EK-KA882-TD-PRE

VAX 8800 System
Technical Description

Volume 2

FOR INTERNAL USE ONLY

Enaﬂuanw

EK-KA882-TD-PRE

VAX 8800 System
Technical Description

Volume 2

FOR INTERNAL USE ONLY

Prepared by Educational Services
of
Digital Equipment Corporation

Preliminary Edition, July 1986

Copyright Digital Equipment Corporation 1986
All Rights Reserved

The information in this document is subject to change
without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital

Equipment Corporation assumes no responsibility for any
errors that may appear in this document.

Printed in U.S.A.

Class A Computing Devices

Notice: This equipment generates, uses, and may emit
radio frequency energy. The equipment has been type
tested and found to comply with the limits for a Class A
computing device pursuant to Subpart J of Part 15 of FCC
rules, which are designed to provide reasonable
protection against such radio frequency interference
when operated in a commercial environment. Operation of
this equipment in a residential area may cause
interference in which case the user at his own expense
may be required to take measures to correct the
interference,

The following are trademarks of Digital Equipment
Corporation:

logo DECwriter RSX

logo DIBOL Scholar

DEC MASSBUS ULTRIX

DECmate PDP UNIBUS

DECset P/0S VAX

DECsystem—-10 Professional VMS

DECSYSTEM=-20 Rainbow VT

DECUS RSTS Work Processor

SECTION 6

CHAPTER 1

.
—

.
.
.
N =

.
N

.
.

.
.
N =

.
H W00 NNJOWU DB EwWwWwWwWwNNDN -

.
.

.
.

[l el e e i e I e I el el T T s e S S Sy Sy S R SV R W SR
* & o 9 L] [] * e
BWWWWNONNNNNDNNNNNNNDMOMNONNNODNONDNDNNDN N — -
*® o @ L)
w N =

= e b e b e e e
L]

GV UT OO Ut U b
L]

. o
“ e
NN
. e
N

L]
WNDNDNDN -
L]
w N =

CONTENTS

INSTRUCTION BOX (IBOX)
INTRODUCTION

OVERVIEW ¢ ¢ o « o o .
Dual-Processor Configuration . .
LOGIC ELEMENTS v ¢ v ¢ v « & & « .
Physical Implementation.
Instruction Buffer (IB).
Writing the IB
Reading the IB

IB Manager . . . e e e e o o
IB Read/Write Control o e e .

Computing Amount of IB Data Consumed

Decoder LogiC. . & « o« o v o o .
Decoder RAMs
Special Address Encoder. . . .

Microsegquencer Logic

Control Store.

. . .

Condition Code and Macrobranch Logic .

PSL CC BitS. v v ¢« v o« v o « .
CPU State FlagS. « v v o o & &
Interrupt and Processor Register
Interrupt Logic. «
Processor Register Logic . . .
File Address Generator
Gateway Control Logic.
Primary Functioms.
IBOX BUSES . & ¢ v v v ¢« ¢« v o o &
Cache Data Bus
IB Data Bus. . . e o o s o e
Cons Bidi Data Bus e s s s s s

IBOX RESIDENT INTERNAL PRIVILEGED REGISTERS

(IPRS) . -
VAX Architecture IPRs. o e o o
VAX 8800-Specific IPRs

NMI Interrupt Control Register (NICTRL)
Interrupt Other Processor Register (INOP)

Logic

. . .
. . .

IBOX MICROCODE VISIBLE ONLY REGISTERS. .
Clear Interrupt Other Processor (CIOP)

IBox Error Register (IBER) ., . .
IBER Usage ¢ ¢« « « o« .
IBER Bits <7:0>.
IBER Bits <11:08>.

Clear Error Register (CER) . . .

iii

I
-

—
I R I

bt e
L I B B e il e T e oo T T SR oy SO Sy SR P Y

bt e = |

COOCOOWVWWOWWYWOOWIJOAAAANUT U UN N

[
i

1-11
1-11
1-12
1-12
1-12
1-12

1-13
1-13
1-14
1-14
1-15
1-16
1-16
1-16
1-16
1-17
1-17
1-19

CHAPTER 2

.

NNNMNMONMNOMNNNMNNODNONNNNDNONDNONDNDNDNODN
.

BESB DR WWWWNNNOMNDNDNDNDODNDND NN
.

.
U UTUT s DWW N
.

.
(]

.
.

.

N~

« o o .
« o .
° o
N =

.
.
N N

.
]

¢ o
.

s ® » e
o e
w N -

e A

.
.
.
N =

BN NN
N U1 U e

CHAPTER

0 O

o o
.
Bk b W N

o o
.
.
N~

°
-

.
w N -

Ww W wwwWiw WWwwWwWwwwwwlwwiww
* e . L]

WWwhwwwwwwwwwuwwinNhnhNhdbdbdNo e+
. e] .

.
L .

JTUT U S W N e

.

.
.
.
N

.
.

.
N o

MICROCODE OVERVIEW AND PIPELINE CONCEPTS

CHAPTER SCOPE. & ¢ ¢« o ¢ o ¢ o o o o o o
VAX 8800 MAIN CONTROL STORE OVERVIEW . . .
Microcode Size and Allocation.
Microcode File Structure « « « &
Microcode Assembly . . . « e e e e e
Other Loadable Binary Flles. e e e s
Microword Format . . ¢« « « o ¢ o o o o =
Field Naming Convention. . . « . « .+ &
Field Functionality. . « « « « «+ « « .
Microcode Definition Files« . .
Field Definition File - DEFIN.MIC. . .
Macrodefinition File - MACRO.MIC . . .
Microcode Related Documentation.
MICROCODE PIPELINING CONCEPTS.
Pipelining Rationale . . . « « - « « . .
Pipelined Versus Nonpipelined Machines .
Performance Factors. . « +« « « ¢ ¢ o« =«

VAX 8800 PIPELINE CHARACTERISTICS.
CPU Clock Cycle. « ¢ « ¢ ¢ o « ¢« o« o o &
CPU Hardware Design. .« +« o« « « « « & .
Relationship Between Microcycles and CPU
FUNCELIONS.: « o« o o o o o « o o o o o o o
IB Decode Cycle. . ¢ « ¢ o o« o ¢« & o ¢ &
Canonical Time StateS. « « +« « o o o o
Definition of a Canonical Time State .
Overlapping Time States.
Time State Events. . . « + ¢ o o« o o o

IBOX FUNCTIONAL DESCRIPTION

CHAPTER SCOPE. + ¢ o ¢ o o o o o o o o o
CONTROL STORE LOGIC. ¢ o ¢ o o o o o o o
Control Store RAM Segments
Control Store RAM Addressing« .
Control Store RAM Data Latches
Loading the Control Store RAMs
Load Control Store Microaddress. . . .
Write Data to Selected Address
MICROSEQUENCING. ¢« & « ¢ o o o o o o o o
Microsequencer Hardware. . . .« « « « « .
Microbranch Slice (UBRS) MCAs.
Microtrap (UTRP) MCA« « . .
Microstack « « o« & o ¢ = = s s o o o
Normal Microcode Flow. . . « +« « o« o o o
IB Decoder Supplied Microaddress
Microbranching . « « o o « o o « o o o
Microbranch Conditions . . . « . .« .+ .
Microbranch Latency . « « « « & o «
Microsubroutine Calls and Returns. . . .
Normal Microstack Operation.
Microsubroutine Calls. . . « « « « « &

iv

T OO NN
1 [
W W W W N

th
-

1 | T I |
= O W WOWWOWOWIARNULTULIN N -

] WWWWWwWwWwWwWwwWwww
Lt et N I N T |]

wWwwwwwww
I
—
w

*
.
b lex o) I e) JE)|

WWWWWWWWWWUWWWwWwWWwWwWwWwWwWwwWwWwWwWwWwwwWwwWwWwWwwwwWwwwwwwww
L]

=B SSE R RE R REEDMLEEESEEDSEDLDDESEDNESEBAEEDADDMRWWWWW
L

e o o o . . e . o o
¢« o e e e o .

L]
DO U UV E D BB DR WWWWWNNDN M

L]
L] L]
NN

WWwWwwwwwwwww
e

VU0l U O s
L]

L]
AU WN -

.
w

.
N =

e o
w N =

.
N

o o o
=W N -

e o o o
U W N

¢ o o & & o o
C~JoaUMdbdwN -

. e o e o
[e)} G W N

.
N =

Microsubroutine Returns.
MIiCrotrapS v v v o o ¢ ¢ o o o o o o o o .
Microtrap Servicing. ¢« « « . . .
Disabling Microtraps . . . « v v o o o« .
Console Supplied Microaddresses.

MACROINSTRUCTION DECODING. +v & v & o & o o &

Initializing the IB (IB Flush)
Full IB Flush., « v « « « .
IB Flush Logic . + ¢« v ¢ v ¢ v v o o « .
Partial IB Flush v v o o + .

I-Stream Prefetching « « « . . .
General Description.
Refilling Cache. « « « . .

Loading the IB ¢« v v v v v o o &
IB Write Control . . . & v v v v v o o .
Cache Monitor LogicC. ¢« v v v o v o o o .
IB Full LOgiC. v v v ¢« v ¢ o o« o o o &
IB Load Example. . .+ ¢ v ¢« o ¢ o o o & &

Reading The IB . ¢« & v v v v ¢« v o o« o« o &
Pipeline Timing. ¢« ¢« ¢« v « « « .
IB Read Ports. + « « « . .
IB Data Aligner. . . . o o o o e s o
IB Data Formatter and Data Scrambler . .
IB Read Example. . . . « ¢ ¢« ¢ ¢« « « o .

IB Manager Operations. . . . « « « o« « o« .
IB Read Address LOgiC. v o o o o o o« .« .
Opcode Watcher Logic . & v ¢ o« & o o . .
Specifier Size Logic « . « « v « v « . .
Checking TEMPINC <2:0> Validity.
Decoder Stall. . + ¢« & ¢ & ¢ ¢ o« « o« o .
Modifying the IB Pointer
IB Read Address Logic Control Signals. .

Computing Number of IB Longwords Consumed.

Instruction Decoder Operation.
Pipeline Timing Considerations
Operand Specifier Entry Point Addresses.
Opcode Entry Point Microaddresses. . . .

Special Microaddresses . . . e o o & o
IBST MCA Signals Related to Instructlon
Decoding e e e e s e e e e e e

Decoder RAM (DRAM) e o o e s e o e o s
Optimized Instructions
Simple Move Instructions
Simple Branch Instructions

MACROBRANCH INSTRUCTIONS . & ¢ & & o« o &« « &

Branch Instruction BasicS. « « v ¢ @« & « &
Branch Instruction Classes « « + .
Unconditional Branches « « « o« « .
Short Conditional Branches « « . .
Long Conditional Branches.
Condition Code and Macro Branch Logic. . .

3-23
3-23
3-25
3-30
3-30
3-32
3-32
3-32
3-34
3-38
3-39
3-39
3-39
3-40
3-40
3-42
3-43
3-43
3-45
3-45
3-4s
3-51
3-60
3-66
3-73
3-73
3-76
3-78
3-81
3-82
3-82
3-85
3-91
3-93
3-93
3-96
3-104
3-111

3-118
3-121
3-128
3-128
3-129
3-129
3-129
3-130
3-130
3-135
3-141
3-147

Q000 00WW~N~I~IOHOOON

o o o
* e
whN =

e e o o
. e .
N =

L]
L]
U W=

WWWwwwwwwwwwww

NN I\IJI\J
| T T B
W owo-Jou & W N

W W
| AN N Y TR N NN N Y O B |
o= b O 00 00T W N k=

=W N O

WWwWwWwwwiwwwwwww

SPECIAL REGISTER ADDRESSING., . + « « o« « &
RNUM1 and RNUM2 Registers. . . « « « o+ &
RLOG Register. « « « ¢ o o ¢ o o o o o o
MDNUM Register . . +« ¢ « ¢ ¢« ¢ ¢ ¢ ¢ o« &

INTERRUPTS & 4 o o o o o s o o o o o o o o
Interrupt Requests . . . ¢ o « « « ¢ « &
Interrupt Servicing. . + « ¢+ ¢« + o + .+

CONSOLE GATEWAY CONTROL., . . « s e
Loading Control Store and Decoder RAMs .
Starting the Micromachine.
Data Transfer with Console Resident IPRs
Breakpoint Microtrap .« « « « o o o o o+ =
Console Data Parity Check.

FIGURES
Title

IBox Block Diagram . « o + o o« o o o o + &
NMI Interrupt Control (NICTRL) Register

Bit Map. « « « « « o = . e« e s e o o
Interrupt Other Processor (INOP) Register
Bit M@P: & v & ¢ ¢ o & o o o 2 s o s s o
IBox Error Register (IBER) Bit Map

Microword Bit Format « « « + « « .
Sample Microword Field Definiton -

I APORT Field. . . . « v v v v v v o o
Basic Time State Diagram
Basic Time State Diagram Pipelined CPU .
Basic CPU Timing « « « ¢ « o o o o o o o o
Microcycles/CPU Functions. . . +« +. « « «
IB Decode CycCle. « v o o « o o o o o o o =
Canonical Time States. ¢« + « + .
VAX 8800 Pipeline Time State Diagram . . .

Control Store Logic mep11F1oH Rlock Dia
Microaddress Bit Slices for Micromatch R
LOAadiNg.e « « o o o o« o o o o o s o o o o
Control Store RAM Load Path.« .« .
Microsequencer LOgiC v & v ¢ o o o o s o
Normal INEXT Field Addressing. . .« « « +
Microbranch Condition Selection.
Microbranch Latency. . « « o o o o o o o o
Microstack Operation + « « « « «
Microtrap Servicing. . « « « o o &+ o « o
Microtrap Latency . « « o ¢ o o o o o .

Instructlon Buffer Logic o v v ¢ v 4 4 .

IB Flush LOGIC v v o s ¢ o o o o o o o o &
IB Load LOQIiC.: v & o o o o o o o o o o o &

vi

Nonpipelined CPU.

3-150
3-150
3-150
3-152
3-153
3-153
3-153
3-158
3-158
3-160
3-160
3-160
3-161

2
o
L

e et
| T R |
UL W N

NN NNDNDNNNDNDNDND
HOYo~-Jou b wN

I-Stream Data Entering the IB.
IB Memory Unit Contents for MOVL Example
IB Read Port Example - Part 1.
IB Read Port Example - Part 2.
IB Data Aligner MuxeS. . . . + o o . . .
IB Data Aligner Output Example Part 1.
IB Data Aligner Output Example Part 2.
Opcode Mux Sources . . . o+ o & & o o . .

IB Data Formatter and Data Scrambler Logic

IB Read Example. « . . .
PCNC MCA Block Diagram . . . +
Simplified IB Read Address Logic
Instruction Decode Logic o o
Operand Specifier Entry Address Format .
Opcode Entry Address Format.
Special Microaddress Format.
Special Address Encoder Logic.
Decoder RAM Read Address Format.
Decoder RAM Output Signals
Pipeline State for a BRB Instruction . .
Pipeline State for a Successful BEQL
Instruction.
Pipeline State for a Successful AOBLEQ
Instruction.
Condition Code and Macro Branch Logic. .
File Address Slice MCAs.
Interrupt Logic Simplified Block Diagram
Gateway Control Logic. « o« . . .

TABLES
Title

Microcode Features
IBox Resident IPRS . . . v v v v & o . .
NICTRL Register Bit Descriptions
INOP Register Bit Description.
IBER Bit Descriptions.

VAX 8800 Microcode Files . . . «
Microword Field Definitions.
Macroexpression Classes. . .+ « o « .+ . .
Sample Register Transfer Macros.
Sample Cache Command Macros.
Sample CREG/IREG MacroS.
Sample Microbranch Macros.
Sample Miscellaneous Macros.« .
Plpellned/Nonplpellned CPU Comparlsons .
Pipeline Time States/CPU Events.

vii

3-44
3-47
3-48
3-49
3-51
3-54
3-55
3-57
3-61
3-69
3-74
3-83
3-94
3-96
3-104
3-111
3-112
3-121
3-123
3-131

3-140

3-145
3-148
3-151
3-155
3-159

Page

. 1-9
1-13
1-14
1-15
1-10

2-17
2-17
2-18
2-19
2-22
2-31

wwwwwwkru.iu&iu
[T I
OO0 ~JO U b WN

(98]
1
—
o

No.

Control Store RAM Segment Functionality. . .
Next Microaddress Sources. . . . o« e e e s
IBRTYPE/IBRMASK Microword Field Relatlonshlp
Microbranch Conditions . . . ¢ « « « « o o &
Special Microbranch Condition Bit Usage. . .
Microtrap Conditions and Vectors
Machine Check Microtrap Conditions
IBST and PCNC MCA Outputs After an IB Flush.

IB Flush Relative State Changes - IBST and PCNC

MCAS v« & o o o o o o s o o s a s s o s s o
IB Read Address/IB Read Port Source.
Data Aligner Control Signals/Data Selection.
IB Data Format Control Signals/Functions . .

3

IB Format Control Signals/Specifier Data Type.

IB Data Formatter and Data Scrambler Output,
Floating Point Short Literal Formats
Specifier Size Logic Control Signals
Slow Spec Size <2:0> Values. . . . « ¢ ¢ =« =
IB Pointer Source. « « .« « + = - o e e e e
Operand Specifier Entry Address Blt
Descriptions . . ¢ ¢ « ¢ ¢ o o o 6 0 s e e
Operand Data Size/Access Type Correlation. .
Operand Specifier Entry Address Symbolic
Labels .« v &« o o o o o s o o o o o o 5 e s
Opcode Entry Address Bit Descriptions. . . .
Special Microaddress Conditions.
Special Conditions Serviced During IB Decode
CYCleS v v « ¢« o o o o o o « o o o o s s o o
Decoder RAM Output Signal Descriptions . . .
Execute Code for a BRB Instruction
Microword CTL.BRB.MEM Event Timing
IMISC Field Settings for Macrobranch Recipes
IMISC Field Settings for PSL Condition Code
Recipes e & s s e e s s e e s e e
Execute Code for a AOBLEQ Instruction. . . .
IMISC Field Settings for State Flag Control.
Hardware Interrupt Priority Levels
Interrupt ID Codes/IPLS. « « « o« o o o o o o

EXAMPLE

Title

Sample Field Value Assignments - I _APORT . .

viii

.

SECTION 7 EXECUTION BOX LOGIC (EBOX)

CHAPTER 1 INTRODUCTION

1.1 GENERAL. . & v ¢ v 4 & 4 ¢ ¢ v o o o o o o o« o« o o 1-1
1.1.1 EBox Organization. . . v v o & ¢ & o o o o o o o 1=2
1.1.2 EBOox Operators . . ¢ ¢ & ¢ ¢« 4 ¢ ¢« o« o « o o o o« 1-4
1.1.2.1 Main ALU . & v v v v 4 v v v e 4 o o e e e e . 1-4
1.1.2.2 Cache Data Path (CDP) and Bus

Watcher/Decoder (BWD). . v v v v & o o o o« « . 1-4
1.2 SLICE MODULE (SLC1/SLCO) FUNCTIONS . +« +« &« &« « o . 1-5
1.2.1 Parity Generator/Checker (PAR) . +. v ¢« ¢ « « + . 1-5
1.2.2 Register File (RGF). v ¢ v v v v v 4 o« o « o« « . 1-6
1.2.3 Slow Data File (SDF) + ¢ ¢ v v ¢ & ¢ o « « o« « . 1-6
1.2.4 Program Counter (PC) Subsystem « « o . . 1-7
1.2.5 Cache Data Path (CDP). v v & v & ¢ v o v o o o o 1=7
1.2.6 Main Arithmetic Logic Unit (Main ALU)., 1-8
1.2.7 Bus Watcher/Decoder (BWD). +. +. v &4 4 & &« o o« « . 1-8
1.3 SHIFTER MODULE (SHR) FUNCTIONS . . v & &« &« &« o o« . 1-9
1.3.1 Shifter (SHF). . . v ¢ ¢« v ¢« 4 ¢ ¢ « v o o o« o« o« 1-9
1.3.1.1 Integer Data « « ¢« ¢« v v & ¢ ¢« ¢« ¢ o ¢ o o« « . 1-9
1.3.1.2 Floating-Point Data. . . « ¢« « v ¢« ¢ & o o« . . 1-9
1.3.1.3 Decimal String Data. . . ¢« « v « ¢ « & « « . 1-10
1.3.2 Floating-Point (FP) Support. . . « ¢« + « « . . 1-10
1.3.2.1 Priority Encoder (PEN) « « « . . 1-10
1.3.2.2 Shift ALU (SALU) v ¢ v ¢ v v o o o o o o o 1-11
1.3.2.3 Exponent ALU (XALU): &4 & ¢ o o o o o « o o« o 1-11
1.3.3 Multiplier/Divider (MULT). « ¢« v ¢« & & & + o o 1-11
1.4 EBOX REGISTERS . & 4 ¢ & ¢ ¢ & o o o o o o o o 1-12
1.4.1 POLR, P1LR, and SLR Internal Bit Formats . . . 1-13
1.4.2 VAX 8800-Specific Registers. 1-13
1.4.2.1 Machine Check Status Register (MCSTS). . . . 1-13
1.4.2.2 System Identification (SID) Register 1-14
1.4.2.3 Revision Registers (REVR1 and REVR2) . ., . . 1-15
1.4.2.4 EBox Parity Error Register (EBER). 1-17

CHAPTER 2 FUNCTIONAL DESCRIPTION

2.1 GENERAL. v & v & v v v ¢ o o o o o o o o o o o o« 2 2-1
2.2 SLICE MODULE (SLC1/SLCO) DESCRIPTION , ., 2-1
2.2.1 Parity Generator/Checker (PAR) . . ¢« v & o o« o« . 2-1
2.2.1.1 Parity Generator . . . ¢« v v v v ¢ & & o o « . 2-8
2.2.1.2 Parity Checker c e« o o + o . 2-8
2.2.1.3 EBox Parity Error Register (EBER). e o o o . 2-11
2.2,1.4 Carry Save LOGIiC + v & 4 v o ¢ o o o o o o o 2-12
2.2.2 Register File (RGF). A
2.2.2.1 Floating-Point Shuffle (FPS) e e e e e e e . 2-14
2.2.2.2 Memory Data (MD) Registers 2-16
2.2.2.3 Traps and Stalls . . ¢ ¢ & v ¢ ¢« o « « o o« « 2-16
2.2.3 Slow Data File (SDF) . . . ¢ ¢« ¢ & & « « « « o 2-18
2.2.3.1 WEIteS & v v v v v 4 4t e v e e e e e e e . 2-19
2.2.3.2 Reads. . . v ¢ v ¢ v v v 4 ¢ ¢ o o o o o « o 2-19
2.2.3.3 Stalls and Traps « « « « o« o « o« o« « o« o« « o 2-19

ix

o o o o e o ¢ e o o o

.

e o & ® » o & o © & & 2+
WWWWWwwWwwwwwwwwwwwwihhhbdNNbrNddbDNND

NN NOMOMNMNOMNONDNDNONNDNDNNDNNDNDNDND
L]

Z
o

b b b
[T T |
U W

1 [
W -3 U WN -

NITJ DN
] o 1
— O

OO U U UL D

e o o
e o o
= W N -

¢ o o o e & o @ e s o e
e o ¢ o o « . .
U W N [\ [\

.
WWWWWWNDN NN
L]
W N =

.
G W

Program Counter (PC) Subsystem . .
PC VA FA Multiplexer
Virtual Address (VA) File. . . .
Trap Shadow Logic. « « « « « .« .
Program Counter (PC)

Cache Data Path (CDP).« .
Cache Data Buffer (CDBF)
Cache Data Store (CDS)

Main Arithmetic Logic Unit (Main ALU). . .

ALU First Half (ALF)
Main ALU Functions &
SHIFTER MODULE (SHR) DESCRIPTION , .
Shifter (SHF). « « ¢ ¢ ¢« o o o o @
Shift Count Bus. . « « « « « « .
General Function Selection . . .
Logical Shift or Rotate.
Arithmetic Shift
Decimal String Conversion. . . .

~ Floating—-Point (FP) Support. . . .
Priority Encoder (PEN) MCA . . .
Shift ALU (SALU) « & &« o o o o &

" Exponent ALU (XALU). . . « . . .
Multiplier/Divider (MULT).
Data Interface Signals
Carry and Control Signals. . . .
Logical and Arithmetic Functions
Multiplier Operation
Divider Operation.

FIGURES
Title

VAX 8800 CPU Kernel Block Diagram. .
Execution Unit (EBox) Block Diagram.
Machine Check Status Register (MCSTS)

System Identification (SID) Register

Revision Register 1 (REVR1).
Revision Register 2 (REVR2).

¢ s B e

Slice Module (SLC1/SLCO) Block Diagram . . .

Parity Generator/Checker (PAR) Block
EBox Parity Error Register (EBER). .
Register File (RGF) Block Diagram. .
Slow Data File (SDF) Block Diagram .
Program Counter (PC) Subsystem Block
Cache Data Path (CDP) Block Diagram.
Main Arithmetic Logic Unit (Main ALI)
Block Diagram. . .+ « « « « o o o s
Shifter Module (SHR) Block Diagram
Shift MCA (SHFT) Logic and Gating
Block Diagram. « o o o o s o« o o o s

X

Diagram

Diagram

s - () .

2-22
2-22
2-22
2-23
2-24
2-31
2-31
2-33
2-41
2-41
2-44
2-51
2-51
2-55
2-55
2-58
2-58
2-58
2-60
2-62
2-70
2-78
2-86
2-86
2-86
2-86
2-95
2-96

Page

1-1
1-3
1-13
1-14
1-15
1-16

Shift Control MCA (SHC) Block Diagram.
Shift Count Bus Signal and Gating

Block Diagram.« e e
VAX-11 Floating-Point Formats.« .
Priority Encoder (PEN) Block Diagram
INMUX Mapping of the BPORT Input Data.
Shift ALU (SALU) Block Diagram
Exponent ALU (XALU) Block Diagram.
Multiplier/Divider (MULT) Block Diagram., . , .

TABLES
Title

Privileged IPRs Maintained by the EBox
POLR, PI1LR, and SLR Internal Formats
Machine Check Status Register (MCSTS)

Bit Descriptions e e e e

System Identification (SID) Register Bit
Field Descriptions e
Revision Register 1 (REVR1) Bit Field

Descriptions e e e e 4 e .
Revision Register 2 (REVR2) Bit Field
Descriptions« .

Parity Generator/Checker (PAR) Signal
Descriptions
A-Side Port Control.
B-Side Port Control.« .
Keepgoing Conditions for A CD PAR<3,1>
E_SHFT<4:0> Control of the EBox Parity

Error Register (EBER).
E_ALUCIK1:0> Control of the ALU
Source e s e e s e s e
Register File (RGF) Address Allocation
Register File (RGF) Signal Descriptions., . . .
Slow Data File (SDF) Signal Descriptions . . .
Program Counter (PC) Subsystem Signal
Descriptions 4 4 . v . ..
E_VAWRT and I APORT<7:6> Control of PC VA
Multiplexer Input Selection.
PC Multiplexer Input Selection PC Multiplexer
Select Signals « . .
Cache Data Buffer (CDBF) Signal Description. .
Cache Data Store (CDS) Signal Description. . .
CDS Output Multiplexer Control for Each Slice.
ALU First Half (ALF) Signal Descriptions . . .
ALU Second Half (ALS) Signal Descriptions. . .
A-Side Select (ASEL) Input Control Signals . .
B-Side Select (BSEL) Input Control Signals . .
Keepgoing/Stall Conditions
EALU<5:0> Field Control of the Main ALU. . . .

Carry-In

FA

xi

2-55
2-61
2-64
2-65
2-73
2-79
2-88

2-3
2-10
2-10
2-10

N
I

12

2-13
2-16
2-17
2-20

2-30
2-34
2-38
2-40
2-45
2-48
2-49
2-49
2-49
2-50

SECTION 8

CHAPTER 1

*
e
.

*
NN
.

T
.
S W N

shift Count Bus Signals and Source . . « .« « =«
ESHFT<4:0> Field Selection of Shifter
(SHF) MCA Logic Functions. . . « « « « « « o« &
ESHFTSEL Selection of a Result Output
to the BP BUS. + ¢« « o o o o 2 o o o o o o o =
EFPFORMAT<1:O> Field Control of Decimal

ng Data Conversions. . . . « « « « o« + o .
EPEFUNC Field Selection of PEN Functions . . .
Priority Encoder (PE) Results Passed
to the Shift Count BUS . 4 4 « ¢ o o o o o =
Increment Multiplexer Data (INCD) Selection
to the Incrementer (INCR). . . « « « ¢ o « o .
Sticky Bit Logic Input and Test Selection. . .
G<1:0> Guard Bit Input Selection « .+ &

Round Bit R<1:0> Input Selection
SALU and XALU Control Signals
from the Microcode e e e e e e e e

ESXALUFN Field Control of the SALU Functions .
Resulting Sign of the Fraction « . « .
SALU Selection of the APORT and BPORT Inputs .
A-Latched Condition Code Inputs to the Branch
MultipleXer. o« « « o« o o o o o s o o o o o o =
Microbranch Condition Code Description
ESXALUFN<5:3) Control of the General XALU
Functions. . . « « + e e e e e e & o o e
XALU Functions with E 5XALUFN<5 3> Equal

to 000 . . .« « ¢ & e e e e . s e e e e
XALU Functions with ESXALUFN<5 3> Not Equal

to 000 e e e e e e e e e e e e e
XALU Condition Code (XALUCC) Tests . « o « « .
M1 Inputs Passed to M3 . . « « « o « ¢ + o &
M3 Inputs Passed to the Adder B-side
M2 Cutputs to M6 or the XREG . . « « « =« « =+ -«
M2 Data Passed to the BP Bus by M6 . . . o e
Multiplier/Divider (MULT) Control Slgnals

from the Microcode . .
E MULDIV Field Control

MULT Logic Signal Port

L]
£ &
1 w

T e

-

e MULT Functions
1

unction Description. .

O
F

CACHE BOX LOGIC (CBOX)
INTRODUCTION

CACHE BOX SYSTEM DESCRIPTION ., « ¢ ¢« &« o o o
CBOX OPERATION &+« @« o o o o o o o s o s o o o o
CBOX CYCleS. & o o o o o « o s o o o o o o o
Ouiescent State. « « ¢ & « &+ o o 4 s e e e
Read CycCle + v ¢ o o o o o » o o s o s o o
Write CycleS « v o ¢ o o o o o o o o o s

The PIBA ¢ o« o o o o o o o s o o o o o o o

xii

1.2.1.5
1.2.1.6
1.2.1.7
1.2.2
CHAPTER
2.1
2.1.1
2.,1.1.1
2.1.1.2
2.1.1.3
2.1.1.4
2.1.1.5
2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.1.3
2.2.1.4
2.2.1.5
2.3
2.3.1
2.3.1.1
2.3.1.2
2.3.1.3
2.3.1.4
2.3.1.5

2
o

e
1
N

NDNONDNMNNDNDNNODDNDNDNDNDDN
|
HHHFHWYWOJMU & WN

N = O

N
|
ot
w

2-14
2-15

TB CyClesS. v v v v v v o o ¢« o o o o o
Refill Operation . « ¢« v v v o « o o o
Invalidate Cycle .« ¢ v v v v v o & o o &
CBox Stalls. o v v v & v ¢ 4 v ¢« o o o o

FUNCTIONAL DESCRIPTION

CBOX SUBSYSTEMS DESCRIPTION., v & o o o o o
Translation Buffer
VA Latch o . . v v ¢ v v ¢ v 4 e e e e

TB RAM . & & ¢ 4 6 4 6 o o o o o o o o

TB Match MCA . . . v v ¢ « o o« « « o o

TB RAM BYDPASS. ¢« « o 4+ o o« ¢ o o o o o &

PA Latch o ¢ v ¢ ¢ ¢ v v v v v o o o o &
CBOX SUBSYSTEMS DESCRIPTION. . 4 o o o o o« .
Cache. . . ¢ v v ¢ ¢ ¢ v v v v e e e e e
Cache Data Path Logic. . + ¢ v « o & o &
Cache Tag MCA. . . . v v 4 & v o « o « &
Cache Match MCA. . . . ¢ ¢ v v v v o « &
Cache Control MCA. v v ¢ ¢ ¢« v o o o o @

MD Number MCA. . ¢ ¢ ¢ ¢ o o & o o o o &
CBOX SUBSYSTEMS DESCRIPTION. &+ & v & o o o .
NMI Interface. e e s e e e o o
NMI Address/Data Sllces. e s e e e e e .

NMI Out Control. .« ¢« v v ¢ ¢ ¢ v « o o &

NMI In Control e e s e

NMI Arbltrat1on/Acknowledgment .« e s e
CBox NMI Registers . . . « ¢ v v « o« « &

FIGURES
Title

CBox —-- Block Diagram. . + o « « « o o o o &
CBox Cycle Timing. .+ + & « & & o« o o o o o

Translation Buffer -- Block Diagram.
Virtual Address Fields . . ¢« ¢« ¢« ¢ v « « « .
TB -- Write Sequence Diagram« .
TB Match MCA -- Simplified Block Dlagram .
PABH MCA -- Simplified Block Diagram
PABL MCA -- Simplified Block Diagram
PA Latch -- Logic Diagram. . . « « o o o« o &
PA Latch Bit Routing -- Refill Cycle
PA Latch Bit Routing -- VA Reference
Cache -- Block Diagram . . . ¢« « ¢« « & « « .
NMI Interface -- Block Diagram
NMI Address/Data Slices MCA -- Slmpllfled

Block Diagram. . « v o & & & o o« o o o o o
NMI Out Control -- Simplified Block Diagram.
Control Store Microword Format Diagram . . .
NMI In Control -- Block Diagram. . . « . . .

xiii

1-9
1-10
1-10
1-11

2-17
2-18
2-19
2-20
2-21
2-22
2-23

NMI Arbitration/Acknowledgment Control --
Simplified BlOCk Diagram ‘e

Timeout -- Flow Diagram. . « « « « o+ o« o &
CBox NMI Registers -- Location Diagram . .
Cache Register -- Bit Format
Cache Error Register Byte 2 -- Bit Format.
Cache Error Register Byte 1 -- Bit Format.
Cache Error Register Byte 0 -- Bit Format.

NMI Fault/Status Register Byte 1 --
Bit Format . « ¢ o ¢ ¢ ¢ o o« ¢ o o o o o @
NMI Fault/Status Register Byte 0 --
Bit Format . « ¢« ¢ ¢ o ¢ « o o o o o o o

NMI Error Address Register -- Bit Format .
NMI Silo Byte 2 -- Bit Format.
NMI Silo Byte 1 -- Bit Format.
NMI Silo Byte 0 -- Bit Format.

Cache TAG Initialization Register --
Bit Format . .+ « ¢ ¢ ¢ ¢ o « o o o o o o

Diagnostic ID Register -- Bit Format . . .
Diagnostic Control Register -- Bit Format.
TABLES

Title

CBOX Cycles - L] L] L] L © - . . . L Ld

PROTection Field <03:00> Coding and Access
BAllowed. « o o o« o o o o o o o o o o o o
TB Match MCA Operation Coding.
Cache Register - Bit Descriptions.
Cache Error Register - Byte 2 Bit

Descriptions . « « o « & + ¢ ¢ & o ¢ s o
Cache Error Register - Byte 1 Bit
Descriptions« e e e

Cache Error Register Byte 0 Bit
Descriptions . . .

L] L] - . L] L] . . L L] . .
NMI Fault/Status Register Byte 1 - Bit
Descriptions . o ¢ ¢« ¢« ¢« ¢ 4 o o o e . .

NMI Fault/Status Register Byte 0 - Bit
DesSCriptions . o o « « o o o s o o o o o @

NMI Error Address Register -- Bit
Descriptions . .« ¢« ¢« ¢ o ¢ ¢ ¢ ¢ o « o o
NMI Silo Byte 2 -- Bit Descriptions. . . .
NMI Silo Byte 1 -- Bit Descriptions. . . .
NMI Silo Byte 0 -- Bit Descriptions. . . .
Cache TAG Initialization Register -- Bit
DescCriptions o ¢ o« o o o o o o o o o o .
Diagnostic ID Register =-- Bit Descriptions
Diagnostic Control Register -- Bit

(VIS B} 4 @ s s s s s s s s ® s L] ® s £

Descriptions

xiv

2-49
2-51
2-52
2-53
2-55
2-56
2-57

2-60
2-61
2-63
2-65
2-66

2-67
2-68
2-69

SECTION 1

CHAPTER 1

S el Y Sy SR
. L] [[L)

AU W N
[]

¢ o e
¢« o
NN =
o .

W N =

.
.
.
N

.
[cANe) I i) Re) RNe Re e AR < A e) Mo e \WE'e Mo P NG NP N
L]
NN NN NNV U S DS D W N
L
w N -

= e e b b e b e e e el e et e e
L] .
L]
U W N

CHAPTER 2

NNONNOMNNOMNNONNDNNODNDNDNDNDNDN
*® & e o
B R E DR WWWWWWWN NN
.]]
N =

.
.
N =~

.
.

[] L]
. .
B W N

¢
* o
w N =

INTRODUCTION AND SYSTEM OVERVIEW

INTRODUCTION

MANUAL SCOPE
MANUAL ORGANIZATION.,

B s s

RELATED DOCUMENTATION. . .

SYSTEM DESCRIPTION .
PHYSICAL DESCRIPTION

FUNCTIONAL DESCRIPTION . .

Console Subsystem.
Central Processing
Instruction Box.
Execution Box. .
Cache Box. , . .
Clock Module . . .
Memory (MBox). . .

. . L]

Unit,

Memory Control Logic .
MAR4 Memory Array. . .

System Buses ., . .

VAX 8800 Memory Interconnect

VAX Bus Interconnect (VAXBI)
Visibility Bus (VBus).

VAX Bus Interconnect and

Power System Complex . .
876 Power Controller .
NBox Port Conditioner.
Module Power Supplies.
Environmental Monitoring
Battery Backup Unit. .

SYSTEM CONTROL

GENERAL.
SYSTEM CONTROL . . .
Software ., . . .
Hardware ., . . .

CONSOLE SOFTWARE COMPONENTS

Control Program. .

Special Control Program Featu

1/0

Multiple Command Streams
File Transfer Program. .
Logical Block Server Program .
Real-Time Interface Driver

CONSOLE SUPPORT MICROCODE
Console Support Microcode Structure.
CSM Data Transfers/Protocol. .
Console Support Microcode Entry Points

Xv

. 3

Module

(CSM).

.

(NMT)

res

Adapters

UL
WO WwJdWWN

| b et b e e
I

—
—

|

[|
NN U D e e

NN NDN
|

NN DN
.
.
N -

.
.
.
N

dud w000t

.

SRR WWWND N
L] .
l.._l

. « o
e o o o
.
[N

.
.

o o
°a ®
" .
W N =

« e o o
¢« o o
SwW N

NNNNMMNMMOMNONNMODNRNMNNNNNDNDONDDN
L]

CHAPTER 3

.
[VSIN \S I o

.
[NCI (SR SR SO G (SR S I
.

.

W wwwwww
.

.
.

.
.
GTUT U W N NN NN
* o
O W=

.
. o
. o
N =

. ®
o o e
. e
N =

.
WWWWWWWWWWWNNNNNNNNNNDND

.
L] L] L]
BB W W N
L]
[

WWWWWwWwWwwWwwWwwwwWwwwwwwwwww
« e ® . .
. ®
L
w N~

OPERATIONAL MODES. . « « s o o o o
Console Mode . . .
Program Mode . . « « « ¢ o o ¢ o

OPERATOR/CONSOLE INTERACTION
Console State Bits . . « « « « « &

Command Validity . « « « ¢« « « &
Saving Console State
Console Commands . « « ¢« & o o o o
Executing Console Commands . . .
Console/Operator Display

Local Display During Remote Operatlon. .

Console Command Language Display
System Logfile . . « « + « « « « &
Displaying the Logfile
Logical Terminals/Logfile Integ
Saving the Logfile
POWER-UP/DOWN SEQUENCING
Power On . o « o o o o o s s s = =
Power Fail . o « ¢ o o o « o o o
Powerdown. o« o« « o o o o o o o o
Warm Restart . . « o « « o o o o &

"1
[

SYSTEM OPERATION

INTRODUCTION . o o o o o o o o o o o
MICROCODE. « &« o« ¢ ¢ o s « ¢ o o o
Microcode Characteristics.
Functionality. . « « ¢ ¢ « « o =
Operation. . « « « o o o o o o
Structure. e e o o s o o e s e
Microcode Control. . . ¢ ¢ « - - -
Interrupt and Processor Register
Condition Code and Branch (CCBR)
Gateway Control (GWYC)
Microtrap (UTRP) . « .+ « « « «
Microbranch Siices (UBRS). . . .
Pipelining . « « « « « « o o o o &
MiCrOLYrapsS « « o o o o o o o o o @
Micromatch « « & « ¢ ¢ o o o o +
Stop on Match. . . « « « « &+ « &
Trap on Match.« e

MEMORY ADDRESSING AND READ/WRITE OPERATIONS.

Virtual AdAresSeS. « o« o o o o o
Layout . o « ¢« o o« o o« o o o o
Format « ¢ o« o o o o o o o o o o

Physical Addresses . . . « « « =«

Address Translation. . « « « « « =«
Page Table Entry . . . « « « «

Cache Operation. .« « « « & o« « + &
Translation Buffer . . . « « + &
Cache. v « ¢ o « o o ¢ o o o o
NMI Interfac€. .« « o o o o o o @

Xvi

Prompts

fv. oL
l—_z' L] L4
(INPR)

. . . .

.
W wWwwww
I

| T S B |
DO N ket b b b

WWWWWWwwWwwwwwww
[T R T T N N B

| l WWWwwWwwwww
o e el e B e | |
O UNUOOWOHAROAOOUTUTE WWWWW

L]
e

.
L]
[N XN}

WWWWLWwwwwwwwwwwww

L] .

[S I Y SN S SN N Nt~ SO UV R FE R 0%
.

B W W W W W N e e
.

. e
W N

e o °
" e o
.

.
»
°

B W N~

.
[

CHAPTER 4

.
.

.
.
.

W N =

L]
.]
U bW NN NN -

.
.
.

.
N =

.
.

L] L] L]
L] . . .
L] . .
NN

WRNNN =

e e R T~ S SN N N SO O S SO SO I S N
. . .
UL R PRPWWWWWWWWWWWN -
.

L]
=

Read/Write Operations.
Device Address Selection . . .

Transaction Significant Address Bits

INTERRUPTS AND EXCEPTIONS. . . .
Servicing. . . « « + +

NMI Interrupt Enable Register.

Types of Interrupts.
Servicing the Interrupt. . .
Priority Levels.

System Control Block {(SCB) Form

SCB Pagination
Offsetable Devices

at.

VAXBI Node Direct Connected Devices.

SCB Format
Machine Check Exception. . . .
Types of Exceptions. . ., . .

DIAGNOSTIC AND MAINTENANCE AIDS

INTRODUCTION ,
GENERAL. . + v ¢ v v v v v o o .
DIAGNOSTICS. © v ¢ ¢ o« v & o o .
Console Selftest
Microdiagnostics
CSM Commands . . « « « « . .
Status and Error Information
Micromonitor Error Messages.
Macrodiagnostics
Customer Runnable Diagnostics.
Auto-Test Mode
Menu Mode.
Remote Diagnostics
POWER/ENVIRONMENTAL SYSTEM . .
Module Placement Verification.
Module Key Test.
Module Placement

Power Monitoring/Error Reporting

Default Mode Error Reporting
Operational Error Reporting.
Voltage Margining.
MAINTENANCE AIDS . . « « « . . .
Machine Check Logout Stack . .

xvii

3-17
3-19
3-19
3-20
3-20
3-20
3-20
3-20
3-20
3-21
3-23
3-23
3-23
3-24
3-25
3-25

LN
LI O - T - S N
[U |

QO WWWO D WW W =

—

wWiwwwwww
I
N YU s W N

w
|
o4}

3-10
3-11
3-12
3-13

Title

FIGURES

VAX 8800 System Major Component Locations

(Rear View). . .

. L] . . .

Cardcage Module Layout (Front Vlew) e e s s e s

Simplified Block Diagram of the VAX 8800 System.
Simplified Block Diagram of the Console
Subsystem. « « « ¢ ¢ ¢ e e e e s e e e e e e e e
Simplified Block Diagram of Single CPU
Simplified Block Diagram of the CPU IBox
Simplified Block Diagram of the CPU Execution
BOXe o o o o o o o o o @ . . e o e e e o
Simplified Block Diagram of the CBox . e e . .
Simplified Block Diagram of the Clock Modulo . .
Simplified Block Diagram of the MBox
Simplified Block Diagram of the VAX 8800 Memory

Interconnect e 4 s e e s s s e
Simplified Diagram of VAX Bus Interconnect
(Maximum Configuration). . « « « « ¢ o « o ¢ « =
1/0 Interconnect and Adapters. . . . « « « « « =
NMI-to-VAXBI Adapter e e e e e e e e
Simplified Block Diagram of the Power

System Complex .« « « « o o o« o o o e . e e e

VAX 8800 System Hardware and Software Control

Components . « « « o« o o o & o s e e e e e e e e
Console Operational Modes. . « « « « ¢« « + « « &
Local/Remote Display Character Flow.

Simplified Pipelining. . . « « « ¢ « ¢ o« o « o =
Virtual Address Space Layout . . « « « « « «+ o =
Virtual Address Format . « « ¢ o« o o o o o o o
Physical Address Space Layout. . . .« « « « « «
MAP Enable Register Bit Configuration.
Page Table Entry Bit Configuration
System Space Virtual-to- Physical Address

Translation.

al-to-Physical

Process Space { R
Address Translation.
Process Space (Pl Region) Virtual-to-Physical

Address Translation. . « « « « o o o « o o ¢ s =
CBox Functional Components . . « « ¢ « « ¢ o o =
NMI Address Selection. . « « o o ¢ o o o o« o o o
NMI Address Bit Significance . . . « « ¢« « + « .
NBI I/0 Adapter SCB Vector Offset Format

. « o
n) ‘Tirt!

. .
o 1
Cga. 11 8]

. w . ? s e

xviii

L N I T I T R R |
o O 0O N O U W N

L SR Y Y SN S N N Y N I

Bottom-Up Testing.
Module Keying Test Slmpllfl@d Block Dlagram. .
Module Key Test Connections.
Margin Enable and Margin Hi Lo Registers ., , .
Machine Check Logout Stack « . . .
CBox Error Register.+ . « . . .
IBox Error Register. « v v v v o o . .
EBox Error Register.
NMI Interrupt Control Register
NMI Fault Summary. . . v o v o 4 o o o o o o .
NMI Silo Dat@. v v o« o o 4 4 v o o o o o v o .
NMI Error Address Register
Cache ON Register. v o v « . .
Machine Check Status
Revision 1/2 Registers

TABLES

Technical Description Manual Organization. . .
Related Documentation.
VAX 8800 System Physical Characteristics . . .
Cabinet Module Identification.
Power Supply Identification.
VAX 8800 Processor Functional Units/Data Bus

Descriptions
System Clocks. . . . ¢ ¢ v v v v v v e e e e
MCL Command Operations + v v o o « . .
NMI Function Descriptions.
VAXBI Function Descriptions. «
Optional VAX Bus Interconnect Adapters
NBIA Registers v v v v v v v v v o o
NBIB RegisSters . . . v v v v v v v v o o o o .
NBox Modules v v v v v v . .

Hardware and Software Component Description. .
Major Sections of CSM Code . . . + . o o o o .
Console Support Microcode Entry Points
Bit Examples . . v ¢« v v v 4 4w e e e e e
Console Command Overview o v o o« . .
Console Command Language Prompts
Module Power Supply Turn-On Sequence

VAX 8800 System Microtraps . . . + « o o o o .
Page Table Entry Bit Description
Translation Buffer Field Description
Hardware Interrupt Priority Level Assignments.
System Control Block Page 0 (000--1FF)
Machine Check Exception Examples

Xix

4-11
4-12
4-15
4-17
4-18
4-18
4-19
4-19
4-20
4-21
4-21
4-22
4-22
4-22

4-1 TEMP Register Addresses for Use with

Diagnostic CSM e e e .
4-2 Microcode Error Register Addresses .
4-3 Macrodiagnostic Tests.

EXAMPLES
No. Title

4-1 Sample Microdiagnostic Display Output
4-2 Sample Microdiagnostic Error Display
4-3 EMM Warning Message€. . « « « « o o =

SECTION 2 SYSTEM BUS SUMMARY
CHAPTER 1 MEMORY INTERCONNECT (NMI)

INTRODUCTION . & & ¢ o o o o o o o =
BASIC FUNCTIONS . . ¢ ¢ « o o o o o
NMI SIGNALS AND TIMING« . .
NMI ADDRESS SPACE. . . « « « ¢« « .« &
READ/WRITE TRANSACTIONS.+ .
INTERLOCKED OPERATIONS . . . « .« « &
BUS ARBITRATION., . &+ @« « o o o o o
INTERRUPTS . « o ¢ o o o o o o o o o
1 NMI Interrupt Priority Levels. . .
.2 Device InterruptS. . . + « « o « &
3 NMI Faults . . . ¢ < « + « « =+ =
NMI ERRORS« ¢ ¢ o ¢« o o o

Y e el e e]
¢« & & o s
WO OO I U WN -

CHAPTER 2 VAX BUS INTERCONNECT (VAXBI)

INTRODUCTION &+ o o o o o o o o o o o
BASIC FUNCTIONS., . ¢ o« & o o o o + o
VAXBI SIGNALS AND TIMING . . . « .+
VAXBI ADDRESS SPACE. . &« &+ &« o o o =«
Memory Address Space . .« « o o o o
I/0 Address SpacC€. « + « o o o o o
Address Selection. . . . o o o
BASIC VAXBI TRANSACTION FORMAT o e e
Command/Address Cycle. « « « « «
Embedded Arbitration Cycle
Data Cycles. . « ¢« ¢« « ¢« o o o« & &
Bus Parity . « « o o o ¢ ¢ o o o &
READ/WRITE TRANSACTIONS. . . « « .« .
Write Data Cycles. . . « .+ « .+ . .
Read Data Cycles . . + « v & « +« .
Nonexistent Addresses.+ . .

e o o .

NNNNNDDNNDNMNNDNNNDNDNDNDNNDND
PR .
oo UTUTUT VT UTL W BN~

e« o o o o o « e
* e o o o . e e
w N~ = W N - W N -

XX

O S
O oW

4 Stalls o ¢ v ¢ v v v v v e e e e
.5 Retries. « . v v « o v . .
BROADCAST TRANSACTIONS
INVALIDATE TRANSACTIONS.
INTERRUPT OPERATION (INTR, IDENT, AN
TRANSACTIONS v v v v v o o o o .

NN N
L] L]
Nele oaE Ie) We)Y

2.9.1 Interrupt (INTR) Transactions. . .
2.9.2 Identify (IDENT) Transactions. . .
2.9.3 Interprocessor Interrupt (IPINTR)
. Transaction.
2.10 STOP TRANSACTIONS. . . v v v o & . .
2.11 BUS ARBITRATION AND CONTROL.
2.11.1 Bus Requests
2.11.2 Arbitration Modes.
2,11.3 Arbitration Control.,
2,11.4 Extending ‘a. Transaction.,
2.11.5 Special Mode Functions
2.12 VAXBI ERRORS .. v v ¢ v v v v & o o
2.12.1 Parity Checking.
2.12.2 Transmit Check Error Detection . .

2,12.3 Protocol Checking.

CHAPTER 3 VISIBILITY BUS (VBUS)

INTRODUCTION . . . ¢ ¢ v v v o o o .
BASIC FUNCTIONS. . . & o « v o & o .
VBUS SIGNALS . & v v v ¢ o o o o o &
VBUS REGISTERS . . . « ¢« v « ¢ + . .
MODULE VBUS CHANNEL CIRCUITRY. . . .

Minimum Configuration.

Expanded Configuration
VBUS . ADDRESS/DATA SUMMARY.
VBUS CONSOLE COMMANDS.

. .

« e
.
N =

WWwwwwwwww
LI
~NOYUTO O w N~

FIGURES

Title

Z
(e}

Memory Interconnect (NMI). ., ., . . .
Basic NMI Timing «
NMI Signals. « « & . . .
NMI Address Space. . « v v & o o o .
NMI Address Bits +
NMI Address Selection. . . « « « . .
NMI Write Transaction.
NMI Read Transaction
NMI Write Transaction Types.

ol el e o J Sy W R
oo
O 00 ~dOo Ul N

Xx1i

lw(fwwwww
SO NN D

w W
=

1-10
1-11
1-12
1-13

N = O

NNNNP\)NK})NNNNN
et b O 0 SO W

N
|

—
> W

bt et el
1
U W N

NMI Read Transaction TYPeS .« « « o« « o o« =«
Basic NMI Arbitration Line Timing.
NMI Arbitrator Operation . .« + « « o« « o+ &

Detailed NMI Arbitration Line Timing (Typical)

MEMORY BUSY Timing . o « + & s o o s o o &
Fault Signal Timing. . . « « ¢« « ¢« « « « .

VAX Bus Interconnect (VAXBI)« . .
VAXBI Signals. . + + &+ o o o o o o o o o =«
Basic VAXBI Timing . « « « & 2+ s =« s + o =
VAXBI AdAressS SPaACE. « o o o o o o o o o
VAXBI Node Register Space. . . « o« o« o« o =«
VAXBI Required Registers . . e e e s s e
BIIC-Specific Device Reglsters e e e e e
VAXBI Read/Write Address Bits,
Basic VAXBI Transaction Format
VAXBI Write Transaction (Octaword Length)
VAXBI Read Transaction (Octaword Length) .
VAXBI Broadcast (BDCST) Transaction
(Octaword Length). . . ¢« « ¢ « « o « « o &
VAXBI Invalidate (INVAL) Transaction . . .
VAXBI Interrupt (INTR) Transaction
VAXBI Identify (IDENT) Transaction
VAXBI Interprocessor Interrupt (IPINTR)
TransactionN. « + + & & o ¢ o o o o o« o o
VAXBI STOP Transaction .« .« « o o o o « o o
Bus Arbitration Request Lines.
Arbitration State Diagram. . . . « « « +
VAXBI Arbitration (Example). . . « . . .

Visibility Bus (VBus) and VBus Control

{on CLK Module). + + & ¢ & o « &+ o o « o &
VBus Contrcl Register. « .« .« . .
VBus Access Register+ .+ .+ « .
VBus Channel in CPU Module (Minimum
Configuration) . . « o o e e s
VBus Channel in CPU Module {(Expanded

Configuration)

TABLES
Title

Glossary of NMI TermsS. . « ¢ o o o o o o o
NMI Signal Descriptions. . . . ¢« ¢« « « « .
I/0 Registers in NBI and Memory Controller
NMI Interrupt Priority Levels (IPLs) . . .
NMI EYYOYS . ¢ ¢ o o o« o o o o o o o o o

°

1-30
1-33
1-36
1-37
1-38
1-42

Page

1-3
1-10
1-21
1-39
1-43

N ==

WL;UW
w N =

SECTION 3

CHAPTER 1

NNNOANONU VNN UTATU U D W N

.« e . e

.
.
BwWWwwiwN -
.
=W N =

.

.
.
w N =

.
.

o b e e e b e b el bl e e e e e e
.

L]

N =

=

e o

~N
L]

U W

CHAPTER 2

.
.
.

NNMDONONDNDNNDNDN -~
L]
L]

.« e o
¢ e+ e o
. . .

B W N

DN N NN NN N
. .

NN N = e e e
N

Glossary of VAXBI Terms.
VAXBI Signal Descriptions.

VBUS Signal Descriptions
VBus Control Register Bit Descriptions
VBus Directory (Excerpt)

CONSOLE SUBSYSTEM
INTRODUCTION

GENERAL. e s e e
RELATED DOCUMENTATION AND REFERENCES .
FUNCTION AND PURPOSE e e o s
SUBSYSTEM COMPONENTS o e o
CONSOLE/VAX 8800 INTERACTION e e o o
Power-Up Mode.
Console I/0. . e e e e e e e e e
VAX 8800 State Description
Power Off.
Clock Stopped/WCS Invalid.
Clock Running/WCS Invalid.
Clock Running/WCS valid.
Console State Description.
CONSOLE SOFTWARE COMPONENTS. e s e e
Control Program.
Logical Block Server Program,
Real-Time Interface Driver
CONSOLE/VAX 8800 POWER SEQUENCE. . . .
Powerup (Refer to Figure 1-3). . . .
EMM/Console Initialize (Refer to
Figure 1-4).
Restart/Boot/Halt (Refer to Figure 1
Power Fail (Refer to Figure 1-6) . .
Powerdown (Refer to Figure 1-7). . .

.
.

.

.

FUNCTION DESCRIPTION

GENERAL. - L] L . L . L L] . . L]
REAL-TIME INTERFACE (RTI).

w W N N
U W ~ W

P et et ot fead et
L L L R O I I I e R T
BB BN N

COWVWOWWOWWOUIIANAOON

Pt
I el el B RS By S R SO
[

—

Programmable Peripheral Interface (PPI)

Port A00

Port B

pPort C

PPI Control.
Serial Line Port . .

ECPI Registers

Data Transfer and Status Registers

.

xxiii

OO0 WW Wk

I NN N

.

NN
|

Ll B |

s @ o o @
X T . . .

.
\Qm\lmtﬂvtb-b,nhwt\)i—'
.

°
N

e 0

R A Y T Y
o e e

L]
Fi,

g
.

NOVNRNNDNONONNODNNNNNDNN
.

BRB WWWWWWWWWwwww
L]

*
) .
e
(] .
+ 1)

? L] N
L] L]
W N NN b b e
L] L) .

L]
NSO W

NN NDNNNNDNDN
.

ULUT U U O R B WS D W i
; 7

.
.

[s e 0
. . .
e o Y

N

« e & & e
¢« o o .
S W N

CHAPTER 3

» e o e o o
. . > »
N

WwWwwWwwwwwwwww
. »
Ursds B WwwwwwN -~
L]
=W N

CGENERAL. .« o v o o o + o

CONSOLE INTERFACE. . « ¢ o« o« o +» o
Buffer Translate and Synchronize .
Console Address Decode . . « « + =
Console Sequencer (CSEQ MCA) . . .
Terminal Register/Interval Clock

Program Mode . « o o ¢« ¢ o o o o

Console Mode . + « « ¢ ¢ « o s =
Data Output Mux. . « « + ¢ o ¢ =« =
Control. Registers. . « « « + o o &
Visibility Bus Control
Console Interrupt Generation . . .
Power StatusS . « « ¢ o o o o e o

CONSOLE/VAX 8800 INTERACTION e o o o
Initialization . . .« « & « o o o &

. .

Lufh ON and Monitor System Power/Ra et

-; ’ EMM R o S e

:Console Poweron. . c v e e e e e

Load .and Run Console -Power-Up Software

Sequenced Power Appllcatlon. . .

- Initialize Hardware. . . « « + .

Test and Checkouts: e« o ¢ o & &

Load RAMs and DRAMs. v .« =

, VAX 8800 CPU Control w: . . « « .« .
, Console Sequencer. ' s .« o o+

. Control Registers. . . . ¢+ « .« .

Data Transfers o 6 i &% e e e e e

CONSOLE/VAX 8800 CLOCKS - AND TIMING .

One-MHz Clock e e e e e e s e e e

Interval Cloqk P

CPU TimeoutsS . « ¢ o« ¢« o« o =

Visibility Bus . .+ « o « « o o

DETAILED DESCRIPTION

e -

TERMINAL REGISTER. INTERVAL CLOCK
CONSOLE SEQUENCER MCA (CSEQ) . .
Console Strobe -Sequencer . . « « +

Read Acknowledge . .« « & ¢ o6 o o &

Console Write Sequencer. . . . « .+

Control Store Load Seguencer . .

CONSOLE/VAX 8800 REGISTER SUMMARY

~3
70-
-
M

. . .

Console Registérs (Refer to Flgure 3 -7). .

xXiv

(TRIC) MCA.

; VAX 8800 CPU Registers (Refer to. Flgure 3-8)
CONSOLE CABLING . . ’o ,-o e

« o o o

2-16
2-16
2-16
2-17
2-17
2-19
2-20
2-20
2-21
2-22
2-23
2=23
2-24
2-24

2-24
2-27
2-28
2-32
2-36
2-44
2-46
263
2-64
2-68
2-70
2-73
2-73
2-75
2-78
2-79

[|
QO ~d IO O O O O

.
I WWwwwwww
I

wWwww
(I]
NN

- 2
| o]
e .

1

el T = sy
I
~N AU W N

I

1
== O 00 ~J O U1 W W IN -

o

—

|
o
B> W N

NN DNNNODNDNNNNONNDNDNDDNDN
1

2-23
2-24
2-25
2-26
2-27
2-28
2~-29
2-30
2-31
2-32
2-33
2-34
2-35

FIGURES
Title

Simplified Block Diagram of the Console

Subsystem. + + ¢« ¢ v 4 4 e e e e e e e e e e
Modes of Operation « « ¢« v « « « . .
Power-Up SequUencCe. . + +v ¢ v ¢ o o o o o o o
EMM/Console Initialize .,
Restart/Boot/Halt. « «v v v v v v o o o o o o .
Power—-Fail Sequence. . . « v v o« o« o o o o o
Powerdown Procedure. . . . ¢ ¢ « 4 o« o o o 4 .

Console Subsystem Functional Block Diagram . .
PPI Port A Format. . . . & ¢ v ¢ ¢« ¢« ¢ « o o W
PPI Port B Format. . . + ¢ ¢ v ¢ ¢ ¢« o o o o .
PPI Port C Format. + ¢« v ¢« « ¢« « « .
PPI Control Register Format. . . . v o & o o+ .
ECPI Mode 1 Register v « v v o o o o .
ECPI Mode 2 Register . . « ¢ v v o« o« o & o o
ECPI Command Register. « ¢« « ¢« « « . .
Serial Line Port Data and Status Registers . .
RXDB, TXDB, and DBCS . . . v v v v ¢ o o o o .
Control Registers. . .« ¢« v v v v v o o o o o W
VBus Control and Access Registers.
System Power-0On Sequence . . v v o « o o o o &
Environmental Monitoring Module Reset

SEeqUENCe . ¢+ v 4 4 e e e e e e e e e e e e
Console Power-0On EventsS. « ¢ « o o &« ¢ o o o .
Serial Line Port Data Transfer Registers . . .
Load/Run Console Power-Up Software Events. . .
Sequenced Power Application Events
Console Interconnect Loopback Testing

Through Ports A, B, and C. . . .« v ¢ v v o + .
Console Interconnect Loopback Testing

Through Ports B and C. s e e s e s e
Interface Data Path Loopback Test

of Unbuffered Data o e s e .
Interface Data Path Loopback Test of Buffered
Data Through RXDB and TXDB . . + &+ &« « + « « &
Console Sequencer Enable Logic
Control Register Initialization.
Hardware Initialization Events
Test and Checkout Events
VBus Parity Bits . . . ¢« v & ¢ ¢ ¢ v ¢ o o o .
DRAM Address e e e e e e e e e e .
MNI Control Store Address. e o e s a4 e s e 4
RAM Loading Simplified Block Diagram
RAM/DRAM Loading EventsS. . . . v v v v & « + .
Console/Interface Timing Signals
Write Sequence . . v v v v ¢ « o o o o o o o .
Read Sequence (Setup). . . . ¢« ¢« « ¢ ¢« o « « .
Read Sequence (Data Out) . . . « v v o o o o

XXV

Page
. o 1-3
e . 1-5
. 1-11
. 1-13
. 1-18
. 1-20
. 1-22
.« . 2-2
e o 2-3

. 2-3
. . 2-6
. . 2-9
. 2-10
. 2-12
. 2-13

2-14
. 2-18
. 2-21
. 2-22
. 2-25
. 2-26
. 2=27
. 2-28
. 2-30
. 2-32
. 2-37

2-37

2-38
. 2-39
. 2-40
. 2-41
. 2-42
. 2-44
. 2-49
. 2-51
. 2-53
. 2-56
. 2=-57

2-64
. 2-65
. 2-66
. 2-67

2-36
2-37
2-38
2-39

N
|
NS
(]

| [T O B B
O 0~ O U W BB
NOYUT R W

WWWWWwWwWwwwdhNhNMNNONDNDND
| I B | |

DN
|
~N oYUl W N

o
I
e

tl\>l\)

wthwa
U W+

Simplified Diagram of Control Register 0 . .
Simplified Diagram of Control Register 1 . .
Simplified Diagram of Control Register 2 . .
Data Transfer Control Interface-to-VAX 8800
CpPUO., e e e e o o o o e e e s
Data Transfer VAX 8800 CPU-to- Console
Interface. . ¢« « o« ¢ ¢ ¢ ¢« ¢ e e e e o o o
1 MHz Clock Generation . . . « &« & o« o o =
Interval Clock Registers Bit Configuration .
Interval Clock Simplified Block Diagram. . .
Simplified CPU Timeout . . . « & « & « « o &
Clock Status and Timeout Register (CST). . .
VBus Control/Data Signals. . « « « & + + &+ &
VBus Logic Simplified Block Diagram.
TRIC MCA Block Diagram . . « « o s o o o o
TRIC MCA Pin Layout. . . ¢ + ¢« & & s =« s s &
TRIC MCA Body Drawing. « « « o o o o s o o
CSEQ MCA Block Diagram . + « o o o « o o +
CSEQ MCA Pin LayoOUL. + « o « o o o o o o« « &
CSEQ MCA Body Drawing. . « « o« « o « o o« o o
Console RegiSterS. « « o« o o o o o o s o o @
VAX 8800 CPU Registers . . . ¢« ¢« « « o« o « &
Console Subsystem Cabling Diagram.

TABLES
Title

PPI Port B Bit Description
PPI Port C bit Description . . . e e e e
PPI Control Register Bit Descrlptlon « o e .
ECPI Mode 1 Register Bit Description
ECPI Mode 2 Register Bit Description
ECPI Command Register Bit Description. . . .
Serial Line Port Data and Status Registers
Bit Description. . . « « o« ¢ o o o o « o o
Serial Line Port Data Transfer Registers

Bit Description. « « o o o o« o o o o o o o
Key Initialization Signal/Functions.
ICCS Bit Configuration + . « . .

TRIC MCA Pin AssignmentsS . « + o o o o o «
TRIC MCA Signal Descriptions . . . « « « + &
CSEQ MCA Pin AssignmentsS . « « + « « o o+ o o
CSEQ MCA Signal Descriptions « .+ &
Console Cable List ¢ ¢ v v o ¢« ¢ « o« o o & &

XXVi

SECTION 4

CHAPTER 1

—

.

—
.

= b e e e
L] ¢ e]

—

i e el e R e e S S S N T P U

CHAPTER 2

NN NDDNDNDNDNDNDNDNDND

* o e o e o . » e

DA UTUT U DD DD

¢ *» e e e+ e e s e s @
WWWwwwwwwwwwN

WWWWWWNDNNDNDN NN

" e o e
O Ul s W N =

.

.

o»
W W W N -

e o

. L[] . L] . .
—
.

G s W NN NN N

Db W N =

D WD N -

N =

—

N =

=W N -

[

POWER SYSTEM COMPLEX
GENERAL DESCRIPTION

INTRODUCTION

SYSTEM COMPONENTS. o .
876A Power Controller.
NBox Power Converter . ., o .
Modular Power System (MPS) o e
Environmental Monitoring Module.
Cooling System « o
Battery Backup Unit H7231 -M. . .

MECHANICAL CONFIGURATION . . ., o .
876A Power Controller. .,
NBox Port Conditioner.

MPS Modules (Regulators) and Cage

Battery Backup Unit.
Air Flow System.
POWER DISTRIBUTION
AC Power
DC Power
Controls and Breakers.
Controls
Circuit Breakers

AC POWER SPECIFICATIONS.
Electrical Requirements.
AC Power Sources
FAULT AND STATUS INDICATORS. . . .
876A Power Controller.
NBox . . . e e e s e e« 4 o
H7170 Bu1lt In Test Equipment.

ILM Built-In Test Equipment. .
Modular Power Supply Regulators.
Environmental Monitoring Module.
System Console Device.

FUNCTIONAL DESCRIPTION

INTRODUCTION . . v v v o o o o . .
POWER SYSTEM BLOCK DIAGRAM ., . . .
SIMPLIFIED OPERATION .,
876A Power Controller.
NBOX v v ¢ v v v v v v o o . . .
H7170 Power Converter.

Control Start-up Power Module (CSP)

Interface Logic Module (ILM) .

New Box Translator Module (NBT).

Modular Power System (MPS) . . .

Battery Backup Unit (BBU Model H7231- M)

BBU Control.

Environmental Monitoring Module (EMM).

Xxvii

.

| [
HHEONNO U b

—
[e el e T I e Y S Ry
11 |

—

INMNI\)NI\)NN(T)N{J(}JY
I
HOOMNMND U B WW -

N
L

AN O

wwwwwww
.
.

NN NDNDN
Y
s e

¢ o o

AU W

.
.

o e
.
N =

L]

NN DNDNDNDDN
L]
~N Oy Ul s b b

—

.
« ®
« o
N =

" e v & o
* s e v e

* e

W DO -

N =

i

—

« s e e
s o o &

. .
Db W=

N N S N Y N N Y S N - - T S = S N~ S S s S S e e A

WWWWWwWwWwwWwwWwWwwwwwwwwwwwwuwwwwwwwwwww

fei et et ped et pl = = OO O NOYOYUTUOTNTR W W WWNNDND
.

== OO QOO0

.
.
N

Power System Monitoring. . . « « ¢ « ¢« o o &
Key Monitoring . . .« « ¢« « « ¢« « « « + &
Regulator Control. . . . « ¢ ¢ o o « & o &
BBU Control. . « ¢« ¢« ¢« o v o« o o o o o o o
Air Flow Status. . . . « « « &
AC/DC LO Signals . . « « o « « «
Regulator Overtemp. and CPU Cabinet

)

.
.
.
.
.
.

Temperature (Thermistor Volts
POWER SEQUENCES. . . + + « « + &
Circuit Breakers . . « ¢ o o« o o o o o o o« =
Summary of Power-Up Sequence+ « « + &
SYSTEM POWER-UP FLOWCHART (FIGURE 2-5)
CONSOLE POWER-DOWN FLOWCHART (FIGURE 2-6). . .
POWER-DOWN/POWER INTERRUPT WITH BBU FLOWCHART
(FIGURE 2=7) « o ¢ o o « « o « & . . e e e
POWERUP FROM BBU FLOWCHART (FIGURE 2- 8) e e e

.

DETAILED DESCRIPTION

INTRODUCTION . & & o ¢ o o o o o o o o = .« .
BLOCK DIAGRAM OF THE VAX 8800 POWER SYSTEM . .
876A POWER CONTROLLER. . + ¢ o ¢ o o o o & o
NBOX POWER CONVERTER ASSEMBLY. + « « .
NBox Modules . . o o ¢ ¢« « ¢ o o o s o o
H7170. ¢ v v 4 e o o o o o o o o o o s o
CSP. &« ¢« o o o o o o s o o o o o o o s s s o
ILM. & ¢ ¢ o« o o o o o o o o s o o o s s
NBT Module e e e e e e e e
Modular Power System -- MPS s e 0 e e v e s
H7186 +5.0-Volt Regulator. « . .
Side Panel . . . ¢ & & ¢ s ¢ & o o s & =& =
H7186 Main Board + « « « « o « o o o o « =
H7187 -2.0-Volt Regulator. « « .+ .« .
H7180 -5.2-Volt Regulator. . .« . .« « ¢« « « .
H7180 Side Panel . . « « o o ¢ ¢ ¢ o o o =
H7180 Main PC BoOAGrd. « « o o o o o o o o
H7189 BIP Regulator. . . . ¢ ¢ o ¢ ¢ o« ¢ o« o
H7189 Functional Description . . . « . . .
MPS Regulator BITE Indicators.
Buses and Backplanes . . . « .+ ¢ ¢« ¢ o o o .
MPS Backplane., . .« + ¢ ¢ o & o ¢ o o o o o
300~-VAC BUSES. 4+ o o o « o o o o o o o o o
Environmental Monitoring Module.
8085A Microprocessor System. . . . « . . .
Electric Key Monitor . . .+ « « o « o o o«
Regulator Control Circuits . . .« « .+ « + &
Regulator On/Off Control Circuits.
Regulator Margin Control Circuits.
Status Registers . . « ¢« + ¢ ¢ o o o « o o =«
AC/DC LO CircuitsS. « « « « & o & . e e
Total-Off Control and Indicator Clrcults .

Xxgviii

I Wwwwwwww

[l |
OV U O WO 0O W

* e
e .
N U b W

.
W N = =
.

wwwwwww
.

(S St S N N N N
.

= e e

zZ
o}

= b e e e
| [
XU WN

[

|

=
[

=\

(]

1-11

o
|
=
N

NN DN
i
W N

TYYYY
1
QO ~J O Ul

1
O 000U W N

|
=
B WO

WWWWwWwwwwwwwwiww
|

3-15
3-16

Temperature Sensing Circuits . . , . . .
Voltage Measuring Circuit.
EMM/Console Voltage Tests.

Battery Backup Unit (BBU) pontrol e .
Battery Backup Unit (H7231-M).
Air Flow Sensing Circuit

COOLING SUBSYSTEM. . . . o W . o o . . . e

FIGURES

Title

VAX 8800 System Physical Layout (Front View)
VAX 8800 Power System Block Diagram (60 Hz).
VAX 8800 Power System Block Diagram (50 Hz).
VAX 8800 CPU Cabinet - Front View.
VAX 8800 CPU Cabinet - Rear View

876A Rear View Showing Receptacles

DC Power Section Block Diagram
VAX 8800 Power System Circuit Location
Diagram. . . o e e . . o e s e

876A Power Controller Front Panel e e e o
NBox Front-Panel Indicators.
Indicators for the Modular Power Regulators.
EMM Front-Panel Indicators

VAX 8800 Power System Block Diagram.
MPS Backplane Configuration (Rear View). . .
Battery Backup Subsystem Functional

Block Diagram. . . © e e e e e e ea e
EMM Functional Block Dlagram e v e e e e e
System Power-Up Flowchart.
System Power-Down Flowchart.,
Powerdown/Power Interrupt with BBU Flowchart
AC Powerup from BBU Operation Flowchart. . .

Power System Block Diagram
876A Front and Rear Panels . . . e e e e
876A Power Controller Block Dlagram. . e e
NBox System Interconnect
ILM PC Board Signals« « o o o« . .
NBT PC Board Signals
MPS Regulator Configuration.
H7186 Block Diagram. v v v « . . .
H7180 Block Diagram. & v o « « . .
H7189 Block Diagram. « v o o« o+ .
BITE Indicators. . . e e e e e e e s e e
Organization of the Power System . .,
MPS I Backplane.
MPS II Backplane « v v v v o . .
EMM Block Diagram.
Voltage Margining Circuit.

XxX1ix

3-53
3-55
3-58
3-58
3-59
3-63
3-65

3—17 AC/DC LO Timil’lg Diagram. 3_50

3-18 AC/DC LO Circuit « « 4 &+ & o o o o « o« o o« o« « o 3-51
3-19 Temperature Sensing Circuit. « « « . . 3-54
3-20 Voltage Measuring Circuit. . . . « « « « + « . . 3-56
3-21 Voltage Measuring Technique. « « « . . . 3=57
3-22 BBU Block Diagram. . .« « » » s o o o o o o« o« « o« 3-62
3-23 Air Flow Sensing Circuit . . « ¢« « « ¢« « « « . . 3-64
3-24 Air Flow Path. . « v v « « ¢ o s o s o o« « o« « o+ 3-66
TABLES
No, Title Page
1-1 Power System COmMpPONENtS. o« « « o o« o« o o o « + o« o 1-4
1-2 NBOX MOAULES +» v v « o o « o o o o o o o o o « o o 15
1-3 876A Power Distribution. « « + ¢« « « o . 1-15
1-4 VAX 8800 Circuit BreakersS. « « « « o o o o o o« o 1-17
1-5 H7170 Status Indicators. . . « « « ¢ « « « « o o 1-23
1-6 MPS Regulator Indicators . . e e e e o o o 1-24
1-7 EMM Magnetic Status Indlcator Codes. e« e e« . . 1-26
2-1 876A Power Distribution. « « « « + « o . . 2-4
2-2 Modules Using CSP Bias Voltages. . . « « « « « « o 25
2-3 Voltage RegulatorsS . .« o o o o o o o o o o o o o o 2=7
2-4 System Circuit Breakers. . . . « « « & « o« « o« o 2-17
3-1 876A AC Power Distribution . . . + « + « « ¢« « « . 3-3
3-2 NBOX MOAULES v v « v v o « o o o o o o o o o« o o « 3-8
3-3 CSP VOltageS .« « o« « o o o « o o o o o o o o o« o « 3-9
3-4 VAX 8800 MPS Regulators. . « « « « ¢ « o« « « « « 3-18
3-5 H7186 Side-Panel Components and Interconnects. . 3-20C
3-6 H7186 Main Board Circuits and Interconnects. . . 3-21
3-7 H7180 Side Panel Components and Interconnects. . 3-24
3-8 H7180 Main PCB Circuits and Interconnects. . . . 3-24
3-9 H7189 Module Functions . . .« + « & o« « « « « « « 3-28
3-10 H7189 Outputs. e e e e e e e 4 4 s . 3-31
3-11 H7189 Module I Circuits and Interconnects. . . . 3-32
3-12 H7189 Module II Circuits and Interconnects . . . 3-32
3-13 MPS Regulator Connectors+ + « « « « « « « 3-36
3-14 300~V Buses, Power Sources, and Loads. 3-40
3-15 Battery Backup Interface Signals 3-6l

SECTION 5 CLOCK MODULE
CHAPTER 1 INTRODUCTION

BASIC OPERATION., e e e s s s s 2 e e
BASIC COMPONENTS AND TIMING e s e e s s e e s s
CLOCK CONTROL (BY CONSOLE) . ¢ « « o o « o o o o o
CLOCK STALLS &+ 4 « « ¢ o o o o s o o o o o o s o s
CLOCK STATUS v v ¢« & ¢ o« & o o s s o s o o o 2 s

b b el et e
|
NN U W

ped
.
U W N

CHAPTER 2 FUNCTIONAL DESCRIPTION

2.1 DETAILED BLCCK DIAGRAM ., ., e e |
2.1.1 Oscillator v v v v v v v v .. . 2-1
2,1,2 ‘Phase Generator. e o o 2-2
2.1.3 Clock Control Logic. . . + . . o o .« . . e e e . 2=2
2.1.4 Clock Distribution Circuits. 2=2
2.2 CLOCK GENERATOR INITIALIZATION . L
2.3 SYSTEM CLOCK PERIOD CONTROL. . . s s s 4+ s+ s 4 + o 2-8
2.3.1 Phase-Locked Loop Operation. 2-8
2.3.2 Changing Clock Period. . . . e e e v e . . 2-11
2.4 SYSTEM CLOCK START/STOP/BURST CONTROL o s e e . 2-12
2.,4.1 Starting the Clocks. « . . . 2-13
2.4.2 Stopping the Clocks Unconditionally. . . 2-13
2.4.3 Stopping the Clocks on Mlcromatch/Scope Sync
Generation 2-16
.4. Bursting the Clocks., . . ¢ e e s e e e e e . 2-17

NN
.

D U
.

Single-Stepping the Clocks B
Single-Stepping the B CLK., « « . 2-18
SLOW CLOCK GENERATION AND CONTROL. . . e o e e 2-19

CLOCK CONSOLE COMMANDS . . + & v o . .+ . . e« . 220

L]
.
N U

FIGURES

No. Title Page
1-1 Clock Generator (and Console Interface)

on ClOCk MOdu1e. - - . . 1—2
1-2 System Clock Timing Diagram. « 1-4
1-3 Clock Control Register 1-8
1-4 Burst Count Register 1-9
1-5 Clock Period Register. 1-9
1-6 Clock/Timeout Status Register. 1-10
2-1 Clock Generator (Detailed Block Diagram) . e 2-3
2-2 Simplified Clock Frequency Control C1rcu1try e o« + 29
2-3 Simplified Clock Start/Stop/Burst Control

Logic. v v v v v i i e e e e e e e e e e e o, 2-14

4 Start/Stop/Burst Control Timing Diagram., 2-15
-5 Micromatch and Scope Sync Timing Diagram 2-16
6 Single-Stepping B CLK Timing Diagram 2-18
7 Slow Clock Timing Diagram. . . « + « « + 2-19

XXX1

TABLES
Title Page

System ClockS. . 4+ « & « & & o o o o o o o o o« o o1
Clock Control Register Bit Descriptions. 1-
Clock/Timeout Status Register Bit

Descriptions . . ¢« ¢ v v ¢ ¢ o o o « « o o « o o 1-10

Clock Generator INPULS « &+ + & & ¢« o o o o o o o+ » 2-4

Clock Generator OUtputS. « « + &« +« o o o o o o o o« 2-5
Clock Console CommandsS « « « « « o « o o o o o« o« 2=20

xxxii

SECTION 9 MEMORY SYSTEM (MBOX)

CHAPTER 1 INTRODUCTION

1.1 MANUAL SCOPE . . &+ ¢ 4 4 4 o o o o o o o o o o« o & 1-1
1.2 WRITING PHILOSOPHY , . v 4 4 o« ¢ ¢ o o o o o « o » 1=-1
1.3 MBOX FUNCTIONS v v 4 & ¢ & & o o o o o o o o o o o« 1=2
1.4 MBOX OVERVIEW. . & 4 & ¢ & ¢ ¢ ¢« o « o o o o o o o 1-4
1.4.1 NMI Signals Used by the MBOX + « ¢« « ¢« ¢« « « . . 1-6
1.4.2 MBox Operations. . . e + s e o o e o o e & o & 1=-5
1.4.3 Octaword Sort- of—erte T)
1.4.4 Command Bus Cycles e o o+ o e « « 1-6
1.4.4.1 Write Longword Bus Cycles (Table 1-3). 1-9
1.4.4.2 Write Quadword Bus Cycles (Table 1-5)., . . . 1-10
1.4.4.3 Write Octaword Bus Cycles (Table 1-6). . . . 1-11
1.4.4.4 Read Longword Bus Cycles (Table 1-7) 1-11
1.4.4.5 Read Octaword Bus Cycles (Table 1-8), 1-13
l1.4.4.6 Read Hexword Bus Cycles (Table 1-9)., 1-14
1.4.5 Memory Controller (MCL). « « ¢ ¢ & o o o o« « o 1-14
1.4.5.1 Command/Address Sequence . . « « « « « « « o 1-16
1.4.5.2 Normal Write . . . & ¢« ¢ & ¢« ¢ o ¢« ¢« o « « o 1=20
1.4.5.3 Read ¢ v ¢ 4 o v 4 o 4 o 4 s e s e e e e e . 1=-22
1.4.5.4 Masked Write . ¢« & & v 4 & ¢« o o o « o o « o 1=-25
1.4.6 Four-Megabyte Memory Array Board (MAR4). . . . 1-29
l.4.6.1 MAR4 Select and Command/Address. . . « « . . 1-30
1.4.6.2 Write Operation. . « « ¢ + o o « o o « o« o« o 1-32
1.4.6.3

Read Operation . « ¢« v ¢ v ¢ ¢ ¢ ¢ o« o o« « o 1-33

CHAPTER 2 MEMORY CONTROLLER (MCL)

DFA OVERVIEW (Figure 2-1). +« &4 v ¢« & o ¢ o o« « « « 2-1
Command/Address CyCle. « v v ¢ o« o o o o o o o o 2-1
Write Data Cycle(S). ¢ v v ¢« ¢ ¢ o« o« o o o« o« o « 2=5
First Read Data Cycle. « ¢ v ¢ ¢ ¢ o o o o o o o 2-7

2-8
2-9
2-9

.
)

"Next" Read Data CYCleS. v o o « o o o« o o o o @
NMI Interrupt. . . ¢ ¢ ¢« ¢ ¢« ¢ o ¢ o o o o o o =
NMI Memory BUSY. « ¢ « o o o o o s o o s o o o
Single-Bit Error Correction During
a Masked Write . . . 4 ¢« v 4 ¢« « 4 & « & « « « 2=10
CSR Reads. e e e 4 e s e s e e o o 2-10
DATA/ADDRESS (DAD) MCAS e e o e e & & s e o o o 2-10
DAD POrES. v« o o o o o o o o o o o o« o o o o 2-13
NMI Writes to MEmOry . + o ¢ « o « o« o o o« « o 2-13
NMI Reads from Memory. . c ¢ o « o o o o o 2-13
Masked Writes Requiring Slngle Bit
Error Correction . . « ¢« ¢ v ¢« ¢ ¢ o o« o« « « o« 2-14

DO NN
L]

e e e =
L]

NOU R WN

* e * e
" e .
o]

NDNNNDNDNON
.
NN

.
=W N

.

