RT-11 Programmer’s
Reference Manual
AA-H378B-TC

March 1983

This manual is a reference document for advanced RT-11 users, in-
cluding FORTRAN IV and MACRO-11 assembly language pro-
grammers. This manual supersedes the RT-11 Programmer’s Refer-
ence Manual, Order No. AA-5378A-TC.

Operating System: RT-11 Version 5.0

To order additional documents from within DIGITAL, contact the Software Distribution
Center, Northboro, Massachusetts 01532.

To order additional documents from outside DIGITAL, refer to the instructions at the back
of this document.

digital equipment corporation - maynard, massachusetts

First Printing, March 1980
Updated, March 1981
Revised, March 1983

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this docu-
ment.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by DIGITAL or its affiliated companies.

© Digital Equipment Corporation 1980, 1981, 1983.
All Rights Reserved.

Printed in U.S.A.

A postage-paid READER’S COMMENTS form is included on the last page of this
document. Your comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

clifglitlali |

DEC MASSBUS UNIBUS
DECmate PDP VAX
DECsystem—10 P/OS VMS
DECSYSTEM-20 Professional VT

DECUS Rainbow Work Processor
DECwriter RSTS

DIBOL RSX

M19500

Contents

Preface

Chapter 1

Introduction to Advanced RT-11 Programming

11

1.2

Programmed Requests,

1.1.1

1.1.2

1.1.3

1.1.4

1.1.5

1.1.6

Programmed Request Implementation

1.1.1.1 EMT Instructions
1.1.1.2 System Control PathFlow

1.1.2.1 Programmed Request Format.
1.1.2.2 Blank Arguments
1.1.2.3 AddressingModes
1.1.2.4 Keyword Macro Arguments.
1.1.2.5 Channels and Channel Numbers
11.26 DeviceBlocks
1.1.27 Programmed Request Exrrors
1.1.2.8 User Service Routine (USR) Requirement.

Using Programmed Requests.

1.1.3.1 Initialization and Control.
1.1.3.2 Examining System Information and Reporting
Statuso
1.1.3.3 Command Interpretation
1.1.34 File Operations.
1.1.3.5 Input/Output Operations
1.1.3.6 Foreground/Background Communications.
1.1.3.7 Timer Support
1.1.3.8 Program Termination or Suspension
1.1.3.9 System Job Communications
1.1.3.10 Extended Memory Functions
1.1.3.11 Interrupt Service Routines
1.1.3.12 DeviceHandlers

Compatibility with Previous RT-11 Versions.

1.1.4.1 Version 1 Programmed Requests
1.1.4.2 Version 2 Programmed Requests
1.1.4.3 Version 3 Programmed Requests
1.1.44 Version 4 Programmed Requests
1.1.4.5 Version 5 Programmed Requests

Programmed Request Conversion.

1.1.5.1 Macro Calls Not Requiring Conversion
1.1.5.2 Macro Calls That Can Be Converted

Programmed Request Summary

Using the System Subroutine Library

1.2.1

System Conventions

1.2.1.1 Channel Numbers
1.2.1.2 Completion Routines

1-18
i-18
1-19
1-20
1-23
1-24
1-24
1-25
1-25
1-26
1-27

1-27

1-27
1-28
1-28
1-29
1-29

1-29

1-29
1-30

1-32
1-37
1-38

1-39
1-39

iii

1.2.1.3 DeviceBlocks 1-41

1.2.1.4 INTEGER*4 Support Functions. 1-41
1.2.1.56 User Service Routine (USR) Requirements 1-42
1.2.1.6 Subroutines Requiring Additional Queue Elements . 1-45
1.2.1.7 System Restriction. 1-45
1.2.2 Calling SYSLIB Subroutines. 1-46
1.2.3 FORTRAN/MACRO Interface 1-47
1.2.3.1 Subroutine Register Usage 1-48

1.2.3.2 FORTRAN Programs Calling MACRO Subroutines . 1-48
1.2.3.3 MACRO Routines Calling FORTRAN Programs . . 1-50

1.2.4 FORTRAN Programs in a Foreground/Background

Environment.o 1-52
1.2.4.1 Calculating Workspace for a FORTRAN
Foreground Program 1-53
1.2.4.2 Running a FORTRAN Program in a
Foreground/Background Environment 1-54
1.2.5 Linkingwith FORLIB 1-55
1.2.6 SYSLIB Services Not Provided by Programmed Requests. . . 1-56
1.2.6.1 Time Conversion and Date Access 1-56
1.2.6.2 Program Suspension 1-56
1.2.6.3 Two-Word Integer Support (INTEGER*4). 1-56
1.2.6.4 Radix-50 Conversion. 1-57
1.2.6.5 Character String Operations 1-57
1.2.7 Character String Functions 1-57
1.2.7.1 Allocating Character String Variables 1-59
1.2.7.2 Passing Strings to Subprograms 1-60
1.2.7.3 Using Quoted-String Literals. 1-61
1.2.8 System Subroutine Summary 1-61

Chapter 2 Programmed Request Description and Examples

iv

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

2.11
2.12
2.13
2.14
2.15
2.16
2.17

ABTIO e e 2-2
CDFEFN. e 2-3
CHAIN e 2-4
.CHCOPY e e 2-6
CLOSE e 2-8
CMKT e 2-9
CNTXSW . . . e e e e 2-10
CRAW . . . e e 2-12
CRRG. e 2--15
CSIGEN e 2-16
2.10.1 Passing Option Information 2-19
CSISPC. . . . o e e 2-21
CSTAT L L e 2-24
CTIMIO. e e 2-25
DATE. e e 2-26
DELETE e 2-27
DEVICE 2-28
DRAST o e 2-30

2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
2.31
2.32
2.33
2.34
2.35
2.36
2.37
2.38
2.39
2.40
241
2.42

2.43
2.44
2.45
2.46
2.47
2.48
2.49
2.50
2,51
2.52
2.53
2.54
2.55
2.56
2.57
2.58
2.59
2.60
2.61
2.62
2.63
2.64
2.65
2.66
2.67
2.68

DRBEG. e e e 2-32
DRBOT e e 2-32
DRDEF e e e 2-33
DREND. e e e e 2-34
DRFIN e e e e e 2-35
DRSET e e e e e e e 2-35
DRVTB. e e e e 2-36
DSTATUS e e s e s e e e e e 2-36
ELAW . . . e e e e 2-39
ELRG. e e e 2-40
ENTER. e e e e 2-40
EXIT . e e e e 2-43
FETCH/RELEAS oo 2-45
FORK. e e 2-47
FPROT e 2-49
GMCX . . . e e e e e e e e 2-50
GTIM e e e e e e e e 2-51
GTIB e e e e e e e 2-53
GTLIN . . . e e e e e e e e 2-55
GVAL/PVAL e e e 2-57
HERR/SERR o e 2-58
HRESET P 2-61
INTEN . . . e e e e e e 2-61
LOCK/UNLOCK et e i dh e e e 262
LOOKUP e e e 2-65
2.42.1 Standard Lookup. 2-65
2.42.2 SystemdJobLookup 2-67
MAP e e e e e 2-68
MFPS/MTPS e e 269
MRKT e 2-71
MTATCH o o e e e e d s e e e e e e 2-73
MTDTCH o e e e e s e e e e s e e 2-75
MTGET. e e e 2-76
MTIN. e e e e 2-79
MTOUT. e e e e d e e e 2-80
MTPRNT e e e e e e 2-81
MTPS. . . . e e e e e e e e e 2-82
MTRCTO o e e e e e e 2-82
MTSET . . . o e e e e e e e e e 2-83
MTSTAT o o e e e e e e e e e e e e e e 2-84
MWAIT. e e e e e e e 2-85
PEEK/POKE e 2-86
POKE. e e e e e e e e e e e 2-87
PRINT e e e e e e e 2-87
PROTECT/UNPROTECT 2-88
PURGE. e e e e e e e 2-90
PVAL. e e e e 2-91
QELDF e e e 2-92
QSET. e 2-92
RCTRLO e e e e e e e e s e e 2-95
RCVD/RCVDC/RCVDW v v i 2-95
RDBBK. e e e e e e 2-99
RDBDF o o e e e e e e e e e 2-99

Chapter 3

vi

2.69
2.70
2.71
2.72
2.73
2.74
2.75
2.76
2,77
2.78
2.79

2.80
2.81
2.82
2.83
2.84
2.85
2.86
2.87
2.88
2.89
2.90
291
2.92
2.93
2.94
2.95
2.96
2.97
2.98
2.99

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

READ/.READC/READW 2-100
RELEAS 2-107
RENAME. 2-107
REOPENo, 2-109
RSUM & . 2-109
SAVESTATUS 2-110
SCCA 2-112
SDAT/.SDATC/SDATW 2-113
SDTTM . . . L 2-117
SERR. 2-119
SETTOP e, 2-119
2.79.1 .SETTOP in an Extended Memory Environment 2-121
SFDAT 2-122
SFPA 2-123
SPCPS 2-124
SPFUN 2-126
SPND/.RSUM. 2-130
SRESET 2-131
SYNCH., 2-132
TIMIO .« L L, 2-135
TLOCK . . o, 2-136
TRPSET, 2-137
TTYIN/TTINR o o, 2-139
JTYOUT/.TTOUTR o o o e, 2-141
TWAIT © L oo, 2-143
UNLOCK, 2-144
UNMAP, 2-145
UNPROTECT. 2-145
WAIT, 2-145
WDBBK, 2-147
WDBDF., 2-148
WRITE/WRITC/WRITW 2-148

AJFLT 3-1
CHAIN 3-1
CLOSEC/ACLOSE o . 3-2
CONCAT 3-4
CVTTIM. s, 3-5
DEVICE. 3-5
DJFLT 3-6
GETSTR.o 3-7
GTIM 3-7
GTIJB/AGTIB. 3-8
GTLIN 3-9
IABTIO 3-10
IADDR, 3--10
IAJFLT o 3-11
IASIGN o 3--11
ICDFN 3-13
ICHCPY. 3-14

3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43
3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51
3.52
3.53
3.54
3.55
3.56
3.57
3.58
3.59
3.60
3.61
3.62
3.63
3.64

3.65 -

3.66
3.67

3.68 -

3.69
3.70
3.71

ICLOSE o e 3-15
ICMKT e 3-15
ICSI. e e 3-16
ICSTAT o e 3-18
IDELET e 3-18
IDJFLT o e 3-20
IDSTAT o o o e e 3-20
IENTER. e 3-21
IFETCH. o s e e e 3-23
IFPROT o s 3-23
IFREEC. e e 3-24
IGETC. o o e 3-24
IGETSP o e 3-25
IGTIB. e e e 3-26
IJCVT. . . . o o e 3-26
ILUN . . .o e 3-26
INDEX e 3-27
INSERT e 3-27
INTSET o e e e 3-28
IPEEK e 3-30
IPEEKB. o e 3-30
IPOKE e 3-31
IPOKEB. e e 3-31
IPUT . . . o o e e 3-32
IQSET. e e e 3-32
IRADS0 o e e 3-33
IRCVD/IRCVDC/AIRCVDEF/IRCVDW 3-33
IREAD/IREADC/IREADF/IREADW 3-36
IRENAM o s 3-40
IREOPN. e 3-41
ISAVES e 3—42
ISCHED. o oo 343
ISCOMP. e 3-44
ISDAT/ISDATC/ISDATF/ISDATW 3-44
ISDTTM. o s e e e e 347
ISFDAT e e e 3—47
ISLEEP e 3-48
ISPEN/ISPFNC/ISPFNF/ISPFNW 3-49
ISPY e 3-565
ITIMER s s s e e 3-55
ITLOCK. s s e 3-57
ITTINR o s e e e e 3-57
ITTOUR. s e e e s e e 3-59
ITWAIT o e 3-59
IUNTIL oo e e e e 3-60
IVERIF o o e e 3-61
IWAIT. . . 0. o s 3-61
IWRITE/IWRITC/IWRITF/ IWRITW 3-61
JADD e 3-64
JAFIX. o e e 3-65
JCMP 3-65
JDFIX. o e 3-66
JDIV o 3-66
JICVT. . . . o e 3-67

vii

372 JICVT. 3-68

873 IMOV. . . oo it 3-68
374 IJMUL. . . . o oot 3-69
875 JSUB . . o ot 3-69
876 JTIME. oo 3-70
877 LEN. . o oot 3-70
878 LOCK. . . . v v vi i 3-71
879 LOOKUP 3-72
880 MRKT. oo vtii 3-75
381 MTATCH, 3-76
882 MIDTCHottt 3-78
883 MTGETo 3-79
884 MTIN 3-79
885 MTOUT oottt 3-80
886 MTPRNT oot 3-81
887 MTRCTO i, 3-81
888 MTSETottt 3-81
889 MTSTATot i it 3-82
890 MWAIT oo i i 3-83
891 PRINT. v vt 3-83
892 PURGE 3-84
893 PUTSTR. oottt 3-84
894 RB0ASC. oo vt 3-85
895 RADS0 3-85
896 RCHAIN 3-86
897 RCTRLO o oottt 3-86
898 REPEAT 3-87
899 RESUME, 3-87
8L00SCCA . . . v v v 3-88
3.101 SCOMP/ISCOMP i i 3-89
8102 8COPY . . . o oot 3-89
3103 SECNDS o v vi PR 3-90
8104 SETCMD o v oottt 3-91
8105 STRPAD.ot 3-91
8106 SUBSTR. oottt ©. . 3-92
8107 SUSPND oot 3-93
BL08 TIMASC. . . . v ot v e e 3-94
SBI09TIME o oottt 3-95
BAI0 TRANSL o oo 3-95
B 3 1. 3-97
SBIIZUNLOCK vt vi et 3-97
SBIBVERIFY.o 3-98

Appendix A Display File Handler

viii

Al Description A -1
A11 Assembly Language Display Support. A-1
A.12 Monitor Display Support.;A —2
A.2 Description of Graphics Macros A-3
A21 BLANK. A-3
A22 CLEAR. A4
A23 INSRT A-5

A24 LNKRT. e A-5

A25 LPEN. e AT
A26 NAME e A-8
A27 REMOV. e e A-9
A28 RESTR A-9
A29 SCROL e e e e A-9
A.2.10 START e A-10
A211 STAT. e A-10
A212 STOP o e e e A-11
A213 SYNC/NOSYN o . A-11
A214 TRACK e e A-11
A215 UNLNK. o e e A-12
A.3 Extended Display Instructions A-13
A.3.1 DJSR Subroutine Call Instruction A-13
A.3.2 DRET Subroutine Return Instruction. A-13
A.3.3 DSTAT Display Status Instruction A-14
A.3.4 DHALT Display Halt Instruction. A-14
A.3.5 DNAME Load Name Register Instruction A-14
A.4 Using the Display File Handler A-15
A.4.1 Assembling Graphics Programs A-16
A.4.2 Linking Graphics Programs A-16
A5 Display File Structure A-17
A5.1 SubroutineCalls. A-18
A.5.2 Main File/Subroutine Structure A-19
A.5.3 BASIC-11 Graphic Software Subroutine Structure A-20
A.6 Summary of Graphics MACROCalls. A-21
A.7 Display Processor Mnemonics A-23
A.8 Assembly Instructions oL A-24
A.8.1 General Instructions. A-24
A82 VTBASE. e A-24
A83 VTCAL1-VTCAL4 A-24
A84 VTHDLR A-24
A.8.5 Building VTLIBOBJ. A-24
A9 VTMAC e e e e e e e e A-25
A.10 Examples Using GTON A-27

Appendix B System Macro Library

Index

Figures
1-1 System Flow During Programmed Request Execution 1-5
1-2 EMT 374 Argument oo 1-7
1-3 Stack Set by .CSIGEN Programmed Request. 1-7

ix

Tables

14
1-5
1-6

bk ek e ek ek
| I.LI I
ot QW DN =

l\'u—lrru—lr—l
[l {>le s BEN o))

EMT 375 Argument Block 1-8

Subroutine Argument Block 147
Argument Block for Program INIARR 1-49
EMT Codes« . . o i i 14
Programmed Requests Requiringthe USR 1-13
Programmed Request Conversions (Version 1 to Version 2). 1-31
Programmed Requests for All RT-11 Environments L. . 1-32
Foreground/Background and Extended Memory Programmed

Requests. oo o 1-36
FORTRAN Program PSECT Ordering 1-44
Return Value Conventions for Function Subroutines 148
SYSLIB ConversionCalls157
Summary of SYSLIB Subroutines 1-61
Timer Block Format 2-25
Soft Error Codes (SERR) 2-59
Functions and Function Codes (Octal) 3-50
Description of Display Status Words A-8

Preface

The RT-11 Programmer’s Reference Manual describes the programmed re-
quests and subroutines that are available in the system macro library
(SYSMAC.SML) and system subroutine library (SYSLIB.OBJ). It provides
programming examples that show how to use programmed requests and
subroutines. .

Chapter 1, Introduction to Advanced RT-11 Programming, describes the
implementation and use of the programmed requests and the FORTRAN-
callable subroutines.

Chapter 2, Programmed Request Description and Examples, describes the
individual programmed requests in detail. Program examples are included
for each request. In addition, macros and subroutines that are used in im-
plementing device handlers and interrupt service routines are described.

Chapter 3, System Subroutine Description and Examples, describes in de-
tail all the RT-11 FORTRAN-callable subroutines. This chapter also con-
tains examples of the use of the calls to the system subroutine library.

Appendix A, Display File Handler, describes the graphics support for the
RT-11 operating system. Program examples are included to help you de-
velop your own display program.

Appendix B, System Macro Library, is a listing of the RT-11 System Macro
Library (SYSMAC.SML).

This manual is written for an advanced -level user. If you have no RT-11
experience, or very little, read:

Introduction to RT-11

RT-11 System User’s Guide

RT-11 System Utilities Manual

PDP-11 MACRO-11 Language Reference Manual

In addition, FORTRAN progrdmmers should read:

RT-11/RSTS/E FORTRAN IV User’s Guide
PDP-11/FORTRAN Language Reference Manual

If you are interested in additional programming techniques or other system
programming topics, read the RT—11 Software Support Manual.

xi

Chapter 1
Introduction to Advanced RT-11 Programming

Programmed requests and system subroutines are available as part of the
RT-11 Operating System and can aid you in writing reliable and efficient
programs.

Programmed requests provide a number of services to application pro-
grams. The requests function as calls to routines in the RT-11 monitor that
perform these services. As system macros, they are defined in a system
macro library that is stored on the system volume and named SYS-
MAC.SML. In addition, macro routines are available in the system macro
library that can help you write device handlers and interrupt service
routines.

If you are a FORTRAN programmer, you can access the RT-11 monitor
services through calls to the system subroutine library called SYSLIB.OBJ,
which is stored on the system volume. A character string manipulation
package and two-word integer support routines are included in this library.
The SYSLIB subroutines allow you to write almost all application pro-
grams in FORTRAN without having to do any assembly language coding.

This chapter tells you how to use programmed requests and subroutines
effectively in your programs. Examples are provided to demonstrate their
flexibility and value in working programs.

1.1 Programmed Requests

You issue a programmed request in your source program when a certain
monitor service is required. The programmed request expands into the ap-
propriate machine language code during assembly time. During program
execution, this code requests the resident monitor to supply the service
represented by the programmed request.

The services involve the following processes:

Initialization and control of operating system characteristics
Allocating system resources and reporting status

Command interpretation

File operations

Input/output operations

Foreground/background communications

Timer support

Program termination or suspension

© ® NS e b=

System job communications

10. Extended memory functions

The system macro library (SYSMAC.SML) also contains several macros
that are not programmed requests. These macros are provided to aid you in

writing:

1. Interrupt service routines

2. Device handlers

3. Memory management control blocks

They are described in Chapter 2 along with the programmed requests.

Components of the RT-11 Operating System that support programmed re-
quests are as follows:

1.

Single-Job Monitor

The single-job (SJ) monitor supports most of the programmed requests.
Table 14 lists the programmed requests that are supported by the SJ
monitor. These programmed requests can manipulate files, perform in-
put and output, set timer routines, check system resources and status,
and terminate program operations.

Foreground/Background Monitor

Some programmed requests are provided for the foreground/back-
ground (FB) monitor only. Table 1-5 lists the programmed requests
that are supported by the FB monitor in addition to those listed in
Table 1-4. These programmed requests allow a program to set timer
routines, suspend and resume jobs, and send messages and data be-
tween foreground and background jobs.

Extended Memory Monitor

The extended memory (XM) monitor provides additional programmed
requests and features above those found in the FB monitor. The XM
monitor extends the memory support capability of RT-11 beyond the
28K-word (plus I/O page) restriction imposed by the 16-bit address size.
The XM monitor’s programmed requests extend a program’s effective
logical addressing space (see Table 1-5).

Multiterminal Feature

The multiterminal feature of RT-11 allows your program to perform
character input/output on up to 16 terminals. Programmed requests are
available to perform input/output, attach and detach a terminal for
your program, set terminal and line characteristics, and return system
status information.

System Job Support

System job support allows users in a foreground/background or ex-
tended memory environment to extend the present standard
foreground/background system to include up to eight jobs. Two system
jobs are presently provided with the RT—11 system: the error logger and
the device queue program. Programmed requests allow programs to

1-2 Introduction to Advanced RT-11 Programming

copy channels from other jobs, obtain job status information about jobs
in the system, and send messages and data between any jobs in the
system. The RT—-11 Software Support Manual describes the system job
feature in more detail.

Programmed requests perform most system resource control and interroga-
tion functions. However, some communication is accomplished by directly
accessing two memory areas: the system communication area and the mon-
itor fixed-offset area.

The system communication area resides in locations 40 to 57(octal) and
contains parameters that describe and control execution of the current job.
This area holds information such as the Job Status Word, starting address
of the job, User Service Routine (USR) swapping address, and the address of
the start of the resident monitor. Some of this information is supplied by
your program, while other data is supplied by the monitor and may not be
changed.

The second memory communication area, the fixed-offset area, is accessed
by a fixed-address offset from the start of the resident monitor. This area
contains system values used to control monitor operation. Your program
can examine or modify these values to determine the condition of the opera-
ting environment while a job is running. The RT-11 Software Support
Manual describes in detail both the system communication area and the
fixed-offset area.

This manual specifically describes programmed requests for RT-11 Version
5. Programmed requests for earlier versions of RT-11 and guidelines for
their conversion are treated in Sections 1.1.4 and 1.1.5.

1.1.1 Programmed Request Implementation

1.1.1.1 EMT Instructions — A programmed request is a macro call followed
by the necessary number of arguments. The macro code that corresponds to
the macro call of a programmed request is expanded by the MACRO assem-
bler when the programmed request appears in your program. The expan-
sion arranges the arguments of the programmed request for the monitor
and generates an EMT (emulator trap) instruction.

When an EMT instruction is executed, control passes to the monitor. The
low-order byte of the EMT code provides the monitor with the information
that tells it what monitor service is being requested.

The execution of the EMT generates a trap through vector location 30. This
vector location is loaded at boot time with an address pointing to a location
in the monitor. The monitor location contains the EMT processing code that
services the interrupt caused by the EMT instruction.

Table 1-1 shows the codes that may appear in the low-order byte of an EMT
instruction and the interpretation of these codes by the monitor.

Introduction to Advanced RT-11 Programming 1-3

Table 1-1: EMT Codes

Low-Order Byte Interpretation

377 Reserved; RT-11 ignores this EMT and returns control to the
user program immediately.

376 Used internally by the RT-11 monitor; your programs should
not use this EMT since its use would lead to unpredictable re-
sults.

375 Programmed request with several arguments; RO points to a
block of arguments that supports the user request.

374 Programmed request with one argument; RO contains a function
code in the high-order byte and a channel code in the low-order
byte.

360-373 Used internally by the RT-11 monitor; your programs should

never use these EMT codes since their use would lead to unpre-
dictable results.

340-357 Programmed requests with the arguments on the stack and/or
in RO.
0-337 Version 1 programmed requests with arguments both on the

stack and in RO. They are supported for binary compatibility
with Version 1 programs.

EMT instructions should never appear in your programs except through
programmed requests.

1.1.1.2 System Control Path Flow — Figure 1-1 shows system flow when a
programmed request is executed.

In Figure 1-1, a programmed request in an application (or system utility)
program is implemented with an EMT instruction. When your program is
executed, the EMT instruction transfers control to the EMT processor code
in the monitor. The user program counter (PC) and processor status word
(PSW) are pushed onto the stack, and the contents of location 30 are placed
in the program counter. Location 30 points to the EMT processor code in
the monitor. Location 32 contains the PSW for the EMT trap. Byte 52 of the
system communication area is loaded with an error code by the monitor if
the monitor detects any errors during the EMT processing. In addition, the
EMT processor uses RO to pass back information to the program. All other
registers except SP are preserved; .CSIGEN and .CSISPC return informa-
tion on the stack.

The monitor either processes a programmed request entirely when it is
issued or it performs partial processing and queues the request for further
processing. The requests that require queued processing support completion
routines (see Section 1.1.3.5). If a request results in an error prior to being
queued, the completion routine is not entered, and the monitor returns to
the user program with the carry bit set. If the request is queued, the com-
pletion routine is entered upon completion of further processing, regardless
of the outcome.

14 Introduction to Advanced RT-11 Programming

Figure 1-1: System Flow During Programmed Request Execution

USER PROGRAM

Programmed
Request

|

-SYSTEM TRAP AREA

Points to EMT

30
Processor Code

PSW 32

RMON

EMT
Processor

RTI Instruction

SYSCOM AREA

EMT

Error 52

|

User Program

Introduction to Advanced RT-11 Programming 1-5

1.1.2 System Conventions

This section describes the system conventions that must be followed for the
correct operation of programmed requests.

1.1.2.1 Programmed Request Format — To issue programmed requests from
assembly language programs, you must set up the arguments in correct
order and issue the appropriate EMT instruction. Macros have been created
to help you do this. They are contained in the system macro library named
SYSMAC.SML. Their use is recommended for maintaining program com-
patibility with future releases of RT-11 and for program readability. The
macro names for all programmed requests start with a period (.) to distin-
guish them from symbols and macros you define.

Arguments supplied to a programmed request must be valid assembler
expressions since the arguments are used as source fields in the instruc-
tions (such as a MOV instruction) when the macros are expanded at assem-
bly time. All programmed requests that appear in your program must ap-
pear in a .MCALL directive to make the macro definition available from
the system macro library, SYSMAC.SML. If the programmed request is
specified by a . MCALL directive, the programmed request is obtained from
the system macro library at assembly time. Alternatively, you can enable
the automatic .MCALL feature of MACRO by using the .ENABL MCL
directive.

Programmed requests have two formats that are accepted by the monitor.
The first format specifies the programmed request followed by the argu-
ments required by the request. The second format specifies the pro-
grammed request, the address of the argument block, and the arguments
that will be contained in the argument block. Because the way you can set
up the argument block and specify arguments to a programmed request can
vary, read the sections on programmed request format and on blank argu-
ments to be sure of correct programmed request operation.

FORMAT 1
The first format for programmed requests is as follows:

.PRGREQ Argl,Arg2,...,Argn
where:

PRGREQ is the name of the programmed request
Argl,Arg2,..,Argn are the arguments used with the request

Programmed requests using this format generate either an EMT 374 in-
struction or EMT 340 through 357 instructions.

Programmed requests that use an EMT 374 instruction set up RO with the

channel number in the even (low-order) byte and the function code in the
odd (high-order) byte, as shown in Figure 1-2.

1-6 Introduction to Advanced RT-11 Programming

Figure 1-2: EMT 374 Argument
15 87 0

Channel Number

RO = Function Code (if applicable)

One programmed request that generates an EMT 374 is DATE. The macro
for this programmed request appears in the system macro library as:

+MACRD DATE
MOV #10.,%*"0400 %0
EMT *0374

+ENDM

The function code, which in this case is 10(decimal) is placed in the high-
order byte of R0O. A channel code of 0 is placed in the low-order byte.

For EMT 340 through 357, if there are arguments, they are placed either
on the stack, in RO, or in RO and on the stack.

The programmed request .CSIGEN is an example of a programmed request
that generates an EMT 344. A simplified macro expansion of this pro-
grammed request is:

+MACRO .CSIGEN DEVSPC.,DEFEXT »CSTRNG LINBUF

+IIF NB <LINBUF> Moy LINBUF »-(B+)
MOv DEVSPC+-(G.+)

«IIF NB <LINBUF: INC (G+)
MOy DEFEXT »-(G+)

+IF B CSTRNG
CLR -(B+)

+IFF

+IF IDN CSTRNG,#0
CLR ~-(B+)

+IFF
Moy CSTRNG»-(B.+)

+ENDC

+ENDC
EMT “0344

+ENDM

When this programmed request is executed, all the specified arguments are
placed on the user stack. Thus, the user stack would appear as shown in
Figure 1-3.
Figure 1-3: Stack Set by .CSIGEN Programmed Request

High Addresses

LINBUF

DEVSPC

DEFEXT

Stack Pointer => CSTRING

Low Addresses

Introduction to Advanced RT-11 Programming 1-7

The EMT processor then uses these arguments in performing the function
of the programmed request .CSIGEN.

FORMAT 2
The second format for programmed requests is as follows:

.PRGREQ Area,Argl,Arg2,...,Argn
where:

.PRGREQ is the name of the programmed request

Area is the address of an argument block

Argl ,Arg2,...,Argn are the arguments that will be contained in the
argument block

This format generates an EMT 375 instruction. Programmed requests that
call the monitor via an EMT 375 use RO as a pointer to an argument block.
In general, the argument block appears as shown in Figure 1-4.

Figure 1-4: EMT 375 Argument Block

RO => AREA:
Function code Channel

Argument 1

Argument 2

Argument n

The programmed request format uses Area as a pointer to the argument
block that contains the arguments Argl through Argn.

.PRGREQ Area,Argl,...,Argn

Blank fields are permitted. However, if the Area argument is empty, the
macro assumes that RO points to a valid argument block. If any of the fields
Argl to Argn are empty, the corresponding entries in the argument list are
left untouched. Thus,

.PRGREQ Area,Argl,Arg2

points RO to the argument block at Area and fills in the first and second
arguments, while

PRGREQ Area

1-8 Introduction to Advanced RT-11 Programming

points RO to the block and fills in the first word — that is, the function
code and channel number — without filling in any other arguments. Ar-
guments that are left blank are discussed in the following section.

1.1.2.2 Blank Arguments — Any programmed request that uses an argument
block assumes that any argument left blank has been previously loaded by
your program into the appropriate memory location (exceptions to this are
the .CHCOPY and .GTJB requests). For example, when the programmed
request

PRGREQ Area, Argl, Arg2

is assembled, RO will point to the first word of the argument block. The first
word has the function code in the high-order byte and the channel number
in the low-order byte. Argl is in the second word of the argument block
(that is, in address RO plus 2), while Arg2 is in RO plus 4.

There are two ways to account for arguments. You can let the MACRO
assembler generate the instructions needed to fill up the argument block at
run time, or you can write these instructions in your program, leaving the
arguments in the programmed request blank for those that you have writ-
ten in. DIGITAL recommends that you let MACRO generate the instruc-
tions, both for program clarity and for reduced chance of programming
error.

The following examples are all equivalent in that the arguments have been
accounted for either in the program instructions or in the programmed
request.

MOV #ARG1 AREA+Z
MOV #ARGZ AREA+4

+PRGREQ #AREA

is equivalent to

MOV #AREA RO
+PRGREQ »#ARG1 »#ARGE

and also to

MOV #AREA RO

MOV #ARG1 »2(RO)

MOV #ARGZ ,4(RO)

MOV #CODE*400!CHANNEL » (RO)

+PRGRE®

This last example sets up all the arguments for the programmed request
prior to executing the programmed request.

The following example shows how arguments are specified to the . TWAIT
programmed request.

Introduction to Advanced RT-11 Programming 1-9

+TITLE EXWAIT.MAC

+MCALL +PRINT » o TWAIT
START:
WAIT: +TWAIT #EMTLST
+PRINT #MSG
BR WATIT
EMTLST: +BYTE 0,24
+WORD TIME
TIME: +WORD 0,10,%B0
MSG: +ASCIZ /PRINT THIS EVERY TEN SECONDS/
+END START

The .TWAIT programmed request suspends a program and requires two
arguments. The first argument is area, which points to the address of a
two-word EMT argument block; the second argument is Time, which is a
pointer to two words of time (high-order first, low-order second) expressed
in ticks. In the example shown above, EMTLST is specified as an argument
with the programmed request that points to the address of the EMT argu-
ment block. The first word of the argument block has a zero stored in the
low-order byte representing the channel number and a function code of 24
stored in the high-order byte. The second word contains a symbolic pointer
to the location (the second argument), which specifies the amount of time
that the program will be suspended. It is defined as two words and, in this
example, represents a 10-second interval. When run, the example program
prints its message every ten seconds.

1.1.2.3 Addressing Modes — You must make certain that the arguments
specified are valid source fields and that the address accurately represents
the value desired. If the value is a constant or symbolic constant, use the
immediate addressing mode [#]. If the value is in a register, use the regis-
ter symbol [Rnl. If the value is in memory, use the label of the location
whose value is the argument.

A common error is to use n rather than #n for numeric arguments. For
example, when a direct numerical argument is required, the immediate
mode causes the correct value to be put into the argument block. Thus

PRGREQ #Area,#4
is correct, while
.PRGREQ #Area,4

is not correct since the contents of location 4 are placed into the argument
block instead of the desired value 4.

However, the form

+PRGREQ LIST:;NUMBER

.
+

.

LIST: +WORD AREA
NUMBER: .WORD 4

is correct since the contents of LIST are the argument block pointer and the
contents of NUMBER are the data value.

1-10 Introduction to Advanced RT-11 Programming

NOTE

All registers except RO are preserved across a programmed
request. In certain cases, RO contains information passed
back by the monitor; however, unless the description of a
request indicates that a specific value is returned in RO, the
contents of RO are unpredictable upon return from the re-
quest. Also, with the exception of calls to the Command
String Interpreter, the position of the stack pointer is pre-
served across a programmed request.

You must be sure that the selected mode generates the correct value as a
source operand in a MOV instruction. Check the programmed request.
macro in the Macro Library (SYSMAC.SML) and expand the programmed
request by hand or with the macro assembler (by using the .LIST MEB
directive) to be sure of correct results.

1.1.2.4 Keyword Macro Arguments — The RT-11 MACRO assembler sup-
ports keyword macro arguments. All the arguments used in programmed

request calls can be encoded in their keyword form (see the PDP-11
MACRO-11 Language Reference Manual for details).

In EMT 375 programmed requests, the high byte of the first word of the
area (pointed to by RO) contains an identifying code for the request. Nor-
mally, this byte is set if the macro invocation of the programmed request
specifies the area argument, and it remains unaffected if the programmed
request omits the area argument. If the macro invocation contains
CODE =SET, the high byte of the first word of the area is always set to the
appropriate code, whether or not area is specified.

If CODE=NOSET is in the macro invocation, the high byte of the first
word of area remains unaffected. This is true whether or not area is speci-
fied. This allows you to avoid setting the code when the programmed re-
quest is being set up. This might be done because it is known to be set
correctly from an earlier invocation of the request using the same area, or
because the code was statically set during the assembly process.

1.1.2.5 Channels and Channel Numbers — A channel is a data structure that
is a logical connection between your program and a file on a mass storage
device or on a serial device such as the line printer or terminal. The system
provides 16(decimal) channels by default. When a file is opened on a partic-
ular device, a channel number is assigned to that file. The channel number
can have an octal value from 0 to 376 (0 to 254 decimal). Thus, your pro-
gram first opens a channel through a programmed request by specifying
the device and/or file name, file type, and a channel number to the monitor.
Your program refers to that file or device in all I/O operations thereafter by
the assigned channel number. You can specify a device (non-file-structured)
or a device and file name (file-structured).

Channel 255(decimal) is reserved for system use. Channel 15(decimal) is
used by the system’s overlay handler.

Introduction to Advanced RT-11 Programming 1-~11

1.1.2.6 Device Blocks — A device block is a four-word block of Radix—50
information. You set up the block to specify a physical or logical device
name, file name, and file type for use with a programmed request. This
information is passed to the monitor when your program opens a file. The
monitor uses the information to locate the referenced device and the file
name in the corresponding directory.

For example, a device block representing the file FILE.TYP on device DK:
could be written as '

+RADSO /DK /
+RADSO /FIL/
+RADSO /E /
+RADSO /TYP/

The first word contains the device name, the second and third words con-
tain the file name, and the fourth word contains the file type. Device, file
name, and file type must each be left-justified in the appropriate field. This
string could also have been written as

+RADSO /DK FILE TYP/

Spaces must fill out each field. Also, the colon and period separators must
not appear in the string since they are only used by the Command String
Interpreter to delimit the various fields.

If the first word of a device block is the name of a mass-storage device such
as a disk and the second word of the block is 0, the device block refers to an
entire volume of the mass storage device in a non-file-structured manner.

1.1.2.7 Programmed Request Errors — Programmed requests use three meth-
ods of reporting errors detected by the monitor:

1. Setting the carry bit of the processor status word (PSW)
2. Reporting the error code in byte 52 of the system communications area

3. Generating a monitor error message

If a programmed request has been executed unsuccessfully, the monitor
returns to your program with the carry bit set. The carry bit is returned
clear after the normal termination of a programmed request. Almost all
requests should be followed by a Branch Carry Set (BCS) or Branch Carry
Clear (BCC) instruction to detect a possible error.

Because some programmed requests have several error codes — that is,
errors can be generated for different reasons — byte 52 in the system com-
munications area is used to receive the error code. Thus, when the carry bit
is set, check byte 52 to find out the kind of error that occurred in the
programmed request. The meanings of values in the error byte are de-
scribed individually for each request. The error byte is always zero when
the carry bit is clear. Your program should reference byte 52 with absolute
addressing. Always address location 52 as a byte, never as a word, since
byte 53 has a different usage. The following example shows how byte 52
can be tested for the error code.

1-12 Introduction to Advanced RT-11 Programming

ERRBYT=52
+PRGREQ® AREA ARGl s+ 44 sARGZ
BCS ERROR

+
‘+

+

ERROR: TSTB B#ERRBYT

Error messages generated by the monitor are caused by fatal errors, which
cause your program to terminate immediately. Some fatal errors can be
intercepted and have their values returned in byte 52 (see the
.HERR/.SERR programmed requests).

1.1.2.8 User Service Routine (USR) Requirement — Many programmed re-
quests require the USR to be in memory. Some of these requests always
require a fresh copy of the USR to be read in because the code to execute
them resides in the USR buffer area. Since the buffer area gets overlaid by
data used to perform other system functions, the USR must be read in from
the systemr device even if there is a copy of the USR presently in memory.
Table 1-2 shows the programmed requests that require the USR.

Table 1-2: Programmed Requests Requiring the USR

Monitor

Request SJ FB XM
.CDFN yes* no no
.CLOSE (see Note 1) yes yes yes
.CSIGEN yes yes yes
.CSISPC yes yes yes
.DELETE yes yes yes
.DSTATUS yes yes yes
.ENTER yes yes yes
EXIT yes yes yes
FETCH . yes yes yes
JFPROT yes yes yes
.GTLIN yes yes yes
HRESET yes no no
.LOCK (see Note 2) yes yes yes
.LOOKUP yes yes yes
.QSET yes* yes* yes
.RELEAS yes yes yes
.RENAME yes yes yes
.SFDAT yes yes yes
.SRESET yes* no no
.TLOCK (see Note 3) yes yes yes

Note 1: Only if channel was opened with an .ENTER pro-
grammed request

Note 2: Only if the USR is in a swapping state
Note 3: Only if the USR is not in use by another job

* The requests marked with an asterisk always require a
fresh copy of the USR to be read in before they can be
executed.

Introduction to Advanced RT-11 Programming 1-13

USR requirements for programmed requests differ between the SJ and FB
monitors as shown in the table. The .CLOSE programmed request on non-
file-structured devices, such as a line printer or terminal, does not require
the USR under any monitor.

The USR is not reentrant and cannot be shared by concurrent jobs. Thus,
when the USR is in use by one job, another job requiring it must queue up
for it. This is particularly important for concurrent jobs when devices such
as magnetic tape or cassette are active. For example, USR file operations
on tape devices require a sequential search of the tape. When a background
program is running the USR, the foreground job is locked out until the tape
operation is completed. You should be aware that this operation may take
considerable time. The .SPFUN request can be used to perform asynchro-
nous directory operations on tape. In the FB and XM monitors, the . TLOCK
request can be used by a job to check USR availability.

Any request that requires the USR to be in memory can also require that a
portion of your program be saved temporarily in the system device swap file
(that is, “swapped out” and stored in the file SWAP.SYS to provide room for
the USR). The USR is then read into memory. Although swapping is invisi-
ble to you in normal operation, you must be aware of it and take some care
in your programming. For example, the argument block being passed to the
USR must not be in the area that is swapped over. You can optimize pro-
grams so that they require little or no swapping, thereby saving time.

Consider the following items if a swap operation is necessary.

1. The background job
If a .SETTOP request in a background job specifies an address beyond
the point at which the USR normally resides, a swap is required when
the USR is called. Section 2.79 details the operation of the .SETTOP
request. This case is not encountered in XM because the USR is always
resident.

2. The value of location 46
If you assemble an address into word 46 or move a value there while the
program is running, RT-11 uses the contents of that word as an alter-
nate place to swap the USR. If location 46 is zero, this indicates that the
USR will be at its normal location in high memory. If the USR does not
require swapping, this value is ignored.

A foreground job must always have a value in location 46 unless it is
certain that the USR will never be swapped. If the foreground job does
not allow space for the USR and a swap is required, a fatal error occurs.
The SET USR NOSWAP command makes the USR permanently resi-
dent.

If you specify an alternate address in location 46, the SJ monitor does
not verify the validity of the USR swap address. Thus, if the area to be
swapped overlays the resident monitor, the system is destroyed.

3. Monitor offset 374
The contents of monitor offset 374 indicate the size of the USR in bytes.

1-14 Introduction to Advanced RT-11 Programming

Programs should use this information to dynamically determine the
size of the region needed to swap the USR.

4. Protecting program areas
Make sure that certain areas of your program do not get overlaid when
you swap in the USR. These areas are the program stack, any parame-
ter block for calls to the USR, the EMT instruction that invoked the
USR, I/O buffers, device handlers, interrupt service routines, queue
elements, defined channels, and completion routines in use when the
USR is being called.

The RT-11 Software Support Manual provides additional information on
the USR.

1.1.3 Using Programmed Requests

This section describes how to use and implement programmed requests to
access the various monitor services. Chapter 2 contains, in alphabetical
order, detailed descriptions of each request, including examples.

1.1.3.1 Initialization and Control — Typically, you use several programmed
requests to control the operating environment in which your program is
running. These requests can include control of memory allocation, I/O ac-
cess, devices, and error processing.

MEMORY ALLOCATION

The memory needs of a program are specified to the monitor by the .SET-
TOP request. When loaded, a program occupies the memory specified by its
image created at link time. To obtain more memory, a .SETTOP request is
executed, with RO containing the highest address desired. The monitor re-
turns the highest address available. Resident handlers or foreground jobs
can prevent all the memory that is desired from being available to the
program. If the memory requirements of the running program permit, the
monitor retains the User Service Routine (USR) in memory, which reduces
swapping. Otherwise, the monitor will automatically remove the USR from
memory and then swap part of the user program to the swap file called
SWAP.SYS on the system device whenever the USR must be reloaded to
process a request. The .SETTOP request then allows you to determine how
much memory is available and to control monitor swapping characteristics.
See the .SETTOP programmed request in Chapter 2 for special optional
features provided in an extended memory environment. Additional infor-
mation on the .SETTOP request is also given in the RT—11 Software Sup-
port Manual.

If a program needs so much memory that the USR must swap, swapping
will automatically occur whenever a USR call is made. However, if a pro-
gram knows what file operations are necessary, and if these operations can
be consolidated and performed at one time, the efficiency of the system can
be enhanced in the following manner: request the USR to be swapped in,
have it remain resident while a series of consecutive USR operations is
performed, then swap the USR out when the sequence of operations is
completed.

Introduction to Advanced RT-11 Programming 1-15

Three programmed requests control USR swapping. The request .LOCK
causes the USR to be made resident for a series of file operations. It can
operate by: (1) requiring a portion of your program to be written to the
swap blocks prior to reading in the USR; (2) only requiring a fresh copy of
the USR if the USR buffer is overwritten; or (3) not requiring the USR to be
read in if it finds the USR intact. The request .UNLOCK swaps your pro-
gram back in if it was swapped out, and the USR is overwritten; otherwise,
no swapping occurs. The request .TLOCK makes the USR resident in
foreground/background programs, but only if the USR is not currently serv-
icing another job’s file requests at the time the .TLOCK request is issued.
This check prevents a job from becoming blocked while the USR is process-
ing another job’s request. When a .TLOCK succeeds, the USR is ready to
perform an operation immediately. In a single-job environment, the
.TLOCK request performs exactly like the .LOCK request.

RT-11 provides 16(decimal) channels as part of the job’s impure
area — that is, 16 files can be active at one time. Up to 255(decimal)
channels can be activated with the .CDFN request. This request sets aside
memory inside the job area to provide the storage required for the status
information on the additional channels. Once the .CDFN request has been
executed, as many channels as specified can be active simultaneously. Use
the .CDFN request during the initialization phase of your program. The
keyboard monitor command CLOSE does not work if you define new chan-
nels with the .CDFN programmed request.

The .CNTXSW request allows the job to add memory locations to the list of
items to be context-switched. The request itself does not cause a context
switch to occur.

INPUT/OUTPUT ACCESS

Each pending I/O, message, or timer request must be placed into one of the
monitor queues. These are then processed by the monitor on a first-in first-
out basis, by job priority, or by time of expiration. In RT-11, all I/O trans-
fers are queued to allow asynchronous processing of the request. A queue is
a list of elements, each element being seven words long (ten words [deci-
mal] long when using the extended memory monitor). When your program
issues a data transfer programmed request, the information specifying the
transfer is stored by the monitor in a queue element. This information is
passed to the device handler, which then processes the I/O transfer.

Each job, whether background or foreground, initially has only a single
queue element available. Additional queue elements may be set aside with
a .QSET request. The .QSET request declares where in memory the addi-
tional queue elements will go and how many elements there will be. If you
do not include a .QSET request in your program, the monitor uses the
queue element set aside in the job’s impure area. In this case, since only one
element is available for each job, all operations would be synchronous. That
is, any request issued when the available queue element list is empty has
to wait for that element to become free. The number of queue elements
necessary equals the number of asynchronous operations pending at any
time.

1-16 Introduction to Advanced RT-11 Programming

DEVICES

The .DEVICE request turns off any special devices that are being used by
the running program upon program termination. This request (available
only in FB or XM) allows you to specify a set of device control register
addresses and a value to be set in each register on job exit. When a job is
terminated — either normally, by an error condition, or by a
CTRL/C — the specified values are set in the specified locations.

In SJ, a hard reset is done at .EXIT or CTRL/C. This clears all devices.

Loading a background job with a GET, R, or RUN command, or loading a
foreground or system job with a FRUN and SRUN command, respectively,
alters most locations in the vector area 0 to 476. RT—11 automatically
prevents alteration of all locations used by the system, such as the clock,
the console terminal, and all vectors used by handlers that are loaded. If a
foreground job in a foreground/background environment accesses a device
directly through an in-line interrupt service routine, the foreground job
must notify the monitor that it must have exclusive use of the vectors. You
use the .PROTECT programmed request to allow the foreground job to gain
exclusive use of a vector. The .PROTECT request can also be used by either
the foreground or background job, prior to setting the contents of a vector,
to test whether the vectors are already controlled by a job. This serves as
further protection against jobs interfering with each other. An .UNPRO-
TECT programmed request relinquishes control of a vector, making the
vector available to both the background and foreground jobs.

The request .SPFUN is available for performing special functions on de-
vices such as magnetic tape. .SPFUN requests are used for such functions
as rewind or space-forward operations.

ERROR PROCESSING

During the course of program execution, errors can occur that cause the
monitor to stop the program and print a MON-F error message. Examples
include directory I/O errors, monitor I/O errors on the system device, or I/O
requests to nonexistent devices. Some programs cannot afford to allow the
monitor to abort the job because of such errors. For example, in the case of
RT-11 multi-user BASIC, a directory I/O error affecting only one of the
users should not cause the whole program to abort. For such applications, a
pair of requests is provided, .HERR and .SERR. A HERR request (normal
default) indicates that the monitor will handle severe errors and stop the
job. A .SERR request causes the monitor to return most errors to your
program in byte 52 for appropriate action.

In addition to processing I/O errors through .HERR and .SERR requests,
you can also handle certain fatal errors through the .TRPSET or .SFPA
requests. You use these requests to prevent your program from aborting
due to a trap to location 4 or 10(octal), or to the exception traps of the
Floating Point Processor (FPP) or Floating Point Instruction Set (FIS). A
.TRPSET request specifies the address of a routine that the monitor enters
when a trap to location 4 or 10 occurs. A .SFPA request specifies the ad-
dress of a floating-point exception routine that is called when an exception
trap occurs.

Introduction to Advanced RT-11 Programming 1-17

1.1.3.2 Examining System Information and Reporting Status — Several pro-
grammed requests interrogate the system for specific details about a device
or file that your program may be using.

The .DATE request obtains the system date, which then can be printed on a
report or entered as a data record in a file. The time-of-day can be obtained
with a .GTIM request and used in the same way. A program can set the
system date and/or time by using the .SDTTM programmed request.
Changing the date or time has no effect on any outstanding mark time or
timed wait requests.

With a .GTJB request you can obtain information on whether the job is
running in the foreground or background, the memory limits of the job, the
virtual high limit for a job created with the linker /V option (XM only), the
unit number of the job’s console terminal (if you are using the multitermi-
nal feature), the address of the job’s channel area, the address of the job’s
impure area, and the job’s logical job name (if you are using a monitor with
the system job feature).

Status information on a file — such as its starting block, its length, and
the device it is located on — can be obtained with a .CSTATUS request.
Status information on a device — such as its block length and controller-
assignment number — can be obtained with a .DSTATUS request.

The MTGET and .MTSTAT programmed requests provide multiterminal
status information when the multiterminal feature is being used.

The programmed requests .MFPS and .MTPS read the priority bits and set
the priority and T-bits in the processor status word (PSW). These requests
allow a program to run without change on any processor from an LSI-11 to
a PDP-11/60.

1.1.3.3 Command Interpretation — Two of the most useful programmed re-
quests are .CSIGEN and .CSISPC. These requests call the Command String
Interpreter (CSI), which is part of the USR. They are used to process stand-
ard RT-11 command strings in the following general form:

*Dev:Output/Option = Dev:Input/Option

The asterisk is printed on the terminal by the monitor. The RT—11 system
programs use the same command string (see the RT—11 System Utilities
Manual).

The .CSIGEN request analyzes the string for correct syntax, automatically
loads the required device handlers into memory, opens the files specified in
the command, and returns to your program with option information. Thus,
with one request, a language processor such as the FORTRAN compiler is
ready to input from the source files and output the listing and binary files.
You can specify options in the command string to control the operation of
the language processor. The .CSIGEN request uses channels 0 through 2 to
accommodate three output file specifications and channels 3 through 10(oc-
tal) to accommodate six input file specifications.

1-18 Introduction to Advanced RT-11 Programming

The .CSISPC request provides you with the services of the command proces-
sor, but allows you to do your own device and file manipulation. When you
use .CSISPC, the CSI obtains a command string, analyzes it syntactically,
places the results in a table, and passes the table to your program for
appropriate action.

The .GTLIN request obtains one line of input at a time instead of one
character. These three requests support the indirect file function and allow
your program to obtain one line at a time from an indirect file. Thus, if your
program was started through an indirect file, the line is taken from the
indirect file and not the terminal. The .GTLIN request has an optional
argument which forces input to come from the terminal. The feature is
useful if your program requires information which can be supplied only at
run time.

1.1.3.4 File Operations — A device handler is the normal RT-11 interface
between the monitor and the peripheral device on which file operations are
performed. The console terminal handlers (in FB and XM) and the interjob
message handlers are part of the resident monitor and require no attention
on your part. All other device handlers are loaded into memory with either
a .FETCH request from the program or a LOAD command from the key-
board before any other request can access that device. Section 1.1.3.5 of this
manual describes the use of programmed requests for performing I/0 opera-
tions. The RT—11 Software Support Manual describes how to write device
handlers for RT-11.

Once the handler is in memory, a .LOOKUP request can locate existing
files and open them for access. New files are created with an . ENTER
request. Space for the file can be defined and allocated as:

1. One-half the size of the largest unused space or all of the second largest
space, whichever is larger (the default)

2. A space of a specific size
3. As much space as possible

The way the system allocates the space depends upon the parameter speci-
fied by you as the file size argument of the ENTER request or specified in a
.CSIGEN command string.

When file operations are completed, a .CLOSE request makes the new file
permanent in the directory. A PURGE request can free the channel with-
out making the file permanent in the directory. Existing permanent files
can be renamed with a .RENAME request or deleted with a .DELETE
request.

Two other requests, .SAVESTATUS and .REOPEN, add to the flexibility of
file operations. The .SAVESTATUS request stores the current status of a
file that has been opened with a .LOOKUP request and makes the file
temporarily inactive, thus freeing the channel for use by another file. The
REOPEN request causes the inactive file to be reactivated on the specified

Introduction to Advanced RT-11 Programming 1-19

channel, and I/O continues on that channel. In this manner, you can open
more files than there are channels. If, in addition, you lock the USR in
memory, you can open all the files your job needs while maintaining system
swapping efficiency. The procedure is:

1. Lock the USR in memory, and open the files that are needed.

2. Issue the .SAVESTATUS request.

3. Release the USR.

4. Issue a .REOPEN request each time a file is needed.

5. Lock USR, and use the .CLOSE request to make the files permanent.

Because a .REOPEN request does not require any /0, all USR swapping
and directory motion can be isolated in the initialization code for an appli-
cation, improving program efficiency.

The creation date and protection status of a file can be modified by using
the .SFDAT and .FPROT requests, respectively.

The .SFDAT request allows you to change the date that appears in a file’s
directory entry listing. You may want to do this for a file that you update in
place, for example, or if the original creation date was in error.

The .FPROT request protects a file against deletion, or removes protection
so that a file can be deleted by a .DELETE, .ENTER, or . RENAME request.
The contents of a protected file are not protected against modification.

1.1.3.5 Input/Output Operations — You can perform I/O in three different
modes:

e synchronous
® asynchronous

® event-driven

These modes allow you to optimize the overlap of CPU and I/O processing.

The programmed requests .READW and .WRITW perform synchronous
I/O — that is, the instruction following the request is not executed until
the I/O transfer is completely finished; thus the program and the 1/O pro-
cess are synchronized.

The program requests .READ, .WRITE, and .WAIT perform asynchronous
I/O — that is, the . READ or .WRITE request adds the transfer request to
the queue for the device; if the device is inactive, the transfer begins; con-
trol returns to the user program before the transfer is completed. The
.WAIT programmed request, however, blocks the program until the trans-
fer is completed. This allows the I/O operation to be completed before any
further processing is done. Asynchronous I/O is most commonly used for
double buffering.

1-20 Introduction to Advanced RT-11 Programming

Program requests such as .READC and .WRITC perform event-driven
I/O — that is, they initiate a completion routine when the transfer is fin-
ished.

Event-driven I/O is practical for conditions where system throughput is
important, where jobs are divided into overlapping processes, or where pro-
cessing timings are random. The last condition is the most attractive case
for using event-driven I/O because processor timing may range up to infin-
ity in that a process is never completed.

Since the completion routine is essential to event-driven I/O, the next sec-
tion presents general guidelines for writing completion routines.

COMPLETION ROUTINES

Completion routines are part of your program. They execute following the
completion of some external operation, interrupting the normal program
flow. On entry to an I/O completion routine, Register 0 contains the con-
tents of the Channel Status Word and Register 1 contains the channel
number for the operation. The carry bit is not significant.

Completion routines are handled differently, depending on whether the
program is being run under the SJ monitor or the FB and XM monitors.
Under the SJ monitor, completion routines are totally asynchronous and
can interrupt each other. An interrupted completion routine is resumed
when the interrupting routine is finished. Unlike completion routines run
under FB and XM monitors, which are serialized and run at priority O,
completion routines run under an SJ monitor are nested. In addition, they
execute not at priority 0, but at the same priority as the device whose
interrupt scheduled them. For example, the completion routine resulting
from a .WRITC programmed request to device TT: runs at priority 4. Com-
pletion routines from timer requests run at the same priority as the system
clock. This is particularly important on LSI-11 and PDP 11/03 systems that
have only two interrupt levels, ON and OFF, because clock interrupts may
be lost while lengthy completion routines execute. Under the FB and XM
monitors, completion routines do not interrupt one another. Instead, they
are queued, and the next routine is not entered until the first is completed.

If the foreground job is running and a foreground I/O transfer completes
and wants a completion routine, that routine is entered immediately if the
foreground job is not already executing a completion routine. If it is in a
completion routine, that routine continues to termination, at which point
other completion routines are entered in a first-in first-out order. If the
background job is running (even in a completion routine) and a foreground
I/0O transfer completes with a specified completion routine, execution of the
background job is suspended and the foreground routine is entered immedi-
ately.

Also under the FB and XM monitors, it is possible to request a completion
routine from an in-line interrupt service routine through a .SYNCH pro-
grammed request. This allows the interrupt service routine to issue other
programmed requests to the monitor.

Introduction to Advanced RT-11 Programming 1-21

Restrictions that must be observed when writing completion routines are as
follows:

1. Requests that require the USR must not be issued within a completion
routine. A fatal monitor error is generated if the USR is called from a
completion routine.

2. Completion routines should never reside in memory space that is used
for the USR, since the USR can be interrupted when I/O terminates and
the completion routine is entered. If the USR has overlaid the routine,
control passes to a random place in the USR, with a HALT or error trap
being the likely result.

3. Registers other than RO and R1 must be saved upon entry to completion
routines and restored upon exiting. Registers cannot transfer data be-
tween the mainline program and the completion routine.

4. Under the XM monitor, completion routines must remain mapped
while the request is active and the routine can be called.

5. The completion routine must exit with an RTS PC instruction because
the routine was called from the monitor with a JSR PC,ADDR, where
ADDR is the user-supplied entry point address. If you exit completion
routines with an .EXIT request, your job will abort. An exit from a
completion routine in FB or XM can be done by using an .SPCPS re-
quest to change the mainline PC to point to an .EXIT in the main code.
As soon as all completion routines are done, the exit will be executed.

6. Under the XM monitor, completion routines scheduled as a result of a
.SYNCH run in kernel mapping, not user mapping.

Frequently, a program’s completion routine needs to change the flow of
control of the mainline code. For example, you may wish to establish a
schedule among the various tasks of an application program after a certain
time has elapsed, or after an I/O operation is complete. Such an application
needs to redirect the mainline code to a scheduling subroutine when the
application’s timer or read/write completion routine runs. The .SPCPS pro-
grammed request, which can only be used in a foreground/background or
extended memory environment, saves the mainline code program counter
and processor status word, and changes the mainline code program counter
to a new value. If the mainline code is performing a monitor request, that
request finishes before rerouting can occur.

TERMINAL INPUT/OUTPUT

Several programmed requests are available to provide an I/O capability
with the console terminal: a .TTYIN request obtains a character from the
console; a .TTYOUT request prints a character on the terminal; long
strings of characters — even multiple lines — are output with the
.PRINT request. Programs can also issue .TTINR and .TTOUTR requests,
which indicate that a character is not available or that the output buffer is
full. The program can then resume operation and try again at a later time.
A .RCTRLO request forces the terminal output to be reactivated after a
CTRL/O has been typed to suppress it, so that urgent messages will be
printed.

1-22 Introduction to Advanced RT-11 Programming

You can use the .TTYIN/.TTINR requests in special (single-character)
mode by setting bit 12 of the Job Status Word. See the .TTYIN programmed
request for a description of special mode.

MULTITERMINAL REQUESTS

The RT-11 multiterminal feature allows your program to perform
input/output on up to 17 terminals. Several programmed requests allow
you to perform I/O on these terminals. Before issuing any of these pro-
grammed requests to a terminal, you must issue the MTATCH request,
which reserves the specified terminal for exclusive use by your program.
The terminal cannot then be used by any other job until you issue the
.MTDTCH request to detach the terminal.

The .MTIN request returns to a program characters that are typed at the
terminal, while the MTOUT and .MTPRNT requests send characters to a
terminal. These requests are analogous to the .TTYIN, .TTYOUT, and
PRINT requests. Note that the .TTYIN/.TTINR, .TTYOUT/TTOUTR, and
.PRINT requests can only be used with the console terminal.

You can set terminal and line characteristics with the .MTSET request.
You provide a four-word status block that contains the terminal status
word, the character of the terminal requiring fillers and the number of
fillers required for this character, the width of the carriage (80 characters
by default), and system terminal status. The status of a terminal can be
obtained by issuing the .MTGET request. The .MTSTAT request provides
multiterminal system status information.

1.1.3.6 Foreground/Background Communications — Communication between
foreground and background jobs is obtained through the programmed re-
quests .SDAT and .RCVD. These requests also have three modes (synchro-
nous, asynchronous, and event driven) that allow transfer of buffers be-
tween the two jobs as if I/O were being done. The sending job treats a
.SDAT request as a write, and the receiving job treats . RCVD as a read. In
the case of .RCVD requests, the receiving buffer must be one word longer
than the number of words expected. When the data transfer is completed,
the first word of the buffer contains the number of words actually sent.

Jobs receiving messages can be activated when messages are sent through
.RCVDC completion routines, while the sending jobs use .SDATC comple-
tion routines. The .MWAIT request is used for synchronizing message re-
quests. It is similar to the .WAIT request that is used for normal I/O.

If you want one job in a foreground/background environment to read or
write data in a file opened by the other job, use the .CHCOPY request. For
example, when the background job is processing data that is being collected
by the foreground job, the .CHCOPY request allows you to obtain channel
information from the foreground job and to use that channel information to
control a read or write request.

The foreground/background monitor always causes a context switch of criti-
cal items such as machine registers, the job status area, and floating-point
processor registers when a different job is scheduled to run because it has a

Introduction to Advanced RT-11 Programming 1-23

higher priority, or because the current job is blocked and a lower priority
job is runnable. When the monitor saves a job’s context, it saves the job-
dependent information on the job’s stack so that this information can be
restored when the job is runnable again.

1.1.3.7 Timer Support — Timer support by the monitor is provided through
the MRKT request. With the .MRKT request, you specify the address of a
routine that is to be entered after a specified number of clock ticks. Like I/O
completion routines, MRKT routines are asynchronous and independent of
the main program. After the specified time elapses, the main program is
interrupted, the timer completion routine executes, and control returns to
the interrupted program.

Pending .MRKT requests — as many as the queue can hold — are identi-
fied by number. Pending timer requests can be canceled with a .CMKT
request. MRKT requests are normally used as a scheduling tool where jobs
are scheduled on the basis of clock events, detected by timer completion
routines.

A job can be suspended for a specified time interval with a . TWAIT request.
For example, the .TWAIT request will allow a compute-bound job to relin-
quish CPU time to the rest of the system, permitting other jobs to run.

1.1.3.8 Program Termination or Suspension — Many jobs come to an execu-
tion point where there is no further processing necessary until an external
event occurs. In the FB or XM environment such a job can issue a .SPND
request to suspend the execution of that job. While the foreground job is
suspended, the background job runs. When the desired external event oc-
curs, it is detected by a previously requested completion routine, which
executes a .RSUM request to continue the job at the point where it was
suspended.

When a job is ready to terminate or reaches a serious error condition, it can
reset the system with the .SRESET and .HRESET requests. .SRESET is a
soft reset. That is, the monitor data base for the job is reinitialized, but
queued I/O is allowed to run to completion. HRESET is a hard reset where
all I/O for the job is stopped (by a RESET instruction in the SJ monitor or
by calls to the handlers in an FB environment).

Use the programmed request .EXIT in a background job to return control to
the keyboard monitor by causing program termination. If Register 0 con-
tains a zero upon execution of this request, a hard reset is performed, and
the commands REENTER, CLOSE, and START are disabled. If Register 0
contains a non-zero value upon exit from your program, a soft reset is done,
and these commands are not disabled. In a foreground job, an .EXIT pro-
grammed request stops the job but does not return control to the keyboard
monitor. The job can be removed from memory by the UNLOAD command.

You may initiate the execution of another program with a .CHAIN request
from a background job. Files remain open across a .CHAIN request and

1-24 Introduction to Advanced RT-11 Programming

data is passed in memory to the chained job, so that it can adjust process-
ing. In FORTRAN, channel information is stored in the job’s impure area,
and this information is not preserved across a .CHAIN request. Thus, close
any channels in the first program, and reopen them in the program being
chained to.

1.1.3.9 System Job Communications — System job support allows communi-
cations between any two jobs in the system. The background job, designated
by the logical job name ‘B’, and the foreground job, designated by the logi-
cal job name ‘F’, can send and receive messages between each other by
using the .RCVD and .SDAT programmed requests.

All jobs (that is, background, foreground, and system jobs) can communi-
cate with each other by using the Message Handler (MQ). The MQ handler
performs like an ordinary RT-11 device handler in the way it accepts and
dispatches I/O requests from the queued I/O system. This permits .READ
and .WRITE requests to send messages between any two jobs as if they
were data transfers to files. Both the sending and receiving job must issue a
.LOOKUP request on a channel and use ‘MQ’ as the device specification
and the logical job name of the job with which they are communicating as
the file specification. In the case of .READ requests, the receiving buffer
must be one word longer than the number of words expected. When the
data transfer is completed, the first word of the buffer contains the number
of words actually sent (identical to the .RCVD requests). This does not
apply to the .WRITE requests; the first word of the sending buffer is the
first word of the message to be sent. Note that the Message Handler (MQ)
can also be used under the distributed FB monitor; it does not require the
system job special feature.

Care should be taken when assigning logical job names to system jobs.
Programmed requests such as .LOOKUP, .CHCOPY, and .GTJB must use
the job’s current logical job name (see the RT—11 System User’s Guide).

1.1.3.10 Extended Memory Functions — The RT-11 extended memory (XM)
monitor permits MACRO programs to access extended memory by mapping
their virtual addresses to physical locations in memory. This is done in
conjunction with a hardware option called the Memory Management Unit
that converts a 16-bit virtual address to an 18- or 22-bit physical address.

You access extended memory in a program through programmed requests.
In accessing extended memory, you must first establish window and region
definition blocks. Next, you must specify the amount of physical memory
the program requires and describe the virtual addresses you plan to use. Do
this by creating regions and windows. Then, associate virtual addresses
with physical locations by mapping the windows to the regions. You can
remap a window to another region or part of a region, or you can eliminate
a window or a region. Once the initial data structures are set up, you can
manipulate the mapping of windows to regions that best meet your require-
ments.

Introduction to Advanced RT-11 Programming 1-25

There are four types of extended memory programmed requests:
1. Window requests 3. Map requests
2. Region requests 4. Status requests

The window and region requests have their own data structures. RT-11
provides the macro .WDBBK to create a window definition block and the
macro .RDBBK to create a region definition block. Both macros automati-
cally define offsets and bit names. Two other macros, .WDBDF and
.RDBDF, define only the offsets and bit names.

The programmed request .CRAW is used to create a window. To eliminate a
window, use the .ELAW request. A region is created using the .CRRG
request. You return a region to the free list of memory with the .ELRG
request.

You map a window to a region with the .MAP request. If a window is
already mapped to a region, this window is unmapped and the new one is
mapped. Use the .UNMAP request to unmap a window. You obtain the
mapping status of a window with the .GMCX request.

Certain programmed requests are restricted when they are in an extended
memory environment. These programmed requests and their restrictions
are as follows:

.CDFN All channels must be in the lower 28K of memory (but
not in the PAR1 region, 20000-37776 octal).

.QSET All queue elements must be 10(decimal) words long and
in the lower 28K of memory (but not in the PAR1 re-
gion, 20000-37776 octal).

SETTOP Effective only in the virtual address space that is
mapped at the time the request is issued, unless the job
was linked with the /V option (see the RT—11 System
Utilities Manual).

.CNTXSW Not usable in virtual jobs.

Detailed information on programmed requests in an extended memory en-
vironment is given in the RT—11 Software Support Manual.

1.1.3.11 Interrupt Service Routines — The system macro library (SYS-
MAC.SML) contains some macros that are not programmed requests, but
are used like programmed requests in interrupt service communication to
the monitor. The first macro call in every interrupt routine is .INTEN,
which causes the system to use the system stack for interrupt service and
allows the monitor scheduler to make note of the interrupt. If device service
is all the routine does, INTEN is the only call it need make. If you need to
issue one or more programmed requests, such as .READ or .WRITE from
the interrupt service routine, you must issue the .SYNCH call. The .INTEN
call described above switches execution to the system state, and since pro-
grammed requests can only be made in the user state, the .SYNCH call

1-26 Introduction to Advanced RT-11 Programming

handles the switch back to the user state. The code following the .SYNCH
call executes as a completion routine. When the .SYNCH is finished, the
completion routine can execute programmed requests, initiate I/O, and re-
sume the mainline code. The first word after the .SYNCH call is the return
address on error, while the second word is the return on success. The
RT-11 Software Support Manual contains a detailed description of inter-
rupt service routines.

1.1.3.12 Device Handlers — The system macro library (SYSMAC.SML) con-
tains several macros that simplify the writing of a device handler. A device
handler is divided into several sections. These sections are as follows:

e Preamble section e Interrupt service section
e Header section e I/O completion section
e I/O initiation section e Termination section

The .DRDEF macro is used near the beginning of your device handler, and
performs much of the work in the preamble section. The .DRBEG macro
sets up the first five words in the header section, stores information in
block 0 of the handler file, and creates some global symbols. The .DRAST
macro sets up the interrupt entry point and the abort entry point in the
interrupt service section, and lowers the processor priority. The .DRFIN
macro generates the instructions for the jump back to the monitor at the
end of the handler I/O completion routine. The .DREND macro generates
handler termination code. The .DRBOT macro sets up the primary driver.
A primary driver must be added to a standard handler for a data device to
create a system device handler. The .DRSET macro sets up the option table
for the SET command in block O of the device handler file. The .DRVTB
macro sets up a table of vectors for devices that require more than one
vector.

Each of the device handler macros is described in Chapter 2. The RT-11
Software Support Manual details the use of these macros in writing a de-
vice handler.

1.1.4 Compatibility With Previous RT-11 Versions

Programmed requests were implemented differently in each major release
of RT—11. The following sections outline the changes that were made to the
programmed requests from version to version.

1.1.4.1 Version 1 Programmed Requests — Programmed requests provided
with the first release of RT—11, such as .READ and .WRITE, were designed
for a single-user, single-job environment. As such, they differ significantly
from the programmed requests of the later versions. For Version 1 requests,
arguments were pushed on the stack instead of being stored, as they are
presently, in an argument block. The channel number was limited to the
range 0 through 17(octal), while later versions can allocate an additional
number of channels. Also, no arguments could be omitted in the macro call.

Introduction to Advanced RT-11 Programming 1-27

Programs written for use under Version 1 assemble and execute properly
under Versions 3, 4, and 5 when the ..V1.. macro call is used. The ..V1..
macro call causes all Version 1 programmed requests to expand exactly as
they did in Version 1. The ..V2.. macro call expands all requests in Version
2 format. However, it is to your advantage to convert Version 1 and Version
2 programs to the current format for programmed requests (see Section
2.7). Future versions of RT-11 may no longer support the older formats.

1.1.4.2 Version 2 Programmed Requests — The release of RT-11 Version 2
included new programmed requests and a different way of handling argu-
ments. The new programmed requests reflected RT-11’s ability to run a
foreground job as well as a background job. They included requests to
suspend/resume the foreground job and to share messages and data be-
tween the two jobs.

Arguments in Version 2 programmed requests were stored in an argument
block instead of on the stack. Another difference in Version 2 was that
arguments could be omitted from macro calls. If the Area
argument — that is, the pointer to the argument block — was omitted,
the macro assumed that RO pointed to a valid argument block. If any of the
optional arguments were not present, the macro placed a zero in the argu-
ment block for the corresponding argument. Version 1 programmed re-
quests were modified to incorporate these changes, and the ..V1.. macro was
provided to allow Version 1 programmed requests to execute under Version
2 without further modification.

Programs written for use under Version 2 assemble and execute properly
under Versions 3 and 4 when the ..V2.. macro call is used. The ..V2.. macro
call causes all programmed requests prior to Version 3 to expand in Version
2 format.

1.1.4.3 Version 3 Programmed Requests — The programmed requests for
Version 3 provide means for user programs to access regions in extended
memory and to use more than one terminal. The chief difference between
Version 2 and Version 3 programmed requests is the way in which omitted
arguments are handled. In Versions 3, 4, and 5, blank arguments in the
macro calls do not cause zeros to be entered into the argument block, but
leave the corresponding argument block entry for the missing argument
untouched.

This change can have a significant impact on user programs. If an argu-
ment block within a program is to be used many times for similar calls, you
can save instructions by setting up the argument block entries only once (at
assembly or run time), and leaving the corresponding fields blank in the
macro call.

However, you should keep in mind that you may not substitute zeroes for
missing fields. Programs written with this assumption operate incorrectly
and exhibit a wide range of symptoms that can be hard to diagnose. There-
fore, you must write the necessary instructions to fill the argument block if
a programmed request is issued with fields left blank in the argument list.

Programmed requests from previous versions were modified to incorporate
this change, and the ..V2.. macro call was provided so that Version 2 pro-

1-28 Introduction to Advanced RT-11 Programming

grams could execute properly under Version 3 without further modifica-
tion.

1.1.44 Version 4 Programmed Requests — Certain programmed requests
have taken on additional functions to support the system job feature. These
programmed requests and their additional functions follow:

Programmed Request Added Function
.GTJB Returns logical job name.
.CHCOPY May specify logical job name.
.LOOKUP Opens message channel to any job; issues

.READ/C/W, .WRITE/C/W, and .WAIT re-
quests to communicate between jobs.

11.45 Version 5 Programmed Requests — Version 5 added several new
programmed requests and modified others. The requests added for Version
5 are .ABTIO, .FPROT, .PEEK, .POKE, .PVAL, and .SFDAT. Although the
XM monitor was expanded to support 22-bit Q-bus addressing, from a pro-
gram’s point of view the extended memory programmed requests are un-
changed from Version 4. Channel number 377 is now reserved for system
use and is always unavailable to user programs. The programmed requests
which have changed between Version 4 and Version 5 are summarized
below:

Programmed Request Added Function
.CSTAT Available under SJ monitor.
TWAIT Available under SJ monitor.
FETCH Available under XM monitor.
.GTLIN Optional argument to force terminal in-
put.

1.1.5 Programmed Request Conversion

The previous sections describe the modified format of programmed requests
that were developed after those of Version 1. This section describes the
conversion process from the Version 1 format to Version 3.

1.1.5.1 Macro Calls Not Requiring Conversion — Version 1 macro calls that do
not require any conversion are as follows:

.CSIGEN .LOCK SRESET

.CSISPC PRINT .TTINR (Note 2)
.DATE .QSET .TTOUTR (Note 2)
DSTATUS .RCTRLO TTYIN

.EXIT .RELEAS JTTYOUT
FETCH .SETTOP (Note 1) .UNLOCK
HRESET

Note 1: Provided that location 50 is examined for the maximum value.

Note 2: Except in FB or XM systems.

Introduction to Advanced RT-11 Programming 1-29

1.1.5.2 Macro Calls That Can Be Converted — Version 1 macro calls that can
be converted are as follows:

.CLOSE .RENAME
.DELETE .REOPEN
.ENTER SAVESTATUS
.LOOKUP WAIT

.READ .WRITE

The general format of the ..V1.. system macro is
.PRGREQ Chan,Argl,...,Argn

In this form, Chan is an integer between 0 and 17(octal) and is not a
general assembler argument. The channel number is assembled into the
EMT instruction itself. The arguments Argl through Argn are either
moved into RO or pushed on the stack.

The ..V2.. equivalent of the above call is
PRGREQ Area,Chan,Argl,...,Argn

In this form, the Chan argument can be any legal assembler argument and
can be in the range from 0 to 377(octal). Area points to an argument block
where the arguments Argl through Argn will be placed.

For example, consider a .READ programmed request in both forms:

Version 1: +READ S,#BUFF +#256, yBLOCK
Version 2: +READ #AREA +#5 y#BUFF »#256, »BLOCK
AREA: +WORD O SCHANNEL/FUNCTION CODE HERE

+WORD O iBLOCK NUMBER HERE
+WORD 0 §BUFFER ADDRESS HERE
+WORD O fWORD COUNT HERE
+WORD O $A 1 GOES HERE

Thus, the difference in the two macro calls is that Version 2 declares the
channel number as a legal assembler argument and adds an Area argu-
ment,

Table 1-3 shows a complete list of conversions for the programmed requests
that can be converted. Version 1 and Version 2 formats are given. In Ver-
sions 3 and later, this function is performed automatically. The arguments
shown inside the square brackets ([1) are optional. Refer to the appropriate
section in Chapter 2 for more details on each request.

1-30 Introduction to Advanced RT-11 Programming

Table 1-3: Programmed Request Conversions (Version 1 to

Version 2)
Version Programmed Request
V1. .DELETE chan,dblk
V2: .DELETE area,chan,dblk{,count]
Vi: .LOOKUP chan,dblk
V2: .LOOKUP area,chan,dblk[,count]
V1. .ENTER chan,dblk[,length]
V2: .ENTER area,chan,dblk{,length[,count]]
V1. .RENAME chan,dblk
V2: .RENAME area,chan,dblk
V1. SAVESTAT chan,cblk
V2. .SAVESTAT area,chan,cblk
Vi: .REOPEN chan,cblk
Va: .REOPEN area,chan,cblk
Vi: .CLOSE chan
V2: .CLOSE chan
Vi: .READ/.READW chan,buff,went,blk
V. READ/.READW area,chan,buff,went,blk
A28 .READC chan,buff,went,crtn,blk
V2: READC area,chan,buff,went,crtn,blk
Vi: WRITE/.WRITW chan,buff,went,blk
Va: WRITE/.WRITW area,chan,buff,wcnt,blk
V1. WRITC chan,buff,went,crtn,blk
va: WRITC area,chan,buff,went,crtn,blk
Vi: WAIT chan
V2: WAIT chan

Several important features of Version 3 calls to be kept in mind when using
them are as follows:

1. Version 3 calls require the area argument, which points to the area
where the other arguments will be (unless RO already points to it and
the first word is set up).

2. Enough memory space must be allocated to hold all the required argu-
ments.

3. The chan argument must be a legal assembler argument, not just an
integer between 0 and 17(octal).

4. Blank fields are permitted in the Version 3 calls. Any field not specified
(left blank) is not modified in the argument block.

Introduction to Advanced RT-11 Programming 1-31

1.1.6 Programmed Request Summary

Many programmed requests operate only in a specific RT—11 environment,
such as under a foreground/background monitor or when using a special
feature such as multiterminal operation. Table 1—4 lists the programmed
requests that can be used in all RT-11 environments, including multiter-
minal operation. Table 1-5 lists the additional programmed requests that
can be used under the foreground/background monitor and extended mem-
ory monitor. The EMT and function code for each request are shown in
octal. Although only the first six characters of the programmed request are
significant to the Macro assembler, the longer forms are shown to provide a
better understanding of the request function. Also, the purpose of each
request is described.

Macros that are used in interrupt service routines and in writing device
handlers are listed since they are a part of the system macro library.

Table 1-4 summarizes the programmed requests that work in all RT-11
environments. The programmed requests followed by (MT) work only under
the multiterminal feature of RT—11.

Table 1-4: Programmed Requests for All RT-11 Environments

Name EMT Code Purpose

ABTIO 374 13 Aborts I/O in progress on the specified channel

.CDFN 375 15 Defines additional channels for I/O

.CHAIN 374 10 Chains to another program (in background job
only)

.CLOSE 374 6 Closes the specified channel

.CMKT 375 23 Cancels an unexpired mark time request (special
feature in single-job environment)

.CSIGEN 344 — Calls the Command String Interpreter (CSI) in
general mode

.CSISPC 345 — Calls the Command String Interpreter (CSI) in
the special mode

.CSTAT 375 27 Returns the status of the specified channel

.CTIMIO — — Used within a device handler as a macro call to
cancel a mark time request (special feature)

.DATE 374 12 Moves the current date information into RO

.DELETE 375 0 Deletes the file from the specified device

.DRAST — — Used with device handlers to create the asynchro-
nous entry points to the handler

.DRBEG — — Used with device handlers to create a five-word
header, and .ASECT locations 52 through 60

.DRBOT — — Used with system device handlers to set up the

primary driver

(continued on next page)

1-32 Introduction to Advanced RT-11 Programming

Table 1-4: Programmed Requests for All RT-11 Environments (Cont.)
Name EMT Code Purpose

.DRDEF — — Used with device handlers to set up handler
parameters, call driver macros from the library,
and define useful symbols

.DREND — — Used with device handlers to generate the table of
pointers into the resident monitor

.DRFIN — — Used with device handlers to generate the code
required to exit to the completion code in the resi-
dent monitor

.DRSET — — Used with device handlers to create the list of SET
options for a device

.DRVTB — — Used with multivector device handlers to generate
a table that contains the vector location, interrupt
entry point, and processor status word for each de-
vice vector

DSTATUS 342 — Returns the status of a particular device

.ENTER 375 2 Creates a new file for output

EXIT 350 — Exits the user program and optionally passes a
command to KMON

FETCH 343 — Loads a device handler into memory

.FORK — — Generates a subroutine call in an interrupt ser-

vice routine that permits long but not critical pro-
cessing to be postponed until all other interrupts
are dismissed

.FPROT 375 43 Sets or removes a file’s protection

.GTIM 375 21 Gets the time of day

.GTJB 375 20 Gets parameters of a job

.GTLIN 345 — Accepts an input line from either an indirect com-
mand file or the console terminal

.GVAL 375 34 Returns contents of a monitor fixed offset

.HERR 374 5 Specifies termination of a job on fatal errors

.HRESET 357 — Terminates I/O transfers and does a .SRESET op-
eration

INTEN — — Generates a subroutine call to notify the monitor

that an interrupt has occurred, requests system
state, and sets processor priority to the specified
value

.LOCK 346 —_ Makes the monitor User Service Routine (USR)
permanently resident until an .EXIT or .UN-
LOCK is executed; the user program is swapped
out, if necessary

.LOOKUP 375 1 Opens an existing file for input and/or output via
the specified channel; opens a message channel to
a specified job

(continued on next page)

Introduction to Advanced RT-11 Programming 1-33

Table 1-4: Programmed Requests for All RT-11 Environments (Cont.)

Name EMT Code Purpose

.MFPS — — Reads the priority bits in the processor status
word, but does not read the condition codes

.MRKT 375 22 Marks time, that is, sets an asynchronous routine
to be entered after specified interval (special fea-
ture in single-job environment)

MTATCH (MT) 375 37 Attaches a terminal for exclusive use by the re-
questing job

MTDTCH (MT) 375 37 Detaches a terminal from one job and frees it for

- use by other jobs

MTGET (MT) 375 37 Returns the status of a specified terminal to the
user

MTIN (MT) 375 37 Operates as a .TTYIN request for a multiterminal
configuration

MTOUT (MT) 375 37 Operates as a .TTYOUT request for a multitermi-
nal configuration

MTPRNT (MT) 375 37 Operates as a .PRINT request for a multiterminal
configuration

MTPS — — Sets the priority bits, condition codes, and T-bit in
the processor status word

.MTRCTO (MT) 375 37 Resets the CTRL/O flag for the designated termi-
nal

.MTSET (MT) 375 37 Modifies terminal status in a multiterminal con-
figuration

MTSTAT (MT) 375 37 Provides multiterminal system status

PEEK 375 34 Examines memory locations

.POKE 375 34 Changes memory locations

PRINT 351 — Outputs an ASCII string terminated by a zero
byte or a 200 byte

PURGE 374 3 Clears out a channel for reuse

PVAL 375 34 Replaces contents of a monitor fixed offset

.QELDF Used with device handlers to define offsets in the
I/0 queue element

.QSET 353 — Increases the size of the monitor I/O queue

.RCTRLO 355 — Enables output to the terminal, overriding any
previous CTRL/O

.READ 375 10 Transfers data on the specified channel to a mem-

ory buffer and returns control to the user program
when the transfer request is entered in the I/O
queue; no special action is taken upon completion
of /O

(continued on next page)

1-34 Introduction to Advanced RT-11 Programming

Table 14: Programmed Requests for All RT-11 Environments (Cont.)
Name EMT Code Purpose

.READC 375 10 Transfers data on the specified channel to a mem-
ory buffer and returns control to the user program
when the transfer request is entered in the I/O
queue; upon completion of the read, control trans-
fers asynchronously to the completion routine
specified in the .READC request

READW 375 10 Transfers data via the specified channel to a mem-
ory buffer and returns control to the user program
only after the transfer is complete

.RELEASE 343 — Removes a device handler from memory

.RENAME 375 4 Changes the name of the indicated file to a new
name; if this request is attempted when using
magtape, the handler returns an invalid operation

code

.REOPEN 375 6 Restores the parameters stored via a .SAVE-
STATUS request and reopens the channel for /O

.SAVESTATUS 375 5 Saves the status parameters of an open file in user
memory and frees the channel for use

SCCA 375 35 Enables intercept of CTRL/C commands

SDTTM 375 40 Sets the system date and/or time

.SERR 374 4 Inhibits most fatal errors from aborting the cur-
rent job

SETTOP 354 —_ Specifies the highest memory location to be used
by the user program

SFDAT 375 42 Changes a file creation date in a directory entry

.SFPA 375 30 Sets user interrupt for floating-point processor ex-
ceptions

.SPFUN 375 32 Performs special functions on magtape, cassette,
diskette, and some disk devices

.SRESET 352 — Resets all channels and releases the device han-

dlers from memory

SYNCH — — Generates a subroutine call that enables your pro-
gram to perform programmed requests from
within an interrupt service routine

TIMIO — — Generates a subroutine call in a handler to sched-
ule a mark time request (special feature in all en-
vironments)

.TLOCK 374 7 Indicates if the USR is currently used by another

job and performs exactly as a .LOCK request in a
single-job environment

.TRPSET 375 3 Sets a user intercept for traps to monitor locations
4 and 10

(continued on next page)

Introduction to Advanced RT-11 Programming 1-35

Table 1-4: Programmed Requests for All RT-11 Environments (Cont.)

Name EMT Code Purpose

.TTINR 340 — Reads one character from the keyboard buffer

TTYIN

TTYOUT 341 — Transfers one character to the terminal input

TTOUTR buffer

TWAIT 375 24 Suspends the running job for a specified amount of
time

.UNLOCK 347 — Releases the USR after execution of a .LOCK and
swaps in the user program, if required

V1. — — Provides compatibility with Version 1 format

.va. — —_ Provides compatibility with Version 2 format

WAIT 374 0 Waits for completion of all /O on a specified chan-
nel

WRITC 375 11 Transfers data on the specified channel to a device
and returns control to the user program when the
transfer request is entered in the I/O queue; upon
completion of the write, control transfers asyn-
chronously to the completion routine specified in
the .WRITC request

WRITE 375 11 Transfers data on the specified channel to a device
and returns control to the user program when the
transfer request is entered in the I/O queue; no
special action is taken upon completion of the I/O

WRITW 375 11 Transfers data on the specified channel to a device

and returns control to the user program only after
the transfer is complete

Table 1-5 lists the additional programmed requests that can be used only
in a foreground/background and extended memory environment. The pro-
grammed requests followed by (XM) operate only in an extended memory

environment.

Table 1-5: Foreground/Background and Extended Memory

Programmed Requests

Name EMT Code Purpose

.CHCOPY 375 13 Allows one job to access another job’s channel

.CNTXSW 375 33 Requests that the indicated memory locations be
part of FB or XM context switch process

.CRAW (XM) 375 36 Creates a window in virtual memory

.CRRG (XM) 375 36 Creates a region in extended memory

.DEVICE 375 14 Allows device interrupts in FB or XM to be disa-
bled upon program termination

ELAW (XM) 375 36 Eliminates an address window in virtual memory

.ELRG (XM) 375 36 Eliminates an allocated region in extended mem-

ory

(continued on next page)

1-36 Introduction to Advanced RT-11 Programming

Table 1-5: Foreground/Background and Extended Memory
Programmed Requests (Cont.)

Name EMT Code Purpose

.GMCX (XM) 375 36 Returns mapping status of a specified window

MAP (XM) 375 36 Maps a virtual address window to extended mem-
ory

MWAIT 374 11 Waits for messages to be processed

PROTECT 375 31 Requests that specified vectors in the area from 0
to 476 be given exclusively to the current job

.RCVD 375 26 Receives data — allows a job to read messages or

.RCVDC data sent by another job in an FB environment.

RCVDW The three modes correspond to the .READ,

.READC, and .READW requests

.RDBBK (XM) — — Reserves space in a program for a region defini-
tion block and sets up the region size and region
status word

.RDBDF (XM) — — Defines the offsets and bit names associated with
a region definition block

.RSUM 374 2 Causes the mainline code of the job to be resumed
after it was suspended by a .SPND request
SDAT 375 25 Sends messages or data to the other job in an FB
SDATC environment. The three modes correspond to the
SDATW WRITE, .WRITC, and .WRITW requests
.SPCPS 375 41 Used in a completion routine to change the flow of
control of the mainline code (special feature)
.SPND 374 1 Causes the running job to be suspended
JUNMAP (XM) 375 36 Unmaps a virtual address memory window
.UNPROTECT 375 31 Cancels the .PROTECT vector protection request
WDBBK (XM) —_ — Reserves space in a program for a window defini-
tion block and sets up the associated data
.WDBDF (XM) — — Defines the offsets and bit names associated with

a window definition block

1.2 Using the System Subroutine Library

The system subroutine library is a collection of FORTRAN-callable
routines that allow various RT-11 system features to be used by a FOR-
TRAN programmer. There are no FORTRAN routines in SYSLIB to access
extended memory under the extended memory (XM) monitor.

This collection of subroutines is placed in a system library called SYS-
LIB.OBJ. This library file also contains the overlay handlers, utility func-
tions, a character string manipulation package, and two-word integer sup-
port routines. The linker uses this library to resolve undefined globals. It is
resident on the system device (SY:).

You should be familiar with the PDP-11 FORTRAN Language Reference
Manual and the RT—11/RSTS/E FORTRAN IV User’s Guide before using
the material in this chapter.

Introduction to Advanced RT-11 Programming 1-37

The system subroutine library provides the following capabilities:

1.

10.

Complete RT-11 I/O facilities, including synchronous, asynchronous,
and event-driven modes of operation. FORTRAN subroutines can be
activated upon completion of an input/output operation.

Timed scheduling of completion routines. This feature is standard in
the FB and XM monitors, and is a special feature in the SJ monitor.

Facilities for communication between foreground and background jobs.
FORTRAN language interrupt service routines for user devices.

Combplete timer support facilities, including timed suspension of execu-
tion in a FB or XM environment, conversion of different time formats,
and time-of-day information. The timer support facilities can use either
50- or 60-cycle clocks.

All RT-11 auxiliary input/output functions, including the capabilities
of opening, closing, renaming, and creating or deleting files on any
device.

All monitor-level information functions, such as job partition parame-
ters, device statistics, and input/output channel statistics.

Access to the RT-11 command string interpreter (CSI).

A character string manipulation package supporting variable-length
character strings.

INTEGER*4 support routines that allow two-word integer computa-
tions.

NOTE

When variables are described or mentioned, and unless oth-
erwise specified, INTEGER means INTEGER*2, (16-bit inte-
ger) and REAL means REAL*4 (single-precision floating
point). Integer and real arguments to subprograms are indi-
cated in this section as follows:

i = INTEGER*2 arguments
J = INTEGER*4 arguments
a = REAL*4 arguments
d = REAL*8 arguments

In general, the routines in SYSLIB were written for use with RT—11 V2 or
later and FORTRAN IV V1B or later versions. The use of SYSLIB with
prior versions of RT-11 or FORTRAN may lead to unpredictable results.

1.2.1 System Conventions

This section describes system conventions that must be followed for proper
operation of calls to the system subroutine library. Certain restrictions that
apply are described in Section 1.2.1.7.

1-38 Introduction to Advanced RT-11 Programming

1.2.1.1 Channel Numbers — A channel number is a logical identifier for a
file used by FORTRAN. Thus, when you open a file on a particular device,
you assign a channel number to that file. To refer to an open file, it is only
necessary to refer to the appropriate channel number.

The FORTRAN system has 16(decimal) channels available for your use.
The call IGETC assigns a channel to your program and notifies the FOR-
TRAN 1/0O system, which also uses these channels, that the channel is in
use. When there is no longer need for a channel, the program should close
the channel with a CLOSEC, ICLOSE or a PURGE SYSLIB call. The chan-
nel should also be freed and returned to the FORTRAN /O system with a
IFREEC call.

Up to 254(decimal) channels can be activated with the ICDFN call. This
function sets aside memory in the job area to accommodate status informa-
tion for the extra channels. Use the ICDFN call during the initialization
phase of your program. You can use all channels numbered higher than
15(decimal). The FORTRAN I/O system uses channels 0 through 15(deci-
mal).

Channels must be allocated in the main program routine or its subpro-
grams. Do not allocate channels in routines that are activated as the result
of I/0 completion events or ISCHED or ITIMER calls.

1.2.1.2 Completion Routines — Completion routines can be written in FOR-
TRAN or assembly language, depending upon the function called.

A completion routine is a subprogram that executes asynchronously with a
main program and is scheduled to run as soon as possible after the comple-
tion of an associated event, such as an I/O transfer or the passing of a
specified time interval. All completion routines of the current job have
higher priority than other parts of the job. Therefore, once a completion
routine becomes runnable because of its associated event, it interrupts exe-
cution of the job and continues to execute until it relinquishes control.

Completion routines are handled differently in the SJ and the FB and XM
monitors. In the SJ monitor, these routines are totally asynchronous and
can interrupt one another. Unlike completion routines run under FB and
XM monitors, which are serialized and run at priority 0, completion
routines run under an SJ monitor are nested and can interrupt each other.
In addition, they execute not at priority 0, but at the same priority as the
device whose interrupt scheduled them. For example, the completion rou-
tine resulting from a .WRITC programmed request to device TT: runs at
priority 4. Completion routines from timer requests run at the same prior-
ity as the system clock. This is particularly important on LSI-11 and
PDP/03 systems that have only two interrupt levels, ON and OFF, because
clock interrupts may be lost while lengthy completion routines execute. In
the FB and XM monitors, completion routines do not interrupt each other
but are queued and have to wait until the correct job is running. They are
then scheduled on a first-in first-out basis.

Assembly language completion routines exit with an RTS PC instruction.
FORTRAN completion routines exit by the execution of a RETURN or END

Introduction to Advanced RT-11 Programming 1-39

statement in the subroutine. All names of completion routines external to
the routine being coded that are passed to scheduling calls must be speci-
fied in an EXTERNAL statement in the FORTRAN program unit issuing
the call.

A completion routine written in FORTRAN can have a maximum of two
arguments as follows:

Form: SUBROUTINE crtn [(iargl,iarg2)]

where:

crtn is the name of the completion routine

iargl is equivalent to RO on entry to an assembly language com-
pletion routine

iarg2 is equivalent to R1 on entry to an assembly language com-
pletion routine

If an error occurs in a completion routine or in a subroutine at completion
level, the error handler traces back through to the original interruption of
the main program. Thus, the traceback is shown as though the completion
routine were called from the main program. This lets you know where the
main program was executing, so that when an error is fatal, it can be
diagnosed and corrected.

