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Chapter 1
Introduction

The Nova computers arc general purpose computer systems with a 16-bit word length. All machines are
organized around four accumulators, two of which can be used as index registers. This accumulator/index
register organization provides great efficiency and ease in programming. The various machines differ from
one another in features and speed, the Supernova SC being the fastest and most versatile. Programming for
all machines is completely compatible except of course for programs that are time dependent.

Any Nova computer can have both alterable corec memory and read-only memory, and the Supernova SC
also has extremely fast semiconductor memory (in other respects the Supernova and Supernova SC are almost
identical, and unless explicitly stated otherwise, any reference in this manual to the “Supernova” applies to
both machines). With the console removed, a system can be operated as a hard-wired controller, whosc
functions can be altered simply by substituting different read-only memories.

Each computer requires only 5% inches mounted in a standard 19-inch rack. Processor options include
real time clock, power failure detector, multiply-divide, and for thc Supernova, memory allocation and
protection. Available peripheral equipment includes teletypewriter, high speed paper tape reader and punch,
card reader, line printer, incremental plotter, display, magnetic tape, magnetic disk, A-D and D-A conversion
cquipment, and data communications equipment.

The central processor is the control unit for the entire system: it governs all peripheral in-out equipment,
performs all arithmetic, logical, and data handling operations, and sequences the program. It is connected to the
memory by a memory bus and to the peripheral equipment by an in-out bus. The processor handles words of
sixteen bits, which are stored in a memory with a maximum capacity of 32,768 words. The bits of a word are
numbered O to 15, left to right, as are the bits in the registers that handle the words. Registers that hold
addresses are fifteen bits, numbered according to the position of the address in a word, ie 1 to 15. Words are
used either as computer instructions in a program, as addresses, or as operands, ie data for the program. The
program can interpret an operand as a logical word, an address,“a pair of 8-bit Bytes, or a 16-digit signed or
unsigned binary number. The arithmetic instructions operate on fixed point binary numbers, either unsigned or
the equivalent signed numbers using twos complement conventions.

The processor performs a program by executing instructions retrieved from consecutive memory locations
as counted by the 15-bit program counter PC. At the end of each instruction PC is incremented by one so that
the next instruction is normally taken from the next consecutive location. Sequential program flow is altered by
changing the contents of PC, either by incrementing it an extra time in a test skip instruction or by replacing its
contents with the value specified by a jump instruction. The other internal registers of importance to the pro-
grammer are four 16-bit accumulators, ACO to AC3. Data can be moved in either direction between any mem-
ory location and any accumulator. Although a word in memory can be incremented or decremented, all other
arithmetic and logical operations are performed on operands in the accumulators, with the result appearing in
an accumulator. Associated with the accumulators is the Carry flag, which indicates when a carry occurs out of
bit O in an arithmetic instruction. The left and right halves of any accumulator can be swapped, the contents of
any accumulator can be tested for a skip, and the 17-bit word contained in any accumulator combined with
Carry can be rotated right or left. An instruction that references memory can address AC2 or AC3 as an index
register, and transfers to and from peripheral devices are also made through the accumulators.

On the processor console is a sct of data switches through which the operator can supply words and
addresses to the program. The console also has a number of control switches that allow the operator to start
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and stop the program, to deposit the contents of the data switches in any memory location or accumulator,
and to display the contents of any location or accumulator in the data lights. The Supernova also has switches
for automatic loading when there is no program in memory; this feature is optional on the Nova 1200 and
800. The address lights display the contents of PC, the instruction lights on the Nova and Supernova display
the left half of the instruction word currently being executed. The remaining lights display the Carry flag and
a number of internakb control conditions that are useful in program debugging.

Any instruction that references memory may address AC2 or AC3 as an index register. Instructions that
move data to and from memory or the peripherals address a single accumulator as a source or destination of data
while addressing a memory location or an in-out device. But the arithmetic and logical instructions do not have
to reference memory; they simply address two accumulators, either or both of which may supply operands, and
one of which may receive the result. Thus memory is used for storage of the program and permanent data, but
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all calculations are carried out in the accumulators and intermediate results are held right in them. This
reduces considerably the amount of data movement as compared with a single accumulator system, and thus
saves instructions. For example, in as trivial an operation as exchanging the contents of two memory locations
A and B, the multi-accumulator organization reduces the time by one third.

Exchange with Exchange with
one accumulator two accumulators
A—~>AC A—~>ACI
AC->TEMP B—>AC2

B—~>AC AC1-B

AC—>A AC2—>A
TEMP->AC

AC—>B

Since an arithmetic or logical instruction does not contain a memory address, there are many bits that
can be used for functions other than specifying the basic operation and the operands: the same instruction that
adds or subtracts can also shift the result or swap its halves, test the result and/or carry for a skip, and specify
whether or not the result shall actually be retained. Hence the percentage of time saved increases with the com-
plexity of the program.

And there are advantages other than speed. The system is much more convenient to use, programming is
much easier because the data being processed is much handier. The accumulators and their associated logic are
essentially like the pad one uses at one’s desk, whereas the memory fulfills the function of a set of reference
books and a notebook kept on one’s side. The results of address calculations are immediately available for index
purposes to the memory reference instructions. One accumulator can be used for in-out data transmission with-
out disturbing others being used continually for computations. Complex software routines such as multiplica-
tion, division and floating point-can be performed without constantly referencing memory.

The input-output hardware allows the program to address up to sixty-two devices. A single instruction can
transfer a word between an accumulator and a device and at the same time control the device operation.
Included in the in-out system are facilities for program interrupts and high speed data transfers. The interrupt
system facilitates processor control of the peripheral equipment by allowing any device to interrupt the normal
program flow on a priority basis. The processor acknowledges an interrupt request by storing PC in location 0
and executing the instruction addressed by the contents of location 1. A high speed device, such as magnetic
tape or disk, can gain direct access to memory through a data channel without requiring the execution of any
instructions; the program simply pauses while access is made. The data channel logic allows the transfer of
data to or from memory, incrementing of a memory word, and (in some machines) adding external data
to a word already in memory. The latter two features allow such functions as pulse height analysis and
signal averaging.

An option available only on the Supernova allows a number of programs to share processor time. With
this option there are two modes of processor operation, supervisor and user. An executive program, which
runs in supervisor mode, allocates areas of memory to the various users, write-protects (if necessary) part of
any user’s allocated area, schedules user programs and handles all input-output needs. Each user program is
mapped into and restricted to its allocated area; and it is illegal for a user to write in a protected area, use
more than two levels of indirect addressing, or give an in-out instruction. An attempt by a user to violate any
of these restrictions results in a transfer of control back to the executive.
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1.1 INSTRUCTIONS

The types of functions performed by instructions in most computers are the following.

Move data between memory and the operating registers.

Modify memory, usually in conjunction with a test to determine whether to alter the program sequence.
Alter the program sequence by jumping to a new location.

Perform an arithmetic or logical operation.

Test the value of a word or flag, or oneword against another, to determine whether toalter the program sequence.

O vk

Transfer data to or from the peripheral equipment.
In many computers the first and fourth and the third and fifth groups overlap. In the NOVA groups 1 and
3 are unique. But groups 4 and 5 coincide: every arithmetic and logical instruction can test the result for a skip.
The following lists the registers that must be specified and the functions performed by the various instruc-
tion classes in the Nova computers.

Move data One memory location, one accumulator. Either may be the source of the operand,
the other is the destination.

Modify memory One memory location. Increment or decrement contents; skip if result is zero.

Jump One memory location from which the next instruction is taken. A return address
can be saved in AC3.

Arithmetic and logic Two accumulators. One or both may be source of operand(s). Perform arithmetic

or logical function, with a bit-0 carry affecting the Carry flag as indicated. If desired,
swap halves of answer or rotate it with Carry one place right or left, load result into
either accumulator, and skip on condition specified for result and/or Carry.

Input-output One accumulator, one IO device. Transfer word in either direction between any
accumulator and one of up to three registers in up to sixty-two devices. Also oper-
ate device as specified.

Note: A subclass of these instructions executes no transfer and specifies only a
device. The instruction either operates the device or skips on a selected condition

in it.

Addressing. Instructions in the first three classes must address a memory location. Each instruction word
contains information for determining the effective address. which is the actual address used to fetch or store the
operand or alter program flow. The instruction specifies an 8-bit displacement which can directly address any
location in four groups of 256 locations each. The displacement can be an absolute address, /e it may be used
simply to address a location in page zero. the first 256 locations in memory. But it can also be taken as a signed
number that is used to compute an absolute address by adding it to a 15-bit base address supplied by an index
register. The instruction can select AC2 or AC3 as the index register; either of these accumulators can thus
be used as an ordinary index register to vary the address computed from a constant displacement, or as a base
register for a set of different displacements. The program can also select PC as the index register, so any instruc-
tion can address 256 words in its own vicinity (relative addressing).

Now the computed absolute (15-bit) address can be the effective address. However, the instruction can use
it as an indirect address. /e it can specify a location to be used to retrieve another address. Bits 1-15 of the word
read from an indirectly addressed location can be the effective address or they can be another indirect address.

Automatic Incrementing and Decrementing. The program can make use of an automatic indexing feature
by indirectly addressing any memory location from 00020 to 00037 (addresses are always octal numbers).
Whenever one of these locations is specified by an indirect address, the processor retrieves its contents, incre-
1-4



ments or decrements the word retrieved, writes the altered word back into memory, and uses the altered word
as the new address, direct or indirect. If the word is taken from locations 00020-00027, it is incremented by

one; if taken from locations 00030-00037, it is decremented by one.

Instruction Format

There are four basic formats for instruction words. In all but the arithmetic and logical instructions, bit O
is 0. If bits 1 and 2 are also 0, bits 3 and 4 specify the function (jump or modify memory) and the rest of the
word supplies information for calculating the effective address. Bits 8—15 are the displacement, bits 6 and 7 spec-
ify the index register if any, and bit 5 indicates the type of addressing, direct or indirect.

ADDRESS TYPE

\
| 0 0 0 ] FUNCTION | ] INDEX DISPLACEMENT 1
0 23 4 5 6 78

JUMP AND MODIFY MEMORY FORMAT

If bits 1 and 2 differ they specify a move data function. Bits 3 and 4 address an accumulator, the rest of

the word is as above.

ADDRESS TYPE

FUNCTION AC '
0 o1 OR 10 ADDRESS INDEX DISPLACEMENT

1 23 4 5 6 78 15

MOVE DATA FORMAT

Bits | and 2 both being | indicate an in-out instruction. In this case the function is specified by bits 5-9,
of which bits 5-7 indicate the direction of transfer and select one of three registers in the device. The transfer
takes place between the accumulator addressed by bits 3 and 4 and the device selected by bits 10-15. Bits 8

AC FUNCTION
0 1 1 ADDRESS TRANSFER | CONTROL DEVICE CODE

0 23 45 78 910 15

IN-OUT FORMAT

and 9 of the function part specify an action to be performed, such as starting the device. If bits 5-7 are all
0 or all 1, there is no transfer and bits 8 and 9 specify a control or skip function respectively.

If bit 0 is 1, bits 5-7 specify an arithmetic or logical function. One operand is taken from the accumulator
addressed by bits 1 and 2; a second operand, if any, from that addressed by bits 3 and 4. The rest of the word
specifies the other functions that can be performed, including whether or not the result is to be loaded into the

destination accumulator.

AC AC !
SECONDARY FUNCTIONS
1 ASI())I;JIEISSES DE:%"BNRA;ZTSISON FUNCTION ROTATE, SWAP, CARRY, NO LOAD, SKIP
0 1 23 45 78 15

ARITHMETIC AND LOGIC FORMAT
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The Nova assembly programs recognize a number of mnemonics and other initial symbols that facilitate
constructing complete instruction words and organizing them into a program [Appendix D]. In particular there
arc three-letter mnemonics for the 2- and 3-bit functions; these mnemonics also represent whatever bits are con-
stant for the class the instruction is in. Eg the modify memory mnemonic

ISZ

assembles as 010000, the arithmetic mnemonic
SUB

assembles as 102400.

NoOTE

Throughout this manual all numbers representing instruction words, register contents, codes and
addresses are always octal, and any numbers appearing in program examples are octal unless other-
wise specified. Computer words are represented by six octal digits wherein the left one is always O or 1
representing the value of bit 0. The ordinary use of numbers in the text to specify quantities of
objects, such as words or locations, to count steps in an operation, or to specify word or byte
lengths, bit positions, etc. employs standard decimal notation.

Characters are suffixed to the basic mnemonic to specify the control part of an IO function and most of the
secondary functions in the arithmetic and logical class. The displacement and addresses of accumulators and
index registers are separated from the mnemonic by a space and from each other by commas. Anything written
at the right of a semicolon in a program listing is commentary that explains the program but is not part of it.

1.2 MEMORY

From the addressing point of view, the cntire memory is a set of contiguous locations whose addresses
range from zero to a maximum dependent upon the capacity of the particular installation. In a system with the
greatest possible capacity, the largest address is octal 77777, decimal 32,767. But the memory is actually made
up of a number of core or semiconductor memory modules, cach having a capacity of 1024, 2048 or 4096
words, and can also contain read-only memory modules. The latter may be used for storage of pure (unalter-
able) programs and constants; they usually contain 1024 words but may be of any size. An address supplied
by the program is actually decoded in two parts, the more significant to select a memory module and the
less significant to select a location within that module, but this need not concern the programmer. From the
point of view of the programmer, memory module size is irrelevant, and the read-only memory differs from
the others only in that its contents cannot be altered electrically. Common arithmetic and in-out routines arc
available in standard read-only memory modules; others are available on a custom basis.

The basic processor cycle time of the Nova is 2.6 microseconds with a core memory, 2.4 microseconds
with a read-only memory. The Nova 1200 and 800 have cycle times of 1200 and 800 nanoseconds respectively.
The Supernova cycle time is 800 nanoseconds with core, but only 300 nanoseconds with semiconductor or
read-only memory.

Memory Restrictions. The use of certain locations is defined by the hardware.

0-1 Program interrupt locations
20-27 Autoincrementing locations
30-37 Autodecrementing locations
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Chapter 11
Central Processor

This chapter describes all computer instructions but does not discuss the special effects of the in-out
instructions when they address specific peripheral devices. The chapter treats the memory reference instructions
and the arithmetic and logical instructions in detail, presents a general discussion of input-output, and
describes the effects of the in-out instructions on processor elements, including the program interrupt, the real
time clock, multiply-divide, and the memory allocation and protection option. Effects of in-out instructions on
particular peripheral devices are discussed with the devices in the remaining chapters.

In the description of each instruction, the mnemonic and name are at the top, the format is in a box below
them. The mnemonic assembles to the word in the box, where bits in those parts of the word represented by
letters assemble as Os. The letters indicate portions that must be added to the mnemonic to produce a
complete instruction word.

Instruction execution times depend both on the processor and the type of memory; they are therefore given
in a table at the end of Appendix D.

Twos Complement Conventions. The signed numbers used as displacements in referencing memory and as
operands for the arithmetic instructions utilize the twos complement representation for negatives. In a word or
byte used as a signed number, the leftmost bit represents the sign, O for positive, 1 for negative. In a positive
number the remaining bits are the magnitude in ordinary binary notation. The negative of a number is obtained
by taking its twos complement, with the sign bit included in the operation as though it were a more significant
magnitude bit. If x is an n-digit binary number, its twos complement is 2"—x, and its ones complement is
(27-1)-x, or equivalently (2"—x)—1. Subtracting a number from 271 (ie, from all 1s) is equivalent to perform-
ing the logical complement, ie changing all Os to 1s and all 1s to Os. Therefore, to form the twos complement
one takes the logical complement — usually referred to merely as the complement — of the entire word includ-
ing the sign, and adds 1 to the result. A displacement of 89 and its negative would look like this in bits 8§—15 of
an instruction word where bit 8 is the sign.