2.2.5 Error-Free Masked Writes . . + ¢« ¢« ¢« « o« « «» « 2-15
2.2.6 Decode RAM Addressing. « + « o« « o o« o o« o« « o« 2=15
2.2.6.1 Initially Loading the Decode RAM 2-15
2.2.6.2 Reading CSRL . . &+ v & &« & & ¢« o o o o« o « o 2-15
2.2.7 CSR Reads to the NMI . . . 4« & ¢ ¢ o o« « « o« o 2-16
2.3 FUNCTION (FUNK) MCA. .+ & ¢ ¢ o o o o o o o o o o« 2-17
2.3.1 Function Field Parity. « « o o« o« ¢ o o o o « o« 2=20

xxxiii

DDV NRODNMNNODNODMNDNDODNNODNODNODNNNDNDNNNNNDNDNDNDNDDDNDDNDNDDDNDND
. e e e & o o o o
B SRR R RBBBREBWWWWWWWWWWWWWWWWWWWwW
(] ® & ¢ o o o o

e o
« o o
= w N -

bt bt et e b b = WD 000000000 -IOYNUWN

Do WwpH+HO
.

e & o

©

.
.
0
[N e

.
.
.
N -

.
.
.

v e
« . .
VU b WD
.
N =

.
-

N
S
Ul
N

N
.
1Y
.
w
.
W

2.4.5.4
2.4.5.5

2.4.5.6

.
.

.
.

NelNo o R NIRN RS)
.

.
N~

.

DN NN NN NN
(] L]

DT U DD
.

.
.
|—

N =

Function Decoder . . . s o & o s o s
NEW CMD EARLY/NEW CMD LATE . .
Read Lock Function
Write Unlock Function.
Lock-Timeout Counter
Block Command. . « « +« 4« « « o
Write Sequence Fault . . . ¢ . « + « + .

Write Longword to Memory . . .« « « «

Write Longword to CSR. « . + & & &« «

Write Quadword . . ¢« o« ¢ o ¢ ¢ o o o

Write Octaword . . ¢ ¢ v ¢ ¢ o o o o =«
NMI FAaultsS o« o o o o o o o o o o o o o o
NMI Confirmation . « o« ¢ « ¢ o o « o o @
NMI DEAD v & 4 ¢ o o o o o o o s o o o =«
CSRs {Figure 2-4}.
Read/Return and Read/Contlnue (Flgure 2-

MCL Immediately Gets the NMI

MCL Waits for the NMI. . . i &
MRM Hold Command (Figure 2-6).
Force One Cycle (Figure 2-6) . . . « «

ARBITRATION/ID (ARID) MCA. . .+ ¢ « o o « &

NMI Data Parity (Figure 2-7) . . ¢« « « .
Parity IN. o o o o o o o o o o o o o &
Parity Out . . & ¢« v ¢ ¢« & ¢ o o o & &

NMI Function/ID Parity (Figure 2-7). . .
Parity IN. o o o o o o o o o o o o o
Parity OUt & & ¢ & ¢ o o o o o o o o =

Fault Detect (Figure 2-8).+ . .

NMI ID/Mask (Figure 2-9) . . . + ¢« « « &
ID/Mask IN ¢ ¢« ¢ ¢ ¢ & o o o o o o o

ID OUL & ¢ & o o ¢ o o o o o o o o o
Arbitration/Hold Lng

s] s s s s s

Memory Gets the Bus R;ght Away -
Longword Read. . . . o e e e
Memory Gets the Bus nght Away
Octaword Read (Figure 2-11). . . « . .
Memory Gets the Bus Right Away
Longword Read Back-to-Back with
Another Read Function. . . « ¢« « « + &
Memory Gets the Bus Right Away -

Hexword Read « e e e e .
Memory Does Not Get the Bus Right Away
Longword Read. o e e e o

Memory Does not Get the Bus Right Away
Two Longword Reads Back-to-Back
or an Octaword Read. . .« + ¢« « « & « &
Interrupts (Figure 2-12) . . « « « « + &
CSRs (Figure 2-=13) 4 v & o« & « o & o o &
CSRO . & v & & ¢« & o o o o o o o s o
CSR3 & 4 v ¢ 6o & ¢« o o s s o o o o o
Memory Busy (Figure 2-14). . . « « .« « .
Clocks and Clock Control (Figure 2-15) .
MDP OVERVIEW (Figure 2-16) . . + « « « «
MDR Address ITn ., . « « .

XxxXiv

2-46
2-47
2-49
2-49
2-49
2-49
2-50
2-54
2-54

MDB Address Out. .
MDB Data In. . . .
MDB Data Out . . .

L]
OO U D WN

Data Parity. . . .

CSR Reads.

Address Read Port.
Data Read Port . .
W Write Port . . .
C Write Port . . .
CSR Logic.

NNMNNDNONNONNDNDNNONNNONNNODNDNNODNDNDND
*
Nddoooooonu Ut Ul

« .
. .
Ol W N

L]
—
.

—

Buffers Empty. .

Data Read Operation.
Masked Write Operation

Write-Enable and Bad- Data BltS

MEMORY DATA BUFFER (MDB)

MEMORY DATA BUFFER CONTROL
Loading Data into the MDB.
Normal Octaword Write With X and Y

a Correctable Error.
an Uncorrectable

(MDBC) MCA.

.
.

O ONOUIS WN

= O WD WD D O WO OO

. o
SO OO Css o

.
L]

b e
L]

NN NNONNNODNONNNDNNNDNONNONNONDNONDNDNDND NN
w N~

2.7.1.2 Normal Octaword Write Wlth Data Already
in the X or Y Buffer
2.7.1.3 Masked Write With No Errors.
2.7.1.4 Masked Write With
2.7.1.5 Masked Write With
2.7.2 Unloading Data From the MDB.
2.7.2.1 General.
2,7.2,2 Detailed
2.7.3 Y Out Select Logic . .
2.7.3.1 General.
2.7.3.2 Detailed
2.7.4 Internal Error, Write Decode
and Clocks
.8 DATA CHECK (DCHK) MCA .
.8.1 Syndrome Generate. .
.8.2 Error Check.
.8.3 Error Status ., . . .
.8.4 Serializer and CSR2. .
.8.5 Diagnostic Mode (Figure 2 28).
.8.6 Reset and Clocks (Figure 2-28)
.9 MRM OVERVIEW (Figure 2-33) ., .
.9. NAB Board Select

NAB Command Field and Parity
MDB Address Selection. . . .
Internal Error
MDB Write-Data Load.
Octaword Writes.
Read-Data Cycle(s) . + . . .
Masked Writes.
CSR READS.

MEMORY SEQUENCE CONTROL (MSC) MCA)
MSC Buffer Control (Figure 2-35)

Buffer Control Operation .
AMRM BUSY REQ.
A CMD PROC START

XXXV

2-54
2-54
2-56
2-56
2-57
2-57
2-58
2-59
2-59
2-61
2-62
2-62
2-63
2-64
2-66
2-67

2-74
2-76
2-78
2-79
2-80
2-80
2-82
2-83
2-83
2-84

2-87
2-87
2-89
2-89
2-92
2-95
2-95
2-98
2-99

2-104
2-105
2-105
2-106
2-106
2-106
2-106
2-107
2-108
2-108
2-109
2-109
2-112
2-113

[\
-
o

L] *
e el
RN

e o e o

.
e b b e e
OO0 OOOOOOOOO

NNV NNNNNNNODNNNNNONNNDNDNDDND
. .

.
(]
(]

2.11

2.11.1
2.11.2
2.11.3
2,11.4
2.11.4.1
2.11.4.2
2.11.5
2.11.6

2.12

MO NN N

L] . .] []
= b e
NDRNN N NN

. e & o o

NN NNDNN
L]

ot bt b= b e e 2 e R e

WWWWWwWWWwwWwwwwwww

N

c & o @
* e .
N N~

—WOWWOWOJdIJaUuundswbwwiddN

O e o

« o ¢ o ¢
. o
N =

o e o o
.
[\] N =

~N O UL W

READ CONTROL SEQUENCER (RCS) MCA . .

O Ut > W N

.
.

ot

N

R R WWWNhDNDNDNDNDDND N

.

o o
. .
N =

BNUM Probe Buffer and Error Logic

(Figure 2-=36). ¢ « ¢ o o o o o o o o o =
Probe LOGiC. + « ¢ « o« ¢« o o o o o o &
Error Logic. . « « « . . . e e e

Command/Address/Size Buffer (Flgure 2-37)

Command Channel. . « ¢« ¢ o« ¢ « o o o =
Address/Size Channel . . . « .« + « « .
Size Logic (Figure 2-38) . . . « « + « &
Starting Address Logic (Figure 2-40) . .
Initial Starting Address . . .« « « « o
Address Incrementation . . « « ¢« « o .
Mask Address/Size Buffer (Figure 2-41) .
Write Command Logic (Figure 2-42). . . .
Write Machine. . + + +« ¢ o« ¢ ¢ o o o
Write Command BitS .« « ¢ o ¢ « o o o
Masked-Write Logic (Figure 2-43)
Command Done Logic (Flgure 2-44)
BMSC PRE CMD DONE., . « ¢ ¢ ¢ & « o o
BMSC PRE MASK DONE . . ¢ ¢ o o o o o
Command Parity e+ e e e s

MEMORY SEQUENCE CONTROL 1 (MSCl) MCA . . .

Mask Store (Figure 2-45) . . « « « « « &
Select Out Buffer Control (Figure 2-46).
Read Buffer Control (Figure 2-47). . .

MDB Address I/0 Select Logic (Figure 2-48)

MDB Address In Select Bits . . « . « =«
MDB Address Out Select Bits. . « « « =
Error Address Pointer. . . « « « ¢ o o =«
BMRM INVERT ADDR4. e o o

MEMORY ARRAY SEQUENCE CONTROL (MASC) MCA
(Figure 2-49). .« o o ¢ o o o o o o o o o o

Command/Address Parity . . « ¢« « « « + -
Force Parity Error e o e o s
Board Number (BMAS BNUM<K2: 0>). e e s s e
Send No Command. « « « o« « o o o o o o o
MASC EmMPptY « « ¢ ¢ o o o ¢ o s o s o =+ o
Board Select (BMAS BD SEL<2:0>).
Command Accept (BMAS CMD ACPT) and Board
valid (BMAS BD VALID). . . « « « &

Power Control (Figure 2-50). . « « . . .
CSR Control (Figure 2-51).
BMRM EN SERIAL RD. . « ¢ ¢ o o o« o o
BMRM SERIAL RD<2:0>. ¢ o « o o o o o o
AMRM CSR WRITE . & ¢ ¢ ¢ o o o o o o
ARCS FORCE CMD ACPT. . « o o o o o o o
AMRM MPR DATA SEL. ¢« ¢ ¢ o o « o ¢ o
BMRM FAKE CMD ACPT e e o e e
Read Command Bits (Figure 2- 52) « o v e
AMRM READ CMDKO> . .+ & o « o o o o o
BRCS READ CMDK1I> ¢ & &« o« ¢ o o o o o
Board Select/Enable (Figure 2-52). . . .
Board Select . . ¢« o o o ¢« o o o o o
Board Select Enable., . . .« .« + ¢ + « =

XXXVi

2-113
2-113
2-116
2-116
2-116
2-118
2-118
2-120
2-120
2-124
2-124
2-126
2-126
2-128
2-129
2-131
2-131
2-133
2-133
2-133
2-134
2-137
2-139
2-139
2-139
2-142
2-143
2-143

2-143
2-143
2-145
2-145
2-145
2-146

2-146

2-146
2-147
2-147
2-149
2-149
2-149
2-149
2-151
2-151
2-151
2-151
2-151
2-151
2-151
2-151
2-153

2.13.5
2.13.5.1
2.13.5.2
2.13.6
2.13.6.1
2.13.6,2
2.14
2.14.1
2.14.2

CHAPTER 3

“ e .
« v e
=W N =

.
N

Wwwwwwwww
. L]

.
WWN NN~

.
.

o e
¢ o

.
.

.
LWWWUWWWWwWWwWwwWwWwWwWwwWwwwWwwWwwWwwwwWwwwwwwwwwww
. o . . .
QOO UEBRDBERERRWRWWWWWWWWNNNNNNDND N —
. ¢« o . .

« o
¢ o . . .

.
.

. e L)
e o

WWWWWWWWURLWWWWWwwWwWwWwwWwwwWwwWwwWwwWwwwWwwwwwwww
L] .

L]

N -

Read Data Ia 5Signals (Figure 2-52) . .
AMRM DRIVE NEW DATA. . & v v v o o o .
BMRM NAB GATE. . . « « +
RCS Full/Empty Status (Figure 2 52). .
ARCS FULL. . . + . v v v v v o o o .
BRCS EMPTY e e s e e 4 e
BATTERY BACKUP UNIT (BBU). s e s s e e s
Loss of Power. . . . ¢« ¢« v v v v o . .
Return of Power.

FOUR MEGABYTE MEMORY ARRAY BOARD (MAR4)

VAX 8800 ARRAY BUS (NAB) . « v v o « o« .
Signal Clocks. . + v v v v v v v o « .
Longword Write Timing.
Longword Read Timing
Octaword Read Timing . .

MAR4 OVERVIEW.
Write Operation (Figures 3-
Read Operation (Figures 3-4 and 3-6) .

MAR4 DETAILED DESCRIPTIONS . . .« « v . .
Clock Logic. « v ¢ v v v v v v v o o .
AMBARRAY Banks . . v v v v v 4 o o o .

Array Bank Components.
Data Flow. « ¢« v v v o . .
Array Command Sequencing
Array Refresh Sequencing
Battery Mode
Cold Start ¢ ¢ v v v v« v o .
Array Bank Differences
Input Parser . . . e e s . o e s
Command/Address Parlty Check o v e
Write Inhibit.
Data Ready Done. . . . « v « v o o .
MAR4 Board Selection
Generation of Array Bank Signals , .
Array Not BUuSY . + « ¢ v o & o o 4 .
Battery Mode
ECC/DPARITY. & v v ¢« v v v v o o o o .
ECC Check Bits
Write Inhibit.
Write Data Parity Check.
INT BAD DATA . + ¢ 4 ¢ & o o o o o .
Data Output Control.
MAR4 Read Enable
Bank Select. e e e s+ e s
MAR4 Data Transfer Enable. e e e e
Control of Read Data Transfer. . . .
DRDY SNC CLK . . . ¢« + v v « v o . .
Battery Mode . . . « « . + .+ .+ . .
Refresh.,
Normal Mode.
Battery Mode

.
.
.
.
.
.
.

XXXvii

2-153
2-153
2-153
2-154
2-154
2-154
2-154
2-156
2-156

.
Fwwwww
l

T
NN R

|
WNWNOW®D K

WwWwwwwww
|

NN

N O

3-29
3-29
3-34
3-36
3-38
3-38
3-38
3-39
3-39
3-39
3-41
3-41
3-42
3-42
3-42
3-42
3-42
3-44
3-44
3-44
3-44
3-46
3-47
3-47
3-48
3-438
3-438
3-49
3-53

Z
0
[

S e s s
[T T TR N R B B | [T T TR T T N S
b = O QO =1 OY U WO O 0 -~ O U b W N+

SO N NN DN

FIGURES
Title

MBox Simplified Block Diagram. . . .

MBox Read/Write Simplified Block Diagram

MBox Block Diagram . .« « « « « » &
Command/Address Flow Diagram
Write Data Cycly Flow Diagram. . . .
Read Data Cycle Flow Diagram
Masked Write Data Cycle Flow Diagram
MAR4 Read/Write Flow Diagram
MAR4 Command Fields. . . « « + « «

DFA Block Diagram. . . « « « « + + =&
DAD Block Diagram. . « + « + « « &+
FUNK Function and Control Logic. . .
FUNK CSRS. v & o o o o o o o o s o
Read/Return and Read/Continue Logic.
Clock and Command Control Logic. . .
Parity Generation and Checking . . .
Fault Detect Logic . . + « « « o + =&
ID/Mask LOQgiC. o « « o« o o o s + o
Arbitration/Hold Logic« « . .
NMI Arbitration/Hold Timing.
Interrupt Logic. . . « « « + « « .«
CSR LOgiC. « « o &« v o o« o o « o o«
Memory Busy Logic. . . « « « « « .+ .
Clock, Reset, and Unjam Logic. . . .
Memory Data Path (MDP) Block Diagram

[I T A N A

w W N NN

e
N~ Wi~ &~ U W

Memory Data Buffer (MDB) Block Diagram

CSR Logic. « v « v & o o« &+ o « = = =
MDBC -- MDB Data-In Selection. . . .
Input Load Command Detect Logic. . .
Full LOGIiC + o« ¢« & o o o o o s o o =
X and Y Bit Storage. . « .« « + o .o

MDBC -- MDB Feedback Selection . . .
Double-Bit Error LOogicC . « + « « + &
MDBC —-- MDB Data-Qut Selection . . .
Y Out Select Flow Diagram. . . .« « =
MDBC -- Internal Error, Write Decode
and Clocks « & v v o & o o o o s e

DCHK Block Diagram . . « « « « « «
Error Check Block Diagram.+ .
Error Status Block Diagram
Serializer Block Diagram . . . « . .
CSR2 Bit MAaD . v & o o o o o o o o« =
MRM Block Diagram. . . « « « « « « &
MSC Block Diagram. . .« « « « « + o &
Buffer Control . . . + « & ¢ + ¢ ¢ =
BNUM Probe Buffer and Error Logic. .
Command/Address/Size Buffer.
Size Logic

ry o [. | P
Hex State Machine

. . . .

ow Diagram . . .

5]
e

xxxviii

2-40
2-41
2—-42
2-43
2-44
2-45
2-46
2-47
2~-48
2-49
2-50
2-51
2-52
2-53

NN
[

[S20NV3]

U1

O

i

—

|

W wwwwwwwiwwww
|
o O 0 O U R W) e
N

w
|

=

N

3-15
3-16
3-17
3-18
3-19
3-20

Z
o)

I I |

|t il el ol S]
[!
OOV W N

Starting Address Logic
Mask Address/Size Buffer ,
Write Command Logic. . .,
Mask Write Logic
Command Done Logic
Mask Store Block Diagram

Select-Out Buffer Control Block Diagram.

Read Butfer Control Block Diagram. .
MDB Address I/0 Select Block Diagram
MASC Block Diagram
Power Control.
CSR Control.
Array Read Control
MCL BBU Block Diagram.
Power Down Flow Diagram.
Power Up Flow Diagram,

Longword Write Timing Diagram. . . .
Longword Read Timing Diagram
Octaword Read Timing Diagram
MAR[} Rl1nclk N1 as~xra

LIS SRS A W AN LJ.LQELGUM 3 » . - . . o . -
Write Flow Diagram,
Read Flow Diagram.
Clock Logic Block Diagram.
Clock Timing Diagram

4MBARRAY Bank Block Diagram (Bank 0 Shown

Array Command Flow Diagram
Array Refresh Flow Diagram
Input Parser Block Diagram
ECC/DPARITY Block Diagram.
Data Output Control Block Diagram. .
Refresh Time Periods
Refresh Block Diagram.
Refresh Flow Diagram -- Normal Mode.
Refresh Flow Diagram -- Battery Mode
Initiation of Battery Mode Refreshes

.

Termination of Battery Mode Refreshes.

Flow-Diagram Symbols
TABLES
Title

NMI Signals Used by the MBox
MBox Command Functions
Arite Longword Bus Cycles.
NMI Confirmation Codes
Write Duadword* Bus Cycles
Write Octaword Bus Cycles.
Read Longword Bus Cycles , .,
Read Octaword Bus Cycles
Read Hexword Bus Cycles.,

XX¥X1ix

»
i

U
1]
Q
o

VTWN — O OO

.
b e et e

| b
b ped e e e |]

NN NN
| T T B

[1
H O 0~ W
D= O

NNNNDNNDNDND
1

wt,low
W N =

SECTION 10

CHAPTER 1

.

1.1

1.2

1.3

1.4
1.4.1
1.4.2
1.4.3
1.5
1.5.1
1.5.1.1
1.5.1.2
1.5.2
1.5.2.1
1.5.2.2
1.5.2.3
1.5.2.4
1.5.2.5
1.5.2.6
1.5.2.7
1.5.2.8
1.5.2.9
1.5.2.10
1.5,.2.11
1.5.2.12
1.5.2.13

Command Code . « + o o ¢ « & o
Size Code. v s « o o o o » o s .
Function Codes .« « « « o o o o
NMI Confirmation Codes
Read Function Codes. . « « « =«
Read Command Code. . + + o « o« =«
Write Commands . « « + o« « o &
ENABLE ECC Truth Table
Size Code. « o o o o o« o o o o
Initial Address Truth Table. . .
Write State Code . « « ¢ ¢ « o
Write Command Code =

NAB Signals. « « « + o« o « o « &
Clock Distribution . . « + « «+ &
Read Bank Shift Register Modes .

NBI (NMI TO VAXBI ADAPTER)
INTRODUCTION

GENERAIL INFORMATION. . « « « <«
PHYSICAL DESCRIPTION AND CIRCUIT
BASIC BLOCK DIAGRAM. . « +« + «+ =«
BASIC OPERATION. . + « ¢ + o o
CPU Read/Write Data Transfers.
DMA Read/Write Data Transfers.
Interrupt Operation.« =«
NBI REGISTERS. .« o ¢ o ¢ o o o
NBIA Registers . . . o o e

TECHNOLOGY .

Control/Status Reglsters (CSRO and CSR1)
Vector Registers (BR4VR through BR7VR) .

NBIB (BIIC) Registers.
Device Register (DTYPE). . .

.

VAXBI Control/Status Register (BICSR). .

Bus Error Register (BER) .

Error Interrupt Control Register

(EINTRCSR) . . « « = « « =

INTR Destination Register (INTRDES) . .
IPINTR Mask Register (IPINTRMSK) . .
IPINTR/STOP Destination Register

(FIPSDES). « &« « + =«

IPINTR Source Register (IPINTRSRC) e o
Starting and Ending Address Reglstprs

(SADR and EADR). . . .

. .

BCI Control and Status Reglqter (B“ILSR)

Write Status Register (WSTAT).

Force IPINTR/STOP Command Register

(FIPSCMD). o ¢ o« o o o o o =

User Interrupt Control Register

(UINTRCSR) e e s o s e e s
General Pu

x1

pose Registers (GPR <3:0>). .

CHAPTER 2 INTERFACE DESCRIPTIONS

NMI. L] L] . - . . L . L . - L] . . - L .

NMI Signals. . « ¢ v v v v o ¢ v o o o o o .
Basic Timing « v v v v v 4 v v ¢« o o o o o .
NMI AdAress Spac€. o v « o o o o o o o o o
NMI Read/Write TransactionS. . . . o o o« o+ .
NMI Arbitration/Memory BUSY. « o« o o & o o+ .
NMI Interrupts . ¢ ¢ v ¢ v 4 ¢ o o o o o o
NMI Errors o o v v v v v 4 6 o o o o o o o &
DATA BUS (BETWEEN NBIA AND NBIB) + v ¢ o o« o« .
VAXBI. ¢ 4 v v o 6 o o o o o o o o o o o o o
VAXBI Signals. . v ¢ v v 4 v o o« o o o o o
Basic Timing . « v v v v v v ¢ ¢ v o o o o
VAXBI Address Space. .« « « ¢ o o o o o o o
VAXBI Read/Write TransactionS. . « « « o+ o .
Interrupt Operation (INTR, IDENT, and IPINTR
Transactions). v « v ¢ v v ¢ ¢ ¢ « o 4 o . .

e o e o o « o
o o e o o
~NOY U N

NN N NN
-
WL WWWWN e s
L]]
U W N

2.3.5.1 Interrupt (INTR) TransactionS. . . « « . .
2.3.5.2 Identify (IDENT) TransactionS. . . « « o« .
2.3.5.3 Interprocessor Interrupt (IPINTR)
Transactions . ¢ v v v ¢ ¢ o« ¢ o o o o o
2.3.6 STOP TransactionS.: « ¢« v v ¢ v o« o o o o o
2.3.7 Invalidate (INVAL) Transactions. . . « . . .
2.3.8 Bus Arbitration. . . .+ . . ¢ ¢ v v 4 e 4 e
2.3.8.1 Bus Requests + ¢ ¢ ¢ v ¢ v v .« .
2.3.8.2 Arbitration ModeS. « « v ¢« v 4 4 o o o o
2.3.8.3 Arbitration Control. . . . ¢« « + o« v o o« .
2.3.8.4 Extending a Transaction.
2.3.8.5 Special Mode Functions « & & « . .
2.3.9 VAXBI EXrOrS v v 4 v 4 ¢ o o o o o o o o o
2.3.9.1 Parity Checking. « v ¢ ¢« v v v v o« o o o &
2.3.9.2 Transmit Check Error Detection
2.3.9.3 Protocol Checking. + + ¢« ¢« v & ¢ ¢ & o o &

CHAPTER 3 FUNCTIONAL DESCRIPTION

3.1 INTRODUCTION v v v ¢« ¢ o o o o o o o o s o o
3.1.1 NBIA Block Diagram . . ¢ v ¢ o« & « o o o o &
3.1.1.1 NMI Data Buffer. . . . ¢« ¢ ¢ v & v o o o &
3.1.1.2 NPAR MCA ., & & v v ¢« ¢ ¢ o o o o o o o o
3.1.1.3 NBIM MCA . . v & ¢ ¢ ¢ o o o o o o o o o
3.1.1.4 NBED MCA & & 4 ¢ ¢ ¢ o o o o o o o o o o«
3.1.1.5 NBAP MCA . . & v ¢ v o o o o o o o o o o
3.1.1.6 NBCT MCA . & & v v 4 ¢« ¢ o o o o o o o o
3.1.1.7 DSEQ MCA . & & ¢ ¢ ¢« o o o o o s « s o« o =
3.1.1.8 DC022 Transaction Buffer .,
3.1.1.9 Data (Bus) Buffers v v o ¢ « o o+
3.1.1.10 Data Bus (and Transaction Buffer) Controls
3.1.2 NBIB Block Diagram . « « o« o « o o o o o o o
3.1.2.1 Data Bus Data Buffer « . . .
3.1.2.2 BCI Data Buffer. . . ¢ v ¢ v v v o o o o &
3.1.2.3 Parity and Translation Logic

x1i

[L

WWWWwWWwWwWwWwwwwwwwww
I
ANV O U DD BN R

.
3

L]

¢« o @
NN NN
o @

0 ~J Oy U1 W

WWwWwwwwwwwww
.
NN -

L]

® .
Uk W N

»
.

.
.
.

. o
.
.
=W N

.
.
.

.
.
.
= w N

e o o ®
« o o .
UMb wwWwwwwNoNhNp DN
. .

.
BEBWWWWWWWwwwwwwww
.

WWWWWWwWWwwWwwwwwwwwwww
L]

L[]
=

Data Buffer Read/Write Control . . « « + « &
Length and Interrupt Control Logic
Master and Slave Port Sequencers . « « « »
BIIC . . . & e e s s s s s s s s s e e e .
VAXBI Clock Drlver/Recelver. « s o a s o e e

INITIALIZATION/SELFTEST., « o« « s+ o o o o o o o o
Basic NBI Initialization . . « « o « « o o o &
BIIC Initialization/Selftest . « ¢« ¢« « « « + &
POWEYUD. o« o ¢ o o o 5 s o s o s o o s s s ¢ =
NBI INIT/UNJAM e s e e e e e s s e
RESET (By Connected VAXBI Device). o o o o o

CPU READ/WRITE OPERATIONS. . &+ ¢ o o o & o o o =
NMI Address Decoding and Translation
Local Read/Write Operations. . . « « « o« « « =

Command/Address Cycle. o « ¢« « & o o o o o &
Write Data Cycle . « « o & o ¢« o o o o o ¢ =
Return Data Cycle. . « « « « o s o s o ¢ o =
Parity Generation and Checking

VAXBI Read/Write (and IDENT) Operations. . . .

Command/Address Transfer . . . « « « « « + &
Write Data Transfer. « « o« « o ¢ o o« o o o &
Return Read Data Transfer. . . ¢« ¢ ¢« « o « =
Parity Generation and Checking &

Write Sequence Faults. . . « ¢ ¢ o o ¢ ¢ ¢ o =
NMI BUS ACCESS TIMEOUTS. . ¢« o« o « s o o = o =
VAXBI EXYOYS o « o o o o o o o s o o s o o o =
DMA READ/WRITE OPERATIONS. . .« « « « o o o « « o
Command/Address Transfer . . . e o s & s o s

Command/Address to BCI Data Buffer

and Data Bus Buffer. . . ¢« ¢ ¢ ¢« o o o o .
Command/Address to NBIA's Transaction
Buffer . . . e a2 e o s . e e s s s e s
Command/Address to NMI (NMI Command/Address
CYCLe) v v v & o o o o o e s e e e e e e . e

Write Data Transfer. e e s e & e s

Write Data to BCI Data Buffer
and Data Bus Buffer. . . .
End of VAXBI Transaction (
Write Data to NBIA's Trans
Write Data to NMI {NMI Wri
or Cycles) « « « « « &
NMI Write Transaction Retries (NO

ACCESS/MEMORY BUSY/NOACK). « o o o o o o o

DMA EXrOrS o « « o o s o o o o o o o o s o o

.
.
.
.
.
.
.
.
.
.
.

Return Read Data Transfer. e o e e s

Return Read Data to Transaction Buffer « e .
NMI Read Transaction Retries

(MEMORY BUSY). & o« o ¢ ¢ o o o o . .
Return Read Data to NBIB . . « « o « o« o o &
Return Read Data to BCI Data Buffer and BIIC
(VAXBI READ DATA CYCLE). . ¢« &+ ¢ o « o « ¢ &
End of VAXBI Transaction . . . e s e o e
DMA Errors (VAXBI Transaction Retrles) . o .

Parity Generation and Checking .+ « o« o « o o @

x1ii

I Wwwwww
i

[
I

s N DN WO O O 00

]
b
w0

Wwwwwww
1

|
[\
(o]

2
o]
L]

H WO U W WwN -
(]

T e e e B e e R R e e
.—l

=
B> W N

—
i

Command/Address and Write Data/Mask
PAarity o o o o o o o o s o o o o o o &
Return Read Data/Status Parity
Timeouts. . .+ ¢ 4 & ¢ 4 o 4 4 4 e e e e
Read Sequence Faults . . ¢« ¢« ¢ ¢« & o« o« o &
INTERRUPT (INTR AND IPINTR) OPERATIONS . . .
Decoding Interrupt Requests.
MISCELLANEOUS OPERATIONS . &4 ¢ ¢ o« o o o + &
BIIC Register Read/Write Operations
(by Other VAXBI NodeS) « « ¢ & o« o o o o
VAXBI Stop TransactionsS. . + « « o« o o o« &
VAXBI INVAL and BROADCAST Transactions . .
DIAGNOSTIC DATA TRANSFERS. + ¢ ¢ o ¢ o o o @
BIIC Loopback Requests . ¢« « ¢ o « o o o«
NBIA Wraparound. . . « « o« « o o « « o o &
CPU Read/Write to Memory (Flip Address
Bits <29> and <22>). ¢ ¢ v 4 4 4 e e e e

Title

NBI Configuration. . « « « o ¢« o ¢« o o« o o &
NBI Basic Block Diagram . . « ¢ ¢ « « o« « .
DC022 Transaction Buffer Organization . . .
CPU Read/Write Data Transfer . . o« o« o« o « o
DMA Read/Write Data Transfers.
INTR/IPINTR Operation . . o« ¢« ¢ ¢ o o o o @
Interrupt Vector Format+ ¢« o o« o o &
SCB Format (Example) . ¢ ¢ ¢ ¢ ¢ o ¢ o ¢ « &
Control/Status Register 0 (CSRO)
Control/Status Register 0 (CSR1) . . o e
Vector Registers (BR4VR through BR7VR) e e e
Device Register (DTYPE).« o
VAXBI Control/Status Register (BICSR). . o
Bus Error Register (BER) . +« ¢« ¢ ¢ o « o o &
Error Interrupt Control Register (EINTRCSR).
INTR Destination Register (INTRDES).
IPINTR Mask Register (IPINTRMSK)
IPINTR/STOP Destination Register (FIPSDES) .
IPINTR Source Register (IPINTRSRC)
Starting Address Register (SADR) « « + o« o o
Ending Address Register (SADR)« . . .
VAXBI Control/Status Register (BICSR). . . .
Write Status Register (WSTAT). « « « o « +
Force IPINTR/STOP Command Register (FIPSCMD)
User Interrupt Control Register (UINTRCSR) .
General-Purpose Registers (GPR <3:0>). . . .

NBIA and NBIB Input/Output Signals

Basic NMI Timing . « « o o o o o o o o o o
NMI Address Space . v o o o s o o s o o o &

x1iii

3-86
3-88
3-90
3-90
3-91
3-92
3-96

3-96
3-96
3-96
3-97
3-97
3-98

3-99

1
== =000~ U W

N = O

WWWwWwWwWwwwWwww wwwww
|

|
—
W

W
|
F—l
w

NMI Write Transaction . « « « ¢« « . .
NMI Read Transaction . . « « ¢« « « « &
Basic NMI Arbitration Line Timing . .
NMI Arbitration Line Timing (Typical)

MEMORY BUSY Timing « « « o« « o s o o o
Fault Signal Timing . « « « « « « « &
Basic VAXBI TiMing « « « o o o o o o o
VAXBI Address SPacC€. « « o« s « o o o
VAXBI Node Register Space. . . « . .« .
VAXBI-Required Registers . . e e e s
BIIC-Specific Device Reglsters o« o e

VAXBI Write Transaction (Octaword Length)

VAXBI Read Transaction (Octaword Length)

VAXBI Interrupt (INTR) Transaction . .
VAXBI Identify (IDENT) Transaction . .

VAXBI Interprocessor Interrupt (IPINTR)

TransactioN. « « o« o o o o o o s o o
VAXBI STOP Transaction . « « « ¢ o o &
VAXBI Invalidate (INVAL) Transaction .
Bus Arbitration Request Lines.
Arbitration State Diagram. . . « « « =«
VAXBI Arbitration {Example).

NBIA Detailed Block Diagram. . « « « .
NBIB Detailed Block Diagram . « .« « .
NBI POWELUD o o o s o s o o o s s o
Reset by VAXBI Node . . « « o« =« « ¢ =«
UNJAM/Programmed NBI INIT
NMI Address Decoding and Translation

Local Read/Write Command/Address Cycle
Local Write Data Cycle . . + « « « o+
Local Read Data Cycle .. . « « « + « &
Basic Information Flow Between NMI and
NMI to VAXBI Command/Address Transfer.
NMI to VAXBI Write Data Transfer . . .
VAXBI to NMI Return Read Data Transfer

Aligned and Unaligned Quadword Read Data

Ordering o« « « o ¢ o o o o o o o o o

Basic Information Flow Between VAXBI and

During DMA Read/Write Operations . . .
VAXBI to NMI Command/Address Transfer.
VAXBI to NMI Write Data Transfer . . .
NMI to VAXBI Return Read Data Transfer
INTR/IPINTR Operations . . « « « « « =«
FLIP 29/22 Diagnostic Data Transfers .

xliv

2-13
2-14
2-16
2-138
2-19
2-22
2-34
2-37
2-38
2-38
2-39
2-42
2-43
2-46
2-49

2-51
2-53
2-55
2-56
2-58
2-60

3-19
3-23
3-27
3-29
3-31
3-34
3-37
3-44
3-50

3-64
3-67
3-74
3-80
3-93
3-101

NN
|
W N

[
= w N -

w w ww

TABLES
Title

NBIA Registers . . . v v v v v v v v v o . .
Control/Status Register 0 (CSR0O) Bit

Descriptions e e e s o W
Control/Status Register 1 (CSRl) Bit

Descriptions
NBIB (BIIC) Registers. e e . e

Device Register (DTYPE) Bit Descrlptlons . .
VAXBI Contrcl/Status Register (BICSR) Bit
Descriptions
Bus Error Register Bit Descriptions.
Error Interrupt Control Register (EINTRCSR)
Bit Descriptions . . ¢ & v v v v 4 4 4 . . .
INTR Destination Register (INTRDES) Bit

Descriptions e o s s
IPINTR Mask Register (IPINTRMSK) Blt
Descriptions ¢ 4 . 0.0 e ...
IPINTR/STOP Destination Register (FIPSDES) .
IPINTR Source Register (IPINTRSRC) Bit

Descriptions . . . ¢ . ¢ . v v v 0w e e
Starting Address Register (SADR) Bit
Descriptions « . ¢ v v v 4w e oW . .
Ending Address Register (EADR) Bit
Descriptions v 4 e 4 e e ..
BCI Control/Status Register (BCICSR) Bit
Descriptions . . « ¢ v v v v v v 4 e e e oW
Write Status Register (WSTAT) Bit
Descriptions e o s+ e e & o o o
Force IPINTR/STOP Command Register (FIPSCMD)
User Interrupt Control Register (UINTRCSR)
Bit Descriptions v . v 4 4

NMI Signals Connecting to NBIA
Data Bus Signals v v v v v v o o o
VAXBI Signals. . « v v v v v v v v v o o o .

BCI Signals. . v v v v v v v v v v v 0 0w .
NBI Initialization « v ¢« & o . .
CPU Read/Write Summary v v o o o o
DMA Read/Write Summary . . . o+ o« o o o o . .

X1v

2-5
2-25
2-30

3-9
3-13
3-21
3-61

EK-KA88I~TD-PRE

SECTION 6
INSTRUCTION BOX (IBOX)

CHAPTER 1
INTRODUCTION

1.1 OVERVIEW

The Instruction unit (IBox) contains the microcode that controls
the entire CPU (except for some Cache operations). The major
functions of the IBox are as follows:

e Buffer prefetched VAX instruction stream (I-stream) data
supplied by the Cache unit (CBox)

® Decode macroinstructions and control their execution

® Monitor and service microtraps, for example, interrupts,
and exceptions

® Supply I-stream embedded data (for example, literals,
immediate mode data, etc.) to the Execution unit (EBox)

e Provide an interface path between the Clock (CLK) module
and the CPU

The IBox also maintains four internal privileged registers (IPRs)
and part of the processor status longword (PSL).

l1.1.1 Dual-Processor Configuration

Each processor in the VAX 8800 dual-processor configuration has its
own IBox. The IBoxs operate independently of each other and have
their own interface to the Clock (CLK) module.

VI i-1

1.2 LOGIC ELEMENTS

The IBox resides on three modules: the Decoder (DEC), Sequencer
(SEQ) and the Writeable Control Store (WCS). Refer to Figure 1-1.
The logic elements contained on each module are as follows:

Module Logic Element

DEC Instruction Buffer (IB)
IB Manager
Decoder

Gateway Control
Bus Watcher

SEQ Microsequencer
Part of the control store logic
Condition Code and Macro Branch Logic
Interrupt and Processor Register Logic
File Address Generator

WCS Rest of the Control Store

NOTE
The Bus Watcher logic is functionally part of
the EBox and is described in the EBox section
of this manual.

1.2.1 Physical Implementation

Most IBox logic is implemented by Macrocell Arrays (MCAs) which are
high density, ECL chips that form the basis for most CPU logic.
The MCA mnemonics are indicated in parentheses in Figure 1-1.

4
-

[\

-1 1A

u-PC addr <13:00>

to Micro-PC
address muxes

———— CBOX control
—-————= EBOX control

F———— |IBOX control

i Status from
I CBOX/EBOX /IBOX

RAW CCs ———»{ CONDITION
| W BUS <3:0> —»] CODE PSL CCs

from EBOX and
| MACRO SIZE DEP BRANCH CONDS \\ \ u-Branch conds
I I-MISC ————»] BRANCH — >

I_SIZE ———— | LOGIC STATE FLAGS / r
| from u-code
l CCBR MCA u-Trap conds

from
PSL bits CBOX
| <TP, FDP, CUR MD, iV> EBOX Machine MICRO
I Interrupts/ INTERRUPT IBOX check conds SEQUENCER
j Fauts ———— and INTR PENDING 4\\ LOGIC
PROCESSOR
I REGISTER INTR ID <4:0~> /
' CACHE DATA —» LOGIC
<8:0>
I INTR OTHER PROC
INPR MCA - to other CPU 5 UBRS MCAs
| 1 1 UTRP MCA
I SET MICROMATCH
I I_MISC » CONSOLE Sequencing control
I from u-code GATEWAY CONSOLE REQUEST
CONTROL

I Eomrol LOGIC CS RAM write control

rom —
I C{onsole —— DRAM Write control

via CLK to Decoder
| module GWYC MCA

u-PC ADDR ——» CS RAM 16K x 143

l CONS BIDI CONS DATA <7:0> u-PC ADDR
I DATA BUS DEC UADDR ——1 addr CONTROL

<7:0> Transmit/ from Decoder muxes <13:00> STORE
] ——————»] Receive RAMs

to/from RAM WRT DATA <7:0>
I Console F—— = . -
i via CLK Discrete
I module Logic DRAM WRITE DATA <7:0>

—» to Decoder
' CACHE DATA -~ CONS IPR DATA <7:0=>
«7:0 —= to IB DATA BUS <7:0>

|
h———————————————_———————-————--

Figure 1-1

IBox Block Diagram (Sheet 1 of 2)

h-————————_—————————————_———J

MKV86-0688

r-

CACHE DATA

BUS <31:00>
from CBOX

WR ADDR <1:0>
RD ADDR «1:0>
ALIGN CNTL <1:0>

SIGNALS — ™

from CBOX

DEC SELECT ——
from u-code

1B Control
from Decoder

LI-I——__———————-

1
|
i
1
1
|
|
1
|
|
|
i
1 CACHE STATUS
|
|
|
|
|
|
1
1
|
|
|
|

———

IB DATA BUS <31:00> to EBOX
ASIDE RD ADDR
from |_APORT —>
4 x 32 u-code E_BPORT —™ BSIDE RD ADDR
INSTRUCTION I_WRTADDR—> FILE —
BUFFER SPEC GRPNUM <3:0> ADDRESS FILE WR ADDR
(1B) SLICES »>
OPCODE <7:0> BW WR ADDR MD STALL
> MDNUM —> BUS —
4 IBUF MCAs SPEC <7:0> BW A RD ADDR WATCHER | A MD VALID
1 IBFO MCA <2:0> 2 » —
FADs BW B RD ADDR B MD VALID
DECODER MCAs —
and (Part A CD READY
SPECIAL of >
ADDRESS A PORT SEL — EBOX B CD READY
ENCODER from u-code B PORT SEL — logic) —
FILE WRENA — PORT CNTRL
L -
4K x 17 from CBOX CACHE DEST —»{ BWD MCA
- DECODER
RAMS
(DRAMS) 1B Control
- to IB Manager
INS"SI’S}:JFCEEON SPEC NUM/SIZE/TYPE Discrete
MANAGER 1B STALL '\L"a‘i’c‘ﬁzls DEC UADDR <13:00> to Micro-PC
— —» address muxes
IB PE sheet 2 of 2
PC INC <2:0>
to EBOX

DRAM WRITE DATA <7:0> and write cortrol

from sheet 2 of 2

CBOX/EBOX Special Address conditions

Figure 1-1

IBox Block Diagram (Sheet 2 of 2)

MKV86-0687

1.2.2 Instruction Buffer (IB)

The instruction buffer is a 4-longword (16-byte) memory. It stores
prefetched VAX I-stream data supplied by the CBox and outputs the
following data relative to the current macroinstruction:

® Op code byte to the IB manager and to the decoder
e Current operand specifier byte to the IB manager
e Specifier GPR number to the file address generator

e Specifier extension bytes (immediate data, literals, etc.)
to the EBox on the IB data bus

The op code and current specifier are output simultaneously,
specifier extension bytes (if any) are sign extended and output
later.

1.2.2.1 Writing the IB - The IB is treated as a 4-longword memory

when written,

Prefetched I-stream data enters the IB one longword at a time from
the CACHE DATA BUS. The data are 1loaded in the IB location
specified by the write address, IB WR ADDR <1:0>. The 1IB manager
increments this value by one each time a longword enters the IB to
point to the next location to receive data.

1.2.2.2 Reading the IB - The IB is treated as a 16-byte memory
when read.

The starting IB byte location is specified by a combination of the
read address, IB RD ADDR <1:0>, and the alignment control, IB ALIGN
CNTL <1:0>. The read address points to the appropriate longword;
the alignment control points to the proper byte in the longword.
The IB manager updates these pointers each time a specifier is
processed to reflect the new I-stream positioning.

The op code byte is read directly from the IB in the decode cycle
for the first specifier. It is then stored in a "Cycle Op Code"
register, which becomes the source of the op code for subsequent
cycles (second to sixth specifiers).

VI 1-5

1.2.3 IB Manager

The IB manager controls the IB read/write operations and computes
the amount of IB data "consumed" during each IB decode cycle. It
also indicates the current specifier’'s type (literal, register
mode, etc.) and position (first through sixth) in the instruction
to the Decoder.

1.2.3.1 IB Read/Write Control - The IB manager supplies the read,
write, and the alignment control inputs to the IB. See Sections
1.2.2.1 and 1.2.2.2.

1.2.3.2 Computing Amount of IB Data Consumed - The amount of data
consumed during the first cycle of an instruction inciudes the op
code, the first specifier, and up to four specifier extension
bytes. In subsequent cycles (second to sixth specifiers), it
includes the specifier and up to four extension bytes.

Example: Instruction - MOVL #7X12345678, B"04(R0)
Cycle IB Data Consumed

First Six bytes - op code, first specifier,
four extension bytes

Second Two bytes - second specifier, one
extension byte

The IB manager indicates the amount of IB data consumed to the EBox
as a PC increment value, PC INC <2:0>. The EBox uses this value to
update the VAX PC.

In the first IB decode cycle, the PC INC <2:0> value ranges from 0
to 6 and is based on the op code byte and the current specifier
type bits. Thereafter, it ranges from 0 to 5 and 1is based on

either the current specifier type bits alone or in combination with
"predicted" size bits from the decoder.

NQOTES

1. The predicted size bits are only used if
a specifier in the second to sixth
position is a branch displacement or
immediate mode data. The bits are output
in the current decode cycle, but indicate
the size of the next specifier to be
processed.

2. PC INC <2:0> can never be equal to 5 in
the first decode cycle; the VAX
architecture does not support 3-byte
extensions.

VI 1-6

1.2.4 Decoder Logic

The decoder logic consists of a 4K word by 17-bit writeable RAM
(DRAM) and a special address encoder, which is composed of discrete
muxes and priority encoders.

1.2.4.1 Decoder RAMs - The DRAMs are addressed by the current
specifier number, the op code byte, and by a "2-byte" signal
(2-byte op codes). The specifier number and the 2-byte signal are
supplied by the IB manager, the op code byte is supplied by the IB.

Major functions

1. Supply the microsequencer with part of the entry point
address for op code and specifier microroutines

2. Assist the IB Manager in controlling the IB

3. 1Indicate which EBox memory data register (MDR) is to
receive data from memory for those specifiers that request

vvvvv Ueta Lroum wemnmory LOr

data

Entry Address Generation

The DRAMs supply the low 5 bits of the entry-point address for
every specifier microroutine. If more than one microword is
required to service the specifier, the microsequencer takes control
and generates the additional addresses for the specifier routine.
When the specifier routine exits, control 1is returned to the
decoder. The next specifier is then processed in the same manner.

Once all specifiers are processed, the DRAMs supply the low 5 bits
of the entry address for the routine that performs the actual work
of the instruction (the execute code) and inform the IB Manager
that a new instruction is to be executed.

IB Control

The DRAMs work in conjunction with the 1IB manager to logically
"shift" the next specifier out of the IB. They also indicate the
data size of the specifier where applicable.

MDR Addressing

The MDRs reside in the EBox register file (RGF) and serve as
scratchpad registers for all data requested from memory. The DRAMs
supply a MDNUM to select the appropriate MDR during each specifier
decode cycle. (The MDRs are described in the EBox section of this
manual.)

VI 1-7

1.2.4.2 Special Address Encoder - The special address encoder
monitors certain "special" CPU conditions that may affect
instruction execution.

When a special condition is present, the special address encoder:

1. Generates the entry point address for a routine to service
the condition

2. Outputs the "special" entry address to the microsequencer
in place of the specifier or op code address

If the condition is not critical, such as a TB miss while accessing
the I-stream, the special condition microroutine returns control to
the decoder after it services the condition.

If the condition is critical, such as an 1IB parity error, the
special routine indicates the error in the IBox error register and
passes control to a machine check microroutine (see Section 1.5.2).

Depending on the severity of the condition, the machine check
routine either invokes a macrolevel service routine to record the
error in the system error log or reports the error on the VAX
console and halt the CPU.

1.2.5 Microsequencer Logic

The microsequencer is responsible for determining which of several
sources is to supply the address of the next microword to be
executed to the microPC address latches of the control store RAMs:

Current microword

Decoder entry-point microaddress

EBox or CBox microtrap vector

Machine check microtrap vector

Trapped microPC from a microPC silo
Microsubroutine return address from a microstack
Console supplied microaddress

211 address sources, except for the decoder, are multiplexed by the
microsequencer logic. The address from the decoder and the one
from the microsequencer are multiplexed by discrete logic. The
selected address, which 1is 14 bits wide, is stored in microPC
address latches and presented to the control store RAMs.

Vi 1-8

1.2.6 Control Store
The CPU control store microcode is 16K words deep by 143 bits wide
and resides in 16K by 1 bit writeable RAMs. The microcode is
loaded into the control store RAMs from the console Winchester disk
during system initialization. The major microcode features are
listed in Table 1-1.

Table 1-1 Microcode Features

Feature Description

Horizontal Microword bits are grouped into fields.

in nature Each field directly feeds and controls a
specific CPU logic element. (Some fields
have vertical functionality in that they
control more than one element.)

Pipelined More than one microword is active at any
operation given time. Allows the CPU to perform
several operations simultaneously.

Segmented Control store RAMs are divided into three
structure physical segments:

CS0 - SEQ module, 48 bits wide
CS1 - WCS module, 48 bits wide
CS2 - WCS module, 47 bits wide

Each segment has its own parity bit (odd
parity) and one or more spare bits.

Approximately 14K words of microcode control the CPU, 1K are
available for user written code, and 1K are reserved to DIGITAL.

1.2.7 Condition Code and Macrobranch Logic
The CCBR MCA maintains the PSL condition code bits (N, Z, C, and V)
and 7 CPU state flags.

1.2.7.1 PSL CC Bits - The CCBR MCA receives "raw" condition codes
that result from various EBox operations (for example, main ALU
functions) and generates a group of size-dependent microbranch
conditions based on the raw CCs and the size of the data being
processed. The size-dependent conditions can then be tested by
microbranch logic in the microsequencer.

The raw CCs can also be compared to the current PSL CC bits to
affect a macrobranch instruction or be stored as the new PSL CC
bits.

VI 1-9

1.2.7.2 CPU State Flags - The 7 CPU state flags are
microprogramming aids that provide firmware writers with another
means of controlling microcode flow. The flags can be set (one at
a time) or cleared (individually or as a group) in one microroutine
and then tested as microbranch conditions in a later routine. The
flags are explicitly controlled by the microcode and are cleared in
the first microword of every macroinstruction.

1.2.8 Interrupt and Processor Register Logic
The interrupt and processor register logic are both contained 1in
the INPR MCA.

1.2.8.1 Interrupt Logic - The interrupt section of the INPR MCA
maintains the hardware image of the IPL (interrupt priority level)
field of the PSL. It monitors hardware interrupts, encodes the
level of the highest pending request, and compares it to the
current IPL. If the encoded level is greater than the current IPL,
the interrupt logic outputs an interrupt identification tag (INTR
ID <4:0>) and request that microcode take an interrupt branch by
asserting an interrupt pending line (INTR PEND) .

1.2.8.2 Processor Register Logic - The processor register logic
maintains the hardware images of four VAX internal privileged
registers. These registers, which are described 1in Section 1.4,
control or supply data to the:

e Interrupt logic
e Microsequencer logic
e Memory management logic (in the CBox)

The INPR MCA also maintains copies of PSL bits <30,27,25:24,5:4>.
(The entire PSL is kept in an EBox slow data file register.)

1.2.9 File Address Generator
The file address generator consists of 2 file address slice (FADS)
MCAs. This logic performs the following:

e Supplies most of the address inputs to the EBox register
file (RGF) and slow data file (SDF) registers

e Stores GPR numbers referenced by operand specifiers

e Records changes made to GPRs during autoincrement and
autodecrement operations

e Allows fast access to operands requiring more than one GPR
(quad and octaword operands)

Vi 1-10

1.2.10 Gateway Control Logic

The gateway control logic (GWYC MCA) 1links the CPU to the VAX
console by providing a data path to the console interface logic
resident on the clock (CLK) module.

1.2.10.1 Primary Functions -
1. Decode console commands

2. Control the CPU/CLK module data path

3. Control data transfers between the CPU and CLK module
registers:

e Console transmit/receive data buffers
® Console control and status registers
e CPU interval count registers

These registers reside in the console interface 1logic of
the CIK module.

4. Control loading of the following CPU elements:

CPU control store RAMs

CPU micromatch register

CPU decoder RAMs

Cache control sequencer RAMs

vl 1-11

1.3 IBOX BUSES i
Three major buses interface the IBox to the rest of the CPU:

1. Cache Data Bus
2., 1IB Data Bus
3. Cons Bidi Data Bus

1.3.1 Cache Data Bus

The cache data bus is 36 Dbits wide (32 data, 4 parity). It
supplies the IBox with I-stream data for the IB (Section 1.2.2) and
with data for the IBox and CLK module registers.

Register data is written one byte at a time from the low byte of
the cache data bus. Microcode ensures that the bus contains the
correct data for high-order bytes of the selected register.

1.3.2 1IB Data Bus

The IB data bus is 36 bits wide (32 data, 4 parity). It supplies
the EBox with I-stream embedded data from the IB (section 1.2.2)
and with data read from the IBox and CLK module registers.

Register data are output one byte at a time (least significant byte
first) to the low byte of the IB data bus. The bytes are assembled
into a longword in the EBox.

1.3.3 Cons Bidi Data Bus

The cons bidi data bus is an 8-bit, bidirectional bus that 1links
the CLK module to the CPU. It allows the CPU to access registers
resident on the CLK module and, through the console interface legic
of the CLK module, to communicate with the console subsystem.

vi 1-12

1.4 1IBOX RESIDENT INTERNAL PRIVILEGED REGISTERS (IPRs)

Microcode implements the hardware images of two VAX architecture
and two VAX 8800-specific IPRs 1in the IBox (IPR numbers are in
hex). Refer to Table 1-2.

Table 1-2 1IBox Resident IPRs

Name Mnemonic Number

VAX Architecture IPRs

Interrupt Priority Level IPL 12
Performance Monitor Enable PME 3D
VAX 8800 Specific IPRs

NMI Interrupt Control NICTRL 80
Interrupt Other Processor INOP 81

The IPRs reside in the INPR MCA of the SEQ module. They are
written from the low order byte of the CACHE DATA BUS after the bus
passes through the DEC module. The INPR MCA reports bad parity to
the DEC module if it detects a parity error on the bus.

l.4.1 VAX Architecture IPRs

The IPL and PME registers are read/write to software but write-only
to IBox hardware. Microcode maintains the software images for the
IPRs in the EBox slow data file (SDF).

When a MTPR instruction writes the IPL or PME, the data is sent to
both the INPR MCA and to the SDF. When a MFPR instruction reads an
IPR, the data is obtained from the SDF copy.

The INPR MCA receives IPL data as bits <4:0> from the cache data
bus. However, the bits are stored as PSL <20:16> in the SDF.
Microcode shifts the bits to the proper position when writing the
software image to the SDF.

PME bit 0 is sent to the INPR MCA as CACHE DATA BUS bit 1.

Microcode shifts the bit to the proper position on the bus. The
PME bit is available on the backplane for external monitoring.

VI 1-13

1.4.2 VAX 8800-Specific IPRs
The two VAX 8800-specific 1IPRs both deal with the interrupt
mechanism of the CPU.

Both registers are written from the low byte of the cache data bus
and appear as 8-bit registers to hardware. The 32-bit software
formats are shown in the following text.

1.4.2.1 NMI Interrupt Control Register (NICTRL) - The NICTRL
register controls the CPUs response to interrupts requested by the
two NBIAs and by NMI memory. The register is write-only and, as
such, has no SDF software image.

31 08 07 06 05 04 03 02 01 00
DO D1 | MEM
MBZ IE IE IE MBZ

NBIA Device O Interrupt

NBIA Device 1 Interrupt Enable

Memory Interrupt Enable

MKVEE-Ubzy

Figure 1-2 NMI Interrupt Control (NICTRL) Register Bit Map

Table 1-3 NICTRL Register Bit Descriptions

Bit Mnemonic Description

<7> DOIE When set, enables the CPU to respond to interrupts
from NBIA Device 0. Cleared by CPU init.

<6> D11IE Same as above, but for NBIA 1.

<5> MIE Same as above, but for Main Memory.

VI 1-14

1.4.2.2 Interrupt Other Processor Register (INOP) - The INOP
register controls whether an interrupt is requested of the other
processor in a dual-CPU system. This register is also write only
and has no SDF image.

31 01 00

MBZ IOP

Interrupt Other Processor

MKV86-0696

Figure 1-3 Interrupt Other Processor (INOP) Register Bit Map

Table 1-4 1INOP Register Bit Description

Bit Mnemonic Description

<0> I0P When set, causes an interrupt in the other
processor of a dual-CPU configuration.

The INOP register exists as a latch in the INPR MCA. The latch is
set when microcode addresses the register and is automatically
cleared one CPU clock cycle later.

VI 1-15

1.5 IBOX MICROCODE VISIBLE ONLY REGISTERS
The IBox maintains three hardware registers that are only
accessible by the microcode:

1. Clear interrupt other processor {CIOP)
2. 1IBOX error register (IBER)
3. Clear error register (CER)

1.5.1 Clear Interrupt Other Processor (CIOP)

This register clears the interrupt requested by the other processor
of a dual-processor system. The register only exists as a signal
in the INPR MCA that is asserted when microcode addresses the
register and is negated one CPU clock cycle later.

1.5.2 1IBox Error Register (IBER)

The IBER is a 12-bit register that records errors detected by IBox
hardware and by microcode. The register is maintained by microcode
in an EBox SDF register. (Refer to Figure 1-4 and Table 1-5.)

1.5.2.1 IBER Usage - The IBER is stored along with other similar
error registers from the CBox (CBER) and EBOX (EBER) in a SDF data
structure known as a machine check error bank.

When a CPU error occurs, the error registers, and other relevant
data (virtual PC, current PSL, etc.), are written to the stack and
to the MC error bank. If the error is recoverable, the system
software will obtain the data from the stack and record it in the
system error log. If the error is not recoverable, the VAX console
will obtain the data from the MC error bank and report it ko the
console operator. (Machine checks are discussed in Chapter 3.)

e

vl 1-16

1.5.2.2 1IBER Bits <7:0> - These bits reside in discrete latches on
the DEC module and report parity errors detected by the DEC and SEQ
modules. The latches only store the first error received. They
are then "locked" by hardware to prevent a second error from being
reported until the first one is serviced. Thus, if a second error
occurs before microcode services the first one, the new error
indication is lost. The latches are cleared by writing the clear
error register (CER).

Bits <7:6,4,0> all indicate parity errors while accessing processor
registers. The mnemonics in Table 1-5 indicate the direction of
transfer and the module detecting the error. For example, if bit 7
is set, data was being transferred from the DEC module to the SEQ
module and the error was detected by the SEQ module. This means
that the DEC module received data from the cache data bus ok but
dropped (or picked) a bit when it routed the data to the SEQ
module.

1.5.2.3 1IBER Bits <11:08> - These bits do not exist in latches but
only in the SDF image of the IBER. They are written by the
microroutines that service the special conditions mentioned in the
special address encoder discussion (see Section 1.2.4.2).

Bit 11 is reported by the CBox but is considered an IBox problem
since it is related to the 1B,

Bit 10 indicates that either the microsequencer, the decoder, or
some microroutine generated the address of a microword that should
never be accessed. All ‘'such microwords contain code to pass
control to a routine that will set bit 10. Since this means there
is a hardware or a microcode bug in the addressing mechanism, the
error causes a fatal machine check.

Bits 8 and 9 only indicate that an IB parity error was detected;

there 1is no 1logic to determine which longword is at fault. If a
double IB parity error occurs, only IB PE UW is reported (bit 09).

VI 1-17

1 10 09 08 07 06 05 04 03 02 01 00

! 1ILL ! iB DEC ; PRO | DEC | CON| CSO | CS1 | CS2 | DEC
MEM | MCR | PE PE | SEQ | REG | RAM | DEC | PE PE PE | CON
BRK | ADR | UW | LW | PE PE PE PE PE

T] A ! A A A) A
IB Memory Broken -

lilegal Micro-address

IB Parity Error Upper Word

IB Parity Error Lower Word

DECoder to SEQuencer Parity Error

PROcessor REGister Parity Error

DECoder RAM Parity Error

CONsole to DECoder Parity Error

Control Store segment O Parity Error

Control Store segment 1 Parity Error

Control Store segment 2 Parity Error

DECoder to CONsole Parity Error

MKV86-0691

Figure 1-4 1IBox Error Register (IBER) Bit Map

Table 1-5 1IBER Bit Descriptions

Bit Mnemonic Description

<11> 1IB MEM BRK Error detected by CBox (TB, NMI, Cache, etc.)
while prefetching I-stream data for IB.

<10> 1ILL MCR ADR Microsequencer, decoder, or microcode itself
generated an illegal microaddress.

<09> 1IB PE UW IB longword location received bad parity from
upper word of the cache data bus.

<08> 1IB PE LW Same as bit 09 except for low word of bus,

<07> DEC SEQ PE SEQ module detected bad parity on data from

. DEC module while writing a processor register.

<06> PRO REG PE DEC module detected bad parity on cache data bus
while writing a processor register,

<05> DEC RAM PE DEC module detected bad parity on the decoder RAMs.

<04> CON DEC PE DEC module detected bad parity on cons bidi data
bus while reading a CLK module processor register,

<03> (€S0 PE SEQ module detected bad parity from the CS0O RAMs.

<02> Csl1 pPE WCS module detected bad parity from the CS1 RAMs.

<01> C(Cs2 PE WCS module detected bad parity from the CS2 RAMs.

<00> DEC CON PE CLK module detected bad parity on cons bidi data

bus while writing a processor register.

1.5.3 Clear Error Register (CER)

The CER is a write only register that exists as a latch in the INPR
MCA. The latch is set when microcode addresses the register and is
cleared one CPU clock cycle later.

Writing a one to the CER clears the latches that store 1IBER bits

<7:0>, Since IBER bits <11:08> only reside in the SDF, they are
not affected by the CER and must be cleared by microcode.

VI 1-19

CHAPTER 2
MICROCODE OVERVIEW AND PIPELINE CONCEPTS

2.1 CHAPTER SCOPE

This chapter describes the general structure and organization of
the VAX 8800 microcode and presents the concept of microcode
pipelining. The following topics are covered in this chapter:

Microcode file structure and assembly
Microword format and bit field definitions
Microcode pipelining concepts
Characteristics of the VAX 8800 pipeline

Since the VAX 8800 processor is a pipelined machine, understanding
how the microcode controls the hardware and the concept of
pipelining are essential to understanding the operation of the CPU.

!

; et it e
f =

2.2 VAX 8800 MAIN CONTROL STORE OVERVIEW

The main control store microcode controls all CPU kernel operations
except for certain CBox functions. The CBox has its own microcode
that interprets commands from the main control store and controls
the requested CBox functions. Refer to the CBox section of this
manual for inﬁgrmation on the CBox microcode.

2.2.1 Microcode Size and Allocation

The main control store microcode is 16K words deep by 143 bits wide
and resides in a set of 16K by 1 bit writeable RAMs. The microcode
is loaded into the control store RAMs from the console's Winchester
disk during system initialization.

Approximately 14K words of microcode are dedicated to controlling
CPU kernel operations, 1K are available for user-written code, and
1K are reserved for DIGITAL.

2.2.2 Microcode File Structure

The VAX 8800 microcode consists of a large set of microroutines
that are logically grouped by function into separate files. For
example, all routines that handle integer and logical
macroinstructions reside in one file while all memory management
routines reside in another. Table 2-1 lists the microcode files
and the microroutines contained in each file.

VI 2-1

2.2.3 Microcode Assembly

The microcode is initially written in the MICRO2 assembler language
as a set of source code files. The source code files are then
assembled by MICRO2 into two ASCII output files:

1. UCODE.ULD - Microcode object (data) file
2. UCODE.MCR - Microcode listing file

The UCODE.ULD file is further processed by a MICRO2 support utility
that produces a loadable file called UCODE.BIN. This file contains
the binary data that is loaded into the main control store RAMs.

The UCODE.MCR file contains the text from the original source files
and the hexadecimal equivalent of the machine code generated by the
MICRO2 assembler. The UCODE.MCR file is available on microfiche.

Table 2-1 VAX 8800 Microcode Files

File Name

Microroutines For

CHARSTR.MIC Character string and CRC instructions
CONTROL.MIC PC control instructions

CSM.MIC Console support microcode

CSX.MIC CSM overlay and user WCS area
DECIMAL.MIC Decimal string instructions

EDITPC.MIC Edit instructions

FLOAT.MIC Floating-point instructions

IANDE.MIC Interrupt and exception routines
INTLOG,.MIC Integer and logical instructions
LDSV.MIC Load/Save process context instructions
MM MIC Memory management routines

MULDIV.MIC Integer multiply and divide instructions
MXPR.MIC Move to/from privileged register instructions
PCALL.MIC Procedure call/return instructions
QUEUE.MIC Queue instructions

VIELD.MIC

variable length bit field instructions

NOTE

There are two other files associated with the

main control store:
These files contain definitions
MICRO2 to generate the UCODE.BIN file.

DEFIN.MIC and MACRO.MIC,.
required by
Refer

to Section 2.2.5.

2.2.3.1 Other Loadable Binary Files - In addition to UCODE.BIN,
there are three other binary files that are also loaded during
system initialization:

File Name Destination
CCODE,BIN CBox - NMI microsequencer RAMs
DRAM.BIN IBox -~ Decoder RAMs

SDFDEF ,BIN EBox - Slow data file RAMs

These files are generated in a manner similar to that used to
create the UCODE.BIN file,

2.2.4 Microword Format

The VAX 8800 microword 1is divided into several fields. Each
microword field 1is assigned a unique symbolic name indicative of
the function the field controls.

Figure 2-1 shows the microword bit format, the bits supplied by
each control store RAM segment (see Chapter 3), and the symbolic
name of each field. Table 2-2 briefly describes the function of
each field.

2.2.4.1 Field Naming Convention - The first letter of a field name
indicates which major CPU kernel unit (CBox, EBox, IBox) contains
the logic element(s) the field controls. The rest of the name is a

mnemonic for the function. For example, the "I" portion of the
I _NEXT field name indicates that the logic element resides in the
IBox. The "NEXT" portion means that the field deals with

generating the address of the next microword to be executed.

2.2.4.2 Field Functionality - Note in Figure 2-1 that most
microword bits are assigned one field name while some are assigned
two or more.

Microword bits with one field name assignment are said to have
horizontal functionality in that they control only one CPU
function. Bits with multiple names are said to have vertical
functionality in that they control several functions. The function
of bits with more than one field name depends on the setting of
other fields.

Certain microword fields are only valid when used in combination
with other fields. For example, the E MULDIV field, which
specifies the function performed by the EBox multiplier/divider
unit, 1is only valid if the E MULDEN field enables the multiplier.
Otherwise, E MULDIV 1is considered to be part of the larger
E_SHFTCNT field.

VI 2-3

¥=¢ 1A

047 046 043 044

CS0 RAM SEGMENT

Bit Format (Sheet 1 of 2)

Y 036 033 i 028 027 026 0P3 OR4 023 02, , 019 018 , , 014 013 Yy 000
7/ r 7 /7 7/ 7/
E_BPORT 1_APORT I_BRTYPE I_BRMASK I_NEXT
S A /L s L S L /s L
7/ rdre L_ 7 /7 7 7/ 7/
l—— CS0 SPARE 1_USTACK
— CS0 PARITY 1_RTNTRAP
1_DECODER
E_FPSUFL
CS1 RAM SEGMENT
E_SHFTCNT
067 066 065 i 060 2 038 057 036 033 Y 053 052 050 049 048
P 7 /7 7 /7
E_MULDIV E_SHFTCNTEN E_SXALU_FN
< L /L /L
I 7z 7 7 / 7 /
E_XALUCC_SIZE L— E_SX_BY_EN L—— £_SHFTFPOUT
E_SHFTSEL L E_SXALU_FORM
093 094 093 Yy 088 087 082 081 080 079 078 Y 074 073 072 071 070 068
7 / 7 7 7 /
I_WRTADDR E_ALU E_SHIFT
/J// 4///1 ///fl
L— CS1 SPARE ‘— E_ALUCON l—— E_PEFUNC
CS1 PARITY E_ALUCI E_MULDEN
E_FPFORMAT
MKV86- 1 304
Figure 2-1 Microword

G-¢ IA

CS2 RAM SEGMENT
119 Yy 113 112 1 ue i 107 106 103 104 103 102 101 100 099 098 097 096
7/ 7 /7
1_MISC E_WRTEN
,//1 7//1
l— E_VAWRT E_PCCTRL ——' I— E_RECIPE
E_PFLUSH E_LDCSL E_SIGNWR_ROTROP
E_ALUENBP —_— ———— I_SIZE
I_NORET
E_SDWRTEN
C_SCF
C_wCF
142 141 Yy 138 137 136 135 . 129 128 . 125124 Yy 1227121 120
7 7/ 7/ 7 7 7/
CS2 SPARES C_RCF C_MREG C_MSIZE
7//L 7//1 7//l 7///
[—- CS2 PARITY l— I_CHKIV
E_MLT_BYTE_OFF
MKV86-1305

Figure 2-1

Microword Bit Format (Sheet 2 of 2)

Table 2-2 Microword Field Definitions
Bit(s) Field Name Description
013:000 I NEXT Contains the base address of the next
microword to be executed.
018:014 I_BRMASK These fields combine to control multiway
022:019 I BRTYPE conditional microbranching.
I BRMASK - Specifies which I_NEXT <4:0>
bits (one or more) can be modified to
affect a microbranch.
I _BRTYPE - Specifies which of 16 micro-
branch condition groups to branch on.
024:023 I_USTACK Controls microstack operation for
subroutine calls/returns and returns from
microtraps.
025 I _RTNTRAP Releases the microPC silo on returning
from a microtrap routine,
026 I DECODER Selects the decoder logic as the source
of the next microaddress.
027 E _FPSUFL Enables the floating-point "shuffle"
function.
035:028 I _APORT Specifies the source for the EBox A port
mux:
® Register file
e Slow data file
e PC or VA register
e IB data bus
Alsc contrcls special register accessing
during operand specifier processing
(RNUM1, RNUM2, and RLOG registers in the
FADS MCAs).
044:036 E_BPORT Specifies the source for the EBox B Port
mux:
@ Register file
e Slow data file
e IB data bus
046:045 CS0 SPARES CS0 RAM segment spare bits,
047 CS0O PARITY CS0 RAM segment parity bit (odd parity).

Table 2-2

Microword Field Definitions (Cont)

Bit(s)

Field Name

Description

049:048

052:050

055:053

56

57

060:058

067:061

065:061

067

070:068

E SHFTFPOUT

E_SXALU_
FORM

E_SXALU FN

E_SX BY EN

E_SHFTSEL

E _SHFTCNTEN

E_SHFTCNT

E_MULDIV

E_XALUCC
STIZE

E_PEFUNC

Specifies the format for data output from
the EBox shifter logic.

Specifies the source and format of data
input to, or the format of data output
from, the EBox shift and exponent ALUs

(SALU, XALU).

Interpretation of this field depends on
the function encoded in E SXALU FN field.

Function code for the SALU and XALU.

Enables the output from the SALU and XALU
to be written to the EBox bypass bus.

i <z A s CYATTT AT 3~
va 1 DAMJ.-U FIN 1>

O D’J

i Oniiy 1lid f
encoded with a bypass functi
Selects source of data input to the
shifter or specifies which longword of a

64-bit result the shifter is to output.

Interpretation of this field depends on
the function encoded in E_SHFT field.

Selects the source of the shift count for
the shifter's shift count bus.

Specifies a direct shift count to the
shifter. The field is treated as an
absolute (unsigned) value in the range 0
to 63.

Function code for the multiplier/divider
unit if the unit is enabled by the
E_MULDEN field.

Specifies the floating-point exponent
format (F/D or G type data) required by
the XALU to generate correct FP
over/underflow condition codes for
microbranching.

Priority encoder function.

VI 2-7

Table 2-2 Microword Field Definitions (Cont)

Bit(s) Field Name Description

071 E _MULDEN Multiplier/Divider unit enable.

073:072 E_FPFORMAT Defines format of FP data input to shifter
and priority encoder. Or, specifies type
of BCD conversion to be performed by
shifter,

078:074 E_SHFT Shifter function code.

079 E_ALUCON Selects hardwired constant of 4 as input
to main ALU B port mux.

081:080 E ALUCI Selects source of carry bit input to main
ALU,

087:082 E_ALU Main ALU function code.

093:088 I_WRTADDR Specifies address of register file
location to be written.

094 CS1 SPARE CS1 RAM segment spare bit.
095 CS1 PARITY CS1 RAM segment parity bit (odd parity).

097:096 E_RECIPE Selects the SALU CC bits that result from
FP operations as microbranch recipes.

098 E SIGNWR This bit performs three basic functions:
ROPTRAP
1. Controls loading of the SALU sign latch.
2. Enables FP reserved operand trap
checking (if selected by E_SXALU FCRM).
3. Helps control FP exponent subtraction
by the SALU.
100:099 I SIZE Indicates data size (byte, word, longword)

for size-dependent microbranch conditions.

<3
-
N
]
<o

Table 2-2

Microword Field Definitions (Cont)

Bit(s)

Field Name

Description

101

102

104:103

105

106

110:107

111

112

119:113

I NONRET

E_SDWRTEN

E_PCCTRL

E_LDCSL

E_ALUENBP

E_WRTEN

E_VAWRT

I_PFLUSH

I_MISC

Sets the NORETRY flag, which is cleared by
the IBox hardware during the first micro-
word of every macroinstruction.

The NORETRY flag is tested by machine
check microcode to determine if a macro-
instruction can be restarted following a
machine check.

Enables writing the slow data file
register addressed by the E BPORT field.

VAX PC function code (increment, load PC).

Loads main ALU's carry save latch. (Saves
the carry bit for later use.)

Enables the main ALU to drive the bypass
bus.

Selects bytes on the WBus to be written to
the register file Location addressed by
the I WRTADDR field or by hardware. (There
is one E WRTEN bit per data byte.)

Enables writing contents of VA Bus to
EBoxs' VA register and to CBoxs' VA latch.
Specifies that IBox hardware is to perform
a partial flush of the IB. 1Issued prior to
returning from microtrap service routines.

Miscellaneous control field for writing:
e PSL CC bits
® CPU state flags
e Certain VAX IPRs

Also used to select the PSL CC bits to be
tested by conditional macrobranches.

Vi 2-9

Table 2-2 Microword Field Definitions (Cont)

Bit(s) Field Name Description

121:120 I_MDNUM Specifies that IBox hardware is to supply
the address of the EBox MD register to
receive memory read data.

The I_MDNUM field overrides the C MREG
field.

124:122 C MSIZE Specifies the cache data size (byte, word,
longword, quadword, octaword).

128:125 C_MREG Specifies the MD register to receive
memory read data (overridden by I_MDNUM).

135:129 C RCF CBox read functions (memory and registers).
135:125 C_WCF Memory write functions.
135:122 C_SCF Miscellaneous CBox functions (special

memory reads and writes, TB checks and
writes, CBox register writes).

136 I_CHKIV Enables IBox hardware to generate an
integer overflow microtrap if PSL <V> and
<IV> bits are both set.

137 E MLT Controls writing least significant byte
BYTE OFF from Mul/Div unit to bypass bus.
141:138 CS2 SPARES CS2 RAM segment spare bits.
142 CS2 PARITY CS2 RAM segment parity bit (odd parity).

VI 2-18

2.2.5 Microcode Definition Files

MICROZ supports all VAX-based systems and requires certain
processor-specific information before it can assemble data to be
loaded in the control store RAMs. The microprogrammers supply this
information in two source code files:

File Name Information supplied

DEFIN,MIC Definitions of the microword fields and the data
considered valid for each field.

MACRO.MIC Definitions of macroexpressions that allow the
microprogrammers to specify several microword
field settings with one symbolic statement.

2.2.5.1 Field Definition File - DEFIN.MIC - Microprogrammers
supply microword field definitions in DEFIN.MIC by specifying the
field name, the microword bits spanned by the field, and the
default setting for the field. For example, the definition for the

I _APORT field appears in DEFIN.MIC as follows:

| _APORT /=<35:28>, DEFAULT=<I_APORT/TO>

Field name ——T ’
Microword bits spanned

Assembler qualifier keyword

Field default setting
MKV86-0723

Figure 2-2 Sample Microword Field Definiton - I _APORT Field

The above definition instructs MICRO2 to assign symbolic name
I_APORT to microword bits <35:28> and to use the symbolic value of
TO as the default for the field (symbolic values are discussed in
the following paragraphs). MICRO2 automatically encodes the
default value in the field if a value is not explicitly specified
by the microprogrammers.

VI 2-11

Symbolic Field Value Names

Each microword field definition is immediately followed by a series
of statements that equate the valid hexadecimal values for the
field to symbols the microprogrammers use to represent the values.
The following 1is a partial 1listing of the symbolic values

associated with the I APORT field.

I_APORT/=<35:28>,.DEFAULT=<I_APORT/TO>

RO=80 ; General Purpose Register 0
R1=81 : General Purpose Register 1
R2=82 ; General Purpose Register 2
R3=83 ; General Purpose Register 3
R4=84 ; General Purpose Register 4
R5=85 ; General Purpose Regilster 5
R6=86 : General Purpose Register 6
R7=87 ; General Purpose Register 7
R8=88 ;: General Purpose Register 8
R9=89 ; General Purpose Register 9
R10=8A ; General Purpose Register 10
R11=8B : General Purpose Register 11
R12=8C ; General Purpose Register 12
R13=8D ; General Purpose Register 13
SP=8E : GPR - STACK POINTER

Example 2-1 Sample Field Value Assignments - I_APORT

MICRO2 interprets each field value definition by equating the
symbol on the left of the equal sign to the hexadecimal value on
the right. The semicolon character separates the code from the
comment text.

Assigning Values to Fields

Once MICRO2 equates hexadecimal values to the field value symbols,
the microprogrammers can then specify field wvalue settings
symbolically. For example, the following statement encodes a value
nf 80 (hex) in the I APORT field:

I _APORT/RO

Microprogrammers use symbols to represent field wvalues to reduce
the amount of coding that would otherwise bhe required if a hardware
nr microcode update 1s made. (The microprogrammers need only
modity the DEFIN.MIC file, not all microcode source files.)

2.2.5.2 Macrodefinition File - MACRO.MIC - MICRO2 supports the use
of macroexpressions, which are single-line, functionally
descriptive statements that represent the settings for several
microword fields.

By using macroexpressions and the default values for each microword
field, the microprogrammers can fully define a microword with only
a few statements (reducing the amount of coding required).
Macroexpressions and individual microword field definitions can be
used in the same microword.

