DATABUS 1100
FOR DOS. SERIES

DB11SYS/DB11ASYS/DB11BSYS |
User’s Guide |

Version 1

May, 1975

Model Code 50138

DATAPOINT CORPORATION

D

The Leader in
Dispersed Data Processing

DATABUS 1100
LB11SYS/DB11ASYS/DB11BSYS

USER’S GUIDE
Veréion 1

May, 19795

Model CLode No, 50138

PREFACE

DATABUS 11, DBL11SYS, is a high level business language
compiler designed for use with the Datapoint Diskette Uperating
System, DOS.C, This User’s Guide describes the characteristics anag
use of the DATABUS 1100 Compiler, The same system is provided by
DB11ASYS for the Cartridge Disk Uperating System, D0OS,A; and by
DB11B5YS for the Mass Stérage Disk Oneratiné System, D0S,B, All
references in thié manual to DUS.C apply eaually to LIJS,A and

DUS,H.

1.

3.

4.

TABLE (F CONTENTS

INTRODUCTION

TEMENT bIRUCTURtS
Comments
Compiler Directives

5
l
e
e
P Program execution
2 Literals
e The forcing character
b4 A sample program
FILE DECLARATION AND DATA DEFINITION
3,1 File declaration
3.2 Data definition
3.2.,1 Numeric string variables
3.2.2 Character string variables
5 2e3 Common data areas

hRAM CONTROL INSTRUCTIONS
S GOTH .

BRAWCH

~CALL

-RETURN

- STOP

CHAIWN

~TRAP

TRAPLLR

<ROLLOUT

»-»,ccn540~u~gg~nah-c

1 TAGPAGE

MOVE
APPEND
MATCH
CMOVE
CMATCH
BU~P
RESET
ENDSET
LENSET
0 CLEAK
P EXTEND

hWCQ»wOUEWNMD

i

TA
ol
. & '
«5 File declarations and data definitions
o4
e
26
o7

1
[VARP IR VAR AV AR il o

ARACTER STRING HANDLING INSTRUCTIONS

page

i
[I DS IO B A | k]
-

1 81]

L

W A e N N AN
]
L ni T\ e e

I~ i
14 1 4%

. 4m2

&=
]
W

]

[V oV RV LU AV Sl U AR VAN HRV ARV ARV B P
]
L0~ 0N DN e

6

le

.12 LUAD

S« 13 STORE
Se14 CLUCK
Y15 TYPE
516 SEARCH
.17 REPLACE

ARITHMETIC INbTRUCTIUNS
6,1 ADD
6.2 SUB or SUBTRACT .
63 MULT or MULTIPLY
6.4 DIV or DIVIDE
6.5 MiVE v
beb COMPARE
6a7 LOAD
6.8 STORE
6,9 CHECKI11
6,10 CHECKI10
INPUT/ZOUTPUT INSTRUCTIONS
7ol KEYIN

Telel Displaying with KEYIN
List Controls

Telel
7e145 KEYIN Continuous
Tolold BACKSPACE and CANCEL
7.145 Operator lnterrupt Procedure
7Teloeb New Line
Tele? KEYIN Timeout and Pause
7.1.8 Echo Control
71,9 KEYIN Format Controls
741,10 Text Input

7«2 DISPLAY

7.3 BELP

7.4 PRINT

7.5 Disk 1/0

791 File structures
7.5.2 Positioning and accessing
7e9¢2+1 Physically Random Access
7.5+2+2 Physically Sequential Access
1e5.243 Indexed Access
7.5.2.4 Physical Access to Indexea Files
$ PREP or PREPARL
4 (JPbwn
CLUSE
READ -
Y.b.1 lest for tnd Of File
READKS

WRITE

Te5e
Teb,
le5,
Te5e

Yo

5
6
/e
/
5.8

7
/e

i1

(V2 RV RV
=== 0 0

b=3
6=3
6=3
b=y

oco
| O] 9 31
oU &

s N NN SN SN NNN NN~
3 1.8 8 % 0 0 0 B0

7

4
o©

7

7.5.9 WRITAB
7.5.10 UPDATE
7.5.11 INSERT
7.5,12 DELETE
7.5.13 WEOF

ROGRAM GENERATION

«1 Preparing Source Files
2 Compiling Source Files
3 Compilation directives
[]

8.

4 Compilation diagnostics
S Disk space requirements
9., SYSTEM OPERATION
el System Loading
9.,1.1 Loading From Cassette
9.1.2 Loading from Diskette
9.2 Program Execution

P
8
8
8
8
8
S
9

Appendix A, INSTRUCTION SUMMARY

Appendix B, INPUT/OUTPUT LIST CONTROLS

Appendix C. COMPILER ERROR CODES
Appendix D. ERROR CODES

 Appendix E, INTERPRETER 1/0 TRAP CODES

iv

=32
7=33
7=34
7=34
7=35

8-1
8=1
8=1
8=5
8=6
8=7

9-1
9=1
9=1
9=2
9=2

CHAPTER 1. INTRODUCTION

DATABUS 1100 is similar to the Datapoint DATASHARE 3 Multiple
lerminal computer system, The primary difference is that
DATASHARE 3 supports multiple remote terminals whereas DATABUS
1100 supports only the processor console as an operator
input/output device, DATARUS 1100 also hanales a high=speed line
printer or servo printer and provides indexed=sequential as well
as random and sequential file accessing, thus providing a powerful
gata entry and processing facility.

In add1ttén,‘008 C with its variety of utility ana higher
level language systems may be used in conjunctaon with DATABUS
1100, enabling processing of tasks not appropriate to the DATABUS
language,

Using virtual memory techniques, DATABUS 1100 allows programs
with a 16K byte area for executable staterents. This, in
combination with the ability of the compiler to accommooate over
3400 labels, enables the user to create and use programs of over
one hundred paqes (a very large high level language program), To
provide rapid program execution, the data area of the executing
program is majntained in main memory and not swapped,

Any of the Datapoint system printers may be connected to the
DATABUS 1100 configuration, Printer output is buffered to allow
maximum program exeCution speed,

All program execution in DATABUS 1100 occurs in the DATABUS
lJanguage., Console command interpretation is handled in a special
DATABUS program, the MASTER program which enables the user to
completely define hns own console command and security system,

Program generat1on is performea under the Flexible Disk

Uperating System, D0OS,C, us1ng the general purpose DS eaitor and
DATARUS 1100 compiler,

CHAPTER 1, IRTRUDUCTIUN 1=1

CHAPTEK 2o STATEMENT STRUCTURES

There are five basic types of statements in DATABUS 1100:
comment, compiler directive, file declaration, data definitien,
and program execution, : '

2el Comments

Comment lines have a period, asterisk, or plus sign in the
first column, and may appear anywhere in the program, (omments
are most useful in explaining program logic and subroutine '
function and parameterization to enable someone reading through
the program to more easily understang its logic, The comment
which pegins with an asterisk will be printed at the top of the
next page 1t fewer than 12 lines are available at the bottom of
the current page, This allows comments to be presented on the
same page as the program statements without having to know where
the listing currently stands on the page, The comment which
begins with a plus sign will always pe printed at the top of the
next page, This allows major sections of the program to be
started at the top of a page. Use of the asterisk at the ,
peainning of each section or subroutine description is encouraged
since .this greatly enhances program readability, Use of the plus
sign should be cautious since it can easily waste great quantities
of paper, -

2.2 Compiler Directives

Compiler directives enable inclusion of other files in the
current compilation:and definition of the absclute value of a
sympolic name for use in tab positioning in file 1/0 statements
ana column positioning in 1/0 statements, The inclusion directive
allows a larage program to be broken into several files for ease in
egditing, Another useful aspect is that a common set of
subroyutines or data definition blocks can be included into a
number of different programs. lherefore, when a change is made in
one of the routines or in the detinition of a data item, only one
tfile need be modified, reaucina both the amount of manual labor
involved and the chance for error. See Section 8 (Program
Generation) for more complete information on tne use aof compiler
~agirectives.

CHAPTER 2, STATLAENT STRUUTURES F=1

2.3 File declarations and data definitions

File declaration and data definition statements must occur
before any progrem execution statements and are used for setting
up all of the logical tiles and datae vartaples in the program,
A1l file declaration and data definition statements must have
lahels, All compiler directive, file declaration, ana data
definttion statement labels must be unique among themselves,
Program execution statements must appear after any file
declaration or data definition statements and may or may not have
labels., Ihe labels on program execution statements may be the
same as labels on the compiler directive, file declaration, and.
data definition statements. Program execution always begins with
the first executable statement,

2.4 Program execution

Labels for variables and executable statements can consist of
any combination of up to eight letters anda digits beginning with a
letter, The following are examplea of valid labels:

A

ABC

A1BC
B1234
ABCDEF
BIGLABEL

The following are examples of invalid labels:

HIsJK (contains an invalid character)
4v0G6s (does not pegin with a letter)

Statements other than comments consist of a label field, an
operation field, an operand field, and a comment field., The label
field is considered empty if a space appears in the first column
of the line, Ihe operation field denotes the operation to be
performed on the operands which tollow it, In many operations;
two operands are required in the operand tield. These operands
may be connected either by an appropriate preposition (BY, T0U, UF .,
FRUM, IN, wlTH, USING, or INIU) or & comma, Une or more spaces
should tollow each element in a stotement except where a comma is
useds in which case the comma must e the terminating character of
the previous element and may be followed by any number (including
zero) ot spaces., The tollowing are all examples ot valid

o= TOATABUS 1100

statements:

LABEL1 ADD PCS TO TOTAL

LABELZ ADD PCS OF TOTAL THIS 1S A CUMMENT
LABEL3 ADD PCS, TUTAL

LABEL4 ADD PCS,TOTAL

Note that any preposition may be used even if it does not
make sense jin English, The following are examples of invalid
statements: ‘

LABELL1 ADD PCS TOTAL (missing connective)
LABELZ ADD PCS ,TOTAL (space betore comma)

Certain DATABUS 1100 statements allow a list of items to
follow the operation field, In many cases; this list can be
longer than a single line, in which case the |ine must be
continued, This is accomplished hy replacing the comma that would
normally appear in the list with a colon and continuing the list
-on the following line, For example, the two statements:

DISPLAY AchCaDS
EsF.G
DISPLAY A;E‘i;C,D;E,F;G

will perform the same function,
2.5 Literais

In an effort to reduce the amount of data area needed by a
program, ‘1iterals are allowed in certain statements which would
‘otherwase need constant data in the uyser®s data area, The
instructions which can contain literals are; STORE, KOLLOUT,
CHALlN, MOVE, APPEND, MATCH, ADD, Sus, MuLT, DIV, COMPARE, (OPEN,
PREPARE, REPLACE, CHECK11, ano CHECK1U. In all except I[/0
statements and the CHECK verbs, the literal must be the first
operand, The literal is always enclosea within a pair of double
quotes (see the following section on the forcing character) and
may be from 1 through 40 characters in length (excluding the
quotes), &hen a literal is used as a string variavle, its
tormpointer is always equal to one ano its jogical length always
points to the last character that is quoted. Examples of the
statements which can contain literals follow?

STOKE "APPLES" InT0 X UF $1,52,8%
ROLLOUT "CHAIN FIx22"
CHATN "NEXTPROG"

CHAPTER 2, STATEsEwt STeUCTURES e=3%

OPEN FILEL,"DATAFILE"
PREPARE FILE1,"USERDATA"
MUVE "MESSAGE" TO M3442
MOVE "100,55" 10 VALUE
APPEND ", " TO STRI

MATCH "YES" TU ANSWER
ADD "23.46" TO TOTAL
SUfk "1" FROM COUNT
MULT ".1" BY TAX

LV "33,3333" [WNT0 FACTOR
CUMPARE "10" TU LINENUMB

2.0 The forcing character

The pound sign (#) is interpreted by the compiler as a
forcing character in any quoted item which can contain multiple
characters, The character immediately following the pound sign is
used in the quoted item simply as a character value regardless of
jts significance to the compiler, Thus, the pound sign itself and
the quote (") may be used in DATABUS 1100 statements, For '
example,

DISPLAY "CUSTOMER#® SHOULD BE #"22228""
would display exactly:

CUSTOMER® SHOULD BE "2eee"

on the screen, Note carefully the woraing used apove that

excludes the cases of RESET, CMATCH, and CMOVE since those .

operations cannot have quoted items which contain multiple

characters, For example,
CMOVE ven T STRING

into the variable

a MUOVE instruction would

even in a single

be a mutiple character

would be used to move a double quote sign
STRING, However, the use of a literal in
require the use ot the forcing character,
character move, since the quoted item can
quote. For example:
MOVE wgnn 70 STRING

would be used to move a double quote sign into the variable
SIKING, The RESET, CMUVE, and CMATCH instructions are the only
exceptions to the forcing character convention within auoted

2=d WATABUS 1100

items,
Exampless
RESET STRING TO "#"
CMOVE "#" T0O STRING
CMATCH """ TO STRING

2.7 A sample program

. PROGRAM TO DISPLAY A MULTIPLICATION 1ABLE

COUNTL FORM non
CUUNTZ2 FORMm ngn
PROD FORM: 2

L3

» HERE IS THE START OF THE EXECUTABLE CUDE

START DISPLAY *ES,"MULTIPLICATION TABLES",*N
LOOP MOVE COUNTY TO PROD '

MULT COUNTe BY PROD

DISPLAY CQUNTI; "x* eCOUNT2,"=",PROD." “‘p *N

ADD "1" TO COUNT2 :
GOTO ~ LOOP IF NOT OVER

ADD "1" TO COUNT!

6OTO - LOGP IF NOT OVER

STOP B

CHaPTEk 2. STATEsExT STRUGLUTURES

CHAPTER 3, FILE DECLARATION AND DATA DEFINITION

There are two types of statements in DATABUS 1100 which cause
space within the user®s data area to be assigned, The first is
logical file declaration where the space is used to store the DUS
system information about the file bpeing used and the second 8
data definition where the space is used to keep the variable
information within the DATABUS 1100 program,

5.1 File declaration

Two types of tiles can be declared in DATABUS 1100, The
first is a type that will be ysed for rancom or physically
sequential accessing. This type is declared using the FILE
statement:

INFILE FILE

The label INFILE will be useg in all disk 1/0 statements that are
to use this particular logical file, This statement causes 17
bytes of data area to be consumed, This area stores the 15 bytes
usea in the DOS logical file table, a space compression counter,
and a flag indgicating that this is a physically random or
sequential access only file, Note that since logical file
information is stored in the yser’s data area, the user may have
any number of logical files active at any one time providing his
data area can contain all of the necessary declaration
information,

The second type of file declaration is used tor :
indexed=sequential file accessings. 1his type is ceclared using
the IFILE statement: ‘ '

ISAMFILE IFILE

The label ISAMFILE will pe used in all disk I/0 statements which
are to use this particular logical file, This statement causes 26
bytes of data area to be consumea, This area stores the
information that a FILE declaration stores plus three three=byte
pointers for use in the access method, Ihese pointers point to
the beginning of the last record accessed (for updating
operations), to the next sequential key (for sequential by key
accessing), ana to information in the DUS R.1.3. of the index file
{used in all accessing operations),

CHAPTER 3, FILE DECLARATION AND DATA DEFINITIUN 5=1

3.2 Data definition

There are two types of data used within the DATABUS 1100
language, They are numeric strings and character strings, Jlhe
arithmetic operations are performed on numeric strings and string
operations are performed on character strings, There are also
operations allowing movement of numeric strings into character
atrings and vice versa, Numeric strings nave the following memory
format?

0200 1 4 . 3 0203

The leading character (0200) is used as an indicator that the
string is numeric, The trailing character (0203)(ETX) is used to
indicate the location of the end of the string (£E7X), Note that
the format of a numeric string is set at definition time and does
not change throughout the execution of the program. A numeric
string can be defined to contain at most ¢1 characters,

when a move into a number occurs from a string or differently
tormatted number, reformatting will occur to cause the information
to assume the format of the destination number (decimal point
position and the number of digits pefore amd after the decimal
point) with truncation occurring if necessary (rounding occurs it
truncation is to the right of the decimal point).

Character strings have the following memory format;

9 5 THE QUICK BROAN 0203

The first byte is called the logical length and points to the last
character currently being used in the string (K in the above
example). lhe second byte §is called the formpointer and points to
a character currently being used in the string (3 in the above
example), The use ot the logical length and formpointer 1n
character strings will be explained in more detail ‘in the
explanations of each character string handling instruction.
nasically, however, these pointers are the mechanism via which the
proarammer deals with individual characters within tne string,

=2 RDATABUS 110v

The term physical length will be used to mean the number of
possible data characters in a string (15 in the above example),
The logical and physical lengths of string variables are limited
to 127.

phenever a data variable is to be used in a program, it must
be detined at the beginning py using either the FURM, IN1T, or DIM
instructions, These instructions reserve the memory space
described above for the data variable whose name is given in the
label field., Note that all variables must be defined before the
first executable statement is given in the program and that once
an executable statement is given, no more variables may be
defined, HNumeric strings are created with the FORM instruction
while character strings are created with the INIT or DIM
instruction,

3.2,1 Numeric stpring variables

Numeric variables are definea in one of two ways with the
FURM instruction as shown in the following illustration:

EMRATE FORM 4,2
XAMT FORM " 382,40"

, In this example, EMRATE has been detftined as a string of
decimal diqits which can cover the range trom 9999,99 to =999,99,
The FURM instruction illustrated reserves spaces in memory for a
number with four places to the left of a decimal point and two
places to the right of a decimal point ang initializes the value
to zero., when the number is negative, one of the places to the v
left of tne decimal point is useda by the minus sign, XAMT, in the
example, is defined with four places to the left of the decimal
point and three to the right but with an initial decimal value of
382,400, The physical length of a numeric variable is limited to
21 characters (decimal point and sign included).

3,2.2 Character string vartables

Character strings are cefined with either a DIM or INIT
instruction. DIM reserves a space in memory for the given number
ot characters but sets the logical lenagth and formpointer to zero
and initializes all the characters to spaces, For examplel

STRInG DIM 25

A character string can also be detined with some initial value by
using the INIT instruction. Ftor example:

CHAPTER 3, FILE UECLARATIUN AwD DATA UEFINITION 3=3

TITLE INIT "PAYROLL PROGRAM"

initializes the string TITLE to the characters shown and gives it
a2 logical length of 15, The formpointer is set to one, Note that
in the case of strings, the actual amount of memory space reserved
18 three bytes greater than the number specified in the DIM or
auoted in the INIT instruction (TITLE occupies 18 bytes in memory,
15 of which hold characters),

Uctal control characters (000 to 037) may be included when
inftislizing a strings The control character is separated by
commas, without quotes, and is preceded by a zero, For example,

TITLE INIT "PAYROLL PRUGRAM",015,"TEST1"

would initialize a string with a logical and physical length of 21
characters., The octal control character, 015, would appear after
the M in PROGRAM and before the first T in 1EST1. It is the
responsibility of the programmer to remember that some ot these
characters (000, 003, 011, and 015) are used for control purposes
in disk files, More importantly, these characters are used as
control characters in DISPLAY and KEYIN statements, and improper
use of these characters in such statements can result in invalid
program execution, '

3.2,3 Common data areas

Since DATABUS 1100 has the provision to chain programs so
that one program can cause another to be loaded and run, it is
desirable to be able to carry common data variables from one
program to the next, The procedure for doing this is as follows:

a, ldentify those variables to be used in successive
programs and in each program define them in exactly the
same order and ways, preferably at the beginning of each
program, The point in this i1s to cause each common
variable to occupy the same locations in each program,
Strange results in program execution usually occur if a
common variable is misaligned with respect to the
variable in the previous program,

bse 0Define the varjables in the normal way in the first
program, then, for all succeeding programs, place an
asterisk in each FURM, DIM, or INIT statement, as
illustrated pelows, to prevent those variables from being
inttialized when the program is loaded into memory.,

ey DATABUS 1100

Examples:

MIKE FORM *4,2
JUE DIM %20
BOB INIT *"THAIS STRING wUNT BE LUADED"

File declarations may not be made common between programs, The
reasoning behind this restriction is that mis=alianment in file
declarations could easily cause catastrophic destruction of the
tfile structure under DOS.C. Therefore, whenever a program i8S
loaded, all logical files are initialized to being closed and must
be opened before any file I/0 can occur, #hen chaining between
programs, one should always close all files in which new space
could have been allocated and then re=open the files in the next

nrogram,

CHAPTER 3, FILE DECLARATION AND DATA DEFIuTTIUN d=b

CHAPTER 4, PROGRAM CUNTRUL IHSTRUCTIONS

‘DATABUS 1100 normally executes statements in a sequential
fashion., The program control instructions allow this flow to be
altered depending on the state of the condition flags, There are
tive condition flags in DATABUS 1100: uveR, LESS, EGUAL, ZERU, and
£0S8. EQUAL and ZERD are two names for the same flag., Unly the :
numeric and character string manipulating instructions, the READ
instruction, and the READKS instruction alter the states of these
flags. Reference should be made to the individual instruction
explanations for the meanings of the flags,

4,1 60TO

_ The GUTO instruction transfers control to the program
statement indicated by the label following the i1nstruction:

GUTD CALC

causes control to be transferred to the instruction labeled CALC,

The GOTD instruction may be made conditional by following the
label by the preposition lF and one of the condition flag names.,
For example:

 GUTO CALC IF OVER

-will transfer control to the instruction labeled CALC if an
overflow occurred in the last arithmetic operation, Utherwise,

the instruction following the GOTU is executed,

The sense of the condition can be reversed by inserting the
word HWUJT before the condition flag name as follows:

6010 CALC IF mNOT UVER
meaning control is transferred only 1f the overflow did nof occur,
el BRANCH

The uBrRANWCH 1nstruction transters control to a statement
specified by an index, For example:

BRANCH ~ UF START,CALL ,PULNT

CHAPTER 4, PRUGRAM CUNTRUL 1a8TRGCTIuNS =1

causes control to be transferred to the label in the label 1ist
pointed to by the index N (i,e, START if N = 1, CALC if N = 2, and
POINT 9f N = 3), If N is negative, zero, or larger than the
number of labels in the list, control continues with the following
statement, The index 18 truncated to no decimal places before it
is used (1,7 = 1),

The BRANCH instruction statement may be continued to the next
line by the use of a colon in place of one of the variable
delimiting commas, For example:

BRANCH N OF LOOP, START, READ1, wRITE1S
WEQF1,STUP

4.3 CALL

The CALL instruction is very 8imjlar to the GUTO instruction
except that when a RETURN instruction is encountered after a
transfer, control is restored to the next instruction following
the CALL instruction, CALL instructions may be nested up to 8
deep. That is, up to eight CALL instructions may be executed
betore a RETURN instruction 18 executed, Being able to call
subroutines eliminates the need to repeat trequently used groups
of statements, Note, however, that in DATABUS 1100 the space
allowed for a program is very large and that, due to the virtual
nature of this space, calling a subroutine is considerably more
time consuming than executing the code in line if a page swap is
invoked by the subroutine call, Therefore, in many cases it 1is
much oetter to put some code in line instead of making it a
subroutine, especially if the amount of code i{s quite small (say,
less than a dozen lines). This is a trade=oft which should be
considereu when one is dealing with code that will be executed
very often (for instance, code that is executed every time a data
item is entered), CALL instructions may be made conditional like
the GOTU instruction, For examples

CALL FORMAT
CALL xCOMP IF LESS

ot RETURN

The RETURN instruction is used to transfer control to the
location indicated by the top address on the subroutine call
stack, Ihis instruction has no operand field but may be made
conagitional, For example:

RETURN

g VATABUS 1100

RETURN LF ZERD
4,5 STOP

The STOP instruction causes the program to terminate and
return to the MASTER program, This instruction has no operand
field but may be made conditional, ror example:

STOP
STUP IF NOT EQUAL

Execution of the STOP instruction in the MASTER program
returns control back to D0OS.C.

deb CHAIN

The CHAIN instruction causes the program, whose DUS npame :
(with extension DAC) is 1n the literal or specified strina, to be
loageg and for control to be passed to its tirst executable
statement. The characters used for the name start from under tne
formpointer of the specitfied string variavble (or with the first
quoted character in the case of a literal) and continue until
either the logical end of the string has been reached or eight
characters have been obtained, lf the end of the string is
reached vefore eight characters are obtained, the rest of the
characters are assumed to be spaces, All DATARUS 1100 program
object files are of extension DBC., The character after the 8th in
the name variable (or the character after the logical! length if
the name is less than 8 characters long) is used as the drive
number specification for the file, 1f the characters is not an
ASCII 0y 1+ 2y 0or 3 or no character physically exists past the
name, no drive specification is assumed and all arives starting
41th drive zero are searched when looking for the program name in
‘the DUS directory (or directories), Utherwise, only the specified
drive is searched for the name, Ffor example, if in the following
example NXTPGM*s formpointer was 4 and logical length was &, the
CHAIN command would try to load the program named "ROL/UBL" from
df‘i\le ‘9

wXTPGM INIT "PAYRULL"

CHAIN NXTPGL™

In the following example, however, the CHAIN command would try to
load the program named "PAYKULLI/UBC" otf of any irive starting
from the zeroth,

LHAPTER 4, PRUOGRAM CUNTROL THSTRUCTIHNS DR

‘CHATN "PAYROLL"

o make the LCHAIN command try to load the program namedg
"PAYRUOLZLUBC" from drive one, one would execute the statement?

CHAIN "“PAYROL 1"

since the | would appear after the eighth character in this case,

4,7 TRAP

TRAP is a unique instruction becasuse, rather than taking
action at the time it is executed, {t specifies the location to
which a transfer of control (via the CALL mechanism) should occur
if a specified event occurs during later execution, For examplel

TRAP EMSG 1F PARITY

specifies that control sheould be transferred to EMSG if a parity
failure is encountered during a READ or WRITE instruction, The
control transfer is performed in a manner similar to the CALL
instruction, Therefore, in the above example, if the parity error
occurred during a disk READ instruction, the effect would be to
insert a CALL EMSG instruction between the READ and the
instruction immediately following it,

1f an event occurs and the trap corresponding to that event
has not been set, the message!

* ERROR ~ LLLLL X % or
* ERRUR * LLLLL X * 4

appears on the console display, The first form appears for all
traps except 1/0 traps, In the event of an 1/0 trap, @
qualification letter is given wnere a "Q" is shown in the example
(explained below under the "10" trap)e The LLLLL is the current
value of the program counter and the X is an error letter, In
most cases, LLLLL points to the instruction following the one that
caused the problem, However, in certain [/U errors, LLLLL will
point after the list item where the problem occurred. The
following error letters can appear:

parity failure

record number out of range
record format error

chain failure

1/0 error

L I B |

fmy DATABUS 110U

B = illegal operation coqe
U =~ call stack underfiow or overflow
A = interruptions alreaay prevented

Note that the last three items shown above cannot be trapped. The
error will only show up if somehow ain invalid object file is
executed or if the system is failing, The ! error will happen if
the programmer forgets to perform a call or 1n some other fashion
manages to execute & RETURN instruction without a corresponding
CALL having been previously execyted, or calls are nested more
than efght levels deep, The A error will happen if a PI
instruction is executed while interrupts are currently prevented,

The events that may be trapped are shown velow, The
canitalized name is the one used in the THKAP statement,

PARITY = disk CRC error during READ.opr disk CRC error
dguring write verification (the DUS retries an
operation up to 5 times to get a good CRC

. before giving up and causing this event),

RANGE. = record numper out of range (an access was
made that was off tne physical end of the file,
a8 record was read which was never written, ar a’
WRITAB was used on record which was never

: written) .

FORMAT * data being read into a numeric variable was

; not all digits ang decimal point and mipus
sign, or decimal point in input does not agree
with the decimal point in FORM, or data from
disk has a negative multi=punch but no room for
a minus sign in FORM, or write specified
‘multi=punch and the last iter of the field is a
decimal point, The operation stops with the
: item in error and the statement is aborteds

CFAIL = the specified program was not in the DOS
directory or a RULLUUT was attempted with one
of the necessary system files missing, or a
program containing compile=time errors was
loaded,

10 = there is only orne trap for all ot the
following conditions, Usually, however, the
trap is used only for detecting whether a file
exists or not, It is a aoou i{dea keep this
trap clear whenever it 18 not being used
specitically to detect tne presence of a file
to prevent confusion if one of the other
congitions occursa. If tne trap 1S not set then

CHAPTER d, PKOGKAM CUNTROL T8STRUCTIONS 4=l

4=b

LaTABUS 110G

one of the following qualification letters
indicates tne nature of the 1/0 problem:

an access seqguentially by key was attempted
before any indexed sequential access was made
using the logical file, ,

the READ mechanism ran otf the end of a sector
without encountering a physical enog of record
character (003),

an operation on & closed logical file was
attempted,

a WRITE or INSERT indexed sequential operation
was attempted where the specifiea key already
existed in the index,

an EOF mark without at least four zeroes was
encountered,

the index file specified in an OPEN statement
does not exist on the specified drive(s),

the ingex file found by the OPEN statement does
not reside in the correct physical location on
the disk (index files may never be moved, they
must always be re=created), (

a null key was supplied in an operation where
the key may not be null, '

the data file specifiea in the OPEN statement
does not exist on the specified drivel(s),

the data file name specified in the UOPEN or
PREPARE statement was null,

the index file name specitied in the OPEN
statement was null,

the file specified in the PREPARE statement had
some type of DOS protection (either write,
delete, or both),

the tab value in the READ or WRITAB statement
was off the end of the sector,

an EOF mark was encounterea while a record was
being deleted in the indexed seguential file.
one of the indexed sequential access overlays
could not be loadeu by the DOS loader,

an index file pointer sector could not be read.
an index file header sector could not be read,
the Kelobe Of the data file pointed to by the
index file could not be read, (vaXY errors can
be causeu by parity errors, the drive being
switched off line, or the disk cartridge being
swapped with another wnile an operation is
taking place,)

~Note that the trap locations are cleared whenever a CHAIN occurs.
Therefore, each program must initialize all of the traps it wishes
to use, Also, whenever a certain event is trapped, the trap
location for that event is cleared, which implies thats, 1f the
event is8 to ve trapped again, its locatjor must be reset by the
trap routine.

4,8 TRAPCLR
This instruction will clear the specified trap, For examples
TRAPCLR PARITY

will clear the parity trap previously set.

®

4.9 ROLLUUT

The ROLLUUT feature allows the execution of thne DATABUS 1100
system to be temporarily suspended while certain functions are
performed under DOS,L. when a ROLLUYUT occurs, the program
ROLLOUT/SYS will be rum which writes system status and memory in a
tile called RULLFILE/SYS, A beep is sounded at the console to
alert the operator when a ROLLUOUT is inityated, Clicks are
sounded as RULLFILE/SYS is created ano another beep occurs when
the file creation is completed. The DOS is then brought up at the
console by the loading of SYSTEMU/SYS. The RULLOUT/SYS program
then supplies the characters in the string specified by the
Vatabus ROLLOUT instruction as if they were keyed in from the
console (this will usually call the CHAIN program)., when the DUS
~functions are completed, the DUS file OBRBACK/CMD may be executed
"to restore the DATABUS 1100 system to its previous status (this is
usually the last program specified in the CHALN file)., DBBACK/CMD
clears the screen and then loads the ROLLFILE/SYS object file,
This returns the DATABUS 1100 program to the point of execution
when the ROLLUUT occurred, RULLOUT/SYS is provided with the
DATABUS 1100 System,

ROLLUUT is initiated by a DATABUS 1100 program with the
following instruction,

ROLLUOUT (string variaole) or
RULLUUT (string literal)

The string variable or literal specities what function is

1nitially to be executed under D5 and should ve a command line !
acceptable to the DUS command nanaler. The string used 15 that in

CHAPTER 4, PROGKRAM CUnTRUL IHSTRUCTIONS de=7

the variable from under the formpointer up to before a character
that has a value less than 040 (octal), 1s a vertical bar (0174
octal), or has a value of octal 0200 or above, Inm the normal
case, this means the string used will be that from under the
formpointer up through the physical length of the string, If it
is desired for less than through the physical end of the string to
he used, one should store a vertical bar in the position after the
last character to be used in the DUS command line string, A CFAIL
trap will occur {f the string varfable is null, For example, the
string’s contents could be

CHAIN DBCFILE

when DS {is brought up by the ROLLOUT, the first thing to occur
would be a chain to DBCFlLE, The commanos found in DBCFILE would
then be executed (see the DOS Program User’s Guide for additional
information concerning the D0OS CHAIN command),., OBCFILE could
consist of these commands:

SURT AFILE,BFILE
SORT CFILE,DFILE
DBBACK

By using the CHAIN commands several DUS functions can be performed
and the system automatically restored witn the DBBACK command, It
DBBACK is not included in the chain file, if the CHAIN aborted for
some reason, if DOS was booted during the CHAIN, or if the string
specified in the ROLLOUT consisted of & DUS function other than
CHAIN, the DATABUS 1100 system will have to be restored by the
operator keying in DBBACK at the console,

The ROLLOUT feature is particularly useful when a file needs
to be sorted with the D0OS SORT command or an indexed file needs to
be re=indexed using the DUS INDEX command, Note that the clock is
not updated while the DATABUS 1100 system is not executing.

There are a number of precautions which must be observed
during the use of ROLLOUT, The functions performed while under
the DUS must not affect any of the operations that were taking
place under the DATABUS 1100 system, For example, the MASTER
program must not be changed and files that are open and in use
must not be modified or deleted, The reason behind this is that
when the DATABUS 1100 operation is restored, certain items in
memory reflecting the state of the DUS file structure will also be
restored, If these items are no longer accurate in theijr
reflection due to the fact that the file structure has been
chanqged, terrible things can happen to the DATABUS 1100 system,

U=y DATABUS 1100

(lperations to be watched in particular include the changing of the
object code of any program that is running, the changing of any
tiles that are open, and the re=arrangement of any disks with
files in use within a myulti=drive system,

Hel0 Pl

This 1nstruct1on (Prevent Interruptions) enables the
programmer to prevent his program from being interrupted for up to
20 Datapus instruction executions, This instruction has no effect
upon the foreground one millisecond interrupt which performs the
printer I1/0,

Normally, background execution can be interrupted through -
execution of the Interrupt procedure at the console, By executing
the Pl instruction, the programmer can postpone this interryption
for a specified numpber of instructions (up to a maximum of 20),

The number of instructions specified in the Pl instruction is
always a tixed decimal number (it may not be a numeric variable),
For examples

Pl 4 |
READ F,KEYFPN,QTYONH,LUD
SUB QTY FROM QTYUNH

GOTO NOTNUFF IF LESS
UPDATE F3PN,QTYONH,LOD

Interruptions will be prevented from the PI instruction through
the UPDATE instruction, WNote that the number supplied to the Pl
instruction denotes tne numher cf instructions after the Pl
1nstructton.

It a KEYIN instruction is executed while interruptions are
prevented, the effect of the Pl instruction is canceled, 1f a Pl
instruction is executed while interruptions are currently
prevented, execution of the program is aborted with an eprror A’
message. This prevents a program from being able to prevent
interruptions for more than 20 instruction executions.,

Note that when devising systems with complex data file
structures it is necessary to protect the file structuring against
irreparable agestruction by untimely interruption, The Pl
instruction can be used to porevent the operator from causing such
a disturpance, However, 1t should not be used as a panacea for
the interruption preoblem since interruptions can still pe caused
oy power failures or the system operator restarting the processor,

CHAPTER 4, PRUGHRAN CunTrUL LnSTRUCTIONS Y=q

The PI can be very useful in preventing the operator from causing
a situation which could require extensive recovery effort but the
precautions which allow recovery in the event of an interruption
at any point in the program must still be built in to allow
recovery in the other less likely but sti11] possivle interruption
cases,

Although when operating under UATABUS 110G, there is only one
user proyram executing at a timey, and no consideration need be
given to another user updating a file as it is being processed,
the Pl imstruction provides the ability to lock out alternate
accesses, providing for future upgrades to multi=user DATASHAKE
systems, .

4,11 TABPAGE

This instruction torces sections of the program into certain
pages of object code, Execution speed can be enhanced in this way
because of the way the virtual storage mechanism for the object
code works., Jhe instruction consists only of the verb TABPAGE and
has no operands (a label may be placed on a TABPAGE instruction
line, however). Execution ot the TABPAGEL t1nstruction causes
control to be transferred to the first byte of the next page,

Note that liberally scattering TAWPAGE 1nstructions
throughout a user program will in general not result in an
increase 1n execution speed, lInstead, the usual effect is to
increase the rate of thrashing of the program, TABPALE should
only be used to force tiaht loops to resice entirely within one or
two pPages.,

d=10 LBATAHUS 1lud

CHAPTER 5, CHARACTER STRING HANDLING INSTRUCTIUNS

Each string instruction, except LUAL and STURE, requires
either one or two character string variable names following the
instruction, (Note that the MUVE instruction is capakble of moving
strings to numbers, numbers to strings, and numbers to numbers, as
well as moving strings to strings. See the following section and
Jection 6.5 for the entire description of the MUVE instrucfion.
Also note that APPEND can move numbers into strings as well as
strings into strings.) In the following sections, the first
variable will be referred to as tne source string and the second
variable will be referreu to as the destination string, In some
casesy the scurce may be a literal, when it 1s, the formpointer
always points to the first physical character in the string and
the logical length always points to the last physical character in
the string.

5,1 MOVL

MOVE transters the contents of the source string into the
destination string, Transfer from the source string starts with
the character under the formpointer ana continues through the
logical length of the source string. fransfer i1nto the
destination string starts at the first physical character and. mhen'
transfer is complete, the formpointer is set to one and the ;
logical length points to the last character moved, The EOQS flag
is set if the £TX in the destination string woula have been
overstored and transfer stops with tnhe character that would have
overstored the ETX, It the source string is null, the length and
form pointer of the destination string are set to zerco, and the
EUS condition is NOT set,

The MOVE instruction can also move character strings to
numeric strings . and vice versa, (The movement of numeric strings
to numeric strings is covered in section 6.%.) A character string
"will pe moved to a numeric string only 1f the character string
from the tormpointer througnh the logical length 1s ot valid
numeric format (only digits, spaces, a leadinyg minus sign, and one
decimal point allowed)., Utherwise, the numeric string is not
chnanged, WNote that only the part of the character string starting
with the formpointer is considered in tne valirdity check and
transferred if the string is of valig numeric tormat, T[he number
in the character string will be reformatted to conform to the
format of the numeric strina. HKounding cccurs it the number in

CHAPTER S, CHARALTER STKRI&NG ndnwiL]nG [HSTRUCTIONS h=}

the character string {8 too large to fit into the format of the
numeric string (see Section 6 tfor rounding rules followed), The
TYPt instruction is available to allow checking the character
string for valid numeric format before using the MUVE instruction,

When a numeric string is moved to & character string, all
characters of the numeric item (unltess the EIX in the destination
string would be overstored) are transferred starting with the
pnysically first character in the destination string, Wwhen the
operation is completed, the logical length is set to point to the
last character transferreds The EO03 condition is left true if the
ETX of the destination string would have been overstored, In this
case, transfer stops with the character before the one that would
have overstored the ETX and the logical length is left pointing to
the physical end of the string (which contains the last character
transferred),

In the following examples, the logical length, formpointer,
and content of each variable is shown betore the statement is
executed, the statement is shown ano the contents ot the variable
that is changed by the execution ot tnat statement is shown, The
* denotes a space in the contents of a variable,

VAR L. FP Contents
STRINGY 4 2 ABCDXLM ETX
STRINGZ & 4 DOGCAT ETX

MOVE STRING! TU SThlnGe

STRINGe 3 1 BCDCAT ETX
STRINGZ 6 3 DOGCAT ETX

MOVE "HELLO"™ T0 STRINGZ

STRINGZ 5 1 BELLUT ETX

H=¢ DATABUS 11uv

STRINGI 9 3 AB100,327 ETX
NUMBER 0200 39,00 ETX
"MOVE STRING1 TO NUMBER

NUMBER 0200 100,55 ETX

NUMBER 0200 100,33 ETX
STRINGL 9 3 AB1Q0.327 ETX
" MOVE NUMBER 10 STRINGI

STRINGY 6 1 100,33327 ETX

Note that in the statement:
MOVE "ABCY TU NUMBER

~the compiler will give an £ error flag since 1t knows that this
cannot be a valid operation (the move wilil not occur because the
literal is not of valid numeric formet), In the statement?

MOVE "2.3" TD STKINGY

the compiler will generate a string to string move rather than a
numeric to string move,

5.2 APPEND

APPEND appends the source string or number to the destination .
string. A numeric item is treated exactly as if it were a string
with a formpointer pointing to the first physical character and a
logical length pointing to the last physical character in the
number, The characters appendea are those from under the
formpointer through under the logical length pointer of the source
string. The characters are appended to the destination string
starting after the formpointed character in the destination
stringe. TIhe source string pointers remain unchanged, Dut the
destination string pointers both point to the last character
transferred. The EOS condition ~1]1 be set 1f the new string will
not fit physically into the destination string, but all characters
that wil]l fit will be transferred,

CHAPTER S. CHARACTEK STRING HANLLING JNSTRUCTIURS h=S$

The iqllowing example shows two strings before the operation,
the operation, and the result in the second string after the
operation:

STRINGI) 6 JOHUN"DOE ETX
STRInG? 11 1 MARY~JONES*~rAnaannrnn ETX
APPEND STRINGY TU STRINGZ
STRINGE 14 14 MARY*JUNES*DOE""4""2" ETX
The following example shows a destination string betfore the
operation, an operation appending a literal to the destination
string, and the destination string after the operation:
STRINGZ 9 8 MARY*JUNES" R rannrnrnan ETx
APPEND " XX,YY," 10U STHINGZ
STRINGZ i 15 MARY*JUN XX YY" nnn ETX
The following example shows the use of APPEND to move a
numeric ttem into a string item:
NUMBER 0200 100,35 ETX
STRING 9 2 ABCOEFGHI ETX
APPEND NUMBER TO STRING
STRING 8 8 AB100,331 ETX
Y3 MATCH
MATCH compares two character strings starting at tne
formpointer of each and stopping when the end of either operanad’s
string is reached, 1f either formpointer is zero before the
operation, the MAICH operation will result in only clearing the
LESS and EWUAL flags and setting the EUS flag, fltherwise, the
"Jength" of each string is calculated to pe LENGTH=FORMPOINTER®+1
and the LESS flag is set 1t the destination string length is less

than that of the source string, The two strings are tnen comparced
on a charactep=for=character pasis for the number of characters

H=i) DATABUS L1vw

equal to the lesser of the two lengths. If all the characters
match, the EQUAL flag is set. ({itherwise, the LESS flag’s meaning
1s changed to indicate whether the ASLII value af the destination
character is less than the ASCI] value of the source character
(LESS flag set) or vice versa (LESS flag reset) for the first pair

of characters that do not match, Some examples and their results
follows

SOURCE DESTINATIOUN RESULT

ABCDE ABCD EQUAL, LESS

ABC L NOT EGQUAL, NOT LESS
277 AdA NOT EBEWUAL, LESS

ABC ABC Ewual, NOT LESS
ABCD - ABCDE EGUAL, NUT LLESS

Examples:

MATCH A TU B
MATCH STR1,S8TRe

5.4 CMUVE

CMUVE moves a character from the source operand to under the
formpointer in the destination string, The character from the o
source operand may be a quoted alphanumeric (note that the forcing
character rule does not apply here), the character from under the
formpointer of a string variable, or an octal control character
(000 to 037), 1If either operand has a formpointer of zeros an E0S
condition and no transfer occurs, Specifically, & variable
declared with DIM instead of INIT has an initial value of MULL.