Certain restrictions apply to completion routines that are activated by the
following calls:

INTSET ISDATF
IRCVDC ISPFNC
IRCVDF ISPFNF
IREADC ITIMER
IREADF IWRITC
ISCHED IWRITF
ISDATC MRKT

The restrictions that apply when using these calls are as follows:

® No channels can be allocated by calls to IGETC or freed by calls to
IFREEC from a completion routine. Channels to be used by completion
routines should be allocated and placed in a COMMON block for use by
the routine.

® The completion routine cannot perform any call that requires the use of
the USR, such as LOOKUP and IENTER. See Section 1.2.1.5 for a list of
the SYSLIB functions that call the USR.

* Files that are used by the completion routine must be opened and closed
by the main program. There are, however, no restrictions on the input or
output operations that can be performed in the completion routine. If
many files must be made available to the completion routine, they can be
opened by the main program and saved for later use (without tying up
RT-11 channels) by an ISAVES call. The completion routine can later

1-40 Introduction to Advanced RT-11 Programming

make them available by reattaching the file to a channel with an IRE-
OPN call.

Even if the completion routine itself does not issue any programmed re-
quests, but does perform I/O to a logical unit number through the OTS,
that logical unit number must be opened from the main level. To accom-
plish this, either the first /O access or an OPEN statement must be
issued from main level. A completion routine may not call CLOSE to close
a logical unit.

¢ FORTRAN subroutines are reusable but not reentrant. That is, a given
subroutine can be used many times as a completion routine or as a rou-
tine in the main program, but a subroutine executing as main program
code does not work properly if it is interrupted and then called again at
the completion level. This restriction applies to all subroutines that can
be invoked at the completion level while they are active in the main
program.

e FORTRAN completion routines can be called only by SYSLIB functions
that end in F. Conversely, MACRO completion routines cannot be called
by SYSLIB functions that end in F. Refer to Section 1.1.3.5 for details of
other restrictions on MACRO completion routines.

e Under the SJ monitor, only one completion function should be active at
any time.

1.2.1.3 Device Blocks — A device block is a four-word block of Radix—50
information that specifies a physical device and a file name. In FORTRAN,
you can use one of three different methods to set up this block as follows:

1. You can use the DIMENSION and DATA statements. For example,

DIMENSION IFILE (4)
DATA IFILE/3R8Y s3RFILs3RE »3RKYZ/

2. You can translate the available ASCII file description string into Ra-
dix—50 format, using the SYSLIB calls IRAD50, R50ASC, and RAD50.
For example,

REAL*8 FSPEC
CALL IRADSO (124+'8Y FILE XYZ' s FGPEC)

3. You can use the SYSLIB call ICSI to call the Command String Inter-
preter (CSI) to accept and parse standard RT-11 command strings.

1.2.1.4 INTEGER*4 Support Functions — This section discusses the initializa-
tion of INTEGER*4 variables for the FORTRAN programmer. Section
1.2.6.3 describes the use of INTEGER*4 functions for use by the MACRO
programmer.

When the DATA statement is used to initialize INTEGER*4 variables, it
must specify both the low- and high-order parts. For example, the code

INTEGER*4 J
DATA J/3/

Introduction to Advanced RT-11 Programming 141

Initializes only the first word. The correct way to initialize an INTEGER*4
variable to a constant such as 3 is as follows:

INTEGER*4 J

INTEGER*2 I(2)

EQUIVALENCE (J,I)

DATA I/3:+0/ F'INITIALIZE J TO 3

If you are initializing an INTEGER*4 variable to a negative value such as
—4, the high-order (second word) part must be the continuation of the two’s
complement of the low-order part. For example,

INTEGER*4 J

INTEGER*2 I(2)

EQUIVALENCE (J,I)

DATA I/-4:-1/ PINITIALIZE J TO -4

The following example is suitable for initializing INTEGER*4 arguments
to subprograms:

INTEGER*2 J(2)
DATA J/3:0/ 'LOW ORDERsHIGH ORDER

1.2.1.5 User Service Routine (USR) Requirements — User-written routines
that interface to the FORTRAN Object Time System (OTS) must account
for the location of the RT-11 User Service Routine (USR). The USR occu-
pies 2K words. When your program calls a SYSLIB routine that requests a
USR function (such as IENTER or LOOKUP), or when the USR is invoked
by the FORTRAN OTS, the USR is swapped into memory if it is nonresi-
dent. The FORTRAN OTS is designed so that the USR can swap over it.

If you permit the USR to swap over certain kinds of data and code, you will
obtain unpredictable results. In particular, you should restrict interrupt
service routines and completion routines to locations outside the USR
swapping area. To find the limits of this swapping area, examine the link
map and, if necessary, change the order of object modules and libraries as
specified to the Linker.

Subroutines that require the USR are as follows:

CLOSEC,ICLOSE

GETSTR (only if first I/O operation on logical unit)
ICDFN (single job only)

GTLIN

ICSI

IDELET

IDSTAT

IENTER

IFETCH

IQSET

IRENAM

ITLOCK (only if USR is not in use by another job)
LOCK (only if USR is in a swapping state)
LOOKUP

PUTSTR (only if first I/O operation on logical unit)

1-42 Introduction to Advanced RT-11 Programming

CONTROLLING USR SWAPPING

You can control USR swapping by using the KMON commands SET USR
NOSWAP and SET USR SWAP. The SET USR NOSWAP command pre-
vents swapping and freezes the USR in memory. The command SET USR
SWAP reverses this, allowing the USR to swap under program control.

Alternatively, you can compile your FORTRAN main program with the
/NOSWAP option if you are sure that there is space just below the fore-
ground partition or RMON to make the USR permanent for the duration of
your program. Use this option if your program does not need the 2K words
of memory that the USR occupies. If the INOSWAP option is not specified,
the USR swaps over the 2K words of your program above the base
address — that is, from location 1000(octal) to 11000(octal), which is the
part of a FORTRAN program least likely to violate the USR restrictions.

To prevent USR swapping for part of the program execution time and allow
the USR to swap out at other times, use the LOCK, UNLOCK, and
ITLOCK calls.

The LOCK call locks the USR into main memory and attaches it to the
requesting job. The UNLOCK call allows the USR to swap again and to be
used by another job. The ITLOCK call is used to determine whether an-
other job is already using the USR. If so, the ITLOCK call returns immedi-
ately with an error code. This allows the program to try for a lock, but to
continue with other action if it fails. The LOCK and UNLOCK calls are
used in a foreground program to prevent interference from the background
during initialization and completion phases and to minimize the number of
swaps.

STRATEGIES IN USR SWAPPING

If you decide to change the position of code or data to avoid the USR swap-
ping area, or if you want to move the USR itself, you must consider the
concept of PSECT (program section) ordering.

PSECTSs contain code and data and are identified by names as segments of
the object program. The attributes associated with each PSECT direct the
Linker to combine several separately compiled FORTRAN program units,
assembly language modules, and library routines into an executable pro-
gram.

The order in which program sections are allocated in the executable pro-
gram is the order that they are presented to the Linker. Applications that
are sensitive to this ordering typically separate those sections containing
read-only information (such as executable code and pure data) from impure
sections containing variables.

The main program unit of a FORTRAN program (normally the first object
module in sequence presented to LINK) declares PSECT ordering as shown
in Table 1-6.

The USR can swap over pure code, but must not be loaded over constants or
impure data that can be used as arguments to the USR. The ordering

Introduction to Advanced RT-11 Programming 1-43

Table 1-6: FORTRAN Program PSECT Ordering

Section Name Attributes
OTS$I RW,ILCL,REL,CON
OTS$P RW,D,GBL,REL,OVR
SYS$I RW,ILLCL,REL,CON
USER$I RW,LLCL,REL,CON
$CODE RW,ILLCL,REL,CON
OTS$0 RW,[LLCL,REL,CON
SYS$0 RW,ILLCL,REL,CON
$DATAP RW,D,LCL,REL,CON
OTS$D RW,D,LCL,REL,CON
OTS$S RW,D,LCL,REL,CON
SYS$S RW,D,LCL,REL,CON
$DATA RW,D,LCL,REL,CON
USER$D RW,D,LCL,REL,CON
858. RW,D,GBL,REL,OVR
Other COMMON Blocks RW,D,GBL,REL,OVR

shown in Table 1-6 collects all pure sections before impure data in memory.
The USR can safely swap over sections OTSI, OTSP, SYS$I, USER$I,
and $CODE. When a FORTRAN program is running, the USR will nor-
mally swap starting at the base of section OTS$I. Location 46 of the System
Communication Area contains the address where the USR will swap. If
location 46 is zero, the USR will swap at its default location, below RMON
and any handlers.

See the RT-11/RSTS/E FORTRAN IV User’s Guide for more information
on program sections. The RT-11 Software Support Manual also contains
information on USR swapping and PSECT ordering.

USR LOCKOUT AND TIMING

If one job is using the USR and another job requests it, the second job will
become blocked until the first job releases the USR. The second job may be
locked out for seconds or minutes at a time. Interrupt service and comple-
tion routines can run, but not the mainline code. The timing problems that
arise as a result can be eliminated, or minimized, in one of the following
four ways:

1. Do not use devices with slow directory operations, such as cassettes and
magtapes.

2. Code real-time operations as completion and interrupt service routines
in your foreground job so that a locked out mainline program does not
impact real-time operations.

Separate USR and real-time operations.

4. Use the ITLOCK call and avoid SYSLIB calls that request the USR
while the USR is owned by another job.

Typically, a real-time foreground job can be constructed of (1) an initializa-
tion phase that opens all required channels and begins a real-time opera-
tion, (2) a real-time phase that performs interrupt service and I/O opera-
tions, and (3) a completion phase that halts real-time activity and then

1-44 Introduction to Advanced RT-11 Programming

closes the channels. Maintaining this structure in the foreground allows
the background task to do USR operations during the real-time phase with-
out locking out the foreground. This also simplifies USR swapping since the
USR can swap over the interrupt routines and I/O buffers as long as they
are inactive.

1.2.1.6 Subroutines Requiring Additional Queue Elements — Certain sub-
routines require queue elements for their proper operation. These sub-
routines are as follows:

IRCVD/IRCVDC/IRCVDF/IRCVDW
IREAD/IREADC/IREADF/IREADW
ISCHED
ISDAT/ISDATC/ISDATF/ISDATW
ISLEEP
ISPFN/ISPFNC/ISPFNF/ISPFNW
ITIMER

ITWAIT

IUNTIL
IWRITC/IWRITE/IWRITF/IWRITW
MRKT

MWAIT

One queue element per job is automatically allocated. Issuing more than
one request from the list requires extra queue elements. Additional queue
elements can be allocated through a call to the IQSET function.

1.2.1.7 System Restriction — The following restrictions must be considered
when coding a FORTRAN program that uses SYSLIB.

1. Programs using IPEEK, IPOKE, IPEEKB, IPOKEB, or ISPY to access
system-specific addresses, such as FORTRAN, monitor, or hardware
addresses, are not guaranteed to run under future releases or on differ-
ent configurations. When using these functions, you should document
their use precisely so that you can check your references against the
current documentation. Also, these routines may act differently under
the XM monitor. NOTE: IPEEK and IPOKE are not equivalent to the
programmed requests .PEEK and .POKE.

2. Various functions in SYSLIB return values that are of type integer,
real, and double precision. If you specify an implicit statement that
changes the defaults for external function types, you must explicitly
declare the type of those SYSLIB functions that return integer or real
results. You must also be sure that the arguments to the SYSLIB
routines are the correct type for the routine. Double-precision functions
must always be declared to be type DOUBLE PRECISION (or
REAL*8). Failure to observe this restriction leads to unpredictable re-
sults.

3. All names of completion routines external to the routine being coded
that are passed to scheduling calls (such as ISCHED, ITIMER, and
IREADC) must be specified in an EXTERNAL statement in the FOR-
TRAN program issuing the call.

Introduction to Advanced RT-11 Programming 1-45

4. Certain arguments to SYSLIB calls must be located in such a manner
as to prohibit the RT-11 User Service Routine (USR) from swapping
over them at execution time. This kind of swapping can occur when the
OTS$I section (which contains the all-pure code and data for the mod-
ule) is less than 2K words in length. Swapping in this uncommon situa-
tion can be avoided either by typing the SET USR NOSWAP command
to make the USR resident before starting the job, or by compiling the
mainline routine with a /NOSWAP option. You can also use the linker
/BOUNDARY option to make OTS$0O start at word boundary 11000(oc-
tal). (This problem generally occurs only with small FORTRAN pro-
grams.)

In FORTRAN 1V, program sections (PSECTSs) are used to collect code
and data into appropriate areas of memory. If the RT-11 USR is needed
and is not resident, it swaps over a FORTRAN program starting at the
symbol OTS$I for 2K words of memory.

5. Certain restrictions apply when using completion or interrupt routines.
See Section 1.2.1.2 for a description of these restrictions.

6. Unless explicitly stated, null arguments should not be used in calls to
SYSLIB routines.

7. If several arguments to a call are listed as being optional, they must
either be all present or all omitted.

1.2.2 Calling SYSLIB Subroutines

SYSLIB includes both function subprograms and callable subroutines,
which are called in the same manner as user-written subroutines.

Function subprograms receive control by means of a function reference as
follows:

i = function name ([arguments])

The returned function value may be an error code, or it may be information
that is useful to the calling routine. See the description of the particular
function for the meaning of the returned function value.

Call subroutines are invoked by means of a CALL statement as follows:
CALL subroutine name [(arguments)]

All subroutines in SYSLIB can be called as FUNCTION programs if a
return value is desired, or as SUBROUTINE programs if no return value is
desired. For example, the LOCK subroutine can be referenced as either

CALL LOCK
or
I = LOCK()

Some subroutines have two acceptable formats. For example, the subrou-
tine CLOSEC can also be specified as ICLOSE because error codes are
returned by the subroutine and require an integer return to be useful.

1-46 Introduction to Advanced RT-11 Programming

Quoted-string literals are useful as arguments of calls to routines in SYS-
LIB, notably the character string routines. These literals are allowed in
subroutine and function calls (see Section 1.2.7.3).

1.2.3 FORTRAN/MACRO Interface

FORTRAN calling routines and subroutines follow a well-defined set of
conventions regarding transfer of control, transfer of information, memory
usage, and register usage. By adhering to these conventions a MACRO
programmer can write FORTRAN-callable routines such as those in SYS-
LIB.

Control is transferred to a subroutine by
JSR PC/SUBR

When control passes to the subroutine SUBR, Register 5 (R5) points to an
argument block that has the format shown in Figure 1-5.

Figure 1-5: Subroutine Argument Block

R5 =>
No. of

Reserve
served arguments

Address of Argument 1

Address of Argument 2

Address of Argument n

Null arguments in CALL statements must be entered with successive com-
mas, for example, CALL SUBR (A,,B). The value —1 is stored in the argu-
ment block as the address of a null argument.

The lower byte of the first word of the argument block contains the number
of arguments that are passed to the subroutine. The rest of the argument
block contains the addresses of those arguments. The argument block is
n+1 words long for n arguments.

The program counter is the linkage register. The subroutine obtains its
arguments through R5. In FORTRAN, the calling program saves the regis-
ters, and the subroutine leaves the contents of the stack pointer intact
before returning to the calling program. The RETURN statement of the
subroutine is replaced by

RTS PC

Introduction to Advanced RT-11 Programming 1-47

The name of the subroutine must be declared global with the .GLOBL
directive in the calling program or with the double colon (::) construction in
the called program.

NOTE

You must make sure that the called program does not modify
the argument block passed by the calling program to a sub-
program.

1.2.3.1 Subroutine Register Usage — A subroutine that is called by a FOR-
TRAN program does not have to preserve any registers. However, each
push onto the stack must be matched by a pop off the stack before exiting
from the routine.

User-written assembly language programs must preserve any pertinent
registers before calling FORTRAN subprograms or SYSLIB routines. They
must then restore registers after the subroutine returns.

Function subroutines return a single result in a register. Table 1-7 shows
the register assignments for returning the different variable types.

Table 1-7: Return Value Conventions for Function Subroutines

Type Result Placed In

INTEGER*2 RO

LOGICAL*1

INTEGER*4 RO low-order result

LOGICAL*4 : R1 high-order result

REAL RO high-order result (including sign and exponent)
R1 low-order result

DOUBLE PRECISION RO highest-order result (including sign and exponent)

R1 next higher order
R2 next higher order
R3 lowest-order result

COMPLEX RO high-order real result
R1 low-order real result
R2 high-order imaginary result
R3 low-order imaginary result

Note that floating-point results are returned in the general purpose regis-
ters and not in the FPU registers. Assembly language subprograms that
use the FP11 Floating Point Unit may be required to save and restore the
FPU status.

1.2.3.2 FORTRAN Programs Calling MACRO Subroutines — FORTRAN pro-
grams can call MACRO subroutines, but several rules must be followed.
For example, the following program named INIARR is a MACRO subrou-
tine that can be called from a FORTRAN program.

1-48 Introduction to Advanced RT-11 Programming

+TITLE INIARR

+GLOBL INIARR

i FILENAME INIARR.MAC
INIARR: TST (R3)+ iSKIP ARGUMENT COUNT
MoV (RS)+4R2 iPUT ADDRESS OF ARRAY INTO RZ
MOV B(RS)+R1 iPUT IVAL IN Ri
Moy B(R3)+RO FAND COUNT INTO RO
BLE RETURN iQUIT IF COUNT IS NDT POSITIVE
1% Mov R1s(R2)+ FINITIALIZE ARRAY
DEC RO SDECREMENT COUNT
BNE 14 iCONTINUE UNTIL ZERO
RETURN: RTS FC
+END

A FORTRAN program calls the preceding routine with
CALL INIARR (IAR,IVAL,N)
where:

INIARR is the name of the subroutine

IAR is the name of the array to initialize
IVAL is the value the array is initialized to
N is the number of elements to initialize

This program illustrates the rules that must be observed when calling a
MACRO program. The name of the subroutine is made global by using the
.GLOBL directive.

Register 5 (R5) is used to pass the arguments. Thus, in the program
INIARR, the argument block would appear as shown in Figure 1-6.

Figure 1-6: Argument Block for Program INIARR

R6 =>

Address of |AR

Address of IVAL

Address of N

Registers RO through R4 can be freely used since the calling program saves
them. Once the arguments are retrieved, you can also use R5.

Introduction to Advanced RT-11 Programming 1—49

On completion, the subroutine returns to the calling program through an
RTS PC. If your MACRO program pushes data on the stack, you must make
sure that all data is popped off the stack before the RTS PC is executed.

The following FORTRAN program named DOFOR calls the subroutine
INIARR.

PROGRAM DOFOR

INTEGER#*2Z ARRAY

DIMENSION ARRAY (10)

N=Z

DO 20 IVAL=1,10

CALL INIARR (ARRAY »IVAL +N)

WRITE (5,100) (ARRAY(I)»I=14N)
20 CONTINUE
100 FORMAT (I3)

STOP

END

After you compile and link both programs, run the program by typing

+RUN DOFOR @ED

The initialized array will be output to the terminal as follows:

DOUODAONNGOUUNLEDEWWRNMN-—

1.2.3.3 MACRO Routines Calling FORTRAN Programs — If you want to call
FORTRAN subroutines from a MACRO program, create a dummy main
program such as

PROGRAM FORINT
CALL CALMAC
STOP

END

1-50 Introduction to Advanced RT-11 Programming

where CALMAC is the name of a MACRO program that can call FOR-
TRAN or MACRO routines.

Creating a dummy program causes the FORTRAN main program to per-
form the initialization necessary for FORTRAN subroutines.

The following MACRO program named CALMAC calls a FORTRAN sub-
routine named MAXMIN.

+TITLE CALMAC
+GLOBL MAXMIN

CALMAC: ¢
MOV #ARGBLK /RO FPOINT RS TO ARGUMENT BLOCK
JSR PCsMAXMIN iCALL MAXMIN
rRTS PC
I: +WORD 28. iVALUE OF FIRST ARGUMENT
NH +WORD 7G. iUALUE OF SECOND ARGUMENT
ARGBLK: +WORD 2 ’ iNUMBER OF ARGUMENTS
+WORD I iADDRESS OF FIRST ARGUMENT
+WORD J FADDRESS OF SECOND ARGUMENT
+END

You must set up the argument block either on the stack or in a separate
area in your MACRO program. You then point R5 to the top of the argu-
ment block prior to calling the FORTRAN subroutine with a JSR
PC,MAXMIN. In the above program, the argument block is set up in an
area of your program.

The following program named STAKEM performs the same operation as
the program CALMAC, except that it places the arguments on the stack.

+TITLE STAKEM
+GLOBL MAXMIN,STAKEM

STAKEM: MOV #.s~(BP)
MoV #14~-(8P)
Mov #24+-(5P)
Moy SP RS
JSR PCsMAXMIN
ADD #6 2 5P
RTS PC

I: +WORD 28.

J +WORD 76,
+END

If the argument block is set up on the stack, be sure that you remove the
arguments from the stack prior to the execution of the RTS PC. In general,
before calling the FORTRAN subroutine, you must save all pertinent regis-
ters. You do not know which registers the FORTRAN subroutine is using.
The stack pointer remains unchanged across the call.

The name of the FORTRAN subroutine that the MACRO program calls
must be defined as a global. In the FORTRAN subroutine, execute normal
FORTRAN statements and return to the MACRO program with a RE-
TURN statement. "

Introduction to Advanced RT-11 Programming 1-51

The following program is the FORTRAN subroutine MAXMIN.

SUBROUTINE MAXMINCINI »INZ)
INTEGER BIGSMALL
IF (INL1.LT.INZ) GO TO 10
BIG=INI1
SMALL=INZ2
TYPE 204BIG
TYPE 30,5MALL
RETURN
10 BIG=IN2
SMALL=IN1
TYPE 20,BIG
TYPE 30,8SMALL
20 FORMAT (’ THE BIGGER NUMBER IS ‘,IZ2)
30 FORMAT (° THE SMALLER NUMBER IS 'IZ)
RETURN
END

After assembling and linking the programs, using either the program CAL-
MAC or STAKEM, type

+RUN FORINT GED

The program executes as follows:

THE BIGGER NUMBER IS 76
THE SMALLER NUMBER IS 2B
STOP --

1.2.4 FORTRAN Programs in a Foreground/Background
Environment

FORTRAN programs can be run in a foreground/background environment,
which permits efficient use of CPU execution time. (See Chapter 15 of
Introduction to RT-11 for a description of running in an FB environment.)
The basic steps in running FORTRAN programs that use the FB monitor
are described in this section.

Before running your foreground program,.you must use the LOAD com-
mand to load the device handlers required by the foreground job. The device
handlers are placed in memory between RMON and the USR and KMON,
which causes USR and KMON to move down in memory.

Next, you use the FRUN command to load your foreground program in
memory between the device handlers and the USR, which causes the USR
and KMON to move further down in memory. It is important that you
allocate workspace when running a FORTRAN program in the foreground.
You do this with the /BUFFER:n option of the FRUN command. Also make
sure that any FORTRAN program you run in the foreground has adequate
stack space. You can use one of the options supported by the linker (see the
RT-11 System Utilities Manual).

The background area must be at least 4K words long to accommodate the
USR and KMON. Until you run a background job with the RUN command,
KMON is the background job.

1-52 Introduction to Advanced RT-11 Programming

When the USR is required, a 2K-word area must be set up in each job for
the swapping to occur correctly — that is, there must be space for 2K
words in the background area and 2K words in the foreground area. USR
swapping is explained in Section 1.2.1.5.

1.2.4.1 Calculating Workspace for a FORTRAN Foreground Program — Addi-
tional workspace must be allocated in memory when running a FORTRAN
program in the foreground of a foreground/background environment. For a
foreground job, the space is allocated by the /BUFFER:n option of the
FRUN command. (A background job uses whatever space is available be-
tween its high limit and the system’s low limit.) When you allocate addi-
tional workspace in memory to run a FORTRAN program in the fore-
ground, calculate the space required by using the following formula:

n = [1/2[504 + (35*N) + (R—136) + A*512]]

where:

n number of decimal words

A = the maximum number of files open at any one time. If double
buffering is used, A should be multiplied by 2

N = the maximum number of simultaneously open channels (logical
unit numbers); the default is 6

R = maximum formatted record length; the default is 136 charac-
ters

This formula must be modified for certain SYSLIB functions.

The IQSET function requires the formula to include additional space for
queue elements (qcount) as follows:

n = [1/2[504 + (35*N) + (R-136) + A*512]] +[10*gcount]

The ICDFN function requires the formula to include additional space for
the integer number of channels (num) as follows:

n = [1/2[504 +(35*N) +(R-136) + A*512]] +[6*num]

The INTSET function requires the formula to include additional space for
the number of INTSET calls issued in the program as follows:

n = [1/2[504+(35*N) + (R—136) + A*512]]+ [25*INTSET

Any calls, including INTSET, that invoke completion routines must include
64(decimal) words plus the number of words needed to allocate the second
record buffer (default is 68[decimal] words). The length of the record buffer
is controlled by the /RECORD option to the FORTRAN compiler. If the
/RECORD option is not used, the allocation in the formula must be 136(dec-
imal) bytes, or the length that was set at FORTRAN installation time. This
modifies the formula as follows:

n = [1/2[504 + (35*N)+ (R-136) + A*512]] +[64 + R/2]

Introduction to Advanced RT-11 Programming 1-53

If the /BUFFER option does not allocate enough space in the foreground on
the initial call to a completion routine, the following message appears:

PErr O Non-FORTRAN error call

This message also appears if there is not enough free memory for the back-
ground job or if a completion routine in the single-job monitor is activated
during another completion routine. In the latter case, the job aborts; you
should use the FB monitor to run multiple active completion routines.

1.2.4.2 Running a FORTRAN Program Iin a Foreground/Background
Environment — This section briefly describes the procedure for running two
FORTRAN programs, one in the background and one in the foreground.

The background program named BACK is as follows:

PROGRAM BACKGROUND

IMPLICIT INTEGER(O)

CALL IPOKE("d44,"10000.0R.IPEEK("44))
100 CALL PRINT(‘HELLO FROM THE BACKGROUND)

ICHAR=ITTINR)

OCHAR=ITTOUR(ICHAR)

GO TO 100

END

This program prints the message “HELLO FROM THE BACKGROUND”
and will print the message each time you input a character at the terminal.

The foreground program named FORE is as follows:

PROGRAM FOREGROUND

IMPLICIT INTEGER(OD)

CALL IPOKE("44,"10000,0R.IPEEK("44))
100 CALL PRINT(‘HELLO FROM THE FOREGROUND')

ICHAR=ITTINR()

OCHAR=ITTOUR(ICHAR)

GO TO 100

END

After compiling both programs, link them. Link the foreground program
using the LINK command with the /FOREGROUND option. This option
produces a relocatable load module with a .REL file type. For example,

+LINK/FOREGROUND FORE GED

Then you can assign the device that will be used for the output of the
foreground program. You must also load into memory the peripheral device
handlers needed by the foreground program.

The command FRUN loads and starts execution of a .REL program as the
foreground job. If the command

+FRUN FORE GED

is typed at this point, the error message

PErr 62 FORTRAN start fail

1-54 Introduction to Advanced RT-11 Programming

" will be displayed. This message indicates that additional workspace alloca-
tion is required and that the /BUFFER option must be used. (Refer to the
previous section for the formula to calculate the additional space needed.)
Thus, the command would be typed as follows:

+FRUN FORE/BUFFER:7G0

Execution of this command results in the following output at the terminal:

Fo
HELLO FROM THE FOREGROUND
B>

+

The system first identifies the message as foreground output. Then the
foreground job executes and outputs its message. The background monitor
next prints the characters B> and a period, indicating that control has
returned to monitor command mode. Command input remains directed to
the background job. By typing

+RUN BACK

the message from the background job will be displayed
HELLD FROM THE BACKGROUND

Each time a character is input to the terminal, say an “L”, the message will
be repeated.

LHELLO FROM THE BACKGROUND

Use the CTRL/F command to direct terminal input to the foreground job.
The system prints F> to remind you that you are now directing input to the
foreground job. When you type a character, such as “Y”, the foreground job
message will be displayed.

F*
YHELLO FROM THE FOREGROUND

Type a CTRL/B to return to the background job or a CTRL/C to return to
monitor command mode. If you are returning to a background environ-
ment, you should unload the foreground job and any handlers to reclaim
memory space for background use.

1.2.5 Linking with FORLIB

Normally, the default system library file (SYSLIB.OBJ) also includes the
overlay handlers and the appropriate FORTRAN run-time system routines.

To add FORLIB.OBJ modules to the default library SYSLIB.OBJ, use the
following command:

+LIBRARY/INSERT/REMOVE SYSLIB FORLIB

Global? $0OVRH GED
Global?

Introduction to Advanced RT-11 Programming 1-55

1.2.6 SYSLIB Services Not Provided by Programmed Requests

SYSLIB provides many services that are not provided by programmed re-
quests. Such services are as follows:

* Time conversion and date access

® Program suspension

® Two-word integer support INTEGER*4)
® Radix—50 conversion

® Character string manipulation

1.2.6.1 Time Conversion and Date Access — Several calls allow you to per-
form time conversions and access the system date.

You use the CVTTIM call to convert a two-word internal format time to
hours, minutes, seconds, and ticks. The JTIME call converts a time given in
hours, minutes, seconds, and ticks into the internal two-word time format.

If you need to print out the time, the TIMASC call converts the time re-
turned by the .GTIM programmed request into an eight-character ASCII
string; the TIME call returns the current time of day as an eight-character
ASCII string.

The current system date can be accessed by your program with a DATE
call. The date is returned as a string value. IDATE performs similarly, but
returns an integer value. DATE and IDATE are part of FORLIB.OBJ.

1.2.6.2 Program Suspension — You suspend execution of a running program
for a specified number of ticks with the ITWAIT call. You use the ISLEEP
call to suspend a running program for a specified number of hours, minutes,
seconds, and ticks. The IUNTIL call allows you to suspend job execution
until a specific time of day, which is given to the routine in hours, minutes,
seconds, and ticks. You can use this function to periodically collect data and
to stop processing between acquisitions.

1.2.6.3 Two-Word Integer Support (INTEGER*4) — You can make calls to SYS-
LIB to manipulate a 32-bit integer that uses two words of storage. The first
word contains the low-order part of the value and the second word contains
the sign and the high-order part of the value. The range of numbers that is
represented is —2(31) to 2(31)-1. This format differs from the two-word
internal time format that stores the high-order part of the value in the first
word and the low-order part in the second word. Table 1-8 shows the calls
that you can use to convert from one format to another.

Calls are also available for you to perform arithmetic operations on
INTEGER*4 values, move a value to a variable, and convert a two-word
internal time format to and from an INTEGER*4 value.

1-56 Introduction to Advanced RT-11 Programming

Table 1-8: SYSLIB Conversion Calls

From To Call
INTEGER*2 (16-bit integer) INTEGER*4 JICVT
INTEGER*4 (32-bit integer) INTEGER*2 LJCVT
INTEGER*4 REAL*4 AJFLT/IAJFLT
INTEGER*4 REAL*8 DJFLT/IDJFLT
REAL*4 (2-word floating point) INTEGER*2 JAFIX
REAL*8 (4-word floating point) INTEGER*4 JDFIX

1.2.6.4 Radix—50 Conversion — You can convert ASCII characters to or from
Radix—50.

IRAD50 converts a specified number of characters of Radix—50 and returns
the number of characters converted as a function result. RAD50 encodes
RT-11 file descriptors in Radix—50 notation. R50ASC converts a specified
number of Radix—50 characters to ASCII.

1.2.6.5 Character String Operations — SYSLIB provides character string
functions that perform string operations such as concatenation, compari-
son, copying, replacing, and computing the number of characters in a
string. For example, the following program will concatenate two character
strings.

LTITLE GETTOO

+GLOBL CONCAT
+MCALL +PRINT«EXIT

START: MOV #ARGBLK sRS
JSR PC+CONCAT
+PRINT #STRCON
JEXIT

ARGBLK: +WORD 3

+WORD STRNG1L

+WORD BTRNGZ

+WORD STRCON
STRNG1: .ASCIZ /RESEARCH AND/
STRNGZ2: .ASBCIZ / DEVELOPMENT/
STRCON: .BLKB 31

+EVEN

+END START

Running this program results in the concatenation of string 1 and string 2,
and the output at the terminal is

RESEARCH AND DEVELOPMENT

The following section describes character string functions in detail.

1.2.7 Character String Functions

The SYSLIB character string functions and routines provide variable-
length string support for RT-11 FORTRAN and for MACRO programs.
SYSLIB calls perform the following character string operations:

Introduction to Advanced RT-11 Programming 1-57

Call Operation
GETSTR Reads character strings from a specified FORTRAN logical
unit
PUTSTR Writes character strings to a specified FORTRAN logical unit
CONCAT Concatenates variable-length strings
INDEX Returns the position of one string in another
INSERT Inserts one string into another
LEN Returns the length of a string
REPEAT Repeats a character string
SCOMP Compares two strings
SCOPY Copies a character string
STRPAD Pads a string with blanks on the right
SUBSTR Copies a substring from a string
TRANSL Performs character modification
TRIM Removes trailing blanks
VERIFY Verifies the presence of characters in a string

Strings are stored in LOGICAL*1 arrays that you define and dimension.
These arrays store strings in ASCII format as one character per array
element plus a zero element to indicate the current end of the string.

The length of a string can vary at execution time from zero characters to
one less than the size of the array that stores the string. The maximum size
of any string is 32767 characters. Strings can contain any of the seven-bit
ASCII characters except null(0), since the null character is used to mark
the end of the string. The inclusion of a terminating zero byte constitutes
an “ASCIZ” format, which is the format set up by a MACRO assembler
directive .ASCIZ. This directive automatically sets up strings with a termi-
nating zero byte. Bit 7 of each character must be cleared. Therefore, the
valid characters are those whose decimal representations range from 1 to
127, inclusive.

The ASCII code used in this string package is the same as that employed by
FORTRAN for A-type FORMAT items, ENCODE/DECODE strings, and
object-time format strings. Whenever quoted strings are used as arguments
in the CALL statement, ASCIZ strings are generated for these routines by
the FORTRAN compiler. Note that a null string (a string containing no
characters) can be represented in FORTRAN by a variable or constant of
any type that contains the value zero, or by a LOGICAL variable or con-
stant with the .FALSE. value.

In many routines, it is difficult to predict the length of the string produced.
To prevent a string from overflowing the array that contains it, you can

1-58 Introduction to Advanced RT-11 Programming

specify an optional integer argument to the subroutine. This argument,
called len, limits the length of an output string to the value specified for len
plus one (for the null terminator), so that the array receiving the result
must be at least len plus one elements in size.

NOTE

If the string is larger than the array, other data may be
destroyed and cause unpredictable results.

When len is specified, you can also include the optional argument called
err. Err is a logical variable that should be initialized by the FORTRAN
program to the FALSE. value. If a string function is given the arguments
len and err, and len is actually used to limit the length of the string result,
then err is set to the .TRUE. value. If len is not used to truncate the string,
err is unchanged — that is, it retains a .FALSE. value.

The argument len can appear alone. However, len must appear if err is
specified. The err argument should be used for GETSTR and PUTSTR.

Several routines use the concept of character position. Each character in a
string is assigned a position number. The first character in a string is in
position one. Each subsequent character has a position number one greater
than the character that precedes it.

1.2.7.1 Allocating Character String Variables — A one-dimensional LOGI-
CAL*1 array can contain a single string whose length can vary from zero
characters to one fewer than the dimensioned length of the array. For ex-
ample,

LOGICAL*1 AW43) IALLOCATE SPACE FOR STRING VARIABLE A

allows array A to be used as a string variable that can contain a string of
44 or fewer characters. Similarly, a two-dimensional LOGICAL*1 array
can be used to contain a one-dimensional array of strings. Each string in
the array can have a length up to one less than the first dimension of the
LOGICAL*1 array. There can be as many strings as the number specified
for the second dimension of the LOGICAL*1 array. For example,

LOGICAL*1 W(21,10) IALLOCATE AN ARRAY OF STRINGS

creates string array W that has ten string elements, each of which can
contain up to 20 characters. String I in array W is referenced in subroutine
or function calls as W(1,D).

The following example allocates a two-dimensional string array.

LOGICAL*1 T(14:5:7) 1ALLDCATE A 5 BY 7 ARRAY OF 13-CHARACTER
ISTRINGS

Each string in array T may vary in length to a maximum of 13 characters.
String LJ of the array can be referenced as T(1,1,J). Note that T is the same
as T(1,1,1). This dimensioning process can create string arrays of up to six
dimensions (represented by LOGICAL*1 arrays of up to seven dimensions).

Introduction to Advanced RT-11 Programming 1-59

1.2.7.2 Passing Strings to Subprograms — There are three ways to pass
strings to subprograms.

1. LOGICAL*1 arrays that contain strings can be placed in a COMMON
block and referenced by any or all routines with a similar common
declaration. However, when you place a LOGICAL*1 array in a com-
mon block, make sure that the array is even in length, that odd-length
arrays are paired to result in an overall even length, or that the strings
are together as the last elements in the COMMON block. Otherwise, all
succeeding variables in the COMMON block may be assigned odd ad-
dresses.

A LOGICAL*1 array has an odd length only if the product of its dimen-
sions is odd. For example,

LOGICAL*1 B(10+7) 1(10%7) = 705 EVEN LENGTH
LOGICAL*1 H (21) 121 IS AN DODD LENGTH

These might be handled as follows:
COMMON A1 A2 +A3(10)+H(21) 'PLACE ODD-SIZED ARRAY AT END

or

COMMON A1,AZ2,H(21):H1(7)+A3(10) !PAIR ODD-SIZE ARRAYS H AND Hi
These restrictions apply only to LOGICAL*1 variables and arrays.

2. A single string can be passed by using its array name as an argument.
For example,

LOGICAL*1 A(Z21) ISTRING VARIABLE A, 20 CHARACTERS MAXIMUM
CALL SUBR(A)

passes string A to subroutine SUBR.

3. If the calling program has declared a multidimensional array, and only
one string of that array is to be passed to a subroutine, then the subrou-
tine call should specify the first element of the string to be passed (this
requires that the first dimension of the array equals the maximum
length of each string).

For example,

LOGICAL*1 NAMES (B81,20) !20 NAMES, 80 CHARACTERS EACH
LOGICAL*1 ERR

.

DO 10 NAMNUM=1,20 IGET ALL 20 NAMES
10 CALL GETSTR (5 ,NAMES(1 sNAMNUM) ,B0ERR) |FROM TT

If the maximum length of a string argument is unknown in a subroutine or
function, or if the routine is used to handle many different lengths, the
dummy argument in the routine should be declared as a LOGICAL*1 array
with a dimension of one, such as LOGICAL*1 ARG(1). In this case, the
string routines correctly determine the length of ARG whenever it is used,

1-80 Introduction to Advanced RT-11 Programming

but it is not possible to determine the maximum size of any string that can
be stored in ARG. If a multidimensional array of strings is passed to a
routine, it must be declared in the called program with the same dimen-
sions that were specified in the calling program.

NOTE

The length argument specified in many of the character
string functions refers to the maximum length of the string
excluding the necessary null byte terminator. The length of
the LOGICAL*1 array to receive the string must be at least
one greater than the length argument.

1.2.7.3 Using Quoted-String Literals — You can use quoted strings as argu-
ments to any of the string routines that are invoked as functions or with
the CALL statement. For example,

CALL SCOMP(NAME:’SMYTHE» R’ M)

compares the string in the array NAME to the constant string SMYTHE, R
and sets the value of the integer variable accordingly.

1.2.8 System Subroutine Summary

Table 1-9 lists the SYSLIB subroutines alphabetically within categories,
the sections in which they are located, and a brief description of each sub-
routine. Those subroutines prefaced with an asterisk (*) are allowed only in
a foreground/background environment, under either the FB or XM monitor.
The SYSLIB subroutines do not support the XM monitor mapping pro-
grammed requests. Use FORTRAN virtual arrays to access extended
memory.

Table 1-9: Summary of SYSLIB Subroutines

Name Section Description

File-Oriented Operations

CLOSEC, 3.3 Closes the specified channel.

ICLOSE

IDELET 3.22 Deletes a file from the specified device.

IENTER 3.25 Creates a new file for output.

IFPROT 3.27 Changes the file’s protection.

IRENAM 3.46 Changes the name of the indicated file.

ISFDAT 3.53 Changes the file’s creation date.

LOOKUP 3.79 Opens an existing file for input and/or output via the speci-

fied channel.

(continued on next page)

Introduction to Advanced RT-11 Programming 1-61

Table 1-9: Summary of SYSLIB Subroutines (Cont.)

Name Section Description

Data Transfer Operations

IABTIO 3.12 Aborts I/O operations on a specified channel.
GTLIN 3.11 Transfers a line of input from the console terminal or indi-
rect file (if active) to the user program.

*IRCVD 3.44 Receives data. Allows a job to read messages or data sent by
*[RCVDC another job ‘in an FB environment. The four modes corre-
*IRCVDF spond to the IREAD, IREADC, IREADF, and IREADW
*IRCVDW modes.

IREAD 3.45 Transfers data from a file to a memory buffer and returns

control to the user program when the request is entered in
the I/O queue. No special action is taken upon completion of
1/0.

IREADC 3.45 Transfers data from a file to a memory buffer and returns
control to the user program when the request is entered in
the 1/0 queue. Upon completion of the read, control transfers
to the assembly language routine specified in the IREADC
function call.

IREADF 3.45 Transfers data from a file to a memory buffer and returns
control to the user program when the request is entered in
the I/O queue. Upon completion of the read, control transfers
to the FORTRAN subroutine specified in the IREADF func-

tion call.
IREADW 3.45 Transfers data from a file to a memory buffer and returns
control to the program only after the transfer is complete.
*[SDAT 3.561 Allows the user to send messages or data to the other job in
*ISDATC an FB environment. The four functions correspond to the
*ISDATF IWRITE, IWRITC, IWRITF, and IWRITW modes.
*ISDATW
ITTINR 3.59 Gets one character from the console keyboard.
ITTOUR 3.60 Transfers one character to the console terminal.
IWAIT 3.64 Waits for completion of all I/O on a specified channel (com-
monly used with the IREAD and IWRITE functions).
IWRITC 3.65 Transfers data to a file and returns control to the user pro-

gram when the request is entered in the I/O queue. Upon
completion of the write, control transfers to the assembly
language routine specified in the IWRITC function call.

IWRITE 3.65 Transfers data to a file and returns control to the user pro-
gram when the request is entered in the /O queue. No spe-
cial action is taken upon completion of the I/0.

IWRITF 3.65 Transfers data to a file and returns control to the user pro-
gram when the request is entered in the I/O queue. Upon
completion of the write, control transfers to the FORTRAN
subroutine specified in the IWRITF function call.

IWRITW 3.65 Transfers data to a file and returns control to the user pro-
gram only after the transfer is complete.

* FB and XM monitors only. (continued on next page)

1-62 Introduction to Advanced RT-11 Programming

Table 1-9:

Summary of SYSLIB Subroutines (Cont.)

Name Section Description

TMTATCH 3.81 Attaches a particular terminal in a multiterminal environ-
ment.

+tMTDTCH 3.82 Detaches a particular terminal in a multiterminal environ-
ment.

TMTGET 3.83 Provides information about a particular terminal in a multi-
terminal system.

TMTIN 3.84 Transfers characters from a specific terminal to the user pro-
gram in a multiterminal system.

tMTOUT 3.85 Transfers characters to a specific terminal in a multitermi-
nal system.

tMTPRNT 3.86 Prints a message to a specific terminal in a multiterminal
system.

tMTRCTO 3.87 Enables output to terminal by canceling the effect of a previ-
ously typed CTRL/O.

TMTSET 3.88 Sets terminal and line characteristics in a multiterminal
system.

tMTSTAT 3.89 Returns multiterminal system status.

*MWAIT 3.90 Waits for messages to be processed.

PRINT 391 Outputs an ASCII string to the console terminal.

Channel-Oriented Operations

ICDFN
*ICHCPY

ICSTAT
IFREEC

IGETC

ILUN

IREOPN

ISAVES

PURGE

3.16
3.17

3.21
3.28

3.29

3.33

3.47

3.48

3.92

Defines additional I/O channels.

Allows access to files currently open in another job’s envi-
ronment.

Returns the status of a specified channel.

Returns the specified RT-11 channel to the available pool of
channels for the FORTRAN I/O system.

Allocates an RT-11 channel and informs the FORTRAN /O
system of its use.

Returns the RT-11 channel number with which a FOR-
TRAN logical unit is associated.

Restores the parameters stored via an ISAVES function and
reopens the channel for I/0.

Stores five words of channel status information into a user-
specified array and deactivates the channel.

Deactivates a channel.

Device and File Specifications

TIASIGN 3.15 Sets information in the FORTRAN logical unit table.
ICSI 3.20 Calls the RT—11 CSI in special mode to decode file specifica-
tions and options.
t With multiterminal support only. (continued on next page)

* FB and XM monitors only.

Introduction to Advanced RT-11 Programming 1-63

Table 1-9: Summary of SYSLIB Subroutines (Cont.)

Name Section

Description

Timer Support Operations

CVTTIM 3.5
GTIM 3.9
ICMKT 3.19
ISCHED 3.49
ISDTTM 3.52
tISLEEP 3.54
ITIMER 3.57
tITWAIT 3.61
$+IUNTIL 3.62
JTIME 3.76
MRKT 3.80
SECNDS 3.103
TIMASC 3.108
TIME 3.109

Converts a two-word }rcernal format time to hours, minutes,
seconds, and ticks.

Gets time of day.

Cancels an unexpired ISCHED, ITIMER, or MRKT request
(valid under FB and XM, and for SJ monitors with timer
support, a SYSGEN option).

Schedules the specified FORTRAN subroutine to be entered
at the specified time of day as an asynchronous completion
routine (valid under FB and XM, and for SJ monitors with
timer support, a special feature).

Changes the system date and time.

Suspends main program execution of the running job for a
specified amount of time; completion routines continue to
run.

Schedules the specified FORTRAN subroutine to be entered
as an asynchronous completion routine when the time inter-
val specified has elapsed (valid under FB and XM, and for
SJ monitors with timer support, a special feature).

Suspends the running job for a specified amount of time;
completion routines continue to run.

Suspends the main program execution of the running job
until a specified time of day; completion routines continue to
run.

Converts hours, minutes, seconds, and ticks into two-word
internal format time.

Schedules an assembly language routine to be activated as
an asynchronous completion routine after a specified inter-
val (valid under FB and XM, and for SJ monitors with timer
support, a special feature).

Returns the current system time in seconds past midnight
minus the value of a specified argument.

Converts a specified two-word internal format time into an
eight-character ASCII string.

Returns the current system time of day as an eight-charac-
ter ASCII string.

RT-11 Services
CHAIN 3.2

*DEVICE 3.6

GTJB,IGTJB 3.10
IDSTAT 3.24

Chains to another program (from the background job only).

Specifies actions to be taken on normal or abnormal pro-
gram termination, such as turning off interrupt enable on
user-programmed devices.

Returns the parameters of the specified job.

Returns the status of the speciffied device.

* SYSGEN option in SJ monitor. (continued on next page)

* FB and XM monitors only.

1-64 Introduction to Advanced RT-11 Programming

Table 1-9: Summary of SYSLIB Subroutines (Cont.)

Name Section Description

IFETCH 3.26 Loads a device handler into memory.

IQSET 3.42 Expands the size of the RT-11 monitor queue from the free
space managed by the FORTRAN system.

ISPFN 3.55 Issues special function requests to various handlers, such as

ISPFCN magtape. The four modes correspond to the IWRITE,

ISPFNF IWRITC, IWRITF, and IWRITW modes.

ISPFNW

*ITLOCK 3.58 Indicates whether the USR is currently in use by another job
and performs a LOCK if the USR is available.

LOCK 3.78 Makes the RT-11 monitor User Service Routine (USR) per-

manently resident until an UNLOCK function is executed.
If necessary, a portion of the user’s program is swapped out
to make room for the USR.

RCHAIN 3.96 Allows a program to access variables passed across a chain.

RCTRLO 3.97 Enables output to the terminal by canceling the effect of a
previously typed CTRL/O.

*RESUME 3.99 Causes the main program execution of a job to resume at the
point it was suspended by a SUSPND function call.

SCCA 3.100 Intercepts a CTRL/C command initiated at the console ter-
minal.

SETCMD 3.104 Passes command lines to the keyboard monitor for execution
after the program exits.

*SUSPND 3.107 Suspends main program execution of the running job; com-
pletion routines continue to execute.

UNLOCK 3.112 Releases the USR if a LOCK was performed; the user pro-

gram is swapped in if required.

INTEGER*4 Support Functions

AJFLT 3.1 Converts a specified INTEGER*4 value to REAL*4 and re-
turns the result as the function value.

DJFLT 3.7 Converts a specified INTEGER*4 value to REAL*8 and re-
turns the result as the function value.

IAJFLT 3.14 Converts a specified INTEGER*4 value to REAL*4 and
stores the result.

IDJFLT 3.23 Converts a specified INTEGER*4 value to REAL*8 and
stores the result.

IJCVT 3.32 Converts a specified INTEGER*4 value to INTEGER*2.

JADD 3.66 Computes the sum of two INTEGER*4 values.

JAFIX 3.67 Converts a REAL*4 value to INTEGER*4.

JCMP 3.68 Compares two INTEGER*4 values and returns an
INTEGER*2 value that reflects the signed comparison re-
sult.

JDFIX 3.69 Converts a REAL*8 value to INTEGER*4.

* FB and XM monitors only. (continued on next page)

Introduction to Advanced RT-11 Programming 1-65

Table 1-9: Summary of SYSLIB Subroutines (Cont.)

Name Section Description

JDIV 3.70 Computes the quotient and remainder of two
INTEGER*4 values.

JICVT 3.71 Converts an INTEGER*2 value to INTEGER*4.

JJCVT 3.72 Converts the two-word internal time format to
INTEGER*4 format, and vice versa.

JMOV 3.73 Assigns an INTEGER*4 value to a variable.

JMUL 3.74 Computes the product of two INTEGER*4 values.

JSUB 3.75 Computes the difference between two INTEGER*4

values.

Character String Functions

CONCAT 3.4
GETSTR 3.8
INDEX 3.34
INSERT 3.36
ISCOMP 3.50
IVERIF 3.63
LEN 3.77
PUTSTR 3.93
REPEAT 3.98
SCOMP 3.101
SCOPY 3.102
STRPAD 3.105
SUBSTR 3.106
TRANSL 3.110
TRIM 3.111
VERIFY 3.113

Concatenates two variable-length strings.

Reads a character string from a specified FORTRAN logical
unit.

Returns the location in one string of the first occurrence of
another string

Replaces a portion of one string with another string.
Compares two character strings.

Indicates whether characters in one string appear in an-
other.

Returns the number of characters in a specified string.

Writes a variable-length character string on a specified
FORTRAN logical unit.

Concatenates a specified string with itself to provide an indi-
cated number of copies and stores the resultant string.

Compares two character strings.
Copies a character string from one array to another.

Pads a variable-length string on the right with blanks to
create a new string of a specified length.

Copies a substring from a specified string.

Replaces one string with another after performing character
modification.

Removes trailing blanks from a character string.

Indicates whether characters in one string appear in an-
other.

(continued on next page)

1-66 Introduction to Advanced RT-11 Programming

Table 1-9: Summary of SYSLIB Subroutines (Cont.)

Name

Section

Description

Radix-50 Conversion Operations

IRAD50

R50ASC
RADA50

3.43

3.94
3.95

Converts characters in ASCII format to Radix-50,
returning the number of characters converted.

Converts characters in Radix—50 format to ASCIL.

Converts six ASCII characters, returning a REAL*4
result that is the two-word Radix—50 value.

Miscellaneous Services

IADDR
IGETSP

INTSET

IPEEK

IPEEKB

IPOKE
IPOKEB
IPUT

ISPY

3.13
3.30

3.36

3.37

3.38

3.39
3.40
3.41

3.56

Obtains the memory address of a specified entity.

Returns the address and size (in words) of free space ob-
tained from the FORTRAN system.

Establishes a specified FORTRAN subroutine as an inter-
rupt service routine with a specified priority.

Returns the value of a word located at a specified absolute
memory address.

Returns the value of a byte located at a specified byte ad-
dress.

Stores an integer value in an absolute memory location.
Stores an integer value in a specified byte location.

Changes the value of the word located at an offset specified
from the beginning of the RT-11 monitor.

Returns the integer value of the word located at a specified
offset from the beginning of the RT-11 resident monitor.

Introduction to Advanced RT—11 Programming 1-67

Chapter 2

Programmed Request Description and Examples

This chapter presents the programmed requests alphabetically, describing
each one in detail and providing an example of its use in a program. Also
described are macros and subroutines that are used to implement device
handlers and interrupt service routines. The following parameters are com-
monly used as arguments in the various calls:

addr

area

blk

buf

cblk

chan
chrent

code
crtn

dblk

func
jobblk
jobdev

num

an address, the meaning of which depends on the request
being used.

a pointer to the EMT argument block for those requests
that require a block.

a block number specifying the relative block in a file or
device where an I/O transfer is to begin.

a buffer address specifying a memory location into which
or from which an I/O transfer will be performed; this ad-
dress has to be word-aligned — that is, located at an even
address and not a byte or odd address.

the address of the five-word block where channel status
information is stored.

a channel number in the range 0-376(octal).
a character count in the range 1-255(decimal).

a flag used to indicate whether the code is to be set in an
EMT 375 programmed request.

the entry point of a completion routine.

a four-word Radix—50 descriptor block that specifies the
physical device, file name, and file type to be operated
upon (see Section 1.1.2.6).

a numerical code indicating the function to be performed.
a pointer to a three-word ASCII system job name.

a pointer to a four-word system-job descriptor where the
first word is a Radix—50 device name and the next three
words contain an ASCII system-job name (for keyword ar-
gument use, refer to this as a “dblk”).

a number, the value of which depends on the request.

2-1

seqnum a file number.

For cassette operation, a value of 0 is assumed if this argu-
ment is blank.

For magtape operation, this argument describes a file se-
quence number. The values that the argument can have
are described under the applicable programmed requests.

unit the logical unit number of a particular terminal in a mul-
titerminal system.

went a word count specifying the number of words to be trans-
ferred to or from the buffer during an I/O operation.

Many programmed requests are qualified as special features. These re-
quests are enabled only if you performed a system generation process, that
is, they are not available in a distributed monitor.

21 .ABTIO

The .ABTIO programmed request allows a running job to stop all outstand-
ing I/O operations on a channel without terminating the program.

When .ABTIO is issued, the handler for the device opened on the specified
channel is entered at its abort entry point. After the handler abort code is
executed, control returns to the user program.

This request cannot be issued from a completion routine.
Macro Call: .ABTIO chan
where:

chan is the channel number for which to abort I/O

Request Format:

RO = 13 | chan |

Errors:
none

Example:

+TITLE ABTIO.MAC

iThis is an example of the ABTID request, The .ABTIO resquest

jis useful for immediately terminating .READC/.WRITC or .READ/
F+WRITE I/0 on a particular channel without issuing a EXIT or
i+HRESET+ which would terminate the program or stor I/0 on all

ichannels,

+MCALL +ABTIO,» .ENTER,» .SCCA
START: +SCCA #AREA +#CTCWRD ilnhibit CTRL/C

+ENTER #*AREA /%1 »#FILNAM iOpen channel 1 as outrut file
I0LOOP:

iPerform I/0 to the file...

2-2 Programmed Request Description and Examples

T8T CTCHWRD ’ fHas CTRL/C been tyred?

BPL 1oLooP iNo: continue file I/0

+ABTIO *1 iYess stop I/0 on channel 1
+

iContinue other Processing

AREA: +BLKW 4 JEMT ardument blocK
CTCWRD: +WORD 0 $Terminal status word
+END
2.2 .CDFN

The .CDFN request redefines the number of I/O channels. Each job,
whether foreground or background, is initially provided with 16(decimal)
/O channels numbered 0-15. .CDFN allows the number to be expanded to
as many as 255(decimal) channels (0-254 decimal, or 0-376 octal). Channel
377 is reserved for use by the monitor.

The space for the new channels is taken from within the user program.
Each I/O channel requires five words of memory. Therefore, you must allo-
cate 5*n words of memory, where n is the number of channels to be defined.

It is recommended that you use the .CDFN request at the beginning of a
program before any I/O operations have been initiated. If more than one
.CDFN request is used, the channel areas must either start at the same
location or not overlap at all. The two requests .SRESET and .HRESET
cause the channels to revert to the original 16 channels defined at program
initiation. Hence, you must reissue any .CDFNs after using .SRESET or
HRESET. The keyboard monitor command CLOSE does not work if your
program defines new channels with the .CDFN request.

The .CDFN request defines new channels so that the space for the previ-
ously defined channels cannot be used. Thus, a .CDFN for 20(decimal)
channels (while 16 original channels are defined) creates 20 new I/O chan-
nels; the space for the original 16 is unused, but the contents of the old
channel set are copied to the new channel set.

If a program is overlaid, the overlay handler uses channel 17(octal) and this
channel should not be modified. (Other channels can be defined and used as
usual.)

If an XM monitor environment, the area supplied for additional channels
specified by the .CDFN request must lie in the lower 28K words of memory.
In addition, it must not be in the virtual address space mapped by Kernel
PARI, specifically the area from 20000 to 37776(octal). If you supply an
invalid area, the system generates an error message.

Macro Call: .CDFN area,addr,num
where:

area is the address of a three-word EMT argument block
addr is the address where the I/O channels begin
num is the number of I/O channels to be created

Programmed Request Description and Examples 2-3

Request Format:

RO — area: 15 I 0
addr
num
Errors:
Code Explanation
0 An attempt was made to define fewer than or the same num-
ber of channels that already exist. In an XM environment,
an attempt to violate the PARL1 restriction sets the carry bit
and returns error code 0 in byte 52.
Example:

«TITLE

i+

CDFN.MAC

i .COFN - This is an exampPle in the use of the ,CDFN reauest. The
i example defines 32 new channels to reside in the body of the

i Prodram.

e
+MCALL «CDFN» PRINT» EXIT

START: +CDFN #AREA »#CHANL +%32, ilse .CDFN to define 32, new channels
BCC 14 iBranch if successful
+PRINT *BADCD iPrint failure message on console
JEXIT FExit Prodgram

1%: +PRINT #G00DCD iPrint success message
JEXIT iThen exit

AREA: +BLKKW 3 FEMT Arsument Block

CHANL s +BLKHW S#32, iSpace for new channels

BADCD: +ASCIZ /7 +CDFN Failed ?/ iFailure messagde

GOODCO: +ABCIZ /+CDFN Successful/ iSuccess messade
+END START

2.3 .CHAIN

The .CHAIN request allows a background program to pass control directly
to another background program without operator intervention. Since this
process can be repeated, a long “chain” of programs can be strung together.

The area in low memory from locations 500-507 contains the device name
and file name (in Radix-50) to be chained to. The area from locations
510-777 is used to pass information between the chained programs.

Macro Call: .CHAIN
Request Format:

RO =] 10 | 0 |
Notes:

1. Make no assumptions about which areas of memory remain intact
across a .CHAIN. In general, only the resident monitor and locations

24 Programmed Request Description and Examples

500—777 are preserved across a .CHAIN. In a .CHAIN to or from a
virtual job, locations 500777 are not preserved.

I/O channels are left open across a .CHAIN for use by the new program.
However, new I/0 channels opened with a .CDFN request are not avail-
able in this way. Since the monitor reverts to the original 16 channels
during a .CHAIN, programs that leave files open across a .CHAIN
should not use .CDFN. Furthermore, nonresident device handlers are
released during a .CHAIN request and must be fetched again by the
new program. Note that FORTRAN logical units do not stay open
across a .CHAIN.

An executing program determines whether it was chained to or RUN
from the keyboard by examining bit 8 of the Job Status Word. The
monitor sets this bit if the program was invoked with .CHAIN request.
If the program was invoked with R or RUN command, this bit remains
cleared. If bit 8 is set, the information in locations 500777 is preserved
from the program that issued the .CHAIN and is available for the cur-
rently executing program to use. Again, locations 500-777 are not pre-
served in a .CHAIN to or from a virtual job.

An example of a calling and a called program is MACRO and CREF.
MACRO places information in the chain area, locations 500-777, then
chains to CREF. CREF tests bit 8 of the JSW. If it is clear, it means
that CREF was invoked with the R or RUN command and the chain
area does not contain useful information. CREF aborts itself immedi-
ately. If bit 8 is set, it means that CREF was invoked with .CHAIN and
the chain area contains information placed there by MACRO. In this
case, CREF executes properly.

Errors:

.CHAIN is implemented by simulating the monitor RUN command
and can produce any errors that RUN can produce. If an error occurs,
the .CHAIN is abandoned and the keyboard monitor is entered.

When using .CHAIN, be careful with initial stack placement. The
linker normally defaults the initial stack to 1000(octal); if caution is
not observed, the stack can destroy chain data before it can be used.

Example:

.
1
.
1
.
"
.
’
[l
.
L
1
.
¥

+

+TITLE CHAINJMAC

,CHAIN - This example demonstrates the use of the .CHAIN
program request. It chains to program ‘CTEST.SAV’ and rasses it
a command line tveped in at the console terminal, As an exercise

write the prosram ‘CTEST’ - in its check to see if it was chained

tos and if so» echo the data passed to its otherwise rrint the

i messade '"Was not chained to".

+MCALL +CHAIN» TTYIN, PRINT
START: MOy #3500 R1 $R1 =» Chain area
MOV #CHPTR »RZ 5R2 =» RADSO Prodram Filesrec
+REPT 4 iMove the Prodram Filespec
MoV (RZ2)++(R1)+ finto the Chain areas..
+ENDR i
+PRINT #PROMT jAsk for the data to be Passed

Programmed Request Description and Examples 2-5

LODP: +TTYIN
MOYB
CMPB
BNE
CLRB
+CHAIN

CHPTR: +RADSO
+RAD3O
+RADSO

PROMT : +ASCII
+END

iNow det a "command" line

RO+ (R1)+ ito Pass to the chained Prodram

ROy#12 iin locations 510 and ue,

Loap ilLoor until line feed,

GR1 iPut in a null byte as a terminatar,
iChain to the next program.,

/DK/ SRADSO File spec...

/CTEST /

/SAV/

/Enter data to be passed to CTEST » /<2003

START

i* IN CASE YOU DON’T HAVE TIME HERE’'S AN EXAMPLE

i* ‘CTEST.MAC‘ PROGRAM.., *
H
+TITLE CTEST.MAC
+MCALL «PRINT,.EXIT
JSW = 44 iLocation of JSW
CHAINS$ = 400 iCHAIN bit in JSW
CTEST: BIT #CHAINS s@#JSW ilere we chained to?
BEQ 1% iBranch if naot
«PRINT #CHAIND iSay we were...
Moy #5104RO iGet addr of start of data
+PRINT iPrint it out
WEXIT FJExit Program
1%: +PRINT #NOCHN iSay we weren‘t chained to
EXIT iThen exit
CHAIND: +ASCIZ /CTEST was chained to - and here’s the data Passed.../
NOCHN: +ASCIZ /CTEST was not chained to/
+END CTEST

2.4 .CHCOPY (FB and XM Only)

The .CHCOPY

request opens a channel for input, logically connecting it to

a file that is currently open by another job for either input or output. This

request can be

used by a foreground, background, or system job and must

be issued before the first .READ or .WRITE request on that channel.

.CHCOPY is valid only on files on disk (including diskette) or DECtape.
However, no errors are detected by the system if another device is used. (To
close a channel following use of .CHCOPY, use either the .CLOSE or
.PURGE request.)

Macro Call: .CHCOPY area,chan,ochan [,jobblk]

where:
area
chan

ochan

jobblk

is the address of a three-word EMT argument block
is the channel the current job will use to read the data
is the channel number of the other job’s channel to be copied

is a pointer to a three-word ASCII logical job name that
represents a system job (see the RT-11 System Ultilities
Manual)

2-6 Programmed Request Description and Examples

Request Format:

RO — area:| 13 | chan

ochan
jobblk
Notes:
1. If the other job’s channel was opened with .ENTER in order to create a

file, the copier’s channel indicates a file that extends to the highest
block that the creator of the file had written at the time the .CHCOPY
was executed.

A channel open on a non-file-structured device should not be copied,
because intermixture of buffer requests can result.

A program can write to a file (that is being created by the other job) on
a copied channel just as it could if it were the creator. When the copier’s
channel is closed, however, no directory update takes place.

Foreground and background jobs may optionally leave the jobblk argu-
ment blank or set it to zero. This causes the job name to default to F if
the background job issued the request, or to B if the foreground job
issued the request.

Errors:

Code Explanation

0 Other job does not exist, does not have enough channels de-
fined, or does not have the specified channel (ochan) open.

1 Channel (chan) already open.

Example:

+

L
i +CHCOPY - This is an examrle in the use of the .CHCOPY reAuest.
5 The example consists of two Prodgramsi a Foredround Job which
i creates a file and sends a messade to a Backdround Prodram
§ which corpies the FG channel and reads a record from the file.
i Both Pprodrams must be assembled and linked serarately.
-

+TITLE CHCOPF.MAC
i+
i This is the Foredround Prodgram ...

+MCALL +ENTER » PRINT + + SDATH » o EXIT »+RCVDMW +» ,CLOSE + JWRITH
STARTF: MoV #AREA +RS RS =» EMT ardument block
+ENTER RS +#0 y#FILE +#5 iCreate a S block file
HWRITH RS20 +#RECRD »#256, »#4 jWrite a record BG is interested in
BCS ENTERR iBranch on error
+SDATH RS y#BUFR y#2 i%end message with info to BG
b [iDo some other Processing
+RCUDKW RS s#BUFR s#1 iWhen it’s time to exits maKe sure
+CLOSE #0 iBG is done with the file-
+PRINT #FEXIT iTell user we’re exiting
+EXIT SExit the Pprodram
ENTERR: +PRINT #ERMSG jPrint error messade
+EXIT fthen exit

Programmed Request Description and Examples 2-7

FILE: +RADS0O /DK QUFILE/ iFile spec for JENTER

+RADSO /THP/
AREA: +BLKW 5 FEMT ardument block
BUFR: +WORD 0 iChannel #

+WORD 4 iBlock #
RECRD: +BLKW 256, iFile record
ERMSG: +ASCIZ /?Enter Error?/ fError messade text
FEXIT: +ASCIZ /FG Job exiting/ fExit message

+END STARTF

+TITLE CHCOPB.MAC

This is the BacKkdround Program ...

+MCALL +CHCOPY s \RCUDKW » READMW » JEXIT . PRINT, ,SDATH
STARTB: MOV #AREA RS iRS => EMT ard block
+RCVDUH RS »#MEG y%2 iWait for messade from FG
BCS 1% iBranch if no FG
«CHCOPY RS »#0 4yMS8G+2 iChannel # is 1st word of messade
BCS 2% iBranch if FG channel not open
+READKW RS »#0 ,#BUFF ,#256, yM5G+4 jRead block which is 2nd word of msg
BCS 3% iBranch if read error
i f iContinue Processing...
+SDATH RS ,#M5G ,#1 iTell FG we’re thru with file
+PRINT #BEXIT iTell user we’re thru
JEXIT fthen exit program
1¢: MOV #NOJOB sRO iRO =» No FG error msd
BR 4% iBranch to print msgyg
2%: mov #NOCH RO SRO => FG ch not open msd
BR 4% iBranch..,
3% Mav #RDERR »RO iRO => Read err msd
4% +PRINT iPrint Prorer error msd
JEXIT fthen exit,
AREA: +BLKW 5 FEMT ardumemt blK
MSG: +BLKW 3 iMessade buffer
BUFF: +BLKW 256, iFile buffer
BEXIT: +ASCIZ /Channel-Record copy successful/
NOJOB : +ABCIZ /?Ne FG Jaob?/ fError messages. .
NOCH: +ABCIZ /?FG channel not oren?/
RDERR: +ABCIZ /?Read Error?/
+END STARTB

2,5 .CLOSE

The .CLOSE request terminates activity on the specified channel and frees
it for use in another operation. The handler for the associated device must
be in memory if the file was created with a .ENTER programmed request.

Macro Call: .CLOSE chan
Request Format:
RO =] 6 |chan]
A .CLOSE request specifying a channel that is not open is ignored.

A file opened with .LOOKUP does not require any directory operations
when a .CLOSE is issued, and the USR does not have to be in memory for
such a .CLOSE. The USR is required if, while the channel is open, a request
was issued that required directory operations. The USR is always required
for special structured devices such as magtape.

A .CLOSE is required on any channel opened with .ENTER if the associ-
ated file is to become permanent.

28 Programmed Request Description and Examples

NOTE

Do not close channel 17(octal) if your program is overlaid,
because overlays are read on that channel.

A .CLOSE performed on a file opened with .ENTER causes the device direc-
tory to be updated to make that file permanent. The first permanent file in
the directory with the same name, if one exists, is deleted, provided that it
is not protected. When a file that is opened with an .ENTER request is
closed, its permanent length reflects the highest block written since it was
entered. For example, if the highest block written is block number 0, the
file is given a length of 1; if the file was never written, it is given a length
of 0. If this length is less than the size of the area allocated at .ENTER
time, the unused blocks are reclaimed as an empty area on the device.

In magtape operations, the .CLOSE request causes the handler to write an
ANSI EOF1 label in software mode (using MM.SYS, MT.SYS, or MS.SYS)
and to close the channel in hardware mode (using MMHD.SYS,
MTHD.SYS, or MSHD.SYS).

Errors:
Code Explanation

3 A protected file with the same name already exists on the
device. The .CLOSE is performed anyway, resulting in two
files with the same name on the device.

.CLOSE does not return any other errors unless the .SERR request
has been issued. If the device handler for the operation is not in
memory, and the .CLOSE request requires updating of the device
directory, a fatal monitor error is generated.

Example:

Refer to the examples for the .CSISPC and .WRITW requests, which
show typical uses for .CLOSE.

2.6 .CMKT (FB and XM. SJ Monitor Special Feature)

The .CMKT request causes one or more outstanding mark time requests to
be canceled (see the MRKT programmed request). The .CMKT request is a
special feature in the SJ monitor, and is selected with the timer support
during the system generation process.

Macro Call: .CMKT area,id[,time]
where:.
area is the address of a three-word EMT argument block

id is a number that identifies the mark time request to be can-
celed. If more than one mark time request has the same id,
the request with the earliest expiration time is canceled. If
id = 0, all non-system mark time requests (those in the
range 1 to 176777) for the issuing job are canceled

Programmed Request Description and Examples 2-9

time is the address of a two-word area in which the monitor re-
turns the amount of time (clock ticks) remaining in the can-
celed request. The first word contains the high-order time, the
second contains the low-order. If an address of 0 is specified,
no value is returned. If id = 0, the time parameter is ig-
nored and need not be indicated '

Request Format:

RO — area:| 23 | 0
id
time

Notes:

1. Canceling a mark time request frees the associated queue element.

2. A mark time request can be converted into a timed wait by issuing a
.CMKT followed by a .TWAIT, and by specifying the same time area.

3. If the mark time request to be canceled has already expired and is
waiting in the job’s completion queue, .CMKT returns an error code of
0. It does not remove the expired request from the completion queue.
The completion routine will eventually be run.

Errors:
Code Explanation
0 The id was not zero and a mark time request with the speci-
fied identification number could not be found (implying that
the request was never issued or that it has already expired).
Example:

Refer to the example for the . MRKT request.

2.7 .CNTXSW (FB and XM Only)

A context switch is an operation performed when a transition is made from
running one job to running another. The .CNTXSW request is used to spec-
ify locations to be included in a list when jobs are switched. Refer to the
RT-11 Software Support Manual for further details.

The system always saves the parameters it needs to uniquely identify and
execute a job. These parameters include all registers and the following
locations:

34,36 Vector for TRAP instruction
40-52 System Communication Area

If an .SFPA request has been executed with a non-zero address, all floating-
point registers and the floating-point status are also saved.

It is possible that both jobs want to share the use of a particular location
not included in normal context switch operations. For example, if a pro-

2-10 Programmed Request Description and Examples

gram uses the IOT instruction to perform an internal user function (such as
printing error messages), the program must set up the vector at 20 and 22
to point to an internal IOT trap handling routine. If both foreground and
background wish to use IOT, the IOT vector must always point to the
proper location for the job that is executing. Including locations 20 and 22
in the .CNTXSW list for both jobs before loading these locations accom-
plishes this. This procedure is not necessary for jobs running under the XM
monitor. In the XM monitor, both IOT and BPT vectors are automatically
context switched.

If .CNTXSW is issued more than once, only the latest list is used; the
previous address list is discarded. Thus, all addresses to be switched must
be included in one list. If the address (addr) is 0, no extra locations are
switched. The list cannot be in an area into which the USR swaps, nor can
it be modified while a job is running.

In the XM monitor, the .CNTXSW request is ignored for virtual jobs, since
they do not share memory with other jobs. For virtual jobs, the IOT, BPT,
and TRAP vectors are simulated by the monitor. The virtual job sets up the
vector in its own virtual space by any of the usual methods (such as a direct
move or an .ASECT). When the monitor receives a synchronous trap from a
virtual job that was caused by an IOT, BPT, or TRAP instruction, it checks
for a valid trap vector and dispatches the trap to the user program in user
mapping mode. An invalid trap vector address will abort the job with the
following fatal error message:

?MON-F-Inv SST (invalid synchronous system trap)
Macro Call: .CNTXSW area,addr

where:

area is the address of a two-word EMT argument block

addr is a pointer to a list of addresses terminated by a zero word.
The addresses in the list must be even and be one of the
following:

a. in the range 2476

b. in the user job area

c. in the I/O page (addresses
160000-177776)

Request Format:

RO — area:| 33 | 0
~addr

Errors:

Code Explanation

0 One or more of the conditions specified by addr was violated.

Programmed Request Description and Examples 2-11

Example:

+TITLE CNTXSHW,MAC

LCNTXSW - This is an example in the use of the CNTXSW reauest.

In this examPles a +CNTXSW request is used to specify that location 20
and 22 (IOT vectors) and certain necessary EAE registers be context
switched, This allows both Jobs to use IOT and the EAE simultaneously
vet inderendently.

- an aw ws an ws e

+MCALL WCNTXSW s PRINT s EXIT
START: +CNTXSHU #AREA s #SWLIST ilssue the ,CNTXEW request
BCC 14 iBranch if successful
«PRINT #ADDERR iAddress error (should not occur)
JEXIT FExit the Program
1%: +PRINT #CNTOK jAcKknowledde success with a message
JEXIT ithen exit the Prodram
SHWLIST: + HORD 20 jAddresses to include in context switch
+WORD 22 iI0T & EAE vectorsss.
+WORD 177302 fEAE redisters...
+WORD 177304 i
+WORD 177310 b
+«WORD 0 jList terminator !!!
AREA: +BLKW 2 fEMT argument blockK
ADDERR: +ASCIZ /? +CNTASW Addressing Error 7/
CNTOK 1 +ASCIZ / CNTXSHW Successful/
+END START

2.8 .CRAW (XM Only)

The .CRAW request defines a virtual address window and optionally maps
it into a physical memory region. Mapping occurs if you set the WS.MAP
bit in the last word of the window definition block before you issue .CRAW.
Since the window must start on a 4K word boundary, the program only has
to specify which page address register to use and the window size in 32-
word increments. If the new window overlaps previously defined windows,
those windows are eliminated before the new window is created (except the
static window reserved for a virtual program’s base segment).

Macro Call: .CRAW area,addr

where:

area is the address of a two-word EMT argument block
addr is the address of the window definition block

The window status word (W.NSTS) of the window definition
block may have one or more of the following bits set on return
from the request:

WS.CRW set if address window was successfully created

WS.VNM set if one or more windows were unmapped to
create and map this window

WS.ELW set if one or more windows were eliminated

2-12 Programmed Request Description and Examples

Request Format:

RO — area:| 36 | 2
addr

Errors:

Code Explanation

0 Window alignment error: the new window overlaps the
static window for a virtual job. The window is too large or
W.NAPR is greater than 7.

1 An attempt was made to define more than seven windows in
your program. You should eliminate a window first
(.ELAW), or redefine your virtual address space into fewer
windows.

If the WS.MAP bit was set in the window definition block status word, the
following errors can also occur:

Code Explanation
2 An invalid region identifier was specified.
4 The combination of the offset into the region and the size of

the window to be mapped into the region is invalid.

Example:
+TITLE XMCOPY

This is an example in the use of the RT-11 Extended Memory reauests.
The rrogram is a file copy with verify utility that uses extended
memory to implement 4K transfer buffers. The example utilizes most of
the Extended Memory requests and demonstrates other Prodramming
techniques useful in utilizing the requests.

an wa ame s wx we wa

+NLIST BEX
+MCALL +UNMAP + JELRG ¢+ ELAW + CRRG + , CRAW + yMAP 4 . PRINT » ,EXIT,,CLOSE
+MCALL +RDBBK ¢+ WDBBK »» TTYOUT » . WDBDF » .RDBDF + s CSIGEN + s READH » s WRITH

JSH = 44 §J8W location

J+VIRT = 2000 iVirtual Job bit in JSW

ERRBYT = 52 iError bvte location

APR = 2 FPAR/PDR for 1st window

APR1 = 4 i " " 2nd "

BUF = WDB+KW«NBAS iVirtual addr of 1st buffer

BUF1 = WDB1+W.NBAS H " " " 2nd "

CORSIZ = 4096, iSize of buffer in words

PAGSIZ = CORSIZ/256. iPade size in blocKs

WRNID = WDB+HW.NRID iRedion ID addr of lst region

WRNID1 = WDB1+W NRID H " " " " Znd N

+ASECT iAssemble in the Virt Job Bit

. = JBH

+WORD JWVIRT fjMake this a "virtual" Job

+PSECT iStart code now

+WDBDF iCreate Window Def BlK Svmbols

+RDBDF i Region " " "
START:: +CBIGEN #ENDCRE s#DEFLT +#0 iGet filesrecss handlers, open files

BCS START iBranch if error

Programmed Request Description and Examples 2-13

INCB ERRNO
+CRRG #CAREA »#RDB
BCC 10%
JMP ERROR
10%: MOV RDB »WRNID
INCB ERRNO
+CRAW #CAREA »#WDB
BCC 20%
JMP ERROR
20%: INCB ERRNO
+MAP #CAREA »#WDB
BCC 30%
JMP ERROR
30%: CLR R1
MOV #CORSIZsR2
INCB ERRNOD
READ: +READW #RAREA »#3,BUF /R2R1
BCC WRITE
TSTB BxERRBYT
BEQ PABSZ
JMP ERROR
WRITE: MOV ROsR2
+WRITH #RAREA +#0,BUF yRZR1
BCC ADDIT
INCB ERRNO
JMP ERROR
ADDIT: ADD #PAGSIZ/R1
BR READ
PASSZ: INCB ERRNO
+CRRG #CAREA »#RDB1
BCC 35¢
JMP ERROR
35%: MOV RDB1 ,WRNIDI1

i* EXAMPLE USING THE
i* IMPLIED .MAP REQUEST.

INCB ERRNO
+CRAK #CAREA »#WDB1
BCC VERIFY
JMP ERROR
VERIFY:: INCB ERRND
CLR R1
GETBLK: MoV #CORSIZR2
+READW #RAREA »#3,BUF1R2R1
BCC 40%
T8TB @8ERRBYT
BE® ENDIT
JmMp ERROR
40%: MOV ROR2
+READW #RAREA »#0,BUF +R2R1
BCC S0%
INCB ERRNO
JMP ERROR
S50%: MOV BUF »R4
MOV BUF1,R3
70%: CMP (RA)+,(R3)+
BNE ERRDAT
DEC R2
BNE 70%
ADD #PAGESIZIR1
BR GETBLK
ENDIT: +PRINT #ENDPRG
XCLOSE: +CLOSE #0
+UNMAP #CAREA »#UWDB
+ELAW #CAREA »#WDB
+ELRG #CAREA »#RDB
+ELRG #CAREA »#RDB1
JEXIT

2-14 Programmed Request Description and Examples

+CRAW REQUEST DOING *

*

JERR = 1x

iCreate a redion

iBranch if successful
sReport error (JMP due to
iMove redion id to MWindow
JERR = 2x

iCreate windows..

iBranch if no error
iRepPort errorss.

SERR = 3x

jExeplicitly marp window...
iBranch if no error
iRerort error

iRl = RT11 BlocKk # for I/0
iR2Z = # of words to read
FERR = dx

iTry to read 4K worth of blocks
iBranch if no error

iEOF?

iBranch if ves

Must be hard errory» report it
iR2 = size of buffer Just read
iWrite out the buffer

iBranch if no error

SERR = 5Sx

iReport error

sAdJjust block =

iThen do0 det another buffer
fERR = Bx

iCreate a redion

iBranch if nao error

iReport error

iGet redion id to window def blK

range!)
Def BIlK

FERR = 7x

iCreate window using implied
iBranch if no error
iRerort error

JERR = Bx

iR1 = RTil block # adain
iR2 = 4K buffer size
iTry to det 4K worth of input file
iBranch if no error

SEOF?

iBranch if ves

jRerport hard error

jR2 = size of buffer read

iTry to det same size from output file
jBranch if no error

FERR = 9x

iRerort error

iGet output buffer address

iGet inPut buffer address

iVerify that data is the same
iIt‘s not» rerort error

iAre we finished?

iBranch if we aren’t

fAdjust block # for Pade size

iGo det another buffer prair

+MAP

iAnnounce we’re finished

iClose outPut file

sExplicitly unmap lst window
JExplicitly eliminate 1st window
fEliminate 1st redion
iUnmaprseliminate 2nd window & redion
JExit program

ERROR: MOVB B#ERRBYT RO §Make error bvte code 2nd digit

ADD #/04+RO 50f error codes..
Move RO JERRNO+1 jPut it in error message
+PRINT #ERR FPrint itess
BR XCLOS iGo close output file
ERRDAT: «PRINT #ERRBUF iRerort. verify failede..
BR XCLODS iGo close outrut file
RDB: +RDBBK CORSIZ/32. i .RDDBK defines Redion Def BIlK
WDB +WDBBK APR,CORSIZ/32. 5+ WDDBK defines Window Def BlK
RDB1: +RDBBK CORSIZ/32. iDefine 2nd redion same wav
WDB1: +WDBBK APR1,CORSIZ/32.+04+0,CORSIZ/32, WS MAP § and 2nd Window
j(but with marPing status set!)
CAREA: +BLKH 2 SEMT ardument blocKs
RAREA: +BLKKW B
DEFLT: +WORD 04+04+0.:0 iNo default extensions
ENDPRG: +ASCIZ / % End of XM Examrle Prodram %/
ERR: +ASCII /?XM Reauest or I-0 Error # /
ERRNO: +ASCIZ /00/
ERRBUF : +ASCIZ /?Data Verification Error?/
ENDCRE = iFor CSIGEN - XM handlers loaded !
+END START

2.9 .CRRG (XM Only)

The .CRRG request directs the monitor to allocate a dynamic region in
physical memory for use by the current requesting program.

Macro Call: .CRRG area,addr
where:

area is the address of a two-word EMT argument block

addr is the address of the region definition block for the region to
be created

Request Format:

RO — area:| 36 [0

addr
Errors:
Code Explanation

6 No region control blocks are available. You eliminate a re-
gion to obtain a region control block (ELRG), or you can
redefine your physical address space into fewer regions.

7 A region of the requested size cannot be created because not
enough memory is available. The size of the largest avail-
able region is returned in RO.

10 An invalid region size was specified. A value of 0, or a value
greater than the available amount of contiguous extended
memory, is invalid.

Example:

Refer to example for the .CRAW request.

Programmed Request Description and Examples 2-15

2.10 .CSIGEN

The .CSIGEN request calls the Command String Interpreter (CSI) in gen-
eral mode to process a standard RT-11 command string. In general mode,
file .LOOKUP and .ENTER requests as well as handler .FETCH requests
are performed.

The .CSIGEN request accepts a command string of the form dev:output-
filespec = dev:input-filespec/options, and the following operations occur:

1. The handlers for devices specified in the command line are fetched.
2. .LOOKUP and/or .ENTER requests on the files are performed.

3. The option information is placed on the stack. See the end of this sec-
tion for a description of the way option information is passed. Note that
this call always puts at least one word of information on the stack.

When called in general mode, the CSI closes channels 0 through 10(octal).

.CSIGEN loads all necessary handlers and opens the files as specified. The
area specified for the device handlers must be large enough to hold all the
necessary handlers simultaneously. If the device handlers exceed the area
available, your program can be destroyed. (The system, however, is pro-
tected.)

The three possible output files are assigned to channels 0, 1, and 2, and the
six possible input files are assigned to channels 3 through 10(octal). A null
specification causes the associated channel to remain inactive. For exam-
ple, the following string

¥)LP:=F1,F2

causes channel 0 to be inactive since the first specification is null. Channel
1 is associated with the line printer, and channel 2 is inactive. Channels 3
and 4 are associated with two files on DK:, while channels 5 through 10 are
inactive. Your program can determine whether a channel is inactive by
issuing a .WAIT request on the associated channel, which returns an error
if the channel is not open.

Macro Call: .CSIGEN devspc,defext[,cstrngll[,linbuf]

where:

devspc is the address of the memory area where the device han-
dlers (if any) are to be loaded

defext is the address of a four-word block that contains the Ra-
dix-50 default file types. These file types are used when a
file is specified without a file type (see Note 1)

cstrng is the address of the ASCIZ command string or a 0 if input
is to come from the console terminal. (In an FB or XM envi-
ronment, if the input is from the console terminal, an .UN-
LOCK of the USR is automatically performed while the
string is being read, even if the USR is locked at the time.)

2-16 Programmed Request Description and Examples

If the string is in memory, it must not contain a ®ED @ (octal
15 and 12), and must terminate with a zero byte. If the
cstrng field is blank, input is automatically taken from the
console terminal. This string, whether in memory or en-
tered at the console, must obey all the rules for a standard
RT-11 command string

linbuf is the storage address of the original command string. This
is a user-supplied area, 81 decimal bytes in length. The
command string is terminated with a zero byte. If this argu-
ment is omitted, the input command string is not copied to
user memory

On return, RO points to the first available location above the handlers, the
stack contains the option information, and all the specified files have been
opened.

Note:
1. The four-word block pointed to by defext is arranged as:
Word 1: default file type for all input channels (3—10)

Words 2,3,4: default file types for output channels 0, 1, and 2,
respectively

If there is no default for a particular channel, the associated word must
contain 0. All file types are expressed in Radix-50. For example, the
following block can be used to set up default file types for a macro

assembler:

DEFEXT: .RADSO "MAC"
+RADSO npJ"
+RADSO "LsT"
+MWORD 0

In the command string:

*DTO:ALPHADT1:BETA=DTZ: INPUT

the default file type for input is MAC; for output, OBJ and LST. The
following cases are valid:

*DTO:OUTPUT=
*DT2: INPUT

In other words, the equal sign is not necessary if only input files are
specified.

2. An optional argument (linbuf) is available in the .CSIGEN format that
provides the user with an area to receive the original input string. The

input string is returned as an ASCIZ string and can be printed through
a .PRINT request. '

3. The .CSIGEN request automatically takes its input line from an indi-
rect command file if console terminal input is specified (cstrng = #0)
and the program issuing the .CSIGEN is invoked through an indirect
command file.

Programmed Request Description and Examples 2-17

Errors:

If CSI errors occur and input was from the console terminal, an error
message describing the fault is printed on the terminal and the CSI
retries the command. If the input was from a string, the carry bit is
set and byte 52 contains the error code. In either case, the options and
option-count are purged from the stack. These errors are:

Code Explanation
0 Invalid command (such as bad separators, invalid file
names, and commands that are too long).
1 A device specified is not found in the system tables.
2 A protected file of the same name already exists. A new file

was not opened.
3 Device full.
4 An input file was not found in a .LOOKUP.

Example:

«TITLE CSIGEN.MAC

i+

i .CSIGEN - This is an example in the use of the .CSIGEN request.

i The example is a single file copy Program. The file srecs are

i inPut from the console terminal, and the inPut & output files orened
i via the general mode of the CSI. The file is corpied using synchronous
1
b}

I1/0, and +CLOSE resuest.

the output file is made Permanent via the

+MCALL +CSIGEN»+READW s \EXIT ++WRITHW,,CLOSE s . SRESET
ERRBYT=52 iError Byte Location
START: +CSIGEN #DSPACE »#DEXT iGet string from terminal
MOV RO sBUFF iRO has first free location
CLR INBLK ilnPut block #
Moy #LIST RS FEMT Ardument list
READ: +READM RS s#3 BUFF »#256, + INBLK iRead a blocK on Channel 3
BCC Z2% iBranch if no errors
TSTB B#ERRBYT fEOF error 7?
BEQ EOF iYeseoo
MOV #INERR 'RO iR0O => Read Error Messade
1¢: +PRINT iPrint the messade
CLR RO iClear RO for hard exit
JEXIT iExit the program
2%: +WRITH RS »#0BUFF +#256. » INBLK jMrite the block Just read
BCC NOERR iBranch if no error
MDY #WTERR :RO iRO =» MWrite error messade
BR 1% iBranch to outPut the message
NOERR: INC INBLK iOtherwises» increment block #
BR READ jand loop to read next block
EOF: +CLOSE #0 fEnd-of-File.,.CLose outrut channel
+.CLOSE #3 iAnd inPut channel
+SRESET iRelease handler(s) from memory
JEXIT fExit the Prosram
DEXT: +WORD 0:04+0,0 iNo default extensions
BUFF : +MWORD 0 §I/0 Buffer start
INBLK: +WORD 0 iRelative blocK to read/write
LIST: +BLKW 5 FEMT ardument list
INERR: +ASCIZ /? InPut error ?/

2-18 Programmed Request Description and Examples

WTERR: +ASCIZ /7 Output error ?/
+EVEN

DSPACE =, jHandler(s) can be loaded starting here

+END START

2.10.1 Passing Option Information

In both general and special modes of the CSI, options and their associated
values are returned on the stack. A CSI option is a slash (/) followed by any
character. The CSI does not restrict the option to printing characters, al-
though you should use printing characters to avoid confusion. The option
can be followed by a value, which is indicated by a : separator. The : separa-
tor is followed by an octal number, a decimal number, or by one to three
alphanumeric characters, the first of which must be alphabetic. Decimal
values are indicated by terminating the number with a decimal point
(/N:14.). If no decimal point is present, the number is assumed to be octal.
Options can be associated with files. For example, the command string

*DK:FOD/ADTA:FILE.OBJ/A:100

has two A options. The first is associated with the input file DK:FOO. The
second is associated with the input file DT4:FILE.OBJ and has a value of
100(octal). The format of the stack output of the CSI for options is as fol-
lows:

Word # Value Meaning
1 N Number of options found in command
(top of string. If N=0, no options were found.
stack)
2 Option character Even byte = seven-bit ASCII option
and file number character
Bits 8-14 = number (0-10) of the file
with which the option is
associated
Bit 15 = 1 if the option had a
value
= 0 if the option had no
value
3 Option value If bit 15 of word 2 is set, word 3 contains
or next option the option value. If bit 15 is not set, word 3

contains the next option character and file
number, if any.

For example, if the input line to the CSI is

*FILE/B:20,sFILZ/E=DT3:INPUT/X:8Y:120

Programmed Request Description and Examples 2-19

on return, the stack is:

Stack Pointer —

4
101530
20
101530
075250
505
100102

24

Three options appeared (X option has two
values and is treated as two options).
Last option=X; with file 3, has a value.
Value of option X =20(octal).

Next option =X; with file 3, has a value.
Next value of option X=RAD50 code for
SY.

Next option =E; associated with file 1, no
value.

Option =B; associated with file 0 and has
a value of 24.

(octal).

As an extended example, assume the following string was input for the CSI

in general mode:

*FILELB.]1+LP:SY:FILEZ2[20.,1=PC: yDT1:IN1/B+sDT2:INZ/M:7

Assume also that the default file type block is:

DEFEXT: +RADSO
+RADSO
+RADSO
+RADSO

"MAC
‘0P’
‘0PZ
‘0P3”

i INPUT FILE TYPE

SFIRST OUTPUT FILE TYPE
iSECOND OUTPUT FILE TYPE
STHIRD OUTPUT FILE TYPE

The results of the above CSI call are as follows:

1. An eight-block file named FILE.OP1 is entered on channel 0 on device
DK:; channel 1 is open for output to the device LP:; a 20-block file
named FILE2.0P3 is entered on the system device on channel 2.

2. Channel 3 is open for input from device PC:; channel 4 is open for input
from a file IN1.MAC on device DT1:; channel 5 is open for input from
IN2.MAC on device DT2:.

3. The stack contains options and values as follows:

Contents

Explanation

2 Two options found in string.
102515 Second option is M, associated with channel 5; has a value.
7 Numeric value is 7(octal).
2102 Option is B, associated with channel 4; has no value.

If the CSI were called in special mode, the stack would be the same as for
the general mode call, and the descriptor table would contain:

DUTSPC: 15270
23364

17500

60137

10

46600

i+RADSO
i +RADSO
i+RADSO
i RADSO
SLENGTH
i.RADS0O

IDKI
‘FIL’
IEI
‘OP1”
OF B BLOCKS (DECIMAL)
ILPI

2-20 Programmed Request Description and Examples

0 iNOD NAME OR LENGTH SPECIFIED

0

0
78230 i +RADSO ‘8Y
23364 i+RADSO FIL
22100 i +RADSO ‘EZ
B60141 $+RADSO ‘OP37

24 SLENGTH OF 20 (DECIMAL)

B2170 i +RADSO ‘PCY

0 iND NAME SPECIFIED

0

0
16077 i+RADSO ‘DTL
35217 $+RADSO ‘INL

0 i +RADSO ! ’
30553 i+ RADSO ‘MAC’
16100 i +RADSO ‘nT2’
35220 i +RADSO “INZ!

0 P +RADSO ! !
230553 1 +RADSO "MAC’

0

0 (12 more zero words are returned)

Keyboard error messages that can occur when input is from the console
keyboard include:

Message Meaning
?CSI-F-Invalid command Syntax error.
?CSI-F—file not found Input file was not found.
?CSI-F—Device full Output file does not fit.
?CSI-F-Invalid device Device specified does not exist.
?CSI-F-Protected file Output file specified already

exists and is protected.

Notes:

1. In many cases, your program does not need to process options in CSI
calls. However, you could inadvertently enter options at the console. In
this case, it is wise to save the value of the stack pointer before the call
to the CSI, and restore it after the call, so that no extraneous values are
left on the stack. Note that even a command string with no options
causes a word to be pushed onto the stack. This word indicates the
number of options to follow.

2. Under an FB monitor, calls to the CSI that require console terminal
input always do an implicit UNLOCK of the USR while the string is
being gathered. This should be kept in mind when using .LOCK calls.

2.11 .CSISPC

The .CSISPC request calls the Command String Interpreter in special mode
to parse the command string and return file descriptors and options to the
program. In this mode, the CSI does not perform any .CLOSE, .ENTER,
.LOOKUP, or handler .FETCH requests.

Programmed Request Description and Examples 2-21

Options and their associated values are returned on the stack. The optional
argument (linbuf) can provide your program with the original command
string.

.CSISPC automatically takes its input line from an indirect command file if
console terminal input is specified (cstrng = #0) and the program issuing
the .CSISPC is invoked through an indirect command file.

Note that in a foreground/background environment, calling the CSI per-
forms a temporary and implicit .UNLOCK while the command line is being
read.