Macroexpression Definition Format

Macrodefinitions consist of a macroname followed by the microword
fields the expression represents. The microword fields are
enclosed in quotes and are separated by commas. For example, the
macro that instructs the CBox to write a longword of data is
defined as follows:

WRITE LONG "C _WCF/WRITE,V.CHECK, C MSIZE/LONG"

When MICRO2 encounters the WRITE LONG macroexpression in a
microcode source file, it:

1. Searches MACRO.MIC for the definition of the macro

2. Searches DEFIN.MIC for definitions of the CWCF and the
CMSIZE fields

3. Encodes the hex values for the symbols:
a. WRITE.V,CHECK in the CWCF field
b. LONG in the CMSIZE field
All other microword fields will be encoded with their default

values, values from other macros, or values explicitly supplied by
the microprogrammer (individual field value symbols).

VI 2-13

Macroexpression Parameters

Microprogrammers can directly specify settings for microword fields
by supplying the symbolic values for the fields as parameters in a
macroexpression. The only restriction is that the parameters must
be valid symbolic value names for microword fields.

MICRO2 recognizes the square bracket ([]) and the "at" (@)
characters in macroexpression definitions as parameter indicators.
For example, the macrodefinition:

READ LONG [] "C_RCF/READ.V.CHECK, C_MSIZE/LONG,
C_MREG/@1"

informs MICRO2 that the programmers will supply the symbolic value
for the C MREG field each time the macro is used by enclosing the
symbol in brackets. The @ <character 1in the macrodefinition
associates the C MREG field with the parameter.

The following is an example of a READ LONG macro that instructs the
CBox to read a longword of data and to store the data in memory
data register 1 in the EBox.

READ LONG [MD1]
When MICRO2 encounters the READ LONG {MD1l] macro it:
1. Searches MACRO.MIC for the macrodefinition.

2. Searches DEFIN.MIC for the CRCF, CMSIZE, and CMREG field
definitions.

3. Encodes the hex value for the symbol:

a. READ.V.CHECK in the CRCF field

in the CMSIZE field
4, Relates the [MDl] parameter in the macro to the field
marked by the @ character - CMREG in this case.

5. Encodes the hex value for the MDl1 symbol in the CMREG
field.

Macroexpressions can have several parameters. The decimal integer
following the @ character in the definition indicates the position
of the parameter in the macro. If several parameters are used, the
left-most parameter will be designated "@1", the one to the right
of that "@2", and so on.

-

3
i
v
r—.
~

Macroexpression Classes

Macroexpressions are grouped by function in the MACRO.MIC file.
For example, all macros that deal with data transfer functions are
in one group while all macros that deal with microbranching
functions are in another group. The macroexpression classes are
shown in Table 2-3,

Table 2-3 Macroexpression Classes

Macrogroup Controls

Register Transfer Data transfers through EBox data path.
Macros further grouped by ALU, shifter,
multiplier, and floating-point (SALU,
XALU, - PE) functions.

Cache commands Memory read/write functions and special
CBox operations.

CREG/IREG Data transfers to/from CBox, IBox, and
console resident registers,

Microbranch Microbranch functions.
Miscellaneous Miscellaneous functions:

® Set/clear PSL cc bits

® Set/clear CPU state flags

® Instruction decoder calls

® Subroutine calls/returns

® Trap returns

® Others

Tables 2-4 through 2-8 list examples of the various macroclasses.

2.2.6 Microcode Related Documentation

For a more detailed description of the VAX 8800 microcode
structure, refer to the VAX 8800 Microcode Interpretation Guide
(EK~-KA88E-UG) .

VI 2-15

Table 2-4

Sample Register Transfer Macros

Macroexpression

CPU Function

ALUKC> <- A[]l + BI]

F[] <= A[] + B[]

F[] <- A[].SL.I[]

F[]1<15-0> <- B[]

PC & VA <- A[] FLUSH IB

Ss{] <- A[].OR.B[]

SHFT <- A[]

SHFT & F[] <- B[]

VA & WBUS <- A[] + B[]

WRUS <- A[l + BI]

Set ALU carry bit based on sum of A and
B port inputs to ALU. Result is not
stored in a register.

Store sum of A and B port inputs in a
fast data RAM register (EBox).

Store left shifted A port input in a
fast data RAM register. Shift amount is
given in the E_SHFTCNT field.

Store bits <15:0> from B port into a
fast data RAM register.

Load PC and VA registers (EBox) with
start address for new I-stream data;
initialize the instruction buffer.

Store logical OR of A and B port inputs
in slow data RAM register (EBox).

Load EBox shift count latches from A
port input of main ALU.

Load shift count latches and slow data
RAM register from B port.

Load VA register, a fast data RAM
register, and a slow data RAM register
from A port.

Load VA register with sum of A and B
ports; also output result to WBus.

Output sum of A and B ports to WBus.

VI 2-16

Table 2-5

Sample Cache Command Macros

Macroexpression

CPU Function

CHECK READ ACCESS
CHECK WRITE ACCESS

READ LONG []

READ LONG MDNUM

WRITE LONG

WRITE,UNLOCK LONG

Probe TB for read access.

Probe TB for write access.

Read longword and store the data in an
EBox memory data register (MDR). MDR
address is given by C MREG field.

As above, except MDR address is given by
IBox hardware (selected by I _MDNUM
field).

Write a longword to memory.

Write a longword and unlock memory.

Table 2-6

Sample CREG/IREG Macros

Macroexpression

CPU Function

CLEAR IBCER

READ CONSOLE STATUS

READ CREG []

READ IBERI1
READ RXDB DATA

WRITE INOP

WRITE IREG []

Clear IBox and CBox error registers.

Read console's transmit and receive
control and status registers. (Registers
reside on the CLK module.)

Read a CBox resident register. The
register address is given by the C_MREG
field.

Read the IBox error register.

Read the console's receive data buffer.

Write the interrupt other processor
register (resident in the IBox).

Write an IBox resident register.
Register address is given by the I _MIscC
field.

VI 2-17

Table 2-7 Sample Microbranch Macros

Macroexpression CPU Function - take microbranch based on:
(ACCESS ALLOWED) N/A. Example of a pseudo macro. *
? ACCESS ALLOWED ? Status returned by CBox after a

)

)

J

[AV]

TB access probe check.

ALULKC> ? Main ALU <C> bit.

ALUKC> + WBUSKN> ? Main ALU <C> bit and WBUS <N> bit.
FLAGO ? CPU state flag O.

INT PEND ? Interrupt pending flag.

PSIKC> ? PSL <C> bit.

WBUS<3-0> ? WBUS bits <3:0>.

* pseudo macros are programming aids microprogrammers use to

debug code associated with dynamic microbranch conditions.
While the pseudo macros appear in the microcode listing file,
they do not generate actual code.

The programmer includes a pseudo macro in a microword if the
word is to set up a dynamic microbranch condition to be tested
by a later microword. A MICRO2 support program checks all
such microword pairs to ensure that the word that tests the
condition is at least three CPU cycles removed from the one
that set up the condition (microcode pipeline requirement).
If not, the support program reports an error when the
microcode is assembled.

Note that pseudo macros and true microbranch macros have the
same basic format. The only difference is that the pseudo
macros are enclosed in parentheses instead of guestion marks.

Table 2-8 Sample Miscellaneous Macros

Macroexpression CPU Function

CALL [] Subroutine call. Push address of current
microword on microstack, get start address
of called routine from I NEXT field.

CHECK 1V Check for integer overflow trap.

CHECK ROP A.FD

CLEAR FLAGO
CLEAR ALL FLAGS

CLEAR TRAP

END INSTRUCTION

EXIT TRAP

FORCE MDVALID

GOTO []

GOTO DECODER

NOP

RETURN []

SETCC []

SET FLAGO

Check for floating-point reserved operand
trap; data type is F/D-float.

Clear CPU state flag 0.

Clear all CPU state flags.

Clear microtrap. Release trap silos, do
not restart trapped microwords (see entry
for EXIT TRAP macro.)

End current macroinstruction, request start
decode of next instruction. Next microword
address supplied by instruction decoder.
decoder.

Return from microtrap. Release trap silos,
silos, restart trapped microwords (see
entry for CLEAR TRAP macro).

Mark all EBox memory data registers valid.

Jump to new microroutine. I NEXT field
has starting address of new routine.

Get address of next microword to be
executed from the instruction decoder.

Do nothing.

Return from subroutine. Logically OR address
popped from microstack with I NEXT field.

Set PSL CC bits. Recipe in I _MISC field.

Set CPU state flag 0.

VI 2-19

2.3 MICROCODE PIPELINING CONCEPTS

VAX 8800 CPU operations are based on a design technique commonly
known as microcode pipelining. This section presents the microcode
pipeline concepts common to most pipelined machines. This section
discusses the characteristics of the VAX 8800 pipeline.

2.3.1 Pipelining Rationale
The major advantage to microcode pipelining is that it enhances the
operational speed of a CPU by allowing more than one microword to
be active at any given time.

In a pipelined machine, the microcode can control several CPU logic
elements simultaneously. For example, the hardware may be
instructed to read new data, perform a computation on previously
read data, and store the result of a previous computation all at
the same time. This more efficient use of the hardware yields a
substantial increase in performance over a nonpipelined machine.

2.3.2 Pipelined Versus Nonpipelined Machines
Each microword of a microcode-controlled CPU must, in some manner,
perform three basic operations:

1. Read data from memory or from a register
2. Modify the data (add, shift, etc.) if required
3. Write the result to memory or to a register

These operations are generally considered to be performed during
what are known as a "microcycles" with each microcycle being one or
more CPU clock cycle in duration.

Figure 2-3 illustrates the timing relationship between microwords
and microcycles of a nonpipelined CPU. Figure 2-4 does the same
for a pipelined CPU. Both figures assume that it takes three
microcycles to execute one microword (ignoring microaddress look-up
time, data access time, traps, stalls, etc.).

Table 2-8 lists the major differences between the two machine
types.

Microcycles

P S I i R e I B B
[A R R A A B B B

Microword N

RD | MOD | WRT

Microword N+1

RD |MOD | WRT

Microword N+2

RD | MCD | WRT

MKV86-0724

Figure 2-3 Basic Time State Diagram - NonPipelined CPU

Microcycles

4 5

RD | MOD | WRT | Microword N

RD | MOD | WRT | Microword N+1

RD | MOD | WRT| Microword N+2

Normal pipeline state

MKV86-0725

Figure 2-4 Basic Time State Diagram - Pipelined CPU

VI 2-21

Table 2-9 Pipelined/Nonpipelined CPU Comparisons

Nonpipelined CPU Pipelined CPU

New microword started New microword started every
every three microcycles. microcycle.

Serial operation - one Parallel operation - three
operation per cycle. operations per cycle.
Majority of hardware Majority of hardware active
idle in each cycle. in each cycle.

2.3.2.1 Performance Factors - Although it takes the same number of
microcycles to execute any given microword in either CPU type, a
substantial increase in performance is gained in a pipelined CPU
since the operations are "overlapped." For example, with one
microword executed every three microcycles, a nonpipelined CPU
would take nine cycles to execute a three-microword routine. A
pipelined CPU would take only five, a performance factor ratio of
1.8 to 1. As the number of microwords in a routine increases, the
performance factor ratio also increases, to a limit of 3 to 1 in
the case of a three-stage pipeline.

vl 2-22

2,4 VAX 8800 PIPELINE CHARACTERISTICS

Microcode pipelining in the VAX 8800 processor is possible because
of the precise timing supplied by the clock subsystem and the
latch-based design of the hardware. The primary timing signals, A
CLK and B CLK, ensure that data is propagated through the hardware
in the correct sequence and at the proper time.

2,4,1 CPU Clock Cycle

The VAX 8800 CPU clock cycle is considered to be the time period
from leading edge to leading edge of either the A CLK or the B CLK
signal. 1IBox clock cycles start on a B CLK; CBox and EBox clock
cycles start on an A CLK. (Refer to Figure 2-5,)

The nominal clock rate is 45 nanoseconds. The rate can be modified
by issuing the SET CLOCK command from the console. (Refer to the
VAX 8800 Console User's Guide.)

2.4.2 CPU Hardware Design

The CPU hardware design 1is based on coupling high-speed,
combinational logic elements together with data latches. The logic
elements perform the required CPU functions (under microcode
control), the data latches serve as buffers between the elements.
The data latches are strobed by either the A CLK or the B CLK
timing signal.

The hardware design requires data to be transferred between latches
strobed by opposite clock phases. For example, data previously
stored in an "A" latch can only be transferred to a "B" latch.

Refer to the lower portion of Figure 2-5. During a single-CPU
clock cycle, data can be:

. Obtained from an A latch

. Processed by a logic element

. Clocked into a B latch

. Obtained from the B latch

. Processed by another logic element

U Wi+

Once processed by the second logic element, the data is then input
to another A latch and made available for the next clock cycle.

NOTE
Clock cycles will be referred to as
microcycles in the remaining text.

VI 2-23

Clock Cycle

l«—15ns -—-I 45ns

A CLK-—'l I

1l

B CLK J I
L L L .
A LOGIC A LOGIC A 0 next
DATA T T T [loge
& ELEMENT . ELEMENT c element
H H H
A CLK B CLK CLK

Note: Cbox and Ebox clock cycles start on an A CLK,

ibox cycies start on a B CLK.

Figure 2-5

VI 2-24

Basic CPU Timing

MKV86-0728

2.4.3 Relationship Between Microcycles and CPU Functions
VAX 8800 microwords can take from three to five microcycles to

execute (ignoring stalls, traps, etc.). Three of these cycles
correspond to the basic functions the CPU must perform (read,
modify, and write). The other two cycles are optional and are

associated with decoding macroinstructions and performing certain
cache operations.

Figure 2-6 and the following table are concerned with the basic
read, modify, and write microcycles of a microword.

Cycle CPU Function

Read Select the source of data input to the
EBox data path (memory, GPR, microcode
temporary register, etc.)

Modify Perform the specified operation on the
data (arithmetic, logical, etc.)

Write Store the result 1in the specified
destination (memory, GPR, microcode
temporary register, etc.)

2.4.4 1B Decode Cycle

In addition to the read/modify/write cycles of a microword, there
is an optional cycle that is associated with decoding I-stream data
from the instruction buffer.

The IB decode cycle precedes the three basic microword cycles in
time, but is only wused during macroinstruction execution.
Otherwise, it is effectively treated as a "no-op" cycle by the
hardware.

NOTE
Figure 2-7 is for illustration purposes only.
Refer to Figure 2-9 for a more precise
representation.

VI 2-25

Microcycles

Clock phase—>A B

Read data from a GPR, microcode
temp register, or from memory

Perform specified operation

(add, shift, etc.), if any

Write result to a GPR, microcode

temp register, or to memory

B 1st 2nd 3rd —»
B B A
| | | |
READ MODIFY WRITE
1 y
MKV86-0727

Figure 2-6 Microcycles/CPU Functions

VI 2-26

2.4.5 Canonical Time States

Since the microcycles of the microwords in the pipeline overlap,
the time at which a CPU event occurs in a given microword is
referred as its canonical time state.

NOTE
The term "canonical" with reference to the
VAX 8800 CPU refers to the set of rules used
by the hardware design engineers.

2.4.5.1 Definition Of A Canonical Time State - A canonical time
state 1is defined as the time period from the leading edge of one
clock phase to the leading edge of the next opposite phase. That
is, the time periods from A CLK to B CLK and from B CLK to A CLK
are both considered canonical time states. ‘

Note in Figure 2-8 that microcycles are divided into two time
states: even numbered time states start on an A CLK pulse, odd
numbered time states start on a R CLK

= L& EASS SL4alLTs SLa L u

Nniilca
t’u-‘-&)\d -

2.4.5.2 Overlapping Time States - Figure 2-8 also shows that each
microword has its own canonical time state periods with each time
state being one cycle removed from the corresponding time state of
the next microword. For example, T10 time of the first (top)
microword in Figure 2-8 is also T8 of the second microword, T6 of
the third, and so forth.

With several microwords in process at a time, to avoid confusion,
the hardware designers always refer to the timing of CPU events
relative to the microword just entering the pipeline.

NOTE
Canonical TO time 1is shown for reference
only. TO 1is considered to be T2 of the
previous microword.

It is assumed that the address of the first microword shown in
Figure 2-8 was loaded into the microPC address latches by the
console. The address of each subsequent microword is generated
during canonical T4 time of the previous microword (see Section
2.4.6).

VI 2-27

o ——x

A B A B A B A B A B A Clock
T I O
DECODE | ADR READ MODIFY WRITE
Microaddress look-up time
Decode I-stream data from
the IB (optional cycle)
MKV86-0728
Figure 2-7 1IB Decode Cycle
T /I\ Bl ? ? T ? ? BI- A‘ -«——— Clock phase
T T T T T T T T T T -«———Time state
1 2 3 4 5 6 7 8 9 10
DECODE ADR READ MOD WRITE
DECODE ADR READ MOD WRITE
DECODE ADR READ MOD WRITE
DECODE ADR READ MOD WRITE
DECODE | ADR READ MOD WRITE
MKV86-0729
Figure 2-8 Canonical Time States

Vi 2-28

4.6 Time State Events

\ microword is considered active in the pipeline from canonical T3
:0 T1l0 except when the CPU is executing a macroinstruction. 1In
:his case, canonical TO to T2 are included.

'igure 2-9 illustrates the CPU event timing for several microwords
.n the pipeline. Table 2-9 briefly describes the events that occur

.n each time state. The time states given 1in the table are
‘elative to the top microword shown in the figure. It is assumed
-hat the CPU is in the process of executing a macroinstruction.

pe-¢ IA

T T T

0 1 2

MICROWORD
P
| Decoder | Decoder

N+1

N+2

N+3

N+4

Cycle 1 Cycle
First | Second
Haif 1 Half

|

T T T T T T T T T T T T T T T T
3 4 5 € 7 8 9 10 11 12 13 14 15 16 17 18
Generate
next File File Writes
Reads
CSo U-addr
Lookup ALU Operations
csi CS2 m Cache
Lookup Lookup Operations |Operations
r TTTTTTT Generate Eile
{ Decoder | Decoder Une;[d Reads File Writes
-addr
! %\({‘35':3 : S%Xglﬁd Loctioup ALU Operations
b Haif | Half Ccs1 cs2 B Cache
| Lookup Lookup Operations |Operations
CTTTT T T T Generate File
Decoder | Decoder next Reads File Writes
; Cycle I Cycle CS0 U-adar ALU Operations
. First | Second Lookup perat
T Hait Half Ccs1 Cs2 ™ Cache
| | Lookup Lookup Operatons |Operations
r ————— (I Generate File
Decoder 1 Decoder next e File Writes
1 < " . Reads
| Gyele I Cycte €S0 U addr ALU Operations
First &1 b
U gt : S(,_f:l?d Lookup cs1 cs2 8 Cache
] | Lookup Lookup Operations [Operations
|
Y I Generate Filo
{ Decoder ¥ Docoder next Rea(:js File Writes
| Cycle | Cycle CSO U-addr ALU Oparatio
First 1 Second Lookup . - perations .
e | Half csi cs2 B Cache
| | Lookup Lookup Operatuons |Operations
| S
[T
A . ¢ 5] s n K
Figure 2-9 VAX 8800 Pipeline Time State Dlagram

Table 2-10 Pipeline Time States/CPU Events

Time State CPU Events

TO to T1 IB checks if it can accept a new longword of
I-stream data. 1If so, IB decodes its write
address in preparation for the longword. (Note:
canonical TO time 1is generally considered to be
T2 time of the previous microword.)

Tl to T2 IB outputs op code and next specifier (if any)
of the macroinstruction currently being
processed to the decoder.

New longword of I-stream data enters IB if the
IB write operation is enabled.

T2 to T3 Decoder generates entry-point address for micro-
routine required to service the specifier.

If there are

3

n Ie)
ne 1A

-

re speci
generates the entry-poin
code routine.

T3 to T4 IB decoder generated microaddress latched in the
microPC address latches for the CS0 RAMs (first
of three control store RAM segments).

CSO0 RAMs start outputting microword bits for the
read cycle of the microword.

T4 to T5 Current microaddress passed to microPC address
latches for CS1 RAMs (second CS RAM segment).

CS1 RAMs start outputting microword bits for the
modify cycle of the microword.

CS0 RAM microword bits latched and routed to the
appropriate EBox and IBox logic.

Microsequencer examines microword bits <26:00>
from CSO segment to determine address of next
microword to be executed.

T5 to T6 Current microaddress passed to microPC address
latches for CS2 RAMs (third CS RAM segment).

CS2 RAMs start outputting microword bits for the
write cycle of the microword.

VI 2-31

Table 2-10 Pipeline Time States/CPU Events (Cont)

Time State

Event

T5 to T6
(cont'd)

-
(o))

T7

3
lee)

T9

T10 to T11

cr
o

to

T
(0]

to

-3
~J

T8

T10

CS1 RAM microword bits latched and routed to the
appropriate EBox logic.

CSO0 RAM microword bits select source of data to
be input to EBox data path.

Microaddress of next microword to be executed is
latched in microPC address latches of CSO RAMs;
new microword started.

CS0O segment completed.

CS1 segment controls the first half cycle of the
EBox data path operation (main ALU, multiplier/
divider, shifter, etc.).

CS2 RAM microword bits latched and routed to the
appropriate CBox, EBox, and IBox logic elements.

CS1 segment completed.

CS2 segment controls second half cycle of EBox
data path operation.

CBox receives and decodes cache command (if any)
supplied by CS2 segment.

CBox performs any virtual to physical address
translation required. (Note: This operation is
controlled by the CBox, not by microcode.)

CS2 segment controls EBox register writes. CBox
performs cache read/write functions (if any).

CBox outputs data to EBox if memory read request
was made. (CBox generates a stall condition if
the required data is not in cache and must be
retrieved from main memory.)

Pending microtrap conditions (if any) signaled
to IBox microtrap logic.

CHAPTER 3
IBOX FUNCTIONAL DESCRIPTION

3.1 CHAPTER SCOPE

This chapter describes the operation of the IBox hardware to the block
diagram level, It 1includes functional block diagrams of each major
IBox logic section and discusses how the hardware interacts with the
various microword fields where applicable.

Certain sections of this chapter, such as the one that discusses the
macroinstruction decode process, include more detailed block diagrams
to better illustrate the operation of the hardware.

To understand the interaction between the hardware and the microcode,
it is recommended that the following VAX 8800 reference material be
available to the reader:

® Microcode Listings
@ Microcode Interpretation Guide, EK-KA88E-UG
® Machine Check Interpretation Guide, EK-KA88H-UG

VI 3-1

3,2 CONTROL STORE LOGIC

The control store logic resides on the SEQ and the WCS modules. It
consists of the 16K by 1 bit writeable RAMs, which contain the main
CPU microcode, and the necessary RAM address and data latches.

Figure 3-1 is a simplified block diagram of the control store logic.

3.2.1 Control Store RAM Segments

To implement the microcode pipeline effect, the control store RAMs are
physically divided into three segments known as CS0, CS1l, and CS2.
The CSO segment resides on the SEQ module, the Csl1 and €S2 segments
both reside on the WCS module.

Each CS RAM segment corresponds to a different cycle of the microword.
CS0 supplies the microword bits for the read cycle, CS1 for the modify
cycle, and CS2 for the write cycle. The following table indicates the
primary CPU functions controlled by each segment.

Table 3-1 Control Store RAM Segment Functionality

Segment U-Word Bits CPU Functions

Cso <047:000> Next micro-PC address formation.
Microstack operations.
Register file reads.

Cs1 <095:048> Data manipulation operations.
Register file write set-up.

CS2 <142:096> Register file writes.
Cache and TB operations.
Condition code setting.
Miscellaneous operations.

Refer to Chapter 2 for descriptions of the microword bits supplied by
each RAM segment.
V9L 3-2

£€-¢ IA

DECODER SELECT

RAM WRITE DATA <7:0>

CSO WRT
CONTROL

WRITE SEG ID <2:0> —————»

CSO SEG SEL <5:0>

\i

CSO WRITE STROBE ——————

CSO ADR
LATCHES

UPC <13:00> ———1) 1
DEC UADDR <13:00> eosmmmmpe! DO

UPCO <13:0>

'MICROTRAP
CONS UADDR REQ

SEL

B CLK
(T3)

CSO RAMS
16K x 48
DATA IN
CSO Microword Bits
SEG WRT (unlatched fields)
STROBES
CSO DATA
LATCHES
—— CS0O Microword Bits
. (latched fields)
ADDR

STALLED A CLK
(T4)

UPCO <13:0>

=== To CS1 Adr Latches
Sheet 2 of 2

MKV86-0697

Figure 3-1 Control Logic Simplified Block Diagram (Sheet 1 of 2)

y-€ IA

CS1 RAMS

CS1 Microword Bits J>

16K X 48
RAM WRITE DATA <7:0> DATA IN
CS1 WRT
CONTROL CS1 DATA
WRITE SEG LATCHES
ID <2:0> —_— CS1 SEG SEG WRT
STROBES
CS1 WRITE SEL <5:0>
STROBE :>
CS1 ADR
LATCHES T
UPC1 <13:0> - B CLK
UPCO <13:0> - =»| ADDR (T5)
From Sheet
10f2

STALLED A CLK —

(T4)

Figure 3-1

CS2 RAMS
16K x 47
RAM WRITE DATA <7:0> emmmmm———-1 DATA IN
CS2 WRT
CONTROL
WRITE SEG
ID <2:0> CS2 SEG SEG WRT
STROBES
CS2 WRITE ——— SEL <5:0>
STROBE
CS2 ADR
LATCHES
UPC2 <13:0>
=p-1 ADDR

B CLK ——I

(T5)

LATCHES

CS2 DATA

CS2 Microword Bits

o

5

(T6)

Control Logic Simplified Block Diagram (Sheet 2 of 2)

STALLED A CLK

MKVB6-0698

3.2.2 Control Store RAM Addressing

Refer to Figure 3-1. The pipeline effect is a direct result of the
way 1in which the address of the next microword to be executed is
propagated through the address latches of the CS RAM segments.

The address of the next microword to be executed is derived from one
of two sources:

Table 3-2 Next Microaddress Sources

Source Logic Signals Comment
IB Decoder DEC UADDR Entry point microaddresses for
<13:0> microroutines that:

o Process operand specifiers
o Execute macroinstructions
o Service special conditions

Microsequencer UPC <13:0> All other microaddresses.

The state of the DECODER SELECT input to the CS0 RAM address latches
is the primary factor 1in determining whether the IB decoder or the
microsequencer is to supply the next microaddress. If the signal is
asserted, the decoder is selected. Otherwise, the microsequencer is
selected.

The selected microaddress is loaded in the CS0O RAM address latches at
canonical T3 of the microword (CSO lookup cycle). The address is then
propagated to the CS1 address latches at T4 (CS1 lookup) and to the
CS2 address latches at T5 (CS2 lookup).

3.2,3 Control Store RAM Data Latches

The microword bits output by each CS RAM segment are clocked into data
latches one canonical Tn time after the segment is read. For example,
the CSO0 microword bits are read at T3 time and latched at T4. Once
stored in the data latches, the microword bits are then routed to the
appropriate CPU logic elements.

VI 3-5

Note that microword bits <25:00> from the CSO segment are not latched
in the (SO data latches. These bits all deal with the generation of
the next microaddress and are fed directly to, and 1latched 1in, the
microsequencer logic. This ensures that the microsequencer will be
able to compute the next microaddress during canonical T4 and have it
ready for the CS0 address latches by canonical T5 (T2 and T3 relative

to the next microword).

3.2.4 Loading The Control Store RAMs

The microcode resides on the console's Winchester disk and is 1loaded
into the CS RAMs during system initialization. Figure 3-3 shows the
CS RAM load path.

NOTE

The CS RAM load process 1is covered in the console
section of this document. Only the highlights of the
process are presented here.

The RAMs are loaded a byte at a time from the 8-bit bidirectional Cons
Bidi Data bus which 1links the CLK module to the DEC module. The
console interface logic on the CLK module controls the load process by
passing commands, addresses, and data over the Cons Bidi Data bus to
the gateway control (GWYC) MCA on the DEC module.

There are three basic steps involved with loading the CS RAMs:

1. Write address of the microword to be loaded in the micromatch °
register of the UBRS MCAs.

2. Write data to the selected microword a byte at a time over
the Cons Bidi Data bus.

3. Verify parity of each microword loaded.

3.2.4.1 Load Control Store Microaddress - Since microaddresses are 14
bits wide and the Cons Bidi Data bus 1s only 8 bits wide, the
microaddresses are loaded in the micromatch register in slices as
shown in Figure 3-2.

A
<

-

W
|
o

07 06 05 04 03 02 01 00
0 ID 5 MICRO-PC BITS

L 11 = LOAD CS ADDRESS <14:10>
10 = LOAD CS ADDRESS <09:05>
01 =LOAD CS ADDRESS <04:00>

MKV86-1255

Microaddress Bit Slices For

Loading

Figure 3-2 Micromatch Register

The ID field points to the appropriate microaddress bit slice in
micromatch register. The

the
address may be sent in any order and need

only be set up once for each microword. The address remains in the
micromatch register and is clocked through all CS RAM address latches.
Note that bit 5 of the top address slice, which would become address

bit 14, is not used.

3.2.4.2 Write Data To Selected Address - Data for each microaddress
is loaded into the CS RAM segments in the following order:
1. CSO RAMs

2., CS1 RAMs
3. CS2 RAMs

The CS RAM segments are divided into 6 banks of 8 RAM chips each. The
Cs0, CSsl, and CS2 WRITE STROBE signals select the segment to load, the

WRT SEG ID <2:0> signals specify the bank within the segment. The
GWYC MCA supplies the control signals.
The CS RAMs are loaded a byte at a time, most significant byte first,

from the Cons Bidi Data bus. Data is loaded to the selected CS RAM
location with 18 consecutive writes to the Cons Bidi Data bus:

First Second Third

Cso Cs1 CS2
<047:040> <095:088> <142:136> (7 bits)
<039:032> <087:080> <135:128>
<031:024> <079:072> <127:120>
<023:016> <071:064> <119:112>
<015:008> <063:056> <111:104>
<007:000> <055:048> <103:096>

Note that if a RAM data segment is less than 8 the

significant bits are "don't cares".

bits wide, most

VI 3-7

CONS BIDI DATA — XCVR RAM WRITE DATA <7:0>

WRITE SEG ID <2:0>
CSO WRITE STROBE
CONS CMD FLAG GWYC CS1 WRITE STROBE
MCA CS2 WRITE STROBE
CONS STROBE CONSOLE REQUEST
SET MICROMATCH REG

\ \

MICRO
MATCH p— UPC <13:00>
REG.

UBRS MCAS
MKV86-1256

Figure 3-3 Control Store RAM Load Path

vl 3-8

3.3 MICROSEQUENCING

Each microword contains several fields that either contribute to the
formation of the next microaddress or inform the microsequencer when
to select one of several alternate address sources. This section
overviews the microsequencer hardware and describes the various
microsequencing methods.

3.3.1 Microsequencer Hardware

Refer to Figure 3-4. The microseguencer consists of 5 identical
microbranch slice (UBRS) MCAs, a microtrap (UTRP) MCA, and a 16 word
by 15 bit microstack.

3.3.1.1 Microbranch Slice (UBRS) MCAs - The UBRS MCAs are responsible
for determining the address of the next microword to be executed and
for supplying the address to the CS0O RAM address latches. The next
microaddress may be derived from any of the following sources:

Current microword
IB Decoder
Microstack
Microtrap logic
VAX Console

The UBRS MCAs multiplex all address sources except the one from the IB
decoder. The address from the decoder and the one from the UBRS MCAs
are multiplexed by the CS0 RAM address latches.

Each UBRS MCA handles a 3 bit slice of the microaddress, a total of 15
address bits. The low 14 bits become the UPC <13:00> lines fed to the
CS0 RAM address latches, the 15th bit is unused.

3.3.1.2 Microtrap (UTRP) MCA - The UTRP MCA receives and prioritizes
all CPU microtrap conditions and supplies the UBRS MCAs with the
microvector of the highest priority condition present. It also
generates the address and control signals for the microstack, and
notifies the rest of the CPU hardware when a microtrap has occurred.

3.3.1.3 Microstack - The microstack supports the subroutine call and
return functions of the microcode. Subroutines may be nested to a
depth of 15 <calls, after which the microstack wraps back. The
microstack operates on a last-in/first-out basis which means that the
last address pushed onto the stack is the first one popped off.

VI 3-9

DEC UADDR <13:00:>
FROM IB DECODER

SPECIAL MICROBRANCH CONDITIONS

OTHER MICROBRANCH CONDITIONS

CONSOLE REQUEST
SET MICROMATCH REG

RAM WRITE DATA <8:0>

|_DECODER

GLOBAL TRAP

MICRO-VECTORS

MICRO-STACK POP

PUSH X

MICRO
STACK

16 x 15

MICRO-STACK POP

RAM

MICRO-VECTORS

DECODER NEXT

]
MACHINE CHECK MICROTRAPS

[

I

POINTER
WRITE ENA

GLOBAL UTRAP
UTRAP RET STATE

NORETRY i AG
NORETRY FLAG

| eI A .
SPEC MDNUM <2:0>
| ot VM 2

BLOCK WRITES

OTHER MICROTRAP CONDITIONS MICROTRAP
LOGIC

DECODER MARKER

UTRP

MICROBREAK MCA
NEW INSTRUCTION
STALL
INTERNAL CPU INIT
PSL IV
DISABLE TRAPS
NO RETRY FLAGS

Figure 3-4

Microsequencer Logic

%)
]

fe}

N
I_NEXT
_BRTYPE, |_USTACK,
I_BRMASK [_RTNTRAP
LATCH
A
2 : > cso
™2 UPCA <13.0> cso,
> UPC <13:00>
N B CLK
MICROBRANCH
LOGIC
5
UBRS
N MCAs MICROMATCH
vV
DECODER
MARKER

3.3.2 Normal Microcode Flow

The microsequencer normally selects the I NEXT field of the current
microword as the next microaddress unless instructed to do otherwise
(modify the address based on a microbranch condition, pop an address
from the microstack, select a microtrap vector, etc.).

Refer to Figure 3-5. The I_NEXT field 1is read from the CS0O RAM
segment at canonical T3 of the current microword and is latched in the
UBRS MCAs at T4. During the T4 to T5 time frame, the UBRS MCAs check
the other microword fields and various control signals to determine if
the I _NEXT field is to become the next microaddress. If so, the UBRS
MCAs will output the I_NEXT field as UPC <13:00> to the CS0O RAM
address latches prior to T5 time (T3 of the next microword).

3.3.3 1B Decoder Supplied Microaddress

The IB decoder is responsible for supplying the entry point (first)
microaddress for each microroutine that processes an operand specifier
of the current macroinstruction. If more than than one microword 1is
required to service a specifier, the microsequencer will generate the
additional addresses for the specifier routine. Once all specifiers
are processed, the decoder will supply the entry point address for the
execute code of the instruction.

Note that the CS0 RAM address latches will only select the IB decoder
supplied address if the I_DECODER bit of the current microword is set.
Otherwise, they will select the microsequencer supplied address.

The instruction decode process is covered later in this chapter.

3.3.4 Microbranching
Refer to Figure 3-6 and Table 3-3.

The I _BRTYPE and I_BRMASK microword fields, in combination, allow the
UBRS MCAs to test up to five CPU hardware conditions at a time and to
modify the I NEXT field based on the result of the test. The state
(one or zero) of the tested conditions are ORed with the low order 5
bits of the I NEXT field, allowing the UBRS MCAs to generate up to 32
possible target microaddresses.

VI 3-11

P
]

w

-
N)

I_NEXT

T2

UBRS MCAS

UPC «<13:00> > MUX| T3 UPCA<13:OO>>

B CLK

Figure 3-5 Normal I NEXT Field Addressing

CSO
RAM

MKV86-1258

Microbranch conditions are divided into 16 groups of 5 conditions each
(some groups have less than 5 conditions). Each UBRS MCA monitors up
to 16 conditions, one per group, and is responsible for modifying one
of the 5 branch-sensitive I NEXT field bits. For example, UBRS MCA
slice 0 handles I_NEXT bit <0>, slice 1 handles I NEXT bit <1>, and so
on.

Each UBRS MCA receives all four I BRTYPE microword field bits and one
masking bit from the I BRMASK field. The I BRTYPE field specifies the
microbranch condition group to be selected by all five UBRS MCAs. The
masking bit determines if the condition tested by a given UBRS MCA is
to affect the branch-sensitive I NEXT bit handled by the MCA.

Note that to implement a microbranch, the microprogrammers ensure that
the appropriate branch-sensitive bits of the I NEXT field are zeros.
For example, to implement a full 32-way microbranch, all 5 1low order
bits of the field must be zeros.

3.3.4.1 Microbranch Conditions - Microbranch conditions are generated
by all CPU 1logic units, including the IBox itself. Table 3-4 lists
the various microbranch conditions and the branch-sensitive I NEXT bit
associated with each condition. -

Size Dependent Conditions

Some EBox generated microbranch conditions are intermediate condition
code bits that are based on the size of the data being processed. The
EBox outputs these microbranch conditions as either WBUS <N,%Z,C,V> or
as ALU <N,z,C,V>.

To ensure that the EBox data path generates the correct size dependent
microbranch conditions, the data size must be specified in the I_SIZE
field of the same microword that produces the conditions. The table
below indicates the values for the I_SIZE field.

I SIZE Data

<1:0> Size
00 Unused
01 Byte
10 Word
11 Longword
Size dependent microbranch conditions are denoted by the asterisk (*)

character in Table 3-4.

VI 3-13

I_BRTYPE, |_BRMASK, I_NEXT

T2

SPECIAL
MICROBRANCH
CONDITIONS

OTHER
MICROBRANCH
CONDITIONS

|

NEXT <13:5>
NEXT <4:0>
MASK BITS
NG
TYPE BITS Elh
SEL

e

e
UBRS MCAS

UPC <13:00> >

MUX

T3 JUPCA <13:0> }

NOTE: EACH UBRS MCA HANDLES ONE BIT
OF THE FIVE BRANCH-SENSITIVE |_NEXT
FIELD BITS. THE I_BRMASK FIELD SELECTS
WHICH UBRS MCAS ARE TO BE ENABLED.

Figur

e 3-6 Microbranch Condition

Selection

CSo
RAM

16K

X
48 BITS

B CLK

Table 3-3 I_BRTYPE/I BRMASK Microword Field Relationship

Specifies the UBRS MCA(s) to be
enabled (one or more).

Specifies the microbranch condition
l group under test (1 of 16).

I BRMASK I BRTYPE Code
T<4:0> <3:0> Microbranch Operation (Hex)
11111 N/A N/A, use I _NEXT field 1FX
11110 Enable UBRS MCA # 0 1EX
11101 ANY 1 1DX
11011 COMBI- 2 1BX
10111 NATION 3 17X
1111 Enable UBRS MCA § 4 OFX
00O00O0 Select branch group 0 XX0
0001 1 XX1
0010 2 XX2
0011 3 XX3
0100 4 XX4
0101 5 XX5
ANY 0110 6 XX6
COMBI- 0111 7 XX7
NATION 1 000 8 XX8
1001 9 XX9
1010 A XXA
1011 B XXB
1100 C XXC
1101 D XXD
1110 E XXE
1111 Select branch group F XXF

XX denotes any combination (except lF‘X)———-———I

VI 3-15

Table 3-4 Microbranch Conditions
Key: @ - dynamic condition
* - gize dependent condition
licrobranch condition group - selected by I

BRTYPE

field

I_NEXT bits to be modified - selected by I_BRMASK field

<4> <3> <2> <1> <0>
0 STATE FLAG STATE FLAG STATE FLAG SALU CC<5> XALU CC
<5> <1> <0>
@ @
1 TB STATUS TB STATUS * ALU <C>
<1> <0>
@ @ @
2 * WBUS <2> WBUS <3> WBUS <2> WBUS <1> WBUS <0>
@ @ @ @ @
3 SALU CC<0> SALU CC<1> SALU CC<2> SALU CC<3> * WBUS <N>
@ @ @ @ @
4 PSL <N> PSI, <2> PSL <V> PSL <C> PSL <TP>
5 INTR PENDING SALU CC<2> XALU CC * WRUS <2>
@ @ e
6 PSL <FPD> PSL <CUR1> PSL <CURO> HALT PENDING ILLEGAL OP
7 WRITE CHK WRITE MD NO <2> MD NO <1> MD NO <0>
(C_SCF<7>) (C_SCF<13>)

VI

)
i
f—
N

Table 3-4 Microbranch Conditions (Cont)

Key: @ - dynamic condition
* - size dependent condition

Microbranch condition group - selected by I BRTYPE field
l I _NEXT bits to be modified - selected by I BRMASK field

<4> <3> <2> <1> <0>

CACHE CMD<4> CACHE CMD<3> CACHE CMD<2> CACHE CMD<1> CACHE CMD<O0>

(C_SCF<7>) (C_SCF<10>) (C_MSIZE<2>) (C_MSIZE<1>) (C_MSIZE<0>)
STATE FLAG PE CC * ALU <C> * WBUS <N> * WBUS <2Z>
<5>
@ @ @ @
A * ALU <V> STATE FLAG AC LOW DIGIT VALID VALID <3>
<4>
@ Q @
WBUS <31> WBUS <30> WBUS <29> WBUS <28> WBUS <27>
@ @ @ @ Q
C NORETRY FLAG * WBUS <2>
@
D SALU CC SALU CC SALU CC SALU CC STATE FLAG
<2> <3> <4> <5> <5>
@ @ @ @

INTR ID <4> 1INTR ID <3> INTR ID <2> INTR ID <1> INTR ID <0>

STATE FLAG STATE FLAG STATE FLAG VA REGK31> VA REG<K30>
<6> <3> <2>

VI 3-17

Special Microbranch Conditions

Microbranch conditions in groups 7 and 8 (I_BRTYPE field equal to 7 or
8) are used exclusively by microtrap service routines that handle
memory management related microtraps (TB miss, TB ACV, etc.). This
includes memory management microcode and certain sections of the
interrupt and exception microcode.

All special microbranch conditions, except for the low three
conditions in group 7, are latched in the UBRS MCAs when a microtrap
is detected and are saved in the MCAs for the duration of the trap
service routine.

The low three group 7 conditions are copies of TRAP MD <2:0> bits from
the CBox. The TRAP MD <2:0> bits are latched and saved in the CBox on
a microtrap (refer to the CBox section of this document). The top two
group 7 and all group 8 conditions are copies of certain bits from the
C_SCF field of the trap causing microword.

NOTE

The C_SCF field is read from the CS2 RAMs at canonical
T6 of the trap causing microword, but the UBRS MCAs do
not check microbranch conditions until T10 (a pipeline
restriction). The C_SCF bits are propagated through
additional latches in the UBRS MCAs to accommodate for
the timing discrepancy.

The following table briefly describes how microtrap service routines
use the special microbranch condition bits.

Table 3-5 Special Microbranch Condition Bit Usage

Group Bits Used by Microtrap Service Routine to:
7 <2:0> Restore the pointer to the EBox memory data
register (MDR) that was to receive memory

read data prior to the microtrap.

7 <4:3> Determine if the command originally issued
to the CBox by the trap causing microword
was a write or write check. The microtrap
handler must know the command type to call
the proper subroutine to fix the fault.

8 <4:0> Perform a 32-way microbranch based on the
original command issued to CBox on exiting
from the trap (requeues the cache command).

~ a1 T

‘
7]

=
W
|
f—d
0

State Flags

The IBox contains 7 CPU state flags which provide the microprogrammers
with more flexibility in controlling microcode flow. The flags reside
in the CCBR MCA and can be set (individually) or cleared (individually
or as a group) as specified by the I MISC field. The state flags are
written at canonical T9.

The IBox hardware clears all state flags during the first microword of
every macroinstruction. The flags can then be set (or cleared) by one
microroutine and tested as microbranch conditions, after a minimum 3
cycle branch latency period, by a later routine.

Note that since the state flags are hardware cleared during the first
microword of a macroinstruction, the I MISC field of this microword
may not be encoded to set a state flag (microcode restriction).

Noretry Flag

Microprogrammers use the special NORETRY flag to inform machine check
interrupt service routines whether a macroinstruction can be restarted
following a machine check fault. The machine check code examines the
noretry flag, and information from other sources, to determine if the
instruction that caused a fault can be restarted after restoring the
PC and any modified GPRs.

The noretry flag is hardware cleared during the first microword of
every macroinstruction. It must then be set by the first microword of
the instruction that performs an operation that could prevent the
instruction from being properly restarted following a fault.

Examples of non-retryable operations include writes to GPRs and IPRs
(except GPR auto-increment/decrement) and memory writes. Note that
writes to GPRs during auto-increment/decrement operations are backed
up by RLOG registers in the FADS MCAs and are, therefore, retryable.

The noretry flag resides in the UTRP MCA and is set at canonical T9 by
the I NORETRY field.

3.3.4.2 Microbranch Latency - Due to the pipeline effect, there is
normally a 3 cycle delay before microbranch conditions generated by a
microword are available to the UBRS MCAs for testing. Figure 3-7
illustrates the pipeline latency for conditional microbranching.

VI 3-19

T T T T T T T T T T T T T T
2 3 4

7
. |

—_ 1 o

.
6
|

GENERATES MICROBRANCH CONDITION(S)

TESTS MICROBRANCH CONDITION(S)

TARGET MICROWORD

NOTES:

1. ALL MICROBRANCH CONDITIONS ARE AVAILABLE TO THE UBRS MCAS AT
CANONICAL T10 RELATIVE TO THE CONDITION PRODUCING MICROWORD
(T4 RELATIVE TO CONDITION TESTING MICROWORD).

2. THE TWO MICROWORDS BETWEEN THE CONDITION PRODUCING AND THE
CONDITION TESTING MICROWORDS ARE ONLY ALLOWED TO PERFORM
OPERATIONS WHICH WILL NOT AFFECT THE MICROBRANCH CONDITIONS
(MICROPROGRAMMING RESTRICTION).

3. MICROTRAPS OR STALLS DURING THE BRANCH LATENCY PERIOD DO NOT
AFFECT THE CORRECT FUNCTICONING OF THE MICROBRANCH. HOWEVER,
DYNAMIC MICROBRANCH CONDITIONS (SEE TEXT) ARE NOT PRESERVED
ACROSS 1B DECODE CYCLES.

MKV86-1216

Figure 3-7 Microbranch Latency

There are two basic types of microbranch conditions (relative to
microbranch latency):

e Dynamic
e Static

Dynamic conditions, such as the WBUS <N,Z,C,V> bits, are only valid
for one cycle and can be tested only by the third microword after the
one that produces them. Static conditions, such as the state flags,
are valid indefinitely and may be tested by the third and any later
microword. Dynamic microbranch conditions are indicated by the "@"
character in Table 3-4. :

3.3.5 Microsubroutine Calls And Returns

Refer to Figure 3-8. The IBox hardware supports microsubroutine calls
and returns through the use of the microstack. Subroutines may be
nested up to a depth of 15 calls, after which the stack wraps back,
overwriting previous entries. Note that the microstack is exclusively
for subroutine calls/returns, not for microtrap related operations.

The I _USTACK microword field and the UTRP MCA control the operation of
the microstack. The I _USTACK field specifies the operation (call or
return), the UTRP MCA maintains the microstack pointer and supplies
the stack write enable signal.

3.3.5.1 Normal Microstack Operation - During normal operation (no
subroutine call or return), the address of each new microword is
loaded in the microstack location specified by the microstack pointer.
This occurs at the same time the microaddress is loaded into the CSO
RAM address latches (canonical T3). As long as the I USTACK field of
the new microword does not request a subroutine call or return, the
UTRP MCA will keep the microstack pointer constant so that the next
microaddress will simply overwrite the one previously stored in the
selected microstack location.

3.3.5.2 Microsubroutine Calls - On a subroutine call, the address of
the calling microword is loaded in the stack and the stack pointer is
incremented by one to point to the next location, This effectively
pushes the address of +the <calling microword onto the stack. The
I NEXT field of the calling microword, which specifies the subroutine
starting address, 1is then selected by the UBRS MCAs and sent to the
CS0 RAM address latches.

The microprogrammers can also also specify conditional multiple-entry
point subroutine calls by encoding a subroutine call and a conditional
microbranch in the same microword. 1In this case, the condition bits
are ORed with the I NEXT field of the calling microword, generating
one of several subroutine entry points.

VI 3-21

I_NEXT

I_USTACK

ACLK

I_NEXT >

T2
T4

UBRS MCAs

NEXT FIELD

['savep urC

NEXT UPCO MUX | T3 | NEXT <13:0> >

B CLK

PUSH > MICRO
STACK

MICRO-STACK POP (SAVED UPC)

m s

I_USTACK

UTRP MCA

POINTER

POINTER
LOGIC

WRITE ENA

Figure 3-8

Microstack Operation

VI 3-22

Cso
RAM

AR B

3.3.5.3 Microsubroutine Returns - On a subroutine return, the
microstack pointer is first decremented by one to point to the stack
entry containing the address of the original calling microword. This
address is then popped from the stack, sent to the UBRS MCAs, and ORed
with the 5 low order bits from the I NEXT field of the returning
microword. The resulting microaddress 1is then sent to the CS0O RAM
address latches,

Note that by ORing the popped microaddress with the low 5 bits of the
I NEXT field of the returning microword allows a single subroutine to
have up to 32 return points. To implement the return, the following
constraint is applied to the address of the calling microword:

If one (or more) of the five low order address bits of the
calling microword 1is to be ORed with the corresponding bit
from the I NEXT field of the return microword, the address
bit(s) must be zero.

For example, if I NEXT bit <0> is set in the return microword, address
bit <0> of the calling microword must be 0. Single point returns can

C
; ; s . OV \
use any combinati f the low five a bits in this manner.)

(
use an m nation of the low five address bits in this manner
Microprogrammers can also specify conditional, multiple-return points
for a subroutine by encoding a conditional microbranch in the return
microword. In this case, the UBRS MCAs form the return point address
by ORing the popped microaddress with the OR of the I NEXT <4:0> bits
from the returning microword and the enabled microbranch conditions.

3.3.6 Microtraps
Refer to Figures 3-9 and 3-10 for the following discussions.

Microtraps are hardware detected conditions which prevent the current
microword from executing properly. When a microtrap occurs, hardware
alters the current microcode flow by generating a microtrap vector to
a fixed control store address, overriding the address that would have
otherwise been selected. The microtrap vector, which is based on the
type of trap detected, forces microcode to enter the appropriate trap
handler microroutine to service the condition.

Microtraps can be caused by serious system faults, such as a machine
check due to a control store parity error, or by conditions expected
during normal macroinstruction execution. For example, microtraps are
used extensively by the CBox memory management logic to call routines
that service such faults as TB misses and access control violations.

Microtraps are prioritized such that if two or more microtraps occur
in the same cycle, the higher priority microtrap is serviced and the
others ignored. Nested traps (traps within traps) are not supported.
Instead, trap service routines and trap priorities are arranged such
that a second trap is taken only after the first trap 1is serviced.
Machine check traps (such as a control store parity error), however,
cannot be controlled in this manner since they are unpredictable.

VI 3-23

It is the responsibility of the priority encoder logic in the UTRP MCA
to monitor all microtrap conditions and to generate the microvector of
the highest priority condition present. The following table lists the
various microtrap conditions and the corresponding microvectors.

Table 3-6 Microtrap Conditions And Vectors

Vector Microtrap Condition Priority
03EO0 Microbreakpoint Hit Highest
03CO Machine Check

03A0 VA Parity Error

0380 TB Tag Parity Error

0360 Reserved for ECC trap

0340 Illegal FP Operand

0320 FP Rounding Error (addition)

0300 FP Rounding Error (multiply)

02EQ Integer Overflow

02CO TB Miss

02A0 TB ACV

0280 Modify Bit Not Set

0260 Page Cross

0240 Unaligned Page Cross

0220 Unaligned Address

0200 Conditional macrobranch Lowest

Machine Check Microtraps

The UTRP MCA generates a common vector of 03C0 for certain types of
machine check exceptions. Depending on the type of fault, a machine
check may be reported by one of four mechanisms:

—

. Microtrap vector from the UTRP MCA

2. Special address from the IB decoder logic
3. Interrupt vector from the INPR MCA

4. Current microword I_NEXT field

The following table lists the machine check exceptions reported by the
microtrap mechanism,

Table 3-7 Machine Check Microtrap Conditions

Cache Data Bus Parity Errors
Cache Tag Parity Errors

Control Store RAM Parity Errors
Console Receive Data Parity Error
Decoder RAM Parity Error

IB Data Bus Parity Error

Main ALU Parity Errors

Processor Register Parity Errors
TB Data Parity Error

Note that VA parity errors and TB tag parity errors are also machine
check exceptions but have their own microtrap vectors (03A0 and 0380).

3.3.6.1 Microtrap Servicing - Microtrap conditions are generated at
various times of a microword but are not honored until canonical T10
by the UTRP MCA. For example, a machine check trap due to a decoder
RAM parity error is sensed at T4 while a TB miss microtrap is sensed
at T9 time. Microtrap conditions sensed early in a microword are
propagated through a series of latches so that all conditions arrive
at the priority encoder in the UTRP MCA at canonical T10 of the trap
causing microword.

When a microtrap occurs, the hardware must:

Preserve the current pipeline state

Preserve the current CPU state

Service the microtrap

Return from the trap

Restore CPU state to proper post trap condition

U W -
.

vl 3-25

LNEXT

|_RTNTRAP
I_USTACK
I_USTACK S
A
_NEXT
I_NEXT t> €S0 —
I_NEXT > Ti 8 RAM
T UPC <13:0> T3 | UPCA <13:0> 16K
X
48 BITS
S
(FREEZE) SILO ‘E o
G
SILO E
Cec B CLK
|_RTNTRAP SILO T
(RELEASE) SILO
UBRS MCAS
MICROVECTOR
GLOBAL TRAP
UTRP MCA —J
__»§ CONTROL
|_USTACK
TOAD CONNITIONS FRIQF}\ITY
TRAP CONDITIONS L/> LOGiC

BLOCK WRITES

NOTES: WHEN A MICROTRAP OCCURS, THE UTRP MCA OUTPUTS THE:
« MICROVECTOR O ROPRIATE TRAP HANDLER ROUTINE
* GLOBAL TRAP SIiGNAL TO FREEZE THE MICRO-PC SILO
(SAVES THE UPCS OF THE FOUR MICROWORDS iN THE PIPELINE
THAT FOLLOWED THE TRAP CAUSING MICROWORD)
* BLOCK WRITES SIGNALS TO INHIBITS WRITES BY THE FOUR
MICROWORDS IN THE SHADOW OF THE TRAP.

il

T
THE APPROPRIAT

THE LAST MICROWORD OF THE TRAP HANDLER ROUTINE RETURNS
FROM THE TRAP BY ISSUING EITHER:

o | RTNTRAP-RETURN TO ORIGINAL FLOW, REQUES TRAPPED
MICROWORDS.

o |_USTACK/RLS.SILO-ABORT ORIGINAL FLOW, RELEASES MICRO-PC
SILO, DOES NOT REQUE TRAPPED MICROWORDS.

ARSI

Figure 3-9 Microtrap Servicing

VI 3-26

" GLOBAL TRAP’ VALID FROM T10 THROUGH T12.

LZ-€ IA

SES A MICRO-TRAP FREEZES THE MICRO-PC SILO AND BLOCKS WRITES
cAv OTR OF NEXT FOUR MICROWORDS IN PIPELINE
1ST IN SILO

2ND IN SILO

3RD IN SILO

< ~ NOTE: MICROVECTOR OF THE TRAP HANDLER FROM THE UTRP MCA

~. 4THINSILO S~ OVERRIDES THE MICRO-PC OF THE FOURTH WORD
N - ~ N
NG FIRST MICRO OF
~ MICROTRAP HANDLER
17\
1 MICRO-TRAP HANDLER ROUTINE
] .
1
]
MICRO-PC SILO NOTE: SEE NOTES ON FIGURE 3-9
(IN UBRS MCAS) FOR REQUEUING MICROWORDS
UPC 1 > RE-QUEUED MICROWORD
UPC 2 RE-QUEUED MICROWORD
> UPC 3 RE-QUEUED MICROWORD
—>{ UPC4 RE-QUEUED MICROWORD

EXECUTION CONTINUES

NOTE: MICRO-PC SILO IS CONTINUALLY
LOADED WITH THE UPCS
OF THE MICROWORDS IN THE
PIPELINE UNTIL FROZEN BY
THE GLOBAL MICROTRAP SIGNAL.
MKV86-1257

Figure 3-10 Microtrap Latency

Preserving The Current Pipeline State

Due to microcode pipelining, three additional microwords are already
started and the address of a fourth microword generated by the time
the UTRP MCA responds to a trap. To allow the original microcode flow
to resume on a trap return, the addresses of these four microwords are

o wA

saved in the micro-PC silo maintained by the UBRS MCAs.

During normal microcode flow, the micro-PC silo is continually 1loaded
with the address of each microword executed. When a microtrap occurs,
the GLOBAL UTRAP signals from the UTRP MCA inhibit further loading of
the silo. Since the silo is four words deep, the addresses of the
four microwords following the trap causing microword are thus saved in
the silo. On a normal trap return, the UBRS MCAs requeue these four

addresses, allowing the original microcode flow to continue.
Preserving The Current CPU State

The three microwords already in the pipeline after the one that caused
the trap must be prevented from altering the CPU state so that the
trap service routine can properly service the fault. (Note that the
fourth microword in pipeline has not yet started, only the address is
formed and saved in the micro-PC silo.)

The current CPU state 1is preserved by either saving potentially
corruptible data in wvarious silos in the CPU or by inhibiting the
writes that would otherwise be performed by the other three microwords
already in the pipeline.

The UTRP MCA issues the GLOBAL UTRAP CONT <2:0> signals to inform the
rest of the CPU that a trap occurred and to save critical CPU state
conditions in the appropriate silos.

The UTRP MCA also issues the BLOCK WRITE CONT <3:0> signals to inhibit
all writes starting at T1ll relative to the trap causing microword.

Servicing The Microtrap

uts the appropriate vector
GLOBRAL UTRAP signal to the
ect the microtrap vector

When a microtrap occurs, the UTRP MCA outp
for the trap service routine along with th
UBRS MCAs. This forces the UBRS MCAs to s
as the source of the next microaddress.

1

1
u
(=}
e
e

Since the microword that caused the trap has already completed
(unsuccessfully) by the time the UTRP MCA honors the trap, the trap
service routine is responsible for correcting the fault (if possible)
such that the net result is the same as if the microword completed
successfully.

Returning From A Microtrap

Some microtrap service routines return to the original microcode flow
while others abort the original flow and enter a new flow. Routines
of the first type include those that service memory management related
faults, such as a TB miss. Routines of the second type include those
that service more serious faults, such as a machine check.

The settings of the I RTNTRAP bit and the I USTACK field in the last
microword of the tran service routine determine how the routine is to
return from the trap. The I RTNTRAP bit informs the UBRS MCAs and the
UTRP MCA whether a normal return is in effect, the I _USTACK field is
used to release the micro-PC silo.

To return to the original microcode flow, the I _RTNTRAP bit and the
I USTACK field are encoded as follows:

I_RTNTRAP/ENABLE, I USTACK/RLS.SILO

On a normal trap return, the four microaddresses that were saved in
the micro-PC silo are sequentially output by the UBRS MCAs and sent to
the CS0 RAM addresses. This requeues the four microwords that
followed the one that caused the trap.

The only exception to this is that IB decoder generated addresses are
not saved in the micro-PC silo. When an address is generated by the
decoder, the corresponding location in the micro-PC silo is flagged
with a DECODER MARKER (derived from the I DECODER microword bit).
Then, if on the trap return a silo location is so marked, the
selection of silo as the microaddress source is terminated and the
next address is selected from the decoder.

Trap service routines abort the original microcode flow by issuing the
I_USTACK/RLS.SILO order by itself. This releases the micro-PC silo,
re-enabling it for future traps.

The silo release micro-order may be issued in any microword of a trap
routine with the following constraint:

The trap return (I_RTNTRAP) must be issued in the very next
microword after one that performs a potential trap causing
operation from which the microcode may want to return.

Trap routines normally encode the silo release and the trap return
orders in the same microword. Trap routines that do not return but
also perform potential trap causing operations must release the first
trap in the next microword after the one containing the trap causing
operation.

VI 3-29

3.3.6.2 Disabling Microtraps - The console can disable microtraps by
setting a Disable Microtrap bit in the console interface logic on the
CLK module. If this bit is set, all microtraps, including machine
checks traps, are inhibited. The bit can only be written by the
console and is normally cleared.

3.3.7 Console Supplied Microaddresses

Refer to Figure 3-11. The console has the ability to write a
microaddress in the micromatch register of the UBRS MCAs. The
contents of this register are compared with current UPC <13:00> and,
if the two are equal, a MICROMATCH signal is sent back to the console.

The console generated address is selected in response to an explicit
est from the

~ ~ » o o~y -~ 1a - = . -
requ rom the consocle and takes precedence over all other sources.

(@]

IE—E I[\x

CLOCK MODULE

SEQ MODULE
— TRIC MCAs UBRS MCAs
PAJ
<7:0> CONS DATA <7:0>
= :> DATA UPC
- DATA LOAD _1
AND SET MICROMATCH MICROMATCH
COMMAND LOAD REGISTER
CONS REGISTERS CONS BDATA =55 LOAD
F_ ADDR <4:0> =0 COMMANDS
TO/FROM LOOPBACK l -~
CONSOLE PEJ CONTROL
\ compPARE /
<7:0>
| Egl'l“_s POWER | coNS DATA <3> DECODE
(ENABLE MICROMATCH)

GWYC MCA
A CLK cLoCK
—— CoNnTRoOL

MICROMATCH LoaGic

MICROMATCH

MKV86-1261

Figure 3-11 Console-Supplied Microaddress

3.4 MACROINSTRUCTION DECODING

The macroinstruction decode process entails selecting a block of
I-stream data from the instruction buffer (IB), decoding the opcode
and current operand specifier, and generating the entry point address
for the microroutine required to service the specifier. After each
specifier of the instruction is processed, the IB is logically shifted
so that the next specifier (if any) is made available for decoding.
Once all specifiers are processed, the entry point address for the
execute code of the instruction is then generated.

Refer to Figure 3-12. The description of the instruction decode
process begins with the operation of the IB.

3.4.1 1Initializing the IB (IB Fiush)

When the VAX PC is modified by other than its incremented value (for
example, summed with a branch offset), the IB and the .decoder must be
initialized. This "IB Flush" operation is invoked by microcode to
ensure that the I-stream data for the next instruction to be executed
is processed properly.

There are two types of IB Flush operations:

1. Full flush - Used by microroutines that handle
PC control instructions, interrupts,
exceptions, and other macro services

2. Partial flush - Used by microtrap service routines

3.4.1.1 Full IB Flush - An example of when a full 1IB flush 1is
required is the execution of a successful macrobranch instruction.

When a successful macrobranch is executed, the CBox will deliver the
new I-stream data to the IB starting with the longword containing the
opcode of the new instruction. Since there is no longer a correlation
between data entering the IB and its current address pointers, it is
highly likely that the next decode cycle will access the opcode for
the wrong instruction. To prevent this, all microroutines that
service macrobranch instructions issue a full IB flush before exiting.
This initializes the 1IB's address inputs and forces the Decoder to

wait for the CBox to deliver the new I-stream.

“
~

<
-
w

|
w
)

TRAP OPCODE

Py CYCLE OPCODE
N TN’ =D ParouT L30-
INIT - ClR>
TiT T[T
2|3 als|e|7]8]s
™ OPCODE A/B <7:0.-
IB DATA
YCLR ALIGNER
4 X 32 READ =D P70
MEMORY PORTS
UNIT
Ry > SPEC GPRNUM <3:0=
N . .
N wwo > IBFOSPEC <7.0>
PORT A | I
CACHE DATA IBUNFORIBDATA1 <7:0>
goeons | w0 > T T >
PORT B > IBUNFORIBDATA2 <7:0%
Lw 2 I]
PORT C DATA
w3) N] l FORMATTER
—» SEL _ {——\/ ::) IBDATA4 <7:0-
N ALIGN
EN <3:0> CONTRL
DVEVggDEE r " BDATA3 <7:0>
IBWR ADDR <1:0>________]
SEL | FORMAT
BUFFERFULL | IS CNTRL
1B RD ADDR <1:0> _ I I I
18 ALIGN CNTL <1:0> |
DATA
NEW OPCODE | SCRAMBLER
18 TRAP I
] R— "> IBDATA2 <70~
| | N >IBDATA1 <7:0>
I V|
IBUF MCA'S (4
——_—()—-___———————-———— CNTRL
0 MCA FORMAT
IBF GEN (2
PARITY |—> IBDATA2 PAR
::) GEN — IBDATA1 PAR
IBUNFORIBDATA2 <7>
{FROM IBUF MCAs)|
{BUNFORIBDATA1 <7> IBEORCNTA /B <1:0>

IBDATAFORCNT <6:0>

Figure 3-12 Instruction Buffer Logic

VIl 3-33

3.4.1.2 IB Flush Logic - Refer to Figure 3-13. The VAX Branch logic
of the IBST MCA determines if a full IB flush is required by checking
the I MISC microword field. When this field is in the range of 20 to
2F, one of the following microroutines is being executed:

I _MIsC Microservice Routine for:

20 to 2E Simple conditional branches (eg: BEQL, BNEQ)
Loop control instructions (eg: ACBx, AOBLEQ)

2F Unconditional branches (BRB, BRW)
Subroutine instructions (BSBB, JSB, RSB)
Interrupts, exceptions, CPU init,... etc.

The I_MISC settings in the range 20 to 2F and the instruction(s) they
represent are listed below.

I MISC Instruction I _MIsC Instruction
20 BGRT 28 BGTRU
21 BLEQ, SOBGTR 29 BLEQU
22 BGEQ 2A BCC
23 BLSS, SOBGEQ 2B BCS
24 BNEQ 2C AOBLEQ, ACBx
25 BEQL 2D AOBLSS
26 BVC 2E BBx, BBxX
27 BVS 2F BRx, BSxx

When a conditional branch is executed, I_MISC specifies which PSL CC
bit(s) the VBRL should test to see if the branch should be taken (the
PSL CC bits are also contained in the CCBR MCA).

Example:

If: I _MISC = 24
Then: Test PSL Z bit for BNEQ instruction

Z Bit Meaning Operation

Set Branch VBRL negates IB FLUSH. IBox executes next
fail instruction from IB.
Clear Branch VBRL asserts IB FLUSH. EBox sums branch

success offset to VAX PC. IBox waits for the new
I-stream to enter 1IB.

VI 3-34

SE-¢ IA

CSs2
RAMS
|_PFLUSH

I_MISC

PARTIAL FLUSH

MISC <6:0>

T7

T8

CCBR
MCA

I_MISC/
=20
to
2F

1B FLUSH

ONE SHOT FLUSH

BLOCK WRITES

T8

Figure 3-13 1IB Flush Logic

PCNC
MCA
FLUSH IB WRCNT
T9
T
T9 10
_: j) EITHER FLUSH
IBST
MCA
l' N\ PFLUSH IBST
DLY F
To 1B FLUSH
T
10
\ NORMAL FLUSH IBST
T9

MK V86.0733

If an unconditional branch is executed (I _MISC equal to 2F), the VBRL
does not test any CC bits but immediately asserts IB FLUSH to force an
unconditional flush.

Refer to Table 3-8. When IB FLUSH 1is asserted, the discrete DEC
module logic issues several IB flush related signals to the IBST MCA
and to the PCNC MCA (the signals are listed in chronological order):

. EITHER FLUSH

. NORMAL FLUSH IBST
. ONE SHOT FLUSH

. DLY IB FLUSH

. FLUSH IB WRCNT

Ul W N

These signals initialize the IB and the Decoder by €£forcing most
outputs of the IBST and PCNC MCAs into a known state.

The column labeled FULL FLUSH in Table 3-8 lists the IBST and PCNC MCA
outputs after a full 1IB flush. The mnemonic "Idep" means that the
output is instruction dependent and remains unchanged wuntil a new
instruction enters the IB.

]
W)
I
W
o))

Table 3-8 IBST And PCNC MCA Outputs After An IB Flush

IBST MCA
State
Output
Signal Full Partial

Flush Flush
IB WRADDR <1:0> Clear Clear
IB PE <1:0> Clear Clear
INDEXED OR INDEX PC Clear Clear
LW ACCEPTED Clear Clear
SEQ LW Clear Clear
SLOW BRANCH Clear Restored
SPEC NO <2:0> Clear Restored
SPEC WAS RMODE Clear Clear
TWO BYTE Clear Restored
NEW OPCODE) Set Restored
SILO NEW OPCODE Set Restored
SPECIAL ADDR ENBL Set Restored
DLY OPN XOR IBS Idep Idep
PRED DATA SIZE <1:0> Idep Restored
SPEC TYPE <3:0> Idep Idep

PCNC MCA

IB RD ADDR <K1:0> Clear Clear
IB FULL Clear Clear
PC INC <2:0> Clear Clear
IB ALIGN CNTL <1:0> Load w/ VA FILE <1:0>
IB EMPTY Set Set
IB DEC NOOP Set Set
IB DEC NOOP OR PE Set Set
OP IS FD Idep Idep
SET BRANCH Idep Idep

VI 3-37

The IBST MCA and PCNC MCA output state changes relevant to an IB flush
are described below. The other changes will be covered later.

Table 3-9 IB Flush Relative State Changes - IBST And PCNC MCAs

State change Function

Clearing Forces the new I-stream to be written
IB WR ADDR <1:0> to and read from the IB starting with
IB RD ADDR <1:0> its longword 0 location.

Loading IB ALIGN Ensures that the first byte read from
CNTL <1:0> with the IB will be the opcode byte of the
VA FILE <1:0> new instruction.

VA FILE <1:0> always egual VAX PC
<1:0> after an IB flush and therefore
pecint to the opcode byte in the first
longword delivered by Cache.

Asserting Forces the 1IB to select the opcode
NEW OPCODE byte from its memory unit instead of
from its "Cycle Opcode Register".
Clearing Forces the Decoder to generate the
SPEC NO <2:0> entry address for the microroutine

that services the first specifier of
the new instruction.

3.4.1.3 Partial IB Flush - A partial flush is invoked when microword
bit I PFLUSH is set. This bit is sent as the signal PARTIAL FLUSH to
the same logic used for a full IB flush. The only difference is that
the 1logic will issue the signal PFLUSH IBST instead of NORMAL FLUSH
IBST and DLY IB FLUSH,.

PFLUSH IBST forces the 1IBST MCA to "restore" several 1IB state
indicators (operand data size, specifier number, etc.) to the state
they were in prior to the time that a microtrap occurs (see column
labeled PARTIAL FLUSH in Table 3-8. This allows microtrap service
routines to recover from traps that occur during instruction
execution.

The IB state indicators are stored in a silo internal to the IBST MCA
when a microtrap is detected.

<3
b~
(V8]
[
()
™

3.4.2 I-Stream Prefetching

I-stream prefetching enhances instruction execution speed by keeping
the IB supplied with I-stream data. The operation is a function of
the CBox and is described in detail in the CBox section of this
manual.

3.4.2.1 General Description - The CBox maintains a Physical
Instruction Buffer Address register (PIBA) which contains the address
of the next longword to be delivered to the IB. The PIBA is initially
loaded with the new PC formed when there is a change in the I-stream
flow (eg: after a successful branch instruction) and is updated when
a longword is accepted by the 1IB.

During each of its idle cycles, the CBox fetches the longword pointed
to by the PIBA offers it to the IB on the CACHE DATA BUS. 1If the IB
accepts the data, the PIBA is incremented by four to point to the next
longword which is offered to the IB in the next CBox idle cycle,

The CBox assumes each longword is accepted by the IB unless the IBox
asserts IB FULL. 1In this case, PIBA incrementing is suspended and the
last referenced longword is offered to the 1IB. Prefetching resumes
once a longword is processed from the IB and the IBox negates IB FULL.,

3.4.2.2 Refilling Cache - Each time a PIBA request 1s made, there
exists the possibility that Cache will not contain the required data.
In this event, Cache will report a "read miss", forcing the CBox to
obtain the data from NMI memory by performing an operation known as a
PIBA "refill,"

PIBA refilling entails fetching a hexaword (32 bytes) from the NMI (a
longword at a time) and storing the data in Cache. There are two key
points about the PIBA refill operation relevant to I-stream decoding:

1. The NMI hexaword is transferred as two octawords
2. The first 1longword returned by NMI is always the one
requested when the Cache read miss occurred
When it receives the first longword, the CBox simultaneously stores it
in Cache and offers it to the IB.
If the PIBA was octaword aligned when the read miss occurred, the next
three longwords of the first octaword are stored in Cache and offered

to the IB. This allows the IBox to continue the decode process while
the rest of the data is being stored in Cache.

VI 3-39

3.4.3 Loading The IB
Refer to Figure 3-14.

The IBUF MCAs always assume the CACHE DATA BUS carries I-stream data
destined for the IB. This means that they will attempt to store data
from the bus on every B clock. (The IB load operation is asynchronous
to the pipeline in that no microword field controls the IB.)

The IBUFFER FULL signal from the PCNC MCA determines 1if data should
enter the IB. When this signal is negated, it indicates that the IB
longword addressed by IB WRADDR <1:0> is "empty" and can be loaded
with data from the CACHE DATA BUS. (An IB longword is considered
empty if ALL the bytes in the longword are processed.)

The Write Decode logic of the IBUF MCAs checks IBUFFER FULL on every A
clock. If the signal is negated, the logic will decode IB WRADDR
<1:0> and clock the longword from the CACHE DATA BUS into the selected
IB location on the following B clock.

3.4.3.1 IB Write Control - The IB load method has one drawback: it
allows the IB to capture data from the CACHE DATA BUS even if the data
are intended for the EBox. (The CACHE DATA BUS also supplies data for
EBox operations.)

If IB WRADDR <1:0> were to change state each time Cache sent data to
the EBox, the 1IB would be loaded with the wrong data. Since this
would corrupt the instruction decode process, the IBST MCA must ensure
that the write address only changes state when data on the CACHE DATA
BUS is destined for the IB. To do this, the IBST MCA monitors five
signals:

Signal Source Description

DEST IS IB CBox CACHE DATA BUS carriesg I-stream
data destined for the IB

CACHE DATA VALID CBox Last Cache reference resulted in

a cache hit. Signal also forced
true when source of data is NMI.

MEMORY BROKEN CBox CBox detected some type of parity
error (TB, Cache, NMI, etc.)

FLUSH IB WRCNT IBox IB Flush operation in progress

IBUFFER FULL IBox IB cannot accept another longword

Iv-¢ IA

CACHE DATA BUS <31:00>

IBUF MCAs

INIT

<LCLR

4 X 32
MEMORY
UNIT

LW o

LW 1

IBST MCA

DEST IS 1B
CACHE DATA VALID
MEMORY BROKE"
FLUSH 1B WRCNT

—
—_— D

D

CACHE

MONITOR

LOGIC

IB WR ADDR <1:0>

LW 2

LW 3

g

EN <3:0>

WRITE
DECODE

LW ACCEPTED

PCNC MCA

1B FULL
LOGIC

IBUFFER FULL

v

SEL
DIS

Figure 3-14

IB Load Logic

A CLK

AV,
IO4qdp»r

MKV86-0734

3.4.3.2 Cache Monitor Logic - When these signals are properly
conditioned, the Cache Monitor logic in the IBST MCA asserts the
signal LW ACCEPTED to indicate that a longword has entered the IB, It
then increments IB WRADDR <1:0> by one to point to the next IB
location to receive data from Cache.

The following chart indicates the state of LW ACCEPTED and IB WRADDR
<1:0> for any given condition.

LW ACCEPTED IB WRADDR <1:0>

FLUSH CACHE DATA VALID 1
IB WRCNT DEST IS IB 1 1 Previous
MEMORY BROKE 0 value + 1
0 IBUFFER FULL 0
Other combinations 0 Previous value
1 Don't care 0 Cleared

Note that IB WRADDR <1:0> are unconditionally cleared when FLUSH 1IB
WRCNT is asserted. This ensures that the first longword from the CBox
is loaded in the IB's longword 0 location.

From this point on, the IBST MCA will increment IB WRADDR <1:0> by one
each time a longword on the CACHE DATA BUS is destined for and loaded
into the IB. Once all four IB longwords are loaded, the write address
is "wrapped back" to again point to the IB's longword 0 location.

Since IB WRADDR <1:0> can only change state when the CACHE DATA BUS is
destined for the IB, they will always point to an "empty" IB location
(assuming IBUFFER FULL is negated). Thus, the problem of the 1IB
trying to capture data on every B clock is resolved; the new longword
simply replaces one that was already processed by the IBox.

VI 3-42

3.4.3.3 1IB Full Logic - When a longword enters the IB, the assertion
of LW ACCEPTED causes the PCNC MCA to increment a counter which tracks
the number of longwords available for decoding. This "IB Full"
counter is incremented by one when a longword enters the IB and is
decremented by one when a longword is processed from the IB.

If the CBox supplies data to the IB faster than the IBox can process
the data, causing the counter to overflow, the PCNC MCA will issue
IBUFFER FULL to prevent any more data from entering the IB.

3.4.3.4 1IB Load Example - Although I-stream data always enters the IB
longword aligned, the VAX architecture imposes no such restrictions on
the PC of an instruction. Since this means that the I-stream for a
new instruction may begin on any byte boundary, the first longword
from the CBox may include data associated with some other instruction.

Figure 3-15 shows how I-stream data for a MOVL #©X12345678, RO
instruction would enter the IB. The xx's represent I-stream data
associated with other instructions.

Assumptions:

1. 1IB Flush just completed
2. Starting PC for MOVL is 1003

Note that the first longword (address 1000) is stored in the IB's LW 0
location., This is always the case after an IB flush. Also note that
although the instruction only occupies seven bytes in memory, it takes
three 1IB LW locations to contain the data. The consequences of this
aspect of the IB will become apparent in the next discussion.

VI 3-43

Assembler Syntax - MOVL #©X12345678, RO

Machine code - 50 12345678 8F DO
Instruction as - Address Contents
stored in memory
1000 DO XX XX XX
1004 34 56 78 8F
1008 xxX xx 50 12
First longword ADDR 1000
IB contents XX XX XX XX XX XX XX XX XX XX XX XX DO xx XxXx XX
le——1wo—=
Second longword ADDR 10004
IB contents XX XX XX XX XX XX XX XX 34 56 78 8F DO xx XX XX
1w 1—sle—1w o—]
Third longword ADDR 1008

IB contents XX XX XX XX xx xx b0 12 34 56 78 8F DO XX XX XX

le— 1w 2 —rbe— 1w 1—f—1w o —

MKV86-1137

Figure 3-15 I-Stream Data Entering The IB

VI 3-44

3.4.4 Reading The IB

Although I-stream data enters the IB a longword at a time, the IB 1is
treated as a sixteen byte buffer when read. The IB read operation
entails selecting six consecutive bytes from the IB and outputting the
data to the rest of the IBox. These bytes consist of the:

® Opcode
@ Current specifier (if any)
@ Up to 4 extension bytes (eg: immediate data)

The opcode byte is sent to the Decoder RAMs (DRAMS) to form part of
their address 1inputs. It is also saved in a "Cycle Opcode" register
during the first decode cycle of the instruction. The cycle opcode
register then becomes the source of the opcode for subsequent decode
cycles,

The specifier byte is sent to the IBST MCA which will determine the
operand specifier's:

Size (byte, word, longword)
Type (literal, register mode, etc.)

Access mode (read, write, etc.)
Position in the instruction (1 to 6)

Both bytes are sent to the PCNC MCA which determines the general class
of the instruction and computes the amount of IB data "consumed" in
each decode cycle.

The four extension bytes, which are sign extended for byte and word
size specifiers, are sent to the EBox on the IB DATA BUS. Since 6
consecutive bytes are always read from the IB, this data may or may
not be related to the current specifier. Microcode determines if the
EBox is to use all four bytes from the bus.

3.4.4.1 Pipeline Timing - IB reads are performed during canonical T1.
This allows the Decoder to generate the entry address for the
microroutine that will service the specifier (or opcode) during T2
time and have it ready for the micro-PC address latches by T3.

VI 3-45

3.4.4.2 1IB Read Ports - The Read Ports select nine consecutive bytes
from the IB Memory unit starting with the longword pointed to by IB RD
ADDR <1:0>. The bytes are output on three read ports to the IB Data
Aligner. ports A and B are both four bytes wide, port C is one byte
wide.

The following table shows the relationship between IB RD ADDR <1:0>
and data selected by the IB Read Ports.

Table 3-10 IB Read Address/IB Read Port Source

IB RD ADDR PORT A PORT B PORT C
<1:0> Source Source Source
00 LW O Lw 1 LW 2 Byte 0
01 LW 1 LW 2 LW 3 Byte O
10 LW 2 Lw 3 LW 0 Byte O
11 LW 3 LW O LW 1 Byte O

Note that the read ports perform a "“wrap around" when the read address
is equal to 2 or 3. This allows the read ports to always access nine
consecutive bytes regardless of the starting longword address.

The reason the read ports select nine bytes at a time is in case the
first specifier of an instruction is being decoded and the opcode byte
occupies byte 3 of a LW.

Since the opcode byte can end up in any position in a longword and is
"consumed" in the decode cycle of the first specifier, up to six bytes
of IB data may be required to process the first operand:

e Opcode
@ First specifier
® Up to four extension bytes

Example:
@ Instruction just executed ended in byte 2 of LW 2
e Next instruction to be executed is:
MOVL #©X12345678, B®04 (RO)

The I-stream for the MOVL would be loaded into the IB as shown below.
{The xx's indicate I-stream data associated with other instructions.)

2nd LW of 1st LW of 3rd LW of
MOVL MOVL MOVL

1 l 1

34 56 78 8F | DO xx xx xx XX XX XX XX xx 04 A0 12

IB Memory unit

LW 3 LW 2 LW 1 Lw o

IB RD ADDR <1:0 > =2

MKV86-1125

Figure 3-16 IB Memory Unit Contents For MOVL Example

First Decode Cycle - MOVL #©X12345678, B©04(RO)

Figure 3-17 shows the data selected by the read ports with a read
address of 2 in the first decode cycle of the MOVL,

Notice that by performing a wrap around function, the read ports
output the I-stream for the MOVL in the same order it was delivered by
the CBox. Also, by selecting nine bytes at a time, they can read all
six bytes required by the decode cycle even though the opcode occupied
byte 3 of a LW.

