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Author's Abstract 

A time service in a distributed system may be used both for multiprocess 
synchronization and for simply finding out what time it is. For synchroniza
tion, the time provided by different servers should be closely synchronized. 
For telling time, the time provided by each server should be a close approx
imation to Universal Time (the international time standard). Algorithms 
are presented for implementing a fault-tolerant time service that meets both 
requirements. 

Capsule Review 

Users of electronic mail are not surprised to see messages that are time
stamped after they were received. The naive blame the probably non
existent operator, "who didn't get the time right." The wary know that 
many computer systems go for long periods without stopping; during those 
periods adjustments are difficult or impossible because almost all time
dependent processes (for example, file systems, mailers, audit trails, back-up 
mechanisms, etc.) assume that the time provided by the local operating sys
tem is increasing smoothly. Hence a good time service not only must be close 
to the real time, but also must increase and maintain only a bounded rate 
of change. 

For some applications (for example, distributed data bases), there is a 
third requirement: the times maintained by various processors within a net
work must be very close to each other. This requirement is so stringent that 
it is not enough simply to ensure that the time provided by each processor 
is within a cerit;ain limit of the real time. Resynchronizations with the real 
time must therefore be coordinated. 

The final requirement of a good time service is that the resynchronization 
protocol must allow a certain number of faulty links or faulty processors, 
since network protocols ought to work in the presence of partial failures. 

Previous authors have presented algorithms that satisfy some of these 
requirements, but the algorithm described here is the first that satisfies all 
four simultaneously. Another attribute of the paper is that both the problem 
and the solution are precisely formulated. 

Andrei Broder 
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1 Introduction 

A time service provides the "current time" to its users. It performs two 
functions: 

• Telling a user the current time and date. 

• Allowing different users to synchronize their activities. 

Though related, these two functions are distinct. The first requires that the 
time provided be approximately equal to Universal Time-the ideal stan
dard that is approximated by the National Bureau of Standards' broadcasts 
on station WWV. The second requires that the time provided to different 
users be approximately the same. 

Marzullo [6] devised algorithms for providing an accurate time and date, 
and a number of fault-tolerant synchronization algorithms have been pro
posed [2,4,5], but there has apparently been no previous work that consid
ered both functions at the same time. In this paper, I consider the problem 
of implementing a fault-tolerant time service that provides a single time 
value to perform both functions-more precisely, a time value that permits 
close to optimum synchronization and is a reasonable approximation to the 
correct time and date. 

The problem to be solved is stated somewhat informally in this intro
duction. Section 2 states the assumptions and conditions more precisely and 
defines some helpful notation. (A glossary is provided at the end of the paper 
to help the reader follow the notation.) Section 3 describes Marzullo's algo
rithm for computing the best possible approximation to the correct time and 
date, and Section 4 develops an algorithm for a time service that provides 
the two functions. 

The algorithms assume a network of processes, in which each node has a 
local clock that runs at approximately the correct rate, and some nodes also 
have direct access to Universal Time, perhaps obtained by "listening" to 
WWV. A time server is implemented by synchronizing all the nodes' clocks, 
using the available information about Universal Time. 

The nodes providing the time service may be a subset of the nodes 
in the complete system-the other nodes interrogating the time servers to 
obtain time information. However, nodes that do not act as time servers 
or providers of Universal Time are ignored. The time service must function 
properly despite the failure of some network components. 

A time service could provide two distinct values to satisfy its two different 
functions. For the function of providing the current time and date, a process 
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p would provide a time interval Ip that is its best approximation to Universal 
Time. More precisely, Ip would be the smallest interval that p knows to 
contain UT, the current Universal Time. (It is most common to write a 
value with error bound in the form t ± £. However, it is more convenient to 
work with the interval [t - £, t + €] within which the correct value is known 
to lie.) 

For the second time-service function, p must provide a time Tp, called 
service time, that is close to the service time Tq provided by any other node 
q. More precisely, it should provide Tp and, for each other node q, a number 
6pq such that jTp -Tql < 6pq· However, this condition is not sufficient, since 
it is trivially met by letting each Tp always be zero. To represent time, Tp 
should change at approximately the same rate as UT, so the value of Tp 
increases by about one second with the passage of one second of Universal 
Time. 

While not strictly necessary, it is convenient to have Tp not only change 
at approximately the same rate as UT, but be approximately equal to it. 
Consider, for example, the problem of generating creation times for files. 
One might want to use the creation time to decide which version of a file 
is the current version. Since versions may be created at different nodes, a 
file generated at node p should use Tp as its creation time to minimize the 
likelihood that a version created at one node receives an earlier creation time 
than a version created before it at a different node. However, one might also 
want a creation time to tell the Universal Time at which the file was created, 
so the user can determine the actual date and time of creation. This could 
be accomplished by recording a separate "universal creation time" derived 
from Ip. However, this additional value is not needed if Tp provides an 
acceptable approximation to UT. 

We therefore state the following three requirements for the time Tp pro
vided by node p, where Kp, £,,, and the 6,,q are values provided by p. (They 
could be constants that are announced when the system is "turned on", or 
they could be provided in response to user requests.) 

correct rate The rate of change of T,, with respect to UT lies between 
1 - Kp and 1 + Kp• 

synchronization For every other node q: ITq - T,,I < 6pq· 

correct time I UT- T,,I < £,,. 
The synchronization requirement follows from the correct-time require

ment by letting 6,,q = fp + fq. However, this may not provide close enough 
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synchronization. Universal Time is of interest mainly to humans; synchro
nization algorithms depend only upon the differences between the values 
of Tp at the different nodes. Humans seldom need to know the value of 
UT to better than a few seconds, so an fp of several seconds is acceptable. 
On the other hand, synchronization algorithms may have more stringent 
requirements for Cpq· When nodes p and q are using the time service for 
synchronization, p generally incurs a delay of 0 ( Cpq) seconds because of the 
lack of synchrony of Tp and Tq. For example, if q announces that it will 
release a resource at time t (that is, when Tq equals t), then p must wait 
until Tp reaches t + Cpq before acquiring the resource. Some applications 
might require that this delay be kept to within a few microseconds. 

While it is not necessary to keep the fp as small as the Cpq, the required 
synchronization condition can be achieved if fp could be kept small enough. 
However, this is not always possible. The closeness with which clocks at 
different nodes can be directly synchronized depends upon the uncertainty 
in message transmission time between those nodes. Modern large networks 
are heterogeneous, and the uncertainty in transmission times may be very 
different for different pairs of nodes. Typically, a large network consists 
of a collection of local area networks (LAN s) that are interconnected by 
point-to-point links. Nodes on a single LAN may be directly connected by 
a fiber-optic link, in which the uncertainty in transmission time can be as 
small as a few microseconds if the timing functions are performed at a low 
enough system level. The nodes in different· LAN s may communicate with 
one another by a store-and-forward protocol that could have an uncertainty 
of a second or more in transmission time.1 If a particular LAN does not 
include a direct source of Universal Time (such as a WWV receiver), so 
nodes in the LAN must base their knowledge of UT on messages received 
from outside the LAN, then the values of fp and Eq for p and q in the LAN 
could be several orders of magnitude greater than the best achievable value 
of 6pq· 

Marzullo [6] presented algorithms for obtaining a clock value from a set 
of clocks, some of which may be faulty. These algorithms can be used to 
provide the intervals Ip that best approximate Universal Time, but they do 
not satisfy the synchronization condition if Cpq < fp + Eq· Several Byzantine 

1 Such a large value results not from uncertainty in the physical transmission times, but 
because the communication involves higher-level protocols, separated from the physical 
messages by many layers of software. It is quite likely that the timing of transmission 
delays can be done at a lower system level for intra-LAN messages than for inter-LAN 
messages. 
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clock synchronization algorithms have been presented that can be used to 
satisfy the correct-rate and synchronization conditions in the presence of 
failures (2,4,5]. However, to my knowledge, there have been no published 
algorithms to achieve all three of the conditions above. 

