DECsystem-10
DECSYSTEM-20
Processor Reference Manual

AA-H391A-TK, AD-H391A-T1

June 1982

This document explains the machine language programming of
the central processors used in the DECsystem-10 and
DECSYSTEM-20.

Software and manuals should be ordered by titie and order number. In the United States, send orders
to the nearest distribution center. Outside the United States, orders should be directed to the nearest
DIGITAL Field Sales Office or representative.

Northeast/Mid—Atlantic Region Central Region Western Region
Digital Equipment Corporation Digital Equipment Corporation Digital Equipment Corporation
PO Box CS2008 Accessories and Supplies Center Accessories and Supplies Center
Nashua, New Hampshire 03061 1050 East Remington Road 632 Caribbean Drive

Sunnyvale, California 94086

Telephone:(603)884—6660 Schaumburg, lllinois 60195
. Telephone:(312)640-5612

Telephone:(408)734—4915

chigital eqquipment corporaton e martboro massachusetts

First Edition, May 1968

Second Edition, December 1971
Third Edition, August 1974
Fourth Edition, February 1978
Fifth Edition, July 1980
Updated, June 1982

Copyright ©, 1968, 1971, 1974, 1978, 1982, Digital Equipment Corporation. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a licensé-and. may-
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the' use or reliability of software on equipment-
that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

DEC DECnet IAS
DECUS DECsystem—-10 MASSBUS
DECSYSTEM-20 PDT PDP
DECwriter RSTS UNIBUS
DIBOL RSX VAX
EduSystem VMS VT

dlilgliltal] RT

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in preparing future
documentation.

Contents

Preface

Chapter 1

Chapter 2

Introduction
1.1 KL10-based System Organization 1-4
The KL10 processor e e e e e e 1-8
1.2 K810-based System Organization 1-11
1.3 Timesharing. o 1-15
1.4 Number System 1419
Floating Point Numbers 1-21
Expanded Range Floating Point Numbers 1-22
1.5 Instruction Format. e [1-22.1
1.6 Effective Address Calculation 1-25
Extended Addresses R 1-26
1.7 KL10Memory 1-31
Memory Characteristics 1-32
1.8 KSIOMemory 1-34
1.9 Programming Conventions. 1-35
1.10 KI10 and KA10 Characteristics 1-38
Memory e 1-39

User Operations

2.1 Full Word Data Transmission 2-3
Move Instructions 2-3
Double Move Instructions 2-6
Block Transfers 2-8

2.2 Fixed Point Arithmetic 2-11
Single Precision Instructions. 2-12
Double Precision Instructions 2-15

iii

Chapter 3

iv

2.3

2.4
25
2.6
2.7
2.8
2.9

2.10
2.11
2.12
2.13
2.14
2.15

2.16

2.17
2.18
2.19

Floating Point Arithmetic 2-17

Single Precision with Rounding 2-19
Single Precision without Rounding 2-21
Standard Range Double Precision 2-23
Expanded Range Double Precision e 2-25
Number Conversion 2-27
Scaling e 2-28.5
KA10 Software Double Precision. 2-28.6
Boolean Functions 2-32
Shiftand Rotate 2-38
Arithmetic Testing. 2-41
Logical Testing and Modification. 2-47
Half Word Data Transmission 2-55
Program Control. 2-62
The Execute Instruction 2-63
Conditional Jumps. 2-64
Program Flags. 2-65
The JRST Instruction 2-70
Subroutine Calling. 2-74
Overflow Trapping. 2-78
Stack Operations 2-79
Byte Manipulation.2-85
String Manipulation. L. 2-90
Decimal Conversion 2-98
String Editing e e e 2-104
Programming Examples 2-111
Processor Identification e e e 2-111
Parityo 2-112
Reversing Order of Digits 2-115
CountingOnes. e 2-116
Number Conversion 2-118
Table Searching 2-119
Extended Addressing. 2-120
Unimplemented Operations 2-122
MUUOs e e e e e 2-123
KS10 Input-Output Instructions 2-126
Pre-KS10 Input-Output Instructions 2-130
User Programming 2-135

KL10 System Operations

3.1

3.2

Priority Interrupt Lo 3-2
Interrupt Requests. 3-3
Interrupt Functions and Instructions. 3-5
Interrupt Programming 3-8

Cache Management 3-11
Cache Programming 3-13

Chapter 4

3.3 TOPS-10 Paging and Process Tables. 3-18
Paging.o 3-19
Page Failure. 3-23
The Map Instruction 3-26
3.4 TOPS-20 Paging and Process Tables. 3-27
Paging. 3-27
PageRefill.o 3-34
Page Failure. 3-39
The Map Instruction. 3-42
3.5 Memory Management 3-43
Previous Context Execute 3-48
Address Debugging 3-51
3.6 Timing and Accounting 3-53
System Timing. 3-54
User Accountso 3-56
Performance Analysis 3-58
3.7 Front End Functions. 3-62
3.8 Error and Diagnostic Instructions 3-63
Error Monitoring and Investigation 3-63
S Bus Diagnostic Cycle. 3-68

KS10 System Operations

4.1 Priority Interrupto 4-2
Processing an Interrupt 4-3
Interrupt Programming 4-4
42 Cache 4-8
4.3 TOPS-10 Paging and Process Tables. 4-9
Paging.o 4-9
Page Failure. 4-14
The Map Instruction. 4-16
4.4 TOPS-20 Paging and Process Tables. 4-16
Paging. 4-17
Page Refill. 4-20
Page Failure. 4-26
The Map Instruction. 4-28
4.5 Memory Managemento 4-29
Previous Context Execute 4-34
46 System Timing 4-37
47 HaltStatus 4-38
4.8 System Conditions. 4-40
System Flags, 4-40
Memory Status Lo 4-43

Chapter 5 KI10 and KA10 System Operations

Page
51 Console e e 5-2
Readin Mode. 5-2
Console-Program Communication 5-3
5.2 KI10 Priority Interrupt 54
Starting an Interrupto 5-5
Interrupt Programming 5-8

5.3 KI10 Processor Conditions 5-11

5.4 KI10 Program and Memory Management 5-15

Paging. T 5-16

Page Failure. 5-20

Monitor Programming 5-23

Previous Context Execute 5-27

5.5 KAI10 Priority Interrupt 5-30

5.6 KA10 Processor Conditions 5-35

5.7 KA10 Program and Memory Management 5-38

Monitor Programming 5-40

5.8 Real Time Clock DK10. 5-41

Appendix A Instructions and Mnemonics

Word Formats e A-2
Instruction Mnemonics. A-6
Numeric listing A-8

Alphabetic listingA-12

Algebraic Representation A-16

Full Word Data Transmission A-18

Fixed Point Arithmetic. A-18

Floating Point Arithmetic A-19

Boolean A-20

Shift and Rotate A-21

Arithmetic Testing. A-21

Logical Testing and Modification. A-22

Half Word Data Transmission A-24

Program Control. A-25

Stack e A-25

Byte Manipulation. A-26

Inout A-26

Powersof Two. A-27

Appendix B Character Codes

ASCII Code o it i e B-3
Line Printer Codes. B-6

Card Codes e e B-10

vi

Appendix C Internal Device Bit Assignments

KI.10 Processor
KS10 Processor
KI10 Processor.

Appendix D Timing

KI10 Instruction Times
KA10 Instruction Times

Appendix E Processor Compatibility

Compatibility Table

Appendix F Processor Operation

F.1 KI10 Operation

Indicators
Operating Keys
Operating Switches
Real Time Clock DK10.

F2 KA10Operation.

Indicators
Operating Keys,
Operating Switches
Real Time Clock DK10.

Appendix G Handling Memory

G.1 DECsystem-10 Memories,

MA10 Core Memory
MB10 Core Memory
MD10 Core Memory
ME10 Core Memory
MF10 Core Memory
MG10 and MH10 Core Memories.
DMA20 Memory Bus Adapter

G.2 DECSYSTEM-20 Memories o

MAZ20 and MB20 Memories
MF20 Memory

lllustrations

1.1 KL10-based DECSYSTEM-20
1.2 KL10-based DECsystem-10
1.3 KL10 Processor Simplified

vii

viii

14
15
1.6
1.7
1.8
21
2.2
2.3
3.1
3.2
3.3
3.4
3.5
3.6
4.1
4.2
4.3
44
5.1
5.2

DECSYSTEM-2020 v v .. 1-11
KS10 Processor Simplifiedo, 1-12
Possible TOPS-10 Virtual Address Space Configuration 1-17
Extended Effective Address Calculation 1-30
DECsystem—10 Based on KI10 or KA10 1-39
Accumulator Bit Flow in Shift and Rotate Instructions. 2-39
Edit Instructiono 2-109
User Process Table MUUO Configurations 2-125
TOPS-10 Virtual Address Space and Process Table Layout. 3-20
TOPS-10 Process Table Configuration 3-21
TOPS-20 Virtual Address Space and Process Table Layout. 3-29
Extended TOPS-20 Process Table Configuration 3-30
Single-section TOPS-20 Process Table Configuration. 3-31
TOPS-20 Paging Pointer Evaluation. 3-38
TOPS-10 Virtual Address Space and Process Table Layout. 4-12
TOPS-10 Process Table Configuration 4-13
TOPS-20 Process Table Configuration 4-18
TOPS-20 Paging Pointer Evaluation. 4-25
Virtual Address Space and Page Map Layout. 5-18
Process Table Configuration 5-19
KL10 and KS10 Formats. A-2
KI10 and KA10 Formats. A4
Derivation of Instruction Mnemonies. A-6
KI10 Instruction Timing D-8
KA10 Instruction Timing D-12
KI10 Console Operator and Maintenance Panels F-4
KI10 Indicator Panels F-7
Clock Control Panel F-15
KA10 Console Operator Panel F-16
KA10 Margin Check and Maintenance Panel. F-17
KA10 Indicator Panels. F-19
Clock Control PanelF24
Address Structure Lo G4

Preface

‘This manual explains the machine language programming and operation,
for both instructional and reference purposes, of the PDP-10 central
processors used in the DECsystem—10 and DECSYSTEM-20. Basically the
manual defines in detail how each processor functions, exactly what its
instructions do, how it handles data, what its control and status informa-
tion means, and what programming techniques and procedures must be
employed to utilize it effectively. The programming is given in machine
language, in that it uses only the basic instruction and device mnemonics
and symbolic addressing defined by the assembler. The treatment relies on
neither any other Digital software nor any of the more sophisticated fea-
tures of the assembler; moreover the manual is completely self-contained —
no prior knowledge of the assembler is required.

The text of the manual is devoted entirely to functional description and
programming. Chapter 1 discusses the general characteristics of the
system, defines the formats of the words used for numbers and instructions,
and also explains the conventions needed to program the system and under-
stand the examples given in the text. Chapter 2 covers all operations regu-
larly available to the user. It also includes a general discussion of user
programming and defines the in-out instructions, even though they are
available to the user only in special circumstances, and the discussion of
their use for handling the peripheral equipment is not included. For com-
pleteness individual instruction descriptions do include special effects unre-
lated to user programming, but the detailed treatment of such effects is left
for the discussion of system operations. Each type of processor contains
various features, such as a priority interrupt system and a pager, that
afford a means through which a system programmer can create software to
handle the overall management of a system with many users. Chapters 3
and 4 respectively discuss these features in the KLL10 and the KS10, and
Chapter 5 discusses such features for the earlier processors, the KI10 and
the KA10.

ix

The first three appendices contain the basic reference tables for the
programmer — word formats, instruction and internal device mnemonics,
ASCII code, bit assignments showing conditions and status, and a short-
hand presentation of instruction actions in symbolic form. The next two
appendices provide additional programming information of less general
use: Appendix D gives the instruction times and Appendix E documents the
differences among the several central processor models. Appendix F pro-
vides a complete guide to the operation of the earlier central processors, i.e.
those that have operator and indicator panels. More recent processors are
operated from a front end processor or terminal and are covered in the
operator’s guides for TOPS-10 and TOPS-20. (The appendix does not dis-
cuss running a system in terms of interacting with any Digital software —
that information is given solely in the operator’s guides.) The final appen-
dix provides operating and setup information for the various memories that
can be used with a PDP-10.

CAUTION

Every effort has been expéended to ensure that this manual
presents a complete description of the architecture of the sev-
eral PDP-10 processors. If there is anything you cannot find,
please do not make assumptions — write to

Chairman, PDP-10 Architecture Committee
Large Systems Engineering Group, MR1-2
Digital Equipment Corporation
200 Forest Street
Marlborough, Massachusetts 01752

In some instances the result of an operation using partic-
ular operands or given in particular circumstances is indi-
cated as being “indeterminate.” This means simply that no
guarantee is made of what that result will be. If you wish to
experiment and find a result to your liking, you are hereby
warned that if you use the operation, your program may well
not be compatible with any other processor, with any other
model of your processor, with the same model of your proces-
sor at some other installation, or even with your own proces-
sor running at some other time with a different version of the
microcode or Monitor.

Chapter 1
Introduction

A DECsystem~10 or DECSYSTEM-20 is a general purpose, stored program
computing system that includes at least one PDP-10 central processor, a
memory with error-checking capability, and a variety of peripheral equip-
ment. Each central processor is the control unit for an entire large-scale
subsystem, in which it is connected by buses to random access storage
modules and peripheral equipment, some of which may be shared with
other central processors. Within a given system the central processor
governs all peripheral equipment, either directly or indirectly, sequences
the program, and performs all arithmetic, logical and data handling opera-
tions. But a given system may also contain other kinds of processors. A
system based on the KL.10 central processor contains a small PDP-11 front
end processor; this acts as the system console and may also handle commu-
nications equipment and the unit record peripheral equipment via a Un-
ibus. The DECSYSTEM-2020, the only system based on the KS10 proces-
sor, contains a microprocessor for handling console functions (with a termi-
nal), and all of its peripheral equipment is handled over two or more
Unibuses. Earlier model central processors have manual consoles and han-
dle unit record equipment directly via an in-out bus. A system may also
include direct-access processors, which have much more limited program
capability and serve to connect large, fast peripheral devices to memory
bypassing the central processor. Every direct-access processor is connected,
for control purposes, to some central processor, to which it appears as a
peripheral device. The direct-access processor is also connected to its pe-
ripheral equipment by a device bus, and to memory either directly by its
own memory bus or via a channel bus through the memory control part of
the central processor. A DECSYSTEM-2020 cannot include direct access
processors, but the Unibus adapters themselves have much of the capabil-
ity of such processors: in particular an adapter can gain direct access to
memory via the same KS10 system bus used by the processor. A system

may also contain peripheral subsystems, such as for data communications,
which are themselves based on small computers; from the point of view of
the PDP-11, such a subsystem in toto is regarded as a peripheral device.
Unless otherwise specified, the words “processor” and “central processor”
refer to the large scale PDP-10 central processor.

At present there are four types of PDP-10 central processors, the
KL10, the KS10, the KI10, and the KA10. The first, which exists in two
versions, with and without extended addressing, is the fastest and most
powerful, having the largest instruction set including string manipulation,
double precision in_both fixed point and floating point, and in later ma-
chines, expanded range floating point. The KS10 lacks expanded range
floating point, lacks extended addressing, and is slower than the KL10; but
it otherwise has the maximum instruction set, and it is considerably less
expensive. All processors handle words of thirty-six bits. Earlier memories
store these with a parity bit for detecting single-bit errors. In the newest
MOS memories, available with the KL.10 and KS10, each word is accompa-
nied by a 7-bit code for correction of single errors and detection of double
errors. Maximum memory capacity depends upon the physical addressing
capability of the processor. However the physical capacity of the memory is
not particularly relevant to a typical user programmer, as all recent proces-
sors are structured to operate in a sophisticated virtual memory environ-
ment. The fundamental virtual address is thirty bits, although no present
processor is capable of using all of them. The virtual memory space is
divided into sections of 256K each, whose locations are specified by the
right eighteen address bits (the “in-section” address). Paging hardware fur-
ther divides each section into 512 pages of 512 locations each. The actual
size of the virtual address space for a given processor depends on how many
out of the twelve possible section bits it implements. The addressing char-
acteristics of the various processors are these.

Single-

Extended section

KL10 KL10 KS10 KIi0 KA10
Physical address 22 22 20 22 18
(number of bits)
Physical memory capacity 4096K 4096K 512K 4096K 256K
(number of locations)
Section bits implemented 5 0 0 0 0
Number of sections 32 1 1 1 1
Virtual address 23 18 18 18 18
(number of bits)
Virtual address space 8192K 256K 256K 256K 256K

(number of locations)

In an Extended KL10 whose operating system supports extended address-
ing only in executive address space, user space is the same as that in a
single-section KL10.

1-2 Introduction

June 1982

The extended KL10, by using five section bits, has a virtual memory
twice the size of the maximum physical memory. All other processor config-
urations currently use only the 18-bit in-section address, so all access is
defined as being in section 0. This means that the KS10 has a physical
memory that can be twice as large as the virtual space available to a single
program; and the single-section KL10 and the KI10 can have a physical
memory sixteen times as large. A virtual limitation of 256K is seldom
critical however, as these processors, like the extended KL10, have features
that allow for dynamic paging and working set management. KA10 mem-
ory management is limited to a basic one- or two-part protection and reloca-
tion scheme. .

The bits of a word are numbered 0-35, left to right (most significant to
least significant), as are the bits in the registers that hold the words. The
KL10 can also handle half words, doublewords, bytes, and strings.

Half words are simply the two halves of a word, wherein the left half is
bits 0-17, the right half, bits 18-35. In operations on half words, the two
halves of a given word are handled independently; e.g. when both are
incremented, no carry from right to left can occur (this is not true on the
KA10, where incrementing both halves is done by adding 1000001 to
the entire word).

A doubleword is two adjacent words treated as a single 72-bit entity,
where the word with the lower address is on the left. In some operations,
such as the product in double precision multiplication, this concept is
extended to multiple length operands involving more than two consecu-
tive words. The direction from more to less significance is always from
lower to higher addresses. (The KA10 cannot handle doublewords, ex-
cept to the limited extent of double length products and dividends.)

A byte is any contiguous set of bits within a word. It is identified by a
byte pointer.

A string is a sequence of bytes packed into and encompassing an arbi-
trary number of words. It is defined by its length in number of bytes and
an initial value for a pointer that is incremented automatically for han-
dling the bytes. (Both KI10 and KA10 lack string hardware.)

Registers specifically for holding addresses have a number of bits ap-
propriate to the type of processor and whether the address is physical or
virtual. Address bits are numbered according to the right-justified position
of an address in a word. Thus the bits of an in-section address are numbered
18-35, and those of a 22-bit physical address are numbered 14-35. Words
are used either as instructions in the program, as addresses, or as operands
(data for the program).

Most of this introductory chapter is oriented toward a DECsystem—-10
or DECSYSTEM-20 based on a KL10 processor, in both its single-section
and extended forms, or a DECSYSTEM-2020, which is based on the KS10
processor. §81.1 and 1.7 apply only to the KL10, and §81.2 and 1.8 apply
only to the KS10. Much of the information for the KL10 applies also to
systems based on the KI10 and KA10. The final section of the chapter
explains the ways in which those earlier processors differ from the architec-
ture defined in the preceding sections. §1.3 is probably of interest only to
system programmers.

Introduction

1-3

1.1 KL10-based System Organization

The illustrations on the next three pages show the organization of the two
types of computer systems based on the KL10 central processor and the
internal organization of that processor. A KL10-based system is effectively
a group of processors organized around an E or execution bus. The other
processors (controllers, interfaces) generally act at the direction of the cen-
tral processor but carry out those actions independently of it.

On the E bus of a DECSYSTEM-20 there may be up to four DTE20
interfaces, each of which connects to a PDP-11 front end processor, and up
to eight RH20 Massbus controllers (Figure 1.1). An RH20 handles disks or
tapes via a Massbus; although fundamentally under control of the KL10,
the RH20 operates from its own command list in memory and uses a sepa-
rate C or channel bus for data transfers to and from internal memory via
the M box, bypassing the E box. All DECSYSTEM-20 memory is internal:
the memory controllers with their storage modules are connected directly
to the S or storage bus, and access to them is possible only through the M
box.! Unit record equipment, such as line printers and card readers, and
communication subsystems are handled by PDP-11 front end processors.
The data path to memory for these is via the E bus, but it uses automatic
features of the priority interrupt, thus interfering minimally with the
KL10 program. Among the front end processors, one is master: it acts as
the system console, bootstraps the system by loading the KL10 microcode
from disk, and is also the system diagnostic facility (for which it has a
direct connection to one of the disks on the RH20).

Figure 1.2 shows a typical DECsystem-10 based on a KL.10. In terms of
memory and peripherals, such a system is much like a KI10-based
DECsystem—10, but it has the faster and more powerful central processor.
Here external memory is on a KI10 memory bus interfaced to the S bus by
a DMAZ20, and the peripherals are on a KI10 in-out bus interfaced to the E
bus by a DIA20. Massbus devices are handled by an RH10, which main-
tains a direct path to external memory by way of a data channel. Such a
system generally has only one front end processor, which acts as the console
and diagnostic facility, and bootstraps the microcode from disk or DECtape.
One version of the DECsystem—10 is more of a hybrid 10-20: a machine in
the 1090 series has KI10 memory and in-out buses, but uses the RH20
Massbus controller, which is right on the E bus and maintains a path to
external memory by way of the C bus through the M box.

There are also two versions of the operating system for use with the
KL10: the TOPS-20 Monitor and the TOPS-10 Monitor. The Extended
KL10 with both user and executive space extended is available only in
TOPS-20 systems. In a TOPS-10 system, an Extended KL10 can have
extended addressing only in executive space, and for this it must run micro-
code version 271 or greater (in which case, the TOPS-10 Monitor actually
uses so-called “TOPS-20 paging”). In other words an Extended KL10, re-
gardless of Monitor, has TOPS-20 paging; in a single-section KL10 the
paging always matches the Monitor.

1 MOS and core memory cannot be mixed on the same bus. If the system includes both, there
must be two S buses.

1-4 Introduction

June 1982

Figure 1.1:

KL10-based DECSYSTEM-20

MA20, MB20 OR MF20
INTERNAL CONTROLLER
AND STORAGE MODULES

MA20, MB20 OR MF20

INTERNAL CONTROLLER
AND STORAGE MODULES

S BUS
c BUS
RH20 MASSBUS
X —_————
M B8O CONTROLLER
E BUS
£ BOX _—— e —
KL10
PROCESSOR
DTE20 POP 11 PDP-11 DISK COMMUNICATION
INTERFACE PROCESSOR MEMORY CONTROLLER SUBSYSTEM
3
UNIBUS
CONSOLE FLOPPY LINE CARD
TERMINAL DISK PRINTER READER

Introduction

1-5

Figure 1.2: KL10-based DECsystem-10

EXTERNAL EXTERNAL
CORE STORAGE CORE STORAGE
MODULE MODULE
DMA 20 K110
MEMORY BUS —_——— —
CONTROLLER] MEMORY BUS
CHANNEL
MEMORY
BUS DISK
DF10 RH10 MASSBUS
DATA CONTROLLER -
S BUS CHANNEL
KI10 IN-OUT BUS
DIA20
IN-OUT BUS LINE CARD COMMUNICATION
CONTROLLER PRINTER READER SUBSYSTEM
M BOX
E BUS
E BOX —_———
KL10
PROCESSOR
DTE20 POP.11 PDP-11
INTERFACE PROCESSOR MEMORY
UNIBUS
CONSOLE DECTAPE
TERMINAL
1-6 Introduction

Figure 1.3: KL10 Processor Simplified

C BUS S BUS
M BOX 1
CHANNEL MEMORY 2K
CONTROL CONTROL CACHE
PMA
22
14 35
' PAGER
E BOX
FAST
MEMORY
8> 16% 37
IR
13
VMA
SECTION 1 23
13 1718 35
ARITHMETIC MICRO
LOGIC CONTROLLER
(AD, AR, ETC} E BUS
PC
SECTION | 23
I 13 1718 35
METERS ERROR PROGRAM PRIORITY
LoGIC FLAGS INTERRUPT
— J
Introduction 1-7

The KL10 Processor

Figure 1.3 shows the internal configuration of the KL10 processor. Of the
registers shown, only PC, the program counter, is directly relevant to a
typical user. The processor performs a program by executing instructions
retrieved from the memory locations addressed by PC. For the normal pro-
gram sequence, PC is regularly incremented by one so that instructions are
taken from consecutive locations. Sequential program flow is altered by
changing the contents of PC, either by incrementing it an extra time in a
skip instruction, or by replacing its contents with the value specified by a
jump instruction. Throughout the text the phrase “jump to location n”
means to load the value n into PC, and continue performing instructions in
the normal counting sequence beginning at the location then specified by
PC. Physically PC is not a counter at all — it just holds the program count,
and the actual counting is done in the virtual memory address register
VMA. The entire VMA functions as a counter, but no carry is allowed into
the section part in program counting. Hence large data structures can arbi-
trarily cross section boundaries but the program cannot. The program
count wraps around in the current PC section, which is specified by PC bits
13-17. For the program to go from one section to another requires an ex-
plicit transfer of control by jumping to another section. In a single-section
KL10 all section bits are held at zero, so VMA and PC function as 18-bit
registers. The virtual address from VMA, whether eighteen bits or twenty-
three, is translated by the pager to a 22-bit physical address that is sup-
plied to memory via PMA.

Each instruction retrieved from memory contains information identify-
ing the operands and an instruction code specifying the operation to be
performed using those operands. The code goes to the instruction register
IR, from which it is decoded by the microcontroller, which in turn performs
the instruction by manipulating all of the other E box elements and mak-
ing the necessary requests to the M box. The microcontroller also executes
the more fundamental operations of sequencing the program, handling
TOPS-20 paging operations beyond the basic address translation made by
the pager (TOPS-10 operations are built into the M box pager), processing
interrupts, and so forth. (Not shown in the illustration is a multitude of
control lines emanating from the microcontroller and extending throughout
the machine.) The microcontroller operates from a microcode contained in a
control store. This microcode bears the same relation to the microcontroller
as the program does to the processor. But microprocessing is invisible to the
programmer, and he need not be concerned with the microcode except to the
extent of loading it at system initialization. The reader should however
note an important implication of this type of processor implementation: a
single KL10 processor can actually be a number of different processors
merely by loading different microcodes.

The major working area of the processor is the arithmetic logic. This
contains three full-word registers, arithmetic register AR, buffer register
BR, and multiplier-quotient register MQ, the first two of which have 36-bit
right extensions, ARX and BRX, for handling double length operands. Var-
ious combinations of these registers play a role in all arithmetic, logical
and data handling operations, and in program control operations as well.

1-8 Introduction

Also included in the arithmetic logic are an extremely fast double length
adder AD-ADX, and smaller registers that handle floating point exponents
and control shift operations and byte manipulation. But like the microcon-
troller, the arithmetic logic can be disregarded. Almost all of the operations
necessary for the execution of a program are performed in it, but it never
retains any information from one instruction to the next. Computations
either affect control elements such as PC and the program flags, or produce
results that are stored and must be retrieved if they are to be used as
operands in other instructions. The program flags detect conditions of inter-
est to the programmer, such as arithmetic and stack overflow, which can
cause program traps.

An instruction word has only one 18-bit address ﬁeld for addressing
any location in the current PC section. But most instructions have two 4-bit
fields for addressing the first sixteen memory locations. Any instruction
that requires a second operand has an accumulator address field, which can
address one of these sixteen locations as an accumulator; in other words as
though it were a result held over in the processor from some previous in-
struction (the programmer usually has a choice of whether the result of the
instruction will go to the location addressed as an accumulator or to that
addressed by the 18-bit address field, or to both). Every instruction has a
4-bit index register address field, which can address fifteen of these loca-
tions for use as index registers in modifying a memory address (a zero index
register address specifies no indexing). Although all computations on both
operands and addresses are performed in the arithmetic logic, the computer
actually has sixteen accumulators, fifteen of which can double as index
registers. The factor that determines whether one of the first sixteen loca-
tions in memory is an accumulator or an index register is not the informa-
tion it contains nor how its contents are used, but rather how the location is
addressed. These first sixteen locations are not actually in the storage mod-
ules — they are in a fast memory contained in the processor. This allows
much quicker access to these locations whether they are addressed as accu-
mulators, index registers or ordinary memory locations. They can even be
addressed from the program counter, and provision is made for referencing
them from nonzero sections. Moreover there are actually eight of these fast
memory blocks (also referred to as “AC blocks”), but generally only one is
available to a program at any given time. Blocks 6 and 7 are reserved
specifically for the microcode; the Monitor usually assigns block 1 to user
programs and reserves the others for itself.

An optional feature that speeds up memory access and increases the
efficiency of storage module use is a cache. This facility has 2048 locations
that temporarily substitute for a selection of the most frequently used stor-
age locations. Hence the cache may be regarded in some respects as a set of
general purpose registers. A program loop once read from storage and then
resident in the cache may be executed hundreds of times without further
instruction fetches from storage. Data produced by the program is written
in the cache. Thus if the program sets up a location to be a counter, that
location may be read and written thousands of times with no storage access,
even initially. When the cache is present but does not contain the word the
program wants, memory control gets a group of four adjacent words from
storage, including the requested one, and places them in the cache, on the

June 1982 , Introduction 1-9

assumption the program will probably want the other three and can thus .
get them more quickly. This is a reasonable assumption, since the program
counts sequentially and data manipulation is frequently sequential as well.
Cache control has a mechanism for determining frequency of use, and it
writes the least recently used word groups back into storage (or discards
them if unchanged) when the cache space is needed for new.references. The
only address restriction on the 512 4-word groups is that the cache can have
the same groups from at most four pages. There may be complete pages in
the cache, but it is more likely to have a selection of groups from a selection
of pages depending on frequency of use. Generally the cache contains words
for the current user and for the Monitor, as well as for handling interrupts
for many users. The reader should be aware that the cache contains repre-
sentations of memory word groups, not necessarily the actual storage con-
tents. For example, when the program writes a word, the contents of that
cache location then differ from the contents of the corresponding storage
location and the other words in the group may not even be in the cache.
This caution is of interest however only to the operating system: a typical
* program simply makes memory references, and the more of these in which
the cache substitutes invisibly for storage, so much the better.

Also included within the processor are a number of internal devices
that are similar to external controllers in that they operate independently
of the program but are controlled by it over the E bus. Some of these have
already been mentioned: the program sets up the pager, instructs cache
control to update storage, sets up the memory system, and gets diagnostic
information from the memory controllers and storage modules. Other such
“devices” are the error logic, the meters, and the priority interrupt. By
means of the error logic, the program can monitor conditions in the proces-
sor. The meters provide a time base, an interval counter, and facilities for
keeping track of program use of the system and analyzing system perform-
ance. The interrupt facilitates processor control of the entire system by
means of a number of priority-ordered levels over which external signals
may interrupt the normal program flow. The processor acknowledges an
interrupt request by executing the instruction contained in a particular
location for the level or doing some special operation specified by the device
(such as incrementing the contents of a memory location). Assignment of
levels to devices is entirely under program control. Two of the devices to
which the program can assign levels are the error logic and the interval
counter.

1-10 Introduction

1.2 KS10-based System Organization

Figures 1.4 and 1.5 show the organization of the newest member of the
DECSYSTEM family — the DECSYSTEM-2020 and the KS10 processor
used in it. The overall system (Figure 1.4) comprises a number of major
units or subsystems that communicate with one another over a bus built
into the backplane. The minimal system has five subsystems: processor,
MOS storage, console, and two in-out subsystems, each based on a Unibus.
One Unibus adapter handles the disk system, the second handles all other
peripheral equipment. Depending on the device, these adapters can make
direct access to storage or request that the processor handle the transfer via
the program. The console, which is based on a microprocessor, boots the
system from disk and handles interaction of the operator or a remote diag-
nostic link with the other subsystems. The backplane bus and most other
full word data paths are actually thirty-eight bits, having a parity bit for
each half word. The system can run under either the TOPS-20 or TOPS-10
Monitor.

Figure 1.4: DECSYSTEM-2020

< KS10 BACKPLANE BUS

)

FIRST SECOND STORAGE
UNIBUS UNIBUS CONSOLE PROCESSOR R
ADAPTER ADAPTER 64K MODULES
]
OPERATOR REMOTE
OPERATOR DIAGNOSTIC
UNIBUS ‘ LINK
DISK
SYSTEM
r
UNIBUS
A A
r 1 r
TAPE LINE SYNCHRONOUS CARD
PRINTER LINES READER

Introduction

1-11

Figure 1.5: KS10 Processor Simplified

KS10 BACKPLANE

BUS

BUS
TRANSCEIVERS

RAM FILE
1777
CACHE
PAGER ool
| 1000
777
WORKSPACE
4
200 38
177[FAST MEMORY
VMA o 128
| 22 1Kx38
14 17 18 35
\ \
- IR
18
ARITHMETIC UNIT
ARITHMETIC LOGIC
AND REGISTER FILE
(PC,AR,ETC.)
PROGRAM .
FLags |™ > - o] m™icro
CONTROLLER
/
Y
SYSTEM. PRIORITY
TIMER FLAGS INTERRUPT

1-12 Introduction

Of the elements shown in the processor illustration (Figure 1.5), only
fast memory, the program flags, and the program counter PC are directly
relevant to a typical user. The processor performs a program by executing
instructions retrieved from the memory locations addressed by PC. For the
normal program sequence, PC is regularly incremented by one so that in-
structions are taken from consecutive locations. Sequential program flow is
altered by changing the contents of PC, either by incrementing it an extra
time in a skip instruction, or by replacing its contents with the value
specified by a jump instruction. Throughout the text the phrase “jump to
location n” means to load the value n into PC, and continue performing
instructions in the normal counting sequence beginning at the location
then specified by PC. Physically PC is not a counter at all — it is a register
in the register file (described below). This register just holds the program
address, and the actual counting is done by the arithmetic logic, which
wraps the count around in eighteen bits because the virtual space is limited
to section 0. Addresses from PC, or calculated by the arithmetic logic, go to
the virtual memory address register VMA. Each virtual storage address
from VMA is translated by the pager to a 20-bit physical address that is
supplied to the storage subsystem via the bus. VMA actually has twenty-
two bits, for handling not only physical storage addresses, but addresses for
other types of bus transactions: with the console, in-out equipment, mem-
ory status. .

Each instruction retrieved from memory contains information identify-
ing the operands and an instruction code specifying the operation to be
performed using those operands. The code goes to the instruction register
IR, from which it is decoded by the microcontroller, which in turn performs
the instruction by manipulating all of the other processor elements and
making the necessary requests for bus transactions. The microcontroller
also executes the more fundamental operations of sequencing the program,
handling paging operations beyond the basic address translation made by
the pager, processing interrupts, and so forth. (Not shown in the illustra-
tion is a multitude of control lines emanating from the microcontroller and
extending throughout the machine.) The microcontroller operates from a
microcode contained in a control store. This microcode bears the same rela-
tion to the microcontroller as the program does to the processor. But mi-
croprocessing is invisible to the programmer, and he need not be concerned
with the microcode except to the extent of loading it at system initializa-
tion. The reader should however note an important implication of this type
of processor implementation: a single KS10 processor can actually be a
number of different processors merely by loading different microcodes.

The major working area of the processor is the arithmetic unit. Central
to this unit is a set of ten 4-bit microprocessor slices, which together con-
tain the full word arithmetic logic and a file of ten registers. The register
file includes, besides PC, the arithmetic register AR, other associated regis-
ters used in manipulating data and performing arithmetic and logical oper-
ations, and registers that contain system addresses, status information and
constants. The arithmetic logic includes a full word adder, shifter and

mixers. It also contains complete 10-bit logic for direct manipulation of

floating point exponents and standard 7-bit bytes, and also for controlling

Introduction

1-13

shifting and operations on bytes of other sizes. Multiple length operands
are handled by separately manipulating their higher and lower order words
using the registers in the file. But like the microcontroller, the arithmetic
unit (except for PC) can be disregarded by the user. Almost all of the opera-
tions necessary for the execution of a program are performed in it, but it
never retains any information from one instruction to the next. Computa-
tions either affect control elements such as PC and the program flags, or
produce results that are stored and must be retrieved if they are to be used
as operands in other instructions. The program flags detect conditions of
interest to the programmer, such as arithmetic and stack overflow, which
can cause program traps. (Several registers in the file do retain information
of interest to the system programmer however.)

An instruction word has only one 18-bit address field for addressing
any location in the virtual space. But most instructions have two 4-bit
fields for addressing the first sixteen memory locations. Any instruction
that requires a second operand has an accumulator address field, which can
address one of these sixteen locations as an accumulator; in other words as

though it were a result held over in the processor from some previous in-

struction (the programmer usually has a choice of whether the result of the
instruction will go to the location addressed as an accumulator or to that
addressed by the 18-bit address field, or to both). Every instruction has a
4-bit index register address field, which can address fifteen of these loca-
tions for use as index registers in modifying a memory address (a zero index
register address specifies no indexing). Although all computations on both
operands and addresses are performed in the arithmetic unit, the computer
actually has sixteen accumulators, fifteen of which can double as index
registers. The factor that determines whether one of the first sixteen loca-
tions in memory is an accumulator or an index register is not the informa-
tion it contains nor how its contents are used, but rather how the location is
addressed. These first sixteen locations are not actually in the storage mod-
ules — they are in a fast memory contained in the processor. This allows
much quicker access to these locations whether they are addressed as accu-
mulators, index registers or ordinary memory locations. They can even be
addressed from the program counter. Moreover there are actually eight of
these fast memory blocks (also referred to as “AC blocks”), but generally
only one is available to a program at any given time. Block 7 is reserved
specifically for the microcode; the Monitor usually assigns block 1 to user
programs and reserves the others for itself.

A feature that speeds up memory access and increases the efficiency of
storage module use is a virtual cache. This facility has 512 locations that
duplicate the contents of storage locations in current use in the virtual
address space of the program. Every time a word is read from storage or
written in storage, it is also written in the cache location selected by the
right nine virtual address bits, which represent position within the virtual
page. Provided there is no intervening reference to the same position in
some other page, a subsequent read reference to the same virtual location
can be made to the cache (referred to as a “cache hit”) instead of going over
the bus to storage. A program loop once read from storage and then resi-
dent in the cache may be executed hundreds of times without further in-

1-14 Introduction

June 1982

struction fetches from storage; and data produced by the program can be
retrieved without requiring bus transactions. To a great extent the cache is
also invisible: a typical program simply makes memory references, and the
more of these in which a word is read from the cache instead of storage, so
much the better. However a program that tends to settle in one virtual
page at a time, instead of alternating references among a number of pages,
will maintain a much higher cache hit rate, saving considerable time.

Fast memory and the cache are contained respectively in the bottom
128 and top 512 locations in a RAM file in the processor. The remaining
384 locations are a workspace used by the microcode as a scratch pad, and
used for handy storage of various system quantities and constants that
expedite the execution of the more complicated instructions. Also included
within the processor are several elements, such as the pager already men-
tioned, that are similar to external controllers in that they operate inde-
pendently of the program but are controlled by it. The timer provides a
time base and an interval counter. By means of the system flags, the pro-
gram can monitor various conditions throughout the system, and can inter-
rupt the console or be interrupted by it. The interrupt facilitates processor
control of the entire system by means of a number of priority-ordered levels
over which external signals may interrupt the normal program flow. The
processor acknowledges an interrupt request by executing the instruction
contained in a particular location for the level or the source of the request.
Assignment of levels is entirely under program control. Two levels can be
assigned to each Unibus adapter, and one can be assigned to the system
flags.

1.3 Timesharing

Inherent in the machine hardware are restrictions that apply universally:
only certain instructions can be used to respond to a priority interrupt, and
certain memory locations have predefined uses. But above this fundamen-
tal level, the timeshare hardware provides for different modes of processor
operation and establishes certain instruction and memory restrictions so
that the processor can handle a number of user programs (programs run in
user mode) without their interfering with one another. The memory restric-
tions are dependent to a great extent on the type of processor, but the
instruction restrictions are not, and these are relatively obvious: a program
that is sharing the system with others cannot usually be allowed to halt the
processor or to operate the in-out equipment arbitrarily (unrestricted in-out
with a limited number of devices is allowed for special real time applica-
tions). A program that runs in executive mode — the Monitor — is respon-
sible for scheduling user programs, servicing interrupts, handling input-
output needs, and taking action when control is returned to it from a user
program. Any violation of an instruction or memory restriction by a user
transfers control back to the Monitor. Dedication of the entire facility to a
single purpose, in other words with only one user, is equivalent to operation
in executive mode.

The paging hardware maps pages from the virtual address space into
pages anywhere in physical memory. A page map for each program speci-

Introduction

1-15

fies not only the correspondence from vitrual address to physical address,
but also whether an individual virtual page is accessible or not, alterable or
not, and whether the cache can be used for references to it. In the KL.10 and
KI10, both user and executive modes are subdivided according to whether
the program is running in a public area or a concealed area; these areas are
distinguished by whether or not their pages are labeled public. Within user
mode these submodes are public and concealed; within executive mode they
are supervisor and kernel. A program in concealed mode can reference all
of accessible user memory, but the public program cannot reference the
concealed area except to transfer control into it at certain legitimate entry
points. The concealed area would ordinarily be used for proprietary pro-
grams that the user can call but cannot read or alter. In the KS10 all pages
may be regarded as concealed, as none are labeled public; but in reality the
concept of public vs concealed simply does not apply. KS10 executive mode
is identical to kernel mode in that supervisor restrictions do not exist. In
this treatment of timesharing, any mention of public as against private is
irrelevant to the KS10, and functions indicated as being performed by the
kernel or supervisor program are all handled by the KS10 executive.

In kernel mode the Monitor handles the in-out for the system, handles
priority interrupts, constructs page maps, and performs those functions
that affect all users. This mode has no instruction restrictions and the
program can even turn off the pager to address memory directly, using
physical addresses; the address space is then said to be unpaged. In paged
address space, individual pages may be restricted as inaccessible or write-
protected, but it is the kernel program that establishes these restrictions.
In supervisor mode the Monitor handles the general management of the
system and those functions that affect only one user at a time. This mode
has essentially the same instruction and memory restrictions as user mode,
although the supervisor program can read, but not alter, the concealed
areas; in this way the kernel mode Monitor supplies the supervisor pro-
gram with information the latter cannot affect, even though the locations
are not write-protected in kernel mode. The kernel program generally as-
signs fast memory block 0 for ordinary use by the Monitor in either mode
(especially in a TOPS-10 system — to be compatible with the KI10 where
the hardware requires it). Typically, the Monitor assigns block 1 to all
users and uses blocks 2 and 3 for handling interrupts (e.g. block 2 just for
the highest priority level and block 3 for the others).