VI 3-47

Note:

IB Memory unit contents

LW 3 LW 2 LW 1 LWO
34 56 78 8F DO xx xx xX XX XX XX XX xx 04 AD 12
L _A _J LY

N N~

IBRD ADDR <1:0> =2
o B A
PORT A=LW 2
PORTB=LW 3 12 34 56 78 8F DO xx Xx XX
PORT C = LW O Byte O
IB Read Ports
MKV86-1126

If the previous instruction caused a change in the I-stream
flow (eg: branch or jump), the I-stream for the MOVL would
still be output from the IB. However, the data would be
ignored since the 1IB would not be "logically" shifted at
canonical T3 time of the last microword of the previous

instruction.

Figure 3-17 1IB Read Port Example - Part 1

el

MOVL #©X12345067

®
>

Q
8, B904(R0O)

First Decode Cycle

-
<3
I
)
|
f1=3
(o o]

Second Decode Cycle - MOVL #©X12345678, B©04(RO)

While the first specifier is being processed, IB

RD ADDR <1:0> are

updated to point to the IB longword containing the second operand
specitier,
The next figure shows the data selected by the Read Ports in the
second decode cycle,
iB Memory unit contents
LW 3 LW 2 LW 1 LW O
XX XX XX XX XX XX XX XX XX XX XX XX xx 04 AO 12
——A ~ Al ~— J
— Y AR SR
IB RD ADDR <1:0> =0
C B A
PORT A=LWO
PORT B = LW 1 XX XX XX XX XX xx 04 AQ 12
PORT C = LW 2 Byte O

IB Read Ports

MKV86-1127

Figure 3-18 IB Read Port Example - Part 2

LWs 2 and 3 are shown containing data associated with some
other instruction since new I-stream data will most likely be
delivered to the 1IB while the first specifier is being
decoded.

Figure 3-18 1IB Read Port Example - Part 2

MOVL #©X12345678, B©04(RO)

Second Decode Cycle

vI 3-49

Figures 3-17 and 3-18 serve to illustrate two important aspects
concerning the IB Read Ports:

1.

20

The opcode byte appears in PORT A in the first decode cycle
of each new instruction

By selecting nine bytes at a time, the Read Ports can access
all I-stream data associated with a specifier in one decode
cycle

Exceptions:

Since the second byte of a two byte opcode is the true
opcode, the first byte is given its own decode cycle. The
second byte will appear in PORT A in the next decode cycle.

Except for this, instructions with two byte opcodes are
processed the same as any other instructions. (Note:
Microcode treats the first byte of a two byte opcode as if it
were a NOP macroinstruction.)

Indexed and big immediate (quad/octaword, double, grand and
huge) specifiers require additional decode cycles.

VI 3-50

3.4.4.,3 1IB Data Aligner - The six data aligner muxes are each one
byte wide. They select six consecutive bytes from an eleven byte
input field consisting of:

e Nine bytes from the IB Read Ports
® The Cycle Opcode Register
e The Trap Opcode Silo

The following figure shows the aligner muxes, the data they output and
the destination of the data. The indicator “internal® means that the
data from a mux remains internal to the IBUF MCAs.

UNFOR IB DATA MUXES SPC | OPC | UNFOR = Unformatted .
SPC = Specifier
B4 B3 IB2 IB1 MUX | MUX | OPC = Opcode

—— OPCODE A <7:0> to PCNC MCA
OPCODE B <7:0> to Decoder logic

» SP <7:0> to IBST and PCNC MCAs
IBFOSPEC <7:0> to IBFO MCA
SPEC GPRNUM <3:0> to FADS MCAs

> |BUNFORIBDATA1 <7:0> TO IBFO MCA

»|BUNFORIBDATAZ2 <7:0> TO IBFO MCA

> |BUNFORIBDATAS (internal)

»IBUNFORIBDATAA4 (internal)

MKV86-1138

Figure 3-19 IB Data Aligner Muxes

VI 3-51

Data Aligner Control

The Data Aligner Muxes are controlled by the following signals:

o IB ALIGN CNTL <1:0> - PCNC MCA
o NEW OPCODE - IBST MCA
o 1IB TRAP - discrete DEC module logic
The next table shows the relationship between the control signals
the data selected by the muxes,
Table 3-11 Data Aligner Control Signals/Data Selection
IB TRAP = 0
IB ALIGN CNTL IB Data Aligner Muxes
<1:0>
IB4 IB3 IB2 IB1 SPC OPC
00 B-1 B-0 A-3 A-2 A-1 A-0 cyc
01 B~-2 B-1 B-0 A-3 A-2 A-1 OPC
10 B-3 B-2 B-1 B-0 A-3 A-2 REG
11 C B-3 B-2 B-1 B-0 A-3
NEW OPCODE = 1 (First decode cycle) -------- l

NEW OPCODE

0 (Subsequent cycles) -----=—-=-----=
IB TRAP = 1, NEW OPCODE = x (don't care)

IB ALIGN CNTL IB Data Aligner Muxes
<1:0>
IB4 IB3 IB2 IB1 SPC oPC
TRAP
X X Don't care OPCODE
SILO
Note: A-0, A-1, etc. represent the IB Read Port and the

byte
If:
Then:

in the port selected by a mux. For example:
IB TRAP =0, NEW OPCODE =1, IB ALIGN CNTL <1:0> =00
OPC MUX selects PORT A Byte 0 (A-0)

Data Aligner Operation

The overall Data Aligner operation will be illustrated using the MOVL
#0xX12345678, B®04(R0O) instruction as an example.

The MOVL instruction was assumed to be loaded in the IB as follows:

IB Memory Unit

34 56 78 8F DO xx XX XX XX XX XX XX xx 04 A0 12

LW 3 LW 2 Lw 1 Lw 0

In the first decode cycle, IB RD ADDR <1:0> pointed to the 1longword
containing the opcode byte (LW 2). They were then updated in the
second cycle to point to the longword containing the second specifier
(Lw 0).

Figures 3-20 and 3-21 show the bytes selected by the IB Data Aligner
muxes for each decode cycle of the MOVL.

VI 3-53

IB READ PORTS Y

IB ALIGN CNTL <1:0> = 11
Start at PORT A byte 3

c

12

34 56 78 8F DO XX XX XX

(.

NEW OPCODE = 1
. Select opcode
byte from PORT A

Save opcode in Cycle
Opcode Register

B4 | IB3 | IB2 | IB1 | SPC | OPC

12 34 | 56 78 8F | DO

DATA ALIGNER MUXES

MKV86-1128

Figure 3-20 1IB Data Aligner Output Example - Part 1
MOVL #©X12345678, B©04(RO)

First Decode Cycle

VI 3-54

IB READ PORTS

IB ALIGN CNTL <1:0> = 00

Start at PORT A byte O

NEW OPCODE = 0

C B A
XX XX XX XX XX XX 04 AO 12
_ - J
v CYC
OPC
‘ REG
{)]) vy
B4 | IB3 | B2 IB1 | SPC | OPC B
XX 04 AO DO

XX

XX

Figure 3-21

DATA ALIGNER MUXES

MOVL #©X12345678, B©04(R0)

Second Decode Cycle

VI 3-55

Select Cycle
Opcode Register

Restore register

MKV86-1129

IB Data Aligner Output Example - Part 2

OPC Mux Source Selection
Refer to Figure 3-22.

The selection of the source input to the OPC mux determines which
bytes the SPC and the IBl to IB4 muxes select from the Read Ports.

There are six possible source inputs to the OPC mux:

e Four PORT A bytes
e Cycle Opcode Register
e Trap Opcode Silo

Figure 3-20 shows that NEW OPCODE is asserted 1in the first decode
cycle of the MOVL. This forces the OPC mux to select the PORT A byte
pointed to by 1B ALIGN CNTL <1:0>.

IB ALIGN CNTL <1:0> always equal VAX PC <1:0> in the first cycle of an
instruction and therefore point to the opcode byte. The opcode 1is
thus selected from the appropriate PORT A byte and stored in the Cycle
Opcode register.

Figure 3-21 shows that in the second cycle, IB ALIGN CNTL <1:0> point
to the byte that precedes the second specifier instead of the
specifier itself. This is because the OPC mux must be able to select
the opcode from PORT A in the first cycle and then from the Cycle
Opcode register in each subsequent cycle. To reduce the amount oOf
logic needed to do this, IB ALIGN CNTL <1:0> are conditioned to point
to a "dummy" byte in PORT A in every decode cycle except the first.

With the starting byte position established by IB ALIGN CNTL <1:0>,
the next five consecutive bytes from the Read Ports are selected by
the SPC mux and the IB1l to IB4 muxes.

"
4

=
W
1
U1
(o)

IB ALIGN CNTL <1:0>
NEW OPCODE

IB TRAP

PORT A

BYTE O

SEL

BYTE 1

BYTE 2

BYTE 3

xXCc<Z

mooOOTWO

OPCODE A/B <7:0>

CYCLE TRAP
OPCODE OPCODE
REGOSTER SILO

—- -

MKV86-1136

Figure 3-22 Opcode Mux Sources

vl 3-57

SPC Mux Source Selection

The SPC mux always selects the specifier byte in the decode cycle
associated with a specifier. The only exception to this is when the
specifier is indexed or is a big immediate.

Indexed and big immediate specifies both require additional decode

cycles to fully process the operand. In this case, the SPC mux will
select data as follows:

Specifier Type SPC MUX Action

Index mode Select index in first decode cycle then
base in second cycle (if base is a big
immediate, the following also applies).

Big immediate Select specifier byte 1in £first cycle
then low order byte of each subsequent
longword in the following cycles.

IBl1 - IB4 Mux Source Selection

Data selected by the IBl1 to IB4 muxes is considered unformatted since
it may or may not be related to the current specifier.

In the first cycle of the MOVL, all four muxes contain data related to
the first specifier. Since data formatting is not required, the four
extension bytes are sent unmodified to the EBox on the IB DATA BUS.

in the second cycle, only the IBl mux contains data related to the
specifier, Since the byte displacement (04) is to be summed with GPR
RO to form a longword address, it must be sign extended before being
sent to the IB DATA BUS. This sign extending is a function performed
by the Data Scrambler and Data Formatter logic. Once the displacement
is properly sign extended, it is then sent to the EBox on the IB DATA
BUS.

Note that the EBox does not always require all four bytes from the 1IB
DATA BUS to be related to the current specifier. For example, to
process the first specifier of a MOVB #0x12, RO instruction, the EBox
only uses the low byte of the bus and ignores the upper three.

VI 3-58

Cycle Opcode Register Selection

In the second cycle of the MOVL, NEW OPCODE is negated to force the
OPC mux to select the Cycle Opcode Register. During this cycle, the
opcode is selected from the Cycle Opcode Register, passed through the
Or” mux and stored back in the register.

Since a MOVL instruction only has two operands, this opcode
"recycling" is performed only once, in the decode cycle for the second
specifier. However, if the instruction were, say, a MOVP, the opcode
would Dbe recycled several times, in the second and each subsequent
specifier decode cycle of the instruction.

For instructions with two byte opcodes, the NEW OPCODE signal stays
asserted in the second cycle since the first byte requires its own
decode cycle. NEW OPCODE is then negated in the third and subsequent
cycles,.

Most instructions use the Cycle Opcode Register again after the last
specifier 1is processed. This is to allow the Decoder to examine the
opcode and generate the entry point address for the execute code.
However, certain instructions, such as MOVL, do not need this cycle
since they combine the execute code in the routine of the last
specifier. These "Optimized" instructions are covered later.

Trap Opcode Silo Selection

The Trap Opcode Silo is selected as input to the OPC mux when IB TRAP
is asserted.

The Trap Opcode Silo provides a copy of the opcode as it was 4 cycles
ago which corresponds to the delay between the occurrence of a trap
and the start of the microroutine that services it. A four cycle old
copy of the opcode is required since by the time a trap is detected,
the IB has wusually been "shifted" beyond the problem causing
specifier.

(Every two latches in Figure 3-22 equal one cycle. Thus, it takes

four cycles for the opcode to get from the OPC mux to the output of
the silo.)

VI 3-59

Trap service routines use the Trap Opcode Silo along with certain data
saved in the IBST MCA to restore IB state indicators to the state they
were in at the time the trap occurred. The IB itself is flushed and
refilled with the I-stream data pointed to by a copy of the VAX PC
which is saved in a similar manner in a Trap PC Silo maintained by the
EBox.

3.4.4.4 1IB Data Formatter and Data Scrambler - One of the functions
of the 1IB is to supply the EBox with I-stream embedded data such as
short literals, immediates, branch offsets and displacements, and
absolute addresses. This function is performed during canonical T2
through T5 by the data formatter and data scrambler.

Data Formatter/Scrambler Logic
Refer to Figure 3-23.

The Data Formatter and Data Scrambler consist mostly of muxes. They
receive the unformatted IB data from the IBl to IB4 muxes and the
specifier byte from the SPC mux. Then, based on the addressing mode
of the specifier and various control signals, they format the data and
send it to the EBox on the IB DATA BUS.

IB Format Control Inputs

The format control inputs to the Format Generator, IBDATAFORCNT <6:0>,
represent the general instruction class and the data size of the
current specifier.

Table 3-12 lists the state of the format control signals for any given
data type. The order in which a signal appears in the table indicates
its logical precedence. That is, SET BRANCH has the highest
precedence followed by SEQ LW. When these signals are both negated,
the remaining inputs indicate the data type of the specifier.

—i
(V9]
|
[o)}
[w]

-
2

(&
W
i

—t
.

DATA

ALIGNER
MUXES
IB4 — IBDATA4 <7:0>
DATA —
IB3 >
FORMATTER IBDATA3 <7:0>
iB2 > -
B1 CONTROL
SPC
> IBDATA2 <7:0>
DATA >
SCRAMBLER IBDATA1 <7:0>
> CONTROL
<7> _
<7> | FORMAT IBFORCNTA/B <1:0>
<7:5> GEN
A
SET BRANCH

DATA SIZE <2:0>

EXTRA BIT
TWO BYTE
SEQ LW

The Format Generator and the Data Scrambler reside in the IBFD MCA.

IBDATAFORCNT <6:0>
(Format control signals)

MKV86-1130

The Data Formatter resides in the IBUF MCAs.

Only bit <7> from IBl and IB2 and bits <7:5> from SPC are sent to

the Format Generator.

Figure 3-23

IB Data Formatter And Data Scrambler Logic

VI 3-61

T

able 3-12 1IB Data Format Control Signals/Functions

Signal

Function

SET BRANC

DATA SIZE

<2:0>

EXTRA BIT

TWO BYTE

SEQ Lw

H Indicates current specifier is the branch offset of
a conditional, unconditional, or loop control branch
instruction. (See notes.)

Indicates data size of current specifier:

000, 011 = Not used

001 = Word

010 Longword, F-Float

100 Quadword, D-Float, G-Float

101 Byte

110 Octaword, H-Float {(except 1lst specifier)
111 = Octaword, H-Float (1lst specifier only)

1

Distinguishes between byte and word sized branch
offsets (see SET BRANCH) and, with TWO BYTE, between
the various data types when the DATA SIZE <2:0> bits
are equal to 010, 100, 110 or 111.

Indicates instruction has two byte opcode (see entry
for EXTRA BIT).

Indicates the current decode cycle 1is processing a
subsequent longword of a big immediate specifier
(quad/octaword, double, grand or huge data).

Notes:

SET BRANCH is also asserted in the first decode <cycle of a
two byte opcode and in first, and only, cycle of an
instruction that has no operands (eg: NOP). This prevents
the Format Generator from interpreting the second byte of a
two byte opcode or the opcode of a new instruction as a

specifier.

SET BRANCH is not asserted for branch displacement
specifiers, such as B®D(Rn). Specifiers of this type are
decoded from their addressing mode bits, SPC <7:5>,

"
~

-
w
[
[oh
A

Table 3-13 1IB Format Control Signals/Specifier Data Type

Set SEQ Data Extra Two Data Type
Branch LW Size Bit Byte
001 - - Word
010 0 - Longword
1 - F-Float
100 0 - D-Float
0 0 1 0 Quadword
1 1 G-Float
101 - - Byte
110 0 - Octaword
1 - H-Float
111 0 - Cctaword
1 - H-Float
1 - - - Subsequent LWs
1 - - 0 - Branch byte
1 Branch word

VI 3-63

SET BRANCH asserted

Wwhen SET BRANCH is asserted, the EXTRA BIT signal represents the data
size of a branch offset. Depending on the state of this input, the
Format Generator determines the sign of the offset from either:

® SPC <7> - byte offset
e IBl1 <7> - word offset

Once it establishes the size and sign of the offset, the Format
Generator causes the Data Scrambler and Data Formatter to output the
sign extended offset to the IB DATA BUS. (The Data Scrambler and Data
Formatter outputs will be shown later.)

SET BRANCH negated, SEQ LW asserted

This combination indicates that the IB 1is to output a subsequent
longword of a big immediate specifier. Since no further formatting of
the data is required, the contents of the SPC mux (low byte) and the
IB1 to IB3 muxes (upper three bytes) are sent, unmodified, to the 1IB
DATA BUS.

SET BRANCH and SEQ LW both negated

When SET BRANCH and SEQ LW are both negated, the remaining format

control inputs determine the specifier data type.

Data Type How Determined

Byte, Word DATA STIZE <2:0> alone specifies the data size
since there 1s only one 8 bit and one 16 bit
data type.

Longword, DATA SIZE <2:0> specifies a 32-bit data type,
F-Float EXTRA BIT tells which one.
Quadword, DATA SIZE <2:0> specifies a 64-bit data type,
D, G-Fioat EXTRA BIT and TWO BYTE combincd tell which one
Octaword, DATA SIZE <2:0> specifies a 128-bit data type,
H-Float EXTRA BIT tells which one

Defining the Specifiers Mode and Sign

To completely define a specifier, the Format Generator must determine
its addressing mode and, for branch offsets, its sign. It does this
by examining SPC <7:5>, IB1l <7>, and IB2 <7> (SPC bit <4> is not used
by the Format Generator).

SPC <7:5> usually equals the specifier addressing mode bits and, as
such, define the basic specifier type.

Since raw data need only be formatted when the specifier extension is
less than a longword, only three addressing modes are considered:

Addressing SPC

Mode <7:5> Data Formatter/Scrambler Operation

Literal 00x SPC mux contains literal, Data Scrambler
selects SPC mux as input and outputs data
on IB DATA BUS either unmodified (integer
literal), or ‘"scrambled" (FP literal).
(FP literal format is shown later.)

Byte displ 101 IB1 mux contains displacement byte. Format

and deferred. Generator derives sign from IBl1 <7>, forces

Byte relative Data Scrambler and Data Formatter to output

and deferred. sign extended displacement to IB DATA BUS.

Word displ 110 As above except word displacement in IBI1

and deferred. and IB2 muxes. IB2 <7> has sign.

Word relative
and deferred

All other addressing modes either have longword extensions or no
extension bytes at all. Data for these modes is therefore output to
the IB DATA BUS in the same format received from the Data Aligner.

VI 3-65

Data Formatter and Data Scrambler Outputs

Table 3-14 shows which bytes the Data Formatter and Data Scrambler
output to the IB DATA BUS. The mnemonics SPC and IBl1 to IB4 refer to
the data selected from the IB Data Aligner muxes. SIGN refers to sign
extended branch offsets or displacements. The indicator "x" means
that the data being output is not related to the current gspecifier
(but will have good parity).

Table 3-15 shows the "scrambled" format of floating point short

literals. Microcode "unscrambles" the data in the EBoxX.

3.4.4.5 1IB Read Example - Figure 3-24 (4 pages) shows the e
read operation for the decode cycles of the folliowing instruc

3
ps

i
ADDL3 #©X12345678, B®04 (R3), RO

Assumptions:
1. 1Instruction loaded into IB starting at byte 1 of longword 0

2. No microtraps or interrupts occur during instruction
execution

The Data Formatter and the Data Scrambler are shown collectively in
the example as the FORMATTER.

Table 3-14 1IB Data Formatter And Data Scrambler Output

Specifier Type Data Formatter Data Scrambler
or
Instruction class IBDATAA4 IBDATA3 IBDATAZ2 IBDATA1
Literal modes
All integer types X X 0 SPC
F and D Float X X See notes

G and H Float X X See notes

Immediate mode

Byte X X X IB1
Word X X IB2 IB1
Longword IB4 IB3 IB2 IB1
Subsequent LWs IB3 IB2 IB1 SPC
Displacement modes
Byte SIGN SIGN SIGN IB1
Word SIGN SIGN IB2 IB1
Longword IB4 IB3 IB2 I81
Branch instructions
Byte offset SIGN SIGN SIGN SPC
Word offset SIGN SIGN IB1 SPC
Notes:
1. 1IB only supplies first longword for quad/octaword and for D,
G and H-Float literals; microcode supplies upper longwords.
2. H-Float literals are output in same format as G-float
literals (Table 3-15). Microcode performs format conversion
in the EBox.
3. First longword of big immediates and address for PC absolute
address mode (9F) are selected from same source muxes (IBl to
IB4) as longword immediates.
4. Entries for displacement mode specifiers also apply to PC

relative and relative deferred modes.

VI 3-67

Table 3-15 Floating Point Short Literal Formats

IBDATA2 IBDATAlL

76543210 76543210

01 0000xXx x x xx 0000

F and D Float {ommm e >

01 000O0O0O 0 x x x Xx Xxx O

G and H Float (e >
SPC <5:0>

A

<
-
W

]
e

(&)

iIB MEMORY UNIT

LONGIWORD 3 | LONGWORD 2 | LONGWORD 1 LONGWORD @
xX | xx I xx{xxjww]lww|SB|B4|A3| 12|34|56|78|8F | C1}|vv
v N v Yy
IB RD ADDR <1: @ = READ PORT MULTIPLEXORS
Port A = LW @ C B A
Port B = LW 1
Port C = LW 2 byte B v4|A3|12 | 34| 56| 7

IB ALIGN CONTL <1: @

= 91

Aligner selects data starting

at Port A byte
NEW OPCODE = 1

1

Get opcode from Aligner
opcode mux; store opcode
1in Cycle Opcode Register

IB FORCNT <1:8>

= 09

No format change;

output data as

Figure

1S

3-24 IB Read

ADDL3

$#©X12345678,

N

1

8|8F|Cl]|vv

ALIGNER MUXES

UNFORIB S |0
Z]3]a]1]clc
12| 34|56 | 78| 8F | C1

s A ~ %

FORMATTER cYe

IB DATA OPC
413|121 REG.
12| 34|56| 78

\"2 v

To EBox ouver To Decoder

IB DATA BUS

Example (Sheet 1 Of 4)

B®04 (R3), RO

VI 3-69

1B MEMORY UNIT

LONGWORD 3

LONGWORD 2 LONGWORD 1 LONGWORD @
xx | xx| xx| xx|ww|ww|50|B4|A3| 12| 34| 5S6|uy | yy | yy | yy
N\ % I —3— New I-stream =
IJ'W é l N
IB RD ADDR <1:@ = 21 READ PORT MULTIPLEXORS
Port A = LW 1 C B A
Port B = LW 2 -
Port C = LW 3 byte @ xx | wwlww| S| B4 A3]|12 | 34|56
b T 1 > Not us
Not used

IB ALIGN CNTL <1:@& = 10

Aligner selects data starting

at Port A byte
NEW OPCODE = @

2

Ignore Opcode byte: get opcode
frrom Cycle Opcode Reg.

IB FORCNT <1:9>

= 81

Dieplacement positive; zero
extend IB DATA bytes <4:2>

Figure 3-24

ADDL3 #©X12345678,

VI 3-70

L

ALIGNER MUXES

UNFORIB S |0
PP
4|13|2|1]C]|C
wwlww | 58| B4] A3 C1
Vo "4 N\
FORMATTER
IB DATA
4131211
2022l gl A4
\"2 v

To EBoex over

IB DATA BUS

B©04 (R3), RO

To Decoder

IB Read Example (Sheet 2 of 4)

1B MEMORY UNIT

LONGWORD 3 | LONGWORD 2 | LONGWORD 1 | LONGWORD %]
XX| XX XX | XX |wwlww|SB|B4| zz|zz|zz|zZz |yy|uyy|yy|yy
N . / Ny
[' ~
IB RD ADDR <1: @ = 1@ READ PORT MULTIPLEXORS
Port A = LW 2 C B A
Port B = LW 3
Port C = LW @ byte @ Uy | XX | xx | xx| xx| ww|ww| S8| B4
e P e\ 7
> Not used
CcYyCc
I 10PC
) s v v REG.
IB ALIGN CNTL <1:@> = ALIGNER MUXES
Aligner selects data starting UNFORIB S10
at Port A byte @ PP
413|211]|C]|C
NEW OPCODE = B sl c1
Ignore Opcode byte; get opcode \xx XX | ww wwk J
from Cycle Opcode Reg.
L4 v)
IB FORCNT «<1:@ = FORMATTER
No format change; IB DATA
output data as 1s 4 (13l211
Note: IB DATA BUS not relevant XX XX | wwl ww
~ for this specifier
V \'

Figure 3-24

IB Read Example

ADDL3 #9X12345678,

vI 3-71

B©04

To EBox over To Decoder
IB DATA BUS

— &

{Sheet 3 of 4)

(R3), RO

IB MEMORY UNIT
LONGWORD 3 | LONGWORD 2 LONGWORD 1 | LONGWORD @
xx | xx | xx | xx|wwjww|SB|B4|z2|ZzZ|ZZ|ZzZ | UY yujuyluy

Point to opcode byte T_:&B RD ADDR <1:8&> = 18
of next |nstruct1on L_IB Al IGN CNTL <1:® = 1@

NEW OPCODE = @)
Select opcode from Cycle Opcode Register

CcYC
orPC
REG.

To Decoder

NOTE: All outputs from IB except for the opcode
are don’t care during the opcode decode cucle

Figure 3-24 1B Read Example (Sheet 4 of 4)

ADDL3 #©X12345678, B®04 (R3), RO

i
4
-4
w
|
N

3.4.5 1IB Manager Operations
The IB Manager consists of the PCNC MCA and part of the IBST MCA.

The PCNC MCA (Figure 3-25) supplies the IB read address and alignment
control inputs and computes the amount of IB data consumed during
every decode cycle. It also decodes the opcode and current operand
specifier and supplies some of the addressing inputs to the Decoder
RAMs.

The IBST MCA supplies the IB write address and detects when a longword
has entered the IB,

The following text describes the operations performed by the PCNC MCA.
The IB manager related functions of the IBST MCA were discussed in
preceding sections.

3.4.5.1 IB Read Address Logic -
Initializing IB RD ADDR <1:0> and IB ALIGN CNTL <1:0>

When microcode invokes an IB Flush, the signals EITHER FLUSH and ONE
SHOT FLUSH are asserted. This causes the IB Read Address logic to
initialize IB RD ADDR <1:0> and IB ALIGN CNTL <1:0> as follows:

e IB RD ADDR <1:0> =0 O
e IB ALIGN CNTL <1:0> = VAX PC <1:0>

EITHER FLUSH causes the mux to the lower right of the IB Read Address
logic to select the two inputs hardwired to logical 0 and the two that
receive VA FILE <1:0>, which equal VAX PC <1:0> after a flush, from
the EBox. The mux outputs are latched to become OLD PC <3:0>.

ONE SHOT FLUSH forces the Read Address logic to issue NO DATA IN IB to
the IB Full logic which responds with NO LW AVAIL. This signal causes
the Read Address logic to select OLD PC <3:2> as the source for IB RD
ADDR <1:0> and OLD PC <1:0> as the source for IB ALIGN CNTL <1:0>.

NOTE
IB RD ADDR <1:0> and IB ALIGN CNTL <1:0> can be
thought of as a four bit address into the IB and will

be referred to collectively as the "IB pointer" in the
rest of the text.

VI 3-73

LW ACCEPTED

e e ———————— -

OPCODE A<7:0>
TWO BYTE

NEW OPCODE — OPCOOE

SLOW BRANCH

o et b ettt etk

SEQ LW

SP<7:0=

PRED DATA SIZE<1:0> ——r]
NEW —]
OPCODE

SPEC SIZE

I
PTY
NO DATA IN B I 1B EM
LW REMAIN<1:0> —] i 18 FULL
IBUFFER FULL
1B FULL |
NO LWAVE L NO LW AVAIL i
LWAVE-10~ L LW AVAIL<1:.0- I
T2 I
INIT B —] CLR i
BRANCH MODE '
J—- SET BRANCH
OPCO FD .
}— OPISFD
SPEC IS INDEX — 1
WATCHER | BRANCHO "
BRANCHO SIZE <1:0> 0-] T2
i
I
FIRST |S|\IAZhIAE A ") IB RD ADDR<1;0>
0: X
IMDMODE i INDE 1B ALIGN CNTL A8} <1:0>
R4 NEW OPCO — I IB DEC NOOP
TEMPING<2:0~ I 5 pec noop oR pe
1ST SPEC SIZE<2:0> I-| 5| LW AVAIL<1:0> — I
SLOW SPEC SIZE<2:0- NO LW AVAIL — |
— P <2:0>
_ INITA—| CLR LD PCv3.0n —] e C INC
L SPEC IS INDEX ASTALL] \ VBUS PCINC<2:0>
1B READ
ADDRESS T3 |1
v - - —
LOGIC
SILO NEW OPCODE ——— L———----_-.._____I
OPCODE NEXT — 1 L\1VOREM I
DEC SELECT<1> ————— = >P LW REMAIN<1:0> "
SHIFT 1B BMPTY NO DATA IN IB
SEL OPCO 1
TRAP<1> —_—
DLY 18 FLUSH ——— T3 l
|B PAR ERR ————}—— NEW OPCODE |
OPC <3:0> L R4 NEW OPCO
ONE SHOT FLUSH ;
—— OLD PC<3:0> | oD PeBo30- |
1 I
| o T4 1
1 ° I
VA FILE<1:0> M
| U = 1
i x !
EITHER FLUSH } T3 i
i NT A—] CLR I

Figure 3-25

O |

PCNC MCA Block Diagram

MK V86-0731

Computing Amount of IB Data Required

At the end of an IB flush, the CBox will deliver new I-stream data to
the 1IB. When the first longword arrives and the IBST MCA asserts LW
ACCEPTED, the IB Full logic negates NO LW AVAIL. This enables the 1IB
Reid Address logic to check if the IB contains enough I-stream data
for the first decode cycle of the new instruction.

The amount of IB data required for any given decode cycle is indicated
as a temporary increment value on the TEMPINC <2:0> bits. These bits,
which become the PC INC <2:0> value sent to the EBox, are derived from
one of two sources:

TEMPINC <2:0> Sources

Cycle
Source Active Function
Opcode First Decode opcode byte and compute PC
Watcher increment amount for branch
offsets and immediate mode
specifiers that occupy first
specifier position.
Note: Also active 1in second
decode cycle for instructions
with two byte opcodes.
Specifier All Compute PC increment amount in
Size logic first cycle for those specifiers

not handled by Opcode Watcher

Compute PC increment amount for
all subsequent specifiers.

VI 3-75

3.4.5.2 Opcode Watcher Logic - The Opcode Watcher is enabled by the
signal NEW OPCODE. This signal 1is asserted in the first cycle of
every instruction and, for the FD class two byte opcodes, along with
TWO BYTE in the second decode cycle.

When NEW OPCODE is asserted, the Opcode Watcher checks the signal
FIRST IMDMODE to see if the first specifier is immediate mode.

If FIRST IMDMODE is negated, the Opcode Watcher then determines if the
instruction falls into one of the following categories:

e No operands - NOP, HALT, etc.
e FD class two byte opcode - ADDG2, MOVO, etc.
e Branch offset in first specifier - BNEQ, BSBW, etc.

If the instruction falls into any of these categories, the Opcode
Watcher will indicate the amount of IB data required for the first
decode cycle on the BRANCHO SIZE <1:0> bits as follows:

BRANCHO SIZE
<1:0> Instruction Class

No operands or first byte of two byte opcode
Branch with byte offset (eg: BNEQ, BSBB)
Branch with word offset (eg: BRW, BSBW)
Otherwise

OO
OO

Note that BRANCHO SIZE <1:0> equal 2 for a branch instruction with a
byte offset and 3 for a word offset. This is because the opcode byte
is always consumed along with the first specifier bytes in the first
decode cycle of an instruction. (The only exception is the first byte
of a two byte opcode which is given in its own decode cycle,)

V9L 3-76

In addition to encoding BRANCHO SIZE <1:0>, the Opcode Watcher also
asserts the following signals:

Signal Function

BRANCHO Forces TEMPINC mux to select BRANCHO SIZE <1:0>.
(TEMPINC bit <2> is forced to logic 0; IB Read
Address logic requires 3 increment bits.)

SET BRANCH Prevents IB Read Address logic from using signal
INDEX from Spec Size logic. SET BRANCH also
asserted when a subsequent specifier is a branch
offset (eg: last specifier of ACBB.)

OP IS FD Asserted if instruction has FD class two byte
opcode. OP IS FD is stored in the IB State Silo
(IBST MCA) and returned as TWO BYTE in second
cycle of instruction to allow Opcode Watcher to
decode second byte of two byte opcode.

When FIRST IMDMODE is asserted, the Opcode Watcher must first decode
the opcode to determine the data size operated on by the instruction.
It then computes the amount of IB data required and encodes the amount
on the IMM SIZE <2:0> bits.

Since the amount of IB data consumed in the first decode cycle
includes the opcode, the first specifier, and up to four specifier
extension bytes, the IMM SIZE value ranges from three to six as
follows:

Extension Size IMM SIZE <2:0> Example

Byte 011 MOVB #©X12, RO
Word 100 MOVW #©X1234, RO
Longword 110 MOVL #©X12345678, RO

Note: The PC increment value for the subsequent longwords of big
immediate specifiers is computed by the Spec Size logic.

VI 3-77

3.4.5.3 Specifier Size Logic -

First Decode Cycle

If the first specifier is not of a type handled by the Opccde Watcher,
the Specifier Size 1logic will provide the PC increment value as 1ST
SPEC SIZE <2:0>.

Since some specifiers have no extension bytes and others have up to
four, the 1ST SPEC SIZE <2:0> value can range from two (opcode, first
specifier) to six (opcode, specifier, longword extension) as follows:

1ST SPEC SIZE <2:0> Values

New Opcode SP 1ST SPEC Size

<7:0> <2:0>

00 - 8F 010

90 - 9E 010

1 9F 110

A0 - BF 011

CO0 - DF . 100

E0 - FF 110

0 X 000

Subsequent Decode Cycle

The Specifier Size logic provides the PC increment value in subsequent

decode cycles (2nd to 6th specifiers) as SLOW SPEC SIZE <2:0>.
The SLOW SPEC SIZE <2:0> value is based on the current specifier byte
and on three control signals from the IBST MCA. Table 3-16 describes

the control signals, and Table 3-17 indicates the SLOW SPEC SIZE <2:0>
value for each specifier type.

VI 3-78

Table 3-16 Specifier Size Logic Control Signals

Signal Indication

SLOW BRANCH Second to sixth specifier is a branch offset
(eg: last specifier of all ACBx instructions
is a branch offset).

Derived from RAM SLOW BRANCH from Decoder RAM.

PRED DATA Size of a branch offset or immediate mode specifier
SIZE <1:0> that occupies second to sixth specifier position.

Derived from PRED DATA SIZE <2:0> from Decoder RAM.

SEQ LW Subsequent longword of a big immediate specifier is
being processed.

Derived from IBST DATA SIZE <2:0> from Decoder RAM.

Notes:

1. The signals are not used during the second cycle of FD
class two byte opcodes (NEW OPCODE still asserted).

2. The signals are available in current decode cycle but
indicate data type/size for next specifier,

3. The SLOW BRANCH signal also forces the Opcode Watcher
to unconditionally assert the SET BRANCH signal.

VI 3-79

Table 3-17 Slow Spec Size <2:0> Values

Slow SP ~ PRED Data SEQ Slow Spec
Branch <7:0> Size <1:0> LW Size <2:0>

00 to 8E - - 001

00 0 101

1 100

8F

10 - 010

11 - 011

0 90 to 9E - - 001

9F - - 101

A0 to BF - - 01O

CO0 to DF - - 011

E0 to FF - - 101

1 XX 00 - 1 00

01 - 0 01

10 - 010

3.4.5.4 Checking TEMPINC <2:0> Validity - Since 1IB reads occur on
every B clock, there is a possibility that the TEMPINC at value could
be based on I-stream data left over from a previous instruction. This
means that before it can use the TEMPINC value, the IB Read Address
logic must first ensure that the value is based on current IB data.

The read address logic determines the validity of the TEMPINC <2:0>
value based on the signals NO LW AVAIL, LW AVAIL <1:0> and OLD PC
<1:0>. ,

The signals NO LW AVAIL and LW AVAIL <1:0> are output from the counter
which the 1IB Full logic (top of Figure 3-25) maintains to keep track
of the number of longwords in the IB available for decoding:

NO LW Asserted if all longwords currently in the IB have
AVAIL already been processed (IB is "empty").

LW AVAIL Encoded with the number of IB longwords yet to be
<1:0> decoded. Only valid if NO LW AVAIL is negated.

NO LW AVAIL Asserted

In this case, the IB Read Address logic knows that the TEMPINC value
is invalid since it could only be based on old IB data. The IB Read
Address logic will therefore ignore LW AVAIL <1:0> and OLD PC <1:0>
and initiate a "Decoder Stall" operation (described later).

NO LW AVAIL Deasserted

The deasserted state of NO LW AVAIL only informs the IB Read Address
logic that the IB contains some valid data, not if it contains enough
data for the current decode cycle.

To determine if the IB contains enough data, the IB Read Address logic
first computes the number of IB bytes available from the OLD PC <1:0>
bits (starting IB byte position) and the LW AVAIL <1:0> bits (total
number of IB longwords available). It then compares this amount to
the TEMPINC <2:0> value.

If the IB contains enough data, the IB Read Address logic may or may
not wuse the TEMPINC <2:0> value in the current decode cycle depending
on whether the IB pointer is to be updated or remain unchanged for the
next cycle,

If the IB does not contain enough data, the IB Read Address logic will
initiate the "Decoder Stall" operation described below.

VI 3-81

3.4.5.5 Decoder Stall - When the IB does not contain enough data for
the current decode cycle, the IB Read Address logic will initiate a
"Decoder Stall" operation by asserting the signal IB DEC NOOP OR PE.

The assertion of IB DEC NOOP OR PE causes the Special Address Encoder
logic to output the address of an 0S.IB.STALL microword in place of
the address that the Decoder would have otherwise generated (opcode or
specifier entry address).

The only function of the 0S.IB.STALL microword is to request another
IB decode cycle (I DECODER bit set). This effectively "stalls" the
decode process for one cycle and allows the CBox more time to deliver
the required data to the IB.

If the CBox fails to supply a new longword of I-stream data by the end
of the "stall" cycle or if more than one longword is required, the IB
Read Address logic will keep IB DEC NOOP OR PE asserted, forcing the
Special Address Encoder to again generate the 0S.IB.STALL microword
address. This operation will continue until the CBox delivers enough
I-stream data for the current decode cycle.

3.4.5.6 Modifying the IB Pointer - When the IB contains enough data
for the current decode cycle, the IB Read Address logic examines its
other inputs to determine if the IB pointer should be modified by the
TEMPINC <2:0> value or remain in its current state for the next cycle.

Figure 3-26 is a conceptual block diagram of the IB Read Address logic
that controls the 1IB pointer. The logic at the top of the figure
determines if the IB pointer should point to the opcode byte in the
first decode cycle of an instruction or to the byte preceding the next
specifier for a subsequent cycle. The logic at the bottom of the
figure determines if the pointer will stay in its current state or be
modified by the TEMPINC <2:0> value.

Table 3-18 shows the relationship between the inputs to the 1IB Read

Address 1logic and the state of the IB pointer for the next decode
cycle. The mnemonic OPC refers to the OLD PC <3:0> bits, TPC refers
to TEMPINC <2:0>. The indicator "-" means that the given input signal

is "don't care". For example, if DLY IB FLUSH is true (1), all other
signals are ignored.

~
-
4
W
|
w
o

SILO NEW OPCODE

D3

-

D2

R4 NEW OPCODE

D1

OPCODE NEXT

iB-SHIFT

INDEX U

1O

SEL
1

BRANCH
TRAP
DEC STALL

DEC NEXT

DLY 1B FLUSH

/

—— SEL OPCO

TEMP INC =2:0>

OLD PC <3:0>

PC INC <2:0>

U

A+B

EL

| [

DLY 1B FLUSH————Q
DEC STALL —Q
1B SHIFT -

s
L~

1B DISPATCH

DEC NEXT

Figure 3-26

)
L/

N SEL

OPC <3:0>

IB RD ADDR <1:0>

1B ALIGN CNTL <1:0>

MKV86-1141

Simplified IB Read Address Logic

VI 3-83

¥8-¢ 1IA

DLY IB DEC DEC 1B SET OPCODE | R4 NEW | SILO NEW
R New IB
FLusH | TRAP | sTAlL | SELECT | sHIFT | BRANCH | INDEX | "NEXT | OPCODE | OPCODE Pointer REMARKS
1 opPC Full 1B Flush
0 1 1 orPC Trap during first decode cycle
0 OPC -1 Subsequent cycle
1 1 OPC Stall on first decode cycle
S 0 OPC -1 Subsequent cycle
0 0 1 OPC No IB decode - first cycle
0 OPC -1 Subsequent cycle
0 1 OPC Execute cycle - most inst.
1 - (o] OPC -1 Shouldn’t happen
1 OPC + TPC Execute cycle - optimized inst.
1 0 0 0 OPC + TPC -1 |Normal subsequent spec. cycles
1 OPC 4 TPC -1 |Index mode specifer
1 1 OPC + TPC Last specifer branch offset
(o] OPC + TPC -1 | Shouldn’t happen

OPC = OLD PC <3:0>
TPC = TEMPINC <2:0>

MKV86-1140

3.4.5.7 IB Read Address Logic Control Signals - This section
describes the 1IB Read Address logic control signals in the order in
which they appear in Table 3-18,

DLY IB FLUSH

This signal is asserted during a full IB flush to force the unmodified
OLD PC <K3:0> bits to become the new IB pointer. (The OLD PC <3:0>
bits are initialized during a full or partial flush to point to the
opcode of the new instruction delivered to the IB,)

TRAP

The TRAP signal indicates that a microtrap occurred.

Microtraps are detected late in the pipeline (canonical T10 time).
Thus, the assertion of TRAP does not necessarily mean that the current

instruction caused the trap.

To determine which cycle was in progress at the time of a trap, the IB
Read Address logic saves the state of the signal SILO NEW OPCODE.

SILO NEW OPCODE is a four cycle old copy of the NEW OPCODE signal that

the 1IBST MCA 1issues at the start of a new instruction and, as such,
indicates which decode cycle was in progress as follows:

SILO NEW OPCODE Decode Cycle in Progress

Asserted First cycle
Negated Subsequent cycle

When TRAP is asserted, SILO NEW OPCODE is output as SEL OPCO, latched
(see Figure 3-25), and returned as R4 NEW OPCODE.

During the ensuing microtrap routine, both TRAP and DEC SELECT are
negated, forcing R4 NEW OPCODE to be recirculated until the routine
exits. (Microcode convention does not allow "nested" traps or decode
cycles within trap routines.)

VI 3-85

At the end of the microtrap routine, a partial IB flush 1is invoked

which initializes the OLD PC <3:0> bits. R4 NEW OPCODE is then
to select the appropriate IB pointer source:

Trap R4 NEW IB Pointer

During OPCODE Source Reason

First True Unmodified Points to opcode byte
Cycle OLD PC of trapped instruction
Subsequent False OLD PC-1 Points to byte preceding
Cycle specifier being processed

when trap occurred

In either case, the IB pointer will address the proper IB byte in
first decode cycle after the trap is released.

NOTE

Microtraps that occur in the "shadow" of a full flush
(DLY IB FLUSH asserted) are ignored by the logic.

DEC STALL

Indicates that a Decoder stall condition is present.

used

the

When DEC STALL is true, the IB Read Address logic uses R4 NEW OPCODE
to determine if the stall occurred during the first decode cycle of a

new instruction or in some subsequent cycle:

R4 NEW
Stall during OPCODE IB Pointer Source
First cycle True Unmodified OLD PC
Subsequent cycle False OLD PC -1

R4 NEW OPCODE is also used when DEC STALL and DEC SELECT are

both

negated. This condition is the norm when there is no Decoder stall or
IB decode request. The selection of the source for the new IB pointer

is as described above.

IB Quiescent State

The above operations have one thing in common: they all force the 1IB
pointer to stay in its current state until an IB "shift" is requested
along with DEC SELECT (see below) and the IB contains enough data.

To ensure that the IB pointer does not change state for the next
cycle, the IB Read Address logic recirculates the OLD PC <3:0> value.
It does this by latching OPC <3:0> and returning the value in the next
cycle as OLD PC <3:0> (see Figure 3-25 for the external latches.)

The reason for recirculating the OLD PC <3:0> value in this manner is
that if the IB pointer mux were to be used instead, the assertion of
SEL OPCO would cause the pointer to be decremented by 1 in the next
cycle. (The logic would select and decrement the OLD PC-1 value.)

The following text describes the remaining inputs to the Read Address
logic assuming that DLY IB FLUSH, TRAP, and DEC STALL are all negated.

DEC SELECT

This signal is asserted each time microcode issues a decode request
and causes two operations to occur:

1. Microsequencer selects Decoder generated entry address for
the specifier or opcode microroutine

2. PCNC MCA modifies (if required) the IB pointer in preparation
for the next decode cycle

When it receives DEC SELECT, the IB Read Address logic first examines
the state of SHIFT IB from the Decoder RAMs (DRAMs) to determine if it
should keep the IB pointer in its current state or modify it for the
next cycle.

VI 3-87

SHIFT IB

SHIFT IB is always asserted by the DRAMs in the first decode cycle of
every instruction and whenever the next block of I-stream data is to
be shifted out of the IB.

if SHIFT IB is asserted, the IB Read Address logic selects either the
OLD PC + TEMPINC value or the OLD PC + TEMPINC-1 value as the source
of the new 1IB pointer. If the signal 1is negated, either the
unmodified OLD PC value or the OLD PC-1 value is selected.

The selection of one of these sources depends on the state of three
other input signals which are used in conjunction with SHIFT IB:

SET BRANCH Asserted if the specifier is the branch offset
of a PC control (BNEQ, BBC, etc.) or a loop
control (ACBB, AOBLEQ, etc.) instruction.

Also asserted in the first, and only, decode
cycle of an instruction that has no specifiers
(HALT, NOOP, etc.), and in the first cycle of
an instruction with a two byte opcode.

INDEX Asserted if the specifier is index mode.

OPCODE NEXT Asserted by the DRAMs if the next decode cycle
will be the first cycle of a new instruction.

Note that SHIFT IB and OPCODE NEXT, like all other DRAM outputs, are
issued during the current decode cycle but control operations for the
next cycle. Therefore, the signals are available prior to the time
the logic receives DEC SELECT from microcode.

The following assumes SHIFT IB is asserted when the current microcode
routine issues DEC SELECT.

1
4

=1
W
|
0]
<0

SET BRANCH

Since a branch offset is always the last specifier of a macrobranch
instruction, the next decode cycle will always be the first cycle of a
new instruction.

If SET BRANCH is true, the IB Read Address logic ignores the INDEX
signal, which 1is meaningless is this case, and selects the OLD PC +
TEMPINC value. This will be the pointer to the opcode byte of the
next instruction should the branch fail. (On a branch success, the
ensuing IB flush operation would initialize the pointer,)

This method is also used to modify the IB pointer for the second byte
of a FD class two byte opcode and to point to the opcode of the
instruction following one that has no specifiers.

NOTE

As long as the DRAMs are properly loaded and no
hardware failure exists, the case in which SHIFT IB
and SET BRANCH are both asserted and OPCODE NEXT
negated should never occur.

INDEX

The assertion of INDEX with SET BRANCH negated means that the current
specifier is indexed mode.

In this case, the IB Read logic will ignore OPCODE NEXT and select the
OLD PC + TEMPINC-1 value as the new IB pointer. This will ensure that
the pointer will address the base operand in the second decode cycle
of the specifier.

(It takes at least two cycles to process an index mode specifier: one
for the index operand and one for the base operand. If the base is a
big immediate, additional cycles are required, one for each subsequent
longword.)

The INDEX signal is especially important when the last specifier of an

instruction is indexed since the base operand byte would otherwise be
interpreted as the opcode of a new instruction.

VI 3-89

OPCODE NEXT

When SET BRANCH and INDEX are both negated, the state of OPCODE NEXT
determines whether the IB pointer should address the opcode byte of a
new instruction or a subsequent specifier of the current instruction.

If all specifiers of the current instruction have yet to be processed,
the DRAMs keep OPCODE NEXT negated. This forces the IB Read Address
logic to select the OLD PC + TEMPINC-1 value which points to the byte
preceding the next specifier to be processed.

After the last specifier is processed, the DRAMs negate SHIFT IB and
assert OPCODE NEXT. This forces the IB Read Address logic to select
the unmodified OLD PC value since this value points to the opcode byte
of the next instruction.

NOTE

OPCODE NEXT also causes the IBST MCA to issue NEW
OPCODE to the IBUF MCAs. However, the IBUF MCAs will
not use this signal until the next decode cycle.

Optimized Instructions

The only exception to the operand specifier processing described above
is the decode cycle for the last specifier of "optimized” instructions
such as a MOVL. In this cycle, the DRAMs assert both SHIFT 1IB and
OPCODE NEXT to force the selection of the OLD PC + TEMPINC value.
This is because the execute code for optimized instructions 1is
incorporated in the last specifiers microroutine. Thus, there is no
decode cycle to generate the entry point address for the execute

microcode.

1
il

=l
(A
[
\O
)

3.4.5.8

Computing Number Of IB Longwords Consumed - When it wupdates

the IB pointer, the IB Read Address logic must also compute the number
of IB longwords consumed during the decode cycle. It does this bhy:

1.

Summing TEMPINC <2:0> (bytes requested) to OLD PC <1:0>
(starting byte position). This vyields the number of IB
longword boundaries that will be crossed accessing the
current specifier.

Subtracting above sum from LW AVAIL <1:0>. This effectively
compares the number of 1longwords requested to the number
actually available in the IB.

NOTE

LW AVAIL <1:0> only have meaning if NO LW AVAIL is
false. In addition, with NO LW AVAIL false, the bits
always equal 1 1less than the number of longwords
actually available. This 1is, they equal 0 if 1
longword is available 1 if 2 two longwords are

avaliable, (0.3 4

available, etc.

Based on the result of this comparison, the IB Read Address logic then

performs

one of the operations below (the symbol ">" means greater

than; "<" means less than).

VI 3-91

Result

Amount of
Data in IB

IB Read Address Logic Response

>

<

0

0

0

Just enough

More than
enough

Not enough

Clear LW REMAIN <1:0> and assert NO
DATA IN IB.

IB Full logic will issue NO LW AVAIL
to cause a Decoder stall in the next
cycle if the CBox does not deliver a
new longword in time.

Negate NO DATA IN IB and indicate
number of longwords remaining as LW
REMAIN <1:0>. '

LW REMAIN <1:0> become LW AVAIL <1:0>
in the next cycle if the CBox does
not deliver a new longword.

Return LW AVAIL <1:0> and NO LW AVAIL
to the IB Full logic as LW REMAIN
<1:0> and NO DATA IN IB.

Note: The IB Read Address logic would
have already invoked a Decoder stall
by asserting IB DEC NOOP OR PE.

VI 3-92

3.4.6 Instruction Decoder Operation
Refer to Figure 3-27. The instruction decode logic cor
following components:

3

sists of the

-

® 4K x 17 bit Decoder RAM (DRAM)
® Special Address Encoder
® Part of the IBST MCA

Primary Functions
® Decode the opcode and current operand specifier

® Generate the entry point address for all operand specifier
microroutines

e After all specifiers are processed, generate the entry point
address for the routine that performs the actual work of the
instruction (the execute code)

® Monitor "special" conditions which may affect 1instruction
execution and generate the entry point address for the
routine which services the condition

® Assist the PCNC and IBST MCAs in controlling the IB

Decoder generated microaddresses, as with all microaddresses, are 14
bits wide. Two copies of the microaddress are sent to the
microsequencer, DEC UADDRA <13:00> and DEC UADDRB <13:00>. This
reduces signal loading of the CSO micro-PC address latches.

3.4.6.1 Pipeline Timing Considerations - The Decoder operates
asynchronous to the pipeline in that it is not explicitly controlled
by microcode. However, there is one microword bit, I _DECODER, which
effectively couples the Decoder to the pipeline.

I _DECODER is set in the last microword of every specifier and opcode
routine to initiate the next IB decode cycle, The bit is output from
its CSO RAM data latch as the signal DEC SELECT which is sent to the
micro-PC address latches.

VI 3-93

vo-¢ IA

DEC RAM

DRAM ADDR <«11:00>

OPCODE =7:0>
IBUF
MCAS SPEC NO <2:0>] 3
SP <7:0> 8\
TWO BYTE 1/
OP IS FD
SET BRANCH
SHIFT IB

OPCODE NEXT

DEC SELECT

1B DEC NOOP

MCA

SPEC WAS RMODE

ADDRESS
GEN'R

DRAM BIT

DECODER

(DRAM)

4K X 17

POSITION DESTINATICN

SHIFT IB A <16>)

Special Address Encoder
DPAR2 <15 > :

DRAM Parity Checker
EXTRA BIT <14 >

- IBFO MCA

SHIFT IB B <13 >

IBST and PCNC MCAs
USE OPCO ADDR <12 > .

Special Address Encoder
MD NUM <2:0 = <11:9 > FADS MCA

s

PRED DATA SIZE <1:0 > <8:7 >

IBST MCA
RAM SLOW BRANCH <6 >

IBST MCA
OPCODE NEXT <5 >

IBST and PCNC MCAs
OPERAND DATA SIZE <2:0 > <4:2 >

IBST and IBFO MCAS
ACCESS TYPE <1:0 > <1:0 >

INDEXED OR INDEX PC

PRED DATA SIZE <1:0>

IBST DATA SIZE <2:0>

RAM SLOW BRANCH

CD PE <1:0>

SPEC TYPE <3:0>

SPECIAL ADDRESS ENBL

SLW RADDR <8:4> = OPCODE <7:3>

USE OPCO ADDR
SHIFT IB A

1B PE <1:0>

DLY OPN XOR IBS

Other Special

Conditions from
CBOX and IBOX

-

. SEL SPECIAL ADDR
SPECIAL

<10 >

e

4
Z:§>_
4 To Micro-PC
FRC Address latches
(SEQ MODULE)

ADDRESS
ENCODER

SPECIAL ADDR «3:0>

DRAM <16, 19, 12:6, 4:0>

Figure 3-27

DPAR2

DRAM

PARITY

DRAM PE

CHECKER

Instruction Decode Logic

(IBST DATA SIZE < 2:0 >
and
IBFO DATA SIZE «2:0>)

DEC UADDRA(B) «<13:00 >

IBOX Error Register
and Micro-trap logic
(UTRP MCA-SEQ module)

MKV86-1142

The state of the DEC SELECT signal determines the source of the next
microaddress selected hy the micro-PC address latches:

DEC SELECT Next Microaddress Source

Asserted Decoder logic. This operation is commonly
referred to as a "Dec Next".

Negated Microsequencer logic (UBRS MCAs)

Decoder to Pipeline Basic Timing Relationship

I_DECODER is output from the CS0O RAM at canonical T3 of the current
microword. The bit is then latched as DEC SELECT at T4 and presented
to the micro-PC address latches at TS.

Canonical T3 to T5 of the current microword correspond with Tl to T3
of the next microword to be executed. It is during these time states
that the IB, the Decoder, and the micro-PC address latches perform
their respective functions:

Time Operation
T1 IB outputs next block of I-stream data

T2 Decoder generates entry address for
next specifier (or opcode) routine.

T3 CS0 micro-PC address latches select
Decoder supplied address if DEC SELECT
is asserted (I_DECODER set).

If DEC SELECT and the signal SHIFT IB from the DRAM are both asserted,
the IB will output the next block of I-stream data to be processed.
The decoder will then generate the entry address for the next
specifier routine (or execute code if no more specifiers) and make it
available to the micro-PC latches by the next T3 time.

If either DEC SELECT or SHIFT IB is negated, the IB will output the

same block of I-stream data. 1In this case, the Decoder will output
the same address in the next cycle.

VI 3-95

3.4.6.2 Operand Specifier Entry Point Addresses - The entry point
address for an operand specifier microroutine is derived from three
sources.,

Figure 3-28 shows the format of the entry point address and the source
of each bit.

Table 3-19 briefly describes how the address bits are derived and
used.

Table 3-20 shows the relationship between the operand specifiers data
size and its access type. The notation used in Table 3-20 is the same
as that used on the VAX programming card. For example, .RW means that
the operand is read access, data size is word.

DEC UADDR <13:00>

13 12 11 10 09 08 07 06 05 04 03 02 01 00

| SPEC OPERAND ACCESS
11 1 0] N TYPE DATA SIZE TYPE
") D <3:0> <2:0> <1:0>
Special
«—— Address —>{«—— IBST MCA > DRAMs§ ————
Encoder

MKV86-1131

Figure 3-28 Operand Specifier Entry Address Format

VI 3-96

Table 3-19 Operand Specifier Entry Address Bit Descriptions

Bit(s)
13:10

(*)

08:05

04:00

How Derived
Forced to state indicated by Special Address Encoder if
no special condition is pending (discussed later).

Bit 10 is DRAM signal USE OPCO ADDR which is negated for
all specifiers except branch offsets. Branch offsets do
not have their own decode cycles since they are serviced
by the execute microcode (see text).

INDEXED OR INDEX PC from the IBST MCA. Asserted if the
current decode cycle is to process the base operand of
an index mode specifier. (The index byte would have
been processed in the previous cycle; see text.)

Based on either the specifier byte, SP <7:0>, from:- the
IB or, for the subsequent longwords of big immediates,
on the IBST DATA SIZE <2:0> bits from the DRAM,

Represents either the specifier type or which longword
of a big immediate specifier is being processed:
- Literal
- PC absolute (all sizes)
- PC relative (all sizes)
- PC relative deferred (all sizes)
~ Index (index byte, not the base)
- Register
Register deferred
~ Auto-decrement
- Auto-increment
- Auto-increment deferred
- Displacement (all sizes)
- Displacement deferred (all sizes)
- Immediate: Byte, Word, Longword, F-float or,

lst LW of Quad/Octaword, D/G/H-float.
Immediate: 2nd LW of Quadword, D/G-float or,

4th LW of Octaword, H-float.
E - Immediate: 2nd LW of Octaword, H-float.
F - Immediate: 3rd LW of Octaword, H-float.

OWPOXJAaUbdWND O
|

O
|

DRAM bits <4:0>. Encoded with the data size and access
mode of the current operand except for certain special
cases. See Table 3-20.

VI 3-97

Table 3-20 Operand Data Size/Access Type Correlation

OPERAND DATA SIZE <2:0> --> DEC UADDR <4:2>

[———ACCESS TYPE <1:0> --> DEC UADDR <1:0>

Operand Specifier Notation or Special Case

W N kO wN - O w N o wN - O w N O w N = O wN = O

wN O

Not used - Reserved for TRAP vector address space
Not used - Reserved for future expansion

Illegal opcode

Not used - Reserved for future expansion

. RW
MW
.AW
.WW - Also, .MW for ADAWI only

.RL, .RF
.ML, MF
.AL, .AF
.WL - Except for special .WLs below

Special - .WL and set CCs' for optimized instructions
Special - .WL 3rd spec of EDIV; 4th spec of EMODs'’
.VB - Normal case (eg: BBC through BBSSI)

.VB - Abnormal case (eg: CMPV, CMPZV)

.RD, .RG, .RQ
.MD, .MG, .MQ
.AD, .AG, .AQ
WD, WG, .AQ

.RB
.MB
.AB
.WB

.RH, .RO - Except first specifier
.MH - There are nc .MO specifiers
.AH, .AO
WH, .WO

.RH, .RO - First specifier only

.MH - ACBH only

Illegal - Should never be encoded
Illegal - Reserved for Special Addresses

VI 3-98

Operand Specifier Entry Point Address Labels

Each operand specifier entry address is assigned a unique label in the
OPSP.MIC (OPerand SPecifier MICrocode) module of the microcode.

Table 3-21 shows the operand specifier entry address label format and
the mnemonics used in each label field.

Example: Specifier is (Rn)+, not indexed,
read access, longword

.B
Address Label

3908 OS.AINC.NI.RD.LF
Reserved Addressing Mode Faults

Certain specifier addressing mode and access type combinations result
in reserved addressing mode faults. For example, REGISTER mode with

-
DDRESS access.

When a reserved addressing mode fault occurs, the Decoder will still
generate an entry address for the specifier. However, all routines
entered in this manner contain code to immediately transfer control to
a reserved addressing mode fault service routine,

The reserved addressing mode fault service routine resides in the

IANDE.MIC module. The routine starts at the label IE.FLT,ILL.ADR and
is entered by the GOTO macroexpression as follows:

Example: Specifier is RMODE, not indexed,
address access, longword

Address Label Microword contents

38AA OS.REG.NI.ADR.LF GOTO [IE.FLT.ILL.ADR]

VI 3-99

Table 3-21 Operand Specifier Entry Address Symbolic Labels
Label format: OS.AAA.BBB.CCC.DDD
Field Meaning Mnemonics
0S OPSP.MIC N/A
module
AAA Address LIT Literal ==+
mode IND Indexed
REG Register General
RDEF Register deferred Register
ADEC Auto-decremeit Addressing
AINC Auto-~-increment Modes
AIDEF Auto-increment deferred
DIS Displacement
DSDEF Displacement deferred <-+
IMM Immediate <-+
ABS Absolute PC Addressing
REL Relative Modes
RLDEF Relative deferred <—i
BBB Index I Indexed
mode NI Not indexed
CCC Access ADR Address
mode ILL2B Illegal opcode
MOD Modify
RD Read
WRT Write, normal case
WRTCC Write and set CCs' - used for
optimized instructions
WRTNLST Write/not last specifier - 3rd spec
of EDIV, 4th spec of EMODs'
VLD Vield - last operand only
VLDRD Vield - not last operand
DDD Data BYTE Bvte
size WORD Word
LF Longword and F-float
DGQ D/G-float, Quadword
HO H-float, Octaword (not first operand)
HOFST H-float, Octaword (first operand,
read only)
H3 H-float 3rd operand (modify only)
oDD1 Special; used with WRTCC, WRTNLST,
VLD and VLDRD
0ODD2 Special; used with ILL2B

The major functions of the IE.FLT.ILL.ADR routine are to:

1. Restore the VAX GPRs to the state they were in prior to the
fault

2. Form the exception vector of 1C (hex) into the System Control
Block (SCB)

When the fault routine exits, it passes control to a routine which
will push the PSL and PC onto the appropriate stack and report the
fault to the system software. Software will determine if the
instruction can be restarted or should be aborted.

One entry address per specifier

With the following exceptions, the Decoder will generate only one
entry address for each specifier:

1. No entry address is generated for a branch offset. The
offset is processed by the execute code.

2. Index mode specifiers require two entry addresses, one for
the 1index and one for the base. (If the base is a big
immediate, item 3 also applies.)

3. Big immediate (but not big literal) mode specifiers require a
separate entry address for each longword.

Big literals only require one entry address since the routine
that services the specifier supplies the additional
longwords.

Branch offsets

There are two general classes of macrobranch instructions:

Branch Class Description Decoder Action

Simple branch Offset is the first, Immediately generate
(BNEQ, BRB, and only, specifier entry address for the
BRW, etc.) execute code.

Loop control Offset is always the Generate entry address
(ACBx, BBx, last specifier for execute code after
AOBx, etc.) next to last specifier

is processed.

VI 3-101

In either case, the branch offset is sign extended, output to the 1IB
DATA BUS, and summed with the VAX PC during the execute code.

Index mode specifiers
The signal INDEXED OR INDEX PC from the IBST MCA determines if the
Decoder 1is to generate the entry point address for the index or for

the base operand microroutine.

Indexed or Index PC Indication

Negated If SPEC TYPE <3:0> = 4, specifier is an
index operand. Otherwise, specifier is
not indexed.

Asserted Specifier is the base operand.

Big immediate specifiers

Since Quadword, D-Float, and G-Float data are all 64 bits wide, the
value represented by OPERAND DATA SIZE <2:0> for these data types is
the same. This means that the routine that services the first
longword of a Quadword big immediate is also the one used for the
first longword of a D or G-float immediate. This also applies to
Octaword and H-Float data since these data types are both 128 bits
wide.

As each longword of a big immediate specifier is processed, the IBST
MCA updates the SPEC TYPE <3:0> bits so that a different routine is
entered to service the next longword. This ensures that the EBox
logic will be conditioned according to the longword being processed.

The IBUF MCAs and the IBFO MCA ensure that each longword 1is properly
formatted before being sent to the EBoOX.

VI 3-102

Specifier routine length

Some specifier types can be handled by a single microword while others
require two or more microwords:

® Specifier types serviced by single microword routines

Register and Register deferred.

All displacement modes except deferred.

All PC relative modes except deferred.

Literals and immediates not bigger than a longword.

® Specifier types serviced by multiple microword routines

Auto-increment (except PC auto-increment).
Auto-decrement,

All deferred modes except register deferred.
PC absolute mode.

Big literals and immediates.

All indexed modes.

Microword bit I DECODER is always set in the last microword of every
specifier routine. For single word routines, this means that the
decode cycle for the next specifier is requested only one clock cycle
after the current routine starts (next T3 time). For multiple word

routines, at least two cycles elapse before the next decode is
reqguested.

In either case, if the IB does not contain enough data for the next
decode cycle, the Special Address Encoder will continually output the
address of an 0S.IB.STALL microword (3BFF), stalling the decoder until
the CBox delivers the required data to the IB.

VI 3-103

3.4.6.3 Opcode Entry Point Microaddresses -~ After all operand
specifiers of an 1instruction are processed (except for branch
offsets), the Decoder then generates the entry address for the execute

code.

The only exception to this are the "optimized" instructions, such as a
MOVL, which do not have a separate opcode decode cycle since they
incorporate the execute code in the last specifier routine.

Figure 3-29 shows the format of the opcode entry address and the
source of each address bit. Table 3-22 briefly describes how the bits

are derived and used.

DEC UADDR <13:00>

13 12 11 10 |09 {08 07 06 05 04 03 02 01 00
N OPCODE OPCODE 2
1 1 11 0 Y
*) E <7:3 > <2:0 > .Er
Special
le—— Address » - IBUF MCAs ——»te«—— DRAMs —
Encoder
IBST MCA

w
N

MKV88-11

Figure 3-29 Opcode Entry Address Format

VI 3-104

Table 3-22 Opcode Entry Address Bit Descriptions

Bit(s) How Derived

13:10 Forced to state indicated by Special Address Encoder if no
special condition is pending.

Bit 10 is actually DRAM signal USE OPCO ADDR which is
asserted for all opcode entry addresses.

9 SPEC WAS RMODE from IBST MCA. Asserted if last specifier of
instruction was register mode.

08:04 Latched copy of OPCODE <7:3> from IB.

One byte opcode - opcode itself
Two byte opcode - bits take on the two values in order

03:01 DRAM bits <03:01>. Equal opcode <2:0>.

0 DRAM bit <0>.

One byte opcode
Two byte opcode

= O

VI 3-105

Two Opcode Entry Points Per Instruction

Most instructions have two execute routines: one when the last
operand required a memory data transfer, and one when the transfer
involved a VAX GPR. The SPEC WAS RMODE bit determines which routine
is entered:

SPEC Was RMODE Execute Routine Entered

Asserted Register transfer
Negated Memory transfer

Two opcode entry points exist even for instructions with noc operands
and for the simple branch instructions; microcode requires there be a
valid first microword at every entry point.

Exception: Instructions whose last specifier is ADDRESS
access, such as an ADDP4

Reason: RMODE mode with ADDRESS access is a reserved
addressing mode which would be detected while
decoding the specifier. Therefore, the entry
address for the register transfer code could
never be generated.

Opcode Entry Address Symbolic Label

The symbolic label assigned to an opcode entry address ends with (MEM
for the memory transfer code and .REG for the register transfer code.

Example: Instruction - ADDL2

SPEC Was RMODE Address Label

Asserted 3F80 INT.ADDLZ.REG
Negated 3D80 INT.ADDL2.MEM
VI 3-106

While operand specifier routines all reside in one module (OPSP.MIC),
execute routines reside in several modules:

Module Name Instruction Types

CHARSTR.MIC Character String and CRC
CONTROL .MIC PC, loop and subroutine control; CASE, JMP
DECIMAL.MIC Decimal string

EDITPC.MIC Edit

FLOAT.MIC Floating point

INTLOG.MIC Integer and Logical

LDSV.MIC Load/Save Process Context
MULDIV.MIC Integer Multiply and Divide
MXPR.MIC Move to/from Privileged Register
PCALL.MIC Procedure Call/Return

QUEUE.MIC Queue

VIELD.MIC Variable length bit field

Special Cases For Entering Execute Code

The decoder logic immediately generates an opcode entry point address
without a preceding specifier address for the following instruction
types:

Those with no specifiers (BPT, HALT, NOP, etc.)
Simple branches (BNEQ, BEQL, BRB, BSBB, etc.)
Illegal one byte opcodes (57, 59, 5A, 5B, 77)
Reserved escape opcodes (FE and FF)

First byte of two byte opcode (FD)

Instructions With No Specifiers and Simple Branches
The DRAM immediately issues USE OPCO ADDR, SHIFT IB and OPCODE NEXT.

USE OPCODE ADDR forces the DEC UADDR mux to select the opcode entry
address for the instruction.

VI 3-107

SHIFT IB and OPCODE NEXT instruct the IB to output the opcode and
first specifier of the next instruction. This allows the Decoder toO
start decoding the next instruction while microcode processes the
current one.

Exception: Conditional branch instructions that result in
branch success and unconditional branches

cause microcode to invoke a full 1IB flush.

This prevents the Decoder from decoding any IB

data until the CBox delivers the new I-stream.

Illegal One Byte Opcodes

USE OPCO ADDR is negated and DRAM bits <4:0> are encoded to a value of
2 to indicate an illegal opcode (see Table 3~-19),

The negation of USE OPCO ADDR usually means that the DEC UADDR mux is
to select a specifier entry address. For illegal opcodes, this
implies that the Decoder will form a separate opcode entry address for
every possible specifier combination (a microcode requirement).

All microwords addressed in this manner contain code to immediately
transfer control to a microroutine that services reserved opcodes.
This routine, which resides in the IANDE.MIC module, starts at
symbolic label IE.FLT.RES.OPCD and is entered by the GOTO
macroexpression:

Example:

Instruction - Any illegal opcode
Specifier - RMODE, not indexed, access type and data
size don't care

Address Label Microword contents

3842 OS.REG.NT.ILL2B.ODD2 GOTO [IE.FLT.RES.OPCD]

el
~
r—
[¥%]
[
|-—l
¢

<

The IE.FLT.RES.OPCD routine is similar to the routine used to service
reserved addressing mode faults (IE.FLT.ILL.ADR). The main difference
is that the exception vector into the SCB is 10 (hex) instead of 1C.

The DRAM <4:0> value of 2 not only 1leads to the formation of an
illegal opcode entry address, but also causes ILLEGAL OPCODE to be
asserted. The microbranch logic (UBRS MCAs) of the microsequencer
uses the signal to distinguish illegal addressing mode from illegal
opcode exceptions.,

Reserved Escape Opcodes

These instructions are also illegal one byte opcodes, but are treated
in a similar manner as instructions with no specifiers:

1. USE OPCO ADDR - Asserted

SPEC WAS RMODE determines if the entry address for the ,MEM
or the ,REG code should be generated:

Opcode SPEC Was RMODE Address Label

FE Negated 3DFC IE.ESCE.MEM
Asserted 3FFC IE.ESCE.REG
FF Negated 3DFE IE.ESCF.MEM
Asserted 3FFE IE.ESCF.REG

2. SHIFT IB and OPCODE NEXT - Asserted
IB shifts out opcode and first specifier of next instruction.

Note that the entry points reside in the IANDE.MIC module. In each
case, the only function of the microword is to form the exception
vector of 10 (hex) and then pass control to the illegal opcode routine
(the same one used for illegal one byte opcodes).

Although OPCODE NEXT and SHIFT IB are asserted, the new data output

from the IB is not used; the exception handler routine will overwrite
the 1IB.

VI 3-109

Two Byte Opcodes

DRAM signals USE OPCO ADDR, SHIFT IB and OPCODE NEXT are all asserted
for the first byte (FD) of a two byte opcode. (The byte is treated as
if it were a macro NOP instruction.)

As with reserved escape opcodes, there are two entry points for the
first byte of a two byte opcode (also in the IANDE.MIC module):

Address Label Microword contents
3FFA IE.ESCD.REG GOTO DECODER
3DFA IE.ESCD.MEM GOTO DECODER

The GOTO DECODER expression (microword bit I DECODER set) means that
the only function of the microword is to request a "Dec Next" cycle
for the second, or true, opcode byte of the instruction.

As it forms the address for the FD microword, the Decoder also
prepares for the second opcode byte by performing the following:

1. SHIFT IB and OPCODE NEXT instruct the IB to shift out the
second opcode byte and the first specifier bytes.

2. PCNC MCA issues OP IS FD to indicate instruction has a two
byte opcode

3. IBST MCA saves OP IS FD as the signal TWO BYTE and inhibits
its normal incrementing of the SPEC NO <2:0> bits.

The TWO BYTE signal is affixed to the DRAM address pointer for the
next, and all subsequent, decode cycles. This enables the DRAM to
distinguish the second byte of a two byte opcode from 1its one byte
opcode 1look alike (eg: the second byte of CVIDH is the same as the
opcode byte of CVIWL). Otherwise, the DRAMs would output the wrong
data for each specifier.

If the second opcode byte is an illegal opcode, DRAM <4:0> will be
equal to 2. This will cause the Decoder to generate the entry address
for an illegal opcode microroutine the same way it does for illegal
one byte opcodes.

VI 3-110

3.4.6.4 Special Microaddresses - Refer to Figure 3-31.

The Special Address Encoder monitors several CPU conditions which may
affect normal instruction execution. These conditions may be caused
by events that occur external to the current instruction, such as an
interrupt, or they may be caused by the instruction itself, such as a
Decoder Stall.

When a special condition is detected, the Special Address Encoder:

1. Disables the Decoder from outputting the entry address for
the next specifier or opcode routine.

2. Generates the entry point address for the routine required to
service the condition
Special Address Generation
Special condition addresses are also output on the DEC UADDR <13:00>
lines. Bits <09:00> are forced set, bits <12:10> receive SPECIAL

ADDRESS <3:0> which are encoded with the 1evel of the highest priority
condition present.

DEC UADDR <13:00>

13121110 | 09 0807 06 0504 03 02 0100

SPECIAL
ADDRESS |1 11 1 11 1 1 11
<3:0>

A

Encoded level of
——— highlest priority
condition present

MKVB6-1134

Figure 3-30 Special Microaddress Format

VI 3-111

IBC DEC NOOP DR PE 1
SPECIAL ADDR ENBL SEL_SPECIAL ADDR

0 ANY INSTR
0
HP
INT_PENDING
P SET ?mmg
FPD SET NCODE
[
0 SPECIAL ADDR DECODE <2:0>
SPECIAL
ADDR <31>
1B PE <0 , |
_IB PE <1 73
MEMORY BROKEN
1B PAGE CROSS
1B TB MISS| Cremocn
IB_ACV
[} 0
TRUE H USE DPCO_ADIR SPECIAL
Mux | ADDR <0>
SEL SPECIAL ADDR SEL
L1 FRC
IR DATA L IB TB MISS
TU A PATA ———=
STATUS <0 | A AT
c pECODE | IB ACV
H
1) 0 | Status e
o|IB TB MISS L
113 Aoy ’ HALT PENDING
0 | Don’t Care
1 | Data Vald | N I
L L L \\T L L l
A A A _J
HALT T T MUX T T
c c c c
H H SEL H H
DECADDR NEW INSTR
MKV86-1303

Figure 3-31 Special Address Encoder Logic

Special Condition Event Classes

The Special Address Encoder categorizes special conditions into two
event classes and services each class at defined times:

Event Class When Serviced Example
External to current Instruction Interrupt
instruction boundaries

Caused by current Next IB decode Decoder
instruction cycle Stall

If the next decode cycle coincides with an instruction boundary and a
special condition is pending in each event class, the instruction
boundary event takes precedence and is selected in the decode cycle.

Table 3-23 lists the special conditions by c¢lass and, within each
class, by relative priority. It also shows the encoded SPECIAL
ADDRESS <3:0> field and the DEC UADDR <13:00> generated for each
condition.

VI 3-113

Table 3-23 Special Microaddress Conditions

Conditions Serviced at Instruction Boundaries

Condition Priority Special ADDR DEC UADDR
<3:0> <13:0>
Not used Highest 0001 07FF
Not used 0011 OFFF
Halt Pending 0101 17FF
Interrupt Pending 0111 1FFF
Trace Pending 1001 27FF
First Part Done 1011 2FFF
Reserved (Note 1) 1101 37FF
Reserved (Note 1) Lowest 1111 3FFF

Conditions Serviced on Next IB Decode Cycle

Condition Priority Special ADDR Decoder UADDR
<3:0> <13:0>

IB PE <0> (Note 2) Highest 0000 03FF

IB PE <1> (Note 2) 0010 OBFF

IB Memory Broken 01060 13FF

IB Page Cross 0110 1BFF

IB TB Miss 1000 23FF

IB ACV 1010 2BFF

Not used 1100 33FF

IB Stall (Note 3) Lowest 1110 3BFF

NOTES
1. Special Address <3:0> cannot equal 1101 or 1111:

1101 - Conflicts with User control store space
1111 - Conflicts with Opcode entry point space

2. IB PE <0>
IB PE 1>

Parity error, lower word of IB longword
Parity error, upper word of IB longword

If both IB PEs' occur at the same time (double error),
IB PE <0> is reported.

3. Although the IB Stall address, 3BFF, is in the address
range assigned to specifiers, the address is allowed
since no specifier generates an entry address of 3BFF.

Instruction Boundary Special Address Selection

Instruction boundaries are indicated by the signal SPECIAL ADDR ENBL
from the IBST MCA. This signal is issued under the same conditions
used by the PCNC MCA to determine when a new instruction is to be read

from the IB.
Refer to Table 3-18.

The entries OPC and OPC+TPC in the column "New IB Pointer™ correspond
to the times SPECIAL ADDR ENBL is issued. With few exceptions, even
the names of the control signals are the same:

Signal Listed Signal Used

in Table 3-18 by IBST MCA

DLY IB FLUSH IB FLUSH

DEC STALL IB DEC NOOP (actually the same signal)

R4 NEW OPCODE R4 NEW IB OPCODE (internal IBST MCA signal)

There is one additional condition imposed on SPECIAL ADDR ENBL: it
cannot be issued 1if TWO BYTE is asserted. This prevents an
instruction boundary condition from being signaled twice for a two
byte opcode.

VI 3-115

IB Decode Special Address Selection

These special conditions are sensed
DRAM and IB DEC NOOP OR PE from the PCNC MCA are asserted. This means
that the encoder will only generate
does not contain enough data for the current decode cycle or the data

is flagged with an error of some sort.

The next table describes

IB decode cycles that do not coincide with instruction boundaries.

Table 3-24

Special Conditions Serviced During IB Decode Cycles

Condition

Meaning

iB PE
<1:0>

IB Memory
Broken

CBox sent a longword on the CACHE DATA BUS with good
parity but the DEC module sensed bad parity when the
data entered the IB. The parity error is reported
in the next decode cycle.

IB PEs only indicate that some IB longword received
bad parity, not which one. Therefore, the error may
or may not be related to the next IB longword read.

IR PEs are indications of problems with the CACHE
DATA BUS or with the IBUF MCAs. This is because the
CBox asserts MEMORY BROKE when it senses bad parity
on data read from cache or from the NMI. Since the
assertion of this signal prevents data £from entering
the IB, no IB PE would be reported.

CBox detected an error in the cache/memory subsystem
(TB, cache, NMI, etc.) and was unable to prefetch the
next longword of the I-stream.

A longword is sent to, but not loaded in, the IB (see
the entry for IB PE <1:0> above).

when the signals SHIFT IB from the

a special address if the IB either

which special conditions are serviced during

Table 3-24 Special Conditions Serviced During

IB Decode Cycles (Cont)

Condition

Meaning

IB Page
Cross

IB TB
Miss

IB ACV

IB Stall

CBox detected a page boundary crossing while fetching
the next longword of the I-stream.

The longword is loaded in the IB but is "tagged" with
PIBA PAGE CROSS. (PIBA is the Physical Instruction
Buffer Address register in the CBox.)

A longword tagged with a "page cross" is usually not
related to the current I-stream. The microcode will
check if the page cross is legal and, if so, instruct
the CBox to form a new PIBA and continue prefetching
the I-stream.

The tagged IB longword location is overwritten with
the first longword of the new page.

Last I-stream prefetch request resulted in a TB miss.

TB misses are common, usually non-fatal page faults.,
The microcode will enter a memory management routine
to fetch the appropriate PTE and service the miss.

The last I-stream prefetch request resulted in a TB
Access Control Violation (ACV).

ACVs may or may not be fatal. Microcode determines
the fault severity and takes appropriate action.

Not enough IB data for current decode cycle.

Special address encoder generates the address for an
OS.IB.STALL microword whose only function is to again
issue an IB decode request,

The special address encoder will continually generate
the address for the 0S.IB.STALL microword until the
CBox delivers the required data.

VI 3-117

NOTE

IB PE <1:0> and MEMORY BROKE are indications of
hardware problems and are reported to the IBox Error
Register (IBER). The IBER is saved along with the
EBox and CBox error registers (EBER and CBER) and
other relevant data (PSL, PC, etc.) in a microcode
data structure known as the Machine Check Error Bank.
Refer to the VAX 8800 Machine Check Interpretation
Guide (EK-KA88H-UG).

