
,

/

A High Performance
Interactive Programming
Environment for the
Apple Macintosh® Computer

CREATIVE lOLUTIOtts
Problem Solving for Business and Computer Applications

(MIll ccfCR11H1 UII

User and Reference Manual

Copyri ght 1 984

Creative Solutions. Inc

All Rights Reserved

Both this physical document and the right to use it is owned
exclusively by Creative Solutions, Inc. Use of this document by
others is licensed by Creative Solutions under the terms of the
MacFORTH Software license Agreement. This document may not be
reproduced in any form· either in part or in whole without the
express written consent of Creative Solutions, Inc.

Introduction Page i-I June 3, 1984

Acknow1edgments:

Portions of this document are derived and sometimes directly copied from the
documentation provided to the authors by Apple Computer, Inc. This has been
done to ensure technical accuracy, and is used with their permission.

This document was entirely prepared and produced on a Macintosh'" under
MacWrite'". All output was produced on an Imagewriter'" printer.

MacFORTH was designed by Doni Dave, and Steve; implemented by Don and
Dave; and documented by Dave, Doni Chrls, Christina, and Richard.

June I, 1984

Introduction Page i - 2 June 3, 1984

Creativity is more than just being different ...
Anybody can play weird -- thafs easy.
Whafs hard is to be as simple as Bach.

Making the simple complicated is commonplace ...
Making the complicated simple --

awesomely simple;

That·s creativity.

-- Charles Mingus. jazz musician (1922-1979)

The MacFORTH project is dedicllted to Alexllnder Rllmsay,
and proudly bears the Ramsay tartan on its cover. In his
90th yellr, he is II continuing source of inspirlJtion for the
road ahead.

Introduction Page j - 3 June 3, 1984

I ntroduct lon Page i - 4 June 3, 1984

Table of Contents

Dedication

Table Of Contents

I ntroduct ion

Users Guide:

Chapter 1: Installation

Chapter 2: Going FORTH

Chapter 3: Program Editing

Chapter 4 Getting Started

Chapter 5: Getting Results

Chapter 6: Graphic Resul ts

Reference Guide

Chapter 7: Menus

Chapter 8: Windows

Chapter 9: File System

Chapter 10: Printing/Serial Interface

Chapter 11: Advanced Topics

Chapter 12: Error Handling

Chapter 13: Glossary

Index

Appendix: ASCII Chart

Introduction Page i - 5

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

June 3J 1984 Index

Introduction

To

MacFORTH"fM

WELCOME I We are about to make your work more fun. We'll do it by making
you more productive with results that are easier to attain. The Apple
MacintoshlH (or more fondly 'Mac') represents a revolution in the way that
users interface to computers. Few computer users who have experienced the
Mac's graphics, windows, menus, or mouse will happlly choose to go back to
the same old alpha screen and keyboard interface.

In order to provide a consistent user interface across all applications, Apple
has included a large amount of software features in read-only memory (ROM)
built into every Macintosh. Mac FORTH has been specifically tal10red to put
these functions at your disposal.

Regardless of your prior programming experience, you will find writing
programs for the Macintosh to be a new and exciting experience. The
objective of this manual and the MacFORTH product is to equip you with the
necessary tools to develop software which fits comfortably within the
Macintosh environment.

Learning how to effectively use the Macintosh is in many ways similar to
learning FORTH. Each is based on extensions to a small set of simple
concepts. Each requires you to re-orient the way you approach computer
related applications, and allows you to get better results with less effort.

In order to learn how to use the Macintosh 1 we will first teach you how to
write programs in MacFORTH, and then how to use such programs to interface
to the Macintosh.

Introduction Page i - 6 June 3, 1984

We have included a Computer Aided Instruction Course for those just
beginning to learn FORTH. The course is designed to help novice FORTH users
and programmers to understand how to solve problems with MacFORTH. If you
are an old hand at FORTH, you'll want to go quickly through the course to
review some of the basics of MacFORTH.

Creative Solutions has been producing 68000 based FORTH systems since
1979. The MacFORTH product is a derivative of our Multi-FORTH'" product
line, specifically tuned to take maximum advantage of the Macintosh features
and facll ities.

CSI 68000 FORTH Products have been used to solve problems across a wide
spectrum of applications:

Airborne Radar Systems
Telephone Company Circuit Analyzers
General Accounting Systems
Video Games
Nuclear Power Plant Pipe Testers
Spread Sheet Programs
Data Base Managers
Hospital Operating Room Patient Monitoring
and some of the world's largest ROBOTS

In troduct i on Page i-7 June 3, 1984

The MacFORTH product line is divided into three areas:

For the hobbyist or those just getting started with the Macintosh. The Levell
product has been designed to put the tremendous power of the Macintosh at
your fingertips, without your having to know a lot about programming or
computers. This and all levels of the MacFORTH product line provide
stand-alone programming capabilities with the Mac, as well as TRACE, DEBUG,
and toolbox access. Support of the serial interface and sound capabilities of
the Mac 1s also included.

Level II

For the Professional who will be using MacFORTH in her/his work. The Level 2
product includes many enhancements such as more advanced graphics
commands, a full 68000 in-l1ne assembler, floating pOint, and more
documentation allowing further access to the toolbox. It is specifically
designed to meet the needs of the professional user.

Level III

For program developers thinking of either converting existing programs to run
on the Mac or developing new programs. Level 3 wi 11 allow you to do all of
your program development on the Mac, and then generate run-time only
versions of your product (contact CSI for details on royalties and other
arrangements). This version includes support from CSI, additional
documentation and 250 "right to execute" licenses.

I ntroduct ion Page j - 8 June 3, 1984

The Macintosh: An Appliance Computer

The Macintosh is Intended to be the first mass-market personal computer. It
is designed to appeal to an audience of non-programmers, including people
who have traditionally feared and distrusted computers. To achieve this goal,
the Macintosh must be friendly. The system must dispel any notion that
computers are difficult to use. Two key ingredients combine in making a
system easy to use: fami I iarity and consistency.

Familiarity means the user easily understands and is comfortable with what
is expected of her or him at all times. Most Macintosh applications are
oriented towards common tasks: writing, graphics and paste-up work, ledger
sheet arithmetic, chart and graph preparation, and sorting and filing. The
actual environment for performing these tasks already exists in people's
offices and homes; we mimic that environment to an extent which makes
users comfortable with the system. Extensive use of graphics plays an
important part in the creation of a familiar and intuitive environment.

Consistency means a uniform way of approaching tasks across applications.
For example, when users learn how to insert text into a document, or how to
select a column of figures in one application, they should be able to take that
knowledge with them into other applications and build upon it. Uniformity and
consistency in the user interface reduces frustration and makes a user more
at ease with the task at hand.

Years of software development, testing, and research have gone into the
definition of the MaCintosh user interface. On many other computers, since
little or no user interface aids are built in, each applications programmer
invents a new and original interface for each program. This leads to many
dlfferent (and usually conflicting) interfaces.

Apple has attempted to avoid this situation on Macintosh by building tools for
a versatile, well-tested user interface and placing them in ROM to be used by
all application programs. There's no strict requirement that an applications
program must use any or all of the supplied interface tools; but programmers
who create their own interface do so at the expense of their own development
time, useable data space, and the overall consistency of the application.

MacFORTH is able to directly access most of the bunt-in tool box functions.
Since the toolbox has been designed for general applicability, often the
amount of set-up required to perform even a simple function (like adding a
window or menu item) is extensive. We have factored out the most common
functions (menu, window, mouse, and file operations) and provided you with
simplified FORTH operators which make them easy to use.

I ntroduct ion Page i - 9 June 3, 1984

MacFORTH:
A High Performance, Interactive Programming Environment

FORTH 1s a language, but it is also a tailorable operating system and a set of
tools for developing and debugging your programs interactively. Since FORTH
is all of these things at once, it has been accurately described as a
"programming environment".

We feel that FORTH matches the process of human thought more closely than
any other programming method. Defining your own commands as you go along,
and using these commands in defining further commands, you actually create
your own personalized programming environment that is natural to the way
you think about your applications.

FORTH gives you as much or as little control over the computer hardware as
you want, at any level -- from the most powerful application commands down
to the machine code instructions. Figure 1 illustrates the various levels at
which comparable programming languages operate.

MacFORTH is a very powerful 32-bit implementation of FORTH which includes
the traditional features of FORTH as well as many new innovations.

Philosophically, FORTH takes a substantially different approach to developing
computer appllcations from other languages and operating systems. Most
other programming systems were designed to teach students how to solve
simple, self-contained problems on large timesharing or batch mainframe
computers. FORTH was developed specifically by and for the use of scientific
and engineering professionals in the solution of difficult real time data
acquisition and process automation problems. Since its inception over ten
years ago, FORTH has been hammered into its current form on the hard anvi I of
actual applications experience. What has emerged is a system which
antiCipates competence and technical responsibility by the user and in turn,
delivers unbridled performance.

MacFORTH puts the power of the computer in your hands. If you choose to
execute an endless loop or overwrite your program with data, MacFORTH wtll
not stand in your way. Consider the analogy of a power saw. The saw
substantially reduces the time required to cut a piece of wood to a desired
size. It does not protect you however, from cutting in half the sawhorse on
which the board rests. Avoiding such an obvious error is your responsibi I ity.
Consider the cost of a saw which was able to detect sawhorses and turned
itself off whenever it encountered one -- similar to the tremendous overhead
involved in many "traditional" computer languages.

Introduction Page i - 10 June 3, 1984

While using MacFORTH, you wi11 occasiona11y cause an error which will
require a restart of the system. This is the natural result of the learning
process. As you become more proficient, this will occur less frequently.

FORTH
Assembly FORTH"S Hi gh leve I language
language

Low High

Language Leve 1

Introduction Page i - t t June 3, 1984

Iterative Organization

The organization of this manual is cycllc, not 11 near. Before we elaborate,
let's look at the method most often used for designing FORTH applications.

The oldest programming approach was simply to write code until you finished.
Later the fashion was to organize a program into "modules", then to code each
of the modules. This approach was named "top down design", and the older
approach was dubbed "bottom up".

FORTH uses a still newer approach. Modularization is part of the method, but
the "modules" (or skeletal versions of the modules) are actually coded and
tested at the same time they are designed. You can code a "sketch" of the
appl1cations, and test to see if your general solution to the problem is
correct. If not, you simply rewrite the simple outline, and continue testing
untll you're satisfied. Then you can "flesh out" the outline with more detail.

This process is called "iterative development." On each iteration you solve
the problem at a deeper level and gather information necessary to avoid
problems at the next lower level. If you reach a point where insufficient
information is available, it is easy to interactively explore alternative
approaches, selecting the best solution at that level.

We have utilized a siml1ar approach in this manual. The manual is divided
into two main sections: the User's Guide and the Reference Guide. The
beginning chapters of the User's Guide show you to how to interact with
MacFORTH: creating, editing and saving. Later chapters of the User's Guide
walk you through successively more comprehensive examples, building on
previously developed skills and introducing the MacFORTH interface to each of
the major Macintosh features and facllities. The Graphics Results chapter
introduces graphiCS, and how to use the extensive set of graphics tools built
into the Macintosh.

The User's Guide ends with an example which touches on the major functions
highl ighted by a separate chapter in the Reference Guide.

The Reference Guide provides in-depth discussion of the MacFORTH interface
to each of the follOWing Macintosh features: Menus, Windows, File System,
and Printing/Serial Interface.

The Reference Guide also discusses Advanced TopiCS, Error Handling, and
provides a glossary of a11 user applicable words in the system.

In troduct i on Page i - 12 June 3, 1984

We hope our approach makes learning Mac FORTH easy. We know you'll be happy
with the results.

Creative Solutions solicits any comments in reference to the form, content,
or accuracy of this manua1. Your responses will allow this documentation to
evolve to better meet the needs of our customers. Please send your comments
to:

MacFORTH Product Manager
Creative Solutions, Inc.
4701 Randolph Road, Suite 12
Rockville, MD 20852
301-984-0262

Introduction Page i - 13 June 6, 1984

Introduction Page i - 14 June 6, 1984

Chapter 1: Installation

Overview

This chapter will show you how to install MacFORTHlH on your computer. It
wi 11 also discuss the files found on your MacFORTH system disk.

license Agreement

Before opening the package which contains the MacFORTH System Disc,
carefully read the License Agreement on the cover of the package. Briefly, it
states ...

Mac FORTH, including this manual and supplied diskette and contents of
both, is owned exclusively by Creative Solutions, Inc. A copyright is
registered with the United States Copyright Office, for both the manual
and the accompanying Object code. After paying the license fee,
agreeing to the terms of the I icense agreement, and returning the
attached registration card, you are licensed to use MacFORTH on a
single computer system.

You may not provide copies of CSI supplied materials to anyone else for
any reason. If you transfer your right to use MacFORTH to anyone else,
you are then no longer licensed to use it yourself.

WeOre quite serious about this. The MacFORTH product is the result of an
enormous amount of work. We have foregone any hardware copy protection
scheme for your convenience, we simply encode a serial number on each disk.
This allows you to always have a backup in the event of a media or hardware
failure and allows us to trace the source of illegal copies. We feel that we
have produced an outstanding product for the price, and that our customers
will respect our efforts and the law by adhering to these terms. If the cover
to the manual that you are reading does not include the distinctive MacFORTH
red, white and black logo, you are utilizing a copy which was produced in
violation of US copyright laws. Contact your attorney for instructions on how
to return this illegally produced material to Creative Solutions.

Be sure you make a backup of your Mac FORTH system disk
before you use the systeml

Installation Page 1 - 1 June 7, 1984

Making a Backup

Be sure to write protect your original MacFORTH disk before you make a
backup. This is described in your Macintosh System documentation (on page 89
- "Locked Disks").

Place the MacFORTH disc in your drive and follow the instructions in your
Macintosh System documentation (on page 81 - "Copying an Entire Disk").

When you have made a backup, store the original disk in a safe place and use
your backup disk. This will protect you in the event of a disc related error.

loading MacFORTH

Before you just start experimenting with the system, you should proceed
through this manual, trying each example (feel free to try other examples of
your own on the topic being presented). This may sound a little harsh, but the
Macintosh is l1ke no other computer. There are many unique features you need
to know about to make the best use of this new computer.

When you are ready to load MacFORTH, place the Mac FORTH system disk in the
drive and reset your computer (either press the programmer's reset button, or
turn the computer off, then back on).

Loading the MacFORTH System
To load the MacFORTH system (which loads MacFORTH and the editor), double
click on either the "MacFORTH 1.1" icon or the "FORTH Blocks" icon. "FORTH
Blocks" is a MacFORTH document and will load the MacFORTH sytem first, then
load the source code contained in the "FORTH Blocks" file itself.

The MacFORTH window will appear and you will see the soon-to-be-familiar
"ok". The arrow cursor will turn into a wristwatch, indicating you should
wait while the system is extended to include the editor (you will notice that
when source code is loaded from disk, the cursor will turn into a wristwatch
temporarlly). Finally, you will be asked to enter your initials (this is for the
editor and is explained in more detail in the "Program Editing" chapter).

Loading Only MacFORTH
If you want to load the MacFORTH system itself, without the editor or any
other "extras", edit block 1 of the "FORTH Blocks" file and delete (or comment
out) any commands which load other code.

Installation Page 1 - 2 June 3, 1984

Setting MacFORTH as the "Startup" Flle
Finder 1.1 (the current level of the Macintosh operating system) allows you to
select a fUe to be automatically loaded when the computer is reset (or turned
on). To select MacFORTH as the auto-load fHe, from the Finder, select the
"MacFORTH 1.1" icon (it w111 become inverted), and then select the "Set
Startup" item from the "Special" menu. To verify that MacFORTH will be
automatlcally loaded, turn your computer off then on and watch MacFORTH
load.

Loading the MacFORTH Demos
In order to understand the demos better, we highly recommend that you
complete the Users Guide section of this manual (chapters 1 through 6).

The demos provide a few graphic and music examples for your amusement. To
load the demos from the Finder, double cllck on the "Demo Blocks" file. To
load the demos from MacFORTH, execute the phrase

IHelUDE· De.o Blocks·

The demos provided are:

1.) Approach
Spins 1n the MacFORTH logo. Shows the rotation and scaling features
of the MacFORTH graphics package.

2.) Clock
Displays the current time (as read from the internal clock) in the
format of an analog clock. Shows real time update of the window.
You can change the size of the clock by resizing its window.

3.) Dark Beams
Displays a series of lines which can create some facinating results.
Try reslzing the window.

4.) Bouncer
Displays a bouncing ball in the window. Resize the window for
different bouncing patterns.

5.) Spirals
Displays some geometric doodllng. Shows the speed and power of the
MacFORTH graphics package. The code for this demo fits easl1y in one
block of source code.

6.) Sound
Plays Bach's two part invention #8.

Installation Page 1 - 3 June 3, 1984

I

To select the demo you like, activate its window (by clicking the mouse down
inside its window) or pull down the music menu. You can see (and modify if
you like) the source code for the demos by simply editing the "Demo Blocks"
file (as described in the Program Editing chapter).

We provide the source code to the demos for you to use as examples. Feel free
to modify the code for the purpose of experimentation. We discuss how to do
this in the Editing chapter.

Contents of the MacFORTH System Disk

In case you're wondering what each of the files on the disc are:

1.) "MacFORTH ,.'"
Contains the MacFORTH system itself. When opened from the Finder
(by double-clicking), it loads MacFORTH, and then the "FORTH Blocks"
fi Ie to extend the system. (By "extending" the MacFORTH system, you
are simply loading the standard utilities -- and any you might add to
the load block for the "FORTH Blocks" file.)

2.) "FORTH Blocks"
MacFORTH blocks fi Ie which contains the source code for some useful
utilities. It is loaded to extend the MacFORTH system. Modify block
one of this file if you want to load your application automatically
when MacFORTH is loaded.

3.) "Going FORTH"
MacFORTH blocks file which contains the source code for the Going
FORTH tutorial. Double-click on this file to load the computer-aided
instruct ion course.

4,) "GF Data"
Contains the text used in the Going FORTH tutorial.

5.) "Demo Blocks"
MacFORTH blocks file which contains the source code for the demos.

6.) "MacFORTH Folder"
A Mac folder used to hold files used by MacFORTH. The Finder and
system are contained in this folder to avoid cluttering up the screen.

Installation Page' - 4 June 71 1984

MacFORTH Customer Support Hotline: (300 984-3530

We have established the "MacFORTH Hotline" to assist you with questions
and/or problems you have concerning the MacFORTH product. Help is available
between the hours of 1 p.m. and 5 p.m. EST, Monday thru Friday (excluding
holidays) at (301) 984-3530.

The following guidelines have been established for the MacFORTH Hot1ine:

1.) Only MacFORTH customers who have signed and returned their
registration cards may use the MacFORTH hotline. If you haven't
signed and returned your card (the one attached to the disk envelope)
yet, do it now.

2,) Know your serial number (its on the original MacFORTH disk you
received). You need to tell the person answering the hotl ine your
name and disk number before you can ask your questions.

3.) Have your questions written down in front of you. We allow a
maximum of 5 minutes per call when others are waiting. This is
ample time to answer even a long list of questions if they are clear
and wri tten down.

4.) Please don't use the hotline for marketing questions. This is for
technical support only.

If these quidelines seem a bit harsh, please understand. We are happy to
support valid, registered users who have questions about MacFORTH.

You can also direct any questions/comments/suggestions in writing to:

I nsta llat ion

MacFORTH Product Manager
Creative Solutions, Inc.
4701 Randolph Road, Suite 12
Rockville, MD 20878

Page 1 - 5 June 3, 1984

I

Installation Page 1 - 6 June 3, 1984

Chapter 2: Going FORTH

Tooic

Overview

Preparat i on

Running the Course

Going FORTH Page 2 - 1

Page

2

2

2

I

June 4, 1984

Overview

This chapter provides the instructions for running the Going FORTH computer
aided instruction course which is supplied on the MacFORTH system disc.

The tutorial is designed for everyone. The novice FORTH programmer wlll
learn the basics of FORTH, more experienced FORTH programmers wi 11 get a
flavor for running MacFORTH on the Macintosh.

It is important that you run through the course, as many Macintosh specific
terms are introduced there. We will assume you have run the course and use
these terms throughout the manual.

Preparat ion

To run the course, power up your Macintosh with the MacFORTH system disc in
the drive. Open the "Going FORTH" document (by double clicking in it). While
it is loading, you wi II get the message "Loading the Going FORTH Tutorial." Be
sure you read this chapter before you begin the course (and remember to
re-size the window).

Once the course is loaded, you need to shrink the size of the MacFORTH
window by dragging its size box over to the left. Figure 2.1 shows what your
screen should look like while running Going FORTH.

Running the Course

When you uncover the Going FORTH window, the course will start
automatically, displaying the first frame. On the right hand side of the
window you will notice the scroll bar. To move on to the next frame, cl1ck
the arrow in the lower right side of the window. To review previous
material, click the arrow in the upper right side of the window.

To move from chapter to chapter, click the mouse down in the shaded area
above or below the scroll box (the scrol1 box is the white box in the shaded
area of the scrol1 bar). You can also move the scroll box to any position
within the course by dragging the scroll box up or down.

If you press any keys while in the Going FORTH window, the Mac will beep at
you, reminding you that you can only enter keystrokes in the MacFORTH
window while you are completing the tutorial.

Going FORTH Page 2 - 2 June 3, 1984

If you close the Going FORTH window, you can re-enter the course by selecting
the "Going FORTH" item from the "Tutorial" menu.

That's it! That's all you need to know; the tutorial will give you any
additional instructions you need, now get going FORTH!

" Options Tutorial

ok

Going FORTH

Going FORTH

A
Cornputer-A i ded Instruction

Course on ry lacFORTH

Creative Solution:::, Inc.
Copyright 1984

(click: Hie flrrow in Hie lO'wer right
corner to cont inue)

Figure 2.1

Page 2 - 3 June 3, 1984

Going FORTH Page 2 - 4 June 7, 1984

Chapter 3: Program Edi ti ng

I
Topic Page

Overview 2
Preparat ion 2
Selecting a Fi le for Editing 2

Displaying File Assignments 3
Using a Different File to Edit 3
Selecting a Different to Edit 3

Entering the Editor 4
Exiting the Editor 4
Block Buffers 4
Using the Editor 5

Practice Editing Block 5
Editor Window 6
Edit Menu 8
Insertion Point 9
Selection Range 10
Cleaning a Block 10
Reverting to the Last Version 10
The Editor Stamp 11

Loading Blocks 11
Error Detection While Loading a Block 11
Listing Programs 12
Copying Blocks 13

Single Block Copying 13
Multiple Block Copying 13
Copying Blocks from One File to

Another 13
Blank Filling Blocks 14

Cutt i ng and Past i ng to the Notepad 14

Program Editing Page 3 - 1 June 4, 1984

Overview

This chapter introduces you to one of the most used features of MacFORTH,
the editor. Using the editor, you can create and save your programs on disc.
This allows you to create and modify program source code without retyping it
each time you load the system. The MacFORTH editor uses an editing
technique similar to MacWrite, so if you are familiar with MacWrite, you will
be right at home using the MacFORTH editor.

The MacFORTH editor is used to edit program source files on the disc. We wi 11
introduce some of the file system commands you will use normally with the
editor. For an in-depth discussion of the file system and its commands, refer
to the File System chapter.

Preparat ion

To start this session load the MacFORTH system by resetting your Macintosh
(power off then on or press programmers reset button on the left side of your
machine) . With your MacFORTH disc in the drive, double click on either the
"MacFORTH 1.1" or the "FORTH Blocks" file in the window that appears on your
screen (if you have set the MacFORTH flle as the startup file, you don't need to
double click on the "MacFORTH 1.1" icon). When this file loads, it also loads
the editor from the file "Editor Blocks" automatically. (Remember to enter
your initials when asked.)

We'll stress again the importance of the editor to your effectiveness with
MacFORTH and urge you to spend the time now to understand how it works.
You should try each example in this chapter before continuing with the
manual.

Be sure to restart your computer as instructed above so that the examples in
this chapter make sense.

Selecting a File for Editing

When you loaded the "FORTH Blocks" file from the Finder (if you don't know
what the finder is, refer to your Macintosh manuals), MacFORTH assigned the
file to file number 0, opened it and selected it as the current "blocks file".
The MacFORTH editor allows you to edit the current "blocks file" only. (File
assignment, opening, selection and flle numbers are discussed in more detail
in the File System chapter. For now, just execute the examples to practice
using the editor.)

Program Editing Page 3 - 2 June 3, 1984 I

pisplaying file Assignments
You can see what files are assigned and opened by executing:

?FILES

You can see that "fORTH Blocks" is assigned to file number 0, that it is open
(by the capital "0"), and that it is the current "blocks file" (by the capital "B"
-- this is explained in more detall in the file System chapter).

Since the "fORTH Blocks" file is the file you are going to work with in this
chapter, you don't need to do anything else to continue. for your reference, we
will discuss how to select a different file for editing.

Using a Different file to Edit
If you want to use a different file for editing, execute the USE- command 1n
the following format:

USE- <file nOle>-

USE- assigns the file specified by the name <file name> to the first avallable
flle number, opens it, and selects it as the current blocks flle for editing (if
it is a blocks file). for example, if you wanted to edit the source code for the
MacfORTH demos (contained in the fi Ie "Demo Blocks"), you would execute
(don't execute this example now):

USE· Delo Blocks·

Selecting a Different flle to Edit
Once a file has been assigned and opened (via the USE- command, for
example), you simply select it as the file to edit with the SELECT command.
SELECT is used in the following format:

<file nUlber> SELECT

So, for example, if you wanted to edit the program source code contained in
the file assigned to file number 1 (assuming it is a blocks flle), you would
execute (don't execute this example now):

1 SELECT

SELECT acts on a file which has already been assigned a number. USE- should
be used when that file has not yet had a number assigned to it (e.g. the first
time you use the file after entering MacfORTH).

Program Ed1ting- Page 3- 3 June 3, 1984

I

Entering the Editor

There are three ways to enter the editor (don't try any of these techniques
just yeti simply become familiar with how to enter the editor):

1.) Execute the EDIT command in the following format:
<block-) EDIT

ie: (don't try this example now)
5 EDIT

2.) Activate the editor window by clicking in it with the mouse.

3,) Pull down the "Edit" menu and select the "Enter Edit" item
(or execute its equivalent keystroke, command D.

Exiting the Editor

There are three ways to exit the editor (don't try any of these techniques just
yeti simply become familiar with how to exit the editor):

1) Pull down the "Edit" menu and select "Exit Editor" item (or
execute its equivalent keystroke, command E) .

2) Click in another window with the mouse.

3) Close the editor window by clicking in its close box.

Block Buffers

When a block is edited, it is read from disk into memory. The area of memory
it is kept in during the editing process is called a "block buffer", Each time a
change is made to the block, it is modified in the block buffer only, When you
exit the editor, or select another block to edit the block is written to disk,

Once again, the image of the block you are editing is in memory and not
updated (written) to the file on disk until you exit the editor or select
another block to edit.

Program Editing Page 3 - 4 June 3, 1984

Using the Editor

The files you will edit are called "block files" because they are made up of a
sequence of "blocks" (old-time FORTH programmers may prefer the term
"screens"). A block is the fundamental unit of disc storage used by MacFORTH.
It is simply a fixed length record containing 1024 characters for programs.
The "FORTH Blocks" file on the MacFORTH system disc contains the source
code for some MacFORTH utilities, as well as empty space for your use.

You should organize your program source code logically into files by
categories. For example, you can see that we put the MacFORTH utilities in
the "FORTH Blocks" file, the demo programs in the "Demo Blocks" file, and the
Going FORTH tutorial source code in the "Going FORTH" flle. By logically
organizing your source code into fUes you will find program development
simplified greatly.

Practice Editing Block
In order to illustrate the use of the editor, we have provided a practice block
for you to work with while completlng this chapter. Begin by displaying the
practice block with the editor. Execute

5 EDIT

You should now see on your screen an edit window which looks like figure 3.1
below:

=0 Blk# 5 of 23 ; File-Forth Blotks
(Sample Editing Practice Block)

CR ," Loading Editor Practice Block, ,"

,PLUS (nl\n2 -- I add nl to n2 and display the result
CR (lOER, ," p I us " OUP ,+ ," equa Is" , .:

CR ," Editor Practice Block Loaded,"

Figure 3.1

Program Editing Page 3 - 5 June 3, 1984

Editor Window
The MacFORTH editor uses its own window. The window is large enough to
display one block of source code in a format 16 lines by 64 characters each for
a total of 1024 characters (as you can see in Figure 3.1). The following list
pOints out the features of the editor (don't try these features just yet, simply
read through the list to familiarize yourself with each):

- Title Bar
Displays the current block number being edited, the total number of
blocks in the file and the file name. Each time you edit a different
block this information is updated to show you exactly what you are
editing.

- Close Box
Lets you close the editor window by clicking in its close box. The
editor window will reappear the next time you enter the editor.

- Drag RegIon
Allows you to drag the edit window to a new position on the screen
(remember to keep the entire window visible when editing).

- Scroll Bar
The vertical bar on the right hand side of the window is the scroll bar.
It allows you to scroll up and down within the current program file,
selecting different blocks for editing.

- Up Arrow
Selects the previous block (numbered one less than the current
block) as the block to edit. Stops on the first block in the file.

- Down Arrow
Selects the next block (numbered one more than the current block)
as the block to edit. Stops on the last block in the file.

- Scroll Box
Drag the scroll box to select another block to edit. Move it up to
edit lower numbered blocks and down to edit higher numbered ones.

- Shaded Area
Click inside the shaded area above or below the scroll box to move
3 blocks at a time in either direction (up or down).

Program Editing Page 3 - 6 June 3, 1984

Now try a few of these features. First, click inside the close box. The editor
window disappears and the MacFORTH window becomes the active window. To
make the editor window reappear, re-enter the editor by executing (from the
MacFORTH window):

5 EDIT

With the edit window now the active window, here's how to move up in the
fUe to block 4: click the up arrow in the scroll bar on the right side of the
window. Click it once and it will move you up one block in the file ("up in the
fHe" meaning to a lower numbered block). You'll see the title of the window
change to

Blk.# 4 of 23; File= FORTH Blocks

indicating that you are now displaying block number 4. Return to block 5 for
editing by clicking the down arrow in the scroll bar once. You can see that
you have returned to block 5 by the title of the editor window:

Blk.# 5 of 23; File= FORTH Blocks

You can also move 3 blocks at a time in either direction in the file by clicking
within the shaded area above or below the scroll box. Click in the shaded area
below the scroll box once. You are now editing block 8 (you were previously
on block 5).

Each time you edit a new block, the scroll box is moved up or down. Its
position tells you what block you are editing relative to the start and end of
the file.

By dragging the scroll box up or down within the shaded area, you can position
the editor to edit any block in the file. Try dragging the scroll box to several
different positions now. Simply drag it to a new location and release the
mouse button to display the block being edited.

Moving the scroll box to the top position in the shaded area wi II position you
to edit block 0 of the file. The bottom position in the shaded area positions
you to edit the last block in the file. You can locate a particular block by
positioning the scroll box in the approximate location from the beginning or
end of the file. For example; since there are 23 blocks in the "FORTH Blocks"
file, if you wanted to edit block 12 you would position the scroll box
approximately half way between the top and bottom of the scroll bar. Try to
find block 12 now using the above technique.

Program Editing Page 3 - 7 June 3, 1984

Edit Menu
The Edit menu provides you with the following options while editing. Each
item in the menu provides a powerful function at your fingertips (don't try
these features just yet; simply read through the list to familiarize yourself
with them):

Undo (command Z)
Undoes the previous cut, copy, or paste operation (including any
changes since the last operation). It actually restores the contents
of the block to the version since the last cut, copy or paste operation.

Cut (command X)
Cuts the current selection range (discussed later in this chapter)
from the text and places it on the clipboard. (Cut, copy and paste use
the clipboard for consistency with the Macintosh environment).

Copy (command C)
Copies the current selection range (discussed later in this chapter) to
the clipboard.

Paste (command V)
Inserts the contents of the cl1pboard to the block at the current
cursor position and/or replaces the current selection range.

Stamp (command S)
Stamps the current block with the current date, as read from the
internal clock, and initials stored in the user variable INITIALS. Use
the word OINIT to change the value in INITIALS. DATE displays the
current initials and date stamp. If the flrst three characters in
INITIALS are non-printable ASCII characters or blanks, the stamp
function is disabled.

CJean
Blank fllls the contents of the block currently being edited. Use this
command with caution as you cannot undo it.

Revert
Resets the contents of the current block back to the version saved on
the disc. Use this command with caution as you cannot undo it.

Enter/Exit Editor (command E)
Allows you to enter or exit the editor.

Program Editing Page 3 - 8 June 3,1984

Insertion Point
If you look in the editor window, you will see a flashing vertical bar. This is
called the Insertion point Try typing the phrase (type it in only, do ll2.t.
press Return):

This Is the Insertion point.

and you'll see it inserted at the insertion point. You can also see that
everything to the right of the insertion point was shifted over each time a
character was typed. Characters in the last position on the right were pushed
right out of the window. Now delete what you just inserted by pressing the
Backspace key once for each character you just entered (the key wll1 repeat
automatically if you hold it down).

You can change the insertion point by pointing with the mouse to the position
you want to insert text and cllcking once. In the edit window, the cursor
becomes an "I-beam" instead of an arrow to make it easier to select an
insertion pOint between characters. Try moving the insertion point to several
different places in the window now. Remember, position the i-beam cursor
and click once. Each time you reposition it, the insertion point will be
marked by the flashing vertical bar.

Try repositioning the insertion point to several places again, but this time,
each time you position the cursor, type the phrase "abc" and backspace it
away to get a feel for inserting and deleting text.

You can also insert a line at any point by positioning the insertion point and
pressing the Return key. For example, position the insertion point between
the words "Sample" and "Editing" in the first line and press Return.
Everything on the line to the right of the insertion point is shifted down to
the beginning of the next line, all lines below it are shifted down one llne.
Press the Backspace key once to "glue" the lines back together. When you
pressed the Return key, you inserted a carriage return. Pressing Backspace
deleted it.

When you insert text in a line, all text to the right of it is shifted to the
right. If you insert a Return, the text after the insertion point and all lines
below are shifted down one line. You can recover the text that was pushed off
the end of a line or the bottom of the screen by deleting some text (if off to
the right) or deleting some lines (if off the bottom). To delete a blank Hne,
just position the cursor against the left edge of the editor window and press
Backspace.

While you ~ recover the text that has been pushed out of the window while
you are editing, only the visible text is saved on the disc when you exit
the editor. After any operation that saves the data in the disk buffers (stamp,

Program Editing Page 3 - 9 June 3, 1984

clean, undo, etc. -- explained next) you cannot recover any text that you can't
see.

The MacFORTH editor uses a simple, yet powerful "cut and paste" style of
editing (similar to MacWrite). By now, you can see how to insert and delete
text at the insertion points by typing in new text or backspacing it away.

Se I ect i on Range
If you are familiar with MacWrite this description will be a review. Cut, Copy
and Paste operate on a range of selected information (ie: a text string). To
select items for edit the I-beam cursor should be placed at the beginning of
the desired text and dragged to the end of the "selection range".

For example, try entering the following line in the block (put it anywhere you
like):

Uelcole to the .orld of nacFORTH editing!!!

Now remove the word "MacFORTH" by selecting it and "cut"ting it out: click at
the beginning of "MacFORTH", drag to the end of the word (it is now displayed
in inverse characters) and release the mouse button when the entire word is
selected (entirely in inverse characters). Select the "Cut" item from the
"Edit" menu; the selection range is now deleted and saved on the clipboard.
Bring it back by selecting "Paste" from the "Edit" menu.

You can now reposition the insertion pOint and paste the word "MacFORTH"
anywhere in the current block. You can even move to a different block and
paste it in that block! This should give you an idea of the power of the editor.
You can cut or copy a selection from any block and paste it into any other
block.

Cleaning a Block
The "Clean" item in the "Edit" menu allows you to completely erase the
current block being edited (filling the block buffer with blanks). THIS
COMMAND CANNOT BE UNDONE .. so use it with caution. You can only
revert to the version of the block saved on disk.

Reverting to the Last Version
The "Revert" item in the "Edit" menu al10ws you to revert back to the old
version of the block (from disc). AI1 changes made to the block since it was
last read in from disc wil1 be lost. THIS COMMAND CANNOT BE UNDONE ..
so use it with caution.

Program Editing Page 3 - 10 June 3, 1984

The Editor Stamp
The MacFORTH stamp allows you to mark a block with your initials and the
current date. Using this method informs you and others who last changed the
block and what day the change was made. Vou should "stamp" the screen (by
selecting the "Stamp" item from the EDIT menu each time you modify a block
with the editor.

Loading Blocks

To load a block from disc, execute the LOAD command in the following form:
<block.) LOAD

For example, to load the block you were editing, execute
5 LOAD

When a block is loaded, the source code on the screen is interpreted just as if
you had typed it in from the keyboard. This enables you to mix definitions
and commands to be executed immediately.

Error Detection While Loading a Block

If MacFORTH encounters an error while loading a block (an undefined word, a
typo, missing del1miter, etc.), it wi 11 abort immediately and issue an error
message. To find where the error occurred, simply enter the editor. The
insertion point (flashing vertical bar) will be located just after the error.

For example, if you have the sequence
QUERTY

in a block (and it was not a deflned word) when you loaded the block, the
insertion pOint would be one space after the "V". This feature is invaluable
for locating the cause of an error during loading because it shows you where
MacFORTH encountered the error.

Program Editing Page 3 - 11 June 3, 1984

Listing Programs

The following words are provided to enable you to list your programs to the
display and/or printer. If you have an Apple Imagewriter connected to your
Mac, select the "Printer" item from the "Options" menu to turn it on. All
output to the screen will be sent to the printer as well.

LIST
Displays the specified block. The data, screen numbers, and lines of the
block (numbered 0-15) are displayed. For example:

10 LIST
would list the contents of block 10.

INDEX
Displays the first line of a range of blocks. If you follow the convention
of using the first line of each block as a comment describing the
contents of the blOCk, INDEX will allow you to see quickly what a
range of blocks contains. For example:

5 15 IHDEX
would display the first line of blocks 5-15, with the block numbers
displayed on the left.

TRIAD
Displays three sequential blocks on one page, starting with a block that
is evenly divisible by three. You specify the number of any block in the
"triad" that you want to display. For example:

10 TRIAD
displays blocks 9, 10 and 11. This enables you to update your program
listings with only the screens that have changed. The icon used for
MacFORTH blocks (program) files contain three rectangles to deSignate
triad listings.

SHOW
Displays a range of blocks (as a series of triads). Given the starting
and ending blocks to displaYi SHOW generates a listing of triads. For
example:

10 20 SHOU
would generate a listing of three blocks per page containing the
specified range of blocks (it would actually list blocks 9-20).

Program Editing Page 3 - 12 June 3, 1984

Copy i ng Blocks

The following routines allow you to copy the contents of one block (or blocks)
to another (or others).

Single Block Copying
When copying limited numbers of blocks, use the COPY command in the
following format:

<source block-> <destination block-> COpy

For example, to copy the contents of block 6 to block 5, you would execute:
6 5 COPY

Multiple Block Copying
If more than a couple of blocks need to be copied, a copying utility program is
available. Load these routines by loading block 10 of the "FORTH Blocks" file.
To copy a series of blocks from one location on the disc to another, use the
COPY.BLOCKS in the following format:

<first> <last> <target> COPY.BLOCKS

For example, to copy blocks 3 thru 7 to screens 12 thru 16, execute:
3 7 12 COpy , BLOCKS (just an exa.plej do not try this no.!)

During the copying procedure, you are shown which screens are being accessed
with the following message:

sss -) ddd
where sss is the source block number and ddd is the destination block being
copied.

Copying Blocks from One File to Another
Load the block transfer routines by loading block 12 of the "FORTH Blocks"
file. The word XFER.BLOCKS will al10w you to copy blocks between files,
promting you to enter the required information. You will be asked for the file
numbers of both files as well as the range of blocks to be transferred.

Program Editing Page 3 - 13 June 3, 1984

Blank-Filling Blocks
To blank-fill a single block, select the "Clean" item from the "Edit" menu
while editing the block. If you want to blank-fill a series of blocks, load the
block copy routines (if you have already loaded them, you don't need to re-load
them). You now have the word CLEAR. BLOCKS. It is used in the following
format:

<first> <last> CLEAR.8LOCKS

For example, to blank-fill blocks 20 thru 25 in the current blocks file, you
would execute (don't try this example):

20 25 CLEAR.8LOCKS

Each time a block 1s cleared, the message
ccc Cleared

is displayed, where ccc is the number of the block being cleared.

cutting and Pasting to the Notepad

You can cut, copy and paste selected text to/from the Notepad. This allows
you to share ASCII data between MacFORTH and any other Macintosh system
that lets you move data to the notepad.

To move ASCII data from MacFORTH to the Notepad, enter the editor and cut
(or copy) the desired text. Select the Notepad item from the apple menu and
paste the selected text into the Notepad.

To move ASCII data from the Notepad to MacFORTH, select the Notepad item
from the apple menu and cut (or copy) the desired text. Enter the editor in
MacFORTH and paste the selected text into a block.

Program Editing Page 3 - 14 June 3, 1984

Chapter 4: Getting Started

Topic Page

Overview 2

Preparat ions 2

Finger Paint Example Program 3
Create a Window 3
Track the Mouse 5
Deflne the Window Program 6
Re-title the Window 7
Print ing the Picture 7
Define the Pen Size Menu 8

Summary 9

Getting Started Page 4 - 1 June 4, 1984

Overview

This chapter will give you first-hand experience in programming the
Macintosh. You wi11 enter a sample program, try it out, make some changes,
and try it again to see the differences. Don't try to understand each command
now. The intent of this chapter is to give you a feel for programming the
Macintosh, not to give a comprehensive description of each command. Later
chapters will fi11 in the missing information. For now, just enter the example
program and enjoy.

By the time you finish this chapter, you will have created a new menu, deflned
a program to be executed for the window, tracked the mouse, created some
graphics pictures (and printed them if you have an Apple Imagewrlter
printer), and defined a menu.

Preparations

By now you should have completed the Going FORTH tutorial, if you haven't, do
so now before you continue. You will be instructed to edit some source code
into the "FORTH Blocks" file. If you skipped the Program Editing chapter, read
it now before you continue.

It is important that you complete this chapter in one sitting.

The only thing you'11 need is about 20 minutes of time, your Mac, MacFORTH,
and you.

Restart your computer (by turning the power off then on) and load MacFORTH
by opening the "FORTH Blocks" document from the Finder (by double clicking
it). When MacFORTH loads, enter your initials when asked and you'11 get "ok".
You are now ready to start.

Getting Started Page 4 - 2 June 4,1984

Finger Paint Example Program

The example program you will be entering will allow you to create pictures in
a new window using the mouse. Press the Return key a few times to see
where your cursor is (some more "ok"s will appear).

Prior to typing in the following example, resize the MacFORTH window and
drag it down to the lower two-thirds of your screen (your screen should be
similar to figure 4.2, except the Finger Paint window won't be present yet).
This will expose the editor window. During the course of the following
example another window will be defined and will appear in the upper left
corner of the screen.

One other reminder before you start typing; spaces separate words in FORTH,
so pay careful attention to spacing in this example.

You will use blocks 2 thru 4 of the "FORTH Blocks" file to enter the source
code for this example. If there is already source code in any of the blocks,
clean the block by selecting the "Clean" item from the "Edit" menu (be sure
that you are editing the correct block before you clean it).

Finally, remember to put the comment (in parentheses) in the topmost I ine of
the block.

Create a Window
Edit the following source code into block 2:

(Finger Painting Uindow Definition

HEU.UIHDOU SHEET
" Finger Paint Uindow"
60 5 200 300
SIZE.BOH CLOSE.BOH +

SYS.UIHDO\.l

SHEET ADD.UIHDOU

Getting Started Page 4 - 3

SHEET \.I.TITLE
SHEET U.BOUHDS

SHEET \.I. ATTRI BUTES
SHEET \.I.BEHIHD

June 4, 1984

Your block should now look like the block in figure 4.1. If there are
differences go back into the editor now and correct them before you cont inue:

;;;;0 Blk# 2 of 23 ; File-Forth Blocks

I(FinQer PaintinQ Window Definition) I ... ·
liEW.WINDOW SHEET

" Finger Paint Window"
60 5 200 300
SIZE. BOX CLOSE. BOX +

SYS.WltiDOW

SHEET W.TITLE
SHEET W.BOUNDS

SHEET W.ATTRIBUTES
SHEET W.BEHIND

SHEET ADO.WlliDOW

Figure 4.1

Now load the block by executing:
2 LOAD

At thlS pOlnt a new wlndow wlll appear in the upper left corner of the screen.

Resize your MacFORTH window and drag it towards the lower right corner of
your screen so that both windows are visible (you can also see the editor
window). Your screen shouid be simi iar to figure 4.2.

Gett ing Started Page 4 - 4 June 4, 1984

" Options Edit

UTES

ok
2 LOAD ok

Figure 4.2

I f you c 1 i ck in the new window the system will just beep at you. eli ck back
inside the MacFORTH window and continue.

Track the Mouse
Edit the following source code into the top of block 3:

(Finger Painting Source Code)
TRACE.FIHGER (--- I word to follow the mOU5e when down)

HIDE.CURSOR
BEGIH STILL.DOWH WHILE @MOUSEXY DOT REPEAT

SHOW.CURSOR

Getting Started Page 4 - 5 June 4, 1984

Pef I ne the Wi ndow program
Edit the followIng source code Into the bottom of block 3 (under the source
code for TRACE.FINGER):

FIHGER.PAIHT (activate flag -- I progra. for SHEET)
IF BEGIH DO.EUEHTS

CASE MOUSE.DOUH OF TRACE.FIHGER EHDOF
IH.SIZE.BOX OF PAGE EHOOF

EHDCRSE
AGAIH

ELSE 7 SYSBEEP (beep on deactivation)
THEH

SHEET OH.ACTIUATE FIHGER.PRIHT

Your block should now look l1ke the block in figure 4.3. If there are
dIfferences, go back Into the edItor now and correct them before you continue.

~D 811e# 3 of 23 ; File-Forth Blocles
(Finger Painting Source Code)

TRACE.FINGER (--- I word to fol low the mouse when down)
HIOE.ClIRSOR

BEGIN STILL.OOWN WHILE @MOLISEXY DOT REPEAT
SHOW. CURSOR .:

FINGER.PAINT (activate flag -- I program for SHEET
IF BEGIN OO.EUENTS

CASE MOllSE.OOWN OF TRACE.FINGER ENOOF
IN.SIZE.BOX OF PAGE ENOOF

EtmCASE
AGAIN

ELSE 7 SYSBEEP
THEN

(beep on deactivation)

SHEET ON.ACTIUATE FINGER. PAINT

Load the block by executing:
3 LORD

Figure 4.3

Gett 109 Started Page 4- 6 June 4,1984

I
I
tQ

Activate the finger paint window by pointing to it with the mouse and
clicking down inside it. When you drag the mouse around in that window, the
cursor disappears and a line follows where you move the mouse. You can even
drag outside the window and come back In. When you release the mouse
button (le. stop dragging), the cursor re-appears and you don't get a line
following you anymore.