+89,, = +I31y = | 01 011 001
8 15
-89,y = —131y = | 10 100 111
8 15

The same numbers used as operands in the accumulators would look like this.

+89,, = +131g = [0000000 001 011 001|
0 15
-89,y = 131z = [1111111110100 111]
0 15
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Bit 0 is now the sign and bits 1-8 are not significant. It is thus evident that expanding an integer into a full
word is accomplished simply by filling out the word to the left with the sign.

Zero is represented by a number containing all Os; complementing this number produces all 1s, and add-
ing 1 to that produces all Os again. So there is only one zero representation and its sign is positive. Moreover
there is one more negative number than there are nonzero positive numbers. Hence there are 256 displace-
ments in an octal range — 200 to + 177. (The most negative number has a 1 in only the sign position.)

2.1 MEMORY REFERENCE INSTRUCTIONS

Bits 5-15 have the same format in every memory reference instruction whether the effective address is
used for storage or retrieval of an operand or to alter program flow. Bit 5 is the indirect bit, bits 6 and 7 are the

I X D
{ 1 | { { | | i
6 ' 7 8 9 ' 10 11 12 V13 14 15

index bits, and bits 8—15 are the displacement. The effective address E of the instruction depends on the values
of I, X, and D. If X is 00, D addresses one of the first 256 memory locations, ie D is a memory address in the
range 00000-00377. This group of locations is referred to as page zero.

If X is nonzero, D is a displacement that is used to produce a memory address by adding it to the contents
of the register specified by X. The displacement is a signed binary integer in twos complement notation. Bit 8
is the sign (0 positive, 1 negative), and the integer is in the octal range —200 to + 177 (decimal —128 to
+127). If X is 01, the instruction addresses a location relative to its own position, ie D is added to the address
in PC, which is the address of the instruction being executed. This is referred to as relative addressing. If X is
10 or 11 respectively, it selects AC2 or AC3 as a base register to which D is added.

X Derivation of address

00 Page zero addressing. D is an address in
the range 00000-00377.

01 Relative addressing. D is a signed displace-
ment (—200 to + 177) that is added to the
address in PC.

10 Base register addressing. D is a signed dis-
placement (— 200 to + 177) that is added
to the address in AC2.

11 Base register addressing. D is a signed dis-
placement (— 200 to + 177) that is added
to the address in AC3.

If 1 is O, addressing is direct, and the address already determined from X and D is the effective address
used in the execution of the instruction. Thus a memory reference instruction can directly address 1024 loca-
tions: 256 in page zero, and three sets of 256 in the octal range 200 less than to 177 greater than the address in
PC, AC2 and AC3. If I is 1, addressing is indirect, and the processor retrieves another address from the location
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specified by the address already determined. In this new word bit 0 is the indirect bit: bits1—15are the effec-
tive address if bit 0 is 0; otherwise they specify a location for yet another level of address retrieval. This

process continues until some referenced location is found with a 0 in bit O; bits 1-15 of this location are the
effective address E.

If at any level in the effective address calculation an address word is fetched from locations 00020-00037,
it is automatically incremented or decremented by one, and the new value is both written back in memory and
used either as the effective address or for the next step in the calculation depending on whether bit 0 is O or 1.

Addresses taken from locations 00020-00027 are incremented, those from locations 00030-00037 are
decremented.

Specific examples illustrating the various addressing methods are given on the next two pages.
The set of all addresses is cyclic with respect to the operations performed in an effective address calcula-

tion; regardless of the true sum or difference in any step, only the low order fifteen bits are used as an address.
Hence the next address beyond 77777 is 00000, the next below 00000 is 77777.

CAUTION

Incrementing 77777 or decrementing 00000 changes the state of the indirect bit in
the address word stored back in memory.

Programming Conventions. All memory reference functions are represented by three-letter mnemonics; eg

1Sz

assembles as 010000. For addressing page zero the displacement is simply an address. Thus

1Sz 344

assembles as 010344. When this word is executed as an instruction it increments the word in location 00344 and
skips the next instruction if the incremented word is zero. For relative or base register addressing the displace-
ment is a ‘twos complement integer.

ISZ —34,2

assembles as 011344 (0 001 001 011 100 100), in which bits 8—15 have the same configuration as in the pre-

vious example, but this time the instruction specifies a location whose address is 34y less than the address in
AC2.

The initial symbol @ preceding the displacement places a 1 in bit 5 to produce indirect addressing. The
examples given above use direct addressing, but

ISZ @—34,2

assembles as 013344 (0 001 011 011 100 100), and produces indirect addressing.

For memory reference with an accumulator, the AC.address precedes the memory address information and
isterminated by a comma. Eg

LDA 3,—342



assembles as 035344 (0 011 101 011 100 100).
The assembler also allows the following addressing conventions. A period represents the current address,
ie the address of the location containing the instruction being executed. Thus

LDA 3,.+6
is equivalent to
LDA 3,6,1
A colon following a symbol indicates that it is a symbolic location name. .
A: ADD 2,3

indicates that the location that contains ADD 2,3 may be addressed symbolically as A. The assembler assigns
a 15-bit value to the label A. When A is used in a statement such as

LDA 2,A+6

the treatment depends on the value of the expression in which A appears. In this case if A+ 6<00400 its low
order eight bits are simply placed in the displacement part of the instruction word and X is set to 00. If A+ 6 is
within range of PC, the indicated location is represented as a displacement relative to PC. Otherwise the assem-
bler indicates an error as location A + 6 cannot be directly addressed by the instruction.

Addressing Examples. Suppose the following registers contain the numbers listed.

Register Contents
6 100015
12 000035
15 000017
17 000023
23 000011
AC3 000015

Now if the program executes the instruction
LDA 1,6
which loads AC1 from location 6, AC1 receives the number 100015. AC1 holds the same number after
LDA 1,—7,3
is executed (effective address =C(AC3)—7=15—7=6). But
LDA 1,@6

which indirectly addresses location 6, which in turn indirectly addresses location 15, which directly addresses
location 17, loads 23 into the accumulator. AC1 also contains 23 following execution of

LDA 1,@15
On the other hand, AC1 contains 17 after

LDA 1,15
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or
LDA 1,0,3
is executed. Now
LDA 1,6,3

does not address location 6; it addresses 23 (C(AC3)+6=15+6=23) and thus loads 11 into ACIl. Note
that addressing an autoincrementing location directly does not alter its contents; AC1 simply receives its con-
tents as an operand. AC1 also receives 11 from

LDA 1,23
or

LDA I 17
But giving

LDA l.23
or

LDA 1, 6.3

replaces the contents of location 23 with the number 12 and loads 35 (the contents of location 12) into ACI.

Move Data Instructions

These two instructions move data between memory and the accumulators. In the descriptions of all
memory reference instructions, E represents the effective address.

LDA Load Accumulator
0 0 1 A I X D
| | | . | 1 | | 1 | | I
o " 1 2 3 T4 5 6 7 8 9 T 10 11 12 13 14 15

Load the contents of location E into accumulator 4. The contents of E£ are unaffected, the original contents
of A are lost.

STA Store Accumulator
0 1 0 A 1 X D
| | | L L | l 1 | | L
o 1 2 3 " 4 5 6 ' 7 8 9 10 11 12 713 14 15

Store the contents of accumulator 4 in location E. The contents of 4 are unaffected, the original contents

of E are lost.
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Modify Memory Instructions

These two instructions alter a memory location -and test the result for a skip. They are used to count
loop iterations or successively modify a word for a series of operations.

1SZ Increment and Skip if Zero
0 O | 0 1 | 0 I )1( 1 | | l? | | 1
0 } 1 2 ‘ 3 T oa 5 6 7 8 o ' 10 11 12 U3 14 15

Add 1 to the contents of location £ and place the result back in £. Skip the next instruction in sequence if

the result is zero.

DSz Decrement and Skip if Zero
o o o 1 1] 1 X D
| | | I ‘ | 1 g 1 | | | L.
o 1 2 3 T a 5 6 ' 7 8 9 T 10 11 12 ' 13 14 15

Subtract 1 from the contents of location E and place the result back in E. Skip the next instruction in sequence
if the result is zero.

Consider a block of thirty words in locations 2000-2035 that we wish to move to locations 5150-5205
but in reverse order. We could autoincrement through one set, autodecrement through the other, and decre-
ment a control count to determine when the block transfer is complete.

LDA O,CNT ;Set up autoincrement location
STA 0,21
LDA 0,CNT+1 ;Set up autodecrement location
STA 0,35
LOOP: LDA 0,@21 :Get a word
STA 0,@35 :Store it
DSZ CNT+2 ;Count down word count
JMP LOOP ;Jump back for next word

;Skip to here when count is zero
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CNT: 001777 ;1 before source block
005206 ;1 after destination block
000036 ;Word count: 30, =364

Of course we could just as well put 177742 (—36) in CNT + 2 and replace the DSZ with an ISZ.

Jump Instructions

These two instructions allow the programmer to alter the normal program sequence by jumping to an
arbitrary location. They are especially useful for calling and returning from subroutines.

JMP Jump
0 0 0 0 0 I X D
| | | | | I i ! 1 | ! |
0o 1 2 3 "4 5 6 | 7 8 9 T 10 11 12 13 14 15

Load E into PC. Take the next instruction from location £ and continue sequential operation from there.

JSR Jump to Subroutine
0 0 0 0 1 ! X D
1 [ Il | | 1 1 1 1 1 1 1
o | 1 2 3 1 4 5 6 | 7 8 9 1 10 11 12 ' o3 14 15

Load an address one greater than that in PC into AC3 (hence AC3 receives the address of the location fol-
lowing the JSR instruction). Load E into PC. Take the next instruction from location E and continue sequen-
tial operation from there. The original contents of AC3 are lost.

NoTEe: The effective address calculation is completed before PC+1 is loaded into AC3. Thus a JSR
that specifies AC3 as a base register does execute properly; ie the previous contents of AC3 are used in the
address calculation.

The usual procedure for calling a subroutine is to give a JSR whose effective address is the starting loca-
tion of the routine. Since PC + 1 is saved in AC3, a subsequent return can be made to the location following the
JSR simply by giving a JMP 0.,3. Note also that PC+ [ is saved in an accumulator. Hence the subroutine can
be reentrant (pure), i¢ memory is not modified by the act of calling it. If we wish to use AC3 in the subrou-
tine, we can store the return address in a convenient place in page zero, say location B, with an STA 3,B
and then return with a JMP (@ B.

A convenient way to handle a number of subroutines that are called frequently is to store their starting
addresses in page zero. Suppose we have subroutines starting at locations U, V, W, X, . . . . If we store these
15-bit addresses at locations UC, VC, WC, XC, . . . respectively in page zero, then we can call a given rou-
tine, say the one beginning at X, simply by giving a JSR (@ XC.
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Consider a print subroutine that we wish to use to output fifty words beginning at TAB. The routine
begins at PRT, which address is stored in PRTC in page zero. Our main program would contain this.
JSR @PRTC
:Return here

We use AC2 as a base register for counting through the table and ACO to output the data. The starting
address of the table is in TAB1, which is in the vicinity of PRT. The subroutine might look something like this.

PRT: LDA 2,TAB1 ;Set up AC2 as base for table
LDA 0,9,2 ;Load word for output into ACO
' ;1O part of routine here

ISZ PRT+1 ;Increment displacement in load instruction
DSZ CNT ;Done yet?
JMP PRT+1 :No, get next word
JMP 0,3 ;Yes, return by AC3
TABI1: TAB
CNT: 62 ;625=50,

This routine is incomplete as it destroys itself; to be used again the displacement in location PRT+ 1 must
be changed back to zero. The routine would be faster if we replaced the ISZ with an arithmetic instruction
that increments AC2, thus using AC2 as an index register and leaving the LDA displacement alone (it would
also be complete as AC2 is set up each time the subroutine is called). It would be even faster if we deleted
the ISZ, stored the address TAB—1 in an autoincrementing location, say 23, and loaded ACO with

LDA 0,@23

Argument Passing. Supposc we have an arithmetic subroutine that operates on arguments in ACO and
ACI, leaving the result in AC1. The subroutine call looks like this:

JSR VSi1 ;Call with arguments in ACO, AC1
;Return here with result in AC1

and the subroutine looks like this:

VSi: . ;Arithmetic operations

JIMP 0,3 ;Return to call + 1

In the above the program would have to load the accumulators before calling the routine. Now it is
often convenient for the program simply to supply the arguments (or the addresses of the locations that con-
tain them) along with the call and have the subroutine take care of the data transfers. With this version the
program gives the arguments in the two memory locations immediately following the JSR,

JSR VS2
;Argument 1
;Argument 2
;Return here with result in AC1



and the return is made to the location following the second argument with the result in ACI.

VS2: LDA 0,0,3 ;Pick up argument 1
LDA 1,1,3 ;Pick up argument 2
JMP 2,3 ;Return to call + 3

This version is called with the addresses of the arguments following the JSR; otherwise it is the same as

version 2.
JSR VS3
;Address of argument 1
;Address of argument 2
VS3: LDA 0,@0,3 ;Pick up argument 1
LDA 1,@1,3 ;Pick up argument 2
JMP 2,3 :Return to call + 3

The next version is the same as version 3 except that the result replaces the second argument in memory.

JSR VsS4
;Address of argument 1
;Address of argument 2 and result
VS4: LDA 0,@0,3 ;Pick up arguments
LDA 1,@1,3
STA 1,@1,3 ;Store result
JMP 2.3

The final version is the same as the fourth but ACO and ACI are not disturbed by its execution. The
call is exactly the same as for VS4.

VS5: STA 0,TM0 ;Save ACs
STA 1,TM1
LDA 0,@0,3 ;Pick up arguments
LDA 1,@1,3



STA 1,@1.3 ;Store result

LDA 0,TMO0 ;Restore ACs

LDA 1,TM1

JMP 2,3
TMO: 0 ;Temporary storage for ACs
TM1: 0

2.2 ARITHMETIC AND LOGICAL INSTRUCTIONS

To perform logical operations the hardware interprets operands as logical words. For arithmetic opera-
tions, operands are treated as 16-bit unsigned numbers, with a range of 0 to 2!16~1. The program however
can interpret them as signed numbers in twos complement notation as described at the beginning of this chap-
ter. It is a property of twos complement arithmetic that operations on signed numbers using twos comple-
ment conventions are identical to operations on unsigned numbers; in other words the hardware simply treats
the sign as a more significant magnitude bit. Suppose an accumulator contains this binary configuration:

1000 000 001 011 001]
0

15

As an unsigned number this would be equivalent to

10013154

]

3285710
whereas interpreted as a signed number using twos complement notation it would be

~77647s =  —32679,,

Insofar as processor operations are concerned, it makes no difference which way the programmer interprets
the contents of the accumulators provided only that he is consistent.

Numbers in twos complement notation are symmetrical in magnitude about a single zero representation
so all even numbers both positive and negative end in 0, all odd numbers in 1 (a number all 1s represents — 1).
If ones complements were used for negatives, one could read a negative number by attaching significance to
the Os instead of the 1s. In twos complement notation each negative number is one greater than the comple-
ment of the positive number of the same magnitude, so one can read a negative number by attaching signi-
ficance to the rightmost 1 and attaching significance to the Os at the left of it (the negative number of largest
magnitude has a 1 in only the sign position). Assuming the binary point to be stationary, 1s may be discarded
at the left in a negative integer, just as leading Os may be dropped in a positive integer; equivalently an
integer can be extended to the left by prefixing 1s or Os respectively (ie by prefixing the sign). In a negative
(proper) fraction, Os may be discarded at the right; as long as only Os are discarded, the number remains in
twos complement form because it still has a 1 that possesses significance; but if a portion including the right-
most 1 is discarded, the remaining part of the fraction is now a ones complement. Truncation of a negative
number thus increases its absolute value.