The most extensive hardware features for timesharing exist in the
KL10 and KI10. The reason for this is that the newest software is much
more sophisticated and thus requires less hardware to do the job — a fact
that the KS10 takes advantage of to cut cost. An example of the use of the
most extensive timeshare hardware is illustrated in Figure 1.6. This draw-
ing shows the layout of a single-section KL10 address space that is config-
ured to make full use of the various modes, to be used with a TOPS-10
Monitor, and to be compatible with earlier machines. The space is 256K,
made up of 512 pages numbered 0-777 octal. Any program can address
locations 0-17 as these are in fast memory and are completely unrestricted
(although the same addresses may be in different blocks for different pro-

i

1-16 Introduction

June 1982

Figure 1.6: Possible TOPS-10 Virtual Address Space Configuration

PPPPPP

PPPPPPPPPPPP
EEEEEEEEEEEEEEEEEE

%/// s
;f/

/// ., e,
% é/
7 g I S ” /
- v
/R
400 2L % 400{%/ . “00

UUUUUUUUUUUU

PPPPPPPPPPPP
EEEEEEEEEEEEEEEEEE

CCCCCCCCC
NNNNNNNNNNN

CCCCCCCCC

TTTTTTTTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

Introduction 1-17

grams). The public user program operates in the public area, part of which
may be write-protected. The public program cannot access any locations in
the concealed areas except to fetch instructions from prescribed entry
points. The concealed user program has access to both public and concealed
areas, but it cannot alter any write-protected location whether public or
concealed, and fetching an instruction from the public area automatically
returns the processor to public mode. In a TOPS-20 system, an area labeled
“write-protected” might better be called “copy on write.” Write protection is
generally for pure code shared by a number of users. If one user attempts to
alter it, the TOPS-20 Monitor will ordinarily make a separate copy for him
in his alterable space, and keep the write-protected copy for the remaining
users.

In our example write-protected user pages are in the high address half
of the space for compatibility with the two-part protection and relocation
scheme of the KA10. We define the supervisor program as confined to pages
340 and above, even though there is actually nothing to prevent it from
reading that part of the kernel program shown in the lower numbered
pages. The reason for specifying it this way is for compatibility with the
K110, where the bottom 112K of executive space is unpaged and accessible
only in kernel mode. Part of the executive public area may be write-
protected, and even though the supervisor can read concealed information,
it cannot change a concealed location whether write-protected or not. For
executive concealed areas, the distinction of writable as against write-
protected applies only to kernel mode. As in the case of concealed user
mode, when the kernel program fetches an instruction from a public area
the processor returns to supervisor mode. With TOPS-10 paging, pages
340-377 constitute the per-process area, which contains information spe-
cific to individual users and whose mapping accompanies the user page
map. In other words the physical memory corresponding to these virtual
pages can be changed simply by switching from one user to another, rather
than the Monitor changing its own page map.

In executive space of an extended KL10, the interrupt code must be in
section 0. The rest of the executive program is usually in section 1, but the
two sections are mapped identically, so a given in-section address in either
refers to the same physical location. Even with an extended user space, a
single-section user program would ordinarily be run in section 0 for com-
patibility with an unextended space. For the multisection case, the pro-
gram might be in section 1, special tables in section 2, and a large data
structure, such as an immense matrix, might occupy sections 10-12. In
terms of instructions implemented and procedures used, the KS10 acts like
an extended processor that is confined to section 0.

To manage the system effectively, the Monitor keeps a special table for
each process in each processor. These process tables are defined in physical
memory; each requires a single page whose whereabouts must be specified
by the Monitor, which keeps an executive table for itself and a user table
for each user. With TOPS-10 paging, the first half of the table holds the
page map for the process; with TOPS-20 paging, the process table contains
a table of section pointers to page maps for whatever sections are in
use. The hardware defines the use of many other locations in the process

1-18 . Introduction

June 1982

tables, especially in the KL10: these include locations that hold trap and
interrupt instructions, control blocks for channels and front end processors,
and various quantities associated with paging and the meters. Of course in
the KS10 there are no control blocks as there are no channels or front end
processors; moreover timing information and many of the words associated
with paging are kept in the workspace instead of the process tables. Parts
of a process table not used by or set aside for the hardware are available to
the software. In each user process table the Monitor generally keeps a stack
for use with the process, job tables, and various user statistics such as
memory space and billing information. In the text the phrase “user process
table” refers to the table currently specified by the Monitor as the one for
the user even if that user is not currently running.

1.4 Number System

A program can interpret a data word as a 36-digit, unsigned binary num-
ber, or the left and right halves of a word can be taken as separate 18-bit
numbers. The PDP-10 repertory includes instructions that add or subtract
one from both halves of a word, so the right half can be used for address
modification when the word is addressed as an index register, while the left
half is used to keep a control count.

The fixed-point arithmetic instructions use twos complement represen-
tations to do binary arithmetic. In a word used as a number, bit 0 (the
leftmost bit) represents the sign, 0 for positive, 1 for negative. In a positive
number the remaining thirty-five bits are the magnitude in ordinary bi-
nary notation. The negative of a number is obtained by taking its twos
complement. If x is an n-digit binary number, its twos complement is
2" — x, and its ones complement is (2" — 1) — x, or equivalently
(2" — x) — 1. Subtracting a number from 2" — 1 (i.e. from all 1s) is equiv-
alent to performing the logical complement, i.e. changing all Os to 1s and
all 1s to 0s. Therefore, to form a twos complement one takes the logical
complement (usually referred to merely as the complement) of the entire
word including the sign, and adds 1 to the result. In a negative number the
sign bit is 1, and the remaining bits are the twos complement of the magni-
tude.

+153,, = +2314 =:E)OOOOOOOOO()OOOOOOO0000000000100]1 OOII

0 35

fl

—2314 ::Illl TIT 1ttt 111 111 101 IOOHII

0 3s

—]5310

A twos complement addition actually acts as though the words repre-
sented 36-bit unsigned numbers, i.e. the signs are treated just like magni-
tude bits. In the absence of a carry into the sign stage, adding two numbers
with the same sign produces a plus sign in the result. The presence of a
carry gives a positive answer when the summands have different signs. The
result has a minus sign when there is a carry into the sign bit and the
summands have the same sign, or the summands have different signs and
there is no carry. Thus the program can interpret the numbers processed in

Introduction

1-19

fixed point addition and subtraction as signed numbers with thirty-five
magnitude bits or as unsigned 36-bit numbers. A computation on signed
numbers produces a result that is correct as an unsigned 36-bit number
even if overflow occurs, but the hardware interprets the result as a signed
number to detect overflow. Adding two positive numbers whose sum is
greater than or equal to 2% gives a negative result, indicating overflow; but
that result, which has a 1 in the sign bit, is the correct answer interpreted
as a 36-bit unsigned number in positive form. Similarly adding two nega-
tives gives a result which is always correct as an unsigned number in
negative form.

Zero is represented by a word containing all 0s. Complementing this
number produces all 1s, and adding 1 to that produces all Os again. Hence
there is only one zero representation and its sign is positive. Since the
numbers are symmetrical in magnitude about a single zero representation,
all even numbers both positive and negative end in 0, all odd numbers in 1
(a number all 1s represents —1). But since there are the same number of
numbers with each sign and zero has a plus sign, there is one more nega-
tive number than there are strictly positive numbers (nonzero numbers
with a plus sign). This is the most negative number and it cannot be pro-
duced by negating any positive number (its octal representation is 400000
000000 and its magnitude is one greater than the largest positive number).

If ones complements were used for negatives one could read a negative
number by attaching significance to the Os instead of the 1s. In twos com-
plement notation each negative number is one greater than the comple-
ment of the positive number of the same magnitude, so one can read a
negative number by attaching significance to the rightmost 1 and attach-
ing significance to the Os at the left of it (the negative number of largest
magnitude has a 1 in only the sign position). In a negative integer, 1s may
be discarded at the left, just as leading Os may be dropped in a positive
integer. In a negative fraction, Os may be discarded at the right. So long as
only Os are discarded, the number remains in twos complement form be-
cause it still has a 1 that possesses significance; but if a portion including
the rightmost 1 is discarded, the remaining part of the fraction is now a
ones complement. Single precision multiplication produces a double length
product, and the programmer must remember that discarding the low order
part of a double length negative leaves the high order part in correct twos
complement form only if the low order part is zero.

The computer does not keep track of a binary point — the programmer
must adopt a point convention and shift the magnitude of the result to
conform to the convention used. Two common conventions are to regard a
number as an integer (binary point at the right) or as a proper fraction
(binary point at the left); in these two cases the range of numbers
represented by a single word is —2% to 2% — 1 or -1 to 1 — 2735, Since
multiplication and division make use of double length numbers, there are
special instructions for performing these operations with integral operands.

The format for double length fixed point numbers is just an extension
of the single length format. The magnitude (or its twos complement) is the
70-bit string in bits 1-35 of the high and low order words. Bit 0 of the high
order word is the sign, and bit 0 of the low order word is made equal to the

1-20 Introduction

sign. The range for double length integers and proper fractions is thus -2
to 2° — 1 and -1 to 1 — 27", The double precision instructions actually use
quadruple length numbers for products and dividends. But numbers of any
length are just a further extension of the basic format: thirty-five addi-
tional bits of the number in each lower order word, and bit 0 made equal to
the sign. Remember that truncating a multiple length negative requires an
adjustment for the twos complement unless the part discarded is zero. The
convention for bit 0 of lower order words is inconsistent with that used for
floating point format (see below). This does not affect the arithmetic in-
structions themselves, as they ignore bit 0 in all lower order words. How-
ever instructions that negate a doubleword use the floating point
convention. This means that if such instructions are used for fixed point
numbers, a problem could arise when comparing one double precision num-
ber with another.

Floating Point Numbers

The floating point instructions provide for conversion between fixed and
floating forms and handle both single and double precision floating point
numbers. The same format is used for a single precision number and the
high order word of a standard range double precision number. A floating
point instruction that handles numbers with the standard exponent range
(available in all machines) interprets bit 0 as the sign, but interprets the
rest of the word as an 8-bit exponent and a 27-bit fraction. For a positive
number the sign is 0, as before. But the contents of bits 9-35 are now
interpreted only as a binary fraction, and the contents of bits 1-8 are inter-
preted as an integral exponent in excess 128 (2004) code. Exponents from
—128 to + 127 are therefore represented by the binary equivalents of 0 to
255 (0-377,). Floating point zero and negatives are represented in exactly
the same way as in fixed point: zero by a word containing all Os, a negative
by the twos complement. A negative number has a 1 for its sign and the
twos complement of the fraction, but since every fraction must ordinarily
contain a 1 unless the entire number is zero (see below), it has the ones
complement of the exponent code in bits 1-8. Since the exponent is in
excess 128 code, an actual exponent x is represented in a positive number
by x + 128, in a negative number by 127 — x. The programmer, however,
need not be concerned with these representations as the hardware compen-
sates automatically. For example, for the instruction that scales the expo-

nent, the hardware interprets the integral scale factor in standard twos.

complement form but produces the correct ones complement result for the
exponent.

+158,, = +231, = +.462,X2°
=|0]10. 001 000[100 110 010 000 V00 000 000 000 000]
01 89 35
-153,, = -231, = -.462,X2°

= ijo1 110 111]011 001 110 000 000 000 000 000 V00|

01 B9 35

June 1982 Introduction

1-21

The floating point instructions assume that all nonzero operands are
normalized, and they normalize a nonzero result. A floating point number
is considered normalized if the magnitude of the fraction is greater than or
equal to 4 and less than 1. The hardware may not give the correct result if
the program supplies an operand that is not normalized or that has a zero
fraction with a nonzero exponent. »

Single precision floating point numbers have a fractional range in
magnitude of 4 to 1 — 27, about eight significant decimal digits. Increas-
ing the length of a number to two words does not significantly change the
range but rather increases the precision; in any format the magnitude
range of the fraction is % to 1 decreased by the value of the least significant
bit. With either precision the exponent range is —128 to + 127, giving a
decimal range of approximately 1.5 x 10 to 1.7 < 10™,

The precaution about truncation given for fixed point multiplication
applies to single precision floating point operations as they are done in
extra length; but the programmer may request rounding, which automat-
ically restores the high order part (the result) to twos complement form if it
is negative. In double precision floating point instructions, all operands and
results are double length, and all instructions calculate an extra length
answer, which is rounded to double length with the appropriate adjustment
for a twos complement negative. In double precision format the high order
word is the same as a single precision number, and bits 1-35 of the low
order word are simply an extension of the fraction, which is now sixty-two
bits, or over eighteen decimal digits. Bit 0 of the low order word is made 0
in a result but is ignored in all operands; e.g. the number 2'* + 27'® has this
two-word representation in standard range double precision format,

[o]to 010 011]100 000 000 000 000 000 000 000 000]

01 &9 35

[0oo 000 000 0 10 000 000 000 000 000 000 V00 000]

01 RN

and its negative is

[01 101""i'I)()[GTi_I'I""i TR TIR IR EIR Y

[89 RE

M] P LT 1ET 110 000 000 000 000 000 000 000 000

01 RE

Expanded Range Floating Point Numbers. Most KL10s have in-
structions for handling double precision floating point numbers with an
expanded exponent range. This is accomplished by using three more bits for
the exponent, thus increasing its range by a factor of eight at a cost of
losing only one significant decimal digit in precision. Numbers of this type
are referred to as being in “G format”, for consistency with the VAX termi-
nology (standard range single and double precision floating point corre-
spond to the VAX F and D formats). These instructions are present in any
KL10 with microcode version 271 or greater.

1-22 Introduction

June 1982

A G format number is like a standard range double precision number
except that the high order word contains an 11-bit exponent and only the
first twenty-four bits of the fraction. In other words the fraction starts at bit
12, and the contents of bits 1-11 are interpreted as an integral exponent in
excess 1024 (20004) code. Exponents from -1024 to + 1023 are therefore
represented by the binary equivalents of 0 to 2047 (0-3777,), resulting in
this two-word representation for the number used in the preceding
example.

000 010 010 011[100 000 000 000 000 000 000 000

01 12 35

10J00 000 000 000 010 000 000 000 000 000 000 000

01

35

These numbers give a decimal range of approximately 2.8 - 10™ to
9 ¢ 103()7'

1.5 Instruction Format

In the basic instruction format, the nine high order bits (0-8) specify the
operation, and bits 9-12 address an accumulator. The rest of the instruction
word supplies information for calculating the effective address, which is the
actual address used to fetch the operand or alter program flow. Bit 13
specifies the type of addressing, bits 14-17 specify an index register for use

June 1982 Introduction

1-22.1

ADDRESS TYPE

ACCUMULATOR INDEX REGISTER
ADDRESS \ / ADDRESS
T
INSTRUCTION CODE | \ l l ! ‘ MEMORY ADDRESS]
0 89 121314 1718 35

BASIC INSTRUCTION FORMAT

in address modification, and the remaining eighteen bits (18-35) address a
memory location. In variations on this basic format, bits 9-12 may be used
for addressing flags, or all thirteen high order bits (0-12) may be used for
an expanded instruction code. The instruction codes that are not assigned
as specific instructions are performed by the processor as so-called “unim-
plemented operations.” Among the unimplemented operations are some
that are specified as “unimplemented user operations” or UUOs (a mne-
monic that means nothing to the assembler). Some of these are for the local
use of a program (LUUOs) and some are for communication with the Moni-
tor (MUUOs). In general, unassigned codes act like MUUOs.

In the KL10 and earlier processors, three 1s in bits 0-2 indicate an
input-output instruction, and these instructions have a different format. In
all processors from the KS10 on, in-out instructions use the basic format,
but for consistency they always do have 1s in the leftmost three bits (there
are also non-IO instruction codes beginning with 7). In the IO instruction
format used prior to the KS10, bits 3-9 address the in-out device to be used
in executing the instruction, and bits 10-12 specify the operation. The rest
of the word is the same as in other instructions.

ADDRESS TYPE

INSTRUCTION INDEX REGISTER
CODE \\ ADDRESS
AY T 7
L 7 l DEVICE CODE | l l MEMORY ADDRESS
0 23 910 121314 1718 35

PRE-KS10 IN-OUT INSTRUCTION FORMAT

Of course post-KL10 IO instruction codes are opportunely chosen, so equiv-
alent instructions generally have the same configuration in all processors.

Note that bits 13-35 have the same format in both types of instruc-
tions; in fact these bits are the same in every instruction whether it ad-
dresses a memory location or not. In the format illustrations throughout
the manual this part of an instruction word is shown as

] x | Y

1314 1718 35

where bit 13 is represented by I for “indirect bit,” i.e. the address type is
either direct or indirect, where the latter is indicated by a 1. For every
instruction the processor carries out an effective address calculation that
results in a quantity referred to as E. This is the effective address of the
instruction if indeed it is an address, whether for an operand or a jump. E
may however be effective conditions, an effective shift, or something else,

Introduction

1-23

but the result of the calculation is always referred to as E. In illustrations
for the basic instructions, bits 9-35 are almost always represented by

o il ox] Y

9 121314 1718 35

where A is the accumulator address.

NOTE

Although the various parts of an instruction word are always
labeled, in some instructions the result of the effective ad-
dress calculation is not actually used. Unless otherwise speci-
fied, in such cases the I, X and Y parts of the word are re-
served by Digital for possible future use, and they must be
zero for compatibility with such use. Similarly when bits
9-12 are not used, they are also reserved and must be zero.
A similar stricture holds for all the formats defined
throughout the manual for address words, pointers, and all
sorts of special words associated with system features. In
words supplied by the program, unassigned bits are available
for arbitrary use by the user only if specifically so indicated.
Bits labeled “reserved” or simply left blank are reserved to
Digital for future use by the hardware or use by the system
software. In any word read by the program, unlabeled bits
are read as Os unless there is a specific indication otherwise.

The KL10 and KS10 have a feature that allows expansion of the in-
struction repertory by an extension of the basic format to two words. In a
two-word instruction, it is only the first word that actually appears in the
program sequence, i.e. that is referenced by PC; and the accumulator used
by the instruction is that specified by the A field of the first word. But the
instruction the processor actually executes is the second word, and it is
found at location E0, which is the result of the effective address calculation
for the first word. Moreover, the way the processor interprets the instruc-
tion code of the second word is entirely different from the way it would if
that same word appeared in the program sequence as a one-word instruc-
tion. Thus use of a single instruction code in the first word effectively
creates a whole new instruction set as large as the one the processor al-
ready has. At present there is only one such extended instruction set, and
only a small number of the available extended codes are used. In extended
instructions the first word is the extend instruction, which has code 123.
The format illustrations for these instructions are like this.

| 123 | a4 1] x| Y |

0 89 121314 1718 35
EO FNSTRUCTION CODEl 00]d X l Y
4] 8 9 121314 17 18

1-24 Introduction

But remember: although the two words are shown together, they never
appear one after the other in the program sequence. If they did, the proces-
sor might well perform the second word as a standard instruction after
executing it as an extended instruction. As with all instructions, before
executing the second word the processor calculates an effective address for
it; this is referred to as E1, and its use depends on the instruction. Bits 9-12
of the second instruction word must be zero for compatibility with possible
future use. Unassigned extended instruction codes are executed as MUUOs.

1.6 Effective Address Calculation

At system startup the pager is off, so all addresses are used as physical
addresses for memory. In this case of course the program must not give
addresses that lie outside the range determined by available memory. Also
when the Monitor is setting up page maps, it must select appropriate physi-
cal translations. But for a running program, whether user or executive, in
any normal circumstances, the relevant memory space is the virtual ad-
dress space; and all address calculation should be viewed as being in virtual
space. This is true even for fast memory, which every program regards as in
its virtual space even though fast memory addresses are treated as physical
and are not sent to the pager for mapping: instead they are supplied di-
rectly to the fast memory from VMA. For our discussion of the effective
address calculation let us begin with the simpler case — a virtual space
limited to a single section (all quantities eighteen bits).

Bits 13-35 have the same format in every instruction whether it ad-
dresses a memory location or not. Bit 13 is the indirect bit, bits 14-17 are
the index register address, and if the instruction must reference memory,
bits 18-35 are the memory address Y. The effective address E of the in-
struction depends on the values of I, X and Y. If I and X are both zero, Y is

i x| y

1314 1718 3s

E — i.e. bits 18-35 contain the effective address. If X is nonzero, the con-
tents of the right half of index register X are added to Y to produce an 18-
bit modified address. If [is 0, addressing is direct, and the modified address
is the effective address used in the execution of the instruction; if I is 1,
addressing is indirect, and the processor retrieves another address word
(referred to as an “indirect word”) from the location specified by the modi-
fied address already determined. This new word is processed in exactly the
same manner: X and Y determine the effective address if I is 0, otherwise
they are used for yet another level of address retrieval. This process contin-
ues until some referenced location is found with a 0 in the indirect bit; the
18-bit number calculated from the X and Y parts of this location is the
effective address E. We have taken Y to be a memory address, but the
program can just as well have an address in the index register, and have
the Y part of any instruction or indirect word that references it be an offset
or displacement. An instruction or indirect word is still an “address word”

Introduction

1-25

even though it may not contain an address; and the quantity in an index
register is still called an “index” even when it is an address instead of an
offset. Note that throughout the procedure, no computed quantity is ever
larger than eighteen bits. In the arithmetic operations overflow is dis-
carded by disabling the carry from bit 18 to bit 17. Hence adding a large
offset can be the same as subtracting a small one.

The calculation outlined above is carried out for every instruction even
if it need not address a memory location. If the indirect bit in the instruc-
tion word is 0 and no memory reference is necessary, then Y is not an
address. It may be a mask in some kind of test instruction, conditions to be
sent to an in-out device, an offset for bytes in a string, or part of it may be
the number of places to shift in a shift or rotate instruction or the scale
factor in a floating scale instruction. Even when modified by an index regis-
ter, bits 18—-35 do not contain an address when [is 0 and no memory refer-
ence is required. But when 7 is 1, the number determined from bits 14--35 is
an indirect address no matter what type of information the instruction
requires, and the word retrieved in any step of the calculation contains an
indirect address so long as I remains 1. When a location is found in which /
is 0, bits 18-35 (perhaps modified by an index register) contain the desired
effective mask, effective conditions, effective offset, effective shift number,
or effective scale factor. Many of the instructions that usually reference
memory for an operand even have an “immediate” mode in which the result
of the effective address calculation is itself used as a half word operand
instead of a word taken from the memory location it addresses. KS10 IO
instructions do not use the result of the effective address calculation; in-
stead they recompute an IO address by a similar procedure (§2.17).

The important thing for the programmer to remember is that the same
calculation is carried out for every instruction regardless of the type of
information that must be specified for its execution, or even if the result is
ignored. In the discussion of any instruction, E refers to the actual quantity
derived from I, X and Y and used in the execution of the instruction, be it
the entire half word as in the case of an address, immediate operand, mask,
offset or conditions, or only part of it as in a shift number or scale factor.

PLEASE READ THIS

The calculation of E is the first step in the execution of every
instruction. No other action taken by any instruction, no mat-
ter what it is, can possibly precede that calculation. There is
absolutely nothing whatsoever that any instruction can do to
any accumulator or memory location that can in any way af-
fect its own effective address calculation.

Extended Addresses

As explained at the beginning of this chapter, the address space of an
unextended processor is limited to one section, which by definition is
section 0. Such processors employ only in-section addresses, as no section
number is necessary when there is only one section. In an extended proces-
sor the much larger address space is divided into sections of 256K each, and
an individual location is identified by an address containing both a section

1-26 Introduction

June 1982

number and an in-section part. There are still many circumstances, how-
ever, in which in-section addresses are used alone in an extended processor.
The most obvious case is the address given directly by an instruction: this
is limited to eighteen bits and is confined to the section from which the
instruction is retrieved, being usually the section in which the program is
currently running as determined by PC. And, of course, if user space is not
extended, all of its addresses are in-section, being in section 0.

. EXTENDED ADDRESS IN-SECTION
ADDRESSES SPACE ADDRESSES
"~ 0000000 0
: SECTION 0
0777777 7771177
1000000 0
: SECTION 1 :
1777117 717777
2000000 0
: SECTION 2
2777777 777117

Even in an extended space, an effective address calculation performed
in section 0 is done exactly as outlined above, with all addresses and dis-
placements taken as 18-bit quantities contained in bits 18-35 of an instruc-
tion word, an index register, or an indirect word. In other words, when a
program is running in section 0, £ can never reference a nonzero section,
for either an operand or a jump (although it can reference an operand that
supplies an extended address). Moreover in terms of addressing, section 0 of
an extended space is entirely compatible with the single section of an unex-
tended space. But in nonzero sections, the effective address calculation can
use extended addressing. To understand how extended addressing works,
the reader must understand the following terms.

o A local address is an 18-bit address. The location it addresses must be in
some section, which may be any section, but the section number is supplied
by something other than the address. ’

o A global address is a 30-bit address, which therefore supplies its own
section number. Of course only the right twenty-three bits (sections 0-37)
are meaningful in a KL10 extended address space, but this does not mean
that larger section numbers cannot be used for software purposes. In partic-
ular section number 7777 is reserved always to trap to the Monitor.

e A local index is an 18-bit unsigned displacement or address in bits 18-35
of an index register.

e A global index is a 30-bit unsigned displacement or address in bits 6— 35
of an index register.

e A local indirect word i is one containing a local address or displacement
in this format.

June 1982 ' Introduction 1-27

l | 0| RESERVED / X Y

0o 12 121314 1718 3s

For obvious reasons, an address word of this sort is also called an “instruc-
tion format indirect word”. An instruction word is by deﬁmtlon a local
address word.

e A global indirect word is one containing a global address or displace-
ment in this format. -

ol x | Y |

01 2 56 ‘ 35

An address word of this type is also called an “extended format indirect
word”.

We can now state that an extended effective address calculation is
carried out by essentially the same procedure as described above, with in-
dex and indirect steps depending on the values of I and X supplied by a
sequence of address words. But now there are differences in the meanings
of individual terms and in the way individual operations are performed.
First, the indirect bit can be either bit 13 or bit 1 depending on whether it
is supplied by a local or global address word (instruction or extended for-
mat). Second, there are several varieties of indexing: local and global, with
two versions of the latter depending on whether the quantity being indexed
is local or global.

e Local indexing occurs when the address word is local and either the left
half of the index register is negative or the section number part of it (bits
6-17) is zero. In this case the operation is carried out just as in the unex-
tended procedure, and the indexing produces a local address in the section
from which the address word is taken (the PC section in the case of an
instruction word). Note that this means the program can use local indexing
in a nonzero section; and furthermore it can use the left half of the local
index register for a control count that counts up through negative numbers
to end an iterative process at zero.

e Global indexing occurs when the address word is global, or the address
word is local but the left half of the index register is positive and bits 6-17
contain a nonzero section number. In either case the result is a: global
address. When the address word is global, the index is taken as global and
is added to Y (bits 6—35 of the global indirect word). This is simply a global
extension of local indexing: the address word may contain an address and
the index register an unsigned offset, or vice versa; adding a large offset
can be the same as subtracting a small one. The case where the address
word is local is quite unlike local indexing: the index is assumed to be a
global address, and the 18-bit Y is interpreted as a signed displacement
(maximum magnitude 2'7), which is added to it algebraically.

1-28 Introduction

As shown in Figure 1.7, the effective address calculation begins in the
section from which the first address word is taken. This is the “local” sec-
tion for the given address word — the PC section in the case of an instruc-
tion word specified by PC. The calculation remains in the local section until
the appearance of a global quantity (index or indirect word) changes the
section number. So long as only local events occur, all addresses are inter-
preted as being in the same section (local indexing wraps around 256K).
Note that either a local or global address can be used to fetch either a local
or global indirect word; but indexing can change only a local quantity to a
global one — it cannot modify a global address into a local one. No matter
how long the procedure remains local, global indexing or retrieval of a
global indirect word can switch to a new section. However if the procedure
enters section 0 it can never get out. This is because the calculation then
interprets all further quantities as local no matter what their format, i.e.
no matter what the program may have meant by the information placed in
the words containing them.

At the end if E is an address, then either it is a global address or it is
interpreted as being in the last section specified. But in an instruction in
which E is not an address, the section number is ignored and E is whatever
number of bits is appropriate. In particular an immediate mode operand is
always eighteen bits, except in two instructions that specifically handle an
extended address as an immediate operand.

The accumulators are regarded as being in the local section of the
instruction that addresses them. Hence unless otherwise specified, a local
pointer taken from an accumulator addresses a location in the same section
as the instruction.

Finally, there is the matter of fast memory reference. An address refer-
ences a fast memory location if its in-section part is in the range 0-17, and
either the address is supplied by PC, the section number is 0, the section
number is 1, or the address is local. Note that if PC counts beyond the last
in-section address, the wraparound causes instructions to be taken from the
ACs. There are two means by which AC references can be made from any
section: by using a local address, or by using what is specifically regarded
as a global AC address, a section number of 1 combined with a fast memory
in-section address.

Introduction

1-29

Figure 1.7: Extended Effective Address Calculation

NOTATION IS THAT USED
IN THE REPRESENTATION
OF INSTRUCTION OPER-
ATIONS IN APPENDIX A

#0

BEGIN WITH
INSTRUCTION
WORD (iw)

FETCHED FROM

PCq 35

PCg 177E6-17

XR,+Y-E

R

LOCAL

Y—E

LOCAL

DISPLACEMENT

I=BIT 130F IW

>0
Y IS SIGNED
XRg ot Y—E
GLOBAL

“XR'* REPRESENTS THE CONTENTS

OF INDEX REGISTER X

FETCH INDIRECT

WORD (1W)
FROM E

X =BITS 14-17 OF IW
Y =BITS 18-35 OF IW

PAGE FAIL
TRAP

=10 LOCAL

=00 OR 01 GLOBAL

X =BITS 2-5 OF IW
Y = BITS 6-35 of IW

XR6_35+Y7~E

Y-E

1-30 Introduction

1=BIT10FIW

E GLOBAL

1.7 KL10 Memory

When dealing with storage modules, the processor need not wait the entire
memory cycle time. To read, it waits only until the information is available
and then continues its operations, whatever the memory must do; to write,
it waits only until the data is accepted, and the memory then performs an
entire cycle to write that data. To save time in an instruction that fetches
an operand and then writes new data into the same location, the memory
executes a read-modify-write cycle in which it performs only the read part
initially and then completes the cycle when the processor supplies the new
data. This procedure is not used however in a lengthy instruction (such as
multiply or divide), which would tie up a storage module that may be
needed by some other processor. Such instructions instead request separate
read and write access. However, the above considerations apply only when
the cache is not in use or is not present, thus requiring that the processor
always deal with the storage modules and that it request one word at a
time. With the cache in use for a given page, memory access is handled
using the cache wherever possible, and when storage access is required,
transfers are in 4-word groups. For a read request, the M box reads from
the cache if the word is there; otherwise it initiates a storage-to-cache
transfer, but this may require a prior cache-to-storage transfer to make
room for the new data. For a write request, the M box always writes in the
cache, and this too may require a cache-to-storage transfer to make room.
Otherwise the M box writes in storage only when the cache is not in use,
the Monitor specifically updates memory, or the data is supplied by an
internal channel.

For handling storage transfers for a channel or with a cache, the M box
interprets physical addresses in this format.

WORD

PAGE GROUP l J
14 26 27 3334 35

When the E box requests a word that is not in the cache, the M box gets the
four words in the group specified by bits 27--33, or more specifically, gets
whichever of them are not already in the cache. For the quickest possible
service, the M box first gets the particular word requested; e.g. if the pro-
gram requests word 2 in a group, the M box retrieves word 2 first, followed
by words 3, 0, and 1. Even without a cache, channel transfers are always in
groups of four, except perhaps for the first or last group in a block. Except
with an MF20, the processor further increases the speed of memory opera-
tion by overlapping memory cycles: it can start one module to read a word
before receiving a word previously requested from a different one. Such
speedup is unnecessary with an MF20 as it is four words wide. Of course
fast memory and the cache have no basic cycle; with them the processor
reads or writes a word directly.

Introduction

1-31

From the simple hardware addressing point of view, the entire physical
memory is a set of locations whose addresses range from zero to a maxi-
mum dependent upon the capacity of the particular installation. In a sys-
tem with the greatest possible capacity, the largest address is octal
17777777, decimal 4,194,303. (Addresses are always in octal notation un-
less otherwise specified.) But the whole memory would usually be made up
of a number of storage modules of different capacities. Hence a given ad-
dress actually selects a particular module and a specific location within it.
For a 64K module with 22-bit addressing, the high order six address bits
select the module, the remaining sixteen bits address a single location in it;
selecting a 32K memory takes seven bits, leaving fifteen for the location.
The times given below assume the addressed memory is idle when access is
requested. The processor can avoid waiting for its own previously requested
memory cycles to end by making consecutive requests to different storage
modules. With an MF20 memory almost all transfers are of four words at a
time, so there is seldom any conflict among requests. With other memories
and provided a cache is in use, ordering requests among modules can be
guaranteed by interleaving them in sets of four, in such a way that re-
quests for the words in a group are cycled through the four modules in the
set. Interleaving is effected by assigning four modules, each of n locations,
to the same 4n-location area of the address space, and setting each module
to respond only to one request out of the four in a group. Hence within the
given area, all addresses ending in 0 or 4 are locations in one module, those
ending in 1 or 5 are locations in a second, and so forth. Some of the earlier
modules can be interleaved only in pairs, which is not as effective but is
worthwhile. Without a cache, interleaving is not as effective, but it is still
advisable since the program is sequential. Without interleaving or a cache,
some alteration between modules is produced by keeping instructions in
one and operands in another. Interleaving, assigning module numbers, and
so forth, is done by the program for internal memories but by manual
switch settings for external memories. Complete information is given in
Appendix G.

The only physical locations uniquely defined by the hardware are those
in fast memory, locations 0—17. All other hardware-defined addresses are
relative to pages, such as the process tables, whose physical location is
specified by the Monitor. Physical memory in a system is a constant unless
a storage module is actually added or removed. The virtual address space
accessible to a particular program is entirely a function of the way in which
the Monitor sets up user operating conditions, except that any space and
any restrictions must encompass an integral number of pages.

Memory Characteristics

The following tables give the characteristics of the various memories for
the two types of KL10 processor. Times are in microseconds, and for exter-
nal memories they include the delay introduced by 10 feet (3 meters) of
cable. Read access for a single word or the first in a group is the time from
the request until the word is in AR. For an entire 4-word group, read access
is the time from the request until the last word is in the cache. Write access

1-32 Introduction

is the time from the request until the processor receives the memory ac-
knowledgment, for either the first word or the fourth. Except for the MF20,
these figures define the system access rates for storage modules with 4-way
interleaving, as all memory operations are absorbed within them: by the
time the processor receives the data or the acknowledgment, it can make a
new request, which the memory will be ready for. Sizes given are those in
which the units are available. Note that interleaving depends on the num-
ber of modules, not the number of units, most of which contain more than
one module. Hence 4-way interleaving can be done with a single MA20 or
MB20 memory, whereas it requires two MH10s or MG10s and four MF10s.

With MF20 memories, there is only one module per unit and interleav-
ing is not used. (Each controller can handle three units or “groups”.) The
times given in the table are the actual times the processor must wait to get
data or an acknowledgement, except that hitting a refresh cycle can cause a
delay of up to 533 ns (refreshing requires about 3%2% of total memory
time). Following a read, the processor can make another request immedi-
ately. Following a write, it must wait from 467 to 867 ns before another
request can be handled by the same controller. However since a single
MF20 handles four words at once, one request following another within
that time is unlikely.

Fast memory times are for referencing a memory location for an oper-
and; a fast memory instruction fetch takes slightly more time than a cache
access. When a fast memory location is addressed as an accumulator or
index register, the access time is considerably shorter and usually takes no
time at all, as it is done in parallel with instruction operations that are
required anyway.

Physical Characteristics

Number of Modules Size

MF10 Core Memory 1 32K, 64K
MG10 Core Memory 2 64K, 128K
MH10 Core Memory 2 128K, 256K
MAZ20 Core Memory 4,8 64K, 128K
MB20 Core Memory 4,8 128K, 256K
MF20 MOS Memory 1 256K

KL10 Fast Memory 16

KL10 Cache 2K

The MF20 has a 7-bit error correction code; all other units have only a
single parity bit. The MF20 also has a spare bit that can be substituted for
a known bad bit.

Introduction

1-33

Extended Processor Timing

First or Single Word Access Four Word Access
Read Write Read Write
MF10 Core Memory 1.493 1.084 2.227 1.484
MG10 Core Memory 1.553 1.134 2.287 1.534
MH10 Core Memory 1.633 1.134 2.367 1.5634
MAZ20 Core Memory .883 .40 1.467 1.60
MB20 Core Memory 1.017 .40 1.60 1.60
MF20 MOS Memory .800 267 1.40 .667
KL10 Fast Memory .067 .067
KL10 Cache .133 .133

Single-section Processor Timing

First or Single Word Access Four Word Access
Read Write Read Write
MF10 Core Memory 1.627 1.217 2.507 1.697
MG10 Core Memory 1.687 1.267 2.567 1.747
MH10 Core Memory 1.767 1.267 2.647 1.747
MAZ20 Core Memory 1.06 .48 1.76 1.92
MB20 Core Memory 1.22 .48 1.92 1.92
KL10 Fast Memory .080 .080
KL10 Cache .160 .160

1.8 KS10 Memory

Any subsystem can request use of the bus to write a word into storage or
read a word from it. To save time in byte input operations, a Unibus
adapter can also get the bus for a read-modify-write cycle. In this transac-
tion a word goes from memory to the adapter, which inserts the byte and
immediately sends the modified word back. A requesting subsystem may
have to wait til the bus is free and it has priority, and even then there may
occasionally be a further wait of up to 750 ns for memory refresh (which
requires about 5% of total memory time). But otherwise reading from stor-
age takes 900 ns, and writing takes 600 although the memory remains
busy for an additional 300. Whenever the processor writes or reads a word
in storage, that word is automatically written in the cache. Thus if the
processor wishes to read the same word at a later time, retrieval requires
only 300 ns. The cache hit rate is generally about 80%.

The following table gives the characteristics of KS10 memory with
times in nanoseconds.

Read Write Size Error Facility
MOS Memory 900 600 128K-512K 7-bit correction
code
Fast Memory 300 300 16 2 parity bits
Cache 300 512 2 parity bits

1-34 Introduction

There is no cache write time as writing is automatic and is absorbed in
storage access time. Fast memory times are for addressing as memory loca-
tions. Access to an accumulator or index register is made in a single mi-
croinstruction period of 150 ns, and frequently this represents no extra
time, as the same microinstruction often performs other functions.

The memory array comprises from two to eight storage modules of 64K
each. But from the hardware addressing point of view, the entire physical
memory is simply a set of locations whose addresses range from zero to a
maximum dependent upon the capacity of the particular installation. In a
system with the greatest possible capacity, the largest address is octal
1777777, decimal 524,287, (Addresses are always in octal notation unless
otherwise specified.)

At a halt the microcode places a halt code and PC in storage locations 0
and 1. The only other physical locations uniquely defined by the hardware
are those in fast memory, locations 0-17. All other hardware-defined ad-
dresses, such as in the process tables or the halt status block, are relative to
physical locations specified by the Monitor. Physical memory in a system is
a constant unless a storage module is actually added or removed. The vir-
tual address space accessible to a particular program is entirely a function
of the way in which the Monitor sets up user operating conditions, except
that any space and any restrictions must encompass an integral number of

pages.

1.9 Programming Conventions

Two elements of system software intimately associated with the presenta-
tion in this manual are the assembler and the operating system. The man-
ual explains the DECsystem—10 and DECSYSTEM-20 in terms of machine
language programming. Such programming makes use of those basic char-
acteristics of the MACRO assembler described here. The assembler natu-
rally has many other features, such as use of predefined and user-defined
pseudoinstructions. The overview of the system presented in the first two
sections and the more detailed presentation of system operations in later
chapters are in a sense a presentation of the sophisticated features of the
operating system: its most impressive features related to the processor are
essentially its capabilities for taking advantage of these sophisticated hard-
ware characteristics. There are two versions of the operating system, the
TOPS-10 Monitor and the TOPS—-20 Monitor. The basic thrust of both is
the timesharing of the system among a number of independent users, all of
whom can make extensive use of all system facilities, including front end
processing and the advanced file system.

MACRO recognizes a number of mnemonics and other initial symbols
that facilitate constructing complete instruction words and organizing
them into a program. In particular there are mnemonics for the instruction
codes (Appendix A), which are nine or thirteen bits (six in pre-KS10 in-out
instructions). The assembler translates every statement into a 36-bit word,
placing Os in all bits whose values are unspecified. For example, the mne-
monic

Introduction

1-35

MOVNS
assembles as 213000 000000, and
MOVNS 2570

assembles as 213000 002570. This latter word, when executed as an in-
struction, produces the twos complement negative of the word in memory
location 2570.

NOTE

Throughout this manual all numbers representing instruc-
tion words, register contents, codes and addresses are always
octal, and any numbers appearing in program examples are
octal unless otherwise indicated. On the other hand, the ordi-
nary use of numbers in the text to count steps in an operation
or to specify word or byte lengths, bit positions, exponents,
etc. employs standard decimal notation.

The initial symbol @ preceding a memory address places a 1 in bit 13
to produce indirect addressing. The example given above uses direct ad-
dressing, but

MOVNS @2570

assembles as 213020 002570, and produces indirect addressing. Placing the
number of an index register (1-17) in parentheses following the memory
address causes modification of the address by the contents of the specified
register. Hence

MOVNS @2570(12)

which assembles as 213032 002570, produces indexing using index register
12, and the processor then uses the modified address to continue the effec-
tive address calculation.

An accumulator address (0-17) precedes the memory address part (if
any) and is terminated by a comma. Thus

MOVNS 4,@2570(12)

assembles as 213232 002570, which negates the word in location E and
stores the result in both £ and in accumulator 4. The same procedure may
be used to place 1s in bits 9-12 when these are used for something other
than addressing an accumulator, but mnemonics are available for this pur-
pose.

The device code in a pre-KS10 in-out instruction is given in the same
manner as an accumulator address (terminated by a comma and preceding
the address part), but the number given must correspond to the octal digits
in the word (000-774). Mnemonics are however available for all standard
device codes. To control the priority interrupt system whose code is 004, one
may give

1-36 Introduction

CONO 4,1302
which assembles as 700600 001302, or equivalently

CONO PI1,1302
The programming examples in this manual use the following address-
ing conventions:

e A colon following a symbol indicates that it is a symbolic location
name.

A: ADD 6,56704

indicates that the location that contains ADD 6,5704 may be addressed
symbolically as A.
e The period represents the current address, e.g.

