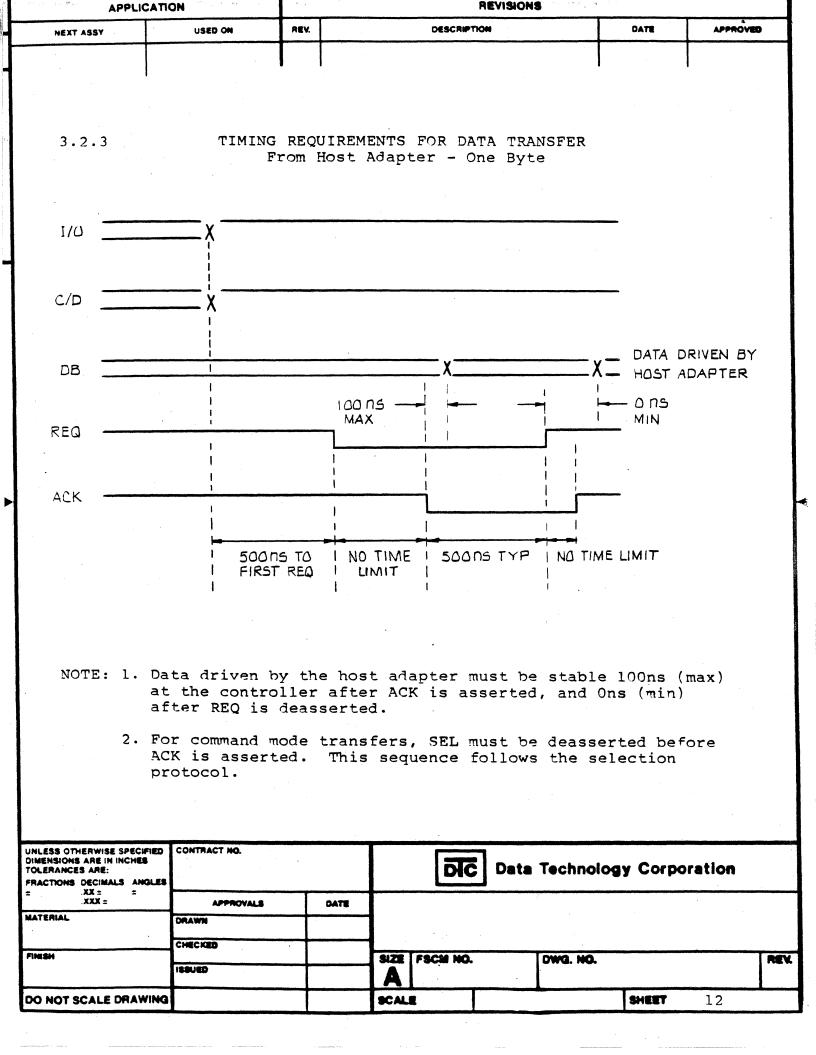
DWG.

3.2 Theory of Operation

Whenever the host adapter has a command for the controller, it performs a selection sequence to gain the attention of the controller. The sequence is as follows:

The host adapter asserts SEL and DBO (controller address bit) on the host bus. It then waits for the controller to respond with BUSY. Upon reception of BUSY, the H/A deasserts SEL. The controller now has control of the host bus.

After the controller asserts BUSY, it then asserts C/D (to indicate command mode transfer), and deasserts I/O (to indicate output from the host adapter) to fetch the command bytes from the H/A. The command bytes are transferred over the host bus with the REQ/ACK handshake protocol until all command bytes are transferred to the controller. (The command byte fetch mode ends after the last REQ pulse from the controller is deasserted.)


For data transfer, the controller deasserts the C/D line to indicate data mode. Depending on the command type (read/write disk), the I/O bit on the host bus is asserted or deasserted by the controller, and the data is transferred (one byte at a time) with the same REQ/ACK handshake protocol. After all the data bytes have been transferred, a completion status is placed on the data bus by the controller - C/D and I/O are asserted. REQ is asserted and the controller waits for ACK from the host adapter. After the status byte transfer, the controller places zeros on the data bus and asserts C/D, I/O and MSG along with REQ to indicate to the host that the command is complete (this action can be used to generate an interrupt on the host system). After the H/A responds with ACK, the controller deasserts REQ, BUSY and all other lines. This completes the command execution and the controller is now ready to be selected for the next command.

DRAWN	SIZE A	FSCM NO.	DWG.	NO.			REV.
