Advanced Operating
System

(AOS)
Library File Editor
User’s Manual

093-000198-01

For the latest enhancements, cautions, documentation

changes, and other information on this product, please see
the Release Notice (085-series) supplied with the software.

Jrdering No. 093-000198
©Data General Corporation, 1976, 1977

All Rights Reserved
Printed in the United States of America

Revision 01, April 1977
Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel, licensees,
and customers. The information contained herein is the property of DGC and shall not be
reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential) caused by
reliance on the materials presented, including but not limited to typographical, arithmetic, or listing
errors.

Advanced Operating System (AOS)
Library File Editor
User’s Manual

Original Release - March 1976
First Revision - April 1977

The following are trademarks of Data General Corporation, Southboro, Massachusetts:

U.S. Registered Trademarks Trademarks
CONTOUR NOVA NOVALITE DASHER
DATAPREP NOVADISC SUPERNOVA INFOS

ECLIPSE

Licensed Material - Property of Data General Corporation

Contents

Chapter 1 - Introduction to the Library File Editor

Terms and CONVENLIONS . « .« v v v o v e et e e e e e
LEE FUNCLIONS .« « o o o ot e e e e e e e e e e e e e e e e e e

Chapter 2 - How to Operate the Library File Editor

Operating Procedures
Command Descriptions e
(A) Analyze One or More Libraries
(D) Delete Objects fromaLibrary
(I) Insert ObjectsintoaLibrary
(M) Merge Libraries
(N) Createalibrary
(R) Replace a LibraryObject
(T) List Library Object Titleso
(X) Extract Modules FromaLibrary
Error MESSAZES . . .« v« v o oo e i e e

Appendix A - Library File Format

Library Start Block oo
Library EndBlocko

093-000198-01 iii

DataGeneral

SOFTWARE DOCUMENTATION

Contents

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 1
Introduction to the Library File Editor

Terms and Conventions

The Library File Editor (LFE) utility creates unshared
library files, edits them, and analyzes them. (Shared
libraries are built by the Shared Library Builder,
discussed in the AOS Shared Library Builder User’s
Manual.) The unqualified term ‘‘library’’ in this
manual refers to unshared libraries only.

An unshared library file is a series of object modules
(OBs). A library start block precedes the series and a
library end block terminates it. The LFE builds library
start and end blocks when it constructs a library; they
are described in Appendix A.

You produce an object module by assembling a source
module (using MASM, the AOS Macroassembler) or
compiling a program (using FORTRAN, etc.). You can
bind one or more objects to form an executable
program file, or you can merge them together using
LFE to form an unshared library file. Collecting objects
into libraries provides a convenient way to group
objects for common reference by many programs. For
example, mathematical routines are often grouped into
a common library. Thus, a programmer can write code
tailored for specific application problems, without
duplicating or incorporating into each compilation the
source code for commonly-used functions.

High-level languages, such as FORTRAN, use runtime
libraries containing modules (SINE, COSINE,
formatting, etc.) which your compiled object modules
require for a complete program. When the Binder
builds a program file, it uses libraries for a supply of
objects with entries ((ENTs) to resolve external
references (e.g., .EXTD or .EXTN) made in other
objects.

Unless noted otherwise, all numbers in this publication

are decimal except for core memory addresses which
are octal values.

093-000198-01

LFE Functions

LFE accepts input objects to create initial libraries, and
can also:

analyze a library

list titles of OBs in a library
merge libraries

update libraries with new OBs
extract OBs from a library.

Analyzing a library lists the core sizes for a library’s
ZREL, NREL shared code, NREL unshared code, etc.
portions. LFE analysis also yields the size of each
binary in each of its relocatability types, lists each
binary’s title, and lists all symbols in each OB which are
arguments to to .ENT, ENTO, .EXTD, .EXTN, and
PENT pseudo-ops. If any external references in one
OB cannot be resolved by entries in succeeding OBs
within the library, then it flags these unresolved
references. Finally, it gives the total size of the entire
library in all its categories of relocatability.