Examples:

CMOVE XDATA TO YDATA
CMOVE "a" 70 CcarT
CMOVE X, Y

CMOVE 015,Y

Sub CMA'LH

CHMATCH compares two characters, one taken from each of the
source and destination operands, The characters may be quoted
alphanumeric (note that the forcing character rule does not appely
here), from under the formpointer ot a string vartable, or octal
control characters (000 to 05/), An £0S condition occurs if
either formpointer is zero, and no other conditions are set.

CHAPTER 5. CHARACTER STRING MAWULING 1RSTRUCTIONS b=bH

Utherwise: thg EQUAL and LESS conditions are set appropriately,
The LESS condition is set if the destinatiaon string character is
less than the source string character,

Examples?

CMATCH XDATA TO YDATA
CMATCH "A",DOG

CMATCH CAT TO "a"
CMATCH 015,D06

el BUMP

BUMP increments or decrements the formpointer of the first
operana if the result will he within the string (between | and the
logical length), 1f no parameter is supplied, BUMP increments the
tformpointer by one, However, a positive or negative literal value
may be sypplied to. cause the formpointer to be moved in either
direction by any amount, Note that a numeric variable is not a
valid arguement to BUMP, although such a statement will not be
tlagged by the compiler, This is because the compiler treats any
text appearing after a valid arguement as comments, providing it
is not recognisable as another arguement, The EOS flag will be
set and no change in the formpointer occurs if it would be less
than one or greater than the logical length after the movement had
occurred,

Examples:

BUMP CAT
BUMP CAT BY 2
BUMP CAT,=1

5.7 RESET

RESET changes the value of the formpointer of the source
string to the value indicated by the second operand, If no second
aperand is given, the formpointer will be reset to one. The
second operand may be a quoted character, in which case the ASCII
value minus 31 (space gives one, ! two, " three, etc) will be used
for the value of the formpointer of the source string, The second
operand may also be a character string, in which case the ASCII
valuye minus 31 of the character under the formpointer of that
string will be used for the value of the formpointer of the source
string. The secono operand may also bhe a numeric strings in which
case tne value of the number will be usedg for the formpointer of
the source string,

b=b PDATABUS 11060

The use of a string variable as the second operand in a RESET
instruction may not be obvious at first, (ne application could be
in deing code conversions where each character in the string to be
converted is used as a formpointer value in a code conversion
string from which is pickea to corresponding converted character
to be used as the character in the converted string, Another use
is in the coding of item positions within a string into o single
character, For example, in a file one might want to place an item
in a variable location within the record, 1The first character of
the record could be a character which corresponds to the column
positicen within the record of the start of the item, Une could
read the first character of the record into a one character string
variable and then the rest of the record into a large string
variable, The large string variable coula then have its
formpointer reset to the posittion indicated by the first character
in the record and the item could then be moved to another variable
with the MUVE instruction,

RESET alsoc has the capability of extending the logical length
ot the first operand. It the formpointer value specified is past
the logical length of the first operand, the logical length will
be extended until it will accommodate the formpointer value, 1f
this would cause the logical length to be past the physical end of
the string, the logical length and formpointer will both be left
pointing to the last physical character in the string., 1lhis
feature is useful in extracting and inserting information within a
large string, The EUS condition will pe set if & change in the
logical length of the first operand occurs. v

Examples:

RESET XDATA TO 5

RESET Y -

RESET Z T NUMBER

RESET Z 10 STRING

Note that the RESET instruction is very useful in code

conversions and hashing of character string values as well as
large string manipulation,
bS.8 EnpSt T

EMNDSET causes the operand’s tormpointer to roint where its
logical lengtn points,

txample?

CHAPTER 9. CHARACTER STRINMG ;*riﬁaiuULIi'-é(,‘ LieSTRUCT LS 5=7

ENDSET PNAME
5.9 LENSE]

LENSET causes the operand’s logical length to point where its
formpointer points, :

Exampﬁe:
LENSET QNAME
5,10 CLEAK

CLEAR causes the operand’s logical length and formpointer to
be zero, None of the data characters are changed,

Example:
CLEAR NBUFF
Sell EXTEND
EXTEND increments the formpointer, stores a space in the
position under the new formpointer, and sets the logical length to
point where the new formpointer points {f the new Jogical length
would not poipt to the ETX at the end of the character string,
Utherwise, the E0OS flag is set and no other action is taken,
Example?
EXTEND BUFF
S.12 LOAD
LOAD performs a MOVE from the character string pointed to by
the index numeric variable, given as the second operand, to the
first character string specifiea, 1Ihe instruction has no effect
if the index is negative, zero, or greater than the number of
items in the list, Note that the index is truncated to no decimal
places before it is used (e,a. 1«7 = 1),

Examples

LUAD AVAR FRUM n UF NAME , TITLE,HEDING

Hed DATARUS 1100

5.13 STURE

STURE performs a MOVE from the first character string
specified to a character string in a list specified by an index
numeric variable given as the second operand, The instruction has
no eftect if the index is negative, zero, or greater than the
numeoer of items 1n the list. Both LOAD and STURE can be used with
numeric arguements, see the sectyon under "Aritnmetic Uperations,"

Note that the index is truncatea to no decimal places before it is
used (eQQQ 157 = 1). :

Exampless

STURE Y IWNTU NUM GF TTEMPENTRY, AL [&K
STORE "xXxX" INTO nUM QOF Al,A2,A3

the LDAD and STORE instructions may be continued to the next
line by the use of a colon:

Examples}
LOAD SYMBUL FRODM N QF VAH;CQNS]:DEC;
’ CCOUNTFLAG,LIST
_STORE NAME INTO NuM OF ArBrLaDrbtsFatas
HelodoKyol i ‘

Se14 CLUCK
CLUCK enables the programmer to access the DATABUS 1100

clocke This interrupt is accurate to approximately 0,00% percent

or four seconds per day. TIhere are three vaoriables that the CLOCK

instruction can access, These are given the names T1ME, DAY, and

YEAR, All are character strings with TIME being in the format:
12:34:56

and ranging from 00:00200 to 23:159:59, DAY beinq in the format?
123

and ranging from 001 to 3ab4 (except to 3%6bo on leap years), and
YEAK being in the format:

le

CHAPTER 5, CHARACIER STRING mAfLLLING LeaSTRACT TS Hed

and ranging from 00 to 99, being the last two digits of the year,
Note that when the TIME goes from 23:59:59 to 00:00300, the day is
incremented, lhe new day value i8 not checked to'be a valid
Julian date, however, implying that the system must be manually
reset at midnight at the end of the year, The CLUOCK instruction
performs a character string to character string move with the
special variable in the source and the character string to receive
the information in the destination operand specification. Note
that the user’s program may have variables called TIME, DAY, and
Yt AH,

For example?

CLOCK TIME TO TIME
CLOCK DAY TO vAY
CLOCK YEAR TO YEAR

would move the information in the system variables into user
defined variables called TIME, DAY, and YtAR also.

Note that the clock value is not allowed to be updated by the
foreground interrupt during the actual transfer of characters from
the system data into the user’s data item, However, an interrupt
tould occur between the time one clock item was moved and the
next, thereby necessitating a precaution 't both the time and the
day tigure are ovtained. For example, if the time was 23359:59
and the TIME was moved into a variable ana then the foreground
interrupted and caused the clock to be incremented to the next
second, the TIME would then read 00:00:00 and the DAY would have
been incremented, If the DAY figure were then obteined, it would
be wrong, Therefore, when obtaining both the TIME and DAY, one
must first get the DAY, then get the TIME, and then qgo back and
make sure the DAY had not changed, For example:

CLOCHK DAY TO DAY

CLOCK TIME TO TIME

CLOCK DAY T0O DAYZ

CUMPARE DAY 10 DAYZ

GOTO TIMEOK IF EGQUAL

CLOCK DAY TO DAY
TIMEODK 44

el DATABUS 1100

5.15 TYPE

TYPE sets the EGUAL conditjon it the string contained from
the formpointer through the logical length of the specified string
variaole is of valid numeric format (only leading minus, one
decimal point, and agigits or leading spaces), Note specifically
that a tield that is all spaces, only a decimal point or NULL is
not a valid numeric field,

5.16 SEARCH

SEARCH compares one string of characters (a key) to a series
of contiguous variables (a 1ist) and returns the positional number
(the index) of the matching item. The search starts at the
tormpointer of the key variable ano the formpointer of first list
varianle, FEtach compare through the list stops when the key lenath
is exhausted (the items do not have to be ot egual length), 1f
the key matches the itemseven though the item is longer, a match
will occur, If the list item is shorter than the key, no match
occurs, The instruction must include a numeric variable
containing the number of items in the list, The key will be
compared to each item in the list unti]l the list length is
exhausted or a match occurs, o '

If a match is fbund, the number of the matching variable -
(that is, its position in the list) 1s stored in the numeric
variable specified as the index ana the EWUAL flag is set,

1t no match is found, the index variaole is set to zero and
the UVER flag is set, : :

For example:

SEARCH ~ KEY IN LIST TU LISTEN wITH INDEX
SEARCH ACTNO ON VALIDACT 10 TEM USING CLASSHD

The key and list may be of either numeric or string type,
However both the key and list items must be ot the same type as it
1s not possiole for a match to occur when one item is a string
variable, and the other 1s a numeric 1tem, Kegardless of the
type, only compare without alianment 1s preformeq, The list
arguement 1s the name of an item 1n the user®s data area, and
defines the beginning of the search operation, As the search
progresses, one date item after another is comparea against the
kev varitapble (using criteria similar, but not identical to MATCH)

ChaPTEE S5 CHAKACTER STRING MANDLLING ITWmSTHUCTIONS Hhell

unttl the specified number of {items have been compared, or a match
has been found, It i8 the user’s responsibility to limit the
search operation to a valid number of 1tems,]f the number of
ftems specified in the search exceeds the number of items in the
user’s data area, the search continues blindly until the count is
exhausted,

.1/ REPLALCE

The REPLACE (or REP) instruction allows any ASCII character
in a string variable to be replaced by any other ASCII character,
The tirst variable fn the instruction contains one or more pairs
of two characters, each pair consisting of the character to be
replaced and the replacing character, The second variable is the
string to oe modified ,

ABVAR INIT "pPaArRS"
REPLACE ABVAR 1IN SVAR
REP "AB" IN SVAR

1n the latter example string SVAR will have any "A® character
replaced by a "B" character, .

bHwl? UaTABUS 1100

CHAPTER 6, ARITHMETIC INSTRUCTIGHNS

_ A1l of the arithmetic instructions have certain
characteristics in common, Except for LUAD and STURE, each ‘
arithmetic instruction. is always followeda by two numeric string
variable names. The contents of the first variable is never
modified and, except in the CUMPAKE instruction, the contents of
the second variable is always the result of the operation. Ffor
example, 1in:

ADD XAMT TO YAMT

the content of XAM1 is not changed, but YAMT contains the sum of
XAMT and YAMT after the instruction is executed,

Following each arithmetic instruction, the condition flags
UVER, LESS, and ZERO (or EUUAL) are set to i1ndicate the results of
the operation, UVER indicates that the result of an operation is
too large to fit in the space allocated for the varianle (a result
is still given with truncation at the lett anag rounding at the
right, however), LESS or ZER((LGUAL) imgicates respectively that
the content of the second variable is negative or zero following
the execution of the instruction (or would have been in the case
of COMPAREL), ’ '

Wwhenever overtlow occurs, the higher valued digits that do
not fit the variable are lost, For example, if a variable is
detined:

NBR42 FORM 2,2

ana a result of 4234,67 is generated for that variaple, NBRAZ will
contain only 34,67, ’

whenever an operation produces lower order digits that will
not fit in the destination variable, tre result is rounded,
Rounding on tive is the next qreater variable, A variable with
the FURY 3,1 would contain:

dor,¢ for 4b,213%
812,.,5 for Hl2,4b%
3,7 for S.b00
3,9 tor 3.,8%0
632.0 for 4632

CHAPTER 6, ARKTTHMETIC 10STRUCTIUNS b=1

with the UVER condition occurring for only the last result,

Note that {f an (JVER occurs during an ADD, SUB, or CUMPARE of
two strings of different physical lengths, the result and the LESS
condition flag may not be correct,

be,1 ADD

ADD causes the content of variable one to be added to the
content of variable two?

Examples:

ADD X TO Y
ADD DOG,CAT
ADD "1", LEN

6.2 SUB or SUBTRACT

The SUB instruction (the compiler will also accept a mnemonic
ot SUBTRACT) ceuses the content ot variable one to be subtracted
trom the content ot varfable two,

txamples?

SUB RX350 FRUM TOTAL
SUB "32,5" FROM RATE
“SUBTRACT Z,TOTAL

6.3 MULT or MULTIPLY

The MULT instruction (the compiler will also accept a
mnemonic of MULTIPLY) causes the content of variable two to be
multipliea by the content of variable one, The restrictions
mentioned in the introduction about the length of multiplication
operands are that the sum of the number ot characters in the two
operands must be less than 32,

Exampless:
MULT B8 BY A

MULT ".005%" dY TUTAL
MULTIPLY w,l

bwg UATABUS 1100

6.4 DIV or DIVIDE

The DIV instruction (the compiler will also accept a mnemonic
of DIVIDE) cayses the content of of the second varjable to be
divided by the content of the first variable. The restriction
upon division operands is that the number of characters in the
dividend plus the number of characters 1n the divisor plus two
times the number of characters after the decimal point in the
divisor must be less than 32, ODivision by zero results in the
OvER condition being set and the destination variable not being
changed,

I1f the guotient cannot be represented fully in the
destination variable format, the guotient will be prounded to the
number of places in the destination variable if the divisor has at
least one digit place after the decimal point, If there are no
digit places after the decimal point in the divisor, the quotient
will be truncated {(rounded down) to the number of places in the
destination variable, :

txamples:
DIV SFACT INTU XRSLT
DIV "3,0" INTUO QUANTITY
DIVIDE X3,HOURS
b.‘J ‘*Nl\ft

MUVE causes the content of variaple one to replace the
content Qf‘variabie two,.

txamples?
MOVE FIRST Tu SECORD
MOVE "0" T0O CUUNTER
"MOVE Al
6.6 ClrmPARE
LUPARE does not chanue the content of either variable but
sets the condition flags exactly as 1f a SuU instruction has

occurre:l,

Examples:

CHAPTER ba ARITH=ETIC INSTRUCTIUNS b=3

COMPAKE XFR# 10 YFRM
 CUMPARE "10u" TO LINENK
COMPARE TIME1,TIMES

6,7 LUAD

The LUAD instruction selects the numeric string variable out
of a list based on a numepric inaex variable, It then performs a
MUVE operation from the contents of the selected variable into the
first operand, 1f the index is truncated to no decimal places
vefore it is uséd (e.g. 0,130).

Examble:

LOAD CAT FROM N OF CAT,MULT,SPACE

6.8 STURE

The STURE instruction selects a numeric string variable from
a list based on the value of a numeric index variable, It then
pertforms a MUVE operation form the contents of the first operand
into the selected variable, If the index is negative, zero, or
greater than the number of items in the list, the instruction has
no effect. Note that the index is truncated to no decimal places
before it is used (e.,g, 0,1=0),

Examples
STORE X INTO NUM OF VAL,SUB,TOUT

The LOAD and STORE instruction statements may be continued to
the nmext line by the use of a colon,

Examples:
LABEL LOAD NUMBER FRUM N OF N1,N2,N3,N4,N>:

Neo N/ NBpNY
ENTRY STORE "2,3" INTU X OF N1,N2/N3

b=4 DATABUS 1100

6.9 CHECK11

The CHECKI1 (or CK11) instruction performs a check digit
calculation (modulo 11) on two string variables., Both string
varianies must consist of digits only. The first variable is the
pase number and the check digit to be validated:

123541 7|
I BASE | k=== CHECK DIGIT

The second variable is the weighting factor:
i 5432

Note that -the weighting factor ano the base portion of tne number
are of the same length. The weiqghting factor is assumed to have
the length of the base, 1f it is shorter, an ELUS condition is set
and the instruction 1s not completed, If the weighting factor 1s
longer, only the first (n) oigits are useds, where (n) 1s the
length of the base,

- The calculation 1s performed starting at the form pointer of
each variable using the length = | of the first variable, When
_the check digit value has been computed, it is compared to the i}
last digit of the base, 1f they match, the tWUAL flag is set; if

the resultant check digit does not match, the OVER flag is set and. -

the EWUAL flag is cleared,
For examplet

CHECK11 BASECK BY "7654327"
CK11 NMBR BY WEIGHT

The algorithm used to generate the modulo 11 check digit value is3

1) tach digit in the base is multiplieo ©y the corresponding
digit in the weighting factor.

2) The inaividual products are added.
5) The sum of the products is divided by eleven,
4) The remainder of the division is subtracted from eleven

giving tne check digit,

CHAPTER o6, ARITHMETLIC INSTRUCTIONS b=

H) A check digit with a value of 10 cannot be used and causes
the UVER flag to be set,

- be10 CHECKI1O
The CHECK10 (or CK10) conforms to the same restrictions and
is performed in the same manner as the CHECK1! itnstruction with
the exceptior of the algorithm used to compute the check digit,

For examples

CHECK10 ACTNU B8Y "21212"
Ckiv A BY B

The algorithm for modulo 10 check digit computation is:

1) Each digit in the base number is multiplied by the
corresponding digit in the weilghting factor,

2) The individual digits in these products are added.
3) The sum ot the digits is divided by 10,

4) The remainder of the division is subtracted from 10 with the
result beinag the check digit,

b=t DATABUS 1100

CHAPTER 7, InPUT/Q0UTPUT IHSTRUCTIONS

The DATABUS 1100 statements that move data hetween the _
program variables and the terminal, printer, or disk, allow a list
ot variables to follow the operation mnemonic, This list may be
continued on more than one l1ine with the use of a colon,

The I/U list may contain some special control information
pesides the names of the variables to be dealt with, It may also
include octal control characters (000 throyah 037), Care must be
taken in tne use of these special control characters as their use
can cause unpredictable results if the 1/0 device (such as the.
Jervo Printer) does not have provision for them, DATABUS 1100 has
no formatting information in its input and output operations other
than the list controls and that implied by tne format of the
varianles. J[Ine number of characters transferred 1s equal to the
number of characters physically allocated for the string (except
in some special cases) allowing the programmer to set up his
formatting by the way he dimensions his data variables,

7.1 KEYIN

KEYIN causes data to be entered into either character or

numeric strings from the kevboard, A single KELYIN instryction can -

contain many variable names and list controi items, when .
characters are being accepted from the keyboard, the flashing
cursor is on. At all other times the cursor is oft, '

‘when a numeric variable is encountered in a KEYIN statement,
only an item of a format acceptable to the variable (not too many
digits to the left or right of the decimal point and no more than
one sign or decimal point) is accepted. If a character i1s struck
that is not acceptable to the format of the numeric variable, the

character is ignored and a beep is returned to the console, Note

that 1f fewer than the allowable number of agigits to the left or
riaght of the decimal point are entered, the number entered will be
reformatted to match the format of the variable being entered,
ahen the ENTER key 1s struck, the next item in the instruction
list 1s processed,

dhen a8 character string variaoble 1s encountered, the system
accepts any set of ASCIIl characters up to the limit ot the
physical length of the string. The formpointer of the string
variavle is set to one ana characters are stored consecutively

CHAPTER 74 INPUT/ZOUTPUT 1N3STRUCTIONS 7=1

starting. at the physical beginning of the string, when the ENTER
key i8 sStruck, the logical length is set to the last character
entered and the next item in the keyin list is processed. If the
ENTER key i8 struck without any other characters having been
entered (a null string is entered), both the logical length and
form pointer of the string are set to zero, The program can check
tor a variable with @ null entry by checking for an EUS condition
atter doing,a CMATCH instruction on the variaple in question,
During a KEYIN, any unrecoqnizable characters (not in the printing
ASCL] set) sent inm from the console will be ignored and a beep
returned, ‘

lelel Displaying with KEYIN

Other than variabie names, the KEYIN instruction may contain
quoted 1tems, list controls, and octal control characters (000 to
037). GQuoted {items are simply displiayed as they are shown in the
statement,

lele2 List Controls

The list controls begin with an asterisk and allow such
functions as cursor positioning and screen erasure, The 2P<n>;<m>
control positions the cursor to hortzontal position <n> and
vertical position <m>, Note that these numpers may be literals or
numeric variables and both positions must always be given in a *P
command, The horizontal position 18 restricted by the interpreter
to pe from } to 80 and the vertical position is restricted to be
trom | to 12, Numbers outside this range have the effective value
of 80 horizontal and 12 vertical,

The *ES control positions the cursor to 131 and erases the
entire screen; the *EF control erases the screen from the current
cursor position, the *EL control erases the rest of the line from
the current cursor position, the *C control causes the cursor to
be set to. the beginninag of the current line, the *L contro)l causes
the cursor to be set to the following line in the current
horiZontal position, the *N control causes the cursor to be set to
the first column of the next line, ana tnhe *R control causes the
screen to roll up.