Try moving the cursor and clicking in the MacFORTH window now. The Mac
beeps at you when you de-activate the SHEET window (1ts title is "Finger
Paint Window) as you told it to do in FINGER.PAINT. Now resize the SHEET
window so your drawing space is larger (but leave both windows visible).

When you resize the SHEET window, the picture you drew is erased and you
are given a clear space to work in.

Close the sheet window (by cl1cking in its close box at the top left corner).
To make it re-appear, execute (from the MacFORTH window):

SHEET SHOU.UIHOOU

You can now activate the SHEET window and do some more drawing.

Re-Title the Window
Go back to the MacFORTH window (by clicking in in Now change the title of
the new window to your name. For example, if your name 1s Marge, execute:

" Marge's Rrt.ork" SHEET SET.UTITLE
or Harry:

U Harry's Impressions" SHEET SET.UTITLE
or, if you prefer:

" My Uery Own Easel u SHEET SET.UTITLE

printing the P1cture
You can even print your work of art if you have an Apple Imagewriter printer.
If you have one connected to your Mac, hold down the command key
(1mmediately to the right of the Option Key) and the $ (shift 4) key
simultaneously. If the Caps Lock key is up, only your sheet is printed, if the
Caps Lock key IS down, the entire screen 1s printed.

Getting Started Page 4 - 7 June 4, 1984

I

Oeftne the pen SIze Menu
As the final addition to the program, create a menu to change the size of the
pen you are drawing with. Edit the following code into block 4:

(Pen Size Menu)
7 COHSTAHT FIHGER.SI2E.MEHU

FIHGER.MEHU (---) FIHGER.SI2E.MEHU DELETE.MEHU
o " Finger Size" FIHGER.SI2E.MEHU HEU.MEHU
" SmalljMedluljLarge" FIHGER.SI2E.MEHU APPEHD.ITEMS
DRAU.MEHU.BAR

FIHGER,SI2E.MEHU MEHU.SELECTIOH: 0 HILITE.MEHU
GET.UIHDOU >R SHEET UIHDOU

CASE 1 OF 1 1 PEHSI2E EHDOF
2 OF 3 3 PEHSI2E EHDOF
3 OF 5 5 PEHSI2E EHDOF

EHDCASE R> UIHDOU
FIHGER.MEHU

Your block should now look like the block in figure 4.4. If there are any
differences, go back into the editor now and correct them before you continue.

~o Blk# 4 of 23 ; File=Forth Blocks
(Pen Size Menu)
7 CONSTANT FINGER.SIZE.MENU

FINGER.MENU (---) FINGER.SIZE.MENU DELETE.MENU
o " Finger Size" FINGER.SIZE,MENU NEW,MENU
" Small;Medium;Large" FINGER,SIZE,MENU APPEND, ITEMS

DRA~J , MENU, BAR
FINGER,SIZE.MENU MENU,SELECTION: 0 HILITE,MENU

GET. WINDOW >R SHEET WINDOW
CASE 1 OF 1 1 PENS I ZE EliDOF

2 OF 3 3 PENSIZE ENDOF
3 OF 5 5 PENSIZE EHOOF

ENDCASE R> WINDOW

FINGER,MENU

Figure 4.4

Getting Started Page 4 - 8 June 4, 1984

Now load the block by executing:
-1 LORD

Now you will see the "Finger Size" menu on your menu bar line. Pull it down
and select a new finger size. Activate the SHEET window and draw a few
llnes. Return to the "Finger Size" menu and select a new finger size. Draw a
few more llnes and re-select a new f1nger size.

When you get tired of the current pattern, re-size the window and start all
over if you like.

Summary

That's it! As we said at the beginning, our intent in this chapter was simply
to introduce you to some of the features of the Macintosh, not to give a
detailed description of each function.

You've seen how simple 1t 1s to create a new window, assign a program to the
window, track the mouse, create graphics pictures (and possibly print the
result), and create a new menu.

Getting Started Page 4 - 9 June 4, 1984

I

GettIng Started Page 4 - 10 June 4, 1984

Chapter 5: Getting Results

lQQ.k ~

Overview 1
Set Up a Work File 3
Windows 5
Error Hand1 ing 7
Forgetting a Window 7
Window Attributes 8
Changing the Window Title 8
Closing a Window 9
Hiding and Showing a Window 9
Wi ndow Bounds 10
Hiding the Cursor 10
Modifying the Cursor 11
Directing Output to a Window 12
The Mouse 13
Text Output 13

Creat i ng a S tri ng 14
Keyboard Input 15

I nput of Strokes 15
Number Input 15
String Input 16

Window Function 17
Assigning a Program to a Window 18
Window Function Template 19
Multiple Windows 19
Menus 19
Sound Generation 20
Arrays 21

Creat ing an Array 21
I nit ia1 izing th Array 22
Accessing Data in an Array 22

Memory Allocation 23
DiSPlaying the Amount of Memory

Available 24
Resizing Memory 24

Getting Results Page 5 - 1 June 4, 1984

Overview

There are some basic features to the Macintosh you need to understand before
you can use it effectively. To illustrate these features, we will present a
series of examples, simi lar to the method used in Getting Started, but giving
a more detailed explanation of the commands as they are presented.

Many of the commands you will use in this chapter will be easy to understand
at first glance. The example in which the command was introduced should
make its usage clear. Others will require more explanation. We will explain
the topic being presented and give any additional information you need to
know to understand the example. If you want to know more about a particular
command, refer to either the appropriate reference chapter of this manual or
the glossary.

As you go through this chapter, be sure that you try each example before you
go on to the next as we will use each step to bulld the next (very much like a
FORTH program).

Some of the examples are short enough that you can execute them directly
from the keyboard without saving them (you will be instructed to "execute"
the example). Others are longer and you may be asked to modify them later.
To avoid re-typing the entire example, you will be instructed to save the
example in a block on disc (using the editor -- you wi 11 be instructed to "edit"
the example, then "load" it). If you skipped over the Editor chapter, stop now
and read it. We will assume that you know how to use the editor to complete
this chapter.

When MacFORTH words are included within text, they are printed in bold face
capital letters to differentiate them from the rest of the text. We use the
convention of capitalizing all MacFORTH words. This is by no means
mandatory, as MacFORTH does not discriminate between upper and lower case
(ie. WORDS is equivalent to words or Words, or even WoRdS) when
executing the name of a definition. (If this is important to you, refer to the
Advanced Topics chapter discussion of the LOWER.CASE option.)

Getting Results Page 5 - 2 June 4,1984

~~--------

Set Up a Work FiJe

We begin this section by creating a blocks file for you to use. If someone else
has already gone through this chapter, the file may already exist.

Displaying the Disk Directory
Look at the contents of the disc by executing

IHTEAHAL DIA

This will display the contents of the disc directory.

I f the Fi Ie Exists
I f the file "Work File Blocks" already exists Ut is in the directory listing),
someone else has created it. You only need to assign, open and select it.
Execute the following (don't forget a space after the quotation marks):

3 COHSTAHT UOAK.FILE
" Uork File Blocks" UOAK.FILE ASSIGH
UOAK.FILE OPEH ?FILE.EAAOA
UOAK.FILE SELECT

If the File Doesn't Exist
If the file "Work File Blocks" doesn't exist (it doesn't appear in the directory
I isting), you need to create it. Execute the following (don't forget a space
after the quotation marks):

3 COHSTAHT UOAK.FILE
" Uork File Block8" UOAK.FILE ASSIGH
UOAK.FILE CAEATE.BLOCKS.FILE ?FILE.EAAOA
UOAK.FILE OPEH ?FILE.EAAOA
12 UOAK.FILE APPEHD.BLOCKS
UOAK.FILE SELECT

This will give you a working file named "WORK FILE BLOCKS" with 12 blank
blocks to use as you complete this chapter. (You may want to keep it around
as you go through the manual in order to keep any examples you might want to
reload.)

Getting Results Page 5 - 3 June 4, 1984

File Commands
The constant WORK.FILE is used as a convenient reference to the newly
created file, You should use a constant when referring to a file for the sake
of readability (it also makes it easier if you want to change its number at a
later date),

ASSIGN equates a file name with a file number, Future references to file
number 3 (using the constant WORK.FILE) will access the file named "Work
File Blocks",

?FILE.ERROR verifies the previous file operation and displays an error
message If an error has occurred,

CREATE.BLOCKS.FILE creates the blocks file on disc, making it a bootable
file, Once a file has been created on the disc, there is no need to re-create it.

OPEN opens the flle as a blocks flle and APPEND. BLOCKS alloted 12 blocks
to the flle for use,

SELECT made the file the current blocks flle for editing,

Getting Results Page 5 - 4 June 4, 1984

WIndows

One of the most innovative features of the Mac is its ability to create and
display windows. Each window can be used for a different purpose and can
run its own program. Let's begin this example by resizing the MacFORTH
window to about two inches high at the bottom of the screen.

Drag the size box upwards to shrink the window to about two inches high.
Next drag the entire MacFORTH window down to the bottom of the screen.
Your screen should now look like figure 5.1 below.

, Options Edit Finger Size

ok

Figure 5.1

Next create a new window named TEST.WINDOW, add it to the display, and
assign it a program to execute. Execute the following:

HEU.UIHDOU TEST.UIHDOU
TEST.UIHDOU ADD.UIHDOU

At this point the new window will appear and become the acttve window.
Cltck in the MacFORTH window and continue.

Getting Results Page 5 - 5 June 4, 1984

NEW.WINDOW created a window definition named TEST.WINDOW. Each
window created in MacFORTH has an array associated with it which defines
the window. Information about the size, starting location, program to
execute, text font, size, mode and style, etc. that pertains to the window is
stored in this array. When you want to reference your new window, use the
Mac FORTH word TEST.WINDOW which you just created. TEST.WINDOW will
place the "window pointer" (or "wptr" in stack notation) for this window on
the stack.

The MacFORTH routines which manipulate windows require the window
pOinter for the window to be on the stack. This allows the window
manipulation routines to be used for any window.

All windows that can be displayed are kept in a list of windows maintained by
the Macintosh. ADD.WINDOW inserts the window specified (by its window
pointer) into the Mac's list of windows, displays it, and makes it the active
window (unless the W.BEHIND window attribute is set).

Only one window can be active at a time. All inpUt/output is by default sent
to the active window. To activate a new window, simply click the mouse
down in the window that you want to become active. Click down in the new
window and then back in the MacFORTH window.

The default action of any window when it is activated is to beep for all user
events (mouse down, keystrokes, etc.). The ON.ACTIVATE command allows
you to specify the program to execute when the window is activated.
Execute:

TEST.UIHDOU OH.ACTIUATE QUIT

to specify the program QUIT to execute when TEST.WINDOW is activated.
QUIT is the program which runs MacFORTH itself (it waits for input, executes
it, and responds "ok"). Now try clicking in TEST.WINDOW and pressing
Return. Go back to the MacFORTH window (by clicking In It) and continue.

You can also activate another window by using the SELECT.WINDOW
command. SELECT.WINDOW expects the window pOinter of the window to be
selected on the stack. For example, to activate the new window from the
MacFORTH window, execute:

TEST.UIHDOU SELECT,UIHDOU

and go back to the MacFORTH window by clicking in it.

You can see that the MacFORTH window has both a size box and a close box;
the editor window has only a close box, and the new Window has neither.

Getting Results Page 5 - 6 June 4, 1984

These are all attributes about a window that can be included or left off,
depending on what you want the window to do.

Try dragging each window around on the screen (if you don't know how to do
this, run the Guided Tour provided with your Macintosh). Place them in any
position you llke, but be sure each window Is visible when you are done.

Error Hand) ing

When an error occurs in a window other than the MacFORTH window, the
MacFORTH window is activated. The error message (if any) is displayed in the
MacFORTH window, not the window the error occurred in.

This enables you to do any debugging from the MacFORTH window, allowing
you to see when and how the error occurred. For example, activate
TEST. WI NDOW and execute:

QUERTY

and you will see the error message
QUERTY ?

appear in the MacFORTH window because MacFORTH doesn't understand the
word QWERTY.

Forgetting a Window

When you forget a window, it is removed from the Macintosh window list and
taken off of the display (If visible). Forget your new window now by
executing:

FORGET TEST.UIHDOU

Any references to TEST.WINDOW, as with any other forgotten FORTH word
wlll not be understood by Mac FORTH as it has been removed from the
dictionary.

Getting Results Page 5 - 7 June 4, 1984

I

Window Attributes

Let's continue by creating a new window to work with. Edit the following
example into block 2 of your "Work Flle Blocks" file:

(He. Uindo. Exa.ple)
HEU,UIHDOU EX,UIHDOU

U Exa.ple Uindo. u EX,UIHDOU U,TITLE
CLOSE,BOX SIZE,BOX + EX,UIHDOU U,ATTRIBUTES

EX,UIHDOU ADD,UIHDOU

Now load it by executing
2 LOAD

You should now see a new window titled "Example Window" with a close box
and size box.

The default tltle for a window is "Untitled" (as you saw in the first window
you created). W.TITlE allows you to assign your own title to a window.
W.TITlE expects a string address on the stack (the string address was left
on the stack by the word") under the window pOinter. By executing

• Exa.ple Uindo. u EX.UIHDOU U.TITLE

in the above example, you assigned the title "Example Window" to the window
EX.WINDOW (we refer to windows by their FORTH name for clarity'>

Changing the Window Title

You can also change the window title after it has been displayed using the
word SET.WTITlE. For example, execute the following to change the name
of the new window to "Example Workspace":

n Exa.ple Uork8pace u EX.UIHDOU SET.UTITLE

Activate the editor window now (by elther clicking in it or choosing the
"Enter Edit" item from the "Edit" menu). Its title is:

Blklt 2 of 12; File = WORK FILE BLOCKS

Now edit block 1 by clicking the up arrow of the editor control bar. The title
of the menu changes to:

Blklt 1 of 12; File - WORK FILE BLOCKS

The MacFORTH editor uses the SET.WTlTlE command to change the title of
the editor window each time a different block is displayed.
EX.WINDOW also has two new features that the previous window you created

Getting Results Page 5 - 8 June 4,1984

didn't have: a close box and a size box. The word W.ATTRIBUTES allows you
to define the features of a window when it is created. These features were
given to the window when you executed:

CLOSE,BOX SIZE,BOX + EX,UIHDOU U,ATTRIBUTES

Closing a Window

When you close a window, it is hidden from view, and the window closest to
the "front" of the display is activated. Try closing EX.WINDOW now by
selecting it with the SELECT.WINDOW command and then clicking its close
box. Execute:

EX,UIHDOU SELECT,UIHDOU

Then click in its close box. When EX.WINDOW disappeared, one of the other
windows became active. Be sure the MacFORTH window is active by clicking
in it.

Hiding and Showing a Window

From the above example, you saw how you can hide a window by clicking in its
close box. To make a window re-appear, use the SHOW.WINDOW command.
SHOW.WINDOW re-displays the window specified by the window pOinter
given. Execute the following to make EX.WINDOW re-appear:

EX,UIHDOU SHOU,UIHDOU

EX.WINDOW is now there, but it is behind the active window, in this case, the
MacFORTH window. To see EX.WINDOW, close the editor window (enter the
editor and click in its close box), then close the MacFORTH window by clicking
in its close box. There it is!! Remember, SHOW.WINDOW makes the specified
window visible, but not active. A "visible" window is on the desktop, but may
be currently under another window.

You can also hide a window with the HIDE.WINDOW command. Like
SHOW.WINDOW, HIDE.WINDOW expects a window pOinter on the stack.
Return to the MacFORTH window by selecting the "MacFORTH Window" item
from the "Options" menu. Execute the following to make EX.WINDOW
disappear:

EX,UIHDOU HIDE,UIHDOU

Getting Results Page 5 - 9 June 4,1984

I

Window Bounds

You can also determine the initial position and size of a window using the
W.BOUNDS command. Edit the following example into block 3:

(He. Uindol TEST,UIHDOU2 Exa.ple)

HEU,UIHDOU TEST.UIHDOU2
H Test Uindow 2ft TEST.UIHDOU2 U.TITLE
100 150 300 400 TEST,UIHDOU2 U.BOUHDS

TEST,UIHDOU2 ADD,UIHDOU

Now load it by executing
3 LOAD

You created a new window named TEST.WINDOW2, gave it the title "Test
Window 2", set its starting position to 100,150 relative to the top left corner
of the screen (which is at 0,0) and made it a window 200 dots by 250 dots
(400-150=250).

The values 100 150 300 400 defined the window size by giving its "tlbr"
values (for lop, left, Q.ottom, right). This is easy to remember, because any
rectangle has four sides: top, left, bottom, and right. So in the example, the
top of the window is at 100 dots from the top of the screen, the left side of
the window is at 150 dots from the left side of the screen, the bottom of the
window is at 300 dots from the top of the screen, the right side of the
window is at 400 dots from the left side of the screen.

The default value assigned to a window as its bounds is
100 100 200 300 U,BOUHDS

Hiding the Cursor

You can hide the cursor (make it invisible) by executing the HIDE.CURSOR
command. To make it reappear, execute the SHOW.CURSOR command. These
commands are useful when you don't want the cursor to interfere with the
process being performed. We used them in the Getting Started chapter finger
painting example.

Use them with one important caution in mind, however. The user expects to
see the cursor move when she or he moves the mouse. If the cursor is hidden,
it will appear that the system is not responding. If you hide the cursor for a
time, be sure to make it reappear when you are done.

Getting Results Page 5 - 10 June 4, 1984

Modifying the Cursor

You can change the type of cursor (currently an arrow) using the SET. CURSOR
command. For example, to change the cursor to the wristwatch cursor (the
cursor displayed when the Mac wants you to wait), execute:

UATCH SET.CURSOR

Return to the arrow cursor by executing:
I HIT. CURSOR

The optional cursors you can select with SET.CURSOR are:
IBEAM (the cursor used in the editor)
WATCH (the wristwatch)

You can also fetch the current cursor with GET. CURSOR. This is useful for
the times you want to change the cursor during a specific operation and then
restore it to its previous image. The following example changes the cursor to
a wristwatch during a delay loop, then restores the cursor to its previous
image (enter it into block # 4):

DELAY (---)
GET. CURSOR (saue the current cursor on the

stack)
UATCH SET.CURSOR 10000 0

DO LOOP (a delay loop that does nothing)
SET.CURSOR (restore the cursor)

Load it by executing
4 LOAD

and try a few tests:
IHIT.CURSOR DELAY
IBEAM SET.CURSOR DELAY

Remember, if you try
UATCH SET.CURSOR DELAY

you won't know when the test is complete untll you get "ok".

Execute
I HIT. CURSOR

to return the cursor to the arrow before you continue.

Getting Results Page 5 - 11 June 4, 1984

I

Directing Output to a Wjndow

There are times you want to get Information or change some characteristiC of
a window without activating it. The commands WINDOW and GET.WINDOW
allow you to access the information about a wIndow without activating the
window. WINDOW selects the window for output from the window pointer
given on the stack, GET. WINDOW returns the window pointer of the current
window.

For example, the wIndow EX. WINDOW was created with the default text font
and mode (these characteristics are discussed in detail in the graphics
section, but for now, take our word for it). The MacFORTH window uses text
font 4, and text mode 2. To set the EX.WINDOW text font and text mode to be
the same as the MacFORTH window, edit the following definition into block
fIve:

Load it via

CHAHGE,TEST (---)
GET,UIHDOU (save current wptr on the stack)

EX,UIHDOU UIHDOU (select EX,UIHDOU)
CR ," Be fore, , , II
4 TEXTFOHT
2 TEXTMODE
CR ,/I After"

(select the text font)
(select the text lode)

UIHDOU (restore the .Indol)

CHAHGE,TEST

5 LOAD

and CHANGE.TEST is defined then executed. When WINDOW is executed, It
makes the selected window the current window for output. If you execute
WINDOW outside of a definition (via the keyboard), be sure to re-select the
window to the MacFORTH window when you are through (the name of the
MacFORTH window Is SYS.WINDOW).

You can see that the word "Before" was displayed In the default Macintosh
font. "After" was displayed in the Mac FORTH default textfont.

Getting Results Page 5 - 12 June 4, 1984

The Mouse

You can read the current posItIon of the mouse at any time wIth the word
OMOUSEXY. The x and y coordInates of the mouse are returned on the stack.
Here's a word to follow the mouse and report Its current position relative to
the active window:

TRACK.MOUSE (---)
BEG I H CR .. Mouse At: II IMOUSEHY SUAP . .
AGAIH i

TRACK.MOUSE

This wIll send you Into an infinIte loop which prInts the current position of
the mouse. Try It out. Move the mouse a11 over the screen and you'll see the
pos i t i on change.

To get out of this word (or to escape from any endless loop that displays
output), select the "Abort" Item from the "Options" menu.

Text Output

So far, we have used : exclusively as the way to output character data. You
can also type a string from memory or emit a single character. The word
EMIT displays the ASCII character given on the stack (refer to the ASCII
Chart Appendix for specIfic ASCII characters). For example, to output an
asterisk, execute (in decimal):

42 EMIT

To type a string from memory, use the words COUNT and TYPE. MacFORTH
strings contain the length of the string In the first character pOSition,
fo11owed by the string Itself. Given the address of a string, COUNT returns
the address of the first character In the string under the length of the string
(In bytes). TYPE displays memory (usually a string address converted by
COUNT), given an address and length on the stack.

Getting Results Page 5 - 13 June 4, 1984

I

Creating a String
There are many ways to create strings in MacFORTH. Here are the two most
common methods:

aJ The word If creates a string (delimited by If) and leaves its address on the
stack. You have already used this technique when defining window and
f1le names earlier in this chapter. The format for this method is:

H <string)"

Remember, the leading quote is a MacFORTH word, it ~ have a space
before and after it. The space after it is .QQt included in the string, it
separates the string from the forth word •. The delimiting quote does
.QQt need a space before it, but it ~ need a space after it. For example,
to create and display a string containing the name of the first NASA
Space Shuttle, you would execute:

" Colu.bla" COUHT TYPE

The disadvantage to this method is that the address of the string Is only
available immediately after the phrase is executed. Use this method
when you ~need the string once.

bJ You can create a named string using CREATE and ,. in the following
format:

CREATE <string na_e) I· <string)"

L1ke· ,you m.u.s1 have a space Immediately following , • . The advantage
to this method Is that you can refer to the string by name. For example,
to create a string containing the name of the second NASA Space Shuttle,
execute:

CREATE SHUTTLE$ I· Challenger"

To display the name, execute:
SHUTTLE$ COUHT TYPE

Gett 1 ng Resu I ts Page 5 - 14 June 4, 1984

Keyboard Input

MacFORTH allows you to control input from the keyboard from the level of a
single keystroke at a time to input of numbers and strings.

I nput of Keystrokes
The word KEY traps ASCII keys from the keyboard (command keys are
executed automatically) and returns the character value on the stack (refer to
the ASCII chart appendix for the ASCII character values). For example,
execute:

KEY .

and press the "*" key (shifted 8), and you'll see that the ASCII character value
for asterisk is 42. When KEY executes, it does not display the keystroke (as
you saw, the * was not displayed). If you want the keystroke displayed,
duplicate the value (with DUP) and EMIT it. This word is handy for words
like:

AHSUER.Y!H (-- flag I flag • -1 if Y, if anything el3e)
.n An3.er Ye3 or Ho (Y!H) _)n KEY DUP EMIT 89 (Y). ;

Now try executing ANSWER.V IN and responding with uppercase V or N. The flag
returned on the stack is true if a capital V was pressed. Now try it out.
Execute

AHSUER.Y!H .

and press uppercase V. Now try the same test, but this time press a different
key.

If you wanted to lOOk for either an upper or lowercase V, you could modify
ANSWERY IN and replace the phrase

89 (Y) •

with:
DUP 89 (Y). SUAP 121 (y). OR

Number Input
To input a number using MacFORTH, use INPUT.NUMBER. INPUT.NUMBER
accepts a number of up to the width specifled (in digits). After you press
Return, the number is converted from a string to binary. If the string is a
valid number, the number is returned on the stack under a true flag. If the
string is not a valid number, only a false flag is returned.

Getting Results Page 5 - 15 June 4, 1984

I

Try:
5 IHPUT,HUMBER CR

After you press Return, MacFORTH will be waiting for input. Input the number
123, then press Return. The numbers on the top of the stack are -1 and 123.
This indicates a number was input, and the number is 123. Now try another
example. Execute:

5 IHPUT,HUMBER CR , ,

Again, after you press Return, MacFORTH will be waiting for input. This time,
input an invalid number. Input

DUD

Since "DUD" is not a valld number, a 0 was returned on the stack under a -I,
indicating a string had been input, but it was invalid.

During conversion of the string to binary, if an invalid numeric character (not
o thru 9 or minus sign) is encountered, MacFORTH will stop converting the
string to a number. The number converted up to that point wi 11 be returned on
the stack under a true flag. If the first character is invalid, a zero is
returned under a true flag.

If nothing is input (the operator just presses Return), a zero flag is returned.

If this seems like a lot of things to remember for just inputting a number, you
could define a word 1 ike:

: ASK. HUMBER (-- n)
BEGIH CR .A Input Humber _>A 3 IHPUT.HUMBER UHTIL j

When ASK. NUMBER is executed, it wll1 repeat the prompt "Input Number -)"
until a number is entered, and leave the converted number on the stack.

String Input
The word INPUT.STRING accepts a string of characters from the keyboard. It
takes an address to store the string under maximum number of characters to
input (up to 255). This way you can control how many characters can be input.
When INPUT.STRING is executed, the system will stop what it is doing and
wait for a string to be input. The following example will input a string of up
to 12 characters to PAD (the MacFORTH scratchpad buffer), and then display
it. Remember, once you execute INPUT.STRING (by entering the following
phrase), the system will wait for a string to be input. Now try:

PAD 12 IHPUT.STRIHG

After you press Return, MacFORTH will wait for you to input a string. Input

Getting Results Page 5 - 16 June 4, 1984

the string (up to 12 characters) and press Return. To see the string you input,
execute:

PAD COUHT TYPE

You can also use INPUT.STRING to input into a string variable. The following
example will create a string variable named NAMES and input a string into it:

CREATE HAMES ," Bill S.ith"
HAME$ COUHT TYPE

After you enter the next line, the system will wait for you to enter the name
string, so input the name Joan Jones.

HAME$ 10 IHPUT,STRIHG
HAME$ COUHT TYPE

Warning: If you try to enter a string longer than the original string into a
string variable, you will overwrite part of the dictionary and may cause the
system to crash. Be sure that the string variable you are using is long enough
by counting the number of characters in it. An easy way to create a string
variable of the proper length is to use numbers in the string. For example, to
create a string variable 18 characters long, you could execute:

CREATE MY$ J. 123456789012345678" (18 char ~tring)

Window Function

The default program for a newly created window when it is activated is to
just beep at all mouse clicks or keystrokes. You can assign a program to a
window using the ON.ACTIVATE command. When the window is activated,
the program assigned to it is executed.

When a window is activated, its program is passed a flag telling whether it is
being activated (a true flag) or deactivated (a false flag). The program then
determines what to do and runs.

When a window is deactivated (by activation of another window, or by closing
the window), the program it is running is aborted immediately, and the
activated window is given control to run its program.

To illustrate this point, activate the MacFORTH window and execute the
following:

TEST (---)
100 0 DO I , LOOP CR ,n Te~t Done"

TEST

Getting Results Page 5 - 17 June 4, 1984

As you would expect, TEST displayed the numbers 0 through 99, output a
carriage return and displayed "Test Done".

Execute TEST again, but this time, before it completes, activate EX.WINDOW
(by clicking in it). As soon as you activated EX.WINDOW, did you see that
TEST stopped executing and control was passed to EX. WINDOW? Re-activate
the MacFORTH window and you'll get "ok", indicating TEST was aborted, and
MacFORTH is waiting for your next request.

Assigning a Program to a Window

You assign a program to a window using the ON.ACTIVATE command. This
program wlll replace the default program. Any program assigned to a window
will be passed a flag when the window is activated telling it whether the
window was activated (a true flag) or deactivated (a false flag). This allows
you to do any initialization when the window is activated, and perform any
clean up when the window is deactivated. Your program must be aware of this
flag and handle any special cases for activation or deactivation.

To illustrate this feature, assign a program to EX.WINDOW and watch it run.
Edit the following example into block #6 (and then load it):

TEST.ACTIUATE (flag -- I true if activate, otherwise
false)

IF .H Window Activated!!H 3 SYSBEEP WORDS
ELSE .H Window Deactivated!!H 3 SYSBEEP
THEH

EX.WIHDOW OH.ACTIUATE TEST.ACTIUATE

ON.ACTIVATE assigned the program TEST.ACTIVATE to EX.WINDOW.

Activate EX.WINDOW by either clicking in it or using SELECT.WINDOW.
When the window is activated, it will run the program TEST.ACTIVATE,
which displays the message "Window Activated!!", and executes WORDS. When
WORDS has completed, it will pass control back to the MacFORTH interpreter,
which will display "ok".

Now click down in another window. When the window is deactivated,
TEST.ACTIVATE will be executed again, but this time a false flag is passed,
indicating the window is being deactivated. The message "Window
Deactivated!!" will be displayed, and control is passed to the newly selected
window.

Getting Results Page 5 - 18 June 4, 1984

Window Function Template

Each program assigned to a window should be similar to the following
template:

UIHDOU.FUHCTIOH (activate flag --)
IF <activate code>
ELSE <deactivate code>
THEH

This is discussed in more detail in the Windows chapter.

Multiple Windows

The number of windows you can have and display at the same time is limited
only by the amount of memory available. When a window is activated, its
program will run until it completes or another window is activated.

Menus

Another important innovation of the Macintosh is the use of menus. Menus
allow you to present a large number of options to the user while at the same
time not requiring her or him to go through several layers of traditional
menus or remembering a large number of commands.

For a detailed discussion of menus, refer to the Menus chapter of this manual.

Getting Results Page 5 - 19 1111'\/\ A 1 ()Q A
..JUIIC ""t, I :7U""t

Sound Generat Ion

The Macintosh supports a wide range of sound capabilities. MacFORTH
provides access to the ROM sound driver for complex sounds (free form and 4
voice wave form) as well as versatile support for simple square wave tone
generation.

Simple Tone Generation
In order to generate distinctive sounds to alert the operator or play simple
melodies} MacFORTH provides the word TONE. TONE expects three things on
the stack:

durat i on \ vo I ume \ frequency

Duration is expressed in increments of 1/60 of a second "ticks" and is in the
range 0 through 256 (0-4.5 seconds).

Volume Is expressed in a scale from 1 through 256} with 256 representing the
loudest.

Freauency is expressed in hertz * 10.

For example}
60 128 1000 TO HE

will generate a tone of 100 Hz at half volume for 1 second. Here are a few
others to try:

60 128 100 TOHE
60 128 10000 TOHE
120 64 30000 TOHE

Detecting Sound in Progress
The word ?SOUND lets you check to see 1f a tone} or series of tones is
currently being sounded.

Aborting Sound in Progress
The word HUSH allows you to abort any sounds currently being generated.

Rest Notes
A frequency of 0 walts the suppl1ed duration with no sound output.

Getting Results Page 5 - 20 June 4} 1984

Note/Freguenc~ Eguivalence
The following table provides frequency equivalents for notes in an 8 octave
human tempered scale:

Octave (frequency* 1 0)

Note Q 1 2 :J ~ ~ Q. I
C 164 327 654 1308 2616 5233 10466 20930
C# 173 348 693 1386 2772 5544 11087 22175
D 184 367 734 1468 2937 5873 11747 23493
D# 194 389 778 1556 3111 6223 12445 24890
E 206 412 824 1648 3296 6593 13185 26390
F 218 437 873 1746 3486 6985 13969 27938
F# 231 462 925 1850 3700 7700 14800 29600
G 245 490 980 1960 3920 7840 15680 31360
G# 260 519 1038 2072 4153 8300 16612 33224
A 275 550 1100 2200 4400 8800 17600 35200
Nil 291 583 1165 2331 4662 9323 18647 37293
B 309 617 1235 2469 4939 9878 19755 39511

Arrays

Arrays are simple! An array is just an area of memory you set aside to store
data in. You decide what is kept in the array and how the data is accessed.
This can range from a very Simple, one dimensional array storing single
characters to a multi-dimensional array storing a complex data item.

Creating an Arra~
To create an array, you simply assign a name to an area of memory and
allocate the amount of space you need. Use CREATE to name the area and
ALLOT to allocate the space. For example, to allocate space for an array
which will hold the ages of 10 of your employees, you would execute:

CRERTE RGES 10 RLLOT

You now have an area of memory allocated (10 bytes to be exact) to the array
AGES. Since the values in this array will each fit into 1 byte (0-255), only
1 0 bytes are needed.

Getting Results Page 5 - 21 June 4, 1984

I

If you wanted to create another array which would keep track of their
salaries (1n the range $15,000-$75,000), each element in the array would
require 4 bytes (a 32-bit integer). You could create an array named
SALARIES for this information:

CREATE SALARIES 10 4* ALLOT

Why did we specify 10 4* instead of 40? Which do you think describes 10
elements, each 4 bytes long better??

Initializing the Array
You can initialize an array in many ways. The MacFORTH words ERASE and
BLANKS are convenient for zero and blank filling arrays. Try zero filling the
AGES array now by executing:

AGES 10 ERASE

(Refer to the MacFORTH Glossary entry for FilL for a general purpose word to
f i 11 memory with any character.)

Accessing Data in an Array
Given the base address of the array (given by its name), you can add the
appropriate offset to calculate the address of any element in the array. For
example, to get the first element in the AGES array (with subscript 0), you
would execute:

AGES C@ •

and you'll see that the value is zero. To read the second element in the AGES
array (with subscript 1), you would execute:

AGES 1+ C@ .

and so on. Remember, the subscript of an element is zero based. meaning that
the first element is subscript 0, the second, subscript 1, the third, subscript
2, and so on. This is logical if you think of the start of the array as the base
of the array, and each element is just an offset from the base. The first
element is located at tIle base, the second is located one up from the base,
and so on ...

Storing data in the AGES array is just as easy. For example, to store 27 in
the third element (subscript 2), you would execute:

27 AGES 2+ C!

Since each element in the AGES array is one byte long, calculating the
address of any element is as easy as adding its subscript to AGES. In the
SALARIES array, it is almost as easy.

Getting Results Page 5 - 22 June 4, 1984

Each element in SALARIES is 4 bytes, so you need to multiply the subscript
by 4 (the length of each element) to get the address of any element in the
array. For example, to get the first element (subscript 0), you would execute:

SALARIES @. (or) SALARIES 0 4* + @ •

To get the third element (subscript 2), you would execute:
SALARIES 2 4* + @ •

Why did we use 2 4* + instead of 8? The first expression tells you that you
were getting the second 4-byte element, the second is ambiguous. Of course,
the latter is more speed efficient.

Here's a word to display each element in the AGES array:
SHOU.AGES (---)

10 0 DO CR I. .0. 0 AGES 1+ Oi. LOOP

or, each element in the SALARIES array:
SHOU.SALARIES (---)

10 0 DO CR I. .M = 0 SALARIES I 4* + @ . LOOP ;

You've noticed by now that MacFORTH doesn't check to see if you are using a
valid subscript when accessing an array. This saves the tremendous overhead
of checking each and every subscript each and every time an element in the
array is accessed. It is your responsibility to check the values when
necessary.

As we said, what you do with an array and the data you keep in it is
completely up to you. Arrays in MacFORTH are free-form areas of memory. If
you are new to FORTH programming, some interesting words to remember
when using arrays (or any time you are manipulating memory) are:

@ U. w! C@ C! CnOIJE
FILL

Memory Allocation

Memory in the Macintosh is allocated from a pool of available memory called
the "heap." Although most memory allocation is handled automatically by
MacFORTH, there are two areas which you must be aware of and explicitly
control: the object and current vocabulary areas. We leave the allocation of
memory up to you in order to give you more control of this resource.

Getting Results Page 5 - 23 June 4, 1984

When a new word 1S created in MacFORTH, the name 1S placed in the current
vocabulary area (usually the FORTH vocabulary). The parameter field (which
includes data and memory address or 68000 instructions used by the word) is
placed in the object area.

The current vocabulary and object space are in1t1ally allocated 20Kand 10K
bytes respectively. If you need more room whl1e compiling a program and you
get one of the following error messages:

VOCABULARY FULl!
or

OBJECT FULLI
you will need to resize the appropriate space.

Displaying the Amount of Memory Ayai lable
You don't have to wait untl1 you get one of these errors in order to resize the
appropriate space. You can monitor both areas as you add definitions by
execut1ng the word ROOM See how much room you have allocated and
available now by executfng

ROOM

and you will see the display:
aaaa OF bbbb Object Bytes Aval1able
cccc OF dddd Current Vocabulary Bytes Aval1able

eeee Heap Bytes Avaflable

aaaa is the number of unused object bytes available and bbbb is the total
number of object bytes allocated. Subtracting aaaa from bbbb will give you
the number of object bytes used).

cccc is the number of unused bytes in the current vocabulary and dddd is the
total number of bytes allocated. Subtracting cccc from dddd will give you the
number of current vocabulary bytes used).

eeee is the amount of heap space available. This teJ1s you how much memory
is avaliabie for use.

Resizing Memory
You explicitly specify the amount of space to be used by either the object
space or current vocabulary space. This way you can increase or decrease
either as you needs require.

To resize the object space, use the command RESIZE.OBJECT, specifying the
amount of space to allocate to the area. For example, to allocate 10,500

Getting Results Page 5 - 24 June 4, 1984

bytes to the object area you would execute:
10500 RESIZE. OBJECT

To resize the current vocabulary space, use the command RESIZE.VOCAB,
specifying the amount of space to allocate to the area. For example, to
allocate 9500 bytes to the current vocabulary space you would execute:

9500 RESIZE. OBJECT

After resize either memory area, it is wise to verify the change by executing
ROOM. You will notice the amount of heap bytes avallable change as well as
the amount of space allocated to the area modified.

If you try to allocate more space than is available, or to shrink either memory
area smaller than its current contents, MacFORTH will issue an error
message. Refer to the Error Handling chapter for more informat1on when one
of these errors occurs.

Getting Results Page 5 - 25 June 4, 1984

Getting Results Page 5 - 26 June 4J 1984

Chapter 6: Graphic Results

Overview 2
Preparation 2
QuickDrawlH: A Sol1d Base 2
Your Wi ndow, Your Canvas 3
The MacFORTH Window 3
GINIT: Graphics Initialization 4
The Native QuickDraw Coordinate System 4

Cartesian Coordinate System 5
QuickDraw Coordinate System 5
The Basis of QuickDraw 6

Range of Coordinates 7
A Handy Tool 7
Line Drawing 8
Window Pen Characteristics 9
Pen Size and Shape 1 1
Pen Mode and Pen Pattern Characteristics 12
Text Output 14

Character Font 14
Text Style 15
Text Mode 17
Text Size 18
Line Height 18

Moving the Origin 19
QuickDraw Shapes 20

Rectang 1 es 20
Ovals 21
Rounded Corner Rectangles 22
Arcs and Wedges 22

Relative Line Drawing 23
Scaling to User Coordinates 24
Rotate to Coordinates 24
Integer Trig Functions 25
Drawing to Other Windows 26
Finding Out What's There 26
Demo Programs 27

Graphic Results Page 6 - 1 June 3, 1984

. Overview

This chapter discusses how to produce graphics images on the Macintosh. It
is intended to introduce you, through examples, to each of the features of the
Mac FORTH graphics package. We will use the analogy of drawing with a pen on
a piece of paper for clarity.

Preparat ions

It's a good idea to complete this chapter in one sitting. If you have read
straight through the preceding chapters you may want to take a break, then
come back to this chapter.

As you go through this chapter, let your imagination run free. Explore. Be
creative! Our examples are intended to trigger your own examples. Of all the
wonderful things that Macintosh graphics is, perhaps the most important
feature is that it's fun to use!

QuickDraw": A Solid Base

QuickDraw is the underlying graphics package from which the Macintosh User
Interface (ie; menus, windows, etc.) is constructed. Written by Bill Atkinson
at Apple, QuickDraw represents many major innovations in graphics software
technology.

QuickDraw lives up to its name! It's very fast. You can do good quality
animation, fast interactive graphics, and complex yet speedy text displays
using the full features of QuickDraw. Using QuickDraw, you can divide the
Macintosh screen into a number of individual windows. Within each window
you can draw:

- Straight lines of any length and width.
- Text characters in a number of proportionai and fixed spaced fonts,

with variations that include boldface, italics, underline, shadow,
and out 1 ine.

- A variety of shapes, either solid or hollow, including: rectangles with
or without rounded corners, ovals, arcs, and wedges.

- Any other arbitrary shape or collection of shapes, again either solid or
hollow.

- A picture consisting of any combination of the above items, with just
a single operation.

Graphic Results Page 6 - 2 June 3, 1984

In addition, QuickDraw has some other abilities that you won't find in many
other graphics packages. These features take care of most of the
"housekeeping" -- the trivial but time-consuming and bothersome overhead
that's necessary to keep things in order:

- The ability to define many distinct windows on the screen, each with
its own complete drawing environment -- its own coordinate system,
drawing location, character set, location on the screen, and so on. You
can easily switch from one such window to another.

- Full and complete "clipping" to arbitrary areas, so that drawing will
occur only where you want. You don't have to worry about accidentally
drawing over something else on the screen, or drawing off the screen
and destroying memory.

MacFORTH provides you with direct access to most of the features of
QuickDraw. Upon this strong foundation we have built a two dimensional
graphics package capable of translating pictures and images which are
expressed in natural user coordinates (ie; feet, miles, furlongs, centimeters)
into actual images on the screen. The images that you create may be offset,
rotated and scaled with respect to the window in which you are drawing.

Your Wi ndow ~ Your Canvas

All drawing occurs within the content region of a window. The content region
of a window is the area inside the window excluding the title bar and any
control bars. Each window is a complete and separate drawing environment
that defines how and where graphic operations will have their effect. Each
window has it's own coordinate system, drawing pattern, background pattern,
pen size and location, and character font size and style. You may instantly
switch between windows for graphic output.

The MacFORTH Window

In the following examples, you will use the MacFORTH window for graphics
output. Although both interactive transactions with MacFORTH and graphics
output will occur on the same window, we will later discuss how to do each
in separate windows.

Now, resize the MacFORTH window to take up most of the available desktop
space. (If you don't understand how to do this, run the Guided Tour to
Macintosh and review the preceding chapters).

Graphic Results Page 6 - 3 June 3, 1984

GINIT: Graphics Initialization

Execute

GIHIT

This will restore the state of the graphics system to it's default state. If,
during the remainder of this chapter, you become confused as to what is going
on (e.g. drawing in white ink on a white background) use GINIT to restore the
system to a known state - black ink on white background. Vou will notice that
the cursor moves immediately to the upper left corner of the window.

The Native QuickDraw Coordinate System

GINIT also resets coordinate interpretation to QuickDraw native mode, and
places the pen at 0,0. Let's move the origin to the center of the screen and
display the XIV axis. Execute

CENTER XV AX I S

QuickDraw native coordinates are different from the normal
cartesian coordinates that that you learned in school:

Cartesian Coordinate Sytem

Higher'V'
1\
I
I
1(0,0)

Lower 'X (----------------------------) Higher 'X'

I
I
I
\1

lower 'V'

As you can see, in the Cartesian coordinate system, increasing V values
progress illL increasing X va lues progress to the right.

Graphic Results Page 6 - 4 June 3, 1984

Look carefully at the XV axis that we've put up on the screen. The '+' sign for
the V axis (up an down direction) is at the bottom 1 not the top (where it would
be in Cartesian coordinates).

QuickDraw Coordinate System

Lower ·Y·
1\
1
1

1

Lower 'X <------------------------) Higher 'X'
1 (0,0)

1

1

\/
Higher ·Y·

Note that in native QuickDraw coordinates, increasingly higher V values
progress down, and lower V values progress.YQ. X coordinates are the same in
both Cartesian and QuickDraw coordinate systems. Now you can see why the
cursor is moved to the upper left corner when GINIT is executed. It was
initialized to 0,0. The diagram below shows how your window relates to the
coordinate system:

top left corner of screen -
V

------------------> higher 'x'

1------
1 10,0
1 1 Mac
1 1 Window
1 1 or Page of
1 1 Text

11-----
1

\/
higher 'y'

Although native QuickDraw coordinates are aligned with the way a page of
English text is read, it's still different from the way you may have been
taught in school to think about coordinate systems.

Graphic Results Page 6 - 5 June 3, 1984

Execute the fo11owing example:

10 10 MOUE.TO 50 50 DRAU.TO

This will move the pen to 10, 10 and draw a line to 50, 50. Notice the line
slopes downward.

MOVE.TO expects two values on the stack (the x and y coordinate of a poinO,
and moves the starting point for drawing to that position. If you think of
drawing lines with a pen, MOVE.TO simulates lifting the pen off of the paper
and moving it to the specified location.

DRAW.TO expects two values on the stack (the x and y coordinate of a pOinO,
and draws a line from the current point to the specified point. The new
location becomes the starting point for the next operation. If you think of
drawing lines with a pen, DRAW.TO simulates keeping the pen down as you
move it to the specified location.

The Basis of QuickDraw
Without discussing the mathematics behind QuickDraw's relationship to the
physical layout of graphics memory systems, it may be a little difficult to
understand why this coordinate system was chosen.

Most major innovation is the result of relaxing traditionally accepted
constraints and discovering whole new ways of looking at the problem.
Consider "Reverse Polish Notation". By removing the constraint of jumbled
operators and operands, far simpler and more elegant code may be produced by
always having operators follow operands and keeping intermediate values on a
stack.

By relaxing the Cartesian Y coordinate constraint, Bill Atkinson was able to
construct a mathematically pure model capable of expressing a two
dimensional coordinate system on bit mapped graphics screens. Much of the
startiing performance of the QuickDraw package is the result of the far
simpler arithmetic relationships between pOints in graphics memory and
QuickDraw native coordinates rather than Cartesian coordinates.

Don't panic. You don't have to learn a new method of drawing points if you
don't want to. MacFORTH allows you to express pOints in the Cartesian
coordinate system if you prefer.

Graphic Results Page 6 - 6 June 3, 1984

Try the following example:
CARTESIAH OH
PAGE
CEHTER
MYAMIS
10 10 MOUE.TO

(specify the Cartesian syste.)
(clear the window)
(center the xy axis in the window)
(display the xy axis)

50 50 DRAU.TO (draw a line)

The line that was drawn slopes upward, just as you would expect it to when
drawn in a Cartesian coordinate system. To go back to the native QuickDraw
coordinate system, execute:

CARTESIAH OFF

That's how easy it is to change between the two coordinate systems!