3.4.6.5 IBST MCA Signals Related To Instruction Decoding - The
following text describes those IBST MCA signals which were either not
covered in preceding sections or need additional explanation.

SPEC NO <2:0>
Function:
e Form the upper three read address inputs to the Decoder RAMs

e Indicate which specifier of instruction is to be processed
next.

Operation:

SPEC NO <2:0> are cleared at the start of every instruction. They are
then incremented by one when DEC SELECT and SHIFT IB are asserted and
IB DEC NOOP is negated. This means that the bits will be equal to 0
in the first specifier decode cycle, 1 in second cycle, and so forth.

Exception: The bits are not incremented in subsequent cycles
of indexed or big immediate specifiers or in the
first cycle of a two byte opcode.

When the opcode cycle of an instruction is to be performed, SPEC NO
<2:0> usually reflect the number of operands in the instruction.

Since the bits are cleared at the start of an instruction, this means
that they will point to a DRAM location for a specifier that does not
exist. In this case, the selected DRAM location is not encoded with
specifier data, but with data necessary to generate and select the
entry point address for the opcode routine.

VT 3-118

For example, the SPEC NO <2:0> value will be equal to 2 in the opcode
cycle of an ADDL2 instruction.

A value of 2 for an instruction with three or more operands would mean
that the DRAM word selected is the one containing data for the third
operand. However, since ADDL2 only has two operands, the DRAM word
selected will contain the data required by the opcode cycle,

Exception: The last specifier of a loop control instruction
(ACBx, AOBLEQ, etc.) is always the branch offset.
Since this specifier does not have its own decode
cycle, the SPEC NO <2:0> value for the specifier
is the one used in the opcode cycle.

SPEC TYPE <3:0>
Function:

® Encoded to represent the current specifier type (literal,
register mode, etc.).

® Become DEC UADDR <8:4> of an operand entry point address (see
Figure 3-28 and Table 3-19.

Operation:

The SPEC TYPE <3:0> bits are normally based on the current specifier
byte, SP <7:0>, from the IB.

The exception to this is during the additional cycles of big immediate
specifiers in which SP <7:0> does not represent a specifier but is the
first byte of a subsequent longword (Table 3-14).

In this case, the IBST MCA must remember that a big immediate is being
processed and the data size of the operand. Otherwise, it could
easily mistake the first byte of a subsequent 1longword as a new
specifier.

VI 3-119

When it first decodes the SP <7:0> byte and determines that the
current specifier is immediate mode, the IBST MCA:

1. Encodes the SPEC TYPE <3:0> bits with a value of C (hex)

This is always the case in the first decode cycle of
immediate mode specifiers (Table 3-19).

2. Gates the SPEC TYPE value just generated with DRAM bits IBST
DATA SIZE <2:0>

IBST DATA SIZE <2:0> represent the data size of the current operand
and are sent to the IBST MCA the same time the entry point address for
the first longword is being forme

Although the IBST DATA SIZE <2:0> bits arrive to late to affect the
SPEC TYPE value in the first cycle, the IBST MCA uses them to generate
the value for the next, and each subsequent, cycle.

When IBST DATA SIZE <2:0> equal 4, 6 or 7, indicating the operand is
bigger than a longword (Table 3-20), the IBST MCA will:

3. 1Issue SEQ LW to the PCNC MCA
4. Inhibit incrementing SPEC NO <2:0>

5. Encode SPEC TYPE <3:0> with the value appropriate for the
next decode cycle (Table 3-20)

The IBST MCA performs steps 3 to 5 once for D-float, G-float and for
Quadword big immediates and three times for H-float and Octaword. In
either case, normal specifier decoding resumes after the last longword
is processed.

DLY OPN XOR IBS

This signal is the logical "XOR" of the DRAM signals OPCODE NEXT and
SHIFT 1IB.

DLY OPN XOR IBS is sent along with the other DRAM outputs to discrete
parity checking logic on the DEC module. If bad parity is sensed in
the DRAM, the parity check logic will issue the signal DRAM PE. This
signal is latched in the IBox Error Register (IBER) and is sent to the
microtrap logic on the SEQ module.

3.4.6.6 Decoder RAM (DRAM) - The 4K x 17 bit DRAM serves basically as
a look-up table of opcode and operand specifier entry point
microaddresses. The DRAM is loaded by the VAX Console during the
system initialization sequence.

There is one DRAM word for every specifier of an instruction and one
for the opcode. In addition, a DRAM word is allocated to every
illegal one byte and two byte opcode.

Exceptions - There is no corresponding DRAM word for the:

® Opcode of an optimized instruction

e Branch specifier of a branch class instruction

DRAM Read Address

The DRAM is indexed by an 11 bit read address which 1s comprised of
three fields The following figure shows the address format and the

L]
caniirce nf each fi
[= R ey AR A N LA e A

)
'._J
[oN

DECODER ADDR <11:00 >

11 10 09 |08 07 06 05 04 03 02 01 00

T B

SPEC NO . WY
~2:0> OPCODE <7:0> 0T
E

e BST e IBUF MCAs————>

MCA

IBST MCA

MKV86-1133

Figure 3-32 Decoder RAM Read Address Format

VI 3-121

There are six copies of the DRAM read address: DECODER ADDR A <11:00>
to DECODER ADDR F <11:00>. This reduces loading of the read address
lines and speeds the selection of certain DRAM bits which are required
early in the decode cycle.

Copies A, B, and D each feed a single DRAM chip. Copies E and F each
feed seven chips.

Copy C does not address the DRAM, Instead, bits <8:4>, which are
equal to OPCODE <7:3>, are sent directly to the DEC UADDR mux. Bits
<8:1> are sent to the "visibility bus" as VBUS OPCODE <7:0>.

DRAM Output Signals

Figure 3-33 shows the 17 DRAM output bits and the signal name assigned
to each bit. Table 3-25 briefly describes each signal.

b=
w
|
=
N
N

DRAM OUTPUT SIGNALS

16 |15 114 |13 |12 |11 10,09|08 07| 06 | 05 |[04:03 02|01 00

A A A y

SHIFT IB A—

DPAR2
EXTRA BIT

SHIFT IBB

USE OPCO ADDR

MD NUM <2:0>

PRED DATA SIZE <1:0>

RAM SLOW BRANCH

OPCODE NEXT

OPERAND DATA SIZE <2:0>

ACCESS TYPE <1:0>
MKV86-1139

Figure 3-33 Decoder RAM Output Signals

VI 3-123

Table 3-25 Decoder RAM Output Signal Descriptions

DRAM
Signal

Description

SHIFT
IB A

DPAR?Z

EXTRA
BIT

SHIFT
IB B

USE
OPCO
ADDR

Gated with IB STALL OR PE {originally IB DEC
NOOP OR PE from PCNC MCA).

Forces Special Address Encoder to check for
special conditions when IB is shifted.

DRAM parity bit (odd parity)

When a DRAM word has bad parity, the signal
DRAM PE is asserted. This signal is recorded
in bit 5 of the 1IBox Error Register (IBER)
and 1is reported to the microtrap logic as
machine check condition bit IBox MC COND <0>.

Allows IBFO MCA to distinguish between byte
and word size offsets and between different
data types of 32, 64 and 128 bit operands.

Signals PCNC MCA and IBST MCA when next block

L ~ A3

of I-stream data is to be shifted out of IB.

Forces DEC UADDR <13:00> mux to select opcode
entry address for current instruction.

ATV =~~~ Pl
Also see entry £

VI 3-124

Table 3-25

DRAM
Signal

Description

MD NUM
<2:0>

PRED
DATA
SIZE
<1:0>

RAM
SLOW
BRANCH

Specifies which EBox Memory Data Register
(MDR) is to receive data for specifiers that
request data from memory or from a VAX GPR.

A maximum of 6 MDRs can be assigned to an
instruction, one per specifier.

Encoding MD NUMs in the DRAM allows specifier
microroutines to refer to MDRs implicitly as
MD[MDNUM], instead of explicitly as MD[MDO].

Specifies data size for branch offsets and
immediate mode specifiers that occupy second
through sixth specifier positions.

Bits are output in current decode cycle but
indicate data size of next operand.

Bits are latched in IBST MCA and presented to
PCNC MCA in T3 of current specifier cycle.
Allows PCNC MCA to generate appropriate PC

increment amount for next specifier in time

for next decode cycle.

Asserted if next specifier will be the branch
offset of a PC loop control instruction (eg:
ACBB, AOBLEQ,... etc.)

VI 3-125

Decoder RAM Output Signal Descriptions (Cont)

Table 3-25 Decoder RAM Output Signal Descriptions (Cont)

DRAM

Signal Description

OPCODE Asserted if the next decode cycle will be the
NEXT first one of a new instruction,

The OPCODE NEXT and USE OPCO ADDR signals are
both asserted in the opcode decode <cycle of
an instruction but are used during different
canonical times:

® USE OPCO ADDR
Used by DEC UADDR muxes during T2 so that

the opcode entry address will be available
to the micro-PC address latches by T3.

e OPCODE NEXT
Latched in PCNC and IBST MCAs during T3.

PCNC MCA uses the signal to establish the
IB pointer for the next decode cycle.

IBST MCA uses the signal to generate NEW
OPCODE which forces IB to output opcode
and first specifier of next instruction.

P 1+ 1 11 o
5 multanecusly allows

-t

Asserting both signa 51

the Decoder to decode the next instruction
while microcode processes the execute code
of the current one.

[}
w
I
p=d
N
[o))

Table 3-25 Decoder RAM Output Signal Descriptions (Cont)

DRAM
Signal Description

OPERAND These bits have dual functionality:
DATA
SIZE ® Specifier cycle
<2:0>
Represent current operand data size

® Opcode cycle

Bits <1:0> = opcode <1:0>

Bit <2> =0
ACCESS These bits also have dual functionality:
TYPE
<1:0> ® Specifier cycle

Represent current operand access mode
® Opcode cycle

Bit <1>

opcode bit <0>

Bit <0>

0 if one byte opcode
1 if two byte opcode

VI 3-127

3.4.7 Optimized Instructions

Optimized instructions incorporate the execute code and last specifier
routine into a single microroutine to yield a one cycle saving in
instruction execution time.

Optimized instructions fall into two general classes:

1. Simple moves - MOVAx, MOVL, MOVZBL and MOVZIWL
2. Simple branches - BEQ, BNEQ, BRB, BRW, etc.

3.4.7.1 Simple Move Instructions - Simple move instructions do not
require execute code since no operation 1is performed on the
destination operand, which is of the WRITE LONG AND SET CC's type (see
Table 2-20. When the last specifier routine issues the I DECODER bit,

the Decoder will output the entry address for the first specifier of
the next instruction instead of the opcode entry address for the
current one.

Although the simple move instructions exclude the opcode cycle, there
are some specifier addressing modes which defeat the one cycle saving
in execution time.

Examples:

Instruction Reason for Lost Optimization

MOVL (RO), R1 Cache latency fetching first operand forces
"optimized" code to wait an extra cycle.

MOVT, RO, 04(R1) Not enough data ports in the EBox to perform
the write operation in one cycle.

NOTE

The MOVZBL and MOVZWL instructions both zero extend
the source operand in the routine that handles the
operand. Except as noted above, this is done without
a performance penalty.

3.4.7.2 simple Branch Instructions - These instructions only take one
microword to execute since there is no decode cycle for the branch
specifier. 1Instead, the Decoder will immediately output the entry
address for the execute code.

The execute code is responsible for sign extending the branch offset
and sending it to the EBox on the IB Data Bus. The execute code also
encodes a microbranch condition recipe for the microsequencer

NOTE

Loop control instructions (ACBx, AOBLEQ, etc.) also
exclude the branch specifier cycle. However, they are
not considered optimized since they require additional
clock cycles to calculate the new index, generate the
condition code bits and test the branch condition.

3.5 MACROBRANCH INSTRUCTIONS

Branch instructions are part of a larger group of 1instructions that
potentially modify the VAX PC. These "PC Control" instructions also
include subroutine control (BSBx, JSB, RSB), case (CASEx) and the

procedure call/return (CALLx, RET) instructions.

The intent of this section to present the basic hardware/ microcode
concepts involved with servicing PC control instructions by using the
branch instructions as examples. Refer to the microcode listings and
the VAX Nautilus 8800 Microcode Interpretation Guide (EK-KA88E-UG) for
more information.

3.5.1 Branch Instruction Basics

When the VAX PC is modified by a branch offset, the resultant change
to the I-stream flow usually means that the IB will not contain the
next instruction to be executed. Since there is no way to predict
this in advance, all microroutines that service branch instructions
contain code to conditionally, or unconditionally:

1. 1Initialize (flush) the IB

2. Sum the updated PC with the branch offset
3. Generate the new physical PC

4. Initiate a Cache prefetch operation

On a successful branch, the above operations are carried out and the
new instruction is fetched from Cache and delivered to the IB. The
decode logic will start processing the new instruction when the last
microword of the branch routine reguests a "Dec Next" cycle (I_DECODER
microword bit set),

On an unsuccessful branch, the above operations are inhibited and the
next instruction in the IB is executed.

VI 3-129

3.5.2 Branch Instruction Classes
There are, in general, three branch instruction classes:

1. Unconditional branches - BRB, BRW, JMP, etc.
2. Short conditional branches - BEQL, BNEQ, etc.

3. Long conditional branches - ACBB, AOBLEQ, BBC, etc.

3.5.3 Unconditional Branches

An unconditional branch only requires a single microword to execute.
However, due to the time required to generate a new physical PC and to
fetch new I-stream from Cache, there is always a delay before the next
instruction is delivered to the IB.

During the delay incurred fetching new I-stream data from Cache, the
pipeline must be "padded" with a series of "Noop" microwords. This
prevents the microsequencer from selecting the Decoder as the source
of the next microaddress until the new instruction enters the IB.
Otherwise, the wrong instruction would be executed next.

Figure 3-34 shows the pipeline state during the execution of a BRB
instruction. (The reason for showing six microwords will be addressed
in the text).

Table 3-26 lists the symbolic 1labels, micro-orders and operations
performed by the BRB execute code.

NOTE

All branch instructions have two execute code entry
points: one if +the last specifier of the previous
instruction was register mode, and one if it was
memory mode. This example assumes that the last
specifier was memory mode.

VI 3-130

T€T-€ 1A

Figure 3-34

Pipeline State

1 T T T T T T T T T T T T T 1 !
1 2 3 4 5 6 7 8 9 10 T 12 13 14 15 16 17 8
CTL. BRB.MEM: PCBVA~--A[PC}+BJIB], FLUSH 1B, GOTO[CTL.NOP]
r Generate File .
| Decoder : Decoder Uneg}j Reads File Writes
Cycle Cycle CSo -addr .
: First | Second Lookup ALU Operations
Half | Half cs1 Ccs2 B Cache
] | Lookup Lookup Operations |Operations
| S A
(CTL.NOP: NOP
r I Generate File
| Decoder | Decoder next Reads File Writes
Cycle | Cycle Cso U-addr ALU O .
First | Second Lookup perations
b Har | Half cs1 Ccs2 T8 Cache
] \ Lookup Lookup Operations |Operations
CTL.NOP.3: NOP
) :_ | Generate File
Wait for CBox | Lecoder | Decoder next Rends File Writes
to deliver new Cycle | Cycle CcSo U-addr
I-stream data I First | Second Lookup ALU Operations
I Hai | Half CS1 cs2 8 Cache
] Lookup Lookup Operations |Operations
R, S
CTL.NOP.2: NOP
- Generate File
| Decoder | Decoder next Reads File Writes
j Cycle Cycle Cso U-addr ALU Operation
First | Second Lookup perations
I Har) Half Ccs1 cs2 TB Cache
i | Lookup Lookup Operations {Operations
L L,
CTL.NOP.1: NOP, END INSTRUCTION
[~ ——
| | Generate File
First longword of new | Decoder I Decoder next Reads File Wites
I-stream should be in 1B, |} (l::Yrcslle : s%gz‘:d ijg U-addr ALU Operations
start decoder. (IR Bt P cs1 cs2 8 Cache
1 Lookup Lookup Operations |Operations
| SR, S
r A Generate File
| Decoder | Decoder next Reads File Waites
Branch target | Cycle 1 Cycle €80 Yaddr ALU Operations
First | Second Lookup Pe -
Half 1 Half cs1 Cs2 B Cache
| Lookup Lookup Operations |Operations

First microword of new instruction or
0S.IB.STALL microword if cache read miss

for a BRB Instruction

Table 3-26

Execute Code For A BRB Instruction

Microword Micro-order Function
CTL.BRB.MEM PC & VA <- A[PC] + BI[IB] Add sign extended branch
offset (IB DATA BUS) to
updated PC, store sum in
PC and VA registers.
Translate virtual PC to
physical PC and prefetch
new I-stream data.
FLUSH IB Unconditional IB Flush
GOTO [CTL.NOP] Enter No-op routine
CTL.NOP NOP Pad pipeline
CTL.NOP.3 NOP Pad pipeline
CTL.NOP.2 NOP Pad pipeline
CTL.NOP.1 NOP, END INSTRUCTION Issue "Decoder Next".

VI 3-132

The first microword of the BRB code performs the actual work of the
instruction. The next three microwords "pad" the pipeline, allowing
time for the CBox to fetch and deliver the first longword of the new
I-stream to the IB.

The macro expression END INSTRUCTION in the fifth microword indicates
that microword bit I DECODER 1is set to force the micro-PC address
muxes to select the Decoder as the source of the next microaddress.

Cache/Decoder Timing

The timing relationship between the arrival of the first 1longword in
the IB and the assertion of the I DECODER bit determines whether the
sixth microword to be executed will be the first microword of the new
instruction or the "Decoder Stall" micro-word, 0OS.IB.STALL.

Table 3-27 lists the events that occur during each canonical time of
the CTL.BRB.MEM microword starting with T8.

VI 3-133

Table 3-27

Microword CTL.BRB.MEM Event Timing

Time Event

T8 EBox outputs new virtual PC to CBox
Translation Buffer (TB).

T8 - T9 TB generates new physical PC.

T9 - T10 Cache read operation requested.

T10 Cache outputs first longword of new
I-stream to IB.

T11 First longword stored in IB.

T12 Decoder generates entry address for
first specifier of new instruction.

T13 Entry address latched in micro-PC

address latches.

Canonical T11, T12, and T13 relative to CTL.BRB.MEM correspond with
T3, T4, and T5 relative to CTL.NOP.1l. It is during these canonical
times that the I DECODER bit is:

1. Read from the CS0 RAM
2. Latched in the CS0 RAM data latches

3. Presented to the micro-PC address muxes

If the CBox can deliver the first longword by T11, the Decoder will be
able to generate the entry address for the first specifier of the new
instruction in T12 and have it for ready for the micro-PC address
muxes by T13,

If the CBox cannot deliver the first longword on time, the Special
Address Encoder will disable the Decoder and output the address of the
O0S.IB.STALL microword (the Decoder always generates an address, even
if it is based on wrong IB data).

The Special Address Encoder will continually output the address of the
OS.IB.STALL microword until the CBox delivers the first longword to
the IB. Once this happens, the Decoder will resume control and supply
the entry address for the first specifier of the new instruction.

3.5.4 Short Conditional Branches

Short conditional branches (BEQL, BNEQ, etc.) are to only perform the
branch function if a certain condition is true. The execute codes for
these instructions are similar in structure in that they all test the
PSL condition code bits to determine if the branch should be taken.
The only difference is the PSL condition code bit(s) under test. For
example, a BEQL instruction will branch if the PSL <Z> bit is set
while a BNEQ will branch if the bit is clear.

Branch Recipes
The execute microwords of short conditional branches specify the PSL
condition code bit(s) under test by encoding a "branch recipe" in the
I_MISC field. The branch recipe is of the form:

I MISC <6:0> = 010xxXX

Table 3-28 lists the I_MISC field settings and PSL condition code
bit(s) under test for all macrobranch instructions.

VI 3-135

Table 3-28 I MISC Field Settings For Macrobranch Recipes

I _MIsC Instruction Take Branch If
20 BGRT PSL <N OR 2> = 0
21 BLEQ, SOBGTR PSL <N OR 2> = 1
22 BGEQ PSL <KN> = 0
23 BLSS, SOBGEQ PSL <KN> =1
24 BNEQ PSL <Z> = 0
25 BEQL PSL <Z> =1
26 BVC PSL <v> = 0
27 BVS PSL <v> = 1
28 BGTRU PSL <C OR Z> =0
29 BLEQU PSL <KC OR 2> = 1
2A BCC PSL <KC> = 0
2B BCS PSL <KC> =1
2C AOBLE(O, ACBx WBUS <N> XOR ALU V> =1
2D AOBLSS ((WBUS <KN> XOR ALU <V>) OR WBUS <z2>) =1
2E BBx, BBxx WBUS 2> =1
2F BRX, BSxx UNCONDITIONAL
Note:

The I_MISC field is monitored by the CCBR MCA. Refer to
Figure 3-37. '

<3

-
w

I
s
w
[o)

Short Conditional Branch Execute Code

Short conditional branches, like the unconditional branches, are also
executed by a single microword. The execute code for a BEQL is shown
below, Except for the PSL condition code bit(s) under test, the codes
for other short conditional branches are similar in structure.

Microword Micro-Orders

CTL.BEQL.REG COND.PC & VA <- A[PC] + B[IB],
or LOAD PC & FLUSH IB IF[PSL<KZ>.EQ.1],
CTL.BEQL.MEM END INSTRUCTION

The first micro-order stipulates to conditionally load the PC and VA
registers 1in the EBox with the sum of the up-dated PC and the sign
extended branch displacement. If the branch is successful, the new PC
is then to be routed from the EBox, over the VA BUS, and loaded into
the VA latch in the CBox.

The second micro-order specifies to load the new PC and flush the 1IB
only if the PSL <Z> bit is set; otherwise, do nothing.

The third micro-order indicates that the I DECODER microword bit is
set to end the instruction and request a decoder next cycle.

Conditionally loading the PC and VA registers is effectively a guess
that the branch will succeed. If the branch is successful, the CBox
will load the new PC in the VA latch, form the physical PC, and fetch
the new I-stream data. If the branch fails, the IBox will issue the
signal COND BR FAIL (see Figure 3-37) to inhibit the CBox from loading
the new PC in the VA latch.

Pipeline Timing Consideration

Note that the execute code for a conditional branch does not call the
CTL.NOP routine to "pad" the pipeline as does the execute code for an
unconditional branch. Instead, it immediately asserts the I DECODER
bit to request another decode cycle.

Since the Decoder is not under microcode control, there is no way to
stop it from decoding the I-stream data in the IB. This means that
when the I DECODER bit is set, the Decoder will supply what it thinks
is the correct entry address for the next specifier (or opcode) to be
processed to the micro-PC address latches.

vl 3-137

If the branch fails, there is no change to the I-stream flow and the
IB should contain the next instruction to be executed (assuming Cache
hits on the I-stream). The Decoder will therefore generate the next
address based on the correct I-stream data already in the IB. In this
case, the branch instruction effectively becomes a NOP.

On a branch success, however, there is a change to the I-stream flow
and the IB will not contain the next instruction to be executed. The
Decoder generated address, which is always based on the 1IB's current
contents, will therefore be based on the wrong next instruction.

The timing relationship between the I_DECODER bit and the I MISC field
of a microword 1is the key factor to what happens when a conditional
branch results in a branch success.

Refer to microword CTL.BEQL.REG shown at the top of Figure 3-35,

The I_DECODER bit is available at TS5 time of CTL.BEQL.REG while the
I MIsC field 1is not available until T8 time. This means that before
the I MISC field can determine whether a branch should be taken, the
Decoder will have already:

1. Decoded the next block of I-stream data currently in the IB
2. Generated the address of microword "g"
3. Sent the address to the micro-PC address muxes

Also, by the time I MISC is actually used, microword "U" will have
generated the address for microword "V" which will have generated the
address for microword "W".

Therefore, before the CTL.BEQL.REG microword progresses to the point
where it can test the branch condition, three erroneous microwords
will already be in various stages of execution.

Conditional Branch Microtrap

Since microwords "U", "V" and "W" are already started by the time the
branch condition 1is tested, the hardware must inhibit the microwords
from performing their normal write operations on a branch success. If
this is not done, the register or memory location written may contain
the wrong data for the next instruction to be executed.

<
L
w
L}
[
w
w

The IBox hardware inhibits the writes of microwords "U", "V" and "W"
by generating the microtrap condition "COND BR SUCCESS". As in the
case with all microtraps, this causes the microtrap logic to issue the
GLOBAL UTRAP and BLOCK WRITES signals. The BLOCK WRITES signals
inhibit the writes to the appropriate logic elements.

The COND BR SUCCESS microtrap condition is handled by a single word
routine at the microtrap vector of 0200 (hex). This vector is the
address of the CTL.TRAP.COND.BR microword shown in Figure 3-35,

The only function of the CTL.TRAP.COND.BR microword is to release the

trap silos and to request another "Decoder Next" cycle. The code for
the CTL.TRAP.COND.BR microword is given below,

Microword Micro-Orders

CTL.TRAP.COND.BR CLEAR TRAP,
END INSTRUCTION

Note that since the CTL.BEQL.REG microword loaded the PC and flushed
the IB and that the three microwords in the "shadow" of the trap are
not to be restarted, the CTL.TRAP.COND.BR microword need not perform
these functions as would other microtrap service routines.

VI 3-139

0¥T-€ 1A

T B T T T T T T T T T T T T T T
1) 3 a4 5 6 7 8 9 10 m 12 13 14 15 16
CTLBEQL.REG: COND.PC & VA- A[PC|+B[IB], LOAD PC & FLUSH IB IF [P3L- Z -.EQ.I}, END INSTRUCTION
meTTT i Generate £
e File Writ
| Decoder | Decoder next Reads tle nes
Cycle 1 Cycle CSo U-addr
I frst 1 Second Lookup ALU Operations -
I ohaf | Hai cst cs2 8 Cache
1 | Lookup Lookup Operatons |Operations
e —————————
\ Generate File
1 Decoder | Decoder next Reads File Writes
Cycle | Cycle CSo U-addr
! First | Second Lookup ALU Operations
I haif | Half cs1 cs2 8 Cache
] 1 Lookup Lookup Operauons |Operations
by th Y Generate Fle Fie W
Writes by these D der | O next ile Writes
microwords inhibited E‘;‘;Ie"' ecizld:(cs0 U-addr Reads -
on a Branch Sucess I Est | Second Lookup ALU Operations /
by the Block Writes Half | Half Ccs1 cs2 8 Cache |
Signals 1 Lookup Lookup Operations |Operations
[Generate File
Decoder | Decoder next File Writes
Ve Cyel cso U-agar | Reads
! F}’rs(e] Sezg:d Lookup ALU Operations
b oHalf) Half cs1 cs2 8 Cache
L | Lookup Lookup Operations | Operations
[S, S

Figure 3-35

Condizional trap

handler, microvector = 0200 |

CTL.TRAP.COND.BR: CLEAR TRAP, END INSTRUCTION

Microwords in the
““Shadow'” of the
branch trap

1 Generate File
{ Decoder | Decoder U"eé; Reads File Writes
-addr
S 1 satond | Lookun
Half \ Half csit CSs2 ™ Cache
1 Lookup Lookup Operations |Operations
TTTTTTTT Generate File]
Decoder | Decoder U"'egé Reads File Writes
-addr
Branch %vde | chded L CSkO ALU Operations
destination | tiret o ookup 1 cgi cs2 T8 Cache
a ! a Lookup Lookup Operations |Operations
| MR S
First microword of the new instruction or
0S.IB.STALL microword if cache read miss.
MKVHE-0721

Pipeline State for a Successful BEQL Instruction

3.5.5 Long Conditional Branches
Long conditional branches include the following instruction types:

Loop control - ACBx, AOBxxx, SOBxxX
Branch on bit - BBx, BBxx, BBxxx
Branch on low bit - BLBC, BLBS
Multi-way branching - CASEx

The execute codes for long conditional branches vary in size from a
few to several microwords. For example, the code for a BLBC is only
three microwords long while the BBCCI code is more than ten.

Optimized Code

Some long conditionals are executed using "optimized" code to enhance
instruction execution speed on a branch success. The first microword
of these instructions save the current PC in a microcode temporary
register and unconditionally load the new PC and flush the IB. This
"guess" that the branch will succeed reduces the number of cycles that
would otherwise be wasted waiting for Cache to deliver new I-stream
data on a branch success. If the guess proves wrong, the PC will be
reloaded with its saved value later on by a microword that includes
the "LOAD PC & FLUSH IB IF[]" conditional branch expression.

The first microword of a long conditional that is not optimized will
either save the new PC or the branch offset in a microcode temporary
register and then transfer control to a routine that determines if the
branch should be taken. 1In this case, the last microword of the code
must include the "LOAD PC & FLUSH IB IF[]" expression.

PSL Condition Code Recipes

Some long conditionals, such as the loop control instructions, perform
arithmetic operations to modify the PSL CC bits and then determine if
the branch should be taken based on the new bit settings. Other 1long
conditionals need only examine the current bit settings to determine
branch success/fail,

The setting/clearing of the PSL CC bits is controlled by the I MISC
field of a microword. Instructions that modify the CC bits include a
microword that contains the expression "SETCC []" which indicates the
PSL CC "recipe" encoded in the I _MISC field.

Table 3-29 lists the various SETCC [] expressions, the encoded I _MIsC
field value and the new PSL CC bit settings.

VI 3-141

Sample Execute Code
Refer to Figure 3-36 and Table 3-30.

The AOBLEQ instruction is typical of an long conditional branch whose
execute code:

1. Saves the current PC
2. Unconditionally loads the new PC and flushes the IB.
3. Performs an arithmetic operation to modify the PSL CC bits.

4., Reloads the saved PC if the branch should not have been
taken.

The first microword of the AOBLEQ execute code saves the current PC in
an EBox Memory Data Register (MDR 6), performs the unconditional load
PC/flush IB and requests a Cache read for new I-stream data at the
predicted branch target address.

The second microword increments the index operand by one and modifies
the PSL condition code bits according to the condition code "recipe"
specified by the expression SETCC [OP6] (see Table 3-29).

The third microword subtracts the new index value from the 1limit and
returns the WBUS and ALU condition codes that result to the IBox.

The forth microword determines if the guess that the branch will be
successful was correct with the LOAD PC & FLUSH IB IF[] expression.
It aliso checks whether an integer overflow trap is to be taken when an
integer overflow occurs and the PSL IV bit is set. (In the case of an
AOBLEQ instruction, an integer overflow will occur if the index was
the largest positive integer before being incremented).

If the initial guess that the branch will be successful was correct
and no integer overflow trap is to be taken, the AOBLEQ code will wait

one more cycle for Cache to deliver the new I-stream by executing the
.NOP.1 microword. Otherwise, the IBox will force the microcode to
enter either the conditional branch or the integer overflow trap

handler routine.

VI 3-142

Table 3-29

I MISC Field Settings For PSL Condition Code Recipes

New N New 2Z New V New C Notes
OPl=1F WBUS<K3> WBUSK2> WBUS<1> WBUS<0> Set CC bits
FROM.WBUS=1F from WBUS
OP2=1 *WBUS<KN> *WBUSKZ> *ALUKV> *ALULC> C <- carry out
OP3=4 *WBUSKN> *WBUS<KZ> 0 C
0OP4=3 ALULKV>
XOR not
*WBUS<N> *WBUSKZ> 0 (*ALUKC>) C <- borrow in

OP5=5 *WBUS<KN> *WBUSKZ> 0 0
OP6=0 *WBUS<KN> *WBUSKZ> *ALUKV> C
Ob7=1C *WBUSKN> *WBUSKZ> 0 C

AND Z
OP8=14 *WBUSKN> *WBUSKZ> 0 C
0OP9=8 *WBUS<KN> Z 0 0
OP10=15 *WBUS<KN> *WBUS<KZ> v 0
OP11=0D N Z *ALULKV> 0
OP12=1D N *WBUSLZ> 0 0

AND Z
0OP13=18 1 Z \Y% C Set N
SET.N=18
0OP14=10 0 Z A/ C Clear N
CLR.N=10
OP15=1A N Z 1 C Set VvV
SET.V=1A
OPl6=1E N *WBUSKZ> \Y C

AND 7Z

VI 3-143

Table 3-29

Code Recipes (Cont)

IMISC Field Settings For PSL Condition

New N New Z n New V New C Notes
OP17=0E NOT

N Z (*WBUSKZ>) C

OR V

OP18=0F NOT

N Z (*WBUSKZ>) C
OP19=0B N *WBUSKZ> 0 0
0P20=16 *WBUSLKN> *WBUSKZ> 0 0
OoP21=6 *WBUSKN> *WBUSKZ> \Y 0
oP22=7 *WBUS<KND *WBUS<KZ> 1 0
OP23=2 not

*WBUSKN> *WBUSKZ> *ALUKV> (*ALULKC>) C <- borrow in
QP24=9 *WBUS<KN> 0 0 0
OP25=11 N 0 \Y C Clear 72
CLR.Z=11
OP26=1B N Z \% 1 Set C
SET.C=1B
oP27=13 N Z v 0 Clear C
CLR.C=13
0P28=12 N Z 0 C Clear V
CLR,V=12
OP29=0A 0 *WBUSKZ> 0 0
OP30=19 N 1 v C Set Z
SET.Z=19
OP31=17 Open recipe
0P32=0C 0 *WBUSKZ> 0 C
wxw _ gState of bit is size dependent. Data size given by

I SIZE field of microword.

VI 3-144

CSPI-€ IA

e —— e

|
| Decoder

Decoder
Cycle Cycle

Second
Half Half

1
I
|
First]
I
1

1 T T l T T 1 T T 1 T ! I
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
CTL.AOBLEQ REG: PC & VA - A[PC]1B[IB] FLUSH 1B, FIMDG]- A[PC|.SL.[0]
Generate File
next Read File Writes
cSo U-addr cads
Lookup ALU Operations
cs Cs2 B8 Cache
Lookup Lookup Operations |Operations
FIRNUM1]-—A[RNUM1}+ 1, SETCC [OP6], SIZE[LONG], SET NORETRY, CALL [CTL.AOB.REG.COMPARE}
r—_ T Generate File
| Decoder | Decoder next Reads File Writes
Cycle | Cycle CSo U-addr ALU Operations
First d K
[: Seoond | tookup T cs2 8 Cache
| | Lookup Lookup Operations |Operations
[S .
CTL.AOB.REG.COMPARE: WBUS---B[MDO] - A[RNUM1], SIZE |LONG], RETURN (1}
[——————— — —
Generate File
Decoder | Decoder next s File Wntes
LG Cyel SO | Uadar | Reads
! FYr:te] Sezg:d Lookuy ALU Operations
b bar)t P cst cs2 B Cache
| | Lookup Lookup Operations |Operations
L L S
COND.PC & VA -~A[MD6], LOAD PC & FLUSH IB IF [N.XOR V], CHECK IV, GOTO [CTL.NOP.1]
R Generate File
} Decoder | Decoder next Reads File Writes
| Cycle Cycle €S0 Yraddr ALU Operations
First | Second Lookup P!
b I Half Cs1 Ccs2 TB Cache
I Lookup Lookup Operations Operations
[
CTL.NOP.1: NOP, END INSTRUCTION
| N Generate File
| Decoder | Decoder Unes:j Reads File Writes
] Cycle I Cycle ¢so il ALU Operations
First i Second Lookup N
| Half | Half Ccs1 Cs2 8 Cache
1 Lookup Lookup Operations {Operations
| S _I_ ———
'_—___l_-—_ Generate .
| File File Writ
| Decoder | Decoder U"'eg,‘j Reads fle Writes
-a T
Branch Target | Cycle I Cycle C€so ALU Operations
First | Second Lookup cs1 cs2 T8 Cach
Half | Half g ache
Lookup Lookup Operations Operations
LR
First microword of the new instruction or
OS.IB.STALL microword if cache read miss
MKVBE-0/27

Figure 3-36

Pipeline State for a Successful AOBLEQ Instruction

Table 3-30 Execute Code For

A AOBLEQ Instruction

CTL.AOBLEQ.,REG:
PC & VA <- A[PC] + BI[IB] FLUSH IB, ;
F[MD6] <- A[PC].SL.[0] ;

0——m e e e e
F[RNUM1] <- A[RNUM1] + 1,

SETCC [OP6], SIZE [LONG],

SET NORETRY,

CALL [CTL.AOB.REG.COMPARE]

~e

~e Ne wo e

CTL.AOB.REG,COMPARE:

WBUS <- B[{MDO] - A[RNUM1j, ;
SIZE [LONG], H
RETURN [1] 7

I e e et
COND.PC & VA <- A[MD6],

LOAD PC & FLUSH IB IF[N.XOR.V],

CHECK 1V,
GOTO [CTL.NOP.1]

e mE Ne mE Ne we W~

Uncond load PC/flush IB.
Save current PC,

Increment index.
Set PSL CC bits.

Compare limit - index
Return to caller

Return point.

Reload saved PC if branch
should not have been taken.
Reload PC if incremented
index greater than limit.
Check for integer overflow.
On branch success, need one
more cycle due to IB flush.

Note: The code given here is in the order in which the microwords
are executed, not the order in which the microwords appear

in the listings.

3.5.6 Condition Code And Macro Branch Logic

The CCBR MCA supports macroinstruction execution by maintaining the
hardware images of the PSL CC bits. It also maintains 7 state flags
which provide firmware writers with one of the methods available for
controlling microcode flow.

Refer to Figure 3-37,

Sized Branch Logic

The Sized Branch logic generates a set of size dependent microbranch
conditions based on intermediate, or "raw", condition codes from the
EBox and on the I SIZE field of the current microword.

The "raw" condition codes from by the EBox can represent byte, word,
or longword size operations. The I SIZE field of the current

microword indicates the data size:

I SIZE Data Size

Not Used

Byte
Word
Longword

W N = O

The sized microbranch conditions are fed to the PSL Condition Code
logic, where they may be stored as the new PSL CC bits, and to the VAX
Branch logic, where they help to determine macrobranch success/fail.
In addition, the sized conditions are also output to the microbranch
logic (UBRS MCAs) where they may be tested as microbranch conditions
by some later microword.

PSL Condition Code Logic

The PSL Condition Code logic sets the PSL CC bits based on the recipe
encoded in the I _MISC field (Table 3-29). Note that the CC bits will
be left unchanged if the I MISC field is encoded with other than a PSL
CC recipe. In addition, if the I MISC field is not required by the
current microword, it is encoded with the NOP value normally used to
inhibit changes to the state flags (I_MISC = 3F).

The new CC bits may be derived from the outputs of the Sized Branch
logic or from the current CCs'. They may also be directly set/cleared
from the WBUS or by the I MISC recipe. If the new CCs are to be based
on the raw condition codes from the EBox, the PSL CC recipe is always
specified by the same microword that causes the EBox to produce the
conditions. Note that the opcode of the current macroinstruction is
not considered when setting the condition codes; only the recipe.

VI 3-147

CONDITION CODE AND
MACRO BRANCH LOGIC

— SIZE DEP WBUS <N,Z>

| SIZE DEP ALU <C,V>
L SIZED NOT WBUS Z

PSL CC <N,C.V.Z>

COND BR FAIL

UNCOND FLUSH

BR SUCCESS

IB FLUSH

- CCBR MCA -
WBUS <31>
ALU NBIT <1:0> l
ALU ZBIT <3:0> SIZED
ALU VBIT <2:0> BRANCH
ALU CBIT <2:0> LOGIC
I_SIZE <1:0>
PSL
. COND
WBUS <3:0> CODE
I_MISC <6:0> LOGIC
BLOCK WRITES
VAX
BRANCH
LOGIC
STATE
FLAG
NEW INSTR LOGIC
Figure 3-37 Condition

VI 3-148

STATE FLAG <6:0>

MKV86-0692

Code And Macro Branch Logic

The PSL CC bits are available to the VAX Branch'logic where they are
tested to determine macrobranch success/fail and to the microbranch
logic where they may be tested as microbranch conditions,.

VAX Branch Logic

The VAX Branch logic examines the sized branch conditions, the CC bits
and the macrobranch recipe encoded in the I MISC field (Table 3-28).
From these inputs, the VAX Branch logic then generates the appropriate
macrobranch control signals BR SUCC, UNCOND FLUSH and COND BR FAIL.
State Flag Logic

The State Flag logic maintains 7 microcode state flags which provide

firmware writers with more flexibility in controlling microcode flow.
The state flags are set/cleared as specified by the I MISC field.

Table 3-31 I MISC Field Settings For State Flag Control

30 Clear Flag O 38 Set Flag 0
31 Clear Flag 1 39 Set Flag 1
32 Clear Flag 2 3A Set Flag 2
33 Clear Flag 3 3B Set Flag 3
34 Clear Flag 4 3C Set Flag 4
35 Clear Flag 5 3D Set Flag 5
36 Clear Flag 6 3E Set Flag 6
37 Clear All Flags 3F No change (NOP)

Note from the above table that the state flags can only be set one at
a time but may be cleared individually or as a group. The flags are
typically set-up by one microroutine and then tested as microbranch
conditions by a latter routine. The flags are all cleared during the
first microword of every macroinstruction by the signal NEW INSTR.

VI 3-149

3.6 SPECIAL REGISTER ADDRESSING

The File Address Slice (FADS) MCAs supply the addressing for the A and
B port inputs to EBox main ALU. They also record changes made to GPRs
during auto-increment and auto-decrement operations, and provide fast
access to operands requiring multiple GPRs.

The main ALU inputs include the EBox register file (RGF), the slow
data file (SDF), the PC and VA registers, the Cache Data Bus, the IB
Data Bus, and the Bypass Bus.

Refer to Figure 3-38. The FADS MCAs contain the MDNUM, RNUM1l, RNUM2,
and RLOG registers, and the file read and write address control logic.
The FADS MCAs allow microcode to specify register addresses explicitly
or implicitly through the RNUM1, RNUM2, MDNUM, or the RLOG registers.

3.6.1 RNUM1 And RNUM2 Registers
The RNUM1 and RNUM2 registers are both 4 bits wide.

The GPR number of the current specifier is available during the first
microword of a specifier routine and may be used to address the
register file, or be saved in the RNUM1l or RNUM2 registers.

Since the GPR number is available only in the first microword of a
specifier routine, it is stored in the RNUM1 register for use by later
microwords. This allows the microprogrammers to write generic
specifier flows without needing to remember which GPR is in use.

The RNUM1 register is also used for reading operands bigger than a
longword from GPRs, for all register writes (except a few that use
RNUM2), and for communicating with the RLOG.

The function of the RNUM2 register is similar to RNUM1l, but its use is
specialized. It records the GPR number used in the first of the two
write specifiers for EDIV and EMODx instructions.

3.6.2 RLOG Register

The RLOG is a six stage shift register which records changes made to
GPRs during autoincrement and autodecrement operations. This enables
the microcode to "roll back" the GPRs if a fault occurs during
macroinstruction execution.

Constants required by microcode to implement GPR autoincrement/
autodecrement operations are loaded in certain SDF locations when the
system is initialized. Specifier flows add the constants, RLOG
restoration code subtracts the constants. For example, autoincrement
adds the appropriate constant (1, 2, 4, etc.) to the GPR, and saves
the GPR number and the increment amount in the RLOG. When restoring
the register, the same GPR address is wused, but the value is
subtracted.

Al

w
I
}_l
wn
O

I_APORT<5:0>

E_BPORT<2:1>

I_WRTADDR<5:0>

NEW INSTR

DECODER NEXT

i_FPSULF

EXPONENT COMPARE

SPEC GPRNUM

RNUM1

> REG

RLOG

E_BPORT<3:0>

RNUM2

REG

SPEC MDNUM<2:0> | MPNUM

REG

FILE
READ
AND
WRITE
ADDRESS
CONTROL

A SIDE READ
ADDR <4:0>

B SIDE READ
ADDR <3:0>

FILE WRITE
ADDR<4:0>

-

BWACH AREAD
ADDR<4:0>

BWACH BREAD
ADDR <4:0>

—

BWACH WRITE
ADDR <4:0>

Figure 3-38 File Address Slice MCAs

VI 3-151

MKV86-1263

Note that only autoincrement/decrement addressing modes use the RLOG
due to access limitation to specifier GPRs. The result is that during
use of the SP, the memory operation is performed first, and then the
SP is changed. This ensures that if the memory operation fails, the
SP change will not have taken place, and will not need toO be
corrected.

To allow quick access to large sized operands, file addresses are also
indexed by some constants in hardware (RNUM1 by 1,2,3 and MDNUM by 1).
For a floating point operation, file addresses may be modified to
effect a swap of operands on the two ports of main ALU (floating point
shuffle).

3.6.3 MDNUM Register

The MDNUM saves the address of the EBox memory data register (MDR)
which 1is to receive data from the Cache Data Bus while processing an
operand. A different MDR number is supplied by the decoder RAMs for
each specifier.

The MDR number is a function of the opcode and current specifier
number and eliminates the need for agreement between different opcodes
concerning the location of the specifiers. The exception is that the
MOVL, MOVAx, MOVZBL, MOVZIWL group must agree in order to be optimized.

The microcoders decide which specifier of which opcode goes in which
MDR. The MDNUM value can be:

® Merged into a cache read command so that there is no need for
separate routines for each MDR

e Substituted for the register destination field of the
microword so that specifier routines can drop operands in the
right MD

Both uses serve to deliver operands into known MDRs for use Dby the
instructions execute code.

The MDR number 1is wvalid the entire time a specifier 1is being
processed. It may be used for either of its two jobs in the decoder
generated microword, and in any later microword including the last one
of the specifier routine. It is unpredictable in the opcode routine,

VI 3-152

3.7 INTERRUPTS

This section describes the VAX 8800 interrupt servicing mechanism from
the hardware point of view, Refer to the VAX 8800 Microcode
Interpretation Guide (EK-KA88E-UG) for detailed 1information on how
microcode and software handle interrupts.

3.7.1 Interrupt Requests

Interrupt requests can be generated by external devices, such as the
NBIs and memory, by internal CPU conditions, such as the CPU power
fail, or by software (MTPR SIRR).

Each interrupt request is assigned a specific interrupt priority level
(IPL) as defined by the VAX architecture. The IPL of a device (or
condition) is the priority the device must have in order to interrupt
the current macroinstruction flow. If the IPL of the device is
greater than the IPL of the current process, an interrupt will occur,
causing the CPU to suspend the current process and to enter the
appropriate interrupt service routine for the device.

nt

There are 3 nt

+LiiT LT QLT

1 4 o 5]
software and 16 hard

Y yril
oL

T
s

i nn ey~
pt priority levels for the VAX 8800 system, 15
ware

o}

r L]

Software IPLs are numbered 01 to OF and are implemented entirely by
microcode. These IPLs are devoted totally to software use. There are
no hardware device interrupts at these levels,

Hardware IPLs are numbered 10 to 1F. Interrupt levels 10 to 17 are
reserved for external devices (NBIs, memory, console, etc.), levels 18
to 1F are reserved for internal CPU conditions (power fail and serious
faults).

Table 3-32 lists the IPLs for the hardware interrupt requests. Note
that devices that interrupt at the same level are listed in order of
priority. For example, the interval timer interrupt has precedence
over the two NBI BR 6 interrupts.

3.7.2 Interrupt Servicing
Refer to Figure 3-39.

The interrupt logic, which is part of the INPR MCA, monitors all
hardware interrupt requests and generates a five-bit interrupt
identification code, INTR ID <4:0>, to represent the 1level of the
highest pending request. The 1identification code is tested by the
microsequencer as a microbranch condition, allowing multi-way
branching to the various interrupt service routines. The signal INTR
PENDING is asserted to indicate INTR ID <4:0> validity.

VI 3-153

Table 3-32 Hardware Interrupt Priority Levels

Interrupt Device IPL

or Condition (Hex) Priority
Unassigned 1F Highest
Power Fail 1E

Machine Check 1D

NMI Fault 1C

Unassigned 1B-18

NBI 0, NMI BR7 17

NBI 1, NMI BR7 17

Interval Timer 16

NBI O, NMI BR6 16

NBI 1, NMI BR6 16

NBI 0, NMI BR5 15

NBI 1, NMI BRS5 15

Memory, NMI BR5 15

NBI 0, NMI BR4 14

NBI 1, NMI BR4 14

Console Receive 14

Console Transmit 14

Other Processor 14

Unassigned 13-10 Lowest

“
=

<
-4
w
|
‘—-J
Ul
o

SST-€ 1A

CACHE DATABUS <4:0>
—

I_MISC

INTREQ «5:0>

OTHER PROC INTREQ

DEV1 INTR

DEVO INTR

DEV1 INTR LVL <1:0>
DEVO INTR LVL <1:0>
MEM INTR

Figure 3-39

MAGNITUDE
COMPARE

A>B

LATCH

IPL CURRENT
LATCH IPL <4:0>
SEL
REQUEST
LATCH CONVERTION
LOGIC
PRIORITY
ENCODER
LOGIC
LATCH
AND LATCH
DECODE

Interrupt Logic Simplified Block Diagram

INT PENDING

INTR ID <4:0=

MKV86-1262

The encoded INTR ID <4:0> value of a device (or condition) 1is not
directly related to the IPL of the device. Table 3-33 contrasts the
encoded INTR ID <4:0> values and the IPLs.

Pending interrupts are honored at two different times: between
instructions (after one instruction has finished and before the next
has stored any results or made any memory references), and at
well-defined times during the execution of long instructions (for
example, a MOVP).

The special address encoder (part of the IB decoder logic) checks for
interrupts at instruction boundaries, the microsequencer checks for
interrupts during the execution of long instructions. These logic
elements both use the INTR PENDING bit to determine if the interrupt
is to be honored.

The VAX 8800 system supports two I/0 subsystems with the NBI I/0
adapters (NBIA/NBIB module pair). Each NBI can an interrupt at any of
four NMI BR levels (BR 4 to 7). The signals DEVO INTR and DEV1 INTR
signify the wvalidity of the interrupt level encoded on the DEV0O INTR
LVL <1:0> and DEV1 INTR LVL <1:0> lines.

Note that in a dual processor system, only one CPU is allowed to
respond to interrupts generated Dby NMI connected devices (NBIs and
memory). The NMI interrupt control register (see Chapter 1) of each
CPU is set up at system boot time to insure that only one CPU will
accept NMI interrupts.

The INTREQ <5:0> lines represent interrupts from the following:

Bit Device or Condition

CPU power fail

CBox error (machine check)
NMI fault

Console receive

Console transmit

Trm+o
Interval clock

O N WU

The INTREQ <5:0> lines are latched to provide a time window for
priority arbitration. The priority arbitration logic is updated every
clock cycle to reflect the current state of the devices and conditions
which may generate interrupts.

VI 3-156

Table 3-33 Interrupt ID Codes/IPLs

Interrupt Device INTR ID IPL
or Condition <4:0> (Hex)
Power fail 11110 1E
Machine Check 11100 1D
NMI fault 11010 1cC
NBI 0, NMI BR7 11000 17
NBI 1, NMI BR7 10110 17
Interval Timer 10100 16
NBI 0, NMI BR6 10010 16
NBI 1, NMI BRG6 10000 16
NBI 0, NMI BR5 01110 15
NBI 1, NMI BR5 01100 15
Memory, NMI BR5 01010 15
NBI 0, NMI BR4 01000 14
NBI 1, NMI BR4 00110 14
Console Receive 00100 14
Conscle Transmit 00010 14
Other processor 00001 14
Passive release 00000 N/A
NOTE

All other INTR ID <4:0> codes are illegal and cause
microcode to enter the machine check routine.

VI 3-157

3.8 CONSOLE GATEWAY CONTROL

The gateway control (GWYC) MCA controls data transfers between IPRs
resident in the console interface logic of the CLK module and the rest
of VAX 8800 CPU. Note that each 1IBox 1in the dual processor
environment has its own interface to the CLK module.

The GWYC MCA also controls the loading of the following CPU data
structures during system initialization:

® CPU controcl store RAMS
e Cache control store RAMs
® Decoder RAMs
e Micromatch register

Figure 3-40 is a simplified block diagram c¢f the gateway control
logic.

3.8.1 Loading Control Store And Decoder RAMs

The console loads the CS RAMS and the decoder RAMS from the console
Winchester disk through the bidirectional Cons Bidi Data bus which
links the console interface logic on the CLK module to the IBox.

The console specifies the operation to be performed by issuing a
command byte to the GWYC. Addresses and data are transferred to the
GWYC in bytes and is controlled with a strobe signal from the console
interface.

The basic sequence for loading the RAMs and DRAMs is:

e Write physical segment count for RAMs or DRAMs to be loaded
(physical segment count defines the number of bytes to be
loaded)

® Point VBUS to parity error bits
® Write RAM or DRAM address

@ Write RAM or DRAM data (in bytes)
e Check Parity

The gateway logic buffers the console data and distributes a separate
copy to each 1IBox module along with a write control and a module
specific strobe signal to the destination module. During the time the
GWYC is writing an address, a specific SET ADDRESS signal is generated
for each DRAM, cache control store, or CPU control store data
structure. Refer to Chapter 2 of the Console section of this manual
for a description of the RAM/DRAM loading process.

6ST-€ 1A

CONS BIDI DATA<7:0>

RCVR

INT CONS DATA <7.0>

p—————» RAM WRT DATA<7:0>
[DRAM WRITE DATA <6:0>
————»CONSOLE IPR DATA<8:0>

- LATCH

BRKPT TRAP EN

XMTR
CONS TO DEC PAR
CONS CMD FLAG
CONS STROBE

> GWYC MCA

MICROMATCH

I-MISC <6:0>"

LATCH

[«——— CACHE DATA <8:0>

XMIT DISABLE

————CS RAM WRITE CONTROL
» DECODER RAM WRITE CONTROL
———— B MUX CONTROL
- CONS IPR ADRS <2:0>
————— XMIT TO CONS
————— CONSOLE REQUEST
|—— SET MICROMATCH REG
————— MICROBREAK
> CONDEC PE

MKV86-1264

3.8.2 Starting The Micromachine
Starting the micromachine depends on the interaction between the
console interface on the CLK module and the GWYC MCA.

The console defines the operation to the GWYC MCA through with a
command byte after the micromatch register (in the UBRS MCAs) is
loaded with the appropriate microaddress.

The GWYC MCA selects the micromatch register as the source of the
microaddress with the CONSOLE REQUEST signal. The console then
initializes the microcode by bursting the clocks the appropriate
number of times. When the microcode pipeline is initialized, the
micromachine is started by unblocking the clocks.

3.8.3 Data Transfer With Console Resident IPRs

The GWYC MCA also controls data transfers between the CPU and the
console interface resident IPRs. This function occurs only when the
micromachine is running and is specified by the I MISC field of the
microword.

The GWYC MCA generates the IB MUX CONTROL signal to enable the
selection of console data when IPRs are being read. When data is to
be written to IPRs, the GWYC MCA generates the XMIT signal to enable
the transfer of data to the console interface. During the IPR write
and read functions, the GWYC MCA specifies the byte address of the IPR
with the IPR ADDRESS lines.

3.8.4 Breakpoint Microtrap

Hardware supports a breakpoint feature which allows the console to
stop the VAX CPU based on a console command. In this stopped state,
it is possible for the console to examine the state of the CPU via the
Vbus. The breakpoint feature 1is accomplished by specifying a
breakpoint microaddress in the micromatch register of the UBRS MCAs
and request one of two actions:

® Stop on Match
e Trap on Match

The micromatch register allows the console to set a breakpoint at any
microaddress except an IB decoder generated addresses.

Once the breakpoint feature 1is established, hardware constantly
compares the contents of the micro-PC with the breakpoint
microaddress. When a match 1is found, the micromachine 1is either
stopped by disabling the CPU clocks or a microtrap is generated.

The console specifies to the GWYC MCA whether a micromatch should

generate a microtrap through the assertion of the BRKPT TRAPEN
(breakpoint trap enable) signal. .

VI 3-160

3.8.5 Console Data Parity Check

The GWYC MCA checks parity on inbound console data and performs one of
two actions in the event of a parity error. The controlling factor
for handling a parity error is the current state of the micromachine.
If the micromachine 1is stopped the console is alerted of the parity
error by the assertion of the PAROUT signal. 1If the micromachine is
running the parity error results in a machine check microtrap.

VI 3-161

EK~-KA88E-TD-PRE

SECTION 7
EXECUTION BOX LOGIC (EBOX)

CHAPTER 1
INTRODUCTION

1.1 GENERAL
Figure 1-1 is a basic block diagram showing the logical placement
of the execution unit (EBox) in the VAX 8800 CPU kernel.

The EBox performs logical and arithmetic functions under the
direct control of the CPU microcode from the instruction unit
(IBox) logic. It is the 1IBox that fetches and decodes
macroinstructions from memory and initiates the microcode routines
that control the CPU kernel.

The main functions of the EBox are to:

° Perform the logical shifts or rotates, and the integer or
floating-point operations required to execute the VAX
native instruction set and update the program counter
(PC).

° Transfer data to and from registers in the cache unit
(CBox) and the instruction unit (IBox).

) Process data from the CBox or IBox and pass it to the
CBox along with the virtual address.

® Generate condition code branch information and pass it to
the IBox microsequencer logic.

° Generate or check parity on data received from the CBox
or IBox or from operators internal to the EBox.

| DATA
A B
e | 98K o
CONSOLE BUS
SUBSYSTEM ¢———p| (CLK) | ¢ 1BOX |2 BYS | eBox | PABUS | cpox
W BUS | MD BUS
- > | Ll
A '
{ CS BUS A

Vv BUS i

SCLD-273

Figure 1-1 VAX 8800 CPU Kernel Block Diagram

Vil 1-1

1.1.1 EBox Organization
Figure 1-2 is a basic block diagram of the EBox. The EBox consists
of three modules that form the following logic:

Data Path
Slice (SLC)
Modules

Shifter (SHR)
Module

The slice module section provides the main address
and data routing circuitry for the CPU kernel. It
also maintains most of the privileged internal
processor registers (privileged IPRs).

- The slice 1 module (SLC1l) processes the upper
data word, bits <31:16>.

- The slice 0 module (SLCO) processes the lower
data word, bits <15:00>.

The slice modules also contain the main arithmetic
logic unit (Main ALU), which performs arithmetic
operations on both integer and floating-point data.

The SHR provides additional MCA and ALU operators
that perform the shift/rotate and multiply/divide
operations on integer or floating-point data and
manipulate the signed exponent of a floating datum.

-t
|
[\

<<
-
[

IBOX

r—————

CBOX

| P PA BUS
| !B DATA BUS - P MD BUS '
_ , CD BUS l
) APS ol MAIN ALU | VA BUS |
SECOND >
«——2LBUS »| DATA PATH HALF l
- BPS ;
(ALS) I
SLICE I
MODULES
(SLC1/SLCO) BP BUS ,
APORT
SHIFTER l
| MODULE
I BPORT (SHR)
CS BUS
IBOX < V BUS
SCLD-274
Figure 1-2 Execution Unit (EBox) Block Diagram

VII 1-3

1.1.2 EBox Operators

The EBox contains the arithmetic logic unit (ALU) and macrocell
array (MCA) elements, called operators, that perform the logical
or arithmetic functions requested by the VAX native instruction
set.

EBox operators are connected in parallel. Operand data is applied
to all of the operators, but only the one that applies to the task
is used by the microcode. For operations that require multiple
cycles, the results of one cycle can be passed directly to the
same, or another, operator to complete the calculation.

1.1.2.1 Main ALU -- The main ALU is located on the slice modules
and consists of two halves.

ALU First Half (ALF)

The ALF performs the main multiplexing functions for the rest of
the EBox and contains the partial sum logic for the first part of
an arithmetic operation.

ALU Second Half (ALS)

The ALS contains the final sum and carry logic, which outputs the
result of an arithmetic operation. The outputs from the ALS and
operators located on the SHR are all connected in parallel on the
bypass (BP) bus.

The ALF passes the first part of an arithmetic operation to the
ALS on the A and B partial select (APS and BPS) lines. It also
passes the first and second operand of an integer or
floating-point operation to the SHR module over the APORT and
BPORT 1lines. The selected operator then passes the result on the
BP bus back to the data paths {slice modules) where the data can
be stored or passed along to the CBox or IBox.

1.1.2.2 Cache Data Path (CDP) and Bus Watcher/Decoder (BWD) --
The CDP logic is 1located on the slice modules for fast access.
Another section of EBox logic called the bus watcher/decoder is
located on the decoder (DEC) module in the IBox.

VII 1-4

1.2
The data
SLCO), e

SLICE MODULE (SLC1/SLCO) FUNCTIONS
path. logic is formed by two slice modules (SLC1l and
ach of which provides a 16-bit slice of the following

32-bit logic:

1.2.1
The PAR
from the

Parity Generator/Checker (PAR)
Register File (RGF)

Slow Data File (SDF)

Program Counter (PC) Subsystem

Cache Data Path (CDP)

Main Arithmetic Logic Unit (Main ALU)
Parity Generator/Checker (PAR)

receives the result of an operation from the main ALU or
SHR module on the bypass (BP) bus. It passes the result

to the SDF, RGF, or CDP over the write (W) bus.

The PAR p

erforms the following logical functions:

Contains the carry-save logic that stores the longword
carry-out from the first cycle of a main ALU operation,
allowing it to be used as a carry-in on the next cycle.

Asserts the four highest and four lowest W bus bits to
the. IBox where they are used for microbranch test
conditions.

Generates the =zero (Z) and negative (N) condition code
bits for a byte, word, and longword and passes them to
the IBox.

Generates byte parity on the received BP bus data and
asserts it on the W bus from where it is stored (with the
W bus data) in the destination location.

Combines the nibble parity generated by the main ALU to
form byte parity.

Generates parity on data from the main ALU and compares
it with the received parity bits. If an error is
detected, it sets a bit in the parity error register for
the byte and generates a trap.

VII 1-5

1.2.2 Register File (RGF)
The RGF consists of 32 high data rate longword registers with byte
parity. It is used to maintain:

e Fifteen general-purpose registers (GPRs), except the PC
register.

° Nine temporary registers (TEMPs) that are wused as
scratchpad registers by the microcode.

° Eight memory data registers (MDRs) that store data from
cache memory.

The GPRs are available to all software levels. The TEMPS and the
MDRs are only accessible by the microcode.

The RGF stores autoincrement/autodecrement results (in GPRs) or
the partial results of 1long arithmetic operations (in TEMP
registers).

The RGF can also be enabled to perform a floating-point shuffle
(FPS). This can be wused to sort two floating-point operands
according to their exponent size.

1.2.3 Slow Data File (SDF)

The slow data file (SDF) and register file (RGF) are both used by
the microcode for temporary data storage and for maintaining many
of the VAX architectural registers.

The SDF provides 256 low data rate longword registers with byte
parity. It is used to maintain:

® Most of the internal processor registers (IPRs)

) The data path constants

® Additional microcode scratchpad registers

° Temporary data when the RGF temporary (TEMP) registers
are full

e Registers reserved for microdiagnostic test patterns

The IPRs are available only to the privileged software. All other
registers are only accessed by the microcode. The SDF operates
under timing restraints that inhibit further access to it for
three cycles after a write operation.

VII 1-6

1.2.4 Program Counter (PC) Subsystem

The PC subsystem maintains the PC, the PC incrementer, the backup
PC and trap PC, and a register called the virtual address (VA)
file.

These registers have the following functions:

pPC Supplies the translation buffer (TB) in the CBox
with the virtual address for each operating code
(op code), operand specifier (op spec), and
operand in the instruction stream (I-stream).

PC Incrementer Updates the PC by adding an increment value
equal to the size of the I-stream data being
processed (the I-size). The increment value is

between 0 and 6 and is supplied by the PC
increment generator from the IBox.

Backup PC Stores the PC for the op code of a
macroinstruction, restoring the PC if the
instruction causes a macroexception (a reserved
operand fault, for example). This allows the
software service routines to examine the op code
of a failing instruction and service the fault.

Trap PC Maintains a recent history of PC activity,
providing the microtrap service routines with a
copy of the PC that was active at the time a
microtrap occurred (a TB miss, for example).

VA File Holds a copy of the last virtual address sent to
the virtual address latch in the CBox. Serves
as the backup if the address causes a microtrap.

The two highest-order bits are sent to the IBox sequencer (SEQ)
module for use in the microbranch logic.

The two lowest-order bits are sent to the SHR module for use in
byte alignment. They are also sent to the instruction buffer (IB)
logic in the IBox for use in byte alignment after an IB flush.

1.2.5 Cache Data Path (CDP)

Although functionally part of the CBox, the cache data path (CDP)
is located on the slice modules. The CDP consists of the cache
data buffer (CDBF) and cache data store (CDS).

The CDBF can be written with modified data from the W bus or with
memory data from the CBox on the memory data (MD) bus. From
there, the data is written to the CDS RAM.

CDS data can be written to the IBox on the cache data (CD) bus or
to the CBox on the MD bus (from where it is written to memory). A
bypass multiplexer asserts new data to those lines while it is
being written to CDS RAM.

VII 1-7

1.2.6 Main Arithmetic Logic Unit (Main ALU)

The main ALU is a 32-bit adder that performs the main multiplexing
functions for the EBox (see Section 1.1.1). It performs the
following arithmetic functions and operations:

o Addition and subtraction with propagated carries and
borrows on integer, floating-point, or decimal string
data.

® Generates carry (C) and overflow (V) condition codes on

the data and passes them to the IBox.

° Provides masking for the hidden bit and overflow bit
positions on floating-point instructions.

® Logical AND, OR, and XOR operations.

® Passes the results of an operation to the PAR MCAs over
the BP bus. The results are then passed on the W bus to
the RGF or SDF, or to the cache data path (CDP) or IBox.

® For a CDP destination, the virtual address is passed to
the CBox translation buffer. The VA file contents are
also sent as a backup 1in the event that the virtual
address causes a trap.

1.2.7 Bus Watcher/Decoder (BWD)

The BWD controls the bypassing operation, which selects the
outputs for the BP bus and selects the inputs to the main ALU.
When the BWD detects a condition that could prevent data from
arriving at its destination in time for the current operation, it
overrides the microcode fields that normally select the main ALDU
inputs, and enables the BP bus for the transfer.

VII 1-8

1.3 SHIFTER MODULE (SHR) FUNCTIONS

The shifter module (SHR) receives 32 or 64 bits of data from the
SLC logic on the APORT and BPORT and returns a 16 or 32-bit result
on the BP bus. It provides the following sets of operators:

° Shifter (SHF)

® Floating-Point (FP) Support
- Priority Encoder (PEN)
- Shift ALU (SALU)
- Exponent ALU (XALU)

° Multiplier/Divider (MULT)

The CPU microcode makes extensive use of the SHF, MULT, and main
ALU operators 1in executing the VAX native instruction set
(including all floating-point operations). However, the SHF
performs several decimal string conversions while the PEN, SALU,
and XALU provide hardware functions that support the F or
D floating and G_floating or integer data types. -

1.3.1 Shifter (SHF)
The SHF shift matrix extracts a 16 or 32-bit output from a 32 or
64-bit input while processing the following three data types:

1. Integer
2. Floating-Point (FP)
3. Decimal String
1.3.1.1 Integer Data —-- The SHF performs a right or left logical

shift (or rotate) or an arithmetic shift of integer data. On an
arithmetic right shift of more than 0, the output 1is
sign-extended.

1.3.1.2 Floating-Point Data -- The SHF performs a normalize,
align, or right or left shift of the fraction field of a
floating-point datum. A fraction field shift is based on the
shift count received from the FP support logic (PEN or SALU) on
the shift count bus.

VII 1-9

1.3.1.3 Decimal

String Data -- The SHF performs the following

decimal string data conversions:

° 32-bit

™ l6-bit

™ 32-bit

™ 32-bit
1.3.2

trailing --> 16-bit packed
packed --> 32-bit trailing
packed --> 32-bit integer
integer --> 32-bit packed

Floating-Point (FP) Support

The FP support logic processes the sign and exponent fields of the

F floating, D floating, and G floating data types.

It consists of

three elements, each of which consists of a single MCA:

1. Priority Encoder (PEN)
2. Sshift ALU (SALU)
3. Exponent ALU (XALU)

1.3.2.1

Priority

Encoder (PEN) -- The PEN consists of the

following logical subsections:

PE Logic

Round Select
Logic

Sticky Bit

Rounding
Increment

This logic scans the mantissa field of a
floating datum to find the most significant 1
bit. It then passes the shift count necessary
to normalize the number to the shifter (SHF) and
to the exponent ALU (XALU).

During an FP alignment, this logic saves the
last two bits shifted out of the data field for
use as the rounding bits in a normalization.

This logic examines the eight most significant
bits shifted out during an FP alignment. If all
8 bits are 0, the logic sets a carry-in bit for
the main ALU.

logic performs a 0 or 1-bit right or left
shift of the 1low-order byte of a floating
number, and passes the result to the rounding
increment logic.

—il D

This logic takes the normalized 8 bits from the
fast normalize logic and adds a 0 or 1 to it,
according to the rounding bits and the operation
(add or subtract). When enabled, it passes the
result to the low-order byte of the floating
number.

1.3.2.2 shift ALU (SALU) -- The SALU subtracts the exponents of
two FP operands and generates a shift count based on the
difference. This shift count is sent to the shifter (SHF), which
then shifts the fraction field of the smaller operand in order to
align the operands.

1.3.2.3 Exponent ALU (XALU) =-- The XALU performs arithmetic
operations on the exponent fields of the floating data applied to
its inputs. It adjusts the exponent field of the result according
to the shift count from the PE logic.

1.3.3 Multiplier/Divider (MULT)
The MULT consists of eight 8-bit MCAs that are a custom
implementation of very large scale integration (VLSI) technology.

The MULT produces a 64-bit multiply or 32-bit divide result. It
improves the speed of both integer and floating-point
multiplication by:

° Using an eight -bit-at-a-time multiply algorithm that

generates eight result bits per MULT cycle. Eight cycles
are required to produce the 32-bit result.

) Producing the correct two's complement results for
integer data so that no premultlply or post-multiply sign
bit correction is necessary.

It wuses a one-bit-at-a-time division algorithm that generates two
quotient bits per cycle. The quotient bits are subtracted from
each other at the end of each division loop to produce the true
guotient.

VII 1-11

1.4

EBOX REGISTERS

Table 1-1 lists the privileged internal processor registers (IPRs)
maintained in the EBox slow data file (SDF). The register numbers

are

expressed in hexadecimal (hex) notation. Software access is

shown as read/write (R/W) or read-only (R/O).

Table 1-1 Privileged IPRs Maintained by the EBox

Register Name Mnemonic Number Access

VAX Architectural Registers

Kernel Stack Pointer KSP 00 R/W
Executive Stack Pointer ESP 01 R/W
Supervisor Stack Pointer SSP 02 R/W
User Stack Pointer UsP 03 R/W
Interrupt Stack Pointer ISP 04 R/W
P0 Base Register POBR 08 R/W
P0 Length Register POLR 09 R/W
Pl Base Register P1BR 0A R/W
Pl Length Register PILR 0B R/W
System Base Register SBR 0cC R/W
System Length Register SLR 0D R/W
Process Control Block Base PCBB 10 R/W
System Control Block Base SCBB 11 R/W
Interrupt Priority Level IPL 12 R/W
Asynchronous System Trap Level ASTLVL 13 R/W
Software Interrupt Summary SISR 15 R/W

VAX 8800-Specific Registers

Machine Check Status Register MCSTS 26 R/W
System Identification Register SID 3E R/0
Revision Register 1 REVR1 86 R/0
Revision Register 2 REVR2 87 R/0O
Notes:

1

L e

2.

Refer to the VAX Architecture Handbook for descriptions of the
VAX Architectural IPRs.

The IPL register resides in the 1IBox as part of the PSL
hardware image and in the SDF as part of the PSL software
image. The microcode maintains both images equally.

1.4.1 POLR, PlLR, and SLR Internal Bit Formats

POLR, PILR, and SLR are stored in the SDF in a different format
than seen by the software because of memory management microcode
requirements. The format changes are 1listed 1in Table 1-2.
Conversion takes place when the MTPR and MFPR instructions are
executed.

Table 1-2 POLR, Pl1LR, and SLR Internal Formats

Register Internal Format

POLR and SLR The software format multiplied by 512.

P1LR The largest virtual address in Pl space
(7FFFFFFF), minus the software format multiplied
by 512.

1.4.2 VAX 8800-Specific Registers

The EBox contains four registers that are unique to the VAX 8800

system,

1.4.2.1 Machine Check Status Register (MCSTS) —-- The MCSTS stores
status information for the machine check microcode and the VAX/VMS
operating system as shown in Figure 1-3. Table 1-3 provides bit

descriptions.
31 03 02 01 00

MBZ

SCLD-275
Figure 1-3 Machine Check Status Register (MCSTS)

VII 1-13

Table 1-3 Machine Check Status Register (MCSTS) Bit
Descriptions

Bit(s)

Name

Description

<31:03>

<00>

<01>

02>

Must be Zeros
(MBZ)

Abort (ABT)

Enter Machine
Check (MC)

Enter VMS

Unused and must be zeros.

Set by the Machine Check (MC)
microcode when an instruction is
aborted. Used by VMS to determine if
the error caused a fault or abort.

Indicates that the MC microcode was
entered but did not complete. Checked
when the MC microcode starts to
service an error. If set, the MC
microcode passes control to the
double error halt microcode .
Otherwise, the MC microcode sets
ENTER MC and processes the error.

Indicates that the VMS handler was
entered but did not complete. Checked
when the MC microcode finishes
servicing an error. If set, the VMS
handler did not finish processing the
previous error and the MC microcode
passes control to the double error
halt code. Otherwise, the MC
microcode resets the ENTER MC bit,
sets the ENITER VMS bit and passes
control to the VMS handler. When VMS
successfully processes the error, it
resets the ENTER VMS bit.

1.4.2.2
Figure

fields.

31

System Identification (SID) Register -- As shown in

1-4, the SID register holds the system identific
that 1identify a specific cr

24 23 22

ITA T

VAX system.

on codes

ati
b1 A — 4 3
Table 1-4 des ibes the bit

16 15 00

CPU TYPE

SYSTEM SERIAL NUMBER

HARDWARE
REVISION

LEVEL

SCLD-276

Figure 1-4 System Identification (SID) Register

Vi 1-14

Table 1-4 System Identification (SID) Register
Bit Field Descriptions

Bit(s) Name Description
<31:24> CPU Type Hardwired on the backplane in order
to define a specific VAX processor.
The value is equal to 00000110 (six)
for the VAX 8800 system.
<23> Left/Right Defines the physical 1location and
logical identification of the CPU in
the system cabinet:
0 Right CPU
1 = Left CPU
<22:16> Hardware Kernel hardware vrevision level.
Revision Changed when a hardware revision
Level impacts the VMS operating system or
diagnostics.
<15:00> System Hardwired jumpers on the backplane.
Serial Equal to the system serial number
Number imprinted on the cabinet nameplate.
It is the same for both CPUs on a

dual-processor system.

1.4.2.3 Revision
indicate (in decimal)

Registers
the revision levels of the modules and other

(REVR1 and REVR2) -- REVR1 and REVR2

hardware components, and also some of the software components that
are loaded during system initialization.

Figure 1-5 shows the REVR1 bit format, and Table 1-5 describes the
bit fields.

Figure 1-6 shows the REVR2 bit format, and Table 1-6 describes the
bit fields.

31

28 27

24 23 20 19

16 15 12 11 08 07 04 03 00

SHR

SLC1 SLCO

ADP CCs DEC WCS SEQ

Figure 1-5

SCLD-277

Revision Register 1 (REVRI1)

VII 1-15

Table 1-5 Revision Register 1 (REVR1l) Bit Field Descriptions

Bit Field Unit Module Revision Level

<31:28> EBox Shifter module (SHR)

<27:24> EBox Slice 1 module (SLC1l)

<23:20> EBox Slice 0 module (SLCO)

<19:16> CBox Address Data Path module (ADP)

<15:12> CBox Cache Control Sequencer module (CCS)

<11:08> IBoX Decoder module (DEC)

<07:04> IBox Writeable Control Store module (WCS)

<03:00> IBox Sequencer module (SEQ)

31 24 23 16 15 08 07 04 03 00

SOET AR N CODE RESERVED CPU/NMI | CLK

Figure 1-6

sCLD-278

Revision Register 2 (REVR2)

Table 1-6 Revision Register 2 (REVR2) Bit Field Descriptions

Bit Field Name Definition
<31:24> Software Revision level of the software components
Elements loaded at system initialization time from

the console storage medium. The software
components include:

- CPU Control Store firmware

- Cache Control Store firmware

- Constants loaded to the SDF

- Data loaded into the I-decode RAMs

(Changes made to individual components are
incorporated into a complete package
before being released.)

<23:16> User Revision level of the user microcode
Microcode 1loaded by the user to the WCS.

<15:08> Reserved

<07:04> CPU/NMI Revision level of the CPU/NMI backplane.

<03:00> Clock Revision level of the Clock (CLK) module.
Module

1.4.2.4 EBox Parity Error Register (EBER) -- The EBER indicates

parity errors detected on the APORT and BPORT buses and provides
pointers to the source of the errors.

The microcode stores the EBER contents along with the contents of
similar registers in the CBox and IBox in an SDF data structure
called the machine check error bank (MCEB). When a machine check
occurs, several machine check-related registers are written to the
MCEB. The MCEB is then pushed onto the stack to provide software
access to the various registers. For further information on the
MCEB, refer to the machine check description in the IBox section
of this manual.

The EBER 1is located in the parity generator/checker (PAR) and is

only accessible by the microcode. It is described in further
detail in Chapter 2.

VII 1-17

CHAPTER 2
FUNCTIONAL DESCRIPTION

2.1 GENERAL

The EBox makes extensive use of high density emitter-collector
logic (ECL) for its main logical functions. Most of this ECL logic
is based in macrocell array (MCA) chips that make up the main
logical operators.

This chapter describes the EBox logic to the block diagram level
and is intended for use with the module print sets.

2.2 SLICE MODULE (SLC1/SLC0O) DESCRIPTION

Figure 2-1 is a block diagram of the 32-bit data path logic formed
by the SLC1 and SLCO modules. Each module provides a 16-bit slice
of the following EBox operators:

™ Parity Generator/Checker (PAR)

° Register File (RGF)

° Slow Data File (SDF)

° Program Counter (PC) Subsystem

® Cache Data Path (CDP)

° Main Arithmetic Logic Unit (Main ALU)
2.2.1 Parity Generator/Checker (PAR)

Figure 2-2 is a block diagram of the parity generator/checker
(PAR) logic, which is formed by two PAR MCAs on each slice module.
Each MCA passes one byte of data to the rest of the data paths and
generates byte parity for storage with, or checks on, the received
data.

The PAR provides the following logical functions:

Parity Generator

Parity Checker

Parity Error (PE) Register
Carry Save Logic

Table 2-1 describes the PAR input and output signals.

VII 2-1

¢-¢ IIA

PARITY
wBus | SENERATON 1, P BUS BP BUS
(PAR) a (FM SHR)
MAIN ALU
SLOW DATA
FILE (SDF)
256 X 36 | o0F > BP BUS APS A D
FB SDF AVt 1BPS Bl HALF
PC VA FA | HALF (ALS)
—» AP |] APORT
c
FB ACD » (TO SHR)
REGISTER '2 »> BPORT
FILE (RGF)
32 X 36
FA o
» pc sub-
SYSTEM |
VA
L
> VA BUS
IB DATA g
I oATA | (TO CBOX)
D BUS B MD CD
(TO 1BOX) CACHE DATA PATH (CDP)
WR DATA
L gl
CACHE DATA CACHE DATA
WBUS OUT
<30:27,03:00> « BUFFER 208) A CD
(TO 1BOX) (CDBF) (co9)

PA BUS (FM CBOX)

» MD BUS (TO/FM CBOX)

SCLD-279

Figure 2-1 Slice Module (SLC1/SLCO) Block Diagram

PARITY GENERATOR/CHECKER
(TWO PAR MCAs PER SLICE)

WBUS PAR<3:0> H,

BP BUS<31:00> H—— ——— WBUS<31:00> H
SLC SHFT <3:0> H— BP BUS ——— ALU NBIT<3,1:0> H
PARITY
APORT PAR<7:0> H— GENERATOR [Po—— ALU ZBIT<3:0> L
IB PAR<3:0> L —(
A CD PAR<3:0> H — A-SIDE
FILE A PAR<3:0> H — PARITY
oL CHECKER
I_APORT<7> L—C
PORT CNTL<11:08,03:00> H—] PE<1:0> H
BPORT PAR<7:0> H—
IB PAR<3:0> L—O
A CD PAR<3:0> H B-SIQE SLC<1:0>
FILE B PAR<3:0> H——] glﬁgéKER ERR PAR H
SDF PAR<3:0> H—
ALU CBIT<2:1> H— —— OCIN SRC<4> H
ALUCi<i:0> H
ALUCI<1:0> CARRY SAVE ALU CIN H
CINSRC«<1:0>H LATCH AND

INH SDF WR H —
STALLED A CLK H ——

A CLK L —O CLOCK
B CLK H —— DISTRIBUTION

KEEPGOINGA<1:0>H

SCLD-280

Figure 2-2 Parity Generator/Checker (PAR) Block Diagram

Table 2-1 Parity Generator/Checker (PAR)
Signal Descriptions

Signal Name Description Valid

Data Input and Parity Control Signals

Bypass Bus The PAR section receives longword T7 to T9
(BP BUS<31:00> H) data from the main ALU or the

shifter (SHR) module ALUs on the

bypass (BP) bus.

Slice Shift E SHFT<4:3,1:0> from the microword T5 to T7
(SLC SHFT<3:0> H) control the PAR MCA parity register
(see Table 2-5).

VII 2-3

Table 2-1 Parity Generator/Checker (PAR)

Signal Descriptions (Cont)

Signal Name

Description

Data and Parity Output Signals

valid

Write Bus
(W BUS<31:00> H)

Write Bus Parity
(W BUS PAR<K3:0> H)

ALU Negative Bit

(ALU NBIT<3,1:0> H)

ALU Zero Bit
(ALU ZBIT<3:0> L)

Parity Error
(PEK1:0> H)

The W bus passes received BP bus
data to the slow data file, regis-
ter file, and BP cache data path.

W BUS <30:27,03:00> H are asserted
to the sequencer (SEQ) module as
W BUS 0OUT<30:27,03:00> # for
microbranch conditions.