The major part of this report concerns algorithms for achieving the syn
chronization condition when 6pq may be much smaller than €p + lq. This is 
a nontrivial problem in the presence of failures, because even very simple 
kinds of failure act like malicious, "Byzantine" failures. For example, sup
pose a node is sending its clock value to all other nodes in the network. It 
does this by sending a message saying something like "my clock now reads 
11:4 7". Suppose, through some hardware or software error, it pauses for five 
minutes in the middle of this broadcast. While it sends the same message to 
all nodes, it has essentially sent descriptions of two clocks that differ by five 
minutes. Thus, this simple error results in a "two-faced" clock that provides 
different clock values to different nodes. 

The correct-time requirement does not mention the interval Ip, which 
represents p's knowledge of UT. One might be tempted to replace this re
quirement by the condition that Tp be in Ip. However, such a condition 
would be inconsistent with the other two requirements for Tp. It is inconsis
tent with the correct-rate requirement because new knowledge of the correct 
value of UT, such as the receipt of a message from a node with a WWV re
ceiver, could suddenly reduce the width of the interval Ip. Keeping the value 
of Tp within the interval Ip could require a sudden change to Tp, which is 
prohibited by the correct-rate requirement. It can also be shown that, with 
malicious failures, requiring Tp to be within Ip could require violating the 
synchronization requirement if 6pq < €p + lq. 

2 Notation and Assumptions 

In the introduction, the term node was used to emphasize that each node in 
the network provides a time service for user processes running at that node. 
To be consistent with the terminology commonly used in discussing clock 
synchronization, the term process will be used instead of node. 

2.1 Intervals 

The term interval is used to denote a closed interval on the real line-that 
is, an interval of the form [x,y] for x ~ y. The width of the interval R is 
denoted by llRll, so ll[x,y]ll = y - x. The sum of two intervals is defined by 
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[x, y] + [z, w] = [x + z, y + w]. A real number z is considered to be the same 
as the interval [z, z], so [x, y] + z is defined to be the interval [x + z, y + z] 
obtained by translating the interval [x, y] to the right a distance of z. For 
any interval U and number 6 > 0, U ± 6 is defined to equal U + [-6, 6], so 
[x, y] ± 0 = [x - 6, y + o]. 

A pseudo-metric d on intervals is a nonnegative, real-valued function 
on pairs of intervals satisfying the following properties for all intervals U, 
V, and W: (i) d(U, V) = d(V, U), (ii) d(U, V) + d(V, W) ;::: d(U, W), and 
(iii) d(U, U + E) = E for any E 2: 0. A pseudo-metric satisfying the additional 
property that d(U, V) = 0 implies U = V is called a metric. (A metric is 
sometimes called a distance function.) 

Two important pseudo-metrics are 

• The midpoint pseudo-metric dm, where dm(U, V) equals the distance 
between the midpoints of U and V. 

• The uniform metric du, where du([x, y], [v, w]) equals the maximum of 
Iv-xi and lw-yl. 

As its name implies, the uniform metric is a metric. Note that for any 
intervals U and V, dm(U, V) ~ du(U, V). 

A real-valued function F on m-tuples of intervals is said to satisfy the 
Lipschitz condition for a pseudo-metric d if, for any intervals Ui and Vi 
and any number 6 > 0: d(Ui, Vi) < 6 for all i implies IF(Ui, ... , Um) -
F(Vi, ... , Vm)I < o. The function F is said to be translation invariant 
if F(U1 + x, ... ,Um + x) = F(Ui, ... ,Um) + x for any intervals Ui and 
real number x. Satisfying the Lipschitz condition is a stronger requirement 
than continuity and a weaker requirement than having a bounded deriva
tive. Translation invariance asserts that translating all arguments by a fixed 
amount causes the value to be translated by the same amount. We expect 
any functions appearing in a clock synchronization algorithm to be trans
lation invariant, since increasing all input clock values by a fixed amount 
should produce a corresponding increase in the clock values computed by 
the algorithm. Observe that if F satisfies the Lipschitz condition for the 
pseudo-metric dm, then it also satisfies the condition for the metric du. 

2.2 Clocks and Clock Ranges 

A time-dependent value is any real-valued function of a real variable. If vis 
a time-dependent value, we interpret v(t) to be the value of v at Universal 
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Time t. A clock is a nondecreasing time-dependent value. If Vis a clock, the 
value V(t) represents the value read by clock V at Universal Time t. The 
identity function, denoted by UT (so UT(t) = t), is a clock. The service 
time Tp provided by process p is a clock, where Tp(t) represents the time 
value provided by p to a request for the current service time received at 
Universal Time t. (Of course, p does not need to know the current value of 
Universal Time to compute the value of Tp at that time.) 

Let Vi, ... , Vn be clocks. (Think of VP as a clock maintained by process 
p.) The following definitions express the correctness conditions introduced 
informally in the introduction. They describe conditions on these clocks for 
an interval of time [u, v], where u and v represent clock values-that is, times 
indicated by the clocks themselves. Thus, the conditions express properties 
of the clocks over intervals [s, t] of Universal Time such that Vp(s) = u and 
Vp(t) = v for a process p. The conditions are expressed in this form because 
clock times are directly observable, Universal Times are not. The bounds 
Kp, 6pq, and fp are time-dependent values. (In many cases, they will be 
constants.) 

correct rate with bounds Kp: For each p and any x and y, x "# y such 
that Vp(x) and Vp(y) are in [u, v]: 

111 
(1- Kp(t)) dt < Vp(Y) - Vp(x) < l\1 + Kp(t)) dt 

synchronization with bounds 6pq: For each p and q, p -::f; q, and each t 

such that Vp(t) is in [u, v]: IVq(t) - Vp(t)I < 6pq(t). 

correct time with bounds fp: For each p and each t such that Vp(t) is in 
[u,v]: I UT(t)- Vp(t)I < £p(t). 

The correct-rate condition is defined in terms of integrals to avoid requiring 
that the VP be differentiable functions of time. When no interval is specified, 
these conditions are assumed to hold for all intervals. 

Each nonfaulty process pis assumed to have a clock Gp, called its local 
clock.2 It is assumed that the local clocks of all nonfaulty processes satisfy 
the correct rate condition with bounds pp < 1, where the pp are constants. 
(An error in the local clock Gp is considered to be a failure of process p.) 

A p-clock is a clock of the form Gp + v for some constant v-that is, a 
clock whose value at time tis v+Gp(t). A p-clock is one that runs at the same 

2 It is sufficient for p to have a cyclic timer, since one can construct a monotonic clock 
from such a timer. In fact, the algorithms are easily modified to work with only a timer. 
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rate as p's local clock. Of course, Gp is a p-clock. A p-clock Vp is determined 
by its value at any single time t0 , since Vp(t) = Vp(to) - Gp(t0 ) + Gp(t). 
Note that Tp, the time-service clock provided by p, will not in general be a 
p-clock. 

The following result is an easy consequence of the assumption that Gp 
satisfies the correct-rate condition. It asserts that the uncertainty pp in the 
running rate of p's local clock causes its knowledge of Universal Time to 
degrade at a rate of Pp seconds per second of elapsed time on its local clock. 

Proposition 1 If process p is nonfaulty and R is an interval such that 
UT( to) ER, then for all t;::: to: 

UT(t) ER+ (1 ± Pp)(Gp(t) - Gp( to)) 

where terms of order p~( t - to) are neglected. 

A clock range is an interval-valued function on the reals of the form [ x, y] 
where x and y are clocks. In other words, R is a clock range if there exist 
clocks x and y such that R(t) = [x(t),y(t)] for all times t. A p-clock range 
is a clock range of the form [x,y] such that x and y are p-clocks. A p-clock 
range can be written as U + Gp for some interval U. Since a real number 
x is identified with the interval [x,x], a clock is a special case of a clock 
range, and a p-clock is a special case of a p-clock range. A p-clock range is 
determined by its value at any single time. 