The computer does not keep track of a binary point; the programmer must adopt a point convention
and shift the magnitude of the result to conform to the convention used. Two common conventions are to

regard a number as an integer (binary point at the right) or as a proper fraction (binary point at the left);
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in these two cases the range of signed numbers represented by a single word is —2'5 to 25—1 or —1 to
[ =215,

Since each bit position represents a binary order of magnitude, shifting a number is equivalent to mul-
tiplication by a power of 2, provided of course that the binary point is assumed stationary. Shifting one place
to the left multiplies the number by 2. A 0 should be entered at the right, and no information is lost if the
sign bit remains the same — a change in the sign indicates that a bit of significance has been shifted out.
Shifting one place to the right divides by 2. Truncatien occurs at the right, and a bit equal to the sign must

be entered at the left.
Associated with the accumulators is the Carry flag, which is used to detect a carry out of bit 0 in an

arithmetic operation. The circumstances that generate a carry out of the most significant bit are obvious
when dealing with unsigned numbers. If addition or incrementing increases a number beyond 2'¢—1, a carry
is produced. In subtraction the condition is the same if instead of subtracting we add the complement of
the subtrahend and add 1 to the result (subtraction is performed by adding the twos complement). In terms
of the original operands the subtraction A—B produces a carry if A>B. Forming the twos complement of
zero generates a carry, for complementing zero produces a word containing all Is, and adding | to that pro-
duces all Os again plus a carry. The statement of the carry conditions in terms of signed numbers is more
complex, but they are always exactly equivalent to the conditions given above if the numbers are simply inter-
preted as unsigned. In any event the complete conditions that produce a carry for numbers signed or unsigned
are given in the instruction descriptions.

Arithmetic and Logical Processing. The logical organization of the arithmetic unit is illustrated below.
Each instruction specifies one or two accumulators to supply operands to the function generator, which per-
forms the function specified by the instruction. The function generator also produces a carry bit whose value
depends upon three quantities: a base value specified by the instruction, the function performed, and the
result obtained. The base value may be derived from the Carry flag. or the instruction may specify an inde-
pendent value.

. 17 BITS .
GENERATOR SHIFTER
1 BIT 16 BITS | 16 BITS 17 BITS
@E ACCUMULATORS SKIP SENSOR
1 BIT 16 BITS -
P~ 17BITS

LOAD/NO LOAD

ORGANIZATION OF ARITHMETIC UNIT

The 17-bit output of the function generator, comprising the carry bit and the 16-bit function result, then
goes to the shifter. Here the 17-bit result can be rotated one place right or left, or the two 8-bit halves of
the 16-bit function result can be swapped without affecting the carry bit. The 17-bit shifter output can then
be tested for a skip; the skip sensor can test whether the carry bit or the rest of the 17-bit word is or is not
equal to zero. Finally the 17-bit shifted word can be loaded into Carry and one of the accumulators selected
by the instruction. Note however that loading is not necessary: an instruction can perform a complicated
arithmetic and shifting operation and test the result for a skip without affecting Carry or any accumulator.
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Carry, Shift and Skip Functions

An instruction that has a 1 in bit O performs one of eight arithmetic and logical functions as specified
by bits 5-7 of the instruction word. The function, which may be anything from a simple move to a subtrac-
tion, always uses the contents of the accumulator specified by bits 1 and 2; and if a second operand is required,
it comes from the accumulator addressed by bits 3 and 4. '

AC AC NO
1 SOURCE |DESTINATION FUNCTION SHIFT CARRY | O SKIP
ADDRESS ADDRESS |
1 1 1 ul : 1 1 1 1
0 1 2 3 g 5 6 | 7 8 9 10 11 12 13 14 15

The instruction also supplies a carry bit to the shifter with the result. Bits 10 and 11 specify a base
value to be used in determining the carry bit. The instruction supplies either this value or its complement
depending upon both the function being performed and the result it generates. The mnemonics and bit con-
figurations and the base values they select are as follows.

Mnemonic Bits 10-11 Base value for carry bit
00 Current state of Carry
V4 0l Zero
O 10 One
C 11 Complement of curvent state of Carry

The three logical functions simply supply the listed values as the carry bit to the shifter. The five arithme-
tic functions supply the complement of the base value if the operation produces a carry out of bit O; other-
wise they supply the value given. The carry bit can be used in conjunction with the sign of the result to
detect overflow in operations on signed numbers. But its primary use is as a carry out of the most signifi-
cant bit in operations on unsigned numbers, such as the lower order parts in muitiple precision arithmetic.

The 17-bit word consisting of the carry bit and the 16-bit result is operated on by the shifter as speci-
fied by bits 8 and 9.

Mnemonic Bits 8-9 Shift operation
00 None
L 01 Left rotate one place. Bit 0 is rotated into the carry position, the

carry bit into bit 15.
e i

R 10 Right rotate one place. Bit 15 is rotated into the carry position,
the carry bit into bit 0.

L—l Ch— 0-15 )_J

S 11 Swap the halves of the 16-bit result. The carry bit is not affected.
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lc] | 0-7 s-15 |

cl | 0-7 8-15

The 17-bit output of the shifter is loaded into Carry and the accumulator addressed by instruction bits
3 and 4 provided bit 12 is 0. A 1 programmed in bit 12 inhibits the loading and prevents the instruction
from affecting Carry or the accumulator. Note that it is the shifted result that is loaded: AC receives the
result of the function and Carry the carry bit only if bits 8 and 9 are O.

The shifter output is also tested for a skip according to the condition specified by bits 13—15. The proc-
cssor skips the next instruction if the specified condition is satisfied.

Bit Effect of a 1 in the bit

13 Selects the condition that the low order 16 bits of the
shifter output are all 0.

14 Selects the condition that the bit in the carry position
of the shifter output is O.

15 Inverts the conditions selected by bits 13 and 14. In

other words a 1 in bit 15 causes 1s in the other bits
to select nonzero conditions.

The combined effects of bits 13—15 taken together and the mnemonics for the various bit configurations are
as follows.

Mnemonic Bits 13-15 Skip function
0 Never Skip
SKP 1 Always Skip
SZC 2 Skip on Zero Carry
SNC 3 Skip on Nonzero Carry
SZR 4 Skip on Zero Result
SNR 5 Skip on Nonzero Result
SEZ 6 Skip if Either Carry or Result is Zero
SBN 7 Skip if Both Carry and Result are Nonzero

Remember that the test is made on the shifter output. Thus if the result of an addition is shifted left, SZC
and SNC actually test the sign of the sum. Note also that the test is made whether or not the shifter output
is loaded. The program can therefore test the result of an arithmetic function without disturbing the orig-
inal operands or Carry.

Programming Conventions. The instruction

ADD 1,2 [1101]1 0]t 1 0joojoojo] 000
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which assembles as 133000, adds the numbers in AC1 and AC2, loads the unshifted result in AC2, and com-
plements Carry if there is a carry out of bit 0. Other carry and shift operations are selected simply by append-
ing the appropriate letters to the function mnemonic, but the carry letter (if any) must appear first. Thus to
generate a carry bit of 1 .on a carry (0 otherwise) and load Carry and AC2 with the 17-bit result shifted
left we give

ADDZL 1,2 [1]o1]1 ot1 do1]o1lgfooo]

which assembles as 133120. This instruction places the sign of the sum in Carry, the rest of the sum in bits
0-14 of AC2, and a 1 or a 0 in bit 15 depending on whether or not there is a carry out of the sign bit. To use
the present state of Carry instead of 0 as the basis for adjusting bit 15, but otherwise produce the same effect, give

ADDL 1,2 [1o1]1 oft 1 ojo1]oojojooo]

which assembles as 133100. The instruction

ADDL  1,2,SZC [1]o11 of11 oo1joojojo10]

assembles as 133102, and affects Carry and AC2 in the same manner as the preceding instruction, but also
causes the processor to skip the next instruction if the sign of the sum is positive.

The initial symbol # following the expanded function mnemonic places a 1 in bit 12 to prevent the loading
of the shifter output. Hence we can skip the next instruction on a positive sum without affecting AC2 or Carry by
giving

ADDL# 1,2,SZC lt]o1]1 i1 ojo1]oofi]o10]

which assembles as 133112.

Arithmetic and Logical Functions

The eight functions are selected by bits 5-7 of the instruction word. For convenience the source and des-
tination accumulators addressed by the S and D parts of the instruction are referred to as ACS and ACD.

Com Complement
1 § Q 0 | 0 [ 0 SIH . (IJ N [ SK |
0 1 2 3 U 4 5 6 ' 7 8 9 10 11 12 13 14 15

Place the (logical) complement of the word from ACS and place the carry bit specified by C in the shifter. Perform the
shift operation specified by SH. Load the shifter output in Carry and ACD unless &V is 1. Skip the next instruction if the
shifter output satisfies the condition specified by SK.

ExaMPLE. Suppose we wish to test AC1 for the unsigned integer 2!6—1 (177777, signed —1). The
instruction

COM# 1,1,SZR
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skips the next instruction if AC1 contains all 1s. The result is not loaded so we could specify any accumulator

as the destination, eg

COM#  1,3,SZR
NEG Negate
1 § 11) 0 0 1 SH C N SK
(4] 1 2 3 ! 4 S : 6 ! 7 8 : 9 10 : 11 12 13 : 14 : 15

Place the twos complement of the number from ACS into the shifter. If ACS contains zero, supply the complement of
the value specified by C as the carry bit; otherwise supply the specified value. Perform the shift operation specified by
SH. Load the shifter output in Carry and ACD unless VNV is 1. Skip the next instruction if the shifter output satisfies the
condition specified by SK.

Mov Move
1 § Q 0 1 0 SH C N l SK
0 1 2 3 ' 4 5 [ 6 ; 7 8 = 9 10 : 11 12 13 14 : 15

Place the contents of ACS and the carry bit specified by C in the shifter. Perform the shift operation specified by
SH. Load the shifter output in Carry and ACD unless N is 1. Skip the next instruction if the shifter output sat-
isfies the condition specified by SK.

ExAMPLES. The test for a zero word in AC1 is any of these:

MOV 1,1,SZR MOV 1,1,SNR MOV# 1,1,SZR MOV# 1,1,SNR
Suppose we wish to divide the number in AC2 by 2.
MOVL# 22.SZC ;Is it positive? S
MOVOR 2,2,SKP ;No, put in a 1 and skip
MOVZR 22 ;Yes,putina0
INC Increment
1 S D SH C N SK
l | ! I 1 1
0 1 2 3T a4 8 9 10 11 12 13 14 15

Add 1 to the number from ACS and place the result in the shifter. If ACS contains 2'6—1 (signed —1) sup-
ply the complement of the value specified by C as the carry bit; otherwise supply the specified value. Per-
form the shift operation specified by SH. Load the shifter output in Carry and ACD unless N is 1. Skip the

next instruction if the shifter output satisfies the condition specified by SK.
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ADC

Add Complement

1

S
|

SH

|

C

N

SK

L

0

Add the (logic

1

L

él) complement of the number from ACS to the number from ACD, and place the result in the shifter.

2

3

P

8

9

10

11

12

13

14

15

If ACD > ACS (unsigned), supply the complement of the value specified by C as the carry bit; otherwise supply
the specified value. Perform the shift operation specified by SH. Load the shifter output in Carry and ACD unless
N is 1. Skip the next instruction if the shifter output satisfies the condition specified by SK.

Notk: For signed numbers the carry condition is that the signs of the operands are the same and ACD is
the greater, or the signs differ and ACD is negative.

This instruction is often used to process high order words in multiple precision subtraction, wherein a neg-
ative is usually a ones complement instead of a twos complement. The overflow condition for signed numbers
using ones complement conventions is the same as that given for SUB below.

SuB Subtract
1 § ll) 1 | 0 | 1 SH ?‘ N SK
0 1 2 3 L) 5 6 I 7 8 I 9 10 11 12 13 : 14 ’ 15

Subtract by adding the twos complement of the number from ACS to the number from ACD, and place
the result in the shifter. If ACD>ACS (unsigned), supply the complement of the value specified by C as the
carry bit; otherwise supply the specified value. Perform the shift operation specified by SH. Load the shifter
output in Carry and ACD unless N is 1. Skip the next instruction if the shifter output satisfies the condition
specified by SK.

Norte: For signed numbers the carry condition is that the signs of the operands are the same and ACD>>
ACS, or the signs differ and ACD is negative.

ExaMmPLES. This instruction can be used to clear an accumulator by subtracting it from itself.
SUB 2,2
clears AC2 and complements Carry,
SUBO 2,2

clears both AC2 and Carry.

SUB is also useful for comparing quantities, eg
SUB# 2,3,SNR

skips if AC2 and AC3 are unequal but does not affect either accumulator.
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ADD

Add

1

S
|

SH
1

C

N

0

1

2

6

7

8

9

10

11

12

Add the number from ACS to the number from ACD, and place the result in the shifter. 1f the unsigned
sum is >2'¢, supply the complement of the value specified by C as the carry bit; otherwise supply the specified
value. Perform the shift operation specified by SH. Load the shifter ovtput in Carry and ACD unless N is 1.
Skip the next instruction if the shifter output satisfies the condition specified by SK.

NortE: For signed numbers the carry condition is that both summands are negative, or their signs differ and
their magnitudes are equal or the positive one is the greater in magnitude.

AND

And

1

SH

L

C

N

0

1

2

8

9

11

12

15

Place the logical AND function of the word from ACS and the word from ACD in the shifter. Supply the
value specified by C as the carry bit. Perform the shift operation specified by SH. Load the shifter output in
Carry and ACD unless N is . Skip the next instruction if the shifter output satisfies the condition specified
by SK.

This instruction operates bitwise on a pair of words, so it actually performs sixteen logical operations
simultaneously. A given bit of the result is 1 if the corresponding bits of both operands are 1; otherwise the
resulting bit is 0.

ACS; ACD; Result;
0 0 0
0 1 0
1 0 0
1 1 1

Programming Examples

Together ADC and SUB allow the program to compare the magnitudes of unsigned numbers in every
way. Eg

SUBZ# 1,0,SZC

skips if ACO<<AC1, whereas,

ADCZ# 1,0,SZC

skips if ACO<CACI.

It is well known that the nth perfect square is the sum of the first # odd numbers. We can therefore find
the largest integer contained in the square root of an integer held in ACO by successively subtracting odd num-
bers in order from ACO until overflow occurs, ie until ACO becomes negative. The desired answer is the number
of odd numbers successfully subtracted before a carry occurs. The routine is called by a JSR with effective

address SQRT.
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SQRT: SUBO 1,1 ;Clear AC1 and Carry

MOVOL 1,2 JAC2 gets | + twice AC1 (2n + 1)

SUBZ 2,0,SNC ;:Subtract next odd number; still positive?

JMP 0,3 :No, exit with 17 one less than number of odd numbers tried
INC 1,1 :Yes, increment n

JMP SORT+1 ;and try next odd number

The instruction set has only one logical function of two variables, but the inclusive and exclusive OR func-
tions can be performed by very simple routines. In an inclusive OR a bit of the result is 1 if either of the cor-
responding operand bits is 1, otherwise it is 0. The algorithm for full words is

A~n~B+B=AVvVEHB

Taking the arguments as single bits, if Bis 1, A A ~ B is 0 regardless of the state of A4, and the expres-
sion on the right is 1. If B is 0, the expression is 1 or 0 as 4 is 1 or 0. In no case are 4 A ~ B and B both 1,
so the full word addition generates no carries. This sequence places the inclusive or of ACO and AC1 in AC1
(ACO = B, ACl1 = A4).

