dlilgliltlall

VAX/VMS

System Dump Analyzer
Reference Manual

Order No. AA-J526A-TE

March 1980

This document describes how the VAX/VMS System Dump Analyzer works
and how to use it.

VAX/VMS

System Dump Analyzer
Reference Manual

Order No. AA-J526A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this release.
OPERATING SYSTEM AND VERSION: VAX/VMS V02

SOFTWARE VERSION: VAX/VMS V02

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, March 1980

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation., Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (:) 1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS~-8 ITPS-10
VAX VMS SBI
DECnet IAS PDT

DATATRIEVE TRAX

PREFACE

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

NN
« o
[\

Wwwwww w
* e o
UL WA

CONTENTS

INTRODUCTION TO SDA

THE SYSTEM DUMP FILE

SETTING THE SYSTEM DUMP FILE SIZE
SAVING SYSTEM DUMP FILES

RUNNING SDA

INVOKING SDA WITH THE RUN COMMAND

INVOKING SDA AS A FOREIGN COMMAND
EXAMINING THE RUNNING SYSTEM

READING THE SYSTEM DUMP FILE

BUILDING THE SDA SYMBOL TABLE

INVOKING SDA IN THE SITE-SPECIFIC START-UP

PROCEDURE

SDA COMMAND STRINGS

GENERAL FORMAT
EXPRESSIONS

Radix Operators
Unary Operators
Binary Operators
Special Operators

Symbols

SDA COMMANDS
COPY

DEFINE
EVALUATE
EXAMINE

EXIT

FORMAT

HELP

READ

REPEAT

SET OUTPUT
SET PROCESS
SHOW CRASH
SHOW DEVICE
SHOW PAGE_TABLE
SHOW PFN_DATA
SHOW POOL
SHOW PROCESS
SHOW STACK
SHOW SUMMARY
SHOW SYMBOL

iii

[N N S T N
! [R | L I B |
H R RFE3OTWND - WWwwNNDN -

oot oo
|

CHAPTER

CHAPTER

INDEX

Figure

Table

6

s e o o s o
P
N -

DwWwwwwwwwwwdhdhoNn -+

BB W Www N~
.
N =

[e)) We) Mo We) We)We) e Ne) Je) o) o) o) le) WEe)!
* o 8 o o o o s @

~

~N o~
.
N

| A I I I I |

NbhWwNH—HO

c\c\wmmmmw'fmmmwmmmm
NHMHFEFRERREREROONOUOTD WN -

[o) W) W)
|
U W

CONTENTS

ANALYZING SYSTEM FAILURES -- GUIDELINES AND
EXAMPLES

GENERAL PROCEDURE FOR SOLVING SYSTEM FAILURES

FATAL BUGCHECK CONDITIONS
Fatal Exceptions
Illegal Page Faults
DEBUGGING A SYSTEM FAILURE -- AN EXAMPLE
Identifying the Bugcheck
Identifying the Exception
Locating the Source of the Exception
Finding the Driver Using the DPT List
Calculating the Offset into the Driver
Finding the Problem within the Routine
Stepping through the Routine
Checking the Values of Key Variables
Identifying and Fixing the Defective Code
INDUCING A SYSTEM FAILURE

SDA ERROR MESSAGES

INITIALIZATION ERROR MESSAGES
OPERATIONAL ERROR MESSAGES

FIGURES

System Region Memory

System Crash Information

Device Data Block List for Dn Devices
Controller Data Structures for DB Devices
Device Unit Data Structures for Device DBAl
System Page Table

PFN Data Base

Paged Dynamic Storage Pool

Process Information

Working Set List

Process Section Table

Program Region Memory

Current Operating Stack (Kernel)

Summary of Active Processes

Global Symbols

Interrupt Stack and Vectors

Page Table Display Showing Invalid Location
80069E00

Linked List of Driver Prologue Tables
Location of Instruction in Driver Routine
Location of Defective Code in Driver Routine

TABLES

Summary of SDA Commands

iv

Page

o)
!
-

|
HEHEOQUOUIIIITUTNDN -

]
=
NN O O

[o2We) Bre) Nie) o) We) Wie) Jio) Tie) I A Wo Yo e}
I

6-13
6-15

~~
|
ey

Index-1

PREFACE

MANUAL OBJECTIVES

The VAX/VMS System Dump Analyzer Reference Manual contains information
useful in determining the cause of a VAX/VMS operating system failure.

INTENDED AUDIENCE
This reference manual is intended for users who possess extensive
knowledge of VAX/VMS data structures. It assumes that the audience

for this manual includes VAX/VMS developers and DIGITAL Software

Support Specialists, as well as DIGITAL customers familiar with
VAX/VMS internal design.

In addition, system programmers who are writing device drivers may
need to use SDA. The system manager should also become familiar with
SDA, usually to produce SDA 1listings after each <crash and, more
importantly, to save the system dump file for later analysis.

STRUCTURE OF THIS DOCUMENT
This reference manual consists of seven chapters:

e Chapter 1 provides an introduction to SDA and summarizes SDA
operations.

e Chapter 2 describes the system dump file that SDA analyzes.

e Chapter 3 explains how to run SDA to analyze a dump file or
examine the running system.

e Chapter 4 details the SDA command format.
e Chapter 5 describes the SDA commands, in alphabetical order.

e Chapter 6 gives guidelines for analyzing system failures and
steps through a sample system crash.

e Chapter 7 lists and explains the messages related to SDA
operation.

ASSOCIATED DOCUMENTS

This document has the following prerequisites:

VAX-11/780 Hardware Handbook

VAX/VMS Summary Description and Glossary

The following documents are associated with this manual:

VAX-11 Run-Time Library Reference Manual

VAX/VMS Guide to Writing a Device ngggg

VAX/VMS System Manager's Guide

VAX/VMS System Services Rgfgfénce Manual

For a

complete

list of

all

VAX-11 documents, including brief

descriptions of each, see the VAX-11 Information Directory and Index.

CONVENTIONS USED IN THIS DOCUMENT

The following conventions are used in this document.

Convention

SHOW CRASH

symbol-name

SET PROCESS ;

-

SHOW SYMBOL TEN

TEN

00000010

name
/INDEX
/SYSTEM

nn

Meaning

Uppercase words and 1letters, used
in examples, indicate that vyou
should type the word or letter
exactly as shown.

Lowercase words and letters, used
in format examples, indicate that
you are to substitute a word or
value of your choice.

Square brackets indicate that the
enclosed argument is optional,
except for brackets used in
directory specifications.

Braces are used to enclose 1lists
from which one element is to be
chosen.

A vertical ellipsis indicates that
not all of the statements in an
example or figure are shown.

In examples of commands you enter
and SDA responses, all output lines
and prompting characters that SDA
prints or displays are shown in
black letters. All the lines you
type are shown in red letters.

A symbol with a 1- to 3-character

abbreviation indicates that vyou
press a key on the terminal.

vi

CHAPTER 1 .

INTRODUCTION TO SDA

The System Dump Analyzer (SDA) is a VAX/VMS utility that aids in
determining the cause of an operating system failure,

When an internal error occurs that interferes with normal operations,
the operating system writes information concerning its status at the
time of the system failure to a predefined system dump file. SDA
examines and formats the contents of this file.
With the help of the SDA commands, vyou can display parts of the
formatted system dump file on a video display terminal, or you can
create hard copy listings.
SDA performs the following operations:

e Assigns a value to a symbol

e Examines memory of any process

e Formats block of data

e Displays device data structures

e Displays memory management structures

e Displays a summary of all processes on the system

e Displays the SDA symbol table

e Copies the system dump file

e Sends output to a file or device

® Reads symbols from any object module
In addition to analyzing the system dump file, SDA can perform the
operations 1listed above on a running system without interrupting that
system's operation.
While SDA provides a great deal of information, it does not analyze
all the various control blocks and data contained in memory.
Therefore, in the event of system failure, it is extremely important

that customers send a copy of the system dump file to DIGITAL along
with a Software Performance Report (SPR).

CHAPTER 2

THE SYSTEM DUMP FILE

Before the VAX/VMS operating system can write information to the
system dump file, the system parameter DUMPBUG must be set. Normally,
this parameter is enabled by default; to reset DUMPBUG, as well as
other system parameters, consult the VAX/VMS System Manager's Guide.

If the DUMPBUG parameter is set and the operating system fails, the
system writes the contents of the error 1log buffers, processor
registers, and physical memory to the contiguous file SYSDUMP.DMP.
SDA analyzes this file and produces formatted displays of its
contents.

SYSDUMP.DMP is furnished as an empty file in the VAX/VMS software

distribution kit. It is located in the system directory [SYSEXE] and
its file size is initially small.

2.1 SETTING THE SYSTEM DUMP FILE SIZE

To preserve the continuity of the error log file and save all of
physical memory, it 1is important to make sure that the dump file's
size in blocks matches the individual system configuration.

To change the size of SYSDUMP.DMP, the system manager (or a user with
similar privileges) runs a command procedure in the directory [SYSUPD]
called SWAPFILES.COM. The command line is:

¢ BLSYSUFDISWAPFILES

The command procedure prompts you for paging, swapping, and dump file
sizes. You can enter a new file size or simply press @) . If you
enter a new file size, the command procedure creates a new system dump
file. This new file will not be used by the operating system until
after a system reboot.

To calculate the correct dump file size for your configuration, use
the formula:

blocks = physical-memory-size-in-pages + 4

The four additional blocks store hardware context and error 1log
buffers. You can also use the table provided in the VAX/VMS System
Manager's Guide to find the <correct size. This table lists
recommended sizes for the three files affected by the SWAPFILES
command procedure. The system manager's gquide also gives detailed
information on SWAPFILES.COM and on changing dump file size.

THE SYSTEM DUMP FILE

2.2 SAVING SYSTEM DUMP FILES

Every time the operating system writes information to SYSDUMP.DMP, it
writes over whatever was previously stored in the file. For this
reason, the system manager should save the contents of SYSDUMP.DMP
after a system failure has occurred. One way to accomplish this is to
copy the file to another directory. Use the DIGITAL Command Language
(DCL) command COPY, as shown in the following example:

$ COPY SYS$SYSTEMISYSDUMP . DMFS L LSYSERRISAVEDIUMF . DIMF

SDA also provides a COPY command. This command can be included in the
series of SDA commands in the site-specific start-up procedure.
Section 3.6 discusses the start-up procedure in more detail. The COPY
command is explained in Chapter 5.

CHAPTER 3

RUNNING SDA

SDA can analyze a dump file or examine the running system. To make it
possible for SDA to read the dump file, you need:

® Read access to SYSDUMP.DMP
® Read access to a copy of the system symbol table

e Enough virtual space for SDA to map the entire system dump
file

To ensure that SDA has the correct amount of virtual address space,
the running system must have the system parameter VIRTUALPGCNT equal
to the size of the dump file plus 1000 pages. In addition, your page
file quota (PGFLQUOTA in the user's authorization record created by
running the User Authorization Program) must be at least the size of
the dump file plus 1000 pages. See the VAX/VMS System Manager's Guide
for information on system parameters and the User Authorization
Program (AUTHORIZE).

3.1 INVOKING SDA WITH THE RUN COMMAND

If the above conditions are satisfied, you can invoke SDA by typing
the following DCL command:

% RUN SYSESYSTEMISDA

When you issue this command, SDA will prompt for the name of the
system dump file you want to examine:

Erter mame of cumes File -

To examine the most recent system dump (SYS$SSYSTEM:SYSDUMP.DMP), press
®ED in response to the prompt. SDA will search the system directory
(logical name SYSS$SYSTEM) for SYSDUMP.DMP. To examine an older dump
file, enter its file specification:

Erter name of cdume File > DWIZARDIACFCRASH . DIMP

The default file specification for the system dump file is
SYSSDISK: [default-dir]SYSDUMP.DMP where SYSSDISK and [default-dir]
represent, respectively, the device and directory specified by the
last SET DEFAULT command. (See the VAX/VMS Command Language User's
Guide for a description of the SET DEFAULT command.)

RUNNING SDA

If you want to examine the running system, type an asterisk (*) in
response to the dump file prompt. See Section 3.3 for further
details.

3.2 INVOKING SDA AS A FOREIGN COMMAND

You can also invoke SDA as a foreign command by wusing the DCL
assignment statement:

tSDA = $SDA

A foreign command is a command not known to the command interpreter
that can be executed by entering a command string.

The dollar sign ($) indicates to DCL that the expression is a foreign
command. Now you can specify a file or the asterisk as a parameter to
the SDA command:

% 8nA COUMPSIRADUCE

Defining SDA as a foreign command abbreviates SDA initialization
because it eliminates the need to respond to the dump file prompt.
For further information on the foreign command feature of DCL, see
Appendix A of the VAX/VMS Command Language User's Guide.

You can also invoke SDA from the site-specific start-up procedure;
Section 3.6 describes this method of calling SDA.

3.3 EXAMINING THE RUNNING SYSTEM

Occasionally, VAX/VMS encounters an internal problem that hinders
system performance without generating a system failure. By allowing
you to examine the running system, SDA provides the means to search
memory for the solution to the problem without disturbing the
operating system.

To examine the running system, invoke SDA as described in Section 3.1.
SDA automatically sets the process context to your process. (See the
description of the SET PROCESS command in Chapter 5 for a discussion
of process context.)

To analyze the system dump file, SDA maps the entire file. By
contrast, when SDA examines a running system, it retrieves only the
information necessary to process a given command.

Because of the system's dynamic nature, use extreme caution when
examining the running system. Although you can safely reference most
locations, accessing certain portions of memory, such as I/0 address
space or nonresident process header pages that the current process
does not own, causes the system to fail.

3.4 READING THE SYSTEM DUMP FILE

When you invoke SDA and specify the name of a dump file (or press
®ED) SDA gathers the data needed to create the displays from that
dump file. Under certain conditions, the contents of general purpose
or processor registers may not be saved in SYSDUMP.DMP.

RUNNING SDA

For example, during console restart bugchecks, such as HALT, the
VAX-11 LSI-11 console program destroys the contents of all the general
purpose registers except the program counter and the processor status
longword. SDA indicates in the SHOW CRASH display that the registers
were wiped out by the console.

Processor registers may also be lost if the -error 1log buffers in
memory are full. When the operating system writes data to
SYSDUMP.DMP, it creates an error log entry in the error 1log buffer
that stores the contents of the processor registers. If the buffers
are full, the contents of the registers are lost because the operating
system cannot create an error log entry for them. Again, SDA prints a
message in the SHOW CRASH display indicating that an error 1log entry
for the registers does not exist.

Although the system dump file must be contiguous for the operating
system to write information to it successfully, the file need not be
contiguous for SDA to read it. Thus, if your copy of the system dump
file is not contiquous, you will still be able to run SDA.

3.5 BUILDING THE SDA SYMBOL TABLE

After locating and reading the system dump file, SDA next attempts to
read the system symbol table file. This file, named SYS.STB, contains
all the global symbols used by the operating system. SDA's ability to
read global symbols makes it easier to analyze a dump because you can
examine locations by symbol rather than by virtual address.

SDA first looks for SYS.STB in the directory and device containing the
system dump., If the file is not there, SDA looks for it in the system
directory SYS$SYSTEM. Once SDA finds SYS.STB, it copies the file's
contents to the ©SDA symbol table. If SDA cannot find the system
symbol table file, it will not run.

When SDA finishes building its symbol table, it prints out a message
identifying itself and the immediate cause of the crash:

VAX/UME Swetem cdume analurer

Tame taken on 28-Fet-1979 01:22:158.43
MTXONTNONZy Mutex count nonzero at swstem service exit

HIA

The SDA> prompt indicates that the utility is ready to accept SDA
commands. You can now use SDA interactively, send selected
information to a file, or print selected information on a 1line
printer. Refer to the description of the SET OUTPUT command in
Chapter 5 for directions on setting up output files.

3.6 INVOKING SDA IN THE SITE-SPECIFIC START-UP PROCEDURE

Because an SDA listing is an important tool in determining the general
nature of a system failure, it is a good idea to make sure that one is
produced after every crash., The system manager can ensure the
creation of an SDA 1listing by modifying the SYSTARTUP.COM file in
[SYSMGR] to invoke SDA when the system is booted.

RUNNING SDA

When called by the start-up procedure, SDA scans the system dump file
for a flag that indicates whether SDA has processed the file. This
flag is cleared each time the operating system writes to SYSDUMP.DMP,
except in the <case of an emergency shutdown (OPCCRASH.EXE). 1If the
flag is clear, SDA executes the commands designated in the command
procedure and sets the flag. 1If, however, SDA finds that the dump
file flag is set, it exits without performing any of the specified
commands. Thus, SDA will execute only if the system just failed.

To allow you to run SDA from the site-specific start-up procedure, the
system parameter PQL DPGFLQUOTA must equal the size of the system dump
file plus 1000 pages. See the VAX/VMS System Manager's Guide for more
information on system parameters. o o

The example below shows commands that might be added to the

site-specific start-up procedure to produce an SDA listing after each
crash.

$ 1
$! Print dump listing if system just failed
S
$ RUN SYSSSYSTEM:SDA
SYS$SYSTEM: SYSDUMP .DMP
COPY SYS$SYSTEM:SAVEDUMP.DMP
SET OUTPUT LPAO:SYSDUMP.LIS

Save dump file
Create listing file

!
!
SHOW CRASH ! Display crash
! information
SHOW STACK ! Show current stack
SHOW SUMMARY ! List all active
! processes
SHOW PROCESS/PCB/PHD/REG ! Display current process
SHOW SYMBOL/ALL ! Print system symbol
1

table
EXIT

CHAPTER 4

SDA COMMAND STRINGS

The following sections describe the SDA command format and the types
of expressions SDA uses within commands.

4.1 GENERAL FORMAT
SDA uses a command string format similar to that of the DIGITAL

Command Language (DCL) interpreter. You issue commands in the general
format:

command [parameter] [/qualifier] (!comment]

command

The name of an SDA command that tells the utility to perform a
certain function. Commands can consist of one or more words, and
can be abbreviated to the number of characters that make the

command unique. For example, SH stands for SHOW and SE stands
for SET.

parameter

The target of the command. For example, SHOW PROCESS GORK tells
SDA to display the process GORK.

When a parameter is a file specification, the current default
device and directory are represented as listed below.

Default Meaning

SYSS$SDISK Device specified in the most recent
SET DEFAULT command

[default-dir] Directory specified in the most
recent SET DEFAULT command

See the VAX/VMS Command Language User's Guide for a description
of the DCL command SET DEFAULT.

/qualifier

The name of a command qualifier that modifies the action of an
SDA command. A qualifier 1is always preceded by a slash (/).
Multiple qualifiers can follow a single parameter but must be

delimited by slashes. Qualifiers can be abbreviated as long as
they remain unique.

SDA COMMAND STRINGS

lcomment

A comment. SDA ignores the exclamation point and all characters
appearing after it on the same line.

4.2 EXPRESSIONS

Certain SDA commands allow expressions as command parameters. To
create expressions, you can use:

e Radix operators

e Unary operators

e Binary operators
e Special operators

e Symbols

4.2.1 Radix Operators

Radix operators determine which base SDA uses to evaluate expressions.

You can use one of three radix operators to specify the radix for a
numeric value.

Operator Radix Example
X Hexadecimal “X10
“0 Octal “030
“D Decimal “D16

The default radix is hexadecimal. SDA displays hexadecimal values
with leading zeros and decimal values with leading spaces.

4.2.2 Unary Operators

SDA recognizes the following unary operators:

Operator Function
+ Assigns positive value
- Assigns negative value
@ Uses contents of location
G Adds 80000000 to value
H Adds 7FFE0000 to value

The unary operator G corresponds the first virtual address 1in system
space, while the wunary operator H corresponds to a convenient base
address in a process's control region.

SDA COMMAND STRINGS

4.2.3 Binary Operators

SDA performs integer arithmetic on 32-bit operands. The characters
indicating arithmetic operations are:

Operator Function

Addition
Subtraction
Multiplication
Division
Arithmetic shift

DN * | +

SDA carries out multiplication, division, and arithmetic shift before
addition and subtraction. 1In division, SDA does not round integers,
nor does it retain a remainder.

4.2.4 Special Operators
SDA uses parentheses as special operators. Expressions enclosed in

parentheses are evaluated first. 1In the case of nested parenthetical
expressions, SDA evaluates from innermost to outermost.