If Fis a real-valued function on m-tuples of intervals, then applying F 
to an m-tuple of clock ranges produces a time-dependent value. Let Ri, ... , 
Rm be p-clock ranges with Ri = Ui +Gp for intervals Ui. If Fis translation 
invariant, then 

Thus, if the Ri are p-clock ranges, then F(Ri, ... , Rm) is a p-clock. 

2.3 The Network 

I assume a network of processes connected by channels, where a channel 
may connect more than two processes. The two kinds of channels that are 
of interest are a point-to-point channel that has a single sender and a single 
receiver, and a broadcast channel that connects a set of processes so that 
any one of them can broadcast a message over it to all other processes on 
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the channel. A two-way communication line is a broadcast channel that 
connects just two processes. 

Certain of the processes, called Universal Time providers, are assumed 
to have a direct source of Universal Time. Let UT(i) denote the value of 
UT obtained by process j. This value is a clock range that is known to 
contain the correct value of Universal Time, so UT(t) E UT(i)(t) for any 
time t. Process j will periodically broadcast UT(i) to other processes. 

For each channel c, I assume values T~ and r~x such that a message 
sent over c at time t is received between times t + ricin and t + T~x if the 
sender, the receiver, and care all nonfaulty. More precisely, if an event, such 
as the receipt of another message, that occurs at the sender at time t causes 
the sending of a message Mover channel c, then M will be received between 
times t + ricin and t + T~. Thus, the minimum and maximum delays ricin 
and T~x include the time needed to generate and send the message as well 
as the time the message was actually in transit along channel c. The values 
of T~ and r~ may vary with time, but they are assumed to be known to 
the receiver. Let "le denote r~ - r~. 

Delivering a message with a delay less than ricin or greater than r~x 
constitutes a channel failure. If there is unpredictable variance in transmis
sion delay, due, for example, to variation in the channel loading, then ricin 
and T~ should be chosen ~onservatively to reduce the probability of such 
a failure. (Note that ricin can always be taken to be zero.) However, the 
time required for fault-tolerant synchronization algorithms depends upon 
the values of r~, not on the actual delays, and the bounds 6pq on clock 
synchronization depend upon 'Ye, so tradeoffs between reliability and effi
ciency must be made when choosing the values of T~ and r~x· 

A path is a sequence of processes and channels, each channel connecting 
successive processes. The null path connects process p to itself. If 11" is a 
path from p to q and 1/J is a path from q to r, then 11"1/J denotes the obvious 
path from p tor via q. 

For a path 11" from p to q, let r!in and r~ denote the sum of all r~ 
and T~, respectively, for all channels c in 11". Thus, T~n and T~ represent 
the minimum and maximum transmission delays for a message relayed from 
p to q along 11". Define "/'Ir to be T~ - r:Un, the uncertainty in transmission 
delay along 11". 

Fault-tolerant synchronization algorithms require that a process know 
the values T~n' r~, and "11r for messages it receives over the path 11", which 
usually requires knowledge of the values of ricin and r~ for each channel 
c in the path. If these values can change, then new values can be broadcast 
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using the method of (3], which assures that the same values are used by all 
processes. For simplicity, I assume that the T~0 , T~, and "Y'lr are constants 
for each fixed path 7r. 

If R is an interval and 7r a path, then R'lr is defined to be the interval 
R+ [r~0 , T~xl· Suppose that 7r is a nonfaulty path from process p to process 
q, and R represents p's knowledge of Universal Time at a certain time t
that is, p knows that UT(t) E R. If p sends a message with the value R 
along 7r to q and that message arrives at time t', then since the transmission 
time of the message is in the interval (r~0 , T~x], q knows that UT(t') E R'lr. 
Observe that if 7r</> is a path, then R1r4> = ( R1r)4'. 

Synchronization algorithms require processes to send clock ranges to 
one another. (Remember that a clock is a special case of a clock range.) 
A process p sends a p-clock range by sending a message with the clock 
range's current value R along a path 7r. The receiving process q interprets 
this message as the receipt of a q-clock range whose value, at the time the 
message is received, is R'lr. The following result asserts that transmitting 
a clock range in this way causes an initial perturbation by a distance of 
up to "Y'lr, after which the two clock ranges drift apart at a rate of at most 
pp+ pq, where distance is measured by the uniform metric du on intervals. 
This result is a simple consequence of the correct-rate assumption for the 
local clocks and the assumed bounds on message-transmission times. 

Proposition 2 Let Rp be a p-clock mnge, and suppose that process p sends 
a message at time t that is received at time t' over a nonfaulty path q, and 
let Rq be the q-clock range such that Rq(t') = Rp(tr. Then for any fl.t ~ 0: 

where terms of order pq T~x are neglected. 

3 0 btaining Universal Time 

Let us now consider how a time server p could provide the best possible 
value of Ip, an interval known to contain UT. Assume that each Universal 
Time provider j maintains a clock range UT(i) that represents its current 
knowledge of Universal Time. If j is nonfaulty, then UT(t) E UTCi)(t) for all 
times t. At various times, provider j broadcasts the current value of UT(i). 
Let UT~) denote a clock range that represents p's knowledge of the current 
value of UTCi). More precisely, assume that, if j and p are nonfaulty, then 
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UT(t) lies within the interval uTV>(t) for all times t. If p receives a message 
at time to informing it that UT( to) lies in the interval R, then Proposition 1 

implies that we can define uTV> by 

fort ~ to. In fact, this is how uTij)(t) should be defined if p did not receive 
any information about UT(j) during the time interval [to, t]. The problem 
of how j broadcasts the value UT(j) is considered later. 

The algorithm for computing the best approximation to UT from a set 
of m intervals, each asserted to contain UT, was first obtained by Marzullo. 
It appears as Algorithm 4-2 in his thesis (6]. Define Mfn(Ui, ... , Um) to be 
the largest interval whose endpoints belong to at least m - f of the intervals 
Ui. It is not hard to show that, if one knows only that UT lies in all but 
at most f of the intervals Uj, then Mfn(Ui, ... , Um) is the smallest interval 
known to contain UT. The value of Mfn(Ui, ... , Um) can be computed from 
the set of m intervals Ui in 0( m log m) time by sorting their endpoints. It 
can be recomputed in 0( m) time if just one of the Ui changes. 

If the intersection of U1 with Mfn(U1 , ••• , Um) is empty, then 
Mfn(Ui, ... ,Um) = M~-.!1 (U2, ... ,Um)· In this case, U1 is known to be 
one of the intervals that does not contain UT (there are at most f of them), 
so it may be thrown away when computing the best approximation to UT. 
After throwing it away, we are left with m - 1 intervals, all but at most 
f - 1 of them containing UT. More generally, if k of the Ui have an empty 
intersection with Mfn(Ui, ... , Um), then Mfn(Ui, ... , Um) equals the value 
obtained by throwing away those k intervals and applying M~-!k to the 
remaining intervals. 

Assume that up to f of them values UT~/> may be incorrect, where an 
interval UTV> is correct if UT always lies within it. The obvious way to 
choose I,,, an interval that process p knows to contain UT, is to let it equal 

Mfn( UTi1>, ... , UTim». However, suppose that at some time when C,, has 

the value C, Mfn( UTi1>, .. . , UTim» equals the interval U. When C,, has 
the value C+~C, UT must lie in the interval U +(I±p,,)~C. However, the 

intervals UTV> are spreading out at a rate p,,, which could cause the value 
of M to spread out at a faster rate--in fact, to make large, discontinuous 
jumps. Thus, when C,, has the value C + t::..C, M( UTi1>, ... , UT¥"» could 
be a larger interval than U + (1 ± p,,)t::..C. 