Range of Coordinates

Coordinate values are between -32768 and +32767 for both X and Y. Based
upon where you place the axis origin, pOints that are calculated to appear
within the window will be displayed; all others are not. Execute:

CARTESIAH OH
CEHTER (discussed later)
10 10 MOUE.TO 1000 1000 DRAU.TO

Notice that the line was drawn right off of the window. Now execute:
20 10 MOUE.TO 100000 100000 DRAU.TO

Numbers greater than 32767 "wrap around" to the negative end of the
coordinate system. Although MacFORTH deals with numbers up to +/- 2
billion, coordinate values greater or less than +/- 32767 can be best
described as "undefined". Refer to the "Scaling to User Coordinates" section
of this chapter for how to deal with larger numbers.

A Handy Tool

Enter the following definition to save yourself some typing:

: CLEAH (---) PAGE CEHTER CARTESIAH OH MYAMIS

When writing and testing MacFORTH programs, any repetitive sequence should
be defined and given a name. From now on we'll just use CLEAN to clean up
the display and redraw the xyaxis. Try it out now, execute:

CLEAH

Graphic Results Page 6 - 7 June 3, 1984

Here's a quick summary of the commands we have presented so far:

CARTESIAN OFF Sets mode to native QuickDraw coordinates

CARTESIAN ON Sets mode to cartesian coordinates

CENTER Positions the XY origin in the center of the window

CLEAN Wipes the display and places the xyaxis in Cartesian
coordinates on the screen
(this word is only present if you enter the definition
given on the previous page)

DRAW.TO Draws with the pen to the specified location from
the current location
(for now use MOVE.TO before every DRAW.TO on the
same line)

GINIT Reverts to Macintosh native coordinates and places
the XY origin in the upper left corner of the window

MOVE.TO Moves the pen to the specified location

PAGE Clears the screen

XYAXIS Displays the XY axis

line Drawing

As you have seen, lines are defined by two points: the current pen location
and a destination location. When drawing a line, QuickDraw moves the pen
(actually the top left corner of the pen) along the calculated line from the
current location to the destination.

If you draw a line to a location outside your window the pen location will
move there, but only the portion of the line that is calculated to be inside the
window will actually be drawn. This is true for all drawing procedures.

Graphics Results Page 6 - 8 June 4, 1984

Window Pen Characteristics

The graphics "pen" associated with each window has the following unique
characteri st i cs:

a location
a size and shape
a drawing pattern
a drawing mode

Pen Location
The pen location is a point in the coordinate system of the window and is
where QuickDraw will begin drawing the next line, shape, or character.
Within the range of coordinates there are no restrictions on the location or
placement of the pen. Remember, if you position the pen outside of the
window, you won't see part of the next line or shape drawn (if you leave it
there).

As you have already seen, MOVE.TO positions the pen at the specified
location, and DRAW.TO draws from the current location to the specified
pOint.

Notice the emphasis that DRAW.TO draws from the current location. To
illustrate this point, execute the following example (on three separate lines):

CLEAH
10 10 MOUE.TO
100 100 DRAU.TO

What happened?? Let's try it again, one step at a time. Execute:
CLEAH

You see that the window was cleared, the xy axis was displayed, and the "ok"
was displayed in the upper left corner. Next, execute:

10 10 MOUE.TO

look at the xy axis, where the pOint (10,10) is. See the "ok"? This tells you
where the pen location was moved to. After MacFORTH processed the
command, it output the "ok" and then moved the pen to the start of the next
line (at the current cursor position). Each time you enter a character, the pen
location is moved to the right (at the position of the cursor). So, when you
exuecte:

100 100 DRAU.TO

Where was the current location when the command was processed? At the
cursor position, just to the right of the DRAW.TO command.

Graphics Results Page 6 - 9 June 4, 1984

This is why you were given examples with MOVE.TO and DRAW.TO on the
same line. Now try:

CLEAH
10 10 MOUE.TO 100 100 DRAU.TO

and you'll see the line you expected. Remember, the current pen location is
changed when MacFORTH finishes what you just asked in interactive (or
interpretive) mode. While running a program, your pen will move only to
where you specify.

If you already know the starting and ending positions of a line, you can
simplify drawing it with the word vector.

VECTOR (x 1 \y 1 \x2\y2 -- I draws line between x l,y 1 and x2,y2

For example (try it both ways):
o 0 MOUE.TO 100 100 LIHE.TO

is the same as:
o 0 100 100 UECTOR

If you only want to display a single dot, you can use the word DOT. DOT
expects the x and y coordinate of the dot you want to display. Try displaying
a few dots by executing:

CLEAH
20 20 DOT
10 10 DOT
30 50 DOT
-10 35 DOT

In MacFORTH, it is easy to define your own shapes. For example, here's a
definition to draw a small box (you may want to edit this definition into a
block and then load it):

BOX (--- I draws a square on the screen)
10 10 MOUE.TO -10 10DRAU.TO

-10 -10 DRAU.TO 10 -10 DRAU.TO
10 10DRAU.TO

Now try it out by execut i ng:
CLEAH BOX

Feel free to modify the definition for BOX to create some graphics shapes of
your own. You may want to increase the size of the box, or make a diamond, or
whatever ...

Graphics Results Page 6 - 10 June 4, 1984

Pen Size and Shape
The pen 1S rectangular in shape, and has a user-definable width and height.
The default size (reset by GINIT) is a 1 by 1 bit square; the width and height
can range from 0, ° (no pen show), all the way up to 32,767,32,767 (a very,
very thick pen). If either the pen width or the pen height is less than 1 the
pen will not draw on the screen.

You can modify the size of a pen by specifying its width and height in terms
of dots to the word PENSIZE. For example,

5 10 PEHSI2E

would specify a pen 5 dots wide and 10 dots high. To see what effect this
has, try a few examples:

CLEAH
1 1 PEHSI2E 100 100 DOT
5 10 PEHSI2E 50 50 DOT
1 1 PEHSI2E 0 0 -50 -50 UECTOR
10 3 PEHSI2E 0 0 100 -100 UECTOR

CLEAH
1 1 PEHSI2E BOX

CLEAH
1 5 PEHSI2E BOX

CLEAH
5 1 PEHSI2E BOX

CLEAH

The pen appears as a rectangle with its top left corner at the pen location; it
hangs below and to the right of the pen location. You can see this by
executing:

10 10 PEHSI2E 0 0 DOT

Think of the coordinate plane as a grid. Individual dots are separated by the
lines of the grid. As the pen moves across the grid, only dots below and to the
right of the pen which fall within the pen size rectangle are affected by the
pen.

Graphics Results Page 6 - 11 June 4, 1984

Pen Mode and Pen Pattern Characterl st 1 cs
The pen mode and pen pattern characteristics determine how the bits under
the pen are affected when lines or shapes are drawn. The pen pattern is a
pattern that is used like the "ink" in the pen. Five patterns are predefined:
(WHITE, LTGRAY, GRAY, DKGRAY, BLACK). Try a few examples:

CLEAH
10 10 PEHSI2E
GRAY PEHPAT
-100 100 -10 10 UECTOR
DKGRAY PEHPAT
-120 100 -20 10 UECTOR

For fun try:
CLEAH
CREATE <BRICKS>
HEX 808080FF, 080808FF J DECIMAL

CLEAH 20 20 PEHSI2E
<BRICKS> PEHPAT
10 10 100 100 UECTOR

Some of the other patterns that we have worked with include:
HEX

CREATE <SPIRAL>
CREATE <CHECKS>
CREATE <BIG.CHECKS>
CREATE <SIGMAS>
CREATE <UEAUE>
CREATE <MARBLES>
CREATE <UAFFLES>

DECIMAL

00FE02FA J

CCCC3333 J

FOFOFOFO J

007C4420 J

F8742247 J

77898F8F J

BFCOBFBF J

8ABA82FE J

CCCC3333 J

OFOFOFOF J

1020447C J

8F172271 J

7798F8F8 J

BOBOBOBO J

As you can see, the pen pattern is used to fill in the bits that are affected by
the drawing operation.

Pen Mode
The pen transfer mode determines how the pen pattern is to affect those dots
which occur under the pen lines or shapes drawn. When the pen draws,
QuickDraw first determines what bits of the bit map will be affected and
finds their corresponding bits in the pattern. It then does a bit-by-bit
evaluation based on the pen mode, which specifies one of eight boolean
operations to perform. The resulting bit is placed into its proper place in
memory.

Graphics Results Page 6 - 12 June 4,1984

The word PENMODE allows you to specify the current pen mode. Choose the
pen mode from one of the following constants (each mode specified below is
represented by a MacFORTH constant of the same name):

Dot was Dot was
Mode Black White

PRTCOPY
PRTOR
PRT)(OR
PRTBIC
HOTPRTCOPY
HOTPRTOR
HOTPRT)(OR
HOTPRTBIC

Force Black
Force Black
Invert
Force White
Force White
No Change
No Change
No Change

Force White
No Change
No Change
No Change
Force Black
Force Black
Invert
Force White

For each type of mode, there are four basic operations -- Copy, Or, Xor, and
Bic. The Copy operation simply replaces the dots in the destination with the
dots in the pattern, "painting" over the destination without regard for what
is already there. The Or, Xor, and Bic operations leave the destination dots
under the white part of the pattern or source unchanged, and differ in how
they affect the dots, thus "overlaying" the destination with the black part of
the pattern. Xor inverts the dots under the black part. Bic erases them to
white.

Each of the basic operations has an alternate form in which every pixel in the
pattern is inverted before the operation is performed. Each mode is defined
by name as a constant in MacFORTH, e.g. (PATCOPV). The best way to
understand each mode is to experiment with them. Try the following
examples to start with, and then try some of your own:

CLERH
<BRICKS> PEHPRT
PRT)(OR PEHMODE
20 20 PEHSI2E
o 0100 -100 UECTOR
BLRCK PEHPRT
o 4 50 -50 UECTOR

Graphics Results Page 6 - 13 June 4, 1984

Text Output

MacFORTH allows you to output in any of the available text fonts, styles,
modes, or sizes aval1able on the Macintosh. Text drawing does not use the
pensize pen pattern or pen mode, but it does use (and modify) the pen location.
Each character is placed to the right of the current pen location, with the left
end of 1ts base line at the pen's location. The pen is moved to the right to the
locat10n where it will draw the next character. Enter:

GINIT CLEAN
100 100 DRAU.TO

All text drawn on the screen is drawn by QuickDraw. As a result, when the
word DRAW.TO was echoed back to the user as it was typed in, the current
point advanced and was left at the end of the text. The line was then drawing
from that point to 100 100 (from the center of the window).

Text echoed back to MacFORTH is a special case, and only effects graphics
drawn 1nteractively in the MacFORTH window. When a carriage return or line
feed is output, MacFORJH determines where to put the next llne of text. Text
advances down along the QuickDraw native Y coordinate until the next line
would be partially off of the window. MacFORTH then scrolls the window up
to make room for the new line. Enter:

CLEAN .
100 100 MOUE.TO U Now Is the time U

-100 -100 MOUE.TO 5 .

To move text around the screen, use MOVE.TO and then ouput the text. If you
attempt to output a line feed at a point which is not currently in the window,
MacFORTH wlll force it back onto the screen. This is so that all error
messages will appear on the display.

Any text which occurs within a window is drawn according to the currently
specified font, style, transfer mode and size. Qu1ckDraw can draw characters
as quickly and easlly as it draws lines and shapes, and in many prepared fonts.

Character Font
A character font is defined as a collection of bit 1mages: these images make
up the individual characters of the font. The characters can be of unequal
widths. A font can consist of up to 256 distinct characters, yet not all
characters need be deflned in a single font. Each font contains a missing
S¥ID..b.Ql to be drawn in case of a request to draw a character that is missing
from the font. Each font is assigned a specific reference number. If you have
deleted any fonts from the MacFORTH disc (as explained in the Macintosh

Graph i cs Resu 1 ts Page 6 - 14 June 4,1984

Users manual provided with your computer), they won't be available from
MacFORTH. The word TEXTFONT allows you to specify the current text font.
Choose the text font from one of the following values (no MacFORTH constants
are provided for the text fonts):

Font
System
App li cat i on
New York

Geneva
Monaco
Venice

London
Athens
San Francisco

Toronto

Value
o (bold faced Geneva)
1 (New York)
2

3
4 (fixed space -- the default MacFORTH font)
5

6 (Gothic)
7
8 (ransom notes)

49'ER ROP
9 NORTH TAHOE HIGf'-1 SCHOOL

P. O. BOX 5099
For example, those of you who are hOOkifAIFIQfiv\6(JnYpo~ ~~~ctill
recognize:

CR 6 TEXTFOHT ,n Have your goldfish, send cash or tartar sauceR

To return to the normal MacFORTH system font execute:
4 TEXTFOHT

To read the value of the currently selected textfont, execute:
GET,TEXTFOHT .

Text Style
The text style controls the appearance of the font. The following styles are
available: bold, italic, underline, outline, shadow, condense 1 and extend. You
can apply these either alone or in combination. Most combinations usually
look better on a larger character size.

If you specify bold, each character is repeatedly drawn one bit to the right an
appropriate number of times for extra thickness.

Italic adds an italic slant to the characters. Character bits above the base
line are skewed right; bits below the base line are skewed left.

Graphics Results Page 6 - 15 June 4, 1984

Underline draws a line below the base line of the characters. If part of a
character descends below the base line (ie: p) the underline is not drawn
through the dot on either side of the descending part.

You may specify either outl1ne or Ihldow. Outline makes a hollow outlined
character rather than a sol1d one. With shadow, not only is the character
hollow and outlined, but the outline is thickened below and to the right of the
character to achieve the effect of a shadow. If you specify bold along with
outl1ne or shadow, the hollow part of the character is widened.

Condensed and extended affect the horizontal distance between all
characters, including spaces. Condensed decreases the distance between
characters and extended increases it.

The word TEXTSTYLE allows you to specify the current text style. Choose
the text style from one of the following constants (each style listed is
represented by a MacFORTH constant of the same name):

~
PLAIN
BOLD
ITALIC
UNDERLINE
OUTLINE
SHADOU
CONDENSED
EXTENDED

For example:
BOLD TEXTSTYLE

or

Bit#
n/a
o
1
2
3
4
5
6

BOLD UNDERLINE + TEXTSTYLE

To read the current text style; execute
GET,TEXTSTYLE ,

Hex Value
o
1
2
4
8
10
20
40

For example, to enhance the current text style with bold face, you would
execute:

GET,TEXTSTYLE BOLD + TEXTSTYLE

To reset the text style to the default (plain setting) enter:

PLAIN TEXTSTYLE

Graphics Results Page 6 - 16 June 4, 1984

Text Mode
The text mode controls the way characters are placed on a bit image. It
functions much I ike a pen mode: when a character is drawn, QuickDraw
determines which bits of the bit image wi 11 be affected, does a bit-by-bit
comparison based on the mode, and stores the resulting bits into the bit
image.

The word TEXTMODE allows you to specify the current text mode. Chose the
text mode from one of the following constants (each mode listed is
represented by a MacFORTH constant of the same name):

SRCCOPY
SRCOR
SRC~OR

SRCBIC

(source copy)
(source or)
(source exclusive or)
(source bit clear)

The best way to understand each text mode is to experiment with each. The
default text mode is SRCXOR. Try the following examples to get started, then
continue with a few of your own:

SRC~OR TE~TMODE (be ,ure it, the default)
PAGE
100 100 MOUE.TO .n HELLO"

(press Return an extra time here to avoid overwriting the previous line)
101 101 MOUE.TO ." HELLO"

(again, press Return a few times to avoid overwriting the previous lines)
SRCCOPY TE~TMODE
100 100 MOUE.TO .• HELLO·

Remember to return to the default text mode when you finish experimenting
by executing:

SRC~OR TE~TMODE

Graphics Results Page 6 - 17 June 4,1984

Text Size
The text size specifies the type size for the font in pOints ("points" here is a
printing term meaning 1/72 inch). Any size may be specified. If the
Macintosh Font Manager does not have the font in a specified size, it will
scale a size it does have in order to produce the size desired. A value of °
directs the Font Manager to select the size from among those it has for the
font; 1t will choose whichever size is closest to the system font size (12
point).

The word TEXTSIZE allows you to specify the text size. For example, to set
the text size to be 20, you would execute:

20 TEXTSI2E

You can read the current text size by executing
GET.TEXTSI2E .

Here are a few examples to try:
34 TEXTSI2E
21 TEXTSI2E
5 TEXTSI2E
10 TEXTSI2E

and finally, return to the default text size by executing:
12 TEXTSI2E

You can see that when you increase the size of the font, it overwrites letters
on previous lines. This is due to the line height for output, explained next.

Line Height
The line height determines how far to advance down the page or scroll up
when a linefeed is encountered. Line height should normally be a little larger
than the text size (usually 3 points).

The word L1NE.HEIGHT allows you to specify the line height,
GET.L1NE.HEIGHT returns the current line height. Here are a few examples
to try:

15 LIHE.HEIGHT 12 TEXTSI2E (the default values)
20 LlHE.HEIGHT
30 LI HE. HE I GHT
15 LI HE . HE I GHT

Execute GINIT to restore text font, size and line height.

Graphic Results Page 6 - 18 June 4, 1984

Moving the Origin

MacFORTH allows you to move the origin for graphics output around on your
window. As you have already seen, XYAXIS draws the xy axis around the
center of the coordinate system. Execute

PAGE
CEHTER
CARTESIAH OH
XYAXIS

and you'll see the xy axis drawn in the center of your window. You can also
select the upper and lower left corner of the window as the origin. Try:

PAGE
LOUER.LEFT XYAXIS

and you'll see the xy axis (only the upper right quadrant) displayed in the
lower left corner of your window. Now try:

PAGE
UPPER.LEFT XYAXIS

and you'll see the xy axis (only the lower right quadrant) displayed in the
upper left corner of your window.

From any of these new origins, you can draw graphics just as you did from the
center of the window. As before, only those points that are inside the bounds
of the window will be displayed.

You can take moving the xy origin one step further and position it anywhere
(inside or outside the window). The word XYOFFSET allows you to express
the offset from the upper left corner of your window in native QuickDraw
coordinates for your xy origin. For example, to position your origin 150 dots
from the left and 75 dots from the top of your window (the content region),
you would execute:

150 75 XYOFFSET

Now verify this by executing:
XYAXIS

Tryout your new origin location by executing:
PAGE
XYAXIS
o 0 100 -100 UECTOR

and you can see that the origin has indeed been moved.

Graphic Results Page 6 - 19 June 4, 1984

I

QuickDraw Shapes

QuickDraw supports a number of predefined shapes:

Rectangles
Ovals (includes circles)
Rounded Corner Rectangles
Arcs (includes wedges)

Each shape may be FRAMEd, PAINTed, CLEARed, INVERTed or PATTERNed.

The outlines of FRAMEd shapes are drawn with the current pen size, shape
mode, and pattern. As the pen traces just inside the boundaries of the shape,
dots to the right and be low the pen (within the pen size) are modified. The
pen location is not affected.

Dots within the boundaries of PAINTed shapes are filled with the current pen
pattern and mode. The pen location is not effected.

Dots within the boundaries of CLEARed shapes are set to the background
pattern in pattern copy mode.

Dots within the boundaries of INVERTed shapes are toggled. Dots that were
black become white and white dots become black.

Dots within the boundaries of PATTERNed shapes are fi11ed with the supplied
pattern in pattern copy mode.

Rectangles
Rectangles are defined by two points at opposing corners. For example:

GIHIT PAGE
50 50 200 200 FRAME RECTAHGLE
200 100 100 200 IHUERT RECTAHGLE
CARTESIAH OH

CEHTER PAGE
~YAXIS

-100 -100 100 100 GRAY PATTERH RECTAHGLE

If you still have bricks around, try:
PAGE
-130 -200 130 -100 <BRICKS> PATTERH RECTAHGLE

Graph i c Resu 1 ts Page 6 - 20 June 4, 1984

(If you have forgotten <BRICKS>, execute:
HEX

CREATE <BRICKS> 808080FF, 080808FF,
DECIMAL

and then try the previous example again.)

The stack arguments for a rectangle are:
(Xl \y 1 \x2\y2\[pattern]\mode --)

Notice the top two stack items. The pattern parameter is optional. This
convention holds true for the standard QuickDraw patterns. If you use one of
the standard modes, you don't specify a pattern. Standard QuickDraw modes
are:

FRAME PAIHT CLEAR I HUERT

(as explained in the beginnning of this section). In the previous example, to
draw a framed rectangle, you executed:

50 50 200 200 FRAME RECTAHGLE

If you use a pattern (like WHITE, GRAY, DKGRAY, BLACK, or one you have
created -- like the <BRICKS> example), you need to supply the pattern
address and specify the mode as PATTERN. In the previous example, to draw
a gray rectangle, you executed:

-100 -100 100 100 GRAY PATTERH RECTAHGLE

Ovals
Ovals are drawn within a specified rectangle. A square rectangle results in a
circle. For example:

CLEAH
o 0 200 100 IHUERT OUAL

<BRICKS> PEHPAT
-20 -20 0 0 PAIHT OUAL
BLACK PEHPAT
-150 -150 100 100 FRAME OUAL

The arguments to an oval are the same as those to a rectangle.

Graphic Results Page 6 - 21 June 4, 1984

I

Rounded Corner Rectangles
A rounded corner rectangle is specified by a rectangle and the height and
width of an oval which describes the corners.

For example:
CLEAH
50 50 120 120 20 10 IHUERT RRECTAHGLE
-50 -50 20 20 5 5 FRAME RRECTAHGLE

The stack arguments for a rounded rectangle are

xl \y 1 \x2\y2\oval width\oval height\[pattern]\mode --

The oval width and height specify the oval the corners of the rectangle lie
within. If this seems confusing, experiment with these two values on a
rounded rectangle a few times -- a picture really is worth a thousand words!

Arcs and Wedges
Arcs are specified by an enclosing rectangle, and the starting angle of where
the arc begins and the arc angle of the extent of the arc. The angles are
treated modulo 360 and may be expressed in positive or negative degrees. A
positive angle proceeds clockwise, a negative angle, counter clockwise. As
with the rounded rectangles, this may seem confusing at first, but after
experimenting with a few makes them much clearer.

While you are experimenting (after you try the examples below), remember:
Zero degrees is 12:00
90 (or -270) degrees at 3:00
180 (or -180) degrees at 6:00 etc.

Arcs use the following stack arguments:
(xl \y 1 \x2\y2\start angle\arcangle\[pattern]\mode --)

For example:
CLEAH
5 5 PEHSI2E BLACK PEHPAT
20 20 100 100 90 120 FRAME ARC
-100 -100 100 100 -45 240 GRAY PATTERH ARC

Graphic Results Page 6 - 22 June 4, 1984

Relative Line Drawing

Frequently, groups of lines and dots are more related to each other than to
their position on the screen. For example, the relationship between the lines
that make up a particular character make more sense described in terms of
each other. If the starting point is moved, then all relative lines and pOints
can be redrawn without converting all of the points to the new location. For
example:

CLEAti
ABO~ (--- I draw the ~ide~ relative to eachother)

5 5 AMOUE -10 0 ADAAU
o -10 ADAAU 10 0 ADAAU
o 10 ADAAU;

1 1 PEtiSI2E PAT COpy PEtiMODE
20 20 MOUE.TO ABOM
40 30 MOUE.TO RBO~

In fact, here's a definition to draw a symbol for FORTH (you may want to edit
this definition into an empty block in your work file):

4TH (--- I draw an abstract symbol for FOATH)
50 0 AMOUE 0 -20 ADAAU

-30 0 AMOUE 0 40 ADAAU
-20 0 AMOUE 0 -40 ADAAU
-20 0 RMOUE 0 40 RDRAU
-30 0 RMOUE 0 -20 ADAAU
100 0 RDRAU

Now move to any position and draw it. For example, try:
CLEAti
10 10 PEtiSI2E
100 100 MOUE.TO 4TH

1 1 PEtiSI2E
o 0 MOUE.TO 4TH

CLEAti

Graph i c Resu 1 ts Page 6 - 23 June 4, 1984

I

Scaling to User Coordinates

MacFORTH allows you to scale your drawings to arbitrary user coordinates.
You can think of "scaling" as expressing values in terms of a percentage of
another value. The word XYSCAlE allows you to set the scale for both the x
and y axis. The default xy scale is 100,100. Try a few examples to illustrate
this:

For examp Ie:
CLEAN XYAXIS
100 50 XYSCALE
10 10 MOUE,TO 4TH
100 200 XYSCALE
10 10 MOUE,TO 4TH
-50 -50 10 10 GRAY PATTERN RECTANGLE
100 100 XYSCALE

If you wanted to draw the dimensions of a plot of land, expressed in feet, how
would you map this to a Macintosh window? If the window is 100 x 100 dots
and the maximum dimension of the plot of land was 500 feet, you could set
the scale to:

20 20 XYSCALE

and enter the coordinates in feet (each dot equals 5 feet>. MacFORTH wi 11
automatically scale the data and display it for you.

Rotate to User Coordinates

MacFORTH also allows rotation of the coordinate system around the origin. By
temporarlly offsetting the origin, other objects may be rotated. The word
XYPIVOT allows you to set the angle of rotation (in degrees) for the xy axis.
For example, try rotating the 4TH symbol 30 degrees:

PAGE CENTER 30 XYPIUOT
xvAxiS
50 50 100 100 UECTOR

Now try:
o XYPIUOT
XYAXIS
50 50 100 100 UECTOR

and you can see how the first 1 ine and axis was rotated 30 degrees.

, Graph i c Resu 1 ts Page 6 - 24 June 4, 1984

Here's a definition to spin the 4TH symbol by just changing the pivot:
SPIH (--- I spin the 4TH symbol)
PRGE PRTXOR PEHMODE
CEHTER CRRTESIRH OH 360 0

DO I XYPIUOT
o 0 MOUE,TO 4TH 0 0 MOUE.TO 4TH

3 +LOOP

By simply rotating the xy axis, you were able to rotate the 4TH symbol
without modifying the word 4TH itself. Now try:

5 5 PEHSI2E SPIH
100 200 XYSCALE SPIH
200 100 XYSCALE SPIH

Remember, only user defined shapes are rotated.

Integer Trig Functions

Included in the MacFORTH graphics are two integer trig functions: sine and
cosine. The words SIN and COS each convert an angle, expressed in degree,
into the angle's sine or cosine scaled up by 10,000. For example, the phrase

45 SIN. 7071 ok

tells us that the sine of a 45 degree angle is .7071 (.7071 times 10,000 is
7071).

Define a word to plot one complete cycle of a sine wave. Since the input to
SIN is an angle, we can set up a DO ... LOOP that runs from 0 to 360, and use the
index as the argument for SIN. This will return all the results from -10,000
to + 1 0,000, since SIN is scaled up by a factor of 10,000. If our window is
only 200 x 200, you clearly cannot fit a full scale sine wave on the display.
By scaling the data, however, it will easily fit. Try the following example:

WRUE (--- I draw a scaled sine wave)
-1000 DUP SIH MOUE.TO

1000 -1000 DO I I SIH DRRW.TO LOOP

Now try:

GIHIT CLEAH
PATOR PEHMODE
10 1 XYSCRLE WAUE

Graphic Results Page 6 - 25 June 4, 1984

I

Drawing to Other Windows

Anything that can be done in the graphics system window can be done in
another window. (Resize MacFORTH window to a wide rectangle at the bottom
of the screen llke you did in the Getting Started chapter -- for figure 4.2).
First, create a new window:

NEU.UINDOU EASEL
40 40 200 350 EASEL U.BOUNDS
n EASEL· EASEL U.TITLE

EASEL ADD.UINDOU

Now click in the MacFORTH window to continue. The following definitions are
used as a shorthand method for specifying the current window (your
fingertips will thank us).

>E (--- I select Easel window) EASEL UINDOU
>M (--- I select MacFORTH window) SYS.UINDOU WINDOU

Now, resize the MacFORTH window so that both it and the EASEL windows are
visible. Then try the following examples:

>E GINIT CENTER XYAXIS >M
>E 10 10 50 50 GRAY PATTERN RECTANGLE >M

TUIST (---)
GINIT CENTER CARTESIAN ON
360 0 DO I XYPIUOT 0 0 MOUE.TO 50 50 DRAU.TO LOOP

>E TUIST >M

(Try some examples of your own. Remember pulling down ABORT in the
options menu or entering the Command A keystroke will return you to the
MacFORTH system window.)

Finding Out What"s There

The word GET.PIXEl lets you find out the state of any dot on the screen.
Given an x,y coordinate, GET.PIXEl returns a true flag if the dot at that
coordinate is black, a false flag otherwise. The x,y coordinates are expressed
in native Quickdraw coordinates relative to the upper left corner of the
screen. For example, to determine if the dot at 100,100 is on, you would
execute:

100 100 GET.PIXEL

Graph i c Resu 1 ts Page 6 - 26 June 4, 1984

Demo Programs

We have included some demo programs on your system disc. To load them,
execute

IHClUDE" Demo Blocks"

(or, you could double click the Demo Blocks icon from the finder). The demo
programs are provided in source form so you can see the techniques used.
Feel free to examine the demos (and make changes if you like). Have fun! We
certainly did when we wrote them! To edit the demo source code, execute:

USE" Demo Blocks"

and then edit whichever block you like. Block 1 of the file will give you a
good idea of where specific demos are located.

Graphic Results Page 6 - 27 June 4,1984

Graphic Results Page 6 - 28 June 4, 1984

Chapter 7: Menus

TOPlC Page

Overview 2

Menu Example 2

Menu List 3

Menu Creat ion 3
Menu Insertion Point 3
Menu 10 3
Menu Title 3

Menu Items 4
Item List 4
Special Characters 4
Special Strings 5

Separating Menu Items 5

Displaying the Menu 5

Menu Item Selection 6
Menu Item Numbers 6
Menu Item Execut i on 6
Modifying Execution 7

Modifying Menu Items 7

Deleting a Menu 8

Disabling a Menu 8

Appendix A: Example Menus 9

Appendix B: Menu Glossary to

I Menus Chapter 7 - 1 June 4, 1984

Overview

MacFORTH allows you to define and control menus easlly. You can specify the
order of the menus on the menu bar, their titles and the items in each menu.
Menu items can be selected via the mouse or command keys, disabled,
highlighted, deleted, or even have their function changed.

This chapter discusses how to create, activate, de-activate and delete menus
from the menu bar. Using MacFORTH, you can create and use up to 31 menus
simultaneously, each having up to 16 items; however, ten to twelve items per
menu are all that wlll usually fit.

Menu Example:

In order to simplify the presentation of this material, try the following
example first. It creates and displays a sample menu, showing how easily
menus can be defined. You may find it easier to edit this code into a blank
block and then load it . That way if you make a typing error you don't have to
re-type the whole example.

10 CONSTANT EXAMPLE (for "example menu")

MY.MENU (--- I menu creation u~ing menu i.d. 10)
o "My Menu" EXAMPLE NEU.MENU (create the menu)

(append the items to the list:)
H Item 1<B<Uj Item 2/2j Item 3<1(" EXAMPLE

APPEHD. ITEMS
DRAU.MEHU.BAR (draw the menu bar

(define the action to take place)
EXAMPLE MENU. SELECT ION: 0 HILITE.MEHU

MY.MEHU

CASE 1 OF CR H Item 1 Selected!"
2 OF CR H Item 2 Selected!"
3 OF CA " Item 3 Selected!"

EHDCASE i

EHDOF
EHDOF
EHDOF

Now try each of the items in "My Menu" by selecting them with the mouse (or
as shown for item 2; "command 2" -- hold down the command key and press 2).

Menus Chapter 7 - 2 June 4, 1984

I

I

I

I

I

Menu List

The menus displayed by MacFORTH are maintained in a "menu list." Each entry
in the list is a menu id (a number assigned to a menu) and its position in the
list determines the order of the menus in the menu bar. Note that this list is
not maintained in numeric order, but in the order of display in the menu bar.

There are 31 entries in the menu list, allowing you to create and display up to
31 menus using MacFORTH.

Menu Creat ion

The word NEW. MENU creates a new menu and inserts it into the menu list.
NEW. MENU is used in the following form:

<menu insertion point> <"menu title"> <menu id> NEW.MENU

So, in our example, we created a new menu, inserted it at the end of the menu
list, called it "My Menu" and assigned it menu number 10 with the phrase
(remember, EXAMPLE is a constant with value 10):

o "My Menu" EXAMPLE NEW.MENU

Menu Insertion Point This is the menu id that the newly defined menu is to be
inserted before in the menu list. Specifying the menu insertion point of 0 is
a special case: it means that you want the menu to be inserted at the end of
the menu bar.

Menu ID The menu id is any number from 1 to 31 that you choose to refer to
your new menu as. We recommend that you use a CONSTANT for your menu id's
for later reference to the menu (1 ike we did with EXAMPLE). You can choose
any number you 1 ike, but we recommend that you use numbers greater than 10
in order to avoid possible conflicts with system menus. In case of a conflict,
the system will use the first menu it finds with the menu id given.

Menu Title The title you choose for your menu is a string of up to
approximately 80 characters (as long as it fits on the screen). You should use
concise, meaningful names for your titles.

Menus Chapter 7 - 3 June 4, 1984

Menu Items

Each of the available selections in a menu is referred to as a "menu item." The
items in "My Menu" ("Item l","ltem 2" and "Item 3") were appended to "My
Menu" with the word APPEND.lTEMS used in the following form:

<"item list"> <menu id> APPEND. ITEMS

In our example, the phrase
" Itel l<B<U;ltem 2/2; Item 3<1(" EXAMPLE APPEHD. ITEMS

passed the item list (the quoted string) to APPEND. ITEMS for menu id 10
(using the constant EXAMPLE).

Item List The item list from our example may seem strange at first, but
take a closer look. You can see the menu items listed ("'tem 1", 2 and 3),
which contain some special character suffixes. The following are special
characters used as suffixes and cannot be specified as part of an item in the
item list:

Special
Character

I

Menus

Meaning
Separates items in the list (ie:" Item 1 ;Item 2;item 3").

highlights the preceding item according to the character
following <. The available highlight characters are:

B for Bo1d (letters must be uppercase)
I for Italic
o for Outline
S forShldow
U for Underline

(ie: " Item 1 <B<U;I tem 2<0;")

Disables the preceding item, displaying it in grey.
The item cannot be selected unto it is enabled.

(ie: " Function 1; Function 2(; Function 3(;")

Assigns the key immediately following the I as the
command key sequence for that menu item.

(ie: " Attackl A;RetreatlR;")

Precedes the item with the character immediately
following the!. (ie:" Fire!*;")

Chapter 7 - 4 June 4,1984

I

I

I

I

I

Now, using the above table, let's go back and look at the item string again.
The first item:

Item 1 <B<U;
specified the string "Item 1" as the menu item and made it bold faced,
under 1 i ned. The second item:

Item 2/2
specified the string "Item 2" as the menu item and assigned the command key
2 to it. When a "command 2" key is pressed (both the command key and the
specified key held down simultaneously), Item 2 will be executed. The third
item:

Item 3<1(
specified the string "Item 3" as the menu item and italicized it. The "("
disabled the item, preventing you from accessing it with the mouse.

Special Strings You can display the Apple logo (apple with a bite) or a check
mark, or any of the special characters, or any of the displayable characters on
the Mac by creating a string and modifying it directly. For example, the Apple
logo is character 20 (decimal) (a check mark is decimal 18). Try finding that
key on the keyboard! (You can't, it doesn't exist.) To create a string with the
apple in it you could execute something like:

CREATE APPLE$,ft X" 20 APPLE$ 1+ C!

Or, for this example, you might try

CREATE APPLE$ 1 C, (for the count) 20 C, (logo character)

You could then use APPLES in your menu defintion in place of the quoted
string:

APPLE$ EXAMPLE APPEHD. ITEMS

Separating Menu Items You can separate items in a menu with a horizontal
bar by using a "-" character and disabling it as an item. For example, the
string

" Item l;-{;ltem 2" <menu a> APPEHD,ITEMS
passed to APPEND.lTEMS would separate Item 1 and Item 2 with a line.

Displaying the Menu

DRAW.MENU.BAR displays the new menu bar. Your menu is now active and
ready to be used just like any other menu. If you are adding several menus,
use DRAW.MENU.BAR after you have created and inserted the menus in the
menu list to avoid having the menu bar flash each time a menu is added.

Menus Chapter 7 - 5 June 4,1984

Menu Item Selection

The word MENU.SELECTION: determines what action is taken when an item
is selected in your new menu and is used in the form:

<menu id> MENU.SELECTION: <action to take>

Where the menu id is the id you assigned to the menu. When an item is
selected, the item number of the selection is passed to the code following
MENU.SELECTION: for execution of the appropriate action.

Menu Item Numbers Each menu item is assigned a number when it is appended
to the menu. The numbers start at 1 and are incremented by one for each
item. For clarity, in our example, we numbered the items according to their
item number. This means that our "Item 1" selection is actually item number
1, "Item 2" is item number 2 and so on. When an item selection occurs, this is
the number which determines the action to take.

Menu Item Execution When a menu item is selected, the code immediatly
following MENU.SELECTION: for that menu is executed with the item
number on the stack. The code executed is usually a CASE statement which
tests the value on the stack and executes the appropriate code.

To make this more clear, let's examine what happened when you touched down
on Item 1 in "My Menu." The system saw a mouse click on menu item one and
passed control to the MENU.SELECTION: code for menu 10 (which was defined
with the EXAMPLE MENU.SELECTION: ... phrase). The code for menu 10's
menu selection is the following case statement:

o HILI TE . MEHU
CASE 1 OF CR

2 OF CR
3 OF eR

EHDCASE

n Item 1 Selected!" EHDOF
" Item 2 Selected!" EHDOF

Item 3 Selected!" EHDOF

which executed case 1 of the statement and returned to what you were doing
before the mouse click occurred. The items in a menu are executed
transparently, returning immediately to what was executing before the
selection occurred.

Menus Chapter 7 - 6 June 4, 1984

I

Modifying Menu Execution You can modify the function of a menu by simply
re-defining the menu selection definition. Try the following to change the
execuUon of our example menu:

HEU.EXAnPLE.FUHCTIOH (---)
EXAnPLE nEHU.SELECTIOH: 0 HILITE.nEHU

CASE 1 OF CR .n He. Function 1n EHDOF
2 OF CR .n He. Function 2n EHDOF
3 OF CR .n Hew Function 3" EHDOF

EHDCASE

HEU.EXAMPLE.FUHCTIOH

Now try the items in "My Menu" and you'll see the new functions executed
when you make your selections. This powerful feature allows you to change
the function of any menu at any time.

Modifying Menu I terns

You can modify the menu items (type style, enable/disable, add/delete check
marks or characters, etc.) with the following functions (each function takes
item# and menu id, where the item# is the item number in the menu and menu
id is the number of the menu):

ITEM.STYLE allows you to change the style of the item. Used in the form:
<item#> <style> <menu id> ITEM.STYLE

where <style> is one of the following styles:

Style Value
PLAIN 0
BOLD 1
/TAL/C 2

UNDERLINE 4
SHADOW 8

OUTLINE 16

To get multiple styles, add the values together. For example, to get
underlined shadow as the style, you would execute:

<item-> UHDERLIHE SHADOU + <menu-> ITEn.STYLE

Menus Chapter 7 - 7 June 4, 1984

ITEM.MARK allows you to attach or remove a character to an item. Used in
the form:

<itema> <mark> <menu id> ITEM.MARK
where <mark> 1s the character to append to the item. If <mark> is zero, any
character currently appended is removed. <mark> is any valid ASCII character
or special Mac character (ie: 20 is the Apple logo).

ITEM.CHECK allows you to append or remove a check mark from a menu item
based on a flag value. Used in the form:

<itema> <flag> <menu id> ITEM.CHECK
where <flag> is a boolean flag. If <flag> is -1 , a check mark is appended to
the item, if <flag> is 0, the check mark is removed.

ITEM.ENABLE allows you to enable or disable any item in the menu. Used in
the form:

<itema> <flag> <menu id> ITEM.ENABLE
where <flag> is a boolean flag. If <flag> is -1, the item is enabled, if <flag> is
0, the item is disabled.

SET.lTEM$ allows you to change the string associated with any menu item.
<Itela> <string.addr> <Menua> SET. ITEM$

De1eting a Menu

You can delete a menu from the menu list by executing the word
DELETE. MENU . Given a menu number on the stack, DELETE.MENU deletes the
menu from the menu 1 ist and re-draws the menu bar, removing the menu.

<menu a> DELETE.MENU

It is a good idea to execute DELETE. MENU for the menu number you are about
to add (with NEW.MENU). This ensures that you won't inadvertently add the
menu twice and is a good way to insure against multiple menus with the same
number.

Disabling a Menu

You can enable/disable a menu at any time using the command MENU.ENABLE
in the following form:

<flag> <menu id> MENU. ENABLE

where <flag> is a boolean flag. If <flag> is true, the menu is enabled, if <flag>
is false, the menu is disabled.

Menus Chapter 7 - 8 June 4, 1984

I

I

I

I

I

Appendix A: Example Menus

The following menu example is provided for you to use as
templates/techniques for your menus.

Menus

13 COHSTAHT OP.MEHU
OPTIOHS.MEHU (--)
o "OPTIOHS" OP.MEHU HEU.MEHU
"TRACE/T;DEBUG/D;UORDS;ABORT/A" OP.MEHU APPEHD.ITEMS
DRAU.MEHU.BAR OP.MEHU MEHU.SELECTIOH: 0 HILITE.MEHU
CASE

1 OF TRACE @ HOT DUP TRACE SUAP OP.MEHU
ITEM. CHECK EHDOF

2 OF DEBUG @ HOT DUP DEBUG 2 SUAP OP.MEHU
ITEM.CHECK EHDOF

3 OF UORDS EHDOF
4 OF 1 ERROR" ABORTED!!" EHDOF

EHDCASE

20 COHSTAHT EX.MEHU
MY.MEHU (---)

EX.MEHU DELETE.MEHU
o " My Menu" OP.MEHU HEU.MEHU
" Item l;-(;ltem 2M EX.MEHU APPEHD.ITEMS
DRAU.MEHU.BAR

EX.MEHU MEHU.SELECTIOH: 0 HILITE.MEHU
CASE 1 OF CR H Item 1 Selected" EHOOF

2 OF CR ." Item 2 Selected" EHOOF
EHDCASE ;

Page 7 - 9 June 4, 1984

Appendix B: Menu Glossary

APPEND.ITEMS item$\menu id --
Appends the items in the item$ to the menu specified by the menu handle
on the stack.

DELETE. MENU menu id --
De letes a menu from the menu item I ist and re-draws the menu bar.

DRAW.MENU.BAR --
Draws the menu bar.

HILlTE.MENU menu id --
Highllghts the menu whose id is given on the stack. Only one menu may be
highlighted at a time. Special case: 0 HILlTE.MENU disables the highl1ght
for the current menu.

ITEM.CHECK item#\flag\menu id --
Appends or removes a check mark from the item specified based on the
boolean flag given. If true, a check mark is appended; if false, the check
mark is removed.

ITEM.ENABLE item#\flag\menu id --
Enables or disables the item specified based on the boolean flag given. If
true, the item is enabled; if false, the item is disabled.

ITEM.MARK item#\char\menu id --
Marks the specified item with the character given.

ITEM.STYLE item#\style\menu id --
Sets the style for the item specified to the style given.

MENU.ENABLE flag\menu id --
Enables or disables the menu specified based on the boolean flag given. If
flag is true, the menu is enabled, otherwise it is disabled.

MENU. SELECT ION: menu id --
Determines the action to be taken when an item is selected in the menu for
the menu id specified. When an item is selected, the code following
MENU.SELECTION: for the appropriate menu will be passed the item
number of the selection.

NEW.MENU title$\menu id --
Creates a new menu, assigning the number and name given to the menu.

Menus Page 7 - 10 June 4,1984

I

I

I

I

Chapter 8:' Windows

Overview
Defining a Window
Window Components

Title
Window Bounds
Window Attributes
Window Program.
Event Handling in a Window
Tracking the Mouse
Closing a Window
Sizing a Window
Example
Handling Keystrokes

Default Event Actions
Complete Events List
Appendix A: Window Glossary

Windows Page 8 - 1

2
2
2
2
3
3
3
4
5
5
5
6
6
7
9
10

June 4, 1984

Overview

This chapter discusses window management using MacFORTH. By now you
should have completed both the Getting Started and Getting Results chapters
which introduce and give examples of windows. The intent of this chapter is
to provide you a quick reference guide to windows.

The concept of windows is very important in the Macintosh environment and
MacFORTH allows you to control virtually every aspect of a window (or leave
it to the default handlers).

Defining a Window

The command NEW.WINDOW creates and defines a new window structure for
MacFORTH. To create a new window, simply execute NEW.WINDOW followed
by the name you want to call the new window. For example:

HEU.UIHDOU MY.UIHDOU

creates a new window named MY.WINDOW with the standard MacFORTH
defaults. These defaults are:

aJ title = "Untitled Window"
b.) bounds = (100,100) (200,300)
c.) no close box or size box
d.) the action of the window is to beep when an event occurs

Use NEW.WINDOW outside of a colon definition.

Window Components

Title
The title assigned to a window is displayed in its title bar across the top of
the window. You can choose any title you like for a window and assign it
using the W.TITLE command during the definition of the window in the
following format:

u <title ~tring>u <window pointer> U.TITlE

Wi ndows Page 8 - 2 June 4, 1 984

You can also re-assign a title to a window with the SET.WTITLE command used
in the following format:

A <title string>A <.indo. pointer> SET.UTITLE

When SET.WTITLES is executed, the title bar of the window is immediately
redrawn.

Wi ndow Bounds
To set the initial position and size of a window, use the W.BOUNDS command
when the window is defined. Use the following format:

<top> <left> <bottom> <right> <window pointer> U.BOUHDS

The <top> <left> <bottom> and <right> values are the coordinates of the
rectangle for the window, relative to the upper left corner of the screen. For
example:

100 150 300 350 MY.UIHDOU U.BOUHDS

will set the initial position of MY.WINDOW (used for example only) to be 100
dots from the top of the screen, 150 dots from the left of the screen at the
window's upper left corner. The lower right corner of the window is 300 dots
from the top of the screen, 350 dots from the left of the screen.

Window Attributes
When a window is defined, you can set the attributes for it with the
W.ATTRIBUTES command. The avallable attributes for a window are:

a,) CLOSE.BOX gives the window a close box
b') NOT.VISIBLE makes the window invisible
c.) SIZE.BOX gives the window a size box

To set the attributes for a window when defining it, select the attributes you
want the window to have and add them before executing W.ATTRIBUTES. For
example, to give the window MY.WINDOW a close box and size box, you would
execute:

CLOSE.BOX SI2E.BOX + MY.UIHDOU U.ATTRIBUTES

when you define the window.

Window Program
Use ON.ACTIVATE to define the function of a window. This actually
specifies the word to be executed when a window is activated. The default
for this function is a word which will just beep when any event occurs within
a window.