4.2.5 Symbols

Symbols are composed of 1 to 31 alphanumeric characters that can
include the special characters dollar sign ($) and underline(_).

SDA copies symbols into its symbol table from the SYS.STB file. They
can also be created by the DEFINE and READ commands.

In addition, SDA provides the following special symbols:

Symbol Meaning

. Current location

G 80000000

H 7FFE0000

RO-R11 General purpose registers

AP Argument Pointer

Fp Frame Pointer

KSp Kernel Mode Stack Pointer

ESP Executive Mode Stack Pointer
SSP Supervisor Mode Stack Pointer
usp User Mode Stack Pointer

POBR Program Region Base Register
POLR Program Region Length Register
P1BR Control Region Base Register
PL1LR Control Region Length Register
PC Program Counter

PSL Processor status longword

The register symbols correspond to the registers saved in the hardware
context of the current process (see the description of the SET PROCESS
command in Chapter 5). For example,

SDA EXAMINE @USF

This command displays the first longword on the user mode stack.

CHAPTER 5

SDA COMMANDS

Table 5-1 lists the SDA commands and gives a brief explanation

their functions. The
abbreviations.

underlined characters represent command

Table 5-1
Summary of SDA Commands

Command Function
CorpY Copies the dump file o -
DEFINE Defines symbols and their values
EVALUATE Performs computations
EXAMINE Examines memory locations
EXIT Exits from the display or from SDA
FORMAT Formats data blocks
HELP Prints help files
READ Copies object module symbols
REPEAT Repeats the last command

Sets output to the device or file

SET OUTPUT
SET PROCESS

SHOW CRASH
SHOW DEVICE
SHOW PAGE_TABLE
SHOW PFN_DATA

SHOW POOL

—

SHOW PROCESS

SHOW STACK

SHOW SUMMARY

SHOW SYMBOL

specification

Sets the process context to a specific
process

Displays crash information

Displays I/0 data structures

Displays the system page table
Displays the PFN data base

Displays dynamic memory

Displays specific process information
Displays process/interrupt stacks
Displays a summary of all processes

Displays the symbol table

5-1

SDA COMMANDS

COPY

Each time the system fails, new information 1is written over the
contents of SYSDUMP.DMP. The COPY command allows you to preserve the
contents of SYSDUMP.DMP by copying it to another file. (The resulting
copy does not have to be a contiguous file; see Section 3.4.)

In most cases, the system manager will include the COPY command in the
SYSTARTUP.COM command procedure so that each time the system fails,
SDA will copy the system dump file to another file,

Format

COPY output-file-spec

Qualifiers Defaults
None None
Parameters

output-file-spec

The device, directory, and file name to which SDA copies the
system dump file. The default file specification is
SYSSDISK: [default-dir] SYSDUMP.DMP. See the VAX/VMS Command
Language User's Guide for more information about file
specifications.,

Examples
1. SDAX> COPY SYS$SYSTEM! SAVEIIUMF
The COPY command takes the SYSDUMP.DMP file and copies it to the

system device and directory SYSS$SYSTEM under the file name
SAVEDUMP .DMP.

SDA COMMANDS

DEFINE

The DEFINE command assigns a value to a symbol. SDA evaluates the
expression before assigning it to the symbol. If the symbol is
already defined, the new value simply replaces the old one.

Although both DEFINE and EVALUATE perform computations, DEFINE adds
symbols used for temporary computations to the SDA symbol table, while
EVALUATE simply performs the computation.

Format

DEFINE symbol ; expression

Qualifiers Defaults

None None
Parameters
symbol

A 1- to 3l-alphanumeric character symbol you designate to
represent a value. See Section 4.2.5 for a discussion of valid
SDA symbols.,

expression

An expression to be defined by the symbol. You can separate the
expression from the symbol by a space or by an equal sign. See
Section 4.2 for a discussion of SDA expressions.

Examples

1. S0AH DEFINE BEGIN = 800358E00
S0Ax DEFINE END = 800358E40
Shax EXAMINE REGINIEND

In this example, DEFINE delimits a range of address space. A
subsequent EXAMINE command can then easily examine that section
of memory locations. The symbols serve as reference points in
memory.

2. Soax DEFINE NEXT = @PFC
Shax EXAMINE NEXT
00000454 3 LFDaF812 Paeed!

The temporary symbol NEXT defines the address contained 1in the
program counter. SDA represents nonprinting characters by a
period (.) and puts quotation marks around ASCII text. Refer to
Section 4.2.5 for a discussion of SDA symbols.

3. Shax DEFINE VEC SCH$GL..FPORVED
A symbol VEC has been assigned to a global symbol. Now you can

access the memory location or value represented by the global
symbol by specifying the symbol VEC.

SDA COMMANDS

ShA DEFINE COUNT = 4

SDA DEFINE RESULT = COUNTXCOUNT
Shax EVALUATE RESULT

Hex = 00000010 Decimal = 16

The value 4 is symbolically defined and then
arithmetic expression,

used

in

an

SDA COMMANDS

EVALUATE

The EVALUATE command computes the value of any SDA expression and
displays the results in hexadecimal and decimal format.

Format

EVALUATE expression

Qualifiers Defaults
None None
Parameters
expression

The expression to be evaluated. See Section 4.2 for a
description of valid SDA expressions.

Examples

1. SDA¥ EVALUATE
Hewx = FFF

Necimal = -1

EVALUATE prints the values of negative 1 in hexadecimal and
decimal.

2. SOAE DEFINE TEN = A
S0AF EVALUATE TEN
Hex = Q000000A Necimsl = 10

EVALUATE computes and displays the value of the symbol TEN. In
this example, the character "A" could also be a symbol. When SDA
encounters a quantity that can either be a symbol or a
hexadecimal expression, SDA first treats the quantity as a symbol
and looks for it in the symbol table. 1If SDA cannot locate the
quantity in the symbol table, it evaluates the quantity as a
hexadecimal expression.

3. SNAZ EVALUATE (CTENXSYH(~1/74))+ (2+4)
Hex = 00000042 lecimasl = &6

The EVALUATE command evaluates a complex expression and prints
the result as hexadecimal and decimal values. See Sections 4.2.2
through 4.,2.5 for a discussion of the expressions used in this
example.

SDA COMMANDS

EXAMINE

The EXAMINE command displays the contents of a location or range of
locations in physical memory.

You can use location parameters to examine specific locations or you
can use qualifiers to display entire process and system regions.
There are two ways to examine a range of Jlocations: 1) designate
starting and ending 1locations separated by a colon, for example,
80000040:80000200; or 2) specify a 1location and a byte 1length,
separated by a semicolon, for example, 80000400;16.

If at any time you omit the 1location parameter from the EXAMINE
command, SDA takes the location you last examined, increases it by 4
(one longword) and examines the resulting location,

Examining Specific Locations

A location can be represented by any valid SDA expression. When you
use the EXAMINE command to look at a location, SDA displays the
location, its symbolic representation (if possible), and its contents,
in hexadecimal and ASCII formats.

SDA initially sets the current location to -4 (decimal) in the program
region (P0) of the process. To examine memory locations in other
processes, you must use the SET PROCESS command.

Examining Memory Regions

You can dump an entire region of virtual memory by adding one or more
qualifiers to the EXAMINE command.

SDA formats the dump into columns of longwords, 4 for an 80-column
device and 8 for a 132-column device, and prints the ASCII value of
the longwords on the right side of the display. The final column
contains the address of the first longword in each line. You read the
dump display from right to left.

If a series of virtual addresses does not exist in physical memory,
SDA prints a message specifying the range of addresses that were not
translated:

Virtual locations locl { loc2 are not in shusical memorw
In this message, locl and 1loc2 represent the starting and ending
addresses of the range. This message also appears if you try to

examine a single location that has not been mapped into physical
memory.

If a range of virtual locations contains only zeros, SDA prints the
message:

Zeros surrressed from locl to loc2

SDA COMMANDS

Format

[location] [¢:location]
EXAMINE [;length]

Qualifiers Defaults
/PO None
/Pl
/SYSTEM
/ALL
Parameters

location

Expression that specifies the address in virtual memory at which
data is stored.

length
Expression that specifies the number of bytes you want to
display.

Qualifiers

/PO
Prints the entire program region for a given process. The
default for this qualifier is the P00 region of the current
process; you must use the SET PROCESS command to examine other
processes' PO regions.

/Pl
Prints the entire <control region for a given process. The
defauit for this qualifier 1is the Pl region of the current
process; use the SET PROCESS command to examine different Pl
regions.

/SYSTEM
Prints portions of the writeable system region.

/ALL
Prints both the entire program and control regions for a given
process, and portions of the writeable system region.

Examples

1. ShAx> EXAMINE 80000200
SYS$SETEF & 8FRCO03C "Heee”

The system virtual address is defined by a global symbol, The
information stored at this address is given in hexadecimal and in
ASCII formats. SDA represents nonprinting characters by a period
(.) and puts quotation marks (" ") around ASCII text.

SDA COMMANDS

ShA> EXAMINE FC

FC ¢ 80008ER22 et

S0A> EXAMINE @rC

EXESRUNDWNYO38 ¢ 61772065 o owa'

SDA examines the program counter and the address contained in the
program counter,

ShAx EXAMINE 80000008711

SDA displays a range of bytes starting at address 80000008 and
ending at 80000027. SDA displays byte ranges in units of 16
(decimal) bytes. In this case, SDA displays two 1lines of 16
bytes even though a value of 17 (11 hexadecimal) was given.

Shax EXAMINE/SYSTEM

Figure 5-1 shows a portion of the display produced by this
command.

VAX/VNS 2,2 == Sygtem Dump
System recion mempry

ape2eaco
8ppSesen
41424403
8peul39as
BapSER2A
8RB7CAEC
ana26617
8pQ8¢5C3
gagecoap
angugary
41504FF3
8eean39asg
8anrRrs2A
80@3¢95C
A@Beeun2R
APRAPAV A
BRABEC e
EF163FER
BaAPZi6EE
8maag9ovC
41584403
8pme3gAg
8mpariza
8epRrAFC
ABRL 2B
anaveave
200V 1ES
ESESESES
ESESESES
ESESESES
FSESESES
LLEIIIIES
8pezeCi1C
8oageEF(C
BpavpCSC
A000¢ B¢
20 Ce
8epvelera
8pa7802¢
anBugeve
FFAFFFFF
212202402
eeelpt1e
sopgerDAC
444CuErs
3enorzen
200¢4¢A¢
A088¢ngy
AngeeAre
anpveaea
e@ddreee
8002eER2e
8QQACESS
eapeeoee
sagrrene

cenprze3
8ArA08UB
p2313146
PRAAAR20
AP0120¢ 1
?32F1316
PPPU99F9
wAeC2ee0n
Bleld]
a0nac2ee
rRAACERe
ACPAIPAA
ARN12021
PAAAU2AN
cCAra9e77?
Pap@rAGH
PANAPARk
I d4dd iy
Rppn171F
BARAIACD
73313146
A0¢ACPER
TARRARZA
204021 1A
Caanap22
[ddd
8avecBéd
ESESESES
ESFSFESES
ESESESES
ESESESFs
41424023
Caae2136
a2 19221
HRNATACA
AERACAna
#B1uanTY
acapenen
22003001
Harpaace
20400914
vCis#aet
goavnareane
BRRPRE2(
“@eeazee
ldddddddd
[dddadale
aagasaae
PARANACA
2@raaeee
perpapnp
80RAREFC
8ACHREIR
ANAQAAAYP
raeanraea?

tegaean9
raguarea
8Apenuns
Anpaansz
ananeand
A207e501
24931812
8nan3IRBC
Advavaann
vaaceaen
Braraany
eaaaaps2
raeugnan
BeBL20Y2
apauenn
8aen24n9
aaepnel
areeennl
By2a1604k
220901 C
Arnp2adn
AVERACS2
FFFupann
22200601
Arpui18ye
BACUE AR
810apBey
ESESESES
FSESESES
ESESESES
ESESESES
APQNARAN
Apecacay
PARAFFFF
A100g2A2
aeatanta
8/papCoe
8apapBEy
8oaenC0a
Aepueear
eaopgaan
24002002
2oaBape2
eaencpan
0ragean
f8132274
2gevaraa
angagesa
[by
Su44S54ERT
2g@0peC8
Adetnray
npeazean
eaevaena
fnenaeaa

Armalysis

fernapal
TFFEEAFU
AeR6p0 3¢
45564952
8og178ap
1CuDyr0g
eaeaeere
rCacapee
geeentde
A kI
neeere 3L
4Fs54a152
nzeeerto
aCegaena?
ARPRAREC 72D
ze2e@ee
A2unApAe
cPESArdy
reredeae
PRAPAP 2
fdelal Yl ok 1)
45564952
RA2A2C6D
{C2Ddere
2¢029000
kA ad
A2erap00
ESESESES
FRESFRES
FSESESES
ESESFSES
Ra2p127C
aAvenarsSa
apeace1d
n815a071
QAraneoe
RageAl9¢
RACQRAEFC
RpeperDe
ARPAPEFA
L I
Reps2PSe
RRP7742¢
a¢Ceneap
axreaeran
ageese2p
g8oapeD78
BarneDEC
apeaveee
PASUUSUE
weasgeeee
7ecpenen
gerprpoR
prggepie
20090¢0Q

aaneapiz
f2er2a28
8vrpnes7C
4auQ8up8
8rpi17Cee
80262940
23150024
e23cEa8ng
@uangpan
a0APAnRa
8297a97C
USSEUFa8
APE2a2an
P2RARAPE
adtdapae
ranACARR
ARQACFFFF
agaogang
?aeeeany
aAcereann
BURRAABC
4us84uns
PARPEARAD
8r262CA2
a314ppnp
PPAAPRAB
eactaany
ESESESES
ESESFSFS
FSESESES
ESESESES
20062034
45564952
gearnand
averannn
PeaBaney
AUARAAAR
ave10004
[l Al]
feAR2GR2
?B100R74
a2aranen
eenraang
200202030
414CULERPT
[Addd ol d)
8QR0REFC
8paanDEC
nAg2272a4
8aan1648
eAARS24S
gronanane
aC1C2200
20220097
ARaR0000

Figure

207N0004 2A324328
Fanan@1l eagrpee?
8PRAA948 8ogainde
ANRQ2227 AACRANQ02
80men866 @81a@22CC
8Are8ER2 @p@ranRre
8nr7823p peecopor
Ns5A22000 8¢itda2C
PREENFAA 1pepanaR
eaARARRe BAPGRARDR
8npRRAB8 @oQABRRY
20020000 PAGBARBA
822420 ¢81a@aAC
2000@@2272 AerARRR¢
BRP74Q30 GRARRARRR
¢22500a1 820686Cn
nar27BBA 8pa7eTRR
ARAACPAP PBERQPAQ
8a7316Co BapapA6C
2naarA6C 22070CEY
82000BE4 82@aRARC
CRrAAARD AANAZARR
8RAN2AAT W81VV128
PAIRCANG PRAAPRAR
Aax78820 @zeQaeanl
220032AC 8/nADULB
22¢1200F 2a0AeAAQ
ESESESES ESESESES
ESEFSESES ESESESES
ESFSESES ESESESES
ESFSFSES ESESESES
8a2a2Con 8002078
44424008 2p@aR220
ARRPRAAAR BR1IReT4
Baraeloe Papcaced
VAARARAR AARARRAQ
AARAPACA AOPANAAR
FFAFFFFF oppreald
21eaeia aCiSene!
apa1ai1a eerapane
saraadny BraeeDRY
AP207BEY 82p@2AEFC
8prp@aDUY Bar@e2DUY
nPRRRRRA 023ARU34
2900000 80ARV1608
200072000 AnARNQS2
geie2nt areaeaea
722074000 Q084Q0AR
20002028 2a0ARA1N
72062034 B2ARPESS
56495244 SU4S4ERS
Qz3eaeaAne Qaeceqdq
80r6AC30 0PQ20QQQ
APPMRA201 Q23000002
A3A20009 @NQ2020Q

5-1 System

22227393
aAgceaeatA
80069092
neeaenoe
80Q23948
sPAe2asus
adpeasBC
wvereacd
2P25328E
[dddoTdeI 1)
vegzeena
“rERRAAR
8rpa3gas
RAPAQA9US
3Ppaa9BC
[dd L)
arR6F 160
LQaes42e
neeanCAB
EF163FBE
8ae@a»rABC
nAPareRe
8PAM3FA8
REAPAABS
3@a22AFC
aepareCC
PREARLEE
araacooe
ESESESES
ESESESES
FSESESES
ESESESES
20920090
seeenCiC
RneaBEY
feaagCsC
20007000
r2pr0o0en
L1l
egaBpage
A2p2nea
eezira04d
facageen
acear0en
2en60034
45564952
20003090
aCiSeeal
[Ll 11
80063260
eoednope
n8iopote
[Ldded-] 11 1]
eoeanoee
[ldld 111

21=MAY=1979 14337:16,88

eSee¥Convececosvrnvrerannesestannae
eesesvecsescaHecsonee

.l.'FI.IHI'.;'I'ul'.‘

eeesaeDBORIVER 40

oM

Hesoosnennaas)ess een

eeeXoverenane

L T T
Muesososssseooessceesd saenoaneee
eCase

[(EEEFERENEA L]
*

ceasessansXas e as raesnee

“eessGesv{ocesrvenralone

(AN ENR]
essessesevsecseaarnee
ceesslocessvsersnsvacens (R XER ¥

.?'.lt..‘..ltl.'l.'..'..‘...'.'.

cessesnsnsenseeedaas®®, Fi1,,DXA
cesseovessess DXORIVER 0 ouseaePye

eFcelonee®onceesMrensese sesloge

consveenvssssrass®uiisecsneMeipans

L]
“escesstssertse Soestae
tee

srssecoe

veaeXoonenssloselosesearssMBAse,,
esesesaeeMBDORIVER {00 eebrnnvnas
vee
\.l.

Sesercrsr s rInIsereEantsoeege
SesecssatistecessteceRratre Soe
CessreseT o seers P s e OR RN CERRLTS
evse

eseeneevselonsrcnces
sentrvene o000

'.I'D'lﬂo..'t'bl 'l"l!.ll'l...l

Stasten
'l"lNLD

eassloccencecocans
.NL.II

escerceote

RIVER,seeus

sessescrescnnsseeXscovornenssenee

. . .
XseolaseHoooNE

see
000N e s 0sINERINIIERERIIRERNRDY

Region Memory

8@oe08082
82000820
LELELLEY]
80000860
80000882
CLLLEYY
880008C0
80@20BBED
8e0009¢09
8grep92e
80200942
800002960
8aa08988
80000942
8gaee9Ce
8200A%EQ
8P0GRACE
820008A20
8AP0RALD
80008462
82R0BA80
82@70AAQ
80820ACE
802G AER
82000892
8poReB20
8o00G2840
LEELELTY
8@p@e88e
82020840
8002208CQ
800@B@BEQ
8geeeCae
8ageeC2e
800008C40
8p0p0CeR
80000C89
8p002CAQ
8@0paCCo
8apeaCEe
8p000000
8apoaD20
83000040
8goeaDse
8p@20089
8@@0@0AQ
80009DCe
8p@@aDEe
80@20ER0
8p2eaE2e
8pa0@Eae
8aeaaken
8n@0eESe
8o200EAQ
8pReQECD

SANVWWOO Vvds

SDA COMMANDS

EXIT

The EXIT command performs two functions: it discontinues SDA displays
and exits from the utility. During interactive sessions, if a display
has more than one page and is being shown on a video display terminal
such as a VT100, SDA will issue the following message each time it
reaches the bottom of a page:

Frass RETURN For more.
SINe

If you want to discontinue the current display, type EXIT at the
prompt. (On hard copy terminals, SDA does not prompt at the bottom of
each page.) If you do not type EXIT at the screen overflow prompt and
simply execute another command, SDA will accept the command as if you
had exited from the display.
To stop SDA, type EXIT in response to the SDA prompt.
Format

EXIT

Qualifiers Defaults

None None

Parameters

None

SDA COMMANDS

FORMAT

The FORMAT command displays a formatted list of the contents of a
specific block. It attempts to:

e Characterize a range of locations as a block
® Assign a symbol to each item of data within the block

Most VAX/VMS blocks contain a byte that indicates the block type.
This byte 1is stored at offset 10 (decimal) from the first address of
the block. The FORMAT command examines the byte stored at this offset
as a block type. 1If the byte represents a valid block type, SDA tries
to find its corresponding symbols. If the byte does not represent a
valid block type, SDA issues the message:

invelid block twee in srecified Dlock
Not every block contains a block type byte at offset 10. If this byte
is absent, you must designate a block type at command level by using
the qualifier /TYPE in order to format the block.
The display produced by FORMAT shows, from left to right, the wvirtual
address of each item within the block, its symbolic name, and its
hexadecimal representation.