In Marzullo's algorithm, p computes an initial value I,,(to) from initial 
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values UTY>(t0 ) of the UTY> as follows. It throws away any of the UTY>(to) 
that it decides are incorrect. If m - k intervals are currently believed to be 
correct, then the interval I,,(t0 ) equals M~-_1ck applied to them - k correct 

intervals UTY>(to). If no new values are received from the Universal Time 
providers between times t0 and t, then, ignoring terms of order p~(t - t0 ), 

/ 11(t) is defined by 

111(t) = 111(to) + (1 ± p11 )(C,,(t) - C11(to)) 

In other words, when p receives no new information, the interval 111 advances 
(moves right along the number line) at p's clock rate and widens at the rate 
of 2p11 seconds per second of clock time. 

When a new value for UTW> arrives, process p adds the value to the 
set of intervals that it presumes to be correct, throwing away the previous 
value of UTY>. Process p next computes I,, by applying M~-!1c to them- k 
intervals currently presumed correct. It then declares to be incorrect any 
of these intervals (the ones it had presumed to be correct) that have empty 
intersections with 111 • 

When no new information is received from the Universal Time providers, 
the value of 111 "deteriorates" at the rate of p11 seconds per second. To 
maintain the accuracy of 111 , it is necessary for the Universal Time providers 
to broadcast their values of UT(j) sufficiently often. Suppose that a provider 
j sends its clock range UT(j) top at time t by simply sending a message 
with the interval UT(j)(t) along some path 1r. If p receives this message at 
time t', it sets UTY>(t') to UT(j)(t}1r. Suppose that each provider j sends 
UT(;) in this way at least once every J seconds over a path 1r with ;w :5 ; . 
It is then easy to show that if II UT(j) II < £ for every nonfaulty provider j 
and at least m - f of the time providers and their paths 1r are nonfaulty, 
then Marzullo's algorithm guarantees that for all times t, / 11(t) is contained 
within the interval UT(t) ± (£ +; + p11J). 

4 Providing the Service Time 

4.1 Ideal Time 

A time server p periodically receives information allowing it to refine the 
clock T11 that represents the service time it provides to its clients. Informa
tion comes in discrete lumps-usually through the receipt of a message. To 
maintain the continuity of T11-more precisely, to maintain the boundedness 
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of its rate of change-the value of Tp cannot change instantly in response 
to new information. Instead, the rate of change of Tp is modified discontin
uously. This section presents a method for computing Tp's rate of change. 

Process p computes Tp from its clock Gp by the formula: 

Tp = aPCP + bP 

where ap and bp are constants that are changed discontinuously-that is, 
they are piecewise constant functions of time. The value bp represents a 
zero-point correction;3 the value ap represents a correction to the running 
rate of Gp. I will discuss the way ap changes; the change to bp is determined 
by the requirement that Tp be continuous and will be ignored. 

There are two corrections embodied in the value of ap: a correction to 
compensate for the measured inaccuracy of the local clock Gp, and a cor
rection to bring Tp into synchrony with UT and with the times Tq provided 
by other servers q. The component of ap that compensates for the inaccu
racy of Gp effectively reduces the error pp in its rate. It can be obtained by 
comparing Gp with Ip for a long enough period of time. I will ignore this 
component and assume that any difference between ap and 1 is meant as a 
correction to achieve synchronization. Such a correction actually increases 
the error Kp in the rate of change of Tp. This increase is unavoidable. If 
clock synchronization is to be maintained, Kp must be allowed to become 
larger than pp, the inherent error in the rate of p's local clock. 

It is easiest to describe synchronization algorithms in terms of discon
tinuously resetting the time. There are a sequence of resynchronization 
times T<0>, T(1), T(2), • • • at which processes resynchronize. Every process 
p changes ap when Tp = T(i), so the T(i) represent service times. For con
venience, I assume that all processes resynchronize at every time T(i)_a 
process p that does nothing at that time can be thought of as performing a 
resynchronization in which the new value of ap equals its old value. Time 
T(o) represents the service time at which the system is started. 

Resynchronization may actually be performed by having every process 
agree when their time Tp should read T(i). However, for this discussion, it is 
more convenient to have a process convert this into the inverse information: 
the time that Tp should read when it actually reads T(i). Assuming pp < 1, 
if p discovers that Tp should read T(i) when it actually reads T(i) + b..T, 
then it knows that Tp should read approximately T(i) _ b..T when it actually 
reads T(i). 

3If Cp is actually a cyclic timer instead of a monotonic clock, then bp is incremented 
every time Gp is reset to zero. 
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At the ith resynchronization, process p thus learns what the "correct" 
service time should be when Tp reads T(i), and uses this information to reset 
aP. (The resynchronization must be carried out in such a way that p receives 
this information before its clock reaches T(i).) Here, the "correct" time is 
the one that is agreed upon by all processes as the one to which they want to 
resynchronize. The most convenient way to describe resynchronization is to 
have p maintain an "ideal" p-clock c~i)' that keeps the "correct" time learned 
during the ith resynchronization-in other words, c~i) is the p-clock that has 

the "correct" time when Tp equals T(i). Hence, C~i) represents p's knowledge, 
as of time T(i), of what the current service time should be. This knowledge 
becomes obsolete at service time T(i+I), when the resynchronization provides 
p with more recent information about the "correct" time. Initially ap = 1 

and Tp = c~0)' so Tp equals c~0) from the time T(O) when the system is 
started until T(1). 

To resynchronize Tp at service time T(i), presets the rate of change of Tp 

so that, in the absence of any further resynchronization, Tp would equal C~i) 
after exactly J seconds, where J is some fixed constant. In other words, if p 
learned that, when Tp reads T( i), the service time should be T11 + dT, then p 
sets ap equal to 1 + ( /:::,.T / J). Thus, Tp is always chasing the current "ideal" 

clock C~i). It is convenient to assume that there is at least one resynchro
nization every J seconds. (We can always add a null resynchronization in 
which the new ideal clock C~i+i) is the same as the old one C~i).) Thus, 
if there is a nonzero correction during each resynchronization, then T11 is 
always chasing the current ideal clock but never catches it. 

Finally, let us make one minor change to this algorithm. Instead of 
performing the ith resynchronization when T11 equals T(i), we perform it 

when C~i-l) equals T(i). This is a minor difference, since we expect T 11 and 

C~i-l) to be close together when either of them reads T(i). However, as 

Proposition 5 below indicates, the different ideal clocks C~i) will be a little 
more closely synchronized to one another than the service times Tp, so it is 
slightly better to use them to control the resynchronization. We can now 
restate our algorithm formally as follows, where J is a fixed parameter. 

Resynchronization Algorithm: Let T(o), T(1), . . . be an unbounded 
increasing sequence of times with TU+I) - TU) 2:, J for all j, let C~o), C~1 ), 
... be a sequence of p-clocks; for i > 0, let 4i) be the Universal Time 
such that C~i-l)(4i)) = T(i); and let 4o) be the Universal Time such that 
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C~o) ( 4o)) = T(o). Then the service clock Tp is defined for t ~ 4o>by 

T,,(t) = a,(t)C,,(t) + b,,(t) 

where a,, a.nd b,, are defined as follows: 

• For 4°> ~ t ~ 41>: ap(t) = 1 and bp(t) = T<0> - Cp(4°». 

• Fort~> < t ~ 4i+l), i > 0: ap(t) = 1 + (C~i)(4i» -T,,(4i»)/J and 

b,,(t) = b,(4i-1» + (a,,(4i-1» - a,,(4i»)C,,(t~i». 