Byte parity is generated on
received BP bus data and asserted
as the W bus byte parity bits
(one bit from each PAR MCA).

W BUS PAR<3:0> are written to the
slow data file, register file, or
cache data path along with the
received BP bus data.

Asserted to the IBox, which

produces the negative (N) condition

code bit for a byte, word, or

longword. ALU NBIT<3> H is asserted

from PAR 2 as W RUS QUT<K31> H.

Asserted to the IBox, which
combines the signals and produces

the zero (Z) condition code bit for

a byte, word, or longword.

NOTE
N and Z byte values are generated
on the BP bus inputs and are not
valid when reading the parity
error register.

ORed on each slice module. Asserts
the slice parity error signals
SIC1 PAR ERR H and SLCO PAR ERR H
to the sequencer (SEQ) module to
generate a machine check. (These
bits do not include cache data
path parity errors.)

T8 to T10

T8 to T10

T8 to T10

T8 to TI10

T8 to T10

VII 2-4

Table 2-1 Parity Generator/Checker (PAR)

Signal Descriptions (Cont)

Signal Name Description Valid
A-Side Input Signals
APORT Parity APORT nibble parity is generated T6 to T8
(APORT PAR<7:0> H) by each of the eight main ALU

first-half (ALF) MCAs on an ALU

operation.
IB Parity Instruction buffer (IB) byte T5 to T7
(IB PARK3:0> L) parity from the IBox.
Cache Data Parity Byte parity from the cache data T5 to T7
(A CD PARK3:0> H) path (CDP).
File A Parity File A byte parity from the T5 to T7
(FILE A PAR<3:0> H) register file (RGF).
I _APORTK7> I APORT<7> from the microword T4 to Té6
(APORT<7> L) (SLC1/SLCO CSO DATA<K1> L signal

on the backplane).

Used with PORT CNTL<11:08,03:00>

to select the A-side byte

data/parity bit source (see
APORT Control A-side port control from the T5 to T7
(PORT CNTL<11:08, (DEC) module. Used with
03:00> H) I APORT<K7>, above, to select

the A-side byte data/parity source.
B-Side Input Signals
BPORT Parity BPORT nibble parity is generated Té to T8
(BPORT PAR<7:0> H) by each of the eight main ALU

first-half (ALF) MCAs.
IB Parity Instruction buffer (IB) byte parity T5 to T7
(IB PARK3:0> L) from the IBox.
Cache Data Parity Byte parity from the cache data T5 to T7
(A CD PAR<3:0> H) path (CDP).
File B Parity File B byte parity from the T5 to T7
(FILE B PAR<3:0> H) register file (RGF).
Slow Data File Byte parity from the slow data T5 to T7

Parity
(SDF PAR<3:0> H)

file (SDF).

VII 2-5

Table 2-1 Parity Generator/Checker (PAR)
Signal Descriptions (Cont)
Signal Name Description Valid
Slow Data File From the SDF, inhibits parity T8 to T10

Write
(SDF WRITE L)

E_BPORT<8>
(B RD MODE L)

BPORT Control
(PORT CNTL<15:12,
07:04> H)

Carry Save and Trap

ALU Carry Bit
(ALU CBIT<2:1> H)

Output Carry
In Source
(OCIN SRC<4> H)

ALU Carry In
(ALUCIK1:0> H)

ALU Carry In
(ALU CIN H)

checking during a write to the SDF.
Valid from T8 to T1l0 of the
microinstruction requesting the
SDF write.

E_BPORT<8> from the microword T5
(asserted as SLC1/SLCO CSO
DATA<K6> L on the backplane).

Used with PORT CNTL<15:12,07:04>
to select the B-side byte
data/parity input source

(see Table 2-3).

B-side port control from the T5
decoder (DEC) module. Used with

E BPORT<8>, above, to select the
B-side byte data/parity input source.

Shadow Signals

Asserted from the upper ALU byte T7
to the upper PAR byte on the same
slice module. Valid from T7 to T9

of the ing&truction producing a word
carry.

Asserted from the upper PAR byte T6
of each slice module. Asserted as

CIN SRCK1> H to the carry save logic
in the upper PAR byte of the other
module.

E ALUCIK1:0> from the microword. T5
Used with CSL CTL<O0> to select the
next ALU CIN carry source (see

Table 2-6).

Asserted from upper PAR byte to T6
both ALU bytes on the same slice
module. Valid from Té6 to T8 of the
microinstruction using the carry in.

to

to

to

to

to

to

T7

T7

T9

T8

T7

T8

Table 2-1 Parity Generator/Checker (PAR)

Signal Descriptions (Cont)

Signal Name

Description valid

Carry In Source
(CINSRC<1:0> H)

Carry Save
Latch Control
(CSL CTL<1:0> H)

Inhibit SDF Write
(INH SDF WR H)

CINSRCK1> H is OCIN SRC<4> H from T7 to TS
the upper PAR byte of the other

slice module. Valid from T7 to T9

of the microinstruction generating

the carry.

CINSRCK0> H is CIN SRC1<0> H from
the SHR guard bit logic to both
SLC1 and SLCO. Valid from T7 to T9
of the microinstruction generating
the carry.

CSL CTL<K1> H is E LDCSL from the T6 to T8
microword and is used to load the
carry save latch.

CSL CTL<KO0> H is FPOP from the upper
ALU byte on the same slice module.
Used with ALUCIK1:0> to select the
integer carry or floating-point
carry as the source for the next
ALU CIN.

Asserted by the PC subsystem Tll to T17
following a microinstruction

causing a global trap.

Valid from T1ll to T17; this is

a half-cycle delayed and 3-cycle

extended trap signal.

Clock Distribution Control

Keepgoing
(KEEPGOINGA
<1:0> H)

Holds the cache data parity A T4 to T6
latches open (A CD PAR<3:0>

outputs) during a stall (see
Table 2-4).

VII 2-7

2.2.1.1 Parity Generator -- The parity generator logic performs
the following functions:

® Receives data from the main ALU on the BP bus if ALUENBP
is asserted. Otherwise, it receives data from the SHR
module or receives only zeros. It distributes received
data on the W bus to the RGF, SDF, and CDP.

® Generates byte parity on the received BP bus data and
distributes it on the W bus from where it may be written
to the RGF, SDF, or CDP. Zero parity may be forced for
maintenance operations.

e Generates the negative (N) and zero (Z) bit for each byte
and passes them to the IBox where they are combined to
form the N and Z condition code bits of the processor
status longword (PSL).

2.2.1.2 Parity Checker -- The parity checker logic performs the
following operations on the main ALU data:

° When the main ALU performs an add or subtract operation,
it generates nibble parity on the data asserted to its
A-side and B-side. It outputs the nibble parity to the
A-side and B-side of the parity checker where it is
combined to form byte parity.

° The parity checker compares the byte parity bits with
those from the data sources applied to the A-side and
B-side of the main ALU. The byte parity error signals
from both slices are ORed and asserted to the sequencer
(SEQ) module to generate a machine check.

A-Side Checker

The A-side checker compares the main ALU APORT parity output bits
with the parity bits from the following sources:

° Instruction Buffer (LB) parity bits

e Cache Data A (A CD) output parity bits

° File A (FILE A) output parity bits

I _APORT<7> and the port control fields PORT CNTL<11:08,03:00> from
the decoder (DEC) module control the A-side checker as shown in
Table 2-2. Only the lowest bit-pair is described; the functions
for the other 3 pairs are identical.

VII 2-8

B-Side Checker

The B-side checker compares the main ALU BPORT parity output bits
with the parity bits from the following sources:

Instruction Buffer (IB) parity bits
Cache Data A (A CD) output parity bits
File B (FILE B) output parity bits
Slow Data File (SDF) parity bits

The BRDMODE bit and the port control fields PORT CNTL<15:12,07:04>
from the decoder (DEC) module control the B-side checker as shown
in Table 2-3. Only the lowest bit-pair is described; the functions
for the other 3 pairs are identical.

Other Checker Functions:

° The parity checker is disabled during SDF writes and for
A-side data that involves a floating-point mask (a
function that changes the data before asserting it on the
APORT 1lines). (The parity checker may also be disabled
for maintenance functions.)

° The first parity error on either side generates an EBox
parity error trap. The error for that side is reported in
the parity error (PE) register and that side of the
register 1is 1locked. Further errors on the same side are
not recorded but are serviced by an EBox parity error
machine check.

® A microinstruction that generates bad parity completes
the write to the destination whether the data is correct
or not. Further writes are blocked by the trap shadow.

) Cache data (CD) parity checks are maintained during a
stall, depending on the state of the CD ready or CD valid
bits and the memory data register (MD) valid bit as shown
in Table 2-4,

VII 2-9

Table 2-2 A-Side Port Control

PORT CNTL
I APORT<K7> <1 0> Selected Data/Parity Bit Source
0 0 0 Virtual Address (VA) or Program Counter
(PC)
1 0 0 File A
- 0 1 Instruction Buffer (IB)
- 1 0 Bypass (BP) Bus
- 1 1 Cache Data (CD) Bus
Table 2-3 B-Side Port Control
PORT CNTL
BRDMODE <5 4> Selected Data/Parity Bit Source
0 0 0 Slow Data File (SDF)
1 0 0 File B
- 0 1 Instruction Buffer (IB)
- 1 0 Bypass (BP) Bus
- 1 1 Cache Data (CD) Bus
Table 2-4 Keepgoing Conditions for A CD PAR<3,1>
CD CD MD
Valid Ready Valid Keepgoing
1 1 - 0
- - 1 0
0 - 0 1
- 0 0 1

VII 2-10

2.2.1.3 EBox Parity Error Register (EBER) -- Figure 2-3 shows the
EBER bit format and functions. This register occurs in the MCA for
each byte and peforms the following functions:

° Monitors the ALU input select 1lines to determine the
source of a byte parity error.

® Records the first byte parity error that occurs (for the
A-side or the B-side) and indicates the source of the
data that produced the error.

Table 2-5 shows how the E SHFT field of the microword controls the
EBER register logic.

A parity error on either side generates a parity error trap and is
stored, locking that side of the register. Further errors generate
machine checks. The effects of parity errors can only be inhibited
by disabling all traps from the console.

07 06 05 . 03 02 00

B-SIDE A-SIDE
DATA SOURCE DATA SOURCE

R ERR
B-SIDE
PAR ERR
B-SIDE DATA SOURCE VALUE A-SIDE DATA SOURCE VALUE
SDF VA OR PC (NO PAR CHECK)

CACHE - 1B MD CD BUS
BP BUS (NO PAR CHECK)
CACHE - A CD BUS

RGF - FILE B

CACHE - IB MD CD BUS
BP BUS (NO PAR CHECK)
CACHE - A CD BUS

RGF - FILE A

PWN—=O
o nonn

wowonogon

HPOWON O

SCLD-281

Figure 2-3 EBox Parity Error Register (EBER)

VII 2-11

Table 2-5 E_SHFT<4:0> Control of the
EBox Parity Error Register (EBER)

E_SHFT Bits
<4 3 21 0> Register Function
11-00 Inhibits A-side parity checking during a
floating-point mask operation.
11-01 Forces zero W bus parity during a maintenance
operation,
11-10 Clears (opens) the parity error register.
11-11 Reads (closes/latches) the parity error register
onto the W bus.
2.2.1.4 Carry Save Logic -- The carry save logic contains the

following functional elements:

° The carry-in multiplexer
° The carry save latch (CSL)
° The floating—-point carry selection latch

Carry Save Functions

The PAR MCA for the upper byte on each slice module uses the CSL
to preserve word and longword carries from an ALU operation. A
latched <carry-out is then wused as a carry in on the next ALU
cycle:

e A latched integer carry-out from ALU bit <31> (CSL<31>)
is carried into ALU bit <00> on the next integer cycle.

° A latched floating-point carry-out from ALU bit <15>
(CSL<15>) 1is carried into ALU bit <16> on the next
floating~-point cycle.

VIT 2-12

Table 2-6 shows how the carry-in multiplexer source is controlled
from the EALUCI<K1:0> field of the microword. The microword and
hardware both select the next carry in. The microword can select a
0, 1, the CCSL, or the guard bit from the SHR module. The
floating-point operation (FPOP) bit from the ALU defines whether
the cycle is an integer or floating-point operation.

Traps

On a trap, backup latches are used to save the contents of the
carry save and floating-point carry selection latches. The inhibit
SDF write (INH SDF WR) signal from the PC subsystem indicates a
trap shadow, loading the backup latches, and also multiplexing the
backup values to the carry save and floating-point carry selection
latches. The latches are not loaded by the trap routine.

Table 2-6 E_ALUCI<K1:0> Control of the
ALU Carry-In Source

ALUCI Bits
FPOP <1 0> ALU Carry-In Source
1 0 0 ALU1<16> <-- FP CIN
0 0 1 ALUO<K00> <-- 0
1 1 0 ALU0K16> <--1
0 1 1 ALUO0<K00> <-- CSL<31> (Integer)
1 1 1 ALU1<16> <-- CSL<15> (FP)

VII 2-13

2.2.2 Register File (RGF)

The RGF File B data outputs are multiplexed with the SDF data
outputs and passed to the B-side of the main ALU (Figure 2-1).
However, the parity outputs for both RGF File A and File B, and
for the SDF, are connected to the A-side and B-side inputs of the
PAR parity checker.

Figure 2-4 1is a block diagram of the register file (RGF) logic,
which provides thirty-two 32-bit registers with byte parity. The
RGF consists of a set of write-enable delay latches that drive two
custom ECL muliple-register (MPR) MCAs per slice.

° The RGF is used for all of the general-purpose registers
(GPRs) except the program counter. The remaining 17
locations are used by the microprogram as memory

management and scratchpad registers.

° Two separate outputs (File A and File B) carry 32-bit
data to the A-side and B-side of the main ALU.

) Two separate read addresses and two separate write
addresses may be applied to the RGF RAM at once. Two read
and two write functions may take place at the same time
with the following limitations:

- Two reads may access the same location at the same
time.

- Two writes to the same 1location at the same time
produces unspecified results.

- The W bus has byte, word, or longword access to all
32 locations.

- The CD bus has longword access to the lowest 8
locations. These are the memory data (MD) registers
and are not used as general-purpose registers.

Table 2-7 shows the RGF memory address allocation. Table 2-8
describes the RGF read and write signals.

2.2.2.1 Floating-Point Shuffle (FPS) -- Under control of the
microcode and the SHR module, the IBox performs an FP shuffle by
swapping the RGF read addresses. A shuffle occurs when FPS is
enabled (EFPSUFL from the microword) and the XALU compare (XALUCC
H) signal is asserted by the XALU on the SHR module.

Bit <1> of either read address is also complemented if the XALU
compare signal is asserted and address bit <2> is a 1. This swaps
the quadword/longword scratch locations for read purposes, but
only in file areas that are defined with address bit <2> as a 1.
The function is mainly used to sort two floating-point operands in
order according to their exponent size.

Vi1 2-14

S1-¢ IIA

RADDR A<4:0> L —

W BUS PAR<3:0> H,

1
1
1
|
1
!
1
W BUS<31:00> H ;
]
1
1
]
1
]

W WRITE
DATA PORT

SA
W WADDR<4:0> L qLAT
DCDR
. B SA
WRTEN<3:0> L—d LATP—9LAT |
INH FILE WR<3:0> H
SA
C WADDR<2:0> L qLAT
DCDR
B CLK L,H
r
A
CD DEST<3> L —qLATPp— CWEL

CD BUS PAR<3:0> H,

REGISTER
FILE
32 X 36

»
»
[
»

B
[
»

».

|

»

o

»

:
|
i
CD BUS<31:00> H E
|
|
|
|
|
I
I

Figure 2-4

Register File (RGF)

C WRITE
DATA PORT

RADDR B<4:0> L

FILE A PAR<3:0> H,
T FILE A<31:00> H

FILE B PAR<3:0> H,
i FILE B<31:00> H

Block Diagram

SCLD-282

2.2.2.2 Memory Data (MD) Registers -- All MD registers are set
valid in the first microinstruction of a new macroinstruction.
However, an individual MD register may be invalidated by the first
microinstruction.

MD registers may be read and written as scratch registers unless
invalidated.

An invalid MD register expects that cache will eventually perform
a write to the location and the register cannot be used until the
cache write is no longer pending. This is determined in one of two
ways: :

® Cache has written its result in the MD register.

) A trap occurs where cache informs the microcode that the
requested data will not be written (no writes are pending
to the MD register).

2.2.2.3 Traps and Stalls -- A trap takes priority over a stall.
In the first case above, the MD register becomes valid and can be
used. In the second case, the MD will not be valid until the
beginning of a new macroinstruction. In either case, a new
macroinstruction cannot be started until there are no cache writes
pending to the MD registers.

An RGF write normally starts at T9. However, the write enable
signals must be delayed. The write enable for the cache side is
delayed one-half cycle by one latch. The write enable for the W
bus side is delayed by one cycle by two latches.

Table 2-7 Register File (RGF)
Address Allocation

Location Register Name

0-D General-Purpose Registers (GPRs)
E GPR Stack Pointer

F Memory Write Data Temp

10-12 ' Memory Management Temps

13-17 Scratchpad Registers

18-1E Memory Data (MD) Registers

1F MD Memory Mangagement Register

VII 2-16

Table 2-8 Register File (RGF) Signal Descriptions

Signal Name Description Valid
A-Port Data Read Signals
File A Data Read data from the RGF A-port. T5 to T7
(FILE A<31:00> H)
File A Parity Byte parity bits for the RGF T5 to T7
(FILE A PAR<3:0> H) A-port read data.
Read Address A ASIDE READ ADDR<4:0> L from the T4 to Té6
(RADDR A<4:0> L) microsequencer.
B-Port Data Read Signals
File B Data Read data from the RGF B-port. T5 to T7
(FILE B<31:00> H)
File B Parity Byte parity bits for the RGF T5 to T7
(FILE B PAR<3:0> H) B-port read data.
Read Address B Concatenation of E BPORT<4> from T4 to T6
(RADDR B<4:0> L) the microword and BSIDE READ

ADDR<3:0> from the microsequencer.
W Bus Data Write Signals
W Bus Data Write data from the PAR logic on T8 to TI10
(W BUS<31:00> H) the same slice module.
W Bus Parity W bus byte parity bits from the T8 to TI10
(W BUS PAR<3:0> H) same slice module.
W Bus Address FILE WRITE ADDR<4:0> from the T7 to T9
(W WADDR<4:0> L) decoder (DEC) module.
W Bus Write Enable Té6 to T8

(WRTEN<3:0> L)

E WRTEN<3:0> from the microword.

VII 2-17

Table 2-8 Register File (RGF) Signal Descriptions (Cont)

Signal Name Description

valid

Inhibit File Writes BLOCK WRITES<5:2> from the

(INH FILE WR<3:0> H) microsequencer inhibit byte
writes to the RGF during a trap
shadow. Valid from T10 to T1l6 of
the trapping instruction.

RGF writes occur at T9, therefore:

T10 to T16

- T1l of the trapping instruction
blocks T9 of the first micro-

instruction in the trap shadow

- T13 blocks T9 of the second

microinstruction

- T15 blocks T9 of the third

microinstruction

CD Bus Data Write Signals

CD Bus Data IB CD MD<31:00> from the cache T8 to T10
(CD BUS<31:00> H) data path (CDP) logic.

CD Bus Parity IB CD MD PAR<3:0> from the cache T8 to T10
(CD BUS PAR<3:0> H) data path (CDP) logic.

Cache Write Address CACHE DATA DEST<2:0> on the same T7 to TS
(C WADDR<K2:0> L) slice module.

Cache Write Enable CACHE DATA DEST<3> on the same T8 to TI10
(C WE L) slice module.

2.2.3 Slow Data File (SDF)

The microcode uses the SDF for the following types of register

functions:

Page table base registers

Error registers

Stack pointers

Masks

Constants

Additional scratchpad locations

n
W)
to
S’

Figure 2-5 1is a block diagram of the slow data file
which provides 256 32-bit registers with byte parity.

Table 2-9 describes the SDF read and write signals.

VII 2-18

}—J
Q
oy
o]

2,2.3.1 Writes -- On a write, the SDF address latches at TS5 and
is delayed for two cycles through two sets of B CLK and STALLED A
CLK latches. SDWRTEN is asserted at T7, and data from the main ALU
or SHR is received on the W bus at T8.

2.2.3.2 Reads -- An SDF read occurs at T5 so the address is gated
directly to the SDF RAM.

Reads occur from T5 (B CLK) to T6 (A CLK) and are inhibited during
a SDF write, which occurs during a modified A CLK at T10. For a
write followed by a read to the same location, the microcode
performs the write at T10, which then corresponds to T8 of the
next microinstruction, T6 of the second, and T4 of the third.
Therefore, the read occurs at T5 of the reading microinstruction,
three cycles after the write.

2.2,3.3 sStalls and Traps -- The A latches stall when the stall
signal is asserted.

During a trap, SDF writes are disabled until the first
microinstruction of the trap routine can begin, 3 microcycles
later.

SDFWRT L
SDFWRT L —dB
W BUS PAR <3:0> H, LAT
W BUS<31:00> H [|SDF RAM
256 X 18
SDFWRITE L
DATA SDF PAR<3:0> H,
SDWRTEN L —qg SA B SA [SDF<31:00> H
LAT LAT
ADDR<7:0> L LAT ALl NI Ll RE
B
| LATP—1 ADDR
WR EN
SDFWRT L [ﬂ
SDF WR CLK L —— SCLD.283

Figure 2-5 Slow Data File (SDF) Block Diagram

VII 2-19

Table 2-9 Slow Data File (SDF)
Signal Descriptions

Signal Name Description valid
Output Signals
SDF Data Read data from the SDF RAM is T5 to T7
(SDF<31:00> H) multiplexed and asserted to the

B-side of the main ALU as

FB SDF<31:00> H.
SDF Parity Byte parity from the SDF RAM is T5 to T7
(SDF PAR<3:0> H) asserted to the PAR parity check

inputs.
SDF Write Signals The SDF write enable signal T8 to T10

(SDWRTEN L) from the IBox is
delayed one cycle and asserted

to the PC trap logic as SDFWRITE L.
There, it is gated with an
extended trap signal and returned
to the SDF logic as SDFWRT L.

Under control of the PC trap logic,
SDFWRT L selects either the read or
write address and is valid from T9
to Tll. It is delayed by a half
cycle and sent to the clock
distribution logic as SDFWR L

where it is gated with A CLK to
form the SDF write clock SDF WR
CLK L, which is valid from

T10 to T12.

VII 2-20

Table 2-9 Slow Data File (SDF)
.Signal Descriptions (Cont)

Signal Name Description Valid

Input Signals

Read/Write Address ADDR<7:0> L is a concatenation of T4 to Té
{ADDR<7:0> L) E_BPORT<7:4> from the microword

and BSIDE READ ADDR<3:0> from the

decoder (DEC) module.

Write Bus Asserts latched ALU output or T8 to TI10
(W BUS<31:00> H) parity error register data to

the SDF RAM write inputs.
Write Bus Parity W bus data source parity from the T8 to T10
(W BUS PARK1:0> H) PAR logic outputs to the SDF RAM

write inputs.
SDF Write Enable Asserted by E _SDWRTEN of the Té to T8
(SD WRT EN L) microword. Selects the read/write

address and 1is eventually gated
with A CLK to form the SDF write
clock (SDF WR CLK L, see Output
Signal description).

VII 2-21

2.2.4 Program Counter (PC) Subsystem
Figure 2-6 is a block diagram of the program counter (PC)
subsystem, which contains the following main logical elements:

PC VA FA Multiplexer

Virtual Address (VA) File

Trap Shadow Logic

Program Counter (PC), Backup PC, and Trap PC

The slice section contains four PC MCAs, each of which operates on
one byte of data or address information. The SLC1l module contains
two PC2 type MCAs. The SLCO module contains one PC2 and one PCl
type MCA. The PCl MCA operates on byte 0 (PC bits <07:00>).

Table 2-10 describes the PC subsystem input and output signals.

2.2.4.1 PC VA FA Multiplexer —-- The PC VA FA multiplexer connects
to the A-side input of the main ALU. Its inputs are selected by
the VA WRT and APORT<7:6> bits of the microword as shown in Table
2-11.

2.2.4.2 Virtual Address (VA) File -- The VA file is loaded from
the main ALU and is a duplicate of the VA register on the cache
control sequencer (CCS) module. The VA file holds the virtual
address for a data transfer request to cache memory. If the
request results in a trap (a TB miss, for example), the VA file
contents are used for the repair and retry of the request.

Traps

When a trap occurs, INH VAWR from the trap logic causes the VA
file to hold its current address until the trap routine is ready
to execute. The trap logic also inhibits the VA file bypass during
the first microinstruction of a trap routine, following a trap
shadow.

In the EBox timing, micro-operations can overlap where the VA file
may be physically read first and then written. If a VA read cycle
is requested immediately after a write cycle, the VAWRT signal
selects the VA file write input data through the VA bypass bus.

VII 2-22

2.2.4.3 Trap Shadow Logic -- The trap shadow logic consists of
concatenated latches that cause a delay of 2 1/2 cycles when a
trap occurs. When this logic receives the global microtrap signal
from the 1IBox, it produces a series of signals on succeeding
cycles that are wused during the trap shadow, and on the first
microinstruction of the trap routine.

SLC1 (TWO PC2 MCAS)

FILE ASSTAE
<31:16> H— pcya | -
APORT<7:6> L —d FA MUX PC VA FA<31:16> H
VA WRT H — —— VA FILE<31:30> H
OP CODE FLAG OUT L —d pc.
PC CRY IN H — BACKUP jo—PRO OUT L *
PROP<1:0> L —d PO
PC CTL<1:0> H — TRAP PC
COND BR EN H —
GLOBAL MICROTRAP H —{ TRAP | |NH SDF WR H
SDF WRITE L —d SHADOW | Spr weT L
STALLED A CLK L —d cLock
BClK L —d DIST.

*NOTE: THIS SIGNAL IS PROP<2>
FROM BYTE 2 TO BYTE 3.

SCLD-284

Figure 2-6 Program Counter (PC) Subsystem Block Diagram
(Sheet 1 of 2)

VII 2-23

SLCOo (PC2 AND PC1 MCAS)

VA<15:00> H—
FiLE A<15:00> H— PC VA
APPORT<7:6> L —d FA MUX —— PC VA FA<15:00> H
VA WHT H — — VA FILE<1:0> H
b— VA FILE2<1:0> L
NEW INSTR H—] PC, — OP CODE FLAG OUT L *
— PC CRY IN H *
PC INC<2:0> H—] ggcfxup PAOPT -0 1
PC CTL<1:0> H—— o pg P— SDF WRTIMWRT L
COND BR EN H —
GLOBAL MICROTRAP H — gﬁﬁgow ——INH SDF WR H
SDF WRITE L —< o SDF WRT L
STALLED A CLK L —4 CLOCK
B CLK H,L —] DIST.

*NOTE: THESE SIGNALS ARE ASSERTED FROM
THE SLCG PC1 MCA TO ALL PCS2 MCAS
ON BOTH SLC1 AND SLCO.

SCLD-285

Figure 2-6 Program Counter (PC) Subsystem Block Diagram
(Sheet 2 of 2)

2.2.4.4 Program Counter (PC) -- The PC is incremented with a
value of 0 to 6 as determined by the decoder (DEC) module and is
latched at T4 of the currently executing macroinstruction.

During operation, the PC makes use of the following logical
functions:

e PC Incrementer

° Backup PC

[) Trap PC

° PC Steering Multiplexer

PC Incrementer

The PC is incremented by a value of 0 to 6 by adding the increment
value to the three lowest-order bits. The resulting carry-out,
with any preceding byte boundary propagates, determines whether
PC<07:04>, ©PC<15:08>, PC<23:16>, and/or PC<31:24>, are to be
incremented by 1.

VII 2-24

Backup PC

When a macroexception 1is generated, the PC is restored from the
backup PC to point to the offending op code.

The backup PC points to the op code before the trap PC. The backup
PC is then loaded during T11l to T13 of the first microinstruction
of a new macroinstruction.

The op code flag (NEW INSTR) signals the beginning of a new
macroinstruction. Set during the first cycle of the current
macroinstruction, it enables writing to the backup PC. Clearing
the op <code flag is higher in priority than setting the op code
bit so that the correct PC value is not 1lost if the last
microinstruction of a macroinstruction causes a trap.

Trap PC

If a microtrap occurs, the PC is backed up to its correct state
from the trap PC (just before the beginning of the microcycle
following the one that caused the trap). This is the correct value
for the return to the microinstruction following the one that had
the problem.

When a trap occurs, the hardware forces the PC to be loaded with
the trap PC value during the second microinstruction in the trap
shadow. It then reloads the PC with itself during the third and
final microinstruction in the trap shadow. The hardware and
microcode prevent the PC from being changed so that the return
from trap routine value is not changed.

VII 2-25

PC Steering Multiplexer

The following signals are loaded to the PC through the steering
multiplexer:

e VA Bus

® VA File

® PC

° Backup PC
) Trap PC

Table 2-12 summarizes the five bits that control the multiplexer
in the following priority order:

1. LD PC INC and LD TRAP PC from the trap logic {internal to
the PC MCAs) - Highest

2. COND BR EN from the decoder (DEC)} module
3. E_PCCTRL<1:0> from the microword - Lowest

A microinstruction that 1loads a new value into the PC must not
produce a trap from which there can be a return. (The trap PC
would not hold the correct value.)

To improve performance on conditional branches, the IBox assumes
that the branch will succeed and sets up for the new I-stream by
writing the new address to the VA file. Meanwhile, the microcode
assumes that the branch will fail and proceeds with the
microinstructions in the current sequence. If the branch succeeds,
the 1IBox issues the Trap signal, blocking the results of the
EBox's assumed failure to branch locgic. It alsc issues a
Conditional Branch Successful signal that causes the PC to be
loaded from the VA file instead of the Trap PC.

VII 2-26

Table 2-10

Program Counter (PC) Subsystem
Signal Descriptions

Signal Name

Description

Valid

PC Virtual Address/File A Multiplexer Input/Output Signals

PC VA FA Out
(PC VA FA<31:00> H)

Virtual Address In
(VA<31:00> H)

File A Data In
(FILE A<31:00> BH)

A-Port Control
(APORT<K7:6> L)

VA Write
(VA WRT H)

PC VA FA multiplexer outputs
to the A-side of the main ALU.

Virtual address from the main
ALU VA bus. Valid from T7 to

T9 of the microinstruction that
generates it.

Register file data from the
File A port.

I_APORT<7:6> from the microword
select the PC, VA, or FA for
the main ALU A-side inputs (see
Table 2-11).

E_VAWRT from the microword
selects either the VA file or
VA file bypass when selected
by APORT<7:6> and enables
writes to the VA file (see
Table 2-11).

Virtual Address File Output Signals

VA File MSBs
(VA FILE<31:30> H)

VA File LSBs
(VA FILE<1:0> H)

VA File 2 LSBs
(VA FILE2<1:0> L)

The two most significant bits
(MSBs) are used by the sequencer
(SEQ) module microbranch logic.

The two least significant bits
(LSBs) are used by the IBox for
byte alignment after an IB
flush.

The two least significant bits
(LSBs) are also used by the
shifter (SHR) module for
read/write data byte alignment.

T5

T7

T5

T4

T6

T9

T8

T9

to

to

to

to

to

to

to

|
~J

T7

T6

T8

T1l1

T10

T1l1

VII 2-27

Table 2-10 Program Counter (PC) Subsystem
Signal Descriptions (Cont)

Signal Name Description valid

Program Counter (PC) Input/Ouput Signals

New Instruction OP FLAG H from the decoder T4 to T6
(NEW INSTR H) (DEC) module to the PCl MCA

on SLCO. Flags the op code

location for the next

instruction decode.

Opcode Flag Issued from the PCl MCA on T9 to T11
(OPCODE FLAG OUT L) SICO. Indicates a new

instruction to all PC2 MCAs

and enables writes to the

backup PC.
PC Carry In CARRY OUT from the low order T4 to T6
(PC CRY IN H) 3-bit adder in the PC1l MCA to

all PC2 MCAs. Used with PRO OUT
(PROP<2>) and PROPK1:0> to
increment the next highest
order PC byte by 1.

PC Increment From the IBox only to the PCl T3 to T5
(PC INC<2:0> H) MCA. Selects the increment value

(0 to 6) for the low order

3-bit PC1l adder.

Propogate A PROP bit 1s asserted by a T4 to T6
(PROP<2:0> L) PC2 MCA when all eight PC bits

of the byte are 1.
PC Control E_PCCTL<1:0> from the microword T2 to T4
(PC CTL<1:0> H) select the PC input source.

Used with internal PC MCA

..... matk1a 2.1
Lago.ie 4“;2).

Trap Shadow Input/Output Signals

Conditional From the IBox. Used with the T10 to T12
Branch Enable GLOBAL MICROTRAP signal to
(COND BR EN H) indicate that a conditional

branch is to be taken. The new
PC value is loaded from the VA
file instead of the trap PC.

VII 2-28

Table 2-10

Program Counter (PC) Subsystem

Signal Descriptions (Cont)

Signal Name

Description

Valid

Global Microtrap
(GLOBAL MICROTRAP H)

Inhibit SDF Write
(INH SDF WR H)

Write Control Signals

SDF Write 1In
(SDF WRITE L)

TRAP SIGNAL H from the IBox is
valid from T10 to T12 of the
microinstruction that caused

the trap. Causes the following
PC MCA functions to occur during
a trap shadow:

1. The PC is loaded with

Tl10 to T12

the

contents of the trap PC during
the second microinstruction in
the trap shadow. Valid from T11

to T13.

2. VA file bypass is inhibited so
that the first microinstruction
of a trap routine can access the
VA file contents. Valid from T12

to T14.

3. The PC is loaded with

an

incremented value. Valid from

T13 to T15.

A write to the VA file and backup

PC are also inhibited during the
trapping microinstruction and
during the trap shadow. Valid
from T10 to T15.

Asserted to the PAR MCAs during
a trap shadow to preserve the
pretrap values of the parity
error registers, carry save
latch, and FP carry selection
latch. Vvalid from T1l1 to T16

of the microinstruction that
caused the trap.

to the Slow Data File (SDF)

SD WRT EN from the IBox goes to

Tll to T16

the SDF logic for each slice where
it is delayed 1 cycle. The output,
SDF WRITE, is asserted to the trap
logic of both PC MCAs (on the same
slice) and is valid from T8 to T10.

VII 2-29

Table 2-10 Program Counter (PC) Subsystem
Signal Descriptions (Cont)

Signal Name Description Valid
SDF Write Out In each PC MCA, SDF WRITE is gated
(SDF WRT L) with the negated state of GLOBAL

SDF Write

MICROTRAP to obtain the SDF WRT
output signal. In the SDF logic for
each slice, SDF WRT selects either
the fast or slow address for a
write or read of the SDF RAM. Valid
from T8 to T10.

From the SDF logic, SDF WRT is

(SDF WR L) asserted as SDF WR to the
slice clock logic. There it is ANDed
with A CLK to form the write clock
(SDF WR CLK L) for the SDF RAM.
Valid from T8 to T10.

With GLOBAL MICROTRAP asserted, SDF
WRT and SDF WR are inhibited for
three cycles, blocking SDF writes
during a trapping microinstruction
and trap shadow. Valid from T10 to
T15. ‘

Table 2-11 E_VAWRT and I_APORT<7:6> Control of
PC VA FA Multiplexer Input Selection

I APORT These Inputs are

E_VAWRT <7 6> Gated to the Outputs
- 0 O PC

0 0 1 VA File

1 0 1 VA File Bypass

- 1 0 File A Data

Table 2-12 PC Multiplexer Input Selection
PC Multiplexer Select Signals

COND PC CTL LD TRAP LD PC

BR EN <1 0> PC INC Selected Input
- 0 0 0 0 Incremented PC
- 0] 1 0 0 VA Bus

- 1 0 0 0 Backup PC

- - - 0 1 Incremented PC
0 - - 1 - Trap PC

1 - - 1 - VA File

2.2.,5 Cache Data Path (CDP)
The cache memory section of the CBox consists of the following
three main logical groups:

1. Cache Tag Store (CTS)
2. Cache Tag Valids (CTV)
3. Cache Data Path (CDP)

While logically part of the cache memory logic, the cache data
path (CDP) group is physically located on the EBox slice modules.
For further information on cache memory functions, refer to the
CBox section of this manual.

Figure 2-7 is a block diagram of the CDP logic which contains the
following elements:

° Cache Data Buffer (CDBF) MCA logic

) Cache Data Store (CDS) RAM logic
2.2.5.1 Cache Data Buffer (CDBF) -- Each slice module contains
two cach data buffer (CDBF) MCAs (Figure 2-7, Sheet 1), each of

which passes one byte of memory or CPU data and parity to or from
the CDS RAM.

Table 2-13 describes the CDBF input and output signals.

The CDBF MCAs make up the following data path registers:
) Write Data Buffer One longword and byte parity
° Delay-Write Buffer One longword and byte parity

° Write Buffer/Output Buffer One octaword (four longwords,
each). with byte parity

Write Data Buffer
The write data buffer consists of a B-latch that drives the write

data (WR DATA) bus with data received from one of the following
sources:

° The MD bus from the IBox
° The W bus from the slice PAR logic
° The W bus, delayed one cycle by the delay-write buffer

VII 2-31

Delay-Write Buffer

The delay-write buffer receives write bus (W BUS) data from the
slice PAR logic, passing it to the write data buffer and write
buffer.

Write Buffer/Output Buffer

Four 36-bit buffers (data and parity) act as a small cache for
writes to the same octaword. The write buffer (all four
longwords) 1is parallel-loaded to the output buffer, which drives
the MD BUS lines.

CACHE DATA BUFFER (CDBF) MCA
(TWO PER SLICE)

MD BUS PTY IN<3:0> H —

MD BUS33 IN H \ .
(|N) MD BUS<30:00> H _’ DLY WR — WR RAM DATA PTY<3:0> H
WBUS PTY<3:0> H —{ BUF AND |— WR DATA<31:00> H
WBUS<31:00> H — WR DATA | wR DAT, Y<3:
B-LATCH DATA PTY<3:0> H
DLY WR LD H —
WR SEL<1:0> H — | .
WR CDS<3:0> L —d CDP PTY ERR<3:0> H
MD BUS WR EN H — L MD BUS PTY OUT<3:0> H
WBUF WR ADD<1:0> H MD BUS33 OUT H
WBUF WREN<3:0> H — WR BUF >
LD WR BUF L —d AND —3p MD BUS<30:00> H (OUT)
OUT BUF
LD OUT BUF H —]

RD ADD<1:0> H —
DLY WR MUX SEL<3:0> H —EDP QUT | o0 obl 105 H

MUX SEL
A CLK H —™¢ 6ck
B CLK H—{ DIST.

SCLD-286

Figure 2-7 Cache Data Path (CDP) Block Diagram (Sheet 1 of 2)

VII 2-32

CACHE DATA STORE (CDS) MCA
16K X 18 BITS PER SLICE

WR DATA PTY<3:0> H -
A IB MD CD PTY<3:0> H,
WR DATA<31:00> H LAT|{ —iIB MD CD<31:00> H
. 2
WR RAM DATA PTY<3:0> H—{ CDS RAM L’
16K X 36
A CD PAR<3:0> H,
WR CDS<3:0> L |
PA1<15:09> H — ‘T/
PA2<15:09> H — ADDRESS
PA<08:02> H —]
A CLK L —{ CLOCK
B CLK L — DIST
WCLK H,L ’

CACHE BYPASS H —|
OUT SEL <1:0> H_| DOFAOUT
DLY WA HIT SLGC<1:05 L

SCLD-287

Figure 2-7 Cache Data Path (CDP) Block Diagram (Sheet 2 of 2)

2.2.5.2 Cache Data Store (CDS) -- Each slice module contains one
16K X 18-bit CDS RAM set (Figure 2-7, Sheet 2) that stores and/or
passes two bytes of memory read/write data and byte parity.

Table 2-14 describes the CDS RAM logic signals. The logic
consists of the following elements:

® CDS RAM memory, 32K X 36 bits

° Two sets of data/bypass multiplexers, one of which uses
A-latched outputs.

Table 2-15 shows the control signal functions for the cache data
output multiplexers.

VII 2-33

Table 2-13 Cache Data Buffer (CDBF) Signal Description

Signal Name Description

Write Data B-Latch Outputs

Write Data Carries the write data B-latch contents

(WR DATA<K31:00> H) to the CDS RAM and to the EBox and
IBox. The B-latch is loaded from one
of the following data sources
(depending on the states of WR
SEL<1:0>):

- The received W BUS value

- The delay-write buffer

- The received MD BUS value from the
CBox

Write RAM Data Parity Carries the write data B-latch byte

(WR RAM DATA PTY<3:0> H) parity bits to the CDS RAM. These
B-latch bits are loaded with the byte
parity value from the selected data

source.
Write Data Parity With WR CDS<3:0> negated, byte parity
(WR DATA PTY<3:0> H) errors are inhibited from CDP PTY

ERR<3:0>. Byte parity is generated on
the B-latch contents and asserted on WR
DATA PTY<3:0> to the EBox and IBox.

With any WR CDS<3:0> bits asserted, the
selected write data B-latch byte parity
bits are asserted on WR DATA PTY<3:0>.

Byte parity errors are reported on CDP

PTY ERR<3:0>.

CDP Parity Error Byte parity is generated on the B-latch

(CDP PTY ERR<3:0> H) contents and compared with the byte
parity bits from the data source. With
any WR CDS<3:0> bits asserted, selected
byte parity errors are reported on CDP
PTY ERR<3:0>.

VII 2-34

Table 2-13 Cache Data Buffer (CDBF) Signal Description (Cont)

Signal Name

Description

Inputs to the Delay-Write Buffer and Write Data B-Latch

Memory Data Bus 33
(MD BUS33 IN H)

Memory Data Bus (In)
(MD BUS<30:00> H)

Memory Data Bus Parity
(MD BUS PTY IN<3:0> H)

Write Bus Data
(W BUS<31:00> H)

Write Bus Parity
(W BUS PTY<3:0> H)

Delay Write Load
(DLY WR LD H)

Asserted from the CBox to bit <31> of
the write data B-latch. From there, it
is written to the CDS RAM as WR
DATA<K31>.

The bidirectional lines pass memory
data from the CBox to the write data
B-latch.

Memory data parity from the CBox is
passed to the write data B-latch.

ALU data asserted by the PAR logic is
received on the W bus and is asserted
to the write data B-latch and the
delay-write buffer.

The delay-write buffer is asserted to
the write data B-latch and the write
buffer.

Byte parity generated by the PAR logic
(on the ALU data) is received on the W
bus. It is asserted to the write data
B-latch and the delay-write buffer
along with the write data.

The delay-write buffer parity bits are
asserted to the write data B-latch and
the write buffer along with the write
data.

Asserted, causes received W BUS data to
be clocked to the delay-write buffer.
It is written on the following cycle to
the write data B-latch or the write
buffer.

VII 2-35

Table 2-13 Cache Data Buffer (CDBF) Signal Description (Cont)

Signal Name

Description

Write Select
(WR SEL<1:0> H)

Write Cache Data Store
(WR CDS<3:0> L)

Output Buffer Outputs

Memory Data Bus 33
(MD BUS33 OUT H)

Memory Data Bus (Out)
(MD BUS<30:00> H)

Memory Data Bus Parity
(MD BUS PTY 0UT<3:0> H)

Select one of the following data and
parity input sources for the write data
B-latch:

WR SEL

<1 0> Data Source

0 O Delay-write buffer
- 1 MD bus

1 0 W bus

From there, the data is written to CDS
RAM or passed to the IBox.

Control parity checking on writes to
CDS RAM.

Negated, byte parity generated on the
B-latch contents is asserted on WR DATA
PTY<3:0>. Byte parity errors are
inhibited from CDP PTY ERR<3:0>.

Asserted, the write data B-latch byte
parity bits are asserted on WR DATA
PTY<3:0>. Byte parity errors are
reported on CDP PTY ERR<3:0>.

Asserted from bit <31> of the output
buffer to the CBox.

The bidirectional lines pass data from
the output buffer to the CBox.

Byte parity from the output buffer is
passed to the CBox.

VII 2-36

Table 2-13 Cache Data Buffer (CDBF) Signal Description (Cont)

Signal Name

Description

Write Buffer and Output Buffer Inputs

MD Bus Write Enable
(MD BUS WR EN H)

Write Buffer Write
Address
(WBUF WR ADDK1:0> H)

Write Buffer Write
Enable
(WBUF WREN<3:0> H)

Load VWrite Buffer
(LD WR BUF L)

Load Output Buffer
(LD OUT BUF H)

Read Address
(RD ADDK1:0> H)

Asserted, enables the MD bus drivers
for the output buffer. The data and
parity bits are passed on the MD BUS to
the NMI data paths in the CBox.

Selects one of four 32-bit write buffer
registers for a write operation.
(Selects the longword within an
octaword as specified by PA<3:2>.)

Write buffer byte mask. Enables valid
bytes to be written from the
delay-write buffer to the selected
write buffer.

Writes selected write buffer bytes from
the delay-write buffer during A CLK.

Causes all four write buffers to be
written to the output buffers one A CLK
after a write to the selected write
buffer. Deasserted, causes output
buffer data to be held for writing to
the NMI through the NMI data paths in
the CBox.

Selects one of four 32-bit output
buffers for assertion on the MD BUS to
the NMI data paths in the CBox.

CDP Output Multiplexer Control

Delay Write
Multiplexer Select
(DLY WR MUX SEL<3:0> H)

Passed as the signals Output Select A
for slice 1 (OUT SEL A<1:0>) and Output
Select B for slice 0 (OUT SEL B<1:0>)
to the CDS RAM output multiplexer.
These bits are driven by the cache
write valids. Used with DLY WR HIT SLC
to make delay write hit/read cycles
work in one cycle (see Table 2-14).

VIiI 2-37

Table 2-14 Cache Data Store (CDS) Signal Description

Signal Name

Description

CDS Multiplexer Output Signals

Cache Data Bus
(IB MD CD<31:00> H)

Cache Data Bus Parity
(IB MD CD PTY<31:00> H)

Cache Data Bus A
(A CD<31:00> H)

Cache Data Bus A Parity
(A CD<31:00> H)

The CDS RAM data outputs are output
through an A-latch multiplexer to the
IBox and the register file.

Write data from the WR DATA bus is
asserted for a bypass when a write is
immediately followed by a read to the
same location.

The CDS RAM parity ocutputs are output
through an A-latch multiplexer to the
IBox and the register file along with
the data.

Parity from the WR DATA bus is asserted
for a bypass when a write is
immediately followed by a read to the
same location.

The CDS RAM data outputs are
multiplexed and passed unlatched to the
A-side and B-side of the main ALU first
half (ALF).

Write data from the WR DATA bus is
asserted for a bypass when a write is
immediately followed by a read to the
same location.

The CDS RAM parity outputs are
multiplexed and passed unlatched to the
A-side and B-side of the main ALU first
half (ALF).

Parity from the WR DATA bus is asserted
for a bypass when a write is
immediately followed by a read to the
same location.

Table 2-14 Cache Data Store (CDS) Signal Description (Cont)

Signal Name

Description

CDS RAM and RAM Logic Input Signals

Write Data
(WR DATA<K31:00> H)

Write RAM Data
Parity (WR RAM DATA
PTY<3:0> H)

Write Data Parity
(WR DATA PTY<3:0> H)

Slice Physical
Address Select
(SLC PA SEL H)

Wirite CDS
(WR CDS<3:0> L)

Physical Address 1
(PA1<15:09> H)

Physical Address 2
(PA2<15:09> H)

Physical Address
(PA<08:02> H)

Passes the write data B-latch contents
from the CDBF to the CDS RAM and the
output multiplexers (see Table 2-13).

Passes the write data B-latch byte
parity bits from the CDBF to the CDS
RAM,

Passes the write data B-latch byte
parity bits, or the byte parity
generated on the write data B-latch
contents, from the CDBF to the output
multiplexers. (See the WR CDS<3:0>
description, Table 2-13.)

Negated, the PA2<15:09> PABH address is
selected for addressing the CDS RAM.

Asserted, the PA1<15:09> and PAK08:02>
fast TB addresses are selected for
addressing the CDS RAM.

Used with write clock (W CLK) to
produce the byte write pulses for CDS
RAM,

Physical address bits <15:09> from the
physical address high buffer (PAHB) in
the translation buffer (TB).

Physical address bits <15:09> from the
fast address register.

Bits <08:02> of the virtual address
latch from the fast address register.

VII 2-39

Table 2-14 Cache Data Store (CDS) Signal Description (Cont)

Signal Name

Output Multiplexer Control

Description

CACHE BYPASS H

Delay Write Hit Slice

(DLY WR HIT SLC L)

Output Select A/B
(OUT SEL <1:0> H)

Asserted, enables WR DATA bus inputs
directly to the output multiplexers.
Passes CDS RAM write data from the W
BUS to the IBox.

Asserted for the slice on a match
between delay-write address bits
<15:02> and the corresponding address
of the current cycle. Used with DLY WR
MUX SEL to assert read data from the
delay-write buffer instead of CDS RAM
when a write is followed by a read to
the same location (cache is not yet
updated). Enables the WR DATA bus
inputs directly to the output
multiplexers (valid only when OUT SEL
A,B<1:0> equals 01).

Selects WR DATA bus or CDS RAM data for
output from the CDS output
multiplexers. OUT SEL<K1> controls the
upper byte and OUT SEL<0> controls the
lower byte for each slice (see Table
2-15).

Table 2-15 CDS Output Multiplexer Control for Each Slice

Selected Input Asserted from

CACHE DLY WRT OUT SEL the Multiplexer Output Bytes
BYPASS HIT SLC <1> <0> Upper Mux Byte Lower Mux Byte
0 0 - - CDS RAM Data CDS RAM Data

0 1 0 0 CDS RAM Data CDS RAM Data

0 1 0 1 CDS RAM Data WR DATA Bus

0 1 1 0 WR DATA Bus CDS RAM Data

0 1 1 1 WR DATA Bus WR DATA Bus

1 - - - WR DATA Bus WR DATA Bus

VII 2-49

2.2.6 Main Arithmetic Logic Unit (Main ALU)
Figure 2-8 shows the main ALU 1logic, which consists of the
following two types of MCAs:

1. ALU PFirst Half (ALF) Four ALF MCAs per slice. Each
process 4 bits (1 nibble) of data,
passing a partial result to the
ALS along with carry propagate/-
generate information.

2. ALU Second Half (ALS) Two ALS MCAs per slice. Each
process 1 byte of data, completing
an arithmetic function and output-
ting the final result.

Table 2-16 describes the ALF input/output and control signals.
Table 2-17 describes the ALS input/output and control signals.

2.2.6.1 ALU First Half (ALF) -- The ALF stage processes the first
part of an add (ADD) or subtract (SUB) operation. It passes a
partial result to the ALS along with the carry generate/propagate
information the ALS uses to complete the operation. Each pair of
ALF chips passes nibble parity to an ALS chip, which combines the

bits to form byte parity.

The following buses apply data to the A-side and/or the B-side of
the ALF, where the data is internally latched and selected:

PC VA FA Bus RGF File A data, virtual address, or program
counter information is preselected in the PC
subsystem and applied to the A-side.

A CD Bus Data coming from the W bus or MD bus for
writing to cache, bypasses the cache data
store (CDS) and is applied to the A-side and

B-side.

BP Bus Bypass bus data is applied to the A-side and
B-side.

IB Data Bus Instruction Buffer information is applied to

the A-side and B-side.

FB SDF Bus RGF File B or SDF data is preselected by a
multiplexer and applied to the B-side.

VII 2-41

A-Side Input Select (ASEL<1:0>)

Each pair of the port control bits (PORT CNTL<11:10><09:08>
<03:02><01:00> from the bus watcher MCA on the DEC module) selects
one A-bit field on the A-side of an ALF MCA as shown in Table
2-18.

B-Side Input Select (BSELK1:0>)

Each pair of the port control bits (PORT CNTL<15:14><13:12>
<07:06><05:04> from the bus watcher MCA on the DEC module) selects
one 4-bit field on the B-side of an ALF MCA as shown in Table
2-19, BSEL<2> (EBRDMODE from the microword) selects data from
either the RGF File B or SDF lines.

Stalls

All of the main ALU A latches may be stalled except for the A CD
bus input latches. The bus watcher MCA on the DEC module asserts
the cache data ready (CD READY) and memory data register valid (MD
VALID) signals while the cache data valid (CD VALID) signal is
asserted by cache. As shown in Table 2-20, these signals are
encoded into the KEEPGOING signal, which determines whether the CD
latches stall for either side while the other side is waiting for
data. They also determine when the stall will be released.

VIT 2-42

EV—¢ 11A

ALU FIRST HALF (ALF) MCAS
(FOUR PER SLICE)

| APORT PAR<7:0> H,
APORT DATA<31:00> H

— APS<31:00> H

|— BPS<31:00> H

BPORT PAR<7:0> H,
[BPORT DATA<31:00> H

jo— PNIB<3:0> L
b— GNIB1<3:0> L

o— GNIB2<3:0> L

ALU SECOND HALF (ALS) MCAS
(TWO PER SLICE)

APS<31:00> H ——

VA PAR<3:1> H,

— VA<31:00> H
BPS<31:00> H — IR
PNIB<3:0> L —0|
GNIB<3:0> L —o | CBIT<2:0> H
CIN H —
PMOD<1:0> L ——0 — VBIT<2:0> H
GMOD<1:0> L —o | FpoP H

BPOUT EN H —
E_ALU<5:0> H
MOD NUM L —

PORT CNTL
11:08 : H —
< ,03:00> A-SIDE
PC VA FA<31:00> H —]
A CD<31:00> H —
BP BUS<31:00> H —]
FILE B 1
<31:00> H IB DATA<31:00> L —Q
PORT CNTL N
SDF<31:00> H o <15:12,07:04> H— B-SIDE
' E_ALUCON H —
E_ALU<5:0> H —] FUNC.
B RD MODE L LA DCDR
EFF SUB H —
STALLED A CLK L —(
ACLK L —d CLOCK
BCLKL_d DIST.
KEEPGOING<1:0> H —
Figure 2-8

PNiB<3:0> L —

GNIiB1<3:0> L —f

GNIB2<3:0> L —q

LOOK-
AHEAD

BOK

CHECK

STALLED CLK L —o0 CLOCK
B CLK L—o| PIST.

— GMOD<1:0> H

— PMOD<1:0> H

|— BCD DIGIT OK<1:0> H

Main Arithmetic Logic Unit
(Main ALU) Block Diagram

— FAST NORM BIT H

SCLD-288

2.2.6.2 Main ALU Functions -- The main ALU 1logic performs
addition (ADD) and subtraction (SUB) of the following types of
numbers:

® Integer
° Floating-Point
° Packed Decimal

ALU Function Control

Table 2-21 1lists the ALU functions that take place under control
of EALU<5:0> from the microword and are used to perform the
following kinds of operations:

° Performs a floating-point mask of A-side data.
® Generates Integer and Floating-Point carries.
° Generates Overflow (V) and Carry (C) condition code bits

on byte, word, and longword boundaries (ignored by the
microcode if not relevant).

) Generates nibble parity on A-side and B-side data, which
is checked against the source input data parity in the
PAR.

) Outputs the ALU data or result on the VA bus and BP bus

(when enabled by BPOUT EN).

Table 2-16 ALU First Half (ALF) Signal Descriptions

Signal Name Description Valid
Data Output Signals - A-Side
A Partial Sum Passes a partial A-side sum to T6 to T8
(APS<31:00> H) the ALS on the same slice.
A Port Data Passes the selected A-side input T6 to T8
(APORT DATA<31:00> H) data to the shifter (SHR) module.
A Port Parity Passes nibble parity generated on T6 to T8
(APORT PARK7:0> H) the selected A-side input data to

the PAR on the same slice.
Data Output Signals - B-Side
B Partial Sum Passes a partial B-side sum to T6 to T8
(BPS<31:00> H) the ALS on the same slice.
B Port Data Passes the selected B-side input T6 to T8
(BPORT DATA<31:00> H) data to the shifter (SHR) module.
B Port Parity Passes nibble parity generated on T6 to T8
(BPORT PARK7:0> H) the selected B-side input data to

the PAR on the same slice.
Data Input Signals - A-Side
PC Multiplexer From the PC subsystem to the T5 to T7
(PC VA FA<31:00> H) A-side, selects PC, VA, or FA

information (see Table 2-11).
Data Input Signals - B-Side
File B/Slow Data File Multiplexed data from the RGF T5 to T7

(FB SDF<31:00> H) File B or SDF data outputs,
selected by B RD MODE (EBPORT<8>
from the microword (see Table 2-19).

VII 2-45

Table 2-16 ALU First Half (ALF) Signal Descriptions (Cont)

Signal Name Description valid

Data Input Signals - A-Side and B-Side

A Cache Data From the unlatched CD multiplexer. T5 to
(A CD<31:00> H) Inputs cache read data or cache

write/read bypass data.
Bypass Bus Driven by the ALS or an ALU on the T5 to
(BP BUS<31:00> H) SHR module; inputs to the PAR to

become the W bus. Inputs directly
to the ALF in order to bypass the
W bus when accepting data from the

SHR.
IB Data Bus Instruction buffer operand data T5 to
(IB DATA<31:00> L) from the IBox.
Control Input Signals
ALU Port Control A-Side -- Each pair of the PORT TS to

{(PORT CNTL<15:00> H) CNTL bits <11:10><09:08><03:02>
<01:00> from the DEC module selects
the A-side byte inputs for the slice.
(ASEL<3:2,1:0>, see Table 2-18.)

B-Side -- Each pair of the PORT T5 to
CNTL bits <15:14><13:12><07:06>

<05:04> from the DEC module selects

the byte inputs for the slice.
(BSEL<3:2,1:0>). B RD MODE is

EBPORT<8> from the microword

(see Table 2-19).

ALU Constant EALUCON from the microword, when T5 to
(EALUCON H) asserted, forces a constant of 4
to be read by the least significant
nibble on the B-side and a value of
0 by all other ALF MCAs. (A value
of 0000 0004 is read from the B-side
instead of the data input value.)

T7

T7

T7

T7

T7

T7

/1T 2-46

Table 2-16 ALU First Half (ALF) Signal Descriptions (Cont)

Signal Name Description Valid
Function Decode Signals
ALU Function Control EALU<3:0> from the microword T5 to T7
(EALUK3:0> H) control the ALF partial sum
functions in conjunction with
the ALS functions (see Table 2-21).
Effective Subtract Indicates a Floating-Point Shuffle T5 to T7
(EFF SUB H) (FPS) operation. A special case
that converts an FP add to a
subtract in the ALF partial sum.
Generate Nibble Nibble carry generates to the ALS T6 to T8
(GNIB<3:0> L) look~-ahead logic on the same slice.
Propagate Nibble Nibble carry propagates to the ALS T6 to T8
{(PNIB<3:0> L) look-ahead logic on the same slice.
Generate Module Cross-module word carry generates T6 to T8
(GMOD<1:0> H) to the ALS MCAs on the other slice.
(GMOD<1:0> are a fanout of the same
signal.)
Propagate Module Cross-module word carry propagates T6 to T8
(PMODK1:0> H) to the ALS MCAs on the other slice.
(PMOD<1:0> are a fanout of the same
signal.)
BCD DIGIT OK <1:0> H Indicates that the nibble contains T6 to T8
a valid decimal digit.
Clock Distribution Control
KEEPGOING<1:0> H Asserted during a stall. Holds T6 to T8

the A-side or B-side A CLK

latches open until the expected data

is available.

VIl 2-47

Table 2-17

ALU Second Half (ALS) Signal Descriptions

Signal Name Description valid
Output Signals
Virtual Address Bus Virtual address to the Cbox. T7 to T9
(VA<31:00> H)
Virtual Address Parity Virtual address parity to the T7 to T9
(VA PAR<3:0> H) Cbox.
Bypass Bus Bypass bus data from the ALS T7 to T9
(BP<31:00> H) or the SHR module inputs directly

to the PAR and ALF MCAs.
Carry Bits Carry (C) bits from ALF bits T7 to TO
(CBIT<2:0> H) <31,15,07>.
Overflow Bits Overflow (0O) bits calculated on T7 to T9
(VBIT<2:0> H) byte, word, and longword

boundaries.
Floating-Point Opcode Indicates that the current T6 to T8
(FPOP H) instruction is floating-point.

Controls the carry save logic

in the next higher byte PAR MCA

on the same slice.
Fast Normalize Bit (FAST NORM BIT H)
Input Signals
A Partial Sum Partial sum nibble inputs from T6 to T8
(APS<31:00> H) the ALF A-side.
B Partial Sum Partial sum nibble inputs from T6 to T8
(BPS<31:00> H) the ALF B-side.
Carry In Carry input from the next lower Té6 to T8
(CIN H) byte PAR MCA on the same slice.
Bypass Output Enable EALENBP from the microword. T6 to T8
(BPOUT EN H) Enables the selected ALS outputs

to the bypass bus.
ALU Function Control EALU<5:0> from the microword. T5 to T7

(ALU<5:0> H)

Module Number
(MOD NUM L)

Selects the ALU function to be
performed (see Table 2-21).

Hardwired high or low.
the slice for each ALS MCA.

Identifies

VII 2-48

Table 2-18 A-~-Side Select (ASEL) Input Control Signals

ASEL Bits

<3,1> <2,0> Selected Input Data
0 0 PC VA FA Bus

0 1 IB DATA Bus

1 0 BP Bus

1 1 A CD Bus

Table 2-19 B-Side Select (BSEL) Input Control Signals

B RD BSEL Bits

MODE<2> <3,1> <2,0> Selected Input Data
0 0 0 SDF data

1 0 0 RGF File B data

- 0 1 IB DATA bus data

- 1 0 BP Bus data

- 1 1 A CD Bus data

Table 2-20 Keepgoing/Stall Conditions

Input Conditions

CD Valid CD Ready MD Vaiid Keepgoing State*
- 0 0 1
0 - 0 1
- - 1 0
1 1 - 0

*

Note: 1 = Keepgoing, 0 = Stall.

VII 2-49

Table 2-21 EALU<5:0> Field Control of the Main ALU

EALU<5:0> ALF Results
Value General ALU Function APS BPS Carry Enable
00 A+B+Carry (FP, no mask) AorB -(AandB) APSandBPS, 1
01 A+B+Carry (F & D mask) AcrB - (AandB) APSandBPS, 1
02 A+B+Carry (G mask) AorB - (AandB) APSandBPS, 1
03 A+B+Carry (H mask) AorB -(AandB) APSandBPS, 1
04 A-B-1+Carry - (-AandB) -(Aand-B) APSandBPS, 1

(FP, no mask)
05 A-B-1+Carry -(-AandB) -(Aand-B) APSandBPS, 1

(F & D mask)
06 A-B-1+Carry (G mask) - (-AandB) -(Aand-B) APSandBPS, 1
07 A-B-1+Carry (H mask} - {-AandB) -(Aand-B) APSandBPS; 1
OF 2's Compl. A -A F APSandBPS, 1

(0-A-1+Carry)
10 A+B+Carry Integer AorB -(AandB) APSandBPS, 1
14 A-B-1+Carry Integer - (-AandB) -(Aand-B) APSandBPS, 1
18 BCD 1lst Cycle Add - - - - APSandBPS, 1
1A Inc A (A+Carry) A F APSandBPS, 1
1C Inc B (B+Carry) B F APSandBPS, 1
1D B-A-1l+Carry Integer -(Aand-B) -(-AandB) APSandBPS, 1
1E BCD ist Cycle Sub - - - - AP5andBP3, 1
20 AcrB AorB -(AandB) APS , 0O
24 notAandB - (-AandB) - (Aand-B) -APS , 0
2Aa Pass A A F APS , 0
2B BCD 2nd Cycle AorB - (AandB) APS ;1
2C Pass B B £ APS , 0
2D Aand.notB - (Aand-B) -(-AandB) -APS , 0
2F notA -A F APS , 0
30 AandB AorB -{AandB) -BPS , 0
39 AxorB AorB -(AandB) APSandBPS, O
3A Force VA parity to 0 A F APSVA PAR=0, 0
3C Clear B F -BPS , 0
3F Dec. A (A-Carry) -a F -APS 1

VII

2-50

2.3 SHIFTER MODULE (SHR) DESCRIPTION

The SHR is a functional extension of the slice modules, providing
additional ALUs and MCA operators that are connected in parallel
with the main ALU on the SLC modules. The SHR processes a 32 or
64-bit operand on the APORT/BPORT lines and returns a 16 or 32-bit
result on the bypass (BP) bus. Figure 2-9 identifies the logical
operators provided by the SHR:

° Shifter (SHF)
® Floating-Point (FP) Support

- Priority Encoder (PEN)
- Shift ALU (SALU)
- Exponent ALU (XALU)

° Multiplier/Divider (MULT)

2.3.1 Shifter (SHF)
The shifter (SHF) contains two types of MCA logic. Figure 2-10

R 3 AM A 14 m\ 1 3 -t AMOA
shows the shift MCA (SHFT) logic s g

logic, which consists of eight MCAs.
It also shows the output gating that drives the BP bus lines
through a set of NOR gates located on the SHR module. Figure 2-11
shows the shift control MCA (SHC) signals and two other signals
from the microcode that control the SHFT MCAs. The SHF shifts
integer or floating-point data and provides several other
functions, one of which is to perform direct conversions between
some of the decimal string formats. Its main hardware functions

perform the following operations:

Logical Shift or Rotate
Arithmetic Shift

Decimal String Conversion
FP Normalize

FP Align

The SHF mainly processes 64-bit operands but has several functions
that also apply to 32-bit operands. Only a 32-bit output is
available. For 32-bit data, the result 1is selected for the
operand applied to the APORT or BPORT. For 64-bit data, the upper
and lower 32 bits of the result are gated to the BP bus on
different cycles.

VII 2-51

BP BUS «

APORT

BPORT

UCODE
SHFTCNT
BUS

Figure 2-9

<31,07,
05:00> SHIFTCD
»| SHIFTER | sHIFTAB
(SHF) =
—
SHFTCNT A LATCH
< SHFTCNT BUS
_»{ PRIORITY [—23:16> —
<25:24>, | ENCODER
P! (PEN)
— b
> SHIFT
ALU
pl (SALU)
L »] EXPONENT
ALU XALU OUT
P (XALU)
»
L | MULTIPLIER/
DIVIDER MULTRES
(MULT)
>

SCLD-289

Shifter Module (SHR) Block Diagram

VII 2-52

SHIFTER MCAS (SHFT)

. SHIFTAB1<31:24> L

OR GATES (SHFT) NOR GATES (SHR)

APORT<31:24> H

BPORT<31:24> H

| SHIFTAB1<15:08> L

MCA 0

o— BCD ZONE OK2 L

SHIFTAB2<23:16> L

SHIFTAB<31:24> L
BP BUS<31:24> H
SHIFTCD<31:24> L

MCA 1 SHIFTAB2<07:00> L

—

SHIFTAB<23:16> L
SHIFTCD<23:16> LﬂD‘BP BUS<23:16> H

_WIFTAB<1S:OB> L
SH'FTCB<’53°8>ﬂ:D7 BP BUS<15:08> H

|, SHIFTAB1<23:16> L

APORT<23:16> H

McA 2b SHIFTAB1<07:00> L

SHIFTAB<07:00> L
F SHIFTCD<07:00> LﬂD' BP BUS<07:00> H

BPORT<23:16> H

>— BCD ZONE OK1 L

|, SHIFTAB2<15:08> L

APORT<15:08> H

SHIFTAB2<31:24> L

MCA 3

SHIFTCD1<15:08> L

BCD ZONE OKzZ L

BCD ZONE OK H
BCD ZONE OK1 L
BCD ZONE OK3 L

McA 4b SHIFTCD1<31:24> L

OR GATES (SHFT)

BPORT<«15:08> H

P— BCD ZONE OK2 L

SHIFTCD2<07:00> L

SHIFTCD2<23:16> L

SHIFTCD<31:24> L

MCA 5

b

|, SHIFTCD1<07:00> L

APORT<07:00> H

BPORT<07:00> H

|, SHIFTCD1<23:16> L

SHIFTCD<23:16> L

@o— SHIFTCD<15:08> L

0

MCA 6

p— BCD ZONE OK3 L

SHIFTCD2<31:24> L

SHIFTCD<07:00> L

Figure 2-10

SHIFTCD2<15:08> L

SCLD-290

Shift MCA (SHFT) Logic and Gating Block Diagram

VII 2-53

E_SHFTFPOUT<1:0>H
E_FPFORMAT<1:0> H

B
>

TO ALL SHFT MCAS

>

APORT<16> H —

SIGN A
BYPASS BUS<31> H——
BLOCKEDWRITE<O> H —
SELECT
—— SHFTCNT A
SHIFT CNT BUS<5:0> EgclaFl(T: COUNT LATCH<4:1> H
BYPASS BUS<05:00> H ——
E_SHFTCNTEN<2:0> H——
BYPASS BUS<07:06,04:03> H—— SHFTCNT A
FAST NORM BIT H— FAST NORM LATCH<0> H
E_FPFORMAT<1> H——| SHIFT SEL
EFFECTIVE suB L —O —— SA<0> H
E_SHFTSEL H—— —— MSEL (A0:D0)<1> H
MUXSEL O— MSEL (A0:D0)<0> L
L MSEL (A1:D1)<1> H
LOGIC
O—— MSEL (A1:D1)<0> L
GTR OPERAND L Q
—— RIGHT H
O— BCD L
E_SHFT<4:0> H—] —— FORCE ONES H
FUNCTION | —— FORCE ZERO H
E_MULDEN H-—— DECODE y— AL T1 L
LGESHFT H— LOGIC

—— ZER EXTND BYTE H
lO—— ENBLRND L

STALLED A CLK H—

B CLK H—

SCLD-291

Figure 2-11 Shift Control MCA (SHC) Block Diagram

VIT 2-54

2.3.1.1 sShift Count Bus -- The shift count bus (SHIFT CNT
BUS<5:0>) is a wire-OR of the three sets of signals shown in
Figure 2-12. These signals are described in Table 2-22.

Table 2-22 shift Count Bus Signals and Source

Signal Bus Name Source of the Shift Count/Amount
SALU SHIFT CNT BUS<5:0> Six bits from the SALU.

PE SHIFT CNT BUS<3:0> Four bits from the PEN.

UCODE SHIFT CNT BUS<5:0> Six bits from the microcode (the

complement of ESHFTCNT<5:0>) or from
the virtual address byte selection
bits (VAK1:0>) when enabled by
ESHFTCNTEN<2:1>,

VA<1:0> are passed to shift count
bits <4:3> (the remaining bits
<5,2:0> are asserted as zeros).

The shift amount passed to the SHC or XALU is normally controlled
by the microcode. For certain types of operations, the SHC passes
the A-latched shift amount (SHFTCNT A LATCH<4:0>) to the PEN. In
addition, certain floating-point operations through the XALU leave
a value on the BP bus that can be readily used as the shift count
amount by a following cycle.

2.3.1.2 General Function Selection -- Table 2-23 lists the SHF
functions selected by the ESHFT<4:0> field of the microword. Table
2-24 shows how the ESHFTSEL bit is used with the ESHFT<4:0> field
in selecting the result of a 32-bit operation on an APORT or BPORT
operand and passing it to the BP bus. For the result of a 64-bit
FP operation, the most significant (MS) and least significant (LS)
32 bits are passed to the BP bus on successive cycles.

SALU SHIFT CNT BUS<5:0> H] (WIRE-OR)

PE SHIFT CNT BUS<3:0> H SHIFT CNT BUS<5:0> H

E_SHFTCNT<5:0> H
—uCODE SHIFT CNT BUS<5:0> H
0, VA<1:0> L, 000

E_SHFTCNTEN<1> H-if}]
E_SHFTCNTEN<2> H SCLD-292
Figure 2-12 shift Count Bus Signal and Gating Block Diagram

VII 2-55

Table 2-23 ESHFT<4:0> Field Selection of Shifter
(SHF) MCA Logic Functions

ESHFT<4:0>

Value (Hex) Selected General Function

00 Left rotate 64 bits by SHFTCNT value

01 Right rotate 64 bits by SHFTCNT value

02 Arithmetic left shift 64 bits by SHFTCNT value
(same as logical shift left)

03 Arithmetic right shift 64 bits by SHFTCNT value
(sign saved in SIGN SAVE register on a previous
code 12 cycle)

04 Logical left shift 64 bits by SHFTCNT value

05 Logical right shift 64 bits by SHFTCNT value

06 Logical left shift 32 bits by SHFTCNT value

07 Logical right shift 32 bits by SHFTCNT value

08 FP normalize by SHFTCNT value

09 Reserved

oA FP fast normalize MS half (FASTNORMMS)

0B FP fast normalize LS half (FASTNORMLS)

0cC FP left shift 64 bits by SHFTCNT value

0D FP right shift 64 bits by SHFTCNT value

OE FP right align two 32-bit operands by SHFTCNT
value

OF FP right align 64-bit operand by SHFTCNT value

10 Zero-extend byte to longword (SHFTCNT = 0)

11 Zero—-extend word to longword (SHFTCNT = 0)

12 Logical 1left shift 64 bits by SHFTCNT value and
load SIGN SAVE register from BP bus bit <31>

13 Short arithmetic right shift 64 bits (0 to 7
places)

14 Pass -- Logical left shift by 0

VII 2-56

Table 2-23 ESHFT<K4:0> Field Selection of Shifter

(SHF) MCA Logic Functions (Cont)

ESHFT<4:0>
Value (Hex)

Selected General Function

15

16

17

18--1B

1C

1D

1E

1F

ClearMult -- Clear BP bus when using the MULT
logic

BCD functions (SHFTCNT must = 0, see Section
2.3.1.8)

Shifter off (force ones to NOR gates)
Reserved

Inhibit APORT parity check (used with ALU FP
masking)

Force Wbus parity to zero
Clear parity error, open parity error register

Read Ebox parity error register

Table 2-24 ESHFTSEL Selection of a Result

Output to the BP Bus

ESHFTSEL ESHFTSEL
ESHFT<4:0> Equal to O Equal to 1 Operand or
Value Selects Selects Data Size
0--5, 12, 13 LS half of the MS half of the 64 bits
shifted result shifted result
6, 7, 10, APORT as input BPORT as input 32 bits
11, 14
B, C, D, F MS half of the LS half of the 64 bits
FP shifted result FP shifted result
A BPORT as input APORT as input 32 bits
B BPORT as input Illegal Function 32 bits

Note: The ESHFTSEL bit is ignored on the following operations:

Decimal conversion
Clear parity error
FP right align two 32-bit operands

VII 2-57

2.3.1.3 Logical Shift or Rotate -- Each SHFT MCA processes Or
passes one byte of data, performing a 0 to 7-bit shift in one
cycle. To perform shifts of more than 7 bits, complementary
functions are shared between the even and odd MCAs as determined
by the chip identification code (ID codes 0 through 7). The ID
code for each SHFT MCA is hardwired to the perscnality select (PS)
input pins.

Example of a Logical Shift of APORT or BPORT data follows:

To perform a 2-bit left shift, MCAs 0, 2, 4, and 6 shift the data
left two places. The upper two bits are lost and zeros are
shifted into the lower two bits. However, MCAs 1, 3, 5, and 7
shift the data right six places. MCAs 1 and 3 shift zeros into
the wupper six bits, while MCAs 5 and 7 shift in ones to satisfy
the AND requirement by the NOR gates to the BP bus. (The MULT and
XALU MCAs are unused in the operation and force ls to satisfy this
condition.) The outputs of MCAO0 are then inclusive-ORed with MCA3
to assert the shifted byte on BP BUS<31:24>. For a right rotate,
MCAl asserts bits <31:30> (from the APORT or BPORT). For a right
shift, it asserts zeros for those bits.

2.3.1.4 Arithmetic Shift -- An arithmetic shift performs the same
functions as a logical shift except that, on an arithmetic right
shift, the data is sign-extended from the SIGN SAVE latch. Two
cycles are required. The first cycle operates on ESHFT<4:0> code
12, which asserts the data on the BP bus, shifting it left by the
necessary number of places to place the sign bit on BP bus bit
<31>. The SIGN SAVE latch is loaded from BP bus bit <31> and the
actual right shift must take place on a subsequent cycle.

The SIGN SAVE latch is normally not altered except by the 12 code
or when corrupted by an FP fast normalize. Its state is held over
traps and should not be altered by a trap service routine unless
it is first saved (by an arithmetic right shift), then restored.

Arithmetic Short Shift

The arithmetic short shift function can right shift a 64-bit
integer from 0 to 7 places, a function that is useful when
converting bit addresses to byte or word addresses.

2.3.1.5 Decimal String Conversion -- A value of 16 in the
ESHFT<4:0> field of the microword selects the conversion of BCD
data between the decimal string formats (except packed decimal
to/from leading separate numeric). Conversion takes place on the
APORT operand. SHFTCNT A LATCH<4:0> must assert a value of zero.
Table 2-25 shows how EFPFORMAT<K1:0> select conversion between the
trailing numeric, packed, and integer formats.

VII 2-58

Table 2-25

EFPFORMAT<1:0> Field Control

of Decimal String Data Conversions

EFPFORMAT<1:0>
Value (Hex)

ESHFT<4:0> Value Equal to 16

If No, Select

If Yes, Convert

0

No Mask

F, D Mask

G Mask

H Mask

32-bit trailing --> 16-bit packed

Output is on the lower 16 bits of
the BP bus. The microcode branch
flag BCD ZONE OK H is asserted if
the upper nibble of each byte in the
trailing format is a 3.

l6-bit packed --> 32-bit trailing

Performs a conversion on the lower
16 bits of the APORT.

32-bit packed <--> 32-bit integer
Converts one longword format to the
other by swapping the two end bytes

and swapping the two center bytes.

Reserved

VII 2-59

2.3.2 Floating-Point (FP) Support

The SHR module provides three operators that support the
floating-point calculations made by the microcode. Each operator
is a single MCA:

® Priority Encoder (PEN)
® Shift ALU (SALU)
° Exponent ALU (XALU)

These operators are mainly concerned with operations on the F_,
D_, and G_Floating data formats shown in Figure 2-13. (H_Floating
operations are performed entirely by the microcode.) Sections of
each MCA logic may also be used by the microcode for general
arithmetic or register functions.

The PEN receives FP data on the BPORT and performs three separate
operations:

1. Priority encodes floating data in order to find the most
significant (MS) 1-bit 1in the mantissa or to aid the
microcode in finding the byte that contains it.

2, Rounds and performs a 0 or 1-bit shift of the least
significant (LS) byte of an FP normalization.

3. Stores and generates the rounding bits for a floating add
(ADD) or subtract (SUB), possibly sending a carry-in
(plus 1) request to the Main ALU.

The SALU and XALU are both controlled by some of the same
microcede fields and receive the exponent of both operands:

° The APORT receives the exponent of the first operand.
° The BPORT receives the exponent of the second operand.

The SALU 1is mainly concerned with the addition or subtraction of
two floating operands:

° Produces the resulting sign of the fraction and returns
it to the SLCO module on BP BUSK15>.

° Subtracts the exponents and generates a shift count based
on the difference. Sends the result to the shifter logic
(SHF), which aligns the operands by shifting the fraction
field of the smaller.

) Generates most of the FP condition code bits for
microcode branching.

VII 2-69

15 14 07 06 00
F_FLOATING EXPONENT FRACTION A
FRACTION Av2
31 16
15 14 07 06 00
D_FLOATING EXPONENT FRACTION A
FRACTION A+2
FRACTION A+4
FRACTION A+
63 48
15 14 04 03 00
G_FLOATING EXPONENT FRACTION
FRACTION A+2
FRACTION A+d
FRACTION A+6
63 48
15 14 00
H_FLOATING EXPONENT A
FRACTION A+2
FRACTION A+d
FRACTION A+6
FRACTION A+8
FRACTION A+10
FRACTION A+12
FRACTION A+14
127 113
SCLD-283

Figure 2-13

VII 2-61

VAX-11l Floating-Point Formats

The XALU

is mainly concerned with a multiply or divide of two

floating operands:

2.3.2.1

Performs 12-bit exponent arithmetic 1in the exponent
register (XREG). Returns the result to the SLCO module
on BP BUSK14:04>.

Generates one FP condition code Dbit for microcode
branching.

Priority Encoder (PEN) MCA -- Figure 2-14 identifies the

main functional areas of the PEN logic:

PE Logic

Tests the mantissa of a floating datum to
find the most significant 1 bit, then passes
the shift count value needed to the SHF to
normalize the fraction.

Sticky Bit Examines the eight most significant bits

shifted out on an FP align. If all eight
bits are 0, the carry-in bit for the main
ALU is set.

Guard and Round Saves the last two bits shifted out of the
Bit Select Logic data field on an FP align. These bits are

used as the rounding bits on a
normalization.

Fast Normalize Increment (INCR) logic input. Performs a 0

or 1l-bit right or left shift of the LS byte
of a floating number, and passes the result
to the rounding increment logic.

Rounding Increment Increment (INCR) 1logic output. Takes the

normalized 8-bit result from the fast
normalize 1logic and adds a 0 or 1 according
to the rounding bits and operation (ADD or
SUBR). When enabled, it passes the result to

the LS byte of the floating number on BP
BUS<K23:16>.

VII 2-62

Function Decoder

The PE function field (EPSFUNC<z:0>) selects the PEN operating
functions as shown in Tanle 2-26.

Input Multiplexer (INMUX)

The INMUX aligns the BPORT value for an operation on an F_/D or
G format 1input as shown in Figure 2-15. The LS bit position of
the exponent represents the hidden bit and is aligned with the MS
bit of the fraction. This data is passed to the rest of the logic
as PEDATA<20:00>.

Priority Encoder (PE)

The E logic tests the mantissa of a floating number (including
the hidden bit) to find the most significant l-bit. It then passes
the shift amount needed for a normalize to the SHF and XALU as
shown in Table 2-27. If a 1l-bit is not found on the first pass,
it asserts the ALL ZERO status signal to the microcode.