ADD 5,.+2
is equivalent to
A: ADD 5,A+2

e Square brackets specify the contents of a location, leaving the address
of the location implicit but unspecified. For example,

ADD 12,[7256004]
and

ADD 12,A
A: 7256004

are equivalent. The bracketed quantity, which is called a “literal”, can be
given as the left and right halves separated by a double comma, not only
eliminating the need to insert leading zeros for the right half, but allowing
use of a minus sign for a negative half word as well. In other words

[-246,,135]
is equivalent to
[777532000135]

A literal can encompass any number of lines of code, employing any of
the programming conventions defined above, and to be assembled in con-
secutive locations. In fact a reasonable way to assemble the extended in-
structions is to give the individual extended instruction code and any neces-
sary follow-up words as a literal in an extend instruction. The assembly of
these two lines,

STRING: EXTEND AC,[MOVSO OFF
FILL]

Introduction

1-37

produces, in location STRING, an EXTEND whose Y part (E0) points to the
location containing the second instruction word MOVSO OFF. The Y part
(E1) of the MOVSO contains the signed offset OFF, and location E0+1
contains the fill character FILL.

Anything written at the right of a semicolon is commentary that ex-
plains the program but is not part of it.

1.10 KI10 and KA10 Characteristics

The KI10 and KA10Q are similar, even identical, to the KL10 in many
respects, but their implementation is quite different: they have no micro-
controller or microcode. They use the PDP-10 instruction set but not in its
full variety as available in the KL10: neither earlier processor can handle
strings or double precision fixed point numbers; the KA10 has no capability
for handling doublewords or performing double precision floating point
arithmetic, although it does have instructions (retained on all KL10 and
KI10 TOPS-10 systems) for assisting the software in doing double precision
floating point in a special software format.

Figure 1.8 illustrates the organization of a DECsystem—10 based on
either of the earlier processors. The processor handles its peripheral equip-
ment directly over an in-out bus, there is no cache, there is a real time clock
but no meters, and all memory is external. The extra four bits shown on
address registers are applicable only to the KI10. Both processors use an
18-bit internal address providing a virtual memory of one section that is
compatible with section 0 of the KL.10. But whereas the KA10 has a maxi-
mum physical memory equal in size to its virtual memory, which is organ-
ized by protection and relocation hardware, the KI10 has a physical ad-
dressing capability equal to that of the KL10 (22-bit address, 4096K) and
has paging hardware. The KI10 virtual address space is the same as that of
a KL.10 with the TOPS-10 Monitor, except that in executive mode the first
112K of memory is unpaged (and thus not available to the supervisor pro-
gram), and the Monitor can define a so-called “small user” whose accessible
space must lie within the virtual ranges 0-37777 and 400000—437777. The
KI10 has four fast memory blocks, of which hardware requires that the
Monitor use block 0; the KA10 has only one block.

Both processors have manual operator consoles with facilities that are
directly relevant to the programmer, although they are used mostly for
manually stepping through a program to debug it. From the sense switches
and the 36-bit data switch register DS, the program can read information
supplied by the operator, and through the memory indicators MI, the pro-
gram can display data for the operator. By means of the address switch
register AS, the operator can examine the contents of, or deposit informa-
tion into, any memory location; stop or interrupt the program whenever a
particular location is referenced; and supply a starting address for the pro-
gram. In these processors IR contains the entire left half of the current
instruction word, i.e. eighteen bits rather than thirteen. The memory ad-
dress register MA supplies the address for every memory access. In the
arithmetic logic of the KA10, there are only single length registers; but in

1-38 Introduction

the KI10, AR and AD have 28-bit left extensions for double precision float-
ing point. The KA10 has no trapping mechanism: arithmetic and stack
overflow signal the program by way of interrupts. Individual processor dif-
ferences relevant to user programming are listed in Appendix E.

Figure 1.8: DECsystem-10 Based on KI10 or KA10

CORE CORE CORE
STORAGE STORAGE STORAGE
MODULE MODULE MODULE

3

r_ CENTRAL

FAST
MEMORY

16X 36

MA IR

MEMORY BUS PROCESSOR

ARITHMETIC
LoGIC M
{AD, AR, ETC)

36

AS PC Ds
18 18

36

IN-OUT BUS PRIORITY
INTERRUPT

————

A

CONSOLE PAPER TAPE PAPER TAPE DISK
TERMINAL READER PUNCH SYSTEM

Memory

The following table gives the characteristics of the various memories avail-
able with the KI10 and KA10. Modify completion is the time to finish a
read-modify-write cycle after the processor supplies the new data. Times
are in microseconds and include the delay introduced by ten feet (three
meters) of cable. Fast memory times are for referencing as a memory loca-
tion (18-bit address); when a fast memory location is addressed as an accu-
mulator or index register, the access time is considerably shorter.

Introduction

1-39

Read Write Modify

Access Access Cycle Completion Size
iVIAlO Core Memory .61 .20 1.00 .57 16K
MB10 Core Memory .60* .20% 1.65* 97 16K
MD10 Core Memory .83 .33 1.8 1.23 32-128K
ME10 Core Memory .61 .20 1.00 .65 16K
MF10 Core Memory .61 .20 1.00 63 32K, 64K
MG10 Core Memory .67 .23 1.00 .63 32-128K
MH10 Core Memory 74 23 1.18 .68 64-256K
KA10 Fast Memory 21 21 16
KI10 Fast Memory .28 0 16

* Add .1 in a multiprocessor system.

KI10 access to accumulators and index registers effectively takes no
time — it is done in parallel with instruction operations that are required
anyway. Retrieval of instructions or memory operands from fast memory is
generally not worthwhile because of the extensive overlapping that speeds
up core access. However, except in instructions that use two accumulators,
storage of a memory operand in fast memory not only takes no time but
actually decreases slightly the nonmemory time.

In a system with the greatest possible capacity, the largest KI10 ad-
dress is octal 17777777, decimal 4,194,303; the largest KA10 address is
octal 777777, decimal 262,143. All storage modules can be interleaved in
pairs, and some of them in sets of four (see Appendix G). The KA10 cannot
overlap memory access.

KI10 Memory Allocation. The KI10 hardware defines the use of cer-
tain memory locations, but most are relative to pages whose physical loca-
tion is specified by the Monitor. The auto restart uses location 70. The only
other physical locations uniquely defined by the hardware are those in fast
memory, whose addresses are the same for all programs: location 0 holds a
pointer word during a bootstrap readin, 0—17 can be addressed as accumu-
lators, and 1-17 can be addressed as index registers. The only addresses
uniquely specified in the user virtual space are for user local UUOs —
locations 40 and 41. All other addresses defined by the hardware, for use in
page mapping, responding to priority interrupts, or other hardware-ori-
ented situations, are to locations in the process tables.

1-40 Introduction

KA10 Memory Allocation. The use of certain memory locations is
defined by the KA10 hardware.

0 Holds a pointer word during a bootstrap readin.

0-17 Can be addressed as accumulators.

1-17 Can be addressed as index registers.

40-41 Trap for unimplemented user operations (UUOs).

42-57 Priority interrupt locations.

60-61 Trap for remaining unimplemented operations: these include

the unassigned instruction codes that are reserved for future
use, and also the byte manipulation and floating point instruc-
tions when the hardware for them is not installed.

140-161 Allocated to second processor if connected (same use as 40-61
for first processor). All information given in this manual about
memory locations 40-61 for a KA10 applies instead to locations
140-161 for programming a second KA10 connected to the same
memory.

In a user program the trap for a local UUO is relocated to locations 40
and 41 of the user area; a Monitor UUO uses unrelocated locations. All
other addresses listed are for physical (unrelocated) locations.

Introduction 1-41

Chapter 2
User Operations

This chapter describes all PDP-10 instructions that are generally available
to the user. It also defines the types of in-out instructions, but does not
discuss their effects when they address specific internal system elements or
peripheral devices. In the description of each instruction, the mnemonic
and name are at the top, the format is in a box below them. The mnemonic
assembles to the word in the box, where bits in those parts of the word
represented by letters assemble as 0s. The letters indicate portions that
must be added to the mnemonic to produce a complete instruction word. For
extended instructions, the mnemonic given actually assembles to the word
shown in the second format box; the first box shows the configuration of the
EXTEND itself. The programmer must give EXTEND, and give the listed
mnemonic either as a literal with EXTEND or place it in the source pro-
gram at the location specified by the EXTEND effective address.

For many of the non-IO instructions, a description applies not to a
unique instruction with a single code in bits 0—8, but rather to an instruc-
tion set defined as a basic instruction that can be executed in a number of
modes. These modes define properties subsidiary to the basic operation; e.g.
in data transmission the mode specifies which of the locations addressed by
the instruction is the source and which the destination of the data, in test
instructions it specifies the condition that must be satisifed for a jump or
skip to take place. The mnemonic given at the top is for the basic mode;
mnemonics for the other forms of the instruction are produced by append-
ing letters directly to the basic mn -monic. Letters representing modes are
suffixes, which produce new mnemonics that are recognized as distinct
symbols by the assembler. Following the description is a table giving the
mnemonics and octal codes (bits 0—8) for the various modes.

In a descriptioi. E refers to the effective address, half word operand,
mask, offset, conditions, shift number or scale factor calculated from the I,
X and Y parts of the instruction word. In an instruction that ordinarily

21

references memory, a reference to E as the source of information means
that the instruction retrieves the word contained in location E; as a desti-
nation it means the instruction stores a word in location E. In the immedi-
ate mode of these instructions, the effective half word operand is usually
treated as a full word that contains E in one half and zero in the other, and
is represented either as 0,E or E,0 depending upon whether E is in the right
or left half. In extended instructions E0 and E1 refer to the results of the
effective address calculations for the first and second instruction words. E
refers to the right eighteen bits of the effective address (i.e. the in-section
part), but in a machine lacking extended addressing, E is equivalent to E.
A reference to “location E,E+1” means the contents of the two locations are
used together as a doubleword, such as a double length number. If the
program is running in section O or the instruction gives a local address, the
addresses wrap around so that when E is 777777, E+1 is 0.

PLEASE READ THIS

The calculation of E is the first step in the execution of every
instruction. No other action taken by any instruction, no mat-
ter what it is, can possibly precede that calculation. There is
absolutely nothing whatsoever that any instruction can do to
any accumulator or memory location that can in any way af-
fect its own effective address calculation.

Most of the non-I10 instructions can address an accumulator, and in the
box showing the format this address is represented by A; in the description,
“AC” refers to the accumulator addressed by A. “AC left” and “AC right”
refer to the two halves of AC. If an instruction uses two or more accumula-
tors, these have addresses A, A+1, A+2, etc., which are interpreted modulo
20 e.g. A+1 is 0 when A is 17. In the text the various accumulators are
referred to as AC, AC+1, and so forth. A pair of accumulators holding a
doubleword is referred to as AC,AC+1. In some cases an instruction uses an
accumulator only if A is nonzero: a zero address in bits 9-12 specifies no
accumulator.

The instructions are described in terms of their effects as seen by the
user in a normal program situation, and on the assumption that nothing is
amiss — the program is not attempting to reference a memory that does not
exist or to write in a protected area of memory. In general, all descriptions
apply equally well to operation in executive mode. For completeness, the
effects of restrictions on certain instructions are noted, as are the effects of
executing instructions in special circumstances. But for the details of pro-
gramming in such special situations the reader must look elsewhere. In
particular, §2.9 discusses trapping, §2.19 explains the restrictions on user
programming, and Chapters 3 to 5 describe the special effects and restric-
tions associated with system operations in the various processors.

To minimize processor execution time the programmer should mini-
mize the number of memory references and iterative operations. When
there is a choice of actions to be taken on the basis of some test, the condi-
tions tested should be set up so that the action that results most often takes
the least time. There are also various subtleties that affect timing (such as

2-2 User Operations

the nature of the arithmetic algorithms), but these are generally not worth
considering except in very special circumstances (to determine the effect
often takes more than the time saved).

No execution times are given with the instruction descriptions as the
time may vary greatly depending upon circumstances. The time depends
upon which processor performs the instruction, and in many cases on the
configuration of the operands and the number of iterative steps. The proces-
sor is designed to save time wherever possible by inspecting the operands in
order to skip unnecessary steps.

The text sometimes refers to an instruction as being “executed.” To
“execute” an instruction means that the processor performs the instruction
out of the normal sequence, i.e. the sequence defined by the program
counter (which sequence may not be consecutive, as when a skip or jump or
some special circumstance changes PC). The processor fetches an executed
instruction from a location whose address is supplied not by PC, but rather
by an extend or execute instruction (whose operand is itself interpreted as
an instruction) or by some feature of the hardware such as a priority inter-
rupt, trap, etc. It is assumed that control will’shortly be returned to PC, at
the location it originally specified before the interruption unless the in-
struction executed or the hardware feature itself changes PC.

Some simple examples are included with the instruction descriptions,
but more complex examples using a variety of instructions are given in
§2.15.

2.1 Full Word Data Transmission

These are the instructions whose basic purpose is to move one or more full
words of data from one place to another, usually from an accumulator to a
memory location or vice versa. In a few cases instructions may perform
minor arithmetic operations, such as forming the negative or the magni-
tude of the word being processed. Let us begin with a single instruction
that simply interchanges the contents of an accumulator and a memory
location.

EXCH Exchange

250 | 4 1] x | Y

V] 89 121314 1718 35

Move the contents of location E to AC and move AC to location E.

Move Instructions

This class of instructions consists of a group for general manipulation of
single words and a special immediate mode instruction for handling an
extended address. Each of the instructions in the standard move group
handles one word, which may be changed in the process (e.g. its two halves
may be swapped). There are four instructions, each with four modes that
determine the source and destination of the word moved.

User Operations

23

Mode Suffix Source Destination

Basic E AC
Immediate I The word 0,E AC

Memory M AC E

Self S E E, but also AC

if A is nonzero

MOVE Move

200 [m| a il x | Y 1

0 67 89 1213 14 1718 35

Move one word from the source to the destination specified by M. The
source is unaffected, the original contents of the destination are lost.

MOVE Move 200
MOVEI Move Immediate 201
MOVEM Move to Memory 202
MOVES Move to Self 203

Notes. MOVEI loads the word 0,E into AC. If A is zero, MOVES is a no-
op that writes in memory; otherwise it is equivalent to MOVE except that
it writes in memory.

MOVS Move Swapped

204 M| 4 1] x | Y

] 67 89 121314 1718 35

Interchange the left and right halves of the word from the source specified
by M and move it to the specified destination. The source is unaffected, the
original contents of the destination are lost.

MOVS Move Swapped 204
MOVSI Move Swapped Immediate 205
MOVSM Move Swapped to Memory 206
MOVSS Move Swapped to Self 207

Notes. Swapping halves in immediate mode loads the word E,0 into AC.

MOVN Move Negative

Orzlo lm| a4 1] x | Y J

67 89 1213 14 1718 35

Negate the word from the source specified by M and move it to the specified
destination. If the source word is fixed point —23% (400000 000000) set the

2-4 User Operations

Trap 1, Overflow and Carry 1 flags. (Negating the equivalent floating point
—1 x 2'?7 gets the flags, but this is not a normalized number.) If the source
word is zero, set Carry 0 and Carry 1. The source is unaffected, the original
contents of the destination are lost.

MOVN Move Negative 210
MOVNI Move Negative Immediate 211
MOVNM Move Negative to Memory 212
MOVNS Move Negative to Self 213

Notes. MOVNI loads AC with the negative of the word 0,E and can
neither overflow nor carry.

MOVM Move Magnitude

| 214 M| a4 1] x | Y

0 67 89 121314 1718 35

Take the magnitude of the word contained in the source specified by M and
move it to the specified destination. If the source word is fixed point —23°
(400000 000000) set the Trap 1, Overflow and Carry 1 flags. (Negating the
equivalent floating point —1 x 2'?7 sets the flags, but this is not a normal-
ized number.) The source is unaffected, the original contents of the destina-
tion are lost.

MOVM Move Magnitude 214
MOVMI Move Magnitude Immediate 215
MOVMM Move Magnitude to Memory 216
MOVMS Move Magnitude to Self 217

Notes. The word 0,E is equivalent to its magnitude, so MOVMI is
equivalent to MOVEI.

It is often convenient to keep a control count in the left half of an
accumulator and a local address or displacement to be used for indexing in
the right half. Suppose we wish to load 200 into the left half and 1400 into
the right half of an accumulator that is addressed symbolically as XR. If
the number 200 001400 is stored in location M, we can do this by giving the
instruction

MOVE XR,M

Of course the source program must somewhere define the value of the sym-
bol XR as an octal number between 1 and 17. If the same word, or its
negative, or with its halves swapped must be loaded on several occasions,
each transfer still requires only a single move instruction that references
M.

User Operations

2-5

The following instruction makes the result of an effective address cal-
culation available for use as a global address, even for accessing a fast
memory location from any section.

XMOVEI Extended Move Immediate

| 415 | a4 [x] Y

0 89 121314 1718 35

If the program is running in a nonzero section, do one or the other of the
following.

If E is not a local AC address, clear AC bits 0-5 and place the global
effective address E in AC bits 6-35.

If E is a local AC address, put 1 in AC left and E in AC right.

If the program is running in section 0, this instruction is called SETMI,
a Boolean instruction that performs an analogous function for section 0
(§2.4).

Notes. The form given a local AC address is that of a global AC address,
which therefore still refers to fast memory no matter what section the
address may be moved to or used in. Giving XMOVEI with an address 20 or
greater without indexing or indirection places the current PC section num-
ber in AC left, and it can thus be used to determine what section the
program is in.

Double Move Instructions!

These four instructions are principally for manipulating the double length
operands used in double precision arithmetic, fixed or floating. But they
may be used to move or negate any doubleword, i.e. the contents of a pair of
adjacent accumulators or memory locations. Two of the instructions are
simple extensions of MOVE and MOVEM to doublewords, and for them the
configuration of the operands is irrelevant. The other two are extensions of
MOVN and MOVNM, with the operand interpreted as a double precision
floating point number. They can just as well be used for fixed point num-
bers, but with a slight variation in the format. Namely a negative result
has a 0 in bit 0 of the low order word instead of a copy of the sign. For
arithmetic operations per se this difference is inconsequential, as all arith-
metic instructions ignore bit 0 of all low order words. However it could
cause a comparison of two equal double precision numbers to fail.

All of these instructions address a pair of adjacent accumulators and a
pair of adjacent memory locations. The accumulators have addresses A and
A+1 (mod 20,), the memory locations have addresses E and E+1.

1 In the KA10 these instructions are trapped as unassigned codes (§2.16).

2-6 User Operations

DMOVE Double Move

[120 [4] x | r]

0 89 121314 1718 - 35

Move a doubleword from location E K + 1 to AC,AC + 1. The memory loca-
tions are unaffected, the original contents of the ACs are lost.

DMOVEM Double Move to Memory

e T A] v]

0 89 121314 1718 35

Move a doubleword from AC,AC +1 to location E,E + 1. The ACs are unaf-
fected, the original contents of the memory locations are lost.

Notes. Do not use the instruction DMOVEM AC,AC+1 as its result is
indeterminate. In the KI10 do not have E and X address the same (fast)
memory location, as a page failure on the second word would then result in
a different effective address calculation when the instruction is restarted.

DMOVN Double Move Negative

| 121 | a4 Ji] x] Y

0 89 121314 1718 35

Negate the doubleword from location E,E + 1 interpreted in double preci-
sion floating point and move it to AC,AC+1. If the memory doubleword is
fixed point —27°, set the Trap 1, Overflow and Carry 1 flags. (Negating the
equivalent floating point with fraction —1 and the maximum exponent sets -
the flags, but this is not a normalized number.) If the memory doubleword
is zero, set Carry 0 and Carry 1. The memory locatlons are unaffected, the
original contents of the ACs are lost.

Note that the negatlon uses floating point conventions. Hence a nega-
tive fixed point result has the incorrect value in bit 0 of the low order word. -

In the KI10 there is no overflow test as the KI10 lacks double precision
fixed point instructions. For floating point the overflow test is really unnec-
essary, as negating a correctly formatted floating point number cannot
cause overﬂow

DMOVNM Double Move Negative to Memory

| 125 [4 1] x] Y]

0 89 121314 1718 35

Negate the doubleword from AC,AC+1 interpreted in double precision
floating point and move it to location £,E + 1. If the AC doubleword is fixed
point —2", set the Trap 1, Overflow and Carry 1 flags. (Negating the equiv-

June 1982 User Operations 2-7

alent floating point with fraction —1 and the maximum exponent sets the
flags, but this is not a normalized number.) If the AC doubleword is zero,
set Carry 0 and Carry 1. The ACs are unaffected, the original contents of
the memory locations are lost.

Note that the negation uses floating point canventions. Hence a nega-
tive fixed point result has the incorrect value in bit 0 of the low order word.

In the KI10 there is no overflow test as the KI10 lacks double precision
fixed point instructions. For floating point the overflow test is really unnec-
essary, as negating a correctly formatted floating point number cannot
cause overflow.

Notes. Do not use the instruction DMOVNM AC,AC +1 as its result is
indeterminate. In the KI10 do not have E and X address the same (fast)
memory location, as a page failure on the second word would then result in
a different effective address calculation when the instruction is restarted.

Block Transfers

There are two instructions for moving blocks of data from one part of mem-
ory to another. One is restricted to acting within the section specified by
the effective address. The other can be performed only in a nonzero section,
but can move data arbitrarily anywhere in memory.

BLT Block Transfer
[25 [4 il x] % |
0 89 128314 1718 35

Beginning at the location addressed by AC left in the section specified by E,
move words to another area in the same section beginning at the location
addressed by AC right. Continue until a word is moved to location E. The
total number of words in the block is thus Ey — ACy + 1. If ACy = E, the
BLT moves one word to location ACy. If the source block is larger than 2'* —
AC,, it is wrapped around to the beginning of the section.?

Provided AC is not in the destination block, then at the end in the
KL10 and KS10, AC left and right respectively contain addresses one
greater than those of the final source and destination locations referenced
(or in the case of ACy > E in the KL10, the addresses of the locations that
would have been referenced had the reverse order transfer actually taken
place). In the KI10 and KA10, AC is indeterminate unless the interrupt
system and the pager are both off, in which case it is unaffected. In any
event, for program compatibility among processors, use of the resulting
quantity in AC is strongly discouraged.

2 Caution: In section 0 of a KL10 extended address space there is no wraparound, and the
instruction inadvertently counts into section 1.

2-8 User Operations

June 1982

CAUTION

Should an interrupt or page failure occur during its execu-
tion, the BLT stores the source and destination addresses for
the next word in AC, so when the processor restarts upon the
return to the interrupted program, it actually resumes at the
correct point within the BLT. Therefore A and X must not
address the same register as this would produce a different
effective address calculation upon resumption; and the in-
struction must not attempt to load an accumulator addressed
either by A or X unless it is the final location being loaded.

Examples. This pair of instructions loads the accumulators from mem-
ory locations 2000-2017.

MOVSI 17,2000 ;Put 2000 000000 in AC 17
BLT 17,17

As mentioned in the above caution, this example might not work if, e.g. AC
10 or AC 16 were used to supply the source and destination addresses. To
transfer the block in the opposite direction requires that one accumulator
first be made available to the BLT:

MOVEM 17,2017 ;Move AC 17 to 2017 in memory
MOVEI 17,2000 ;Move the number 2000 to AC 17
BLT 17,2016

If at the time the accumulators were loaded the program had placed in
location 2017 the control word necessary for storing them back in the same
block (2000), the three instructions above could be replaced by

EXCH 17,2017
BLT 17,2016

A convenient way to clear a block in memory is to clear the first loca-
tion and then use a BLT to transfer the zero successively from one location
to the next. Suppose the block starts at A and contains B words.

MOVE AC,[A,,A+1]
SETZM A
BLT AC,A+B-1

For a reverse BLT procedure (highest addresses first), refer to the POP
instruction (§2.10).

User Operations

2-9

XBLT Extended Block Transfer

[123 | 4 /] x] Y]

0 89 121314 1718 35

EO [020 l 00]II X I Y] E1 is not used.?
0 89 121314 1718 35

Move a block of words from one area of memory to another. The block size
and the locations of the source and destination areas are defined by the
contents of a block of three accumulators.

AC NUMBER OF WORDS IN BLOCK
AC+1 00 LOCATION OF SOURCE BLOCK
AC+2 00 LOCATION OF DESTINATION BLOCK
0 56 35

If this instruction is given in section 0, execute it as an MUUO. Otherwise
perform a forward or backward block transfer as follows.

If AC contains a positive number N, move a block of N words from a
source area beginning at the location specified by AC+1, to a destina-
tion area beginning at the location specified by AC+2, and extending
through increasing addresses. At the end AC is clear, and AC+1 and
AC+2 respectively contain addresses one greater than those of the final
source and destination locations referenced.

If AC contains a negative number —N, move a block of N words from a
source area beginning at a location one less than that specified by
AC+1, to a destination area beginning at a location one less than that
specified by AC+2, and extending through decreasing addresses. At the
end AC is clear, and AC+1 and AC+2 respectively contain the addresses
of the final source and destination locations referenced.

CAUTION

This instruction uses three accumulators, and under no cir-
cumstances should any of these three be part of either the
source or destination block. Because of the possibility of an
interrupt or page failure, the contents of these accumulators
even as a source cannot be guaranteed. And in any event, use
of XBLT for moving an AC block is quite unnecessary, as a
simple BLT can move fast memory to any section.

3 1, X and Y are reserved and should be zero.

2-10 User Operations

2.2 Fixed Point Arithmetic

For fixed point arithmetic the PDP-10 has instructions for performing ad-
dition, subtraction, multiplication and division of numbers in single and
double precision fixed point format (§1.4), although double precision is not
available in the KI10 or KA10. The processor can also do arithmetic shift-
ing — which is essentially multiplication by a power of 2 — but those
instructions are discussed with logical shifting and rotating (§2.5). For sin-
gle precision the add and subtract instructions involve only single length
numbers, whereas multiply supplies a double length product, and divide
uses a double length dividend. There are also integer multiply and divide
instructions that involve only single length numbers and are especially
suited for handling smaller integers, particularly those of eighteen bits or
less such as addresses, bytes, and character codes. For double precision the
add and subtract instructions involve only double length numbers, whereas
multiply supplies a quadruple length product, and divide uses a quadruple
length dividend. In all cases the position of the binary point is arbitrary,
and the programmer may adopt any point convention. Even the integer
multiply and divide instructions can be used for small fractions provided
the programmer keeps track of the binary point. For convenience in the
following, all operands are assumed to be integers (binary point at the
right).

The processor has four flags, Overflow, Carry 0, Carry 1 and No Divide,
that indicate when the magnitude of a number is or would be larger than
can be accommodated. Carry 0 and Carry 1 actually detect carries out of
bits 0 and 1 in certain instructions that employ fixed point arithmetic oper-
ations: the add and subtract instructions treated here, the move instruc-
tions that produce the negative or magnitude of the word moved (§2.1), and
the arithmetic test instructions that increment or decrement the test word
(82.6). In these instructions an incorrect result is indicated — and the Over-
flow flag set — if the carries are different, i.e. if there is a carry into the
sign but not out of it, or vice versa. Overflow is determined directly from
the carries, not from the carry flags, as their states may reflect events in
previous instructions. The Overflow flag is also set by No Divide being set,
which means the processor has failed to perform a division because the
magnitude of the dividend is greater than or equal to that of the divisor, or
in integer divide, simply that the divisor is zero. In other overflow cases
only Overflow itself is set: these include too large a product in multiplica-
tion, too large a number to convert to fixed point (§2.3), and loss of signifi-
cant bits in left arithmetic shifting. Any condition that sets Overflow also
sets the Trap 1 flag (§2.9).

These flags can be read and controlled by certain program control in-
structions (§§2.9, 2.16), but overflow is usually handled by trapping
through the setting of Trap 1 (§2.9). The KA10 lacks the trapping feature,
so its program must make direct use of the Overflow flag, which is avail-
able as a processor condition (via an in-out instruction) that can request a
priority interrupt if enabled (§5.6). In any event, user overflow is handled
by the Monitor according to instructions from the user, as described in
Chapter 3 of the appropriate Monitor Calls manual. The conditions de-

User Operations

2-11

tected can only set the arithmetic flags and the hardware does not clear
them, so the program must clear them before an instruction if they are to
give meaningful information about the instruction afterward. However, the
program can check the flags following a series of instructions to determine
whether the entire series was free of the types of error detected. Besides
indicating error types, the carry flags facilitate performing multiple preci-
sion arithmetic.

Single Precision Instructions

As noted above the numbers manipulated by these instructions are single
length except for double length products and dividends. Such double length
fixed point numbers are in AC,AC+ 1, where the magnitude is the 70-bit
string in bits 1-35 of the two words, the sign is in bit 0 of the high order
word, and bit O of the low order word contains a copy of the sign. All six
instructions have four modes that determine the source of the non-AC oper-
and and the destination of the result.

Source of non- Destination
Mode Suffix AC operand of result
Basic E AC
Immediate I The word 0,E AC
Memory M E E
Both B E AC and E
ADD Add
| 270 |m] a [i] x | Y
0 67 89 121314 1718 35

Add the operand specified by M to AC and place the result in the specified
destination. If the sum is = 23 set Trap 1, Overflow and Carry 1; the result
stored has a minus sign but a magnitude in positive form equal to the sum
less 2%, If the sum is < —23% set Trap 1, Overflow and Carry 0; the result
stored has a plus sign but a magnitude in negative form equal to the sum
plus 2%%, Set both carry flags if both summands are negative, or their signs
differ and their magnitudes are equal or the positive one is the greater in
magnitude.

ADD Add 270
ADDI Add Immediate 271
ADDM Add to Memory 272
ADDB Add to Both 273

2-12 User Operations

sSUB Subtract

274 M| a |1 x | Y]

0 67 89 121314 1718 35

Subtract the operand specified by M from AC and place the result in the
specified destination. If the difference is = 2% set Trap 1, Overflow and
Carry 1; the result stored has a minus sign but a magnitude in positive
form equal to the difference less 2%. If the difference is < —23° set Trap 1,
Overflow and Carry 0; the result stored has a plus sign but a magnitude in
negative form equal to the difference plus 2%. Set both carry flags if the
signs of the operands are the same and AC is the greater or the two are
equal, or the signs of the operands differ and AC is negative.

SUB Subtract 274
suBl Subtract Immediate 275
SUBM Subtract to Memory 276
SuBB Subtract to Both 277
MUL Muitiply

[224 Jm] a4] x | Y |

[}] 67 89 121314 1718 R

Multiply AC by the operand specified by M, and place the high order word
of the double length result in the specified destination. If M specifies AC as
a destination, place the low order word in AC + 1. If both operands are —2%
set Trap 1 and Overflow; the double length result stored is —27°.

MUL Multiply : 224

MULI Multiply Immediate 225

MULM Multiply to Memory 226

MULB Multiply to Both 227
CAUTION

In the KA10, an AC operand of -2 is treated as though it
were +23° producing the incorrect sign in the product.

User Operations

2-13

IMUL Integer Multiply

220 |m| a4 (i x] - Y l

0 67 89 121314 1718 35

Multiply AC by the operand specified by M, and place the sign and the 35
low order magnitude bits of the product in the specified destination. Set
Trap 1 and Overflow if the product is = 2% or < —2% (i.e. if the high order
word of the double length product is not null); the high order word is lost.

IMUL Integer Multiply 220
IMULI Integer Multiply Immediate 221
IMULM Integer Multiply to Memory 222
IMULB Integer Multiply to Both 223
DIV Divide

234 M| a4 [x | Y]
0 67 89 121314 1718 35

If the high order word of the magnitude of the double length number in

AC,AC +1 is greater than or equal to the magnitude of the operand speci-

fied by M, set Trap 1, Overflow and No Divide, and go immediately to the
next instruction without affecting the original AC or memory operand in
any way. Otherwise divide the double length number contained in
AC,AC +1 by the specified operand, calculating a quotient of 35 magnitude
bits including leading zeros. Place the unrounded quotient in the specified
destination. If M specifies AC as a destination, place the remainder, with
the same sign as the dividend, in AC+ 1.

DIV Divide 234
DIVI Divide Immediate 235
DIVM Divide to Memory 236
DIvB Divide to Both 237

Notes. The magnitude restriction is required since the quotient devel-
oped would exceed 36 bits.

IDIV Integer Divide
| 230 |m] a |/ x | Y j
0o 6 7 8 9 . 121314 17 18 35

If the operand specified by M is zero, or AC contains —2* and the operand
specified by M is —1 (except in the KS10), set Trap 1, Overflow and No
Divide, and go immediately to the next instruction without affecting the
original AC or memory operand in any way. Otherwise divide AC by the

2-14 User Operations

June 1982

specified operand, calculating a quotient of 35 magnitude bits including
leading zeros. Place the unrounded quotient in the specified destination. If
M specifies AC as the destination, place the remainder, with the same sign
as the dividend, in AC +1.

DIV Integer Divide : 230

IDIVI Integer Divide Immediate 231

IDIVM Integer Divide to Memory 232

IDIVB Integer Divide to Both : 233
CAUTION

In the KS10, dividing -2* by -1 gives —2* with no error
indication. In the KA10, KI10, and a KL.10 with microcode
version before 271 (which includes all single-section KL10s),
the overflow action is also triggered by attempting to divide
2% by +1.

Double Precision Instructions*

There are just four instructions for the four basic operations, and they have
no modes. All use AC and memory operands and place the result in the
accumulators. Memory operands are double length in location E,E + 1. Most
AC operands are double length in AC,AC + 1, but products and dividends
are quadruple length in AC,AC+1,AC+2,AC+3, and the double length
remainder in division is placed in AC+2,AC + 3. Double length numbers
have the same format as the products and dividends of single precision
instructions discussed above. In quadruple length numbers AC contains the
highest order word; the magnitude is the 140-bit string in bits 1-35 of the
four words, the sign is in bit 0 of the highest order word, and copies of the
sign are kept in bit 0 of the other three words.

DADD Double Add

[114 [4 1] x] Y

0 89 121314 1718 35

Add the operand in location E.E+1 to AC,AC+1 and place the result in
AC,AC + 1. If the sum is = 27, set Trap 1, Overflow and Carry 1; the result
stored has a minus sign but a magnitude in positive form equal to the sum
less 2. If the sum is < -2, set Trap 1, Overflow and Carry 0; the result
stored has a plus sign but a magnitude in negative form equal to the sum
plus 27°. Set both flags if both summands are negative, or their signs differ
and their magnitudes are equal or the positive one is the greater in
magnitude.

* In the KI10 and KA10 these instructions are trapped as unassigned codes.

June 1982 User Operations 2-15

DSuUB Double Subtract

115 [4 1] x | Y]

0 89 121314 1718 35

Subtract the operand in location E,E +1 from AC,AC +1 and place the re-
sult in AC,AC + 1. If the difference is = 27, set Trap 1, Overflow and Carry
1; the result stored has a minus sign but a magnitude in positive form equal
to the difference less 27°. If the difference is < —27°, set Trap 1, Overflow
and Carry 0; the result stored has a plus sign but a magnitude in negative
form equal to the difference plus 27°. Set both carry flags if the signs of the
operands are the same and AC,AC + 1 is the greater or the two are equal, or
the signs of the operands differ and AC,AC +1 is negative.

DMUL Double Multiply

[116 [a4 [I] x| Y |

0 89 121314 1718 35

Multiply AC,AC + 1 by the operand in location E,E + 1 and place the result
in AC-AC+3. If both operands are —27°, set Trap 1 and Overflow; the
quadruple length result stored is —2!4°,

DDIV Double Divide
[117 | a4 il x | Y
(1) 89 121314 1718) 3s

If the high order doubleword of the magnitude of the quadruple length
number in AC-AC+3 is greater than or equal to the magnitude of the
operand in location E,E + 1, set Trap 1, Overflow and No Divide, and go
immediately to the next instruction without affecting the original AC or
memory operand in any way. Otherwise divide the quadruple }Jength num-
ber contained in the accumulators by the operand in location E,E + 1, calcu-
lating a quotient of 70 magnitude bits including leading zeros. Place the
unrounded quotient in AC,AC + 1, and the double length remainder, with
the same sign as the dividend, in AC+2,AC + 3.

2-16 User Operations

2.3 Floating Point Arithmetic®

For floating point arithmetic the PDP-10 has instructions for scaling the
exponent (which is multiplication of the entire number by a power of 2),
performing addition, subtraction, multiplication and division of numbers in
single and double precision floating point formats, converting between dif-
ferent range floating formats, and converting numbers from fixed format to
floating and vice versa. Except for conversion operations, instructions
treated here interpret all operands as floating point numbers in the formats
given in §1.4, and generate results in those formats. The reader is strongly
advised to reread §1.4 if he does not remember the formats in detail.

For the four standard arithmetic operations in single precision, the
program has a choice of modes, determining mostly the destination of the
result, and can select whether or not the result shall be rounded. Rounding
produces the greatest consistent precision using only single length
operands. Instructions without rounding save time 1n one-word operations
where rounding is of no significance. Actually the result is formed in a
double length register in addition, subtraction and multiplication, wherein
any bits of significance in the low order part supply information for normal-
ization, and then for rounding if requested. Consider addition as an exam-
ple. Before adding, the processor right shifts the fractional part of the
operand with the smaller exponent until its bits correctly match the bits of
the other operand in order of magnitude. Thus the smaller operand could
disappear entirely, having no effect on the result (“result” shall always be
taken to mean the information (one word or two) stored by the instruction,
regardless of the number of significant bits it contains or even whether it is
the correct answer). In any event, the significance of the result depends on
the relative values of the operands. For example, a subtraction involving
two like-signed numbers whose exponents are equal and whose fractions
differ only in the LSB gives a result containing only one bit of significance.
In division the processor always calculates a one-word quotient that re-
quires no normalization if the original operands are normalized. An extra
quotient bit is calculated for rounding when requested.

Among the remaining floating point instructions, those that convert
between number types in standard range operate only on single words.
Instructions that convert to floating point assume the operand is an integer
and always normalize and round the result. In the opposite direction, only
the integral part of the result is saved, and rounding is an option of the
program. The instructions for the four standard operations using double
precision have no modes. In division the processor calculates a two-word
rounded quotient that is already normalized if the original operands are
normalized. In addition, subtraction and multiplication, the result is
formed in a triple length register, wherein bits of significance in the lowest
order part supply information for normalization and then for rounding.

The processor has four flags, Overflow, Floating Overflow, Floating
Underflow and No Divide, that indicate when the exponent is too large or
too small to be accommodated or a division cannot be performed because of

5 In a KA10 without floating point hardware, all of the instructions presented in this section
are trapped as unassigned codes (§2.16).

June 1982 User Operations 2-17

the relative values of dividend and divisor. Except where the result would
be in fixed point form, any of these circumstances sets Overflow and
Floating Overflow. If only these two are set, the exponent of the answer is
too large; if Floating Underflow is also set, the exponent is too small. No
Divide being set means the processor failed to perform a division, an event
that can be produced only by a zero divisor if all nonzero operands are
normalized. Any condition that sets Overflow also sets the Trap 1 flag.
These flags can be read and controlled by certain program control instruc-
tions (§§2.9, 2.16), but overflow is usually handled by trapping through the
setting of Trap 1. The KA10 lacks the trapping feature, so its program must
make direct use of Overflow and Floating Overflow, which are available as
processor conditions (via an in-out instruction) that can request a priority
interrupt if enabled (§5.6). The conditions detected can only set the arith-
metic flags and the hardware does not clear them, so the program must
clear them before a floating point instruction if they are to give meaningful
information about the instruction afterward. However, the program can
check the flags following a series of instructions to determine whether the
entire series was free of the types of error detected. \ »

The floating point hardware functions at its best if given operands that
are either normalized or zero, and it normalizes.a nonzero result.® An oper-
and with a zero fraction and a nonzero exponent can give wild answers in
additive operations because of extreme loss of significance; e.g. adding Y2 x
2% and 0 x 2% gives a zero result, as the first operand (having a smaller
exponent) looks smaller to the processor and is shifted to oblivion. A num-
ber with a 1 in bit 0 and 0s in bits 9-35 is not simply an incorrect represen-
tation of zero, but rather an unnormalized “fraction” with value -1. This
unnormalized number can produce an incorrect answer in any operation.
But note that such malformed numbers must be created deliberately by the
programmer — the processor never produces them.

6 The processor normalizes the result by shifting the fraction and adjusting the exponent to
compensate for the change in value. Each shift and accompanying exponent adjustment
thus multiply the number both by 2 and by 'z simultaneously, leaving its value
unchanged.

Note that with normalized operands, the processor uses at most two bits of informa-
tion from the lowest order part to normalize the result. In multiplication this is obvious,
since squaring the minimum fractional magnitude "4 gives a result of Y. In an addition or
subtraction of numbers that differ greatly in order of magnitude, the result is determined
almost completely by the operand of greater order. A subtraction involving two like-signed
numbers with equal exponents requires no shifting beforehand so there is no information
in the lowest order part. Hence an addition or subtraction never requires shifting both
before the operation and in the normalization; when there is no prior shifting, the normal-
ization brings in Os.

2-18 User Operations

June 1982

Single Precision with Rounding

There are four instructions that use only one-word operands and store a
single length rounded result. Rounding is away from zero: if the part of the
normalized answer being dropped (the low order part of the fraction) is
greater than or equal in magnitude to one half the LSB of the part being
retained, the magnitude of the latter part is increased by one LSB.

The rounding instructions have four modes that determine the source
of the non-AC operand and the destination of the result. These modes are
like those of fixed point arithmetic, including an immediate mode that
allows the instruction to carry an operand with it.

Source of non- Destination
Mode - Suffix AC operand of result
Basic E AC
Immediate I The word E,0 AC
Memory M E E
Both B E AC and E

Note however that floating point immediate uses E,0 as an operand, not
0,E. In other words the half word E is interpreted as a sign, an 8-bit expo-
nent, and a 9-bit fraction.

In each of these instructions, the exponent that results from normaliza-
tion and rounding is tested for overflow or underflow. If the exponent is >
127, set Trap 1, Overflow and Floating Overflow; the result stored has an
exponent 256 less than the correct one. If < -128, set Trap 1, Overflow,
Floating Overflow and Floating Underflow; the result stored has an expo-
nent 256 greater than the correct one.

FADR Floating Add and Round

tasa [m] 4 [x | %

0 67 89 121314 1718 ') 35

Floating add the operand specified by M to AC. If the double length fraction
in the sum is zero, clear the specified destination. Otherwise normalize the
double length sum bringing Os into bit positions vacated at the right, round
the high order part, test for exponent overflow or underflow as described
above, and place the result in the specified destination.

FADR Floating Add and Round 144
FADRI Floating Add and Round Immediate _ 145
FADRM Floating Add and Round to Memory 146
FADRB Floating Add and Round to Both 147

7 In the hardware the rounding operation is actually somewhat more complex than stated
here. If the result is negative, the hardware combines rounding with placing the high
order word in twos complement form by decreasing its magnitude if the low order part is <
v, LSB. Moreover an extra single-step renormalization occurs if the rounded word is no
longer normalized.

