P/OS System
Reference Manual

Order No. AA-N620B-TK

November 1985

This manual describes the Professional Operating System,
and provides detailed reference information.

REQUIRED SOFTWARE: P/OS V3.0

EHEHEEHTM

DIGITAL EQUIPMENT CORPORATION
Maynard, Massachusetts 01754-2571

First Printing, December 1982
Updated, September 1983
Updated, December 1983
Revised, November 1985

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished wunder a
license and may only be used or copied in accordance with the
terms of such license.

No responsibility is assumed for the wuse or reliability of
software on equipment that is not supplied by DIGITAL or its
affiliated companies.

The specifications and drawings, herein, are the property of
Digital Equipment Corporation and shall not be reproduced or
copied or used in whole or in part as the basis for the
manufacture or sale of items without written permission.

Copyright © 1985 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTI BUS MASSBUS Rainbow

DEC PDP RSTS

DECmate P/0S RSX
DECsystem-10 PRO/BASIC Tool Kit
DECSYSTEM-20 PRO/Communications UNIBUS

DECUS Professional VAX

DECwriter PRO/FMS VMS

DIBOL PRO/RMS vT

dli[ofi[t[a]1 s PROSE Work Processor

PROSE PLUS

ii

CONTENTS

PREFACE . . . ¢ ¢ « ¢ ¢« « « « o « « o« « « . xvii
PART | -- SYSTEM OVERVIEW
CHAPTER 1 INTRODUCTION TO P/OS
1.1 P/0OS HARDWARE ENVIRONMENT 1-1
1.2 P/0OS SYSTEM COMPONENTS ¢« « « « « « . 1-2
1.2.1 The Executive 1-4
1.2.2 I/0 Drivers . . S
1.2.3 Terminal Subsystem .. c e e e 1-5
1.2.4 FILES-11 Ancillary Control Processor . 1-5
1.2.5 Record Management and File Control Services 1-5
1.2.6 P/0OS System Utility Modules and Executive
Servers . . C e e e e e e e e 1-6
1.3 P/0OS BASIC CONCEPTS D
1.3.1 Tasks .« . ¢« ¢ ¢ ¢+« ¢ ¢ ¢ e e e v o . . 1-6
1.3.2 Memory . . e
1.3.3 Checkp01nt1ng e
1.3.4 System Pool . . e e e e« .« .« 1-9
1.4 APPLICATION DESIGN SUGGESTIONS e e« « . . . 1-10
1.4.1 Use Cooperating Tasks 1-10
1.4.2 Use Shared Regions 1-11
1.4.3 Use Disk-Resident Overlays 1-12
1.4.4 Use Memory-Resident Overlays 1-12
1.4.5 Use Clustered Resident Libraries 1-13
1.4.6 Use Fast Remapping Feature 1-13
1.5 COMPARING RSX-11M-PLUS AND P/OS 1-13
CHAPTER 2 LOGICAL NAMES
2.1 LOGICAL NAME STORAGE e e e e e e e e . 221
2.2 LOGICAL NAME MODIFIERS . e . e e e« . . 2-3
2.2.1 Modifiers in Duplicate Loglcal Names . 2-4
2.3 LOGICAL NAME TRANSLATION . . e« < . . 2-5
2.4 LOGICAL NAMES FOR FILES-11 VOLUMES . e« . . 2-5
2.4.1 Removable Versus Nonremovable Volumes 2-6
2.5 LOGICAL NAME DEFAULT DIRECTORY STRING . . . 2-7
2.6 LOGICAL NAME OPERATIONS 2-8
2.6.1 Creating a Logical Name 2-8
2.6.2 Deleting a Logical Name .. 2-8
2.6.3 Translating a Logical Name 2-9
2.6.4 Setting a Default Directory String 2-9
2.6.5 Retrieving a Default Directory String 2-10

iii

CHAPTER 3 USING EVENT, TRAP, AND SYNCHRONIZATION SERVICES

CHAPTER

CHAPTER

3.1 SIGNIFICANT EVENTS . . . ¢« ¢ « ¢ v « « « .
3.2 EVENT FLAGS . . ¢ ¢ ¢ ¢ o o o o o o o =
3.3 SYSTEM TRAPS . . . ¢ ¢ o o o o o o o o o =
3.3.1 Synchronous System Traps (SSTs)
3.3.2 SST Service Routines
3.3.3 Asynchronous System Traps (ASTs)
3.3.4 AST Service Routines
3.4 STOP-BIT SYNCHRONIZATION . . « « o« « « .
4 USING PARENT/OFFSPRING TASKING SERVICES
4.1 TASK STATES . .+ &+ « o o o o o o o o o o« =
4.1.1 Task State Transitions
4.2 DIRECTIVE SUMMARY« ¢« ¢« « « « o« .
4.2.1 Parent/Offspring Tasking Directives
4.2.2 Task Communication Directives
4.3 CONNECTING AND PASSING STATUS e e e e s
5 USING MEMORY MANAGEMENT SERVICES
5.1 ADDRESS MAPPING . ¢ ¢ ¢ o o o o o o o =
5.1.1 Physical, Logical, and Virtual Address
SPACE © + ¢ e e e e e e e e e e e e e
. WINDOWS . . ¢ ¢« ¢ ¢ ¢ ¢« o« o o o o o o @
REGIONS . .« ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o =
3.1 Attaching to Regions
.3.2 Region Protection

DIRECTIVE SUMMARY e o e e e e e & o o e e
Create Region Directive (CRRGS)
Attach Region Directive (ATRGS) . .
Detach Region Directive (DTRGS)
Create Address Window Directive (CRAWS)

.

[SRRNCRINOLE N NG RN, BNCa NG IO INC R RN 2 BNO 2 INC NG RO BNC RN IO IO
e o e . o e . e o e .
QOUOTUTUT S DD DS DS DS S DD DWW wN
o e ¢ e . o e
PP OO JdOoOuds Wwh -

. °

Map Address Window Directive (MAPS) . .
Unmap Address Window Directive (UMAPS)
Send By Reference Directive (SREFS)
Receive By Reference Directive (RREFS)
Get Mapping Context Directive (GMCX$)
Get Region Parameters Directive (GREGS) .

USER DATA STRUCTURES« .« . &
Region Definition Block (RDB)

o e e
. .
= O

.

.1
1.1 Using Macros to Generate an RDB . .
1.2 Using High-Level Languages to Generate
an RDB« « « « « « « « .
5.5.2 Window Definition Block (WDB) ..
5.5.2.1 Using Macros to Generate a WDB

iv

Eliminate Address Window Directive (ELAWS)

Fwwwwwww
I

= 1
DO oOOUTU N

w

i

[ICIIRC ARG RO O IO I) |
i

[l el | 1
OO WWOWWOOoW NP

[N NENE NE
o

e

o oo

5-10
5-11
5-11
5-11
5-11
5-12
5-14

5-17
5-17
5-18

5.5.2.2 Using High—Level Language to Generate a

WDB 5-21
5.5.3 Assigned Values or Settlngs 5-22
5.6 PRIVILEGED TASKS 5-22
5.7 FAST REMAP OPERATIONS 5-23
5.7.1 Performing a Fast Remap . 5-23
5.7.2 Requirements for Using Fast Remap 5-25
5.7.3 Status Codes for Fast Remap 5-25

PART Il -- THE SYSTEM SERVICES
CHAPTER 6 SYSTEM UTILITY MODULES (POSSUM)

6.1 LINKING PROGRAMS WITH POSSUM . 6-2
6.1.1 Impact of POSSUM on Your Task Image 6-2
6.2 CONVENTIONS FOR CALLABLE SYSTEM ROUTINES 6-2
6.2.1 PDP-11 R5 Calling Convention 6-3
6.2.2 Other Conventions for POSSUM Routlnes 6-4
6.2.3 Status Control Block Format . 6-4
6.3 FORMAT OF POSSUM ROUTINE DESCRIPTIONS 6-6
6.4 PROATR e e e e e e e e e e e 6-7
6.4.1 Status Codes Returned by PROATR 6-8
6.5 PRODIR e e e e e e e e e e 6-10
6.5.1 Status Codes Returned by PRODIR 6-12
6.5.2 PRODIR Example e e . 6-12
6.6 PROFBI e e e e e e e e e e e e 6-13
6.6.1 Status Codes Returned by PROFBI 6-15
6.6.2 PROFBI Example . 6-18
6.7 PROLOG e e e e e 6-19
6.7.1 Create or Translate a Loglcal Name 6-19
6.7.2 Delete a Logical Name and Set/Show Default 6-21
6.7.3 Status Codes Returned by PROLOG . 6-23
6.7.4 PROLOG Examples e e e . 6-23
6.8 PROTSK . 6-26
6.8.1 Install a Task or Statlc Reglon 6-27
6.8.2 Remove a Task or Static Region 6-28
6.8.3 Fix a Task or Region in Memory . 6-29
6.8.4 Install/Run/Remove an Offspring Task 6-29
6.8.5 Status Codes Returned by PROTSK 6-32
6.8.6 PROTSK Example 6-35
6.9 PROVOL 6-36
6.9.1 Mount/Dlsmount 6-36
6.9.2 Bootstrap a Volume 6-38
6.9.3 Plug Bootblock/Plug Bootblock and Boot 6-38
6.9.4 Unplug a Bootblock .. 6-39
6.9.5 Get Free Space 6-39
6.9.6 Get Free Space and Flle Header Usage 6-40
6.9.7 Establish Secondary Boot Device 6-42
6.9.8 Note For PROVOL 6-43