Macro Call: .CSISPC outspc,defext[,cstrng][,linbuf]

where:

outspc is the address of the 39-word block to contain the file
descriptors produced by .CSISPC. This area can overlay the
space allocated to cstrng, if desired

defext is the address of a four-word block that contains the Ra-
dix—50 default file types. These file types are used when a
file is specified without a file type

cstrng is the address of the ASCIZ input string or a #0 if input is
to come from the console terminal. If the string is in mem-
ory, it must not contain a (octal 15 and 12), and must
terminate with a zero byte. If cstrng is blank, input is auto-
matically taken from the console terminal or indirect file, if
one is active

linbuf is the storage address of the original command string. This
is a user-specified area, 81 bytes in length. The command
string is terminated with a zero byte instead of (octal
15 and 12)

Notes:

1. The file description consists of 39 words, comprising nine file descriptor
blocks (five words for each of three possible output files; four words for
each of six possible input files), which correspond to the nine possible
files (three output, six input). If any of the nine possible file names are
not specified, the corresponding descriptor block is filled with zeroes.

2. The five-word blocks hold four words of Radix—50 representing
dev:file.type, and one word representing the size specification given in
the string. (A size specification is a decimal number enclosed in square
brackets ([]) that follows the output file descriptor.) For example:

*DT3:LIST.MACL15]=PC:

Using special mode, the CSI returns in the first five-word slot:

16101 Radix-50 for DT3

46173 Radix-50 for LIS

76400 Radix-50 for T

50553 Radix-50 for MAC

00017 Octal value of size request

2-22 Programmed Request Description and Examples

In the fourth slot (starting at an offset of 36 bytes [octal] into outspc),

the CSI returns:

62170 Radix-50 for PC
0 No file name

0 specified

0 No file type given

Since this is an input file, only four words are returned.

Errors:

Errors are the same as in general mode except that invalid device
specifications are checked only for output file specifications with null
file names. Since .LOOKUP and .ENTER requests are not done, the

valid error codes are:

Code Explanation
0 Invalid command line.
1 Invalid device.
Example:
+TITLE CSISPC.MAC

.CSISPC - This is an example
The exampPle uses the

in the use of the
"special" mode of CSI to det an

+CSISPC reauest.
input

specification from the console termimals then uses the +DSTATUS
request to determine if the output device’s handler is loaded$

if notsy a +FETCH reauest

is issued to load the handler into

memorys, Finally a +DELETE resquest is issued to delete the specified

file.

+MCALL
START: MOV SPs RS
+C8ISPC #0DUTSP »#DEFEXT
MOV RS 8P
+DSTAT #STAT y#0UTSP
TST STAT+4
BNE 2%
+FETCH #HANLOD »# INGPEC
BCC 2%
+PRINT #FEFAIL
JEXIT
2%: +DELETE #AREA »#0 »# INGPEC
BCC 3%
+PRINT #NOFTL
BR START
3%: +PRINT #FILDEL
JEXIT
AREA: +BLKMW 2
STAT: +BLKW 4
DEFEXT: +WORD 0404040
FEFAIL: LASCIZ /7+FETCH Failed?/
NOFIL: +ASCIZ /?File Not Found?/
FILDEL: +ASCIZ /1File Deleted!/
+EVEN
OUTSP: +BLKW 5%3
INSPEC: +BLKW 4%B
HANLOD: BLKW 1
+END START

DSTATUS » + PRINT »+EXIT+» FETCH,».CEISPC+.DELETE

iSave current stacKk Pointer

jUse (CSISPC to det outPut spPec
jRestore SP to clear any CSI ortions
iCheck on the output device

$(CSISPC catches illegal devices!)
$8ee if the device is resident
iBranch if alreadv loaded
$It’s not loaded. . bring it
jBranch if successful
jFetch failed+ssPrint error messade
jthen exit Pprodram

iNow delete the file

iBranch if successful

iPrint error messade

iThen try adain

jAcknowledge successful deletion
jthen exit prodgram

into memory

JEMT Argument block
iBlock for status

iNo default extensions
jiFetch failed messade
sFile not found
iDelete acKvowledgment
iFix boundary

iOutrPut srecs do here
iInPut srecs do0o here
jHandlers bedgin loadingd here

Programmed Request Description and Examples 2-23

(if necessary)

212 .CSTAT

This request furnishes you with information about a channel.
Macro Call: .CSTAT area,chan,addr

where:

area is the address of a two-word EMT argument block

chan is the number of the channel about which information is de-
sired

addr is the address of a six-word block to contain the status

Request Format:

RO — area:| 27 | chan
addr

Notes:

The six words passed back to the user correspond to the following six points
of information:

1. Channel status word (see the RT-11 Software Support Manual for de-
tails)

2. Starting block number of file (0 if sequential-access device, or if channel
was opened with a non-file-structured .LOOKUP or .ENTER)

3. Length of file (0 if non-file-structured device, or if channel was opened
with a non-file-structured .LOOKUP or .ENTER)

4. Highest relative block written since file was opened (no information if
non-file-structured device). This word is maintained by the
.WRITE/ WRITC/.WRITW requests
Unit number of device with which this channel is associated
Radix—50 of the device name with which the channel is associated (this
is a physical device name, unaffected by any user name assignment in
effect).

Errors:

Code Explanation
0 The channel is not open.
Example:

i+

+TITLE CSTAT.MAC

i +CSTAT - This is an example in the use of the ,CSTAT recuest.

i In
i re

STAR

this examples +CSTAT is used to determine the ,RADSO
Presentation of the device with which the channel is associated.

+MCALL +CSTAT»CSIGEN s+ PRINT ,EXIT
T: MOV 8Py RS iSave current stack pointer
+CSIGEN #DEVSDC »#DEFEXT iOpen files
MOV RS, SP iRestore 8P to clear any CSI ortions
+CSTAT #AREA s#0 »#ADDR iGet the status
BCS NOCHAN iChannel 0 rnot oren
MOV #ADDR+10 sR5S iPoint to unit =

2-24 Programmed Request Description and Examples

Moy (RS)+HRO iUnit # to RO

ADD (PC)+ RO iMake it RADSO
+RADSO / 0/
ADD (RS) sRO iGet device name
Moy RO sDEVNAM i'DEVNAM’ has RADSO device name
JEXIT FExit the prodram
NOCHAN: +PRINT #MSG iPrint error messade
+JEXIT ithen exit prodram
M8G: +ASCIZ /7No Output File?/ fError messade
+EVEN 5Fix boundary
AREA: +BLKW S SEMT argd list

ADDR: +BLKMW [c} jArea for channel status

DEUNAM: +WORD Q iStoragde for device mame

DEFEXT: +WORD 010,040 iNo default extensions

DEVSDC=. iStart CSI tables heres.
+END START

2.13 .CTIMIO (Device Handler Only)

The .CTIMIO macro cancels the device time-out request in the handler
interrupt service section. It is used when an interrupt occurs to disable the
completion routine (see .TIMIO).

If the time interval has already elapsed and the device has, therefore, timed
out, the .CTIMIO request fails. The completion routine has already been
placed in the queue. The .CTIMIO call returns with the C bit set when it
fails because the completion routine was already queued.

The device time-out feature must have been selected during the system
generation process.

Macro Call: .CTIMIO tbk

where:

tbk is the address of the seven-word timer block shown in Table
2-1

Table 2-1: Timer Block Format

Offset Filled in By Contents
0 .TIMIO High-order time word (expressed in ticks).
2 .TIMIO Low-order time word (expressed in ticks).
4 monitor Link to next queue element; 0 indicates none.
6 user Owner's job number; 0 for background job, MAXJOB for fore-

ground job, and job priority *2 for system jobs. MAXJOB is
equal to (the number of jobs in the system * 2)-2. The job
number for the foreground job is 2 in a system without system
jobs, and 16 for a system with system jobs. The job number is
set from the queue element.

10 user Sequence number of timer request. The valid range of sequence
numbers is from 177000 to 177377.

12 monitor -1

14 user Address of the completion routine to execute if timeout occurs.

The monitor zeroes this word when it calls the completion
routine, indicating that the timer block is available for reuse.

Programmed Request Description and Examples 2-25

The .CTIMIO macro expands as follows:

+CTIMIO tBK

JER RSIESTIMIT SPOINTER AT END OF HANDLER
+HWORD thk -

+WORD 1 iCODE FOR .CTIMIO

Example:

Refer to the example for the .TIMIO request.

2.14 .DATE

This request returns the current date information from the system date
word in RO. The date word returned is in the following format:

BIT: 1514 13..10 9..5 4.0
Nl e el
0 0 MONTH DAY YEAR

The year value in bits 4-0 is the actual year minus 1972. The day in bits 9
to 5 is a number from 1 to the length of the month. The month in bits 13 to
10 is a number from 1 to 12.

NOTE

RT-11 support of month and year rollover is a system gener-
ation special feature; otherwise, the keyboard monitor DATE
command must be issued to change the month and year.

Macro Call: .DATE
Request Format:
RO=[12] o |

Errors:

No errors are returned. A zero result in RO indicates that the user has
not entered a date.

Example:

+TITLE DATE.MAC

i+

i +DATE - This is an example in the use of the .DATE reauest.
i This example may be assembled serparately and linKed with

i user written Prodrams

INPUT: none
DUTPUT: RO

R1
R2

MONTH (1-12)
DAY (1-31)
YEAR (Last two digitsg)

. ar e we wn

2-26 Programmed Request Description and Examples

i ERRORS: RO = 0 if no date entered

-

+MCALL +DATE

DATE:: +DATE iGet date in RO via .DATE resuest
MOV RO R2 iCary RO
BEQ 1% sIf zeros» no date was entered
BIC #*“C37+R2 iClear all but vear bits
ADD #724R2 §MaKe it current vear
Mov RO:R1 iCory date word adain
ASL R1 jGet dar bits
ASL R1 jon a byte boundarv...
ASL R1 i
SWAB R1 jPut day bits in low order bvte
BIC #"C37R1 iClear all but davy bits
SWAB RO iPut month bits in low bvte
ASBR RO fRight addust
ASR RO imonth bits...
BIC #°C174+RO iClear all but month bits

1%: RETURN iReturn to callind Program
+END

2.15 .DELETE

The .DELETE request deletes a named file from an indicated device. The
.DELETE request is invalid for magtapes. The .SERR programmed request
can be used to allow the program to process any errors.

Macro Call: .DELETE area,chan,dblk[,seqnum]

where:
area is the address of a three-word EMT argument block
chan is the device channel number in the range 0-376(octal)
dblk is the address of a four-word Radix—50 descriptor of the

file to be deleted

seqnum file number for cassette operations: if this argument is
blank, a value of 0 is assumed

Request Format:

RO — area: 0 | chan
“dblk
seqnum

Notes:

The channel specified in the DELETE request must not be open when the
request is made, or an error will occur. The file is deleted from the device,
and an empty (UNUSED) entry of the same size is put in its place. A
.DELETE issued to a non-file-structured device is ignored. .DELETE re-
quires that the handler to be used be in memory at the time the request is
made. When the .DELETE is complete, the specified channel is left inac-
tive.

Programmed Request Description and Examples 2-27

Errors:

Code

3

Explanation

Channel is active.

File was not found in the device directory.

Invalid operation.

The file is protected and cannot be deleted.

Example:

+

+DELETE - This is an examrle in the use of the
The examrle uses the
specification from the console terminal, then uses the

if not
MEMOTY .
file,

"
¥
;
;
.
¥
i resuest
i
.
1
H
i

START:

2%:

3%:

AREA:
STAT:
DEFEXT:

FEFAIL:
NOFIL:
FILDEL:

OUTSP:
INSPEC:
HANLOD:

+TITLE

DELETE+MAC

+DELETE request.

"special" mode of CSI to det an inePut

+DSTATUS

to determine if the output device’s handler is loaded3;
a +FETCH reauest is issued to load the handler into
Finally a +DELETE reauest is issued to delete the specified

+DSTATUS » . PRINT 4 ,EXIT+,.FETCH,.,CSISPC,».DELETE

iSave current stacKk pointer
ilse ,CSISPC to det outPut srec

iRestore SP to clear anvy CSI oPtions

iCheck on the outrut device

F(CSISPC catches illedal devices!)

iSee if the

device is resident

iBranch if already loaded

iIt’s not loaded.ssbrind it into memory

iBranch if successful

iFetch failed.,.Print error messade

ithen exit Prosgram
iNow delete the file

iBranch if successful

iPrint error messade
iThen try adain

iAcknowledde successful deletion

ithen exit Program

FEMT Ardument block

iBlock for status

iNo default

extensions

iFetch failed messagde
jFile not found
iDelete acKknowleddgment
iFix boundary

i0utrPut srecs do0 here

+MCALL

MoV SPy RS

+CSISPC #0UTSP +#DEFEXT
Moy RS, SP

+DETAT #STAT »#0UTSP

TST STAT+4

BNE 2%

+FETCH #HANLOD y#INSPEC
BCC 2%

+«PRINT #FEFAIL

JEXIT

+DELETE #AREA »#0 y# INSPEC
BCC 3%

+PRINT #NOFIL

BR START

+PRINT #FILDEL

JEXIT

+BLKW 2

+BLKW 4

+HWORD 0404040

+ABCIZ /7.FETCH Failed?/
+ASCIZ /?File Not Found?/
+ABCIZ /1File Deleted!/
+EVEN

+BLKW 5%3

+BLKW 4%B6

+BLKW 1

+END START

2.16 .DEVICE (FB and XM Only)

This request allows your program to load device registers with any neces-
sary values when the program is terminated. You set up the list of ad-
dresses with the specified values. Upon issuing an .EXIT request or a
CTRL/C from the terminal, this list is picked up by the system and the
designated addresses are loaded with the corresponding values. This func-
tion is primarily designed to allow your program to turn off a device’s
interrupt enable bit when the program servicing the device terminates.

2-28 Programmed Request Description and Examples

ilnPut specs do0 here

iHandlers begin loading here

(if necessarvy)

Successive calls to .DEVICE are allowed when you need to link requested
tables. When the job is terminated for any reason, the list is scanned once.
At that point, the monitor disables the feature until another .DEVICE call
is executed. Thus, background programs that are reenterable should in-
clude .DEVICE as a part of the reenter code.

The .DEVICE request is ignored when it is issued by a virtual job running
under the XM monitor.

Macro Call:

where:

area

addr

link

.DEVICE area,addr[,link]

is the address of a two-word EMT argument block

is the address of a list of two-word elements, each composed of
a one-word address and a one-word value to be put at that
address. If addr is #0, any previous list is discarded; in this
form, the argument /ink must be omitted

is an optional argument that, if present, specifies linking of
tables on successive calls to .DEVICE. If the argument is
omitted, the list referenced in the previous .DEVICE request
is replaced by the new list. The argument must be supplied to
cause linking of lists; however, linked and unlinked list types
cannot be mixed

Request Format:

Nonlinking Linking

RO — area:| 14 | 0 RO — area:| 14 [1
addr addr

NOTE

The list referenced by addr must be in either linking or non-
linking format. The different formats are shown below. Both
formats must be terminated with a separate, zero-value
word. Linking format must also have a zero-value word as its
first word.

Nonlinking Linking
addr: | address addr: 0
value address
address value
value address
value
address .
value address
0 value
0 0

Programmed Request Description and Examples 2-29

Errors:
None.

Example:

+TITLE DEVICE.MAC

i «DEVICE - This is an examprle in the use of the .DEVICE request.

i The examrle shows how ,DEVICE is used to disable interrurts from
i a device upon termination of the prodram. In this case the device
i is a DL11 Serial Line Interface.

+MCALL +DEVICE » EXIT,».PROTECT » +UNPROTECT s, PRINT
+GLOBL DL11
START: +DEVICE #AREA»#LIST iSetur to disable DLIl1 interrurts on
$+EXIT or °“C°C
+PROTECT ®AREA »#300 iProtect the DL11 wvectors
BCS BUSY iBranch if already Protected
i . iSet up data to transmit over DLI11
1 +
JSR R5,0L11 iUse DL11 xfer routine (see +INTEN examrle)
+WORD 128, fArduments.. Word count
+WORD BUFFR iData buffer addr
i ' iContinue Processing...
k] +
FINI: +UNPROTECT #AREA,#300 f.oeeventually to exit Prodram
JEXIT
BUSY: +PRINT *NOVEC iPrint error messages,.
JEXIT fthen exit
AREA: +BLEKW 3 SEMT Ardument block
LIST: +WORD 178500 fiCSR of DL11
+WORD 0 §Fill it with ‘0°
+WORD 0 jList terminator
BUFFR: iData to send over DLI11
+REPT 8. i8 lines of 32 characters...
+ASCIZ /Hello DLI1.+. Are You There 7?7/
+ENDR
NOVEC: +ASCIZ /?Vector already Protected?/ JError message text
+END START

2.17 .DRAST (Device Handler Only)

The .DRAST macro sets up the interrupt and abort entry points, lowers the
processor priority, and references a global symbol $INPTR, which contains
a pointer to the $INTEN routine in the resident monitor. This pointer is
filled in by the bootstrap (for a system device) or at . FETCH time (for a data
device).

Macro Call: .DRAST name,pri[,abo]

where:

name is the two-character device name

pri is the priority of the device, and also the priority at which
the interrupt service code is to execute

abo is an optional argument that represents the label of an abort
entry point. If you omit this argument, the macro generates
an RTS PC instruction at the abort entry point, which is the
word immediately preceding the interrupt entry point

2-30 Programmed Request Description and Examples

Example:

+TITLE SP.MAC

wn an an e W n e

JMCALL
+IIF NDF MMGH$T . MMG$T=0
+1IF NDF ERL%G: ERL$G=0
+IIF NDF TIMS$IT: TIM&IT=0

SP$VEC=304
SP$CSR=176504

+IIF NDF SP$VEC,
+IIF NDF SP%CSR

SP.MAC - This is an example of a simple:
the use of the .DRBEG:s .DRAST,» DRFIN.
This driver could be used to outPput to a serial ASCII printer-terminal
over a DL11 Serial Liwe Interfaces, To use this driver as an RT-11 device
handlers simely install it via the INSTALL command (ed, ‘INSTALL SP").

RT-11 device driver to illustrate
+DREND+ FORK & J+QELDF requests.

+DRBEG + DRAST + DRFIN+,DREND ,».QELDF +» .FORK

jiDefine these in case not
jassembled with SYSCND.MAC

iDefine default vector
iDefine default CSR addr

+IIF NDF SP4%PRI SP$PRI=4 iDefine default device Priority
IOERR = 1 tHard I/0 error bit definition
SPSTS = 20000
jDevice Status = Write only
SPSIZ = 0 iDevice Size = O (Char device)
+QELDF jUse +QELDF to define @-Elem offsets
iAmond others & of interest to us are:
iQ.BLKN = 4 j0ffset to Block # (SPCOE => Q.BLKN)
1Q%CSHW = -2 jOffset from QO.BLKN to CSW pointer
JOSBUFF = 4 i " " " User buffer Ptr
FOEWUCNT = G i " " " " Word count
+DRBEG SPSP$VEC +SPSIZsSPSTS iBegin driver code with DRBEG
iMACRO exPpansion 1S+
H +WORD <SPEND-SPSTRT > iSize of driver (handler)
i +WORD ¢l iSize of device
H +WORD 20000 iDevice status (Write only)
i +WORD ERL$G+<MMGET*2»+<TIM$IT*#4>3Default ortions
iSPSTRT: : iBedinning of driver
i +WORD SPVEC+4 iIlnterrupt vector
i +WORD SPINT-.,»"0340 i0ffset to Int svuc rtne & Priority
iSPCQE:: +WORD 0 iQuene element Pointers
FSPLOQE:: JWORD 0 5(Point to 3rd word in element!)
Mov SPCOE R4 iR4 => Current O-Element
ASL QsWCNT (R4Y) iMake word count hvte count
BCC SPERR A read from a write/only device?
BEQ SPDUN iZero word countesedust exit

SPRET: BIS
RETURN

#100@#S5P4CSR

i INTERRUPT SERVICE ROUTINE

.DRAST SPSP$PRI

; RTS PC

JSPINT:: JSR RS IB$INPTR

3 +WORD “C<SP$PRI*" 04080340
MoV SPCOE /R4
TST @#SP$CSR
BMI SPRET
BIC #100 ,@#SP$CSR
FORK SPFORK

iEnable DL-11 interrurt
iReturn to monitor

jlse DRAST to define Int Svc Sect.
SMACRD exPansiomee.

iAbort Entry Point

iDo a +INTEN to alert momnitor

jand drop Processor Priority

iR4 => Q-Element

iError?

iYessoo 'hand’ until ready

iDisakle interrupts

iContinue at FORK level

SPNXT: TSTB B#SP4CSR ils deuvice readv?
BPL SPRET iNo+.s 90 wait ‘till it is
MOVB @A$BUFF(R4) 1@sSP$COSR+23iXfer byte from buffer to DL-11
INC QEBUFF(R4) jBump the buffer Pointer
INC QFWCNT (R4) jand the word count (it‘s nedativel)
BEQ SPDUN iBranch if done
BR SPNXT iTry to outPut another character

SPERR: BIS #I0ERR +@0$CSW(R4)
SPOUN: +DRFIN 5P

iSet error bit in CSMW
jUse +DRFIN to return to Monitor
iMACRO expansion...

Programmed Request Description and Examples 2-31

MoV PC R4 iCalculate PIC addr of current

i
i ADD #SPCOE- ., sR4 jqueue element Pointer
i MOV B#54 RS iPut addr of base of RMON in RS
H JMP @*0270(R5) iJump to handler completion in monitor
SPFORK: +WORD 0,04+040 jFork Queue Element

+DREND SP iUse +DREND to end code

iMACRO exparsion...

Fi$INPTR::, WORD 0 jAddr of JINTEN code in RMON
F$FKPTR: 2. WORD 0 iAddr of .FORK processor in RMON
FSPEND == . SEnd of driver

+END

2.18 .DRBEG (Device Handler Only)

The .DRBEG macro sets up the information in block 0 and the first five
words of the handler. This macro also generates the appropriate global
symbols for your handler. Before you use .DRBEG, invoke .DRDEF to de-
fine xxCSR, xxVEC, xxDSIZ, and xxSTS (see Section 2.20).

Macro Call: .DRBEG name
where:
name is a two-character device name

Example:

Refer to the example for .DRAST.

2.19 .DRBOT (Device Handler Only)

2-32

The .DRBOT macro sets up the primary driver. A primary driver must be
added to a standard handler for a data device to create a system device
handler. The .DRBOT macro invokes the .DREND macro (see Section 2.21)
to mark the end of the handler so that the primary driver is not loaded into
memory during normal operations.

Macro Call: .DRBOT name,entry,read[, CONTROL =arg...,arg}[,SIDES=n]

where:
name is the two-character device name
entry is the entry point of the software bootstrap routine
read ~ is the entry point of the bootstrap read routine

CONTROL defines the types of controllers supported by this han-
dler. The values for arg can be UBUS or QBUS. If
CONTROL is omitted, both Unibus and Q-bus are as-
sumed. This is correct for all supported handlers

SIDES specifies single- or double-sided diskettes. If omitted,
single-sided diskettes are assumed. This is correct for
all supported handlers

Programmed Request Description and Examples

The .DRBOT macro puts a pointer to the start of the primary driver into
location 62 of the handler file. It puts the length (in bytes) of the primary
driver into location 64. Location 66 of the handler file contains the offset
from the start of the primary driver to the start of the bootstrap read rou-
tine. The .DRBOT macro is called before the .DREND macro that you issue.
The code for the primary driver is placed between the DRBOT and
.DREND calls.

Example:

Refer to the RT—11 Software Support Manual for an example showing
the use of . DRBOT.

2.20 .DRDEF (Device Handler Only)

The .DRDEF macro sets up handler parameters, calls the driver macros
from the library, and defines useful symbols.

Macro Call: .DRDEF name,code,stat,size,csr,vec

where:

name is the two-character device name

code is the numeric code that is the device identifier value for the

device

stat is the device status bit pattern. The value for stat may use
the following symbols:
FILST$ = 100000 SPECL$% = 10000 ABTID$ = 1000
RONLY$ = 40000 HNDLR$ = 4000 VARSZ$ = 400
WONLY$ = 20000 SPFUN$ = 2000

size is the size of the device in 256-word blocks

csr is the default value for the device’s control and status regis-
ter

vec is the default value for the device’s vector

The .DRDEF macro performs the following operations:

1. A .MCALL is done for the following macros: .DRAST; .DRBEG;
.DRBOT; .DREND; .DRFIN; .DRSET; .DRVTB; .FORK; .QELDF.

2. If the system generation conditionals TIMS$IT, MMGST, or ERL$G are
undefined in your program, they are defined as zero. If time-out support
is selected, the .DRDEF macro does a .MCALL for the .TIMIO and
.CTIMIO macros.

3. The .QELDF macro is invoked to define symbolic offsets within a queue
element.

4. The symbols listed above are defined for the device status bits.

Programmed Request Description and Examples 2-33

5. The following symbols are defined:

HDERR$=1 HARD ERROR BIT IN THE CSHW
EOF$=20000 SEND OF FILE BIT IN THE CSH

6. The symbol xxDSIZ is set to the value specified in size.
7. The symbol xx$COD is set to the specified device identifier code.

8. The symbol xxSTS is set to the value of the device identifier code plus
the status bits.

9. If the symbol xx$CSR is not defined, it is set to the default csr value.
10. If the symbol xx$VEC is not defined, it is set to the default vector value.
11. The symbols xx$CSR and xx$VEC are made global.

You should invoke the DRDEF macro near the beginning of your handler,
after all handler specific conditionals are defined.

Example:

Refer to the RT-11 Software Support Manual for an example showing
the use of .DRDEF.

2.21 .DREND (Device Handler Only)

The .DREND macro generates the termination table for the termination
section of the device handler.

Macro Call: .DREND name
where:
name is the two-character device name

The generation of the termination table, dependent upon certain condi-
tions, is as follows:

Label Addresses
SRLPTR: .WORD 0 ($RELOC)
$MPPTR: .WORD 0 ($MPPHY)
$GTBYT: .WORD 0 ($GETBYT)
$PTBYT: .WORD 0 ($PUTBYT)
$PTWRD: .WORD 0 ($PUTWRD)
$ELPTR: .WORD 0 ($ERLOG)
$TIMIT: .WORD 0 ($TIMIO)
$INPTR: .WORD 0 ($INTEN)
$FKPTR: .WORD 0 ($FORK)

The generation of the labels depends upon the special features chosen dur-
ing the system generation process. All the pointers in the termination sec-
tion are initialized when the handler is loaded into memory with the
FETCH request. If the device handler is a system device, the pointers are
initialized at boot time with the addresses shown in the address column.

234 Programmed Request Description and Examples

The addresses are located within the monitor. The first five addresses are
the locations of subroutines in the resident monitor that are available to
device handlers in an extended memory environment. Device I/O time-out
service is provided by $TIMIO and error logging is provided by $SERLOG.
The $INPTR and $FKPTR labels are always filled in by a .FETCH or
LOAD command.

Example:
Refer to the example for .DRAST.

2.22 .DRFIN (Device Handler Only)

The .DRFIN macro generates the instructions for the jump back to the
monitor at the end of the handler I/O completion section. The macro makes
the pointer to the current queue element a global symbol, and it generates
position-independent code for the jump to the monitor. When control passes
to the monitor after the jump, the monitor releases the current queue ele-
ment.

Macro Call: .DRFIN name

where:

name is the two-character device name
Example:

Refer to the example for .DRAST.

2.23 .DRSET (Device Handler Only)

The .DRSET macro sets up the option table for the SET command in block 0
of the device handler file. The option table consists of a series of four-word
entries, one entry per option. Use this macro once for each SET option that
is used. When used a number of times, the macro calls must appear one
after another.

Macro Call: .DRSET option,val,rtn[,mode]

where:

option is the name of the SET option, such as WIDTH or CR. The
name can be up to six alphanumeric characters long and
should not contain any embedded spaces or tabs

val is a parameter that is passed to the routine in Register R3.
It can be a numeric constant, such as minimum column
width, or any one-word instruction that is substituted for an
existing one in block 1 of the handler. It must not be a zero

rtn is the name of the routine that modifies the code in block 1
of the handler. The routine must follow the option table in
block 0 and must not go above address 776

Programmed Request Description and Examples 2-35

mode is an optional argument to indicate the type of SET parame-
ter. A NO indicates that a NO prefix is valid for the option.
NUM indicates that a decimal numeric value is required.
OCT indicates that an octal numeric value is required.
Omitting this argument indicates that the option takes nei-
ther a NO prefix nor a numeric argument

The .DRSET macro does an .ASECT and sets the location counter to 400 for
the start of the table. The macro also generates a zero word for the end of
the table and leaves the location counter there. Thus routines to modify
codes are placed immediately after the .DRSET calls in the handler, and
their location in block 0 of the handler file is made certain.

Example:

Refer to the RT-11 Software Support Manual for an example of
.DRSET.

2.24 .DRVTB (Device Handler Only)

The .DRVTB macro sets up a table of three-word entries for each vector of a
multivector device. The table entries contain the vector location, interrupt
entry point, and processor status word. You must use this macro once for
each device vector. The .DRVTB macros must be placed consecutively in
the device handler between the .DRBEG macro and the .DREND macro.
They must not interfere with the flow of control within the handler.

Macro Call: .DRVTB name,vec,int[,ps]

where:

name is the two-character device name. This argument must be
blank except for the first-time use of . DRVTB

vec is the location of the vector, and must be between 0 and 474

int is the symbolic name of the interrupt handling routine. It
must appear elsewhere in the handler code. It generally
takes the form ddINT, where dd represents the two-charac-
ter device name

ps is an optional value that specifies the low-order four bits of
the new Processor Status Word in the interrupt vector. This
argument defaults to zero if omitted. The priority bits of the
PSW are set to 7 even if you omit this argument

Example:

Refer to the RT—11 Software Support Manual for an example of
.DRVTB.

2.25 .DSTATUS

This .DSTATUS request obtains information about a particular device.
Macro Call: .DSTATUS retspc,dnam

2-36 Programmed Request Description and Examples

where:

retspc is the address of a four-word block that stores the status
information

dnam is the address of a word containing the Radix—50 device

name

.DSTATUS looks for the device specified by dnam and, if successful, returns
four words of status starting at the address specified by retspc. The four
words returned are as follows:

Word 1 Status Word

Bits 0-7: The low-order byte contains a number that identifies the
device in the system. The values are currently defined in
octal as follows: -

N U WO

I (T (| (| | | T | [1

RKO05 Disk

TC11 DECtape

Error Logger

Line Printer

Console Terminal or Batch Handler
RL01/RL02 Disk

RXO02 Diskette

PC11 High-speed Paper Tape Reader and
Punch

Reserved (V2 PP handler)

TU10 Magtape

RF11 Disk

TA11 Cassette

Card Reader (CR11,CM11)
Reserved

RJS03/RJS04 Fixed-head Disk
Reserved

TJU16 Magtape

RP02/RP03 Disk

RXO01 Diskette

RK06/RK07 Disk

Reserved

Null Handler

Reserved (DECnet) -

Reserved (CTS-300,LQ,LR,LS)
TU58 DECtape 11

TS11 Magtape

PDT-11/130

PDT-11/150

Reserved

Serial Line Printer Handler (LS)
Message Queue Handler (MQ)
DRV11-J Interface (MRRT)
Down-line Load Handler (XT) (MRRT-11
only)

Programmed Request Description and Examples 2-37

45 = Reserved

46 = Logical Disk Handler
47 = KT-11 VM Handler
50 = MSCP Class Disk Handler

51 = Single-line Editor

Bit 8: 1= Handler can access variable-sized volumes and sup-
ports .SPFUN 373
0= All volumes used by this device are the same size

Bit 9: 1= Enter handler at abort entry whenever program ter-
minates for any reason

0= Do not enter at abort entry point unless conditions
for bit 11 are satisfied

Bit 10: 1= Handler accepts .SPFUN requests (for example, MT,
CT, DX)
0= No .SPFUN requests accepted
Bit 11: 1= Enter handler abort entry every time a job is
aborted

0= Handler abort entry taken only if there is an active
queue element belonging to aborted job

Bit 12: 1= Non RT-11 directory-structured device (magtape,
cassette)

Bit 13: = Write-only device (line printer, serial line printer)

Bit 14: = Read-only device (card reader, paper tape reader)

Bit 15: = Random-access device (disk, DECtape)

0= Sequential-access device (line printer, paper tape,
card reader, magtape, cassette, terminal)

Word 2 Handler Size
The size of the device handler in bytes.

Word 3 Load Address +6
Non-zero implies the handler is now in memory: zero implies that it
must be fetched before it can be used. The address returned is the
load address of the handler +6.

Word 4 Device Size
The size of the device (in 256-word blocks) for block-replaceable de-
vices; 0 for sequential-access devices, the smallest-sized volume for
variable-sized devices. The last block on the device is the device size
-1.

The device name can be a user-assigned name. .DSTATUS information is
extracted from the device handler. Therefore, this request requires the han-
dler for the device to be present on the system device and installed on the
system.

2-38 Programmed Request Description and Examples

Errors:

Code Explanation
0 Device not found in tables.
Example:
+TITLE DSTAT.MAC

+
+DSTATUS - This

file.

an s me ee ws am ax o am

+MCALL
START: +C8ISPC
+DSTAT

T8T
BNE
+FETCH
BCC
+PRINT
WEXIT

2% +DELETE
BCC
+PRINT
BR

3%: +PRINT
JEXIT

AREA: +BLKW
STAT: +BLKKW
DEFEXT: +WORD

FEFAIL: +ABCIZ
NOFIL: +ASCIZ
FILDEL: +ASCIZ
+EVEN
OUTSP: +BLKKW
INSPEC: +BLKW
HANLOD: «BLKW
+END

2.26 .ELAW (XM Only)

The example uses the
specification from the console terminal, then uses the ,DETATUS
request to determine
if nots a +FETCH reauest is issued to load the handler into

memorv. Finally a issued to delete the srecified

is an example in the use of the ,DSTATUS reauest.

"special" mode of CSI to get an inPut

if the output device‘s handler is loaded}

+DELETE reauest is

+DSTATUS » PRINT + 4EXIT+,FETCH+.CSISPC,+.DELETE

#0UTSP ,#DEFEXT
#5TAT y#0DUTSP

STAT+4

Z%

#HANLOD »#INSPEC
2%

#FEFAIL

#AREA »#0 4 INSPEC
3%

#NOFIL

START

#FILDEL

2
4
0+0+0:0

/?.FETCH Failed?/

/?File Not Found?/

/'File Deleted!/

S#3
4+6

START

jUse +CSISPC to det outrut seec
iCheck on the outrput device

3 (CSISPC catches illegal devices!)
i8ee if the device is resident
iBranch if already loaded

jIt’s not loadedsssbring it into memory
jBranch if successful

iFetch failed.,.print error messade
ithen exit program

iNow delete the file

jBranch if successful

jPrint error messagde

iThen try adain

fjAcknowledde successful deletion
fthen exit program

$EMT Ardument blockK
iBlocK for status
iNo default extensions

iFetch failed messade
sFile not found
jDelete acKnowleddment
iFix boundary

iOutrPut srecs do here
ilnPut specs do here

jHandlers bedin loading here (if necessarv)

The .ELAW request eliminates a virtual address window. An implied un-
mapping of the window occurs when its definition block is eliminated.

Macro Call:

where:

.ELAW areal,addr]

area is the address of a two-word EMT argument block

addr is the address of the window definition block for the window
to be eliminated

Programmed Request Description and Examples 2-39

Request Format:

RO — area:| 36 3

addr
Errors:
Code Explanation
3 An invalid window identifier was specified.
Example:

Refer to the example for the .CRAW request.

2.27 .ELRG (XM Only)

The .ELRG request directs the monitor to eliminate a dynamic region in
physical memory and return it to the free list where it can be used by other
jobs.

Macro Call: .ELRG area {,addr]
where:

area is the address of a two-word EMT argument block

addr is the address of the region definition block for the region to
be eliminated. Windows mapped to this region are unmapped.
The static region cannot be eliminated

Request Format:

RO — area:| 36 | 1

addr
Errors: |
Code Explanation
2 An invalid region identifier was specified.
Example:

Refer to the example for the .CRAW request.

2.28 .ENTER

The .ENTER request allocates space on the specified device and creates a
tentative entry in the directory for the named file. The channel number
specified is associated with the file.

Macro Call: .ENTER area,chan,dblk,len[,seqnum]

where:
area is the address of a four-word EMT argument block
chan is a channel number in the range 0-376(octal)

240 Programmed Request Description and Examples

dblk

len

seqnum

Request Format:

RO — area:| 2 |chan

is the address of a four-word Radix-50 descriptor of the
file to be operated upon

is the file size specification. If the argument is omitted, it
is not set to 0 in area. An argument of #0 must be speci-
fied to accomplish this. If an argument is left blank, the
corresponding location in area is assumed to be set

The value of this argument determines the file length allo-
cation as follows:

0 either half the largest empty entry or the entire sec-
ond-largest empty entry, whichever is larger. (A max-
imum size for nonspecific .ENTER requests can be
patched in the monitor by changing resident monitor
offset 314; refer to the example for .PVAL)

m a file of m blocks. The size, m, can exceed the maxi-
mum mentioned above

—1 the largest empty entry on the device

is a file number for magtape or cassette. Programming for
specific devices such as magtape or cassettes is discussed
in detail in Chapter 10 of the RT-11 Software Support
Manual. For cassette operation, if this argument is blank,
a value of 0 is assumed

For magtape, seqnum describes a file sequence number.
The action taken depends on whether the file name is
given or is null. The sequence number can have the follow-
ing values:

0 rewind the magtape and space forward until the file
name is found or until logical end-of-tape is detected.
If the file name is found, an error is generated. If the
file name is not found, then enter file. If the file name
is a null, a non-file-structured lookup is done (tape is
rewound)

n position magtape at file sequence number n if n is
greater than zero and the file name is not null

-1 space to the logical end-of-tape and enter file

-2 rewind the magtape and space forward until the file
name is found, or until logical end-of-tape is detected.
The magtape is now positioned correctly. A new logi-
cal end-of-tape is implied

dblk
len
seqnum

Programmed Request Description and Examples 2—41

On return from this call, RO contains the size of the area actually allocated
for use.

The file created with an .ENTER request is not a permanent file until a
.CLOSE request is given on that channel. Thus, the newly created file is
not available to .LOOKUP, and the channel cannot be used by .SAVE-
STATUS requests. However, it is possible to read data that has just been
written into the file by referencing the appropriate block number. When
the .CLOSE to the channel is given, any existing permanent unprotected
file of the same name on the same device is deleted and the new file be-
comes permanent. Although space is allocated to a file during the .ENTER
operation, the actual length of the file is determined when .CLOSE is re-
quested.

Each job can have up to 255 files open on the system at any time. If re-
quired, all 255 can be opened for output with the . ENTER function.

When an .ENTER request is made, the device handler must be in memory.
Thus, a .FETCH should normally be executed before an .ENTER can be
done.

Notes:

When using the zero-length feature of .ENTER, keep in mind that the
space allocated is less than the largest empty space. This can have an
important effect in transferring files between devices (particularly DEC-
tape and diskette) that have a relatively small capacity. For example,
transferring a 200-block file to a diskette, on which the largest available
empty space is 300 blocks, does not work with a zero-length . ENTER. Since
the .ENTER allocates half the largest space, only 150 blocks are really
allocated and an output error occurs during the transfer. When transfer-
ring from A to B, with the length of A unknown, do a .LOOKUP first. This
request returns the length so that value can be used to do a fixed-length
.ENTER. The .ENTER request generates hard errors when problems are
encountered during directory operations. These errors can be detected after
the operation with the .SERR request.

Errors:
Code Explanation
0 Channel is in use.
1 In a fixed-length request, no space greater than or equal to
m was found; or the device or the directory was found to be
full.
3 A file by that name already exists and is protected. A new
file was not opened.
Example:

+TITLE ENTER.MAC
i+
i ENTER - This is an example in the use of the .ENTER redquest.
i The example maKes a copv of the file ‘TECO.SAV’ on device DK:
s

2-42 Programmed Request Description and Examples

+MCALL +LOOKUP + yENTER + + WRITW » « READW »,CLOSE

+MCALL +PRINT » EXIT
ERRBYT=52
START: +LOOKUP #AREA »#0 y#TECO iLooKur file TECO,8AV
BCS o% iBranch if not there!
MoV ROR3 iCopy size of file to R3
+ENTER #AREA »#1 y#TFILE »R3 iEnter a new file of same size
BCS G4 iBranch if failed
CLR BLK fInitialize blocKk % to zero
14%: +READW #AREA »#0 y#BUFFR »#256, »BLK iRead a block
BCC 2% iBranch if successful
TSTB B#ERRBYT iWas error EOF?
BEQ 3% iBranch if ves
MoV #RERR sRO iHard read error messade to RO
BR 7% iBranch to Print messade
2%: WRITH #AREA y#1 1#BUFFR %256, ,BLK jWrite a block
INC BLK iBump blocK # (doesn‘t affect C bit)
BCC 1% iBranch if write was oK
Moy #WERR 1RO RO =>» Write error messade
BR 7% jBranch to Print messagde
3% +CLOSE #1 iMaKe new file Permanent
MOV #DONE /RO iRO => Done message
BR 7% iBranch to Print messade
5% Moy #NOFIL 2RO iRO => File not found messade
BR 7% iBranch to print it
G$: Mav #NOENT 4RO iRO =» Enter Failed message
7%z +PRINT jPrint messade on console terminal
JEXIT ithe exit Prodram
AREA: +WORD [fEMT Ardument block
BLK: +WORD 0104040 H
BUFFR: +BLKKW 256, i1/0 Buffer
TECO: +RADSO /DK/ jFile descriptors...
+RADSO /TECO/
+RADSO /8AY/
TFILE: +RADSO /DK/
+RADSO /OLDTEC/
+RADSO /8AY/
NOFIL: +ASCIZ /?File not found?/ iMessage text...
NOENT ¢ +ASCIZ /?+ENTER Failed?/
WERR & +ASCIZ /?Write Error?/
RERR: +ASCIZ /?Read Error?/
DONE ¢ +ASCIZ /TECO Copy Comrlete/
+END START

2.29 .EXIT

The .EXIT request causes the user program to terminate. When used from
a background job under the FB monitor or XM monitor, or in SJ, EXIT
causes KMON to run in the background area. All outstanding mark time
requests are canceled. Any I/O requests and/or completion routines pending
for that job are allowed to complete. If part of the background job resides
where KMON and USR are to be read and SET EXIT SWAP is in effect, the
user job is written onto the system swap blocks (the file SWAP.SYS).
KMON and USR are then loaded and control goes to KMON in the back-
ground area. If SET EXIT NOSWAP is in effect, the user program is simply
overwritten when a .EXIT is done. If RO = 0 when the .EXIT is done, an
implicit HRESET is executed when KMON is entered, disabling the subse-
quent use of REENTER, START, or CLOSE.

The .EXIT request allows a user program to pass command lines to KMON
in the chain information area (locations 500-777octal) for execution after
the job exits. This is performed under the following conditions:

1. The word (not byte) location 510 must contain the total number of bytes
of command lines to be passed to KMON.

Programmed Request Description and Examples 243

2. The command lines are stored beginning at location 512. The lines
must be .ASCIZ strings with no embedded carriage return or line feed.
For example:

+=3510
+WORD B-A
A: +ASCIZ /COPY A.MAC B.MAC/

+ASCIZ /DELETE A.MAC/
B

3. The user program must set bit 5 or bit 11 in the Job Status Word
immediately before doing an .EXIT, which must be issued with
RO = 0.

When the .EXIT request is used to pass command lines to KMON, the
following restrictions are in effect:

1. Ifbit 11 of the JSW is set and if the feature is used by a program that is
invoked through an indirect file, the indirect file context is aborted
before executing the supplied command lines. Any unexecuted lines in
the indirect file are never executed.

2. If bit 5 of the JSW is set and the feature is used by a program invoked
through an indirect file, the indirect file context is preserved across the
EXIT request.

3. An indirect file can be invoked, using the steps described above, only
if a single line containing the indirect file specification is passed to
KMON. Attempts to pass multiple indirect files or combinations of indi-
rect command files and other KMON commands yield incorrect results.
An indirect file must be the last item on a KMON command line.

The .EXIT request also resets any .CDFN and .QSET calls that were done
and executes an .UNLOCK if a .LOCK has been done. Thus, the CLOSE
command from the keyboard monitor does not operate for programs that
perform .CDFN requests.

An attempt to use a .EXIT from a completion routine aborts the running
job.

NOTE

You must make sure that the data being passed to KMON is
not destroyed during the .EXIT request. Extreme care should
be exercised so that the user stack does not overwrite this
data area. If the user passes command lines to KMON, the
stack pointer should be reset to 1000(octal) or above before
an exit is made.

Macro Call: .EXIT
Errors:;

None.

244 Programmed Request Description and Examples

Example:

+TITLE EXIT.MAC
i+
3 JEXIT - This is an example in the use of the ,EXIT request.
i The example demonstrates how a command line may be rassed to
5 Kevboard Monitor after Job execution is stopred.

.
-

«MCALL EXIT
CHNIFs = 4000 iChain bit in JSK
JSHW = 44 §JSH location
START: MOV #510,R0O fRO =» Communication area
MoV #CMDSTR»R1 iR1 => Command string
MOV #5TART »SP iMake sure that the stack is
fnot in the communication area...
10%: Move (R1)+(RO)+ jCopy command string
CMP R1 +#CMDEND iDone?
BLO 10% iBranch if not
BIS #CHNIF$ sB#JSKW iSet the “"chain" bit to alert KMON that
ithere’s a command in the communication area
CLR RO iRO must be zero
JEXIT fJExit the Pprodram
CMDSTR ¢ +WORD CMDEND-CMDSTR
«ASCIZ "DIRECT/FULL %.MAC"
CMDEND:
+EVEN
+END START

2.30 .FETCH/.RELEAS

The .FETCH request loads device handlers into memory from the system
device.

Macro Call: .FETCH addr,dnam

where:

addr is the address where the device handler is to be loaded
dnam is the pointer to the Radix-50 device name

The storage address for the device handler is passed on the stack. When the
FETCH is complete, RO points to the first available location above the
handler. If the handler is already in memory, RO contains the same value
that was initially specified in the argument addr. If the argument on the
stack is less than 400(octal), it is assumed that a handler RELEAS is being
done. (RELEAS does not dismiss a handler that was loaded from the
KMON; an UNLOAD must be done.) After a . RELEAS, a . FETCH must be
issued in order to use the device again.

Several requests require a device handler to be in memory for successful
operation. These include:

.CLOSE .READC .READ .SFDAT
.LOOKUP .WRITC .WRITE JFPROT
.ENTER .READW SPFUN

.RENAME WRITW .DELETE

Programmed Request Description and Examples 245

When running under the foreground/background monitor, handlers for the
foreground program or a system job must be loaded with the LOAD com-
mand before execution.

NOTE

I/O operations cannot be executed on devices unless the han-
dler for that device is in memory.

Errors:

Code

Explanation

The device name specified is not installed in the system, or
there is no handler for that device in the system.

Example:

+

memory.
file.

we aa wr wm e e we e

+TITLE

The example uses the
specification from the console terminal, then uses the ,DSTATUS
request to determine if the output device’s handler is loaded]
if not, a ,FETCH redquest is issued to load the handler into

FETCH.MAC

+FETCH - This is an example in the use of the ,FETCH reaquest.

"special" mode of CSI to det an inpPut

Finally a DELETE request is

issued to delete the specified

+MCALL +DSTATUS »+ PRINT » JEXIT+,FETCH,».CSISPC+.DELETE

START: +CSISPC #0UTSP »#DEFEXT ilse .CSISPC to det outrPut spec
+DSTAT #STAT »#0UTSP iCheck on the outrut device

i(CSISPC catches illegal devices!)

TST STAT+4 iSee if the device is resident
BNE 2% iBranch if already loaded
+FETCH #HANLOD »#INSPEC ilt’s not loaded.ssbring it into memory
BCC 2% iBranch if successful
+PRINT #FEFAIL iFetch failedsssPrint error messade
JEXIT ithen exit eprogram

2%: +DELETE #AREA y#0 y# INSPEC iNow delete the file
BCC 3% iBranch if successful
+PRINT #NOFIL iPrint error messade
BR START iThen try adain

3%: +PRINT #FILDEL iAcknowledse successful deletion
WEXIT fthen exit prodram

AREA: +BLKW 2 FEMT Ardument block

STAT: +BLKKW 4 iBlock for status

DEFEXT: +WORD 0,0,0,0 iNo default extensions

FEFAIL: +ASCIZ /7?WFETCH Failed?/ iFetch failed messade

NOFIL: +ABCIZ /?File Not Found?/ iFile not found

FILDEL: +ASCIZ /!File Deleted!/ iDelete acKknowleddgment
+EVEN iFix boundary

OUTSP: = JBLKW S5#3 i0utPut spPecs go here

INSPEC: = +BLKW 4%6 ilnPut specs do here

HANLOD: = +BLKHKW 1 iHandlers begin loading here (if necessary)
+END START

The .RELEAS request notifies the monitor that a fetched device handler is
no longer needed. The .RELEAS is ignored if the handler is (1) the system
device, (2) not currently resident, (3) resident because of a LOAD command

2-46 Programmed Request Description and Examples

to the keyboard monitor. . RELEAS from the foreground or system job under
the FB monitor or the XM monitor is always ignored, since the foreground
job in a FB environment or extended memory environment can only use
handlers that have been loaded by the JOAD command.

Macro Call: .RELEAS dnam

where:

dnam is the address of the Radix—50 device name

Errors:
Code Explanation
0 Device name is invalid.
Example:

+TITLE RELEAS.MAC

$In this examprles the DECtare handler (DT) is loaded into memory:
juseds then released. If the svstem device is DECtares the handler is
jalways resident, and .FETCH will return HSPACE in RO.

+MCALL +FETCH+ RELEAS + yEXIT +»+PRINT

START: +FETCH #HSPACE,#DTNAME $Load DT handler
BCS FERR iNot available

i Use handler

+RELEAS =#DTNAME iMark DT no londer in
imemory
BR START
FERR: +PRINT #NODT DT not available
DTNAME: +RADSO /0T / iName for DT handler
NODT: +ASCIZ /?DT HANDLER NOT AVAILABLE/
+EVEN
HSPACE: iBedinning of handler
jarea
+END START

2.31 .FORK (Device Handler and Interrupt Service Routine Only)

The .FORK call is used when access to a shared resource must be serialized
or when a lengthy but non-time-critical section of code must be executed.
FORK issues a subroutine call to the monitor and does not use an EMT
instruction request.

Macro Call: .FORK fkblk

where:

fkblk is a four-word block of memory allocated within the driver
Errors:

None.

Programmed Request Description and Examples 2-47

The .FORK macro expands as follows:

+FORK fKbI1K
JSR U5 1B$FKPTR
+WORD fKb1K-,

The .FORK call must be preceded by an .INTEN call, and the address of a
four-word block must be supplied with the request. Your program must not
have left any information on the stack between the .INTEN and the FORK
call. The contents of registers R4 and R5 are preserved through the call,
and on return registers RO through R3 are available for use.

If you are using a .FORK call from a device handler, it is assumed that you
are also using the other macros (QELDF, .DRBEG, .DRAST, .DRFIN, and
.DREND) provided for handlers.

The .DREND macro allocates a word for $FKPTR. This word is filled in at
bootstrap time for a system device or at LOAD or .FETCH time for a non-
system device.

If you want to use the .FORK macro in an in-line interrupt service routine
rather than in a device handler, you must set up $FKPTR. The recom-
mended way to do this is as follows:

SYSPTR=54 iAddress containing base
iaddress of RMON

FORK=402 iMonitor offset containing
joffset to fork processor

+GVAL #AREA s #FORK iReturn offset in RO

ADD B#SYSPTR,» RO iAdd RMON base address

MOVE RO+ $FKPTR iSave as address of the

iforKk Processor
4

+

AREA: +BLKW 2
$FKPTR: WORD 0

Once the pointer is set up, use the macro in the usual way as follows:
JFORK fkblk
This method permits you to preserve both R4 and R5 across the fork.

The .FORK request is linked into a queue and serviced on a first-in first-
out basis. On return to the driver or interrupt service routine following the
call, the interrupt has been dismissed and the processor is executing at
priority 0. Therefore, the .FORK request must not be used where it can be
reentered using the same fork block by another interrupt. It also should not
be used with devices that have continuous interrupts that cannot be dis-
abled. The RT-11 Software Support Manual gives additional information
on the .FORK request.

Notes:

For use within a user interrupt service routine, monitor fixed offset 402
(FORK) contains the offset from the start of the resident monitor to the

248 Programmed Request Description and Examples

FORK request processor. A .FORK can be done by computing the address
of the .FORK request processor and using a subroutine instruction. (Under
the XM monitor, only privileged jobs can contain user interrupt service
routines.) For example:

SYSPTR=54 iAddress containing base
jaddress of RMON
FORK=402 iMonitor offset containing
joffset to forkK Processor
+GVAL #AREA» #FORK iReturn offset in RO
ADD Ea#S5YSPTR: RO iAdd RMON base address
MOV RO+ R4
JSR RS+ (R4) iCall fork Process
+WORD BLOCK-.
AREA: +BLKKW 2
BLOCK: = +BLKW 4

This method destroys the contents of R4.
Example:

Refer to the example following the description of .DRAST.

2.32 .FPROT

The .FPROT programmed request sets or removes file protection on indi-
vidual RT-11 files. A file marked as protected cannot be deleted by
.CLOSE, .DELETE, .ENTER, or .RENAME requests. However, the con-
tents of a protected file are not protected against modification. For example,
a .LOOKUP of a protected file followed by a .WRITE to the file is per-
mitted.

Protection is enabled by setting bit 15 of a file’s directory entry status word.
Macro Call: .FPROT area, chan, dblk, prot

where:

area is the address of a four-word EMT argument block
chan is a channel number in the range 0-376(octal)

dblk is the address of a four-word block containing the filespec in
Radix—50 of the file

prot = #1 — to protect the file from deletion

= #0 — to remove protection so that the file can be deleted

Request Format:

RO area | 43 | chan
dblk

prot

Programmed Request Description and Examples 2—49

Errors:

Code Explanation
0 Channel in use
1 File not found
2 Invalid operation

3 Invalid value for PROT

Example:

i.FPROT+ .SFDAT example.

iThis is an example of the use of the ,FPROT and ,SFDAT
irprodrammed requests. It uses the "special"” mode of the CSI to
idet an inpPut filesrec from the console terminal. .DSTATUS is
jused to determine if the device handler is loaded, If nots a
i+FETCH request is used to load the handler into memory, Finally,
ithe file is marKed as protected usind the FPROT request and
ithe file date is chanded to the current svstem date usind the
i+SFDAT request.,

H]

+MCALL .FPROT, .FETCH, .CSISPC,+ .DSTATUS: .SFDAT, .PRINT, EXIT

START: +CSISPC #QUTSP s #DEFEXT ilse CSI to det input filesprec
+DSTAT #STAT »#INSPEC iCheck the device
TST STAT+4 ito see if the hanndler is resident
BNE 1% iBranch if it is
+FETCH #INSPEC iOtherwises load that handler
BCC 1% iok
+PRINT #LOFAIL iOtherwisey Print load error messade
BR START iand try again
1%: +FPROT #EMTBLK+» #0, #INSPECy #1 iMark file as Protected
BCC 2% fand branch if okay
+PRINT #PRFAIL iOtherwisey Print Pprotect error messade
BR START jand try adgain
2% +SFDAT #EMTBLK, %0, #INSPEC, #0 3Finallvy, set current date
iA date of O means "use current system date”
BCC 10% iBranch if evervthing is oKay
+PRINT #SDFAIL i0Otherwises» Print date error messade
BR START jand try adain
10%: JEXIT iEverrthing okay - exit to KMON
EMTBLK : +BLKW 4 iThe EMT arsument block is built here
DEFEXT: +WORD 0404040 iNo default extensions
STAT: JBLKMW a iBlock for .DSTATUS to use
LOFAIL: +ABCIZ /Error in LOAD reauest/
PRFAIL: +ASCIZ /Error in (FPROT request/
SOFAIL: +ASCIZ /Error in SFDAT request/
+EVEN
OUTSP: +BLKKW S+3 i0utPut srecs g0 here
INSPEC: +BLKHW 446 ilnPut specs g0 here
HANLOD: +BLKW 1 iHandlers begin loading here (if necessary)
+END START

233 .GMCX (XM Only)

The .GMCX request returns the mapping status of a specified window.
Status is returned in the window definition block and can be used in a
subsequent mapping operation. Since the .CRAW request permits combined
window creation and mapping operations, entire windows can be changed
by modifying certain fields of the window definition block.

The .GMCX request modifies the following fields of the window definition
block:

2-50 Programmed Request Description and Examples

W.NAPR Dbase page address register of the window
W.NBAS window virtual address

W.NSIZ window size in 32-word blocks

W.RID region identifier

If the window whose status is requested is mapped to a region, the .GMCX
request loads the following additional fields in the window definition block:

W.NOFF offset value into the region
W.NLEN length of the mapped window

W.NSTS state of the WS.MAP bit is set to 1 in the window status
word

Otherwise, these locations are zeroed.
Macro Call: .GMCX areal,addr]
where:
area is the address of a two-word EMT argument block

addr is the address of the window definition block where the speci-
fied window’s status is returned

Request Format:

RO — area:| 36 | 6

addr
Errors:
Code Explanation
3 An illegal window identifier was specified.
Example:

Refer to the example for the .CRAW request.

2.34 .GTIM

.GTIM allows user programs to access the current time of day. The time is
returned in two words and given in terms of clock ticks past midnight.

Macro Call: .GTIM area,addr
where:
area is the address of a two-word EMT argument block

addr is the address of the two-word area where the time is to be
returned

Request Format:

RO — area:| 21 [0
addr

Programmed Request Description and Examples 2-51

The high-order time is returned in the first word, the low-order time in the
second word. Your program must perform the conversion from clock ticks to
hours, minutes, and seconds.

The basic clock frequency (50 or 60 Hz) can be determined from the configu-
ration word in the monitor (offset 300 relative to the start of the resident
monitor). In the FB monitor, the time of day is automatically reset after
24:00, when a .GTIM request is done and the date is changed if necessary.
In the SJ monitor, the time of day is not reset unless SJ timer support was
selected during the system generation process. The month is not automati-
cally updated in either monitor. (Proper month and year rollover is a spe-
cial feature that you enable through the system generation process.)

The default clock rate is 60 cycles, that is, 60 ticks per second. Consult the
RT-11 System Generation Guide if conversion to a 50-cycle rate is neces-
sary.

Because day rollover is done only through a .GTIM request, make sure that
your program receives the correct time and day by issuing a .GTIM request
before using the .DATE request. Nearly all RT-11 system utility programs
issue a .GTIM request to make sure that rollover occurs daily. If you do not
use a system utility program regularly, issue a .GTIM request at least once
during a 24-hour period.

NOTE

There are also several SYSLIB routines that perform time
conversion (see Chapter 3). They are CVTTIM, TIMASC,
TIME, and SECNDS.

Errors:
None.
Example:
+TITLE GTIM.MAC
+
+GTIM - This is an example in the use of the «GTIM reauest.
This example is a subroutine that can be assembled serparately
and linKked with a user Prodram.
CALLING SEQUENCE: CALL TIME
INPUT: none
OUTPUT: R4 = Minutes in hi bvte / hours in lo brte
RS = Ticks iwn hi bvte / seconds in lo brte
(in that order for ease of removal !)

ERRORS: nane Possible

NOTE: This example calls SYSLIB functions ‘$DIVTK’ & ‘$DIVBO’

“E wE wE ws wE wE e ws wE ws W ek wE A R wE mm

+GLOBL $DIVTK +$DIVGBO
«MCALL +GTIM

TIME:: MoV #TICKSR1 iR1 Points to where to pPut time
WGTIM #AREA K1 iGet ticKs since midnight via JGTIM

2-52 Programmed Request Description and Examples

(R1)+ 4RO iRO

= lo order time
iR1 = hi order time
jCall SYSLIB 32 bit divide by clk fre=
iSave ticks
fPut them in hi brte
iCall SYSLIB divide by B0. routine
jPut seconds in lo brte
§Divide by 60, once again
iPut minutes in R4
iMove them to hi byte
iPut hours in lo bvte
fand return

SEMT argdument area
iTicks since midnisht returned here

The .GTJIB request returns information about a job in the system.

.GTJB area,addr[,jobblk]

is the address of a three-word EMT argument block

is the address of an eight-word or twelve-word block into
which the parameters are passed. The values returned are:

MOV
MOV @R1/R1
CALL $DIVTK
MoV R3 RS
SWAB RS
CALL $DIVEBO
BISB R3 RS
CALL $DIVEO
MoV R3 R4
SWAB R4
BISB R1R4
RETURN
AREA: +BLKW 2
TICKS: +WORD 040
QEND
Macro Call:
where:
area
addr
Word 1
2
3
4
5
6
7
8-9
10-12
jobblk

Job Number = priority level *2 (background job
is 0; system jobs are 2, 4, 6, 10, 12, 14; and fore-
ground job is 16 in system job monitors; back-
ground job is 0 and foreground job is 2 in FB and
XM monitors; job number is 0 in a SJ monitor)
High-memory limit of job partition (highest loca-
tion available to a job in low memory if the job
executes a privileged .SETTOP #-2 request)
Low-memory limit of job partition (first location)
Pointer to I/O channel space

Address of job’s impure area in FB and XM moni-
tors

Low byte: unit number of job’s console terminal
(used only with multiterminal option; 0 when
multiterminal feature is not used)

High byte: reserved for future use

Virtual high limit for a job created with the
linker /V option (XM only; 0 when not running
under the XM monitor or if /V option is not used)
Reserved for future use

ASCII logical job name (system job monitors
only; contains zeroes for non-system jobs in FB
and XM, not defined in SJ)

is a pointer to a three-word ASCII logical job name for
which data is being requested

Programmed Request Description and Examples 2-53

Word 4 of addr, which describes where the I/O channel words begin, nor-
mally indicates an address within the job’s impure area. However, when a
.CDFN is executed, the start of the I/O channel area changes to the user-
specified area.

If the jobblk argument to the .GTJB request is between 0 and 16 when the
status of a job is requested, it is interpreted as a job number. If the jobblk
argument is ‘ME’, or equals —1, information about the current job is re-
turned. If the jobblk argument is omitted, or equals —3 (a VO3B-compatible
parameter block), only eight words of information (corresponding to words
1-8 of addr) are returned.

In an F/B environment without the system job feature, you can get another
job’s status only by specifying its job number (0 or 2).

Request Format:

RO — area:| 20 [0
addr
jobblk
Errors:
Code Explanation
0 No such job currently running.
Example:

See the program GTJB.MAC in the example listing.

+TITLE GTJB.MAC

+
+GTJB - This is an example of the .GTJB request. The
example issues the request to determine if there is a loaded
Foredround Job in the svystem. This Prosram will execute Properly
with either a normal FB monitor or an FB monitor that includes
System Job supprort.,

A wa wn we ae wa ams

+MCALL +GYAL,» .GTJB: .PRINT, .EXIT
SYSGEN= 372 iFixed offset to SYSGEN word
SYSJoB= 40000 iSvstem Job option bit

START: MOV #2 R1 iAssuse FG Job number = 2
+ GUAL #LIST #SYSGEN iGet SYSGEN option word
BIT #5YSJO0B+ RO iSvystem Job monitor?
BEQ 1% iBranch if not
MOV #16» R1 iIf so: FG Job number = 1B

1%: «GTJB #LIST» #JOBARG:s R1 iFind out if FG loaded
BCS 2% iBranch if no active FG Job
+PRINT #FGLOAD iAnnounce that FG Job is loaded
JEXIT fand exit from Program,

2%: +PRINT #NOFG iAnnounce that there’s no FG Job
+EXIT iand exit from Pprosgram,

LIST: +BLKW 3 SEMT Ardument block

2-54 Programmed Request Description and Examples

JOBARG: +BLKW 12, jJob rparameters passed bacK here

FGLOAD: +ASCIZ /'FG Loaded!/ iFG loaded messade
NOFG: +ASCIZ /7?No FG dob7?/ iNo FG messade
+END START

2.36 .GTLIN

The .GTLIN request collects a line of input from either the console terminal
or an indirect command file, if one is active. This request is similar to
.CSIGEN and .CSISPC in that it requires the USR, but no format checking
is done on the input line. Because the .GTLIN command is implemented in
the USR, the CSI will generate an error message if you attempt to input
more than 80 characters to a .GTLIN request. Normally, .GTLIN collects a
line of input from the console terminal and returns it in the buffer specified
by you. However, if there is an indirect command file active, .GTLIN col-
lects the line of input from the indirect command file just as though it were
coming from the terminal.

When bit 3 of the Job Status Word is set and your program encounters a
CTRL/C in an indirect command file, the .GTLIN request collects subse-
quent lines from the terminal. Note that if you then clear bit 3 of the Job
Status Word, the next line collected by the .GTLIN request is the CTRL/C
in the indirect command file; this causes the program to abort. Further
input will come from the indirect command file, if there are any more lines
in it. When bit 14 of the Job Status Word is set, the .GTLIN request passes
lowercase letters.

An optional prompt string argument (similar to the CSI asterisk) allows
your program to query for input at the terminal. The prompt string argu-
ment is an ASCIZ character string in the same format as that used by the
PRINT request. If input is from an indirect command file and the SET TT
QUIET option is in effect, this prompt is suppressed. If SET TT QUIET is
not in effect, the prompt is printed before the line is collected, regardless of
whether the input comes from the terminal or an indirect file. The prompt
appears only once. It is not reissued if an input line is canceled from the
terminal by CTRL/U or multiple DELETE characters, unless the single-
line editor is running.

If your program requires a nonstandard command format, such as the user
identification code (UIC) specification for FILEX, you can use the .GTLIN
request to accept the command string input line. .GTLIN tracks indirect
command files and your program can do a pre-pass of the input line to
remove the nonstandard syntax before passing the edited line to .CSIGEN
or .CSISPC.

NOTE

In an F/B environment, .GTLIN performs a temporary im-
plicit unlock while the line is being read from the console.

Macro Call: .GTLIN linbufl,prompt][,type]

Programmed Request Description and Examples 2-55

where:

linbuf is the address of the buffer to receive the input line. This
area must be at least 81 bytes in length. The input line is
stored in this area and is terminated with a zero byte

prompt is an optional argument and is the address of a prompt
string to be printed on the console terminal. The prompt
string has the same format as the argument of a .PRINT
request. Usually, the prompt string ends with an octal 200
byte to suppress printing the carriage return/line feed at
the end of the prompt

type is an optional argument which forces .GTLIN to take its
input from the terminal rather than from an indirect file

NOTE

The only requests that can take their input from an indirect
command file are .CSIGEN, .CSISPC, and .GTLIN. The
TTYIN and .TTINR requests cannot get characters from an
indirect command file. They get their input from the console
terminal (or from a BATCH file if BATCH is running). The
.TTYIN and .TTINR requests and the .GTLIN request with
the optional type argument are useful for information that is
dynamic in nature — for example, when all files with a .MAC
file type need to be deleted or when a disk needs to be initial-
ized. In these circumstances, the response to a system query
should be collected through a .TTYIN or a .GTLIN with the
type argument so that confirmation can be done interactively,
even though the process may have been invoked through an
indirect command file. However, the response to the linker’s
Transfer Symbol? query would normally be collected through
a .GTLIN, so that the LINK command could be invoked and
the start address specified from an indirect file. Also, if there
is no active indirect command file, .GTLIN simply collects an
input line from the console terminal by using .TTYIN re-
quests.

Errors:
None.

Example:

+TITLE GTLINJMAC

i+

i «GTLIN - This is an exameple in the use of the .GTLIN reduest.
i The example merely acceprts input from the console terminal and
i echoes it back.

2-56 Programmed Request Description and Examples

+MCALL +GTLIN s PRINT »EXIT

START: +GTLIN #BUFF +#PROMT iGet a line of input from Kevboard
TSTB BUFF iNothing entered?
BEQ 1% iBranch if nothing entered
+PRINT #BUFF jEcho the inPut back
CLRB BUFF iClear first char of buffer
BR START 5Go back for more
1%: JEXIT JExit eprodram on null inPut
BUFF: +BLKW 41, 80 character buffer (ASCIZ for PRINT)
PROMT: +«ABCII /Enter something»/<{200>
+END START

2.37 .GVAL/.PVAL

The .GVAL request returns in RO the contents of a monitor fixed offset; the
PVAL request changes the contents of a monitor offset. The .PVAL request
also returns the old contents of an offset in RO to simplify saving and
restoring an offset value. .GVAL and .PVAL must be used in an XM envi-
ronment to read or change any fixed offset, and should be used with other
RT-11 monitors for compatibility with XM and possible future releases of
RT-11.

Chapter 3 of the RT-11 Software Support Manual contains a table of the
monitor’s fixed offset locations.

Macro Calls: .GVAL area, offset
PVAL area, offset, value

where:

area is the address of a two- or three-word EMT argument block

offset is the displacement from the beginning of the resident moni-
tor to the word to be returned in RO

value is the new value to be placed in the fixed offset location
Request Format for .GVAL:

RO — area:| 34 | ©
offset

Request format for .PVAL:
RO — area:| 34 | 2

offset
value
Errors:
Code Explanation
0 The offset requested is beyond the limits of the resident mon-

itor.

Programmed Request Description and Examples 2-57

Example:

+TITLE JGVAL.MAC
i+
i +GVAL - This is an examrle of the GUAL resuest., It finds out
i if the foreground Job is active. Compare this example with the
i +GTJB examprle.

+MCALL .GVAL» (PRINT, JEXIT

CONFIG= 300 i0ffset in monitor of confiduration word
FJOB%= 200 iBit in config word is on if FG active
START: +GVAL #AREA+ #CONFIG iGet monitor CONFIG word in RO
BIT #F JOB% ,R0O iSee if FG Active bit is an
BEQ 1% iBranch if not
+PRINT #FGACT iAnnounce FG is active
JEXIT fthen exit Prodram
1%: +PRINT #NOFG iAnnounce there’s no FG Job
JEXIT fthen exit prodram
AREA: +BLKW 2 FEMT argument block
FGACT: +ASCIZ /! FG is active !/ iFG active message
NOFG: +ASCIZ /? Na FG dob 7/ iNo FG messagde
+EVEN

+END START

i +TITLE JPVAL.MAC

+PVAL - This is an examrle of the ,PVAL request., The example
illustrates a way of changing the default file size created

by the .ENTER resuest., Compare this example with the ,PEEK/.POKE
example., +PVAL is used both to change the default file size and
to read the old default file size» returning the old value in RO,

wn wn wn ws wn e

+MCALL .PVAL, EXIT

MAXBLK= 314 iMonitor offset of default file size

START: +PUAL #EMTBLK »#MAXBLK »#NEWSIZ 3iChange default file size to 100, blocks
MOV RO OLDSIZ iSave the old default
JEXIT iWe’ll Just exit nows but Presumably

iin a real Prodram we’'d do more
irrocessingd, perhars creating files
iwith the new default size we .Just
iset» then before exitingd we’d restore
ithe old default size,

EMTBLK ¢ «BLKW 3 FEMT ardument block
NEWSIZ: +WORD 100,
OLDSIZ: +WORD (o} i01d default size is saved here

+END START

2.38 .HERR/.SERR

.HERR and .SERR are complementary requests used to govern monitor
behavior for serious error conditions. During program execution, certain
error conditions can arise that cause the executing program to be aborted
(see Table 2-2).

Normally, these errors cause program termination with one of the 2MON -
F-error messages. However, in certain cases it is not feasible to abort the
program because of these errors. For example, a multi-user program must
be able to retain control and merely abort the user who generated the error.
SERR accomplishes this by inhibiting the monitor from aborting the job
and causing an error return to the offending EMT. On return from that

2-58 Programmed Request Description and Examples

request, the carry bit is set and byte 52 contains a negative value indicat-
ing the error condition that occurred. In some cases (such as the . LOOKUP
and .ENTER requests), the .SERR request leaves channels open. It is your
responsibility to perform .PURGE or .CLOSE requests for these channels,
otherwise subsequent .LOOKUP/.ENTER requests will fail.

.HERR turns off user error interception. It allows the system to abort the
job on fatal errors and generate an error message. (HERR is the default
case.)

Maciro Calls: .HERR
.SERR

Request Formats:

.HERR Request RO =
.SERR Request RO = 4 0

!
o
o

Errors:

Table 2-2 contains a list of the errors that are returned if soft error
recovery is in effect. Traps to locations 4 and 10, floating-point excep-
tion traps, and CTRL/C aborts are not inhibited. These errors have
their own recovery mechanism.

Table 2-2: Soft Error Codes ((SERR)

Code Explanation

-1 Called USR from completion routine.
-2 No device handler; this operation needs one.
-3 Error doing directory I/O.

—4 .FETCH error. Either an I/O error occurred while the handler was being used, or
an attempt was made to load the handler over USR or RMON.

-5 Error reading an overlay.
—6 No more room for files in the directory.

—7 Invalid address (FB only); tried to perform a monitor operation outside the job
partition.

-10 Invalid channel number; number is greater than actual number of channels that
exist.

-11 Invalid EMT; an invalid function code has been decoded.
-12 Reserved for monitor internal use.

-13 Reserved for monitor internal use.

—-14 Invalid directory.

-15 Unloaded XM handler.

—-16 Reserved for monitor internal use.

—17 Reserved for monitor internal use.

—20 Reserved for monitor internal use.

-21 Reserved for monitor internal use.

—22 Reserved for monitor internal use.

Programmed Request Description and Examples 2-59

Example:

+
+HERR /
requests
Prodgram

- wn wn we an

START:

ERROR:

FTLERR:

TBL:

M2:
M3:
M7:
M10:
M11:
M12:
M13:
Mi1d4:
M17:
M1:
M4
MS:
MG:
M15:
M1B:
M20:
M21:
M22:
NOFIL:

+TITLE

+SERR -

HERR . MAC

This is an example in the

use of the .HERR & .SERR

« Normally fatal errors will cause a return to the user
for processingd and Pprinting of an arProPriate error messade.

+MCALL
+MCALL

+SERR
+CSISPC
+«PURGE
+LOOKUP
BCS
+HERR
+PRINT
JEXIT
MOvB
BMI
+PRINT
BR

NEG

DEC

ASL

MOV
+PRINT
BR

M1
M1
M2
M3
M4
MS
M6
M7
M10
M11
M12
M13
M1d
M15
M16
M17
M20
MZ1
MZ2

+ASCIZ
+ASCIZ
+ASCIZ
+ASCIZ
+ASCIZ
+ASCILZ
+ASCILZ
+ASCIZ
+ASCIZ

+ASCIZ
+ASCIZ

+HERR »+ SERR +» + LOOKUP » . PURGE

+EXIT» PRINT,.CSISPC

#0QUTSP »#DEFEXT

#0
#AREA »#0 ,#0UTSP+36
ERROR

#LUPDK

@852,R0O
FTLERR
#NOFIL
START

RO

RO

RO

TBL(RO) 4RO

START

/?Invalid Device -or-

iLet prodram handle fatal errors
iUse .CSISPC to det filesrec

iBranch if there was an error
iNow Permit ‘?MON-F-’ errors.
iAnnounce successful LOODKUP
iExit Prodgram

iwas the error fatal?

iBranch if ves

iTry adain...

iMaKe error # positive

iAddust by ane

iMultirply by 2 to make an index
iPut messade address into RO
fand print it.

iGo try some more errors

iTable of Error Messasde Addresses

fError Messades..

Nae Handler?/

/?Directory I-0 Errar?/
/?Address Check Error?/

/?Invalid Channel?/
/?Invalid EMT?/
/?Trar to 47/

/?Trap to 107/
/?Invalid directorv?/
/?Memory error?/

/?Not Possible?/
/?File Not Found?/

2-60 Programmed Request Description and Examples

iNot pPossible in this epradram
iNot rossible in this Praodram
iNot rossible in this Prodram
iNot possible in this prosram
iNot Possible in this eprodgram
iNot possible in this Pprodram
iNot possible in this Prodram
iNot pPossible in this Pprogram
iNot Possible in this Prosram

LUPODK : +ASCIZ /LooKurP succeeded/

+EVEN jFix boundary

AREA: +BLKW 4 . FEMT Ardument block

DEFEXT: +WORD 040:04+0 iNo default extensions

OUTSP: +BLKW 5%3 jOutPut specs do0 here

INSPEC: +BLKW 4%6 iInPut srecs do0 here

HANLOD: +BLKW 1 iHandlers begin loading here (if necessary)
+END START

2.39 .HRESET

The .HRESET request stops all I/O transfers in progress for the issuing job,
and then performs an .SRESET request. (HRESET is not used to clear a
hard-error condition.) In an SJ environment, a hardware RESET instruc-
tion is used to terminate I/O. In an FB or XM environment, only the I/O
associated with the job that issued the .HRESET is affected by entering
active handlers at the abort entry point of the handler. All other transfers
continue.

Macro Call: .HRESET
Errors:

None.
Example:

Refer to the example for .SRESET for format.

INTEN

JINTEN is used by interrupt service routines to:

1. Notify the monitor that an interrupt has occurred and to switch to
system state.

2. Set the processor priority to the correct value.

3. Save the contents of R4 and R5 before returning to the Interrupt Ser-
vice Routine. Any other registers must be saved by you.

INTEN issues a subroutine call to the monitor and does not use an EMT
instruction request.

All external interrupts must cause the processor to go to priority level 7.
JINTEN is used to lower the priority to the value at which the device should
be run. On return from .INTEN, the device interrupt can be serviced, at
which point the interrupt routine returns with an RTS PC.

NOTE

An RTI instruction does not return correctly from an inter-
rupt routine that specifies an .INTEN.

Macro Call: .INTEN priol,pic]

Programmed Request Description and Examples 2-61

where:

prio

pic

Errors:

is the processor priority at which to run the interrupt routine,

normally the priority at which the device requests an inter-

rupt

is an optional argument that should be non-blank if the inter-
rupt routine is written as a PIC (position-independent code)
routine. Any interrupt routine written as a device handler
must be a PIC routine and must specify this argument

None.

Example:

DLVEC
DLCSR
DLPRI

SLits:
WCNT:

BUFAD:

1%:

DLINT:

DLDUN:

2.41
.LOCK

+TITLE SL11.MAC

CALLING FORMAT:

+MCALL

304
176504
4

MOV
+WORD
MOV
+WORD
ASL
BEQ
MOV
BIS
RETURN

+« INTEN

MOVB
INC
DEC
BEQ
RETURN

BIC
RETURN
+END

.LOCK/.UNLOCK

JSR

+HORD

+ WORD
BUFFER: +BLKW
+ INTEN

(R5)+,(PC)+

0

(R5)+,(PC)+

[

WCNT

1%

#DLINT »@#DLVEC
#100,@#DLCSR

DLPRI

EBUFAD ,@#DLCSR+2
BUFAD
WCNT
DLDUN

#100,@#DLCSR

SL11.MAC - This is an example in the use of the +INTEN reauest,
The example is an in-line, interrupt service routine, which may
be assembled separately and linKed with a mainline Program.

The routine transfers data from a user specified buffer to a DL11
Serial Line Interface.

R5,8L11 ilnitiate Output
wordcount §# words to transfer
BUFFER iAddress of Data Buffer

.
.

wordcount

iDL11 Vector #*#*#
iDL11 Outrut CSR #*%#
iDL11 Priority for RT-11

51/0 Initiation - Get word count

iGet address of Data Buffer

jMake word count byte count

idJust leave if zero word count
ilnitialize DL11 interrurt vector
iEnable interrupts

iReturn to caller

ilnterruprt service - Notify RT-11
fand drop Priority ta that of DLI11l
iTransfer a bvyte

iBump buffer Pointer

iAll bytes transferred?

iBranch if ves

iNo return from interrupt thru RT-11

iAll done - disable DL11 interrupts
iReturn thru RT-11

The .LOCK request keeps the USR in memory to provide any of its services
required by your program. If all the conditions that cause swapping are
satisfied, the part of the user program over which the USR swaps is written
into the system swap blocks (the file SWAP.SYS) and the USR is loaded.

2-62 Programmed Request Description and Examples

Otherwise, the copy of the USR in memory is used, and no swapping occurs.
(Note that certain calls always require a fresh copy of the USR.) A .LOCK
request always causes the USR to be loaded in memory if it is not already
in memory. The USR is not released until an .UNLOCK request is given.
(Note that under an FB monitor, calling the CSI or using a .GTLIN request
can also perform an implicit and temporary .UNLOCK.) A program that
has many USR requests to make can .LOCK the USR in memory, make all
the requests, and then .UNLOCK the USR.

In an FB environment, a .LOCK inhibits the other job from using the USR.
Note that the .LOCK request reduces time spent in file handling by elimi-
nating the swapping of the USR in and out of memory. .LOCK causes the
USR to be read into memory or swapped into memory. After a .LOCK has
been executed, an .UNLOCK request must be executed to release the USR
from memory. The .LOCK/.UNLOCK requests are complementary and
must be matched. That is, if three .LOCK requests are issued, at least three
J.UNLOCK requests must be done, otherwise the USR is not released. More
JUNLOCK than .LOCK requests can be issued without error.

Macro Call: .LOCK
Notes:

1. It is vital that the .LOCK call not come from within the area into which
the USR will be swapped. If this should occur, the return from the
.LOCK request would not be to the user program, but to the USR itself,
since the .LOCK function inhibits the user program from being re-read.
Also, none of the executable code should be in the area or reference
anything in the area that the USR will occupy while it is locked.

2. Once a .LOCK has been performed, it is not advisable for the program
to destroy the area the USR is in, even if no further use of the USR is
required, because this causes unpredictable results when an .UNLOCK
is done.

3. If a foreground job performs a .LOCK request while the background job
owns the USR, foreground execution is suspended until the USR is
available. In this case, it is possible for the background to lock out the
foreground (see the .TLOCK request).

Errors:
None.
Example:
Refer to the example for the .UNLOCK request.

.UNLOCK

The .UNLOCK request releases the User Service Routine (USR) from mem-
ory if it was placed there with a .LOCK request. If the .LOCK required a
swap, the UNLOCK loads the user program back into memory. There is a
.LOCK count. Each time the user does a .LOCK, the lock count is incre-
mented. When the user does an .UNLOCK, the lock count is decremented.
When the lock count goes to 0, the user program is swapped back in (see
Note 1).

Programmed Request Description and Examples 2-63

Macro Call: .UNLOCK
Notes:

1. The number of UNLOCK requests must at least match the number of
.LOCK requests that were issued. If more .LOCK requests are done, the
USR remains locked in memory. Extra .UNLOCK requests in your pro-
gram do no harm since they are ignored.

2. With two running jobs in an FB environment use .LOCK/.UNLOCK
pairs only where absolutely necessary. When a job locks the USR, the
other job cannot use it until it is unlocked, which can degrade perform-
ance in some cases.

3. In an FB environment, calling the CSI with input coming from the
console terminal results in an implicit (though temporary) .UNLOCK.

4. Make sure that the .UNLOCK request is not in the area that the USR
swaps into. Otherwise, the request can never be executed.

Errors:
None.

Example:

+TITLE LOCK.MAC

i+
i +LOCK / +UNLOCK - This is an example in the use of the .LOCK and .UNLOCK

i reauests. This example tries to obtain as much memory as Possible (using

i the SETTOP request)s which will farce the USR into a swarepingd mode. The

i +LOCK reauest will bring the USR into memory (over the high 2K of our little
i prodram !) and force it to remain there until an JUNLDCK is issued.

L]

+MCALL +.OCK »UNLOCK +» LDOKUP
«MCALL +SETTOPPRINT » EXIT
SYSPTR=54 iPointer to beginning of RMON
START: +SETTOP @#S5YSPTR iTry to allocate all of memory (up to RMON)
+LOCK ibrind USR into memory
+LOOKUP #AREA,#Q y#FILEL SLOOKUP a file an channel O
BCC 1% iBranch if successful
2%: +PRINT #LMSG iPrint Error Messade
JEXIT ithen exit Pprodram
1%: +PRINT #F1FND iAnnounce our success
MoV #AREA JRO RO => EMT Arsument Block
INC @RrRO ilncrement low bvte of i1st arg (chan #)
MOV #*FILEZ,2(R0O) iFill in pPointer ta new filesrec
+LDOKUP iDo the .LODKUP from filled in arg block
ipointed to by RO,
BCS 2% iBranch on error
«PRINT #F2FND iSay we found it
+UNLOCK inow release the UBR
EXIT fand exit Program
AREA: +BLKMW 3 FEMT Ardument Block
FILE1: +RADSO /DK/ iA File we’‘re sure to find
+RADSO /RIP /
+RADSO /8AV/
FILEZ2: +RADSO /DK/ iAnother file we might find
+RADSO /TECO /
+RADS0O /8AV/

2-64 Programmed Request Description and Examples

LMSG: +ASCIZ /?Error on LOOKUP?/ §Error messade

F1FND: +ABCIZ /+++Found PIP.SAV/
F2FND: +ASCIZ /++v+Found TECD.SAV/
+EVEN
+END START

242 .LOOKUP

A .LOOKUP request can be used in two different ways. The first way is to
use the request as a standard lookup, which occurs under the SJ, FB, and
XM monitors. The second way is to use the request when the system job
feature is implemented. Both ways are described in this section.

2.42.1 Standard Lookup

The .LOOKUP request associates a specified channel with a device and
existing file for the purpose of performing 1/O operations. The channel used
is then busy until one of the following requests is executed:

.CLOSE

.SAVESTATUS

SRESET

.HRESET

.PURGE

.CSIGEN (if the channel is in the range 0-10 octal)

Note that if the program is overlaid, channel 17(octal) is used by the over-
lay handler and should not be modified.

If the first word of the file name (the second word of dblk) is O and the
device is a file-structured device, absolute block 0 of the device is desig-
nated as the beginning of the file. This technique is called a non-file-struc-
tured .LOOKUP and allows I/O operations to access any physical block on
the device. If a file name is specified for a device that is not file structured
(such as LP:FILE.TYP), the name is ignored.

The handler for the selected device must be in memory for a LOOKUP. On
return from the .LOOKUP, RO contains the length in blocks of the file just
opened. On a return from a .LOOKUP for a non-directory, file-structured
device (typically magtape), RO contains O for the length.

NOTE

Care should be exercised when doing a non-file-structured
LOOKUP on a file-structured device, since if your program
writes data, corruption of the device directory can occur and
effectively destroy the disk. (The RT-11 directory starts in
absolute block 6.)

In particular, avoid doing a .LOOKUP or .ENTER with a file
specification where the file value is missing. If the device
type is not known in advance and is to be entered from the
keyboard, include a dummy file name with the .LOOKUP or
ENTER, even when it is assumed that the device is always
non-file structured.

Programmed Request Description and Examples 2-65

Macro Call:

where:

area
chan

dblk

seqnum

Request Format:

.LOOKUP area,chan,dblk[,seqnum]

is the address of a three-word EMT argument block
is a channel number in the range 0-377(octal)

is the address of a four-word Radix—50 descriptor of the
file to be operated upon

is a file number for magtape and cassette
If this argument is blank, a value of 0 is assumed.

For magtape, it describes a file sequence number. The ac-
tion taken depends on whether the file name is given or is
null. The sequence number can have the following values:

-1 means suppress rewind and search for a file name
from the current tape position. If a file name is given,
a file-structured lookup is performed (do not rewind).
It is important that only —1 be specified and not any
other negative number. If the file name is null, a non-
file-structured lookup is done (tape is not moved).

0 means rewind to the beginning of the tape and do a
non-file-structured lookup.

n where n is any positive number. This means position
the tape at file sequence number n and check that the
file names match. If the file names do not match, an
error is generated. If the file name is null, a file-struc-
tured lookup is done on the file designated by seqnum.

RO — area: | 1 |chan
dblk
seqnum
Errors:
Code Explanation
0 Channel already open.

1

| Example:

File indicated was not found on the device.

+TITLE LOOKUP.MAC

i+

i +LOOKUP - This is an examrle in the use of the ,LOOKUP reauest.
i This example determines whether or not the RT-11 Device Queue

i Workfile exists on device DK: and if so,» Prints its size in

i blocks on the console terminal,

2-66 Programmed Request Description and Examples

+MCALL +LODKUP » PRINT » JEXIT

AblK =4,

START: +LOOKUP #AREA +#0 ,#QUSPEC iSee if there’s a DK:QUFILE.TMP
BCC 1% iBranch if there is
+PRINT #NOFIL iPrint ‘File Not Found’ messade
JEXIT fthen exit Program

1%: MoV #G51ZER1 iR1 => where to put ASCII size
CALL CNViO iConvert size (in RO) to ASCII
+PRINT #BUFF iPrint size of QUFILE.TMP on console
JEXIT ithen exit program

CNV10: MOV RO +-(SP) iSubroutine to convert Binary % in RO
CLR RO ito Decimal ASCII by repetitive

14%: INC RO isubtraction., The remainder for each
SuB #10.+@8P iradix is made into ASCII and Pushed
BGE 14 fon the stack, then the routine calls
ADD #72,@8P fitself, The code at 2% Pops the ASCII
DEC RO idigits off the stack and into the out-
BEQ 2% irput buffer, eventually returning to
CALL CNV10 ithe calling Prodram. This is a VERY

2%: MovB (SP)+,(R1)+ fjuseful routines is short and is
RETURN imemory efficient.

AREA: +BLKW 3 FEMT Ardument Block

QUSPEC: +RAD50 ok \nﬁnﬁl’fE/ 2 oseds
+RADSO /THP/. fweedl

BUFF = +ASCII /DK:QUFILE,TMP = /

SIZE: +ASCIZ / Blocks/

NOFIL: +ASCIZ /?File Not Found DK:QUFILE.TMP 7/
+EVEN
+END START

2.42.2 System Job Lookup

The foreground and background jobs can send messages to each other via
the existing .SDAT/.RCVD/ MWAIT facility. A more general message facil-
ity is available to all jobs through the message queue (MQ) handler. By
turning message handling into a formal “device” handler, and treating
messages as /O to jobs, the existing .READ/C/W— WRITE/C/W—WAIT
mechanism can be used to transmit messages. A channel is opened to a job
via a .LOOKUP request, after which standard I/O requests are issued to
that channel.

Macro Call: .LOOKUP area,chan,jobdes

where:

area is the address of a two-word EMT argument block
chan is the number of the channel to open

jobdes is the address of a four-word descriptor of the job to which
messages will be sent or received

jobdes — .RAD50 /MQ/
.ASCII /logical-job-name/

where logical-job-name can be from one to six characters
long. It must be padded with nulls if less than six characters
long. If logical-job-name is zero, the channel will be opened
for READ/C/W requests only and such requests will accept
messages from any job

Programmed Request Description and Examples 2-67

Request Format:

RO — area:| 1 | chan
jobdes

The .LOOKUP request associates a channel with a specified job for the
purposes of sending inter-task messages. RO is undefined on return from
the .LOOKUP.

Errors:

Code Explanation

0 Channel already open.
1 No such job.

Example:

+TITLE SJLOOK.MAC

+

+LDOKUP - This is an example in the use of the ,LOOKUP reauest

to oren a messade channel to a System Jobs» specificallys the
RT-11 Device Queue Foredround rprodram, NOTE: This example assumes
it will be run under an FB Monitor denerated with Svstem Job
Support and that QUEUE.REL has been successfully FRUN/SRUN !!!

- e ax aE wr we e

+MCALL +LOOKUP » s PRINT » JEXIT» WRITH,.READU

START: +LOOKUP #AREA »#0 ,#QMEG iTry to oren a channel to QUEUE
BCC 1% iBranch if successful
+PRINT #NOJOB SError...pPrint error messade
JEXIT fthen exit program

1%: VHRITH #AREA +#0 y#RMSG /%6 iSend a meanindless message to QUEUE
BCS 2% iBranch if error
+READK #AREA s#0 y#RMSG 4B sWait for an acKnowleddment messade
BCS 2% iBranch if error
+PRINT *QRUN iAnnounce QUEUE alive and well
JEXIT iThen exit

2%: +PRINT #MSGERR jPrint error message
JEXIT iThen exit

AREA: «BLKH S SEMT Ardument Block

OMSG: +RADS50 /MQ/ jJob Descriptor Block for LOOKUP
+ASCIZ /QUEUE/
+WORD 040

RMSG: +WORD 0 iDummy messade...
+ASCII /SJLOOK/

MSGERR : +ASCIZ /?Message Error?/ jError Messadess etc.

NOJOB : +ASCIZ /?QUEUE is not running?/

QRUN: +ASCIZ /! QUEUE is alive and running !/
+EVEN
+END START

2.43 .MAP (XM Only)

The .MAP request maps a previously defined address window into a dy-
namic region of extended memory or into the static region in the lower 28K
words of memory. If the window is already mapped to another region, an
implicit unmapping operation is performed (see the UNMAP programmed
request).

268 Programmed Request Description and Examples

Macro Call: .MAP areal,addr]

where:

area is the address of a two-word EMT argument block

addr is the address of the window definition block containing a
description of the window to be mapped and the region to
which it will map

Request Format:

RO — area:| 36 4

addr
Errors:
Code Explanation

2 An invalid region identifier was specified.

3 An invalid window identifier was specified.

4 The specified window was not mapped because the offset is
beyond the end of the region, the region is larger than the
window, or the window would extend beyond the bounds of
the region.

Example:

Refer to example for the .CRAW request.
2.44 .MFPS/.MTPS

The .MFPS and .MTPS macro calls allow processor-independent user access
to the processor status word. The contents of the registers are preserved
across either call.

The .MFPS call is used to read the priority bits only. Condition codes are
destroyed during the call and must be directly accessed (using conditional
branch instructions) if they are to be read in a processor-independent
manner.

In the XM monitor, MFPS and .MTPS can be used only by privileged jobs
and are not available for use by virtual jobs.

Macro Call: .MFPS addr

where:

addr is the address into which the processor status is to be stored;
if addr is not present, the value is returned on the stack. Note
that only the priority bits are significant

The .MTPS call is used to set the priority bits.
Macro Call: .MTPS addr

Programmed Request Description and Examples 2-69

where:

addr is either the value or the address of the value (depending on
addressing mode) to be placed in the PSW. If addr is not
present, the processor status word is taken from the stack.
Note that the high byte on the stack is set to 0 when addr is
present. If addr is not present, you should set the stack to the
appropriate value. In either case, the lower byte on the stack
is put in the processor status word

Note:

It is possible to perform MTPS and MFPS operations and access the condi-
tion codes by following this special technique:

1. In the beginning of your program, set up the IOT trap vector as

follows:
JASECT JSET UP 10T
v = 20
.MORD GETPS $10T SERVICE ADDRESS IN ‘MFPS’ SUBROUTINE
LWORD 340 i PRIORITY 7

2. Elsewhere in your program place the following routines:

i+
i MFPS/MTPS ROUTINES ...

MFPS: 10T FEXECUTE IOT
FWILL RETURN TO CALLER W/ PS ON STACK

GETPS: MOV 4(5P) »@SP iPUT USER RETURN ON TOP
Moy 2(8P) ,4(SP) $MOVE PS SAVED BY 10T
MTPS: RTI FWILL RETURN TO CALLER W/ NEMW PS

3. To get the PSW or to set the PSW to a desired value, follow this
sequence of instructions:

TD GET PS 4o
3 -
JSR PC 'MFPS {GET PS
iCONTINUE » PS IS ON STACK +..
I+
§ TO PUT PS v+
;-
MoV NEWPS +-(SP) $PUT DESIRED PS ON STACK 4.,
JSR PC sMTPS JCALL MTSP
FCONTINUE PROCESS M/ NEW PS 4.4
Errors:
None.