June 1982 User Operations 2-19

FSBR Floating Subtract and Round

| asa] a T x] Y |

0 67 89 121314 1718 : 35

Floating subtract the operand specified by M from AC. If the double length
fraction in the difference is zero, clear the specified destination. Otherwise
normalize the double length difference bringing Os into bit positions va-
cated at the right, round the high order part, test for exponent overflow or
underflow as described above, and place the result in the specified
destination.

FSBR Floating Subtract and Round 154
FSBRI Floating Subtract and Round Immediate 155
FSBRM Floating Subtract and Round to Memory 156
FSBRB Floating Subtract and Round to Both 157

FMPR Floating Multiply and Round

| 104 JM&L‘) A il x| Y

0 67 121314 1718 RE

Floating multiply AC by the operand specified by M. If the double length
fraction in the product is zero, clear the specified destination. Otherwise
normalize the double length product bringing Os into bit positions vacated
at the right, round the high order part, test for exponent overflow or under-
flow as described above, and place the result in the specified destination.

FMPR Floating Multiply and Round 164
FMPRI Floating Multiply and Round Immediate _ 165
FMPRM Floating Muitiply and Round to Memory 166
FMPRB Floating Multiply and Round to Both 167

FDVR Floating Divide and Round

| 174 Ju] 4 1] x| Y I

0 67 89 121314 1718 35

If the magnitude of the fraction in AC is greater than or equal to twice that
of the fraction in the operand specified by M, set Trap 1, Overflow, Floating
Overflow and No Divide, and go immediately to the next instruction with-
out affecting the original AC or memory operand in any way.

If the division can be performed, floating divide AC by the operand
specified by M, calculating a quotient fraction of 28 bits (this includes an
extra bit for rounding). If the fraction is zero, clear the specified destina-
tion. Otherwise round the fraction using the extra bit calculated. If the

2-20 User Operations

June 1982

original operands were normalized, the single length quotient will already
be normalized; if it is not, normalize it bringing Os into bit positions va-
cated at the right. Test for exponent overflow or underflow as described
above, and place the result in the specified destination.

FDVR Floating Divide and Round 174
FDVRI Floating Divide and Round Immediate 175
FDVRM Floating Divide and Round to Memory 176
FDVRB Floating Divide and Round to Both 177

Notes. Division fails if the divisor is zero, but the no-divide condition
can otherwise be satisfied only if at least one operand is unnormalized.

Single Precision without Rounding

Instructions that do not round are faster for processing floating point num-
bers with fractions containing fewer than 27 significant bits. They perform
the four standard arithmetic operations with normalization but without
rounding. All use AC and the contents of location E as operands and have
three modes. They lack an immediate mode, but are otherwise analogous to
the single precision instructions with rounding.

Mode Suffix Effect

Basic High order word of result stored in AC.
Memory M High order word of result stored in E.

Both B High order word of result stored in AC and E.

In each of these instructions, the exponent that results from normaliza-
tion is tested for overflow or underflow. If the exponent is > 127, set Trap 1,
Overflow and Floating Overflow; the result stored has an exponent 256 less
than the correct one. If < -128, set Trap 1, Overflow, Floating Overflow
and Floating Underflow; the result stored has an exponent 256 greater
than the correct one.

FAD Floating Add

[140 [m] a4 [x | Y M1

67 89 121314 1718 s

Floating add the contents of location E to AC. If the double length fraction
in the sum is zero, clear the destination specified by M. Otherwise normal-
ize the double length sum bringing Os into bit positions vacated at the

June 1982 : User Operations 2-21

right, test for exponent overflow or underflow as described above, and place
the high order word of the result in the specified destination.?

FAD Floating Add T '. 140

FADM Floating Add to Memory - ‘ ‘ 142
FADB Floating Add to Both o ' 143
FSB Floating Subtract

[1so {m] 4 il «x Y M# 1.
0 6 7 89 121314 1718 35

Floating subtract the contents of location E from AC. If the double length
fraction in the difference is zero, clear the destination specified by M. Oth-
erwise normalize the double length difference bringing Os into bit positions
vacated at the right, test for exponent overflow or underflow as described
above, and place the high order word of the result in the specified
destination.” '

FSB Floating Subtract | : 150
FSBM Floating Subtract to Memory 152
FSBB Floating Subtract to Both | - 153
FMP Floating Multiply

[160 [mM| a4 [i] x] y | M#L
0 67 89 121314 17 18 ' 35

Floating multiply AC by the contents of location E. If the double length
fraction in the product is zero, clear the destination specified by M. Other-
wise normalize the double length product bringing Os into bit positions
vacated at the right, test for exponent overflow or underflow as described
above, and place the high order word of the result in the specified
destination.

8 Caution: In single precision addition the term with the smaller exponent is right shifted in
a double length register. specifically a register with 54 magnitude bits. Now if the differ-
ence in the exponents is <2 54, there is at least one significant bit after the shift (assuming
normalized operands); and if the difference is ;> 72 (64 in the KI10), the hardware throws
the term away by substituting zero. But when the exponent difference lies in the range 54
to 72 (64), the procedure disposes of all significant bits without actually substituting zero.
This means that if the shifted term is positive it appears in the addition as all 0s, but if
negative it appears as all 1s. The latter case gives an answer that is less by one LSB.

9 The caution given above for addition applids also to subtraction. which is done by adding
with the minuend negated. Here the lesser answer (as against a true zero substitution)
occurs when the term with the smaller exponent is negative after the minuend negation,
i.e. when it is a negative subtrahend but a positive minuend.

2-22 User Operations

June 1982

FMP Floating Multiply 160

FMPM Floating Multiply to Memory 162
FMPB Floating Multiply to Both 163
FDV Floating Divide

v7o M| o4 [x] Y | M1
0 67 89 121314 1718 35

If the magnitude of the fraction in AC is greater than or equal to twice the
magnitude of the fraction in location E, set Trap 1, Overflow, Floating
Overflow and No Divide, and go immediately to the next instruction with-
out affecting the original AC or memory operand in any way.

If division can be performed, floating divide AC by the contents of
location E. Calculate a quotient fraction of 27 bits. If the fraction is zero,
clear the destination specified by M. A quotient with a nonzero fraction will
already be normalized if the original operands were normalized; if it is not,
normalize it bringing Os into bit positions vacated at the right. Test for
exponent overflow or underflow as described above, and place the single
length quotient in the specified destination.

NOTE

In the KL10 and KS10, a negative quotient is represented by

a twos complement only when the remainder is zero — other-
wise it is a ones complement. In the KI10 and KA10, a twos |
complement is used for a negative quotient regardless of the
value of the remainder,

FDV Floating Divide 170
FDVM Floating Divide to Memory 172
FDVB Floating Divide to Both 173

Notes. Division fails if the divisor is zero, but the no-divide condition
can otherwise be satisfied only if at least one operand is unnormalized.

Standard Range Double Precision'

There are four instructions for the four basic operations, and they have no
modes. All use AC and memory operands and place the result in the accu-
mulators. Memory operands are double length in location E.E+1; AC
operands and results are double length in AC,AC+1. All operands are
interpreted as double precision floating point numbers. All results are nor-
malized regardless of the status of the original operands, except that in
KI10 multiplication and division the result is guaranteed to be normalized
only when the original operands are normalized. Except in KI10 division,
the result is rounded. The rounding function is the same as that used in

' In the KA10 these instructions are trapped as unassigned codes.

June 1982 User Operations 2-23

single precision: if the part of the answer being dropped (the low order part
of the fraction) is greater than or equal in magnitude to one half the LSB of
the double length part being retained, the magnitude of the latter part is
increased by one LSB (with appropriate adjustment for a twos complement
negative). ,

In each of these instructions, the exponent that results from normaliza-
tion and rounding (if done) is tested for overflow or underflow. If the expo-
nent is > 127, set Trap 1, Overflow and Floating Overflow; the result stored
has an exponent 256 less than the correct one. If < —-128, set Trap 1, Over-
flow, Floating Overflow and Floating Underflow; the result stored has an
exponent 256 greater than the correct one.

DFAD Double Floating Add

110 | 4] x] Y]

0 89 121314 1718 35

Floating add the operand in location E,E + 1 to AC,AC + 1. If the fraction in
the sum is zero, clear AC,AC+ 1. Otherwise normalize the triple length
sum bringing Os in at the right, round the high order double length part,
test for exponent overflow or underflow as described above, and place the
result in AC,AC+ 1. Note: The KI10 zero test inspects only the high order
70 bits in the fraction.

DFSB Double Floating Subtract

111 | a4 Ji] x] Y]

0 89 121314 1718 35

Floating subtract the operand in location E,E+1 from AC,AC+1. If the
fraction in the difference is zero, clear AC,AC + 1. Otherwise normalize the
triple length difference bringing Os into bit positions vacated at the right,
round the high order double length part, test for exponent overflow or un-
derflow as described above, and place the result in AC,AC+ 1. Note: The
KI10 zero test inspects only the high order 70 bits in the fraction.

DFMP Double Floating Multiply

iz [a [x] v |

0 89 121314 1718 35

KL10 and KS10: Floating multiply AC,AC+ 1 by the operand in location
EE + 1. If the product is zero, clear AC,AC + 1. Otherwise normalize the
product, round the high order double length part, test for exponent overflow
and underflow as described above, and place the result in AC, AC +1.
KI10: Floating multiply AC,AC + 1 by the operand in location E.E + 1.

2-24 User Operations

June 1982

If the high order 70 bits of the fraction in the product are zero, clear
AC,AC + 1. Otherwise, if there are any bits of significance among the high
order 35, do at most one normalization shift if required; if the high order 35
bits are zero, shift the fraction left 35 places (adjusting the exponent), and
then do at most one normalization shift if required. Round the high order
double length part, test for exponent overflow and underflow as described
above, and place the result in AC,AC + 1. The 35-bit shift can be done only
if the original operands are unnormalized. The single normalization shift
produces a normalized result for normalized operands.

DFDV Double Floating Divide

| 113 | a4 1] x] Y

0 89 121314 1718 35

If the magnitude of the fraction in the operand in AC,AC +1 is greater than
or equal to twice that of the fraction in the operand in location E,E + 1, set
Trap 1, Overflow, Floating Overflow and No Divide, and go immediately to
the next instruction without affecting the original AC or memory operand
in any way.

If the division can be performed, floating divide the AC operand by the
memory operand, calculating a quotient fraction of 63 bits including one for
rounding (62 in the KI10), If the fraction is zero, clear AC,AC + 1. Other-
wise in the KL10 normalize the quotient and round it using the extra bit
calculated. Test for exponent overflow or underflow as described above, and
place the quotient in AC,AC + 1. The remainder is lost. Division fails if the
divisor is zero, but the no-divide condition can otherwise be satisfied only if
at least one operand is unnormalized.

Notes. In the KI10 the quotient is normalized if the original operands
are normalized.

Expanded Range Double Precision''

There are four instructions for the four basic operations in G format, and
they have no modes. All use AC and memory operands and place the result
in the accumulators. Memory operands are double length in location
E,E+1; AC operands and results are double length in AC,AC+1. All
operands are interpreted as G format double precision floating point num-
bers. All results are normalized and rounded regardless of the status of the
original operands. The rounding function is the same as that used in single
precision: if the part of the answer being dropped (the low order part of the
fraction) is greater than or equal in magnitude to one half the LSB of the
double length part being retained, the magnitude of the latter part is in-
creased by one LSB (with appropriate adjustment for a twos complement
negative).

11 These instructions are trapped as unassigned codes except in a KL10 that runs microcode
version 271 or greater.

June 1982 User Operations 2-25

In each of these instructions, the exponent that results from normaliza-
tion and rounding is tested for overflow or underflow. If the exponent is >
1023, set Trap 1, Overflow and Floating Overflow; the result stored has an
exponent 2048 less than the correct one. If < —1024, set Trap 1, Overflow,
Floating Overflow and Floating Underflow; the result stored has an expo-
nent 2048 greater than the correct one.

GFAD G Format Floating Add

102 [a4 [x] Y |

0 89 121314 1718 35

Interpreting all numbers in G format, floating add the operand in location
EE+1 to AC,AC+1. If the fraction in the sum is zero, clear AC,AC+1.
Otherwise normalize the triple length sum bringing Os in at the right,
round the high order double length part, test for exponent overflow or un-
derflow as described above, and place the result in AC,AC+ 1.

GFSB G Format Floating Subtract

| 103 | a [x] Y

0 89 121314 1718 35

Interpreting all numbers in G format, floating subtract the operand in loca-
tion E.E+1 from AC,AC +1. If the fraction in the difference is zero, clear
AC,AC +1. Otherwise normalize the triple length difference bringing Os
into bit positions vacated at the right, round the high order double length
part, test for exponent overflow or underflow as described above, and place
the result in AC,AC +1.

GFMP G Format Floating Multiply

106 | a4 [x] Y j

0 89 121314 1718 35

Interpreting all numbers in G format, floating multiply AC,AC+ 1 by the
operand in location E.E + 1. If the product is zero, clear AC,AC + 1. Other-
wise normalize the product, round the high order double length part, test
for exponent overflow and underflow as described above, and place the re-
sult in ACLAC+1.

2-26 User Operations June 1982

GFDV G Format Floating Divide

[107 [4] x | v]

0 89 121314 1718 35

If the magnitude of the G format fraction in the operand in AC,AC+1 is
greater than or equal to twice that of the G format fraction in the operand
in location E,E + 1, set Trap 1, Overflow, Floating Overflow and No Divide,
and go immediately to the next instruction without affecting the original
AC or memory operand in any way.

If the division can be performed, floating divide in G format the AC
operand by the memory operand, calculating a quotient fraction of 60 bits
including one for rounding. If the fraction is zero, clear AC,AC + 1. Other-
wise normalize the quotient and round it using the extra bit calculated.
Test for exponent overflow or underflow as described above, and place the
quotient in AC,AC + 1. The remainder is lost. Division fails if the divisor is
zero, but the no-divide condition can otherwise be satisfied only if at least
one operand is unnormalized.

Number Conversion'*

Besides the groups of instructions for performing standard arithmetic oper-
ations with fixed and floating point numbers in the various formats, there
is also a group for translating numbers from one format to another. This
group includes several that are strictly single precision between floating
and fixed, and over twice as many that handle conversion between G for-
mat and single or double precision fixed point as well as single precision
floating point. In the following presentation these instructions are grouped
in the way they would most likely be associated in use; but there are com-
mon characteristics that cross over these categories, in particular havmg to
do with the rounding of the result.

If the result of a conversion is a floating point number in any format,
the rounding function is the same as that used by the standard floating
point arithmetic instructions described above. A fixed point result on the
other hand may be rounded or simply truncated, which corresponds to
whether the instruction mnemonic ends in "FIXR” or just “"FIX”.

Truncation produces the integer of largest magnitude less than or equal
to the magnitude of the original number. For example, a number > +1
but < +2 becomes +1; a number < -1 but > -2 becomes —1. This
truncation function is that used in Fortran (“fixation”). For it, the pro-
cessor drops the fractional part in a positive number, but adds one to the
integral part (as required by twos complement format) if any bits of
significance are shifted out in a negative number.

12 In the KA10 all of these instructions are trapped as unassigned codes. The first three are
available in all other processors, but the remaining eight are available only in a KL10
with microcode version 271 or greater. However the four instructions that convert from G
format to fixed point are not implemented in microcode: they are instead simulated by the
Monitor.

June 1982 ‘ User Operations

2-27

Rounding is in the positive direction: the magnitude of the integral part
is increased by one if the fractional part is = %2 in a positive number
but > Y in a negative number. For example, + 1.4 (decimal) is rounded
to +1, whereas + 1.5 and + 1.6 become +2; but with negative numbers,
—1.4 and -1.5 become -1, whereas —1.6 becomes —2. This rounding func-
tion is the Algol standard for real to integer conversion. For it the
processor adds one to the integral part if the fractional part is = Y2 in a
positive number or (as required by twos complement format) is < 2 in a
negative number.

The first three of the following instructions convert between fixed and
floating in single precision only; the next six are for converting between
single and double precision integers and G floating point numbers; the final
pair converts between G format and the standard range single precision
floating point that is available in all machines. In all cases the operand is
taken from location E or E.E + 1, and the converted result is placed in AC or
AC,AC+1.

FIX Fix
| 1
0

If the exponent of the single precision floating point number in location E is
> 35, set Overflow and Trap 1, and go immediately to the next instruction
without affecting AC or the contents of E in any way.

Otherwise replace the exponent X in the word from location E with bits
equal to the sign of the fraction, and shift the (now fixed) extended fraction
N = X - 27 places to the correct position for its order of magnitude with the
binary point at the right of bit 35. For positive N, shift left bringing Os into
bit 35 and dropping null bits out of bit 1. For negative N, shift right bring-
ing null bits (0s for positive, 1s for negative) into bit 1, and then truncate to
an integer. Place the result in AC.

Notes. The overflow test checks for a value = 2* assuming the operand
is normalized.

| a [x | Y

89 121314 1718 35

R
1o

FIXR Fix and Round
[120 [a4 [i] x] | Y
0 89 121314 1718 35

If the exponent of the single precision floating point number in location E is
> 35, set Overflow and Trap 1, and go immediately to the next instruction
without affecting AC or the contents of E in any way.

Otherwise replace the exponent X in the word from location E with blts
equal to the sign of the fraction, and shift the (now fixed) extended fraction
N = X — 27 places to the correct position for its order of magnitude with the

2-28 User Operations

June 1982

binary point at the right of bit 35. For positive N, shift left bringing Os into
bit 35 and dropping null bits out of bit 1. For negative N, shift right bring-
ing null bits (0s for positive, 1s for negative) into bit 1, and then round the
integral part. Place the result in AC.

Notes. The overflow test checks for a value = 2* assuming the operand
is normalized.

FLTR Float and Round
127 | 4 [x | Y |
0 89 121314 1718 35

Shift the magnitude part of the fixed point integer from location E right
eight places, insert the exponent 35 (in excess 128 form) into bits 1-8 to
move the shifted binary point to the left of bit 9 (35 = 27 + 8), and normal-
ize the fraction bringing first the bits originally shifted out and then 0s into
bit positions vacated at the right. If fewer than eight bits (left shifts) are
needed to normalize, use the next bit to round the single length fraction.
Place the result in AC.

Since the largest single precision fixed point magnitude (without con-
sidering sign) is 2*° — 1, a floating point number with exponent greater than
35 (and assumed normalized) cannot be converted to single precision fixed
point. There is no limit in the opposite direction, but precision can be lost as
floating point format provides fewer significant bits. A fixed integer greater
than 2% — 1 cannot be represented exactly in floating point unless all its
significant bits are clustered within a group of twenty-seven.

GFIX G Format Fix
123 A Il x Y

1) 8 9 12 13 14 17 IR B 45

E0 024 [oo [/] x | Y | Bits 9-12=0.
0 XY 12 13 14 17 1N 35

If the exponent of the G format floating point number in location E.E +1 is
> 35, set Overflow and Trap 1, and go immediately to the next instruction
without affecting AC or the contents of E,E +1 in any way.

Otherwise replace the exponent X in the word from location E with bits
equal to the sign of the fraction, and shift the (now fixed) extended double
length fraction N = X — 24 places to the correct position for its order of
magnitude with the binary point at the right of bit 35. For positive N, shift
left bringing bits from the low order word into bit 35 and dropping null bits

June 1982 User Operations 2-28.1

out of bit 1; for negative N, shift right bringing null bits (0s for positive, 1s
for negative) into bit 1. Then truncate to a single length integer and place
the result in AC.

Notes. The overflow test checks for a value = 2% assuming the operand
is normalized.

GFIXR G Format Fix and Round

[123 | a]I X”‘]m Y |

0 L) 12 13 14

EO | 026 [00 [7] x | Y | Bits 9-12=0.
L] 45

a 12 1 17 I

If the exponent of the G format floating point number in location E.E +1 is
> 35, set Overflow and Trap 1, and go immediately to the next instruction
without affecting AC or the contents of E,E +1 in any way.

Otherwise replace the exponent X in the word from location E with bits
equal to the sign of the fraction, and shift the (now fixed) extended double
length fraction N = X — 24 places to the correct position for its order of
magnitude with the binary point at the right of bit 35. For positive N, shift
left bringing bits from the low order word into bit 35 and dropping null bits
out of bit 1; for negative N, shift right bringing null bits (Os for positive, 1s
for negative) into bit 1. Then round the integral part and place the result in
AC. If rounding produces the number 2%, set Overflow and Trap 1; the
result stored is actually -2%.

Notes. The initial overflow test checks for a value = 2* assuming the
operand is normalized. Rounding can overflow only if the original operand
has exponent 35 and fraction = 1 — 27 (in other words the fraction is
positive and begins with a string of thirty-six 1s).

GFLTR G Format Float and Round

[123 | a4 1] x | Y
B9 17 IR

0 1213 14

Eo | 030 [oo [1] x | Y | Bits 9-12=0.
" . 15

0 L 12 B0 7K

Shift the magnitude part of the fixed point integer from location E right
eleven places in a double length register with 0 bits at the right, insert the
exponent 35 (in excess 1024 form) into bits 1-11 to move the shifted binary
point to the left of bit 12 (35 = 24 + 11), and normalize the now double
length fraction bringing Os into bit 71. Place the G format result in
AC,AC+1.

Notes. No rounding can occur as the fraction contains fewer than fifty-
nine significant bits.

2-28.2 User Operations

June 1982

GDFIX G Format Double Fix

[125 [a || x| ~y |
K4 171K

[l 12 13 14

1] 12 13 14 17 1K

If the exponent of the G format floating point number in location E.E +1 is
> 70, set Overflow and Trap 1, and go immediately to the next instruction
without affecting the ACs or the contents of E,E+1 in any way.

Otherwise replace the exponent X in the word from location E with bits
equal to the sign of the fraction, and shift the (now fixed) extended double
length fraction N = X — 59 places to the correct position for its order of
magnitude with the binary point at the right of bit 71. For positive N, shift
left bringing Os into bit 71 and dropping null bits out of bit 1. For negative
N, shift right bringing null bits (0s for positive, 1s for negative) into bit 1,
and then truncate to a double length integer. Place the result in AC,AC + 1.

Notes. The overflow test checks for a value = 2" assuming the operand
is normalized.

GDFIXR G Format Double Fix and Round

[123 | a j1] x | Y
L 17 1K

[FARERE

il

E0 023 oo [1] x | % | Bits 9-12=0.
Y 45

EO 025 oo [1l x | % Bits 9-12= 0,

o X4 12 13 14 17 In 45

If the exponent of the G format floating point number in location E.FE + 1 is
> 70, set Overflow and Trap 1, and go immediately to the next instruction
without affecting the ACs or the contents of E,E +1 in any way.

Otherwise replace the exponent X in the word from location E with bits
equal to the sign of the fraction, and shift the (now fixed) extended double
length fraction N = X — 59 places to the correct position for its order of
magnitude with the binary point at the right of bit 71. For positive N, shift
left bringing Os into bit 71 and dropping null bits out of bit 1. For negative
N, shift right bringing null bits (0Os for positive, 1s for negative) into bit 1,
and then round the double length integral part. Place the result in
AC,AC+1. '

Notes. The overflow test checks for a value = 2" assuming the operand
is normalized.

June 1982 User Operations

2-28.3

DGFLTR Double G Format Float and Round

123 JA][Xl Y

4] 8 12 13 14 17 18 35

Eo | 027 [00 |1] x J Y | | Bits 9-12=0.

[§] 89 12 13 14 17 BB

Shift the magnitude part of the double length fixed point integer from
location E,E + 1 right eleven places, insert the exponent 70 (in excess 1024
form) into bits 1-11 to move the shifted binary point to the left of bit 12 (70

= 59 + 11), and normalize the fraction bringing first the bits originally
shlfted out and then Os into bit positions vacated at the right. If fewer than
eleven bits (left shifts) are needed to normalize, use the next bit to round
the double length fraction. Place the result in AC,AC+1.

GSNGL G Format to Single Precision

[123 IAJﬂX[Y

0 12 13 14 17 ES)

E0 o21 [oo [If x Y Bits 9-12=0.

0 K9 2o 17 1K . RE

If the exponent of the G format floating point number in location E.E +1 is
> 127 or < -128, set Overflow, Floating Overflow and Trap 1 (and Floating
Underflow if < —128), and go immediately to the next instruction without
affecting the ACs or the contents of E,E +1 in any way.

Otherwise convert the excess 1024 exponent in the doubleword from
E.E+1 to excess 128 form, and shift the fraction left three places to the
correct position for single precision format. Round the high eorder word
(reducing the fraction from 59 bits to 27), and place the resulting single
precision number in AC. If rounding produces an exponent > 127, set Over-
flow, Floating Overflow and Trap 1; the result stored has an exponent 256
greater than the correct one.

Notes. Rounding can overflow only if the original operand has exponent
127 and fractional magnitude = 1 — 27",

GDBLE Single Precision to G Format

s Tal[x] v |

0 12 13 14 17 1K 35

Eo [o022] o |1] x | Y | Bits 9-12=0.
1] 9 12 13 14 17 1K 35

Shift the fraction of the single precision floating point number from loca-

tion E right three places in a double length register, with Os at the right, to

the correct position for G format, and convert the excess 128 exponent to

excess 1024 form. Place the resulting G format number in AC,AC + 1.

2-28.4 User Operations June 1982

Scaling

Two floating point instructions are in a category by themselves: they
change the exponent of a number without changing the significance of the
fraction. In other words they multiply the number by a power of 2, and are
thus analogous to arithmetic shifting of fixed point numbers except that no
information is lost, although the exponent can overflow or underflow. The
amount added to the exponent is specified by the result of the effective
address calculation taken as a signed number (in twos complement nota-
tion) modulo 2° or 2! in magnitude respectively for single precision or G
format operations. In other words the effective scale factor E is the number
composed of bit 18 (which is the sign) and bits 28-35 or 25-35 of the calcu-
lation result. Hence the programmer may specify the factor directly in the
instruction (perhaps indexed) or give an indirect address to be used in
calculating it. A positive E increases the exponent, a negative E decreases
it; E is thus the power of 2 by which the number is multiplied. The scale
factor lies in the range —256 to + 255 or —1048 to +1023.

FSC Floating Scale

132 | 4 1] x | Y

0 89 121314 1718 35

If the single precision fractional part of AC is zero, clear AC. Otherwise add
the 8-bit signed scale factor given by E to the exponent part of AC (thus
multiplying AC by 2*), normalize the resulting word bringing Os into bit
positions vacated at the right, and place the result back in AC. A negative
E is represented in standard twos complement notation, but the hardware
compensates for this when scaling the exponent.

If the exponent after normalization is > 127, set Trap 1, Overflow and
Floating Overflow; the result stored has an exponent 256 less than the
correct one. If < —128, set Trap 1, Overflow, Floating Overflow and Float-
ing Underflow; the result stored has an exponent 256 greater than the
correct one.'**

The above instruction can be used to float a fixed number with twenty-
seven or fewer significant bits. To float an integer contained within AC bits
9-35,

FSC AC,233

inserts the correct exponent to move the binary point from the right end to
the left of bit 9 and then normalizes (233, = 155,, = 128 + 27). Of course
this is useful only in the KA10, which lacks the conversion instructions.

12A Cqution: In the KI10 and KA10 only, extreme overflows are not detected properly in this
instruction. An exponent > 255 sets Floating Underflow, and an exponent < -256 fails
to set it.

June 1982 User Operations 2-28.5

GFSC G Format Floating Scale'??

123 A 1] x | Y]

0 8 9 12 13 14 17 18 35

Eo| 031 [oo [r] x | Y | Bits 9-12=0.
A9

) 2 13 14 7 18 3

If the G format fractional part of AC is zero, clear AC,AC+1. Otherwise
add the 11-bit signed scale factor given by E to the exponent part of
AC,AC+1 (thus multiplying AC,AC+1 by 2*), normalize the resulting
doubleword bringing Os into bit positions vacated at the right, and place the
result back in AC,AC+1. A negative E is represented in standard twos
complement notation, but the hardware compensates for this when scaling
the exponent. :

If the exponent after normalization is > 1023, set Trap 1, Overflow and
Floating Overflow; the result stored has an exponent 2048 less than the
correct one. If << -1024, set Trap 1, Overflow, Floating Overflow and Float-
ing Underflow; the result stored has an exponent 2048 greater than the
correct one.

KA10 Softwaré Double Precision

These instructions are regarded as obsolete — they are solely for assisting
in the KA10 software implementation of double precision floating point
arithmetic. Hence they exist only in the KA10, the KI10, and in those
KL10s whose microcode implements them specifically for compatibility
with KA10 usage. A programmer who employs these instructions must be
aware that the double length format for KA10 software double precision is
not the same as the standard double precision format given in §1.4. A
double length number in KA10 software double precision format contains a
54-bit fraction, half of which is in bits 9-35 of each word. The sign and
exponent are in bits 0 and 1-8 respectively of the word containing the more
significant half, and the standard twos complement is used to form the
negative of the entire 63-bit string. In the remaining part of the less signifi-
cant word, bit 0 is 0, and bits 1-8 contain a number 27 less than the
exponent, but this is expressed in positive form even though bits 9-35 may
be part of a negative fraction. For example, the number 2" + 27! has this
two-word representation in software double precision format:

10(10 010 0111100 000 000 000 000 000 000 000 000]

01 89 35

lojo1 111 000J000 000 000 100 000 000 000 000 000

01 89 35

12B This instruction is trapped as an unassigned code except in a KL10 that runs microcode
version 271 or greater.

2-28.6 User Operations

June 1982

whereas its negative is

1101 101 300011 111 111 LT 1LE 111 111 111 111]
01 89 35
1001 111 000[111 111 111 100 000 000 000 000 000]
01 89 35

Routines for performing software double precision arithmetic are made
possible by the six instructions described here. Four of these do the basic
operations with normalization; the double length number in software for-
mat is used as a dividend or appears as the result in addition, subtraction
or multiplication. The remaining two instructions do not normalize: one
negates a software double length number, the other performs a special
unnormalized addition for manipulating low order parts of numbers with-
out shifting them from their proper positions. In the instructions for the
basic operations, the exponent that results from normalization is tested for
overflow or underflow. If the exponent is > 127, set Trap 1, Overflow and
Floating Overflow; the result stored has an exponent 256 less than the
correct one. If < —-128, set Trap 1, Overflow, Floating Overflow and Float-
ing Underflow; the result stored has an exponent 256 greater than the
correct one.

NOTE

These instructions are solely for assiting in KA10 software
double precision floating point arithmetic. In any processor
that does not implement them, their codes are unassigned,
and they therefore execute as MUUOs rather than perform-
ing the operations given in the following descriptions.

DFN Double Floating Negate
HEE | a4 1] x | Y]
0 89 121314 1718 3s

Negate the software double length floating point number composed of the
contents of AC and location E with AC on the left. Do this by taking the
twos complement of the number whose sign is AC bit 0, whose exponent is
in AC bits 1-8, and whose fraction is the 54-bit string in bits 9-35 of AC
and location E. Place the high order word of the result in AC; place the low
order part of the fraction in bits 9-35 of location E without altering the
original contents of bits 0—8 of that location.

Notes. Usually the double length number is in two adjacent accumula-
tors, and E equals A+1. There is no overflow test, as negating a correctly
formatted floating point number cannot cause overflow.

DFN AC,AC is undefined.

User Operations

2-29

UFA Unnormalized Floating Add

130 |4] x] Y

0 89 121314 1718 35

Floating add the contents of location E to AC.'3 If the double length fraction
in the sum is zero, clear AC+1. Otherwise normalize the sum only if the
magnitude of its fractional part is = 1, and place the high order part of the
result in AC+1. The original contents of AC and E are unaffected.

If the exponent of the sum following the one-step normalization is >
127, set Trap 1, Overflow and Floating Overflow; the result stored has an
exponent 256 less than the correct one.

Notes. The exponent of the sum is equal to that of the larger summand
unless addition of the fractions overflows, in which case it is greater by 1.
Exponent overflow can occur only in the latter case.

FADL Floating Add Long

| 141 [4 1] x] Y

0 89 121314 1718 35

Floating add the contents of location E to AC'3. If the double length fraction
in the sum is zero, clear AC,AC+1. Otherwise normalize the double length
sum bringing Os into bit positions vacated at the right, test for exponent
overflow or underflow as described above, and place the high order word of
the result in AC. If the exponent of the sum is < -101 (=128 + 27) or the low
order half of the fraction is zero, clear AC+1. Otherwise place a low order
word for a double length result in AC+1 by putting a 0 in bit 0, an exponent
in positive form 27 less than the exponent of the sum in bits 1-8, and the
low order part of the fraction in bits 9-35.

FSBL Floating Subtract Long

151 [a4 [/ x] Y

0 89 121314 1718 35

Floating subtract the contents of location E from AC', If the double length
fraction in the difference is zero, clear AC,AC+1. Otherwise normalize the
double length difference bringing Os into bit positions vacated at the right,
test for exponent overflow or underflow as described above, and place the
high order word of the result in AC. If the exponent of the difference is <
-101 (=128 + 27) or the low order half of the fraction is zero, clear AC+1.

13 The caution given in footnote 10 for FAD applies to this instruction as well.

14 The caution given in footnote 11 for FSB applies to this instruction as well.

2-30 User Operations

Otherwise place a low order word for a double length result in AC+1 by
putting a 0 in bit 0, an exponent in positive form 27 less than the exponent
of the difference in bits 1-8, and the low order part of the fraction in bits
9-35.

FMPL Floating Multiply Long

| 161 | a4 1] x] Y]

V] 89 121314 1718 35

Floating multiply AC by the contents of location E. If the double length
fraction in the product is zero, clear AC,AC+1. Otherwise normalize the
double length product bringing Os into bit positions vacated at the right,
test for exponent overflow or underflow as described above, and place the
high order word of the result in AC. If the exponent of the product is > 154
(127 + 27) or < -101 (--128 + 27) or the low order half of the fraction is zero,
clear AC+1. Otherwise place a low order word for a double length result in
AC+1 by putting a 0 in bit 0, an exponent in positive form 27 less than the
exponent of the product in bits 1-8, and the low order part of the fraction in
bits 9-35.

FDVL Floating Divide Long

171 [4 [1] x | Y]

0 89 121314 1718 35

If the magnitude of the software format double length fraction in AC,AC+1
is greater than or equal to twice the magnitude of the fraction in location E,
set Trap 1, Overflow, Floating Overflow and No Divide, and go immediately
to the next instruction without affecting the original AC or memory oper-
and in any way.

If the division can be performed, floating divide the software format
operand in AC,AC+1 by the contents of location E. Calculate a quotient
fraction of 27 bits. If the fraction is zero, clear AC. A quotient with a
nonzero fraction will already be normalized if the original operands were
normalized; if it is not, normalize it bringing Os into bit positions vacated at
the right. Test for exponent overflow or underflow as described above, and
place the single length quotient part of the result in AC.

Calculate the exponent for the fractional remainder from the division
according to the relative magnitudes of the fractions in dividend and divi-
sor: if the dividend was greater than or equal to the divisor, the exponent of
the remainder is 26 less than that of the dividend, otherwise it is 27 less. If
the remainder exponent is < —128 or the fraction is zero, clear AC+1. Oth-
erwise place the floating point remainder (exponent and fraction) with the
sign of the dividend in AC+1.

User Operations

2-31

NOTE

In the KL10, a negative quotient is represented by a twos
complement only when the remainder is zero — otherwise it
is a ones complement. In the KI10 and KA10, a twos comple-
ment is used for a negative quotient regardless of the value of
the remainder.

Notes. Division fails if the divisor is zero, but the no-divide condition
can otherwise be satisfied only if at least one operand is unnormalized.

A nonzero unnormalized dividend whose entire high order fraction is
zero produces a zero quotient. In this case AC+1 is cleared in the KI10 but
may receive rubbish in other processors.

2.4 Boolean Functions

For logical operations the PDP-10 has instructions for shifting and rotat-
ing (82.5) as well as for performing the complete set of sixteen Boolean
functions of two variables (including those in which the result depends on
only one or neither variable). The Boolean functions operate bitwise on full
words, so each instruction actually performs thirty-six logical operations
simultaneously. Thus in the AND function of two words, each bit of the
result is the AND of the corresponding bits of the operands. The table at the
end of the section lists the bit configurations that result from the various
operand configurations for all instructions.

Each Boolean instruction has four modes that determine the source of
the non-AC operand, if any, and the destination of the result. For an in-
struction without an operand (one that merely clears a location or sets it to
all 1s) the modes differ only in the destination of the result, so basic and
immediate modes are equivalent. The same is true also of an instruction
that uses only an AC operand. When specified by the mode, the result goes
to the accumulator addressed by A, even when there is no AC operand.

Source of non- Destination
Mode Suffix AC operand of result
Basic E AC
Immediate I The word 0,E* AC
Memory M E E
Both B E AC and E

* Tn section 0 the immediate source is 0,FE in all cases. But in a nonzero
section, setting AC to immediate memory instead uses the entire ex-
tended effective address E as the source, including the section number
(the left part of E).

SETZ Set to Zeros

400 |m| a Ji] x | Y

0 67 89 121314 1718 35

Change the contents of the destination specified by M to all 0s.

2-32 User Operations

SETZ Set to Zercs 400

SETZI Set to Zeros Immediate 401
SETZM Set to Zeros Memory 402
SETZB Set to Zeros Both 403

Notes. SETZ and SETZI are equivalent (both merely clear AC). In
them, I, X and Y are reserved and should be zero (at present E is ignored).

SETO Set to Ones

474 M| a4 |1l x | Y

0 67 89 121314 1718 3s

Change the contents of the destination specified by M to all 1s.

SETO Set to Ones 474
SETOI Set to Ones Immediate 475
SETOM Set to Ones Memory 476
SETOB Set to Ones Both 477

Notes. SETO and SETOI are equivalent. In them, I, X and Y are re-
served and should be zero (at present E is ignored).

SETA Set to AC

424 M| a] x | Y |

0 67 89 121314 1718 35

Make the contents of the destination specified by M equal to AC.

SETA Set to AC 424
SETAI Set to AC Immediate 425
SETAM Set to AC Memory 426
SETAB Set to AC Both 427

Notes. SETA and SETAI are no-ops. In them, I, X and Y are reserved
and should be zero (at present E is ignored).

SETAM and SETAB are both equivalent to MOVEM, which is the
preferred instruction (all move AC to location E).

SETCA Set to Complement of AC

aso |m| a4 1] x | y]

0 67 89 121314 1718 35

Change the contents of the destination specified by M to the complement of
AC.

User Operations 2-33

SETCA Set to Complement of AC 450

SETCAI Set to Complement of AC Immediate 451
SETCAM Set to Complement of AC Memory 452
SETCAB Set to Complement of AC Both 453

Notes. SETCA and SETCAI are equivalent (both complement AC). In
them, I, X and Y are reserved and should be zero (at present E is ignored).

SETM Set to Memory

414 M| o4 1l x| Y

0 67 89 121314 1718 35

Make the contents of the destination specified by M equal to the specified
operand.

SETM Set to Memory 414
SETMI Set to Memory Immediate 415
SETMM Set to Memory Memory 416
SETMB Set to Memory Both 417

If the program is running in a nonzero section, the instruction SETMI
is called XMOVEI (§2.1), which performs an analogous function with an
extended immediate operand (effective address).

Notes. SETM is equivalent to MOVE. In section 0 SETMI moves the
word 0,E to AC and is thus equivalent to MOVEI. SETMM is a no-op that
writes in memory. With nonzero A, SETMB is equivalent to MOVES. In all
cases the move instruction is preferred.

SETCM Set to Complement of Memory

460 M| a 1] x | Y

0 67 89 121314 1718 35

Change the contents of the destination specified by M to the complement of
the specified operand.

SETCM Set to Complement of Memory 460
SETCMI Set to Complement of Memory Immediate 461
SETCMM Set to Complement of Memory Memory 462
SETCMB Set to Complement of Memory Both 463

Notes. SETCMI moves the complement of the word 0,F to AC.
SETCMM complements location E.

2-34 User Operations

AND And with AC

[aor Tl A [l x T]]

0 67 89 121314 1718 35

Change the contents of the destination specified by M to the AND function
of the specified operand and AC.

AND And 404
AND! And Immediate 405
ANDM And to Memory 406
ANDB And to Both 407

ANDCA And with Complement of AC

| a1t0 M| a4 il x | Y]

0 67 89 121314 1718 35

Change the contents of the destination specified by M to the AND function
of the specified operand and the complement of AC.

ANDCA And with Complement of AC 410
ANDCAI And with Complement of AC Immediate 411
ANDCAM And with Complement of AC to Memory 412
ANDCAB And with Complement of AC to Both 413

ANDCM And Complement of Memory with AC

| 420 [m] a4] x | Y]

0 67 89 121314 1718 35

Change the contents of the destination specified by M to the AND function
of the complement of the specified operand and AC.

ANDCM And Complement of Memory 420
ANDCMI And Complement of Memory Immediate 421
ANDCMM And Complement of Memory to Memory 422
ANDCMB And Complement of Memory to Both 423

ANDCB And Complements of Both

0r440 [MiA[] | Y |

67 121314 1718 35

Change the contents of the destination specified by M to the AND function

User Operations

2-35

of the complements of both the specified operand and AC. The result is the
NOR function of the operands.

ANDCB And Complements of Both 440
ANDCBI And Complements of Both Immediate 441
ANDCBM And Complements of Both to Memory 442
ANDCBB And Complements of Both to Both 443
IOR Inclusive Or with AC

a3 Jm] 4 1] x| v 1
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the inclusive OR
function of the specified operand and AC.

IOR Inclusive Or 434
IORI Inclusive Or Immediate 435
IORM Inclusive Or to Memory 436
IORB Inclusive Or to Both 437

Notes. MACRO also recognizes OR, ORI, ORM and ORB as equivalent
to the inclusive OR mnemonics.

ORCA Inclusive Or with Complement of AC

454 [m| 4] x | Y

0 67 89 121314 1718 35

Change the contents of the destination specified by M to the inclusive OR
function of the specified operand and the complement of AC.

ORCA Or with Complement of AC 454
ORCAI Or with Complement of AC Immediate 455
ORCAM Or with Complement of AC to Memory 456
ORCAB Or with Complement of AC to Both 457

ORCM Inclusive Or Complement of Memory with AC

[404 M| a4 1] x | Y

0 67 89 121314 1718 35

Change the contents of the destination specified by M to the inclusive OR
function of the complement of the specified operand and AC.