Format

FORMAT location

Qualifiers Defaults
/TYPE= None
Parameters
location

The starting location of the block you want to format. The
location can be any valid SDA expression.

Qualifiers

/TYPE=block-type

The symbolic prefix that corresponds to the type of Dblock

structure vyou want to format. SDA finds all symbols containing
the specified prefix in the form:

block-typeSfield-type field-name
The field types accepted by SDA are:

longword

word

byte

quadword

counted ASCII string (0 through 31 characters)
constant

aJowsE

SDA COMMANDS

You can define your own block types and use the READ command to
include them in the SDA symbol table. Thus, a valid block type
is one that SDA can find in the symbol table. If SDA cannot find
the symbols associated with the block type you have indicated, it
will issue the message:

No "block-type" sumbols Tound to Tormat this block

Examples

1.

ShAx FORMAT @SCHSOL..CURPCR

80069550 FORSL.SAFL. SOQ02 48
800469554 FCER$L..SQRL. OO0 48
80069558 FOBSW..STZE 0070
BOOLPHETEA FORSR.TYPE o

+
]

3

SDA takes the address pointed to by the obtains

the block type, and formats the block.

global symbol,

$ RUN SYSS$SYSTEMISDA

4

S0AF READ GLORALS.STR

SNAE FORMAT @TOCSGL.IEVLIST

80000848 DOBREL.LITNK 80000948
80000840 DOREL... UCE 80000870
80000850 DOBREW..SIZE 0034
80000852 DNNRSRE.TYFE 0é
80000853 00
go0008%4 DURSL.LO0T 80060408
80000858 noRsL..ACFD 02313146
80000850 NDEST..NAME "HEAY
80000860 Q0000000
80000844 00000000
80000868 00000000
80000860 DORGT.. IRVNAME “TIBRORTVER"

SHAX FORMAT @.

13

SDAE REFEAT

This example illustrates the use of SDA commands to format a list
of blocks. The steps followed in the example are listed below:

e Invoke SDA.

e Use the READ command to read the DDB symbol definitions
from GLOBALS.STB into the SDA symbol table. For a
further discussion of object module files, see the

description of the READ command.

e Use the FORMAT command to format the location pointed to
by the global symbol IOCSGL_DEVLIST. When SDA finishes
formatting this block, it sets the current 1location to
the first byte of the block.

5-12

SDA COMMANDS

o Use the FORMAT command again to format the next block in

the device 1list. Most blocks contain a pointer to the
next block in a linked list. This pointer is usually the
first 1longword in the block. 1In this step, the FORMAT

the contents of the current

of the block).

command causes SDA to format
location (the first longword

e Repeat the FORMAT command to format the next entry in the

list. In this way, vyou can step through the entire
device list, formatting each block.

ShAx READ SYMDEF
SDAY FORMAT GLOACOO/TYPE:=FHD
8010ACO0 FHO$Q.FRIVMSK GO308008
8010ACO4 00000000
801L0ACOH FHOG W WSLLIST 0046
801L000C0A FHOSW. . WEAUTH 0420
BOLOACOL FHOGW.. WE 0081
B010ACOE FHNSW... Q0%
g010a010 FHOGW... Q0CY
H010AC1LE FHITGW... OOnR
BOLOACLA FHIEL. F DOGOO000
BOLOACLE FHIGW... Q420
gOLOACLS FHOsW... QONE
BOLOACLE FHI$L. .. 03000000

FHO%E

FHOGW... Q400

P S

0000

FHOGW... FEDNEG

FHIIGW... 0000

F Y%, OOOAR200

P, 00001978

T ZFFN2000

BO10ACIL
8010ACEE
80104040
80108042
801L0ACA4
B8O1L0ACASH
8010AC4H8
8010AC4AA

80106040
8010ACHO
8010A0G4
8010ACH8

P ..
FHI%SE..
FHO%BE..
FHOSW...FLAGS
FHO$L. . CRUTIM
FHO$W...QUANT
FHOSW...FRCLM
FHOSW..ASTLM
FHOSW. . FHYTNDEX
FHOSW...RAK
FHIMEW...WEL.X
FHOSW. ..FETRASBMAX
FHIL. .. PAGEFLTS
FHOSL.DTOCNT
FHO$L. .. BLOUNT
FHO$L .. CFULTM

°

*

+

00R7ORRI
7E
0z
0006
00022471
FI' ':2‘ ‘IZ' /
0008
0010
000F

0500

Q0064510
Q000631
000090C2S
00000000

This example shows the use of the qualifier /TYPE=. The READ
command is issued to move PHD symbols to SDA's symbol table (see
the description of the READ command for details on command
syntax) . Then, the FORMAT command can 1identify the process
header block that starts at location 8010ACO00.

SDA COMMANDS

HELP

The HELP command 1lists information about the SDA utility, its
operation, and its command format. HELP has three command parameters.
If you do not specify a parameter, HELP gives a brief description of
SDA operations and lists SDA commands.

Format

[command-name]
HELP ([EXPRESSION]

[OPERATION]
Qualifiers Defaults
None None

Parameters
command-name

Specifies the SDA command for which you need information.
EXPRESSION

Prints a description of SDA expressions.

OPERATION

Describes how to operate SDA at your terminal and through the
site-specific start-up procedure.

SDA COMMANDS

READ

The READ command lets you extract global symbols from any object
module file and insert the definitions automatically into SDA's symbol
table.

The object module file can be the output of a compiler or assembler or
the output of the linker qualifier /SYMBOL_ TABLE.

It is important to note that the READ command recognizes global
symbols but ignores 1local symbols; hence, only global symbols are
copied into the SDA symbol table.

The program below shows some sample definitions of global symbols.

.TITLE GLOBALS, GLOBAL SYMBOLS FOR SYSTEM DUMP ANALYZER

Note: the macros in this program must use the
argument GLOBAL. This argument defines them as
globals so that they will be automatically carried
into the object file. Without the GLOBAL argument,
the macros would be local and SDA would not be

able to read them.

Ne Ne Ne we we W “e W

$PHDDEF GLOBAL
S$SDDBDEF GLOBAL
SUCBDEF GLOBAL
$VCBDEF GLOBAL
SACBDEF GLOBAL
SIRPDEF GLOBAL

PROCESS HEADER DEFINITIONS
DEVICE DATA BLOCK

UNIT CONTROL BLOCK

VOLUME CONTROL BLOCK

AST CONTROL BLOCK

I/0 REQUEST PACKET

e N we e we we

(more macros can be inserted here)

~

. END
Use the following DCL command to generate an object module file with
the file type STB that contains the global symbols defined in the
sample program GLOBALS.MAR, as shown above:
$ MACRO GLORALS+SYS$LIBRARY!LIR/L.IBRARY /ORJECT=GL.CBALS .STR

Now you can invoke SDA and use the READ command to copy the symbols
into the SDA symbol table, as shown in Example 1 below.

Format

READ file-spec

Qualifiers Defaults
None None
Parameters

file-spec

The device, directory, and file name of the file whose symbols
you want copied to SDA. The default file specification for this
parameter is SYS$DISK:[default-dir]filename.STB.

SDA COMMANDS

Examples
1. ShAx READ GLORALS

SDA searches for the file specification GLOBALS.STB in the
current device and directory.

SDA COMMANDS

REPEAT

The REPEAT command repeats execution of the last command issued. This
command is primarily used to step through a linked list of data
structures or to examine a sequence of memory locations. On terminal
devices, vyou <can use the wescape key (&)) to perform the same
function as the REPEAT command; E5C provides a faster means of
executing the command.
Format

REPEAT

Qualifiers Defaults

None None
Parameters

None

Examples

1. SDAx FORMAT @SCH$GQ..L.EFWQ

800631EQ FORSL..EQFL 80062080
800631E4 FOR$L..SQRL. 80003000
800631E8 PORSW..STZE 007C
800463 1LEAN FORSR.LTYPE oc
B00631ER FORSR.LFRT 18

+
+

SDAx FORMAT @.

80062080 FORSL...EQAFL BOOSZFRO
80062084 FORSL.SARL, B800A31LEO
80062N88H FOBREW..STZE 0070
B00L2NBA FCRSB.LTYFE o
B006218R PORSR.FRYE L&

*
¢

+

$DA: REFEAT

BOOHRFRO FUREL..H5QFL 0003000
B8O0462F R4 FCRSL..SQRL. SO062N80
BOOH2FBR FCREW.. QO7C
BOOLIFRA FORSE.TYPE o
BOO0LHAFRRE FORSERLFRT 15

+
13

L3

In this example, the FORMAT command is used to examine the 1local
event flag wait queue. The first process control block (PCB) in
the wait queue is formatted, then the rest of the queue can be
examined by using REPEAT (or by pressing &0).

SDA COMMANDS

SET OUTPUT

The SET OUTPUT command writes the output of SDA commands to a file or
device of your choice. If you set output to a file, SDA creates a
table of contents that identifies the displays you selected.

When you set SDA output to a file or device, SDA stops displaying
commands at your terminal. If you finish directing SDA commands to an
output file and wish to return to interactive display, you can issue
another SET OUTPUT command using vyour terminal device as the file
specification. You can also exit from SDA and then recall the
utility.

Format

SET OUTPUT file-spec

Qualifiers Defaults
None None
Parameters

file~spec

The device, directory, and file to which SDA output will be
written. The default file specification is
SYSSDISK: [default-dir]SYSDUMP.LIS.

Examples

1. DA SET OUTFUT BROKEN
Sha SHOW CRASH
50Ax SHOW FROCESS/ALL
HIAF SHOW SUMMARY
SHAX EXIT

SDA stores the displays produced by the commands following SET
OUTPUT on the current device and directory in a file called
BROKEN.LIS,.

SDA COMMANDS

SET PROCESS

The SET PROCESS command moves process context to a specific process.
This command allows you to examine the data structures associated with
any given process.

When you invoke SDA and specify a dump file, process context, that is,
the wvirtual memory you will see upon executing SDA commands, defaults
to the process that was executing when the system failed. If you are

examining the running system, process context defaults to your
process.

When you issue a SET PROCESS command, process context changes to the
process you specify. Many of the SDA commands, for example, EXAMINE,
SHOW PROCESS and SHOW STACK, operate on the current process, that |is,
the context of the process specified in the last SET PROCESS command.

SET PROCESS locates the information needed for the particular process
but produces no output.

You must specify one of the three SET PROCESS parameters or SDA will
generate a syntax error.

Format
name
SET PROCESS {/INDEX=nn
/SYSTEM
Qualifiers Defaults
None None
Parameters
name

A 1 to 31 character alphanumeric string assigned to the process.
The dollar sign ($) and underline () characters can be included
in the string.

/INDEX=nn

The index to the software process control block (PCB). The index

number (nn) is composed of the last four hexadecimal digits of
the process identification (PID).

/SYSTEM

The system process control block. The system PCB and process
header (PHD) are dummy structures that are located in system
space and contain the system working set, global section table,
global page table, and other system-wide data.

SDA COMMANDS

Examples

1. SHAX SET FROCESS/INDEX=43
HNAx EXAMINE/FO

SDA locates the process by means of the index number and displays
the contents of its program region.

2. SDAx SET PROCESS SMITH
SDAx SHOW STACK

Setting the process to SMITH causes the SHOW STACK command to
default to SMITH rather than to the currently executing process.

SDA COMMANDS

SHOW CRASH

The SHOW CRASH command displays fundamental information concerning the
operating system and the currently executing process. The display can
be divided into three sections:

e Operating system and process information
e General and special register contents

® Processor and hardware maintenance register contents

Operating System and Process Information

The first section of SHOW CRASH lists:
e Date and time of the crash
e Name and version number of the operating system
e Name of the currently executing process

e File specification of the image executing in the process
context (left blank if no image is executing)

® Interrupt Priority Level (in decimal) of the processor

General and Special Register Contents

The second section of the SHOW CRASH display lists the contents of the
general purpose and special registers.

e RO through R11 e Argument Pointer (AP)
e Frame Pointer (FP) e Stack Pointer (SP)
e Program Counter (PC) e Processor Status Longword (PSL)

Process and Hardware Maintenance Register Contents

The third section of the SHOW CRASH display 1lists the contents of
three sets of registers. The first set includes registers that store
the vital statistics of the currently executing process, as well as
registers that contain information used by the operating system. The
second set of registers are the stack pointers for the processor
access modes plus the interrupt stack. The third set of registers are
used in hardware maintenance.

The process and system registers are:

POBR Program Region Base Register

POLR Program Region Length Register

P1BR Control Region Base Register

P1LR Control Region Length Register

SBR System Region Base Register

SLR System Region Length Register

PCBB Process Control Block Base Register
SCBB System Control Block Base Register
ASTLVL Asynchronous System Trap Level

SISR Software Interrupt Summary Register

5-21

SDA COMMANDS

The stack pointers are:

Isp Interrupt Stack Pointer

KSP Kernel Mode Stack Pointer

ESP Executive Mode Stack Pointer
SSP Supervisor Mode Stack Pointer
Usp User Mode Stack Pointer

The hardware maintenance registers are:

ICCS Interval Clock Control/Status Register
ICR Interval Count Register
TODR Time-of-Day Register
ACCS Accelerator Control and Status Register
SBIFS SBI Fault/Status Register
SBISC SBI Silo Comparator Register
SBIMT SBI Maintenance Register
SBIER SBI Error Register
SBITA SBI Timeout Address Register
SBIS SBI Silo Register
Format
SHOW CRASH
Qualifig£§ Defaults
None None
Parameters
None
Examples

1. ShAx SHOW CRASH

Figure 5-2 shows the display produced by this command.

SDA COMMANDS

VAX/VMS 2,0 -- System Dump Analysis
System crash information

Time of system crash:

Version of system: VAX/VMS VERSION 1.50

21-MAY-1979 10:57:48.99

21-MAY-1979 14:42:49.46

Reason for BUGCHECK exception: PGFIPLHI, Pagefault with IPL too high

Process currently executing: GALCHER

Current image file name: DB2:[F4V2,TOOL}BLISS32.EXE;43

Current IPL:

7

(decimal)

General registers:

RO
R4
R8
AP
PSL

0019CCAB
8006BACOH
7FFDB998
TFFEEBC4
00070000

Processor registers:

POBR
POLR
P1BR
P1LR
SBR
SLR

Isp
Ksp
ESP
SSP
usp

8010C400
000003EE
7F914400
001FFEC9
001FC000
00001000

owonaoun

8007C200
7FFEEB38
7FFEF000
7FFEF828
7FFDB65C

Rl
R5
R9
FpP

00000000
7FFDFEOO
00019108
TFFEEB7C

PCBB
SCBB
ASTLVL
SISR
ICCs
ICR
TODR

Figure 5-2

R2 = 00008400
RA = 0D0L1FFFBC
R10 = 0000255C
SP = 7FFEEB38
0012C678 ACCs
001D6A00 SBIFS
00000004 SBISC
00180000 SBIMT
800000C1 SBIER
FFFFF88F SBITA
585540BA SBIS

R3
R7
R1
PC

wwonanun

8010Ch0C
00000200
TFFEAC10
80006074

1

00008001
00040000
00000000
00200200
00008002
00075CD8
00000000

System Crash Information

‘SDA COMMANDS

SHOW DEVICE

The SHOW DEVICE command displays a formatted 1list of all data
structures associated with a device. The display for each device is
divided into three sections:

e Device data block lists

e Controller data structures

e Device unit data structures

For a detailed explanation of I/0 data structures displayed by SDA,
consult Appendix A of the VAX/VMS Guide to Writing a Device Driver.

Device Data Block (DDB) List

The DDB list shows information common to all devices associated with a
single controller. It shows:

e Address of the controller status register (CSR)
e Name of the controller

® Name of the ancillary control process (ACP)

e Name of the I/O driver

® Address of the driver prologue table (DPT)

e Length of the I/0 driver and DPT

Controller Data Structures

SDA displays the contents of the following four data structures
associated with each controller:

e Device Data Block (DDB) -- points to the driver dispatch
table, the channel request block, and the first unit control
block connected to the controller

e Channel Request Block (CRB) -- stores information used to
arbitrate requests between devices attached to a single
controller

e Interrupt Dispatch Block (IDB) -- contains controller status

information used to dispatch interrupts to the proper driver

e Driver Dispatch Table (DDT) -- points to routines that process
the I/0 request

Device Unit Data Structures

The final section of the SHOW DEVICE display itemizes the contents of
the Unit Control Block (UCB) for each device. 1If the device is
handling file~structured requests, the display 1lists the Volume
Control Block (VCB) and the ACP queue as well,.

5-24

SDA COMMANDS

Unit Control Block (UCB) - SDA organizes the data stored in the UCB
into a 1list of items. Heading the list are the address of next UCB,
the status of the device, and the longword whose bits express various
characteristics of the device.

Following the heading, SDA lists pointers to other block types:

I/0 Request Packet (IRP) address
Channel Request Block (CRB) address
Volume Control Block (VCB) address

The next six items on the list concern the fork block for the device
driver:

Fork Queue Forward Link (FQFL)

Fork Queue Backward Link (FQBL)
Fork Interrupt Priority Level (IPL)
Fork PC, R3, and R4

The UCB contains device status information:

Device class

Device type

Device buffer size (DEVBUFSIZ)

Device dependent data (DEVDEPEND) longword
Device status (DEVSTS) longword

Device IPL

Reference count

Operations count

The final items detailed concern mailboxes and information obtained
from the I/0 request packet:

Associated Mail Box (AMB) address

System Virtual Page Number (SVPN)

System Virtual Address of Page Table Entry (SVAPTE)
Byte Offset (BOFF)

Byte Count (BCNT)

Error Retry Count (ERTCNT)

Error Retry Maximum (ERTMAX)

Error Count (ERRCNT)

Owner UIC

Process Identification (PID)

SDA also formats all the I/O request packets queued to the UCB. The
packet currently being processed 1is flagged by an asterisk (*).
Information contained in each I/0 request packet 1is 1listed 1in the
following order across the page:

Channel number (CHAN)

Function value (FUNC)

Window Control Block (WCB)
Event flag number (EFN)
Asynchronous system trap (AST)
I/0 status block (IOSB)

Status flags (STATUS)

If the request queue is empty, SDA issues the message:

XXX I/0 recuest cueue is emstuy XXX

SDA COMMANDS

Volume Control Block and ACP Queue - If a volume was mounted on the
device SDA reads and displays the contents of the volume control block
(VCB) and the ancillary control process queue block (AQB). The VCB
identifies the volume and contains counts and quotas concerning files

on that volume.
The ACP queue block contains information about the ancillary control
process (ACP) associated with the volume. SDA reads the AQB and lists
its contents in readable format.
If the request queue is empty, SDA prints the message:

X%X ACF recuest cueue is emrty XXX

Format

SHOW DEVICE [device-name]

Qualifie{§ Defaults
None None
Parameters

device-name

The name of a device whose data structures you want to display.
The device name takes the form:

devcu
where
dev = 2-alphabetic character device code
c = l-alphabetic character controller designator
u = 1- or 2-digit device unit number

You can display information about several devices by specifying a
device code or a device code and controller. For example, SHOW
DEVICE D 1lists all devices with device code Dn, where n
corresponds to the second letter of the device code. SHOW DEVICE
DBA lists all devices with device code DB and controller A. To
display a single unit, specify the entire device name: SHOW
DEVICE DBAl displays the device associated with device name DBAl.
If you do not specify a device name, SDA 1lists the data
structures of every device on the system.

Examples

1. ShAx SHOW DEVICE D
Figure 5-3 is a sample Device Data Block list of all the devices
attached to the system whose device codes start with D. This is

an example of the first section of the display produced by SHOW
DEVICE.