270 Programmed Request Description and Examples

Example:

+TITLE

i+

ar as e e

+MCALL
JEBW =

+MFPS / .MTPS - This is an

MFPS

examrle in the use of the .MFPS and .MTPS
requests, The example is a sKeleton mainline Prodram which calls a
subroutine to det the next free element in an RT11-like linked aueue.

+MFPS» s MTPS, EXIT» PRINT» . TTINR

TTSPC% 10000
START:
BIS #TTSPCS +@#J5UW
i ’
; *
CALL GETQUE
BCC 1%
+PRINT #NOELEM
BIC #TTSPC$,@#JSW
JEXIT
1%: NOP
NOP
+PRINT #GOT1
24%: +TTINR
BCS 2%
BR START
GETRUE: MOV #QHEAD /R4
TST R4
BEQ 11%
+MFPS
+MTPS #340
MOV @R4 RS
MDYV @RS 1@R4
+MTPS
T8T (PC)+
1143 SEC
RETURN
QHEAD: +WORD 01
Q1 +WORD Q240,40
Q2: +WORD Q34040
Q03: +WORD 0,00

NOELEM: +ASCIZ
GOT1: +ASCIZ

+END

iJob Status Word location
iTTY Special bit

iSKeleton mainline Program...
iSet TTY Sepecial bit

iCall subroutine to return next free
fjelement - on return RS => element
iBranch if no error

iNo more elements available

iReset srpecial bit

fExit Program

iProgram continues
§
fAnnounce success

iWait for a Key to be hit on console

iPoint to Aueue head

iQueue exhausted?

iYes.,..s5et error on leaving
iSave status on stack

iRaise Priority to 7

iRS Points to next element
iRelinK the queue

iRestore Previous status

iThis clears carry & sKiPs next instruction
iSet carry bit (to flag error)
iReturn to caller

iQueue head
i3 linKed sueue elements

/?No more Queue Elements Available?/
/Element acauired...Press any Key to continue/

START

2.45 .MRKT (FB and XM; SJ Monitor Special Feature)

The .MRKT request schedules a completion routine to be entered after a
specified time interval (measured in clock ticks) has elapsed. The .MRKT
request is an optional feature in the SJ monitor, and is selected as a system

generation option.

A MRKT request requires a queue element taken from the same list as the
I/O queue elements. The element is in use until either the completion rou-
tine is entered or a cancel mark time request is issued (see .CMKT request).
The user should allocate enough queue elements to handle at least as many
mark time and IO requests as are expected to be pending simultaneously.

Programmed Request Description and Examples 2-71

Macro Call:

where:
area

time

crtn

id

.MRKT area,time,crtn,id

is the address of a four-word EMT argument block

is the address of a two word-block containing the time inter-
val (high order first, low order second), specified as a number
of clock ticks

is the entry point of a completion routine

is a non-zero number or memory address assigned by the user
to identify the particular request to the completion routine
and to any cancel mark time requests. The number must not
be within the range 177000-177777, which is reserved for
system use. The number need not be unique (several . MRKT
requests can specify the same id). On entry to the completion
routine, the id number is in RO

Request Format:

RO — area:| 22 | 0
time
crtn
id
Errors:
Code Explanation
0 No queue element was available.
Example:
+TITLE TREAD.MAC

i +MRKT/.CMKT -
i The examrle i
i inPut redquest

«
§-

This is an example in the use of the ,MRKT/.CMKT requests
llustrates a user implemented "Timed Read" to cancel an
after a specified time interval.

+MCALL WMRKT » o TTINR » yEXIT s PRINT +, TTYOUT » . CMKT » TWAIT»,QSET
LF = 12 iLine Feed
JSW = 44 idJob Status MWord location
TCBIT$ = 100 iReturn C-bit bit in JSW
TTSPC% = 10000 iTTY Special Mode bit in JSH
START: +QSET #XQUE »#1 iNeed an extra G-Elem for this
1%: MOV #PROMT /RO iMainline - RO =» Promprt
MOV #BUFFR ¢+R1 iR1 => InPut buffer
CALL TREADS% iDo a "timed read"
BCS 2% iC-bit set = Timed out
+PRINT #L INE i"Process" data...
BR 1% iGo bacK for more
2%: +PRINT *TIMOUT iRead timed out - could Process
JEXIT tpartial data but we’ll Just exit
i* TREAD$ - "Timed Read" Subroutine *
s%# InPut: RO =» Prompt String / RO = 0 if no Promet *
LR R1 => Input Buffer *
i* OutpPut: Buffer contains inPut chars, if anvy, terminated *
i* by a null char, C-Bit set if timed out *

2-72 Programmed Request Description and Examples

TREAD%: TST RO iSee if we have to Prompt

BEQ 1% iBranch if nos..
+PRINT jOutPut Praomet
1% CLR TBYT iClear time-out flag
+MRKT #TAREA»#TIME »#TOUT s#1 jIssue a +MRKT for 10 sec
BIS #TCBITS @#J5W iSet C-Bit bit in JSW (for F/B)
CLRB BR1 iStart with "empPtv" buffer
TTIN: +TWAIT #AREA ilait so we don‘t lock out BG
+TTINR iLooK for a character
BIT . #1,(PC)+ iTimed out?
TBYT: +WORD (0] iTime-out flag
BNE 2% iBranch if ves
BCS TTIN iBranch if inPut not complete
MOVB RO (R1)+ iXfer lst character
+CMKT #TAREA »#0 iCancel JMRKT
2% BIS #TTSPC% +@#JSW §fTurn on TT: Special mode
3%: +TTINR iFlush TT: ring buffer
MOVB RO (R1)+ iPutting characters in user buffer
BCC 3% iIf more chars g0 gdet ‘em
CLRB -(R1) iTerminate inPut with null brte
BIC #TCBITS!TTSPC% @#JSW iClear bits in JSW
ROR TBYT iSet carry if timed out
RETURN iReturn to caller
TOUT: INC TBYT
RETURN iLeave completion code
KQUE = +BLKW 10, iExtra Q-Element
AREA: +WORD O +WAIT JEMT Ardument block for +THWAIT
TAREA: +BLKW 4 FEMT Ardument block for MRKT
TIME: +WORD 0,600, iTime-out interval (10 sec)
WAIT: +MWORD 01 i1/60 sec wait between +TTINRs
LINE: +ASCII /Not in stocKk - Part # / jDummy response
BUFFR: +BLKB 81. iUser inPut buffer
PROMT : +ASCIZ /Enter Part # »/<200> iPromet
TIMOUT: +ASCIZ /Timed read expired!/ §Too bad message
+END START

2.46 .MTATCH (Special Feature)

The .MTATCH request attaches a terminal for exclusive use by the re-
questing job. This operation must be performed before any job can use a
terminal with multiterminal programmed requests, although a job can is-
sue a . MTGET request before a . MTATCH. If . MTATCH request fails be-
cause the terminal is owned by another job, the job number of the owner is
returned in RO.

Macro Call: .MTATCH area,addr,unit

where:

area is the address of a three-word EMT argument block

addr is the optional address of an asynchronous terminal status
word, or it must be #0 (The asynchronous terminal status
word is a special feature that you can select during the sys-
tem generation process.)

unit is the logical unit number of the terminal (The logical unit
number is the number assigned by the system to a particular
physical unit during the system generation process.)

Request Format:

RO — area: | 37 | 5
addr
0 | unit

Programmed Request Description and Examples 2-73

Explanation

2 Nonexistent logical unit number.

Invalid request; function code out of range.

3
4 Unit attached by another job (job number returned in RO).
5

In the XM monitor, the optional status word address is not

in valid user virtual address space.

Example:

prodrammed

as = wx A aE e a8 ae

+MCALL
+MCALL

HNGUP$ = 4000

TTSPC$ = 10000
TTLCS 40000
AS . INP = 40000
M.TETS =0
M, TSTH = 7
M.NLUN]

MTXAMP:

+MTSTAT
MOV

BEQ

CLR

MOV
+MTATCH
BCC
CLRB

BR

MovB
MOV

ASL

ASL

ASL

ADD
+MTGET
BIS

10%:

20%:

+MTSET
BITB
BNE
+MTRCTO
+MTPRNT
ADD

INC

CMP

BLO

30%:

requests.
terminals on a diven system:
input/echo exercise on all attached terminals until
CTRL/C is sent to it.

#MTA #MSTAT
MSTAT+M.NLUN R4
MERR

R1

#AST sR2
#MTAIR2sR1
20%

TAI(R1)

30%
#1,TAI(RL)
R1R3

R3

R3

RrR3

#TSBsR3
#MTAR3 +R1

#TTSPCH+TTLCS M. TSTS(R3)

#MTAR3:R1

#HNGUP$/400 M, TSTW(R3)

30%

#MTAR1
#MTA»#HELLO :R1
#2,)R2

R1

R1 R4

10%

2-74 Programmed Request Description and Examples

MTXAMP.MAC - The following is an example Prodgram that
demonstrates the use of the multiterminal

The prodram attaches all the
then Proceeds with an

+MTATCH,» +MTPRNT s+ MTGET » JMTIN, MTOUT
+PRINT » MTRCTO +» MTSET» MTSTAT +» EXIT

jTerminal off-line bit
iSpecial mode bit
iLower-case mode bit
ilnPut available bit
iTerminal status word
sTerminal state bvte
i# of LUNs word

iStart of Prodram

iGet MTTY status

iR4 = # LUNs

iNone? Not MTTY!!!
ilnitial LUN = %0

iRZ2 — AST word arravy
iAttach terminal
iSuccess!

iSet attach failed
iProceed with next LUN
jAttach successful
iCopy LUN

iMultiply by B for offset
jto the terminal status
iblocKs

iR3 — LUN‘s TSB

iGet LUN’'s status

iSet srecial
imode and lower case
iSet LUN’s status

i0n line?

iNope!

iReset CTRL/O

iSay helloess

iR2 — Next AST word
iGet next LUN

iDone?

iNorpe» 90 attach another

LOOP: iInput & echo forever

CLR R1 iInitial LUN = O
MOV #AST :R2 iR2 — AST words
10%: TSTB TAI(R1) fTerminal attached?
BEQ 20% iNore .«
BIT #AS, INPs(R2) fAny inPut?
BEQ 20% iNoPeE+ v
+MTIN #MTA »#MTCHAR sR1+#1 §InPut a character
BCS ERR i0ooprs! Error on inrPut
JMTOUT #MTA»#MTCHAR sR1 s %1 iEcho the character
- BCS ERR i0oops! Error on outpPut
20%: ADD #Z2,3R2 iPoint to next AST word
INC R1 iGet next LUN
CMP R1 R4 iDone them all®?
BLO 10% iNo+ 90 checKk another
BR LOQP iYes)» rereat (forever!)
ERR: +PRINT #UNEXP iUnexrected error...
JEXIT iPrint messagde & exit!
MERR: +PRINT #NOMTTY iNot multiterminal
+EXIT iPrint messade & exit
AST: +BLKHK 1B, iAsynchronous Terminal
iStatus Words (1/LUN)
TAI: +BLKB 16, iTerminal attached list
il Brte Pper LUN+ o
30 = Not attached
MSTAT: +BLKHW 8. FMTTY status block
TSB: +BLKW 16.%4, iTerminal status blocks
164+ blocKs of 4 words
MTA: +BLKMW 4 JEMT argument blocK
MTCHAR: +BYTE 0 iCharacter stored here
HELLO: +ASCII {33>"H"<33>"J" iVTS2 Home + Erase to EOS

+ASCIZ /Hello! Characters tvyrped will be echoed/
NOMTTY: +ASC1IZ /?Not multiterminal system?/
UNEXP: +ABCIZ /?Unexpected error...Prodgram aborting?/

+END MTXAMP iEnd of Pprodram

2.47 .MTDTCH (Special Feature)

The MTDTCH request detaches a terminal from one job and makes it
available for other jobs. When a terminal is detached, it is deactivated, and
unsolicited interrupts are ignored. Input is disabled immediately, but any
characters in the output buffer are printed. Attempts to detach a terminal
attached by another job result in an error.

Macro Call: .MTDTCH area,unit

where:

area is the address of a three-word EMT argument block
unit is the logical unit number (lun) of the terminal to be detached
Request Format:

RO —> area:| 37 | 6
unused
— | unit

Programmed Request Description and Examples 2-75

Errors:

Code Explanation
1 Invalid unit number, unit not attached.
2 Nonexistent logical unit number.
3 Invalid request; function code out of range.
Example:

+MCALL +MTDTCH, .MTPRNT s MTATCH» EXIT s PRINT

START:
+MTATCH #MTA »#0Q,#3 SATTACH TO LUN 3
BCS 1% iATTACH ERROR
+MTPRNT MTA ,#MESS »#3 iPRINT MESSAGE
+MTDTCH #MTA,#3 SDETACH LUN 3
WEXIT

1¢: +PRINT #ATTERR JATTACH ERROR

i (PRINTED ON CONSOLE)

JEXIT

ATTERR: ASCIZ/ATTACH ERROR/

MESS: +ASCIZ/DETACHING TERMINAL/
+EVEN

MTA: +BLKW 3
+END START

2.48 .MTGET (Special Feature)

The .MTGET request returns the status of the specified terminal unit to the
caller. If a . MTGET request fails because the terminal is owned by another
job, the job number of the owner is returned in R0O. You do not need to do an
.MTATCH before using the MTGET request.

Macro Call: .MTGET area,addr,unit

where:

area is the address of a three-word EMT argument block

addr is the address of a four-word status block where the status
information is returned

unit is the logical unit number (lun) of the terminal whose status
is requested. A unit need not be attached to the job issuing a
.MTGET request. If the unit is attached to another job (error
code 4), the terminal status will be returned and the job num-
ber will be contained in RO. In any other error condition, the
contents of RO are undefined

Request Format:

RO — area:| 37 | 1
addr
— | unit

2-76 Programmed Request Description and Examples

The status block has the following structure:

addr—

M.TSTS

M.TST2

M.FCNT | M.TFIL

M.TSTW | M.TWID

The following information is contained in the status block:
Byte Offset

SO DNO

(M.TSTS)
(M.TST2)
(M.TFIL)
(M.FCNT)
(M. TWID)
(M. TSTW)

Description

Terminal configuration word 1
Terminal configuration word 2
Character requiring fillers
Number of fillers

Carriage width

Terminal status byte

Note that if an error occurs, and the error code is not 1 or 4, the status block
will not have been modified.

NOTE

Use the Bit Set (BIS) and Bit Clear (BIC) instructions in-
stead of Move (MOYV) and Clear (CLR) instructions when set-
ting terminal and line characteristics. This avoids changing
other bits inadvertently.

The bit definitions for terminal configuration word 1 (M.TSTS) are as fol-

lows:

Value

1
2
4
10

100
200
7400

Bit

W =O

8-11

Terminal has hardware tab
Output RET/LF when carriage width exceeded
Terminal has hardware form feed

Meaning

Process CTRL/F and CTRL/B (and CTRL/X if system
job) as special command characters (if clear, CTRL/F

and CTRL/B are treated as ordinary characters)

Inhibit TT wait (similar to bit 6 in the Job Status Word)

Enable CTRL/S—-CTRL/Q processing

Line speed (baud rate) mask. Bits 8 through 11 indicate
the terminal baud rate (DZ11 and DZV11 only). The val-
ues are as follows:

Octal Value of
Line Speed Mask
(M.TSTS bits 11-8)

Programmed Request Description and Examples

0000
0400
1000
1400
2000
2400

Baud Rate

50

75
110
134.5
150
300

2-77

Octal Value of
Line Speed Mask

(M.TSTS bits 11-8) Baud Rate
3000 600
3400 1200
4000 1800
4400 2000
5000 2400
5400 3600
6000 4800
6400 7200
7000 9600
7400 (unused)

10000 12 Character mode input (similar to bit 12 in the Job
Status Word)
20000 13 Terminal is remote (Read-only bit)
40000 14 Lowercase to uppercase conversion disabled
100000 15 Use backspace for rubout (video type display)
The bit definitions for terminal configuration word 2 (M.TST2) are as fol-
lows:
Value Bit Meaning
3 0-1 Character length, which can be 5(00), 6(01), 7(10), or
8(11) bits (DZ only)
4 2 Unit stop, which sends one stop bit when clear, two stop
bits when set (DZ only)
10 3 Parity enable (DZ only)
20 4 0Odd parity when set; even parity when clear
140 5-6 Reserved
200 7 Read pass all
77400 8-14 Reserved
100000 15 Write pass all
The bit definitions for terminal status byte (M.TSTW) are as follows:
Value Bit Meaning
2000 10 Terminal is shared console
4000 11 Terminal has hung up
10000 12 Terminal interface is DZ11
40000 14 Double CTRL/C was struck (the MTGET request resets
this bit in the terminal control block if it is on)
100000 15 Terminal is acting as console
Errors:
Code Explanation
1 Invalid unit number, unit not attached.
2 Nonexistent logical unit number.
3 Invalid request; function code out of range.
4 Unit attached by another job (job number returned in RO).

2-78 Programmed Request Description and Examples

5 In the XM monitor, the status block address is not in valid
user virtual address space.

Example:
Refer to the example for the MTATCH request.

2.49 .MTIN (Special Feature)

The .MTIN request reads characters from the keyboard buffer. It is the
multiterminal form of the .TTYIN request. The .MTIN request moves one
or more characters from the input ring buffer to a buffer specified by you.
The terminal must be attached. An updated user buffer address is returned
in RO if the request is successful. If bit 6 is set in the M.TSTS word (see the
MTSET request), the .MTIN request returns immediately with the carry
bit set (code 0) if there is no input available. Operation is similar for the
system console if bit 6 is set in the JSW. If bit 12 in M.TSTS is clear, no line
is available; if bit 12 is set, there are no characters in the buffer. If these
conditions do not exist, the .MTIN request waits until input is available,
and the job is suspended until input is available.

The meaning of bits 6 and 12 in the terminal configuration word (M.TSTS)
for the programmed request .MTIN is as follows:

Bit 6 Bit 12 Meaning
0 0 Normal mode of input (echo provided); wait for line
1 0 Carry bit set: no line available
1 1 Carry bit set: no character available; no echo provided
0 1 No echo provided

If a multiple-character request was made and the number of characters
requested are not available, the request can either wait for the characters
to become available, or it can return with a partial transfer. If bit 6 of
M.TSTS is clear, the request waits for more characters. If bit 6 is set, the
request returns with a partial transfer. In the latter case, RO contains the
updated buffer address (pointing past the last character transferred), the C
bit is set, and the error code is 0.

The .MTIN request has the following form:
Macro Call: .MTIN area,addr,unit[,chrent]

where:

area is the address of a three-word EMT argument block
addr is the byte address of the user buffer
unit is the logical unit number of the terminal input

chrent is a character count indicating the number of characters to
transfer. The valid range is from 1 to 255(decimal). A char-
acter count of zero means one character

Programmed Request Description and Examples 2-79

Request Format:

RO — area: 37 | 2
addr
chrent | unit
Errors:
Code Explanation

0 No input available — bit 6 is set in the Job Status Word (for
the system console) or in M.TSTS by the .MTSET request.

1 Invalid unit number, unit not attached.
2 Nonexistent logical unit number.
3 Invalid request; function code out of range.
5 In the XM monitor, the user buffer address is not in valid
user virtual address space.
Example:

Refer to the example for the . MTATCH request.

2.50 .MTOUT (Special Feature)

The .MTOUT request transfers characters to the terminal output buffer.
This request is the multiterminal form of the .TTYOUT request. The
.MTOUT request moves one or more characters from the user’s buffer to the
output ring buffer of the terminal. The terminal must be attached. An
updated user buffer address is returned in RO if the request is successful.
When there is no room in the output ring buffer, the carry bit is set and an
error code of 0 is returned in byte 52 if bit 6 is set in M.TSTS. Otherwise,
the job is suspended until room becomes available.

If a multiple-character request was made and there is not enough room in
the output ring buffer to transfer the requested number of characters, the
request can either wait for enough room to become available, or it can
return with a partial transfer. If bit 6 in M.TSTS is clear, the request waits
until it can complete the full transfer. If bit 6 is set, the request returns
with a partial transfer. In the latter case, RO contains the updated buffer
address (pointing past the last character transferred), the C bit is set, and
the error code is 0.

The meaning of bit 6 in the terminal configuration word (M.TSTS) for the
.MTOUT request is as follows:

Bit 6 Meaning
0 Normal mode for output; wait for room in buffer
1 Carry bit set: no room in output ring buffer

280 Programmed Request Description and Examples

Macro Call: .MTOUT area,addr,unit[,chrent]

where:

area is the address of a three-word EMT argument block
addr is the address of the caller’s input buffer
unit is the unit number of the terminal

chrent is a character count indicating the number of characters to
transfer. The valid range is from 1 to 255(decimal)

Request Format:

RO —> area:| 37 | 3
addr
chrent | unit
Errors:
Code Explanation
0 No room in output buffer.
1 Invalid unit number, unit not attached.
2 Nonexistent logical unit number.
3 Invalid request; function code out of range.
5 In the XM monitor, the user buffer address is not in valid
user virtual address space.
Example:

Refer to the example for the MTATCH request.

2.51 .MTPRNT (Special Feature)

This .MTPRNT request allows one or more lines to be printed at the speci-
fied terminal in a multiterminal environment. It is equivalent to the
PRINT request (see .MTSET request for more details). The string to be
printed must be terminated with a null byte or a 200 byte, similar to the
string used with the .PRINT request as follows:

ASCIZ /string/
or
.ASCII /string/<200>

The null byte causes a carriage return/line feed combination to be printed
after the string. The 200 byte suppresses the carriage return/line feed com-
bination and leaves the carriage positioned after the last character of the
string. The request does not return until the transfer is complete.

Macro Call: .MTPRNT area,addr,unit

Programmed Request Description and Examples 2-81

where:

area is the address of a three-word EMT argument block
addr is the starting address of the character string to be printed
unit is the unit number associated with the terminal

Request Format:

RO — area:| 37 | 7
addr
— | unit
Errors:
Code Explanation
1 Invalid unit number, unit not attached.
2 Nonexistent logical unit number.
3 Invalid request; function code out of range.
5 In the XM monitor, the character string address is not in
valid user virtual address space.
Example:

Refer to the example for the .MTATCH request.

2.52 .MTPS
See MFPS/.MTPS (Section 2.44).

2.53 .MTRCTO (Special Feature)

The .MTRCTO request resets the CTRL/O switch of the specified terminal
and enables terminal output in a multiterminal environment. It is equiva-
lent to the . RCTRLO request.

Macro Call: .MTRCTO area,unit

where:

area is the address of a three-word EMT argument block
unit is the unit number associated with the terminal
Request Format:

RO — area:| 37 | 4
unused
— | unit

282 Programmed Request Description and Examples

Errors:

Code Explanation
1 Invalid unit number, unit not attached.
2 Nonexistent logical unit number.
3 Invalid request; function code out of range.
Example:

Refer to the example for the MTATCH requést.

2.54 .MTSET (Special Feature)

This multiterminal request sets terminal and line characteristics. It also
determines the input/output mode of the terminal service requests for the
specified terminal.

Macro Call: .MTSET area,addr,unit

where:

area is the address of a three-word EMT argument block

addr is the address of a four-word status block containing the line
and terminal status being requested

unit is the logical unit number associated with the line and termi-
nal

Request Format:

RO — area:[37 | 1
addr
— | unit

When the program returns from the request, the status block contains the
following information:

Byte Offset - Contents

0 Terminal configuration word 1 (The bit definitions
are the same as those for the MTGET request.)

2 Terminal configuration word 2 (The bit definitions
are the same as those for the MTGET request.)

4 Character requiring fillers
5 Number of fillers
6 Carriage width (byte)

Programmed Request Description and Examples 2-83

NOTE

The .MTSET request sets all of the parameters listed above.
The recommended procedure for using .MTSET is: (1) precede
it by an .MTGET request; (2) use BIS and BIC instructions to
set or clear bit fields (modify only the bits or bytes that you
intend to change); (3) issue the .MTSET request to replace
the previous terminal status with the updated status.

Note that if an error occurs, and the error code is not 1, the status block will
not have been modified.

Errors:
Code Explanation
1 Invalid unit number, lun not attached.
2 Nonexistent logical unit number.
3 Invalid request, function code out of range.
5 In the XM monitor, the status block address is not in valid
user virtual address space.
Example:

Refer to the example for the MTATCH request.

2.55 .MTSTAT (Special Feature)

The .MTSTAT request returns multiterminal system status information.
Macro Call: .MTSTAT area,addr
where:

area is the address of a three-word EMT block

addr is the address of an eight-word status block where multiter-
minal status information is returned. The status block con-
tains the following information:

Byte Offset Contents

0 Offset from the base of the resident monitor
to the first terminal control block (TCB)

2 Offset from the base of the resident monitor
to the terminal control block of the console
terminal for the program

4 The value (0-16 decimal) of the highest logi-
cal unit number (LUN) built into the system

6 The size of the terminal control block in
bytes
10-17 Reserved

2-84 Programmed Request Description and Examples

Request Format:

RO — area:| 37 | 10
addr
0
Errors:
Code Explanation
3 Invalid request; function code out of range
5 In XM, the status block address is not in valid user address
space.
Example:

Refer to the example for the . MTATCH request.

2.56 .MWAIT (FB and XM Only)

This request is similar to the .WAIT request. MWAIT, however, suspends
execution of the job issuing the request until all messages sent to the other
job or requested from the other job have been received. It should be used
with the .RCVD or .SDAT modes of message handling, where no action is
taken when a message is completed.

Macro call: .MWAIT
Request Format:
RO=| 11 | 0 |

Errors:

None.

Example:

i+

5 «MWAIT - This is an example in the use of the +MWAIT reauest.

i The example is actually two Programs» a BacKdround Job

} which sends messadess» and a Foreground Job+ which receives them.
i NOTE: Each program should be assembled and linKed serparatelv.

+TITLE MWAITF . MAC
i+
i Foredround Program ..
§-
+MCALL +RCYD » +MWAIT + e PRINT ¢ EXIT
MWAITF: +RCYD #AREA s#MBUFF y#40, iRequest a messade up to 80 char,
H B iNo error Possible - alwavs a BG
i f i
H . iDo some other Processing
+PRINT #FGJOB slike announcing FG active...
i f i
i f §
+MHWAIT iWait for messade to arrive...
18T MBUFF+2 iNull message?
BEQ FEXIT . iYes.,.exit the Program
+PRINT #FMEG fAnnounce we Jot the messade. .
+PRINT #MBUFF+2 fand echo it bacK
BR MWAITF jLoor to det another one

Programmed Request Description and Examples 2-85

FEXIT: JEXIT fExit Program

AREA: +BLKM 5 SEMT Ardument Block
MBUFF : +BLKHW 41, jBuffer - Msg lendth + 1
+WORD [iMake sure B0 char messade ends ASCIZ
FGJOB: +ASCIZ /Hi - FG alive and well and waiting for a messade!/
FMSG: «ASCIZ /Hey BG - Got vour messade it reads:/
+END MWAITF
+TITLE MWAITB.MAC

i+
i Background Program - Send a ‘null’ messade to star both prodrams

+MCALL +SDAT » ' MWAIT o GTLIN s EXIT+ . PRINT
MWAITHB: CLR BUFF iClear 1st ward
+GTLIN #BUFF »#PROMT iCet somethindg to send to FG from TTY
+SDAT #AREA +2BUFF »240, iSend inPut as messade to FG
BCS 1% iBranch on error - No FG
+MHWAIT iWHait for message to be sent
TST BUFF iSent a null message?
BNE MWAITB iNo...loopr to send another messade,
JEXIT iYes,. exit prosram
1%: PRINT #NOFG iNo FG !
JEXIT fExit Program
AREA: +BLKW S {EMT Ardument Block
BUFF: +BLKW 40, iUP to BO char messagde
PROMT: +ASCII /Enter messadge to be sent to FG dob/<15><12>/>/<200>
NOFG: ‘ JASCIZ /?No FG?/
~ +END MWAITB

2.57 .PEEK/.POKE

The .PEEK programmed request returns in RO the contents of a memory
location; .POKE changes the contents of a memory location. The .POKE
request also returns the old contents of the memory location in RO to sim-
plify the saving and restoring of a location. . PEEK and .POKE must be
used in an XM environment to change memory locations that are not de-
fined as monitor fixed offsets, and should be used with all RT—11 monitors
for compatibility.

Although .PEEK and .POKE may seem very similar to .GVAL and .PVAL,
respectively, they are different in the way they refer to locations. .GVAL
and .PVAL access only monitor fixed offsets. All offsets used by .GVAL and
.PVAL are calculated relative to the base of the resident monitor. Ad-
dresses used by .PEEK and .POKE, on the other hand, are simply memory
addresses. Although .PEEK and .POKE can be used to access monitor fixed
offsets, this requires that you find the base address of RMON, add the offset
value, and use the resulting address as an argument to .PEEK or .POKE.

Macro Calls: .PEEK area,address
POKE area, address,value

where:

area is the address of a two- or three-word EMT argument block
address is the address of the location to examine or change

value is the new contents to place in the location

2-86 Programmed Request Description and Examples

Request Format for .PEEK:

RO — area:| 34 | 1
address

Request Format for .POKE:
RO — area:| 34 | 3

address
value
Errors:
| None.
Example:

jExample of +PEEK and ,POKE Pprogrammed requests.
3This example illustrates a wav of reading and setting
fthe default file size used by the .ENTER request.
$Normallys» this would be done using the .GVAL and ,PVAL Prodrammed
jrequests, (Refer to the example dgiven for the +PVAL reauest.,) This
texample computes the address of the word in RMON containing the
tdefault file size used by the (ENTER reauest and uses ,POKE
jboth to chande the default file size to 100, blocks and to return
Sthe old default file size in RO.
H

+MCALL PEEK:s POKE:+ +EXIT

RMON= 54
MAXBLK= 314
START: +PEEK #EMTBLK »#RMON iPicK up base of RMON from loc. 54
ADD #MAXBLK + RO jAdd fixed offset of default file size:
mMov RO+ R1
+POKE #EMTBLKy» R1+ #NEWSIZ iSet a new default file sizes return old
Moy RO OLDSIZ sdefault file size in RO and save the old size.
JEXIT fHe’1l Just exit nows but presumably

jin a real prodram we'’d do more

iprocessings rerhaps creating files

jwith the new default size we Just sets then
jbefore exitind we’d restore the old
jdefault size.

SEMT area
EMTBLK : +BLKW 3 FEMT area
NEWSIZ: +WORD 100,
OLDSIZ: +WORD 0 iThe old default size is saved here.

+END START

2.58 .POKE

Refer to . PEEK/.POKE (Section 2.57).

2.59 .PRINT

The .PRINT request causes output to be printed at the console terminal.
The string to be printed can be terminated with either a null (0) byte or a
200 byte. If the null (ASCIZ) format is used, the output is automatically
followed by a carriage return/line feed combination. If a 200 byte termi-
nates the string, no carriage return/line feed combination is generated.

Programmed Request Description and Examples 2-87

Control returns to the user program after all characters have been placed
in the output buffer.

When a foreground job is running and the job that is producing output
changes, a B> or F> appears. Any text following the message has been
printed by the job indicated (foreground or background) until another B>
or F> is printed.

When a system job prints a message to the terminal, the message is pre-
ceded by logical-job-name.

If the foreground job issues a message using .PRINT, the message is printed
immediately, no matter what the state of the background job. Thus, for
urgent messages, the .PRINT request should be used (rather than
TTYOUT or .TTOUTR). The .PRINT request forces a console switch and
guarantees printing of the input line. If a background job is doing a prompt
and has printed an asterisk but no carriage return/line feed combination,
the console belongs to the background and .TTYOUTS from the foreground
are not printed until a carriage return is typed to the background. A fore-
ground job can force its message through by doing a .PRINT instead of the
.TTYOUT.

Macro Call: .PRINT addr

where:

addr is the address of the string to be printed
Errors:

None.
Example:

+TITLE PRINT.MAC

i+

i +PRINT - This is an example in the use of the .PRINT reauest.
i The example merely accePts input from the console terminal and
i echoes it back.

.
3-

+MCALL +GTLIN +PRINT+ EXIT
START: +GTLIN #BUFF »#PROMT iGet a line of inPut from Kevboard
TSTB BUFF iNothing entered?
BEQ 14 iBranch if nothing entered
+PRINT #BUFF iEcho the inPput bacK
CLRB BUFF iClear first char of buffer
BR START iGo bacK for more
1%: EXIT fExit pProdram on null inpPut
BUFF: +BLKKW a1, iB0 character buffer (ASCIZ for PRINT)
PROMT: +ASCI1I /Enter something/<15><12>/>/<200>
+END START

2.60 .PROTECT/.UNPROTECT (FB and XM Only)

.PROTECT
The .PROTECT request allows a job to obtain exclusive control of a vector
(two words) in the region 0 to 474. If the request is successful, it indicates

2-88 Programmed Request Description and Examples

that the locations are not currently in use by another job or by the monitor.
The job then can place an interrupt address and priority into the protected

locations and begin using the associated device.
Macro Call: .PROTECT area,addr

where:

area is the address of a two-word EMT argument block
addr is the address of the word pair to be protected

NOTE

The argument addr must be a multiple of four, and must be
less than or equal to 474(octal). The two words at addr and
addr+2 are protected.

Request Format:

RO — area:| 31 | O
addr

Errors:

Code Explanation

0 Protect failure; locations already in use.

1 Address (addr) is greater than 474 or is not a multiple of 4.

Example:

+TITLE PROTEC.MAC

+

+PROTECT / UNPROTECT - This is an example in the use of the (PROTECT

and +UNPROTECT requests, The example illustrates how to Protect the
vectors of a device while an inline interrupt service routine does

a data transfer (in this case the device is a DL11 Serial Line Interface).
When the prodgram is finishedy the vectors are unprotected for Possible

use by another Jab.

ws an ma ws s we we e

+MCALL +DEVICE» EXIT+».PROTECT + UNPROTECT » . PRINT
START: +DEVICE #AREAs8LIST iSetur to disable DL11 interrupPts on
5+EXIT or “C*C
+PROTECT #AREA »#300 iProtect the DL11 vectors
BCS BUSY iBranch if alreadv Protected
H . iSet uP data to transmit over DLI11
1 +
JSR RS sDL11 jUse DL11 xfer routine (see +INTEN
jexamprle)
+WORD 128, §Arduments..sWord count
+WORD BUFFR iData buffer addr
H ‘ sContinue Processing...
L] ‘.
FINI: +UNPROTECT #AREA %300 f+.eeventually to exit Prodram
JEXIT
BUSY: +PRINT #NOVEC iPrint error messasge. .
JEXIT fthen exit
AREA: +BLKW 3 FEMT Argdument block
LIST: +WORD 176500 FCSR of DL11
+HWORD 0 §Stuff it with ‘0’
+WORD 0 fList terminator

Programmed Request Description and Examples

BUFFR: iData to send aver DL11

+REPT 8. iB lines of 32 characters...
+ASCIZ /Hello DL11... Are You There ??/
+ENDR

NOVEC: +ASCIZ /?Vector already protected?/ JError messasde text
+END START

.UNPROTECT

The .UNPROTECT request is the complement of the . PROTECT request. It
cancels any protected vectors in the 0 to 476 area. An attempt to unprotect
a vector that a job has not protected is ignored.

Macro Call: .UNPROTECT area,addr

where:
area is the address of a two-word EMT argument block

addr is the address of the protected vector pair that is going to be
canceled. The argument addr must be a multiple of four, and
must be less than or equal to 474(octal)

Request Format:

RO — area:| 31 | 1
addr

Errors:
Code Explanation

1 Address (addr) is greater than 474(octal) or is not a multiple
of four.

Example:
Refer to the example for the .PROTECT request.

2.61 .PURGE

The .PURGE request deactivates a channel without performing a
.HRESET, .SRESET, .SAVESTATUS, or .CLOSE request. . PURGE frees a
channel without taking any other action. If a tentative file has been en-
tered on the channel, the file is discarded. An attempt to purge an inactive
channel is ignored.

NOTE

Do not purge channel 17(octal) if your program is overlaid
because overlays are read on that channel.

Macro Call: .PURGE chan
where:

chan is the number of the channel to be freed
Request Format:

RO = | 3 [chan]|

2-90 Programmed Request Description and Examples

Errors:

None.

Example:

+PURGE -

START:

2%:
4%

S#:

Gs:

AREA:
BLK:
WBLK
SAVBLK::
DEFEXT:
NODINP:
WERR ¢
RERR:
DONE:

BUFFR:
DSPACE

2.62 .PVAL

+TITLE

This is an

This example merges
and REOPEN to read
is used to free the

+MCALL
+MCALL
ERRBYT

+CSIGEN
MoV
MOy
MOV
+SAVEST
BCS
ADD
INC
CMP
BGE
MOV
BEQ
+REDPEN
CLR
+READK
BCC
T8TB
BNE

+ PURGE
ADD
187
BNE
+CLOSE
+PRINT
JEXIT
VWRITH
INC
INC
BCC
MOV

BR
MOVE
BR

MOV
+PRINT
JEXIT
+BLKW
+WORD
+WORD
+BLKH
+WORD
+ASCIZ
+ASCIZ
+ASCIZ
+ABCIZ
+EVEN
+BLKW

= e

+END

PURGE +MAC

example in the use of the PURGE reauest.

2-6 files into 1 files maKing use of +SAVESTATUS
all input files on one channel, The ,PURGE reauest
inrut channel after each transfer.

+CSIGEN+SAVESTATUS » REOPEN+,CLOBE » EXIT
+READW s yWRITKW »+PRINT + . PURGE

= 52 fError brte loc in SYSCOM

#DSPACE »#DEFEXT iGet file srecrorPen files:load handlers
#3 R4 R4 = 1st inPut channel

#AREA +R3 iR3 =» EMT Argdument block

#S5AVBLK RO iRS => Channel savestatus blocKs
R31R4 RS iSave channel status

2% - iBranch if channel never orPened
#124R5 jAdJjust RS to point to next status block
R4 jBumPp R4 to = next inPut channel
#B8. sR4 jDone all inPut channels?

14 iBranch if not

#SAVBLK sRO RS => to 1st saved channel status
7% iBranch if no inpPut files

R3 +#3 sR5 iRe-oren inPut channel on Ch 3

BLK iStart reading with block 0O

R3 +#3 y#BUFFR y#256, +BLK 3$Read a blocK

6% iBranch if no error

@#ERRBYT iCheck if error = EOF

8% iBranch if not EOF

#3 iClear inpPut channel for re-use
#124+RS fPoint RS to next saved ch status
@RS fAny more inpPut channels?

a4 iBranch if ves

#0 ile’re done...close outPut channel
#DONE iAnnounce merde comprlete

FJExit Program
R3,#0 +#BUFFR »#256, +WBLK S§Write blocK Just read

WBLK jBumP to next outPut block

BLK ssame for inPput blK (doesn’t affect C bit)
5% iBranch if no error on write

#WERR +RO jWrite error - RO => messade

9% imerde...

#NOINP RO §RO =* No input files message

9% imerde ..

#RERR RO X fRO =» Read error message

iRerort error
fthen exit Prodram

S - FEMT Ardument block

Q iCurrent read block

0 iCurrent write block

30, iSaved channel status area
040+0:+0 iNo default extensiaons for CSIGEN
/?No inPut files?/ iError messades

/?PHrite Error?/
/?Read Error?/
/1-0 Transfer Comprleted/

256, i1/0 buffer
fHandlers start here...

START

See .GVAL/.PVAL (Section 2.37).

Programmed Request Description and Examples 2-91

2.63 .QELDF (Device Handler Only)

The .QELDF macro symbolically defines queue element offsets for the spec-
ified set of system generation special features. The queue element offsets
generated by this macro are as follows:

Q.LINK=0 (Link to next queue element)
Q.CSW=2, (Pointer to channel status word)
Q.BLKN =4. (Physical block number)
Q.FUNC=6. (Special function code)
QJNUM=7. (Job number)

Q.UNIT=7. (Device unit number)

Q.BUFF="010 (User virtual memory buffer address)
Q.WCNT="012 (Word count)
Q.COMP="014 (Completion routine code)

Since the handler usually deals with queue element offsets relative to
Q.BLKN, the .QELDF macro also defines the following symbolic offsets:

Q$LINK =—4
Q$CSW =-2
Q$BLKN =0
Q$FUNC =2
Q$INUM =3
Q$UNIT =3
Q$BUFF =4
Q$WCNT=6
Q$COMP="010

For SJ and FB systems:
QELGH="016 (End of queue element; used to find length)
For XM systems:

Q.PAR="016 (PARLI relocation bias)
Q$PAR="012
QELGH="024 (End of queue element; used to find length)

Example:

Refer to the example following the description of .DRAST.

2.64 .QSET

The .QSET request allows additional entries to be made to the RT-11 /O
queue. A general rule to follow is that each program should contain one
more queue element than the total number of I/O requests that will be
active simultaneously on different channels. Timing and message requests
such as .MRKT, .TWAIT, .SDAT/C, and .RCVD/C also require queue ele-
ments and must be considered when allocating queue elements for a pro-
gram. Note that if synchronous I/O is done (such as READW/ WRITW) and
no timing requests are done, no additional queue elements need be allo-
cated.

2-92 Programmed Request Description and Examples

Each time .QSET is called, a specified contiguous area of memory is divided
into seven-word segments (10-word [decimal] segments for the XM monitor)
and is added to the queue for that job. .QSET can be called as many times
as required. The queue set up by multiple .QSET requests is a linked list.
Thus, .QSET need not be called with strictly contiguous arguments. The
space used for the new elements is allocated from your program space. Care
must be taken so that the program in no way alters the elements once they
are set up. The .SRESET and .HRESET requests discard all user-defined
queue elements; therefore any previous .QSET requests must be reissued.
However, you must not specify the same space in two separate .QSET re-
quests if there has been no intervening .SRESET or .HRESET request.

Care should also be taken to allocate sufficient memory for the number of
queue elements requested. The elements in the queue are altered asynchro-
nously by the monitor; if enough space is not allocated, destructive refer-
ences occur in an unexpected area of memory. The monitor returns the
address of the first unused word beyond the queue elements. Other restric-
tions on the placement of queue elements are that the USR must not swap
over them and they must not be in an overlay region. For jobs that run
under the XM monitor, queue elements must be allocated in the lower 28K
words of memory, since they must be accessible in kernel mapping. In
addition, the elements must not be in the virtual address space mapped by
kernel PARI1, specifically the area from 20000 to 37776(octal).

NOTE

Programs that are to run in XM as well as SJ or FB environ-
ments should allocate 10(decimal) words for each queue ele-
ment. Alternatively, a program can specify the start of a
large area and use the returned value in RO as the top of the
queue element.

The following programmed requests require queue elements:

TWAIT RCVDW
.MRKT .WRITE
.READ WRITC
.READC .WRITW
.READW .SDAT
.RCVD .SDATC
.RCVDC .SDATW

Macro Call: .QSET addr,len
where:
addr is the address at which the new elements are to start

len is the number of entries to be added. In the SJ and FB moni-
tor, each queue entry is seven words long; hence the space set
aside for the queue should be len*7 words. In the XM monitor,
10(decimal) words per queue element are required

On completion, RO contains the address of the first word beyond the allo-
cated queue elements.

Programmed Request Description and Examples 2-93

Errors:

In an extended memory environment, an attempt to violate the PAR1
restriction results in a 2MON-F-addr error, which can be intercepted
with a .SERR programmed request.

Example:

+TITLE
+
+QSET - This

inPut

- s we we

+MCALL

LF = 12
JSW = 44
TCBITS =

is an example
The example illustrates a user implemented
request after a specified time inmterval,

QSET.MAC

in the use of the

+Q8ET reauest.
"Timed Read" to cancel an

¢MRKT » ¢« TTINR » yEXIT»PRINT » . TTYOUT ++CMKT » « TWAIT »+ QSET

100

iReturn C-bit bit in JSW

iLine Feed
iJob Status Word location

TTSPC$ = 10000 iTTY Special Mode bit in JSMW

. 8TART: +OSET #XOUE 1#1 iNeed an extra O-Elem for this

1%: MOV #PROMT »RO iMainline - RO = PrompPt
MOY #BUFFRR1 iR1 => InPut buffer
CALL TREAD$ iDo a "timed read"
BCS 2% iC-bit set = Timed out
+PRINT #L INE i"Process" data.,..
BR 1% iGo back for more

2%: +PRINT *TIMOUT iRead timed out - could Process
JEXIT irpartial data but we’ll Just exit
i* TREAD$ - "Timed Read" Subroutine *
i* InPut: RO = Prompt Strind / RO = O if no Prompt *
ix R1 => Input Buffer *
i* OutpPut: Buffer contains inPut chars, if any, terminated *
i by a null char, C-Bit set if timed out *

TREADS: TST RO iSee if we have to Prompt
BEQ 1% iBranch if no...
«PRINT jOutPut Promet

1%: CLR TBYT iClear time-out flay
+MRKT #TAREA +»#TIME »#TOUT y#1 §lssue a MRKT for 10 sec
BIS #TCBITS @#JSHW iSet C-Bit bit in JSW (for F/B)
CLRB eri iStart with "empty" buffer

TTIN: JTWAIT #AREA iWait so we daon‘t locK out BG
+TTINR iLooK for a character
BIT #1,(PC)+ iTimed out?

TBYT: +WORD 0 iTime-out flag
BNE 2% iBranch if ves
BCS TTIN iBranch if inPut not comrlete
MOVB RO (R1)+ iXfer lst character
+CMKT #TAREA 1#0 iCancel MRKT

2%: BIS #TTSPC$ /@#JSW iTurn on TT: Srecial mode

3%: +TTINR iFlush TT: ring buffer
MOVB ROs(R1)+ fPutting characters in user buffer
BCC 3% ilf more char, g0 det ‘em
CLRB -(R1) iTerminate inPut with null brte
BIC #TCBIT$!TTSPC$@#JSW iClear bits in JSW
ROR TBYT iSet carry if timed out
RETURN iReturn to caller

TOUT: INC TBYT
RETURN iLeave completion code

XQUE: +BLKW 10, jExtra Q-Element

AREA: +HWORD O WAIT FEMT Ardument block for ,TWAIT

TAREA: +BLKMW 4 FEMT Arsdument block for +MRKT

TIME: +WORD 0:600., iTime-out interval (10 sec)

WAIT: +WORD 01 i1/60 sec wait between TTINRs

LINE: +ASCII /Not in stocKk - Part # / jDummy response

BUFFR: +BLKB 81, iUser inPut buffer

PROMT: +ASCIZ /Enter Part # »>/<200> iPrompt

TIMOUT: +ASCIZ /Timed read expired!/ §iToo bad message
+END START

2-94 Programmed Request Description and Examples

2.65 .RCTRLO

The .RCTRLO request makes sure that the console terminal is able to print
by resetting the CTRL/O switch for the terminal. A CTRL/O typed while
output is directed to the console terminal inhibits the output from printing
until either another CTRL/O is struck or the program resets the CTRL/O
switch. Therefore, a program with a message that must appear at the con-
sole should reset the CTRL/O switch.

A program should also issue a .RCTRLO request whenever it changes the
contents of the job status word (JSW). Issuing a .RCTRLO request updates
the monitor’s internal status information to reflect the current contents of
the JSW.

Macro Call: .RCTRLO
Errors:
None.

Example:

+TITLE RCTRLO.MAC

+

+RCTRLO - This is an example in the use of the RCTRLO reAuest.

In this examples the user program first calls the CSI in deneral mode:
then Processes the commands When finished, it returns to the CSI for
another command lines+ To maKe sure that the prompPting ‘%’ tvyred by

the CSI is nat inhibited by a CTRL-O in effect from the last oreration:
terminal outPput is assured via the +RCTRLO reauest prior to the

€SI call,

we ws s wr we we wn e wa

+MCALL +RCTRLO++CSIGEN, EXIT

START: +RCTRLO iMake sure TT: outPut is enabled

+CSIGEN #DSPACE s#DEXT 80 ilssue a .CS5IGEN request to det
icommand
f§(CSI will prompt with ‘*’)
H . iProcess the command...
§ f i
§ . i
JMP START iGet another command...
DEXT: +WORD 0404040 iNo default extensions
DSPACE: = iSerace for handlers starts here
+END START

2.66 .RCVD/.RCVDC/.RCVDW (FB and XM Only)

The .RCVD (receive data) request allows a job to read messages or data
sent by another job in an FB environment.

There are three forms of the .RCVD request, and they are used with the
.SDAT (send data) request. The send data-receive data request combination
provides a general data/message transfer system for communication be-
tween a foreground and a background job. .RCVD requests can be thought
of as .READ requests where data transfer is not from a peripheral device
but from the other job in the system. Additional queue elements should be

Programmed Request Description and Examples 2-95

allocated for buffered I/O operations in .RCVD and .RCVDC requests (see
the .QSET request). Under an FB monitor with the system job feature,
.RCVD/C/W requests and .SDAT/C/W requests remain valid for sending
messages between background and foreground jobs in addition to the gen-
eral read and write capability available to all jobs.

Be particularly careful if you use both synchronous (RCVDW and
.SDATW) and asynchronous (RCVDC and .SDATC) requests in the same
program. If you issue a mainline .SDATW while there is a pending
.RCVDC, the .SDATW will wait until the .RCVDC is satisfied. If the com-
pletion routine for the .RCVDC issues another .RCVDC, the mainline
.SDATW will never complete. In general, you should avoid the use of both
synchronous and asynchronous message requests in the same program.

.RCVD

This request is used to receive data and continue execution. The request is
posted and the issuing job continues execution. When the job needs to have
the transmitted message, an .MWAIT should be executed. This causes the
job to be suspended until all .SDATx and .RCVDx requests for the job are
complete.

Macro Call: .RCVD area,buf,went
where:
area is the address of a five-word EMT argument block

buf is the address of the buffer into which the message
length/message data is to be placed

wecnt is the number of words to be transferred

Request Format:

RO — area:| 26 | 0
reserved
buf
wcnt

1

Upon completion of the .RCVD, the first word of the message buffer con-
tains the number of words transmitted. Thus, the space allocated for the
message should always be at least one word larger than the actual message
size expected. If the sending job attempts to send more words than the
receiver specified in the wcnt argument of the .RCVD request, the first
word of the buffer will contain the number of words that the sender speci-
fied, but only wcnt words will be actually transferred. The rest of the
sender’s message will be ignored.

The word count is a variable number, and as such, the .SDAT/.RCVD com-
bination can be used to transmit a few words or entire buffers. The .RCVD
operation is only complete when a .SDAT is issued from the other job.

Programs using .RCVD/.SDAT must be carefully designed to either always
transmit/receive data in a fixed format or to have the capability of handling

2-96 Programmed Request Description and Examples

variable formats. Messages are all processed in first-in first-out order.
Thus, the receiver must be certain it is receiving the message it actually
wants. Message handling in the FB monitor does not check for a word count
of zero before queuing a send or receive data request. Since RT-11 distin-
guishes a send from a receive by complementing the word count, a .SDAT of
zero words is treated as a .RCVD of zero words. Avoid a word count of zero
at all times when using a .RCVD request.

Errors:
Code Explanation
0 No other job exists in the system. (A job exists as long as it is
loaded, whether or not it is active.)
Example:
Refer to the example for the .SDAT request.
.RCVDC

The .RCVDC request receives data and enters a completion routine when
the message is received. The .RCVDC request is posted and the issuing job
continues to execute. When the other job sends a message, the completion
routine specified is entered.

Macro Call: .RCVDC area,buf,wcnt,crtn

where:

area is the address of a five-word EMT argument block

buf is the address of the buffer into which the message
length/message data is to be placed

went is the number of words to be transmitted
crtn is the address of a completion routine to be entered

As in the .RCVD request, word 0 of the buffer contains the number of words
transmitted when the transfer is complete.

Request Format:

RO — area:{ 26 | O
reserved
buf
went
crtn
Errors:
Code Explanation
0 No other job exists in the system. (A job exists as long as it is

loaded, whether or not it is active.)

Programmed Request Description and Examples 2-97

Example:

+TITLE

+

CTRL-C action.

“n wn ws ws we ws s wm s

+MCALL

+MCALL
START: +QSET
+SCCA
1%: CALL

+RCVDC

-

- e

+PRINT
+SPND
TST
BNE

[= J

R

CWATCH: 18T

+RCYDC - This is an example of the
is a simulation of a mainline Foredround prodgram which is currently
suspended waiting for a message from the Backdrounds» but which needs
+ENTER ?) before aborting from
A completion routine rPeriodically inspects the CTRL-C
status word and resumes the mainline if double CTRL-C is entered.
NOTE: This example MUST be run as a FG Job under an FB monitor,

to close a file (Pperhars orPened by a

RCVDC.MAC

+RCUDC request, The exampPle

+SCCA»RCVUDC»EXIT» PRINT » MRKT

+QSET . SPND+» +RSUM

#OELEM »1

#MAREA y#SCCA

CHATCH

#MAREA +#MBUFF ,#40, ,#MESG

.

#SLEEP

8CCA
CLOSE

’

{process message here>

.

is

SCCA

MARK

+RSUM
#CAREA »sTIME +#CWATCH %1

#ABORT

5 <Outrut file(s) closed here>

BEQ
MESG:

RETURN
MARK : +MRKT

RETURN
CLOSE: +PRINT

§

i

WEXIT
QELEM: +BLKW
MBUFF: +BLKW
MAREA: +BLKW
CAREA: +BLKW
TIME: +WORD
SCCA: +WORD
ABORT: +ABCIZ
SLEEP: +ABCIZ

+END
.RCVDW

7

a1,

S

4
04600,
(¢}

fAllocate another Q-Element
§Inhibit "C"C action by monitor
iStart "watchdog" compPletion rtne
jLook for a messade

iNo errors - there’s alwavs BG
iOther Processing here...

1

iAnnounce we’'re going to suspend
iSusrpend to wait for messade
ide‘ve been ,RSUMed.,.."C"C hit??
iBranch if ves

jotherwise assume messade came in...

iLooP e

iCheck if “C"C entered...

iBranch if no

iYes.. ,wake ur the mainline

ithen leave completion code
iSchedule to run agdain in 10 sec.
ithen leave completion code

iAnnounce we’‘re aborting
irproceed with "orderly" abort

fExit the Prosdram

iExtra Q-Element
iMessage buffer

FEMT Ardument blocks

i

iTime out in 10 seconds
i"C"C Status word

/?! Abort Acknowledged,.,.Closing Output File(s) 1?7/

/! Mainline Suspending !/

START

.RCVDW is used to receive data and wait. A message request is posted and
the job issuing the request is suspended until all pending .SDATx and
.RCVDx requests for the job are complete. When the issuing job runs again,
the message has been received, and word 0 of the buffer indicates the num-
ber of words transmitted.

Macro Call:

RCVDW area,buf,went

2-98 Programmed Request Description and Examples

where:

area is the address of a five-word EMT argument block

buf is the address of the buffer into which the message
length/message data is to be placed

went is the number of words to be transmitted

Request Format:

RO — area:| 26 | 0
reserved
buf
wcent
0
Errors:
Code Explanation
0 No other job exists in the system. (A job exists as long as it is
loaded, whether or not it is active.)
Example:

Refer to the example for the .SDATW request.

2.67 .RDBBK (XM Only)

The .RDBBK macro defines symbols for the region definition block and
reserves space for it. The RDBBK automatically invokes .RDBDF.

Macro Call: .RDBBK rgsiz

where:

rgsiz is the size of the dynamic region needed (expressed in 32-
word units)

Example:

See Chapter 4 of the RT—11 Software Support Manual for an example
that uses the .RDBBK macro and a detailed description of the ex-
tended memory feature.

2,68 .RDBDF (XM Only)

The .RDBDF macro defines the symbolic offset names for the region defini-
tion block and the names for the region status word bit patterns. In addi-
tion, this macro also defines the length of the region definition block by
setting up the following symbol:

R.GLGH = 6

Programmed Request Description and Examples 2-99

The .RDBDF macro does not reserve space for the region definition block.
Macro Call: .RDBDF
The .RDBDF macro expands as follows:

R.GID =0
R.GSIZ = 2
R.GSTS = 4
RGLGH =6
RS.CRR = 100000
RS.UNM = 40000
RS.NAL = 20000

2.69 .READ/.READC/.READW

Read operations for the three modes of RT-11 I/O are done using the
.READ, .READC, and READW programmed requests.

In the case of .READ and .READC, additional queue elements should be
allocated for buffered I/O operations (see the .QSET request).

Upon return from any .READ, .READC, or . READW programmed request,
RO contains the number of words requested if the read is from a sequential-
access device (for example, paper tape). If the read is from a random-access
device (disk or DECtape), RO contains the actual number of words that will
be read (READ or .READC) or have been read (READW). This number is
less than the requested word count if an attempt is made to read past end-
of-file, but a partial transfer of one or more blocks is possible. In the case of
a partial transfer, no error is indicated if a read request is shortened.
Therefore, a program should always use the returned word count as the
number of words available.

For example, suppose a file is five blocks long (it has block numbers 0 to 4)
and a request is issued to read 512(decimal) words, starting at block 4.
Since 512 words is two blocks, and block 4 is the last block of the file, this is
an attempt to read past end-of-file. The monitor detects this and shortens
the request to 256(decimal) words. On return from the request, RO contains
256, indicating that a partial transfer occurred. Also, since the request is
shortened to an exact number of blocks, a request for 256 words either
succeeds or fails, but cannot be shortened.

An error is reported if a read is attempted starting with a block number
that is beyond the end-of-file. The carry bit is set, and error code 0 appears
in byte 52. No data is transferred in this case, and RO contains a zero.

.READ

The .READ request transfers to memory a specified number of words from
the device associated with the specified channel. The channel is associated
with the device when a .LOOKUP or .ENTER request is executed. Control
returns to the user program immediately after the .READ is initiated, pos-
sibly before the transfer is completed. No special action is taken by the
monitor when the transfer is completed.

2-100 Programmed Request Description and Examples

Macro Call: .READ area,chan,buf,went,blk

where:

area is the address of a five-word EMT argument block
chan is a channel number in the range 0-376(octal)

buf is the address of the buffer to receive the data read
went is the number of words to be read

blk is the block number to be read. For a file-structured
.LOOKUP, the block number is relative to the start of the
file. For a non-file-structured .LOOKUP, the block number is
the absolute block number on the device. Note that the first
block of a file or device is block number 0. The user program
normally updates blk before it is used again. If input is from
TT: and blk=0, TT: issues an uparrow (") prompt (This is true
for all .READ requests.)

Notes:

1.

.READ and .READC requests instruct the monitor to do a read from the
device by queuing a request for the device and immediately returning
control to your program.

.READ and .READC requests execute as soon as all previous I/O re-
quests to the device handlers have been completed. Note that a read
from RK1: must wait for a previous read from RKO: to complete. This is
a hardware restriction common to most disks because the controller
looks at all I/O operations sequentially.

Read errors are returned from the .READ and .READC or the .WAIT
request. Errors can occur on the read or on the wait, but only one error
is returned. Therefore, the program must check for an error when the
read is complete (READ/BCS) and after the wait (WAIT/BCS). The
wait request returns an error, but it does not indicate which read
caused the error.

Errors reported on the return from the read request are as follows:
a. Nonexistent device/unit
b. Nonexistent block

c. In general, errors that do not require data transfers but are control-
ler errors or EOF errors

During the .READ and .READC requests, the monitor keeps track of
errors in the channel status word. If an error occurs before the monitor
can return to the caller, the error is reported on the return from the
read request with the carry bit set and the error value in RO. If the
error occurs after return from the read request, the error is reported on
return from the next .WAIT, or the next .READ/READC. Some errors
can be returned from .READ/ READC requests immediately, before any
I/O operation takes place. One condition that causes an immediate er-
ror return is an attempt to read beyond end-of-file.

Programmed Request Description and Examples 2-101

5. If READ/C/W requests are used to receive messages under a system job
monitor, the buffer must be one word longer than the number of words
expected to be read. Upon completion of the data transfer, the first word

of the buffer will contain a value equal to the number of words actually
transferred (as for . RCVD/C/W).

Request Format:

10 | chan
blk
buf
went
1

When the user program needs to access the data read on the specified
channel, a .WAIT request should be issued as a check that the data has
been read completely. If an error occurred during the transfer, the .WAIT

RO — area:

request indicates the error.

Errors:
Code Explanation
0 Attempt to read past end-of-file.
1 Hard error occurred on channel.
2 Channel is not open.
Example:
+TITLE READ.MAC

the blocK Just

e s s wE o am wE ws s e

file specss load the

+READ / WRITE - This is an examrle in the use of the .READ /
requests, The example demonstrates asynchronous I/0 where a mainline
Program initiates inPput via +READ requestss does some other Processing
maKes sure input has completed via the WAIT requests then outpPuts
read, Another .WAIT is issued before the next read

is issued to maKe sure the previous write has finished, This examprle
is another single file coPy Prodrams utilizing +CSIGEN to inPut the

+WRITE

required handlers and oren the files.

+MCALL +READ s + WRITE + +CLOSE » + PRINT
+MCALL +CSIGEN» .EXIT,» WAIT,.SRESET
ERRBYT = 52 jError Byte location in SYSCOM
+ENABL LSB jEnable local symbol block
START: +CSIGEN #DSPACE +#DEFEXT jUse CSIGEN to det handlers, files
MoV #AREA 'RS iRS = EMT Argdument list
CLR I10BLK iStart reads with BlocK %0
1%: +READ RS 83 iRead a blocK...
BCS G# iBranch on error
i . iThen simulate
BIT #1,10BLK isome other
BNE 2% imeaningful(?)
+PRINT #MESSG FPTOCESS .4
i) L
2%: HWALT #3 iDid read finish OK?
BCS 5% iBranch if not (must be hard error!)
+HRITE RS 180 iNow write the block Just read
BCS 3% iBranch on error
INC I10BLK iBump Block #
H . ile could do some more Processing here
L] .
THAIT #0 iWait for write to finish
BCC 14 iBranch if write was successful

Programmed Request Description and Examples

3%: MoV #WERR +RO fRO =3 Write error msd

4% : +PRINT iRerort error
BR 7% - §Merde to exit Prosgram

S%: MOV #RERR +RO §RO =» Read error ms4dg
BR 4% iBranch to rerort error

G TSTB EB#ERRBYT iRead error...EOF?
BNE 5% iBranch if not
¢«PRINT #DONE iYes«.ssannounce completion
+CLOSE #0 iMake output file pPermanent

7%: +8SRESET iDismiss fetched handlers
JEXIT fthen exit Pprodram

AREA:: +WORD 0 SEMT Area block

I0BLK: +WORD 0 iBlock #.
+WORD BUFF iBuffer addr & word count
+WORD 256, falready fixed in blocK.s.
+WORD 0 i

BUFF: +BLKW 256 1/0 buffer

DEFEXT: +WORD Q10:+04+0 iNo default extensions for CSIGEN

DONE: +WASCIZ /1-0 Transfer ComPlete/ iMessages...

MESSG: +ASCIZ <152412%/< Simulatving Mainline Processing >/

WERR ¢ +ASCIZ /7?Write Error?/

RERR: +ASCIZ /?Read Error?/
+EVEN

DSPACE: = fHandlers mav be loaded starting here
+END START

.READC

The .READC request transfers a specified number of words from the indi-
cated channel to memory. Control returns to the user program immediately
after the .READC is initiated. Attempting to read past end-of-file also
causes an immediate return, in this case with the carry bit set and the error
byte set to 0. Execution of the user program continues until the .READC is
complete, then control passes to the routine specified in the request. When
an RTS PC is executed in the completion routine, control returns to the
user program. '

Macro Call: .READC area,chan,buf,wcnt,crtn,blk

where:

area is the address of a five-word EMT argument block
chan is a channel number in the range 0-376(octal)

buf is the address of the buffer to receive the data read
went is the number of words to be read

crtn is the address of the user’s completion routine. The address of
the completion routine must be above 500(octal)

blk is the block number to be read. For a file-structured
.LOOKUP, the block number is relative to the start of the
file. For a non-file-structured .LOOKUP, the block number is
the absolute block number on the device. The user program
normally updates blk before it is used again

When a completion routine is called, error or end-of-file information for a
channel is not cleared. The next .WAIT or .READ/READC on the channel
(from either mainline code or a completion routine) produces an immediate
return with the C bit set and the error code in byte 52. The completion
routine will never be entered if the .READC request returns an error.

Programmed Request Description and Examples 2-103

Request Format:

RO — area:| 10 | chan
blk
buf
went
crtn

When a .READC completion routine is entered, the following conditions are
true:

1. RO contains the contents of the channel status word for the opera-
tion. If bit O of RO is set, a hardware error occurred during the
transfer; consequently, the data may not be reliable. The end-of-
file bit, bit 13, may be set.

2. R1 contains the channel number of the operation. This is useful
when the same completion routine is to be used for transfers on
different channels.

3. On a file-structured transfer, a shortened read is reported when
the .READC request is returned, not when the completion routine
is called.

4. Registers RO and R1 can be used by the routine, but all other
registers must be saved and restored. Data cannot be passed be-
tween the main program and completion routines in any register
or on the stack.

Errors:
Code Explanation
0 Attempt to read past end-of-file; no data was read.
1 Hard error occurred on channel.
2 Channel is not open.
Example:

+TITLE READC+MAC

+READC / +HWRITC - This is an example in the use of the .READC / .WRITC
requestss The example demonstrates event-driven I/0 where a mainline
prodram initiates a file transfer and completion routines continue it
while the mainline proceeds with other Processes, The example is another
single file copy Programs utilizing .CSIGEN to input the file specss load
the regquired handlers and oprpen the files,

amE wE =B e an an aae caw

+MCALL +READC + WRITC +.CLOSE » ,PRINT »,CSIGEN» ,EXIT».WAIT,+.8RESET
ERRBYT = 52 iError Brte location in SYSCOM
+ENABL LSB

START: +CSIGEN #DSPACE »#DEFEXT iUse CSIGEN to get handlers, files
CALL IOXFER iStart I/0
+PRINT #MESSG iNow simulate other mainline Pprocess
Mov #-1,R5 3

2-104 Programmed Request Description and Examples

1%: DEC
BNE
T8TB
BEQ
INCB
BEQ
BLT
+CLOSE
MOV
BR
WERR : MOV
BR
RERR: MOV
GBYE: +PRINT
+8RESET
WJEXIT
WRDONE: JHWAIT
BCS
IOXFER: +READC
BCC
TSTB
BEQ
2%: DECB
3% DECB
RETURN
4% +WAIT
BCS
+WRITC
BCS
S$: INC
RETURN
G$: INCB
7%: RETURN
AREA:: +WORD
BLOK: +WORD
+WORD
+WORD
+MWORD
BUFF: +BLKW
DEFEXT: +WORD
DONE: +ASCIZ
MESSG: +ABCIZ
WRERR: +ABCIZ
RDERR : +ASCIZ
EOF: +BYTE
+EVEN
DSPACE =
+END
.READW

RS

1%

EOF

14

EOF

WERR

RERR

#0

#DONE +RO
GBYE
#WRERR sRO
GBYE
#RDERR »RO

#0

3%
#AREA +#3 4 4 1 8#d$
7%

@RERRBYT

G$

EOF

EOF

#3

2%

#AREA +#0 4 4 +#WRDONE

3%
BLOK

EOF

0

Q

BUFF
256,

(o]

256,
040,040

/1-0 Transfer Comprlete/

i (Kill some time)

i

iDid I/0 complete?

iNo+,..do some more mainline work

iChecK for read/write error
SEOF = 0 = Write error
SEOF < 0 = Read error
JEDF > 0 = End of File

FRO => We’re done messgd
iMerde to exit Pprodram
iSet uP error messages here,..

fPrint messade

iDismiss fetched handlers

fExit prodram

fWrite compl rtrne...write successful?
iBranch if not...

iQueue ur a read

iBranch if oK...

iError - is it EOQOF?

iBranch if ves

iUser EOF Flad to indicate hard error
fEOF = -2 Read err / = -1 MWrite err
iLeave completion code

iCompl rtne #2 - was read oK?

iBranch if not

iQueue uP a write...
iBranch if error

iBumrp block # for next read
iLeave Comepletion code...
iSet EOF flag

ithen return

FEMT Area block

iBlock #

iBuffer addr & word count
jalready fixed in blocK...
iComrletion rtne addr

iI/0 buffer

iNo default extensions for CSIGEN
iMessagdes..

/< Simulating Mainline Processing »/

/?Write Error?/
/?Read Error?/
0

START

iEOF flag

iHandlers may be loaded startind here

The .READW request transfers a specified number of words from the indi-
cated channel to memory. When the .READW is complete or an error is
detected, control returns to the user program.

Macro Call:

where:

area
chan

buf

.READW area,chan,buf,went,blk

is the address of a five-word EMT argument block
is a channel number in the range 0-376(octal)

is the address of the buffer to receive the data read

Programmed Request Description and Examples 2-105

went is the number of words to be read; each .READ request can
transfer a maximum of 32K words

blk is the block number to be read. For a file-structured
.LOOKUP, the block number is relative to the start of the
file. For a non-file-structured .LOOKUP, the block number is
the absolute block number on the device. The user program
normally updates blk before it is used again

Request Format:

RO — area:

If no error occurred, the data is in memory at the specified address. In an
FB environment, the other job can be run while the issuing job is waiting

10 | chan

blk

buf

went

0

for the I/0 to complete.

If a volume is opened with a non-file-structured lookup and the word count
specified is greater than the number of words left on the volume, READW
returns a hard error.

Errors:
Code Explanation
0 Attempt to read past end-of-file.
1 Hard error occurred on channel.
2 Channel is not open.
Example:

«TITLE READH.MAC

ws wa we s

+MCALL

ERRBYT=52

START: +CSIGEN
CLR
MOV
READ: +READK

BCC
TSTB
BEQ
MOV

1%: +PRINT
BR

2-106 Programmed Request Description and Examples

+READW / WRITW - This is an example in the use of the
requests, The example is a single file copy Prodram. The file specs

are input from the console terminals and the inPut & outrut files orened
via the general mode of the CSI, The file is copied using synchronous

3 I/Ds and the output file is made Permanent via the ,CLOSE resuest.

+CSIGEN s READMW + PRINT » yEXIT + +WRITW,+,CLOSE +»,SRESET

#DSPACE »#DEXT
IDBLK

#AREA RS

RS +#3

2%
@#ERRBYT
3%
#RERR RO

a%

fError Bvyte Location

iGet strind from terminal

iInPut blocK # starts with 0

=» EMT Ardument list

jRead a block on Channel 3

iBlk#, Buff addr & WC already in arg

iBranch if no errors
iIs error EOF?

iRO => Read Error Messade
iPrint the messade
SExit Progdram

2%:

3¢:
4%
DEXT:

AREA:
I0BLK:

BUFFR:
RERR:
WERR:
DONE:

DSPACE:

2.70 .RELEAS

See .FETCH/.RELEAS (Section 2.30).

2.71 .RENAME

+HWRITH
INC

BCC

MOV

BR
CLOSE
+PRINT
+SRESET
JEXIT

+WORD
+WORD
+WORD
+WORD
+WORD

. +WORD

+BLKW
+ABCIZ
+ABCIZ
+ASCIZ
+EVEN

.

+END

RS s#0
I0BLK
READ
#WERR 1RO
1¢

#0

#DONE

010040

0

0

BUFFR

2586,

Q

256,

/? Read error

/? Write error 7/

iWrite the blocKk Just read

iBump block . # (doesn’t affect C bit)
iBranch if no error

fRO =» Write error messasde

iBranch to outrut the messade
$End-of-File,,.Close outrPut channel
iAnnounce successful copy

iRelease handler(s) from memory
JExit the Prodgram

iNo default extensiaons
SEMT Ardument block
iBlock #

§I/0 Buffer addr

iWord Count

§I/0 Buffer

/1-0 Transfer Comrlete/

START

iHandler(s) can be loaded starting
fhere

The .RENAME request changes the name of the file specified.

Macro Call:

where:

area
cchan
dblk

.RENAME area,chan,dblk

is the address of a two-word EMT argument block
is an unused channel number in the range 0-376(octal)

is the address of a block that specifies the file to be renamed

followed by the new file name

Request Format:

RO — area:|

4 | chan

dblk

The dblk argument consists of two consecutive Radix—50 device and file
specifications. For example: ‘

DBLK:

+ RENAME

BCS

+

¢
+RADSO
+RADSO
+RADSO
+RADSO
+RADSO
+RADSO

#AREA »#7 »#DBLK

RNMERR

/DT3/
/0LDFIL/
/MAC/
/DT3/
/NEWFIL/
/MAC/

iUSE CHANNEL 7
iNOT FOUND

Programmed Request Description and Examples 2-107

The first string represents the file to be renamed and the device where it is
stored. The second represents the new file name. If a file with the same
name as the new file name specified already exists on the indicated device,
it is deleted. The second occurrence of the device name DT3 is necessary for
proper operation and should not be omitted. The specified channel is left
inactive when the RENAME is complete. RENAME requires that the han-
dler to be used be resident at the time the . RENAME request is made. If it
1s not, a monitor error occurs. Note that RENAME is legal only on files on
block-replaceable devices (disks and DECtape). In magtape operations, the
handler returns an illegal operation code in byte 52 if a . RENAME request
is attempted. A .RENAME request to other devices is ignored.

Files cannot be protected or unprotected using the .RENAME request. To
change the protection status of a file, use the .FPROT request or the PRO-
TECT and UNPROTECT commands.

File dates can be changed using the .SFDAT request.

Errors:

Code Explanation
0 Channel open.
1 File not found.
2 Invalid operation.
3

A file by that name already exists and is protected.
A RENAME was not done.

Example:

+TITLE RENAME.MAC

i+

i +RENAME - This is an example in the use of the .RENAME request.
i The example renames a file according to filespecs input thru the
i «CS5ISPC resuest.,

+MCALL +RENAME » PRINT » JEXIT
«MCALL +CSISPC++FETCH,».SRESET
ERRBYT = 52 fError byte locatian
START: +CSISPC #FILESP »#DEFEXT iUse .CSISPC to set file specs
+FETCH #HANLOD »#FILESP iGet Handler from outsrec
BCS 2% iBranch if failed
MOV #FILESPR2Z iR2 => OutsrFec
Moy #FILESP+4GR3 iR3 => Insrec
MoV EBRZHFILESP+36 iCopy device spec to inspec
+REPT 4 iCoPpy outsrec behind insrec
MOV (R2)+,(R3)+ ifor .RENAME.,..
+ENDR
+ RENAME #AREA »#0 y#F ILESP+36 iRename input file
BCC 1% iOperation successful
DECB @#ERRBYT iMake error code -1,0 aor +1
BEQ 3% iBranch if File-Not-Found
MO #ILLOP RO illledal oPeration-set ur msd
BR o% iBranch to rerport error

2-108 Programmed Request Description and Examples

1%:
2%:

34%:
S¢:

AREA:
DEFEXT:
NOFIL:
ILLOP:
NOHAN:

FILESP:
HANLOD

2.72 .REOPEN

+SRESET iDismiss handlers

JEXIT fExit Prodram

MOV #NOHAN RO iFetch failed-set uP messade
BR 5% iBranch to report error

MOV #NOFIL RO iFile not found-setur messade
+PRINT iPrint error message

BR 1% iThen exit via +SRESET

+BLKW 3 ’ fEMT Ardument block

+WORD 0104+0+0 iNo default extensions
+ASCIZ /?File not found?/ iError messade text

+ASCIZ /?Illedal Operation?/

+ASCIZ /?.FETCH Failed?/

+EVEN

+BLKW 39.%2 fCSISPC InPut Area
= iHandlers can load here...
+END START

The .REOPEN request associates the channel that was specified with a file

on which

a .SAVESTATUS was performed. The .SAVESTATUS/.REOPEN

combination is useful when a large number of files must be operated on at

one time.

As many files as are needed can be opened with .LOOKUP, and

their status preserved with .SAVESTATUS. When data is required from a
file, a . REOPEN enables the program to read from the file. The . REOPEN

need not

be done on the same channel as the original .LOOKUP and

SAVESTATUS.
Macro Call: .REOPEN area,chan,cblk

where:

area is the address of a two-word EMT argument block

chan is a channel number in the range 0-376(octal)

cblk is the address of the five-word block where the channel status

information was stored

Request Format:

RO — area:| 6 [chan
cblk
Errors:
Code Explanation
0 The specified channel is in use. The .REOPEN has not been
done.
Example:

Refer to the example for the .SAVESTATUS request.

2.73 .RSUM (FB and XM Only)

See .SPN

D/.RSUM (Section 2.84).

Programmed Request Description and Examples 2-109

2.74 .SAVESTATUS

The .SAVESTATUS request stores five words of channel status information
into a user-specified area of memory. These words contain all the informa-
tion RT-11 requires to completely define a file. When a .SAVESTATUS is
done, the data words are placed in memory, the specified channel is freed,
and the file is closed. When the saved channel data is required, the
.REOPEN request is used.

.SAVESTATUS can only be used if a file has been opened with .LOOKUP.
If ENTER was used, .SAVESTATUS is invalid and returns an error. Note
that .SAVESTATUS is not valid for magtape or cassette files.

The .SAVESTATUS/.REOPEN requests are used together to open many
files on a limited number of channels or to allow all . LOOKUPs to be done
at once to avoid USR swapping.

While the .SAVESTATUS/.REOPEN combination is useful, care must be
observed when using it. In particular, the following cases should be
avoided:

1. Ifa .SAVESTATUS is performed and the same file is then deleted
before it is reopened, it becomes available as an empty space that
could be used by the .ENTER command. If this sequence occurs,
the contents of the file supposedly saved changes.

2. Although the device handler for the required peripheral need not
be in memory for execution of a .REOPEN, the handler must be
in memory when a .READ or .WRITE is executed, or a fatal error
is generated.

One of the more common uses of .SAVESTATUS and .REOPEN is to con-
solidate all directory access motion and code at one place in the program.
All files necessary are opened and their status saved, then they are re-
opened one at a time as needed. USR swapping can be minimized by lock-
ing in the USR, doing .LOOKUP requests as needed, using .SAVESTATUS
to save the file data, and then unlocking the USR. The user should be
aware of the consequences of locking in the USR in a foreground/back-
ground environment. If the background job locks in the USR when the
foreground job requires it, the foreground job is delayed until the back-
ground job unlocks the USR.

Macro Call: .SAVESTATUS area,chan,cblk

where:

area is the address of a two-word EMT argument block
chan is a channel number in the range 0-376(octal)

cblk is the address of the five-word user memory block where the
channel status information is to be stored

Request Format:

RO — area:|{ 5 | chan
cblk

2-110 Programmed Request Description and Examples

The five words returned by .SAVESTATUS contain the following informa-
tion:

Name Offset Contents
C.CSW 0 Channel status word
C.SBLK 2 Starting block number of this file,
or 0 if non-file-structured
C.LENG 4 Length of file
C.USED 6 Highest block written
C.DEVQ 10 Number of pending requests
C.UNIT 11 Device unit number
Errors:
Code ' Explanation
0 The channel specified is not currently associated with any
files; that is, a previous .LOOKUP on the channel was never
done.

1 The file was opened with an .ENTER request, or a .SAVE-

STATUS request was performed for a magtape or cassette
file.

Example:

+TITLE SAVEST.MAC
i+
i .SAVESTATUS / .REOPEN - This is an example in the use of the ,SAVESTATUS
§ /+REOPEN requests., These requests are most ccommonly used together to
§ consolidate access to the USR at one Pplace in the Pprodram or if the
§ prodram must access more files than there are I/0 channels available.
$ Once a channel has been oreneds its status mav be savedy to be re-oprened
i and used later as needed, This examprle merges 2-6G files into 1 file.
j-reading all input files on one channel,

+MCALL +CSIGEN/+.SAVESTATUS y «REOPEN».CLOSE + EXIT
+MCALL +READW + ¢ WRITW++PRINT »+ PURGE
ERRBYT = 52 fError byte loc in SYSCOM
START: +CSIGEN #DSPACE »#DEFEXT iGet file specssoren filesiload handlers
MOV #3 R4 R4 = 1st inpPut channel
MOV #AREA 'R3 iR3 = EMT Ardument block
MOV #SAVBLK sRS iRS =» Channel savestatus blockKs
1%: +8SAVEST "R3:1R4 RS jSave channel status
BCS 2% iBranch if channel never orened
ADD #124RS fAdJjust RS to Point to next status blocK
INC R4 iBump R4 ta = next input channel
CMP #8, R4 iDone all inpPut channels?
BGE 1% iBranch if not
2%: Mov #SAVBLK »RS iRS => to lst saved channel status
BEQ 7% iBranch if no inPut files
a%: +REOPEN R3+#3 RS iRe-oren input channel on Ch 3
CLR BLK iStart reading with block ©
Stz +READW R3 43)#BUFFR ,#256, yBLK 3$Read a block
BccC Gs iBranch if no error
TSTB @#ERRBYT iCheck if error = EOF
BNE 8% sBranch if wnot EOF
+ PURGE #3 iClear inPut channel for re-use
ADD #12 RS jPoint RS to next saved ch status
TST @RS jAny more inPut channels?
BNE a% iBranch if ves
+CLOSE %0 iWe‘re done..sclose outPut channel
+PRINT #DONE fAnnounce merde complete
JEXIT JExit Program

Programmed Request Description and Examples 2-111

G%: yWRITH R340, #BUFFR »#256, »WBLK jWrite block Just read

INC WBLK jBumr to next outPut black
INC BLK isame ffor inPut blK (doesn‘t affect C bit)
BCC 5% iBranch if no error on write
MOV #WERR RO iWrite error - RO => messade
BR 9% imerdges..

7%: MOY #NOINP RO fRO =» No input files messade
BR 9% imerges ..

8%: MoV #RERR +RO iRO =» Read error msd

9% : +PRINT iRerport error
JEXIT ithen exit Prodram

AREA: +BLKH S SEMT Ardument block

BLK: +WORD 0 iCurrent read block

WBLK = +WORD 0 jCurrent write block

SAVBLK:: +BLKW 30. iSaved channel status area

DEFEXT: +WORD 0304040 iNo default extensions for CSIGEN

NOINP: +ASCIZ /?No input files?/ iError messades

WERR = +ASCIZ /?Write Error?/

RERR: +ASCIZ /?Read Error?/

DONE: +ASCIZ /1-0 Transfer Comeleted/
+EVEN

BUFFR: +BLKKW 256. 51/0 buffer

DSPACE = iHandlers start here...
+END START

2.75 .SCCA
The .SCCA request:

1. Inhibits a CTRL/C abort
2. Indicates when a double CTRL/C is initiated at the keyboard
3. Distinguishes between single and double CTRL/C commands

CTRL/C characters are placed in the input ring buffer and are treated as
normal control characters without specific system functions. The request
requires a terminal status word address that is used to report consecutive
CTRL/C input sequences. Bit 15 of the status word is set when consecutive
CTRL/C characters are detected. The program must clear the bit.

There are three cautions to observe when using .SCCA. First, the request
can cause CTRL/C to appear in the terminal input stream, and therefore
the program must provide a way to handle it. Second, the request makes it
impossible to terminate program loops from the console, and therefore it
should be used only in thoroughly tested, reliable programs. When .SCCA
is in effect and the program enters an interminable loop, the system must
be halted and re-bootstrapped. The keyboard monitor ABORT command is
not inhibited by .SCCA, however, so foreground and system jobs can still be
terminated in this manner. Third, a CTRL/C from indirect command files is
not intercepted by the .SCCA request.

A SCCA request with a status word address of zero disables the intercept
and re-enables CTRL/C system action.

Macro Call: .SCCA area,addr

where:

area is the address of a two-word parameter block

addr is the address of a terminal status word (an address of 0 re-
enables the CTRL/C command)

2-112 Programmed Request Description and Examples

Request Format:

RO — area:| 35 | 0

addr
Errors:
None.
Example:
+TITLE SCCAJMAC
.

+BCCA - This is an example in the use of the .SCCA reauest, The

example is a simulation of a mainline Foredround prodgram which is
currently suspended waiting for a messade from the Backdround, but which
needs to close a file (rerhars orpened by a ENTER ?) before aborting

from CTRL-C action, A comprletion routine periodically inspects the CTRL-C
status word and resumes the mainline if double CTRL-C is entered,

NOTE: This example MUST be run as a FG Job under an FB monitor.,

W an e an e s s e em

+MCALL +SCCA++RCVDC + EXIT 4y PRINT » +MRKT
+MCALL +QSET»+5PND».RSUM
START: JOSET #OELEM 2 %1 iAllocate another O-Element
+SCCA #MAREA +#SCCA ilnhibit "C*C action by monitor
1%: CALL CWATCH iStart "watchdod" completion rtne
+RCVDC #MAREA »#MBUFF »#40, y#MESG jLook for a message
H f iNo errors - there’s alwavs BG
i ' i0ther Processing here...
3 . L]
+PRINT #SLEEP iAnnounce we're going to suspend
+SPND iSusrend to wait for messade
TST SCCA iWe’ve been JRSUMed.,.."C"C hit??
BNE CLOSE iBranch if ves
H f jotherwise assume messade came inse.s

i <Process messade here>

BR 14 SLoOP 4
CWATCH: TST SCCA iCheck if "C"C entered...
BEQ MARK iBranch if no
MESG: +RSUM iYes...wake ur the mainline
RETURN ithen leave completion code
MARK : +MRKT #CAREA#TIME »#CWATCH #1 3$Schedule to run adain in 10 sec.
RETURN ithen leave campletion code
CLOSE: +PRINT #ABORT fAnnounce we’re aborting
H f irroceed with "orderly" abort
§ {0utput files(s) closed here’
i f
JEXIT fExit the Pprodram
QELEM: +BLKW 7 iExtra Q-Element
MBUFF +BLKW 41, iMessade buffer
MAREA: +BLKW S FEMT Ardument blocKs
CAREA: +BLKM 4 H
TIME: +WORD 01600, iTime out in 10 seconds
SCCA: +WORD 0 i"C"C Status word
ABORT: +ASCIZ /7! Abort Acknowledded...Closingd Output File(s) 17/
SLEEP: +ASCIZ /! Mainline Susrending !/
+END START

2.76 .SDAT/.SDATC/.SDATW (FB and XM Only)

The .SDAT/.SDATC/.SDATW requests are used with the .RCVD/
.RCVDW/.RCVDC calls to allow message transfers between a foreground
job and a background job under the FB or XM monitors. .SDAT transfers

Programmed Request Description and Examples 2-113

are similar to .WRITE requests, where data transfer is not to a peripheral
but from one job to another. Additional I/O queue elements should be allo-
cated for buffered I/O operations in .SDAT and .SDATC requests (see
.QSET).

Message handling in the FB monitor does not check for a word count of zero
before queuing a send or receive data request. Since RT-11 distinguishes a
send from a receive by complementing the word count, a .SDATW of zero
words is treated as a .RCVDW of zero words. Thus, avoid a word count of
zero at all times when using a .SDATW request.

Be particularly careful if you use both synchronous (RCVDW and
.SDATW) and asynchronous (RCVDC and .SDATC) requests in the same
program. If you issue a mainline .SDATW while there is a pending
.RCVDC, the .SDATW will wait until the .RCVDC is satisfied. If the com-
pletion routine for the .RCVDC issues another .RCVDC, the mainline
.SDATW will never complete. In general, you should avoid the use of both
synchronous and asynchronous message requests in the same program.

SDAT
Macro Call: .SDAT area,buf,wcnt

where:

area is the address of a five-word EMT argument block

buf is the buffer address of the beginning of the message to be
transferred

went is the number of words to transfer

Request Format:

RO — area:[25 | 0
unused
buf
went
1
Errors:
Code Explanation
0 No other job exists. (A job exists as long as it is loaded,
whether or not it is active.)
Example:

5+

5 .SDAT/.RCVYD - This is an example in the use of the ,SDAT/.RCVD

5 requests., The example is actually two Prodramss a BacKdround .Job
i which sends messadess and a Foredround Jobs» which receives them.
INOTE: Each prodram should be assembled and linKked seraratelvy,

.
+TITLE SDATF «MAC
5+
5 Foreground Prosgram..,
§-

2-114 Programmed Request Description and Examples

+MCALL +RCVD » +MWAIT + PRINT s JEXIT

STARTF: +RCVD #AREA y#MBUFF »#40, jRequest a messade uP to BO char.
i . iNo error pPossible - alwavs a BG
K . 1
§ . iDo some other Processing
+PRINT #FGJDB ilike announcing FG active...
; + ’ ; N
i . i
+MUWAIT iWait for messade to arrive...
TST MBUFF+2 iNull message®?
BEQ FEXIT iYess.,oexit the Prodgram
+PRINT #FMSG fAnnounce we S0t the messade. ..
+PRINT #MBUFF+2 jand echo it back
BR STARTF iLoor to det another one
FEXIT: JEXIT SExit Prodgram
AREA: +BLKW S JEMT Ardument Block
MBUFF : +BLKHW 41, jBuffer - Msd lendth + 1
+WORD 0 iMake sure B0 char messade ends ASCIZ
FGJOB: +ASCIZ /Hi - FG alive and well and waiting for a messade!/
FMSG: +ASCIZ ~ /Hey BG - Got vour messade it reads:/
+END MWAITF
+TITLE STARTB.MAC

i+
§ Backdround Program - Send a ‘null’ messade to stop both Prodrams
§

+MCALL +SDAT » +MWAIT » GTLIN EXIT+» PRINT
STARTB: CLR BUFF iClear 1st word
+GTLIN #BUFF s#PROMT iGet something to send to FG from TTY
+SDAT #AREA +#BUFF +%40, iSend inPut as messade to FG
BCS 1% iBranch on error - No FG
+MWAIT iWait for messade to be sent
18T BUFF iSent a null messade?
BNE STARTB iNo++loorp to send another messade.
JEXIT iYes.,vexit Program
14: +PRINT #NOFG iNo FG !
WEXIT JExit Prodram
AREA: +BLKW S SEMT Argument Block
BUFF ¢ +BLKW 40, iUp to BO char messade
PROMT: +ASCII /Enter messade to be sent to FG Job/<15:<{12%/>/<2002>
NOFG: +ASCIZ /?No FG?/
+END MWAITB

.SDATC
Macro Call: .SDATC area,buf,wcnt,crtn

where:

area is the address of a five-word EMT argument block

buf is the buffer address of the beginning of the message to be
transferred

went is the number of words to transfer

crtn is the address of the completion routine to be entered when
the message has been transmitted

Request Format:

RO — area:| 25 | 0
unused
buf
went
crtn

Programmed Request Description and Examples 2-115

Errors:

Code Explanation
0 No other job exists. (A job exists as long as it is loaded,
whether or not it is active.)
Example:
See the example following .SDATW.
SDATW

Macro Call: .SDATW area,buf,wcnt

where:

area is the address of a five-word EMT argument block

buf is the buffer address of the beginning of the message to be
transferred

went is the number of words to transfer

Request Format:

RO — area:| 25 | 0
unused
buf
went
0
Errors:
Code Explanation
0 No other job exists. (A job exists as long as it is loaded,
whether or not it is active.)
Example:

+
+SDATW/RCVDW - This is an example in the use of the ,SDATW/,RCVUDW
requests, The example consists of two Progdrams’? a Foredround Job
which creates a file and sends a messase to a BacKdround program
which cories the FG channel and reads a record from the file, Both
i prodrams must be assembled and linKed serparatelv,

- wn wm wm

+TITLE SDATWF.,MAC
i+
i This is the Foredround Prosgram ...

+MCALL vENTER + PRINT » +SDATH + EXIT +» «RCYDW » CLOSE s yWRITHK
STARTF: MOV #AREA sRS iRS =» EMT ardument block
+ENTER RS 1#0 y#FILE y#5 iCreate a S block file
+WRITH RS +#Q +#RECRD »#256, »#4 jWrite a record BG is interested in
BCS ENTERR iBranch on error
«SDATH RS +#BUFR sy %2 iSend messade with info to BG
i . iDo some other Processing
+RCVDMW RS »#BUFR s#1 iWhen it’s time to exit,» make sure
+CLOSE #0 iBG is done with the file
+PRINT #FEXIT iTell user we’re exiting
JEXIT fExit the Program

2-116 Programmed Request Description and Examples

ENTERR: +PRINT #ERMEG iPrint error message

+EXIT fthen exit
FILE: +RADSO /DK QUFILE/ jFile spec for JENTER
+RADSO /TMP/
AREA: +BLKW S JEMT argument block
BUFR: +WORD 0 iChannel #
+WORD a4 iBlock #
RECRD: +BLKW 256, iFile record
ERMSG: +ASCIZ /?Enter Error?/ fError messade text
FEXIT: +ASC1Z /FG Job exiting/ fExit messade
+END STARTF

+TITLE SDATWB.MAC

§ This is the BacKdround Program ..

+MCALL +CHCOPY » 1 RCYDW s READW » JEXIT» o PRINT + +SDATH
STARTB: MOV #AREA RS iRS => EMT ard block
+RCVDHW RS »#MBG y%2 iWait for message from FG
BCS 1% iBranch if no FG
+CHCOPY RS +#0 MGG+2 iChannel # is 1st word of messade
BCS 2% iBranch if FG channel not oren
+READW RS »#0 y#BUFF +#256, +M5G+4 jRead block which is Znd word of msd
BCS 3% iBranch if read error
i ' iContinue Processing...
+«SDATH RS)#MEG =1 iTell FG we're thru with file
+PRINT #BEXIT iTell user we're thru
JEXIT ithen exit Pprodram
1$: MOV #NOJOB »RO RO = No FG error msqg
BR 4% iBranch to pPrint msg
2%: MOV #NOCH »ROQ iRO =3 FG ch not open msdg
BR 4% iBranchas..
34%: MoV #RDERR sRO RO =» Read err msyg
4 +PRINT iPrint Prorer error msg
JEXIT ithen exit.
AREA: +BLKW S SEMT ardument blK
MSG: +BLKHW 3 iMessade buffer
BUFF: +BLKW 256, iFile buffer
BEXIT: +ASCIZ /Channel-Record copy successful/
NOJOB: +ASCIZ /?No FG Job®?/ SErrar messades. ..
NOCH: +ASCIZ /?FG channel not oren?/
RDERR: +ASCIZ /?Read Error?/
+END STARTB

2.77 .SDTTM

The .SDTTM (Set date and time) request allows your program to set the
system date and time.

Macro Call: .SDTTM area,addr

where:

area is the address of a two-word EMT argument block

addr is the address of a three-word block in user memory that con-
tains the new date and time

Request Format:

RO — area:| 40 | 0
addr

The first word of the three-word parameter block contains the new system
date in internal format (see the .DATE programmed request). If this word
is —1 (represents an illegal date), the monitor ignores it. Put a -1 in the

Programmed Request Description and Examples 2-117

first word of the parameter block if you want to change only the system
time. If the first parameter word is positive, it becomes the new system
date. Note that the monitor does no further checking on the date word. To
be sure of a valid system date, you must specify a value between 1 and
12(decimal) in the month field (bits 13—10) and a value between 1 and the
month length in the day field (bits 9-5). Bits 14 and 15 must be zero.

The second and third words of the parameter block are the new high-order
and low-order time values, respectively. This value is the double-precision
number of ticks since midnight. If the high-order time word is negative, the
monitor ignores the new time. Put a negative value in the second word of
the parameter block if you want to change only the system date. If the
second parameter word is positive, the new time becomes the system time.
The monitor does no further checking on the new time. To be sure of a valid
system time, you must specify a legal number of ticks for the system line
frequency. For a 60 Hz clock, the high-order time may not be larger than
117(octal), and if it is equal to 117, the low-order time may not be equal to
or larger than 15000(octal). For a 50 Hz clock, the high-order time may not
be larger than 101(octal), and if it is equal to 101, the low-order time may
not be equal to or larger than 165400(octal).

Changing the date and/or time has no effect on any outstanding mark time
or timed wait requests.

Errors:
None.