CHAPTER

CHAPTER

6.9.9 Status Codes Returned by PROVOL .

6.9.10 PROVOL Example

7 USING THE SYSTEM DIRECTIVES

7.1 HOW THE SYSTEM PROCESSES DIRECTIVES .

7.2 ERROR RETURNS e e e e e s e .

7.3 USING DIRECTIVE MACROS

7.3.1 Macro Name Conventions

7.3.1.1 $ Form« . « « « <

7.3.1.2 SC FOorm . . « ¢ « o o« « o .

7.3.1.3 SS Form . . ¢ .« « ¢ o « < . e e .

7.3.2 DIRS MacCro . . « .« o« .«

7.3.3 Optional Error Routine Address

7.3.4 Symbolic Offsets

7.3.5 Examples of Macro Calls

7.4 USING HIGH-LEVEL LANGUAGE SUBROUTINES

7.4.1 Calling the Subroutines

7.4.2 Specifying Task Names

7.4.3 Specifying Integer Arguments . .

7.4.4 GETADR Subroutine

7.4.5 The Subroutine Calls

7.4.6 Error Conditions . .

7.4.7 AST Support for High- Level Languages .

7.5 RESTRICTIONS ON NONPRIVILEGED TASKS . .

7.6 DIRECTIVE CATEGORIES

7.6.1 Task Execution Control Dlrectlves . .

7.6.2 Task Status Control Directives

7.6.3 Informational Directives

7.6.4 Event-Associated Directives . ..

7.6.5 Trap-Associated Directives . . .

7.6.6 I/0- and Intertask Communication Related
Directives . . . « <« « « « « . . .- .

7.6.7 Memory Management Directives . .

7.6.8 Parent/Offspring Tasking Directives .

7.7 DIRECTIVE CONVENTIONS

8 DIRECTIVE DESCRIPTIONS

8.1 FORMAT OF SYSTEM DIRECTIVE DESCRIPTIONS

8.2 ABRTS - ABORT TASK

8.3 ACHNS - ASSIGN CHANNEL

8.4 ALTPS - ALTER PRIORITY

8.5 ALUNS - ASSIGN LUN

8.6 ASTX$S - AST SERVICE EXIT

8.7 ATRGS - ATTACH REGION . . .

8.8 CINTS - CONNECT TO INTERRUPT VECTOR .

8.9 CLEF$ - CLEAR EVENT FLAG

8.10 CLOGS - CREATE LOGICAL NAME STRING .

vi

L B e e e B B N N N
1

= 1
P OWOWWWLO IO DN

8.11
8.12
8.13
8.14
8.15
8.16

8.17
8.18
8.19

8.20
8.21
8.22
8.23
8.24
8.25
8.26
8.27
8.28
8.29
8.30
8.31
8.32
8.33
8.34
8.35
8.36
8.37
8.38
8.39
8.40
8.41
8.42
8.43
8.44
8.45
8.46
8.47
8.48
8.49
8.50
8.51
8.52
8.53

8.54
8.55
8.56
8.57
8.58

CMKTS$ - CANCEL MARK TIME REQUESTS
CNCT$ - CONNECT . . . e e e e
CRAWS - CREATE ADDRESS WINDOW e e e e
CRRGS - CREATE REGION . . . e e e ..
CRVTS - CREATE VIRTUAL TERMINAL e e e
CSRQS - CANCEL TIME-BASED INITIATION
REQUESTS e e ..
DECLSS - DECLARE SIGNIFICANT EVENT c ..
DLOGS - DELETE LOGICAL NAME
DSARSS/IHARSS - DISABLE/INHIBIT AST
RECOGNITION e e e ..
DSCPSS - DISABLE CHECKPOINTING e e
DTRGS - DETACH REGION . . . e e
ELAWS - ELIMINATE ADDRESS WINDOW e e
ELVTS - ELIMINATE VIRTUAL TERMINAL . . .
EMSTS - EMIT STATUS . . . e e ..
ENARSS - ENABLE AST RECOGNITION e e e e
ENCP$S - ENABLE CHECKPOINTING
EXIFS - EXIT IF « o « « o « .
EXITSS - TASK EXIT .. e e e e
EXST$ - EXIT WITH STATUS« « « . .
EXTKS - EXTEND TASK
FEATS - TEST FOR SPECIFIED SYSTEM FEATURE
FSS$ - FILE SPECIFICATION SCAN
GDIRS - GET DEFAULT DIRECTORY
GLUNS - GET LUN INFORMATION
GMCRS$ - GET COMMAND LINE « « « . .
GMCXS$S - GET MAPPING CONTEXT
GPRTS - GET PARTITION PARAMETERS
GREGS - GET REGION PARAMETERS
GTIMS - GET TIME PARAMETERS
GTSKS - GET TASK PARAMETERS
MAPS - MAP ADDRESS WINDOW
MRKTS - MARK TIME . . . e e
PFCSS$S - PARSE FCS SPECIFICATION e e ..
PRMSS - PARSE RMS SPECIFICATION
QIOS - QUEUE I/O REQUEST . . . e e ..
QIOWS - QUEUE I/O REQUEST AND WAIT ...
RCSTS - RECEIVE DATA OR STOP
RCVDS - RECEIVE DATA . . . e e e e
RCVXS - RECEIVE DATA OR EXIT e e e e e e
RDAFS - READ ALL EVENT FLAGS
RDEFS - READ EVENT FLAG

RDXFS$S - READ EXTENDED EVENT FLAGS

RPOIS - REQUEST AND PASS OFFSPRING
INFORMATION . . . e e e e .

RQSTS - REQUEST TASK .. e e e e e e
RREFS - RECEIVE BY REFERENCE e ..
RRSTS - RECEIVE BY REFERENCE OR STOP ..
RSUMS - RESUME TASK . . .

RUNS - RUN TASK . +. « « & « . .

vii

8-30
8-32
8-36
8-41
8-46

8-54
8-56
8-57

8-59
8-61
8-63
8-66
8-68
8-70
8-72
8-73
8-75
8-77
8-79
8-81
8-84
8-88
8-95
8-98
8-101
8-103
8-107
8-109
8-111
8-113
8-116
8-120
8-124
8-128
8-132
8-136
8-138
8-140
8-142
8-146
8-148
8-149

8-151
8-155
8-158
8-162
8-164
8-165

8.59 SCAAS - SPECIFY COMMAND ARRIVAL AST . . 8-170
8.60 SDATS - SEND DATA 8-172
8.61 SDIRS - SET-UP DEFAULT DIRECTORY STRING 8-174
8.62 SDRCS - SEND, REQUEST AND CONNECT e e e . 8-176
8.63 SDRP$ - SEND DATA REQUEST AND PASS OCB . 8-180
8.64 SETF$ - SET EVENT FLAG« . . 8-184
8.65 SFPAS - SPECIFY FLOATING POINT PROCESSOR

EXCEPTION AST e e e e e e e e e e e e e e 8-185
8.66 SPNDS$SS - SUSPEND e e e e e e e e e e e e 8-187
8.67 SPWNS - SPAWN 8-189
8.68 SRDAS - SPECIFY RECEIVE DATA AST . . 8-195
8.69 SREF$ - SEND BY REFERENCE« . . . 8-197
8.70 SREXS - SPECIFY REQUESTED EXIT AST

DIRECTIVE 8-201
8.71 SRRAS - SPECIFY RECEIVE BY REFERENCE AST 8-204
8.72 STIMS - SET SYSTEM TIME e e . 8-206
8.73 STLOS - STOP FOR LOGICAL OR OF EVENT FLAGS 8-209
8.74 STOP$SS - STOP« . . 8-212
8.75 STSES - STOP FOR SINGLE EVENT FLAG e e e . 8-213
8.76 SVDBS - SPECIFY SST VECTOR TABLE FOR

DEBUGGING AID e« < . . 8-214
8.77 SVTKS - SPECIFY SST VECTOR TABLE FOR TASK 8-216
8.78 SWSTS - SWITCH STATE . . . v v o « o« « . 8-218
8.79 TFEAS - TEST TASK FEATURE e e e e e e 8-221
8.80 TLOGS - TRANSLATE LOGICAL NAME e e e e e 8-224
8.81 UMAPS - UNMAP ADDRESS WINDOW 8-227
8.82 USTPS - UNSTOP TASK . . . e e e e 8-229
8.83 VRCDS$ - VARIABLE RECEIVE DATA e e e e . 8-231
8.84 VRCSS$S - VARIABLE RECEIVE DATA OR STOP . 8-233
8.85 VRCX$ - VARIABLE RECEIVE DATA OR EXIT . 8-236
8.86 VSDAS - VARIABLE SEND DATA . 8-238
8.87 VSRC$S - VARIABLE SEND, REQUEST AND CONNECT 8-240
8.88 WIMPS - WHAT’S IN MY PROFESSIONAL e e e . 8-244
8.89 WSIGSS - WAIT FOR SIGNIFICANT EVENT e e . 8-256
8.90 WTLOS$S - WAIT FOR LOGICAL OR OF EVENT FLAGS 8-258
8.91 WTSE$S - WAIT FOR SINGLE EVENT FLAG . . 8-261

PART Illl -- THE I/O DRIVERS
CHAPTER 9 SYSTEM INPUT/OUTPUT CONVENTIONS

9.1 PHYSICAL, LOGICAL, AND VIRTUAL I/O . . 9-2
9.2 LOGICAL UNITS - . e e e e e e e 9-2
9.2.1 Logical Unit Number e e e . 9-2
9.2.2 Logical Unit Table 9-3
9.2.3 Changing LUN Assignments . . e . 9-3
9.3 ISSUING AN I/O REQUEST 9-4
9.3.1 QIO Macro Format 9-6
9.3.2 I/0-RELATED ASTS . . « « « « . . . 9-9

viii

CHAPTER

CHAPTER

e o o s s e
UL W

e o s o e s
~NOoO s W

WO W WWWOWWWWOWWWOWWOWOWOWWOWWOWOOWOOOWY

o e o o« s e « e e o e e

OO ~JOAOAITOOOOOO UTUIUIUTU U U
.

N -

10

10.1
10.2
10.3
10.4

10.4.1
10.4.2

10.4.
10.5
10.6

11

11.1

11.2

11.2.
11.2.
11.2.
11.2.
11.2.
11.2.
11.2.
11.2.
11.2.
11.2.
11.2.

3

1
2

2.

1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

DIRECTIVE PARAMETER BLOCKS
I/0-RELATED MACROS . .

The
The

QI0S$ Macro
QIOWS$ Macro

The ALUNS Macro . .

The

GLUNS$ Macro . .

The ASTXSS Macro . e e
The WTSE$ Macro
STANDARD I/O FUNCTIONS . . .

IO.ATT: Attaching to an I/0 Dev1ce

.