Windows Page 8 - 3 June 4, 1984

As discussed in the Getting Results chapter, when a window is activated, the
word which is executed is passed a flag. This flag is true (-1) if the window
was activated and false (0) if another window is activated (hence the current
window is deactivated). This allows you to start up your program when the
window is activated and perform any cleanup when the window is deactivated.
I t is important to check this flag as the first thing when you execute your
program. Any programs you assign to a window should follow a template
similar to:

UIHDOU.PROGRAM (activate flag --)
IF (code for activate)
ELSE (code for deactivate)
THEH

If you FORGET the word which defines the function of a window, you will get
unpredictable results when the window is activated. If you don't specify a
word following ON.ACTIVATE (1.e. you just press return) you will get
unpredictable results when the window is activated (most likely an address
error trap).

Event Handling in a Window
The Macintosh is an event driven computer. This means that your programs
should be aware of the events occurring when they are executing. The word
DO.EVENTS handles this automatically for you, performing any default
actions (resizing a window, hiding it when a close box is clicked, accepting
keystrokes, etc.) and notifying you that the event occured. If you ignore
events as they occur, your program wtll not be consistent with the Macintosh
environment. To maintain consistency, your programs should be running an
endless loop that checks for the occurence of events by executing DO.EVENTS
often.

With this in mind, you should expand the above template to be:

UIHDOU.PROGRAM (activate flag --)
IF BEGIH DO.EUEHTS

(code for activate which checks the events
AGAIH

ELSE (code for deactivate)
THEH

The code for activation should also be aware of any events that occur by
executing DO.EVENTS and checking the code returned against a list of any
you care about.

Windows Page 8 - 4 June 4, 1984

The following MacFORTH constants contain the event codes for the most used
events that occur:

MacFORTH Constant
MOUSE.DOWN
I N.CLOSE.BOX
IN.SIZE.BOX

Tracking the Mouse

Event
mouse button pressed
mouse click inside the close box
mouse click inside the size box

In the Getting Started chapter example, we presented a clear usage of
tracking the mouse in the Finger Painting example. If you recall (if you don't
recall the example, refer to the Getting Started chapter), FINGER.PAINT
executed DO. EVENTS, which returned an event code. The only event we were
concerned with in that example was when the mouse button was pressed, we
checked the event code to see if it was equa I to MOUSE. DOWN (a constant
value for the event code of a mouse button being pressed). If it was, we went
into a loop which ignored all events while the mouse was still down (which
can be determined by the routine STILl.DOWN).

The word ttMOUSEXY returns the x and y coordinates of the current position
of the mouse.

Closing a Window
When a window is closed by a click in its close box, MacFORTH automatically
hides the window from view and returns an IN.CLOSE.BOX event from
DO.EVENTS. You don't need to be concerned with hiding the window, as it has
already been hidden before you are notified that the close box has been
cl icked. This lets you perform any cleanup that should occur when a window
is closed.

Sizing a Window
When a window is resized by dragging its size box, Mac FORTH wi 11
automatically handle the resizing for you and return an IN.SIZE.BOX event
from DO.EVENTS. You don't need to be concerned with actually resizing the
window, as it has already been resized before you are notified of the event.

Windows Page 8 - 5 June 4, 1984

I

Example
In order to illustrate the above attributes (tracking the mouse, closing a
window, and sizing a window), try the following example (you may want to
edit it into a block):

HEW.WIHDOW SHEET
N Finger Paint Window" SHEET W.TITLE
40 40 200 200 SHEET W.BOUHDS
CLOSE.BOX SIZE.BOX + SHEET W.ATTRIBUTES

SHEET ADD.WIHDOW

TRACE.FIHGER (---)
HIDE.CURSOR

BEGIH STILL.DOWH WHILE @MOUSEXY DOT REPEAT
SHOW. CURSOR

FIHGER.PAIHT (activate flag --)
DO.EUEHTS IF BEGIH

CASE MOUSE.DOWH OF TRACE.FIHGER EHDOF
IH.SIZE.BOX OF ." Window Resized!" EHDOF
IH.CLOSE.BOX OF 7 SYSBEEP EHDOF

EHDCASE
AGAIH

ELSE ." Window Deactivated·
THEH

SHEET OH.ACTIUATE FIHGER.PAIHT

Handling Keystrokes
If you want to input data from the keyboard in another window, you should
look for keystrokes in the activate portion of your program. Input of
keystrokes are handled differently from other events in that you can check for
the presence of a keystroke (if one has been pressed) and get the key at any
time in the activate loop part of the program.

Windows Page 8 - 6 June 4,1984

The word ?KEYSTaOKE checks for a keystroke and returns either a false flag
indicating no keystroke had been pressed} or a key value under a true flag if a
key was pressed.

Here's an example which modifies the finger painting example to include
check for input of an "5" key for skinny mode} "M" key for medium mode} or "F"
for fat mode:

DO.FIHGER.KEY (key value
CASE 83 (.. S") OF 1 1

77 ("Mn) OF 3 3
70 ("Fn) OF 5 5

7 SYS8EEP
EHDCASE j

Now modify FINGER.PAINT to be:

--)
PEHSI2E
PEHSI2E
PEHSI2E

FIHGER.PAIHT (activate flag --)
IF 8EGIH DO.EUEHTS

EHDOF
EHDOF
EHDOF

CASE MOUSE.DOUH OF TRACE.FIHGER EHDOF
?KEYSTROKE IF DO.FIHGER.KEY THEH

EHDCASE
AGAIH

ELSE 7 SYS8EEP .n Finger Painting Finished"
THEH

SHEET OH.ACTIUATE FIHGER.PAIHT

Default Event Act ions

MacFORTH executes a default operation for each event} within DO.EVENTS}
prior to returning an event code to the user. The default operation typically
handles all of the messy details required by the Mac User Interface and just
returns an event code to let you know what happened. The default actions are
summarized below for each event.

Common to all events: If a keystroke has been received but not picked up by
the user (via KEY) no further keystroke events are allowed until the current
one is cleared. Type-ahead characters are thus accumulated in the event
queue. If a Mouse.Down event occurs outside the content region of the current
window} events 17-24 (see Events List ahead) are systhesized to indicate a
special Mouse.Down event.

Windows Page 8-7 June 4} 1984

The following events have special default actions:

Windows

Default Action

MOUSE.DOWN Check for events 17-23 and if appropriate
returns that code instead. Code of 1 indicates
mouse down in content region of current
window. EVENT.RECORD is copied to
MOUSE.DOWN.RECORD.

MOUSE.UP EVENT.RECORD is copied to MOUSE.UP.RECORD

KEY.DOWN EVENT.RECORD is copied to keystroke array.

UPDATE.WINDOW begins update , passes control to window
update token, ends update

ACTIVATE.WINDOW passes control to window's activate token

COMMAND.KEY simulates menu event

IN.DESKTOP beeps

IN.SYS.WINDOW passes control to execution procedure posted
for menu by MENU. SELECT ION:

IN.LOWER.WINDOW activates lower window

IN.DRAG.BOX drags window

IN.SiZE.BOX resizes window

IN.CLOSE.BOX hides window

Page 8 - 8 June 4, 1984

Complete Events list

DO.EVENTS always returns one of the following event codes:

o NULL.EVENT
1 MOUSE.DOWN
2 MOUSE.UP
3 KEY.DOWN
4 KEY.UP
5 AUTO. KEY
6 UPDATE.EVENT
7 DISK.EVENT
8 ACTIVATE.EVENT
9 ABORT.EVENT

10 NETWORK.EVENT
11 DRVR.EVENT
16 COMMAND. KEY
18 I N.MENU.BAR
19 I N.SYS. WI NDOW
20 IN.LOWER.WINDOW
21 IN.DRAG.BOX
22 IN.SIZE.BOX
23 I N.CLOSE.BOX

Note: Refer to "Inside Macintosh" for the meaning of events not described in
this chapter.

Windows Page 8 - 9 June 4, 1984

Appendix A: Window Glossary

Glossary Key:
wptr Refers to the pointer to a window record which contains all

of the information about the window needed by the system.
This value is returned by a window specifier.

Definitions:

@MOUSEXY -- x\y
Returns coordinates of the mouse.

ADD.WINDOW wptr--
Opens a window on the screen using the preset title, bounds, behind,
type and attributes. The content region is sized for the specified
controls.

BS -- 8
A constant which returns the ASCII value of a backspace.

FRONT.WINDOW -- wptr
Returns the window pointer of the front window (which is the current ly
active window).

GET.WINDOW -- wptr
Returns the window pOinter of the current window used for output.

MAC. CON -- addr
Returns the address of the Mac console device table. The phrase

MAC.CON CONSOLE!
directs output to the Mac console.

MOUSE.DOWN -- n
Returns the value of a mouse down event (as returned by DO.EVENTS).

NEW.WINDOW «compile time»

PAGE

-- wptr «run time»
Defining word which creates text window specifiers. When the window
specifier is later executed, its window pOinter is returned on the stack.

Clears the window and puts the cursor in the upper left corner.

Windows Page 8 - 10 June 4, 1984

SCREEN. BOUNDS -- addr
Returns the address of the rectangle containing the screen boundaries.
The rectangle coordinates are in packed 16-bit values for top, left,
bottom, and right.

SYS.WINDOW -- addr
Default MacFORTH window name. This is the window presented when
MacFORTH is active.

TYPE addr\cnt --
Outputs the specified string to the current window.

W.BEHIND front wptr\back wptr --
Causes the window specified as 'back wptr' to be opened behind 'front
wptr.

W.BOUNDS x 1 \y 1 \x2\y2\wptr --
Sets the bounds of the window specified.

WTITLE addr\wptr--
Places the supplied string address into the window parameter list.
When the window is opened the title string is taken from the specified
address.

W.TYPE n\wptr--
Sets the window type. The default is 0 (document windows).

WI NDOW wptr--
Sets the specified window as the window for output. All text and
graphics images will be output to that window.

Windows Page 8 - 11 June 4,1984

Windows Page 8 - 12 June 4, 1984

Chapter 9: F i 1 e System

Overview 3
File I/O Operation Result Codes 3
File Assignment 4

File Numbers 4
Alternate Volumes 4
Displaying File Assignments 5
Opening a File 5

Displaying the Disk Directory 5
MacFORTH Fi le Types 6
Data Files 6

Creating a Data File 6
Allocating Space in a Data File 7

Reading/Writing in a Data File 7
Fixed Record Data Files 8

Specifying Record Size 8
Accessing Records 8

Text Files 9
Rewinding a Text File 9
Reading Records in a Text File 9
Writing Records in a Text File 10

Virtual Files 11
Accessing Data in a Virtual File 11

Blocks Files 11
Creating a Blocks File 11
Allocating Space ina Blocks File 12
Rea 11 ocat i ng Space

Within a Blocks Fi le 12
Accessing Program Source Code

in a Blocks Fi le 12
MacFORTH Blocks File Structure 13
Including a File 14

Closing a File 14
Deleting a File 14
Ejecting a Disk 14
Mounting a New Volume 15

File System Page 9 - 1 June 4, 1984

Advanced File System Topics IS
Fi Ie Control Blocks 15
Fi Ie Pointer 15
Position Modes 15
File Names 16
Volume Names 16

Maximum File Length 16
Appendix A: Example File Usage 17
Appendix B: File System I/O Result

Codes 19
Appendix C: File System Glossary 20

File System Page 9 - 2 June 4, 1984

Overview

This chapter discusses how MacFORTH interfaces to the Macintosh file
system. Using MacFORTH, you can create, read and write any standard
Macintosh file. This allows you to share data among applications.

You can have up to 9 files assigned and open at a time for accessing the data
within a file. MacFORTH supports two file types: data and program (or
"blocks") files. The records within a data file can be one of three types: fixed
length records, text records and virtual data files (free-format records). The
records within a program file are fixed length records, each containing 1024
characters.

We refer to program files as "b locks" files because they are made up of source
code blocks (as explained in the Editor chapter).

File Input/Output Operation Result Codes

For each file operation a result code is returned in the variable IO-RESUl T.
This result code allows you to check the operation to see if it completed
successfully, and if not, why not.

Each of the 1/0 result codes are listed in Appendix B of this chapter for your
reference. If the file operation is successful, the result code is 0, otherwise
the value indicates an error condition. This allows you to monitor the result
of each file operation. You can then set the level of error checking from no
checking to full error checking/re-try attempts, etc. I f you aren't concerned
with the result of the operation, ignore it.

The word ?FllE.ERROR is provided to handle file manipulation error
conditions in a basic manner. It is executed immediately following a file
operation and, if an error occurred, will abort the current task displaying the
appropriate error message. For example if you executed the phrase (don't try
it now)

1 OPEH ?FILE.ERROR

and the file assigned to file number 1 was not found (1/0 result code -43), the
current task would be aborted and the error message "File Not Found!" would
be displayed.

File System Page 9 - 3 June 4, 1984

FiJe Assignment

The Macintosh fi le system is based on assigning files (using their names) to a
file number and using that number in referring to the file. In MacFORTH, we
recommend that you use a CONSTANT value to refer to the file number to make
your programs more readable.

File Numbers The first thing you must do when preparing to create a new file,
or access an existing file, is assign 1t a file number. MacFORTH allows you to
access up to 9 files using file numbers 0-8. If you use a file number outside
of the range 0-8, MacFORTH will issue the error message "Illegal File#".

The command ASSIGN assigns a file number to a file name and is used in the
following format:

<"file name"> <file- (0-8» ASSIGN

For example, the phrase
n Employee Age" 1 ASSIGN

would assign file number to the file titled "Employee Age". As we
mentioned above, it is a good idea to create a constant for file numbers. In
the above example, you could execute

1 CONSTANT AGE.FILE
" Employee Age" AGE.FILE ASSIGN

Later references to the fi le can be made using the constant, making your
program easier to read and understand.

Alternate Volumes
You can access files on another (previously mounted) volume by simply using
the volume name as a prefix to the file name in the ASSIGN statement. For
example, to assign the file "Employee Salary" on the volume "Employee
Information", to file number 3, you would execute:

3 CONSTANT SALARY.FILE
"Employee Information:Employee Salary" SALARY.FILE ASSIGN

When you access the fi le later, you wi 11 be prompted to insert the appropriate
disk if it is not currently in the drive.

File System Page 9 - 4 June 4,1984

D1splaY1ng Flle Ass1gnments

You can d1splay the current flle ass1gnments by executing the ?FILES
command. Each flle number 1S d1splayed w1th its assoc1ated flle name. A
capitalized "0" next to the number 1mpl1es the flle is open. A lowercase "b"
indicates 1t 1S a blocks flle, a cap1tal1zed "B" next to a flle number indicates
it is the current blocks file.

Open1ng a Fi Ie

Once you have ass1gned a fUe a flle number, use the OPEN command to open a
flle for access. Use the follow1ng format:

< f ilea> OPEH

It is always a good idea to check the I/O result code after opening to be sure
it was opened correctly.

Displaying the Disk Directory

The DIR command displays the disk directory of the specified drive. To
display the directory of the disk in the internal drive, execute:

IHTERHAL DIR

To display the directory of the d1Sk 1n the external drive (If present), execute:
EXTERHAL DIR

The following information is presented when you use the DIR command:
1.) volume name
2'} number of flles
3.) amount of space available
4.) volume creation date
5'} volume last modified date
6.) for each file:

a,} fUe name (first 19 characters)
b.) flle attributes

U "L" for locked, "-" for unlocked
i1.) nu" for in use, "_" for not in use

c,} file type
d.) file size
e.) flle creation date
f.) file last modified date

The difference between ?FILES and DIR is: ?FILES displays the file
ass1gnments and DIR displays the contents of the disk.

File System Page 9 - 5 June 4, 1984

I

MacFORTH File Types

There are two standard types of files you will use with MacFORTH: data files
and blocks files. Data files contain data in a free-format. Blocks files
contain program source code in sequential fixed length records.

From the Finder, you can distinguish between these two file types by their
icons. Data fi Ie icons are the standard fi Ie icon used (plain rectangular
document icons). Blocks file icons are rectangUlar document icons with three
rectangles within the bounds of the icon. These rectangles represent the
three blocks of source code you can print out on a sheet of paper using the
word TRIAD (explained in the Editor chapter).

You can load a blocks file from the Finder by double clicking it. When a blocks
file is loaded in this manner, MacFORTH is loaded first, then block 1 of the
selected fi Ie is loaded (more about this later).

Data Files

Data files contain data in whatever format you specify. The data can be
stored as a virtual array with no particular format all the way up to fixed
fields within fixed records.

Creating a Data File
If the file you have assigned already exists on the disk, there is no need to
re-create it; go on to "Opening a Data File."

Once a file is assigned, you can create it on disk with the CREATE-FILE
command in the following format:

<file#} CREATE.FILE

This command wiil create the file on disk and piace it into the disk file
directory as a "DATA" type file. Be sure to check the I/O result code returned
by CREATE.FILE to be sure that the file was created correctly (ie. enough
room on the disk, in the catalog, no naming conflicts, etc.).

File System Page 9 - 6 June 4, 1984

Allocating Space in a Data File
There are three methods you can use for allocating space for files:

a) Use the ALLOCATE command
b) Don't (let the system do it for you)
c) Both a) and b)

When you create a data file, no space is initially allocated for data in the file.
To create some space using method a), use the ALLOCATE command to
allocate space for the fi Ie on the disk. The space allocated is contiguous on
the disk. ALLOCATE is used in the following format:

<number of bytes in the file> <filel> ALLOCATE

Suppose you wanted to allocate enough space for 100 records, each 50
characters in length. The number of bytes needed is 5000 (100 * 50), so you
could execute (assuming file# 5):

5000 5 ALLOCATE

To create some space using method b), you can simply start writing data into
the file. This appends data to the file, allocating space for the data as
needed. Each time you write data into the file, the furthest write operation
into the file sets the end-of-file pOinter. You can write past the end-of-file
pointer (and re-set it), but you can't read past it. This simply means that you
should write data to the last position in the file you will access before trying
to read from it.

You can also combine both methods to create space in your file. You may want
to start out and allocate some space in the file and as the file grows, simply
append data to the end, increasing its size.

Reading/Writing in a Data File

MacFORTH supports three data file record types: fixed, text, and virtual. Each
type has is own best use and you are free to use any type you like with i n an
application. Fixed record files are the simplest and most useful, text record
files make efficient use of disk space for text storage, and virtual record
files are the most flexible.

The MacFORTH fi Ie system reads and writes data records from a record buffer
from/to a file. A record buffer is simply an area in memory that you specify
for reading/writing records. To create a record buffer, simply allocate the
amount of space needed for the longest record you wi 11 read or write.

File System Page 9 - 7 June 4, 1984

For example, if you will be accessing data records in a file and know that the
maximum record length is 60 bytes, you could create a record buffer by
executing:

60 COHSTAHT REC.BUF.SIZE
CREATE REC.BUF REC.BUF.SIZE ALLOT

This phrase created a record buffer called REC.BUF and allocated 60 bytes
for it. If you create a record buffer smaller than your record size
and read data into it, you could crash the system. When the data is
read from the file, it wf1 I continue to overwrite your dictionary, so be sure to
allocate enough space. That is why we created the constant REC.BUF.SIZE in
the above example. When reading or writing, you can specify the size of the
buffer as a constant to be sure you use the right size.

You may also use the scratchpad buffer, PAD, but be sure to use a reasonable
record size to avoid overwriting the end of the object space.

Fixed Record Data Fi les

Fixed files are made up of records of the same size. This format allows you
to access any record in the file by its record number. The records in a fixed
file are in sequence starting at record number 0 through the last record in the
file.

Specifying Record Size After you assign a fixed file, before you can read or
write data in the file, you need to specify the size of each record in the fi Ie.
Use the SET.REC.LEN command in the following format:

<.ax rec size> <file'> SET.REC.LEH

For example, if you were using fixed record lengths of 37 in fixed file #3
(using the constant MYFllE) you would execute:

37 MYFILE SET.REC.LEH

This Is the value used by the MacFORTH system when reading/writing records
in a fixed file. If you don't specify the record size, you'll get the error
message "Fixed Record Length = 0'" when you try to read or write records in
the file.

Accessing Records Once you have assigned and opened the file, and allocated
a record buffer for the file, accessing records within the file is simple. To
read a record into your buffer, you supply the buffer address, record number
and fi Ie number to the command READ.FIXED. For example, to read record 5

File System Page 9 - 8 June 7, 1984

from file #3 (represented by the constant MYFllE) into a buffer named
REC.BUF, you would execute:

REC.BUF 5 MYFILE READ.FI~ED

Similarly, to write a record, you use the same format. For example, to write
record 12 to file # MYFllE from a buffer named REC.BUF, you would execute:

REC.BUF 12 MYFILE URITE.FI~ED

Text Files

Text files are made up of a sequence of text (ASCII characters) records
separated by carriage returns. This is an efficient way to store text fi les
because only the space needed for the text is used (no wasted space as may be
found in using fixed records for variable length text storage).

Because the records in a text file are variable length, you won't know how
long a particular record is until you have read the entire record into your
buffer.

Rewinding a Text Fi Ie To rewind a text fi Ie (set its position pointer to point
to the start of the file), use the word REWIND in the following format:

<filea> REUIHD

For example, to rewind file # MYFllE (where MYFllE is simply a constant
containing the file number), you would execute

MYFILE REUIHD

Reading Records in a Text File Once you have assigned and opened the text
file you want to use, and created a record buffer for the records, reading and
writing records from/to the file is simple. For example, to read the first
text record in file number MYFllE into a record buffer named REC.BUF with
length of REC.BUF.lEN, you would execute:

MYFILE REUIHD
REC.BUF REC.BUF.LEH MYFILE READ.TE~T

To read the next record in the file, you would execute:
REC.BUF REC.BUF.LEH MYFILE READ.TE~T

and so on. After each read operation in a text file, the fi Ie pOinter is
positioned to the first byte of the next record. Subsequent read operations
read the next record in the file automatically.

File System Page 9 - 9 June 4, 1984

I

What if your buffer isn't long enough for the record being read? Unlike the
fixed record files, you can use a buffer that is shorter than the length of the
record being read. (We recommend you use record buffer long enough to accept
the longest text record in the file for simp llcity.) Let's look at an examp le to
illustrate this point. Suppose that the next record in the text file you are
reading from is 10 characters in length, consisting of the following:

Char #: 1 2 3 4 5 6 7 8 9 10
Chars: Bob S mit h <cr>

If you read this record into a buffer of length 10 or more, you will get the
entire record and can continue. But, on the other hand, if you read this record
into a record buffer of length, say 7, you will only get the first seven
characters. To get the rest of the record ("t", "h", and the carriage return),
perform a read command just as if the rest of the record was the next record
in the file. The read will terminate on the carriage return, so only the 3
characters remaining will be read.

When MacFORTH reads a text record into a buffer, it transfers characters to
the buffer one at a time until it encounters a carriage return in the file
("normal" termination) or until the record buffer is full. If the record buffer
is full prior to encountering a carriage return, the fi le pointer is left point ing
at the next character to be read from the current text record. Subsequent
reads will begin at that character (just as if it were the first character in
the record).

Wri t i ng Records ina Text F 11 e To add records to a text f i 1 e use the
WRITE.TEXT command as follows:

<buffer addr> <record length> <filel> URITE.TEXT

For example, to add the record in the buffer REC.BUF which is 10 bytes long
(including a carriage return at the end) to file number MYFILE, you would
execute:

REC.BUF 10 MYF!LE WR!TE.TEXT

When writing text records, you must append a carriage return to the end of
the record (EOL).

File System Page 9 - 10 June 4,1984

Virtual Files

Virtual files are the most flexible file format of the three types supported by
MacFORTH. Using virtual files, you could re-write each of the existing file
structures or create your own new file types. To MacFORTH, a virtual file is
simply a virtual array of characters. You can manipulate this array in any
way you I ike.

Accessing Data in a Virtual File To read data within the file to a buffer, use
READ.VIRTUAl in the following format:

<buffer addr> <length> <file addr> <file I> READ.UIRTUAL

The only new parameter you may not recognize is <file addr>. This is the
offset from the start of the fi Ie where you would I ike to start reading data.
For example, to read 100 bytes from the file number 6 (represented by the
constant MYFllE) starting at the beginning of the file into the record buffer
REC.BUF, you would execute:

REC.BUF 100 0 MYFILE READ.UIRTUAL

To read 7 bytes from the same file, starting at the 23rd element in the file
into the record buffer REC.BUF, you would execute:

REC.BUF 7 23 MYFILE READ.UIRTUAL

Writing data into the file is done in a similar manner using the word
WRITE. VIRTUAL in the following format:

<buffer addr> <length> <file addr> <file'> URITE.UIRTUAL

For example, to write 30 bytes of data from PAD, starting at position 100,
you would execute:

PAD 30 100 MYFILE URITE.UIRTUAL

Blocks Files

Blocks flles contain program source code. Each file is made up of a sequence
of blocks (1024 bytes) numbered from zero through the maximum block in the
file.

Creating a Blocks Flle
If the flle you rlave assigned already exists on the diSk, there is no need to
re-created it; go on to "Opening a Blocks File."

Once you have ASSIGNed a file number to the file you want to use as a blocks

File System Page 9 - 11 June 4, 1984

file, create the file with the CREATE.BLOCKS.FILE command in the
fol lowing format:

<fi lea> CREATE.BLOCKS.FILE

This command wil I create a fi Ie on disk and place it into the disk fi Ie
directory. Be sure to check the 1/0 result code to be sure the fi Ie was created
correctly.

Allocating Space in a Blocks File
When you create a new file, you don't have any room for blocks in it. To
allocate room in the file, use the APPEND. BLOCKS command in the following
format:

<aof blocks> <filea> APPEHD.BLOCKS

For example, to initially create space for 10 blocks in a newly created blocks
file, (with file number represented by the constant MY.BLOCKS) execute:

10 MY.BLOCKS APPEHD.BLOCKS

FORTH blocks are normally printed three to a page in "triads," so you may
want to allocate space in multiples of three blocks as a convenience when
printing (by no means is this necessary).

Re-allocatlng Space Within a Blocks File
Once you have allocated space to a blocks file, you can change the size of the
file with the APPEND. BLOCKS command used in the following format:

<# of blocks> <fi le#> APPEND. BLOCKS

where <#of blocks> is positive to add blocks, or negative to delete blocks
from the specified blocks file. For example, to add 6 blocks to the file
identified by the constant MY.FILE, you would execute

6 MY.FILE APPEHD.BLOCKS

or to delete 3 blocks from that file:
-3 MY.FILE APPEHD.BLOCKS

Accessing Program Source Code in a Blocks File
To access the data within the file as a blocks file, you select it as the
"current blocks file." To select a file, use the SELECT command in the
following format:

<fi lea> SELECT

File System Page 9 - 12 June 4) 1984
I

This command selects the specified file as the current file for block access.
Once assigned and opened, you can select any blocks file to be the current
blocks file with this command. Be aware that MacFORTH does not
discriminate what files can be used as blocks fi les. If you assign, open and
select a data file as the current blocks file, MacFORTH will treat the data file
just as if it were a block record. You are responsible for selecting the proper
file. We recommend that you use the word "blocks" in the name of your file to
distinguish it from other files on your disk (ie. "Graphics Blocks" or
"Checkbook Blocks", etc.>.

When executed, SELECT saves the block buffers and the file information out
on the disk, insuring that any unwritten data from the previous blocks file is
saved, and then selects the specified file as the current blocks file.

The MacFORTH word USE- is provided for convencience when you want to edit
a blocks file. Used in the form

USE" <file name>H

the file specified is assigned to the first available FCB, opened, and selected
as the current blocks. For example, if you wanted to edit the "Demo Blocks"
file, you could execute:

• Demo Blocks" 3 ASSIGN
3 OPEN ?FILE.ERROR
3 SELECT

or, you could use
USE" Demo Block~H

MacFORTH Blocks File Structure
MacFORTH reserves the first two blocks in a file (blocks 0 and 1) for a special
purpose. Block 0 is used as a comment block for the file and can't be loaded.
Block 1 is used as a load block for the entire file.

Use block 0 to make notes about the file, current revision of the program, etc.
This is handy for later reference.

Use block 1 as a load block for your application. This important because when
you open (by double clicking) a MacFORTH blocks file from the Finder,
MacFORTH selects the file and loads block 1.

File System Page 9 - 13 June 4, 1984

Including a File
The word INCLUDE- allows you to load another blocks fi Ie. The specified fi Ie
will be assigned , opened, and loaded (by loading block 1). You can use
INCLUDE- from any file to load another file, then continue loading the
original file. For example, if you had the source code to a file named
"Checkbook Blocks", you could load it by executing

INCLUDE" Checkbook Block~"

INCLUDE- may be nested. This means that a file that is being included can
include a fi Ie itself.

When INCLUDE- is executed, the specified fi le is assigned to the first
available FCB.

Closing a Fi Ie

When you have finished using a file, you should close it. This ensures that all
data is written to the disk and that the file system updates all necessary
information about the file. To close a file, simply execute the CLOSE
command using the file number to be closed. For example, to close file# 7,
you would execute:

1 CLOSE

You should always check the 1/0 result code when you close a file to be sure
it was properly closed.

Deleting a File

To remove a file from the disk (and destroy all data contained in the file), use
the DELETE command. Once a file is deleted, you cannot recover the data
from it, so use this command with caution. To delete a file from the current
disk, execute the DELETE command as follows:

<fi le#) DELETE

Ejecting a Disk

You can eject a disk from the drive with the command
I NTERNAL EJECT

To eject the disk in the external drive (if present) execute
EXTERNAL EJECT

File System Page 9 - 14 June 4,1984

Mounting a New Volume

To mount a new volume, simply eject the disk that is in the drive and insert
the desired disk (volume). MacFORTH will automatically mount the new
volume.

Advanced File System Topics

This section discusses some of the inner workings of the Mac FORTH file
system. I t is intended for the advanced user. You do not need to read this
section to use the file system.

File Control Blocks MacFORTH uses an array for each file number used. The
information in this array is required by the Macintosh file commands. You can
examine and alter (at your own risk!!) any information about a file by
examining its file control block.

The command >FCB returns the address of the fcb array for the given file
number. Each array is 90 bytes long.

File Pointer The basis of the MacFORTH file system is the word POINT which
pOints into a file. POINT allows you to point anywhere in a file, randomly,
sequentially, relative to the front, back or anywhere in-between. POINT is
used in the following format:

<position> <position mode> <file#> POINT

Position Modes There are four position modes for use with POINT:

Mode
FROM.START
FROM. END
FROM. CURRENT
VIRTUAL

Position Type
position relative to the start of the file
position relative to the end of the file
position relative to the current file position
position to any specified location in the file

To clarify this point, let's look a some examples (we'll use the dummy
constant FILE# to represent a valid file number):

a) position at the start of the file:
o FROM. START FILE- POIHT

b) position at the end of the file
o FROM,EHD FILE- POIHT

File System Page 9 - 15 June 4,1984

c) position at the 17th character in the file
17 FROM. START FILE. POINT

d) position 4 characters before the current position in the file
-4 FROM.CURRENT FILE. POINT

Note: The above three operators set the fi Ie mode to text. This means that
the file pOinter will be positioned where you specify, but until you change the
mode (if text is not the desired mode), you will be reading and writing text
records (terminating on carriage returns).

You can also use the position mode VIRTUAL to point to any byte in the file.
Using the above examples:

a) posit ion at the start of the fi Ie
o UIRTUAL FILE· POINT

b) pOSition at the end of the file
<max • of byte~ in file> UIRTUAL FILE. POINT

c) position at the 17th character in the file
17 UIRTUAL FILE. POINT

d) pOSition 4 characters before the current pOSition in the file
CURRENT.POSITION 4 - UIRTUAL FILE. POINT

File Names The name given to a file is any string of up to 255 characters in
length. Invalid characters include colon (:) and double quote (").

Volume Names A volume name is any string of up to 26 characters in length
and terminated by a colon (:).

Maximum File Length For practical purposes, the maximum file size is
limited only by the amount of available space on a disc. The absolute file size
maximum is 16 megabytes (16,722,216 bytes). The maximum record size to
be read at one time is 64 kilobytes (65,535 bytes), but is currently limited to
the amount of memory available.

File System Page 9 - 16 June 4,1984

Appendix A: Example File Usage

In order to simplify your task of using the file system in your application, we
present the following Simple example as a template. The example is a simple
system of keeping track of three people (by their last names) and their ages
in the fixed file" Ages File". Their names and ages are:

Name Age
SMITH 26
JONES 38
WILSON 31

and we will translate them to:
CREATE RECl 26 C, ," SMITH"
CREATE REC2 38 C, ," JONES"
CREATE REC3 31 C, ,"WILSON"

(Note that we are simply placing the data into the dictionary for the purpose
of example. This data would normally be accessed via another file or input
directly from the keyboard.)

Now, continue with assigning, creating and opening the file:
1 COHSTAHT AGES.FILE
" Ages Fi len AGES.FILE ASSIGH
AGES.FILE CREATE.FILE
AGES.FILE OPEH

?FILE.ERROR
?FILE.ERROR

The buffer used to read the records into:
8 COHSTAHT AGES.REC.SI2E
CREATE AGES-BUF AGES.REC.SI2E ALLOT

Set the fixed record size:
AGES.REC.SI2E AGES.FILE SET.REC.LEH

Next, we'll write the records into the file:

RECl 1 AGES. FILE URITE.FIXED ?FILE.ERROR
REC2 2 AGES.FILE URITE.FIXED ?FILE.ERROR
REC3 3 AGES.FILE URITE.FIXED ?FILE.ERROR

(Notice that we didn·t need to set the end of file pointer; it was done
automatically by writing data at the end of the file each time. The file
system automatically increased the file size.)

File System Page 9 - 17 June 4, 1984

Here's a word which will read each record and print the information:

01 SPLAY. RECORD (--- I display data for the current rec)
AGES-BUF 1+ COUNT TYPE (display the name)
- is - AGES_BUF C@ (display the age)
- years old.-

SHOU.AGES (---) 3 0 (the number of recs in file)
DO AGES_BUF I AGES.FILE READ.FIXED ?FILE.ERROR

CR 01 SPLAY. RECORD
LOOP

Suppose you wanted to change JONES' age to 39?

AGES_BUF 2 AGES.FILE READ.FIXED
39 AGES_BUF C!
AGES_BUF 2 AGES.FILE URITE.FIXED

Page 9 - 18

(read Jones' record)
(change the age)
(re-write the record)

June 4, 1984

Appendix B: File System 1/0 Result Codes

The following result codes are returned by the system ROM after an
Input/Output operation has taken place:

Result
Code

o
-33
-34
-35
-36

-37
-38
-39
-40
-41

-42
-43
-44
-45
-46

-47
-48
-49
-50
-51

-53
-54
-55
-56

-57

-58
-59
-60
-61

File System

Meaning
No error. Operation completed successfully.
Directory full
Disc full
No such volume
Disc I/O error

Bad f i 1 ename
Fork not open
End of fork
Position error. Tried to position before start of file.
Memory full

Too many forks - more than 12 forks open
File not found
Disc write protected
File locked
Volume locked

One or more files are opened
Dupllcate file name
Fork already opened with read/write permission
No drive number specified
No file assigned, reference number specifies nonexistent
access path

Volume not on-line
Locked volume can't be written to
Volume already mounted and on-line in drive
Invalid drive number - number specified doesn't match an
existing drive
Invalid disc directory

External file system; can't recognize volume
Problem during rename
Master directory block is bad
Read/write or open permissions - writing not allowed

Page 9 - 19 June 4,1984

Appendix C: Fi1e System Glossary

Glossary Key
The following symbols and abbreviations are used in this glossary:

Symbol
file#
file$
name string
pos mode

Meaning
a valid file number (0-8) identifying a file
the string address of a file name
address with count in first byte
the positioning mode used for the file system

Glossary Definitions

"BLKS -- fi le type
Constant containing the BLKS fi le type.

"DATA -- fi le type
Constant containing the OAT A fi le type.

"M4TH -- fi le type
Constant containing the M4TH file type.

"PICT -- file type
Constant containing the PICT file type.

"TEXT -- fi le type
Constant containing the TEXT file type.

@FILE.NAME file# -- file$
Returns the address of the fi le name string of the specified file.

@REC.LEN file# -- rec len
Returns the fixed record length for the fixed record file specified .

. FILE.ERROR error# --
Displays the file error message for the given file error number.

+MAX.BLK# fcb -- addr
Returns the address of the maximum block number element (32-bits) in the
file control block. For example:

o >FCB +MAX.BLK# @
returns the maximum number of blocks in the blocks file with file number
zero.

File System Page 9 - 20 June 4, 1984
I

+REC.SIZE fcb -- addr
Returns the address of the record size element (16-bits) in the file
control block. For example:

o >FCB +REC.SI ZE W@
returns the record size of the file with file number zero.

+SCR# fcb -- addr
Returns the address of the screen (block) number element (32-bits) in the
file control block. For example:

o >FCB +SCR# @

returns the current block number of the blocks file with file number zero.

#FILES -- n
Returns the maximum number of files that MacFORTH allows to be open at
one time.

?EOF -- flag
Returns a true flag if the end-of-file marker of the current file has been
reached for the file that was most recently read/written.

?FILE.ERROR
Checks the value of IO-RESUL T and aborts the current task, displaying an
error message if IO-RESUL T is non-zero.

?FILES
Displays the current file number assignments.

?OPEN fi le# -- flag
Returns a true flag if the file number specified is open, otherwise the flag
is false.

>FCB file# -- fcb
Returns the file control block address for the file number specified.

ADD. BLOCKS #b locks\file# --
Adds #blocks to the file.

ALLOCATE file size\file#--
Allocates the specified number of bytes for the specified file.

APPEND.BLOCKS #blocks\file#--
Adds/deletes blocks to/from the specified file. If #blocks is positive,
that number of blocks is added to the file (disc space permitting). If
#blocks is negative, that number of blocks are deleted from the end of the
file.

File System Page 9 -21 June 4, 1984

ASSIGN file$\file# --
Assigns the file name specfied to the file number specified. Sets
IO-RESUl T to 0 if the file number was not previously assigned,
otherwise it stores the name string address of the previous string into
IO-RESUlT.

BLOCK-FILE -- addr
Variable containing the file number of the current blocks file.

CLOSE file# --
Closes the specified file, returning the result code for the operat ion.

CLOSE. ALL
Closes all files.

CREATE.BLOCKS.FILE file#--
Creates the specified blocks fi Ie on disc. The fi Ie is specified as a
MacFORTH blocks file and can be loaded from the finder.

CREATEJILE file#--
Creates the specified file on disc.

CURRENT.POSITION file# -- position
Returns the position mode under the current position pOinter into the file
number specified.

DELETE file# --
Deletes the specified file from disc.

DELETE.BLOCKS #blocks\file# -
Deletes #blocks from the file.

DIR drive# --
Displays the directory for the disc in the specified drive. Use INTERNAL
and EXTERNAL to specify the drive.

EXTERNAL -- n
Constant value which specifies the external disc drive.

EJECT drive specifier --
Ejects the disc from the specified drive. Use INTERNAL or EXTERNAL as
the drive specifier.

FCB.LEN -- n
Constant containing the length of an FCB.

File System Page 9 - 22 June 4, 1984

FILE.TYPE file type\file# --
Sets the specified file to the file type given.

FLUSH.FILE file# --
Writes the file control block of the file specified out to disc.

FROM.END -- pos mode
Returns the value which specifies that positioning is relative to the end of
the file.

FROM. CURRENT -- pos mode
Returns the value which specifies that positioning is relative to the
current file position.

FROM.ST ART -- pos mode
Returns the value which specifies that positioning is to take place
re lat ive to the start of the fi Ie.

GET.EOF file# -- #bytes
Returns the number of bytes in the specified file.

GET.FILE.INFO fi le# --
Reads the fi Ie information from disk for the specified fi leo The
information is kept in the file's FCB.

GET.FILE.TYPE fi le# -- file type
Returns the file type of the specified file.

ILLEGAL.FILE
Displays the error message "Illegal File#" and aborts the current task.

INCLUDE"
Used in the form:

INCLUDE" <file name>"
to include the contents of the blocks file "<file name>" by loading the first
block in the file.

INTERNAL -- n
Constant value specifying the internal drive.

10-RESUL T -- addr
Returns the address of the variable containing the I/O result code of a flle
operation.

File System Page 9 - 23 June 4, 1984

LOCK.FILE file# --
Locks the file number specified.

OPEN fi le# --
Opens the specified file.

OPEN.RSRC file# --
Opens the specified resource file.

POINT pos mode\position\file# --
Positions the file pOinter to the specified location in the specified file.

POSITIONJIXED rec#\file# -- rec len\f1le#
Fixed record file primitive. Positions the file pOinter at the start of the
specified record within the specified fi Ie.

READ.FIXED addr\rec#\file#--
Reads the data from the file with number file# at the record with number
rec# to addr.

READ.TEXT addr\cnt\fi le#
Reads the data record from the file with file number fi le# at the current
position to addr for a maximum of cnt bytes. If the record is larger than
cnt bytes, the pointer in the file is left pointing at the last byte
transferred. The next read (without adjusting the pointer) will begin with
the rest of the record.

READ.VIRTUAL addr\cnt\file addr\file#
Reads the data from the file with file number file#, starting at the file
address given to addr for cnt bytes.

REWIND file# --
"Rewinds" the file pointer to point at the beginning of the fi Ie.

REMOVE
Removes trle specified flie number.

SELECT fi le# --
Specifies the file number as the current blocks file.

SET.EOF #bytes\fi le# --
Sets the size of the file number given to the number of bytes specified.

SET.FILE.INFO file#--
Writes the file information from the file's FCB to disk.

File System Page 9 -24 June 4, 1984

SET.REC.LEN rec len\file# --
Sets the fixed record length for the fixed record file specified.

UNLOCK.FILE file# --
Unlocks the specified file.

USE"
Assigns, opens, and selects the named blocks file. Used in the form:

USE" <file name>"

VIRTUAL -- pos mode
Returns the value which specifies that the file access is virtual.

WRITEJIXED addr\rec#\file#--
Writes the data at addr to the record at rec# in the file with number file#.

WRITE.TEXT addr\cnt\file# --
Writes the data at addr for cnt bytes (the last byte must be a carriage
return) into the file with number file# at the current file position.

WRITE. VIRTUAL addr\cnt\file addr\fi le# --
Writes the data at addr for cnt bytes into the file with number file#
starting at the file addr given.

File System Page 9 -25 June 4, 1984

Fl1e System Page 9 -26 June 4,1984

Chapter 10: Printer/Serial

Overview

Text Output
Window/Screen Output

Other Printers
I nterfacing to Another Printer
Printer Port Configurations
Graph i cs Output

2

2
3

3
4
4
4

Serial Interface 5
Serial Communications with a Host Computer 5
Serial Interface Implementation Details 6

Printer/Serial Chapter 1 0 - 1 June 4, 1984

Overview

MacFORTH allows you to output anything that you can put on the screen, both
characters and graphics, to an Apple Imagewriter printer. If you have any
other type of printer, refer to a section at the end of this chapter entitled
"Other Printers".

Text Output

Any character output to the screen can also be output to the printe~ To do
this, use one of three methods:

a.) Select the "Printer" item from the "Options" menu. Output is then
directed to both the printer and the screen.

b.) Hold down the command key and press the key labelled 'P'. This
selects the Printer menu entry.

c.) Execute PR I NTER ON to activate the printer.

To disable output to the printer, you can use A or B above (they actually
toggle the printer function) or execute

PRINTER OFF

If you are doing any special formatting on the printer and don't want the
output to appear on the screen, execute:

PRINTER. ONLY CONSOLE !

To return output to both the printer and the screen, execute:
MAC.CON CONSOLE !

PRINTER.ONLY does what its name implies. In the event of an error or if the
end of the input is reached MacFORTH always returns to the console as the
output device.

You can also direct any string to the printer with the word PRINT. PRINT
works just like TYPE, only the string is output to the printer instead of the
display.

Many printers need a termination character (like CR or LF) before they will
print the data sent to them. To output a carriage return or line feed execute

CRLF 2 PRINT (CR1LF)
CRLF 1 PRINT (just CR)

Printer/Serial Chapter 10 - 2 June 4, 1984

Window/Screen Oytput
MacFORTH allows you to dump the contents of either only the active window
or the entire screen to an Imagewriter printer. There are two methods of
dumping the entire screen:

A) Release the caps lock key and then simultaneously press the 3
keys labelled command shift 4.

B) Execute PA I NT . SCREEN

To dump only the contents of the front window use one of the following two
methods:

A) Depress the caps lock key and then simultaneously depress
command shift 4.

B) Execute PAINT.UIMDOU

It is also possible to print just a portion of the current window with the
word PRINT.BITS. Used in the form

<top> <left> <bottom> <right> <bitmap addr> PRINT.BITS

the rectangle specified by <top> <left> and <bottom> <right> in the active
window will be printed. The bitmap for a window is offset 2 bytes into the
window record, so the address for the bitmap is GET.WINDOW 2+

For example, to print the contents of the upper left corner of the window,
execute:

o 0 50 60 GET.UINDOU 2+ PAIMT.BITS

Other Printers

For best results, CSI strongly suggests the purchase of an Apple Imagewriter
printer. I f you choose to use another type of printer, you wi 11 have to either
provide your own cabling and printer configuration or arrange with someone
who can.

Note: CSI does not guarantee that the instructions provided will enable you to
interface to any printer other than the Imagewriter. The following
information is intended to provide background information to individuals who
have fabricated cables for and interfaced printers to other computers. It is
not something that be attempted by inexperienced users. Beyond supplying
background information, CSI will not support non-Imagewriter printers.

Printer/Serial Chapter 10 - 3 June 4, 1984

I

Interfacing to Another Printer
In order to interface your non-Imagewriter printer to the Macintosh, you wi II
need the f 011 ow i ng:

a) a printer with an RS232C Serial interface, and
b) a specially fabricated cable to connect between the printer and

the Mac (refer to ST.MAC Magazine, 1984, pg.44 for Mac pinouts)
c) be sure to satisfy the control signal requirements of your printer

(ie. DSR, CD, RTS)

Printer Port Configurations
Default text output to the printer port occurs at 9600 baud, no parity, 8 data
bits, 1 stop bit. Handshake protocol for output flow control is XON/XOFF. If
your printer cannot be configured to this format, you will need to reconfigure
the Mac printer port to a format your printer is capable of. Use:

<'stop bits> <parity> <abits> <baud rate> COHFIGURE.PRIHTER

where #stop bits
parity
#bits
baud rate

For example:

1,2 =
0,1,2,3 =
5,6,7,8 =
75-57600

1 stop bit, 2 stop bits
none ,odd,none ,even
of data bits

1 0 6 1200 COHFIGURE.PRIHTER

reconfigures the printer port for 1 stop bit, no parity, 8 data bits, 1200 baud.