COM 0,0 ;~B
AND 0,1 ;~B A Ain AC1
ADC 0,1 i~~B 4+ ~BAA =B+ ~BA Ain AC1

In an exclusive OR a bit of the result is 1 if the corresponding operand bits are different, otherwise it is 0.
This is equivalent to the sum if carries from one bit position to the next are ignored. Now a carry out of the ith
position is equ‘al to twice the value of a 1 in the ith position, and a carry is generated only if the ith bits of both
summands are 1, provided we compensate for any carry into the ith position. The algorithm is therefore.

A~B=A+ B —2(4 A B)

This sequence places the exclusive OrR of ACO and AC1 in ACI, destroying the contents of AC2 and Carry
in the process (ACO = B,AC1 = A).

MOV 1,2 :Move 4 to AC2
ANDZL 0,2 ;2(A ~ B) in AC2
ADD 0,1 ;A + B

SUB 2,1 A+ B —2(A A~ B)

Double Precision Arithmetic. A double length number consists of two words concatenated into a 32-bit
string wherein bit O is the sign and bits 1-31 are the magnitude in twos complement notation. The high order
part of a negative number is therefore in ones complement form unless the low order part is null (at the right

+262,146,, =  +2000002, = |0000 000 000 001 000|0 000 000 000 000 010)
0 15 16 31
-262,146,, =  —2000002¢ = (1111111111110 111]1 111 111 111 111 110]
0 15 16 31
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only Os are null regardless of sign). Hence in processing double length numbers, twos complement operations
are usually confined to the low order parts, whereas ones complement operations are generally required for the
high order parts.

Suppose we wish to negate the double length number whose high and low order words respectively are in
ACO and ACI. We negate the low order part, but we simply complement the high order part unless the low
order part is zero. Hence

NEG 1,1,SNR
NEG 0,0,SKP ;Low order zero
COM 0,0 ;Low order nonzero

Note that the magnitude parts of the sequence of negative numbers from the most negative toward zero are
the positive numbers from zero upward. In other words the negative representation —x is the sum of x and the
most negative number. Hence in multiple precision arithmetic, low order words can be treated simply as posi-
tive numbers. In unsigned addition a carry indicates that the low order result is just too large and the high
order part must be increased. We add the number in AC2 and AC3 to the number in ACO and AC1.

ADDZ 3,1 8ZC
INC 2,2
ADD 2,0

In twos complement subtraction a carry should occur unless the subtrahend is too large. We could incre-
ment as in addition, but since incrementing in the high order part is precisely the difference between a ones
complement and a twos complement, we can always manage with only two instructions. We subtract the num-
ber in AC2 and AC3 from that in ACO and ACI1.

SUBZ 3,1 8ZC
SUB 2,0,SKP
ADC 2,0

Multiply and Divide Subroutines. In pencil and paper decimal multiplication, one multiplies the multipli-
cand by each multiplier digit separately to form a set of partial products. Successive partial products are shifted
one place to the left (they are multiplied by successive powers of 10) and summed. In the computer it is easier
to add each partial product as it is formed and shift the result one place to the right so the running sum is in
the correct position to receive the next one. Since the numbers are binary, each partial product is either the
multiplicand or zero. Hence at each step we either add the multiplicand and shift or simply shift depending
on whether the next bit of the multiplier is 1 or 0.

The multiply subroutine operates on unsigned integers in AC1 and AC2 to generate a double length product
whose high and low order parts are left in ACO and AC1 respectively. If entry is made at MPYA, the product is
added to the number originally in ACO (the result is ACO+ AC1 X AC2). Carry is left unchanged.

MPYU: SUBC 0,0 ;Clear ACO, don’t disturb Carry
MPYA: STA 3,.CB03 ;Save return
LDA 3,.CB20 ;Get step count
.CB99: MOVR 1,1,SNC ;Check next multiplier bit
MOVR 0,0,SKP ;0 — shift
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ADDZR 2,0 ;1 — add multiplicand and shift

INC 3,3,SZR ;Count step, complementing Carry on final count
JMP .CB99 ;Iterate loop
MOVCR 1,1 ;Shift in last low bit (which was complemented by final count) and
JMP @.CBO3 ;restore Carry
.CB03: 0
.CB20: -20 ;1644 steps

The divide subroutine also operates on unsigned integers, using a double length dividend and a single
length divisor to produce a single length quotient and remainder. The routine starts by comparing the divisor
with the high order half of the dividend: if the divisor is less than or equal to the latter quantity, the division is
not performed as the result would be greater than 216-1, the largest integer than can be held in an accumula-
tor. (The result would be greater than or equal to 1 if the operands are interpreted as proper fractions.) It is
not a sensible procedure simply to compute the first sixteen bits of the quotient as it would be impossible to
determine the order of magnitude. So it is up to the programmer to shift the dividend to the correct position
beforehand. For operations limited to single length integers (referred to as “integer division”) the one-word
dividend is treated as the low order half of a double length number whose high order part is null, and the
routine fails to perform the division only when the divisor is zero. The worst possible case is the division
of 216-1 by 1, whose integral result can be accommodated.

In division on paper, one subtracts out the divisor the number of times it goes into the dividend, then
shifts the dividend one place to the left (or the divisor to the right) and again subtracts out. In binary com-
putations the divisor goes into the dividend either once or not at all. Each comparison thus generates a single
bit of the quotient. If the divisor does go in, it is subtracted and a 1 is entered into the quotient; if not, a 0 is
entered. The test condition is reversed if the dividend shift puts a 1 in Carry; this way Ca'rry is used effectively
as an extra magnitude bit and no information is lost in the shift.

The high and low parts of the dividend are in ACO and ACI, the divisor is in AC2. At completion the
remainder is in ACO, the quotient is in AC1, AC2 is unchanged, and Carry is left clear. For integer division
entry is at .DIVI with the dividend in ACI. If the division is not performed, Carry is set and the three
accumulators are unchanged except that calling .DIVI clears ACO. Note that the result is such that if . MPYA
is called, ACO and ACl are restored, ie divisor times quotient plus remainder equals original dividend. For
further information see the subroutine writeup, 093-000016.

.DIVI: SUB 0,0 ;Integer divide — clear high part
DIVU: STA 3,.CC03 ;Save return
SUBZ# 2,0,SZC ;Test for overflow
JMP .CC99 ;Yes, exit (ACO = AC2)
LDA 3,.CC20 ;Get step count
MOVZL 1,1 ;Shift dividend low part
.CC98: MOVL 0,0 ;Shift dividend high part
SUB# 2,0,S2C ;Does divisor go in?
SUB 2,0 ;Yes
MOVL 1,1 ;Shift dividend low part
INC 3,3,SZR ;Count step
JMP .CC98 ;Iterate loop
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SUBO 3,3,SKP ;Done, clear Carry

.CC99: SUBZ 3,3 ;Set Carry
IMP @.CC03 ;Return

.CCO3: 0

.CC20: -20 ;1649 steps

Byte Manipulation. For processing 8-bit bytes it is convenient to use a byte pointer in which bits 0-14 are
the address of the memory location that contains or will receive the byte, and bit 15 specifies which half (1 Ileft,

MEMORY ADDRESS

nou

1=1L
0 =R

0 14 15

0 right). Incrementing a pointer with this format changes bit 15 every count to specify the next byte, but changes
the address part only every other count.

The following subroutine picks up a byte, places it in the right half of ACO, and increments the byte
pointer in memory. The calling sequence is ~

JSR PICK
;Address of pointer
;Return here if byte is zero
;Normal return

The calling sequence supplies the address of the location containing the pointer. A separate return for a zero
byte allows the program to process a sequence of bytes whose length is unspecified, but which terminates with

a zero byte.
PICK: LDA 2,@0,3 - ;Get byte pointer
ISZ @0,3 ;Increment pointer
MOVZR 22 ;Put address in right place (left/right bit to Carry)
LDA 0,0,2 ;Bring memory word to ACO
LDA 2,C377 ;Get 8-bit mask
MOV 0,0,SZ2C ;Test Carry for which half
MOVS 0,0 ;Swap byte from left to right
AND 2,0,SNR ;Mask out unwanted byte and test for zero
IMP 13 ;Zero, return to call +2
JMP 23 :Nonzero, return to call +3
C377: 377 ;8-bit mask (1s in right half)

2.3 INPUT-OUTPUT

Instructions in the in-out class govern all transfers of data to and from the peripheral equipment, and also
perform various operations within the processor. An instruction in this class is designated by 011 in bits 0-2.
Bits 10-15 select the device that is to respond to the instruction. The format thus allows for 64 codes of which
62 can be used to address devices (octal 01—76). The code 00 is not used, and 77 is used for a number of spe-

cial functions including reading the console data switches and controlling the program interrupt. A table in
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Appendix E lists all devices for which codes have been assigned, and gives their mnemonics and DGC option
numbers.

Every device has a 6-bit device selection network, an Interrupt Disable flag, and Busy and Done flags. The
selection network decodes bits 10-15 of the instruction so that only the addressed device responds to.signals
sent by the processor over the in-out bus. The Busy and Done flags together denote the basic state of the device.
When both are clear the device is idle. To place the device in operation, the program sets Busy. If the device
will be used for output, the program must give a data-out instruction that sends the first unit of data — a word
or character depending on how the device handles information. (The word “output” used without qualification
always refers to the transfer of data from the processor to the peripheral equipment; “input” refers to the trans-
fer in the opposite direction.) When the device has processed a unit of data, it clears Busy and sets Done to in-
dicate that it is ready to receive new data for output, or that it has data ready for input. In the former case the
program would respond with a data-out instruction to send more data; in the latter with a data-in instruction
to bring in the data that is ready. If the Interrupt Disable flag is clear, the setting of Done signals the program
by requesting an interrupt; if the program has set Interrupt Disable, then it must keep testing Done or Busy to
determine when the device is ready.

In all in-out instructions bits 8 and 9 either control or sense Busy and Done. In those instructions in which
bits 8 and 9 specify a control function, the mnemonics and bit configurations and the functions they select are
as follows.

Mnemonic Bits 8-9 Control function
00 None
S 01 Start the device by clearing Done and setting Busy
C 10 Clear both Busy and Done, idling the device
p 11 Pulse the special in-out bus control line — the effect, if

any, depends on the device

The overall sequence of Busy and Done states is determined by both the program and the internal operation
of the device.

Busy Done
0 0 \
START li
( 1 0 7 CLEAR
DEVICE START
COMPLETION 0 | AGAIN

The data-in or data-out instruction that the program gives in response to the setting of Done can also restart
the device. When all the data has been transferred the program generally clears Done so the device neither re-
quests further interrupts nor appears to be in use, but this is not necessary. Busy and Done both set is a mean-
ingless situation.

Bits 5-9 specify the complete function to be performed. If there is no transfer (bits 5-7 all alike), bits 3
and 4 are ignored and bits 8 and 9 may specify a control function or a skip condition.
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NIO No 10 Transfer

0 ! 0 0 F L ! l? L !

0 SR S 8 9 10 11 12 ' 13 14 15
Perform the control function specified by F in device D.
SKPBN Skip if Busy is Nonzero

0 | ! 0 | 0 0 ! 0 ! L l|) | !

|

o ! 2 I 3T 4 8 9 10 11 12 T 13 14 15
Skip the next instruction in sequence if the Busy flag in device D is 1.
SKPBZ Skip if Busy is Zero

0 ! 0 | 0 0 ! | ! 11) I !

0 ' T 8 9 10 11 12 ' 13 14 15
Skip the next instruction in sequence if the Busy flag in.device D is 0.
SKPDN Skip if Done is Nonzero

0 1 0 0 1 0 | | lx) | 1

0 'l l 2 l 3 I 4 8 9 10 11 12 T 13 14 15
Skip the next instruction in sequence if the Done flag in device D is 1.
SKPDZ Skip if Done is Zero

0 ! ! ! 0 | 0 ! ! ! 11) | !

I !
0 2 3 a4 8 9 10 11 12 ' 13 14 15

Skip the next instruction in sequence if the Done flag in device D is 0.

The letter for the control function is appended to the basic mnemonic; NIO alone with any device code
is a no-op. To place say the high speed tape reader in operation we could give

NIOS 12

which assembles as 060112 (0 110 000 001 001 010) and causes the reader to read one line from tape into
its buffer. There are mnemonics for the device codes so we could also give the equivalent

NIOS PTR
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To determine when the character is in the buffer without using the program interrupt we can wait for either Busy
to clear or Done to set, eg by giving

SKPDN  PTR
JMP ~1

If bits 5-7 are not all alike the instruction calls for an in-out transfer. Bits 3 and 4 specify the accumula-
tor that supplies or receives the data, bits 8 and 9 specify a cortrol function (if any) as listed above.

DIA Datain A
0 ! I AIC 0 | 0 | L II: | | ? | |
0 { 1 I 2 3 T a4 5 6 ' 7 8 9 10 11 12 " 13 14 15

Move the contents of the A buffer in device D to accumulator AC, and perform the function specified by F in
device D.

The number of data bits moved depends on the size of the device buffer, its mode of. operation, etc. Bits
in AC that do not receive data are cleared.

DOA Data Qut A
0 ! ! A|C 0 l ! | 0 ﬁr i L | ll) | I
0 ; 1 I 2 3 ' a 5 6 ' 7 8 9 10 11 12 T 13 14 15

Send the contents of accumulator AC to the A buffer in device D, and perform the function specified by F in
device D.

The amount of data actually accepted by the device depends on the size of its buffer, its mode of opera-
tion, etc. The original contents of 4C are unaffected.

DIB Datain B
0 | 1 1 AC 0 1 1 F ‘ D
0 I 1 : 2 3 ! 4 5 l 6 I 7 8 I 9 10 : 17 I 12 i 13 : 14 : 15

Move the contents of the B buffer in device D to accumulator AC, and perform the function specified by F in
device D.

The number of data bits moved depends on the size of the device buffer, its mode of operation, etc. Bits
in AC that do not receive data are cleared.
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DOB Data Qut B
0 | 1 A|C 1|7 | D |
. | | |
0 2 3 8 9 10 11 12 713 U 14 15

Send the contents of accumulator AC to the B buffer in device D, and perform the function specified by F in
device D.

The amount of data actually accepted by the device depends on the size its buffer, its mode of operation,
etc. The original contents of AC are unaffected.

DIC Data in C
0 1 1 1 A1C 1 0 | 1 fl7 ] II) ‘ |
{
011 2 3 T 4 5|6'7 8 9 10 11 12 ' 13 14 15

Move the contents of the C buffer in device D to accumulator AC, and perform the function specified by F in

device D.
The number of data bits moved depends on the size of the device buffer, its mode of operation, etc. Bits
in AC that do not receive data are cleared.

DOC Data OQut C
O 1 1 AC 1 | 1 | 0 II:"1 { { lf) | |
0 I 1 : 2 3 l 4 5 6 { 7 8 9 10 11 12 V13 14 15

Send the contents of accumulator AC to the C buffer in device D, and perform the function specified by F in
device D.
The amount of data actually accepted by the device depends on the size of its buffer, its mode of opera-

tion, etc. The original contents of AC are unaffected.

A device may require no 10 transfers, such as the real time clock, which uses only NIOS and NIOC to
turn it on and off. All of the simpler data handling devices have only an A buffer, eg to hold a single charac-
ter in the teletypewriter, tape reader and tape punch, or to receive incremental plotting data for a single point
in the plotter. Suppose the reader has read a line from tape into its buffer. We can bring the character into the
right half of AC2 by giving

DIA 2,PTR
If we want to read another line we can make the transfer with a
DIAS 2,PTR

which brings the character into AC2, clears Done and sets Busy causing the reader to read-the next line. If the
bufter contains the final character to be read from tape we might give

DIAC 2,PTR

which retrieves the character and clears Done. Data is moved in and out in characters of various sizes or in
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full 16-bit words. Generally a device uses only DIA and/or DOA for data but it may use other 1O transfer in-
structions to handle status and control information. A high speed device, such as magnetic tape or disk, may
require 1O transfer instructions only for status and control information with data moving directly between the
device and memory via the data channel.