What conditions are required of the ideal clocks C~i) to guarantee that 
the T, defined by the Resynchronization Algorithm satisfy the correct-rate, 
synchronization, and correct-time conditions? Since each C~i) is a p-clock, 
running at the same rate as Cp, we know that the ideal clocks C~i), ... , 
cii) satisfy the correct-rate condition with bounds Pp· We expect that they 
must also satisfy the synchronization and correct-time conditions. If the 
ideal clocks C~i) satisfy these conditions, then the service clocks Tp will too, 

provided that each Tp remains close to the current ideal clock C~i). (Of 
course, the actual bounds in these conditions will not be the same for the 

(') T, as for the C,' .) 
Since Tp is always "chasing" the current C~i), we need a bound on how 

fast the ideal clocks can change as a result of resynchronization. The re
quired condition is that there exist a constant up such that, during any time 
interval of length J, the total amount by which p's ideal clocks are changed 
is less than Up. (The constant J is the parameter of the Resynchronization 
Algorithm.) 

bounded correction with constants up: For all p and all j, k: if j < k 
and T(k) - T(j) < J, then 

k-1 
E 1cJi+i) - cJi>1 < up 
i=i 

The following result shows that the bounded-correction condition ensures 
that Tp stays close to cJil. The appearance of e (which equals 2. 71828 ... ) 
is somewhat surprising. 
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Proposition 3 If the C~i) satisfy the bounded-correction condition with con
stants up, then the R.esynchronization Algorithm ensures that for every Uni

versal Time t such that r<•> ~ C~'>(t) ~ r<t+t): 

IC~'>(t) - Tp(t)I < eup/(e - 1) 

where terms of order u;/ J are ne.glected. 

Proo/: Define the time-dependent value C by C(t) = C~'>(t), for i deter
mined by the condition r<•> ~ c1'> < r<'+1>. In other words, C(t) is the 
time rea.d at Universal Time t by the ideal clock C~') being used at time 
t. Observe that C(t) advances at the same rate as Cp(t) except that it is 

incremented by c~') -c~•-1 > at the resynchronization (Universal) times 4•>. 
The bounded-correction condition means that the sum of the absolute value 
of all such corrections performed during an interval of length J as measured 
by C is less than O'p. For convenience, I assume that this condition holds 
when the length of the interval is measured by p's local clock Cp rather than 
by UT. This introduces an error in the length of the interval of at most up, 
which will introduce an error of order at most u;/ J in our bounds. 

Let a(t) equal IC(t) - Tp(t)I. We must show that a(t) < eup/(e - 1). 
A rigorous, straightforward proof is obtained by computing a(t + 6.t) as a 
function of a(t) and the resynchronizations performed during the interval 
(t, t + 6.t). Such a proof is tedious and unenlightening. Instead, a less 
rigorous but more intuitive proof is given. 

Since Gp satisfies the correct-rate condition with bound less than one, 
we can approximate it arbitrarily closely on the interval [t, t + 6.t] by a 
differentiable function G~ with a strictly positive derivative. We can then 
replace all functions of Universal Time by their composition with c~-1 . This 
substitution leads to the same formulas we would have if Gp were a perfect 
clock, with Gp(t) = t for all t. (In other words, the substitution effects a 
change of coordinates from Universal Time to local-clock time.) Therefore, 
we may assume without loss of generality that Gp is the identity function, 
so Gp is the Universal Time clock UT. 

Let t = to < ti < · · · < tn = t + J, and assume that the only resynchro
nizations with nonzero corrections to Gin the interval [t, t + J] occur at the 
times ti. Let Ci be the change to G at time ti, and let 6.t, = t, - ti-1· Then 
L:f::1 6.t, = J and, by the bounded-correction hypothesis, L:f=1 lcil ~ Up· 

In addition to the resynchronizations at time ti, we can have an arbitrary 
number of resynchronizations with zero correction. Such a resynchroniza-

15 



tion has the effect of slowing the rate at which Tp converges towards C. The 
maximum value for a is achieved by doing as many such resynchronizations 
as possible. The value of a obtained by any finite number of resynchro
nizations is less than the value obtained in the limiting case of continual 
resynchronization, in which da/dt = -af Jon each interval (ti-i,ti)· A bit 
of calculus then shows that 

from which we deduce 

a(t + J) <up+ (a(t)/e) 

It is easy to show from this that if a(t) < eup/(e - 1) then a(t + J) < 
eup/(e - 1). To complete the proof of the proposition, we need only show 
that a(t) < eup/(e - 1) holds for all tin the initial interval (T(O), T(o) + J]. 
However, this follows from the bounded-correction hypothesis and the fact 
that Tp initially equals c~0)' so a(T(O)) = 0. I 

I leave it as an exercise for the reader to show that the bound of Propo
sition 3 is the best possible one. (Consider a scenario in which there is a 
resynchronization every J seconds that advances the ideal clock by almost 
up and a large number of "zero resynchronizations".) Proposition 3 imme
diately implies the following two results. 

Proposition 4 If the C~i) satisfy the bounded-correction condition with con
stants up, then the Tp chosen by the algorithm above satisfy the correct-rate 
condition with bounds pp+eup/( e-l)J (neglecting terms of order u;f J2 ). If, 

for each fixed i, the C~i) also satisfy the correct-time condition with bounds 
fp on the interval [T(i), T(i+l)], then the Tp satisfy the correct-time condition 
with bounds fp + eup/(e -1) (neglecting terms of order u;/J). 

Proposition 5 If, for each fixed i, the C~i) satisfy the synchronization con
dition with bounds 6pq on the interval [T(i), T(i+l)J, then the Tp chosen 
by the algorithm above satisfy the synchronization condition with bounds 
6pq + (2eup/(e - 1)) (neglecting terms of order u;f J). 

These results are based upon the assumption that Tp initially equals C~o). 
Suppose this is not the case, so Tp initially differs from the ideal clock c~O) 
by some quantity ~T0 • The argument used in the proof of Proposition 3 
shows that at time T(o) + J, Tp will differ from its ideal clock by a quantity 
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D..T1 that is less than <7p + D..T0/e, at time T(o) + 2J, Tp will differ from its 
ideal clock by D..T2 < <7p + D..Tif e, and so on. Thus, Tp will keep getting 
closer to the ideal clock until it is within e<7p/(e - 1). 

Similarly, the synchronization condition assumes that initially ITq-Tpl < 
Opq· If this condition is not met, then the bound on ITq-Tpl will keep getting 
smaller until it eventually reaches a value less than Opq + (2e<7p/(e - 1)). 

4.2 Synchronization and Time-Correctness of Ideal Clocks 

Propositions 4 and 5 show that the Tp satisfy the synchronization and 
correct-time conditions if the ideal clocks C~i) satisfy these conditions dur
ing the interval (T(i), T(i+I)] and the sequence of ideal clocks C~o), C~1 ), 
... satisfies the bounded-correction condition. Moreover, suppose that the 
C~i) satisfy the synchronization and correct-time conditions with bounds Opq 
and fp just at service time T(i)_that is, on the interval [T(i), T(i)]. In other 
words, suppose only that the ideal clocks are synchronized to within Opq and 
lie within fp of Universal Time when they read T(i). It is easy to see that 

the C~i) must then satisfy the synchronization and correct-time conditions 
on the entire interval [T(i), y(i+I)] with bounds Opq +(Pp+ pq )(T(i+l) _ y(i)) 
and fp + pp(T(i+i) - y(i)), respectively. 

The requirement that the C~i) satisfy the correct-time condition places 
a bound on how much C~i) and C~i+I) may differ. In particular, if C~i) 
satisfies the correct-time condition on the entire interval [T(i), y(i+I)] with 
bound fp + Pp(T(i+I) - y(i)), and C~i+I) satisfies the correct-time condition 

at time T(i+l) with bound fp, then IC~i+I) - c~i)I < 2fp + pp(T(i+l) - r(i)). 
These inequalities together with the propositions above easily imply the 
following result, where the hypothesis asserts that there is at least one and 
at most r resynchronizations performed every J seconds. 