Graphics Output
Unfortunately, the industry has no real standards for dumping graphics to a
printer. In order to output graphics data to your printer, you wi 11 need the
following:

a) The ability to output text as described above (consider a printer buffer
if necessary).

b) A complete understanding of the way in which your printer accepts
graphics information.

c) You will then have to write a program which determines which bits
are set in the desired display area, format them into a output buffer
which will be compatible with your printer, and then dump successive
output buffers to the printer. Use the MacFORTH graphics word:

GET.PIXEL (x\y -- flag)

to determine the state of each dot on the screen.

Printer/Serial Chapter 1 0 - 4 June 4, 1984

Serial Interface

Screens 15 through 19 of the "FORTH Blocks" file on the MacFORTH system
disc contain source code for the Macintosh serial communications port (the
phone icon). To add the serial interface routines to your dictionary, load
block 15 of the "FORTH Blocks" file. We have provided this source code for
three reasons:

First, it is optionally loadable. If you don't want to use it, you aren't
penalized in memory usage.

Second, many users of MacFORTH are newcomers to FORTH. This provides
another example of FORTH source code. We encourage you to follow our
example of spreading your applications source code over many blocks, leaving
plenty of "white space" in your blocks. Note that each word is commented
with both what is expected on the stack and a brief description of the action
it takes. Many novice FORTH programmers try to cram as much as possible
into a single block of source code, making it unreadable. Disks are cheap
compared to the headache of trying to unravel an overstuffed block!!

Third, for those users who have "Inside Macintosh", this is a good example of
how to interface to a device driver entirely in high level FORTH.

Serial Communications with a Host Computer
The word HOST provides a simple terminal emulator. Set up the appropriate
baud rate that your host computer expects with the word BAUD. For example,
if your host communicates with you at 300 baud, you would execute:

300 BAUD

To enter into terminal emulator mode, execute:
HOST

To exit from terminal emulator mode, press the ~ key (it is the shifted key in
the upper left corner of the keyboard).

Printer/Serial Chapter 1 0 - 5 June 4,1984

I

Serial Interface Implementation Details
Given the source code for the serial interface driver, you should be able to
follow our path of logic. The following summarizes the contents of each
block containing source code:

Block 15: Serial Interface Load Block

SERIALFllE'" -- addr
Variable containing the file number to use for serial I/O operations.
Actually, two files are required to support full duplex operations.

SERIALIN -- file#
Returns the file number for the input side of the serial interface.

SERIALOUT -- file#
Returns the file number for the output side of the serial inteface.

INPUT.SIZE -- size
Constant containing the size of the serial input type ahead buffer.
Change it to suit your requirements.

INPUT.BUFFER -- addr
Returns the address of the input buffer.

SERIALOPTIONS -- addr
Returns the addres of the array used to configure the serial
interface protocol.
Offset (bytes) Description

Printer/Serial

o XON/XOFF handshake enabled if byte is non-zero
1 CTS handshake enabled if byte is non-zero
2 XON character for software handshake
3 XOFF character for software handshake
4 I nput abort codes:

bit 4 = parity error
bit 5 = overrun error
bit 6 = framing error

5 Status change generates event
bit 7 = BREAK state change
bit 5 = CTS state change

6 Enable XON/XOFF input flow control if byte is
non-zero

Chapter 10- 6 June 4, 1984

OPEN.SERIAL addr\cnt\file# --
Opens serial device driver on the specified file#. (Note: ?FILES
will show the serial files as ".AIN" and ".AOUT"') addr and cnt
specify the address and length of the input buffer to be used for
type ahead. This buffer is used to make up for the time it takes to
scroll up all bits within the window. The options array is used to
define the port protoco1.

Block 16: Serial I/O

S.TYPE addr\cnt --
Analagous to TYPE or PRINT. Output is sent to the serial port.

S.EXPECT addr\cnt --
Analagous to EXPECT. No character editing (eg. backspace) is
performed.

S. ?TERMI NAl -- n
Returns n as the number of characters available in the input buffer.
Returns 0 if none are avai lab leo

S.ST ATUS -- stat2\stat 1
Returns the serial device status.
Stat 1:

bit 30 framing error
bit 29 hard overrun
bit 28 parity error
bit 24 soft overrun (input buffer overflow)
bits 16-23 non-zero: XOFF received to stop input data
bits 8-15 read command pending
bits 0-7 write command pending

Stat 2:
byte 0
byte 1

S. ?READY -- f1 ag

non-zero XOFF flag
non-zero CTS flag

Returns a true flag if the serial driver is able to output (not held off
by CTS or XOFF).

Printer/Serial Chapter 10 - 7 June 4, 1984

I

Block 17: Serial I/O

S.KEY -- char
Reads char from the serial port. If no characters are available,
S.KEY waits until one is sent.

S.EMIT char --
Writes char to the serial port. Waits if not ready until ready for
output.

S.BREAK flag--
Sets Break if flag is non-zero, otherwise clears break.

Block 18: Serial I/O

BAUD baud rate --
Opens the serial port if necessary and sets the baud rate.

Block 19: Serial I/O

HOST
Enters terminal emulation mode. Bi-directional XON/XOFF protocol
supported. Exit via ~ key (shifted upper left key on the keyboard).
Reducing the window size allows for faster throughput.

Notes:
(1) Input is not placed in the desk scrap. If you want to record transactions

or transfer fi les, use HOST to logon and enter the editor. Exit and
transf er data under program contro 1.

(2) You can change your textsize to allow either wider or narrower displays.

Printer/Serial Chapter 10- 8 June 4, 1984

Chapter 11: Advanced Topics

In this chapter we will discuss a variety of MacFORTH features which you
wi 11 find useful in the course of programming.

Topic Page

Time and Date Functions 2
Timer Functions 3
TRACE and DEBUG Features 3

INTERRUPT Option 3
DEBUG Opt ion 3
TRACE Option 4
UNIQUE.MSG Option 5
LOWER.CASE Option 5
QUIET Option 6

User Specified Error Handlers 6
Error Recovery 6
Disabling Error Recovery 7
Nesting Error Handlers 8
Fixed Error Recovery 8

Recovery Stack Frame Chart 9
Memory Allocation 10
Macintosh/MacFORTH Memory Map 11
Vocabulary Data Structure 12
MacFORTH Vocabulary Structure 14
Character Cursor Symbo I 15
Cutting and Pasting Between

Applications 16
Macintosh Toolbox Interface 17

Pre-Requ i si tes 17
Review of Pascal Data Types 17
Toolbox Traps 17

OS Traps 17
Pascal Procedures 18
Pascal Funct ions 18

Complex Sound Generatlon 19

Advanced Topics Page 11 - 1 June 4, 1984

I

Time and Date Functions

Your Macintosh maintains a count of the number of seconds that have passed
since January 11 1904 in its own internal counter. This counter is updated
every second automatically by the computer and can be read by executing the
word .CLOCK. To facilitate using this featurel we have provided you with
the following words to display the time and date:

.TIMES
Displays the current time (as read from the internal clock) and
displays it in the following format:

HH:MM:SS XM
.DATES

Displays the current date (as read from the internal clock) and
displays it in the following format:

MM/DD/YY

GET.TIMES addr--
Copies the 11 byte time field ("HH:MM:SS XM") to addr. Be sure
that you have 11 available bytes at addr as it will be
overwri tten.

GET .DATES addr--
Copies the 8 byte date field ("MM/DD/YY") to addr. Be sure that
you have 8 available bytes at addr as it will be overwritten.

For more information on using the internal clock for display of time and date}
refer to the MacFORTH Glossary entries for:

FMT.DATE$ FMT.TIME$ DAYS> ?SECOHDS ?DAYS

Timer Functions

You can also use the clock as a timer. For example} to see how long it takes
to display the entire words list of the current dictionary; you could execute:

.CLOCK UORDS .CLOCK SUAP - CR. .• Seconds·

or to wait a specified number of seconds before continuing:

UAIT (. of seconds --)
@CLOCK +

BEGIH @CLOCK OUER· UHTIL DROP

30 UAIT

Advanced Topics Page 11 - 2 June 4 1 1984

TRACE and DEBUG Features:

To facilitate debugging your program (if it has any bugs), we have provided
you with an extensive set of tools for tracing and locating the problem.

I nterrupt Button Support
When the user presses the interrupt button (the second button on the
programmers buttons on the left side of the Mac) while MacFORTH is in
control, MacFORTH locks out interrupts for a few seconds and then aborts the
current operation. This action will recover from most unterminated loops and
return control to the MacFORTH window. For example, try a definition like:

: ENDLESS BEGIN .n again and again., ,n AGAIN j

ENDLESS

Now reach around and press the interrupt button (not the reset button).

DEBUG Option
The debug option is present on the options menu bar. A check mark indicates
the debug option is active. The keyboard equivalent command is command D.

When the debug option is on, the text interpreter will check the stack depth
after completion of each request. If any items are left on the stack, they are
disp layed using .S in the following format

[depth] \ 3rd stack item \ 2nd stack item \ top stack item

The 3rd and 2nd stack items are only displayed if they exist. Refer to the
trace option for other features of the debug option.

Advanced Topics Page 11 - 3 June 4, 1984

TRACE Option
The trace option provides a complle time elective trace feature. Basically
this option instructs the compiler to compile new definitions in such a way
that when they are executed, the name of each word will be printed along
with the depth and contents of the stack. The trace option may be set and
cleared via the options menu bar. Pull down TRACE to toggle this function.

For example, execute
DEBUG OH
TRACE OH

: TEST 10 0 DO

TEST

• I • I . LOOP j

Because the definition was compiled with the trace option on) when it
executes, each word that is executed is preceded by printing its name and
followed by printing the contents of the stack. (You can use the Menu Bar to
ha I t and resume output.)

The debug option enables and disables the run-time trace option's output.
Now execute

DEBUG OFF
TEST

and you will see that the trace feature was not executed because the debug
option was off.

NOTE: The trace option forces compilation of the trace feature into each word
when it is turned on. The trace output is generated at run-time. This means
that a great deal of overhead is carried with each word when it is executed
with the trace option on. To get accurate timing information in time-critical
operations, and for production applications code, disable the trace feature and
re-compile the code.

Remember, the TRACE option is altered by command D. You can toggle the
trace function on and off during output by pressing command D (or by
selecting the Debug item from the Options menu).

Advanced Topics Page 11 - 4 June 4, 1984

UNIOUE.MSG Option
The text interpreter searches the current words in the dictionary when a new
deflnition is created. If a new entry with a name field the same as a prior
entry is created, the interpreter can optionally display the error message

ISHIT UHIQUE
The phrase

UHIQUE.MSG OH

enables output of this warning message when a word is re-deflned (or given
the same name as a prior word). The phrase

UHIQUE.MSG OFF

disables output of this message. For example, execute the following
UHIQUE.MSG OH

TEST
: TEST j

UHIQUE.MSG OFF
: TEST j

You normally want to operate with the UNIOUE.MSG option enabled, however,
when loading production code with known re-definitions, you may choose to
disable this message.

LOWER.CASE Opt ion
If you enter MacFORTH words in lower case, the text interpreter normally
converts them to upper case before looking them up or creating a new
dictionary entry. This allows you to reference a word by typing its name in
upper or lower case. The phrase

LOLJEA.CRSE OH

defeats this automatic conversion and allows you to deflne MacFORTH words
in lower case that have different name fields than their upper case
equivalents. The phrase

LOLJEA.CRSE OFF

causes words to be again converted to upper case. The default state of this
switch (at startup) is OFF.

Advanced Top i cs Page 11 - 5 June 4,1984

QUIET Option

MacFORTH normally sounds the beeper to attract your attention to an error. In
some environments, this noise may be inappropriate. To quiet the beeper on
errors, enter

QUIET OH

to sound the beeper on errors, enter
QUIET OFF

Default setting for this switch is OFF at startup.

User Specified Error Handlers

MacFORTH allows you to dynamically install and remove handlers which
intercept errors defined by ABORT" or ERROR". Error handler entry points,
specified by TRY and ON.ERROR , are dynamically installed and remain active
for the current definitions. If an ABORT" occurs or a RECOVER attempt is
made within that defintion or any definition which it executes, the specified
error handler will be invoked (unless another handler has been invoked at a
lower level). When the current definition completes, error handling specific
to that definition is replaced by that of the next higher level. Thus, error
recovery is fully nested, and the scope of any error handler specified within
a definition is relevant only to that definition (or those it references), For
example,

: OOPS! 0 0 UIMOD j

OOPS!

invokes a division by zero processor exception handler to execute the
following:

ABORT· ZERO DIU IDE TRAP ! •

Error Recoverv
Because no exception handler was specified, the default abort occurred. By
using ON.ERROR to specify a new handler, you can override the default
message:

TEST (--)
OH,ERROR ,. TEST ABORTED· ABORT RESUME

,. TEST STARTED· OOPS!
,. TEST COMPLETED • j

TEST

Advanced Topics Page 11 - 6 June 4, 1984

What TEST did was to create an error handler to process the abort condition.
The phrase

OH,ERROR I· TEST ABORTED • ABORT RESUME

defined the error handler to display the message "TEST ABORTED" and then
execute ABORT when an ABORT condition occurred.

Disabling Error Recovery
You may cancel a posted retry handler at any point with the phrase

RETRY OFF

For examp I e:
: TEST4 (---)

OH,ABORT I· TEST4 ABORT ROUTIHE· RETRY OFF
CR ,a IHLIHE TEST4 • CR OOPS! j

TEST4

Let's follow what happened when you executed TEST 4;

RESUME

OH I ERROR ,a TEST4 ABORT ROUTIHE· RETRY OFF RESUME

set up the new error handler.
CR ,a IHLIHE TEST4·

displayed the message,
CR OOPS!

caused an abort condition to occur. From here control was passed to the error
handler, which displayed the message "TEST4 ABORT ROUTINE" and set RETRY
to zero. Control was then passed to the code following THEN in TEST 4, which
again executed

CR ,M IHLIHE TEST4· CR OOPS!

This time, with RETRY set to zero, the default error handler was executed and
the system aborted with the message "ZERO DIVIDE TRAP !"

Setting RETRY to zero only affects the most recently defined error handler
(which is automatically removed at the end of the current definition anyway).
Any previously defined error handler will be re-installed when the current
definition is completed, allowing nesting of error handling routines.

Advanced Topics Page 11 - 7 June 4, 1984

Nesting Error Handlers
For nested RETRYs, you may want to include the following definition:

PRIOR.RETRY (I pops the recovery stack frame)
(off of the return stack)

RETRY @ ?DUP IF 12 + @ RETRY! THEM j

This definition wi II remove the recovery stack frame off of the return stack
and point RETRY at the next frame in the I ist (the I ist is zero-terminated).

TEST6 (---)
OM.ERROR ." FIRST ABORT" PRIOR.RETRY
ELSE OM.ABORT." SECOMD ABORT" PRIOR.RETRY

RESUME
RESUME OOPS! j

TEST6

This example has shown multiple-level nesting of the error handlers using
RETRY. The first level error handler will display the message "FIRST ABORT"
and reset the error handler to the next higher handler (in this case, the
default handler). The second level error handler will display the message
"SECOND ABORT" and reset the error handler to the next higher handler (the
first level error handler).

Fixed Error Recovery

TEST7 (f --)
OM.ERROR PRIOR.RETRY 1 ABORT" TEST7 ABORT ROUTIME"
RESUME

IF RECOUER ELSE 60 SYSBEEP THEM j

o TEST7
1 TEST7

displays the message "TEST7 ABORT ROUTINE." RECOVER unconditionally
recovers at the most recently specified recovery stack frame.

: TESTa " YY" RECOUER ;

TESTa

The error message "ILLEGAL RECOVERY ATTEMPTED" indicates that an
attempted was made to recover with no handler posted.

Advanced Topics Page 11 - 8 June 4, 1984

TEST9 (---)

TEST9

2 TRY 1- .• XX· OUP
IF TEST8 THEH

n 22. j

ON. ERROR posts a handler and jumps over it, TRY posts a handler and continues
to execute. In either case the stack pointer is returned to the depth that it
was when the error handler was identified. This technique is most often used
to identify the last ditch error handler in a fault tolerant system. TRY may be
used to restart the current program function in case of an unexpected error
condition.

I 0
I I <--
I I I Recovery Stack Fra.e
II II I

I
_________ 1 I

Prior Retry 1 __ '

----------, Recovery SP I
________ -:..1 User Uar i ab I e

Recovery I P I RETRY
-----__ --__ 1

I
Rddress of HO.RETRY I <-----------1

---______ 1 1 __ _ ,
I II

,------------RP--> ,

,--------------
This stack frame approach allows you to specify your own ABORT" error
handler at any level without disrupting a handler posted at a higher level.
When the current definition completes, the posted handler is automatically
replaced by the immediately higher level (if present).

The list of stack frames is terminated by zero which, when RETRY pOints to it
(the zero entry), indicates that the default error handler is to be used.

Advanced Topics Page 11 - 9 June 4, 1984

Memory Allocation

Macintosh memory is partitioned into the five major areas shown in the
Macintosh and Mac FORTH Memory Maps that follow. The areas titled
"Application Heap" and the stack are all that you need concern yourself with.
The remaining areas support system functions normally outside the scope of
applications programs. The applications heap area is a chunk of memory under
the control of the toolbox memory manager.

When writing MacFORTH programs, you control the amount of memory
allocated to your current object and vocabulary data structures. When
MacFORTH is loaded into memory from disc, it is placed by the toolbox
memory manager at the base of the applications heap. The applications heap
is just a pool of memory from which programs can request variable length
chunks.

The memory manager will attempt to satisfy your request by looking at all of
the available pieces in the heap and if a big enough piece isn't available, it
will reshuffle the heap until it can put together enough smaller chunks to
satisfy your request. You can also ask the memory manager to increase or
decrease the size of an existing chunk of memory.

After it is loaded, and the desktop window is initialized, MacFORTH asks the
memory manager to a I locate a chunk of memory to put programs and data in.
Because the object area will contain executable code, it must be locked down
in memory, while its size may still grow and shrink.

A default allocation of 8K of object space and 9.5K of FORTH vocabulary space
is made.

Mac FORTH Level 2 provides an indepth discussion of heap collection and
allows you to allocate your own relocatable heap data structures.

Advanced Topics Page 11 - 10 June 4,1984

Macintosh
Memory Map

Oi sp lay Memory

Stack

~
Application

Heap

System

Heap

Globals

and

Vectors

Advanced Topics

/

\

Page 11 - 11

1/

\

MacFORTH
Memory Map

Block Buffers

T I B \ Return Stack

STACK
(grows down)

HEAP
(grows up)

Other Vocabularies

Resizable
MacFORTH Vocabulary

Resizable
MacFORTH Object

Desktop Window

MacFORTH
PreCompi led

Object

User Area

Handles

June 4, 1984

""
.J

Vocabulary Data Structure

MacFORTH supports vocabularies as a I inked I ist of words located in a data
structure allocated from the heap. (Refer to vocabulary Structure Diagram.)

When a word is defined in MacFORTH, the "head" of the definition, including
the text for the name, and it's associated token is placed in the current
vocabulary, and the "body", including associated data or execution structures,
is placead in the object image.

A number of MacFORTH operators exist for manipulating the vocabulary and
ob ject area data structures.

N VOCABULARY TEST
Creates a new vocabulary called TEST. The initial allocation of space
for TEST will be N bytes.

APPEND (token\str.addr --)
Appends the supplied token and string to the current vocabulary.

TEST
Sets TEST as the context vocabulary.

TEST DEFINITIONS
Sets TEST to the current vocabulary.

N RESIZE. VOCAB
Attempts to RESIZE the current vocabulary to N bytes. Error
messages are reported if insufficient heap space is available or if N
is too small to contain vocabulary.

-LATEST
Purges the latest vocabulary entry, returning space to the vocabulary.

N BEHEAD
Purges the name head for the token represented by 'N' from the
vocabulary.

AXE NAME
BEHEADs the vocabulary entry for 'NAME'.

Advanced Top i cs Page 11 - 12 June 4, 1984

FIND (-- token or 0)
Returns the applicable token value for the next word in the input
stream. For example:

FIND DUP
returns the token for DUP .

NFA (token -- name addr)
Returns the address for the name of the vocabulary entry that
corresponds with the supplied token. For example:

FIND DUP NFA 10.
will obtain the token DUP , convert it to it's Name Field Address, and
then type out the Name.

Advanced Topics Page 11 - 13 June 4,1984

MacFORTH
Vocabulary Structure

0000

T

I

X

E

04

TOKEN

~ • • • •
W

E

N

03

TOKEN

•

LL SIZE
I-(-L-A-TE-S-T---I

Context

Handle

Advanced Topics

/
~

J-

Zero Token indicates
end of Vocabulary Ust

First Name in Vocabulary
"EXIT"

Token for First Name in
Vocabulary

Names and Tok:ens Bet ween
First and Latest

~ Latest Name In Vocabulary

________ Token for Latest Name
_________ "NEW"

Page 11 - 14

Avai lable Space in Vocabulary

Forget Barrier: Relative to
Start of Vocabulary. Use
SET .FENCE to copy LATEST to
Fence

Current Vocabulary S1ze

Self Relative pOinter to
Latest NAME.

June 4, 1984

Character Cursor Symbo 1

When MacFORTH is waiting for text from the keyboard, a flashing cursor is
displayed at the point where the text will be placed. The flash rate is set via
the contro 1 pane 1.

Any character font may be used as the cursor. The variable CURSOR-CHAR
contains the font# in the first 16 bits and the character in the second 16 bits.
For example:

HEX 5F CURSOR. CHAR ! DECIMAL

sets the cursor to the default underline cursor.
BL CURSOR. CHAR !

sets the cursor to blank (invisible)
HEX 7C CURSOR. CHAR ! DECIMAL

sets the cursor to a vertical bar (as in MacWrite) and
HEX 070041 CURSOR. CHAR ! DECIMAL

sets the cursor to character 41 (A) of font#7.

Changing the cursor symbol is a good way of alerting the user when the
system is in some special mode. Some of the different character cursors we
have experimented with are listed below:

Hex Value
11
12
13
14
15
C6
BO
BO

Advanced Topics

Symbol
hollow apple
checkmark
diamond
dot
solid apple
triangle
infinity symbol
omega

Page 11 - 15 June 4, 1984

Cutting and Pasting Between Applications

One of the more innovative features of the Macintosh is its ability to cut and
paste between applications. This is done utilizing a facility known as the
Desk Scrap. The Desk Scrap is maintained by the Toolbox Desk Manager.
MacFORTH currently supports two types of scrap entries: TEXT and PICT.

MacFORTH Level 1 supports cutting and pasting of text data between the text
editor and the desk accessories, or other appl1cations. This is built in to the
edltor and explained in the Program Editing chapter. Unless you need to
handle text larger than fits on a block of source code, you don't need to
concern yourself with the desk scrap.

Accessing the Scrap
The following words are available for accessing the desk scrap (refer to their
definitions in the glossary for more information on each):

SCRAP.LEH SCRAP.HAHDLE SCRAP.COUHTER
ZERO. SCRAP GET. SCRAP PUT. SCRAP
UHLOAD.SCRAP LOAD ,SCRAP -TEXT
·PICT

The text editor source code is a good example of accessing the desk scrap.
Refer to the source code in the "Editor Blocks" file.

Advanced Top i cs Page 11 - 16 June 4, 1984 I

Macintosh Toolbox Interface

This section documents the facilities to directly call routines in the
Macintosh toolbox from high level MacFORTH.

Pre-requisites
The objective of this section is neither to document the contents of the
Macintosh toolbox, nor explain the interworkings of Mac/Lisa Pascal. To gain
insight into those areas you need to obtain a copy of "Inside Macintosh."

As a minimum, you will need to read and understand the "Programming
Macintosh Applications in Assembly Language" section of the manual. Add to
this any parts of the toolbox that you want to access.

Review of Pascal Data Types
The following data types are used throughout:

Boolean: 16-bit word wlth LS bit set in the high order byte to
indicate true or false (true = 1)

Byte: 16-bit word with byte in LS 8 bits
Char: same as Byte
Integer: 16-bit word
Long Integer: 32-bit word
Pointer: 32-bit address
Handle: 32-bit pOinter to an address which contains a 32-bit

pOinter

Toolbox Traps
Macintosh toolbox traps occur in 3 areas:

OS Traps: All OS traps uniformly expect an I/O buffer pointer in AO and
return an I/O result in DO. The MacFORTH defining word OS.TRAP creates a
new word, which when later executed, pops the top item of the stack into AO,
executes the trap, saves the result in the user variable 10-RESUl T, and then
executes NEXT. OS traps are defined in the following form:

HEX
A002 OS. TRAP READ
Al02 OS. TRAP ASYHC.READ
DECIMAL

and may be used in the form:
1 >FCB READ ?FILE.ERROR

buf ptr --)
buf ptr --)

(Refer to the File System chapter for details on each command.)

Advanced Topics Page 11 - 17 June 4,1984

I

Pascal Procedures: Pascal procedures are a little more complicated. There
may be more than one argument passed and they may be of jumbled data types
(16-bit values, including boo leans, bytes, or words intermixed with 32-bit
values). Fortunately, the majority of toolbox procedures either expect all
32-bit items or only the last one or two items are 16-bit values.

Uniform 32-Bit Procedure Calls: Because MacFORTH works with 32-bit stack
data, Pascal procedures which expect 32-blt arguments may be easily defined
with MT. For example:

HEX A915 MT HIDE.WINDOW (.ptr --) DECIMAL

When HIDE.WINDOW is executed, the trap A915 (hex) is executed with wptr
on the stack.

Note: When passing parameters to Pascal procedures, just leave them on the
stack in the order described in the Apple documentation (left is deepest stack
item).

Procedure Call with 1 16-bit Item on the Top of the Stack: Enough of these
exist to warrant a special operator.:

HEX A9C8 W>MT SYSBEEP (duration) DECIMAL

This operator works for all cases in which all arguments below the top of the
stack (i f any) are 32-b its.

Procedure Call with 2 16-bit Items on the Top of the Stack: Enough of these
exist to warrant a special operator:

HEX A893 2W>MT (LINE. TO) (x\y --) DECIMAL

Note: The trap values shown differ from those in the Apple documentation (ie.
ADC8 for SysBeep, AC93 for LineTo, etc.). The 11 th bit set in the Apple
documentaion is an artifact of a prior generation Pascal compiler. Don't ask
why, just use the correct lower value. I t's what the new compiler uses.

Pasca I F unct j ons: Unfortunate ly, Pascal funct ions expect space reserved to
return the result under any passed arguments. This means we have to pop off
all of our arguments, push space into the stack for the returned result, and
the push back the arguments. This is further complicated by the fact that the
result may be either 16 or 32-bits in length. As you may have guessed, some
of your favorite toolbox traps (like NEW.WINDOW which takes 9 parameters!!)
are function calls.

MacFORTH provides toolbox trap defining words for the easy function calls.
The harder ones you'll either have to include a zero in your argument list (to

Advanced Topics Page 11 - 18 June 4, 1984

reserve space for the result), or write in with the Level 2 MacFORTH 68000
assembler. The following function traps are supported:

FUNC>W returns a 16-bit result
(ie: A861 FUHC>U RAHDOM)

FUNC>L
W>FUNC>L
L>FUNC>L

returns a 32-bit result
word parameter, long result
long parameter, long result

Complex Sound Generation

MacFORTH provides access to the Macintosh OS sound driver. The sound driver
provides three different sound synthesizers:

- square wave synthesizer: produces a pre-programmed series of tones
- four tone synthesizer: produces simple harmonic tones (with up to 4

voices)
- free form synthesizer: produces complex music and speech

When the system is loaded, MacFORTH opens the device driver ".SOUND" and
assigns it to its own FeB called SOUND.FCB. The Getting Started chapter
discusses how to generate simple tones via the sound driver. For more
complex sounds, you will need to create your own waveform record. For
instructions on how to construct any desired free form or four-tone
synthesizer record, refer to the in-depth discussion on sound generation in
the Apple documentation.

A MacFORTH sound record consists of a synthesizer record proceded by a
16-bit word containing the length of the following synthesizer record. Two
operators are available to play your synthesizer record:

PLAY sound record address --
Plays the desired synthesizer record, hangs the cpu unti I it finishes.

APLA Y sound record address --
Asynchronously plays the desired synthesizer record. The processor
continues execution and the sound is generated concurrently.

Refer to the sourc code of the demos for examples of how to define you own
music using the square wave synthesizer.

Advanced Top i cs Page 11 - 19 June 4, 1984

I

Advanced Topics Page 11 - 20 June 4, 1984

Chapter 12: MacFORTH Error Handling

This section discusses the method MacFORTH uses to handle errors. The
topics discussed in this section are:

Overview 2

Compiler and Interpreter Errors 3

File Errors and Processor Exceptions 4

MacFORTH Default Error Message Summary 5

Error HandHng Page 12-1 June 5, 1984

Overview

By default, when MacFORTH encounters an error condition, an error message
is displayed, the current operation is aborted, and control is returned to the
system window. Error conditions occur in the following categories:

Interpreter
Compiler
Utility
File
Processor

You can override any default exception error handler. All of the messages in
the preceding sections are listed in alphabetical order in the back of this
section with accompanying text discussing the probable cause of the error
and what action to take.

The errors supplied by the Macintosh that are specific to file handling are
I isted in Appendix B of the Fi Je System chapter.

Error Handling Page 12-2 June 5, 1984 I

Compiler and Interpreter Errors

Complier and interpreter errors can be divided as follows:

I nterpreter Errors
?
BELOW FENCE !
STACK EMPTY
MISSING STRING DELIMITER
DECLARE VOCABULARY
MISSING IFEND OR OTHERWISE

Compiler Errors
?
COMPILATION ONLY, USE IN A DEFINITION
CONDITIONALS NOT PAIRED
DEFINITION INCOMPLETE
DICTIONARY FULL
EXECUTION ONLY
MISSING STRING DELIMITER
ATTEMPTED TO REDEF I NE NULL

Because these errors are more pertinent to the program development
process rather than run time appllcatlons, they are defined with the word
ERROR". An example of ERROR" is

FENCE @ < ERROR" BELOW FENCE"

If the value of the stack is non-zero, the console buzzer is sounded (if the
QUIET option 1s ON), a carriage return is output followed by the most
recently interpreted word and the errr 'message. If the error occurs while
lnterpretlng text from disc, the scrf .m# and offset are placed in the user
variables SCR and R# . When you enter the editor the cursor wlll
positioned Immediately after the error.

Error Handling Page 12-3 June 5, 1984

I

File Errors and Processor Exceptions

File errors and processor exceptions are sub-divided as follows:

File Errors

MEDIA WRITE PROTECTED!
DRI VE NOT READY!
DI SC SEEK ERROR!
INTERRUPTED

Processor Exceptions

ADDRESS ERROR TRAP AT XXXXXX
BUS ERROR TRAP AT XXXXXX
ILLEGAL INSTRUCTION TRAP!
OVERFLOW TRAP!
ZERO DIVIDE TRAP!

These errors are defined with the word ABORT" . An example of ABORT" is

MAX. BLOCK > ABORT" I LLEGAL BLOCK # ..

If the value on the top of the stack is non-zero, and no user supplied
recovery stack frame has been established (discussed in next section), the
default error handler outputs the message text and executes ABORT to
return control to the console. Whlle the default handler works well in the
normal program development process, you will often choose to supply your
own error handlers to recover from device errors and processor exceptions
in actual applications.

Error Handl ing Page 12-4 June 5, 1984

MacFORTH Default Error Message Summary

When a system error Is encountered, the MacFORTH system stops and outputs
an error message. All system error messages and a discussion of their
probable cause Is provided below.

File 1/0 errors are discussed separately in the File System
chapter.

Message Probable Cause

? The text Interpreter was unable to find <string> in the CONTEXT or
TRUNK vocabularies and was unable to convert it to a number.
Probably a typo or the word has not been loaded.

ABORTED FROM KEYBOARD
A keyboard abort event occurred.

ADDRESS ERROR TRAP AT XXXXXXX
An attempt was made to fetch or store a 16-blt or 32-blt value at
odd address XXXXXXX. The 68000 hardware does not allow this.
Either altgn the data structure on an even word boundary (using
?ALIGN) or use Ct1)VE.

ATTEMPED TO REDEFINE NULL
MacFORTH prevents the user from Inadvertently redefining the end
of line function (NULL> by typing : followed by a carriage return,
as this would cause the system to respond to carriage returns in
an unpredictable manner. If you truly wish to redefine the
function of NULL, and understand fully the overall system Impact,
use the following:

: X <your definition for null>
HEX R020 TOKEH.FOR X HFR U!

BUS ERROR TRAP AT XXXXXXX
An attempt was made to access data at address XXXXXXX which is
invalid. Neither memory nor hardware is capable of responding at
the address.

CANNOT CLOSE SYSTEM WINDOW!
While It Is possible to hide the MacFORTH window, you cannot
close it.

Error Handllog Page 12-5 June 5, 1984

Message Probable Cause

CANNOT LOAD BLOCK 0 !
Block 0 of each file is reserved for data or comments. You are
unable to load it. Use a higher block number.

COMPILATION ONLY USE IN A DEFINITION!
The offending word was encountered in execution state. The word
is a compiler primitive and has no meaning when not compiling (ie:
DO IF LOOP BEGIN).

CONDITIONALS NOT PAIRED
The text interpreter expects all conditionals to be properly nested.
A terminating conditional (THEN , UNTIL , REPEAT , AGAIN,
LOOP, +LOOP) was encountered for which there was not a
corresponding acceptable initializing conditional (IF, ELSE, DO ,
BEGIN, WHILE) at the correct nesting level.

DEFINITION INCOMPLETE!
The stack depth changed inside a colon definition. This is normally
the result of an unpaired conditional (ie: a missing THEN). It may
however, result from using a literal inside a definition to compile
a literal value that was left on the stack prior to defining a word.
In this case modify the user variable CSP to indicate the
difference, ie: one item dropped from the stack requires

[4 CSP +!]
Warning: Conditionals leave various information (address,
conditional type) on the stack at run time. Be aware of this when
placing literals inside colon deflnitions.

DICTIONARY FULL !
Less than 260 (decimal) bytes exist in the object dictionary. If
allowed to continue, scratch pad buffers above dictionary could
overwrite the end of the object space. FORGET to free up
dictionary space or resize the object area.

EXECUTION ONLY I
The offending word may not occur while compiling.

FILE ERROR ~_
An unidentified file error occurred. Refer to the File System
chapter for identified file errors.

Error Handl ing Page 12-6 June 5, 1984

Message Probab I e Cause

FILE NOT OPEN!
An attempt was made to access a flle that was not open. Open the
fi Ie and continue.

FIXED RECORD LENGTH = 0 !
FORTH blocks are merely fixed length records within a file. In
order to access them, the record length for the file must be 1024.
You probably attempted to read a text ffle as blocks.

ILLEGAL FILE NUMBER!
MacFORTH file numbers range between 0 and 9, any other value is
i Ilega 1. Check the order of your operands.

ILLEGAL INSTRUCTION TRAP!
The 68000 attempted to execute an invalid (unrecognizable)
instruction probably due to accidentally overwriting the
dictionary. Try to locate erroneous code which overwrites
dict ionary.

ILLEGAL RECOVERY ATTEMPTED!
An Attempt was made to recover from an error 'condition with no
ON.ERROR recovery handler posted.

I LLEGAL VOLUME !
The MacFORTH DIR command expects either a drive name (internal
or external) or a volume reference number to produce a directory.

WARNING: Disc full at block # __

ADD.BLOCKS encountered an end of volume condition. No more
space exists on the disk. All available space is allocated.

I SN'T UNIQUE
A word was created in the dictionary which is not unique in the
CURRENT, CONTEXT, or TRUNK vocabularies and the UNIQUE.MSG
switch is off. The most recent definition will be used for future
references. The prior deflnition probably cannot be found. This
warning message may be disabled when loading production code by:

UNIQUE.MSG OFF

MISSING (STRING DELIMITER !
The input stream was exhausted (null encountered) before a
delimiting right paren was found. See the MISSING STRING
DELIMITER error message also.

Error Handl ing Page 12-7 June 5, 1984

Message Probab I e Cause

MISSING (STRING DELIMITER
The input stream was exhausted (null encountered) before a
delimiting right brace was found. See the MISSING STRING
DELIMITER error message also.

MISSING IFEND OR OTHERWISE
MacFORTH does not al10w IFTRUE ... OTHERWISE... IFEND ... or
IFTRUE ... IFEND conditional compilation sequences to cross either
input line or block boundaries. Reorganize your text to start and
end such sequences on the same source block or input line.

MISSING STRING DELIMITER
The input stream was exhausted (nul1 encountered) before the
required delimiter was found. Delimited strings may not cross
block or terminal input line boundaries. Insert trailing delimiter
in source text.

NO FCB'S AVAILABLE
Al1 FCB's were in use when the NEXT.FCB command was executed.

NOT A BLOCKS FILE!
An attempt was made to select a non-blocks file as the current
blocks file for editing.

NOT ENOUGH STACK ITEMS!
Insufficient stack items where placed on the stack before
executing the most recently entered word. MacFORTH selectively
contains a few operators which provide this check. In applications
code use:

X NEEDED
Where X is the number of items required to properly execute.

OBJECT DICTIONARY FULL!
Object dictionary space is full. Use ROOM and RESIZE.OBJECT to
al10cate more object space from the heap.

OBJECT WON'T FIT!
An attempt was made to resize the object dictionary into a
memory segment which is too small.

OVERFLOW TRAP!
Default handler for exception caused by TRAP V instruction - see
Motorola documentation.

Error Handling Page 12-8 June 5, 1984

----.~-.----

Message Probab Ie Cause

RANGE TRAP!
User assembly code generated a range TRAP from a CHK,
instruction. See MacFORTH Level 2 Assembler documentation.

ST ACK EMPTY !
Text interpreter found the stack pOinter greater than the top of
the stack. An attempt was made to access nonexistent stack data.
NOTE: There is no run-time check made by the address interpreter.
When executing code underflows the stack, the contents of the
text input buffer and eventually the return stack are unpredictable.
A buffer zone of 2 bytes is reserved for minor underflow
occurrences.

SOUND ERROR!
The sound generat ion driver reported an error to MacFORTH.

UNABLE TO RESIZE OBJECT!
The memory manager was unable to increase the size of the object
space due to the placement of a fixed/locked memory segment
immediately behind it. Refer to the Advanced Topics chapter for a
discussion of memory allocation and resizing.

UNABLE TO RESIZE VOCABULARY!
The memory manager was unable to increase the size of the
vocabulary space due to the placement of a fixed/locked memory
segment immediately behind it. Refer to the Advanced Topics
chapter for a discussion of memory allocation and resizing.

VOCABULARY FULL !
The current vocabulary is full. Use RESIZE.VOCAB to allocate more
vocabulary space. ROOM displays current allocation. Refer to the
Advanced Topics chapter for more information on memory
allocation.

VOCABULARY WON'T FIT!
An attempt was made to resize the vocabulary into a memory
segment which is too small.

ZERO DIVIDE TRAP!
The 68000 attempted to divide by zero in hardware.

Error Handl ing Page 12-9 June 5, 1984

Error Handling Page 12 - 10 June 5, 1984

MacFORTH Glossary

This section presents the MacFORTH glossary. It is divided into three
parts:

1) An index in sorted ASCII order with page number reference.
Useful for finding a particular word quickly.

2) An index by function with page number reference. Useful for
finding a word in a particular class.

3) The definitions themselves in sorted ASCII order.

The authors have put an enormous amount of work into this glossary.
Users who want to get the most out of MacFORTH should read through it at
least once to get an idea of the wide range of capabilities that are
available.

Glossary Key

The following symbols are used in the glossary to indicate the contents of
the parameter stack before and after execution of the particular word:

Symbol

$

addr

bool

char

MacFORTH Glossary

Meaning

Prefix used to indicate a string field
operation. By itself, it indicates a
string address. As a prefix to cnt
($cnt) it indicates a string field
count.

A memory address. A number suffix is
used to differentiate between
addresses.

A boolean flag. A value of zero
indicates a false flag; non-zero
indicates true. MacFORTH words which
return pure boolean results use -1 as
a true flag (all bits set).

An 8-bit character value.

Page 13- 1 June 3, 1984

Symbol Meaning

cnt

dest

false

flag

n or un

src

true

w

wptr

MacFORTH Glossary

A count value. Usually used with an
addr symbol to designate the start
ing address and count for an array of
string value. Also used to designate
the width of a field.

Refers to a destination address.

A boolean false flag (0).

A special flag value. The specific
meanings for different flag values are
discussed in the text of the defin
itions for the word which uses the
flag.

A 32-bit integer. A number suffix is
used to differentiate between num
bers. The prefix u indicates the
number is unsigned.

Ref ers to a source address.

A boolean true flag (-1).

A 16-bit integer. A number suffix is
used to differentiate between num
bers.

Starting address of a window table.

Page 13- 2 June 3, 1984

Symbol Meaning

\

[".l or [".1

Delimits items on the stack. It is pro
nounced "under". For example,

n 1 \n2 -- addr
is read "n 1 under n2 leaves addr" .

Indicates different possible stack
outcomes. For example, the word ?DUP
dupl1cates the top item on the stack
if it is non-zero. It's stack notation is

n -- [n\n] or [n]
Indicating an integer is expected
on the stack and leaving either two
items (n under n) or the original
integer 1tself.

In some of the definitions, we have used a more mnemonic name for a
parameter instead of a standard symbol for clarity. For example, "index" is
used to indicate an index value, "sect" is used to indicate a sector on a
disk, "blk--" refers to a block number, and so on.

Always refer to the text of the definition for a more complete explanation
of the required parameters.

A Few Notes on the Glossary:

Most FORTH glossaries are noted for their small size (typically less than
250 items). The MacFORTH glossary contains about 900 entries. This is
due to the extensive access to the Macintosh toolbox provided by
MacFORTH. Normally, the MacFORTH kernel is about 250-300 words.

MacFORTH Glossary Page 13- 3 June 3, 1984

ICSP

n\addr --
Store n at addr. "store"
The error message "ADDRESS ERROR TRAP AT addr" 1nd1cates addr is
odd (addr 1s d1splayed as a hexadec1mal value) Refer to the Error
Handl1ng chapter for a further explanat10n.

Save the current stack position in the User Variable CSP . This is used
as part of the compiler security to ensure the stack does not change
during compilation of a word. "store-c-s-p"

IPENST A TE 20 bytes --
Restores the prior penstate from the stack. See @PENST ATE. "store
pen state"

IPOINT x\y\addr --
Packs the 16-bit values x and y into a 32-bit integer and stores the
value at addr.

IREeT top\left\bottom\r1ght\addr --

ISR

•

Packs the rectangle coord1nates on the stack 1nto 4 16-b1t values and
stores them at addr. Packed rectangle conta1ns 4 '6-b1t elements 1n
top-left-bottom-r1ght sequence. "store rect"

n --
Directly stores the least significant 16 bits of n into the 68000
hardware status register. The supervisor and trace modes, interrupt
level, and condition codes are affected. "store-s-r"

-- addr
Compiles a string delimited by " , leaving its address when the word
is later executed. Used during compilation in the form: "<string
literal>" to compile ($LlT) followed by <string literal> with Its count
in the first position. When iater executed, ($LlT) places the address
of <string literal> on the stack, advancing the instruction pOinter to
the word following the string I itera1. See $LlT , ($LlT) , ." , ," "quote"

-8lKS -- n
32-bit constant containing the 4 character ASCII string "BLKS" . Used
to designate the blocks file type. "quote B-L -K-S "

MacFORTH Glossary Page 13-4 June 3, 1984

-DATA -- n
32-bit constant containing the 4 character ACSII string "DATA" . Used
as a fl1e or resource type. "Quote DATA"

-PleT -- n
32-blt constant containing the 4 character ASCII string "PI CT". Used
to designate a picture file or resource types. "Quote P-I-C-T "

-TEXT -- n
32-bit constant containing the 4 character ASCII string "TEXT" . Used
to designate text files or resource types. "Quote TEXT"

-M4TH -- n
Constant MacFORTH File creator id code. Placed in the creator field of
all files created by MacFORTH. "Qoute M-4th"

nl -- n2

Uses n 1 to generate the next ASCII character for numeric output.
leaving n2 as n 1 IBASE. The result n2 is maintained for further
processing. Unchecked error if not used between <# and #). See <#

and #) . "sharp"

#) n -- addr\cnt
End pictured numeric output conversion. Drop n from the stack and
leave the address and count of the text string created during numeric
conversi on. "sharp-greater"

#FILES -- n
Constant specifing the maximum number of files that can be opened at
once.

#FIND -1 \voc addr 1 \. .. \voc addr n -- [token\len\true) or [false)
Search the -1 terminated vocabulary list for the word in input
stream. If the word is not found during the search, leave a false flag.
If the word is found, leave its token, length byte and a true flag. voc
addr is the handle of the vocabulary token "hash-find"

#S un -- 0
Converts all digits of unsigned un. Each is added to the pictured
numeric output string until the remainder is zero. A single zero is
added to the output string if un was initially zero. "sharp-s"

MacFORTH Glossary Page 13-5 June 3, 1984

SADDR -- addr
Skips over fol1owlng In-l1ne string literal. leav1ng address on stack.
"string address"

SLIT -- addr\cnt
Executes (SLIT). Necessary to match nesting level (return stack
depth) for other inllne string llteral operators such as (ABORT") and
(ERROR") which also use (SLIT). See (SLIT) . "string-lit"

-- pfa
Used in the form: . <name> to get the pfa of <name>. If executing.
leave the pfa of the next word in the input stream. If compi1 ing,
complle this pfa as a literal; later execution w1l1 place it on the
stack. Issue an error message if the word is not found after a search
of the CONTEXT and then the CURRENT vocabularies. Within a colon
definition . <name> is identical to [· <name>] LITERAL . Error
If the following word is not found in the dictionary. The system will
print the name followed by a question mark. "tick"

·INTERPRET

(

Begin interpretation of the input stream pointed to by >IN and BLK. If
BLK Is non-zero, >IN pOints to the character within the block pointed
to by BLK. If BLK is zero, the input stream is taken from the
Terminal Input Buffer. See >IN , BLK , TlB . "tick-interpret"

Accepts and ignores comment characters from the input stream until
the next right parenthesis. Used in the form: (ccc) or (ccc) The
left parenthesis must be followed by at least one space (as with a11
FORTH words). It may be used freely while compiling or executing.
The error message MISSING(STRING DELIMITER! indicates the input
stream has been exhausted before the delimiting right parenthesis
was encountered. "paren"
The del1miter (right parenthesis) is pronounced: "close-paren"

(ION.ACTIVA TE)
Runtime word for !ON.ACTIVATE . Use !ON.ACTIVATE .

(ION.UPDA TE) --
Runtime word for ION.UPDATE . Use !ON.UPDATE .