IO.DET: Detaching from an I/0 Device
IO.KIL: Canceling I/0 Requ
IO.RLB: Reading a Logical

IO.RVB: Reading

Virtual

a
IO.WLB: Writing a Logical
a

IO.WVB: Writing

Virtual

I/0 COMPLETION

RETURN

CODES

Directive Condltlons .. .
I/0 Status Conditions . .

DISK DRIVERS

RX50 DESCRIPTION
RD-SERIES DESCRIPTION . . .
GET LUN INFORMATION FOR DISK DRIVERS
OVERVIEW OF I/O OPERATIONS .
Physical I/O Operations
Logical I/0 Operations . .
Virtual I/0 Operations
QIO MACRO FUNCTIONS FOR DISK DRIVERS
STATUS RETURNS FOR DISK DRIVERS

THE TERMINAL DRIVER

ests

Block
Block
Block
Block

-

.

GET LUN INFORMATION MACRO FOR TERMINAL

DRIVER

.

QIO MACRO FOR TERMINAL DRIVER
Using Subfunction Bits . . .
Driver-Specific QIO Functions

I0.
I0.

I0.
I0.
I0.
I0.
I0.
I0.

I0.

ATA and IO.ATT!TF.AST
ATT!TF.ESQ . . .

CCO and IO.WLB!TF. CCO
DET

GTS « « . . .
RAL and IO.RLB!TF.RAL
RNE and IO.RLB!TF.RNE
RPR

RPR'TF BIN

ix

-

-

9-10
9-11
9-11
9-12
9-12
9-13
9-14
9-14
9-15
9-16
9-17
9-17
9-18
9-19
9-20
9-20
9-21
9-22
9-23
9-24

10-1
10-2
10-2
10-4
10-4
10-5
10-5
10-5
10-8

11-2
11-3
11-6
11-8
11-9

11-11

11-11
11-11
11-11
11-13
11-13
11-13
11-14

CHAPTER

11.2.2.10 IO.RST and IO.RLB!TF.RST
11.2.2.11 IO.RTT . . .« ¢« ¢ « ¢ ¢ « ¢« « « « « .
11.2.2.12 IO.WAL and IO.WLB!TF.WAL . . .

11.2.2.13 IOWBT . « ¢ ¢« v v ¢ ¢« ¢ o o o o o
11.2.2.14 IO.WSD . v ¢« v v v e e e e e e e
11.2.2.15 IO.RSD . . ¢ v v v v e ¢ e e e e e
11.2.2.16 SF.GMC « ¢ « « v « ¢ « o o .
11.2.2.17 SF.SMC . . . e e e e e e e e e e
11.3 STATUS RETURNS FOR TERMINAL DRIVER . . .
11.4 CONTROL CHARACTERS AND SPECIAL KEYS . .
11.4.1 Control Characters e e e e .
11.4.2 INTERRUPT/DO AST Informatlon
11.4.3 Special Keys« ¢« « « « « o o .
11.5 ESCAPE SEQUENCES e o e e s
11.5.1 Format of Escape Sequences .« e .
11.5.2 Receiving Escape Sequences
11.5.3 Characteristics of Escape Sequences .
11.5.4 Escape Sequence Format Violations . .
11.5.4.1 Delete Character--DEL (177)
11.5.4.2 Control Characters e e e e
11.5.4.3 Full Buffer . . C e e e e e e
11.6 VERTICAL FORMAT CONTROL e e e e e e e .
11.7 TYPE-AHEAD BUFFERING
11.8 FULL-DUPLEX OPERATION
11.9 INTERMEDIATE INPUT AND OUTPUT BUFFERING
11.10 TERMINAL-INDEPENDENT CURSOR CONTROL . .
11.11 PROGRAMMING SUGGESTIONS . . . e e .
11.11.1 Using IO.WVB Instead of IO. WLB . .
12 VIRTUAL TERMINAL DRIVER
12.1 GET LUN INFORMATION MACRO FOR VIRTUAL
TERMINAL DRIVER . .
12.2 QIO MACRO FOR VIRTUAL TERMINAL DRIVER
12.2.1 Standard QIO Functions
12.2.1.1 IO.ATT & & ¢« v v ¢ & o o e o« e . .
12.2.1.2 IO.DET . . « « v o« ¢ ¢ o o o« « o o .
12.2.1.3 TO.KIL . . v ¢« ¢ ¢ v o o o « o o« « .
12.2.1.4 IO.RLB, IO.RVB, IO.WLB, IO.WVB
12.2.2 Device-Specific QIO Functions
12.2.2.1 I0.STC . . e e e e e e e e e e e
12.2.2.2 SF.GMC . . +« v v ¢ « o ¢ e o e e oo
12.2.2.3 TO.GTS . ¢« v v v e ¢ e e e o . .
12.2.2.4 IO.RPR . ¢ ¢ ¢« ¢ ¢ ¢ « o o« « o« =
12.2.2.5 SF.SMC
12.3 STATUS RETURNS FOR VIRTUAL TERMINAL DRIVER
12.4 TASK STACK FORMATS, AST ROUTINES
12.5 LOGIN FOR VIRTUAL TERMINALS
12.6 NULL VIRTUAL TERMINALS

11-14
11-14
11-15
11-15
11-16
11-16
11-17
11-17
11-25
11-28
11-28
11-29
11-31
11-33
11-33
11-34
11-34
11-35
11-35
11-35
11-35
11-35
11-37
11-38
11-38
11-39
11-40
11-40

12-1
12-3
12-5
12-5
12-5
12-6
12-6
12-6
12-6
12-8
12-8
12-9
12-9

12-10

12-12
12-12
12-13

PART I

THE SYSTEM SERVICES

CHAPTER 13

THE COMMUNICATION DRIVER

13.1 GET LUN INFORMATION FOR COMMUNICATION DRIVER 13-1
13.2 QIO MACRO FOR COMMUNICATION DRIVER 13-3
13.2.1 Using Subfunction Bits 13-5
13.2.2 Device-Specific QIO Functions 13-7
13.2.2.1 IOLANS . . . & ¢ v v ¢ e e e e e e e . . 13-7
13.2.2.2 IO.ATA and IO.ATT!TF.AST 13-8
13.2.2.3 IO.BRK v o v v v e v e « e <« . . 13-9
13.2.2.4 IO.CON . . . v o v v e e e « « « o« o« « < 13-9
13.2.2.5 IO.HNG + « v ¢ o o« o« « o o « « o« 13-9
13.2.2.6 IO.LTI . . v v v o ¢ « o« o« @« o o o o < . 13-9
13.2.2.7 IO.ORG .+ . +v ¢ ¢ ¢« & « &« & o« o « o « . 13-10
13.2.2.8 IO.RAL and IO.RLB!TF.RAL 13-10
13.2.2.9 IO.RNE and IO.RLB!TF.RNE 13-10
13.2.2.10 IO.TRM . . . & v v ¢ ¢ ¢ o« o o o « « « 13-11
13.2.2.11 IO.UTI . . . & v ¢ ¢ o « o« o o o o & o« 13-11
13.2.2.12 IO.WAL and IO.WLB!TF.WAL 13-11
13.2.2.13 SF.GMC . . . ¢ ¢« &« ¢ ¢ o « « o« o o« o« o 13-22
13.2.2.14 SF.SMC . . 13-17
13.3 STATUS RETURNS FOR COMMUNICATION DRIVER . 13-18
13.4 FULL-DUPLEX OPERATION ¢ « o« « = 13-20
13.5 UNSOLICITED EVENT PROCESSING = 13-21
13.5.1 XTU.UI Event Type Processing e e e o« . 13-21
13.6 EFFECT OF TIMEOUT ON QIO REQUEST . . . 13-21
13.6.1 Timeout on Read Requests (IO.RLB!TF. TMO) 13-22
13.6.2 Timeout on IO.CON Request (IO.CON!TF.TMO) 13-22
13.6.3 Timeout on IO.ORG Request (IO.OAG!TF.TMO) 13-22
13.7 XON/XOFF SUPPORT ¢ « o o o « o « = 13-23
APPENDIXES

APPENDIX A

o e
[N

APPENDIX B

APPENDIX C

c.1

SUMMARY OF I/O FUNCTION AND SUBFUNCTION CODES

I/0 FUNCTION CODE VALUES A-1
I/0 SUBFUNCTION CODE VALUES A-4
SUMMARY OF DSW AND IO STATUS CODES

STATUS CODES RETURNED IN DIRECTIVE STATUS

WORD (DSW) . . ¢« & o « ¢« o o « ¢ « o =« B-1
I/0 STATUS CODES (STANDARD) . B-3
I/0 STATUS CODES (DEVICE SPECIFIC) B-6
CONFIGURATION TABLE VALUES

CONFIGURATION TABLE . . . « « « « « « . . . C-1

xi

APPENDIX D

INDEX

FIGURES

TABLES

[oNe@!

~N oo o e e

[N RN WO WO ~JJdJdJ
o i

QULTULUTUIUTS DN W NN

.

w N

| NN U R N R A |

i

o
NP

P OSs WP N

I NP NPT WN

(=Y

PODWNERPNNREFESW

DEVICE ID AND ERROR NUMBERS
CONFIGURATION TABLE ERRORS RETURNED DURING
BOOT . . + ¢« « ¢« « v ¢« o« v o o o e e e .

DIRECTIVE IDENTIFICATION CODES

Main Components of P/OS
Task States . . e e e e e e e
Virtual Address Wlndows e e e e e e
Region Definition Block
Mapping Windows to Regions
Region Definition Block
Window Definition Block
Directive Parameter Block (DPB) Pointer on
the Stack

Directive Parameter Block (DPB) on the Stack 7-5

Sample FORTRAN Program « « o« .
Sample PASCAL Program e e e .
Sample PASCAL Program Using DIR$ Functlon
Sample BASIC-PLUS-2 Program . . . e e
Device Entry in GI.MSD Return Buffer . .
Flags Word in GI.MSD Return Buffer . . .
Format of I/0 Status Block
QIO Directive Parameter Block

Get LUN Information Return Buffer .