ISSUED	SCAL	E			SHEET	9	

NEXT ASSY					
NEXT ASST	USED ON	REV.	DESCRIPTION	DATE	APPROVED
		~~~~~~~			
3.2.1	TIMING RE	QUIREM	IENTS FOR CONTROLLER SELECT	I'I'ON	
				•	
			· · · · · ·		
SEL -				and and a second se	
BUSY	<u> </u>				
	1	ļ			
		I			
	· •	E.			
DB0 —	· · · · · · · · · · · · · · · · · · ·				
		1			
	<b>⊨</b>		<b>&gt;</b>		
	100 nS MAX   11	SINGI	TIME LIMIT		
• •		.5   NO 1			
• •		.5   NO 1			
	Idd ns MAX	<u>.5   NO 1</u>	TIME LIMIT		
		÷		ill assert B	REQ.
		÷	d before the controller w	ill assert B	REQ.
		÷		ill assert H	REQ.
		÷		ill assert P	REQ.
		÷		ill assert F	REQ.
		÷		ill assert H	REQ.
		÷		ill assert H	REQ.
		÷		ill assert H	REQ.
		÷		ill assert H	REQ.
NOTE : S	EL must be dea	÷		ill assert A	REQ.
NOTE: S ESS OTHERWISE SPECI INSIONS ARE IN INCHES ERANCES ARE:	EL must be dea	÷	ed before the controller w	ill assert f	
NOTE: S ESS OTHERWISE SPECI ENSIONS ARE IN INCHES ERANCES ARE: CTIONS DECIMALS AN XX = =	EL must be dea	sserte	ed before the controller with the controller with the control of t		
NOTE: S ESS OTHERWISE SPECI ENSIONS ARE IN INCHES ERANCES ARE: CTIONS DECIMALS AN .XX = = .XXX =	EL must be dea	sserte	ed before the controller w		
NOTE: S ESS OTHERWISE SPECI INSIONS ARE IN INCHES ERANCES ARE: CTIONS DECIMALS AN .XX = = .XXX =	EL must be dea	sserte	ed before the controller with the controller with the control of t		
NOTE: S ESS OTHERWISE SPECI ENSIONS ARE IN INCHES ERANCES ARE: CTIONS DECIMALS AN .XX = .XXX = ERIAL	EL must be dea	sserte	ed before the controller with the controller with the control of t	ology Corpora	tion
NOTE: S ESS OTHERWISE SPECI ENSIONS ARE IN INCHES ERANCES ARE: CTIONS DECIMALS AN XX = =	EL must be dea	sserte	ed before the controller with the controller with the controller with the controller with the control of the co	ology Corpora	

▶

NEXT	AFFLICA	TION		<b></b>				EVISION	•		· · · · ·	· ·	
	ASSY	U <b>S</b> I	ED ON	REV.			DESCRIPTIO	N		DA		APPROVE	D
		•		1									
	1												
					i.								
3.2	2.2		TIMING			er - 1							
			10				IPICU		-				
						2							
		v											
· 1/0		^							مى مەربىرىكى بىلىك چرىچى <del>ب</del> ىلىك				
									an a				
C/C	)	X											
		1											
										ΠΔΤΔ	DRIV	(EN	
DB			X						$X \equiv$			ALLER	
		1	4					. 1	4				
				ons			10	onsi	1				
REG			1° N	11N	) )			MIN I	i				
		1			L			J					
		Í			1			1					
ACK	<u> </u>				1 	]		1					
		1			l			1	!				
			•		/ /								
		i	500 ns	TΔ	NO TI	MEL	500 ns		NO TI				
			CIDCT D	EO	1 1124			TYP		ME LIMI	Г		
			FIRST R	EQ	LIM	IT I		TYP     		MELIMI	Г		
	· · ·		FIRST R	EQ	I LIM	IT I		     		MELIMI	T .		