LFE also builds new libraries, and inserts or removes
OBs from existing libraries. You must approach library
building or modification with caution, however, since
the order of OBs in a library can be critical; the Binder
extracts OBs from libraries in sequential order when it
builds a program file.

The .ENT pseudo-op makes library entries available to
programs. When the Binder detects an .EXTN or
EXTD statement naming these entries, it binds library
modules (containing these entries) into a program file.
Thus if module A in a library makes an external
reference to an entry in module B, module B must
follow A in the library (see Figure 1-1).

LFE Functions

DataGeneral

SOFTWARE DOCUMENTATION

TITL BLUE TITL GREEN
ENT FIRST ENT SECOND
EXTN SECOND SECOND:
FIRST: :
EJSR SECOND .
. .END
.END
Module Green
Module Blue
Module Module
Library _eo ¢ Blue . Green
Start
Spectrum
TITL TEST
EXTN FIRST
START:
EJSR FIRST
.
L]
.
.END START

User Program TEST.PR

SD-00301

Figure 1-1. Order of OBs ina Library

Licensed Material - Property of Data General Corporation

1-2

If you gave the Binder a command line like “‘XEQ
BIND TEST SPECTRUM.LB”, it would build the user
program file TEST.PR. If module BLUE precedes
module GREEN in the library entitled SPECTRUM,
then the Binder can resolve BLUE’s external reference
to SECOND in GREEN. TEST requests FIRST, FIRST
is found in BLUE which, in turn, requests SECOND in
module GREEN. BLUE is bound into the program file,
and then GREEN is too. However, if the positions of
BLUE and GREEN were reversed in SPECTRUM,
then after the Binder bound BLUE from the library it
would search in vain to the end of the library for
GREEN. The Binder does not back up and rescan a
library. Note that TEST did not explicitly request
module GREEN, and it might well have been unaware
that GREEN would ultimately become part of the
program file.

End of Chapter

093-000198-01

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 2
How to Operate the Library File Editor

- Operating Procedures

Each LFE command starts with the CLI command
XEQ, then the LFE, followed by a single-letter
function argument, followed by one or more other
arguments. You can apply function switches to the
function letter, and argument switches to arguments
following the function letter:

XEQ LFE function-letter argument ...)
Each LFE function has one function letter.

Function Letter Function

A Analyze one or more libraries.

D Delete one or more OBs from a
library.

I Insert one or more OBs into a library.

M Merge two or more libraries to form a
new library.

N Create a new library.

R Replace library OBs with new OBs.

T List the titles of OBs in a library.

X Extract OBs from a library, and place

them into a new OB file.

If filenames you supply in an LFE command have no
extensions, then LFE searches first for the names
without extensions. If LFE does not find the files, then
it searches for library names with the .LB extension and
OB modules with the .OB extension.

Depending upon variables such as the amount of
memory available to you, there is a maximum number
of arguments that you can supply in each LFE
command. If you exceed that maximum in any LFE

093-000198-01

2-1

command, LFE will output the error message ‘“TOO
MANY ARGUMENTS”. All LFE error messages go
to the generic file @OUTPUT. LFE error messages are
listed and described at the end of this chapter.

Command Descriptions

This manual uses the following symbol conventions in
describing LFE command sequences:

Symbol Meaning Name
REQUIRED Required argument boldface
or required
Optional repetition ellipsis
[] Optional argument italic
’ brackets
) Command terminator new line
&) CLI command line ampersand
extender and new line

In formats, REQUIRED (uppercase) means a literal
entry such as XEQ LFE. required (lowercase) means
you must supply an argument such as a filename; for
example XEQ LFE X library.

The ellipsis indicates the optional repetition of a
previous argument or group of arguments. A pair of
italic brackets delimits the optional selection. Thus
“[title]”” indicates that you can supply an optional
module .TITLE in the command sequence.

You must provide a command terminator after each
command; the manual shows the terminator (new line)
as ‘) 7. Press the new-line or carriage return key on
your console keyboard to type a new-line character.
You can extend a single command beyond the length of
a single line by typing an ampersand followed
immediately by the new line character. The CLI will
then display an ampersand and prompt on the next line,
where you can continue typing. Insert a space as a
delimiter, either before your ampersand, or at the start
of the new line.