SDA COMMANDS

VAX/VMS 2.0 -- System Dump Analysis
I/0 data structures

DDB list

Address Controller ACP Driver
80000848 DRA F11ACP DRDRIVER
8009A4C0O DMA F11ACP DMDRIVER
8009AD0O DYA F11ACP DYDRIVER
8009C560 DBA F11ACP DBDRIVER
8009C620 DBB F11ACP DBDRIVER
Figure 5-3 Device Data
2. Soax SHOW DEVICE DRA
Figure 5-4 shows information on
with DB device controller A.
section of the display produced
VAX/VMS 2.0 -- System Dump Analysis

I/0 data structures

Control

ler: DBA

Device

Channel

Interrupt Dispatch Block

Driver

Data Block (DDB):
DDT address

First UCB address
CRB address

Request Block (CRB):

UCB reference count
Channel allocation mask
Secondary CRB address
IDB address

Controller init, routine
Unit init. routine

Unit start routine

Unit disconnect routine

(IDB) :
CSR address

Owner UCB address
Number of units

ADP address

Dispatch Table (DDT):
Start I/0 routine

Unsol. interrupt routine
Function Decision table
Cancel I/0 routine
Register dump routine
Diagnostic buffer size
Error buffer size

Figure 5-4

800A0408
8000087C
8005EB20

11

00
00000000
80075E40
80001271
800609DE
00000000
00000000

80017800
00000000

8
8005EBAO

00000102
00000637
0000007A
8000A869
00000592

0080

00AE

DPT

80080410
800821FE0
8008 2ECO
80087640
80087540

DPT size

0814
08F0
0AF0
06F0
06F0

18-DEC-1979 11:38:52.74

Block List for Dn Devices

the

data

structures

associated

This is an example of the second

by SHOW DEVICE.

16-AUG-1979 16:34:54.81

Controller Data Structures for DB Devices

SDA COMMANDS

3. S0A> SHOW DEVICE DEAL

Figure 5-5 shows an example of the last section
produced by SHOW DEVICE.

for the device DBAl.

VAX/VMS 1.0 -- System Dump Analysis

I/0 data structures

DBAl

The display lists the

UCB address: 80074B30
Device status: 1810 online,valid,unload
Characteristics: 1C4D4008
IRP address 80089350 Device class 01 SVPN
CRB address 8006B520 Device type 05 SVAPTE
VCB address 80076140 DEVBUFSIZ 512 BOFF
FQFL 80003A48 DEVDEPEND 032F1316 BCNT
FOBL 80003A48 DEVSTS 0000 ERTCNT
Fork IPL 8 Device IPL 21 ERTMAX
Fork PC 80074831 Reference count 0 ERRCNT
Fork R3 80019C80 Operation count 83765 Owner UIC
Fork R4 80019800 AMB address 00000000 PID
% 1/0 request queue is empty **#*
Volume: VMSWORK2
Status: 80 system
AQB address 800AE4AQ Cluster size 3
Rel. Volume # 2 Reserved files 9
Transactions 3 Maximum files 25000
Mount count 1 Free blocks 19791
Window size 7 Record size 0
Default extension 5 RVT address 8008C820
ACP for volume: DRASACP
PID 00010042
ACP type 3
ACP class 0
Status 04 defsys
Mount count 7
AQB linkage 00000000

*** ACP request queue is empty *#**

Figure 5-5

Device Unit Data

of the
UcB, VCB,

display
and AQB

15-AUG~1979 17:10:06.68

00000217
8009835C
0000
0200

8

8

1

[1, 1
00000000

Structures for Device DBAl

SDA COMMANDS

SHOW PAGE_TABLE

The SHOW PAGE_TABLE command displays a formatted list of system page
table entries which are used to map virtual pages to physical pages.

The display can be divided into left and right sections. The 1left
section contains virtual page information. The right section contains
physical page information.

Virtual Page Information

The left section of the display describes virtual pages wusing
information contained in the system page table. Each line of this
display lists characteristics of a particular virtual page as well as
locations needed for address translation. The values listed are:

e ADDRESS -- system virtual address that marks the base of a
virtual page
® SVAPTE -- system virtual address of the page table entry that
maps this virtual page
e PTE -- page table entry; 1longword that describes a system
virtual page
e Type —-- type of virtual page; there are seven types:
VALID Valid page (in main memory)
TRANS Transitional page (between main
memory and page lists)
DZERO Demand-allocate~zero-fill page
PGFIL Paging file page
STX Section table index page
GPTX Global page table index page
IOPAGE I/0 address space page
® PROT -- protection; a code derived from bits in the PTE that

designate the type of access (read and/or write) granted to
processor access modes (Kernel, Executive, Supervisor, or
User).

e Bits -- letter(s) representing the wvalue of a bit or a
combination of bits in the PTE; indicates certain aspects of
a page. The bit codes are:

M Modify bit
L Locked into working set
K,E,S or U Access mode of owner of page

(only one letter will appear)

SDA COMMANDS

Physical Page Information

If the virtual page has been mapped to a physical page, the right
section of the display includes information from the Page Frame Number
(PFN) data base. Otherwise, the section is left blank. SDA organizes
the 18 bytes of PFN data into nine categories:

e PAGTYP -- type of physical page; there are six page types:
PROCESS Process page
SYSTEM System page
GLOBAL Global section page
PPGTBL Proccess page table page
GPGTBL Global page table page
GBLWRT Global writeable section page
e LOC -- location of page in system; there are eight locations:
ACTIVE In working set

MDFYLST In modified page list
FREELST In free page list
BADLST In bad page list
RELPEND Release pending
RDERROR Read error

PAGEOUT Paging out

PAGEIN Paging in
® STATE -- byte that describes the state of the physical page.
e TYPE -- byte that describes the type of virtual page (see
PAGTYP) .
e REFCOUNT -- reference count; word indicating the presence of
a reference to this PFN. If the wvalue of REFCOUNT is
non~-zero, the page is used in at least one working set. If

the value is zero, the page is not used in any working set.

e BAK -- backing store address; location on a disk device to
which pages can be written

® GSVAPTE -- virtual address associated with this page frame.
The two SVAPTEs indicate a valid link between physical and
virtual address space.

e FLINK -- forward link within PFN data base; also acts as the
share count of a global section.

e BLINK -- backward link within PFN data base; also acts as an
index to the working set list.

SDA indicates pages that cannot be accessed with the message:
s 7 NULL FPAGES

where n represents the number of inaccessible pages.

SDA COMMANDS

Format

SHOW PAGE_TABLE

Qualifiers Defaults

/GLOBAL

/SYSTEM

/ALL /ALL
Parameters
None
Qualifiers
/GLOBAL

Lists the global page table.
/SYSTEM

Lists the system page table.
/ALL

Lists both the global and system page tables. This is the

default for the command.
Examples

1. ghax SHOW FAGE.TARLE/SYSTEM

Figure 5-6 shows one page of the display produced by this
command.

Ze€-§

ADDRESS

8000D000
8000D200
8000D400
8000D600
8000D800
8000DA0O
8000DCOO
8000DEOO
8000E000
8000E200
8000E400
8000E600
8000E800
8000EA00
8000ECO00
8000EE00
8000F000
8000F200
8000F400
8000F600
8000F800
8000FA0Q0
8000FC00
8000FEOQ0
80010000
80010200
80010400
80010600
80010800
80010A00
80010C00
80010E0Q0

80014600
80014800
80014A00
80014cCo00
80014E00
80015000
80015200
80015400
80015600
80015800
80015A00
80015C00
80015E00
80016000
80016200
80016400
80016600

27

SVAPTE PTE

801F91A0 78000B7A
801F91A4 F80004E9
801F91A8 78000134
801F91AC F80009ES5S
801F91B0 F8000DB2
801F91B4 F80001DD
801F91B8 F80001E9
801F91BC F8000257
801F91C0O FB800098E
801F91C4 F80G0O0A5SB
801F91C8 F800049A
801F91CC F8000844
801F91D0 F8000075
801F91D4 78000088
801F91D8 F800020A
801F91DC F8000270
801F91E0 F8000A4C
801F91E4 78000096
801F91E8 F8000A7B
801F91EC 780001E5
801F91F0 F800031A
801F91F4 F800029A
801F91F8 7800098C
801F91FC 7C40FFF8
801F9200 F80002DC
801F9204 78000159
801F9208 7CAOFFF8
801F920C 7C40FFF8
801F9210 7C40FFF8
801F9214 7C40FFF8
801F9218 7C40FFF8
801F921C F80009F7

NULL PAGES

801F928C 94100010
801F9290 94100030
801F9294 90100031
801F9298 90100032
801F929C 90100033
801F92A0 94100034
801F92A4 94100035
801F92A8 90100036
801F92AC 90100037
801F92B0 941009F0
801F92B4 901009F1
801F92B8 901009F2
801F92BC 901009F3
801F92C0 941009F4
801F92C4 901009F5
801F92C8 901009F6
801F92CC 901009F7

TYPE

TRANS
VALID
TRANS
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
TRANS
VALID
VALID
VALID
TRANS
VALID
TRANS
VALID
VALID
TRANS
STX

VALID
TRANS
STX

STX

STX

STX

STX

VALID

IOPAG
IOPAG
IOPAG
IOPAG
IOPAG
IOPAG
IOPAG
IOPAG
IOPAG
IOPAG
IOPAG
IOPAG
IOPAG
IOPAG
IOPAG
IOPAG
IOPAG

PROT BITS PAGTYP
UR K SYSTEM
UR K SYSTEM
UR K SYSTEM
UR K SYSTEM
UR K SYSTEM
UR K SYSTEM
UR K SYSTEM
UR K SYSTEM
UR K SYSTEM
UR K SYSTEM
UR K SYSTEM
UR K SYSTEM
UR K SYSTEM
UR K SYSTEM
UR K SYSTEM
UR K SYSTEM
UR K SYSTEM
UR K SYSTEM
UR K SYSTEM
UR K SYSTEM
UR K SYSTEM
UR K SYSTEM
UR K SYSTEM
UR K

UR K SYSTEM
UR K SYSTEM
UR K

UR K

UR K

UR K

UR K

UR K SYSTEM
KW M K

Kw M K

KW K

KW K

KW K

KW M K

KW M K

KW K

KW K

KW M K

KW K

KW K

KW K

KW M K

KW K

KW K

KW K
Figure 5-6

LOC STATE TYPE REFCNT

FREELST
ACTIVE
FREELST
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
FREELST
ACTIVE
ACTIVE
ACTIVE
FREELST
ACTIVE
FREELST
ACTIVE
ACTIVE
FREELST

ACTIVE
FREELST

ACTIVE

co
07
0o
07
07
07
07
07
07
07
07
07
07
00
07
07
07
00
07
00
07
07
00

07
00

01
01
01
01
01
01
01
01
01
01
01l
01
01
01
01
01
01
01
01
0l
01
01
01

01
01

01

System Page Table

OFRPHFOFROHHMHMOHMHMEMERPHERRO KO

(=N

BAK

0040FFF8
0040FFF8
0040FFF8
0040FFF8
0040FFF8
0040FFF8
0040FFF8
0040FFF8
0040FFF8
0040FFF8
0040FFF8
0040FFF8
0040FFF8
0040FFF8
0040FFF8
0040FFF8
0040FFF8
0040FFF8
0040FFF8
0040FFF8
0040FFF8
0040FFF8
O040FFF8

0040FFF8
0040FFF8

O040FFF8

SVAPTE

801F91A0
801F91A4
801F91A8
801F91AC
801F91B0
801F91B4
801F91B8
801F91BC
801F91CO
801F91C4
801F91C8
801F91CC
801F91D0
801F91D4
801F91D8
801F91DC
801F91E0
801F91E4
801F91ES8
801F91EC
801F91F0
801F91F4
801F91F8

801F9200
801F9204

801F921C

FLINK

0lES
0000
053E
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0DB9
0000
0000
0000
0909
0000
0000
0000
0000
02BA

0000
098C

0000

BLINK

0742
0046
0654
0062
0058
0057
00A6
007C
007D
00A3
004E
0094
0068
0394
005C
005B
006D
0585
0072
0B7A
006C
00A9
0159

0087
094D

0083

SANVYWWOD Vvds

SDA COMMANDS

SHOW PFN_DATA

The SHOW PFN DATA command displays a formatted 1list of wvalues
contained 1in the page lists and in the PFN data base that can be used
to translate physical pages to virtual pages.

There are four data structures concerned with the management of
physical memory:

e Free Page List -- pages available for use

e Modified Page List -- pages to be written to disk
e Bad Page List -- pages containing data errors

e PFN Data Base -- all pages in physical memory

To display a particular physical page, specify its page frame number
(PFN) . To list the pages of one or more data structures, use the
qualifiers. If you do not specify a parameter or a qualifier, SDA
will dump all the page lists and the entire PFN data base.

The format used to display physical page data is the same for each
data structure,. Figure ©5-7 shows a page of the display produced by
the command SHOW PFN DATA/SYSTEM. SDA organizes the information for
each page under the following headings:

e PFN -- page frame number; the absolute page number within
physical memory

e PTE ADDRESS -- Page Table Entry address; the virtual address
of the Page Table Entry (see the description of the SHOW
PAGE_TABLE command for more details).

e BAK -- backing store address; location on a disk device to
which pages can be written

® REFCNT -- reference count; a word whose value signals whether
a page is part of a working set

e FLINK -- forward link; forward link within the PFN data base
(also used as share count of a global section)

e BLINK -- backward link; backward link within the PFN data
base (also used as an index to the working set list)

e TYPE -- type of page that was mapped into physical memory (see
the description of the SHOW PAGE_TABLE command for a list of
the different types)

e STATE -- current state of the page 1in the system (see the
description of the GSHOW PAGE_TABLE command for a list of
states)

SDA COMMANDS

Format
SHOW PFN_DATA [number]
Qualifiers Defaults
/FREE
/MODIFIED
/BAD
/SYSTEM
/ALL /ALL
Parameters
number
The number of the physical page you want to display.
Qualifiers
/FREE
Displays the free page list.
/MODIFIED

Displays the modified page list

/BAD
Displays the bad page list.

/SYSTEM
Displays the PFN data base in order of PFN starting at page frame
Zero.

/ALL
Displays all of the above memory management data structures.
This is the default for the command.

Examples

1. S0Ax GHOW FFN.DATA/SYSTEM

Figure 5-7 shows one page of the display produced by this
command.

SDA COMMANDS

VAX/VMS 2,0 -- System Dump Analysis 21-MAY-1979 15:00:04.82
PFN data base

PFN PTE ADDRESS BAK REFCNT FLINK BLINK TYPE STATE
0000 00000000 00000000 0 0895 OAAF 00 PROCESS 00 FREELST
0001 800A3Cl10 03000000 1 0000 0053 00 PROCESS 87 ACTIVE
0002 80174EA0 03000000 1 0000 007C 00 PROCESS 87 ACTIVE
0003 8010CEEQD 033FFFFF 1 0000 01A2 00 PROCESS 87 ACTIVE
0004 801F7F70 03000000 1 0000 00C9 00 PROCESS 07 ACTIVE
0005 8010CEB4 033FFFFF 1 0000 018D 00 PROCESS 87 ACTIVE
0006 80174CAC 03000000 1 0000 OOCE 00 PROCESS 07 ACTIVE
0007 8016D200 0300E351 0 002D 0498 00 PROCESS 00 FREELST
0008 8010CE2C 0300E2DE 0 0D0& 095F 00 PROCESS 81 MDFYLST
0009 801C0C58 03000000 1 0000 00DB 00 PROCESS 07 ACTIVE
000A 801FB890 03000000 1 0000 0054 04 PPGTBL 07 ACTIVE
000B 801FC6BC 03000000 1 0000 004B 04 PPGTBL 87 ACTIVE
000C 00000000 00000000 0 0566 08Bl 00 PROCESS 00 FREELST
000D 801FD3EO 0040FFB8 1 0002 0000 02 GLOBAL 07 ACTIVE
000E 801FD474 0040FFAQ 0 03FB OD11 02 GLOBAL 00 FREELST
000F 8010CF1C 033FFFFF 1 0000 0084 00 PROCESS 87 ACTIVE
0010 80101040 033FFFFF 1 0000 008C 00 PROCESS 87 ACTIVE
0011 801FD524 0040FF90 1 0002 0000 02 GLOBAL 07 ACTIVE
0012 8017C9D0 03000000 1 0000 0047 00 PROCESS 07 ACTIVE
0013 80113F88 0300E2C6 1 0000 014B 00 PROCESS 07 ACTIVE
0014 8011Fr480 03000000 1 0000 00B8 00 PROCESS 07 ACTIVE
0015 801F0464 03000000 1 0000 006B 00 PROCESS 07 ACTIVE
0016 8010C610 0040FFE8 0 00D1 0195 00 PROCESS 00 FREELST
0017 8015D3BC 03000000 1 0000 OOFE 00 PROCESS 07 ACTIVE
0018 800B50D8 03000000 1 0000 005D 00 PROCESS 07 ACTIVE
0019 8016D338 03000000 1 0000 0143 00 PROCESS 07 ACTIVE
001A 801FB774 03000000 1 0000 004E 04 PPGTBL 87 ACTIVE
001B 8016D254 033FFFFF 0 018E 0634 00 PROCESS 81 MDFYLST
00lcC 801D20D8 033FFFFF 1 0000 00B4 00 PROCESS 87 ACTIVE
001D 801FD5F0 0040FF90 1 0002 0000 02 GLOBAL 07 ACTIVE
001E 8010A8DS8 03005305 1 0000 0175 00 PROCESS 87 ACTIVE
001F 801FD6DC 0040FF70 1 0001 0000 02 GLOBAL 07 ACTIVE
0020 8011D848 033FFFFF 1 0000 00D2 00 PROCESS 87 ACTIVE
0021 8010CFEO 033FFFFF 1 0000 00DC 00 PROCESS 87 ACTIVE
0022 801B59D4 03000000 1 0000 0046 00 PROCESS 07 ACTIVE
0023 00000000 00000000 0 020C 025B 00 PROCESS 00 FREELST
0024 80174CA4 03000000 1 0000 00CC 00 PROCESS 07 ACTIVE
0025 00000000 00000000 0 0A2E 08CB 00 PROCESS 00 FREELST
0026 8010CE34 0300E2E0 0 0590 0423 00 PROCESS 81 MDFYLST
0027 801FCB6C 03000000 1 0000 004F 04 PPGTBL 87 ACTIVE
0028 8010CA28 0040FFE8 1 0000 00C5 00 PROCESS 07 ACTIVE
0029 8010CC98 033FFFFF 0 0A25 0CC5 00 PROCESS 81 MDFYLST
002A 801601F4 03008FF2 1 0000 0058 00 PROCESS 87 ACTIVE
002B 8010C604 0040FFE8 0 07AC ODlE 00 PROCESS 00 FREELST
002C 8016D348 03000000 1 0000 0135 00 PROCESS 07 ACTIVE
002D 8016D204 0300E352 0 04D1 0007 00 PROCESS 00 FREELST
002E 801A2838 0300861C 1 0000 00D7 00 PROCESS 87 ACTIVE
002F 00000000 00000000 0 0840 0BO3 00 PROCESS 00 FREELST
0030 801FD2ES8 0040FFDO 1 0003 0000 02 GLOBAL 07 ACTIVE
0031 00000000 00000000 0 093A 08CD 00 PROCESS 00 FREELST
0032 8010C7C4 0040FFES8 1 0000 017A 00 PROCESS 07 ACTIVE

Figure 5-7 PFN Data Base

SDA COMMANDS

SHOW POOL

The SHOW POOL command displays the contents of the I/0 Request Packet
(IRP) pool, the nonpaged dynamic storage pool, and the paged dynamic
storage pool. This data is organized into blocks; SDA attempts to
identify each block by 1its block type. SHOW POOL displays only
allocated blocks, that is, blocks that are (or were) currently in use
by the systenm.