NO	TE: 1. F	for St	FIRST R	EQ	<b>I -</b> <i>i</i>						Ţ		
NO	TE: 1. F d	leasse	FIRST R atus By rted),	EQ te T or I	 ransfe nterru	er (I/(	), C/D ce Tra	 asse nsfer	rted (MSC	& MSG ; I/O,	c/c		
NO	đ	leasse assert	FIRST R atus By rted), ed), RE	EQ te T or I Q is	ransfe nterru assei	IT   	), C/D ce Tra )Ons (	asse nsfer typic	rted (MSC	& MSG ; I/O,	c/c	)	
NO	đ	leasse assert	FIRST R atus By rted),	EQ te T or I Q is	ransfe nterru assei	IT   	), C/D ce Tra )Ons (	asse nsfer typic	rted (MSC	& MSG ; I/O,	c/c	)	
NO	d a a 2.	leasse assert assert Data	FIRST R atus By rted), ed), RE ion of driven	EQ te T or I Q is any c by t	ransfenterru assen of the	er (I/C pt By ted 50 above atrolle	), C/D ce Tra )Ons ( e bits er is	asse nsfer typic • stabl	rted (MSC al) a e 100	& MSG ; I/O, lfter t Ons mir	C/D the	the	
NO	d a a 2.	leasse assert assert Data host	FIRST R atus By rted), ed), RE ion of driven adapter	EQ te T or I Q is any by t end	ransfenterru assen of the he com	er (I/ pt By ted 5 above ntrolle	), C/D ce Tra )Ons ( e bits er is	asse nsfer typic • stabl	rted (MSC al) a e 100	& MSG ; I/O, lfter t Ons mir	C/D the	the	
NO	d a a 2.	leasse assert assert Data host	FIRST R atus By rted), ed), RE ion of driven	EQ te T or I Q is any by t end	ransfenterru assen of the he com	er (I/ pt By ted 5 above ntrolle	), C/D ce Tra )Ons ( e bits er is	asse nsfer typic • stabl	rted (MSC al) a e 100	& MSG ; I/O, lfter t Ons mir	C/D the	the	
NO	d a a 2.	leasse assert assert Data host	FIRST R atus By rted), ed), RE ion of driven adapter	EQ te T or I Q is any by t end	ransfenterru assen of the he com	er (I/ pt By ted 5 above ntrolle	), C/D ce Tra )Ons ( e bits er is	asse nsfer typic • stabl	rted (MSC al) a e 100	& MSG ; I/O, lfter t Ons mir	C/D the	the	
NO	d a a 2.	leasse assert assert Data host	FIRST R atus By rted), ed), RE ion of driven adapter	EQ te T or I Q is any by t end	ransfenterru assen of the he com	er (I/ pt By ted 5 above ntrolle	), C/D ce Tra )Ons ( e bits er is	asse nsfer typic • stabl	rted (MSC al) a e 100	& MSG ; I/O, lfter t Ons mir	C/D the	the	
	d a a 2.	leasse assert Data host after	FIRST R atus By rted), ed), RE ion of driven adapter REQ is	EQ te T or I Q is any by t end	ransfenterru assen of the he com	er (I/ pt By ted 5 above ntrolle	), C/D ce Tra )Ons ( e bits er is	asse nsfer typic • stabl	rted (MSC al) a e 100	& MSG ; I/O, lfter t Ons mir	C/D the	the	
UNLESS OT	d a 2 . 2 .	leasse assert Data host after	FIRST R atus By rted), ed), RE ion of driven adapter REQ is	EQ te T or I Q is any by t end	ransfenterru assen of the he com	er (I/ pt By ted 5 above ntrolle	), C/D ce Tra )Ons ( e bits er is is as	asse nsfer typic • stabl serte	rted (MSC al) a e 100 d, ar	& MSG ; I/O, lfter t Ons min d 100n	C/E the h at hs mi	the n	
UNLESS OTP DIMENSIONS TOLERANCE FRACTIONS	HERWISE SPECIFIE ARE IN INCHES SARE IN INCHES DECIMALS ANGLI XX = =	Data host after	FIRST R atus By rted), ed), RE ion of driven adapter REQ is	EQ te T or I Q is any by t end	ransfenterru assen of the he com	er (I/ pt By ted 5 above ntrolle	), C/D ce Tra )Ons ( e bits er is	asse nsfer typic • stabl serte	rted (MSC al) a e 100 d, ar	& MSG ; I/O, lfter t Ons mir	C/E the h at hs mi	the n	
UNLESS OTF DIMENSIONS TOLERANCE FRACTIONS	d a a a 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 .	Data host after	FIRST R atus By rted), ed), RE ion of driven adapter REQ is	EQ te T or I Q is any by t end	ransfenterru assen of the he com	er (I/ pt By ted 5 above ntrolle	), C/D ce Tra )Ons ( e bits er is is as	asse nsfer typic • stabl serte	rted (MSC al) a e 100 d, ar	& MSG ; I/O, lfter t Ons min d 100n	C/E the h at hs mi	the n	