Normally, the cursor is positioned to the start of the next
line at the termination of a KLYIN statement, However, placement
of a semicolon after the last item in the list will cause this
positioning to be suppressed, allowing the line to be continued
with the next KEYIN or DISPLAY statement, Tnis feature is also
true of the PKINT commana,

{=2 UATABUS 1100

Example:

KEYInN *ES,"NAME: ",NAME,%P3531,"ACNT Nik: "3
ACTNR," ADDRESS: ",STREET,#P10s3:
CITY xPX34,"21IP: ",Z21P;

KEYIN "ABC",021,NVAR

f+1,3 KEYIN Continuous

A mode called keyin continuocus 1s available (turned on with
list control %+ and turned off with list control 2= or the end of
the statement) which causes the system to react as if an ENTER key
nad pbeen struck when the operator enters the last character that
will ftit 1into a variable, This mooe aliows the system to react in
mych the same way as a keypunch machine with a&a control cara,

7.1.4 BACKSPACE and CANCEL

while keying a given variable, the operator can strike the
dAaCKSPACE key and cause the last character entered to be deleted,
Ihe operator may also strike the CANCEL key and cause all of the
characters entered for that variable to be deleted,

A circular input butfer allows the operator to send
characters from the keyboard before they are requested by the
system, #iote that there is no feedback at this level as the
characters are fed back only as they are taken from the buffer,
This butfer allows the operator to continuously enter data without
being attected by minor delays inm the resvonse of the system, B

f.1lab Uperator lnterrupt Procedure

A special case of KEYIWN is the interrupt procecure, entered _
oy keying CANCEL with botn the KEYBUARD and DISPLAY keys depressed
on the system console. WNormally, when the cursor is not flashing,
all characters will be i1gnored (not acceptea from the circular
inout puffer) until input is requested, The exception, however,
is the interrupt character, which may e keyed at any time (it
will be postponed it a 'l instpruction is in eftect) and will
result in an immeaiate CHAIK to the #ASTEK proaram, Thus, the
currently executing program will stopy the vrinter, 1t veing used,
will e avorted, and the MASTER program will penin execution,

CHARTER 7, 1wPUT/Z0UTPLT 103 irtt.TTONS =35

Teleb New Line

Another special case of KLYInN 1s the NEw LINE character,
which is the DEL or underline character on the system console, 1If
this key i8 struck during a KEYIN statement, the current variable
is terminated as it the ENTER key were struck and all subsequent
variables in the statement will pbe set to zero or their
tormpointers and logical lenaths set to zero depending on whether
they are numeric or string variables, (Lontro! will fall through
to the next DATABUS 1100 statement,

Telel KEYIN Timéout and Pause

The 1ist control, *xT, may be ifncluded in the KEYIN statement
causing a time out if more than two seconds elapse between the
entry of two characters, The time out has the same results as if
the NEW LINE key had been struck,

The list control, *W, may be included in the KEYIN statement
causing a one second pause at that point in the list sequence,
This control is especially useful in programs which wish to simply
pauge for a number of seconds, Any number of seconds of pause may
be achieved by putting in the required number ot *w controls in
the l‘ist.

T«la8 Echo Control

The 1ist controls *EOFF anao *EUN may be included in the KEYIN
statement causing the echo of entered characters to be inhibited
or enabled respectively, when echo is inhibited, the KEYIN
statement causes only tne characters specifically mentioned in the
list to be displayed on the console, Therefore, the statement?

KEYIN *EOFF o INLIVES

would allow the variable INLINE to be entered from the keyboard
with absolutely no characters being displayed at the console,

Since the cursor display at the console will not be enabled, there
will pe no indication in this case that input is peing reauesteq,
Jhis feature could be usea where passwords are to be entered and
it is desired to suppress their display., In this case, the
statement $) : :

KEYIN AEQFF »*P1210, "ENTER PASSHORDE "3
022,PASSWURD, 024

{=i DATABUS 1100

could be ysed., Note that even though echo is 1nhibited, the
cursor positioning and literal characters are still displayed on
the conscle since they are specifically mentioned, Notice also
that tne carriage return and line feea will be sent at the end of
‘the statement since a semi=colon is not supplied, The 022
character 1s a cursor on ana the 024 is a cursor off for the
system console. The cursor controls must be specifically
mentioned since the echo inhibit prevents them from being sent
automatically, The echo is always enabled at the conclusion of
the KEYIM stotement, Therefore, one must always inhibit the echo
at the start of each statement in which no echo ts desired,

{.1.9 KEYIN Format Controls
Humeric and 8tring variables in the KEYIN may be preceded by
a format control function which can change the justification

ana/or fi1l control normally performea during KEYIN,

The special KEYIN controls apply only to the variable
following in the KEYIN statement.

Ihe *JL control left=justifies numeric input ana zero=fills at -
riaht if there i8 no decimal point enteread from the terminal,

KEY1N xJL o NVAR

The *xJK control pight=justifies String input and blank=fills at
ieft. : .

KEYIN *JR, SVAR
The *ZF cantrol performs zero=fill on String entby; Characters
that normally would be supplied as blanks are supplied as ASCII -
zeroes, _ » -

KEYIN *ZF ,SVAR

The combination of *ZF and %xJR is valia,

KEYIn kIF g2 JR,SVAR
The *DE control can be useo to restrict String 1nput to di1gits
only (U=9), A non=oi1git will not be accepted at the keyboard,
KEY LN %0k p SVAK

CHAPTER 74 LaPUT/ZJUTPUT INSTRULTIUNS /=%

7.1.,10 Text Input

The keyhoard input can be programmed for text input through
the use of the 1T and *IN contreols, The control %11 is used to
turn=on the text input mode, This converts all alphabetic
characters to shift case as on an office typewriter, The keyboard
remaing in the text input mode until the control *IN returns the
keyboard to normal mode, ‘

KEYIN *IT,SVAR,*IN

/2 DISPLAY

DISPLAY follows the same procedure as KLYIN except that when
a variable name is encounteredg in the list following the
instruction, the variable®s contents are sent to instead of being
requested from the console, Character strings are displayed
starting with the tirst physical character ang continuing through
the logical length, Spaces will be displayed for any character
positions that exist betweem the logical length and physical end
of the string unless the *+ mode (keyin continuous in the KEYIN
instruction) is active, §in which case no more characters are put
out after the logical length, Numeric strings are always
displayed in total, Quoted strings, list controls, and octal
control characters may be included in the display instruction and
are handled in the same manner as describeo for the KEYIN
instruction. Note that the xT, *EON, and *EOFF controls will
simply be ignored in the DISPLAY statement,

Examples:
DISPLAY *PS:1,"RATES ",RATE:
xPS12, PAMOUNT s ", AMNT
DISPLAY "ABC",021,51;
.3 ottpP
BLEP causes a heep to be sent to the console,
Examples

BLEP

T=6 DATABUS 1100

{ed PRINT

DATABUS 1100 supports either one local printer or one Servo
orinter, depending on printer availability,

Ine PRINT instruction causes the contents of variables in the
list to be printed in a fashion similar to the way UISPLAY causes
the contents of variables to be displayed, The list controls are
much the same as DISPLAY except that cursor positioning cannot be
useda, column tahbulation 1s provided (*<n> causes tabulation to
column <n>) and *F causes an advance to the top of the next form,
Uctal control characters may also be included in the print
instruction, The PRINT statement may ve continued on more than
one line by the yse of a colon,

Examples:

PRIN'{ DATE s 220, " TRANSACUT T SUMMARYY &0 oL 2
PriRME g kn p KLU RATE p 220, HUURS %408
ArtT g ki

PRINT YAKRCY,021,51;

The control character, *ZF may ve used hefore any numepric
variable to cause zero fi{ll on tne left, movina the sign to the
left if necessary, The tabbing in the PRINT statement can move
the carriage 1n the reverse direction and any sequence of printer
controls will be executed in precisely the sequence specified,
For example, one could print 10 characters, tab back to column 5
and overprint that column, do one line teed, and print five
characters which would appear 1n columns 6 throuagh (U under the
first line., Une could tnem uo a form feeo and orint 10 more
characters which would appear 1n coiumns 11 throuagh 20 at the top
ot the next paqge,

[t the servo printer is being used, the parer out condition
will be checked whenever a top of form control 1s given in a PRINT
statement, 1f, after the top ot form furction 1s performed, the
paper aut conaition is present, the conscole will make a uniquely
characteristic beeping sound (morse coae "H") to alert the system
operator that more paper must be placea 1n the printer, lhe
neeping sound will stop when tne front cover of the printer is
swuna out but will resume 1f the cover is replacea to 1ts original
position with the paper out indicator still on., Ilhe recommendea
procedure i1s to open the frant cover, remove the last form still

CHAPTER fe LiaPUTZ0UTPUT LTaSTRUCT DS [=7

in the Qrinter, place new paper in the printer with the top of the
form aligned with the print head, and finally close the front
cover, _

Another feature allowed with the servo printer is minor
vertical spacing (there are eight minor vertical spaces for one
standard line space), Control characters given directly in the
PrRINT statement and can cause the paper to be fed either up or
dowh up to seven minor vertical spaces, The characters zero
through seven (in binary value) cause the paper to be fea down the
pange (the normal spacing airection) a corresponding number of
minor spaces, 1Ihe characters eight through fifteen cause the
paper to be fed up the page (opposite to the normal spacing
direction) zero through seven minor spaces respectively, The
characters sixteen through twenty=two cause the carriage to move
to the left seven through one column positions respectively
(horizontal minor positioning cannot be pertormed), The character
twenty=three causes no printer action, The characters twenty=four
through thirty one cause the carriage to move to the right one
through eight column positions respectively, TIhis feature on the
servo printer allows different kinas of underscoring and super<
and/or sub=scripting in the printed output, Note that it is the
user’s responsibility to keep track of the carriage
micro=position,

75 Digk 1/0

DATABUS 1100 allows a large variety of file structures and
access methods. The structures can be dependent upon the physical
sectoring of the disk, ohysically sequential, or logically
indexed, The access methods can be physically random, physically
sequential, logically random, or logically sequential with any mi x
of these being allowea on logically indexed files, This section
will describe the various file structures that can be created, how
positioning is maintained within these structures, and how access
to desireas information within tne structure can be achieved, It
will then describe the various operations that can pe performed
upon the information within the file.

Te«1 Fi1le structures

The most basic structure within a file is a physical recora,
A physical record can contain at most 251 data characters (note
that there is no decimal number compression within any of these
file structures so a number always occupies the number of
characters that are containmed within the FURM which defines the
number)., A physical record corresponds to exactly one physical

Tt UnTABUS 1100

sector on the disk and is always terminated bty a 003 character,

The next level of structuring 1s a Ingical record. Depending
upon the way the user structures his file there may or may not be
an integral number of logical recoros witrin a physical record. A
logical recora is terminatea by a 015 character after which
another logical record begins, dote tnat logical records can
extend across physical record poundaries (terminated by 003
characters) so that a file witn logical records may appear 1n the
first two physical records as follows (the items in parentheses
are the logical and physical record termination characters):?

(11268556382 AASDFGWERKFKDSKA (015) 1254846 (003)
6483 LAKSIDFLKASLFKAJ (01b) 488283884483 k1 (003)

Note that the tirst logical record extends about two thirds of the
way throuagh the first physical record ang is then terminated by
the 015 cnaracter, The first seven characters of the seccnd
logical record are also contatned in the first physical record at
which point the first physical recora is terminated, . The rest of
the second logical record extenus about half way through the
second physical record andg is then terminated by the €15
character, . At this point the third logical record starts and so -
ONe.

Also note that there is no restriction upon the length of a
logical record (a single logical record may extend across many
physical records) but that it is a good 1gea to keep logical
records reasonably short to prevent them from vtecoming hard to
deal with, If it 1s wanted to keep only cne logical record per
physical record then make the file appear as follows:

(11128558382 AASDFUWERKEKDSKA (015) (003)
1250484884838 LAKSIDFLKASUFKKY (G15) (Gu3)
48826 3BBUB3 KILAKJLKJILKSIDFKY (019) (u03)

sote that it took more disk space to store the same amount of
information in this case than in the previous case. It is
sometimes desirable to give up tnis space 1n return for the
canability of using the fastest accessing method of directly
accessing ohysical records, A& structure w~hich allows loagical
records to cross physical record noungaries 1s caltled a record
compresseda structure,

In some data files large numbers of contiuuous SpPACES appPear,

[nese files can be compressed even furtner tnan simple use of
record compression by the use ot space comnression (the general

CHAPTER 7. InPUl/ZoiTPuT 1ol olTLUNS 7=

purpose DUS editor, the DOS SURT program, a number of the terminal
emylator programs, the DATABUS 1100 compiler (listing file
output), anda DATABUS 1100 programs can all generate space
compressed records), A space compressed structure appears much
like a record compressed structure except for the addition of the
Vil control character, This control indicates that the next byte
is o positive 8-=pit binary word which tells how many Spaces were
replaced by the compression code character pair, This numher will
never be less than ¢ (since it is wasteful to expand one or zero
spaces into two characters) and may be as large as 255, In
agdition, the 011 will never appear as the last character in a
physical record since the character indicating the numher of
spaces will always appear after the 011 (otherwise the 003
indicating the end of the physical recoro and three spaces
compressed could not be differentiated), For example, in the
following a logical record is shown first without space
compression and then with space compression:

NUW IS THE TIME FOR (015)
NOw IS THECO11)(002)TIME(O11)C007)FOK (015)

The second record is physically shorter than the first by six
characters, It may seem silly to compress two spaces into a two
character compression code but most programs do this because it is
loqgically simpler to program,]f more than 255 contiguous spaces
appear in the data record, multiple space compression codes will
appear, Space compressed records are most useful where large
numbers of spaces appear in the file (as in print tiles) and where
the records '‘are not to be modified in place, If the record is to
be moaified in place, space compression is discouraged since the
number ot spaces could change and the physical length of the
logical record could change,

A file which can be accessed physically sequentially must not
nave any physical records without the proper format between the
beginning of the file and an end of file mark, The end of file
mark always starts at the beginning of a physical record and
contains exactly six 000 characters followed by the physical
record termination character (003), The rest of the characters in
the physical record are of no significance, WNote that if there
are no physical records besides the one containing the ena of file
mark, the file would be null (wnich is a valid condition for a
filed,

A physically sequential adata tile can be logically indexed,

(jne cannot tell that a file is ingexed by looking only at the data
tile since the indexing information is maintained in a separate

f=10 DATARULS 1100

file called the index file (and usually of DUS extension ISI).

The index tile contains the name ana exténsion of the data file
which it indexes ano a set of keys and pointers which relate the
key value of a logical record to its physical position within the
dgata file. QUS utilities exist for the creation of the index file
which must always be performed outside of the DATABUS 1100
interpreter, .

The inaoex file is a n=ary tree where n is determinec by the
length of the key ana where there are enough levels to make the
top node in the tree always fit within one disk sector {(contain at
most n branches)., (ine can conservatively estimate the number of
sectors that will be used in the index file by the following
method, The actual number used may be less pecause trailing
spaces in keys are discarded and more than the minimum number of
keys may fit in a sector,

To compute tne index file length, divide 290 oy the key
lenath plus / and discara the remainder (do not round up the
result), This number should then pe divided into the numter of
logical recoraus to be indexed and the answer rounded up (if the
remainder 1s non=zero then add ome to the answer and discard the
remainder), Save this number which is the number of sectors at
the lowest level ot the index tree, Then divide 250 by the key ,
length plus % and aiscard the remainder. lhis number should then
be divided into the number saved before the previous step and the
answer rounded up, Save this numper which 1s the number of
sectors at the next higher level of the inuex tree, 1f the answer
produced is areater than one, repeat the previcus step (aividing
250 divided by the key length plus $§ 1nto the previous answer).
when the answer has been reduced to one, total all of the numbers
of sectors requirea tor each level ana the result wiil be the
total number of sectors required im the index file. :

For example, assume that the data file contains 10000 logical
recoras and the key is li characters long, Ihe first cormputation
is €50/(10+47) = 14,/1 or 14 discarding the rerainder. lhe next
computation 1s 10000714 = 714,29 or 715 rounding up. Ilherefore;
tne lowest level of the index tree will require 715 sectors, The
next computation is 250/(10+3) = 19,25 or 19 giscarding the
remainoer, lhe next computation is /15/19 = 37.6% or 38 rcunding
ups lherefore, the next higher level of the index tree will
require an additional 38 sectors. Ine next computatian 15 S58/19 =
2,00 or 2 rounaing up, lherefore, the next hianer level of the
1naex tree will require an additional ¢ sectors. The next
computation is 2/19 = 0,11 or 1 rounaing up. Since one sector has
veen reached, the totals are madge: 7T1Ht38+241 = /56 sectors for

CHAFTER fe INPUTZUOTRPUT T8STHul TS I=il

the entire fndex tree,

7«92 Positioning and accessing

In DATABUS 1100, all files are referenced by way of logical
f{les, IThese files are deciared in the data area of the program
using the FILE and IFILE declarations, The declarations relate a
logical file to a certain physical file that is specified by the
UPFN or PREPARE statement performed upon the logical file, The
dats space used by the declaration holds all of the physical
position intormation needed for that particular file. During tile
operations, DATABUS 1100 establishes a position within the file
using a specified access method and then increments this position
based upon the operation specified, '

For physically accessed files, a file position is definea by
a physica)l record number (0 tnrough the maximum number of recoras
in the file) and a character pointer within this record (1
through 249). when the file is inftially opened (with UPEN or
PREPAREL), the physical record number is set to 0 and the character
nointer is set to 1, All read and write operations sequentially
increment the character pointer as the individual characters are
read or written. If the physical record terminator (003) is
reached during a read or the 249th character is written during a
write, the character pointer is reset to 1 ano the physical record
number is incremented (when writing, a physical record terminator
is automatically written after the 249th data character before the
physical record is written out to the disk and movement on to the
next physical record is made). If an end of tile mark is written,
the current physical record is terminated, the physical record
number is incremented (unless the position was at the start of a
physical record when the operation was entered), the end of file
mark is written in the first seven characters of the new physical
records and the character pointer is left at 1,

The character pointepr may be set directly by what 1s called a
tab operation in some disk I/0 statements, WRITAB, UPDATE, and
all readg operations may contain these positioning operators, When
physical access is being made to the file, the tab position given
in the statement is relative to the beginning of the physical
record, #hen indexed access is being made to the tile, the tab
positton given in the statement is relative to the beginning ot
the logical record, Note that when tabbing relative to the start
of a logical record, it is an illegal operation to tan past the
end of a ohysical record., Therefore, when using tabs in inoexed

/=1¢ DATABUS 1100

filesy, there should always be an integral number of logical
records per physical record to prevent tabbing past the end of a
physical recoru. Note that taboing may not bpe used when chysical
access is being made to a file declared as indexed. 1o do tabbed
physical accesses to the file as well as indexed accesses, declare
two loaical files to the same data file; one to be used for
physical accesses (naving peen declarea using the FILE directive)
and the other to pe used for jndexed accesses (having been
declared using the IFILE airective).