Command Descriptions

DataGeneral

SOFTWARE DOCUMENTATION

(A) Analyze One or More Libraries

Formats:

XEQ LFE [/F][/L =listfile] A library [title...])
XEQ LFE [/F]{/L =Ilistfile] A/M library library...)

where: listfile is the name of an output file to receive
the analysis. If you specify no output file, then
the analysis appears in the generic file
@OUTPUT. If you use the /F switch, the
analysis of each OB will be listed on a separate
page; i.e., a form feed precedes the analysis of
each OB.

library is an input library to be analyzed /M
indicates that more than one library is to be
analyzed).

title is the title of a module to be analyzed. If
you specify one or more titles, then only the
modules with these titles will be analyzed.

Purpose:

This command analyzes one or more libraries, or one
or more OBs within a single library. The output analysis
lists symbols, naming the symbol type, and provides
certain flags indicating potential error conditions. Also
provided is the amount of each type of data in the OB,
the total library size (in each type of relocatability), and
the total size of unlabeled common, if any.

You can analyze any group of OBs after merging them
into a library (with the LFE N command).

Analysis describes the type of each of the symbols
displayed on output using the following flags:

AC accumulating symbol

EN .ENT

EO .ENTO

NC named common symbol

PN .PENT (OB destined for a shared library, merged
into a dummy library for analysis only)

T .TITL

XT .ENTNor .EXTD

Analysis also notes library errors or cautionary
conditions with the following flags:

* multiply-defined symbol (warning). The first
module in a multiply-defined series will flag with a
star (*) in its EN row the titles of all other modules
defining this same symbol. Each other module
defining this symbol will precede the EN row with a
star, and will list the title of only the first module in
the multiply-defined series. All external references

Licensed Material - Property of Data General Corporation

2-2

(XT) list the title of only the first module in the
series. If you can guarantee that only one of the
modules containing the symbol with the same
name will ever be bound, then you can ignore this
warning.

phase warning. A symbol is .ENTered in a module
that occurs before another module externally
referencing this symbol. If you can guarantee that
the first module will always be bound (and thus the
external reference will always be satisfied), then
you can ignore the phase warning.

An .ENTry was not found for an .EXTN or .EXTD
symbol. In analyzing part of a library, you can
ignore this warning if you know that the .ENTry
occurs elsewhere in this library or in another library
that would always be bound.

If you name an existing list file in the command line,
then listing output produced by this command will be
appended to whatever is in that file.

Example:
XEQLFE/L=@LPT A LIBRARY1)
The analysis report is:

T 10PKT
10PKT
SPOOL
LIR
DOUBLE
WALT

MACR XREF
SYMy
MACR

XREF

Symp
CLANG

PAGE ZERO RELOCATABLE DATA=U
NON=SHARED CODE 98
NUN=SHARED DATA %}
SHARED ULATA %
SHARED CODE %

T MACR
EN DOouBLE
EN MACR

P XT SPOUL

u xT ASMVA

I0PKT *SYMB CLANG

I0PKT

PAGE ZERO RELOCATABLE ULATA
NON=SHARED CUDE

NUIN=SHARED DATA

SHAREUL DATA

SHARED CODE

nuuwuuauou
[S SV N\ V]

T SyYmB
DOUBLE
SYMB
DIR
SPUOL

MACR

1OPKT
10PKT

PAGE ZERO RELOCATABLE CATA
NUN=SHARED CODE

NONeSHARED DATA

SHARED DATA

SHARED COOE

wee aan
S8 S~

093-000198-01

Licensed Material - Property of Data General Corporation

T XKREF
EN WALT

EN EP1L

EN [0PK1
xT SPUUL
xT BLIP

X7 BLOP

IOPKT CLANG

LOPKT
CLANG

PAGE ZERO RELOCATABLE DATA
NON=SHARED CODE

NON=SHARED DATA

SHAKED DATA

SHARED CODE

ABSOLUTE DATA

12
69

14

T CLANG
EN 3LIP

EN BLAP

XT DOUBLE
xT DIR

XREF

MACR
10PKT

PAGE ZERUG RELOCATABLE CATA
NONeSHARED CUDE

NON=SHAKED DATA

SHARED DATA

SHARED CUDE

ABSULUTE DATA

[V SIS S N

TUTAL PAGE ZERO RELUCATABLE DATA=14
TOTAL NON=SHARED COOE s439
TOTAL NON=SHARED DATA =¢
TOTAL SHARED DATA 0
TOTAL SHARED CODE s¢
TUTAL ABSOLUTE DATA sl