UNLESS OTP DIMENSIONS TOLERANCE FRACTIONS	HERWISE SPECIFIE ARE IN INCHES SARE IN INCHES DECIMALS ANGLI XX = =	Data host after	FIRST R atus By rted), ed), RE ion of driven adapter REQ is	EQ te T or I Q is any by t end	ransfe nterru assen of the he con befon sserte	er (I/ pt By ted 5 above ntrolle	), C/D ce Tra )Ons ( e bits er is is as	asse nsfer typic • stabl serte	rted (MSC al) a e 100 d, ar	& MSG ; I/O, lfter t Ons min d 100n	C/E the h at hs mi	the n	
UNLESS OTF DIMENSIONS TOLERANCE FRACTIONS	HERWISE SPECIFIE ARE IN INCHES SARE IN INCHES DECIMALS ANGLI XX = =	Data host after	FIRST R atus By rted), ed), RE ion of driven adapter REQ is	EQ te T or I Q is any by t end	ransfe nterru assen of the he con befon sserte	er (I/C upt By ted 50 above ntrolle re REQ ed.	D, C/D ce Tra Oons ( e bits er is is as	asse nsfer typic • stabl serte	rted (MSC al) a e 100 d, ar	& MSG , I/O, after t Ons min ad 100n	C/E the h at hs mi	the n	
UNLESS OT DIMENSIONS TOLERANCE FRACTIONS = MATERIAL	HERWISE SPECIFIE ARE IN INCHES SARE IN INCHES DECIMALS ANGLI XX = =	Data host after	FIRST R atus By rted), ed), RE ion of driven adapter REQ is	EQ te T or I Q is any by t end	ransfe nterru assen of the he con befon sserte	er (I/ pt By ted 5 above ntrolle	D, C/D ce Tra Oons ( e bits er is is as	asse nsfer typic • stabl serte	rted (MSC al) a e 100 d, ar	& MSG , I/O, after t Ons min ad 100n	C/E the h at hs mi	the n	



#### 4.0 COMMANDS

5

ġ

DWG.

An I/O request to a disk drive is performed by passing a command descriptor block (CDB) to the controller. The first byte of a CDB is the command class and opcode. The remaining bytes specify the drive logical unit number (LUN), block address, control bytes, number of blocks to transfer or the destination device ID. The controller performs an implied seek and verify when required to access a block.

Commands are categorized into three classes as indicated:

<u>Class O</u>	-	Non-data Transfer, Data Transfer and Status Commands
		commands
Class l	-	Disk Copy Commands
Class 2-6		
Class 7	-	Diagnostic Commands

The command descriptor blocks in Command Class 0 and 7 are 6 bytes long. and those in Class 1 are 10 bytes long.

#### Command Description (Class 0)

Opcode Description (Hex)

- 00 Test drive ready. Selects the drive and verifies drive ready.
- 01 Recalibrate. Positions the R/W arm to Track00, clears possible error status in the drive.
  - Request Syndrome. Returns the offset and syndrome for data field error correction. The two bytes are as follows:

Byte

0

7	1	6		5		4	1	3	1	2		1	1	0
			M	.s	. I	317	с (	OFI	TS1	ET	( 8	3)		
_	S. DFE	_		г — -		<b>.</b>		5	SYI	NDI	ROI	ЧE	<b></b> ·	

The bit offset is relative from the first data bit, i.e., Bit 7 of Byte 0.

03

04

Request Sense. This command must be issued immediately after an error. It returns 4 bytes of drive and controller sense for the specified LUN (see copy block for exception).

Format Drive. Formats all blocks with ID field according to interleave factor and data fields. The data field contains 6C Hex.

DRAWN	SIZE A	FSCM NO.	DWG. NO.			REV.
ISSUED	SCAL	£		SHEET	13	

02

- 05 Check Track Format. Checks format on the specified track for correct ID and interleave. Does not read the data field.
- 06 Format Track. Formats the specified track with bad block flag cleared in all blocks of that track. Writes 6C Hex in the data fields.
- 07 Format Bad Track (bad block flag). Formats the specified track with bad block flag set in the ID fields. Writes 6C Hex in the data fields.
- 08 Read. Reads the specified number of blocks starting from initial block address given in the CDB.
- OA Write. Writes the specified number of blocks starting from initial block address given in the CDB.
- OB Seek. Initiates seek to specified block and immediately returns completion status before the seek is complete for those drives capable of overlap seek.

#### Command Description (Class7)

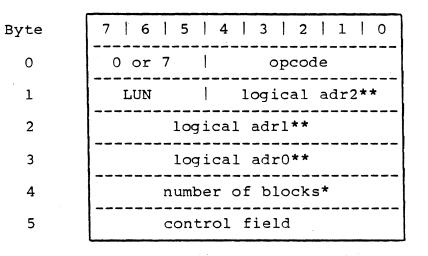
Opcode Description (Hex)

In

g

DWG.