When an indexed file is being used, two additional pointers
are kept for the logical file. 1he first is a pnysical record
numper and character pointer to tne first character of the last
logical recoru accessed using the index. Tlhe second 1S a pointer
to the next sequential key after the Jast key accessed using the
indgex., The first pointer enables re=reads and upaates to pe made
to the indexed file and the second pointer enables the 1ndexed
file to pe accessed sequentially by key, wote that nejther of
these pointers is changed when & physical access 1s mage UsiIng the
logical file,

An additional counter maintained for all logical files is the
space compression counter., Ihis counter is used in the
decompression of spaces during read, the compression ot spaces ‘
during write, and as a flag as to whether or not space compression
is to be performed during & write (decompression will always he
pertormed by the read). It is suggested that the reacer come bhack
and read the tollowing paragraph closely after he feels he
understands the disk reaa and write access methods and operations
since some of these ideas are referenced in the following Secticn.
Une must understand the following sectiaon to be able to
effectively deal with space compressed files.,

ithen tne space compression counter has a value of =1 during
write operations, spaces will not pe compressed in the output,
~I'he counter value is set to 0 when the file 1s initially opened
(using OPEN or PREPARE) and at the start of a phystcally random or
Indexed access read operation or when a *+ control in a write
operation statement is encountered., Ihe counter value is set to
=1 when a physically random or inaexed access write operation is
performed or when a *= control in a write operation statement is
encountered, Therefore, space compression will be on at the
beainning ot a pnysically sequential write that occurs as the next
operation after the file has veen opened or a reaa operation ot
any kind has been performed, space compression will be off at the
beginning of any physically ranaom or 1nde«<ed access write
operation, and the status of space compression -ill not be changed

CHARTE i fe LoPLTZUTPUL ThaTRLCTIONS I=15

/=

by any othepr operations, lf the cesired space compression mode
tor a write operation is not obtained by the above rules then the
A+ and A= controls will have to be used to get the desired mode,
Note that these controls can erase the memory of previously
accumulated spaces if used after the beginning of the statement
list while spate compression has been on,

/.5.2.1 Physically Random Access

The fastest random access method available under DATABUS 1100
is physically random access, [o perform a physically random
access, a numeric variable containing a positive number is
supplied as the record specifier to the statement, Any fractional
part of this variable will be truncated and then the physical
record number will be set to its value, The character pointer
will then be set to one and the read or write operation will
proceed, Unfortunately it is often hard to find a map from a key
value {n the data records to a fairly contiguous set of numbers,
necessatating the use ot an index structure, However, if such 8
map can be found, physically random accessing 1mposes lower
overhead than the indexed accessing,

7+5.2.2 Physically Sequential Access

{ne can cause the read or write operation to simply pick up
where the physical record number and character pointer are
currently positioned by specifying a numeric variable with 8
neqgative value in the record specifier, Usually, when a read or
write operation is finished, it leaves these pointers at the
peginning of the next logical record, However, a read or write
operation can be parameterized (by placing a semi=colon at the end
of the variable 1ist) such that it will simply leave the pointers
after the last character dealt with, In this case, the physically
sequential access can be used to continue a previous operation
from where that operation stopped. The previous operation could
have used any access method (including this one) which implies
that omne can continue a logical record to any length., However, it
is often a good idea to keep logical records reasonably short to
nrevent them from becoming hard to deal with., Note that the SUKT
and INUEX utilities require the key value to be within the first
255 characters of a logical record, :

14 DATABUS 1100

[a9a2.3 Indexed Access

As described in the previous section, a data file may have an
associated index file which associates key values to physical
record number and character pointer values, There are five basic
indexed operations: read a record of a given key value, read a
record of the next ASLI] sequential key value, update the record
that was last accessed through the index, insert a new record of a
given unique xey value, and celete a record of a given key value,
Since there can be any number of indexes into one aata file, the
insertion and deletion operations will have to perform key
insertions and deletions upon all indexes, Trerefore, these
operations will nave to be performed once for each index that
points to the data file,

For the indexed read and write overations, once the indexed
access has been performed (the physical record number ana o
character pointer values have been set), the actual operation is
pertformed identically to the operation as performea for physical
accesses, The one exception is when a record 1S being inserted,
Since records are always inserted at the physical end of the file,
a new end of file mark must be written after the inserted record
has been written, In this case, a tlag is set 50 that when the
Write statement has been finished (and it has not been specitfied
that the write operation is to be continued), then the ena of file
mark will automatically be written, This automatic enc of file
mark writing operation will not be performed if the write
operation is to be continued, thereby making it the responsibility
of the DATABUS 1100 program to write the end of file mark when the
record has finally been written in i1ts entirety,

The indexed access using a given key value will cause at
least one disk sector to be read for each level in the inagex in
aaqaition to whatever disk functions are required to perform the
actual read or write operation, If records have peen inserted
into the inde¥ and the INDEX utility has not oeen run since then,
additional disk sector reads may take place depending upon the
length and path of the linked list at the lowest level in tre
index., Therefore, when many insertions are beina rerformed the
InDEX utility should be run as otten as 1s practical to keep tne
access time trom becoming overly large, also, whern 35 gata npase 1§
veing 1nitialized, it is not a qood 1dea to bullao 1t ftrom a null
ingexed tile doing insertions., It would ve nuch more efficient to
builo the data base physically sequentially as long as indexed
accesses need not be made to 1t ana then create the index file on

CHARPTERK 7, IrPal/zouivul TS Tedl T LGnG /=15

a reasonably large data tile after which additional insertions can
then be marie using the insertion facility,

lebe2.4 Physical Access to Indexed Files

Hoth physically random and sequential accesses may be made to
indexed files, Therefore, a file can be indexed only on primary
records and the rest of the records obtained using physically
sequential accesses, A file which is already physically randomly
accessed may have an index added based on some other key value for
fast access to other aspects of the file, If the file has bheen
declared as indexed (using the IFILE directive) then all access
methods may be used upon it. However, if the file has been
declared as none=indexed (ysing the FILE directive) then only
physical access methods may be used uypon it.

7543 PREP or PREPARE.

PREPARE (the compiler will alsoc accept a mnemonic of PREP) is
used to create a new file under the DOS file structure, The name
used for the D0OS file name is given in the string variable or
literal specified in the PREPARE instruction. The characters used
for the name stert from under the formpointer ot the specified
variable and continue until either the logical end of the string

" has been reached or eight characters have been obtained, (If the
item is a literal, the formpointer is one and the logical length
points to the last character,) If the end of the string is
reached before eight characters are obtained, the rest of the
characters are assumed to be spaces, All data files used in
DATABUS 1100 are of extension IXT, The character after the 8th in
the name variable or the character after the logical length, if
the name is less than 8 characters, is used as the drive number
for that file, If the character is not an ASCII 0, 1, 2, or 3 or
no character physically exists past the name, no arive v
specification is assumed and all drives starting with drive zero
are searched when looking for a name in the directory or
directories, Utherwise, only the drive specified is searched,

If the tile already exists (and is not delete or write
protected), it is deleted and a new file created, It the tile has
any protection or the drive specified is off line, an 10 error P
or M prespectively will occur,

7=16 DATABUS 1100

UATABUS 110U always deals with "logical fi1les" once they are

openec with either the PREPARE or OFPEN
files can be opened

of loagical

instructions,
at one time, the

Any number
limitation being

the amount of space the user has avallable to devote to the data

space needed by each logical
files are declared using the FILE or I1FILE
NOTE §

Section 3.1),.
file that has bheen

file that 135 declared,

The PREPAKE

aeclared as a FILE type,

The

logical
instructions (see

instruction can only create a
IThe compiler will

flag an attempt to PREPARE a file that has neen declared as an

IFILE type,

gtility running ynder the D0OS,

For example, let the following definitions be made:

FDECL
FNAME L
FNAMEZ
FIVAME 3

FILE

INIT "EILE LY
INIT "FIlte 1
INTY

"ASUFFILESZ

IFILE type files must be createa by use of the INDEX

Let the formpointer and loaical length of FiAMEL be 1| and 5y that

of FNAMESZ De 1 ana 9,

statement ?

PREPAKE FOECL pFiNAME]
were executea, the file FILEL/TXT would be preparea as
file FDECL on the first drive (beginning with drive 0)
space was avajlable, 1f the statement?

PREPARE FOECL sFNAMEZ
Jere executed, the file FILEZ/TXT would te preparead as
tile FOECL on arive 1, If the statement:

PREPARE FRECL JFNAME S
were ‘executed, the file FILES/TXT woula be prenarea as
file FOECL on «arive 2., If the statement:

PREFAKE FUELCL o "ASDE"
xere executed; the file ASOF/ZIXT would be prepareon as
Filt LI, on the ftirst drive on shich space «~as avallable.

statement

PREPARE

LHAFTER

FOECL» "unt R 3"

7. InPuiZ0ulbpul IasTruCTIins

logical
on which

and that of FNAMES be D ana 9, Then if the

logical

logical

loajcal

[t

the

=17

file

were executed, the file UWER/TXT woula be prepared as logical file
FOECL on drive 3,

If the logical file specified is already open (having been
specifiea in a previous PREPARE or UPEN instructiom and not since
in a CLUSE instruction), the old file will be closed before the
new one is aealt with,

when preparing a very large file a program should be run to
write a dummy record into the largest record number., This will
cause the 0U0S to allocate all records up throuah the one accessed
in as physically contiguous & manner as possihble, thus increasing
the speed with which the file may be randomly accessed, WNote that
the use ot the DUS implies that a tile must be contained on one
arive, If the writing of the gummy record tries to extend the
file past the amount of space available on tne aisk, an error R
will occur,

Kememper that space compression mode for writing i1s left on
py a PREFPARE instruction , .

1.5.4 OPEN

WPk~ causes & DUS file alreaay in existence to be prepared
for use by the DATABUS 1100 program. Except for the fact that it
deals only with files already in existence (giving an IU error if
the name specified cannot be founa and not killing the file if it
already exists), OPEN works in a tashion similar to PREPARKE, In
aoddition, UPEN may specify a file that has been declared as an
IFlILE type (indexed seguential). In the IFILE case, the extension
of the name supplied in the literal or string variable is assumed
to pe ISI instead of TXT (the ISl file header contains the name of
the data file it indexes), The opening of the ISI file
automatically causes the data file indexed by the IS] tile to be
opened, If the data file is indexed by more than one index file
(1S1 tile) then each of the indices must be opened using a
gitterent logical file for each one, (When dealing with indexead
files, the data file itself is never explicitly specified since it
is automatically specified by the header of the ISI file that is
openea,) For example, if the following logical files were
declared:

FOECL FILE
FueCle IFILE
FDECL 3 IFILE

anad a data file FILEL/TXT existed and the ISI tiles FILELI/ISI and

=10 DATABUS 1100

FILEIA/ISI had been created using the InLEX ut1lity as follows:

INDEX FILELZ1=5
InDEX FILEL,FILELAGE=10

and the following UOPEN statements were executed:

OPEN FOECLL»"FILELY
UPERN FOECLZ2,"FILEL"
GPREN FOECLS,"FILELA"

then the iogical file FDECL1 would pbe opened to the normal
(physical access) file FILE1/1XT, the Inaical file FDECL? would be
opened to the jndexed fi1le whose index name was FILEL/1S] and
whose oata file name (as specitieo in the FILE1/1S] header) was
FILE1/TXT, and the logical file FUECL3 would be opened to the
indexed file whose index name was FILE1A/18] ang whose data file
name was FILE1/TXT. This would aive physical access plus access
via two different inaices into the aata file FILEI/TXT, wote that
an IS1 file does not have to reside on the same disk as the data
f1le that it indexes, :

Remember that space compression made for urvtwna 15 left an
by an {JPEN 1nstruction , o

7T.5.5 CLOSE

CLUSE closes the specitied logical file, This insures that
any newly allocated space that was not used in the file will be
returned to the UUS tor allocation to ancother tile,

Examples
CLOSE FDECL

If oniy reaags or updates were performed on the tile, the [LUSE
instruction does not need to be used. Alsao, a CLUSE s
automatically pertormed when one opens or prepares a logical file
tnat is already onen. when a CHAIN is performed, all files that
are currently open are automatically closed without space
deallocation being performed, ~Note that this means ftiles cannot
he neld open across proaram chains, Also, if the interpupt key 1is
struck o chain is aytomatically invoke:d meaning that all files
w111 pe closed without space deallocation,

LLubtk 1s also usea to delete a ti1le frov the S tile system,
Ft g vrEd s performed on a loagical file and the next operation

CHardtw Fe ToP b zuuTiul TSTRUCTIGHS I=14

performed upon the logical file is a CLUSE, the file described by
the logical file declaration will be deleted from the D(US file
system, ' :

Te9.6 READ

READ performs all file data reads (physically random,
physically sequential, indexed random, tabbed or not) except for
indexed key sequential reads, The READ statement format consists
ot & logical file declaration name, & record specifier variable
(numeric or string), and a list of varjables to be filled by the
data from the record, The list may also contain tab indicators
which can specify that only certain portions of the data record
actually be read into the variables listed, Tabbing is a DATABUS
1100 feature which can eliminate unwanted data transfers from and
to the disk controller buftfer and can allow the programmer to save
considerable space in his data area, It can only be used,
however, when the logical records do not cross physical disk
sector boundaries, This condition can usually be enforced through
the use of the REFORMAT utility and careful use ot the DATABUS.
1100 write instructions,

, when data is transferred from the record into a numeric
variable that is specified in the READ statement 1i8t, the number
of characters corresponding to the length of the variable are read
ine Any non=~leading spaces read will be converted to zeros (e.g.
s38’sl, where s stands for a space, would be read as 830201)., If
a non=numeric character other than a negative sign as the first
nonespace character, decimal point, or space is read, a FORMAT
trap will occur., A FORMAT trap will also occur if the variable is
dimensioned to one and the character is a negative sign, A FORMAT
trap occurs if the data does not match exactly the format of the
numeric variable to be read, For example, if X was dimensioned to
4.2 and the characters read were 7777877, a FURMAT trap would
occur since the digit B appeared where a decimal point appeared in
the variable, If a FORMAT trap occurs during a reads, the logical
file pointers are left pointing at the current file position
pefore the read was attempted,

1f a numeric variable to be read includes a "minuswoverpunch"
character, the variable is converted to the normal numeric format
with the minus sign preceeding the first non=blank digit,

when a string 1s read, the number of characters corresponding
to the physical length of the variable are read into the varijable.
The formpointer is set to one ana the logical length is set to
point to the last physical character in tne strina,

=20 DATABUS 1100

If the end ot the logical record is reached before all
variapbles in the list have been read in full, and the variahle
which is veing filled with data when the t0OK is detected is a
string, 1t will nave 1ts logical length pointer set to the last
cnaracter entered before the EUR was reached ang the rest of the
characters physically in the string paddeg with spaces., Note that
this fact can be usea to aavantage when reading sequential space
compressed files, Remember that the trarling spaces in such file
records are not written and that the DISPLAY and PRINT statements
can pe forced to output only up througn the character being
pointed to by the logical length (uysing the *+ vontrol)., These
teatures can be combired to make listing sequential files on the
terminal or orinter much faster by the deletion of trailing
SNaces, .

Ihe above discussion deals with the action taker when the end
of the loaical recora is reached while reading data into a string
varitable, 1f the data is being read 1nto a numeric variable, the
rest of the variable is padded with either spaces or zeros as
appropriate, Note that if one of these Jocations within the
variable i1s the decimal point, a FURMAT trap will occur,

1f the list contains more variables after the one being
tilled when the end of the logical recora is detected, these
variables will either be set to zero (if numeric) or have their.
loanical lengths and formpointers set to zeroc,

1f tne list is exhausted vefore the logical end of the pecard
is reached, two actions can take place, If a semicolon is placed
at the ena of the list, the file pointers are simply left after
the last character read so a subsequent I/0 operation will pick up
shere tne pointers were left, 1f a semicolon is not placed at the
end of the list. the file pointers are advanced until they are
pointing after the next logical end ot record marker so a
subsequent [/ operation will pick up at the start of the next
logical recoru,

A RANGLE trap will occur and the logical file pointers will
not pe changed if an attempt is made to read a record which has
never before been written, (hote that tne DIIS KAWGE or FURMAT
traps will opoth cause a PATABUS 1100 KanGl trap ana that the
UDATABUS 1100 FUKMAT trap has nothing to do with the DUS FLORMAT
trap.)

The following 15 a list of the adiftferent types of REAU

statements, In the examples, the varijahle Kiy is a positive
numeric 1tem, SEW is a negative numeric item, KEY is 8 non=null

CHap Ttk To 1aPLT/ZUUTPUT LadTRUL f]'_éins {=c1

string vtem, NULL 18 & null stering item, FNDECL is a FILE
neclaration name, FIDECL is an IFILE aeclaration name, and FDECL
is either a FILE or IFILE declaration name,

Tebebel Test for End Of File

Before discussing the READ operations, the end ot tile
indicator should be discussed., The UVER condition flag being set
indicates that a READ operation has run across an end ot file mark
on physical accesses or has accessed a non=existent key on indexed
accesses, The test for the UVER condition should be made after
the READ statement, For example:

READ FDECL,SEG;A,8,C
GO10 LABEL IF OVER

1f an end of file is read on physical accesses, the variables in
the statement will be set to zero or have their logical lengths
and formpointers set to zero depending upon whether they are
numbers or strings respectively, Note that the UVER condition
will also be set if a semicolon appeared at the end of the READ
liste The way the READ mechanism works, whenever an end of file
mark 18 found the file pointers "stick" at the beginning of the
mark and spaces are supplied for all characters requested to fill
variables, Theretore, if one continues to perform READ operations
ignoring the fact that the OVER condition flag is being set, the
READ operations will simply continue to set the OUVER condition
flag and clear or zero all variables. This.is also true of READ
operations whose lists are terminated by semicolons,

The OVER condition being set after an indexed READ operation
indicates that the KEY specified could not be found in the index.
For a READKS (read key sequential) operation, the OVER condition
pbeing set indicates that the last record in the sequence has been
read and the current operation tried to read a nonwexistent
record, See the relevant sections that follow for further
intormation on indexed operations setting the UVER condition flag,

READ FDECLRiNFA,B,C
his is & physically random access read, The physical record
pointer is set to the value of RN and the character pointer is set

to the beginning of the physical record (any digits after a
decimal point in RN are truncated).

[=2¢ DATABUS 1100

discarded since the operation leaves the file pointers pointing to
the beginning of the following logical record.

READ FDECL,RN;A,B,C;

This is similar to the above operation except that the file
pointers are left pointing to the character after the last one
read into the variable C, This enables another 1/0 operation
(write as well as read) to continue from the character after the
last one loaded into the vari{able C,

READ FDECL,SEQ;A,B,C

This is a physically sequential access read. Variables A; B,
and C are read from logical file one beginning at the position
indicated by the current file pointer values, The file pointers
are left pointing to the beginning of the following logical
record,

READ FDECL,SEQG;A,B,C;

This is similar to the above operation except that the file
pointers are left pointing to the character after the last one
read into variable C, This enables another 1/0 operation (write
as well as read) to continue from the character after the last one
read into the variable C,

READ FDECL,ZERO:;

. Assume that the numeric variable ZERD is defined to be a zero
in value., This operation would then cause the file pointers to be
positioned to the physical beginning of the file exactly as if a
PREPARE or OPEN instruction had just been performed, This implies
that space compression will be on if a WRITE is then performed,
and the uyser must turn off space compression §if it is not desired,

READ FDECL,RN;A,%100,B,*NVAR,C,*50,D;

By including the tabbing controls in the read statement list,
selected positions may be read from a record without having to
read all of the positions in the record, The list controls
*(numeric literal) or *(numeric variable) are used to position the
character pointer to the specitied character position in the
specified physical record and may appear anywhere in the list,
Reading for the rest of the list (unless another positioning
control 1s encountered) begins at the character position specified
by the positioning list control, Note that tabbimg im physically

CHAPTER 7, INPUT/QUTPUT INSTRUCTIONS =23

random access reads is8 allowed only upon logical files that have
been declared using the FILE directive (simce the tab values are
biased by the starting point of the last index accessed record on
reads using a logical file that has been declared using the IFILE
directive),

Tab positioning in physically random access read operations
is calculated from the first data position of the physical record
specified, If the tab position is greater tham 249 characters, an
IO trap will occur., When reading 4s completed, the character
pointer is moved to the beginning of the next logical record if
the statement list is not terminated by a semicolon., If the list
is terminated by a semicolon, the character pointer is left
pointimg one character position past the last character read,

Note that tab positioning in a physically random access read
operation will inhibit the ability of that operation to detect an
EQF mark that may be in the given sector. Either a non=tabbing
read can be performed first (to adetermine whether an EOF exists in
the sector in question) followed by the tabbing read if the EOF
was not found, or the programmer can invent his own EOF marking
convention (which will not reauire double reads),

The above example would set the physical record pointer to RN
and the character pointer to one and variable A would be read,
The character pointer would then be set to one hundred and
variable B would be reac. The character pointer would themn be set
to the value contained in the numeric variable NVAR and variable C
would be read, The character pointer would finally be set to
fifty and variable D. would be read, The character pointer would
be left pointing after the last character read into variable D
since a semicolon appears at the end of the list,

Note that for physically random access reads, it is generally
a good idea to place a semicolon at the end of the list {f the
next read will involve an access to a logical record other than
the one which appears next physically, The reason for this {s
that there is no need to require the processor to scan the rest of
the logical record in an attempt to place the file pointers at the
beginning of the next logical record when that placement will not
be used, This is especially helpful {f the read does not leave
the character pointer near the end of the logical record as would
often be the case where tabbing is being used.