2-36 User Operations

ORCM Or Complement of Memory 464

ORCMI Or Complement of Memory Immediate 465
ORCMM Or Complement of Memory to Memory 466
ORCMB Or Complement of Memory to Both 467
ORCB Inclusive Or Complements of Both

[470 M| a4] x | Y

0 67 89 121314 1718 35

Change the contents of the destination specified by M to the inclusive OR
function of the complements of both the specified operand and AC. The
result is the NAND function of the operands.

ORCB Or Complements of Both 470
ORCBI Or Complements of Both Irmmediate 471
ORCBM Or Complements of Both to Memory 472
ORCBB Or Complements of Both to Both 473
XOR Exclusive Or with AC

430 M| a4 J] x | Y
0 67 89 121314 1718 3s

Change the contents of the destination specified by M to the exclusive OR
function of the specified operand and AC.

XOR Exclusive Or 430
XORI Exclusive Or Immediate 431
XORM Exclusive Or to Memory 432
XORB Exclusive Or to Both 433

The original contents of the destination can be recovered except in XORB,
where both operands are replaced by the result. In the other three modes
the replaced operand is restored by repeating the instruction in the same
mode, i.e. by taking the exclusive OR of the remaining operand and the
result.

EQV Equivalence with AC
| 444 [m] a4 1] x | Y |
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the complement of
the exclusive OR function of the specified operand and AC (the result has
1s wherever the corresponding bits of the operands are the same).

User Operations 2-37

EQV Equivalence 444

EQVI Equivalence Immediate 445
EQVM Equivalence to Memory 446
EQVB Equivalence to Both 447

The original contents of the destination can be recovered except in EQVB,
where both operands are replaced by the result. In the other three modes
the replaced operand is restored by repeating the instruction in the same
mode, i.e. by taking the equivalence function of the remaining operand and
the result.

For the four possible bit configurations of the two operands, the above
sixteen instructions produce the following results. In each case the result as
listed is equal to bits 3—6 of the instruction word.

AC

Mode Specified Operand

SETZ

AND

ANDCA

SETM

ANDCM

SETA

XOR

IOR

ANDCB

EQV

SETCA

ORCA

SETCM

ORCM

ORCB

SETO

ek e e e = = = O O OO O O O OO0
H O OO O R HHOOO OO
H - O O H H O O H R O O H MO OoOlRo
H O H O H O H O H O H O O R Ok

2.5 Shift and Rotate

These instructions shift or rotate right or left the contents of AC or the
contents of AC,AC+1 concatenated into a 72-bit register with AC on the
left. Shifting is the movement of information bit-to-bit in a register. A
logical shift involves the entire word or doubleword with no distinction
among its bits, whereas an arithmetic shift involves only the magnitude,
bypassing the sign. Figure 2.1 shows the movement of information these

2-38 User Operations

instructions produce in the accumulators. A logical shift moves the bits
with Os brought in at the end being vacated; information shifted out at the
other end is lost. Rotation is a cyclic logical shift where information shifted
out at one end is put back in at the other. An arithmetic shift does not
affect the sign, but in a double length number, where it operates on the 70-
bit string made up of the magnitude parts of the two words, it makes bit 0
of the low order word equal to the sign. Null bits are brought in at the end
being vacated: a left shift brings in 0s at the right, whereas a right shift
brings in the equivalent of the sign bit at the left. In either case, informa-
tion shifted out at the other end is lost. A single shift left is equivalent to
multiplying the number by 2 (provided no bit of significance is shifted out);
a shift right divides the number by 2, with truncation (see footnote 15).

Figure 2.1: Accumulator Bit Flow in Shift and Rotate Instructions
LSH 0 AC 0
T 35
LSHC 0 AC AC+1 0
35 0 35
ROT AC
35
ROTC AC AC+I
35 0 35
ASH AC AC 0
0 35
AC+]
AC
ASHC 0 0
AC N AC+1 0
35 1 35
User Operations 2-39

The number of places moved is specified by the result of the effective
address calculation taken as a signed number (in twos complement nota-
tion) modulo 2% in magnitude. In other words the effective shift E is the
number composed of bit 18 (which is the sign) and bits 28-35 of the calcula-
tion result. Hence the programmer may specify the shift directly in the
instruction (perhaps indexed) or give an indirect address to be used in
calculating the shift. A positive E produces motion to the left, a negative E
to the right. E is thus the power of 2 by which the number is multiplied.

LSH Logical Shift
| 242 | a4 1] x | Y
0 89 121314 1718 35

Shift AC the number of places specified by E. If E is positive, shift left
bringing Os into bit 35; data shifted out of bit O is lost. If E is negative, shift
right bringing Os into bit 0; data shifted out of bit 35 is lost.

LSHC Logical Shift Combined

| 246 | 4 1] x | Y

0 89 121314 1718 35

Shift AC,AC+1 the number of places specified by E. If E is positive, shift
left bringing Os into bit 71 (bit 35 of AC +1); bit 36 is shifted into bit 35;
data shifted out of bit 0 is lost. If £ is negative, shift right bringing Os into
bit 0; bit 35 is shifted into bit 36; data shifted out of bit 71 is lost.

ROT Rotate
| 241 | 2] x | Y
(4] 89 121314 1718 35

Rotate AC the number of places specified by E. If E is positive, rotate left;
bit 0 is rotated into bit 35. If E is negative, rotate right; bit 35 is rotated
into bit 0.

ROTC Rotate Combined
| 245 | a4 [i] x | Y

0 89 121314 1718 35

Rotate AC,AC+1 the number of places specified by E. If E is positive,

2-40 User Operations

rotate left; bit 0 is rotated into bit 71 (bit 35 of AC+ 1) and bit 36 into bit
35. If E is negative, rotate right; bit 35 is rotated into bit 36 and bit 71 into
bit 0.

ASH Arithmetic Shift
[240 | a4] x| Y
0 89 121314 1718 35

Shift AC arithmetically the number of places specified by E. Do not shift bit
0. If E is positive, shift left bringing Os into bit 35; data shifted out of bit 1
is lost; set Trap 1 and Overflow if any bit of significance is lost (a 1 in a
positive number, a 0 in a negative one). If E is negative, shift right bringing
Os into bit 1 if AC is positive, 1s if negative; data shifted out of bit 35 is
lost.!®)

ASHC Arithmetic Shift Combined

244 | a4 1] x] y

0 89 121314 1718 3s

Shift AC,AC+ 1 arithmetically the number of places specified by E. Do not
shift bit 0 of AC or AC+1, but make bit 0 of AC +1 equal to AC bit 0 if at
least one shift occurs (i.e. if E is nonzero). If E is positive, shift left bringing
0s into bit 71 (bit 35 of AC +1); bit 37 (bit 1 of AC + 1) is shifted into bit 35;
data shifted out of bit 1 is lost; set Trap 1 and Overflow if any bit of
significance is lost (a 1 in a positive number, a 0 in a negative one). If E is
negative, shift right bringing 0Os into bit 1 if AC is positive, 1s if negative;
bit 35 is shifted into bit 37; data shifted out of bit 71 is lost.!®

Notes. The effect of a shift on bit 0 of the low order word is consistent
with the convention used for double length fixed point numbers. When
there is no shift however, the result may be inconsistent with that conven-
tion.

2.6 Arithmetic Testing

These instructions may jump or skip depending on the result of an arithme-
tic test and may first perform an arithmetic operation on the test word. Two
of the instructions have no modes.

15 An arithmetic right shift truncates a negative result differently from IDIV if 1s are
shifted out. The result of the shift is more negative by one than the quotient of IDIV.
Hence shifting —1 (all 1s) gives -1 as a result.

2KT0 obtain the same quotient that IDIV would give with a dividend in A divided by N
= 2%, use

SKIPGE A
ADDI AN-1
ASH A-K

User Operations

241

AOBJP Add One to Both Halves of AC and Jump if Positive

| 252 | a1l x | Y]

0 89 121314 1718 35

Add one to each half of AC'® and place the result back in AC. If the result is
greater than or equal to zero (i.e. if bit 0 is 0, and hence a negative count in
the left half has reached zero or a positive count has not yet reached 2'7),
take the next instruction from location E and continue sequential operation
from there.

AOBJN Add One to Both Halves of AC and Jump if Negative

253 | a4 i x| Y]

0 89 121314 1718 35

Add one to each half of AC'® and place the result back in AC. If the result is
less than zero (i.e. if bit 0 is 1, and herice a negative count in the left half
has not yet reached zero or a positive count has reached 2!7), take the next
instruction from location E and continue sequential operation from there.

These two instructions allow the program to keep a control count in the
left half of an index register and require only one data transfer to initialize.
Problem: Add 3 to each location in a table of N entries starting at TAB.
Only four instructions are required.

MOVSI XR,—-N ;Put =N in XR left (clear XR right)
MOVEI AC,3 ;Put 3 in AC

ADDM AC,TAB(XR) ;Add 3 to entry

AOBJN XR,.~1 ;Update XR and go back unless all

;entries accounted for

Note that even with extended addressing, AOBJN and AOBJP can be used
for this sort of local indexing, as the left half being negative or zero satisfies
the criterion for a local index.

The eight remaining instructions jump or skip if the operand or
operands satisfy a test condition specified by the mode.

Mode Suffix
Never

Less L
Equal E
Less or Equal LE
Always A
Greater or Equal GE
Not Equal N
Greater G

16 Tn the KA10, incrementing both halves of AC together is effected by adding 1000001g. A
count of —2 in AC left is therefore increased to zero if 2'8 - 1 is incremented in AC right.

2-42 User Operations

CAl Compare AC Immediate and Skip if Condition Satisfied

30 M| o4 o x| v

0 56 89 121314 1718 35

Compare AC with E (i.e. with the word 0,E) and skip the next instruction in
sequence if the condition specified by M is satisfied.

CAl Compare AC Immediate but Do Not Skip 300

CAIL Compare AC Immediate and Skip if AC less than E 301

CAIE Compare AC Immediate and Skip if Equal 302

CAILE Compare AC Immediate and Skip if AC less than or 303
Equal to E

CAIA Compare AC Immediate but Always Skip 304

CAIGE Compare AC Immediate and Skip if AC Greater than or 305
Equal to E

CAIN Compare AC Immediate and Skip if Not Equal 306

CAIG Compare AC Immediate and Skip if AC Greater than E 307

Notes. CAI is a no-op in which I, X and Y are available for software
use.

CAM Compare AC with Memory and Skip if Condition Satisfied

ER]GMJ A il x| Y

0 9 121314 1718 35

Compare AC with the contents of location E and skip the next instruction
in sequence if the condition specified by M is satisfied. The pair of numbers
compared may be either both fixed or both normalized floating point.

CAM Compare AC with Memory but Do Not Skip 310
CAML Compare AC with Memory and Skip if AC Less 311
CAME Compare AC with Memory and Skip if Equal 312
CAMLE Compare AC with Memory and Skip if AC Less or Equal 313
CAMA Compare AC with Memory but Always Skip 314
CAMGE Compare AC with Memory and Skip if AC Greater 315
or Equal
CAMN Compare AC with Memory and Skip if Not Equal 316
CAMG Compare AC with Memory and Skip if AC Greater 317

Notes. CAM is a no-op that references memory.

User Operations

2-43

JUMP Jump if AC Condition Satisfied

32 5[/148[94] x | Y

0 121314 1718 35

Compare AC (fixed or floating) with zero, and if the condition specified by
M is satisfied, take the next instruction from location E and continue se-
quential operation from there.

JUMP Do Not Jump 320
JUMPL Jump if AC Less than Zero 321
JUMPE Jump if AC Equal to Zero 322
JUMPLE Jump if AC Less than or Equal to Zero 323
JUMPA Jump Always 324
JUMPGE Jump if AC Greater than or Equal to Zero 325
JUMPN Jump if AC Not Equal to Zero 326
JUMPG Jump if AC Greater than Zero 327

Notes. JUMP is a no-op (instruction code 320 has this mnemonic for
symmetry). In it, I, X and Y are available for software use.
As an unconditional transfer, JRST is preferred to JUMPA.

SKIP Skip if Memory Condition Satisfied
33 | m | a i x| y]
0 56 89 121314 1718 35

Compare the contents (fixed or floating) of location E with zero, and skip
the next instruction in sequence if the condition specified by M is satisfied.
If A is nonzero also place the contents of location E in AC.

SKIP Do Not Skip 330
SKIPL Skip if Memory Less than Zero 331
SKIPE Skip if Memory Equal to Zero 332
SKIPLE Skip if Memory Less than or Equal to Zero 333
SKIPA Skip Always 334
SKIPGE Skip if Memory Greater than or Equal to Zero 335
SKIPN Skip if Memory Not Equal to Zero 336
SKIPG Skip if Memory Greater than Zero 337

Notes. If A is zero, SKIP is a no-op; otherwise it is equivalent to MOVE.
(Instruction code 330 has mnemonic SKIP for symmetry.) SKIPA is a con-
venient way to load an accumulator and skip over an instruction upon
entering a loop.

2-44 User Operations

AOJ Add One to AC and Jump if Condition Satisfied

| 34 JS(,MSIQ a il x] Y

0 121314 1718 35

Increment AC by one and place the result back in AC. Compare the result
with zero, and if the condition specified by M is satisfied, take the next
instruction from location £ and continue sequential operation from there. If
AC originally contained 23% — 1, set Trap 1, Overflow and Carry 1; if -1, set
Carry 0 and Carry 1.

AOJ Add One to AC but Do Not Jump 340
AOJL Add One to AC and Jump if Less than Zero 341
AOJE Add One to AC and Jump if Equal to Zero 342
AOJLE Add One to AC and Jump if Less than or Equal to Zero 343
AOJA Add One to AC and Jump Always 344
AOJGE Add One to AC and Jump if Greater than or Equal to Zero 345
AOJN Add One to AC and Jump if Not Equal to Zero 346
AOJG Add One toc AC and Jump if Greater than Zero 347
AOS Add One to Memory and Skip if Condition Satisfied

| 35 | wm| a 1] x| Y

0 56 89 121314 1718 35

Increment the contents of location E by one and place the result back in E.
Compare the result with zero, and skip the next instruction in sequence if
the condition specified by M is satisfied. If location E originally contained
235 _ 1, set Trap 1, Overflow and Carry 1; if —1, set Carry 0 and Carry 1. If
A is nonzero also place the result in AC.

AOS Add One to Memory but Do Not Skip 350

AOSL Add One to Memory and Skip if Less than Zero 351

AOSE Add One to Memory and Skip if Equal to Zero 352

AOSLE Add One to Memory and Skip if Less than or 353
Equal to Zero

AOSA Add One to Memory and Skip Always 354

AOSGE Add One to Memory and Skip if Greater than or 355
Equal to Zero

AOSN Add One to Memory and Skip if Not Equal to Zero 356

AOSG Add One to Memory and Skip if Greater than Zero 357

User Operations

2-45

SOJ Subtract One from AC and Jump if Condition Satisfied

0L36 SEMJ;A]ILX [Y |

121314 1718 35

Decrement AC by one and place the result back in AC. Compare the result
with zero, and if the condition specified by M is satisfied, take the next
instruction from location E and continue sequential operation from there. If
AC originally contained —2%, set Trap 1, Overflow and Carry 0; if any other
nonzero number, set Carry 0 and Carry 1.

SOJ Subtract One from AC but Do Not Jump 360

SOJL Subtract One from AC and Jump if Less than Zero 361

SOJE Subtract One from AC and Jump if Equal to Zero 362

SOJLE Subtract One from AC and Jump if Less than or 363
Equal to Zero

SOJA Subtract One from AC and Jump Always 364

SOJGE Subtract One from AC and Jump if Greater than 365
or Equal to Zero

SOJN Subtract One from AC and Jump if Not Equal to Zero 366

SOJG Subtract One from AC and Jump if Greater than Zero 367

SOSs Subtract One from Memory and Skip if Condition Satisfied

[37 [m] a i x| Y

0 56 89 121314 1718 35

Decrement the contents of location E by one and place the result back in E.
Compare the result with zero, and skip the next instruction in sequence if
the condition specified by M is satisfied. If location E originally contained
—23 set Trap 1, Overflow and Carry 0; if any other nonzero number, set
Carry 0 and Carry 1. If A is nonzero also place the result in AC.

SOS Subtract One from Memory but Do Not Skip 370

SOSL Subtract One from Memory and Skip if Less than Zero 371

SOSE Subtract One from Memory and Skip if Equal to Zero 372

SOSLE Subtract One from Memory and Skip if Less than 373
or Equal to Zero

SOSA Subtract One from Memory and Skip Always 374

SOSGE Subtract One from Memory and Skip if Greater 375

than or Equal to Zero
SOSN Subtract One from Memory and Skip if Not Equal to Zero 376
SOSG Subtract One from Memory and Skip if Greater than Zero 377

2-46 User Operations

Some of these instructions are useful for determining the relative val-
ues of fixed and floating point numbers; others are convenient for control-
ling iterative processes by counting. AOSE is especially useful in an inter-
lock procedure in a multiprogramming environment. Suppose memory con-
tains a routine that must be available to two processes but cannot be used
by both at once. When one process finishes the routine it sets location
LOCK to —1. Either process can then test the interlock and make it busy
with no possibility of letting the other one in, as AOSE cannot be inter-
rupted once it starts to modify the addressed location.

AOSE LOCK ;Skip to interlocked code only if
JRST -1 :LOCK is zero after addition
;Interlocked code starts here

SETOM LOCK ‘Unlock

Since it takes a long time to count to 2%, it is alright to keep testing the
lock.

2.7 Logical Testing and Modification

These eight instructions use a mask to modify and/or test selected bits in
AC. The bits are those that correspond to 1ls in the mask and they are
referred to as the “masked bits.” The programmer chooses the mask, the
way in which the masked bits are to be modified, and the condition the
masked bits must satisfy to produce a skip.

The basic mnemonics are three letters beginning with T. The second
letter selects the mask and the mannder in which it is used.

Mask Letter Effect

Right R AC right is masked by E (AC is masked by the
word 0,E)

Left L AC left is masked by E (AC is masked by the
word E,0)

Direct D AC is masked by the contents of location E

Swapped S AC is masked by the contents of location E with

left and right halves interchanged

The third letter determines the way in which those bits selected by the
mask are modified.

Modification Letter Effect on AC

No N None

Zeros y/ Places Os in all masked bit positions
Complement C Complements all masked bits

Ones (0] Places 1s in all masked bit positions

An additional letter may be appended to indicate the mode, which spec-
ifies the condition the masked bits must satisfy to produce a skip.

User Operations 2-47

Mode Suffix Effect

Never Never skip

Equal E Skip if all masked bits equal 0

Always A Always Skip

Not Equal N El;lp i{)not all masked bits equal 0 (at least one
it is

These mode names are consistent with those for arithmetic testing and
derive from the test method, which ands AC with the mask and tests
whether the result is equal to zero or is not equal to zero. The programmer
may find it convenient to think of the modes as Every and Not Every: every
masked bit is 0 or not every masked bit is 0. If the mnemonic has no suffix
there is never any skip, and the instruction is a no-op if there is also no
modification; an A suffix produces an unconditional skip — the skip always
occurs regardless of the state of the masked bits. Note that the skip condi-
tion must be satisfied by the state of the masked bits prior to any modifica-
tion called for by the instruction.

TRN Test Right, No Modification, and Skip if Condition Satisfied
| oo [mlo] a || x | %
0 56 789 121314 1718 35

If the bits in AC right corresponding to 1s in E satisfy the condition speci-
fied by M, skip the next instruction in sequence. AC is unaffected.

TRN Test Right, No Modification, but Do Not Skip 600

TRNE Test Right, No Modification, and Skip if All Masked Bits 602
Equal O

TRNA Test Right, No Modification, but Always Skip 604

TRNN Test Right, No Modification, and Skip if Not All Masked 606
Bits Equal 0

Notes. TRN is a no-op in which I, X and Y are reserved and should be
zero (at present E is ignored).

TRz Test Right, Zeros, and Skip if Condition Satisfied

| o2 Ml a4] x | Y]

0 56 789 121314 17 18 35

If the bits in AC right corresponding to 1s in E satisfy the condition speci-
fied by M, skip the next instruction in sequence. Change the masked AC
bits to Os; the rest of AC is unaffected.

TRZ Test Right, Zeros, but Do Not Skip 620
TRZE Test Right, Zeros, and Skip if All Masked Bits Equaled O 622

2-48 User Operations

TRZA Test Right, Zeros, but Always Skip 624

TRZN Test Right, Zeros, and Skip if Not All Masked Bits 626
Equaled 0
TRC Test Right, Complement, and Skip if Condition Satisfied
64 |mlo] a 1] x | Y
0 56 789 121314 1718 35

If the bits in AC right corresponding to 1s in E satisfy the condition speci-
fied by M, skip the next instruction in sequence. Complement the masked
AC bits; the rest of AC is unaffected.

TRC Test Right, Complement, but Do Not Skip 640

TRCE Test Right, Complement, and Skip if All Masked Bits 642
Equaled 0

TRCA Test Right, Complement, but Always Skip 644

TRCN Test Right, Complement, and Skip if Not All Masked Bits 646
Equaled 0

TRO Test Right, Ones, and Skip if Condition Satisfied

| oo [mlo] a [/ x | Y |

0 56 789 121314 1718 o 35

If the bits in AC right corresponding to 1s in K satisfy the condition speci-
fied by M, skip the next instruction in sequence. Change the masked AC
bits to 1s; the rest of AC is unaffected.

TRO Test Right, Ones, but Do Not Skip 660

TROE Test Right, Ones, and Skip if All Masked Bits 662
Equaled 0

TROA" Test Right, Ones, but Always Skip 664

TRON Test Right, Ones, and Skip if Not All Masked Bits 666
Equaled 0

TLN Test Left, No Modification, and Skip if Condition Satisfied

[6o [mp] a [x | Y

0 56 7809 121314 1718 . 35

If the bits in AC left corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. AC is unaffected.

TLN Test Left, No Modification, but Do Not Skip 601
TLNE Test Left, No Modification, and Skip if All Masked Bits 603
Equal O

User Operations

2-49

TLNA Test Left, No Modification, but Always Skip 605

TLNN Test Left, No Modification, and Skip if Not All Masked 607
Bits Equal O

Notes. TLN is a no-op in which I, X and Y are reserved and should be
zero (at present E is ignored).

TLZ Test Left, Zeros and Skip if Condition Satisfied
L 62 [m)f 4 Jif x] Y]
0 56 789 121314 1718 35

If the bits in AC left corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
0Os; the rest of AC is unaffected.

TLZ Test Left, Zeros, but Do Not Skip 621

TLZE Test Left, Zeros, and Skip if All Masked Bits 623
Equaled 0O

TLZA Test Left, Zeros, but Always Skip 625

TLZN Test Left, Zeros, and Skip if Not All Masked Bits 627
Equaled 0

TLC Test Left, Complement, and Skip if Condition Satisfied

64 MmNl a |1 x | Y |
0 56 789 1213 14 1718 35

If the bits in AC left corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Complement the masked AC
bits; the rest of AC is unaffected.

TLC Test Left, Complement, but Do Not Skip 641

TLCE Test Left, Complement, and Skip if All Masked Bits 643
Equaled 0

TLCA Test Left, Complement, but Always Skip 645

TLCN Test Left, Complement, and Skip if Not All Masked Bits 647
Equaled 0

TLO Test Left, Ones, and Skip if Condition Satisfied

[o6 [mp] 4 [l x | Y |

0 56 789 121314 1718 35

If the bits in AC left corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
1s; the rest of AC is unaffected.

2-50 User Operations

TLO Test Left, Ones, but Do Not Skip 661

TLOE Test Left, Ones, and Skip if All Masked 663
Bits Equaled 0

TLOA Test Left, Ones, but Always Skip 665

TLON Test Left, Ones, and Skip if Not All Masked 667

Bits Equaled 0

TDN Test Direct, No Modification, and Skip if Condition Satisfied
o1 [mll a [i] x [Y]
0 56 789 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. AC is unaf-
fected.

TDN Test Direct, No Modification, but Do Not Skip 610

~ TDNE Test Direct, No Modification, and Skip if All 612
Masked Bits Equal 0

TDNA Test Direct, No Modification, but Always Skip 614

TDNN Test Direct, No Modification, and Skip if Not All 616

Masked Bits Equal O

Notes. TDN is a no-op that references memory.

TDZ Test Direct, Zeros, and Skip if Condition Satisfied
| 63 mpo a 1] x | Y |
0 56 789 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. Change the
masked AC bits to 0s; the rest of AC is unaffected.

TDZ Test Direct, Zeros, but Do Not Skip 630

TDZE Test Direct, Zeros, and Skip if All Masked 632
Bits Equaled 0

TDZA Test Direct, Zeros, but Always Skip 634

TDZN Test Direct, Zeros, and Skip if Not All Masked 636

Bits Equaled 0

User Operations

2-51

TDC Test Direct, Complement, and Skip if Condition Satisfied

| 65 [mll a4 [x] Y |

0 56 789 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. Comple-
ment the masked AC bits; the rest of AC is unaffected.

TDC Test Direct, Complement, but Do Not Skip 650

TDCE Test Direct, Complment, and Skip if All Masked 652
Bits Equaled 0

TDCA Test Direct, Complement, but Always Skip 654

TDCN Test Direct, Complement, and Skip if Not All 656

Masked Bits Equaled 0

TDO Test Direct, Ones, and Skip if Condition Satisfied
| o7 Jarlol a4 |1 x | Y
0 56 789 1213 14 1718 35

If the bits in AC corresponding to 1s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. Change the
masked AC bits to 1s; the rest of AC is unaffected.

TDO Test Direct, Ones, but Do Not Skip 670

TDOE Test Direct, Ones, and Skip if All Masked 672
Bits Equaled 0

TDOA Test Direct, Ones, but Always Skip 674

TDON Test Direct, Ones, and Skip if Not All 676

Masked Bits Equaled 0

TSN Test Swapped, No Modification, and Skip if Condition Satisfied

0[—()1 (m] a4 [i] x | Y |

56 789 121314 1718 3s

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. AC is unaffected.

TSN Test Swapped, No Modification, but Do Not Skip 611

TSNE Test Swapped, No Modification, and Skip if All 613
Masked Bits Equal 0

2-52 User Operations

TSNA Test Swapped, No Modification, but Always Skip 615

TSNN Test Swapped, No Modification, and Skip if 617
Not All Masked Bits Equal 0

Notes. TSN is a no-op that references memory.

TSZ Test Swapped, Zeros, and Skip if Condition Satisfied

os [l a4 v]]]

0 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Change the masked AC bits to Os; the rest of
AC is unaffected.

TSZ Test Swapped, Zeros, but Do Not Skip 631

TSZE Test Swapped, Zeros, and Skip if All Masked 633
Bits Equaled 0

TSZA Test Swapped, Zeros, but Always Skip 635

TSZN Test Swapped, Zeros, and Skip if Not All - 837

Masked Bits Equaled 0

TSC Test Swapped, Complement, and Skip if Condition Satisfied

o5 [l a I ¥ |]]
0 56 789 121314 17 18 38

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Complement the masked AC bits; the rest of
AC is unaffected.

TSC Test Swapped, Complement, but Do Not Skip 651

TSCE Test Swapped, Complement, and Skip if All 653
‘Masked Bits Equaled 0

TSCA Test Swapped, Complement, but Always Skip 655

TSCN Test Swapped, Complement, and Skip if Not 657

All Masked Bits Equaled 0

User Operations

2-53

TSO Test Swapped, Ones, and Skip if Condition Satisfied

| o7 Imp] a4 | x | Y

0 56 789 1213 14 1718 B 35

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Change the masked AC bits to 1s; the rest of
AC is unaffected.

TSO Test Swapped, Ones, but Do Not Skip 671

TSOE Test Swapped, Ones, and Skip if All Masked 673
Bits Equaled 0

TSOA Test Swapped, Ones, but Always Skip 675

TSON Test Swapped, Ones, and Skip if Not All Masked 677

Bits Equaled 0

With these instructions any bit throughout all of memory can be used
as a program flag, although an ordinary memory location containing flags
must be moved to an accumulator for testing or modification. The usual
procedure, since locations 1-17 are addressable as index registers, is to use
AC 0 as a register of flags (often addressed symbolically as F).

Unless one frequently tests flags in both halves of F simultaneously, it
is generally most convenient to select bits by 1s right in the address part of
the instruction word. A given bit selected by a half word mask M is then set
by one of these:

TRO F,M TLO F,.M
and tested and cleared by one of these:
TRZE F,M TRZN F.M TLZE F.M TLZN F.M

Suppose we wish to skip if both bits 34 and 35 are 1 in location L. The
following suffices.

SETCM F,L
TRNE F,3

We can refer to a flag in a given bit position within a word as flag X, where
X is a binary number containing a single 1 in the same bit position as the
flag. This sequence determines whether flags X and Y in the right half of
accumulator F are both on:

TRC FX+Y ;Complement flags X and Y
TRCE F.X+Y ;Test both and restore states
;Do this if not both on

;Skip to here if both on

2-54 User Operations

2.8 Half Word Data Transmission

These instructions move a half word and may modify the contents of the
other half of the destination location. There are sixteen instructions, but in
a nonzero section the immediate mode of one of them acts in a special way,
and is treated as a separate instruction. The sixteen forms are distin-
guished by which half of the source word is moved to which half of the
destination, and by which of four possible operations is performed on the
other half of the destination. The basic mnemonics are three letters that
indicate the transfer,

HLL Left half of source to left half of destination
HRL Right half of source to left half of destination
HRR Right half of source to right half of destination
HLR Left half of source to right half of destination

plus a fourth, if necessary, to indicate the operation.

Operation Suffix Effect on Other Half of Destination

Do nothing None

Zeros Z Places 0s in all bits of the other half

Ones (6] Places 1s in all bits of the other half

Extend E Places the sign (the leftmost bit) of the half word

moved in all bits of the other half. This action extends
a right half word number into a full word number but
is valid arithmetically only for positive left half word
numbers — the right extension of a number requires
0Os regardless of sign (hence the Zeros operation should
be used to extend a left half word number).

An additional letter may be appended to indicate the mode, which de-
termines the source and destination of the half word moved.

Mode Suffix Source Destination
Basic E AC

Immediate I The word 0,E* AC

Memory M AC E

Self S E E, but full word

result also goes
to AC if A is
nonzero

* In section O the immediate source is 0,F in all cases, and selecting the left
half of the source merely clears the selected half of the destination. But
in a nonzero section the basic left-to-left transfer (XHLLI) instead uses
the entire extended effective address E as the source, and it thus trans-
fers the section number (the left part of E).

User Operations

2-55

HLL Half Word Left to Left

| soo [wm[a4] x| vy

0 67 89 121314 1718 RN

Move the left half of the source word specified by M to the left half of the
specified destination. The source and the destination right half are unaf-
fected; the original contents of the destination left half are lost.

HLL Half Left to Left ' . 500
HLLI Half Left to Left Immediate 501
HLLM Half Left to Left Memory 502
HLLS Half Left to Left Self 503

If the program is running in a nonzero section, the instruction HLLI is -
called XHLLI (see below), which performs an analogous function with an
extended immediate operand (effective address).

~ Notes. In section 0 HLLI merely clears AC left. If A is zéro, HLLS is a
no-op, otherwise it is equivalent to MOVE.

HLLZ Harlf Word Left to Left, Zeros

| s10 M| a)] x] Y |

[(67 89 121314 1718 135

Move the left half of the source word specified by M to the left half of the
specified destination, and clear the destination right half. The source is
unaffected, the original contents of the destination are lost.

HLLZ Half Left to Left, Zeros 510
HLLZI Half Left to Left, Zeros, Immediate 511
HLLZM Half Left to Left, Zeros, Memory 512
HLLZS Half Left to Left, Zeros, Self 513

Notes. HLLZI merely clears AC. If A is zero, HLLZS merely clears the
right half of location E.

HLLO Half Word Left to Left, Ones

Ofszo (m] a4] x | Y |

67 89 121314 1718 35

Move the left half of the source word specified by M to the left half of the
specified destination, and set the destination right half to all 1s. The source
is unaffected, the original contents of the destination are lost.

2-56 User Operations

HLLO Half Left to Left, Ones 520

HLLOI Half Left to Left, Ones, Immediate 521
HLLOM Half Left to Left, Ones, Memory 522
HLLOS Half Left to Left, Ones, Self 523

Notes. HLLOI sets AC to all Os in the left half, all 1s in the right.

HLLE Half Word Left to Left, Extend

530 Im| a4 i x| Y

0 67 89 121314 1718 3

P

Move the left half of the source word specified by M to the left half of the
specified destination, and make all bits in the destination right half equal
to bit 0 of the source. The source is unaffected, the original contents of the
destination are lost.

HLLE Half Left to Left, Extend _ 530
HLLEI Half Left to Left, Extend, Immediate 531
HLLEM Half Left to Left, Extend, Memory 532
HLLES Half Left to Left, Extend, Self 533

‘Notes. HLLEI is equivalent to HLLZI (it merely clears AC).

HRL Half Word Right to Left
| _soa [m] 4 Ji] x | Y
0 67 89 121314 1718 . 35

Move the right half of the source word specified by M to the left half of the
specified destination. The source and the destination right half are unaf-
fected; the original contents of the destination left half are lost.

HRL Half Right to Left 504
HRLI Half Right to Left Immediate 505
HRLM Half Right to Left Memory - 506
HRLS Half Right to Left Self 507

User Operations

2-57

HRLZ Half Word Right to Left, Zeros

| s1a M| o4 1] x| y

0 67 89 121314 1718 35

Move the right half of the source word specified by M to the left half of the
specified destination, and clear the destination right half. The source is
unaffected, the original contents of the destination are lost.

HRLZ Half Right to Left, Zeros 514
HRLZI Half Right to Left, Zeros, Immediate 515
HRLZM Half Right to Left, Zeros, Memory 516
HRLZS Half Right to Left, Zeros, Self 517

Notes. HRLZI loads the word E,0 into AC and is thus equivalent to
MOVSI.

HRLO Half Word Right to Left, Ones

s24 (Ml o4 | x | Y |

0 67 89 121314 1718 - 35

Move the right half of the source word specified by M to the left half of the
specified destination, and set the destination right half to all 1s. The source
is unaffected, the original contents of the destination are lost.

HRLO Half Right to Left, Ones 524
HRLOI Half Right to Left, Ones, Immediate 525
HRLOM Half Right to Left, Ones, Memory 526
HRLOS Half Right to Left, Ones, Self 527

HRLE Half Word Right to Left, Extend

| s34 |m| 4 il x | Y

0 67 89 121314 1718 35

Move the right half of the source word specified by M to the left half of the
specified destination, and make all bits in the destination right half equal
to bit 18 of the source. The source is unaffected, the original contents of the
destination are lost.

HRLE Half Right to Left, Extend 534
HRLEI Half Right to Left, Extend, Immediate 535
HRLEM Half Right to Left, Extend, Memory 536
HRLES Half Right to Left, Extend, Self 537

2-58 User Operations

HRR Half Word Right to Right

s40 M| o4 1] x| Y

0 67 89 121314 1718 35

Move the right half of the source word specified by M to the right half of the
specified destination. The source and the destination left half are unaf-
fected; the original contents of the destination right half are lost.

HRR Half Right to Right 540
HRRI Half Right to Right Immediate 541
HRRM Half Right to Right Memory 542
HRRS Half Right to Right Self 543

Notes. If A is zero, HRRS is a no-op; otherwise it is equivalent to
MOVE.

HRRZ Half Word Right to Right, Zeros

sso (w4] x | Y]

0 67 89 121314 1718 35

Move the right half of the source word specified by M to the right half of the
specified destination, and clear the destination left half. The source is unaf-
fected, the original contents of the destination are lost.

HRRZ Half Right to Right, Zeros 550
HRRZI Half Right to Right, Zeros immediate 551
HRRZM Half Right to Right, Zeros, Memory 552
HRRZS Half Right to Right, Zeros, Self 553

Notes. HRRZI loads the word 0,E into AC and is thus equivalent to
MOVEI and SETMI. If A is zero, HRRZS merely clears the left half of
location E.

HRRO Half Word Right to Right, Ones

se0 M| a4 [/ x | Y

0 67 89 121314 1718 35

Move the right half of the source word specified by M to the right half of the
specified destination, and set the destination left half to all 1s. The source
is unaffected, the original contents of the destination are lost.

HRRO Half Right to Right, Ones 560
HRROI Half Right to Right, Ones, Immediate 561
HRROM Half Right to Right, Ones, Memory 562
HRROS Half Right to Right, Ones, Self 563

User Operations

2-59

HRRE Half Word Right to Right, Extend

s70 m| 4 [x | Y

0 67 89 121314 1718 35

Move the right half of the source word specified by M to the right half of the
specified destination, and make all bits in the destination left half equal to
bit 18 of the source. The source is unaffected, the original contents of the
destination are lost.

HRRE Half Right to Right, Extend 570
HRREI Half Right to Right, Extend, Immediate 571
HRREM Half Right to Right, Extend, Memory 572
HRRES Half Right to Right, Extend, Self 573
HLR Half Word Left to Right

| saa |m| a4] x | Y B

0 67 89 121314 1718 35

Move the left half of the source word specified by M to the right half of the
specified destination. The source and the destination left half are unaf-
fected; the original contents of the destination right half are lost.

HLR Half Left to Right 544
HLRI Half Left to Right Immediate - 545

- HLRM Half Left to Right Memory 546
HLRS Half Left to Right Self 547

Notes. HLRI merely clears AC right.

HLRZ Half Word Left to Right, Zeros

ssa M| a4 1] x | Y |

0 67 89 121314 1718 35

Move the left half of the source word specified by M to the right half of the
specified destination, and clear the destination left half. The source is unaf-
fected, the original contents of the destination are lost.

HLRZ Half Left to Right, Zeros 554
HLRZI Half Left to Right, Zeros, Immediate 555
HLRZM Half Left to Right, Zeros, Memory 556
HLRZS Half Left to Right, Zeros, Self 557

Notes. HLRZI merely clears AC and is thus equivalent to HLLZI.

2-60 User Operations

HLRO Half Word Left to Right, Ones

| se4 [m] A i x | Y 1

0 121314 1718 35

Move the left half of the source specified by M to the right half of the
specified destination, and set the destination left half to all 1s. The source
is unaffected, the original contents of the destination are lost.

HLRO Half Left to Right, Ones 564
HLROI Half Left to Right, Ones, Immediate ' 565
HLROM Half Left to Right, Ones, Memory , 566
HLROS Half Left to Right, Ones, Self 567

Notes. HLROI sets AC to all 1s in the left half, all Os in the right.

HLRE Half Word left to Right, Extend

| 574 (LMT a il x | Y

0 1213 14 1718 35

Move the left half of the source word specified by M to the right half of the
specified destination, and make all bits in the destination left half equal to
bit 0 of the source. The source is unaffected, the original contents of the

- destination are lost.

HLRE Half Left to Right, Extend ' 574

HLREI Half Left to Right, Extend, Immediate 575
HLREM Half Left to Right, Extend, Memory ‘ 576
HLRES Half Left to Right, Extend, Self 577

Notes. HLREI is equivalent to HLLRZI (it merely clears AC).

The half word transmission instructions are very useful for handling
addresses, and they provide a convenient means of setting up an accumula-
tor whose right half is to be used for indexing while a control count is kept
in the left half. For example, this pair of instructions loads the 18-bit num-
bers M and N into the left and right halves respectively of accumulator XR.

HRLZI XR.M
HRRI XR,N

It is not necessary to clear the other half of XR when loading the first half
word. But any memory instruction that modifies the other half is faster
than the corresponding instruction that does not, as the latter must fetch
the destination word in order to save half of it. (The difference does not
apply to self mode, for here the source and destination are the same.)

User Operations

2-61

Suppose that at some point we wish to use the two halves of XR inde-
pendently as operands (taken as 18-bit positive numbers) for computations.
We can begin by moving XR left to the right half of another accumulator
AC and leaving the contents of XR right alone in XR.

HLRZM XR,AC
HLILI XR, ;Clear XR left

The following instruction uses a half word transfer for inserting the
section number that results from an effective address calculation into the
left half of an accumulator.

XHLLI Extended Half Word Left to Left

501 E];Ail]xl Y |

121314 1718 35

0

If the program is running in a nonzero section, clear AC bits 0-5 and place
the section number (the left part) of the effective address E in AC bits 6-17.
If E is a local AC address, the section number is 1. AC right is unaffected,;
the original contents of AC left are lost.

If the program is running in section 0, this instruction is called HLLI,
which performs an analogous function for section 0 (it moves a zero section
number).

Notes. The section number given for a local AC address is that of a
global AC address. Giving XHLLI with an address 20 or greater without
indexing or indirection places the current PC section number in AC left,
and it can thus be used to determine what section the program is in.

2.9 Program Control

A program control instruction is one that in some way affects the sequence
in which instructions in the program are performed. Most such instructions
are actually described in some other category, such as the arithmetic and
logical testing instructions above, or the yet-to-be discussed stack instruc-
tions, UUOs, string compare instructions, and the condition IO instructions
that test device flags. The present section treats the program flags, over-
flow trapping, and all program control instructions that do not belong to
some other class. Most of these are specifically for handling subroutines.
All but one are jumps, although the exception causes the processor to exe-
cute an instruction at an arbitrary location and may therefore be regarded
as a jump with an immediate and automatic return. All but two of the
jumps are unconditional; one exception tests several program flags, the
other tests an accumulator.

When an instruction makes the processor leave the normal program
sequence to jump to a subroutine or call the Monitor, it must save informa-
tion sufficient to allow a later return to the original program. Such instruc-
tions generally save the states of the program flags and the location at

2-62 User Operations

which the disruption in the normal sequence occurred. Saving the program
position is referred to as “saving PC,” although the quantity actually saved
may be the value currently contained in PC or an address one greater than
that, depending on the circumstances. For example, the same instruction
may be used to call a subroutine in a program or to call a service routine in
an interrupt. When a return is later made using the saved address in the
subroutine case, the instruction that saved PC should not be repeated —
the return should be made instead to the instruction following it in normal
sequence, i.e. the instruction at the address one greater than that originally
in PC. In the interrupt case, on the other hand, a subsequent return has
nothing to do with the instruction that saved PC — the return should be
made to the interrupted instruction, the one PC pointed at when the inter-
rupt occurred. Both cases are covered in the instruction descriptions by the
phrase “save PC,” and it is to be assumed that the address saved is the one
appropriate to the situation in which the instruction is given.

Sometimes regarded as program control, in a somewhat trivial sense,
are those instructions that do nothing. The most commonly used no-op is
JFCL, which is described here. Other no-ops are among the testing and
Boolean instructions discussed previously: SETA, SETAI, SETMM, CAI,
CAM, JUMP, TRN, TLN, TDN, TSN.'7 Of these, SETA, SETAI, CAI,
JUMP, TRN and TLN are preferred because they do not use the calculated
effective address to reference memory.