- 00 RAM Diagnostic. Performs a data pattern test on the RAM buffer.
- 01 Write ECC. Displaces data on the disk by three bytes so that the ECC bytes can be written from the data specified. Used to verify the ECC logic.
- 02 Read ID. Transfers the cylinder, head, sector and 3 ECC bytes for the specified block ID field.


03 Drive Diagnostic 0. Performs a drive diagnostic. Reads Sector 0 on all cylinders sequentially. Reads Sector 0 on 256 random cylinders.

DRAWN	SIZE	FSCM NO.	DWG. NO.			REV.
ISSUED	SCAL	E		SHEET	14	

#### 4.1 Command Format

DWG. NO

#### 4.1.1 Class 0 & 7 Commands



*Interleave factor for Format, Check Track, and Read ID commands. **Refer to section 4.3 Logical Address.

The control field is defined as follows:

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | spare (set to zero) | | | | | ------ disable data error correction ------ disable retry

### Commands in this group

a) NOP

- b) Format Drive
- c) Check Format
- d) Request Sense
- e) Request Syndrome
- f) Recalibrate
- g) Read Block(s)
- h) Read ID
- i) Write Block(s)
- j) Format Track
- k) Format Track (bad track flag)
- 1) Seek
- m) Ram Diagnostic
- n) Drive Diagnostic
- o) Write ECC

Г	DRAWN	SIZE	FSCM NO.	DWG. NO.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		REV.
	ISSUED	SCAL	E		SHEET	15	

4.1.2 Class 1 Commands



1

2

3

4

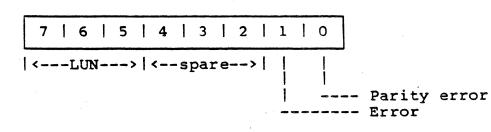
5

6

7

8

9


0

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 0 0 1 opcode LUN/s | logical adr2/s* logical adrl/s* logical adr0/s* number of blocks LUN/d | logical adr2/d* logical adrl/d* logical adr0/d* spare control

"s" = the source device, "d" = the destination device *Refer to section 4.3 Logical Address Commands in this group: Copy Block

4.2 Status Format

4.2.1 Completion Status Byte



Parity error occurred during transfer from host to controller.
 Bit 1 Error occurred during command execution.
 Bit 2-4 Spare (set to zero).
 Bit 5-7 Logical unit number of the drive.

[	DRAWN	SIZE	FSCM NO.	DWG. NO.			REV.
	ISSUED	SCAL	E		SHEET	16	

4

4.2.2

Drive and Controller Sense Bytes

Byte

0 1

2

3

7   6	5 4 3 2 1 0
	Sense Byte**
LUN	logical adr2*
/	logical adrl*
	logical adr0*

*Refer to section 4.3 for Logical Address Computation **Sense Byte is defined as follows:

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 Byte 0 <--Error code-> --- Error type ----- Spare (set to zero) ---- Block address valid

Block Address Valid - Indicates that the Logical Sector Address in bytes 1 thru 3 contain the block at which the error occurred.

Error Type	- Indicates the general type of error.
Error Code	- The actual error interpretation.
LUN	The Logical Unit Number of the erring drive.

#### 4.3 Logical Address Computation

The logical address is computed as follows:

Logical adr = (CYADR * HDCYL + HDADR) * SETRK + SEADR

Where: CYADR = cylinder adress HDADR = head address SEADR = sector address HDCY = number of heads per cylinder SETRK = number of sectors per track

> Bit 0 of Logical adr0 = the least significant bit. Bit 4 of Logical adr2 = the most significant bit.

DRAWN	SIZE A	FSCM NO.	DWG. NO.			REV.
ISSUED	SCAL	E		SHEET	17	

F

2 DWG. 4.4 Error Code Descriptions

4.4.1 Sense Command Results

Type 0 (Drive) Error codes.

0	No status
1	No Index signal.
2	No Seek Complete.
3	Write fault
4	Drive not ready
5	Drive not selected.
6	No Track00
7	Multiple drives selected.

## Type 1 (Controller) Error codes.

0	ID read error. ECC error in the ID field.
1 .	Uncorrectable data error during a read.