Most peripheral devices involve motion of some sort, usually mechanical. In this respect there are two
types of devices, those that stay in motion and those that do not. Magnetic tape is an example of the former
type. Here the device executes a command (such as read, write, space forward) and Done sets when the entire
operation is finished. A separate flag requests a data channel transfer each time the device is ready for direct
data access to memory, but the tape keeps moving until an entire record or file has been processed. Paper tape,
on the other hand, stops after each line is read, but if the program gives another DIAS within a critical time
the tape moves continuously.

Other devices operate in one or the other of these two ways but differ in various respects. The tape punch
and teletype output are like the reader. Teletype input is initiated by the operator striking a key rather than by
the program. Once started the card reader reads an entire card, with a DIA required for each column.

In the remainder of this manual the discussion of each device treats only the control functions and the
applicable 10 transfer instructions. The skips apply to all and are the same in all cases. Giving a data-in in-
struction that does not apply to a device (either because the device is output only or does not have the buffer
specified) clears the addressed accumulator but does do the specified control function. Similarly a data-out that
does not apply is a no-op except for control functions. When the device code is undefined or the addressed de-
vice is not in the system, any data-out, an SKPBN or an SKPDN is a no-op, an SKPBZ or SKPDZ is an ab-
solute skip, and any data-in simply clears the addressed AC.

All instructions discussed in the rest of this manual are in-out instructions with various device codes. For
the transfer instructions the mnemonics are given with a dash in the position occupied by an accumulator ad-
dress, as the assembler indicates an error if the programmer fails to specify an accumulator. The programmer
must substitute a valid address for the dash. In the format box for each instruction the accumulator address part
is represented by AC. In the instruction description, “AC” refers to the accumulator specified by the AC part
of the instruction word.

Special Code-77 Functions

In-out instructions with the code 77 in bits 10-15 perform a number of special functions rather than con-
trolling a specific device. In all but the skip instructions bits 8 and 9 are used to turn the interrupt on and off.
The mnemonics are the same as those for controlling Busy and Done in 10 devices, but with code 77 they se-

lect the following special functions.

Mnemonic Function
S Set the Interrupt On flag to enable the processor
to respond to interrupt requests.
C Clear the Interrupt On flag to prevent the processor
from responding to interrupt requests.
P None

Most of these instructions perform functions associated with processor elements so the mnemonic for 77
is CPU. For the transfer type instructions that use no accumulator, the mnemonics are given with an accumu-
lator address included, as the assembler indicates an error if the programmer fails to specify an accumulator
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even when none is used. A zero address is given, but any valid address would suffice. Instructions for the pro-

gram interrupt and power failure detection are treated in greater detail in later sections.

NIOS CPU Interrupt Enable
0 | 1 0 0 0 0 0 1 1 ] 1 1 1 1
| 1 Lo | | T | | n
o 2 UNEERER] 3 6 8 9 10 11 12 "3 14 15
Set the Interrupt On flag to allow the processor to respond to interrupt requests.
NoTE: The assembler recognizes the mnemonic INTEN as equivalent to NIOS CPU.
NIOC CPU Interrupt Disable
0 ] 1 0 0 0 0 ] 0 ] 1 1 1 1 1
4;1 1 i t - it l 1 1 + | |
0 I 2 3 3 S o 8 9 10 1 12 13 14 15

Clear the Interrupt On flag to prevent the processor from responding to interrupt requests.

NotE: The assembler recognizes the mnemonic INTDS as equivalent to NIOC CPU.

DIA —-,CPU Read Switches
0 | 1 AC 0 0 F 1 1 1 1 1 ] 1 ’ 1
0 ! 1 [ 2 3 { 4 5 : 8 : 9 10 : 11 : 12 " 13 14 15

Read the contents of the console data switches into AC. and perform the function specified by F.

Note: The assembler recognizes the mnemonic READS as equivalent to DIA —,CPU.

DIB —,CPU Interrupt Acknowledge
0 1 1 AC 0 1 1:7 1 | 1 | 1 | 1 | 1 | 1
0 l 1 : 2 3 I 4 5 6 8 9 10 11 12 " 13 14 15

Place in AC bits 10-15 the device code of the first device on the bus that is requesting an interrupt (*‘first”

means the one that is physically closest to the processor on the bus). Perform the function specified by F.

Note: The assembler recognizes the mnemonic INTA as equivalent to DIB —,CPU.
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D0OB —-,CPU Mask Out
0 1 | A‘C 1 ‘ 0 ‘ 1 | 1 1 1 1 1 1 ' 1
o ' 3 ' a 5 6 ! 10 11 12 713 14 15

Set up the Interrupt Disable flags in the devices according to the mask in AC. For this purpose each device is
connected to a given data line, and its flag is set or cleared as the corresponding bit in the mask is 1 or 0. Per-

form the function specified by F.

NoTte: The assembler recognizes the mnemonic MSKO as equivalent to DOB —,CPU.

DIC 0,CPU Clear 10 Devices
0 | 1 l 0 ' 0 1 : 0 | 1 1 | 1 l 1 [ 1 | 1
o ' 1 3 1 a 5 6 ! 10 11 12 7 13 14 15

Clear the control flipflops, including Busy, Done and Interrupt Disable, in all devices connected to the bus. Per-

form the function specified by F.

NoTE: The assembler recognizes the mnemonic IORST as equivalent to DICC 0,CPU — ie as the in-

struction defined here with F set to 10.

DocC 0,CPU Halt
0 | 1 | 0 | 0 1 ' 1 1 1 1 ( 1 1 1 1
o ' 1 3 ' 3 5 6 ! 10 11 12 % 13 I 14 I 15

Perform the function specified by F and then halt the processor. When the processor stops, the instruction
and data lights display the halt instruction, the address lights point to the location following the halt instruc-

tion.

Note: The assembler recognizes the mnemonic HALT as equivalent to DOC 0,CPU.

SKPBN CPU

Skip if Interrupt On is Nonzero

0

]

1 0 0 1 1

0

Skip the next instruction in sequence if the Interrupt On flag is 1.
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SKPBZ CPU Skip if Interrupt On is Zero

o ' 1 2 3 s 5 6 ' 7 8 9 10 11 12 13 14 15
Skip the next instruction in sequence if the Interrupt On flag is 0.
SKPDN CPU Skip if Power Failure is Nonzero
0 1 1 0 1 1 1 1 0 1 1 1 1 1 1
[ | L | ! | L ! | | 1 L
o 2 3 T a 5 6 ' 7 8 9 10 11 12 V13 14 15
Skip the next instruction in sequence if the Power Failure flag is 1.
SKPDZ CPU Skip if Power Failure is Zero
0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1
| | / | | | I 1 L { L 1
o T 2 3T a4 s 6 ' 7 8 9 10 11 12 '3 14 15

Skip the next instruction in sequence if the Power Failure flag is 0.

The assembler recognizes a number of convenient mnemonics for instructions with device code 77.

Mnemonic Octal
Mnemonic Meaning Equivalent Equivalent
READS Read Switches DIA —,CPU 060477
IORST 10 Reset DICC 0,CPU 062677
HALT Halt DOC 0,CPU 063077
INTEN Interrupt Enable NIOS CPU 060177
INTDS Interrupt Disable NIOC CPU 060277
INTA Interrupt Acknowledge DIB —,CPU 061477
MSKO Mask Out DOB —,CPU 062077

Eg to read the switches into AC3 we could simply give
READS 3

instead of
DIA 3,CPU

However, there is one important difference between these special mnemonics and the standard ones: mnemonics

for turning the interrupt on and off cannot be appended to them! Thus to set Interrupt On while reading the
switches we must give

DIAS 3,CPU
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Note that IORST clears Interrupt On along with the devices on the bus. We can set it while clearing the de-
vices by giving

DICS 0,CPU

Automatic Program Loading

To place information in the Nova memory without relying on a program already in memory, the operator
must load one word at a time manually; the information loaded in this manner is usually a bootstrap loader
of which examples for the teletype reader and the high speed reader are given in §3.3. The same procedure
must be used for the Nova 1200 or Nova 800 unless the computer is equipped with the optional program
load feature (option 8108 on the 1200, 8208 on the 800). For this option the processor has two LSI chips
that contain thirty-two words of read-only memory. Pressing the program load switch on the console starts
the processor in a special sequence that deposits the read-only words into locations 0—37 and then begins
normal program execution at location 0. The bootstrap loader generally used with this feature is given in §3.3.

The Supernova has facilities for two types of automatic loading, one that simulates ordinary programmed
transfers, another that uses the data channel [for the latter refer to §2.5]. The principal use of the program
load is to read in a short loader program that is then used for loading other information. Pressing the program
load switch on the console starts the processor in a special hardware sequence that simulates a series of
sixty-six DIAS instructions, all of which address the device whose code is selected by data switches 10-15.
The device must supply 8-bit data bytes, right justified. Each pair of bytes is stored as a single word in
memory wherein the first and second bytes read become the left and right halves of the word. To simplify
positioning of the tape in the reader, the processor ignores the tape leader, ie it does not begin counting the
instructions it issues until the first nonzero byte is read.

To load a program automatically, the operator must set up the device he is using, set its code into data
switches 10-15, press the 10 reset switch to clear the 10 system, and press the program load switch. The
processor places the device in operation and upon encountering the first nonzero byte reads thirty-three pairs
of bytes and stores the resulting words in memory beginning at location 0. Upon storing the thirty-third word
in location 40, the processor executes the contents of that location; the last word in the block is thus normally
a jump instruction into the body of code just read (or a halt to stop the processor). If the block contains fewer
than thirty-three words the processor simply reads the trailing blank tape as zeros. In this case the word stored
in location 40 is also zero and is executed as JMP 0. Typically the program is the same one used with the
1200 and 800 program load, and it can duplicate the Supernova data channel automatic loading.

2.4 PROGRAM INTERRUPT

Many in-out devices must be serviced infrequently relative to the pfocessor speed and only a small amount
of processor time is required to service them, but they must be serviced within a short time after they request it.
Failure to service within the specified time (which varies among devices) can often result in loss of informa-
tion and certainly results in operating the device below its maximum speed. The program interrupt is designed
with these considerations in mind, ie the use of interruptions in the current program sequence facilitates con-
current operation of the main program and a number of peripheral devices. The hardware also allows condi-
tions internal to the processor to signal the program by requesting an interrupt.

Interrupt Requests. Interrupt requests by a device are governed by its Done and Interrupt Disable flags.
When a device completes an operation it sets Done, and this action requests a program interrupt if Interrupt
Disable is clear — if Interrupt Disable has been set by the program the device cannot request an interrupt. At
the beginning of every memory cycle the processor synchronizes any requests that are then being made. Once
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a request has been synchronized the device that made it must wait for an interrupt to start. The request signal
is a level so once synchronized it remains on the bus until the program clears Done or sets Interrupt Disable.
If the program does set the Interrupt Disable flag in a device, that device not only cannot request an interrupt
when its Done flag sets, but any request it has already made and had synchronized is disabled, so it is no
longer waiting for an interrupt. However, if Done is left set, clearing Interrupt Disable restores the request.

Starting an Interrupt. The processor starts an interrupt if all four of the following conditions hold:
® The processor had just completed an instruction or a data channel transfer [see §2.5].
® At least one device is waiting for an interrupt to start (ie it was requesting an interrupt at the beginning of
the last memory cycle).
® Interrupts are enabled, /e Interrupt On is set.
® No device is waiting for a data channel transfer, ie there are no data channel requests that the processor

has synchronized but not yet fulfilled. The data channel has priority over program interrupts.
When the processor finishes an instruction it takes care of all data channel requests before it starts an in-

terrupt; this includes any additional data channel requests that are synchronized while data channel transfers
are being made. When no more devices are waiting for data channel transfers, the processor starts an interrupt
if Interrupt On is set and a device was requesting an interrupt at the beginning of the last data channel transfer.

The processor starts an interrupt by clearing Interrupt On so no further interrupts can be started, saving
PC (which points to the next instruction) in location 0, and simulating a JMP @1 to jump to the interrupt
service routine. Location 1 should contain the address of the routine or an indirect address that will get there.

Servicing an Interrupt. The interrupt service routine should determine which device requires service, save
the contents of any accumulators that will be used in the routine, save Carry if it will be used, and service the
device. The routine can identify the device by testing with IO skips or by giving an interrupt acknowledge
instruction (INTA). This instruction determines which is the first device on the bus that is waiting for service
by reading its device code into an accumulator. The program can simply leave the interrupt off while servicing
the device (by leaving Interrupt On clear), or it can enable interrupts and establish a priority structure that
allows higher priority devices te interrupt the current device service routine. This priority is determined by a
mask that controls the states of the Interrupt Disable flags in the various devices. If this final course is taken
the routine must save location 0, so the return address to the interrupted program will not be lost should an-
other interrupt occur.

Device Priority. There are several ways in which priorities are determined for or assigned to devices on
the bus. An elementary priority is established by the hardware for devices that are requesting interrupts si-
multaneously in that the interrupt acknowledge instruction reads the code of one and only one device: among
those that are waiting it reads the code of that one which is physically closest to the processor on the bus. This
however applies only to those devices that are waiting at the time the acknowledgement is given. Using IO
skips to determine which device to service establishes a priority by the order in which the devices are tested,
but again this applies only to those that are waiting at the time.

The most significant method is by specifying which devices can interrupt a service routine currently in
progress. This is done through the use of a mask that sets up the Interrupt Disable flags. Every device is wired
to a particular data line on the bus and hence to a particular bit of the mask. Although slower devices are as-
signed to the higher numbered bits in the mask, there is no established priority as the program can use any
mask configuration. All devices whose Interrupt Disable flags are set cannot cause an interrupt to start (setting
Interrupt Disable causes the withdrawal of any request that has already been made and prevents the setting of
Done from making a request) and are therefore regarded by the program as being of lower priority. Those
devices in which Interrupt Disable is left clear can interrupt the current routine and therefore are regarded by
the program as being of higher priority.
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By means of the mask the program can establish any priority structure with one limitation: in some cases
two or more devices are assigned to the same bit in the mask and are thus all at the same priority level. When
an interrupt is in progress for a device, the rest of the devices assigned to the same mask bit must be regarded
as all of lower priority or all of higher priority depending upon whether they are disabled or not.

Dismissing an Interrupt. After servicing a device the routine should restore the pre-interrupt states of the
accumulators and Carry, turn on the interrupt, and jump to the interrupted program. The instruction that
enables the interrupt sets Interrupt On, but the flag has no effect until the next instruction begins. Thus after
the instruction that turns the interrupt back on, the processor always executes one more instruction (assumed
to be the return to the interrupted program) before another interrupt can start.

If the service routine allows interrupts by higher priority devices, then before dismissing as indicated
above, the routine should turn off the interrupt to prevent further interrupts during dismissal. In dismissing,
the routine should reenable lower priority devices that were not allowed to interrupt the current routine but
will be allowed to interrupt the program to which the processor is returning.

Instructions. The instructions for the program interrupt use special device code 77. Bits 8 and 9 of the
skip instructions sense whether the interrupt is on or off; in the other instructions these bits turn the interrupt
on or off by setting or clearing the Interrupt On flag (these are respectively the start and clear 10 control
functions).

NIOS CPU Interrupt Enable

0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1

| I ] | | ] 1 1 1 | | |

o 1 2 3 T a 5 6 ' 7 8 9 10 117 ' 12 '3 14 15
Set Interrupt On to allow the processor to respond to interrupt requests. If Interrupt On actually changes state
(0 > 1) the processor will execute one more instruction before it can start an interrupt.

NoTEk: The assembler recognizes the mnemonic INTEN as equivalent to NIOS CPU.

NIOC CPU Interrupt Disable

0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1

| | | | | | Il | I | ] 1
o ' 1 2 3 ' 4 5 T 6 T 7 8 ' o T 10 T 11 12 a3 14 15

Clear Interrupt On to prevent the processor from responding to interrupt requests.
NoTE: The assembler recognizes the mnemonic INTDS as equivalent to NIOC CPU.