Note that using the read tab on physically sequential access

reads (where the record number specified {s a negative value) f{s
possible but not advisable. Tab positioning on physical accesses

/=24 DATABUS 1100

is always calculated from the first character position in the
current physical record. The program could obtain characters from
a previous or following logical recora {f tabbing is used {in a
file where the relationship between logical anmd physical record
boundaries is not known, ‘

READ FIDECL,KEY;A,B,C

This is an indexed access read, The index file is searched
for the key given in the string variable KEY starting with the
formpointed character and goimg through the character pointed to
by the logical length. The KEY is considered to match an jtem in
the index file if both have exactly the same number of characters
and all of them match or if all of the characters up through the
length of the index item match and then the rest of the characters
in the key variable are spaces, Remember that there are no
trailing spaces in the index file key items., This means that even
if the INDEX utility was told to index on columns 1 through 10, if
that field in a certain record consisted of an "A" followed by 9
spaces, the index file key item would consist of an "A" followed
by the key terminator character,

If a match is found, the next key pointers are left pointing
to the following item in sequence in the index file, the physical
record and character pointers are obtainea from the index file,
and the rest of the read proceeds precisely as if a physically
sequential read were being performed., When finished, the file
pointers are left at the start of the physically next logical
record in the file.

If no match is found, the OVER condition flag is set, all of
the variables in the 1ist are left with the values they had beforg
the READ was attempted, and the next key pointers are left
oo1nting to the next item inm sequence in the index file,
Therefore, a read key sequential (see the section on READKS) can
be performed to obtain the first item by collating seaquence
following the item that could not be found. This can be very
useful for obtaining lists of classes of items,

For example, one could have a file of serialized items with
model codes. One could imdex the file on the model code followed
by the serial number, He could then access a given model code
with a serial number of all spaces (spaces being lower in
collating value than zeros). The access would returmr with the
OVER condition flag set indicating that no such item existed in
the file., The program could then proceed to read sequential by
key obtaining a list of the serial number of all items of a given

CHAPTER 7. INPUT/OUTPUT INSTRUCTIONS 7=25

model code by the collating sequence of the serjal number, The
program would have to detect when the model code changed to
determine when the list of a given model code should be
terminated.

Another feature is that physically sequential accesses can be
made after an indexed access, The INDEX utility allows a file to
be indexed only upon what are called primary records (this i{s a
S0RT utility option). For example, a file could consist of a
primary record followed by five secondary records followed by
another primary record followed another five secondary records and
so forth, If the index were built only on the primery records,
one could do an indexed access to the primary record and then do
five physically sequential accesses to read the five secondary
records,

An indexed access read takes approximately half a second
regardless of the size of the data file, This assumes that
relatively few insertions have been made upon the file, See the
section below on index insertions (WRITE) for a discussion on how
insertions can affect the indexed access timing.

READ FIDECL,KEY}A,B,C}

This s similar to the above operation except that the
physical file pointers are left after the last character read
rather than at the beginning of the physically next logical
record, This is useful if one {is not going to do a physically
sequential access afterwards since it saves time not scanning to
the end of the logical record, It is also useful {f one wants to
read the rest of the record in a later READ operation or to update
the rest of the record by following the indexed read by a
physically sequential write,

READ FIDECL,NULL:7A,B,C

This is an indexed re=read., If the index key supplied to the
READ operation is null (logical length and formpointer equal to
zero), then instead of accessing a given item based on the key,
the operation re=-reads the last logical record that was accessed
using the index specified by the given logical file, Remember
that physical accesses do not change the pointer to the last
record accessed using an indexed access,

This operation enables one to re~read an indexed record

without having to search the index file for a given key. An IO
error is given if there has not previously beenm a successful READ

=26 DATABUS 1100

oerformed using a non=null key on the specified logical file,
Otherwise, the operation proceeds exactly as im the normal indexed
access READ, :

READ FIDECL,NULL7A,B,C;

This is similar to the above operation except that the
physical file pointers are left after the last character read into
the variable C.

READ FIDECL KEY;*%25,B,aNVAR,C,*10,D;

This operation performs an indexed access, positions the
character pointer to column 25 relative to the beginning of the
logical record, reads the required number of characters into the
variable B, positicons the character pointer to the column
specified in the numeric variable NVAR relative to the beginning
of the logical record:, reads the required muymber of characters
into the variable C, positions the character pointer to column 10
relative to the beginning of the logical record, reads the
required number of characters into the variable D, and leaves the
physical record pointers after the last character read. Note the
difference between using tabbing in physical accesses and i{ndexed
accesses i3 that in indexed accesses the tab position specified s
made relative to the beginning of the logical record and nmnot to
the beginning of the physical record. The reason for this 1s that
one may desire to have several logical records per physical record
in an indexed file and be able to use tabbing on the accesses to
that file, The problem {s that when doing indexed accesses, the
program has no idea of where the logical record is in the physical
record so the system must make the tab values relative to the
beginning of the logical record to make tabbing in indexed files
useful. Remember that an attempt to cross a physical record
boundary with a tab results inm an 10 error,

- Note that once again it is usually advisable to use a
semicolon at the end of statements using tabs simce it Just wastes
time to cause the processor to scan to the beginning of the next
logical record if the next access to the file will not be to the
physically next logical record,

READ FIDECL, NULL?*25,B,*NVAR,C,%x10,0;
This is similar to the above operation except that the last

key=accessed record in the given logical file is read instead of a
new index access being made,

CHAPTER 7, INPUT/OUTPUT INSTRUCTIONS T7=27

7¢5.7 READKS

This is a read key sequential operation, Whenever anm indexed
access {s made the access routines update a pointer to point to
the following key entry in the lowest level of the index, When a
READKS operation is performed, instead of searching for a key of a
given value, the key pointed to by the next key pointer is used
(no key is supplied to the READKS operation). READKS also bumps
the pointer to the next key in the fndex causing successive READKS
operations to obtain records in collating sequence, If the
pointer to the next key in the index i1s pointing past the last key
in the index (either a key larger than any existing was accessed
in the last indexed access or the last key sequential read
obtained the last record in the collating sequence) then execution
of the READKS operation causes the OVER condition flag to be set
and all of the variables in the list will have an indeterminate
value, The READKS imstruction can appear as follows:

READKS FIDECLJ}A,B,C
READKS FIDECL3*x25,A,*NVAR,B,%x10,C’

Except for the access method, the functioning of READKS {s
identical to the functioning of an indexed access READ (this {s in
reference to the action taken once the desired logical record is
located),

74548 WRITE

The write statement is used for physically random, physically
sequential, or indexed insertion writes, The write statement
consists of a logical file declaraction name and a record
specifier (a numeric variable for physical accesses and a string
varfable for indexed insertions) followed by a 1ist, The 1{st may
include variable names, quoted characters, and octal control
characters (000 through 037), Note that tab positioning is not
allowed in the WRITE operations (the WRITAB operation must be used
to do tabbing in writing functions),

Each character string varfable in the write list will be
written from its first physical character through the logical
length, Spaces will be written for any character positions
between the logical length pointer and the physical ena of string.
Each numeric item will be written in total. Note that only the
data in each variable is written and not any of the control
information (logical lenmgth, formpointer, 0200, or ETX). The

1=28 DATABUS 1100

guoted items and octal control characters will be written exactly
as they appear in the list. For example, if the following
definitions were made:

TIME INIT "10:23"
TOTAL FORM "001"
FDECL FILE

and the statement:
WRITE FDECL,RN;"TIME: ",TIME,015,"TOTAL: ", TOTAL
were executed, the file would be written with the characters?
TIME: 10:23(015)TOTAL: 001(015)(003)

where the (015) and (003) demote control characters, Remember.
that certain control characters (000, 003, 011, and 015) mean
special things to the read operations and their use ¢an cauyse
confusion, In the example above, two logical records were written
with the one write statement because of the 015 written in the
middle,

i .
The format control, *ZF may be used before any numeric
variable to cause zero=fill on the left, moving the sign to the
left if neccessary,

The format control *MP converts a numeric variable to &
"minus~overpunch" format, where, on negative numeric variables,
the minus sign is over=punched over the rightmost digit. The *ZF
and *MP are valid for the immediately following variable only,

WRITE FOECL /RNG %ZF Ay %MP B C

A negative overpunched zero converts to a right bracket "}" and
one thru nine convert to "J" thru "R",

The following is a list of the different types of write
statements., Although the following examples show 1ists with only
three variables, it should be remembered that all of the WRITE
operation lists canm contain the various items shown in the above
example,

- WRITE FDECL,RN;A,B,C

This is a physically random access write, The physical
record pointer is set to the mumeric value contaimed in RN and the

CHAPTER 7., INPUT/OUTPUT INSTRUCTIONS T=29

character pointer is set to the beginning of the physical record
(any digits atter a decimal point in RN are ignored). Variables
A, B and C are then written followed by end of logical record
(015) and end of physical record (003) characters. The character
pointer {s left pointing to the 003 character. Note that all
WRITE statements are allowed on either FILE or IFILE declared
logical files,

WRITE FDECL,RN};A,B,C;

This is similar to the above operation except that the 015
and 003 characters are not written after the last data character,
The character pointer is left pointing after the last character
written, This operation is useful for writing the first part of a
record where more of the record will be written later or for
updating part of a record where the 015 and 003 would, {f they
were written, destory data characters that followed,

WRITE FDECL,SEQ;A,B,C

This is a physically sequential access write, Variables A, :
Br and C are written beginning at the character position currently
being pointed to by the logical file pointers, If the file had
just been opened, the current position would be the first
character position in physical record zero of the specified
logical files Otherwise, the file pointers would be positioned
according to the results of the last read or write operation
executed, End of logical record (015) and end of physical record
(003) characters are written after the last character in varjable
C. The character pointer is left pointing at the 003 character,
Remember that space compression mode will be on after the file s
opened which means {f the file is to be opened and then written
sequentially but space compression is not to be used, one must
execute a write statement whose first l1ist item is a *= ¢control,

WRITE FOECL,SEQ;A,B,C;
This §is similar to the above operation except that the 015
and 003 characters are not written after the last character in the

variable C., The character pointer is left pointing after the last
character written,

WRITE FIDECL,kEY;A,B,C
This is an indexed access record insertion, The KEY varjable

must not be null and the key specifieo must not already exi{st in
the index specified by the given logical file (either condition

7=30 DATABUS 1100

will cause an 0 error). The search algorithm used to determing
that the key is not already in the index {is ifdentical to that used
in the indexed access READ operation,

The key whose value lies from the formpointer through the
logical length of the KEY variable is inserted in the index fiile
specified by the given logical file and the record is written at
the physical end of the data file, The record is always started
at the beginning of the physical record which contains the EQF
mark and then a new EOF mark is automatically written in the
physical record which physically follows the new record, Note
that this implies that for each record inserted into the data
file, at least one physical record will be used (even if the
record inserted is only 30 characters long). The record inserted
may be longer tham one physical record, in which case an integral
number of physical records will be used for the inserted record,
The reason the inserted record is always started at the begimning
of a physical record is that this insures that tabbed operations
can then be performed upon the new record in case they are desired
(assuming the new record will fit within one physical record).

Insertions will take longer if many records very close
together in collating segquence are inserted together, When:
inserting ftems whose keys fall randomly within the collating
sequence one can ysually insert a number of records egual to one
tenth of the total number of records in the file before the
insertions will start to take significantly longer, It 19
generally a good idea to run the INDEX utility as often as
practical when many insertions and deletions are being performed
to keep the speed of insertions and indexed accesses as high as
possible,

WRITE FIDECL,KEY;A,B8,C;

This operation is also an indexed insertion write except that
the new EOF mark is not automatically written at the end of the
file. One could desire to finish writing the record with a later
operation and could do this by following the above statement by
physically sequential write operations and then writing the EQF
mark at the end of the file One must make certain, however, that
in doing this that no other program can try to do an insertion
before the EOF 1s written or the other program will get a RANGE
trap since it will not be able to fina the EOF which it will want
to overstore,

CHAPTER 7. INPUT/QUTPUT INSTRUCTIONS T=31

7459 WRITAB

This operation is the write tab feature which requires a
different instruction mnemonic from the normal write operations,
With this feature, characters may be written into any character
position of a physical record without disturbing the rest of the
record, A RANGE trap will occur and the logical file pointers
will not be changed if a write tab is used on a record of the file
that has never been writtem pefore. The write tab can be
performed only upon logical files which have been delcared using
the FILE declaration, The UPDATE operation is used to do tabbed
writes into indexed files, The list controls *(numeric literal)
or *(numeric variable) are used to position the character pointer
to the specified character position in the current physical
record., Writing of the variable begins at the point specified by
the position control. If no positioning is specified, the writing
of the first variable starts at the beginning of the physical
record,

Tab positioning in physically random accessed writes is
calculated from the first position in the specified physical
record, If the tab position is greater than 249 characters, an IO
trap will occur. Only the gquoted cheracters, octal control
characters, and variables appearing in the list are written, The
character pointer is left pointing one character past the last
character written (there is an implied semicolon at the end of the
WRITAB operation), For example,

WRITAB FNDECL /RN A,%x70,B,%x10,C)xXNVAR,"TIME"

would write variable A beginning with the first position in the
physical record specified by RN, Variable B would be written.
beginning at position 70 in the physical record amd variable C
would be written beginning at position 10 in the physical record,
The characters "TIME" would be written beginnimng at the position
specified by the numeric variable NVAR (any places after a decimal
coint will be truncated) and the character pointer would be left
pointing ome character past the "E" written for the quoted
characters "TIME", An I0 trap would occur and the record would
not be written it NVAR was greater than 249,

A word of caution is appropriate at this point im the
discussion, If in the above example NVAR had had a value of 248,
the letter "T" would have been written as the last character {n
the physical record specified by RN, That physical record would

7=32 DATABUS 1100

then be written and the following physical record would have been
read into the buffer, The letters "IME" would have then beem
written into the first three positions of this new physical record
and the record then written back out. If more tab positions had
followed the writing of the characters "TIME", these would have
been in the new physical record, not in the one specified by the
contents of RN. This action would probably not be that expected
by the programmer and would all take place without a whimper of an
error message from the interpreter, Just be careful about your
tab positions!

Note that using WRITAB with a physically sequential access
(where RN contains a negative value) is possible but not
advisable. Tab positioning on physical accesses is always
calcylated from the first character position in the current
physical record., The program could obtain characters from a
pervious or following logical record if tabbing is used in a file
where the relationship between logical and physical record
boundaries is not known,

745410 UPDATE

This operation allows modification of the last record that
was accessed with a READ or READKS operation, Only the logical
file declaration name is supplied to this operation (no key is
supplied) but the list may have all of the items allowed in the
NRITAB list., For example, ’

UPDATE FIDECL3A,%20,B,%40,"ASDF",033

would read the last indexed accessed record in the logical file
FIDECL and would overstore the first characters in the Jogical
‘record with the contents of the variable A, would overstore the
characters starting with the 20th character in the logical record
with the contents of the variable B, and would overstore the
characters starting with the 40th character in the logical record
with the characters "ASDF" followed by the octal character 033,
The character pointer would be left pointing after the 033
character (the last character written from the list)., Note that
as in indexed access reads using tab positioning, the tab
positions in the UPDATE operatiom are relative to the beginning of
the logical record (and not the bpeginning of the physical record
as in WRITAB). As in the WRITAB operation, the UPDATE has an
implied semicolon at the end of its list.

CHAPTER 7. INPUT/QUTPUT INSTRUCTIONS 7=33

7.5.11 INSERT

This operation allows an index ifnsertion into more than one
index file, The WRITE operation mentioned earlier is used to
physically insert the record into the data file and insert the key
into one index file, If more than one index is being used, one
INSERT operatioh must be performed for each additioral index fnto
which an insertjon is to be made., wWhen the WRITE operation
performs the physical record insertion, a pointer is xept which
contains the physical location of the newly inserted record in the
data file, When the INSERT operation is performed, the speci{fied
key (with a pointer to the remembered physical location into the
data file) is inserted into the specified index file, Sinmce only
one of these insertion memory pointers is kept for each program,
one must make sure that all insertions necessary for a gfiven
record are made before performing the next WRITE to insert the
next record. For example, the sequence to fnsert twe records into
two indices would be WRITE INSERT WRITE INSERT and mot WRITE WRITE
INSERT INSERT. The format of the INSERT statement is as follows}

INSERT FIDECL,KEY

where FIDECL is the name of the logical file declared for the
index being used and KEY is the string varfable in which from the
formpointer through the logical length i8 contained the key to be
inserted in the index, An I0 error is given {f KEY is null or §{f
the key specified already exists in the specified index file,
Otherwise, the key is simply inserted into the index, Note that
it is not necessary to prevent the program from being interrupted
between the WRITE and INSERT operations since the pointer to the
record which was inserted is kept for each program and even if
another program inserted a record {n the same file or {ndex
between the WRITE and INSERT of the program in question, all
insertions would be performed correctly,

7.5.,12 DELETE

This operation allows a record to be physically deleted from
a data file and for its key to be deleted from the specified
‘index, The DELETE inmstruction is also used to delete keys from
other indices which cam index the data file, For example,

DELETE FIDECL,KEY

will delete the record specified by the key (whose vajue lies from

7=34 DATABUS 1100

the formpointer through the logical length in the variable KEY) in
the data file specified by the index file specified by the logical
file whose declaration name is FIDECL. The record is physically
deleted by having al]l of its characters up through the logical end
of record mark (015 character) overstored with 032 contro)
characters, The 032 character does not appear to exist when the
record is read using the DATABUS 1100 reao mechanism or the
REFORMAT utility read mechanism since when these mechanisms see
such a character they simply bump the character pointer (moving on
to the next physical record if running off the end of the current
physical record) and try to fetch the next character. Therefore,
when DATABUS 1100 performs physically sequential reads across
records that have been physically deleted, the records do not
appear to exist., The REFURMAT utility eliminates these 032
characters to close up the deleted space in a file and to make the
file readable by other DOS utility programs such as SORT,

The DELETE operation will not try to overstore the record
being deleted with 032 characters if the first character already
contains a 032 character, This allows the DELETE operation to be
used to delete the key entries from all index files which index
the given data file. For example,

DELETE FIDECLL1,KEYI]
DELETE FIDECLZ,KEYZ
PELETE FIDECL3,KEY3

would be ysed to delete the record and keys out of the three
indicies which pointed to that record. The first DELETE would
actually overstore the logical record with 032 characters and
delete the key from the index file specified by the logical file
whose declaration mame was FIDECL1. The other two DELETE
operations would only remove the keys from their respective index
files since it would be noted that the logical record already
containmed a 032 character {n its first position. -

7.5.13 WEOF

Standard DOS end of file marks (000 000 000 000 000 Q00 003)
in the first seven character positions of a physical record) can
be written in DATABUS 1100, WEQF does mot change the physical
record or character pointers for the given logical file., For
example,

WEOF FDECL RN

will write an end of file mark in physical record RN while

CHAPTER 7, INPUT/OUTPUT INSTRUCTIONS 7=35

WEOF FDECL,SEQ

will write an end of file mark in the next physical record after
the current physical record pointer. Note that the WEOF operation
may be performed upon logical records which have been declared
either FILE or IFILE but that the record is always specified using
a numeric variable for the record number. This implies that one
cannot write an end of file mark using an indexed access.

7-36 DATABUS 1100

CHAPTER 8. PROGRAN GEMtRATIUN

8,1 Preparing Source Files

Files containina the source languaaqe for DJATABUS 1100
proarams are opreparea using the general purpose editor running
under DUS,C and whose use is covered in a separate document, [he
editor tab stops may be set to be suitaole for keyin of DATABUS
1100 programs by usinga the 1 commana and settina two tabs, one at
10 and the other at 20,

G.2 Lompiling Source Files

DATABUS 1100 programs are compiled using the DATABUS 1100
compiler running under DUS.C. The DATAHBUS 1100 compiler 1s
parameterized in the following manner!

