Guide to Writing a P/OS 1/O Driver
and Advanced Programmer’s Notes

Order No. AA-BT73A-TH

April 1984

This document is a reference manual describing the procedures for writing
an 1/O driver for P/OS systems. Executive routine descriptions and sample
code are included. Advanced programmer information is provided in the
appendices.

DEVELOPMENT SYSTEM: P/OS V2.0, BL22.0

DIGITAL EQUIPMENT CORPORATION
Maynard, Massachusetts 01754

First Printing, April 1984

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software or equipment
that is not supplied by DIGITAL or its affiliated companies.

The specifications and drawings, herein, are the property of Digital Equipment

Corporation and shall not be reproduced or copied or used in whole or in part
as the basis for manufacture or sale of items without written permission.

Copyright © 1984 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTIBUS MASSBUS Rainbow

DEC PDP RSTS

DECmate P/OS RSX
DECsystem-10 PRO/BASIC Tool Kit
DECSYSTEM-20 PRO/Communications UNIBUS
DECUS Professional VAX

DECwriter PRO/FMS VMS

DIBOL PRO/RMS VT

dlilg]i]t]a]1] PROSE Work Processor

PROSE PLUS

CHAPTER

CHAPTER

CHAPTER

1

I e
L] L]
Wwwh NN -
L]
N b

e o
N =

e o o o
e o °
> W

N e Rl
U D s D W W
L] °
S W N

%)

e o © o o o o o
e o © o o o e o o
UL WN - U W N -

NDNNDNDNDNDNDNDNDNDNDNDNDDNDDNDND
WWMNNNDNNDNDND R

°
-

> w W
°
w N

NN N
e o

CONTENTS

P/0OS I/0 DRIVERS

VECTORS AND CONTROL AND STATUS REGISTERS . « « .
SERVICE ROUTINES ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o @
Executive and Driver Layout . . « « o &
Driver Contents . ¢« ¢« ¢ o o o o o o o &
EXECUTIVE AND DRIVER INTERACTION . ¢« ¢ « o o o o o
The Driver Process o o o o o o o
Interrupt Dispatching and the Interrupt Control
BlOoCK ¢« ¢ ¢ ¢ ¢ o ¢ o o o o o o o o o o o o o o1
Interrupt Servicing and Fork Process . . « « o o 1
Nonsense Interrupt Entry Points . . . « . . &
ADVANCED DRIVER FEATURES . . .
Overlapped Seek I/O

. e o o o o 1-12
Delayed Controller Access 1-13
Full Duplex Input/Output . e o o o o 1-13
Buffered Input and Output . . . e e« o o 1-14

OVERVIEW OF INCORPORATING A USER WRITTEN DRIVER

INTO P/OS ° . ° ° ° ° ° o ° ° ° ° ° ° ° ° ° ° ° 1_15

e o o o
e o © o
°
°
°
°
®

DEVICE DRIVER I/O STRUCTURES

I/O STRUCTURES ¢ &« ¢ o o o o o o o o o o o o o o s
Controller Table (CTB)* . ¢« & ¢ o o o o o o o o
Controller Request Block (KRB)* « .« .
Device Control Block (DCB) &« ¢ « o o o o o o o @
Unit Control Block (UCB) + o o o o o o o o o o o
Status Control Block (SCB) . « ¢ o« o o o &

DRIVER DISPATCH TABLE (DDT) e o o o o o o o
I/0 Initiation « o ¢ o o o o o &
Cancel I/0 « o o o o o o o o o @
Device Timeout « « « o « o o o o
Device Power Failure . . . « .+ o
Controller and Unit Status Change
Device Interrupt Addresses . « « o ¢ o o o

TYPICAL CONTROL RELATIONSHIPS o o o o o o o e
Multiple Units per Controller, Serial Un1t
Operation o« « o ¢ « o o o o o o o o o o o o o o 2-8
Multiple Controllers, Single Unit per Controller 2-9
Parallel Unit Operation . . « ¢« ¢« ¢« &« o« o « o 2=-11

OVERVIEW OF DATA STRUCTURE RELATIONSHIPS . . . & 2-11

e o o o
e o o o
e e o o

e
°
®

L]
MDD NNDNDDNDND
|
OO NIJauTUnld WWwWwN = -

EXECUTIVE SERVICES AND DRIVER PROCESSING

FLOW OF AN I/O REQUEST o ° e ° e ° ° ° ° ° ° 0 ° ° 3—1

iii

1 Predriver Initiation Processing . . .
.2 Driver Processing . . « « ¢ « o o o &
EXECUTIVE SERVICES AVAILABLE TO A DRIVER

Get Packet (SGTPKT) .+ ¢ o o « o o o &
Create Fork Process (SFORK) . « . . .
I/0 Done (SIODON or SIOALT) e o o o o

e o o o
NN
o o
.
.
e © o o °
e © o © o
.

WWwWwwwww
wnN =

e e ©° o

CHAPTER

~N

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

PROGRAMMING STANDARDS . ¢ ¢ ¢ o o o o o o o o o o
Programming ProtocCol SUummary . « « o o o o o o o
Accessing Driver Data Structures . . « « o « o+ &

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER DATA

BASES e o o o o o e o o o & o e e o e o e o o o o
General Labeling and Ordering of Data Structures
Device Control Block Labeling . . ¢ ¢ ¢« ¢ ¢ o« &
Unit Control Block Ordering o o o
Status Control and Controller Request Blocks . .
Controller Table . ¢ ¢ ¢ ¢ o o o o o o o o o o &

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE .
Generate Driver Dispatch Table Macro Call - DDTS$

N b=
L]
N

[S~ -
e o o o o o o e o
o o o o o °
G WN =

Get Packet Macro Call = GTPKTS . « &« « « « &
Interrupt Save Macro Call - INTSVS . . « « « &
Usage of UCBSV Argument in Macro Calls . . .
Driver Entry Points for PROLOD and PROUNL .
DRIVER DATA STRUCTURE DETAILS . ¢ o ¢ o o
The I/0 Packet « o« o o o o .
The QIO Directive Parameter Block (DPB)
The Device Control Block (DCB)
.1 Establishing I/0 Function Masks
The Unit Control Block (UCB) . . .
The Status Control Block (SCB) . .
The Controller Request Block (KRB)
Contiguous Allocation of the SCB
Controller Table (CTB)
DRIVER CODE DETAILS e o o o o
Driver Dispatch Table Format
I/0 Initiation Entry Point .
Cancel Entry Point &
Device Timeout Entry Point .
Deallocation Entry Point . .
Power Failure Entry Point .
Controller Status Change Entry
Unit Status Change Entry Point
Interrupt Entry Point
0 Volume Valid Processing . . .

e o © o o o o o © o o o o o o o o o
U SeEAREBBRBRBERRWWWWWWNDNDDNDNDIN
e o o o o o o o o o o o e o o o
odoaaUndbdwWwwWwND - b W=
e e © o o o o
o o o o o
V)]
=) =}
e (Tt e o o o o o o o e o o o
e o o o
~
e o o © o © o 06 o © o o o o
° o

L R S S A A A o il e i i i S S~ i - Y R~~~ St S -

e o o o © o o o o o o o [JTDe o o o o

e o o o o o o
e o o o o o o
HOWOJAAUIdxWN -

e o o Mje o o

o}

° e o e 0 ° ° . ° e o o
® e o o © o o o o © o o
® o o o o o o

iv

IS
LN I AN AR N A A N 11
N

HOWOUUIES &R WWW

KON N O N IR I NI

—

CHAPTER

CHAPTER

CHAPTER

5

(SN0,]

(G, O, IO, N0, U, T,]
L]

[2232 Je W2 W2 0e) We) We) Ne) We) Io) e) N e)] [=)]

N

A O

~

NNNNNNNNNN

e © © o o o o o °
B WWWWWWN - =

Ul b

U wWwWwWwwddH-

e © o © o o o

b

W WN

>

o o o
> WN -

L
N =

.

B W N -

> W N ot

-

N

Ul W

INCORPORATING A USER-SUPPLIED DRIVER INTO P/0S

INCORPORATING AN I/0 DRIVER INTO A P/OS SYSTEM . . 5-1
Guidelines for Creating/Adding a Driver Into the
System . . ¢ ¢ ¢ ¢ ¢ e o o e o s o o
Assembling the I/O Driver
Taskbuilding the I/O Driver
Loading an I/0 Driver Into the System

PROLOD ¢ o ¢ o o o o o o o o o o o o o @

PROLOD PROCESSING ¢ o « o o o o o o o o
PROLOD Operations and Diagnostic Checks

e o o o
L]
°
L]
°

DEBUGGING A USER-SUPPLIED DRIVER

THE EXECUTIVE DEBUGGING TOOL . ¢ ¢ o o o o o o o o
XDT Commands .« ¢ « « « o o o o o o o o o o
XDT Start Up . . . e e e e e e e e e e e
XDT General Operatlon e e o o o o o o e o
XDT and Debugging a User-Supplied Driver .

MAINTENANCE- OR MICRO-=ODT . ¢ « o o o o o o

FAULT ISOLATION . ¢ ¢ o o o o o o o o o o o

e o o o
° ° o ° o
I T I I

Immediate Servicing
The System Traps to XDT . . e e o e o« .
The System Halts but Displays No Informatlon .
The System Is in an Unintended Loop . « . . .
Pertinent Fault Isolation Data . « ¢« « o o o o &
TRACING FAULTS &« ¢ ¢ o o o o o o o o o o o o o o o
Tracing Faults Using the Executive Stack and
Register DUMD . & o o o o o o o o o o o o o o o
Tracing Faults When the Processor Halts Without
Display =« o o o e o o o o o o o o o o o o o o 6-11
Tracing Faults After an Unintended Loop . . . 6-13
Additional Hints for Tracing Faults 6-13
System Bugcheck Without XDT e + o o 6-13
REBUILDING AND REINCORPORATING A DRIVER e « o« o 6-15

O\O\O\G\G\G\C{\G\C\O\G\O\G\
OV UT U o o b W WA N

(<)}
|
X

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

SYSTEM-STATE REGISTER CONVENTIONS e o o o s e o o 1-1
EXECUTIVE TIMER RELATED FACILITIES ¢ ¢ ¢ ¢ o o « « 7-1
ADDRESSING A TASK BUFFER ¢« ¢ ¢ ¢ o o o o o o o o o 1-4
Address Checking a Task Buffer . « « ¢« « « o« o« o« 1-6
QIO Directive Processing Specifics « . « « « « o 7-6
THE ADDRESS DOUBLE WORD ¢« ¢ &« o o o o o o o o o 1-11
SERVICE CALLS e o o o o o o o o o o o o e e e o 1-12
Address CheCk ¢« ¢ o o o o o o o o o o o o o« o 1-14
Allocate Core Buffer . « « o o e o o o« o« o o« o« 1-16
Check Logical BIOCK =« « ¢ o o o o s o o o o« o 1-17
Move Block Of Data « « « « o o o o o o o o o o 1-19

7.5.5 Check I/O BUffer « o ¢ ¢ ¢ o o o o o o o o o o 1-20
7.5.6 Clock Queue Insertion . . o ¢« ¢ o« ¢ o o o o o 1-22
7.5.7 Convert Logical Block Number . . ¢« ¢« « o « « o 7-23
7.5.8 Deallocate Core Buffer . . . ¢« ¢« ¢ ¢ o o o o« o 71-24
7.5.9 FOrXK ¢ ¢ ¢ ¢ o o o o o o o o o o o o o o o o o 1-25
7.5.10 FOrkl & & ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o o o 1-27
7.5.11 Get Byte ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o o o o 1-28
7.5.12 Get Packet ¢« ¢ ¢ o o o o o o o o o o o o o o o 1-29
7.5.13 Get Word . « o o o o o o o o o o o o o o o o o 1-32
7.5.14 Initiate I/0 Buffering « « « ¢« ¢ ¢ ¢« o« ¢ o« « o 7-33
7.5.15 Interrupt EXit ¢ ¢ o o ¢ o o« o o o o o o o« o« o 1-34
7.5.16 I/0 Done Alternate Entry and I/0 Done 7-35
7.5.17 I/JO'Finish ¢ v ¢ ¢« ¢« ¢ ¢ ¢ o o o o o o o o« « o 1-36
7.5.18 Put Byte ¢ ¢« ¢ ¢ ¢ ¢ o o o o o o o o o o o o o 1-38
7.5.19 Put WOrd . « ¢ o o o o o o o o s o o o o o o« o 1-39
7.5.20 Queue Insertion by Priority . . « ¢« ¢« ¢« o« o« o 7-40
7.5.21 Relocate o« o o o o o o o o o o o o o o o o o o 1-41
7.5.22 Queue Kernel AST to Task« . . e o 1-42
7.5.23 Test if Partition Memory Resident for Kernel

AST ¢ ¢ o o o o o o o o o o o s o o o o o o o 1-43
7.5.24 Test for I/0 Buffering . « « ¢ o « o o« o o o o 71-44
7.6 ADDING PHYSICAL MEMORY TO THE P/0OS CONFIGURATION 7-44
7.7 EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS . . 7-46
7.7.1 Pointer Location and Format . . o ¢ « ¢ « « o 1-46
7.7.2 Referencing LOWCR and SYSCM Data Structures . 7-47
7.7.3 Referencing Executive Routines . . . ¢« « « « o 7-48
7.7.4 Executive Routine Vector Table . . « « ¢« « « . 7-48

CHAPTER 8 HANDLING SPECIAL USER BUFFERS
8.1 DRIVER CODE e o o o o o o o e e s e e s s o o o o 8-1
CHAPTER 9 THE PROFESSIONAL VIDEO BITMAP AND FONT STRUCTURE

9.1 THE VIDEO BITMAP . &« o o o o o o o o o o o o o o « 9-1
9.1.1 Application Level Access to the Video Hardware 9-1
9.1.2 "Disabling"” the Terminal Subsystem e o s o o « 9-2
9.1.3 Accessing the Video Device Registers e o o o o 9-3
9.1.4 Access to Video Memory Through the Bus e o o« o 9-3
9.1.5 Natural Images (Reduced Resolution) 9-4
9.1.6 The Screen Timer e o o o o o s o o e s o s o o 9-5
9.1.7 Returning the Video Hardware to the System « « 9-5
9.2 VIDEO FONT STRUCTURE . ¢ &« e o o o o o o o o o o o« 9-5
9.2.1 VDFNTS Resident Common . « « « o o o o o o o o o 9-5
9.2.2 Character Set Tables . « « ¢ o« o o o o o o« o o« o« 9=7
9.2.3 Font Tables .« « ¢« ¢ ¢ o o o o o o o o o o o o« » 9-8
9.2.4 Cvdata « o o o o o o s o o o o o o o o o o« « o« 9-10

vi

APPENDIX A

bbb g i R
=0 00 =] O UT i W N

A.17
A.18

APPENDIX B

N b b b b e
L]

o o
° e °
NDNDNDNDDN -
e o o o
W N

wwwwwwwm

DWW wWwwww
NN NNDNDNDN
=0 O~ U WNH

WwWwwwwwd N

WO WwWowwwww

P/0OS SYSTEM DATA STRUCTURES AND SYMBOLIC

ABODFS &« v o o o o o o o o o o o o o o @
CLEKDFS & & ¢ o« o o o o o o o o o o o o o
DCBDFS,,SYSDF v ¢ ¢ ¢ o o o o o o o o
DDTS ¢« o o o o o o o o o o o o o o o o
F1IDFS,,SYSDF v & & o o o o o o o o o
GTPKTS & ¢ ¢ ¢ o o o o o o o o o o o o o
HDRDFS & ¢ o o o o o o o o o o o o o o o
HWDDFS ,L,B,SYSDEF ¢ ©+v ¢ &« « o o o o o o
FI1IDFS,,SYSDF « ¢ o o o o o o o o o o
ITBDFS,,SYSDF « ¢ ¢ o o o o o o o o o @

KRBDFs 4 ’SYSDF ° ° ® ° ° ® ° ° ° ® ° °

PCBDF$,,SYSDF e e o o o o o o e
PKTDFS ¢ ¢ o o o o o o o o o o o o o o o
QIOSYS v ¢ ¢ o o o o o o o o o o o o o @
SCBDFS,,SYSDF v ¢ o o « o o o o o o o &
TTSYMS & & ¢« ¢ o o o o o o o o o o o o o
TCBDFS, ,SYSDF . . e e o o o o o o o e
UCBDF$, ,TTDEF, SYSDEF e o o o o o o o o o

TASK BUILDING AND CLUSTER LIBRARIES

AN OVERVIEW OF OVERLAYING . ¢« o« ¢ o «
Basic Overlay Concepts and Constraints
The Overlay Structure . . « o« ¢ o + =

Overlaying Code SegmentsS . « « o« o o
Making the Tree More Flexible . . .
Co—trees .« ¢« o o o o o o o o o o o &
Overlaying Data .« « « o o o o &

PDP-11 CLUSTER LIBRARIES AND THEIR USE IN

APPLICATIONS ¢ ¢ ¢ o ¢ o o o o o o o o o

Simple Task Structure and Memory Mapping

Libraries and Virtual Address Windows
Library Sharing and Multiple Libraries
Library with Memory-Resident Overlays
Clustered Libraries . « « o« o o o o o

DEFINITIONS

o o o o o A-4
e o o o o A-6
e o o « o A-8
e o« « o« A-10
e o o o A-12
» o o o A-17
« o« o o A-18
e o o o A-20
e o o o A-28
e o o o A-29
e o o o A-31
e o o o A-34
e ¢« « o A-40
o o o o A-47
e o« o« o A-58
e o o o A-61
e o o o A-67
e o o o A-T71

° ° ° ° B 1
° ° ° ° B_12
° ° ° B_12
° ° ° ° B-15
° ° ° ° B—17

° ° ° ° B-19
° ° ° ° B_21

Cluster Libraries - Implementation Detail . . B-24

Summary and Implications e o o o o

° ° ° ° B_25

Inter-Library References and Miscellaneous

Points . ¢« « o . o o e o o o o o
WRITE Access to Clustered Libraries .
NULLIB &« o o o o o o o o o o o o o o o
OPTIONS IN TASK ORGANIZATION . ¢ « o o o
FLAT.TSK ¢« ¢ o o o o o o o s o o o o o
FLATBLD.CMD e o o o o o o e o o o
ROOT.MAC ¢ o e o o o o o o o o o o o
MAINLINE.MAC ¢ e o o o o o o o o o o
ROOTDATAMAC o« o o o o o o o o o o o
CLUST.TSK e o s o o o s & o » s ° o e

vii

« o« « o B-28
e o o« o B=29
e + o o B-31
e o« o o B-31

B-38

CLUSTBLD.CMD

—
.
N
.
3

B

ANANOCO MmN N OO0 0
NI IS T
A L L L L L
mOomMmMMMmMAMMMMMMAMAMMM
° e o o o o () © e o o o o o o
—
e © o © o o 3 e o o o o o o o
T
e o o o o o (O o o o o o o o o
& e o o ° .
154 O N
e lN o o oL O © © o o o o o o
H =
e © o o o e) e o o o o o o o
9] Qo
oMcooWVo'oooooo
e, o e oeUN Y o o o o o o o o
0 M O
« D e o X O e o o e o o
a (s a)] A
odMoomI-\Moo Soe e
ol &) (0] Q - O Q
G ol o MO o a . O <
= AAoOHCAANMOALL =
AN 0-H S 0WN o dgE o
QUM ceWH oM eHMHME X
cHUNWN W AKX L
= .EEUIOOOYLLZWU
NEMKEOIOIHHBHGHEKEEHS A
DOMAEVNOLVDOOOHEMEMOASE
HEHONWO-AXEEEED>S>OAO0
CWU»UUDEVVVWOORCC
> o
(9] ~N AN N O AN M N
AN O OO OO NI TS
N MmmMmOmmnOmnmommonmnmnom

mMmMOoMMOoMMMMMAMMMMMMMM

FILES-11 ON-DISK STRUCTURE SPECIFICATION

APPENDIX C

HEANANNOONFTLFIIFINDOMMMNNLU OIS0 0 WY WYY
e HAAAAA A A AA A A NNNNNN
oovooovovoOLOLVDOLOOLODOLOLVDOLVO T L
oovovoLvoOLOLDLULLDLDLDOLDLVDLDOLODLOLDOD
e © o © o © o © o © o © o © o © o © o © o © o © o ° o © o o o
e © o © o © o o o o o I e © o © o © o © o © o © o © o © o o o
0]
e © o © o © o © e o e+ © © o © o © o © o © o © o © o © o o o
+
e © o o o o o o o o o D e e o o o o o © o © e ©° o o o o o o o
o
e © o o o © o e o © o Ll e © o © o © o © o o o © o o o o o o o
O
° ° ° ° ° ° . ° ° e o N on e o ° ° ° ° e o o e o o e o o o
0 c o}
e o o o o o o o o o o [N O LCH o o o e e o o o o o o o e o
~ O ¥ 0] 'y
e o o o o o o o o o OoTT PP O o o Q © e o o © o o o e) e o
O P A 0 - (0]
¢ © o o o o o o o o e QNI e QO N C e o o o ° — e e
N4 0O3 -+ 00O jon om
e © o o o o o o o o GOSN NO ¢ C 4 MHerd o 0 o (T o e o
nPnoo > O3V . =] ot~
e ® o o o o o o o oL O OUVLMAM N QPO o e P e[y O O o
OoAAO 1 &0 0 o} i ~ @
e © o o o o e ¢ ETT [N =] o Med TP o o MW QP E O
© 3@ | @© 3N — A N0 m N 0o
o o e e O cND OWND oD PN e MOOEOH-H
D) N0 MIDMHNOMT T o0 A QOHTPOMMK
e o P o s UL KM @O O 4 0O® —~ Q@™ O~ @- -
[} T < 0 O0CT C O OW >xNrt NDINH ML OMO O M
o ol o C M 4O 0@ N Nofhsniica BN SN TR S S c 3 T R jand (o) e &)
AOOVPCOHAHOOLO = O OO0l W] @ O
e QO °HIITC n oo a O P NP PH P OOOODNNA
£ E c 0 QT C B OTHOOUOOVOLOLUMXOET~Nm@®OOM
= 33 QOO OVT O ECOVOOTLCHAHO®WOO QOO0 o H NP YP
DA NAATTHERPLPADHEOEREO MDD N NZTMIHL ONWNT
H O O M-~ X o e Hed O + S
A> D m K gl A AAOH wn M
e — H Z
= 3 A %4
~ AN < ~ AN MM < ~— ~ AN M < ~ N
e o o o e o o o ° e o o o e o
~ N AF AN NN NN IS — =N ™M A S A ANANAN ™M

1112222222222222333334444444444

L] e o e o e © e © o o o © o o© o o e © o © o o o o o o o

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

viii

°
=

[S2 S, RO RS, IE, RO, R0, 0, IRV, R0, IO, O, RO, B

® e o o e o
e o ° o e
0w
e o

e o o o o
e o o o

° o o

N O UL W

OO0 00000000n
W N -~

L]
DO RO N N b b ot b et o et et
L]

APPENDIX D

INDEX

e o o
e o o
Ul W NN DN
o o
W N =

e e @
W OO UTUTUTUTUTUT &y (0N b b bt ped fd e e
° * o ¢ o 0
Ul W N

w N

pUPPUUUPPPPUPUUUUUUUUUUOU

Bad Block Descriptor . . « « « . .
Master File Directory . . « « « o &«
Core Image File .+ ¢« ¢ o o o o o o @

FCS FILE STRUCTURE . ¢ ¢ ¢ o o o o o o
FCS File Attributes . . . e o o

F.RTYP: 1 Byte - Record Type e e o s e
F.RSIZ: 2 Bytes - Record Size
F.HIBK: 4 Bytes - Highest VBN Allocated
F.EFBK: 4 Bytes - End of File Block .
F.FFBY: 2 Bytes - First Free Byte . .

S.FATT: 14 Bytes - Size of Attribute

FCS File Attributes Layout
Record Structure . . o« « & o ¢ o o &
Fixed Length Records . . . « « «
Variable Length Records
Sequenced Variable Length Records

°

Block

°

o

Format of Two Byte Print Control Fleld in

R.SEQ Records . « « o o o o o o

FILES-11] QIO INTERFACE TO THE ACPS

QIO PARAMETER LIST FORMAT e o o o o o
File Identification Block
The Attribute List . ¢« ¢ ¢ ¢ « o« o« o

The Attribute Type . « « o o o o

Attribute Size . . . e e o o

Attribute Buffer Address e o o o e
Size and Extend Control
Window Size and Access Control . .
File Name Block Pointer

PLACEMENT CONTROL e o o o o o o o o

BLOCK LOCKING e o o o o o o o o & o

SUMMARY OF F11ACP FUNCTIONS .

HOW TO USE THE ACP QIOS e e o o o o o
Creating a File . . ¢ ¢ ¢ o o o o =
Opening a File o« ¢ ¢ o ¢ o o o o o
Closing a File . . &« o &« o o « o o =
Extending a File e o o o o o o o
Deleting a File . e o o o o o o

FILE HEADER BLOCK FORMAT e o o o o o o
Header Area .« « o o o o o o o o o o
Identification Area . .« « o « o o o
Map AY€a .« « o o o o o o o o o o o o

STATISTICS BLOCK . « ¢ o o« o o o o o o

ERRORS RETURNED BY THE FILE PROCESSORS

FILENAME BLOCK . ¢« ¢ ¢ o o o o o o o o

e
°
®

ix

C-28
C-29
C-29
C-29
C-29
C-30
C-30
C-31
C-31
C-31
C-31
Cc-31
C-32
C-32
C-32
Cc-33

D-1
D-2
D-2
D-3
D-4
D-5

D-6
D-7

D-8

D-9
D-10
D-10
D-11
D-11
D-11
D-11
D-1?
D-14
D-15
D-16
D-17
D-18
D-22

FIGURES

1-1 Virtual to Physical Mapping for the Executive . . 1-4
1-2 Interrupt Dispatching for a Driver 1-8
2-1 Multiple Units per Controller, Serial Unit

Operation .« « & o o o o o o o o @ e o o s o o o 29
2-2 Multiple Controllers, Single Unit per Controller 2-10
2-3 Parallel Unit Operation (Overlapped Seek) . . . 2-11
2-4 Composite I/O Data Structures .« . « o o« o o o o 2-13
4-1 I1/0 Packet Format - Control Function 4-15
4-2 I/0 Packet Format - Transfer Function 4-16
4-3 QIO Directive Parameter Block (DPB) 4-20
4-4 Device Control BloCK « & « o o o o o o o o o o o 4=22
4-5 D.PCB and D.DSP Bit Meanings . . « « o o o « o« - 4-29
4-6 Unit Control BloCk +. o o o &« o o o o « o o o« « o 4=35
4-7 Unit Control Byte . « ¢ ¢ & ¢ o o o o o o o« « o 4=37
4-8 Unit Status Byte . . ¢ o o o o o o o o s« o« o« « o 4=39
4-9 Unit Status Extension 2 ¢ « o o o o« o « 4-41
4-10 Status Control Block « ¢« « ¢ o o o « o o o o o o 4-47
4-11 Controller Status Extension 3 . . . « « « « « «» 4-50
4-12 Controller Status Extension 2 . . . ¢« ¢« « « o« o 4=52
4-13 Controller Request Block . « ¢« o « ¢ « o o o« o o 4-=55
4-14 Controller Status Word . . . « « « o o « o« o« « o 4=57
4-15 Contiguous KRB/SCB Allocation . « « o ¢ o o o o 4-62
4-16 Controller Table . « ¢ o o« « o o o o s o o« o« o« » 4-63
4-17 Controller Table Status Byte . . ¢« ¢ « o« « « o « 4-65
4-18 Driver Dispatch Table Format . . « « « « « « - o 4-68
4-19 Sample Interrupt Address Block in the DDT . . . 4-71
6-1 Interaction of Task Header Pointers . . . « « . . 6-7
6-2 Task Header . . o ¢ o o o o o o o o o s o o« o o o 6-8
6-3 Stack Structure: Internal SST Fault 6-10
6-4 Stack Structure: Abnormal SST Fault 6-11
6-5 Stack Structure: Data Items on Stack . . « « . . 6-12
9-1 Line Data Structure . .« ¢ ¢ ¢ « ¢ o o o« o o« « « 9-10
9-2 Character Cell Structure . . « « « o« o e o o o 9-11
B-1 Simple Task Structure and Memory Mapplng e« o« o« o« B-14
B-2 Libraries and Virtual Address Windows B-16
B-3 Library Sharing and Multiple Libraries e« « o o B-18
B-4 Library With Memory-Resident Overlays B=20
B-5 Clustered Libraries . . . « ¢« o« o o o o o o o o B=23
D-1 Filename Block Format =« « « o « o o o o o o o o D24

TABLES

1-1 Option Slot Address Assignments . . ¢« ¢ ¢ ¢ o o o 1-2
4-1 System Macro Calls for Driver Code* 4-5
4-2 DDT$ Macro Call ArgumentsS .« « o o o o o o o o o« o 4-6
4-3 GTPKTS$ Macro Call ArgumentS . « o « « o o o o o« o 4-8
4-4 INTSVS Macro Call ArgumentS . « « « o o o o« o« o 4-=10
4-5 Mask Values for Standard I/0 Functions 4-30

\)»b»b»b-drh
i |
= O 00~ O

Noudhd W HEEFWN

wlwlvlwilvNeRolh RIS I

Mask Word Bit Settings for Disk Drives . « « .« .

Mask Word Bit Settings for Magnetic Tape Drives
Mask Word Bit Settings for Unit Record Devices
Labels Required for the Driver Dispatch Table

Standard Labels for Driver Entry Points
QIO Processing By Function Type and Device
Characteristics
I/0 Packet Usage by Function Type
Summary of Executive Service Calls for Drivers
Currently Implemented Fonts
Summary of System Data Structure Macros
Maximum Size for Each File Attribute
File Header Block
Statistics Block Format
File Processor

Filename
Filename
Filename
Magnetic

ooooooooooooooooooooooooooo

© e ¢ 0 o 0 0 e 0 0 e e e ¢ @ o0 06 a 0 o

...........

oooooooooooooooooooooooooo

Error Codes
Offset Definitions
Status Word (N.STAT)
Offset Definitions for ANSI

© e © 0 06 06 e e © 0 e 0 0 00 00 00 c 006 6006 00 680 660 0 O 0

..D-18
eeeeeD=-23

PREFACE

MANUAL OBJECTIVES

The primary goal of this manual is to introduce P/0S physical 1I/0
concepts, define Executive and I/O service routine protocol, describe
system I/O data structures, and prescribe I/O service routine coding
procedures. This information is in sufficient detail to allow you to:

@ Prepare software that interfaces with the Executive and
supports a conventional I/O device.

® Incorporate the user-written software into an P/0S system.
® Detect typical errors that cause the system to crash.

® Use Executive service routines that an I/0 service routine
typically employs.

e Develop P/0OS video applications.

CAUTION

Unless explicitly noted otherwise, all information in
this manual is subject to change without notice.

INTENDED AUDIENCE

This manual is written for the senior-level system programmer who is
familiar with the hardware characteristics of both the Professional
300 Series and the device that the wuser-written software supports.
The programmer should also be knowledgeable about DIGITAL peripheral
devices and experienced in using the software supplied with an P/OS
system., The manual neither describes general Executive concepts nor
defines general system structures. The manual does describe 1I/0

xiii

concepts, the Executive role in processing I/0 requests, and some
pertinent aspects of I/O processing done by DIGITAL-supplied software.
Therefore, with a firm understanding of hardware characteristics and
P/0OS system software, a senior-level system programmer could attempt
to write an I/0 driver.

STRUCTURE OF THIS DOCUMENT

This manual has three types of information: conceptual, procedural,
and reference. The following are abstracts of the chapters in the
document:

e Chapter 1, "P/OS I/0 Drivers," introduces terms and concepts
fundamental to wunderstanding physical I/0 in P/0S, and
describes the protocol that a driver must follow to preserve
system integrity. It summarizes advanced driver features and
P/0S capabilities helpful in becoming acquainted with overall
Executive and driver interaction.

e Chapter 2, "Device Driver I/0 Structures," continues the
conceptual discussion begun in Chapter 1. It introduces on a
general level the software data structures involved in
handling I/0 operations at the device level, examines typical
arrangements of data structures that are necessary for
controlling hardware functions, and presents a macroscopic
software configuration that summarizes the logical
relationships of the I/0 data structures.

e Chapter 3, "Executive Services and Driver Processing," ends
the conceptual presentation. It summarizes how an I/O
request originates, how the Executive processes the request,
and how a driver would use Executive services to satisfy an
I/0 request.

® Chapter 4, "Programming Specifics for Writing an I/O Driver,"
provides the detailed reference information necessary to code
a conventional 1I/0 driver. Included 1is a summary of
programming standards and protocol, an introduction to the
programming facilities and requirements for both the driver
data base itself and the executable code that constitutes the
driver, and an extensive elaboration of the driver data base
and of the driver code.

® Chapter 5, "Incorporating A User-Supplied Driver into P/0OS,"
supplies the procedural information that you need to assemble
and build a loadable driver image, load it into memory, and
make accessible the devices that the driver supports. Also
included are a summary of the system generation dialogue
concerning including user-supplied drivers and a description

Cxiv

of the 1loading mechanism and the diagnostic operations
performed during loading.

® Chapter 6, "Debugging A User-Supplied Driver," summarizes
software features provided to help you uncover faults in
drivers and gives procedures to follow that might prove
successful in isolating faults in drivers.

e Chapter 7, "Executive Services Available to An I/O Driver,"
gives general coding information relating to the PDP-11 and
P/0S Executive service routines.

@ Chapter 8, "Sample Driver Code," shows the source code for
the data base and driver of a conventional device and an
excerpt of source code from a driver that handles special
user buffers.

® Chapter 9, "The Professional Video Bitmap and Font
Structure," provides reference information on the driver's
control of Professional video hardware and software. It also
describes the structure of the video fonts and lists the
implemented fonts.

e Appendix A, "System Data Structures and Symbol Definitions,"
lists the source code of system macro calls that define
system device structures, driver-related structures, and
system-wide symbolic offsets needed to access those
structures.

e Appendix B, "Task Building and Cluster Libraries" is a
collection of three documents describing overlaying task
structures, cluster libraries, and task organization.

e Appendix C, "Files-11 On-Disk Structure Specification”
describes the general-purpose file structure intended for use
on medium and large-size PDP-11 systems.

e Appendix D, "QIO Interface to the ACPs," describes the QIO
level interface to the file processors (ACPs).

ASSOCIATED DOCUMENTS

Included in your P/0S Tool Kit documentation are documents that
describe both the software and hardware on the system. The software
documents are listed and described in the Tool Kit User's Guide (Order
no. AA-N617D-TK) . Consult this document for concise summaries of
software-related publications. For information on hardware technical
specifications, see the Professional 300 Series Technical Manual

(Order no. EK-PC350-TM-001).

Also, it is recommended that you refer to the P/0S Executive listings,

which are published on microfiche. It is entitled Executive Listings
and Maps, order number AH-CG61A-TK.

ASSOCIATED FILES

As mentioned in your installation guide, the directory [ZZPRIVDEV] on
the PRODCL2 diskette contains several library and symbol table files,
which are needed for writing privileged applications. The file
README.TXT in the same directory contains further information about
these files.

Contrary to what is stated in the installation guide, you do not need
"system manager privileges" to read these files on your Professional.

CHAPTER 1

P/0OS 1/0 DRIVERS

Device drivers on P/0OS are the primary method of interfacing the
Executive's I/O subsystem with hardware attached to the computer.
Most DIGITAL-supplied hardware is supported by drivers accompanying
the system that the user receives. This chapter introduces the
concept of device drivers and explains driver operations and features.

1.1 VECTORS AND CONTROL AND STATUS REGISTERS

Associated with a device contoller are device control and status
registers. The addresses of these registers are determined by the
physical slot in which the controller has been inserted, rather than
the actual option module. A given controller may have up to 64.
words of device registers as shown in Table 1-1. To provide a unique
identification for controllers, a hardware ID 1is expected to be
present, and may be accessed at the first address within a given
slot's device register address range. The bootstrap and diagnostic
ROM examines each option slot and places the hardware 1IDs in a
configuration table located at the top of physical memory. This table
is referenced by PROLOD to resolve the hardware ID specified in the
controller table (CTB) 1located in the driver's database. The table
may also be accessed by the executive's WIMPS directive (See the
Professional 300 Series System Reference Manual for further details of
the directive arguments and table format.) Certain controllers are
physically present on the motherboard. These devices have predefined
device registers and are fully described in the Professional 300
Series Technical Manual.

VECTORS AND CONTROL AND STATUS REGISTERS

Table 1-1: Option Slot Address Assignments

Vector Vector
Physical Logical address address
Slot Slot Device Register Interrupt A Interrupt B
Position Number Address Range ICSRA= ICSRB=
17773206 ICSRA+4
1 0 17774000-17774177 300 304
2 1 17774200-17774377 310 314
3 2 17774400-17774577 320 324
4 3 17774600-17774777 330 334
5 4 17775000-17775777 340 344
6 5 17775200-17775377 350 354

Logical (ICSR= 17773202)

Slot Device Register Vector

Number Address Range Address Device type

0 Not used

1 17773500-17773506 200 Keyboard Receiver

2 204 Keyboard Transmitter

3 17773300-17773314 210 Comm. Port Rec./Trans.
4 214 Comm. Port Modem Status
5 17773400-17773406 220 Printer port receiver
6 224 Printer port trans.

7 17773000-17773032 230 System clock

Optionally, a controller may utilize one or two of the two-word areas
associated with each slot, called interrupt vectors. A vector
provides a connection between the device and the software that
services the device. A vector allows a device to trigger certain
software actions because of some external condition related to the
device. When a device interrupts, the vector address is sent to the
processor. The first word of the interrupt vector contains the
address of the interrupt service routine for that device. The
processor uses the second word of the vector as a new Processor Status
Word. Thus, when the processor services the interrupt, the first word
of the vector is taken as the new Program Counter (PC) and the second
word is the new PS.

VECTORS AND CONTROL AND STATUS REGISTERS

Space is reserved on the PDP-11 for the interrupt vectors. This space
is in the low part of Kernel I-space. The vectors are considered to
be in Kernel mode virtual address space and are thus mapped by the
Executive. Because the interrupt vector 1is in Kernel space, the
Executive receives control of the processor on every interrupt.

1.2 SERVICE ROUTINES

The service routine that is entered to process an interrupt is most
frequently in the device driver. Device drivers vary in complexity
depending on the capabilities of the type of device and the number of
device units they service.

Although linked into the Executive structures, a driver resides in
memory outside the virtual address space of the Executive. An
application can add or remove a driver by means of a callable "POSSUM"
system routine. In addition, any driver not required for a period of
time need not be loaded. The space normally occupied by the unloaded
driver can hold user tasks or another driver.

1.2.1 Executive and Driver Layout

A device driver is a logical extension of the Executive that is not
contiguous in physical memory with the Executive code. Active Page
Registers (APRs)* 0 through 4 map the Executive, APR 7 is reserved to
map the 1I/0 page, and APR 5 maps the driver. Therefore, a driver is
by default restricted to the 4K words of space mapped by APR 5 unless
it controls its own mapping with APR 6 to gain access to an extra 4K
words.

The virtual to physical mapping of a P/0S system is shown in Figure
1-1.

* Active Page Register is a term referring to the Memory Management
register pair (Page Address Register (PAR) and Page Descriptor
Register (PDR).) Refer to the Professional 300 Series Technical Manual
for information on hardware mapping and memory management. Refer to
the RSX11M-Plus Task Builder Manual for a description of mapping and
APR assignments by software.

SERVICE ROUTINES

Physical Memory

Address Space
1/0 Page
Virtual
Kernel
\\ Space 32K Words
— APR 7
Privileged Task = — — — | 28KWords
or \
Driver & e — = -
T APR 5
L —_— — - 20K Words

' \ APR 1
Dynamic Storage L o — - 4K Words

Regi
gion APR 0
System Resident / 0K Words
1/0 Data Base /

74
Executive

Code

VECTORS

Figure 1-1: Virtual to Physical Mapping for the Executive

Virtual addresses 20K through 28K words (APR 5 and APR 6) are reserved
to map drivers and privileged tasks in Kernel mode. (Although APR5
and APR6 are reserved for drivers, the Executive maps only APR5 when
it «calls a driver.) Finally, virtual addresses 28K through 32K words
(APR 7) map the I/O page.

SERVICE ROUTINES

Thus, a device driver is mapped with the Executive code and the 1I/0
page. When a driver has control, it can access the device registers
in the I/0 page to perform its operations. While in system state, a
driver has access to all the Executive service routines to help it
process I/0 requests. While in interrupt state, the driver must save

and restore APR 6 (access to APR 6 is unrestricted when the driver is
in system state).

Because of the layout of the Executive and device drivers, many common
functions related to I/0 are centralized in the Executive as service
routines. This commonality eliminates the inclusion of repetitive
coding in each and every driver. Coding in each driver is therefore
reduced to handling the specific functions of the device supported.

1.2.2 Driver Contents

A device driver consists of two parts. One part 1is the executable
instructions of the driver itself. This part has the entry points to
the driver. The entry points are those places where the Executive
calls the driver to perform a specific action, and their addresses are
established in the driver dispatch table (DDT). The table contains
addresses of routines in a fixed order so that the Executive can enter
the driver at the appropriate place for a given action.

The other part of a device driver is the data structures forming the
data base that describes the controllers and units supported by the
driver. Two structures, the controller table (CTB) and the controller
request block (KRB), describe the controller of the device being
supported. Because the CTB supplies generic information about the
controller type, only one CTB need exist for each controller type on a
system. The KRB holds information related to a specific controller
and therefore each controller has its associated KRB.

Three structures in the driver data base--the device control block
(DCB), the wunit control block (UCB), and the status control block
(SCB)--describe the device as a 1logical entity. The DCB contains
information related to the type of device, whereas the UCB holds
information specific to an individual unit of the device. The SCB is
used mainly to store data (driver context) concerning an operation in
progress on the device unit.

The driver data structures are tailored to the number of controllers
on the system, the number of units attached to each controller, and
the types of features the devices support. The structures increase in
complexity as the number of supported features increases.

EXECUTIVE AND DRIVER INTERACTION

1.3 EXECUTIVE AND DRIVER INTERACTION

The Executive and a driver interact by accessing and manipulating
common data structures. An I/O0 activity typically begins when a task
generates a request for input or output. The Executive performs
preliminary processing of that request before it initiates the driver.
This preliminary processing, called predriver initiation, 1is common
for all drivers and eliminates a great deal of code from all drivers.

In performing predriver initiation, the Executive accesses the driver
data structures to assess the 1legality of the I/0 request. For
example, cells in the device control block (DCB) define the functions
that the driver supports. If the function specified in the I/O
request is not supported by the driver, the Executive need not call
the driver. The driver is not aware of the I/O request. Therefore,
the Executive calls the driver only when the predriver initiation
warrants it.

1.3.1 The Driver Process

When the Executive does call the driver to process an I/O request, the
driver begins I/0 initiation. Once an I/O request is created, a
driver process is initiated. The Executive has queued to the driver
an I/O packet that must be processed to satisfy the request.
Potentially there exist on the system as many driver processes as
there are distinct units capable of being active simultaneously.
(Moreover, some drivers supporting advanced features can have multiple
I/0 requests simultaneously active for a given unit. 1In this case,
each active I/0O request is part of a separate driver process. Refer
to Section 1.4.3 for more information.

Central to a full understanding of a driver and the I/0 structure is
the difference between a driver process and the driver code. The
driver code, (which is pure instruction), invokes an Executive routine
called SGTPKT to get an I/O packet to process. This activity
generates data for the request being processed and the unit doing the
processing. The driver process, once initiated, starts the proper I/O
function, waits for a completion interrupt and performs any required
data transfers. It then completes the I/0 by specifying I/O status
and requesting another I/O packet. This sequence of execution steps
continues wuntil the I/O queue 1is empty and the driver process
terminates.

Because a driver may be capable of servicing several I/0 requests in
parallel, it 1is possible that, for a single driver, many driver
processes exist at the same time. However, there is only one copy of
driver code. The driver process is reentrant code and the data that
defines the state of the code is stored in the driver data base when
the process 1is not executing (for example, when it is waiting for an

1-6

EXECUTIVE AND DRIVER INTERACTION

interrupt). The driver process executes driver code for a particular
device type on behalf of a specific unit. If independent units of a
particular device type are concurrently active, several driver
processes are also active at the same time, each with its own set of
data.

1.3.2 Interrupt Dispatching and the Interrupt Control Block

Once a driver starts an I/0 function, it must await the I/O completion
interrupt. When a device interrupt occurs, the processor pushes the
current PS and PC onto the current stack and loads the new PS and PC
from the device controller interrupt vector. By convention, the PS in
the interrupt vector is preset with a priority of 7 and the number of
the controller associated with the vector. (The controller number,
which identifies a particular controller for a given controller type,
is in the low-order four bits.)

For a driver, the hardware cannot dispatch directly to the interrupt
service routine in the driver because the driver is mapped outside the
address space of the Executive. Therefore, some code in the Executive
must initially handle the interrupt, load the mapping context of the
driver, and dispatch to the proper driver. This code resides in the
Executive in a structure called an interrupt control block (ICB).
Figure 1-2 shows this mechanism. A common Executive coroutine, called
interrupt save (SINTSI) is called from the ICB. The S$INTSI coroutine
saves two registers, R4 and R5, which are thereafter free for the
driver to use. These registers are typically used by drivers to hold
addresses of the data blocks containing unit status and control
information, the SCB and UCB. (Most Executive routines assume these
two registers hold pointers to the two structures. If the driver
needs to use more registers, it saves them on the stack and restores
them when it finishes.) Kernel APR 5 is then saved and the driver Iis
mapped through APR 5 and called at the interrupt entry point. When
the interrupt save coroutine returns to the driver, the driver runs at
the interrupt 1level of the device that it is servicing and has two
free registers that it can use.

The driver may then run for a short interval at the partially
interruptable level. By convention, this interval should not exceed
500 microseconds. When the driver finishes processing the interrupt,
it may execute a RETURN instruction to transfer control back to the
coroutine which gives control of the CPU to the next process.*

* An Executive interrupt exit routine, SINTXT, exists to standardize
the way a driver exits from an interrupt. This routine is executed by
the S$INTSI coroutine. Therefore, interrupt exit processing is
effected via the "RTS PC" (RETURN) instruction.

1-7

EXECUTIVE AND DRIVER INTERACTION

Thus, the ICB actually contains a JSR instruction to an Executive
interrupt save routine ($INTSI) that performs the following:

® Save R4 and R5

® Save the Kernel mapping (APR 5)

@ Load APR 5 to map the driver

® Transfer control to the driver via a JSR instruction

® Restore the mapping after return from the driver

® Perform interrupt exit processing

@ Restore R4 and R5

@ Return from interrupt

Thus, the interrupt vector for a controller serviced by a driver
points to an ICB rather than to the driver.

1 INTERRUPT
CONTROL
CONTROLLER BLOCK
(1CB)
NUMBER
——
INTERRUPT
VECTOR DRIVER

ZK-247-81

Figure 1-2: Interrupt Dispatching for a Driver

The ICB conceptually allows up to 128 controllers of the same type on
a system. The low-order four bits in the PS of the interrupt vector
restricts the number of controllers to 16. In the ICB, the system
maintains a controller group number and the PS bits describe the
controller number within the group. To obtain the controller index
(controller number #2), the executive interrupt service routine first
multiplies the controller within group number that was in the 1low 4
bits of the PS by two. The group number byte in the ICB is then added
to this number.

EXECUTIVE AND DRIVER INTERACTION

The simplest case in handling an interrupt 1is that in which a
controller can have only one unit active at any one time. Multiple
controllers may be active concurrently, yet only one unit per
controller may be active. The interrupt service routine in the driver
uses the controller index passed in R4 to index a table in the CTB and
to access the proper KRB. From the KRB, the UCB (via K.OWN) may be
determined to access the proper unit data and context. For those
devices that have a static one-to-one static relationship between a
controller and a perticular UCB, the controller index may be wused to
index a table of UCB addresses within the driver.

The more complex case in dispatching an interrupt is that in which a
controller can have multiple units operating in parallel. This is an

advanced driver feature called overlapped seek I/0 and is described in
Section 1.4.1.

1.3.3 Interrupt Servicing and Fork Process

A driver handling an interrupt and operating at the partially
interruptable level may need to (1) access structures in its data base
or (2) call centralized Executive service routines which may access
structures 1in the data base. Because a driver may have more than one
process active simultaneously, the driver itself may need to access
structures in the data base shared among separate, unrelated
processes. A method must exist to coordinate access to the data
structures shared among the processes and the Executive.

The mechanism that coordinates access to the shared structures is
called the fork process. An Executive routine, called fork ($FORK),
causes the driver process to be placed in a queue of processes waiting
for access to the shared data structures, to run at processor priority
level 0, and to be completely interruptable.* A driver must therefore
call the fork routine before it calls any other Executive service
routine (except for SINTSI), or before it accesses any device-specific
(nonprivate) structures in its data base. If a driver does not follow
this protocol, it will corrupt the system data base and lead to a
system crash.

A driver that calls the fork routine requests the Executive to
transform it into a fork process. The routine saves a snapshot of the
process in a fork block. The snapshot is the context of the driver

* By convention, drivers may operate at a partially interruptable
level for no more than 500 microseconds. Some drivers conceivably
could need more time than this convention allows. Thus, an additional
reason for the fork mechanism is to preserve the response time of the
system and not lock out interrupts from lower-priority levels.

1-9

EXECUTIVE AND DRIVER INTERACTION

process--the PC of the process and the contents of R4 and R5. The
fork block itself can (and usually does) reside in the 1I/0 data
structure holding the status information of the device being serviced
(that is, the status control block, or SCB). The Executive maintains
a list of fork blocks in FIFO order. A new fork block is added to the
list after the last block in the list.

When the driver calls $FORK, the CPU priority is lowered to 0, which
allows other interrupts to be serviced. When there are no more
pending interrupts (they have either been dismissed or the drivers
have called S$FORK), the Executive checks to see whether the first
interrupt preempted a priority 0 Executive process. If a preemption
occurred, the Executive process 1is continued from where it was
interrupted.* If no priority level 0 Executive process was
interrupted, the Executive executes the process at the head of the
fork list. The Executive restores the saved context of the process
from the SCB and returns control to the driver at the statement
immediately following the call to the fork routine. The process 1is
unaware that a pause of indeterminate length has elapsed.

Fork processes thereby are granted FIFO access to the common I/0O data

structures. Once granted such access, a fork process has control of
the structures until it exits. The protocol guarantees that the
driver process has unrestricted access to shared system data

structures. As one fork process exits, the next in the 1list 1is
eligible to run and access the data structures. Thus, the fork
mechanism allows both controlled access to the common data structures
and sufficient time to process an interrupt without locking up the
system.

The status of a fork process lies between an interrupting routine and
a task requesting system resources. This is known as "system state."
Interrupt routines are run first and can be interrupted only by
higher-priority interrupts. Processes in the fork list run after
other system processes either terminate or call $FORK themselves.
Because system processes save and restore user task registers and
cannot be interrupted by a fork process, a fork process can use all
registers. The fork processes are completely interruptable. Tasks
run only when the fork list is empty.

The fork mechanism establishes linear, or serial, access to the shared
data structures. For example, an Executive routine that completes I/0
processing ($SIODON) manipulates the I/O queue to deallocate an 1I/0
packet that the driver processed. If multiple processes were allowed
to alter the gueue at random times, the queue pointers could become

* The stack must be restored to its state on interrupt entry before
calling SFORK. Therefore, it cannot be wused to pass additional
context. ’

EXECUTIVE AND DRIVER INTERACTIOw

disarranged. Without the fork mechanism, any process could be
interrupted by a higher-priority process and not be able to complete
its manipulation. Because the Executive completes a currently active
fork process before it starts the next fork process in the queue, the
integrity of the 1I/0 data structures is maintained if all routines
that call $SIODON run at system state.

Between the time that a driver process calls SFORK and the Executive
starts the process at system state, the driver cannot call $FORK again
for that same device. If the SFORK routine is called again before the
first process starts, context stored in the fork block for the first
fork process is overwritten. However, once a fork process starts, the
data in the fork- block is stale and the process may call SFORK again
while it is at system state. If the driver does not ensure against
unexpected interrupts, it may double fork as described above. As a
result of the double fork, the system will bugcheck (crash) with an
IOT trap as a result of a failed sanity check while queuing the
forkblock. A common protocol used by DIGITAL device drivers 1is to
clear the saved PC in the forkblock immediately following a fork, and
to test this work before forking. If the word is non-zero, it is not
possible to call $FORK.

If all drivers adhere to the interrupt protocol, the integrity of the
I/0 data structures 1is preserved. Thus, when a device interrupt
occurs while a fork process is executing, the protocol demands that
the service routine handling the interrupt not destroy any of the
registers. The registers are part of the context of the fork process.
After the driver dismisses the interrupt or itself becomes a fork
process, the interrupted fork process can safely resume execution with
its proper context. If any driver violates the protocol, the
integrity of the I/0 data structures is endangered. (That 1is, the
system crashes in mysterious ways.)

1.3.4 Nonsense Interrupt Entry Points

All vectors for off-line devices and vectors for which there are no
devices contain the addresses of Executive nonsense interrupt entry
points. Code at these special entry points exists to properly dismiss
unexpected interrupts from these devices via an RT1 instruction.

1.4 ADVANCED DRIVER FEATURES

This section introduces optional features so you can better understand
the structures and concepts described in the remainder of the manual.

ADVANCED DRIVER FEATURES

1.4.1 Overlapped Seek I/0

Some disk devices allow multiple device units attached to the same
controller to execute operations in parallel. This 1is called
overlapped seek support and is a software option designed to take
advantage of a hardware feature found in most advanced disk drives and
controllers. This feature allows any or all drives to be attached to
the same controller, allowing this functionality to execute a seek
function simultaneously. Each unit may perform a seek operation
independent of what another unit may be doing. Only one data transfer
can occur at any one time. Some types of drives allow seek functions
to overlap a data transfer function, whereas other types do not.

The increased difficulty for overlapped seek devices stems from
determining whether the controller or the wunit generated the
interrrupt. Most control functions issued to the drive unit
(including the positioning commands SEEK and SEARCH) terminate with a
unit interrupt. The controller reports the physical wunit number of
the interrupting unit. A controller interrupt indicates the
termination of a function (usually a data transfer command) that
changes the controller status from busy to ready. Only one unit may
issue a data transfer complete notification to a particular controller
at any one time because only one data transfer can be in progress at
any one time. Most hardware defers seek termination interrupts until
the current data transfer is complete.

To handle interrupts for a device that supports overlapped seek
operations, a device controller-specific interrupt service routine
must be built into the driver to examine the device registers in order
to determine whether the interrupt was initiated by the controller or
the drive unit. Using the controller index on interrupt entry, the
routine uses this as an offset into a table of addresses in a
structure (called the controller table or CTB) in the I/O data base.
The routine accesses the table to determine the address of the I/0
data structure of the interrupt controller (called the controller
request block or KRB) that generated the interrupt. Accessing the KRB
yields the address of the CSR of that controller and having the CSR
address allows the routine to examine the device registers.

If the controller itself initiated the interrupt, the routine
determines the data base structure of the unit that is active. This
determination is possible because such a controller interrupt relates
to a termination of a data transfer, and only one such unit can be
active for a data transfer. A cell in the KRB has the address of the
data structure describing the active unit (the unit control block or
UCB). The routine can then determine the address of the driver
dispatch table and transfer control to the driver.

=
|

12

ADVANCED DRIVER FEATURES

If a device unit initiated the interrupt, the routine retrieves its
unit number from the device registers. Using the physical unit
number, the routine indexes a table at the end of the KRB to yield the

address of the related UCB. The driver is entered through the driver
dispatch table.

1.4.2 Delayed Controller Access

Drivers that support overlapped seeks also must request access to a
controller before executing a function on an independent unit and must
release access after completing the function. To take maximum
advantage of simultaneous operation of units on one controller, the
system delays controller access when the controller is busy.

The Executive maintains a request queue for the controller. Whenever
a driver process requests access to a controller and must wait for
access to the controller, the Executive places the associated fork
block in the controller request queue. When a driver releases a
controller, the Executive automatically grants access to the next
driver process waiting for access. Precedence is given to positioning
requests over requests for data transfer. The controller request

queue thereby provides the means for the Executive to synchronize
access.

1.4.3 Full Duplex Input/Output

In certain circumstances it may be necessary for a driver to handle
more than one I/0 request on a unit at the same time. Typically a
driver processes only one I/O packet per unit at any one time. In
normal operation the driver calls the Executive routine $GTPKT to get
an I/0 packet to process. When $GTPKT returns an I/O packet, it marks
the device busy and does not allow additional I/O until the first I/O
activity completes. Therefore, only one 1I/O process can be in
progress at the same time on a device. Full duplex operation allows
more than one I/0 process to be in progress on a device at the same
time.

To allow full duplex operation, the $GTPKT routine has a special entry
point called $GSPKT. A driver calling $GSPKT specifies an acceptance
routine, to which $GSPKT returns control when an eligible packet is
found. The acceptance routine determines whether to accept or reject
the packet. The criteria that the acceptance routine applies could be
that a write request is accepted if a write has just completed or that
a read request is accepted if a read has Jjust completed. If the
routine rejects the packet, it indicates so to SGSPKT, which continues
to search for another packet. If the acceptance routine accepts the
packet, $GSPKT dequeues the packet and passes it to the driver but

1-13

ADVANCED DRIVER FEATURES

does not modify U.BUF and U.CNT in the unit control block (UCB) nor
does it mark the device busy. As a result, during full duplex
operation the device appears idle even while it is processing an 1I/0
request. For this reason, it may be difficult to make use of the
executive's standard driver timeout facility. Clock queue entries are
suggested.

To complete an I/O request under full duplex operation, the driver
calls the $IOFIN routine rather than the $IOALT or $IODON routine.
SIOFIN does final processing without making the device look idle, as
$IOALT and S$IODON attempt to do. 1In full duplex operation, a unit
will always appear idle to the system and the driver acceptance
routine will determine whether the device can handle an I/0O request.

A driver handling full duplex operations requires augmented data base
structures. The conventional data base structures are defined for
only one I/O request in progress per unit. Because the driver has to
keep more information concerning a unit that allows two I/O requests
in progress, you may have to alter the UCB and other data base
structures to provide additional offsets. The DIGITAL-supplied full
duplex terminal driver not only wuses a lengthened UCB and a
nonstandard SCB, but also connects to a dynamically allocated UCB
extension.

l1.4.4 Buffered Input and Output

Typically, data for input and output requests are transferred directly
to and from task memory. To allow the successful transfer of data,

the task cannot be checkpointed until the transfer is complete. For
most high-speed devices, the transfer occurs quickly enough so that a
task does not occupy memory for too long a time. For slow-speed

devices, however, some mechanism must be available to avoid binding
memory to a task for too long a time while the task is performing I/O.

Using the routines STSTBF, SINIBF, and $SQUEBF in the Executive module
IOSUB, a driver can execute an I/0O request for a slow-speed device and
allow the task to be checkpointed while the request is in progress.
To perform the 1I/0 request, the driver buffers the data in memory
allocated to the driver while the task is checkpointed and the 1I/0O
request is in progress.

To test whether a task is in a proper state to initiate I/O buffering,
the driver calls the S$TSTBF routine and passes it the address of the
I/0 packet. By extracting the address of the task control block (TCB)
from the I/0 packet, STSTBF can examine various task attributes. For
example, if the task is not checkpointable, buffered I/O 1is not
desirable. STSTBF returns to the driver and indicates whether
buffered I/0 can be performed.