Summary of Differences Between RSX and P/0S
Logical Name Tables . . .
Operations on Loglcals Wlth leferent

Modifiers . . .
Sample F11ACP- Created Loglcals for Dlskette

Sample F11ACP-Created Logicals for Hard Disk

Trap Vector Table
Offspring Task Status
Intertask Synchronization Examples

Region Status Word (R.GSTS) Bit Deflnltlons

RDB Array Format . . .

Window Status Word (W.NSTS) Bit Definitions

WDB Array Format
ID Values for APRS . . . + v v « o « .
POSSUM Routines

xii

7-13
. 7-14
7-15
8-248
8-249
9-8
9-11
10-2

1-14

[NS)
1
o

[
OO WWOUIdJdJdOo

B W NN
t

[RGEE,
1
B e

DAY OV O
1
OO JO U Wi

~ ~
| I
[N =

QO CO 00 0O O 00 O
|
OO U W

11-5
11-6
11-7

11-8

Accessible File Attributes
PROFBI Status Codes (Server Specific)
PROLOG Status Codes (Server Specific)
PROTSK Status Codes (Server Specific)
Get Free Space Status Block . ..
Get Free Space and File Headers Status
PROVOL Status Codes (Server Specific)

IE.ABO Subcodes for PROVOL Mount/Dismount

Failure . . e .

Directives Wlthout ngh Level Language
Subroutines . . . e .
Restricted Dlrectlves Issued by
Nonprivileged Tasks

Region Definition Block Parameters for
Window Definition Block Parameters for
Region Definition Block Parameters for
Region Definition Block Parameters for
Window Definition Block Parameters for
System Feature Symbols
Format of the FSS$ Parse Block .
Window Definition Block Parameters for
GMCXS v v v e e e e e e e e e e e
Window Definition Block Parameters for
Window Definition Block Parameters, RRE
and RRSTS e e e e e e
Window Definition Block Parameters for
SREFS e e e e e e e e e e
Task Feature Symbols e e e e e e e e
Window Definition Block Parameters for
UMAPS e e e e . . e e e
Return Buffer for Get System Ver51on
Numbers
Configuration Table Output Buffer Forma
Meaning of Status Code Binary Values
Directive Conditions
I/0 Status Conditions
Standard Disk Devices

Get LUN Characteristic Flags for DlSkS
QIO Functions for Disks
Disk Status Returns

Get LUN Information for Termlnal Driver

QIO Functions for Terminals .
Subfunction Bit Symbolic Names and

Description . . e e e e e e e e e
Subfunction Bits Avallable for Driver
Requests . . . o e e e e e e e s
Task Stack Format e e e e e e e e

Information Returned by IO.GTS

Driver-Terminal Characteristics, SF.GMC and

SF.SMC . e . . .
Stack Upon Entry to AST Routlne . .

xiii

. . . 6-9
. . . 6-16
. . 6-23
. . . 6-33
. 6-40
Block 6-41
6-43
. . . b6-44
. 7-20
. . . 1-22
ATRGS 8-16
CRAWS 8-37
CRRGS 8-42
DTRGS 8-64
ELAWS 8-67
. . . 8-85
. . . 8-89
. . 8-104
MAPS 8-118
F$
. . 8-160
8-199
. . 8-222
8-228
8-247
t . 8-251
. . . 9-23
. . . 9-23
9-26
. . . 10-1
. . . 10-3
10-6
10-8
11-2
11-3
. . . 11-6
11-7
11 10
.. 11-12
. . 11-18
.. 11-21

11-9

11-10
11-11
11-12
11-13
11-14

11-15
11-16
12-1

12-2
12-3
12-4

12-5

> ? o>
ol W

vy
~ O

W oomww
|
Urd W N

Terminal Type Values (TC.TTP) for SF.SMC

and SF.GMC e o . . 11-23
Receiver/Transmitter Speed Values e ... 11-24
Terminal Status Returns 11-25
Terminal Control Characters 11-28
Response with IO.ATA (Omitting TF. XCC) . . 11-30
Response Without IO.ATA or with

IO.ATA!TF.XCC e e e e e e e e e e e e e 11-30
Special Terminal Keys . e+ . . 11-32
Vertical Format Control Characters . . . 11-36
Get LUN Information for Virtual Termlnal

Driver e e . . 12-2
QIO Functions for Vlrtual Termlnals e o . . 12-3
Virtual Terminal Characteristics 12-9
Virtual Terminal Status, Offsprlng Task

Requests 12-10
Virtual Terminal Status, Parent Task

Requests . . . e .. 12-11
Get LUN Informatlon for Communlcatlon Driver 13-2
QIO Functions for Communication Driver . . . 13-3
Subfunction Bit Symbols« « < . . 13-6
Subfunction Bits Allowed for Drlver Requests 13-6
Task Stack Format 13-8
Driver Characteristics for SF GMC and

SF.SMC e e . . e e e e e e 13-13
TC.FSZ and TC. PAR Relatlonshlp e e e e . . 13-14
Receiver and Transmitter Speed Values . . 13-15
Modem Type Values (XT.MTP) 13-17
Communication Driver Status Returns . . . 13-18
Unsolicited Event Types 13-21
Function Code Values, Communlcatlon Dr1ver
(XKDRV) e e . e e e e e e e e e e A-1
Function Code Values, Disk Drivers (DZDRV and
DWDRV) e e e e e e e e A-2
Function Code Values, Terminal Driver (TTDRV) A-2
Function Code Values, TMS Driver (XTDRV) A-3

Subfunction Code (Bit) Values, XKDRV and

)

XTDRV e e e e e e e e e e e e e e e e e A-4
Subfunction Code (Bit) Values, TTDRV . . . A-5
Subfunction Code (Bit) Values, DZDRV and
DWDRV e e e e e e e e e e e e e e e e e A-6
DSW Success Codes . . . « « .« « « . B-2
DSW Error Codes « . . . B-2
I/0 Success Codes, Standard B-3
I/0 Error Codes, Standard . . . B-4
I/0 Status Codes for the Terminal Drlver,
TTDRV B-7
Full-wWord Subcodes for IS SUC Return in TTDRV

e e e e e e e e e e e e e e . « <« . . B-7
High-Byte Subcodes for IE.ABO Return in TTDRV

e e e e e e e e e e e e e e e e e e e . . . B-8

xXiv

I/0 Status for TMS Driver, XTDRV . e . B-8
High-Byte Subcodes for IE.ABO Return in XTDRV

e e e e . e e e e e B-9
I/O Status for Communication Driver, XKDRV B-9
High-Byte Subcodes for IE.ABO Return in XKDRV

. -
I/0 Status for Disk Drivers, DZDRV and DWDRV

e - A
Configuration Table Vvalues c-1
Summary of Device Codes (-8
Error Values for Devices C-10
Directive Identification Codes D-2

XV

PREFACE

Manual Objectives

The P/0S System Reference Manual describes the base system
software supporting the Professional 300 Series computer.
Intended Audience

You should be a programmer who is creating or modifying an
application to run on P/0S (the Professional Operating System).
Experience with RSX-11M-PLUS systems is especially helpful.
Structure of This Document

This manual contains three parts:

@ PART I is a broad system overview that describes how to wuse
the various components of the system.

® PART II provides details on the two forms of system services,
callable routines and directives.

® PART III describes the system I/0 capabilities and the
bundled I/0 drivers.

A chapter summary follows.

e Chapter 1 introduces the P/0S system. It describes the
hardware environment, the operating system components, and
basic concepts. Also, it ~contrasts P/0S features with

RSX-11M-PLUS features (on which P/0S is based) and provides
application design suggestions.

e Chapter 2 describes how the system handles 1logical names,
which aid program development by providing device
independence.

e Chapter 3 presents general information on the system’s
trapping and synchronization mechanisms.

xvii

The
and

Chapter 4 details the parent/offspring task support available
under P/0S.

Chapter 5 describes the memory management services that P/0S
provides.

Chapter 6 provides details on the POSSUM library that allows
programmers to easily perform often-used functions.

Chapter 7 shows you how to use the system directives.

Chapter 8 describes each P/0S system directive.

Chapter 9 details the system I/O conventions.

Chapter 10 describes the P/0S disk drivers (device handlers).
Chapter 11 describes the P/0S terminal driver.

Chapter 12 describes the virtual terminal driver.

Chapter 13 describes the P/0S communication driver.

appendixes cover system error messages, I/0 function codes
status codes, and provide a complete description of

hardware-related values stored in the system configuration table.

Associated Documents

PDP-11 Architecture Handbook

This handbook describes the two processors wused in the
Professional computers, the F-11 (Professional 325, 350) and
the J-11 (Professional 380). Topics covered are data
representation, addressing modes, processor instruction set,
floating point features, trap and interrupt handling, memory
mapping, and bus structures. The handbook also contains a
useful summary of differences among the PDP-11 family
processors.

Professional 300 Series Technical Manual
This manual details the hardware components of the
Professional computer, including system boards, controllers,

drives, monitors, bit map modules, keyboard, and controls and
indicators.

Xviii

e Professional 325/350 Pocket Service Guide

This guide

contains detailed troubleshooting methods for

software and hardware problems. It explains many of the
software errors that the system returns.

e Other Tool Kit manuals

If you are unfamiliar with P/0S and the Tool Kit, please read

the Tool

User’s Guide. For descriptions of advanced

programming features not covered in this manual, see the
Guide to Writing a P/0OS I/O Driver and Advanced Programmer’s

Notes.

Conventions Used in This Document

Convention/Term

[optional]

UPPERCASE

lowercase

red

Tool Kit

Meaning

In a command line, square brackets indicate
that the enclosed item is optional. In a file
specification, square brackets are part of
the required syntax.

Uppercase words and letters indicate that you
should type the word or letter -exactly as
shown.

Lowercase words and letters indicate that you
should substitute a word or value of your
own. Usually the 1lowercase word identifies
the type of substitution required.

A horizontal ellipsis indicates that you can
repeat the preceding item one or more times.
For example:

parameter [,parameter...]

A vertical ellipsis means that not all of the
statements are shown.

Interactive input appears in red.

This general term refers to the software you

use to develop applications to run on a
Professional computer.

xix

Convention/Term

Host Tool Kit

PRO/Tool Kit

10.

Meaning

The Host Tool Kit is Tool Kit software that
runs on a host computer, rather than on the
Professional itself.