The information contained in each of the three pools is shown in the
same format. From left to right, the contents of the display are:

e Block type -- the type of information contained in the block.
SDA tries to define the block type. 1If it is unable to do so,
the message UNKNOWN is printed instead of the name of the
block type.

e Starting address -- the virtual address that marks the start
of the block.

e Block size -- the number (decimal) of bytes of nonpaged memory
allocated to the block. The block size is fixed at 80 in the
IRP pool and is variable in the paged and nonpaged pools.

e Contents (hexadecimal) -- the contents of the block in
longwords. The contents are arranged four columns across.

e Contents (ASCII) -- the contents of the block in ASCII format.
Format
SHOW POOL

Qualifiers Defaults

/IRP

/NONPAGED

/PAGED

/SUMMARY

/ALL /ALL

Parameters
None

Qualifiers

/IRP
Prints the I/0 request packet pool. Formats all blocks currently
allocated (in use) within this pool.

/NONPAGED

Prints the nonpaged dynamic storage pool currently in use by the
systenmn.

SDA COMMANDS

/PAGED

Prints the paged dynamic storage pool currently in use by the
system.

/SUMMARY

Prints a summary of the pools selected by the above qualifiers.
/SUMMARY displays the different block types present and lists the
total number and bytes used of each in decimal. This qualifier
also prints the total number of bytes used in each pool.

/ALL

Prints IRP, nonpaged, and paged dynamic storage pools. This 1is
the default for the command.

Examples
1. Shax SHOW FOOL/FPAGE

Figure 5-8 shows a page of the display produced by this command.

SDA COMMANDS

VAX/VMS 2.0 -~ System Dump Analysis 21-MAY-1979 16:21:47.68
Paged dynamic storage pool

GSD 80056 FA0 48
00010004 00150028 B80056FD0 80056B10 .KeeuOuef(ooeonan
5F424D53 5452500A 80056870 FFC8A000ph...PRTSMB
00000000 00000000 000006000 00313030 00l.cceeecsccons
GSD 80056FDO 48
00010004 00150028 80057000 B80056FAD0 .0ceePeef{oceneee
59414C50 5349440B 80056970 FFCOA000pi...DISPLAY
00000000 00000000 00000000 3130305F 00l...... cieans
GSD 80057000 48 -
00010004 00150028 80057320 80056FD0 .0ue Seuwleeeeasn
59414C50 5349440B 80056970 FFB8AOOOpi...DISPLAY
00000000 00000000 00000000 3230305F 002...¢eceeaese
KFH 80057030 240 -
0028007C 002600E4 80056970 80057114 .qQ..pi....&.l.(.
00000101 31303230 00000000 00440038 8.D.....0201....
02000000 00000000 00000000 00000000 ..veeescnaocnnoea
00000000 000022B5 0000373E 00000000 +vee>70eeernnns
00000002 00000000 0000001D 00000000 .cveeeeeescences
00000000 00000000 59414C50 53494407 .DISPLAY........
00000000 00000000 00000000 00313002 .0lueveeeecoosess
00003032 2E313005 008644D4 064A0E20 .J..D...01.20..
00000001 00040010 00000000 00000000 .civueeevancsnses
00000005 00020010 00000002 00000000 .ueeeceeooscenans
00800007 0005000C 00000006 0000000A cecernene
00000000 0000000C 000AG010 0000000C ...ceeeecsavanns
0000000A 00000016 000B0OO10 00000008 .cveeeeveoecnnns
FD0O0000OC 003FFFEC 0014000C 00000012ecceeePennss
00000000 00000000 00000000 FFFFO000 .eeeeeeoeacsanes
KFI 80057120 64
00340000 04180040 80057160 800569F0 .i.. q..@.....4.
800630C0 00000233 00020387 00000001 3....0..
00000001 00000000 00108001 B00574FC cteeeeseeoroanns
00000000 00000057 4F485304 80057120 g...SHOW.......
KFI 80057160 64
00340000 04180040 800571A0 80057120 Q...Q..@.....4.
800630F0 000004DD 00008001 00000001veveveessOan
00000000 00000000 00000000 00000000 ceveeeseoeosonss
00000000 00000000 50495003 00000000PIP...uuuss
KFI 800571A0 64
00340000 04180040 800571E0 80057160 ‘qg...Q..@.....4.
80063120 000000A0 00018205 00000001 ...ceweeeaes lo.
00000001 00000000 00000000 00000000 +svveescvessnanss
00000000 00000000 534F5303 800571A0 .Q...S0S.ceuscas
KFI 800571E0 64
00340000 04180040 80057220 800571A0 .q.. r..@.....4.
80062F50 000002F5 00010307 00000001cee....P/..
00000001 00000000 00000000 800578DC .Xeveeeeooosaees
00000000 00000000 58535203 800571E0 .g...RSXeveeeosn
KFI 80057220 64
00340000 04180040 80057260 800571E0 .g9..'r..@.....4.
80062F80 000004E1l 00010307 00000001 ..ceeeevcecee/on
00000001 00000000 00000000 80057A0C .Zieeeoecooancsns
0000534E 4152544B 43414209 80057220 r...BACKTRANS..
KFI 80057260 64
00340000 04180040 800572A0 80057220 r...r..P..... 4,

Figure 5-8 Paged Dynamic Storage Pool

SDA COMMANDS

SHOW PROCESS

The SHOW PROCESS command displays the software and hardware context of
any process in the balance set.

Format
[name]
SHOW PROCESS{[/INDEX=nn]
[/SYSTEM]
Qualifiers Defaults
/PCB /PCB
/PHD
/REGISTERS

/WORKING_SET
/PROCESS”_SECTION_TABLE
/PAGE_TABLES h
/ALL

Parameters
name

A 1- to 15-character alphanumeric string assigned to the process.
The name can include the symbols underline () and dollar sign
($).

/INDEX=nn

The index to the software PCB; nn consists of the 1last four
hexadecimal digits of the Process Identification (PID).

/SYSTEM

The system process control block. The system PCB and process
header (PHD) are dummy structures that are located in systenm
space and contain the system working set, global section table,
global page table, and other system-wide data. When you specify
this parameter, SDA displays the system PCB rather than a given
process.

If no parameter 1is specified, the command displays the current
process. See the description of the SET PROCESS command for the
definition of the current process.
Qualifiers
/PCB

Produces a formatted list of the data contained in the software

process control block (PCB). The software PCB is the central
control mechanism for process swapping and scheduling.

SDA COMMANDS

The display produced by the /PCB qualifier lists:

e Software context for the process

e Condition handling information

® Interprocess communication data

Counts and quotas
/PCB is the default display for the command.

/PHD

Lists information included in the process header. The process
header <contains a process's vital statistics and is swapped into
memory when a process becomes part of the balance set. Each item
listed by the /PHD qualifier gives a quantity, count, or limit
for the process concerning:

® Process memory

e Pager

e Scheduler

e Asynchronous system traps

e I/0 activity

e CPU activity

/REGISTERS

Lists the process's hardware context. When a process executes,
its hardware context is saved in the processor registers (see the
description of the SHOW CRASH command). If the process is not
executing, 1its hardware context is stored in the hardware PCB,
which is part of the process header. The /REGISTERS qualifier
organizes the saved process registers into:

e General-purpose registers
e Stack pointers

e Special-purpose registers
e Base and length registers

/WORKING_SET

Displays the working set list for the process. The working set
list is a table for all virtual pages residing in physical memory
that the process can access without a page fault. The values
exhibited by this command are:

e INDEX -- index used in PFN data base to access the entry

e ADDRESS -- address of a virtual page in the ©process
address space :

e STATUS -- a 3-part section that lists the location of the
page in physical memory, the type of page (see the
description of the SHOW PAGE TABLE command), and whether
the page is locked into the working set

5-40

SDA COMMANDS
When SDA locates an unused working set entry, it issues the
message:
--—~ n empty entries

The value of n is the number (in decimal) of unused entries that
SDA has found.

/PROCESS_SECTION_TABLE

Lists data within the process section table. The process section
table contains information needed to locate a page in a process
section. SDA notes the boundary of the Process Section Table in
the "Process Section Table Information" section of the listing
and then displays the actual process section table 1in readable
format. The parts of the process section table are:

e INDEX -- the word that locates the corresponding process
section table entry

® ADDRESS -- the virtual address in the program region that
marks the location of a process section table page

e PAGES -- the length of a process section in pages

e WINDOW -- the mapping window that translates virtual

block numbers to logical block numbers

e VBN -- virtual block number; the number of a block on a
mass storage device (the block number is relative to a
file rather than to a device)

e CLUSTER -- the cluster factor used when faulting pages in
the corresponding process section

e CHANNEL -- the channel number <connecting a process
section to a device unit

e REFCNT -- a number that indicates whether the page |is
part of a working set

e FLINK -- the forward link word in the PST list

e BLINK -- the backward link word in the PST list

e FLAGS -- the flags that describe the process section

during process execution

/PAGE_TABLES

/ALL

Displays the program and control region page tables.
/PAGE_TABLES produces a 1list in the same format as the SHOW
PAGE_TABLE command.

Displays the information produced by the /PCB, /PHD, /REGISTERS,
/WORKING_SET, /PROCESS_SECTION_TABLE, and /PAGE_TABLES
qualifiers.

Examples

1. Shax SHOW FROCESS/FCR

SDA COMMANDS

The top portion of Figure 5-9 shows the display produced by this

command.

2. SDAX SHOW FROCESS/FHD

The middle portion of Figure 5-9 shows the
this command.

3. S0Ax SHOW FPROCESS/REGISTERS

The bottom portion of Figure 5-9 shows the
this command.

VAX/VMS 2.0 -- System Dump Analysis
Process 2B dump: ELDRIDGE

Process status: 00040001

PCB address

Master PID

PID

PHD address

State

Current priority
Base priority

UIC

Mutex count
Waiting EF cluster
Starting wait time
Event flag wait ma
Local EF cluster 0
Local EF cluster 1

sk

[

Global cluster 2 pointer 00000000
Global cluster 3 pointer 00000000

Process header

First free P0 addr
Free PTEs between
First free Pl addr
Free page file pag
Page fault cluster
Page table cluster
Flags

Direct I/0 count
Buffered I/0 count
Limit on CPU time
Maximum page file
Total page faults
File limit

Timer queue limit
Paging file index

Saved process regi

RO = 08000000
R4 = 8008BD20
R8 = 7FFD5A58
AP = 7FFD590C
Ksp = 7FFEE400
POBR = 80181C00

ess
PO/P1
ess
es
size
size

count

sters

R1
R5
R9
FP
ESP
POLR

display produced by

display produced by

3-JAN-1980 16:54:45.57
RES,PHDRES
8008BD20 JIB address 8009DB80
00040028 Creator PID 00000000
0004002B Subprocess count 0
80180A00 Swapfile disk address 00000000
LEF Termination mailbox 0000
9 AST's enabled KESU
4 AST's active NONE
011,013] AST's remaining 14
0 Buffered I/0 count/limit 5/6
0 Direct I/0 count/limit 6/6
00000000 BUFIO byte count/limit 12056/12336
F7FFFFFF # open files allowed left 10
4000031B Timer entries allowed left 10
80000041 Active page table count 0
Process WS page count 235
Global WS page count 14
0002C800 Accumulated CPU time 00001446
7478 CPU since last quantum 0031
TFFFD3200 Subprocess quota 8
25252 AST limit 14
127 Process header index 0018
2 Backup address vector 03A5
0002 WSL index save area 0380
727 PTs having locked WSLs 2
4958 PTs having valid WSLs [
00000000 Active page tables 7
25600 Maximum active PTs 7
7154 Guaranteed fluid WS pages 20
16 Extra dynamic WS entries 360
10 Locked WSLE counts array OFB8
03000000 Valid WSLE counts array OFF8
00000000 R2 = 80001ADO R3 = 8008BD70
00000000 R6 = 000008DC R7 = 00000003
7FFDC120 R10 = 7FFDC008 R11 = 7FFDBA8C
7FFD5914 PC = 80000328 PSL = 03C00000
TFFEF000 SSp = 7FFEF878 Usp = 7FFD590C
00000164 P1BR = 7F989C00 P1LR = 001FFE9A
Figure 5-9 Process Information

SDA COMMANDS

4. S0AF SHOW FROCESS/WORKING..SET
Figure 5-10 shows the display produced by this command. The size
of the working set and its boundaries are listed at the head of
the display. The actual working set list follows this
information.

VAX/VMS 2.0 -- System Dump Analysis 21-MAY-1979 15:19:08.57

Process 34 dump: GROVE

Working set information

First WSL entry 0046 Current authorized working set size 1000
First locked entry 0051 Default (initial) working set size 350
First dynamic entry 0052 Maximum working set allowed (quota) 1000
Last entry replaced 015A
Last entry in list 01A3

Working set list

INDEX ADDRESS STATUS

0046 T7FFEEA00 VALID PROCESS WSLOCK
0047 7FFEE800 VALID PROCESS WSLOCK
0048 7FFEE600 VALID PROCESS WSLOCK
0049 7FFEFEOQO VALID PROCESS WSLOCK
004A 8010ACO00 VALID PPGTBL WSLOCK
004B 8010AE00 VALID PPGTBL WSLOCK
004C 8010B00O VALID PPGTBL WSLOCK
004D 8010C000 VALID PPGTBL WSLOCK
004E 8010C200 VALID PPGTBL WSLOCK
004F 80113E00 VALID PPGTBL WSLOCK
0050 80114000 VALID PPGTBL WSLOCK
0051 8010B200 VALID PPGTBL WSLOCK
0052 00054400 VALID PROCESS

0053 00054A00 VALID PROCESS

0054 00055400 VALID PROCESS

0055 00054E00 VALID PROCESS

0056 00054C00 VALID PROCESS

0057 00055000 VALID PROCESS

0058 00055200 VALID PROCESS

0059 00063E00 VALID PROCESS

005A 00056600 VALID PROCESS

005B 00055600 VALID PROCESS

005C 00068E00 VALID PROCESS

005D 00055C00 VALID PROCESS

005E 00O05BEOQO VALID PROCESS

005F 00069000 VALID PROCESS

0060 00056200 VALID PROCESS

0061 00056400 VALID PROCESS

0062 00069200 VALID PROCESS

0063 00056A00 VALID PROCESS

0064 00069400 VALID PROCESS

0065 00056C00 VALID PROCESS

0066 00056E00 VALID PROCESS

0067 00064000 VALID PROCESS

0068 00069600 VALID PROCESS

0069 0005C400 VALID PROCESS

006A 00057200 VALID PROCESS

006B 00057400 VALID PROCESS

006C 00059200 VALID PROCESS

006D 00059000 VALID PROCESS

Figure 5-10 Working Set List

SDA COMMANDS

5. ShA> SHOW FROCESS/FROCESS_SECTION..TABLE

Figure 5-11 shows the display produced by this command.

VAX/VMS 2.0 -- System Dump Analysis

Process 34 dump: GROVE

Process section table information
Last entry allocated FFEO
First free PST entry 0000

Process section table

INDEX ADDRESS PAGES WINDOW VBN
FFF8 00000200 0000000F 8006B980 00000002
FFFO 00076600 00000008 80078050 00000002
FFE8 00003C00 00000188 8006B980 00000013
FFEO 00077600 00000033 80079220 0000019C

Figure 5-11 Process

SDA» SHOW FPROCESS/PAGE_TABLES

Figure 5-12 shows a portion of the
command.

21-MAY-1979 15:29:24.56%

CLUSTER CHANNEL REFCNT

TFFE1DEQ 0
7FFE1D90 7
7FFE1DEO 355
TFFE1D6O 51

(== Re]

Section Table

display produced

FLINK BLINK

FFE8 FFE8
FFFO FFFO0
FFF8 FFF8
FFEO FFEO
by this

FLAGS

1N Aad]

VAX/VMS 2.0 -- System Dump Analysis
Process 01 dump: SWAPPER

P0 page table

ADDRESS

00000000
00000200
00000400
00000600
00000800
00000A00
00000C00
00000E00
00001000
00001200
00001400
00001600
00001800

00001C00
00001E00
00002000
00002200
00002400
00002600
00002800
00002A00
00002C00
00002E00
00003000
00003200
00003400
00003600
00003800
00003A00
00003C00
00003EQ0
00004000
00004200
00004400
00004600
00004800
00004400
00004C00
00004E00
00005000
00005200
00005400
00005600
00005800

SVAPTE

8005EE30
8005EE34
8005EE38
8005EE3C
8005EE40
8005EE44
8005EE48
8005EE4C
8005EE50
8005EES54
8005EES58
8005EESC
8005EE60

1 NULL PAGES

8005EE68
8005EE6C
8005EE70
8005EE74
8005EE78
8005EE7C
8005EE80
8005EE84
8005EE88
8005EE8C
8005EE90
8005EE94
8005EE98
8005EE9C
8005EEA0
8005EEA4
8005EEAS8
8005EEAC
8005EEBO
8005EEB4
8005EEBS8
8005EEBC
8005EECO
8005EEC4
8005EECS
8005EECC
8005EEDO
8005EED4
8005EEDS8
8005EEDC
8005EEEQ

PTE

D0000B6D
DO00066E
D40009DD
D0000075
DO000OB77
DO000B73
DOOOOSFB
D4000CAC
DO0009DD
D0000075
D0000B77
D4000290
D4000397

DOOOOAAG
D0000960
D00001CB
DO000D04
DO00O5A0
D0000271
DO0OOBC7
D0000066
D0000076
D0000C32
D000080C
D0000539
DO0QOBC1
DOOOO6GAA
DOOOODES
DO0OOASB
D0000012
D000094D
D0000448
DOOOO7ES
D0000456
DO0OOOO6F
D0000ODCC
DO0OOODBY
D0000234
DO000A59
D000074B
D000083B
D0000900
DO00070F
D00002CB

TYPE

VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID

VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID

Figure

PROT

SRKW
SRKW

SRKW M

SRKW
SRKW
SRKW
SRKW

SRKW M

SRKW
SRKW
SRKW

SRKW M
SRKW M

SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW
SRKW

BITS PAGTYP

PPGTBL
PPGTBL
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PPGTBL
PPGTBL

RARAARRARARRNRRNANR

PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
GLOBAL

PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
GLOBAL

PROCESS
PROCESS

RARRAARARRAARNA AR AARARNRARRARNRARAXRR

LOC STATE TYPE

ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE

FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST
FREELST

22-MAY-1979 10:40:52.99

87
87
07
87
87
07
07
07
07
87
87
87
87

Q00
00
(]
00
00
(0]
00
00
00
00
00
00
o1}
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

REFCNT

b b b bt b b et b e

OO0 O0O0OCOOO0OC OO0 OOODDOOO

Program Region Memory

BAK

03000000
03000000
03000000
03000000
03000000
03000000
03000000
03000000
03000000
03000000
03000000
03000000
03000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
0040FF08
00000000
00000000
00000000
00000000
00000000
004CFFDO
00000000
00000000

SVAPTE

801FA7D8
801Fa900
800C81FC
800C803C
800C80C8
800C81D4
800C81D0
800cC81CC
800C81FC
800C803C
800C80C8
801FA7EOD
801FA7DC

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
801FE2E4
00000000
00000000
00000000
00000000
00000000
801FD34C
00000000
00000000

FLINK

0000
000F
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

05E4
01C9
0271
0BCl
0596
0331
049E
06DF
00CB
0D04
0C32
080C
0456
0DD8
0DD1
09A7
0779
04E7
0763
0557
01CB
0352
054C
070F
0A8B
009A
0407
0050
074D
086A
0511

BLINK

004A
0050
0049
0051
0052
0046
0047
0048
0049
0051
0052
004C
004B

0288
O0AE
0456
0C32
0523
0l1CB
0BCA
0384
09F0
080C
0539
0038
0D04
0B24
ocsc
0044
08BA
03FC
0839
0AC3
0BC1
ODES8
075E
00CE
067B
0557
040A
0522
08EOQ
0DB9
0889

SANVWWOO VYds

SDA COMMANDS

SHOW STACK

The SHOW STACK command displays the location and contents of the four
stacks wused by a given process as well as the system-wide interrupt
stack.

Each qualifier displays one of four stacks that correspond to the four
VAX/VMS processor access modes for a specific process. The /INTERRUPT
qualifier displays the system-wide interrupt stack. The default for
SHOW STACK 1is the stack that is currently being used or that was in
use when the system failed.