MacFORTH Glossary Page 13-6 June 3, 1984

(SLIT) -- addr
Fetches the ln11ne strIng l1tera1 address from the return stack,
leavIng the strIng address on the stack. The value on the return stack
(the Instruction p01nter) Is 1ncremented to p01nt just past the str1ng,
so when ($LlT) executes EXIT, execution will contInue beyond the
str1 ng 11 tera 1. "paren-strl ng-l1 t"

((ABORT»
Default version of ABORT (lnltially placed in (ABORT)). Empties the
data stack, RELEASEs the disk, sets BASE to DECIMAL, copies TRUNK
to CONTEXT and CURRENT, and finally QUITs, which aborts execution
and returns control to the console. "paren-paren-abort"

«ERROR)) addr\cnt --
Default error handler (initially placed in (ERROR». If QUIET is
disabled, sounds the console's buzzer, outputs a CR LF and the most
recently interpreted word (from POCKET) followed by the string at
the addr and cnt given. The data stack is cleared. If BLK is non-zero
(compiling from disc) , SCR is set to BLK , and R# is set to >IN , so
that entry into the editor will point to the location of the error.
Finally, QUIT is executed, aborting the current task and returning
control to the console. See (ERROR) J POCKET, BLK , >IN , WHERE.
"paren-paren-error"

(+LOOP) n--

(.5)

The run-time procedure compiled by +LOOP. It increments the loop
index by n and tests for loop completion. See +LOOP .
"paren-plus-loop"

The run-t1me procedure complled by " . It transmIts the following
1n-llne text str1ng to the selected output dev1ce. See."
"paren-dot-quote"

Non-destructive stack display primitIve. No CR before execution.
Displays the contents of the stack using the following format:

[d] c\b\a
where d Is the stack depth, and a band c are the top three stack
Items. If d 1s less than 3, only the stack Items present are dIsplayed.
"paren-dot-s"

MacFORTH Glossary Page 13-7 June 3, 1984

(;COoE.)
stores the supplIed cfa 1nto the cfa of the latest word. The suppl1ed
cfa Is po1nted to by the value on the return stack.

(>COoE)
Jumps to the address conta1ned In the I P. Compi led by >CODE .

(ABORT-) flag --
Pr1mitive routine compiled by ABORT" which precedes the in- line
string literal. When executed, if flag is true, the string is typed to
the console and executes ABORT. If flag is false, flag is dropped
from the stack and execution resumes at the word following the
string literal. "paren-abort-quote"

(ABORT) -- addr
User variable containing the cfa to be executed by ABORT . This
allows each task to have its own version of ABORT. "paren-abort"

(DO) n 1 \n2 --
The run-time procedure comp1Jed by DO , which moves the loop control
parameters to the return stack. See DO . "paren-do"

(ERROR-) flag --
Compiled by ERROR" prior to an inHne error message string. When
executed, if flag is true, the most recently executed word (in POCKET
) is displayed, followed by the inline error message string. If flag is
false, flag is dropped from the data stack and execution continues
beyond the string. See SLIT , (SLIT) , ERROR" , ABORT" .
"paren-error-quote"

(ERROR) -- addr
User variable containing the address of the word to be executed when
an error 1s detected by the text interpreter. "paren-error"

MacFORTH Glossary Page 13-8 June 3, 1984

(EXCPT)
Code definition which copies the contents of the 68000 registers to
the array REG. SET . The first 16 bytes on the return stack (hardware
stack pOInter) are also moved. This routIne Is called by all of the
processor and unImplemented instruction handlers during exception
processing before they execute ABORT, provIding a snapshot of the
registers and the supervisor stack when the exception occured. The
loadable utility .REGS (MacFORTH Level 2) will gIve you a formatted
dump of this Information. Use the Motorola Processor Exeception
Documentation to Interpret the supervisor stack contents.
"paren-except"

(FIND) addr\voc handle -- [token\prec flag\true1 or [false1
Searches the vocabulary for a match with the name found at addr. If a
match is found, the token and precedence flag for the word are
returned under a true flag, else a false flag Is returned. "paren-find"

(GET) addr --
Multitasking stub for source compatibility with future CSI MacFORTH
products.

(GET.FILE) n1\n2\n3\n4\n5\ --
Standard file hook for uniform access to standard file package in
MacFORTH Level 2. Unsupported in Levell. "paren GET.FILE"

(LINE) X\ Y --
QulckDraw line primitive. X and Y In local window native QuickDraw
coordinates, unaffected by XYSCALE, XYPIVOT, or XYORIGIN. "paren
lIne"

(LINE.TO) X\Y -~
QuickDraw relative line drawing primitive. X and Y in local window
native QuickDraw coordinates, unaffected by XYSCALE, XYPIVOT, or
XYORIGIN. "paren line-to"

(LOOP)
The run-time procedure compiled by LOOP which increments the loop
index and tests for loop completion. See LOOP. "paren-loop"

(MENU.SELECTION:) --
Run time code for MENU. SELECT ION: retained for clarity during tracing.
"paren menu selection"

MacFORTH Glossary Page 13-9 June 3, 1984

(MOVE) X\ Y --
QulckDraw lIne drawing prlm1tlve. X and Y In local wIndow native
QulckDraw coordInates, unaffected by XYSCALE, XYPIVOT, or XYORIGIN.
"paren move"

(MOVE.TO) X\Y--
QulckDraw line drawing primitive. X and Y in local window native
QuickDraw coordinates, unaffected by XYSCALE, XYPIVOT, or XYORIGIN.
"paren move-to"

(OF) n 1 \n2 -- [n 1] or []
Run-time code compi led by OF. See OF .

(ON.ERROR)
Pushes the recovery stack frame into the return stack. It then
branches over the error recovery code.

(PENSIZE) w/h --
Sets PENSIZE regardless of XV scale. "paren pen size"

(PUT.FILE) n 1 \n2\n3\n4 --
Standard fl1e hook for unIform access to the standard fIle package in
MacFORTH Level 2. Unsupported In Levell. "paren PUT.FILE"

(R/W) -- addr
User Variable containing the address of the word which obtains a
requested block from the disc. "paren-r-slash-w"

(TEXTSIZE) size --
Sets physical text size regardless of Y scaling. "paren textsize"

(TRACE)
Routine whIch executes the trace function of the compl1er. Compiled
by the Interpreter before every token If the TRACE optIon swItch Is
on. When the later executed, If the DEBUG optIon swItch Is on, output
Is tabbed to column 16, the stack Is dIsplayed (usIng (,5)). A CRLF Is
output, and the name fIeld of the followIng 1nllne token Is dIsplayed.
If the DEBUG optIon swItch Is off, no output Is generated. See TRACE,
DEBUG. "paren trace"

Mac~ORTH Glossary Page 13 -10 June 3, 1984

(TRACK.CONTROl) nl \n2\n3 -- flag
MacFORTH Level 2 controls primitive. Refer to the Level 2
documentation.

(WORD) char\addr -- addr
Moves the string delimited by char from the input stream to addr.
"paren-word"

)CONST ANT addr --
Creates relocatable constant. When created, NEXT.PTR is subtracted
from the stored 32 bit value. When the constant Is later used, the
saved value is summed with NEXT.PTR to produce the actual physical
address.

)U addr -- n
Converts the user area address given to the offset from the base of
the user area. It is simply defined as: :)U STATUS - It is used
to access another task's user area or the bootup l1teral area.
"c 1 ose-paren-u"

* nl\n2 -- n3
Leaves the product of (n 1 *n2). Error if the product is greater than 31
bits plus sign. System response is to truncate the product to 32 bits
with no error message. "times"

*1 n 1 \n2\n3 -- n4
Leaves the result of the product nl times n2 divided by n3. The result
n4 Is rounded toward zero. The Intermediate product (n 1 *n2), is
maintained as a 64-blt value for greater precision than the otherw1se
equivalent sequence n 1 n2 * n3 I
Error If division by zero, or quotient overflows, with NO system
check. "t1mes-dlvide"

*/MOD n 1 \n2\n3 -- n4\nS
Multiply n 1 by n2, divide the result by n3, leaving the remainder n4
and quotient nS. A 64-bit intermediate product is used (as for *1).
The remainder has the same sign as n 1. Error if division by zero, or
quotient overflows with NO system check. "times-divide-mod"

+ nl\n2 -- n3
Add nl to n2 and leave the result n3. Error if sum overflows resulting
in 32-bit truncated unnormalized sum with no system check. "plus"

MacFORTH Glossary Page 13 -11 June 3, 1984

+1 n\addr--
Add n to the 32-blt value at addr according to the convention for +.
Error 1f the sum overflows w1th no system check (see +). The error
message ADDRESS ERROR TRAP Ind1cates addr Is odd (see !).
"plus-store"

+CARTESIAN wptr -- addr
Returns the address of a variable window record whose contents
determine whether point coordinates for the window are to be
interpreted in native QuickDraw or cartesian coordinates. When the
variable is TRUE, all coordinates are expressed in Cartesian
coordinates. "plus Cartesian"

+FIND -- [token\flag\true] or [false]
Searches the dictionary for a match on the next word in the input
stream. The next word in the input stream is extracted using WORD
and placed in POCKET. If the word is found in the CONTEXT. CURRENT
, or TRUNK vocabularies, the token for the word. its precedence flag
and true flag are returned. The precedence flag is true if the word is
an immediate word and should be executed when compiling (ie. DO, IF
, ."). If the word is not found, a false flag is returned. See IMMEDIATE
, CREATE, WORD, POCKET. "plus-find"

+FOllOWER n 1 -- n 1 +FOLLOWER
Returns the sum of nl plus the offset to the user variable FOLLOWER
from the base of the user area.

+H8AR wptr -- wptr+offset
Returns the address of a variable within a window record which
contains the handle for a horizontal scroll bar control which is
attached to the window. Refer to Level 2 controls documentation for
further information.

+lOAD relative scr# --
Loads the screen number given relative to the current screen being
loaded. For example. the sequence 10 +LOAD
encountered while loading screen 100 would cause screen 110 to be
loaded. "p I us-load"

MacFORTH Glossary Page 13 -12 June 3, 1984

+LOOP n--
Add the sIgned Increment n to the loop Index usIng the conventIon for
+ and compare the total to the l1mlt. Return execution to the
correspondIng DO until the new Index Is equal to or greater then the
lImIt (for n>O), or until the new Index Is less than the lImIt (for n<O).
Upon exIt from the loop, dIscard the loop control parameters from the
return stack and pass control to the word following +LOOP. The error
message CONDITIONALS NOT PAIRED IndIcates the +LOOP was not
matched with a DO. See DO. "plus-loop"

+MAX.BLK' f cb -- addr
Returns the address within the fcb of the maximum variable
containing the block number for the flle.

+ON.ACTIV A TE wptr -- addr
Returns the address of a variable within the window record which
contains the token to be executed when the window is activated.

+ON.UPDA TE wptr -- addr
Returns the address of a variable within the window record which
contains the token to be executed when the window is updated.

+POINT Xl\Yl\X2\Y2 -- Xl+X2\Yl+Y2
Adds two points.

+PRINTER addr\cnt--
Prints the contents of the string at addr for cnt bytes to the printer
If the varIable PRINTER 1s on, then to the d1splay. "plus-pr1nter"

+REC.SIZE fcb -- addr
Returns the address within the fcb of the variable which contains the
record size field for the file.

+SCR# fcb -- addr
Returns the address within the fcb of the variable which contains the
current screen number for the file.

+THRU relative start\relative end --
Load screens start through end relative to the current screen. For
example, the sequence

5 15 +THRU
encountered whl1e loadIng screen 10 would cause screens 15 through
25 to be loaded. "plus-thru"

MacFORTH Glossary Page 13 -13 June 3, 1984

+ TVISRECT text.record -- addr
Returns the address of the visible rectangle within the text edit
record. Refer to level 2 TEEDIT interface documentation for further
detalls.

+ VBAR wptr -- addr
Returns the address of a variable wlthin the window record which
contains the handle for a vertical scroll bar control which is attached
to the window. Refer to Level 2 controls documentation for further
information.

+W.A TTRIBUTES wptr -- addr
Returns the address of the 16-bit variable within the window record
which contains the window attributes to be assigned when the
window is created:

bitO CLOSE. BOX
bit 1 Not visible
bit2 SI ZE.BOX
bit3 SCROLL.UP/DOWN
bit4 SCROLL.LEFT /RIGHT
bitS TEXT. RECORD
bits 6 - 15 Reserved

+W.BEHIND wptr -- addr
Returns the address of a variable within the window record which
contains the wptr to place the new window behind when It is created.
o places it up front, -1 places 1t at back.

+W.lINK wptr -- addr
Returns the address of a variable within the window record which
contains the address of the prior chronologically defined window.
This linked list is traversed, during FORGET, to close any windows
which are about to be forgotten.

+W.TVPE wptr -- addr
Returns the address of a 16-bit variable within the window record
which contains the window type. Type 0 is a document window.
Others include dialog. with/without shadow, etc.

+WBOUNDS wptr --addr
Returns the address within the window record of a rectangle to be
used as the window bounds when the window is created.

Mac FORTH Glossary Page 13 - 14 June 3, 1984

+WCBOUND5 wptr -- addr
Returns the address within the window record of the current content
area rectangle for the wtndow. This rectangle is kept current when
the window 1s res1zed, and reflects the presence or absence of scroll
bars.

+WFILE.PTR wptr -- addr
Returns the address within the window record of a variable which
contains the file number of file which is associated with the
specified window.

+WLINE.HEIGHT wptr -- addr
Returns the address within the window record of a variable which
contains the current LlNE.HEIGHT. Windows are scrolled llne.height
bits up at the end of the screen.

+WREFCON wptr -- addr
Returns the address within the window record of a variable which
contains the window reference constant. This field normally contains
the address of the handle for the current TE edit record.

+W.TITLE wptr -- addr
Returns the address within the window record of a variable which
contains the address of a string to be used as the window title.
Executed when the window is created with ADD.WINDOW .

+)(VBIA5 wptr -- addr
Returns the address within the window record of a 32-bit variable
wh1ch contains the integer 16-bit sine and cosine of the current
XYPI VOT angle.

+XYOFF5ET wptr -- addr
Returns the address within the window record of a 32-bit variable
which contains the Y and X offset which is applied to all coordinates
relating to the window.

+)(VPIVOT wptr -- addr
Returns the address within the window record of a 16-bit variable
which contains the angle of rotation to be appl1ed to all coordinates
relating to the window.

MacFORTH Glossary Page 13 -15 June 3, 1984

+XVP05 wptr -- addr
Returns the address within the window record of a 32-blt variable
containing the current XY position. This is used for all relative
coord1 nates.

+XV5CALE wptr -- addr

,

--)

Returns the address within the window record of a variable which
contains the current XYSCALE to be applied to all window coordinates.

n --
Allot 4 bytes in the dictionary, storing n there. An error is reported if
insufficient object space is available. "comma"

Complles a string literal Into the dictionary. Extracts the fol1owing
string, terminated by " (double quote), from the input stream and
emplaces it into the dictionary preceded by its count byte. For
example:
CREATE TEST.STRING ," THIS IS A TEST" TEST.STRING COUNT TYPE
will output
THIS IS A TEST
This operator is generally used to emplace string literals into the
dictionary for words like ." , ABORT" , ERROR" , etc. "comma-quote"

nl \n2 -- n3
Subtract n2 from n 1 and leave the difference n3. Error if the
difference overflows. Returns a 32-bit value similar to that of the
case of overflow from addition with no system check. See + . "minus"

ContInue InterpretatIon on the next sequential block. May be used In a
colon or code definition that crosses a block boundary. "next-block"

- i -- -1
Constant containing the value -1.

-2 ---2
Constant containing the value -2.

-3 ---3
Constant containing the value -3.

MacFORTH Glossary Page 13 -16 June 3, 1984

-4 ---4
Constant contaInIng the value -4.

-FIND -- [token\f1ag\true] or [false]
Searches the dictionary for a match on the next word in the input
stream. Extracts the next word in the input stream (via WORD),
placing It In POCKET. If the word is found in the CONTEXT or TRUNK
vocabularies, the token for the word, its precedence flag, and a true
flag are returned. The precedence flag is true if the word is
immediate and should be executed when compiling (ie. DO, IF , ."). If
the word is not found, a false flag is returned.
See I MMED I ATE , INTERPRET .
"dash-find"

-FOUND token --
Reports an error" ?" if token is zero.

-KEYBOARD -- n
Constant mask which allows all but keyboard events to
be received. Th1s value is ended with the contents of EVENTS if a
keystroke already exists prior to execution of DO.EVENTS allowing
type-ahead.
"m i nus-keyboard"

-LATEST
Removes latest token, name, and Object space from current
dictionary. It ignores smudge bit.
"minus-latest"

-POINT xl \y 1 \x2\y2 -- x 1-x2\y 1-y2
Subtracts two points. See +POINT .

-TEXT addr1 \cnt\addr2 -- flag
Compares the two strings at addr1 and addr2 for cnt bytes. The flag
returned is zero if the strings are equivalent, otherwise the flag
equals the difference between the last two characters compared, as
f 011 ow s: addr 1{ i) - addr2(i)
"dash-text"

MacFORTH Glossary Page 13 -17 June 3,1984

-TRAILING addr\cnt 1 -- addr\cnt2
Str1ps tra111ng blanks from the str1ng at addr. AdjUst the character
count cnt 1 of a text str1ng beg1nn1ng at addr to om1t trall1ng blanks
(Ie. the characters from addr+cnt 1 to addr+cnt2 are blanks). Error If
cnt 1 Is negatIve wIth no system check.
"mInus-traIlIng"

n --
Displays n. n is converted according to BASE in a free format field
with one trailing blank. Displays a negative sign if n is negative. "dot"

Outputs a string of text delimited by " . Executed or compiled in the
form
." aaaaaaaa"
Accept the following text from the input stream, terminated by "
(double-quote). If executing, transmit this text to the selected
output device. If compiling, compile so that later execution will
transmit the text to the output device. Up to 255 characters are
allowed in the text. The error message MISSING STRING DELIMITER
indicates the input stream was exhausted before the delimiting
double quote was encountered. "dot-quote"
The double quote delimiter is pronounced "quote"

.ABORT n--
Prlnts the number n In hexadecImal, and aborts .

. DATES
Displays the current date from the internal clock in the following
format: MM/DD/YY

.FILE.ERROR error number -
See the File System Glossary .

. R n\width --
D1splays n r1ght-jUstlfied. The fIeld Is w1dth characters w1de, and n
Is d1splayed accord1ng to BASE. If wIdth 1s less than 1, no lead1ng
blanks are suppl1ed. "dot-f"

MacFORTH Glossary Page 13 - 18 June 3, 1984

.5
Non-destruct1vely d1splays the contents of the stack. The number of
1tems on the stack 1s f1rst d1splayed. enclosed 1n brackets, followed
by the top three stack items (the top stack 1 tem 1 s furthest to the
r1ght) after a carr1age return. For example. 1f you enter
123 .5
you will see
[3]\ 1 \2\3
If you then add another stack item (say 4 for example). you w1ll see
[4] \ 2 \ 3 \ 4 "dot-s"

.TIMES
Displays the current time as read from the internal clock in the
following format: HH:MM:SS XM

.TYPE addr\cnt --
Default Macintosh console output operator. Scrolls up at bottom of
screen.

I nl\n2 -- n3
Divide n 1 by n2, leaving the quotient n3. n3 is rounded toward zero
(truncated). Error on division by zero with no system check. "divide"

IMOD n 1 \n2 -- remainder\quotient
D1v1de nl by n2 and leave the remainder under the quotient. The
rema1nder has the same sign as n 1. Error on division by zero with no
system check. "d1vide-mod"

o -- 0

Constant containing the value O.

0< n -- flag
The flag is true if n is less than zero (negative). "zero-less"

0= n -- flag
The flag is true if n is equal to zero. "zero-equals"

0> n -- flag
The flag is true if n is greater than zero. "zero-greater"

MacFORTH Glossary Page 13 - 19 June 3, 1984

08RANCH flag--
The run-t1me procedure used for cond1t1onal branching. If flag is
false (zero), the following in-l1ne parameter is added to the
lnterpreter pOinter to branch ahead or back. Complied by IF , UNTIL,
and WHILE. "zero-branch"

OMAX n -- [nl or [0]
Code rout ine which returns the maximum of n or O. "zero-max"

-- 1
Constant containing the value 1.

1 + n -- n+ 1
Increments the top stack item by one.

1- n -- n-1
Decrements the top stack item by one.

10+ n -- n+ 10
Increments the top stack item by ten.

10- n -- n-10
Decrements the top stack item by ten.

12HOURS --n
Constant returning the number of seconds in 12 hours.

16* n -- n* 16
Multipl1es the top stack item by sixteen.

16+ n -- n+16
Increments the top stack item by sixteen.

16- n -- n-16
Decrements the top stack item by sixteen.

161 n -- n/16
Divides the top stack item by sixteen.

1 DAY -- n
Constant returning the number of seconds in one day.

MacFORTH Glossary Page 13 - 20 June 3, 1984

1 HOUR -- n
Constant returning the number of seconds in one hour.

2 -- 2
Constant containing the value 2.

21 n 1 \n2\addr --
Stores n2 at addr, n 1 at addr+4.

2* n -- n*2
Multiplies the top stack item by 2.

2+ n -- n+2
Increments the top stack item by 2.

2- n -- n-2
Decrements the top stack item by 2.

21 n -- n/2
Divides the top stack item by 2.

2. addr -- n 1 \n2
Fetches n2 from addr, n 1 from addr+4.

2DROP nl \n2 --
Drops n 1 and n2 from the stack.

2DUP nl\n2 -- nl\n2\nl\n2
Duplicates nl and n2.

20VER n 1 \n2\n3\n4 -- n 1 \n2\n3\n4\n 1 \n2
Copies n 1 and n2 to the top of the stack.

2SWAP n 1 \n2\n3\n4 -- n3\n4\n 1 \n2
Swaps n 1 ,n2 with n3,n4.

2W>MT nl --
Macintosh Tooltrap interface word. See Advanced Topics toolbox
interface section.

3 -- 3
Constant containing the value 3.

MacFORTH Glossary Page 13 - 21 June 3, 1984

3+ n -- n+3
I ncrements the top of the stack by three.

3- n -- n-3
Decrements the top of the stack by three.

4 -- 4

Constant containing the value 4.

4* n -- n*4
Multiplies the top of the stack by four.

4+ n -- n+4
Increments the top stack item by 4.

4- n -- n-4
Decrements the top stack item by 4.

41 n -- n/4
Divides the top stack item by 4.

5+ n -- n+5
Increments the top stack item by 5.

5- n -- n-5
Decrements the top stack 1tem by 5.

6+ n -- n+6
Increments the top stack item by 6.

6- n -- n-6
Decrements the top stack item by 6.

7+ n -- n+7
Increments the top stack item by 7.

7- n -- n-7
Decrements the top stack item by 7.

8* n -- n*8
Multiplies the top stack item by 8.

MacFORTH Glossary Page 13 - 22 June 3, 1984

8+ n -- n+8
Increments the top stack 1tem by 8.

8- n -- n-8
Decrements the top stack item by 8.

81 n -- n/8
Divides the top stack item by 8.

Begins compilation of a new definition. A defining word used in the
form:
: <name> ... ;
Set CONTEXT to CURRENT and create a dictionary entry for <name> in
the CURRENT vocabulary. Words thus defined are 'colon definitions'
and the compilation address of subsequent words from the input
stream which are not immediate are compiled into the dictionary to
be later executed when <name> is executed. IMMEDIATE words are
executed as encountered. Words encountered that are not found in the
dictionary (CONTEXT and TRUNK vocabularies) cause compilation to
stop with a question mark printed after the offending word. The
warning message:
I SN'T UNIQUE
indicates that a previous definition for <name> exists. "colon"

Terminate a colon definition and stop compilation. The error message
DEFINITION INCOMPLETE indicates the stack depth changed within the

current colon definition. "semicolon"

< nl\n2 -- flag
Returns a true flag If n 1 Is less than n2. "less-than"

Initialize pictured numeric output. The following group of words are
used to convert a number to its ASCII string equivalent:
<# #> # #S HOLD SIGN
"less-sharp"

MacFORTH Glossary Page 13 - 23 June 3, 1984

=

addr -- n
Fetches the 16-b1t contents at addr and s1gn extends It to 32 b1ts.
An address error trap w1l1 result jf add is odd. Use <W@> for odd or
even addresses.
"extended-word-f etch"

n 1 \n2 -- flag
Returns a true flag if n I' is equal to n2. "equals"

=CELLS nl -- n2
Ensures nl is even by adding one to it if it is odd. "equals-cells"

=DROP n 1 \n2 -- [n 1 \n21 or [n 11
Drops n2 if n 1 =n2. "equals-drop"

> n 1 \n2 -- flag
Returns a true flag if n 1 is greater than n2. "greater-than"

>FCB ** Refer to the File System chapter glossary ***

> IN -- addr
User variable pointing to the current character in the input stream.
Error if the value stored is outside the range 0 to 1023 with no
system response. See: WORD' (." and FIND. "to-in"

>JSR addr--
Jumps to the assembly code subroutine at addr. Registers AO-A2,
00-03 are available; A3-A7, and 04-07 should be saved and restored
by the assembly routine if they would be modified. The JSR
instruction places the address (containing NEXT) on the return stack
(A7). Return to FORTH via an RTS instruction. NOTE: MacFORTH
expects to run in supervisor state, NOT user state. "to-j-s-r"

>liST<
IndIrectly references the word to execute at the top of every lIsted
screen. Used to time and date stamp 1lst1ngs.

>R n--
Pushes the top stack item onto the return stack. Be aware that DO .
. LOOP affects the return stack. (DO pushes 2 items, LOOP pops them).
Error if not balanced inside of a colon definition or inside a DO ...
LOOP structure with a matching R> (see R) with an unpredictable
system response. "to-r"

MacFORTH Glossary Page 13 - 24 June 3, 1984

>RECT xl \y 1 \x2\y2 -- RB\L T\SP@
Returns address w1th1n stack of reformatted rectangle xl \y 1 \x2\y2.
Rectangle coord1nates are translated and offset accordIng to
XYSCALE, XYPIVOT, and XYOFFSET before reformatt1ng occurs.
Rectangle Is In QulckDraw top, left, bottom, r1ght format.

>SYS.WINDOW ---
Directs output to system window.

) WI< n\addr --
Stores the 16 bit value n at addr. Addr may be an odd address.

addr -- n
Fetches the 16 bit value at addr. Addr may be an odd address.

? addr--
D1splays the 32-b1t value at addr. "quest1on mark"

1AliGN
Forces the dictionary pOinter to an even address. The user variable DP
is 1ncremented by one if 1t 1s odd. "query-aI1gn"

?BLOCKS.FILE file# -- flag
Flag is true if Fl1e# is a BLKS type file.

1COMP

1CSP

VerIfIes compllat1on state. Issue the error message COMPILATION
ONLY! USE ONLY IN A DEFINITION 1f STATE does not IndIcate
compllatlon mode. "query-comp"

Verifies the stack did not change during compilation. I ssues the error
message DEFINITION INCOMPLETE! if the value in the user variable
CSP is different from the stack position. See CSP . "query-c-s-p"

?DAYS n 1 -- n2
Converts n 1 seconds into n2 days. n 1 is divided by the number of
seconds in one day, leaving the result n2.

1DUP n -- [n \nl or [nl
Duplicate n if it is non-zero. "query-dup"

MacFORTH Glossary Page 13 - 25 June 3, 1984

I

?EOF ** Refer to the File System chapter glossary **

1EVENT record\mask -- event code
Copies next event that passes mask to record. Event is not removed
from the event queue. "query-event"

?EXEC
Verifies execution state. Issue the error message EXECUTION ONLY
if STATE does not indicate execution mode. "query-exec"

1FllE.ERROR **Refer to the File System chapter glossary. **

1FllES ** Refer to the File System chapter glossary **

1HEAP.SIZE -- size
Returns total amount of space avallable in heap, including any grow
region. Refer to Apple Developer's documentation for further detail
Reference: FreeMem

7IN.CONTROl --flag
Returns a true flag if most recent I'1)USE.DOWN even occurred in a
control attached to the currently active window. The variable
THIS.CONTROL contains the handle to the affected control. The
variable THIS.PART contains the relevant control part code.

?KEYSTROKE -- [key\true] or [false]
Checks for a keystroke from the Mac keyboard. Returns a key under a
true flag if a key was pressed, otherwise just returns a false flag.

1l0ADING
Verifies loading from disc. Issue the error message:
CAN'T USE FROM TERMI NAL !
if a word is executed from the terminal which should only be executed
from di sc. "query-loading"

10PEN ** Refer to the File System chapter glossary **

?PAIRS nl\n2 --
Verifies conditionals were paired in the latest definition. Issue the
error message CONDITIONALS NOT PAIRED if n 1 is not equal to n2.
The message indicates compiled conditionals do not match.
"query-pairs"

MacFORTH Glossary Page 13 - 26 June 3J 1984

1PUNCT addr -- fl ag
Checks for valid punctuation. Returns a true flag 1f the ASCII
character at addr 1s one of the follow1ng: ,. / : If the character 1s
not one of the above, a false flag 1s returned. "query-punct"'

1ROOM
Reports the amount of space available in the heap, object and
vocabulary memory areas.

1SECONDS n1 -- n2
Converts n1 seconds into n2 seconds since midnight of the current
day. n 1 is divided by the number of seconds in one day, leaving the
remainder n2.

1S0UND -- fl ag
Returns a true flag if sound driver is active asynchronously.

1STACK
Checks for underflow of the parameter stack. Issue the message
STACK EMPTY! if the parameter stack underflows.
" query-stack"

1TERMINAl -- flag
Returns a non-zero flag 1f a key has been pressed, otherw1se false.
"query-term1nal"

1TRACE
Compile (TRACE) into the dictionary if the TRACE option switch is
enabled. "query-trace"

7WORD char -- addr
Parses a string from the input stream. Performs the same function as
WORD (see WORD), except it aborts with the error message:
MISSING STRING DELIMITER
if the input stream is exhausted before the delimiter was
encountered, "query-word"

• addr -- n
Returns the 32-b1t contents of addr. The error message "ADDRESS
ERROR TRAP" 1nd1cates addr was odd. If you need to fetch data from
odd addresses, use CMOVE or <W@> .
"fetch"

MacFORTH Glossary Page 13 - 27 June 3, 1984

•• addr -- n
Returns the 32-blt contents of the contents pointed to by addr. The
error message "ADDRESS ERROR TRAP" Indicates addr or Its contents
were odd.
"fetch-fetch"

_CLOCK -- n
Returns the number of seconds since 12:00 am 01/01/04 as read from
the internal clock .

• EVENT record\mask -- event code
Copies next event from event Queue to record. Returns event code if it
applies to current window, otherwise O.

c.FILE.NAME ** Refer to the Fl1e System chapter glossary **

.INIT
Asks for input of the user's initials. The message:

ENTER YOUR INITIALS [XXX] --)
is displayed and you (or any user) can input up to 3 initials .

• MOUSE -- point
Returns current location of mouse 1n local coordinates .

• MOUSE.ON --point
Returns location of where the mouse last went down (button pressed)
in local coordinates .

• MOUSEXV --x\y
Returns mouse position in userwindow coordinates. Sensitive to
cartesian flag, XYSCALE, XYOFFSET .

• PEN -- x\y
Returns current pen position In local coordinates to the currently
active w1ndow.

CilPENSTATE -- 20 bytes (5 stack items)
Fetches the current pensize, penpat, penloc, and penmode to the stack.
(see IPENSTATE)

.POINT (addr -- x\y)
Fetches 32 bit value from addr and unpacks x,y to stack.

MacFORTH Glossary Page 13 - 28 June 3, 1984

"RECT addr -- t\l\b\r
Unpacks rectangle at address. Top Left Bottom R1ght are pushed 1nto
stack .

• SR -- n
Returns the contents of the 68000 hardware status register. This
16-bit value is contained in the least significant bits of n.
"fetch-s-r"

ABORT
Aborts the current task. Clears the data and return stacks and returns
control to the console in execution mode.

ABORT- flag --
Aborts the current task with the supplied message if flag is true and
RETRY is zero. Used in the form:

ABORT" <user message>"
Compiles (ABORT") followed by <user message> preceded by its count
byte. At execution time, if flag is true, <user message> is displayed
in the MacFORTH window, and ABORT is executed. If flag is false, no
action is taken. If RETRY is non-zero, error recovery occurs at the
stack frame in the return stack pOinted at by RETRY.
See ABORT, (ABORT") , RETRY. "abort-quote"

ABORT.EVENT -- n
Constant event.code returned by DO.EVENTS on an abort event.

ABS nl -- n2
Returns n2 as the absolute value of n1. Error occurs when the
argument is the most negative 32-bit number. That argument is
returned unchanged w1th no error message. "absolute"

ACTIVATE-EVENT -- n
Constant event code returned by DO.EVENTS on an activate event.

ADD. BLOCKS ** Refer to the File System chapter glossary **

ADD. WINDOW wptr --
Bul1ds window from w.tltle, w.bounds, w.type, and w.attrlbutes, and
l1nks It 1nto window l1st and d1splays 1t 1f v1s1ble. W.BEHIND
determ1nes where w1ndow w1ll appear 1n the window l1st

MacFORTH Glossary Page 13 - 29 June 3, 1984

AGAIN
Marks the end of an fnffnfte loop structure. Causes an unconditional
branch back to the start of a BEGIN ... AGAIN loop construct. It is
eQufvalent to BEGIN ... 0 UNTIL See BEGIN, UNTIL.

ALIT -- address
Pushes the sum of the next 32-bit value in the interpretation stream
and NEXT.PTR into the stack. Advances over the value.

AllOCATE file size\file* --
See File System glossary.

AllOT n--
Increments the dictionary pointer by n. Aborts if object area is too
small to contain n additional bytes.

AND n1 \n2 -- n3
Returns n3 as the bitwise logical AND of n 1 and n2.

APlA V addr --
Passes addr+2 to Macintosh sound driver. Addr contains the 16-bit
s1ze of the waveform record at addr+2. Sound fs generated
asynchronoous ly.

APPEND token \str.addr --
Appends string with token to current vocabulary. Error message is
generated if insufficient space is available in the vocabulary. Resize
the vocabulary with RESIZE.VOCAB .

APPEND.BLOCKS * of blocks\file * -
See Editing Programs glossary.

APPEND.lTEMS ltem$\menufd--
Appends elements in ItemS (separated by';') to the specified menu.
See Menu Chapter of the manual.

APPlE.MENU I --
Installs the Apple desk accessory menu on the Menu Bar.

ARC xl \y 1 \x2\y2\sa\ca\[pattern addr]\mode --
Draws ARC within the recangle xlylx2y2 starting at angle sa and
ending at angle ca. PATTERN.ADDR required for the PATTERN mode.

MacFORTH Glossary Page 13 - 30 June 3,1984

ASSIGN flle$\fl1e# --
See Fl1e System glossary.

AUTO.KEY -- n

AXE

Constant event code returned by DO.EVENTS on an auto key (repeat)
event.

Looks up and removes the next word in the input stream from the
current vocabulary. Vocabulary is closed up to recover space. Object
space for word is not affected.

B/BUF -- n
Returns the number of bytes per block buffer.(1 024)
"b-s 1 ash-buf"

BACK addr--
Calculate the backward branch offset from HERE to addr. It is then
compiled into the next available 16-bit memory cell in the dictionary.

BACKPAT addr --
Sets QuickDraw background patternto supplied pattern address.

BASE -- addr
User variable containing the current I/O numeric conversion base.
Error if the value in BASE is outside the range 2 through 70 with no
system check.

BEGIN
Marks the start of a loop structure for repetitive execution. Used in a
colon definition in one of the following forms:

BEGIN ... UNTIL BEGIN ... AGAIN
BEGIN ... WHILE ... REPEAT

The words after UNTIL and REPEAT (remember, BEGIN ... AGAIN is an
endless loop -- see AGAIN) will be executed after the loop
terminates. The error message:

DEFINITION INCOMPLETE!
indicates the BEGIN was not matched with an UNTIL, AGAIN, or WHILE
... REPEAT sequence.

BEHEAD token --
Removes the name and token ftelds for the supplied token from the
current vocabulary.

MacFORTH Glossary Page 13 - 31 June 3, 1984

BL -- 32 (dec1mal)
Returns the value for the ASCII blank character. "b-l"

BLACK -- addr
Returns the address of the black pattern.

BLANKS addr\cnt --
Fills memory at addr for cnt bytes with ASCII blanks.

BLK -- addr
User variable containing the block currently being interpreted as the
input stream. If BLK is zero, the input stream is coming directly from
the termina1. "b-l-k"

BLOCK block:#: -- addr
Returns the buffer address of the requested block number. If the
requested block is not already in a block buffer, it is transferred from
mass storage into the least recently accessed buffer. If the previous
data in that buffer has been UPDATEd, it is written out to mass
storage before the new block is read in. Only data within the latest
block referenced by BLOCK is valid due to sharing of the block buffers.

BLOCK-FILE ** Refer to the File System chapter glossary **

BOLD -- 01
Constant bit mask for bold text attribute.

BOOLEAN n -- true or false
Converts n to a true flag (-1) if n is non-zero.

BRANCH
The run-tIme procedure to uncondItIonally branch. An In- lIne offset
Is added to the Interpreter poInter, IP , to branch ahead or back.
BRANCH Is compl1ed by ELSE, AGAIN, and REPEAT.

BRING.TO.FRONT wptr-
Brings window to FRONT.

B5 -- 08 (decimal)
Returns the value for the ASCII backspace character. "b-s"

MacFORTH Glossary Page 13 - 32 June 3, 1984

BUFFER block# -- buffer addr

BYE

Returns the addr of an ava1lable block buffer for the block number
given.

Exits MacFORTH, Launching Finder.

CI char\addr--
Stores the 8-bit value char at addr. "c-store"

C.. char--
Emplaces char into the dictionary. Stores the 8-bit value into the
dictionary at the current dictionary pointer value, and increments the
dictionary pointer by 1.

C/l -- n
Returns the number of characters per line in a block of source code.
(64)

"c slash 1"

C. addr -- char
Returns the 8-bit value char located at addr. "c-fetch"

CARTESIAN (addr --)
Returns the address of the Cartesian coordinate flag. When this flag is
on, coordinates are interpreted in Cartesian coordinates (positive y up
). When flag is off, Native QuickDraw coordinates (negative y up) are
used. Refer to the graphics section for a complete discussion of this
feature.

CASE n -- n
Marks the beg1nn1ng of a case statement. Used In the form:

CASE... X OF ... ENDOF
Y OF ... ENDOF
ENDCASE

CENTER (--)
Sets the graphics XYOFFSET to 112 MAX.X , 112 MAX.Y, the center of the
current window.

CHARWIDTH char -- width
Returns width in pixels for char in current font.

MacFORTH Glossary Page 13 - 33 June 3, 1984

CHECK.BOX (n 1 \n2\n3\n4\n5 --)
Check box control definition word. Unsupported in Levell. Refer to
Level 2 controls documentation.

CIRCLE x\y\radius\[pattern]\mode --
Draws circle of radius at XV within current window according to mode.
[PATTERN] present for pattern mode only

CLEAR -- 2
QuickDraw shape mode attribute shape will be filled in with background
pattern.

CLIP>CONTENT wptr--
Clips all drawing in window to the content region. Controls wi 11 not be
updated. Refer to NO.CLI P .

CLOSE fl1e# --
See Fi Ie System glossary.

CLOSE.ALL ** Refer to the File System chapter glossary **

CLOSE.BOX -- n
Constant containing bit mask for close box attribute in window
attribute field.

CLOSE.WINDOW wptr--
Closes window speCified by wptr. All window-related heap data
structures are returned to the heap. Window is removed from window
I1nked list. if you are unable to close SVS.Window use HIDE.WINDOW .

CMOVE src addr\dest addr\cnt --
Moves cnt bytes from srce addr to dest addr. The transfer beg1ns 1n low
memory and moves toward high memory (ie. the byte at src addr is
moved to dest addr, then the byte at src addr+ 1 is moved to dest
addr+ 1> etc.). Error 1f the count 1s less than one; the system drops the
parameters from the stack and no movement occurs. "c-move"

CMOVE> src addr\dest addr\cnt --
Moves cnt bytes from src addr to dest addr. Starts at the end of the
string and proceeds toward low memory. "c-move-up"

MacFORTH Glossary Page 13 - 34 June 3, 1984

CNT -- addr
User variable containing the total count of characters transferred by
TYPE or EXPECT. Immediately following execution of EXPECT, CNT
contains the actual number of bytes received. "c-n-t"

CNTR -- addr
User variable containing the current count of characters to be
transferred. This number counts toward 0 for both input and output.
operation& "c-n-t-r"

COL -- addr
User variable containing the current output column position. You may
examine and alter this user variable to control display formatting.
"col"

COMMAND.KEY -- n
Constant event.code returned by DO.EVENTS when a menu item is
selected from the keyboard.

COMPILE
Used to compile the token for a word into the dictionary. When a word
containing COMPILE is executed, the token for the word following
COMPILE in the defintion is complled into the dictionary. An unchecked
error exists if the word following COMPILE is not found in the
dictionary or convertible to a number.

COMPILING -- flag
Returns a true flag if STATE is non-zero. STATE = non-zero indicates
compilation mode, STATE = zero indicates execution mode.

CONDENSED -- 32
Constant bit mask for condensed text attribute.

CONFIGURE.PRINTER #stop bits\parity\# data bits\ baud rate
Used to custom configure the printer port for non-Imagewriter
printers. Refer to the Printer chapter for more information.

CONSOLE -- addr
Returns the address of the user variable which contains the address of
the current console device table.

MacFORTH Glossary Page 13 - 35 June 3, 1984

CONST ANT n --
Creates a constant with value n. A defi'ning word used in the form:
n CONSTANT <name> to create a dictionary entry for <name>, which
when later executed wll1leave n on the top of the stack. n 1s comp1led
1nto the pfa of <name>.

CONTEXT -- addr
Returns the address of the user vari'able which contains the handle for
the vocabulary where dictionary searches are to begin during
interpretation of the input stream.

CONVERT n 1 \addr 1 -- n2\addr2
Converts the ASCII string at addrl + 1 to its binary equivalent. The
number is accumulated into n 1 and returned as n2. Addr2 is the address
of the first unconvertible character.

COpy src blk#\dest blk# --
Copies the src blk# into dest blk#.

COS ANGLE -- cosine * 10000
Returns integer cosine of angle * 10000 (4 digits precision).

COUNT addr -- addr+ 1 \cnt

CR

Returns the address and count of the text string at addr+ 1. The count
byte is at addr and text is at addr+ Ion. The range of n is 0 - 255.

Emits a CR LF to the current output device. "c-r"

CREATE
A def1n1ng word to create a d1ctionary entry for the name given. Used
1n the form:

CREATE <name>
to create a dictionary entry for <name>, without allocat1ng any
parameter f1eld memory. When <name> 1s later executed, the address of
<name>'s parameter f1eld 1s left on the stack. If the UNIQUE.MSG 1s on
and the word already ex1sts 1n the CONTEXT or TRUNK vocabular1es, the
message "ISN'T UNIQUE" 1s d1splayed. See UNIQUE.MSG

CREATE.BLOCKS.FILE ** Refer to the Flle System chapter glossary **

MacFORTH Glossary Page 13 - 36 June 3, 1984

CREA TE.FILE fl1e---
See File System glossary.

CRLF -- addr
Returns the address of a llteral string containing a CRLF sequence. Used
in the form: CRLF 2 TYPE to output a CR LF sequence. "c- r -l-f"

CSP -- addr
Returns the address of the User Variable which temporarily holds the
value of the stack pointer during compilation for error checking.
"C- S- p"

CURRENT -- addr
User variable which contains the handle for the vocabulary into which
newle created words are appended. This is the second vocabulary to be
searched during a dictionary search (after CONTEXT).

CURRENT-FILE ** Refer to the File System chapter glossary **

CURRENT.POSITION file- -- current file position
See File System glossary.

CURSOR -- addr
Variable containing address of current cursor array.

CURSOR.CHAR -- addr
Returns the address of a variable containing the text font for the
cursor symbol in the first 16 bits and the character code for the
symbol in the second 16 bits.

DAVS> -days since 01/01/84 -- year\days\month
Converts days to year, days, month.

DEAlLOT token --
Deallots object space for and above token.

MacFORTH Glossary Page 13 - 37 June 3, 1984

I

DEBUG -- addr
User Variable containing flag which Indicates debug mode.

DEBUG ON
sets the system Into DEBUG state.

DEBUG OFF
clears DEBUG state. When DEBUG is ENABLED, items left on the stack
during execution are displayed with .S , and words being executed have
their name and stack Implications displayed, if they where compiled
with TRACE mode set.

DECIMAL
Set the 1/0 numeric conversion base to ten. See BASE.

DEFAUlT.ACTIVATE --
Default activate function for all defined windows. Beeps on activate,
(mouse down) nothing on deactivate.

DEFINITIONS ---
Determines the vocabulary new definitions are compiled in. Set
CURRENT to the CONTEXT vocabulary so that subsequent definitions will
be created in the vocabulary previously selected as CONTEXT.

DELETE file:# --
See File System glossary.

DELETE.BLOCKS ** Refer to the File System chapter glossary **

DELETE.MENU menu. id
De letes menu menuid from menubar, redraws menubar.

DEPTH --n
Return the number of stack items (32-blt values) currently on the stack
(before n was added).

DEVICE.CONTROL parm 1 \parm2\cmd\fcb
Stores: 16 Bit CMD at FCB+26

32 Bit PARM1 at FCB+28
32 Bit PARM2 at FCB+32
o 0 at FCB+36

Issues: OS CONTROL TRAP with FCB .

MacFORTH Glossary Page 13 - 38 June 3, 1984

DEV I CE.ST A TUS cmd\ f cb -- parm 1 \parm2
Stores: 16 Bit CMD at FCB+26
Issues: OS STATUS TRAP with FCB
Fetches: 16 Bit PARMl from FCB+32

32 Bit PARM2 from FCB+28

DFl T .CONTROl ---
Default word used to handle control characters on input and output for
special console devices.

DFl T.WINDOW.TAll -- addr
Array containing the default values for the MacFORTH extension to the
standard window record.

DIGIT char\base -- [n\true] or [false]
Convert the ASCII character char, using the base given, to its binary
equivalent. If the conversion was valid, n is left as the binary
equivalent under a true flag, otherwise only a false flag is returned.

DIR drive # --

Prints catalog for media in drive.
49'ER fiOP

NORTH TAHOE HIGi'-l SCl-loBL
P. O. BOX 5099

DIRECTORY -- addr TAI-IOE CITY, CA 95730
Returns the address of the user variable which contains the disc
directory load screen.

DISCARD.UPDA TES --
Discards any pending update events for the current window. Used to
eliminate double flash at window activation if ACTIVATE code redraws
the window contents anyway.

DISK -- addr
Variable containing DISK resource variable.

DISK.EVENT -- n
Constant event.code returned by DO.EVENTS on a disk inserted event.

DISPOSE.CONTROl n--
Disposes control. Unsupported in Levell. Refer to Level 2 controls
documentat ion.

MacFORTH Glossary Page 13 - 39 June 3, 1984

I

DKGRA Y -- addr
Returns the address of the dark grey pattern.