The PRO/Tool Kit is the Tool Kit software
that runs on the Professional computer.

All numbers are decimal wunless indicated

otherwise. A decimal point emphasizes that a
number is decimal.

XX

PART |

SYSTEM OVERVIEW

CHAPTER 1
INTRODUCTION TO P/OS

P/0S is the Professional Operating System. Based on DIGITAL’s

RSX-11M-PLUS ("RSX") operating system for PDP-11, P/0OS has many
features found on operating systems designed for larger
minicomputers. Like RSX, P/0S provides a resource-sharing
environment that is ideal for multiple real-time activities. It

supports multitasking and dynamic memory management, and has
extensive I/0 and file management services.

This chapter describes the hardware environment for P/0S, the
structure of the operating system, and important system concepts.
Also, it contrasts P/0S with RSX-11M-PLUS, and presents several
application design suggestions.

1.1 P/OS HARDWARE ENVIRONMENT

P/0S runs on either of the two central processing units provided
with the Professional 300 Series: the F-11 in the 325 and 350
series, and the J-11 in the 380 series. These processors are
full-fledged members of the PDP-11 family. The J-11 is a more
recent, higher-performance processor. The two processors share
the same instruction set, which 1is documented in the PDP-11
Architecture Handbook.

The Professional includes diagnostic and bootstrap read-only
memory in a component called the Base System ROM (BSR). Besides
containing bootstrap and self-test instructions, the BSR
initializes an area of main memory called the configuration
table. This table contains information about other system
hardware. Programs can access this information via an operating
system directive (WIMPS).

P/0S HARDWARE ENVIRONMENT

Other components of the hardware environment are:

e Memory Management Unit (MMU) -- An integral part of both of
the Professional’s CPUs, the MMU translates virtual addresses
into actual physical addresses.

e Serial Number ROM -- This read-only memory contains a 6-byte
identification number that is unique for each Professional.
The serial number is available to programs via the WIMPS
system directive.

e Floating Point Processor (FPP) -- The FPP includes microcoded
instructions that provide high-speed arithmetic operations
for floating-point data.

e CTI Bus -- An interconnect path for system option cards, the
Computing Terminal Interconnect (CTI) Bus 1is a six-slot
backplane mounted on the system module.

e I/O Ports -- The Professional has ports for the
video/keyboard device, a serial printer, a communication
line, and an Ethernet line. (To use an Ethernet 1line, you

must install the Ethernet controller option.)

e Peripheral Mass Storage Devices -- Both the RX50 Diskette
Subsystem and the RD series Hard Disk Subsystem are
available. There are several Winchester hard disks from

which to choose.

e Time of Day Clock -- Backed up by a built-in battery, the
time of day clock maintains the system time and date.

e Controllers -- Interrupt controllers handle interrupt
arbitration for peripheral devices. The bit map video

controllers provide an interface between the CPU and the
video display. The RX50 and RD controllers provide an
interface between the CPU and their respective devices.

1.2 P/OS SYSTEM COMPONENTS

Figure 1-1 shows the main components of P/OS. The figure
illustrates the paths of communication between the components.
User tasks, the top layer in the figure, are normally not part of
the operating system but are managed by it. Professional
hardware, the bottom layer, is also not a part of the operating
system, but instead constitutes the hardware environment.

Sections following the figure describe each component.

1-2

P/0OS SYSTEM COMPONENTS

User Task

POSSUM/ RMS/FCS F11ACP
Servers
v v I
Executive

I/0 Drivers

l

Terminal Subsystem

l ‘,

Professional Hardware

KEY

F11ACP FILES-11 Ancillary Control Processor
RMS Record Management System

FCS File Control Services

POSSUM P/0OS System Utility Modules

Figure 1-1: Main Components of P/OS

P/0S SYSTEM COMPONENTS

1.2.1 The Executive

The Executive is the foundation of P/0OS. It coordinates and
controls all activities and resources of the system by performing
the following functions:

e Task scheduling and processing control -- Tasks are system or
user entities that perform functions needed to achieve a

desired result.

e Main memory resource management and control -- Main memory is
the processor storage medium.

e Interrupt processing -- The Executive handles synchronous and
asynchronous events that occur as a result of task execution.

@ Coordination of I/O and File Management facilities -- These
facilities perform data transfer and data processing
operations requested by executing tasks.

1.2.2 /O Drivers

I/0 drivers are system components that interface hardware 1I/0
controllers and their attached devices with the Executive. A
device driver provides basic services for a particular type of
device, thus removing device-dependent responsibiltity from the
Executive. As shown in Figure 1-1, drivers are actually an
integral part of the Executive.

The I/0 drivers perform the following functions:

® Receive and service interrupts from I/O devices

@ Initiate I/O operations as requested by the Executive

e Cancel in-progress I/O operations

@ Perform other device-specific functions during system boot
Chapters 10, 11, and 13 describe the system’s disk drivers,
terminal driver, and communication driver in detail. Chapter 12

describes a special kind of driver that handles a virtual device.

The Guide to Writing a P/0S I/O Driver and Advanced Programmer’s
Notes, provided with the Tool Kit, describes driver concepts.

P/0S SYSTEM COMPONENTS

1.2.3 Terminal Subsystem

The Terminal Subsystem is software that provides an interface
between the video/keyboard hardware and the terminal driver. It
performs such video functions as character generation, blinking,
scrolling, ©polygon fill, and vector generation. The graphics
capability of the Terminal Subsystem is provided by GIDIS, the
General Image Display Instruction Set.

For information on the functions performed by the Terminal
Subsystem, see the Terminal Subsystem Manual and the PRO/GIDIS
Manual, both supplied with the Tool Kit.

1.2.4 FILES-11 Ancillary Control Processor

The FILES-11 Ancillary Control Processor (F11ACP) 1is the P/0OS
file <control processor. It catalogues and maintains files on
disks and issues I/O requests to the disk drivers. Also, it
controls the wvirtual and logical structures applied to data and
performs translation of one to the other.

FILES-11 is the name of a DIGITAL-standard volume structure that
the F11ACP imposes upon disks and diskettes.

1.2.5 Record Management and File Control Services

Record Management Services (RMS) and File Control Services (FCS)
serve as translators between user tasks and other I/0O facilities
of the operating system, such as the F11ACP and device drivers.
A user task can incorporate either RMS or FCS routines to enable
it to perform record I/0 and file I/O functions.

NOTE

Although P/0S provides a full implementation of
FCS, you are urged to always wuse RMS in new
applications. Use FCS to port applications
designed to run on RSX systems when such
applications already use FCS.

Whereas the F11ACP handles stored data in units of files, RMS and
FCS handle stored data in wunits of records, or file-relative
blocks. RMS and FCS allow user tasks to define the internal
structure of files--the size and arrangement of records within
files--and provide operations that allow user tasks to read and
write records in files.

P/0S SYSTEM COMPONENTS

The document PRO/RMS-11: An Introduction, provided with the Tool
Kit, contains a complete overview of RHMS. For further
information on FCS, see your RSX-11M/M-PLUS documentation.

1.2.6 P/OS System Utility Modules and Executive Servers

P/0S System Utility Modules (POSSUM) are a set of callable
routines that P/0S provides in a resident library called POSSUM.
These routines allow user tasks to conveniently perform such
functions as mounting volumes, translating logical names, and
formatting hard disks. Most of the routines invoke Executive
servers to perform their operations, rather than performing the
operations themselves.

Chapter 6 describes the POSSUM routines and their servers.

1.3 P/OS BASIC CONCEPTS

The following sections describe important features of the
operating system.

1.3.1 Tasks

A task is the basic unit of executable code on a P/0S system. An
application usually consists of several tasks that work together.
Tasks, which reside in files that have the .TSK extension, are
sometimes referred to as executable images.

Tasks that are part of P/0OS are called system tasks. Examples
are system servers such as CREDEL and INSREM, and the F11ACP.
Tasks that you create are <called user tasks. An application

program consists of one or more user tasks.

Whether on disk or in memory, a task is always contiguous.

Before a task can run, it must be installed 1into the system.
Installing a task makes it known to P/0S. Several DCL commands,
as well as the PROTSK system service (in the POSSUM library),

allow you to install a task.

The Executive uses the following system data structures to store
information about a task:

1-6

P/0S BASIC CONCEPTS

e Task Control Block (TCB)

The TCB contains information that the system derives from a
task’s header, as well as from the directive used to activate
the task. The TCB contains information that the Executive
needs in order to run the task, such as the address of the
task on disk, the priority of the task, and the memory
partition in which the task will run.

® System Task Directory (STD)

The STD is simply a 1linked 1list of TCBs, organized by
priority, that the Executive holds in its working storage
area called the Dynamic Storage Region (DSR), or primary
pool. A task whose TCB is in the System Task Directory is
known to the system.

e Active Task List (ATL)

When a task becomes active, the Executive inserts the TCB in
another 1linked list, the ATL, which contains the TCBs of all
active tasks. A task whose TCB is in the Active Task List is
eligible to be loaded into memory and executed.

A task can exist in one of several possible states. Figure 1-2
illustrates and describes the task states.

1.3.2 Memory

The primary units of memory used in P/OS are determined by the
16-bit data path of the Professional’s hardware design. The
units are:

e Bit -- Binary digit, either 1 or 0.
e Byte -- Eight bits, the smallest addressable unit of memory.
e Word -- Two bytes (16 bits); always begins on an even address

Since the Professional’s primary addressing mechanism is the
16-bit word, the maximum physical memory that a task can access
at a single moment is 32K words. However, the presence of
hardware memory management enables a task to access more than 32K
words by using the P/0OS memory management directives.

P/0OS BASIC CONCEPTS

e Installed @ Not installed
® Has TCB e No TCB

® Requested to run e Not requested

R N BLOCKED § >PED
® Has resources e Missing resources e Not contending for
® CPU contending e Not contending CPU or memory
for CPU

mcaﬁéénding for CPU

e Sti
Figure 1-2: Task States

Physical addresses are locations in memory. Virtual addresses
are the addresses within a task. Logical addresses are the
actual physical memory addresses that the task <can access.
Virtual to physical address space mapping need not be contiguous.