The first module analyzed in this library, LIBRARY1,
is entitled IOPKT.

This module defines entries IOPKT, SPOOL and DIR.
Although IOPKT is not externally referenced by any
other module in the library, SPOOL is referenced by
modules MACR, SYMB and XREF in the library.
Likewise, DIR is referenced by SYMB and CLANG.

093-000198-01

2-3

DataGeneral

SOFTWARE DOCUMENTATION

Symbols DOUBLE and WAIT are externally
referenced by this module; they are defined as entries
in modules MACR and XREF respectively. There are
98 storage words in this module, and they are all
non-shared code.

LFE gives two warnings in the next module, MACR.
Entry SPOOL is externally referenced, yet this symbol
occurs in a previous module (IOPKT). Unless every
program using module MACR also binds IOPKT, these
two modules must be merged or their positions in the
library reversed; otherwise, Binder resolution errors
will occur. Likewise, entry ASMVA is externally
referenced yet there is no corresponding entry in the
library. This will cause a Binder error unless, in every
case, a module follows this library that resolves
ASMVA. These comments apply also to the remaining
P and U errors flagged in this example.

Finally, the module entitled SYMB has an entry
defined, DOUBLE, which was also defined in a
previous module (MACR). The Binder will flag this as
an error unless in every case modules DOUBLE and
MACR will not both be bound. The storage totals for
all kinds of relocatability are listed at the end of the
analysis.

XEQ LFE A FORT.LB SINE COSINE)

LFE analyzes objects SINE and COSINE of FORT.LB.
The analysis is listed on the generic file @OUTPUT.

XEQ LFE/L=@LPT/F A/M TRIG1.LB TRIG2.LB)

LFE analyzes libraries TRIG1.LB and TRIG2.LB as a
complete library. It outputs the listing on the line
printer, with a form feed output before the analysis of
each module.

Command Descriptions

DataGeneral

SOFTWARE DOCUMENTATION

(D) Delete Objects from a Library
Format:

XEQ LFE D input/I output/O title [...7])

where: input is the name of the unshared library file
containing OBs to be deleted.

output is the name to be assigned to the new,
reduced library.

title is the title of each module to be deleted
from the input library.

Purpose:

This command deletes one or more OBs from an input
library, and creates an output library lacking these OBs.
The original input library is left intact.

Example:
) XEQ LFE D FORT.LB/I FORT1.LB/O TEMP)

This command deletes the module entitled ‘““TEMP”’
from library FORT.LB to produce a new library named
FORTI1.LB.

Licensed Material - Property of Data General Corporation

(D) Insert Objects into a Library

Format:

XEQ LFE | input/I output/O [object [/F][/C]...] &)
[title/A object [IFI[IC]...]... &)
[title/B object [/F][IC]...]...)

where: input is the name of the library into which OBs
are to be inserted.

output is the name to be assigned to the new,
expanded library.

object is the name of a file containing an OB to
be inserted into the library.

Switches:

/F force-binds this module (sets the force-bind
flag); when you specify this library in a BIND
command, this OB will be bound whether or
not it contains the .FORC pseudo-op.

/C instructs the Binder to ignore a .FORC
pseudo-op in this module when you specify this
library in a BIND command (clears the
force-bind flag); prevents this module from
being bound unless it resolves an .EXTN
reference.

titte is the title of the library module
immediately before (/B) or after (/A) which
LFE inserts the OBs. LFE inserts OBs named
in the command line before a title argument at
the beginning of the library.