2	ID Address Mark not found.
3	Data Address Mark not found.
4	Record not found. Found correct cylinder and head but not
	sector.
5	Seek error. R/W head positioned on a wrong cylinder and/or
	selected a wrong head.
6	Unused.
7	Write protected.
8	Correctable data field error.
9	Bad block found.
A	Format Error. The controller detected that during the Check
	Track command, the format on the drive was not expected.

Type 2 (Command) Error codes.

Invalid Command received from the host.
Illegal disk address. Address is beyond the maximum address.

### Type 3 (Misc) Error codes.

0

RAM error. Data error detected during Sector buffer RAM diagnostic.

	SIZE	FSCM NO.	DWG.	NO.			REV.
DRAWN	A						
ISSUED	SCAL	E			SHEET	18	

### 4.4.2 Error Display in LED's

The table below lists the error indications as displayed by the controller.

0 0 0 0 0 0 0 0 DS7 DSØ

Error Code (HEX, DSØ is LSB)

5

Ż

565

Interpretation

<b>7</b> 0	No Error
Ø1	No Index from drive
Ø2	No Track ØØ from drive
Ø3	Sector Address Out of Bounds
74	ST506 not selected
95	No Seek Complete from ST506
Ø6	No ID Address Mark
77	No Data Address Mark
<u>78</u>	Seek Error (Cylinder or Head not correct)
<b>7</b> 9	Sector not found
7A	ID ECC error
ØB	No ACK from Host Adaptor
ØC	Invalid Command
ØD	Incorrect DATA MARK
ØE	Incorrect ID MARK
ØF	Incorrect cylinder address from drive
19	Incorrect sector address from drive
11	Incorrect head address from drive
12	Uncorrectable Data Error
13	Correctable Data Error
14	Drive not READY
15	Write fault
16	not used
17 -	Drive write protected
18	RAM diagnostic error
19 - 1F	not used
20	Parity Error from host adaptor. If this error occurs, the host adaptor has a fault in the
	parity generation circuitry.
21	Bad Block detected from drive
22	Invalid function for this type
81	Multiple ST506's selected. Fatal error.

	SIZE	FSCM NO.	DWG. NO.			REV.
DRAWN						
ISSUED	SCAL	E		SHEET	10	

5.0 ELECTRICAL/MECHANICAL SPECIFICATIONS

#### Physical Parameters

Width	8.0	inches
Length	12.0	inches
Height	0.49	inches
Weight	1.12	lbs.

### Environmental Parameters

Momporphumocrae	Operating:	Storage:
Temperatureegree (degrees F/C)	32/0 to 131/55	-40/-10 to 167/75
(@ 40 degrees F, wet bulb temp.,		
no condensation)	10% to 95%	10% to 95%
Altitude	sea level to 10K feet	sea level to 15K feet

#### Power Requirement

Voltage @ current

+5 VDC @ 4.6A (max) +12 VDC @ 100 mA (max)

#### 6.0 DIAGNOSTIC PHILOSOPHY

6.1 Error Indicators

The controller contains 8 diagnostic LED error indicators. Each time an error occurs the controller deposits a value in the LED's and returns a failure status to the host adapter. The LED value can be decoded, but the error it indicates will always be available to the host software. The errors that are returned by the controller are very detailed. As a result, preliminary fault isolation is made fairly easily, narrowing the failure to the particular interface portion of the controller. In addition, two diagnostic commands can be invoked via the host software interface. One is the RAM Diagnostic Command, and the other is the Drive Diagnostic Command.

•	DRAWN	SIZE FSCM NO.	DWG. NO.	•	REV.
	ISSUED	SCALE		SHEET 20	

Ż ż

#### 6.2 Fault Isolation Microdiagnostics (Optional)

The controller can be further checked out off-line by initiating explicit microdiagnostic routines via optional firmware diagnostic sets. The routines are initiated by a set of control switches. Errors will be displayed in a set of LED's. Each microdiagnostic checks the functionality of a particular section of the controller and is able to isolate failures in the following major categories:

> ALU Registers Sector Buffer ECC Logic

Fault-isolation techniques can be concentrated on the failing section.

#### 7.0 ST506 SECTOR FORMAT

The track layout for the ST506 (typical for 33 sectors) is shown below.

					1
					İ
13	aFchse00	13	a F  256	e 0 0  9	Ì
bytes	m E y d e c 0 0	bytes	m 8 bytes	collo bytes	
					1
1					1
					.