ADVANCED DRIVER FEATURES

If buffered I/0 can be performed, the driver performs two operations.
First, it establishes the buffering conditions. For an output
request, it copies the task buffers to dynamically allocated pool
space. For an input request, it allocates sufficient pool space to
receive the incoming data. Second, the driver <calls the SINIBF
routine to initiate the I/0 buffering. S$INIBF decrements the task I/O
count, increments the task's buffered I/O0 count in T.TIO, and releases
the task for checkpointing and shuffling. If the task is currently
blocked, the task state is transformed into a "stopfor" state until
the task is unblocked, buffered I/0 completes, or both. Checkpointing
the task is subject to the normal requirements of an active or
"stopfor" state as described in the P/0S Reference Manual.

After the driver transfers the data, it calls the S$SQUEBF routine to
queue the Dbuffered I/0 for completion. SQUEBF sets up a kernel
asynchronous system trap (AST) for the buffered I/0 request and if
necessary, unstops the task. When the task is active again, a routine
(SFINBF) in the Executive module SYSXT notices the outstanding AST and
processes it. (If the request is for input, the routine copies the
buffered data to task memory.) This mechanism occurs transparently to
the task, thus the name kernel AST. The routine then calls the driver
to deallocate the buffer from pool. S$SIOFIN completes the processing.

1.5 OVERVIEW OF INCORPORATING A USER-WRITTEN DRIVER INTO P/OS

A callable system service called PROLOD is responsible for 1loading a
driver into memory. PROLOD establishes the linkage between the data
base structures in the system device tables and the driver code being
loaded. Another <callable system service called PROUNL can remove a
driver from memory. (Although PROLOD removes a driver, it does not
remove a data base.)

To incorporate a user-written driver into P/0OS, you first create two
modules, one in which you define the data base and the other in which
you include the driver code itself. You must supply in your code
symbols and labels that PROLOD needs.

PROLOD also loads the driver's data base. It reads the driver symbol
definition file to find the start and end of the data base in the
driver image. (Thus, you must have defined its start and end in the
data base source code.) Knowing the start and end, PROLOD reads the
data base from the driver image. It then places the data base in the
system pool so that it resides in Executive address space, accordingly
relocates pointers and 1links within the data base to be wvalid
Executive addresses, and also connects the CTB and DCB(s) in the data
base to the system device tables. Moreover, so that the system device
tables are not corrupted by an incorrect data base, PROLOD performs
many consistency and validity checks on the data base being loaded.

OVERVIEW OF INCORPORATING A USER-WRITTEN DRIVER INTO P/OS

You must build (1) a single image containing the driver code module
followed by the driver data base module and (2) a symbol definition
file on which PROLOD depends to find critical data base and driver
locations. You will 1link the driver image to the Executive version
under which the driver will run. However, the driver image will be
separate from the Executive image. PROLOD is responsible for loading
both your driver data base and driver code, for <connecting the data
base to the system device tables, and for connecting your driver code
to the data base.

CHAPTER 2

DEVICE DRIVER I/0 STRUCTURES

This chapter deals mainly with structures at the block level, their
relationship to the hardware configuration and functionality
supported, and their relationships to each other. The precise
description of each structure is given in Chapter 4.

2.1 1I/0 STRUCTURES

The main elements in the driver I/0 environment essentially define the
logical and physical characteristics of the supported hardware and
establish the links and connections by which routines can access and
manipulate driver data. The following subsections describe the
control blocks that a driver data base module defines, and explain in
general terms the purposes for each block.

2.1.1 Controller Table (CTB)*

A controller table defines a unique controller type on the system. A
CTB must exist for each physical controller type. All controller
tables are linked together, in a list, with the head of the 1list
SCTLST in the Executive common area. The list of the controller
tables is one of the threads through the system data base to provide
access to all device-related data. The link in the last CTB in the
list has a value of zero.

Associated with each CTB is a 2-character ASCII controller name which
must be wunique within the driver. This unique name allows PROLOD to
find the correct CTB for the controller type.

Drivers which are not associated with hardware devices (such as in
memory disk or pipe driver) do not need a CTB or KRB. DCBs, SCBs, and
UCBs are a sufficient database.

I/0 STRUCTURES

Any user-written driver data base must have its own CTB. The
user—-created controller table will also be linked into the system CTB
list, if necessary.

A CTB has generic status information, links, and pointers to other
structures on the system. The table of KRB addresses in the CTB is
the means by which the Executive handles interrupts for the controller
type and dispatches to the correct driver routine.

2.1.2 Controller Request Block (KRB)*

The controller request block is the means by which the Executive
maintains controller-specific or hardware-specific information and
accesses the correct information for a wunit which 1its associated
controller owns. One KRB exists for each device controller of a given
type in the configuration. It stores such data as the the device CSR
and vector addresses, the slot number, the interrupt controller CSR
address, and controller's status.

In a configuration where a device controller allows only one operation
at a time, the KRB 1is combined with another structure called the
status control block (SCB). (The SCB holds context for a wunit while
an operation is in progress.) Because only one access path is possible
in such a configuration, unit context is always associated with the
same controller. Moreover, because only one operation is possible at
a time, the same context storage area can be used for all units
attached to the controller. Thus, in a conventional driver operating
environment, the context storage 1is merely an extension of the
controller request block.

In a configuration where multiple operations in parallel on the same
controller are possible, the controller context is separate from each
independent unit context. Therefore, each unit capable of operating
independently on a controller has the context of the current I/O
operation stored in an SCB separate from the controller KRB. In such
an operating environment, any unit can access the controller while
other operations are pending, but only one unit can have access at a
time. The KRB indicates which wunit owns the controller for the
current operation, and synchronizes access among driver processes on
the same controller.

Where multiple operations in parallel are allowed on a controller, it
may be necessary to delay access to the controller when it is busy.
Therefore, in the KRB the Executive holds the head of a list of access
requests called the controller request queue. The list contains fork

See footnote on page 2-1.

I/0 STRUCTURES

blocks for driver processes awaiting controller access. The queue is
the means by which the Executive serializes access to the controller.

When a controller allows parallel operations, the software must have a
means of determining which of several units generated an interrupt.
The KRB, therefore, contains a table of addresses which associate the
controller with all the units connected to it. This table, indexed by
physical unit number, must appear if the controller in question
supports overlapped seek operations or multiple simultaneous data

transfers for each physical unit attached to the controller (comm.
multiplexers).

The KRB also holds the configuration status of the controller. If the
KRB indicates that the controller is off-line, no activity can take
place on any unit connected to the controller.

2.1.3 Device Control Block (DCB)

The device control block describes the static characteristics of a
device type and of units associated with a certain device type. The
DCB is the means of access to the driver dispatch table and thus to
the driver. At least one DCB exists for each logical type of device
on a system. There may be more than one DCB for a logical device
type. (Note that the logical device type is not the same as the
physical device type.)

A cell in each device control block forms a link in a forward-linked
list, with the head of the list starting in a cell ($DEVHD) in the
Executive common area. This list, as with the CTB 1list, 1is a main
thread through the system data structures to device-related data. The
link in the last DCB in the list has a value of zero.

The static data in the DCB gives such information as the generic
device name, wunit quantity and 1links to individual unit data, the
address of the driver dispatch table, and types of I/O functions
supported by the driver. Typically, the Executive QIO directive
processing code and not the driver code accesses the DCB.

2.1.4 Unit Control Block (UCB)

The unit control block holds much of the static information about an
individual device unit and contains a few dynamic parameters.
Although unit control blocks need not be any prescribed 1length for
different devices, all unit control blocks for the same DCB must be of
equal length. (The UCB length is stored in the device control block
to calculate the offset to a particular UCB in the concatenated set of
UCBs described by the DCB's logical wunit numbers.) This condition

2-3

I/0 STRUCTURES

allows the UCB to contain varying amounts of unit- and
device-independent data for different types of devices.

A UCB, one of which exists for each device unit, enables a driver to
access most of the other structures in the I/0O environment. A UCB
provides access to most of the dynamic data associated with I/0
operations. Given the address of a UCB, a driver may readily find
most of the other data structures in which it 1is interested because
the proper 1links exist. Because of this access information, the UCB
is a key control block in the driver I/0 structure.

The static data in the UCB includes pointers to other I/0 structures,
definitions of unit control bits which regulate directive processing,
definitions of unit status bits which describe operational conditions,
and definitions of wunit- and device-dependent characteristics and
storage cells.

Data in the UCB is accessed and modified by both the Executive and the
driver.

2.1.5 Status Control Block (SCB)

The status control block holds driver -—context for operations on a
device wunit. In the SCB are stored such data as the pointer to the
head of the queue of input/output requests; the 1link to the fork
- blocks queued for the wunit; the fork process context; timeout, and
unit status; and the address for the controller request block (KRB)
representing the device controller (if the device has a controller).

The Executive accesses the SCB to set up an I/0 request, to store
context while a request 1is in progress, and to post results and
status. When the driver accesses the SCB, it 1is usually for read
access only.

The number of status control blocks depends on the processing support
in the Executive. If the controller itself cannot handle parallel
operations, only one SCB is needed for each controller. In such a
case, a controller can have only one unit processing a command at one
time, and there is no need to store context for more than one unit at
a time. There 1is also no need for a physically separate controller
request block (KRB) to separate generic data from unit context.
Therefore, the driver data base contains the required KRB cells in the
status control block since the KRB and SCB overlap.

If the <controller allows parallel operations and the Executive
supports this feature, there must be one SCB to store context for each
unit capable of operating independently on the controller. 1In such a
configuration, a cell in each SCB points to the KRB of the controller
to which the wunits are connected. Should the controller allow

2-4

I/0 STRUCTURES

parallel data transfers to individual wunits independently and the
driver uses $GSPKT and $IOFIN, the driver could store unit context in
a UCB extension and reduce the number of SCBs required.

2.2 DRIVER DISPATCH TABLE (DDT)

The driver dispatch table* contains the entry points to and the
interrupt entry addresses for the driver. An entry point is the
location at which the Executive calls the driver to perform a specific
function. An interrupt entry address 1is a location to which the
central processor or the Executive transfers control within the driver
for servicing hardware interrupts. The pointer to the interrupt entry
address resides in an interrupt control block.
Every driver has four conventional entry points as follows:

@ I/O initiation

e cancel 1I/0

@ device timeout

e device powerfail

Two more entry points are added for controller and unit on-line and
off-line status changes:

e KRB status change
® UCB status change

For many devices, these status change entry points are merely a return
to the Executive calling routine.

There are two additional entry points that have been added for the
advance driver feature of buffered I/O and terminal driver processing:

@ Deallocate buffers (buffered I/0)

® Send next command (FDX TTDRV)

* The DDT is not a structure in the strict sense of the word because
it 1is defined in the instruction part of the driver code. However,
because it contains addresses for dispatching code, it is included in
the data structure description.

DRIVER DISPATCH TABLE (DDT)

2.2.1 1I/0 Initiation

The Executive transfers control to this entry point to inform the
driver that work for it is waiting to be done. To reduce work for the
driver, the Executive performs predriver-initiation processing.
(Predriver initiation 1is described in Chapter 3). 1If, at the end of
predriver processing, the Executive has I/0 packets queued for the
driver, it calls the driver at this entry point.

When the driver gets control at its I/O initiation entry point, RS
contains the address of the UCB for the unit on which the request is
to be processed. To establish access to the I/O packet, the driver
calls an Executive routine that either returns information in
registers concerning both the packet to be processed and the
associated data in order to gain access to the data structures* or
causes the driver to dismiss itself. (There may be no packet to
process or the driver may already be busy.)

Once control is returned to a driver and there 1is a request to
process, the driver must extract the information from the registers,
establish data within the control blocks, and process the request.
This means that the driver proceeds with an I/0 request until it
issues a command to the controller hardware, which physically
initiates the I/O operation.

Typically a driver is called at this entry point after an 1I/O packet
has been inserted into the I/O queue. However, a driver can be called
before a packet is placed in the I/0 queue. Refer to the description
of the U.CTL control flag UC.QUE in Section 4.4.4 for information on
queueing an I/0 packet to the driver.

2.2.2 Cancel I/0

To terminate an in-progress I/O operation, the system flushes the 1I/0
gqueue and calls the driver at this entry. There are many situations
in which a task must terminate I/O. When such a termination becomes
necessary, a task issues an Executive QIO request and the Executive
relays the request to the driver by calling it at this entry point.

The driver 1is responsible for checking that the 1I/0 operation
in-progress was issued from the task that is forcing the termination,
and for completing or terminating the operation before returning ¢to
the caller.

* The S$GTPKT routine, which gets a packet for the driver to process,
is described in Chapter 7.

DRIVER DISPATCH TABLE (DDT)

Typically, a driver is called at this entry point only when an I/O
operation 1is in progress. A driver also can be called, even if the
unit specified is not busy. Refer to the description of the U.CTL
control flag UC.KIL in Section 4.4.4 for information on unconditional
cancelling of I/0. (For instance, the driver may need to clean wup
data structures created during pre-initiation processing (UC.QUE=1)
and has "hidden" the I/0 packet listhead in some other structure).

2.2.3 Device Timeout

When a driver initiates an I/O operation, it can establish a timeout
count., If the operation fails to complete within the specified
interval, the Executive notes the lapse and calls the driver at this
entry point. Using this facility, a driver can wait for an interrupt
but need not hang if the interrupt never occurs. Thus, no driver
should ever stall on a request because a hardware failure prevented an
expected interrupt from happening.

NOTE

Extreme caution must be exercised to avoid completing
an I/0 request twice. It can happen once for timeout,
and again when a pending forked process becomes active
and completes I/0O again.

2.2.4 Device Power Failure

The Executive calls the power failure entry point wupon successful
completion of loading.

2.2.5 Controller and Unit Status Change

Two entry points are required for configuration status changes of the
controller and units. The Executive enters one entry point to put the
controller on-line and take it off-line. The other entry point,
called once for each unit whose status changes, is for putting units
on-line and taking them off-line. The driver must show successful
completion of the on-line or off-line request or the Executive will
not effect the status change.

DRIVER DISPATCH TABLE (DDT)

2.2.6 Device Interrupt Addresses

Control passes to an interrupt address when a device, previously
initiated by the driver, completes an I/0O operation and causes an
interrupt in the central processor. A device may have associated with
it more than one interrupt entry. For example, a full duplex device
such as a terminal will have two interrupt addresses.

The interrupt addresses are arranged in a block in the DDT. The
arrangement 1is general enough to support multicontroller drivers such
as the terminal driver. The block defines the address or addresses to
include in the vector for the driver.

2.3 TYPICAL CONTROL RELATIONSHIPS

This section presents different arrangements of the control structures
that are found in P/0S. The section concentrates on the relationships
among device control, unit control, status control, and controller
request blocks and controller tables based on hardware and functions
supported. Descriptions of the detailed contents of the structures is
left to Chapter 4, where the coding requirements are presented. Some
of the arrangements are not conventional but are shown to convey the
flexibility. Section 2.4 shows how such arrangements fit into the
overall system I/O data structure.

The arrangements described in this section illustrate the strategy in
offering a flexible 1I/0 data structure. There need be only one
controller table for each controller type. Multiple~device control
blocks for a single device type reflect the capability to handle
varying characteristics. The existence of one or more status control
blocks depends on the degree of parallelism possible: one SCB for
each controller servicing several units (no parallelism); or one for
each device unit combination on the same controller (unit operation in
parallel).

The I/O data structure reflects the hardware configuration that the
data structures describe. The flexibility in the data structure
arrangements provide flexibility in configuring I/O devices. The
information density in the structures themselves reduces the coding
requirements for the associated drivers.

2.3.1 Multiple Units per Controller, Serial Unit Operation

A typical arrangement of structures for a user-written driver is shown
in Figure 2-1. The arrangement could represent an RX50 controller
with dual drives. A single controller table (CTB) defines the
existence of the controller type on the system. One device' control

2-8

TYPICAL CONTROL RELATIONSHIPS

block (DCB) establishes the characteristics for the type of device
running on the controller.

DPB CTB
List l List I
e il -B
DCB CTB

T

KRB

ucCB SCB »

ZK-249-81

Figure 2-1: Multiple Units per Controller, Serial Unit Operation

The status control block (SCB) and controller request block (KRB) are
contiguous in this arrangement because the software does not allow
another I/0 operation to begin while the controller is Dbusy. A
separate unit control block (UCB) describes each unit attached to the
controller. The UCBs are associated with the SCB, which contains the
context of the operation currently in progress.

2.3.2 Multiple Controllers, Single Unit per Controller
Another typical conventional arrangement of structures for a

user-written driver is shown in Figure 2-2, which could represent two
Winchester controllers, one with an RD50 and the other with an RD51

2-9

TYPICAL CONTROL RELATIONSHIPS

attached. It represents the simplest case of driver processing.
Figure 2-1 shows what is required for a controller that allows only a
single 1I/0 operation for each controller. A single controller table
defines the existence of the controller type on the system. One
device control block establishes the characteristics for the type of
device running on the controller.

The status control and controller request blocks are contiguous in
this arrangement because, while the controller is busy, another I/O
operation cannot begin. Only one SCB 1is necessary to store the
context of the wunit operation. The UCB points to the SCB, which in
turn points to the KRB of the unit's controller. Because the system
must handle interrupts from multiple controllers, the controller table
points to the KRB of each controller present.

DCB CTB
List List I
DCB CTB
KRB
- UCB l SCB e
ot
— d
UCB _—L— KRB
SCB

ZK-250-81

Figure 2-2: Multiple Controllers, Single Unit per Controller

TYPICAL CONTROL RELATIONSHIPS

2.3.3 Parallel Unit Operation

Some devices, such as the <this space for rent>, allow multiple units
to have seek operations in progress at the same time. In particular,
this controller would allow such operations to overlap a data
operation. Figure 2-3 shows the arrangement needed in the software
structures to support parallel operations on one controller.

Two additional structural changes are required from the serial
operation arrangement. First, because more than one unit may have an
operation pending at the same time, a structure 1is needed to store
unit context. Therefore, for each unit (and each unit control block)
there is a separate.status control block. Second, because interrupts
can come from more than one unit, some way must exist to access the
proper unit. As a result, the controller request block contains a
table of wunit control block addresses that allows the driver to find
the structures for the unit generating an interrupt.

DCB CTB

ucB SCB

KRB
ucB SCB
o e
UCB
Table

ZK-251-81
Figure 2-3: Parallel Unit Operation (Overlapped Seek)
2.4 OVERVIEW OF DATA STRUCTURE RELATIONSHIPS
This section presents an overview of the relationships among the
user-written driver data structures previously introduced in this

chapter and the Executive I/O structures and DIGITAL-supplied driver
structures. The goal of the section is to convey the general manner

2-11

OVERVIEW OF DATA STRUCTURE RELATIONSHIPS

in which user-written structures and code link into the system 1I/0
scheme and to describe generally the use to which the system puts the
structures. The specific user-written structures are simplified
somewhat so that the emphasis is placed on the linkages with other
parts of the system rather than on the details of wuser-written
structural relationships.

This section should be used with Section 2.3 to understand the general
structural concepts. For example, Section 2.3 describes various
arrangements of unit control, status control, and controller request
blocks based on hardware functions the software structures support.
This section treats such arrangements as an engineering black box that
is oriented in the general I/0 environment. Thus, in the generalized
I/0 data structure depicted in this section, the pointers in the KRB
table of the SCB are not shown and the table is simply marked KRB
Table.

Figure 2-4, which provides the basis for the presentation of the 1I/O
data structure, shows the individual elements and the important link
fields within them. The numbers in the figure correspond to the
numbers in the lead paragraphs of the text to simplify the discussion
and to guide you through the data structures.

1. The location represented by the Executive symbol $DEVHD is a
cell 1in system common (SYSCM). It is the head (or start) of
a singly-linked, unidirectional list of all device control
blocks in the system. The first word in each DCB is a link
to the next DCB.

The list of device control blocks is one of the two threads
through the system data tables for device-related
information. For example, the list is the means by which
executive routines scan the data structures to determine what
devices are on the system and what is the status of wunits.
User-written device control blocks must be linked into the
list of system defined DCBs.

2. Every driver is associated with a partition control block
(PCB) . The PCB defines the characteristics of the memory
area into which the driver 1is 1loaded. The Executive and
services such as PROLOD reference the data in the PCB. A
driver is not concerned with the PCB.

3. If a task is attached to a unit, the UCB has a pointer to the
task control block (TCB) of that task.

€1-¢

POINTER TO LINK TO
DEVICE VECTOR NEXT DCB DRIVER CODE FIRST I0B
ICB 5 C)
DDT
$DEVHD (:> $CTLST
® ® e 1
| | —
I | CTB
| |
DCB Des : | cTB
1/0 PACKETS =
I (:) 1/0 QUEUE !
r———~ I 44
-] Current
C) () - C 1/0
LOADABLE $FRKHD Packet
DT,'C\:BER - FORKBLOCK
SCB l
ucB c, r—’
KRB
(:) i - KRB TABLE
TCB OF] UCB TABLE ior
INDEX
ATTACHED ucs ()
TASK
VCB
(:) MOUNTED
TCB OF VOLUME
ACP FORKBLOCK[™ ™1 «grs -
SCB S
@[tasx
HEADER LUT ENTRY KRB TABLE UCB TABLE WB
T Sy === el
w8
(TASK) (VOLUME)
NOTE (:) ECB
(TASK)
This diagram shows only a typical example;
itdoes not show every possible arrangement.

-z @2anb1g

sain3onais ejeq O/I @3rsodwo)d

SAIHSNOILVTIHY JINLOMNALS VIVA 40 MIIAYIAO

OVERVIEW OF DATA STRUCTURE RELATIONSHIPS

The task header is an independent entity in the I/0 data
structure and the driver never accesses it. (In fact, it may
not be memory resident.) The task header may be in the
primary pool, or in physical memory immediately before the
task region when the task's "task region" 1is resident in
memory in both cases.

A logical unit table (LUT) entry in the task header has two
items of interest: a pointer to an associated unit control
block and, if a file is being accessed, a pointer to a window
block. The Executive accesses the logical unit table of a
task during a QIO request and indexes the table by the
logical unit number specified in the QIO request.

A device control block has a pointer to the unit control
block of the first related unit. Because the length of a UCB
is stored in the DCB and all UCBs are allocated in a
contiguous area, access to all the UCBs related to that DCB
is possible. This arrangement allows software to access all
related unit information for a device type.

A DCB also has a pointer to the start of the driver dispatch
table. This pointer allows the Executive to call the driver
at its entry points to process an I/O-related request.

Each unit control block contains a pointer back to its
related DCB. This backpointer allows the Executive interrupt
dispatch code to enter the proper driver (through the pointer
to the driver dispatch table).

Associated with each UCB is a status control block. The SCB
is shared by all wunits for a device type that does not
require units to operate in parallel. When units can operate
in parallel, each UCB has its own associated SCB.

As part of processing a QIO directive (queued I/O request),
the Executive builds a structure called an I/0O packet.
Storage for packets is in the system dynamic storage region
(the primary pool). The Executive connects the packets by a
pointer in each packet to form a linked list called the 1I/O
queue. The Executive maintains two pointers in the SCB to
the list of packets. The first pointer is to the start of
the 1list and the second pointer is to the last packet in the
list.

Normally, the driver should not access the 1list of 1I/0
packets directly. When the Executive transfers control to
the driver to initiate processing of an I/0 request, the
driver immediately calls an Executive service routine to get
a packet to process. The routine passes, to the driver, data
sufficient to process the request (for example, the address

2-14

OVERVIEW OF DATA STRUCTURE RELATIONSHIPS

of the packet). Thus, the Executive, and not the driver,
removes a packet from the queue of packets. However, in
performing the I/0 request, the driver can access certain
fields in the packet to be processed because a pointer to the
currently active I/O packet is kept in the SCB.*

The Executive determines the ordering of packets in the

gueue, Typically, higher-priority requests are placed at the
head of the queue.

8. At least one status control block (SCB) exists for each
controller. Where a controller and software support
operations in parallel on multiple units, one SCB exists for
each unit capable of operating independently. A pointer in
the SCB connects to the controller request block (KRB) of the
controller to which the related unit is connected.

The fork block in the SCB contains some of the driver process
context. The driver executes an Executive routine so that
processing will occur at fork level. To preserve processing
status, the routine stores some context in the fork block.
When the driver eventually runs again, the fork processing
restores the proper context from the fork block.

The fork blocks for pending driver processes are connected in
a singly-linked 1list, the head of which is in a location
(SFRKHD) in the Executive region. Generally, the fork
processing routines 1link a fork block in FIFO order. At
location $FRKHD+2 the executive maintains a pointer to the
last fork block in the list.

9. Associated with each open file on a mounted volume is a file
control block (FCB). The file system alone uses the FCB to
control access to the file.

10. For each open file on a mounted volume, a window block exists
for each task that has the file open to hold pointers to
areas on the volume on which the file resides. The function
of the window block is to speed up the process of retrieving
data items from the file. (The associated ACP need not be
called to <convert a virtual block number in a file to a
logical block number on the device.) The driver 1is not

* Normally, the driver does not directly manipulate the I/O queue. An
exception is when a driver needs to examine an I/O packet before it is
queued or instead of having it queued. This exception involves a
status bit in a control byte of the unit control block. For more
information on queuing of I/0 packets to the driver, refer to the
description of the UC.QUE bit in Section 4.4.4.

2-15

11.

12.

OVERVIEW OF DATA STRUCTURE RELATIONSHIPS

concerned with the window block or this VBN to LBN
conversion.

The driver dispatch table (DDT) is part of the driver code
and is the means by which the executive calls the driver.

The controller request blocks (KRB) are linked into the 1I/0
data structure through the pointers in the controller table
(CcTB).

The KRB table in the CTB allows the Executive access to the
structures for a controller when it initiates an interrupt.
To report the termination of a data transfer command, a
controller initiates an interrupt. (While such a
controller-initiated interrupt is in progress, the hardware
delays interrupts from wunits.) The driver determines the
correct KRB by indexing the CTB with the controller index.

For a controller that allows wunit operation 1in parallel
(overlapped seek support), the related KRB must have a table
of UCB addresses. This table allows the driver to access the
structures of the unit that generates an interrupt. When a
unit interrupts, its controller has the physical number of
the interrupting unit. The driver must retrieve the number
and use it to index the UCB table in the KRB to access the
proper unit control Dblock. (For example, see DZDRV.MAC
interrupt "B", door open, processing.)

To support multilple parallel unit operations, the KRB also
contains a queue to regulate controller access. This queue,
known as the controller request queue, 1is a 1list of fork
blocks for driver processes that have requested and have been
denied immediate access to the controller. If the driver
requests access to a controller and the controller is busy,
the Executive forces the driver to wait for access by placing
the fork block in the queue of processes waiting for access.
The Executive gives precedence to control access over
requests for data transfer by placing positioning requests
onto the front of the queue and adding data transfer requests
to the end of the queue. When a unit is given access, the
controller status is set to busy and unit UCB address is set
to connect the KRB to the owned UCB.

To indicate what unit to process on a controller initiated
interrupt, a cell in the KRB points to the unit control block
(ucB) of the wunit that currently owns the KRB (data
transfer).

13.

14.

OVERVIEW OF DATA STRUCTURE RELATIONSHIPS

The KRB controller request queue 1listhead consists of two
words. The first word points to the fork block in the SCB of
the next unit to get access. The second word points to the
fork block in the SCB of the last unit to get access. If the
first word is 0, then the second word points to the first and
no unit is waiting for access to the controller.

The location represented by the Executive symbol $CTLST is a
cell in system common (SYSCM). It is the head (or start) of
a singly-linked, unidirectional list of all controller tables
(CTBs) in the system. A word in each CTB is a link to the

next CTB. The last CTB in the list contains a link word of
0.

The list of controller tables 1is one of the two threads
through the system for device-related information. (The list
of device control blocks is the other thread.) A user-written
controller table will be linked into the 1list of
system—-defined CTBs. This list is the mechanism by which
system routines access I/0 data structures for hardware
information.

One volume control block (VCB) exists for each mounted volume
in the system. The VCB maintains volume-dependent control
information.

Pointers within the VCB connect to the file control block
(FCB) and window block (WB). The FCB and WB control access
to the volume's index file, which is a file of file headers.
All FCBs for a volume form a linked list starting from the
index file FCB. These linkages aid in keeping file access
time to a minimum. A conventional driver never accesses any
of these structures.

CHAPTER 3

EXECUTIVE SERVICES AND DRIVER PROCESSING

The Executive provides services related to I/0 drivers. Some services
are provided before a driver process is initiated and are therefore
called predriver initiation services. The predriver initiation
services are those performed by the Executive during its processing of
a QIO directive; these services are not available as Executive calls.

Predriver initiation processing extracts from the QIO directive all
I/0 support functions not directly related to the actual issuance of a
function request to a device. If the outcome of predriver initiation
processing does not result in the queuing of an I/0O Packet to a
driver, the driver is unaware that a QIO directive was 1issued. Many
QIO directives do not result in the initiation of an I/0 operation.

Other services are available to the driver after it has been given
control, either by the Executive or as the result of an interrupt.
They are available as needed by means of Executive calls.

An important concept used in this section and in Chapter 4 1is the
state of a process. In P/0S, a process can run in one of two states,
user or system. Drivers operate entirely in the system state; the
programming standards described in Chapter 4 apply to system-state
processes.

3.1 FLOW OF AN I/0O REQUEST

Following an I/0 request through the system at the functional level
(the level at which this chapter is directed) requires that limiting
assumptions be made about the state of the system when a task issues a
QIO directive. The following assumptions apply:

@ The system is running and ready to accept an ?/O request.
All required data structures for supporting devices attached
to the system are intact.

3.1.1

FLOW OF AN I/O REQUEST

The only I/O request in the system 1is the sample request
under discussion.

The example progresses without encountering any errors that
would prematurely terminate its data transfer; thus, no error
paths are discussed.

The controller in question executes only a single operation
at a time.

Predriver Initiation Processing

The I/0 flow proceeds as described below:

1.

Task issues QIO directive

The user program first either statically (by QIOWSC, QIOWS,
QIOSC, or QIOS) or dynamically (by QIOWSS or QIOS$S) creates a
directive parameter block (DPB) containing information about
what 1I/O is to be performed on what device. Then, it issues
the directive.

All Executive directives are called by means of EMT 377. The
EMT causes the processor to push the PS and PC on the stack
and to pass control to the Executive's directive processor.

QIO Dispatching

The Executive directive dispatcher DRDSP ascertains that the
EMT 1is a QIO directive and calls the QIO directive processor
DRQIO.

First-level validity checks

The QIO directive processor validates the logical unit number
(LUN) and the Unit Control Block (UCB) pointer. DRQIO checks
whether the LUN supplied in the directive parameter block is
a legal value. If it is not a legal value, the directive is
rejected. If the LUN is legal, DRQIO checks whether a valid
UCB pointer exists 1in the Logical Unit Table (LUT) for the
specified LUN. This check ascertains whether the LUN is
assigned. If the check fails, the directive is rejected. If
both these checks are successful, DRQIO then performs the
redirect algorithm.

FLOW OF AN I/O REQUEST

4, Redirect algorithm

Because the UCB may have been dynamically redirected by a
Redirect command, QIO directive processing traces the
redirect linkage until the target UCB is found. The target
UCB provides the links to most of the other structures of the
device to which the I/0 operation will be directed.

5. Additional validity checks

The event flag number (EFN) is validated, as well as the
address of the I/O Status Block (IOSB). If either is
illegal, the directive is rejected. Immediately following

successful validation, DRQIO resets the event flag and clears
the I/0 status block.

6. Obtain storage for and create an I/O Packet

The QIO directive processor now acquires a 20-word block of
dynamic storage for use as an I/0 Packet. It inserts into
the packet the device-independent data items that are used
subsequently by both the Executive and the driver in
fulfilling the I/0 request. Most items originate in the
requesting task's Directive Parameter Block (DPB).

At this point, DRQIO sets the directive status to +1, which
indicates directive acceptance. Note that a directive
rejection is a return to the caller with the C bit set. In
addition, a directive rejection is transparent to the driver.

7. Validate the function requested
If the function is legal, DRQIO checks to see whether the
unit is on-line. If the wunit is off-line, the packet is
rejected. The function is one of four possible types:
Control
No-op
ACP

Transfer

With the exception of Attach/Detach, control functions are qgueued to
the driver. If the bit UC.ATT is set, Attach/Detach will also be
queued to the driver. If the requested function does not require a

call to the driver, the Executive takes the appropriate action and
calls the I/O Finish routine ($IOFIN).

FLOW OF AN I/O REQUEST

No-op functions do not result 1in data transfers. The Executive
performs them without calling the driver. No-ops return a status of
IS.SUC in the I/0 status block.

ACP functions may require processing by the file system. More
typically, the request is a read or write virtual function that is
transformed into a read or write logical function without requiring
file-system intervention. When transformed into a read or write
logical function, the function becomes a transfer function (by
definition).

Transfer functions are address checked and queued to the proper
driver. This means that DRQIO checks the address of the I/0 buffer,
the byte count, and the alignment requirement for the specified
device. If any of these checks fails, DRQIO calls the I/O Finish
routine (SIOFIN), which returns an I/O error status and clears the I/0
request from the system. If the checks succeed, DRQIO either places
the I/0 Packet in the driver request queue according to the priority
of the requesting task or, if the UC.QUE bit is set, gives the packet
directly to the driver. (See Section 4.4.5 for a description of the
UC.QUE bit.)

3.1.2 Driver Processing

1. Request work

To obtain work, the driver calls Get Packet (SGTPKT). SGTPKT
either provides work, if it exists, or informs the driver
that no work is available or that the SCB is busy; if no work
exists, the driver returns to its caller. If work is
available, SGTPKT sets the device controller and unit to
busy, dequeues an I/0 request packet, and returns to the
driver.

2. 1Issue 1/0

From the available data structures, the driver initiates the
required I/0 operation and returns to its caller. A
subsequent interrupt may inform the driver that the initiated
function 1is complete, assuming the device 1is interrupt
driven.

3. Interrupt processing
When a previously issued 1I/0 operation interrupts, the
interrupt causes the driver to be entered. The driver

processes the interrupt according to the programming protocol
described in Chapter 1. According to the protocol, the

3-4

FLOW OF AN I/O REQUEST

driver may process the interrupt at priority 7, at the
priority of the interrupting device, or at fork level. 1If
the processing of the 1I/0 request associated with the
interrupt 1is still incomplete, the driver initiates further
I/0 on the device (Step 9). When the processing of an 1I/0
request is complete, the driver calls S$SIODON.

4, 1I/0 Done processing

SIODON removes the busy status from the device wunit and
controller, queues an AST if required, and determines whether
a checkpoint request pending for the issuing task can now be
effected. The IOSB and event flag, if specified, are
updated, and S$IODON returns to the driver. The driver
branches to its initiator entry point and looks for more work
(Step 8). This procedure is followed until the driver finds
the queue empty, whereupon the driver returns to its caller
and the driver process vanishes.

Eventually, the processor is granted to another ready-to-run
task that issues a QIO directive, starting the I/0 flow anew.

3.2 EXECUTIVE SERVICES AVAILABLE TO A DRIVER

Once a driver is given control following an I/O interrupt or by the
Executive 1itself, a number of Executive services are available to the
driver. These services are discussed in detail in Chapter 7.

However, four Executive services merit special emphasis because
virtually every driver in the system uses them:

1. Get Packet (S$GTPKT)
2. Create Fork Process (SFORK)

3. I/O Done ($SIODON or SIOALT)

3.2.1 Get Packet (SGTPKT)

The Executive, after it queues an I/0 Packet, calls the appropriate
driver at its I/O initiation entry point. The driver then immediately
calls the Executive routine $GTPKT to obtain work.* If work Iis
available, SGTPKT delivers to the driver the highest-priority,
executable I/O Packet in the driver's I/O queue, and sets the SCB
status to busy. If the driver's I/O gueue is empty or if the driver

3-5

EXECUTIVE SERVICES AVAILABLE TO A DRIVER

is busy, $GTPKT returns a no-work indication.

If the SCB related to the device is already busy, S$GTPKT so informs
the driver, and the driver immediately returns control to the
Executive.

Note that, from the driver's point of view, no distinction exists
between no-work and SCB busy, because an I/0 operation cannot be
initiated in either case.

3.2.2 Create Fork Process (S$FORK)

Synchronization of access to shared data bases 1is accomplished by
creating a fork process. When a driver needs to access a shared data
base, it must do so as a fork process; the driver becomes a fork
process by calling $FORK. The SCB contains preallocated storage for a
5-word fork block. See Section 4.4.5 for a description of the fork
block. Section 1.3.3 contains details on $FORK. After S$FORK is
called, a routine is fully interruptable (priority 0), and its access
to shared system data bases is strictly linear.

3.2.3 I/0 Done (SIODON or $IOALT)

At the completion of an I/O request, the subroutines SIODON or SIOALT
perform a number of centralized checks and additional functions:

® Store status if an IOSB address was specified

® Set an event flag if one was requested

e Determine whether a checkpoint request can now be honored
® Determine whether an AST should be queued

S$IODON and SIOALT also declare a significant event, reset the SCB and
device wunit status to idle, and release the dynamic storage used by
the completed I/O operation.

* An exception is a driver that handles special user buffers. Such a
driver must call certain other Executive routines before calling
$GTPKT. See Section 4.4.4 for a description of the UC.QUE bit.

3-6

CHAPTER 4

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

Chapters 2 and 3 give overviews of data structures and Executive
services, respectively. This chapter summarizes programming
standards, presents overviews of programming requirements for
user-written driver code and data, and gives details of the data

structures and driver code. Executive services are covered in Chapter
7.

4.1 PROGRAMMING STANDARDS

I/0 drivers function as integral components of the P/0S Executive, and
this manual enables you to incorporate I/0 drivers into your system.
User-written drivers must follow the same conventions and protocol as
the Executive 1itself if they are to avoid complete disruption of
system service. Failure to observe the internal conventions and
protocol that are described fully in Chapter 1 can result in poor
service and reductions in system efficiency.

The programming conventions wused by P/0OS system components are
identical to those described 1in Appendix E of the PDP-11 MACRO-11

Language Reference Manual. DIGITAL urges vyou to adhere to these
conventions.

4.1.1 Programming Protocol Summary

Drivers are required to adhere to the following internal conventions
when processing device interrupts:

1. Registers R4 and R5 are available; any other registers must
be saved and restored.

PROGRAMMING STANDARDS

2. Processing at the priority of the interrupting source should
be minimized and kept well under 500 usecs. On Professional
Series hardware, all devices interrupt at processor priority
4 and, as a result, processing at device priority is
equivalent to processing at priority 7 with all pending
interrupts (including the clock) locked out. The interrupt
arbitration described in the "Professional 300 Series
Technical Manual" only addresses which of the interrupts is
subsequently serviced at priority 4 when the processor drops
its priority to 0.

3. Kernel APR 6 mapping must be preserved by the interrupt
service routine if needed to map additional driver code or
data buffers.

4, Only a fork process, which by definition is in system state,
may modify a system data base or examine dynamic system data
structures such as the installed task directory (the STD).

5. A fork process has unrestricted access to APR 6, and RO-R5.

6. Complex drivers and system processes that require extended
periods of processing at system state should consider

reforking to allow other system processes' execution time.
These other system processes could, for example, perform
clock-related and I/O completion-related processing. Care

must be exercised that any additional context is preserved if
required, since only R4, R5 and APR 5 mapping are preserved
across the fork. As always, "double forking" must not occur;
it is avoided by either using an interlock protocol on the
forkblock, or through the wuse of a separate forkblock
allocated from primary pool.

4.1.2 Accessing Driver Data Structures

All the driver data structure elements have symbolic offsets. Because
the physical offset values may vary from one version of the Executive
to another, your wuser-written driver code should always use the
symbols to access the elements.

Accordingly, your driver code should not step from one structural
element to another (relying on the juxtaposition of data structures
and individual words in a data structure) but should access each
element by symbolic offset. On the other hand, it is a common coding
practice to assume that zero offsets (particularly link pointers such
as D.LNK) will remain zero. This assumption allows the saving of one
word per instruction by substituting an instruction such as MOV
(R3),R3 for MOV D.LNK(R3),R3. DIGITAL recognizes that such practices

4-2

PROGRAMMING STANDARDS

are followed and consequently attempts to keep such offsets zero.

4.2 OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER DATA BASES

You should create the source code for your user-written driver data
base in a file separate from that of the driver code. You assemble
this file to create the driver data base module. If your data base is
in a separate module, it will be linked to the end of the driver code
module. If your driver data base is in the same module as that of
your driver code, it must be at the end of the driver code.

To create the source code, you need to know, in addition to the
detailed structures, what ordering and labeling are required. These
requirements, though not extensive, are important in 1linking and
loading your driver data base. The general coding requirements for
driver data bases are described in the following subsections.

4.2.1 General Labeling and Ordering of Data Structures

When creating a data base, you must specify, for the PROLOD routines,
two global labels as follows:

SDAT: ¢ marks the start of the user-written driver data base.

SEND:: marks the end of the wuser-written driver data Dbase,
that 1is, immediately following the final word of the
data base.

If either or both of these 1labels are not defined, PROLOD cannot
determine the length of your data base when you attempt to load your
driver.

There is no mandatory ordering of the different structures in a driver
data base. DIGITAL suggests, however, that you place the DCB first,
followed by the UCB, the SCB(s), the KRB(s), and the CTB. If you do
not follow this ordering scheme, you must specify the starting
location of the first (or only) DCB as described in Section 4.2.2.

4.2.2 Device Control Block Labeling

When writing a driver data base, the PROLOD routines require either

that the first (or only) DCB be identified by the global label $DCB::
or that the DCB be at the start of the data base.

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER DATA BASES

4,2.3 Unit Control Block Ordering

All the UCBs associated with a specific device control block (DCB)
must be contiguous with each other and must be of equal length. These
requirements are necessary because the DCB has only one 1link to the
UCBs, and that link is to the first UCB. Two data elements, the UCB
length and the number of units, are stored in the DCB; they, together
with the 1link to the first UCB, are used to locate subsequent UCBs.
If you do not follow these requirements, no software <can access the
UCBs.

4.,2.4 Status Control and Controller Request Blocks

All user-written drivers that do not need separate storage for
independent unit context should use the contiguous allocation of the
KRB and SCB. (For an explanation of when independent unit context 1is
required, refer to the discussion of overlapped seek I/O in Section
1.4.1. Therefore, the KRB and SCB are contiguous and some fields of
each structure overlap. This arrangement saves space that would be
required for one SCB for each independent unit. Because only one unit
can be active at any one time, all wunits attached to the same
controller can share the SCB. This arrangement of the KRB and the SCB
is described in Section 4.4.7.

4.2.5 Controller Table

You must define the start of the table of KRB addresses in the CTB
with the global 1label $xxCTB::. Both the INTSVS$ macro call and the
Executive PROLOD routines require this label.

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

4.3 OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

To create the source code to drive a device, you must perform the
following steps:

1. Thoroughly read and understand this manual.

2. Familiarize yourself in detail with the physical device and
its operational characteristics.

3. Determine the level of support required for the device.
4., Determine actions to be taken at the driver entry points.

5. Create the driver source code.

To assist you in generating proper code for your user-written driver
and to provide a stable user-level interface from one release of the
system to another, P/0OS provides the macro calls listed in Table 4-1.

The definitions of the system macro calls for drivers are in the
Executive assembly prefix file RSXMC.MAC. The following subsections
describe the format of the macro calls and other features of
user-written driver code. Driver code details (such as labeling
requirements and entry point conditions) are presented in Section 4.5.

4.3.1 Generate Driver Dispatch Table Macro Call - DDTS$

The DDT$ macro call facilitates generation of the driver dispatch
table. The format of the DDTS$ macro call is as follows:

DDTS$ dev,nctrlr,iny,inx,ucbsv,NEW,0OPT,BUF
Table 4-2 lists the arguments of the DDT$ macro call. The macro
constructs the DDT, wusing as addresses those locations indicated by
the standard labels. The macro has arguments allowing you to tailor
some of the standard entry points. The format of the DDT generated by
the DDTS$ macro is described in Section 4.5.1.

Table 4-1: System Macro Calls for Driver Code*

Macro Name General Functions

* See Appendix A for Macro definitions.

4-5

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

DDTS$

GTPKTS

INTSVS

Table 4-2:

Argument

dev

nctrlr

iny

Used conventionally at the start of the driver code
(1) to allocate storage for and to generate a
driver dispatch table containing the addresses of
entry points in the order in which the Executive
expects them; (2) to generate special global labels
required by the Executive; (3) to tell the
Executive PROLOD routines: (a) which controllers
the driver supports, (b) how many interrupt vectors
each controller supports, and (c) the association
between the interrupt vectors and the driver
interrupt entry points; and (4) to generate default
controller and wunit status change entry point
procedures (for on-line and off-line transitions)

Used at the I/O initiator entry point to generate
the call to the SGTPKT routine and to generate code
to save the address of the currently active unit's
UCB

Used at an interrupt entry point to conditionally
generate a call to the S$INTSV routine and to
generate code to load the UCB address of the
interrupting device into R5

DDT$ Macro Call Arguments

Meaning

is the 2-character device mnemonic. (Optional, wused
to generate entry point symbol names such as a $xXxINI
where dev=xx.)

is the number of controllers that the driver services
(counting from 1).

allows the definition of no interrupt entry point or
multiple interrupt entry points. If you leave the
argument null, the macro generates as the interrupt
entry point address the 1location defined by the
conventional label S$INT.

If you specify NONE, no interrupt entry point Iis
generated for the controller.

inx

ucbsv

BUF

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

If you specify an argument list of the form <aaa,bbb>,
the macro generates multiple cells containing
addresses defined by unconventional labels of the form
Saaa and $bbb. This latter mechanism allows you to
define multiple interrupt entry points in the driver.
For example, the argument list <INP,OUT> generates two
interrupt address labels of the form $INP and $OUT,
the typical names used by drivers with two interrupt
entry points.

uses an alternate I/0 initiation entry point address
label instead of the conventional INI form. If you
specify inx, the macro uses as the only I/0 initiation
entry point address the location defined by the label
inx.

Strictly speaking, this argument is not needed on P/0S
systems and can not be used directly 1if a given
controller can support parallel operations on multiple
units simultaneously. If this argument is non-blank,
a table of "nctrlr" words in length 1is generated to
contain the controller index to UCB mapping of a per
controller I/0 operation in progress. As a result,
the macro does not allocate the space for the table of
UCB addresses. For guidelines on specifying this
argument, refer to Section 4.3.4.

If this argument is blank, then the DDT powerfail,
controller status change, and the unit status change
entry points are NOPed.

required if the driver performs buffered input and
output. The entry point DEA: is generated.

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

4.3.2 Get Packet Macro Call - GTPKTS

The GTPKTS macro call standardizes wuse of the Executive S$GTPKT
routine, which retrieves an I/O packet for the driver to process.
The format of the GTPKTS macro call is as follows:

GTPKTS

dev,nctrlr,addr,ucbsv,suc

The description of the arguments appears in Table 4-3.

Table 4-3:

Argument

dev

‘nctrlr

addr

ucbsv

suc

GTPKTS Macro Call Arguments

Meaning

is the 2-character device mnemonic (optional).

is the number of controllers that the driver services
(counting from 1).

is the local label defining the location at which to
continue execution if there is no I/0 packet
available. A driver typically executes a RETURN
instruction when the SGTPKT routine indicates that
there is no 1/0 packet to process. If you leave this
argument null, therefore, the macro generates a RETURN
instruction.

Strictly speaking, this argument is not needed on P/0S
systems and can not be wused directly if a given
controller can support parallel operations on multiple
units simultaneously. If this argument is non-blank,
a table of "nctrlr" words in length is generated to
contain the controller index to UCB mapping of a per
controller I/0 operation in progress. The macro then
generates code to 1load the pointer S.OWN with the
address of the UCB returned by $GTPKT. For guidelines
on using the argument, refer to Section 4.3.4.

indicates single unit controller. If you are writing
a driver that supports a controller type such as the
LP1l1l, to which only a single unit can be attached, you
should specify this argument (any character(s) except
null). If you specify this argument, vyou should
ensure that the offset K.OWN/S.OWN in the KRB(s) of
your driver data base points to the UCB(s) of the
unit(s) to which the controller(s) is attached. Thus,
the macro does not generate code that stores the UCB
address in the KRB for a device that has only one UCB

4-8

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

per KRB.

If your driver has multiple units attached to the same
controller, you should leave this argument null. The
macro will then generate code to store the UCB address
of the unit to process in the SCB or SCB/KRB.

Note that for non-contiguous SCB/KRB configurations,
the UCB is stored in K.OWN when the controller request
is granted, depending on controller characteristics
(see SROQCNC and S$SRQCND in MDSUB).

This macro call generates the call to the Executive S$GTPKT routine.
You should place it at the I/0O initiation (INI) entry point because
the SGTPKT routine is the standard manner for a driver to receive work
from the Executive. When the driver receives control at its INI entry
point, the Executive has loaded R5 with the address of the UCB of the
unit that the driver must service. Because of the code the macro call
generates, the driver immediately calls $GTPKT, which can set the C
bit to indicate that no work 1is pending. The call additionally
generates the BCS instruction that returns control to the <calling
routine when there 1is no work. If you specify an address as the
"addr" argument in the macro call, it is used as the destination of
the BCS instruction. The address 1is typically that of a RETURN
instruction, but does not have to be. Eventually the driver must
execute a RETURN to the system.

The S$GTPKT routine indicates that the driver has an I/0 packet to
process by clearing the C bit. Therefore, when the test of the BCS
instruction is false, execution continues inline and the driver can
process the 1I/0 packet that the Executive queued to it. The $GTPKT
routine leaves information in the driver registers to enable the
driver to process the request. Refer to the description of the S$GTPKT
routine and the GTPKTS$ macro listing in Chapter 7.

4.3.3 Interrupt Save Macro Call - INTSVS

You should specify the INTSVS macro call at each interrupt entry point
in the driver. The format of the INTSV$ macro call is as follows:

INTSVS dev,pri,nctrlr,pswsv,ucbsv

The arguments of the call are described in Table 4-4. The macro
generates the code to load R5 with the UCB address of the current
controller owner, given the controller index is in R4 (R4 1is not
modified by macro). Note that R5 may be zero in case of either an
unexpected interrupt (e.g., no current I/O operation), or an interrupt
as a result of a parallel operation on the same controller. (For

4-9

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

example, an overlapped seek completing after a data transfer
completion.) In general, for configurations which support overlap seek
it is the driver's responsibility to differentiate between a transfer
function completion interrupt from a control function completion
interrupt.

Table 4-4: INTSVS Macro Call Arguments

Argument Meaning
dev is the 2-character device mnemonic (optional).
pri not used.
nctrlr is the number of controllers that the driver services

(counting from 1),

pSwsw Leave this argument null; it has no effect. It is an
anachronism, and must be positionally present if ucbsv
is specified.

ucbsv Strictly speaking, this argument is not needed on P/0S
systems and can not be wused directly if a given
controller can support parallel operations on multiple
units simultaneously. If this argument is non-blank,
a table of "nctrlr" words in length is generated to
contain the controller index to UCB mapping of a per
controller I/O operation in progress. The macro
generates code which uses the controller index
returned in R4 by SINTSI to index into a UCB table to
load the UCB address of the interupting device into
R5.

4.3.4 Usage of UCBSV Argument in Macro Calls

The DDTS$, GTPKTS, and INTSVS macro calls allow you to specify an
argument (ucbsv) that wuses an alternate technique to map the
controller index to a UCB address. P/0S does not need to utilize
the wucbsv argument. The argument ucbsv in the DDT$ macro allocates
nctrlr words of storage (one word for each controller that the
driver supports) and labels the first word ucbsv:. This table
contains the address of the unit control block of the interrupting
devices for each controller. The GTPKTS macro updates table entries
at I/0 initiation and INTSVS$ references this table to retrieve the
UCB address.

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

If you specify the argument ucbsv in the GTPKTS macro call, it must
be the same 1label you supplied for the ucbsv argument in the DDT$
and INTSVS macro calls. The macro generates code to move the UCB
address returned by S$GTPKT to the correct location in the table
starting at the label ucbsv.

If you specify the argument ucbsv in the INTSVS macro «call, it
should be the same label you supplied for the ucbsv argument in the
DDT$ and GTPKTS macro calls. The macro uses ucbsv to locate the UCB

address of the interrupting unit, and then generates code to load
the address into R5.

4.3.5 Driver Entry Points for PROLOD and PROUNL

A driver that requires additional initialization and completion
functions can define two entry points by labels of the form $LOA and
$UNL. Because these two labels do not appear in the DDT itself,
their format is fixed; you must use the exact format in your driver
code. When you load the driver, the PROLOD routines check for the
S$LOA entry point.

The driver is entered, once per UCB, at the $LOA entry point at
priority zero. At this stage, the driver data base has been loaded
and pointers have been relocated. The driver is mapped through APR
5, and the following registers are set up:

R3 Controller index (undefined if S.KRB = 0)
R4 - Address of the status control block
R5 - Address of the unit control block

The driver may use all the registers. When you unload the driver,
the PROUNL routine <calls it at the S$UNL entry point with the same
conditions. These two entry points in the driver are independent of
the controller and wunit status change entry points used by the
Executive. That is, the two entry points SLOA and S$UNL are used for
initialization and at driver load and unload time and not at on-line
and off-line status change time. Note that $UNL is called only when
all controllers and units are offline. The database is removed and
is reused on subsequent reloads.

4.4 DRIVER DATA STRUCTURE DETAILS

The following elements in the I/O data structure are of concern to
the programmer writing a driver:

K
i

11

DRIVER DATA STRUCTURE DETAILS

1. The I/0O packet
2., The DCB
3. The UCB
4, The SCB

5. The KRB

6. The CTB

The I/0 data structure, and the control blocks listed previously in
particular, contain an abundance of data pertaining to input/output
operations. Drivers themselves are involved with only a subset of
the data.

NOTE

Except where explicitly noted otherwise, all unused
bits, fields, and words in all driver data base
structures are reserved for DIGITAL system use and
expansion.

In the following descriptions, most data fields (words or bytes) are
classified by one of five descriptions. Two items 1in each
description indicate:

® Whether the field 1is 1initialized in the data-structure
source, and

® What sort of access the driver has to the field during
execution

The five descriptions are:

<initialized, not referenced>
This field is supplied in the data-structure source code,
and is not referenced by the driver during execution.

<initialized, read-only>
This field is supplied in the data-structure source code,
and may be read by the driver.

<not initialized, read-only>
Either an agent other than the driver establishes this
field, or the driver sets it wup once and thereafter
references it read-only.

<not initialized, read-write>
Either the driver or some other agent establishes this
field, and the driver may read it or write over it.

4-12

DRIVER DATA STRUCTURE DETAILS
<not initialized, not referenced>
This field does not involve the driver in any way.
These five descriptions cover most of the fields in the control

blocks described in this section. No system software or hardware

checks or enforces any of the access described. Exceptions are
noted in the text.

4.4.1 The I/0 Packet

Figure 4-1 shows the layout of a control function I/O Packet, and
Figure 4-2 shows the layout of a transfer function I/O Packet. Both
are constructed and placed in the driver I/0 queue by QIO directive
processing, and subsequently delivered to the driver by a call to
S$GTPKT. The DPB from which the I/0 Packet 1is generated is
illustrated in Section 4.4.2. QIO directive processing dynamically
builds the I/O packet from the data in the DPB. Fields in the 1I/O
Packet (see the following text) are classified as:

@ Not referenced,

® Read-only, or

® Read-write.
I.LNK

Driver access:

Not referenced.

Description:

Links I/O Packets gueued for a driver. A zero ends the
chain. The listhead is in the SCB (S.LHD).

I.EFN
Driver access:
Not referenced.
Description:
Contains the event flag number as copied by QIO directive
processing from the requester's DPB. Bit 0<200> indicates

a virtual function.

I.PRI

DRIVER DATA STRUCTURE DETAILS

Driver access:
Not referenced.
Description:

Priority copied from the TCB of the requesting task.

Figure 4-1:

DRIVER DATA STRUCTURE DETAILS

I/0 Packet Format - Control Function

I.LNK
I.PRI }
I.EFN
I.TCB
I.LN2
I.UCB
I.FCN

1.10SB

ILAST

I.PRM

ILAADA

I.LAADA+2

Link to next |/O packet

EFN

PRI

TCB address of requester

Address of second LUT word

Address of redirect UCB

Function code

Modifier

Virtual address of 1/0O status block

Relocation bias of 10SB

Real address of 10SB

Virtual address of AST service routine

(control functions)

P1

P2

P3

P4

P5

P6

Attachment Descriptor Pointer

Attachment Descriptor Pointer

10

12

14

16

20

22

24

Figure 4-2:

DRIVER DATA STRUCTURE DETAILS

I/0 Packet Format - Transfer Function

I.LNK

I.PRI }
I.EFN

1.TCB

I.LN2

L.ucs

I.FCN

1.10SB

ILAST

I.PRM

I.LAADA

I.LAADA+2

Link to next 1/O packet

EFN PRI

TCB address of requester

Address of second LUT word

Address of redirect UCB

Function code Modifier

Virtual address of 1/0 status block

Relocation bias of |0SB

Real address of 0SB

Virtual address of AST service routine

P2

Relocation BIAS of buffer

Displacement of buffer (+140000)

Device
P3 parameters.
(transfer functions)
P4
P5
P6

Attachment Descriptor Pointer

Attachment Descriptor Pointer

P1 assumed to be buffer virtual address
P2 assumed to be buffer size in bytes

10

12

14

16

20

22

24

DRIVER DATA STRUCTURE DETAILS

I.TCB

Driver access:

Not referenced usually. Referenced at I/0 cancel.

Description:

TCB address of the requesting task.

I.LN2
Driver access:
Not referenced.
Description:

Contains the address of the second word of the LUT entry in
the task header to which the I/0 request is directed, if
even. Also, for virtual functions, 1if even, the task
region, and consequently the header, was locked in memory
by incrementing the appropriate I/0 counts. For open files
on file-structured devices, this word contains the address
of the Window Block. If odd, it 1is the window block
pointer; otherwise zero.

I.UCB
Driver access:

Not referenced by conventional driver; frequently
referenced by drivers that use $GSPKT and maintain parallel
active wunit context UCBs rather that the SCBs, and
therefore have a "many to one" UCB to SCB configuration.

Description:

Contains the address of the unit to which I/O 1is to be
directed. I.UCB is the address of the Redirect UCB if the
starting UCB has been subject to a Redirect command. The
field is referenced by the $GTPKT routine.

I.FCN
Driver access:
Read-only.

Description:

I.IOSB

DRIVER DATA STRUCTURE DETAILS

Contains the function code for the I/0 request. It
consists of two bytes. The high-order byte contains the
function code; the 1low-order byte contains modifier

(subfunction) bits. During predriver initiation the
Executive compares the function code with a function mask
value in the DCB. The driver interprets the modifier

(subfunction) bits.

Driver access:

Not referenced. Do not touch. Driver specifies status at
I/0 completion in registers to S$IODON or SIOFIN. The
region containing the IOSB is not guaranteed to be memory
resident, except at predriver initiation time (see UC.QUE).

Description:

I.AST

I.IOSB contains the virtual address of the I/0 Status Block
(I0OSB), if even, or zero if one was not specified.

I.I0SB+2 and I.IOSB+4 contain the address doubleword for
the IOSB if I.IOSB is even and nonzero (see Section 7.4 for
a detailed description of the address doubleword.

Driver access:

Not referenced.