Purpose:

This command creates a new library consisting of an
old library and inserted modules. Modules which you
name before a title argument are inserted at the
beginning of the new library. Modules following a title
argument are inserted either immediately before (/B)
or after (/A) the module with that title in the old
library. Contents of the input library always remain
unchanged.

2-4 093-000198-01

Licensed Material - Property of Data General Corporation
Examples:
) XEQ LFE | LIBRARY1/I LIBRARY2/O FILE1)

The OB in FILEl becomes the first module in
LIBRARY2; OBs in LIBRARY1 follow as the
remainder of LIBRARY2. Error messages go to the
generic file @OUTPUT.

) XEQ LFE | LIBRARY1/I LIBRARY2/0 &)
&) .FIVE/AFILE1 FILE2)

OBs in FILE1 and FILE? are inserted immediately after

the OB entitled ‘.FIVE” in LIBRARYI to form
LIBRARY2.

093-000198-01

2-5

DataGeneral

SOFTWARE DOCUMENTATION

(M) Merge Libraries
Format:

XEQ LFE M output/O input1 input...)

where: output is the name to be assigned to the new
library.
input1 is the name of the first input library.

input represents the names of subsequent
libraries that are merged with input1.

Purpose:

This command merges two or more libraries to form a
new output library. Contents of input libraries remain
intact.

Example:

) XEQ LFE M LIBRARY/O LIBRARY1 LIBRARY2 &)
&) LIBRARY3)

Libraries LIBRARY1, LIBRARY2, and LIBRARY3
are merged to form a new library named LIBRARY.

Command Descriptions

DataGeneral

SOFTWARE DOCUMENTATION

(N) Create a Library
Format:

XEQ LFE N output/O object [/FI[/C]...)
where: output is the name of the new library.

object is the name of each file containing an OB
that will go into the new library.

Switches:

/F force-binds this module (sets the force-bind
flag); when you specify this library in a BIND
command, this OB will be bound whether or
not it contains the .FORC pseudo-op.

/C instructs the Binder to ignore a .FORC
pseudo-op in this module when you specify this
library in a BIND command (clears the
force-bind flag); prevents this module from
being bound unless it resolves an .EXTN
reference.

Purpose:

This command takes one or more OBs and forms a
library. You can use this command to form a dummy
library consisting of a collection of OB files to be
analyzed. These OB files can contain the .PENT
pseudo-on even though they are eventually destined to
form a shared library file.

Examples:

) XEQ LFE N NEWLIB.LB/O FILE.OB FILE1.0B &)
&) FILE2.0B)

This command creates a new library, NEWLIB.LB,
containing the OBs in FILE, FILE1 and FILE2. This
command would work exactly the same if you omitted
the extensions *“.LB’’ and ‘*.OB”’ in the command line.

) XEQ LFE N LIB.LB/O OB1/C OB2 OB3/F)

This example builds new library LIB.LB, containing
OB1, OB2 and OB3. OBl has the force-bind flag
cleared, OB2’s flag is not modified, and OB3 has the
. flag set.

Licensed Material - Property of Data General Corporation

(R) Replace a Library Object

Format:

XEQ LFE R input/l output/O title1 object1 [/F] [/C] &)
[titleN objectN[/FIIC]]...)

where: inputis the name of the input library.
output is the name of the output library.

title is the title of a library module to be
replaced by the object whose filename
immediately follows it in the command line.

object is the name of the file containing the
object replacing the one whose title is the
preceding argument.

Switches:

/F force-binds this module (sets the force-bind
flag); when you specify this library in a BIND
command, this OB will be bound whether or
not it contains the .FORC pseudo-op.

/C instructs the Binder to ignore a .FORC
pseudo-op in this module when you specify this
library in a BIND command (clears the
force-bind flag); prevents this module from
being bound until it resolves an .EXTN
reference.

Purpose:

This command replaces objects within a library. You
specify library objects and replacement objects in pairs.
You identify by .TITL the library objects to be replaced,
and you identify replacement objects by filename.
Contents of the input library remain intact.