Example:

+TITLE SDTTM,MAC

i+

5 +SDTTM.,MAC - This is an examprle in the use of the +SDTTM request.
i The example is a Davlight/Standard Time utility - to switch the

i current system time from Standard to Davlidht or vice versas call
i the prodram as a subroutine at the Prorper entry pPoint.

.
¥ -

+MCALL +SDTTM» o PRINT 4 EXIT».GTIM
+GLOBL STD:DALITE
STD: COM HR iSwitch to STD time...
NEG HR+2 iMake one hr in clock ticKs
DALITE: +GTIM #AREA »#TIME iGet the current time
CALL JADD §Adjust +/- { hour
+8DTTHM #AREA s#NEWDT iSet the new system time
+GTIM #AREA y#TIME iForce date rollover (if anvy)
RETURN iReturn to caller
NEWDT : +HWORD -1 5+SDTTM arguments - No new date
TIME: +WORD 040 iNew time
HR: +WORD 3 i0ne hour in clocK ticKs (BO cvcle
i clock!)
+WORD 45700
AREA: +WORD 040 SEMT Ardument Block
JADD: jDouble Precision inteder add
MoV #HR :R4 iR4 => Low order of System time + 2
MoV #AREA +R3 SR3 => Low order of One hour + 2
x[1%} #HR sR1 fR1 => Low order of new time
Mov -(R4) +R2 jPut low order of 1st oPperand in RZ

2-118 Programmed Request Description and Examples

ADD -{R3)+R2 sAdd in low order of orperand %2

MoV -(R4)R3 jPut high arder of operand #1 in RS

ADC RS fAdd in carry (no overflow Possible !)

ADD -(R3) sRS $Add in high order of orerand %2
j(ditto!)

MOV R24-(R1) iStore result where wanted

MOy RS s~(R1)

RETURN iReturn to caller

+END

2.78 .SERR
See .HERR/.SERR (Section 2.38).

2.79 .SETTOP

The .SETTOP request specifies a new address as a program’s upper limit.
The monitor determines whether this address is legal and whether or not a
memory swap is necessary when the USR is required. For instance, if the
program specified an upper limit below the start address of USR (normally
specified in offset 266 in the resident monitor), no swapping is necessary, as
the program does not overlay the USR. If .SETTOP from the background
specifies a high limit greater than the address of the USR and a SET USR
NOSWAP command has not been given, a memory swap is required. The
use of .SETTOP in an extended memory environment is described at the
end of this section.

Careful use of the .SETTOP request provides a significant improvement in
the performance of your program. An approach that is used by several of
the system-supplied programs is as follows:

1. A .SETTOP is done to the high limit of the code in a program
before buffers or work areas are allocated. If the program is
aborted, minimal writing of the user program to the swap blocks
(SWAP.SYS) occurs. However, the program is allowed to be re-
started successfully.

9. A user command line is now read through .CSISPC or .GTLIN.
An appropriate USR swap address is set in location 46. Successive
DSTATUS, .SETTOP, and .FETCH requests are performed to
load necessary device handlers. This attempts to keep the USR
resident as long as possible during the procedure.

3. Buffers and work areas are allocated as needed with appropriate
SETTOP requests being issued to account for their size. Fre-
quently, a .SETTOP of #-2 is performed to request all available
memory to be given to the program. This can be more useful than
keeping the USR resident.

4. TIf the process has a well-defined closing phase, another .SETTOP
can be issued to cause the USR to become resident again to close
files (the user should remember to set location 46 to zero if this is
done, so that the USR again swaps in the normal area). On return
from .SETTOP, both RO and the word in location 50(octal) contain

Programmed Request Description and Examples 2-119

the highest memory address allocated for use. If the job requested
an address higher than the highest address legal for the request-
ing job, the address returned is the highest legal address for the
job rather than the requested address.

When doing a final exit from a program, the monitor writes the
program to the file SWAP.SYS and then reads in the KMON. A
SETTOP #0 at exit time prevents the monitor from swapping out
the program to the swap blocks (SWAP.SYS) before reading in
the KMON, thus saving time. This procedure is especially useful
on a diskette system when indirect command files are used to run
a sequence of programs. The monitor command SET EXIT
NOSWAP also disables program swapping.

Macro Call: .SETTOP addr

where:

addr is the address of the highest word of the area desired (the last
word the program will modify, not the first word it leaves
untouched)

Notes:

1. A program should never do a .SETTOP and assume that its new upper
limit is the address it requested. It must always examine the returned
contents of RO or location 50 to determine its actual high address.

2. It is imperative that the value returned in RO or location 50 be used as
the absolute upper limit. If this value is exceeded, vital parts of the
monitor can be destroyed.

Errors:
None.

Example:

+TITLE SETTOP.MAC

+SETTOP - This is an example in the use of the .SETTOP request., The
example tries to obtain as much memory as Possible using the .SETTOP
requests which will force the USR into a swarping mode. The .LOCK reauest
will bring the USR into memory (over the high 2K of our little Proscam !)
and force it to remain there until an UNLOCK is issued,

+MCALL +LOCK » JUNLOCK » « LOOKUP
+MCALL +SETTOP,» PRINT 4+ EXIT
SYSPTR=54 iPointer to bedinning of RMON
START: +SETTOP @#SYSPTR iTry to allecate all of memory (up to
iRMON)
+LOCK ibrind USR into memory
+LOOKUP #AREA 180 y#FILE1L JLOOKUP a file on channel O
BCC 14 iBranch if successful
2%: «PRINT #LMSG iPrint Error Message
JEXIT ithen exit prosgram

2-120 Programmed Request Description and Examples

1%: +PRINT #F1FND FANNOUNCE DUl SUCCESS

MOV #AREA sRO RO =» EMT Ardument Block
INC @RroO fIncrement low byte of 1st ard (chan %)
Moy #FILEZ24+2(RO) §Fill in Pointer to new filesrec
+LOOKUP jDo the LOOKUP from filled in arg block
irointed to by RO,
BCS 2% iBranch on error
+PRINT #F2FND iSay we found it
+UNLOCK inow release the USR
JEXIT jand exit Prodram
AREA: +BLKW 3 FEMT Argdument BlocK
FILEL: +RADSO /DK/ iA File we‘re sure to find
+RADSO /PIP /
+RADSO /8AYV/
FILEZ: +RADSO /DK/ iAnother file we might find
+RADSO /TECO /
+«RADSO /SAV/
LMSG: +ASC1Z /?Error on +LOOKUP?/ S§Error messade
F1FND: +ASCIZ /+++Found PIP.SAV/
F2FND: +ASCIZ /v Found TECO.SAY/
+EVEN
+END START

2.79.1 .SETTOP in an Extended Memory Environment

You can enable the extended memory feature of the .SETTOP programmed
request with the linker /V option or the LINK command with the /XM
option (see Chapter 11 in the RT-11 System Utilities Manual or Chapter 4
of the RT-11 System User’s Guide). The RT-11 Software Support Manual
describes in detail the .SETTOP request in an extended memory environ-
ment. The .SETTOP request operates in privileged and virtual jobs as fol-
lows:

Privileged Jobs

1. A .SETTOP that requests an upper limit below the virtual high
limit of the program will always return the virtual high limit of
the program. The virtual high limit is the last address in the
highest PAR that the program uses. In this case, a value can
never be returned below the job’s virtual high limit.

2. A .SETTOP that requests a job’s upper limit above the program’s
virtual high limit will return the highest available address as
follows:

a. Either the address requested or SYSLOW-2 (last used ad-
dress, SYSLOW is next address available) is returned, which-
ever is lower. SYSLOW is defined as the start of the USR in
the XM monitor.

b. If the program’s virtual high limit is greater than SYSLOW
(the user program maps over the monitor or USR), the virtual
high limit of the program will always be returned.

Virtual Jobs
1. As in privileged jobs, a .SETTOP request can never get less than
the virtual high limit of the job.

Programmed Request Description and Examples 2-121

2. If a .SETTOP requests an upper limit greater than the virtual
high limit, the following occurs:

a.

2.80 .SFDAT

If the virtual high limit equals 177776, this value is returned
since this is the address limit in virtual memory. Otherwise,
a new region and window will be created. The size of the
region and window will be determined by the argument speci-
fied to the .SETTOP or by the amount of extended memory
that is available, whichever value is smaller. The .SETTOP
argument rounded to a 32-word boundary minus the high
.LIMIT value for the program equals the size of the region
and window (see the LINK chapter of the RT—11 System Ultil-
ities Manual and the RT-11 Software Support Manual for a
description of the .LIMIT directive in extended memory). If
there are no region control blocks, window control blocks, or
extended memory available, the program’s virtual high limit
is returned. The .SETTOP request uses one of the region and
window control blocks allocated to the user, thus one less
block is available to the program if the linker /V option is
used.

Additional .SETTOP requests can only remap the original
window created by the first .SETTOP. Thus, additional re-
quests will return an address no higher than that established
by the first request and no lower than the program virtual
high limit. An additional .SETTOP request whose argument
is higher than the first request will cause the entire first
window to be mapped. An additional .SETTOP request whose
argument specifies a value below the virtual high limit elimi-
nates the region and window. If another .SETTOP request
then follows, it may create a new region and window.

The .SFDAT programmed request allows a program to set or modify the
creation date in a file’s directory entry. Dates on protected as well as unpro-
tected files can be changed.

Macro Call: .SFDAT area, chan, dblk, date

where:

area
chan

dblk

date

is the address of a three-word EMT argument block
is a channel number in the range 0-376

is the address of a four-word block containing a filespec in
Radix-50

is the address of the new date, in RT-11 format If this argu-
ment is #0, the system date is used; bits 14 and 15 are always
set to 0, but no other check is made for an illegal date

2-122 Programmed Request Description and Examples

Request Format:

RO — area:| 42 | chan
_dblk
date
Errors:
Code Explanation
0 Channel in use
1 File not found
2 Invalid operation (device not file structured)
Example:

Refer to the example for the .FPROT request.

2.81 .SFPA (Special Feature)

The .SFPA request allows users with floating-point hardware to set trap
addresses to be entered when a floating-point exception occurs. If no user
trap address is specified and a floating-point (FP) exception occurs, a
¢MON-F-FPU trap occurs, and the job is aborted.

Macro Call: .SFPA area,addr

where:

area is the address of a two-word EMT argument block

addr is the address of the routine to be entered when an exception
occurs

Request Format:

RO — area:| 30 | O
addr

Notes:

1. The user trap routine must save and restore any registers it uses. It
exits with an RTT instruction.

2. If the address argument is #0, user floating-point routines are disabled
and the fatal ZMON-F-FPU trap error is produced by any further
traps.

3. In the FB environment, an address value of #1 indicates that the FP
registers should be switched when a context switch occurs, but no user
traps are enabled. This allows both jobs to use the FP unit. An address
of #1 to the SJ monitor is equivalent to an address of #0.

4. When the user routine is activated, it is necessary to re-execute an
.SFPA request, as the monitor disables user traps as soon as one is
serviced. It does this to prevent a possible infinite loop from being set
up by repeated floating-point exceptions.

Programmed Request Description and Examples 2-123

5. If the FP11 is being used, the instruction STST —(SP) is executed by the
monitor before entering the user’s trap routine. Thus, the trap routine
must pop the two status words off the stack before doing an RTI. The
program can tell if FP hardware is available by examining the configu-
ration word in the monitor.

Errors:
None.
Example:

+TITLE SFPA.MAC

i+

i +SFPA - This is an examprle in the use of the .SFPA request. This
i example is a sKeleton prodram which demonstrates how to set up a
i Floating Point trap routines and the minimum action that routine
i must take before dismissing the error trar,

i-

+MCALL +SFPA,.EXIT

SYSPTR = 54 fLoc of bedginning of Maonitor
CONFIG = 300 iOffset to Monitor configuration wd
FP1i1 = 100 iFPU Present bit
START: H ' " §Mainline Program...
i f
H f
+SFPA #AREA »#FPTRAP iSet up FPU error trap
1)
i f fcontinue mainline Program
1] .
JEXIT fExit Prodram
FPTRAP: iFPU excertion routine
i . fHandle exception...
i f
; +
CKFPU: MOY B88YSPTR RO iRO => base of RMON
BIT #FP11,CONFIG(RO) iCheck for FPU hdwe
BEOQ 1% iBranch if none
CMP (SP)+,(5P)+ iMust PoP status reds off stack!
1%: RTI iBefore returning from interrupt
+END START

2.82 .SPCPS (FB and XM SYSGEN Option)

The .SPCPS (save/set mainline PC and PS) request allows a program’s
completion routine to change the flow of control of the mainline code.
.SPCPS saves the mainline code PC and PS, and changes the mainline PC
to a new value. If the mainline code is performing a monitor request, the
monitor allows that request to finish before doing any rerouting. The actual
rerouting is deferred until the mainline code is about to run. Therefore, the
.SPCPS request returns an error if it is reissued before an earlier request
has been honored. Furthermore, the data saved in the user block is not
valid until the new mainline code is running.

The .SPCPS request is a system generation feature and is available only in
FB and XM. If a program issues this call under SJ or under a monitor not
generated for the call, no action is taken and no error is returned.

2-124 Programmed Request Description and Examples

Macro Call: .SPCPS area,addr
where:
area is the address of a two-word EMT argument block

addr is the address of a three-word block in user memory that con-
tains the new mainline PC, and that is to contain the old
mainline PC and PS

Request Format:

RO — area:| 41 | 0
addr

Errors:

Code Explanation

0 The program issued the .SPCPS call from the mainline code
rather than a completion routine.

1 A previous .SPCPS request is outstanding.

When the program issues the .SPCPS request, the monitor saves the old
mainline PS in the third word of the three-word block and the old mainline
PC in the second word of the block. The monitor then changes the mainline
PC to the contents of the first word of the block.

Example:

+TITLE SPCPS.MAC
+ENABL LC
i+
i +SPCPS - This is an example in the use of the .SPCPS reauest. In this
i examrle +SPCPS is used to reroute the mainline code after an 1/0
i error or EOF is detected by a completion routine.
H

+MCALL +READC + yWRITC+» CLOSE » y PRINT » CSIGEN» EXIT+ WAIT»,SRESET

+MCALL +SPCPS
ERRBYT = 52 fError Byte location in SYSCOM
+ENABL Lse
START: +CSIGEN #DSPACE #DEFEXT iUse CSIGEN to det handlerss files
CALL IOXFER iStart I/0
+PRINT #MESSG iNow simulate other mainline Process
1¢: DEC RS i (Kill some time)
BR 14
FINI: +CLOSE #0 FEOF > 0 = End of File
MoV #DONE sRO iRO — We’re done messade
BR GBYE iMerde to exit Prodram
WERR: Moy #WRERR +RO iSet up error messades heres..
BR GBYE
RERR: MOV #RDERR »RO
GBYE: +PRINT iPrint messade
+SRESET iDismiss fetched handlers
JEXIT JExit Prodram
WRDONE: +WAIT #0 iWrite compl rtne.,.write successful?
BCS 3% iBranch if not...
I0OXFER: +READC #AREA s#3 4 3 1 #6% iQueue ur a read
BCC 5% iBranch if oK...
TSTB @#ERRBYT iError - is it EOF?
BE® 4% iBranch if ves

Programmed Request Description and Examples 2-125

2%: MOV

#RERR »SBLOK

iMove Read err rtne addr to arg block

BR 4% iMerde...
3%: MOV #WERR +SBLOK iMove Write err rtne addr to arg block
4%: T8TB SPCALL jAlready done a SPCPS?
BNE 5% iYes.. don’t do another
+SPCPS #AREA »#5BLOK iDe-rail mainline code
INCB SPCALL iFlag we’ve done this
BCS 7% iDooprs! Somethingd’s amiss!
S%: RETURN iLeave completion code
G%: +HALIT #3 iCompletion routine #2 - was read okK?
BCS 2% iBranch if not
+WRITC #AREA s#0 s 1 #WRDONE iQueue UP a Write...
BCS 3s iBranch if error
INC BLOK jBump blocK # for next read
RETURN iLeave Comrletion codes..
7%: +PRINT #SPERR iPrint ,SPCPS failed messade
RETURN
AREA:: +WORD 0 $EMT Area block
BLOK : + WORD o] iBlock %,
+WORD BUFF iBuffer addr & word count
+WORD 256, jalready fixed in blocK...
+WORD 0 iCompletion routine addr
SBLOK: + WORD FINI 040 i+SPCPS Ardument block (FINI default)
BUFF: +BLKR 256, §i1/0 buffer
DEFEXT: »WORD 041041040 iNo default extensions for CSIGEN
SPCALL: +BYTE 0 $+SPCPS called flad in case I/0 error
i(compl rtne gdets sched. redardless!)
+NLIST BEX
DONE ¢ +ASCIZ /1-0 Transfer CompPlete/ iMessades. .
MESSG: +ASCIZ /< 8imulating Mainline Processing >/
WRERR: +ASCIZ /?Write Error?/
RDERR: +ASCIZ /?+Read Error?/
SPERR: +ASBCIZ /?.8PCPS Error?/
+EVEN
DSPACE = iHandlers may be loaded starting here
+END START

2.83 .SPFUN

This request is used with certain device handlers to do device dependent
functions, such as rewind and backspace. It can be used with diskettes and
some disks to allow reading and writing of absolute sectors. This request
can determine the size of a volume mounted in a particular device unit for
RX02 diskettes, RKO6/RK07 disks, RL0O1/RL02 disks, MSCP disks, and log-

ical disks.
Macro Call:

where:

.SPFUN area,chan,func,buf,went,blk[,crtn]

area
chan

func

buf

went

is the address of a six-word EMT argument block
is a channel number in the range 0 to 376(octal)

is the numerical code of the function to be performed; these
codes must be negative (Lude wise) e ‘0‘{:1 3&3(

is the buffer address; this parameter must be set to zero if no
buffer is required

is defined in terms of the device handler associated with the
specified channel and in terms of the specified special func-
tion code

2-126 Programmed Request Description and Examples

blk is also defined in terms of the device handler associated with
the specified channel and in terms of the specified special
function code

crtn is the entry point of a completion routine. If left blank, 0 is
automatically inserted. This value is the same as for READ,
.READC, and . READW.

0 = wait I/O (READW)
1 real time (READ)

Value >500 = completion routine

Request Format:

RO — area:| 32 | chan
blk
buf
went

func | 377
crtn

The chan, blk, and wcnt arguments are the same as those defined for
.READ/WRITE requests. They are only required when doing a .WRITE
with extended record gap to magnetic tape. If the crtn argument is left
blank, the requested operation completes before control returns to the user
program. Specifying crtn as #1 is similar to executing a .READ or .WRITE
in that the function is initiated and returns immediately to the user pro-
gram. Use a .WAIT on the channel to make sure that the operation is
completed. The crtn argument is a completion routine address to be entered
when the operation is complete.

The available functions and function codes for magtape and cassette are as
follows:

Function MM, MS, MT CT
Forward to last file 377
Forward to last block 376
Forward to next file 375
Forward to next block 374
Rewind to load point 373 373
Write file gap 372
Write EOF 377
Forward one block 376
Backspace one block 375
Write with extended

file gap 374
Off-line rewind 372
Write 371
Read 370
Stream at 100 ips

(MS only) 367

Programmed Request Description and Examples 2-127

The available functions and function codes for diskettes, RK0O6/RKO07 disks,
RLO1 and RLO2 disks, the logical disk handler, and MSCP disks are as

follows:
Function DX DM DY DL LD DU
Read 377 377 377 377
Write 376 376 376 376
Write with deleted
data mark 375 375

Force a read by the

handler of the bad

block replacement

table from block 1

of the disk 374 374
Return device size 373 373 373 373 373 373
Read/write translation

table 372 372
Direct MSCP access 371

To use the .SPFUN request, the handler must be in memory and a channel
must be associated with a file via a .LOOKUP request.

A .SPFUN request to write absolute blocks on a diskette should not write
anything in track 0 if you want to use DUP or the COPY/DEVICE com-
mand to back up the volume. DUP does not copy data in track 0. Also, you
should be careful to specify a valid buffer address and word count. The
monitor checks that the buf argument is in the job area, but it does not
check buf + wecnt. If you use the .SPFUN request, and the device handler
for that device does not support special functions or the particular .SPFUN
code used, the call simply returns to the program without reporting an
error.

For the RK06/07 handler (DM), special function codes 377 and 376 require
the buffer size to be one word larger than necessary for the data. The first
word of the buffer contains the error information returned as a result of the
.SPFUN request. The data transferred as a result of the read or write
request is found in the second and following words of the buffer. The error
codes and information are as follows:

Code Meaning

100000 The I/O operation is successful.

100200 A bad block was detected (BSE error).
100001 An ECC error is corrected.

100002 An error recovered on retry.

100004 An error recovered through an offset retry.
100010 An error recovered after recalibration.

1774xx An error did not recover.

2-128 Programmed Request Description and Examples

Other device-specific information is included in the RT—11 Software Sup-

port Manual.
Errors:
Code Explanation
0 Attempt to read or write past end-of-file, or invalid function
value.
1 Hard error occurred on channel.
2 Channel is not open.

Additional qualifying information for these errors is returned in the
first two words of the blk argument status block. This information is
given in Chapter 10 of the RT-11 Software Support Manual.

Example:

+TITLE

+

as e an e

+MCALL
+MCALL

START: +FETCH
BCS
+LOOKUP
BCS

+SPFUN
BCS
+HWRITH
BCS
+SPFUN
+PRINT
JHAIT
+CLOSE
JEXIT

1¢: MOV
BR
2%: MoV
BR
3%: Moy
BR
4= MoV
S5%: +PRINT
JEXIT

AREA: +WORD
BLK: +HWORD
CT: +RADSO
+WORD
BUFF: +BLKMW
DONE: +ASCIZ
FERR: +ABCIZ
LKERR: +AGCIZ
SPERR: +ASCIZ
WERR: +ASCIZ
+EVEN
HSPC =
+END

.

SPFUN.MAC

+GPFUN - This is an example in the use of the SPFUN reaquest. The
example rewinds a cassette and writes out a 25G-word buffer and
then a file dar,

+FETCH++LODKUP +» . SPFUN» s WRITH
+EXIT»+PRINT . WAIT,»,CLOSE

#HSPC +#CT

1%
#AREA s 84 80T
2%

#AREA 1#4 1#373 1 #0
3%

iFetch the CT Handler

iBranch if failed

iOrpen channel 4 for outpPut

§Branch if error (should never har-
iren!)

iRewind to BOT using Synchronous I/0
iBranch on error

#AREA »#4 y#BUFF »#256. +BLK iWrite one block

4%

#AREA 1#4 18372180 181
#DONE

#4

#4

#FERR »RO

5%

#LKERR yRO
5%

#SPERR »RO
5%

#WERR /RO

0

0404+04040

/CT /

0400

256,

/A1l done !/
/?WFETCH Error?/
/7?.LO0OKUP Error?/

iBranch on error

iWrite a file dar with Asvnch I/0
$Announce that we’re done

iWait for file darp oreration to finish
iClose the file

ithen exit the Prodram

iProcess errors heres ..

§Print error messade
fthen exit eprodram

fEMT Arsgument blockK

iCassette Device Descrirtor
$Null filesrec

j0utrut buffer

iMessage text...

/?Srecial Function Error?/

/?Write Error?/

START

jHandler can load in here...

Programmed Request Description and Examples 2-129

2.84 .SPND/.RSUM (FB and XM Only)

The .SPND/.RSUM requests control execution of a job’s mainline code (the
code that is not executing as a result of a completion routine). .SPND
suspends the mainline and allows only completion routines (for I/O and
mark time requests) to run. .RSUM from one of the completion routines
resumes the mainline code. These functions enable a program to wait for a
particular I/O or mark time request by suspending the mainline and having
the selected event’s completion routine issue a .RSUM. This differs from the
.WAIT request, which suspends the mainline until all I/O operations on a
specific channel have completed.

Macro Calls: .SPND

.RSUM
Request Formats:
(.SPND) RO = 1 0
(RSUM) RO = 2 0

Notes:

1. The monitor maintains a suspension counter for each job. This counter
is decremented by .SPND and incremented by .RSUM. A job is sus-
pended only if this counter is negative. Thus, if a .RSUM is issued
before a .SPND, the latter request returns immediately.

A program must issue an equal number of .SPND and .RSUM requests.

A .RSUM request from the mainline code increments the suspension
counter.

4. A .SPND request from a completion routine decrements the suspension
counter, but does not suspend the mainline. If a completion routine does
a .SPND, the mainline continues until it also issues a .SPND, at which
time it is suspended and requires two .RSUMSs to proceed.

5. Since a .TWAIT is simulated in the monitor using suspend and resume,
a .RSUM issued from a completion routine without a matching .SPND
can cause the mainline to continue past a timed wait before the entire
time interval has elapsed.

6. A .SPND or .RSUM, like most other programmed requests, can be is-
sued from within a user-written interrupt service routine if the
INTEN/.SYNCH sequence is followed. All notes referring to
.SPND/.RSUM from a completion routine also apply to this case.

Errors:
None.
Example:

+TITLE SPND.MAC
i+

i +SPND/.,RSUM- This is an exampPle in the use of the ,SPND/.RSUM reauests.
i The example is a simulation of a mainline Foredround Prodgram which is

2-130 Programmed Request Description and Examples

ar wa e s ws e

START:

1%:

CWATCH:
MESG:

MARK :

CLOSE:

QELEM:
MBUFF
MAREA:
CAREA:
TIME:
SCCA:

ABORT:
SLEEP:

2.85 .SRESET

currently suspended waiting for a messade from the Backdround: but which
needs to close a file (perhaps orened by a ,ENTER ?) before aborting

from CTRL-C action. A compPletion routine pPeriodically inspects the CTRL-C
status word and resumes the mainline if double CTRL-C is entered.

NOTE: This examrple MUST be run as a FG Job under an FB mowitor.

+MCALL +SCCA s RCYDC +» EXIT + PRINT»,MRKT
+MCALL +OSBET ».SPND».RSUM
+OSET #QELEM #1 iAllocate another Q-Element
+8CCA #MAREA +#5CCA iInhibit "C"C action by monitor
CALL CWATCH iStart "watchdod" comprletion rtne
+RCVYDC #MAREA +#MBUFF 4240, +#MESG iLook for a messade
H f iNo errors - there’s alwavs BG
i . §Other Processing here...
9 + 1
+PRINT #SLEEP iAnnounce we’re doind to susPend
+SPND iSusrpend to wait for messasde
TST SCCA iWe’ve been +RSUMed,..,"C"C hit??
BNE CLOSE iBranch if ves '

. jotherwise assume messade came in...

{process message herel

+

0 e ws -

R ’ 1% iLoOP 4

78T 8CCA iCheck if "C"C entered...

BEQ MARK iBranch if no

+RSUM iYes.+swake up the mainline
RETURN ithen leave completion code
+MRKT #CAREA »#TIME +#CWATCH»#1 3iSchedule to run adain in 10 sec.
RETURN fthen leave completiaon code
+PRINT #ABORT fAnnounce we’'re aborting

i <Output file(s) closed here> iproceed with "orderly" abort
i f

JEXIT fExit the Program

+BLKW 7 fExtra Q-Element

+BLKW at., iMessage buffer

+BLKHW 5 FEMT Ardument blocKs

+BLKW [/} H

+WORD 0,800, iTime out in 10 seconds

+WORD 0 i"C"C Status word

+ASCIZ /?! Abort AcKnowledded.,..Closing Output File(s) {7/
+ASCIZ /! Mainline Suspending !/

+END START

The .SRESET (software reset) request:

1.
2.

3.

Cancels any messages sent by the job.

Waits for all job I/O to complete, which includes waiting for all
completion routines to run.

Dismisses any device handlers that were brought into memory
via .FETCH calls. Handlers loaded via the keyboard monitor
LOAD command remain resident, as does the system device han-
dler.

Purges any currently open files. Files opened for output with .EN-
TER are never made permanent.

Programmed Request Description and Examples 2-131

5. Reverts to using only 16(decimal) I/O channels. Any channels
defined with .CDFN are discarded. A .CDFN must be reissued to
open more than 16 channels after a .SRESET is performed.

Clears the job’s .SPND/.RSUM counter.
Resets the I/O queue to one element. A .QSET request must be

reissued to allocate extra queue elements.

8. Cancels all outstanding .MRKT requests.

Macro Call: .SRESET
Errors:

None.
Example:

+TITLE SRESET.MAC

i+

i «SRESET - This is an example in the use of the ,SRESET request,
i The example renames a file accordingd to filespecs entered usingd the

i +CSISPC request.

+MCALL +RENAME » y PRINT s JEXIT
+MCALL +C8ISPC,».FETCH+.5RESET
ERRBYT = 52 iError byte location
START: +CSISPC #FILESP »#DEFEXT iUse ,CB5ISPC to det file specs
+FETCH #HANLOD »#FILESP iGet Handler from outspec
BCS 2% iBranch if failed
MoV sFILESPR2 iRZ => Outsrec
MOV #FILESP+46,R3 iR3 => InsPec
MOV BRZyFILESP+36 iCopy device sPec to insrec
+REPT 4 iCopy outspec behind insrec
MoV (R2)+(R3)+ ifor .RENAME.,.,.
+ENDR
+RENAME #AREA »#0 +#FILESP+36 iRename inpPut file
BCC 1% jOperation successful
DECB @#ERRBYT iMake error code -1+0 or +1
BEQ 3% iBranch if File-Not-Found
MoV #ILLOP RO illledal operation-set up msd
BR 5% iBranch to report error
1%: +SRESET iDismiss handlers
JEXIT fExit Prodram
2%1 MOV #NOHAN sRO iFetch failed-set uP messade
BR 5% iBranch to report error
3% MOV #NOFIL +RO iFile not found-setur message
5% +PRINT iPrint error messade
BR 1% iThen exit via +SRESET
AREA: +BLKW S fEMT Argument block
DEFEXT: +WORD 040400 iNo default extensions
NOFIL: +ASCIZ /?File not found?/ fError messade text
ILLOP: +ASCIZ /?Illedal Orperation?/
NOHAN: +ASCIZ /?.FETCH Failed?/
+EVEN
FILESP: +BLKHW 39, FCSISPC InPut Area
HANLOD = jHandlers can load heres..
+END START

2.86 .SYNCH (Device Handler and Interrupt Service Routine Only)

This macro call enables your program to issue programmed requests from
within an interrupt service routine. Code following the .SYNCH call runs
at priority level O as a completion routine in the issuing job’s context.
Programmed requests issued from interrupt routines are not supported by
the system and should not be performed unless a .SYNCH is used.

2-132 Programmed Request Description and Examples

.SYNCH, like .INTEN, is not an EMT monitor request, but rather a sub-
routine call to the monitor.

Macro Call: .SYNCH areal,pic]

where:

area is the address of a seven-word block that you must set aside
for use by .SYNCH. This argument, area, represents a special
seven-word block used by .SYNCH as a queue element. This
is not the same as the regular area argument used by many
other programmed requests. The user must not confuse the
two; he should set up a unique seven-word block specifically
for the .SYNCH request. The seven-word block appears as:

Word 1 RT-11 maintains this word; its contents should not
be altered by the user
2 The current job’s number. This must be set up by
the user program. It can be obtained by a .GTJB
call or from the I/0 queue element in a device han-
dler
3 Unused
4 Unused
5 RO argument. When a successful return is made
from .SYNCH, RO contains this argument
6 Must be -1
7 Must be 0
pic is an optional argument that, if non-blank, causes the

.SYNCH macro to produce position-independent code for use
by device drivers

Note:

.SYNCH assumes that the user has not pushed anything on the stack
between the INTEN and .SYNCH calls. This rule must be observed
for proper operation.

Errors:

The monitor returns to the location immediately following the
.SYNCH if the .SYNCH was rejected. The routine is still unable to
issue programmed requests, and R4 and R5 are available for use. An
error is returned if another .SYNCH that specified the same seven-
word block is still pending.

NOTE

The monitor dismisses the interrupt without returning to the
.SYNCH routine if one of the following conditions occur:

1. You specified an illegal job number.

2. The job number does not exist (for example, you specify 2,
and there is no foreground job).

3. The job is exited or terminated with an .EXIT pro-
grammed request.

Programmed Request Description and Examples 2-133

You can find out if the block is in use by:

1. Checking location Q.COMP (offset 14 octal). If this location con-
tains a zero, the block is available.

2. Performing a .SYNCH call. If the block is busy, an error return
will be performed.

Normal return is to the word after the error return. At this point, the
routine is in user state and is thus allowed to issue programmed
requests. RO contains the argument that was in word 5 of the block.
RO and R1 are free for use without having to be saved. R4 and R5 are
not free, and do not contain the same information they contained
before the .SYNCH request. A long time can elapse before the pro-
gram returns from a .SYNCH request since all interrupts must be

serviced before the main program can continue. Exit from the routine
should be done via an RTS PC.

Example:

+TITLE SYNCH.MAC

+
+«8YNCH - This is an examprle of the SYNCH request,
The example is a sKeleton of a Prodram which could inrut data
from the outside world by means of an in-line interruPt service routine:
buffer it until a whole block’s worth has been inPut, then use
a +WRITE reauest to store the data on an RT-11 device.

- s e s an an am

+MCALL +GTJB» o INTEN + WRITE s ¢ WAIT s SYNCH» EXIT s PRINT

START: Moy #J0B »RS iResults of .GTJB do here
+GTJB #AREA »RS iGet Job number (either FG aor BG)
MOV (R5) sSYNBLK+2 iStore Job number in ,SYNCH black
i ' iHere we oPen an RT-11 outpPut

idevices then initiate input from

fja "foreign" device,» interrupts to
ibe handled by our in-line interruet
iservice routines...

INTRPT: SINTERRUPT SERVICE ROUTINE

+INTEN 5 iNotify RT-11 and drop to Priority 5
§ + iProcess interruprt and buffer inpPut
§ . iTime to write a buffer - switch
i ' ibuffers (should be double buffered
H ' §so that interrupt processing can
H ' icontinue durind write operation).
+8YNCH #GYNBLK iDo a +SYNCH so we can use a WRITE
BR SYNFAIL iReturn here if a +SYNCH block in use
H f SReturn here if oKav...
JHAIT #1 iSee if error on last write
BCS WRFAIL iBranch if there was
WRITE #AREA#1 yOBUFF y#256, +BLK

fQueue a write to store the data
INC BLK iand bumep the blocKk number.
RETURN iRe-enable interrurts and leave

SYNBLK: +WORD 0 §+8YNCH block

+WORD 0 iJob number soes here
+WORD 0 iNext two words reserved
+WORD o] i
+WORD S iRO contains 5 ow successful ,SYNCH
+WORD ~-1,0 iRequired values for the Monitor

2-134 Programmed Request Description and Examples

SYNFAIL: §.SYNCH failed...
H . iThis can be a Problem if the
i . inext interrurt came in before the
5 f ibuffer was written out!

WRFAIL: MOV #WERR »RO RO — error messade text
ERRM: +PRINT s0utPut the error messade
+EXIT fthen exit.
BLK: +WORD 0 iBlock number to write
AREA: +BLKW S FEMT Ardument block
JaB: +BLKW 8. iArea for .GTJB data
OBUFF: +WORD 0 iPointer to current output buffer
IBUFF: +WORD 0 iPointer to current inPut buffer
BUFF1: +BLKW 256, iBuffer 1
BUFF2: «BLKW 256, iBuffer 2
WERR: +ASCIZ /?Write Error?/
SYNERR : +ABCIZ /?SYNCH Failed?/
+EVEN
END START

2.87 .TIMIO (Device Handler Only)

The .TIMIO macro issues the device time-out call in the handler I/O initia-
tion section. This request schedules a completion routine to run after the
specified time interval has elapsed. The completion routine runs in the
context of the job indicated in the timer block. In XM systems, the comple-
tion routine executes with kernel mapping, since it is still a part of the
interrupt service routine. (See the RT-11 Software Support Manual for
more information about interrupt service routines and the XM monitor.) As
usual with completion routines, RO and R1 are available for use. When the
completion routine is entered, RO contains the sequence number of the
request that timed out.

Macro Call: .TIMIO tbk,hi,lo

where:

tbk is the address of the timer block, a seven-word pseudo timer
queue element. (The timer block format is shown in Table 2-1
under the .CTIMIO request.) You must set up the address of
the completion routine in the seventh word of the timer block
in a position-independent manner

hi is the high-order word of a two-word time interval
lo is the low-order word of a two-word time interval

Example:

«TITLE TIMIO.MAC

TIMIO.MAC - This is an examrle of a simpley RT-11 device driver,

to illustrate the use of the .TIMIO/.CTIMIO reauestss, The timeout
completion routine will be entered if a character hasn’t been
successfully transmitted in 1/10 sec (approx., 110 baud). In this
examrle the completion routine takes no explicit actioni the fact
that the timeout occurred is enough to be considered a "hard" error,

s ws ws es W we e s

Programmed Request Description and Examples 2-135

JIIF
JIIF
JIIF

NDF
NDF
NDF

+IIF
+IIF
+IIF

NDF
NDF
NDF

SPRET:

+MCALL

MMG$T s+ MMG$T=0
ERL$Gs ERL$G=0
TIMIT, TIMIT=0
SP$VEC,» SP$VEC=304
SP$CSR: SP$CSR=176504
SP$PRI+ SP$PRI=4
I0ERR = 1
SRSTS = 20000
SPSIZ = 0
TIME =
cob = 377
+QELDF
+DRBEG SP,S5P$VECSPSIZ,)SPSTS
Mov SPCOE R4
ASL Q$WCNT (R4)
BCC SPERR
BEQ SPDUN
MOV PC RS
ADD #SPTOUT -, +RS
Mov RS TBLK+14
+TIMIO TBLK »0TIME
BIS #100B#5P%CSR
RETURN

i INTERRUPT SERVICE ROUTINE

SPTDUT:

SPERR:
SPDUN:

TBLK:

2.88 .TLOCK

+DRAST
MoV
TST
BMI
TSTB
BPL
+CTIMID
BCS
Move
INC
INC
BEQ

BR

i
i
i
R

ETURN

BIS
+DRFIN

+WORD
+DREND

+END

SP)SP%PRI
SPCOE R4
@#SP$CSR
SPRET
E@*SP$CSR
SPRET

TBLK

SPERR
EGO$BUFF (R4) ,@#5P$CER+2
Q$BUFF (R4)
Q$WCNT (R4A)
SPDUN
SPRET

#I0ERR/BO%CSUW(RA)
SP

O0yTIME»0»0,+177000+C0OD+-1,40

SP

+DRBEG,».DRAST » ,DRFIN,.DREND,,QELDF » ., TIMIO,.CTIMIO

iDefine these in case not
jassembled with SYSCND.MAC

iDefine default vector
jDefine default CSR addr
iDefine default device Priority

iHard I/0 error bit definition
iDevice Status = MWrite only
jDevice Size = O (Char device)

" §Timeout interval = 1/10 sec
jDevice i.d, code
sUse (QELDF to define Q-Elem offsets

iBedin driver code with ,DRBEG
iR4 =» Current Q-Element

iMake word count bvte count

A read from a write/only device?
iZero word count.ssdust exit
iCalculate PIC address
jcompletion routine

iMove it to arsument block
iSchedule a marKtime

iEnable DOL-11 interruert
iReturn to monitor

iUse .DRAST to define Int Swc Sect.
iR4 => Q-Element
fError?

iYessos ‘hand’ until
ils device readv?
iNov+sg90 wait ‘till it is

iCancel completion routine

iToo late - it timed out!

iXfer bvte from buffer to DL-11
iBump the buffer rointer

iand the word count (it’s nesative!)
iBranch if done

iGo wait ‘till char xmitted

ready

comrpletion routine
exampley it does nothingd,
life it may want to try
some corrective action...

iTimeout
iln this
iln real
ito takKe

in CSHW
return to Momitor

iSet error bit
iUse .DRFIN to

i.TIMIO argument block

iUse +OREND to end code

The .TLOCK (test lock) request is used in an FB environment to attempt to
gain ownership of the USR. It is similar to .LOCK in that, if successful, the
user job returns with the USR in memory (it is identical to .LOCK in the SJ
monitor). However, if a job attempts to .LOCK the USR while another job is
using it, the requesting job is suspended until the USR is free. With
.TLOCK, if the USR is not available, control returns immediately with the
C bit set to indicate the .LOCK request failed.

2-136 Programmed Request Description and Examples

Macro Call:
Request Format:
RO = |

Errors:

.TLOCK

[0 |

Code

0

Example:

+
+TLOCK

START:

141

SUSPND:

AREA:
FILE:
LKERR:
LKMSG:
J1MEG:

JZMSG:
JZEMW:

JoBz2:

2.89 .TRPSET

+TITLE

- This

+MCALL

+TLOCK
BCS
«LODKUP
BCS

i
+PRINT
+UNLOCK
T8TB
BNE
CALL
+JEXIT

TSTB
BNE
JER
INC
BR

+BLKW
+RADSO
+RADSO
+RADSO
+PRINT
WEXIT
+ABCIZ
+ASCIZ
+ASCIZ
+BYTE
+EVEN

+PRINT
RTS

+END

is an
In this examprle:
executing., If
runs another sub-Job
This tvyre of Procedure is
a sindgle bacKdground or foredround Prodram.

Explanation

TLOCK «MAC

examrle

in the use of the

USR is already in use by another job.

+TLOCK reauest.

the user prodram needs the USR for a sub-Jdob it is

it fails to det the USR it

"suspends” that sub-Job and

(that perhaps doesn’t need the USR for execution).
useful to schedule several sub-Jdoks

within

+TLOCK + +LOOKUP + s UNLOCK + EXIT »+ PRINT

SUSPND
#AREA y#d y#FILE
LKERR

.

#J1IMSG

J2EU
1%
JoBz2

J2SK
START
PC.,JOB2Z
JZSHW
START

5

/DK/
/QUFILE/
/TMP/
#LLKMEG

/7TFile Not Found?/
/Jab #1 Executed/
/Jdob #2 Executed/
0

#./2ZMSG
PC

START

iBedin Mainline Prodgram
iTry to det the USR for lst
jFailed..+branch to "susrend" 1st .Job
iSucceeded . Proceed with 1st Job
iBranch if error on LOOKUP

flst Job inwvolves file Processind,..do
iTell user we executeds..

filst Job finished.,.release USR

"job"

iCheck if we ran Job #2 while USR busvy
iYup - we did
iNore - do it now

$"Suseend” current "Job"
iDid we already run Job #2
iYes - don’t do it adain
i"Run" other "Job"

iSet switch that savs we
When it’s finisheds try

ran Job #2
1st Job adain

SEMT ardument block
iFile spec for Job #1i

.
"
.
1
N
v

Error on +LOOKUP - Rerort it!

iSwitch to control Job #2 execution

iZnd "Job"
iReturn

- Doesn’t need USR
when done

it!

.TRPSET allows the user job to intercept traps to 4 and 10 instead of having
the job aborted with a 2MON—-F-Trap to 4 or 2MON-F-Trap to 10 message.

Programmed Request Description and Examples 2-137

If . TRPSET is in effect when an error trap occurs, the user-specified routine
is entered. The status of the carry bit on entry to the routine determines
which trap occurred: carry bit clear indicates a trap to 4; carry bit set
indicates a trap to 10. The user routine should exit with an RTI instruction.
Traps to 4 can also be caused by user stack overflow on some processors
(check your processor handbook). These traps are not intercepted by the
.TRPSET request, but they do cause job abort and a printout of the message
¢MON-F-Stack overflow in the SJ monitor or ’MON-F~Trap to 4 in the FB
and XM monitors (see the RT—11 System Message Manual).

Macro Call: .TRPSET area,addr
where:
area is the address of a two-word EMT argument block

addr is the address of the user’s trap routine. If an address of 0 is
specified, trap interception is disabled

Request Format:

RO — area:{ 38 | 0
addr

Notes:

1. Reissue a .TRPSET request whenever an error trap occurs and the user
routine is entered. The monitor disables user trap interception prior to
entering the user trap routine. Thus, if a trap should occur from within
the user’s trap routine, an error message is generated and the job is
aborted. The last operation the user routine should perform before an
RTI is to reissue the .TRPSET request.

2. In the XM monitor, traps dispatched to a user program by .TRPSET
execute in user mode. They appear as interrupts of the user program by
a synchronous trap operation. Programs that intercept error traps by
trying to steal the trap vectors must be carefully designed to handle two
cases accurately: programs that are virtual jobs and programs that are
privileged jobs.

If the program is a virtual job, the stolen vector is in user virtual space
that is not mapped to kernel vector space. The proper method is to use
.TRPSET; otherwise interception attempts fail and the monitor contin-
ues to handle traps to 4 and 10.

If the program is a privileged job, it is mapped to the kernel vector
page. The user can steal the error trap vectors from the monitor, but
the benefits of doing so must be carefully evaluated in each case. Trap
routines run in the mapping mode specified by bits 14 and 15 of the trap
vector PS word. With both bits set to 0, kernel mode is set. However,
kernel mapping is not always equivalent to user mapping, particularly
when extended memory is being used. With both bits 14 and 15 of the
PS set to 1, user mode is set, and the trap routine executes in user
mapping.

2-138 Programmed Request Description and Examples

Errors:
None.
Example:
+TITLE TRPSET.MAC

i+

i ,TRPSET - This is an example in the use of the .TRPSET reauest.

5 In this exameple a user trap routine is sets then deliberate

$ trars to 4 & 10 are caused (not very pPractical but it demonstrates
i that .TRPSET really worKs!).,

+MCALL +TRPSET + +EXIT+ PRINT
DIVZ = B7 iDivide by zero - illegal instruction
START: iBedin example
+TRPSET #AREA +#TRPLOC iSet uPp a trap routine to handle trars
ito 4 & 1044,
DIvVZ 5Illedal instruction - Trap to 10
TST @#166666 jAddress non-existent memory - Traep to
JEXIT fExit Program
TRPLOC: iTrap routine
BCS 1% iC bit set = TRAP 10
+PRINT #TRP4 iReport Trar to 4
BR 2% sBranch to reset trap routine
1%: «PRINT #TRP10O iRerort trar to 10
+TRPSET #AREA »#TRPLOC iReset trarp routine address
Z2%: RTI iReturn to offending code
AREA: +WORD 0,0 $EMT argument blocK
TRP4: +ASCIZ /?Trar to 47/ JError messagdges...
TRP10: +ASCIZ /?Trap to 107/
+END START

2.90 .TTYIN/.TTINR

The requests .TTYIN and .TTINR transfer a character from the console
terminal to the user program. The character thus obtained appears right-
justified (even byte) in RO. The user can cause the characters to be returned
in RO only, or in RO and other locations.

The expansion of .TTYIN is:

EMT 340
BCS -2

The expansion of .TTINR is:
EMT 340

If no characters or lines are available when an EMT 340 is executed, return
is made with the carry bit set. The implication of these calls is that TTYIN
causes a tight loop waiting for a character/line to appear, while the user
can either wait or continue processing using .TTINR.

If the carry bit is set when execution of the .TTINR request is completed, it
indicates that no character was available; the user has not yet typed a valid
line. Under the FB or XM monitor, . TTINR does not return the carry bit set
unless bit 6 of the Job Status Word (JSW) was on when the request was
issued.

Programmed Request Description and Examples 2-139

There are two modes of doing console terminal input. The choice is gov-
erned by bit 12 of the job status word. If bit 12 is 0, normal I/O is performed.
In this mode, the following conditions apply:

1. The monitor echoes all characters typed.

2. CTRL/U and the DELETE key perform line deletion and charac-
ter deletion, respectively.

3. A carriage return, line feed, CTRL/Z, or CTRL/C must be struck
before characters on the current line are available to the pro-
gram. When one of these is typed, characters on the line typed are
passed one by one to the user program.

If bit 12 is 1, the console is in special mode. The effects are:

1. The monitor does not echo characters typed except for CTRL/C
and CTRL/O.

2. CTRL/U and the DELETE key do not perform special functions.
3. Characters are immediately available to the program.

In special mode, the user program must echo the characters received. How-
ever, CTRL/C and CTRL/O are acted on by the monitor in the usual way.
Bit 12 in the JSW must be set by the user program. This bit is cleared when
the program terminates.

Regardless of the setting of bit 12, when a carriage return is entered, both
carriage return and line feed characters are passed to the program; if bit 12
is 0, these characters will be echoed.

Lowercase conversion is determined by the setting of bit 14 in the JSW. If
bit 14 is 0, lowercase characters are converted to uppercase before being
echoed (if bit 12 is 0) and passed to a program; if bit 14 is 1, lowercase
characters are echoed (if bit 12 is 0) and passed as received. Bit 14 is
cleared when the program terminates.

CTRL/F and CTRL/B (and CTRL/X in system job monitors) are not affected
by the setting of bit 12. The monitor always acts on these characters (unless
the SET TT NOFB command is issued).

CTRL/S and CTRL/Q are intercepted by the monitor (unless, under the FB
or XM monitor, the SET TT NOPAGE command is issued).

Under the FB or XM monitor, if a terminal input request is made and no
character is available, job execution is blocked until a character is ready.
This is true for both .TTYIN and .TTINR, and for both normal and special
modes. If a program requires execution to continue and the carry bit to be
returned, it must set bit 6 of the Job Status Word before the .TTINR re-
quest. Bit 6 is cleared when a program terminates.

If the single-line editor has been enabled by the commands SET SL ON and
SET SL TTYIN, and if bits 4 and 12 of the JSW are 0, input from a .TTYIN

2-140 Programmed Request Description and Examples

or .TTINR request will be edited by SL. If either bit 4 or bit 12 is set, SL
will not edit input. If SL is editing input, the state of bit 6 (inhibit TT wait)
is ignored and a .TTINR request will not return until an edited line is
available.

NOTE

The .TTYIN request does not get characters from indirect
files. If this function is desired, the .GTLIN request must be
used.

Macro Calls: .TTYIN char
.TTINR

where:

char is the location where the character in RO is to be stored. If
char is specified, the character is in both RO and the address
represented by char. If char is not specified, the character is

in RO
Errors:
Code Explanation
0 No characters available in ring buffer.
Example:

Refer to the example following the description of
TTYOUT/ TTOUTR.

2.91 .TTYOUT.TTOUTR

The requests .TTYOUT and .TTOUTR cause a character to be transmitted
to the console terminal. The difference between the two requests, as in the
TTYIN/TTINR requests, is that if there is no room for the character in the
monitor’s buffer, the .TTYOUT request waits for room before proceeding,
while the . TTOUTR does not wait for room and the character is not output.

If the carry bit is set when execution of the .TTOUTR request is completed,
it indicates that there is no room in the buffer and that no character was
output. Under the FB or XM monitor, .TTOUTR normally does not return
the carry bit set. Instead, the job is blocked until room is available in the
output buffer. If a job requires execution to continue and the carry bit to be
returned, it must turn on bit 6 of the Job Status Word before issuing the
request.

The .TTINR and .TTOUTR requests have been supplied to help those users
who want to continue rather than suspend program execution until a con-
sole operation is complete. With these modes of I/O, if a no-character or no-
room condition occurs, the user program can continue processing and try
the operation again at a later time.

Programmed Request Description and Examples 2-141

NOTE

If a foreground job leaves bit 6 set in the Job Status Word,
any further foreground .TTYIN or .TTYOUT requests cause
the system to lock out the background until a character is
available. Note also that each job in the foreground/back-
ground environment has its own Job Status Word, and there-
fore can be in different terminal modes independently of the

other job.
Macro Call: .TTYOUT char
.TTOUTR

where:

char is the location containing the character to be loaded in RO and
printed. If not specified, the character in RO is printed. Upon
return from the request, RO still contains the character

Errors:
Code Explanation
0 Output ring buffer full.

Example:

+TITLE TTYIN.MAC

+TTYIN / +TTYDUT - This is an example in the use of the ,TTYIN

& JTTYOUT resuests. The example acceprts a line of input from the
cansole Kerboard, then echoes it on the terminal, Using ,TTYIN &
+TTYOUT reauests illustrate Synchronous terminal I1/05 ise.s» the
Monitor retains control (the Job is blocKed) until the resuests
are satisfied.

+MCALL «TTYINS TTYOUT
START: Moy #BUFFER »R1 iRl => Character buffer

CLR R2 iClear character count
INLOOP: +TTYIN (R1)+ iRead char into buffer

INC R2 iBumep count

CMPB #12,4R0O ilas last char a LF ?

BNE INLOOP iNo..,.det next character

MOV #BUFFER »R1 iYes.soPOint R1 to bedinning of buffer
DUTLOOP: STTYOUT (R1)+ iPrint a character

DEC R2 iDecrease count..,

BEGQ START iDone if count = 0O

BR ouTLOOP iLoor to Pprint another character
BUFFER: +BLKW G4, iCharacter buffer,.,.

+END START

+TITLE TTINR.MAC

«TTINR / TTOUTR - This is an example in the use of the ,TTINR &
+TTOUTR requests, LiKe TTYIN.MAC/+ this example accerts lines of
inPut from the console Kevboard, then echoes it on the terminal.
But rather than waitind for the user to tvyepe something at ‘INLOOP’
or wait for the outPut buffer to have available space at ‘OUTLOCP’,
the routine has been recoded using TTINR and .TTOUTR to allow
other Processing to be carried out if a wait condition is reached.

wn we an we wn ws ae e e

2-142 Programmed Request Description and Examples

+MCALL WTTYIN, TTYOUT

+MCALL +TTINR » TTOUTR 9 EXIT

JSW = 44 jLocation of Job Status Word in SYSCOM
START: MOV #BUFFER »R1 iPoint R1 to buffer

CLR R2 iClear character count

BIS #100,B#JSH 55et bit #B6 in JSW so TTINR/.TTOUTR will

sreturn C bit set if no char/no roome..

INLOOP: +TTINR iGet char from terminal

BCS NOCHAR iNone available
CHRIN: MOovB RO (R1)+ jPut char in tuffer

INC R2 iIncrease count

CMPB RO 412 iWas last char = LF?

BNE INLOOP iNo+.+s9et next char

MoV #BUFFER sR1 iYes.oorO0int R1 to beginning of buffer
ouTLOOP: MOvB (R1) 1RO jPut char in RO

+TTOUTR iTry to Print it

BCS NOROOM $Branch if no room in outPut buffer
CHROUT : DEC R2 iDecrease count

BEQ START iDone if count=0

INC R1 jBump buffer pPointer

BR auTLOOP 5then branch to Print next char
NOCHAR : iComes here if no char avail

+TTINR ftry to adain to det one

BCC CHRIN jThere‘s one avail this time!

H f §

i . iDo other Processing

; + ;

BR NOCHAR iTry adain
NORODM iComes here if no room in buffer

Move (R1) 4RO iPut char in RO

+TTOUTR iTry to Print it adain

BCC CHROUT iSuccessful !

. iCode to be executed while waiting

.
+ 1

’ iNow we must hang to wait...

. aa

BIC #100,@%J8W iClear bit #6 in JGW

STTYOUT (R1) jUse +TTYOUT to wait for room

BIS #100,@#J5K Finally successful - reset bit #B

BR CHROUT fthen return to outrut loop
BUFFER: +BLKHW 64, jBuffer

+END START

2.92 .TWAIT (SYSGEN Option for SJ)

The .TWAIT request suspends the user’s job for an indicated length of time.
TWAIT requires a queue element and thus should be considered when the
.QSET request is issued.

Macro Call: .TWAIT area,time

where:

area is the address of a two-word EMT argument block

time is a pointer to two words of time (high order first, low order
second), expressed in ticks

Request Format:

RO — area:| 24 | O
time

Programmed Request Description and Examples 2-143

Notes:

1. Since a .TWAIT is simulated in the monitor using suspend and resume,
a .RSUM issued from a completion routine without a matching .SPND
can cause the mainstream to continue past a timed wait before the
entire time interval has elapsed. In addition, a .TWAIT issued within a
completion routine is ignored by the monitor, since it would block the
job from ever running again.

2. The unit of time for this request is clock ticks, which can be 50 Hz or 60
Hz, depending on the local power supply, if your system has a line
frequency clock. This must be kept in mind when the time interval is

specified.
Errors:
Code Explanation
0 No queue element was available.
Example:

+TITLE TWAIT.MAC

+
+TWAIT - This is an example in the use of the ,TWAIT request,
+THAIT is useful in applications where a Prodram must be only
activated periodically, This example will ‘wake ur’ every five seconds
to perform a simulated "task"s» and then ‘sleer’ again., (For examrle
purroses this cvcle will be rereated for a maximum of about 35 sec).

- e an we ar s e

+MCALL +THAIT »«QBET +EXIT+ PRINT

START: CALL TASK iPerform tasKk...

1%: +THAIT #AREA »#TIME iGo to sleer for 5 secands
BCS NOQ iBranch if no aqueue element
CALL TASK iPerform task asdain
DEC COUNT . iBump counter - example good for 35 sec
BNE 1% iBranch if time’s not ue
+PRINT #BYE iSay we’‘re thru
JEXIT fExit Program

TASK: iPeriodic task simulated here
INC TCNT iBump a counter
BIT #1,TCNT ils it odd?
BEQ 1% iBranch if not
+PRINT #TICK j0dd counter Prints "ticK.,."
RETURN iReturn to caller

1%: +PRINT #TOCK iEven counter Prints "tock"
RETURN iReturn to caller

NOQ: +PRINT #0ERR iPrint error message
JEXIT fExit Program

AREA: +HWORD 0,40 FEMT Argument block

TIME: +WORD 0/+60.*5, B0 ticks/sec * 5 seconds

COUNT: +WORD 7 iMaximum cvcles for examele

TCNT: +WORD 0 iTicKkstock count

TICK: +ASCII /TicKes /<200 iMessade text

TOCK: +ASCIZ /Tock/

BYE: +ASCIZ /Example Concluded/

QERR: «ASCIZ /?No Q-Element Available?/
+END START

2.93 .UNLOCK
See .LOCK/.UNLOCK (Section 2.41).

2-144 Programmed Request Description and Examples

2.94 .UNMAP (XM Only)

The .UNMAP request unmaps a window and flags that portion of the pro-
gram’s virtual address space as being inaccessible. When an unmap opera-
tion is performed for a virtual job, attempts to access the unmapped address
space cause a memory management fault. For a privileged job, the default
(kernel) mapping is restored when a window is unmapped.

Macro Call: .UNMAP area,addr

where:

area is the address of a two-word argument block

addr is the address of the window control block that describes the
window to be unmapped

Request Format:

RO — area:| 36 | 5

addr
Errors:
Code Explanation
3 An illegal window identifier was specified.
5 The specified window was not already mapped.
Example:

Refer to the example following the description of .CRAW.

2,95 .UNPROTECT
See .PROTECT/.UNPROTECT (Section 2.60).

296 .WAIT

The .WAIT request suspends program execution until all input/output re-
quests on the specified channel are completed. The .WAIT request, com-
bined with the .READ/.WRITE requests, makes double buffering a simple
process.

.WAIT also conveys information through its error returns. An error is re-
turned if either the channel is not open or the last I/O operation resulted in
a hardware error.

If an asynchronous operation on a channel results in end-of-file, the follow-
ing .WAIT programmed request will not detect it. The .WAIT request de-
tects only hard error conditions. A subsequent operation on that channel
will detect end-of-file and will return to the user immediately with the
carry bit set and the end-of-file code in byte 52. Under these conditions, the
subsequent operation is not initiated.

Programmed Request Description and Examples 2-145

In an FB system, executing a .WAIT when I/O is pending causes that job to
be suspended and another job to run, if possible.

Macro Call: .WAIT chan
Request Format:

RO = | 0 |chan]|

Errors:
Code ‘ Explanation
0 Channel specified is not open.
1 Hardware error occurred on the previous I/O operation on
this channel.
Example:
.,TITLE WAIT.MAC

+WAIT - This is an examrle in the use of the .WAIT request. The
example demonstrates asvnchronous I/0 where a mainline Prodram
initiates input via +READ requests, does some other Processing,
makes sure inPut has completed via the +WAIT reauest: then out-
Puts the block Just read. Another ,WAIT is issued before the next
read is issued to make sure the Previous write has finished, This
example is a sindle file copy Prodram, utilizingd .CSIGEN to input
the file specsy load the required handlers and oren the files,

wn an s wE wm ws wn we ws aw

+MCALL +READ + +WRITE » s CLOSE » PRINT
+MCALL +CSIGEN» EXIT+ WAIT,.8SRESET
ERRBYT = 52 iError Bryte location in S5YSCOM
+ENABL LSB iEnable local svmbol block
START: +CSIGEN #DSPACE »#DEFEXT iUse CSIGEN to set handlers, files
Mov #AREA +R3 iRS => EMT Ardument list
1% +READ R5 %3 iRead a block,..
BCS 6% iBranch on error
1 +
BIT #1,I10BLK iThen simulate
BNE 2% isome other
+PRINT #MESSG imeaningdful(?) Process...,
1 .
2%: JHWAIT 3 iDid read finish OK?
BCS 5% iBranch if not
+HRITE RS »#0 iNow write the block Just read
BCS 3% iBranch on error
i . iCould do some more Processing here...
" .
INC I0BLK iBump block # for next read
THWALT #0 iWait for write to finish
BCC 1% iBranch if successful
3¢: MOV #WRERR 1RO iRO => MWrite error msy
Az +PRINT iRerort error
JEXIT ithen exit Pprodram
S5%: Moy #RDERR »RO §RO = Read error msg
BR 4% iBranch to report error
G#: TSTB @#ERRBYT iRead error,,,EOQOF?
BNE S% iBranch if not
+PRINT #DONE iYes...announce completion
+CLOSE #0 iMake output file Permanent
+SREBET iDismiss fetched handlers
JEXIT ithen exit Program
AREA:: +WORD [« {EMT Area block

2-146 Programmed Request Description and Examples

- I0BLK:

BUFF:

DEFEXT:

DONE:
MESSG:
WRERR:
RDERR:
EOF:

DSPACE

+WORD
+WORD
+WORD
+WORD
+BLKW
+WORD
+ABCIZ
+ASCIZ
+ASCIZ
+ASCIZ
+BYTE
+EVEN

= e

+END

0 iBlock %,

BUFF jBuffer addr & word count

256, jalready fixed in blocKke..

0 i

256, 1/0 buffer

010,040 " jNo default extensions for CSIGEN

/1-0 Transfer Complete/ iMessages...
{153<12>/< Simulating Mainline Processing >/
/?Write Error?/

/?Read Error?/

0 {EOF flag

jHandlers mavy be loaded starting here

START

2.97 .WDBBK (XM Only)

The .WDBBK macro defines symbols for the window definition block and
reserves space for it. Information provided to the arguments of this macro
permits the creation and mapping of a window through the use of the
.CRAW request. Note that .WDBBK automatically invokes .WDBDF.

Macro Call:

where:

wnapr

wnsiz

wnrid

wnoff

wnlen

wnsts

Example:

.WDBBK wnapr,wnsiz[,wnrid,wnoff,wnlen,wnsts]

is the number of the Active Page Register set that includes
the window’s base address. A window must start on a 4K-
word boundary. The valid range of values is from 0 through
7

is the size of this window (expressed in 32-word units)

is the identification for the region to which this window
maps. This argument is optional; supply it if you need to
map this window. Use the value of R.GID from the region
definition block for this argument after you create the re-
gion to which this window must map

is the offset into the region at which to start mapping this
window (expressed in 82-word units). This argument is op-
tional; supply it if you need to map this window. The default
is 0, which means that the window starts mapping at the
region’s base address

is the amount of this window to map (expressed in 32-word
units). This argument is optional; supply it if you need to
map this window. The default value is 0, which maps as
much of the window as possible

is the window status word. This argument is optional; sup-
ply it if you need to map this window when you issue the
.CRAW request. Set bit 8, called WS.MAP, to cause .CRAW
to perform an implied mapping operation

See Chapter 4 of the RT—11 Software Support Manual for an example
that uses the .WDBBK macro and a detailed description of the ex-
tended memory feature.

Programmed Request Description and Examples 2-147

2.98 .WDBDF (XM Only)

The .WDBDF macro defines the symbolic offset names for the window defi-
nition block and the names for the window status word bit patterns. In
addition, this macro also defines the length of the window definition block
by setting up the following symbol:

W.NLGH = 16

The .WDBDF macro does not reserve any space for the window definition
block (see .WDBBK).

Macro Call: .WDBDF
The .WDBDF macro expands as follows:

W.NID =0
W.NAPR =1
W.NBAS = 2
W.NSIZ =4
WNRID =6
W.NOFF = 10
W.NLEN = 12
W.NSTS = 14
W.NLGH = 16
WS.CRW = 100000
WS.UNM = 40000
WS.ELW = 20000
WS.MAP = 400

2.99 .WRITE/.WRITC/.WRITW

Write operations for the three modes of RT-11 I/O are done using the
-WRITE, .WRITC, and .WRITW programmed requests.

Note that in the case of .WRITE and .WRITC, additional queue elements
should be allocated for buffered I/O operations (see .QSET programmed
request).

Under an FB monitor with the system job feature, WRITE/C/W requests
may be used to send messages to other jobs in the system.

.WRITE
The .WRITE request transfers a specified number of words from memory to
the specified channel. Control returns to your program immediately after
the request is queued.

Macro Call: .WRITE area,chan,buf,went,blk

where:

area is the address of a five-word EMT argument block

2-148 Programmed Request Description and Examples

chan

is a channel number in the range 0 to 376(octal)

buf is the address of the memory buffer to be used for output
went is the number of words to be written
blk is the block number to be written. For a file-structured
LOOKUP or .ENTER, the block number is relative to the
start of the file. For a non-file-structured .LOOKUP or .EN-
TER, the block number is the absolute block number on the
device. The user program should normally update blk before
it is used again. Some devices, such as LP, may assign the blk
argument special meaning. For example, if blk = 0, LP: is-
sues a form feed
Request Format: Lye e
RO — area:|[11 | chan
blk
buf
went
1

NOTE

When any .WRITE, .WRITC, or .WRITW programmed re-
quest is returned, RO contains the number of words requested
if the write is to a sequential-access device (for example,
magtape). If the write is to a random-access device (disk or
DECtape), RO contains the number of words that will be writ-
ten (WRITE or .WRITC) or have been written (WRITW). If a
request is made to write past the end-of-file on a random-
access device, the word count is shortened and an error is
returned. The shortened word count is returned in RO. If a
write goes past EOT on magtape, an error is returned and
RO=0. Note that the write is done and a completion routine,
if specified, is entered, unless the request cannot be partially
filled (shortened word count = 0).

Errors:

Code Explanation
0 Attempted to write past end-of-file.
1 Hardware error.

2 Channel was not opened.

Example:

Refer to the example following .READ.

Programmed Request Description and Examples 2-149

.WRITC

The .WRITC request transfers a specified number of words from memory to
a specified channel. Control returns to the user program immediately after
the request is queued. Execution of the user program continues until the
-WRITC is complete, then control passes to the routine specified in the
request. When an RTS PC is encountered in the completion routine, control
returns to the user program.

Macro Call: .WRITC area,chan,buf,went,crtn,blk
where:
area is the address of a five-word EMT argument block
chan is a channel number in the range 0 to 376(octal)
buf is the address of the memory buffer to be used for output
went is the number of words to be written
crtn is the address of the completion routine to be entered
blk is the block number to be written. For a file-structured
.LOOKUP or .ENTER, the block number is relative to the
start of the file. For a non-file-structured .LOOKUP or .EN-
TER, the block number is the absolute block number on the
device. Your program should normally update bl% before it is
used again. See the RT-11 Software Support Manual for the
significance of the block number for devices such as line
printers and paper tape readers
Request Format: W EITC
RO — area:| 11 [chan
blk
buf
went
crtn

NOTE

When any .WRITE, .WRITC, or .WRITW programmed re-
quest is returned, RO contains the number of words requested
if the write is to a sequential-access device (for example,
magtape). If the write is to a random-access device (disk or
DECtape), RO contains the number of words that will be writ-
ten (WRITE or .WRITC) or have been written (WRITW). If a
request is made to write past the end-of-file on a random-
access device, the word count is shortened and an error is
returned. The shortened word count is returned in RO. If a
write goes past EOF on magtape, the handler returns an er-
ror and RO=0. Note that the write is done and a completion
routine, if specified, is entered, unless the request cannot be
partially filled (shortened word count = 0).

2-150 Programmed Request Description and Examples

When a .WRITC completion routine is entered, the following conditions are
true:

1. RO contains the contents of the channel status word for the opera-
tion. If bit O of RO is set, a hardware error occurred during the
transfer; Consequently, the data may be unreliable.

2 R1 contains the octal channel number of the operation. This is
useful when the same completion routine is to be used for several
different transfers.

3. Registers RO and R1 are available for use by the routine, but all
other registers must be saved and restored. Data cannot be passed
between the main program and completion routines in any regis-
ter or on the stack.

Errors:
Code Explanation
0 End-of-file on output. Tried to write outside limits of file.
1 Hardware error occurred.
2 Specified channel is not open.
Example:
Refer to the example following .READC.
WRITW

The .WRITW request transfers a specified number of words from memory to
the specified channel. Control returns to your program when the .WRITW
is complete.

Macro Call: .WRITW area,chan,buf,wcnt,blk

where:

area is the address of a five-word EMT argument block
chan is a channel number in the range 0 to 376(octal)
buf is the address of the buffer to be used for output

went is the number of words to be written. The number must be
positive
il
blk is the block number to be written. For a file-structured

LOOKUP or .ENTER, the block number is relative to the
start of the file. For a non-file-structured .LOOKUP or .EN-
TER, the block number is the absolute block number on the
device. Your program should normally update blk before it is
used again. See the RT—11 Software Support Manual for the
significance of the block number for devices such as line
printers and paper tape readers

Programmed Request Description and Examples 2-151

Request Format: Vg

RO — area:| 11 [chan
blk
buf
went

0

NOTE

When any .WRITE, .WRITC, or .WRITW programmed re-
quest is returned, RO contains the number of words requested
if the write is to a sequential-access device (for example,
magtape). If the write is to a random-access device (disk or
DECtape), RO contains the number of words that will be writ-
ten (WRITE or .WRITC) or have been written (WRITW). If a
request is made to write past the end-of-file on a random-
access device, the word count is shortened and an error is
returned. The shortened word count is returned in RO. If a
write goes past end-of-file on magtape, the handler returns
an error and R0 =0. Note that the write is done and a comple-
tion routine, if specified, is entered, unless the request cannot
be partially filled (shortened word count = 0).

Errors:

Code Explanation

0 Attempted to write past EOF.

1 Hardware error.
2 Channel was not opened.
Example:

Refer to the example following .READW.

2-152 Programmed Request Description and Examples

Chapter 3
System Subroutine Description and Examples

This chapter presents all SYSLIB functions and subroutines in alphabetical
order and provides a detailed description of each one. An example of each
call in a FORTRAN program is given.

3.1 AJFLT

The AJFLT function converts an INTEGER*4 value to a REAL*4 value
and returns that result as the function value.

Form: a = AJFLT (jsrc)

where:

jsrc is the INTEGER*4 variable to be converted
Function Results:
The function result is a REAL*4 value.
Errors:
None.
Example:

The following example converts the INTEGER*4 value contained in
JVAL to single precision (REAL*4), multiplies it by 3.5, and stores
the result in VALUE.

REAL*4 VALUE,AJFLT
INTEGER*4 JUAL

+

+

VALUE=AJFLT(JUVAL)*3.3

3.2 CHAIN

The CHAIN subroutine allows a background program (or any program in
the single-job system) to transfer control directly to another background
program and pass specified information to it. CHAIN cannot be called from
a completion or interrupt routine. The FORTRAN impure area is not pre-
served across a chain. Therefore, when chaining from one program to an-
other, the information must be reset in the program being chained to.
When chaining to any other program, the user should explicitly close the
opened logical units with calls to the CLOSE routine. Any routines speci-
fied in a FORTRAN USEREX library call are not executed if a CHAIN is
accomplished (see Appendix B in the RT-11/RSTS/E FORTRAN IV User’s
Guide).

31

Form: CALL CHAIN (dblk,var,went)

where:

dblk is the address of a four-word Radix—50 descriptor of the file
specification for the program to be run (see the PDP—11 FOR -
TRAN Language Reference Manual for the format of the file
specification)

var is the first variable (which must start on a word boundary) in
a sequence of variables with increasing memory addresses to
be passed between programs in the chain parameter area (ab-
solute locations 510 to 777). A single array or a COMMON
block (or portion of a COMMON block) is a suitable sequence
of variables

went is a word count specifying the number of words (beginning at
var) to be passed to the called program. The argument went
may not exceed 60. If no words are passed, then a word count
of 0 must be supplied

If the size of the chain parameter area is insufficient, it can be increased by
specifying the /B (or /BOTTOM) option to LINK for both the program exe-
cuting the CHAIN call and the program receiving control.

The data passed can be accessed through a call to the RCHAIN routine. For
more information on chaining to other programs, see the .CHAIN pro-
grammed request (Section 2.3).

Errors:

None.

Example:

The following example transfers control from the main program to
PROG.SAV on DTO, and passes it variables.

DIMENSION SPEC(2)
INTEGER*2 DATA(10)
DATA SPEC/GRDTOPRDs BRG SAY/

13

+

+
CALL CHAIN (SPEC+DATA10)

3.3 CLOSEC/ICLOSE

The CLOSEC subroutine terminates activity on the specified channel and
frees it for use in another operation. The handler for the associated device
must be in memory. CLOSEC cannot be called from a completion or inter-
rupt routine.

Form: CALL CLOSEC (chanl,i])
i = CLOSEC(chan)
CALL ICLOSE (chanl,il)
i = ICLOSE(chan)

3-2 System Subroutine Description and Examples

where:

chan is the channel number to be closed. This argument must be
located so that the USR cannot swap over it

i is the error return if a protection violation occurs

A CLOSEC or PURGE must eventually be issued for any channel opened
for input or output. A CLOSEC call specifying a channel that is not open is
ignored. ‘

A CLOSEC performed on a file that was opened via an IENTER causes the
device directory to be updated to make that file permanent. If the device
associated with the specified channel already contains a file with the same
name and type, the old copy is deleted when the new file is made perma-
nent. If the file name is protected, then a protection error is generated. A
CLOSEC on a file opened via LOOKUP does not require any directory
operations.

When an entered file is closed, its permanent length reflects the highest
block of the file written since the file was entered; for example, if the
highest block written is block number 0, the file is given a length of 1; if the
file was never written, it is given a length of 0. If this length is less than
the size of the area allocated at IENTER time, the unused blocks are re-
claimed as an empty area on the device.

Errors:
i = 0 Normal return.
= —4 A protected file with the same name already exists on a
device. The CLOSEC is performed, resulting in two files on
the device with the same name.
Example:

The following example creates and i)rocesses a 56-block file.

REAL*4 DBLK(Z)
DATA DBLK/BRSYONEWGRFILDAT/
DATA ISIZE/SG/

+

4

ICHAN=IGETC()
IF(ICHANLLT.0) GOTO 100
IERR=IENTER(ICHAN :DBLK»ISIZE)
IF(IERR.LT.0)GOTD 20
20 GOTO(110+120,130)ABB(IER)
CALL ICLOSE (ICHAN,I)
IF(I.EQ.~-4) GOTO 200
CALL IFREEC(ICHAN)
CALL EXIT
100 STOP ‘NO AVAILABLE CHANNELS'
110 STOP ‘CHANNEL ALREADY IN USE’
20 STOP ‘NOT ENOUGH ROOM ON DEVICE'
130 STOP ‘DEVICE IN USE’
200 STOP ‘PROTECTION ERROR
END

System Subroutine Description and Examples 3-3

3.4 CONCAT

The CONCAT subroutine concatenates two character strings.
Form: CALL CONCAT (a,b,out[,len[,err]])

where:
a is the array containing the left string. The string must be ter-
minated with a null byte
b is the array containing the right string. The string must be

terminated with a null byte

out is the array into which the concatenated result is placed. This
array must be at least one element longer than the maximum
length of the resultant string (that is, one greater than the
value of len, if specified)

len is the integer number of characters representing the maximum
length of the output string. The effect of len is to truncate the
output string to a given length, if necessary

err is the logical error flag set if the output string is truncated to
the length specified by len

CONCAT sets the string in the array out to be the string in array a imme-
diately followed on the right by the string in array b and a terminating null
character.

NOTE
Any combination of string arguments is allowed, so long as b
and out do not specify the same array.

Concatenation stops when a null character is detected in b, or when the
number of characters specified by len has been moved.

If either the left or right string is a null string, the other string is copied to
out. If both are null strings, then out is set to a null string. The old contents
of out are lost when this routine is called.

Errors:

Error conditions are indicated by err, if specified. If err is given and
the output string would have been longer than len characters, then
err is set to .TRUE.; otherwise, err is unchanged.

Example:

The following example concatenates the string in array STR and the
string in array IN and stores the resultant string in array OUT. OUT
cannot be larger than 29 characters.

LOGICAL*1 IN(Z22),0UT(30)+STR(7)

+

CALL CONCAT(STR:IN,OUT,»29)

3—4 System Subroutine Description and Examples

3.5 CVTTIM

The CVTTIM subroutine converts a two-word internal format time to
hours, minutes, seconds, and ticks.

Form: CALL CVTTIM (time,hrs,min,sec,tick)

where:

time is the two-word internal format time to be converted. If time
is considered as a two-element INTEGER*2 array, then:

time (1) is the high-order time
time (2) is the low-order time

hrs is the integer number of hours
min is the integer number of minutes
sec is the integer number of seconds

tick is the integer number of ticks (1/60 of a second for 60-cycle
clocks; 1/50 of a second for 50-cycle clocks)

Errors:

None.

Example:

INTEGER*4 ITIME

+

+

CALL GTIM(ITIME) 'GET CURRENT TIME-OF-DAY

CALL CUTTIM(ITIME :IHRS,»IMINISECITCK)
IF(IHRS.GE.12,AND, IHRS.LT.13) GOTO 100 !TIME FOR LUNCH

3.6 DEVICE (FB and XM Only)

The DEVICE subroutine allows you to set up a list of addresses to be loaded
with specified values when the program is terminated. If a job terminates
or is aborted with a CTRL/C from the terminal, this list is picked up by the
system and the appropriate addresses are set up with the corresponding
values.

This function is primarily designed to allow user programs to load device
registers with necessary values. In particular, it is used to turn off a de-
vice’s interrupt enable bit when the program servicing the device termi-
nates.

Only one address list can be active at any given time; hence, if multiple
DEVICE calls are issued, only the last one has any effect. The list must not
be modified by the program after the DEVICE call has been issued, and the

list must not be located in an overlay or an area over which the USR swaps.

The second argument of the call (link) provides support for a linked list of
tables. The link argument is optional and causes the first word of the list to
be processed as the link word.

System Subroutine Description and Examples 3-5

Form: CALL DEVICE (ilist[,link])

where:

ilist is an integer array that contains two-word elements, each
composed of a one-word address and a one-word value to be
put at that address, terminated by a zero word. On program
termination, each value is moved to the corresponding address

link is an optional argument that can be any value. This indicates
that a linked list table is to be used

If the linked list form is used the first word of the array is the
link list pointer

For more information on loading values into device registers, see the .DE-
VICE programmed request (Section 2.16).

Errors:
None.

Example:
INTEGER*Z IDR11(3) IDEVICE ARRAY SPEC
DATA IDRI11(1)/"16B7770/ IDR11 CSR ADDRESS (OCTAL)
DATA IDR11(2)/0/ IWALUE TO CLEAR INTERRUPT ENABLE
DATA IDR11(3)/0/ 'AND END-DF-LIST FLAG
CALL DEVICE(IDR11) ISET UP FOR ABORT

3.7 DJFLT

The DJFLT function converts an INTEGER*4 value into a REAL*8 (DOU-
BLE PRECISION) value and returns that result as the function value.

Form: d = DJFLT (jsrc)
where:

jsrc specifies the INTEGER*4 variable to be converted
Notes:

If DJFLT is used, it must be defined in the FORTRAN program, either
explicitly (REAL*8 DJFLT) or implicitly IMPLICIT REAL*8 (D)). Without
a definition, DJFLT is assumed to be REAL*4 (single precision).

Function Results:
The function result is the REAL*8 value that is the result of the operation.
Errors:

None.

Example:

INTEGER*4 JVAL
REAL*8 DJFLTD

+

+

D=DJFLT(JVAL)

36 System Subroutine Description and Examples

3.8 GETSTR

3.9 GTIM

The GETSTR subroutine reads a formatted ASCII record from a specified
FORTRAN logical unit into a specified array. The data is truncated (trail-
ing blanks removed) and a null byte is inserted at the end to form a charac-
ter string.

GETSTR can be used in main program routines or in completion routines,
but it cannot be used in both at the same time. If GETSTR is used in a
completion routine, it cannot be the first I/O operation on the specified
logical unit.

Form: CALL GETSTR (lun,out,len,err)

where:

lun is the integer FORTRAN logical unit number of a formatted
sequential file from which the string is to be read

out is the array to receive the string; this array must be at least
one element longer than len

len is the integer number representing the maximum length of the
string that is allowed to be input

err is the LOGICAL*1 error flag that is set to .TRUE. if an error
occurred. If an error did not occur, the flag is .FALSE

Errors:

Error conditions are indicated by err. If err is .TRUE., the values
returned are as follows:

err = -1 End-of-file for a read operation.

err = —2 Hard error for a read operation.

err = -3 More than len bytes were contained in a record.
Example:

The following example reads a string of up to 80 characters from
logical unit 5 into the array STRING.

LOGICAL*1 STRING(81) +ERR

+

+

CALL GETSTR(3:8TRING,»B0ERR)

The GTIM subroutine returns the current time of day. The time is returned
in two words and is given in terms of clock ticks past midnight. If the
system does not have a line clock, a value of 0 is returned. If an RT-11
monitor TIME command has not been entered, the value returned is the
time elapsed since the system was bootstrapped, rather than the time of
day.

System Subroutine Description and Examples 3-7

Form: CALL GTIM (itime)

where:

itime is the two-word area to receive the time of day

The high-order time is returned in the first word, the low-order time in the
second word. The CVTTIM routine (see Section 3.5) can be used to convert
the time into hours, minutes, seconds, and ticks. CVTTIM performs the
conversion based on the monitor configuration word for 50- or 60-cycle
clocks. Under an FB or XM monitor, the time-of-day is automatically reset
after 24:00 when a GTIM is executed; under the single-job monitor, it is

not.
Errors
None.

Example:

INTEGER*4 JTIME

+

+

CALL GTIMC(JTIME)

3.10 GTJB/IGTJB

The GTJB subroutine returns information about a job in the system.

Form: CALL GTJB (addr,[jobblk [,il])
i = GTJB (addr,[jobblk])
CALL IGTJB (addr,[jobblk [,il])
i = IGTJB (addr,[jobblk])

where:

addr is the address of an eight- or twelve-word block into which
the parameters are passed

The parameters returned are as follows:

Word 1

Job Number = priority level*2 (background
job is 0, system jobs are 2, 4, 6, 10, 12, 14,
foreground job is 16 in system job monitors;
background job is 0, foreground job is 2 in FB
and XM monitors; job number is 0 in SJ moni-
tor)

High-memory limit of job partition (last loca-
tion plus 2)

Low-memory limit of job partition (first loca-
tion)

Pointer to I/O channel space

Address of job’s impure area in FB and XM
monitors (0 in SJ)

3-8 System Subroutine Description and Examples

89
10-12

Low byte: unit number of job’s console termi-
nal (only if the multiterminal option is pres-
ent; 0 when the multiterminal feature is not
used)

Virtual high limit for a job created with the
linker /V option (XM only; 0 in SJ and FB and
where the Linker /V option is not used)
Reserved for future use

ASCII logical job name (system job monitors
only)

jobblk is a pointer to a three-word ASCII job name for which data
is being requested. Do not specify this argument when re-
questing the eight-word block

i is an error return if the job is not running

If one argument is used with the call, only the first eight parameters will be

passed. For example,

INTEGER IJPARM(8)
CALL GTJB (IJPARM)

I = GTJB IJPARM)

At least a comma must follow the argument to pass the information into a
12-word block. For example,

INTEGER IJPARM(12)
CALL GTJB (IJPARM,)

I = GTJB (IJPARM,)

Errors:

i

Example:

0 Normal return.
-1 No such job currently running.

C THIS IS AN EXAMPLE UNDER A 8YSTEM

C J0OB MONITOR

T0 SEE IF THE FOREGROUND

C JOB IS RUNNING
DIMENSION JDATA(LIZ)

+

+

+

I = GTJB (JDATA, 1G6)
IF (I,EQ,0) GOTO 20

TYPE 10

10 FORMAT(‘NO FG JOB! ")

STOP
20 .

+

3.11 GTLIN

The GTLIN subroutine transfers a line of input from the console terminal
or an active indirect command file to the user program. This request allows

System Subroutine Description and Examples 3-9

you to input information at the console terminal, and it allows the program
to operate through indirect files. This subroutine requires the USR. The
maximum size of the input line is 80 characters. See the .GTLIN pro-
grammed request for setting bits in the Job Status Word to pass lowercase
letters and to establish a nonterminating condition.

Form: CALL GTLIN (result[,prompt])

where:

result is the array receiving the string. This LOGICAL*1 array
contains a maximum of 80 characters plus 0 as the end
indicator, and therefore must be dimensioned to at least 81
elements

prompt is a LOGICAL*1 array containing an optional prompt
string to be printed before the input line is received. The
string format is the same as that used by the PRINT sub-
routine. If this argument is not present, no prompt is
printed

Errors:
None.

Example:

LOGICAL*1 INP(BO) PROMT(B)
DATA PROMT /7 /N 3’A’2'M’ s E’ 4’7/ 4 "200/

CALL GTLINCINP,PROMT)

*
+

+

3.12 |ABTIO

The IABTIO function aborts I/O on a specified channel.
Form: CALL IABTIO (chan)
where:

chan is the channel number for which to abort I/0
Errors:

None.

3.13 |ADDR

The IADDR function returns the 16-bit absolute memory address of its
argument as the integer function value.

Form: i = IADDR (arg)

3-10 System Subroutine Description and Examples

3.14

3.15

where:

arg is the variable or constant whose memory address is to be ob-
tained. The value obtained by passing an expression as arg is
unpredictable

Errors:
None.
Example:

IADDR can be used to find the address of an assembly language
global area. For example:

EXTERNAL CAREA
J=IADDR(CARERA)

IAJFLT

The IAJFLT function converts an INTEGER*4 value to a REAL*4 value
and stores the result.

Form: i = IAJFLT (jsrc,ares)
where:
jsrc is the INTEGER*4 variable to be converted

ares is the REAL*4 variable or array element to receive the con-
verted value

Function Results:

i = -1 Normal return; the result is negative.
=0 Normal return; the result is 0.
=1 Normal return; the result is positive.
Errors:
i = -2 Significant digits were lost during the conversion.
Example:

INTEGER*4 JVAL
REAL*4 RESULT

+

IF(IAJFLT (JVUAL »RESULT)Y JER.-2) TYPE 8989
99 FORMAT (’ DVERFLOW IN INTEGER#*4 TO REAL CONYERSION’)

IASIGN

The IASIGN function sets information in the FORTRAN logical unit table
(overriding the defaults) for use when the FORTRAN Object Time System
(OTS) opens the logical unit. This function can be used with ICSI (see

System Subroutine Description and Examples 3-11

Section 3.20) to allow a FORTRAN program to accept a standard CSI input
specification. IASIGN must be called before the unit is opened; that is,
before any READ, WRITE, PRINT, TYPE, ACCEPT, or OPEN statements
are executed that reference the logical unit.

Form: i = IASIGN (lun,idevl,ifiltypl,isize[,itypell])

where:
lun is an INTEGER*2 variable, constant, or expression specify-
ing the FORTRAN logical unit for which information is
being specified
idev is a one-word Radix—-50 device name; this can be the first

word of an ICSI input or output file specification

ifiltyp is a three-word Radix—50 file name and file type; this can be
words 2 through 4 of an ICSI input or output file specifica-
tion

isize is the length (in blocks) to allocate for an output file; this
can be the fifth word of an ICSI output specification. If 0, the
larger of either one-half the largest empty segment or the
entire second largest empty segment is allocated. If the
value specified for length is —1, the entire largest empty
segment is allocated

itype is an integer value determining the optional attributes to be
assigned to the file. This value is obtained by adding the
values that correspond to the desired operations:

1 Use double buffering for output.

2 Open the file as a temporary file.

4 Force a LOOKUP on an existing file during the first
I/O operation. (Otherwise, the first FORTRAN I/O oper-
ation determines how the file is opened. Normally if the
first I/O operation is a write, an IENTER would be per-
formed on the specified logical unit. A read always
causes a LOOKUP.)

8 Do not expand carriage control information.

16 Expand carriage control information (see Notes below).
32 File is read only.

Notes:

Expanded carriage control information applies only to formatted output
files and means that the first character of each record is used as a carriage
control character when processing a write operation to the given logical
unit. The first character is removed from the record and converted to the
appropriate ASCII characters to simulate the requested carriage control.

If carriage control information is not expanded, the first character of each
record is unmodified and the FORTRAN OTS outputs a line feed, followed
by the record, followed by a carriage return.

If carriage control is unspecified, the FORTRAN OTS sends expanded car-
riage control information to the terminal and line printer and sends unex-

3-12 System Subroutine Description and Examples

3.16

panded carriage control information to all other devices and files. See the
PDP-11 FORTRAN Language Reference Manual for further carriage con-
trol information.

Errors:

i = 0 Normal return.
<> 0 The specified logical unit is already in use, or there is no
space for another logical unit association.

Example:

The following example (1) creates an output file on logical unit 3,
using the first output file given to the RT-11 Command String Inter-
preter (CSI), (2) sets up the output file for double buffering, (3) cre-
ates an input file on logical unit 4, based on the first input file specifi-
cation given to the RT-11 CSI, and (4) makes the input file available
for read-only access.

INTEGER*2 SPEC(39)
REAL*4 EXT(2)
DATA EXT/GRDATDAT BRDATDAT/ IDEFAULT FILE TYPE IS DAT

+

.

0 IF(ICSI(SPECEXTs+0).NE.O) GOTO 10

DO NOT ACCEPT ANY SWITCHES

0300 e

CALL IASIGN(3,8PEC(1)SPEC(Z) ,8PEC(3) 1)
CALL TASIGN(4,S5PEC(LIB)+8PEC(17),0,32)

ICDFN

The ICDFN function increases the number of input/output channels. Note
that ICDFN defines new channels; any channels defined with an earlier
ICDFN function are not used. Thus, an ICDFN for 20(decimal) channels
(while the 16[decimal] original channels are defined) causes only 20 IO
channels to exist; the space for the original 16 is unused. The space for the
new channel area is allocated out of the free space managed by the FOR-
TRAN system.

Form: i = ICDFN (numl[,areal)

where:

num is the integer number of channels to be allocated. The number
of channels must be greater than 16 and can be a maximum of
256. The program can use all new channels greater than 16
without a call to IGETC; the FORTRAN system input/output
uses only the first 16 channels. This argument must be posi-
tioned so that the USR cannot swap over it

area is the space allocated from within the calling program. Under
FB and SJ monitors; be sure that the space is outside the USR
swapping area. If this argument is not specified, the space for
the channels is allocated in the FORTRAN OTS work area

System Subroutine Description and Examples 3-13

Notes:

ICDFN cannot be issued from a completion or interrupt routine.

It is recommended that the ICDFN function be used at the beginning of
the main program before any I/0 operations are initiated.

If ICDFN is executed more than once, a completely new set of channels
is created each time ICDFN is called.

ICDFN requires that extra memory space be allocated to foreground
programs (see Section 1.2.4.1).

Any channels that were open prior to the ICDFN are copied over to the
new set of channel status tables.

Function Results:

i =0 Normal return.
=1 An attempt was made to allocate fewer channels than al-
ready exist.
= 2 Not enough free space is available for the channel area.

Example:

IF(ICDFN(24).EQ.2) STOP ‘NOT ENOUGH MEMORY’

3.17 ICHCPY (FB and XM Only)

The ICHCPY function opens a channel for input, logically connecting it to a
file that is currently open by another job for either input or output. This
function can be used by either the foreground or the background job. An
ICHCPY must be done before the first read or write for the given channel.

Form: i = ICHCPY (chan,ochan[,jobblk])

where:

chan is the channel the job will use to read the data. You must
obtain this channel through an IGETC call, or you can use
channel 16 or higher if you have done an ICDFN call

ochan is the channel number of the other job that is to be copied

jobblk is a pointer to a three-word ASCII job name

Notes:

1.

If the other job’s channel was opened with an IENTER function or a
.ENTER programmed request to create a file, your channel indicates a
file that extends to the highest block that the creator of the file had
written at the time the ICHCPY was executed.

A channel that is open on a sequential-access device should not be
copied, because buffer requests can become intermixed.

3-14 System Subroutine Description and Examples

3.18

3.19

3. Your program can write on a copied channel to a file that is being
created by the other job, just as your program could if it were the crea-
tor. When your channel is closed, however, no directory update takes
place.

Errors:

i =0 Normal return.
=1 Specified job does not exist or does not have the specified
channel (ochan) open.
= 2 Channel (chan) is already open.

ICLOSE

See the SYSLIB subroutine CLOSEC.

ICMKT

The ICMKT function cancels one or more scheduling requests (made by an
ISCHED, ITIMER, or MRKT routine). Support for ICMKT in SJ requires
that timer support be created through SYSGEN.

Form: i = ICMKT (id,time)
where:

id is the identification integer of the request to be canceled. If id
is equal to 0, all scheduling requests are canceled

time is the name of a two-word area in which the monitor returns
the amount of time remaining in the canceled request

For further information on canceling scheduling requests, see the .CMKT
programmed request (Section 2.5).

Errors:

i =0 Normal return.
=1 id was not equal to 0 and no scheduling request with that
identification could be found.

Example:

INTEGER=*4 J

+

+

CALL ICMRT(O,J) 'ABORT ALL TIMER REQUESTS NOMW

+

+

END

System Subroutine Description and Examples 3-15

3.20 ICSI

The ICSI function calls the RT-11 Command String Interpreter in special
mode to parse a command string and return file descriptors and options to
the program. In this mode, the CSI does not perform any handler
IFETCHes, CLOSECs, IENTERSs, or LOOKUPs. ICSI cannot be called from
a completion or interrupt routine. This subroutine requires the USR.

Form: i = ICSI (filspc,deftyp,[cstring],[option],n)
where:

filspc is the 39-word area to receive the file specifications. The
format of this area (considered as a 39-element INTE-
GER*2 array) is:

Word 1 output file number 1
4 specification
5 output file number 1 length
6 output file number 2
9 specification
10 output file number 2 length
11 output file number 3
14 specification
15 output file number 3 length
16 input file number 1
19 specification
20 input file number 2
23 specification
24 input file number 3
27 specification
28 input file number 4
31 specification
32 input file number 5
35 specification
36 input file number 6
39 specification

deftyp is the table of Radix—50 default file types to be assumed
when a file is specified without a file type:

deftyp(1) is the default for all input file types

deftyp(2) is the default file type for output file number 1
deftyp(3) is the default file type for output file number 2
deftyp(4) is the default file type for output file number 3

cstring is the area that contains the ASCIZ command string to be
interpreted; the string must end in a zero byte. If the argu-
ment is omitted, the system prints the prompt character (*)
at the terminal and accepts a command string. If input is
from an indirect command file, the next line of that file is
used

3-16 System Subroutine Description and Examples

option

n

Notes:

is the name of an INTEGER*2 array dimensioned (4,n)
where n represents the number of options defined to the
program. This argument must be present if the value speci-
fied for n is non-zero. This array has the following format
for the jth option described by the array:

option(1,j) is the one-character ASCII name of the option

option(2,j) is set by the routine to 0, if the option did not
occur; to 1, if the option occurred without a
value; to 2, if the option occurred with a value

option(3,j) is set to the file number on which the option is
specified

option(4,j) is set to the specified value if option(2,n) is
equal to 2

is the number of options defined in the array option

1. The array option must be set up to contain the names of the valid
options. For example, use the following to set up names for five options:

INTEGER*2 SW(4,5)
DATASW(L1 1) /'8 /7 »GWC12)/ M/ »8W(14+3)/°17/
DATA SW(L+d) /7 'L/ +8WCL3)/E'/

2. Multiple occurrences of the same option are supported by allocating an
entry in the option array for each occurrence of the option. Each time
the option occurs in the option array, the next unused entry for the
named option is used.