am, FE, cyl, hd, sec, 00, F8 = 1 byte ecc = 3 bytes

Track Capacity = 10416 + 1% (i.e., + 104 bytes)

10164 = 308 x 33 16 = Index Gap (4E) 236 = Speed Tolerance Gap (4E) -----10416

308 bytes/sector including ID and overhead

DRAWN	SIZE A	FSCM NO.	DWG. NO.			REV.
ISSUED	SCAL	E		SHEET	21	

#### Appendix A

DWG, NO,

Host I/O Connector Pin Assignment.

The Host I/O Bus uses a 50-pin connector (AMP P/N 2-87227-5 or equivalent). The unused signal pins are considered to be spares for future use. The pin assignments are as follows:

Signal	Pin	Number
DATAO DATA1 DATA2 DATA3 DATA4 DATA5 DATA6 DATA7 PARITY	2 4 6 8 10 12 14 16 18	
    	20 22 24 26 28 30 32 34	Future Usage
BUSY ACK RST MSG SEL C/D REQ I/O	36 38 40 42 44 46 48 50	

NOTE: All signals are negative true and all odd pins are connected to ground. The signal lines are terminated with 220 ohms to 5V and 330 ohms to ground.

•	SIZE	FSCM NO.	DWG. NO.			REV.
DRAWN	A					
ISSUED	SCAL	E .		SHEET	2.2	

APPENDIX B DTC-510 Controller Power Connections

* . . . .

- 1) +12V @ 500mA
- 2) GND
- 3) GND

DWG. NO.

4) +5V @ 4.0A

APPENDIX C Parity Jumper Setting