Examples:

) XEQ LFE R TRIG.LB/I .SINE FILE1 &)
&) TRIG2.LB/O)

This command replaces the object entitled *“.SINE”’ in
library TRIG.LB with the object in FILE1, and forms a
new library, TRIG2.LB.

) XEQ LFE R OLDLIB/I NEWLIB/O OLD NEW/F)

This command creates library NEWLIB, from the
contents of OLDLIB, with object OLD replaced by
NEW. The Binder will force-bind object NEW
whenever library NEWLIB appears in a BIND
command line.

093-000198-01

Licensed Material - Property of Data General Corporation

(T) List Library Object Titles
Format:

XEQ LFE [/F] [IL =listfile] T input...)

where: listfile is the name of an output file to receive
the titles of the objects. If you specify no listing
file, then the list appears in the generic file
@OUTPUT. If you use the /F switch, a form
feed will be output between the title lists of
each separate library.

input is the name of a library file whose objects’
titles are to be listed.

Purpose:

This command lists the titles of object modules in one
or more library files.

LFE prints an asterisk before the title of any module in
which the force-bind flag is set.

Example:

) XEQ LFE/L=TITLELIST/F T MATH1.LB &)
&) MATH2.LB)

This command outputs the titles of objects in two math
libraries, MATH1 and MATH?2, to a disk file named
TITLELIST. A form feed (blank page) separates the
lists of MATH1 and MATH2 titles.

093-000198-01

2-7

DataGeneral

SOFTWARE DOCUMENTATION

(X) Extract Modules From a Library

Format:
XEQ LFE X input title...)

where: input is the name of the library from which
copies of modules will be extracted.

title is the title of each module whose copy is to
be extracted from the library.

Purpose:

This command extracts copies of modules from a
library, and constructs OB files from these copies. Each
OB file has the extension ‘*.OB’’ and bears the name of
the module’s title. The original input library is left
intact.

If an OB file already exists with the name which is given
to the extracted module, then no extraction occurs and
you get an error message.

Note that since you don’t flag the input argument with
a /I switch, input must appear as the first argument in
the command line.

Example:

) XEQ LFE X MATH.LB SINE)

This command extracts the module whose title is

“SINE”, and builds an OB file named ‘‘SINE.OB”’.
MATH.LB remains unchanged.

Command Descriptions

DataGeneral

SOFTWARE DOCUMENTATION

Error Messages

All error conditions output in an error message go to
the generic file @ OUTPUT. Some error conditions abort
the LFE command; other errors permit some
processing to continue.

The following error messages indicate that the LFE
command has been aborted:

ILLEGAL FUNCTION KEY': key.

The single-letter function key following immediately
“LFE” in each command mustbe A, D, I, M, N, R, T,
or X. You supplied some other key.

INPUT FILE NOT A LIBRARY FILE.

LFE required an input library file, yet the input you
supplied was not a library.

INPUT FILE NOT SPECIFIED.

An LFE command required an input filename with a /I
switch, yet you provided none.

OUTPUT FILE NOT SPECIFIED.

An LFE command required an output filename with a
/0 switch, yet you provided none.

NOT ENOUGH ARGUMENTS.

Either you gave too few arguments (such as only two
arguments in a Merge), or you did not pair the title and
object arguments in a Replace command.

SWITCH MAY NOT APPEAR TWICE: switch.

This message appears when the named switch appears
more than once in a single LFE commnand.

TOO MANY ARGUMENTS.

If you need to name more arguments (as in creating a
library with more OBs), issue several commands and
combine their results (for example, create several small
libraries and then merge them into one large library).

Licensed Material - Property of Data General Corporation

TOO MANY SYMBOLS IN THE LIBRARY.
ANALYSIS IS NOT POSSIBLE

This condition arises when the combined length of all
unique symbols in modules being analyzed exceeds
131,072 characters. It also arises if memory is sufficient
for LFE to build itself a temporary table. You can
correct this condition by making the library smaller
(perhaps by extracting some modules), or by increasing
the amount of memory available to the process in
which LFE is running.