3. The arguments of ICSI must be positioned so that the USR cannot swap
over them. For more information on calling the Command String Inter-
preter, see the .CSISPC programmed request (Section 2.11).

Errors:

Example:

WNH=O

Normal return.

Illegal command line; no data was returned.

An illegal device specification occurred in the string.

An illegal option was specified, or a given option was spec-
ified more times than were allowed for in the option array.

The following example causes the program to loop until a valid com-
mand is typed at the console terminal.

10
89

INTEGER*2 SPEC(38)
REAL*4 EXT(2)
DATA EXT/BRDATDAT BRDATDAT/

+

+

TYPE 88
FORMAT (/ ENTER VALID C8BI SBSTRING WITH NO OPTIONS’)
IF(ICSI(SPECEXT»+0)NE.Q) GOTO 10

System Subroutine Description and Examples 3-17

3.21 ICSTAT

The ICSTAT function obtains information about a channel.
Form: i = ICSTAT (chan,addr)

where:

chan is the channel whose status is desired

addr is a six-word area to receive the status information. The area,
as a six-element INTEGER*2 array, has the following format:

Word 1
2
3
4
5
6
Errors:
l =
Example:

channel status word

starting absolute block number of file on this chan-
nel

length of file

highest block number written since file was opened
unit number of device with which this channel is
associated

Radix—50 of device name with which the channel is
associated

0 Normal return.
1 Channel specified is not open.

The following example obtains channel status information about

channel 1.

INTEGER*2 AREA(B)

I=7

IF(ICSTAT(I AREA) JNE,O) TYPE 8989,1
99 FORMAT(1X s "CHANNEL *»14,I5 NOT OPEN’)

3.22 IDELET

The IDELET function deletes a named file from an indicated device.
IDELET requires the USR and cannot be issued from a completion or inter-

rupt routine.

Form: i = IDELET (chan,dblk[,seqnum])

where:
chan is the channel to be used for the delete operation. You
must obtain this channel through an IGETC call, or you
can use channel 16(decimal) or higher if you have done an
ICDFN call
dblk is the four-word Radix—50 specification (dev:filnam.typ)

for the file to be deleted

3-18 System Subroutine Description and Examples

seqnum

is the file number for cassette operations: if this argument
is blank, a value of 0 is assumed

For magtape operation, it describes a file sequence number that
can have the following values:

Value

|

Meaning

This value suppresses rewinding and searching for a file
name from the current tape position. Note that if the
position is unknown, the handler executes a positioning
algorithm that involves backspacing until an end-of-file
label is found. The user should not use any other value
since all other negative values are reserved for future
use.

This value rewinds the magtape and spaces forward un-
til the file name is found.

Where n is any positive number. This value positions
the magtape at file sequence number n. If the file repre-
sented by the file sequence number is greater than two
files away from the beginning of the tape, a rewind is
performed. If not, the tape is backspaced to the file.

NOTE

The arguments of IDELET must be located so that the USR
cannot swap over them.

The specified channel is left inactive when the IDELET is complete. IDE-
LET requires that the handler to be used be resident (via an IFETCH call
or a LOAD command from KMON) at the time the IDELET is issued. If the
handler is not resident, a monitor error occurs.

For further information on deleting files, see the .DELETE programmed
request (Section 2.15).

Errors:

Example:

LN~ O

Normal return.

Channel specified is already open.

File specified was not found.

Device in use.

The file is protected and cannot be deleted.

The following example deletes a file named FTN5.DAT from SYO.

REAL*4 FILNAM(Z)
DATA FILMAM/BRSYOFTNBRS DAT/

+

+

I=IGETCO)

IF(I.LT.,0) STOP ‘NO CHANNEL’
CALL IDELET(IsFILNAM)
CALL IFREEC(I)

System Subroutine Description and Examples 3-19

3.23

3.24

IDJFLT

The IDJFLT function converts an INTEGER*4 value into a REAL*8 (DOU-
BLE PRECISION) value and stores the result.

Form: i = IDJFLT (jsrc,dres)
where:
jsrc specifies the INTEGER*4 variable that is to be converted

dres specifies the REAL*8 (or DOUBLE PRECISION) variable to
receive the converted value

Function Results:

-1 Normal return; the result is negative.
0 Normal return; the result is 0.
1 Normal return; the result is positive.

i

Errors:
None.
Example:
INTEGER*4 JJ
REAL*8 DJ
IF(IDJFLT(JJ+DI)WLE.O) TYPE 99
99 FORMAT (’ VALUE IS NOT POSITIVE')

IDSTAT

The IDSTAT function obtains information about a particular device. It re-
quires the USR and cannot be issued from a completion or interrupt rou-
tine.

Form: i = IDSTAT (devnam,cblk)
where:
devnam is the Radix—50 device name

cblk is the four-word area used to store the status information.
The area, as a four-element INTEGER*2 array, has the
following format:

Word 1 device status word (see Section 2.25)
2 size of handler in bytes
3 entry point of handler (non-zero implies that
the handler is in memory)
4 size of the device (in 256-word blocks) for
block-replaceable devices; zero for sequential-
access devices

3-20 System Subroutine Description and Examples

3.25

NOTE

The arguments of IDSTAT must be positioned so that the
USR cannot swap over them.

IDSTAT looks for the device specified by devnam and, if found, returns four
words of status in cblk.

Errors:

0
1

_.
I

Example:

Normal return.
Device not found in monitor tables.

The following example determines whether the line printer handler
is in memory. If it is not, the program stops and prints a message to
indicate that the handler must be loaded.

INTEGER IDNAM

INTEGER*Z CBLK(4)

DATA IDNAM/3RLP /

DATA CBLK/4x%0/

CALL IDSTAT(IDNAM,CBLK)

IF(CBLK(3),EQ,0) STOP ‘LOAD THE LP HANDLER AND RERUN’

IENTER

The IENTER function allocates space on the specified device and creates a
tentative directory entry for the named file. If a file of the same name
already exists on the specified device, it is not deleted until the tentative
entry is made permanent by CLOSEC or ICLOSE. The file is attached to
the channel number specified. This routine requires the USR.

Form: i = IENTER (chan,dblk,length[,seqnum})

where:

chan

dblk

length

seqnum

is the integer specification for the RT-11 channel to be
associated with the file. You must obtain this channel
through an IGETC call, or you can use channel 16 or
higher if you have done an ICDFN call

is the four-word Radix—50 descriptor of the file to be oper-
ated upon

is the integer number of blocks to be allocated for the file.
If 0, the larger of either one-half the largest empty seg-
ment or the entire second largest empty segment is allo-
cated. If the value specified for length is —1, the entire
largest empty segment is allocated (see the .ENTER pro-
grammed request, Section 2.28)

is a file number for cassette. If this argument is blank, a
value of 0 is assumed.

System Subroutine Description and Examples 3-21

Notes:

For magtape, it describes a file sequence number that can
have the following values:

—2 Rewind the magtape and space forward until the file
name is found, or until logical-end-of-tape is de-
tected. The magtape is now positioned correctly. A
new logical-end-of-tape is implied.

—1 Space to the logical-end-of-tape and enter file.
0 Rewind the magtape and space forward until the file
name is found or the logical-end-of-tape is detected.

If the file name is found, an error is generated. If the
file name is not found, then enter file.

n Position magtape at file sequence number n if n is
greater than zero and the file name is not null.

1. IENTER cannot be issued from a completion or interrupt routine.

2. IENTER requires that the appropriate device handler be in memory.

3. The arguments of IENTER must be positioned so that the USR does not
swap over them.

For further information on creating tentative directory entries, see the
.ENTER programmed request (Section 2.28).

Errors:
1= n

= _1
= -2

= _3
4
= -b

Example:

Normal return; number of blocks actually allocated (n =
0 for non-file-structured IENTER).

Channel (chan) is already in use.

In a fixed-length request, no space greater than or equal
to length was found.

Device in use.

A file by that name already exists and is protected.
File sequence number not found.

The following example allocates a channel for file TEMP.TMP on
SYO. If no channel is available, the program prints a message and

halts.

REAL*4 DBLK(2)

DATA DBLK/GRSYOTEM:BRP TMP/

ICHAN=IGETC()

IF(ICHAN.LT.0) STOP ‘ND AVAILABLE CHANNEL

oo

CREATE TEMPORARY WORK FILE

IF(IENTER(ICHANDBLK »20),LT,0) STOP ‘ENTER FAILURE’

+

CALL PURGE(ICHAN)
CALL IFREEC(ICHAN)

3-22 System Subroutine Description and Examples

3.26

3.27

IFETCH

The IFETCH function loads a device handler into memory from the system
device, making the device available for input/output operations. The han-
dler is loaded into the free area managed by the FORTRAN system. Once
the handler is loaded, it cannot be released and the memory in which it
resides cannot be reclaimed. IFETCH requires the USR and cannot be is-
sued from a completion or interrupt routine. IFETCH issued from a fore-
ground job will fail unless the handler is already in memory.

Form: i = IFETCH (devnam)
where:
devnam is the one-word Radix—50 name of the device for which the
handler is desired. This argument can be the first word of

an ICSI input or output file specification. This argument
must be positioned so that the USR cannot swap over it

For further information on loading device handlers into memory, see the
FETCH programmed request (Section 2.30).

Errors:
i =0 Normal return.
=1 Device name specified does not exist.
= 2 Not enough room exists to load the handler.
= 3 No handler for the specified device exists on the system
device.
Example:

The following example requests that the DX handler be loaded into
memory; execution stops if the handler cannot be loaded.

REAL*4 IDNAM
DATA IDNAM/3RDX/

.

L]

IF (IFETCH(IDNAM).NE.0) STOP ‘FATAL ERROR FETCHING HANDLER’

IFPROT

The IFPROT function sets or removes file protection for a file.
Form: i = IFPROT (chan,filspc,prot)

where:

chan is the channel number to be used for the protect operation.
You must obtain this channel through an IGETC call, or you
can use the channel 16(decimal) or higher if you have done
an ICDFN call

filspc is the file specification of the file to be protected or unpro-
tected, in the format dev:filnam.typ

protect the file
remove protection from the file

prot 1
0

System Subroutine Description and Examples 3-23

Errors:

i =0 Normal return.
= 1 Channel is in use.
= 2 File not found.
=3 Invalid operation.
= 4 Invalid prot value.
Example:
This example protects the file SY:RT11FB.SYS against deletion.
ICHAN = IGETC() IALLOCATE CHANNEL

IF (ICHAN.LT.,0) STOP ‘CANNOT ALLOCATE CHANNEL'’
I=IFPROT(ICHAN, ‘SY:RT11FB.SYS’ 1)

+

END
3.28 IFREEC

The IFREEC function returns a specified RT-11 channel to the available
pool of channels. Before IFREEC is called, the specified channel must be
closed or deactivated with a CLOSEC or ICLOSE (see Section 3.3) or a
PURGE (see Section 3.92) call. IFREEC cannot be called from a completion
or interrupt routine. IFREEC calls must be issued only for channels that
have been successfully allocated by IGETC calls; otherwise, the results are

unpredictable.
Form: i1 = IFREEC (chan)
where:

chan is the integer number of the channel to be freed

Errors:

0 Normal return.
1 Specified channel is not currently allocated.

Example:
See the example under IGETC.

3.29 IGETC

The IGETC function allocates an RT-11 channel, in the range 0 to 15(deci-
mal), to be used by other SYSLIB routines and marks it in use so that the
FORTRAN I/O system will not access it. IGETC cannot be issued from a
completion or interrupt routine.

Form: i = IGETC()
Function Result:

i = n Channel n has been allocated.
Error:

i = =1 No channels are available.

3-24 System Subroutine Description and Examples

3.30

Example:

IGETSP

ICHAN=IGETC() 'ALLOCATE CHANNEL
IF(ICHAN.LT.0) STOP ‘CANNOT ALLOCATE CHANNEL '

+

+

CALL IFREEC(ICHAN) 'FREE IT WHEN THROUGH

+

END

The IGETSP subroutine obtains free space from the FORTRAN system and
returns the address and size (in number of words) of the allocated space.

When this space is obtained, it is allocated for the duration of the program.
Form: i = IGETSP (min,max,iaddr)
where:

min is the minimum space to be obtained without an error indi-

cating that the desired amount of space is not available

max is the maximum space to be obtained

iaddr is the integer specifying the address of the start of the free

space (buffer). Note that iaddr does not directly denote the
storage area as a standard FORTRAN variable would.
Rather, it denotes a word that contains the address of the
storage space. It is most useful with IPEEK and IPOKE, or
with assembly language subroutines

NOTE

Extreme caution should be exercised to avoid using all of the
free space allocated by the FORTRAN system. If the FOR-
TRAN system runs out of dynamic free space, fatal errors
(Error 29, 30, 42, and so forth) occur. See the RT-11 System
Message Manual.

Function Results:

i1=n The actual size allocated whose value is min .LE. n .LE.

max. The size (min, max, n) is specified in words.

Error:

i = =1 Not enough free space is available to meet the minimum
requirements; no allocation was taken from the FORTRAN
system free space.

Example:
N=IGETSP (256256 » IBUFF) IGET 256 WORD BUFFER
IF(N.LT,0) STOP ‘CANNDT GET BUFFER SPACE!’ INO SPACE AVAILABLE

System Subroutine Description and Examples 3-25

3.31

3.32

3.33

IGTJB

See the SYSLIB subroutine GTJB, Section 3.10.

IJCVT

ILUN

The IJCVT function converts an INTEGER*4 value to INTEGER*2 format.
If ires is not specified, the result returned is the INTEGER*2 value of jsrc.
If ires is specified, the result is stored there.

Form: i = I[JCVT (jsrcl,ires])
where:

jsrc specifies the INTEGER*4 variable or array element whose
value is to be converted

ires specifies the INTEGER*2 entity to receive the conversion re-
sult

Function Results (if ires is specified):

i = -2 An overflow occurred during conversion.
-1 Normal return; the result is negative.

0 Normal return; the result is 0.

=1 Normal return; the result is positive.

I

Errors:
None.
Example:

INTEGER*4 JVAL
INTEGER*Z IVAL

+

IF(IJCYT(JYAL »IVAL) WEQ.-2) TYPE 99
99 FORMAT(’ NUMBER TOO LARGE IN IJCVT CONVERSION')

The ILUN function returns the RT-11 channel number with which a FOR-
TRAN logical unit is associated.

Form: i = ILUN (lun)

where:

lun is an integer expression whose value is a FORTRAN logical
unit number in the range 1-99

Function Results:

+n RT-11 channel number n is associated with lun.
Errors:

—1 Logical unit is not open.
—2 Logical unit is opened to console terminal.

i

3-26 System Subroutine Description and Examples

Example:

PRINT 98
99 FORMAT(’ PRINT DEFAULTS TO LOGICAL UNIT 6, WHICH FURTHER DEFAULTS TO LP: ")
ICHAN=TILUN(G) IWHICH RT-11 CHANNEL IS RECEIVING I/07

3.34 INDEX

The INDEX subroutine searches a source string for the occurrence of a
pattern string and returns the character position of the first occurrence of
the pattern within the source.

Form: CALL INDEX (a,pattrn,[i],m)
or
m = INDEX (a,pattrnl[,i])
where:

a is the array containing the source string to be searched; it
must be terminated by a null byte

pattrn is the string being sought; it must be terminated by a null

byte

i is the integer starting character position of the search in a.
If i is omitted, a is searched beginning at the first character
position

m is an integer variable to store the result of the search; m is

set to the starting character position of pattrn in a, if found;
otherwise m is 0

Errors:
None.
Example:

The following example searches the array STRING for the first occur-
rence of strings EFG and XYZ and searches the string ABCABCABC
for the occurrence of string ABC after position 5.

CALL SCOPY(’ABCDEFGHI’STRING) PINITIALIZE STRING
CALL INDEX(STRING:’EFG’ M) IM=5
CALL INDEX(STRING: ' XYZ' s N) IN=0

CALL INDEX(‘ABCABCABC'+’ABC’5,L) IL=7

3.35 INSERT

The INSERT subroutine replaces a portion of one string with another
string.

Form: CALL INSERT (in,out,i[,m])

System Subroutine Description and Examples 3-27

3.36

where:

in is the array containing the string being inserted. The string
must be terminated with a null if the number of characters is
less than the value of m (below), or if m is not specified

out is the array containing the string being modified. The string
must be terminated with a null

i is the integer specifying the character position in out at which
the insertion begins

m is the integer maximum number of characters to be inserted

If the maximum number of characters (m) is not specified, all characters to
the right of the specified character position (i) in the string being modified
are replaced by the string being inserted. The insert string (in) and the
string being modified (out) can be in the same array only if the maximum
number of characters (m) is specified and is less than or equal to the differ-
ence between the position of the insert (i) and the maximum string length
of the array.

Errors:
None.

Example:
CALL SCOPY¥('ABCDEFGHIJ’ 581) PINITIALIZE STRING 1
CALL SCOPY(S1,52) IINITIALIZE STRING 2
CALL INSERT(’'123’,:81:+6:3) 1S1 = ‘ABCDE1231J°
CALL INSERT('12374+82:4) 1§82 = ‘ABC1237

INTSET

The INTSET function establishes a FORTRAN subroutine as an interrupt
service routine, assigns it a priority, and attaches it to a vector. INTSET
requires that extra memory be allocated to foreground programs that use it
(see Section 1.2.4.1).

Form: i = INTSET (vect,pri,id,crtn)

where:

vect is the integer specifying the address of the interrupt vector to
which the subroutine is to be attached

pri is the integer specifying the actual priority level (4—7) at
which the device interrupts

id is the identification integer to be passed as the single argu-
ment to the FORTRAN routine when an interrupt occurs.
This allows a single cr¢n to be associated with several INTSET
calls

3-28 System Subroutine Description and Examples

crtn is a FORTRAN subroutine to be established as the interrupt
routine. This name should be specified in an EXTERNAL
statement in the FORTRAN program that calls INTSET. The
subroutine has one argument:

SUBROUTINE crtn(id)
INTEGER id

When the routine is entered, the value of the integer argu-
ment is the value specified for id in the appropriate INTSET
call

Notes:

1.

The id argument can be used to distinguish between interrupts from
different vectors if the routine to be activated services multiple devices.

When using INTSET in FB or XM, the SYSLIB call DEVICE must be
used in almost all cases to prevent interrupts from interrupting beyond
program termination.

If the interrupt routine (crin) has control for a period of time longer
than the time in which two more interrupts using the same vector
occur, interrupt overrun is considered to have occurred. The error mes-
sage:

?SYSLIB-F-Interrupt overrun

is printed and the job is aborted. Jobs requiring very fast interrupt
response are not viable with FORTRAN, since FORTRAN overhead
lowers RT—11’s interrupt response rate.

The interrupt routine (cr¢n) is actually run as a completion routine by
the RT-11 .SYNCH macro. The pri argument is used for the RT-11
INTEN macro.

A .PROTECT request is issued for the vector, but no attempt is made to
report an error if the vector is already protected; furthermore, the vec-
tor is taken over unconditionally. See the .PROTECT programmed re-
quest (Section 2.60) for more information.

The FORTRAN interrupt service subroutine (cr¢n) cannot call the USR.
INTSET cannot be called from a completion or interrupt routine.

Interrupt enable should not be set on the associated device until the
INTSET call has been successfully executed.

Errors:

Normal return.

Invalid vector specification.

Reserved for future use.

No space is available for the linkage setup.

T T |
LN - O

System Subroutine Description and Examples 3-29

Example:

EXTERNAL CLKSUB !SUBR TD HANDLE KW11-P CLOCK
I=INTSET("104,+6:0,CLKSUB) 'ATTACH ROUTINE

IF (I.NE.O) GOTO 100 'BRANCH IF ERROR

END

SUBROUTINE CLKSUB(ID)

+

END
3.37 IPEEK

The IPEEK function returns the contents of the word located at a specified
absolute 16-bit memory address. This function can examine device registers
or any location in memory.

Form: i = IPEEK (iaddr)
where:

iaddr is the integer specification of the absolute address to be exa-
mined. If this argument is not an even value, a trap results
(except on LSI-11 or a PDP-11/23)

Function Result:
The function result (i) is set to the value of the word examined.
Example:

ISWIT = IPEEK("177570) 'GET VALUE OF CONSOLE SWITCHES

3.38 IPEEKB

The IPEEKB subroutine returns the contents of a byte located at a speci-
fied absolute byte address. Since this routine operates in a byte mode, the
address supplied can be odd or even. This subroutine can examine device
registers or any byte in memory. The return is zero extended, that is, the
high byte is 0.

Form: i = IPEEKB (iaddr)
where:

iaddr is the integer specification of the absolute byte address to be
examined. Unlike the IPEEK subroutine, the IPEEKB sub-
routine allows odd addresses

Function Result:
The function result (i) is set to the value of the byte examined.

Example:
IERR = IPEEKB("S53) 'Get error brte

3-30 System Subroutine Description and Examples

3.39

3.40

IPOKE

The IPOKE subroutine stores a specified 16-bit integer value into a speci-
fied absolute memory location. This subroutine can store values in device
registers.

Form: CALL IPOKE (iaddr,ivalue)

where:

iaddr is the integer specification of the absolute address to be
modified. If this argument is not an even value, a trap re-
sults (except on LSI-11 or PDP-11/23)

ivalue is the integer value to be stored in the given address speci-
fied by the iaddr argument

Errors:
None.
Example:

The following example displays the value of IVAL in the console
display register (this is possible only on certain processors).

CALL IPOKE("177870,IVAL)

To set bit 12 in the JSW without zeroing any other bits in the JSW,
use the following procedure.

CALL IPOKE("44,"10000,0R.IPEER("44))

IPOKEB

The IPOKEB subroutine stores a specified eight-bit, integer value into a
specified byte location. Since this routine operates in a byte mode, the
address supplied can be odd or even. This subroutine can store values in
device registers. '

Form: CALL IPOKEB (iaddr,ivalue)

where:

iaddr is the integer specification of the absolute address to be
modified. Unlike the IPOKE subroutine, the IPOKEB sub-
routine allows odd addresses

ivalue is the integer value to be stored in the given address speci-
fied by the iaddr argument

Errors:
None.

Example:

caLL IPOKEB("S53,"20) ! Tell KMON unconditionally fatal error

System Subroutine Description and Examples 3-31

3.41 IPUT

The IPUT function replaces the value of a monitor fixed offset. IPUT uses
the monitor .PVAL programmed request.

Form: i = IPUT (ioff,value)
where:
ioff is the offset (from the base of RMON) to be modified

value is the integer value to replace the current contents of the
offset location

Function Result:

i = old (replaced) value of the fixed offset location.
Example:
ISIZE = IPUT ("314, 100) ! Chande default file size used by ENTER

3.42 IQSET

The IQSET function is used to make the RT-11 I/O queue larger — that is,
to add available elements to the queue. These elements are allocated out of
the free space managed by the FORTRAN system. IQSET cannot be called
from a completion or interrupt routine.

Form: i = IQSET (qleng[,area])
where:

gleng is the integer number of elements to be added to the queue.
This argument must be positioned so that the USR does not
swap over it

area is the space allocated from within the calling program. Un-
der FB and SJ monitors, make sure that the space is outside
the USR swapping area. If this argument is not specified, the
space for the elements is allocated in the FORTRAN OTS
work area

All RT-11 T/O transfers are done through a centralized queue management
system. If I/O traffic is very heavy and not enough queue elements are
available, the program issuing the I/O requests is suspended until a queue
element becomes available. In an FB or XM system, the other job can run
while the first program waits for the element. When IQSET is used in a
program to be run in the foreground, the FRUN command must be modified
to allocate space for the queue elements (see Section 1.2.4.1).

A general rule to follow is that each program should contain one more
queue element than the total number of /O and timer requests that will be
active simultaneously. Timing functions such as ITWAIT and MRKT also
cause elements to be used and must be considered when allocating queue
elements for a program. Note that if synchronous I/O is done (for example,
IREADW/IWRITW) and no timing functions are done, no additional queue
elements need be allocated. Note also that FORTRAN IV allocates four
queue elements by default.

3-32 System Subroutine Description and Examples

The following subroutines require queue elements:

IRCVD/IRCVDC/IRCVDF/IRCVDW ITIMER
IREAD/IREADC/IREADF/IREADW ITWAIT

ISCHED IUNTIL
ISDAT/ISDATC/ISDATF/ISDATW IWRITEAWRITC/IWRITF/IWRITW
ISLEEP MRKT

ISPFN/ISPFNC/ISPFNF/ISPFNW ~ MWAIT

For further information on adding elements to the queue, see the .QSET
programmed request.

Errors:
i = 0 Normal return.
— 1 Not enough free space is available for the number of
queue elements to be added; no allocation was made.
Example:

IF(IOBET(5),NE.0) STOP ‘NOT ENOUGH FREE SPACE FOR QUEUE ELEMENTS’

3.43 IRAD5S0

The IRAD50 function converts a specified number of ASCII characters to
Radix—50 and returns the number of characters converted. Conversion
stops on the first non-Radix—50 character encountered in the input, or when
the specified number of ASCII characters have been converted.

Form: n = IRADS50 (icnt,input,output)

where:
n is the integer number of input characters actually con-
nected
icnt is the number of ASCII characters to be converted

input is the area from which input characters are taken
output is the area in which Radix-50 words are stored

Three characters of text are packed into each word of output. The number
of output words modified is computed by the expression (in integer words):

(ient +2)/3

Thus, if a count of 4 is specified, two words of output are written even if
only a one-character input string is given as an argument.

Function Result:

The integer number of input characters actually converted (n) is returned
as the function result.

Example:

REAL*8 FSPEC
CALL IRADSO(12,'S8YOTEMP DAT'FSPEC)

3.44 IRCVD/IRCVDC/IRCVDF/IRCVDW (FB and XM Only)

There are four forms of the receive data function; these are used in conjunc-
tion with the ISDAT (send data) functions to allow a general data/message

System Subroutine Description and Examples 3-33

transfer system. The receive data functions issue RT-11 receive data pro-
grammed requests (see Section 2.66). These functions require a queue ele-
ment; this should be considered when the IQSET function (Section 3.42) is
executed.

IRCVD

The IRCVD function receives data and continues execution. The operation
is queued and the issuing job continues execution. When the job has to
receive the transmitted message, an MWAIT should be executed. This
causes the job to be suspended until all pending messages have been
received.

Form: i = IRCVD (buff,wecnt)

where:

buff is the array to be used to buffer the data received. The array
must be one word larger than the message to be received
because the first word contains the integer number of words
actually transmitted when IRCVD is complete

went is the maximum integer number of words that can be
received

Errors:

i = 0 Normal return.
1 No such job exists in the system. (A job exists as long as it
is loaded, whether or not it is active.)

Example:
INTEGER*2 MSG(41)

[

3

CALL IRCUD(MSG.,40)

+

.

CALL MWAIT

IRCVDC

The IRCVDC function receives data and enters an assembly language com-
pletion routine when the message is received. The IRCVDC is queued, and
program execution stays with the issuing job. When the other job sends a
message, the completion routine specified is queued and run according to
standard scheduling of completion routines.

Form: i = IRCVDC (buff,went,crtn)

where:

buff is the array to be used to buffer the data received. The array
must be one word larger than the message to be received be-
cause the first word contains the integer number of words
actually transmitted when IRCVDC is complete

3-34 System Subroutine Description and Examples

went is the maximum integer number of words to be received

crtn is the assembly language completion routine to be entered.
This name must be specified in a FORTRAN EXTERNAL
statement in the routine that issues the IRCVDC call

Errors:

i = 0 Normal return.
1 No such job exists in the system. (A job exists as long as it
is loaded, whether or not it is active.)

IRCVDF

The IRCVDF function receives data and enters a FORTRAN completion
subroutine when the message is received. The IRCVDF is queued, and pro-
gram execution continues with the issuing job. When the other job sends a
message, the FORTRAN completion routine specified is entered.

Form: i = IRCVDF (buff,wcnt,area,crtn)

where:

buff is the array to be used to buffer the data received. The array
must be one word larger than the message to be received
because the first word contains the integer number of words
actually transmitted when IRCVDF is complete

went is the maximum integer number of words to be received

area is a four-word area to be set aside for linkage information.
This area must not be modified by the FORTRAN program
and the USR must not swap over it. This area can be re-
claimed by other FORTRAN completion routines when crin
has been entered

crtn is the FORTRAN completion routine to be entered. This name
must be specified in an EXTERNAL statement in the FOR-
TRAN routine that issues the IRCVDF call

Errors:
i = 0 Normal return.
= 1 No such job exists in the system. (A job exists as long as it
is loaded, whether or not it is active.)
Example:

INTEGER*2 MSG(41) »AREA(4)
EXTERNAL RMSGRT

4

+

CALL IRCVDF(MSG .40 +AREARMEGRT)

IRCVDW
The IRCVDW function receives data and waits. This function queues a
message request and suspends the job issuing the request until the other

System Subroutine Description and Examples 3-35

job sends a message. When execution of the issuing job resumes, the mes-
sage has been received, and the first word of the buffer indicates the num-
ber of words transmitted.

Form: i = IRCVDW (buff,went)

where:

buff is the array to be used to buffer the data received. The array
must be one word larger than the message to be received
because the first word contains the integer number of words
actually transmitted when IRCVDW is complete

went is the maximum integer number of words to be received

Errors:

i = 0 Normal return.
= 1 No such job exists in the system. (A job exists as long as it
is loaded, whether or not it is active.)

Example:

INTEGER#*#2 MSG(d41)
IF(IRCUDW(MSG+40) .NE.OQ) STOP ‘UNEXPECTED ERROR‘

3.45 IREAD/IREADC/IREADF/IREADW

The functions IREAD, IREADC, IREADF, and IREADW transfer a speci-
fied number of words from a file into memory. These functions require a
queue element, which should be considered when the IQSET function (Sec-
tion 3.42) is executed.

IREAD

The IREAD function transfers into memory a specified number of words
from the file associated with the indicated channel. Control returns to the
user program immediately after the IREAD function is initiated. No special
action is taken when the transfer is completed.

Form: i = IREAD (went,buff,blk,chan)

where:

went is the relative integer number of words to be transferred

buff is the array to be used as the buffer; this array must contain
at least went words

blk is the integer block number of the file to be read. The first
block of a file is block number 0. The blk argument must be
updated when necessary. For example, if the program is read-
ing two blocks at a time, blk should be updated by 2

chan is the integer specification for the RT—11 channel to be used

When the user program needs to access the data read on the specified
channel, an IWAIT function should be issued. This makes sure that the

3-36 System Subroutine Description and Examples

IREAD operation has been completed. If an error occurred during the trans-
fer, the IWAIT function indicates the error.

Errors:

i =

n Normal return; n equals the number of words requested (0
for non-file-structured read, multiple of 256[decimal] for
file-structured read). If the read is from a magtape, the
number of words requested is returned. For example:

If went is a multiple of 256 and less than that number
of words remain in the file, n is shortened to the num-
ber of words that remain in the file; thus, if went is 512
and only 256 words remain, i = 256.

If went is not a multiple of 256 and more than wcnt
words remain in the file, n is rounded up to the next
block; thus, if went is 312 and more than 312 words
remain, i = 512, but only 312 are read.

If went is not a multiple of 256 and less than wcnt
words remain in the file, n equals a multiple of 256 that
is the actual number of words being read.

—1 Attempt to read past end-of-file; no words remain in the file.
—2 Hardware error occurred on channel.
-3 Specified channel is not open.

NOTE

If an asynchronous operation on a channel (for example,
IREAD) results in end-of-file, the following IWAIT will not
detect it. IWAIT detects only hard error conditions. A subse-
quent operation on that channel will detect end-of-file and
returns to the user with the end-of-file error code. Under
these conditions, the subsequent operation is not initiated.

Example:

i0

1000
C

1010

INTEGER*2 BUFFER(Z856) RCODE,BLK

+

+

+
RCODE

= IREAD(256/BUFFERBLK ICHAN)

IF(RCODE+1) 10101000410

IF NO

+

ERROR s START HERE

IF(IMAIT(ICHAN) (NE,O) GOTO 1010

+

L]

+
CONTINUE
END OF FILE PROCESSING

+

.

CALL EXIT INODRMAL END OF PROGRAM
STOP ‘FATAL READ’

END

System Subroutine Description and Examples 3-37

IREADC

The IREADC function transfers a specified number of words from the indi-
cated channel into memory. Control returns to the user program immedi-
ately after the IREADC function is initiated. When the operation is com-
plete, the specified assembly language routine (crtn) is entered as an asyn-
chronous completion routine.

Form: i = IREADC (went,buff,blk,chan,crtn)

where:

went is the integer number of words to be transferred

buff is the array to be used as the buffer; this array must contain
at least went words

blk is the integer block number of the file to be read. The user
program normally updates blk before it is used again. The
first block of a file is block number 0

chan is the integer specification for the RT—11 channel to be used

crtn is the assembly language routine to be activated when the
transfer is complete. This name must be specified in an EX-
TERNAL statement in the FORTRAN routine that issues the
IREADC call

Errors:
See the errors under IREAD.
Example:

INTEGER*2 IBUF(25B) RCODE s IBLK
EXTERNAL RDCMP

+

+

RCODE=IREADC(256+IBUF »IBLK ICHAN sRDCMP)

IREADF

The IREADF function transfers a specified number of words from the indi-
cated channel into memory. Control returns to the user program immedi-
ately after the IREADF function is initiated. When the operation is com-
plete, the specified FORTRAN subprogram (cr¢n) is entered as an asynchro-
nous completion routine (see Section 1.2.1.2).

Form: i = IREADF (went,buff,blk,chan,area,crtn)
where:
went is the integer number of words to be transferred

buff is the array to be used as the buffer; this array must contain
at least went words

blk is the integer block number of the file to be used. The user
program normally updates blk before it is used again. The
first block of a file is block number 0

3-38 System Subroutine Description and Examples

chan is the integer specification for the RT—11 channel to be used

area is a four-word area to be set aside for link information; this
area must not be modified by the FORTRAN program or
swapped over by the USR. This area can be reclaimed by
other FORTRAN completion functions when crin has been

activated

crtn is the FORTRAN routine to be activated on completion of the
transfer. This name must be specified in an EXTERNAL
statement in the routine that issues the IREADF call. Section

1.2.1.2 describes completion routines

Errors:

See the errors under IREAD.

Example:

20
100

INTEGER#*2 DBLK(4) ,BUFFER(256) »BLKNO
DATA DBLK/3RDX0:3RINP,3RUT +3RDAT/BLKND/O/
EXTERNAL RCMPLT

*

ICHAN=IGETC ()

IF(ICHAN.LT.0) STOP ‘NO CHANNEL AVAILABLE’
IF(IFETCH(DBLK) ,NE.0) STOP ‘BAD FETCH’
IF(LOOKUP(ICHANDBLK) .LT.0) STOP ‘'BAD LOOKUP'’

IF(IREADF (256 +BUFFER +BLKNO s ICHAN +DBLK »RCMPLT).LT.0) GOTOD

PERFORM OVERLAP PROCESSING

SYNCHRONIZER

CALL IWAIT(ICHAN) !'WAIT FOR COMPLETION ROUTINE TO RUN
BLKNO=BLKNO+1 'UPDATE BLOCK NUMBER

GOTO 20

+

END OF FILE PROCESSING
CALL ICLOSE(ICHAN.I)
I=ICLOSE()

CALL IFREEC(ICHAN)

4+

CALL EXIT

END

SUBROUTINE RCMPLT(I»J)

THIS IS THE COMPLETION ROUTINE

+

RETURN
END

System Subroutine Description and Examples 3-39

IREADW

The IREADW function transfers a specified number of words from the indi-
cated channel into memory. Control returns to the user program when the
transfer is complete or when an error is detected.

Form: i = IREADW (went,buff,blk,chan)

where:

went is the integer number of words to be transferred

buff is the array to be used as the buffer; this array must contain
at least went words

blk is the integer block number of the file to be read. The user
program normally updates blk before it is used again

chan is the integer specification for the RT-11 channel to be used
Errors:

See the errors under IREAD.
Example:

INTEGER*2 IBUF(1024)

+

+

ICODE=IREADMW (1024 IBUF +IBLK +ICHAN)

IF(ICODE.E®.-1) GOTD 100 'END OF FILE PROCESSING AT 100
IF(ICODE.LT.-1) GOTO 200 'ERROR PROCESSING AT 200

c

c MODIFY BLOCKS

C

C

C WRITE THEM OUT

C

ICODE=IWRITW(1024,IBUF yIBLK sICHAN)

3.46 IRENAM

The IRENAM function causes an immediate change of the name of a speci-
fied file.

Form: i = IRENAM (chan,dblk)

where:

chan is the integer specification for the RT-11 channel to be used
for the operation. You must obtain this channel through an
IGETC call, or you can use channel 16(decimal) or higher if
you have done an ICDFN call. The channel is again available
for use once the rename operation is completed

dblk is the eight-word area specifying the name of the existing file
and the new name to be assigned. If considered as an eight-
element INTEGER*2 array, dblk has the form:

3-40 System Subroutine Description and Examples

3.47

Words 14 specify the Radix—50 file descriptor for the old
file name

Words 5-8 specify the Radix—50 file descriptor for the
new file name

NOTE

The arguments of IRENAM must be positioned so that the
USR does not swap over them.

If a file already exists with the same name as the new file on the indicated
device, it is deleted. IRENAM requires that the handler to be used be resi-
dent at the time the IRENAM is issued. If it is not, a monitor error occurs.
The device names specified in the file descriptors must be the same.

For more information on renaming files, see the .RENAME programmed
request (Section 2.71).

Errors:
i = 0 Normal return.
= 1 Specified channel is already open.
= 2 Specified file was not found.
= 8 A file by that name already exists and is protected.
Example:

REAL*8 NAME(Z)
DATA NAME/1Z2RDKOFTNZ DAT12RDKOFTNZ OLD/

+

ICHAN=IGETC()

IF(ICHAN.LT.O) STOP ‘NO CHANNEL’

CALL IRENAM(ICHAN,NAME) !PRESERVE OLD DATA FILE
CALL IFREEC(ICHAN)

IREOPN

The IREOPN function reassociates a specified channel with a file on which
an ISAVES was performed. The ISAVES/IREOPN combination is useful
when a large number of files must be operated on at one time. Necessary
files can be opened with LOOKUP and their status preserved with
ISAVES. When data is required from a file, an IREOPN enables the pro-
gram to read from the file. The IREOPN need not be done on the same
channel as the original LOOKUP and ISAVES.

Form: i = IREOPN (chan,cblk)
where:

chan is the integer specification for the RT-11 channel to be asso-
ciated with the reopened file; this channel must be initially
inactive

System Subroutine Description and Examples 341

3.48

cblk is the five-word block where the channel status information
was stored by a previous ISAVES. This block, considered as a
five-element INTEGER*2 array, has the following format:

Word 1 Channel status word.

2 Starting block number of the file; zero for non-
file-structured devices.

3 Length of file (in 256-word blocks).

4 Reserved for future use.

5 Two information bytes. Even byte: I/O count of
the number of requests outstanding on this chan-
nel. Odd byte: unit number of the device associ-
ated with the channel.

Errors:

0 Normal return.
Specified channel is already in use.

i
—

Example:

INTEGER*2 SAVES(5,10)
DATA ISVPTR/1/

+

+

CALL ISAVES(ICHANBAVES(1,,ISVPTR))

+

+
CALL IREOPN(ICHAN:SAVES(1,+ISVUPTR))

ISAVES

The ISAVES function stores five words of channel status information into a
user-specified array. These words contain all the information that RT-11
requires to completely define a file. When an ISAVES is finished, the data
words are placed in memory and the specified channel is closed, so that it is
again available for use. When the saved channel data is required, the IRE-
OPN function (Section 3.47) is used.

ISAVES can be used only if a file was opened with a LOOKUP call (see
Section 3.79). If IENTER was used, ISAVES returns an error. Note that
ISAVES is not legal on magtape or cassette files.

Form: i = ISAVES (chan,cblk)
where:

chan is the integer specification for the RT-11 channel whose
status is to be saved. You must obtain this channel through
an IGETC call, or you can use channel 16 or higher if you
have done an ICDFN call

cblk is a five-word block in which the channel status information
describing the open file is stored (see Section 3.47 for the
format of this block).

342 System Subroutine Description and Examples

3.49

The ISAVES/IREOPN combination is very useful, but care must be ex-
ercised when using it. In particular, the following cases should be avoided.

1. If an ISAVES is performed on a file and the same file is then
deleted before it is reopened, the space occupied by the file be-
comes available as an empty space which could then be used by
the IENTER function. If this sequence occurs, there is a change in
the contents of the file whose status was supposedly saved.

2. Although the handler for the required peripheral need not be in
memory for execution of an IREOPN, a fatal error is generated if
the handler is not in memory when an IREAD or IWRITE is
executed.

Errors:

i =

Example:

Normal return.

The specified channel is not currently associated with any
file.

The file was opened with an IENTER call.

INTEGER*2 BLK(3)

3

+
IF(ISAVES(ICHAN,BLK) . NE.O) BTOP ‘ISAVES ERROR’

ISCHED

The ISCHED function schedules a specified FORTRAN subroutine to be
run as an asynchronous completion routine at a specified time of day. Sup-
port for ISCHED in SJ requires timer support.

Form: i = ISCHED (hrs,min,sec,tick,area,id,crtn)

where:

hrs
min
sec

tick

area

id

is the integer number of hours
is the integer number of minutes
is the integer number of seconds

is the integer number of ticks (1/60 of a second on 60-cycle
clocks; 1/50 of a second on 50-cycle clocks)

is a four-word area that must be provided for link informa-
tion; this area must never be modified by the FORTRAN pro-
gram, and the USR must not swap over it. This area can be
reclaimed by other FORTRAN completion functions when
crtn has been activated

is the identification integer to be passed to the routine being
scheduled

System Subroutine Description and Examples 343

crtn is the name of the FORTRAN subroutine to be entered at the
time of day specified. This name must be specified in an EX-
TERNAL statement in the FORTRAN routine that issues the
ISCHED call. The subroutine has one argument. For exam-
ple:

SUBROUTINE crtn(id)
INTEGER id

When the routine is entered, the value of the integer argu-
ment is the value specified for id in the appropriate ISCHED
call

Notes:

1. The scheduling request made by ISCHED can be canceled at a later
time by an ICMKT function call.

2. If the system is busy, the actual time of day that the completion routine
is run may be later than the requested time of day.

3. A FORTRAN subroutine can periodically reschedule itself by issuing
its own ISCHED or ITIMER calls from within the routine.

4. ISCHED requires a queue element; this should be considered when the
IQSET function (Section 3.42) is executed.

Errors:

i = 0 Normal return.

= 1 No queue elements available; unable to schedule request.

Example:

INTEGER*2Z LINK(4) ILINKAGE AREA

EXTERNAL NOON INAME OF ROUTINE TO RUN

i=ISCHED(12'0'0»0’LINK’O'NODN) IRUN SUBR NOON AT 12 PM

) (rest of main Prodram)

éND

SUBROUTINE NOON(ID)

C
c THIS ROUTINE WILL TERMINATE EXECUTION AT LUNCHTIME .,
c IF THE JOB HAS NOT COMPLETED BY THAT TIME.
C
STOP ‘ABORT JOB -- LUNCHTIME'
END

3.50 ISCOMP
(See SYSLIB subroutine SCOMP.)

3.51 ISDAT/ISDATC/ISDATF/ISDATW (FB and XM Only)

The functions ISDAT, ISDATC, ISDATF, and ISDATW are used with the
IRCVD, IRCVDC, IRCVDF, and IRCVDW calls to allow message transfers
under the FB or XM monitor. Note that the buffer containing the message

3-44 System Subroutine Description and Examples

should not be modified or reused until the message has been received by the
other job. These functions require a queue element, which should be consid-
ered when the IQSET function (see Section 3.42) is executed.

ISDAT

The ISDAT function transfers a specified number of words from one job to
the other. Control returns to the user program immediately after the trans-
fer is queued. This call is used with the MWAIT routine (see Section 3.90).

Form: i = ISDAT (buff,went)
where:
buff is the array containing the data to be transferred

went s the integer number of data words to be transferred

Errors:
i = 0 Normal return.
= 1 No such job currently exists in the system. (A job exists as
long is it is loadable, whether or not it is active.)
Example:
INTEGER*2 MSG(40)
CALL ISDAT(MSG:40)
CALL MWAIT
c PUT NEW MESSAGE IN BUFFER
ISDATC

The ISDATC function transfers a specified number of words from one job to
another. Control returns to the user program immediately after the trans-
fer is queued. When the other job accepts the message through a receive
data request, the specified assembly language routine (crtn) is activated as
an asynchronous completion routine.

Form: i = ISDATC (buff,went,crtn)

where:

buff is the array containing the data to be transferred
went is the integer number of data words to be transferred

crtn is the name of an assembly language routine to be activated
on completion of the transfer. This name must be specified in
an EXTERNAL statement in the FORTRAN routine that is-
sues the ISDATC call

Errors:

i = 0 Normal return.
= 1 No such job currently exists in the system. (A job exists as
long as it is loaded, whether or not it is active.)

System Subroutine Description and Examples 3-45

Example:

INTEGER+#2 MS5G(40)
EXTERNAL RTN

+

4

CALL ISDATC(MSG40:RTN)

ISDATF

The ISDATF function transfers a specified number of words from one job to
the other. Control returns to the user program immediately after the trans-
fer is queued and execution continues. When the other job accepts the mes-
sage through a receive data request, the specified FORTRAN subprogram
(crtn) is activated as an asynchronous completion routine (see Section
1.2.1.2).

Form: i = ISDATF (buff,went,area,crtn)

where:

buff is the array containing the data to be transferred
went is the integer number of data words to be transferred

area is a four-word area to be set aside for link information; this
area must not be modified by the FORTRAN program and the
USR must not swap over it. This area can be reclaimed by
other FORTRAN completion functions when crtn has been
activated :

crtn is the name of a FORTRAN routine to be activated on comple-
tion of the transfer. This name must be specified in an EX-
TERNAL statement in the FORTRAN routine that issues the
ISDATF call

Errors:
i = 0 Normal return.
= 1 No such job currently exists in the system. (A job exists as
long as it is loaded, whether or not it is active.)
Example:

INTEGER*2 MSG(40) sSPOT(4)
EXTERNAL RTN

+

3

CALL ISDATF(MSG.:40,5P0TRTN)

ISDATW

The ISDATW function transfers a specified number of words from one job to
the other. Control returns to the user program when the other job has
accepted the data through a receive data request.

Form: i = ISDATW (buff,wcnt)

346 System Subroutine Description and Examples

where:

buff is the array containing the data to be transferred

went is the integer number of data words to be transferred

Errors:
i = 0 Normal return.
= 1 No such job exists in the system. (A job exists as long as it is
loaded, whether or not it is active.)
Example:

INTEGER*2 MS5G(40)

+

+

IF (ISDATW(MSG,40).NE.O) STOP 'FOREGROUND JOB NOT RUNNING’

3.52 ISDTTM

The ISDTTM function sets the system date and time. An argument of —1
leaves the corresponding value unchanged.

Form: CALL ISDTTM (date,hitime,lotime)

where:

date is the new system date
hitime is the high-order time of day, in ticks past midnight

lotime is the low-order time of day, in ticks past midnight

Example:

C DEFINE NEW SYSTEM DATE BUT LEAVE TIME UNCHANGED
IDATE = IMONTH*1024+IDAY*32+(IYEAR-1972)
CALL ISDTTM (IDATE, -1, -1)

+
3

+

3.53 ISFDAT

The ISFDAT function allows user programs to modify the creation date of
an RT-11 file. The device must have an RT-11 file structure.

Form: i = ISFDAT (chan,dblk,idate)
where:

chan is the integer value of the RT-11 channel to be used for the
operation. You must obtain this channel through an IGETC
call, or you can use channel 16(decimal) or higher if you have
done an ICDFN call

System Subroutine Description and Examples 3-47

dblk is the four word RT-11 file specification, in Radix—50, of the
file whose date is being changed

idate is the integer date in RT—11 date format

Errors:
i = 0 Normal return.
= 1 Channel in use.
= 2 File not found.
= 3 Invalid operation.
Example:

This example changes the date of the file DY1:OLD23.DAT to July 4,
1976.

REAL*4 FILNAM(Z)
DATA FILNAM /GRDY10LDBRZ23 DAT/

IDATE=7%1024 + 4%32 + (1976-1972) TJuLy 44 1876
ICHAN = IGETC(Q) 'ALLOCATE CHANNEL
I = ISFDAT(ICHANFILNAM/IDATE) !SET THE DATE

IF (I.NE.O) STOP ‘ERROR DURING ISFDAT CALL’

.

END

3.54 ISLEEP

The ISLEEP function suspends the main program execution of a job for a
specified amount of time. The specified time is the sum of hours, minutes,

seconds, and ticks specified in the ISLEEP call. All completion routines
continue to execute.

Form: i = ISLEEP (hrs,min,sec,tick)
where:
hrs is the integer number of hours
min is the integer number of minutes
sec is the integer number of seconds

tick is the integer number of ticks (1/60 of a second on 60-cycle
clocks; 1/50 of a second on 50-cycle clocks)

Notes:

1. SLEEP requires a queue element, which should be considered when the
IQSET function (Section 3.42) is executed.

2. If the system is busy, the time in which execution is suspended may be
later than that specified.

Errors:

i = 0 Normal return.
= 1 No queue element available.

348 System Subroutine Description and Examples

3.55

Example:

+

. +

CALL IQSET(2)

+

+

CALL ISLEEP{(0:0,0,4) 'GIVE BACKGROUND JOB SOME TIME

ISPFN/ISPFNC/ISPFNF/ISPFNW

The functions ISPFN, ISPFNC, ISPFNF, and ISPFNW are used in conjunc-
tion with special functions to various handlers. They provide a means of
doing device-dependent functions, such as rewind and backspace, to those
devices. If ISPFN function calls are made to any other devices, the function
call is ignored. For more information on programming for specific devices,
see the RT—11 Software Support Manual.

To use these functions, the handler must be in memory, and a channel must
be associated with a file via a non-file-structured LOOKUP call. These
functions require a queue element; this should be considered when the
IQSET function (Section 3.42) is executed.

ISPFN

The ISPFN function queues the specified operation and immediately re-
turns control to the user program. The IWAIT function can be used to
ensure completion of the operation.

Form: i = ISPFN (code,chan[,wcnt,buff,blk])

where:

code is the integer numeric code of the function to be performed
(see Table 3-1)

chan is the integer specification for the RT—-11 channel to be used
for the operation. You must obtain this channel through an
IGETC call, or you can use: channel 16(decimal) or higher if
you have done an. ICDFN call

went is the integer number of data words in the operation. This
parameter is optional with some ISPFN calls, depending on
the particular function. Default value is 0. In magtape opera-
tions, it specifies the number of records to space forward or
backward. For a backspace operation (wcnt=0), the tape drive
backspaces to a tape mark or to the beginning-of-tape. For a
forward space operation (wcnt=0), the tape drive forward
spaces to a tape mark or the end-of-tape

buff is the array to be used as the data buffer. This parameter is
optional with some ISPFN calls, depending on the particular
function. Default value is 0

System Subroutine Description and Examples 3—49

blk is the integer block number of the file to be operated upon.
This parameter is optional with some ISPFN calls, depending
on the particular function. Default value is 0

When this argument is supplied by magtape, it is the address
of a four-word error and status block used for returning the
exception conditions. The four words must be initialized to
zZero.

The error and status block must always be mapped when run-
ning in the XM monitor, and the USR must not swap over it.
To obtain the address of the error block, execute the following

instructions:
INTEGER*2 ERRADR s ERRBLK (4)
DATA ERRBLK /030104047
.
ERRADR = IADDR (ERRBLK) IGET THE ADDRESS OF THE 4-WORD ERROR BLOCK

ICODE = ISPFN (CODEsICHANWDCT BUF ;ERRADR)

The three optional arguments (went, buff, blk) are not individually op-
tional. You must have all or none present.

Table 3—1: Functions and Function Codes (Octal)

Function MSMT,MM CT DX DM DY DL LD DU

Read absolute 377 377 377 377
Write absolute 376 376 376 376
Write absolute with
deleted data 375 375
Forward to last file 377
Forward to last block 376
Forward to next file 375
Forward to next block 374
Rewind to load point 373 373
Write file gap 372
Write end-of-file 377
Forward 1 block 376
Backspace 1 block 375
Initialize the bad
block replacement table 374 374
Write with extended
record gap 374
Offline 372
Return volume size 373 373 373 373 373
Read/write translation table 372 372
Write variable size blocks 371
Direct MSCP access 371
Read variable size blocks 370
Stream at 100 ips
(MS only) 367

3-50 System Subroutine Description and Examples

Errors:

i = 0 Normal return.
= 1 Attempt to read or write past end-of-file.
= 2 Hardware error occurred on channel.
3 Channel specified is not open.
Example:
CALL ISPFN("373,ICHAN) IREWIND
ISPFNC

The ISPFNC function queues the specified operation and immediately re-
turns control to the user program. When the operation is complete, the
specified assembly language routine (crtn) is entered as an asynchronous
completion routine.

Form: 1 = ISPFNC (code,chan,went,buff,blk,crtn)

where:

code

chan

went

buff

blk

is the integer numeric code of the function to be performed
(see Table 3-1)

is the integer specification for the RT—11 channel to be used
for the operation. You must obtain this channel through an
IGETC call, or you can use channel 16(decimal) or higher if
you have done an ICDFN call

is the integer number of data words in the operation; the de-
fault value for this argument is 0

is the array to be used as the data buffer; the default value for
this argument is 0

is the integer block number of the file to be operated upon;
this argument must be 0 if not required

When this argument is supplied by magtape, it is the address
of a four-word error and status block used for returning the
exception conditions. The four words must be initialized to 0.

The error and status block must always be mapped when run-
ning in the XM monitor, and the USR must not swap over it.
To obtain the address of the error block execute the following
instructions:

INTEGER*Z ERRADR » ERRBLK (4)
DATA ERRBLK 7040430404/
+

+

!GET ADDRESS OF 4-WORD ERROR BLOCK
ERRADR = IADDR (ERRBLK)
ICODE = ISPFNC (CODE»ICHAN,WDCT BUF sERRADR)

System Subroutine Description and Examples 3-51

3-52

crtn is the name of an assembly language routine to be activated
on completion of the operation. This name must be specified
in an EXTERNAL statement in the FORTRAN routine that
issues the ISPFNC call

Errors:
i = 0 Normal return.
= 1 Attempt to read or write past end-of-file.
= 2 Hardware error occurred on channel.
= 3 Channel specified is not open.
Example:
EXTERNAL SFCOMP 'NAME OF ASSEMBLY LANGUAGE COMPLETION RTN

4+

+

ICODE = ISPFNC(CODE,ICHAN,WDCT BUF sBLK ,SFCOMP)

ISPFNF

The ISPFNF function queues the specified operation and immediately re-
turns control to the user program. When the operation is complete, the
specified FORTRAN subprogram (crtn) is entered as an asynchronous com-
pletion routine.

Form: i = ISPFNF (code,chan,went,buff,blk,area,crtn)

where:

code is the integer numeric code of the function to be performed
(see Table 3-1)

chan is the integer specification for the RT-11 channel to be used
for the operation. You must obtain this channel through an
IGETC call, or you can use channel 16(decimal) or higher if
you have done an ICDFN call

went is the integer number of data words in the operation; this
argument must be 0 if not required

buff isthe array to be used as the data buffer; this argument must
be 0 if not required

blk is the integer block number of the file to be operated upon,;
this argument must be 0 if not required

When this argument is supplied by magtape, it is the address
of a four-word error and status block used for returning the
exception conditions. The four words must be initialized to 0.

The error and status block must always be mapped when
running in the XM monitor, and the USR must not swap over
it. To obtain the address of the error block, execute the fol-
lowing instructions:

System Subroutine Description and Examples

INTEGER*Z ERRADR » ERRBLK (4)
DATA ERRBLK 703040504/

L]

+

IGET THE ADDRESS OF THE 4-WORD ERROR BLOCK
ERRADR = IADDR (ERRBLK)
ICODE = ISPFNF (CODE»ICHAN:WDCT BUF »ERRADR)

area is a four-word area to be set aside for linkage information;
this area must not be modified by the FORTRAN program,
and the USR must not swap over it. This area can be re-
claimed by other FORTRAN completion functions when crtn
has been activated

crtn is the name of a FORTRAN routine to be activated on com-
pletion of the operation. This name must be specified in an
EXTERNAL statement in the FORTRAN routine that issues
the ISPFNF call (Section 1.2.1.2 describes completion

routines)
Errors:
1 0 Normal return.
= 1 Attempt to read or write past end-of-file.
= 2 Hardware error occurred on channel.
3 Channel specified is not open.
Example:

REAL*4 MTNAME(Z) yAREA(Z)
DATA MTNAME/3RMTOQ 0./
EXTERNAL DONSUB

+

I=IGETC() 'ALLOCATE CHANNEL
CALL IFETCH(MTNAME) 'FETCH MT. HANDLER
CALL LOOKUPC(IsMTNAME) INON-FILE-STRUCTURED LOOKUP ON MTO
IERR=ISPFNF("373:1,0,0:0,,AREA DONSUB) IREWIND MAGTAPE
END
SUBROUTINE DONSUB
C
C RUNS WHEN MTO HAS BEEN REWOUND
c
END
ISPEFNW

The ISPFNW function queues the specified operation and returns control to
the user program when the operation is complete.

Form: i = ISPFNW (code,chan[,went,buff,blk])

System Subroutine Description and Examples 3-53

where:

code

chan

went

buff

blk

Errors:

i =

WO

Example:

is the integer numeric code of the function to be performed
(see Table 3-1)

is the integer specification for the RT—-11 channel to be used
for the operation. You must obtain this channel through an
IGETC call, or you can use channel 16(decimal) or higher if
you have done an ICDFN call

is the integer number of data words in the operation. This
parameter is optional with some ISPFNW calls, depending on
the function

is the array to be used as the data buffer. This parameter is
optional with some ISPFNW calls, depending on the function

is the integer block number of the file to be operated upon.
This parameter is optional with some ISPFNW calls, depend-
ing on the function

When this argument is supplied by magtape, it is the address
of a four-word error and status block used for returning the
exception conditions. The four words must be initialized to 0.

The error and status block must always be mapped when
running in the XM monitor, and the USR must not swap over
it. To obtain the address of the error block execute the follow-
ing instructions:

INTEGER=*2 ERRADR » ERRBLK (4)
DATA ERRBLK 7040430404/

+

+

'GET THE ADDRESS OF THE 4-WORD ERROR BLOCK
ERRADR = IADDR (ERRBLK)
ICODE = ISPFN (CODE,ICHAN,WDCT BUF yERRADR)

Normal return.

Attempt to read or write past end-of-file.
Hardware error occurred on channel.
Channel specified is not open.

INTEGER*2 BUF(BS) +TRACK SECTOR +DBLK (4)
DATA DBLK/3RDX0 04040/
+

+

ICHAN=IGETC()
IF(ICHAN.LT.0) STOP 'NO CHANNEL AVAILABLE’
IF(LOOKUP(ICHANDBLK).LT.0O) STOP ‘BAD LOOKUR’

+

READ AN ABSOLUTE TRACK AND SECTOR FROM THE FLOPPY

3-54 System Subroutine Description and Examples

3.56

3.57

ICODE=ISPFNW("377+ICHANTRACK +BUF sSECTOR)

C
C BUF(1) IS THE DELETED DATA FLAG
c BUF (2-6%) I8 THE DATA

The ISPY function returns the integer value of the word at a specified offset
from the RT-11 resident monitor. This subroutine uses the .GVAL pro-
grammed request to return fixed monitor offsets. (See the RT-11 Software
Support Manual for information on fixed offset references.)

Form: i = ISPY (ioff)
where:

ioff is the offset (from the base of RMON) to be examined
Function Result:

The function result (i) is set to the value of the word examined.

Example:
C
C BRANCH TO 200 IF RUNNING UNDER FB MONITOR
C
IF(ISPY("300),AND,1) GOTO 200
C
C WORD AT OCTAL 300 FROM RMON IS
C THE CONFIGURATION WORD.

ITIMER

The ITIMER function schedules a specified FORTRAN subroutine to be run
as an asynchronous completion routine after a specified time interval has
elapsed. This request is supported by SJ when the timer support special
feature is included during system generation.

Form: i = ITIMER (hrs,min,sec,tick,area,id,crtn)
where:

hrs is the integer number of hours

min is the integer number of minutes

sec is the integer number of seconds

tick is the integer number of ticks (1/60 of a second on 60-cycle
clocks; 1/50 of a second on 50-cycle clocks)

area is a four-word area that must be provided for link informa-
tion; this area must never be modified by the FORTRAN pro-
gram, and the USR must never swap over it. This area can be
reclaimed by other FORTRAN completion functions when
crtn has been activated

id is the identification integer to be passed to the routine being
scheduled

crtn is the name of the FORTRAN subroutine to be entered when
‘ the specified time interval elapses. This name must be speci-

System Subroutine Description and Examples 3-55

fied in an EXTERNAL statement in the FORTRAN routine
that references ITIMER. The subroutine has one argument.
For example:

SUBROUTINE crtn(id)
INTEGER id

When the routine is entered, the value of the integer argu-
ment is the value specified for id in the appropriate ITIMER
call

Notes:

1. This function can be canceled at a later time by an ICMKT function
call.

2. If the system is busy, the actual time interval after which the comple-
tion routine is run can be longer than the time interval requested.

3. FORTRAN subroutines can periodically reschedule themselves by issu-
ing ISCHED or ITIMER calls.

4. ITIMER requires a queue element, which should be considered when
the IQSET function (Section 3.42) is executed.

For more information on scheduling completion routines, see Section
1.2.1.2 and the .MRKT programmed request, Section 2.45.

Errors:

i = 0 Normal return.
= 1 No queue elements available; unable to schedule request.

Example:

INTEGER*2 AREA(4)
EXTERNAL WATCHD

+

4

IF THE CODE FOLLOWING ITIMER DOES NOT REACH THE ICMKT CALL

C
C IN 12 MINUTES, WATCH DOG COMPLETION, ROUTINE WILL BE
C ENTERED WITH ID OF 3
c
CALL ITIMER(O+124+04+0,AREA»3 +WATCHD)
CALL ICMKT(3:AREA)
END
SUBROUTINE WATCHD(ID?)
c
C THIE IS8 CALLED AFTER 12 MINUTES

+

.

+
RETURN
END

3-56 System Subroutine Description and Examples

3.58 ITLOCK (FB and XM Only)

The ITLOCK function is used in an FB or XM system to attempt to gain
ownership of the USR. It is similar to LOCK (Section 3.78) in that, if suc-
cessful, the user job returns with the USR in memory. However, if a job
attempts to LOCK the USR while the other job is using it, the requesting
job is suspended until the USR is free. With ITLOCK, if the USR is not
available, control returns immediately and the lock failure is indicated.
ITLOCK cannot be called from a completion or interrupt routine.

Form:; i = ITLOCKOQ

For further information on gaining ownership of the USR, see the TLOCK
programmed request (Section 2.88).

Errors:

i = 0 Normal return.
= 1 TUSR is already in use.

Example:

IF(ITLOCK () NE.0O) GOTO 100 1GOTO 100 IF USR BUSY

3.59 ITTINR

The ITTINR function transfers a character from the console terminal to the
user program. If no characters are available, system action is determined
by the setting of bit 6 of the Job Status Word.

Form: i = ITTINR(

If the function result (i) is less than 0 when execution of the ITTINR func-
tion is complete, it indicates that no character was available. Under the FB
or XM monitor, ITTINR does not return a result of less than zero unless bit
6 of the Job Status Word was on when the request was issued.

There are two modes of doing console terminal input, and they are gov-
erned by bit 12 of the Job Status Word (JSW). The JSW is at octal location
44. If bit 12 is 0, normal I/O is performed under the following conditions:

1. The monitor echoes all characters typed.

2. CTRL/U and RUBOUT perform line deletion and character dele-
tion, respectively.

3. A carriage return, line feed, CTRL/Z, or CTRL/C must be struck
before characters on the current line are available to the pro-
gram. When one of these is typed, characters on the line typed are
passed one by one to the user program.

If the console is in special mode (bit 12 set to 1), the following conditions
apply:

1. The monitor does not echo characters typed except for CTRL/C
and CTRL/O.

2. CTRL/U and RUBOUT do not perform special functions.

System Subroutine Description and Examples 3-57

3. Characters are immediately available to the program.
4. No ALTMODE conversion is done.

In special mode, the user program must echo the characters desired. How-
ever, CTRL/C and CTRL/O are acted on by the monitor in the usual way.

Bit 12 in the JSW must be set by the user program if special console mode
is desired. Bit 14 in the JSW must be set if lowercase characters are de-
sired. These bits are cleared when control returns to RT—11.

Regardless of the setting of bit 12, when a carriage return is entered, both
carriage return and line feed characters are passed to the program,; if bit 12
is 0, these characters will be echoed.

Lowercase conversion is determined by the setting of bit 14. If bit 14 is 0,
lowercase characters are converted to uppercase before being echoed (if bit
12 is 0) and passed to a program; if bit 14 is 1, lowercase characters are
echoed (if bit 12 is 0) and passed as received. Bit 14 is cleared when the
program terminates.

NOTE

To set and/or clear bits in the JSW, do an IPEEK and then an
IPOKE (see example under IPOKE). In special terminal
mode (JSW bit 12 set), normal FORTRAN formatted I/O from
the console is undefined.

In the FB or XM monitor, CTRL/F and CTRL/B (and CTRL/X in monitors
with the system job feature) are not affected by the setting of bit 12. The
monitor always acts on these characters if the SET TT FB command is in
effect.

Also under the FB or XM monitor, if a terminal input request is made and
no character is available, job execution is normally suspended until a char-
acter is ready. If a program requires execution to continue and ITTINR to
return a result of less than zero, it must turn on bit 6 of the JSW before the
ITTINR. Bit 6 is cleared when a program terminates. The results of
ITTINR must be stored in an INTEGER type variable for the purposes of
error checking. Once it is known that the call did not have an error return,
the result can be moved into a LOGICAL*1 variable or array element.
Direct placement into a LOGICAL*1 variable will lead to incorrect results,
because the negative flag (bit 15 set) is lost in conversion to a LOGICAL*1
variable.

Function Results:

i >0 Character read.
<0 No character available.

Example:

ICHAR=ITTINR() 'READ A CHARACTER FROM THE CONSOLE
IF(ICHAR,LT.0) GOTO 100 ICHARACTER NOT AVAILABLE

3-58 System Subroutine Description and Examples

3.60 ITTOUR

The ITTOUR function transfers a character from the user program to the
console terminal if there is room for the character in the monitor buffer. If
it is not currently possible to output a character, an error flag is returned.

Form: i = ITTOUR (char)

where:

char is the character to be output, right-justified in the integer
(can be LOGICAL*1 entity if desired)

If the function result (i) is 1 when execution of the ITTOUR function is
complete, it indicates that there is no room in the buffer and that no charac-
ter was output. Under the FB or XM monitor, ITTOUR normally does not
return a result of 1. Instead, the job is blocked until room is available in the
output buffer. If a job requires execution to continue and a result of 1 to be
returned, it must turn on bit 6 of the JSW (location 44) before issuing the
request.
NOTE

If a foreground job has characters in the TT output buffer,
they are not output under the following conditions:

1. If a background job is doing output to the console TT, the
foreground job cannot output characters from its buffer
until the background job outputs a line feed character.
This can be troublesome if the console device is a graph-
ics terminal and the background job is doing graphic out-
put without sending any line feeds.

2. If no background job is running (that is, KMON is in
control of background), the foreground job cannot output
its characters until the user types a carriage return or a
line feed. In the former case, KMON gets control again
and locks out foreground output as soon as the fore-
ground output buffer is empty.

Note that the use of PRINT eliminates these problems.
Function Results:

i

0 Character was output.
1 Ring buffer is full.

Example:
DO 20 I=1,3

10 IF(ITTOUR("OO7),NE.O) GOTOD 10 IRING BELL 5 TIMES
20 CONTINUE

3.61 ITWAIT (SYSGEN Option in SJ)

The ITWAIT function suspends the main program execution of the current
job for a specified time interval. All completion routines continue to exe-
cute.

System Subroutine Description and Examples 3-59

Form: i = ITWAIT (itime)
where:

itime is the two-word internal format time interval

itime (1) is the high-order time
itime (2) is the low-order time

Notes:

1. WAIT requires a queue element, which should be considered when the
IQSET function (Section 3.42) is executed.

2. If the system is busy, the actual time interval during which execution is
suspended may be longer than the time interval specified.

Errors:

i = 0 Normal return.
= 1 No queue element available.

Example:

INTEGER*2 TIME(2Z)

+

+

CALL ITWAIT(TIME) 'WAIT FOR TIME

3.62 IUNTIL (SYSGEN Option in SJ)

The IUNTIL function suspends main program execution of the job until the
time of day specified. All completion routines continue to run.

Form: i = IUNTIL (hrs,min,sec,tick)

where:
hrs is the integer number of hours
min is the integer number of minutes
sec is the integer number of seconds

tick is the integer number of ticks (1/60 of a second on 60-cycle
clocks; 1/50 of a second on 50-cycle clocks)

Notes:

1. IUNTIL requires a queue element, which should be considered when
the IQSET function (Section 3.39) is executed.

2. If the system is busy, the actual time of day that the program resumes
execution may be later than that requested.

Errors:

0 Normal return.
= 1 No queue element available.

i

3-60 System Subroutine Description and Examples

Example:

C TAKE A LUNCH BREAK
CALL IUNTIL(13,04+0,0) ISTART UP AGAIN AT 1 P.M,

3.63 IVERIF
See SYSLIB subroutine VERIFY, Section 3.113.

3.64 IWAIT

The IWAIT function suspends execution of the main program until all
input/output operations on the specified channel are complete. This func-
tion is used with IREAD, IWRITE, and ISPFN calls. Completion routines
continue to execute.

Form: i = IWAIT (chan)

where:

chan is the integer specification for the RT-11 channel to be used.
You must obtain this channel through an IGETC call, or you
can use channel 16(decimal) or higher if you have done an
ICDFN call

For further information on suspending execution of the main program, see
the .WAIT programmed request (Section 2.96).

Errors:
i = 0 Normal return.
= 1 Channel specified is not open.
= 2 Hardware error occurred during the previous I/O operation
on this channel.
Example:

IF(IWAIT(ICHAN) NE.Q) CALL IOERR(4)

3.65 IWRITE/IWRITC/IWRITF/IWRITW

The functions IWRITE, IWRITC, IWRITF, and IWRITW transfer a speci-
fied number of words from memory to the specified channel. The IWRITE
functions require queue elements; this should be considered when the
IQSET function (Section 3.42) is executed.

IWRITE

The IWRITE function transfers a specified number of words from memory
to the specified channel. Control returns to the user program immediately
after the request is queued. No special action is taken upon completion of
the operation.

Form: i = IWRITE (went,buff,blk,chan)

System Subroutine Description and Examples 3-61

where:

went
buff
blk

chan

Errors:

1 =

Il

I

Example:

-1

-2
-3

is the integer number of words to be transferred
is the array to be used as the output buffer

is the integer block number of the file to be written. The user
program normally updates blk before it is used again

is the integer specification for the RT-11 channel to be used.
You must obtain this channel through an IGETC call, or you
can use channel 16(decimal) or higher if you have done an
ICDFN call

Normal return; n equals the number of words written,
rounded to a multiple of 256 (0 for non-file-structured
writes).

NOTE

If the word count returned is less than that re-
quested, an implied end-of-file has occurred al-
though the normal return is indicated.

Attempt to write past end-of-file; no more space is available
in the file.

Hardware error occurred.

Channel specified is not open.

Refer to the example for IREAD.

IWRITC

The IWRITC function transfers a specified number of words from memory
to the specified channel. The request is queued and control returns to the
user program. When the transfer is complete, the specified assembly lan-
guage routine (crtn) is entered as an asynchronous completion routine.

Form: i = IWRITC (went,buff,blk,chan,crtn)

where:

went
buff
blk

chan

is the relative integer number of words to be transferred
is the array to be used as the output buffer

is the relative integer block number of the file to be written.
The user program normally updates blk before it is used
again (for example, if the program is writing two blocks at a
time, blk should be updated by 2)

is the relative integer specification for the RT—11 channel to
be used. You must obtain this channel through an IGETC
call, or you can use channel 16(decimal) or higher if you have
done an ICDFN call

3-62 System Subroutine Description and Examples

crtn is the name of the assembly language routine to be activated
upon completion of the transfer. This name must be specified
in an EXTERNAL statement in the FORTRAN routine that
issues the IWRITC call

Errors:
See the errors under IWRITE.
Example:

INTEGER*2 IBUF(256)
EXTERNAL CRTN

‘.

+

ICODE=IWRITC(256+IBUF »IBLK+ICHAN CRTN)

IWRITF

The IWRITF function transfers a number of words from memory to the
specified channel. The transfer request is queued and control returns to the
user program. When the operation is complete, the specified FORTRAN
subprogram (crtn) is entered as an asynchronous completion routine (see
Section 1.2.1.2).

Form: i = IWRITF (went,buff,blk,chan,area,crtnn)

where:

went is the integer number of words to be transferred
buff is the array to be used as the output buffer

blk is the integer block number of the file to be written. The user
program normally updates blk before it is used again

chan is the integer specification for the RT-11 channel to be used.
You must obtain this channel through an IGETC call, or you
can use channel 16(decimal) or higher if you have done an
ICDFN call

area is a four-word area to be set aside for link information; this
area must not be modified by the FORTRAN program, and
the USR must not swap over it. This area can be reclaimed by
other FORTRAN completion functions when crin has been
activated

crtn is the name of the FORTRAN routine to be activated upon
completion of the transfer. This name must be specified in an
EXTERNAL statement in the FORTRAN routine that issues
the IWRITF call (Section 1.2.1.2 describes completion

routines)
Errors:
See the errors under IWRITE.
Example:

Refer to the example under IREADF, Section 3.45.

System Subroutine Description and Examples 3-63

IWRITW

The IWRITW function transfers a specified number of words from memory
to the specified channel. Control returns to the user program when the
transfer is complete.

Form: i = IWRITW (went,buff,blk,chan)
where:

went is the integer number of words to be transferred
buff is the array to be used as the output buffer

blk is the integer block number of the file to be written. The user
program normally updates blk before it is used again

chan is the integer specification for the RT-11 channel to be used.
You must obtain this channel through an IGETC call, or you
can use channel 16(decimal) or higher if you have done an
ICDFN call

Errors:
See the errors under IWRITE.

Example:
Refer to the example under IREADW, Section 3.45.

3.66 JADD

The JADD function computes the sum of two INTEGER*4 values.
Form: i = JADD (joprl,jopr2,jres)
where:

joprl is an INTEGER*4 variable
jopr2 is an INTEGER*4 variable

jres is an INTEGER*4 variable that receives the sum of joprl and
Jjopr2

Function Results:

i=-1 Normal return; the result is negative.
=0 Normal return; the result is zero.
=1 Normal return; the result is positive.
Errors:
1 = -2 An overflow occurred while computing the result.
Example:

INTEGER*4 JOP1,J0P2,JRES

+

+

IF(JADD(JOP1,,JOP2,JRES) .EQ.,-2) GOTOD 100

3-64 System Subroutine Description and Examples

3.67 JAFIX
The JAFIX function converts a REAL*4 value to INTEGER*4,
Form: i = JAFIX (asrc,jres)

where:

asrc is a REAL*4 variable, constant, or expression to be converted
to INTEGER*4

jres is an INTEGER*4 variable that is to contain the result of the
conversion

Function Results:

i

—1 Normal return; the result is negative.
0 Normal return; the result is zero.
1 Normal return; the result is positive.

Errors:
i = =2 An overflow occurred while computing the result.
Example:
INTEGER#*4 JOP1
C READ A LARGE INTEGER FROM THE TERMINAL

ACCEPT 994
99 FORMAT (F15.0)
IF(JAFIX(A,JOPL)EQ,.-2) GOTO 100

+
+

+

3.68 JCMP

The JCMP function compares two INTEGER*4 values and returns an IN-
TEGER*2 value that reflects the signed comparison result.

Form: i = JCMP (joprl,jopr2)
where:

joprl is the INTEGER*4 variable or array element that is the first
operand in the comparison

jopr2 is the INTEGER*4 variable or array element that is the sec-
ond operand in the comparison

Function Results:

i = -1 If joprl is less than jopr2.
0 If joprl is equal to jopr2.

1 If joprl is greater than jopr2.

Errors:

None.

System Subroutine Description and Examples 3-65

Example:
INTEGER*4 JOPX,JDPY

.

IF(JCMP(JOPX »JOPY)) 104+20,30

3.69 JDFIX

The JDFIX function converts a REAL*8 (DOUBLE PRECISION) value to
INTEGER*4.

Form: i = JDFIX (dsrc,jres)

where:

dsrc is a REAL*8 variable, constant, or expression to be converted
to INTEGER*4

jres is an INTEGER*4 variable to contain the conversion result

Function Results:

i = -1 Normal return; the result is negative.
=0 Normal return; the result is zero.
=1 Normal return; the result is positive.
Errors:
i = -2 An overflow occurred while computing the result.
Example:

INTEGER#*4 JNUM
REAL*8 DPNUM

+

+

20 TYPE 88

88 FORMAT (' ENTER POSITIVE INTEGER’)
ACCEPT B99,:;DPNUM

99 FORMAT(F20.0)
IF(JDFIX(DPNNUM,JNUM),.LT.0) GOTO 20

.
.

*

3.70 JDIV

The JDIV function computes the quotient of two INTEGER*4 values.
Form: i = JDIV (joprl,jopr2,jres[,jrem])
where:

Joprl is an INTEGER*4 variable that is the dividend of the opera-
tion

3-66 System Subroutine Description and Examples

jopr2 is an INTEGER*4 variable that is the divisor of joprl

jres is an INTEGER*4 variable that receives the quotient of the
operation (that is, jres=joprl/jopr2)

jrem is an INTEGER*4 variable that receives the remainder of the
operation. The sign is the same as that for joprI

Function Results:

i = =1 Normal return; the quotient is negative.
=0 Normal return; the quotient is 0.
=1 Normal return; the quotient is positive.
Errors:

1 = -3 An attempt was made to divide by 0.

Example:

INTEGER*4 JN1,,JNZ,JQUD

4+

+

CALL JDIV(JNIL»JNZ,JOUD)

+
+

+

3.71 JICVT

The JICVT function converts a specified INTEGER*2 value to INTE-
GER*4.

Form: i = JICVT (isrc,jres)
where:
isrc is the INTEGER*2 quantity to be converted

jres is the INTEGER*4 variable or array element to receive the
result

Function Results:

i = -1 Normal return; the result is negative.
0 Normal return; the result is O.
=1 Normal return; the result is positive.

Errors:
None.

Example:

INTEGER*4 JUAL
CALL JICYUT(478,»JVAL) IFORM A 32-BIT CONSTANT

System Subroutine Description and Examples 3-67

3.72 JJCVT

The JJCVT function interchanges words of an INTEGER*4 value to form
an internal format time or vice versa. This procedure is necessary when the
INTEGER*4 variable is to be used as an argument in a timer-support func-
tion such as ITWAIT. When a two-word internal format time is specified to
a function such as ITWAIT, it must have the high-order time as the first
word and the low-order time as the second word.

Form: CALL JJCVT (jsrc)

where:
jsrc is the INTEGER*4 variable whose contents are to be inter-
changed
Errors:
None.
Example:

INTEGER#*4 TIME

+

+

CALL GTIM(TIME) 'GET TIME OF DAY
CALL JJCVT(TIME) ITURN IT INTO INTEGER*4 FORMAT

3.73 JMOV

The JMOV function assigns the value of an INTEGER*4 variable to an-
other INTEGER*4 variable and returns the sign of the value moved.

Form: i = JMOV (jsrc,jdest)
where:
jsre is the INTEGER*4 variable whose contents are to be moved

jdest is the INTEGER*4 variable that is the target of the assign-
ment

Function Results:

The value of the function is an INTEGER*2 value that represents the sign
of the result as follows:

i = —1 Normal return; the result is negative.
0 Normal return; the result is 0.

1 Normal return; the result is positive.

I

Errors:
None.
Example:

The JMOV function allows an INTEGER*4 quantity to be compared
with 0 by using it in a logical IF statement. For example:

3-68 System Subroutine Description and Examples

INTEGER*4 INT1

+

4+

IF(JMDUCINTLINTL).NE.O) GOTO 300 IGO TO STMT 300 IF INT1 NOT O

3.74 JMUL
The JMUL function computes the product of two INTEGER*4 values.
Form: i = JMUL (joprl,jopr2,jres)
where:
joprl is an INTEGER*4 variable that is the multiplicand
jopr2 is an INTEGER*4 variable that is the multiplier

jres is an INTEGER*4 variable that receives the product of the
operation

Function Results:

i = =1 Normal return; the product is negative.
=0 Normal return; the product is 0.
1 Normal return; the product is positive.

Errors:
i = =2 An overflow occurred while computing the result.
Example:
INTEGER*4 J1:J2+JRES
IF(JMUL (J1+J2JRES)+1) 100,10,20
C GOTO 100 IF OVERFLOMW
C GOTD 10 IF RESULT IS NEGATIVE
(o GOTO 20 IF RESULT IS POSITIVE OR ZERO
3.75 JSUB
The JSUB function computes the difference between two INTEGER*4
values.

Form: i = JSUB (joprl,jopr2,jres)
where:

joprl is an INTEGER*4 variable that is the minuend of the opera-
tion

jopr2 is an INTEGER*4 variable that is the subtrahend of the op-
eration

jres is an INTEGER*4 variable that is to receive the difference
between joprl and jopr2 (that is, jres =joprl—jopr2)

System Subroutine Description and Examples 369

Function Results:

i = =1 Normal return; the result is negative.
=0 Normal return; the result is 0.
=1 Normal return; the result is positive.
Errors:
i = =2 An overflow occurred while computing the result.
Example:

INTEGER*4 JOP1,»JOPZ+J3

.

+

CALL JSUB(JOP1,JOPZ,J3)

3.76 JTIME

3.77 LEN

The JTIME subroutine converts the time specified to the internal two-word
format time.

Form: CALL JTIME (hrs,min,sec,tick,time)

where:

hrs is the integer number of hours
min is the integer number of minutes
sec is the integer number of seconds

tick is the integer number of ticks (1/60 of a second for 60-cycle
clocks; 1/50 of a second for 50-cycle clocks)

time is the two-word area to receive the internal format time:
time(1) is the high-order time; time(2) is the low-order time

Errors:
None.
Example:
INTEGER*4 J1
C CONVERT 3 HRS, 7 MIN, 23 SECONDS TO INTEGER *4 VALUE

CALL JTIME(3:7+23+0,:J1)
CALL JJCVUT(J1)

The LEN function returns the number of characters currently in the string
contained in a specified array. This number is computed as the number of
characters preceding the first null byte encountered. If the specified array
contains a null string, a value of 0 is returned.

3-70 System Subroutine Description and Examples

Form: i = LEN (a)
where:

a specifies the array containing the string, which must be termi-
nated by a null byte

Errors:
None.

Example:

LOGICAL*1 STRNG(73)

+
4+

TYPE 98, (8TRNG(I)»I=1 LEN(STRNG))
99 FORMAT (0’ +132A1)

3.78 LOCK

The LOCK subroutine keeps the USR in memory for a series of operations
involving various RT-11 file management functions.

If all the conditions that cause swapping are satisfied, a portion of the user
program is written out to the disk file SWAP.SYS and the USR is loaded.
Otherwise, the USR in memory is used, and no swapping occurs. The USR
is not released until an UNLOCK (see Section 3.112) is given. (Note that in
an FB system, calling the CSI can also perform an implicit UNLOCK.) To
save time in swapping, a program that has many USR requests to make
can LOCK the USR in memory, make all the requests, and then UNLOCK
the USR.

In an FB or XM environment, a LOCK inhibits another job from using the
USR. Thus, the USR should be locked only for as long as necessary.

NOTE

If any job does a LOCK, it can cause the USR to be unavaila-
ble for other jobs for a congiderable period of time. The USR
is not reentrant and only one job has use of the USR at a
time, which should be considered for systems requiring con-
current foreground and background jobs. This is particularly
true when magtape and/or cassette are active.

File operations by the USR require a sequential search of the
tape for magtape and cassette. This could lock out the fore-
ground job for a long time while the background job does a
tape operation. The programmer should keep this in mind
when designing such systems. The FB and XM monitors sup-
ply the ITLOCK routine, which permits the foreground job to
check for the availability of the USR.

Form: CALL LOCK

System Subroutine Description and Examples 3-71

After a LOCK has been executed, the UNLOCK routine must be executed
to release the USR from memory. The LOCK/UNLOCK routines are com-
plementary and must be matched. That is, if three LOCKs are issued, at
least three UNLOCKs must be done, otherwise the USR is not released.
More UNLOCKSs than LOCKs can occur without error; the extra UN-
LOCKs are ignored.

Notes:

1. It is vital that the LOCK call not come from within the area into which
the USR will be swapped. If this should occur, the return from the USR
request would not be to the user program, but to the USR itself, since
the LOCK function causes part of the user program to be saved on disk
and replaced in memory by the USR. Furthermore, subroutines, varia-
bles, and arrays in the area where the USR is swapping should not be
referenced while the USR is locked in memory.

2. Once a LOCK has been performed, it is not advisable for the program to
destroy the area the USR is in, even though no further use of the USR
is required. This causes unpredictable results when an UNLOCK is
done.

3. LOCK cannot be called from a completion or interrupt routine.

4. If a SET USR NOSWAP command has been issued, LOCK and UN-
LOCK do not cause the USR to swap. However, in FB, LOCK still
inhibits the other job from using the USR, and UNLOCK allows the
other job access to the USR.

5. The USR cannot accept argument lists, such as device file name specifi-
cations, located in the area into which it has been locked.
Errors:
None.
Example:

INTEGER+2 DBLK (4)
DATA DBLK /3RDK 3RDT3RFIL:3RF4 /

+

+

CALL LOCK 'LOCK THE USR IN MEMORY

ICHN=GETC () 'GET A CHANNEL TO USE
IF(LOOKUP(ICHNDBLK).LT.0) STOP ‘7?LOOKUP FAILED’

CALL UNLOCK 'RELEASE THE USR

+

3.79 LOOKUP

The LOOKUP function associates a specified channel with a device and/or
file for the purpose of performing I/O operations. The channel used is then
busy until one of the following functions is executed.

CLOSEC or ICLOSE
ISAVES
PURGE

3-72 System Subroutine Description and Examples

Form: i

.....
]

where:

chan

dblk

ccount

seqnum

jobdes

LOOKUP (chan,dblk[,count,seqnum,])
LOOKUP (chan,jobdes)

is the integer specification for the RT-11 channel to be
associated with the file. You must obtain this channel
through an IGETC call, or you can use channel 16(deci-
mal) or higher if you have done an ICDFN call

is the four-word area specifying the Radix-50 file descrip-
tor. Note that unpredictable results occur if the USR
swaps over this four-word area

is an optional argument used for the cassette handler; this
argument defaults to 0

is a file number. For cassette operations, if this argument
is blank, a value of 0 is assumed

For magtape, it describes a file sequence number. The ac-
tion taken depends on whether the file name is given or
null. The sequence number can have the following values:

-1 Suppress rewind and search for the specified file
. name from the current tape position. If a file name is
given, a file-structured lookup is performed (do not
rewind). If the file name is null, a non-file-structured
lookup is done (tape is not moved). You must specify

a —1 and no other negative number.

0 Rewind to the beginning of the tape and do a non-
file-structured lookup.

n Where n is any positive number. Position the tape at
file sequence number n and check that the file
names match. If the file names do not match, an er-
ror is generated. If the file name is null, a file-struc-
tured lookup is done on the file designated by seq-
num.

is an argument that allows communication between jobs
in a system job environment. It is a pointer to a four-word
job descriptor of the job to which messages will be sent or
received. The syntax is

jobdes — .RAD50 /MQ/
.ASCII /logical-job-name/

where the logical-job-name is six characters long. If the
logical-job-name is zero, the channel will be opened only
for .READ/C/W requests, and such requests will accept
messages from any jobs.

If the jobdes argument is omitted, . LOOKUP operates as it
did for Version 3B.

System Subroutine Description and Examples 3-73

NOTE

The arguments of LOOKUP must be positioned so that the
USR does not swap over them.

The handler for the selected device must be in memory for a LOOKUP. If
the first word of the file name in dblk is 0 and the device is a file-structured
device, absolute block 0 of the device is designated as the beginning of the
file. This technique, called a non-file-structured lookup, allows I/O to any
physical block on the device. If a file name is specified for a device that is
not file structured (such as LP:FILE.TYP), the name is ignored.

NOTE

Since a non-file-structured lookup allows I/O to any physical
block on the device, the user must be aware that, in this
mode, it is possible to overwrite the RT-11 device directory,
thus destroying all file information on the device.

Function Results:

i = n Indicates a successful file-structured lookup on a random-
access storage volume.

i = 0 Indicates a successful non-file-structured lookup on both
random-access and non-file-structured volumes, or a suc-
cessful file-structured lookup on magtape.

Errors:
i = =1 Channel specified is already open.

= -2 File specified was not found on the device.

= -3 Device in use.

= —4 Tape drive is not available.

= -5 Illegal argument error with a file-structured volume.

= —6 Illegal argument error with a non-file-structured volume.
Example:

INTEGER*Z DBLK(4)
DATA DBLK/3RDKO,3RFTN,3R44 »3RDAT/

+

ICHAN=IGETC ()

IF(ICHAN.LT.0) STOP ‘NO CHANNEL'
IF(IFETCH(DBLK) .NE.,O) STOP ‘BAD FETCH’
IF(LOODKUP(ICHAN DBLK).LT.0) STOP ’‘BAD LOOKUP’

+

CALL ICLOSE(ICHAN,I)
I = ICLOSEQ)
CALL IFREEC(ICHAN)

+

3-74 System Subroutine Description and Examples

or using LOOKUP with a system job

LOGICAL*1 JNAM(B)

DIMENSION JBLK(4)

EQUIVALENCE (JNAM(1) ,JBLK(2))
DATA JUNAM /77/Q7/ s 'U’»'E"+»'U’ s 'E’ 40/
DATA JBLK(1) /3RMQ /

+

+

C DPEN A MESSAGE CHANNEL TO ‘QUEUE’
ICHN=GETC ()
IF(LOOKUP(ICHN »JBLK).LT.0) STOP ‘QUEUE IS NOT RUNNING’

+

3.80 MRKT (SYSGEN Option in SJ)

The MRKT function schedules an assembly language completion routine to
be entered after a specified time interval has elapsed. Support for MRKT in
SJ requires timer support.

Form: i = MRKT (id,crtn,time)
where:

id is an integer identification number to be passed to the routine
being scheduled

crtn is the name of the assembly language routine to be entered
when the time interval elapses. This name must be specified
in an EXTERNAL statement in the FORTRAN routine that
issues the MRKT call

time is the two-word, internal format time interval; when this in-
terval elapses, the routine is entered. If considered as a two-
element INTEGER*2 array:

time(1) is the high-order time.
time(2) is the low-order time.

Notes:

1. MRKT requires a queue element, which should be considered when the
IQSET function (Section 3.42) is executed.

2. If the system is busy, the time interval that elapses before the comple-
tion routine is run can be greater than that requested.

For further information on scheduling completion routines, see the .MRKT
programmed request (Section 2.45).

Errors:

0 Normal return.
= 1 No queue element was available; unable to schedule re-
quest.

Il

i

System Subroutine Description and Examples 3-75

Example:

INTEGER*Z TINT(2)
EXTERNAL ARTN

.

CALL MRKT(4sARTN»TINT)

3.81 MTATCH (Special Feature)

3-76

The MTATCH subroutine attaches a terminal for exclusive use by the re-
questing job. This operation must be performed before any job can use a
terminal with multiterminal programmed requests.

Form: i = MTATCH (unit[,addr][,jobnum])

where:
unit is the logical unit number (lun) of the terminal
addr is the optional address of an asynchronous terminal status

word. Omit this argument if the asynchronous terminal
status word is not required by specifying a comma. For
example:

I = MTATCH (unit,,jobnum)

jobnum is the job number associated with the terminal if the ter-
minal is not available

Errors:
i = 0 Normal return.
= 3 Nonexistent unit number.
= 5 Unit attached by another job (job number returned in job-
num)
= 6 In XM monitor, the optional status word address is not in a
valid user virtual address space
Example:

TEST SYSLIB MULTITERMINAL ROUTINES

INTEGER*2 UNIT,SBLOK(4) ,STAT(8) »ASW,STRING(41) ,PROMT(B)
LOGICAL#*1 TENDC(11)

REAL*4 TESTM(9)

DATA PROMT/'EN‘»'TE' 'R ' +/8T'+'RI'"+'NG’ >’ »"200/

DATA TEND/ ‘% +/E' s /'N" /D" s’ “4/'T H4'E 1/'S »'T" sy'%'40/
DATA TESTM/‘STAT ' +’ATCH’ s 'GET s '8ET " » " "2+’ " 4’ " »'DTCH"/

USE MTSTAT TO GET & DISPLAY NO. OF UNITS

TYPE 106

L=1

IF(MTSTAT(STAT) .NE.0)GOTO 988
TYPE 99,85TAT(3)

ANNOUNCE TEST
L = FUNC CODE
GET MTTY STATUS
DISPLAY # UNITS

GET UNIT # TO TEST

System Subroutine Description and Examples

30

40

S0
55

GO

TYPE 100 ! TYPE PROMPT
ACCEPT 101 +UNIT ' GET UNIT #
IF(UNIT,EQ.89) STOP ‘END OF MULTITERMINAL TEST’! UNIT #9989 STOPS TEST

ATTACH UNIT TO THIS JOB THEN GET TCB STATUS WORDS

TYPE 110

ACCEPT 111,1AS8MK
IF(IASW.EQ, ‘Y ')IER=MTATCH(UNIT +ASK »JOB)
IF(IASW.NE. 'Y’)IER=MTATCH(UNIT ,0,JOB)

SEE IF ASW TEST
IS TO BE DONE

ATT W/ AGW IF YES
ATT W/0 ASW IF NO

L=2

IF(IER)GDTO 999 I REPORT ERROR IF ANY
L=3

IF(MTGET(UNIT,SBLOK(1)).NE.,0)GOTD 998 ! GET TCB WORDS

TYPE 102,UNIT.SBLOK ! DISPLAY CONTENTS

GET NEW STATUSs PUT IT IN TCBs THEN DISPLAY IT

CALL SETUP(SBLOK UNIT) ! GET CHANGES IF ANY
L=4

IF(MTSET(UNIT+SBLOK(1)).NE.O)GOTO 999 I GET NEW TCB STATUS
TYPE 10Z,UNITSBLOK ! THEN DISPLAY IT...

PERFORM TEST - FIRST ECHO INPUT THEN REPEAT IT USING MTIN & MTOUT

TYPE 103 ! ANNOUNCE RULES OF
TYPE 104 ! THE TEST...
TYPE 105

CALL MTINCUNIT sJ)
CALL MTOUT(UNITJ)
IF(J.NE.10)GOTO 30
CALL MTRCTO(UNIT)

GET LINE OF INPUT
REPEAT 1ST/ECHD 2ND
LF = END OF LINE
RESET CTRL/O

NOW TEST W/ TTSPC$ BIT ON - ECHO INPUT WITH MTOUT (DON‘T REPEAT)
THEN TURN TTSPC#% BIT OFF...