SKPBN CPU Skip if Interrupt On is Nonzero

Skip the next instruction in sequence if Interrupt On is 1.
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SKPBZ CPU Skip if Interrupt On is Zero
0 1 1 0 0 1 0 1 1 1 1 1 1 | 1
0 — R B 5 5o 10 11 12 13 14 15

Skip the next instruction in sequence if Interrupt On is 0.

DiB —-,CPU Interrupt Acknowledge

l 0 1 1 AC 0 F 1 1 1 1 1 | 1
0 ! “ = = PR 10 11 12 13 14 15

Place in AC bits 10-15 the device code of the first device on the bus that is requesting an interrapt. and per-
form the function specified by F.

NoTE: The assembler recognizes the mnemonic INTA as equivalent to DIB —,CPU.

DOB —,CPU Mask Out
0 | 1 1 A‘C 1 1|7 1 1 1 1 1 | 1
0o ' 1 2 3 4 5 8 9 10 11 12 13 . 14 15

Set up the Interrupt Disable flags in the devices according to the mask in AC (a 1 in a mask bit sets the flags

in all devices assigned to that bit; a O clears them). Perform the function specified by F.

The following lists the devices assigned to the bits in the mask, and for each bit gives the mask for dis-
abling all devices assigned to that and all higher numbered bits. [Complete information on all devices is given

in Appendix E.]

AC Bit

N I R N N N S =)

L
wm AW NN = O

Data communications multiplexer

A-D converter, high speed communications controller

Disk

Card reader, industry compatible magnetic tape

Paper tape reader

Plotter, line printer, multiprocessor communications adapter

Real time clock, paper tape punch, display, IBM 360 interface

Teletype in
Teletype out

Mask
177777
77771
37777
17777
7777
3777
1777
777
377
177
77

37

17
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A zero mask clears all Interrupt Disable flags. In general the devices are in order by speed, with the fastest
ones (those requiring the quickest service) assigned to the lower numbered bits.

NoTE: The assembler recognizes the mnemonic MSKO as equivalent to DOB —,CPU.

The assembler recognizes special mnemonics for some of the above instructions.

INTEN NIOS CPU Interrupt Enable 060177
INTDS NIOC CPU Interrupt Disable 060277
INTA DIB —,CPU Interrint Acknowledee 001477
MSKO poe —,CPU Mask Out 062077

To turp the meerrupt on or off while acknowledging or masking, the programmer must use the DIB and DOB
forms — the S and C mnemonics cannot be appended to INTA and MSKO.

Timing. The time a device must wait for an interrupt to start depends on how many devices are using
interrupts, how long the service routines are for devices of higher priority, and whether the data channel is
in use. A single device will shut out all others of lower priority if every time its service routine dismisses the
interrupt, it is already waiting with another request; and the data channel shuts out all interrupts when it op-
erates at the maximum rate. If the data channel is not in use and only one device is using interrupts, it need
never wait longer than the time required for the processor to finish the instruction that is being performed when
the request is synchronized. Without delays caused by indirect addressing, the maximum interrupt waiting time
is the latency given in the table at the end of Appendix D.

To start an interrupt the processor uses two cycles to store PC in location O and retrieve the address from
location 1. The time given in Appendix D assumes location 1 contains a direct address.

Sample Master Interrupt Routine. Suppose we are using only the teletype and the high speed reader and
punch. We shall allow higher priority devices to interrupt a lower priority service routine; but since the reader
is the highest priority device, we shall simply leave the interrupt off while servicing it. Because of the small
number of devices we can use flag testing to identify the one that is requesting service and we can treat the
teletype input and output as the same priority. For illustration let us assume that the reader and punch rou-
tines use all the accumulators but the teletype routines use only ACO.

.LOC 0 ;This pseudoinstruction causes the assembler to put the next statement in
; the location specified
0 ;Clear location 0 — will be used for saving PC
INTRP ;Put address of master interrupt processor routine in location 1
CMASK: 0 ;Will save current mask here (initially zero)

;When the processor is interrupted the interrupt is disabled and there is an automatic jump to INTRP.
;First find source of interrupt.

INTRP: SKPDZ  PTR ;Try reader first
JMP PTRIN ;Yes, service it
SKPDZ PTP ;No, try punch
IMP PTPIN ;Jump to punch service
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STA
LDA
STA
LDA
STA
LDA
STA
DOBS

SKPDZ
JMP
SKPDN
JMP

JMP

TTOIN:

TTDSM: INTDS
LDA
STA
MSKO
LDA
INTEN
JMP

TTSAV:

w o o o

CN3:

:Punch routine

PTPIN: STA
STA
STA
STA
MOVL
STA
LDA
STA
LDA
STA
LDA
STA
DOBS

0,TTSAV
0,0
0,TTSAV+1
0,CMASK
0,TTSAV+2
0,CN3
0,CMASK
0,CPU

TTO
TTOIN
TT1
ERROR

TTDSM

0,TTSAV+2
0,CMASK
0

0,TTSAV

@TTSAV+1

0,PPSAV
1,PPSAV+1
2,PPSAV+2
3,PPSAV+3
0,0
0,PPSAV+4
0,0
0,PPSAV+5
0,CMASK
0,PPSAV+6
0,CN7
0,CMASK
0,CPU

;Neither, must be teletype; save ACO
;Save return address from location O

;Save current mask

;Set mask bits 14, 15 (disable teletype interrupts)
;Set new current mask
;MSKO and enable interrupts

;Test teletype output

;Jump to output service

;Test input

;Something wrong — nobody wants service
;Service teletype in

;Must dismiss

Service teletype out

;To dismiss, first disable interrupts
;Restore previous mask

;Restore ACO
;Enable interrupts
;Return to interrupted program

;Save ACO here
;Save PC (from location 0) here
;Save current mask here

;Save accumulators

;Save Carry

;Save location 0
;Save current mask
;Set mask bits 13,14,15 (punch, teletype in and out)

;Set new current mask
;MSKO and turn on interrupt
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;Service punch

INTDS ;Turn off interrupt

LDA 0,PPSAV+6 ;Restore previous mask

STA 0,CMASK

MSKO 0

LDA 0,PPSAV+4 ;Restore Carry

MOVR 0,0

LDA 0,PPSAV ;Restore ACs

LDA 1,PPSAV+1

LDA 2,PPSAV+2

LDA 3,PPSAV+3

INTEN ;Turn on interrupt

JMP @PPSAV+5 ;Restore PC
PPSAV:
.LOC 7 :Reserve 7 locations
CN7: 7

;Reader routine

PTRIN: STA 0,PRSAV ;Save ACs and Carry, but don’t bother with PC or mask, and leave inter-
STA 1,PRSAV+1 ;rupt off
STA 2,PRSAV+2
STA 3,PRSAV+3
MOVL 0,0
STA 0,PRSAV+4

;Service reader

LDA 0,PRSAV+4 ;Restore Carry and ACs

MOVR 0,0

LDA 0,PRSAV

LDA 1,PRSAV+1

LDA 2,PRSAV+2

LDA 3,PRSAV+3

INTEN ;Turn on interrupt

JMP @0 ;Restore PC
PRSAV:
.LOC A5 ;Reserve 5 locations

When to Use the Interrupt. If the program has little computing to do and is using only one or two fast in-
out devices or several slow ones, it may not be necessary to use the interrupt at all. On the other hand, if there
are many calculations to perform and the program is using a fast device or is processing data using several
slower devices, then the interrupt is necessary. The critical factors in determining whether to use the interrupt,
and beyond that its priority structure, are what the program is doing besides in-out and the time required by
the service routines. Suppose the program is doing nothing but processing data using reader, punch and tele-
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type, and further suppose that no service routine requires more than say half a millisecond. In these circum-
stances the program could dispense with the interrupt and test all the devices with the following loop:

TEST: SKPDZ PTR
JMP PTRSER
SKPDZ PTP
JMP PTPSER
SKPDZ  TTO
JMP TTOSER
SKPDZ TTI
JMP TTISER
;Fast test that determines whether 10 is finished
JMP TEST ;Do this if more 10

;Skip to here and continue if 10 done

where the reader service routine returns to TEST + 2 and all others return to TEST. The fastest device, the
reader, will never be delayed too much. But suppose the program has a significant amount of computing to do.
Then we must use the interrupt, but what about the priority structure? If input-output service for the teletype
(as in the sample master routine above) requires 1 ms and punch service requires .8 ms, then reader service
will never be delayed more than 1 ms if we simply turn the interrupt off while servicing each device. But if
teletype service requires 30 ms per character, then neither reader nor punch will be able to run at full speed
unless we use the priority structure as illustrated in the sample routine.

Programming Suggestions. A convenient method for handling a large number of priority levels is to use
a pushdown list for saving the machine state. This obviates setting aside so many specific locations for saving
accumulators and the like, and makes it very easy for a routine at any level in a sequence of nested routines to
restore the state for the interrupted program. If many devices are in use it may frequently happen that when
one routine is dismissing an interrupt, a device of lower priority is already waiting. Thus much time might be
wasted in restoring the machine state only to have to save it again as soon as the interrupt is turned back on.
The devices of concern in this situation are those with priority less than or equal to the device presently being
serviced, but of priority greater than that of the device whose routine is about to be resumed (to which the
current dismissal will return). The usual dismissal procedure (as illustrated in the sample master routine given
above) begins by disabling the interrupt and restoring the previous mask. If the program then gives an

INTA AC

a device code will be read into AC if any device of priority higher than that of the interrupted routine has
requested service. Since this means that the device will interrupt before the interrupted program can restart,
the current program can save a great deal of time by servicing the higher priority device without bothering to
restore and resave the machine state. If AC is clear after the INTA is given, no device of appropriate priority
has requested service, and the current routine can proceed with the usual dismissal.

Remember the following when programming an interrupt routine:
® An interrupt cannot be started until the current instruction is finished. Therefore do not use lengthy indirect
address chains if devices that require very fast service can request an interrupt.
© The routine must save the accumulators and the Carry flag if these will be used by it.
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® If this interrupt routine can itself be interrupted, then it must save location 0 so PC can later be restored
properly.

® The principal function of an interrupt routine is to respond to the situation that caused the interrupt. Eg com-
putations that can be performed outside the routine should not be included within it.

® The routine should restore the accumulators and Carry when returning to the interrupted program.

2.5 DATA CHANNEL

Handling data transfers between external devices and memory under program control requires an inter-
rupt plus the execution of several instructions for each word transferred. To allow greater transfer rates the
processor contains a data channel through which a device, at its own request, can gain direct access to
memory using a minimum of processor time. At rates lower than the maximum the channel frees processor
time to allow execution of a program concurrently with data transfers for a device. The channel is multiplexed
— many devices may be active at the same time.

Besides the straightforward transfer of a word between memory and a device in either direction, the
data channel also allows a device to increment by one a word already in memory and in the Nova or Supernova
to add a word to the contents of a memory location. In these two cases involving an arithmetic operation,
the processor sends the result back to the device; and if the operation should increase the contents of the
memory location above 216 — [, it also sends an overflow signal to the device. The data channel is used by
devices requiring very high data transfer rates, such as magnetic tape or disk, and by devices requiring the
specialized transfer functions. Eg the memory increment feature would be used for pulse height analysis,
the add-to-memory feature for signal averaging.

The program cannot affect the data channel directly because there are no instructions for it; instead the
program sets up the device to use it. When the device requires data service, it requests access to memory
via the channel. At the beginning of every memory cycle the processor synchronizes any requests that are
then being made. Except in the Nova 800, the processor completes the current instruction and then takes
care of all requests that have been synchronized or are synchronized while it is handling transfers. In the
Nova 800 the data channel is capable of operating at two different speeds (standard and high speed) and
does not require that a device wait until the completion of an instruction — the processor can pause to handle
transfers at certain points within an instruction. If several devices are waiting for service simultaneously,
the first to receive it is the one that is physically closest to the processor on the bus. When the Nova 800
processor pauses within an instruction, it handles all data channel requests of either speed (handling high
speed requests first) and then continues with the interrupted instruction. Following completion of an instruc-
tion, any processor handles all data channel requests, and then starts a program interrupt if a device is
waiting for one, or otherwise resumes the execution of instructions.

Operating the Nova 800 data channel at standard speed allows data transfer rates of half a million
words per second, but at this rate all other processing activity is suspended. Use of the high speed capability
not only allows data transfer rates at essentially the full memory speed (in excess of a million words per
second), but at speeds in the standard range its use allows considerable processing activity unrelated to the
channel (each transfer takes less time). Hence choice of the standard or high speed depends on the degree
of interference with the program caused by channel operations and the maximum time within which the
device must make the transfer. When a rate of 100,000 or more words per second is required, both the device
and the program will benefit noticeably through use of the high speed capability. To use the high speed the
interface for a device must be mounted inside the main frame and must be designed so that it can both
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respond to the shorter control signals presented to it and operate within the extremely limited time available
[timing specifications for all data channel operationfs are given in Appendix A, Part II]. Moreover all high
speed interfaces must be grouped at the beginning of the bus: all interfaces closer to the processor than the
last high spced one automatically operate at high speed, whereas all devices farther out on the bus operate
at standard speed. The processor examines the priority determining signal on the IO bus to determine which
way to handle cach transfer.

Timing. The time a device must wait for data channel access depends on when its request is made within
an instruction and how many devices of higher priority are also requesting access. Once the processor reaches
a point at which it can pause to handle transfers (within an instruction in the Nova 800, but only at the end
of an instruction in the other machine<), a given device must wait until all devices closer than it on the bus
have been serviced (hence all devices connected for the high speed are serviced first). The highest priority
device can preempt all processor time if it requests access at the maximum rate. At less than the maximum
rate the closest device on a Nova, Nova 1200 or Supernova need wait no longer than the time required for
the processor to finish the instruction that is being performed when the request is synchronized, but indirect
addressing can extend this beyond the normal instruction execution time. The latency given in the timing table
at the end of Appendix D is the maximum data channel waiting time for the highest priority device exclusive
of any delay caused by indirect addressing. On the Nova 800 the closest device, once synchronized, need
never wait beyond the next point at which the processor can pause within the instruction, but the maximum
that this can be depends on whether the program includes 10 instructions (ie the device may have to wait
longer when the program is also using the bus). In some cases the time taken for a single isolated transfer
is less than the minimum time between transfers.

CaurIOoN

Devices that use the data channel often require service very quickly. Since a device
(except on the Nova 800) must always wait for the current instruction to end, do
not use lengthy indirect addressing chains when the data channel is in use on the
Nova, Nova 1200 or Supernova.

Maximum rates in transfers per second are as follows.

Nova 800
Function Supernova Standard  High Speed Nova 1200 Nova
Data in 434,700 500,000 1,250,000 833,333 285,500
Data out 357,100 500,000 1,000,000 555,555 227,500
Increment memory 357,100 454,545 833,333 416,666 227,500
Add to memory 357,100 187,500

Automatic Loading

Besides the program load feature discussed at the end of §2.3, the Supernova also has facility for initiating
data channel operations from the console. Pressing the channel start switch starts the processor in a special
hardware sequence that simulates a DIAS that addresses the device whose code is selected by data switches
10-15, and then marks time while the channel is reading data.

To start the channel, the operator must set up the device he is using, set its code into data switches
10-15, press the 10 reset switch to clear the 10 system, and press the channel start switch. The processor
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places the device in operation, then stores the instruction JMP 377 in location 377 and begins normal program
execution at that location. Hence the processor keeps repeating the instruction in 377 while the channel stores
data beginning at location 0. Eventually location 377 receives a data word, which is then executed by the
processor as an instruction; this is typically a jump into the data just read or a halt.