The following error messages indicate that the LFE has
been able to execute part of the command:

BLOCK NUMBERS NOT IN SEQUENCE,
FILE:pathname

This error message indicates that the named file was
either not an OB file (which it had to be), or it had gross
structural errors (perhaps it was stored on a bad disk).
Whatever the case, LFE does not process file named in
the command sequence.

FILE ALREADY EXISTS: pathname

On an eXtract, a file to be created already exists. LFE
ignores the argument.

NOT A LIBRARY FILE: pathname

This message is given only when you attempt to
execute an Analyze or Title command, and one or
more (but not all) of the input files was supposed to be
library, yet was not. LFE ignores each offending file.

NOT AN .OB FILE: pathname

An OB module with title name was required, yet you
supplied none. LFE ignores the argument.

OBJECT MODULE NOT FOUND: pathname

An input file did not contain a requested module with
the title name. LFE ignores the object module (and any
associated arguments) in executing the command. The
following LFE commands can detect this error
condition: Analyze, Delete, Insert, Replace, and
eXtract.

End of Chapter

2-8 093-000198-01

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Appendix A
Library File Format

Most users will never be aware of internal library file
structure. You need to understand this appendix only
if:

1) you plan to build libraries without using LFE, or
2) you intend to read the headers (as the Binder does).

Otherwise, you may disregard this appendix.

Library files are made from three types of blocks. The
first block is always a library start block. This is followed
by object modules, and the last object module is
followed by a library end block.

Library Start Block

The library start block consists of a fixed 4-word
header, followed by a series of module descriptors.
There are as many module descriptors as there are OB
modules in the library:

7 (type)
* start block
1
length of start block oB

number of OB modules modules

END block
object descriptor,
Library

0)Y
1{3

I
W
LRI I

object descriptor,

SD-00302
Figure A-1. Library Start Block Overview*

The first word in the block contains the block type
number, 7. The second word contains 1, since the
library start block is always the first block in a library.
(Note that sequence numbers in object module blocks

093-000198-01

A-1

within the library are unchanged from what they were
when the objects were stand-alone OB files.) The third
word of the start block contains the word length of the
entire start block. The fourth word lists the number of
OB modules contained within the entire library.

Fach object descriptor is a variable-length block
describing a single object module. Each descriptor
consists of a fixed 6-word header, followed by a
variable number of variable-length sections describing
entries in the object module.

Object descriptor structure is shown in Figure A-2:

OB descriptor length

double precision word

Fixed offset to OB module

Length

OB module length

number of entries

flags] OB module title length

OB module title

Symbol
Descriptor

length of entry symbol, }

entry symbol,

Variable

Length T T

Symbol
Descriptor

length of entry symbol, }

entry symbol,

FIXED
DESCRIPTOR;

Start Block %
1

DESCRIPTOR,

oB
MODULES

END BLOCK

Library
SD-00303A

Figure A-2. Object Descriptor Structure*®

Library Start Block

DataGeneral

SOFTWARE DOCUMENTATION

The second and third words of the object descriptor
contain a double-precision word offset to the object
module identified by this descriptor. This offset starts
at the first OB module; thus the offset is 0, 0 for the
first OB descriptor. If the first OB is » words long, and »
is less than a 16-bit integer, then the second descriptor
offset value is 0, n. Following this offset are the length
of the OB module and the number of entries within this
module. Entries include arguments of .ENT, .ENTO
and .PENT pseudo-ops (bear in mind that .PENT
pseudo-ops will be found only if you build a dummy
library for analysis; see Chapter 2, *“A’’ command).

Following the entry count, the OB flags make up the
first byte of the next word. The OB flags include the
force-bind flag. You can set this flag, which force-binds a
module, either by including the .FORC pseudo-op in
the module, or by setting the LFE /F switch, described
earlier. You can clear the flag, and restore normal
Binder loading of the module, with the LFE /C switch.
The AOS Macroassembler manual describes .FORC.
The second byte of this word is the OB title length.

The next word contains the title name string. Following
this are as many symbol descriptors as there are entry
symbols to be described. Each descriptor consists of a
one-word symbol length followed by the entry symbol
string itself. Following the last descriptor for the last OB
module is the start of the first OB module in the library.