IF(SBLOK(1).AND."10000)GOTO 40
SBLOK(1)=8SBLOK(1),0R."10000
IF(MTSET(UNIT,,SBLOK(1)).NE.Q)GDTO 999
GOTO 30
SBLOK(1)=8BLOK (1) +AND, NOT."10000
IF(MTSET(UNIT»SBLOK(1)).NE.0)GOTO 9989
IF(IASW.NE. 'Y ’)GOTO GO

IF TTSPC% ON BRANCH
SET TTSPCs BIT
UPDATE TCB

GD DO 2ZND TEST

TURN OFF TTSPC$ BIT
UPDATE TCB

SKIP ASW TEST?

ASYNCHRONOUS STATUS WORD TEST - "POLL" TERMINAL UNTIL INPUT
AVAILABLE - ECHO INPUT THEN REPEAT IT ON NEXT LINE

TYPE 108
IF(.NOT.ASKH.AND."40000)GDTD SO
CALL MTINCUNIT J)

CALL MTOUT(UNIT ,»J)
IF(J.NE.1O)GOTD 55

CALL MTRCTOCUNIT)

ANNDUNCE TEST
WAIT FOR INPUT
GET CHAR

OUTPUT CHAR

END ON LINE FEED
RESET CTRL/O

TEST MTPRNT BY OUTPUTTING 2 STRINGS:, 1 FROM USER & 1 INTERNAL

CALL GTLIN(STRING,PROMT) ! GET STRING VIA GTLIN
CALL MTPRNT(UNITSTRING) ! DUTPUT TO TERMINAL
CALL MTPRNT(UNIT,TEND) ! ANNOUNCE END OF TEST

DETACH UNIT FROM JOB AND START OQUVER

L=9
TYPE 108,UNIT ! DETATCH UNIT
IF(MTDTCH(UNIT) .EQ.Q)GOTO S5 ! FrROM JOB THEN LOOP

System Subroutine Description and Examples

3177

c ERROR REPORTING

9899 TYPE 9089,TESTM(L) JIER ! ANNOUNCE ERROR
GOTO 5 ! THEN START OVER

98 FORMAT(‘OTHERE ARE’ I3’ UNITS ON THIS SYSTEM')

100 FORMAT(‘$UNIT # TO BE TESTED?')

101 FORMAT(I2)

102 FORMAT(OUNIT’,I3,’ STATUS =',408)

103 FORMAT(‘0GO TO TERMINAL BEING TESTED.,..ENTER 2 LINES + GD')
104 FORMAT(’ 18T LINE: INPUT WILL BE ECHDED THEN REPEATED’)

105 FORMAT(’ 2ND LINE: TEST TTSPC$% ON - INPUT ECHOED VIA MTOUT'/)
106 FORMAT("1 SYSLIB MULTITERMINAL ROUTINE TEST PROGRAM‘)
108 FORMAT(’ ABOUT TO DETACH UNIT # /,I2)

109 FORMAT(’ TEST ASW - INPUT WILL BE ECHOED, THEN REPEATED'/)
110 FORMAT(“$TEST ASYNCH STATUS WORD FUNCTION?')

111 FORMAT (A1)

908 FORMAT('OMT ‘A4’ ERROR CODE ='+I3)
END
C SUBROUTINE TO CET NEW STATUS WORD WALUES

SUBROUTINE SETUP(SBLOK,UNIT)
INTEGER SBLOK(4) +UNIT

TYPE 100
ACCEPT 101 .4
IF(J)SBLOK(1)=J

PROMPT FOR NEW CONFIG WORD
ACCEPT INPUT
UPDATE IF ANY INPUT

TYPE 102 ASK FOR FILL CHAR
ACCEPT 101.,J ACCEPT IT
TYPE 103 ASK FOR # OF FILL CHARS

ACCEPT 1011
IF(I,OR,J)SBLOK(3)=I%25G+J

TYPE 104

ACCEPT 10541
IF(I)SBLOK(4)=SBLOK(4)/256%256+1
RETURN

ACCEPT IT TOO

PUT IN PROPER BYTES

ASK FOR CARRIAGE WIDTH
ACCEPT IT

SET BUT DON‘T MESS WITH
STATE WORD +++ RETURN

o

100 FORMAT($CONFIG BIT MASK: ')
101 FORMAT (OB)
102 FORMAT(‘$CHAR REQUIRING FILLER:)
103 FORMAT(‘$# OF FILL CHARS: ')
104 FORMAT('$CARRIAGE WIDTH: ")
108 FORMAT(I3)
END

3.82 MTDTCH (Special Feature)

The MTDTCH subroutine is the complement of the MTATCH subroutine.
Its function is to detach a terminal from a particular job and make it avail-
able for other jobs.

Form: i = MTDTCH(unit)
where:
unit is the logical unit number ({un) of the terminal to be detached

Errors:

= 0 Normal return.
= 2 Invalid unit number; terminal is not attached.
= 3 Nonexistent unit number.

i

3-78 System Subroutine Description and Examples

Example:
Refer to the example under MTATCH.

3.83 MTGET (Special Feature)

The MTGET subroutine furnishes the user with information about a spe-
cific terminal in a multiterminal system. You do not need to do an
MTATCH before using MTGET.

Form: i = MTGET (unit,addr[,jobnum})

where:
unit is the unit number of the line and terminal whose status is
desired
addr is the four-word area to receive the status information. The

area is a four-element INTEGER*2 array (see the MTSET
programmed request, Section 2.54, for area format)

jobnum is the job number associated with the terminal if the termi-
nal is not available

Status information including bit definitions for the terminal configuration
words and the terminal state byte are described in detail under the
.MTGET programmed request.

Errors:
i= Normal return.

Unit not attached.

Nonexistent unit number.

Unit attached by another job (job number returned in job-

num).

= 6 In XM monitor, the address of the terminal buffer is outside
the valid program limits.

I
B WN O

Example:
Refer to the example under MTATCH.

3.84 MTIN (Special Feature)

The MTIN subroutine transfers characters from a specified terminal to the
user program. This subroutine is a multiterminal form of ITTINR. If no
characters are available, an error flag is set to indicate an error upon re-
turn from the subroutine. If no character count argument is specified, one
character is transferred.

Form: i = MTIN (unit,char[,chrent][,ocnt])

where:
unit is the unit number of the terminal
char is the variable to contain the characters read in from the

terminal indicated by the unit number

System Subroutine Description and Examples 3-79

chrent is an optional argument that indicates the number of char-
acters to be read

ocnt is an optional argument that indicates the number of char-
acters actually transferred

When a request for a multiple-character transfer is requested, if the op-
tional fourth argument (ocnt) is specified and bit 6 of the M.TSTS word is
set, the variable specified as the argument will have a value equal to the
actual number of characters transferred upon return from the subroutine.

Errors:
i = 0 Normal return.
= 1 No input available.
= 2 Unit not attached.
= 3 Nonexistent unit number.
Example:

Refer to the example under MTATCH.

3.85‘ MTOUT (Special Feature)

3-80

The MTOUT subroutine transfers characters to a specified terminal. This
subroutine is a multiterminal form of ITTOUR. If no room is available in
the output ring buffer, an error flag is set to indicate an error upon return
from the subroutine. If no character count argument is specified, one char-
acter is transferred.

Form: i = MTOUT (unit,char[,chrent][,ocnt])

where:
unit is the unit number of the terminal
char is the variable or array containing the characters to be out-
put, right-justified in the integer (can be LOGICAL*1 if de-
sired)

chrent is an optional argument that indicates the number of char-
acters to be output

ocnt is an optional argument that indicates the number of char-
acters actually transferred

When a request for a multiple-character transfer is requested, if the op-
tional fourth argument (ocnt) is specified and bit 6 of the M.TSTS word is
set, the variable specified as the argument will have a value equal to the
actual number of characters transferred upon return from the subroutine.

Errors:

Normal return.

No room in output ring buffer.

Unit not attached.

Nonexistent unit number.

In the XM monitor, the address of the user buffer is outside
the valid program limits.

1 =

i

If
MW RO

System Subroutine Description and Examples

Example:
Refer to the example under MTATCH.

3.86 MTPRNT (Special Feature)

The MTPRNT subroutine allows output to be printed at any terminal in a
multiterminal environment. This subroutine has the same effect as the
PRINT subroutine (Section 3.91).

Form: i = MTPRNT (unit,string)
where:
unit is the unnit number associated with the terminal

string is the character string to be printed. Note that all quoted
literals used in FORTRAN subroutine calls are in ASCIZ
format, which ends in zero for a CR/LF or a 200 if no action
is to be taken

Errors:

Normal return.

Unit not attached.

Nonexistent unit number.

In the XM monitor, the address of the character string is
outside the valid program limits.

3.87 MTRCTO (Special Feature)

The MTRCTO subroutine resets the CTRL/O command typed at the speci-
fied terminal in a multiterminal environment. This subroutine has the
same effect as the MTRCTO programmed request (Section 2.53).

Form: i = MTRCTO(unit)

where:

i

o

gt N O

unit is the unit number associated with the terminal

Errors:
i = 0 Normal return.
= 2 Unit not attached.
= 3 Nonexistent unit number.
Example:

Refer to the example under MTATCH.

3.88 MTSET (Special Feature)

The MTSET subroutine sets terminal and line characteristics. The set con-
ditions remain in effect until the system is booted or the terminal and line
characteristics are reset. See the .MTSET programmed request (Section
2.54) for more details.

System Subroutine Description and Examples 3-81

Form: i = MTSET (unit,addr)

where:

unit
addr

Errors:

i

Example:

[o2JSV I el

is the unit number of the line and terminal whose character-
istics are to be changed

is a four-word area to pass the status information. The area is
a four-element INTEGER*2 array

Normal return.

Unit not attached.

Nonexistent unit number.

In the XM monitor, the address of the status block is outside
the valid program limits.

Refer to the example under MTATCH.

3.89 MTSTAT (Special Feature)

The MTSTAT subroutine returns multiterminal system status in an eight-
word status block.

Form: i = MTSTAT (addr)

where:

addr

Errors:

.l

Example:

0
5

is the address of an eight-word array where multiterminal
status information is returned. The status block contains the
following information:

Contents
addr(1) Offset from the base of the resident monitor to
the first Terminal Control Block (TCB).
addr(2) Offset from the base of the resident monitor to

the terminal control block of the console termi-
nal for the program.

addr(3) The value (0-16 decimal) of the highest logical
unit number (LUN) built into the system.

addr(4) The size of the terminal control block in bytes.
addr(5)—(8) Reserved.

Normal return.
In the XM monitor, the address of the status block is not in
valid user address space.

Refer to the example under MTATCH.

3-82 System Subroutine Description and Examples

3.90 MWAIT (FB and XM Only)

The MWAIT subroutine suspends main program execution of the current
job until all messages sent to or from the other job have been transmitted or
received. It provides a means for ensuring that a required message has
been processed. MWALIT is used primarily in conjunction with the IRCVD
and ISDAT calls, where no action is taken when a message transmission is
completed. This subroutine requires a queue element, which should be con-
sidered when the IQSET function (Section 3.42) is executed.

Form: CALL MWAIT
Errors:

None.
Example:

Refer to the example under ISDAT, Section 3.51.

3.91 PRINT

The PRINT subroutine prints output from a specified string at the console
terminal. This routine can be used to print messages from completion
routines without using the FORTRAN formatted I/0 system. Control re-
turns to the user program after all characters have been placed in the
output buffer.

The string to be printed can be terminated with either a null (0) byte or a
200(octal) byte. If the null (ASCIZ) format is used, the output is automati-
cally followed by a carriage return/line feed pair (octal 15 and 12). If a 200
byte terminates the string, no carriage return/line feed pair is generated.

In the FB monitor, a change in the job that is controlling terminal output is
indicated by a B> or F>. Any text following the message has been printed
by the job indicated (foreground or background) until another B> or F> is
printed. When PRINT is used by the foreground job, the message appears
immediately, regardless of the state of the background job. Thus, for urgent
messages, PRINT should be used rather than ITTOUR.

Form: CALL PRINT (string)

where:

string is the string to be printed. Note that all quoted literals used
in FORTRAN subroutine calls are in ASCIZ format, as are
all strings produced by the SYSLIB string-handling package
(The CONCAT routine can be used to append an octal 200 to
an ASCIZ string; see example.)

Errors:

None.

System Subroutine Description and Examples 3-83

Example:

CALL PRINT (’'THE COFFEE IS READY’)
or

BYTE QUESTION(80)

'APPEND BYTE 200

CALL CONCAT(‘WHAT IS YOUR NAME?,"200,QUESTION)
CALL PRINT(QUESTION) !'QUESTION PRINTS WITHOUT CRLF

3.92 PURGE

The PURGE subroutine deactivates a channel without performing an
ISAVES, CLOSEC, or ICLOSE. Any tentative file currently associated
with the channel is not made permanent. This subroutine prevents entered
(IENTER or .ENTER) files from becoming permanent directory entries.

Form: CALL PURGE (chan)

where:

chan is the integer specification for the RT—11 channel to be deac-
tivated

Errors:
None.

Example:

Refer to the example under IENTER, Section 3.25.

3.93 PUTSTR

The PUTSTR subroutine writes a variable-length character string to a
specified FORTRAN logical unit. PUTSTR can be used in main program
routines or in completion routines but not in both in the same program at
the same time. If PUTSTR is used in a completion routine, it must not be
the first I/O operation on the specified logical unit.

Form: CALL PUTSTR (lun,in,char,err)
where:

lun is the integer specification of the FORTRAN logical unit
number to which the string is to be written

in is the array containing the string to be written

char is an ASCII character that is appended to the beginning of the
string before it is output. If 0, no extra character is output.
This character is used primarily for carriage control purposes

err is a LOGICAL*1 variable that is .TRUE. for an error condi-
tion and .FALSE. for a no-error condition

3-84 System Subroutine Description and Examples

Errors:
err = -1 End-of-file for write operation.
-2 Hardware error for write operation.
Example:

LOGICAL*1 STRNG(81) JERR
+

+

IOUTPUT STRING WITH DOUBLE SPACING
CALL PUTSTR(7s8TRNG, ‘0’ ERR)

3.94 R50ASC

The R50ASC subroutine converts a specified number of Radix—50 charac-
ters to ASCIL. .

AR . %A
Form: CALL R50ASC (icnt,input,output) o
where:
icnt is the integer number of ASCII characters to be produced

input is the area from which words of Radix-50 values to be con-

verted are taken. Note that (icnt+2)/3 words are read for
conversion C

output is the area into which the ASCII characters are stored

Errors:

If an input word contains illegal Radix—50 codes — that is, if the
input word is greater (unsigned) than 174777(octal) — the routine
outputs question marks for the value.

Example:

REAL*8 NAME
LOGICAL*1 OUTP(1Z)

+

+

CALL RSOASC(1ZsNAME,,DUTP)

3.95 RADS50

The RAD50 function provides a method of encoding RT-11 file descriptors
in Radix—50 notation. The RAD50 function converts six ASCII characters
from the specified area, returning a REAL*4 result that is the two-word
Radix—50 value.

Form: a = RADS5O0 (input)

where: 4 lqv,*% = Gob

input is the area from which the ASCII input characters are taken

System Subroutine Description and Examples 3-85

The RAD50 call:
A = RADS0 (LINE)

is exactly equivalent to the IRAD50 call:

CALL IRADSO (BsLINE:A)

Function Results:

The two-word Radix—50 value is returned as the function result.

3.96 RCHAIN

The RCHAIN subroutine allows a program to determine whether it has
been chained to and to access variables passed across a chain. If RCHAIN is
used, it must be used in the first executable FORTRAN statement in a

program.

Form: CALL RCHAIN (flag,var,went)

where:

flag

var

went

Errors:

None.

Example:

is an integer variable that RCHAIN will set to —1 (true) if the
program has been chained to; otherwise, it is 0 (false)

is the first variable in a sequence of variables with increasing
memory addresses to receive the information passed across
the chain (see Section 3.2)

is the number of words to be moved from the chain parameter
area to the area specified by var. RCHAIN moves went words
into the area beginning at var

INTEGER*2 PARMS5(50)
CALL RCHAIN(IFLAG:PARMS50)
IF(IFLAG) GOTO 10 IGOTO 10 IF CHAINED TO

.
.

3

3.97 RCTRLO

The RCTRLO subroutine resets the effect of any console terminal CTRL/O
command that was typed. After an RCTRLO call, any output directed to the
console terminal prints until another CTRL/O is typed.

Form: CALL RCTRLO

Errors:

None.

3-86 System Subroutine Description and Examples

Example:

CALL RCTRLO
CALL PRINT (‘PRINT UNTIL ANOTHER CTRL/0 TYPED')

3.98 REPEAT

The REPEAT subroutine concatenates a specified string with itself to pro-
duce the indicated number of copies. REPEAT places the resulting string in
a specified array. ‘

Form: CALL REPEAT (in,out,i[,len[,err]])

where:

in is the array containing the string to be repeated; it must be
terminated with a null byte

out is the array into which the resultant string is placed. This
array must be at least one element longer than the value of
len, if len is specified. It also must be terminated with a null
byte if len is specified

i is the integer number of times to repeat the string

len is the integer number representing the maximum length of the
output string

err is the logical error flag set if the output string is truncated to
the length specified by len

Input and output strings can specify the same array only if the repeat count
(1) is 1 or 0. When the repeat count is 1, this routine is the equivalent of
SCOPY; when the repeat count is 0, out is replaced by a null string. The old
contents of out are lost when this routine is called.

Errors:

Error conditions are indicated by err, if specified. If err is given and
the output string would have been longer than len characters, then
err is set to .TRUE.; otherwise, err is unchanged.

Example:

LOGICAL*1 SIN(Z1),80UT(101)

+

*

CALL REPEAT(SIN,S0UT3)

3.99 RESUME (FB and XM Only)

The RESUME subroutine allows a job to resume execution of the main
program. A RESUME call is normally issued from an asynchronous FOR-
TRAN routine entered on I/O completion or because of a schedule request
(see the SUSPND subroutine, Section 3.107, for more information).

System Subroutine Description and Examples 3-87

Form: CALL RESUME

Errors:
None.

Example:
Refer

3.100 SCCA

to the example under SUSPND.

The SCCA subroutine provides a CTRL/C intercept to:

1. Inhibit a CTRL/C abort
2. Indicate that a CTRL/C command is active
3. Distinguish between single and double CTRL/C commands

Form: CALL SCCA [(iflag)]

where:

iflag

When a CTRL/C is typed, the SCCA subroutine places it in the input ring
buffer. While residing in the buffer, the character can be read by the pro- -
program must test and clear the iflag to determine if two
CTRL/C commands were typed consecutively. The iflag is set to non-zero
when two CTRL/Cs are typed together. It is the responsibility of the pro-
gram to abort itself, if appropriate, on an input of CTRL/C from the termi-
nal. The SCCA subroutine with no argument disables the CTRL/C inter-
cept. A CTRL/C from indirect command files is not intercepted by SCCA.

gram. The

Errors:
None.

Example:

10

19

20

is an integer terminal status word that must be tested and
cleared to determine if two CTRL/Cs were typed at the con-
sole terminal; the iflag must be an INTEGER*2 variable (not

LOGICAL*1)

PROGRAM SCCA
SCCA.FOR SYSLIB TEST FOR SCCA

CALL PRINT (‘'PROGRAM HAS STARTED:s TYPE’)
IFLAG=0

CALL SCCA (IFLAG)

I = ITTINRC) 'GET A CHARACTER
IF (I .NE. 3) GOTO 10

A CTRL/C WAS TYPED

CALL PRINT (‘A CTRL/C WAS TYPED')

IF (IFLAG .ER. O) GOTO 10

CALL PRINT (‘A DOUBLE CTRL/C WAS TYPED’)
TYPE 19,IFLAG

FORMAT (IFLAG = 7,06.:/)

CALL SCCA 'DISABLE CTRL/C INTERCEPT
CALL PRINT ('TYPE A CTRL/C TO EXIT’)

GOTO 20 'LOOP UNTIL CTRL/C TYPED
END

3-88 System Subroutine Description and Examples

3.101 SCOMP/ISCOMP

The SCOMP routine compares two character strings and returns the inte-
ger result of the comparison.

Form: CALL SCOMP (a,b,i)
or
i = ISCOMP (a,b)
where:

a is the array containing the first string; it must be terminated
with a null byte

b is the array containing the second string; it must be terminated
with a null byte

i isthe integer variable that receives the result of the comparison

The strings are compared from left to right, one character at a time, using
the collating sequence specified by the ASCII codes for each character. If
the two strings are not equal, the absolute value of variable i (or the result
of the function ISCOMP) is the character position of the first inequality
found. Strings are terminated by a null (0) character.

If the strings are not the same length, the shorter one is treated as if it
were padded on the right with blanks to the length of the other string. A
null string argument is equivalent to a string containing only blanks.

Function Results:

i <0 Ifaislessthan b.
=0 Ifaisequal to b.
>0 If a is greater than b.

Example:

LOGICAL*1 INSTR(B1)

+

+

CALL GETSTR(S+INSTR80)
CALL SCOMP(’YES’INSTR»IVAL)
IF(IVALNE. Q) GOTO 10 'TF INPUT STRING IS NOT YES GOTO 10

3.102 SCOPY

The SCOPY routine copies a character string from one array to another.
Copying stops either when a null (0) character is encountered or when a
specified number of characters have been moved.

Form: CALL SCOPY (in,out[,len[,err]])
where:

in is the array containing the string to be copied; it must be ter-
minated with a null byte if len is not specified, or if the string
is shorter than len ‘

System Subroutine Description and Examples 3-89

out is the array to receive the copied string. This array must be at
least one element longer than the value of len, if len is speci-

fied. It also must be terminated with a null byte if len is speci-
fied

len isthe integer number representing the maximum length of the
output string. The effect of len is to truncate the output string
to a given length

err is a logical variable that receives the error indication if the
output string was truncated to the length specified by len

The input (in) and output (out) arguments can specify the same array. The
string previously contained in the output array is lost when this subroutine
is called.

Errors:

Error conditions are indicated by err, if specified. If err is given and
the output string was truncated to the length specified by len, then
err is set to .TRUE.; otherwise, err is unchanged.

Example:

SCOPY is useful for initializing strings to a constant value, for exam-
ple:

LOGICAL*1 STRING(BO0)
CALL SCOPY('THIS IS THE INITIAL VALUE’ sSTRING)

3.103 SECNDS

The SECNDS function returns the current system time, in seconds past
midnight, minus the value of a specified argument. Thus, SECNDS can be
used to calculate elapsed time. The value returned is single-precision float-
ing point (REAL*4).

Form: a = SECNDS (atime)

where:

atime is a REAL*4 variable, constant, or expression whose value is
subtracted from the current time of day to form the result

Notes:

This function does floating-point arithmetic. Elapsed time can also be cal-
culated by using the GTIM call and the INTEGER*4 support functions.

Function Result:
The function result (a) is the REAL*4 value returned.
Errors:

None.

3-90 System Subroutine Description and Examples

Example:

c START OF TIMED SEQUENCE
T1=8ECNDS(0.)

CODE TO BE TIMED GOES HERE

oo

DELTA=SECNDS(T1) 'DELTA IS ELAPSED TIME

3.104 SETCMD

The SETCMD routine allows a user program to pass a command line to the
keyboard monitor to be executed after the program exits. The command
lines are passed to the chain information area (500-777 octal) and stored
beginning at location 512(octal). No check is made to determine if the
string extends into the stack space. For this reason, the command line
should be short and the subroutine call should be made in the main pro-
gram unit near the end of the program just before completion. When sev-
eral commands are involved, an indirect command file that contains sev-
eral command lines should be used.

The monitor commands REENTER, START, and CLOSE are not allowed if
the SETCMD feature is used.

Form: CALL SETCMD (string)

where:

string is a keyboard monitor command line in ASCIZ format with
no embedded carriage returns or line feeds

Errors:
None.

Example:
LOGICAL*1 +INPUT(134) PROMPT(8)
DATA PROMPT/ /P’ s/R‘»/0/ /M’ 4P’ 4'T"4'>"4"200/
CALL GTLIN (INPUT,PROMPT)

CALL SETCMD (INPUT)
END

NOTE

Set USR NOSWAP, or specify /INOSWAP with the COM-
PILE, FORTRAN, or EXECUTE command to control the
swapping state of the USR. A LOCK would inhibit another
job from using the USR.

A STOP or CALL EXIT must also be issued after the SETCMD to cause an
exit.

3.105 STRPAD

The STRPAD routine pads a character string with rightmost blanks until
that string is a specified length. This padding is done in place; the result

System Subroutine Description and Examples 3-91

string is contained in its original array. If the present length of the string is
greater than or equal to the specified length, no padding occurs.

Form: CALL STRPAD (a,len[,err])

where:

a is the array containing the string to be padded. This array
must be one element longer than the value of len if len is speci-
fied. It will be terminated by a null byte

len is the integer length of the desired result string

err is the logical error flag that is set to .TRUE. if the string speci-
fied by a exceeds the value of i in length

Errors:

Error conditions are indicated by err, if specified. If err is given and
the string indicated is longer than i characters, err is set to .TRUE.;
otherwise, the value of err is unchanged.

Example:

This routine is especially useful for preparing strings to be output in
A-type FORMAT fields. For example:

LOGICAL#*#1 STR(81)

+

’

CALL STRPAD(STR:BO) TASSURE 80 VALID CHARACTERS
PRINT 100+(STR(I)+I=1:80) !PRINT STRING OF BO CHARACTERS
100 FORMAT(80AL1)

3.106 SUBSTR

3-92

The SUBSTR routine copies a substring from a specified position in a char-
acter string. If desired, the substring can then be placed in the same array
as the string from which it was taken.

Form: CALL SUBSTR (in,out,i[,len])

where:

in is the array from which the substring is taken; it is terminated
by a null byte

out is the array to contain the substring result. This array must be
one element longer than len, if len is specified. It also is termi-
nated by a null byte if len is specified

i is the integer character position in the input string of the first
character of the desired substring

len is the integer number of characters representing the maximum
length of the substring

System Subroutine Description and Examples

If a maximum length (len) is not given, the substring contains all charac-
ters to the right of character position i in array in-and is not terminated by
a null byte. If len is given, the string is copied and terminated with a null
byte. If len is equal to zero, out is replaced by the null string. The old
contents of array out are lost when this routine is called.

Errors:

None.

3.107 SUSPND (FB and XM Only)

The SUSPND subroutine suspends main program execution of the current
job and allows only completion routines (for I/O and scheduling requests) to
run.

Form: CALL SUSPND
Notes:

1. The monitor maintains a suspension counter for each job. This count is
decremented by SUSPND and incremented by RESUME (see Section
3.99). A job will actually be suspended orly if this counter is negative.
Thus, if a RESUME is issued before a SUSPND, the latter routine will
return immediately.

2. A program must issue an equal number of SUSPND and RESUME
calls.

3. A SUSPND subroutine call from a completion routine decrements the
suspension counter but does not suspend the main program. If a comple-
tion routine does a SUSPND, the main program continues until it also
issues a SUSPND, at which time it is suspended. Two RESUME calls
are then required to proceed.

4. Because SUSPND and RESUME are used to simulate an ITWAIT (see
Section 3.61) in the monitor, a RESUME issued from a completion rou-
tine and not matched by a previously executed SUSPND can cause the
main program execution to continue past a timed wait before the entire
time interval has elapsed.

For further information on suspending main program execution of the cur-
rent job, see the .SPND programmed request (Section 2.84).

Errors:
None.

Example:

INTEGER IAREA(A)
COMMON /RDBLK/ IBUF(256)
EXTERNAL RDFIN

System Subroutine Description and Examples 3-93

IF(IREADF (256 ,IBUF ,IBLK ICHAN IAREA RDFIN).NE.O) GOTO 1000
GOTO 1000 FOR ANY TYPE OF ERROR

o0

DO OVERLAPPED PROCESSING

.

+

CALL SUSPND ISYNCHRONIZE WITH COMPLETION ROUTINE

END
SUBROUTINE RDFIN(IARG1,IARG2)
COMMON /RDBLK/ IBUF(258)

*

3

CALL RESUME ICONTINUE MAIN PROGRAM

+

éND
3.108 TIMASC

The TIMASC subroutine converts a two-word internal format time into an
ASCII string of the form:

hh:mm:ss

where:

hh is the two-digit hours indication

mm is the two-digit minutes indication

ss is the two-digit seconds indication
Form: CALL TIMASC (itime,strng)

where:

itime is the two-word internal format time to be converted.
itime(1) is the high-order time, itime(2) is the low-order time

strng is the eight-element array to contain the ASCII time
Errors:

None.
Example:

The following example determines the amount of time from the time
the program is run until 5 p.m. and prints it.

INTEGER*4 J1,J42,J3
LOGICAL*1 STRNG(B)

+

3-94 System Subroutine Description and Examples

CALL JTIME(17:0,04+0,J1)
CALL GTIM(JZ)
CALL JJCVUT(JD)
CALL JJCVUT(J2)
CALL JSUB(J1,J2,J3)
CALL JJCVT(J3)
CALL TIMASC(J3:5TRNG)
TYPE 99+ (STRNG(I) »I=1,8)
99 FORMAT(’ IT IS ‘,8A1+" TILL 5 P.M.’)

+

3.109 TIME

The TIME subroutine returns the current system time of day as an eight-
character ASCII string of the form:

hh:mm:ss
where:
hh is the two-digit hours indication
mm is the two-digit minutes indication
ss is the two-digit seconds indication
Form: CALL TIME (strng)
where:
strng is the eight-element array to receive the ASCII time
Notes:
A 24-hour clock is used (for example, 1:00 p.m. is represented as 13:00:00).

Errors:
None.
Example:
LOGICAL*1 STRNG(8)
+
CALL TIME(STRNG)
TYPE 99,(STRNG(I) +1=1,8)
89 FORMAT (/ IT IS NOW ’/,B8A1)

3.110 TRANSL

The TRANSL routine performs character translation on a specified string
and requires approximately 64(decimal) words on the R6 stack for its exe-
cution. This space should be considered when allocating stack space.

Form: CALL TRANSL (in,out,r[,p])

System Subroutine Description and Examples 3-95

where:

in is the array containing the input string; it is terminated by a
null byte

out is the array to receive the translated string; it is not termi-
nated by a null byte

r is the array containing the replacement string; it is terminated
by a null byte

p is the array containing the characters in in to be translated; it
is terminated by a null byte

The string specified by array out is replaced by the string specified by array
in, modified by the character translation process specified by arrays r and
p. If any character position in in contains a character that appears in the
string specified by p, it is replaced in out by the corresponding character
from string r. If the array p is omitted, it is assumed to be the 127 seven-bit
ASCII characters arranged in ascending order, beginning with the charac-
ter whose ASCII code is 001. If strings r and p are given and differ in
length, the longer string is truncated to the length of the shorter. If a
character appears more than once in string p, only the last occurrence is
significant. A character can appear any number of times in string r.

Errors:
None.
Examples:

The following example causes the string in array A to be copied to
array B. All periods within A become minus signs, and all question
marks become exclamation points.

CALL TRANSL(AsBs’'-174',7")

The following is an example of TRANSL being used to format charac-
ter data.

LOGICAL*1 STRING(27) RESULT(Z27) sPATRN(27)

c SET UP THE STRING TO BE REFORMATTED
C
CALL SCOPY(‘'THE HORN BLOWS AT MIDNIGHT',STRINGC)
c SET UP NUMBER-CHARACTER DATA RELATIONSHIP
C
c 00000000011111111112222222
o 12345678901234567890123456
c THE HORN BLOWS AT MIDNIGHT
c NOW SET UP PATRN TO CONTAIN THE FOLLOWING PATTERN:
c 16,17918019020'21o22»23'24925926:15'1¢2y304p55897y8'9910p11p12013914t0
c

DO 10 I=16+26
10 PATRN(I-15)=1
PATRN(12)=15
DO 20 I=1,14
20 PATRN(I+12)=1
PATRN(27)=0

3-96 System Subroutine Description and Examples

THE FOLLOWING CALL TO TRANSL REARRANGES THE CHARACTERS OF
THE INPUT STRING TO THE ORDER SPECIFIED BY PATRN:

oo

CALL TRANSL(PATRN:RESULT:STRING)

c

C RESULT NOW CONTAINS THE STRING ‘AT MIDNIGHT THE HORN BLOWS'

C IN GENERAL,» THIS METHOD CAN BE USED TO FORMAT INPUT STRINGS

c OF UP TO 127 CHARACTERS. THE RESULTANT STRING WILL BE

C AS LONG AS THE PATTERN STRING (AS IN THE ABOVE EXAMPLE).
3.111 TRIM

The TRIM routine shortens a specified character string by removing all
trailing blanks. A trailing blank is a blank that has no non-blanks to its
right. If the specified string contains all blank characters, it is replaced by
the null string. If the specified string has no trailing blanks, it is un-
changed.

Form: CALL TRIM (a)

where:

a is the array containing the string to be trimmed, it is terminated
by a null byte on input and output

Errors:
None.

Example:

LOGICAL*1 STRING(B1)
ACCEPT 100 (STRING(I)»I=1,80)
100 FORMAT(BOAL)
CALL SCOPY(STRING:STRING.80) IMAKE ASCIZ
CALL TRIM(STRING) ITRIM TRAILING BLANKS

3.112 UNLOCK

The UNLOCK subroutine releases the User Service Routine (USR) from
memory if it was placed there by the LOCK routine. If the LOCK required
a swap, the UNLOCK loads the user program back into memory. If the
USR does not require swapping, the UNLOCK involves no I/O. The USR is
always resident in XM.

Form: CALL UNLOCK
Notes:

1. It is important that at least as many UNLOCK calls are given as
LOCK calls. If more LOCK calls were done, the USR remains locked in
memory. Extra UNLOCK calls are ignored.

2. When running two jobs in the FB system, use the LOCK/UNLOCK
pairs only when absolutely necessary. If one job locks the USR, the
other job cannot use the USR until it is unlocked.

System Subroutine Description and Examples 3-97

3. In an FB system, calling the CSI (ICSI) with input coming from the
console terminal performs a temporary implicit UNLOCK.

For further information on releasing the USR from memory, see the
.LOCK/.UNLOCK programmed requests (Section 2.41).

Errors:
None.

Example:

+

C GET READY TO DO MANY USR OPERATIONS
CALL LOCK 'DISABLE USR SWAPPING
C PERFORM THE USR CALLS

+

+

c FREE THE USR
CALL UNLOCK

.
*

3.113 VERIFY

The VERIFY routine checks that a given string is composed entirely of
characters from a second string. If a character does not exist in the string
being examined, VERIFY returns the position of the first character in the
string being examined that is not in the source string. If all characters
exist, VERIFY returns a 0.

Form: CALL VERIFY (a,b,i)
or
i = IVERIF (a,b)
where:

a is the array containing the string to be scanned; it is terminated
by a null byte

b is the array containing the string of characters to be accepted in
a; it is terminated by a null byte

Function Result:

i = 0 If all characters of a exist in b; also if @ is a null string.
= n Where n is the character position of the first character in
array a that does not appear in array b; if b is a null string
and a is not, i equals 1.

3-98 System Subroutine Description and Examples

Example:

The following example accepts a one- to five-digit unsigned decimal
number and returns its value.

LOGICAL*1 INSTR(B1)

+

CALL VERIFY(INSTR,‘0123436788',1)
IF(I.EQ.1) STOP ‘NUMBER MISSING'
IF(I.EQ.0) I=LEN(INSTR)
IF(I.GT.5) STOP ‘TOO MANY DIGITS’
NUM=IVALUE(INSTR 1)

+

*
END

System Subroutine Description and Examples 3-99

Appendix A
Display File Handler

This appendix describes the assembly language support provided under
RT-11 for the VT11 graphic display hardware systems.

The following manuals are suggested for additional reference:

GT40/GT42 User’s Guide
EK-GT40-0P-002

GT44 User’s Guide
EK-GT44-0P-001

VT11 Graphic Display Processor
EK-VT11-TM-001

DECGRAPHIC-11 GT Series Reference Card
EH-02784-73

DECGraphic-11 FORTRAN Reference Manual
DEC-11-GFRMA-A-D

BASIC-11 Graphics Extensions User’s Guide
DEC-11-LBGEA-A-D

A.1 Description

The graphics display terminals have hardware configurations that include a
display processor and CRT (cathode ray tube) display. All systems are
equipped with light pens and hardware character and vector generators, and
are capable of high-quality graphics. The Display File Handler supports this
graphics hardware at the assembly language level under the RT-11 monitor.

A.1.1 Assembly Language Display Support

The Display File Handler is not an RT-11 device handler, since it does not use
the 1/0 structure of the RT-11 monitor. For example, it is not possible to use a
utility program to transfer a text file to the display through the Display File
Handler. Rather, the Display File Handler provides the graphics programmer
the means for the display of graphics files and the easy management of the
display processor. Included in its capabilities are such services as interrupt
handling, light pen support, tracking object, and starting and stopping of the
display processor.

The Display File Handler manages the display processor by means of a base
segment (called VITBASE) which contains interrupt handlers, an internal
display file and some pointers and flags. The display processor cycles through
the internal display file; any user graphics files to be displayed are accessed

by display subroutine calls from the Handler’s display file. In this way, the
Display File Handler exerts control over the display processor, relieving the
assembly language user of the task.

Through the Display File Handler, the programmer can insert and remove
calls to display files from the Handler’s internal display file. Up to two user
files may be inserted at one time, and that number may be increased by re-
assembling the Handler. Any user file inserted for display may be blanked
(the subroutine call to it bypassed) and unblanked by macro calls to the
Display File Handler.

Since the Handler treats all user display files as graphics subroutines to its
internal display file, a display processor subroutine call is required. This
is implemented with software, using the display stop instruction, and
is available for user programs. This instruction and several other extended
instructions implemented with the display stop instruction are described in
Section A.3.

The facilities of the Display File Handler are accessed through a file of macro
definitions (VTMAC) which generate calls to a set of subroutines in VTLIB.
VTMAC’s call protocol is similar to that of the RT-11 macros. The expansion
of the macros is shown in Section A.6. VTMAC also contains, for convenience
in programming, the set of recommended display processor instruction
mnemonics and their values. The mnemonics are listed in Section A.7 and are
used in the examples throughout this appendix.

VTCAL1 through VTCAL4 are the set of subroutines which service the
VTMAC calls. They include functions for display file and display processor
management. These are described in detail in Section A.2. VTCALI through
VTCALA4 are distributed, along with the base segment VTBASE, as a file of
five object modules called VTHDLR.OBJ. VTHDLR is built into the graphics
library VTLIB by using the monitor LIBRARY command. VTHDLR only
supports VT11 hardware. Section A.4.2 shows an example.

A.1.2 Monitor Display Support

The RT-11 monitor, under Version 03 and later, directly supports the display
as a console device. A keyboard monitor command, GT ON (GT OFF) per-
mits the selection of the display as console device. Selection results in the
allocation of approximately 1.25K words of memory for text buffer and code.
The buffer holds approximately 2000 characters.

The text display includes a blinking cursor to indicate the position in the text
where a character is added. The cursor initially appears at the top left corner
of the text area. As lines are added to the text the cursor moves down the
screen. When the maximum number of lines are on the screen, the top line is
deleted from the text buffer when the line feed terminating a new line is
received. This causes the appearance of “scrolling,” as the text disappears off
the top of the display.

When the maximum number of characters have been inserted in the text
buffer, the scroller logic deletes a line from the top of the screen to make room

A-2 Display File Handler

for additional characters. Text may appear to move (scroll) off the top of the
screen while the cursor is in the middle of a line.

The Display File Handler can operate simultaneously with the scroller pro-
gram, permitting graphic displays and monitor dialogue to appear on the
screen at the same time. It does this by inserting its internal display file into
the display processor loop through the text buffer. However, the following
should be noted. Under the SJ Monitor, if a program using the display for
graphics is running with the scroller in use (that is, GT ON is in effect), and
the program does a soft exit ((EXIT with RO not equal to 0) with the display
stopped, the display remains stopped until a CTRL/C is typed at the key-
board.

This can be recognized by failure of the monitor to echo on the screen when
expected. If the scroller text display disappears after a program exit, always
type CTRL/C to restore. If CTRL/C fails to restore the display, the running
program probably has an error.

Four scroller control characters provide the user with the capability of halting
the scroller, advancing the scrolling in page sections, and printing hard copy
from the scroller.

NOTE

The scroller logic does not limit the length of a line, but the
length of text lines affects the number of lines which may be
displayed, since the text buffer is finite. As text lines become
longer, the scroller logic may delete extra lines to make room
for new text, temporarily decreasing the number of lines dis-
played.

A.2 Description of Graphics Macros

The facilities of the Display File Handler are accessed through a set of macros,
contained in VTMAC, which generate assembly language calls to the Handler
at assembly time. The calls take the form of subroutine calls to the sub-
routines in VTLIB. Arguments are passed to the subroutines through register
0 and, in the case of the TRACK call, through both register 0 and the stack.

This call convention is similar to Version 1 RT-11 I/O macro calls, except that
the subroutine call instruction is used instead of the EMT instruction. If a
macro requires an argument but none is specified, it is assumed that the
address of the argument has already been placed in register 0. The program-
mer should not assume that RO is preserved through the call.

A.2.1 .BLANK
The .BLANK request temporarily blanks the user display file specified in the

request. It does this by bypassing the call to the user display file, which
prevents the display processor from cycling through the user file, effectively

Display File Handler A-3

blanking it. This effect can later be canceled by the .RESTR request, which
restores the user file. When the call returns, the user is assured the display
processor is not in the file that was blanked.

Macro Call: .BLANK faddr
where:
faddr is the address of the user display file to be blanked

Errors:

No error is returned. If the file specified was not found in the Handler
file or has already been blanked, the request is ignored.

A.2.2 .CLEAR

The .CLEAR request initializes the Display File Handler, clearing out any
calls to user display files and resetting all of the internal flags and pointers.

After initialization with .LNKRT (Section A.2.4), the .CLEAR request can be
used any time in a program to clear the display and to reset pointers. All calls
to user files are deleted and all pointers to status buffers are reset. They must
be re-inserted if they are to be used again.

Macro Call: .CLEAR

Errors:
None.

Example:

This example uses a .CLEAR request to initialize the Handler then
later uses the .CLEAR to re-initialize the display. The first .CLEAR is
used for the case when a program may be restarted after a CTRL C or

other exit.
BR RSTRT
EX13? RIS #20000y0B#44 SSET REENTER RIT IN JSW
RSTRT ¢ +« UNLNK FCLEARS LINK FLAG FOR RESTART
+LNKRT FSET UF VECTORSy START DISFLAY
+CLEAR FINITIALIZE HANDLER
+INSRT #FILEL FNISFLAY A PICTURFE
143 +TTYIN SWALIT FOR A KEY STRIKE
CMPE #12yR0O FLINE FEED?
ENE 1% FNOy LOOF
+CLEAR FYESy CLEAR DISPLAY
+ INSRT #FILER FOISFLAY NEW FICTURE
*
FILELS FOINT FAT FOINT (0500
0
500
LONGY FORAW A LINE
SO00FINTX $TO (500,500)
]
ORET
0

A-4 Display File Handler

FILER: FOINT $AT FOINT (3500-0)
Boo
0
LONGY PORAW A LINE

Ol INTX $TO (GO0 500D
HO0

DRET

)

<ENI EXL

A.2.3 .INSRT

The .INSRT request inserts a call to the user display file specified in the
request into the Display File Handler’s internal display file. INSRT causes
the display processor to cycle through the user file as a subroutine to the
internal file. The handler permits two user files at one time. The call inserted
in the handler looks like the following:

ISR sNISFLAY SUBROUTINE
+t4 FRETURN ADDRESS
+ Faddr F SUBROUTINE ADDRESS

The call to the user file is removed by replacing its address with the address of
a null display file. The user file is blanked by replacing the DJSR with a
DJMP instruction, bypassing the user file.

Macro Call; .INSRT faddr

where:

faddr is the address of the user display file to be inserted
Errors:

The .INSRT request returns with the C bit set if there was an error in
processing the request. An error occurs only when the Handler’s display
file is full and cannot accept another file. If the user file specified exists,
the request is not processed. Two display files with the same starting
address cannot be inserted.

Example:

See the examples in Sections A.2.2 and A.2.4.

A.2.4 .LNKRT

The .LNKRT request sets up the display interrupt vectors and possibly links
the Display File Handler to the scroll text buffer in the RT-11 monitor. It
must be the first call to the Handler, and is used whether or not the RT-11
monitor is using the display for console output (that is, the KMON command
GT ON has been entered).

The .LNKRT request used with Version 03 and later RT-11 monitors enables
a display application program to determine the environment in which it is
operating. Error codes are provided for the situations where there is no display

Display File Handler A-5

hardware present on the system or the display hardware is already being used
by another task (for example, a foreground job in the foreground/background
version).

The existence of the monitor scroller and the size of the Handler’s subpicture
stack are also returned to the caller. If a previous call to . LNKRT was made
without a subsequent .UNLNK, the .LNKRT call is ignored and an error code
is returned.

Macro Call: .LNKRT
Errors:

Error codes are returned in RO, with the N condition bit set.

Code Meaning
-1 No VT11 display hardware is present on this system.
-2 VT11 hardware is presently in use.

-3 Handler has already been linked.

On completion of a successful .LNKRT request, RO will contain the
display subroutine stack size, indicating the depth to which display
subroutines may be nested. The N bit will be zero.

If the RT-11 monitor scroll text buffer was not in memory at the time of
the .LNKRT, the C bit will be returned set. The KMON commands GT
ON and GT OFF cannot be issued while a task is using the display.

Example:
START? +LNKRT FLINK TO MONITOR
EBMI ERROR FERROR DOING LINK
ECS CONT $NO SCROLL IF C SET
+SCROL. #SEUF FADJUST SCROLL PARAMETERS
CONT? +« INSRT ¥FILEL yDISFLAY A FICTURE
143 +TTYIN fWAIT FOR KEY STRIKE
CMFER *12yR0O FLINE FEEDT
RNE 1% $NOy LOOF
« UNLNK FYESy UNLINK AND EXIT
JEXIT
SRUF ¢ +RBYTE 5 FLINE COUNT OF 5
+RYTE 7 FINTENSITY 7 (SCALE OF 1-8)
+WORD 1000 FFOSITION OF TOF LINE
FILEL: FOINT $AT FOINT (500+500)
500
500
CHAR sDISPLAY SOME TEXT
+ASCTII /FILE1L THIS I8 FILEL. TYFE CR TO EXIT/
+EVEN
LRET
0
ERROR ¢ Ervror routine

A-6 Display File Handler

A.2.,5 .LPEN

The .LPEN request transfers the address of a light pen status data buffer to
VTBASE. Once the buffer pointer has been passed to the Handler, the light
pen interrupt handler in VIBASE will transfer display processor status data
to the buffer, depending on the state of the buffer flag.

The buffer must have seven contiguous words of storage. The first word is the
buffer flag, and it is initially cleared (set to zero) by the .LPEN request. When
a light pen interrupt occurs, the interrupt handler transfers status data to the
buffer and then sets the buffer flag non-zero. The program can loop on the
buffer flag when waiting for a light pen hit (although doing this will tie up the
processor; in a foreground/background environment, timed waits would be
more desirable). No further data transfers take place, despite the occurrence
of numerous light pen interrupts, until the buffer flag is again cleared to zero.
This permits the program to process the data before it is destroyed by another
interrupt.

The buffer structure looks like this:

Buffer Flag

Name

Subpicture Tag

Display Program Counter (DPC)
Display Status Register (DSR)
X Status Register (XSR)

Y Status Register (YSR)

The Name value is the contents of the software Name Register (described in
A.3.5) at the time of interrupt. The Tag value is the tag of the subpicture
being displayed at the time of interrupt. The last four data items are the
contents of the display processor status registers at the time of interrupt. They
are described in detail in Table A-1.

Macro Call: .LPEN baddr

where:

baddr is the address of the 7-word light pen status data buffer
Errors:
None.

If a .LPEN was already issued and a buffer specified, the new buffer
address replaces the previous buffer address. Only one light pen buffer
can be in use at a time.

Example:
INSRT BLFILE SOISPLAY LFILE
LFEN #LEUF FOET UF LFEN RBUFFER
LOOF TST LEUF STEST LEUF FLAGy WHICH
REQ 1.OOF SWILL BE SET NON-ZERO

FON LIGHT FEN HIT.
FPROCESS DATA IN LEBUF HERE.

Display File Handler A-7

Table A-1:

CLR L. BUF

RR LOOR
LBUF? » BLKW 7
LFILE?

sDATA IN LRUF)
sCLEAR THE RUFFER FL.AG
FPERMITTING ANOTHER
G0 WAIT FOR IT
FSEVEN WORD LFEN BUFFER

Description of Display Status Words

Bits

Significance

Display Program Counter (DPC=172000)

0-15

Address of display processor program
counter at time of interrupt.

Display Status Register (DSR=172002)

.NAME baddr

where:

baddr

A-8 Display File Handler

0-1 Line Type

2 Spare

3 Blink

4 Italics

5 Edge Indicator

6 Shift Out

7 Light Pen Flag

8-10 Intensity

11-14 Mode

15 Stop Flag

X Status Register (XSR=172004)

0-9 X Position

10-15 Graphplot Increment

Y Status Register (YSR=172006)

0-9 Y Position

10-15 Character Register
A.2.6 .NAME

The .NAME request has been added to the Version 03 and later Display File
Handler. The contents of the name register are now stacked when a subpic-
ture call is made. When a light pen interrupt occurs, the contents of the name

register stack may be recovered if the user program has supplied the address
of a buffer through the .NAME request.

The buffer must have a size equal to the stack depth (default is 10) plus one
word for the flag. When the .NAME request is entered, the address of the
buffer is passed to the Handler and the first word (the flag word) is cleared.
When a light pen hit occurs, the stack’s contents are transferred and the flag
is set non-zero.

Macro Call:

is the address of the name register buffer

HIT

Errors:
None.

If a .NAME request has been previously issued, the new buffer address
replaces the previous buffer address.

A.2.7 .REMOV

The .REMOV request removes the call to a user display file previously in-
serted in the handler’s display file by the INSRT request. All reference to the
user file is removed, unlike the .BLANK request, which merely bypasses the
call while leaving it intact.

Macro Call: .REMOYV faddr

where:
faddr is the address of the display file to be removed

Errors:

No errors are returned. If the file address given cannot be found, the
request is ignored.

A.2.8 .RESTR

The .RESTR request restores a user display file that was previously blanked
by a .BLANK request. It removes the by-pass of the call to the user file, so
that the display processor once again cycles through the user file.

Macro Call: .RESTR faddr

where:

faddr is the address of the user file that is to be restored to view
Errors:

No errors are returned. If the file specified cannot be found, the request
is ignored.

A.2.9 .SCROL

This request is used to modify the appearance of the Display Monitor’s text
display. The .SCROL request permits the programmer to change the maxi-
mum line count, intensity and the position of the top line of text of the
scroller. The request passes the address of a two-word buffer which contains
the parameter specifications. The first byte is the line count, the second byte
is the intensity, and the second word is the Y position. Line count, intensity
and Y position must all be octal numbers. The intensity may be any number
from O to 7, ranging from dimmest to brightest. (If an intensity of 0 is speci-
fied, the scroller text will be almost unnoticeable at a BRIGHTNESS knob
setting less than one-half.) The scroller parameter change is temporary, since
an .UNLNK or CTRL/C restores the previous values.

Display File Handler A-9

Macro Call: .SCROL baddr

where:

baddr is the address of the two-word scroll parameters buffer

Errors:

No errors are returned. No checking is done on the values of the param-
eters. A zero argument is interpreted to mean that the parameter value
is not to be changed. A negative argument causes the default parameter
value to be restored.

Example:
«SCROL #SCERUF FADJUST SCROLL FPARAMETERS
SCEUF $ +BYTE 5 $DECREASE #LINES TO 5.
+EYTE 0 FLEAVE INTENSITY UNCHANGED.
+WORDI 300 $TOF LINE AT Y=300.

A.2.10 .START

The .START request starts the display processor if it was stopped by a .STOP
directive. If the display processor is running, it is stopped first, then restarted.
In either case, the subpicture stack is cleared and the display processor is
started at the top of the handler’s internal display file.

Macro Call: .START

Errors:

None.

A.2.11 .STAT

The .STAT request transfers the address of a seven-word status buffer to the
display stop interrupt routine in VTBASE. Once the transfer has been made,
display processor status data is transferred to the buffer by the display stop
interrupt routine in VTBASE whenever a .DSTAT or .DHALT instruction is
encountered (see Sections A.3.3 and A.3.4). The transfer is made only when
the buffer flag is clear (zero). After the transfer is made, the buffer flag is set
non-zero and the .DSTAT or .DHALT instruction is replaced by a .DNOP
(Display NOP) instruction. .

The status buffer must be a seven-word, contiguous block of memory. Its
contents are the same as the light pen status buffer. For a detailed description
of the buffer and an explanation of the status words, see Section A.2.5 and
Table A-1.

Macro Call: .STAT baddr

where:

baddr is the address of the status buffer receiving the data

A-10 Display File Handler

Errors:

No errors are indicated. If a buffer was previously set up, the new buffer
address is replaced as the old buffer address.

A.2.12 .STOP

The .STOP request “stops’ the display processor. It actually effects a stop by
preventing the DPU from cycling through any user display files. It is useful for
stopping the display during modification of a display file, a risky task when
the display processor is running. However, a .BLANK could be equally useful
for this purpose, since the .BLANK request does not return until the display
processor has been removed from the user display file being blanked.

Macro Call: .STOP
Errors:

None.

NOTE

Since the display processor must cycle through the text buffer
in the Display Monitor in order for console output to be pro-
cessed, the text buffer remains visible after a .STOP request is
processed, but all user files disappear.

A.2.13 .SYNC/.NOSYN

The .SYNC and .NOSYN requests provide program access to the power line
synchronization feature of the display processor. The .SYNC request enables
synchronization and the .NOSYN request disables it (the default case).

Synchronization is achieved by stopping the display and restarting it when
the power line frequency reaches a trigger point, e.g., a peak or zero-crossing.
Synchronization has the effect of fixing the display refresh time. This may be
useful in some cases where small amounts of material are displayed but the
amount frequently changes, causing changes in intensity. In most cases, how-
ever, using synchronization increases flicker.

Macro Calls: .SYNC
NOSYN

Errors:

None.

A.2.14 .TRACK

The .TRACK request causes the tracking object to appear on the display CRT
at the position specified in the request. The tracking object is a diamond-
shaped display figure which is light-pen sensitive. If the light pen is placed
over the tracking object and then moved, the tracking object follows the light
pen, trying to center itself on the pen.

Display File Handler A-11

The tracking object first appears at a position specified in a two-word buffer
whose address was supplied with the TRACK request. As the tracking object
moves to keep centered on the light pen, the new center position is returned
to the buffer. A new set of X and Y values is returned for each light pen
interrupt.

The tracking object cannot be lost by moving it off the visible portion of the
display CRT. When the edge flag is set, indicating a side of the tracking object
is crossing the edge of the display area, the tracking object stops until moved
toward the center. To remove the tracking object from the screen, repeat the
.TRACK request without arguments.

The .TRACK request may also include the address of a completion routine as
the second argument. If a . TRACK completion routine is specified, the light
pen interrupt handler passes control to the completion routine at interrupt
level. The completion routine is called as a subroutine and the exit statement
must be an RTS PC. The completion routine must also preserve any registers
it may use.

Macro Call: .TRACK baddr, croutine

where:

baddr is the address of the two-word buffer containing the X and Y
position for the track object

croutine is the address of the completion routine

Errors:

None.

Example:

See Section A.10.

A.2.15 .UNLNK

The .UNLNK request is used before exiting from a program. In the case where
the scroller is present, .UNLNK breaks the link, established by .LNKRT,
between the Display File Handler’s internal display file and the scroll file in
the Display Monitor. The display processor is started cycling in the scroll text
buffer, and no further graphics may be done until the link is established
again. In the case where no scroller exists, the display processor is simply left
stopped.

Macro Call: .UNLNK

Errors:

No errors are returned. An internal link flag is checked to determine if
the link exists. If it does not exist, the request is ignored.

A-12 Display File Handler

A.3 Extended Display Instructions

The Display File Handler offers the assembly language graphics programmer
an extended display processor instruction set, implemented in software
through the use of the Load Status Register A (LSRA) instruction. The ex-
tended instruction set includes: subroutine call, subroutine return, display
status return, display halt, and load name register.

A.3.1 DJSR Subroutine Call Instruction

The DJSR instruction (octal code is 173400) simulates a display subroutine
call instruction by using the display stop instruction (LSRA instruction with
interrupt bits set). The display stop interrupt handler interprets the non-zero
word following the DJSR as the subroutine return address, and the second
word following the DJSR as the address of the subroutine to be called. The
instruction sequence is:

DJSR
Return address
Subroutine address

Example:
To call a subroutine SQUARE:
FOINT SFOSITION REAM
100 $AT (1005100)
100
DJSK FTHEN CALL SUBROUTINE
)
SQUARE 5TO DRAW A SQUARE
IRET
0

The use of the return address preceding the subroutine address offers
several advantages. For example, the BASIC-11 graphics software uses
the return address to branch around subpicture tag data stored follow-
ing the subpicture address. This structure is described in Section A.5.3.
In addition, a subroutine may be temporarily bypassed by replacing the
DJSR code with a DJMP instruction, without the need to stop the
display processor to make the by-pass.

The address of the return address is stacked by the display stop inter-
rupt handler on an internal subpicture stack. The stack depth is condi-
tionalized and has a default depth of 10. If the stack bottom is reached,
the display stop interrupt handler attempts to protect the system by
rejecting additional subroutine calls. In that case, the portions of the
display exceeding the legal stack depth will not be displayed.

A.3.2 DRET Subroutine Return Instruction

The DRET instruction provides the means for returning from a display file
subroutine. It uses the same octal code as DJSR, but with a single argument
of zero. The DRET instruction causes the display stop interrupt handler to
pop its subpicture stack and fetch the subroutine return address.

Display File Handler A-13

Example:

SQUARE: LONGV $DRAW A SQAUARE
1001 INTX
0
OVINTX
100
100 INTX ! MINUSX
0
O1INTX
100! MINUSX
DRET $RETURN FROM SURFICTURE
0

A.3.3 DSTAT Display Status Instruction

The DSTAT instruction (octal code is 173420) uses the LSRA instruction to
produce a display stop interrupt, causing the display stop interrupt handler to
return display status data to a seven-word user status buffer. The status
buffer must first have been set up with a .STAT macro call (if not, the
DSTAT is ignored and the display is resumed). The first word of the buffer is
set non-zero to indicate the transfer has taken place, and the DSTAT is
replaced with a DNOP (display NOP). The first word is the buffer flag and
the next six words contain name register contents, current subpicture tag,
display program counter, display status register, display X register, and dis-
play Y register. After transfer of status data, the display is resumed.

A.3.4 DHALT Display Halt Instruction

The DHALT instruction (octal code is 173500) operates similarly to the
DSTAT instruction. The difference between the two instructions is that the
DHALT instruction leaves the display processor stopped when exiting from
the interrupt. A status data transfer takes place provided the buffer was
initialized with a .STAT call. If not, the DHALT is ignored.

Example:
«STAT FSERUF # INIT BUFFER
MOV $DHALT»STFLOC 5 INSERT DHALT
+INSRT #DFILE $DISPLAY THE FICTURE
143 TET SRUF sDHALT FROCESSED?
HEQ 1s $NOs WAIT
SEUF ¢ +BLKW 7 iSTATUS RBUFFER
DFILES POINT $FPOSITION NEAR TOF OF 12* TURE
+WORD 500y 1350
LONGY $DRAW A LINE» MAYEE OVER EDGE
+WORD 0+400 $IF IT IS A 12* SCOFE.
STFLOC: LINOF $STATUS WILL RE RETURNED AT
DRET $ THIS FOINT
0

A.3.5 DNAME Load Name Register Instruction

The Display File Handler provides a name register capability through the use
of the display stop interrupt. When a DNAME instruction (octal code is
173520) is encountered, a display stop interrupt is generated. The display stop
handler stores the argument following the DNAME instruction in an internal

A-14 Display File Handler

software register called the “name register.” The current name register con-
tents are returned whenever a DSTAT or DHALT is encountered, and more
importantly, whenever a light pen interrupt occurs. The use of a “name”’
(with a valid range from 1 to 77777) enables the programmer to label each
element of the display file with a unique name, permitting the easy identifica-
tion of the particular display element selected by the light pen.

The name register contents are stacked on a subpicture call and restored on
return from the subpicture.

Example:

The SQUARE subroutine with “named” sides.

SQUARE DNAME INAME IS
10 10
LONGV sDRAW A SIDE
100 INTX
0
DINAME $THIS SIDE IS NAMEID
i1 i1l
OVINTX $STILL IS LONG VECTOR MODE
100
DINAME
12
1001 INTX I MINUSX
0
DINAME
13
OVTINTX
100 I MINUGX
DRET FRETURN FROM SUBFICTURE
0

A.4 Using the Display File Handler

Graphics programs which intend to use the Display File Handler for display
processor management can be written in MACRO assembly language. The
display code portions of the program may use the mnemonics described in
Section A.7. Calls to the Handler should have the format described in
Section A.6.

The Display File Handler is supplied in two pieces, a file of MACRO defini-
tions and a library containing the Display File Handler modules.

MACRO Definition File: VTMAC.MAC
Display File Handler: ‘ VTLIB.OBJ (consisting of:)

VTBASE.OBJ
VTCAL1.0BJ
VTCAL2.0BJ
VTCAL3.OBJ
VTCAL4.0BJ

Display File Handler A-15

A.4.1 Assembling Graphics Programs

To assemble a graphics program using the display processor mnemonics or the
Display Handler macro calls, the file VTMAC.MAC must be assembled with
the program, and must precede the program in the assembler command
string.

Example:

Assume PICTUR.MAC is a user graphics program to be assembled. An
assembler command string would look like this:

MACRO VTMACH+FICTUR/OBRJECT
A.4.2 Linking Graphics Programs

Once assembled with VI'MAC, the graphics program must be linked with the
Display File Handler, which is supplied as a single concatenated object mod-
ule, VTHDLR.OBJ. The Handler may optionally be built as a library, follow-
ing the directions in A.8.5. The advantage of using the library when linking is
that the Linker will select from the library only those modules actually used.
Linking with VTHDLR.OBJ results in all modules being included in the link.

To link a user program called PICTUR.OBJ using the concatenated object
module supplied with RT-11:

LINK FICTURsVYTHILR
To link a program called PICTUR.OBJ using the VTLIB library built by
following the directions in A.8.5, be sure to use the Version 03 Linker:

LINK FICTURsVTLIR

VTLIB (Handler Modules):

Module CSECT Contains Globals
VTCAL1 $GT1 .CLEAR $VINIT
START $VSTRT
.STOP $VSTOP
INSRT $VNSRT
.REMOV $VRMOV
VTCAL2 $GT2 .BLANK $VBLNK
.RESTR $VRSTR
VTCALS3 $GT3 .LPEN $VLPEN
.NAME $SNAME
.STAT $VSTPM
.SYNC $SYNC
.NOSYN $NOSYN
.TRACK $VTRAK
VTCAL4 $GT4 .LNKRT $VRTLK
.UNLNK $VUNLK
.SCROL $VSCRL
VTBASE $GTB Interrupt handlers $DFILE

and internal
display file

A-16 Display File Handler

The file modules in VTHDLR can be used in three different ways. When space
is not critical, the most straightforward way is to link VIHDLR directly with
a display program. The following command is an example.

LINK FICTURyVTHIOLR

It is often necessary to conserve space, however, and selective loading of

modules is possible by first creating an indexed object module library from

VTHDLR and then by making global calls within the display program. The

following command creates an indexed object module library.
LIBRARY/CREATE VTLIR VTHOLR

To further conserve space with overlays, it is also possible to extract individ-
ual object modules from a library and create separate object module files. For
example, to link a display program using overlays, the following statements
are a typical sequence of creating, extracting and linking commands. (NOTE:
the modules VTCALI and VTCAL2 must be in the same overlay if any global
in either one is used.)

L3

+LIBRARY/CREATE VTLIR VTHDLR

.

+

LIBRARYZEXTRACT VTLIR VUTCAL1L

GLOBAL? $VSTRT !moves entire module with $VSTRT to VTCALL
GLORALT 1Terminates rromrting sequence
JLIBRARY/ZEXTRACT VTLIB VTCALZ

GLORALT $VELNK !Moves the entire module to VTCALZ
GLORAL?

LIBRARYZEXTRACT VTLIR VTCAL3

GLORAL? $VLPEN !Moves the entire module

GLORAL?

LLIBRARYZEXTRACT VTLIR VTCALA4

GLORALT $VRTLK !'Moves the entire module

GL.OBAL?

+LIBRARY/ZEXTRACT VTLIER VTRASE

GLORAL? $DFILE !Moves the entire module
GLORAL?

*

.

+LINK/ZFPROMFT FICTURyVTRAGE
¥UTCALLyVTCAL2»VTCAL3/02 L
¥VUTCALA/0% L

X//

A.5 Display File Structure

The Display File Handler supports a variety of display file structures, takes
over the job of display processor management for the programmer, and may
be used for both assembly language graphics programming and for systems
program development. For example, the Handler supports the tagged subpic-
ture file structure used by the BASIC-11 graphics software, as well as simple
file structures. These are discussed in this section.

Display File Handler A-17

A.5.1 Subroutine Calls

A subroutine call instruction, with the mnemonic DJSR, is implemented us-
ing the display stop (DSTOP) instruction with an interrupt. The display stop

. Interrupt routine in the Display File Handler simulates the DJSR instruction,
and this allows great flexibility in choosing the characteristics of the DJSR
instruction.

The DJSR instruction stops the display processor and requests an interrupt.
The DJSR instruction may be followed by two or more words, and in this
implementation the exact number may be varied by the programmer at any
time. The basic subroutine call has this form:

DJSR
Return Address
Subroutine Address

In practice, simple calls to subroutines could look like:

DJSKR
+WORD ++4
+WORD SUR

where SUB is the address of the subroutine. Control will return to the display
instruction following the last word of the subroutine call. This structure per-
mits a call to the subroutine to be easily by-passed without stopping the
display processor, by replacing the DJSR with a display jump (DJMP) in-

struction:

nJMF

JWORD «+a

<WORD SUR
A more complex display file structure is possible if the return address is
generalized:

+IOJUSR

«WORD NEXT

+WORD SUR
where NEXT is the generalized return address. This is equivalent to the
sequence:

ISR

<WORD ++4

+WORD SUE

DLJIMP

+WORD NEXT

It is also possible to store non-graphic data such as tags and pointers in the
subroutine call sequence, such as is done in the tagged subpicture display file
structure of the BASIC-11 graphics software. This technique looks like:

ISR
+WORD NEXT
+WORD SUR
DATA

NEXT?$.

*

.

For simple applications where the flexibility of the DJSR instruction de-
scribed above is not needed and the resultant overhead is not desired, the

A-18 Display File Handler

Display File Handler (VTBASE.MAC and VTCALL.MAC) can be condition-
ally re-assembled to produce a simple DJSR call. If NOTAG is defined during
the assembly, the Handler will be configured to support this simple DJSR
call:

DJSR

WORD SUR
where SUB is the address of the subroutine. Defining NOTAG will eliminate
the subpicture tag capability, and with it the tracking object, which uses the
tag feature to identify itself to the light pen interrupt handler.

Whatever the DJSR format used, all subroutines and the user main file must
be terminated with a subroutine return instruction. This is implemented as a
display stop instruction (given the mnemonic DRET) with an argument of
zero. A subroutine then has the form:

SUR? Disrlas Code

DRET
+WORD ©

A.5.2 Main File/Subroutine Structure

A common method of structuring display files is to have a main file which
calls a series of display subroutines. Each subroutine will produce a picture
element and may be called many times to build up a picture, producing
economy of code. If the following macros are defined:

+MACRO CAlL “ARGx
TLISR

+WORD 4
+WORD ARG

+ ENIIM

+MACRO RETURN
DRET

+WORD 0
+ENDM

then a main file/subroutine file structure would look like:

SMAIN DISFLAY FILE

y
MAIN? Disrlaw Code
cal.l. SURL sCALL SUBROUTINE 1
Disrlay Code
CALL SUR2 sCALL SURROUTINE 2
. FETC
+
RETURN

i
FDISFLAY SURROUTINES

¥

SUR1L: Nisrlaw Code FSURROUTINE 1
RETURN
¥
GURZ? Dis=law Code FSURROUTINE 2
RETURN
. SETC.

*

+

Display File Handler A-19

A.5.3 BASIC-11 Graphic Software Subroutine Structure

An example of another method of structuring display files is the tagged sub-
picture structure used by BASIC-11 graphic software. The display file is
divided into distinguishable elements called subpictures, each of which has its
own unique tag.

The subpicture is constructed as a subroutine call followed by the subroutine.
It is essentially a merger of the main file/subroutine structure into an in-line
sequence of calls and subroutines. As such, it facilitates the construction of
display files in real time, one of the important advantages of BASIC-11
graphic software.

The following is an example of the subpicture structure. Each subpicture has
a call to a subroutine with the return address set to be the address of the next
subpicture. The subroutine called may either immediately follow the call, or
may be a subroutine defined as part of a subpicture created earlier in the
display file. This permits a subroutine to be used by several subpictures
without duplication of code. Each subpicture has a tag to identify it, and it is
this tag which is returned by the light pen interrupt routine. To facilitate
finding subpictures in the display file, they are made into a linked list by
inserting a forward pointer to the next tag.

SURL DJSR $START OF SUBRFICTURE 1
+WORD SUBR2 INEXT SUBFICTURE
+WORD SURL+12 $JUMP TO THIS SUBFICTURE
+WORD 1 JTAG = 1
+WORD SUB2+4 FFOINTER TO NEXT TAG

$BODY OF SUBRFICTURE 1

DIRET SRETURN FROM
0 $SUBFICTURE 1
SUERZ2: DJISR FSTART SURFICTURE 2
+WORD SUR3 FNEXT SUEBFICTURE
+WORD SUR2+12 #JUMF TO THIS SURFICTURE
+WORD 2 FTAG 2
+ WORD SUE3té $FTR TO NEXT TAG
§BODY OF SUBFICTURE 2
IRET FRETURN FROM
+WORD 0 FSURFICTURE 2
SUR3: DJSK $START SURFICTURE 3
+WORD SUR4 FNEXT SURFICTURE
«WORD SURL+12 COFY SURFICTURE 1
SFOR THIS SURFICTURE
+WORD 3 FRUT TAG IT 3.
+WORD SUR4+6 FFTR TO NEXT TAG
SUR4 ¢ DJSK FSTART SURFICTURE 4
. FJETC.

+

.

A-20 Display File Handler

A.6 Summary of Graphics MACRO Calls

Mnemonic

.BLANK

.CLEAR

INSRT

.LNKRT

.LPEN

NAME

.NOSYN

.REMOV

.RESTR

.SCROL

Function

Temporarily blanks
a user display file.

Initializes handler.

Inserts a call to
user display file

in handler’s master
display file.

Sets up vectors and
links display file
handler to RT-11
scroller.

Sets up light pen
status buffer.

Sets up buffer to
receive name
register stack
contents.

Disables power line
synchronization.

Removes the call to
a user display file.

Unblanks the user
display file.

Adjusts monitor
scroller parameters.

MACRO Call
(see Note 1)

.BLANK faddr

.CLEAR

INSRT faddr

.LNKRT

.LPEN baddr

.NAME \baddr

.NOSYN

.REMOV faddr

.RESTR faddr

.SCROL baddr

Display File Handler A-21

Assembly Language
Expansion
(see Note 2)

.GLOBL $VBLNK
JF NB, faddr
MOV faddr, "100
.ENDC

JSR 07, $VBLNK

.GLOBL $VINIT
JSR "07, $VINIT

.GLOBL $VNSRT
JF NB, faddr
MOV faddr, “O0
.ENDC

JSR "07, $§VNSRT

.GLOBL $VRTLK
JSR "07, $VRTLK

.GLOBL $VLPEN
JF NB, baddr
MOV baddr, 00
.ENDC

JSR "07, $VLPEN

.GLOBL $NAME
IF NB, baddr
MOV .BEDDR, "00
ENDC

JSR “07, SNAME

.GLOBL $NOSYN
JSR "07, $SNOSYN

.GLOBL $VRMOV
JF NB, faddr
MOV faddr, “00
.ENDC

JSR 07, $VRMOV

.GLOBL $VRSTR
IF NB, faddr
MOV faddr, “O0
ENDC

JSR 07, $VRSTR

.GLOBL $VSCRL
JIF NB, baddr
MOV baddr, 00
.ENDC

JSR "07, $VSCRL

Mnemonic

START

STAT

.STOP

SYNC

.TRACK

.UNLNK

MACRO Call
Function (see Note 1)
Starts the display. START
Sets up status .STAT baddr
buffer,
Stops the display. .STOP
Enables power line SYNC

synchronization.

Enables the track .TRACK baddr,

Assembly Language
Expansion
(see Note 2)

.GLOBL $VSTRT
JSR "07, $VSTRT

.GLOBL $VSTPM
IF NB, baddr
MOV baddr, "00
.ENDC

JSR "07, $VSTPM

.GLOBL $VSTOP
JSR "07, $VSTOP

.GLOBL $SYNC
JSR "07, $SYNC

.GLOBL $VTRAK

object. croutine IF NB, baddr
MOV baddr, ~00
.ENDC
IF NB, croutine
MOV croutine,-
("06)
IFF
CLR-("06)
.ENDC
.NARG T
JFEQ, T
CLR "00
.ENDC
JSR "07, $VTRAK
Unlinks display .UNLNK .GLOBL $VUNLK
handler from RT-11 JSR "07, $VUNLK
if linked (otherwise
leaves display stopped).
NOTE 1
baddr Address of data buffer.
faddr Address of start of user display file.
croutine Address of .TRACK completion routine.

NOTE 2

The lines preceded by a dot will not be assembled.
The code they enclose may or may not be assembled

depending on the conditionals.

A-22 Display File Handler

A.7 Display Processor Mnemonics

Mnemonic

CHAR
SHORTV
LONGV
POINT
GRAPHX
GRAPHY
RELATYV

INTO
INT1
INT2
INT3
INT4
INT5
INT6
INT7

LPOFF
LPON

BLKOFF
BLKON

LINEO
LINE1
LINE2
LINES

DJMP
DNOP
STATSA

LPLITE
LPDARK

ITALO
ITAL1

SYNC

STATSB

INCR

Vector/Point Mode

INTX

MAXX
MAXY

MINUSX
MINUSY

Il

Il

Il

fi

Il

Value

100000
104000
110000
114000
120000
124000
130000

2000
2200
2400
2600
3000
3200
3400
3600

100
140

20
30

4
5
6
7

160000
164000
170000

200
300

40
60

4

174000

100

40000

1777
1377

20000
20000

Function

Character Mode
Short Vector Mode
Long Vector Mode
Point Mode
Graphplot X Mode
Graphplot Y Mode
Relative Point Mode

Intensity 0 (Dim)
Intensity 1
Intensity 2
Intensity 3
Intensity 4
Intensity 5
Intensity 6
Intensity 7 (Bright)

Light Pen Off
Light Pen On

Blink Off
Blink On

Solid Line
Long Dash
Short Dash
Dot Dash

Display Jump
Display No Operation
Load Status A
Instruction

Light Pen Hit On
Light Pen Hit Off

Ttalics Off
Italics On

Halt and Resume
Synchronized
Load Status B
Instruction

Graphplot Increment

Intensity Vector or
Point

Maximum X Component
Maximum Y Component

Negative X Component
Negative Y Component

Display File Handler

A-23

Mnemonic Value Function

Short Vector Mode

SHIFTX = 200

MAXSX = 17600 Maximum X Component
MAXSY = 77 Maximum Y Component
MISVX = 20000 Negative X Component
MISVY = 100 Negative Y Component

A.8 Assembly Instructions

A.8.1 General Instructions

All programs can be assembled in 16K, using RT-11 MACRO. All assemblies
and all links should be error free. The following conventions are assumed:

1. Default file types are not explicitly typed. These are .MAC for source files,
.OBJ for assembler output, and .SAV for Linker output.

2. The default device (DK) is used for all files in the example command
strings.

3. Listings and link maps are not generated in the example command
strings.
A.8.2 VTBASE

To assemble VTBASE with RT-11 link-up capability.
MACRO VTRASE

A.8.3 VTCAL1 - VTCAL4

To assemble the modules VT'CAL1 through VICALA4:
MACKO VTCAL1,VUTCAL2sUTCAL3,UTCALA

A.8.4 VTHDLR

To create the concatenated handler module:

COFY/ERINARY VTCALL1.0BJyVTCAL2,0BJsUTCALS 0By~
VTCAL4.0BJyVTBASE.OR.) VTHDLR.DRJ

A.8.5 Building VTLIB.OBJ

To build the VTLIB library:
LIBRARY/CREATE VTLIB VTHDLR

A-24 Display File Handler

A.9 VTMAC

+TITLE VTMAC

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY ONLY BE USED
OR COFIED IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE.

COPYRIGHT (C) 1978y DIGITAL ERUIPMENT CORFORATION.
VTMAC IS A LIEBRARY OF MACRO CALLS AND MNEMONIC DEFINITIIONS WHICH

FROVIDE SUFFORT OF THE VUT11 DISFLAY FROCESSOR. THE MACROS FRODUCE
CALLS TO THE VT11 DEVICE SUFFORT FACKAGE, USING GLOERAL REFERENCES.

ws M> W W N> W € W

$ MACRO TO GENERATE A MACRD WITH ZERO ARGUMENTS.
+MACRD MACO NAMECALL
+MACRO NAME
+GLORL CALL
JBR FCyCALL
+ ENIIM
+ENDM

§ MACRO TO GENERATE A MACRO WITH ONE ARGUMENT

+MACRO MACL NAME,CALL
+MACRO NAME ARG

+IF NEyARG

MOV ARGy %700
+ENDC

+GLORBL CALL

JSR FCyCALL
+ ENDIM

+ ENDIM
$ MACRO TO GENERATE A MACRO WITH TWO OFTIONAL ARGUMENTS

+MACRO MAC2 NAME s CALL
+MACRO NAME ARG1»ARGZ

+GLORL CALL
«IF NRsARGL

MOV ARGL» %700
+ENDEC

+IF NRyARG2

MOV ARGZ2y - (8F)
+ IFF

CLR -(8F)

+ NARG T

+IF EQsT

CLR “Z700
+ENDC

+ENDG

J8R PGy CALL

+ ENDM

+ ENDM

$ MACRO LIERARY FOR VT11:

MACO

MACO

MACO y SHVSTRT =
MAC1 o INBRT =y HUNGRT >
MACL o REMOV 9 SVURMOV
MACL < BLANK s <SURLNKD
MAC1 “yRESTR» y T$VRETRX
MAC L BTATHy wSVSTFM

MACL e LPEN » TSVLFPENE

Display File Handler A-25

MAC1
MAC2
MACO
MACO

e BOROL > » S$VSCRL. >
“ o TRACK y {$YTRAK >
o LNKRT 3y C$URTILK
o UNLNK Dy < $ VUNL K

MNEMONIC DEFINITIONS FOR THE VUT11 DISFLAY FROCESSOR

DUMFP=160000
ONOF=164000
DJUSR=173400
DRET=173400
INAME=173520
NDSTAT=173420
DHALT=173500

CHAR=100000
SHORTV=104000
LONGV=110000
FOINT=114000
GRAFHX=120000
GRAFHY=124000
RELATV=130000

INT0O=2000

[NTZ=2400
INT3=2600
INTA4=3000
INTE=3200
INT6=3400
INT7=3600

LFOFF=100
LFON=140
BLKOFF=20
ELKON=30
LINEO=4
LINE1=5
LINE2=
LINE3=7

STATSA=170000
LFPLITE=200
LFIARK=300
ITALO=40
ITAL1=60
SYNC=4

STATSE=174000
INCR=100
INTX=40000
MAXX=1777
MAXY=1377
MINUSX=20000
MINUSY=20000
MAXSX=17600
MAXSY=77
MISUX=20000
MISVUY=100

A-26 Display File Handler

rDISFLAY JUME

FNISFILLAY NOF

SDISPLAY SUBROUTINE CALL

FRISFLAY SUBROUTINE RETURN

FSET NAME REGISTER

FRETURN STATUS DATA

FETOF DISFLAY AND RETURN STATUS DATA

FCHARACTER MODE
FSHORT VECTOR MODE
FLONG VECTOR MODLE
FFOINT MODE

FGRAFH X MODE

F$GRAFH Y MOLE
FRELATIVE VECTOR MODE

FINTENSITY ©

FLIGHT FEN OFF
FLIGHT FEN ON
FRLINK OFF
FBLINK ON
FSOLID LLINE
FLONG DASH
FSHORT DASH
sDOT DASH

FLOAD STATUS REG A
FINTENSIFY ON LFEN HIT
SOON’T INTENSIFY
FITALICS OFF

FITALICS ON

FFOWER LINE SYNG

$LLOAD STATUS REG K

FGRAFH FLOT INCREMENT
FINTENSIFY VECTOR OR FOINT
FMAXIMUM X INCR. = |LONGY
FMAXIMUM Y INCR., = LONGY
FNEGATIVE X INCREMENT
FNEGATIVE Y INCREMENT
FMAXIMUM X INCR., = SHORTY
FMAXIMUM Y INCR. = SHORTY
FNEGATIVE X INCR. = SHORTY
FNEGATIVE Y INCR., = SHORTVY

NOdTT440¥ 18I INTTHYHD
NOdTINONTRISINI T HYHD

W344nE §NivLS N3&TE L
NOLINOA WO¥d MNIINNE
H3HI0NY 139 ‘ON! 1819
240334 3INITH AL
NIVOY 4007¢ 18l
*IIH d71 d#34iDNVY 3T8VN3I
71 9v14 ¥3d4dng ¥va1d4 4nE7
3600 lvHL A4IQ0W! dlalx‘ll
HldI QLNI ¥HQAY 3IA0WS HldI 4 (1)
Jgeig 319vL 4404 Taf=avi0%
X3GN1 0l 3sné 18134
Orl A8 A<ILNm 1™
3INg Lovalsnsd Ty
INIvA 3wyN L1394 Tut2+4087
3009 SNOIAINA 34018343 didie’el
NIVEY 4007 ‘Ond 1e17
LIx3 “83A¢ 11x3
dlnaNI L1 ANv fONf
§3Ad g1
ELIM N3d LH9ITE 4neT
2N1LL ¥04 mST 1384 wSPEo ‘AR #
534408 N3dT dn L1384 Pl
3714 Ay1dS1Q LydsSwIf 37140%
ICHE
I19%3s Lsnravd 4nEISH
*11x3 Qny!
JovsSad4 INI¥d “S3A? EIER
{80883 dn ¥NIT 31

S0LINOR 0L NI
INIMa® 1Ix3**ynTil’

a®0® Snivis gord

ayom® 121
cdom® 11l
Myg* t4nal

f1x3°*
NNINA®
aN8

dwd $1IX3

k]

373
AOH
AOw
aagyv
agyv
sy
Jaa
AOW

ADK igl

¥6

Jod
anIli®
aN8

isi 181

g18

N3dT*
L¥gNT®
INI¥g®

1043s° i1

l1x3*
INTHd"
148

Ld%Nq® $18V1S

TIvan®

nhr=wel
Lx=3d
1zs1y
Au=aY

*03q 14917 34l 4LTw 3714 AvIeSia ¥ A4100A Ol 53161932 3wWuN
Il gNY H344N8 SNLvLS NI 3IHL 83SN 3dwyx3 SIKL

1# 37dwvx3 37LIL°

[T N

{

210020

910a0d
2%ueve Zho2ee
e9dery
29

ASR0EE
2eiegs nlagee

SLongd
rreQ3n e31épd

291¢81
aleeal

Shiton
eaLz22a
aslep?

L9359%
LLL912
L9111
1212992
18L09¢e
185980
111 %Y1
felole
LLL919
2LLe0D
§20%¢l

¢aslor
L9LSAn
LS L28™

n28081

nnaned
L2062
1A00d@2
203ned

S 39vd hutenini Li=AVwe=gl pA*EAX QdIVW

NOLlb Buisn sajdwex3y 0LV

9L1888 v
wi1202 20
951208 1h
nS1de0 3h
251002 6%
9ni1ded Bt
eniond Lf
entage 9%

ngtovo ne
92102002 ¢t
e2teas 2%
g1tned 1¢
h1lugd 8%
2110608 62
211000 82
noteed L2
5L9800 92
niopdn &
2Léped ne
pLEBLY §2
99ynpn 22
2opned 12
hSpade 82
nhende 61
hsodne 81
9zevee L1
912082 91
nto2023 S1
329080 71
neoned ¢l
Jveepd 21

- NPT N O~

T# 37dWVX3

Display File Handler A-27

13x0 BBnELT 22%0de (L

1Y) Sa1 S21 L1s000
/348l / IInSy* éect 211 netl hlgase 9L
MOdYInINTITA40¥8 8vH) 1¢q Bolewl 21¢8¥d Si
£ £A0232 Qa1see2 ni
3WYNG D2SELT 995209 €L
aet anieel noageow 2L
2e1 AeINed eagved 1L
InIod A2ntl vosB2d 3L
982 Li2v30
/*0w1/ 1I38v® L1l L2t n2t ni2avd 69
RIC-REE IR & P Ty i I EEVEIVE) $2¢ 491¢0l 2.2002 8¢
4 2A20pD 0l2v4d L9
AwING A288LT 992203 9¢
ag¢ ARTEAY h927PAB 59
2a7 391342 292426 h9
INTad dMARTT 2922293 €9
952 L8239
/3807 1IaSw® gat 911 L1l nsS2889 29
ACEITRINTT 440018 8Y KD i1 291¢21 252003 19
1 132722 052382 09
INYNG d2S¢LT 9h2dva &S
#35 05232 hh223Q 35
ept 221008 2n2ede LS
iNIge 337130 220011 anzZeda 9s
{ §s
12 3Mawvx3 204 3714 AvidSIQ ¢ ns
! £s
1=S 39vd nnlebinl Lleiyw=8] #2°C4X 05Jvw 1# 37dWYX3
N3A3® 2s
2d 92 Sg2oe?
§ne Zne Sl 2¢20v0
it pet Sit L22vve
3gvesaw *Q°1f /12 37duvx3/ ZIgzsy® t9Sw 1a1 0t Set nedvéd 1s
NFAT® 2s
a2 (§.7] 222809
22l L11 221 L12200
39veSAn dH0uH3Id /TH0u¥3t/ Z138v* 198Ky 221 sal inad n12689 sn
*Std A 431 TloMNISt Peal GHom® 201200 212203 8n
L8N03 3INIT 1708080 4 ¥0m® tdneds 22pVBe At2wed Ly
(314709 NOILVIDT SADIAINGS 10 ayow* i¥lal «25200¢ 902800 94
Q374103w 39 0L SNOILVICTS St
37114 AvIdSIQ 40 3718vid ga2Q’1a Juosr*® 3I8VYIQ L21%009 ,2.27¢0 +€52Uv3 R42003 nhn

A-28 Display File Handler

Aaen e
Al agn
0 F¥xEXX
Avinel
dépnet
G Xxxxx¥
daph !l
faueell
§2G2da¢
saenal
LLeter
aasE R
Nphead

= XASIW
= 44747
=LHSNAS
=AHdV¥9
=XHAYHS
=IHIGAE
=gS81vls
=¢S1v.LS
1aQ
AL¥OHS
AXTwW
LINT
37140

Ly0dy3 dn ANITE
HOLINOW OL ¥NIT
INTEA®INTALL®?LIX3"

*(38S*a0S) LV LNIOd 13§ Vv Wodd N3Id LIWOIT Al
M07104 01 301334 ¥ 3SNVI 06 3INILNOY NOIL3Tawld
Wyl 3HL ONV 123060 ONINOvAEL 3xL 38N 3Tdwyx3 SIMI

g NXEEEN
yarwveno
LLL1B0
ht2099
g2Ahede
n2geade
L A%4dd]
nenell
¥49228¢ad
49.L102372
232%09
yes2aoR
490987

SHINIAS
1yv1S
XAV
L3y
9INI
INAS
4N¥3s
lvlsa
didl

wnuwn

= SINI
1817
z 17Vl

st

2% J7dwvX3

gean9t
p2ssit
9 xxx¥x¥y
2onELY
22p0el
S xXxy¥xx
yt /1800
apeoee
12000
Agen1l
280020
2¢p020
301000
d0etop

lyviLs

AL
LY%NT®
TIvdn®

Lx=3d
IX=248
Tx=1y
9%23Y

ERIR S

11yViS

e Bu on G on

neoool

lapepn
J22e0a
feg02e
aap02¢

S 39vd LSi6hinl Li=Ave=81 #A°€2X OHIVW

z dONQ
z 3WYNQ
=HTLHAS
z ¥SlQ
=340y
=sNIdTAg
11

e Bvlil
O8wW3

= INIOd
=ASNNIRA
sXSNNIKW
s NQOdM
s WINT

$39vd
(s39vd nl1)

gecddu
#21200
¥9sieaz
LBodRe
A0nELl
voeesl
pgsee
SeeBée
205000
v8e0otl
200691
Speece
egn2en
aoeene

8Qug™M m9SE

=311747
s HINI

4n87
a §3INIT
2 13¥¢
ALY
s §INI
z 23INIT
=)¥vadl
& AINOT
z dwfd
= 13INIT
= 2iINI
= XIUNI

neddeD &1
enpese 21

11
et

EalAVE L I S TR oI o o

en 37dWvXx3

IXINVRIVHiAZE 4"
P9 HO4 IV18VIIVAY Ad0W3IW JIWVYNAC
$03SN AS0OW3W IVNLHIA

2 $¢31J313Q Sy0y¥d3d

126
aae

=S 39v4 hnienin] Li=AvWeBl #0°E2X O¥IVA

ana’
@

»,000000
2010000

gegeee
gaaged

Joeueuvd
aeveal
nEndcl
2usell
2s00a0
gezeey

4he2end
2elgee
Ligeew

yelgene
de9Lla
reo2ee
yentlooe
yelL2ene

‘say °*

18v1d
HYHI
23NIN
1vHa
NOYT8
1INI
98
AASIR
ASXVYiW
b 4¢}
XSXVYW
BINT
1Ix3
24

378vl 08WAS
T8 37dwyYX3

6L

h2gese 8l

Display File Handler A-29

UN3 3914 Avi4sIqd
IHIHMON ATIIVILINDY
H0LJ3A ¥ MYaQE
(2ys’ans) ¢

lv inNIGd 138!

INILPOY “OT1370400 wOud LIX3!

o 3a0193n!¢

140 NI 32018 M3IMLE
LI8 snNIw [3S Gnvd
IANTLISO4 dyvw 0S “ont
$3I0NFdF44I0 IATLISOGS
A J70 =« A4 W3NG

A owmand

*37130 NI 35018 NIAHLS
1I8 A4ISNIUINT L3S 08v¢
LI SANIA 138 Lngd
AINILISOd 3¥vW OS LON!
$3In3W3I4410 Inlllsod!
X 270 = x m3Iné

X MING

T4 3AvSH

e
¢

1340
ayom*
[hlR

PINITAONDT

aes
es
InTod

tAQ
iXxa

tio
$X0
837141
H

27 37dwvX3 ¥Cd4 3714 AvIdSIQ ¢

Jd

1424 (d4S)
AGTY
LHIXSNNIwWE
1y

$c

T41A0
Ty’2+4nel
b ER %]
THIxinIg
THIXSANTWE

(dS)='1y

SiM
ADA
ADW
S1d
93IN
949
8ns
AOW
AOwW
s19
S18
93N
46
ans
ADW
ADW

H

is2

ig1

P40

*U3dd0LS AVIESIQ WLIm ¥3TONVH 3714 AVILSIQ WONS
T3AFT LdNNEIUNT Ly GIBIUINI INILNOY NOILITdWDI NIVHL

1
[
*4NYL A0¥3 VIVA HII 3714 AVI4SIQ 3LYQdN 0L 438N “
]
{

(626 7pA8) LV x»Jvdl L¥visd
0L Q3LINT ¥344n8 MOvwyld

d43HI0NY L399 ‘ONt
40334 INIT?
ALL WO¥d4 *YyHD L4914

HOLINOW WO¥d MNIINNY
<€¥I> ¥0d lIvmd

L33rap sJovyl AvdsIqgt
3714 Avd4SI0 Lly3enId
LIXx3 Qnv!

438N WHOANI 483AS

2os‘eps
Jd

lIvm
EREaE

1Iymé3d
NOJLlr’d4nglx
3N140#

9Swas

Quon®
L]
3N8
dwd

NIALL®
lrx3*
ANINA®
ysr
nival®
LYENT®
lixz*
INT¥g®

tdnel

$Lllvm

151

912269
uaedea

n2ange
anLlLlt
andoen
2Advann
022229

2seaed
99LLLT

2AS200

21e0ge

900000

JangLl
2000V a
200204
dzegtl
025203
83590¢
aganit

LA2ude
129219
L91214
191252
1ancue
Lodvel
142991
184912
lItainm
taL2sn
1aL252
lensea
§22ae1
InL99T
1ad9te
Inintd

2Asen0
L0200
£L5100
204220

L9ilhoe

2Lia40e
GLINGY
851022
"91den
291eaa
291430
9sigae

nstden
2stena
91203
2nieeo
ph1022
9¢1009
cetenn
921648
t A 1dL]
CARELL
clinga
1102
91200
2eleva
9.08082
nleddd

elegae
9900200
hovede
2900202
nS0200
250000
920898
2vooes
920000
9igeoe
LAY T4
920022

LS

1
ns
s
2s
1S
28
(34
an
in
9n

Ldd
£h
2t
i

6%
8¢
Ls
9%
St
ne
133
2%
1¢
2%
62
82
le
9¢
se
he
%e
ae
12
ee
6t
81
i1
KA
St
LA

A-30 Display File Handler

dd¢22d
a2 1A
g MEREYE
Aapnel
nagvel
darnLl

goeall
aaghal
LLE12¢
ARGEan
%9G12an
9 w¥X¥%X%x¥

= XASIw
= 44047
"Pv..wz\)m
=AHdYHD
SXHAY RO
=3Sivie

2ySLYLS
=ALa0MS
= AXVH
= LINI

3140
=HINNAY

HZoteng
Howndede
M391@8¢
LiLiae
odhgDe
nZgend

a2nell
dngede
7920
2%uh91
gesgLl
Q NNANRE

AQ
lavis
X0

= XXVW
= 9INI
= INAS

lvisa
SINI
= TAvil
= d0ONQ
= JWVYNQ
ZNTLHAS

dapsll
A2BA0
wnpded
¥9li2e@
23ah 1l
Adpvee

7gpcel
aniope
depLed
9 Exa¥X¥
ansagee
482000

1uvis

/«3780Md ¥ 38 OL SW33S 3IHIAL ANHOS/

= 4asfe
=440%78
2 glvi]

98W3
= INHIOd
SASANIR

=XSNNIwW
2z NDd1
s hINI
ENVHLIXE

livm
311747

2% 39vd LS6hINT Li=AVik=R] nA*ERX DHUIVW

ang*

Z13s8v*
8

1=S 3I9vd LSi6ninl Ll=ivd=01 p3*EeXY ¥V

$39vd 9

(s3%vd S1)

NIAZ®

$9SK3

231826
UELRE2D
dellafe

Logoed

2ohedl
3t lvdde

dendtl
geoden
¥991028
92008D
288200
g2edll

spl
L1l
oye
sot
L1l
g2l
sol
set
a1l
nse
221

sGuoM L1lg

2z NINI
anegl

AQ

z §£3InIT
1330
wo3ll

=ALYI3Y
s ¢InI

XQ
s 23nNIT
2XNAVadT
2 A9NOT

200
LA
eatl
1el
el
nel
Sit
g2t
eet
wel
1¢1
i1

ZXINV"IVNLIAZI 4"

2
19v
246

,230028

sl
281
221
gne
ane
aneg
Sa1
ane
S91
ang
2et
g2t
ABnd0d

2n2and
282002

220091
Seguei
209282
fgoaene
pegedl
haraey
peseELl

ngB4uw
ng220v
2o109¢
Liepne
PeSLtTe
poe2ed

¥04 FVAVIIVAY A30W3IW JIWVNACD
$036N AHOW3W TYNLATA

$03123130 S¥0uH3

‘sgv *

dnfd
13NIT
2INI
XINT
HYHD
B3INIT
1vHa

NOXT8
TINT
AASTIH
ASXVH
XSXVN
PINI

378vl 08WAS

2#

Lg2000
n§2009
1g2000
9z28ee
geenne
n2ze0e
51208289
21208k
Lo2pae
hu2doo
1220009
9LlTedd
hileod

2%

ITdWY X3

19
29

65
8%

37dWVX3

Display File Handler A-31

Appendix B
System Macro Library

This appendix contains the listing of the system macro library (SYS-
MAC.SML) for Version 5 of RT—11. This library is stored on the system
device. It is used by MACRO when expanding the programmed requests

and calling the subroutines that are described in Chapter 2.