Proposition 6 If, for each i, the clocks C~i) satisfy the synchronization 
condition with bounds Opq and the correct-time condition with bounds £p at 
time T(i), and there is at least one and at most r of the T(i) in any interval 
of the form [t, t + J), then the Resynchronization Algorithm guarantees that 
the clocks Tp satisfy: 

• the correct-rate condition with bounds 

(i+ e~ 1)PP+ (e:_r~)J£p 
(neglecting terms of order ( r£p/ J)2 and p~) 
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• the synchronization condition with bounds 

6pq + ( ( 1 + e ~ 1) Pp + Pq) J + e 4~e 1 E:p 

(neglecting terms of order (rt:,, )2 / J and p2 J). 

• the correct-time condition with bounds 

( 1 + e 2~e 1) E:p + ( 1 + e ~ 1) p,,J 

(neglecting terms of order ( np )2 / J and p2 J ). 

In order to compute I,, and 19 , processes p and q can use the values 
for Universal Time provided by different subsets of the Universal Time 
providers. Process p does not care which values are used by process q. 
However, the following result indicates that to achieve the synchronization 
condition with 6,,9 < £p + £9 , it is necessary for p and q to agree to compute 

the values C~i) and C~i) using values of UT obtained from the same set of 
providers j. To apply this proposition in our case, let F and G be the func
tions used to compute T,, and T9 from the values UTU>(t) broadcast by the 
Universal Time providers. As I observed earlier, we expect these functions 
to be translation invariant. (Recall that II Ull is the width of the interval U.) 

Proposition 7 Let F and G be translation-invariant functions on n-tuples 
of intervals such that for any intervals Ui, ... , Un: if, for each j, llU;ll < 
£ and the intersection of all the U; is nonempty, then IG(Ui, ... , Un) -
F(Ui, ... , Un)I < 6. If 6 < £, then there is some j such that the values of 
both F(U1, ... , Un) and G(Ui, ... , Un) depend upon the value of U;. 

Proof: We assume that there is no such j and show that £ ~ 6. This 
assumption implies that we can renumber the arguments so that, for 
some k, the value of F depends only upon its first k arguments and the 
value of G depends only upon its last n - k arguments. Let F'(U, V) = 
F(U, ... , U, V, ... , V) and G'(U, V) = G(U, ... , U, V, ... , V), with k copies 
of U and n - k copies of V. The value of F' depends only on its first 
argument and the value of G' depends only on its second argument. Let 
U be an interval of width £', where I < £. Without loss of generality, 
we can assume that F'(U, U) ~ G'(U, U). The hypothesis implies that 
IG'(U + £', U) - F'(U +I, U)I < 6. Since the value of G' does not depend 
upon its first argument, G'(U + £', U) = G'(U, U); similarly, F'(U +I, U) = 
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F'(U + €, U + €). Hence, IG'(U, U) - F'(U + €, U + f')I < 6. However, the 
translation invariance of F' implies that F'(U + €, U + €) = F'(U, U) + €. 
Since F'(U, U) ~ G'(U, U), this allows us to conclude that € :::; 6. This is 
true for any € < £, which implies the desired result f:::; 6. I 

Thus, p and q must agree upon a set of Universal Time providers whose 
values they will use in computing C~i) and C~i). This set may change for 
different values of i (different resynchronizations). The method described 
in [3] can be employed to obtain agreement on the current set of Universal 
Time providers that are to be used. Here, let us assume that the values 
UT(l), ... , UT(m) from m providers are used. 

To perform the ith resynchronization, each process p obtains a set of 
intervals U~1 >, ... , U~m), where u~> is the value obtained from Universal 
Time provider j. (It is the current value of UT(j) "smeared out" by un-

certainties in message-transmission time.) Process p sets its p-clock C~i) to 
equal F( U~1 ), ••• , U~m)) (when C~i-l) = T(i>), where Fis some real-valued 
function of m intervals. 

What properties must F have? As we indicated above, we expect F to be 
translation invariant. We also require that F satisfy the Lipschitz condition 
for some pseudo-metric. Recall that the Lipschitz condition means that 
changing each argument by less than o changes the value of F by less than 
o. Translation invariance implies that moving each interval a distance of 
6 "in the same direction" changes the value of F by 6, so the Lipschitz 
condition is the strongest "continuity bound" that can be achieved. 

The Lipschitz condition implies that we can satisfy the synchronization 
condition for the C~i) by ensuring that d( u~>, U~/>) < Opq for all j. Intu
itively, the Lipschitz condition ensures that p and q will be closely synchro
nized if, for each Universal Time provider j, the values they obtain from j 
are almost the same. 

Marzullo's function Mfn was defined so that Mfn(Ui, ... , Um) is the 
largest interval whose endpoints lie within at least m - f of the intervals 
U1 , ... , Um· One might be tempted to define the function F by letting 
F(U1 , ••• , Um) be the midpoint of Mfn(Ui, ... , Um)· However, this function 
does not satisfy a Lipschitz condition; in fact, it is not even continuous. 
Its discontinuity is illustrated in Figure 1, where m = 4, f = 1, Ip = 

1( (1) (4)) 1 (1) (4)) · 1 h M 4 Up , ... , Up , and lq = M 4 ( U q , ... , U q . In this examp e, t e 
values of u~> and u~> are ones that could be obtained if Universal Time 
provider 1 is faulty. Processes p and q see the same values of u<2>, u<3>, and 
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U(l) 
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(a) Process p's computation. (b) Process q's computation. 

Figure 1: Example of discontinuity of Marzullo's function. 

u<4>, and they see values of u<1> that are almost the same. However, when 
they apply Marzullo's function to these sets of intervals, they compute very 
different intervals Ip and Iq. Recall that Marzullo's function computes the 
optimal value of Ip-that is, the smallest interval that p knows to contain 
UT. It is this discontinuity in the optimal Ip that makes it impossible, 
in the presence of malicious faults, to satisfy the synchronization condition 
with the extra requirement that Tp lies within Ip. More precisely, it can be 
shown that if a nonfaulty process may assume that it is nonfaulty, then the 
synchronization condition is incompatible with the requirement that each Tp 
lies within Ip when the 6pq are smaller than half the widths of the intervals 
UTU>. 

There are a number of functions F that are translation invariant and 
satisfy the Lipschitz condition for a suitable choice of pseudo-metric. Two 
such functions are obtained by letting F(Ui, ... , Um) equal the average or 
the median of the midpoints of the Ui. (These functions satisfy the Lips
chitz condition for the midpoint pseudo-metric and therefore for the uniform 
metric.) A class of functions that includes both of these is defined as fol
lows. Let Af(U1 , ••• , Um) be the average of the multiset of m - 2/ numbers 
obtained by taking the midpoints of all the Ui and omitting the f lowest 
and f highest of them. Each Af (with m > 21) is translation invariant and 
satisfies the Lipschitz condition for the midpoint pseudo-metric. (This fol
lows from the result that, if the numbers Xi and Yi, with 1 ~ i ~ m, satisfy 
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lxi - Yil < 6, then for any s, the sth largest of the Xi and the sth largest of 
the Yi differ by at most 6.) 

The functions Al actually give us a somewhat stronger bound on 611q than 

that obtained simply from the Lipschitz condition. If dm( uW>' u~i)) < 8(j), 
then using Ai to compute C~i) and C~i) gives an algorithm that satisfies 
the synchronization condition with bounds 811q equal to the average of the 
m - 2f largest of the 6(j). If the worst-case difference 6(j) between the 
values that p and q obtain from Universal Time provider j depends upon 
j, then the Lipschitz condition guarantees only that 611q is no larger than 
the maximum of the 6(j), while the averaging function Al can do better. 
However, the different values of 8(j) will probably be almost the same in a 
practical application, so this is not significant. 

Next, we consider the correct-time condition: I UT-C~i) I < £11 • Suppose 
that at most f of the Universal Time providers may be faulty. If m $ 2f, so 
at least half the Universal Time providers are faulty, there is not much hope 
of finding any algorithm that satisfies the correct-time condition, since all 
the faulty providers could give the same incorrect value.4 Therefore, we can 
assume m > 2f. It is then easy to show that there exist nonfaulty providers 
j and j' such that Af(U~1 >, ... , U~m)) lies between the midpoints of U~/> 
and ulf'). Combining this with the result above for the synchronization 
condition, it is easy to prove the following result. 