Figure 5-13 shows the display produced by the SHOW STACK command. The
display is the same for each stack, and is composed of four sections:

e Stack Pointer -- the stack pointer identifies the top of the
stack. The display indicates the stack pointer by the symbol:

SF =& 7FFEF868 00000001

e Stack address -- SDA lists all the virtual addresses allocated
to the stack by the operating system. The stack addresses are
listed in a column which increases by 4 (one longword).

e Stack contents -- SDA lists the contents of the stack in a
column next to the stack addresses.

e Global symbols -- SDA attempts to display the contents of a
location symbolically using a symbol and an offset. For
example:

7FFEF848 7FFEE200 MMG$HIORERUF
7FFEF86C 7FFEE208 MMG$HDRRUF+08

If the value is not within range of any existing symbols, the
field will be left blank.

If a stack is empty, the stack pointer will point to the message:
P =l (THE STACK I8 EMFTY)

SDA will display only five pages of any stack.

Format
SHOW STACK
Qualifiers Defaults

/INTERRUPT Stack currently in use (running system)
or in use when system failed

/KERNEL

/EXECUTIVE

/SUPERVISOR

/USER

/ALL

Parameters

None

5-46

Qualifiers
/INTERRUPT

Displays the

SDA COMMANDS

interrupt stack. This stack is always resident

memory and is used during hardware interrupt processing.

/KERNEL

Displays the
/EXECUTIVE

Displays the
/SUPERVISOR

Displays the
/USER

Displays the
/ALL

bisplays all

Examples

kernel stack for the current process.

executive stack for the current process.

supervisor stack for the current process.

user stack for the current process.

the stacks described above.

1. BOAY SHOW STACK/KERNEL

Figure 5-13 shows a portion of the display produced by

command.

in

this

VAX/VMS 2.0 -- System Dump Analysis

Current operating stack

Current operating stack (KERNEL):

SP

7FFEEB18
7FFEEB1C
7FFEEB20
7FFEEB24
T7FFEEB28
7FFEEB2C
7FFEEB30
TFFEEB34

7FFEEB38
TFFEEB3C
7FFEEB40
7FFEEB44
7FFEEB48
7FFEEB4C
T7FFEEB50
7FFEEB54
7FFEEB58
7FFEEBSC
7FFEEB60
7FFEEB64
7FFEEB68
7FFEEB6C
TFFEEB70
7FFEEB74
7FFEEB78
7FFEEB7C
7FFEEB80
7FFEEB84
7FFEEB88
T7FFEEB8C
TFFEEB90
T7FFEEB94
7FFEEB98
7FFEEB9C
TFFEEBAO
7FFEEBA4
TFFEEBAS
TFFEEBAC
7FFEEBBO
T7FFEEBB4
T7FFEEBB8
TFFEEBBC
7FFEEBCO
7FFEEBC4
7FFEEBC8
TFFEEBCC
TFFEEBDO
7FFEEBD4
TFFEEBDS8
7FFEEBDC
7FFEEBEO
7FFEEBE4

00001000
7FFEEB20
TFFEF000
7FFEF828
7FFDB65C
8007C200
80006074
00070000

8006BACO
7FFDFEOOQ
00000000
BO1F1868
80007814
00070000
00000000
00000002
00020004
8000C4DF
8000C487
3FFFFFFF
00000000
8000771F
00000000
00000000
00000000
00000000
00000000
7FFEEBC4
7FFEEB98
8000B4E3
80000116
00800000
00000000
20FC0000
TFFEF854
7FFEEBE4
8000BBF7
7FFEEBD4
7FFEL1DFO
8006BACO
7FFDFE00O
FFFFFFFF
00000003
00000003
TFFEEBD4
00000000
00000000
3FFFFFFF
00000000
00000000
80008E38
00000000

Figure 5-13

SDA COMMANDS

CTLSGL_KSTKBAS+520
CTLSGL_KSPINI+400
CTLSGL_KSPINI+C28

EXESSWAPINIT+9F8

MMGSEXTRADYNWS+164

EXESDELTVA+0AA
EXESDELTVA+052

MMGSEXTRADYNWS+06F

CTLSGL_KSTKBAS+5C4
CTLSGL KSTKBAS+598
EXESCMODEXEC+0D3
SYSSDELTVA+006

CTLSGL_KSPINI+C54
CTL$GL_KSTKBAS+5E4
MMGS IMGRESET+030
CTLSGL_KSTKBAS+5D4
CTL$GL_CCB

CTLSGL_KSTKBAS+5D4

EXE$RUNDWN+04E

21-MAY-1979 15:34:40.49

Current Operating Stack (Kernel)

SDA COMMANDS

SHOW SUMMARY

The SHOW SUMMARY command displays a formatted 1list of all active
processes. The display shows the values used 1in swapping and
scheduling for these processes. Figure 5-14 is an example of the
display produced by the SHOW SUMMARY command. The information listed
in the display includes:

e PID -- the 32 bit quantity that uniquely identifies the
process

e PROCESS NAME -- the name assigned to the process

e IMAGE NAME -- the VAX/VMS file specification of the image
currently executing in the process's context

® STATE -- the condition of the process (see the VAX/VMS System
Manager's Guide for a description of possible states)

e PRI -- the current scheduling priority of the process

e UIC -- User Identification Code

® WKSET —-- the total number (in decimal) of pages currently in

the working set

If the process has been swapped out of the balance set, this message
appears in the "Image Name" column:

e GWAFFEN QUT oo

Format
Qualifiers Defaults
None None
Parameters
None
Examples
1. 8&DAx SHOW SUMMARY

Figure 5-14 shows the display produced by this command.

SDA COMMANDS

VAX/VMS 2.0 -- System Dump Analysis 21-MAY-1979 15:36:26.03
Current process summary

PID PROCESS NAME IMAGE NAME STATE PRI uIc WKSET
00010000 NULL CoM 0 (000,000} 0
00010001 SWAPPER HIB 16 [000,000] 0
00010019 _TTA3: DBAO: [SYSEXE]VMOUNT.EXE; LEF 4 [017,022] 59
0003001A TTF7: DBAO: [SYSEXE]MAIL.EXE; COM 4 [(320,100] 74
0005001B MANDERLEY DBAO: [SYSEXE]RSX.EXE; LEF 7 [360,007] 148
000B001C _TTAl: DBAO: [SYSEXE]LOGINOUT.EXE; LEF 4 [010,040] 39
0014001D KAREN LEF 4 [361,006] 41
000CO01E CRAIG DBAO: [SYSEXE] BACKTRANS.EXE; LEF 4 (320,111) 70
0001001F DERF LEF 8 [320,114] 41
000B0020 USER LEF 7 [304,003] 150
00100021 NOAH DBAO: [SYSEXE]LOGINOUT.EXE; LEF 7 [361,002] 67
00050022 LYNN DBAO: [SYSEXE]SUBMIT.EXE;8 LEF 4 [320,110] 68
001E0023 LAMONT DBAO: [SYSEXE] SHOW.EXE; LEF 4 [360,003] 61
00170024 OZZIE DBAO: [SYSEXE]TYPE.EXE;31 LEF 4 [360,002] 70
00060025 CLEO DBAO: [SYSEXE]DELETE.EXE;4 LEF 4 [361,004] 68
00020026 MAJA DBAO: [SYSEXE]COPY.EXE; LEF 4 [304,002] 55
00170027 BOUSQUET DBAO: [SYSEXE]TALK.EXE; LEF 4 [011,016] 53
00020028 BACH LEF 7 [360,014] 45
00040029 WIZARD DBAOQ: [SYSEXE]BACKTRANS.EXE; LEF 5 [017,022] 149
000F002A BOUFFON COM 4 [300,041] 300
000B002B HARLEY DBAO: [SYSEXE] SHOW,. EXE; LEF 4 {017,022] 58
0018002C DAVIDSON DBAO: [SYSEXE]BACKTRANS .EXE; LEF 8 [361,013] 43
000F002D RMS DBAO: [SYSEXE]COPY .EXE; LEF 4 [011,016] 70
0007002E _TTG4: DBAO: [SYSEXE]DISPLAY.EXE; LEF 7 [311,001] 39
0013002F KURT -—- SWAPPED OUT --- LEFO 4 [361,003] 61
000F0030 MEYERS LEF 4 [360,005] 65
000F0031 EDWIN LEF 8 [360,001] 150
00040032 _TTG3: --- SWAPPED OUT --- LEFO 4 [311,001] 45
00090033 WOODROW DBAO: [SYSEXE]USERS.EXE; LEF 4 [201,201)] 50
00200034 FRED DB2:[F4V2.TOOL]BLISS32.EXE;43 CUR 5 (320,100] 338
00190035 REID --- SWAPPED OUT --- LEFO 7 [361,010] 106
00160036 LOWELL LEF 5 [301,021] 45
00210037 OPPENHEIM —-- SWAPPED OUT --- LEFO 4 [360,023) 43
00010038 NETACP HIB 9 [001,001] 54
00010039 PRTSYMB4 DBAO: [SYSEXE]PRTSMB.EXE; HIB 8 [001,004] 41
0001003A PRTSYMB3 DBAO: [SYSEXE]PRTSMB.EXE; HIB 8 [001,004] 41
0001003B PRTSYMB2 DBAO: [SYSEXE] PRTSMB.EXE; HIB 8 [001,004) 41
0001003C PRTSYMB1 DBAO: [SYSEXE] PRTSMB.EXE; HIB 8 (001,004)] 41
0001003D DBA2ACP DBAO: [SYSEXE]F11BACP.EXE; HIB 11 {001,003} 104
0031003E GUITAR HIB 7 [361,010] 32
0001003F ERRFMT . HIB 9 [001,006] 30
00010040 OPCOM LEF 8 [001,004] 38
00010041 JOB_CONTROL HIB 13 [001,004] 100
00010042 DBAOACP HIB 11 [001,003) 100
00020043 DBALACP DBAO: [SYSEXE]F11BACP.EXE; HIB 10 [001,003] 105

Figure 5-14 Summary of Active Processes

The S
value

SDA COMMANDS

SHOW SYMBOL

HOW SYMBOL command displays a local or global symbol and the
associated with it. If the value is a valid memory location,

SDA examines that address and displays its contents.

Forma

t

SHOW SYMBOL symbol-name

Qualifiers Defaults
/ALL None
Parameters

symbol-name

Quali

/ALL

Specifies an SDA symbol that corresponds to an SDA expression.
See Section 4,2.5 for more information on SDA symbols.

fiers

Displays two lists of the entire SDA symbol table. The first
list organizes the 1local and global symbols in alphabetical
order. The second list organizes these symbols by their wvalues,
starting at the 1lowest wvalue. If the value represents an
address, the contents of the memory location will be displayed:

TTY$ALCTRLZ 0002412 =X Q00NHAGE

If you specify a symbol name and the /ALL qualifier, SHOW SYMBOL
displays a list of all the symbols that begin with the specified
symbol name. For example, SHOW SYMBOL IOCSGL displays all the
symbols with starting characters IOCSGL.

Examples

1.

SHAF GHOW SYMBOL. RUGHFATAL.
RUGHFATAL = 8000825046 ¢+ 08309FE

In this example, the global symbol, its system virtual address,
and the value stored at the address are shown.

SHAS BEFINE START = 00000000

BDAT GHOW SYMRBOL. STARTY

START = 00000000 ¢ O0YANR9A

In this example, a local symbol is defined. See the description
of the DEFINE command for more information &about symbol
definition,

SOAE SHOW SYMROL /ALL

Figure 5-15 shows a page of the listing produced by this command.

2S-§

VAX/VMS 2.0 -- System Dump Analysis
System global symbols by name

I0$M_FCODE
10$_TOGICAL
10$_PHYSICAL
I0$_READLBLK
I10$_READPBLK
10$_READVBLK
I0$ WRITELBLK
I0$” WRITEPBLK
I0$ WRITEVBLK
IOCSALOUBAMAP
IOC$ALOUBAMAPN
IOCSALTUBAMAP
IOC$APPLYECC
IOC$CANCELIO
IOCSCREATE_UCB
I0C$CVTLOGPHY
IOCSCVT_DEVNAM
I0C$DELMBX
IOCSDIAGBUFILL
IOC$DIRPOST]
IOC$DISMOUNT
IOC$FFCHAN
IOC$FILSPT
I0C$GL_ADPLIST
IOCSGL_AQBLIST
IOCSGL_DEVLIST
IOC$GL_DIALUP
IOCSGL_DPTLIST
IOCSGL_IRPBL
IOCSGL_IRPFL
I0C$GL_MUTEX
I0C$GL_PSBL
IOCS$GL_PSFL
I10C$GQ_BRDCST
10CSGQ_MOUNTLST
IOCS$GW_MAXBUF
IOC$GW_MBXBFQUO
I0C$GW_MBXMXMSG
I0CSGW_MBXNMMSG
IOC$INITDRV
IOC$ INITIATE
IOC$IOPOST
10C$ LOADMBAMAP
I0CSLOADUBAMAP
IOCSMAPVBLK
I0C$MOVFRUSER
I0C$MOVTOUSER
IOCSPTETOPFN
IOCSQNXTSEG
IOC$QNXTSEGL
IOCSREINITDRV
IOC$RELCHAN
IOC$RELDATAP
IOC$RELMAPREG
IOCSRELSCHAN

0000003F
0000002F
0000001F
00000021
0000000C
00000031
00000020
00000008
00000030

8000A807 =

8000A803
B00OA7ES
8000A8AC
8000A551
8000B7F6
8000A920
8000B87A
8000A568
8000A5EE
80005544
8000B665
8000B8AF
8000A3CO
8000083C
80003A10
80000838
80003Al1C
80000840
80003A0C
80003A08
80003B28
80003A04
80003A00
80003A20
80003A14
80004466
80004468
8000446A

8000446C =

800126FF
8000A6F4
80005078
8000AA04
8000AA4E
8000A947
8000A388
8000A3A4
8000AAB7
800053C0
800053CC
80012705
80002628
8000A729
8000A799
8000A61E

A53C38BB
151138BB
5326A19A
C53C18BB
58A508E1
5108A53C
34A350D0
DO7E507D
5024A5D0
534CA5D0
5024A5D0
A6D028BB
463BEFC1
04C553DD
8005E800
80063310
80000848
800688A0
80069090
80078390
80076F70
0000FFFF
80003400
80003A00
80003A20
80056A60
04000400
01000400
00100100
00100010

4CA553D0
7D7E547D
A53C53DD
3C7E537D
120AA291
A5A83610
A5A81A10
00008FCA
5218A3D0
3044a4B7

5020A5D0
5020A5D0
5120A5D0
5020A5D0

IOC$REQCOM
IOC$REQDATAP
IOC$REQDATAPNW
IOC$SREQMAPREG
IOC$REQPCHANH
IOCSREQPCHANL
IOCSREQSCHANH
IOCSREQSCHANL
IOCSRETURN
IOC$SEARCHDEV
TOCS$SEARCHGEN
TOCSUNLOCK
IOCSUPDATRANSP
IOCSVERIFYCHAN
IOC$WAKACP
IOCSWFIKPCH
IOC$WFIRLCH
IPLS_ASTDEL
IPLS_HWCLK
IPLS_IOPOST
IPL$ MAILBOX
IPLS_POWER
IPLS_QUEUEAST
IPLS_SCHED
IPL$_SYNCH
IPLS_TIMER
KFISGL_F11AACP
LIBSCVT DTB
LIBSCVT HTB
LIB$SCVT OTB
LOG$AL_DISKLOG
LOG$AL_LOGTBL
LOG$AL__MUTEX
LOGS$DELETE
LOGS$GL_SLTFL
LOGSINSLOGN
LOGSLOCKR
LOGS$LOCKW
LOG$SEARCHLOG
LOGS$TRNSLOGNAME
LOGSUNLOCK
MBSDDT

MBSDPT
MBSGL_DDB
MB$GL_UCB1
MBSGL_UCB2
MB$UCBO
MBASINITIAL
MBASINT
MMGSALCPAGFIL
MMGSALCPHD
MMGS$SALCSTX
MMGS$ALLOCPFN
MMGS$AL_BEGDRIVE
MMGS$AL_ENDDRIVE

Figure 5-15

8000A6B3
8000A762
B8000A7SE
8000A7D3
8000A67F
8000A688
8000A66B
8000A675
8000A869
8000B8D6
8000B8DB
8000BIF9
8000A9CS8
8000BAOB
800053F4
8000A86A
8000AB8A
00000002
00000018
00000004

. 0000000B

0000001F
00000006
00000003
060000007
00000007
80003B40
8000F03E
8000F04C
8000F045
80011A08

800039C8 =

800039D4
8000BA3E
800039E8
8000BAGO
8000BAA7
8000BAAD
8000BACS
8000BB14
8000BAB3
8000127C
80000F34
80000BE4
80000C90
80000D04
80000C1C
80001271
80001200
80006FFD
8000BD5E
8000BD35
80006B82
80001200
80002E00

=>
=>

=>

=>
=>

=>
=>
=>
=>

=>
=>
=>
=>
=>
=>
=>
=>

21-MAY-1979 16:04:51,71

534CAS5D0O
ASDO01DD
021100DD
50E83210
5020A5D0
5020A5D0
5020A5D0
5020A5D0
6E02C005
115202D0
BB5201D0
EFDO50DD
6EA550A2
13500FAA
DA7E12DB
7DARE02CO
7D6E02CO

80056830
0ADOOO03C
10D0003C
08D0003C

800039E8
0000FFFF
DO50610F
80056A30
530BA59A
DF64CFIF
DF44CF9F
00608FBB
1350613C
DFB7CF9F
0000031B
80001046
80000D78
80000C90
80000D04
80000C1C
04A401D0
5300BEDO
16DF41D0
5024A532
5126A532
923052D4
5300BEDO
01AD0983

Global Symbols

MMG$AL_PGDCOD
MMGS$AL_PGDCODEN
MMGSAL_SBICONF
MMGS$SALTSYSPCB
MMGSA ENDVEC
MMGSA” PAGFIL
MMGSA~ SYSPARAM
MMG$CRECOM1
MMGSCRECOM2
MMGSCREPAG
MMGSCRETVA
MMGSDALCPAGFIL
MMGSDALCSTX
MMGS$DALCSTXSCN
MMGSDALLOCPFN
MMG $DECPHDREF
MMG $DECPHDREF1
MMG$DECPTREF
MMGS$DECSECREF
MMG$DELCONPFN
MMGS$DELGBLSEC
MMGS$DELGBLWCB
MMGSDELPFNLST
MMGSDELWSLEPPG
MMGS$DELWSLEX
MMG$DGBLSC1
MMGS$EXTRADYNWS
MMGSFREWSLE
MMG$FREWSLX
MMGS$FRSTRONLY
MMGSGETPTIPAG
MMG$GL_CRDCNT
MMGS$GL__CTLBASVA
MMGSGL_FRESVA
MMGSGL_GPTBASE
MMG$GL_GPTE
MMG$GL_IACLOCK
MMGSGL_MAXGPTE
MMGSGL ™ MAXPFN
MMGSGL MAXSYSVA
MMG$GL NPAGEDYN
MMGSGL PAGEDYN
MMGSGL_PAGSWPVC
MMGSGL ™ PFNLOCK
MMGS$GL_PHYPGCNT
MMGSGL_RMSBASE
MMGSGL_SBR
MMGSGL_SPTBASE
MMGS$GL_SPTLEN
MMG$GL”SYSPHD
MMGSGL_SYSPHDLN
MMG$GSDMTXULK
MMGSGSDSCN

MMGS$ IMGACTBUF
MMGS$ IMGHDRBUF

80008400
80011000
80003264
800038D8
80000600
800031D8
80004400
8000C39F
8000C3A7
8000C51D
8000C380
800070C4
8000BD1E
8000BCAS
80006023
80006B2C
80006B30
80006AC5
8000712E
80006897
80007963
8000D639
80006C8C
80006989
80006995
8000D518
800076B0
8000682F
800067E7
80004800
80007A12
80003F80
80004540
80004558
8000454C
80004550
80002E84
80004554
80004584
80004558
8000457C
80004580
80003218
80002E88
8000445E
80003224
80004578
8000455C
80004560
80004564
80004568
8000D503
8000D599
7FFEDA0O
7FFEE200

=>

=>
=>
=>
=>

=>

=>

=>

D500CF31

00000000
800038D8
0000007A
80060B7C
EOBECC20
547D5510
DAGOEE30
1EE150DD
AC9A01FC
4FDF41D0
5520A5C1
3AAS501E?7
40B552D4
5146A53C
2BDF41B7
531509EF
5520A5C1
F8DF40D0
501CA3DO
6409FFOF
10889610
A4B70710
526541D0
071100FC
AS56CA5A3
EF327E7C
7E7C01DD
E15622DB
DD7E12DB
00000001
7FFDFEO0O
80200000
801F9000
801FD000
00000000
80200000
00000E17
80200000
8005E800
80056800
8000322C
40000000
00004000
80019C00
001FC000
801F9000
00001000
801F8400
00000C00
5C1BEFDO
51D5527C
00000000
7FFEE208

SANVWWDD Vds

CHAPTER 6

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

This chapter discusses how VAX/VMS handles internal errors and
suggests procedures that can aid in determining the cause of these
errors. The final sections of the chapter illustrate, through
detailed analysis of a sample system failure, how SDA helps you find
operating system problems.