79-¢ 1IA

QUOTIENTBIT L
{FM MULT)

SHIFTCNT A
LATCH«<3:0> H
{FM SHF)

PE <2:0> H

EFFECTIVE SUB L e
ALIGN GT 18 H — 4t H
(FM SALU) STKY SAC CIN SRC<0>
———» 8A<3:0>
<14:08> 1\ STICKYIN
<8:0> R G<1:0>
AND
<06:00> 0 fovso
|—-» oBIT <8:05
- STICKY
eEn » FUN<2:0> <05:00> BIT
FUNC (N MUX
ocoR | PEN FUNCTIONS |-— R<t:0a
> h SA<2:0»
BPORT<07:00> H » PEDATA
<20:00>
»
BPORT<31:16> H
0,
| peoatazero |,
- L]
2005, e ALL ZERO
RND<1>—| 0
aBIT) INCMUX
\ -
2
RND<1> 0 L ol FUN<2>
ENA QBIT — o
ReliC plq SHET PE SHIFT CNT
RND<0> s BUS<3.0> H
out
BP BUS<235:24> H— — 0 SA<0>
FUN<O>— INCD<8:0>
RNOTRAP H
GGHT WL INCR
(FM SHC))
—(O—1 PE<7:05 L
{TO NOR GATES,
BP BUS<2316>)
E_SHFTCNTEN<2> H —
ENBLAND L _ .
(FM SHC)
HCI10-204
Figure 2-14 Priority Encoder (PEN) Block Diagram

G_FLOATING
20 16 15

0o

PEDATA

BPORT<04:00> i

BPORT<31:16>

=_/D_FLOATING
20

PEDATA BPORT<07:00>

BPORT<31:24>

T

Figure 2-15 INMUX

Table 2-26 EPEFUNC

SCLD-295

Mapping of the BPORT Input Data

Field Selection of PEN Functions

EPEFUNC
<21 0> Function Comments
000 Left shift into LS byte, 0 or 1 place No rounding
0 01 Left shift into LS byte, 0 or 1 place Add rounding
increment

010 Load round bits RND<1:0> from

BP BUS<K15:14>
011 Load round bits RND<1:0> from R<1:0>
100 SHFTCNT BUS <-- PE value (F_/D_ format)
101 SHFTCNT BUS <~- PE value (G_ format)
110 SHFTCNT BUS <K-- 1,

BP BUSK16> <-- OQOBIT Divide
111 SHFTCNT BUS <-- 8 Multiply

VII 2-65

Rounding Incrementer (INCR)

The increment multiplexer (INCMUX) aligns the lowest nine INMUX
bits for the incrementer as shown in Table 2-28. For a fast
normalization (FAST NORM), the INCMUX outputs are directed by the
state of SHIFTCNT A LATCH<O> (SA<K0>) from the SHF:

SAKO> =0 Passes the true state of PEDATA<7:0> and RND<K1>.
SAKO> 1 Shifts the value right or 1left by one place,
according to the RIGHT signal (0 = left, 1 = right).

With E_PEFUNC<0> asserted, the INCR adds INCD<KO0> to INCD<1>. With
ENBLRND asserted, it passes the rounded result of INCD<8:1> to
PE<7:0> (for assertion to BP BUS<23:16>). RNDTRAP is asserted to
the microcode if adding the rounding bit caused a carry-out from
INCD<8>.

Sticky, Guard, and Round Bits

Inputs to this logic are controlled by the shift count A-latch
(SA<3:0>) value asserted by the SHF as shown in Table 2-29. The
sticky logic asserts STKY to the Carry-In Source (CIN SRC) gating

and to the Guard and Round Bit logic when any of the tests are
true.

VII 2-66

Table 2-27

Priority Encoder (PE) Results Passed
to the Shift Count Bus

Input Conditions

Logical Test Results

PEDATA<20:13>
Equal to O

PEDATA<20:13>
Not Equal to O

Assert SHFTCNT<3> and test PEDATA<K12:05>,

Then, if: E_PEFUNC<2> = 1, assert ALL ZERO if
PEDATAK12:05> are also equal to 0.

E_PEFUNC<2> = 0, assert ALL ZERO if rounding bit
RND<1> is set.
Negate SHFTCNT<3> and test PEDATA<20:13>.

In either case, assert the final shift count
value as follows:

PE Test Bit Value Output Passed to
<76 54321 0> SHFTCNT<2:0>
l - =-=-==--- 000

01 -=-=-=--- 001

001 -=---- 010
0001 - - - - 011
00001-- - 100
000001 - - 101
00000O01 - 110
000000O01 111
00000O0O0CO 111

Note: E_SHFTCNTEN<2>

must be asserted to pass the SHFTCNT<3:0> result

to PE SHIFT CNT BUS<3:0>.

VII 2-67

Table 2-28 Increment Multiplexer Data (INCD)
Selection to the Incrementer (INCR)

SA<O0> RIGHT INCR Bits <8 - - - 2> <1> <0>
0 - PEDATA Bits <7 - - = 1> <0> RND<1>
1 0 PEDATA Bits <8 - - - 2> (<1> 0>
1 1 PEDATA Bits <6 - - = 0> <*> RND<O>
L——— ENA OBIT: O = RNDK1>
(Code 110) 1 = OBIT
Note: If E_PEFUNC<0> = 0, RND<K1:0> assert BP BUS<K25:24>,
If E_PEFUNCKO> = 1, RND<1:0> assert R<1:0> (round bits); R<i>
(RND<1>) added to INCR<1> and INCR<8:1> are asserted as PE<7:0>.
Assert RNDTRAP if INCR<8> produced a carry-out.
Table 2-29 Sticky Bit Logic Input and Test Selection
Input Selection Selected Input or Test
SA<3> Equal to 1 Asserts PEDATA<14:06> to the Guard and Round
Bit logic on STICKYIN<K8:0>. Sticky 1logic
performs an OR of PEDATA<05:00> where any bit
on a 1 asserts STKY.
SA<3> Equal to 0 Asserts PEDATA<06:00> to the Sticky logic and

the Guard and Round Bit logic. (Zeros are
asserted on STICKYIN<K8:7>.) Sticky logic
performs a selective OR of PEDATA<K06:00>,
where a 1-bit asserts STKY as selected by

SA<2:0>:

SA Bits Selects OR Test

<21 0> of PEDATA Bits Comments
000 - - STKY negated
001 <0> STKY asserted
010 <1:0> if any bit is
011 <2:0> al

100 <3:0>

101 <4:0>

110 <5:0>

111 <6:0>

VII 2-68

Table 2-30 G<1:0> Guard Bit Input Selection

STICKYIN Bits Selected
SA Bits for Assertion as G<l:0>
<21 0> <8765 43210>

HHEHROOOO
HHOOHKMOO
HOHORFROKO

|

l

!

Note: Xs indicate the two STICKYIN bits selected for
assertion as guard bits G<1:0> (and for possible
assertion as the round bits R<1:0>).

-~

Table 2-31 Round Bit R<1:0> Input Selection

EFF ALIGN Bits Selected as
SUB GT 16 STKY the R<1:0> Outputs

0 1 - (Outputs deselected)

0 0 - R<1:0> <-- GK1:0>

1 1 - R<1:0> <=~ Ones

1 0 0 R<1:0> <-- G<1:0> (Complement of G<1:0>)
1 0 1 R<1> <-- XOR of G<1:0> and R<0> <-- G<0>

VII 2-69

2.3.2.2 Shift ALU (SALU) -- In addition to their special FP
functions, the SALU and XALU may be used by the microcode for
general arithmetic or register operations. They are both
controlled by some of the same microcode fields as shown in Table
2-32.

Figure 2-16 1identifies the main functional areas of the SALU
logic:

SALU Function Decoder (SFND)

SALU Sign (SSGN)

SALU Input Select (SINS)

SALU Symmetrical Difference (SDIF)
SALU Output Inverter (SOPI)

SALU Branch Logic (SBRL)

SALU Function Decoder (SFND)

The SALU/XALU function field of the microword (E_SXALUFN<5:0>)
controls the SALU functions as shown in Table 2-33.

Condition Codes

The SFND logic does not produce any microbranch condition codes.
However, each of the other logical areas produces codes that are
asserted to the SBRL logic, where they are either used directly or
to generate other types of codes.

SALU Sign (SSGN)

The SSGN logic receives the fracticnal signs of the first and
second floating operand on APORT<15> and BPORT<K15>. For a
floating add or subtract, the SSGN produces the sign of the
resulting fraction, as shown in Table 2-34, and writes it to the
sign latch.

Sign Latch -- The sign latch is a 1-bit recirculating register
consisting of a stalled A-clock and B-clock latch. The sign latch
holds the resulting sign of the fraction for assertion to BP
BUS<15> or for use as a microbranch condition. The stalled
A-clock latch (ASIGN LATCH) value is passed to the SBRL.

SALU Input Select (SINS)
The SINS consists of a set of multiplexers that receive the
exponent of the first operand on the APORT<14:04> inputs and

receive the exponent of the second operand on the BPORT<14:04>
inputs.

VII 2-70

Table 2-32

SALU and XALU Control Signals
from the Microcode

Signal Name

CS0 RAM Segment (SALU)

Bit Description

EFPSUFL

Asserted, enables floating-point shuffle
to the IBox.

CS1 RAM Segment (SALU and XALU)

ESXALUFN<5:3>

ESXALUFN<2:1>

ESXALUFN<O>

ESXBYEN

CS1 RAM Segment (SALU)

ESHFTCNTEN<2>

CS2 RAM Segment (SALU)

ERECIPE<K1:0>

ESIGNWR

Selects the general SALU/XALU functions.
(Described in Tables 2-33 and 2-38.)

Selects specialized functions according to
the microcode operation.

Selects the input/output format:

0 = Operand is F_ or D _Floating
1 = Operand is G_Floating or Integer
SALU -- Asserted, enables the SIGN LATCH

value (the resulting sign of the fraction)
to BP BUSK15>.

XALU -- Asserted, enables the resulting
exponent (or result of the operation) to
BP BUS<14:04>,

1 = Enables the SALU SHIFT CNT<5:0> value
to the shift count bus.

Selects one of four microbranch condition
code groups from the branch multiplexer.

1l = Writes the sign to the SIGN LATCH and
enables the reserved operand trap check
logic.

0 = Inverts the shift amount. (Is used if
WRONG SHIFT was set on the first pass
through the SALU.)

VII 2-71

Table 2-33

ESXALUFN Field

Control of the SALU Functions

E_SXALUFN
<5 4 3 2 1> Exponent Operation or Function Comments
See Note 1.
0 0000 BP BUS<K15> <-- SIGN LATCH Note 2.
01 BP BUS<15> <-- SIGN LATCH; SHFTCNT <-- SHFT AMT ADD
10 BP BUS<K15> <-- SIGN LATCH
00011 BP BUSK15> <-- SIGN LATCH; SHFTCNT <-- SHFT AMT SUB
See Note 3.
001- - SIGN LATCH <-- SIGN LATCH XORed with Sign of Fraction MUL
g 10 - - SIGN LATCH <-- SIGN LATCH XORed with Sign of Fraction MUL
011 -~ SIGN LATCH <-- SIGN LATCH XORed with Sign of Fraction MUL
100 - - SIGN LATCH <-~- Sign of the Larger Fraction
101060 SIGN LATCH <-- 1
} 0 1 SIGN LATCH <-- APORT<15>
| 1 0 SIGN LATCH <-- 0 __
10111 SIGN LATCH <-- BPORTK15> Note 4.
110- - SIGN LATCH <-- SIGN LATCH XORed with Sign of Fraction MUL
111- - SIGN LATCH <-- SIGN LATCH XORed with Sign of Fraction DIV

Notes: 1. ESXALUFN<O>

2. SIGN

LATCH

3. Write SIGN

4. BPORT<15>

Equal to 0, selects the

The sign latch value is passed to BP
asserted.
Otherwise, the operation is performed

BUSK15> if E_SXBYEN is

but the result is not sent.

The reserved operand trap (RES OP TRAP)
check is enabled when E_SIGHNWR

asserted.
If the result generates a

inverted.

VII 2-72

format for
F /D Floating. Equal to 1, selects the
format for G_Floating/Integer.

reserved
operand trap, the BPORT sign is not

is

€L-C IIA

SSGN
E_SXBYEN H < iGN L
L (TO NOR GATES,
. BP BUS<15>)
APORT B 1]
<15> H LAT LAT|
3
XOR _
BPORT<15> H SBRL
L y COND. CODES
E_RECIPE<1:0> H aﬁx » BRANCH<5:0> H
E_SIGNWR L d Ro's,xg » RES OP TRAP H
SINS SDIF LGESHET H
A\ A MINUS B ce's
<10:08> SDIF CC'S COND. ALIGN GT 16 H
F CODE
LoaGic b-— GTR OPERAND L
-
— EXPONENT COMPARE L
APORT<14> H —1—{>O LOAD STATIC L
APORT<13:12> H SHR
. B
MUX » CcC'S » EFF_ADD H
ATl
BPORT<14> H —t—[>0-{ SET SOPI EFFECTIVE SUB L
» EFF SUBt H
BPORT<13:12> H jI;
EFF SUB2 H
APORT<11:04> H _gﬁlfUBEI;IFST 8 b
BPORT<11:04> H <5:0> E_FPSUFL L LAT
E_SXALUFN<0> H _
(SEL G FORMAT H)
E_SHFTCNTEN<2> H
—»
FUNCTION |—
E_SXALUFN<5:1> H ?SEFCNODD‘)ER > SALU FUNCTIONS
L ——»
-

SCLD-296

Figure 2-16 Shift ALU (SALU) Block Diagram

Table 2-34 Resulting Sign of the Fraction

Resulting

Operation Resulting Sign Operation
(+A) + (4B) Plus Effective ADD
(+A) - (+B) Plus, if A > B; Minus, if B > A Effective SUB
(+A) + (-B) Plus, if A > B; Minus, if B > A Effective SUB
(+A) - (-B) Plus Effective ADD
(-A) + (+B) Minus, if A > B; Plus, if B > A Effective SUB
(-A) - (+B) Minus Effective ADD
(-A) + (-B) Minus Effective ADD
{-A) - (-B) Minus, if A > B; Plus, if B > A Effective SUB

Table 2-35 SALU Selection of the APORT and BPORT Inputs
Floating SINS Outputs to the SDIF Subtracter
Format <10 09 08 07 06 05 04 03 02 01 00> Comments
APORT or BPORT Inputs to the SINS
G_ <14 13 12 11 10 09 08 07 06 05 04>
F_/D_ <14 13 12 14 13 12 11 10 09 08 07>
Exponent Input Value
G_ 1 0o o 0 0 O - - - - -~ Small, see
F_/D_ 1 0o 0100 - - - - - Note 1.
G_ 01 1 1 1 1 1 1 1 1 1 Large, see
F_/D_ 0 1 1 0 1 1 1 1 1 1 1 Note 2.
G_ 1 0o 0 0 0 0O 0O O O O O Zero, see
F_/D_ 1 0 0 1. 0 0 0 0 O O0 O Note 3.
Notes: 1. Asserts OVR_UND POSS ADD if EFFECTIVE ADD = 0 and both

exponents have a value of less than 64. (Adding the
exponents may result in a floating underflow.)

2. Asserts OVR _UND POSS ADD if EFFECTIVE ADD = 1 and
either exponent has a value of all ones. (Adding the
exponents may result in a floating overflow.)

3. Asserts B ZERO EXPA if the APORT exponent is zero.

Asserts B ZERO EXPB if the BPORT exponent is zero.

VII 2-74

Exponent Sign

VAX architecture wuses the inverted state of the exponent sign to
produce a true positive zero. Therefore, APORT<14> and BPORT<14>
are both inverted on input to the SINS logic.

SINS Input Registers and SDIF Subtracter

The APORT and BPORT operands are each multiplexed to a B-latch
register according to a selected format as shown in Table 2-35.
Both registers are wused in tests that assert condition codes to
the GSBRL. The 1 side of the APORT latches (which are part of the
input MUX SET) are applied to the A-side of the SDIF adder.
However, the 0 side of the BPORT latches are applied to the B-side
of the adder, making it a full-time subtracter.

SALU Symmetrical Difference (SDIF)

The SDIF receives the upper three bits of a subtraction result (A
MINUS B<10:08>). It also receives the carry outputs from bits
<10> and <K07>, which are used to produce and assert condition
codes to the SBRL.

SALU Output Inverter (SOPI)

The SOPI receives the lower eight bits of a subtraction result (A
MINUS B<07:00>) and produces the shift amount required for a
floating align. It also uses these bits in tests that produce and
assert condition codes to the SBRL.

SALU Branch Logic (SBRL)

The SBRL branch multiplexer receives the condition codes produced
by the other logical sections, either using them directly or with
signals that produce other kinds of codes. The SBRL outputs one of
the four code groups shown in Table 2-36, under the control of the
E_RECIPE<1:0> field. Table 2-37 describes the logical states or
conditions that are passed to the microbranch logic.

Most of the SBRL input signals are static condition codes that are
loaded to a set of stalled A-clock latches. The latch states
remain the same wuntil they are again loaded by one of two SALU
functions:

101
000Xx1

E_SXALUFN<5:3>
E_SXALUFN<5:1>

Reserved Operand Trap
The RES OP TRAP signal is one of the nonstatic condition codes.

Enabled by ESIGNWR, it is asserted if the sign of either fraction
is negative but its exponent is zero.

VII 2-75

Table 2-36 A-Latched Condition Code Inputs
to the Branch Multiplexer

E_RECIPE Bits Branch Multiplexer Outputs to the BRANCH<5:0> B-Latch

<1:0> BRANCH<5> BRANCH<4> BRANCH<3>

11 A_EFF ADD A ANY OP ZERO A BOTH OP ZERO

10 A_GTR 64 ALIGN A GTR 32 ALIGN A_ANY OP ZERO

01 A _SIGN LATCH* A _ZERO OP B A SIGN OF EXP*

00 A_GTR 32 ALIGN A_EFF ADD A _ALIGN 1632

<1:0> BRANCH<2> BRANCH<1> BRANCH<0>

11 A _SIGN LATCH* 0 0

10 A_EFF ADD A_WRONG SHIFT A _BOTH OP ZERO

01 A_ZERO OP A A_GTR 32 ALIGN 0

00 A _OVR OR ANY A _UNKNOWN WRONG A _FULL NORM
OP_ZERO LARGE

* Nonstatic Condition Codes

Table 2-37 Microbranch Condition Code Description

Signal Name

Function

A EFF ADD

A_SIGN LATCH
A_ANY OP ZERO
A _BOTH OP ZERO

A_GTR 64 ALIGN

A GTR 32 ALIGN

A _ALIGN 1632

A_WRONG SHIFT

A_ZERO OP A

A _ZERO OP B

A _SIGN OF EXP

A_OVR OR ANY OP_ZERO

A_UNKNOWN_WRONG_LARGE

A_FULL NORM

Asserted or negated depending on the states
shown in Table 2-34.

Asserts the fractional sign result.
Either or both of the exponents are zero.
Both of the exponents are zero.

The result of an exponent subtraction will
be greater than 64.

The result of an exponent subtraction will
be greater than 32.

The result of an exponent subtraction will
be in the range of 16 to 32.

The calculated shift amount is wrong. (The
microcode must force the correct result
from the subtractor.)

The APORT exponent is zero.
The BPORT exponent is zero.

The sign of the BPORT exponent. (Useful
for converting from floating to integer
format.)

The result of an exponent subtraction may
be too large for the size of the register.
(A floating overflow or wunderflow may
result.)

Which operand 1is larger is unknown if the
exponents are equal on an effective
subtract (anything other than an effective
add). However, the second operand may be
the larger of the two fractions.

A shift greater than 1 1is necessary to
normalize. (The microcode must then scan
the smaller fraction to find the first
1-bit.)

* Nonstatic Condition Codes

VII 2-77

2.3.2.3 Exponent ALU (XALU) -- Figure 2-17 shows the location of
the main data multiplexers and identifies the main functional
areas of the XALU logic:

XALU Function Decoder (XALF)
Exponent Register (XREG)
XALU Shifter (XALS)

XALU Adder (XALA)

XALU Function Decoder (XALF)

The microcode signals that control the XALU come from the CS1 RAM
segment.

° Table 2-38 shows the general XALU functions that are
defined by ESXALUFN<5:3>.

® Table 2-39 shows the functions selected by E SXALUFN<2:0>
when E SXALUFN<5:3> are equal to all zeros.

° Table 2-40 shows the functions selected by E_SXALUFN<2:0>
when E_SXALUFN<5:3> contain a code other than zero.

Exponent Register (XREG)

The XREG 1is a 12-bit recirculating register that consists of a
stalled A-clock register (REGXA) and a B-clock register (REGXB).
The XREG holds the first operand for a subseqguent operation or
holds the result for assertion to the BP bus. REGXA is used for
condition code (CC) tests that assert XALUCC directly to the IBox
(Table 2-41).

REGXB contents can be ©passed to the BP bus or asserted to the
A-side of the adder. The adder can receive the true or inverted
value of REGXB, or a value of zero (Table 2-38). A global trap
inhibits REGXB from being loaded.

VII 2-78

IIa

EXPONENT REGISTER (XREG)

XALR
INV, REG REG
[—CLR,% XB XA |4
PASS
BLOCKEDWRITE<1> H (GLOBAL TRAP H) T
cc
E_SHFTCNT<6> H
XALA
XALS
SHFTCNT BUS<5:0> H] 4 Sp
APORT<14:04> H 1 M3 M2 Mé
>
M1 0 0
BPORT<15:04> H)
GTR OPERAND L— -f ——p»
E_SXBYEN H ——}
XALF
E_SXALUFN<5:0> H
FUNC [P
EFF ADD H DCDR [—— XALU FUNCTIONS
MUL NORM H — L
SA<O0> H —} | | ——»
(ADD NORM)

4 XALUCC H

—- XALOUT<10:00> L

(TO NOR GATES
BP BUS<14:04>)

Figure 2-17

Exponent ALU

(XALU)

Block Diagram

SCLD-297

Table 2-38 ESXALUFN<5:3) Control of the General
XALU Functions

ESXALUFN Function

<5 4 3 2> Name Exponent Operation or Function

000 - Bypass BP BUS<K14:04> <-- XREG<K10:80> (See Note 1)
001 - Add XREG<11:00> <-- XREG<11:00> + INPUT<K11:00>
010 - Increment XREG<11:00> <-- XREG<11:00> + 1

011 - Add-Increment XREG<11:00> <-- XREG<11:00> + INPUT<11:00> + 1
.0 00 - Sel. Exponent XREG<11:00> <-- Larger of APORT or BPORT value
101 - Pass XREG<11:00> <-- INPUT<11:00>

1100 Decrement XREG<11:00> <-- XREG<K11:00> - 2

1101 Decrement XREG<11:00> <-- XREGK11:00> -1

111 - Subtract XREG<11:00> <-- XREG<11:00> + INPUT<I1:00> + 1
Notes:

1. The output is passed to the BP bus if E SXBYEN is asserted by

the microcode. Otherwise, the operation is performed but the
result is not sent.

The Invert/Clear/Pass logic has the following effects on the
XREG data. With E_SXALUFN<5:3> equal to:

111 Invert - Assert XREG<11:00> for subtraction.
100, Clear - Assert zeros to pass the true input
101 value though the adder.

All Other ©Pass - Assert the contents of XREG<11:00>
Codes for an exponent operation.

VII 2-80

Table 2-39 XALU Functions with E_SXALUFN<5:3>
Equal to 000

E_SXALUFN

<21 0> General XALU Function Comments

000 BP Bus <-- XREG F_/D_

0 01 BP Bus <-- XREG G_

010 Reserved

011 BP Bus <-~ XREG Integer (No Bias)

100 BP Bus <-- XREG +1/-1 F /D ADD/SUB Fast Norm
101 BP Bus <-- XREG +1/-1 G_ ADD/SUB Fast Norm
110 BP Bus <-- XREG -1 F_/D_ MUL Fast Norm
111 BP Bus <-- XREG -1 G_ MUL Fast Norm
Notes:

E_SXBYEN must be asserted to send the result to the BP bus.
Otherwise, the operation is performed but the result is not sent.

SA<O0> from the shift control MCA (SHC) determines whether the XREG
contents are sent to the BP bus modified (on a 1) or unmodified
(on a 0). If modified, EFF ADD from the SALU then selects an
exponent correction of plus one (+1), if asserted, or minus one
(-1), if negated.

ADD NORM from the SHF logic or MUL NORM from the MULT logic causes
M2 to select the adder instead of the XREG.

Table 2-40 XALU Functions with ESXALUFN<5:3>
Not Equal to 000

E_SXALUFN

<21 0> XALU Input Function Comments
000 INPUT <-- SHFTCNT BUS, 1l's Complement

0 01 INPUT <-- APORT, 2's Complement 11 Bits
010 INPUT <-- APORT, Bias F_/D_Floating See Note.
011 INPUT <-- APORT, Bias G Floating See Note.
100 INPUT <-- SHFTCNT BUS

101 INPUT <-- BPORT, 2's Complement 12 Bits
110 INPUT <-- BPORT, Bias F_/D Floating See Note.
111 INPUT <-- BPORT, Bias G Floating See Note.
Note:

The SALU performs a reserved operand check if E_SIGNWR is
asserted.

ViI 2-81

Table 2-41

XALU Condition Code (XALUCC) Tests

E_SXALUFN Bits
<5 4 3 2 1> Conditions that Assert XALUCC
000 - - XREG<11> is set (negative fraction).
101 - -
010-20 XREGK11:00> are zero.
10-0
010-1 The fraction and exponent sign bits are
110-1 not equal and E_SHFTCNT<6> is:
001 --
011- - 0 = XOR bits REGXA<08:07> (F_/D_)
100- -
111 - - 1 = XOR bits REGXA<11:10> (G_/Integer)

XALU Shifter (XALS)

The
data
adder:

and pass it

port data

(shifted

Input Multiplexer
and

or

(M1)
format to M3 (Table 2-42).

XALS has two sets of input multiplexers that select the input
unshifted) to the B-side of the

M1 passes the selected input

On the first

pass, GTR OPERAND from the SALU selects the larger of the

two operands.

B-side

Shift Multiplexer (M3) - The M3 outputs are passed
of the adder (Table 2-43).

format are selected from one of two sources:

The true
the shift

e

@ O

12
11

p

5 T
(e o
rh ©

O

ra

=

1

or
count bus.

r shi

of

vVaALwT b

VIl 2-82

N +
to the

The M3 input data and

negative (one's complement) value from

@]

"~
in
t

second

XALU Output Multiplexers

The

XALU has two multiplexers (M2 and M6) that participate in an
exponent

operation with the adder and XREG, or pass a result to

the bypass (BP) bus:

Adder Multiplexer (M2) -- M2 may pass the complete 12-bit
adder output to the exponent register. It may also pass
the 1l-bit adder or XREG value (bits <10:00>) to M6 for
output to the BP bus (Table 2-44).

Output Multiplexer (M6) -- M6 passes the correct format
of the result received from M2 (Table 2-45) and inverts
the exponent sign bit back to its complemented value.
(The M6 outputs are enabled if E_SXBYEN is asserted by
the microcode.)

Table 2-42 M1 Inputs Passed to M3

E_SXALUFN GTR M1 Multiplexer Output Bits

<3 OPERAND <15 14 13 12 11 10 09 08 07 06 05 04>

0 0 1

0 1 1 APORT<14 14 13 12 11 10 09 08 07 06 05 04>
1 0 -

0 0 0

0 1 0 BPORT<15 14 13 12 11 10 09 08 07 06 05 04>
1 1 -

Note:

APORT<14> is applied to the inputs for both M1 bits <15> and <14>.
The larger of the two operands is selected on the first pass.

VIT 2-83

Table 2-43 M3 Inputs Passed to the Adder B-side

E SXALUFN Input

M3 Multiplexer Outputs

21 0> Source <11 10 09 08 07 06 05 04 03 02 01 00>
0060 SHFTCNT BUS 1 1 1 1 1 1 <0504 03 02 01 00>
100 SHFTCNT BUS 0 0 0 O O O <05 04 03 02 01 00>
X001 M1 PORT (G) <15 14 13 12 11 10 09 08 07 06 05 04>
X10 M1 PORT (F/D) <14 14 14 14 14 13 12 11 10 09 08 07>
X111 M1 PORT (G) <14 14 13 12 11 10 09 08 07 06 05 04>
|
+--- Bias (invert) the sign of the remainder (BIAS REM).

000
Note: Zeros are asserted to the adder when ESXALUFN<5:3> = gig

The above values are true for all other codes.

VII 2-84

Table 2-44 M2 Outputs to M6 or the XREG

E_SXALUFN M2 Inputs Passed
<2 1> E_SXBYEN ADDNORM MULNORM to the Outputs Comments

E_SXALUFN<5:3> Not Equal to 000

- - - - - ADDER<K11:00>

E_SXALUFN<5:3> Equal to 000

0 O - - - XREG<11:00>

0 1 0 - - XREG<K11:00> Invert XREG<10>

0 1 1 - - XREGK11:00> Clear XREGK10>
for integer
operation

1 0 0 - - XREG<K11:00>

1 1 0 - - XREG<11:00>

1 0 1 0 - XREG<11:00>

1 0 1 1 - ADDERK11:00>

1 1 1 - 0 XREG<11:00>

1 1 1 - 1 ADDERK11:00>

Notes: Bit <11> 1is wused by the adder, XREG, and condition code (CC)
logic but is not sent to the BP bus. ADDNORM is bit <0> of the
shift count A-latch (SA<0>) from the SHF. MULNORM comes from
the MULT logic.

Table 2-45 M2 Data Passed to the BP Bus by M6

E_SXALUFN<O> Output M6 Outputs to the BP Bus

Value Format <14 13 12 11 10 09 08 07 06 05 04>
0 G_ or Integer <10 09 08 07 06 05 04 03 02 01 00>
1 F or D <07 06 05 04 03 02 01 00> - - -

Note: The M6 outputs are enabled when E_SXBYEN is asserted by the
microcode.

VII 2-85

2.3.3 Multiplier/Divider (MULT)
The MULT section consists of eight custom multiplier (MULTIPR)
chips, each of which operates on one byte of data.

2.3.3.1 Data Interface Signals ~- Figure 2-18, Sheet 1,
identifies the data input and loop signals used in multiply (MUL)
operations. It also shows the output gating that drives the BP
bus through the NOR gates.

2.3.3.2 Carry and Control Signals -- Figure 2-18, Sheet 2,
identifies the control signals and the carry propagate/generate
signals. It also identifies the data shift signals used in divide
(DIV) operations.

Table 2-46 describes the microcode bit fields that control the
MULT logical and arithmetic functions.

Table 2-47 describes the MULT operations that take place under the
control of the E MULTDIV<4:0> microcode field.

Table 2-48 describes the functions of the MULTIPR chip signal
ports as they are used in the MULT logic.

2.3.3.3 Logical and Arithmetic Functions -- The MULT accepts
floating operands of up to 64 bits from the APORT and BPORT
(although the exponent may be masked).

As shown 1in Figure 2-18, Sheet 1, the MS byte of the fraction
field 1is 1loaded to the MS byte of the MULT logic, while the sign
and exponent field is loaded to the LS byte. Thus, an 8-bit right
shift 1is accomplished on the load. A MULT load takes 2 cycles,
with the guard bits 1loaded on the first cycle and the operand
loaded on the second.

An E_MULDIV code of 1, 2, or 3 (hex) loads the multiplicand or
divisor with 64 bits. The sign and exponent field of the operand

is forced +to zero and the hidden bit is inserted intc the LS bit

~ LT B R A A " T Wy § & UL O S

position of the exponent when a "load with mask" is specified.

VII 2-86

The NOP code 1E or 1F (hex) pauses the MULT and saves its internal
states, allowing a multiply or divide operation to be interrupted
and later continued. On a later cycle, the BP bus asserts the
quotient or multiplier byte, so care is required on the cycle
following a pause to prevent this data from being corrupted.

When reading the quotient is required (E_PEFUNC<2:0> = 6), the SHF
must be doing an FP left normalize (E SHFT<4:0> = 8) by 1 bit.
This is so the normalize shift will enable the PE to output the LS
byte and the PEN will substitute the quotient (instead of the
rounding bit) for the FP left normalize.

When the MULT is enabled and the SHF is not used (when doing a
LOAD of the multiplier, for example), the BP bus would normally
assert all ones. This is because of the requirement that unused
operators assert ones and enable the NOR gates, allowing the
active operator to drive the BP bus. However, a special SHF
function, CLEAR MULT (E_SHFT<4:0> = 15), forces the BP bus to all
zeros, allowing the ALU to drive the BP bus (with data to be
tested for zero).

VII 2-87

88-¢C IIA

MULT LOGIC DATA SIGNALS

MULTLOOP MULTLOOP MULTLOOP
—— <63:56> H — <55:485 H by v el _ MULTLOOP
| <39:32> H
0 ——MLI MO MLl MO MLl MLO MLl MLO
7 6 5 4
— M M M MI
APORT
<07:00> H DI RO p— DI RO — o1 RO p— DI RO
e e
<31:24> H <15:08>
APORT __] MULTFAN |— R0<63:32> L .
<23:16> RO<31.005 L D_MULTRES
C <1202 <31:00> L
MULTLOOP To NoR GATES.)
MULTLOOP MULTLOOP BUS<31:00>
**** <31:24> H <23:16> H <15:08> H — MuLTLOoP
MULTLOOP
<39:32> H MLl MLO MLl MLO MLl MLO MLl MLO
3 2 1 0
L mi Ml M Ml
BPORT
<07:00> H ——]D! RO p—— DI Ro p— DI RO b DI RO o— LAT NOR GATES
—BP BUS
<15:08> H
BPORT APORT B
<31:24> H gg‘gf‘{h W 215:08> H E_MLT_BYTE OFF H—{ a1

SCLD-298

Figure 2-18 Multiplier/Divider (MULT) Block Diagram
(Sheet 1 of 2)

68-C IIA

MULT LOGIC CONTROL SIGNALS

MULTLOOP<55> H —{DSI MULTLOOP<47> H —[DSI MULTLOOP<38> H—{DSI MULTLOOP<31> H —{DSI
QUOTIENTBIT L —q DDI DDI DDI DDl
cams L —qcl P p—P<7> L P pb—P<6> L P p—P<5> L P b—Pe<d> L
CiMS L—o CI couTs L —dcI caLs L — Cl
G p—Ge7> L G p—G<6> L G pb—G<5> L G p—Ged> L
cOo b— co b— CO p— CO p—COUT«<4> L
MUL NORM H —INAI NAI NAI NAI
E_MULDIV<4:0> H—] oo NRO NROJ—MUL NORM H NRO|— NRO| -
FAN FNC FNC FNC FNC
E_MULDEN H— TRAP TRAP TRAP TRAP
7 PS 6 —|PS 5 —|Ps 4—{PS
MULTLOOP<25> H DSI MULTLOOP<15> H—{DSI MULTLOOP<07> H —{DSI APORT<15> H—{DS]
QUOTIENTBIT L Dol oDI qDbDI o DDI
P p—P<3> L P pb—P<2> L P p—P<i> L P p—P<0> L
o|ci —|¢c couTo L—o|Cl
courz L Gb-Geas L OS L ' ab-ges L Gb - Gel> L ONE H—-qCl G bGeos L
co pb— €O p—couT<2> L cop— CO p— COUT<0> L
MUL NORM H -~ —INAI NAI NAI NAI
NRO[— RNDTRAP1 H NRO|— NRO}— NRO|— RNDTRAP2 H
L 1Fne FNC FNC FNC
ANDTRAP1 H
NDTRAP2 Ho D TRAP TRAP TRAP TRAP
3 —|PS 2 —|ps 1 —Ps o —|Ps
SCLD-289
Figure 2-18 Multiplier/Divider (MULT) Block Diagram

(Sheet 2 of 2)

Table 2-46 Multiplier/Divider (MULT) Control Signals

from the Microcode

Signal Name

Signal Functions

E_MULDIV<4:0> H

E_MULDEN H

E_MLT BYTE OFF H

These are the lower five bits of the shift
count (E_SHFTCNT) field and are applied to the
SHF and XALU from the microcode shift count
bus.

This bit has the following effects:

0 = Enables the MULT under the control of the
E_MULDIV<4:O> field.

1 = Disables the MULT and preserves internal
states in order to resume execution later
(Has the same effect as an E_MULDIV code
of all 1s.)

This bit has the following effects:

1 = 1Inhibits the LS byte from being written
to BP BUS<K15:08>.

0 = Outputs the LS byte to BP BUS<15:08> if
other required conditions are met. (The

SHF must be doing an 8-bit FP right shift
with E_FPFORMAT<1:0> and E_SHFTFPOUT(l:O)
both equal to 3.)

VII 2-90

Table 2-47

E_MULDIV Field Control of the MULT Functions

E_MULTDIV Bits Name

<4 321 0> Mnemonic Multiply/Divide Function

000O00O0 Reserved.

00001 LOAD Load 64-bit multiplicand/divisor, no
masking.

00010 LOAD G Load 64-bit multiplicand/divisor
with G _format masking; load hidden
bit.

00011 LOAD D Load 64-bit multiplicand/divisor
with F_/D _format masking; load
hidden bit.

00100 STORE F Store 32-bit normalized and rounded
result with F_format masking. Check
for Round Trap.

00101 STORE MS Store MS 32 bits of the result with
no normalize, masking, rounding, or
Round Trap check.

00110 STORE MS Store MS 32 bits of normalized and
rounded result with D format
masking. Check for Round Trap.

00111 STORE MS Store MS 32 bits of normalized and
rounded result with G_format
masking. Check for Round Trap.

01000 LAST MLT Last multiply cycle.

01001 STORE LS Store LS 32 bits of the result with
no masking.

01010 STORE LS Store LS 32 bits of the G format
result.

01011 STORE LS Store LS 32 bits of the D _format
result.

01100 FIRST MLT First multiply loop. (Microcode
supplies the LS multiplier byte.)

01101 MAIN MLT Main multiply loop. (Microcode

supplies the next multiplier byte.)

VII 2-91

Table 2-47 E_MULDIV Field Control of the MULT Functions (Cont)

E_MULTDIV Bits Name

<4 321 0> Mnemonic Multiply/Divide Function

01110 to 10111 Reserved.

11000 LOAD DD Load Dividend and do first division
loop.

11001 MAIN DIV Main division loop.

11010 LAST DIV Last division loop.

11011 to 11101 Reserved.

11110 and 11111 NCP Preserve internal states and inhibit

writes to the BP BUS.

VII 2-92

Table 2-48 MULT Logic Signal Port Function Description

MULTIPR Port Name

Data I/O Signals

Signal Function

Multiplier Loop
In/Out (MLI/MLO)

Data In (DI)

Multiplier In (MI

Result Out (RO)

Divider Shift In

)

(DSI)

On a multiply cycle, each byte of
the accumulating product is
right-shifted to the next LS byte.

A multiplicand or divisor of up to
56 bits may be loaded through the DI
port. The MS word is applied to the
APORT and the LS word to the BPORT,
and the exponent is masked out.

For a DIV operation, the divisor is
loaded first. The dividend is then
loaded through the DI port on a
following cycle.

For a MUL operation, one byte of the
multiplier is applied to the MI
input on each cycle, starting with
the LS byte.

Each multiplier byte is supplied by
the microcode on APORT<23:16> and is
asserted to all chips from the MULT
fanout (MULTFAN) logic.

The MS 32 bits (R0<63:32>) and the
LS 32 bits (RO<31:00>) of the final
result are passed to the BP bus on
separate cycles.

On a divide cycle, the accumulating
quotient is left-shifted one bit at
a time to the next MS byte.

VII 2-93

Table 2-48 MULT Logic Signal Port Function Description (Cont)

MULTIPR Port Name

Carry and Look—-Ahead Signals

Signal Function

Carry-Out (CO),
Carry-In (CI)

Propagate (P),
Generate (G)

Divider
Data In (DDI)

Control 1I/0 Signals

Normalize In (NAI)

Fl

Normalize/Round
Out (NRO) and
TRAP

Function (FNC)

Position Select (PS)

A carry-out from byte 4, 2, or 0 is
passed directly to the carry-in port
of the next MS byte. A carry-in for
each of the other bytes comes from
the carry look-ahead logic.

The carry propagate and generate
signals from all chips drive the

QUOTIENTBIT L is passed from the
carry look-ahead logic to all chips:

The first cycle of a divide
subtracts the dividend from the
divisor. If the result is negative,
QUOTIENTBIT is asserted and the next
cycle does an add of the partial
remainder. If the result is
positive, the next «cycle does a
subtract.

MUL NORM 1is asserted if the MS bit
is not in the hidden bit position,
causing a l-bit left shift.

When RNDTRAP is asserted by byte 3
or 0, the internal states of all
chips are preserved and the RO
outputs disabled. The MULT is thus
disabled for the next 3 cycles
(during pipeline latency).

E_MULDIV<4:0> and E MULDEN from the
microcode are applied to all chips
through the MULT fanout (MULTFAN)
logic. (See Tables 2-46 and 2-47.)

Each chip has a 3-bit PS input
hardwired to the code that defines
its order of byte significance.
(Byte 7 is MS; Byte 0 is LS.)

VII 2-94

2.3.3.4 Multiplier Operation -- Starting with the LS multiplier
byte, the microcode supplies the stored multiplicand with a
multiplier byte on each cycle, generating a new partial result.
Each multiplier byte is applied to the MULT on APORT<23:16>, and
each partial result is passed to the next MS chip on the
multiplier loop (MULTLOOP) lines.

The first multiplier byte is required on the first multiply cycle
using E MULDIV code C (hex). Thereafter, each of the next higher
bytes 1is applied on each of the following main multiply cycles
using code D (hex). On the last multiply loop, using code 8
(hex), a byte containing the multiplier sign bits for all bytes is
sent to the multiply 1logic (the multiplier must have been
sign-extended by one byte to obtain the required sign bits). (For
floating-point, the mantissa is always positive so a byte of all
zeros can be sent.)

At the end of the first and main multiply loops, the LS byte of
the product generated thus far is passed to the BP bus on bits
<15:08>. (Because this byte is sent during register write time of
the current microinstruction, it appears to be on the bus in the
middle of the ALU cycle of the next microinstruction. For a
floating-point multiply, this byte is usually discarded. For an
integer multiply, this byte represents part of the required
result, with a MICROCODE RESTRICTION that no traps may be provoked
if this is sent to the BP bus.)

The MS part of the result is stored in the multiplier logic after
the last multiply cycle and can be sent over the BP bus using the
STORE function codes 4--7, and 9--B (hex). The internal result is
64 bits 1long but the MS and LS 32 bits can be sent to the BP bus
on separate <cycles. The output can also be masked, allowing the
sign and exponent fields from the SALU and XALU to be merged with
the multiplier result on the BP bus.

The result can also be normalized and rounded. If a normalization
is performed, the hardware signal MUL NORM is asserted to the XALU
to correct the exponent by a decrement of 1. A rounding increment
is only performed on the LS byte of the product if a carry-out
from the rounded result occurs, producing a round trap. The ROUND
TRAP microsubroutine then fixes the result by propagating the
carry through the remainder.

Because the G _format mantissa is not byte-aligned, it is necessary
to first prescale one of the operands of a G_ times G_format
multiply. This involves a shift of either the multiplicand or the
multiplier by three bits left, then three bits back, and filling
with zeros.

VII 2-95

Two cycles are required to store an F _format multiply result with
normalization and rounding. This is because the rounding occurs
late in the multiply cycle. The STORE order is performed twice,
with the result of the first STORE being ignored and the result of
the second STORE being valid.

2.3.3.5 Divider Operation -- The division algorithm is based on a
nonrestoring technique that generates one quotient bit per cycle.
Both operands must be positive.

To start the division algorithm, the divisor is first loaded using
code 1, 2, or 3 (hex), the same functions used to load the
multiplicand.

The dividend 1is then loaded and the first division cycle is
performed using code 18 (hex). A hardwired left shift of 8 bits
is involved in this load. To compensate, the dividend must first
have been right-rotated by 8 bits. At the end of the first
division cycle, the MS quotient bit is output at register write
time and written to BP BUSK16>. The division algorithm then
continues, wusing the main division loop function code 19 (hex),
which generates one quotient bit per cycle.

On the last cycle, the last divide loop is coded and the remainder
is generated. The remainder 1is correct if it is positive. If
not, it must be corrected by adding the divisor to it. The
quotient then requires that a value of 1 be subtracted from it (if
the remainder was corrected). Function codes 5 and 9 (hex) are
then used to output the remainder.

For an aid in implementing the H format divide, it is possible to
divide an arbitrarily large dividend by the 56-bit divisor. On
each division cycle, APORT<15> is shifted into the LS bit of each
partial result (under normal operation these bits should be zero).
The MS part of the dividend is initially loaded into the
multiplier/divider. Thereafter, the remaining bits are shifted in
one bit at a time on each successive cycle.

The LS part of the dividend must be shifted left by 1 bit on each
division cycle. This works in conjunction with the 1-bit shift
required for quotient accumulation. As the dividend is shifted in
from its MS end, the new quotient bits are shifted into the LS
end. By supplying the correct part of the dividend at the right
time, it is possible to perform divides of large dividends.

VII 2-96

EK-KA88C-TD-PRE

SECTION 8
CACHE BOX LOGIC (CBOX)

CHAPTER 1
INTRODUCTION

1.1 CACHE BOX SYSTEM DESCRIPTION
As Figure 1-1 illustrates, the VAX 8800 cache box (CRox) consists
of three subsystems:

1. Translation buffer (TR)

2. Cache
3. NMI interface
The B is a hardware mechanism that speeds virtual

address-to-physical address translations.

NOTE
Cache and memory accesses cannot be made
without a physical address.

The TB holds calculated address translations for future use. If
the translation for a virtual address exists in the TB, the data
is taken as the physical address. And, if the required address
translation is unavailable, a microtrap will occur and cause a
trap routine to perform the required translation and write it into
the TB. Subsequent wuse of the virtual address reads the address
translated as data out of the TB.

In addition to the physical address, the TB also holds physical
page control information (that is, protection field and modify
bit). It performs a hardware check on these functions.

The TB receives a virtual or physical address as VA <31:00>, plus
an instruction of how to process the address as CACHE CMD MDNUM
<03:02> from the EBox. Within the TB, VA <31:00> bits cause an
address vector to be produced as PA <15:02>. This vector points to
a data entry in the cache.

The TB also produces a PA3 <29:16> address that is used in TAG and
matching MCAs in the cache. The PA3 <29:00> output of the TB is
sent to the NMI interface where it is stored whenever a cache
reference is made and is used to write the cache with refill data
when a cache miss occurs. The TB receives refill/invalidate
addresses as REF/INVAL <28:02> from the NMI interface when cache
miss data is received from the NMI as NMI DATA <31:00>,

VIIT 1-1

The cache 1is a hardware mechanism that provides the CPU fast
access to frequently-used data. It is addressed by a physical
address vector (PA <15:02>) produced in the TB. If the referenced
data is in the cache, it will be read from the cache and no memory
request 1is required. However, if the referenced cache data is
unavailable, a request to memory is made to obtain it. Returning
refill data is sent to the requester and is also written into
cache. Subsequent use of the data causes it to be read out of the
cache.

The cache is "read allocate only"; a new cache location is
created only after a read miss occurs, and a write updates the
cache if it 1is a <cache hit. However, if a write does hit in
cycle, the next possible cache reguest is stalled. Instead, a
"delay write algorithm" 1is used to update the cache on the next
write cycle.

The cache 1is written by the EBox (by means of WBUS <31:00>) and
refilled by the NMI interface with MD BUS <31:00> data by means of
the MD BUS. It sends data to the EBox ALU as A CD BUS <31:00>. It
also sends CACHE DATA BUS <31:00> data bits to the EBox register
file and to the IBoxXx.

VIII 1-2

€T I11IA

I EBOX SLICE 0,1 CDP LOGIC

WRITE DATA
WBUS CACHE

<31:00>
L 4 > (F1G.2-10)
J cVMD
M
|A

»
L

JRTUAL/PHYSICAL| TRANSLATION
DDRESS BUFFER

FROM PA<15:02>

PA3<29:16>

READ/WRITE_DATA

»

A CD BUS<31:00>

No

READ/WRITE DATA

*ALU
-STREAM TO
BAYK EBOX

»

»

CACHE DATA BUS <31 :00>/ TO
> REGISTER
FILE

| _STREAM DATA

D

WRITE DATA
MD BUS<31:00>

WRITE/READ MISS ADDRESSES .
>

REFILL/INVALIDATE ADDRESSES

)

<
<

I PA3<29:00>
)

< REF/INVAL <28:02>

NMI
INTERFACE

(FIG.2-15)
<« REFILL DATA

PA/DATA

NMI ADDR/DATA
<31:00>

NMI

<

T’

Figure 1-1 CBox - Block Diagram

SCLD-300

TO
IBOX

The NMI interface 1is the CPU interface to memory and I/0
subsystems. All requests to memory and I/0 subsystems are
processed by the NMI interface.

The NMI interface provides the control and data path by which the
CPU communicates on the NMI. When a cache read misses, the NMI
interface uses the read-miss address to build an NMI command/
address transaction and then sends the address to memory. The TB
and cache then become free to process additional CPU requests,
while the NMI interface handles the transaction to memory. When
memory data arrives, the NMI interface:

1. Takes control of the cache
2. Loads the data into the cache data store
3. Validates the cache tag valids with the new tag address.

When the CPU executes a write, the NMI interface transfers the
write data to memory without making the CPU wait for a write
completion to memory.

The destination of cache or memory data defines its usage. Any
data destined for the EBox is data stream, or D-stream data. Data
destined for the 1IBox is instruction stream, or I-stream data.
I-stream data is held in a 4-longword instruction buffer (IB). The
content of the 1IB is always interpreted as macroinstructions by
the IBox. It is used by the IBox decoder as the basis for forming
entry points into the VAX 8800 microcode and, thus, starting
microcode execution. Normally, an I-stream refers to the
contiguous set of longwords within a page currently being fetched.
A "new" I-stream 1is when the next longword being fetched is not
the next contiguous one.

Data destined for the EBox is wused as data or an address
calculation. It can only be requested by microcode and is always
written into a memory data (MD) register. The MD number is a
register specification field in the microcode and is used to
select one of eight possible MD registers for the destination of
the read data.

All D-stream read accesses must specify a known MD register
number; the MD number must be sent along with the D-stream data to
the EBox.

The EBox uses the MD number to write the data into the selected
register in a GPR file. When microcode requests a cache read
destined for an MD register, the MD register is invalidated by
EBox control 1logic; the MD register becomes valid when the data
returns. Whenever a reference is made to an EBox MD register that
it is invalid, the CPU MD stalls, and waits for the read.

VIII 1-4

1.2 CBOX OPERATION

The CBox operates per instructions in the VAX 8800 microcode.
These functions consist of data accesses (that is, read or write
and "housekeeping" functions that support the CBox hardware).
The CBox-specific microcode that is used to request CBox functions
is the CACHE command.

Figure 1-2 illustrates CBox cycle timing. The CACHE command is
received at T7. The half-cycle T7-T8 is used to decode the
command and form the appropriate control signals. The address
associated with the access is available at T9 from the ALU. The
T9-T10 half-cycle 1is wused to 1look up the TB, and the physical
address becomes available at T9. The cache tag and data store are
accessed during T9-T10. At T10, the CACHE HIT signal and cache
data are available. The cycle T8-T1l0 of a microinstruction is the
CBox (or cache) cycle for that instruction. Every
microinstruction has a <cache cycle at the canonical time. The
instruction and the CBox determine where a microinstruction
performs any function.

<4———— CBOX CYCLE ————p

B A B A
T7 T8 T9 T10
CACHE COMMAND NEXT CACHE
COMMAND
VA RECEIVED
FROM THE ALU NEXT VA
ACCESS TB PHYSICAL ADDR
WITH VA AVAILABLE
LOOK UP
CACHE TAG AND | CACHE HIT
DATA STORE CACHE DATA

SCLD-301

Figure 1-2 CBox Cycle Timing

Basically, the address and command flow is similar for all CACHE
commands. If a read miss occurs, the NMI interface must process
the read miss and eventually send a read transaction out to the
memory to obtain the required data for the cache. All write
requests are processed by the NMI interface. Whether a CACHE
command needs to be processed by the NMI interface does not affect
microinstruction processing, unless the NMI interface becomes full
or read data is used before it is received from memory.

VIII 1-5

The cache microfield consists of several overlapping fields,
depending on the function of the field. Each valid field
combination specifies the following information:

® CACHE command - An encoding of the type of CBox function
being requested (for example, read, write). Additionally,
it also specifies whether a physical address or virtual
address is being used.

® TB command - Decoded to control the generation of memory
management traps.

° MD number - Only relevant for read cycles, when it
specifies the destination for read data. On any other
type of cycle, a nonvalid MD number is specified.

® Size - Access size, if relevant.

The CBox 1is transparent to the microcode. Whether the data being
written to (or being delivered) is in memory or in the cache does
not affect its functionality.

Relative to the CPU, the CACHE command part of the
microinstruction is completed in one cycle; a CACHE command can be
presented to the CBox on every machine cycle. The microcode and
the CBox determine whether any function 1is performed as a result
of this. 1f the CBox is unavailable for a particular
microinstruction, the CPU will stall. The default state of the
microfield is interrupted as a "no operation" request.

1.2.1 CBox Cycles

The CBox performs certain functions, or cycles, based on the
command it receives in the VAX 8800 microcode. Table 1-1 lists and
describes the CBox cycles.

VIII 1-6

Table 1-1 CBox Cycles

CBox Cycle CPU Command NMI Function PIBA

Quiescent Noop None Missed in cache
Read Read None No arbitration *
Write Write None No arbitration *
PIBA Noop None Yes

TB command TB command Don't care Yes

Refill Stall if cmd** Refill No arbitration *
Invalidate Stall if cmd** Invalidate No arbitration *
Register returns Stall if cmd** None+d No arbitration *

*

* %

PIBA does not have arbitration; it does not make an access.

CPU command is overridden. If there is a CPU command, the CPU
will stall until the NMI function completes. Not applicable to
TB commands.

Not really an NMI activity, but a completion of the register
read that uses the NMI address/data paths.

1.2.1.1 Quiescent State -- The quiescent state is a control
mechanism the PIBA accesses for I-stream data delivery. The
following conditions set the quiescent state:

° Quiescent on the 1last cycle - The state was set and no
condition for clearing the state has occurred.

° LD PC or PIBA cache miss - Whenever an I-stream fetch in
the cache misses, additional fetching is stopped until
the quiescent state is cleared.

® Page <cross - When an I-stream fetch crosses a page
boundary, further access is prevented until an LD PC
command sets up the new I-stream fetch on another page
with a new translated address.

The following conditions clear the quiescent state.

°® LD PC with cache hits - This starts a new I-stream fetch.

) Second octaword of a current IB refill return - The IB
has been incremented, the refill data has been sent to
the 1IB, and further PIBA accesses can be made without
conflicts in I-stream fetching.

VIII 1-7

1.2,1.2 Read Cycle -- A read cycle can be requested only by
microcode. The microcode specifies an MD number, which is the
destination of the read data and the size of the read. The address
of the read is latched at the input of the TB.

If memory management errors are detected, a trap is generated. If
the address does not cause a trap, and the read data is in the
cache, the read 1is a cache hit and it takes only one cycle to
complete. The microcode request is received at T7 and decoding is
started. The VA is taken from the latched output of the TB at T8.
The address translation RAM in the TB is "looked up" in the T8
cycle.

At T9, the physical address is selected and latched at the output
of the TB. During T9, a tag and data store in the cache are
addressed. The data becomes available at T10. If the read caused a
cache hit, the data is taken by the EBox and eventually written to
the specified MD register. If the read misses in the cache, the
CBox NMI interface initiates a request to memory for the data.

1.2.1.3 Write Cycles -- Write cycles are requested by microcode.
The microcode specifies the write size, but does not specify an MD
number because read data 1is not expected. The address is taken
from a VA latch at the TB input, and the data is supplied to the
cache by means of the WBus.

Writes can be with a virtual or physical address. A virtual
address requires use of the TB for translation. If any memory
management problems occur, a trap will be generated. Otherwise,
the TB supplies the physical address needed for the cache access.
If the EBox specifies a physical address, the TB is bypassed and
the address is taken directly out of the VA Latch at the TB input.

The CBox implements a buffered write-through algorithm to control
writes to memory. Write-through means that writes go out to memory
as soon as possible. Buffered means the NMI interface collects
these writes, buffers them, and then sends them to memory.

The CRoY imnlementg a del
ements Cel

A LT el
(=3 Ve

The CBRox impl a rite algerithm. Two cycles are
required tc complete a write that updates the cache. The first
cycle is wused as the look-up cycle to determine if the write hit
in the <cache. If the write hit, the write must update the cache.
And, 1if the write did not hit, the write does not update the

cache.

If two write <cycles occur consecutively, any CBox request that
follows the write must stall for one cycle while the write
completes the wupdate of the cache. Thus, the CBox implements a
"delay write algorithm". If a write hits in the cache it updates
the cache only during the next occurrence of a write {that is, the
write to cache is delayed until the next write).

VIIT 1-8

The first cycle of the write performs a cache look-up. During the
following cycle, the physical address of the write is loaded into
a delay-write address buffer (in the TB) and the data is loaded
into a delay-write data buffer (in the cache). If the next cycle
is a read, both the write address in the delay-write address
buffer and the data in the delay-write data buffer remain
unchanged. 1If the next c¢ycle 1is a write, the write performs a
look-up by addressing a tag store in the cache. The delay-write
address in the TB is then sent to the cache data store, and the
data in the TB delay-write buffer is written to the cache, if it
was previously a hit.

NOTE
If the write was previously a miss,
cache control logic prevents the write
from updating the cache.

-

es latch in the TB. The PIBA always holds the address of the
next longword of I-stream data to be fetched. On each successful
delivery of IB data, the PIBA in the TB is incremented to point to
the next longword. The TB 1is not used when the PIBA addresses
contiguous longwords within the page boundary. If the PIBA crosses
a page boundary, it will not be incremented any further, and the
IB will be informed. The memory management microcode then issues a
LD PC command to start a new I-stream fetch on the new page.

Q)

4 The PIBA -- The PIBA refers to the contents of a PIBA
s

.2.
ddr

1.2.1.5 TB Cycles -- TB cycles make exclusive use of the TB. They
have three functions:

1. Writing the TB
2, Flushing the TB
3. Checking the TB

Writing the TB means loading the page table entry (PTE) into the
TB as the result of a TB miss. The VA latch is taken as the source
of the address and the data.

The TB can be flushed. This means invalidating one or more TB
entries. Any reference to an invalidated TB entry causes a TB
miss. Typically, this is used to clear the TB after a CPU reset,
or after a context switch.

VIIT 1-9

1.2.1.6 Refill Operation -- When a reference misses in the cache,
the CBox sends a read request for the data to memory or an 1/0
device. Data returned by memory Or an I1/0 device, is termed the
refill, or returned data. For the duration of the returning data,
the CBox performs refill cycles, passing data to the IBox or EBOX
and writing the data into the cache data store. The number of
longwords returned, and, hence, the number of cycles required, can
be one longword or two octawords. The size of the refill expected
depends on the type of the original read reference.

A read request is sent to memory or an I/O device because of:

o A D-stream read miss
e An I-stream read miss
°® An I/0 read

The address for the refill is the physical address. It is used to
address the cache tag and cache data store during the cache refill
cycles.

Data 1is returned from memory on the NMI address/data lines. The
received data is sent (by means of the MD-bus) to the cache data
store and the cache data bus. The first longword is always the
data missed in the original reference. For D-stream or I1/0 reads,
this is always passed to the EBox. I-stream data is sent to the
IBox only if it can accept the data. All the refill data is
written to the cache data store and set valid, except if:

° The refill is for an I/0 device
°® The cache is off, or
° An error occurred during the refill

The size of the refill data determines the number of refill cycles
required. The CBox determines the size of the refill expected by
the type of read reference made. If it has been waiting for a
longword return and, instead,; a hexword is returned, this is an
error condition.

A hexaword refill requires a minimum of 10 cycles for completion.
It consists of four data consecutive cycles {termed
"first-octaword refill"), a minimum gap of two nonrefill cycles,
and then four additional, consecutive data refill cycles (termed
"second-octaword refill"). A refill size of one longword takes
only one cycle to complete.

1.2.1.7 Invalidate Cycle -- The NMI interface interprets writes
on the NMI, with any ID other than its own, as an invalidate
cycle. The address accompanying the write is taken from the NMI
and then sent to the TB as the source for the cache physical
address. This is then used as the physical address to look up the
cache tag store.

VIIT 1-14@

Invalidates can take one to two cycles in the CBox. The first
cycle 1is wused as the 1look-up c¢ycle for a cache hit. If the
invalidate address misses, then the block being modified is not in
the cache and no further action is necessary. If it was a cache
hit, then modified data 1is in the cache and it must be
invalidated; subsequent accesses must access the data from the
memory.

The address 1in the refill/invalidate cycle is made available for
two cycles. The cache data store is not affected during a
invalidate cycle.

1.2,2 CBox Stalls

A stall is a CPU condition, whereby the current set of
microinstructions in the pipeline cannot continue processing due
to unavailability of certain resources or data.

Each latch in the CPU that is required to retain information (for
the current instruction) when the CPU stalls, is clocked by a
"stalled A <clock." During normal operation, the stalled A clock
functions as A clocks. When a stall happens, the stalled A clocks
are Dblocked, thereby retaining the state of the "stalled" latches
the cycle before the stall occurred. Thus, microinstructions that
cause a stall can be completed after the stalling conditions are
cleared.

There are two types of stalls:
1. VA stalls
2. MD stalls

VA stalls occur when the CPU requests a cache cycle but the cache
data path is being used for other functions (for example, refill,
invalidates, or register returns). The CPU must stop and present
the address again during the next cycle.

MD stalls occur when the CPU tries to use some data that was
requested by a previous cycle and the data has not yet arrived
from the cache (for example, because the reference missed in the
cache). The CPU must wait until the data arrives and then execute
the microoperation.

NOTE
The CPU can wait for more than one MD at
the same time.

VIIT 1-11

CHAPTER 2
FUNCTINNAL DESCRIPTION

2.1 CBOX SUBSYSTEMS DESCRIPTION

2.1.1 Translation Buffer

Because the VAX 8800 system uses virtual addresses, every virtual
address must Dbe translated to 1its actual physical address in
memory; the CBox translation buffer (TB) performs the required
translations. However, the CBox TB does not always perform
address translations; sometimes it receives physical addresses
that require no translation.

The translation buffer receives:

) Read and write addresses from the EBox
) Refill/invalidate addresses from the NMI interface

It produces the following types of address vectors:

Read

TB read miss

Cache read miss

Write

Delay-write algorithm
Physical instruction buffer
Cache TAG

The TB data inputs consist of:

° Refill/invalidate data (addresses) from the NMI interface
) Write data for the TB RAM

As Figure 2-1 illustrates, the TB consists of:

An input VA latch
A TB RAM

A TB match MCA

A TB RAM bypass

A PA latch

VIII 2-1

¢—¢ II1A

CBOX ADP MODULE

ADP CS2

TRAP
CONDITIONS

DATA | LATCH TB MATCH I
FROM . <02:00> CMCF<02:00> (SH 2 TBM CTRL<02:00> MCA =
£<02:00> | >
IBox ‘ OF 10) (SH 2 OF 10) ‘
MODULE TRANSLATION OK TO
———————— " CACHE
MATCH
(FIG.2-1)
| VA LT VA<31:16> I
LATCH TB BR COND<01:00> l
——» 10
IBOX
- 8 TAG SEQ l
(SH1 OF 10) RAM < > > MODULE
PROT
(SH1 OF 10) |._<03:00>
i TB VALID,
_ | VA<31:09> | <09:00> M BIT
l (FIG. 2-5) l
B DATA<29:09> TO l
> sh2
| PA LATCH
FIG 2-7)
ROM TB_DATA PA2 (PA |
FRo <15:09> > PABH | <15:09> <15:2> o CacHE
FRC INTERFAGE McA DATA I
EBOX gEl%fggA“ REF INVAL<15:09> PATH
ALY (FIG.2-5) (SH 3 oF 10 g (FIG 2-10)
: | <18:09>
PA3<29:16> TO
LT VA<15:09> CACHE
TAG,MATCH
(FIG.2-10)
| LT VA<29:16> I
PA3<29:00> 3 To
NMI
INTERFACE
To s ADDR/DATA
| VA<08:005 % TO SH2 PABL UNBUF PA SLIGES
» MCA ; (F1G.2-12)
] CACHE CMD <08:02> >
FROM | MDNUM<3:2>
1BOX l ™ (SH 8 OF 14)
WCS FROM __CACHE HIT
NMI INTERFACE id
ADDR/DATA SLICES _ REF INVAL<08:02> |
| (FIG.2-12)

Figure 2-1

Translation Buffer - Block Diagram

SCLD-302

Basically, a virtual address is received as VA bits <31:00> from
the EBox, plus cache command CMCF <02:00> field bits that
determine TB operation. The virtual address in VA bits <31:09> is
held in an 1input VA latch and then distributed to the TB match
MCA, the TB RAM, and the TB RAM bypass logic. If the TB RAM
contains a physical-to-virtual address translation for the EBox VA
<31:00> input:

) The required physical address is accessed from the RAM.

° The accessed translation is checked for validity in the
TB match MCA.

® Presence of the following fault conditions are checked:
- Page crossing
- Access violation
- Memory trap
- Modify bit trap

° A physical address vector is assembled in the PA latch
and sent to the cache data store as PA <15:02> bits.

However, when a physical address is received from the EBox, the TB
RAM 1is not wused; the TB RAM bypass logic produces the physical
address input to the PA latch.

When the TB RAM is to be used for an address translation, and a
check determines that it does not contain a valid translation, the
EBox writes the data into the TB RAM and the
physical-address-access procedure is repeated to produce the
required cache data store physical address vector.

Of the wvirtual/physical address VA<31:0> bits received from the
EBox:

° VA <31:09> specifies a virtual page frame number (VPN).

°® The corresponding physical translation for the VPN is the
page frame number (PFN).

° Data within a page (virtual or physical) pointed to by
the PFN is specified by VA<8:0>.

Thus, a virtual address input is comprised of a VPN (VA <31:09>)

and VA<8:0>, and a full physical address is comprised of the PFN
and VA<8:0>. Figure 2-2 illustrates the virtual address fields.

VIIT 2-3

—_
D W
0N
@ N
~N N
DN
o
AN
w N
NN
—- N
o N
O —
o —
-~ =
D —
o -
-y
w —
N —
-
[
[le =)
@ O
~N o
(o) =)
Qo
»~ O
w o
N o
- O
oo

i i N

¢—TB TAG g 7B INDEX———p«4—SPECIFIES DATA—p
WITHIN A PAGE

——»{ l€— MSB OF TB INDEX
USED TO MAP SYSTEM
OR PROCESS PTES

SCLD-305

Figure 2-2 Virtual Address Fields

The PFN is a part of a page table entry (PTE) data structure that
holds information specific to the page. The CBox TB RAM, in
addition to holding the PFN, also holds a subset of the
information included in the PTE (the protection field and the
modify bit).

2.1.1.1 VA Latch -- The VA 1latch (Figure 2-1) is the holding
mechanism for high-order bits <31:09> of the VA <31:00> input
received from the EBox. It is clocked with a STALLED A CLK and
loaded by means of LD VA EN from the PABL MCA. buring a VA stall,
it holds bits <31:09> until the cache can process the command.

As Figure 2-1 illustrates, the VA latch sends:

° LT VA <31:16> bits to the TB match MCA where it is
compared with the TB RAM TB TAG <30:18> output bits to
determine if a TB hit has occurred.

® VA <31,17:09> bits as FVA <09:00>, TvA <09:00>, SVA
<09:00>, and PVA <09:00> to the TB RAM to access a
translated (physical) address and also produce

control/status signals.

° LT VA <29:16> bits to the PA latch.

2.1.1.2 TB. RAM -~ The TB RAM provides a cache of 1K calculated
virtual-to-physical page table entries (PTEs), consisting of 512
system PTEs and 512 process PTEs. It receives data as bits LT VA
<30:18> and addresses as bits FVA <09:00>, TVA <09:00>, SVA
<09:00>, and PVA <09:00> from the VA latch, plus write enables and
a flush signal from the cache control MCA (Figure 2-10).

The TB RAM directly maps the VPN bits <31:09> into 1K TB entries.
Bit VAK31> is wused to map one half of the TB RAM for system
translations and the other half for process translations. Bits
VA<17:9> are used to map the system and process PTEs into the 512
TB RAM entries.

NOTE
As the TB RAM translates pages, bits
VA<8:0> do not need to be translated.

Whether or not the TB RAM is used for an address translation is
determined by setting a memory management enable (MME) bit that is
received from the cache control logic. When the MME bit is set,
all virtual address references use the TB RAM for translations and
memory management traps are allowed to occur (unless otherwise
defined in the TB command). When the MME bit is not set, the TB
RAM is not wused for translations; all addresses are taken as
physical addresses from the TB RAM bypass logic and memory
management traps are blocked from occurring.

Within the TB RAM, the four sets of bits <09:00> received from the
VA latch are used to access a translated address that was written
into the RAM, and perform checks on the access being made. And, if
the VA <31:09> input from the EBox contains a virtual address, the
TB RAM 1is used to produce a PAl output. The PAl output comprises
the wupper physical address bits <15:09> that are used to form the
PA <15:02> address vector for the cache data store.

When the EBox sends a physical instead of a virtual address (in
the VA <31:00> 1input), the TB RAM is not used to produce bits
<15:09> for the cache address vector. Instead, the TB RAM bypass
logic is used; bits LT VA <15:09> from the VA latch are used in
the PABH (physical address bypass - high) MCA to produce the upper
bits (PA2 <15:09>) of the physical address. This would then be
combined with the buffered output PA <08:02> of the PABL (physical
address bypass - low) MCA to produce the PA <15:02> address bits
for the cache.

Whenever a translation access is made, the TB RAM TB TAG <30:18>
bits are compared against the LT VA <31:16> bits in the TB match
MCA to determine if the address produced by the translation buffer
is wvalid data. And, if it is determined to be valid, the TB match
MCA sends a TRANSLATION OK signal to the cache match MCA. The
cache match MCA then determines if the cache data entry being
pointed to by the physical address vector contains the required
data.

VIII 2-5

[TIA

|
4

9-2

W N = =g

RAM ARRAYS WRITTEN

8 TAG TB VALIDS

TB DATP<15:07>, TB VALIDS,
PROT<31:00>

TB DAT<«29:10>, VALIDS, MBIT

TB VALIDS

TB RAM

VALID
RAM
TBV

TB VALID

DATA RAMS

FAST
RAM
TBD2

SLOW
RAM
T8D 1

v

PAl A,B<15:09>
B - S — ’

TB DATA<29:09>

TB_ RAM T
Te_ha B WA ENABLE
CYCLE TBD |TBD1]TBD2|TBV
18T 1 0 0 1
2ND 0 0 1 1
3RD o | 1]o |1
FLUSH T I I
TRUE
B WRITE SEQUENCE

LOAD TB INDEX INFO VA LATCH

WRITE THE TAG AND HOLD THE TB INDEX

WRITE PFN(8-0), PROT AND MBIT AS TBDATAZ2

WRITE THE PFN<20-7> AS TBDATA1
Figure 2-3 TB

TAG
RAM
TBT

TB TAG
<30:18>

v

PROT,
MBIT

PROT<3:0>

v

MBIT

v

-~ Write Sequence Diagram

v

SCLD-304

aanb1a

*sousnbes e31aM

£-¢

24

WYY 91 9yl se3exlsnil 3eyjz weibeip perziidurs

As Figure 2-3 illustrates, the TB RAM is:

) Flushed
) Written
) Checked

The TB RAM is flushed to invalidate (clear) one or more of its
data entries. Typically, it is flushed after a CPU reset or a
context switch has been made.

The TB RAM is written with page table entries after the TB match
MCA has determined that it does not contain valid data for the
address reference being made.

Table 2-1 correlates the encoding of the PROTection field <03:00>
bits to the type of access allowed.

Table 2-1 PROTection Field <03:00> Coding and Access Allowed

Protect Access Allowed

Codes

<3 2 1 O K E S U

0 0 0 0 NONE NONE NONE NONE
0 0 0 1 RES RES RES RES
0 0 1 0 RW NONE NONE NONE
0 0 1 1 R NONE NONE NONE
0 1 0 0 RW RW RW RW

0 1 0 1 RW RW NONE NONE
0 1 1 0 RN R NONE NONE
0 1 1 1 R R NONE NONE
1 0O 0 0 RW RW RW NONE
1 0 0 1 RW RW R NONE
1 0 1 0 RW R R NONE
1 0 1 1 R R R NONE
1 1 0 0 RW RW RW R

1 1 0 1 RW RW R R

1 1 1 0 RW R R R

1 1 1 1 R R R R

VIII 2-7

2.1.1.3 TB Match MCA -- The TB match MCA (Figure 2-4) checks the
validity of the TB RAM virtual address translations. As Figure
2-4 illustrates, the TB match MCA checks the TB RAM TB TAG <30:18>
output bits against the LT VA <31:16> bits from the VA latch. If
the two inputs do not match, or if the TB VALID bit output of the
TB RAM has not been set, a TB MISS TRAP error signal is generated,
indicating that the translation referenced by the EBox is not in
the TB RAM. If the TB RAM contains a valid translation, a
TRANSLATION OK signal is sent to the cache control.

The TB match MCA is controlled by means of a TBM CTRL <02:00>
field received from the EBox and a MME signal from the cache
control.

Table 2-2 provides a correlation of the TB match MCA operations to

the type of TB match control bits TBM CTRL <02:00> and the setting
of the MME bit.

Table 2-2 TB Match MCA Operation Coding

TB Encoding

State <1> <TBS>
TB MISS 0 0

ACV 0 1
MBIT 1 0

TB OK 1 1

MME OFF 1 1

VIII 2-8

6—¢ IIIA

TRANSLATION BUFFER MATCH (TBM) MCA

ACV TRAP

TRANSLATION
SO

LA >

TB BR
COND<01:00>
»

TB MISS TRAP
»

MBIT TRAP

B
. MATCH
TBM CTRL<2:0> CONTROL
ACCESS
VIOLATION
CHECK
ACCESS
TRANS-
N READ CHECK VIOLATION > v T8 PROBLEM LATION
TRAP CHECK
NO TRAP
PROT<3:0> -~
CUR MODE
A<1:0> nl
TB
STATE
I TB_MISS
TAG
LT VA MATCH
<30:18>
TB TAG
<30:18> o
NQ TRAP
M BIT
TRAP

Figure 2-4

TB

Match MCA - Simplified Block Diagram

>

SCLD-303

2,1.1.,4 TB RAM Bypass -- The TB RAM bypass logic produces a
physical address input to the PA latch whenever the TB RAM has
been turned off. It consists of a PABH MCA, a PABL MCA, and part
of logic in the cache match MCA. The TB RAM bypass logic produces
the fcllcowing types of addresses:

® PIBA
® Delay write
® Refill/Invalidate

PIBA Addresses

A PIBA address contains a physical address that points to the next
longword of I-stream data to be fetched. Because the PIBA is used
to store a physical address, and fetches contiguous longwords from
memory, an address translation need only be done once per page.
The address translation 1is performed and the PIBA is loaded
whenever:

° There is a Jump
o A conditional branch is successfully taken, or
° A PIBA page crossing has occurred

Delay-Write Addresses

A delay-write address 1is the address of a write waiting to be
written into the <cache. The address held in the TB RAM bypass
corresponds to the data held in the delay-write address buffer.

DELAY WR ADDR <15:09> is loaded during a CPU write operation, with
either TB DATA <15:09> bits, or the LT VA <15:09> input bits to
the PABH MCA. This delay-write address is used to update the cache
data store 1if the write was determined to be a hit in the cache,
or to check subsequent CPU reads to determine if they hit in the

same cache data store location that is waiting to be updated.
Since this MCA contains only the <15:0%> bi i
address (PABL MCA contains 1low bits <08:02>), it generates the
PART2 DELAY WR HIT signal that is used by the cache match MCA to
generate the DELAY WRITE HIT signal.

PR = 1.~ AT v e
of tne deiay=wr

+~
Lo

et
cr
n

NOTE
The PABH MCA DELAY WR ADDRS latch is
loaded during an A clock, and is gated
by the signal DELAY WR LOAD.

VIII 2-19

Refill/Invalidate Addresses

When a reference misses 1in the cache, the CBox sends a read
request for the data to the memory or the I/0 device. Data
r~turned by the memory or the I/O device is refill, or returned
data. For the duration of the returning data input, the CBox
performs refill cycles, sending data to the IBox or the EBox and
writing the data into the cache data store.

The refill address is always held in the NMI interface
address/data slices PA file PIBA Q2 or Read QO (because it was
first a miss). The address is selected from one of these queues,
and then sent to and 1latched in the TB RAM bypass MCAs
refill/invalidate latches for the duration of the refill. This
address 1is selected as the PA within these MCAs for input to the
data PA latch and the tag PA latch during the refill cycle.

Within the TB RAM bypass logic:

° The PABL MCA produces the refill address 1low bits
<15:09>.

® The PABH MCA produces the refill address high bits
<15:09>.

o The cache tag MCA checks the refill address to determine

if a refill match exists.

The REFILL/INVAL address is stored in the three MCAs, and the PABL
MCA increments the low three bits of the address to point to the
proper longword of the hexword that is being written to the cache
during the refill cycle. The REFILL/INVAL address is received by
the PABH MCA on the B CLK, and is loaded into an A latch, which
has a clock gated by the signal LD REFILL/INVAL. As with the
PIBA, bits <15:09> of the REFILL/INVAL ADDR do not have to be
incremented, so this section of the PABH MCA simply provides
latching for these bits.

During an invalidate operation, the REFILL/INVAL address is loaded
into the three MCAs with the address (which had been checked for a
cache hit) that was present on the NMI, and then used to clear the
valid bit in the appropriate cache locations.

Figures 2-5 and 2-6, respectively, are simplified block diagrams

of the TBR RAM bypass PABH and PABL MCAs. They illustrate how the
PIBA, delay-write, and refill/invalidate addresses are produced.

VIII 2-11

PHYSICAL ADDRESS BYPASS HIGH (PABH) MCA
LT VA<15:09> I
\ PA3 51'2509> \ PA2 C<«15:09> >
<15:09> PIBA .
ADDR
TB DATA LATCH
<15:09>
DELAY
TIWRITE PA<15:09> .
ADDR >
LATCH
DELAY
REFILL INVAL —PIWRITE WR INDEX MATCH >
R AR | R
INVAL :) INDEX OCTAL MATCH
ADDR <15:09> > ING oC ATCI >
LATCH
DLY WR HIT SLCO/SLCY
>
T8 DATA<15:09>

SCLD-306

Figure 2-5 PABH MCA - Simplified Block Diagram

IIT 2-12

el-¢ IIIA

r.PHYSICAL ADDRESS BYPASS |LOW (PABL) MCA

PAGE HEX MATCH

>

DLY WRT HIT<1:0>
-

VA/PA<8:0> VA
™ [ArcH - MATCH
VA<08:00> ADDRESS
LD VA o
VA<08:02>
DLY
. WRITE DELAY WRITE<08:02>
ADDR
LATCH REFILL INVAL<08:02>
LD DLY WR £68%2>
REF/INVAL ADD<8:2> REFILL REFILL
CONTROL ADDR
LONGWORD LATCH
COUNTER
STOP REF
PIBA
»| INC
LOOP
Figure 2-6 PABL MCA - Simplified Block Diagram

PA<08:02>

SCLD-307

v

PABL MCA functions include:

2'1‘1.5
vectors:

Storage and control of the PIBA bits <08:00>

Storage of DELAY WRITE ADDRESS bits <08:00>, and the
generation of the DLY WRT HIT signal for a match in this
section of the address

Storage and control of REFILL/INVAL ADDR bits <08:00>
Detection of four microtrap conditions:

Unaligned

Page cross

Unaligned page cross

PA Latch =-- The PA latch produces the following address

PA <15:02> for the cache data store
PA 3 <29:16> for the cache match MCA and cache tag MCA

PA 3 <29:00> that 1is sent to the NMI interface
address/data slices

TAG PA <15:04> that is sent to the cache TAG MCA

Figure 2-7 is a simplified diagram of the PA latch.

VIII 2-14

CBOX ADP MODULE
PA LATCH
FROM . .
FROM Ass 1B DATA<29:095 <29:16>
(FIG.2-1) !
PA3<29:16>
FROM REF INVAL<28:10>
NMI INTERFACE —
ADDR/DATA SLICES 0 3P |<29:16>
(FIG.2-12) 2710 ;
FAOM LT VA<29:16> § TO
TB BYPASS ‘ |18 DATA CACHE TAG,
(F1G.2-1) PA SEL | 1<15:09> PA3<29:16> | . MATCH
PA3<15:09> | pA3<29:00 (FIG.2-10)
i < N > o
» TO NMI
FROM PA2 C<15:09> INTERFACE
SH 1 ADDR/DATA
SLICES
(FIG.2-12)
CBOX CCS MODULE
FROM TB .
(BF‘?S'ZS) UNBUF PA<oa,04>\ —
. or, sep | Pas<os>
2710
FAOM _VA<0B:00> ;'QTCH
EBOX — P 3714 /
LT VA
<07:00>
73p PA3<07:00>
8/14
<7:2> <8:2> PA
0 { <8:4> | LATCH 08:04
2 46P <08:04>
PA SEL 2110
——= TB DATA |
<15:09> ‘
‘ TAG PA 1o
ser |<15:00> | <18:04> Qo
PA2 C (FIG.2-10)
= <15:09>
|
1‘ PA SEL
‘ PA1 A/B<15:09>
PA
15:2> _ 10
! T
PATH
Bis.2-1 PA2 A/B<15:09> (FIG 2-10)
BUFFER| PA A<08:02>
PABL _ IfSH 8
OF 14)
PA B<08:02>
<7:2> TO
SH 2
SCLD-308
Figure 2-7 PA Latch - Logic Diagram

VIII 2-15

The data PA latch produces the cache data store look-up address
vector PA <15:02>. It has the same timing as the tag PA latch, but
is, in the <case of writes, loaded from a different source (the
delay-write address buffer in both the PABH MCA and the PABL MCA) .

Because the data PA latch is used only to index the cache data
store, it does not need any bits beyond the cache index bits (that
is, PA <29:16> bits are not needed).