Proposition 8 With the notation of the Resynchronization Algorithm, let 
u~,i> be intervals such that, for all j: 

1. For all p and q: dm( U~/>, U~;)) < 611q. 

2. For all p: if Universal Time provider j is nonfaulty, then 4'> E uY>. 

where each C~i) is chosen so that C~'>c4'>) = Af(u~>, ... , uim>). If 

there are at most f faulty Universal Time Providers, then the C~i) sat
isfy the synchronization condition with bounds 611q (neglecting terms of order 

(p11 + pq)611q} and the correct-time condition with bounds max{ll U~)ll/2 : 
provider j nonfaulty} at time T(i). 

Observe that Af(Ui, ... , Um) depends only upon the midpoints of the 
U,, so Af(Ui, ... , Um)= Af(U1±6, ... , Um±em) for any numbers e;. While 

4 However, even with more than half the providers faulty, it is still possible to satisfy 
the synchronization condition. 
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the averaging function Al gives reasonable worst-case behavior, it does not 
make the best use of the available information because it ignores the widths 
of intervals. Very wide intervals are given the same weight as narrow ones, 
even though they provide less information. One can construct examples in 
which the function Al does not provide the best possible approximation 
to UT. However, I know of no simple function F satisfying the Lipschitz 
condition that does better. 

4.3 Broadcasting Universal Time 

By Proposition 8, the synchronization and correct-time conditions for non
faulty processes can by met by broadcasting values from the Universal Time 
providers such that the following two conditions are satisfied, where dm is 
the midpoint pseudo-metric on intervals and uV> is the value obtained by 
p from server j during resynchronization i. 

1. If processes p and q are nonfaulty, then for every Universal Time 
provider j: dm( u~j)' ulf>) < 6pq• 

2. If process p and Universal Time provider j are both nonfaulty, then 
UT( 4i)) lies in the interval uV>. 

These conditions are very similar to those of the approximate Byzantine 
agreement problem [1], in which each process p begins with a real value v11 

and must choose a real value v~ such that: (i) for nonfaulty processes p 
and q: Iv~ - v~I < 6, and (ii) v~ lies within the interval I determined by 
the largest and smallest of the values vq. For 6 < llill, the approximate 
Byzantine agreement problem is known to require f + 1 rounds of message 
passing to handle f failures, even for simple halting failures in a completely 
connected network. 

We can apply lower-bound results for the approximate Byzantine agree
ment problem to the problem of broadcasting a Universal Time provider's 
value by letting Vp be the midpoint of the value U(i) that process p obtains 
directly from provider j. The broadcast problem then becomes a special case 
of the approximate Byzantine agreement problem. Since a faulty provider 
may send very different values to different processes, the result for the ap
proximate Byzantine agreement problem implies that f + 1 rounds of message 
passing are needed to handle f process failures in a completely connected 
network. 
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We assume that if process p sends a message at time t to process q over a 
path ?r, and p, q, and 7r are nonfaulty, then the message is received at some 
time in the interval t + [r~n' r~]. However, what if one or more of the pro
cesses and/or channels on the path 7r are faulty? If we rule out "malicious" 
process behavior and garbled messages, the only type of failure possible is 
for a message sent over a channel c to take longer than r:iiax seconds to 
be delivered. (A lost message is considered to take very much longer than 
r:iiax seconds.) Even with malicious failures, one can guarantee that, with 
suitably high probability, a faulty process or channel can do no more than 
delay a message. Such a guarantee is achieved by using digital signatures, 
so a faulty process cannot falsify the information contained in a message, 
and by choosing the value of T~ so that it is physically impossible for a 
message to be sent over channel c in less than T~ seconds-for example, by 
letting T~ = 0. In practice, how one achieves this guarantee depends upon 
the class of failure one is willing to tolerate. In most cases, it suffices to 
add simple redundancy to messages. However, tolerating malicious failures 
requires that a process relay a clock value by appending a digital signature 
to it without removing other process's signatures [2,4]. 

The following algorithm by which a Universal Time provider j broadcasts 
a set of clocks to all processes rests upon the assumption that faults can only 
delay (or lose) messages. However, if j is faulty, it may send different values 
to different processes. The choice of the constant k is discussed later. 

Byzantine Clock-Broadcast Algorithm: A Universal Time provider j 
broadcasts a p-clock to every process p as follows. (The sets c,, of p-clocks 
are initially empty.) 

1. j sends an interval U(j) to all its neighbors. 

2. If process p receives the interval R along path 7r at time t, then it adds 
to C,, the p-clock l; whose value at time t equals Rtr, and it relays R to 
each of its neighbors q unless one or more of the following conditions 
holds: 

• q is on the path 1!". 

• C,, already contained p-clocks U and V such that the left endpoint 
of U is greater than or equal to the left endpoint of R; and the 
right endpoint of V is greater than or equal to the right endpoint 
of l;. 

• The length of 7r equals k. 
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3. When no more messages can arrive, process p sets UTY) to be the 
p-clock whose left and right endpoints are the maxima of the left and 
right endpoints of all the p-clocks 1;. 

Note that in the second condition of step 2, U and V could be the same 
p-clock. This condition can be strengthened so that p need not relay R to 
q if it knows that q has already added to Cq a q-clock approximately equal 
to 1;. For example, suppose p received R by an Ethernet message and q 
is on the same Ethernet. If one is willing to assume benign failure modes 
for the Ethernet, then p could assume that q received the same message at 
approximately the same time, so there is no need for p to relay it. However, 
the resulting algorithm would then tolerate only benign Ethernet faults. 

Define the delay r and the variance 'Y of a Byzantine Clock-Broadcast 
Algorithm to be the maximum of T~ and /Tr for all paths 7r from j of 
length at most k. Suppose the clocks of any two nonfaulty processes differ 
by at most (. Since messages along faulty paths can be ignored, it is easy 
to see that if a Byzantine clock broadcast is initiated by provider j when its 
clock equals T, then a process can ignore any message that reaches it over 
a path 7r of length l when its clock reads later than r~ + l(. Hence, each 

process p can compute its p-clock urY) at time T + k(' where T is the delay 
of the algorithm. 

Suppose that, in executing the Byzantine Clock-Broadcast Algorithm, p 
receives R along path 7r. Let r be a node on this path such that </> is the 
subpath of 7r going from j tor, and 17 is the subpath going from r top, sop 
received R because r relayed R along 17. Suppose that r also relays R to q 
along¢. If p, q, r, ,,P, and 17 are nonfaulty, then Proposition 2 implies that 
if p received Rat time t, then 

(neglecting terms such as ppr~). The following result follows easily from 
this. 

Proposition 9 Assume that for every pair of nonfaulty processes p, q there 
are paths </>11 from Universal Time provider j to p and </>1/J from j to q of 
length at most k such that T/ and ,,P are nonfaulty. If a Byzantine Clock
Broadcast algorithm with variance 'Y is started at time t to broadcast an 
interval u(i)' then: 

1. If p and q are nonfaulty, then du( UTY)(t), UT~i)(t)) < 21 
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2. If j and p are nonfaulty and UT(t) E uW then UT(t) E UT~>(t). 

(neglecting terms of order PpT~x for paths 1r of length at most k from j to 
p). 

For any particular network, the hypothesis of Proposition 9 can be satisfied 
by making k large enough if every pair of nonfaulty processes are connected 
by some nonfaulty path. The choice of k and the actual set of channels to 
use for the broadcast will be a compromise between the conflicting desires 
to increase reliability and reduce the number of messages sent. 