6.1 GENERAL PROCEDURE FOR SOLVING SYSTEM FAILURES

When the VAX/VMS operating system detects an internal error so severe
that normal operation cannot continue, it signals a condition known as
a fatal bugcheck and shuts itself down. A bugcheck describes the
error discovered by the system; each error is associated with a
particular bugcheck code.

To resolve the condition, you must find the reason for the bugcheck.
You generally need the VAX/VMS source code to locate the error, unless
the error exists in a driver that is not supplied by DIGITAL. If this
is the case, you may simply need the driver listings.

The best way to start the search for the error is to locate the line
of code that signaled the bugcheck. The address of this instruction
is usually contained in the Program Counter register (PC). Invoke SDA
and give the SHOW CRASH command. The display SDA produces gives the
contents of the PC.

Next, examine the system map file SYSSSYSTEM:SYS.MAP. This file lists
the addresses of each VAX/VMS module that resides in system space (the
part of the operating system that performs basic system services and
scheduling). Compare the address in the PC with the addresses in the
system map file to locate the module that uses the instruction pointed
to by the PC.

If you do not have the system map file, you <can use SDA's symbol
table. All the S&system global symbols that appear in SYS.MAP also
exist in the SYS.STB file that SDA reads during the initialization
process, To determine the offset from the closest global symbol,
issue the command:

Shax EXAMINE @FC
Once you have narrowed the search to a particular module, subtract the
module's starting address from the address in the PC to get the offset
into the code.

Now, to determine the general cause of the system failure, examine the
code that signaled the bugcheck.

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

6.2 FATAL BUGCHECK CONDITIONS

If a bugcheck is signaled, it is usually caused by one of two
conditions:

e A fatal exception

e An illegal page fault

6.2.1 Fatal Exceptions

A fatal exception is an event that causes VAX/VMS to signal a fatal
bugcheck. An exception is fatal when it occurs while a process is:

e Using the interrupt stack
e Executing above IPL 2 (IPLS_ASTDEL)

e Executing in a privileged (kernel or executive) processor
access mode

When the system fails, it lists the immediate cause of the failure on
the LSI-11 console. For fatal exceptions, the messages appear as
follows:

FATALEXCFTy Fatal executive or kernel mode excesltion
INVEXCEFTNy Excertion while sbove ASTREL or on interrust stack

Although there are several possible exception conditions, the type
that most commonly occurs is the access violation. The rest of this
section discusses the access violation in detail. For more
information on other kinds of exceptions, see the VAX-1ll Run-Time
Library Reference Manual.

When an access violation is detected by the VAX-11 hardware,
information wuseful in finding the cause of the violation is pushed
onto the current operating stack, that is, the stack that the process
was using when the access violation occurred. This information is
described by three structures, referred to as vectors. A vector is
structured as follows:

31 0

longword

series of
longwords

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

The first longword in the vector shows the number of longwords that
follow. Each longword in the series contains information describing
conditions at the time of the exception.

The first vector that appears on the stack gives the addresses of the
next two vectors:

31 0

00000002

signal vector
address

mechanism vector
address

The mechanism vector follows the first wvector. This structure
describes the process that was executing when the exception occurred.
The diagram below illustrates the sequence of longwords in a mechanism
vector:

31 0

00000004

The values contained in this vector are:

e 00000004 -- the number of 1longwords that follow. In a
mechanism vector, this value is always four.

e Frame -- the address of the stack frame.

e Depth -- the stack depth.

e RO -- the contents of RO at the time of the exception.

e Rl -- the contents of Rl at the time of the exception.

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

The next vector created on the stack is the signal vector. For access
violations, the signal vector is set up as follows:

31 0

00000005

0000000C

reason mask

virtual address

PC

PSL

The parameters shown in the above diagram are:

e 00000005 —-- the number of longwords that follow. For access
violations, this value is always five.

e 0000000C -- the exception code. This value is C (hexadecimal)
to represent an access violation.

@ Reason mask -- the longword whose lowest three bits, 1if set,
indicate that the instruction caused a length violation (bit
0), referenced the process page table (bit 1), and attempted a
read/modify operation (bit 2).

@ Virtual address -- the virtual address that the system tried
to reference.

e PC -- the Program Counter. The PC contains the address of the
instruction that signaled the exception.

e PSL -- the processor status 1longword at the time of the
exception.

Signal vectors differ in length, depending on the kind of exception
the system detects., See the VAX-11 Run-Time Library Reference Manual
for details.

If VAX/VMS encounters a fatal exception, you can find the code that
signaled it by examining the PC placed in the signal vector. Issue
the SHOW STACK command to display the current operating stack, then
locate the vectors. Once you obtain the PC, which points to the
instruction that signaled the exception, you can identify the module
by the procedure outlined in Section 6.1.

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

6.2.2 1Illegal Page Faults

VAX/VMS also signals a bugcheck when a page fault occurs while the
Interrupt Priority Level (IPL) 1is greater than two (IRP$ ASTDEL).
When VAX/VMS fails because of an illegal page fault, it isSues the
following message on the console:

PGFIFLHIy Pade fault with IPL too high

In this case, information is pushed on the stack as longwords in the
following sequence:

31 0

R4

R5

reason mask

virtual address

PC

PSL

The longwords pushed on the stack are:

e R4 -- the contents of R4 at the time of the bugcheck.

® R5 -- the contents of R5 at the time of the bugcheck.

® Reason mask -- see Section 6.2.1.

e Virtual address -- the virtual address that caused the page
fault.

e PC -- the Program Counter. The PC contains the address of the

instruction that was executing when the page fault was issued.

e PSL -- the processor status longword at the time of the
bugcheck.

If the operating system detects a page fault while the IPL 1is higher
than two, you can obtain the faulting instruction by examining the PC
pushed on the current operating stack. Follow the steps outlined in
Section 6.1 to determine which module issued the instruction.

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

6.3 DEBUGGING A SYSTEM FAILURE -- AN EXAMPLE

This section steps through the analysis of a system failure. The
events that lead up to this failure are:

e The line printer goes offline for three hours.
o The line printer comes back online.

e The operating system signals a bugcheck, writes information to
the system dump file, and shuts itself down.

6.3.1 Identifying the Bugcheck

Invoke SDA to analyze the system dump file. The initialization
message indicates the type of bugcheck signaled:

VAX/UMS Sustem dumr analyzer
Iume taken on 31-JUL-1979 20843113.32
INVEXCEFTNs Excestion while above ASTIEL or omn interrurt stachk
ShA
VAX/VMS encountered an exception that caused it to signal a bugcheck.

Signal and mechanism vectors are created on the current operating
stack.

6.3.2 Identifying the Exception

Issue the SHOW STACK command to display the current operating stack,
which, 1in this case, 1is the interrupt stack. Figure 6-1 shows the
interrupt stack and highlights the three vectors,

Current orerating stack (INTERRUFT)

BOOLAZ78 BOOOBA4E ACF$WRTTERLK+OAO
SF =3 BO06A398 7FFIC340
BOOSAZHC BOOSAZAO
BOOLAZA0 BOOOAE TN EXESRELECTHON4
BO06AZA4 04080009

- BO06A3AE 00000004
mechanism - 1 '
vector :

- BOOL7:
00000:
00000005
signal
vector

8006A3N0 G0000
8006A304 80009604 EXESFORKDSHTHA0 10

+

Figure 6-1 Interrupt Stack and Vectors

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

Examination of the signal vector shows that:

e The exception code is C (hexadecimal) which means that an
access violation occurred.

e The reason mask is zero, which means that the instruction
generated a protection violation (instead of a length
violation) when it tried to read the location (rather than
write to it).

e The virtual address is 80069E00 and is the address that the
instruction tried to reference.

e The PC is 8005D003 and is the address of the instruction that
signaled the exception.

e The IPL was eight at the time of the exception (shown by bits
16 through 20 of the PSL).

e The current operating stack was the interrupt stack (bit 26 of
the PSL is set to 1).

e The process was executing in kernel mode at the time of the
exception (shown by bits 24 and 25 of the PSL).

Use the SHOW PAGE_TABLE command to display the system page table, as
shown in Figure 6-2. The page containing location 80069E00 is not
available to any access mode (a null page); thus, the virtual address
is not valid.

VAX/VMS 1,8 == Sygtem Dump Analysis
System page table

ADDRESS SVAPTE PTE

800CD34e BOGAASED
AARCD344 BUBBBSEE

8pB6ARRA
84064200

eemeawaws | NULL PAGE

8eabaeny 81WACD34C D4OBO3B9
8264800 81AC035a DupAnt Uy
BaR6AAZD 8paC0354 Dupavp28

meemmen= 3 ML PAGES

8aRr6B222 8UNCD364Y DURDYIBAT
afacBane 8uNCD368 DupORLLL
82068644 B2aRCD36C DURAN4AB
APA6RBAM BupCD372 DAVAB2FS
Bed6RADH BABCD374 SaRRABHY
8e2aeBcan BANCD378 Saneaadon
8ANLBERD 840CD37C SAARRANP
8re6Cuve BRACO38Q Seodvnsp
8236C229 8:4CD384 500an209
8ra6CURA 8A3CD388 50222220
82m6CeAU B8enCD3IBC Seeaupira
8436C322 8ueCD392 Saaaudve
82060400 BRAACD3I%4 Sanayusn
Ban6CCOR §2ACD39A 52420090
BRALCENY R2@CD39C Senaanan
Re26D222 BAGCD34Aa 52248230
82260202 8rCD3Ad San2gave
RAA6DEAN 82¢C0348 Spanenap
BAB6DLBD AACD3AC Sa@zause
B8406DBAN 8uECD3Bn Seamppap
BRR6NARR 8AACD3BY SaddanI»
8uP6DCOR 8unCD3B8 Sananace
BaneNERR 8230CD3AC Sgoanesnr
8rasER@N 30aC03C2 Seavanve
80a6E200 8UACD3ICY SpBANAER
R206E402 8nnC03C8 SavenIve
8126E624 8nraL03CC Seanmare
BeALEBDA 89ACD30e SarvprAen
BRVLEAND 8A2CD3IDY SAdBBAAL
spaeECcoR 8naCD3ID8 SG2A3¥00e
8naoEERR B33CO3DC DUBAR2ES
Bra6F200 RPACD3ER D4BAP3ST
89P6F200 83¢CD3E4 Samannae
8eubFupa 82QCD3ES DLUBRAI%L
8206F6R2 832CO3EC DuampesDd
87A06FBRA 8arCD3Fp DuveBl22

wewsmmew § NULL PAGES

Figure 6-2

TYPE

vaLID
VALID

VALID
VALID
VALID

VALID
vaALID
VALID
vALID
DZERO
DZERN
DZEKD
DZERD
DZERO
DZERD
NZERD
DZERD
NZERD
VZERD
DZERD
DZERD
DZEPQ
DZERD
DZERD
NZERQ
NZERD
DZERD
DZERD
NZERN
DZERN
DZERO
NZERD
DZERD
DZERO
DZERO
VALID
vVALID
DZERD
VALID
VALID
VALID

PROT

ERKW
ERKW

SRKW
SRKW
SRKKW

SRKwW
SRKW
SRKW
SRKH
SRKMW
SRKW
SRKW
SRKW
SRKW
SRKw
SRKW
SRKW
SRKW
SRKW
SRK A
SRKw
SRKw
SRKA
SRKW
SRKwW
SRKW
SRKW
SRK#
SRKA
SRK«
SRK4
SRKW
SRKw
SRKW
SRKW
SRKW
SRKW
SRKwW
SRKu
SRKH
SRKw

Tz

x

x

x

BITS

X X

XX AXAXXXXXXXXXXRAXNRXEXEXENRTXAXXXXAXAXXKXKXX XXX

Page Table Display

PAGTYP

PPGTBL
PPGTBL
PPGTAL

PPGTBL
PPGTAL
RPRGTRL
PPGTAL

epGTRL
PRGTABL

PPGTBL
PPGTBL
PPGTBL

LOC STATE TYPE

ACTIVE
ACTIVE
ACTIVE

ACTIVE
ACTIVE
ACTIVE
ACTIVE

ACTIVE
ACTIVE

ACTIVE
ACTIVE
ACTIVE

1@=DEC=1979 19321380,32

87
a7
87

a7
87

87

87
a7

87
87
87

24
04
24

a4
B4
34
a4

a4
a4
a4

B4
a4

REFCNT

-

- s s

BAK

p3geeace
23n04900
23@pvoea

23p2a000
23202424
@33FFFFF
23202648

#33FFFFF
43000020

232000
23004000
293203000

Page

SVAPTE FLINK

8apch34c
8gmCD3Se
Bgecb3sS4

8gech3ed
8@naCD368
8A@CD36C
8apCD372

82aCD3DC
89@CD3ED

880CD3ES8
8m@CD3EC
82@CD3FR

Showing Invalid Location 80069E00

2000
2230
Q2o

20089
2035
duai
nean

age3
ap4@

2098
2079
2gge

17

BLINK

AB4A
2048
mauc

L.l D]
@22ER
99E3
.I.LF]

24BS
PR4E

an4a
pa4B
pa4c

SATdWVYXd ANV SIANITIAIND -- SIYNTIVA WILSAS OHNIZXTUNY

ANALYZING SYSTEM FAILURES —-- GUIDELINES AND EXAMPLES

6.3.3 Locating the Source of the Exception

Because the line printer went offline and then online, the problem may
exist in the driver code. To determine which driver might contain the
faulty code, take the address contained in the PC on the stack and
compare it with the bounds of each driver.

6.3.3.1 Finding the Driver Using the DPT List - The Driver Prologue
Table (DPT) 1is a data structure that describes each driver. All the
driver prologue tables form a 1linked 1list; each DPT 1is followed
directly by driver code. The location IOCSGL_DPTLIST contains the
address of the first DPT. Figure 6-3 illustrates the linked structure
of the driver prologue tables.

-
® o o
iocsaL_opTuisT | Y . . I
DPT DPT DPT
DRIVER DRIVER DRIVER
CODE CODE CODE

Figure 6-3 Linked List of Driver Prologue Tables
Use the FORMAT command and specify the contents of IOCSGL_DPTLIST as a
parameter:
Sha FORMATRIOCSGL . .IFTLIST

0040500 T FLINK B8O0HF400
800460504 DETHL. BLINK 80000000

BO0OHOGOA neEr

1 1
BOOLOHOR DFTER.LR

01
800460500 DFTHR..6 01
80060500 DRFTSR.F 02
BOOLHOGOE DFTS$W. UCBRSTZIE OOFO
80060510 DPTSW.LINETTAR 00LF
8004K0HL2 DETEW.REINITTAR 0062
8006014 DFTHW.UNLOAD 0000
80060016 DPTHT..NAME “DFEDRIVER"

ShA

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

The formatted display identifies the size of the driver by the symbol
DPTSW_SIZE.

Calculate the end of the driver by adding the value of DPTSW_SIZE to
the starting address of the DPT for the driver. The driver code
begins just after the DPT.

Next, determine whether the address in the PC falls within the range
of addresses that contain the driver code. If the address is not part
of the driver you are examining, continue on to the next driver by
stepping through the 1linked 1list with the FORMAT command (see the
description of the FORMAT command in Chapter 5 for an example of the
commands used to step through a linked list of data structures).

In this example, the instruction that caused the exception falls
within the range of addresses that contain the line printer driver
code.

6.3.3.2 Calculating the Offset into the Driver - Once you have
identified the driver, you can locate the instruction in the source
code by subtracting the starting address of the driver prologue table
from the address contained in the PC. Match the resulting offset with
the offsets in the driver code listing.

After you have located the routine that caused the exception, you
should examine memory to make sure that the instruction in the routine
matches the instruction that signaled the exception.

6.3.4 Finding the Problem within the Routine

Examine the line printer driver code. The instruction that caused the
exception is MOVB (R3)+,(R0), as shown in Figure 6-4. To check the
contents of R3, use the SHOW CRASH command. The invalid wvirtual
address 80069E00 is indeed stored in R3.

IT1-9

029F 480 START NEXT OUTPUT SEQUENCE

~ ~e

029F 481
029F 482
50 54 02 Cl 029F 483 10$: ADDL3 #LP DBR,R4,RO ; CALCULATE ADDRESS OF DATA BUFFER REGISTER
51 6C A5 3C 02A3 484 MOV ZWL UCBSW_ BOFF (R5) ,R1 ;GET NUMBER OF CHARACTERS REMAINING
52 8080 8F BO 02A7 485 MOVW #°X8080,R2 ;GET CONTROL REGISTER TEST MASK
08 11 02AC 486 BRB 25$% ;
64 52 B3 02AE 487 20$: BITW R2, (R4) ;PRINTER READY OR HAVE PAPER PROBLEM?

OT READY OR PAPER PROBLEM
EXT CHARACTER

08 l§ 02B1 488 BLEQ 30$; IF LEQ N

SRt s - & A5 S i " e
F5 51 F4 02B6 490 25$: SOBG R1,20$;ANY MORE CHARACTERS TO OUTPUT?
70 11 02B9 491 BRB 70% ;
02BB 492
02BB 493 ;
02BB 494 ; PRINTER IS NOT READY OR HAS PAPER PROBLEM
02BB 495 ;
02BB 496
21 12 02BB 497 30S$: BNEQ 408 ;IF NEQ PAPER PROBLEM
51 01 Al 02BD 498 ADDW3 #1,R1,UCBSW BOFF (R5) ; SAVE NUMBER OF CHARACTERS REMAINING
6C A5 02C0 -
02C2 499 DSBINT ;DISABLE INTERRUPTS
64 40 8F 88 02C8 500 BISB #°X40,LP CSR(R4) ;SET INTERRUPTS
02ccC 501 WFIKPCH 40$,#12 — ;WAIT FOR INTERRUPT
02D6 502 IOFORK ;CREATE A FORK PROCESS
c1 11 02DC 503 BRB 10$;
02DE 505 ;
02DE 506 ; PRINTER HAS PAPER PROBLEM
02DE 508
TA AS 94 02DE 509 40S: CLRB UCBSB LP OFLCNT(R5) ;CLEAR OFFLINE COUNTER
51 01 Al 02E1 510 ADDW3 #1,R1,UCBSW_BOFF (R5) ;SAVE NUMBER OF CHARACTERS REMAINING
6C AS 02E4
64 B4 02E6 511 50$: CLRW LP CSR(R4) ;DISABLE PRINTER INTERRUPT
02ES8 512 SETIPL UCBS$B FIPL(RS5) ;LOWER TO FORK LEVEL
64 B5 02EC 513 TSTW LP CSR(R4) ;PRINTER STILL HAVE PAPER PROBLEM?
AF 14 02EE .1 BGTR 10% ;IF GTR NO
3E 58 A5 03 EO 02F0 515 BBS #UCB$V CANCEL,UCBSW STS(R5),80% ;IF SET, CANCEL I/0 OPERATION
01 OF 9D 02F5 516 ACBB #15,#1,UCBSB LP OFLCNT(R5),80% ;SKIP UNTIL TIMEOUT
0017 7A AS 02F8 - -
7A AS 94 02FC 517 CLRB UCBSB LP OFLCNT (R5) ;RESET COUNTER
18 BB 02FF 518 PUSHR #"M<R3,R%> ; SAVE REGISTERS
54 05 9A 0301 519 MOVZBL #MSG$ DEVOFFLIN,R4 ;SET UP MESSAGE TYPE
00000000 'GF 9E 0304 520 MOVAB G~sYS3GL OPRMBX,R3 : ADDRESS TARGET MAILBOX
53 030A -

Figure 6-4 Location of Instruction in Driver Routine

SHYNTIVA WILSAS ONIZATUNY

SITIWVYXd ANV SENITIAIND --

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

6.3.4,1 Stepping through the Routine - The MOVB instruction 1is part
of a routine that reads characters from a buffer and writes them out
to the line printer. The routine executes the following steps for
each character in the buffer:

e The driver gets a character from the buffer, moves it to the

device data register (pointed to by RO in this example), and
autoincrements.

e The preceding step 1is repeated until the byte count is
exhausted or the printer signals that it is NOT READY.

e If the printer gives the NOT READY signal, the driver waits
for an interrupt from the printer.

e When the printer becomes READY, it interrupts the driver and
the loop is resumed.