The Execute Instruction

This instruction allows the programmer to execute the contents of any
memory location as an instruction without altering the normal program
counting sequence to do it.

XCT " Execute

Lo o4l]y |

121314 1718 35

If A is zero or the processor is in user mode or is a KA10, execute the
contents of location E as an instruction.'® Any instruction may be executed,
including another XCT. If an XCT executes a skip instruction, the skip is
relative to the location of the XCT (the first XCT if there are several in a
chain). If an XCT executes a jump, program flow is altered as specified by
the jump (no matter how many XCTs precede a jump instruction, when PC
is saved it contains an address one greater than the location of the first
XCT in the chain).

17 KA10 instruction codes 247 and 257 are reserved for instructions installed specially for a
particular system. They execute as no-ops when run on a KA10 that contains no special
hardware for them, but for program compatibility it is advised that they not be used
regularly as no-ops.

18 Caution: In a private program (concealed or kernel mode) on the KI10, never give an XCT
that executes an instruction in a public page. It does not work.

User Operations

2-63

In executive mode this instruction performs as stated only when A is
zero.!® Nonzero A results in a so called “previous context XCT” or PXCT,
whose ramifications are far more widespread than indicated here. PXCT is
a very special instruction for the exclusive use of the Monitor, and it is
described in the section on memory management in the system operations
chapter for each processor. -

Conditional Jumps

-

JFFO Jump if Find First One

| 243 | 4 |1 x | Y

0 . . 89 1213 14 1718 ' 35

If AC contains zero, clear AC+1 and go on to the next instruction in se-
quence.

If AC is not zero, count the number of leading Os in it (Os at the left of
the leftmost 1), and place the count in AC+1. Take the next instruction
from location E and continue sequential operation from there.

In either case AC is unaffected, the original contents of AC +1 are lost.

Notes. When AC is negative, the second accumulator is cleared, just as
it would be if AC were zero.

JFCL Jump on Flag and Clear

s [] x|]

0 89 121314 1718 35

If any flag specified by F' is set, clear it and take the next instruction from
location E, continuing sequential operation from there. Bits 9-12 are pro-
grammed as follows.

Bit Flag Selected by a 1
9 Overflow

10 Carry 0

11 Carry 1

12) Floating Overflow

To select one or a combination of these flags the programmer can spec-
ify the equivalent of an AC address that places 1s in the appropriate bits,
but MACRO recognizes mnemonics for some of the 13-bit instruction codes
(bits 0-12).

19 The KA10 lacks previous-context capability. On that processor and in user mode on any
processor, A is ignored, but it is reserved and should be zero.

2-64 User Operations

JFCL JFCL 0, No-op 25500

JOV - JFCL 10, - Jump on Overflow 25540
JCRYO JFCL 4, Jump on Carry 0 25520
JCRY1 JFCL 2, Jump on Cary 1 25510
JCRY JFCL 6, Jump on Carry O or 1 25530
JFOV JFCL 1, Jump on Floating Overflow 25504

To left-normalize a positive integer in AC use

JFFO AC, +1
LSH AC~1(AC+1)

The flags tested by JFCL are described in detail below. This instruction
can be used simply to clear the selected flags by having the jump address
point to the next consecutive location, as in

JFCL 17,.+1

which clears all four flags without disrupting the normal program se-
quence. A JFCL that selects no flag is the preferred no-op as it neither
fetches nor stores an operand, and bits 18-35 of the instruction word can be
used to store information.

JFCL is the only jump that can test any of the flags. But it can test
only four of them, and it saves no information for a subsequent return from
a subroutine. Hence it serves as a branch point for entry into either one of
two main paths, which may or may not have a later point in common. For
example, it may test the carry flags simply to take appropriate action in a
multiple precision fixed point routine.

Program Flags

When an instruction saves the program flags, it loads their states into bits
0-12 of a word as shown here,

[)
OVERFLOW d';lJ?»’lOUT

CARRY CarRY 1 [FLOATING ;ZRRSIT USER PUB ?E?“%E‘ TRAP.2 TRAP
PREVIOUS e Y . PREVI LIc LU
cofwvrfoff OVERFLOW |~ pONg e INHIBIT

PUBL: C : USER

FLOATING
UNDERFLOW

NO GIVIDE

0 1 2 3 4 5 6 7 8 9 10

where the upper part of a double box indicates the flag saved in user mode,
and the lower part indicates that saved in KLL10 and KI10 executive mode.
The flag listed in the lower part for bit 6 also applies to KS10 executive
mode, but since the KS10 has no public mode, bit 0 always receives the
state of the Overflow flag and bit 7 is not used. The KS10 also lacks a flag
for bit 8. (In KA10 executive mode bits 0 and 6 receive the Overflow state
and the (meaningless) User In-out state, and bits 7-10 are not used as their
flags do not exist.)

Where the flags are saved (in an accumulator or memory location) and
what other information is saved with them depends on the instruction and

B

User Operations

2-65

the circumstances of its execution. But whenever the flags are saved, their
states are always stored in bits 0-12 of a word in the configuration shown.
Some instructions when executed in section 0 save the flags and the in-
section part of PC in a so-called “"PC word” like this.

[FLAGS [00 I IN-SECTION PC
V] 1213 1718 N as

Note that nothing is stored in bits 13—-17, so when the PC word is addressed
indirectly it can produce neither indexing nor further indirect addressing.
When such instructions are performed in a nonzero section, they generally
save only the extended PC without flags. Other instructions, executable
only in the KS10 and the extended KL10, combine the flags and the full PC
in what is referred to as a “flag-PC doubleword” with this format,

FLAGS 00 PROCESSOR-DEPENDENT INFORMATION
00 PC

0 56 1213 1718 35

where still other information may be saved in the rest of the flag word. In a
manner analogous to the PC word, nothing is ever stored in bits 13-17 of
the first word or bits 0-5 of the second. Hence when the second word is
addressed indirectly, it is interpreted as global and can produce neither
indexing nor further indirect addressing. Note however that if it is used
from an index register, it is taken as global or local depending on whether
or not bits 6-17 are zero. Nothing is saved in the right half of the flag word.

Certain instructions can use bits 0-12 of a word to set up the program
flags to restore them to their original states following an interruption or to
control specific situations. Restoration of course assumes the flags are
being restored from a word in which they were previously saved. When the
flags are saved, the flag bits reflect the states and flags appropriate to the
current situation. At a transition from one mode to another, the flags saved
are those of the mode the processor is leaving, and the flags restored are
those for the mode the processor is entering. For example, when the user
calls the Monitor, bit 5 of the flag word is set; and the User flag must be
cleared, either automatically or by a 0 in bit 5 of a restoring flag word.
Moreover Overflow and User In-out are saved, but the flag bits used for
restoration are adjusted to produce the correct states for the previous con-
text flags. No conflict can result concerning bit 6, as User In-out exists only
in user mode, and Previous Context User exists only in executive mode. On
the other hand, although only one flag is ever saved in bit 0, at restoration
bit 0 conditions the states of both Overflow and Previous Context Public (if
present). The latter is irrelevant in user mode, but the executive program-
mer must be aware that if he wishes to use Overflow or give a JFCL to test
it, its initial state is that assigned to Previous Context Public rather than
that resulting from any arithmetic operation. When a return is made to an
interrupted executive program via a flag-PC doubleword in an extended
processor, the previous context section for that program is also restored
from bits 24-35 of the flag word.

By manipulating the bits used to restore the flags, the programmer can
set them up in any desired way, except that the hardware contains inter-

2-66 User Operations

June 1982

locks so that a user program cannot clear User or set User In-out, and no
public program can clear Public for itself. As an example, setting a trap
flag immediately causes a trap.

The following lists the meaning of the information contained in bits
0-12 of a flag word at the time the flags are saved. Bits 0 and 6 are given
only for user mode, as the special executive flags are relevant only to the
previous context XCT instruction and are left for the discussion of system
operations. Remember (§2.2) that overflow is determined directly from the
carries, not the carry flags, which give useful information only if no more
than one instruction that can set them occurs between clearing and reading
them. The explanations assume the flags reflect normal circumstances —
not arbitrary rigging. An x in a mnemonic indicates any letter (or none)
that may appear in the given position to specify the mode, e.g. ADDx com-
prises ADD, ADDI, ADDM, ADDB.

Bit Meaning of a 1 in the Bit
0 Overflow — any of the following has occurred:
A single instruction has set one of the carry flags (bits 1 and 2)

without setting the other.

An ASH or ASHC has left shifted a 1 out of bit 1 in a positive
number or a 0 out in a negative number.

An MULx has multiplied -2 by itself (product 2.

A DMUL has multiplied -2 by itself (product 2'*).

An IMULx has multiplied two numbers with product = 2* or <
_235'

An FIX, FIXR, GFIX or GFIXR has fetched an operand with
exponent > 35.

A GDFIX or GDFIXR has fetched an operand with exponent >
70.

AzG,FS‘IXR has fixed a number with exponent 35 and fraction = 1
Floating Overflow has been set (bit 3).
No Divide has been set (bit 12).
1 Carry 0 — if set without Carry 1 (bit 2) being set, causes Overflow to
be set and indicates that one of the following has occurred:
An ADDx has added two negative numbers with sum < —2%,
A DADD has added two negative numbers with sum < -2

An SUBx has subtracted a positive number from a negative
number with difference < --2%

A DSUB has subtracted a positive number from a negative num-
ber with difference < -2

An SOJx or SOSx has decremented —2*.

June 1982 User Operations

2-67

But if set with Carry 1, indicates that one of these nonoverflow
events has occurred:

In an ADDx or DADD both summands were negative, or their
signs differed and their magnitudes were equal or the positive
one was the greater in magnitude.

In an SUBx or DSUB the signs of the operands were the same
and AC was the greater or the two were equal, or the signs of the
operands differed and AC was negative.

An AOJx or AOSx has incremented —1.

An SOdJx or SOSx has decremented a nonzero number other than
—2%,)

An MOVNx has negated zero.

A DMOVN or DMOVNM has negated zero (this condition does
not affect the flags in the KI10).

2 Carry 1 — if set without Carry O (bit 1) being set, causes Overflow to
be set and indicates that one of the following has occurred:
An ADDx has added two positive numbers with sum = 2%,
A DADD has added two positive numbers with sum = 2,

An SUBx has subtracted a negative number from a positive
number with difference = 2%,

A DSUB has subtracted a negative number from a positive num-
ber with difference = 2.

An AOJx or AOSx has incremented 2% — 1.
An MOVNx or MOVMzx has negated —2%,

A DMOVN or DMOVNM has negated —2™ (this condition does
not affect the flags in the KI10).

But if set with Carry 0, indicates that one of the nonoverflow events
listed under Carry 0 has occurred.
3 Floating Overflow — any of the following has set Overflow:

In a standard range floating point instruction other than FLTR
or DFN, the exponent of the result was or would have been
(GSNGL) > 127.

In a G format floating point instruction other than GFLTR,
DGFLTR or GDBLE, the exponent of the result was > 1023.

Floating Underflow (bit 11) has been set.
No Divide (bit 12) has been set in an FDVx, FDVRx, DFDV or
GFDV.

4 First Part Done — the processor is responding to a priority interrupt
between the parts of a two-part instruction or to a page failure in the
second part. A 1 in this bit indicates that the first part has been

2-68 User Operations - June 1982

10

11

completed, and this fact should be taken into account when the pro-
cessor restarts the instruction at the beginning upon the return to
the interrupted program. For example, if an ILDB or IDPB is inter-
rupted after the processing of the pointer but before the processing of
the byte, the pointer now points not to the last byte, but rather to the
byte that should be handled at the return. Thus when the processor
restarts the instruction, it must retrieve the pointer but not¢ incre-
ment it. Note however that this flag is solely for use by the hardware:
it is saved and restored by the Monitor, and the user should never
touch it. On the other hand, if a trap handler (which may be supplied
by the user) does any byte operations, the state of this flag must be
taken into account; for details refer to the discussion of “special con-
siderations” at the end of each of the sections on the interrupt.

User — the processor is in user mode.

User In-out — even with the processor in user mode, the program can
use in-out instructions.

Public®® — the last instruction performed was fetched from a public
area of memory, i.e. the processor is in user mode public or executive
mode supervisor.

Address Failure Inhibit* — an address failure cannot occur during
the next instruction.

Trap 2°' — if bit 10 is not also set, stack overflow has occurred.
Unless the pager is disabled, the setting of this flag immediately
causes a trap as explained at the end of this section. At present, bits 9
and 10 cannot be set together by any hardware condition.

Trap 1*' — if bit 9 is not also set, arithmetic overflow has occurred.
Unless the pager is disabled, the setting of this flag immediately
causes a trap as explained at the end of this section. At present, bits 9
and 10 cannot be set together by any hardware condition.

Floating Underflow — either of the following has set Overflow and
Floating Overflow:

In a standard range floating point instruction other than FLTR
or DFN, the exponent of the result was or would have been
(GSNGL) < -128.

In a G format floating point instruction other than GFLTR,
DGFLTR or GDBLE, the exponent of the result was < -1024.

20 Not available in the KA10 or KS10.

2l Not available in the KA10.

June 1982

User Operations

2-68.1

12 No Divide — any of the following has set Overflow:

In‘a DIVx or DDIV the high order half of the dividend was
greater than or equal to the divisor.

In an IDIVx the divisor was zero, or the dividend was —2* and
the divisor was *1.

In an FDVx, FDVRx, DFDV or GFDV the divisor was zero, or the
dividend fraction was greater than or equal to twice the divisor
fraction in magnitude; in either case Floating Overflow has been
set. If normalized operands are used, only a zero divisor can
cause floating division to fail.

In an ADJBP the number of bytes per word was zero.

June 1982 User Operations 2-69

The JRST Instruction

The basic use of this instruction is as a straightforward jump — it is the
fastest jump and is the preferred instruction for such use. However it also
allows the programmer to select individual functions by means of bits 9-12
of the instruction word. All KI10 and KA10 functions are included in the
KL10-KS10 set, but the method of decoding is so different that the instruc-
tion is described twice, first for the KL10 and KS10, then for the earlier
processors. Most of the functions are illegal in some circumstances on at
least some processors; when a function is illegal, the instruction executes as
an MUUO (§2.16) instead of performing the given function. The instruction
descriptions explain what each function does when it is legal. Between the
two descriptions is a table that indicates which of the functions are legal in
which p:ocessors under what circumstances.

JRST Jump and Restore (KL10-KS10)

[254 8[9 rol] ox] Y]

0 121314 1718 35

Perform the function specified by F if it is legal. At present only ten func-
tions are defined, and for all but one of these MACRO recognizes individual
mnemonics for generating the combined 13-bit instruction codes (including
bits 9-12). The defined functions, with their function codes, mnemonics,
and combined instruction codes are as follows.

Mnemonic and

Instruction
F Code Function
00 JRST Jump to location E.
25400
01 PORTAL -If the instruction has been taken from a nonpublic area, clear
25404 Public; then jump to location E. A location containing a
PORTAL is the only valid entry to a nonpublic area, and the
instruction places the processor in concealed or kernel mode.
Note that this function is equivalent to function 0 except when
the instruction is taken from a private area by a public pro-
gram, an event that cannot occur in a KS10 as it has no public
mode.
02 JRSTF Restore the program flags from bits 0-12 of the final word used
25410 in the effective address calculation (indirect or index word), and

jump to location E.

CAUTION

Restoring the flags requires that the instruc-
tion use indexing or indirect addressing.
Without indexing or indirection the result is
indeterminate.

2-70 User Operations

04

05

06

07

HALT
25420

XJRSTF
25424

XJEN
25430

XPCW
25434

Restoration of all but the user and Public flags is directly
according to the contents of the corresponding bits in the flag
word: a flag is set by a 1 in the bit, cleared by a 0. A 1 in bit 5
sets User but a 0 has no effect, so the Monitor can restart a user
program by restoring flags but the user cannot leave user mode
by this method. A 0 in bit 6 clears User In-out, but a 1 sets it
only if the JRST is being performed by the Monitor, i.e. if User
is clear. A 1 in bit 7 sets Public, but a 0 clears it only if the
JRST is being performed in executive mode with a 1 in bit 5
(i.e. User is being set). These conditions imply that the proces-
sor is entering user mode: hence the user cannot enter
concealed mode by clearing Public; and although the supervisor
can place the processor in user mode concealed, it cannot use
this procedure to enter kernel mode.

Notes. The flag bits are assumed to be in a previously
stored PC word. If the PC word was stored in AC (as in a JSP),
a common procedure is to use AC to index a zero address (e.g.
JRSTF (AC)), so its right half becomes the effective (jump) ad-
dress. If the PC word was stored in core (as in a JSR), one must
address it indirectly (remember, bits 13—17 of the PC word are
clear, so again its right half is the effective address). A JRSTF
(AC) is considerably faster than a JRSTF «PCWORD.

Load E into PC and halt the processor. While the KL10 is
halted the microcode runs in the halt loop, in which it will
handle interrupts on level 0 and will respond to console and
diagnostic functions from the front end. The KS10 microcode
performs the halt sequence discussed in §4.7, and then runs in
the halt loop in which it responds only to commands from the
console.

NOTE

The halt occurs of course only when the func-
tion is legal. But for debugging purposes the
function is often used when illegal (and it exe-
cutes as an MUUO).

Restore the program flags and PC (and the previous context
section, if appropriate) from a flag-PC doubleword in location
EE+1, and continue performing instructions in normal se-
quence beginning at the location then addressed by PC. Re-
strictions on the manipulation of the flags by the flag bits are
the same as those for JRSTF given above.

Restore the level on which the highest priority interrupt is cur-
rently being held (dismiss the interrupt (§§3.1, 4.1)), and then
perform an XJRSTF (function 5).

Notes. This instruction can be used in any section, and it is
the only way to dismiss an interrupt routine or restore an in-
terrupted prograra in a nonzero section.

Save the program flags and PC (and the previous context sec-
tion, if relevant) in a flag-PC doubleword in location E,E +1.
Then restore the flags and PC from a flag-PC doubleword in
location E+2,E+3, and continue performing instructions in
normal sequence beginning at the location then addressed by
PC. Restrictions on the manipulation of the flags by the flag
bits are the same as those for JRSTF given above.

User Operations

2-71

10
25440
12 JEN
25450
14 SFM
25460

Notes. This instruction can be used only for calling an in-
terrupt routine in a KS10 or an extended processor. In the lat-
ter case it is the recommended instruction. When it is so used,
the four-word block at location E must be in section 0, as that is
the default section for instructions executed in interrupt loca-
tions. The return from the routine would typically be made by
an XJEN that addresses the same block (i.e. that uses the first
doubleword in the block).

Restore the level on which the highest priority interrupt is cur-
rently being held (dismiss the interrupt (§§3.1, 4.1)).

Restore the level on which the highest priority interrupt is cur-
rently being held (dismiss the interrupt (§§3.1, 4.1)), and then
perform a JRSTF (function 2).

Save the program flags in bits 0—12 of memory location E (clear
bits 13-23). If the instruction is given in executive mode in an
extended processor, save the previous context section in bits
24-35 (otherwise clear these bits as well).

The remaining undefined functions execute as MUUOs, as does any
defined function when it is illegal.

One can program a function by giving JRST with the equivalent of an
AC address that specifies the function code. For the sixteen forms of the
instruction, the following table lists the individual mnemonic if any, and
indicates where that form of the instruction is legal in each of the five
processors. The meanings of the symbols used to define the legal domains of
the functions are as follows.

Yes Legal everywhere

Z Legal only in section 0

NZ Legal only in a nonzero section

10 Legal wherever 10 instructions are legal, i.e. in user I0 mode (User
and User In-out both set) and in kernel mode (executive mode in the
KS10 and KA10)

K Legal only in kernel mode (in the KS10, executive mode is kernel

mode)

No Legal nowhere (always executes as an MUUO)

-H Legal where indicated by first symbol but causes a halt

2-72 User Operations

Single-
Extended section
KL10 KLi0 KS10 KI10 KA10

JRST 0, JRST Yes Yes Yes Yes Yes
JRST 1, PORTAL Yes Yes Yes Yes Yes
JRST 2, JRSTF Z Yes Yes Yes Yes
JRST 3, No No No . Yes Yes
JRST 4, HALT K-H K-H K-H K-H 10-H
JRST 5, XJRSTF Yes No Yes K-H I0-H
JRST 6, XJEN 10 No K K-H I0-H
JRST 7, XPCW I0 No K K-H 10-H
JRST 10, I0 IO 10 K I0
JRST 11, No No No K 10
JRST 12, JEN Z A10* 10 10 K 10
JRST 13, No No No K 10
JRST 14, SFM NZ v IO* No K K-H I0-H
JRST 15, No No No K-H 10-H
JRST 16, No No No K-H I0-H
JRST 17, ' No No No K-H 10-H

* JEN is legal only where IO is legal in section 0; SFM is legal anywhere in a nonzero
section and also where IO is legal in section 0. ‘

JRST Jump and Restore (KI10-KA10)

| 254 | F il x | Y]

0 89 121314 1718 3s

Perform the functions specified by F' if they are legal; then if the function
was performed and the processor is not halted, take the next instruction
from location E and continue sequential operation from there. Bits 9-12 are
programmed as follows.

Bit Function Produced by a 1 if Legal

9 Restore the level on which the highest priority interrupt is currently
being held (dismiss the interrupt (§85.2, 5.5)).

10 Halt the processor. When it stops, the AR lights on the KI10 and the
MA lights on the KA10 display an address one greater than that of
the location containing the instruction that caused the halt, and PC
displays the jump address (the location from which the next instruc-
tion will be taken if the operator causes the processor to resume
operation without changing PC).

AR or MA actually displays the address of the location that
would have been executed next had the JRST been replaced by a no-

User Operations

2-73

11

12

op. So except for a JRST in an interrupt, the lights point to the
location one beyond that containing the instruction that caused the
halt. This instruction is ordinarily the JRST or perhaps an XCT, but
could even be a UUO.

Restore the program flags from bits 0-12 of the final word used in the
effective address calculation. Hence to restore flags requires that the
instruction use indexing or indirect addressing. Restrictions on the
manipulation of the flags by the flag bits are the same as those for
the KL10 JRSTF given above. (The notes on addressing given there
also apply.)

KA10. Enter user mode. The user program starts at relocated loca-
tion E.

KI10. The instruction is simply a jump except when fetched from
a nonpublic area, in which case it clears Public. In other words a
location containing a JRST 1, is the only valid entry to a nonpublic
area, and the instruction places the processor in concealed or kernel
mode.

While the KA10 is in user mode, if this instruction is executed as an
interrupt instruction or by an MUUO, the processor leaves user mode.

Notes. To produce one or a combination of these functions the program-
mer can specify the equivalent of an AC address that places 1s in the
appropriate bits, but MACRO recognizes mnemonics for the most important
13-bit instruction codes (bits 0-12).

JRST JRST 0, Jump 25400

JRST 10, Jump and Restore Interrupt Level 25440

HALT JRST 4, Halt 25420

JRSTF JRST 2, Jump and Restore Flags 25410

PORTAL JRST 1, Allow Nonpublic Entry (KI10) 25404
Jump to User Program (KA10)

JEN JRST 12, Jump and Enable 25450

JEN completes an interrupt by restoring the level and restoring the flags
for the interrupted program. It is a combination of JRST 10, and JRSTF.

CAUTION

Giving a JRSTF or JEN without indexing or indirect ad-
dressing restores the flags from the instruction code itself.

Subroutine Calling

Currently the stack instructions PUSHJ and POPJ, described in the next
section, are employed almost universally for handling subroutines. De-
scribed here are four traditional subroutine-handling instructions, the first
two of which still enjoy some popularity.

2-74

User Operations

JSR Jump to Subroutine

L 264] A]II X L Y]Aisnotused.22

0 89 121314 1718 35

In section 0 save the program flags and PC in a PC word in location E; in a
nonzero section save PC in bits 6-35 of location E (clear bits 0-5). In either
case jump to location E -+ 1. The flags are unaffected except First Part Done,
Address Failure Inhibit, and the trap flags, which are cleared.

While the processor is in user mode, if this instruction is executed as
an interrupt instruction (or by a KA10 MUUO), the processor leaves user
mode, clearing Public. (An interrupt that is not dismissed automatically
returns control to kernel mode.)

JSP Jump and Save PC
| 265 | a4 1] x | Y
0 89 121314 1718 35

In section 0 save the program flags and PC in a PC word in AC; in a
nonzero section save PC in AC bits 6-35 (clear bits 0-5). In either case
jump to location E. The flags are unaffected except First Part Done, Ad-
dress Failure Inhibit, and the trap flags, which are cleared.

While the KI10 or KA10 is in user mode, if this instruction is executed
as an interrupt instruction (or by a KA10 MUUO), the processor leaves
user mode, clearing Public. (An interrupt that is not dismissed automati-
cally returns control to kernel mode.)

When a subroutine is called in section 0 by a JSR M, the typical
method of returning from it is to give a JRSTF @M, which not only returns
to the original program but also restores the original states of the program
flags using the PC word saved by the JSR. In a nonzero section there is an
analogous procedure using a flag-PC doubleword. The subroutine is called
by

SFM M
JSR M+1

and the return is made by XJRSTF M. A similar analogy holds for JSP. The
following discussion of subroutine calling is geared to section 0, but its
extension to nonzero sections is straightforward, by such substitutions as a
flag-PC doubleword for a PC word, XJRSTF for JRSTF, and so forth.

22 The A portion of this instruction is reserved and should be zero.

User Operations

2-75

JSR and JSP are unconditional, but the execution of such an instruc-
tion can be the result of a decision made by any conditional skip or jump. In
the case of the flags, a basic overflow test and subroutine call can be made
as follows.

JOV 42
JRST 42 :
JSR OVRFLO ;Jump over this if Overflow clear

If we wish to go to the DIVERR routine when No Divide is set, we must
first read the flags into a test accumulator T and then use a test instruc-
tion.

JSP T, +1 ;Store flags but continue in sequence

TLNE T,40 ;40 left selects bit 12

JSR DIVERR ;Skip this if No Divide clear

A subroutine called by a JSR must have its entry point reserved for the PC
word. Hence it is nonreentrant: the JSR modifies memory so the subroutine
cannot be shared with other programs. The JSP requires an accumulator,
but it is faster and is convenient for argument passing. To return from a
JSR-called subroutine one usually addresses the PC word indirectly, re-
turning to the location following the JSR. But there are two ways'to get
back from a JSP. We can address the PC word indirectly with a JRST @AC
(or JRSTF @AC if the flags must be restored), but we can also get it by
addressing AC as an index register: JRST (AC). By using the second return
method we can place N words of data for the subroutine immediately after
the call, and return to the location following the data by giving a JRST
N(AC).

Suppose we wish to call a print subroutine and supply the words from
which the characters are to be taken. Our main program would contain:

JSP T,PRINT ;Put PC word in accumulator T

. ;Text inserted here by ASCIZ
;pseudo-instruction, which
;automatically places a zero (null)
:character at the end
;Next instruction here

The subroutine can use T as a byte pointer (§2.11) that already addresses
the first word of data. For the print routine, characters are loaded into
another accumulator CH.

2-76 User Operations

PRINT: HRLI T,440700 :Initialize left half of pointer for
:size 7, position 36
ILDB CH,T ;Increment pointer and load byte
JUMPE CH,1(T) ;Upon reaching zero character
;return to one beyond last data word
;Print routine

j RST PRINT+1 :Get next character

The next two instructions have no capacity for handling extended ad-
dresses. Hence their usefulness is limited to making intrasection subrou-
tine calls. However most programmers regard them as obsolete anyway, as
they have been supplanted entirely by the stack instructions.

JSA Jump and Save AC
[2066 | 4 i x | Y]
0 89 121314 1718 3s

Save AC in location E, the in-section part of E in AC left, and the in-section
part of PC in AC right. Then jump to location E + 1. The original contents of
E are lost.

While the KA10 is in user mode, if this instruction is executed as an
interrupt instruction or by an MUUQ, the processor leaves user mode.

JRA Jump and Restore AC
| 267 | 4] x | Y
0 89 121314 1718 35

Place the contents of the location addressed by AC left into AC, and jump to
location E.

A JSA combines advantages of the JSR and JSP. JSA does modify
memory, but it saves PC in an accumulator without losing its previous
contents (at a cost of not saving the flags). It is thus convenient for multi-
ple-entry subroutines. In a subroutine called by a JSR, the returning JRST
must refer to the (single) entry point. Since a JRA can retrieve the original
PC by addressing AC as an index register, it is independent of any entry
point without tying up an accumulator to the extent a JSP would. The
accumulator contents saved by a JSA are restored by a JRA paired with it
despite intervening JSA-JRA pairs. Hence these instructions are especially
useful for nesting subroutines.

User Operations

2-77

Overflow Trapping?

In the performance of a program there are many events that cannot be
foreseen and whose occurrence requires special action by the program.
There are instructions that test for the conditions produced by such events,
but in say a long string of computations, it would be both cumbersome and
time consuming to test for overflow at every step. It is far better simply to
allow an event such as overflow to break right into the normal program
sequence.

For situations of this nature, various internal conditions can act
through the priority interrupt system. However the processor also has a
trapping mechanism that allows conditions due directly to the program,
and which are often permitted to happen as a matter of course, to break
into the program sequence without recourse to the interrupt system. In
some cases, traps are used to handle the restrictions that play a role in
program and memory management (as explained in later chapters), but
here we are concerned specifically with action by the processor in response
to overflow.

An instruction in which an arithmetic overflow condition occurs sets
Overflow and Trap 1, and an instruction in which a stack overflow occurs
sets Trap 2. Note that it is the overflow condition that sets Trap 1 — not the
state of the Overflow flag. Hence an overflow is trapped even if Overflow is
already set. Note also that the trap flags have no effect at all when paging
is disabled. Otherwise at the completion of an instruction in which either
trap flag is set, rather than going on to the next instruction as specified by
PC, the processor instead executes an instruction taken from a particular
location in the process table for the program (user or executive). The loca-
tion as a function of the trap flags set is as follows.

Trap Flags Set Trap Type Trap Number Location
Trap 1 only Arithmetic overflow 1 421
Trap 2 only Stack overflow 2 422
Trap 1 and 2 Not used by hardware 3 423

A trap instruction is executed in the same address space and section as the
instruction that caused it. Overflow in a user instruction traps to a location
in the user process table, and any addresses used in the instruction in that
location are interpreted in the user address space. Thus a user program can
handle its own traps, e.g. by requesting the Monitor to place a PUSHJ to a
user routine in the trap location. An MUUO must be used if the Monitor is
to handle a user-caused trap.

23 This feature is not available in the KA10. That processor is limited to the use of internal
conditions that can act through the interrupt system (§5.5).

24 A trap can be produced artifically simply by setting up the trap flags from bits in a flag
word. In this way the program can also use trap number 3, which at present cannot result
from any hardware-detected condition and is reserved.

2-78 User Operations

The location of the instruction that caused the overflow can be deter-
mined from PC unless the instruction jumped, in which case its location can
be determined only for a PUSHJ, from the stack entry. The trap instruction
(the final instruction in an XCT and/or LUUO string) clears the trap flags,
so the processor returns to the interrupted program unless the trap instruc-
tion changes PC. Thus the trap instruction can be a no-op (which ignores
the trap), a skip, a jump, or anything else. However, should the trap in-
struction itself set a trap flag (not necessarily the same one), a second trap
occurs. An arithmetic instruction that overflows on every iteration pro-
duces an infinite loop if used as a trap instruction for arithmetic overflow.
A stack instruction in a stack overflow trap can overflow only once. (The
memory allocated to a stack should have at least one extra location to
handle this case — two extras if'the program and the trap both use the
same pointer.)

An interrupt can occur between an instruction that overflows and the
trap instruction, but the latter will be performed correctly upon the return
provided the interrupt is dismissed automatically or the interrupt routine
restores the flags properly. If a single instruction causes both overflow and
a page failure, the latter has preference; but the overflow trap will be taken
care of after the offending instruction has been restarted and completed
successfully. A trap instruction that causes a page failure does not clear the
trap flags; hence after the page failure is taken care of, the trap instruction
will correctly handle the trap when it is restarted.

2.10 Stack Operations

A stack, or pushdown list, is simply a set of consecutive memory locations
from which words are read in the order opposite that in which they are
written. In more general terms, it is any list in which the only item that
can be removed at any given time is the last item in the list. This is usually
referred to as “first in, last out” or “last in, first out.” Suppose locations a, b,
¢, ... are set aside for a stack. We can deposit data in a, b, ¢, d, then read d,
then write in d and e, then read e, d, ¢, etc. Adding an item to the stack is
referred to as “pushing” or “pushing down”; removing an item is “popping.”
The stack is used in two ways: for handling data, and for saving and restor-
ing PC, as in calling and returning from a subroutine.

The mechanism for keeping track of the list is a stack pointer, which
specifies the position of the last item in it. This pointer is always kept in an
accumulator. In section 0 the pointer has two parts: the right half contains
the address of the last item, and the left half can contain a control count.
An instruction that pushes an item onto the list increments both parts of
the pointer by one, and then places the item in the newly specified location;
an instruction that pops an item takes it from the currently specified final
location, and then decrements both parts of the pointer by one so it points to
what has become the final item. To help prevent mismanagement of the
stack, the control count in the left half is monitored for overflow. The over-
flow condition, which sets the Trap 2 flag, is a change in the count from
negative to zero on a push or from zero to negative on a pop. The KA10
lacks the trapping feature, so in it overflow sets the Pushdown Overflow
flag, which requests an interrupt on the level assigned to the processor
(8§5.6).

User Operations

2-79

By keeping a control count in AC left, the programmer can set a limit
to the size of the list by starting the count negative, or he can prevent the
program from extracting more items than there are in the list by starting
the count at zero, but he cannot do both at once. The common practice is to
limit the size of the list. If only jump addresses are kept in the stack, the
size limitation restricts the depth of nesting. A technique to catch extra
popping of jump addresses is to put the address of an error routine at the
bottom of the stack.

In a nonzero section there are two pointer formats, local and global. A
local pointer is just like the one used in section 0, with the same manipula-
tion in pushing and popping, except that the left half must be negative or
zero (like a local index register). Restriction to a negative control count
means it can be used only to limit the size of the list, as the only meaning-
ful overflow condition is the change to zero on a push. AC right contains a
local address that is interpreted as being in the same section as the instruc-
tion. Note that a local stack wraps around in the local section.

A global stack pointer is one in which bits 6—35 contain a global ad-
dress, and since bits 05 must be zero, it is identified by the left half being
nonzero positive. Manjpulation of a global pointer by pushing and popping
is simply incrementing and decrementing the 30-bit address by one, and a
global stack can therefore cross section boundaries. There is no control
count, but the program can limit stack size by making the pages at either
end inaccessible. Note that pushing on a local stack whose pointer has
already overflowed (whose control count has gone to zero) changes the
pointer to the global format, and it then addresses a location in section 1.
Similarly, adjusting a global stack pointer into the “section” beyond 7777
changes it to the local format. (A pointer with a 0 in bit 0 and any arbitrary
configuration in bits 1-5 is interpreted as local or global depending on
whether or not bits 6-17 are zero.)

The processor implements program use of the stack by providing five
instructions: one for making arbitrary adjustments of the pointer, and two
pairs for pushing and popping. One pair handles data; the instructions in
the other are jumps that use the stack for handling subroutines.

PUSH Push

T 8[a 1l x | Y]

v 121314 1718 35

If the program is running in section 0 or AC left is negative (or AC bits
6-17 are zero), add one to each half of AC, then move the contents of
location E to the location now addressed by AC right. If the addition causes
the count in AC left to reach zero, set Trap 2.2° If the program is running in

25 In the KA10, incrementing and decrementing both halves of AC together is effected by
adding and subtracting 1000001g. Hence a count of —2 in AC left is increased to zero if
218_1 s incremented in AC right, and conversely, 1 in AC left is decreased to 1 if zero is
decremented in AC right. Also in the KA10 there are no trap flags, so Pushdown Over-
flow is set instead.

2-80 User Operations

a nonzero section with a 0 in AC bit 0 and AC bits 6-17 nonzero, add one to
AC, then move the contents of location E to the location now addressed by
AC bits 6-35. The contents of E are unaffected, the original contents of the
location added to the stack are lost.

Notes. Do not allow the pointer to address AC, as the result of the
instruction is then indeterminate.

POP Pop
| 2062 [4 Ji] x] Y |
0 89 121314 1718 35

If the program is running in section 0 or AC left is negative (or AC bits
6-17 are zero), move the contents of the location addressed by AC right to
location E, then subtract one from each half of AC. If the subtraction causes
the count in AC left to reach —1, set Trap 2.2° If the program is running in a
nonzero section with a 0 in AC bit 0 and AC bits 6-17 nonzero, move the
contents of the location addressed by AC bits 6-35 to location E, then sub-
tract one from AC. The original contents of location E are lost.

Notes. Do not use the instruction POP AC,AC as its result is indetermi-
nate. To decrement the pointer by one position (in other words to throw
away the last item in the stack), give a POP AC,(AC) or ADJSP AC,—1.

Example. In section 0 a POP can be used to implement a reverse BLT,
i.e. to transfer a block of words from one area of memory to another, start-
ing at the largest addresses and proceeding to the smallest. To move a block
of N words from a source area to a destination area whose maximum ad-
dresses are S and D respectively, the program must first set up a stack
pointer in accumulator T, where T left contains N -1 + 400000 and T right
contains S. The transfer is then effected by this pair of instructions

POP T,D-S(T)
JUMPL T,-1

where the jump returns to the POP until T left is less than 400000, i.e.
until it looks positive. The 400000 added into T left prevents overflow, but
also limits the block to 2'7 words.

User Operations

2-81

PUSHJ Push and Jump

[260 | 4 1] x| Y]

V] 89 121314 1718 35

Take one of these three courses of action.

If the program is running in section 0, add one to each half of AC, then
save the program flags and PC in a PC word in the location now ad-
dressed by AC right. If the addition causes the count in AC left to reach
zero, set Trap 2.2°

If the program is running in a nonzero section but AC left is negative
(or AC bits 6-17 are zero), add one to each half of AC, then save PC in
bits 6-35 of the location now addressed by AC right (clear bits 0-5). If
the addition causes the count in AC left to reach zero, set Trap 2.2°

If the program is running in a nonzero section with a 0 in AC bit 0 and
AC bits 6-17 nonzero, add one to AC, then save PC in bits 6-35 of the
location now addressed by AC (clear bits 0-5).

Then jump to location E.

The flags are unaffected except First Part Done, Address Failure In-
hibit, and the trap flags, which are cleared. However, overflow overrides
the Trap 2 clear, so if the list overflows, Trap 2 sets and the processor traps
instead of jumping. The original contents of the location added to the list
are lost.

While the KI10 or KA10 is in user mode, if this instruction is executed
as an interrupt instruction (or by a KA10 MUUOQO), the processor leaves
user mode, clearing Public. (An interrupt that is not dismissed automati-
cally returns control to kernel mode.)

POPJ Pop and Jump

| 263 [4 [/ x | Y | E is not used.”

0 89 121314 1718 35

Take one of these three courses of action.

If the program is running in section 0, subtract one from each half of
AC. If the subtraction causes the count in AC left to reach —1, set Trap
2.2% Then jump to the location addressed by the right half of the location
that was addressed by AC right prior to the decrementing.

If the program is running in a nonzero section but AC left is negative
(or AC bits 6-17 are zero), subtract one from each half of AC. If the
subtraction causes the count in AC left to reach —1, set Trap 2.2° Then
jump to the location addressed by bits 6-35 of the location that was
addressed by AC right prior to the decrementing.

%7 , X and Y are reserved and should be zero.

2-82 User Operations

If the program is running in a nonzero section with a 0 in AC bit 0 and
AC bits 6-17 nonzero, subtract one from AC, and jump to the location
addressed by bits 6-35 of the location that was addressed by AC bits
6-35 prior to the decrementing.

CAUTION

The jump is completed before the processor responds to over-
flow. Hence it is impossible to determine the location of the
POPJ that caused the overflow.

ADJSP Adjust Stack Pointer?’

| 105 [a4 [/ x | Y]

0 89 121314 1718 35

If the program is running in section 0 or AC left is negative (or AC bits
6-17 are zero), add the in-section part of E algebraically (bit 18 is the sign)
to each half of AC. If a negative E, changes the count in AC left from
positive or zero to negative, or a positive E, changes the count from nega-
tive to positive or zero, set Trap 2. If the program is running in a nonzero
section with a 0 in AC bit 0 and AC bits 6-17 nonzero, add the in-section
part of E algebraically to AC.

Notes. When an ADJSP changes the control count in a local pointer in
a nonzero section from negative to positive, the result will appear to be a
global pointer. Similarly an overflow to negative can occur only from zero,
as otherwise the original would have been taken as global (excluding the
irrelevant case of AC left being greater than zero only because of bits 1-5
being nonzero).

A stack is very convenient for a program that can use data stored in
this manner as the pointer is initialized only once and only one accumula-
tor is required for the most complex stack operations. To initialize a local
pointer P for a list to be kept in a block of memory beginning at BLIST and
to contain at most N items, the following suffices.

MOVSI PN
HRRI P,BLIST-1

27 In the KI10 and KA10 this instruction is trapped as an unassigned code.

User Operations

2-83

Of course the programmer must define BLIST elsewhere and set aside loca-
tions BLIST to BLIST + N — 1. Using MACRO to full advantage one could
instead give

MOVE P,]IOWD N,BLIST]
where the pseudoinstruction
IOWD J K

is replaced by a word containing — o/ in the left half and K — 1 in the right.
Elsewhere there would appear

BLIST: BLOCK N

which defines BLIST as the current contents of the location counter and
sets aside the N locations beginning at that point.

Since the stack is independent of the subroutine called, PUSHJ-POPJ
can be used for multiple entries. Moreover, ordering by level is inherent in
the structure of a stack, so paired PUSHJ-POPJ instructions are excellent
for nesting subroutines: there can be any number of subroutines at any
level, each with more subroutines nested within it. Recursive subroutines
are also easily programmed.

The stack instructions do tie up an accumulator, but the usual proce-
dure is to keep both data and jump addresses in a single list so only one AC
is required for most operations. The programmer must keep track of
whether a given entry in the list is data or a saved PC; in other words,
generally every item inserted by a PUSH should be removed by a POP or
ADJSP, and every PUSHJ should be matched by a POPJ. If flag restoration
is desired in section 0, the returning

POPJ P,
can be replaced by

POP P,AC

JRSTF (AC)

which requires another accumulator. If the flags are not important, data
may be stored in the left halves of the PC words in the stack, reducing the
required pushdown depth.