Description:

I.PRM

Contains the virtual address of the AST service routine to
be executed at I/0 completion. If no address is specified,
the field contains zero.

Driver access:

Read-write.

Description:

Device-dependent parameters constructed from the last six
words of the DPB. Note that if the I/O function is a
transfer (refer to the description of D.MSK in Section
4,.4.,3, the buffer address (first DPB device-dependent
parameter) is translated to an equivalent address
doubleword. Therefore, the virtual buffer address, which

4-18

I.AADA

I.AADA+2

DRIVER DATA STRUCTURE DETAILS

occupied one word in the DPB, occupies two words in 1I.PRM.
As a result, all other parameters in I.PRM are shifted by
one word so that device-dependent parameter n is copied to
I.PRM +(2*n)+2,

Most DIGITAL-supplied drivers treat these words as a

read/write storage area after their initial contents have
been used.

When the last word of the device-dependent parameters is
nonzero, the value can have one of several special meanings
to the Executive. For example, if the value is nonzero and
the I/0 function is marked "virtual," the Executive assumes
that the value is a block locking word. Therefore, if the
driver uses the word, it should restore its contents before
calling SIODON.

Driver access:

Not referenced; maintained by the Executive transparently
to the driver.

Description:

4.4.2

Two pointers, each to an attachment descriptor block of the
region in which the task I/0 buffer resides. These
pointers account for I/0 by region and enable the Executive
to lock a region to make it noncheckpointable while I/O is
in progress, and to unlock a region after I/O completes.

The QIO Directive Parameter Block (DPB)

The QIO DPB is constructed as shown in Figure 4-3. Usually drivers

never

access the DPB; the information is supplied here for general

reference.
The parameters in the DPB have the following meanings:

Length (required):

The length of the DPB, which for the QIO directive is always
fixed at 12 words.

DIC (required):

Directive Identification Code. For the QIO directive, this
is 1. For QIOW it is 3.

DRIVER DATA STRUCTURE DETAILS

Q.IOFN (required):

The code of the requested I/0 function (0 through 31).

Length DIC 0
Q.I0FN Function code Modifier 2
Q.loLu Reserved LUN 4
Q.IOPR/Q.I0OEF Priority EFN 6
Q.10SB 1/0 status block address 10
Q.10AE AST address 12
Q.I0PL +0 14

+2 [R

g dependrs _

+6 parameters

+10 B]

-H2‘_———]

ZK-255-81

Figure 4-3: QIO Directive Parameter Block (DPB)

Modifier:

Device-dependent modifier bits.
Reserved:

Reserved byte; must not be used.
0.IOLU (required):

Logical Unit Number.

DRIVER DATA STRUCTURE DETAILS

Q.IOPR:

Request priority. Ignored by P/0S but space must be allocated
for IAS compatibility.
Q.IOEF (optional):

Event flag number. Zero indicates no event flag.

Q.IOSB (optional):

This word contains a pointer to the I/0 status block, which is
a 2-word, device-dependent I/0O-completion data packet formatted
as:
Byte O

I/0 status byte.
Byte 1

Augmented data supplied by the driver.

Bytes 2 and 3

The contents of these bytes depend on the value of byte 0.
If byte 0 = 1, then these bytes usually contain the

processed byte count. If byte 0 does not equal 0, then
the contents are device-dependent.
Q.IOAE (optional):
Address of the I/0 done AST service routine.

Q.IOPL

Up to six parameters specific to the device and to the 1I/0
function to be performed. Typically, for data transfer
functions, the following four are used:

@ Buffer address

® Byte count

e Carriage control type

e Logical block number

The fields for any optional parameters not specified must be filled
with zeros.

DRIVER DATA STRUCTURE DETAILS

4.4.3 The Device Control Block (DCB)

Figure 4-4 is a schematic layout of the DCB. The DCB describes the
static characteristics of a device controller and the units attached
to the controller. All fields must be specified.

D.LNK Link to next DCB (0O=last) 0

D.uCB Link to first UCB 2

D.NAM Generic device name (ASCII) 4

D.UNIT Highest unit no. Lowest unit no. 6

D.UCBL Length of UCB 10

D.DSP Address of driver dispatch table 12

D.MSK Legal function mask bits O - 15. 14

Control function mask bits 0 - 15. 16

No-op’ed function mask bits O - 15, 20

ACP function mask bits O - 15. 22

Legal function mask bits 16. - 31. 24

Control function mask bits 16. - 31. 26

No-op’ed function mask bits 16. - 31. 30

ACP function mask bits 16. - 31. 32

D.PCB Address of partition control block 34
ZK-256-81

Figure 4-4: Device Control Block

The fields* in the DCB are described as follows:
D.LNK (link to next DCB)

Driver access:

* Parenthesized contents following the symbolic offset indicate the
value to be initialized in the data base source code.

4-22

DRIVER DATA STRUCTURE DETAILS

Initialized, not referenced.

Description:

Address link to the next DCB. If this cell is in the last
(or only) DCB, vyou should set its value to zero. If you
are incorporating more than one user-written driver at one
time, then this field should point to another DCB in a DCB

chain, which is terminated by a value of zero.
D.UCB (pointer to first UCB)

Driver access:

Initialized, not referenced.

Description:

Address link to the U.DCB field of the first, and possibly
the only, unit control block associated with the DCB. For
a given DCB, all UCBs are in contiguous memory locations
and must all have the same length.

D.NAM (ASCII device name)
Driver access:

Initialized, not referenced.

Description:

Generic logical device name in ASCII by which device units
are mnemonically referenced.

D.UNIT (unit number range)

Driver access:

Initialized, not referenced.

Description:

Unit number range for the device. The 1low~-order byte
contains the 1lowest 1logical wunit number; the high-order
byte contains the highest logical unit number. This range
covers those logical units available to the user for device
assignment. Typically, the lowest number is zero or one,

and the highest is n-1, where n is the number of
device-units described by the DCB.

D.UCBL (UCB length)

DRIVER DATA STRUCTURE DETAILS

Driver access:
Initialized, not referenced.
Description:

The unit control block can have any length to meet the
needs of the driver for variable storage. However, all
UCBs for a given DCB must have the same length. The
specified 1length must include prefix words (such as U.LUIC
and U.OWN), if present.

D.DSP (driver dispatch table pointer)
Driver access:
Not referenced.
Description:

Address of the driver dispatch table, which 1is 1located
within the driver code. (When the Executive wishes to
enter the driver at any of the entry points contained in
the driver dispatch table, it accesses D.DSP, locates the
appropriate address in the table, and calls the driver at
that address.)

D.MSK (driver-specific function masks)

Driver access:
Initialized, not referenced.

Description:
Eight words, beginning at D.MSK, are critical to the proper
functioning of a device driver. The Executive uses these
words to validate and dispatch the I/O0 request specified by
a Q0I0 directive. The following description applies only to
nonfile-structured devices.* Four masks, with two words per
mask, are described by the bit configurations that you
establish for these words:

1. Legal function mask

* Although no DIGITAL publication describes writing drivers for
file-structured devices (drivers that interface with F11ACP), you
could write a disk driver by using a DIGITAL-supplied driver as a
template.

DRIVER DATA STRUCTURE DETAILS

2., Control function mask

3. No-op function mask

4., ACP function mask
The QIO directive allows for 32 possible I/0 functions.
The masks, as stated, are filters to determine validity and
I/0 requirements for the subject driver.
The Executive filters the function code in the I/0 request

through the four masks. The I/0 function code is the
high-order byte of the function parameter issued with the

QIO directive. The decimal representation of that
high-order byte is equivalent to the decimal bit number of
the mask. If you want the function to be true in one of

the four masks, you must set the bit in that mask in the
position that numerically corresponds to the function code.
For example, the code for IO.RVB 1is 21 (octal) and its
decimal representation is 17. If you want IO.RVB to be

true for a mask, therefore, you must set bit number 17 in
the mask.

The masks are laid out in memory in two 4-word groups.
Each 4-word group covers 16 function codes. The first 4
words cover the function codes 0 through 15; the second 4
words cover codes 16 through 31. Below is the exact layout
used for the driver example in Chapter 8.

«WORD 177477 ; LEGAL FUNCTION MASK CODES 0-15.
«WORD 70 ; CONTROL FUNCTION MASK CODES 0-15.
«WORD 0 ;NO-OP FUNCTION MASK CODES 0-15.

« WORD 177200 ;ACP FUNCTION MASK CODES 0-15.

«WORD 377 ; LEGAL FUNCTION MASK CODES 16.-31.

- WORD 0 ;CONTROL FUNCTION MASK CODES 16.-31.
«WORD 0 ;NO-OP FUNCTION MASK CODES 16.-31.
«WORD 377 ;ACP FUNCTION MASK CODES 16.-31.

The Executive filters the function code through the mask
words sequentially as follows:

Legal Function Mask:

Legal function values have the corresponding bit position
in this word set to 1. Function codes that are not legal
are rejected by QIO directive processing, which returns
IE.IFC in the 1I/0 status block, provided an IOSB address
was specified.

DRIVER DATA STRUCTURE DETAILS

Control Function Mask:

If any device-dependent data exists in the DPB, and this
data does not require further checking by the QIO directive
processor, the function 1is <considered to be a control
function. Such a function allows QIO directive processing
to copy the DPB device-dependent data directly into the I/0
Packet.

No-op Function Mask:

A no-op function 1is any function that 1is considered
successful as soon as it is issued. If the function is a
no-op, QIO directive processing immediately marks the
request successful; no additional filtering occurs.

ACP Function Mask:

If a function code is legal but specifies neither a control
function nor a no-op, then it specifies either an ACP
function or a transfer function. If a function code
requires intervention of an Ancillary Control Processor
(ACP), the corresponding bit in the ACP function mask must
be set. ACP function codes must have a value greater than
7.

In the specific case of read-write virtual functions, the
corresponding mask bits may be set at your option. If the
corresponding mask bits for a read-write virtual function
are set, QIO directive processing recognizes that a
file-oriented function is being requested to a
nonfile-structured device and converts the request to a
read-write logical function.

This conversion 1is particularly useful. Consider a
read-write virtual function to a specific device:

1. If the device is file-structured and a file is open on
the specified LUN, the block number specified Iis
converted from a virtual block number in the file to a
logical block number on the medium. Moreover, the
request is queued to the driver as a read-write logical
function.

2. If the device is file-structured and no file is open on
the specified LUN, then an error is returned and no
further action is taken.

DRIVER DATA STRUCTURE DETAILS

3. If the device is not file-structured, then the request
is simply transformed to a read-write logical function
and is queued to the driver. (The specified block
number is unchanged.)

Transfer Function Processing:

Finally, if the function is not an ACP function, then it is
by default a transfer function. All transfer functions
cause the QIO directive processor to check the specified
buffer for legality (that is, inclusion within the address
space of the requesting task) and proper alignment (word or
byte). In addition, the processor checks the number of
bytes being transferred for proper modulus (that 1is,
nonzero and a proper multiple). All transfer functions
except IO.WLB and IO.WVB are assumed to require Read and
Write access to the buffer region, and are access checked
accordingly. By convention, the first user-supplied

parameter is the buffer address and the second is the byte
count.

Creating Mask Words:

Creating function mask words involves the following five
steps:

1. Establish the I/0 functions available on the device for
which driver support is to be provided.

2. Build the Legal Function mask: Check the standard P/0S
function mask values 1in Table 4-6 for equivalencies.
Only the IO.KIL function 1is mandatory. IO.ATT and
IO.DET functions, if used, must have the P/0S system
interpretation. DIGITAL suggests that functions having
an P/0OS system counterpart use the P/0S code, but this
is required only when the device 1is to be wused in
conjunction with an ACP. From the supported function
list in Table 4-5, you can build the two Legal Function
mask words.

3. Build the Control Function mask by asking:

Does this function carry a standard buffer address and
byte count in the first two device-dependent parameter
words?

If it does not, then either it qualifies as a contgol
function or the driver itself must effect the checking
and conversion of any addresses to the format required

by the driver. See Section 8.1 for an example of a
driver that does this. (Buffer addresses in standard
format are automatically converted to Address

4-27

DRIVER DATA STRUCTURE DETAILS

Doubleword format.)

Control functions are essentially those functions whose
DPBs do not contain buffer addresses or counts.

4. Create the No-op Function mask by deciding which 1legal
functions are to be no-op. Typically, for
compatibility with File Control Services (FCS) or
Record Management Services (RMS) on nonfile-structured
devices, the file access/deaccess functions are
selected as 1legal functions, even though no specific
action is required to access or deaccess a
nonfile-structured device; thus, the access/deaccess
functions are no-op.

5. Finally, include the ACP functions Write Virtual Block
and Read Virtual Block for those drivers that support
both read and write. (Include only one related ACP
function if the driver supports only read or write).
Other ACP functions that might be included fall 1into
the nonconventional driver classification and are
beyond the scope of this document.

D.PCB (0)
Driver access:

Initialized, not referenced.
Description:

Address of the driver's Partition Control Block (PCB). The
driver data base source must initialize the address to
zero. The DCB can be extended by adding words after D.PCB.
A PCB exists for every partition in a system. A driver PCB
describes the partition in which it resides.

The Executive uses D.PCB together with D.DSP (the address
of the driver dispatch table) to determine a driver is in
memory. Zero and nonzero values for these two pointers
have the meanings shown in Figure 4-5.

4.4.3.1 Establishing I/O Function Masks - Table 4-5 is supplied to
assist you in determining the proper values to set in the function
masks. The mask values are given for each 1I/0 function wused by
DIGITAL-supplied drivers. The bit number allows you to determine
which mask group to use: for bits numbered 0 through 15, use the
mask value for a word in the first 4-word group; for bits numbered
16 through 31, use the mask value for a word in the second 4-word
group.

DRIVER DATA STRUCTURE DETAILS

D.DSP:
D.PCB: =0 #0

Loadable

-0 driver, (notv
not in possible)
memory
(not andable

#0 possible) driver,

in memory

Figure 4-5: D.PCB and D.DSP Bit Meanings

Of the function mask values listed in Table 4-5, only IO.KIL is
mandatory and has a fixed interpretation. However, if IO.ATT and
IO.DET are used, they must have the standard meaning. (Refer to the
Professional Developer's Tool Kit Reference Manual) Order no.
AA-Y660A-TK for a description of standard I/0 functions.) If QIO
directive processing encounters a function code of 3 or 4 and the
code is not no-op, QIO assumes that these codes represent Attach
Device and Detach Device, respectively. The other codes are
suggested but not mandatory. You are free to establish all other
function-code values on nonfile-structured devices. However, the
mask words must still reflect the proper filtering process.

If you are writing a driver for a file-structured device, you must
establish the standard function mask values of Table 4-5.

To determine the proper bit masks for disks, tapes, and unit record
devices (such as terminals, card readers, line printers, paper tape
punches/readers), use Table 4-6, Table 4-7, and Table 4-8 as guides.

Table 4-5:
Bit Mask
Value
0 1
1 2
2 4
3 10
4 20
5 40
6 100
7 200
8 400
9 1000
10 2000
11 4000
12 10000
13 20000
14 40000
15 100000
16 1
17 2
18 4
19 10
20 20
21 40
22 100
23 200
24 400
25 1000
26 2000
27 4000
28 10000
29 20000
30 40000
31 100000

DRIVER DATA STRUCTURE DETAILS

Related
Symbolic

IO.KIL
IO.WLB
IO.RLB
IO.ATT
IO.DET

IO.FNA
IO0.ULK
IO.RNA
IO.ENA
IO.ACR
IO.ACW
IO.ACE
IO.DAC
IO.RVB
IO.WVB
I0.EXT
IO.CRE
IO.DEL
IO.RAT
IO.WAT
IO0.APC

IO.APV

Mask Values for Standard I/O Functions

I1/0
Function

Cancel I/0

Write Logical Block
Read Logical Block
Attach Device

Detach Device

General Device Control
General Device Control
General Device Control
Diagnostics

Find File in Directory
Unlock Block

Remove File from Directory
Enter File in Directory
Access File for Read
Access File for Read/Write
Access File for Read/Write/Extend
Deaccess File

Read Virtual Block
Write Virtual Block
Extend File

Create File

Mark File for Delete
Read File Attributes
Write File Attributes
ACP Control

Unused

Unused

Unused

Unused

Unused

ACP Privileged

Unused

n n

DRIVER DATA STRUCTURE DETAILS

Table 4-6: Mask Word Bit Settings for Disk Drives

Bit P/0S Related Symbolic
0 C IO0O.KIL
1 t IO.WLB
2 t IO.RLB
3 C IO.ATT
4 c IO.DET
2 c I0.STC
7 sa IO.CLN
8 sd Diagnostic
9 a IO.FNA

10 a I0.ULK

11 a IO.RNA

12 a IO.ENA

13 a IO.ACR

14 a IO.ACW

15 a IO.ACE

16 a I0.DAC

17 a IO.RVB

18 a IO.WVB

19 a I0.EXT

20 a IO.CRE

21 a IO.DEL

22 a IO.RAT

23 a IO .WAT

24 a IO.APC

25

26

27

28

29

30 a I0.APV

31

- transfer function, bit set only in legal function mask

- control function, bit set in legal and control function masks
- no-op function, bit set in legal and no-op function masks

ACP function, bit set in legal and ACP function masks

- special case, bit set only in ACP function mask, but not legal
- special case, bit set only if diagnostic support in system and
driver

Qo 30t
|

4-31

DRIVER DATA STRUCTURE DETAILS

Table 4-7: Mask Word Bit Settings for Magnetic Tape Drives

Bit P/0S (currently IS.PND) Related Symbolic
0 C IO.KIL
1 t IO.WLB
2 t IO.RLB
3 C IO.ATT
4 c IO.DET
5 C IO.STC
6 c
7 sa IO.CLN
8 sd Diagnostic
9 a IO.FNA
10 I0.ULK
11 IO.RNA
12 n TO.ENA
13 a IO.ACR
14 a IO.ACW
15 a IO.ACE
16 a IO.DAC
17 a IO.RVB
18 a IO.WVB
19 a IO .EXT
20 IO.CRE
21 IO.DEL
22 a IO.RAT
23 IO.WAT
24 a I0.APC
25
26
27
28
29
30 a IO.APV
31
t - transfer function, bit set only in legal function mask
c - control function, bit set in legal and control function masks
n - no-op function, bit set in legal and no-op function masks
a - ACP function, bit set in legal and ACP function masks
sa - special case, bit set only in ACP function mask, but not legal
sd - special case, bit set only if diagnostic support in system and

driver

DRIVER DATA STRUCTURE DETAILS

Table 4-8: Mask Word Bit Settings for Unit Record Devices

Bit P/0S Related Symbolic
0 c IO.KIL
1 t JIO.WLB
2 t IO.RLB
3 C IO.ATT
4 c IO.DET
5 c 10.STC
6
7 sa IO.CLN
8 sd Diagnostic
9 a IO.FNA
10 a IO.ULK
11 a IO0O.RNA
12 a IO.ENA
13 a IO.ACR
14 a IO.ACW
15 a IO0.ACE
16 a IO.DAC
17 a IO.RVB
18 a IO.WVB
19 a I0.EXT
20 a IO.CRE
21 a IO.DEL
22 a IO.RAT
23 a I0.WAT
24 a I0.APC
25
26
27
28
29
30
31
t - transfer function, bit set only in legal function mask
¢ - control function, bit set in legal and control function masks
n - no-op function, bit set in legal and no-op function masks
a — ACP function, bit set in legal and ACP function masks
sa - special case, bit set only in ACP function mask, but not legal
sd - special case, bit set only if diagnostic support in system and

driver

DRIVER DATA STRUCTURE DETAILS

4.4.4 The Unit Control Block (UCB)
Figure 4-6 is a layout of the UCB (a variable-length control block).
One UCB exists for each physical device-unit generated into a system
configuration. For user-added drivers, this control block is defined
as part of the source code for the driver data structure.
The fields* in the UCB are described below:
U.UAB (0)
Driver access:
Initialized, not referenced.
Description:
For terminal UCBs only. Reserved.
U.MUP
Driver access:
Not initialized, not referenced.
Description:
For terminal UCBs only.
U.LUIC (0<100200>)
Driver access:
Initialized, not referenced.
Description:
For terminal UCBs only, and only in multiuser systems: the
logon UIC of the wuser at the particular terminal. This
of fset must exist for any device on a multiuser system for

which the DV.TTY bit is set.
U.OWN (0)

Driver access:

Initialized, not referenced.

* Parenthesized contents following the symbolic offset indicate the
value to be initialized in the data base source code.

4-34

DRIVER DATA STRUCTURE DETAILS

Description:

The UCB address of the owning terminal for allocated devices.

, - - - - - - - -7 = h
U.UAB reserved -1 10
u.MuP! reserved —I 6
v.Luic’ reserved -4
U.OWN Owning terminal UCB address -2 A
u.DCB Back pointer to DCB 0
U.RED Redirect UCB pointer 2
3§1T'SL } Unit status Control flags 4
U.UNIT
. Phusi . .
UST?2 } Unit status hysical unit no 6
U.Cwi1 Characteristics word 1 10
U.Cw2 Characteristics word 2 12
U.Cw3 Characteristics word 3 14
u.Cw4 Characteristics word 4 16 All
devices
u.sCs Pointer to SCB 20
UATT TCB address of attached task 22
U.BUF Buffer relocation bias 24
U.BUF+2 Buffer address 26
U.CNT Byte count 30 "
2 r- - - - - - - - - 0= - — = =
u.ucBx I Pointer to the UCB extension in secondary pool | 32
Device- 34
dependent
 I— PRSN

.
.

°

storage \

1. This offset appears only for terminal devices (that is, devices that have DV.TTY set)
2. This offset appears only for those devices that have DV.MSD set.

Figure 4-6: Unit Control Block

U.DCB (pointer to associated DCB)

Driver access:

DRIVER DATA STRUCTURE DETAILS

Initialized, not referenced.

Description:

This word is a pointer to the corresponding device control
block. Because the UCB 1is a key control block in the I/O
data structure, access to other control blocks usually occurs
by means of links implanted in the UCB.

U.RED (pointer to start of this UCB (.-2))
Driver access:
Initialized, not referenced.
Description:

Contains a pointer to the unit control block to which this
device-unit has been redirected. The redirect chain ends
when this word points to the beginning of the UCB itself
(U.DCB of the UCB, to be precise).

U.CTL (device-dependent values)
Driver access:
Initialized, not referenced.
Description:

U.CTL and the function mask words in the device control block
control QIO directive processing. Figure 4-7 shows the
layout of the unit control byte.

The driver data base code statically establishes this bit
pattern. Any inaccuracy in the bit setting of U.CTL produces
erroneous I/0 processing. Bit symbols and their meanings are
as follows:

UC.ALG - Alignment bit.

If this bit is 0, then byte alignment of data buffers is
allowed (for example, a communications driver). If UC.ALG is
1, then buffers must be word-aligned (for example, a disk
driver).

15

DRIVER DATA STRUCTURE DETAILS

U.STS U.CTL

l }UC. LGH - Buffer size mask bits for transfer length

UC.KIL - Unconditional cancel 1/0 (1=ves)
UC.ATT - Attach/detach notification (1=yes)
UC.PWF - Unconditional call at powerfail (1=vyes)
UC.QUE - Queue to driver bit {1=yes)

UC.NPR - NPR device bit (1=yes)

UC.ALG - Alignment (byte or word)(1=no)

ZK-258-81
Figure 4-7: Unit Control Byte

UC.ATT - Attach/Detach notification.

If this bit is set, then the driver is called when S$GTPKT
processes an Attach/Detach I/0 function. Typically, the
driver does not need to obtain control for Attach/Detach
requests, and the Executive performs the entire function
without any assistance from the driver. When the need
exists, the most common use of UC.ATT 1is for event
notification without outstanding 1I/0. Attachment coupled
with UC.ATT provides an I/0 rundown operation (IO.DET) to
occur so that the driver can remove this context when the
issuing task exits - gracefully or otherwise.

UC.KIL - Unconditional Cancel I/0 call bit.

If set, the driver is called on a Cancel I/O request, even if
the unit specified is not busy. Typically, the driver is
called on Cancel 1/0 only if an I/O operation is in progress.
In any case, the Executive flushes the I/0 queue.

UC.QUE - Queue to-driver bit.
If set, the QIO directive processor calls the driver at its
I/0 initiation entry point without queuing the I/O packet.

After the processor makes this call, the driver is
responsible for the disposition of the 1I/0 packet.

4-37

U.STS (0)

DRIVER DATA STRUCTURE DETAILS

Typically, the processor queues an I/0 Packet before calling
the driver, which later retrieves it by a call to SGTPKT.

The most common reason for a driver to examine a packet
before queuing 1is that the driver employs a special user
buffer, other than the normal buffer used in a transfer
request. Within the context of the requesting task, the
driver must address-check and relocate such a special buffer.
See Section 8.1 for an example of a driver that does this.
Use SCKBFR, SCKBFB, OR SCKBFW rather than $ACHRO, S$ACHKB,
SACHKW, since the later routines do not increment region and
ACB I/O counts.

UC.PWF - Unconditional call on loading driver bit.

If set and the unit is on-line, the driver is always to be
called when driver 1is loaded. Driver may then ignore unit
and controller status changes by simply performing a RETURN
instruction. The driver, however, can never be unloaded
without reboot if these entry points are ignored for the
online to offline transition.

UC.NPR - NPR device bit.

If set, the device is an NPR device. This bit determines the
format of the 2-word address in U.BUF (details given in the
discussion of U.BUF below). It is normally cleared.

UC.LGH - Buffer size mask bits (two bits).

These two bits are used to check whether the byte count
specified in an I/0O request is a legal buffer modulus. You
select one of the values below by ORing into the byte a 0, 1,
2, or 3.

00 - Any buffer modulus valid

01 - Must have word alignment modulus

10 - Combination invalid

11 - Must have double word-alignment modulus

UC.ALG and UC.LGH are independent settings.

Driver access:

Initialized, not referenced.

Description:

DRIVER DATA STRUCTURE DETAILS

This byte contains device-independent status information.
Refer to the UCBDF$ macro definition in Appendix A. Figure
4-8 shows the layout of the unit status byte.

U.ST2 U.UNIT

15 847 0

Unused bits are reserved
for system use and expansion.

US.RED - Unit redirectable (1=no)

US.PUB - Unit is public device (1=no)

US.UMD - Unit attached for diagnostic s (1=yes)
US.PDF - Privileged diagnostic functions only (1=vyes)
US.MUN - clusterdevice (1=yes)

US.TRN - unit transition has accured (1=yes)

US.SIO - stall 1/0 to unit (1=yes)

| ‘ l | US.OFL - Unit offline (1=yes)

Figure 4-8: Unit Status Byte

UsS.MDM, US.MNT, US.VV and US.FOR apply only to mountable
devices.* The bit meanings are as follows:

US.BSY

If set, device-unit is busy.

US .MNT

If set, volume is not mounted.

US.FOR

If set, volume is mounted foreign.

US .MDM

If set, device is marked for dismount.
Us.vv

If set, volume is valid from a software viewpoint.

* If your user-written driver services a mountable device, refer to
Section 4.5.7 for information on volume valid processing.

4-39

DRIVER DATA STRUCTURE DETAILS

U.UNIT (unit number)
Driver access:
Initialized, read-only.
Description:

This byte contains the physical wunit number of the
device-unit serviced by this UCB. 1If the controller for the
device supports only a single unit, the unit number is always
zero.

NOTE

This is the physical unit number of the device and
not the logical wunit number. The range of this
number is from zero to n where n is device-dependent.
The 1logical designation DBO: does not necessarily
imply a zero in this byte.
U.ST2 (US.OFL)
Driver access:
Initialized, not referenced.

Description:

This byte contains additional device-independent status
information. Different parts of the system set and clear
these bits. The layout of the unit status extension byte 1is
shown in Figure 4-9.

The bit meanings are as follows:

US.OFL=1

If set, the device 1is off-line (that 1is, not in the
configuration). This bit should be initialized to 1.

US .RED=2
If set, the device cannot be redirected.
US.PUB=4

If set, the device is a public device.

NS
|

40

DRIVER DATA STRUCTURE DETAILS

US.UMD=10

If set, the device is attached for diagnostics.

US.PDF=20

If set, this unit can be used for a privileged diagnostic
function only.

US.TRN=100

If set, unit volume status change in progress.

US.S10=200

If set, I/0 is stalled typically until volume is reverified.

U.STS U.CTL

15 8,7 0

~—T T — Unused bits are reserved
= for system use and expansion.

US.MDM - Marked for dismount (1=yes)
US.FOR - Mounted as foreign volume (0=vyes)
US.MNT - Volume is mounted (1=no)
US.BSY - Device-unit busy (1=ves)

Figure 4-9: Unit Status Extension 2
U.CWl (device-specific characteristics)
Driver access:
Initialized, not referenced.
Description:

The first of a 4-word contiguous cluster of device

characteristics information. U.CWl and U.Cw4 are
device-independent, whereas U.CW2 and U.CW3 are
device-dependent. The four characteristics words are

retrieved from the UCB and placed in the requester's buffer
on 1issuance of a Get LUN information (GLUNS) Executive

directive. It is your responsibility to supply the contents
of these four words in the assembly source code of the data
structure. '

DRIVER DATA STRUCTURE DETAILS
U.CWl is defined as follows. (If a bit 1is set to 1, the
corresponding characteristic is true for the device.)
DV.REC=1
Record-oriented device
DV.CCL=2
Carriage-control device
DV.TTY=4

Terminal device. If DV.TTY is set, then the UCB contains
extra cells (for U.LUIC, U.CLI, and optionally U.UAB).

DV.DIR=10

Directory device

DV.SDI=20

Single directory device DV.SQD=40
Sequential device

DV.MSD=100

Mass Storage device

DV.UMD=200

Device supports user-mode diagnostics
DV.EXT=400

Unit is on an extended 22-bit controller
DV.SWL=1000

Unit is software write-locked
DV.ISP=2000

Input spooled device

DV.0SP=4000

DRIVER DATA STRUCTURE DETAILS

Output spooled device
DV.PSE=10000

Pseudo device. If this bit is set, the UCB does not extend
past the U.CWl offset.

DV.COM=20000
Device mountable as a communications channel
DV.F11=40000
Device mountable as a FILES-11 device
DV.MNT=100000
Device mountable*
U.CW2 (device-specific characteristics)
Driver access:
Initialized, read-write.
Description:
Specific to a given device driver (available for working
storage or constants) .**
U.CW3 (device-specific characteristics)
Driver access:
Initialized, read-write.

Description:

Specific to a given device driver (available for working

* If your user-written driver services a mountable device, refer to
Section 4.5.7 for information on volume valid processing and
privileged ACP functions.

** An exception is that, for block-structured devices, U.CW2 and U.CW3
may not be used for working storage. In drivers for block-structured
devices (disks and DECtape), these two words must be initialized to a
double-precision number giving the total number of blocks on the
device. Place the high-order bits in the low-order byte of U.CW2 and
the low-order bits in U.CW3.

DRIVER DATA STRUCTURE DETAILS

storage or constants).*
U.CW4 (device-specific characteristics)
Driver access:
Initialized, read-only.
Description:

Default buffer size in bytes. This word 1is <changed by a
system command (SET with the /BUF keyword). The value in
this word effects FCS, RMS, and many utility programs.

U.SCB (SCB pointer)
Driver access:
Initialized, read-only.
Description:

This field contains a pointer to the status control block for
this UCB. In general, R4 contains the value in this word
when the driver is entered by way of the driver dispatch
table, because service routines frequently reference the SCB.

U.ATT (0)
Driver access:

Initialized, not referenced.

Description:

If a task has attached itself to the device-unit, this field
contains its task control block address.

U.BUF (reserve two words of storage)

Driver access:

* An exception is that, for block-structured devices, U.CW2 and U.CW3
may not be used for working storage. In drivers for block-structured
devices (disks and DECtape), these two words must be initialized to a
double-precision number giving the total number of blocks on the
device. Place the high-order bits in the low-order byte of U.CW2 and

the low-order bits in U.CW3.

DRIVER DATA STRUCTURE DETAILS

Not initialized, read-write.

Description:

U.BUF 1labels two consecutive words that serve as a
communication region between S$GTPKT and the driver. 1If a
nontransfer function is indicated (in D.MSK), then U.BUF,

U.BUF+2, and U.CNT receive the first 3 parameter words from
the I/0 Packet.

For transfer operations, the initial format of these two
words depends on the setting of UC.NPR in U.CTL. The driver
does not format the words; all formatting is completed before
the driver receives control. The format is determined by the
UC.NPR bit, which is set for an NPR device and reset for a
program-transfer device.

The format for program-transfer devices 1is an address
doubleword identically formatted to I.IOSB+2 and I.IOSB+4.

In general, the driver does not manipulate these words when
performing I/O to a program-transfer device. Instead, it
uses the Executive routines Get Byte, Get Word, Put Byte, and
Put Word to effect data transfers between the device and the
user's buffer.

The details of the construction of the Address Doubleword
appear in Chapter 7.

U.CNT (reserve one word of storage)

Driver access:

Not initialized, read-write.

Description:

U.UCBX

Contains the byte count of the buffer described by U.BUF.
The driver uses this field in constructing the actual device
request.

U.BUF and U.CNT keep track of the current data item in the
buffer for the current transfer (except for NPR transfers).
Because this field is being altered dynamically, the 1I/0
Packet may be needed to reissue an I/0 operation (for
instance, after a powerfail or error retry).

Driver access:

DRIVER DATA STRUCTURE DETAILS

Not initialized, not referenced

Description:
This field contains a pointer to the UCB extension in
secondary pool for mass storage devices with DV.MSD set,

(DV.MSD=1).

For information on formatting, see the description of the
UCBDF$ macro.

U.PRM (Device-dependent words)
Driver access:
Not initialized, read-write.
Description:

The driver establishes this variable-length block of words to

suit device-specific requirements. For example, a disk
driver uses the first words to store the disk geometry as
follows:

.BLKB 1 ;# OF SECTORS PER TRACK
.BLKB 1 ;# OF TRACKS PER CYLINDER
«BLKW 1 ;# OF CYLINDERS PER VOLUME

The driver can call the SCVLBN routine (described in Chapter
7) to convert a logical block number to a disk address based
on the values in U.PRM and U.PRM+2.

4.4.5 The Status Control Block (SCB)

Figure 4-10 is a layout of the SCB. The SCB contains the context for
a unit operation and describes the status of a unit that can run in
parallel with all other units.

>
|

46

DRIVER DATA STRUCTURE DETAILS

Figure 4-10: Status Control Block

S.LHD

S.FRK

S.KS5
S.PKT

S.CTM/S.ITM
S.STS/S.ST3
S.ST2

S.KRB

S.KTB

Input/Output
Queue Listhead

Fork Link Word

Fork PC

Fork R5

Fork R4

Driver/Fork KISARS

1/0 Packet Address

Initial Time-Out Count | Current Time-Out Count
Status Extension Status
Status Extension
KRB Address
®
®
e
r—-—————— —— — —=
KRB Address 0
- —_—_ - - = = 9
KRB Address 1
L e o e e e e o - — J
®
[]
®
r--—-—-—-"-—-=-=-=-7 1
KRB Address n
Fm—mmmm———— - s
L e o o e e e e — — Jd

10

12

14

16

20

22

24

26

30

DRIVER DATA STRUCTURE DETAILS

The fields* in the SCB are described as follows:
S.LHD (first word equals zero; second word points to first)
Driver access:
Initialized, not referenced.

Description:

Two words forming the I/0 queue 1listhead. The first word
points to the first I/0 Packet in the queue, and the second
word points to the last I/O Packet in the queue. If the
queue 1is empty, the first word is zero, and the second word

points to the first word.
S.FRK (reserve four words of storage)
Driver access:
Initialize words to zero, not referenced.

Description:

The four words starting at S.FRK are used for fork-block
storage if and when the driver deems it necessary to
establish itself as a Fork process. Fork-block storage
preserves the state of the driver, which is restored when the
driver regains <control at fork level. This area is
automatically used if the driver calls S$FORK.

S.KS5 (0)
Driver access:
Initialized, not referenced.
Description:

This word contains the contents of KISAR5 necessary to
correctly alter the Executive mapping to reach the driver for
this unit. It is set by PROLOD, and whenever a fork block is
dequeued and executed, this word is unconditionally jammed
into KISAR5. ADJACENCY WITH THE FORK BLOCK IS ASSUMED!

S.PKT (reserve one word of storage)

* Parenthesized contents following the symbolic offset indicate the
value to be initialized in the data base source code.

4-48

DRIVER DATA STRUCTURE DETAILS

Driver access:

Not initialized, read-only.

Description:

S.CTM (0)

Address of the current I/O Packet established by $GTPKT. The
Executive wuses this field to retrieve the I/0 Packet address

upon the completion of an I/0 request. S.PKT is not modified
after the packet is completed.

Driver access:

Not initialized, read-write.

Description:

P/0OS supports device timeout, which enables a driver to limit
the time that elapses between the issuing of an I/0 operation
and its termination. The current timeout count (in seconds)
is typically initialized by moving S.ITM (initial timeout
count) into S.CTM. The Executive clock service (in module
TDSCH) examines active times, decrements them, and, if they

reach zero, calls the driver at its device timeout entry
point.

The internal clock count 1is kept 1in 1l-second increments.
Thus, a time count of 1 is not precise because the internal
clocking mechanism is operating asynchronously with driver
execution. The minimum meaningful clock interval is 2 if you
intend to treat timeout as a consistently detectable error

condition. If the count is zero, then no timeout occurs; a
zero value is, in fact, an indication that timeout is not
operative, The maximum count is 250, The driver 1is

responsible for setting this field. Resetting occurs at
actual timeout or within SFORK and $IODON.

S.ITM (initial timeout count)

Driver access:

Initialized, read-only.

Description:

S.STS (0)

Contains the initial timeout value that the driver can 1load
into S.CTM to begin device timeout.

DRIVER DATA STRUCTURE DETAILS

Driver access:
Initialized, not referenced.
Description:

Establishes the controller as busy/not busy (nonzero/zero).
This byte is the interlock mechanism for marking a driver as
busy for a specific controller. The byte is tested and set
by SGTPKT and reset by $IODON.
S.ST3 (driver-specific status byte)
Driver access:
Initialized, referenced by driver for synchronization.

Description:

This status byte is reserved for driver-specific status bits
concerning driver-executive or driver-driver communication.
Figure 4-11 shows the layout of this byte.

S.ST3 (S.STS)

LIT T T]
A A A b | S3.DRL - Reserved

S3.NRL - Reserved

S3.8IP - Seek in progress on drive

S3.ATN - Reserved

S3.SLV - Reserved

S3.SPA - Reserved

S3.SPB - Reserved

S3.0PT - Seek optimization enabled (1 yes)

Figure 4-11: Controller Status Extension 3

The following are the descriptions for the currently defined
bits. All currently defined bits are used by mass storage
devices.

DRIVER DATA STRUCTURE DETAILS

S3.S1P=4

If this bit is set, the drive has a seek in progress. A
driver that supports overlapped seek operations examines this
bit to keep track of whether the drive 1is seeking. For a
driver that does not support overlapped operations, this bit
is set to indicate that a positioning operation 1is in
progress.
S3.SPB=100
If this bit is set, port B on this unit is spinning up.
S3.0PT=200
Reserved for future use. Must be clear.
S.ST2 (controller status extension)

Driver access:

Initialized.

Description:

This status word defines certain status conditions for the
controller-unit combination. Figure 4-12 shows the layout of
this word.

DRIVER DATA STRUCTURE DETAILS

S.ST2

15 8,7 0

LIL I L LT T T T T T T T T T fhenedbrsare eenved
; I T [T 1

S2.EIP - Error in progress (1 = yes)
——— S2.ENB - Reserwved
S2.10G - Reserved
S2.MAD - Multiaccess device (1 = yes)

S2.1DS - Reserved (not supported)

S2.0PT - Device supports seek optimization (1 yes)
S2.CON - Contiguous KRB/SCB allocation (1 yes)
S2.0P1 - Indicates the type of optimization used
52.0P2 - Indicates the type of optimization used
S2.ACT - Driver has operation (I/O) active (1 yes)

Figure 4-12: Controller Status Extension 2

DIGITAL has attempted to restrict bits in this word to those
defining system-wide status. Specific bits for driver and
Executive synchronization or driver internal synchronization
are allocated from S.ST3. The following are the descriptions
for the currently defined bits:

S2.MAD=10

This bit indicates the presence of the table of KRB addresses
at the end of the Status Control Block. PROLOD will relocate
these KRB addresses, but it is the drivers' responsibility to
manage controller assignment.

S2.CON=200

This bit indicates the contiguous allocation of the
controller request and status control blocks. Devices that
do not support overlapped operation do not require a separate
SCB for each unit. The KRB and SCB for such devices can be
contiguous and some fields in the SCB overlap those in the
KRB. Therefore, the SCB offsets S.CSR, S.PRI, S.VCT, and
S.CON are valid only for such devices. For these devices,
S2.CON is set.

For the layout of the contiguous KRB and §SCB, refer to
Section 4.4.7.

S2.ACT=2000

K
|

52

DRIVER DATA STRUCTURE DETAILS

If this bit is set, the driver nas active I/O.
S.KRB (pointer to currently assigned KRB)

Driver access:

Initialized, referenced by driver to access the KRB.

Description:

This word points to the currently assigned controller request
block. If this word has a value of zero, then the device has
no currently assigned KRB. It may, in fact, not have a KRB

or CTB at all. Both the null driver and virtual terminal
driver have no KRB.

Certain restrictions apply to drivers whose data bases do not
include KRBs. They will receive powerfail, timeout, and
cancel calls like any other driver, but the priority will

always be zero, and the CSR address and controller index
(where supplied) will be undefined.

NOTE

All code that checks S.KRB for a KRB pointer
must check for a possible zero value and take
appropriate action. A zero value in S.KRB
does not necessarily mean that a KRB does not
exist, but perhaps rather that one 1is not

currently assigned. P/0S systems do not
currently provice active support of
multi-access devices. If needed, however,

the driver may dynamically change this KRB
pointer for its own purposes.

The first cell in the KRB (K.CSR) contains the control and
device register address for the controller.

S.KTB (KRB addresses)
Driver access:
Initialized.
Description:

This table appears only if and the device is multiaccess (the
S2.MAD bit set).

DRIVER DATA STRUCTURE DETAILS

Every controller to which the unit (unit control block and
status control block combination) can communicate is
represented in this table by a controller request block
address. The table contains at least two entries, with the
list terminated by a zero word. Only the driver may change
S.KRB, and it may or may not use the low-order bit of the KRB
addresses in S.KRB as an on-line and off-line flag. System
software (other than the driver) must not modify S.KRB and
must tolerate a 1 in the low-order bit of the values 1in
S.KTB.

4.4.6 The Controller Request Block (KRB)

Figure 4-13 is a layout of the controller request block. One KRB
exists for each controller. If a controller allows only a single
operation on a single unit at a time, then the driver can allocate the
controller request block and the status control block in contiguous
space. With such contiguous allocation, all offsets commonly used by
the driver are referenced by their S.xxx forms. The system will still
use the offset S.KRB and the K.xxx forms for all references. Refer to
Section 4.4.7 for the contiguous SCB/KRB allocation.

The fields* in the KRB are described as follows:
K.PRM (device-dependent storage)
Driver access:
Initialized, read-write.
Description:

PROLOD does not relocate any addresses in this area.

* Parenthesized comments following the symbolic offset indicate the
value to be initialized in the data base source code.

4-54

DRIVER DATA STRUCTURE DETAILS

Figure 4-13: Controller Request Block

K.ICSR
K.SLT

K.PRM
K.VCT3/ K.PRI®
K.I0C/K.CON?
K.STS

K.CSR®

K.OFF

K.HPU

K.OWN

K.CRQ!

K.URM -2

Start of UCB table

interrupt controller CSR

reserved slot number

Driver dependent storage

Vector/4 Priority

Controller 1/0 count Controller index

Controller status

Control and status register address

Offset to UCB table

Unused Highest physical unit

Owner (UCB address of unit owned)

Controller request queue listhead

Controller UNIBUS run mask

UCB address physical unit 0

UCB address physical unit n

-1

NN
I

55

10

14

DRIVER DATA STRUCTURE DETAILS

K.PRI (device priority)
Driver access:
Initialized, read-only.
Description:

Contains the priority at which the device interrupts. Use
symbolic values (for example, PR4) to initialize this field

in the driver data source code. These symbolic values are
defined by issuing the HWDDF$ macro.
K.VCT (interrupt vector divided by 4)
Driver access:
Initialized, not referenced.
Description:
First interrupt vector address divided by 4.
K.CON (controller number times 2)
Driver access:
Initialized, read-only.

Description:

Controller number multiplied by 2. Drivers that support more
than one controller use this field. A driver may use K.CON
to index into a controller table created in the driver data
base source code and maintained internally by the driver
itself. By indexing the controller table, the driver can
service the correct controller when a device interrupts.

Because this number is an index into the table of addresses
in the CTB, its maximum value is limited by the value of
L.NUM in that CTB.
K.IOC (0)
Driver access:

Initialized, not referenced.

Description:

N
I

56

DRIVER DATA STRUCTURE DETAILS

Reserved for future use.

K.STS (controller-specific status)

15

Driver access:

Initialized, not referenced.

Description:

This word is wused as a status word that concerns the

controller. Figure 4-14 shows the layout of the controller
status word.

K.ST
STS (1 = yes)

Unused bits are reserved
for system use and expansion.

0
NERE! L
KS.OFL - Controller offline

KS.MOF - Controller marked for offline
KS.UOP - Supports overlapped operation
KS.MBC — Reserved

KS.SDX - Seeks allowed during data transfers
KS.POE - Parallel operation enabled

KS.UCB - UCB table present

KS.DIP - Data transfer in progress

KS.PDF - Privileged diagnostic functions only
KS.EXT - Extended 22-bit UNIBUS controller
KS.SLO - Controller is slow coming online’

Figure 4-14: Controller Status Word

All wundefined bits are reserved for use by DIGITAL.
Currently defined bits are:

KS .MOF=2

If this bit is set, the unit/controller is in the process of
becoming offline.

KS.UOP=4

DRIVER DATA STRUCTURE DETAILS

This bit indicates whether the controller supports unit
operation in parallel and requires synchronization. If this
bit is set, each unit attached to the controller 1is capable
of operating independently. Therefore, the KRB contains a
UCB table holding the UCB addresses of each independent unit.

KS.SDX=20

If this bit is set, the controller allows seek operations to
be initiated while a data transfer is in progress. (Some
types of disks, such as the RK06 and RKO07, support overlapped
seek operations but do not allow a seek to be initiated if a
data transfer is in progress.) The Executive routines Request
Controller for Control Function (SRQCNC) and Request
Controller for Data Transfer (SROCND) examine this bit to
distinguish between the two types of controllers that support
overlapped seeks.

KS.POE=40

If this bit is set, the driver may initiate an I/O operation
on the controller in parallel with other I/0 operations. A
driver that supports overlapped seek operations checks this
bit to decide whether it should attempt to perform an I/O
operation as a seek phase and then a data transfer phase
(that 1is, overlapped) or as an implied seek (that is,
nonoverlapped). If this bit is set, the driver <can then
attempt the overlapped operation.

An overlapped driver must check this bit once only for each
I/0 operation. The driver must not rely on the bit value to
decide whether, wupon being interrupted, the driver was
attempting a seek operation. The driver should use the
S2.SIP bit to hold its internal state.

KS.UCB=100

This bit indicates the presence of the table of unit control
block addresses associated with the KRB. If this bit is set,
K.OFF gives the offset from the beginning of the KRB to the
start of the UCB table.

Devices that support unit operation in parallel (for example,
overlapped seeks) require a mechanism for finding the UCB of
the unit generating an interrupt. Therefore, if KS.UOP is
set, a UCB table must exist. If KS.UOP is not set, however,
a UCB table may still exist because some devices (for
example, terminal multiplexers) support full unit operation
in parallel but do not require synchronization. Therefore,
KS.UCB may be used to determine whether the UCB table exists,
regardless of whether KS.UOP is set.

4-58

DRIVER DATA STRUCTURE DETAILS

KS.DIP=200

If this bit is set, a data transfer is in progress. A driver
that supports overlapped seek operation sets or clears this
bit to indicate to itself whether, after an interrupt, a data
transfer 1is in progress. The driver must set or clear this
bit. Usage of this bit eliminates the need for the software
to access the device registers to determine what type of
operation was in progress.

K.CSR (start of controller device register addresses)
Driver access:
Initialized, read-only.
Description:

Contains the first address of the device for the device
controller. The driver uses K.CSR to initiate 1I/O

operations.
NOTE

This word is guaranteed to be offset zero for
the KRB.

K.OFF (offset in bytes (from K.CSR) to start of UCB table)
Driver access:
Initialized, referenced by interrupt dispatch code.

Description:

This word contains the offset to the beginning of the wunit
control block table. When added tc the starting address of
the KRB, it yields the UCB table address.

The status bit KS.UCB may be used to determine whether the
UCB table exists. A UCB table may exist if KS.UOP is not
set, since some devices (for example, terminal multiplexers)
support full unit operation in parallel with no
synchronization required. If KS.UOP is set, a UCB table must
appear (and KS.UCB will also be set).

K.HPU (highest physical unit number)

Driver access:

DRIVER DATA STRUCTURE DETAILS

Initialized.

Description:

This byte contains the value of the highest physical unit
number used on this controller.

K.OWN (0)

Driver access:

Initialized, referenced for actual unit.

Description:

This word has three slightly different uses, depending on the
particular device.

l.

For controllers which always have only a single unit
connected to them (for example, the 1line printer),
K.OWN/S.OWN always points to the UCB of that unit. You
can use the suc argument in the GTPKT$ macro to
statically initialize this cell in the data base.

For controllers that may have multiple units attached but
do not support unit operation in parallel, K.OWN/S.OWN is
set with the currently active unit by code generated with
the GTPKTS$ macro suc argument set to blank.

For controllers that support unit operation in parallel
and require synchronization (KS.UOP is set), this is a
busy/nonbusy interlock for the controller. If the
controller is busy for a data transfer, this word
contains the UCB address of the currently active unit.
This word 1is set and cleared by the Request Controller
for Control Access (SRQCNC), Request Controller for Data
Access (SRQCND), and Release Controller (SRLCN) routines.

K.CRQ (first word equals 0; second word points to first)

Driver access:

Initialized, not referenced.

Description:

Two words that form the controller wait queue. Fork
blocks are queued here for driver processes that have
requested controller access. Driver processes that

request access for control functions are queued on the
front of the list, and those that request access for data

4-60

DRIVER DATA STRUCTURE DETAILS

transfer are queued on the end of the list.

KE.UCB
Driver access:

Initialized, referenced by interrupt dispatch code.

Description:

This table contains the unit control block addresses for
the wunits on this controller. Physical unit zero is in
the first word, unit one is in the second word, and unit
n 1is in word n+l. The table has a length of (K.HPU+1)
words. A value of zero in this table indicates a
physical wunit number for which no actual physical unit
exists. The table is terminated by a -1.

NOTE

This table exists only for those devices that
have KS.UCB set.

4.4.7 Contiguous Allocation of the SCB and KRB

In a configuration where a controller and the Executive supports only
a single operation on a wunit at one time, the driver can allocate
space for the KRB and the SCB in a contiguous area. Some fields of
the KRB overlap those in the SCB. Although the KRB and SCB in this
arrangement are contiguous, the system still considers the 1I/0 data
structure to contain a KRB. The system will still use the S.KRB
offset and the K.xxx forms for all references. The driver can
reference the fields by the S.xxx form of the symbolic offset
definitions. Figure 4-15 shows the physical layout of the contiguous
KRB and SCB allocation.

4,4,8 Controller Table (CTB)

Figure 4-16 is a layout of the controller table. You ensure that the
CTB is linked into the system list of controller tables by placing the
CTB macro immediately before the allocation of the L.LNK word. The
CTB macro generates a global symbol that links the user-written CTB
into the system list.

DRIVER DATA STRUCTURE DETAILS

Figure 4-15: Contiguous KRB/SCB Allocation

K.ICSR interrupt controller CSR
K.SLT reserved slot number
K.PRM Driver-dependent storage
S.VCT/S.PRI K.VCT/K.PRI Vector/4 Priority
S.CON K.IOC/K.CON Controller 1/0 Count Controller index
K.STS Controller status
S.CSR K.CSR Pointer to CSR
K.OFF Offset to UCB table
K.HPU Unused Highest physical unit
K.OWN Owner UCB
S.LHD K.CRQ Input/output queue listhead
S.FRK - F-ork-Link— T
Fork PC
Fork R5
Fork R4
S.KS5 KISARS
S.PKT 1/0 packet address
S.CTM/S.ITM Initial Time-Out Count | Current Time-Out Count
S.STS/S.ST3 Status Extension Status
S.5T2 Status extension
S.KRB KRB address
°
°
KE.RHB °
Start of UCB table =

UCB address physical unit 0

ucs

address physical unit n

-1

-6
—4
-2

10

DRIVER DATA STRUCTURE DETAILS

L.CLK r-———-- - -=--=- = 1
8-word

I Clock l

| Block |

I I
L.DID hardware device ID -4
L.IcB Link to first ICB -2
L.LNK' Link to next CTB 0
L.NAM Generic controller name 2
L.DCB? DCB address 4
L.STS/L.NUM Controller status Number of KRB addresses| 6
L.KRB ‘ KRB address 0 10

KRB address n

" The head of the list of controller tables is $CTLST in SYSCM.
2|f LS.CIN is set, this cell points to the common interrupt
address table rather than to the DCB.

Figure 4-16: Controller Table

The fields* in the CTB are described below:
L.CLK
Driver access:
Initialized
Description:

This is the clock queue entry for these devices that need a

* parenthesized contents following the symbolic offset indicate the
value to be initialized in the data base source code.

4-63

DRIVER DATA STRUCTURE DETAILS
single <clock block per generic controller type. It only
appears if LS.CLK is set.
L.ICB (reserve one word of storage)
Driver access:

Not initialized, not referenced.

Description:

This word points to the first interrupt control block for
this type of controller.

L.LNK (0 or link to next CTB in 1list)
Driver access:
Not initialized, not referenced.

Description:

All of the controller tables in the system are 1linked

together so they can be found, and they are threaded through
this first word. A zero link terminates this list.

A CTB must exist for every physical controller type in the
system.

L.DID (controller's hardware ID)
Driver access:
Initialized, read-only.

Description:

This hardware ID is the controller mnemonic used to find this
controller table from among all the others in the system.

L.NUM (number of KRB addresses)
Driver access:
Initialized, read only.

Description:

DRIVER DATA STRUCTURE DETAILS

Used by programs that scan the controller tables to compute
the number of KRB addresses. This value 1is never zero, since

without controller request blocks there should be no
controller table.

L.STS (generic controller status)
Driver access:
Initialized, read only.

Description:

The controller table status bits give information about the
class of controllers. Figure 4-17 shows the layout of this

byte.
L.STS L.NUM (1 = yes)
15 8
Unused bits are reserved
for system use and expansion.
t * LS.CLK - Clock block allocated

LS.MDC - Multidriver controller

LS.CBL - Clock block linked into clock queue

LS.CIN - Controller uses common interrupt address table
LS.NET - DECnet device

Figure 4-17: Controller Table Status Byte

The following are the descriptions of these bits:

LS.CLK=1

If this bit is set, the controller table has an 8-word clock
block.

LS.MDC=2

If this bit is set, multiple drivers service wunits attached
to the associated controller.

LS.CBL=4

DRIVER DATA STRUCTURE DETAILS

If this bit is set, the clock block is linked into the clock
queue.

L.KRB (KRB addresses of controllers)
Driver access:
Initialized once for the controller, not referenced.
Description:

A list of the controller request block addresses ordered by
their respective controller numbers. This table is indexed
by the controller index retrieved from the PS word
immediately after an interrupt. The table 1is of length
(L.NUM) words. While the interrupt routines will not have to
scan the 1list in a linear fashion, the only way to find all
the controller request blocks in the system includes a linear
scan of all the controller tables. The CTB is static.

The address of the start of the KRB address list in the CTB
is the global symbol $xxCTB in the driver dispatch table.
PROLOD supplies this address in the DDT when it 1loads the
driver.

Proper action for drivers to access their 1list of KRB
addresses 1is to retrieve the address of the start of the KRB
list in the CTB from the cell in the driver dispatch table
set up by PROLOD.

4.5 DRIVER CODE DETAILS

This section describes the specific requirements for driver code. The
driver code must contain a driver dispatch table which allows the
Executive to call the driver to perform discrete system functions. If
the driver needs to access either system structures such as the
partition and task control blocks or structures within its own data
base, it should use the system-wide symbolic offsets rather than the
real offsets. Because the driver is built with the Executive 1library
EXELIB.OLB, the symbolic offsets are automatically defined for the
driver code. If you want to see the definitions of the symbols in
your driver 1listing, place in your driver source code the related
macro name in a .MCALL directive and invoke the macro. (For your
convenience, the source code of the macro calls that define the
symbols of structures is in Appendix A.) The detailed descriptions of
the driver data base structures are in Section 4.4.

DRIVER CODE DETAILS

4.5.1 Driver Dispatch Table Format

The driver dispatch table associates the entry points that the
Executive expects to find in a device driver and the actual locations
of the routines in the driver code. The DDT also provides a link from
the driver code to the driver data base. Figure 4-18 shows the format
of the DDT. Section 4.3.1 describes the DDT$ macro call, which
automatically generates the DDT.

All device drivers require a driver dispatch table somewhere 1in the
first 4K words of the driver code. Conventionally, the table is
located at the beginning of the code.

NOTE

If the length of a driver must exceed 4K words (20000
octal bytes), then your driver must set up the mapping
for the second 4K words whenever it is entered; and,

of course, all entry points must be in the first 4K
words of the driver.

The driver must define some labels that the Executive routines and the
INTSV$S macro call wuse to access the DDT. Table 4-10 lists these
labels, which are automatically generated by the DDT$ macro call.
Because these labels do not appear in the DDT itself, their format is
fixed and they must be specified in the format shown.

Table 4-9: Labels Required for the Driver Dispatch Table

Required Format Meaning

SxxTBL: : Defines the start of the DDT. The PROLOD
routines use this label to fill in D.DSP.

xxXCTB: Defines the pointer to the table of KRB
addresses in the CTB of the controller for
device xx. Because a driver can support
different types of controllers, there may
be more than one of this form of label.
(The DDTS$ macro supports only one
controller type.)

SxXXTBE: : Defines the end of the DDT for Executive
PROLOD and PROUNL routines that scan the
DDT.

DRIVER CODE DETAILS

e e e —— — —

D.VNXC, D.VCHK' Next Command/Optimization Entry Point Address -4
D.VDEB' ——- ™ Deallocation ay?oi;t_;c;;:es:_ - -2

$xxTBL:: D.VINI I/0 Initiation Entry Point Address 0
D.VCAN Cancel Entry Point Address 2

D.VTIM Timeout Entry Point Address 4

D.VPWF Powerfailure Entry Point Address 6

D.VKRB Controller Status Change Entry Point Address 10

D.vUCB Unit Status Change Entry Point Address 12

‘ D.VINT Generic Controller Name (ASCII) for xy 14

Interrupt Entry Point Address O

Interrupt Entry Point Address'

0

Pointer to KRB table in CTB (for INTSV$) for xy controller
0

t wzCTB: Pointer to KRB Table in CTB (for INTSV$) for wz controller

L 0 B

$xxTBE:: [0 J

1. These are optional advance driver features

Figure 4-18: Driver Dispatch Table Format

At offsets D.VINI through D.VUCB in the DDT of your driver appear
labels defining the addresses of the entry points in the driver. As a

4-68

DRIVER CODE DETAILS

standard procedure, you supply the labels described in Table 4-10 at
the entry points in the driver code. The formats of the standard
labels that appear in the DDT are not fixed. Because the Executive
expects to find the entry point addresses at fixed offsets from the
start of the DDT and the labels themselves appear in the DDT, you can
change their format if you construct the DDT without using the DDT$
macro call. (However, other labels that are required in the driver
code but do not appear in the DDT have a certain, fixed format which
you must not change. For reference, these fixed format labels are:

SxXTBL: ¢
XXCTB:

SXxXTBE::
SxxLOA: :
SXXUNL: :

DRIVER CODE DETAILS

These fixed-format labels are described elsewhere in this chapter.)
The DDT$ macro uses the standard labels but allows you to alter the
format of some of them.