DO upper limit\lower limit --
Marks the beginning of a finite loop structure. Used in a colon definition
in the form: DO ... LOOP or DO ... n +LOOP Begins a loop which will
terminate based on the upper and lower limits given. See LOOP and
+LOOP. DO .. LOOP's may be nested as long as each DO is matched with a
correspond- ing LOOP or +LOOP within the same colon definition. The
error message DEFINITION INCOMPLETE! indicates a DO was not
matched with a corresponding LOOP or +LOOP .

DO.EVENTS -- event.code
Removes next event from the event queue. Executes any supplied default
token in the events listJ and returns the event code. Refer to manuals
for discussion of event codes.

DOES>
Defines the run-time action within a high-level defining word. Used in
the form:
: <name> ... CREATE ... DOES> ... ;

It marks the termination of the defining part of the defining word
<name> and begins the definition of the run- time action for words that
will later be defined by <name>. On execution of a word defined by
<name>J the words between DOES> and; will be executedJ with the
parameter field address of the new word on the stack. "does"

DOT (x\y --)
Pen is placed at XJV, Pen patternJ sizeJ and mode determines effect on
dots below and to the right of X,V. XJV are rotatedJ scaled and translated
within the window.

DOWN.BUTTON -- n
Part code for down button. Refer to Level 2 controls documentation.

DP -- addr
User variable containing the current value of the dictionary pointer.
This value may be read using HERE and altered using ALLOT. See HERE
and ALLOT. "d-p"

DPl -- addr
User variable containing the number of places after the decimal point
for numeric input conversion. "

MacFORTH Glossary Page 13 - 40 June 3J 1984

DRAW.CHAR char--
Draws character at current pen pos1t1on w1th current text transfer
mode 1n current textstyle textfont and texts1ze.

ORA W .CONTROlS wptr--
Draws controls associated with window. Refer to Level 2 controls
documentat ion.

DRAW.MENU.BAR --
Redraws menu bar from current menu 1 ist. Execute this word after
adding or deleting items to or from the menu list.

DRAW.TO x\y--
Draws to the supplied XV position. Dots to the right and below the pen
are modified according to the current pen size, shape, pattern, and
mode.

DRAWSTRING addr--
Draws string at addr with count in first position at current pen
position. Uses current text settings.

DROP n--
Drop the top stack 1tem.

DRVR.EVENT -- n
Constant event code returned by DO.EVENTS on a DRI VER event

DUP n -- n\n
Duplicate the top stack item. "dupe"

DUP>R n -- n
Dupl1cates the top ttem on the stack and places 1t on the top of the
return stack.

EJECT drive# --
Ejects media in drive.

MacFORTH Glossary Page 13 - 41 June 3, 1984

ELSE
Marks the beg1nning of the "false portion" of a conditional structure.
Used In a colon-definition in the form:

IF ... ELSE ... THEN
If the conditional for the IF Is true, when the ELSE is encountered, It
passes control to the word following THEN. If the conditional for the IF
Is false, control Is passed to the word following ELSE. The error
message:

DEFINITION INCOMPLETE!
indicates the control structure was missing its THEN . The error
message:

CONDITIONALS NOT PAIRED
1ndicates the control structure was missing Its IF .

EMIT char--
Transmit char to the current output device (this is usually the active
window).

EMPTY
Removes all words and vocabularies above the currently specified
task-dependent FENCE from the dictionary. Tasks which are forgotten
will be unlinked from the dispatch queue. See (FORGET), FENCE ,
SET. FENCE

EMPTY-BUFFERS
Clears contents of disc buffers, marking all buffers as inactive.

ENCLOSE addr\delim -- addr\offset 1 \offset2\offset3
Text parsing primitive. Given an address to parse from and a delimiter,
this operator skips over leading del imiters returning address under
offset to the first non-delimiter (offset 1), under the offset to the last
non-delimiter (offset2), under the offset to the following delimiter
(offset3). The enclosed test starts at addr+offset2. Parsing for the
next word should begln at addr+offset3. A null (zero) character aiways
acts as a delimiter regardless of the specified delimiter.

ENDCASE n--
Terminates a case statement. Used in the form: CASE... X OF ...
ENDOF ENDCASE Completes the case statement by dropping nand
resolving all unresolved branch addresses (left on the stack by ENDOF)
to pOinter after ENDCASES. Executes during compll- ation.

MacFORTH Glossary Page 13 - 42 June 3,1984

ENOOF
TermInates a condItIonal branch wIthIn a case statement. Used In the
form: CASE... X OF ... ENDOF ENDCASE

ENTER.FLAG -- addr
Variable containing the enter key flag. This flag is set when the enter
key is used to terminate a line of input. The user is responsible for
clearing and checking this flag. It is set by EXPECT.

ERASE addr\n
Zero fills memory at addr for n bytes. If n is less than or equal to zero,
take no action.

ERASE.REeT address --
Erases contents of rectangle at address to background pattern.
rectangle is 4 16 bit values representing top,left,bottom,right.

ERROR addr\cnt --
Executes the cfa contained in the user variable (ERROR) . addr and cnt
point to a string to be output. See (ERROR) , «ERROR» , (ERROR") , and
ERROR" .

ERROR- flag --

Aborts the current task, displays the name of the word executed and
the suppl1ed message if flag is true. Used in the form:

ERROR" <user error message>"
Compiles (ERROR") followed by the inline literal string. If flag is true
when (ERROR") executes, the name field of the most recently
interpreted word (in POCKET) is displayed, followed by the string <user
error message>, finally the system ABORTs, returning control to the
console. If flag is false, control is passed to the word following the
string literal. "error-quote"

EVENT.LOOP
Default loop which dispatches to the next active window. If all
windows are deactivated, this word patiently executes do. events untn
an act ivate event occurs.

MacFORTH Glossary Page 13 - 43 June 3, 1984

EVENT .RECORD -- addr
Array conta1n1ng the event record for the current event.
bytes: 0-1 contain the event code
2-5 conta1n the event.message
6-9 contain the mouse
10-13 contain the time in ticks when the event occured
14-15 contain the modif1ers bits (kbd state)

EVENT. TABLE -- addr
Array containing default tokens to be executed for each of the 24
standard events. DO.EVENTS always executes this token whenever the
appropriate event occurs. The caller to do. events is also notified with
an event code.

EVENTS -- addr
Returns the address of the variable containing the mask for all events.

EVENTS OFF
Disables all events. No events are enabled when DO.EVENTS is called.

EVENTS ON
Enables all events.
NOTE: If a keystroke is waiting in the keystroke array, the contents of
EVENTS is anded with the constant -KEYBOARD, effectively disabling
keyboard events until the keyboard data is read. This allows for type
ahead.

EXECUTE token --

EXIT

Execute the dictionary entry whose token is on the stack.

Terminates execution of a definition. When compfled into a colon
definition, causes the word to terminate at that point when later
executed. An unchecked error exists if used within a DO .. LOOP
structure or a >R ... R> pair.

EXPECT addr\max cnt --
Accepts up to max cnt characters from the terminal and stores them at
addr. Input terminates on receipt of etther a carr1age return or max
cnt characters. No action is taken for max cnt less than one. The user
variable CNT is set to the actual number of charaters recieved.

EXTENDED --64
Constant bit mask for extended text attribute.

MacFORTH Glossary Page 13 - 44 June 3,1984

EXTERNAL -- 2
Constant drive number for the external drive. Use with EJECT, DIR

FALSE -- 0
Boolean false constant.

FCB.LEN ** Refer to the File System chapter glossary **

FENCE -- addr
Returns the address containing a pOinter below which FORGETTING is
prevented. to FORGET below this point, alter the value in fence or use:
FENCE OFF. NOTE: FENCE is set by the system to prevent FORGETting of
interrupt handlers and vectored words so use caution when changing its
value. See SET.FENCE, FORGET

FIELD n--
MacFORTH field defining word. Creates a 16 bit constant which will add
itself to the word on the top of the stack when executed.

FILE.ERROR.MSGS -- addr

String array containing file/os error messages.

FILE.TYPE file.type\file#
Sets the file type for the file (ie: "TEXT 1 FILE.TYPE).

FILL addr\cnt\char --
Fills memory at addr for cnt bytes with char. No action taken for cnt
less than one.

FIND -- [token] or [0]
Returns the token for the next word in the input stream. If that word
cannot be found in the dictionary after a search of CONTEXT or TRUNK
vocabularies, returns a zero.

FIND.CONTROL pOint\wptr -- control.handle\control part code
Returns control part code and handle if point is in a control. part code:

0= no control 1 = in button 2 = in check box 3 = in up arrow
4 = in down arrow 5 = in page up 6 = in page down 7 = in thumb

MacFORTH Glossary Page 13 - 45 June 3, 1984

FIND.WINDOW point -- wptr\window part
Returns window pOinter under window part code.
Part code:
o in desktop
1 in menubar
2 in system window
3 in content of active window
4 In drag of active window
5 in grow of active window
6 in close of active window

FIRST -- addr
Returns the address of the first block buffer.

FLUSH
Writes all blocks that have been UPDATEd to mass storage. Identifies
all blocks as 7FFFFFFF (hex) to force any new block to be re-read from
mass storage. Use when changing media.

FLUSH.EVENTS --
Flushes all pending events from

FLUSH.FILE ** Refer to the File System chapter glossary **

FLUSH. VOL ** Refer to the File System chapter glossary **

FMT.DATES #days\flag -- addr\cnt
Formats a date string for output. The date formatted is in terms of
#days since 01/01/84. If the flag is true the month, day and year are
separated by slashed ("r). The formatted string is placed at addr for
cnt bytes.

FMT. TIMES addr --
Formats the time output string at addr in the following format:
HH:MM:SS XM

FOLLOWER -- addr
User variable containing the address of the base of the user area for
the following task in the multitasking round- rob1n task dispatch queue.
With no other tasks running, this is the address of the console STATUS.
See STATUS.

MacFORTH Glossary Page 13 - 46 June 3, 1984

FORGET
Removes entries from the dictionary. Used In the form:

FORGET <name>
to delete from the dlct10nary Un the CONTEXT vocabulary) all entries
added after and 1nclud1ng <name>. Forgotten Menus or windows are
d1sabled. No action Is taken If <name> is not found In the CONTEXT or
TRUNK vocabularies. FORGETting is terminated at the FENCE.

FORTH
The name of the primary vocabulary. When executed, FORTH becomes
the CONTEXT vocabulary.

FRAME -- 0
QuickDraw shape mode attribute. Shape will be drawn in outline mode.

FROM.CURRENT -- position mode
See File System glossary.

FROM.END -- position mode
See File System glossary.

FROM.HEAP size -- handle
Requests memory manager to allocate a relocatable data structure in
the heap of size bytes. Handle returned is non-zero if successful and
contains the address of a pointer to the allocated data structure. The
contents of the handle changes dynamically with the heap, however the
address of the handle will never change. Refer to the Apple Developer's
documentation for further details. Reference: NewHandle. See also:
IN.HEAP, TO. HEAP, RESIZE.HANDLE

FROM.START -- position mode
See Fi le System glossary.

FRONT.WINDOW -- wptr
Returns wptr to currently act1ve (or front) window.

FUNC>L n--
Macintosh toolbox Pascal function call compiler. Refer to the Advanced
Topics Toolbox Interface section.

MacFORTH Glossary Page 13 - 47 June 3, 1984

FUNC)W n--
Macintosh toolbox Pascal function call compiler. Refer to the Advanced
Topics Toolbox Interface section.

GET addr--
Multitasking stub for source compatibility with future products.

GET .CONTROl n -- n
Not supported in Level 1. Refer to MacFORTH Level 2 controls
documentat Ion.

GET.CURSOR
Returns address of cursor in use. (0 indicates default NW arrow).

GET .DA TES addr --
Formats the current date Into a string in the format MM/OO/VV and
places it at addr.

GET.EOF ** Refer to the File System chapter glossary **

GET.FILE.lNFO ** Refer to the File System chapter glossary **

GET.FllE-TVPE ** Refer to the File System chapter glossary **

GET-ICON resld -- handle
Reads ICON RESIO from the resource flle. The handle to the ICON Is
returned. See PLOT. I CON.

GET.LINE.HEIGHT -- line height
Returns the line height for the current window. See the Graphics
chapter.

GET.PICTURE resld -- handle
Reads the picture RESID from the resource file, returning its handle.

GET.PIXEl (x\y -- flag)
Returns TRUE if the pixel at X,V in the current window is on.

GET.REC.lEN ** Refer to Flle System chapter glossary **

GET.SCRAP ** Refer to the Advanced Topics chapter - Cutting and
PastIng between Applications **

MacFORTH Glossary Page 13 - 48 June 3,1984

GET.TEXTFONT -- font#
Returns text font number for current wIndow. See graphIcs sectIon.

GET. TEXTMODE -- mode
Returns text mode for current window. See graphics section.

GET.TEXTSIZE -- text size
Returns current text size. See graphics section.

GET.TEXTSTYlE -- style bits
Returns text style bits for the current window. See graph- ics section.

GET.TIMES addr--
Stores the formatted time string (in the format HH:MM:SS XM) at ad dr.

GET.WINDOW -- wptr
Returns the wIndow pOinter of the currently act1ve window.

GET.XYOFF5ET (-- x\y)
Returns the offset in QuickDraw native coordinates to the 0,0 origin of
the current window.

GET.XYPIVOT -- angle
Returns current XYPI VOT angle for the current window.

GET .XYSCAlE -- XSCALE\ YSCALE
Returns the X and Y scale factors for the current w1ndow.

GINIT
Initializes graphics parameters for the current window. The following
defaults are set:
XYPOS --) XYBIAS erased
1 00 1 00 XYSCALE
o XYPIVOT
12 TEXTSIZE
15 LI NE.HE I GHT
11 PENSIZE BLACK PENPAT
o 0 XYOFFSET
00 MOVE.TO

MacFORTH Glossary Page 13 - 49 June 3,1984

GLOBAl>LOCAL point -- point
Converts poInt In global coordInates to poInt In local coordInates
relative to the currently active window. Point is two 16 bit words
packed Into 32 bits, y In high order word, x in lower.

GRAY -- addr
Returns the address of the gray pattern.

HANDLE.SIZE handle -- size
Returns size of relocatable data structure in heap. Reference
APDEVDOC: GetHandleSize

HANDLER -- addr
User varIable contaIning the address of the Interrupt handler for the
current task.

HBAR.BOUNDS wptr -- t \ 1 \b \r
Returns rectangle for horizontal scro11 box within window.

HERE -- addr

HEX

Returns the address pOinted to by the dictionary pOinter. It is the next
available memory location in the dictionary.

Sets the current numeric I/O base to hexadecima1.

HIDE.CURSOR --
Increments cursor leve1. When cursor level is 0, cursor is visible. Use
INIT.CURSOR to reset cursor leve1. See SHOW. CURSOR

HIDE.PEN
Decrements pen level in current graphport. See SHOW.PEN for
diSCUSSion of why tills may be useful.

HIDE.WINDOW wptr --
Clears visible flag in windwow at wptr. Window will immediately
disappear from screen.

HILITE.CONTROL n 1 \n2 --
Refer to Level 2 Controls Documentation.

MacFORTH Glossary Page 13 - 50 June 3} 1984

HILITE.MENU n --
Highlight menu n . Where n is 0, no menus are highlighted. Normally used
to turn off menu highlight which is auto- matically done when a menu
item is selected.

HILITE.WINDOW flag\wptr--
Window primitive. Hilights the specified window based on flag.

HLD -- addr
User variable which holds the address of the latest character of text
during numeric output conversion. "h-l-d"

HOLD char--
Inserts char into a pictured numeric output string. May only be used
between (# and #) . An unchecked error occurs when used outside (#

and #> . See <# and #) .

HUSH
Immediately terminates any sound being produced by the sound driver.

-- n
Copies the loop index (maintained on the top of the return stack) onto
the data stack. Must be used only within a DO ... LOOP structure.
Unchecked error occurs if used outside a DO '" LOOP or DO ... +LOOP
structure. Warning: I f you use R> or >R inside a loop, the loop indices
may be covered up.

II n --
Stores n at the address corresponding to the current value of the loop
Index. "I-store"

1+ n -- n+Ooop index)
Increments the top of the stack by the current loop index.

1+1 n\offset --
Equivalent to I + !.

1+. offset -- n
Equivalent to I + @ .

I+WI n\offset --
Equivalent to I + W!.

MacFORTH Glossary Page 13 - 51 June 3, 1984

I+W. offset -- n
Equ1valent to I + w@ .

1- n -- n-(loop index)
Decrements the top of the stack by the current loop index.

I. -- n
Fetches n from the address corresponding to the current value of the
loop index. "i-fetch"

IBEAM -- addr
Returns address of I Beam cursor array.

lei char --
Stores char (using C!) at the address corresponding to the current value
of the loop index. "i-c-store"

Ie. -- char
Fetches char (using C@) from the address corresponding to the current
value of the loop index. "i-c-fetch"

ID. nfa --
Prints the name field of the definition whose nfa is given. "i-d-dot"

IF flag --
Marks the beginning of the "true portion" of a conditional structure.
Used in a colon definition in the form:

IF ... THEN
or

IF ... ELSE ... THEN
If flag is true, the words following IF until the ELSE (if present) or
THEN (if ELSE is not present) are executed. I f flag is false, control is
passed to the words following ELSE (if present) or THEN (if ELSE is not
present). The error message DEFINITION INCOMPLETE! indicates the IF
was not matched with a THEN. See ELSE and THEN.

IFEND
Marks the end of an executable conditional structure. Executed in the
form IFTRUE ... OTHERWISE ... IFEND or IFTRUE '" IFEND Execution
version of the compiled IF ... ELSE ... THEN structure. This word is used
as a marker for IFTRUE and OTHERWISE and if executed does nothing.
See IFTRUE and OTHERWISE. "if-end"

MacFORTH Glossary Page 13 - 52 June 3, 1984

IFTRUE flag--
Marks the beg1nn1ng of the "true port1on" of an executable cond1tional
structure. Executed in the form IFTRUE ... OTHERWISE ... IFEND or
IFTRUE ... IFEND Execution version of the complled IF '" ELSE ... THEN
structure. IFTRUE performs the execution version of IF 1n the complled
vers1on. If flag 1s true, the words fOllow1ng IFTRUE up to the
OTHERWISE (1f present) or IFEND (if OTHERWISE is not present) are
executed. If flag 1s false, control 1s passed to the words following
OTHERWISE (1f present) or IFEND (1f OTHERWISE 1s not present). The
error message MISSING OTHERWISE OR IFEND impl1es the input stream
was exhausted before an OTHERWISE or IFEND was encountered. See
I FEND and OTHERWI SE .

ILLEGALFILE ---
See File System glossary.

IMMEDIATE
Marks the most recently defined word as "immediate". The word will be
executed when encountered during compilation rather than complled
into the dictionary.

IN.BUTTON -- n
Refer to Level 2 Controls Documentat1on.

IN.CHECK.BOX -- n
Refer to Level 2 Controls Documentation.

IN.CLOSE-BOX -- n
Constant event code returned by DO.EVENTs when a mouse down occurs
in the close box of the currently active window.

IN.DESKTOP -- n
Constant event code returned by DO.EVENTS when a mouse down occurs
on the desktop.

IN.DRAG.80X -- n
Constant event code returned by DO.EVENTS when a mouse down occurs
in the drag region of a window.

MacFORTH Glossary Page 13 - 53 June 3, 1984

IN.HEAP
Marks the latest word as containing a heap handle in its parameter
f1eld. When the word is later forgotten, the handle will be
automat1cally returned to the heap.

IN.lOWER.WINDOW -- n
Constant event code returned by DO.EVENTS when a mouse down occurs
in a non.active window.

IN.MENUBAR -- n
Constant event.code returned by DO.EVENTS when a mouse down occurs
in the menu bar.

IN.SIZE.BOX -- n
Constant event code returned by DO.EVENTS when a mouse down occurs
1n the s1ze box of the currently act1ve w1ndow.

IN.SYS.WINDOW -- n
Constant event code returned by DO.EVENTS when a mouse down event
occurs in a system (desk accessory) window.

IN.THUMB -- n
Refer to Level 2 Controls Documentation.

INCLUDE-
Refer to the Fi Ie System chapter glossary.

INDEX flrst screen#\last screen# --
Displays the first line of each block over the range given. The first line
of each screen should be a comment describing the contents of that
screen.

INIT .CURSOR
Resets cursor level to 0, displays northwest arrow (dflt) cursor.

INITIALS -- addr
User variable containing the user's initials for a terminal task.

MacFORTH Glossary Page 13 - 54 June 3, 1984

INPUT.NUMBER width -- [n\true] or [false]
Inputs a number of up to the width specHied. If nothing is entered (the
operator just pressed return), a false flag is returned. If a number is
entered, the number is returned under a true flag. Invalid characters
(non 0-9 or "-"), terminate number conversion when encountered.

INPUT.STRING addr\cnt--
Inputs a string to a string variable (or any address). After the string
has been input, the number of characters entered is stored at addr, the
string at addr+ 1 on.

INTERNAL -- 1
Constant drive number for the internal drive.

INTERPRET
Executes 'INTERPRET. You may use an alternate text interpreter (for
example, one that accepts floating point numbers) by storing the cfa of
your new interpretation word into' the pfa of INTERPRET. The actual
definition of INTERPRET is simply: : INTERPRET 'INTERPRET ; ***
Note: Be aware that modifying INTERPRET affects ALL tasks.

INVALID.REeT addr--
Marks the rectangle at addr within the current window as not requiring
updates.

INVERT -- 3
QuickDraw shape mode attribute shape will be drawn with all bits
inverted in the destination.

IO-RE5UL T -- addr
See Fi Ie System glossary.

ITALIC -- 02
Constant bit mask for ital1c text attribute.

ITEM.CHECK ltem\check.flag\menuid --
Sets or clears check mark associated with item on menu menuid.

ITEM.ENABLE item\flag\menuid --
Enables or disables item on menu menuld. Disabled items cannot be
selected.

MacFORTH Glossary Page 13 - 55 June 6,1984

ITEM-ICON item\icon\menu.id--
Dlsplays selected lcon wlth menu item. See menu sectlon of
documentation for further discussion of item icons.

ITEM.MARK ltem\mark\menuid--
Selects mark to associate with menu item. See menu section in
documentation for discussion of associated item marks Le. check mark

ITEM.STYlE item\style.char\menuid
Selects text style for menu ltem from style character. See menu
section of documentation for description of style character.

J -- n
Returns the index of the next outer finite loop construct. May used only
wHhln a nested DO .. LOOP (or DO ., +LOOP). An unchecked error occurs
lf used outs1de a DO .. , LOOP or DO .. , +LOOP structure.

KEY -- char
Returns the ASCII value of the next available character from the
current input device.

KEY.DOWN -- n
Constant event code returned by DO.EVENTS on a key down event.

KEY.STROKE -- addr
Array containing the event record for the most recent keystroke. A two
byte fi11er is added to the front of the record so that the first four
bytes may be used as a f1ag. ie. KEY. STROKE @ See EVENT.RECORD for
fie ld layout

KEY.UP -- n
Constant event code returned by DO.EVENTS on a key up event

Klll.CONTROlS wptr --
Refer to Level 2 Controls Documentat10n.

KllLIO buf.ptr --
Aborts any pending 1/0 transaction on device associated with buf.ptr.

l>FUNC>l n --
Macintosh toolbox function call compiler. Refer to the Advanced Topics
chapter, toolbox interface discussion.

MacFORTH Glossary Page 13 - 56 June 3, 1984

LA TEST -- nfa
Returns the nfa of the most recently def1ned word 1n the CURRENT
vocabulary.

LEAVE
Forces termination of a finite loop structure at the next LOOP or +LOOP.
Sets the loop limit equal to the current value of the index. The index
itself remains unchanged and execution proceeds normally until the
loop terminating word (LOOP or +LOOP) is encountered. An unchecked
error occurs if used outside of a DO ... LOOP or DO ... +LOOP with
unpred i ctab Ie resu Its.

LIMIT -- addr
Returns the address just above the highest memory available for a disc
buffer. This is usually the highest system memory.

LINE# -- addr
User variable containing the number of lines output. This variable is
incremented by CR and set to zero by PAGE.

LINE-HEIGHT n --
Sets line height to n scaled by Y scale.

LIST block:lt --
Lists the contents of the given block number. The value in OFFSET is
taken into account. See OFFSET.

LIT -- n
Places the compiled number following it on the stack. Within a colon
deflnition, LIT is automatically compiled before each literal number
encountered in the input stream. Later execution of LIT causes that
number to be placed on the stack. If LIT is compiled, the following
32-bit value (usually a compiled cfa) will be pushed on the data stack
at run time.

LITERAL n--
Ifcompiling, compile n as a literal number, which when later executed
operator takes the number off of the data stack at compile time. For
example, to compile the number of the current block, you could execute
the following [BLK @] LITERAL This would return the block number
that the definition was compiled into at run time.

MacFORTH Glossary Page 13 - 57 June 3, 1984

LMOVE addr 1 \addr2\cnt --
Moves cnt 32 b1t words from address 1 to address2.

LMOVE> src addr\dest addr\cnt --
Moves cnt long words (32-bit, 4 byte) from src addr to dest addr. Starts
at the end of the array and proceeds towards low memory. "move-up"

LOAD block# --
Interprets the contents of block#. Begins interpretation of the block
number given by making it the input stream and preserving the current
contents of >IN and BLK. If interpretation is not terminated explic
itly, it will be terminated when the input stream is exhausted. Control
then returns to the input stream containing LOAD, determined by the
input stream locators >IN and BLK. The value in the user variable
OFFSET is added to the block# given. Error if the specified block cannot
be loaded from mass storage. See BLOCK, >IN , BLK , and OFFSET.

LOAD.SCRAP -- io result
Loads the clipboard into memory.

LOCAL>GLOBAL point -- pOint
Converts point in coordinates local to the currently active window to
global screen coordinates. Point is two packed 16 bit words, y in higher
word, x in lower.

LOCK.FILE ** Refer to the File System chapter glossary **

LOCK.FONT font# --
Locks font in memory. Will not be lost on heap compression.

LOCK.HANDLE handle--
Marks relocatable heap data structure as locked. See Apple Developer's
documentation for further details. Reference: HLock

LOOP
Terminates a flnite loop structure. Used in the form:

DO ... LOOP
Increments the DO ... LOOP index by one, terminating the loop if the new
index 1s equal to or greater than the loop limit. The error message
CONDITIONALS NOT PAIRED indicates the LOOP was not preceded by a
matching DO . See DO and +LOOP .

MacFORTH Glossary Page 13 - 58 June 3, 1984

LOWER.CASE -- addr
User variable containing a flag which when true causes FIND to convert
all interpreted strings to upper case. LOWER.CASE ON Enables
conversion LOWER.CASE OFF Disables conversion

LOWER.LEFT ---
Sets the graphics XYOFFSET to the lower left corner of the current
window.

L TGRA V -- addr
Returns the address of the light gray pen pattern.

M* nl\n2 -- d
Returns the signed 54-bit product of the two signed 32-bit numbers
given. "m-star"

M/MOD d\n -- remainder\quotient
Divides the 64-bit number d by the 32-bit number n, return- ing the
32-bit signed remainder and quotient. "m-divide-mod"

MAC.CON -- addr
Array containing console device i/o vectors for Macintosh console.

MAC.CONSOLE --
Sets Macintosh console as default console device.

MAC.FILES
Sets the file read/write operator for blocks to MAC.R/W. See MAC.R/W,
(R/W)

MAC.R/W addr\block#\flag --
Standard Macintosh block f1le read/write primitive. If flag is non-zero,
Block is read to address, if flag is zero, block is written from address.

MAKE.REeT xl \y 1 \x2\y2 -- xy\xy\ addr
Compresses XY coordinate pairs into a TLBR rectangle. The address of
the rectangle within the stack is left on the stack.

MacFORTH Glossary Page 13 - 59 June 3, 1984

MAKE. TOKEN addr -- token
Converts the address on the stack to a 16 bit token. If the address 1s
greater than NEXT.PTR+32k, a new entry is made in the token table, and
the relatIve offset to the token table entry (below NEXT.PTR) 1s
returned. All tokens are 16 bit values, Token table offsets are negative
from NEXT.PTR. See NEXT.PTR, NEW.TOKEN, TOKEN>ADDRESS.

MATCH $\$ cnt\addr\cnt -- [O\addr2] or [true\addr3]
string comparison routine to find a match on the string at $ (its
address) for $ cnt bytes over the range addr for cnt bytes.

MAX n 1 \n2 -- n3
Leaves the maximum of n 1 and n2. "max"

MAX.)(-- x
Returns the max1mum X coord1nate 1n Qu1ckDraw nat1ve representation
of the content region of the current window.

MAX.Y -- y
Returns the maximum Y coordinate in QuickDraw native representation
of the current window.

MENU.ENABLE flag\menuid--
If menu is non-zero, menu is enabled, otherwise menu is disabled, and
cannot be selected.

MENU.HANDLE menuid -- menu.handle
Returns handle for menu menuid.

MENU.SELECTION: menuid--
Exits the current definition, placing the following address into the
menus array at menuid*4. When the menu is later executed, control is
passed to the following address. See Menu section of the documentation
for further details.

MENUS -- addr
16 element array containing the address to execute for each of the 16
possible active menus.

MIN nl\n2--n3
Leaves the minimum of n 1 and n2. "min"

MacFORTH Glossary Page 13 - 60 June 3, 1984

MINIMUM.OBJECT size--
If the current object size is less than the specified size, MacFORTH
attempts to resize the object image to the specified size. See
RESI ZE.OBJECT

MINIMUM.VOCAB size--
If the current vocabulary slze 1s less than the spec1f1ed slze, MacFORTH
attempts to resize the vocabulary image to the specified size. See
RES I ZE. VOCAB

MOD n1 \n2 -- n3
Returns the remainder of n 1 divided by n2, with the same sign as n 1.
Error if division by zero (see * /). "mod"

MONTHS -- addr
Returns the address of the table conta1n1ng the number of days in each
month.

MOUSE.BUTTON -- flag
Returns state of mouse button. True when down.

MOUSE.DOWN -- n
Constant event code returned by DO.EVENTS if a mouse down event
occurs. ie. MOUSE. DOWN @ See EVENT.RECORD for field layout

MOUSE.DOWN.RECORD -- addr
Array containing the event record for the most recent mouse down
event. A two byte filler is added to the record so that the first four
bytes may be used as a flag. i.e. MOUSE.DOWN.RECORD @ See
EVENT.RECORD for format. (add 2 bytes at start)

MOUSE.UP -- n
Constant event code returned by do. events if a mouse up event occurs. a
flag. ie. MOUSE.UP @ See EVENT.RECORD for field layout

MOUSE.UP .RECORD -- addr
Array containing the event record for the most recent mouse up event. a
two byte filler has been added to the start of the record so that the
first 4 bytes may be used as a flag. ie. MOUSE.UP.RECORD @ See
EVENT.RECORD for format (add 2 bytes at start)

MacFORTH Glossary Page 13 - 61 June 3,1984

I

MOUSE.WAS.. -- pOint
Returns location of where the mouse last went down in global
coordinates.

MOVE.TO x\y--
Moves the pen to the supplied X,V position.

MT n--
Macintosh toolbox procedure call compiler. Refer to the Advanced
Topics chapter toolbox interface discussion.

MT>W n--
Macintosh toolbox procedure call compl1er. Refer to the Advanced
Topics chapter toolbox interface discussion.

MUNGER handle\offset\addrl \cnt 1 \addr2\cnt2 -- result
Macintosh universal string operator.

NEEDED (n --)
Aborts the current definition if less than n items are available on the
stack.

NEGATE n ---n
Returns the two'S complement of n. Error if n is the most negative
integer, system response is to return the same value given.

NETWORK.EVENT -- n
Constant event code returned by DO.EVENTS on a network event.

NEW.MENU position\t1tle$\menuid --
Def1nes new menu, links 1t Into menu l1st. menu1d must be 1n the range
0-15, title$ is preceeded by the count, and position of 0 places item on
the left, -1 on the right See menu section of documentation for
examples.

NEW.STRING str.addr -- handle
Allocates new handle from heap for string and copies string into
handle. Handle is returned on stack. Use IN.HEAP to tag any word
defined with this handle in order to deallocate handle when word is
forgotten.

MacFORTH Glossary Page 13 - 62 June 3, 1984

NEW.TOKEN addr -- token
Converts address on stack to an lndirect token. An entry is made in the
token table, and the negative relative address to NEXT.PTR of the token
table entry is returned. Used by NEW.TOKEN to handle addresses >
NEXT.PTR+ 32k.

NEW.WINDOW
MacFORTH window defining word. Creates named window record which
will return it's wptr when executed.

NEXT .FCB -- flle#

Returns the file number for the next available file control block for
assignment. Aborts with the error message "No FCBs Available!" if all
FCBs are in use.

NEXT.PTR -- addr
Returns the address contained in the relocation base register, A4.
Positive tokens are merely added to A4 to provide the actual address.
Negative tokens are added to A4 to produce an address within the token
table. The 32 bit address contained at this location in the token table is
then added to A4 to produce the actual address. Assembly code for the
fundamental FORTH primitive NEXT starts at NEXT.PTR.

NF A pfa -- nfa
Converts the pfa given to the nfa for the definition. "n-f-a"

NO.ClIP wptr --
Disables clipping within window bounds. Note that controls may only
be drawn or updated if CLlP>CONTENT is active.

NO.ECHO -- addr
User Variable containing a flag which is used by EXPECT. When NO.ECHO
is non-zero, EXPECT does not echo keystrokes. to the console. QUIT
resets this flag to the default cleared (or always flag true to disable
echo when it calls EXPECT. Uses include: passwords,and fully
lntrepreted text fields (ie: left zero fill calculator type text entry)
NO.ECHO ON disabled keystroke echo NO.ECHO OFF echoes keystrokes
in EXPECT

NO.RETRY
Procedure which pops the recovery stack frame from the return stack.
Pushed onto the return stack at the bottom of the recovery frame.

MacFORTH Glossary Page 13 - 63 June 3, 1984

NON.PURGABLE handle--
Marks relocatable heap data structure as non-purgeable. See Apple
Developer's documentation for further details. Reference: HNoPurge

NOT flag -- -flag
Reverse the boolean value of the flag given. This is identical to 0= .
See 0=.

NOT.VISIBLE -- n
Constant bit mask for not.visible window attribute.

NOTPATBIC -- n
Constant specifying bit transfer mode. Current pattern is
complemented and used to clear corresponding bits in the destination.

NOTPATCOPY -- n
Constant specifying bit transfer mode. Current pattern is
complemented and copied directly into destination.

NOTPATOR -- n
Constant specifying bit transfer mode. Current pattern is
complemented and Or'ed into destination.

NOTPATXOR -- n
Constant specifying bit transfer mode. Current pattern is
complemented and Exclusive Or'ed into the destination.

NOTSRCOR -- n
Constant specifying bit transfer mode. Source pattern is complemented
and Or'ed with destination.

NOTSRCBIC -- n
Constant specifying bt transfer mode. Source pattern is complemented
and used to clear corresponding bits in the destination.

NOTSRCCOPY -- n
Constant specifying bit transfer mode. Source pattern is complemented
and copied directly to destination.

NOTSRCXOR -- n
Constant specifying bit transfer mode. Source pattern is is
complemented and Exclusive Or'ed with destination.

MacFORTH Glossary Page 13 - 64 June 3,1984

NULLEVENT -- n
Constant event code. No events posted.

NUMBER addr -- n
Attempts to convert the string at addr+ 1 to a number. If successful, n
is returned, otherwise an error is generated indicating that the string
was not recognized as a number in the current base.

OBJECT.FULLII ---
Aborts with the error message "Object Full!" if the object area is full.

OBJECT .HANDLE -- addr
User variable which conta1ns the address of the handle wh1ch po1nts to
the base of the current object area. The object area 1s allocated from
the heap and is set up as locked and nonpurgable. This area may be
res1zed with the RESIZE.OBJECT operator as long as no other
non-relocatable memory allocat1on has occured above this address.

OBJECT .ROOM -- # bytes
Returns number of bytes avallable in the current object space.

OF n 1 \n2 -- [n 1] or []
Marks the beginning of a conditional branch within a case statement.
Used in the form:

CASE .. .
X OF ... ENDOF

ENDCASE
If n1 is equal to n2, both arguments are dropped, and execution
continues through ENDOF and then skips to the next ENDCASE . If n1 is
not equal to n2, n2 is dropped and execution continues after ENDOF .

OFF addr--
Stores a 32-bit zero at addr.

OFF.CONTROL n--
Refer to Level 2 Controls Documentation.

OFFSET -- addr
User variable containing the block offset value. Used by BLOCK to
determ1ne the actual physical block number to be accessed.

ON addr--
Stores a 32-bit -1 at ad dr.

MacFORTH Glossary Page 13 - 65 June 3,1984

ON.ERROR
Establishes the recovery stack frame. Compiles (ON. ERROR) to
establish this frame and branches over the recovery code past the
del1mltlng RESUME. Used In the form:

ON.ERROR <recovery code> RESUME

ON.ACTIVATE wptr--
Defines token to execute when window is activated. Used in the form:

<wptr> ON.ACTI VATE <procedure>
When <procedure> is later invoked (as a result of the window becoming
active) a flag is left on the stack. If the flag is true, it is an activate
event, if false, it is a deactivate event.

ON. CONTROL n--
Refer to Level 2 Controls Documentation.

ON.UPDA TE wptr --
Defines the token to be executed when an update event occurs for
window wptr. Used In the form: my.wlndow on. update
redlsplay.wlndow When an update event occurs, redisplay.window will
be executed wlth my.window temporarlly set as the graphport.

OPEN flle#--
Refer to the Fi Ie System glossary.

OPEN.DEVICE name$\fcb--
Attempts to open the device named name$ with feb. Aborts on error.

OPEN.PORT wptr--
Initializes the graphport at wptr.

OPEN.PRINTER ---
Opens the printer device driver.

OPEN.SOUND ---
Opens the sound device driver.

OPEN.RSRC file#--
See File System glossary.

OPTIONS.MENU ---
Installs the MacFORTH options menu on the Menu Bar.

MacFORTH Glossary Page 13 - 66 June 3, 1984

OR nl\n2 -- n3
Leave n3 asthe bitwise inclusive-OR of two numbers.

OS.TRAP n--
Macintosh operating system trap call compiler. Refer to the Advanced
Topics chapter toolbox interface discussion.

OTHERWISE
Marks the beginning of the "false portion" of an executable conditional
structure. Used in the form IFTRUE ... OTHERWISE ... IFEND Equivalent
in control flow to ELSE in the compiled IF ... ELSE ... THEN construct.
See ELSE.

OUTLINE -- 08
Constant bit mask for outline text attribute.

OVAL xl \y 1 \x2\y2\[pattern1\mode --
Draws oval within rectangle xl yl x2 y2 according to mode. [PATTERN]
present for pattern mode.

OVER n 1 \n2 -- n 1 \n2\n 1
Copy the second stack item over to the top of the stack.

PAD -- addr
Returns the address of a scratchpad area. Used to hold character
strings for intermediate processing, as well as a scratchpad area for
other tasks. The minimum capacity of PAD is 64 characters.

PAGE
Outputs a form feed to the current display devices. This clears the
console display and ejects a page on any attach- ed printers.

PAGE.DOWN -- n
Refer to Level 2 controls documentation.

PAGE.UP -- n
Refer to Level 2 controls documentation.

PAINT -- 1
QuickDraw shape mode attribute shape will be drawn filled with pen
pattern.

MacFORTH Glossary Page 13 - 67 June 3, 1984

PATBle -- n
Constant specIfying bIt transfer mode. Current pattern is used to clear
corresponding bits in destination.

PATCOPY --n
Constant specifying bit transfer mode. Current pattern is directly
copied into destination.

PATOR -- n
Constant specifying bit transfer mode. Currrent pattern is OR'ed into
destination.

PATTERN pattern -- pattern\4
QulckDraw shape mode attribute shape will be filed with supplied
pattern.

PATXOR -- n
Constant specifying bit transfer mode. Current pattern is exclusive
OR'ed into destination.

PAUSE
Stub for source compatability with later products.

PEN.NORMAl
Resets state of pen in current graphport: pensize = 1,1 penmode =

patcopy penpat = black

PENMODE n--
Sets pen transfer mode. Allowable modes include: PATCOPY PATXOR
NOTPATCOPY NOTPATXOR PATOR PATBIC NOTPATOR NOTPATBIC See
individual modes for definition of function.

PENPAT addr --
Sets the pen pattern for current graph port.

PENSIZE width\height --
Sets pen size to width and height scaled by XYSCALE.

PF A token -- pfa
Convert the token of a compiled definition to its pfa. "p-f-a"

MacFORTH Glossary Page 13 - 68 June 3,1984

PICK n1--n2
Return the stack Item n 1 Items from the top (not including n 1). For
example, 2 PICK Is functionally equivalent to OVER; 1 PICK is
functionally equivalent to DUP . An error condition eXists for n 1 less
than 1, system response is to leave n 1 on the stack.

PLAIN -- n
Constant for no text enhancements.

PLAY addr--
Passes addr+2 to the Macintosh sound generator. Addr contains 16-bit
length of the waveform description record at addr+2 on. System will
hang until the sound is completed.

PlOT.lCON rect\handle --
Plots icon at handle within supplied rectangle.

PNTR -- addr
User variable containing the address to which characters are
transferred "p-n-t-r"

POCKET -- addr
User area array used for parsing text strings from the input stream.
WORD uses this 256 byte area when extracting strings from the input
stream. If the task does not compile text, this area may be user
defined for further user variables.

POINT position mode\posltion\flle# --
See File System glossary.

POINT> XY point -- x\y
Unpacks point into x under y.

POLYGON handle--
Refer to Level 2 advanced graphicS documentation.

POSITION.FIXED
** Refer to the File System chapter glossary **

MacFORTH Glossary Page 13 - 69 June 3, 1984

POST.EVENT event.code\event.msg --
Places event of type event.code into event Queue with message of
event.msg. BE CAREFUL not to post events for such things as activate or
update events as these are sure to crash the system. Normally posted
events should be limited to user designated range 12-15.

PREV -- addr
Returns the address of the variable which points to the disc buffer
most recently referenced. The UPDATE command marks this buffer as
changed so it is later written to disc when needed.

PRINT addr\cnt --
Sends the string of characters starting addr for cnt bytes to the
printer.

PRINT.BITS t\l\b\r\blt map --
Pr1nts the pixels w1thln the top, left, bottom, right rectangle of bitmap
to an Apple Imagewrlter pr1nter. bitmap Is wptr+2.

PR I NT .FCB -- addr
Returns the address of the printer device driver FCB.

PRINT.SCREEN ---
Prints the contents of the screen to the Apple Imagewriter printer.

PRINT.WINDOW ---
Prints the contents of the currently active window to the Apple
Imagewriter printer.

PRINTER -- addr
Returns address of printer resource variable. In single user systems,
this variable is used to turn on and off duplicating screen output to the
printer. PRINTER ON turns on printer PRINTER OFF turns off printer

PRINTER.ONLY -- addr
Returns the address of the device console table which directs output to
the printer.

PTINRECT pOint\rect.addr -- flag
Returns true if pOint is within rectangle.

MacFORTH Glossary Page 13 -70 June 3,1984

PURGABlE handle --
Marks handle as purgable by memory manager.

PUSH.BUTTON n 1 \n2\n3\n4\nS --
Refer to Level 2 controls documentation.

PUT. SCRAP addr\cnt\res type -- io result
Writes cnt bytes from addr to the desk scrap and marks it with res
type.

QUERY
Accepts input of up to 80 characters from the keyboard. A carriage
return wl1l stop input when encountered. The str1ng 1s stored 1n the
term1nal 1nput buffer. Two nulls are appendeQ to the 1nput stream and
CNT conta1ns the actual number of characters input. A space is output
when a CR 1s entered. WORD may be used to accept text from this
buffer as the Input stream by setting >IN and BLK to zero. See TIB ,
WORD, >IN , and BLK.

QUIET -- addr
User variable mode switch. When non.zero, indicates the buzzer is not
to sound when a user-defined error condition is encountered (ie. using
ERROR"). QUIET ON Enables Quiet mode. QUIET OFF Disables Quiet
mode.

QUIT
stops execution of the current task, clears the return stack and returns
control to the terminal. No message is given and the data stack is
preserved.

R# -- addr
User variable which contains block offset to location of latest ERROR.

R/W addr\block\flag --
The mass storage read/write primitive. addr specifies the source or
destination block buffer, block is the number of the referenced block,
and flag determines the operation to take place (0 implies write, 1
implies read). Execution is vectored through the User Variable (R/W) to
the user spec- ified read/write handler.

RO -- addr
User variable containing the initial location of the return stack. See
RP! . "r-zero"

MacFORTH Glossary Page 13 -71 June 3, 1984

R> -- n
Pops the top item off of the return stack and pushes it onto the data
stack. MUST be matched with a >R within the same colon definition or
an unpred1ctable error w1ll occur. "r-to" See >R.

R>DROP
Code routine which drops the top item from the return stack.
"r-from-drop"

R8 -- n
Copies the top of the return stack to the data stack. Should on ly be used
between a >R ... R> sequence. "r-fetch"

RANGE n\min\max -- n\bool
Performs a range check for min (= n (= max. Bool is the boolean result
(true if min (= n (= max).

RADIO.BUTTON n 1 \n2\n3\n4\nS --
Refer to Level 2 controls documentation.

RANDOM -- n
Returns a psuedo random number between 0 and 32767. See SEED

RANGE.OF n 1 \min\max -- [n 1] or []
Marks the beginning of a conditional branch within a case statement.
Used in the form:

CASE ...
(min> <max> RANGE.OF ... ENDOF

ENDCASE
If nl is <= max and >= min, all arguments are DROPped and execution
cont i nues through ENDOF and then sk i ps to the next ENDCASE . If n 1 is
not with min and max, min and max are DROPped and execution
continues after ENDOF . See OF , ENDOF , CASE, and ENDCASE .

RDRA W dx\dy --
Relat1ve draw. Draws from current XV pos1tion to XV pos1t10n at x + dx,
Y + dy dots to the right of and below the pen are modified according to
the pen s1ze, shape, pattern and mode.

READ.FIXED addr\rec#\file# --
See F 11 e System glossary.

MacFORTH Glossary Page 13 - 72 June 3, 1984

READ. TEXT addr\cnt\file"" --
See Flle System glossary.

READ.VIRTUAL addr\cnt\f11e addr\file# -
See File System glossary.

REALFONT? font#\size -- flag
Returns true if font is an actual rather than synthesized font.

RECOVER
Recovery routlne for errors 1n the floppy boot ROM handler.

RECOVER.HANDLE ptr -- handle
Returns handle for address if address corresponds with a valid
relocatable data structure in the heap. Reference APPDEVDOC:
RecoverHandle

RECT t\l\b\r --
Creates rectangle data structure which will place it's address on the
stack when executed (like variable).

RECT ANGLE xl \y 1 \x2\y2\[pattern addr]\mode --
Rectangle according to mode.