NOTE

For proper channel operation, the -device selected by the data switches
must be initiated for reading by the combination of the IO reset and the DIAS
issued by the processor. Moreover it is up to the device to stop the transfer after
256 words have been read. The 10 reset clears the location and word counters in
the channel interface of the device so the transfer begins at location 0, but since
the word counter is also zero the transfer will continue and fill all ‘of memory
unless the device stops it. The disk is designed to read exactly 256 words; the
magnetic tape stops at the end of the record and it is therefore up to the
programmer to write a record of the proper length in the first place.

2.6 PROCESSOR OPTIONS

Optional equipment for the processor includes a real time clock, a power monitor with facility for
automatic restart after power failure, multiply-divide, a high speed data channel, memory allocation ‘and
protection, and the program load discussed in §2.3 (not all options are available on all :machines).

Real Time Clock

The clock generates a sequence -of pulses that is independent of processor timing. .It uses only one IO
transfer instruction to set the clack frequency. Busy and Done are controlled or sensed by bits 8 and 9 in
all 1O instructions with device code 14, mnemonic RTC. Interrupt Disable ‘is controlled by interrupt priority
mask bit 13.

DOA —,RTC Data Qut A, Real Time Clock
0 | 1 ’ 1 AiC 10 x 1 l 0 II7 ," 0 ; o 1 1 0 0
o 1 2 3 ' 4 S 6 | 7 8 9 10 11 ' 12 ; 13 I 14 . 15

Perform the function specified by F and select the clock frequency by AC bits 14 and 15 as follows.

AC bits 14-15 Frequency
00 Ac line frequency
01 10 Hz
10 100 Hz
11 1000 Hz

Setting Busy allows the next pulse from the clock to set Done, requesting an interrupt if Interrupt Disable
is clear. A DOA to select the frequency need by given only once; following each interrupt an NIOS sets up
the clock for the next pulse.

2-40



When Busy is first set the first interrupt can come at any time up to the clock period. But once one
intefrupt has occurred, further interrupts are at the clock frequency provided that the program always sets
Busy before the next period expires.

The clock is used primarily for low resolution timing (compared to processor speed) but it has high
long-term accuracy. Power turnon and the IO reset function generated by the program or from the console
reset the clock to line frequency. Following power turnon the line frequency pulses are available immediately,
but 5 seconds must elapse before a steady pulse train is available from the crystal for other frequencies.

Power Monitor and Autorestart

When ac power is turned on, memory is unaltered, the initial states of PC, the accumulators and flags
are indeterminate, and the computer is stopped. If ac power should fail there is a delay of 1 to 2 millisec-
onds before the processor shuts down. In so doing, the processor always completes a memory cycle and
sequences power off so the contents of memory are unaffected. The optional power monitor warns the pro-
gram when power is failing by setting the Power Failure flag. This action automatically requests an interrupt
— there is no interrupt disable flag for the power monitor. Of course the interrupt must be on if a power
failure is to produce an interrupt.

The power monitor does not respond to the INTA instruction. Thus when an interrupt occurs in a
machine equipped with the power monitor, the program should test the Power Failure flag before giving
INTA or testing other devices. The flag corresponds to the Done flag and is tested by either of these instructions.

SKPDN CPU Skip if Power Failure is Nonzero

Skip the next instruction in sequence if Power Failure is 1.

SKPDZ CPU Skip if Power Failure is Zero

Skip the next instruction in sequence if Power Failure is 0.

If the power does fail the program should save the accumulators and Carry in memory, save location
0 (for restoring PC in the interrupted program), put a JMP to the desired restart location in location 0, and
then HALT.

The action taken by the processor when an adequate power level is restored depends on the power switch
on the operator console. If the switch is on, power comes back on with the machine stopped. If the switch
is in the lock position, then 200 ms after power comes back on the processor executes a JMP 0, which causes
it to begin executing instructions in normal sequence at location 0.
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. Multiply-Divide

Multiplication and division can be performed by the subroutines given on pages 2-19 and 2-20, but in
all machines except the Nova, an option that is added right into the processor hardware is also available for
these operations. This option provides two pseudo-IO instructions that duplicate exactly the effects of the
subroutines (the writeups of the multiply and divide subroutines are 093—-000015 and 093-000016 respectively).

MUL Multiply

o ' 1 2 T 3 ' a 5 6 ' 7 8 9 10 11 12 13 14 15

Multiply the unsigned integers in ACl and AC2 to generate a double length product; add the product to
the unsigned integer in ACO, and place the high and low order parts of the result respectively in ACO and
ACI (in other words the result left in ACO and AC1is ACO + AC1 X AC2). AC2 is unaffected, the original
contents of ACO and ACI are lost.

Note that the mnemonic MUL is equivalent to DOCP 2,1. The AC field must be 10. (The hardware
requires this, but it is done to be compatible with the Nova.)

DIv Divide

0 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1

0o | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

If the unsigned integer in ACO is greater than or equal to the unsigned integer in AC2, set Carry and go im-
mediately to the next instruction without affecting the original contents of the accumulators. Otherwise clear
Carry and divide the double length unsigned integer in ACO and ACI by the unsigned integer in AC2,
producing a single length quotient including leading zeros, and then clear Carry. Place the quotient in AC1
and the remainder in ACO. AC2 is unaffected, the original contents of ACO and ACI are lost.

Note that the mnemonic DIV is equivalent to DOCS 2,1. The AC field must be 10. (The hardware
requires this, but it is done to be compatible with the Nova.)

Nova Multiply-Divide
The hardware multiply-divide option for the Nova is actually a peripheral device connected to the in-out
bus, although it has no flags or interrupt capability. It contains A, B and C registers, which are loaded and
read by the standard IO transfer instructions, and which correspond in use respectively to accumulators 0, 1
and 2 with respect to the multiply and divide software routines and the processor hardware option in the other
computers. Bits 8 and 9 in a transfer instruction or an NIO perform control functions as follows,

Mnemonic Bits 8-9 Function
00 None
S 01 Divide the double length unsigned integer in A and B by the unsigned

integer in C, producing a single length quotient including leading zeros.
Place the quotient in B and the remainder in A. C is unaffected.
C 10 Clear the A register.
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P 11 Multiply the unsigned integers in B and C to generate a double length
product; add the product to the unsigned integer in A and place the
high and low order parts of the result respectively in A and B (in other
words the result left in A and B is A + B X C). C is unaffected.

The multiply-divide device code is 01, mnemonic MDV. With this device code the instructions are those given
on pages 2-23 to 2-25, with the exception that the skips are meaningless since the device has no flags.

Following the IO instruction that starts the multiply or divide, the program must wait until the result is
available in the A and B registers. Multiplication takes 6.4 us, division takes either 6.8 or 7.2 us depending on
the operands. Of course the program can do something useful with the time (such as loading an accumulator
for the next operation), but usually one simply gives a couple of no-ops to pass the time.

Generally it is best to set up the accumulators just as one would for the software or the processor option.
If they are set up for multiplication, we could give this sequence to multiply and place the result in the same
place the subroutine would.

DOA 0,MDV :ACO to A (AC)

DOB 1,MDV ;ACIT to B (MQ)

MUL ;= DOCP 2,MDV = AC2 to C, multiply
NIO 0 ‘ ;Wait for result (6.8 us)

JMP 41

DIA 0,MDV ;Put double length product in ACO
DIB 1,MDV ;and AC1

With this procedure, programming for all the computers is compatible. If a program containing the above
sequence is run on a Supernova, the first two instructions are ignored, the MUL is executed, the two no-ops
result in a small amount of lost time, and the DIA and DIB are ignored as the hardware is gated so that
calling for input from device 01 cannot affect the accumulators,

Similarly, if the accumulators are set up for software division we would give this sequence to divide.

DOA 0,MDV

DOB 1,MDV

DIV ;= DOCS 2,MDV but no overflow check
MOV# 0,0 ;Wait for result (7.2 us)

JMP 41

DIA 0,MDV

DIB 1,MDV

Here the AC configuration is the same but there is no check to determine whether division is possible—the
program must do that first and properly adjust the operands. (Carry has no connection with the operation of
the device and is unaffected.) For integer division the program need not clear ACO: instead the first two
instructions can be replaced by

DOBC 1,MDV

but compatibility with the other machines is then lost.
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Supernova High Speed Data Channel

This option simply adds a high speed capability to the data channel in the Supernova. The information
given in §2.5 about the Supernova data channel still applies for devices connected to operate at the standard
speed, but devices connected for the high speed operate in the manner (and must fulfill the requirements)
described for the high speed on the Nova 800. Use of this capability in the Supernova not only increases the
maximum transfer rate and decreases the processor time per transfer, but also decreases the latency, as the
waiting time is then dependent only on program use of the bus rather than instruction time and indirect
addressing. The time taken from the program for an isolated transfer, the minimum time between transfers
for the device, and the maximum rate depend upon the type of access as follows.

Program time Time between Transfers

Function taken in p.s transfers in p.s per second

Data in .8 .8 1,250,000
Data out .8 1 1,000,000
Increment memory, add to memory 1 1.2 833,333

Memory Allocation and Protection

Without memory allocation and protection the system executes a single program that has no restrictions
except those inherent in the hardware: the programmer must stay within the memory capacity, and observe
the restrictions placed on the use of certain memory locations by the hardware [§1.2]. Optional hardware for
the Supernova only can restrict processor operation to permit time sharing by a number of programs. Each
user program is run with the processor in user mode, in which the program must operate within an assigned
area in memory and certain operations are illegal. A program that runs unrestricted—the executive—is
responsible for scheduling user programs, servicing interrupts, handling input-output needs, and taking action
when control is returned to it from a user program.

Every user has a memory area allocated to him and he cannot gain access to the rest of memory for either
storage or retrieval of information. Moreover part of his allocated area may be protected from him, /e the
executive may set aside part of his allocated area so that he can access it but cannot alter its contents, /e he
cannot write anything in it. The executive would do this when part of the allocated area contains a pure
procedure to be used reentrantly by several users. While the processor is in user mode, the program is further
restricted in that it is illegal to issue any 10O instruction (except. MUL and DIV) or to use more than two levels
of indirect addressing. The violation of any restriction by a user program causes the processor to terminate the
instruction immediately and return control to the executive (by requesting an interrupt, which returns the
processor to the supervisor mode).

For allocation purposes the entire memory is divided into blocks of 4096 words each, defined by the three
high order address bits. For each user the executive establishes a map of the logical blocks (those defined by
the addresses given in the user program) into the physical blocks of memory, and validates those logical blocks
that are available to the given user. The most convenient procedure is for the executive to allow all users to
write programs beginning at location 0. Thus one user may be limited to a single block, and the executive
would validate logical block 0 and assign it to say physical block 4; for another user allowed two blocks, the
executive would validate blocks 0 and 1 and assign them to say physical blocks 5 and 6. The first user would
use addresses 0-7777 and these would be mapped into addresses 40000-47777; the second would use addresses
0-1777 and these would be mapped into 50000-67777. The programmed addresses are retained in the object
program but are mapped by the hardware into the physical area assigned to the user as each access is made
while the program is running.
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For protection purposes memory is divided into pages of 256 words each. The executive establishes a
protection scheme for all of the physical memory, and although a given user can access any location in his
allocated blocks, he simply cannot write in any page that is protected. To save swapping time, a Page Written
flag is associated with each page. When setting up a user program, the executive should clear all the flags. When-
ever the user writes in a given page, its associated Page Written flag is set. Then when that user goes on the
inactive list, the executive need rewrite on the swapping disk or drum only those pages that have actually changed.

Note that the restrictions apply only to the user program. Data channel transfers can occur while the
processor is in user mode, and access is made to the physical locations addressed. An interrupt always returns
the processor to supervisor mode—the executive handles all interrupts.

User Programming. The user must observe the following rules when programming on a time shared basis.
e Use addresses only within the allocated logical blocks for all purposes—retrieval of instructions, retrieval
of addresses, storage or retrieval of operands. The method of allocating blocks will depend of course on the
executive program used at a particular installation, but usually the executive will be set up so that the user be-
gins at location O and can write any size program, ie the executive will assign enough memory for his needs.
Basically the user must write a sensible program; if he uses absolute addresses scattered all over memory his
program cannot be run on a time shared basis with others.

e Do not attempt to store anything in pages that are protected.

¢ Do not execute a JMP or JSR outside of the logical blocks assigned in any allocation procedure.

e Use IO instructions only for communication with the executive in the manner prescribed for the installation.
e Do not use more than two levels of indirect addressing.

Executive Programming. The executive program uses the following instructions to supervise time shared
operation.

DOB — MAPO Assign Lower Logical Memory Map

0 1 1 AC 1 0 0 0 0 0 0 0 0 1 0

| | | 1 ! 1 il 1 1 ] |

o | 1 2 3 ' 4 5 6 | 1 8 9 10 11 12 ' 13 14 15

Assign logical memory blocks 0-3 to the physical blocks selected by the contents of AC and establish the
validity of user addressing in these logical blocks as shown.

LOGICAL BLOCK 3 LOGICAL BLOCK 2 LOGICAL BLOCK 1 LOGICAL BLOCK 0
I 1 ! 1 1 I 1 ] 1 I 1 1

o ' 1 2 3 4 5 6 ' 7 8 9 ' 10 11 12 | 13 14 15

In each set of four bits, a 1 in the left bit validates user addresses within the corresponding logical block (a 0
makes such addresses invalid); the right three bits specify the physical block to which user addresses in the
corresponding logical block will be mapped.

DOC — MAPO Assign Upper Logical Memory Map

0 1 1 A.C 1 1 0 0 0 0 0 0 0 1 0

1 2 3 a s 6 7 8 9 10 11 12

Assign logical memory blocks 4-7 to the physical blocks selected by the contents of AC and establish the
validity of user addressing in these logical blocks as shown.
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LOGICAL BLOCK 7 LOGICAL BLOCK 6 LOGICAL BLOCK 5 LOGICAL BLOCK 4
1 1 1 1 1 ! 1 1 1 ! 1 1

o ' 1 2 3 4 5 6 | 7 8 9 ' 10 11 12 ' 13 14 15

In each set of four bits, a 1 in the left bit validates user addresses within the corresponding logical block (a 0
makes such addresses invalid); the right three bits specify the physical block to which user addresses in the
corresponding logical block will be mapped.

DOA — MAPO Write Protect

0 1 1 AlC 0 1 0 0 0 0 0 0 0o 1 0

0 1 2 3 4 5 6

7 8 9 10 11 12 13 14 15

Set up the protection scheme for a half block according to the contents of AC as shown.

PROTECT PAGES
7 6 5 4 3 2 1 0 PHYSICAL HALF BLOCK

| ! 1 | 1 1 | 1 | 1 { ! !

o 1 2 3 ' a4 5 6 | 7 8 9 ' 10 11 12 ' 13 14 15

Bits 12-15 specify the physical half block, ie bits 12-14 specify the physical block and a 0 or 1 in bit 15
selects the half containing the lower or upper addresses in that block. A 1 in any bit from 0-7 protects the
corresponding 256-word page from writing by the user (a 0 allows the user to write in the page if it is in one of
his allocated blocks). Page 0 contains the lowest addresses in the half block.

DOA 0, MAP 2 Clear Page Written Flags

Clear all Page Written flags and select physical block 0 for page-written checking.

DIA — MAP1 Read Violation Status

1 ! | 1 | | | |

0 1 1 A'C 0 0 1 a 0 0 0 0 1 1
1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Read the status of the allocation and protection option into AC as shown.

USER INDIRECT | 10 ERROR | VARIPITY \PROTECEON]  PHYSICAL BLOCK ADDRESSED
0 T 9 10 11 12 13 14 15
Bit Meaning of a 1 in the Bit
0 The processor was in user mode when the last interrupt occurred.
9 The last user instruction attempted more than two levels of indirect addressing.
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10 The last user instruction was an 10 instruction (not MUL or DIV).