At offset D.VINT in the DDT is the name of the controller type that
the driver supports. (The same name is in the CTB.) If the driver has
no controller (such as the virtual terminal driver VTDRV), this word
is =zero. The structure allows the driver to support multiple
controller types. (The terminal driver supports different controller
types.) Although the DDT$ macro supports only one controller type,
there is no restriction on the number of controller types that a
driver can support.

After each controller name follows a block of interrupt entry
addresses. At 1location D.VINT+2 begins the first interrupt address
block, each word of which defines an address to be included in a
vector for the driver. A zero terminates the block and indicates that
there are no more interrupt entry points for the controller. There is
no restriction on the number of vectors each controller may have. For
a single interrupt device, location D.VINT+2 (interrupt entry address
0) is the interrupt address.

Table 4-10: Standard Labels for Driver Entry Points

Label Entry Point

XxXINT: I/0 initiation

xXCAN: Cancel 1I/0

xxCHK: Block check and conversion
xxXOUT: Device timeout

XXPWF : Power failure

XxxKRB: Controller status change
xxUCB: Unit status change
$XXINT::3 Interrupt entry point

* The characters xx are the 2-character mnemonic.

DRIVER CODE DETAILS

D.VINT XX
XXIN1
XXIN2
0
XXCTB: 0

Figure 4-19: Sample Interrupt Address Block in the DDT

4,5.2 1/0 Initiation Entry Point

The offset D.VINI in the driver dispatch table contains the address of
this entry point. A driver is called at this entry point at priority
0 from the Executive routine $DRQRQ in the module DRQIO. A driver
should call the Executive S$GTPKT routine to get an I/0 packet to
process. This action dequeues an I/0 request. The following are the
register conventions when the Executive enters the driver.

R5 = address of the UCB of the unit for which the Executive has
queued an I/0 packet

This entry condition pertains unless the driver wants to delay the
queuing operation. Therefore, if the queue-to-driver bit UC.QUE in
the unit status block offset U.CTL 1is set, the following are the
register conventions.

R5 = UCB address of unit for which a packet has been created
R4 = SCB address of the related unit
Rl = address of the I/O packet

You may find more information on and coding requirements for the hone
queue-to-driver operation in the description of the UC.QUE bit in
Section 4.4.4 and an example of its use in Chapter 8.

DRIVER CODE DETAILS

The GTPKTS$ macro call automatically generates the call to the $GTPKT
routine and the code to process the return from $GTPKT. Upon return
from $GTPKT, the C bit indicates whether there is a packet to process.

c =1 If the C bit is set, the Executive found the controller
busy, could not dequeue a request, or had to call S$FORK
to have the driver run on the correct processor.

c=0 If the C bit 1is <clear, the Executive successfully
dequeued a packet for the driver and placed it in the
device's input/output queue.

If a request was successfully dequeued, the following are the contents
of the registers:

R5 = Address of unit control block

R4 = Address of status control block

R3 = Controller index

R2 = Physical unit number of device to process
Rl = Address of the I/0 packet

If the C bit is set, the driver returns control to the caller (a
RETURN instruction should be executed). If the C bit is clear, the
generated code 1loads the 1location at offset K.OWN/S.OWN in the
contiguous KRB/SCB with the UCB address of the unit to process. The
driver may then process the request and activate the device. All
registers are available to the driver. The driver executes a RETURN
instruction to transfer control to the system.

4.5.3 Cancel Entry Point

The offset D.VCAN in the driver dispatch table contains the address of
this entry point. The Executive routine $IOKIL in the IOSUB module
calls the driver at this entry point at device priority. When the
Executive enters the driver, the following register conventions
pertain:

R5 = UCB address

R4 = SCB address

R3 = Controller index (undefined if S.KRB equals zero)
R1 = Address of TCB of current task

RO = Address of active I/0 packet

The usage of this entry point is explained in Section 2.2.2,. All
registers are available to the driver. The driver returns control to
the Executive by executing a RETURN instruction.

DRIVER CODE DETAILS

4.5.4 Device Timeout Entry Point

The offset D.VTIM in the driver dispatch table contains the address of
this entry point. Routines in the Executive module TDSCH call the
driver at this entry point at device priority. When the Executive
enters the driver, the entry conditions are as follows:

R5 = UCB address

R4 = SCB address

R3 = Controller index (undefined if S.KRB equals zero)
R2 = Address of device CSR

RO = I/O status code IE.DNR (Device Not Ready)

The usage of this entry point is explained in Section 2.2.3. All
registers are available to the driver. The driver returns control to
the Executive by executing a RETURN instruction.

4.5.5 Deallocation Entry Point

The offset D.VDEB in the driver dispatch table contains the address of

this entry point. This entry point is called at priority zero from
the routine SFINBF in the Executive module SYSXT after a buffered 1I/0
request completes. The driver is expected to deallocate its buffers

at this entry point. When called, the registers are set wup as
follows:

RO = address of the first buffer

All registers are available to the driver. The driver returns control
to the Executive by executing a RETURN instruction.

4,5.6 Power Failure Entry Point

The offset D.VPWF in the driver dispatch table contains the address of
this entry point. The routines in the Executive module POWER call the
driver at this entry point at priority 0 for both unit and controller
power failures. The Executive first calls the driver for controller
power failure with the C bit set. The driver 1is <called 1in this
fashion once for each controller. The following are the register
conventions:

C bit set (controller power failure)

R3
R2

CTB address
KRB address

The driver may use all registers.

DRIVER CODE DETAILS

After the Executive has called the driver for all related controllers,
it calls the driver once for each unit power failure at priority 0
with the C bit clear. The following are the register conventions:

C bit clear (unit power failure)

R5 = UCB address
R4 = SCB address
R3 = Controller index

For both controller and wunit power failures, the driver returns
control to the calling routine by executing a RETURN instruction.

4.,5.7 Controller Status Change Entry Point

The offset D.VKRB in the driver dispatch table contains the address of
this entry point. The Executive routine $KRBSC in the OLRSR module
calls the driver at this entry point at priority 0 to put a controller
on-line or to take a controller off-1line.

The C bit indicates whether the request is for off-line or on-line.
The following are the register conventions upon entry to the driver.

R3 = CTB address for the controller
R2 = KRB address of controller changing status
0(SP) = Return address for completion
2(SP) = Return address for caller of the Executive routine

The C bit is set to indicate the requested status change as follows:

C =1 On-line to off-line transition
C 0 Off-line to on—-line transition

The status change byte S$SCERR is preset as follows:
$SCERR = 1
The driver indicates the return status in the $SCERR byte as follows:

SSCERR < 0 Operation is not successful and a negative value in
SSCERR is the I/0 error code. Thus, a negative value
rejects the status change requested by the C bit.

SSCERR = 1 Operation is successful. The driver accepts the
status change requested., This 1is the default
condition.

All registers are available to the driver. The Executive does not

change the status of the controller until and unless the driver shows
successful completion of the on-line or off-line request.

4-74

DRIVER CODE DETAILS

The driver must return immediately by either of the following methods:

1. The driver can indicate the return status immediately and can
return to the first address on the stack in the normal
fashion. 1If the driver accepts the status change, it merely
executes a RETURN instruction. (The status change byte
$SCERR has been preset with 1.) If the driver rejects the
status change, it 1loads the relevant I/0 error code into
$SCERR and executes a RETURN instruction.

2. The driver need not indicate the status immediately but
removes the first address from the stack, saves it, and
returns immediately to the second address. The driver then
has 60 seconds to perform its processing, to indicate the
return status, and to return to the first address. The
driver can wuse the offset S.CTM in the status control block
to time out some operation (such as a protocol rundown) and
then accept or reject the operation by using $SCERR.

If the driver does not return to the first address on the stack, the
system can be considered to be in an indeterminate state and possibly
corrupted. The driver must return immediately because status changes
should not stall the system. The 60-second delay allows a driver time
to overcome conditions over which it has 1little control (such as
network connections). System disk and terminal drivers must indicate
return status immediately.

4.5.8 Unit Status Change Entry Point

The offset D.VUCB in the driver dispatch table contains the address of
this entry point. The Executive routine SUCBSC in the OLRSR module
calls the driver at this entry point at priority 0 to put a unit
on-line or to take a unit off-line. This entry is called once for
each unit whose status changes. The C bit indicates whether the

request 1is for on-line or off-line. The following are the register
conventions:

R5 = Address of UCB or unit changing status

R4 = Address of SCB of unit

R3 = Controller index (undefined if S.KRB equals zero)
0(SP) = Return address for driver completion
2(SP) = Return address for caller of the Executive routine

The C bit is set to indicate the requested status change as follows:

C
C

1 On-line to off-line transition
0 Off-line to on-line transition

DRIVER CODE DETAILS

The status change byte $SCERR is preset as follows:
$SCERR = 1
The driver indicates the return status in the $SCERR byte as follows:

$SCERR < 0 Operation is not successful and a negative value in
$SCERR is the I/O error code. Thus, a negative value
rejects the change requested by the C bit.

$SCERR = 1 Operation is successful. The driver accepts the
status change requested. This 1is the default
condition.

All registers are available to the driver. The driver must return
within 60 seconds. The Executive does not change the status of a unit
until and unless the driver shows successful completion of the on-line
or off-line request.

The driver must return immediately by either of the following methods:

1. The driver can indicate the return status immediately and can
return to the first address on the stack in the normal
fashion. If the driver accepts the status change, it merely
executes a RETURN instruction. (The status change byte
S$SCERR has been preset with 1.) If the driver rejects the
status change, it 1loads the relevant I/0O error code into
SSCERR and executes a RETURN instruction. .

2. The driver need not indicate the status immediately but
removes the first address from the stack, saves it, and
returns immediately to the second address. The driver then
has 60 seconds to perform its processing, to indicate the
return status, and to return to the first address. The
driver can use the offset S.CTM in the status control block
to time out some operation (such as a protocol rundown) and
then accept or reject the operation by using $SCERR.

If the driver does not return to the first address on the stack, the
system can be considered to be in an indeterminate state and possibly
corrupted. The driver must return immediately because status changes
should not stall the system. The 60-second delay allows a driver time
to overcome conditions over which it has 1little control (such as
network connections). System disk and terminal drivers must indicate
return status immediately.

4.5.9 Interrupt Entry Point

Upon an interrupt, control is dispatched to the driver from an

4-76

DRIVER CODE DETAILS

interrupt vector through an interrupt control block or directly from
an interrupt vector. A device may have more than one interrupt entry
point. The entries in the DDT interrupt address block are used to
initialize either the vector(s) or the interrupt control block with
the address(es) of the related interrupt entry point(s). (Refer to
Section 4.5.1 for a discussion of the interrupt address block.) All
drivers should observe the protocol for handling interrupts introduced
in Section 1.3 and summarized in Section 4.1.

The driver will be called from the interrupt dispatch coroutine $INTSI
in the Executive. The following are the register contents when the
driver gets control:

R4 = Controller index

Registers R4 and R5 are available to the driver. The driver runs at

the priority set in the interrupt control block. To dismiss the
interrupt, a driver executes a RETURN instruction.

Drivers should use the INTSVS macro call at an interrupt entry point,
in order to resolve entry processing. INTSVS does not generate a call
to SINTSV because PROLOD establishes in the interrupt control block
the <call to the S$INTSI coroutine. The $INTSI coroutine saves R4 and
R5; sets the priority to that in the interrupt control block; and
forms the controller index from the PS and stores it in R4.

INTSVS generates code to 1load R5 with the UCB address of the
interrupting unit. After the 1INTSVS call in the driver code, the
following conditions apply:

R5 = UCB address of the interrupting unit
R4 Controller index

The driver may then do the following:
1. Save extra registers if necessary
2. Do whatever processing is necessary

3. Become a fork process to access the data structures or to
call Executive routines if necessary

4, Restore the explicitly saved extra registers

5. Execute a RETURN instruction to the coroutine, which
dismisses the interrupt

DRIVER CODE DETAILS

4.5.10 Volume Valid Processing

System-supplied drivers that service mountable devices (those that
have the DV.MNT bit in the UCB U.CWl word set) take advantage of
special processing of volume valid for a device. For such devices the
Executive directive processor DRQIO checks that either of the mounted
status bits US.MNT or US.FOR in the UCB U.STS word 1is set. If a
mounted status bit is not set, DRQIO requires that a device-specific
bit called volume valid (US.VV) be set or else it rejects the
directive, If a mounted status bit is set, DRQIO does not check the
volume valid bit. (DRQIO assumes that the MOUNT command properly set
the volume valid bit.)

To effectively service a mountable device on the system, a
user-written driver should perform in one of two ways. First, it can
take advantage of the volume valid capability in the same way that a
system-supplied driver does. This processing involves calling the
SVOLVD routine 1in the Executive module IOSUB, and handling the
spinning-up status bit (US.SPU) and the volume valid bit (US.VV) in
the UCB status byte U.STS. (For details of this mechanism, refer to
driver source code supplied on the system.) Second, a user-written
driver can circumvent the volume valid processing by doing the
following:

1. Enable the set characteristics function (I0.STC) for volume
valid in the DCB legal function mask word

2. Enable the same function in the DCB no-op function mask work

3. Statically set the US.VV bit in the UCB in the driver data
base source code

The second method allows the device to be successfully mounted and
associated with an ancillary control processor without your having to
include code in the driver to handle US.VV.

CHAPTER 5

INCORPORATING A USER-SUPPLIED DRIVER INTO P/0OS

This chapter describes how to incorporate a user-supplied driver into
an P/0S system. The material in the chapter depends on your having

created source code according to the programming specifics given 1in
Chapter 4.

5.1 INCORPORATING AN I/0O DRIVER INTO A P/0OS SYSTEM

With the exception of DIGITAL supplied disk I/0 drivers and the
terminal driver, all P/0S 1I/0 drivers are loadable with a loadable
database and are incorporated directly into a running system via a
call to the PROLOD (POSSUM) system service. The driver may also be
unloaded at runtime, as a result of a specific wunload request to
PROLOD. The driver database 1is never removed as there are many
structures in the system which reference the UCB. Even if it were
possible to track down all references, the required structures might
not be memory resident. Since the system image is not modified as a

result of 1loading a new driver, the database can be removed from the
system by rebooting P/OS.

5.1.1 Guidelines for Creating/Adding a Driver Into the System

To incorporate a loadable driver with a loadable database, wuse the
following procedure:

1. Create the driver's macro source code file and the database
source code file in the directory of your choice.

2. Assemble the driver and database wusing the prefix file
RSXMC.MAC and the executive data structures macro library
EXEMC.MLB. RSXMC contains the various system configuration
symbols used by the executive's conditionalization and
commonly used macros, such as DDT$, GTPKT$, and INTSVS.

INCORPORATING AN I/O DRIVER INTO A P/0OS SYSTEM

3. Taskbuild (using PAB) your driver code and database. Ensure
that a symbol table file (.STB) is generated at this time,
since it is required by the PROLOD system service. The
symbol table file 1is expected to be located in the same
directory and have the same file name as the driver image
file (.TSK). The only difference will be the file name
extension.,

4., Create a program that will issue the PROLOD system service
call to 1load your driver. As an aid to debugging, the
logical "PROLODSMSG" (without the quotes) may be created
using the DCL "ASSIGN" command and set to ASCII "0". This
logical's existence will enable PROLOD ASCII error messages
to be sent to the debugging terminal (TT2:).

5.1.2 Assembling the I/O Driver

After you have created the driver source code and database files, they
must be assembled by the P/0OS macro assembler (PMA). It is suggested
that listing files be created in the event debugging is needed. The
following commands illustrate this:

PMA>DRVCOD,DRVCOD=[1,5] EXEMC/ML,RSXMC/PA:1, []1DRVCOD
: Assemble the driver code.

PMA>DRVTAB ,DRVTAB=[1,5] EXEMC/ML ,RSXMC/PA:1,[] DRVTAB
: Assemble the driver database.

Note that it is not possible to use ODT in a driver since a driver is
not a task, and it is not possible to issue a system directive from
system state. For debugging tips and procedures, see Chapter 6.

5.1.3 Taskbuilding the I/O Driver

After completing the assemblies with no detected errors, taskbuild the
driver code and database with the following commands:

PAB>DRIVER/-HD/-MM,DRIVER,DRIVER= :

1) The /-HD switch is specified since a task header is not
needed. The driver is not a task but rather an
extension to the executive.

2) The switch /-MM must be used in the command line.

3) A map file is produced and is useful for debugging.

4) A symbol table file is specified since it will be
required by PROLOD.

® N8 Ne w0 e we “e

PAB>DRVCOD
PAB>DRVTAB

INCORPORATING AN I/O DRIVER INTO A P/0OS SYSTEM

5) PAB reprompts for input files. Both the code and the
database are specified. The driver database is built

: into the image following the driver code.

PAB>[1,5]P0OS.STB/SS

PAB>[1,5]EXELIB/LB

PAB>/

o weo e

6) POS.STB is specified as input so that executive routine an
listhead references may be resolved.

7) EXELIB is specified so that data structure offsets, mask,
and bit references may be resolved.

8) The single slash begins the option phase of the task build
Enter options:

TKB>STACK=0
;7 9) The taskbuilder is directed not to allocate stack space. A

; driver uses the executive's stack sparingly.
PAB>PAR=GEN:120000:40000

PAB>//

Ne we ™o “o wo

10)A partition, base virtual address and maximum size are
specified and the double slash terminates taskbuilder
input.

~e wmo wo

5.1.4 Loading an I/O Driver Into the System

After completing the taskbuilding of your driver without any detected
errors, you must create a small task to issue the POSSUM "PROLOD"
system service call. 1If you are in the process of debugging the
driver, it 1is suggested that you attach a debugging terminal to the
printer port (TT2:), define the logical name "PROLODS$SMSG", and run XDT
prior to invoking PROLOD.

5.2 PROLOD

The callable PROLOD system routine provides a method to load or unload
an I/O0 driver into P/OS. PROLOD 1is an entry point in the system
resident POSSUM library which calls the server task S$SLOAD. (See the
P/0S System Reference Manual for a general description of POSSUM
system services.)

By default, when loading a driver, PROLOD will attempt to offline any
competing access for the hardware option(s) that will be used by the
driver being loaded. This is done via a controller offline request to
the competing driver in most cases (an exeption being the
communications driver XK:, which is handled somewhat differently). If
the driver relinquishes control, the new driver can be successfully
loaded. Optionally, a driver can be explicitly unloaded and removed

5-3

PROLOD

from memory if all controllers and wunits are successfully marked
offline.

To avoid memory fragmentation, PROLOD will 1load the driver in the
highest available physical memory, checkpointing any eligible regions
that may be resident in high memory.

A user-written driver on version 2.0 P/0OS systems may gain access to
the communications port or to any hardware option modules not used by
P/0S directly.

PROLOD requires that both the driver image (.TSK) and the driver
symbol table (.STB) be located on the same device and directory. The
filename extension is assumed by PROLOD and should not be specified in
the request. If a version number is specified, both the symbol table
and the image must have identical version numbers (filename.;n). If
the version number is not specified, the highest version of each will
be used. Unload operations currently have a restriction that requires
access to the image and symbol table files so that PROLOD can easily
determine which units and controllers need to be placed offline prior
to wunloading the driver code from memory. The driver's database is
never removed from primary pool and, if the driver is reloaded, it is
assumed that the old database can be reused. Optionally, a driver can
specify the SLOA and SUNL entry points so that it can save, restore,
or initialize any required context.

To load or wunload a driver, invoke PROLOD with the following
arguments:

STATUS ,REQUEST ,FILENAME ,FILENAME SIZE

where:

STATUS The address of the 8-word Status Block

REQUEST The address of a word containing the value of the
operation to be performed. The decimal values are:
1 = load a driver
2 = unload a driver

FILENAME_SIZE The address of a word containing an ASCII file
specification of the driver image and symbol file. Do
not specify file extensions as they are assumed to be
.TSK and .STB respectively by PROLOD.

FILE_SIZE The address of a value containing the number of

characters in FILENAME.

PROLOD PROCESSING

5.3 PROLOD PROCESSING

The PROLOD routines extensively check the driver data base. The
following sections describe two aspects of PROLOD.

5.3.1 PROLOD Operations and Diagnostic Checks

Two modules (LDVLDB and LDVFIN) in PROLOD load a driver into memory:
one checks the wvalidity of and loads the data base; and the other
finishes the operation by loading the driver. The data base is loaded
into the system pool. The PROLOD routines relocate and validate many
of the pointers within the data base and, in the process, validate
other data 1in thé structures. The driver itself is then loaded into
the highest available physical address space.

To read the data base from the driver image file into the system pool,

the global 1labels $DAT and $END, defining the start and end of the
data base, are needed.

To check the data base, the PROLOD routines must know the starting
address of the DCB. If the global label $SDCB is not defined (that is,
not in the symbol table file), the start of the DCB is assumed to be
the first word of the data base. Many unusual error conditions result
when PROLOD assumes that the DCB is at the start of the data base and
the DCB 1is elsewhere in the data base and not labelled properly.
Thus, to avoid this type of problem, vyou should always define the
start of the DCB with the global label S$DCB.

Each CTB is checked and relocated. The following offsets are both
checked and relocated:

L.LNK The link to the next CTB must be even. If it is
not zero, it must point within the data base, and
the CTB to which it points must 1lie within the
data base. (Because it is highly unusual to have
two controller types in one driver data base, this
value is usually zero.)

L.DCB The address of the related DCB must be even, point
within the data base, and the DCB to which it
points must lie within the data base. The DCB
address(es) in the table must be even, and the
DCB(s) to which each address points must 1lie
within the data base.

L.DID If non-zero, the system configuration table is
scanned for the presence of a device with a
matching hardware ID. If a match is found, then
the KRB's, K.SLT, K.ICSR, K.CSR and K.VEC values

5-5

L.KRB

PROLOD PROCESSING

are assigned. If L.DID is zero, then K.VEC and
K.CSR are used to generate the appropriate ICB and
to verify LSR presence.

Each pointer in the table of KRB addresses must be
even and must point within the data base, and the
KRB to which each cell points must lie within the
data base.

The following offsets in the CTB are checked:

L.NAM

L.NUM

The controller name cannot duplicate other L.NAM
entries in the loadable data base.

The number of controllers must be less than 17
(decimal).

Each KRB is checked and relocated. The following offsets in the KRB
are both checked and relocated:

K.OWN

K.OFF

K.CRQ
K.CRQ+2

The pointer to the owner UCB must be even and
point within the data base, or be zero. If it is
nonzero, the pointer is relocated.

The start of the table of UCB addresses produced
from K.OFF must be even and must point within the
data base. The entries themselves must be even,
point within the data base, and the UCB to which
each cell points must lie within the data base.

The listhead for the controller request queue.

It is initialized to an empty list with the first
word zero, and the second word pointing to the
first, relocated.

Each DCB is checked and relocated. The following offsets are both
checked and relocated:

D.LNK

D.UCB

D.UCBL

D.UNIT

The link to the next DCB must be even. If it 1is
nonzero, it must point within the data base, and
the DCB to which it points must 1lie within the
data base.

The link to the first UCB must be even and must
point within the data base, and the UCB to which
it points must lie within the data base.

The length of the UCB must be even and nonzero.
The highest unit number (increased by 1) used with
D.UCBL forms the last address of all UCBs. This

5-6

PROLOD PROCESSING

address must lie within the data base.

The pointer to the driver dispatch table (D.DSP) is set to zero to
show that the driver is not yet loaded.

Each UCB is checked and relocated. The following offsets are both
checked and relocated:

U.DCB The pointer to the DCB must point to the DCB that
points to this UCB.

U.SCB The pointer to the SCB must be even, must point
within the data base, and the SCB to which it
points must lie within the data base.

U.RED The unit redirect pointer must be nonzero and even
if it 1is an Executive address. If it is not an
Executive address, it must be nonzero, even, and
point within the data base.

Each SCB is checked and relocated. The following offsets are both
checked and relocated:

S.KRB The pointer to the KRB must be even, must point
within the data base, and the KRB to which it
points must lie within the data base. If S.KRB is

nonzero, there must be a CTB in the loadable data
base.

S.KTB If the table of KRB addresses 1is present, each
entry must point within the data base. (PROLOD
preserves bit zero in each entry.) Each entry in
the table must also have a matching entry in the
table of KRB addresses of a CTB in the loadable
data base.

The following offsets in each SCB are initialized as described:

S.LHD The head of the I/O queue is set to zero and the
pointer to the end of the queue (S.LHD+2) is set
to point at S.LHD.

S.PKT The pointer to the current I/0 packet is set to 1.
These last checks end the loading and validating of the data base.
After the data base is loaded and validated and no error is found, the
driver itself 1is 1loaded into memory. In loading the driver,'the
driver dispatch table is validated, each interrupt entry in the driver

dispatch table 1is inspected, and the vector(s) are checked. If a
vector address is higher than the highest available vector address

5-7

PROLOD PROCESSING

PROLOD prints a warning message. Interrupt control blocks are created
and linked into the list starting at L.ICB in the CTB.

The format of the DDT must be consistent with that described 1in

Section 4.3.1. If the device that the data base describes does not
have any physical controllers (that is, a CTB does not exist), the DDT
is not checked. Otherwise, the device has at least one interrupt

vector and therefore at least one interrupt entry point. The DDT is
then checked. The two global labels S$xxXTBL and SxxTRE must define the
start and end of the DDT. The dgeneric controller name(s) must be
nonzero and the interrupt entry values must be valid. Interrupt entry
point 0 must be nonzero, even, and lie in the range 117777 and 140000.
If the format of DDT is inconsistent, PROLOD prints an error message,
restores the system device tables, and exits.

When the driver is loaded, all links are established. The DCB of the
loadable data base is put in the list of DCBs just in front of the DCB
for the first pseudo device. The CTB(s) are linked to the end of the
CTB 1list. The DDT address D.DSP, the driver PCB address D.PCB, and
the driver mapping S.KS5 (the block number of the first word of the
driver) in the fork block are initialized. The address of the start
of the KRB table in the CTB, denoted in the driver data base by the
local label xxCTB, is loaded into the DDT.

CHAPTER 6

DEBUGGING A USER-SUPPLIED DRIVER

Adding a user-supplied driver carries with it the risk of introducing
obscure bugs into a P/0OS system. Because the driver runs as part of
the Executive, P/0OS provides an Executive debugging tool (XDT).

6.1 THE EXECUTIVE DEBUGGING TOOL

XDT is an interactive debugging tool which can aid in debugging
Executive modules, I/0 drivers, and interrupt service routines. This
debugging aid is similar to ODT, the task-level debugger. XDT
occupies physical address space in the GEN partition but does not take
up any Executive virtual address space. XDT also does not interfere
with wuser-level ODT, which can be used with any number of tasks while
you are debugging your driver with XDT.

6.1.1 XDT Commands

XDT commands are generally compatible with ODT commands. XDT does not
contain the following commands available in ODT:

® No SM - (Mask) register

e No $X - (Entry Flag) registers
® No SV - (SST vector) registers
@ No $D - (I/O LUN) registers

@ No SE - (SST data) registers

@ No SW - (Directive status word) S$DSW word

THE EXECUTIVE DEBUGGING TOOL

e No E - (Effective Address Search) command
e No F - (Fill Memory) command

e No N - (Not word search) command

@ No V - (Restore SST vectors) command

e No W - (Memory word search) command

In addition, the X (Exit) command in XDT will simply issue a HALT
instruction. This will drop the printer port terminal into Micro-ODT.
(See Section 6.2.

6.1.2 XDT Start Up

You may install XDT from DCL with the command: INSTALL XDT/NOREMOVE.
The "noremove" switch will inform the executive not to abort XDT when
the DCL or Native Toolkit application exits. From DCL, RUN XDT. An
initialization message will appear. When active, XDT runs entirely at
priority level 7.

6.1.3 XDT General Operation

Prior to embarking on an XDT debugging session, plug a maintenance
cable (BCC-08) into the printer port and attach a VT100 or similar
terminal. If the cable had been in place when the system was turned
on, the terminal will need to be set to 9600 baud; otherwise, the
terminal must be at 4800 baud. Input and output are directed to this
port.

Assemble the driver with an embedded BPT instruction, or use the ZAP
utility to set the breakpoint by replacing a word of code with the BPT
instruction. (Make sure to write down the instruction that you
replace with the BPT instruction.) When the breakpoint instruction in
the driver is executed, XDT prints:

BE : XXXXXX
XDT>

Then:

1. Using XDT, replace the BPT instruction with the desired
instruction.

THE EXECUTIVE DEBUGGING TOOL

2. Decrement the PC by subtracting 2 from the contents of
register R7.

3. Then proceed by using the P or S commands, after optionally

setting breakpoints within the driver or examining memory
locations.

6.1.4 XDT and Debugging a User-Supplied Driver

Using XDT to debug a driver has special pitfalls. One problem that
can arise is a T-bit error:

TE : XXXXXX
XDT>

This error results when control reaches a breakpoint that you have
set, wusing XDT, in a loaded driver. The T-bit error, rather than the
expected BE: error, occurs unless register APR5 is mapped to the
driver at the time XDT sets the breakpoint. Assembling or zapping the
BPT (as opposed to setting it from an XDT prompt) will help avoid this
T-bit error.

NOTE

You should not set breakpoints in more than one module
that maps into the Executive through APR 5 or APR 6.
In particular, do not set breakpoints in more than one
driver at a time or XDT will overwrite words of main
memory when it attempts to restore what it considers
to be the contents of breakpoints.

6.2 MAINTENANCE- OR MICRO-ODT

The processor microcode supports a more limited set of debugging
commands which permit debugging of a system in an otherwise
inaccessible state. Be advised, however, that Micro-ODT 1is able to
access only the low 28K words of memory and the I/O Page, whereas XDT
can be mapped to any part of memory. Micro-ODT is more fully
documented in the Professional 300 Series Technical Manual. It will
also be discussed further in this chapter.

FAULT ISOLATION

6.3 FAULT ISOLATION
Four causes can be identified when the system faults:

1. A user-state task has faulted in such a way that it causes
the system to fault.

2. The user-supplied driver has faulted in such a way that it
causes the system to fault.

3. The system software itself has faulted.

4, The hardware has faulted.
When the system faults, you must first decide which of the above four
potential causes is responsible. This section presents some

procedures that can help you 1isolate the source of the fault.
Correcting the fault itself is your responsibility.

6.3.1 Immediate Servicing

Faults manifest themselves in four ways as listed below (in order of
increasing difficulty to isolate):

1. If XDT is running, an unintended trap to XDT occurs.
2. The system displays a software bugcheck and halts.
3. The system halts but displays nothing.

4, The system is in an unintended loop.

The immediate aim, regardless of the fault manifestation, is to get to
the point where you can obtain pertinent fault isolation data.

6.3.1.1 The System Traps to XDT - A trap may or may not be intended
(for example, a previously set breakpoint). If it is not intended and
you have some idea of the source of the problem (for example, a recent
coding change), you may use XDT to examine pertinent data structures
and code.

6.3.1.2 The System Halts but Displays No Information - Before taking
any action, preserve the current PS and PC and the pertinent device
registers (that is, examine and record the information these registers
contain). See Section 6.2.

FAULT ISOLATION

6.3.1.3 The System Is in an Unintended Loop - Proceed as follows:

1. Halt the processor by pressing <BREAK> from the debugging
terminal (Micro-ODT).

2. Record the PC, the PS, and any pertinent device registers, as
in Section 6.3.1.2.

You may then want to step through a number of instructions in an
attempt to locate the 1loop. Toggle the Micro-ODT Halt register by
entering "H" at the "@" prompt. Following this, each "P" command will

result in a single step. To restore "proceed" functionality to the
"P" command, enter "H" again.

In order to avoid the side-effects of printer port interrupts you may
first wish to disable printer receiver interrupts. Then proceed as
follows:

1. In micro-ODT open location 173202 (the CSR).

2. Set the printer receiver IMR (interrupt mask register) bit by
depositing a 75 in this location.

6.3.2 Pertinent Fault Isolation Data
Before you attempt to locate the fault, you should examine the system
common (SYSCM). SYSCM contains a number of critical pointers and
listheads. 1In addition, you should examine the dynamic storage region
(system pool and ICB pool) and the device tables. The device tables
are in the module SYSTB. At this point, you have the following data,
which represents a minimal requirement for effectively tracing the
fault:

® PS

® PC

e The stack

e RO through R6

@ Pertinent device registers

® The dynamic storage region

FAULT ISOLATION

® The device tables

® System common

6.4 TRACING FAULTS

Three pointers in SYSCM are critical in fault tracing. These pointers
are described below:

$STKDP - Stack Depth Indicator
This data item indicates which stack was being used at the time

of the crash. $STKDP plays an important role in determining the
origin of a fault. The following values apply:

+1 -- User (task-state) stack or a privileged task at user
state
0 or less —-- System stack

If the stack depth is +1, then the user has crashed the system,
STKTCB - Pointer to the Current Task Control Block (TCB)

This is the TCB of the user-level task in control of the CPU.
SHEADR - Pointer to the Current Task Header (Pool-Resident)

The location of the task header and the contents of its associated
pointers vary according to whether the task has an external header. A
task with an external header has its header attached in a physically
contiguous and numerically lower location in memory. A task with a
nonexternal header has its header located in Executive pool space.
Therefore, a header in Executive pool is a pool-resident header, and a
header adjacent to the task is a non-pool-resident header.

Figure 6-1 shows the interaction of header pointers for both
pool-resident and non-pool-resident headers. For a pool-resident task
header, SHEADR, S$SAHPT, and $SAVSP all point to the first word of the
task header. This word also contains the user task's stack pointer
(SP) from the last time it was saved. Figure 6-2 shows a brief
description of the task header. The task header is fully described in
the RSX11M/M+ Task Builder Manual, which is distributed with the P/0S
Toolkit Documentation.

TRACING FAULTS

POOL-RESIDENT TASK HEADER (Non-external)

LV:rtual Header Addr.

| sneaom |
Current Task
Saved Stack Addr.
| ssavse == Header
1 Virtual Header Addr. e — — — =
[$SAHPT Saved Stack Pointer

i

—t

THDOLN O

ISSAHDB undefined value

NON-POOL-RESIDENT TASK HEADER (External)

Task

ese

RSAHPT 140000

Current Task

[$HEADR Header
Executive
Data Area
[$SAVSP 1-word block T HDLN .0

Executive |

l $SAHDB - KISAR6E

J—‘—‘{ Address resolution

Figure 6-1:

The header (as pointed to by $HEADR) ‘
set, just before the header guard word (the last word in the

register

Interaction of Task Header Pointers

also

header -- pointed to by H.GARD).

contains

the

last-saved

TRACING FAULTS

RO

RS

PC

PS

H.NLUN N

H.GARD

H.HDLN Length in bytes

SP

Figure 6-2: Task Header

The pointers associated with a pool-resident header are described
next:

SHEADR - Points to the current task header.

The SHEADR word points to the pool-resident task header of
the task currently running. The value in $HEADR is a kernel
virtual address in primary pool.

$SAVSP - Points to the first word of the current task header, which
contains the saved stack pointer.

$SAHPT - Points to the current task header in pool. $SAHPT contains

6-8

TRACING FAULTS
the virtual address of the header. $SAHPT and S$HEADR contain
the same virtual address for a pool-resident header.

SSAHDB - Contents undefined

The pointers associated with a non-pool-resident header are described
next:

SHEADR - Points to the pointer for the saved stack pointer, $SAVSP.

SSAVSP - Points to a 4-word block in the Executive data area.

$SAHPT - Contains the octal value of 140000 that is to be wused with
$SAHDB to resolve the address of the task's header. S$SAHPT
always contains 140000 in this case.

$SAHDB - Contains the value in KISAR6, which is a 32-word block-offset

to be used with the value in $SAHPT to resolve the address of
the task's header.

6.4.1 Tracing Faults Using the Executive Stack and Register Dump

The following discussion implies that XDT is active. If the system
crashes while XDT 1is not active, a software bugcheck occurs.
Procedures for analyzing a bugcheck are discussed in Section 6.4.5.
To trace a fault after a software crash, first examine the system
stack pointer. Usually an Executive failure is the result of an
SST-type trap within the Executive. If an SST does occur within the
Executive, then the origin of the call on the crash-reporting routine
is in the SST service module. (The crash call is initiated by issuing
an IOT at a stack depth of zero or less.)

A call to crash also occurs in the Directive Dispatcher when an EMT is
issued at a stack depth of zero or less, or a trap instruction is
executed at a stack depth of less than zero. The stack structure in
the case of an internal SST fault is shown in Figure 6-3.

TRACING FAULTS

PS

PC

R5

R4

R3

R2

R1

RO

Return to system exit

Zero or more SST parameters

SST fault code

A

Number of bytes

Figure 6-3: Stack Structure: Internal SST Fault

The fault codes are:

0 ; TRAPS TO 4

2 ;MEMORY PROTECT VIOLATION
4 ;BREAK POINT OR TRACE TRAP
6 ; IOT INSTRUCTION

10 ; ILLEGAL OR RESERVED INSTRUCTION
12 ;NON RSX EMT INSTRUCTION

14 ; TRAP INSTRUCTION

16 ;11/40 FLOATING POINT EXCEPTION
20 :SST ABORT-BAD STACK

22 ;AST ABORT-BAD STACK

24 ;ABORT VIA DIRECTIVE

26 ; TASK LOAD READ FAILURE

30 ; TASK CHECKPOINT READ FAILURE
32 ; TASK EXIT WITH OUTSTANDING I/O
34 ; TASK MEMORY PARITY ERROR

TRACING FAULTS

The PC points to the instruction following the one that caused the SST
failure. The number of bytes is the number normally transferred to
the user stack when the particular type of SST occurs. If the number
is 4, then a non-normal SST fault occurred, and only the PS and PC are
transferred. There are no SST parameters.

If the failure is detected in $DRDSP, the stack is the same as that
shown in Figure 6-3, except that the number of bytes, the SST fault

code (the fault codes are listed above), and the SST parameters are
not present.

One SST-type failure, stack underflow, does not result in the stack
structure of Figure 6-3. To determine where the crash occurred, first
establish the stack structure. This can be deduced by the value of
the SP and the contents of the top word on the stack. If the stack
structure is that of Figure 6-3, then the failure occurred in $DRDSP,
or was a normal SST crash. If the stack structure is that of Figure
6-4, then an abnormal SST crash has occurred.

SP

0

PS

PC

Figure 6-4: Stack Structure: Abnormal SST Fault

Abnormal SST failures occur when it 1is not possible to push
information on the stack without forcing another SST fault. When this
situation occurs, a direct jump to the crash-reporting routine is made
rather than an IOT crash. The PS and PC on the stack are those of the
actual crash, and the address printed out by the crash-reporting
routine is the address of the fault rather than the address of the IOT
that crashes the system. Note that the crash-reporting routine
removes the PC and PS of the IOT instruction from the stack, which in
this case is incorrect. Thus, the SP appears to be four bytes greater
than it really is (as in Figure 6-4).

You now have all the information needed to isolate the cause of the
failure. From this point on, rely on personal experience and a

knowledge of the interaction between the driver and the services
provided by the Executive.

6.4.2 Tracing Faults When the Processor Halts Without Display

To trace a fault when the processor halts but displays no information,

6-11

TRACING FAULTS

first examine $STKDP, $TKTCB, S$HEADR, $SAVSP, S$SAHPT and $SAHDB. The
difficulty in tracing failures in this case is that the system stack
is not directly associated with the cause of a failure.

By examining $STKDP, you can determine the system state at the time of
failure. If it was 1in user state, the next step is to examine the
user's stack. The examination focuses on scanning the stack for
addresses that may be subroutine links that can ultimately lead to a
thread of events isolating the fault. This is essentially the aim of
looking at the system stack if SSTKDP is zero or less.

Frequently, a fault can occur that causes the SP to point to Top of
Stack (TOS)+4. This fault results from issuing an RTI when the top
two items on the stack are data. The result is a wild branch and
then, most probably, a halt. Figure 6-5 shows a case in which two
data items are on the stack when the program executes an RTI. TOS
points to a word containing 40100. Suppose that location 40100
contains a halt. This indicates that the original SP was four bytes
below the final SP, and fault tracing should begin from the original

SP.

A

SP

40100 s SP

Figure 6-5: Stack Structure: Data Items on Stack

This type of fault also occurs when an RTS instruction 1is executed
with an inconsistent stack. However, in that case, SP points to
TOS+2.

A scan of the contents of the general registers may give some hint as
to the neighborhood in which a fault (or the sequence of events
leading up to the fault) occurred.

If the fault occurred in a new driver, a frequent source of <clues Iis
the buffer address and count words in the UCB (U.BUF, U.BUF+2, U.CNT),
as are the activity flags (US.BSY and S.STS). Other locations in both
the UCB and SCB may also provide information that may help locate the
source of the fault.

TRACING FAULTS

6.4.3 Tracing Faults After an Unintended Loop

To trace a fault when an unintended loop has occurred, first halt the
processor by hitting <BREAK> from the debugging terminal.

After you halt the processor, the same state exists as was discussed
in Section 6.4.2. Follow a similar tracing procedure to the one
described there. A specific suggestion is to <check for a stack
overflow 1loop. Patterns of data successively duplicated on the stack
indicate a stack looping failure.

6.4.4 Additional Hints for Tracing Faults

Another item to check is the current (or last) I/0 Packet, the address
of which 1is found in S.PKT of the SCB. The packet function (I.FCN)
defines the last activity performed on the unit.

If trouble occurred in terminating an I/0O request, a scan of the
system dynamic memory region may provide some insight. This region
starts at the address contained in $SCRAVL, a cell in SYSCM. Because
all 1I/0 packets are built in system dynamic memory, their memory is
returned to the dynamic memory region when they are successfully
terminated. Following the 1link pointers in this region may reveal
whether I/0 completion proceeded to that point. In systems with QIO
optimization, $PKAVL (SYSCM) points to a list of I/O packet-sized
blocks of dynamic memory that are not linked into the $CRAVL chain.

A frequent error for an interrupt-driven device is to terminate an I/O
Packet twice when the device 1is not properly disabled on I/0
completion and an unexpected interrupt occurs. This action ultimately
produces a double deallocation of the same packet of dynamic memory.
Double deallocation of a dynamic buffer causes a loop in the module
SDEACB on the next deallocation (of a block of higher address) after
the second deallocation of the same block. At that time, R2 and R3
both contain the address of the I/O Packet memory that has been doubly
deallocated.

6.4.5 System Bugcheck Without XDT

If a software error causes the system to crash while XDT is not
active, the system will bugcheck. A bugcheck will request the
diagnostic ROM to display an unhighlighted picture of the Professional
with a two-number code, for facility and type of bugcheck. Errors
with a facility code of 000300 are executive or other system state
errors, in which case, the type is represented in the following list:

000000 IOT in System State

TRACING FAULTS

000001 Stack Overflow

000002 Trace Trap or Breakpoint

000003 TIllegal Instruction Trap

000004 0dd Address or Other Trap 4
NOTE

Since there are no odd address traps or memory parity
errors on the 350, these traps are most likely NXM
(non-existent memory), caused by illegal address
computation, bus timeout, or memory management fault.

000005 Segment Fault

000006 A Background Task (one without a parent) aborted or
exited with I/0 outstanding

The processing of the diagnostic ROM changes some of the context of
the system at the time of the crash, so that the diagnosis of the
problem is made somewhat more difficult. In particular, after a
bugcheck, KISAR5, KISAR6, UISARO, and UISAR]1 have been altered, and
the Kernel Stack Pointer has not been preserved. You must therefore
examine the Kernel stack from $STACK toward low memory in order to
locate the trap.

When the processor traps, the PSW and PC are pushed onto the stack.
If the +trap 1is a directive issued by a task in user state (i.e. an
EMT trap), the task's general purpose registers are pushed beginning
with R5 and ending with RO. Then the return call to $DIRXT and an
initial DSW success code of 1 are pushed onto the stack. The
directive processing may call other system subroutines, some of which
might save R5 and R4 (by convention the "nonvolatile" registers).
When the stack contents are analyzed to determine whether they are
pointing to data structures or subroutine addresses, a picture of the
flow of control can be outlined. Often there will be pointers on the
stack to UCB's or other driver-related structures, TCB's or other
task-related structures, or saved APR mapping biases for temporary
remapping of KISAR5 and KISAR6. Since most of these structures are in
primary pool (and thus in the low 28KW of physical memory), they may
be examined using micro-ODT.

Ultimately, a crash will be preceded by a trap in system state.
Again, the PSW and PC at the time of the crash will be pushed onto the
stack. A PSW of 0300nn or 000nnn indicates Kernel mode, previous mode
User or Kernel, respectively. The PC will point to the instruction
following the one causing the trap. Remember that after a bugcheck R6
(or SP) will not point to this address on the stack.

6-14

REBUILDING AND REINCORPORATING A DRIVER

6.5 REBUILDING AND REINCORPORATING A DRIVER

After correcting and assembling the driver source, wunload the old
version wusing PROUNL, task build the new one, and load it using
PROLOD.

Once loaded, the data base is not removed by PROUNL. If the data base
is in error and cannot be patched, correct its source, reassemble it,
and build the new driver task. Then bootstrap the system before
loading the driver task image containing the corrected data base.

CHAPTER 7

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

Because a driver is mapped within the Executive address space, it can
call Executive routines on the same basis as that of any other module
in the Executive. The driver must observe the protocol and
conventions established on the system. The following sections
summarize the conventions, describe the address double word, tell what
special processing 1is required for NPR devices attached to a PDP-11
processor with extended memory support (22-bit addressing), and
summarize some of the typical Executive services available.

7.1 SYSTEM-STATE REGISTER CONVENTIONS

In system state, R5 and R4 are, by convention, nonvolatile registers.
This means that an internally called routine is required to save and
restore these two registers if the routine destroys their contents.
R3, R2, Rl, and RO are volatile registers and may be used by a called
routine without save and restore responsibilities.

When a driver is entered directly from an interrupt, it is operating
at interrupt 1level, not at system state. At interrupt level, any
register the driver uses must be saved and restored. INTSV$ generates
code to preserve R5 and R4 for the driver's use. All drivers must
follow these conventions.

See the description of the driver dispatch table in Section 4.5 for
the contents of registers when a driver is entered.

7.2 EXECUTIVE TIMER RELATED FACILITIES

The executive provides a number of timer related facilities which are
available to an I/O driver. They are typically used to periodically
poll a device for a status change in the absence of an interrupt
capability, to provide general timer services to the driver so that it
can perform it's own timeout processing (needed by more advanced

7-1

EXECUTIVE TIMER RELATED FACILITIES

drivers such as the full duplex terminal driver), or to call the
driver back after some specified period of time.

A timer request requires a structure called a clock block. It 1is
normally located in the device driver's database which has been
allocated from primary pool and is "C.LGTH" bytes in length. A driver
can however simply allocate the clock block from primary pool using
the SALOCB executive subroutine. The clock block contains the request
type, the absolute time when request is to occur, and the bias and
APR5 displacement of the driver routine to be called when inserted in
the system clock queue. A timer request 1is made by calling the
executive's $CLINS routine. Input parameters to SCLINS are the
virtual address of the primary pool resident clock block, the request
type of "C.SYST", the high and low order time delta (in tics), and a
unique identifier. "C.SUB" is expected to contain the virtual address
of the driver routine to be called by executive's clock processor
(executive module TDSCH) when the specified interval of time has
elapsed. The unique identifier is wused to dequeue timer requests
before completion and must be a unique executive (primary pool)
virtual address. This unique identifier could be a UCB address, or
even the address of the clock block itself. Note that since this
identifier is a system wide identifier, and an ad hoc wvalue could
potentially corrupt the system.

Timer requests are one shot in nature and as such, the clock block is
dequeued by the TDSCH processing. The request must be respecified via
the SCLINS routine to achieve a periodic timer facility. The driver
subroutine specified in the request will be called at system state at
processor priority O.

If it is necessary to cancel a timer request, this may be done by
removing the clock block from the system's clock queue via the
executive's SCLRMV routine. The following examples further illustrate
the manipulations required:

-+

Example clock queue insertion and removal
Driver database contains clock block in UCB and thus avoids resource

allocation errors associated with dynamic allocation from primary
pool.

UCB

WO WO Mo We WE WO N WO W WO We WO We W We “O

~o w8 weo

we w8 we wo

I

Ne we WO WM WE WMe WO N WO We WO Wp WO WE W “we “o

I-U\. we w8 W “o

EXECUTIVE TIMER RELATED FACILITIES

examples assume R5 => UCB

The first example is a periodic polling of some device status. Though
status changes are traditionally communicated to the driver via an
interrupt, there are instances of when this hardware functionality is
not available.

NITIM: MOV R5,R0 ;copy UCB address
ADD #U.MYCB,RO ;point to clock block
MOV #POLL,C.SUB(RO) ;specify address of timer routine
CLR R1 ;zero high order delta time
MOV #HSSRTZ/2,R2 ;get number of ticks per half
: second

;for low order time delta

Note that for a request type (6) "C.SYST" $CLINS will save
current APR5 mapping and restore it when time delta expires
before calling driver. The implication is that the virtual
address specified in C.SUB must be mapped through APR5 and that
the caller of SCLINS is also mapped through APR5 with the same
mapping. If a request type (8) "C.SYTK" is specified, then the
caller must have already specified the APR bias in C.AR5 in
addition to the virtual address in C.SUB. Calling SCLINS after
the clock block has already been inserted in the clock block can
cause unpredictable results including the removal of other system
timer requests as a result of the clock queue corruption. Should
this be a problem, C.RQT could be used as an interlock by
clearing it after clock queue removal and checking this word to
determine if the clock block is in use before attempting to call
$CLINS.

MOV #C.SYST,R4 ;specify request type
CALLR $CLINS ;insert clock block into clock
;queue
;and return to this subroutine's
;caller.
The driver is called at this entry point every .5 seconds. All
registers may be used by the driver and upon entry, R4 contains
the address of the clock block dequeued.
OLL: ;first, respecify clock request
MOV R4 ,RO ;specify address of clock block
CLR R1 ;init high order delta time
MOV #HSSRTZ/2,R2 :init low order delta time
MOV C.TCB(RO) ,R5 ;get address of identifier (UCB
;address despite symbolic offset
;name)

7-3

we we

Ne We Wo we we wo wo

EXECUTIVE TIMER RELATED FACILITIES

;note that C.SUB is not modified
;and still valid.

CALL $CLINS ;respecify timer request
;note that C.AR5, or C.SUB need
;not be respecified.

On return from $CLINS, (RO,R4, and R5) are unmodified.

. :driver does what needs to be
R ;done
RETURN

The second example builds on the first example and illustrates
how to cancel a timer request.

The CANTIM routine may be called to remove the clock block
inserted above.

CANTIM: MOV R5,R1 ;specify identifier of clock

Ne Ne We WO we WO We Wo wo wo

;block
:(in this case, the UCB address)

A clock block may be removed from the system clock queue however,
the listhead SCLKHD is not a double word listhead and therefore,
SQRMVT may not be called. $CLRMV can be called to remove clock
blocks from the system clock queue and if the request type was
not "C.SYST", the clock block will be deallocated from primary
pool. Therefore, if the driver's clock block is located in the
driver's database (such as in the UCB or KRB), only the request
type "C.SYST" should be specified.

MOV #C.SYST,R4 ;specify type of request to
;dequeue

CALL SCLRMV ;dequeue it (if there)

RETURN ;return to caller

7.3 ADDRESSING A TASK BUFFER

A typical user task has no knowledge of the physical 1locations

7-4

of

ADDRESSING A TASK BUFFER

every region mapped into its wvirtual space, since the physical
addresses of a task's regions can change due to checkpointing or
shuffling.* Given that a task can only specify the virtual address of
a buffer to a system directive such as QIOS$, this virtual address must
be resolved to some form of an actual physical address being used
while the issuing task's context is loaded. Most I/0 operations are
asynchronous to the execution of user tasks. As a result, the issuer
could change its virtual address space mapping, and thus invalidate
the specified virtual address. The executive assists the driver by
keeping a count of all active I/0 requests on a per region basis, and
converting the user buffer virtual address in the first parameter to a

physical address for transfer functions. If a region contains a
non-zero I/O count, the executive will not checkpoint or shuffle the
region. This would both invalidate the physical address and

compromise the integrity of the system, since the outstanding I/O
could be transferred into the another region resident in memory.

For non-DMA devices, there are three common methods for a driver to
reference a task buffer:

1. The simplest approach is to move the "bias"™ half of the
physical address double word into KISAR6 and then use the
"displacement-in-block” half, which has been adjusted by the
QIO directive processor to map through APR6 for transfer
functions. Unless the bias and displacement are adjusted by
the driver, the maximum size of the user task buffer is
limited to <4096.-32.> words.

2. 1In certain cases, it is not possible for the driver to unmap
KISAR6 because another structure, such as an intermediate
buffer (or possibly the driver code itself), is required to
be mapped. These cases can use a method in which the
executive S$BLXIO routine is used to temporarily unmap the
driver in KISAR5, map the source and destination buffers
through KISAR5 and KISAR6. It then performs the transfer and
restores the mapping.

3. Another method is useful for drivers that sequentially empty
or fill a task buffer word by word, or byte by byte. With
this method, the executive's $GTBYT, S$GTWRD, S$SPTBYT and
$SPTWRD routines unmap KISAR6, perform the transfer, adjust

* Checkpointing is the process of copying a region to a disk so it can
be used by another contending region. Shuffling is the process of
moving a region from one physical location to another 1location in
order to reduce fragmentation. Though a fixed region or a
non-checkpointable region cannot be checkpointed, it can be shuffled -
provided the region has a zero I/O count and is not explicitly marked
as non-shufflable (PS.NSF).

ADDRESSING A TASK BUFFER

the bias and displacement of the target buffer. The buffer
could be as large as 32KW and restore the KISAR6 mapping (see
module BFCTL).

7.3.1 Address Checking a Task Buffer

Address checking is the process of validating that a buffer is fully
mapped within the task's virtual address space, that a buffer is
contained within one region, and that the issuing task has write
access to the region. A buffer can be checked for read only access or
read/write access, depending upon the I/O function. For instance, an
IO.WLB or IO.WVB check the buffer for read-only access, since it is
known that the transfer will not write to the region. Normally, a
driver does not need to explicitly address check the I/0 buffer, as
the executive's QIOS$ directive (see DRQIO) assumes this function for
transfer and ACP I/0 functions.

7.3.2 QIO Directive Processing Specifics

The following checks and actions are performed by the executive's QIO
directive processing:

® The specified LUN must be valid and assigned. If it is not,
a directive error IE.ILU or IE.ULN is returned.

@ The UCB address in LUN is resolved to the target UCB by
following the redirect pointer U.RED.

e If I/O is stalled for the wunit (US.SIO=1) or if a file
operation is pending (bit 0 in the second LUN word =1), the
issuing task's PC is modified so that the directive is
reissued at a later point in time after a significant event
occurs. The Files-11 reverification task (VER...) is allowed
to break through a stalled I/0 state.

® The driver must be resident. If not, a directive error
(IE.HWR) is returned.

e If an optional event flag is specified, it is validated and
cleared. If an 1invalid (non-existent) event flag is
specified, a directive error (IE.IEF) is returned.

@ An I/O packet is allocated from the primary pool. If there
is insufficient pool to create the I/0 packet, a directive
error (IE.UPN) is returned.

ADDRESSING A TASK BUFFER

If the directive QIOWS is received, the task is placed in a
"waitfor" state - if the event flag was specified.

An I/0 rundown count (T.IOC) is incremented in the issuer's
task control block.

The optional I/0O status block is validated, and the contents
cleared. The virtual address and physical address double
word of the I/O status block are stored in the I/0 packet.

I/0 packet fields are initialized and used as indicated 1in
Table 7-20

IO.KIL functions are always legal and are processed
immediately by the executive. The driver's I/0 packet gueue
(listhead S.LHD) is flushed, whether the unit is online or
not, of all packets with the same TCB address and UCB address
if the device is not mounted with an associated ACP. If the
unit is online and cancel notification has been requested by
the driver (UC.KIL=1), the driver is always called at the
D.VCAN entry point - independent of whether the unit was busy
or if any packets were flushed. If the unit was busy at the
time of the cancel I/0 request, the driver will be called.

Depending on device characteristics, unit status, and type of
function, specific processing is performed and the I/O packet
is either queued to the driver or to the ACP.

Table 7-1: QIO Processing By Function Type and Device Characteristics

DV .MNT

| TYPE | US.MNT| US.FOR| US.LAB| Checks and action performed

———————— T e i ittt

N - - - 1,2,1IS.SUC is returned

C - - - 1,2,A

T - - - 1,2,B

A - - - 1,2,3,B

N - - - 2,IS.SUC is returned

C 1 - - 2,1,A,6

T 1 - - 2,4,B,6

A 1 - - 2,5

C 0 1 - 2,1,A,6

C 0 0 1 2,7,A,6

C 0 0 0 2,1,A,6

T 0 1 - 2,8,B,6

T 0 0 2,9,B,6

A 0 1 - 2,8,C,6

A 0 0 - (beyond scope of this table)

ot e el e b R R = = O OO O

£
oy
0}
I}
0}

PHOZ
oo

ADDRESSING A TASK BUFFER

NOP
Control
Transfer
ACP

If the device unit is allocated (U.OWN <> 0), and not public
(US.PUB=0), then an I/0 error of IE.PRI is return unless the
issuing task is privileged or the issuing task's TI 1is the
allocator ((T.UCB)=(U.OWN)).

If the function is not legal then an I/O error of IE.IFN is
returned. Also, if the device wunit is marked offline
(US.OFL=1) then an I/0 error of IE.OFL is returned.

If function code is I0O.RVB ((I.FCN+1)=I0.RVB/"0400) then
function code is converted to IO.RLB and all subfunction bits
cleared. If function code is an IO.WVB, then subfunction is
converted to an IO.WLB again clearing all subfunction bits.

If device unit's volume status is not valid (US.vv=0) an I/0O
error of IE.PRI is returned.

ACP functions to a dismounted volume result in an IE.PRI
error.

Task load overlay checks. I0O.LOV and IO.LOD have a
particular meaning for mountable devices, whether or not
device is mounted or not, and check is performed for both
control and transfer functions. (These I/0 functions are
equivilent to IO.RLB!10 or IO.RLB!110 .)

Control functions to a mounted ANSI tape required the issuer
to be privileged.

An ACP must be associated with the wunit otherwise an I/0
error of IE.PRI is returned.

A transfer function to a mounted volume must be a 1load
overlay function or the task must be privileged.

A. A control function format I/O packet is built and queued
to the driver.

B. A transfer function format I/O packet is built and queued
to the driver. If the I/O0 function was an IO.WVB or an
IO.WLB, then the buffer is address checked for read only
access, otherwise the buffer is checked to ensure that
the task has write access to the buffer's region.