Using P/0S system features to manipulate 1logical address space
allows you to make use of more than 32K words of physical address
space. Furthermore, the multitasking capabilities of P/0S allow
you to design applications that can consist of multiple,
cooperating, concurrent tasks.

Both Chapter 5 and the RSX-11M/M-PLUS and Micro/RSX Task Builder
Manual contain greater detail on addressing concepts.

P/0S BASIC CONCEPTS

1.3.3 Checkpointing

Checkpointing is the process of writing a task or shared common
to a file on a disk to make room for a higher priority task or
common competing for memory. Given that a task or common is
capable of being checkpointed, tasks and commons compete: for
memory based on their respective priorities. (The priority value
of a common region 1is equal to one greater than the highest
priority task mapped to that common region.)

Section 1.4.2 describes shared commons.

The following task states prohibit a checkpoint from occuring:

e A task region 1is specified at task-build time to be
noncheckpointable.

@ A task region has checkpointing disabled (DSCPS).

e A task is exiting.

® A region has resident, mapped tasks--that is, all currently
mapped tasks must be checkpointed before the region itself is

eligible for checkpointing.

@ A region has outstanding I/O.

The following task states promote checkpointing:
e A stopped task has an effective memory priority of zero.
e A checkpointable task doing synchronous terminal I/0 (since
the task’s terminal I/0 is buffered and the task is stopped
until the I/0 completes).

e A task which previously had checkpointing disabled can issue
the Enable Checkpointing directive (ENCPS).

1.3.4 System Pool

Throughout this manual we discuss the system’s wuse of pool.
System pool is a portion of memory that the Executive uses for
working storage. For example, as mentioned in a previous
section, the Executive uses pool to store task control blocks.

1-9

P/0S BASIC CONCEPTS

There are two types of pool:
e Primary Pool or DSR

Primary pool is also known as the system Dynamic Storage
Region. It contains such data structures as Task Control
Blocks (TCBs), Offspring Control Blocks (OCBs), I/O packets,
and File Control Blocks. The size of primary pool is limited
by the size of the Executive'’s virtual address space.

e Secondary Pool
Secondary pool contains large data structures such as command
lines, Send Data packets, file window blocks, and logical

name tables. The size of secondary pool is limited only by
the physical memory present on a system.

1.4 APPLICATION DESIGN SUGGESTIONS

The following sections list suggestions for designing
applications that make the most efficient use of the P/0S
multitasking, resource-sharing capabilities. In particular,

these suggestions can help you to design programs that might
otherwise exceed the 32K word virtual address space limitation of
a task.

The Tool Kit User’s Guide contains additional suggestions for
fine-tuning your application.

1.4.1 Use Cooperating Tasks

An application is a task or set of tasks that perform a needed
function or set of functions. The application can consist of
multiple, cooperating tasks that pass context (variables) between
tasks by using data packets, command lines, and shared memory. A
task can be requested using the following system directives:

@ SPWNS -- Useful when passing a command line and there 1is a
need to receive status from or synchronize with the
cooperating task.

® RPOIS -- Useful when passing a command line and there 1is no
need to receive status from or synchronize with the
cooperating task.

APPLICATION DESIGN SUGGESTIONS

e SDRC$ and VSRC$ -- Useful when passing data packets and there
is a need to receive status from or synchronize with the
cooperating task.

® RQSTS -- Useful when simply requesting a task and there is no
need to receive status from or synchronize with the
cooperating task.

You can pass additional context by using the SDATS, VSDAS$, and
SREFS$ directives. See Chapters 4 and 8 for details on using
these directives.

1.4.2 Use Shared Regions

A shared region is a block of data or code that any number of
tasks can |use. Shared regions are useful because they make
efficient use of physical memory. There are two kinds of shared
regions:

e Shared Common

A shared common contains only data. It is a read-write area
that provides a way for two or more tasks to share data.
When a shared common is not being accessed, the Executive can
checkpoint the common by removing it from memory and writing
it to the system checkpoint file.* Note that the Executive
does that for any read-write area.

e Shared Library

A shared library contains only code. It is a read-only area
that provides a way for two or more tasks to share a single
copy of commonly used subroutines. When a shared library 1is
not being accessed, the Executive can checkpoint the library
by removing it from memory (but not by writing it to a
checkpoint file). Note that the Executive does that for any
read-only area.

* This is a change from previous versions of the operating
system. When checkpointing or removing a shared common on
P/0S V2.0A systems and earlier, the Executive wrote the
common to the file containing the initial copy of the

common, rather than to the system checkpoint file. See
Section 6.8.1 for information on how to <change this
behavior.

APPLICATION DESIGN SUGGESTIONS

You can create a shared region by building it with the Task
Builder and installing it into the system separately from the
task that links to it. This type of region is called a static
shared region. The RSX-11M/M-PLUS and Micro/RSX Task Builder
Manual describes static shared regions in detail, and shows how
to build them.

Alternatively, your task can create a shared region during
execution, wusing the Executive’s memory management directives.
(Memory management is sometimes referred to as PLAS--Programmable
Logical Address Space). This type of region is called a dynamic
shared region, and is described in Section 5.3 1later in this
manual.

1.4.3 Use Disk-Resident Overlays

You can divide an application task into pieces called segments.
Several segments of a task share a given section of the task’s
virtual address space, but only one segment can be in memory at
one time. Segments are individually read from the disk into a
section of the task’s address space as needed, overwriting a
previously read segment.

Disk-resident overlays reduce the memory and virtual address
space needed by a task. The RSX-11M/M-PLUS and Micro/RSX Task
Builder Manual describes segments and disk-resident overlays in
detail.

1.4.4 Use Memory-Resident Overlays

Memory-resident overlays are different from disk-resident
overlays, in that all of the task’s segments are present in
physical memory at the same time. By using the memory management
directives, the overlay runtime system maps segments into a
section of the task’s virtual address space as needed. Virtual
to physical address mapping changes as the new segments are
mapped.

Memory-resident overlays reduce the virtual address space needed
by a task, but do not reduce the physical memory requirements.
However, tasks constructed of memory-resident overlays are faster
since they do not involve disk 1I/0. The RSX-11M/M-PLUS and
Micro/RSX Task Builder Manual describes memory-resident overlays
in detail.

APPLICATION DESIGN SUGGESTIONS

1.4.5 Use Clustered Resident Libraries

Clustered resident libraries (sometimes called cluster libraries)
allow tasks to dynamically map memory-resident, shared libraries
at run time. The advantage of using clustered resident libraries
is that they save task virtual address space by using the same
section of task wvirtual address space to map independent
memory-resident, shared libraries. The RSX-11M/M-PLUS and
Micro/RSX Task Builder Manual describes clustered resident
libraries at length.

1.4.6 Use Fast Remapping Feature

Fast remapping is a high-performance method for a task to change
the offset and length mapping of a currently mapped region. 1If
your task is normally mapped to a given region and frequently
remaps a window to that region, this feature can significantly
increase the performance of your task.

Generally speaking, the system performs fast remap operations in
one tenth the execution time of a remap using the MAPS$ directive,
while still providing the same level of region access control and
protection present in the operating system.

See Section 5.7 later in this manual for details on fast
remapping.

1.5 COMPARING RSX-11M-PLUS AND P/OS

The principal difference between P/0S and RSX is that the default
user interface on P/0S is the Menu System, rather than the RSX
Monitor Console Routine (MCR). Some RSX software features remain
the same on P/0S, some have been removed, some have changed, and
some new software features have been added. Some RSX wutilities
carried over to P/0S are now program-callable routines.

COMPARING RSX-11M-PLUS AND P/0S

Table 1-1: Summary of Differences Between RSX and P/OS

RSX Features RSX Features P/0S Features

Not on P/0OS Modified for P/0OS Not on RSX

Group global event Terminal driver Automatic volume

flags mounting and

dismounting

Batch processing System utilities Enhanced high-level
(FMT, BAD, INI, language interface
INSTALL, FIX, to the system and
REMOVE, UFD) the utilities

(POSSUM library)

Alternative CLI GET TIME
support

Virtual Monitor Print queue
Routines (VMR) management
Console Logging Account server
Error logging LOAD,UNLOAD

System accounting
Shadow recording
System generation
Checkpoint Common

Region directive
(CPCRS)

CHAPTER 2
LOGICAL NAMES

A logical name is a combination of a name (defined by you or by
P/0S) and an equivalence value (any part of a file
specification).* You can use a logical name to refer to all or
part of a file specification.

Logical names provide programs with device and file independence.
For example, from within a program you can refer to an input or
output file using logical names rather than physical filenames.
Then, between invocations of the program, you can change the
input and output files simply by associating the 1logical names
with new physical filenames.

This chapter describes how the system stores and translates
logical names, and how you can perform operations on logical
names from within your program by wusing several Executive
directives and a callable system service.

2.1 LOGICAL NAME STORAGE

The system stores logical names as name-equivalence pairs. For
every logical name stored by the system, an equivalence value
must exist. The name and equivalence each consist of a string
whose maximum length is 255 bytes.

Three tables, located in secondary pool, contain all logical name
definitions. The purpose of the different tables is to enable
programmers to define the scope of logical names. That 1is, you
define a logical 1in a particular table in order to provide the
desired level of access to that 1logical by other wusers or
application tasks. Table 2-1 describes the tables.

* See the Tool Kit User’s Guide for a list of system-defined
logical names.

Table 2-1:

LOGICAL NAME STORAGE

Logical Name Tables

Name

Number

Description

LT.SYS

LT.SES

LT.USR

System Table. Any logical name that must be
accessible to all users and applications on a
system belongs in the system table. The scope
of a logical defined in LT.SYS is any logged
in user and any currently executing
application.

There can be only one system table on any
system.

Session Table. A session table contains
logical names that are part of the context
associated with a user’s login-logout period.
The scope of logical names defined in LT.SES
consists of the user who owns that table plus
all applications currently executing for that
user.

The number of session tables on a system is
equal to the number of users logged in to the
system.

User Table. For each application running on
the system, one user table is allocated. The
scope of logical names defined in an LT.USR
table consists only of the application
associated with that particular table. Tasks
that are not part of an executing application
cannot access that application’s LT.USR
logical names.