1 1CMp <source>1,<ob;ect>l[.<print>1i;<L><L><t><H><x>su>J“
File bpecifications:

ine compiler may be parameterized with up to three file
specifications, These file specifications follow the standard DUS
conventions, HKeter to the DUS User®s tuice tor further
intformation concerning DUS file specifications, A bad darive
specification for any of the files will result in the error
message :

HBAD DEVICE SPECIFICATION
It any of the file specifications are 1dentical, the messaqes;

SOURCE AND (OBJECT FILES THE SAmE or

SOURCE AuD PRInT FILES THE SamE or

UBJECT AmD PRINT FILES TrHE SAME
will e displaveuo,

The source tile contains tne Daiabud 110U proygram text

created with the editor, JThis tile must always vpe specitiea, If

no extension is aiven on the source tile name, the extension TXT
15 assumed, l1f the source file name 1s not suppliea, the messaqges

Cf'f&'&f’]tl‘("o PR e -_;t ?’>if‘_kll| I(,S}.' B

WAME REGQUIRED,

will ve displayed, If the source file mame does not exist in the
DU directory, the messages :

b SUCH NAME

will pe displayed., It no drive is specified, all drives beqginning
Nith drive O will be searched for the source file,

The object file will contain the object code generated by the
compiler from the specified source code, 1f the name of the
object code file 18 not given, the name ot the source code file
with an extension of DBC will be used for the name of the object
code file., Note that DATABUS 1100 can run only those files with
extension UBCL, If the source code file is specified without a
drive number, the compiler will search all drives for the name
agiven, If the object code file name (with the ext2nsion specified
or the assumed extension DBC) is not found on any drive, the
object coade file is placed on the same drive as the source code
file, If the object code file is found, it i8 killed and
re=opened on the same drive it was found on to assure a maximally
contiguous file space is available,

The print file specification is also optional. I1f it is
given, any print output requested will be written in this file (in
the standard GEDIT format) insteaa of being printed on the local
printer, Top of torm will be inoicated by the character 17 in
column one of the print line, Utherwise, column one is always
nlank and the line starts with column two (this is the standard
CUBOL and FURTRAN print file tformat),

1f no name is aiven for the print file specification, the
source file name will be assumed, It no extension ts given, an
extension ot PRT will be assumed, However, if the orint file is
to be reaa under DATABUS 1100 it must have an extension of TXT
since all DATABUS 1100 datea files must have that extension, [f no
dqrive numher i1s specitfied, the print file will be placed on the
same drive as the source file, A print file may be specified
simply by keying in a comma after the object file svecification
or, 1f no object file is specified, by keying in two commas after
the source file specification, Note, however, that the extension
assumed 1n this case will be PRI,

P untTAplis 1100

Uutput Parameters:

These parameters allow the user to specity what type of
output is wanted in addition to the object file, I[f a print file
1s specifieds, any print output is written in that fi1le instead of
neing sent to the printer, If the semicolon but no parameters are
specitied, the only output is the object file (if in this case a
print file was specified it woulda be null). '

The DATABUS 1100 compiler can output to eitner a local or
servoe printer, 1lhe compiler is self=confiquring in this respect
and will output to whichever printer it finas connected to the
system [/0 pus. Since the compiler looks first for a servo
printer, output will be to the servo printer if poth a local and
servo printer are agdressable by the system, :

Any source code lines which have errors are displayed on the
screen during pass 1I, with the appropriate error flaq,
Agdrtionaily, the compiler displays at the lower left corner of
the screen the current line number beina compilea, for every 10th
line, tvery lUth line is indicated pecause displaying the line
number for every line would slow down the compiler, No numbers
4111 pe displayed if the proaram 1s fewer than 10 Jines long.
This line number display is cleared when processing of inclyaeda
files begins or ends, so the line nunber arsplay will tlink off
momentarily during compilation of source files using i1ncluded
files, '

Jo aspecity output options, a semicolon plus one or more of
the following shoula be placed atter tne last file specifications

L A listing of the compilation results is printed. Ftach line
of source code 1s numbered and the opject code location
counter value for the first byte of code generateo for the
line is listed to tne left of eacn source code line. A “#+°
appearing as the first character of a line causes o new print
page to be started, The rest of the Jinme following the + may
e usea as a comment line, A "%’ appearing as the first
character of a line causes a new print pange to te started it
the current line 15 within two inches of the wottom of the
current page., A good way to improve the reaodability of a
proagram i1is to heqgin each section or routine «~ith a comment
tefore which a line is enterea which contains a star in 1ts
first column., This will make sure .the comment aonpears on the
same page as the first lines of the code to wnich 1t 18
attached,.

CHAFTER He Paifderis - OE o breal s He's

C A listing of the compilation results is printed and the
generated ovbject code is listea to the left of the source
code, Printing the object code usually makes the listing
about twice as long, 1f this option is qgiven, the L option
1s implied and need not also he given,

| Ihe source code for lines with errors will be printed in
aodition to being displayea on the screen, This parameter
has no meaning if the L or C options are given since listings
produced ynder those options will include error flags anyway.

~ The line numbers for reterenced labels in an cperano string
will be printed at the right margin of the listing, The line
number is the line on which the Referenced label was defined,
If the Ly C, or E option is not also given, this option has
no effect, This option may be given instead ef or in
aodition to the X option, The R option is especially
convenient with GOTO or CALL instructions in following the
logic path of a complex set ot code, Note that for the R
option to be effective, a printer with at least 150 column
printing capability must be used,

X A crosswreference listing is printed at the end of the
compilation., There will actually be two cross=referencesi
one for the data labels and one for the executable labels,
Each cross~reference is sorted alphabetically, The data or
executable label ‘is given preceded by the octal location
where the label was defined and followed by a list of all
Jine numbers in which the item was defined or referenced, An
asterisk flags those line numbers which are definitions, The
SORT uwtility is called by the compiler to do the actual
reference sorting, and the messages displayed on the screen
will be appropriate to the progress of the sort, A
cross=reference may be obtained regardless of whether a
Tisting was requested)

D A copy of the source code is displayed on the screen during
the compilation,

It a listing has been requested, the compiler will ask:

HEADLING S
Ih1s may be /0 characters long and is printed at the top of each
pane. Inugicating the time and date of the listing is helpful in

keeping listings in chronological order. The source file name is
automatically listed to the left ot the heading,.

By DATABUS Jlul

‘Exampless
URTICHE PRUOGHAM

in1s is the simplest compilation specification, Ine source
coue found in tile PROGKRAM/TXT woula be compilea with the object
cone placed in file PROGKaM/DBC, wo other output woula be given
excert for errors displayed on the screen,

DBLICHP CHECR p Crb ORI 0K

The source code in (HECK/TXx] would pe compiled and the object
code placed in CHECKNO/USBC. A Jisting would be printea on the ,
printer and consist of the source and object code with a data and
executacle lavel crosswreference at the end,

Uoll1CaP FILESDRO,pF ILELST/TXTI0ORLFLX

The source code in FLILE/ZTXT on drive U would be compilea and
the object code placed in FILL/08C on drive 0, A copy of the
source code and a data and Janel cross~reference will be written
in FILELSIZTIXT on drive 1, :

The compiler may be stoopped temporarily by depressing the
DISPLAY key. Tne DISPLAY light «ill pe turned on and execution
~ill not be resumed until the DISPLAY key is depressed again (the
DISPLAY light will then be turnea off), Compilation may be
aborted at any time pefore the cross=reference sort is begun by
depressing the KEYBOARD key., 1f tne compilation 18 anortea in
this manner the object file and the dictionary tile are celeted,
as are tne reterence tile and tne print file it a cross~retference
list or print file was specified.

If a comptler print option (L, Cy Ly or X) 1s selectea, the
vprint is not being sent to a print file, ana there are no printers
attached to the diskette 1100, the compiler will progress unti)
the first print buffer is full, and wait at that point for a
printer to vecome ready, This 1mplies that if there is no printer
at all attached, the compiler will enter a perpetual wait loop.

M,5 Lompiliation directives
Two ulrectives are available 1in the RATAGUS 1100 compiler as
menticned 1n Sectinn 2ead. tne is the tLull statement whicn allows a

label to vLe assigned a decimal numeric value trom 1 tnrouah 249,
For example:

LHaPTEw 8, FrUGKAN SbEvbral fuo H=Y

LM EQu 5

A label which is defined in this manner may be used as tab values
in disk [/0 statements and as cursor positions in KEYIN and
D1ISPLAY statements, This is particularly useful when one defines
a data base record format, If all item positions within the
record are defined using the EQU directive, then changes in item
positions can be achieved by simply changing the ore directive
value, [f the btuUU were not used, the user would have to hunt
through all programs to change all disk 1/1) statemerts to change
the i1tem position in the record,

The second compiler directive is INCLUDE (the compiler also
accepts a mnemonic of INC) which allows another text file to be
includged at that point as if the lines actually existed in the
main file., For example:? -

INC RECDEFS

will cause the file RECDEFS/TXT to be scanned as 1f all of its
lines existed in the place of the INCLUDE line. The assumed
extension on included files is TX[l but may be specified to be any
extension, If no drjve is specified, all drives starting with
drive zero will be scanned for the file, Inclusions may be nested
up to four deep, with a maximum of 16 included files, The INCLUDE
directive can be used to include a file containing the LGU
directives and data variable definitions which define the format
of a data base file record, This can prevent the programmer from
having to keyin the data area (and common data area) definitions
over and over for each program to use a certain data tile, It
also will make it much easfer to update the data area definition
since the programmer would have simply to update the one text file
and then compile all the programs (which would 1ncluce the
modified definition file) to update all programs to the new data
area definition,

8.4 CLompilation diagnostics

The compiler prints and displays diagnostic messages on the
listing to help the programmer debug syntatical errors in his
code. These messages take the form ot an error code letter at the
left of the listing and an asterisk under the line at the position
of the scanning pointer when the error occurred, The letters are

"t for an expression error (a generalized syntactical error), U for
an undefined variable or label, and 1 for an undefined
instruction, In the case ot £ errors a numbher is given on the
line with the asterisk pointing out the error position in the

ti=b DATABUS 1100

source line, This numper refers to the list of uvetailed error
explanations 1n Appendix C of this cocument, If any of these
tlaas appear, the compiler will tlag the program as being
non=executable, If the faulty program 13 then executed, 1t will
return control to the MASTER proaram or to 3US.0,

The DATABUS 1100 system uses the U3 loaical file zero for
reading -and writing all data to and trom the agisk. lhis imrplies
that a segment boundary may not bLe crossed py the object code
dquring a rbtAD or aRITE statement (since fetching the statement
alsao involves disk I/0). For this reason, the DATABUS 1100
compiler will 1nsert a TABPAGE instruction if it detects a READ or
4#R1TE statement crossing o segment boundary, dNormally, this is of
nao particdular concern to the user, however, proqarams using TARPAGE
ang goiny extensive optimization shoul:d be aware that this may
OCCUr,

8.5 litsk space requirements

The DATABUS 1100 compiler maintains 1ts label dictionary on
disk in the file nmamed LSCLICTI/SYS, HMoreover, this file is always
placed aoan tnhe same drive as the output object file because 1t 18
reasonadbly certain that that drive will not e write protected,
For these reasons, there may not obe more than 254 files named (255
11 the object file name already exists) on the disk onto which the
ovject tile 18 to be written.)

Furtner, if a cross reference 1s desireda, there must be four
more file name places available amony the drives on=line, [lne of
the file names that will be in use dguring the compilation is
DSCREF/SYS (the file onto which the compiler writes information
avout each label reference), Three files will be generated by
SUrT: *SURTMRG/SYS, *SUORTKEY/S5YS, and DSCREFT/5Y5, The first of
the two files vy SURT are scratch files, anda the third is a
taag=tile pointing back into the USCRLF/SYS file, At normal
completion of the compilation, all files mentioned above (excent
the outnut object file) will have neen deleteg and the file space
again made available to the user,

Crink b me brdakhAr GESERAT IO =7

CHAPTER 9, SYSTEY UPEwAT b

" Th1s chapter discusses lcaating the DalABUS 1100 Syster on
Diskette under DUS,C and the use of the UaTABUS 1100 Interpreter.
The use of the DATABUS 1100 Compiler 1s arscussen in tre previous
chapter,

9.1 System Loadging

The DATABUS 1100 System is avatlanle on either Cassette or
Diskette media. The DUS files furnished with DATABUS 1100 are the
Interpreter, DH11/CMD ana Dpll/0v] trru Urll/0vh; the Compilery
DB1L1CMP/LAD and DBLIICMP/ZOVO tnru pBLICHP/ZUNVZ; DBHACK/CMD, and
RULLUUT/ZS5YS,. : :

9.1,1 Loading From (assette

The DATABUS 1100 compiler ana interpreter system programs are
contained on one cassette, The cassette 1s 1n tne DMF (DUS
Multiple File) tormat which incluses a girectory of tne files on
the tape. To load the DATABUS 11Ly files to Diskette, keyint

MIN A

The MInN (Multiple li) program will pe activateo and will
display the date of creation of the tape, the tile names in the
tape directorys, and each file name as the file is being loaded.,
1f the file already exists on the diskette, the MIN program will
ask 11 it is to be overstoreo., lhe operator can decide to
overstore the file or can tell it not to overstore the file in
which case MIN will allow the file to pe storea under a drfferent
name. Consult the DUS USER®S GUIGE for turtner intormation on its
aperati1on,

The DATABUS 1100 interpreter system tiles can pe re=named to
any name desired as lona as the commang tile ana all the overlays
nave the same Name., For example, 11 undll/000 was re=nameq DB/CMD,
then UBl11/Z00v] tnry EBEIL/ZUVS would have to ve named n/itvl thru
/NS .

Conb Tl 9. SYSTES HFEnal 0 =1

9,1,2 Loaaing from Diskette

If the DATABUS 1100 System is obtained on Diskette media,
additional copies of the saystem should be generated for packup
purposes using the DOS,C commands, DUSGEN, COPY, and/or BACKUP,

4,2 Program Fxecution

It the DATABUS 1100 Interpreter is named DB11/CMD then a
DATABUS 1100 program can be executed by entering:?

DA1L PROGA

The DATABUS program compiled and filed under the name PROGA/DBC
will begin execution, This program will continue ex=scuting untal
an irrecoverable error i1s detected or until a STUP instruction is.
executed, At this time system control will return to D0OS,C,

The general form for the DATABUS 1100 interpreter command is?
pB1l l<object>](:tparémetérs>l

It a DATABUS 1100 program is not specitied, the Interpreter will
search for a special program catasloged as MASTER/DBC and begin
executing this program:

bell

The master program will continue execution until a STOP is
executed, at which time control will return to DUS, . In any
case, the very first program to begin execution under DBIl1l is
considered to be the master program, regardless of what name it
has,

The master program can cause another DATABUS 1190 program to
begin execution through the use of the CHAIN instpruction, In this
case, when this new program executes a STOP instruction, control
is transferred to the start of the master program instead of to
VU8 .Ce

lwo parameters are available for setting the batabus interna)
clock. These are the clock set parameter and the ocate set
narameter., Jhe clock set parameter has the form:

hhimm3ss

‘=2 DATABUS 1100

where hhimmiss is the time used on a 24 hour clock, HNote that
poth :mm and :ss are optional, ang if omitted are 9ssSumed Zern.
Hence, in order to set the time to 1932%, tne parameter would be
£19:2% . The oate set parameter has the form:

liyy oddaci
where yy is the last two digits of the year (75 tnru 99) and ddd
is the Julian adate., Fror example, darch %, 1977 woulda ve specified

as

DI7.062

Coaarlre 9, By5TE o ubraed b Q=4

APPENDIX A, INSTRUCTI®N SUMMARY

SYNTACTIC DeFINITIONS

condition

character string

event
fist
name
label
nvar
nval
niit
svar

svyal

stit

nlist

The result of any arithmetic or string
operation: UVER, LES3, bBQUAL, ZtRa, or
EUS (EQUAL ana /tki) are two names for the
same conaiticn),

Any string of printing ASCI] characters,

The occurrence ot a program trap: PARITY,
RANGE, FURMAT, CFAlL, or 10,

A list ot variables or controls appearing -
in an input/output Instruction,

Any combination of letters (A={Z) ana
aigits (0=9) starting with a letter (only
the first eight characters are used).

A name assigned to a statement,

A name assigned tc & statement defining a
numeric string variaple,

A name assigned to an operand defining a
numeric string variable or an immediate
nymeric value, :

An immediate numeric value,

A name assigned to a statement defining a
character strinag variable,

A name assigned to an operand defining a
character string varijable or a-auoted '
alphanumeri1c character.

An immeatrate character string, enclosed
in adouule quotes ("),

A series of contiguous numeric variables,

APPENDTX A, LwdiruC Lo S0 LaaRY A=}

slist

rn

seq

key

null

A series of contiguous string variables,

A positive recora number (2= 0) used to
randomly READ or WRITE on a3 file,

A negative number (< 0) used to READ or
WRITE on a file sequentially,

A non~null string used as a key to
indexed accesses,

A null string used as a key t0o an indexed
read,

FOR THE FOLLOWING SUMMARYS

CUMPILER DIRECTIVES

e

ltems enclosed in brackets [] are optional,

Items separateo by the | symbol are mutually exclusive (one
or the other but not both must be used),

label
label

EQU

EUUATE

INC

INCLUDE

10
100
file
file

FILE DECLARATIUNS

label
label

DATA DEFINITIONS

label
label
lacel
label
1 abel
label
label
label

NATABUS 1100

FILE

IFILE

FORM
FOR®M
DImM

INTT
FORM
FUORM
DIm

INLT

Nem
"4506
n
"cha
kpom
x"yY
*n
A"CH

name [/ext]
name[/ext]

’23n
racter string"
6,25"

ARACTER STRING"

Clur T UL

LT (label)
GOy (lapel) IF (conurtion)
GIVT L (label) IF niil {congition)
Al {nvar) UF (lapel Tist)
CALL (larel)
Catt (label) IF (conaition)
Cati (lavel) IF (0T {condition)
RETUKN
RETUKN IF (conditian)
~b Tuky IF wUuT (condition)
STOP o '
ST ¥ (condition)
STUP IF nidT leconadition)
CHATw {sval)
CHATN (slit)
TRAP (label) 1F (event]
TRAPCLR (event)
HULLudl {svar)
FOLLOUT (slit)

CHARALTER STRING HANDLIMEG
MATCH (svar) TQ (svar)
MATCH {s1it) TU (svar)
MUvE {svar) 10 (svar)
MUVE 7 (stit) TO (svar)
MOVE - (svar) TU (nver)
MUV E nlat) T0C (nvar)
MVE (nvar) 10U €svar)
APPEND (svar) 10 (svar)
APPEND (s1it) 10 -{svar)
APPLEND (nvar) TU (svar)
LHMuvE (svall) 14 (svar)
CHATCH (sval) TU (sval)
D (svar)
sl P (svar) 8Y (nlit) .
RESE T (svar) TU (sval)
WESET (svar) Til (Avar)
b S T {svar)
EHDSE] (svar)
Lbohre)d (svar)
CLE AR (svar)
ExTEwy {svar) :
Liiah (svar) Fhus {nvar) b (slist)
STuRrE (svar) Inuld (nyvar) OF (sl1st)

ARPPE L X

be LD True T lidw SHuss

ARY

A=il

STURE
CLUCK
CLUCK
CLUCK
TYPL
SEARCH
SEARCH
REPLACE
REP

ARITHMETIC

ADD

ADD

SuB

SuUb
SUBTRACT
MULT
MULT
MULTIPLY
LIV

DIV
DIVIDE
MOVE
MOVE
COMPARE
CUMPARE
LOAD
STORE.
STURE
CHECKL]
CKk1l
CHECK1O
CK10

InNPUT/Z0UTPUT

KEY LN
VISPLAY
BEEP
PRINT
PREPARE
PREP
UPE
CLUSBE
wRRITE
ARTTAY

DATABUS 1100

(s1it) INTU (nvar) UF (slist)
TIME T (svar)
DAY TO (svar)
YEAR 10U (svar)

(svar)

(nvar) IN
(svar) IN
(svar) In
(stit) IN

(nvar) TO
(nlit) T0

(nlist) 10 (nvar) WITH (nvar)
(slist) TUO (nvar) USING (nvar)
(svar)

(svar)

(nvar)
(nvar)

(nvar) FRUM (nvar)
(nlit) FROM (nvar)
(nlitinvar) FROM (nvar)
(nvar) BY (nvar)

(ntit) 8Y (nvar)
(niitinvar) BY (nvar)
(nvar) INTO (nvar)
(n1it) INTO (nvar)
(nlitinvar) INTO (nvar)

(nvar) TU
(n1it) TU
(nvar) TU
(nlit) TO

(nvar)
(nvar)
(nvar)
(nvar)

(nvar) FROM (nvar) OF (nlist)
{nvar) INTO (nvar) QOF (nlist)
(n1it) INTO (nvar) OR (nlist)

(svar) BY
(svar) BY
(svar) BY
{svar) BY

(list)
(list)

(list)

(svar)
{slit)
(svar)
(slit)

{trle)s(svarislit)

(tile),y(svarislit)
(filelifile),(svarislit)

(filetifile)
(filelifile),rniseqlkey (s [(V1ist)) (7))
(file)srnisea;i (1ist) (]

wkUF
UPJATE
REAQ
REAUKS
DELETE
InSERT

(filetitilel,rniseq

(itiled {slClist)) iz
{(tiletifilelsrnisealkevinuls it (listis]))
(vf11ed s (i Qhist 7l

{(ifile),(svar)
(ifile),(svar)

CAPEE LA

ia

Lo ol 110

Su

TMANY

oy

CuntrOL

xP<m>3<n>

Ry

rEL

AL

*EUFF

*E L1

Lok g

X+

x<n>

APPENDIXY pe InPUT/ZUUTEUT LIST CUORTRULS

USED I

KD

KOP

K0

APPFELIILX

FusCl Lun

{auses tne cursor to Le positioned

horizontally and vertically to the column
ard line indicated bty the numbhers <m>
(horizontal 1=40) ani <n> (vertical 1=12),
Inese numpbers may eitner be literals or
numeric varianples,

"(auses the cursor or printer to te

positioned in Lolumn 1 of the next line,

Causes tne line to be erased from the
current cursor position, :

Lauses the screen to te erasea trom the
current cursor position to the ena of the
line.,

Causes the cursor to ve positioned at
horjzontal position 1 of the top row of
the display and the entire adisplay to be
erased,

Prevents the echo to the display during
input operations, '

Causes the echo during input operations
Turn on keyin Continucus for KEYIn or
space atter logical lennth suppression for
U15PLAY ana PrRIWT,

Turn on space comgression durina wRITE,
lurn off Keyin Continuous (turned off at |
the end of tne statement) or the space
after logical lenath suppression,

lurn oft space compression auring wrITE,

Causes a horrzontal tab on the printer to
tne columm inagicated by the nunber <n>,

., likul/zublPul LIST CusTxilo tym]

AE<n>
*<nvar>

e 13

LU

*p
*L
*C
AT
L3
*JL
)\JB

*x[F

x0E

LN

- AT IS

R

KDP

KOP

KDP

KDP

KD

KOPW

L1ou

No action occurs if tne'carriage 18 past
the column indicatea by <n>,

lab specification for READ or ARITAB
operations; the logical file pointers are
moved to that character position relative
to the current physical record,.