ADDRESSING A TASK BUFFER

C. Same action as B except that packet is queued to ACP.

Table 7-2: I/0 Packet Usage by Function Type

I/0 packet Control Transfer

Field Functions Functions Notes
sk utility link word
I.PRI (T.PRI) (T.PRI)

I.EFN (0.IOLU) (Q.IOLU)

I.TCB ($TKTCB) (STKTCB) 1
I.LN2 (SHEADR)+H .NLUN+2+<<Q.IOLU-1>*4>+2 2
I.UCB redirected UCB address 3
I.FCN (Q.IOFN) (Q.IOFN) 4
I.I0OSB virtual address of I/0 status block 5
I.I0SB+2 bias of I/0 status block 5
I.I0SB+4 disp. in blck+140000 of I/O status blck 5
I.AST virtual address of I/0 completion AST
I.PRM (Q.IOPL) bias of buffer

I.PRM+2 (Q.IOPL+2) DIB+140000 of buf.
I.PRM+4 (Q.IOPL+4) (0.IOPL+2)

I.PRM+6 (Q.IOPL+6) (Q.IOPL+4)

I.PRM+10 (Q.IOPL+10) (Q.IOPL+6)

I.PRM+12 (Q.IOPL+12) (0.IOPL+10)

I.PRM+14 0 (Q.IOPL+12)

I.PRM+16 0 0

I.AADA 0 address of ADB 8
I.AADA+2 0 0

Notes:

ADDRESSING A TASK BUFFER

If the high bit in the event flag byte field 1is set, it
indicates a virtual I/0 function. I.PRM+16 is then treated
as a FILES-11 lock block during I/0 completion. Mass storage
device drivers should ensure that I.PRM+16 is not used as
temporary storage of I/0 context.

If the bit 0 is set in the contents (not the address) of the
second LUN word I.LN2, it indicates that this word contains
the window block pointer. If the function 1is wvirtual and
this word 1is even, the task's header (task region) has been
locked in memory by incrementing the attachment descriptor
I/0 count and the task region's PCB I/0 count.

UCB addresses in the task header are not fully resolved to
the target UCB, so a level of indirection is possible. For
instance, a task which is preinstalled in the system before
boot may need to read a disk overlay from LB:. The UCB
address of the pseudo device LB: is in the LUN, and the
system has redirected the pseudo device to the physical boot
unit during the boot process to DWl:, DZl:, or DZ2:.

The I.FCN word consists of two bytes. The high byte is the
function code and the low byte is the subfunction code. The
subfunction consists of eight independent bits which are
interpreted within the context of the function code. The
exceptions are as follows:

e The subfunction IQ.UMD (4) stamps any I/O function as a
diagnostic function, independent of any device

characteristics.

@ The subfunction IQ.X (1) means inhibit reties. It is of
primary interest to mass storage device drivers.

® The subfunction IQ.LCK (70200) is used by FILES-11 ACP
functions and will not be seen normally by the mass
storage device driver.

@ Another subfunction bit of concern to mass storage device
drivers occurs when "write checking” is requested on a
mounted volume. This is indicated by an IO.WLB function
with subfunction bit (20) specified.

I/0 counts are not maintained for the I/0 status block.
Therefore, the I/0 status block may not be accessed by the
driver except at predriver initialization time (UC.QUE=1).
I/0 completion processing uses the physical address of the
I/0 status block, provided no event has occurred while 1I/0

7-10

ADDRESSING A TASK BUFFER

was outstanding that would have invalidated this address
(such as unmapping a region, an EXTKS, or a checkpoint), as
indicated by T3.MPC. If such an event has occurred, the I/0
packet is converted into a kernel AST packet such that when
the task’'s context is 1loaded, the virtual address can be
used. Note that system's integrity is preserved here, rather
than the issuing task's, if the task remapped or unmapped the
I/0 status block. 1In general, a task may not change the
virtual mapping of it's I/0 status block, but can unmap an
I/0 buffer if needed.

If I.I0SB+4 is odd, it indicates that the 1I/0 packet is
internal I/0 which was issued from another driver or system
process. When I/0 is completed, a specified kernel mode
completion routine is called - rather than performing normal
I/0 completion processing (see SIOFIN in IOSUB for details).
This is intended to be transparent to the driver.

7.4 THE ADDRESS DOUBLE WORD

P/0S can accommodate configurations whose maximum physical memory is
2048K words. Individual tasks, however, are limited to 32K words.
The addressing is accomplished by using virtual addresses and memory
mapping hardware. I/0 transfers, however, use physical addresses 18
bits in length. Since the PDP-11 word size is 16 bits, some scheme is
necessary to represent an address internally until it is actually used
in an I/0 operation. The choice was made to encode two words as the
internal representation of a physical address and to transform virtual
addresses for I/0 operations into the internal doubleword format.

On receipt of a QIO directive, the buffer address in the Directive
Parameter Block, which contains a task virtual address, is converted
to address doubleword format.

The virtual address in the DPB is structured as follows:

Bits 0 through 5 Displacement in terms of 32-word blocks
Bits 6 through 12 Block number
Bits 13 through 15 Page Address Register Number (PAR#)

The internal P/0OS translation restructures this virtual address into
an address doubleword as described in the following paragraphs.

THE ADDRESS DOUBLE WORD

The relocation base contained in the PAR specified by the PAR number
in the virtual address in the DPB is added to the block number in the
address. The result becomes the first word of the address doubleword.
It represents the nth 32-word block in a memory viewed as a collection
of 32-word blocks. Note that at the time the address doubleword is
computed, the user's task issuing the QIO directive is mapped by the
processor's memory management registers.

The second word is formed by placing the displacement in block (bits 0
through 5 of virtual address) into bits 0 through 5. The block number
field was accommodated in the first word and bits 6 through 12 are
cleared. Finally, a 6 is placed in bits 13 through 15 to enable use
of PAR #6, which the Executive uses to service I/0 for program
transfer devices. '

For nonprocessor request (NPR) devices, the driver requirements for
manipulating the address doubleword are direct and are discussed with
the description of U.BUF in Section 4.4.4.

7.5 SERVICE CALLS

This section contains general commentary on the Executive routines
typically wused by I/O drivers. The descriptions of the routines are
taken from the source code of modules linked to form the Executive.
Table 7-3 summarizes the routines described in this section. Only the
most widely used routines are described; however, many other Executive
services are available. The source code for the related routines is
in the MACRO-11 source files for the Executive modules.

~
I

12

Table 7-3:

Routine

Name

SACHKB
SACHCK
SALOCB
$BLKCK
$SBLKC1
SBLKC2
$BLXIO
SCKBFI
SCKBFR
S$CKBFW
SCKBFB
$CLINS
SCVLBN
SDEACB
SFORK

SFORK1
SGTBYT
SGTPKT
SGSPKT
SGTWRD
SINIBF
SINTXT
SIOALT
SIODON
SIOFIN
SPTBYT
S$PTWRD
SQINSP
SRELOC
SREQUE
SREQU1
STSPAR

STSTBF

SERVICE CALLS

Summary of Executive Service Calls for Drivers

Location in
Module

EXSUB
EXSUB
CORAL
MDSUB
MDSUB
MDSUB
BFCTL
EXESB
EXESB
EXESB
EXESB
QUEUE
MDSUB
CORAL
SYSXT
SYSXT
BFCTL
IOSUB
IOSUB
BFCTL
IOSUB
SYSXT
IOSUB
IOSUB
IOSUB
BFCTL
BFCTL
QUEUE
MEMAP
IOSUB
IOSUB
REQSB

IOSUB

Function

Address check for byte-aligned buffers
Address check for word-aligned buffers
Alocate core buffer

Check logical block number

Check logical block number

Check logical block number

Move block of data

Check I/0 buffer

Check I/0 buffer

Check I/0 buffer

Check I/0 buffer

Clock queue insertion

Convert logical block number
Deallocate core buffer

Create a fork process

Fork but bypass clearing timeout count
Get byte

Get an I/O packet

Get a special I/O0 packet

Get word

Initiate I/0 buffering

Interrupt exit

Alternate entry to $IODON

I/0 done for completing an I/O request
I/0 finish for special I/0 completion
Put byte

Put word

Queue insertion by priority

Relocate address

Queue kernel AST to task

Queue kernel AST to task

Test if partition memory resident

for kernel AST

Test for I/O buffering

SERVICE CALLS

SACHKB
$ACHCK

7.5.1 Address Check

These routines are in the file IOSUB. A driver <can call either
routine to address-check a task buffer while the task is the current
task. The Address Check routines are normally used only by drivers
setting UC.QUE in U.CTL. See Section 8.1 for an example.

Calling Sequences:

CALL SACHKB
or
CALL SACHCK
Description:
+

** _SACHKB-ADDRESS CHECK BYTE ALIGNED
**_SACHCK-ADDRESS CHECK WORD ALIGNED

THIS ROUTINE IS CALLED TO ADDRESS CHECK A BLOCK OF MEMORY TO SEE
WHETHER IT LIES WITHIN THE ADDRESS SPACE OF THE CURRENT TASK.

INPUTS:

RO=STARTING ADDRESS OF THE BLOCK TO BE CHECKED.
R1=LENGTH OF THE BLOCK TO BE CHECKED IN BYTES.

OUTPUTS :

C=1 IF ADDRESS CHECK FAILED.
C=0 IF ADDRESS CHECK SUCCEEDED.

R2 =ADDRESS OF WINDOW BLOCK MAPPING BUFFER
(FOR PRIV TASKS SEE NOTE.)

RO AND R3 ARE PRESERVED ACROSS CALL.

NOTE : SINCE PRIVILEGED TASK I /O BUFFERS ARE NOT
ADDRESS CHECKED, R2 ALWAYS RETURNS A POINTER TO
THE FIRST WINDOW BLOCK. CHECKPOINTING AND
SHUFFLING OF COMMONS WILL STILL WORK PROPERLY
PROVIDED THAT A PRIVILEGED TASK NEVER SPECIFIES
AN I /O INTO A COMMON WHICH IT ALLOWS TO REMAIN

VWO WO VO N0 N0 NO N0 N0 MO WO WO N0 WO N0 WO N WO WO N0 N WO We WO W We W0 We WO

7-14

Note:

e weo

SERVICE CALLS

CHECKPOINTABLE AND SHUFFLEABLE.

In P/0S, almost all drivers will wish to use the alternate
routines SCKBFB/SCKBFW which correctly maintain the
attachment and partition I/0 count mechanism in addition to
address checking the user buffer. 1If the driver completes
all references to the buffer in the initiation routine (that
is, fills the buffer and calls SIOFIN, rather than queueing
the packet and/or starting a transfer which is completed via
interrupt service) then it is permissible to use
SACHKB/$ACHCK. See Section 7.5.5 for a description of
$CKBFB/SCKBFW and Section 8.1 for an example.

~
I

15

SALOCB

7.5.2

SERVICE CALLS

Allocate Core Buffer

This routine is in the file CORAL.

Calling Sequences:

CALL $ALOCB
or

CALL $ALOC1
Description:

—e

We WO WO Ne W WO WO e Ne We WO WO N WO WO WO W0 Wo W We

** _SALOCB-ALLOCATE CORE BUFFER
** _SALOCl1-ALLOCATE CORE BUFFER (ALTERNATE ENTRY)

THIS ROUTINE IS CALLED TO ALLOCATE AN EXEC CORE BUFFER, THE
ALLOCATION ALGORITHM IS FIRST FIT AND BLOCKS ARE ALLOCATED IN
MULTIPLES OF FOUR BYTES.

INPUTS:

RO=ADDRESS OF CORE ALLOCATION LISTHEAD-2 IF ENTRY AT
SALOC1 R1=SIZE OF THE CORE BUFFER TO ALLOCATE IN BYTES.

OUTPUTS:

C=1 IF INSUFFICIENT CORE IS AVAILABLE TO ALLOCATE THE
BLOCK.
C=0 IF THE BLOCK IS ALLOCATED.
RO=ADDRESS OF THE ALLOCATED BLOCK.
R1=LENGTH OF BLOCK ALLOCATED

SBLKCK
$BLKC1
SBLKC2

7.5.3

SERVICE CALLS

Check Logical Block

This routine is in the file MDSUB. The output from this routine is
used by disk drivers as input to the $CVLBN routine to handle logical
block numbers in data transfers.

Calling Sequence:

CALL $BLKCK
or

CALL SBLKC2
Description:

+

e MO MO WO W WO WG WO WE NE WE WO WO WO WO N We WO Ne W W6 W6 N8 e We Wo We W o

**-SBLKCK-LOGICAL BLOCK CHECK ROUTINE

**_SBLKC1-LOGICAL BLOCK CHECK ROUTINE (ALTERNATE ENTRY)

**_SBLKC2-LOGICAL BLOCK CHECK ROUTINE (ALTERNATE ENTRY FOR
QUEUE OPT)

THIS ROUTINE IS CALLED BY I/O DEVICE DRIVERS TO CHECK THE
STARTING AND ENDING LOGICAL BLOCK NUMBERS OF AN I/O TRANSFER TO
A FILE STRUCTURED DEVICE. IF THE RANGE OF BLOCKS IS NOT LEGAL,
THEN S$IODON IS ENTERED WITH A FINAL STATUS OF "IE.BLK" AND A
RETURN TO THE DRIVER'S INITIATOR ENTRY POINT IS EXECUTED. ELSE
A RETURN TO THE DRIVER IS EXECUTED.

$BLKC2 RETURNS TO $QOPDN IN $DRQRQ IF THERE IS AN ERROR INSTEAD
OF THE DRIVER'S INITIATOR ENTRY POINT. THIS ALLOWS THE QUEUE
OPTIMIZATION CODE TO USE BLKCK

INPUTS:

R1=ADDRESS OF I/O PACKET.
R5=ADDRESS OF THE UCB.

OUTPUTS
IF THE CHECK FAILS, THEN S$IODON IS ENTERED WITH A FINAL
STATUS OF "IE.BLK" AND A RETURN TO THE DRIVER'S INITIATOR
ENTRY POINT IS EXECUTED.

IF THE CHECK SUCCEEDS, THEN THE FOLLOWING REGISTERS ARE

7-17

N6 Ne weo we =0 “wo

SERVICE CALLS

RETURNED:
RO=LOW PART OF LOGICAL BLOCK NUMBER.
R1=POINTS TO I.PRM+12 (LOW PART OF USER LBN)
R2=HIGH PART OF LOGICAL BLOCK NUMBER.
R3=ADDRESS OF I/O PACKET.

SERVICE CALLS

$BLXIO

7.5.4 Move Block of Data
This routine is in file BFCTL.
Calling Sequence:

CALL $BLXIO

Description:

+

**_SBLXIO-MOVE BLOCK OF DATA.

THIS ROUTINE IS CALLED TO MOVE DATA IN MEMORY IN A MAPPED
SYSTEM.

INPUTS:

RO=NUMBER OF BYTES TO MOVE.
R1=SOURCE APR5 BIAS.
R2=SOURCE DISPLACEMENT.
R3=DESTINATION APR6 BIAS.
R4=DESTINATION DISPLACEMENT.

OUTPUTS:

DESCRIBED MOVE IS ACCOMPLISHED.

RO ALTERED

R1,R3 PRESERVED

R2,R4 POINT TO LAST BYTE OF SOURCE AND DESTINATION + 1

NOTE : THE COUNT INPUT IN RO MUST NOT BE ZERO AND IT MUST
NOT BE LARGE ENOUGH TO CROSS APR BOUNDARIES (THIS
TYPICALLY MEANS A MAXIMUM OF 8KB-64.BYTES).

NO WO Ve NE NE WO We WO W WE W NG WP WO WE WO Ne N WO W0 WO Np “e we wO

SCKBFI
SCKBFR
SCKBFW
SCKBFB

SERVICE CALLS

7.5.5 Check I/O Buffer

These routines are in file EXESB.

Calling Sequences:

CALL

Description:

-e

WO N N Ne Ne Mo We We WE W We WO MO WE WO We WO Ve WE WE Ve WO WP WP wms W We We WG ™o wWs WO

$CKBFB (or appropriate entry name)

**_SCKBFI-CHECK I/O BUFFER FOR I-SPACE (OVERLAY) ACCESS
**_SCKBFR-CHECK I/O BUFFER FOR READ-ONLY (BYTE) ACCESS

**_SCKBFW-CHECK I/0 BUFFER FOR READ-WRITE (WORD) ACCESS
**_SCKBFB-CHECK I/0 BUFFER FOR READ-WRITE (BYTE) ACCESS

THESE ROUTINES ARE CALLED TO ADDRESS CHECK AN I/0 BUFFER
ASSOCIATED WITH THE CURRENT (UNDER CONSTRUCTION) I/O PACKET.
IF THE ADDRESS CHECK PASSES, THEN AN ATTEMPT IS MADE TO POINT
ONE OF THE ATTACHMENT DESCRIPTOR POINTERS AT THE ASSOCIATED

ADB.

1) -

2) -

3) -

THIS WILL HAVE ONE OF THE FOLLOWING OUTCOMES:

THERE IS CURRENTLY NO ATTACHMENT POINTER IN THE PACKET TO
THIS ADB, AND THE POINTERS AREN'T FULL. A POINTER IS FILLED
IN AND THE A.IOC, P.IOC FIELDS FOR THIS I/O ARE
INCREMENTED. THIS IS THE "NORMAL" SUCCESSFUL CASE.

THERE IS ALREADY ONE POINTER TO THIS ADB. THE PACKET IS
UNTOUCHED, AS ARE THE A.IOC AND P.IOC FIELDS, AND THE CHECK
IS CONSIDERED SUCCESSFUL. THE IMPLICATION OF NOT
INCREMENTING A.IOC AND P.IOC IS THAT DRIVERS AND ACPS MAY
NOT RELEASE BUFFERS FOR AN I/O REQUEST ONE AT A TIME, I.E.
THE DRIVER SHOULD NOT CALL $DECIO DIRECTLY, BUT SHOULD CALL
$IODON OR $DECAL AFTER ALL BUFFER ACCESS HAS COMPLETED.

THERE ARE ALREADY TWO POINTERS, NONE OF THEM TO THIS
ATTACHMENT DESCRIPTOR. THIS IS CONSIDERED A CHECK FAILURE
AND RETURN IS MADE WITH CARRY SET.

INPUTS:

RO=STARTING ADDRESS OF BLOCK TO BE CHECKED
R1=LENGTH OF BUFFER TO BE CHECKED

7-20

Ne WO W WO wme We Wwe "o wo WO

SERVICE CALLS

SATTPT=ADDRESS OF I.AADA IN CURRENT I/O PACKET
HEADER OF THE SUBJECT TASK IS MAPPED THROUGH KISAR6

OUTPUTS:

Cc=0

C=1

CHECK AND PACKET UPDAT SUCCESSFUL
I.AADA OR I.AADA+2 POINTS TO THE ADB
A.IOC, P.IOC INCREMENTED
CHECK UNSUCCESSFUL OR PACKET COULD NOT BE FILLED IN

SERVICE CALLS

$CLINS

7.5.6 Clock Queue Insertion
This routine is in the file QUEUE.
Calling Sequence:

CALL $CLINS

Description:

e

**_SCLINS-CLOCK QUEUE INSERTION

THIS ROUTINE IS CALLED TO MAKE AN ENTRY IN THE CLOCK QUEUE. THE
ENTRY IS INSERTED SUCH THAT THE CLOCK QUEUE IS ORDERED IN
ASCENDING TIME. THUS THE FRONT ENTRIES ARE MOST IMMINENT AND
THE BACK LEAST.

INPUTS:

RO=ADDRESS OF THE CLOCK QUEUE ENTRY CORE BLOCK.
R1=HIGH ORDER HALF OF DELTA TIME.

R2=LOW ORDER HALF OF DELTA TIME.

R4=REQUEST TYPE.

R5=ADDRESS OF REQUESTING TCB OR REQUEST IDENTIFIER.

OUTPUTS:

THE CLOCK QUEUE ENTRY IS INSERTED IN THE CLOCK QUEUE
ACCORDING TO THE TIME THAT IT WILL COME DUE.

WO WO WO WO N WO NP WO WP VO N9 WO WO Ne WO W We Wp W) we “o

SERVICE CALLS

SCVLBN

7.5.7 Convert Logical Block Number

This routine is in the file MDSUB. The input to this routine is the
same as the output from the $BLKCK routine. Typically, a disk driver
calls this routine to convert a logical block number to a physical
disk address. The routine accesses the U.PRM fields in the driver
data base unit control block. These fields contain the sector, track,
and cylinder parameters for the type of disk supported. Refer to the
description of the U.PRM fields in Section 4.4.4.

Calling Sequence:
CALL $CVLBN

Description:

+

** _SCVLBN-CONVERT LOGICAL BLOCK NUMBER TO DISK PARAMETERS

THIS SUBROUTINE WILL CONVERT THE SPECIFIED LOGICAL BLOCK
NUMBER TO A SECTOR/TRACK/CYLINDER ADDRESS.

INPUTS:

(SAME AS S$BLKCK OUTPUTS)
RO=LOW PART OF LBN
R2=HIGH PART OF LBN
R3=I/0 PACKET ADDRESS
R5=UCB ADDRESS

OUTPUTS:
RO=SECTOR NUMBER

R1=TRACK NUMBER
R2=CYLINDER NUMBER

we WO WO WO N WO WM WO WO WO WE WO WO W We We Wo We wo Wo

SDEACB

7.5.8

SERVICE CALLS

Deallocate Core Buffer

This routine is in the file CORAL.

Calling sequences:

CALL SDEACB

or

CALL SDEAC1

Description:

WO N0 N0 WO WO N0 MO N0 We W WO WO W Ne NE Ne WO we We W wo “o

+

** _SDEACB-DEALLOCATE CORE BUFFER

**_SDEAC1-DEALLOCATE CORE BUFFER (ALTERNATE ENTRY)

THIS ROUTINE IS CALLED TO DEALLOCATE AN EXEC CORE BUFFER. THE
BLOCK IS INSERTED INTO THE FREE BLOCK CHAIN BY CORE ADDRESS. IF

AN ADJACENT BLOCK IS CURRENTLY FREE,

THEN THE TWO BLOCKS ARE

MERGED AND INSERTED IN THE FREE BLOCK CHAIN.

INPUTS:

RO=ADDRESS OF THE CORE BUFFER

R1=SIZE OF THE CORE BUFFER TO

R3=ADDRESS OF CORE ALLOCATION
SDEAC1.

OUTPUTS:
THE CORE BLOCK IS MERGED INTO

ADDRESS AND IS AGLOMERATED IF
BLOCKS.

TO BE DEALLOCATED.
DEALLOCATE IN BYTES.
LISTHEAD-2 IF ENTRY AT

THE FREE CORE CHAIN BY CORE.
NECESSARY WITH ADJACENT

SFORK

7.5.9

SERVICE CALLS

Fork

Fork is in the file SYSXT. A driver calls SFORK to switch from a

partially

interruptable 1level (its state following a call on $INTSV)

to a fully interruptable level.

Calling sequence:

CALL

SFORK

Description:

WO WO WO We WO WE WO WO WE We WO We WO We WE WO WO W w0

Notes:

2.

+

**_-SFORK-FORK AND CREATE SYSTEM PROCESS

THIS ROUTINE IS CALLED FROM AN I/O DRIVER TO CREATE A SYSTEM
PROCESS THAT WILL RETURN TO THE DRIVER AT STACK DEPTH ZERO TO
FINISH PROCESSING.

INPUTS:

R5=ADDRESS OF THE UCB FOR THE UNIT BEING PROCESSED.
0(SP)=RETURN ADDRESS TO CALLER.
2(SP)=RETURN ADDRESS TO CALLERS CALLER.

OUTPUTS:

REGISTERS R5 AND R4 ARE SAVED IN THE CONTROLLER FORK BLOCK
AND A SYSTEM PROCESS IS CREATED. THE PROCESS IS LINKED TO
THE FORK QUEUE AND A JUMP TO SINTXT IS EXECUTED.

$FORK cannot be called unless S$INTSV has been previously
called or S$INTSI has run. The fork-processing routine
assumes that the Executive has set up entry conditions.

A driver's current timeout count 1is <cleared in calls to
SFORK. This protects the driver from synchronization
problems that can occur when an I/O request and the timeout
for that request happen at the same time. After a return
from a call to SFORK, a driver's timeout code will not be
entered.

~
I

25

SERVICE CALLS

If the clearing of the timeout count is not desired, a driver
has two alternatives:

1.

Perform timeout operations by directly inserting elements
in the <clock queue (refer to the description of the
SCLINS routine).

Perform necessary initialization, including clearing
S.STS in the SCB to zero (establishing the controller as
not busy), and call the S$FORK1 routine rather than S$FORK.
Calling SFORK1 bypasses the <clearing of the current
timeout count.

The driver must not have any information on the stack when
SFORK is called.

~
I

26

SFORK1

7.5.10

Forkl is
clearing

SERVICE CALLS

Forkl

in the file SYSXT. A driver calls $FORKl to bypass the
of its timeout count when it switches from a partially

interruptable level to a fully interruptable level (refer also to the
description of the SFORK routine).

Calling Sequence:

CALL $FORK1

Description:

o

me WO WE WO N WO WO WO WO WO WO We we W6 We WO we WO

Notes:

**_SFORK1-FORK AND CREATE SYSTEM PROCESS

THIS ROUTINE IS AN ALTERNATE ENTRY TO CREATE A SYSTEM PROCESS
AND SAVE REGISTER R5.

INPUTS::

R4=ADDRESS OF THE LAST WORD OF A 3-WORD FORK BLOCK PLUS 2.
R5=REGISTER TO BE SAVED IN THE FORK BLOCK.

OUTPUTS::

REGISTER R5 IS SAVED IN THE SPECIFIED FORK BLOCK AND A
SYSTEM PROCESS IS CREATED. THE PROCESS IS LINKED TO THE
FORK QUEUE AND A JUMP TO $INTXT IS EXECUTED. R5 IS
RESERVED FOR CALLERS CALLER.

A 5-word fork block is required for calls to $FORKIL.

When a 5-word fork block is used, the driver must initialize
the fifth word with the base address (in 32-word blocks) of
the driver partition. This address can be obtained from the
fifth word of the standard fork block in the SCB.

The driver must not have any information on the stack when
SFORK1 is called.

SERVICE CALLS

SGTBYT

7.5.11 Get Byte

Get Byte is in the file BFCTL. Get Byte manipulates words U.BUF and
U.BUF+2 in the UCB.

Calling sequence:
CALL $GTBYT

Description:

+

** _GTBYT-GET NEXT BYTE FROM USER BUFFER
THIS ROUTINE IS CALLED TO GET THE NEXT BYTE FROM THE USER BUFFER
AND RETURN IT TO THE CALLER ON THE STACK. AFTER THE BYTE HAS
BEEN FETCHED, THE NEXT BYTE ADDRESS IS INCREMENTED.
INPUTS:
R5=ADDRESS OF THE UCB THAT CONTAINS THE BUFFER POINTERS.
OUTPUTS:
THE NEXT BYTE IS FETCHED FROMT HE USER BUFFER AND RETURNED
TO THE CALLER ON THE STACK. THE NEXT BYTE ADDRESS IS
INCREMENTED.

ALL REGISTERS ARE PRESERVED ACROSS CALL.

WO NP WO WP MO WO WE N0 WO We WO Wp WO Ne NI we No wo “o

SERVICE CALLS

SGTPKT
SGSPKT

7.5.12 Get Packet

Get Packet and Get Special Packet are in the file IOSUB. The
recommended way to use S$GTPKT is to use the GTPKTS$ macro call defined

in Section Section 4.3. Usage of S$GSPKT is described briefly in
Section 1.4.3.

Calling Sequences:

CALL S$GTPKT
or

CALL $GSPKT
Description:

+

**_-SGTPKT-GET I/O PACKET FROM REQUEST QUEUE
**_SGSPKT-GET SELECTIVE I/0 PACKET FROM REQUEST QUEUE

THIS ROUTINE IS CALLED BY DEVICE DRIVERS TO DEQUEUE THE NEXT I/0
REQUEST TO PROCESS. IF THE DEVICE CONTROLLER IS BUSY, THEN A
CARRY SET INDICATION IS RETURNED TO THE CALLER. ELSE AN ATTEMPT
IS MADE TO DEQUEUE THE NEXT REQUEST FROM THE CONTROLLER QUEUE.
IF NO REQUEST CAN BE DEQUEUED, THEN A CARRY SET INDICATION IS
RETURNED TO THE CALLER. ELSE THE CONTROLLER IS SET BUSY AND A
CARRY CLEAR INDICATION IS RETURNED TO THE CALLER.

IF QUEUE OPTIMIZATION IS SUPPORTED AND ENABLED FOR THE DEVICE
THE APROPRIATE PACKET FOR THE CURRENT OPTIMIZATION ALGORITHM

IS RETURNED. THREE ALGORITHMS ARE SUPPORTED: NEAREST CYLINDER,
ELEVATOR, AND C-SCAN. ALL THREE ALGORITHMS INCORPORATE A
FAIRNESS COUNT. IF THE FIRST PACKET ON THE LIST IS PASSED OVER
MORE THAN "FCOUNT" TIMES, IT IS DONE IMMEDIATELY.

THE ALTERNATE ENTRY POINT $GSPKT IS INTENDED FOR USE BY DRIVERS
WHICH SUPPORT PARALLEL OPERATIONS ON A SINGLE UNIT, A COMMON
EXAMPLE BEING FULL DUPLEX. SUCH DRIVERS ARE EXPECTED TO LOOK TO
THE SYSTEM AS IF THEY ARE ALWAYS FREE, WHILE MAINTAINING THE
STATUS OF ALL PARALLEL OPERATIONS INTERNALLY WITHIN THEIR OWN
DEVICE DATA STRUCTURES. PARALLELISM IS ACCOMPLISHED BY HANDLING
DRIVER-DEFINED CLASSES OF I/O FUNCTION CODES IN PARALLEL WITH
EACH OTHER. FOR EXAMPLE A FULL-DUPLEX DRIVER WOULD HANDLE INPUT

o WO WO we WO WE WO wo Wo WO WE Ne W W6 W0 We W We W6 We We Ne Ve Wo “we “e wo wo

7-29

WO N WO NE W We WO e WO WO WP WO WO WO WO WO VO W We WO WO WO WO W WO WO WO WO WO WS WO WO WP WO WO WE WO WO W@ WP WO WG WO WMo WO W WQ we W W o

SERVICE CALLS

REQUESTS IN PARALLEL WITH OUTPUT REQUESTS. A DRIVER CALLS $GSPKT
WHEN IT WANTS TO DEQUEUE A PACKET WHOSE I/O FUNCTION CODE BELONGS
TO A CERTAIN CLASS. WHICH FUNCTIONS QUALIFY IS DETERMINED BY AN
ACCEPTANCE ROUTINE IN THE DRIVER WHOSE ADDRESS IS PASSED TO $GSPK
IN R2. THE ACCEPTANCE ROUTINE IS CALLED BY $GSPKT EACH TIME A
PACKET IS FOUND IN THE QUEUE WHICH IS ELIGIBLE TO BE DEQUEUED.
THE ACCEPTANCE ROUTINE IS THEN EXPECTED TO TAKE ONE OF THE
FOLLOWING THREE ACTIONS:

1. RETURN WITH CARRY CLEAR IF THE PACKET SHOULD BE
DEQUEUED. 1IN THIS CASE $GSPKT PROCEEDS AS S$GTPKT
NORMALLY WOULD ON DEQUEUEING THE PACKET.

2. RETURN WITH CARRY SET IF THE PACKET SHOULD NOT BE
DEQUEUED. 1IN THIS CASE $GSPKT WILL CONTINUE THE
SCAN OF THE I/0O QUEUE.

3. ADD THE CONSTANT G$$SPSA TO THE STACK POINTER TO
ABORT THE SCAN WITH NO FURTHER -ACTION.

THE ACCEPTANCE ROUTINE MUST SAVE AND RESTORE ANY REGISTERS WHICH
IT INTENDS TO MODIFY. WHEN A PACKET IS DEQUEUED VIA $GSPKT, THE
FOLLOWING NORMAL $GTPKT ACTIONS DO NOT OCCUR:

1. FILLING IN OF U.BUF, U.BUF+2 AND U.CNT. THESE
FIELDS ARE AVAILABLE FOR DRIVER-SPECIFIC USE.

2. BUSYING OF UCB AND SCB.

3. EXECUTION OF SCFORK TO GET TO PROPER PROCESSOR
(MULTI-PROCESSOR SYSTEMS).

NOTE: SGSPKT MAY NOT BE USED BY A DRIVER WHICH SUPPORTS
QUEUE OPTIMIZATION.

INPUTS:
R2=ADDRESS OF DRIVER'S ACCEPTANCE ROUTINE (IF CALL AT
SGSPKT) .
R5=ADDRESS OF THE UCB OF THE CONTROLLER TO GET A PACKET
FOR.

OUTPUTS:

C=1 IF CONTROLLER IS BUSY OR NO REQUEST CAN BE DEQUEUED.
C=0 IF A REQUEST WAS SUCCESSFULLY DEQUEUED.

R1=ADDRES'S OF THE I/O PACKET.

R2=PHYSICAL UNIT NUMBER.

R3=CONTROLLER INDEX.

R4=ADDRESS OF THE STATUS CONTROL BLOCK.

7-30

SERVICE CALLS

R5=ADDRESS OF THE UNIT CONTROL BLOCK.

NOTE: R4 AND R5 ARE DESTROYED BY THIS ROUTINE.

we we “o “o

SERVICE CALLS

SGTWRD

7.5.13 Get Word

Get Word is in the file BFCTL. It manipulates words U.BUF and U.BUF+2
in the UCB.

Calling Sequence:
CALL SGTWRD

Description:

-+

** _SGTWRD-GET NEXT WORD FROM USER BUFFER

THIS ROUTINE IS CALLED TO GET THE NEXT WORD FROM THE USER BUFFER
AND RETURN IT TO THE CALLER ON THE STACK. AFTER THE WORD HAS
BEEN FETCHED, THE NEXT WORD ADDRESS IS CALCULATED.

INPUTS:

me WO WO WO me WO W we We “wo

R5=ADDRESS OF THE UCB THAT CONTAINS THE BUFFER POINTERS.
OUTPUTS
THE NEXT WORD IS FETCHED FROM THE USER BUFFER AND RETURNED

TO THE CALLER ON THE STACK. THE NEXT WORD ADDRESS IS
CALCULATED.

Ne We we WO we Wo we we

ALL REGISTERS ARE PRESERVED ACROSS CALL.

~e

SERVICE CALLS

SINIBF

7.5.14 1Initiate I/O Buffering
This routine is in the file IOSUB.
Calling Sequence:

CALL SINIBF

Description:

-

**-SINIBF-INITIATE I/0 BUFFERING
THIS ROUTINE INITIATES I/0 BUFFERING BY DOING THE FOLLOWING:
1. DECREMENT THE TASK'S I/O COUNT.
2. INCREMENT THE TASK'S BUFFERED I/O COUNT
3. INITIATE CHECKPOINTING IF A REQUEST IS PENDING
INPUTS:
R3=ADDRESS OF I/O PACKET FOR I/O REQUEST.
OUTPUTS:

R3 IS PRESERVED.

NO WO WO Ne WO WE WO We WO WO Ve We WO Wwe W6 We We we “e

SERVICE CALLS

$INTXT

7.5.15 Interrupt Exit
Interrupt Exit is in the file SYSXT.
Calling Sequence:

JMP SINTXT

Description:

+

**-$INTXT-INTERRUPT EXIT
THIS ROUTINE MAY BE CALLED VIA A JMP TO EXIT FROM AN INTERRUPT
INPUTS:
0(SP)=INTERRUPT SAVE RETURN ADDRESS.
OUTPUTS:

A RETURN TO INTERRUPT SAVE IS EXECUTED.

WO Mo N0 NG VO Ne N N0 Ne “e W “wo W

SERVICE CALLS

SIOALT/SIODON

7.5.16 I/0 Done Alternate Entry and I/O Done
These routines are in the file IOSUB.

Calling Sequences:

CALL $IOALT
CALL SIODON
Description:
+

**_-SIOALT-I/0O DONE (ALTERNATE ENTRY)
**_$STODON-I/0O DONE

THIS ROUTINE IS CALLED BY DEVICE DRIVERS AT THE COMPLETION OF AN
I/0 REQUEST TO DO FINAL PROCESSING. THE UNIT AND CONTROLLER ARE
SET IDLE AND SIOFIN IS ENTERED TO FINISH THE PROCESSING.

INPUTS:

RO=FIRST I/O STATUS WORD.
R1=SECOND I/O STATUS WORD.

R2=STARTING AND FINAL ERROR RETRY COUNTS IF ERROR LOGGING
DEVICE.

R5=ADDRESS OF THE UNIT CONTROL BLOCK OF THE UNIT BEING
COMPLETED.
(SP)=RETURN ADDRESS TO DRIVER'S CALLER.

NOTE: IF ENTRY IS AT S$IOALT, THEN Rl IS CLEAR TO SIGNIFY
THAT THE SECOND STATUS WORD IS ZERO.

OUTPUTS :
THE UNIT AND CONTROLLER ARE SET IDLE.

R3=ADDRESS OF THE CURRENT I/O PACKET.

WO WO WO WM NG WP WO WO N WE N WO WO We N WO We We Ne Ve We Ve T we “e we o

Note:

1. R4 is destroyed when either of these routines is called. The
routines call $IOFIN, which destroys R4.

SERVICE CALLS

SIOFIN

7.5.17 I/0 Finish

I/0 Finish is in the file IOSUB. Most drivers do not call I/O Finish,
but you should be aware that this routine is executed when a driver
calls SIOALT or $IODON. A driver that references an I/0O packet before
it 1is queued (bit UC.QUE set--see Section 8.1 for an example) calls
I/0 Finish if the driver finds an error while preprocessing the 1I/0
packet.

Calling Sequence:
CALL SIOFIN

Description:

+

**_STIOFIN-I/O FINISH

THIS ROUTINE IS CALLED TO FINISH I/0O PROCESSING IN CASES WHERE
THE UNIT AND CONTROLLER ARE NOT TO BE DECLARED IDLE. IF THE TASK
WHICH ISSUED THE I/O HAS HAD A RECENT MAPPING CHANGE WHICH MAY
HAVE UNMAPPED ITS I/O STATUS BLOCK, THE I/0 PACKET IS QUEUED TO
THE FRONT OF ITS AST QUEUE TO BE COMPLETED LATER IN S$FINBF BY
CALLING $IOFIN AGAIN.

INPUTS:

RO=FIRST I/O STATUS WORD.
R1=SECOND I/O STATUS WORD.
R3=ADDRESS OF THE I/0 REQUEST PACKET.

OUTPUTS:
THE FOLLOWING ACTIONS ARE PERFORMED

1-THE FINAL I/O STATUS VALUES ARE STORED IN THE I/O
STATUS BLOCK IF ONE WAS SPECIFIED.

2-ALIL ASSOCIATED I/O COUNTS ARE DECREMENTED AND TS.RDN IS
CLEARED IN CASE THE TASK WAS BLOCKED FOR I/O RUNDOWN.
T3.MPC IS CLEARED IF THE TASK I/0O COUNT GOES TO ZERO TO
INDICATE THAT THE I/0 COUNT WENT TO ZERO AFTER A
MAPPING CHANGE.

3-IF "TS.CKR' IS SET, THEN IT IS CLEARED AND
CHECKPOINTING OF THE TASK IS INITIATED.

WO NP WO WP W WO WO WO WO WP WO WO WO WO WG WO WP WO WP WO WO W WO NP WO We WO We WP we WO

7-36

Ne wme N0 W WO we wo “e

SERVICE CALLS

4-IF AN AST SERVICE ROUTINE WAS SPECIFIED, THEN AN AST IS
QUEUED FOR THE TASK, ELSE THE I/O PACKET IS DEALLOCATED.

5-A SIGNIFICANT EVENT OR EQUIVALENT IS DECLARED.

NOTE: R4 IS DESTROYED BY THIS ROUTINE.

~
I

37

SERVICE CALLS

SPTBYT

7.5.18 Put Byte

Put Byte is in the file BFCTL. Put Byte manipulates words U.BUF and
U.BUF+2 in the UCB.

Calling Sequence:
CALL SPTBYT

Description:

+

** _SPTBYT-PUT NEXT BYTE IN USER BUFFER

THIS ROUTINE IS CALLED TO PUT A BYTE IN THE NEXT LOCATION IN THE
USER BUFFER. AFTER THE BYTE HAS BEEN STORED, THE NEXT BYTE
ADDRESS IS INCREMENTED.

INPUTS:
R5=ADDRESS OF THE UCB THAT CONTAINS THE BUFFER POINTERS.
2(SP)-BYTE TO BE STORED IN THE NEXT LOCATION OF THE USER
BUFFER.

OUTPUTS::

THE BYTE IS STORED IN THE USER BUFFER AND REMOVED FROM THE
STACK.

THE NEXT BYTE ADDRESS IS INCREMENTED.

ALL REGISTERS ARE PRESERVED ACROSS CALL.

WO WO N0 N0 WO WO N VO NE N0 Np WO WO WO WO MO WO WO Np WO w0 wo

SERVICE CALLS

SPTWRD

7.5.19 Put Word

Put Word is in the file BFCTL. It manipulates words U.BUF and U.BUF+2
in the UCB.

Calling Sequence:
CALL $PTWRD

Description:

+

**~$SPTWRD-PUT NEXT WORD IN USER BUFFER

THIS ROUTINE IS CALLED TO PUT A WORD IN THE NEXT LOCATION IN
THE USER BUFFER. AFTER THE WORD HAS BEEN STORED, THE NEXT WORD
ADDRESS IS CALCULATED.

INPUTS:

R5=ADDRESS OF THE UCB THAT CONTAINS THE BUFFER POINTERS.
2(SP)=WORD TO BE STORED IN THE NEXT LOCATION OF THE
BUFFER.

OUTPUTS:

THE WORD IS STORED IN THE USER BUFFER AND REMOVED FROM THE
STACK. THE NEXT WORD ADDRESS IS CALCULATED.

ALL REGISTERS ARE PRESERVED ACROSS CALL.

WO MO NG WO WO Ve Ne VO N0 We Ve N0 Ne WO We W0 Ne We wo ™

SERVICE CALLS

$QINSP

7.5.20 Queue Insertion by Priority

This routine is in the file QUEUE. A driver may call $QINSP to insert
into the I/O queue an I/O packet that the Executive has not already
placed in the queue. Queue Insertion by Priority is wused only by
drivers setting UC.QUE in U.CTL. See Section 8.1 for an example.
Calling Sequence:

CALL SQINSP

Description:

-+

**-SQINSP-QUEUE INSERTION BY PRIORITY

THIS ROUTINE IS CALLED TO INSERT AN ENTRY IN A PRIORITY ORDERED
LIST. THE LIST IS SEARCHED UNTIL AN ENTRY IS FOUND THAT HAS A
LOWER PRIORITY OR THE END OF THE LIST IS REACHED. THE NEW ENTRY
IS THEN LINKED INTO THE LIST AT THE APPROPRIATE POINT.

INPUTS:

RO=ADDRESS OF THE TWO WORD LISTHEAD.
R1=ADDRESS OF THE ENTRY TO BE INSERTED.

OUTPUTS:

THE ENTRY IS LINKED INTO THE LIST BY PRIORITY.

RO AND R1 ARE PRESERVED ACROSS CALL.

WO WO WO NO N0 Ne W N0 WO WO N9 WO WO Ne WO W W0 wo w0

SERVICE CALLS

SRELOC

7.5.21 Relocate

Relocate is in the file MEMAP. A driver may call SRELOC to relocate a
task virtual address while the task is the current task. Relocate is
normally used only by drivers setting UC.QUE in U.CTL. See Section
8.1 for an example.
Calling Sequence:

CALL $RELOC

Description:

~e

** _SRELOC-RELOCATE USER VIRTUAL ADDRESS
THIS ROUTINE IS CALLED TO TRANSFORM A 16-BIT USER VIRTUAL
ADDRESS INTO A RELOCATION BIAS AND DISPLACEMENT IN BLOCK
RELATIVE TO APR6.
INPUTS:

RO=USER VIRTUAL ADDRESS TO RELOCATE.
OUTPUTS :

R1=RELOCATION BIAS TO BE LOADED INTO PARG.
R2=DISPLACEMENT IN BLOCK PLUS 140000 (PAR6 BIAS).

RO AND R3 ARE PRESERVED ACROSS CALL.

N0 WO WO WO Ne WO We WO We N0 Ne NO Ne Wo N N wo

SERVICE CALLS

SREQUE
SREQU1

7.5.22 Queue Kernel AST to Task
This routine is in module IOSUB.

Calling Sequence:

CALL SREQUE
or

CALL SREQU1
Description:

s+

; ** - SREQUE-REQUEUE A REGION LOAD AST TO A TASK AST.
;**~-SREQU1-REQUEUE A REGION LOAD AST TO A TASK AST (ALTERNATE
ENTRY) .

THESE ROUTINES ARE USED TO QUEUE A TASK KERNEL AST WHICH HAS
BEEN USED AS A REGION LOAD AST BACK AS A TASK AST. THE BUFFERED
I/0 COUNT OF THE TASK IS DECREMENTED IF ENTRY AT $REQUE.

INPUTS:
RO=TCB ADDRESS OF ASSOCIATED TASK
R3=ADDRESS OF PACKET TO BE QUEUED

OUTPUTS:
NONE.

W MO Ne WO WP W We WMe WP WO WO WO wg ™

SERVICE CALLS

STSPAR

7.5.23 Test if Partition Memory Resident for Kernel AST
This routine is in file REQSB.
Calling Sequence:
CALL $TSPAR

Description:
**~-STSPAR-TEST IF PARTITION IS IN MEMORY FOR KERNEL AST
THIS ROUTINE IS CALLED TO CHECK A REGION FOR MEMEORY RESIDENCE
TO DETERMINE IF IT IS SAFE TO SERVICE A KERNEL AST (E.G. COPY
A BUFFER) INTO THE REGION. IF THE REGION IS CHECKPOINTED OR
CURRENTLY BEING CHECKPOINTED, THEN A REGION LOAD AST IS QUEUED
AND THE REGION IS ACCESSED ON THE TASKS BEHALF.
INPUTS:

RO=ADDRESS OF PACKET PEING PROCESSED

R1=PCB ADDRESS OF REGION

R5=TCB ADDRESS OF ASSOCIATED TASK

OUTPUT

S
C=0 IF REGION IS MEMORY RESIDENT ‘
C=1 IF REGION IS NON-RESIDENT. IN THIS CASE THE REGION AST

HAS BEEN QUEUED, ETC.

N0 MO MO MO We WO WO WO W Wp We W WO we We Wo WO We

SERVICE CALLS

STSTBF

7.5.24 Test for I/0 Buffering
This routine is in file IOSUB.
Calling Sequence:

CALL $TSTBF

Description:

B

**_STSTBF-TEST IF I/0 BUFFERING CAN BE INITIATED
THIS ROUTINE DETERMINES IF A GIVEN I/O REQUEST IS ELIGIBLE FOR
I/0 BUFFERING, AND IF SO IT STORES THE PCB ADDRESS OF THE REGION
INTO WHICH THE TRANSFER IS TO OCCUR IN I.PRM+16 OF THE I/0
PACKET.
INPUTS:

R3=ADDRESS OF I/O PACKET FOR I/O REQUEST
OUTPUTS:

R3 IS PRESERVED.

C=0 IF I/O BUFFERING CAN BE INITIATED.

C=1 IF I/O BUFFERING CAN NOT BE INITIATED.

N0 WO N Mo MO Ne WO WO MO Ne WO We We We WO WS we We W “o

7.6 ADDING PHYSICAL MEMORY TO THE P/0OS CONFIGURATION

Option modules that contain additional (possibly special purpose)
memory, can allow it to be accessible to the system and applications
by calling the privileged executive subroutine $STPAR in the
distributed PRVLIB.OLB object 1library. It must be called at system
state. In order to access the executive vector table, kernel APR6 is
used. Therefore, the routine must be mapped through APR5 when called.
This routine is system version independent. Note that system state
may be entered without the necessity of being bound to the system
version, by using the SWST$ directive.

ADDING PHYSICAL MEMORY TO THE P/0OS CONFIGURATION

If the additional memory is general purpose and there are no
restrictions on its use, it may be added to the "GEN" main partition.
Tasks, commons, and most PLAS regions are allocated from GEN on
demand. If the memory is to be used for a dedicated purpose, a main
partition of the name "$PARsx" can be specified - where "s" is the
logical slot number corresponding to the slot in which the board is
located and "x" is any legal RAD50 character. This convention reduces
the 1likelihood of a collision on the partition name. The partition
name must be unique among all of the (region and partition) names 1in
the system. Dedicated memory can be accessed, specifying the given
main partition name in the creation of a PLAS region subpartition.
Memory is allocated from the main partition, using a "first fit"
algorithm unless the region is being fixed. If it is, the region is
loaded high. If the region is already in memory, an attempt is made
to checkpoint it so that it can be loaded high. Once additional

memory has been added to the system configuration, it can not be
removed.

The calling interface to $STPAR is as follows:

+
SSTPAR -- add additional memory to system configuration
Inputs:
Rl = base address modulus-1 (modulus granularity = 64 bytes)

for example, if a base address modulus of 128KB was
required, this parameter would be 3777(8).

required PCBs

: R2 = size of memory to add (granularity = 32 Kbytes)

H R3 = name of main partition

: (must be unique if not "GEN ")

H (if the partition name "GEN " is specified, the
H additional memory will be appended to to this

: main partition.)

7

H Output:

H c=0,

; R2 = base address of the region (granularity = 64 bytes)
7 c=1,

H R2 =0 partition name already exists

H R2 = 2 insufficient space in available physical

; address space

H R3 = 4 insufficient primary pool space to allocate
7

EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS

7.7 EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS

In order to allow greater system version independence for privileged
tasks and device drivers, a simple vectoring scheme has been
implemented in P/0S version 2.0.

Prior to version 2.0, a privileged task was needed to 1link with the
system's symbol table file to resolve references to various executive
routine and data structure addresses. Since these addresses changed
with every system version, it was necessary to rebuild the component
for each version of the system. By creating a set of absolute
addresses which point to various tables, a privileged component can
resolve the necessary addresses at runtime.

While it cannot be guaranteed, DIGITAL will attempt to maintain upward
compatibility of the P/0OS executive data structures and routines.
Therefore, the tables provided below are on a "USE AT YOUR OWN RISK"
basis. In particular, the data structures can and will change in the
next version of P/0S. Each vectored executive routine is stamped with
an IDENT which may be used as a validity check during initialization.

There are three absolute pointers in the P/0S executive. The first
points to the executive module LOWCR, the second to SYSCM and the
third pointer consists of a bias and a displacement offset by 140000,
which is used to map the executive routine vector table. 1In addition,

the $SBTMSK bit table has been moved to an absolute location.

7.7.1 Pointer Location and Format

The vector table pointers are 1located in the following absolute
locations:

Symbolic Name Address Description

$BTMSK 1002 bitmask table

SVECLC 1042 address of S$STACK

SVECSC 1044 address of SCMBEG

SVECVT 1046 bias of vector table
1050 displacement+140000(8)

The executive routine vector table's format is:

«WORD number of vectors in table
SVECVT--> .WORD $XXX,reserved,IDENT ;entry point 0
.WORD $XXX,reserved,IDENT ;entry point 1

where,

EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS

SxxXX is the address of the executive routine

reserved is not currently used though may be used in
the future to contain a bias.

IDENT is a value associated with the particular

routine which is incremented when the routine
changes in a non upward compatible manner.

7.7.2 Referencing LOWCR and SYSCM Data Structures

The following example illustrates one method of binding an executive
data structure reference at runtime.

.MCALL QIOWSS,EXITSS ;system macros

.PSECT DATA,D

MYTCB: .WORD STKTCB-$STACK ;form offset from base of

: LOWCR to STKTCB (absolute)
ARGBLK: .BLKW 2 ;argument block/taskname buf
BUF: .BLKB 80. ;output buffer

FORMAT: .ASCIZ /My name is %2R and I got it the hard way/
.EVEN

.PSECT CODE,I
This task prints its taskname and exits. Could have been

done simpler using GTSK$ however, the example is one
technique to resolve the symbol $TKTCB in LOWCR.

I~ “e Se “e weo “eo

NIT: MOV #ARGBLK,R2 ;point at taskname buffer
CALL SSWSTK,TYPIT ;enter system state
ADD @#SVECLC,MYTCB ;resolve address of S$TKTCB
MOV MYTCB,R5 ;get current task's TCB addr
MOV T.NAM(R5),;(R2)+ ;get my task name
MOV T.NAM+2(R5),(R2)
RETURN ;return to user state (which

;restores registers)

TYPIT: MOV #BUF ,RO ;point at output buffer
MOV #FORMAT ,R1 ;point to format string
MOV #ARGBLK+2,R2 ;point to argument block
CALL SEDMSG ; format output
QIOWSS #IO.WVB,#5,#5,,,,<#BUF,R1,#40> ;output to msg
EXITSS ;exit
.END INIT

EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS

7.7.3 Referencing Executive Routines

The following example subroutine illustrates one method of referencing
a vectored executive routine.

.PSECT DATA,D

TKTCB: STKTCB-$SSTACK ;offset in LOWCR to STKTCB
SETFG: SETFGS$;entry point symbols defined
: in PRVLIB
.WORD 1 ;version number at time routine
; written
HIVEC: .WORD SETFGS$/<3*2> ;each entry point consists of 3
; words.

.PSECT CODE,I

This subroutine sets the this task's local event flag the
hard way. (It illustrates the vectoring as opposed to a
SETF$ replacement.)

U] ~e ~eo o o wo

ETF: CLR $ERROR

CALL SSWSTK,20$;enter system state

ADD @#VECLC,TKTCB ;resolve reference to STKTCB

MOV @#KISAR6,-(SP) ;save current APR6 mapping

MOV @#SVECVT,@#KISAR6 ;map vector table

MOV @#VECVT+2,R1 ;point to vector table

CMP HIVEC,-2(R1) ;does vector table describe
;entry point?

BHI 108 ;if hi vectoring error has
;occurred

ADD SETFG,R1 ;point to entry point in table

CMP SETFG+2,4(R1) ;same IDENT?

BNE 108 ;if ne no, routine has changed

MOV (R1),R1 ;resolve reference to S$SETFG

MOV #1,R0 ;specify event flag to set

MOV @TKTCB,R5 ;get this task’'s TCB address

CALL (R1) :set a this task'’'s local event
;flag 1

BR 158

10$: DEC SERROR
15$: MOV (SP)+,@#KISAR6
- 20S$: RETURN

7.7.4 Executive Routine Vector Table

1 .TITLE EXEVEC
2 .IDENT /01.00/
3

e WO WO WO WE WO we WO WO WO We We We WO Wo “we WO wo WO

EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS

COPYRIGHT (c) 1984 BY DIGITAL EQUIPMENT CORPORATION.
ALL RIGHTS RESERVED,

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED
OR COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE.

EXEVEC =-- THIS MODULE DEFINES SELECTED EXECUTIVE ENTRY POINTS
SO THAT DRIVERS AND PRIVILEGED TASKS MAY BE SYSTEM

VERSION INDEPENDENT. THERE IS NO IMPLIED GUARANTEE

THAT THE EACH ENTRY POINT'S INTERFACE WILL REMAIN STABLE
THOUGH THERE IS SOME INTEREST IN KEEPING THEM UPWARD
COMPATIBLE IF POSSIBLE. AN IDENT HAS BEEN PROVIDED

WHICH CAN BE USED TO IDENTIFY THE VERSION OF THE

REFERENCED ROUTINE.

$ALOCB —-- ALLOCATE CORE BLOCK

ROUTINE VERSION NUMBER = 1 MODULE NAME = CORAL
VECTOR TABLE OFFSET NAME = ALOCBS$ OFFSET VALUE= 0

SDEACB -- DEALLOC. CORE BLK

ROUTINE VERSION NUMBER = 1 MODULE NAME = CORAL
VECTOR TABLE OFFSET NAME DEACBS OFFSET VALUE= 6

$ALOC1l -- ALLOC. CORE BLK (SPECIFIABLE LSTHD)

ROUTINE VERSION NUMBER
VECTOR TABLE OFFSET NAME

1 MODULE NAME = CORAL
ALOClS$ OFFSET VALUE= 14

SDEAC1 -- DEALLOC. CORE BLK (SPECIFIABLE LSTHD)

ROUTINE VERSION NUMBER
VECTOR TABLE OFFSET NAME

1 MODULE NAME = CORAL
DEAC1l$ OFFSET VALUE= 22

SALCLK -- ALLOC. CLOCK QUEUE CORE BLK

e N8 wo We WO We WO WO WO W We WO WO Ve We W6 We W We W6 We W We N Ve e e W e “e “we “e

ROUTINE VERSION NUMBER = 1 MODULE NAME = CORAL

7-49

WO N WO VO Mo N0 N We WO N WO MO We WO WO WO WO WO WO e W WP WE We WO WO WO WO WE WO N0 WO WO WO e NE N0 W WG Ne N0 NG WO WO WO WO WO WE We We We

EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS

VECTOR TABLE OFFSET NAME

= ALCLKS OFFSET VALUE=

$DECLK -- DEALLOC. CLOCK QUEUE CORE BLK

ROUTINE VERSION NUMBER
VECTOR TABLE OFFSET NAME

$ALPKT -- ALLOC. I/O PACK

ROUTINE VERSION NUMBER
VECTOR TABLE OFFSET NAME

$DEPKT -- DEALLOC. I/O PA

ROUTINE VERSION NUMBER
VECTOR TABLE OFFSET NAME

$ALSEC -- ALLOC. SECONDA

ROUTINE VERSION NUMBER
VECTOR TABLE OFFSET NAME

1 MODULE NAME = CORAL
DECLKS OFFSET VALUE=

ET

1 MODULE NAME = CORAL
ALPKTS$ OFFSET VALUE=

CKET

30

36

44

= 1 MODULE NAME = CORAL

= DEPKT$ OFFSET VALUE=

RY POOL CORE BLK

52

= 1 MODULE NAME = CORAL

= ALSEC$ OFFSET VALUE=

$DESEC -- DEALLOC. SECONDARY POOL CORE BLK

ROUTINE VERSION NUMBER
VECTOR TABLE OFFSET NAME

SGTBYT -- GET NEXT BYTE F

ROUTINE VERSION NUMBER
VECTOR TABLE OFFSET NAME

SPTBYT -- PUT NEXT BYTE I

ROUTINE VERSION NUMBER
/VECTOR TABLE OFFSET NAME

60

= 1 MODULE NAME = CORAL

= DESECS$ OFFSET VALUE=

ROM USER BUFFER

66

= 1 MODULE NAME = BFCTL

= GTBYTS OFFSET VALUE=

N USER BUFFER

= 1 MODULE NAME = BFC
= PTBYTS$ OFFSET VALUE=

74

TL
102

No N6 N N0 WO WO N0 NE MO WO We WO W6 WO We We We We W We S|e W W6 W6 Ne Ve N6 We Te We |We W6 N6 Ve Ve N6 We e Ve We Ve e “e We ™o w0 w9 We wo W “e

EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS

$GTWRD -- GET NEXT WORD FROM USER BUFFER

ROUTINE VERSION NUMBER = 1 MODULE NAME = BFCTL
VECTOR TABLE OFFSET NAME = GTWRD$ OFFSET VALUE= 110

$PTWRD -- PUT NEXT WORD IN USER BUFFER

ROUTINE VERSION NUMBER = 1 MODULE NAME = BFCTL
VECTOR TABLE OFFSET NAME = PTWRD$ OFFSET VALUE= 116

$SBLXIO -- MOVE BLOCK OF DATA

ROUTINE VERSION NUMBER = 1 MODULE NAME = BFCTL
VECTOR TABLE OFFSET NAME = BLXIO$ OFFSET VALUE= 124

$CLINS -- CLOCK QUEUE INSERTION

ROUTINE VERSION NUMBER = 1 MODULE NAME = QUEUE
VECTOR TABLE OFFSET NAME = CLINSS OFFSET VALUE= 132

$CLRMV -- CLOCK QUEUE REMOVAL

ROUTINE VERSION NUMBER = 1 MODULE NAME = QUEUE
VECTOR TABLE OFFSET NAME = CLRMVS OFFSET VALUE= 140

SQINSF -- QUEUE INSERTION AT END OF LIST

ROUTINE VERSION NUMBER = 1 MODULE NAME = QUEUE
VECTOR TABLE OFFSET NAME = QINSF$ OFFSET VALUE= 146

SQINSP -- QUEUE INSERTION BY PRIORITY

ROUTINE VERSION NUMBER = 1 MODULE NAME = QUEUE
VECTOR TABLE OFFSET NAME = QINSP$ OFFSET VALUE= 154

WE WO WO W WO WO WO WO WMo We W We WO we “e WO

O Ne e NO NG NE Ne MO Ne Ve We WO N WO WO WO MO W6 We WO Ne WO W6 We WO WO WO we N0 w0 W0 o WO We WO

EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS

SQINSB' -=- QUEUE INSERTION AT BEGINNING

ROUTINE VERSION NUMBER = 1 MODULE NAME = QUEUE
VECTOR TABLE OFFSET NAME = QINSB$ OFFSET VALUE= 162

$ORMVA -- QUEUE REMOVAL BY BLOCK ADDRESS

ROUTINE VERSION NUMBER = 1 MODULE NAME = QUEUE
VECTOR TABLE OFFSET NAME = QRMVA$ OFFSET VALUE= 170

SORMVT -- QUEUE REMOVAL BY TCB ADDRESS

ROUTINE VERSION NUMBER = 1 MODULE NAME = QUEUE
VECTOR TABLE OFFSET NAME = QRMVT$ OFFSET VALUE= 176

$QSPIB -- QUEUE INSERTION (SEC. POOL) AT BEG.