Licensed Material - Property of Data General Corporation

Library End Block

Following the end of the last OB module is a
three-word block, the library end block. This
fixed-length block consists of three words as shown in
Figure A-3.

type(21) start
block number (1) block
length (3) o8B
modules

*{ END block

SD-00304

Figure A-3. Library End Block Structure*

The first word, block type, contains ‘‘21; >’. The second
word, sequence number, contains ‘‘1’’; note that the
original sequence numbers in each OB module do not
differ from the values they had in each stand-alone OB
file. Since the block is three words long, the block
length (given in the third word) is three.

End of Appendix

A-2 093-000198-01

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Index

Within this index, the letter “‘F’’ after a page number
means ‘‘and the following page.”’

A (Analyze) command 2-2F
analyze symbols (LFE) 2-2F
*

AC
EN
EO
NC
P

PN
T

U

XT

analyzing an OB 2-6

Binder 1-1F, 2-4, 2-6
block (library)
end A-1F
number sequence 2-8
start A-1

CLI
command line extension (&) 2-1
LFE command line (XEQ LFE) 2-1

D (delete) command 2-4
dummy library 2-6, A-2

.ENT pseudo-op 1-1F, A-2
.ENTO pseudo-op 1-1, A-2
errors

Binder 1-2, 2-3

LFE message 2-8
external definition see .EXTN, .EXTD
.EXTD pseudo-op 1-1
EXTN pseudo-op 1-1F, 2-4, 2-6
eXtract command 2-7

093-000198-01

filename extensions 2-1
.FORC pseudo-op 2-4, 2-6, A-2
force-bind flag 2-4, 2-6
definition of A-2
form feed
inserting (/F switch) 2-2, 2-7

I (Insert) command 2-4F

LFE
command descriptions 2-1to 2-8
definition of 1-1
functions 1-1
function letter 2-1
operating procedures 2-1
library
creating 2-6
end block 1-1, A-1F
modifying 2-2to 2-7
object modules 1-1
shared 1-1, 2-6
start block 1-1, A-1
unshared 1-1

M (Merge) command 2-5
MASM assembler 1-1
multiply-defined symbol 2-2

N (Create a library) command 2-6
new-line character 2-1
NREL 1-1

.PENT pseudo-op 1-1, 2-6, A-2
phase warning 2-2F

R (Replace) command 2-6

Index-1 Index

DataGeneral

SOFTWARE DOCUMENTATION

shared code 1-1, 2-2
switches, definition of 2-1
symbols
maximum for LFE 2-8
notation conventions 2-1
undefined 2-2F

T (List titles) command 2-7

Licensed Material - Property of Data General Corporation

undefined symbol 2-2F
unshared code 1-1, 2-2

X (Extract) command 2-7

ZREL 1-1

Index-2

093-000198-01

SOFTWARE DOCUMENTATION
D ataGeneral ' REMARKS FORM

Document Title Document No. Tape No.

SPECIFIC COMMENTS: List specific comments. Reference page numbers when applicable.
Label each comment as an addition, deletion, change or error if applicable.

GENERAL COMMENTS: Also, suggestions for improvement of the Publication.

FROM:

Name [Title Date

Company Name

Address (No. & Street) City State Zip Code

Form No. 10-24-004 Rev. /-75

FOLD DOWN FIRST FOLD DOWN

- e o e e e B e we e OB e e B G e N e S e e G B S Ge Gm R G MR SR S G e G0 S R G G SR e G L Gm D Em M e G D SR N R ER R G m M S TS G SR SR AR G R G T G Gw R R G OE SD MR em e e o e D S Gm e R S S e e

FIRST
CLASS
PERMIT
No. 26
Southboro
Mass. 01772
BUSINESS REPLY MAIL
No Postage Necessary If Mailed In The Unitea States
Postage will be paid by:
Data General Corporation
Southboro, Massachusetts 01772
ATTENTION: Software Documentation
FOLD UP SECOND FOLD UP

STAPLE