Suppress a3 new line function when
occurring at the end of a list,

Any characters appearing between quotes

are displaved or printed when encountered,
Note that to include the character (") in
the string, the forcing character (#) must

' be used, For example, "Jack said,

#"Datapoint is great!#"" would print what
Causes the printer to be positioned to the
top of form,

Causes a linefeed to be displayed or
printed,

Causes a carriage return to be displayed
or printed, ’

Time out after 2 seconds for KEYIN
statement,

Pause for one second,
Left=justify numeric variable and
zero=fill at pight if there is no decimal

Right=)justity string variable and
blank=fill at left,

Left zero=fill string varijable,

Kestrict string input to dicits (0=9)
only.,.

Turn=on Text “ode (invert alphabetic
input),

Turn=off Text Mode,

A MP

APPEMDLX

Convert numeric variable to
"“Uinus=overpunch" format,

Boe loPuidbZouieol LIST CiinIwilld

APFENDTIX €, COMPILER ERHUR CUDES

#hen an bt code 1s given by the corpiler at the left of a line
of coue containing an error, the very next line will contain an
asterisk followea by an t code number and another asterisk under
the errar line at the position of tne scanning pointer when the
error was detected., The E code numper reters to the number in the
left column of the tollowing table ana the corresponding error
explination 1n the right column,

06001 The first operand of a CMATCH or CxivE 1nstruction was not
an octal numper, a auoted character, or a3 string varijable,

000U The second operand of a (»AICH instructior was not an octal
numbery, a quoted character, or a4 string variable,

UOULS The second operand of a MATUH or APPEID instruction was not
a string variable.

QUU04 The first operanda ot a MAILH or AFHEND instruction was not
a string variable or 8 literal,

00005 The ftirst orerand ot a RESET 1nstruction was not a string
vartable, :

00t0o The second operand of a RESE] instruction was followed by a
character that was not a space, implyinag that there were
other operanus following the second operand, RESLT may
have only one or two operands,

QU007 The first operanu of a BUMP instruction was not a string
varianle,

0UU10 fne second operand of a KuUMP instructior was not terminateq
' by & space, or had an absolute value of greater than 127,

CEVRVR I lhe operand of a (CHAIN or KULLUUT dinstructicon was not a
string varlable or o literal,

00Ule The first operana of o SIUKE 1nstruction ~as not a striny
variable or numeryc varjatle or li1teral, The first operand
of a LUAD instruction was not a string varianle or numeric
variable,

APPEwL LA Co LUMPILER EHRUIR LUDES C=1

000t1s
00014

0ouLs

V0016
0007
Qv
00021

0002¢°

voo0e3

suon2ly

Hooebh

wudee

VoLt

The second operand ot a8 SIURE or LUAD instruyction was not a
numeric variable,

The second bperand of a STURE or LUAD instruction was not
followed by either a space or a comma,

Une of the third thru Nth operands of a STUKE or LOAD
instruction was not the same data type as the first
operand, [f the first operand is a string or numeric
variable, then all operands after and including the third
operand must be a string or numeric variable, respectively,

The second operand of a MUVE instruction was not a string
variable or a nymeric variable,

The second operand of a MUVE instruction was not a string
variable or a numeric variable,

fhe tirst operand of a Muvt’instruction was not a string
variable or a numeric variable or a literal,

The second operand of a CUMPARE, ADU, SUBTRACT, MULTIPLY,
or DIVIDE instruction was not a numeric variable,

The second operand of a CMATCH, CMOVE, MATCH., APPEND,
CHAIN, ROLLOUT, CUMPARE, ADD, SUBTRACT, MULTIPLY, or DIVIDE
ingtruction was not followed by a space (indicating no more
operands followl,

The first operand of a CUMPARE, ADD, SUBTRACI, MULTIPLY, or
DIVIDE instruction was not a numeric variable or a literal,

The first operand of an instruction which may be followed
by a comma or a preposition was not immediately followed by
a comma or a space, If a comma follows the operand a
preposition is not looked for. 1f a space does follow the
operand then a preposition must be there,

The first operand of a GUTO, CaLL, or TRAP instruction was
not followed by a space.

‘The tirst operand of a TKAP instruction was not followed by

”" IF n N
The conditional overand (LT} EUS, EGUAL, LtRU, etc,) of a

Glilti, CALL, or TRAP instructiron was not follnwed by a
SNACce o

DATABUS 1100

uLo S0

LRest
QU032

20053
00054
G035

LI EY)

GOOA7T

G004y

0ooal

The conditional cperand of a GUTL or CALL instruction was
not LNUT) E0S, EWUAL, ZERU, LESS, or (UVEK; or the .
conditional operanc of a TRAP instruction was not PARITY,

“RANGE S, FURMAT, CFAIL, or 10,

IThe tirst operano of the TRAPULR instruction was not
tollowea oy & space,

The first operand of the TKAPULR imstruction was pot
PARITY, RANGE, FUORMAT, CFAIL, or 1U.

AN operand 1n @ KEYIKN or DISPLAY instruction was not a
string variable or a numeric variable, It was an ELU,
FILE, or IFILE variable, '

A control code (letter or letters following an asterisk) in
a KEYInN or LDISPLAY instruction was not *C, *L, #n, *T, =R,

xP, xbEL, *EF, %xES, %4, xElUN, or *E(FFE,

A variable <n> in the *F<n>i<n> control code of a KEYIN or
D18FLAY instruction was not a number (did not have a first
character of (=9) nor a numeric variable,

A variable €n> in the *P<n>i<n> conrtrol code of a KEYIN or
DIGPLAY instructicon was a numeric literal with a value for

“the first (horizontal position) <n> that was not | =< <n>

=< 80y or witn a value for the second (vertical position)
<n> that was not 1 =< «<n> =< |2,

A literal in a KEYIN or DISPLAY instruction was not
tollowed by a comma, space, semicolon, or full colon,

Ine last character in the operana strina of a nEYLi,

CDISPLAY, PRINT, READ, wR1TE, or wK1TAB instruction was not

a spacey colony, or semicolon,

lThe ena=of=line was encountereu before an operand string
terminator was encountered for o KbEYIiv, BISPLAY, PRINT,
REAL, @WRITE, vRITAB, ~EOF, REALKS, UPDATF, UPEN, PREPARE,
INSERT, or DELETE instruction, or

The character tollowing the ft1rst <n> in the *kF<n>:<n>
control code of a rtYLL or DIGELAY 1nstruction was not a

colon:s or

A gquotea string or octal number was spectfied 1n the
operana string of a kbald instruction.

abbE sl s e CutdP Il thior Lok D =3

0Ooue

00045

nouuy

0 0dy

vdudbd

00047

00050

VoISl

Qoushe

00053

An EWUATE, FILE, or IFILE name was specified in the operand
list of a PRINT instruction.

A character following an asterisk indicating a control code
in a PRINT instruction was not +, =, Ly F, Cy» N, Or a
number (0=9,

The first operand of a READ, WRITE, WRITAB, or WEOF
instruction was not a FILL or IFILE name,

fhe character following the first operand of a READ, WRITE,
WKITAB, or WEUF 1nstruction was not a comma,

The second operand of a READ, wRITE, WRITAB, or WEUF
instruction having an IFILE name as the first operand was
not a string variable name nor a numeric variable name,

The second operand of a READ, wKRITE, wRITAB, or WEOF
instruction having a FILE name as the first operand was not
a numepric variable,

The character following the first operand of a READKS
ingstruction or the second operand of a READ instruction was
not a semicolon,

Ine character following the first operand of an UPDATE
instruction or the second operand of a WRITE instruction
was not a space or semicolon,

An operand in the operand strinag of a READ or READKS
instruction was not a tab (x<number> or *<nvar> or
*<tWlUname>) nor numeric variable nor string variable, or

An operand in the operand string of a WRITE or UPDATE
instruction was not a space compression control (*x+ or *=)
or a quoted strinrg or numeric variable or string variable,
or

An operand in the operand string of a WHITAB or UPDATE
instruction was not a tab (*<number> or *<EGUname>) or
space compression control (*+ or *=) or quoted string or
numepric variable or string varible,

A tab operand (x<number> or *<EQUname> or *<nvar>) was used

in a READ instruction that had an IFILE name as operana one
and an NVAR mname as operand two.

VATABUS 1100

0uoby

B0ubs

00056

u0os7
000A0

00061

DQG6?

Buveld
DdQed

Uiiah

Guubb

The character following the % control=indicator character
in a wKRITE instruction was not a + or =, The comoiler will
recognize only the *4+ or *= control for the wKITE
instruction, use the wkITAH instruction to use tab control
(*<number> or *<nvar> or *<tliUname>) for output to a disk
file, For an Index=Sequential tile, to use tab control to
update & record in the file, use tne UFIJATL instruction,

The operana following an * control=indicator character was
a quoted 1tem, Numeric literals may be useg but they may
not be enclosed in couble~quote (") symbols, Humeric
literals, numeric variable names, or equated names may be
used to specitfy tab values in KbYlwu, DISPLAY, CUNSULE,
READ, wRITAB, READKS, or UPUATE instructions,

The operand following an * control=indicator character was
not an unquoted numeric literal, a numeric variable name,
or an equated name,

The first operand of a READKS or UPDATE instruction was not
an IFILE nare, :

A tab in a READ, WRITAH, READKS, or UPDAIEL instruction was
greater than 249, :

A tab in a READ, wRITAB, READKS, or UPUATE instruction was
zero, note that if the value of an EGU'd tab 1is
incorrectly specified the compiler generates a value of
zero for the tab, ana eacnh use of tnat tao will generate
this error,

A character following an operana i1n the operana string of a
READ, WRITE, wRkITAB, READKS, or UPDATE instruction was not
a space, comma, semicolon, or colon, If the instruction is
a wrRITAB or UPLATE instruction a semicolon is assumed,

The character following the second operand of a wEUF
instruction was not a space,

Ine character following the second operand of a 4RITAR
instruction was not a semicolon,

The first operano of an UPLYN instruction was not a FILE or
IFILE name or the first orerana ot o PrREFEKE instryction
was not a FIlLE nane,

The first operana ot a PRrPAaWE irmstruction was an [FILFE

rEPESDIX L ComPILER Ermon CUubk S {=5

00067

VIO A

0vo71

Joo7e

Vo073

vua7y

VIV

von7e

0oar?

00100

U101

wul0e

DEVRNYE

=&

name,

There is no provision within the DATABUS 1100 INTERPRETER
for the creation of an indexed=sequential file, The file
must first exist and be indexed by means of the INDEX
program betore the file may be opened by the CPEN
instruction and accessed; increased, or decreased by means
of the READ, wRITE, WRITAB, WEUF, KREADKS, UPDATE, and
DELETE instructions,

The character tollowing the first operand ot an UPENW or
PREPARE instruction was not a comma,

Ihe character following the second operand o* an (PEN or
PREPARE vnstruction was not & space,

lhe second operand of an UPEN or PREPAKE instruction was
not a string variable name or a literal,

Ihe end=of=line was encountered hefore a first operand was
encountered in a CLOUOSE instruction,

The first operand of a CLUSE instruction was mot a FILE or
IFILE name,

The character following the operand of a CLOSE instruction
was not a space,

4 character following an operand in a STORE, LOAD, or
JRANCH jinstruction was not a comma, cqlonp or space,

The first operand of a CLOCK instruction was not TIME, DAY,
or YEAK,

4 comma opr the preposition TO was not used between the
tirst and second operanas of the CLUCK instruction,

The secona operand of a CLOCK 1nstruction was not a string
varjaole. ' '

The character following the second operand of a CLUCK
instruction was not a space,

The tirst operand of an INSEKRT or DELETE instruction was
not an lFILE name,

Ine character following the first operand of an INSEKT or

JATARUS 1100

goluu
UGS

dO106

UOIIUI

uglle

Julll

nielts

D014

AV O A

Gol1e

Jull/

LELETE instruction was not a comma.

The second operand of an 1uSERT or DELETE instruction was
not a string varianie name,

The character tollowing tre secona operand of an LaSERT or
RELETE instruction was not a space.

An alphavetic character string shere a preposition should
have been was not recognized as a preposition: Y, TO, OF,
Frunsiy or INTUe or

A numeric literal was useo but w~as not enclosea in double
gquote " symbols,

An EUUATE directive was given atter an executatle
instruction was specifiea.

An ELQUATE directive was given but no label was specified,
Ihe tirst character of the operarna of an FJQUATE oirective
was not 1 thru 9. A first character of U implies an octal

numher which 1s not allowed 1n the ELUATL directive.

The value specifiea for an LUJAlE directive was not from |
thru 244, ’

The file specified in an INCLUUE directive was not found on
115k, :

The character after the first operand of a Li® 1nstruction
428 not a space,

The operanu value of a L1t instruction ~as greater than
127, ; -

For an INIT 1nstruction or an 1nstruction usirg a string
literals

a0 operana was found, or

4 character after a Quotcd SEriInNg was Net Comma or space,
or

Ine end=ot=line was encountered tefore tne encina quote of
d quateda operand was encountereud, or

[
f
~

APPE 01X Ue CuUmPILEbr bk Litbbs

nolgu

dulel

uulee

00123

o124

wilen

L=t

Ihe end=of=line was encountered immediately a‘ter a forcing
character # was given, or : '

A character following a comma following a guoted string or
an octal number was not a double=aucte sympbol or a zero, oOr

& qgquoted string ot greater than 127 characters was
specitied,

For an 1#lT i1nstruction or an instruction using a string
literal:

fhe character following the ending double=quote symbol of a
gquoted strinag was not a comma or a space,

For an instruction using a string literal, tne literal was
over 40 characters long.

The end=ot=line was encounterea hefore the fipst operand
(data item length specification) was encountered for the
pIM instruction,

Ihe end=of=line was encountered before the first operanda
(numeric gata format specification) was encountereds, or the
numeric data was specified to be more than 21 characters
long, for the FURM instruction,

A closing double=auote symbol was not found for the operand
(numeric data tormat specification) of a FURNM instruction,
or

A numeric literal was used but was not enclosed in double
quote (") symbols,

For the operand (numeric cdata format specification) of a
FURM instruction or for & numeric literal onerand:

The following applies for the FUR® instruction 1f a
integer=aecimal lenatn was specifiea:

Ine character ‘after the first numeric string (specifying
the integer part length) was not a space or a decimal
point, or

ihe character after the tirst numeric string =as a vecimal

point but MO numeric string swecifying the agecimal part
lengtn was found,

DR Thonud ol

vialee

ot

Hul b

Vulidl

DG132

D0133
Ul su
#ul3h
U0l a6
vol1s7
TRVR IR

TR N

i lde

ARV VN

The following applies if a quoteq string was specyfired:

there were more than 127 characters in tke number
specification, or.,

inere were no gi1gits spectfirea, or

Inere was a decimal point specities but ne diagits followed
1ty ORF '

Ihe nureric literal was not enclosed in vouple auote (")

systols,
H

For the 1M, INIT, or FUR® 1nstructions: the end=of=]ine
waSsS encountereq before an operand ~as encountered,

AN operand was not a quoteo 1tem, a numner, or a label,

Ine secona character after the openina aouble=cuote symbol
in the operanc of a (+OVE or CMATCH instruction was not a
qouble=quote symbol, lhe torcing character does not apply

in tnese two instructions vecause it 1S Not necessary,

For an instruction using a literal, the character after the
enaing double=quote symuol was not a space or corma,

An octal number was specified put the nurber was not in the
range U through Q357 inclusive,

Restricted error indicateq == consult oystems bEnaineer,
Kestricteg error inaicateu == consult Systems tnaineer,
restricted error indicatea == consult Syvstems fngineer,
Kestrictea error indicates == consult Systems Engineer,
Infernal compiler error,

xestricted error 1naicaten == consult Systems Enaineer,

Ine operand of a F| Jfnstructi1on was rot an unauoteo nymeric
literal with a value of | througn 20,

The operand ot a «bLur instryction was not an nVAK name,

Hestrictea error indicatey == consult byvstens fnoineer,

APPEL T A (e UeP bbb bRk CULES L=9

00144

0014%

gulae

ould’

gulho

Oulsvt

uolbe
un1953
Qulbha

Vo155

L=10

Hestricted error indicated == consult Systems Engineer,
Restrictied error indicated == consult Systems tEnqgineer,
CHeCKiv, CHECKL11, REPLACE operand Lvnot a 5var.

Cn10, CK1l, REP operana 2 not a svar'or stit,

SEARCH operand 1 not svar or nvar,

SEARCH operand ¢ not same type as operand i.

List lenéth not nvar in SEARCH,

lndex not nuﬁeric in SEARCH,

ARITL control was not ®mMp,

4RITE control was not *ZF,

PpATABUS 110

APPELDIX D, ERROR CUDES

1 an event occurs and the trap corresponding to that event
nas not been set, the message!

* ERRUR % LLLLL X = or
* EREUK x LLLLL X % 44

appears on the console display. lhe ftirst form appears for all
traps except 1/0 trapss In the event of an I/U trap, a
aqualification letter is given where a "Q" is shown 1n the example
(explained below under the "I0" trapl), The LLLLL is the current
value of the program counter and the X is an error letter, In
most cases, LLLLL roints to tne instruction teollowing the one that
causea the problem. However, in certain [/1) errorsy LLLLL wil)
point after the list item where the problem occurred. The
tollowing error Jletters can appear:

P = parity failure
K o= record number out of range
F = record tormat error
£ = chain tailure
- [/0 error
3 = 11legal operation coge
iy = call stack underflow or overflow
- interruptions already prevented ‘ "

Note that the last three jtems shown above cannot be trapped, The
5 error will only show up if somehow an invalid ooject tile is
executed or 1t the system is tailing., The U error will happen if
the programmer forgets to perform a call or in some other fashion
manaages to execute a RETURI instruction without a corresponding
CALL having been previously executed, or calls are nested more
than e1ght levels ceep, Ine A error will happen 1f 5 Pl
instruction 1s executed while 1nterrupts are currently prevented,

APPENDIX 0. ERRUR CULES =1

’

The events tha

capitalized mame is

Y=g

PAKITY

RANGE

FORMAT

CFAIL

10

DaTABus 1100

t may be trapped are shown below, The
the one used tn the TRAP statement,

- disk CRC error during READ or aisk CRC error
during write verification (the DL retries an
operation up to 5 times to get a so0od CRC
before giving up and causing this event),

- record number out of range (an access was
made that was off the physical ena of the file,
a record was read which was never written, or a
#RITAB was used on record which was neverp
written)

- gata being read into a numeric variable was
not all digits and decimal point and minus:
s1gny or decimal point in input aoes not agree
with the decimal point in FORM, or data from
disk has a negative multi=punch bu* no room for
a minus sign in FURM, or write specified
multi=punch and the last item of the field is a
gecimal point. The operation stous with the
item in error and the statement is aborted,

- the specitied program was not in the DUS
directory or a ROLLOUT was attempted with one
of the necessary system files missing, or a
program containing compile~time errors was
loaded,

= Error during 1/0 statement, Ei%her a
proaramming error or disk failure can cause
this TRAP, See Appendix E,

APPENDIX Eo INTERPRETER I/ TRAP CODES

A = an access sequentially by key was attempted pefore any indexed
sequential access was made using the logical file,

B = the READ mechanism ran off the end of a sector without
encountering a physical end of record character (003),

C = an oreration on a closed logical file was attempted.

D = a non=READ, non=DELETE, 1ndexed sequential operation was
attempted where the specifiea key already existed in the index.

t = an bEOF mark without at Jleast four zeroes was encountered,

[= the index file specifieo in an (JPEV statement does not exist
on the specified drive(s),

J = the index file found by the UPEN statement does not reside in
the correct physical location on the oi1sk (index files may never
nre moved, they must always be re=createo).

K = a null key was supplied in an operation where the key may not
be null,

M = the data file specified in the UPEn statement oOoes not exist
on the specifieg drive(s),

N = the adata file name specified im the OPEN or PREPARE statement
was null,

0 = the index tile name specified in the UPEN statement was null,
P = the file specifiea in the PREPARE statement had some type of
DOS protection (either write, delete, or both)., '

T = the tab value in the READ or wRITAH statement was off the end
of the sector,

U = an EUF mark was encountered while a record was being aeleted
in the indexed sequential file,

Vv = one of the indexeqa sequential access overlays (DHIL1/0V1,
DB11/0Ve2, or DBI1/0V3) could not be loaded by the DOS loager,

% = an index file pointer sector could naot be read,

X = an ingex file header sector could not be read,

Y = the R,I.8, of the data file pointed to by the index file could
not be read, (vwXY errors can be caused by parity errors, the
drive being switcheu off line, or the disk cartridge being swapped
with another while an operation is taking place.)

APPENDIX b, IWTERPRETER 1/00 TRAP CODES b~1

	0001
	0002
	001
	002
	003
	004
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	3-01
	3-02
	3-03
	3-04
	3-05
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	9-01
	9-02
	9-03
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	D-01
	D-02
	E-01