Examine the code to determine which variables control the 1loop. In
this case, the byte count (BCNT) is the number of characters in the
buffer. This value controls the number of times the loop is executed.
(BCNT 1is set by a Function Decision Table (FDT) routine to the number
of characters in the buffer.) The number of characters 1left to be
printed is represented by the byte offset (BOFF).

Because the exception is an access violation, you can infer that R3 is
outside the range of the buffer. It seems likely that the MOVB
instruction has executed too many times, that is, a number of times

greater than BCNT. To prove this theory, you must examine BOFF and
BCNT.

6.3.4.2 Checking the Values of Key Variables - If you examine the
code, you can see that R5 contains the address of the Unit Control
Block (UCB) of the device that was active when the system failed. If
you use the FORMAT command to display the contents of R5, SDA will
display the values of BCNT and BOFF:

SDA> FORMAT @RS

80030160 UCEB$L..RQFL 80003978
UCE$L...FQFL

8005111464 UCE4$L .RQRL 80003948
UCES$L..FQRIL

80050168 UCE$W..SIZE 0080

80050116A UCR$R.TYFE 10

800GD14R UCRS$R..FIPL 08

800501C8 UCRSI...SVAF

80050100 UCH$E. ERTCNT
8005111 UCES$E.ERTMAX 00
800SDL 11D UCESW. ERRCNT 0000

e

.

3

SIA

ANALYZING SYSTEM FAILURES -- GUIDELINES. AND EXAMPLES

If you have only one line printer in your system configuration, you
need not use the FORMAT command. Issue the SHOW DEVICE command with
device code LP as the parameter; since there is only one line printer
device connected to the VAX-1ll1 processor there 1is only one line
printer UCB to display.

The output produced by the FORMAT @R5 command shows that BOFF contains
a value greater than BCNT, when it should be the reverse. This means
that an illegal value is being stored in BOFF. Thus, the value of
BOFF is not the number of remaining characters in the buffer but some
meaningless number that eventually causes the system to fail when it
tries to access a null page (unreadable to all access modes).

6.3.4.3 Identifying and Fixing the Defective Code - Examine the 1line
printer driver code again to locate all instructions that modify BOFF.
The value changes in two important places.

1. Immediately after the driver detects that the printer is not
ready.

2. When the wait for interrupt (WFIKPCH) routine timeout count
of 12 seconds is exhausted. At this time, R1l+1l is stored in
BOFF.

The second modification to BOFF should not be made because R4 and RS
are the only registers that retain their values after the WFIKPCH
routine is executed. To correct the problem, change the WFIKPCH line
to transfer <control to 50$% rather than 40$ (see Figure 6-5) if the
timeout count expires.

50 54
51 6C
52 8080
64

60
F5

51
6C

64 40

v1-9

7A
51
6C

3E 58 A5
0l

0017 7A

7A

54

00000000"

02
A5
8F
08
52
08
83
51
70

GF
53

Cl
3C
BO
11
B3
15
90
F4
11

12
Al

88

11

94
Al

029F
029F
029F
029F
02A3
02A7
02AC
02AE
02B1
02B3
02B6
02B9
02BB
02BB
02BB
02BB
02BB
02BB
02BD
02C0
02C2
02Cs8
02CC
02DA
02DpC
02DE
02DE
02DE
02DE
02E1
02E4
02E6
02E8
02EC
02EE
02F0
02F5
02F8
02FC
02FF
0301
0304
030A

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

499
500
501

503
505
506
508
509
510

511
512
513

515
515

517
518
519
520

Figure

~e ~e

6-5

START NEXT OUTPUT SEQUENCE

ADDL3 #LP DBR,R4,RO
MOV ZWL UCBSW BOFF (R5) ,R1
MOVW #°X8080,R2

BRB 25%

BITW R2, (R4)

BLEQ 308

MOVB (R3)+, (RO)

SOBGEQ R1,20$

BRB 70$

;CALCULATE ADDRESS OF DATA BUFFER REGISTER
;GET NUMBER OF CHARACTERS REMAINING
;GET CONTROL REGISTER TEST MASK

’

;PRINTER READY OR HAVE PAPER PROBLEM?
;IF LEQ NOT READY OR PAPER PROBLEM
;OUTPUT NEXT CHARACTER

;ANY MORE CHARACTERS TO OUTPUT?

7

PRINTER IS NOT READY OR HAS PAPER PROBLEM

BNEQ 40$%

ADDW3 #1,R1,UCBSW_BOFF (R5)
DSBINT

BISB #°X40,LP_CSR(R4)

WFIKPCH [408],#12
TIOFORK
BRB

108

PRINTER|HAS PAPER PROBLEM

CLRB UCBSB _LP_OFLCNT (R5)
ADDW3 #1,R1,UCB$W_BOFF (R5)
—~~———— CLRW LP_CSR(R4)
SETIPL UCB$B_FIPL (R5)
TSTW LP_CSR(R4)
BGTR 103
BBS #UCBS$V_CANCEL ,UCBSW_STS(R5) ,80$
ACBB #15,#1,UCBSB_LP_OFLCNT (R5) ,80%
CLRB UCB$B_LP_OFLCNT (R5)
PUSHR #"M<R3,R4>
MOVZBL #MSGS$_DEVOFFLIN,R4
MOVAB G"SYSSGL_OPRMBX,R3

; IF NEQ PAPER PROBLEM
;SAVE NUMBER OF CHARACTERS REMAINING

;DISABLE INTERRUPTS
;SET INTERRUPTS

;WAIT FOR INTERRUPT
;CREATE A FORK PROCESS

’

; CLEAR OFFLINE COUNTER
; SAVE NUMBER OF CHARACTERS REMAINING

;DISABLE PRINTER INTERRUPT
;LOWER TO FORK LEVEL

;PRINTER STILL HAVE PAPER PROBLEM?
;IF GTR NO

;IF SET, CANCEL I/O OPERATION
;SKIP UNTIL TIMEOUT

;RESET COUNTER

; SAVE REGISTERS

; SET UP MESSAGE TYPE

; ADDRESS TARGET MAILBOX

Location of Defective Code in Driver Routine

SHTdWVXE ANV SINITIQIND —-- STUNTIVA WILSAS OHNIZATYNV

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

6.4 INDUCING A SYSTEM FAILURE

If the operating system is not performing well and you want to create
a system dump file so that you can examine it later, you can induce a
system failure by typing the following commands at the console:

% CRUP)
Hal T
EXAMINE P&
DEFOSIT PC s -]
DEFOSTT FSL = LFO000
CONTINUE

The system responds to the HALT command by displaying the PC; it
responds to the EXAMINE PSL command by displaying the PSL.
Immediately after you type this command sequence, the system signals a
fatal bugcheck, writes information to SYSDUMP.DMP, shuts itself down,
and automatically reboots.

Make a note of the PC and PSL displayed on the <console before vyou
perform the procedure outlined above. When you induce a system
failure, the values you deposit into these registers destroy their
previous contents, and you will need the pre-failure values contained
in the PC and PSL when you begin to examine the system dump file, as
described in Section 6.1,

CHAPTER 7

SDA ERROR MESSAGES

SDA error messages can be divided into messages that occur during SDA
initialization and messages that occur during SDA operation. Messages
that appear before SDA is initialized indicate problems encountered by
SDA as it tries to run. SDA prints the message but does not execute.

Messages that appear when SDA is operating ‘concern problems
encountered during command execution.

7.1 INITIALIZATION ERROR MESSAGES

The dume file contsins no valid dums
This message appears if SDA cannot read the contents of the
system dump file. The file may be unreadable because the data is
bad or because the file is empty.

The dums only comtaing n erages of shusical memorw
This message occurs if the system dump file is not large enough
to accommodate all of physical memory. The number of physical
pages SDA can analyze is represented by n. To change the size of
the system dump file, see Section 2.1.

Sumbol sumbol-nsme not Tound in SDA swumbol table

This message appears if SDA cannot find a symbol in the SYS.STB
file which is vital to its initialization.

7.2 OPERATIONAL ERROR MESSAGES
Irnvalid block ture in srecified bhlock

This message appears if SDA is unable to identify the block type
of a particular block. The 1invalid block type message most
usually occurs when the FORMAT command tries to identify a block
type wusing a byte offset. See the description of the FORMAT
command in Chapter 5 for further information about byte offsets.

No *block-ture" symbols found to format this block

This message appears if SDA cannot locate the symbols needed to
format a block as a particular block type.

You may need to use the READ command to include the specific
block type symbols in the SDA symbol table.

SDA ERROR MESSAGES

No such rrocess

This message occurs if the process name specified in a SHOW
PROCESS or SET PROCESS command refers to a process that does not
exist,

Frocess swarrerd out

This message occurs if the process name specified in a SHOW
PROCESS or SET PROCESS command represents a process that was
swapped out of the balance set when the system failed.

Unable to access location location

This message indicates that SDA is wunable to read a certain
location. The inaccessible location may be an implied reference
to memory made during the execution of an SDA command.

Urnkriown sumbol swmbol-name
This message occurs if SDA cannot identify a specified symbol.
Unkrnown tuee of GSD entrul G5

This message occurs when SDA encounters a type of global symbol
that it does not recognize, either in the SYS.STB file or in a
file specified in the READ command. The type of global symbol
definition GSD is represented by a byte. This message can occur
during either initialization or operation of SDA, and usually
means that the file being read has been corrupted.

INDEX

A

Abbreviated commands, 4-1

Access violation, 6-2

ACP queue, 5-26

Active processes, displayed,

Add symbols to table, 5-3

Analyzing system failures, 6-1

Ancillary control process queue
block (AQB), 5-26

Arithmetic operations, 4-3

ASCII text, and quotation marks,
5-3

Assigning values to symbols, 5-3

Asterisk (*), to examine running
system, 3-2

5-49

Bad page list, 5-33
Base, specification of numeric,
4-2
Binary operators, 4-3
Block type, 5-11
byte, 5-11
symbols, 5-12
Blocks, formatted, 5-12
Byte ranges, displayed as, 5-8
Bugcheck, fatal, 6-1
identifying, 6-6

C

Channel Request Block
Characters,
tions,
Colon (:),
Command format,
HELP command
Commands,
COPY, 5-2
DEFINE, 5-3
EVALUATE, 5-5
EXAMINE, 5-6
EXIT, 5-10
FORMAT, 5-11
HELP, 5-14
optional, to produce SDA
listing, 3-4
READ, 5-15
REPEAT, 5-17
SET OUTPUT,
SET PROCESS,
"SHOW CRASH, 5-21
SHOW DEVICE, 5-24
SHOW PAGE_TABLE, 5-29

(CRB), 5-24
in arithmetic opera-

4-3

in EXAMINE command,

4-1. See also

5-6

5-18
5-19

Commands, (Cont.)
SHOW PFN DATA,
SHOW POOL, 5-36
SHOW PROCESS, 5-39
SHOW STACK, 5-46
SHOW SUMMARY, 5-49
SHOW SYMBOL, 5-51

Compute, value of expression, 5-5

Conditions, and fatal bugcheck,

6-2

Contents, location displayed, 5-6

Controller data structures, 5-24

Copy command, 5-2

Creating,
symbols, 4-3

Current process,

5-33

5-19

D

Decimal, values displayed, 4-2
Debugging system failure, 6-6
Default file specification, for
system dump file, 3-1
Default radix, 4-2
Defective code, identifying and
fixing, 6-13
DEFINE command, 5-3
Device Data Block (DDB), 5-24
Device data structures displayed,
5-24
Device status information, 5-25
Device unit data structures, 5-24
Discontinue display, 5-10
Displayed,
active processes, 5-49
contents of location, 5-6
formatted block, 5-11
global page table, 5-31
hardware process context,
IRP pool, 5-36
nonpaged dynamic storage pool,
5-36
paged dynamic storage pool,
5-36
PFN data base,
physical page, 5-33
process regions, 5-6
process working set list, 5-40
software process control block,
5-39
stacks, 5-46
system regions, 5-6
system-wide interrupt stack,
5-46
Dollar sign ($), to indicate
foreign command, 3-2
Driver dispatch table (DDT),

5-39

5-33

5-24

Index-1

INDEX

Driver, finding, using DPT list, 6-9
calculating end of, 6-10

calculating offset into, 6-10
Driver Prologue Table (DPT), 6-9
DUMPBUG parameter, 2-1
Dump file,

copy of, 5-2

flag, 3-4

E
Equal sign (=), in expression, 5-3

Error messages,
initialization, 7-1
operational, 7-1

Escape key (<KESC>),

command, 5-17

EVALUATE command, 5-5

Evaluating expressions,

EXAMINE command, 5-6

Examine,
data structures, 5-19
location contents, 5-6
memory regions, 5-6
running system, 3-2
sequence of memory locations, 5-17

Exceptions, fatal, 6-2

EXIT command, 5-10

Expressions,
as command parameters, 4-2
as parameter to the DEFINE

command, 5-3

and REPEAT

5-5

F

Fatal bugcheck, 6-1
conditions, 6-2
Finding problem in routine, 6-10
Fixing, and identifying defective
code, 6-13
Flag, dump file and SDA command
execution, 3-4
Foreign command, invoking SDA
with, 3-2
Fork block, 5-25
FORMAT command,
Formatting blocks, 5-12
lists of blocks, 5-12
linked lists, 5-12
Free page list, 5-33

5-11

G

General purpose registers,
contents, 5-21

Global page table, 5-31
Global symbols, 3-4
and DEFINE command, 5-3
and READ command, 5-15
copying to symbol table,
displayed, 5-51
symbol table, 5-51
value displayed, 5-51

5-15

H

Hardware maintenance register
contents, 5-21

Hardware process context,

HELP command, 5-14

Hexadecimal expression, how SDA
evaluates, 5-5

Hexadecimal values displayed, 4-2

5-39

Identifying,
and fixing defective code, 6-13
bugcheck, 6-6

exception, 6-6
Illegal page faults,
Index number, 5-19
Inducing system failure, 6-15
Initialization error message, 7-1
Interrupt Dispatch Block (IDB),

5-24
I/0 request packet, 5-25
I/0 request packet pool,
Invoking SDA, 3-1
as a foreign command,

6-5

5-36

3-2

K

Key variables, checking values of,

6-12

L

Line of code, and bugcheck, /-1
Linked lists, formatting, 5-12
Linked structure of DPT, 6-9
List,
data structures, 5-24
process's hardware context,
Local symbol, displayed, 5-51
Local symbol value, displayed,
5-51
Location,
contents displayed, 5-6
examine by symbol, 3-4
parameters, 5-6

5-40

Index-2

INDEX

M

Mechanism vector, 6-3
Modified page list, 5-33

‘Moving process context to specific

process, 5-19
Multiple qualifiers, 4-1

N

Nested parenthetical expressions,

4-3
Nonpaged dynamic storage pool,
5-36

Nonprinting characters, represented

by period, 5-3

o

Object module file, 5-15

extracting global symbols from,
5-15

Offset, into code, 6-1

Omitted location parameter, 5-6

Operational error messages, 7-1

Operating system information, in

SHOW CRASH command, 5-21

P

Paged dynamic storage pool, 5-36
Page faults, illegal, 6-5
Page file quota, 3-1
/PAGE TABLE, in SHOW PROCESS
command, 5-41
Page table entries, displayed,
5-29
Parameter,
as file specification, 4-1
expressions as, 4-2

Parentheses, as special operators,

4-3

Period (.), as nonprinting charac-

ters, 5-3
PFN data base, displayed, 5-33
Physical page,
displayed, 5-33
information, 5-30
/PO, as EXAMINE qualifier, 5-7
/Pl, as EXAMINE qualifier, 5-7
Preserving a system dump file,
5-2
Printing,
both program and control
regions, 5-7
control region, 5-7
I/0 request packet pool, 5-36

Printing, (Cont.)
nonpaged dynamic storage pool,
5-36
paged dynamic storage pool, 5-37
program region, 5-7
summary of the pools, 5-37
writeable system region, 5-7
Problem, finding, in routine, 6-10
Process,
context, 5-19
control block (PCB), 5-19
header (PHD), 5-19
identification (PID), 5-19
information, in SHOW CRASH
command, 5-21
regions, displayed, 5-6
register contents, 5-21
Processor registers, loss of
contents during SYS$DMP.DMP,
3-2, 3-3

Q

Qualifier, 4-1
abbreviated, 4-1
multiple, 4-1

Quotation marks (" "),

ASCII text, 5-3

R

Radix operators, 4-2
Radix, specifying SDA use, 4-2
READ command, 5-15
to create symbols, 4-3
Reading dump file, prerequisites
for, 3-1
Register contents, 5-21
REPEAT command, 5-17
Return to interactive display,
in SET OUTPUT command, 5-18
Routine, finding problem in, 6-10
stepping through, 6-12
RUN command, invoking SDA with,
3-1
Running system, examination of,
3-2

around

S

Sample crash analysis, 6-9
Screen overflow prompt, and exit
command, 5-10
SDA, definition, 1-1
command format, 4-1
in site-specific start-up
procedure, 3-4

Index-3

INDEX

SDA, definition, (Cont.)
operation. See HELP command
utility. See HELP command

SET PROCESS command, 5-19

SHOW CRASH command, 5-46

SHOW CRASH display, 3-3

SHOW DEVICE command, 5-24

SHOW PAGE TABLE command, 5-29

SHOW PFN DATA command, 5-33

SHOW POOL command, 5-36

SHOW PROCESS command, 5-39

SHOW STACK command, 5-46

SHOW SUMMARY command, 5-49

SHOW SYMBOL command, 5-51

Signal vector, 6-4

Signal vector, examination, 6-7

Slash (/), used with qualifier,

4-1

Software process context, 5-39

Space, in expression, 5-3

Special characters, 4-3

Special operators, 4-3

Special register contents, 5-21

Special symbols, 4-3, See also

DEFINE and READ commands

Stack configuration for illegal

page faults, 6-5

Stacks, displayed, 5-46

Stepping through routine, 6-12

Step through linked list, 5-17

Stopping SDA, 5-10

SWAPFILES command procedure, 2-1

SYSSDISK default, 3-1

Symbol evaluation, 5-5

Symbols,
add to table, 5-3
assign value to, 5-3
defined, 4-3
global, 5-3

Symbol table, displayed, 5-51

System dump file, 2-1
calculating size of, 2-1
creating new, 2-1
default file specification, 3-1
reading, 3-1
saving, 2-1

System failure, 1-1

debugging, 6-6

causes while examining running

system, 3-2

inducing, 6-15

solving, 6-1
System map file,

SYS$SYSTEM:SYS.MAP, 6-1.

System parameter., See parameter

System process control block, 5-39

System region, displayed, 5-6
System-wide interrupt stack,
displayed, 5-46

T

Table of contents, SDA creates,
5-18

U

Unary operators, 4-2
Underline (_), 4-3
Unit control block, 5-25

\

Values, checking, of key variables,

6-12
Vectors, 6-2
mechanism, 6-3
signal, 6-4
Violation, access, 6-2
Virtual memory, and SET PROCESS
command, 5-19
Virtual page information, 5-29
Volume control block, 5-26

w

Writing output to a file, 5-18

Index-4

Please cut along this line.

VAX/VMS

System Dump Analyzer
Reference Manual
AA-J526A-TE

READER'S COMMENTS

NOTE: This form is for document comments only., DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

OOogdga

Other (please specify)

Name Date

Organization

Street

City. State Zip Code
or

— — — Do Not Tear - Fold Here and Tape

dlilgliltlall

_ — Do Not Tear - Fold Here

11

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS TW/A14

DIGITAL EQUIPMENT CORPORATION
1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

No Postage
Necessary
if Mailed in the
United States