Jumper near connector J6:

A - B = enable parity

B - C = disable parity

DRAWN	SIZE	FSCM NO.	DWG.	NO.			REV.
ISSUED	SCAL	E	1	•	SHEET	23	

#### DATA TECHNOLOGY CORPORATION

#### CABLE CONNECTIONS FOR DTC510

1. Controller Board to Host Adapter Board

Connector to Controller Board a. Type - 50 Pin Socket b. Location - J6

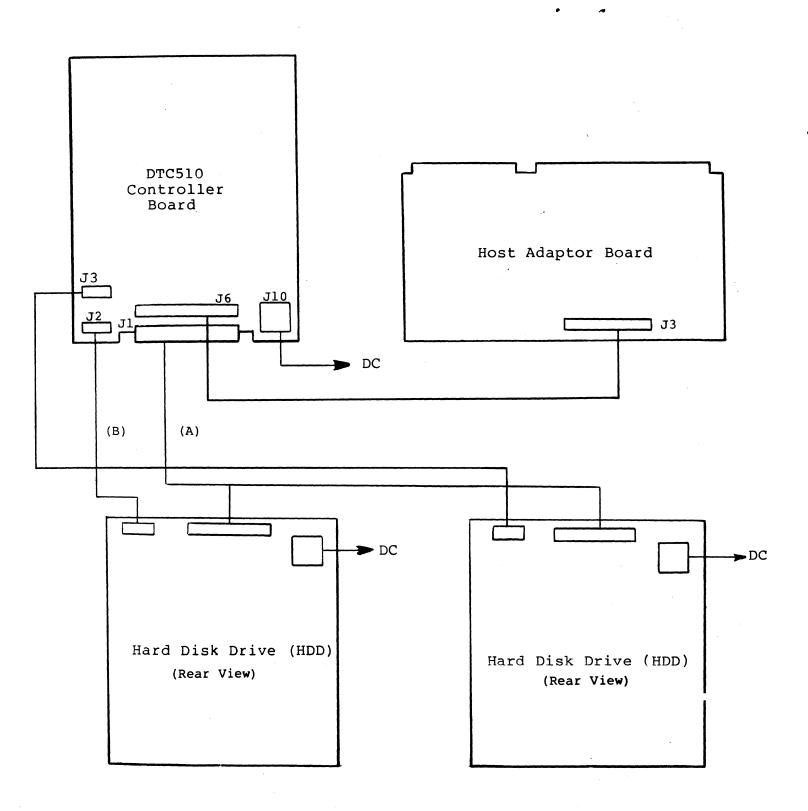
Connector to Host Adapter Board a. Type - 50 Pin Socket b. Location - J3

2. Controller Board to HDD (B Cable)

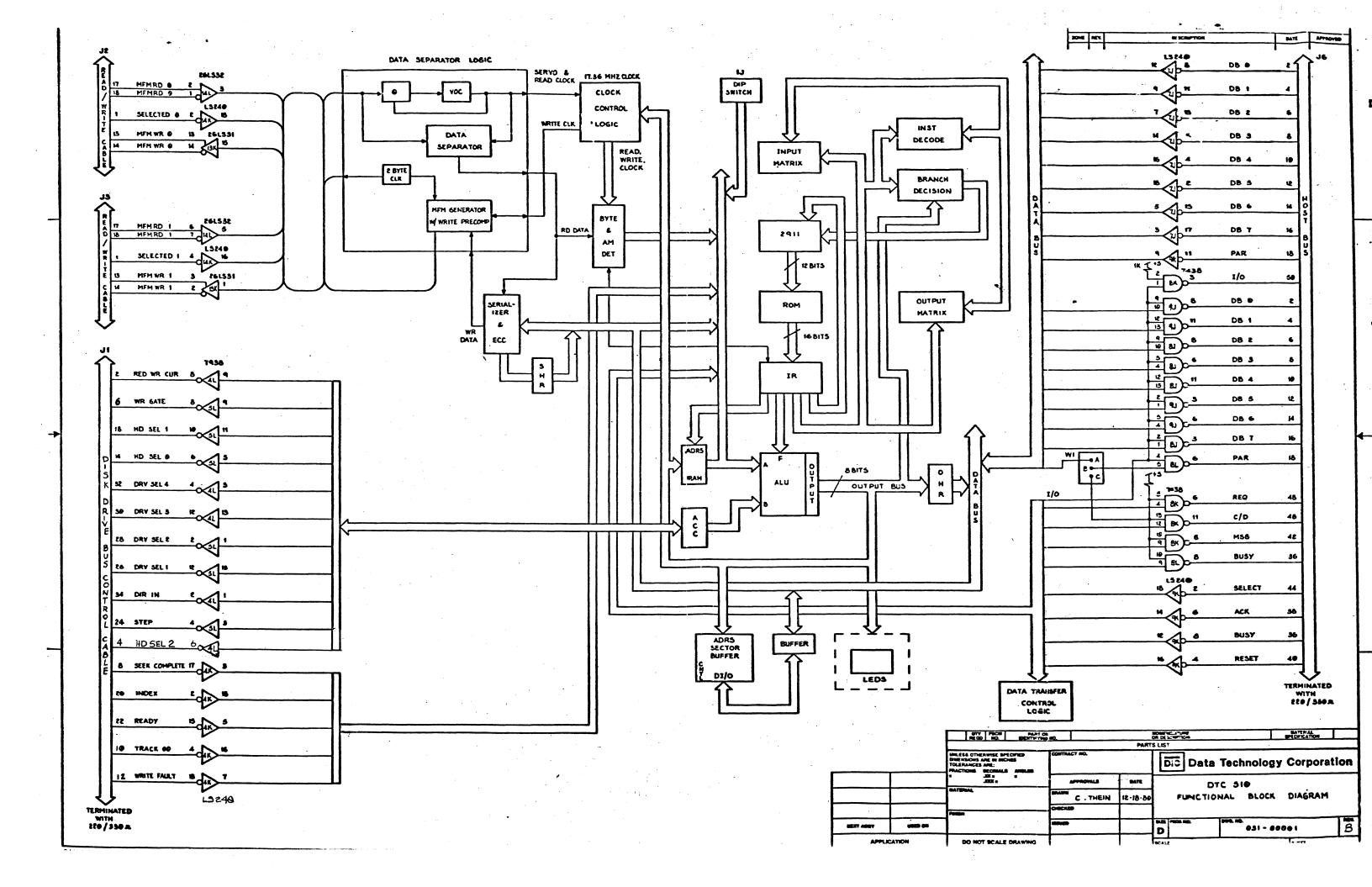
Connector to Controller Board a. Type - 20 Pin Socket b. Location - J2 or J3

Connector to HDD a. Type - 20 Pin Cardedge b. Location - rear of unit

3. Controller Board to HDD (A Cable)


Connector to Controller Board a. Type - 34 Pin Cardedge b. Location - J1

Connector to HDD a. Type - 34 Pin Cardedge b. Location - rear of unit


4. DC Power (Controller, HDD)

Connector to Controller Board a. Type - 4 Pin Plug b. Location - J10

Connector to HDD a. Type - 4 Pin Plug b. Location - rear of unit Pin Assignments Pin 1: +12 2: GND 3: GND 4: +5



CABLE CONNECTIONS