ROUTINE VERSION NUMBER = 1 MODULE NAME = QUEUE
VECTOR TABLE OFFSET NAME = QSPIB$ OFFSET VALUE= 204

$QOSPIF -- QUEUE INSERTION (SEC. POOL) AT END.

ROUTINE VERSION NUMBER = 1 MODULE NAME = QUEUE
VECTOR TABLE OFFSET NAME = QSPIF$ OFFSET VALUE= 212

S$QOSPRF —-- QUEUE REMOVAL (SEC. POOL) FROM FRONT

ROUTINE VERSION NUMBER = 1 MODULE NAME = QUEUE
VECTOR TABLE OFFSET NAME = QSPRF$ OFFSET VALUE= 220

$QSPIP -- QUEUE INSERTION (SEC. POOL) BY PRI.

ROUTINE VERSION NUMBER = 1 MODULE NAME = QUEUE
VECTOR TABLE OFFSET NAME = QSPIPS$S OFFSET VALUE= 226

$GTSPK -- QUEUE REMOVAL (SEC. POOL) BY BLK ADR

~
|

52

N MO WO WO MO N6 WS WO W WO Wwe WO We WO VO We WO We W We W We We e We e We W We We Ve We Te We [e We s We e MO We MO WE WO WO Ne We We we we We

EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS

ROUTINE VERSION NUMBER = 1 MODULE NAME = QUEUE
VECTOR TABLE OFFSET NAME = GTSPK$ OFFSET VALUE= 234

SACHCK —-- ADDRESS CHECK WORD ALIGNED (NO I/O CNTS)

ROUTINE VERSION NUMBER = 1 MODULE NAME = EXESB
VECTOR TABLE OFFSET NAME = ACHCKS OFFSET VALUE= 242

$ACHKB -- ADDRESS CHECK BYTE ALIGNED (NO I/O CNTS)

ROUTINE VERSION NUMBER =] MODULE NAME = EXESB
VECTOR TABLE OFFSET NAME = ACHKB$ OFFSET VALUE= 250

$ACHRO -- ADDRESS CHECK FOR READONLY ACCESS NO IOC

ROUTINE VERSION NUMBER = 1 MODULE NAME = EXESB
VECTOR TABLE OFFSET NAME = ACHROS OFFSET VALUE= 256

SCKBFW -- CHECK I/0 BUFFER FOR READONLY (BYTE)

ROUTINE VERSION NUMBER = 1 MODULE NAME = EXESB
VECTOR TABLE OFFSET NAME = CKBFWS$ OFFSET VALUE= 264

SCKBFB -- CHECK I/O BUFFER FOR READWRITE (BYTE)

ROUTINE VERSION NUMBER = 1 MODULE NAME = EXESB
VECTOR TABLE OFFSET NAME = CKBFB$ OFFSET VALUE= 272

$CKBFR -- CHECK I/0 BUFFER FOR READWRITE (WORD)

ROUTINE VERSION NUMBER = 1 MODULE NAME = EXESB
VECTOR TABLE OFFSET NAME = CKBFR$ OFFSET VALUE= 300

$CEFIG -- CONVERT EVENT FLAG AND LOCK FOR I/O

ROUTINE VERSION NUMBER = 1 MODULE NAME = EXESB
VECTOR TABLE OFFSET NAME = CEFIGS$ OFFSET VALUE= 306

7-53

WO WO MO We WO WO Ne Ne WY WO WO WO WO Wo WO W) W@ WE WO WO WO WY WO WE WE WO WO WO WO WO WO Ne WO We WO WO WO WE W WO WO WO W N0 N Wo WO We We Wo we

EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS

$CEFI -- CONVERT EVENT FLAG FOR I/O

ROUTINE VERSION NUMBER = 1 MODULE NAME = EXESB
VECTOR TABLE OFFSET NAME = CEFI$ OFFSET VALUE= 314

SCVDVN -- CONVERT DEV NAM AND LOGICAL UNIT TO UCB

ROUTINE VERSION NUMBER = 1 MODULE NAME = EXESB
VECTOR TABLE OFFSET NAME = CVDVN$ OFFSET VALUE= 322

$SMPLNE -- MAP LOGICAL UNIT NUMBER

ROUTINE VERSION NUMBER = 1 MODULE NAME = EXESB
VECTOR TABLE OFFSET NAME = MPLNE$ OFFSET VALUE= 330

SMPLND -- MAP LOGICAL UNIT NUMBER (ALTRN. ENTRYPT)

ROUTINE VERSION NUMBER = 1 MODULE NAME = EXESB
VECTOR TABLE OFFSET NAME = MPLNDS$ OFFSET VALUE= 336

STKWSE -- WAIT FOR SIGNIFICANT EVENT

ROUTINE VERSION NUMBER = 1 MODULE NAME = EXESB
VECTOR TABLE OFFSET NAME = TKWSES$ OFFSET VALUE= 344

SRELOC -- RELOCATE USER VIRTUAL ADDRESS

ROUTINE VERSION NUMBER = 1 MODULE NAME = MEMAP
VECTOR TABLE OFFSET NAME = RELOCS$ OFFSET VALUE= 352

$SRELOM -- RELOCATE AND MAP USER VIRTUAL ADDRESS

ROUTINE VERSION NUMBER = 1 MODULE NAME = MEMAP
VECTOR TABLE OFFSET NAME = RELOM$ OFFSET VALUE= 360

N0 WO WO e MO WO WO MO We WE WO N9 We Ve Ve W We W “o e “o we WO WO VO N0 NG WO NQ NG N WO N0 WO WO M9 Ve N MY WO N WO N N NP WE WO N W S wo

EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS

$CVLBN —-- CONVERT LOGICAL BLOCK NUMBER TO DISK PARAMS

ROUTINE VERSION NUMBER = 1 MODULE NAME = MDSUB
VECTOR TABLE OFFSET NAME = CVLBNS$ OFFSET VALUE= 366

$BLKCK -- LOGICAL BLOCK CHECK ROUTINE

ROUTINE VERSION NUMBER = 1 MODULE NAME = MDSUB
VECTOR TABLE OFFSET NAME = BLKCKS$ OFFSET VALUE= 374

$BLKC1 -- LOGICAL BLOCK CHECK ROUTINE ALTRN. ENTRYPT

ROUTINE VERSION NUMBER = 1 MODULE NAME = MDSUB
VECTOR TABLE OFFSET NAME = BLKC1l$ OFFSET VALUE= 402

$BLKC2 -- LOGICAL BLOCK CHECK ROUTINE FOR QUEUE OPT

ROUTINE VERSION NUMBER = 1 MODULE NAME = MDSUB
VECTOR TABLE OFFSET NAME = BLKC2$ OFFSET VALUE= 410

$SROCNC -- REQUEST CONTROLLER FOR CONTROL OPERATION

ROUTINE VERSION NUMBER = 1 MODULE NAME = MDSUB
VECTOR TABLE OFFSET NAME = RQCNCS$ OFFSET VALUE= 416

SRQCND -- REQUEST CONTROLLER FOR DATA TRANSFER

ROUTINE VERSION NUMBER = 1 MODULE NAME = MDSUB
VECTOR TABLE OFFSET NAME = RQCNDS$ OFFSET VALUE= 424

SRLCN -- RELEASE CONTROLLER

ROUTINE VERSION NUMBER = 1 MODULE NAME = MDSUB
VECTOR TABLE OFFSET NAME = RLCN$ OFFSET VALUE= 432

SVOLVD -- PREPROCESS VOLUME VALID FUNCTION

7-55

T|O N0 Ne Ve Ve Ne Ne Ne WO W WO N W VO N WO WO WO WO We WO VO NI WO VO WO WO WO Me WO WO N0 Ne WO WO N0 WO WO WO W W WO W WO WO Wo WO Wo WO wo we

EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS

ROUTINE VERSION NUMBER = 1 MODULE NAME = MDSUB
VECTOR TABLE OFFSET NAME = VOLVD$ OFFSET VALUE= 440

SVOLSC -- VOLUME STATUS CHANGE

ROUTINE VERSION NUMBER = 1 MODULE NAME = OLRSR
VECTOR TABLE OFFSET NAME = VOLSC$ OFFSET VALUE= 446

$DECIO -- DECREMENT I/O COUNT VIA ADB

ROUTINE VERSION NUMBER = 1 MODULE NAME = IOSUB
VECTOR TABLE OFFSET NAME = DECIOS$ OFFSET VALUE= 454

$DECIP -- DECREMENT I/O COUNT PARTITION ONLY

ROUTINE VERSION NUMBER = 1 MODULE NAME = IOSUB
VECTOR TABLE OFFSET NAME = DECIP$ OFFSET VALUE= 462

$GTPKT -- GET I/O PACKET FROM REQUEST QUEUE

ROUTINE VERSION NUMBER = 1 MODULE NAME = IOSUB
VECTOR TABLE OFFSET NAME = GTPKT$ OFFSET VALUE= 470

$GSPKT -- GET SELECTIVE I/O PACKET FROM REQUEST QUEUE

ROUTINE VERSION NUMBER = 1 MODULE NAME = IOSUB
VECTOR TABLE OFFSET NAME = GSPKT$ OFFSET VALUE= 476

STSTBF -- TEST IF I/O BUFFERING SHOULD BE INITIATED

ROUTINE VERSION NUMBER = 1 MODULE NAME = IOSUB
VECTOR TABLE OFFSET NAME = TSTBFS OFFSET VALUE= 504

SINIBF -- INITIATE I/O BUFFERING

ROUTINE VERSION NUMBER = 1 MODULE NAME = IOSUB

7-56

NO NG Mo N0 MO N0 N NG SO Ne NG Ne We WO W6 WO Ne We We Ne We Ne We N6 Ve Ne Ve We Ve Ve Ne Ve We Mo We Ne e We Ve Ve We N6 e Ne e e e ~e we weo “o

EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS

VECTOR TABLE OFFSET NAME = INIBFS$ OFFSET VALUE= 512

SQUEBF -- QUEUE BUFFERED I/O FOR COMPLETION

ROUTINE VERSION NUMBER = 1 MODULE NAME = IOSUB
VECTOR TABLE OFFSET NAME = QUEBF$ OFFSET VALUE= 520

SREQUE -- REQUEUE A REGION LOAD AST TO A TASK AST

ROUTINE VERSION NUMBER = 1 MODULE NAME = IOSUB
VECTOR TABLE OFFSET NAME = REQUES OFFSET VALUE= 526

$REQU1 -- REQUEUE A REG LOAD AST (ALTERNATE ENTRYPOINT)

ROUTINE VERSION NUMBER = 1 MODULE NAME = IOSUB
VECTOR TABLE OFFSET NAME = REQU1$ OFFSET VALUE= 534

$IOALT -- I/0 DONE ALTERNATE ENTRY POINT (ERRORS)

ROUTINE VERSION NUMBER = 1 MODULE NAME = IOSUB
VECTOR TABLE OFFSET NAME IOALTS OFFSET VALUE= 542

$IODON -- 1I/O DONE

ROUTINE VERSION NUMBER = 1 MODULE NAME = IOSUB
VECTOR TABLE OFFSET NAME IODONS$ OFFSET VALUE= 550

$IOFIN -- 1I/O FINISH

ROUTINE VERSION NUMBER = 1 MODULE NAME = IOSUB
VECTOR TABLE OFFSET NAME IOFINS OFFSET VALUE= 556

SDECAL -- DECREMENT ALL I/O COUNTS AND UNBLK TASK

ROUTINE VERSION NUMBER = 1 MODULE NAME = IOSUB
VECTOR TABLE OFFSET NAME = DECALS$ OFFSET VALUE= 564

WO N0 Ne N0 We W me We WO WO VO WO WO WO Ve W Ne WO WO WO Ne N M WO MO We WO W WO WO WO WO We WO W@ W N0 WO N MO WO W6 We Wwe WO We we N we wo we

EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS

$DECBF —-- DECREMENT ALL PARTITION I/O CNTS & UNBLK TASK

ROUTINE VERSION NUMBER = 1 MODULE NAME = IOSUB
VECTOR TABLE OFFSET NAME DECBF$ OFFSET VALUE= 572

SIOKIL -- I/O KIL

ROUTINE VERSION NUMBER = 1 MODULE NAME = IOSUB
VECTOR TABLE OFFSET NAME IOKILS OFFSET VALUE= 600

$SCDVT -- SCAN DEVICE TABLES

ROUTINE VERSION NUMBER = 1 MODULE NAME = IOSUB
VECTOR TABLE OFFSET NAME = SCDVT$ OFFSET VALUE= 606

$SCDV1 -- SCAN DEVICE TABLES (ALTRN. ENTRYPT)

ROUTINE VERSION NUMBER = 1 MODULE NAME = IOSUB
VECTOR TABLE OFFSET NAME = SCDV1$ OFFSET VALUE= 614

$SRNAM —-- SEARCH FOR NAMED PARTITION

ROUTINE VERSION NUMBER = 1 MODULE NAME = PLSUB
VECTOR TABLE OFFSET NAME = SRNAMS$ OFFSET VALUE= 622

$SETCR -- SET CONDITIONAL SCHEDULE REQUEST

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB
VECTOR TABLE OFFSET NAME = SETCR$ OFFSET VALUE= 630

$SETRQ -- SET SCHEDULE REQUEST

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB
VECTOR TABLE OFFSET NAME = SETRQS$ OFFSET VALUE= 636

NO Mo N6 me WO WO mo WO N0 WO WO WO WO Wo N6 N Ne Ve W6 We Ve We Ne Ve W6 Ve Ne W6 Ve Ne Ve e “e Ve N0 W Ne We W6 We Ve We W6 We We Ve We We S N “o

EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS

$SETRT -- SET SCHEDULE REQUEST FOR CURRENT TASK

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB
VECTOR TABLE OFFSET NAME = SETRT$ OFFSET VALUE= 644

$SETMG -- SET EVENT FLG & UNLCK W/EVNT FLG MASK

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB
VECTOR TABLE OFFSET NAME = SETMGS$ OFFSET VALUE= 652

$SETFG -- SET EVENT FLAG AND UNLOCK W/EFN NUMBER

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB
VECTOR TABLE OFFSET NAME = SETFGS$ OFFSET VALUE= 660

$DASTT -- DECLARE AST TRAP

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB
VECTOR TABLE OFFSET NAME = DASTTS$ OFFSET VALUE= 666

SQASTC -- OQUEUE AST TO TASK (USED W/CINTS)

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB
VECTOR TABLE OFFSET NAME = QASTCS$ OFFSET VALUE= 674

$QASTT -- QUEUE AST TO TASK

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB
VECTOR TABLE OFFSET NAME = QASTT$ OFFSET VALUE= 702

$SRSTD -- SEARCH SYSTEM TASK DIRECTORY

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB
VECTOR TABLE OFFSET NAME = SRSTD$ OFFSET VALUE= 710

$STPCT -- STOP CURRENT TASK

| Ne WO Ne N N0 N0 NO e WO Ne W We M Ve WE WE WO We VO VO W WO WO Ne WO W6 W WO WO VI W0 Ve Wo W8 WO W WO N6 We M WO MO N9 N0 W N Wo We We we

EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB
VECTOR TABLE OFFSET NAME STPCT$ OFFSET VALUE= 716

SSTPTK -- STOP TASK

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB
VECTOR TABLE OFFSET NAME STPTKS OFFSET VALUE= 724

$NXTSK -- ASSIGN NEXT REGION TO PARTITION

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB
VECTOR TABLE OFFSET NAME = NXTSK$ OFFSET VALUE= 732

$TSPAR —- TEST IF PARTITION IN MEMORY FOR KERNEL AST

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB
VECTOR TABLE OFFSET NAME = TSPAR$ OFFSET VALUE= 740

SICHKP -- INITIATE CHECKPOINT

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB
VECTOR TABLE OFFSET NAME = ICHKP$ OFFSET VALUE= 746

SEXRQP —-- EXEC REQUEST WITH QUEUE INSERT BY PRIORITY

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB
VECTOR TABLE OFFSET NAME = EXRQP$ OFFSET VALUE= 754

SEXRQF -- EXEC REQUEST WITH QUEUE INSERT FIFO

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB
VECTOR TABLE OFFSET NAME = EXRQF$ OFFSET VALUE= 762

SEXRON —-- EXEC REQUEST WITH NO QUEUE INSERT

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB
VECTOR TABLE OFFSET NAME = EXRQN$ OFFSET VALUE= 770

7-60

N6 MO NE WO MO e MO WO MO WO N0 VO Ne We N6 NE Ve N Ve Ne N6 N8 e N8 Ne Ne No Ve Ve Ve N Ne Ve Se We We N “e Ne Ne Ne Ne Ne Se “e e Ne Neo No “we o

EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS

SEXRQU -- EXEC REQUEST AND UNSTOP WITH NO INSERT

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB
VECTOR TABLE OFFSET NAME = EXRQUS$ OFFSET VALUE= 776

SEXRQS —-- EXEC REQUEST WITH NO SCHEDULE REQUEST

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB
VECTOR TABLE OFFSET NAME = EXRQS$ OFFSET VALUE= 1004

$TSKRT -- TASK REQUEST (DEFAULT UCB)

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB
VECTOR TABLE OFFSET NAME = TSKRTS$ OFFSET VALUE= 1012

$TSKRQ —-- TASK REQUEST (SPECIFY UCB)

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB
VECTOR TABLE OFFSET NAME = TSKRQS$ OFFSET VALUE= 1020

$TSKRP -- TASK REQUEST (SPECIFY DEFAULT UIC)

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB
VECTOR TABLE OFFSET NAME = TSKRP$ OFFSET VALUE= 1026

SFORK -- FORK AND CREATE SYSTEM PROCESS

ROUTINE VERSION NUMBER =] MODULE NAME = SYSXT
VECTOR TABLE OFFSET NAME = FORK$ OFFSET VALUE= 1034

SFORK1 -- FORK AND CREATE SYSTEM PROCESS

ROUTINE VERSION NUMBER = 1 MODULE NAME = SYSXT
VECTOR TABLE OFFSET NAME = FORK1$ OFFSET VALUE= 1042

~
|

61

T WO NE N W N Ne e WO WO WO W Ve WO We We Vs N0 N0 Mo VO Me WO W WO WE We WO We W WO WO WO WO WO WO VO MO WE WO WO WO WO N WO We N6 wo wo wo W@

EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS

$FORKO —-- FORK AND CREATE SYSTEM PROCESS

ROUTINE VERSION NUMBER = 1 MODULE NAME = SYSXT
VECTOR TABLE OFFSET NAME = FORKO$ OFFSET VALUE= 1050

$FORK2 ~- FORK AND CREATE SYSTEM PROCESS USED W/CINTS

ROUTINE VERSION NUMBER = 1 MODULE NAME = SYSXT
VECTOR TABLE OFFSET NAME FORK2$ OFFSET VALUE= 1056

$QFORK —-- INSERT FORK BLOCK AT END OF FORK QUEUE

ROUTINE VERSION NUMBER = 1 MODULE NAME = SYSXT-
VECTOR TABLE OFFSET NAME = QFORKS$ OFFSET VALUE= 1064

$NONSI —-- NONSENSE INTERRUPT ENTRY POINT

ROUTINE VERSION NUMBER = 1 MODULE NAME = SYSXT
VECTOR TABLE OFFSET NAME = NONSIS$ OFFSET VALUE= 1072

$DSPKA -- DISPATCH KERNEL AST

ROUTINE VERSION NUMBER = 1 MODULE NAME = SYSXT
VECTOR TABLE OFFSET NAME DSPKAS OFFSET VALUE= 1100

SSGFIN -- SEGMENT FAULT AND TRAP 4 INTERCEPT ROUTINE

ROUTINE VERSION NUMBER = 1 MODULE NAME = SYSXT
VECTOR TABLE OFFSET NAME = SGFIN$ OFFSET VALUE= 1106

$NLTMO -- NULL TIMEOUT ROUTINE

ROUTINE VERSION NUMBER = 1 MODULE NAME = TDSCH
VECTOR TABLE OFFSET NAME = NLTMOS$ OFFSET VALUE= 1114

$MUL -- INTEGER MULTIPLY MAGNITUDE NUMBERS

7-62

WO WO WO WO WO WO WO WO N MO N0 WO WO WO WO WO WO WO WO WO We We WO WO N0 WO W W0 Ve N6 WO We W Ne We Wo we N wo w0

EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS

ROUTINE VERSION NUMBER = 1 MODULE NAME = UTSUB
VECTOR TABLE OFFSET NAME = MULS$ OFFSET VALUE= 1122

$DIV -- INTEGER DIVIDE MAGNITUDE NUMBERS

ROUTINE VERSION NUMBER = 1 MODULE NAME = UTSUB
VECTOR TABLE OFFSET NAME = DIV§$ OFFSET VALUE= 1130

$DBDIV —-- DOUBLE PRECISION DIVIDE MAGNITUDE NUMBERS

ROUTINE VERSION NUMBER = 1 MODULE NAME = UTSUB
VECTOR TABLE OFFSET NAME = DBDIVS OFFSET VALUE= 1136

SCAT5 -- CONVERT ASCII TO RADS50

ROUTINE VERSION NUMBER = 1 MODULE NAME = UTSUB
VECTOR TABLE OFFSET NAME CAT5$ OFFSET VALUE= 1144

$SAVNR -- SAVE NON VOLATILE REGISTERS

ROUTINE VERSION NUMBER = 1 MODULE NAME = UTSUB
VECTOR TABLE OFFSET NAME = SAVNRS$ OFFSET VALUE= 1152

$DRQRQ —-- QUEUE I/O REQUEST (INTERNAL ENTRYPT)

ROUTINE VERSION NUMBER = 1 MODULE NAME = DRSUB
VECTOR TABLE OFFSET NAME = DRQRQS$ OFFSET VALUE= 1160

CHAPTER 8

HANDLING SPECIAL USER BUFFERS

Some drivers need to handle user buffers in addition to the buffer
that the Executive address-checks and relocates in a normal transfer
request. Address-checking and relocation operations must take place
in the context of the task 1issuing the I/0 request, because the
mapping registers are set for the issuing task. However, 1in the
normal driver interface, the task context after the call to S$SGTPKT is
not, in general, that of the issuing task.

Thus, drivers that need to handle special buffers must be able to

refer to the I/O packet before it is queued, while the context of the
issuing task is still intact.

8.1 DRIVER CODE

The coding shown in this chapter is an excerpt from a driver that
illustrates the handling of a special user buffer. The key points
are:

1. The UC.QUE bit has been set in the control byte (U.CTL) of
the UCB for each device/unit.

2. The routine (ZZINI) that is defined as the I/0 initiation
entry point in the driver dispatch table (DDT$) macro call
performs the following actions:

1. Retrieves the user virtual address and address-checks it

2. Relocates the virtual address and stores the result back
into the packet

3. Inserts the packet into the I/O queue and continues
execution 1inline to the entry point BMINI, which calls
$GTPKT

DRIVER CODE

3. The driver propagates its own execution by branching back to
BMINI to call $GTPKT.

DRIVER CODE

Olt

.TITLE BMTAB - DATA BASE FOR BLOCK MOVE DRIVER
.IDENT /01/

COPYRIGHT (c) 1981, 1982 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD
MASSACHUSETTS. ALL RIGHTS RESERVED.

we we w0 weo w0

;THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED
sAND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE
sAND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS
; SOFTWARE OR ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR
;OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO AND
;OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED.

;THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
;NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
;EQUIPMENT CORPORATION.

; DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
; ITS SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

LOADABLE DATA BASE FOR EXAMPLE BUFFERED I/O DRIVER

MACRO LIBRARY CALLS

N me WE WO We We WO WO “

.MCALL CLKDFS$
.MCALL HWDDF$
.MCALL SCBDFS$
.MCALL UCBDF$

CLKDF$:DEFINE CLOCK BLOCK OFFSETS
HWDDFS$:DEFINE HARDWARE REGISTERS
SCBDF$ s 1 SYSDEF :DEFINE SCB OFFSETS
UCBDFS :DEFINE UCB OFFSETS

SDAT::

; BM DCB

H

SDCB::
« WORD 0 D.LNK

«WORD .BMO D.UCB

DRIVER CODE

.ASCII /BM/ ;: D.NAM
.BYTE 0,1-1 ; D.UNIT,D.UNIT+1
.WORD BMND-BMST ; D.UCBL
.WORD $0 ; D.DSP
; D.MSK - FUNCTION MASKS
«WORD 33 ; LEGAL 0-17 IO.KIL,IO.WLB,IO.ATT
; IO.DET
.WORD 31 ; CONTROL 0-17 IO.KIL,IO.ATT,IO.DET
.WORD 0 ; NOOP 0-17
.WORD 0 ; ACP 0-17
.WORD 4 ; LEGAL 20-37 IO.WVB
.WORD 0 ; CONTROL 20-37
.WORD 0 ; NOOP 20-37
.WORD 0 ; ACP 20-37
«WORD 0 ; D.PCB
: BM UCB'S
PRO=0
.IF DF MSMUP
.WORD 0
.ENDC
+.BMO::
.WORD $BMDCB ; U.DCB
.WORD =2 : U.RED
.BYTE UC.QUE,O0 ; U.CTL,U.STS
.BYTE 0,US.OFL ; U.UNIT,U.ST2
.WORD DV.REC ; U.Cwl
.WORD 0 ; U.CW2
.WORD 0 ; U.CW3
.WORD 72. ; U.Cw4
.WORD $BMO ; U.SCB
.WORD 0 ; U.ATT
.WORD 0,0 ; U.BUF,U.BUF+2
.WORD 0 ; U.CNT
BMND=.

BM SCB'S

Ne we wo wo

$SBMO: :

SEND: :

s+

«WORD
«WORD
. WORD
«WORD
.BYTE
.BYTE
«WORD
-WORD

.END
.TITLE
« IDENT

OO0 ODOOO

DRIVER CODE

O e
-
oN
-
o

S.LHD

S.FRK

S.KS5

S.PKT

S.CTM,S.ITM

S.STS,S.ST3

S.ST2

S.KRB = NO KRB SINCE NO CONTROLLER

-« W=

s~ =
o O

Ne WO We “O0 mo S o “eo

BMDRV - BLOCK MOVE DRIVER

/01/

; COPYRIGHT (c) 1981,1982 BY DIGITAL EQUIPMENT CORPORATION.
;ALL RIGHTS RESERVED.

o
?

s THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED
;OR COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE.

NO WO NO SO WO WO MO WO WO we WO N0 WO WO We W WO N6 Wo Ve Ne Wo Ne W We Vo We Ne “e “e

THIS IS A SAMPLE DRIVER WHICH DEMONSTRATES HOW TO USE SOME
OF THE MORE SOPHISTICATED EXECUTIVE SERVICES AVAILABLE TO
I/0 DRIVERS. THIS DRIVER DEMONSTRATES:

1) THE CHECKING OF ADDITIONAL USER BUFFERS PRIOR TO QUEUEING

AN I
2) USE
3) USE
4) USE
5) USE
6) USE

/0
OF
OF
OF
OF

OF

PACKET.

THE CLOCK QUEUE FROM A DRIVER.

THE BUFFERED I/0 MECHANISM

THE GENERAL BUFFERED I/0O KERNEL AST MECHANISM
REGION LOAD KERNEL ASTS

BLXIO

THIS DRIVER UNDERSTANDS PRECISELY ONE QIO, WHICH IS:

o o o

IO.WLB,.....,<DEST-BUFFER,LENGTH, TIME,SRC-BUFFER>

OR

IO.WVB

THE DRIVER QUEUES A CLOCK BLOCK FOR TIME TICKS AND AT THE

8-5

DRIVER CODE

END OF THAT TIME INTERVAL COPIES THE SOURCE BUFFER TO THE
DESTINATION BUFFER. IF POSSIBLE, THE REQUEST IS BUFFERED
INTERNALLY WHILE THE CLOCK REQUEST IS POSTED.

we W0 =wme we

.MCALL CLKDF$, PKTDFS$

CLKDFS$;DEFINE CLOCK BLOCK OFFSETS
PKTDFS$;DEFINE I/0 PACKET OFFSETS

DEFINE MAXIMUM TRANSFER LENGTH WHICH WILL BE BUFFERED

~e weo wo

BUFLIM = 100.

DDTS$ BM, ,NONE, , ,NEW

* +

* — BMINI - I/O INITIATION ENTRY POINT

INPUTS:

DRQIO (BECAUSE THE UC.QUE BIT IS SET IN THE UCB) SETS THE
REGISTERS TO THE FOLLOWING:

R1 = ADDRESS OF I/O PACKET

R4 = ADDRESS OF SCB

R5 = ADDRESS OF UCB
OUTPUTS:

IF THE SPECIFIED CONTROLLER IS NOT BUSY AND AN I/O REQUEST IS
WAITING TO BE PROCESSED, THEN THE REQUEST IS DEQUEUED AND THE
I/0 OPERATION IS INITIATED.

I/0 REQUEST PACKET FORMAT:

TO | Ne VO WO NG N W Ne W8 o WO WO WO Ne WO WO WO e We W6 We W6 W N Wwo wo we

I.LNK -- I/0 QUEUE THREAD WORD.

I.PRI/I.EFN -- REQUEST PRIORITY, EVENT FLAG NUMBER.

I.TCB -—- ADDRESS OF THE TCB OF THE REQUESTER TASK.

I.LN2 -- POINTER TO SECOND LUN WORD IN REQUESTER TASK
HEADER.

I.UCB -—- UCB ADDRESS OF DEVICE

I.FCN -— I/0 FUNCTION CODE (IO.WLB).

8-6

WO WO WO WE WO WO WMe We WO WO Ne WO we “o we we

T we we we we “e

BMINTI:

Ne We Wo We Wme we W@

Ne W WO WO we wo we “e

DRIVER CODE

I.I0SB —-- VIRTUAL ADDRESS OF I/O STATUS BLOCK.

I.IOSB+2 -— RELOCATION BIAS OF I/O STATUS BLOCK.

I.I0SB+4 -- I/0 STATUS BLOCK ADDRESS (DISPLACEMENT +
140000).

I.IOSB+6 —-- VIRTUAL ADDRESS OF AST SERVICE ROUTINE.

I.PRM —-— RELOCATION BIAS OF SOURCE BUFFER.

I.PRM+2 -- BUFFER ADDRESS OF I/O TRANSFER.

I.PRM+4 -- NUMBER OF BYTES TO BE TRANSFERED.

I.PRM+6 —-- TIME DISPLACEMENT IN TICKS

I.PRM+10 —-- VIRTUAL ADDRES (TO BECOME RELOCATION BIAS) OF
DESTINATION BUFFER

I.PRM+12 -— FILLED IN WITH DISPLACEMENT ADDRESS OF
DESTINATION BUFFER

I.PRM+14 -- USED TO STORE BUFFER/CLOCK BLOCK ADDRESS

I.PRM+16 -—= FILLED IN WITH PCB ADDRESS OF OUTPUT BUFFER

.ENABL LSB

*kkkkkkk
*
*
*

khkhhkkkhhhhkhkkhkhihhkkhhkhkhhhkkhhkkkhkhkkkhkhkhkhhkhkkhhkkkkkhhhkhkhkkhkkhkkkkkkkx
*

POINT *
*

INITIATTION ENTRY

khdhkhkhhkhkkhkhhhkkhkhkhkkhhhkkhkhhkhkkhkkhkhhhhhhhhkhhkhhhhkhhhkkhhkkhkhkhhhkkk

; PRE-QUEUING INITIALIZE ENTRY POINT

khkkkkhkhkhhkhkkhkhkhhhkhkhkhhhkhkhkhhrhkhhhkhhhkhkhhkhhhhkhhhkhhkhhhhhhhhhkhkhkrhhik

* *
* ADDRESS CHECK THE SOURCE BUFFER WHILE THE TASKS *
* CONTEXT IS LOADED, AND FILL IN THE NECESSARY *
* PARAMETERS IN THE I/O PACKET *
* *
* *

khkhkhhhkkhkhkhkhkhkhhhhhhhhhhhhhhhhhkhkhkhhhkhkhkhhkhkhkhhkhhkhhhhhrhhhhkik

MOV R1,R3 ; COPY ADDRESS OF I/O PACKET
MOV I.PRM+10(R1),R0 ; GET VIRTUAL ADDRESS OF SOURCE
; BUFFER
MOV I.PRM+4(R3),R1 ; AND LENGTH OF SOURCE BUFFER
e e e e o e e e

THE INPUT PARAMETERS FOR $CKBFR ARE:

RO = STARTING ADDRESS OF BLOCK TO BE CHECKED
R1 = LENGTH OF THE BLOCK TO BE CHECKED
SATTPT = ADDRESS OF I.AADA IN I/O PACKET

(ESTABLISHED IN DRQIO)

8-7

WO N0 NE We WO Ve We W6 W We We wo

we w8 “o =0 wo

CALL

DRIVER CODE

CURRENT TASK HEADER MUST BE MAPPED THROUGH APR 6

(ESTABLISHED BY DIRECTIVE DISPATCHER)

THE OUTPUT PARAMETERS ARE:
C = 0 IF CHECK AND PACKET UPDATE SUCCESSFUL
I.AADA OR I.AADA IN PACKET POINTS TO
RELATED ADB, P.IOC, A.IOC INCREMENTED
C = 1 IF CHECK UNSUCCESFUL OR I.AADA, I.AADA
ALREADY FILLED IN
o e e e e o o o e e e o e e e
$CKBFR ; CHECK BUFFER, INCREMENT A.IOC AND
‘ ; P.IOC FOR APPROPRIATE REGIONS
10% ; IF CC ALL WAS OK

BCC

khkkhkhkhkhkkhkhkhkhhhhkhkhhhkhkkhkhkhhkhkhkhkhkhkhkhkkhkhkkhkkhkkhhkhkhkhkhkhkkhkhkhkkkkhhkhkkkkx

*
*
*

SOURCE BUFFER WAS ILLEGAL, FINISH I/O HERE

*
*
*

khkhkhkkhhhkhkkhhkhkhkhkhhkhkhkkhhkhkhkkhkhkhkhkhkhkhkkkhkhkhhhkkhkhkhkkhkhkkhhkkhkkhkkhkkkkkhkkkkkkk

MOV
CLR

IE.SPC&377,R0

R1

; SET COMPLETION STATUS
; AND NUMBER OF BYTES TRANSFERRED

N We WO N WO We WO WMe WO W We ™o we wo “wo

we Ne we wo wo “O

e WO Wo WO We WE We We W WO we W

108

we we we wo “o

DRIVER CODE

THE INPUT PARAMETERS FOR $IOFIN ARE:

RO = FIRST WORD OF I/O STATUS TO RETURN
R1 = SECOND WORD OF I/O STATUS TO RETURN
R3 = ADDRESS OF I/O PACKET

THE OUTPUT PARAMETERS ARE:

R4 IS DESTROYED

CALLR S$IOFIN ; COMPLETE I/O AND EXIT DRIVER

khkkkhkkkhhhhkhkhkhkhkhkhkhkhkkhkkhhkkhkkhkhkhkhhkhkkkkkkhhkkhkhkhkkhkhkhkhhkhkhkhkhkhkkhkkk*k

* *
* BUFFER WAS LEGAL, CONVERT VIRTUAL ADDRESS TO *
* ADDRESS DOUBLEWORD AND STORE PARAMETERS *
* *

khkkhhkkhhhkkhkhkhhkhkkhkhkhhhkhkkhkhkhhkhhhkhkhhhhkhhhhkhkhhhhhhhkhhkhkhkhthhrhhrxx

THE INPUT PARAMETERS FOR SRELOC ARE:
RO = USER VIRTUAL ADDRESS TO RELOCATE

THE OUTPUT PARAMETERS ARE:

Rl = APR6 RELOCATION BIAS OF USER BUFFER
R2 = DISPLACEMENT IN BLOCK + 140000
e +
CALL $RELOC ; RELOCATE BUFFER ADDRESS
MOV R1,I.PRM+10(R3) ; SAVE APR BIAS OF SOURCE BUFFER
MOV R2,I.PRM+12(R3) ; AND DISPLACEMENT ADDRESS
CLR I.PRM+16(R3) ; INDICATE NOT BUFFERED I/O
kkkhkhkhkhkhhkhkhkhkhhkhhhhhhhhhhhhhhhhkhhhhhhhhhkhkhkkhkkkhhhhhhhkhhkhhhhkkkk
* *
* NOW QUEUE THE PACKET IN THE DEVICE QUEUE *
*

kkhkkhhhkhkhhkhhkhhkhhhhkhhkhkkhkhdrhhhkhhhhhkhhdhhhhkhhhrrhhhhhdhhdhhhhhk

we WO We We “we We we w9 we wo

MOV
MOV

DRIVER CODE

R4,R0O ; COPY POINTER TO I/O QUEUE LISTHEAD
R3,R1 ; AND ADDRESS OF I/O PACKET
___ +
THE INPUT PARAMETERS FOR SQINSP ARE:
RO = ADDRESS OF THE TWO WORD LISTHEAD
R1 = ADDRESS OF THE PACKET TO BE INSERTED
NO OUTPUT PARAMETERS
___ +

SQINSP ;7 INSERT PACKET IN QUEUE

we we We we we

w0 WMe WP WE W WO WP WE WP WO WO WO WO WO W W ™o

BMINI1:

o
Rz,
o0

we wme we we we we [N

e

N W WO we We We We WO We W we

DRIVER CODE

khkhkkhkhhhhkhhhkhhhhkkhhhhhhkhkhhkkhhhhhhhhkhkhhrhhhhhhkhhhkhhhkhhkhhrdhhhkx
*

*

*

BEGIN SERIAL PROCESSING OF I/O PACKETS *
* *
hAhkkkhhhkhhhhhhhhhhhhhhhhhhkhhhhhhhhhhdhhhhhkhhkkhhhhhhkhhrhhhhxk

THE INPUT PARAMETERS FOR SGTPKT ARE:
R5 = ADDRESS OF THE UCB OF REQUESTING UNIT

THE OUTPUT PARAMETERS ARE:

C = 0 IF A REQUEST WAS SUCCESSFULLY DEQUEUED
R1 = ADDRESS OF THE I/O PACKET
R2 = PHYSICAL UNIT NUMBER
R3 = CONTROLLER INDEX
R4 = SCB ADDRESS OF CONTROLLER
R5 = UCB ADDRESS OF UNIT
C =1 IF UNIT BUSY OR NO PACKETS QUEUED
e e e +
CALL SGTPKT ATTEMPT TO GET A REQUEST
BCC 208 IF CC WE GOT ONE

RETURN DEVICE BUSY OR QUEUE EMPTY

REFERENCE LABEL
khkkkkhkhkhhhhhkhhkhhhhkhhkhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhkhhk*

we ™o we wo

* *
* ATTEMPT TO ALLOCATE CLOCK BLOCK *
* *

khkhkhkkhhhkhkhkkhhhhhhhhhkhkhkhkhhkhkhhhhhhhkhhkhkkhhhhhhhhhrhhkhhrhkhhrhkk

MOV R1,R3 ; COPY I/O PACKET ADDRESS
MOV C.LGTH,R1 ; SET LENGTH OF CLOCK BLOCK

THE INPUT PARAMETERS FOR SALOCB ARE:
Rl = SIZE OF THE BLOCK TO ALLOCATE (IN BYTES)

THE OUTPUT PARAMETERS ARE:

C = 0 IF A BLOCK WAS SUCCESSFULLY ALLOCATED
RO = ADDRESS OF THE ALLOCATED BLOCK
Rl = LENGTH OF THE ALLOCATED BLOCK
C = 1 IF NO BLOCK ISCURRENTLY AVAILABLE

8-11

~e wo

DRIVER CODE

CALL SALOCB ; ATTEMPT TO ALLOCATE
BCC 308 ; IF CC SUCCESSFUL
MOV IE.NOD&377,R0 ; SET I/O STATUS

WO WO Ne WO WO N WE We WO We WO We we “e WO

30$:

“e we wo w8 “weo

O WO W WO WO N0 wp We Wwe We “wo we “o

Ne weo wo w0 w0 “e

DRIVER CODE

THE INPUT PARAMETERS FOR $IOALT ARE:

RO = FIRST WORD OF I/O STATUS BLOCK

R1 = SECOND WORD OF I/0O STATUS BLOCK

R2 = STARTING AND FINAL RETRY COUNTS
(IF AN ERROR LOGGING DEVICE)

R5 = UCB ADDRESS OF UNIT TO COMPLETE

THE OUTPUT PARAMETERS ARE:

R4 IS DESTROYED

CALL S$IOALT AND COMPLETE THE I/0

BR BMIN1 ; GO LOOK FOR MORE WORK

MOV RO,I.PRM+14(R3) ; SAVE ADDRESS OF CLOCK BLOCK
khkhkhkhkhkhkhhkkhkhkhkhkhkhhhkhhkhhkkkkhkhkhkhkhhhhkhhhkhhkhkhkhkhkhhkhhhkhkhkhkhhhkhhkik
* *
* DETERMINE IF I/O REQUEST IS BUFFERABLE *
* *

khkkhkhkhkhkhkkhkkkkhkhhhhkhhkhkhkkhkkhkkkkhkkkhhkhkkhkhkhhkhkhkkkkkkhkkhkkhhkhkhkhkkkhkkkx

THE INPUT PARAMETERS FOR $TSTBF ARE:
R3 = ADDRESS OF I/0O PACKET TO TEST

THE OUTPUT PARAMETERS ARE:

C = 0 IF REQUEST MAY BE BUFFERED

C = 1 IF REQUEST MAY NOT BE BUFFERED
e +
CALL STSTBF ; TEST FOR BUFFERABLE I/O REQUEST
BCS 408 s IF CS CAN'T ALLOCATE A BUFFER

kkkhkhkhkhkhkhkhkhkhkhhkhkhkhhhrhhhhhrhhhhhhhhhhhhhhkhkhkhhhkhdhhrhhhrkrhbhodhhhkx

* *
* ATTEMPT TO ALLOCATE A BUFFER :
*

khkhkhkhhhkhkhkhhhkkhkhkkhkhhkhkhkhhhhhkhdhhhkhhhhhkhhkhhhkhhhhdhhhhrhbhhhhhhkk

Ne “wo weo wo

MOV
CMP
BHI

DRIVER CODE

I.PRM+4(R3),R1
R1, BUFLIM
408

we ~eo we

GET LENGTH OF BUFFER
BIGGER THAN BUFFER LIMIT ?
IF HI YES, DON'T BUFFER

we WE WO WO WO WO WO WO WO Wp W We WO Wwe W

we we We Wme we WO

wO WE WP WO W WO WO WO WY WO WO W W WO

CALL
BCS

DRIVER CODE

THE INPUT PARAMETERS FOR $ALOCB ARE:

Rl = SIZE OF THE BLOCK TO ALLOCATE (IN BYTES)
THE OUTPUT PARAMETERS ARE:
C = 0 IF A BLOCK WAS SUCCESSFULLY ALLOCATED
RO = ADDRESS OF THE ALLOCATED BLOCK
R1 = LENGTH OF THE ALLOCATED BLOCK
C =1 IF NO BLOCK ISCURRENTLY AVAILABLE
$ALOCB ; TRY TO ALLOCATE BUFFER
408 ; IF CS COULDN'T GET ONE

khhkkkhkhkhkhkhhhkhhkkhhkhhkhkhkhkhhhkhkhkkkhhkhhkhkkhhhkhkhhhkhkhkhhhhkkhhkhkhkhkhhik

*
*
*

COPY USER BUFFER TO INTERNAL BUFFER

*
*
*

hkhkkhhhkhkhhkhkkhkhhkhkhkkhkhkhhkhhkhkhkkhkhhhkkhkhhhkkhkhhkhhkkkhkkhkhhhhkkhkkhk

MOV
MOV
MOV
MOV
MOV
BIC
BIS
MOV

RO ,R4
R3,R5
I.PRM+4(R5),R0
I.PRM+10(R5),R1
I.PRM+12(R5),R2

SET ADDRESS OF DESTINATION BUFFER
SAVE ADDRESS OF I/O PACKET

SET LENGTH OF TRANSFER

SET BIAS OF SOURCE BUFFER

AND DISPLACEMENT

8 we W we we we Weo W@

140000,R2 STRIP OFF APR6 ADDRESS BITS
120000,R2 AND SUBSTITUTE APR5
R4,I.PRM+10(R5) ; SET INTERNAL BUFFER ADDRESS INTO

; PACKET

THE INPUT PARAMETERS FOR $BLXIO ARE:

RO
R1
R2
R3
R4

NUMBER OF BYTES TO MOVE
SOURCE APR 5 BIAS

SOURCE DISPLACEMENT
DESTINATION APR6 BIAS
DESTINATION DISPLACEMENT

THE OUTPUT PARAMETERS ARE

RO ALTERED
R1,R3 PRESERVED

we weo we wo

e =6 wo “e wo “weo

DRIVER CODE

R2,R4 POINT TO LAST BYTE OF SOURCE/DESTINATION +1

CALL $BLXIO ; COPY TO INTERNAL BUFFER

I XEE R XSS ESSES RS SRR SRR R R R R R R SRS REEREEEREEREEEEREEERERERESS]

* *
* CONVERT TO BUFFERED I/O REQUEST *
* *

khkkhkhkhkkhkhhhkhhkhhhkhhhhkhkhhkhhkhhhkhhhhkhhhhkhhkhkhhhhhhkhhkhkhhhkhhkhhkkkk

MOV R5,R3 ; COPY I/O PACKET ADDRESS BACK

we WO We Wo We We Wo W we WO

we ™o we “o wo =o

=9
o
w»
'y

~e We WO WO WE Wy WO W We W WO we e O

e weo wo

CALL

DRIVER CODE

THE INPUT PARAMETERS FOR S$INIBF ARE:

R3 = ADDRESS OF THE I/O PACKET TO BUFFER

NO OUTPUT PARAMETERS.

S$INIBF ; INITIALIZE BUFFERED I/0

khkhkhkhkhkhkkhhkhhkkhhkhkhhhhhhkhhhkhkhhhhhkhhhhhhhkhhkhkhhhhhkhhhkhhhkhhhkkhhik

*
*
*

QUEUE THE CLOCK BLOCK

*
*
*

khkkhkhhkkhhhkhkhhkhhhkhhhkhhhkhkhkhkkhhhkhhkhhhhhhhkhkhhkhhkhhkkhhhhkkhkhkhhhkhkhikx

MOV
MOV
CLR
MOV
MOV
MOV

CALLR

I.PRM+14(R3) ,RO GET ADDRESS OF CLOCK BLOCK

CLKSRV,C.SUB(RO) ; SET ADDRESS OF SUBROUTINE
R1 s HIGH ORDER DELTA TIME
I.PRM+6(R3),R2 ; LOW ORDER PART

C.SYST,R4 ; SET REQUEST TYPE
R3,R5 ; USE PACKET ADDRESS AS IDENTIFIER

THE INPUT PARAMETERS FOR $CLINS ARE:

RO = ADDRESS OF THE CLOCK BLOCK TO QUEUE
R1 = HIGH ORDER HALF OF DELTA TIME

R2 = LOW ORDER HALF OF DELTA TIME
R4 = REQUEST TYPE
R5 = ADDRESS OF REQUESTING TASK OR IDENTIFIER

NO OUTPUT PARAMETERS.

$CLINS QUEUE CLOCK BLOCK AND TEMPORARILY

EXIT THE DRIVER

e =e

AhkkkhkddhhkhdhhhdhhrhhhhhhhkhkrhhhkAhhrhhkrhrkrhhkhkkkkhkdhdhhkrrhhb bk

*
*

CLOCK ENTRY POINT

8-17

*
*

we No wo

Ne No “e wo weo “o

CLKSRV: MOV C.TCB(R4) ,R5

Ne WO No wo “So “wo

DRIVER CODE

* *
kkhkkkkkkhkkkhkkhhkhkhhhkhkhkhkhkhkhkhhhhkhkhkhkhkhkhkhhkhhhkhkhhhhkhhkhhhhkhhkhkrhkhhhhhihik

khkkkkkhkkhkkhkkhkkhkkkhhkhkhkhhkkhkhhkkhhhhkhhhkkhkhhhkhhkhhkhkkhkhkhkkhhkhkkhhkhkkhkhkhkkhkhkkhkkkhkx

* *
* CHECK TO SEE IF THE I/0O WAS BUFFERED *
* *

kkkkkkhkhkhkkhkhkhkhkhkhkhkhhkhkhhhkhkhhhkhhhkhkhhhkhkhhkhkhhhhhhhhhkhkhhkhkhkhrhkhhkhkhhhhk

; GET ADDRESS OF I/0 PACKET
TST I.PRM+16(R5) ; WAS IT BUFFERED I/0O
BNE 50$; IF NE YES, GO QUEUE KERNEL AST

RS E RS E RS EEE S SRS SRS SRR R R L EEEEEREEEEEEEEEEEEEEESEEEER]

* *
* COULDN'T BUFFER, PERFORM COPY HERE AND NOW *
* *

IEEE TR SRS E RS SRS ESR R SRS S RS EREE R R EREREREEREEEEEEEREEREEESESESRESES

MOV I.PRM+4(R5),R0 ; SET LENGTH TO TRANSFER

MOV I.PRM+10(R5),R1 ; BIAS OF SOURCE BUFFER

MOV I.PRM+12(R5),R2 ; DISPLEACEMENT OF SOURCE

BIC 140000,R2 ; STRIP OFF APR6 ADDRESS BITS
BIS 120000,R2 ; AND CONVERT TO APRS

MOV I.PRM(R5) ,R3 ; SET BIAS OF DESTINATION

MOV I.PRM+2(R5),R4 ; SET DISPLACEMENT

N WE WE WO We WO We W@ WO WO W WO W We We W9 W we

DRIVER CODE

THE INPUT PARAMETERS FOR $BLXIO ARE:

RO = NUMBER OF BYTES TO MOVE
R1 = SOURCE APR 5 BIAS

R2 = SOURCE DISPLACEMENT

R3 = DESTINATION APR6 BIAS

R4 = DESTINATION DISPLACEMENT

THE OUTPUT PARAMETERS ARE

RO ALTERED
R1,R3 PRESERVED
R2,R4 POINT TO LAST BYTE OF SOURCE/DESTINATION +1

CALL $BLXIO ; COPY BUFFER
MOV I.PRM+14(R5) ,R0 ; GET ADDRESS OF CLOCK BLOCK
MOV C.LGTH,R1 ; GET LENGTH OF CLOCK BLOCK

DRIVER CODE

THE INPUT PARAMETERS FOR $DEACB ARE:

ADDRESS OF BLOCK TO DEALLOCATE
LENGTH OF BLOCK TO DEALLOCATE

RO
R1

NO OUTPUT PARAMETERS.

WO WO WO W6 WO we We wo w6 wo wo

e e e e +
CALL SDEACB ; DEALLOCATE IT
MOV R5,R3 ; COPY PACKET ADDRESS FOR $IODON
BMSUC: MOV Is.suc&377,R0 ; SET FINAL I/0O STATUS
MOV I.PRM+4(R3),R1 ; AND LENGTH OF TRANSFER = REQUESTED
BMDON: MOV I.UCB(R3),R5 ; GET UCB ADDRESS OF DEVICE

WO WO ME WO NG WO WO WE WE WO We We We We W WO

we we w0 wo we w0

ul
o
-

DRIVER CODE

THE INPUT PARAMETERS FOR S$IODON ARE:

RO = FIRST WORD OF I/O STATUS BLOCK

R1 = SECOND WORD OF I/O STATUS BLOCK

R2 = STARTING AND FINAL RETRY COUNTS
(IF AN ERROR LOGGING DEVICE)

R5 = UCB ADDRESS OF UNIT TO COMPLETE

THE OUTPUT PARAMETERS ARE:

R4 IS DESTROYED

o +

CALL S$IODON ; COMPLETE THE I/0

BR BMIN1 ; GO LOOK FOR MORE WORK
hkhkhhkhkhkkkhkhhkkhhhhkhkhkhhkhkrhhAhkArxrhkhkhhhhhhhkhAhkrd A kA hkhkrhhhrhkhkhkhhhk
* *
* BUFFERED I/0O, CONVERT I/0O PACKET TO KERNEL *
* AST AND EXIT FROM DRIVER *
%* *

hkhkkkhhkhkhkhkkhhkhhhhhkhhhkhhkhhkhkhkhkhkhkhhkhkhhkhhhhkhkhkhhhkhhhhhkhhhhhhdkhhhhk

MOV R4,R3 ; COPY CLOCK BLOCK ADDRESS FOR $REQUE
MOV I.TCB(R5),R0O ; POINT TO TCB OF TASK

TST (R4)+ ; SKIP LINK WORD

MOV AK.GBI,(R4)+ ; SET A.CBL=AK.GBI

MOV KISARS5,(R4)+ ; SET APR BIAS OF SERVICE ROUTINE

MOV KATSRV, (R4)+ ; SET ADDRESS OF PROCESSING ROUTINE

MOV R5,(R4)+ ; SAVE I/0O PACKET ADDRESS IN CLOCK BLOCK

fee]
I

21

WO MO Ne Ne Ne N0 wo “we “we “o

Ne wo we e wo

we weo wo “wo “o

DRIVER CODE

THE INPUT PARAMETERS FOR $REQUE ARE:

RO
R3

TCB ADDRESS TO QUEUE AST BLOCK TO
ADDRESS OF THE PACKET TO QUEUE

NO OUTPUT PARAMETERS.

e +
CALLR SREQUE : QUEUE AST TO TASK
khkhkkhkhhkkhkkhkkkhkhkhkhkhkkhkhkkhkkhkhkhkhkhkhhkhkhkhkhkkhkhkhkhkhkhkhhkhkArAhirkhhhhhkrkhxhhhhkhkdxhkhkkhhkkk
* *
* KERNETL A ST ENTRY POINT *
* *

khkhkkkkhkhkhkhkkkhkhkkhkkhkhkhkkhkhkhkhkhhhkhhhhkhhkhkhkhhhkhkhkhkhhkhhhhkhkhhhhkhhkhhhhkhhkhik

khkkkkhkhkkhkhhkhkhhkhkhkhhhkhhhhkhkhhhkhkhhhhhhkhhhhkhhhhkhhhkhhkrhhhhhkhhhhkhhhhk

* *
* GET PCB ADDRESS AND SEE IF PARTITION IS RESIDENT *
* *

[EXEEEEERE SR EER R RS RE RS RS RS S AR RS R R R R R R R R SRR EEEEEEEREREREESEES]

KATSRV: MOV 10(R3) ,R5 ; GET I/O PACKET ADDRESS
MOV I.PRM+16(R5),R1 ; GET PCB ADDRESS OF BUFFER REGION
BEQ 708 ; IF EQ THERE IS NO COPY TO PERFORM

(e e}
I

22

WO WO WO MO NE WO N0 WO N0 WO Ne WO we “e we o

we We WO We WO No wo “wo

—e Wo W0 wo w0 “weo

[=)]
o
-

DRIVER CODE

+
THE INPUT PARAMETERS FOR S$TSPAR ARE:
RO = ADDRESS OF THE PACKET (THE KERNEL AST BLOCK)
R1 = PCB ADDRESS OF THE PCB CONTAINING THE BUFFER
R5 = TCB ADDRESS OF ASSOCIATED TASK
THE OUTPUT PARAMETERS ARE
C = 0 IF REGION IS RESIDENT AND CAN BE ACCESSED
C = 1 IF REGION IS NOT RESIDENT AND AST HAS
BEEN QUEUED
g R +
CALL STSPAR ; REGION IN MEMORY ?
BCC 60$; IF CC REGION IN MEMORY

khkhkkkhkkhkkkkhkhkkhkkhkkhkhkhkhhhkhhkkkhkhhkhhkkhkkhhkkhkhhkhkhhkkhkkhkhkhhhkkkhkhhkx

* *
* A REGION AST WAS QUEUED. BUMP BUFFERED I/O COUNT *
* BACK UP TO FORCE I/O RUNDOWN IN CASE OF ABORT AND *
* EXIT AST SERVICE ROUTINE. *
* *
* *

khkkhkhhkhkhhkhkhhkhkhhkhhkkhkhhhhhkhhkhhhhkhkhhhhkrhhkhhkhhkhkhhkhhkhhhhkkkk

MOV I.TCB(R5),R0O ; GET TCB ADDRESS

INCB T.TIO(RO) ; BUMP BUFFERED I/O COUNT

RETURN ; EXIT AST SERVICE ROUTINE
AAkKhkKRARKARKAKRRKRKRIA KRR AR AR Ak hhkhhhhhkhhhhkhhhhkhrkhhkhhhhhhhk
* *
* PERFORM BUFFER COPY OPERATION *
* *

khkhhhhhkhhkhkkkkhhkhhhhkhhhhhhhhhhkhkhkhkhkhkhkhkhkhkkkhkhkhkhkhhhhhhhhhhdkhhkhkkx

MOV I.TCB(R5),R0 ; GET TCB ADDRESS OF TASK

INCB T.IOC(RO) s+ ADJUST REAL I/O COUNT UPWARDS
MoV I.PRM+4(R5),R0 ; GET COUNT OF BYTES

MOV I.PRM+10(R5),R2 ; SET SOURCE BUFFER ADDRESS

MOV P.REL(R1),R3 : GET STARTING BIAS OF PARTITION
ADD I.PRM(R5),R3 ; AND ADD IN OFFSET

MOV I.PRM+2(R5),R4 ; SET DISPLACEMENT

DRIVER CODE

THE INPUT PARAMETERS FOR $BLXIO ARE:

RO = NUMBER OF BYTES TO MOVE
R1 = SOURCE APR 5 BIAS

R2 = SOURCE DISPLACEMENT

R3 = DESTINATION APR6 BIAS

R4 = DESTINATION DISPLACEMENT

THE OUTPUT PARAMETERS ARE

RO ALTERED
R1,R3 PRESERVED
R2,R4 POINT TO LAST BYTE OF SOURCE/DESTINATION +1

WO WO WO N Ne NO Ne WO Ne NG N0 NG N0 Ne N0 “e W wo

COPY THE BUFFER
GET BUFFER ADDRESS AGAIN
GET LENGTH OF BUFFER

CALL SBLXIO
MOV I.PRM+10(R5) ,R0O
MOV I.PRM+4(R5),R1

we wo wo

THE INPUT PARAMETERS FOR $DEACB ARE:

RO = ADDRESS OF BLOCK TO DEALLOCATE
R1 LENGTH OF BLOCK TO DEALLOCATE

NO OUTPUT PARAMETERS.