The stack is kept in a random access memory, so the restrictions on
order of entry and removal of items actually apply only to the standard
addressing by the pointer in stack instructions — other addressing methods
can reference any item at any time. The most convenient way to do this is
to use the address part of the pointer as an index. To move the last entry to
accumulator AC we need simply give

MOVE AC,P)

Of course this does not shorten the list — the word moved remains the last
item in it.

2-84 User Operations

One usually regards an index register as supplying an additive factor
for a basic address contained in an instruction word, but the index register
can supply the basic address and the instruction the additive factor. Thus
we can retrieve the next to last item by giving

MOVE AC-1(P)
and so forth. Similarly
PUSH P,-3(P)

appends the third to last item to the end of the list (remember that E is
calculated before the contents of P are changed).

POP P,-2(P)

removes the last item and inserts it in place of the next to last item in the
shortened list.

An ADJSP can delete an entire block from a stack, and in combination
with a BLT it can be used to add a whole block.

2.11 Byte Manipulation®

This set of six instructions allows the programmer to pack or unpack bytes
of any length anywhere within a word. Movement of a byte is always be-
tween AC and a memory location: a deposit instruction takes a byte from
the right end of AC and inserts it at any desired position in the memory
location; a load instruction takes a byte from any position in the memory
location and places it right justified in AC.

The byte manipulation instructions have the standard memory refer-
ence format, but the effective address E is used to retrieve a pointer, which
is used in turn to locate the byte or the place that will receive it. A pointer
restricted only to local addressing is always one word and has the format

P s ol x | Y B

0 56 11121314 1718 35

where S is the size of the byte as a number of bits (with zero S specifying a
null byte), and P is its position as the number of bits remaining at the right
of the byte in the word (e.g. if P is 3 the rightmost bit of the byte is bit 32 of
the word). The rest of the pointer is interpreted in the same way as in an
instruction: I, X and Y are used to calculate the address of the location that
is the source or destination of the byte; the address calculation begins in
the section containing the pointer.

In section 0 the pointer is always of the above type — local and one
word — and P must be < 36. In a nonzero section the pointer can be local in
the above format, but it can also be global in either a one or two-word

28 In a KA10 without byte manipulation hardware, all of the instructions presented in this
section are trapped as unassigned codes.

June 1982 User Operations 2-85

format. The one-word global pointer is available only with TOPS—20 micro-
code version 271 or greater, cannot use indirection, and provides for only
the most common byte sizes via this format:

P&S 30-BIT ADDRESS
0 5 6 35

where the address can point to any section, and the left six bits specify both
byte position and size by a number > 36 as follows.

P&S P S P&S P S
37 36 6 49 36 7
38 30 6 50 29 7
39 24 6 51 22 7
40 28 6 52 15 7
41 12 6 53 8 7
42 6 6 54 1 7
43 0 6

55 36 9
44 36 8 56 27 9
45 28 8 57 18 9
46 20 8 58 9 9
47 12 8 59 0 9
48 4 8

60 36 18

61 18 18

62 0 18

For unrestricted use in a nonzero section, the pointer can be a doubleword
in location E.E + 1 with this format:

P S
oj7/f Xx Y
01 2 56 11 1213 17 18 35

—

RESERVED AVAILABLE TO USER

which allows unlimited pointing, as P and S are independent, and the
second word can be local or global, direct or indirect (see the discussion of
indirect words in §1.6). The processor determines the number of words in a
pointer with independent P and S by the state of bit 12 in the first word (in

section 0 bit 12 is ignored and should be 0). Any type of pointer aims at a

word whose format is

%%% P BITS 7

0 35-P-§+1 35-P 35-P+1 35

where the shaded area is the byte.

Bytes are always contiguous within a word, and the forward order is
left to right in words and from low to high addresses. The position of the
byte area in a word is called the “byte alignment.” Let P be the position of a
specified byte; 36 — P is then the number of bits in the left part of the word
including the given byte and all byte positions at the left of it. Dividing

2-86 User Operations

June 1982

36 — P by S gives the number of byte positions in this left part, and the
remainder is those extra bits at the left end that are not in any byte posi-
tion. This number of extra bits is the byte alignment.

A block of 8-bit bytes might look like this.

Y ' 19 BITS BYTE 0 \ BYTE 1
Y+1 BYTE 2 ' BYTE 3 BYTE 4 BYTE 5 4 BITS
Y+2 BYTE 6 BYTE 7 BYTE 8 BYTE 9 4 BITS

In the first word, the first byte can occupy any position, but as many bytes
as will fit are packed into the rest of the word at the right. In the second
and all succeeding words, the byte alignment is zero no matter where the
bytes may start in the first word, and as many as will fit are packed into
every word, although the last may run short. In our example the byte
alignment in the first word is 3, even though two byte positions are not
used: the alignment is always less than S and is the number mod S of bits
at the left of the first byte. Bytes are assumed to be handled consecutively
in the forward direction only, and for this type of processing the pointer is
“incremented. Since bytes are contiguous and are processed from left to
right, incrementing merely replaces the current value of P by P — S, unless
there is insufficient space in the present location for another byte of the
specified size (P — S < 0). In this case Y is increased by one® to point to the
next consecutive location, and P is set to 36 — S to point to the first byte at
the left in the new location.

To facilitate processing a series of bytes, two of the byte handling in-
structions increment the pointer before handling the byte. A typical proce-
dure for using these instructions is to set up the pointer initially to point at
the byte position preceding the first byte.

The pointer is referred to as being “at location E,” which means that it
is either a single word in location E or a doubleword in location E.E +1.
Local and global pointers, and the operations associated with them as de-
scribed above, are also utilized in handling byte strings, which are dis-
cussed in the three sections following this one.

CAUTION

Giving a pointer with P or S greater than 36 produces an
indeterminate result in any instruction that uses it. A P of 36
should be used only for initial incrementing by an ILDB or
IDPB (its effect on an LDB or DPB is indeterminate).
If both P and S are less than 36 but P + S > 36, a byte of
size 36 — P is loaded from position P, or the right 36 — P bits
of the byte are deposited in position P.
Giving a one-word global pointer with a P&S number of
63 causes an instruction that uses it to be trapped as an
MUUO. '
29 Caution: In the KA10 do not allow Y to reach maximum value. The whole pointer is
incremented, so if Y is 2" — 1 it becomes zero and X is also incremented. The address

calculation for the pointer uses the original X, but if an interrupt should occur before the
calculation is complete, the incremented X is used when the instruction is repeated.

June 1982 User Operations

2-87

LDB Load Byte

TREE | a4] x] Y

0 89 121314 1718 35

Retrieve a byte of S bits from the location and position specified by the
pointer at location E, load it into the right end of AC, and clear the remain-
ing AC bits. The location containing the byte is unaffected, the original
contents of AC are lost.

DPB Deposit Byte

137 | 4 i x| Y

0 89 121314 1718 ' 35

Deposit the right S bits of AC into the location and position specified by the
pointer at location E. The original contents of the bits that receive the byte
are lost, AC and the remaining bits of the deposit location are unaffected.

IBP increment Byte Pointer

133 | oo [/] x | Y Bits 9—12 = 0.

0 89 121314 1718 RH]

Increment the byte pointer at location E, setting the byte alignment to zero -
if the incrementing crosses a word boundary, as explained above.

Notes. Giving this instruction code with bits 9-12 nonzero produces the
ADJBP instruction described at the end of the section. In the KI10 and
KA10, only the IBP form is available and bits 9—12 are ignored (but should
be zero).

iLDB Increment Pointer and Load Byte
[134 | a4 [1] x | Y]
0 89 121314 1718 35

Increment the byte pointer at location E, setting the byte alignment to zero
if the incrementing crosses a word boundary, as explained above. Then
retrieve a byte of S bits from the location and position specified by the
newly incremented pointer, load it into the right end of AC, and clear the
remaining AC bits. The location containing the byte is unaffected, the orig-
inal contents of AC are lost.

2-88 User Operations June 1982

IDPB Increment Pointer and Deposit Byte

| 1306 | a4 [i] x] Y

0 89 121314 1718 35

Increment the byte pointer at location E, setting the byte alignment to zero
if the incrementing crosses a word boundary, as explained above. Then
deposit the right S bits of AC into the location and position specified by the
newly incremented pointer. The original contents of the bits that receive
the byte are lost, AC and the remaining bits of the deposit location are
unaffected.

Note that in the pair of instructions that both increment the pointer
and process a byte, it is the modified pointer that determines the byte
location and position. Hence to unpack bytes from a block of memory, the
program should set up the pointer to point to a byte just before the first
desired, and then load them with a loop containing an ILDB. If the first
byte is at the left end of a word, this is most easily done by initializing the
pointer with a P of 36 (44;). Incrementing then replaces the 36 with 36 — S
to point to the first byte. For the convenience of the programmer, MACRO
has a pseudoinstruction for setting up such a pointer: in assembly

POINT S Y

is replaced by a pointer that points to 2 byte of size S at position 36 in
location Y. At any time that the program might inspect the pointer during
execution of a series of ILDBs or IDPBs, it points to the last byte processed
(this may not be true when the pointer is tested from an interrupt routine).

ADJBP Adjust Byte Pointer

0 89 121314 1718 ' 3s

Take one of these three courses of action depending on the value of S in the
pointer at location E.

If S is 0, place an unmodified copy of the pointer in AC or AC,AC +1.

If S is greater than 36 minus the byte alignment given by the pointer —
so not even one byte will fit in a word — set Trap 1, Overflow and No
Divide, and go on to the next instruction without affecting the ACs or
memory.

If S is greater than 0 but less than 36 minus the byte alignment, make a
copy of the pointer from location E or E,E+1, and “adjust” the copy,
forward or back, by the number of byte positions specified by AC, pre-
serving the byte alignment across word boundaries: if AC contains a posi-
tive number N, adjust the copy by N bytes forward; if AC contains a

June 1982 User Operations

133 A Il X Y A#0.

2-89

negative number —N, adjust the copy by N bytes back. Place the revised
pointer copy in AC or AC,AC+1 as appropriate. The original pointer is
unaffected; the original contents of AC or AC,AC +1 are lost.

Notes. The adjustment always produces a pointer that specifies an
actual byte; e.g. adjusting a pointer with a P of 36 by zero bytes results in a
pointer that specifies the rightmost byte in the preceding word. Note that if
the pointer specifies a byte alignment of zero, there is no difference between
“adjusting” it by N and “incrementing” it N times (except that the latter
actually modifies the pointer). Since the result goes to AC, it is not gener-
ally useful to adjust a local pointer that is in a different section from the
instruction.

Giving this instruction code with a zero A field or in a KI10 or KA10
produces the IBP instruction described above. Note that if § = 0, this
" instruction is equivalent to MOVE. '

This last instruction facilitates selection of individual bytes at arbi-
trary positions in an array whose format differs from the linear format used
by the incrementing instructions in that the adjustment preserves the byte
alignment across word boundaries. As an example of this format, let us
again use 8-bit bytes where the pointer specifies one in the same position as
byte 0 in our linear example at the beginning of the section. Such an array
would look like this.

Y-2 BYTE -10 BYTE -9 BYTE -8 BYTE -7
Y -1 BYTE -6 BYTE -5 BYTE -4 BYTE -3
Y BYTE -2 BYTE -1 BYTE 0 BYTE 1
Y+ 1 BYTE 2 BYTE 3 BYTE 4 BYTE s
Y+2 BYTE 6 BYTE 7 BYTE 8 BYTE 9

Here the bytes are ordered in either direction from the zero position, and
the byte alignment determined by the pointer is preserved throughout all
words in the block. Bytes are packed as many as will fit in all words (except
perhaps at either end of the block), but within the restriction that the
alignment be preserved. For example, with 10-bit bytes there are always
three per interior word in the linear format, but in the array format with
an alignment of 8, there are only two, occupying bits 8-17 and 18-27.
Specification of an arbitrary byte anywhere in the array is accomplished by
using an ADJBP. The microcode makes the adjustment by changing Y to
the location containing the byte and then setting up a new P for the specific
byte.

Suppose we have bytes packed five to a word, a pointer at location E
now points to the third byte in a given location, and we wish to retrieve the
thirty-first (the fourth byte from the sixth location) beyond that. This rou-
tine loads the desired byte into AC.

2-90 User Operations

June 1982

MOVEI AC,37
ADJBP AC,E ;Adjust by 31,
LDB AC,AC

2.12 String Manipulation®

This and the next two sections treat the instructions that handle strings.
All string instructions are in the extended instruction set, and all therefore
have a two-word format, the first word being EXTEND. The second instruc-
tion word, whose own effective address is E1, is at location E0, which is the
effective address of the EXTEND. An instruction that “offsets” uses EI as a
signed offset, in which bit 18 is the sign. An instruction that “translates” or
“edits” makes use of a translation table that begins at E1.

A string is a sequence of bytes as specified by successive states of a
standard byte pointer of the type described in the preceding section, the
first page or so of which the reader should reread if he does not remember
in detail the format of the pointer, the way it is incremented, and the way
bytes are organized in consecutive words (specifically with zero byte align-
ment). The program defines a string by giving its length in number of bytes
and an initial value for the pointer. Initially the pointer must point to the
byte position preceding the first byte in the string, as every string instruc-
tion acts in a manner similar to a series of ILDBs or IDPBs, or in some
cases both. Hence all string operations are from left to right due to the way
byte pointers are incremented. A string byte pointer and length may define
a string of bytes or define a string space that will receive bytes. In an
instruction that moves a string, the actual string moved is referred to as
the source string, and the receiving space is referred to as the destination
string, even though initially the latter is a string of positions rather than
bytes. Note that source and destination strings need not be the same
length. When the source string is longer, only part of it will fit in the
destination space. Conversely when the source is shorter, it can be inserted
into part of the destination space, either starting at the left (left justified)
or placed so that its final byte is in the last destination position (right
justified). ' , ,

Bytes may be of any size from zero bits to thirty-six, but in a given
string all are the same size as indicated by the pointer. The relationship
between source and destination byte sizes is a function of the way the
programmer uses his data and the meaning he assigns to it. Depending on
circumstances it may be desirable to spread out a source string into a desti-
nation space whose positions are larger than the source bytes (data is al-
ways right justified in a given byte position); or source bytes may be
truncated to fit into smaller destination positions (the truncation being
always from the left).

Most string operations make some use of bytes other than those in the
strings themselves. Such bytes may be special characters found in locations
EO0+1 and E0+ 2, or substitutions supplied by a translation table. A byte

% In the KI10 and KA10 these instructions are trapped as unassigned codes (§2.16).

June 1982 User Operations 2-91

from any location not in a string defined by the pointers and lengths associ-
ated with the instruction is always from the right end of the word or half
word containing it and has the same number of bits as the bytes in the
string in which it will be used.

The interior of a string space is all of those bits in the words containing
the string that lie between the first byte in the first word and the last byte
in the last word. Since byte alignment is zero, the string is packed solid
(with no unused interior bits) if 36 is an integral multiple of the byte size.
For sizes that do not pack solid, there will be unused interior bits except in
the last word, and they will lie at the right of the bytes in the words. If all
unused interior bits are Os initially in the string spaces (whether one or
two) specified by a string instruction, they are guaranteed to be Os at the
completion of the instruction. If such bits are not all Os initially, the subse-
quent states of unused interior destination bits are indeterminate (source
strings are unaffected by the instructions).

Bytes in a string may represent anything — digits, letters, special
characters. This section discusses the basic operations: those that compare
two strings, or move a string to a new position with optional offsetting or
translating of its bytes. The next section covers special operations for con-
verting between binary and decimal, where a decimal number is a string of
bytes representing decimal digits. §2.14 considers an instruction that is
effectively a whole routine for complex editing of a text string.

All string instructions skip the next instruction in the PC sequence if
all operations are carried out as expected, or a compare condition is satis-
fied, etc. Failure of a compare condition to be satisfied or something being
amiss (such as loss of bytes because the source string will not fit in the
destination space) usually causes the processor to perform the next instruc-
tion. Note that the “next instruction” is relative to the EXTEND (or an
XCT that executes it) — in other words relative to the actual instruction
PC points to. The location of the second instruction word, which is actually
the operand of the EXTEND, does not affect the PC value.

Every string instruction uses a block of accumulators, which contain
one or two byte pointers. A pointer may be one word or two, local or global,
as explained at the beginning of §2.11. In the illustrations of the AC block
format for the extend instructions, pointers are always shown as a pair of
words in AC+N,AC+N +1, where the actual byte pointer used may be in
the first accumulator or in both. However the reader should note that when
a global pointer is given as one word, the instruction always converts it
to two.

CAUTION

For the instructions described in this and the next two sec-
tions, the format illustrations show various parts of the accu-
mulators and instruction words as being zero. These parts
are reserved and must be zero. Failure to comply with this
requirement will cause an extend instruction to give an inde-
terminate result.

2-92 User Operations

June 1982

« Moreover there can be no overlapping of the various
quantities used in any extend instruction. The source and
destination spaces must never overlap; under no circum-
stances should any string overlap anything else used by the
instruction, such as the AC block, a translation table, an edit
pattern, special character locations following EO, or even the
instruction words themselves; and unused ACs in the speci-
fied block (such as that following a one-word byte pointer)
cannot be used for any other purpose (such as an index regis-
ter). Any such overlapping will cause the result of the in-
struction to be indeterminate.

This caution applies not only to the basic instructions
discussed here, but also to those of the two sections that
follow.

There are four move instructions. One right justifies the source string
in the destination space, without otherwise modifying it. The others move
the source string directly (i.e. left justified), with the bytes unmodified, or
all offset by a constant, or translated where every byte of a given value is
replaced by a corresponding substitution. The six compare instructions do
not affect the specified strings; instead they are compared according to a
collating sequence based on the algebraic relationships of their bytes taken
as unsigned binary numbers. All of these are two-word instructions, where
the first has the EXTEND code 123, and all use a block of six accumulators.

MOVSLJ Move String Left Justified

[123 [4 [/ x | Y
0 89 121314 1718 35
EO 016 00 [If X Y
E0+1 FILL
0 89 121314 1718 35

Move the source string left justified into the destination string space.

31 1 X and Y are reserved and should be zero.

June 1982 User Operations

Bits 9—-12=0
El is not used. *' .

2-92.1

Source and destination are defined by the contents of a block of six accumu-
lators.

AC 000 SOURCE STRING LENGTH Bits 0—-8 = 0.
AC+L | SOURCE STRING BYTE POINTER —
AC+2
AC+3 000 DESTINATION STRING LENGTH Bits 0-8 = 0.
AC+4

L DESTINATION STRING BYTE POINTER —
AC+S5

0 9 35

Beginning at the left, copy as many bytes from the source string as will
fit into the destination string space. If any source bytes are left over (i.e. if
the source string is longer than the destination string), go to the next
instruction. Otherwise place the fill character from EO +1 in the remaining
destination byte positions (if any) and skip the next instruction.

At the end the byte pointers point to the last positions referenced in
source and destination, AC + 3 contains zero, and AC bits 9-35 contain the
number of source bytes not copied (if any). If unused interior bits in both
strings are clear initially, they are left clear; otherwise unused interior
destination bits are indeterminate. The source string is unaffected.

MOVSO Move String Offset

| 123 | 4 1] x | Y]
0 89 121314 1718 35
E0 014 | oo |71 x | Y Bits 912 = 0.
E0+1 : FILL
0 89 12 13 14 1718 35

Move the source string, with each byte offset by E1, left justified into the
destination string space. Source and destination are defined by the contents
of a block of six accumulators.

AC 000 SOURCE STRING LENGTH Bits 0—8 = 0.
AC+1
— SOURCE STRING BYTE POINTER —
ACH+2
AC+3 000 DESTINATION STRING LENGTH Bits 0—8 = 0.
AC+4
- DESTINATION STRING BYTE POINTER —
AC+5
0 9 35

Beginning at the left, read each byte from the source string, add EI to
it algebraically (bit 18 is the sign), and place the offset byte in the corre-
sponding position in the destination string space provided it is not larger

User Operations 2-93

than the specified byte size (i.e. there are no 1s outside the area containing
the offset byte in the register holding it). Continue in this fashion for each
source byte until an oversize offset byte is encountered, or either the source
string or the destination space is exhausted, whichever occurs first. Then if
there are any source bytes not moved (because an offset byte is oversize or
the source string is too long), go to the next instruction. Otherwise place
the fill character from £0+ 1 in the remaining destination byte positions (if
any) and skip the next instruction.

At the end the byte pointers point to the last positions referenced in
source and destination, AC bits 9-35 contain the number of source bytes
not moved (if any), and AC + 3 bits 9-35 contain the number of destination
byte positions not used (if any). If unused interior bits in both strings are
clear initially, they are left clear; otherwise unused interior destination
bits are indeterminate. The source string is unaffected.

NOTE

MOVSO with a zero offset is equivalent to MOVSLJ, but the
latter is faster and should always be used instead.

MOVST Move String Translated

[123] a4 [x] Y
(4] 89 121314 1718 35
E0 015 [oo [1] x | Y Bits 912 = 0.
E0+1 i FILL

0 8 9 12 13 14 17 18 35
Move the significant part of the source string, with its bytes replaced by
bytes from a translation table at EI, left justified into the destination
string space. Source and destination are defined by the contents of a block
of six accumulators. S is the significance bit: setting it signals the start of
that part of the source string that has significance, and bytes read while it
is on are regarded as significant.
AC S|N\M 00 SOURCE STRING LENGTH Bits 3—8=0.
AC+1

- SOURCE STRING BYTE POINTER —
ACH2
AC+3 000 DESTINATION STRING LENGTH Bits 0—8 = 0.
AC+4

— DESTINATION STRING BYTE POINTER -
AC+5

o1 2 9 35

Beginning at the left, read each byte from the source string, and carry
out the corresponding translation function given in the appropriate half
word at location EI + B/2 in the translation table, where B is the value of
the source byte. Each word in the table has this format.

2-94 User Operations

TRANSLATION FUNCTION FOR EVEN B TRANSLATION FUNCTION FOR ODD B

oP SUBSTITUTE FOR BYTE | OP SUBSTITUTE FOR BYTE :
lcomal 0 I (MAXIMUM 12 BITS) CODEI 0 | (MAXIMUM 12 BITS) 1 Location E1 + B/2

0 2 6 1718 20 24 35

Perform the function specified by the op code in the half word correspond-
ing to the source byte as follows.

If S is 1 take the substitute in place of the source byte.

Terminate translation.

If S is 1 take the substitute in place of the source byte. (Also clear M.)
If S is 1 take the substitute in place of the source byte. (Also set M.)
Set S and take the substitute in place of the source byte. (Also set N.)
Terminate translation. (Also set N.)

Set S and take the substitute in place of the source byte. (Also set N
and clear M.)

7 Set S and take the substitute in place of the source byte. (Also set N
and M.)

Then take one of these three courses of action:

SO AR W N - O

If the function makes no substitution and does not terminate, read the
next byte from the source string and continue as described above.

If the function makes a substitution, place the substituted byte in the
next position in the destination string space, read the next byte from
the source string, and continue as described above.

If the function terminates the translation, go on to the next instruction.

Unless the translation is terminated by a translation function, con-
tinue the above procedure until either all source bytes are processed or the
destination string is filled, whichever occurs first. Then if any source bytes
are left over, go to the next instruction. Otherwise place the fill character
from EO+1 in the remaining destination byte positions (if any) and skip
the next instruction.

At the end the byte pointers point to the last positions referenced in
source and destination, AC bits 9-35 contain the number of unprocessed
bytes in the source string (if any), and AC + 3 bits 9-35 contain the number
of destination byte positions not used (if any). If unused interior bits in both
strings are clear initially, they are left clear; otherwise unused interior
destination bits are indeterminate. The source string is unaffected.

Notes. The translation table starts at location E1, and since there are
two functions per word, it contains 2" locations, where n is the number of
bits in a byte. The address is generated by adding the left n — 1 bits of a
byte to E1.

Of the three flags in AC bits 0-2, only S is relevant to this instruction;
the translation functions do manipulate M and N, but their states have no
effect on the result. S being set means the translation has started. The
programmer can make the translation start at the beginning of a string by
having S already set when the instruction is given; or he can skip any
number of initial bytes in the source string, and have the translation

User Operations

2-95

started by the first occurrence of some byte whose associated function sets
S. Hence by the use of S and terminating functions, the programmer can
have an MOVST translate any contiguous subset of the source string.

MOVSRJ Move String Right Justified

[123 [a [x] Y |

0 89 121314 1718 35
Bits 9—-12 =0.
EO 017 I 00 l[[X J : Y E1 is not used.™
E0+1 ; FILL
0 8 9 12 13 14 17 18 35

Move the source string right justified into the destination string space.
Source and destination are defined by the contents of a block of six accumu-
lators.

AC 000 SOURCE STRING LENGTH Bits 0—8 = 0.
AC+1

| SOURCE STRING BYTE POINTER —
AC+2
AC+3 000 DESTINATION STRING LENGTH Bits 0—8 = 0.
AC+4

— DESTINATION STRING BYTE POINTER —
AC+5

0 9 35

Check the relation between the source and destination lengths to select
one of the following three courses of action.

If the source and destination strings are the same length, move the
source string into the destination space.

If the source string is shorter, place the fill character from E0+1 in
destination byte positions beginning at the left until there are just
enough places remaining in the destination space to accept the source
string. Move the source string into the remaining destination positions
at the right.

If the source string is longer, skip over enough source bytes at the left so
the remaining source substring will fit in the destination space. Move
the remaining source bytes into the destination space.

After completing the selected course of action, skip the next instruction.
At the end the byte pointers point to the last positions referenced in
source and destination, AC+3 contains zero, and AC bits 9-35 contain the
number of source bytes skipped over (if any). If unused interior bits in both
strings are clear initially, they are left clear; otherwise unused interior
destination bits are indeterminate. The source string is unaffected.

2-96 User Operations

CMPS- Compare Strings

| 123 | a] x | Y
(1] 89 121314 1718 35
E0 0 | ¢ | oo [/] x | Y
E0+1 i FILL |
E£0+2 , FILL 2
0 5 6 8 9 12 13 14 17 18 ' 35

Compare two strings and skip the next instruction if the condition specified
by C is satisfied. The two strings are defined by the contents of a block of
six accumulators.

AC 000 STRING 1 LENGTH
AC+1

_— STRING 1 BYTE POINTER —
AC+2
ACH+3 000 STRING 2 LENGTH
AC+4 | STRING 2 BYTE POINTER —
AC+5

0 9 35

Beginning at the left, compare string 1 with string 2, byte by byte,
until a pair of bytes that are not identical is encountered. If a string runs
out before an inequality is found, continue the comparison using a byte
from E0+1 in lieu of bytes from string 1 or a byte from E0+2 in lieu of bytes
from string 2, whichever is shorter.

Upon either encountering an inequality between corresponding bytes
of the two strings or reaching the end of the longer string, stop the compari-
son and skip the next instruction if condition C is satisfied. The various
values of C select different conditions and therefore specific forms of this
instruction as follows.

CMPSL Compare Strings and Skip if String 1 Less than String 2 001

CMPSE Compare Strings and Skip if String 1 Equal to String 2 002

CMPSLE Compare Strings and Skip if String 1 Less than or 003
Equal to String 2

CMPSGE Compare Strings and Skip if String 1 Greater than or 005
Equal to String 2

CMPSN Compare Strings and Skip if String 1 Not Equal to 006
String 2

CMPSG Compare Strings and Skip if String 1 Greater than 007
String 2

At the end the byte pointers point to the last positions referenced in the
strings, and bits 9-35 of AC and AC + 3 contain the number of bytes left in
the strings beyond the unequal pair. The strings themselves are not af-
fected. Note that except in the case where the inequality occurs at the last

C#0,4.
Bits 9—12 = 0.
E1 is not used.®

Bits 0—-8 = 0.

Bits 0—8 = 0.

User Operations 2-97

byte, the comparison continues to the end of the strings only if they are
equal; and in both of these cases the final states of the pointers and lengths
are the same.

If an interrupt or page failure occurs during execution of a string move
or compare, the accumulators are adjusted for what has already been done.
Afterwards the instruction resumes as though starting at the beginning,
but manipulates substrings that are simply those parts of the original
strings left from where the instruction was interrupted.

Offset can be used to change a string of capitals to lower case by adding
40 octal to every byte. Text in upper and lower case can be converted to all
upper case by an MOVST with a translation table that substitutes capitals
for both. Compare is useful for such applications as alphabetizing strings
that represent words.

2.13 Decimal Conversion3

Included among the string instructions are four for converting between
binary and decimal. The binary is always a twos complement, double
length binary integer in the format given in §1.4: the magnitude is the 70-
bit string in bits 1-35 of the two words, bit 0 of the high order word is the
sign, and bit 0 of the low order word is a copy of the sign but is never used
in any operation. The decimal is a string of bytes representing decimal
digits (the reader should be familiar with the general information and cau-
tions about strings presented at the beginning of the previous section). To be
capable of conversion to double length binary, a decimal string can have a
maximum of twenty-two significant digits, although the string may be
longer because of the presence of leading zeros or nonnumeric characters.
The decimal value corresponding to the binary maximum of 27 is 1 180 591
620 717 411 303 424.

The four instructions are for converting with offset or translation in
the two directions. All are two-word instructions, where the first has the
EXTEND code 123, and all use a block of accumulators. Decimal to binary
uses five accumulators, and binary to decimal requires a block of six, but
one within the block is not used.

2-98 User Operations

CVTBDO Convert Binary to Decimal Offset

| 123 | 4 [x] Y]
0 89 121314 1718 35
L0 012 | oo [/] x | Y
EO+1 i FILL
0 8 9 12 13 14 17 18 35

CVTBDT Convert Binary to Decimal Translated

| 123 [4 Ji] x] Y
V] 89 121314 1718 35
EO 013 [o0 [/] x] Y
EO+1 é FILL
0 8 9 1213 14 17 18 35

Convert the magnitude of a double length binary integer into a decimal
digit string, offset or translated. The integer is given and the string space
defined by the contents of a block of six accumulators.

AC

- DOUBLE LENGTH BINARY INTEGER —
AC+1
AC+2 NOT USED
AC+3 |L{NIM 00 STRING LENGTH
AC+4 .

— STRING BYTE POINTER —
ACH+5

0o 1 2 9 35

Determine the number of decimal digits required to convert the binary
integer, and if this number is greater than the string length given by AC+3
bits 9-35, go on to the next instruction without affecting the string space or
the accumulators in any way.3? Note that the string length must specify a
minimum of one digit byte even if the binary number is zero, for to repre-
sent zero in decimal requires at least the digit “0” (a string with no bytes
cannot represent anything — not even zero). If the converted integer will fit
in the defined string space, continue as follows.

If the binary integer in AC,AC+1 is not zero, set N; if it is less than
zero, set M (minus). If the number of digits required is less than the given
string length and L is 1, place the leading fill character from E0+1 in the
excess positions at the left in the string space. This action causes the result
to be right justified. Clear AC+3 bits 9-35.

32 Caution: In the KL10 the N and M flags are set up first and may therefore be affected
even by an instruction that is aborted because the binary integer is too large.

Bits 9—12 = 0.
Bits 9-12=0.
Bits 3-8 =0.

User Operations 2-99

Compute each decimal digit for a positive representation of the magni-
tude of the binary integer (highest order first), and for each do one or the
other of the following two operations depending on which instruction is
being performed.

If the instruction is CVTBDO, add E1 to the computed digit algebrai-
cally (bit 18 is the sign).

If the instruction is CVTBDT, for the digit substitute a byte from the
right half of location EI1+D in the translation table, where D is the
value of the digit, unless this is the last digit in the conversion, in which
case make the substitution from the right half of the location if M is 0,
but from the left half if M is 1.

Place each offset or translated byte in the next position in the string
space, compute the next digit, and continue as described above. When the
conversion is complete — all digits computed, offset or translated, and de-
posited — clear AC and AC+1, and skip the next instruction.

At the end the byte pointer points to the last byte deposited in the
string space, and AC, AC+1, and AC+3 bits 9-35 all contain zero. If unused
interior bits in the string are clear initially, they are left clear; otherwise
unused interior destination bits are indeterminate. The source string is
unaffected.

Notes. The translation table, which starts at E1, contains ten locations
for the decimal digits, each with substitute bytes in both half words, but the
left half is only for the final digit. This allows the program to use a different
final byte for a decimal string converted from a negative number. Note that
setting N is just to indicate that the number converted is not zero; the state
of the flag has no effect on the execution of the instruction.

CVTDBO Convert Decimal to Binary Offset

| 123 | a4 [x] Y

(V] 89 121314 1718 35

Eo | 010 [o0 [/] x] Y | Bits 9-12=0.
0 8 9 1213 14 17 18 35

CVTDBT Convert Decimal to Binary Translated

L 123 | 4 Ji] x | Y |

0 89 121314 1718 as

E0 | 011 [oo [/] x | Y

| Bits 9-12=0.

0 89 12 13 14 17 18 35

Convert a decimal string, offset or translated, to a double length binary
integer. A block of five accumulators is used for defining the decimal string
and receiving the binary result.

2-100 User Operations

AC |S|NIM 00 STRING LENGTH
+1
AC — STRING BYTE POINTER —]
AC+2
AC+3
— DOUBLE LENGTH BINARY RESULT —
AC+4
0o 1 2 9 35

If S is 1 initially there is already a binary number of significance in
AC+3,AC+4: use it as a base for further accumulation of the digits derived
from the decimal string. Otherwise begin with a zero base.

If the instruction is CVTDBO, set S to indicate the conversion has
started.

Beginning at the left, read each byte from the string, and for each do
one or the other of the following two operations depending on which in-
struction is being performed.

If the instruction is CVTDBO, add E1 to the byte algebraically (bit 18 is
the sign).

If the instruction is CVTDBT, carry out the corresponding translation
function given in the appropriate half word at location EI + B/2 in the
translation table, where B is the value of the byte. Each word in the
table has this format.

Bits 3--8 = 0.

TRANSLATION FUNCTION FOR EVEN B TRANSLATION FUNCTION FOR ODD B
(.
[coogb;l J DIGIT lcgglv] I DlGlﬂ Location EI1 + B/2
0 2 14 1718 20 32 35

Perform the function specified by the op code in the half word correspond-
ing to the byte as follows (setting S signals the start of significant digits in
the decimal string).

0 If S is 1 substitute the table digit for the byte. If S is 0 ignore this
byte and go on to the next.

1 Terminate the conversion.

2 Clear M, and if S is 1 substitute the table digit for the byte. If S is 0
ignore this byte and go on to the next.

3 Set M, and if S is 1 substitute the table digit for the byte. If S is 0
ignore this byte and go on to the next.

Set S and N, and substitute the table digit for the byte.

Set N and terminate the conversion.

Set S and N, clear M, and substitute the table digit for the byte.
Set S, N and M, and substitute the table digit for the byte.

< O Ot

If the translation function terminates the conversion, or the offset or
translated digit is greater than 9, put the number of bytes remaining in the
string in AC bits 9-35, put the partial binary result accumulated so far in
AC+3,AC+4, and go on to the next instruction. Otherwise multiply the
current binary value by 10 decimal, add in the current digit, and read the
next byte from the string to continue as described above until the conver-
sion is finished.

User Operations 2-101

CAUTION

It is up to the programmer to keep track of the size of the
decimal number — the hardware runs no test on the string. If
there are too many significant digits, the most significant
part of the binary is lost, and the processor gives no indica-
tion of it.

The conversion is regarded as complete only when all bytes of the
decimal string have been processed without causing a termination or gen-
erating a digit outside the range 0-9. Upon completion negate the accumu-
lated binary if M is 1, place the result (negated or not) in AC+3,AC+4,
and skip the next instruction.

At the end the byte pointer points to the last byte read from the deci-
mal string, and AC bits 9-35 contain the number of unprocessed bytes left
in the decimal string (if any). The string itself is unaffected.

The translation table starts at location EI, and since there are two
functions per word, it contains 2" locations, where n is the number of bits
in a byte. The address is generated by adding the left n — 1 bits of a byte to
E1.

Notes. CVTDBO always sets S immediately, but in CVTDBT its setting
is controlled by the translation functions. Hence an instruction can skip
over leading fill characters or nonnumeric characters preceding the decimal
part of a string. If an interrupt or page failure occurs during this instruc-
tion, the number of bytes yet to be processed is put in AC bits 9-35, and the
partial binary accumulated so far is placed in AC +3,AC + 4. Thus when the
instruction resumes after an interruption with S set, it simply continues
where the conversion left off, adding the next digit to ten times the binary
previously saved. If the programmer wishes to preset S to add the decimal
string to a significant binary base already in AC+3,AC +4, he must be
aware that the base is multiplied by ten before the first digit is added.

For a decimal string abcde, the evaluation procedure is

(ax104+b6) x10 +¢c) x10+d) x 10 + e
which is equivalent to

ex1
+d x 10
+ ¢ x 100
+ b x 1000
+ a x 10000

Of course the operations are all done in binary arithmetic.

Translation functions manipulate M, but the program can set it prior
to either instruction to indicate the decimal string represents a negative
number. N can also be preset or manipulated through the translation table,
but its state has no effect on the execution of the instruction.

2-102 User Operations

For decimal strings with 4-bit digits, conversion can be done by
CVTBDO or CVTDBO with a zero offset. But note that decimal bytes need
not be four bits: they can be larger using any decimal code provided only
that on conversion to binary they are in the range 0-9 (0-1001 binary)
after offset or translation.

In ASCII numeric strings, the bytes representing the digits are 60—71
octal. Conversion to ASCII decimal would be by CVTBDO with offset 60 (48
decimal), and CVTDBO with offset .60 would convert in the opposite direc-
tion. Consider an ASCII string containing decimal numbers of various un-
known lengths separated by semicolons (ASCII code 73). The program could
convert all of these numbers to binary by specifying a constant, but suit-
ably large, string length while giving a sequence of CVTDBOs with offset
—60. Each conversion would terminate (nonskip) upon encountering a semi-
colon, as its offset value is 11 decimal. Between conversions the program
would have to store away the result and clear S by a sequence like this.

EXTEND AC,[CVTDBO 0,-60] ;Convert
DMOVEM AC+3,VALUE1 ;Store result
TLZ AC,700000 ;Reset SNM
EXTEND AC,[CVTDBO 0,-60]

DMOVEM AC+3,VALUE2

TLZ AC,700000

If there were very many numbers, the program would naturally use only
one of the above sets of three instructions in a loop, along with some mecha-
nism to change the storage address and test whether to reiterate. The pro-
cedure cannot of course provide a negative result. If the same situation
were handled by translation, the table would not actually start at E1 — it
would run from E1+ 30 to EI + 35.

User Operations

2-103

2.14 String Editing*

The edit instruction implements more complex operations on strings than
merely moving or translating, and before investigating it the reader should
be familiar with the general characteristics of strings (and cautions about
them) as presented at the beginning of §2.12. Edit provides the facilities
needed, particularly in COBOL and PL/I, to create formatted character
strings for output. Typical features are the ability to suppress leading zeros,
insert special symbols such as decimal points or currency symbols, and
recognize different types of numbers for operations like adding “CR” or
“DB” after them. When numbers appear in running text, leading zeros are
usually deleted; when they are lined up in columns (such as in a financial
statement), the practice is to substitute spaces.

Edit uses the usual source and destination byte pointers, but no string
lengths are given. Instead the source bytes are processed by commands in a
pattern command string, whose structure is determined by the expected
length of the source. The pattern commands are 9-bit bytes packed four to
a word. They are executed according to a pattern pointer, which supplies
the address of a memory location and a 2-bit byte number, wherein the
numbers 0-3 identify the bytes from left to right in the word. The destina-
tion string space is assumed to be large enough for whatever string edit
creates.

Available to the procedure are a translation table at E1 like that of
MOVST, and a message insertion table following E0. E0+1 contains the
fill character — typically a space — for suppression of leading zeros; but if
the whole word containing the fill character is zero, the fill is not inserted
in the destination space, thus deleting leading zeros. E0 + 2 contains a float
character — typically a currency symbol or plus sign — which, if the word
containing it is nonzero, is inserted before the first significant byte. The
table can extend to E0+ 100, thus supplying an additional sixty-two char-
acters for insertion in the string being generated. Insert characters are
typically decimal point, comma, “C” and “R”, and so forth.

For signaling significance AC has an S bit, which can be set from the
translation table when significance starts. At this point the destination
string position is marked by storing the current value of the destination
pointer at a location specified by a mark address. This provides a record of
where significance started, so the instruction can go back to make revisions
if need be after receiving more information from the source.

EDIT is a two-word instruction, where the first has the EXTEND code
123, and it uses a block of six accumulators. The description is accompanied
by a flowchart.

2-104 User Operations

EDIT Edit String

s [a [x] 7
(/] 89 121314 1718 35
EO 004 | oo [/ x | Y
Eo+1 i FILL
EO+2 ! FLOAT

0 8 9 1213 14 17 18 35
Execute the commands in the pattern string to edit a source string, employ-
ing byte substitutions from a translation table at E1 and inserting charac-
ters from a message insertion table at EO+1, and place the result in the
destination string space. Source, destination and pattern are defined by the
contents of a block of six accumulators.

PATTERN BYTE NUMBER
Vi

AC SINIM{O / PATTERN STRING ADDRESS
AC+l1

[SOURCE STRING BYTE POINTER —
AC+2
ACH+3 00 MARK ADDRESS
AC+4

— DESTINATION STRING BYTE POINTER —
AC+5

o 1 2 4 56 35

Definitions: Initially the pattern pointer, which comprises the pattern
string address and byte number, points to the first pattern command. Pat-
tern byte counting is effected by incrementing the byte number unless it is
3, in which case it is changed to 0 and the address is incremented. The
address is limited to bits 18-35 if the program is running in section 0. The
mark address is simply the address of the first in a pair of locations for
receiving the destination byte pointer as a mark. Of course if the destina-
tion pointer is local, only one location is used to store it. Furthermore if the
program is running in section 0, the mark address is limited to bits 18-35
and always points to a single location. In the following any reference to
reading a source byte shall be taken to mean that the source string byte
pointer is incremented first, and any reference to placing a character in the
next position in the destination string space shall be taken to mean the
destination byte pointer is incremented first.

Execute the pattern command specified by the pattern pointer. At the
completion of any pattern command, unless the edit has been ended by a
STOP command or a terminating translation function, increment the pat-
tern pointer and execute the pattern command then specified by it. There
are ten such commands as follows (all other command bytes are reserved
and must not be used).

Bits 912 =0.
Bit 3 =0.
Bits 0—5 = 0.

User Operations 2-105

SELECT l 001] Select Next Source Byte

0 8

Read the next byte from the source string, and carry out the corresponding
translation function given in the appropriate half word at location
E1 + B/2 in the translation table, where B is the value of the source byte.
Each word in the table has this format.