The number of user tables on a system is equal
to the number of currently executing
applications.

LOGICAL NAME MODIFIERS

2.2 LOGICAL NAME MODIFIERS

Every equivalence value contains a modifier. A modifier 1is a
means of distinguishing among equivalence values that are
associated with the same logical name and that reside in the same
table.

P/0S currently defines three values for a modifier:

Mod 2

Equivalence values that have a modifier value of 2 are said
to be permanent. A permanent equivalence value is one that
the system login process creates when a user logs into the
system.

Mod 1

Equivalence values that have a modifier value of 1 are said
to be temporary. A temporary equivalence is one that a user
task creates to supersede a particular permanent equivalence.
It differs from the permanent equivalence only in the mod
value, which is 1 instead of 2.

Mod 0

The system does not store the modifier wvalue 0 in an
equivalence value. Instead, it maps mod 0 to the other
modifier values during operations on 1logical names. Table

2-2 shows the mapping. 1In general, you should specify mod 0
when performing operations on logical names.

Table 2-2 describes the system’s actions for all operations when
you specify different modifier values.

LOGICAL NAME MODIFIERS

Table 2-2: Operations on Logicals With Different Modifiers

Mod Operation
Create Delete Translate
Mod 0 Create mod 1 Delete mod 1 Return mod 1
logical. logical. equivalence if
found; if not
found, return mod 2
equivalence (if
present).
Mod 1 Create mod 1 Delete mod 1 Return mod 1
logical. logical. equivalence.
Mod 2 Create mod 2 Delete mod 2 Return mod 2
logical. logical. equivalence.

2.2.1 Modifiers in Duplicate Logical Names

A duplicate logical name is a logical name that 1is associated
with more than one equivalence value. If duplicate logical names
are in different tables, you might be able to distinguish them
simply by indicating which table they are in. 1In this case, the
mod values for the duplicates can be the same.

However, if the duplicates are in the same table, then each
equivalence value must have a unique modifier to distinquish it
from other duplicates. You can specify modifier values 128
through 255 (decimal) to create duplicates. Note that modifier
values 0 through 127 are used by the system.

NOTE

Duplicate logical names are possible only when
the user tasks handle the logical name
translations. Within the context of the system
software (such as RMS and volume mounting
procedures), the only recognized value for the
mod argument is 0.

LOGICAL NAME MODIFIERS

If you create a logical name that duplicates an existing logical
name with the same modifier value, the system supersedes the old
equivalence value with the new one. This is true for any mod
value.

The maximum number of equivalence values that can be associated
with a single 1logical name in any table is 255 (decimal).
However, the current size of available secondary pool, where the
tables reside, sets a practical upper limit.

2.3 LOGICAL NAME TRANSLATION

As part of I/0O processing in programs that wuse RMS, RMS
translates 1logical names and returns their equivalence values.
The following conventions govern RMS translation of logical
names:

e RMS translates all 1logical names that occur within the
context of a valid file specification.

@ RMS continues to do translations of 1logical name strings
until it encounters an equivalence name string beginning with
an underscore (_), until it fails to translate a string, or
until it reaches the maximum number of translations allowed.

® RMS performs a maximum of eight translations for a given
logical name. If the number of logical name translations
exceeds the maximum, RMS issues an error.

2.4 LOGICAL NAMES FOR FILES-11 VOLUMES

The FILES-11 ACP creates two logical names when it mounts a
file-structured volume, such as a disk or diskette:

e F11ACP creates a logical whose name is the volume label that
was previously given the volume when it was initialized. Its
equivalence value is the physical device name of the device
on which the volume is mounted.

e F11ACP creates a logical whose name is the physical device
name and whose equivalence value is the volume label. This
is the reverse of the first logical.

LOGICAL NAMES FOR FILES-11 VOLUMES

For example, suppose you mount in drive 1 a diskette having the
volume name FINANCE. The ACP creates the two logicals shown in
Table 2-3.

Table 2-3: Sample F11ACP-Created Logicals for Diskette

Logical Name Equivalence Value
FINANCE: _Dz001:
Dz001: FINANCE:

An application program can refer to the diskette with the volume
label FINANCE by using the logical name FINANCE:. RMS translates
the logical name to determine the actual physical device.
Similarly, an application programmer can use the logical name
DZ001: to determine the volume 1label of the volume that 1is
currently mounted.

2.4.1 Removable Versus Nonremovable Volumes

There are two classes of volumes that you can mount on a
Professional computer: removable and nonremovable.

Removable volumes are those that are easily taken out of the
system wunit and transported to another system. Floppy disks are
an example. Nonremovable volumes are those that are not easily
transported. Hard disks are an example. (Hard disks can be
transported, but they are not designed to be transportable.)

F11ACP creates logicals for removable media exactly as shown 1in
Table 2-3. The general format for a logical representing a
removable media volume label is:

vlabel:

where

vlabel Is the volume label of the removable media.

2-6

LOGICAL NAMES FOR FILES-11 VOLUMES

The format of the volume label logical for nonremovable media is
different:

node$sSvlabel[_n]:

where
node Is the name of the node or system on which the
hard disk resides.
vlabel Is the volume label of the nonremovable media.
n Is a number F11ACP assigns to the volume when
there is more than 1 volume with the same volume
label on a system. The duplicate volumes are

numbered starting from 1.
Table 2-4 illustrates the two logical names that F11ACP creates

when you mount a second hard disk whose volume label is DATAVOL
on the node NODNAM.

Table 2-4: Sample F11ACP-Created Logicals for Hard Disk

Logical Name Equivalence Value
NODNAMSSDATAVOL_1: « _DW003:
DW003: NODNAMSSDATAVOL_1:

2.5 LOGICAL NAME DEFAULT DIRECTORY STRING

The system provides a special set of logical names known as the
default directory. The default directory is a character string
stored in secondary pool. You can get and set its equivalence
value by using the GDIRS and SDIRS Executive directives.

If RMS encounters an input string with no specified directory, or
if the input string contains a pair of closed empty brackets--an
explicit request for the default directory--RMS returns the
default directory string.

LOGICAL NAME OPERATIONS

2.6 LOGICAL NAME OPERATIONS

The system provides several Executive directives, as well as a
callable routine <called PROLOG, to perform create, delete, and
translate operations on logical names. General descriptions of
the different operations follow.

For detailed information on any directives, refer to Chapter 8.
For details on PROLOG, see Section 6.7.

2.6.1 Creating a Logical Name

Use the CLOGS directive to create a logical name string and the
associated equivalence name string. The length of each logical
name string can be a maximum of 255(10) characters (bytes).
Creation of the 1logical name string requires the use of the
secondary pool, which is of limited size.

The following example shows how to create a logical name with the
CLOGS directive.

.MCALL CLOGS,DIRS
LNAME: .ASCII /EXPENSES:/ ; LOGICAL NAME STRING
LNAMSZ= . -LNAME ;SIZE OF LOGICAL NAME STRING
ENAME : .ASCII /FINANCE:/ ; EQUIVALENCE NAME STRING
ENAMSZ= . ~ENAME ;DEFINE SIZE OF EQUIVALENCE

;NAME STRING

.EVEN
NAMVOL: CLOGS ,LT.USR,LNAME, LNAMSZ , ENAME , ENAMS?Z
START: DIRS #NAMVOL ;CREATE LOGICAL NAME

2.6.2 Deleting a Logical Name

Use the DLOGS directive to delete entries from a logical name
table. When vyou code a call to the DLOGS directive, you can
delete a single logical name from the table, or you can delete
all the logical names in the table.

The example below deletes all the mod 1 logical name entries from
the user logical name table:

.MCALL DLOGS$,DIRS
DELALL: DLOGS ,LT.USR
START : DIRS #DELALL ;:DELETE LOGICAL NAME

LOGICAL NAME OPERATIONS

The next example deletes a single logical name entry from the
user logical name table:

.MCALL DLOGS,DIRS
NAME: .ASCII /TMONK/
NAMESZ= . -NAME
.EVEN
NAMDEL: DLOGS$,LT.USR,NAME,NAMESZ
START: DIRS #NAMDEL ;DELETE LOGICAL NAME

2.6.3 Translating a Logical Name

Use the TLOGS directive to translate a logical name string into
its equivalence string. RMS issues the TLOGS directive for each
logical name translation necessary in a program.

The following example shows a call from a wuser program to the
TLOGS directive to translate the logical name EXPENSES:

.MCALL TLOGS ,DIRS
SIZE: .WORD 0 ;SIZE OF EQUIVALENCE NAME
; IN BYTES
ENAME: .BLKB 20. ;BUFFER TO CONTAIN
;EQUIVALENCE NAME
ENAMSZ= . -ENAME
LNAME: .ASCII /EXPENSES:/ ;BUFFER CONTAINING
; LOGICAL NAME
LNAMSZ= .-LNAME
.EVEN
GETNAM: TLOGS ,LT.USR,LNAM,LNAMSZ , ENAME , ENAMSZ ,SIZE
START : DIRS #GETNAM ; TRANSLATE LOGICAL NAME

2.6.4 Setting a Default Directory String

Use the SDIRS macro to establish a default directory. Be aware
that the default directory belongs to and should be controlled by
the user, not by an application. Thus, we recommend that you
prompt the wuser for the default directory before you set the
string.

2-9

LOGICAL NAME OPERATIONS

The following example shows how to use the SDIR$ macro to set wup
a default directory string:

.MCALL SDIRS,DIRS
DDSNAM: .ASCII /[SOLOS 1/
DDSSZ= . -DDSNAM
.EVEN
SETNAM: SDIRS ,DDSNAM,DDSSZ
START: DIRS #SETNAM ;SET DEFAULT DIRECTORY
NOTE

The PROLOG callable system routine is the
preferred method of setting a default directory.

2.6.5 Retrieving a Default Directory String

Use the GDIRS directive to retrieve a default directory string.
The system returns the default directory string to the specified
user buffer, along with the length of the string.