The data PA latch is loaded from:

® The TB RAM with bits PAl <15:09> (or from the TB RAM
bypass PABH MCA with bits PA2 <15:09>) during a cache
read operation.

° The delay-write address buffer in PABL for CPU writes
with PA 1 <08:02>.

The tag PA latch produces the cache tag MCA look-up address vector
TAG PA <15:04>. The tag PA latch holds the same address as the
data PA latch during all CBox cycles (except the write cycle).

The tag PA latch is loaded from the TB RAM with TB DATA <15:09>
bits (or TB RAM bypass PABH MCA with bits PA2 C <15:09>) for CPU
reads and "new PC" reads.

Figure 2-8 1illustrates the bit routing through the TB PA latch

when a refill address is received from the NMI address/data slices
(Figure 2-12).

VIIT 2-16

CBOX ADP MODULE

| PA LATCH ,
FROM . 9
FROM pass — 1B DATA<29:09> <29:16> |
(FIG.2-1) |
27p |_PA3<29:16>
FROM REF_INVAL<28:10> 2710 —
NMI INTERFACE —_—— —
ADDR/DATA SLICES <29:165| !
(FIG.2-12) - ‘*“’““"/‘ I
FROM LT VA<29:16> o
TB BYPASS
(Fig.2-1) B8 | PA3<20:165 MATCH
PA3<15:09> (F1G.2-10)
—— PA3<29:005 | ——
FROM L£A2 C<15:09> | _ | INTERFACE
ah ADDR/DATA
SLICES
L (FIG.2-12)
I CBOX CCS MODULE | ‘
I
FROM 1B 04 ;
EroM UNBUF PA<08:042] i
(FIG.2-3) LATCH [pa3.oss |
i il
) LATCH 2/10 |
FROM _VA<08:00>y| gp
EBOX 8/14 ‘
ttva N\ |
<07:00> \
73p PA3<07:00> |
B8/14 —
<7:2> <8:2> PA —
| <8:4>) LATCH
2 46P <08:04>
PA SEL 2no
| TB DATA
<15:09>
{ TAG PA 0
370} <19:09> <15:04> o cacHE
TAG
P1A§ 009 (FIG.2-10})
[< N >
PA_SEL
I PA1_A/B<15:09>
A
15:2 10
T e
FROM
18) PATH
Pia.21) PA2 A/B<15:09> I (FIG 2-10)
BUFFER PA A<08:02> |
PABL o BN ER A A<0R022 _l
OF 14)
— PA B<08:02>
<7:2> TO
SH 2

Figure 2-8

PA Latch Bit Routing - Refill Cycle

VIII 2-17

SCLD-3088

Figure 2-9

output

reference to the CBox.

illustrates the bit routing of the TB RAM the TB DATA
through the PA latch when the EBoOx makes a virtual address

CBOX ADP MODULE
IPA LATCH
FROM T8 DATA<29:09> <29:16
T8 BYPASS -——\
(FIG.2-1)
27p | PA3<29:16>
FROM REF_INVAL<28:10> B |
NMI INTERFACE i
ADDR/DATA SLICES
(FIG.2-12) / l
FROM LT VA<29:16> 1
TB BYPASS 18 oata [N\ A
r . MATCH
! (FIG.2-1) A SEL <15:09> | N\ ! PA3<29:16> | (FiG.2-10)
;?TO_E;__s:L;os;i l PA3<29:00 .
— === TO NMI
FROM PA2 C<16:09> INTERFACE
SH 1 / | ADDR/DATA
/1 1 SLICES
L 1 i (FI1G.2-12)
| CBOX GCS MODULE | Pa SEL] I
FROM T8 . !
l BYPRSS UNBUE PA<08:04>] \ | — i |
(FIG.2-3) o Tep T | PA3<0s)
2/10]
LATCH I |
FROM VA<08:00> I
Faoy —————l 8P] =
| l
LT VA l
<07:00>
73P PA3<0 DO>
8/14 ——
<7:2> <8:2> PA4
- hamn <B:4> | LATCH
Qe \ | s6p | .<08:04>
pa SEL] I 2/10
1B DATA
<15:09> \
TAG PA
<15:09> <15:04> ggcrs
2/1 1AG
PA2 C (FIG.2-10)
= <15:09>
]‘ PA_SEL
2 'H PA1 A/B<15:09>
| sz,
i S W [C)ACPE
FROM j
ng6.2-1)< PA2 A/B<15:09> I (F,G 2-10)
i
i H
1 1 BUFFER| _PA A<08:02> |
l ___PABL BI(SH 8 _l
H — OF 14) PA_B8:08:02> t_
<7:2> > (o]
SH 2
SCLD-308C
Figure 2-9 PA Latch Bit Routing - VA Reference

2.2 CBOX SUBSYSTEMS DESCRIPTION

2.2.1 Cache
As Figure 2-10 illustrates, the cache consists of:

Data path logic
Tag MCA

Match MCA
Control MCA

MD number MCA

2.2.1.1 cache Data Path Logic -- The cache data path logic is
used to move data out of the CBox to the IBox and the EBox. It
consists of:

A delay-write data latch

A write data output multiplexer
A cache data store

An ALU bypass multiplexer

A write buffer

Basically,

° Data is read from the cache data store as bits RD <08:00>
and multiplexed by means of the ALU bypass multiplexer as
cache DATA bus <31:00> bits to the EBox register file and
the IBox, or

® It is multiplexed to the EBox ALU as A CD <31:00>
Alternately, the cache data store can be bypassed (by means of a

bypass multiplexer) and EBox write data is sent as WR DATA CDB
<08:00> bits to these two destinations.

VIII 2-19

gg¢—~¢ 1IIA

£BOX SLICE 0, 1 MODULES
CACHE DATA PATH

CACHE WRITE DATA SOURCE
MULTIPLEXER-LATCH

WRITE DATA
OUTPUT
WB<31:00> —WRITE_DATA —p> —WRITE DATA-S
c DB
WRITE DATA LATGH <08:00>
WS WS DELAY -DELAY WRITE 10
<31:00> INPUT DATA DATA IN<08:00> ALGORITHM DATA - Py ? " SHEET
EBOX | DATA LATGH 2
LATCH | TOFROM —REFILL DATA—p
MEMORY ML <& MEMORY WRITE DATA — WRITEL
WRITE i
CACHE OLY VALD ,, DATA ADDR/DATA __MD BUS<31:00> DELAY WRITE/
CONTROL SLICES *- DATA
(SH 3) (FIG.2-12) J
WRITE BUFFER DATA IN VEMORY
<08:00> WRITE
MISC DATA
WRITE QUPUT LOGIC
BUFFER BUFFER INT MD
LATCH <08:00>
WBUF WR ADD<1:0> ITATCH
SELECT
DEGODER
weue
WHREN LATCH
LD WA BUF out LATCH
LD WA BUF | __LD OUT BUF] I
RD ADD<1:0s o] WATOH 1 - —
NMI _ho BUS weEN | LATCH
INTERFACE ¥
Mi IN
CONTROL
(F1G.2-15)
SCLD-309

Figure 2-10 Cache - Block Diagram (Sheet 1 of 3)

I
| EBOX SLICE 0,1 MODULES
| CACHE DATA PATH '
1 CACHE DATA STORE CACHE DATA ;
! BUS MUX
WRITE DATA WR
READ/WRITE DATA
CACHE DATA BUS <31:00> . TO
RD » 1BOX
. TO
> EBOX
REGISTER
WR DATA R FILE
FROM CDB<08:00> N
SHEET 1 WRITES k. e E%AD DATA
- 08:00
DELAY WRITE/- = Z RD » TO
REFILL DATA ALU
PA<15:02>
FROM =P
TRANS-
LATION
BUFFER
PA LATCH
(F1G.2-1) DLY WRITE HIT N
SLco.1 CACHE
DATA SEL
0
CACHE BYPASS
OUT SEL
|
i
i

SCLD-310

Figure 2-10 Cache - Block Diagram (Sheet 2 of 3)

VIIT 2-21

¢¢—¢ IIIA

CBOX ADP MODULE

__ TRANSLATION OK
3<29:16 CACHE MISS
> Pl MoA~ | ——————% NMI INTERFACE
CTAG DATA<28:16> NMI_IN
CACHE "1 4/10 CONTROL
TAG (F1G.2-15)
MCA
TAG PA<15:04> | 4/10
RoM _CTAG WREN | CTAG VALID<3:0> CACHE 10
CLOCK HIT TRANSLATION
» BUFFER
(FIG.2-1)
CBOX CCS MODULE FAOM REFILLING 1B
CACHE 10
FROM CMCF<6:3> CONTROL| FORGE DATA VALID [BOX
SEQ MODULE TB CMD<2:0> "SLICE PA SEL A.B [ShicE 0.
. DLY WR LD A.B ¢
CMSIZE<2:0> »
114 | STALL <7:0> ») TO
FROM . IBOX
FPOM & cRFACE BUF RETURN TYPE<1:00> TRAP_SUMMARY > (2
NMI IN CONTROL
(F1G.2-15) MME_ ON CACHE NMI CR ID<1:0>. 10
» NM! INTERFACE
NMI_OUT
CONTROL
FROM TRAP MD<2:0> TO (FIG.2-13)
IBOX | AT Vo< b 1BOX
WeS MD DECODER
NO.
MCA
CACHE DEST<3:0> .
CACHE HIT<1 >
T p 2/74 WR CDS<3:0> o TO
» | EBOX
CACHE CMD DLY WR MUX SEL<3:0> SLICE 0.1
MDNUM=<3:0> > cop
> WBUF_WREN<3:0> _
>

SCLD-311

Figure 2-10 Cache - Block Diagram (Sheet 3 of 3)

The cache data store is loaded with WR DATA CDB <08:00> from a
latch at the output of the cache write data source multiplexer.
The data source multiplexer is used to select:

® Data directly from the EBox as WB <31:00> during a cache
write.

® A delayed EBox input from the delay-write data buffer as
DATA IN <08:00> during a delay-write-algorithm operation.

® INTernal MD <08:00> from the NMI interface (by means of
the MD bus) when memory data must be written to the cache
RAM.

During a write operation to memory, the delay-write data
buffer DATA IN <08:00> output is buffered in a write
buffer, put on the MD bus as MD bus <31:00>, and then
written to memory by means of the NMI address/data slices
and the NMI. Incoming WBus data <31:00> bits are either:

1. Sent directly to the write data output multiplexer as
WB <31:00>, or

2. Latched 1in the delay-write data latch (if a delay
write 1is requested), the DATA IN <08:00> output of
which can be sent to either:

a. The write data output multiplexer, or

b. The write buffer

The delay-write data buffer provides storage of data received from
the WBus until:

® The EBox executes another write (at which time the
data is written into the cache data store on the next
write)

® A read operation requires data to be placed into the
cache data store

The delay-write data buffer 1is 1loaded during a delay-write
algorithm by means of a DLY WR LD control signal from the cache
control MCA.

The cache data store holds the corresponding data for addresses
held in the cache tag MCA. It is written from:

° The WBus
° The delay-write data buffer, or

® The MD bus

VIIT 2-23

The cache data bypass and cache ALU MD bypass multiplexers located
at the output of the cache data store are used to select between
the output of the cache data store and the cache write data source
latch. This allows the data being written to the cache data store
to also be sent to the EBox and IBox if necessary, or in the case
of a delay-write hit, to be taken directly out of the delay-write
data buffer.

The ALU MD bypass allows data to be sent more quickly to the ALU
from the cache data store, instead of through the MD registers. It
contains the same information as the cache data bus, but the data
is wunlatched and, therefore, driven slightly earlier (the input
latch of the ALU has the same timing as the latch that drives the
cache data bus).

The write buffer is a l-octaword (16-byte) write-only, write-back
cache that is used for writing data to the cache data store or VAX
8800 memory. It allows the following types of large data blocks:

Quadword

Octaword
Grand-floating
Huge-floating
Character strings
Stack writes

to be grouped into blocks that correspond to the memory block
size. This minimizes the number of required main memory write
cycles.

The write buffer consists of:

° Input latch selection logic
° 16-byte write buffer
° Output buffer
° Output multiplexer
Basically, ¢t W
sections are then selected for writing to the output buffer by
WBUF WR ADD <01:00> bits from the translation buffer after being
enabled by WBUF WREN control signal [from the cache control logic
(MD number MCA)].

he write buffer is written with a longword. The latch

VIII 2-24

Longwords in the output buffer are read (multiplexed) onto the MD
bus as MD BUS <31:00> bits by means of the MD BUS WR EN and WR BUF
RD ADD <01:00> control signals.

NOTE
During the time that the output buffer
is being multiplexed onto the MD bus,
the write buffer can again be accepting
a new longword of data, thus providing
approximately a 200-ns delay between
availability of data.

2.2.1.2 Cache Tag MCA -- The cache tag MCA is used to check if
data requested in the current reference is in the cache. It
consists of a cache TAG RAM, plus several registers. The RAM is
written with PA 3 <29:16> bits and addressed by means of PA
<15:04> bits (from the translation buffer). The CTAG VALID <03:00>
output indicates which octaword within a cache block is valid.

2.2.1.3 Cache Match MCA -- The catch match MCA:

° Detects cache "hits"

) Provides storage for part of the PIBA address and part of
the delay cache write buffer address

The cache match MCA consists of:

) Cache match
° Refill match
° Write buffer match logic

Basically, CTAG DATA <28:16> and PA 3 <29:16> inputs are compared
for a match. If they do match, they are gated with CTAG VALID
<3:0> as a TAG match condition to produce a CACHE HIT signal. If a
TAG match condition does not exist, a CACHE MISS signal is sent to
the NMI interface (Figure 2-11).

NOTE
The FORCE CACHE MISS input signal from
the cache control MCA can also produce
the CACHE MISS output.

Additionally, there are partial "delay-write hit" terms from the
PABH and PABL MCAs. The major outputs of the cache match MCA are
several primary "hit" signals that are combined with other CBox
states 1in order to cause a stall, to start an NMI sequence to
fetch read data, or to mark data "valid" for the IBox and EBox.

VIII 2-25

The cache match MCA, in addition to checking the cache tag match,
also checks for "hits” on the delay cache write buffer and on the
cache write buffer. Hitting on the delay cache write buffer on a
read means that the longword being requested is within a valid
cache Dblock, but one or more bytes of the longword in the cache
data RAMs is "stale®™ and must be updated with information from the
delay cache write buffer before the data can be returned to the
requester. Hitting on the write buffer means that the longword
being requested is NOT within a valid cache block, but some
information from that cache block, which will be fetched, is in
the write buffer.

Both the write buffer and the delay cache write buffer, if
valid, contain information from the same address block. Thus, the
distinction between delay cache write buffer hit, and write buffer
hit 1is the cache hit signal. When a refill hits the delay-write
address, the delay-write hit valid bit must be cleared (since
the data in the cache is no longer stale).

When PA3 <29:16> is received by the cache match MCA, it is latched
for forwarding to the PIBA latch and the delay cache write latch,
and it is also used immediately by the hit Logic and the PA3
parity logic. 1If the PA3 represented a new PC (or a new
translation for the PC), the PIBA latch loaded. Once the PIBA
latch is 1loaded, all PIBA cache cycles match with the PIBA latch
instead of the received PA3 (selected by the match data
multiplexer). Similarly, whenever the received PA3 corresponds to
a write, the delay cache write latch loaded.

The cache match MCA hit logic compares the match field (that is,
bits <29:16> of the physical address) of the current reference to
output of the cache tag RAMs. This comparison is always a miss if

MATCH DATA<K29>=[1], since I/0 address space is referenced this
way .

The hit logic contains two match arrays, one to compare the match
data with the cache tag DATA and one to compare the match data
with the delay-write address. The delay-write address compare
happens relatively early while the cache tag data compare
ultimately determines the time of the output hit signals. In order
to speed up the cache match signal for the parity check of the
cache data, the cache tag parity bits received from the RAMs are
compared with the match data parity (available and checked early).
Since there is no TB lookup during PIBA cycles or invalidates, TB
OK is forced true, and PA3 parity is forced OK.

VIII 2-26

2.2.1.4 cache Control MCA -- The cache control MCA provides a
general control of CBox operation. It decodes cache command field
bits CMCF <6:3> and CMSIZE <2:0> into control signals for the
cache data path and the translation buffer PA latch. It also sends
stall and trap status data to the IBox.

The cache control MCA performs cache arbitration. Arbitration in
the cache is effected on a priority basis. The NMI activities are
of the highest priority level and the CPU has the MPXT level. The
following 1is the priority for each cycle type in descending
order:

® Refill/invalidate cycle. Requested by the NMI in control
(function MCA) to either return read miss data or to
invalidate a cache block. Refill and invalidate cannot
happen at the same time.

) Register return. Requested by the NMI out control
(microsequencer MCA) to complete a register read
sequence.

) CPU request. Microcode request to read, write, etc.

® Noop. The default request from the microcode is no
operation. When this 1is true, two further cycles could
occur. The PIBA cycle, uses the cache only when the
microcode is no operation and there is no NMI activity.
If the PIBA cycle missed in the cache, then the quiescent
state is set, which prevents further PIBA cycles from
occurring until refill or I-stream change occurs. Neither
the PIBA or quiescent participates in arbitrating for the
CBox. Additionally, the quiescent state is a mechanism
for controlling the PIBA, and does not affect operation
of the other cycles (that is, quiescent can be set when
the microcode makes requests).

VIII 2-27

Which function is granted use of the cache data path defines what
the CBox is performing (for example, if refill occurs then the
CBox is said to be performing a refill cycle).

« NOTE
If the NMI interface is busy processing
writes out to the NMI and the PIBA is
quiescent, the CBox 1is then in a
quiescent state.

2.2.1.5 MD Number MCA -- The MD number MCA receives the number
(as CACHE CMD MDNUM bits <3:00>) of the memory data (MD) register
that cache data 1is to be written to, and sends it as CACHE
DESTination <03:00> to the EBox. When the translation buffer TB
match MCA generates a MEM TRAP signal, the number of the register
(that should have received the cache data) content is sent to the
NMI out control (microsequencer MCA) as TRAP MD <02:00>, and is
used when the required read miss data is received from memory.

VIII 2-28

2.3 CBOX SUBSYSTEMS DESCRIPTION

2.3.1 NMI Interface

The NMI interface provides a data path and control function with
which the CPU communicates on the NMI. When a cache read misses,
the NMI interface uses the read-missed address received from the
translation buffer (TB) to build an NMI command/address
transaction and sends it to memory. The TB and the cache then
become available to process additional CPU requests, while the NMI
interface processes the memory transaction. When the read-miss
data arrives from memory, the NMI interface takes control of the
cache and loads the data into the cache data store. It also
validates the cache tag valids with the new tag address.

When the CPU executes a write, the NMI interface transfers the
write data to memory without making the CPU wait for write
completion to memory.

As Figure 2-11 illustrates, the NMI interface consists of:

Address/data slices

NMI out control

NMI in control

NMI arbitration/acknowledgment logic
NMI hardware registers

VIII 2-29

pe-C ILLn

CBOX

MD BUS

<31:00>
TO/FROM
CACHE
(FIG.2-10)

i »
ADDRESS/-
DATA
SLICES
(F16.2.12) | —FEG WRITE DATA —
REGISTERS
REG READ DATA
. LD WRITE BUF gmll
LD WRITE/-
PIBA Q1,01 CONTROL ~
NMI SOURCE (F1G.2-13) z
, SEL<1:0>
CONTROL NMI CS DATA OUT<22:0>
NMI FUNCTION SEL<2:0> i
FROM NMI _SOURCE SEL<1:0>
CACHE CACHE NMI CMD<1:0> SET EXPECT
e patA [i NMIEN . TO
(F1G.2-10) > ———% SHEET 1
ARB/ACK
D 10 (FIG.2-16) | NMI_FAULT REG<4:0>
BUS CACHE DATA >
WR EN
NMI A o) NMI_CPU HOLD |
FROM 2- >
cacre CACHE MISS 1 contRoL NMI_FAULT INT >
MATCH EXPECT READ/PIBA DATA .
(FIG.2-12) (FIG.2-15) NMI_CONFIRM<1:0>

CBOX ADP MODULE

CLOCK
MCA
9/10

TIMEQUT STATUS<1.0>

NMt EN

NMI FUNCTION<4:0>

NM!I FAULT

NMI PA<29>

NMI ID MASK<3:.0>

Y

Figure 2-11 MNI Interface - Block Diagram

S5CLD-312

2.3.1.1 NMI Address/Data Slices - There are eight NMI
address/data slice MCAs; six are located on the address data path
(ADP) module, and the other two are located on the cache control
sequence (CCS) module. Their function is to send:

® Read-miss/write addresses and write data to memory

° Read-miss data (that is received from memory) to the
cache

® Read-miss addresses to the translation buffer

Figure 2-12 is a simplified diagram of the NMI address/data slice
MCAs. As Figure 2-12 illustrates, the MCAs basically consist of:

) A physical address (PA) file
® An NMI address/data bus
) An MD-bus

VIITI 2-31

¢e—¢ I1IA

CBOX ADP, CCS MODULES
NMI ADR/DATA SLICES 1,2 MCAS

C2 READ ADR<2:0>

2-BIT

-

WRITE INVAL HIT READ Q

WRITE INVAL HIT PIBA Q2

CrR PIBA ADR

"} REFILL/
INVALIDATE
MUX & DRIVER

2 WRITE_ADR

Qt WRITE ADDR

REF/INV<28:02>

v

WRITE Q1 VALID

ADD ERR REG SEL

READ REG. DATA<3:0>

ADDR QUEUE
s
(PA FILE)
READ
'l—o' }_E
PIBA
» Q1 - Q2
PAS o — WRITE
FROM < 2
TRANS- vl o ¥ @
LATION |
EUFFER |
(FIG 2-3) i
LD PIBA Q1
»
| weerce |
LD PIBA Q2
ANYWAY
»
| iwecueren)
LD WA Q
DATA<2.0>
LD WRITE_Q1
»
WAT CLR
MOD<1:0>
FROM
€BOX

NMI
REGISTERS
(FIG 2-18)

NMI SRC SELl<t:0>

.
(5]

w

DATA §§ o
\ ZzZhw

AcY
BUFFER

READ REG SEL<3:0>

1T

XM
8UFFER PA/DATA ™\

——REFILL DATA

COMPARE
& DRIVER

2-BIT

10
» TRANSLATION
BUFFER
TB BYPASS
(FIG.2-1)

WA Qi
HIT REFILL

——PA/DATA

4—REFILL DATA ———

REGISTER
WRITE
» O
GBOX
AMistens
FS’:}E - s (F1G.2-18)
—\ _ |<a1:00> .
» TOIFFOM
— GACHE
DATA
TH
(FIG.2-10)
» NMI
ADDR/DATA
<31:00>

FROM
SH 2

«&——WRITE DATA FOR MEMORY —

NMI_EN

» TO/FROM
MEMORY

Figure 2-12

Block Diagram

NMI Address/Data Slices MCA - Simplified

8CLD-313

PA File
The PA fill consists of three, two-deep queues:

1. Read Q1, Q2
2. PIBA Q1, 02
3. Write Q1, Q2

Briefly,

® Memory reads load the read (miss) queue. The read queue
holds read miss addresses destined for the EBox. When the
read-miss data 1is received from memory, the read-miss
address in the read queue is sent to the\Tﬁl The (TB/ then
produces an address vector for the cache and the data is
transferred from the NMI address/data slices MD BUS to
the cache data store.

° PIBA references load the PIBA miss queue. PIBA queues Ql
and Q2 hold read miss addresses destined for the IBox.

° A memory write operation 1loads the write queue. Write
queues Q1 and 02 are wused during write requests; the
address is sent with the data (taken from the cache write
buffer) as part of a write transaction.

The CPU stalls if it attempts to do a reference to a full queue.
The file 1is read at conceptually two different times. First, to
start the memory transaction, an address 1is taken out of the
appropriate register in the PA file and placed on the NMI address
wires in the same cycle as the command.

NOTE

For a write, this is the last time the
address needs to be used unless a retry
is necessary. For reads, when the NMI
sequencer recognizes that a read return
sequence 1is taking place, it loads the
refill/invalidate address port with the
refill address to load the refill
sequencer.

VIITI 2-33

When a cache read miss occurs, and if the PA file read queue Q2 is
empty, the miss address is transferred from read queue 0l to Q2.
The NMI out control (microsequencer MCA) then uses the address in
read queue 02 for the read transaction. If a second miss occurs,
the address of the miss remains in input gueue Q1 until the data
from the first read has been received from memory.

The two-deep read queue enables the CPU to continue processing
while a miss is outstanding. If a second miss occurs while the
first miss 1is still out, a bit in the stall logic is set that
indicates "stall if read." When there are two read misses
outstanding, the CPU VA stalls on read. When the data comes back
from memory, the miss address in read 02 is placed in the
refill/invalidate multiplexer and driver logic and sent to the
translation buffer as REFILL/INVAL <28:02>.

The PIBA queue functions similarly to the read queue, except that
the high-order bits are loaded when there is a:

° Branch
® PC change, or
) Page cross PC

When the PIBA queue 1is initially loaded, the upper bits go to
output queue Q2. If there is another PC change and no miss has
occurred, the high-order bits are again transferred to 02. The
lower bits, PIBA<8:2> are loaded in PIBA Q2 in the cycle that the
miss occurred in.

If there 1is a branch while PIBA Q2 is full, and waiting for read
data, the new PIBA high-order bits (PIBA <29:09>) are loaded in
PIBA Ql.

NOTE
This can happen when the PIBA prefetches
ahead of instruction execution.

When the data for the address in PIBA 02 is returned, the content
of PIBA Ql is moved to PIBA Q2.

VIII 2-34

The cache write buffer (Figure 2-10) is 2-octawords deep, and can
support two independent transactions. Therefore, the related PA
file write queue in the NMI address/data slice MCAs (Figure 2-12)
is two addresses (queues) deep. The first write of a sequence to
load the <cache write buffer will load the input side (Q1l) of the
gueue. When either:

® The explicit microcode bit to validate memory is set, or
o The write sequence crosses an octaword boundary:

- The cache write buffer (Figure 2-10) is copied to the
cache output write buffer.

- An address in the write queue Ql is copied to the
output write queue Q2.

- An NMI write sequence is requested from the NMI out
control (Figure 2-13).

When the NMI out control sets up to do the command address cycle
of the NMI write sequence, it examines the write mask buffer for
the output write buffer and modifies the lower bits of the write
address to fall on the natural data type boundary, (that is, the
write buffer can be loaded with byte writes, but be an octaword
write to the memory).

The address in output write queue Q02 is multiplexed by means of
the NMI source select multiplexer (by means of the NMI out control
NMI SRC SEL <01:00> signal) and is then sent to the NMI as NMI
ADD/DATA <31:00>. The address 1is held in write Q2 until an
acknowledgment from the last write to memory is received. If the
acknowledgment is received, the register valid bit is cleared so
the next write can be processed. However, if no acknowledgment is
received, the address in the PA file is used for a memory-write
retry until it completes successfully, or a timeout occurs.

NMI Address/Data Bus

The NMI address/data bus is sourced in the NMI address/data
slice's MCAs. It is a multiplexed address and data bus and is the
major interconnect between the CPU and the memory and I/O devices.
It is wused by the NMI in control (function MCA) and as an input
port to the cache, and 1is wused by the NMI out control
(microsequencer MCA) output as a cache output port.

VIIT 2-35

If, in a given cycle, the NMI out control, has not requested and
obtained use of the NMI address/data bus, or, if the NMI in
control is not processing a refill sequence, receive logic in the
NMI address/data slices processes the received memory information
as both address and data. The refill/invalidate wires in the NMI
address/data slices are driven to load the refill register in the
translation buffer. The MD bus is then used to send the received
data to the cache data path where it is loaded into a cache write
latch. This allows the NMI in control (function MCA) sufficient
time to determine what type of NMI transaction is currently being
processed. If it 1is a refill or an invalidate transaction, the
data will be at the correct place (cache write latch) when the NMI
in control needs it.

During a CPU-initiated transaction, the NMI address/data bus is
driven with addresses from the PA file and data received from the
MD bus (from the cache).

MD Bus

The MD bus is a bidirectional data path that provides an interface
between the CPU and the NMI. The NMI out control uses it to move
write data from the cache data path to the NMI address/data bus
and refill data from memory to the cache. The NMI out control
(microsequencer) uses the MD bus for register reads and writes.

MD bus arbitration is performed in the arbitration/acknowledgment
control (Figure 2-16). When the NMI in control is not requesting
the MD bus, the MD bus is enabled for the NMI in control refill
path. While the NMI in control is determining if the received
function 1is read return data, the data is loaded into the MD bus
receive latch.

2.3.1.2 NMI Out Control -- The NMI out control:
) Controls the NMI address/data slice MCAs PA file gueues
® Controls the cache:

- Write buffer
- Output buffer

° Sends NMI transactions to memory and I/0 devices

Figure 2-13 1is a simplified block diagram of NMI out control. It
illustrates that it consists of:

° A next address chip
° A microsequencer MCA
® An NMI control store

VIII 2-36

LE-C IIIA

TB CMD<2:0>

CACHE NMI CMD<1:0>

ARB OK

REC CONFIRMATION<1:0>

INTERLOCK WR

MD BUS BUSY

TIMEOUT STATUS<1:0>

-

READ/WR CYCLE

CURRENT PA<29>

NEW INSTR

BRANCH GROUP SEL<2:0>

Figure 2-13

RAM WHT DATA<7:0> CONTROL | TEST LOAD ADDR<7:0> R
STORE >
WRT SEG ID SILO TEST DATA<7:0>
Lad
SET CUSTORE ADD REG NM| SOURCE SEL<1:0>
Ll
CUSTORE WR STROBE NMI_FUNCTION SEL<2:0>
NMI CS DATA OUT<27:0>
Ll
NEXT UADD
ADDR UADD<7:5> <7:0>
NEXT ADD<4:0> TSRO UADDR<4:0s
MOD CACHE SEQUENCER }—---0%222-
NMi CMD<1:0>
UADDRESS<4:0> >
ERROR SELECT<1:0>
LD READ Q >
LD PIBA Q1/Q2 .
CACHE MISS TD NMi > NMI
2Ponpers
 WRITE BUFFER MISS LD _WRITE Q2 A/B »| (FiG.2-12)
READ/WRITE PA<29> LD OUT BUF B TO SLICE 1 -
L
CACHE
CURRENT PA<29> LD WR BUF A/B TO SLICE 0/1 _ ((FIG.2-10)
DISABLE NMI v
SCLD-314

NMI Out Control - Simplified Block Diagram

The NMI microsequencer 1is a microcoded sequencer that handles
command traffic to the NMI. It contains logic that holds the state
of the NMI address/data slice MCAs PA file and maintains the order
CPU memory requests. It is in control of all commands from the CPU
that are destined to the NMI, and performs some error handling and
CBox register reads and writes.

The outputs of the control store directly control the NMI
address/data slices, some part of the cache, and provide the next
address and branch selects to the sequencer itself.

The microsequencer sends read and write commands to the memory and
I1/0 devices for the CPU. These commands are made up of several
steps:

® The priority and ordering logic produce the address of
the next pending instruction.

® The sequencer fetches the address of the command from the
PA file, writes it to the NMI bus, and starts the
appropriate timers. For writes, write data is moved to
the NMI bus.

° The sequencer checks the received confirmation lines to
see if the receiver got the data. For a write, the
situation 1is the same in relation to pending writes, but
a second pending read (from the PIBA gueue, for example)
can be done while the sequencer waits for the read
confirmation.

. When the confirmation of the transaction is received from
the NMI, the sequencer sets or clears the approp*iate
state. For writes, this means clearing the valid bit in
the write queue state and moving the Q1 address to Q2.
For reads, this means getting the appropriate EXPECT READ
DATA bit in the function MCA.

The microsequencer MCA contains logic that monitors the loading of
the read, write, and PIBA gueues in the NMI address/data slices.
It also includes 1logic that keeps PA file reads and writes in
order, by giving them a 2-bit number as they are received by the
microsequencer MCA. The number is incremented whenever a read that
missed is followed by a write. This ensures that there can be no
more than a difference of 1 in the numbers of the commands at the
front of the queues at any one time. Thus, at a given time, if a
read and a write have the same number, the write goes first.

VIIT 2-38

Within the microsequencer MCA, next command select logic looks at
the numbers associated with each of the three PA file queues and
their wvalid bits. If more than one is valid, then it uses two
blocks of logic to determine which one goes first. One block
checks if the write number is less than or equal to the CPU read
number; the other checks if the write number is less than or equal
to the PIBA read number. If the write is valid and less than or
equal to any other valid command, the write is the next command to
be processed, otherwise, the command with the lowest number is
processed. If both CPU read and PIBA read are lowest (and valid),
then the order is CPU read, then PIBA read.

Dispatch 1logic in the microsequencer MCA generates dispatch
microaddresses from the control store based on command types in
the read, write, and PIBA queue state logic. It prioritizes
pending requests and sends an address to the control store,
initiating the first cycle of the sequence.

There are two groups of requests that can be pending.

1. NMI timeouts, a delay-write hit, and a read finish
2. Pending requests involved with the PA file

A third path for generating the first cycle of a sequence
functions as a bypass path around the PA file queue state logic
for commands from the CPU. Because the PA file queue state is
loaded in only cycle, a cycle can be saved if nothing else must be
serviced by the sequencer, and the command must be sent to the NMI
address/date bus.

The first group has the highest priority for the NMI
microsequencer. The highest priority is the group of NMI timeouts.
The NMI microsequencer 1in response to a timeout clears the
appropriate address location in the PA file to allow further
processing to go through and load the timed-out address in the
error register. The next request that the sequencer handles is
read finish. 1If the CPU does two read misses to the same cache
block, the NMI microsequencer passes the read back into the cache
rather than go to memory again after the first one comes back. The
lowest priority in this group is the delay-write hit. The NMI
microsequencer does a masked read/write into the cache and
delivers the data to the ALU and MD registers in the IBox.

VIII 2-39

If any of the PA file queue entries are waiting for the
microsequencer MCA, they are processed 1if none of the above
requests are pending. Since reads and writes have to be kept in
order (to avoid various types of stale data problems) simply
prioritizing reads and writes will not work. Instead, each
location in the PA file is given a number as it comes from the
CPU. The next command logic looks at these numbers and selects the
next command. Besides being processed in order by the NMI
microsequencer, the commands are also finished in order. Thus, the
receiver (memory or an I/0 device) must confirm that it received
the read command or the write command and all of the write data.
This 1is handled by the way the microcode flow is written and the
branch on the received confirmation. Hence, a longword write takes
four lines of microcode.

Figure 2-14 illustrates the format of the control store microword.

1v-C II1A

<0> PARITY
Odd parity on the
28 microword bits
<1> INTERLOCK ARB
Re-arbitration tfor READ LOCK

after a WRITE UNLOCK is detected.

<2> SET EXPECT PIBA DATA
Used to set the EXPECT PIBA
DATA state bit in FUNC MCA
during PIBA READ cycles.
<3> SET EXPECT READ DATA
Used to sel the EXPECT READ
DATA state bit in FUNC MCA
during CPU READ cycles.

<6:4> NMI FUNCTION SELECT '
9 BTN LR 24 to generate

DIAGNOSTIC FUNCTION
READ INTERLOCK
WRITE

WRITE UNNLOCK

PIBA

WRITE DATA

<7> SELECT CIAGNOSTIC ID

Select DIAGNOSTIC ID for
transmission on the NMI.

1 No Operation
0 Select DIAGNOSTIC ID

<8> REQUEST MD BUS WRITE
Requesis the SLC modules to
send WRITE DATA on the MD BUS.

1 No Operation
0 Request data

NO N AWN=O

27 2423 20 19 16,15, 1211 08lo7 04 o 00
T T T T 7 SRANGT f T
NEXT ADDRESS<7:.0> GROUP
SELECT
1 | | t Lt L‘ F‘i .h i [4 I T
ERRO
SEND| | GLEAR N
SOURCE | REQ | SEL INLK
HOLD| | serecT | |SRLECE M- | BinG EE%% PRB
M LR AD
WR Q2
CONT REQ NMI PTY
REQ |F ACK SON 2 B Hlierion X XPCT Py
WR

<9> REQUEST MD BUS READ
During Cbox Reglsler Read this bit
is used to request the use of the
cache, set the REFILL/INVAL select
lines to select the READ QUEUE

and enable the data onto the MD BUS.

1 No Operation
0 Request MD BUS read

<10> REQUEST REGISTER WRITE
Used during Cbox REGISTER WRITES
to enable the aclual writing
of the registers.

1 No Operation
0 Request Register Write

<12:11> NMI SOURCE SELECT

Select the source of information
for transmission on the NM! ADDRESS
DATA Lines. It is aiso decoded and
used to start the timeout counter
and determine whether ID or MASK
should be sent on the NMI.

0 MD BUS

1 READ ADDRESS

2 WRITE ADDRESS
3 PIBA ADDRESS

<13> CONTINUE SEQUENCE
Select between the DISPATCH
and the NEXT ADDRESS microaddress.
0 Dispatch
1 Continue sequence

<16:14> BRANCH GROUP SELECT

Selects branch bits for replacement
of next microaddress <2: 0>.
ERROR CLEAR function in

<17> CLEAR WRITE Q2 |F ACK
Used to clear the WRITE QUEUE
when CONFIRMATION is received
from the NMI device.

<18> SEND HOLD
Used to assert the CPU HOLD
line on the NMI during write
transactions.

<19> NMI BUS REQUEST
Used to asseri NMI BUS REQUEST
when arbitrating for use of
the NMI bus.

<27:20> NEXT ADDRESS
Because the NEXT MICROADDRESS tor
continuation of NMI microcode
sequences.

Also performs
M! interface,

the N
and ERROR ADDRESS REGIS TER (EAR) loading.

Figure

BRANCH ADDR«1 BRANCH ADDR<0
B b 2 components components | REBOOT ERROR GLEAR| LD EAR
0 | NEXT UADDRS<2> NEXT UADDRS<1> NEXT UADDRS<0> | No branch WRITE | -
1 | NEXT UADDRS<2> RCVD CONF<1> RCVD CONF<0> PIBA
2 | NEXT UADDRS<2> 0 MD BUS BUSY READ
3 | NEXT UADDRS<2> 0 MEMORY BUSY | | ..
4 | NEXT UADDRS<2> INTR IF TIMEOUT Write Unlock WRITE
5 NEXT UADDRS<2> INTR I|F TIMEOUT ARB OK PIBA -
6 | Write Unlock RCVD CONF<1> RCVD CONF<0> Selecl Error Cir & READ LOAD
7 | NEXT UADDRS<2> 0 0 set up LD EAR. | oo LOAD
8CLD-315
2-14 Control Store Microword Format Diagram

¢y=¢ IIIA

CCS MODULE

PA3<3:2>

NMI
SOURCE SEL
<1:0>

REG WRITE
DATA<7:4>

MASK/IC
CNTRL

(5 OF 14)

Figure 2-15

NMI In Control - Block Diagram

30
[V]
0n o
bl
~NH
N
|wige]
Q
=
(@]
ot
o
o O
3
o,
(@]
o W
o]
WHICH CPU Eh »
NMI (D MASK<3:0> R =
NEW INSTR 2 :.
GLOBAL UTRAP O
o3
o]
55
WRITE MASK FUNCTION NMI PA<29> = oa
-/SIZE CNTRL MCA/LOC MCA PA SEL<1:0> z .
™ (REFILL > Z
REC D SEQUENCER) MD NMi _RD EN =z
P (3 OF 14) NMI FUNCTION<4:0> =
RET CMD <1:0> —_
1
BUF RETURN TYPE<1:0> . TO e
> v NO Q
INVAL SEL A/B R c
v =
Evifs ®
SILO DATA<7:3>), <4:05 MD NMI_RD EN R
|- -7 » N
DIAG FUNC<4:0> | R
(6]
-
.
SCLD-316

? JO S3ISISUOD 31

ur IWN €°T1°€°C

T0a3uU0)

IWN 9YL

ut

ejep STOAJUOD TOIJUOD

Mask/ID MCA

The mask/ID MCA stores the valid (or state) queues for the cache
write buffers indicating which bytes are valid. The outputs of
this chip include the mask/ID field for the NMI, state information
for the microsequencer, and information needed for write
transactions for the function MCA. Within the mask/ID MCA, valid
gqueue encode logic looks at VA<K03:00>, the CPU WRITE command, and
the size of the reference to determine what bytes are being
written 1in the NMI address/data slices PA file write buffer, and
then sets the corresponding bit in valid queue 1. Conditions are
monitored in this block to determine whether or not to move Queue
1 to Queue 2 and whether or not to clear Queue 1. Within the
mask/ID MCA, valid queue decode logic provides information needed
for the NMI write transaction. From the data in valid Queue 2
logic, the following is determined:

° The size of the NMI write transaction

® The starting address (VA<3:2>) of that write (00 for an
octaword, 00 or 10 for quadword, and any for longword
writes)

) Whether or not the transaction is a masked or unmasked
write

. If the write 1is masked, the proper mask for each data
cycle

The mask/ID MCA contains ID logic that:

® Generates the NMI MASK/ID field during command cycles in
which the CBox is the commander using the CPU number and
control lines from the CBox microsequencer

® Monitors the MASK/ID field at times when the CBox is
transmitting to ensure that the ID was transmitted
properly, (otherwise, a multiple transmitter fault has
occurred)

e Monitors the MASK/ID field during NMI command cycles for
return data to the CBox

The mask/ID MCA also calculates parity on the MASK/ID field of the
NMI control. This term is then combined with the parity calculated
by the function MCA on the function field in the
acknowledgment/arbitration MCA to complete the parity on the NMI
control field.

VIII 2-43

Function MCA

The function MCA 1is in control of data and invalidates received
from the NMI bus. It is completely synchronized with NMI traffic.
When the received memory data is refill data for the cache, a
check is made to see if read data is expected for that ID, then
the function MCA requests and automatically obtains use of the
cache and writes the refill data into it.

Any writes to memory space cause the function MCA to perform a
two-cycle invalidate. The function MCA (Figure 2-15) serves two
functions in the cache:

1. It is the interface to the NMI FUNCTION <4:0> field.
2. It is the controller for received NMI traffic.

In the first case, it 1is the output path for the MNMI
microsequencer to drive the FUNCTION field to other devices on the
NMI. In the second case, it produces all the control to direct the
cache control MCA in loading refill data, or invalidating the
cache.

Function Encode -- The output portion of the function MCA is
controlled by the microsequencer MCA. One field is output from the
control store that selects the function to go to the bus. For
writes, these 1lines are encoded with the mask bit and WRITE SIZE
<1:0> 1lines from the mask/ID MCA. Reads are encoded from the
current read function from the microsequencer MCA.

Function Read State -- The function MCA has four state bits
associated with read commands. They are:

1. EXPECT READ DATA

This bit 1is set by the NMI microsequencer when the
confirmation from the receiver of the READ command is
returned. When the read data is sent back, the function
MCA checks this bit to make sure the data is expected
for this 1ID before writing the data into the cache. The
function MCA clears this bit during the last data return
cycle. If the reference has a timeout, the NMI
microsequencer clears this bit when it enters the timeout
service routine.

2. READ SIZE

This bit is loaded with PA<29> when the read goes to the
NMI bus. If PA<29>=0, the read size is hex; if PA<K29<=1,
then the read size is long. The function MCA uses this
hit+ to Ho{-erm{ne hAaw mnech dAata +~n ha votiirn

1a erq T4+ ‘;S
AJ L - L doith A 12 LIS TY LR R WAL el E A s Ao Le Ll Ads 4 Es

cleared in the same fashion as expect read data.
3. VALIDATE RETURN DATA

This bit keeps the cache from storing stale data in the
following case. If the CPU does a read miss followed by a
write to the same cache half-block (or an invalidate
occurs to that block), the data it requires from the
cache 1is not the data returned by the read, but the data
that had been written to memory. The specific data
requested in the read miss is sent to the CPU, but only a
longword. This bit 1is set by address checking logic in
the NMI ADD/DATA MCAs and is cleared by the function MCA
at the same time as the EXPECT READ DATA BIT. It causes
the function not to validate the returned block in the
cache.

4, READ Q1 HIT Q2

This bit keeps the NMI microsequencer from doing two
reads to memory for the same half block. If the CPU
executes two consecutive reads to the same cache
half-block (read quad, for instance), the correct data
for the second read is contained in the return for the
first read. Instead of reading to memory, the NMI
microsequencer directs the read back to the CPU.

This bit is set by the address checking logic in the NMI
ADD/DATA MCAs if the expect read data line is set. It is
cleared by the NMI microsequencer when the read finish
sequence is executed.

VIIT 2-45

Function PIBA State -- The function MCA has four state bits
associated with PIBA commands.

1. EXPECT PIBA DATA -~ Same as for read data.

2. PIBA SIZE -- Same as read data, except that it is set by
PIBA PA<K29>,

3. VALIDATE cache -- Same as read data, except that the
check is done against the PIBA Q2 address.

4, OLD/NEW -- This bit 1is wunique to the PIBA state. If,
while the PIBA miss is out, a PC change occurs, the PIBA
in the PIBA address register is no longer the same one
that caused the miss. This means that while the data is
being written into the cache, it does not want to be sent
to the 1IB. This bit 1is set by a PC change while the
EXPECT READ DATA bit is set and cleared by the function
MCA during the last data return cycle.

Function Decode Logic

The input 1logic decodes the received function, examines the
received ID if READ RETURN and PA <29> if write, and decides what
to do. To do a READ RETURN, the received ID has to be checked
against the EXPECTING READ DATA bit. If, for that ID (one ID is
for PIBA READ, one for CPU READ), it is not expecting data, the
UNEXPECTED READ FAULT line is raised. If it is expecting data, the
function MCA requests and wins the cache and does the refill.

For a CPU read, the function MCA:

® In the first cycle, loads the refill/invalidate register
to write the <cache with the data that has been loaded

into the cache write latch.

® Also 1in the first cycle, reads out the MD NUMber of the
reference that caused the miss currently being refilled.
This directs the first word to the requesting MD
register.

° Increments the refill pointer for every cycle the
received NMI function 1indicates READ RETURN DATA CONT,
not incremented on PAUSE.

° When the refill counter has reached eight, clears the
EXPECT READ RETURN DATA bit if there have been no errors
during the sequence.

If the refill 1is in response to a PIBA READ miss, then the
function MCA responds slightly differently in one of two ways.
Along with the EXPECT PIBA READ DATA bit in the function MCA,
there 1is a bit that says whether or not there has been a PC
change, while the read was out. If there was a PC change then the
data 1is put in the cache just as the read data was with the
exception of reading out an MD NUMber. If there was not a PC
change, then the function MCA puts out a signal that says step the
PIBA with the refill. So if the IB is not full, it will get a
longword a cycle wuntil either it becomes full or the refill
crosses the wrapped boundary.

During an invalidate operation, the function MCA:

° In the first cycle, loads the refill/invalidate register
and looks up the cache tag pointed to by that address.

® In the next cycle, invalidates the line if the previous
cycle's lookup was a hit. If it missed, then this cycle
will be given to another requester.

2.3.1.4 NMI Arbitration/Acknowledgment

Acknowledgment/Arbitration MCA

The NMI acknowledgment field 1is used by the NMI "responder" to
notify the "commander" of the status of the data transfer. The NMI
arbitration field is used to determine the "commander" of the next

command cycle. Also included in the MCA is the timeout logic, the
fault logic, and the NMI parity logic.

VIIT 2-47

Arbitration Logic

CPUO has the 1lowest NMI priority and, in a dual-processor
arrangement, CPUl is just above it. This piece of logic determines
if the CPU has been granted the arbitration cycle. This is
determined by checking the NMI arbitration lines coming into the
chip to see if a device of higher priority is arbitrating for the
next cycle. If the CPU number is '0O', it is the lowest device in
the scheme and it may assume that it has won the bus at this point
if no one else wants the bus. However, CPUl must make sure that
its own arbitration 1line has been asserted the cycle before it
desires the bus. This ensures that no other device of lower
priority (CPU0O) thinks it has the bus. In summary, CPUO may assume
it has won the bus when no one else is arbitrating. CPUl must
additionally check to be sure that its own arbitration line has
been asserted, and if it has not, to assert it and try again next
cycle. Finally, the arbitration 1logic sends NMI hold if the
transaction is longer than one cycle, and notifies the
microsequencer if the bad memory busy response occurs.

Acknowledgment Logic

The NMI arbitration/acknowledgment control (Figure 2-16) has
transaction confirmation codes:

AC

OK

BUSY

BUSY INTERLOCKED
NO RESPONSE

These codes are transmitted by the receiver one cycle after it
receives a command or date. When the NMI microsequencer is a
commander, it treats BUSY, BUSY INTERLOCKED, and NO RESPONSE like
they were busy responses and keeps retrying the command. When the
function MCA is receiving read return data, it only sends ACK OK.
The CPU is never busy to returned data.

VIII 2-48

6¥v-¢ IIIA

CCS MODULE

Figure 2-16

NMI Arbitration/Acknowledgment Control - Simplified
Block Diagram

ACK/ARB NMI CONFIRMATION<1:0>
CNTRL
| NMJ FAULT DETECT >
N
—p
NMI EN A/B
NMI CPU BUS EN
NMI SLOW CLOCK ENABLE
NMI NMI RIGHT/LEFT CPU HOLD/ARB 5
ARB NMI MEMORY HOLD/ARB z
CONTROL <
(10 OF 14) ¢ NMI_1/O 0/1 HOLD/ARB
NMI MEMORY BUSY ARB
DIS DEAD CYCLE
NMI RT/LFT CPU BUS E
N A__b
NMI MCL BUS EN .
NMI TO I/0 BUS EN
O BUS E >
CACHE ERR REG<5:0> .
CBOX ERR/MC TRAP
o
MEMORY BROKE
—]
SCLD-317

Timeout Logic

Basically, this block is a counter that is given a slow clock from
the NMI and monitors the three types of CBox transactions (read,
write, and PIBA read) for timeouts. For the read and PIBA read,
there are two periods to the transaction that are timed. The first
is from the time the NMI microsequencer starts the read until the
responder confirms the command with ACK OK. This means the READ
command can timeout either because there was no access to the NMI
bus or the responder was busy or not there. When positive
confirmation 1is received, the timer is restarted to wait for the
data. In the first cycle of read return data, the timer associated
with that data is set back to the idle state. For writes, only the
first case of timeout is necessary. In the event of a timeout, the
NMI microsequencer sets the timer to the idle state and clears the
address queue of the timed-out transaction. Timeout locks the
fault register and NMI silo for examination by system software.
These timeouts occur when cycles of the slow clock pass without
the transaction being completed. For diagnostic purposes, the
timers can be switched from running off the slow clock (system
clock divided by approximately one thousand) to running off the
normal system clock for very fast timeouts.

Figure 2-17 illustrates the timeout flow.

VIII 2-50

16-¢ IIIA

READ| START

TO PIBA
NO ACCESS
TO BUS STATE

General Notes on Timeout Counter:

START PIBA OR
WRITE OPERATION of a READ, WRITE, or PIBA cycle.

TiM while writing for ARB OK.
result in a ACCESS TO BUS code.

PIBA +
WRITE

o]

|

o

read returns, or it times out.

Figure 2-17 Timeout - Flow Diagram

The Timeout counter is cleared on the first
The WAIT FOR ARB OK
state is a tight loop in the Cache microcode, which
PIBA can only be broken by ARB OK or a timeout. T
branch conditions that the microsequencer checks

A timeout_at this

the read state will

PIBA is timed b\{ the Cache microcode, waitin th
WAL second cycle after the command/address is sent
TIMO If ACK OK is set, the EXPECT READ DATA bit will
This will result in the WAIT FOR RETURN DATA state.
PIBA At this point, the microsequencer can begin a PIBA
RETURN or WRITE operation, or it there is a PIBA return
FINISHED outstanding, the PIBA RETURN can come back and clear the
PIBA state. |If there is no PIBA or WRITE to be done,
the counter will count until timeout occurs or the read
return is finished. At this time,
cleared. If there is no other cycle in progress, the
CLEAR PIBA STATE AND timeout counter will be disabled, and return
CLR CONTINUE TO WAIT FOR IDLE state. |f a PIBA read is outstanding, the
READ RETURN counter will continue to count until

¢S-C IIIA

CBOX CCS MODULE

SILO DATA
FUNCTION .
MCA <7:3>
3/14
SILO DATA
NMI RIGHT CPU ARB MASK/ID :
»| BUFFER MCA <11:08>
NMI LEFT CPU ARB 130P 5714
» i0/1a
3| NMITO 1 ARB .
=
NMI_TO 0 ARB
NM! MEMORY BUSY ARB SILO DATA<18:12>
DIAG
_SILO MARKER
(AFTER FAULT) SILO DATA<19» 9/14
ACK/ARB
MCA (SILO_REC CONF<1:0 SH3,DATA RERD o0
6/14 Ll DATA TO NMI
17ep | <07:00> Via
— SILO TEST DATA<7:0> ADDR/
CONTROL SLICES
4714 SILO (FI1G.2-12)
DATA
e | o4
a/14 <19:00>
o FORCE FUNC ACK OK
< DIAGNOSTIC
 FORCE CTL PTY ERROR| ID REG
< <4:0>
N |——— -1 NMI| ARB CACHE ERROR REG<5:0>
hd 10/14
o NMI_FAULT REG<4:0>
BUFFER
FROM REGISTER WRITE DATA<4:0> | 34P 39p CBOX ADP MODULE
NMI 11714
(VIA
ADDR/DATA
SLICES) CACHE TAG CACHE
(FIG.2-12) . TAG
7| <3:0> 4/10
11/14
8CiLD-319
Figure 2-18 CBox NMI Registers - Location Diagram

*(S9011s elep/ssoaappe IWN ©Ul JO sueauw Aq ATI0L8ITPUT pPU®B TN

oyl woaj AT300aTIP) IWN SYl O3 /woaj uellTam/pesaa aie eyl sasisibax

Xodd G°1°¢€°¢

si93s1b8d IWN

so93raI3SNIII 81-z oanb1g

X0gD

Cache Register

The cache control register controls the overall operation of the
cache. It is the only READ/WRITE register in the CBox.

Figure 2-19 illustrates and Table 2-3 describes the format of the

Cache Register.

31302928 27262524232221201918 171615 1413121110 0908 07 06 05 040302 01 00

o|0fj0i0|0j00(0|0|0O

0l0i0

0fojojo0jo0jojojolojo|o]o|ololo]|o

NMI DRIVER ENABLE —? T

CACHE ON —
MME ON

SCLD-320

Figure 2-19 Cache Register - Bit Format

Table 2-3

Cache

Register - Bit Descriptions

Bit Name

Description

<2> NMI DRIVER ENABLE

<1>

When NMI DRIVER ENABLE is cleared, it
prevents the NMI ENABLE signal from
being set in the CBox, in effect
turning off the NMI drivers. This
permits some diagnostic functions to
be performed without disturbing the
NMI bus.

This READ/WRITE bit is cleared by CPU
INIT.

NOTE
This bit must be set for normal CPU
operation to occur.

CACHE ON When this bit is set, cache
operation is enabled. When it is
cleared, all cache references will be
misses. Additionally, all NMI D-stream
reads will be reads to conserve NMI
bus cycles.

This READ/WRITE bit is cleared by CPU
INIT.

VIIT 2-53

Table 2-3 Cache Register - Bit Descriptions (Cont)

Bit Name

Description

<0> MME ON

This memory management enable bit
enables the virtual memory management
hardware in the translation buffer.

The operation of this bit is generally
defined by VAX 8800 architecture. When
this bit is <cleared, the wvirtual
address range of the system is 30 bits
rather than 32 bits. The mapping of
virtual physical addresses, with MME
cleared, is PA<31:30> = [001,
PA<29:00> = VA<K29:00>.

Wwhen MME is cleared, the translation
buffer does not perform protection
checking or page cross checking.

This read/write bit is cleared by CPU
INIT. '

Cache Error Register

The cache error register
parity checking

interface. Included are:

VA bus parity

networks

holds the error bits for the various
in the CBox =-- other than the NMI

Physical address parity (this generally means TB parity)

Memory data parity, which 1is the parity of the MD bus
information received at the cache data path end

TB tag parity

NMI microsequencer parity

NMI data parity error on:

- Data destined for an EBox MD register

- BAD READ DATA that is not prefetch data

- Bad PIBA data for the current PIBA

VIII 2-54

The entire cache error register locks on the first error, and is
unlocked by a CBox register write to address VA = 20
(hexadecimal).

The cache error register is cleared by CPU INIT.

Cache Error Register - Byte 2 -- Figure 2-20 illustrates and Table
2-4 describes the format of the Cache Error Register - Byte 2.

313029 2827262524232221201918171615 1413121110 0908 07 0605040302 01 00

ojojojojojojoiojojofojojofojojoojojolojo|olojololoO]

l

A A A
VA PARITY ERROR<2> - |

VA PARITY ERROR<1>
SPARE

TB DATA PARITY ERROR<2>
TB DATA PARITY ERROR<1>

TB DATA PARITY ERROR<0>

SCLD-321

Figure 2-20 Cache Error Register Byte 2 - Bit Format

Table 2-4 Cache Error Register Byte 2 - Bit Descriptions

Bit Name Description
<05:04> VA PARITY These bits are set to indicate that
ERROR <2:1> there was a parity error in the VA
on bits <31:16> or bits <15:09>,
respectively.
<03> Spare Read as a ZERO.
<02:00> TB DATA PARITY These bits are set on a parity
ERROR <2:0> error in the translation buffer

(TB) data. The bits pertain to the
following fields of the TB data:

TB DATA<K29:23>
TB DATA<22:16>
TB DATA<15:09>

VIII 2-55

Cache Error Register - Byte 1 -- Figure 2-21 illustrates and Table
2-5 describes the format of the Cache Error Register - Byte 1.

313029 2827262524232221201918 171615 14131211100908 07 06 05040302 01 00

ol/ojojojofoloj0l0Ol0]|0}0]0O

0

clolojojojo|o|O|O]O|O}O

T A A
CACHE TAG PARITY ERROR<1>
CACHE TAG PARITY ERROR<0>

MEM DATA PARITY ERROR<3>
MEM DATA PARITY ERROR<2>
MEM DATA PARITY ERROR<1>

MEM DATA PARITY ERROR<0>

SCLD-322

Figure 2-21 Cache Error Register Byte 1 - Bit Format

Table 2-5 Cache Error Register Byte 1 - Bit Descriptions

Bit Name

Description

<05:04> CACHE TAG PARITY
ERRORK1:0>

<03:00> MEMORY DATA PARITY
ERROR<3:0>

These bits are set when there is a
parity error detected on the cache
tag data <28:24> or <23:16>,
respectively.

These bits indicate that a parity
error was detected on MD bus data
by the cache data buffer. There is
one parity error bit for each byte
of data.

VIII 2-556

Cache Error Register - Byte 0 -- Figure 2-22 illustrates and Table
2-6 describes the format of the Cache Error Register - Byte 0.

313029 28 27262524 232221201918 171615 1413 12 11 10 0908 07 06 05 04 0302 01 00

| !
000000000000000000000!00000]I
! I

TB TAG PARITY ERROR — | i
NMI CS PARITY ERROR ‘—-{]
|

BAD READ DATA

BAD PIBA DATA

NMI DATA PARITY ERROR

SCLD-323

Figure 2-22 Cache Error Register Byte 0 - Bit Format
Table 2-6 Cache Error Register Byte 0 - Bit Descriptions

Bit Name Description

<05> Read as a ZERO

<04> TB TAG PARITY ERROR This bit 1is set when there is a

parity error detected in the TB tag
RAMs. It 1is the 1logical OR of
parity check conditions for the TB
tag, MBIT, PROTection, and VALID
fields.

<03> NMI CS PARITY ERROR This indicates that there was a
parity error in the 28 bits of the
CBox NMI control store data.

<02> BAD READ DATA BAD READ DATA is set when the
return data for the CPU read miss
received the BAD DATA NMI function
code (which indicates that the data
that was being returned from the
memory was uncorrectable) and the
data was not prefetch read data.

<01> BAD PIBA DATA BAD PIBA DATA 1is set when the
return data for the CPU PIBA miss
received the BAD DATA NMI function
code (which indicates that the data
that was being returned from the
memory was uncorrectable) and the
data was a return for the current
I-stream.

VIII 2-57

Table 2-6 Cache Error Register Byte 0 - Bit Descriptions (Cont)

Bit Name Description
<00> NMI DATA PARITY NMI DATA PARITY ERROR is set when
ERROR there 1is a parity error on return

data that was destined for an MD
register, or data that was destined
for the current PIBA.

NMI Fault/Status Register

NMI Fault/Status Register - Byte 1 -- Figure 2-23 illustrates and
Table 2-7 describes the format of the NMI Fault/Status Register -
Byte 1.

313029 28 27262524 232221201918 1716151413 1211100908 07 0605040302 01 00

olojo|ojololololo|o|Oo|Oo|0o|0jO|O|0O|O|CO|O|O|OfO|0|0O]|0O|O

T A A A
NMI FAULT RECEIVED

BUF ID <1>
BUF ID <0> ————————

ADDRESS/DATA PARITY ERR

CONTROL PARITY ERROR

SCLD-324

Figure 2-23 NMI Fault/Status Register Byte 1 - Bit Format

Table 2-7 NMI Fault/Status Register Byte 1 - Bit Descriptions

Bit Name Description

<04> NMI FAULT RECEIVED This bit shows the state of the NMI
FAULT wire at the time the register
is read. 1If this bit is not set,
bits <1:0> of NMI fault/status
register byte 1 and bits <4:3> of
NM I fault/status register Dbyte
(that the CPU detects) have no
meaning.

VIII 2-58

Table 2-7 NMI Fault/Status

Register Byte 1 - Bit Descriptions
(Cont)

Bit Name

Description

<03:02> BUF ID <1:0>

<01:00> PARITY ERROR FAULT

BUF ID <1:0> 1is an encoded field
used to determine which of the
transaction buffers had a timeout
condition. The encoding 1is shown
below:

BUF 1ID
<1> <K0> Buffer Code

No Timeout

Write Timeout
Read Timeout
PIBA Timeout

= OO
— O O

ADDRESS /DATA PARITY ERROR and
CONTROL PARITY ERROR indicate that
the CBox detected a parity error on
the ADDRESS/DATA or CONTROL parity
lines on the NMI. These are NMI
FAULT conditions, and are held from
the time the fault was detected
until the NMI FAULT line is cleared
(by a transaction to a memory CSR).
If the NMI FAULT received bit is
not set, these bits have no
meaning. The information that is
latched in these bits pertains to
the cycle on the NMI in which the
fault was detected, not the cycle
in which the FAULT 1line was
asserted.

VIII 2-59

NMI Fault/Status Register - Byte 0 -- Figure 2-24 illustrates and
2-8 describes the format of the NMI Fault/Status Register -

Table
Byte 0.

313029 28 27 262524 232221201918 171615 141312 11100908 07 06 0504 0302 01 00

(1]

0

oijojofojoloj0|00]0

0

0

oiololojo|ojojojC|0|0]|O

Figure 2-24

I YWY

READ SEQUENCER ERROR‘——,

TRANSMITTER DURING FAULT
TIMEOUT STATUS<2>

TIMEOUT STATUS<1>

TIMEOUT STATUS<0>

SCLD-325

NMI Fault/Status Register Byte 0 - Bit Format

Table 2-8 NMI Fault/Status Register Byte 0 - Bit Descriptions
Bit Name Description
<04> READ SEQUENCE Read Sequence Error is another of

<03>

<02:00>

ERROR Fault

TRANSMITTER DURING
FAULT

TIMEOUT STATUS
<2:0>

the NMI FAULT conditions. It is set
when read return data is sent to
the CPU when no READ command was
outstanding. This 1is also one of
the NMI FAULT REGISTER bits. If NMI
FAULT RECEIVED is not set, this bit

has nc meaning.

TRANSMITTER DURING FAULT indicates
that the CPU was transmitting on
the NMI 1in the cycle that caused
the fault. It is undefined if the
NMI FAULT RECEIVED bit is not set.

Three-bit field for the type of

timeout that occurred. The
following table shows the encoding
of those bits:

<2> <1> <0> Timeout Code

0 0 0 No Timeout

0 0 1 Reserved

0 1 0 Interlock Timeout

0 1 1 No Return Read Data

1 0 0 No Access - no response
1 0 1 No Access to bus

1 1 0 No Access - interlocked
1 1 1 Mo Accesge - busy

VIII 2-64

NMI Error Address Register

The MNMI error address register holds the address of a CPU NMI
transaction that has timed out on the NMI. It is loaded with the
address from the PA FILE wunder the control of the NMI control
store microcode when a timeout occurs. This is done by asserting
the NMI source select bits and strobing the LOAD ERROR ADDRESS
REGISTER signal at the correct time. The NMI error address
register is read only to the CPU microcode. Figure 2-25
illustrates and Table 2-9 describes the format of the NMI Error
Address Register.

313029 2827262524232221201918171615 1413 1211100908 07 0605040302 0100

171
NMI SOURCE<29:00>

' MODE<0> (1B WRITE ADDRESS)

MODE<1> (1B WRITE ADDRESS)

SCLD-326

Figure 2-25 NMI Error Address Register - Bit Format

Table 2-9 NMI Error Address Register - Bit Descriptions

Bit Name Description
<31:30> ERROR ADDRESS In the NMI PA file, the CPU ACCESS
REGISTER MODE for the write is stored along

with the write address. If there is
a timeout of a write operation on
the NMI, bits <31:30> of the error
address register are loaded with
these saved access mode bits at the
same time the write address is
being loaded into bits <29:00>.

These bits are undefined for read
and PIBA timeouts, and should be
ignored. Only bits <29:00> contain
valid address information for these
types.

VIII 2-61

Table 2-9

NMI Error Address Register - Bit Descriptions (Cont)

Bit

Name

Description

<29:00>

Error Address
Register

For diagnostic purposes, there is
the capability to load the MD bus
data (the source of the NMI write
data) into the error address
register. When this diagnostic
capability 1is used, bits <31:30>
will contain the two most
significant bits of +the MD bus
data. This diagnostic function can
only be accessed through the use of
a special CBox microcode seguence,
which diagnostic programmers create
and use in their testing.

Normally these bits contain address
bits <29:00> of an address that has
timed out on the NMI. This register
is loaded under control of the CBox
microcode.

VIII 2-62

NMI Silo

The NMI silo is a 255-cycle history file of NMI events preceding a
fault, plus the events for the faulted cycle. The NMI silo is
normally written every cycle with the contents of a selected group
of NMI fields that indicate the type of transaction taking place
in that <cycle. Address and data information are not saved. When
the FAULT signal on the NMI is driven, the NMI silo can be
prevented from further loading -- thus capturing information about
the faulting cycle and its predecessors. When the NMI silo is
locked, reads of the silo return the contents of the most recent
cycles, starting with the faulting cycle, with successive reads
returning older information. In other words, when the silo is in
running mode, the address counter increments after each write; and
when the silo is locked, the address counter decrements after each
read.

The contents of this register are UNDEFINED if the silo is not
locked.

This register is READ ONLY for all bit locations.

NMI Silo - Byte 2 =-- Figure 2-26 illustrates and Table 2-10
describes the format of the NMI Silo - Byte 2.

313029 2827262524232221201918 171615 1413 12 1110 0908 07 06 05 04 03 02 01 00

1 1
! l |
0000000000000000000000'000[000

A

AFTER FAULT
DIAG SILO MARKER

NMI MEMORY BUSY
NMI 1O 0 ARB

SCLD-327

Figure 2-26 NMI Silo Byte 2 - Bit Format

VIII 2-63

Table 2-10 NMI Silo Byte 2 - Bit Descriptions

Description

Bit Name
<03> AFTER FAULT
<02> DIAG SILO MARKER

<01:00> NMI Arbitration
lines

The AFTER FAULT signal is asserted
for one cycle after NMI FAULT is
deasserted on the NMI. In the silo,
this bit indicates the first line
of information added to the silo
after the deassertion of the NMI
fault wire. This bit distinguishes
information added to the silo
leading to two separate faults. In
general, it will only be set when
the system has a high error rate.
The DIAG SILO MARKER is a synonym
for the LOAD ADDRESS ERROR REGISTER
bit that comes out of the CBox
control store. It helps diagnostic
programmers determine the start of
certain special diagnostic
sequences when examining the silo
after a diagnostic test.

The NMI MEMORY BUSY and NMI IO 0
ARB are two of the NMI arbitration
lines.

VIII 2-64

NMI Silo - Byte 1 =-- Figure 2-27 illustrates and Table
describes the format of the NMI Silo - Byte 1.

313029 28 27262524232221201918171615 14131211100908 07 06 05040302 01 00

o|joj/0jojoj0o|0|0|0Oj0O|O|O|O|O|O|O|O|OfO|OjO|O|O]O

* T A A
NMI ID 1 ARB —— |

NMI MEMORY ARB — | |
NMI LEFT CPU ARB

NMI RIGFHT CPU ARB
NMI ID MASK<3>
NMI ID MASK<2>
NMI ID MASK<1>
NMI ID MASK<0>

SCLD-328

Figure 2-27 NMI Silo Byte 1 - Bit Format

Table 2-11 NMI Silo Byte 1 - Bit Descriptions

2-11

Bit Name Description

<07:04> NMI Arbitration These bits capture the state
lines various arbitration lines
devices on the bus.

of
for

<03:00> NMI ID MASK<3:0> The NMI ID MASK bits contain the ID

of the commander during
command/address cycles, and

NMI
the

byte mask for write data cycles.

VIII 2-65

NMI Silo - Byte 0 -- Figure 2-28 illustrates and Table 2-12
describes the format of the NMI Silo - Byte 0.

313029 2827262524232221201918171615 14131211100908 07 06 05040302 01 00

o|lojojojojo|0|O0jO|O|O|OfO|O|O|O]|O|O]|O|OjO|O[O]O

T A A A
NMI FUNCTION<4>

NMI FUNCTION<3> ——— 1
NMI FUNCTION<2>
NMI FUNCTION<1>
NMI FUNCTION<0O>
NMI PA<29>
NMI CONFIRMATION<1>
NM| CONFIRMATION<O>

SCLD-329

Figure 2-28 NMI Silo Byte 0 - Bit Format

Table 2-12 NMI Silo Byte 0 - Bit Descriptions

Bit Name Description

<07:03> NMI FUNCTION <4:0> The function field on the NMI

specifies the type of bus transfer
for the cycle.

<02> NMI PA <29> This bit records the state of
address/data bit <29>, which is of
interest during command/address
transactions because it indicates
that I/O address space 1is being
accessed.

<01:00> NMI CONFIRMATION These ar

e the confirmation lines,
which are the response to a
command/address transfer twc cycles
earlier.

VIII 2-66

Cache TAG Initialization Register

Figure 2-29 illustrates and Table 2-13 describes the format of the
Cache TAG Initialization Register.

313029 2827262524232221201918171615 1413121110 0908 07 06 0504 0302 01 00

0j6j0|0|0j0j00j0|0Oj0|Of0OjO|O|O|O|O0O/0|O|O|O|O|0|O|0O|0O]|0O

CACHE TAG INIT<3>‘*I
CACHE TAG INIT<2>

CACHE TAG INIT<1>

CACHE TAG INIT<0>

SCLD-330
Figure 2-29 Cache TAG Initialization Register - Bit Format

Table 2-13 Cache TAG Initialization Register - Bit Descriptions

Bit Name Description

<03:00> CACHE TAG INIT<3:0> These bits are used in conjunction
with the cache INIT microcode
command to load the cache tag valid
bits. The main purpose 1is to
initialize the cache tag RAMS after
powerup by putting good parity and
all zero valid bits into the cache.

The cache TAG bits are cleared by
CPU INIT.

The CACHE TAG INIT bits must be
cleared before normal CPU
operation.

VIII 2-47

Diagnostic ID Register

Figure 2-30 illustrates and Table 2-14 describes the format of the
Diagnostic ID Register.

31302928 27262524232221201918171615 1413 1211100908 07 0605040302 01 00

o|{o|loflo|ojo|0|o|j0j0|0]|O|0|0O{Oj0OjO|0Ol0|0]0|0|0O]|O o|ololo
4 A A

PROGRAMMABLE ID<3>
PROGRAMMABLE ID<2>

PROGRAMMABLE [D<1>

PROGRAMMABLE {D<0>

SCLD-331

Figure 2-30 Diagnostic ID Register - Bit Format

Table 2-14 Diagnostic ID Register - Bit Descriptions

Bit Name Description

<07:04> PROGRAMMABLE ID <3:0> This is a diagnostic feature that
allows the diagnostic programmer to
replace normal ID of an NMI
transfer with another ID to perform
some error checking functions in
the CBox. The programmable ID is
enabled by the DIAGNOSTIC ID SELECT
bit out of the CBox microcode.

The PROGRAMMABLE ID bits are
cleared by CPU INIT.

VIII 2-68

Diagnostic Control Register

Figure 2-31 illustrates and Table 2-15 describes the format of the
Diagnostic Control Register.

313029 2827262524232221201918171615 1413 1211100908 07 0605 040302 01 00

1
00;0000000000000000000000000
]

EEE
LOAD SILO DURING FAULT —'
SILO LOCK ON OVERFLOW

FORCE CONTROL PARITY ERR

FORCE CPU LOST ARB

FORCE FUNC ACK OK

SCLD-332
Figure 2-31 Diagnostic Control Register - Bit Format

Table 2-15 Diagnostic Control Register - Bit Descriptions

Bit Name Description
<04> LOAD SILO DURING Prevents the SILO from locking on
FAULT NMI FAULT.

This bit is asserted low: that is,
0 = asserted. It is cleared by CPU
initialization so LOAD SILO DURING
FAULT 1is asserted after CPU INIT.
This bit must be deasserted (by
writing a one to it) to cause the
silo to lock properly on FAULT.

VIII 2-69

Table 2-15

Diagnostic Control Register - Bit Descriptions (Cont)

Bit

Name

Description

<03>

<02>

<01>

<00>

SILO LOCK ON OVERFLOW

FORCE CONTROL PARITY
ERR

FORCE CPU LOST ARB

FORCE FUNC ACK OK

Causes the NMI silo to stop loading
when the silo address counters
overflow. This permits the silo to
be stopped even in the absence of
the NMI FAULT signal, which is the
normal mechanism for locking the
silo.

This bit is asserted low: that is,
0 = asserted. It is cleared by CPU
initialization so SILO LOCK ON
OVERFLOW is asserted after CPU
INIT. This bit must be deasserted
{by writing a one to it) to allow
the silo to correctly continue to
load (until FAULT is received.)

Forces the NMI control parity
generation 1logic to transmit bad
parity along with the current
FUNCTION/ID MASK transfer on the
NMI.

Cleared by CPU INIT.

Forces the CPU to get ARB OK from
the NMI bus arbitration logic.

Cleared by CPU INIT.

This enables diagnostic programmers
to generate the ACK OK signal,
which indicates that the CPU has
sent a command to the NMI and

A nocitive acknawledament +n
N4 ‘L/VUL\.‘LV\-‘ AN NI VY O \Aglﬁl\/l‘\‘ s
] t
-

the command, which permits testing
of some hardware in the CBox
without actually having to use the
NMI bus.

Yoo 7

1
Lo~ T LV

VIIT 2-7G

Digital Equipment Corporation.Bedford, MA 01730

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	6_01-00_IBOX
	6_01-01
	6_01-02
	6_01-03
	6_01-04
	6_01-05
	6_01-06
	6_01-07
	6_01-08
	6_01-09
	6_01-10
	6_01-11
	6_01-12
	6_01-13
	6_01-14
	6_01-15
	6_01-16
	6_01-17
	6_01-18
	6_01-19
	6_02-01
	6_02-02
	6_02-03
	6_02-04
	6_02-05
	6_02-06
	6_02-07
	6_02-08
	6_02-09
	6_02-10
	6_02-11
	6_02-12
	6_02-13
	6_02-14
	6_02-15
	6_02-16
	6_02-17
	6_02-18
	6_02-19
	6_02-20
	6_02-21
	6_02-22
	6_02-23
	6_02-24
	6_02-25
	6_02-26
	6_02-27
	6_02-28
	6_02-29
	6_02-30
	6_02-31
	6_02-32
	6_03-001
	6_03-002
	6_03-003
	6_03-004
	6_03-005
	6_03-006
	6_03-007
	6_03-008
	6_03-009
	6_03-010
	6_03-011
	6_03-012
	6_03-013
	6_03-014
	6_03-015
	6_03-016
	6_03-017
	6_03-018
	6_03-019
	6_03-020
	6_03-021
	6_03-022
	6_03-023
	6_03-024
	6_03-025
	6_03-026
	6_03-027
	6_03-028
	6_03-029
	6_03-030
	6_03-031
	6_03-032
	6_03-033
	6_03-034
	6_03-035
	6_03-036
	6_03-037
	6_03-038
	6_03-039
	6_03-040
	6_03-041
	6_03-042
	6_03-043
	6_03-044
	6_03-045
	6_03-046
	6_03-047
	6_03-048
	6_03-049
	6_03-050
	6_03-051
	6_03-052
	6_03-053
	6_03-054
	6_03-055
	6_03-056
	6_03-057
	6_03-058
	6_03-059
	6_03-060
	6_03-061
	6_03-062
	6_03-063
	6_03-064
	6_03-065
	6_03-066
	6_03-067
	6_03-068
	6_03-069
	6_03-070
	6_03-071
	6_03-072
	6_03-073
	6_03-074
	6_03-075
	6_03-076
	6_03-077
	6_03-078
	6_03-079
	6_03-080
	6_03-081
	6_03-082
	6_03-083
	6_03-084
	6_03-085
	6_03-086
	6_03-087
	6_03-088
	6_03-089
	6_03-090
	6_03-091
	6_03-092
	6_03-093
	6_03-094
	6_03-095
	6_03-096
	6_03-097
	6_03-098
	6_03-099
	6_03-100
	6_03-101
	6_03-102
	6_03-103
	6_03-104
	6_03-105
	6_03-106
	6_03-107
	6_03-108
	6_03-109
	6_03-110
	6_03-111
	6_03-112
	6_03-113
	6_03-114
	6_03-115
	6_03-116
	6_03-117
	6_03-118
	6_03-119
	6_03-120
	6_03-121
	6_03-122
	6_03-123
	6_03-124
	6_03-125
	6_03-126
	6_03-127
	6_03-128
	6_03-129
	6_03-130
	6_03-131
	6_03-132
	6_03-133
	6_03-134
	6_03-135
	6_03-136
	6_03-137
	6_03-138
	6_03-139
	6_03-140
	6_03-141
	6_03-142
	6_03-143
	6_03-144
	6_03-145
	6_03-146
	6_03-147
	6_03-148
	6_03-149
	6_03-150
	6_03-151
	6_03-152
	6_03-153
	6_03-154
	6_03-155
	6_03-156
	6_03-157
	6_03-158
	6_03-159
	6_03-160
	6_03-161
	7_01-00_EBOX
	7_01-01
	7_01-02
	7_01-03
	7_01-04
	7_01-05
	7_01-06
	7_01-07
	7_01-08
	7_01-09
	7_01-10
	7_01-11
	7_01-12
	7_01-13
	7_01-14
	7_01-15
	7_01-16
	7_01-17
	7_02-01
	7_02-02
	7_02-03
	7_02-04
	7_02-05
	7_02-06
	7_02-07
	7_02-08
	7_02-09
	7_02-10
	7_02-11
	7_02-12
	7_02-13
	7_02-14
	7_02-15
	7_02-16
	7_02-17
	7_02-18
	7_02-19
	7_02-20
	7_02-21
	7_02-22
	7_02-23
	7_02-24
	7_02-25
	7_02-26
	7_02-27
	7_02-28
	7_02-29
	7_02-30
	7_02-31
	7_02-32
	7_02-33
	7_02-34
	7_02-35
	7_02-36
	7_02-37
	7_02-38
	7_02-39
	7_02-40
	7_02-41
	7_02-42
	7_02-43
	7_02-44
	7_02-45
	7_02-46
	7_02-47
	7_02-48
	7_02-49
	7_02-50
	7_02-51
	7_02-52
	7_02-53
	7_02-54
	7_02-55
	7_02-56
	7_02-57
	7_02-58
	7_02-59
	7_02-60
	7_02-61
	7_02-62
	7_02-63
	7_02-64
	7_02-65
	7_02-66
	7_02-67
	7_02-68
	7_02-69
	7_02-70
	7_02-71
	7_02-72
	7_02-73
	7_02-74
	7_02-75
	7_02-76
	7_02-77
	7_02-78
	7_02-79
	7_02-80
	7_02-81
	7_02-82
	7_02-83
	7_02-84
	7_02-85
	7_02-86
	7_02-87
	7_02-88
	7_02-89
	7_02-90
	7_02-91
	7_02-92
	7_02-93
	7_02-94
	7_02-95
	7_02-96
	8_01-00_CBOX
	8_01-01
	8_01-02
	8_01-03
	8_01-04
	8_01-05
	8_01-06
	8_01-07
	8_01-08
	8_01-09
	8_01-10
	8_01-11
	8_02-01
	8_02-02
	8_02-03
	8_02-04
	8_02-05
	8_02-06
	8_02-07
	8_02-08
	8_02-09
	8_02-10
	8_02-11
	8_02-12
	8_02-13
	8_02-14
	8_02-15
	8_02-16
	8_02-17
	8_02-18
	8_02-19
	8_02-20
	8_02-21
	8_02-22
	8_02-23
	8_02-24
	8_02-25
	8_02-26
	8_02-27
	8_02-28
	8_02-29
	8_02-30
	8_02-31
	8_02-32
	8_02-33
	8_02-34
	8_02-35
	8_02-36
	8_02-37
	8_02-38
	8_02-39
	8_02-40
	8_02-41
	8_02-42
	8_02-43
	8_02-44
	8_02-45
	8_02-46
	8_02-47
	8_02-48
	8_02-49
	8_02-50
	8_02-51
	8_02-52
	8_02-53
	8_02-54
	8_02-55
	8_02-56
	8_02-57
	8_02-58
	8_02-59
	8_02-60
	8_02-61
	8_02-62
	8_02-63
	8_02-64
	8_02-65
	8_02-66
	8_02-67
	8_02-68
	8_02-69
	8_02-70
	xBack