+MCALL .MODULE

,MODULE SYSMACRELEASE=Y0S,VERSION=11,COMMENT=<8vstem macro librar

COPYRIGHT (c) 1982, 1983 BY

DIGITAL EQUIPMENT CORPORATION: MAYNARD: MASS.

ALL RIGHTS RESERVED

TRANSFERRED .+

CORPORATION.

R AR WSS AME RS AEE ARG ARE ARW S8 NS NS AR BR &S N8 AR 8

SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

Error Messades

HESS

5 RESERVED SYMBOL NAMES

I edemmm e memmmmm =

H

§ ooVl and +. U5 are "global" values defined in macros
i

b v++¥1l -~ gontrols .MCalling of +..CM* and surPoTt of
H Y3 versions of the expansions.

3 L.+ U5 -- pontrols deneration of ,Audit information.

H

i .. U% -- are reserved for more local and global values
H

i e U2 v 4a¥3y and 4+ V4 are in use currently (Y035.06)
i local svmbols (reusable in each macro definition).
H

b RESERVED MACRO NAMES

1 e

i

i vVl

; OQIvJZOO

H +MACS

H v e CM*

.

HES

b

b

i

PGYGMAC-W-Invalid arduments use #0» not 0

-

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVATLABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE 18 HEREBY

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS

and

v#sLIB=YES

General messade -- Macro arduments of "0" are almost alwavs
errors, (Which specify an address of O, not a value of 0.)

-n

TBYSMAC-E-0dd or invalid vector specified

E oae e AR as as

+DRBEG & .DRWTB -- the 2 lower bits of the vector address mus
H ke O,
b
i?5YGMAC-E-Invalid ¢ o n t r o 1 value - control
i
H +DRBOT -- an invalid controller tvyre was srecified, See defin
b of +.DRBOT for valid tvyepe codes,
;
i?SYBMAC-E-Invalid s i d & 5 value - sides
?
i «DRBOT -- an invalid number of sides was specifieds use 1 or
H
i78YSMAC-E-Primary hoot too large
H
3 +DREND -- the primary boot code overflowed the area available
PSYSMAC-E-Y A L Must not be O, YALS
+DRSET -- the second ardument to the macro must not be Oy if
iss the rest of the oPtions in the tahle are idnored,
PSYSMAC-E-Invalid parameter x}
+DRSET -- the last ardument must he blank or one (or more) of

the following: NOD:NUM,OCT

+ 1

vVl

+MCall the suprport routines and set the version to 1

ABE MEE \EE GRS RN AN EE ARE AN AR NN A8 AEB AN aEE am

+MACRO . V1.,

OMCALL OOQCMO’QQQCMI’00OCMZ’O'QCMBPOQOCMa’OOOCMS,OOQCMG'OQOCM7
vealdl=1

+ENDM

oooUZoo

+MCall the support routines and set the version to 2

«MACRO .. 02,,
OMCALL oooCMO’oooCMiDoo0CM2’000EM3'00QCMaro00CM5)000CMB'000CM7

+MACS

+MCall the surPort routines and set the version to [»=13
+MACRO .MACS

OMCALL 000CMO’000CM1'OQOCMZQOOOCMG'OOOCMA’OOOCMS'QOOCMB’QOOCM7

v V123,
+ENDM

B-2 System Macro Library

t

ition
2

to it.,
it

+
+

++ o CMO

Moue a word to the stacK, If ardument blanKk or %0
Put a O on the stack, If second ardument Present:
deperate an EMT with that value

P LR L]

+MACRO ,..CMO STARG,INS
+IF B <BTARG:

CLR -{8P)
+IFF
+IF IDN <STARG: %0
CLR ~-(8P)
JIFF .
JIIF IDN <STARG: <0 LERROR 198YSMAC-W-Invalid argument» use #0, not Q3
MOYy STARG - (SP)
+ENDC
+ENDC
+JIF NB <ING: EMT ‘ol INS>
+ENDM
i ++
b v CML
1
3 Getur RO to Point to AREAs set the CHAN and IC (subcode)
] value in first word, This macro optimises number of
i instructions to set up first word.
b IC is forced to decimal.
F.
+MACRO +..CM1 AREAsICCHAN sFLAG ARG »INSCSET »BB
+ ++CMBS ‘IAREA
v W2=0

+IF B {FLAG:

+IIF B <AREAX» +4 U2=1

+IFF

JIIF DIF <FLAG»8ETs 4.+ WE=1
+ENDC

+IF NE 4. V2

+IF IDN <CHANZ <205

CLRB B8RO
+IFF
+IIF NB <CHAN: mMove CHANERO
+ENDC
+IFF
+IF B <CHAN:
MovBe #IC/, »1(RD)
+IFF

«NTYPE ++WZCHAN
JIF EQ 4 WVE-"027

MOV CHAN+{IC %0400 8RO
+IFF
MoV #IC’,*"0400,BRO
mMove CHAN s @RO
+ENDC
+ENDC
+ENDC

LIIF IDN <CHAN: <0> LERROR 3PGYEMAC-W-Invalid arduments use #0y not 03
.+ CMZ <ARG>,24+INS,CEET BB
+ENDM

S+
i e+ CMZ

System Macro Library B-3

Move an argument value to OFFSET(RO),
Use a CLR- if the value is %0,

Offset is forced to decimal.

BB is blank or B for bvte orerations
If INS NB dernerate an EMT 375

=3 e EE R wE ae a

+MACRO ..,.CM2 ARG /OFFSE »INS4CSET BB

+IF B <ARG:

+IF NB <CSET>»

+IIF NE ,,.¥1-3, CLR’BB OFFSE’.(RO)

+ENDC

JIFF

+IF IDN <ARG:,#0
CLR ‘BB OFFSE ‘. (RO)

+IFF

+IIF IDN <ARG> <0> ,ERROR iIPSYSMAC-W-Invalid arduments use #0, not 03
MOV ‘BB ARG ,0OFFSE ‘., (RO)

+ENDC

+ENDC

+IIF NB <INS: EMT “037%5

+ENDM

-+
+

+++CM3

Move a channel and code to RO,

Follow this with anm EMT 374.

This macro optimises the instructions used
to load RO.

AR R EE AE wE wE s e

+MACRO +..,CM3 CHAN,»IC
+«IF B <CHAN>
Mov #IC*"0400,4R0
+IFF
+«NTYPE +,.,¥2,CHAN
+IF EQ ,..V2-"027

MOy CHAN+<IC* 04003 yRO
+IFF
MOY #IC* 0400 ,R0O
BISB CHAN RO
+ENDC
+ENDC
EMT “0374
+ENDM
R
H v CM4
H
i Setur for a SDAT/RCYD EMT block
HI.
+MACRO ,..CM4 AREA »BUF sWCNT yCRTN +IC »CODE

+IIF IDN <CODE>s;NOSET ,..CM1 <AREA:,IC,s+<CODE>
+IIF DIF <CODE>sNOSET .,..CM1 <AREA>,IC +#0,<C0ODE>
v+ CM2 <BUF >4

‘. 0CM2 ‘,NCNT> ’B

+++CM2 <CRTN>,8,E

+ENDM

++
v+ CME

- s s

B4 System Macro Library

s a8 -aw wau a8 aE

+MACRO
+IF NB
+IIF DI
+ENDC
+IIF NB
+ENDM

+
+

BB AEE RN =S AmE A3 A N

+MACRO
+ ¢ OCMS
+IF B <
+IIF NB
+ IFF
+IIF ID
+ENDC
QOQCMZ
+ENDM

+
+

au aE xs a8 =w

+MACRO
+IF EQ
000CM5
v oo CMO
¢+ CMO
v+« CMO
+IFF

s 0o CML
+ oo CM2
e e CM2
OOQCMZ
+ENDC

+ENDM

+MACRO
+IF NDF
+MCALL
+MACS
+ENDC
¢+ CM3
+ENDM

+
+

aw . aw am

Move a (bvte) value to RO unless the src is
blank or RO, If sos+ then denerate nothingd.

BB is blank for word operations or B for bvte.
If second ardument Present: denerate an
that code value.

«++CMB SRC+ING BB

{BRC>

F <8SRCZ» RO MOV ‘BB BRCHIRO
<ING: EMT o< ING
OOOCMB

Move a code and channel to RO, This macra
optimises the instructions needed to load RO.
Do the first +..CMZ also.

1C and CHAN are forced to decimal.

+++CMB AREA +IC sCHAN JFLAG +ARG »INS ,CSET »BB
{AREA>

FLAG:

<AREA: Mow #IC/ %" 0400+CHAN', +BRO

N <FLAG::SET Mouw

{ARG>»+2INS,CSET BB

+ 0+ CM7

Generate READ./WRIT. reauests

Q.OCM?
veall-1
LWONT >
<CRTN>
<BUF >
{CHAN > »<V1+AREAY

{AREA> +IC+<CHAN> »<CODE> +<BLK >
<BUF >4

{WCNT> B

“CRTNZ:8,E

+ABTIO
OQOUI
+«MACS

CHAN

{CHAN>s11.

+AUDIT

macro to denerate list of versions

#IC/,* 0400+CHAN'+ »BRO

EMT with

AREA sCHAN sBUF sWCNT yBLK s+CRTN+1C+CODE 21

starting at abs 110

System Macro Library B-5

UP to 26 names

First reference denerates a RadS0 value for 110 of release

R aE aae e

+MACRD .AUDIT FrwsesrstevsusisosPrasssdsfadshsdsksl sz sxso su sboamoam
+Save
1Asect
WITF NDF v YS vesU3="0110
s =40 US
JIF EQ +="0110
+Globl +Andit
+List
+MWord +Audit
+NList
+EndC
+Irp v M2 Caswre st st sy sl 10 P ra 98 2 s F tdshsdsKalszaxscsusbosr sm>
JIf NB L Y2
+Globl fee N2
+List
+Word Tae U2
+NList
+EndC
+EndR
000U5=0
List
+Word -1
ONLiSt
+Restore

+ENDM +AUDIT

+MACRO .CDFN AREA +ADDR »NUM »CODE
+IF NDF +.,.,U1

+MCALL .MACS

+MACS

+ENDC

+++CMB {AREA>+13,0,<CODE> <ADDR>

¢+ o2 CM2 <NUM: 4 ,4E

+ENDM
+MACRO L CHAIN
Moy #°040004R0O
EMT 0374
+ENDM
+MACRO .CHCOP AREACHAN yOCHAN » JOBBLK ,CODE

+IF NDF +,.V1

+MCALL .MACS

+MACS

+ENDC

+++CM1 {AREA> 411 {CHAN> <CODE* < OCHAN >
+IF NB <JOBBLK:>

v+ CM2 CJOBBLK: 14 4E

+IFF

oooCMZ #0949E

+ENDC

+ENDM

+MACRD .CLOSE CHAN

«IF NDF +,,41
+MCALL JMACS
+MACS
+ENDC
+IF EQ 4o, y1-1
EMT “0<1B60+CHAN

B-6 System Macro Library

+IFF
+++CM3 <{CHAN:,B.
+ENDC
+ENDM

+MACRD .CMKT AREAID »TIME=%#0,CODE
+IF NDF +..V1

+MCALL +MACS

+MACS

+ENDC

+++CMB <AREA>,19,0,<CODE> 1D

v +sCM2 <TIME?44E.C

+ENDM

+MACRO CNTXS AREA sADDR ,CODE
+IF NDF .. U1
+MCALL +MACS

+MACS

+ENDC

+++CMB <AREA»2740+<CODE> »<ADDRXE
+ENDM

+MACRO .CRAM AREA +ADDR »CODE

+IF NDF .. .V1
+MCALL +MACS

+MACS

+ENDC

+++CMB <AREA>:30+2+<{CODE> < ADDR>+E
+ENDM

+MACRO .CRRG AREA +ADDR »CODE

+IF NDF +..U1
+MCALL MACS

+MACS

+ENDC

«++CMB <AREA»+30,0 < CODE> +{ADDR>E

+ENDM

+MACRDO .CSIGE DEVSPC DEFEXT »CSTRNG sLINBUF

+IF NDF 4.0Vl
+MCALL +MACS
+MACS

+ENDC

+«IF NB {LINBUF>
+++CMO <LINBUF>

WNTYPE ++.V2,DEVSPC
+IF EQ ., V2-"027
+++CMO <DEVSPC/+1>
+IFF
+++CMO <DEVSPC:

INC (SP)
+ENDC
+ IFF
+++CMO <DEVSBPC>
+ENDC

v+ +CMO <DEFEXT>
v+ CMO {CSBTRNG> 344
+ENDM

+MACRD .CSISP DUTSPCDEFEXT »CSTRNG »LINBUF
+IF NDF 4. U1

+MCALL +MACS

+MACS

+ENDC

+IF NB <LINBUF:

v+ +CMO <LINBUF:

System Macro Library B-7

+NTYPE .,.V2,0UTSPC
«IF EQ ,,.V2-"027
e+ CMO <OUTSPC’+1:

+IFF
«++CMO <OUTSPC>
INC (SP)
+ENDC
+IFF
+ENDC

v+ CMO <DEFEXT:
+++CMO <CSTRNG> 345
+ENDM

+MACRO .CSTAT AREA yCHAN +ADDR »CODE
+IF NDF ..Vl
+MCALL +MACS

+MACS
+ENDC
+++CM1 <AREA> 23 1<CHAN> »<CODE > »<ADDR > +E
+ENDM
+MACRO CTIMI TBK
JSR RS +@BSTIMIT
+WORD TBK-.
+WORD 1
+ENDM
+MACRO .DATE
MOY #°035000,R0O
EMT 0374
+ENDM
+MACROD .DELET AREACHAN ,DBLK +SEQNUM ,CODE

+IF NDF +,,V1

+MCALL .MACS

+MACS

+ENDC

+IF EQ o V1-1

+++CM5 <CHAN>,<AREA>
+IFF

«++CM3 <AREA:

«IF IDN <CHAN> %0

CLR BRO
+IFF
+IIF IDN <CHAN> <0> ,ERROR 37?5YSMAC-W-Invalid ardument, use #0, not 03
v V2=0
+IF B <CODE>
+IIF B <AREAY, +..Y2=1
+IFF
+IIF DIF <CODE>,SETs +..Y2=1
+ENDC
+IF NE +,.Y2
+IIF NB <CHANZ MOUB CHAN s@RO
+IFF
+IF B <CHAN:
CLRB 1(RO)
+IFF

+NTYPE +.,Y2,CHAN
oIF EQ v V2-"027

Mou CHAN @RO
+IFF

CLR BRO

MOVB CHAN sBRO
+ENDC

B8 System Macro Library

+ENDC

+ENDC
+ENDC
+eoCM2 <DBLK:»2
++v+CM2 <SEONUM>44E,C
+ENDC
+ENDM
+MACRO .DEVIC AREA +ADDR »L INK »CODE
+IF NDF .V
+MCALL +MACS
+MACS
+ENDC
+IF B LINK
+++CMB <AREA>+12,0,<CODE>+<ADDR>E
+ IFF
+++CMB <AREA>+12+1+<CODE> »<ADDR>E
+ENDC
+ENDM
+MACRO .DRAST NAME s PRI sABT
+GLOBL $INPTR
+IF B <ABT:
RETURN
+IFF
BR ABT
+ENDC
NAME INT:: JSR RSHE@HINPTR
+WORD "C<PRI*"040:8"0340
+ENDM
+MACRO .DRBEG NAME +VEC +DSIZDETSUTBL
+ABECT
+="032
+GLOBL NAME’END :NAME’INT
+WORD {NAME 'END-NAME ‘STRT »
+IF B {D8IZ*
+WORD NAME '‘DSIZE
+IFF
+WORD DsI1Z
+ENDC
+IF B <D8TS8*»
+WORD NAME 'STS
+IFF
+WORD DSTS
+ENDC
+MWORD “0{ERL$G+<MMGHT*#Z2 >+ TIMSIT*4>+{RTESM*105:>
+="0176
.IIF DF NAME’‘$CSR,» .WORD NAME'$CSR
+PSECT NAME'DUR
NAME ‘STRT: s
+IF NB VUTBL
.GLOBL VTBL
+WORD LUTBL-»/2+-1+70100000
+IFF
+IF NB <{VEC>
+I1IF NE VEC&3, .ERROR VEC 75YSMAC-E-Odd or invalid wector specifieds’
+MWORD VECR&"C3.
+IFF
+IF DF NAME‘4VTB
+GLOBL NAME 'sUTB
+WORD {NAME ‘$UTB-,>/2,-1+70100000
+IFF
+IIF NE NAME'$VEC&3. +ERROR NAME ‘$VEC 3SYSMAC-E-Odd or invalid vector

ispecifieds

System Macro Library B-9

+WORD NAME '$VEC&"C3,

+ENDC
+ENDC
+ENDC
+WORD NAME “INT-, s+~ 0340
NAME '8YS= ¢
NAME ‘LLOE: : +WORD O
NAME 'CQE: : +WORD ©
+ENDM
i++
i +DRBOT
L]
3 CONTROL= is used to gemerate the controllerp description bits
i in the boot blocK., The default value is correct for nearly
i all RT surported devices, As manvy opPtions may be specified as
5 are supported by the boot code:
1
] <uUBUS » Unibus device
H <QBUS > Q-Bus device
i {CBUS > PC-Bus deuvice
H <UMSCP> Unibus MSCP device
b <{QMSCP> Q-Bus MSCP device
j <CM8CP> PC-Bus MSCP device
¥
i SIDES= is used to indicate the number of sides suProrted in
i floppy disKk drive, Walid values are 1 and 2, Hard media
i sidedness is not coded.
3
b NOTE: the definition of a code does NOT imply anvy Present
H or future product committment,
H—
+MACRO .DRBOT NAME +ENTRY sREAD +CONTROL=<UBUS »QBUS > +SIDES=1

+«DREND NAME
+IIF NDF TPS, TPS="0177564
+IIF NDF TPB,s TPB="0177566
LF="012
CR="0l5
B&BOOT="01000
B$DEVUN="0471G
B$DEVU="0d4722
B&READ="04730
+IF EQ MMGS$T
BEDNAM="R 'NAME
+ IFF
BEDNAM="R 'NAME ' X
+ENDC
+ASECT
+="0B2
+WORD NAME ‘BOOT sNAME ‘BEND-NAME ‘BOOT »READ-NAME “BOQT
+PSECT NAME'BOOT
NAME ‘BOOT: :NOP

BR ENTRY-2,
000v2=60100
+IRP X <CONTROL »
v Y3=0
+IIF IDN {H> ":UBUS} 000V3=10
WIIF IDN X <QBUS>» v ¥3=2,
IIF IDN IX> <CBUS>» v ¥3=4,
+IIF IDN IR {QMS8CP> +,+,VU3="010
+IIF IDN X {UMSCP> ,,.,Y3="020
+IIF IDN L {CMSCP> ,+.+.,VY3="040
+IIF EQ e e W3 +ERROR iTPSYSMAC-E-Invalid ¢ o n t r o 1 valye

fcontrol:

000”2-‘-000‘)2!000‘)3

B-10 System Macro Library

+ENDR

sgides

+=ENTRY -6
+BYTE F020 00 W27 020 70 020+, JUEHZ0
+IF EQ SB8IDES-13
BR ENTRY
+IFF
+IF EQ {BIDES-2.3%
BMI ENTRY
+ IFF
JERROR 37SYSMAC-E-Invalid s i d e s wvalue
+ENDC
+ENDC
+ENDM
+MACRD DRDEF NAME sCODE +STATsSIZEsCBRyVEC
+MCALL .DRAST’.DRBEG;.DRBDT'.DREND,.DRFIN¢.DR8ET9.DRUTB,.FDRKy.OELDF
.I1IF NDF RTE$M RTE$M=0
+IIF NE RTE$M RTE$M=1
JIIF NDF TIM&IT TIM&IT=0
JIIF NE TIM$IT TIM$IT=1
+IIF NDF MMG&T MMG$T=0
JIIF NE MMGS$T MMG$T=1
+IIF NDF ERL%G ERL%G=0
+IIF NE ERL%G ERL%G=1
LIIF NE TIM&IT MCALL +TIMIO+»CTIMI
+QELDF
HDERR%$=1

EOF$="020000
VARSZ$="0400
ABTIO$="01000
SPFUN$="02000
HNDLR%$="04000
SPECL$="010000
WONLY$="020000
RONLY$="040000
FILST$="0100000
NAME ‘DSIZ=8I1ZE
NAME ‘$C0D=CODE

NAME ‘STS=<CODE>!<8TAT>

+IIF NDF NAME ‘$CSR
+IIF NDF NAME'$VEC:
NAME ' $CS5R sNAME ' $VEC

will force deneration

NAME ‘$CSR=CER
NAME ' $VEC=VEC

NAME +FORCE=0

.GLOBL

+ENDM

3+

i +DREND

i

b

i

H kit value to
i

b FORCE=1

3 for instance.
H.

+MACRO +DREND

+PSECT NAME'DUR

+IIF NDF NAME ‘$END:
«-NAME ' $END

+IF EQ
NAME ' $END: s

NAME ' 4END:

+IF NE MMG$T!<FORCE&Z.%¥

$RLPTR::
$MPPTR: ¢
$GTBYT:s . WORD
PTBYT::WORD
$PTWRD:: . WORD

+WORD
+WORD

Q
0
0
0

Q

of the error logding

FORCE is used to force the deneration of the vector table
assidgning a value to FORCE causes the associated svsden
"forced" on for purposes of generating the table.

vector

System Macro Library B-11

+ENDC

+1IF NE ERL%G!<FORCE&1> $ELPTR::,WORD 0
+IIF NE TIM$IT!<{FORCE&4.,> $TIMIT:z:.WORD O
$INPTR:: .WORD 0

$FKPTR::,WORD 0

+GLOBL NAME‘STRT

NAME "END==,

+IFF

+PSECT NAME'BOOT

+IIF LT <NAME'BOOT-.+"0BG4>s .ERROR i?SYSMAC-E-Primary boot too larges

+=NAME ‘BO0OT+ " 0GB4

BIDERR: JSR R1+REPORT
+WORD I0OERR-NAME'BOOT
REPORT: MOV #BOOTF-NAME ‘BOOT RO
JSR R14+REP
Moy (R1)RO
JSR R1,REP
MOv #CRLFLF-NAME 'BOOT 4RO
JSR R1sREP
RESET
HALT
BR =2
REPOR: MOVB (ROY+,@#TPB
REP: TSTB @#TPS
BPL REP
TSTB @RO
BNE REPOR
RTS R1

BOODTF: .ASCIZ <CR>{LF:>"?BOOT~U-"<"0200%
CRLFLF: .ASCIZ CCR>{LF*<LF»

I0ERR: +ASCIZ "I1/0 error"
+EVEN

NAME ‘BEND: ¢

+ENDC

+ENDM

+MACRO .DRFIN NAME
+«GLOBL NAME'COQE

Mo PC:R4
ADD #NAME 'COE-, »R4
Moy EB#"054,R5
JMP B 0270(R5)
+ENDM
+MACRO DRSET OPTION VAL +RTN »MODE
+ASECT
«IF LE +-"0400
+=" 0400
+IFF
rEe=2,
+ENDC
v Y2=0

+IRP Xa<{VAL:
+IIF EQ +,.V2 ,IIF EQ <¥> ,ERROR IPEYSMAC-E-Y A L Must not be 0O, VALS
000U2=000U2+1
+ENDR
VAL
v Y22,
+RADSO \NOPTIONN
S W2+,
+BYTE “RTN-"0d400>/2,

B-12 System Macro Library

s W2=0

+IRP X 4<MODE>

+IF IDN

CHEF L NUM2

e eW2=, W U217 0100

+IFF
+IF IDN

SR END:

v W22, U217 0200

+IFF
+IF IDN

{X» 00T >

s U2z, V2170140

+IFF
+ERROR
+ENDC
+ENDC
+ENDC
+ENDR

+ENDM

+MACRO
+IF NB

J7PSYSMAC-E~-Invalid parameter X1

+BYTE vl U2
+WORD 0
+DRYTH

NAME

NAME ‘$UTB: ¢

+IFF

1 Ze-20
+ENDC
+IIF NE

+ENDM

+MACRO
+IF NDF
+MCALL
+MACS
+ENDC
+++CM3
¢+ +CMO
+ENDM

+MACRO
+IF NDF
+MCALL
+MACS
+ENDC
+++CMB
+ENDM

+MACRO
+IF NDF
+MCALL
+MACS
+ENDC
+ ¢ CMB
+ENDM

+MACRO
+IF NDF
+MCALL
+MACS
+ENDC
+IF EQ
«++CM3
+ oo CMO
+IFF
e+ CM1
vesCM2

+DSTAT

+ELANW

+ELRG

+ENTER

VEC&3., +ERROR
+WORD VECK"C3++INT-, +"03401P5,40

ee eVl

+MACS

<DNAM

<{RETSPC>,342

ve el

+MACS

{AREA> 30,3 +<CODE*<ADDR>E

ce e Wl

+MACS

<AREAY» 30,1 +<CODE> +LADDR>+E

v Wl

+MACS

veell-1

{CHAN>

<DBLK > +<40+AREA

{AREA>+2 +<CHAN>»<CODE> +<DBLK >

SLEN> 4 4C

NAME yVEC s INT »PS=0

i78YSMAC-E-Odd or

RETSPCsDNAM

AREA +ADDR »CODE

AREA sADDR »CODE

AREA sCHAN sDBLK +LEN +SEQNUM »CODE

invalid vector srpecified?

System Macro Library B—-13

+++CM2 <{SEQNUM> 6 +E,C
+ENDC
+ENDM

+MACRO JEXIT
EMT “0350
+ENDM

+MACRO .FETCH ADDR »DNAM
«IF NDF +..V1

+MCALL .MACS

+MACS

+ENDC

++»+CM3 <DNAM:

+++CMO {ADDR>,343

+ENDM
+MACRO FORK FKBLK
JSR RS IE@EFKPTR
+WORD FKBLK - .
+ENDM
«MACRO FPROT AREA ;CHAN +DBLK »PROT=#1 ,CODE

+IF NDF .,.V1

+MCALL .MACS

+MACS

+ENDC

+++CM1 <AREA> 35 ,<CHAN> <CODE> < DBLK»
+++CMZ <PROT>3s44+E 4B

+ENDM

+MACRO .GMCX AREAADDR yCODE

+IF NDF +..,U1

+MCALL .MACS

+MACS

+ENDC

+++CMB {AREA> 30,6 /+<CODE> +<ADDR> +E
+ENDM

+MACRO ,GTIM AREA yADDR »CODE

« IF NDF +.,01

+MCALL +MACS

+MACS

+ENDC

+++CMB <AREA>+174+0,4+<CODE > +<ADDR > E
+ENDM

+MACRO .GTJB AREA sADDR »JOBBLK ;CODE
+IF NDF . U1

+MCALL .MACS

+MACS

+ENDC

+++CMB <{AREA>,16,1,<CODE>,»<ADDR>
+«IF NB <{JOBBLK >

+IF IDN <JOBBLK> 3 <ME:>

v CM2 #-1,4,E

+IFF

«++CM2 <JOBBLK> 14 4E

+ENDC

+IFF

QOOCMZ #-30 94)5

+ENDC

+ENDM

+«MACRD GTLIN LINBUF sPROMPT s TYPE

B-14 System Macro Library

+IF NDF
+MCALL
+MACS
+ENDC
+ o+ CMO
IF

v oo CMO
+IFF

+ e CMO
+ENDC
+ 4 OCMC)
v+ CMO
+ENDM

+MACRO
+IF NDF
+MCALL
+MACS
+ENDC
QQOCMB
+ENDM

+MACRO

+ENDM

+MACRD

+ENDM

+MACRO
+IF B P

+IFF

+ENDC

+ENDM

+MACRD

+ENDM

+MACRD
+IF NDF
+MCALL
+MACS
+ENDC
+IF EQ
4+ OCMS
+IFF
QOOCMI
4t QCMZ
+ENDC
+ENDM

+MACRD
+IF NDF
+MCALL
+MACS
+ENDC
QOQCMB
+ENDM

QOQUI
+MACS

CLINBUF
NB
#3,

#1
<PROMPT
1345

+GUAL
OOOlJi
+MACS

<AREA» 128,04+« CODE > »<0OFFSE > E

+HERR
Moy
EMT

+HRESE
EMT

+INTEN
IC
JBR

Mov
JER

+WORD

+LOCK
EMT

+LOOKU
vedll
+MACS

vl

STYPE:

AREAOFFSE yCODE

#°02400,R0O
“0374

“0357

PRIOSPIC

R5,@°054

@#"0354,-(5P)
RS+@(SP)+

“C<PRIO*3Z, »8224,

0346

AREA :CHAN sDBLK »SEONUM »CODE

<CHAN: »{20+AREA

CAREAX> +1 s{CHAN: s {CODE > »<DBLK >

<SEQNUM* +4+E»C

+MAP
QOQU].
+MACS

<AREA: +30,:4,,{CODE:+<ADDR:E

AREA:ADDR »CODE

System Macro Library B-15

+MACRO .MFPS ADDR

MOy B#°054,-(5P)
ADD #°0362,(SP)
CALL B(SP)+
+IIF NB <ADDR: MOVB (SP)+,ADDR
+ENDM
++
+MODULE
Macro to define a standard identification for all
modules,
InPuts:

Module 1-5 character svymbol name
Release 3 char release identification
Version 2 char version number

Comment n char title string

TITLE=YES denerate .Title
TITLE=NO do not denerate +Title

IDENT=YES denerate .Ident
IDENT=NO do not gdenerate .Ident

AUDIT=NO generate ,Audit call
AUDIT=YES denerate +Audit call

.IB=NDO denerate +Audit gdlobal value
LIB=YES do not denerate .Audit

+MCall +Audit
vAudit JAudit v 'Module’

definition of +NLCSI macro

+NLCSI TYPE=PART=
TYPE=Z denerate +AsciZ (default)
TYPE=1 denerate +Ascil

PART=ALL denerate std ID (default)
PART=NAME denerate name

PART=RLSVER denerate release B version
PART=PREFIX denerate message prefix
definition of +RModule macro

+RModule

AEE MBS NEE WBR AME AN AEE AR WSS AN SES SRS SR AR SRE MR AEE SAE AEE GBS ARR WS VES SEE NN SRS MEE R MEE BB AR B8 NS ANE ARE AN ARE S S MEE AR SR S R N N IS SEE NEE NS ME ARR SN A

+MACRD +MODULE Module Release Yersion
TITLE=YESsIDENT=YES »AUDIT=NO GLOBAL sLIB=NO
+MCall sAudit

B-16 System Macro Library

(KEDID)
(X03)

(09)

4I1/0 Modulex

(default)

(default)

(default)

(default)

(default)

title for module

ident for module

version value svmbol Binary
release value svymbol RadS0

GLOBAL not srpecified

GLOBAL=gname substitutes dgname for +‘Module’
OutpPuts:

+Title ‘Module’ - ‘Comment’

+Ident "'Release’, ‘Yersion’"

v ‘Module’ ==: ‘Jersion’,

dAudit == “r‘Release’

det »Audit definition
denerate audit information

denerate prodram ID string
+Ascid "KEDIOD Xo3,08 ¢
+Ascil "KEDIO X0S5,08 ¢
+Asciz "KEDIO Xo0S5.,09 ¢
+Asciz "KEDIO"

+Asciz "XOS,09"

+Asciz "PKEDIO-"

denerate RadS50 for ‘Module’

Comment

JIDF IDN {Titlelr {YEBX +Title ‘Module’ - ‘Comment’

WJIIF IDN “Ident> <YES» +Ident "’'Release’, ‘Version’"
JIIF IDN <Lib> <NO= sAudit==:"r’'Release’

If NB <GLOBAL»

‘Global’==3'Version’,

JIIf IDN CAudit> <YEB: cAudit ‘Global’

JIfPF

+ ‘Module’==:'Yersion’,

JIIF IDN SAudits {YES: +Audit « ‘Module’

+EndC

+Macro WNLCSI TYPE=Z :PART=ALL

JIIT IDN <SPART» <ALLX +Asci ‘Tyre’ "/Module’

JIIF IDN <PART > <NAME:X +Asci ‘Type’ "'Module’ "
JITF IDN {PART» <RLSYER> +Asci’'Tvre’ "'Release’, ‘Version’
JIIP IDN {PART> «<PREFIX*» +Asci’'Tvre’ "?'Module "
+EndM

+Macro +RModule
+RadS0 "’'Module’”
+EndM
veeUS="0110
+ENDM

+MACRDO MRKT AREA+TIME CRTNIDCODE
«IF NDF ..Ul

+MCALL .MACS

+MACS

+ENDC

+++CMB <AREA>18,0,{CODE> »<TIME>
++e+CM2 <CRTN:+4

++esCMZ2 <ID>sGHE

+ENDM

+MACRO JMTATC AREA »ADDR »UNITCODE
+IF NDF v U1

+MCALL +MACS

+MACS

+ENDC

+++CMB <AREA>+31,5,{CODE> »<ADDR >
+o o CMZ2 {UNIT:»44E4+4B

+ENDM

+MACRO .MTDTC AREASUNIT »CODE
+IF NDF 4 W

+MCALL +MALCS

+MACS

+ENDC

+++CMB <AREA>31,+6,»<CODE>

v+ +CM2 <UNIT>244E44B

+ENDM

+MACRD MTGET AREAADDR +UNIT »CODE
+IF NDF .. U1

+MCALL +MACS

+MACS

+ENDC

+++CMB <AREA:>+31,1,<CODEX »<ADDR >
veoCMZ2 {UNIT:+44E44B

+ENDM

+MACRO JMTIN AREA »ADDR +UNIT CHRCNT »CODE
+IF NDF ...Vl

+MCALL +MACS

+MACS

+ENDC

+++CMB <AREAX31,2,<CODEX »<ADDR >

‘Release’, ’'Yersion’

System Macro Library B-17

vesCM2 <UNIT>»d,,4B
+++CM2 <{CHRCNT>:5+E++B
+ENDM

+MACRO .MTOUT AREA +ADDR sUNIT yCHRCNT ,CODE

+IF NDF +..V1

+MCALL +MACS

+MACS

+ENDC

++.CMB <AREA>»31,3,<{CODE>»<ADDR>
+ooCM2 <{UNIT>:4,4+B

v+ +eCM2 <CHRCNT>:34+E 4B

+ENDM

+MACRO +MTPRN AREA ADDR sUNIT »CODE
+IF NDF +..V1

+MCALL .MACS

+MACS

+ENDC

+++CMB <AREA>+31+7,<CODE> +«ADDR>
++oCM2 <UNIT>,4,4E+B

+ENDM

+MACRO +MTPS ADDR

+IIF NB <ADDR> CLR -(5P)

+IIF NB <ADDR> MOVB ADDR + (SP)
Moy @#"054,-(5P)
ADD #0360 (SP)
CALL B(SP)+

+ENDM

+MACRO JMTRCT AREAUNIT +CODE

«IF NDF ... U1

+MCALL +MACS

+MACS

+ENDC

+++CMB <AREA»,31,4,<CODE>
+++CM2 <{UNIT>+44+E4B
+ENDM

+MACRO JMTSET AREA sADDR sUNIT »CODE
+IF NDF ... U1

+MCALL .MACS

+MACS

+ENDC

+++CMB <AREA>,31,0,<CODE>,{ADDR>
++2CM2 <UNITH>.4,E44B

+ENDM

+MACROD .MTSTA AREA»ADDR »CODE
+IF NDF +,.U1

+MCALL .MACS

+MACS

+ENDC

+++CMB {AREA>+31+8+<CODE> y<ADDR=>
H.CME #0 4 4E

+ENDM
+MACRO JMWAIT
Moy #°04400 4RO
EMT 0374
+ENDM

+MACRO . PEEK AREA »ADDR »CODE
+IF NDF ., U1

B-18 System Macro Library

+MCALL +MACS

+MACS

+ENDC

++ CMB <AREA»28+1,,<CODEX>+<ADDR > E
+ENDM

+MACRO POKE AREA»ADDR »VALUE »CODE
+IF NDF 4.4V

+MCALL +MACS

+MACS

+ENDC

+++CMB <AREA>+284+3,<CODE: »<ADDR:

+ o CMZ <VALUE> »44E

+ENDM

+MACRO +PRINT ADDR
+IF NDF +4.W1

+MCALL +MACS

+MACS

+ENDC

v+ CMS <{ADDR:>,351
+ENDM

+MACRO PROTE AREA »ADDR »CODE

+IF NDF .41

+MCALL +MACS

+MACS

+ENDC

++e+CMB {AREA>,25,0,{CODE>s»<ADDR>E
+ENDM

+MACRO . PURGE CHAN
«IF NDF .. U1

+MCALL .MACS

+MACS

+ENDC

000CM3 ‘:DHAN:'BO
+ENDM

+MACRDO +PVAL AREA,OFFSE sVALUE »CODE
+IF NDF +.,4U1

+MCALL +MACS

+MACS

+ENDC

+++CMB <AREA>,28,2,+<CODE» +<0OFFSE>

v CMZ2 <VUALUE: »4HE

+ENDM

+MACRO .QELDF

+IIF NDF MMG$Ts» MMG$T=1
+IIF NE MMGT, MMGT=1
Q.LINK=0

Q+CE8H=2,

0.BLKN=4,

Q.FUNC=6,

Q.JNUM=7,

Q.UNIT=7,

Q.BUFF="010

Q.WENT="012

Q.COMP="014

+IRP Ke<LINK CSW BLKN sFUNC » JNUM sUNIT sBUFF sWCNT sCOMP >
Q% ‘X=Q, 'X-4

+ENDR

+IF EQ MMGST
Q.ELGH="016

System Macro Library B-19

+IFF
Q.PAR="016
Q¢PAR="012
0.ELGH="024
+ENDC

+ENDHM

+MACRD .QSET ADDR sLEN
+IF NDF ,,.,V1

+MCALL .MACS

+MACS

+ENDC

+++CM3 {LEN>

L) OCMC) <’ADDR}’353

+ENDM

+MACRO JRCTRL
EMT “0335
+ENDM

+MACRO ,RCVD AREA +BUF yWCNT sCRTN=#1 ,CODE
«IF NDF ., V1

+MCALL ,MACS

+MACS

+ENDC

¢+ +CMA {AREA:<BUF > +<WCNT>4CRTN> 22 ,<CODE >
+ENDM

+MACRO +RCYDC AREABUF WCNT,CRTN;;CODE
+IF NDF 4. .41

+MCALL +MACS

+MACS

+ENDC

vooCMA {AREAX »{BUF > y»<WCNT>»<CRTN> 22 ,<CODE >
+ENDM

+MACRO ,RCUDW AREABUF }WCNTCRTN=%0,C0ODE
+IF NDF +.,.Y1

+«MCALL ,MACS

+MACS

+ENDC

+++CM4 {AREA><BUF > s{WCNT><CRTN>+22,<CODE>
+ENDM

+MACRD RDBBK RGSIZ
+MCALL .RDBDF

+RDBDF
+WORD
+WORD RGSIZ
+WORD
+ENDM
+MACRO ,RDBDF
R.GID=0
R.GS8I1Z2=2,
R.G8TS8=4,
R+GLGH=G.,

RS.CRR="0100000
RS.UNM="040000
RS «NAL="020000
+ENDM

+MACROD .READ AREA »CHAN yBUF sWCNT yBLK yCRTN=#1 ,CODE

+IF NDF ...Vl
+MCALL .MACS

B-20 System Macro Library

+MACS
+ENDC
+++CM7 <AREA> s<CHAN> s<BUF » s {WCNT > »<BLK > ySCRTN* 8, {CODE > »200
+ENDM

+MACRO +READC AREA,CHAN,BUF +WCNT CRTNBLK,CODE

+IF NDF +..U1

+MCALL +MACS

+MACS

+ENDC

v oo CM7 <AREA> »<CHANZ {BUF > s {WCNT > s<BLK > »{CRTN+8,,<CODE> +200
+ENDM

+MACROD +READW AREAsCHAN,BUF +WCNT BLK CRTN=%0,CODE

+IF NDF +44 U1

+MCALL +MACS

+MACS

+ENDC

+++CM7 <AREA>»<CHAN < BUF > »{WCNT > »<BLK><{CRTN>+8,<CODE> 200
+ENDM

+MACRO +REGDEF
+ENDM

+MACRO RELEA DNAM
+IF NDF . U1

+MCALL MACS

+MACS

+ENDC

¢«+v+CMD <DNAM:

v CMO 4343

+ENDM

+MACRO RENAM AREA:CHAN.DBLK.CODE
+IF NDF .+ W1

+MCALL .MACS

+MACS

+ENDC

JIF EQ v eW V1=t

+++CM3 {CHANZ»<100+AREA>

+IFF

+++CM1 <AREA> 14 <CHANZ <CODE: »<DBLK*E
+ENDC

+ENDM

+MACRO .REOPE AREA;CHAN,CBLK,CODE
+IF NDF U1
+MCALL +MACS

+MACS
+ENDC
+IF EQ w4 iUl-1
+++CMS <CHAN>+<140+AREA>
+IFF
¢+++CM1 <AREA>+B+<CHAN: »<CODE> +<CBLK>E
+ENDC
+ENDM
+MACRD +RSUM
MOy #°01000,4RO
EMT 0374

+ENDM
+MACRO +SAVES AREACHAN,CBLK.CODE

+IF NDF +44V1
+MCALL +MACS

System Macro Library B-21

+MACS
«ENDC
+IF EQ
+++CMS
+IFF

v CM1
+ENDC
+ENDM

+MACRO
+IF NDF
+MCALL
+MACS
+ENDC
+++CMB
+ENDM

+MACRO
+ IF NDF
+MCALL
+MACS
+ENDC

¢+ CM4 <AREAX »{BUF > »{WCNT>,{CRTN>,21 ,<CODE >

+ENDM

+MACRD
+IF NDF
+MCALL
+MACS
+ENDC

+++CM4 <AREAY +<BUF > s<WCNT> {CRTN> 21 ,<CODE >

+ENDM

+MACRO
+IF NDF
+MCALL
+MACS
+ENDC

v+ CM4 <AREAX> 1{BUF > y{WCNT> s<{CRTNX»,21 < CODE >

+ENDM

+MACRO
+IF NDF
+MCALL
+MACS
+ENDC
QQODMB
+ENDM

+MACRO

+ENDM

+MACRO
+IF NDF
+MCALL
+MACS
+ENDC
+++CMB
+ENDM

+MACRO
+IF NDF

OOQUI—I
{CHANZ><{120+AREA>

<AREA>5»{CHAN: »{CODE +{CBLK > +E

+SCCA
000"’1
+MACS

AREA »ADDR »CODE

<AREA» 28,40 ,<CODE> y<ADDR > +E

+SDAT
oool)l
+MACS

+SDATC
QOQU].
+MACS

AREA sBUF +WCNT »CRTN »CODE

+SDATHW
QQ.U].
+MACS

+SDTTH
OQOUI
+MACS

AREA +ADDR »CODE

<AREA» 32,0 ,<CODE> +<{ADDR>E

+SERR

Moy #°02000,3R0O
EMT 0374
+SETTO ADDR

OQOUI

+MACS

<ADDR:>,354

+SFDAT
00¢U1

B-22 System Macro Library

AREA »BUF sWCNT sCRTN=#1 ,CODE

AREA sBUF +WCNT »CRTN=%0,CODE

AREACHANDBLK +DATE=#0,CODE

+MCALL +MACS

+MACS

+ENDC

+++CM1 <AREA>+34<CHAN> »<CODE» »{DBLK>
0 e CM2 <DATE> »4E

+ENDM

+MACROD .SFPA AREA +ADDR »CODE
+«IF NDF .. U1
+MCALL +MACS

+MACS

+ENDC

+++CMB <AREA>»24,0,{CODE> »<ADDR:E
+ENDM

+MACRO ,SPCPS AREAADDR,CODE

+IF NDF W1

+MCALL .MACS

+MACS

+ENDC

+++CMB <AREA»33+0,<CODE>+{ADDR>E
+ENDM

+MACRD .SPFUN AREACHANFUNC sBUF +WCNT »BLK CRTN=%0,CODE
+IF NDF 440 V1

+MCALL .MACS

+MACS

+ENDC

+++CM1 <AREA» 26 »<CHAN><CODE> s<BLK?>
++2CM2 <{BUF: .4

+vesCM2 CWCNT>6

«IF NB FUNC

+NTYPE 4 o U2HFUNC

+IF NE .+ V2-"027

+IIF DIF <CODEZX>sNOSETs..CM2 #°03774+8444B
+++CMZ <FUNC:>9,,4B
+IFF
+++CM2 <FUNC‘*°04000377:>.8
+ENDC
+ENDC
+++CM2 <CRTNZ:>»10,E+C
+ENDM
+MACRDO +SPND
MOV #°0400,R0O
EMT 0374
+ENDM
+MACRO .SRESE
EMT 0352
+ENDM
+MACROD +SYNCH AREAPIC
+IF B PIC
+IIF NB <AREA> MOV AREA R4
+IFF
+IF NB AREA
mMou PC R4
ADD #AREA- . +R4
+ENDC
+ENDC
Moy @#"034,R3
JBR RS +@*0324(R3)
+ENDM

System Macro Library B-23

+MACRD L TIMIO TBK+HIsLOD

JER RSBETIMIT
+WORD TBK-.
+WORD 0
+WORD HI
+WORD LO
+ENDM
+MACRO .TLOCK
MOV #°03400,R0
EMT “0374
+ENDM
+MACRO .TRPSE AREA »ADDR »CODE
+IF NDF +,.V1
+MCALL .MACS
+MACS
+ENDC

»++CMB {AREA>+3:04+<CODE>{ADDR>E
+ENDM

+MACRO JTTINR

EMT 0340
+ENDM
+MACRD .TTOUT
EMT 0341
+ENDM
+«MACRO TTYIN CHAR
EMT 0340
BCS =20
+IF NB <CHAR:
+IIF DIF <CHAR> RO MouB ROYCHAR
+ENDC
+ENDM

+MACRO .TTYDU CHAR
+IF NDF .. U1
+MCALL /MACS

+MACS

+ENDC

v+ LMS {CHAR>,341 4B
BCS =2

+ENDM

+MACRO .TWAIT AREA,TIME,CODE

+IF NDF +..U1

+MCALL .MACS

+MACS

+ENDC

+++CMB <AREA> 20,40 4<CODE>»<TIME>E
+ENDHM

+MACRO JUNLOC
EMT 0347
+ENDM

+MACRO ,UNMAP AREA,ADDR,CODE

+IF NDF ..Ul

+MCALL +MACS

+MACS

+ENDC

+++CME <AREA>+30+5,<CODE><ADDR>E
+ENDM

B-24 System Macro Library

+MACROD +UNPRO AREA,ADDRCODE

+IF NDF +4.V1

+MCALL +MACS

+MACS

+ENDC

+++CMB <AREA> 25,1 +<CODE> » ADDR > +E
+ENDM

+MACRO JHWAIT CHAN

+IF NDF 4 oV1
+MCALL .MACS
+MACS
+ENDC
JIF EQ v aVl-1
EMT "0 240+CHAN
+IFF
+IF B {CHAN
CLR RO
+IFF

ONTYPE ooo(JZQCHAN
JIF EQ 44 W2-"027
+IF IDN <CHANZ %0

CLR RO
+IFF
JIIF IDN <CHAN> <0 ERROR 37?S5YSMAC-W-Invalid ardument, use #0, not O3
Moy CHAN RO
+ENDC
+IFF
CLR RO
BISB CHAN RO
+ENDC
+ENDC
EMT “0374
+ENDC
+ENDM

+MACRO ,WDBBK WNAPR s WNSTZ sWNRID sWNOFF s WNLEN sWNETS
+MCALL +WDBDF

+WDBDF
+BYTE
+BYTE WNAPR
+WORD
+WORD WNSIZ
+WORD WNRID
+WORD WNOFF
+WORD WNLEN
+WORD WNETS
+ENDM

+MACRO +WDBDF
W«NID=0
W:NAPR=1
W.NBAS=2Z,
W«NSIZ=4,
W+NRID=G,
W.NOFF="010
W,NLEN="012
W.NSTE="014
WNLGH="016

WS +CRW="0100000
WS UNM="040000
WS,ELW="020000
WS +MAP="0400
+ENDM

System Macro Library B-25

+MACRO WWRITC AREA,CHANBUF ;WCNT CRTN,BLK :CODE

+IF NDF ..Vl

+MCALL .MACS

+MACS

+ENDC

+++CM7 {AREAX +{CHANZ: y<BUF > +<WCNT > s$BLK > +<CRTN>+9,<CODE> 220
+ENDM

+MACRO +WRITE AREA:CHANBUF sWCNTBLK jCRTN=%1,CODE

+IF NDF +,.V1

+MCALL .MACS

+MACS

+ENDC

+ 0 CM7 <AREA> »{CHAN> s<{BUF > y<WCNT> +{BLK > <CRTN>+9,<CODE> 220
+ENDM

+MACRO JWRITW AREACHAN:BUF yWCNTBLK jCRTN=#0,CODE

+IF NDF +.,.V1

+MCALL +MACS

+MACS

+ENDC

¢ CM7 {AREA} s<{CHANZ> s {BUF > y{WCNT > +{BLK > s<CRTN: 9 ,<CODE> +220
+ENDM

B-26 System Macro Library

INDEX

ABTIO$
defined by .DRDEF, 2-33
.ABTIO programmed request, 2—2
summary, 1-32
Addressing modes
description, 1-10
AJFLT system subroutine, 3—1
summary, 1-65
using, 1-57

Blank arguments
description, 1-9
BLANK graphics macro, A-3

C.CSW

returned by .SAVESTATUS, 2-111
C.DEVQ

returned by .SAVESTATUS, 2-111
C.LENG

returned by .SAVESTATUS, 2-111
C.SBLK

returned by .SAVESTATUS, 2-111
C.UNIT

returned by .SAVESTATUS, 2-111
C.USED

returned by .SAVESTATUS, 2-111
.CDFN programmed request, 2—-3

effect of .EXIT, 2—44

effect on .GTJB, 2-54

relationship to .CHAIN, 2-5

relationship to .SRESET, 2-132

restrictions, 1-26

summary, 1-32
using, 1-16
.CHAIN programmed request, 2—4
summary, 1-32
using, 1-24
CHAIN system subroutine, 3—1
summary, 1-64
Channel allocation
using .CDFN, 1-16
Channel numbers
description, 1-11
system subroutine library, 1-39
Channel status word
See CSW
Character strings
allocating in FORTRAN, 1-59
passing to subprograms, 1-60
quoted literals, 1-61
support in SYSLIB, 1-57
.CHCOPY programmed request, 2—6
summary, 1-36
using, 1-23
Version 4, 1-29
.CLEAR graphics macro, A—4
CLOSEC system subroutine, 3—2
relationship to ICSI, 3-16
relationshp to IENTER, 3-21
summary, 1-61
USR requirements, 1-42
CLOSE keyboard command
after .EXIT, 1-24
relationship to .EXIT, 2-43

Index-1

.CLOSE programmed request, 2-8
not done by .CSISPC, 2-21
on a protected file, 2—-49
relationship to .CHCOPY, 2-6
relationship to .ENTER, 2-42
relationship to .LOOKUP, 2-65
relationship to .PURGE, 2-90
relationship to .SERR, 2-59
requires device handler, 2—45
summary, 1-32
using, 1-19, 1-24

.CMKT programmed request, 2—-9
relationship to . MRKT, 2-71
summary, 1-32
using, 1-24

.CNTXSW programmed request, 2-10
restrictions, 1-26
summary, 1-36
using, 1-16

Command String Interpreter
See CSI

Completion routines
introduction, 1-21
restrictions, 1-22, 1-40, 2-2
system subroutine library, 1-39

CONCAT system subroutine, 3-4
summary, 1-58, 1-66

.CRAW programmed request, 2—-12
relationship to .GMCX, 2-50
summary, 1-36
using, 1-26

.CRRG programmed request, 2—-15
summary, 1-36
using, 1-26

CSI
implicit .UNLOCK, 2-63
introduction, 1-18
options, 2-19
using, 2-16

.CSIGEN programmed request, 2—-16
compared to .GTLIN, 2-55
implicit .UNLOCK, 2-63
relationship to .LOOKUP, 2-65
summary, 1-32
using, 1-18

.CSISPC programmed request, 2-21
compared to .GTLIN, 2-55
implicit .UNLOCK, 2-63
relationship to .SETTOP and USR,

2-119

summary, 1-32
using, 1-19

CSI special mode
See .CSISPC

Index—2

.CSTAT programmed request, 2—24
summary, 1-32
Version 5, 1-29
.CSTATUS programmed request
using, 1-18
CSwW
bits defined by .DRDEF, 2—-34
.CTIMIO macro, 2-25
expansion, 2—26
relationship to .DRDEF, 2-33
summary, 1-32
CTRL/C
disabling, 2-112
CTRL/O
reset by .RCTRLO, 2-95
CVTTIM system subroutine, 3-5
instead of .GTIM, 2-52
summary, 1-64
using, 1-56

Date
.GTIM required for date rollover,
2-52
internal format, 2-26
month and year rollover, 2-26
set by .SDTTM, 2-117
.DATE programmed request, 226
summary, 1-32
using, 1-18
DATE subroutine (in FORLIB)
using, 1-56
.DELETE programmed request, 2-27
on a protected file, 2-49
requires device handler, 2-45
summary, 1-32
using, 1-19
Device blocks
description, 1-12
with system subroutine library, 1-41
Device handler macros
.CTIMIO, 2-25
.DRAST, 2-30
.DRBEG, 2-32
.DRBOT, 2-32
.DREND, 2-34
.DRFIN, 2-35
.DRSET, 2-35
.DRVTB, 2-36
.FORK, 2-47
INTEN, 2-61
SYNCH, 2-132
.TIMIO, 2-135

Device handlers

writing, 1-27

Device identification codes
list of values, 2-37
.DEVICE programmed request, 2—-28
summary, 1-36
using, 1-17
Device status word
contents, 2—-37
defined by .DRDEF, 2-33
DEVICE system subroutine, 3-5
relationship to INTSET, 3-29
summary, 1-64
DHALT display halt instruction, A—14
Display file handler
assembling graphics programs, A-16
assembly instructions, A-24
description, A-1
example, A-27
linking, A-16
linking graphics programs, A-16
subroutine summary, A-21
using, A-15
Display file structure, A-17
BASIC-11 graphics software, A—20
subroutine calls, A-18
Display processor mnemonics, A-23
DJFLT system subroutine, 3—6
summary, 1-65
using, 1-57
DJSR subroutine call instruction, A-13
DNAME load name register instruction,
A-14
.DRAST macro, 2—-30
relationship to .DRDEF, 2-33
relationship to .FORK, 248
summary, 1-32
using, 1-27
.DRBEG macro, 2—32
relationship to .DRDEF, 2-33
relationship to .DRVTB, 2-36
relationship to .FORK, 2-48
summary, 1-32
using, 1-27
.DRBOT macro, 2-32
relationship to .DRDEF, 2-33
summary, 1-32
using, 1-27
.DRDEF macro, 2-33
summary, 1-33
use before .DRBEG, 2-32
using, 1-27
.DREND macro, 2—34
called by .DRBOT, 2-32
relationship to .DRDEF, 2-33
relationship to .DRVTB, 2-36

relationship to .FORK, 2-48
summary, 1-33
using, 1-27
DRET subroutine return instruction,
A-13
.DRFIN macro, 2-35
relationship to .DRDEF, 2-33
relationship to .FORK, 2-48
summary, 1-33
using, 1-27
.DRSET macro, 2-35
relationship to .DRDEF, 2-33
summary, 1-33
using, 1-27
.DRVTB macro, 2-36
relationship to .DRDEF, 2-33
summary, 1-33
using, 1-27
DSTAT display status instruction, A-14
.DSTATUS programmed request, 2—36
relationship to .SETTOP and USR,
2-119
summary, 1-33
using, 1-18

.ELAW programmed request, 2-39
relationship to .CRAW, 2-13
summary, 1-36
using, 1-26

$ELPTR
defined by .DREND, 2-34

.ELRG, 2-15

.ELRG programmed request, 2—-40
summary, 1-36
using, 1-26

EMT codes
See also Programmed requests
EMT 374, 1-7
EMT 375, 1-8
meaning of different values, 1-3

EMT instructions
See Programmed requests

.ENTER programmed request, 2—40
done by .CSIGEN, 2-16
not done by .CSISPC, 2-21
on a protected file, 2-49
relationship to .CHCOPY, 2-7
relationship to .CLOSE, 2-8
relationship to .CSTAT, 2-24
relationship to .READx, 2-100
relationship to .SAVESTATUS, 2-110
relationship to .SERR, 2-59
relationship to .SRESET, 2-131
relationship to .WRITx, 2-149

Index-3

requires device handler, 2-45
summary, 1-33
using, 1-19
EOF$
defined by .DRDEF, 2-34
ERL$G
defined by .DRDEF, 2-33
$ERLOG pointer
in handler termination table, 2-34
Error processing
monitor errors, 1-17
Errors
intercepting monitor errors, 2—137
programmed requests, 1-12
.EXIT programmed request, 2—-43
relationship to .DEVICE, 2-28
summary, 1-33
using, 1-24
Extended memory monitor
See XM monitor

FB monitor
foreground job and .FETCH, 2-45
introduction, 1-2
FETCH programmed request, 2-45
done by .CSIGEN, 2-16
fills in $FKPTR, 2-48
not done by .CSISPC, 2-21
relationship to $INPTR, 2-30
relationship to .ENTER, 2-42
relationship to .SETTOP and USR,
2-119
relationship to .SRESET, 2-131
relationship to handler termination
table, 2-35
summary, 1-33
Version 5, 1-29
File operations
introduction, 1-19
FILST$
defined by .DRDEF, 2-33
$FKPTR
defined by .DREND, 2-34
setup by user program, 2—49
Foreground/background
communications, 1-23
context switch, 1-23
with FORTRAN programs, 1-52
Foreground/background monitor
See FB monitor
.FORK macro, 2-47
relationship to .DRDEF, 2-33
summary, 1-33

Index—4

$FORK pointer
in handler termination table, 2-34
FORLIB.OBJ
linking, 1-55
FORTRAN logical units
relationship to .CHAIN, 2-5
FORTRAN programs
calculating workspace, 1-53
FPROT programmed request, 2—49
relationship to .RENAME, 2-108
requires device handler, 2-45
summary, 1-33
using, 1-20

General mode
See .CSIGEN
$GETBYT pointer
in handler termination table, 2—-34
GETSTR system subroutine, 3—7
summary, 1-58, 1-66
USR requirements, 1-42
.GMCX programmed request, 250
summary, 1-37
using, 1-26
Graphics macro calls
summary, A-21
$GTBYT
defined by .DREND, 2—-34
.GTIM programmed request, 2-51
summary, 1-33
using, 1-18
GTIM system subroutine, 3—7
summary, 1-64
.GTJB programmed request, 2-53
summary, 1-33
using, 1-18
Version 4, 1-29
GTJB system subroutine, 3—8
summary, 1-64
.GTLIN programmed request, 2-55
implicit .UNLOCK, 2-63
relationship to .SETTOP and USR,
2-119
summary, 1-33
using, 1-19
Version 5, 1-29
GTLIN system subroutine, 3—9
summary, 1-62
USR requirements, 1-42
GT OFF keyboard command, A—2
GT ON keyboard command, A—-2
.GVAL programmed request, 2-57
compared with .PEEK, 2-86
summary, 1-33

HDERRS$
defined by .DRDEF, 2-34
.HERR programmed request, 2-58
summary, 1-33
using, 1-17
HNDLR$
defined by .DRDEF, 2-33
.HRESET programmed request, 261
relationship to .CDFN, 2-3
relationship to .LOOKUP, 2-65
relationship to .PURGE, 2-90
relationship to .QSET, 2-93
summary, 1-33
using, 1-24

1/O operations
introduction, 1-20

IABTIO system subroutine, 3-10
summary, 1-62

IADDR system subroutine, 3—-10
summary, 1-67

IAJFLT system subroutine, 3-11
summary, 1-65
using, 1-57

IASIGN system subroutine, 3—11
summary, 1-63

ICDFN system subroutine, 3-13
summary, 1-63
USR requirements, 1-42

ICHCPY system subroutine, 3-14
summary, 1-63

ICLOSE system subroutine, 3—2
relationship to IENTER, 3-21
summary, 1-61
USR requirements, 1-42

ICMKT system subroutine, 3—15
cancelling an ITIMER request, 3-56
cancelling ISCHED requests, 3—44
summary, 1-64

ICSI system subroutine, 3-16
summary, 1-63
using argument from IFETCH, 3-23
using with IASIGN, 3-11
USR requirements, 1-42

ICSTAT system subroutine, 3—18
summary, 1-63

IDATE subroutine (in FORLIB)
using, 1-56

IDELET system subroutine, 3-18
summary, 1-61
USR requirements, 142

IDJFLT system subroutine, 3—-20
summary, 1-65
using, 1-57

IDSTAT system subroutine, 3—20
summary, 1-64
USR requirements, 1-42
IENTER system subroutine, 3-21
relationship to CLOSE, 3-3
relationship to ICSI, 3-16
summary, 1-61
USR requirements, 1-42
IFETCH system subroutine, 3-23
relationship to ICSI, 3-16
relationship to IDELET, 3-19
summary, 1-65
USR requirements, 1-42
IFPROT system subroutine, 3-23
summary, 1-61
IFREEC system subroutine, 3-24
summary, 1-63
IGETC system subroutine, 3—24
summary, 1-63
IGETSP system subroutine, 3—25
summary, 1-67
IGTJB system subroutine, 3—8
summary, 1-64
IJCVT system subroutine, 3—26
summary, 1-65
using, 1-57
ILUN system subroutine, 3—26
summary, 1-63
INDEX system subroutine, 3—27
summary, 1-58, 1-66
Indirect command files
relationship to .CSIGEN, 2-17
$INPTR
defined by .DREND, 2-34
referenced by .DRAST, 2-30
Input/output operations
See 1/0 operations
INSERT system subroutine, 3—27
summary, 1-58, 1-66
INSRT graphics macro, A-5
INTEGER*4 support
in SYSLIB, 1-56
INTEN macro, 2-61
must precede .FORK, 248
relationship to .SPND/.RSUM, 2-130
summary, 1-33
using, 1-26
$INTEN monitor routine
referenced by .DRAST, 2-30
$INTEN pointer
in handler termination table, 2—34
Interrupt service routines, 1-26
use of .SYNCH, 2-132
INTSET system subroutine, 3—28
summary, 1-67

Index-5

IPEEKB system subroutine, 3--30
restrictions, 1-45
summary, 1-67

IPEEK system subroutine, 3-30
restrictions, 1-45
summary, 1-67
using with IGETSP, 3-25

IPOKEB system subroutine, 3-31
restrictions, 1-45
summary, 1-67

IPOKE system subroutine, 3-31
restrictions, 1-45
summary, 1-67
using with IGETSP, 3-25

IPUT system subroutine, 3—32
summary, 1-67

IQSET system subroutine, 3—32
summary, 1-65
using, 1-45
USR requirements, 1-42

IRAD50 system subroutine, 3-33
summary, 1-67
using, 1-57

IRCVDC system subroutine, 3--33
requires queue element, 1-45
summary, 1-62

IRCVDF system subroutine, 3--33
requires queue element, 1-45
summary, 1-62

IRCVD system subroutine, 3—-33
requires queue element, 1-45
summary, 1-62

IRCVDW system subroutine, 3-33
requires queue element, 1-45
summary, 1-62

IREADC system subroutine, 3—-35
requires queue element, 1-45
summary, 1-62

IREADF system subroutine, 3-35 _

requires queue element, 1-45
summary, 1-62

IREAD system subroutine, 3-35
requires queue element, 1-45
summary, 1-62

IREADW system subroutine, 3-35
requires queue element, 1-45
summary, 1-62

IRENAM system subroutine, 3-40
summary, 1-61
USR requirements, 1-42

IREOPN system subroutine, 3-41
summary, 1-63

ISAVES system subroutine, 3—42
relationship to IREOPN, 3-41
summary, 1-63

Index—6

ISCHED system subroutine,
3-43

cancelled by ICMKT, 3-15
requires queue element, 1-45
summary, 1-64

ISCOMP system subroutine, 3-89
summary, 1-66

ISDATC system subroutine, 3—44
requires queue element, 1-45
summary, 1-62

ISDATF system subroutine, 3—44
requires queue element, 1-45
summary, 1-62

ISDAT system subroutine, 3—44
requires queue element, 1-45
summary, 1-62

ISDATW system subroutine, 3—44
requires queue element, 1-45
summary, 1-62

ISDTTM system subroutine, 3—47
summary, 1-64

ISFDAT system subroutine, 3—47
summary, 1-61

ISLEEP system subroutine, 3—48
requires queue element, 1-45
summary, 1-64
using, 1-56

ISPFNC system subroutine, 3-49
requires queue element, 1-45
summary, 1-65

ISPFNF system subroutine, 3-49
requires queue element, 1-45
summary, 1-65

ISPFN system subroutine, 3—49
requires queue element, 1-45
summary, 1-65

ISPFNW system subroutine,

3-49

requires queue element, 1-45
summary, 1-65

ISPY system subroutine, 3-55
restrictions, 1-45
summary, 1-67

ISR
See Interrupt service routines

ITIMER system subroutine, 3-55
cancelled by ICMKT, 3-15
requires queue element, 1-45

rescheduling FORTRAN subroutines,

3-44
summary, 1-64
ITLOCK system subroutine, 3-57
summary, 1-65
using, 1-44
USR requirements, 1-42

ITTINR system subroutine, 3—57
multiterminal equivalent, 3—79
summary, 1-62

ITTOUR system subroutine, 3-59
multiterminal equivalent, 3—-80
summary, 1-62

ITWAIT system subroutine, 3—-59

relationship to SUSPND/RESUME,

3-93

requires queue element, 1-45
summary, 1-64
using, 1-56

TUNTIL system subroutine, 3—60
requires queue element, 1-45
summary, 1-64
using, 1-56

IVERIF system subroutine
See VERIFY system subroutine
summary, 1-66

IWAIT system subroutine, 3-61
summary, 1-62
use with ISPFN, 3—49

IWRITC system subroutine, 3—61
requires queue element, 1-45
summary, 1-62

IWRITE system subroutine, 3—61
requires queue element, 1-45
summary, 1-62

IWRITF system subroutine, 3-61
requires queue element, 1-45
summary, 1-62

IWRITW system subroutine, 3-61
requires queue element, 1-45
summary, 1-62

JADD system subroutine, 3—-64
summary, 1-65

JAFIX system subroutine, 3—65
summary, 1-65
using, 1-57

JCMP system subroutine, 3—65
summary, 1-65

JDFIX system subroutine, 3—66
summary, 1-65
using, 1-57

JDIV system subroutine, 3—66
summary, 1-66

JICVT system subroutine, 3—-67
summary, 1-66
using, 1-57

JJCVT system subroutine, 3—68
summary, 1-66

JMOV system subroutine, 3—68
summary, 1-66

JMUL system subroutine, 3—69
summary, 1-66
Job status word
See JSW
JSUB system subroutine, 3—69
summary, 1-66
JSW
bit 11, 244
bit 12, 1-23
effect on terminal input, 2-140
relationship to ITTINR, 3-57
bit 14, 2-55
effect on terminal input, 2-140
relationship to ITTINR, 3-58
bit 3, 2-55
bit 4, 2-140
bit 5, 2-44
bit 6

compared with M.TSTS bit 6, 2-79

relationship to .TTINR, 2-139

relationship to .TTOUTR, 2-141

relationship to ITTINR, 3-57
relationship to ITTOUR, 3-59
bit 8, 2-5

issue MTRCTO or .RCTRLO after

changing, 2-95
JTIME system subroutine, 3—70
summary, 1-64
using, 1-56

Keyword macro arguments
description, 1-11

LEN system subroutine, 3—70
summary, 1-58, 1-66

.LNKRT graphics macro, A—5

LOAD keyboard command

before running foreground job, 2-45

fills in $FKPTR, 2-48
relationship to .SRESET, 2-131

relationship to handler termination

table, 2-35
relationship to IDELET, 3-19
.LOCK programmed request, 2—62
compared to .TLOCK, 2-136
effect of .EXIT, 2-44
relationship to .CSIGEN, 2-21
summary, 1-33
using, 1-16
LOCK system subroutine, 3—71
summary, 1-65
USR requirements, 1-42
Logical job names, 2-67
assigning, 1-25

Index-7

.LOOKUP programmed request, 2-65
done by .CSIGEN, 2-16
not done by .CSISPC, 2-21
on a protected file, 2—49
relationship to .CLOSE, 2-8
relationship to .CSTAT, 2-24
relationship to . ENTER, 2-42
relationship to .READx, 2-100
relationship to .REOPEN, 2-109

relationship to .SAVESTATUS, 2-110

relationship to .SERR, 2-59
relationship to .WRITx, 2-149
requires device handler, 2—45
summary, 1-33
system job, 2—-67
using, 1-19
Version 4, 1-29
LOOKUP system subroutine, 3—72
relationship to CLOSE, 3-3
relationship to ICSI, 3-16
summary, 1-61
USR requirements, 1-42
.LPEN graphics macro, A—7

M.FCNT
contents, 2-77
M.TFIL
contents, 2-77
M.TST2
contents, 2-78
in multiterminal status block, 2-77
M.TSTS
bit 12
relationship to .MTIN, 2-79
bit 6
relationship to .MTIN, 2-79
relationship to .MTOUT, 2-80
contents, 2-77
M.TSTW
contents, 278
in multiterminal status block, 2-77
M.TWID
contents, 2-77
.MAP programmed request, 2-68
summary, 1-37
using, 1-26
MAXJOB
in timer block, 2-25
.MCALL directive
use, 1-6
Memory allocation
swapping USR, 1-15
with .SETTOP, 1-15
Message handler

Index—8

See MQ handler

.MFPS programmed request, 2—69
summary, 1-34
using, 1-18

MMG$T
defined by .DRDEF, 2-33

Monitor fixed offset area
introduction, 1-3

Monitor services
introduction, 1-1

$MPPHY pointer
in handler termination table, 2-34

$MPPTR
defined by .DREND, 2-34

MQ handler
relationship to system job .LOOKUP,

2-67

using, 1-25

MRKT programmed request, 2-71
relationship to .CMKT, 2-9
requires queue element, 2-93
summary, 1-34
using, 1-24

MRKT system subroutine, 3-75
cancelled by ICMKT, 3-15
requires queue element, 1-45
summary, 1-64

.MTATCH programmed request, 2-73
relationship to MTGET, 2-77
summary, 1-34
using, 1-23

MTATCH system subroutine, 3-76
summary, 1-63

.MTDTCH programmed request, 2—75
summary, 1-34
using, 1-23

MTDTCH system subroutine, 3-78
summary, 1-63

.MTGET programmed request, 2-76
relationship to MTATCH, 2-73
summary, 1-34
using, 1-18, 1-23

MTGET system subroutine, 3—79
summary, 1-63

.MTIN programmed request, 2—79
summary, 1-34
using, 1-23

MTIN system subroutine, 3—79
summary, 1-63

.MTOUT programmed request, 2—80
summary, 1-34
using, 1-23

MTOUT system subroutine, 3—80
summary, 1-63

.MTPRNT programmed request, 2-81
summary, 1-34
using, 1-23

MTPRNT system subroutine, 3—81
summary, 1-63

.MTPS programmed request, 2—-69
summary, 1-34
using, 1-18

.MTRCTO programmed request, 2—82
summary, 1-34

MTRCTO system subroutine, 3—-81
summary, 1-63

.MTSET programmed request, 2—-83
summary, 1-34
using, 1-23

MTSET system subroutine, 3—81
summary, 1-63

.MTSTAT programmed request, 2—84
summary, 1-34
using, 1-18, 1-23

MTSTAT system subroutine, 3-82
summary, 1-63

Multiterminal feature
introduction, 1-2

Multiterminal requests
introduction, 1-23

Multiterminal status block
contents, 277
contents after MTSET, 2-83

.MWAIT programmed request, 2—85
relationship to .RCVDx, 2-96
relationship to system job .LOOKUP,

2-67

summary, 1-37
using, 1-23

MWAIT system subroutine, 3—-83
requires queue element, 1-45
summary, 1-63

.NAME graphics macro, A-8
NOSYN graphics macro, A—-11

PEEK programmed request, 2—-86
summary, 1-34

.POKE programmed request, 2—86
summary, 1-34

PRINT programmed request, 2—-87
multiterminal equivalent, 2-81
summary, 1-34
using, 1-22

PRINT system subroutine, 3—83
summary, 1-63

Processor status word
See PSW

Programmed requests
See also EMT codes
addressing modes, 1-10
blank arguments, 1-9
channel numbers, 1-11
conversion to Version 5, 1-29
device blocks, 1-12
errors, 1-12
execution, 1-4
extended memory, 1-25
format, 1-6
introduction, 1-1, 1-3
keyword macro arguments, 1-11
registers available, 1-11
summary, 1-32
using, 1-15
USR requirements, 1-13
Version 1, 1-27
Version 2, 1-28
Version 3, 1-28
Version 4, 1-29
Version 5, 1-29
.PROTECT programmed request, 2—88
summary, 1-37
using, 1-17
PSW
referenced by .MFPS/.MTPS, 2-69

$PTBYT

defined by .DREND, 2-34
$PTWRD
defined by .DREND, 2-34
.PURGE programmed request, 2—90
relationship to .CHCOPY, 26
relationship to .LOOKUP, 2-65
relationship to .SERR, 2-59
summary, 1-34
using, 1-19
PURGE system subroutine, 3—84
in place of CLOSE, 3-3
$PUTBYT pointer
in handler termination table, 2-34
PUTSTR system subroutine, 3-84
summary, 1-58, 1-66
USR requirements, 1-42
$PUTWRD pointer
in handler termination table, 2—-34
.PVAL programmed request, 2—57
compared with .POKE, 2-86
summary, 1-34
to change default .ENTER size, 2-41

Q$BLKN
defined by .QELDF, 2-92

Index-9

Q$BUFF

defined by .QELDF, 2-92
Q$COMP

defined by .QELDF, 2-92
Q$CSW

defined by .QELDF, 2-92
Q$FUNC

defined by .QELDF, 2-92
Q$JNUM

defined by .QELDF, 2-92
QS$LINK

defined by .QELDF, 2-92
Q$PAR

defined by .QELDF, 2-92
Q$UNIT

defined by .QELDF, 2-92
Q$WCNT

defined by .QELDF, 2-92
Q.BLKN

defined by .QELDF, 2-92
Q.BUFF

defined by .QELDF, 2-92
Q.COMP

defined by .QELDF, 2-92

relationship to .SYNCH, 2-134

Q.CSW

defined by .QELDF, 2-92
Q.ELGH

defined by .QELDF, 2-92
Q.FUNC

defined by .QELDF, 2-92
Q.JNUM

defined by .QELDF, 2-92
Q.LINK

defined by .QELDF, 2-92
Q.PAR

defined by .QELDF, 2-92
Q.UNIT

defined by .QELDF, 2-92
Q.WCNT

defined by .QELDF, 2-92
.QELDF macro, 2-92

relationship to .DRDEF, 2-33
relationship to .FORK, 2-48

summary, 1-34

.QSET programmed request, 2-92

effect of .EXIT, 2—44

relationship to .RCVDx, 2-96
relationship to .READx, 2-100
relationship to .SRESET, 2-132
relationship to .TWAIT, 2-143
relationship to .WRITx, 2-148

restrictions, 1-26
summary, 1-34
using, 1-16

Index-10

R.GID
defined by .RDBDF, 2-100

R.GLGH
defined by .RDBDF, 2-100

R.GSIZ
defined by .RDBDF, 2-100

R.GSTS
defined by .RDBDF, 2-100

R50ASC system subroutine, 3—-85
summary, 1-67
using, 1-57

RAD50 system subroutine, 3-85
summary, 1-67
using, 1-57

Radix—50 support
in SYSLIB, 1-57

RCHAIN system subroutine, 3—86
relationship to CHAIN, 3-2
summary, 1-65

.RCTRLO programmed request, 2-95
multiterminal equivalent, 2-82
summary, 1-34
using, 1-22

RCTRLO system subroutine, 3—-86
multiterminal equivalent, 3-81
summary, 1-65

.RCVDC programmed request, 2-95
relationship to .SDATx, 2-113
requires queue element, 2-93
summary, 1-37
using, 1-23

.RCVD programmed request, 2-95
relationship to .SDATx, 2-113
relationship to system job .LOOKUP,

2-67

requires queue element, 2-93
summary, 1-37
use with MWAIT, 2-85
using, 1-23, 1-25

.RCVDW programmed request, 2-95
relationship to .SDATx, 2-113
requires queue element, 2-93
summary, 1-37

.RDBBK macro, 2-99
summary, 1-37
using, 1-26

.RDBDF macro, 2-99
summary, 1-37
using, 1-26

.READC programmed request, 2-100
for messages between jobs, 2-67
requires device handler, 2-45
requires queue element, 2-93
summary, 1-35
using, 1-21

.READ programmed request, 2-100
for messages between jobs, 2-67
relationship to .SAVESTATUS, 2-110
relationsip to .CHCOPY, 2-6
requires device handler, 2—45
requires queue element, 2-93
summary, 1-34
use with \WAIT, 2-145
using, 1-20

.READW programmed request, 2-100
for messages between jobs, 2—67
requires device handler, 2-45
requires queue element, 2-93
summary, 1-35
using, 1-20

REENTER keyboard command
after .EXIT, 1-24
relationship to .EXIT, 2-43

.RELEASE programmed request, 2—45
after FETCH, 2-46
sometimes ignored, 2—46
summary, 1-35

$RELOC pointer
in handler termination table, 2-34

.REMOYV graphics macro, A-9

.RENAME programmed request, 2-107
on a protected file, 2—49
requires device handler, 2-45
summary, 1-35
using, 1-19

.REOPEN programmed request, 2-109
summary, 1-35
using, 1-19

REPEAT system subroutine, 3-87
summary, 1-58, 1-66

.RESTR graphics macro, A-9

RESUME system subroutine, 3—-87
relationship to SUSPND, 3-93
summary, 1-65

$RLPTR
defined by .DREND, 2-34

RONLY$
defined by .DRDEF, 2-33

RS.CRR
defined by .RDBDF, 2-100

RS.NAL
defined by .RDBDF, 2-100

RS.UNM
defined by .RDBDF, 2-100

.RSUM programmed request, 2—130
effect of TWAIT, 2-144
relationship to .SRESET, 2-132
summary, 1-37

.SAVESTATUS programmed request,
2-110
relationship to .ENTER, 242
relationship to .LOOKUP, 2-65
relationship to .PURGE, 2-90
relationship to .REOPEN, 2-109
summary, 1-35
using, 1-19
.SCCA programmed request, 2—-112
summary, 1-35
SCCA system subroutine, 3—-88
summary, 1-65
SCOMP system subroutine, 3-89
summary, 1-58, 1-66
SCOPY system subroutine, 3—89
summary, 1-58, 1-66
.SCROL graphics macro, A-9
.SDATC programmed request, 2-113
relationship to .RCVDx, 2-96
requires queue element, 2-93
summary, 1-37
using, 1-23
.SDAT programmed request, 2-113
relationship to .RCVDx, 2-95
relationship to system job .LOOKUP,
2-67
requires queue element, 2-93
summary, 1-37
use with MWAIT, 2-85
using, 1-23, 1-25
.SDATW programmed request, 2-113
relationship to .RCVDx, 2-96
requires queue element, 2-93
summary, 1-37
.SDTTM programmed request, 2—117
summary, 1-35
using, 1-18
SECNDS system subroutine, 3—-90
instead of .GTIM, 2-52
summary, 1-64
.SERR programmed request, 2—58
relationship to .DELETE, 2-27
relationship to .ENTER, 2-42
summary, 1-35
using, 1-17
SETCMD system subroutine, 3-91
summary, 1-65
SET keyboard commands
relationship to .DRSET, 2-35
SET EXIT NOSWAP
relationship to .EXIT, 2-43
relationship to .SETTOP and USR,
2-120

Index-11

SET EXIT SWAP
relationship to .EXIT, 2-43
SET TT QUIET
relationship to .GTLIN, 2-55
SET USR NOSWAP
relationship to .SETTOP, 2-119
relationship to LOCK/UNLOCK,
3-72
SET option table
defined by .DRSET, 2-35
SETTOP programmed request, 2-119
in XM monitor, 2-121
restrictions, 1-26
summary, 1-35
using, 1-15
SFDAT programmed request, 2—-122
relationship to . RENAME, 2-108
requires device handler, 2-45
summary, 1-35
using, 1-20
.SFPA programmed request, 2-123
relationship to .CNTXSW, 2-10
summary, 1-35
using, 1-17
Single-job monitor
See SJ monitor
Single-line editor
relationship to .TTYIN, 2-140
SJ monitor
introduction, 1-2
SPCPS programmed request, 2—-124
summary, 1-37
using, 1-22
Special (single-character) mode for
terminal, 1-23
SPECLS$
defined by .DRDEF, 2-33
SPFUNS$
defined by .DRDEF, 2-33
SPFUN programmed request, 2—-126
bit in device status word, 2-38
function codes, 2—127
requires device handler, 2-45
summary, 1-35
using, 1-17
.SPND programmed request, 2-130
effect of TWAIT, 2-144
relationship to .SRESET, 2-132
summary, 1-37
using, 1-24
SRESET programmed request, 2—-131
performed by .HRESET, 2-61
relationship to .CDFN, 2-3
relationship to .LOOKUP, 2-65

Index-12

relationship to .PURGE, 2-90
relationship to .QSET, 2-93
summary, 1-35
using, 1-24
Stack pointer
caution with .CHAIN, 2-5
during .EXIT, 2-44
START graphics macro, A-10
START keyboard command
after .EXIT, 1-24
relationship to .EXIT, 2-43
STAT graphics macro, A—10
STOP graphics macro, A-11
STRPAD system subroutine, 3-91
summary, 1-58, 1-66
SUBSTR system subroutine, 3-92
summary, 1-58, 1-66
Suspension of a program, 1-24
SUSPND system subroutine, 3-93
relationship to RESUME, 3-87
summary, 1-65
SYNC graphics macro, A—11
.SYNCH macro, 2-132
relationship to .SPND/.RSUM, 2-130
summary, 1-35
using, 1-21, 1-26
SYSCOM area
introduction, 1-3
SYSLIB.OBJ
additional services, 1-56
introduction, 1-1
SYSLIB functions, 3—1
channel, 1-63
character string, 1-57, 1-66
data transfer, 1-62
date and time, 1-56
device and file, 1-63
file-oriented, 1-61
INTEGER*4, 1-41, 1-56, 1-65
miscellaneous, 1-67
program suspension, 1-56
Radix-50, 1-57, 1-67
RT-11 services, 1-64
summary, 1-61
timer, 1-64
SYSLOW, 2-121
SYSMAC.MAC
listing, B—1
SYSMAC.SML
description, 1-6
introduction, 1-1
macros for device handlers, 1-27
macros for interrupt service routines,
1-26

System communication area
See SYSCOM area

System jobs
communicating with, 1-25
.LOOKUP, 2-67

System job support
introduction, 1-2

System macro library
introduction, 1-1
listing, B—-1

"~ System status
how to get, 1-18

System subroutine library
calling conventions, 1-46
capabilities, 1-38
channel numbers, 1-39
completion routines, 1-39

restrictions, 1-40

conventions, 1-38
device blocks, 141
FORTRAN/MACRO interface, 1-47
introduction, 1-1
subroutine argument block, 1-47
subroutine register usage, 1-48
system restrictions, 1-45
using, 1-37

Terminal I/O
introduction, 1-22
special mode, 1-23
Termination of a program, 1-24
TIMS$IT
defined by .DRDEF, 2-33
TIMASC system subroutine, 3-94
instead of .GTIM, 2-52
summary, 1-64
using, 1-56
Time
internal format, 2-118
set by .SDTTM, 2-118
TIME keyboard command
relationship to GTIM system
subroutine, 3-7
Timer block format, 2-25
Timer support
introduction, 1-24
TIME system subroutine, 3-95
instead of .GTIM, 2-52
summary, 1-64
.TIMIO macro, 2-135
relationship to .CTIMIO, 2-25
relationship to .DRDEF, 2-33
summary, 1-35
timer block format, 2—25

$TIMIO pointer
in handler termination table, 2—-34
$TIMIT
defined by .DREND, 2-34
.TLOCK programmed request, 2—136
summary, 1-35
using, 1-16
.TRACK graphics macro, A-11
TRANSL system subroutine, 3-95
summary, 1-58, 1-66
TRIM system subroutine, 3—97
summary, 1-58, 1-66
.TRPSET programmed request, 2—137
summary, 1-35
using, 1-17
.TTINR programmed request, 2—139
summary, 1-36
using, 1-22
with indirect command file, 2-56
.TTOUTR programmed request, 2—141
summary, 1-36
using, 1-22
when to use .PRINT, 2-88
TTYIN programmed request, 2—139
multiterminal equivalent, 2-79
summary, 1-36
using, 1-22
with indirect command file, 2-56
.TTYOUT programmed request, 2—141
multiterminal equivalent, 2-80
summary, 1-36
using, 1-22
when to use .PRINT, 288
.TWAIT programmed request, 2-143
relationship to .CMKT, 2-10
relationship to .SPND/.RSUM, 2-130
requires queue element, 2-93
summary, 1-36
using, 1-24
Version 5, 1-29

.UNLNK graphics macro, A—12
.UNLOCK programmed request, 2—62
implicit by .CSIGEN, 2-16, 2-21

implicit by .CSISPC, 2-22
performed by .EXIT, 244
summary, 1-36
using, 1-16

UNLOCK system subroutine, 3-97
relationship to LOCK, 3-71
summary, 1-65

.UNMAP programmed request, 2—145

relationship to .MAP, 2-68
summary, 1-37
using, 1-26

Index-13

.UNPROTECT programmed request,
2-88
summary, 1-37
using, 1-17
User service routine
See USR
USR
ownership by different jobs, 2-136
USR locking
effect of .LOCK, 2-62
effect of UNLOCK system subroutine,
3-97
how to minimize, 1-44
relationship to .CSIGEN, 2-16
using LOCK system subroutine, 3-71
USR requirements
.CLOSE, 2-8
FORTRAN interface, 1-42
programmed requests, 1-13
swapping, 1-14
USR swapping
controlling, 1-15, 1-43, 2-110
effect of .LOCK, 2-62
strategies, 1-43

..V1.. macro
summary, 1-36
..V2.. macro
summary, 1-36
VARSZ$
defined by .DRDEF, 2-33
VERIFY system subroutine, 3-98
summary, 1-58, 1-66
Version 1
differences, 1-27
Version 2
differences, 1-28
Version 3
differences, 1-28
Version 4
differences, 1-29
Version 5
differences, 1-29
VTBASE.OBJ display file handler
module, A-2, A-15
VTCAL1.0BJ display file handler
module, A-2, A-15
VTCAL2.0B{J display file handler
module, A-2, A-15
VTCALS3.0BJ display file handler
module, A-2, A-15
VTCAL4.QBJ display file handler
module, A-2, A-15

Index—-14

VTHDLR.OBJ concatenated display
modules, A-2, A-16
VTLIB.OBJ display file handler library,
A-2, A-15
components, A-16
linking, A-16
VTMAC.MAC
listing, A-25
VTMAC.MAC display file handler
macros, A-2, A-15

W.NAPR
defined by .WDBDF, 2-148
modified by .GMCX, 2-51
use with .CRAW, 2-12
W.NBAS
defined by .WDBDF, 2-148
modified by .GMCX, 2-51
W.NID
defined by .WDBDF, 2-148
W.NLEN
defined by .WDBDF, 2—-148
modified by .GMCX, 2-51
W.NLGH
defined by .WDBDF, 2-148
W.NOFF
defined by .WDBDF, 2-148
modified by .GMCX, 2-51
W.NRID
defined by .WDBDF, 2-148
W.NSIZ
defined by .WDBDF, 2-148
modified by .GMCX, 2-51
W.NSTS
defined by .WDBDF, 2-148
modified by .GMCX, 2-51
use with .CRAW, 2-12
W.RID
modified by .GMCX, 2-51
.WAIT programmed request, 2—145
compared with MWAIT, 2-85
summary, 1-36
use with .CSIGEN, 2-16
use with .READx, 2-101
using, 1-20
.WDBBK macro, 2-147
summary, 1-37
using, 1-26
.WDBDF macro, 2-148
automatically called by .WDBBK,
2-147
summary, 1-37
using, 1-26

WONLYS$
defined by .DRDEF, 2-33

.WRITC programmed request, 2—148
for messages between jobs, 267
relationship to .CSTAT, 2-24
requires device handler, 2-45
requires queue element, 2-93
summary, 1-36
using, 1-21

.WRITE programmed request, 2—148
for messages between jobs, 2-67
relationship to .CHCOPY, 2-6
relationship to .CSTAT, 2-24
relationship to .SAVESTATUS, 2-110
requires device handler, 2-45
requires queue element, 2-93
summary, 1-36
to a protected file, 2—49
use with .WAIT, 2-145
using, 1-20

WRITW programmed request, 2148
for messages between jobs, 2—67
relationship to .CSTAT, 2-24

requires device handler, 2-45
requires queue element, 2-93
summary, 1-36
using, 1-20
WS.CRW
defined by .WDBDF, 2-148
use with .CRAW, 2-12
WS.ELW
defined by .WDBDF, 2-148
use with .CRAW, 2-12
WS.MAP
defined by .WDBDF, 2-148
effect on .CRAW, 2-12, 2-13

optional argument to WDBBK, 2-147

WS.UNM

defined by .WDBDF, 2-148
WS.VNM

use with .CRAW, 2-12

XM monitor
introduction, 1-2
using, 1-25

Index-15

RT-11 Programmer’s
Reference Manual
AA-H378B-TC

READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company’s discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

__ Assembly language programmer

— Higher-level language programmer

__ Occasional programmer (experienced)

__ User with little programming experience
— Student programmer
— Other (please specify)

Name Date

Organization Telephone

Street

City State Zip Code

or Country

dilgliltiall

Do Not Tear — Fold Here

Do Not Tear — Fold Here and Tape

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG/ML PUBLICATIONS, MLO5-5/E45
DIGITAL EQUIPMENT CORPORATION
146 MAIN STREET '

MAYNARD, MA 01754

No Postage
Necessary
if Mailed in the
United States

Cut Along Dotted Line

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	01-32
	01-33
	01-34
	01-35
	01-36
	01-37
	01-38
	01-39
	01-40
	01-41
	01-42
	01-43
	01-44
	01-45
	01-46
	01-47
	01-48
	01-49
	01-50
	01-51
	01-52
	01-53
	01-54
	01-55
	01-56
	01-57
	01-58
	01-59
	01-60
	01-61
	01-62
	01-63
	01-64
	01-65
	01-66
	01-67
	01-68
	02-001
	02-002
	02-003
	02-004
	02-005
	02-006
	02-007
	02-008
	02-009
	02-010
	02-011
	02-012
	02-013
	02-014
	02-015
	02-016
	02-017
	02-018
	02-019
	02-020
	02-021
	02-022
	02-023
	02-024
	02-025
	02-026
	02-027
	02-028
	02-029
	02-030
	02-031
	02-032
	02-033
	02-034
	02-035
	02-036
	02-037
	02-038
	02-039
	02-040
	02-041
	02-042
	02-043
	02-044
	02-045
	02-046
	02-047
	02-048
	02-049
	02-050
	02-051
	02-052
	02-053
	02-054
	02-055
	02-056
	02-057
	02-058
	02-059
	02-060
	02-061
	02-062
	02-063
	02-064
	02-065
	02-066
	02-067
	02-068
	02-069
	02-070
	02-071
	02-072
	02-073
	02-074
	02-075
	02-076
	02-077
	02-078
	02-079
	02-080
	02-081
	02-082
	02-083
	02-084
	02-085
	02-086
	02-087
	02-088
	02-089
	02-090
	02-091
	02-092
	02-093
	02-094
	02-095
	02-096
	02-097
	02-098
	02-099
	02-100
	02-101
	02-102
	02-103
	02-104
	02-105
	02-106
	02-107
	02-108
	02-109
	02-110
	02-111
	02-112
	02-113
	02-114
	02-115
	02-116
	02-117
	02-118
	02-119
	02-120
	02-121
	02-122
	02-123
	02-124
	02-125
	02-126
	02-127
	02-128
	02-129
	02-130
	02-131
	02-132
	02-133
	02-134
	02-135
	02-136
	02-137
	02-138
	02-139
	02-140
	02-141
	02-142
	02-143
	02-144
	02-145
	02-146
	02-147
	02-148
	02-149
	02-150
	02-151
	02-152
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	03-63
	03-64
	03-65
	03-66
	03-67
	03-68
	03-69
	03-70
	03-71
	03-72
	03-73
	03-74
	03-75
	03-76
	03-77
	03-78
	03-79
	03-80
	03-81
	03-82
	03-83
	03-84
	03-85
	03-86
	03-87
	03-88
	03-89
	03-90
	03-91
	03-92
	03-93
	03-94
	03-95
	03-96
	03-97
	03-98
	03-99
	a-01
	a-02
	a-03
	a-04
	a-05
	a-06
	a-07
	a-08
	a-09
	a-10
	a-11
	a-12
	a-13
	a-14
	a-15
	a-16
	a-17
	a-18
	a-19
	a-20
	a-21
	a-22
	a-23
	a-24
	a-25
	a-26
	a-27
	a-28
	a-29
	a-30
	a-31
	a-32
	b-01
	b-02
	b-03
	b-04
	b-05
	b-06
	b-07
	b-08
	b-09
	b-10
	b-11
	b-12
	b-13
	b-14
	b-15
	b-16
	b-17
	b-18
	b-19
	b-20
	b-21
	b-22
	b-23
	b-24
	b-25
	b-26
	i-01
	i-02
	i-03
	i-04
	i-05
	i-06
	i-07
	i-08
	i-09
	i-10
	i-11
	i-12
	i-13
	i-14
	i-15
	replyA
	replyB