VO WO Ne N0 Ne Ne we “we wo “wo

*
khkkhkkhkkhkkkhkkkhkkhkhkhkhkkhkhkhkhkhkhkhhkhkhkhhhkhkhhkhhkhkhhhkhhhhkhkhkhrhkhkhhkhkhhkhkhkhhhhkhhkhkkk

e +
CALL SDEACB ; DEALLOCATE IT
: I E R R EER R R SRR R R R R RS RS R R ER SRR R RS R EE]
. * *
; * IF THIS WASN'T A REGION LOAD AST, FINISH THE I/O :
;

708 : MOV I.PRM+14(R5),R0 ; RETRIEVE AST BLOCK ADDRESS
TST (RO) ; WAS THIS A REGION LOAD AST ?
BNE 808 3 IF NE YES
MOV C.LGTH,R1 7 SET LENGTH OF CLOCK BLOCK

[e)
|

24

we e T WO wme We w0 We “o WO

DRIVER CODE

THE INPUT PARAMETERS FOR $DEACB ARE:

RO
R1

NO OUTPUT PARAMETERS.

ADDRESS OF BLOCK TO DEALLOCATE
LENGTH OF BLOCK TO DEALLOCATE

e +
CALL SDEACB ; DEALLOCATE CLOCK BLOCK
MOV I.IOSB(R5),R3 ; GET VIRTUAL ADDRESS OF I/O STATUS
; BLOCK
MOV IS.SUC&377,-(SP) ; SET FIRST I/O STATUS WORD
MTPDS$ (R3)+ ; WRITE FIRST WORD OF STATUS (MAY
; TRAP)
MOV I.PRM+4(R5),-(SP) ; SET SECOND WORD OF I/O STATUS
MTPDS$S (R3) ; WRITE SECOND WORD (MAY TRAP)
CLR I.IOSB(R5) ; PREVENT S$IODON ATTEMPT TO WRITE
; STATUS
MOV R5,R3 ; COPY I/O PACKET ADDRESS
JMP BMSUC ; FINISH IN COMMON CODE

*
*
*

we w8 wo w9 =g

80S: MOV
CLR
MOV

khkhkkkkhhkhhkhkkhkhkhhkhkhkhhkkhhkhkhhhhkhhhkhkhkhhhhkhhhhhhhhhhhhhhhhkhkrhhhthhhhk

*

RECONVERT REGION LOAD AST TO A TASK AST *

RO,R3 H
10(RO) H
I.TCB(R5),R0 :

[eo)
I

*

hkhkkhkhkhkhhkhkhhhhhkhhhhhhhhhhkhkhhhhhkhhhrhhhhhkhhhhkhdhdhhhhhhhhkrrhhhh

COPY BLOCK ADDRESS
INDICATE NO BUFFER NEXT TIME
GET TCB ADDRESS

25

N WO We WO Wme We wWe Wy we We

DRIVER CODE

THE INPUT PARAMETERS FOR S$REQUE ARE:

RO
R3

TCB ADDRESS TO QUEUE AST BLOCK TO
ADDRESS OF THE PACKET TO QUEUE

wn

NO OUTPUT PARAMETERS.

CALLR $REQUE ; RE-QUEUE TASK AST AND EXIT AST
;s SERVICE

we we w0 wo we

%o wme WO We Wwe we W W

DRIVER CODE

khkhkhkhhhkhhhkhhkhhhkhhhhhhkhhhkhhhhkhhkhhkhhkhhhhhhhhhkkhhkhhkhhrhhhihd s

%* *
* MISCELLANEOUS ENTRY POINTS *
* *

khkhkkhhhkhhkkhkhkhhkhkhhhhhkhkhkhhkkhhkhhkhhkkhhkhkhhhhkhkhhkkhhkhhhkhhkhhhhkhkkkik

khkhhkkhkkhkhhkhkhkkhkhhhkkhhkhkhhhkhhkhkhhhkhkhhkhkhkhhhkkhkhhhkkkkhhkhhkhkhkkkhkkk

CANCETL ENTRY POINT

* *
* *
* *
* WE COULD DEQUEUE PENDING CLOCK REQUEST, ETC HERE, *
* BUT WE DON'T, WE JUST LET THEM COMPLETE LATER *
* *
* *

khkhhkhkkhhkhkkhhhkhkhkhhhhhhhhhkhhhhhkhhkhkhhkhhhkhkhkkhkhhkhhkikhhkkhk

DRIVER CODE

BMCAN:

hkhkhkkkhhhkhkhhhhkhhkhkhhhkkhhhhkhkhhhhkhkhhkkhhhhhkkhkhhkkhhkkhkhkkhhkhkkkkhk

*
TIMEOUT ENTRY POINT *
*
*
*
*

we We we WO W WO wo

*

*

*

* SINCE THERE'S NO PHYSICAL DEVICE TO TIME OUT, NO-OP
*

*

khhkhkkkhkhhhhkhkkhhhhhkhhkhkhhhhkhkhhkhhkhkhkhkhkkhhkhkhkhhkhkhhkhkhhhhhhhkrhhhkik

BMOUT:
khkkhkhhhhhhhhhhkhkhhhhhhhhhhhkhhhhhhhdhhhhhhhhhhhhhhhhhhrhhhhhhk
POWERFATIL ENTRY POINT

* *
* *
* *
* POWERFAII. DOESN'T AFFECT NON-EXISTENT DEVICES *
* *
* *

khhhkhhkhkhhkhhhkhhkhkkhhkhkhhkhkhkhhhhhhkhhkhkhkhhkhkhhhkhhhhkhkhkhhkhkhkkhkhhkkhkkkx

Ne ®e we We w9 wo wo

BMPWF ¢

STATUS CHANGE ENTRY POINTS

* *
* *
* *
* DON'T NEED TO TOUCH NON-EXISTENT DEVICE, JUST LET *
* EXEC PUT DEVICE ON/OFF LINE *
* *
* *

khhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhhkhkhkhhhhhhkhkhkhkkhhkhhhkhkhkhhkhkhhhhhhhkhkhkhkhkhxk

we Ne We We WO we we wg

BMKRB:

BMUCB:
RETURN ; ALL THESE ARE NO-OP FOR NOW

-END

CHAPTER 9

THE PROFESSIONAL VIDEO BITMAP AND FONT STRUCTURE

This chapter provides reference information to the user in accessing
the video bitmap and the font structure of the Professional 300 series
computer. Note that the information provided is for reference, rather
rather than step-by-step instruction. Familiarity with the hardware
at the level of the Professional 300 Series Technical Manual (Order
No. EK-PC350-TM-001), and with P/0S at the 1level of Executive
Directives and the Application (Task) Builder is assumed.

9.1 THE VIDEO BITMAP
9.1.1 Application Level Access to the Video Hardware

Under P/0S, the video generator device registers and display memory
are generally accessed only by the terminal subsystem, with a higher
level interface provided for applications. However, it is also
possible for an application to directly access the hardware. There
are reasons for both approaches, as outlined below.

The main reasons for having an application access the hardware
directly are that the application might be able to:

@ Achieve faster throughput than if it went through the
supported system services.

® Provide functionality that the system software doesn't
support.

The main reasons for NOT having an application access the hardware
directly are as follows:

@ Future versions of the system software may interact
differently with the video hardware. An application that
accesses the hardware directly may not work wunder all
versions of P/0S. DIGITAL 1is not and will not attempt to

9-1

THE VIDEO BITMAP

achieve this type of compatibility.

® The video hardware may change. The system software keeps up
with such <changes, but if the application accesses the
hardware directly (thus does not use the system services), it
will also have to be adapted to account for the video
hardware changes.

e Developing an application that accesses the hardware directly
requires considerable familiarity with the hardware. The
relevant sections of the Professional 300 Series Technical
Manual, along with the contents of this document, are
pre-requisites to acquiring this familiarity, but are not
necessarily sufficient by themselves.

This document will deal only with a Professional running P/0S, but
some of the information may be useful for applications running under
other operating systems.

9.1.2 "Disabling"™ the Terminal Subsystem

Before directly accessing the video hardware, an application must
ensure that the terminal subsystem 1is not "active". Failure to
"disable" the terminal subsystem can have unpredictable results,
including system software failure.

Steps for "disabling" the video subsystem (P/0OS Version 1.7 and 2.0)
are as follows.

1. Send a RIS (<KESC>c). This resets the terminal subsystem to
its initial state, and clears the screen.

2., Send a "disable cursor" sequence (<KESC>[?251). This turns
the text mode cursor off.

After disabling the cursor, the terminal subsystem accesses the video
hardware only when it is requested to display something - or when it
blanks the screen at the end of it's time-out period. If the
application combines requests to the terminal subsystem with it's own
manipulation of the video hardware, it must save and restore the
contents of the following device registers:

@ Control and Status Register

@ Plane 1 Control Register

THE VIDEO BITMAP

e Plane 2 and 3 Control Register

® Memory Base Register (should not be modified at all)

NOTE

CAUTION Do not set the interrupt enable bits. The
results of doing so are unpredictable, and probably
undesirable. The system could hang or crash.

9.1.3 Accessing the Video Device Registers

In the CTI architecture, as on other PDP-11 buses, devices are
controlled via device registers which appear as memory in the top 8KB
(the I/0 page) of the bus address space. Unlike those on UNIBUS and
Q0-BUS devices, the device registers on a CTI device do not have fixed
addresses on the bus. Instead, each option slot has a 128-byte device
register address space, the location of which can be found in the
Professional 300 Series Technical Manual. The registers on a given
module will appear at a fixed displacement within the address space of
the slot the module is in. This means that in order to access the
device registers on the video, software must determine at run-time

which slot it is in. The WIMPS$ Executive Directive provides the means
for doing this.

The WIMPS Directive returns a dump of the configuration table,
including the ID's of the devices in all the slots. Scan the list to
find out which slot the video is in the video controller has an ID of
2 in the low byte and 2 in the low 4 bits of the high byte.

The slot number gives you the bus address. You can then task-build in
a resident common in partition CTPAGE, which covers the I/O page.

9.1.4 Access to Video Memory Through the Bus

It is possible for the CPU to read from and write to the video display
memory without using the device registers - because the memory can be
programmed to be on the bus. P/0OS uses this configuration.

The video memory occupies a partition called BITMAP, and the system
video handler creates a region <called TFWBMP, which fills it. An
application can attach the region and map to all or a portion of it.

THE VIDEO BITMAP

TFWBMP is 32KB, of which the first 30KB corresponds to the displayed
portion of the memory. Note that the least significant portion of the
first word of the region corresponds to the upper left corner of the
screen. If there is an Extended Bit Option (EBO) in the system, all
three planes of memory share the same 32KB bus address space.

To read from or write to any of the planes (whether or not there is an
EBO), the memory reference -enable bit (bit 5) in its plane control
register must be set to 1. 1If there is an EBO, the memory reference
enable bit can be set for more than one plane. Reads will come from
each plane - in ascending order (1, 2, 3) - that has the memory
reference enable bit set. Plane numbers are defined by the hardware
and do not necessarily correspond to any software numbering scheme.
Writes will go to all planes that have the memory reference enable bit
set.

Remember that a transfer, once started, can take a long time. Check
the Done bit before modifying any registers other than the X and Y
registers unless you are certain that the transfer is complete.

9.1.5 Natural Images (Reduced Resolution)

The video hardware normally displays an image with a resolution of
1024 by 240 pixels, with one bit per pixel per plane. This means that
a non-EBO system displays black or white pixels only, and an EBO
system can display eight colors or gray levels at a time.

Using reduced resolution, you can display more grey levels or colors.
It is possible to have 512 pixels per line with two bits per pixel per

plane, or 256 pixels per line with four bits per pixel per plane.

To use reduced resolution in a system with an EBO, the color map must
be DISABLED by clearing the appropriate bit in the CSR. In this mode,
the output from plane 1 drives the blue signal, the output from plane
2 drives the green signal, and the output from plane 3 drives the red
signal. At 512 resolution for all planes, this configuration produces
4 gray levels in a monochrome system, or 64 colors in a color system.
At 256 resolution, this configuration produces 16 gray levels in a
monochrome system, or 4096 colors in a color system.

Resolution is set on a per-plane basis, so different planes can be
displayed at different resolutions. However, this configuration has
no real usefulness since it can be applied only to a monochrome system
with an EBO. In such a system, the monochrome signal is the sum of
the three color signals, and several output combinations would
overload the monochrome monitor. Also, the color map is not used at
reduced resolution. Therefore, an EBO system cannot be used to
produce any more gray levels than a non-EBO one.

THE VIDEO BITMAP

The video logic for setting the contents of video memory is unaffected
by the resolution. The only difference is that as the contents of
memory are scanned for display, instead of each bit (from the least to
most significant) of a word being used for a given pixel, each 4 bits
is used to generate one of 16 possible levels. Thus, the application
must set 4 bits (in each plane) to define a pixel.

Note that at ANY resolution, the pixel aspect ratio is not one-to-one.

9.1.6 The Screen Timer

A screen time-out feature is built into the terminal subsystem to
prevent the "burn-in" of a static image in the screen phosphor. The
‘terminal subsystem "blanks" the screen if there has been no keyboard
or video activity for thirty minutes. This is accomplished by setting
the horizontal resolution to "off" in the Plane 1 Control Register.

For applications that process input from the keyboard, the screen
timer is not a problem, but for "display only" applications, it can be
a problem, because the terminal subsystem cannot detect the ongoing
video activity. One solution to this problem is to send a null byte
to the screen (via the terminal subsystem) at regular intervals (at
least every 30 minutes). This will cause the terminal subsystem to
reset its timer, without causing any visual effects.

9.1.7 Returning the Video Hardware to the System

After the application has completed, it must restore the hardware
device registers, expecially the Plane 1 control register. Failure to
do so may cause the system to crash when a split-screen scroll or
insert/delete subsystem should then be re-initialized by issuing a RIS
sequence.

9.2 VIDEO FONT STRUCTURE
This section provides further information for video applications with

a description of the resident common, and character set and font
tables.

9.2.1 VDFNTS Resident Common

The VDFNTS resident common contains the character se@ tables and font
definition tables for the terminal subsystem, and is attached by the

9-5

VIDEO FONT STRUCTURE

subsystem at system boot time.

At the beginning of the resident common, in a fixed location, is
information necessary to locating the font and character set
information. This information consists of the following words, in the
order specified.

1. A flag indicating the type of pointers in the common.
Initially the flag is a one (1), indicating that the pointer
values are self-relative and therefore position independent.
At system boot time, the pointers are converted to
position-dependent values for efficiency reasons, and the
flag 1is set to zero (0). Only the low byte of the word is
used.

2. The number of font tables. The value of this word 1is
currently three (3), and not used.

3. Pointers for eight font tables. The pointers point to the
font data for the zeroth character, rather than the general
information, in order to facilitate indexing into the table.
Pointers corresponding to non-existent fonts contain a zero
(0). The first font is for text while in 80-column mode, the
second is for text while in 132-column mode, the third is for
the default graphics-mode font, and the remaining five (5)
entries are currently unused.

4., The number of character set tables.

5. Pointers for sixteen character set tables. The pointers
point to the translation data for the zeroth character,
rather than the general information, in order to facilitate
indexing into the table. Pointers corresponding to
non-existent character sets contain a zero (0).

While the above information implies a fair degree of flexibility in
font design, there are assumptions and restrictions in both software
and hardware that preclude this. These restrictions, and other
information about the fonts, are listed below.

@ The character cells include any space that occurs between
characters. Therefore, for most characters it is necessary
to leave a minimum of one row blank, as well as one column of
pixels in each cell. A spacing of at least two blank columns
is even more desirable, due to the close spacing of pixels in
the horizontal direction. In fonts that allow the characters
to be shifted, a blank column should occur on the right.
There may be some characters (e.g., in the DEC Special
Graphics set), for which it is desirable to have adjacent
characters "touch" each other.

VIDEO FONT STRUCTURE

e Character width and height should normally be an odd number
of pixels, in order to produce symmetric characters.

@ Character cell width must be less than sixteen (16) for fonts
that allow shifting, and less than seventeen (17) for those
that do not.

® The character cell width for the font used with 80-column
mode must be twelve (12) pixels, and the character cell width
for the font used with 132-column mode must be seven (7)
pixels.

e The character cell height must be ten (10).

® The pixel aspect ratio for the video display is roughly 2.5
pixels in the horizontal direction for every one in the
vertical direction. Therefore a solid horizontal line
appears brighter than a solid vertical line. If this is to
be avoided in text-mode characters, the font data must not
contain two horizontally adjacent pixels which are both "on".
Also, the fonts must be set up so that the "edges" of two
adjacent <cells do not both have their pixels "on". This
restriction does not apply to the graphics-mode font, because
graphics text must allow for display in any orientation.
Fonts that do not satisfy this "adjacency" restriction must
not set the "shift" attribute.

@ The "bold" character attribute is only supported with fonts
which allow the characters to be shifted. "Bold" characters
are produced algorithmically by shifting the font data
rightward one pixel and ORing it with the original data.
This has the effect of "doubling" the vertical 1lines and
"filling in" the horizontal lines, and therefore producing a
brighter character in both dimensions.

9.2.2 Character Set Tables

The character set tables are used in conjunction with the VT1l02-mode
fonts. They provide the information necessary to locate the font data
for a character, when supplied with the ISO/ANSI character code and
character set information for the character. The =zeroth entry
corresponds to SPACE (2/0), the next ninety-four (94) entries
correspond to character codes 2/1 to 7/14, and the next ninety-four
entries correspond to character codes 10/1 to 15/14.

VIDEO FONT STRUCTURE

There may be from one to sixteen (16) character set tables for use
with text-mode, with the first table being aligned on a 64-byte
boundary. The first four tables determine the default settings for
character sets GO through G3. If there are 1less than four (4)
character set tables, the "G" sets which correspond to non-existent
tables default to the first table. Each character set table begins
with four bytes of general information about the character set and
table, in the order listed below.

1. Size of the entries in the character set translation table,
in Dbytes. If the translation table does not specify a font
entry larger than 255, a value of one (1) may be specified.
Otherwise, a value of two (2) must be specified.

2. Character code for the third intermediate character 1in the
ISO/ANSI sequence used to designate the character set, or
zero if no such character.

3. Character code for the second intermediate character in the
ISO/ANSI sequence used to designate the character set, or
zero if no such character.

4, Character code for the final character in the ISO/ANSI
sequence used to designate the character set.

This information is followed by the character set translation table.
The translation table <consists of ninety-four (94) entries which
correspond to each of the possible characters in the character set,
and which specify the number of the font entry used to draw the
corresponding character. Entries which correspond to reserved
characters should contain a =zero, so that the error character is
displayed. Entry size is one or two bytes, as specified above.

9.2.3 Font Tables

The fonts contain the information necessary to produce the visual
symbols for all supported characters. There are two fonts for VT102
mode, one for 80-column mode and one for 132-column mode, each
containing all the characters that can be drawn while in VT102 mode,
and differing only by the size of the characters they produce.

Each font is aligned on a 64-byte boundary, and begins with general
information about the font followed by the data for each of the
supported characters. The general font. information is listed 'below,
with each item occuring in the order shown and occupying one word.

VIDEO FONT STRUCTURE

1. Maximum character cell width, in pixels.

2. Maximum character cell height, in pixels.

3. Number of bytes of data per character cell row.
4. Number of bytes of data per character cell.

5. Number of the character cell row which is modified when a
character is underlined. The top row is row number one (1).

6. Font data for the underscore row, which replaces the normal
data for the row when the character is underlined.

7. Font attribute flags. Currently, the only supported font
attribute, that character <cells in the font may be shifted

rightward one pixel and ORed with the original to produce a
"bold" character.

8. Number of character cell entries contained in the font.

The general font information is followed by the specified number of
character «cell entries, which are used to draw each of the supported
characters. Each character cell entry contains the specified number
of bytes and rows, and consists of the data for each of the rows of
the character cell. The data for the top row of the character cell
occurs first within the entry, with the data being displayed low bit
to high bit from left to right on the display.

The first five entries of the text-mode fonts are reserved for special
characters, as specified below:

® The =zeroth entry is the error character, reverse
question-mark, which 1is wused as the visual presentation of
SUB and reserved characters.

® The next entry is the screen alignment character, a hollow
rectangle about the size of a capital letter, which is used
to fill the screen when the DECALN sequence is received.

® The next entry is the space character.

@ The remaining two entries for special characters are
currently unused.

The order and position of other characters in the font 1is not
critical, as 1long as they are the same for the two text-mode fonts.

The order 1is usually chosen to facilitate the «creation of the
character set tables.

VIDEO FONT STRUCTURE

The currently implemented fonts are as follows:

80-col 132-col graphic

cell size (width x height) 12x10 7x10 12x10
"normal" character w/out descenders (W x H) 9x7 5x7 9x7

"normal" character with descenders (W x H) 9x9 5x9 9x9

descender rows 9,10 9,10 9,10
underline row 9 9 9
intercharacter row 1 1 1
intercharacter columns 1,11,12 1,7 1,11,12
font allows shifting yes no no
data for underline row (hex) 5555 FFFF FFFF
size of font row data (bytes) 2 1 2
size of font data (bytes) 20 10 20
number of font entries 222 222 189

Table 9-1: Currently Implemented Fonts
9.2.4 Cvdata

This region is created at boot time. It contains a character cell
view of the screen. The cell view 1is a 1linked 1list of line
structures. A line structure contains forward and backward 1links,
line attributes (double wide, double high top, double high bottom),
height of the line, number of columns in the line, and the character
cells of the line. See Figure 9-1.

t——————— F——————— Fm—————— tm—————— tm—————— t——————— +=—==\\-——--- +
| LicoL | LIHI | LIBL | LIATTR | LIBKWD | LIFWRD | cell data |
t——————— t——————— t——————— Fm—————— t——————— t——————— +====\\----- +

| +-> Link to next line
+-> Link to previous line
+=> Line attributes
+-> Link to blink 1list
+-> Line height
+-> Number of columns in line

Figure 9-1: Line Data Structure

The character cells are one word each. The character attributes are
placed in the high nibble of the high byte to facilitate testing of
the blink attribute (DABLNK).

The character set number is placed in the low nibble of the high byte
to facilitate its extraction.

VIDEO FONT STRUCTURE

Normally, the character code information for a given cell will have

a

value in the range of zero (0) to ninety-three (93), corresponding to

one of the ninety-four (94) entries within a graphic character

set.

However, if the byte value is negative, the character is "special" and

not contained in a graphic character set. Figure 9-2 describes
character cell.

15 12 11 8 7 0
e T e B B B i e S e A e e e Das St Y

| CIATTR | CISET | CICODE |
e e e et S e natas st L S e s ettt St &

-
‘ -+-> DABOLD - Character 1is bold
+-=> DARVRS - Character is reverse video
+-> DAUNDR - Character is underscored
+-> DABLNK - Character is blinking

Figure 9-2: Character Cell Structure

the

APPENDIX A

P/OS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

This appendix describes the P/0OS system macros that supply symbolic
offsets for data structures listed in Table A-1.

The data structures are defined by macros in the Executive macro

library. To reference any of the data structure offsets from your
code, include the macro name in an .MCALL directive and invoke the
macro. For example:

.MCALL DCBDF$ DCBDFS ;Define DCB offsets
NOTE

All physical offsets and bit definitions are subject
to change in future releases of the operating system.
Code that accesses system data structures should
always use the symbolic offsets rather than the
physical offsets.

The first two arguments, <:> and <=>, make all definitions global. 1If
they are 1left blank, the definitions will be local. The SYSDEF
argument causes the variable part of a data structure to be defined.

All of these macros are in the Executive macro library,
LB:[1,1]EXEMC.MLB. All except F11DFS, ITBDFS$, MTADFS$, OLRDFS, and
SHDDFS are also in the Executive definition library,

LB:[1,1]EXELIB.OLB.

Table A-1: Summary of System Data Structure Macros

Macro Arguments Data Structures

ABODFS <:>,<=> Task abort and termination
notification message codes

ACNDFS$ <:>,<=> Accounting data structures
(user account block, task account
block, system account block)

CLKDFS$S <:>,<=> Clock gueue control block
Macro Arguments Data Structures
CTBDFS$S <:>,<=> Controller table
DCBDFS$S <:>,<=>,SYSDEF Device control block
EPKDFS$ <:>,<=> Error message block
F11DFS <:>,<=>,SYSDEF Files-11 data structures

(volume control block, mount list
entry, file control block, file
window block, locked block list

node)
HDRDFS$ <:>,<=> Task header and window block
HWDDFS$ <:>,<=>,SYSDEF Hardware register addresses and
feature mask definitions
ITBDFS <:>,<=>,SYSDEF Interrupt transfer block
KRBDF$ <:>,<=> Controller request block
LCBDFS$ <:>,<=> Logical assignment control block
MTADFS <:>,<=> ANSI magtape data structures
(volume set control block)
OLRDFS$ On-line reconfiguration interface
PCBDFS$ <:>,<=>,SYSDEF Partition control block and

attachment descriptor

PKTDFS$

SCBDFS$
SHDDF$
TCBDF$

UCBDF$

<> ,LK=>

<:>,<=>,SYSDEF
<> ,<=>
<:>,<=>,SYSDEF

<:>,<=>,TTDEF,SYSDEF

I/0 packet, AST control block,
offspring control block, group
global event flag control block,
and CLI parser block

Status control block

Shadow recording linkage block

Task control block

Unit control block

ABODFS$

A.l1 ABODF$

-+

TASK ABORT CODES

NOTE: S.COAD-S.CFLT ARE ALSO SST VECTOR OFFSETS

~o wo weo “weo “eo

TASK STILL ACTIVE

TASK EXITED NORMALLY

ODD ADDRESS AND TRAPS TO 4
SEGMENT FAULT

BREAK POINT OR TRACE TRAP

IOT INSTRUCTION

ILLEGAL OR RESERVED INSTRUCTION
NON RSX EMT INSTRUCTION

TRAP INSTRUCTION

11/40 FLOATING POINT EXCEPTION
SST ABORT-BAD STACK

AST ABORT-BAD STACK

ABORT VIA DIRECTIVE

TASK LOAD REQUEST FAILURE

TASK CHECKPOINT READ FAILURE
TASK EXIT WITH OUTSTANDING I/0
TASK MEMORY PARITY ERROR

TASK ABORTED WITH PMD REQUEST
TI: VIRTUAL TERMINAL WAS ELIMINATED
TASK INSTALLED IN 2 DIFFERENT SYSTEMS
TASK ABORTED DUE TO BAD AFFINITY
(REQUIRED BUS

RUNS ARE OFFLINE OR NOT PRESENT)
BAD CSM PARAMETERS OR BAD STACK
TASK HAS RUN OVER ITS TIME LIMIT
ABORT VIA DIRECTIVE WITH NO TKTN
MESSAGE

177774 S.CACT=-4.
177776 S.CEXT=-2.
000000 S.COAD=0.

000002 S.CSGF=2.

000004 S.CBPT=4.

000006 S.CIOT=6.

000010 S.CILI=8.

000012 S.CEMT=10.
000014 S.CTRP=12.
000016 S.CFLT=14.
000020 S.CSST=16.
000022 S.CAST=18.
000024 S .CABO=20.
000026 S.CLRF=22.
000030 S.CCRF=24.
000032 S.IOMG=26.
000034 S.PRTY=28.
000036 S.CPMD=30.
000040 S.CELV=32.
000042 S.CINS=34.
000044 S.CAFF=36.

000046 S.CCSM=38.
000050 S.COTL=40.
000052 S.CTKN=42.

WO WO |0 N0 N0 N0 Ve WO NE Ne Ve WO W We WO We WO We WO NWe WO W0 We we WO Wo “o

TASK TERMINATION NOTIFICATION MESSAGE CODES

we wo weo

DEVICE NOT READY
DEVICE SELECT ERROR
CHECKPOINT WRITE FAILURE
CARD READER HARDWARE ERROR
DISMOUNT COMPLETE
UNRECOVERABLE ERROR

LINK DOWN (NETWORKS)

LINK UP (NETWORKS)
CHECKPOINT FILE INACTIVE
UNRECOVERABLE DEVICE ERROR
MEMORY PARITY ERROR

000000 T .NDNR=0
000002 T.NDSE=2
000004 T.NCWF=4
000006 T.NCRE=6
000010 T .NDMO=8.
000012 T.NUER=10.
000014 T.NLDN=12.
000016 T.NLUP=14.
000020 T.NCFI=16.
000022 T.NUDE=18.
000024 T.NMPE=20.

WO |9 Ve Ne Ne We Ne we N wo we

A-4

000026
000030
000032
000034
000036

000040

000042

T.NKLF=22.
T .NAAF=24.
T.NTAF=26.
T.NDEB=28.
T.NRCT=30.

T.NWBL=32.

T.NVER=34,

me We e WO WP We WO We We WO

ABODFS$

UCODE LOADER NOT INSTALLED
ACCOUNTING ALLOCATION FAILURE
ACCOUTING TAB ALLOCATION FAILURE
TASK HAS NO DEBUGGING AID
REPLACEMENT CONTROL TASK NOT
INSTALLED

WRITE BACK CACHING DATA LOST. UNIT
WRITE LOCKED

MOUNT VERIFICATION TASK NOT
INSTALLED

A.2 CLKDFS$

000000
000002

000004
000006

000010

000012

000000
000002
000003

000004

000006

000012
000012
000014
000016
000020

+

WO WO |WE We WO W We W Wwe we W

C .MRKT=
C.SCHD=

C.SSHT=
C.SYST=

C.SYTK=

C.CSTP=

.=0

C.LNK:
C.RQT:
C.EFN:
C.TCB:

C.TIM:

THE FOLLOWING

0
2

4
6

8

10.

.ASECT

«BLKW
.BLKB
.BLKB
«BLKW

«BLKW

.=C.TIM+4

C.AST:
C.SRC:
C.DST:

«BLKW
« BLKW
«BLKW
« BLKW

CLKDFS$

CLOCK QUEUE CONTROL BLOCK OFFSET DEFINITIONS
CLOCK QUEUE CONTROL BLOCK
THERE ARE FIVE TYPES OF CLOCK QUEUE CONTROL BLOCKS.

EACH CONTROL BLOCK HAS THE SAME FORMAT IN THE FIRST
FIVE WORDS AND DIFFERS IN THE REMAINING THREE.

CONTROL BLOCK TYPES ARE DEFINED:

MARK TIME REQUEST

TASK REQUEST WITH PERIODIC
RESCHEDULING

SINGLE SHOT TASK REQUEST

SINGLE SHOT INTERNAL SYSTEM SUBROUTINE
(IDENT)

SINGLE SHOT INTERNAL SYSTEM SUBROUTINE
(TASK)

CLEAR STOP BIT (CONDITIONALIZED ON
SHUFFLING)

e

MO N0 WO NE W0 we “we we wo

CLOCK QUEUE CONTROL BLOCK TYPE INDEPENDENT
OFFSET DEFINTIONS

wo we weo wo

CLOCK QUEUE THREAD WORD

REQUEST TYPE

EVENT FLAG NUMBER (MARK TIME ONLY)

TCB ADDRESS OR SYSTEM SUBROUTINE
IDENTIFICATION

ABSOLUTE TIME WHEN REQUEST COMES DUE

Ne We we “e weo wo

CLOCK QUEUE CONTROL BLOCK-MARK TIME
DEPENDENT OFFSET DEFINITIONS

we wo wo wo

START OF DEPENDENT AREA

AST ADDRESS

FLAG MASK WORD FOR 'BIS' SOURCE
ADDRESS OF 'BIS' DESTINATION
UNUSED

b
e WO W9 wo wo

-e

000012
000012
000016
000020

000012
000012
000016
000020

WO WO WO WO We We we WO WO wo “wo

000012
000012
000014
000016

000020
000022

000000

«=C.TIM+4

C.RSI: .BLKW
C.UIC: .BLKW
C.UAB: .BLKW

.=C.TIM+4
«BLKW
«BLKW
«BLKW

~e weo wo wo =t = N we wo wo wo

=N

CLKDF$

CLOCK QUEUE CONTROL BLOCK-PERIODIC
RESCHEDULING DEPENDENT OFFSET
DEFINITIONS

we wo wo wo

START OF DEPENDENT AREA

RESCHEDULE INTERVAL IN CLOCK TICKS
SCHEDULING UIC

POINTER TO ASSOCIATED UAB

CLOCK QUEUE CONTROL BLOCK-SINGLE
SHOT DEPENDENT OFFSET DEFINITIONS

~e weo wo weo

START OF DEPENDENT AREA
TWO UNUSED WORDS
SCHEDULING UIC

C.UAB

CLOCK QUEUE CONTROL BLOCK-SINGLE SHOT INTERNAL SUBROUTINE OFFSET
DEFINITIONS

THERE ARE TWO TYPE CODES FOR THIS TYPE OF REQUEST:

TYPE 6=SINGLE SHOT INTERNAL SUBROUTINE WITH A 16 BIT VALUE AS

AN IDENTIFIER.

TYPE 8=SINGLE SHOT INTERNAL SUBROUTINE WITH A TCB ADDRESS AS

AN IDENTIFIER.

.=C.TIM+4

C.SUB: .BLKW

C.AR5: « BLKW

C.URM: .BLKW
+«BLKW
C.LGTH=.
.PSECT

e

e WO WO We WO WO we W0 “o

START OF DEPENDENT AREA
SUBROUTINE ADDRESS

RELOCATION BASE (FOR LOADABLE
DRIVERS)

URM TO EXECUTE ROUTINE ON

(MP SYSTEMS, C.SYST ONLY)
UNUSED

LENGTH OF CLOCK QUEUE CONTROL
BLOCK

DCBDF$, ,SYSDF

A.3 DCBDF$,,SYSDF

+

DEVICE CONTROL BLOCK

THE DEVICE CONTROL BLOCK (DCB) DEFINES GENERIC INFORMATION
ABOUT THE LOGICAL ACCESS TO THE DEVICE. THIS INCLUDES THE
LOWEST AND HIGHEST LOGICAL UNIT NUMBERS (NOT THE PHYSICAL
UNIT NUMBERS FOUND IN U.UNIT), THE LENGTH OF THE ASSOCIATED
UCB(S), A POINTER TO THE FIRST UCB (ADDITIONAL UCBS IMPLIED
BY D.UNIT ARE ALLOCATED CONTIGUOUSLY TO THE FIRST UCB), THE
CLASSIFICATION OF EACH POSSIBLE I/O FUNCTION CODE, AND A
POINTER TO THE DEVICE DRIVER AND ITS DISPATCH TABLE. THE IS
AT LEAST ONE DCB FOR EVERY LOGICAL DEVICE NAME IN THE SYSTEM.

FOR EXAMPLE THE LOGICAL DEVICE NAME 'TT' IS ASSOCIATED WITH
THE BITMAP VIDEO (TTl:) AND THE PRINTER PORT (TT2:). BOTH ARE
MANAGED BY THE FULL DUPLEX TERMINAL DRIVER AND SINCE
IO.RSD/IO.WSD ARE TTl: SPECIFIC, TWO DCBS ARE USED RATHER THAN
ONE SINCE THE FUNCTION CODE MASKS ARE DIFFERENT. IT IS
CONCEPTUALLY POSSIBLE TO ADD A USER WRITTEN DRIVER THAT HAS THE
LOGICAL DEVICE NAME 'TT' THOUGH IT MUST HAVE DIFFERENT LOGICAL
UNIT NUMBERS (IE:TT3:)

WO Ne N0 WO VO N0 N0 N0 N0 VO N0 WO MO WO WO WO WO WO N0 N6 we we wg wo

000022 <ASECT
000000 .=0

000000 D.LNK: «BLKW 1 ; LINK TO NEXT DCB
000002 D.UCB: «BLKW 1 s POINTER TO FIRST UNIT CONTROL BLOCK
000004 D.NAM: « BLKW 1 ; GENERIC DEVICE NAME)
000006 D.UNIT: .BLKB 1 : LOWEST UNIT NUMBER COVERED BY THIS
; DCB
000007 +BLKB 1 ¢ HIGHEST UNIT NUMBER COVERED BY THIS
s DCB
000010 D.UCBL: .BLKW 1 : LENGTH OF EACH UNIT CONTROL BLOCK
; IN BYTES
000012 D.DSP: «BLKW 1 ; POINTER TO DRIVER DISPATCH TABLE
000014 D.MSK: « BLKW 1 : LEGAL FUNCTION MASK CODES 0-15.
000016 « BLKW 1 : CONTROL FUNCTION MASK CODES 0-15.
000020 «BLKW 1 ; NOP'ED FUNCTION MASK CODES 0-15.
000022 «BLKW 1 ; ACP FUNCTION MASK CODES 0-15.
000024 «BLKW 1 ;: LEGAL FUNCTION MASK CODES 16.-31.
000026 «BLKW 1 s CONTROL: FUNCTION MASK CODES 16.-31.
000030 «BLKW 1 : NOP'ED FUNCTION MASK CODES 16.-31.
000032 «BLKW 1 : ACP FUNCTION MASK CODES 16.-31.
000034 D.PCB: « BLKW 1 ; LOADABLE DRIVER PCB ADDRESS

«PSECT

177770
177772

177774

177774

177776
000000
000002
000004
000006
000010
000012

000014

e
DRIVER DISPATCH

~e wo =o

D.VTOU=-10

D.VTIN=-6

D.VCHK=-4

D.VNXC=-4

D.VDEB=-2
D.VINI=0
D.VCAN=2
D.VOUT=4
D.VPWF=6
D.VKRB=10
D.VUCB=12

™e MO WO WY WO WO WME WO WMe WE W We WO WO We WO WO W

DCBDFS$, ,SYSDF

TABLE OFFSET DEFINITIONS

ADDRESS OF ROUTINE IN TTDRV CALLED
FOR OUTPUT COMPLETION

ADDRESS OF ROUTINE IN TTDRV CALLED
FOR INPUT FROM THE CT FIRMWARE TASK
ADDRESS OF ROUTINE CALLED TO VALIDATE
AND CONVERT THE LBN. USED BY DRIVERS
THAT SUPPORT SEEK OPTIMIZATION.
ADDRESS OF ROUTINE IN TTDRV CALLED TO
HAVE IT SEND THE NEXT COMMAND IN THE
TYPEAHEAD BUFFER TO MCR. (NOT USED BY
P/0S)

DEALLOCATE BUFFER(S)

DEVICE INITIATOR

CANCEL CURRENT I/O FUNCTION

DEVICE TIMEOUT

POWERFAIL RECOVERY

CONTROLLER STATUS CHANGE ENTRY

UNIT STATUS CHANGE ENTRY

.IF- NB SYSDF

D.VINT=14 ; BEGINNING OF INTERRUPT STUFF

«ENDC

DDTS$

A.4 DDTS
Hes
; GENERATE THE I/O DEVICE DRIVER DISPATCH TABLE -- DDT$
s =
.MACRO DDTS$ DEV,NCTRLR, INY,INX,UCBSV,NEW,BUF,OPT
.IF NB <OPT>
.WORD ' DEV' CHK
.ENDC
.IF NB <BUF>
.WORD 'DEV' DEA
LIFF
.IF NB <OPT>
.WORD 172361 ;ENTRY SHOULD NOT BE USED - CRAS
.ENDC
.ENDC

.ENABL LSB

.IF B <INX>
S$'DEV'TBL::.WORD DEV'INI

.IFF
S$'DEV'TBL:: .WORD DEV'INX

.ENDC

.WORD DEV' CAN

.WORD DEV'OUT

.IF B <KNEW>

.WORD 655338

.WORD 0
.WORD 655318
.IFF

.WORD DEV'PWF
.WORD DEV'KRB
.WORD DEV'UCB
.ENDC

.IF DIF <INY>,<NONE>
.ASCII /DEV/

.IF B <INY>

.WORD $'DEV'INT

.IFF

«IRP X,<INY>

«WORD $'DEV''X

.ENDM

«ENDC

«WORD 0
'DEV'CTB: «WORD 0

-ENDC

$'DEV'TBE:: .WORD 0
.IF NB <UCBSV>

UCBSV: «BLKW NCTRLR
«ENDC
.IF B <NEW>
65531$: BITB #UC.PWF ,U.CTL(R5)

A-10

655318$:

65533%:

65532S:

BITB
BEQ
BCS
JMP
RETURN
« ENDC
.DSABL
.ENDM

DDTS

#UC.PWF,U.CTL(R5)
655328

655328

DEV'PWF

LSB

A-11

A.5

000000
000002
000000
000001
000002
000010
000011
000003
000001
000002
000004
000010
000020

000004
000020
000024
000024
000026
000032
000033
000034
000036
000040

000041
000042
000044
000045
000046
000050
000052
000054
000056
000057
000060
000062
000001
000002
000063
000064
000066
000072
000076

w8 wo weo

.=0

V.TRCT:
V.TYPE:
VT .FOR=
VT.SL1=
VT.SL2=
VT .ANS=
VT .UNL=
V.VCHA:
VC.SLK=
VC.HLK=
VC .DEA=
VC.PUB=
VC.DUP=

V.LABL:
V.PKSR:
V.SLEN:
V.IFWI:
V.FCB:

V.IBLB:
V.IBSZ:

V.FMAX:
V.WISZ:

V.SBCL:
V.SBSZ:
V.SBLB:
V.FIEX:

V.VOWN:
V.VPRO:
V.FPRO:
V.FRBK:
V.LRUC:

V.STS:

VS.IFW=
VS . BMW=
V.FFNU:
V.EXT:

V.HBLB:
V.HBCS:
V.LGTH:

F11DF$,,SYSDF

<ASECT

«BLKW
.BLKB

-BLKB

.BLKB
«BLKW

«BLKW
«BLKW
-BLKB
-BLKB
«BLKW
«BLKW
-BLKB

-BLKB
«BLKW
.BLKB
«BLKB
«BLKW
«BLKW
«BLKW
« BLKW
.BLKB
-BLKB
«BLKW
.BLKB

-BLKB
«BLKW
«BLKW
«BLKW

VOLUME CONTROL BLOCK

DN B N b b e D) e O et
()

[N

N =
>

bt et bl et et N bt

N R e e N R e) S SSrpy Sy Wiy Sy

T WO W WO |e WO Mo Ne WO Ne Ne Ve N0 Ne WO Mo WO WO We W6 WO WO Ve NE N0 WO We WO We MO WO WO WO Wo WO Wo WO e W6 wo %6 wo WO %o

F11DF$, ,SYSDF

TRANSACTION COUNT
VOLUME TYPE DESCRIPTOR

FOREIGN VOLUME STRUCTURE

FILES-11 STRUCTURE LEVEL 1

FILES-11 STRUCTURE LEVEL 2

ANSI LABELED TAPE

UNLABELED TAPE

VOLUME CHARACTERISTICS

CLEAR VOLUME VALID ON DISMOUNT
UNLOAD THE VOLUME ON DISMOUNT
DEALLOCATE THE VOLUME ON DISMOUNT
SET (CLEAR) US.PUB ON DISMOUNT
DUPLCATE VOLUME NAME; DON'T DELETE
LOGICALS

VOLUME LABEL (ASCII)

PACK SERIAL NUMBER FOR ERROR LOGGING
LENGTH OF SHORT VCB

INDEX FILE WINDOW

FILE CONTROL BLOCK LIST HEAD

INDEX BIT MAP 1ST LBN HIGH BYTE
INDEX BIT MAP SIZE IN BLOCKS

INDEX BITMAP 1ST LBN LOW BITS

MAX NO. OF FILES ON VOLUME

DEFAULT SIZE OF WINDOW IN RTRV PTRS
VALUE IS < 128.

STORAGE BIT MAP CLUSTER FACTOR
STORAGE BIT MAP SIZE IN BLOCKS
STORAGE BIT MAP 1ST LBN HIGH BYTE
DEFAULT FILE EXTEND SIZE

STORAGE BIT MAP 1ST LBN LOW BITS
VOLUME OWNER'S UIC

VOLUME PROTECTION

VOLUME DEFAULT FILE PROTECTION
NUMBER OF FREE BLOCKS ON VOL HI BYTE
COUNT OF AVAIL LRU SLOTS IN FCB LIST
NUMBER OF FREE BLOCKS ON VOL LOW BITS
VOL STATUS BYTE, CONTAINS FOLLOWING
INDEX FILE IS WRITE ACCESSED

STORAGE BITMAP FILE IS WRITE ACCESSED
FIRST FREE INDEX FILE BITMAP BLOCK
POINTER TO VCB EXTENSION

LBN OF HOME BLOCK

HOME BLOCK CHECKSUMS

SIZE IN BYTES OF VCB

A-12

000076
000000

000000
000002
000001
000003
000004
000006
000010

000010
000000

000000
000002
000004
000006
000007
000010
000012
000014
000015
000016

000022

000026
000032
000033
000012

000034

000034
000035

100000

IS lllll

WO N0 We WO We WO WO W WO

<ASECT

=0

M.LNK: .BLKW

M.TYPE: .BLKB
MT .MLS=

M.ACC: .BLKB
M.DEV: .BLKW
M.TI: «BLKW
M.LEN:

°
14

F11DFS$, ,SYSDF

wo WO We Wme we We wo

; FILE CONTROL BLOCK

°
4

«ASECT

.=0

F.LINK:.BLKW
F.FNUM: .BLKW
F.FSEQ: .BLKW

.BLKB
F.FSQON: .BLKB
F.FOWN: .BLKW
F.FPRO: .BLKW
F.UCHA: .BLKB
F.SCHA: .BLKB
F.HDLB: .BLKW

F.LBN: .BLKW
F.SIZE: .BLKW
F.NACS:.BLKB
F.NLCK: .BLKB

S.STBK=.-F.LBN

F.STAT:
F.NWAC: .BLKB
.BLKB

FC.WAC= 100000

DO = b e b b e e

— N

=

we ™o WO We WO Wo Wo We we W

®o WO Wo we we WO w0

we w0 wmo we

MOUNT LIST ENTRY

EACH ENTRY ALLOWS ACCESS TO A SPECIFIED USER FOR A
NON-PUBLIC DEVICE

TO ALLOW EXPANSION, ONLY THE ONLY TYPE CODE DEFINED
FOR DEVICE ACCESS BLOCKS

LINK WORD

TYPE OF ENTRY

MOUNTED VOLUME USER ACCESS LIST
NUMBER OF ACCESSES

DEVICE UCB

ACCESSOR TI: UCB

LENGTH OF ENTRY

FCB CHAIN POINTER

FILE NUMBER

FILE SEQUENCE NUMBER

NOT USED

FILE SEGMENT NUMBER

FILE OWNER'S UIC

FILE PROTECTION CODE

USER CONTROLLED CHARACTERISTICS
SYSTEM CONTROLLED CHARACTERISTICS
FILE HEADER LOGICAL BLOCK NUMBER

BEGINNING OF STATISTICS BLOCK

LBN OF VIRTUAL BLOCK 1 IF CONTIGUOUS
0 IF NON CONTIGUOUS

SIZE OF FILE IN BLOCKS

NO. OF ACCESSES

NO. OF LOCKS

SIZE OF STATISTICS BLOCK

FCB STATUS WORD

NUMBER OF WRITE ACCESSORS

STATUS BITS FOR FCB CONSISTING OF
SET IF FILE ACCESSED FOR WRITE

A-13

040000
020000
010000

000036
000040
000042
000044
000050

000052
000054

000054
000000

000000
000000
000000

000400
001000
002000
004000
010000
020000
040000
100000
000002
000003
000004

000006
000010

000012

000014

FC.DIR= 40000
FC.CEF= 20000
FC.FCO= 10000

F.DREF: .BLKW
F .DRNM: .BLKW
F.FEXT: .BLKW
F.FVBN: .BLKW
F.LKL: .BLKW

=N

—

F.WIN:
F.LGTH:

«BLKW

WINDOW

~e w0 wo

«ASECT
.=0

W.ACT:
W.BLKS:
W.CTL: .BLKW 1

WI.RDV= 400
WI.WRV= 1000
WI.EXT= 2000
WI.LCK= 4000
WI.DLK= 10000
WI.PND= 20000
WI.EXL= 40000
WI.WCK= 100000
W.IOC:.BLKB
.BLKB
W.FCB: .BLKW

W.TCB: .BLKW
W.UCB: .BLKW

W.LKL: .BLKW

e e

W.WIN: .BLKW 1

.IF NB,SYSDF :
.IF NDF,PS$SSWND ;

~e e weo wo

F11DFS$, ,SYSDF

SET IF FCB IS IN DIRECTORY LRU

SET IF TRYING TO FORCE DIRECTORY
CONTIGUOUS

DIRECTORY EOF BLOCK NUMBER
1ST WORD OF DIRECTORY NAME
POINTER TO EXTENSION FCB

POINTER TO LOCKED BLOCK LIST FOR
FILE

WINDOW BLOCK LIST FOR THIS FILE
SIZE IN BYTES OF FCB

Ne WO W WE WP WO We WO We W wo W

WHEN NO SECONDARY POOL

WHEN SECONDARY POOL

EXTEND ALLOWED IF SET

SET IF DEACCESS LOCK ENABLED
WINDOW TURN PENDING BIT

SET IF MANUAL UNLOCK DESIRED
DATA CHECK ALL WRITES TO FILE
COUNT OF I/O THROUGH THIS WINDOW
RESERVED

FILE CONTROL BLOCK ADDRESS

TCB ADDRESS OF ACCESSOR
ORIGINAL UCB ADDRESS OF DEVICE
POINTER TO LIST OF USERS LOCKED

BLOCKS
WINDOW BLOCK LIST LINK WORD

WO WO WO We WO WO MO WO WO WO WO WO WO WO WO WO WO W N0 wo WO wo

IF SYSDF SPECIFIED IN CALL
IF SECONDARY POOL WINDOWS NOT
; ALLOWED

NON-SECONDARY POOL WINDOW BLOCK
IF SECONDARY POOL WINDOWS ARE NOT ENABLED,
BLOCK CONTAINS THE CONTROL INFORMATION AND RETRIEVAL

THE WINDOW

A-14

SET IF DIRECTORY EOF NEEDS UPDATING

STARTING VBN OF THIS FILE SEGMENT

NUMBER OF ACTIVE MAPPING POINTERS
BLOCK SIZE OF SECONDARY POOL SEGMENT
LOW BYTE = # OF MAP ENTRIES ACTIVE
HIGH BYTE CONSISTS OF CONTROL BITS
READ VIRTUAL BLOCK ALLOWED IF SET
WRITE VIRTUAL BLOCK ALLOWED IF SET

SET IF LOCKED AGAINST SHARED ACCESS

000016
000017

000017

000020
000022

177774

POINTERS.

—e wo

W.VBN: .BLKB
W.MAP:
W.WISZ:.BLKB

«BLKW
W.RTRV:

W.SLEN=-4

. IFF

we wo we e w0 Wo w0

W.MAP: .BLKW

W.SLEN:

~e w0 we wo we wo

.=0
ASSUME
.BLKB
W.USE: .BLKB
W.VBN: .BLKB
W.WISZ:.BLKB
«BLKW
W.RTRV:
«ENDC
«ENDC

we wme wo

«e

1

F11DF$, ,SYSDF

HIGH BYTE OF 1ST VBN MAPPED BY WINDOW
DEFINE LABEL WITH ODD ADDRESS TO
CATCH BAD REFERENCES

SIZE IN RTRV PTRS OF WINDOW (7 BITS)
LOW ORDER WORD OF 1ST VBN MAPPED
OFFSET TO 1ST RETRIEVAL POINTER IN
WINDOW

we We me wo wo we W

DUMMY DEFINITION TO PREVENT INCORRECT

REFERENCE (-4 WHEN ROUNDED "UP" IS A
very LARGE BLOCK)

IF WINDOWS IN SECONDARY POOL

SECONDARY POOL WINDOW CONTROL AND MAPPING BLOCK
IF SECONDARY POOL WINDOW BLOCKS ARE ENABLED, LUTN2
POINTS TO A CONTROL BLOCK IN SYSTEM POOL WHICH
CONTAINS THE FOLLOWING CONTROL FIELDS AND THE MAPPING
INFORMATION FOR THE SECONDARY POOL WINDOW.

ADDR TO THE MAPPING PTRS IN SECONDARY
POOL
Length of primary pool stub

we w8 wo

SECONDARY POOL WINDOW
IF SECONDARY POOL WINDOW BLOCKS ARE ENABLED, THE
RETRIEVAL POINTERS ARE MAINTAINED IN SECONDARY POOL
IN THE FOLLOWING FORMAT.

W.CTL,O

1 ; NUMBER OF ACTIVE MAPPING POINTERS

1 ; STATUS OF BLOCK

1 ; HIGH BYTE OF 1ST VBN MAPPED BY WINDOW
1 ; SIZE IN RTRV PTRS OF WINDOW (7 BITS)
1 ; LOW ORDER WORD OF 1ST VBN MAPPED

OFFST TO 1ST RTRIEVAL POINTR IN WINDW

END SECONDARY POOL WINDOW CONDITIONAL

~e

END SYSDF CONDITIONAL

=e

A-15

000022
000000

000000
000002
000004
000005
000006
000010

000000

F11DF

LOCKED BLOCK LIST NODE

“e wo wo

+ASECT
.=0

L.LNK: .BLKW 1 ;
L.WIl:.BLKW 1 ;
L.VBl: .BLKB 1 ;
L.CNT: .BLKB 1 ;

« BLKW 1 ?
L.LKSZ:

END OF DEFINITIONS

=0 wo o

«PSECT

$,,SYSDF

LINK TO NEXT NODE IN LIST

POINTER TO WINDOW FOR FIRST ENTRY
HIGH ORDER VBN BYTE

COUNT FOR ENTRY

LOW ORDER VBN

A-16

GTPKTS

A.6 GTPKTS

GET I/0 PACKET MACRO -- AUTOMATES UNIT DETERMINATION -- GTPKTS$

~eo weo wo

.MACRO GTPKT$ DEV,NCTRLR,ADDR,UCBSV,SUC

CALL SGTPKT
.IF B <ADDR>
BCC 65535$
RETURN

655358 :
.IFF
BCS ADDR
.ENDC

.IF B <UCBSV>

.IF B <SsucC>

MOV R5,S.0WN(R4)
.ENDC

. IFF

.IF GT NCTRLR-1
MOV R5,UCBSV(R3)
.IFF

MOV R5,UCBSV

. ENDC

.ENDC

- ENDM

A-17

HDRDFS$

A.7 HDRDF$

TASK HEADER OFFSET DEFINITIONS

~e wo wo

<ASECT
.=0
000000 H.CSP: .BLKW s CURRENT STACK POINTER
000002 H.HDLN: .BLKW s HEADER LENGTH IN BYTES
000004 H.SMAP: .BLKB s SUPERVISOR D SPACE OVERMAP MASK
000005 H.DMAP: .BLKB ;USER D SPACE OVERMAP MASK

000006 «BLKW
000010 H.CUIC: .BLKW
000012 H.DUIC: .BLKW
000014 H.IPS: .BLKW
000016 H.IPC: .BLKW
000020 H.ISP: .BLKW

: RESERVED
: CURRENT TASK UIC

; DEFAULT TASK UIC

; INITIAL PROCESSOR STATUS WORD (PS)
; INITIAL PROGRAM COUNTER (PC)

; INITIAL STACK POINTER (SP)

000022 H.ODVA: .BLKW ;ODT SST VECTOR ADDRESS

000024 H.ODVL: .BLKW ;ODT SST VECTOR LENGTH

000026 H.TKVA: .BLKW ; TASK SST VECTOR ADDRESS

000030 H.TKVL: .BLKW s TASK SST VECTOR LENGTH

000032 H.PFVA: .BLKW ; POWER FAIL AST CONTROL BLOCK ADDRESS
000034 H.FPVA: .BLKW ; FLOATING POINT AST CONTROL BLOCK ADDR
000036 H.RCVA: .BLKW ;RECEIVE AST CONTROL BLOCK ADDRESS
000040 H.EFSV: .BLKW ; EVENT FLAG ADDRESS SAVE ADDRESS

000042 H.FPSA: .BLKW ;POINTR TO FLOATING POINT/EAE SAVE AREA

000044 H.WND: .BLKW
000046 H.DSW: .BLKW
000050 H.FCS: .BLKW
000052 H.FORT: .BLKW
000054 H.OVLY: .BLKW

; POINTER TO NUMBER OF WINDOW BLOCKS
; TASK DIRECTIVE STATUS WORD

; FCS IMPURE POINTER

; FORTRAN IMPURE POINTER

;OVERLAY IMPURE POINTER

;WORK AREA EXTENSION VECTOR POINTER
; PRIORITY DIFFERENCE FOR SWAPPING

; NETWORK MAILBOX LUN

;RECEIVE BY REF AST CONTROL BLOCK ADDR
;FOR USE BY X25 SOFTWARE

;5 RESERVED BYTES

; POINTER TO HEADER GUARD WORD
;NUMBER OF LUN'S

; START OF LOGICAL UNIT TABLE

000056 H.VEXT: .BLKW
000060 H.SPRI:.BLKB
000061 H.NML: .BLKB
000062 H.RRVA: .BLKW
000064 H.X25: .BLKB
000065 .BLKB
000066 «BLKW
000072 H.GARD: .BLKW
000074 H.NLUN: .BLKW
000076 H.LUN: .BLKW

Y T B N B e O e o e B S G Ry Ry B g A g g S S S VP S

+
LENGTH OF FLOATING POINT SAVE AREA

e weo <=0

H.FPSL=25.*2

s+
; WINDOW BLOCK OFFSETS

A-18

000000
000002
000004
000006
000010
000012
000014
000015
000016
000020

1

=0

W.BPCB: .BLKW
W.BLVR: .BLKW
W.BHVR: . BLKW
W.BATT: .BLKW
W.BSIZ:.BLKW
W.BOFF: .BLKW
W.BFPD: .BLKB
W.BNPD: .BLKB
W.BLPD: . BLKW
W.BLGH:

o b e e

BIT DEFINITION FOR W.