11 The last address mapped was invalid.

12 The last valid address mapped was for a reference that attempted to write in a protected page.

The setting of bit 9, 10, 11 or 12 requests an interrupt which has priority over all other devices connected to

the bus and which cannot be disabled (but these bits cannot cause an interrupt when the processor is in

supervisor mode). Bits 13—15 specify the physical block addressed by the last address mapped.

(Perform the function specified by F.)

DOA — MAP1 Select Mode
0 . 1 AIC 0 | 1 ' [I7 0 0 0 | 0 . 1 | 1
o ' 1 3 ' a4 5 6 8 9 10 11 12 ' 13 14 15

Load AC bit 0 into bit O of the status register and clear the rest of the register.

If Fis 01 (S), turn on the interrupt and place the processor in the mode specified by bit 0 of the status

register. If bit 0 is 1 the processor will execute one more instruction before entering user mode. If Interrupt On

actually changes state (0 —> 1) the processor will execute one more instruction before an interrupt can start.

NIOS MAP1 Enter User Mode
0 1 0 0 0 1 0 | 0 0 | 1 0 0 0 | 0 | 1 l 1
0 } 1 ' l 3 ! 4 5 6 ' 7 3 9 10 11 12 ' 13 14 15

Turn on the interrupt and place the processor in the mode specified by bit 0 of the status register. If bit 0 is 1

the processor will execute one more instruction before entering user mode. If Interrupt On actually changes

state (0 —> 1) the processor will execute one more instruction before an interrupt can start.

DOB — MAP1 Map an Address
0 . 1 | A|C 1 ' 0 | 0 fl7 0 0 0 | 0 | | | 1
' 3 ' 4 5 6 | 7 8 9 10 11 12 ' 13 14 15

Map the address contained in AC bits 1-15, interpreting it as a user address for a write reference (in other

words, indicate any violations in the status register).

(Perform the function specified by F.)

DIB — MAP1 Read Mapped Address
0 . 1 A|C 0 | 1 . I|7 0 0 0 1 0 1 1 l 1
o ' 1 3 a4 5 6 8 9 10 11 12 ' 13 14 15

Read the mapped address derived from the address supplied by the last DOB -,MAPI into AC bits 1-15.
(Perform the function specified by F.)
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DOB —, MAP 2

Select Page Written Check

AC

0

0

o ' 1 2 3

4

8

9

10

11

15

Select, for page-written checking, the pair of contiguous physical half blocks consisting of the half block specified
by AC bits 12-15 and the next higher-numbered half block. (If AC bit 15 is 0, this instruction selects the
physical block specified by bits 12-14.)

DIA — Map 2 Read Page Written Status
0 1 1 AC 0 0 1 F 0 0 0 1 0 0
0 : 1 : 2 3 . 4 5 l 6 = 7 8 l 9 10 ' 11 + 12 t 13 ' 14 : 15

Read the Page Written flags associated with the currently selected pair of contiguous physical half blocks into
AC as shown (a 1 in an AC bit indicates the user wrote in the corresponding page).

PAGES WRITTEN IN NEXT HALF BLOCK PAGES WRITTEN IN SPECIFIED HALF BLOCK

7 6 5 4 3 2 1 0 7 6 , 5 4 3 2 .1 0

1
T 1 T 1 1
] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

If Fis 11 (P), select the next pair of contiguous half blocks following this pair for page-written checking.

Note: If the user allocation being checked is larger than one block, the executive should use this instruction
in the form DIAP so that a string of them can check all user blocks. A single block can of course be checked
by a DIA. But if the first in a series of blocks were checked by a DIA, and there were no intervening DOB
—MAP2 or NIOP MAP2, a subsequent DIA would check the status of the higher half block already checked
and the next half block after that (ie the sixteen flags checked would overlap the previous set by eight).

SKPDN MAPO Skip if Any Viclation

0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 0

0 1 2 3 a4 5 6 7 8 9 10 11 12 13 14 15

Skip the next instruction in sequence if any of bits 9-12 of the violation status register is 1.

SKPDZ MAPO Skip if No Violation

0 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0

0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15

Skip the next instruction in sequence if bits 9-12 of the violation status register are all 0.
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SKPBN MAPO Skip if 10 Violation
0 ; 1 1 1 1 0 ‘ 0 1 | 1 ‘ 1 0 ' 0 0 | 0 0 0 1 0
o 1 2 3 4 5 6 ' 1 8 9 10 11 12 13 14 15
Skip the next instruction in sequence if bit 10 of the violation status register is 1.
SKPBZ MAPO Skip if No 10 Violation
0 | 1 | 1 ) 0 1 0 1 1 1 | 1 0 I 1 0 1 0 0 0 1 0
o 1 2 3 1 4 5 6 | 7 8 9 10 11 12 13 14 15
Skip the next instruction in sequence if bit 10 of the violation status register is 0.
SKPDN MAP1 Skip if Validity Violation
0 1 1 0 0 1 1 | 1 0 0 0 0 0 1 1
| 1 1 Il 1 £l 1 1
o ' 1 2 3 a4 5 6 | 7 8 9 10 11 12 13 14 15
Skip the next instruction in sequence if bit 11 of the violation status register is 1.
SKPDZ MAP1 Skip if No Validity Violation
0 1 | 1 1 0 . 0 1 . 1 ' 1 1 1 0 ) 0 0 0 1 1
| I
o 1 2 3 a4 5 6 1 8 9 10 11 12 13 14 15
Skip the next instruction in sequence if bit 11 of the violation status register is 0.
SKPBN MAP1 Skip if Protection Violation
0 1 | 1 | 0 I 0 1 | 1 | 1 0 | 0 0 | 0 0 0 1 1
l
o ' 1 2 3 ' a4 5 6 7 8 9 10 11 12 13 14 15
Skip the next instruction in sequence if bit 12 of the violation status register is 1.
SKPBZ MAP1 Skip if No Protection Violation
0 | 1 | 1 | 0 . 0 | I 1 . 1 0 \ 1 0 ! 0 0 0 1 1
' 2 3 ' 4 5 6 | 7 8 9 0 11 12 13 14 15

Skip the next instruction in sequence if bit 12 of the violation status register is 0.
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At power turnon the processor is in supervisor mode and the mapping and protection data are indeter-
minate. The IO reset switch places the processor in supervisor mode but does not affect the mapping and
protection data. To run a user program without write-protection, the executive must put Os in the protection
bits for the pages in the user blocks.

Note that the executive may not be able to trace a violation to its source. Eg, a JMP to an invalid address
is not detected until the next instruction is fetched, and by then the location of the JMP cannot be determined.

2.7 OPERATION

The operator console is illustrated on page 1-2. The lights in the upper right display control conditions,
the rows of lights in the upper center display the processor registers. Below the latter is a register of toggle
switches through which the operator can supply addresses and data to the processor (the up position of a switch
represents a 1). The register can be used in conjunction with some of the operating switches, and its contents
are read by the READS instruction.

In the row at the bottom of the panel are the operating switches. Each switch lever is actually two
momentary-contact logical switches with a common off position in the center. Lifting the lever up turns on
the switch whose name is prihted above it; pressing it down turns on the switch whose name is written below.

At the upper left is a 3-position key-operated rotary switch that controls power and locks the console.
Turning it to ON simply turns on power. Turning it to LOCK keeps power on and disables the operating
switches so no one can interfere with the operation of the processor (the operator can still use the data switches
to supply information to the program).

Indicators. When any indicator is lit the associated flipflop is in the 1 state or the associated function
is true. A few indicators display useful information while the processor is running, but most change too
frequently and are therefore discussed in terms of the information they display when the processor has stopped.

The instruction lights (Nova and Supernova only) display the left eight bits of the instruction being
executed or just completed; these lights are all off if the processor stops following a program interrupt (in
the Nova they are also off following a data channel cycle). The address lights display the contents of PC.
The numbered data lights display the data written in the last memory reference, except following a Supernova
memory step when they display the address for the next reference.

RUN The processor is in normal operation with one instruction following another. ~ When
the light goes off; the computer stops.

ION The program interrupt is enabled (this is the Interrupt On flag).
FETCH The next processor cycle will be used to fetch an instruction from memory.
DEFER The next processor cycle will be used to fetch an address word in an indirectly

addressed memory reference instruction.

EXECUTE The next processor cycle will be used to reference memory for an operand in a move
data or modify memory instruction.

DCH (Nova and Supernova only.) The next processor cycle will be used by the data
channel for direct access to memory by an in-out device.
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PI (Nova and Supernova only.) The next processor cycle will be used to start an
interrupt by storing PC in Jocation 0.
OVERLAP (Supernova only.) Arithmetic and logical class instructions are being executed out
of read-only memory and the processor is overlapping the execution of one with
the fetching of the next. (This light is always off when the computer stops.)

PROTECT (Supernova only.) The processor is in user mode.

FETCH, DEFER, EXECUTE, DCH and PI are the state indicators: they specify the state (the type of
cycle) the processor will enter if operations are continued by pressing the CONTINUE or MEMORY STEP
switch (see below). On the Nova panel one and only one light must be lit; on the other machines at most
one light is lit; no light lit on the Supernova is equivalent to FETCH. Unless otherwise indicated, use of any
operating switch lcaves the processor ready to enter the fetch state.

Operating Switches. All of the switches in the bottom row except STOP and RESET are interlocked
so that they have no effect if RUN is lit. The four pairs of switches at the left are for depositing data in the
accumulators and examining their contents. Lifting a switch lever up loads the contents of the data switches
into the specified accumulator; pressing it down displays the contents of the accumulator in the data lights.
At completion the instruction lights are off.

The switches at the right perform the following functions when turned on.

EXAMINE Load the address contained in the data switches into PC (which is displayed in the
address lights) and display the contents of the addressed location in the data lights.

DEPOSIT Deposit the contents of the data switches in the memory location specified by
the address lights. At completion the data lights display the word deposited.

EXAMINE NEXT Add 1 to the PC address displayed in the address lights and display the contents
of the location specified by the incrémented address in the data lights.

DEPOSIT NEXT Add 1 to the PC address displayed in the address lights and deposit the contents of
the data switches in the memory location specified by the incremented address. At

completion-the data lights display the word deposited.

The above four switches can be used for a sequence of operations on consecutive memory locations.
The sequence must begin with EXAMINE to supply the initial address unless PC already points to the right
location. Suppose we set the data switches to octal 100 initially. Then the following sequence of switch settings

produces the effects listed.

EXAMINE Display location 100.
EXAMINE NEXT Display location 101.
EXAMINE NEXT Display location 102.
DEPOSIT Load data switches into 102.
EXAMINE NEXT Display location 103.
DEPOSIT Load data switches into 103.
DEPOSIT NEXT Load data switches into 104.
EXAMINE NEXT Display location 105.
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START

STOP

Load the address contained in the data switches into PC, light FETCH and RUN,
and begin normal operation by executing the instruction at the location specified
by PC.

Stop before fetching the next instruction. Thus the processor finishes the current
instruction, and then stops with the instruction lights displaying the instruction,
unless a device is waiting for data channel access or a program interrupt, in which

case it performs all such operations before stopping with the instruction lights off.
The address lights point to the next instruction.

CauTiON

If the current instruction contains an infinitely long indirect addressing chain or

there are continuous data channel requests, pressing STOP will not stop the com-
puter (see RESET, below).

CONTINUE

INST STEP

MEMORY STEP

Turn on RUN and begin normal operation in the state indicated by the lights.

Begin operation in the state indicated by the lights but then stop as though STOP
had been pressed at the same time. If the stop occurs at the end of an instruction,
the data displayed by the data lights depends on the instruction as follows.

LDA, STA Operand

1SZ, DSZ Operand

JMP Nova 1200 and 800, direct: instruction
Otherwise: effective address

JSR Nova 1200 and 800, direct: instruction

Nova 1200 and 800, indirect: effective address

Otherwise: address loaded into AC3 (old PC + 1)
Arithmetic and logical Supernova: unshifted result

Otherwise: instruction

In-out Supernova: zero; Nova: instruction
Nova 1200 and 800: data

Note that the AC switches can be used between instruction steps without
requiring any readjustment.

Perform a single processor cycle in the state indicated by the lights and then stop.
At completion the lights indicate the next state to be executed. The address lights
display PC; the data lights on the Nova display the data for the last memory step,
on the Supernova they display the address for the next memory step.

CaurtIion

Using the AC switches between memory steps within an instruction usually destroys

information necessary for the execution of the rest of the instruction.

RESET
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Interrupt On, place the processor in supervisor mode, and set the clock to line
frequency.

CAUTION
Information deposited in an accumulator from the console is displayed in the lights
but is not actually entered into the accumulator until the processor performs some
other operation. Hence pressing RESET after an AC deposit prevents the data from
actually reaching AC.

PROGRAM LOAD Supernova: Read 33 words from the device selected by data switches 10-15 into
locations 0—40, then light RUN and begin normal operation at location 40.
Nova 800, Nova 1200: Deposit the contents of the bootstrap read-only memory
into locations 0-37, then light RUN and begin normal operation at location O.

CHANNEL START (Supernova only.) Issue a DIAS to the device selected by data switches 10-15,
store JMP 377 in location 377, then light RUN and begin normal operation by
executing the instruction at location 377.

EXAMINE can be used to load PC for beginning any single step procedure. Instruction stepping can
also be begun by pressing START while holding STOP on.
* To use the various examine and deposit switches between instruction steps, simply remember what PC
is and restore it before continuing.
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Chapter 111
Hardcopy Equipment

This chapter discusses the simpler peripheral devices: teletypewriter, tape reader, tape punch, card reader,
card punch, plotter and line printer. These devices are used primarily for communication between computer
and operator using a paper medium: tape, cards, form paper or graph paper. All transfers for them are made
by the program through the accumulators.

The program can type out characters on the teletypewriter and can read characters that have been typed
in at the keyboard. This device has the slowest transfer rate of any, but it provides a convenient means of man-
machine interaction. The KSR teletypewriters comprise only a keyboard and printer; the ASR models also have
a slow tape reader and punch. This punch and the separate high speed punch supply output in the form of 8-
channel perforated paper tape. The information punched in the tape can be brought into the processor by the
high speed tape reader or the one mounted in the teletypewriter.

The card equipment processes standard 12-row 80-column cards. Many programmers find cards a con-
venient medium for source program input and for supplying data that varies from one program run to another.
Cards and paper tape are both convenient to prepare manually, but card input is much faster than tape, and
simple changes are easier to make: individual cards can be repunched, and cards can be added or removed
from the deck. A possible consideration in using cards is that many installations do not include an on line
card punch.

The line printer provides text output at a relatively high rate. The program must effectively typeset each
line; upon command the printer then prints the entire line. With the plotter, the program can produce ink
drawings by controlling the incremental motion of pen on paper in a cartesian coordinate system. Curves and
figures of any shape can be generated by proper combinations of motion in x and y.

3.1 TELETYPEWRITER

Four teletypewriter models are regularly available for use with the Nova computers: the ASR33, KSR33
and KSR35, all of which are capable of speeds up to ten characters per second, and the KSR37, which can
handle up to fifteen characters per second. The program can type out characters and can read in the
characters produced when keys are struck at the keyboard. With an ASR the program can also punch
characters in a tape and read characters from a tape.

The teletype separates its input and output functions and is really two distinct devices. Each has its own
device code, its own Busy, Done and Interrupt Disable flags, and its own interrupt priority mask assignment.
Placing a code for a character in the output buffer and setting Output Busy causes the teletype to print the
character or perform the designated control function. Striking a key places the code for the associated char-
acter in the input buffer where it can be retrieved by the program, but it does nothing at the teletype unless the

program sends the code back as output.
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Character codes received from the keyboard have eight bits wherein the most significant is an even parity
bit. The Model 33 and 35 printers ignore the parity bit in characters transmitted to them. The model 37
ignores the parity bit in a code for <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>