The conclusion of Proposition 9 is almost but not quite in the form neces
sary for implying the hypothesis of Proposition 8. This is because the value 
u~> used in the actual algorithm will be UT~>c4i)) rather than UT~)(t). 
However, the conclusion of Proposition 9 remains valid after replacing t by 
the values 4i) if we can neglect terms of order PPl4i) - tj. These terms will 
be negligibly small if the time t, when the clock broadcast is begun, is close 
to the resynchronization time 4i). The broadcast needs to be begun early 
enough so that every process p receives its value before time 4i), which is 
the time when its clock C~i) reads T(i). If the C~i-l) satisfy the correct-time 
condition with bounds £p and Tis the maximum of T~ for all paths from j 
of length k, then we get a minimum value for 14i) - ti on the order of fp + T. 

4.4 The Complete Algorithm 

We now have all the pieces necessary to construct an algorithm to compute 
the Tp. First, one must select disjoint sets Pi of processes such that if p and 
q want to synchronize their times so that Dpq < £p + £q, then they both lie 
within the same set Pi. If the sets Pi can change, then the algorithm of 
[3] is used to guarantee that all nonfaulty processes agree upon the current 
collection of sets. 

A process p not in any set Pi simply chooses Tp to be the midpoint of 
Ip. All processes p in the same set Pi choose their service times Tp by the 
following algorithm. 

Service Time Algorithm: 

1. The processes in Pi choose a set of Universal Time providers. The 
method of [3] is used to ensure that all processes in Pi agree upon 
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a set of providers that are thought to be nonfaulty and to provide 
suitable values. 5 Let this set of providers be numbered from 1 to m. 

2. For a sequence of predetermined times T(i) and time providers Ji, when 
the maximum (right-hand endpoint) of UT(ji) equals T(i) - r - k(x + 
pH), provider Ji executes the Byzantine Clock-Broadcast Algorithm, 
with U(j;) equal to the current value of UT(j;), to broadcast a p-clock 
UT~;) to every process pin Pi, where 

• T is the delay of the broadcast algorithm. 

• X ~ II UTf1i•) /2 for all p. 

• His a constant such that each provider J broadcasts its value of 
UT(i) in this way at least once every H seconds. 

• k is the parameter of the broadcast algorithm. 

3. Each process p sets C~i) equal to the p-clock Al ( UT~1 ), .•• , UT~m)). 

4. Process p uses the Resynchronization Algorithm to compute Tp. 

It follows from the correct-time condition in Proposition 10 below that 
provider }i initiates its broadcast early enough so each process p can compute 
C~i) by the time C~i-l) reaches T(i). 

Propositions 6, 8, and 9 allow us to deduce that the Tp satisfy the correct
rate, synchronization, and correct-time conditions. However, the bounds in 
these conditions become rather complex. Therefore, only the simpler condi
tions for the ideal clocks C~i) are given; the corresponding conditions for the 
service clocks Tp are obtained from these bounds by applying Proposition 6. 

Proposition 10 If at most f of the Universal Time providers are faulty, 
then the clocks C~i) constructed in step 3 of the Service Time Algorithm 
satisfy 

• the clock-synchronization condition with bounds 2; +(pp+ pq)H. 

• the correct-time condition with bounds x + ppH. 

on the interval [T(i), T(i+l)J (neglecting terms of order ppr). 

5Since agreement takes time, a provider will have to remain in the set of chosen 
providers for some period of time after it is discovered to be faulty before the processes 
agree to eliminate it. Thus, even if we assumed that faulty Universal Time providers can 
be detected, the algorithm for choosing Tp still has to tolerate faulty providers. 
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Glossary 

Gp: Process p's local clock. 

G~i): A mythical ideal clock that runs at the same rate as Gp and maintains 
the "correct" time, as learned by pin the ith resynchronization. 

dm: The midpoint pseudo-metric on (bounded) intervals; dm(U, V) is de
fined to be the distance between the midpoints of U and V. 

du: The uniform metric on intervals; du([x,y],[v,w]) is defined to be the 
maximum of Iv - xi and lw - YI· 

e: 2.7182818284590452353602874713526624977572470936999595749669 ... 

H: A parameter of the Service Time Algorithm, chosen to be a length of 
time such that each Universal Time provider broadcasts its value at 
least once every H seconds. 

i: Used as a superscript to denote a clock-synchronization event. 

Ip: A clock range, maintained by time server p, that is guaranteed to contain 
UT. 

j: Used as a sub- or superscript to denote a Universal Time provider. 

J: A parameter of the Resynchronization Algorithm, chosen to be a length 
of time such that there is at least one resynchronization every J sec
onds. (At the ith resynchronization, process p sets the running rate of 
Tp so that Tp would equal C~i) after exactly J seconds, in the absence 
of further resynchronization.) 

k: The maximum-length path by which messages travel in a Byzantine 
Clock-Broadcast Algorithm. 

Lipschitz condition: F satisfies a Lipschitz condition for pseudo-metric d 
if d(Ui, Vi) < 6 for all i implies IF(Ui, ... , UM) - F(Vi, ... , VM )I < 6. 

pseudo-metric: A nonnegative function d such that: (i) d(U, V) = d(V, U), 
(ii) d(U, V) + d(V, W) ~ d(U, W), and (iii) d(U, U + E) = IEI. 

R'lr: The interval R + [T~n,T~], where R is an interval and 11' is a path. 

Tp: The time provided by time-service process p. 
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T(i): The time of the ith resynchronization (as read by the clocks C~i-l)). 

translation invariance: Fis translation invariant if F(U1 + x, ... , Um+ 
x) = F(Ui, ... , Um)+ x. 

UT: Universal Time-the ideal standard, closely approximated by clocks 
at the National Bureau of Standards and other places throughout the 
world. 

U(j): An interval containing UT broadcast by Universal Time provider j 
during a particular synchronization. 

uV): The interval obtained by process p when u(i) is broadcast by Univer
sal Time provider j. 

UT(j): A clock range maintained by Universal Time provider j that contains 
UT. 

UTV): The p-clock obtained by process p when Universal Time provider j 
broadcasts UT(i). 

4i): The value of UT at which process p's ideal clock C~i-l) reads T(i). 

1: The variance of a Byzantine Clock-Broadcast Algorithm. 

1c: When c is a channel, it equals r~ - r~, the uncertainty in message
transmission time over channel c. For a path 71'", "'(tr is the sum of the 
're for all channels c in the path. 

6pq: An upper bound on the difference between time values provided by 
nodes p and q--e.g., an upper bound for ITp - Tql· 

£: An upper bound on half the width of UTU) for all nonfaulty Universal 
Time providers j. 

fp: An upper bound on the difference between Universal Time and a value 
provided by process p--e.g., an upper bound on I UT - Tpl· 

Kp: An upper bound on the error in the rate of change of the service time 
Tp provided by process p. 

pp: An upper bound on the error in the running rate of Gp· 
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O"p: The maximum amount by which resynchronization can change p's ideal 

clocks c~i) during any time interval of J seconds duration. 

r: The delay of a Byzantine Clock-Broadcast Algorithm. 

r~n: The minimum message delay for a message sent across channel c. (It 
includes the time needed to generate the message.) For a path 11", ricin 
is the sum of the minimum message delays for all channels in path 11". 

r:iui,x: The maximum message delay for a message sent across channel c 
(including the time needed to generate the message). For a path rr, 
r~ is the sum of the maximum message delays for all channels in 
path rr. 

x: A parameter of the Service Time Algorithm, at least half the maximum 
width of UT~) for every nonfaulty Universal Time provider j and 
nonfaulty process p. 

II·.· II : The width of an interval, defined by ll[x,y]ll = y - x. 

+: The sum of two intervals is defined by [u, v] + [x, y] = [u + x, v + y]. The 
sum of an interval and a number is defined by [u, v] +x = [u+x, v+x]. 

±:For an interval [u,v] and a number 6 ·~ 0, [u,v] ± 6 is the interval 
[u-6,v+6J. 
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