~e we =

WB .NBP=20

WB.BPS=40

.PSECT

HDRDFS$

;PARTITION CONTROL BLOCK ADDRESS

; LOW VIRTUAL ADDRESS LIMIT

;HIGH VIRTUAL ADDRESS LIMIT

;ADDRESS OF ATTACHMENT DESCRIPTOR
;SIZE OF WINDOW IN 32W BLOCKS

; PHYSICAL MEMORY OFFSET IN 32W BLOCKS
;FIRST PDR ADDRESS

;NUMBER OF PDR'S TO MAP

;CONTENTS OF LAST PDR

; LENGTH OF WINDOW DESCRIPTOR

BLPD

;CACHE BYPASS IS NOT DESIRED FOR THIS
s WINDOW

;ALWAYS BYPASS THE CACHE FOR THIS

;s WINDOW

A-19

HWDDFS$,L,B,SYSDEF

A.8 HWDDF$,L,B,SYSDEF

+

HARDWARE REGISTER ADDRESSES AND STATUS CODES

e we wo

MPCSR=177746 ;ADDRESS OF PDP-11/70 MEMORY PARITY REGISTER
MPAR=172100 sADDRESS OF FIRST MEMORY PARITY REGISTER
PIRQ=177772 s PROGRAMMED INTERRUPT REQUEST REGISTER
PRO=0 ; PROCESSOR PRIORITY O

PR1=40 ; PROCESSOR PRIORITY 1

PR4=200 ; PROCESSOR PRIORITY 4

PR5=240 ; PROCESSOR PRIORITY 5

PR6=300 ; PROCESSOR PRIORITY 6

PR7=340 ; PROCESSOR PRIORITY 7

PS=177776 ; PROCESSOR STATUS WORD

SWR=177570 ;CONSOLE SWITCH AND DISPLAY REGISTER
TPS=177564 ; CONSOLE TERMINAL PRINTER STATUS REGISTER
-

EXTENDED ARITHMETIC ELEMENT REGISTERS

~e we wo

.IF DF ESSEAE

AC=177302 s ACCUMULATOR
MQ=177304 sMULTIPLIER-QUOTIENT
SC=177310 ; SHIFT COUNT
«ENDC
-+

MEMORY MANAGEMENT HARDWARE REGISTERS AND STATUS CODES

ws wo weo

CRESET KINAR,172340 ;KERNEL I PAR'S
KINARO = 172340
KINAR1 = 172342
KINAR2 = 172344
KINAR3 = 172346
KINAR4 = 172350
KINARS5 = 172352
KINAR6 = 172354
KINAR7 = 172356
CRESET KINDR,172300 ;KERNEL I PDR'S
KINDRO = 172300
KINDR1I = 172302
KINDR2 = 172304

A-20

CRESET

CRESET

CRESET

CRESET

CRESET

CRESET

HWDDFS$,L,B,SYSDEF

KINDR3
KINDR4
KINDR5
KINDR6
KINDR7
KDSAR,172360
KDSARO
KDSAR1
KDSAR2
KDSAR3
KDSAR4
KDSAR5
KDSAR6
KDSAR7
KDSDR, 172320
KDSDRO
KDSDR1
KDSDR2
KDSDR3
KDSDR4
KDSDR5
KDSDR6
KDSDR7
SISAR,172240
SISARO
SISARI1
SISAR2
SISAR3
SISAR4
SISARS
SISARG
SISAR7
SISDR,172200
SISDRO
SISDRI1
SISDR2
SISDR3
SISDR4
SISDR5
SISDR6
SISDR7
SDSAR,172260
SDSARO
SDSAR1
SDSAR?2
SDSAR3
SDSAR4
SDSAR5S
SDSARG6
SDSAR7
SDSDR, 172220

°
14
°
’
°
4
°
7
°
14
°
14

172306

172310

172312

172314

172316
KERNEL D PAR'S

172360

172362

172364

172366

172370

172372

172374

172376
KERNEL D PDR'S

172320

172322

172324

172326

172330

172332

172334

172336
SUPERVISOR I PAR'S

172240

172242

172244

172246

172250

172252

172254

172256
SUPERVISOR I PDR'S
172200

172202

172204

172206

172210

172212

172214

172216
SUPERVISOR D PAR'S

172260

172262

172264

172266

172270

172272

172274

172276
SUPERVISOR D PDR'S

A-21

HWDDFS$,L,B,SYSDEF

SDSDRO = 172220
SDSDR1 = 172222
SDSDR2 = 172224
SDSDR3 = 172226
SDSDR4 = 172230
SDSDR5 = 172232
SDSDR6 = 172234
SDSDR7 = 172236
CRESET UINAR,177640 ;USER I PAR'S
UINARO = 177640
UINAR1 = 177642
UINAR2 = 177644
UINAR3 = 177646
UINAR4 = 177650
UINARS = 177652
UINAR6 = 177654
UINAR7 = 177656
CRESET UINDR,177600 ;USER I PDR'S
UINDRO = 177600
UINDR1 = 177602
UINDR2 = 177604
UINDR3 = 177606
UINDR4 = 177610
UINDR5 = 177612
UINDR6 = 177614
UINDR7 = 177616
CRESET UDSAR,177660 ;USER D PAR'S
UDSARO = 177660
UDSAR1 = 177662
UDSAR2 = 177664
UDSAR3 = 177666
UDSAR4 = 177670
UDSAR5 = 177672
UDSAR6 = 177674
UDSAR7 = 177676
CRESET UDSDR,177620 ;USER D PDR'S
UDSDRO = 177620
UDSDR1 = 177622
UDSDR2 = 177624
UDSDR3 = 177626
UDSDR4 = 177630
UDSDR5 = 177632
UDSDR6 = 177634
UDSDR7 = 177636
.IF DF K$SSDAS ;KERNEL I/D
CRESET KISAR,172360 ;KERNEL I PAR'S
KISARO = 172360
KISAR1 = 172362
KISAR2 = 172364

A-22

HWDDFS$,L,B,SYSDEF

KISAR3 = 172366
KISAR4 = 172370
KISARS5 = 172372
KISAR6 = 172374
KISAR7 = 172376
CRESET KISDR,172320 ;KERNEL I PDR'S
KISDRO = 172320
KISDR1 = 172322
KISDR2 = 172324
KISDR3 = 172326
KISDR4 = 172330
KISDR5 = 172332
KISDR6 = 172334
KISDR7 = 172336
.IFF ;NO KERNEL I/D
CRESET KISAR,172340 ;KERNEL I PAR'S
KISARO = 172340
KISARl = 172342
KISAR2 = 172344
KISAR3 = 172346
KISAR4 = 172350
KISARS5 = 172352
KISAR6 = 172354
KISAR7 = 172356
CRESET KISDR,172300 ;KERNEL I PDR'S
KISDRO = 172300
KISDR1 = 172302
KISDR2 = 172304
KISDR3 = 172306
KISDR4 = 172310
KISDR5 = 172312
KISDR6 = 172314
KISDR7 = 172316
.ENDC : DF K$SDAS
.IF DF USSDAS ;USER I/D
CRESET UISAR,177660 ;USER I PAR'S
UISARO = 177660
UISAR1 = 177662
UISAR2 = 177664
UISAR3 = 177666
UISAR4 = 177670
UISAR5 = 177672
UISAR6 = 177674
UISAR7 = 177676
CRESET UISDR,177620 ;USER I PDR'S
UISDRO = 177620

A-23

HWDDF$,L,B,SYSDEF

UISDR1 = 177622
UISDR2 = 177624
UISDR3 = 177626
UISDR4 = 177630
UISDR5 = 177632
UISDR6 = 177634
UISDR7 = 177636
- IFF ;NO USER I/D
CRESET UISAR,177640 ;USER I PAR'S
UISARO = 177640
UISARLI = 177642
UISAR2 = 177644
UISAR3 = 177646
UISAR4 = 177650
UISAR5 = 177652
UISAR6 = 177654
UISAR7 = 177656
CRESET UISDR,177600 ;USER I PDR'S
UISDRO = 177600
UISDR1 = 177602
UISDR2 = 177604
UISDR3 = 177606
UISDR4 = 177610
UISDR5 = 177612
UISDR6 = 177614
UISDR7 = 177616
« ENDC ; DF USSSDAS
UBMPR=170200 ;UNIBUS MAPPING REGISTER 0
CMODE=140000 ; CURRENT MODE FIELD OF PS WORD
PMODE=30000 s PREVIOUS MODE FIELD OF PS WORD
CSMODE=40000 ; CURRENT MODE = SUPERVISOR PS WORD BITS
PSMODE=10000 ;s PREVIOUS MODE = SUPERVISOR PS WORD BITS
SRO0=177572 ; SEGMENT STATUS REGISTER 0
SR3=172516 ; SEGMENT STATUS REGISTER 3
CPUERR=177766 ; CPU ERROR REGISTER
MEMERR=177744 s MEMORY SYSTEM ERROR REGISTER
MEMCTL=177746 s MEMORY CONTROL REGISTER

+

DEFINE THE LOCATIONS USED IN THE NON-VOLATIL RAM (NVR)
FOR P/0OS SYSTEMS

w0 we wo we

N.KEY=173054 s NUMBER OF KEYS PRESSED
N.UPT=173064 ;UPTIME IN MINUTES
N.DZA=173074 ;NUMBER OF I/0S DONE ON THE DZ
N.DWA=173104 ;NUMBER OF I/OS DONE ON THE DW

A-24

HWDDF$,L,B,SYSDEF

N.DAY=173114
N.MON=173116
N.YEA=173120

DATE THAT THE NVR WAS LAST INITIALIZED

e weo W

+
FEATURE SYMBOL DEFINITIONS

we we wo

FE.EXT=1 ;22-BIT EXTENDED MEMORY SUPPORT

FE .MUP=2 ;MULTI-USER PROTECTION SUPPORT

FE.EXV=4 sEXECUTIVE IS SUPPORTED TO 20K

FE.DRV=10 ;s LOADABLE DRIVER SUPPORT

FE.PLA=20 s PLAS SUPPORT

FE.CAL=40 s DYNAMIC CHECKPOINT SPACE ALLOCATION
FE.PKT=100 ; PREALLOCATION OF I/O PACKETS
FE.EXP=200 s EXTEND TASK DIRECTIVE SUPPORTED
FE.LSI=400 ;PROCESSOR IS AN LSI-11

FE.OFF=1000 ; PARENT/OFFSPRING TASKING SUPPORTED
FE.FDT=2000 s FULL DUPLEX TERMINAL DRIVER SUPPORTED
FE.X25=4000 ;X.25 CEX IS LOADED

FE.DYM=10000 s DYNAMIC MEMORY ALLOCATION SUPPORTED
FE.CEX=20000 ;COM EXEC IS LOADED

FE.MXT=40000 sMCR EXIT AFTER EACH COMMAND MODE
FE.NLG=100000 ; LOGINS DISABLED - MULTI-USER SUPPORT
E

we we we

FEATURE MASK DEFINITIONS (SECOND WORD)

F2.DAS=1 s KERNEL DATA SPACE SUPPORTED
F2.LIB=2 ;s SUPERVISOR MODE LIBRARIES SUPPORTED

F2.MP=4 s SYSTEM SUPPORTS MULTIPROCESSING
F2.EVT=10 ; SYSTEM SUPPORTS EVENT TRACE FEATURE
F2.ACN=20 ;SYSTEM SUPPORTS CPU ACCOUNTING

F2.SDW=40 ; SYSTEM SUPPORTS SHADOW RECORDING
F2.POL=100 s SYSTEM SUPPORTS SECONDARY POOLS
F2.WND=200 s SYSTEM SUPPORTS SECONDARY POOL FILE WINDOWS
F2.DPR=400 s SYSTEM HAS A SEPARATE DIRECTIVE PARTITION
F2.IRR=1000 s INSTALL, RUN, AND REMOVE SUPPORT
F2.GGF=2000 : GROUP GLOBAL EVENT FLAG SUPPORT
F2.RAS=4000 ; RECEIVE/SEND DATA PACKET SUPPORT
F2.AHR=10000 ;ALT. HEADER REFRESH AREA SUPPORT
F2 .RBN=20000 ; ROUND ROBIN SCHEDULING SUPPORT
F2.SWP=40000 ; EXECUTIVE LEVEL DISK SWAPPING SUPPORT
F2.5TP=100000 ;EVENT FLAG MASK IS IN THE TCB(1=YES)

+

THIRD FEATURE MASK SYMBOL DEFINITIONS

weo wme wo

F3.CRA=1 ;SYSTEM SPONTANEOUSLY CRASHED (1=YES)

A-25

HWDDF$,L,B,SYSDEF

F3.XCR=2 ;SYSTEM CRASHED FROM XDT (1=YES)

F3.EIS=4 ;SYSTEM REQUIRES EXTENDED INSTRUCTION SET
F3.STM=10 ;SYSTEM HAS SET SYSTEM TIME DIRECTIVE
F3.UDS=20 ;SYSTEM SUPPORTS USER DATA SPACE
F3.PRO=40 s SYSTEM SUPPORTS SEC. POOL PROTO TCBS
F3.XHR=100 ;SYSTEM SUPPORTS EXTERNAL TASK HEADERS
F3.AST=200 s SYSTEM HAS AST SUPPORT

F3.115=400 ;RSX-11S SYSTEM

F3.CLI=1000 sMULTIPLE CLI SUPPORT

F3.TCM=2000 ;SYSTEM HAS SEPARATE TERMINAL DRIVER POOL
F3.PMN=4000 ; SYSTEM SUPPORTS POOL MONITORING
F3.WAT=10000 ;SYSTEM HAS WATCHDOG TIMER SUPPORT
F3.RLK=20000 ; SYSTEM SUPPORTS RMS RECORD LOCKING
F3.SHF=40000 ; SYSTEM SUPPORTS SHUFFLER TASK

+

FOURTH FEATURE MASK BITS

~e wo weo

F4.CXD=1 ;COMM EXEC IS DEALLOCATED (NON-I/D ONLY)

F4.XT=2 ; SYSTEM IS AN PROFESSIONAL SYSTEM (1=YES)

F4 .ERL=4 ;SYSTEM SUPPORTS ERROR LOGGING (1=YES)

F4.PTY=10 ; SYSTEM SUPPORTS PARITY MEMORY (1=YES)
F4.DVN=20 ; SYSTEM SUPPORTS DECIMAL VERSIONS (1=YES)

F4 .LCD=40 ; SYSTEM SUPPORTS LOADABLE CRASH (1=YES)

F4 .NIM=100 ;SYSTEM SUPPORTS DELETED TASK IMAGES (1=YES)
B

HARDWARE FEATURE MASK BIT DEFINITIONS

HF.CIS,HF.FPP DEFINED AS SIGN BITS FOR RUN TIME SPEED

we we “eo wo weo

I

HF .UBM=1 ; PROCESSOR HAS A UNIBUS MAP (1=YES)

HF .EIS=2 : PROCESSOR HAS EXTENDED INSTRUCION SET

HF .QB=4 ;SYSTEM HAS A QBUS (1=YES)

HF .CIS=200 ; PROCESSOR SUPPORTS COMMERCIAL INSTRUCTION SET
HF .FPP=100000 : (1=PROC. HAS NO FLOATING POINT UNIT)

s+
SECOND HARDWARE FEATURE MASK BIT DEFINITIONS
THIS WORD IS RESERVED FOR PROFESSIONAL SERIES HARDWARE FEATURES

we weo wo

H2 .NVR=1 : PRO NON-VOLATILE RAM PRESENT (1=YES)

H2.INV=2 : NON-VOLATILE RAM IS INVALID (1=YES)

H2.CLK=4 : PRO CLOCK IS PRESENT (1=YES)

H2.ITF=10 ; INVALID TIME FORMAT IN NON-VOLATILE RAM
: (1=YES)

H2.BRG=100000 ; PRO BRIDGE MODULE PRESENT (1=YES)

A-26

-

CDA.

we we ™o We We we wWe Wo W6

SF.STD=1
SF.PGN=2

+
MULTIPROCESSOR

~e weo we

MP.CRH=100000
MP.PWF=40000
MP.RSM=20000
MP.NOP=10000
MP.STP=4
MP.INT=7777

«MACRO
- ENDM
- ENDM

HWDDF$,L,B,SYSDEF

SYSGEN FEATURE SELECTIONS MASK. THIS IS INTENDED TO RECORD IN A

BIT MASK THE CHOICES THE USER HAS MADE AT SYSGEN TIME. FEATURES WILL
BE LISTED HERE WHEN THEY ARE BEING RECORDED FOR OUR INFORMATIONAL
PURPOSES ONLY. THEY CANNOT BE TESTED LIKE BITS IN THE FEATURE MASK
SINCE THIS ONLY EXISTS IN THE RSX11M.STB FILE. NO BITS IN MEMORY

ARE USED. THEY ARE ONLY INTENDED TO BE PRINTED FROM THE STB FILE BY

: STANDARD EXEC SELECTED
;SYSTEM WAS PRE-GENERATED (EX. RLO2/RC25
: SYSTEM)

STATUS TABLE DEFINITIONS (TEMPORARY)

;CRASH PROCESSOR IMMEDIATELY

; POWERFAIL ON ONE CPU

;RESET INTERRUPT MASKS

;NOP FUNCTION FOR TRANSMISSION CHECK
; STOP PROCESSOR IN ORDERLY FASHION

;BIC MASK FOR INTERRUPT LVL FUNCTIONS

HWDDFS$S X,Y,Z

A-27

F11DF$, ,SYSDF

A.9 F1l1DF$,,SYSDF

INTERRUPT SAVE GENERATION FOR NON-ERROR LOGGING DEVICES -- INTSVS

we w8 “eo

.MACRO INTSVS DEV,PRI,NCTRLR,PSWSV,UCBSV
GTUCBS UCBSV,NCTRLR,DEV
- ENDM

GENERATE CODE TO LOAD UCB ADDRESS INTO R5 -- CALLED
ONLY BY INTSV$, AND TTSETS$ (IN TTDRV).

~e weo wo wo

.MACRO GTUCB$ UCBSV,NCTRLR,DEV
.IF NB <UCBSV>
.IF GT NCTRLR-1

MOV UCBSV(R4) ,R5

. IFF

MOV UCBSV,R5

«ENDC

.IFF

MOV 'DEV'CTB,R5 ;:sGET ADDRESS OF KRB TABLE IN CTB
ADD R4,R5 ;s sADD CONTROLLER INDEX

MOV (R5) ,R5 7 sGET KRB ADDRESS FROM CTB
MOV K.OWN(R5) ,R5 : ;s RETRIEVE OWNERS UCB ADDRESS
«ENDC

- ENDM

A-28

ITBDFS,,SYSDF

A.10 ITBDFS,,SYSDF

-+

INTERRUPT TRANSFER BLOCK (ITB) OFFSET DEFINITIONS

~e wo “wo o

.IF DF ASSTRP

.MCALL PKTDF$

PKTDFS$ DEFINE AST BLOCK OFFSETS

~e

-ENDC

«ASECT
R .=0
000000 X.LNK: « BLKW 1 LINK WORD FOR ITB LIST STARTNG IN

TCB

000002 X.JSR: JSR R5,@#0 ; CALL $INTSC

000006 X.PSW: .BLKB 1 ; LOW BYTE OF PSW FOR ISR
000007 .BLKB 1 ; UNUSED

000010 X.ISR: .BLKW 1 ; ISR ENTRY POINT (APR5 MAPPING)
000012 X.FORK: ; FORK BLOCK

000012 «BLKW 1 ; THREAD WORD

000014 .BLKW -1 ;7 FORK PC

000016 « BLKW 1 ; SAVED R5

000020 «BLKW 1 ; SAVED R4

.IF DF MSSSMGE

X.REL: .BLKW 1 RELOCATION BASE FOR APR5

-e

+«ENDC

000022 X.DSI: .BLKW 1
000024 X.TCB: «BLKW 1

ADDRESS OF DIS.INT. ROUTINE
TCB ADDRESS OF OWNING TASK

—e wo

.IF NB SYSDF
.IF DF ASSTRP

A.DQOSR FOR AST BLOCK
AST BLOCK

- BLKW 1
X.AST: -BLKB A .PRM

we weo

-« ENDC
000026 X.VEC: .BLKW 1 VECTOR ADDRESS (IF AST SUPPORT,
THIS IS FIRST AND ONLY AST PARAMETER)
SAVED VECTOR PC
LENGTH IN BYTES OF ITB

000030 X.VPC: .BLKW 1
000032 X.LEN:

we W0 wo wo

A-29

ITBDFS$, ,SYSDF

«ENDC

.PSECT

A-30

KRBDF$, ,SYSDF

A.1l1 KRBDFS$,,SYSDF
\

CONTROLLER REQUEST BLOCK (KRB)

-+

THE CONTROLLER REQUEST BLOCK DEFINES THE ENVIRONMENT OF A
DEVICE CONTROLLER. ONE KRB EXISTS FOR EVERY DEVICE CONTROLLER
IN A P/OS SYSTEM. THE KRB CONTAINS CERTAIN DEVICE STATUS
INCLUDING THE CSR (FIRST DEVICE REGISTER, VECTOR ADDRESS,
INTERUPT CONTROLLER 'A' CSR AND THE SLOT NUMBER FOR THE
CONTROLLER.

NO WO Ne We W0 W0 Wo wme we we

<ASECT
.=177764
177764 K.PRM: .BLKW 1 ; DEVICE DEPENDANT PARAMETER WORD
177766 K.ICSR: .BLKW 1 ; INTERRUPT 'A' CONTROLLER CSR (ADD 4
; FOR ICSR 'B' IF APPROPRIATE TO DEVICE)
177770 K.SLT: .BLKB 1 ; SLOT NUMBER
177771 .BLKB 1 s RESERVED
177772 K.PRI: .BLKB 1 ; CONTROLLER PRIORITY
177773 K.VCT: .BLKB 1 ; INTERRUPT VECTOR ADDRESS
177774 K.CON: .BLKB 1 ; CONTROLLER INDEX WITHIN THE SYSTEM
177775 K.IOC: .BLKB 1 ; CONTROLLER I/O COUNT
177776 K.STS: «BLKW 1 ; CONTROLLER STATUS
000000 K.CSR: «BLKW 1 ; ADDRESS OF CONTROL STATUS REGISTER

; NOTE: K.CSR MUST BE THE ZERO OFFSET!
000002 K.OFF: «BLKW ;OFFSET TO UCB/UMR/RHBAE TABLE
000004 K.HPU: .BLKB ;HIGHEST PHYSICAL UNIT NUMBER
000005 .BLKB ; UNUSED BYTE

000006 K.OWN: .BLKW
000010 K.CRQ: .BLKW
000014 K.URM: .BLKW
000016 K.FRK: .BLKW

;OWNER OF CONTROLLER

; CONTROLLER REQUEST QUEUE
; RESERVED FOR FUTURE USE
; POSSIBLE KRB FORK BLOCK

= N b e

-}

OFFSETS FOR THE KRB EXTENSION REACHED BY ADDING (K.OFF) TO
THE STARTING ADDRESS OF THE KRB.

WHEN ONE ADDS (K.OFF) TO THE KRB ADDRESS, IT YIELDS AN
ADDRESS WHICH POINTS TO HERE.

No we We We “e “o w0 wo

* -

000000 KE.UCB: .BLKW 1 ;OFFSET TO UCB TABLE (IF KS.UCB SET)
.PSECT

-
CONTROLLER REQUEST BLOCK (KRB) STATUS BIT DEFINITIONS

°
7
°
7

A-31

000001
000002
000004
000010
000020

000040
000100
000200
000400

001000

002000

000022

177756
177760
177761
177762
177763
177764
177765
177766
177770
177772
177774
177775
177776

KRBDFS, ,SYSDF

v

KS.OFL=1 ; CONTROLLER OFFLINE (1=YES)
KS .MOF=2 ; CONTROLLER MARKED FOR OFFLINE (1=YES)
KS .UOP=4 ; SUPPORTS OVERLAPPED OPERATION (1=YES)
KS .MBC=10 ; (RESERVED)
KS.SDX=20 ;SEEKS ALLOWED DURING DATA XFERS

; (1=YES)
KS .POE=40 ; PARALLEL OPERATION ENABLED (1=YES)
KS.UCB=100 ;UCB TABLE PRESENT (1=YES)

KS.DIP=200 ;DATA TRANSFER IN PROGRESS (1=YES)
KS.PDF=400 ; PRIVILEGED DIAGNOSTIC FUNCTIONS ONLY
; (1=YES)

KS.EXT=1000 ; EXTENDED 22-BIT UNIBUS CONTROLLER
; (1=YES)

KS.SLO=2000 ; CONTROLLER IS SLOW COMING ONLINE
; (1=YES)

b
DEFINE THE CONTIGUOUS SCB OFFSETS

“o we wo

<ASECT
.=177756
S.ICSR: .BLKW 1 ; INTERRUPT 'A' CONTROLLER CSR
S.SLT: .BLKB 1 ; SLOT NUMBER

s RESERVED

; CONTROLLER PRIORITY

s INTERRUPT VECTOR ADDRESS
; CONTROLLER INDEX

.BLKB 1
S.PRI: .BLKB 1
S.VCT: .BLKB 1
S.CON: .BLKB 1

-BLKB 1

«BLKW 1
S.CSR: .BLKW 1 ;CONTROL AND STATUS REGISTER

«BLKW 1

.BLKB 1

.BLKB 1

1

S.OWN: .BLKW ; DISTRIBUTED CNTBL

ES

SUBCONTROLLER REQUEST BLOCK (KRB1)

THE SUBCONTROLLER REQUEST BLOCK DEFINES THE ENVIRONMENT OF
A DEVICE SUBCONTROLLER. EXACTLY ONE KRBl EXISTS FOR EVERY
DEVICE SUBCONTROLLER IN AN RSX-11M+ SYSTEM.

WO WO we wWe we we we

<ASECT

A-32

177774

177775
177776

000000

000002
000004
000010

KRBDF$, ,SYSDF

K1.CON: .BLKB

.BLKB
K1.STS: .BLKW

K1 .MAS: .BLKW

bt o el et

NOTE: K1.MAS MUST BE

we we =

K1.0OWN: .BLKW 1
K1.CRQ: .BLKW 2
K1.UCB:

.PSECT

; SUBCONTROLLER INDEX WITHIN THE SYSTEM

;s UNUSED BYTE
;s SUBCONTROLLER STATUS
;UCB ADDRESS OF THE MASTER UNIT

THE ZERO OFFSET
;OWNER OF SUBCONTROLLER

: SUBCONTROLLER REQUEST QUEUE
:START OF THE UCB TABLE (IF ANY)

A-33

000000
000002
000004
000010
000012
000014

000016
000016
000020
000024
000030
000032

000034

000042
000043

000044

000000
000002
000003

PCBDFS$, ,SYSDF

+

w0 we we

PCBDFS$, ,SYSDF

MAIN PARTITION PCB

<ASECT
.=0
P.LNK: .BLKW 1 ; LINK TO NEXT MAIN PARTITION PCB
.BLKW 1 ; (UNUSED)
P.NAM: .BLKW 2 ; PARTITION NAME IN RADS50
P.SUB: .BLKW 1 ;POINTER TO FIRST SUBPARTITION
P.MAIN: .BLKW 1 ; POINTER TO SELF
P.REL: .BLKW 1 : STARTING PHYSICAIL ADDRESS IN 32W
; BLOCKS
P.BLKS:
P.SIZE: .BLKW 1 ;SIZE OF PARTITION IN 32W BLOCKS
P.WAIT: .BLKW 2 ; PARTITION WAIT QUEUE LISTHEAD
.BLKW 2 ; (UNUSED)
P.STAT: .BLKW 1 ; PARTITION STATUS FLAGS
P.ST2: .BLKW 1 : STATUS EXTENSION FOR COMMON AND MAIN
;PCB'S
.BLKW 3 ;: (UNUSED)
P.HDLN: .BLKB 1 ;SIZE OF EXTERNAL HEADER IN 32W BLOCKS
P.IOC: .BLKB 1 ; PARTITION I/O COUNT
$$S=.
P.RRM: .BLKW 1 ;: REQUIRED RUN MASK
.IF NDF M$SPRO
.=$8$8$
.ENDC
.IF NB SYSDF
P.LGTH=. ;s PARTITION CONTROL BLOCK LENGTH
.ENDC
s+
; TASK REGION PCB
.=O
P.LNK: .BLKW 1 ;UTILITY LINK WORD
P.PRI: .BLKB 1 ; PRIORITY OF PARTITION
P.RMCT: .BLKB 1 ;RESIDENT MAPPED TASKS COUNT

A-34

000004
000010
000012
000014
000016
000016
000020
000022
000024
000026
000030
000032
000034
000036

000042
000043

000044

000000
000002
000003
000004
000010

000012

000014
000016
000016
000020
000022
000024
000026
000030
000032

000034

P.NAM:
P.SUB:
P.MAIN:
P.REL:
P.BLKS:
P.SIZE:

+SWSZ:
P.DPCB:
P.TCB:
P.STAT:
P.HDR:

P.ATT:

P.HDLN:
P.IOC:

000044

«BLKW
«BLKW
«BLKW
«BLKW

«BLKW
«BLKW
« BLKW
«BLKW
«BLKW
«BLKW
« BLKW
«BLKW
« BLKW

-BLKB
«BLKB

P.RRM: .BLKW

.IF NDF MSSPRO

.=$8$8$

«ENDC

+

@ w8 =mo we

=0

P.LNK:
P.PRI:
P.RMCT:
P.NAM:
P.SUB:
P.MAIN:
P.REL:
P.BLKS:
P.SIZE:
P.CBDL:
P.SWS7Z:
P.DPCB:
P.OWN:
P.STAT:
P.ST2:

P.PRO:

«BLKW
-BLKB
«BLKB
«BLKW
« BLKW
«BLKW
«BLKW

« BLKW
«BLKW
«BLKW
«BLKW
«BLKW
«BLKW
« BLKW

« BLKW

I Y S e R B B S e L)

—

COMMON REGION PCB

et N b bt

P Y

[u

PCBDF$, ,SYSDF

; PARTITION NAME IN RAD5O0

; POINTER TO NEXT SUBPARTITION
;POINTER TO MAIN PARTITION .

s STARTING PHYSICAL ADDR IN 32W BLOCKS

;SIZE OF PARTITION IN 32W BLOCKS
; (UNUSED)

; PARTITION SWAP SIZE

; CHECKPOINT ALLOCATION PCB

; TCB ADDRESS OF OWNER TASK

; PARTITION STATUS FLAGS

; POINTER TO HEADER CONTROL BLOCK
; (UNUSED)

; ATTACHMENT DESCRIPTOR LISTHEAD

;SIZE OF EXTERNAL HEADER IN 32W BLOCKS
; PARTITION I/O COUNT

$88=.

;REQUIRED RUN MASK

sUTILITY LINK WORD

;s PRIORITY OF PARTITION

; RESIDENT MAPPED TASKS COUNT

; PARTITION NAME IN RAD50

s POINTER TO NEXT SUBPARTITION

; POINTER TO MAIN PARTITION

; STARTING PHYSICAL ADDR IN 32W BLOCKS

;SIZE OF PARTITION IN 32W BLOCKS

; COMMON BLOCK DIRECTORY LINK
;PARTITION SWAP SIZE

;POINTER TO DISK PCB

;OWNING UIC OF. REGION

; PARTITION STATUS FLAGS

;s STATUS EXTNSN FOR COMMON AND MAIN
;PCB'S

; PROTECTION WORD [DEWR,DEWR,DEWR,DEWR]

A-35

000036

000042
000043

000044

P.ATT: .BLKW

P.HDLN: .BLKB
P.IOC: .BLKB

$$$=.

P.RRM: .BLKW

[Ey—

1

PCBDF$, ,SYSDF
s ATTACHMENT DESCRIPTOR LISTHEAD

;SIZE OF EXTERNAL HEADER IN 32W BLOCKS
; PARTITION I/O COUNT

s REQUIRED RUN MASK

.IF NDF MSSPRO

.=$88
.ENDC
.PSECT

+

~e wmeo =

PS.0UT=100000
PS.CKP=40000

PS.CKR=20000
PS.CHK=10000

PS.FXD=4000
PS.CAF=2000

PS.LIO=1000
PS.NSF=400
PS.COM=200
PS.LFR=100
PS.PER=40
PS.DEL=10
PS.AST=4

+

we e o

PR.UBT=100000
PR.UBS=40000
PR.UBR=20000
PR.UBP=10000
PR.UBN=4000

REQUIRED RUN MASK

PARTITION STATUS WORD BIT DEFINITIONS

;PARTITION IS OUT OF MEMORY(1=YES)

; PARTITION CHECKPOINT IN PROGRESS

: (1=YES)

; PARTITION CHECKPOINT IS REQUESTED

: (1=YES)

; PARTITION IS NOT CHECKPOINTABLE

: (1=YES)

; PARTITION IS FIXED (1=YES)

; CHECKPOINT SPACE ALLOCATION FAILURE
: (1=YES)

;MARKED BY SHUFFLER FOR LONG I/O

;: (1=YES)

:PARTITION IS NOT SHUFFLEABLE (1=YES)
; LIBRARY OR COMMON BLOCK (1=YES)
:LAST LOAD OF REGION FAILED (1=YES)

: PARTIY ERROR OCCURED IN THIS REGION
; (1=YES)

; PARTITION SHOULD BE DELETED WHEN NOT
;ATTACHED (1=YES)

; PARTITION HAS REGION LOAD AST PENDING

s UNIBUS RUN
s UNIBUS RUN
;UNIBUS RUN
sUNIBUS RUN
;UNIBUS RUN

ZY™nA

A-36

PCBDF$, ,SYSDF

PR.UBM=2000 sUNIBUS RUN M
PR.UBL=1000 ;UNIBUS RUN

PR.UBK=400 s UNIBUS RUN K
PR.UBJ=200 sUNIBUS RUN J
PR.UBH=100 ;UNIBUS RUN H
PR.UBF=40 ;UNIBUS RUN F
PR.UBE=20 s UNIBUS RUN E
PR.CPD=10 sPROCESSOR D
PR.CPC=4 ; PROCESSOR C
PR.CPB=2 s PROCESSOR

PR.CPA=1 s PROCESSOR A

B

STATUS EXTENSION WORD BIT DEFINITIONS
(THESE BITS CAN ONLY BE EXAMINED IN COMMON OR MAIN
PCB'S)

we we weo we ™

P2.LMA=40000 ;DON'T SHUFFLE,DELETE SPINDLE OR MUTILATE

; THIS PARTITION (ACTUALLY ON P/0S V1.7 AND V2.0
;THIS BIT HAS TAKEN ON THE EXACT OPPOSITE

s MEANING SINCE IT HAS YET TO BE IMPLEMENTED ON
sM-PLUS. TEMPORARILY, IT HAS BEEN REDEIFNED TO
;MEAN "THIS COMMON IS PART OF THE APPL.

;AND SHOULD BE REMOVED FROM THE SYSTEM (IF

; POSSIBLE) WHEN THE APPLICATION EXITS")

P2.CPC=20000 ;CPCR INITIATED CHECKPOINT PENDING

P2.SEC=4000 ;THIS IS RO SECTION OF MU TASK WITH TCB IN SEC. POOL
P2 .PAR=2000 ; THE FIXER TASK HAS HANDLED A PARITY ERROR
P2.POL=1000 ; SECONDARY POOL PARTITION

P2.CPU=400 ; MULTIPROCESSOR CPU PARTITION

P2.PIC=200 ; POSITION INDEPENDENT LIBRARY OR COMMON (1=YES)
P2.RON=100 ; READ-ONLY COMMON (1=YES)

P2.DRV=40 ;DRIVER COMMON PARTITION (1=YES)

P2.APR=7 ;STARTING APR NUMBER MASK FOR NON-PIC COMMON

000000
000002
000004
000006
000010

000012
000014

-
CHECKPOINT FILE PCB

w9 wo wo

<ASECT
.=0
P.LNK: «BLKW 1 ; LINK WORD OF CHECKPOINT FILE PCB'S
P.UCB: «BLKW 1 ;UCB ADDRESS OF CHECKPOINT FILE DEVICE
P.LBN: «BLKW 1 ;HIGH PART OF STARTING LBN

«BLKW 1 ; LOW PART OF STARTING LBN
P.SUB: +«BLKW 1 ; POINTER TO FIRST CHECKPOINT

s ALLOCATION PCB

P.MAIN: .BLKW 1 ;MUST BE 0 (FOR $RLPR1)
P.REL: .BLKW 1 ;CONTAINS 0 IF FILE IN USE, 1 IF NOT

; IN USE

A-37

000016

000020

000000
000010

000012
000014

000016

000000
000002

000004
000006
000010
000012
000014
000016

000000
000002
000003
000004
000006
000010
000011

000012
000014

PCBDFS$, ,SYSDF

P.SIZE: .BLKW 1 ;SIZE OF CHECKPOINT FILE IN 256W
s BLOCKS

P.DLGH=. s LENGTH OF ALL DISK PCB'S

+

we wo wo

CHECKPOINT ALLOCATION PCB

.=0
.BLKW 4 ; (UNUSED)

P.SUB: .BLKW 1 ; LINK TO NEXT CHECKPOINT ALLOCATION
; PCB

P.MAIN: .BLKW 1 ; ADDRESS OF CHECKPOINT FILE PCB

P.REL: .BLKW 1 ;RELATIVE POSITION ,IN FILE IN 256W
; BLOCKS

P.SIZE: .BLKW 1 ;SIZE ALLOCATED IN 256W BLOCKS

+
COMMON TASK IMAGE FILE PCB

~e wo wo

.=0

P.FIDl: .BLKW 1 ;FILE ID WORD FOR SAVE

P.UCB: .BLKW 1 ;UCB ADDRESS OF DEVICE ON WHICH

; COMMON RESIDES

P.LBN: .BLKW 1 ; HIGH PART OF STARTING LBN
«BLKW 1 ; LOW PART OF STARTING LBN

P.FID2: .BLKW 1 ;FILE ID WORD FOR SAVE

P.MAIN: .BLKW 1 s POINTER TO SELF

P.REL: .BLKW 1 ;ALWAYS CONTAINS A O

P.FID3: .BLKW 1 ;FILE ID WORD FOR SAVE

A.PCBL: .BLKW 1 ;PCB ATTACHMENT QUEUE THREAD WORD
A.PRI: .BLKB 1 ; PRIORITY OF ATTACHED TASK
A.IOC: .BLKB 1 ;I/0 COUNT THROUGH THIS DESCRIPTOR
A.TCB: .BLKW 1 ; TCB ADDRESS OF ATTACHED TASK
A.TCBL: .BLKW 1 ; TCB ATTACHMENT QUEUE THREAD WORD
A.STAT: .BLKB 1 ; STATUS BYTE
A.MPCT: .BLKB 1 ;s MAPPING COUNT OF TASK THRU THIS

s DESCRIPTOR
A.PCB: .BLKW 1 ;PCB ADDRESS OF ATTACHED TASK
A.LGTH= . ; LENGTH OF ATTACHMENT DESCRIPTOR

+
ATTACHMENT DESCRIPTOR STATUS BYTE BIT DEFINITIONS

we wo weo

A-38

«PSECT

AS .PRO=100
AS.SBP=20
AS .RBP=40
AS.DEL=10
AS .EXT=4
AS .WRT=2
AS .RED=1

PCBDF$, ,SYSDF

:A.TCB IS SEC POOL PROTO TCB BIAS (1=YES)
; CACHE BYPASS REQUESTED

:REQUEST TO NOT BYPASS CACHE

; TASK HAS DELETE ACCESS (1=YES)

; TASK HAS EXTEND ACCESS (1=YES)

; TASK HAS WRITE ACCESS (1=YES)

: TASK HAS READ ACCESS (1=YES)

A-39

PKTDF$

A.13 PKTDFS$

+

ASYNCHRONOUS SYSTEM TRAP CONTROL BLOCK OFFSET DEFINITIONS

SOME POSITIONAL DEPENDENCIES BETWEEN THE OCB AND THE AST CONTROL
BLOCK ARE RELIED UPON IN THE ROUTINE S$FINXT IN THE MODULE SYSXT.

N Wo Weo we w0 wo

.ASECT

.=177774
177774 A.KSR5: .BLKW
177776 ~ A.DOSR: .BLKW
000000 .BLKW
000002 A.CBL: «BLKW

; SUBROUTINE KISAR5 BIAS (A.CBL=0)

; DEQUEUE SUBROUTINE ADDRESS (A.CBL=0)
;AST QUEUE THREAD WORD

s LENGTH OF CONTROL BLOCK IN BYTES

;IF A.CBL = 0, THE AST CONTROL BLOCK IS
s TO BE DEALLOCATED BY THE DEQUEUE

s SUBROUTINE POINTED TO BY A.DQSR

s MAPPED VIA APR 5 VALUE A.KSR5. THIS
; IS CURRENTLY USED ONLY BY THE FULL

; DUPLEX TERMINAL DRIVER FOR UNSOLICITED
; CHARACTER ASTS. IF THE LOW BYTE OF
;A.CBL = 0, AND THE HIGH BYTE IS NOT
;= 0, THE AST CONTROL BLOCK IS A

; SPECIFIED AST, WITH LENGTH, C.LGTH.
; IF THE HIGH BYTE OF A.CBL=0

;AND THE LOW BYTE > 0, THEN

; THE LOW BYTE IS THE LENGTH OF THE
;AST CONTROL BLOCK.

; IF HIGH BYTE = 0 AND LOW BYTE IS
;sNEGATIVE, THEN THE BLOCK IS A KERNEL
;AST BIT 6 IS SET IF $SGFIN SHOULD
;NOT BE CALLED PRIOR TO DISPATCHING

; THE AST, AND THE LOW SIX BITS (5-0)
; REPRESENT THE INDEX/2 INTO THE

; KERNEL AST DISPATCH TABLE (SKATBL)
000004 A.BYT: .BLKW 1 ; NUMBER OF BYTES TO ALLOCATE ON TASK
;s STACK

;AST TRAP ADDRESS

[N SR

000006 A.AST: «BLKW
000010 A .NPR: «BLKW ;NUMBER OF AST PARAMETERS
000012 A.PRM: «BLKW ;s FIRST AST PARAMETER
AS.FPA=1 ;CODE FOR FLOATING POINT AST
AS .RCA=2 ; CODE FOR RECEIVE DATA AST
AS .RRA=3 ;CODE FOR RECEIVE BY REFERENCE AST
AS .PEA=4 ;CODE FOR PARITY ERROR AST
AS .REA=5 ;CODE FOR REQUESTED EXIT AST
AS.PFA=6 ;CODE FOR POWER FAIL AST
AS .CAA=7 ;CODE FOR CLI COMMAND ARRIVAL AST
AS.TEA=10 ;CODE FOR TAST EXIT AST

; ABORTER SUBCODES FOR ABORT AST (AS.REA) TO BE RETURNED ON

P

A-40

000000
000002
000003
000004
000006
000010
000012
000014
000016
000020
000022
000024
000026
000042
000044

000050

PKTDFS$

USER'S STACK

o we

AB.NPV=1 ; ABORTER IS NONPRIVILEGED (1=YES)
AB.TYP=2 ; ABORT FROM DIRECTIVE (0=YES)

;ABORT FROM CLI COMMAND (1=YES)
A.PLGH=70 ;SIZE OF PARITY ERROR AST CONTROL BLOCK
A.DUCB=10 ;UCB OF TERM ISSUING DEBUG COMMAND
A.DLGH=10. ; LENGTH OF DEBUG (AK.TBT) AST BLOCK

; KERNEL AST CONTROL CODES (A.CBL)

AK .BUF=200 ; BUFFERED I/0 COMPLETION
;THIS CODE MUST BE 200 UNTIL ALL
s REFERENCES IN TTDRV ARE FIXED

AK.OCB=201 ; OFFSPRING TASK EXIT

AK.GBI=202 ; SEGMENTED BUFFERED I/O COMPLETION
AK.TBT=203 ; TASK FORCE T-BIT TRAP (DEBUG CMD)
AK.DIO=204 ; DELAYED I/0 COMPLETION

AK.GGF=205 ;GRP. GBL. RUNDWN

HE
; I/0 PACKET OFFSET DEFINITIONS

«ASECT
=0
I.LNK: .BLKW 1 ;I/0 QUEUE THREAD WORD
I.PRI: «BLKB 1 s REQUEST PRIORITY
I.EFN: .BLKB 1 s EVENT FLAG NUMBER
I.TCB: .BLKW 1 ; TCB ADDRESS OF REQUESTOR
I.LN2: «BLKW 1 ; POINTER TO SECOND LUN WORD
I.UCB: « BLKW 1 ; POINTER TO UNIT CONTROL BLOCK
I.FCN: «BLKW 1 ;I/0 FUNCTION CODE ,
I.I0SB: .BLKW 1 ; VIRTUAL ADDRESS OF I/0 STATUS BLOCK
«BLKW 1 ;I/0 STATUS BLOCK RELOCATON BIAS
« BLKW 1 ;I1/0 STATUS BLOCK ADDRESS
I.AST: .BLKW 1 ;AST SERVICE ROUTINE ADDRESS
I.PRM: .BLKW 1 ; RESERVED FOR MAPPING PARAMETER #1
«BLKW 6 ; PARAMETERS 1 TO 6
« BLKW 1 ;USER MODE DIAGNOSTIC PARAMETER WORD

I.ATTL=. sMINIMUM LENGTH OF I/O PACKET (USED BY
;FILE SYSTEM TO CALCULATE MAXIMUM
;NUMBER OF ATTRIBUTES)

I.AADA: .BLKW 2 ; STORAGE FOR ATT DESCR PTRS WITH I/O
I.LGTH=. ; LENGTH OF I/0 REQUEST CONTROL BLOCK
I.ATRL=6%8. ;: LENGTH OF FILE SYSTEM ATTRIBUTE BLOCK
4

ANCILLARY CONTROL BLOCK (ACB) DEFINITIONS

we wo wo

A-41

000000
000002
000004
000006
000007
000010
000012
000013
000014

000010
000012
000014
000016

000020
000022
000024
000030
000034

000000
000002
000004
000006
0oo0010
000012
000014
000016
000020
000022

.=0
A.REL: «BLKW
A.DIS: «BLKW
A.MAS: « BLKW
A.NUM: .BLKB
«BLKB
A.LIN: «BLKW
A.ACC: .BLKB
A.STA: .BLKB
A.LEN1=.
«=A.LIN
A.IMAP: .BLKW
A.IBUF: .BLKW
A.ILEN: .BLKW
A.SMAP: .BLKW
A.SBUF: .BLKW
A.SLEN: .BLKW
A.IOS: «BLKW
A.RES: .BLKW
A.LEN2=.
UA.ACC=1
UA.PRO=2
UA.ECH=4
UA.TYP=10
UA.SPE=20
UA.PUT=40
UA.CAL=100
UA.COM=200
UA.ALL=400

UA.TRA=1000

e we wo wo

=0

A.ACCE:
A.DEQU:
A.POWE:
A.INPU:
A.OUTP:
A .CONN:
A.DISC:
A.RECE:
A.PROC:
A.CALL:

«BLKW
«BLKW
«BLKW
«BLKW
« BLKW
«BLKW
«BLKW
«BLKW
«BLKW
«BLKW

el S S -

=

NN =

DEFINE THE ACD ENTRY

e b b e b et b et e

PKTDFS$

;ACD RELOCATION BIAS

sACD DISPATCH TABLE POINTER
;ACD FUNCTION MASK

sACD IDENTIFICATION NUMBER
s RESERVED

sACD LINK WORD

;ACD ACCESS COUNT

;ACD STATUS BYTE

; LENGTH OF PROTOTYPE ACB

;FULL ACB OVERLAPS PROTOTYPE ACB
;ACD INTERRUPT BUFFER RELOCATION BIAS
;ACD INTERRUPT BUFFER ADDRESS

;ACD INTERRUPT BUFFER LENGTH

;ACD SYSTEM STATE BUFFER RELOCATION
s BIAS

;ACD SYSTEM STATE BUFFER ADDRESS
;ACD SYSTEM STATE BUFFER LENGTH
;ACD I/0 STATUS

s RESERVED FOR USE BY THE ACD

; LENGTH OF FULL ACB

DEFINE THE FLAG VALUES IN THE OFFSET
U.AFLG

we weo weo wo

;ACCEPT THIS CHARACTER

; PROCESS THIS CHARACTER

s ECHO THIS CHARACTER

;FORCE THIS CHARACTER INTO TYPEAHEAD

; THIS CHARACTER HAS A SPECIAL ECHO

;PUT THIS CHARACTER IN THE INPUT BUFFER
;CALL THE ACD BACK AFTER THE TRANSFER-
;COMPLETE THE INPUT REQUEST

;ALLOW PROCESSING OF THIS I/0 REQUEST

; TRANSFER CHARS. WHEN I/O COMPLETES

POINTS (OFFSETS INTO THE DISPATCH TABLE)

;I/0 REQUEST ACCEPTANCE ENTRY POINT
;I/0 REQUEST DEQUEUE ENTRY POINT

; POWER FAILURE ENTRY POINT

; INPUT COMPLETION ENTRY POINT

;OUTPUT COMPLETION ENTRY POINT

s CONNECTION ENTRY POINT

s DISCONNECTION ENTRY POINT

s INPUT CHARACTER RECEPTION ENTRY POINT
;s INPUT CHARACTER PROCESSING ENTRY POINT
;CALL ACD BACK AFTER TRANSFER ENTRY

A-42

PKTDF$

s POINT

DEFINE THE STATUS BITS IN A.STA OF THE PROTOTYPE ACB

e “o wo

’
000001 AS.DEL=1 ;ACD IS MARKED FOR DELETE
000002 AS.DIS=2 ;ACD IS DISABLED
+

SECONDARY POOL COMMAND BUFFER BLOCKS

® o we wo

=0
000000 C.CLK: .BLKW 1 ;: LINK WORD
000002 C.CTCB: .BLKW 1 ; TCB ADDRESS OF TASK TO RECEIVE COMMAND
000004 C.CUCB: .BLKW 1 ;UCB ADDRESS OF RESPONSIBLE TERMINAL
000006 C.CCT: .BLKW 1 : CHARACTER COUNT, EXCLUDING TRAILING
;CR
000010 C.CSTS: .BLKW 1 : STATUS MASK
000012 C.CMCD: :SYSTEM MESSAGE CODE
000012 C.CSO: .BLKW 1 : STARTING OFFSET OF VALID COMMAND
s TEXT
000014 C.CTR: .BLKB 1 : TERMINATOR CHARACTER
000015 C.CBLK: .BLKB 1 :SIZE OF PACKET IN SEC POOL (32 WD.)
: BLOCKS
000016 C.CTXT: ; COMMAND TEXT, FOLLOWED BY CR
s+
; BIT DEFINITIONS FOR THE GINS (AKA WIMPS) INFORMATION
; DIRECTIVE.
SF.PRV=100000 :FUNCTION IS PRIVILEGED
SF.IN= 40000 ; FUNCTION IS AN INPUT FUNCTION

+

OFFSPRING CONTROL BLOCK DEFINITIONS

SOME POSITIONAL DEPENDENCIES ARE DEPENDED ON BETWEEN THE
OCB AND THE AST BLOCK IN THE ROUTINE S$FINXT IN THE MODULE

@ N8 Ne Ne w0 wo “Se wo

SYSXT.

=0
000000 O.LNK: .BLKW 1 ;OCB LINK WORD
000002 O.MCRL: .BLKW 1 ;s ADDRESS OF MCR COMMAND LINE
000004 O.PTCB: .BLKW 1 ; PARENT TCB ADDRESS
000006 O.AST: .BLKW 1 ; EXIT AST ADDRESS
000010 O.EFN: .BLKW 1 ;EXIT EVENT FLAG
000012 O.ESB: .BLKW 1 ;EXIT STATUS BLOCK VIRTUAL ADDRESS
000014 O.STAT: .BLKW 8. ; EXIT STATUS BUFFER
000034 O.LGTH=. ; LENGTH OF OCB

A-43

000000
000002
000006
000010
000011
000012

THEY ARE, HOWEVER,

e weo weo =e

=0

C.PTCB:
C.PNAM:
C.PSTS:
C.PDPL:
C.PCPL:
C.PRMT:

°
7
°
7

°
’

CP.NUL=1
CP.MSG=2
CP.LGO=4

«BLKW 1
«BLKW 2
«BLKW 1
.BLKB 1
.BLKB 1

CP.DSB=10
CP.PRV=20

CP.SGL=40

CP.NIO=100

CP.RST=200

CP.EXT=400
CP.POL=1000
CP.CTC=2000

e wo wo

14

CC.MCR=1
CC.PRM=2
CC.EXT=4
CC.KIL=10

CC.CLI=20
CC.MSG=40
CC.TTD=100
CC.CTC=200

PKTDFS

e I e o A T L L S o A

THE FOLLOWING CPB,C.PSTS,AND C.CMCD ARE NOT CURRENTLY USED BY P/OS.
RESERVED FOR A POSSIBLE FUTURE USE.

CLI PARSER BLOCK (CPB) DEFINITIONS

;ADDRESS OF CLI'S TCB

;CLI NAME

;s STATUS MASK

; LENGTH OF DEFAULT PROMPT

; LENGTH O CNTRL/C PROMPT

; START OF PROMPT STRINGS. DEFAULT

;IS CONCATENATED WITH CONTROL C PROMPT

STATUS BIT DEFINITIONS

; PASS EMPTY COMMANDS TO CLI
;CLI DESIRES SYSTEM MESSAGES

:CLI WANTS COMMANDS FROM LOGGED OFF

: TTYS

;CLI IS DISABLED

;USER MUST BE PRIV TO SET TTY TO THIS
:CLI

;:DON'T HANDLE CONTINUATIONS (M-PLUS
;ONLY)

sMCR..., HEL, BYE DO NO I/O TO TTY
¢:HEL, BYE DO NOT SET CLI ETC.
sABILITY TO SET TO THIS CLI IS

: RESTRICTED

:TO THE CLI ITSELF

:PASS TASK EXIT PROMPT REQUESTS TO CLI
:CLI TCB IS IN SECONDARY POOL

:"C NOTIFICATION PACKETS ARE WANTED

STATUS BITS FOR COMMAND BLOCKS

; FORCE COMMAND TO MCR

; ISSUE DEFAULT PROMPT

; TASK EXIT PROMPT REQUEST

;DELETE ALL CONTINUATION PIECES FROM

;s THIS TTY

; COMMAND TO BE RETREIVED BY GCCIS ONLY
; PACKET CONTAINS SYSTEM MESSAGE TO CLI
; COMMAND CAME FROM TTDRV

;C NOTIFICATION PACKET

A-44

PKTDF$

IDENTIFIER CODES FOR SYSTEM TO CLI MESSAGES

CODES 0-127. ARE RESERVED FOR USE BY DIGITAL
CODES 128.-255. ARE RESERVED FOR USE BY CUSTOMERS

°
’
°
7
°
r
°
1
°
’

CM.INE=1 ;CLI INITIALIZED ENABLED
CM.IND=2 ;CLI INITIALIZED DISABLED
CM.CEN=3 ;CLI ENABLED

CM.CDS=4 ;CLI DISABLED

CM.ELM=5 ;CLI BEING ELIMINATED
CM.EXT=6 ;CLI MUST EXIT IMMEDIATELY
CM.LKT=7 sNEW TERMINAL LINKED TO CLI
CM.RMT=8. s TERMINAL REMOVED FROM CLI
CM.MSG=9. ;s GENERAL MESSAGE TO CLI

e

GROUP GLOBAL EVENT FLAG BLOCK OFFSETS
(CURRENTLY NOT USED BY P/0S)

@ “eo wme wo weo

=0
000000 G.LNK: «BLKW 1 ;s LINK WORD
000002 G.GRP: .BLKB 1 ; GROUP NUMBER
000003 G.STAT: .BLKB 1 s STATUS BYTE
000004 G.CNT: .BLKW 1 ;ACCESS COUNT
000006 G.EFLG: .BLKW 2 s EVENT FLAGS
000012 G.LGTH=. s LENGTH OF GROUP GLOBAL EVENT FLAG
s BLOCK
GS.DEL=1 s STATUS BIT -- MARKED FOR DELETE

-+

EXECUTIVE POOL MONITOR CONTROL FLAGS (HISTORICAL INTEREST
ONLY)

~e we we weo

$POLST IS THE SYNCHRONIZATION WORD BETWEEN THE EXEC AND POOL

o we we

MONITOR

PC.HIH=1 ;HIGH POOL LIMIT CROSSED (1=YES)

PC.LOW=2 ; LOW POOL LIMIT CROSSED (1=YES)

PC.ALF=4 ;POOL ALLOCATION FAILURE (1=YES)

PC.XIT=200 ; FORCE POOL MONITOR TASK TO EXIT (MUST
;BE COUPLED WITH SETTING FE.MXT IN THE
; FEATURE MASK)

PC.NRM=PC.HIH*400 ; POOL TASK INHIBIT BIT FOR HIGH POOL

PC.ALM=PC.LOW*400 ; POOL TASK INHIBIT BIT FOR LOW POOL

; SPOLFL IS THE POOL USAGE CONTROL WORD

A-45

PF.INS=40
PF.LOG=100
PF.REQ=200

PF.ALL=177777

.PSECT

PKTDF$

; REJECT NONPRIVILEGED INS/RUN/REM
s NONPRIVILEGED LOGINS ARE DISABLED
; STALL REQUEST OF NONPRIV. TASKS

s TAKE ALL POSSIBLE ACTIONS TO SAVE POOL

A-46

QIOSYS

A.14 QIOSYS

SYSTEM STANDARD CODES, USED BY EXECUTIVE AND DRIVERS

we we wo

DECIMAL OCTAL
IE.BAD -01. 177777 Bad parameters
IE.IFC -02. 177776 1Invalid function code
IE.DNR -03. 177775 Device not ready
IE.VER -04. 177774 Parity error on device
IE.ONP -05. 177773 Hardware option not present
IE.SPC -06. 177772 1Illegal user buffer
IE.DNA -07. 177771 Device not attached
IE.DAA -08. 177770 Device already attached
IE.DUN -09 177767 Device not attachable
IE.EOF -10. 177766 End of file detected
IE.EOV -11. 177765 End of volume detected
IE.WLK -12. 177764 Write attempted to locked unit
IE.DAO -13. 177763 Data overrun
IE.SRE -14. 177762 Send/receive failure
IE.ABO -15. 177761 Request terminated
IE.PRI -16. 177760 Privilege violation
IE.RSU -17. 177757 Sharable resource in use
IE.OVR -18. 177756 1Illegal overlay request
IE.BYT -19. 177755 0dd byte count (or virtual address)
IE.BLK -20. 177754 Logical block number too large
IE.MOD -21. 177753 1Invalid UDC module #
IE.CON -22. 177752 UDC connect error
IE.BBE -56. 177710 Bad block on device
IE.STK -58. 177706 Not enough stack space (FCS or FCP)
IE.FHE -59. 177705 Fatal hardware error on device
IE.EOT -62. 177702 End of tape detected
IE.OFL -65. 177677 Device off line .
IE.BCC -66. 177676 Block check, CRC, or framing error
IE.NFW -69. 177673 Path lost to partner ;THIS CODE MUST BE ODD
IE.DIS -69. 177673 Path lost to partner ;DISCONNECTED (SAME
AS NFW)
IE.NDR -72. 177670 No dynamic space available ; SEE ALSO IE.UPN
IE.TMO -95. 177641 Timeout on request ; see also IS.TMO
IE.CNR -96. 177640 Connection rejected
IE.MII -99, 177635 Media inserted incorrectly
IE.SPI -100. 177634 Spindown ignored
; FILE PRIMITIVE CODES

IE.NOD -23. 177751 Caller's nodes exhausted

A-47

IE.DFU
IE.IFU
IE.NSF
IE.LCK
IE.HFU
IE.WAC
IE.CKS
IE.WAT
IE.RER
IE.WER
IE.ALN
IE.SNC
IE.SQC
IE.NLN
IE.CLO
IE.DUP
IE.BVR
IE.BHD
IE.EXP
IE.BTF
IE.ALC
IE.ULK
IE.WCK
IE.DSQ

FILE

=e wo wo

IE.NBF
IE.RBG
IE.NBK
IE.ILL
IE.BTP
IE.RAC
IE.RAT
IE.RCN
IE.2DV
IE.FEX
IE.BDR
IE .RNM
IE.BDI
IE.FOP
IE.BNM
IE.BDV
IE.NFI
IE.ISQ
IE.NNC

177750
177747
177746
177745
177744
177743
177742
177741
177740
177737
177736
177735
177734
177733
177732
177707
177701
177700
177665
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>