TRANSLATION FUNCTION FOR EVEN B TRANSLATION FUNCTION FOR ODD B
oP SUBSTITUTE FOR BYTE | OP SUBSTITUTE FOR BYTE ,

Icomz' 0 | (MAXIMUM 12 BITS) ICODEI 0 I (MAXIMUM 12 BITS)] Location E1 + B/2

E 6 1718 20 24 35

Perform the function specified by the op code in the half word correspond-
ing to the source byte as follows.

0 If S is 1 place the substitute in the next position in the destination

string space. Otherwise if location EO+ 1 is nonzero, place the fill

character from it in the next destination position.

Increment the pattern pointer, and go on to the next instruction.

Clear M and then perform function O.

Set M and then perform function 0.

Set N. If S is 1 place the substitute in the next position in the desti-

nation string space. Otherwise do the following: set S; put the cur-

rent value of the destination byte pointer at the location specified by

the mark address; if location EO + 2 is nonzero, put the float charac-

ter from it in the next destination position; then place the substitute

in the next destination position after that.

5 Set N, increment the pattern pointer, and go on to the next instruc-
tion.

6 Clear M and then perform function 4.

7 Set M and then perform function 4.

W N

Notes. The translation table starts at location E1, and since there are
two functions per word, it contains 2" locations, where n is the number of
bits in a byte. The address is generated by adding the left n — 1 bits of a
byte to E1.

SIGST 002 | Start Significance

0 8

If S is 0 do the following: set S; put the current value of the destination
pointer at the location specified by the mark address; and if location EQ+ 2
is nonzero, put the float character from it in the next destination position.

Notes. A typical use of this command might be before a final character
to guarantee that zero is represented by one “0.” Or if the number of cents
is 00004, to put in a decimal point and generate a result of .04.

2-106 User Operations

MESSAG +n I 1 [n Insert Message Character

0 23 8

If S is 1 place the character from EO + n+1 in the next destination position.
Otherwise if location E0+1 is nonzero, place the fill character from it in
the next destination position.

FLDSEP L 003] Separate Fields

0 8

Clear S, M and N.

Notes. Essentially this instruction causes the procedure to start over on
a new substring. A typical use would be in handling a series of numbers
(separated by some character), where one would want to suppress leading
zeros in all of them.

EXCHMD [004 j Exchange Mark and Destination Pointers

0 8

Interchange the destination pointer presently held in AC+4,AC+5 with
the mark pointer at the location specified by the mark address.

Notes. This makes it possible to go back to where significance began in
order to revise the destination string in light of further processing of the
source, but at the same time saving the present position. A return forward
can be made simply by repeating the instruction.

Note that it is unlikely to be very useful for the programmer to set up
an initial mark pointer. In any normal procedure a mark is created from
the destination pointer and is simply a particular state of it. Hence the
destination and mark pointers have the same number of words. The result
is indeterminate if the programmer deliberately sets up mark and destina-
tion pointers of different types.

SKPM+n | 5| n | SkiponM

(4] 2 3 8

If M is 1 skip over the next n + 1 pattern commands by incrementing the
pattern pointer n + 1 times.

Notes. M is generally used as a minus sign, i.e. to indicate a string is
negative, but the programmer can use it for any purpose. A typical use
would be to determine whether “CR” or “DB” should be inserted after a
number.

SKPN +n 6 | n | SkiponN
8

0 2 3

If N is 1 skip over the next n + 1 pattern commands by incrementing the
pattern pointer n + 1 times.

User Operations

2-107

Notes. N is generally set to mean the string is nonzero, but the pro-
grammer can use it for any purpose. Suppose we wish to output a blank on
zero, but use of SIGST to handle cents-only quantities has produced “.00”.
We could use SKPN after the last source byte, so that if the output is
nonzero we would skip over commands that would otherwise go back and
blank the output.

SKPA +n | 7 | n | Skip Always

0 23 8

Skip over the next n + 1 pattern commands by incrementing the pattern
pointer n + 1 times.

Notes. This command is used mostly to reverse the meaning of the
other skips. For example, the sequence “SKPN,X” skips command X if N is
1, but the sequence “SKPN,SKPA,X” executes it if N is 1. SKPA can also be
used to extend a conditional skip beyond sixty-four commands, as in

SKPN +77,...63 bytes...,SKPA,SKPA +3,...4 bytes...,.X

in which N being 1 causes a skip over sixty-seven significant commands to
get to X.

NOP | 005 | No-op
(1] 8

Do nothing.

STOP | 000 | Stop Edit
0 8

Increment the pattern pointer, end the edit, and skip the next instruction.

At the end the byte pointers point to the last positions referenced in
source and destination, and the pattern pointer points to the command byte
following the last one executed. Note however that if the pattern gives an
EXCHMD after the final byte is placed in the destination string, the “desti-
nation pointer” is actually at the mark location rather than in
AC+4,AC+5. If unused interior bits in both strings are clear initially,
they are left clear; otherwise unused interior destination bits are indeter-
minate. The source string is unaffected.

Notes. If an interrupt or page failure occurs during EDIT, the accumu-
lators are adjusted for restarting at the beginning of the current pattern
command.

2-108 User Operations

Figure 2.2:

Edit Instruction

RETRIEVE &
DECODE (PP)
SELECT SIGST MESSAG FLDSEP EXCHMD SKPM SKPA SKPN NOP STOP
001 002 1XX 003 004 5XX 7XX 6XX 005 000
1 . oo " ! ! N PP+1 > PP
0—~>SM,N DP < (MA) PC+1 = PC
0 0 0
DP+1 - DP
18 PP+XX+1~> PP
DP —>(MA) (E0+XX+1)p — (DP)
= =0
#0 #0
DP+1 ~> DP DP+1 —> DP
(E0+2)p— (DP) (E0+1)p —~ (DP)
l l 3 A
sp+1->sP
RETRIEVE (SP)
DECODE Tp
2 3 0 4 6 7 5 1
0> M 1-M 0 M 1-M™ 1=N
I _1 1—>N [_—.
\ 1
S PP+1->PP
0
1>s PP PATTERN POINTER IN AC
DP—>(MA) SP SOURCE POINTER IN AC+1, AC+2
MA MARK ADDRESS IN AC+3
DP DESTINATION POINTER IN AC+4, AC+5
D NUMBER OF BITS AT THE RIGHT EQUAL
=0 (E0+1) =0 TO THE SIZE OF A DESTINATION BYTE
+ (E0+2) (USED AS SUBSCRIPT)
T TRANSLATION FUNCTION
(E1+(SP)/2}_ IF (SP) EVEN
#0 (E1+[(SP)—1]/2)g IF {SP) ODD
Top OP CODE PART OF T (LEFT 3 BITS)
DP+1 —> DP DP+1 - DP DP+1 —~>DP Tp DATAPART OF T (RIGHT D BITS)
(E0+1)p— (DP) Tp~(DP) (E0+2)p > (DP) XX RIGHT 6 BITS OF PATTERN BYTE
PP+1->PP

EDIT

MR-0630

Example. The following program uses binary-to-decimal conversion
and editing to translate a binary number into a message of seventeen char-
acters containing a decimal string with appropriate nomenclature for com-
mercial billing purposes. A positive result has the form

$12,345.46 DUE US
whereas a negative result has the form
$12,345.46 CREDIT

but if the number is zero, the entire field is blank (all spaces). The maxi-
mum number the routine can handle is $99,999.99.

This program employs seven accumulators, of which P is for the stack
pointer, and a block of six, labeled AC1-ACS, is for the extend instructions.
In the block however, AC3 and AC6 are never actually used as the program
is entirely local, employing only one-word stack and byte pointers. Begin-
ning at TEMP and FIELD are blocks of eight locations set aside for the edit
source and destination strings. The routine is called by a PUSHJ to
PNTFLD with the amount as a binary number of cents in AC1,AC2. It
returns the result beginning at the left in FIELD.

PNTFLD: MOVE AC4,[400000,,7]1 ;Convert up to 7 digits with leading fill
MOVE ACS5,[POINT 7, TEMP] ;Store decimal in edit source area
EXTEND AC1,[CVTBDO 60;Convert to decimal with leading zeros

60]

JRST ERROR ;Here if need too many digits (binary too large)

MOVEI AC1,PATTRN ;Set pattern pointer to first command
TLNE AC4,100000 ;Copy M flag from AC4 (CVTBDO result)

TLO AC1,100000 ; to AC1

MOVE AC2,[POINT 7,TEMP] ;Pointer for source string
; (CVTBDO result)

MOVEI AC4 MARK ;Address of mark pointer

MOVE ACS5,[POINT 7,FIELD] ;Pointer for destination string

EXTEND AC1,EDTINS ;Edit the item

HALT ;Should never get here
POPJ P,0 ;Return

;Here is the edit instruction

EDTINS: EDIT TABLE-30 ;Need only digit part of translation table

¢© »

;Fill character is space

“$” ;Float character is dollar sign
« ;Message 2 is comma

«.” ;Message 3 is decimal point
(QD”

(!U”

«E”

“S”

«C”

((R”

Q(I”

((T”

User Operations

2-111

:Here is the translation table. Digits 1-9 set S and N flags; 0 does not affect the flags
TABLE: 60,,400061

400062,,400063

400064,,400065

400066,,400067

400070,,400071

;Here is the pattern
PATTRN: 001001,,102001 :SELECT SELECT MESSAG +2 SELECT
; 2 digits, comma, digit
001001,,002103 ;SELECT SELECT SIGST MESSAG +3
;2 more digits, then start significance and insert
; a decimal point
001001,,100506 ;SELECT SELECT MESSAG+ 0 SKPM +6
;2 more digits (cents) and a space, then skip
; next 7 commands if number was negative
104105,,106100 ;Append the message “DUE US”

105107,,705110 ; Then skip 6 pattern commands
111106,,104112 ;Append the message “CREDIT”
113613,,004100 ;If number is nonzero skip 12 commands
100100,,100100 ; Else exchange mark and destination pointers
100100,,100100 ; and blank out result

100100,,0 ;Then stop

MARK: BLOCK 1
TEMP: BLOCK 10
FIELD: BLOCK 10

2.15 Programming Examples

Before continuing to more system-related subjects, let us consider some
simple programs that demonstrate the use of a variety of the instructions
described thus far.

Processor Identification

The instruction repertoires of all PDP-10 processors and the 166 processor
used in the PDP-6 are very similar, and most programs require no changes
to run on any of them. Because of minor differences and the fact that some
instructions are not available on the earlier machines, a program that is to
be compatible with all should have some way of distinguishing which ma-
chine it is running on. This simple test suffices.

JFCL 17,.+1 ;Clear flags

JRST 41 ;Change PC

JFCL 1,PDP6 ;PDP-6 has PC Change flag
MOVNI AC,1 ;Others do not, make AC all 1s
AOBJN AC, +1 ;Increment both halves
JUMPN AC,KA10 ;KA10 if AC = 1000000 (carry
BLT AC,0 ;between halves)

JUMPE ACKI10 ;KI10 if AC = 0

2-112 User Operations

MOVEI AC,1 ;KL10 or KS10if AC = 1,,1
SETZ AC+1, ;Big binary integer

MOVEI AC+3,1 ;One digit byte

EXTEND AC,[CVTBDO] ;Convert will abort

TLNE AC+3,200000 ;Test effect on N

JRST KL10 ;KL10 if N set

JRST KS10 ;KS10 if N unaffected

Parity

Parity procedures are used regularly to check the accuracy of stored infor-
mation. Parity generation and checking is generally handled automatically
by memory and high speed, block-oriented peripheral devices, but must be
handled by the program for character-oriented devices. Consider 8-bit char-
acters, for which the program carries out two procedures: for output it
generates a parity bit from seven data bits to produce an 8-bit character
with parity; following input it checks the parity of the eight bits received.
In either case however, the program can simply find the parity of an 8-bit
character, by regarding the seven output data bits as eight including an
irrelevant extra bit. The two procedures then differ only in the final action.
In the first case the program uses the result to adjust the eighth bit for
correct parity, whereas in the second it checks the result for an indication
of error.

Assuming the character is right justified in accumulator A and the rest
of A is clear, as it would be were the character placed in A by a load-byte
instruction or a DATAI, the simplest and quickest procedure would be to
use A to index an XCT into a table, each of whose locations contains an
instruction that adjusts the parity for output or jumps to a routine for
erroneous input. This procedure would normally be unacceptable because of
the very large memory requirements. However the table can be reduced to
sixteen entries without excessive loss in speed, by exclusive oring the left
and right halves of the character and indexing on the result (parity is
invariant under the exclusive OR function, which essentially disposes of
pairs of 1s). This example, which uses a second accumulator T for character
manipulation, requires six memory references to generate odd parity.
(Numbers of memory references and locations given do not include those for
the POPJ, which we will regard as subroutine overhead. Similarly every
example also requires that the program give a PUSHJ to get to the
subroutine.)

PARITY: MOVEI T,A) ;Copy character in T
LSH T,—4 ;Line up halves
XORI T,(A) ;Reduce paritywise to 4 bits
ANDI T,17 ;Wipe out unwanted bits
XCT PARTAB(T) ;Execute indicated table item
POPJ P,

User Operations

2-113

PARTAB: XORI A,200 ;0 — change high bit

JFCL ;1 — no-op
JFCL ;2
XORI A,200 ;3
JFCL ;4
XORI A,200 ;5
XORI A,200 ;6
JFCL 7
JFCL ;10
XORI A,200 ;11
XORI A,200 ;12
JFCL ;13
XORI A,200 ;14
JFCL ;15
JFCL ;16
XORI A,200 ;17

To handle even parity, interchange the JFCLs and XORIs in the table, or
change the MOVEI T,(A) to MOVEI T,200(A).

The next example does exactly the same thing but substitutes a little
more computation for use of a table. In other words it takes a little more
time (7% memory references average) but less than half the memory.

PARITY: MOVEI T,200(A) ;Copy character with high bit

LSH T,—4 ;complemented, then fold copy into 4
XORI T,(A) ;bits with opposite parity

TRCE T,14 ;Are left two both 0?

TRNN T,14 ;Or both 1?

XORI A,200 ;Yes, change high bit

TRCE T,3 ;Are right two both 0?

TRNN T,3 ;Or both 1?

XORI A,200 ;Yes, change for even, restore for odd
POPJ P,

Note that this example does not require the rest of A to be clear. For even
parity change the address in the MOVEI from 200 to 0.

Finally let us consider the extreme of substituting computation for
memory. Starting with the character abcdefgh right justified in A, we first
copy it in T and then duplicate it twice to the left producing

abc def gha bed efg hab cde [gh

where the bits (in positions 12-35) are grouped corresponding to the octal
digits in the word. Anding this with

001 001 001 001 001 001 001 001

retains only the least significant bit in each 3-bit set, so we can represent
the result by

cfadgbeh

2-114 User Operations

where each letter represents an octal digit having the same value (0 or 1) as
the bit originally represented by the same letter. Multiplying this by
11111111, generates the following partial products:

¢c fadgbeh
c fadghbeh
c fadgbeh
c fadgbeh
c fadgbeh
c fadgbeh
c fadghbehn
c fadgbeh

Since any digit is at most 1, there can be no carry out of any column with
fewer than eight digits unless there is a carry into it. Hence the octal digit
produced by summing the center column (the one containing all the bits of
the character) is even or odd as the sum of the bits is even or odd. Thus its
least significant bit (bit 14 of the low order word in the product) is the
parity of the character, 0 if even, 1 if odd.

The above may seem a very complicated procedure to do something
trivial, but it is effected by this quite simple sequence:

PARITY: MOVEI T,(A) ;Copy in T
IMULI T,200401 ;Duplicate twice
AND T,ONES ;Pick L3Bs
IMUL T,ONES ;Generate product
TLNN T,10 :Is bit 14 odd?
XORI A,200 ;No, change parity

POPJ P,

ONES: 11111111

This procedure uses a minimum of both memory references and memory
space, but takes considerably more time because the instructions them-
selves are slow.

The following table shows the trade-off of memory references against
memory space for the above four procedures. The time is proportional to the
number of references except in case 4.

References Locations
1. 2 257
2. 6 21
3. T2 9
4. TV 7

User Operations

2-115

Reversing Order of Digits

Suppose we wish to reverse the order of the digits in the 6-bit character
abcedef, where the letters represent the bits of the character. We first dupli-
cate it three times to the left and shift the result left one place producing

a bed efa bed efa bed efa bed ef 0

where the bits are grouped corresponding to the octal digits in the word.
Anding this with

1 000 100 100 010 010 000 001 000
gives
a 000 €00 500 0Of0 0cO 000 00d 000

Now it just so happens this number is configured such that the residues of
the values of its bits modulo 28 — 1 are in exactly the opposite order from
the bits of the original character and have the binary orders of magnitude
0-5. In other words this number is equal to the sum of the numbers in the
upper row below, and dividing each of these summands by 255 gives the
remainder listed in the lower row.

Dividend X213 eX220 dX23 X210 pX2'T gX2%
Remainder fX23 eX24 dX23 ¢X2? bX2! aXx?2°

The remainder in a division is equal to the sum, modulo the divisor, of the
remainders left by dividing each of the dividend summands by the same
divisor. And the sum of the terms in the lower row is obviously fedcba. The
above procedure is implemented by this sequence (due to Schroeppel®?)
where the character is right justified in accumulator A (with the rest of A
clear), and its reverse appears right justified in accumulator A +1.

IMUL A,[2020202] ;4 copies shifted left one
AND A,[104422010] ;Pick bits for reverse
IDIVI A 3777 ;Divide by 2% — 1

To reverse eight bits we can use a similar procedure (also due to
Schroeppel) where again the original character is right justified in A and
its reverse appears right justified in A + 1. But this time we cannot manage
the manipulation within a single length word, so we must use multiply,
divide, and a pair of ANDs.

MUL A,[100200401002] ;5 copies in A and A+1
AND A +1,[20420420020] ;Pick bits for reverse via
ANDI A41 ;residues mod 2'° — 1
DIVI A1777 ;Divide by 2 — 1

3¢ HAKMEM 140, page 78 (Artificial Intelligence Memorandum, No. 239, February 29,
1972, MIT Artificial Intelligence Laboratory).

2-116 User Operations

Counting Ones

Suppose we wish to count the number of 1s in a word. We could of course
check every bit in the word. But there is a quicker way if we remember that
in any word and its twos complement the rightmost 1 is in the same posi-
tion, both words are all Os to the right of this 1, and no corresponding bits
are the same to the left (the parts of both words at the left of the rightmost
1 are complements). Hence using the negative of a word as a mask for the
word in a test instruction selects only the rightmost 1 for modification. The
example uses three accumulators: the word being tested (which is lost) is in
T, the count is kept in CNT, and the mask created in each step is stored in
TEMP.

MOVEI CNT,0 ;Clear CNT

MOVN TEMP,T ;Make mask to select rightmost 1
TDZE T, TEMP ;Clear rightmost 1 in T

AOJA CNT,.-2 ;Increase count and jump back
;Skip to here if no 1s left in T

CNT is increased by one every time a 1 is deleted from T. After all 1s have
been removed, the TDZE skips.

The preceding example uses little memory, but contains a loop so the
time it takes is proportional to the number of 1s. The next example takes
more memory but is constant; hence it is slower than the above when there
are few 1s (less than eight), but is much faster when there are many. The
word, which is lost, is in accumulator A, and the answer appears in accu-
mulator A+1 (for convenience we let B = A+1). The routine (due to
Gosper, Mann and Leonard®®) has three distinct parts and is based on the
fact that in a binary word, counting 1s is equivalent to calculating the sum
of the digits. The first part, of seven instructions, manipulates the octal
digits of the word so as to replace each digit by the number of 1s in it.
Taking D as an octal digit and [x] as the largest integer contained in x, the
algorithm used to make the substitution is

D - [D/2] - [D/4]

Of course the computer always acts in binary terms regardless of program-
mer interpretation. In this case the procedure carried out on each 3-bit
piece abc is

abc —ab—-a

The instructions effect this algorithm by shifting a copy of the word right
one place, masking out the LSB of each shifted octal digit to prevent it from
interfering with the next digit at the right (i.e. to isolate the digits), and
subtracting the shifted word from the original. The same process is then
repeated, this time masking out what was originally the middle bit in each
digit. That this algorithm gives the correct substitution is evident from the
following table, in which it is seen that the bottom number in a given
column is the sum of the bits in the octal digit given at the top of the
column.

35 Ibid, item 169, page 79.

User Operations

2-117

Originaldigit 0 1 2 3 4 5 6 17
Subtract 0 0 1 1 2 2 8 3
o 1 1 2 2 3 3 4

Subtract 0 0 0 0 1 1 1 1
Number of 1s 0 1 1 2 1 2 2 3

We have now replaced the original word with a set of twelve numbers,
whose sum is equal to the number of 1s in the original. The next three
instructions add together pairs of adjacent numbers so as to replace the
twelve by six whose sum is still the same. Since these new numbers are
isolated in 6-bit pieces of the word, we shall revise our point of view, and
regard them as digits in a number in base 64. Now any number is simply
the sum of the values of its digits, i.e., of its digits each multiplied by an
appropriate power of the base. Dividing each such summand by 1 less than
the base gives the digit itself as remainder. Hence the third part of the
routine just divides our 6-digit number by 63, producing in B a remainder
that is the sum of the remainders from the individual digits, i.e., that is the
sum of the digits.3¢

MOVE B,A ;Copy in B

LSH B-1 ;Right one

AND B,[333333,,333333] ;Mask out LSBs

SUB AB ;D — [D/2]

LSH B,-1 ;Right one again

AND B,[333333,,333333] ;Mask out middle bits
SUBB AB ;D — [D/2] — [D/4]; two copies
LSH B,-3 ;Shift right one octal digit
ADD AB ;Add numbers in digit pairs
AND A,[070707,,070707] ;Throw out extra pair sums
IDIVI A)77 ;Divide by 63, sum in B

If it is known that the 1s in the word are entirely contained within bits
22-35 (the right fourteen bits), we can use the following somewhat shorter
routine, which is faster than the loop for more than seven 1s. It first treats
the number in quaternary, replacing each digit with the number of 1s in it,
and then converts from quaternary to hexadecimal.

MOVEI B,(A)

LSH B,-1

ANDI B,12525 ;Mask out LSBs
SUBB A,B ;D — [D/2]; two copies

36 In general terms this is the statement that the sum S of the digits in any number N in
base b mod (b — 1) — provided b is deliberately chosen such that S < b — 1. The condition
holds here of course as the number of 1s in a PDP-10 word is at most 36. And it is in fact
to make this condition hold that the routine converts from base 8 to base 64.

2-118 User Operations

LSH B,-2 ;Right one quaternary digit

ANDI A,31463 ;Mask out some of digits in A
ANDI B,31463 ;The rest in B

ADDI A,B) ;Now combine digit pairs
IDIVI A,17 ;Divide by 15, sum in B

Note that the pair of ANDIs gets rid of one out of each set of two identical
bit pairs before adding. This is done because there can be digit overflow, i.e.
a resulting hexadecimal digit can have more than two significant bits.

Number Conversion

In the standard algorithm for converting a number N to its equlvalent in
base b, one performs the series of divisions

N/b = q +r/b r <b
ql/b = q2+r2/b 7'2<b
Qn1/b = O+rn/b r,<b

The number in base b is then r,...r;ror,. For example, the octal equivalent of
61 decimal is 75:
61/8 = 7+ 5/8
7/8 = 0+ 7/8
The following decimal print routine converts a 36-bit positive integer
in accumulator T to decimal and types it out. The contents of T and T+ 1

are destroyed. The routine is called by a PUSHJ P,DECPNT where P is the
stack pointer.

DECPNT: IDIVI T,12 ;12 = 10,4,
PUSH PT+1 ;Save remainder
SKIPE T ;All digits formed?
PUSHJ P,DECPNT ;No, compute next one
DECPN1: POP P, T ; Yes, take out in opposite order
ADDI T,60 ;Convert to ASCII (60 is code for 0)

JRST TTYOUT ;Type out

This routine repeats the division until it produces a zero quotient. Hence it
suppresses leading zeros, but since it is executed at least once it outputs one
“0” if the number is zero. The TTYOUT routine returns with a POPJ P, to
DECPNI1 until all digits are typed, then to the calling program.

In section 0 space can be saved in the stack by storing the computed
digits in the left halves of the locations that contain the jump addresses.
This is accomplished in the decimal print routine by changing

PUSH P,T+1 to HRLM T+1,P)

User Operations

2-119

and
POP P,T to HLRZ T,P)

The routine can handle a 36-bit unsigned integer if the IDIVI T,12 is re-
placed by

LSHC T,—"D35 ;Shift right 35 bits into T+ 1
LSH T+1,-1 ;Vacate the T +1 sign bit
DIVI T,12 ;Divide double length integer by 10

Table Searching

Many data processing situations involve searching for information in tables
and lists of all kinds. Suppose we wish to find a particular item in a table
beginning at location TAB and containing N items. Accumulator T con-
tains the item. The right half of A is used to index through the table, while
the left half keeps a control count to signal when a search is unsuccessful.

MOVSI A~-N ;Put =N,,0 in A

CAMN T, TAB(A) ;Skip if current item not the one
JRST FOUND ;Item found

AOBJN A2 ;Try next item until left count = 0
;Item not in list

The location of the item (if found) is indicated by the number in the right
half of A (its address is that quantity plus TAB). A slightly different proce-
dure would be

MOVSI A-N

CAME T,TAB(A) ;Skip if current item is the one
AOBJN A,-1

JUMPL A/FOUND ;Jump if left count < 0

;Item not found

Locations used for a list can be scattered throughout memory if data is
kept in the left half of each location and the right half addresses the next
location in the list. The final location is indicated by a zero right half. The
following routine finds the last half word item in the list. It is entered at
FIND with the first location in the list addressed by the right half of accu-
mulator T. At the end the final item is in T right.

MOVE T,(T) ;Move next item to T

FIND: TRNE T,-1 ;Skip if AC right = 0; -1 = 777777
JRST ~2
HLRZS T ;Move final item to right

The following counts the length of the list in accumulator CNT.
MOVEI CNT,0 :Clear CNT
JUMPE T,0UT ;Jump out if T contains 0
HRRZ T,(T) ;Get next address

AOJA CNT,.-2 ;Count and go back

2-120 User Operations

Extended Addressing

For simplicity the preceding examples have employed only local address-
ing, as this is mostly what a typical program would use even when running
in a nonzero section. Here we give a number of straightforward examples to
show the differences between local and extended addressing, with and with-
out indexing and indirection. In all cases the program is assumed to be
running in section 22,

Local reference without indexing or indirection.

MOVE T,1000

loads accumulator T with the contents of location 1000 in section 22.
Local indexing.

MOVEI X,100
MOVE T,1000(X)

loads T with the contents of location 1100 in section 22. This would typi-
cally be the hundredth entry in an array starting at 1000 in the current
section.

MOVNI X,100
LOOP: ADD T,1000(X)
AOJL X,LOOP

adds together the contents of locations 700-777 in section 22. (We assume
that either T is cleared first or the array is added to whatever is in it
initially.)

MOVSI X,-LENGTH
LOOP: ADD T,1000(X)
AOBJN X,LOOP

adds together the contents of all locations in an array of length LENGTH
starting at location 1000 in section 22. Note that since local indexing is
used, the array cannot cross over into section 23. If LENGTH is greater
than 776777 the array wraps around, first into the AC block, and then
continuing from location 20 in the current section.

Global indexing.

MOVE X,[30,,1000]
ADD T,100(X)

adds the contents of location 1100 in section 30 to T. Note that if the literal
were “22,,1000” the ADD would address location 1100 in the current sec-
tion even though the indexing is global.

MOVE X,[30,,1000]
ADD T,—100(X)

adds the contents of location 700 in section 30. Were the address part of the
ADD instruction —1000, it would reference storage location 0 in section 30

User Operations

2-121

(not a fast memory location). Furthermore were the address part —2000, it
would address location 777000 in section 27, as global indexing can cross
the section boundary.

Local indirection.

MOVEI T1,100
MOVEM T1,1000
ADD T,@1000

adds the contents of location 100 in section 22 to T.
Global indirection.

MOVE T,@[30,,1000]

loads T with the contents of location 1000 in section 30. If location 1000 in
section 30 contained

MOVE T,2000
then in the current section (22) the instruction
XCT @(30,,1000]

would load T with the contents of location 2000 in section 30, as the instruc-
tion is executed in that section rather than in 22. On the other hand, were
location 1000 in section 30 to contain

JSR SUBR
then an
XCT @[30,,1000]

given in location 100 in section 22 would transfer control to SUBR+1 in
section 30, but the PC saved in 30,,SUBR would be 22,101 as the XCT
itself is performed in the current PC section, which is 22.

Global indirection with indexing.

MOVEI X,100
MOVE T,@[GIW 30,1000(X)]

loads T with the contents of location 1100 in section 30. The made-up pseu-
doinstruction GIW would create a global indirect word by causing the as-
sembler to place the number X in bits 2-5 of the word in which it places
30,,1000 in bits 6-35. There is no such operation, but the programmer could
define a macro for this purpose.

MOVE X,[2000000-1] ;2 sections worth
LOOP: ADD T,@[GIW 30,1000(X)]
SOJGE X,LOOP

adds up the 512K array from location 777 in section 32 down to 1000 in
section 30. Note that even if the array contained fewer than 2!” words and

2-122 User Operations

did not cross a section boundary, it would still not be possible to use
AOBJN for the loop, as global indexing uses the entire index register. The
following gets the same result with negative indexing. '

MOVE X,[-2000000 + 1]
LOOP: ADD T,@[GIW 32,777(X)]
AOJLE X, LOOP

2.16 Unimplemented Operations

Codes not assigned as specific instructions act as unimplemented opera-
tions, wherein the word given as an instruction is trapped, either because it
should not be given or because it must be interpreted by a routine included
for this purpose by the programmer. Those that are available for interpre-
tive use are unimplemented user operations, or UUOs (the several
mnemonics mentioned in this discussion are for convenience and mean
nothing to the assembler). Codes in the range 001-037 are for the local use
(LUUOs) of the user anywhere or the Monitor in section 0. Various other
codes are set aside specifically for user communication with the Monitor or
for communication between one level of the Monitor and another; in either
case these MUUQOs are interpreted by the executive. Basic codes (except
000) that are not used for instructions or UUOQOs, and extended codes not
used by EXTEND, are regarded as the “unassigned codes”; 000 is not re-
garded as a legal code at all. Let us consider first how an LUUO works.

Local Unimplemented User Operation

001-037 | 4 [i| x | Y]

0 89 121314 1718 35

If the program is running in section 0, store the instruction code, A and the
effective address E in bits 0-8, 9—12 and 18-35 respectively of location 40;
clear bits 13-17. Execute the instruction contained in location 41. The orig-
inal contents of location 40 are lost. Every LUUO in section 0 uses some
pair of locations numbered 40 and 41, but which such pair depends upon
the circumstances. An LUUO in a user program uses virtual locations 40
and 41 and is thus entirely a part of and under control of the user program.
The locations used in executive mode depend on the processor:

KL10,KS10 40 and 41 in executive virtual space
KI10 40 and 41 in the executive process table
KA10 7 Unrelocated 40 and 4137

37 If a single memory serves as memory number 0 for two KA 10 processors, the second (with
the trap offset) uses unrelocated 140-141 and 160-161 respectively for each instance in
which 40-41 and 60-61 are given here. The offset does not apply to user LUUOs as it is
assumed the Monitor would relocate these to different physical blocks.

User Operations

2-123

If the program is running in a nonzero section, take one of these two
courses of action.

In executive mode perform an MUUO — not because the code is illegal,
but because it is actually unassigned rather than an LUUO.

In user mode perform the following operations using a block of four
locations beginning at that specified by bits 6-35 of location 420 in the
user process table. In the first two locations save the program flags and
PC in a flag-PC doubleword; in the rest of the flag word clear bits 13-17
and 31-35, and store the instruction code and A in bits 18-26 and
27-30. In the third location store E in bits 6-35 (clear bits 0-5).

0 FLAGS 00 CODE A 00
00 PC
2 00 E
3 00 NEW PC
0 5 6 1213 1718 2627 3031 35

Then load bits 6-35 of the fourth location into PC, and continue performing
instructions in normal sequence beginning at the location then addressed
by PC. If E is a local AC address, store it in global form (i.e. with a section
number of 1).

MUUOs

The actions of MUUOs depend to a considerable degree on the processor,
and also on which Monitor is in use. These are the MUUO codes.

TOPS-20 104;040-051, 055-077 in section 0
TOPS-10 except KA10 040-051, 055-077
KA10 040-051, 055—-100

MUUOs have considerable flexibility in the way they can alter the opera-
ting characteristics of the machine (mode, section). But the information
that governs the alterations is contained in the user process table, and is
therefore assumed to be under sole control of the kernel program.

The unassigned codes, which are listed in Appendix E, are not
MUUQOEs, but the processor reacts to them in the same way in order to turn
control over to the Monitor. (In the KA10 there are minor differences as
explained below.) The processor also takes the same action if the program
gives a JRST with an undefined function, an instruction that is illegal
because of the context in which it is given, an extended instruction with
incorrectly formatted accumulators, or code 000. The last is so that control
returns to the Monitor should a user program wipe itself out or inadver-
tently attempt to execute a location that has been cleared.

2-124 User Operations

The rest of this section is devoted to the different ways in which
MUUQOs are performed. Except in the KA10, all types use locations in the
user process table to store similar information. Figure 2-3 shows what
information is stored in which locations for each processor type.

Extended KL10 MUUOs. In locations 424-426 of the user process
table, store the same information (as specified above) that is stored in the
first three locations of an LUUO block by an LUUO given in a nonzero
section, except that when the MUUO is given in executive mode, also save
the previous context section in bits 31-35 of location 424. Store the “process
context word” in location 427; this word saves information that partially
defines the context in which the MUUO is given, and is exactly the infor-
mation read by a DATAI PAG, (§3.5). Complete the specification of the
MUUO context by setting up the previous context flags, and clear the rest
of the flags to place the processor in kernel mode. Then load PC from bits
6-35 of the appropriate location in a PC list, and continue performing in-
structions in normal sequence beginning at the location then addressed by
PC. (Note that the MUUO can change PC from any section to any other.)
The new PC can be taken from among the eight locations in the user pro-
cess table listed here depending upon the mode at the time the MUUO is
given, and whether or not it is executed as the result of an overflow trap.

Mode Execution Location
Kernel No trap 430
Kernel Trap 431
Supervisor No trap 432
Supervisor Trap , 433
Concealed No trap 434
Concealed Trap 435
Public No trap 436
Public Trap 437

Single-section KL10 MUUOs. With either the TOPS-20 or
TOPS-10 Monitor, MUUOs store the same information and take the same
action, but they use a different set of three locations in the user process
table. In the first location store the instruction code, A and the effective
address E in bits 0-8, 9—12 and 18-35 respectively, and clear bits 13-17
(this is the same information as that stored by an LUUO given in section
0); save the flags and PC in a PC word in the second location; and save the
process context word in the third location. Then set up the flags and PC
according to the contents of the appropriate location in a PC word list, and
continue performing instructions in normal sequence beginning at the loca-
tion then addressed by PC. The PC word list occupies the same area as the
- PC list for an extended KL10, and it is organized and used (with respect to
mode and trap) in the same way.

There are no restrictions on the manner in which the new PC word of
an MUUO can set up the flags, It can switch the processor from any mode
to any other.

User Operations

2-125

Figure 2.3: User Process Table MUUO Configurations

424 FLAGS 00 CODE A | 00/PCS
425 00 PC
426 00 E
427 PROCESS CONTEXT WORD
¢ 56 1213 17 18 26 27 30 31 35

EXTENDED KL10 OR TOPS-20 KS10

425 CODE A 00 E
426 | FLAGS 00 PC
427 PROCESS CONTEXT WORD
0 89 12 13 17 18 35

SINGLE SECTION KL10 WITH TOPS-20

424 CODE A 00 E
425 FLAGS 00 PC
426 PROCESS CONTEXT WORD

0 8 9 12 13 17 18 35

SINGLE SECTION KL10 OR KS10 WITH TOPS-10

424 CODE A 00 E
425 FLAGS 00 PC
0 8 9 12 13 17 18 RE
KI10

KS10 MUUOs. For the KS10 the PC or PC-word list contains only four
entries for executive and user modes, in the locations corresponding to the
kernel and concealed modes as given above — the supervisor and public
locations are not used. The process context word for the KS10 is that read
by an RDUBR (§4.5). Otherwise, with TOPS-20 an MUUO is performed in
the same way as in an extended KL10, and with TOPS-10 it is performed
in the same way as in a single-section KL10 running under TOPS-10.

KI10 MUUOs. An MUUO is performed in exactly the same way as on
a single-section KL10 with the TOPS-10 Monitor, except that it does not
store a process context word (only two words of information are stored in
locations 424 and 425). Note that the trap locations in the PC-word table
are used for either overflow or a page failure.

2-126 User Operations June 1982

KA10 MUUOs. MUUOs and unassigned codes,?® regardless of mode,
perform exactly the operations given above for an LUUO with the excep-
tion that MUUOs use unrelocated 40-41 and unassigned codes use unrelo-
cated 60-61 (140-141 and 160-161 for a second processor). Note that in
executive mode, LUUOs and MUUOs act identically.

The important point is that an MUUO or unassigned code results in
executing an instruction in an unrelocated location, i.e. an instruction un-
der the control of the Monitor. This would most likely be a jump that leaves
user mode, saves the PC word and enters a routine to interpret the MUUO
configuration. In the instruction descriptions, any-reference to events re-
sulting from execution by an MUUO should be taken to include the unas-
signed and illegal codes as well.

2.17 KS10 Input-Output Instructions

Unlike earlier processors, the KS10 has no special format for IO instruc-
tions. Instead they are simply those instructions that handle the peripheral
equipment, the console and memory status — although for consistency,

they do have 1s in the left three bits. KS10 IO instructions are oriented -

toward Unibus-type devices, as. all peripheral equipment in a
DECSYSTEM-2020 is handled through Unibus adapters. There are twelve
of these instructions, six each for manipulating full words and bytes, de-
scribed here in terms of their general effects for handling external devices.
Information about external devices — individual instruction descriptions,
IO addresses, etc. — is given in the device documentation (however memory
status is defined in §4.8).

NOTE

Ordinarily the user has no use whatever for the instructions
described in this section. In almost all cases, input and out-
put is handled by the Monitor in response to user requests
employing MUUOs and various software formats. For infor-
mation on user procedures vis-a-vis Monitor handling of user
IO requirements, the reader should refer to the appropriate
Monitor Calls manual.

Programmers who do handle their: own input-output
should note that the instructions described here are in-out
instructions, which are affected by the timeshare instruction
restrictions. Namely an instruction of this type cannot be
performed by a user program unless User In-out is set. Any
in-out instruction that violates this restriction does not per-
form the functions given for it in the instruction description.
Instead it executes as an MUUO.

38 Codes 247 and 257, although not assigned as specific instructions, are nonetheless not
regarded as “unassigned” codes. They execute as no-ops unless implemented by special
hardware.

User Operations

2-127

The system instructions discussed in Chapters 3 and 5
for the other processors are also IO instructions. System in-
structions for the KS10 are not 10, but for consistency and
convenience they are subject to the same restriction as 10
instructions (determination of their legality is done by the
same microcode test). This restriction will not be mentioned
in the instruction descriptions, as it applies to all instruc-
tions from this point on.

As in all instructions the processor does an effective address calcula-
tion, but for the IO instructions it ignores the result and recomputes an
effective IO address beginning with the I, X and Y parts of the instruction
word. The IO address specifies an 10 register in some Unibus device or in
the console or memory controller, and for convenience we shall refer to this
effective IO address also as E. An IO address is analogous to an extended
virtual address in that it has a fundamental length of thirty bits, but not all
of its bits are implemented in a given processor. In a KS10 IO address the
right eighteen bits are the register address, and the left twelve are the
controller number, of which only four bits are implemented. An IO address
thus has this format,

L 00000 | C [REGISTER ADDRESS —l
0 1314 1718 35

where C is the controller number and bits 0—13 must be zero. Of the sixteen
possible controller numbers only three are used at present: 0 addresses the
console and the memory controller; 1 addresses Unibus adapter 1; 3 ad-
dresses Unibus adapter 3. Presently allowed IO addresses are these, and no
others can be used.

Controller Register Address Specifies
0 100000 Memory status
0 200000 Console (microcode only)
1 400000-777777 Adapter 1 Unibus registers
3 400000-777777 Adapter 3 Unibus registers

The 10 address calculation is like an effective address calculation in
which the result can be “global”, i.e. can have more than eighteen bits.
When the result is an 18-bit “local” register address, it is automatically
interpreted as specifying controller 0. The calculation is limited to one level
of indirection or indexing or both, and any intermediate result that is used
as a memory address must be local (since the KS10 is confined to section 0).

If there is no indexing or indirection, the 10 address is simply Y.

If there is indexing only and the left half of XR is negative, the IO
address is the local sum of Y and XR right.

If there is indexing only and XR is positive, the IO address is the global
sum of Y and XR (but remember that bits 0-13 must be zero).

2-128 User Operations

If there is indirection only, the IO address is the contents of location Y.

If there is both indexing and indirection, the IO address is the contents
of the location specified by the sum of Y and XR right.

Note that an index register can supply the entire IO address, but it can also
be used to supply only the controller number when Y is the register ad-
dress. This latter technique is useful for employing common code for both
adapters.

BSIO Bit Set 10

714 | 4 1] x | Y

0 89 121314 1718 35

In the word read from [O register E, set bits corresponding to 1s in AC, and
write the result back in register E.

BCIO Bit Clear 10

715 | 4 |1l x | Y

0 89 121314 1718 35

In the word read from IO register E, clear bits corresponding to 1s in AC,
and write the result back in register L.

RDIO Read 10
| 712 | 4 |1 x | Y
0 89 121314 17 18 35

Read the contents of 10 register £ into AC.

WRIO Write 10

713 | 4 1] x| Y
0 89 121314 1718 35

Write the contents of AC into IO register E.

User Operations 2-129

TIOE Test 10 Equal

710 | 4 [1] x | Y

) 89 121314 1718 35

If all bits of IO register E corresponding to 1s in AC are zero, skip the next
instruction in sequence.

TION Test 10 Not Equal

[711 4 1] x] Y
0 89 121314 1718 35

If not all bits of IO register E corresponding to 1s in AC are zero, sklp the
next instruction in sequence.

BSIOB Bit Set 10 Byte

L 724 | A |1| X | Y
0 89 121314 1718 35

In the byte read from IO register E, clear bits corresponding to 1s in AC
bits 28-35, and write the result back in register E.

BCIOB Bit Clear 10 Byte

725 | a4 |1l x | Y
0 89 121314 1718) 35

In the byte read from IO reg