The following example shows how to wuse the GDIRS macro to
retrieve the default directory string:

.MCALL GDIRS,DIRS
DDSNAM: .BLKB 100. ;DEFINE BUFFER FOR DEFAULT
;DIRECTORY STRING
DDSSZ= .-DDSNAM ; CALCULATE BUFFER SIZE
.EVEN
GETNAM: GDIRS ,DDSNAM,DDSSZ
START: DIRS #GETNAM ;GET DEFAULT DIRECTORY
; STRING

CHAPTER 3
USING EVENT, TRAP, AND SYNCHRONIZATION SERVICES

This chapter introduces the concept of significant events and
describes the ways in which your code can make use of event

flags, synchronous and asynchronous system traps, and stop-bit
synchronization.

3.1 SIGNIFICANT EVENTS
A significant event is a change in system status that causes the
Executive to reevaluate the eligibility of all active tasks to
run. A significant event is usually caused (either directly or
indirectly) by a system directive issued from within a task.
(All of the system directives named in this chapter are described
in detail in Chapter 8.)

Significant events include the following:

@ I/0 completion

e Task exit

® Execution of a Send Data directive (SDATS)

e Execution of a Send Data, Request and Pass OCB directive
(SDRPS)

® Execution of a Send, Request, and Connect directive (SDRCS)

e Execution of a Send By Reference or a Receive By Reference
directive (SREFS$ or RREFS)

® Execution of an Alter Priority directive (ALTPS)

SIGNIFICANT EVENTS

® Removal of an entry from the clock queue (for example,
resulting from a Mark Time directive previously executed or
the issuance of a rescheduling request)

e Execution of a Declare Significant Event directive (DECLSS)

e Execution of the round-robin scheduling algorithm at the end
of a round-robin scheduling interval

® Execution of an Exit, an Exit With Status, or an Emit Status
directive (EXITS$S, EXSTS$, or EMSTS)

3.2 EVENT FLAGS

Event flags are a means by which tasks recognize specific events.
(Tasks also wuse Asynchronous System Traps, ASTs, to recognize
specific events. See Section 3.3.3.)

In requesting a system operation (such as an I/O transfer), a
task can associate an event flag with the completion of the
operation. When the event occurs, the Executive sets the
specified flag. Several examples later in this section describe
how tasks can use event flags to coordinate task execution.

To enable tasks to distinguish one event from another, 64
(decimal) event flags are available. Each event flag has a
corresponding unique Event Flag Number, or EFN (all numbers are
decimal):

e Numbers 1 through 32 form a group of 1local flags that are
unique to each task and are set or cleared as a result of
that task’s operation.

e Numbers 33 through 64 form a second group of flags that are
common to all tasks, hence their name common flags. Common
flags can be set or cleared as a result of any task’s
operation.

e The last 8 flags in each group, local flags (25 through 32)
and common flags (57 through 64) are reserved for use by
DIGITAL software components.

Tasks can use the common flags for intertask communication, or
they can wuse their own local event flags internally. They can
set, clear, and test event flags by using Set Event Flag (SETFS$),
Clear Event Flag (CLEF$), and Read All Event Flags (RDAFS)
directives.

EVENT FLAGS

CAUTION

Erroneous or multiple setting and clearing of
event flags can result in software faults that
are difficult to trace. We suggest that vyou
avoid using common event flags.

Examples 1 and 2 illustrate the use of common event flags (33
through 64) to synchronize task execution. Examples 3 and 4
illustrate the use of local flags (1 through 32).

e Example 1

Task B clears common event flag 35 and then blocks itself by

issuing a Wait For directive that specifies common event flag
35.

Subsequently another task, Task A, specifies event flag 35 in
a Set Event Flag directive to inform Task B that it can
proceed. Task A then issues a Declare Significant Event
directive to ensure that the Executive will schedule Task B.

e Example 2

To synchronize the transmission of data between Tasks A and
B, Task A specifies Task B and common event flag 42 in a Send
Data directive.

Task B has specified flag 42 in a Wait For directive. When
Task A’s Send Data directive has caused the Executive to set
flag 42 and to cause a significant event, Task B proceeds and
issues a Receive Data directive Dbecause its Wait For
condition has been satisfied.

e Example 3

A task contains a Queue I/0O Request directive and an
associated Wait For directive; both directives specify the
same local event flag. When the task queues its I/O request,
the Executive clears the local flag. If the requested I/0 is
incomplete when the task issues the Wait For directive, the
Executive blocks the task.

When the requested I/O is completed, the Executive sets the
local flag and causes a significant event. The task then
resumes its execution at the instruction that follows the
Wait For directive. Using the 1local event flag in this
manner ensures that the task does not manipulate incoming
data until the transfer is complete.

EVENT FLAGS

e Example 4

A task specifies the same local event flag in a Mark Time and
an associated Wait For directive. When the Mark Time
directive is issued, the Executive first clears the 1local
flag and subsequently sets it when the indicated time
interval has elapsed.

If the task issues the Wait For directive before the 1local
flag 1is set, the Executive blocks the task, which resumes
when the flag is set at the end of the proper time interval.
If the flag has been set first, the directive is a no-op and
the task is not blocked.

Specifying an event flag does not mean that a Wait For directive
must be issued. Event flag testing can be performed at any time.
The purpose of a Wait For directive is to stop task execution
until an indicated event occurs. Hence, it is not necessary to
issue a Wait For directive immediately following a Queue I/O
Request directive or a Mark Time directive.

If a task issues a Wait For directive that specifies an event
flag that 1is already set, the blocking condition is immediately
satisfied and the Executive immediately returns control to the
task.

Tasks can 1issue Stop For directives 1instead of Wait For
directives. When this is done, an event flag condition not
satisfied will result in the task’s being stopped (instead of
being blocked) until the -event flag 1is set. A task that is
blocked still competes for memory resources at 1its running
priority. A task that is stopped competes for memory resources
at priority O.

The simplest way to test a single event flag 1is to issue the
directive CLEF$ or SETF$. Both these directives can cause the
following return codes:

IS.CLR - Flag was previously clear
IS.SET - Flag was previously set

For example, if a set common event flag indicates the completion
of an operation, a task can issue the CLEFS$ directive both to
read the event flag and simultaneously to reset it for the next
operation. If the event flag was previously clear (the current
operation was incomplete), the flag remains clear.

SYSTEM TRAPS

3.3 SYSTEM TRAPS

System traps are transfers of control (also called software
interrupts) that provide tasks with a means of monitoring and
reacting to events. The Executive initiates system traps when
certain events occur. The trap transfers control to the task
associated with the event and gives the task the opportunity to
service the event by entering a user-written routine.

There are two kinds of system traps:
® Synchronous System Traps (SSTs)

SSTs detect events directly associated with execution of

program instructions. They are synchronous because they
always recur at the same point in the program when
trap-causing instructions occur. For example, an illegal

instruction causes an SST.
e Asynchronous System Traps (ASTs)

ASTs detect events that occur asynchronously to the task’s

execution. That is, the task has no direct control over the
precise time that the event--and therefore the trap--can
occur. For example, the completion of an I/O transfer can

cause an AST to occur if you specify the AST argument in the
QIO directive.

A task that wuses the system trap facility issues system
directives to establish entry points for user-written service
routines. Entry points for SSTs are specified in a single table.
AST entry points are set by individual directives for each kind
of AST. When a trap condition occurs, the task automatically
enters the appropriate routine 1if its entry point has been
specified.

3.3.1 Synchronous System Traps (SSTs)

SSTs can detect the execution of invalid instructions,
instructions with invalid addresses, and trap instructions (TRAP,
EMT, IOT, BPT).*

* See the PDP-11 Architecture Handbook for a description of
processor instructions referred to in this chapter.

3-5

SYSTEM TRAPS

NOTE

If you use the Fast Remap feature, which operates
via IOT instructions, the IOT entry point in your
SST vector table is ignored. See Section 5.7 for
details on the Fast Remap feature.

The user can set up an SST vector table, containing one entry per
SST type. Each entry is the address of an SST routine that
services a particular type of SST (a routine that services
illegal instructions, for example). When an SST occurs, the
Executive transfers control to the routine for that type of SST.
If a corresponding routine 1is not specified in the table, the
task is aborted.

The SST routine enables the user to process the failure and then
return to the interrupted code. Note that if a debugging aid and
the user’s task both have an SST vector enabled for a given
condition, the debugging aid vector 1is referenced first to
determine the service routine address.

SST routines must always be reentrant if there is a possibility
that an SST can occur within the SST routine itself. Aalthough
the Executive initiates SSTs, the execution of the related
service routines is indistinguishable from the task’s normal
execution. An AST or another SST can therefore interrupt an SST
routine.

3.3.2 SST Service Routines

The Executive initiates SST service routines by pushing the
task’s Processor Status (PS), Program Counter (PC), and
trap-specific parameters onto the task’s stack. After removing
the trap-specific parameters, the service routine returns control
to the task by issuing an RTI or RTT processor instruction. Note
that the task’s general purpose registers RO through R5 and SP
are not saved. If the SST routine makes use of them, it must
save and restore them itself.

To the Executive, SST routine execution is indistinguishable from
normal task execution, so that all directive services are
available to an SST routine. An SST routine can remove the
interrupted PS and PC from the stack and transfer control
anywhere in the task; the routine does not have to return control
to the point of interruption. Note that any operations performed
by the routine (such as the modification of registers or the
setting or clearing of event flags) remain in effect when the
routine eventually returns control to the task.

3-6

SYSTEM TRAPS

A trap vector table within the task contains all the service
routine entry points. You can specify the SST vector table by
means of the Specify SST Vector Table For Task directive or the
Specify SST Vector For Debugging Aid directive. The trap vector
table has the format shown in Table 3-1.

Table 3-1: Trap Vector Table

Word Offset Vector Trap

0 S.COAD 4 0dd address trap (PC380 only)
or nonexistent memory error

1 S.CSGF 250 Memory protect violation

2 S.CBPT 14 T-bit trap or execution of a
BPT instruction

3 S.CIOT 20 Execution of an IOT instruction
(except when using Fast Remap
feature)

4 S.CILI 10 Execution of a reserved
instruction

5 S.CEMT 30 Execution of a non-RSX EMT
instruction

6 S.CTRP 34 Execution of a TRAP instruction

Depending on the reason for the SST, the task’s stack can also
contain additional information, as follows:

TRAP instruction or EMT other than 377 (and 376 in the case
of unmapped tasks a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>