REG.SET -- addr
Returns the address of a register snapshot array. Contains a snapshot
of the 68000 registers and the last 16 bytes of the parameter and
return stacks when the last exception occurred. See (EXCPT) .

REGION
Refer to Level 2 advanced graphlcs documentation.

RELEASE addr --
Multitasking primitive which releases a resource. If addr, a resource
variable, contains the current task's status address, the resource
variable is RELEASEd (set to zero), otherwise no action is taken.

REMOVE fi le# --
Refer to the File System chapter glossary.

RENAME f11e$\f11e#--
Renames the spec1fied flle (by number) w1th the spec1fied name.

MacFORTH Glossary Page 13 -73 June 3, 1984

REPEAT
Terminates a finite control structure. Used within a colon definition in
the form:

BEGIN ... WHILE ... REPEAT
Returns control to the word fo11owing the corresponding BEGIN. The
error message CONDITIONALS NOT PAIRED indicates the structure is
missing either a BEGIN or WHILE command.

RESIZE.HANDLE handle\size -- flag
Attempts to resize handle in heap. Returns non-zero if unsuccessful.
Reference APDEVDOC: realloc.handle

RESIZE.OBJECT size--
Attempts to resize the current object space. An error message results
if insufficient heap space exists or if the requested size is unable to
contain the current object image. Use the ROOM function to determine
the current object space allocation.

RESIZE.VOCA8 size--
Attempts to resize the current vocabulary to the requested size. An
error message is generated if insufficient heap space is available or if
the vocabulary is currently larger than the requested size.

RESUME ---
Terminates a user specified error handler. See ON. ERROR

RETRY -- addr
User variable pointing to the most recently speCified error recovery
frame. See ABORT" I RECOVER I ON.ABORT .

REWIND file# --
See File System glossary.

RMOVE dx\dy --
Relative move. Moves the current pen position to current position plus
the supplied offset.

ROLL n1 -- n2
Extracts the stack item n 1 from the top (not including n 1). The
remaining stack items are moved into the vacated position. For
example, 3 ROLL is equivalent to ROT 2 ROLL is equivalent to
SWAP Error if n 1 is less than or equal to one with no action taken.

MacFORTH Glossary Page 13 -74 June 3, 1984

ROOM
Displays the amount of remaining memory available for use. The
message displayed 1s xxxxxxxx Object Bytes Available yyyyyyyy
Current Vocabulary Bytes Available zzzzzzzz Heap Bytes Available
Where xxxxxxxx represents current object area (pOinted to by
OBJECT.HANDLE), yyyyyyyy represents the amount of space in the
CURRENT vocabulary (pointed to by CURRENT) and zzzzzzzz represents
the total amount of space remaining in the HEAP.

ROT n 1 \n2\n3 -- n2\n3\n 1-

RPI

Rotates the top three stack items. The third item is brought to the top.
"rote"

Initializes the return stack to point to the value contain- ed in the user
variable RO . "r-p-store"

RPta -- addr
Returns the address of the top of the return stack.

RRECTANGlE xl \yl \x2\y2\ch\cw\[pattern]\mode --
Draws rounded rectangle with ch by ch radius rounding [pattern1

present for pattern mode.

R5RVMEM size -- iorslt
Requests memory manager to reserve size bytes in heap for a upcoming
relatively static or locked data structure. See Apple's Developer's
documentation for further details. Reference: ResrvMem

R5T.PRINTER ---
Resets the Apple Imagewriter printer by sending an esc c sequence.

50 -- addr
User Variable containing the address of the top of the stack when it is
empty. "s-zero"

SA VE -BUFFERS ---
Writes all UPDATEd blocks to disc. The contents of the block buffers
remain unchanged and available. See BLOCK, UPDATE, and FLUSH.

MacFORTH Glossary Page 13 -75 June 3,1984

SCALE n 1 \n2 -- n3
Arithmetically shifts n 1 according to the value of n2. If n2 is negative,
n 1 is shifted right, if n2 is positive, n 1 is shifted left. The absolute
value of n2 determines the actual shift. For example: : NEW.2* (n-
n*2) 1 SCALE ; Is equivalent to 2* . Error if n2 is greater than 31,
system responds by leaving n3 as zero.

SCALE>XY XI\Yl -- X2\Y2
X2 = xl * 100 / XSCALE Y2 = yl * 100 / YSCALE

SCALE>Y n -- n * 100\ YSCALE
N is scaled to Y.

SCAN.FROM -- addr
Computes the address within the Input stream of the next word. addr is
either TIB + >IN or BLK + >IN If BLK is non- zero. See BLK J TIB , and >IN .

SCR -- addr
User variable containing the number of the screen most recently LISTed
or EDITed. "s-c-r"

SCRAP. COUNTER -- n
Returns the number of times the desk scrap has been zeroed.

SCRAP.HANDLE -- addr
Returns the address containing the desk scrap handle.

SCRAP .LEN -- addr
Returns the address containing the length of the desk scrap.

SCRATCH -- addr
User variable used to hold the most recently referenced option b1t
switch. All switch references set the appropriate bit at this location.

SCREEN.B I TS -- addr
Returns the address of the rectangle which contains the maximum
screen coordinates.

SCROLL ---
Scrolls the current window up the number of pixels contained in the
current l1ne height of the window. See GET.LlNE.HEIGHT LlNE.HEIGHT

MacFORTH Glossary Page 13 - 76 June 3, 1984

SEED -- addr
Returns the address of the random number generator seed.

SELECT file#--
Refer to the File System glossary.

SCROlLlEFT /RIGHT -- n
Constant bit mask for horizontal scroll control window attribute.

SCROLL UP/DOWN -- n
Constant bit mask for vertical attribute.

SElECT.WINDOW wptr--
Causes wptr to be activated as currently active window.

SEND.BEHIND wptr\behind wptr --
Re-links the window specified by wptr behind the window specified by
behind wptr.

SET .CONTROl n 1 \n2 --
Refer to Level 2 controls documentation.

SET .CONTROLMAX n 1 \n2 --
Refer to Level 2 controls documentation.

SET .CONTROLMIN n 1 \n2 --
Refer to Level 2 controls documentation.

SET .CONTROl.RANGE n 1 \n2\n3 -
Refer to Level 2 controls documentation.

SET .CURSOR cursor address --
Sets cursor to supplied address. (0 indicates default NW arrow).

SET.EOF
Refer to the File System chapter glossary.

SET.FENCE
Sets the FENCE to point to the current dictionary offset within the
relocatable vocabulary structure. FENCE is stored at CURRENT @@ 8+ .
The current vocabulary offset pOinter is stored at CURRENT @@

MacFORTH Glossary Page 13 - 77 June 3,1984

SET.FILE.lNFO file""--
Refer to the F1le System glossary.

SET-ITEMS item\item$\menuid --
Replaces current menu item string with supplied string.

SET.ORIGIN X\Y--
Establishes window origin in QuickDraw native screen coordinates.

SET.REC.LEN rec len\fl1e"" --
See File System Glossary (in File System chapter).

SET.STRING handle\string.addr--
Places string into handle. Prior handle contents are lost.

SET.WTITLE str.addr\wptr--
Sets window title to supplied string. If window is visible title will be
updated on the screen.

SETUP.SERIAL "" stop b1ts\par1ty\# data b1ts\baud rate\FCB addr -
Sets up the serial interface. Refer to the Printer/Serial Interface
chapter.

SHADOW -- 16

Constant bit mask for shadow text attribute.

SHOW starting screen""\ending screen"" --
Generate a l1sting of TRIADs between the start1ng and end- 1ng screen
numbers g1ven. See TRIAD.

SHOW.CONTROLS wptr-
Displays controls for window.

SHOW.CURSOR --
Decrements cursor level. When cursor level is 0, cursor is visible. Use
INIT.CURSOR to reset cursor level to 0. See HIDE.CURSOR

SHOW.PEN
Increments pen level 1n current graphport. When pen level 1s 0, drawing
functions are displayed on the screen. This is used when defining
reglons, or pictures where the pen is used to depict a region or picture
wlthout actually drawlng the outllne on the screen.

MacFORTH Glossary Page 13 - 78 June 3, 1984

SHOW.WINDOW wptr --
Sets visible flag in window at wptr. Visible portions of window wlll
appear on display.

SIGN n--
Insert the ASCII negative sign into the pictured numeric output string
if n is negative. *** Note: You must retain the sign of the original value
being converted and place it on the stack before executing SIGN. Error
if used outside of <# and #) pair with no system response. See <# and
#) .

SIN angle -- SINE * 10000
Returns integer sine of angle * 10000. (4 digit precision).

SIZE.BOX -- n
Constant bit mask for size.box window attribute.

SIZE. WINDOW wptr --
Recalculates window content, region, allocating space for only desired
scro 11 bars.

SMUDGE
Used during word definition to toggle the "smudge bit" in a definition's
name field. This prevents the incomplete definition from being found
during dictionary searches, until compilation is completed without
error.

SOUND.FCB -- addr
Returns the address of the sound driver FCB.

SPI
Procedure to initialize the stack pOinter to SO. See SO . "s-p-store"

SP. -- addr
Returns the address of the top of the stack just before SP@ was
executed "s-p-fetch"

SPACE
Displays an ASCII space on the current output device.

MacFORTH Glossary Page 13 - 79 June 3, 1984

SPACES n--
outputs n spaces to the current output dev1ce. No action is taken for n
less than one.

SORT (n -- square root)
Computes a 16 bit square root from 32 bit square n.

SRCBIC -- 3
QuickDraw bit transfer mode. Bits set in the source pattern are cleared
in the dest i nat ion.

SRCCOPV --4
QulckDraw pattern transfer mode. All btts set In the source pattern are
copied to the destination.

5RCOR --4
QuickDraw pattern transfer mode. Bits set in the source pattern are
set in the destination.

SRCXOR -- 3
QuickDraw bit transfer mode. Bits set in the source pattern are
inverted in the destination.

ST ACK.ERROR (flag --)
Aborts with" not enough stack items" error message if flag is true.

5T ART .FLAG -- n
Constant used by MacFORTH to determine if the system has been booted.

STATE -- addr
User variable containing the compilation state. A non-zero value
Indicates compllatlon mode, zero Indicates execution.

STATUS -- addr
Returns the base address of the current task's user area.

STILL.DOWN -- flag
Returns true while mouse is still down. If mouse comes up and goes
down between samples, returns false.

STRING.WIDTH addr -- n
Returns the width, in pixels of the string at addr.

MacFORTH Glossary Page 13 - 80 June 3, 1984

SWAP n 1 \n2 -- n2\n 1
Swaps the top two stack items.

SVS.FllE -- addr
FeB address used for system related file functions.

SVS.WINDOW -- wptr
Default interactive MacFORTH Window.

SVS8EEP durat i on --
Sounds the buzzer for the number of specified 1/60 sec ticks.

SVSPARMS -- addr
Returns the low memory address of data copied from battery backed-up
memory.

SVSTEM.EDIT n -- f

Allows desk manager an opportunity to respond to editing functions
pressed while a desk accessory is active. If flag is true, then event was
handled by desk manager, and no user action is required. Refer to
Supplied Macforth editor source code for examples.

T A8.STOPS -- addr
Variable containing the number of spaces between tab stops.

TEACTIVATE
Refer to Level 2 TE interface documentation.

TECAlTEXT
Refer to Level 2 TE interface documentation.

TECllCK
Refer to Level 2 TE interface documentation.

TECOPV
Refer to Level 2 TE interface documentation.

TECUT
Refer to Level 2 TE Interface documentatIon.

TEDEACTI V A TE
Refer to Level 2 TE interface documentation.

MacFORTH Glossary Page 13 - 81 June 3, 1984

TEDELETE
Refer to Level 2 TE 1nterface documentat1on.

TEDISPOSE
Refer to Level 2 TE interface documentation.

TEIDLE
Refer to Level 2 TE interface documentation.

TEINSERT
Refer to Level 2 TE 1nterface documentat1on.

TEKEY
Refer to Level 2 TE interface documentation.

TENEW
Refer to Level 2 TE interface documentation.

TEPASTE
Refer to Level 2 TE interface documentation.

TERECORD
Refer to Level 2 TE interface documentation.

TESCROLL
Refer to Level 2 TE interface documentation.

TESET.JUST
Refer to Level 2 TE interface documentation.

TESET.SELECT
Refer to Level 2 TE interface documentation.

TESET.TEXT
Refer to Level 2 TE 1nterface documentatIon.

TEST .CONTROL
Refer to Level 2 TE interface documentation.

TEUPDATE
Refer to Level 2 TE interface documentation.

Mac FORTH Glossary Page 13 - 82 June 3, 1984

TEXT.BOX
Refer to Level 2 TE Interface documentation.

TEXT.CLICK
Refer to Level 2 TE interface documentation.

TEXT.FIELD
Refer to Level 2 TE interface documentation.

TEXT .RECORD -- n
Constant bit mask for window attribute wh1ch Indicates that a text
record is pOinted to by refcon.

TEXTFONT n --
Selects text font. 0 reserved for system, 1 default for user
appl1cations. MacFORTH uses #4 (fixed space) for text editing.

TEXT MODE tX.mode --

Sets Current text bit transfer mode. Valid modes include: SRCCOPY
SRCOR SRCXOR SRCBIC NOTSRCCOPY NOTSRCOR NOTSRCXOR
NOTSRCBIC

TEXTSIZE s1ze --
Sets text size for current graphport. Max value is 50. MacFORTH
Windows maintain L1NEHEIGHT for scrolling and general text output. If
you set textsize greater than L1NE.HEIGHT you will overwrite data on
the prior line.

TEXTSTVLE n --
Selects text style. Each of the first 7 bits enable a particular text
enhancement. Bit 0 = BOLD(1) Bit 1 = Italic(2) Bit 2 = Underline(4)
Bit 3 = Outline(8) Bit 4 = Shadow(16) Bit 5 = Condense(32) Bit 6 =

Extend(64) Just sum up the appropriate values to get the desired style

THEN
Marks the end of a conditional structure. Used within a colon definition
In the form: IF ... ELSE ... THEN or IF ... THEN The word following
THEN Is executed after the code for IF or ELSE Of present). The error
message CONDITIONALS NOT PAIRED indicates there was no preceding
IF.

THIS.CONTROL -- addr
Refer to Level 2 controls documentation.

MacFORTH Glossary Page 13 - 83 June 3, 1984

THIS.PART -- addr
Refer to Level 2 controls documentation.

THRU starting screen#\ending screen# --
Loads screens between and including the starting and ending screen
numbers given.

TIB -- addr
User variable containing the address of the terminal input buffer.

TICKCOUNT -- tick.count
Returns real time clock ticks.

handle --
Returns a handle to the heap manager.

TOGGLE addr\mask --
Complements the 8-bit value in addr by the bit mask given.

TOGGLE. CONTROL -- n
Refer to Level 2 controls documentation.

TOKEN.FOR -- token
Inputs the next word in the input stream and converts it to a token. If
no token is found, 0 is returned instead.

TOKEN> ADDR token -- addr
Converts a relocatable token to a physical address.

TONE duration\volume\frequency * 10--
Outputs a tone via the sound generator. duration (0-255) is 1/60ths of
a second, volume (0-255) is a relative VOlume, and frequecy is
hertz* 10.

TRACE -- addr
Compller Mode switch. When enabled, the compiler emplaces the token
(TRACE) into the dictionary prior to every token that would otherwise
normally be compiled. At run-t1me, (TRACE) tests the state of DEBUG,
and 1f True, displays the stack contents with .5 and the NAME of the
following token. (See (TRACE), DEBUG, and ?TRACE) TRACE ON
Enabled trace mode. TRACE OFF Disabled trace mode.

MacFORTH Glossary Page 13 - 84 June 3, 1984

TRACE. TOKEN -- addr
REturns the address of the variable conta1n1ng the token to be compiled
when the trace switch is on. See TRACE

TRACK.CONTROL n 1 \n2 -- fl ag
Refer to Level 2 controls documentation.

TRIAD screen# --
Displays the triad containing screen#. The three screens include
screen#, beginning with a screen number evenly divided by three.
Output is suitable for source text records and can be used to replace
only updated screens in the master listing.

TRUE ---1
Constant for boolean true value.

TRUNK -- addr

TRY

User variable containing the task unique address of the task's FORTH
vocabulary.

Pushes the recovery stack frame into the return stack. See RECOVER I

ABORT" .

TYPE addr\cnt --
outputs a string. Transmits cnt characters beginning at addr to the
current output device. No action is taken for cnt less than 1.

UNDERLINE -- 04
Constant bit mask for underline text attribute.

UN I aUE.MSG -- addr
User Variable containing flag which when true, causes CREATE to issue
the warning message: ISN'T UNIQUE when a newly created word name
field is not unique within CONTEXT and TRUNK.

UNLOAD. SCRAP -- i 0 resu 1 t
Writes the desk scrap to disc under the file name "CLIPBOARD".

UNLOCK.FILE ** Refer to the File System chapter glossary **

MacFORTH Glossary Page 13 - 85 June 3, 1984

I

UNLOCK. HANDLE handle--
Marks relocatable heap data structure as unlocked. See Apple
Developer's documentation for further detalls. Reference: HUnlock

UNTIL flag --
Terminates a finite control structure. Within a colon definition, marks
the end of a BEGIN ... UNTIL loop which will terminate based on the
value of flag. If flag is true, the loop is terminated and control is
passed to the word following UNTIL. If flag is false, the loop continues
and control is passed back to the word following BEGIN. BEGIN ... UNTIL
loops may be nested freely as long as each BEGIN is paired with an
UNTIL or WHILE ... REPEAT . The error message CONDITIONALS NOT
PAIRED I may indicate an UNTIL is not paired with a BEGIN. See BEGIN,
WHILE, and REPEAT.

UP .BUTTON -- n
Refer to MacFORTH Level 2 controls documentation.

UPDATE
Mark the most recently referenced block buffer as modified. The block
will subsequently be written to mass storage when its buffer is needed
for storage of a different block, or when SAVE-BUFFERS or FLUSH is
executed.

UPDA TE.EVENT -- n
Constant event.code returned by DO.EVENTS on a update event.

UPPER addr\cnt --
Converts lowercase characters to uppercase. Any lowercase ASCII
alpha characters in the string at addr for cnt bytes are converted to
uppercase ASC II a I pha characters.

UPPER.LEFT (--)
Sets the graphics XYOFFSET to the upper left corner of the current
window.

USE -- addr
Variable containing the address of the block buffer to use next. This is
the least recently written block buffer.

USER ---
Refer to the File System glossary.

MacFORTH Glossary Page 13 - 86 June 3, 1984

USER n--
User variable defining word. Used in the form: n USER <name> which
creates a user variable <name>. n is the cell offset within the user
area where the value of <name> is stored. Execution of <name> leaves
as absolute User Area storage address.

VARIABLE
Defining word to create variable definitions. Used in the form:
VARIABLE <name> to create a dictionary entry for <name> and allot four
bytes for storage in the parameter field. When <name> is later
executed, it will place the pfa of <name> on the stack.

VBAR.BOUNDS wptr -- t\l\b\r
Refer to MacFORTH Level 2 controls documentation.

VECTOR (xl \y 1 \x2\y2 --)
Draws a line from Xl ,Y 1 to X2,Y2.

VERSION
Types the current software version number and CSI copyright not ice.
Used in TRIAD and COLD.

VERSION# -- n
Constant containing the specific version of the software release.

VIRTUAL -- position mode
See File System glossary.

VOCABULARY size--
A defining word to create a new vocabulary. Used in the form:
VOCABULARY <name> to create (in the CURRENT vocabulary) a dictionary
entry for <name>, which specifies a new ordered list of word def
initions. Subsequent execution of <name> will make it the CONTEXT
vocabulary. When <name> becomes the CURRENT vocab- ulary (see
DEFINITIONS), new definitions will be created in that list (vocabulary).
size represents the desired initial size of the vocabulary.

WI w\addr--
Stores the 16-bit value w at addr. "w-store"

W* nl\n2 -- n3
Returns the signed 32-bit product of the signed 16-bit numbers n 1 and
n2. "w-star"

MacFORTH Glossary Page 13 - 87 June 3, 1984

W, w--
Emplaces w into the dictionary. stores the 16-bit value in the
dictionary at the current dictionary pOinter value and increments the
dlctionary pOinter by 2.

W.ATTRIBUTES attributes\wptr--
Sets window attributes before window is displayed. Valid attributes
include: CLOSE.BOX NOT.VISIBLE SIZE.BOX SCROLL.UP/DOWN
SCROLL.LEFT /RIGHT TEXT.RECORD

W.BEHIND [wptr] or [-1] or [0] --
Sets window order before window is displayed. Window will be placed
behind wptr when it is displayed. 0 indicates the window should be
placed at the front of the list, -1 indicates the window should be
placed at the end of the list.

W.BOUNDS t\l\b\r\wptr --
Sets bounds rectangle for wlndow before it is displayed.

W .ll NKAGE -- addr
Variable containg the latest pOinter to a linked list of windows in
chronological order. This list is traversed during FORGET to close any
window which is about to be forgotten.

W.TITlE $addr\wptr --
Sets title for window before window is displayed.

W.TVPE w.type\wptr--
Sets window type for window before it is displayed.

Win 1 \n2 -- quotient
Divides 32-bit n 1 by 16-bit n2 leaving a 16-bit quotient. This routine
uses the 68000 signed divide hardware instruc- tion for speed.
"w-divide"

W IMOD n 1 \n2 -- remainder\quotient
Divides the 32-bit signed number n 1 by the 16-bit signed number n2,
leaving the 16-bit remainder and quotient. This routine directly
utilizes the 68000 signed divide hardware instruction. "w-divide-mod"

W> FUNC> l n --
Macintosh toolbox function call compiler. Refer to the Advanced Topics
toolbox interface discussion.

MacFORTH Glossary Page 13 - 88 June 3, 1984

W>MT n--
Macintosh toolbox function call compller. Refer to the Advanced Topics
toolbox interface discussion.

We addr -- w
Return the 16-bit value at addr. The error message "Address Error Trap
at xxxx" indicates addr is odd. See <W@> "w-fetch"

WAIT n--
Stub used to maintian source compatability with later products.

WAIT.MOUSE.UP -- flag
Waits for mouse button to come up. Returns false if button is already
up.

WATCH -- addr
Returns address of watch cursor array.

WCONST ANT n --
16 bit constant defining word. When later executed, pushes signed 16
bit value into the stack.

WHILE flag --
Marks the beginning of the "true portion" of a finite loop construct.
Used in a colon definition in the form:

BEGIN ... WHILE ... REPEAT
On a true flag, continue execution through to REPEAT , which then
returns control back to the word following the BEGIN. On a false flag,
skip to the word following the REPEAT, exiting the control structure.
The error message CONDITIONALS NOT PAIRED indicates the WHILE
was not nested within a BEGIN .. REPEAT control structure within the
current definition.

WHITE -- addr
Returns address of white pattern.

WINDOW wptr --
Selects WPTR for output.

WLIT -- n
Pushes the next 16 bit value in the interpretation stream into the stack
and advances the interpreter pointer over it.

MacFORTH Glossary Page 13 - 89 June 3, 1984

WMOD n 1 \n2 -- remainder
Divides 32-blt n 1 by 16-blt n2 leaving the 16-bit remainder of the
division. This routine uses the 68000 signed divide hardware
1nstructlon for speed. "w-mod"

WORD char -- addr
Parses a string from the input stream. Receive characters from the
input stream until the non-zero delimiting character is encountered, or
the input stream is exhausted, ignoring leading delimiters. The
characters are stored as a packed string with the character count in
the first position. The actual delimiter encounter,ed (char or nul]) is
stored at the end of the text string, but not included in the count. If
the input stream was exhausted as WORD was executed, a zero length
string will result. The address left on the stack pOints to the beginning
of the string (the count byte), the text is placed within the user area at
POCKET. An error condition exists if the string length exceeds 255,
leaving only the last 255 characters available. An unchecked error
occurs if the char given is O.

WORDS
List the CONTEXT vocabulary starting with the most recent definition.

WRITE.FIXED addr\rec#\file#-
See File System glossary.

WRITE.TEXT addr\cnt\file# --
See File System glossary.

WRITE. VIRTUAL addr\cnt\file addr\file# -
See File System glossary.

XlA TE xl \y 1 -- x2\y2
Rotates, scales and translates point XY according to the current
window XYPIVOT (angle), XYSCALE, and XYOFFSET . If cartesian flag is
true, Y coordinate is negated. X2,Y2 are expressed in QuickDraw native
coordinates relative to the current window.

XOR nl \n2 -- n3
Leave the bitwise exclusive-or of n 1 and n2. "x-or"

XV>POINT x\y -- point
Packs x under y into 32 bit point. Y resides in high order word, x in low
order.

MacFORTH Glossary Page 13 - 90 June 3, 1984

XVAXIS
D1splays a '100 x 100 cross hair at the current screen ori- gin. Positive
x and yare marked with '+', negative with '-'.

XV OFFSET x\y--
Sets the offset to the center of the coordinate system to x dots from
the right and y dots from the top of the current window.

XVPIVOT angle --
Causes all subsequent line and dot coordinates within the current
window to be pivoted by angle degrees. Shapes are not pivoted.

XVSCALE XSCALE\ YSCALE --
Causes all p01nts 1n the current w1ndow to be scaled by X & Y. Full
scale is 100 100 . To increase the size of the image. Increase the scale
factors above 100%.

ZERO.SCRAP -- io result

[

Zeroes the desk scrap and increments SCRAP. COUNTER .

Begin execution mode. The text from the input stream is subsequently
executed. See]. "left-bracket"

[COMPILE]

]

{

Forces compilation of an immediate word. Used in a colon- definition
in the form: [COMPILE] <name> Forces compilation of the following
word. This allows compilation of a compiling word when it would
otherwise be executed. "bracket-compile-bracket"

Begin compilation mode. The text from the input stream is
subsequent ly compi led. See ["right bracket"

Accepts and ignores comments from the input stream until the next
delimiting right brace. Very similar in usage to (, but can be used
when multiple occurrances of parentheses are desired in a comment.
For examp 1 e:

{ xxx (xxx) xxxx (xxx) xxxx J
is a valid comment. "brace"

MacFORTH Glossary Page 13 - 91 June 3, 1984

Mac FORTH Glossary Page 13 - 92 June 3, 1984

Alphabetic MacFORTH Glossary Index

f9gJt Uord fuR ~ fat ~

04 09 (EKCPT) 13 +REC.SIZE
04 !cno 09 (FIHo) 13 +SCRa
04 !PEHSTATE 09 (GET) 13 +THRU
04 !POIHT 09 (GET.F IlE) 14 +TUISRECT
04 !RECT 09 (lIHE) 14 +UBAR
04 !SR 09 (liHE. TO) 14 +U.ATTRIBUTES
04 09 (lOOP) 14 +U.BEHIHo
04 -BlKS 09 (nEHU.SElECTIOH:) 14 +U.lIHK
05 -DATA 10 (nOUE) 14 +U.TYPE
05 -n4TH 10 (nOUE.TO) 14 +UBOUHDS
05 -PICT 10 (OF) 15 +UCBOUHoS
05 -TEKT 10 (OH.ERROR) 15 +UFllE.PTR
05 a 10 (PEHSIZE) 15 +UlIHE.HEIGHT
05 a> 10 (PUT.F IlE) 15 +UREFCOH
05 aFllES 10 (R/U) 15 +UTITlE
05 aFIHO 10 (TEXTSIZE) 15 +KYBIAS
05 as 10 (TRACE) 15 +KYOFFSET
06 SAooR 11 (TRACK.COHTROl) 15 +XYPIUOT
06 SLIT 11 (UORo) 16 +XYPOS
06 11)COHSTAHT 16 +KYSCAlE
06 'IHTERPRET 11)U 16
06 (11 * 16 -I

06 (!OH.ACTIUATE) 11 *1 16
06 (!OH.UPDATE) 11 */noo 16 -->
01 (SLIT) 11 + 16 -1
01 «ABORT» 12 +! 16 -2
01 «ERROR» 12 +CARTESIAH 16 -3
01 (+lOOP) 12 +FIHo 11 -4
01 (. -) 12 +FOllOUER 11 -FIHD
01 (.S) 12 +HBAR 11 -FOUHo
06 (jCOD~) 12 +lOAD 11 -KEYBOARD
06 (>COoE) 13 +lOOP 11 -lATEST
06 (ABORT-) 13 +nAK.BlKa 11 -POIHT
08 (ABORT) 13 +OH.ACTIUATE 11 -TEXT
08 (00) 13 +OH.UPoATE 18 -TRAllIHG
08 (ERROR-) 13 +POIHT 16
06 (ERROR) 13 +PRIHTER 18 I
MacFORTH G J ossary Page 13 - 93 June 6, 1984

fgu .II.m':JI fA9§. lord lAp 1Im=JI

18 . ABORT 22 3+ 25 ?DAYS
18 .DATE$ 22 3- 25 ?DUP
18 . FILE. EAROA 22 4 26 ?EOF
18 .A 22 4* 26 ?EUEHT
19 .S 22 4+ 26 ?EXEC
19 . TlME$ 22 4- 26 ?FILE.EAROR
19 .TYPE 22 4/ 26 ?FILES
19 / 22 5+ 26 ?HEAP.SI2E
19 /MOD 22 5- 26 ?IH.COHTROL
19 0 22 6+ 26 ?KEYSTAOKE
19 0< 22 6- 26 ?LOADIHG
19 0- 22 7+ 26 ?OPEH
19 0> 22 7- 26 ?PAIRS
20 OBAAHCH 22 8* 27 ?PUHCT
20 OMAX 23 8+ 27 ?ROOM
20 1 23 8- 27 ?SECOHDS
20 1+ 23 8/ 27 ?SOUHD
20 1- 23 27 ?STACK
20 10+ 23 27 ?TEAMIHRL
20 10- 23 < 27 ?TRACE
20 12HOURS 23 <' 27 ?UOAD
20 16* 24 <1.11 27 @
20 16+ 24 28 " 20 16- 24 -CELLS 28 .CLOCK
20 16/ 24 -DROP 28 @EUEHT
20 lDAY 24 > 28 @FILE.HRnE
21 1 HOUA 24 >FCB 28 IIHIT
21 2 24 >IH 28 @nOUSE
21 21 24 >JSA 28 @MOUSE.DH
21 2* 24 >LlST< 28 ,MOUSEXY
21 2+ 24 >R 28 ,PEH
21 2- 25 >RECT 28 @PEHSTRTE
21 2/ 25 >SYS.UIHDOU 28 ,POIHT
21 21 25 >U!< 29 ,RECT
21 2DROP 25 >1.11< 29 @SA
21 2DUP 25 ? 29 ABORT
21 20UER 25 ?RLIGH 29 RBOAT-
21 2SURP 25 ?BLOCKS.FILE 29 RBOAT.EUEHT
21 2U>nT 25 ?COnp 29 RBS
21 3 25 ?CSP 29 RCTIURTE.EUEHT

MacFORTH Glossary Page 13 - 94 June 6, 1984

bp IIm!d fgp lord f!lu ~

29 ADD.BlOCKS 33 CASE 37 DEAL lOT
29 ADD.UIHDOU 33 CEHTER 38 DEBUG
30 AGAIH 33 CHARUIDTH 38 DEBUG.OHlY
30 ALIT 34 CHECK. BOX 38 DEClnAl
30 AllOCATE 34 CIRCLE 38 DEFAUlT.RCTIUATE
30 AllOT 34 ClERR 38 DEF IHITIOHS
30 AHD 34 ClIP>COHTEHT 38 DELETE
30 APlAY 34 CLOSE 38 DELETE.BLOCKS
30 APPEHD 34 ClOSE.RLl 38 DELETE.nEHU
30 APPEHD.BLOCKS 34 CLOSE.BOX 38 DEPTH
30 APPEHD. I TEnS 34 CLOSE.UIHDOU 38 DEUICE.COHTROl
30 APPLE.nEHU 34 cnOUE 39 DEUICE.STATUS
30 ARC 34 cnOUE> 39 DFLT.COHTROl
31 ASSIGH 35 CHT 39 DFlT.UIHDOU.TAll
31 AUTO. KEY 35 CHTR 39 DIGIT
31 AXE 35 COL 39 DIR
31 B/BUF 35 connAHD.KEY 39 DIRECTORY
31 BACK 35 conPILE 39 DISCARD.UPDATES
31 BACKPAT 35 COnPILlHG 39 DISK
31 BRSE 35 COHDEHSED 39 DISK.EUEHT
31 BEGIH 35 COHFIGURE.PRIHTER 39 DISPOSE.COHTROl
31 BHEAD 35 COHSOlE 40 DKGRAY
32 BL 36 COHSTAHT 40 DO
32 BLACK 36 COHTEXT 40 DO.EUEHTS
32 BLAHKS 36 COHUERT 40 DOES>
32 BlK 36 COPY 40 DOT
32 BLOCK 36 COS 40 DOUH.BUTTOH
32 BLOCK-FilE 36 COUHT 40 DP
32 BOLD 36 CR 40 DPl
32 BOOlEAH 36 CREATE 41 DRAU.CHAR
32 BRAHCH 36 CREATE.BLOCKS.FILE 41 DRAU.COHTROLS
32 BRIHG.TO.FROHT 37 CREATE.FllE 41 DRAU.nEHU.BAR
32 BS 37 CRlF 41 DRAU.TO
33 BUFFER 37 CSP 41 DRAUSTRIHG
33 BYE 37 CURREHT 41 DROP
33 C! 37 CURREHT-FllE 41 DRUR.EUEHT
33 C, 37 CURREHT.POSITIOH 41 DUP
33 C/l 37 CURSOR 41 DUP>R
33 C. 37 CURSOR.CHAR 41 EJECT
33 CARTESIAH 37 DAYS> 42 ELSE

MacFORTH Glossary Page 13 - 95 June 6, 1984

bB lIord f.gp JIgd f.gp .II!lt.d

42 EMIT 47 FRAME 50 HIDE.UIHDOU
42 EMPTY 47 FROM.CURREHT 50 HILITE.COHTROL
42 EMPTY-BUFFERS 47 FROM.EHD 51 HILITE .MEHU
42 EHCLOSE 47 FROM.HEAP 51 HILITE.UIHDOU
42 EHDCASE 47 FROM. START 51 HLD
43 EHDOF 47 FROHT.UIHDOU 51 HOLD
43 EHTER.FLAG 47 FUHC>L 51 HUSH
43 ERASE 46 FUHC>U 51 I
43 ERASE.RECT 46 GET 51 II
43 ERROR 46 GET.COHTROL 51 1+
43 ERROR- 46 GET.CURSOR 51 I+!
43 EUEHT.LOOP 46 GET. DATES 51 I ...
44 EUEHT.RECORD 46 GET.EOF 51 I+U!
44 EUEHT.TABLE 46 GET.F ILE. IHFO 52 I+UIt
44 EUEHTS 46 GET.FILE.TYPE 52 1-
44 EXECUTE 46 GET .ICOH 52 I.
44 EXIT 46 GET.LIHE.HEIGHT 52 IBERM
44 EXPECT 46 GET.PICTURE 52 IC!
44 EXTEHDED 46 GET.PIXEL 52 ICe
45 EXTERHRL 48 GET.REC.LEH 52 10.
45 FALSE 46 GET. SCRAP 52 IF
45 FCB.LEH 49 GET.TEXTFOHT 52 IFEHD
45 FEHCE 49 GET. TEXT MODE 53 iFTRUE
45 FIELD 49 GET. TEXTS IZE 53 ILLEGAL.FILE
45 FILE.ERROR.MSGS 49 GET.TEXTSTYLE 53 IMMEDIRTE
45 FILE.TYPE 49 GET. TIMES 53 IH.BUTTOH
45 FILL 49 GET.UIHDOU 53 IH.CHECKBOX
45 FIHD 49 GET.XYOFFSET 53 IH.CLOSE.BOX
45 FIHD.COHTROL 49 GET.XYPIUOT 53 IH.DESKTOP
46 FIHD.UIHDOU 49 GET.XYSCRLE 53 IH.DRRG.BOX
46 FIRST 49 GIHIT 54 IH.HEAP
46 FLUSH 50 GLOBRL>LOCAL 54 IH.LOUER.UIHDOU
46 FLUSH. EUEHTS 50 GRAY 54 IH.MEHUBAR
46 FLUSH.FILE 50 HRHDLE.SIZE 54 IH.S IZE.BOX
46 FLUSH.UOL 50 HRHDLER 54 IH.SYS.UIHDOU
46 FMT.DRTES 50 HBAR.BOUHDS 54 IH.THUMB
46 FMT. TIMES 50 HERE 54 IHCLUDE-
46 FOLLOUER 50 HEX 54 IHDEH
47 FORGET 50 HIDE.CURSOR 54 I HIT. CURSOR
47 FORTH 50 HIDE.PEH 54 IHITIRLS

MacFORTH Glossary Page 13 - 96 June 6} 1984

fu.l lord tAu lord fAp JlId

55 IHPUT.HUnBER 59 LTGRRY 63 HEXT.PTR
55 IHPUT.STRIHG 59 n* 63 HFR
55 IHTERHRL 59 M/nOD 63 HO.CLlP
55 IHTERPRET 59 MRC.COH 63 HO.ECHO
55 IHURLID.RECT 59 MRC.COHSOLE 63 HO.RETRY
55 I HUERT 59 MRC.FILES 64 HOH.PURGRBLE
55 10-RESULT 59 MRC.R/U 64 HOT
55 ITRLlC 59 MRKE.RECT 64 HOT.UISIBLE
55 ITEn.CHECK 60 MRKE.TOKEH 64 HOTPRTBIC
55 ITEn.EHRBLE 60 MRTCH 64 HOTPRTCOPY
56 ITEM.ICOH 60 MRX 64 HOTPRTOR
56 ITEM.nRRK 60 MRX.X 64 HOTPRTXOR
56 ITEn.STYLE 60 MRX.Y 64 HOTSRCBIC
56 J 60 MEHU.EHRBLE 64 HOTSRCCOPY
56 KEY 60 nEHU.HRHDLE 64 HOTSRCOR
56 KEY.DOUH 60 MEHU.SELECTIOH: 64 HOTSRCXOR
56 KEY. STROKE 60 nEHUS 65 HULL.EUEHT
56 KEY.UP 60 MIH 65 HUMBER
56 KILL.COHTROlS 61 MIHlnUM.OBJECT 65 OBJECT.FULL!!
56 KILL. 10 61 MIHIMUM.UOCRB 65 OBJECT.HRHDlE
56 L>FUHC>l 61 MOD 65 OBJECT.ROOn
51 LRTEST 61 MOHTHS 65 OF
51 LERUE 61 MOUSE.BUTTOH 65 OFF
51 LIMIT 61 MOUSE.DOUH 65 OFF.COHTROL
51 LIHE' 61 MOUSE. DOUH. RECORD 65 OFFSET
51 LI HE. HE I GHT 61 MOUSE. UP 65 OH
51 LIST 61 MOUSE. UP. RECORD 65 OH.RCTIURTE
51 LIT 62 MOUSE.URS .. 65 OH.COHTROL
51 LITERRL 62 MOUE.TO 66 OH.ERROR
58 LnOUE 62 MT 66 OH.UPDATE
58 LnOUE> 62 MT>U 66 OPEH
58 LOAD 62 MUHGER 66 OPEH.DEUICE
58 LOAD.SCRRP 62 HEEDED 66 OPEH.PORT
58 lOCAL>GlOBAL 62 HEGATE 66 OPEH.PRIHTER
58 LOCK.FllE 62 HETUOAK.EUEHT 66 OPEH.ASAC
58 lOCK. FOHT 62 HEU.MEHU 66 OPEH.SOUHD
58 lOCK.HRHDlE 62 HEU.STAIHG 66 OPTIOHS.nEHU
58 LOOP 63 HEU.TOKEH 61 OA
59 lOUEA.CASE 63 HEU.UIHDOU 61 OS.TARP
59 lOUEA.lEFT 63 HEXT.FCB 61 OTHERUISE

MacFORTH Glossary Page 13 - 97 June 6J 1984

fgp ~ t!I!m Il!.rJl t!I!m lord

67 OUTLIHE 71 PUSH. BUTTOH 75 RP!
67 OUAL 71 PUT.SCRAP 75 R~

67 OUER 71 QUERY 75 RRECTAHGLE
67 PAD 71 QUIET 75 RSRUMEM
67 PAGE 71 QUIT 75 RST.PRIHTER
67 PAGE.DOUH 71 Ra 75 SO
67 PAGE.UP 71 R/U 75 SAUE-DUFFERS
67 PAIHT 71 RO 76 SCALE
68 PATDIC 72 R> 76 SCALE>XY
68 PATCOPY 72 R>DROP 76 SCALE>Y
68 PATOR 72 fI@ 76 SCAH.FROM
68 PATTERH 72 RADIO.DUTTOH 76 SCR
68 PATXOR 72 RAHDOM 76 SCRAP.COUHTER
68 PAUSE 72 RAHGE 76 SCRAP.HAHDLE
68 PEH.HORMAL 72 RAHGE.OF 76 SCRAP.LEH
68 PEHMODE 72 RDRAU 76 SCRATCH
68 PEHPAT 72 READ.FIXED 76 SCREEH.DITS
68 PEHSIZE 73 READ. TEXT 76 SCROLL
68 PFA 73 READ.UIRTUAL 76 SCROLL.LEFT/RIGHT
69 PICK 73 REAL. FOHT? 76 SCROLL.UP
69 PLAIH 73 RECOUER 76 SCROLL.UP/DOUH
69 PLAY 73 RECOUER.HAHDLE 77 SEED
69 PLOT .ICOH 73 RECT 77 SELECT
69 PHTA 73 RECTAHGLE 77 SELECT.UIHDOU
69 POCKET 73 REG.SET 77 SEHD.DEHIHD
69 POIHT 73 REGIOH 77 SET.COHTROL
69 POIHT>XY 73 RELEASE 77 SET.COHTROL.MAX
69 POLYGOH 73 REMOUE 77 SET.COHTROL.MIH
69 POSITIOH.FIXED 73 REHAME 77 SET.COHTROL.RAHGE
70 POST.EUEHT 74 REPEAT 77 SET.CURSOR
70 PREU 74 RESIZE.HAHDLE 77 SET.EOF
70 PRIHT 74 RESIZE.ODJECT 77 SET.FEHCE
70 PRIHT.DITS 74 RESIZE.UOCAD 78 SELFILE.IHFO
70 PRIHT.FCD 74 RESUME 78 SET .ITEM$
70 PRIHT.SCREEH 74 RETRY 78 SET.ORIGIH
70 PRIHT.UIHDOU 74 REUIHD 78 SET.REC.LEH
70 PRIHTER 74 RMOUE 78 SET.STRIHG
70 PRIHTER.OHLY 74 ROLL 78 SET.UTITLE
70 PTIHRECT 75 ROOM 78 SETUP.SERIAL
71 PURGADLE 75 ROT 78 SHADDU

MacFORTH Glossary Page 13 - 98 June 6, 1984

lip, ~ fJlu. ~ fI9.t! JIs!r.d

76 SHOU 62 TEDISPOSE 65 TYPE
76 SHOU.COHTROLS 62 TEIDLE 65 UHDERLIHE
76 SHOU.CURSOR 62 TEIHSERT 65 UHIQUE.nSG
76 SHOU.PEH 62 TEKEY 65 UHLORD.SCRRP
79 SHOU.UIHDOU 62 TEHEU 65 UHLOCK.FILE
79 SIGH 62 TEPRSTE 66 UHLOCK.HRHDLE
79 SIH 62 TERECORD 66 UHTIL
79 S12E.80X 62 TESCROLL 66 UP.8UTTOH
79 SI2E.UIHDOU 62 TESET.JUST 66 UPDRTE
79 SnUDGE 82 TESET.SELECT 66 UPDRTE.EUEHT
79 SOUHD.FC8 62 TESET.TEXT 66 UPPER
79 SP! 62 TEST.COHTROL 66 UPPER. LEFT
79 SPe 62 TEUPDRTE 66 USE
79 SPRCE 63 TEXT.BOX 66 USE-
60 SPRCES 63 TEHT.CLICK 67 USER
60 SQRT 63 TEHT.FIELD 67 URRIR8LE
60 SRC81C 63 TEHT.RECORD 67 U8RR.80UHDS
60 SRCCOPY 63 TEHTFOHT 67 UECTOR
60 SRCOR 63 TEHTnODE 67 UERSIOH
60 SRCXOR 63 TEHTSI2E 67 UERSIOHa
60 STRCK.ERROR 63 TEHTSTYLE 67 UIRTURL
60 STRRT.FLAG 63 THEH 67 UOCR8ULRRY
60 STRTE 63 THIS.COHTROL 67 U!
80 STRTUS 84 THIS.PRRT 87 U*
60 STILL.DOUH 84 THRU 66 U,
60 STRIHGUIDTH 84 Tl8 66 U.RTTRIBUTES
61 SURP 64 TICKCOUHT 66 U.8EHIHD
61 SYS.FILE 84 TO.HERP 66 U.80UHDS
81 SYS.UIHDOU 64 TOGGLE 88 U.L1HKRGE
61 SYSBEEP 64 TOGGLE.COHTROL 66 U. TITLE
61 SYSPRRnS 84 TOKEH.FOR 88 U.TYPE
81 SYSTEn.EDIT 84 TOKEH>RDDR 66 UI
61 TR8.STOPS 64 TOHE 88 U/nOD
81 TERCTIURTE 64 TRRCE 66 U>FUHC>L
81 TECRLTEXT 65 TRRCE.TOKEH 89 u>nT
61 TECLICK 85 TRRCK.COHTROL 89 UI
81 TECOPY 85 TRIRD 69 URIT
81 TECUT 85 TRUE 89 URIT.nOUSE.UP
81 TEDERCTIURTE 85 TRUHK 89 URTCH
82 TEDELETE 65 TRY 89 UCOHSTRHT

MacFORTH Glossary Page 13 - 99 June 6, 1984

lJIu Nord

69 UHILE
69 UHITE
69 UIHDOU
69 ULiT
90 UnOD
90 UORD
90 UORDS
90 UR ITE.F I XED
90 URITE.TEXT
90 URITE.UIRTUAL
90 XEXPECT
90 XLATE
90 XOR
90 XY>POIHT
91 XYAXIS
91 XYOFFSET
91 XYPIUOT
91 XYSCALE
91 2ERO.SCRAP
91 [
91 [COMPILE]
91]
91 {

MacFORTH Glossary Page 13 - tOO June 6, 1984

MacFORTH Glossary Index by Subject

Stack Manipulation:

Ym=.d fggC Uord fgg§!

2DAOP (21) A> (72)
2DUP (21) A>DAOP (72)
20UEA (21) Act (72)
2SUAP (21) AOLL (74)
-DAOP (24) AOT (75)
>A (24) AP! (75)
>AECT (25) A~ (75)
?DUP (25) SO (75)
DAOP (41) SP! (79)
DUP (41) SPI (79)
DUP>A (41) SUAP (61)
OUEA (67)
PICK (69)
AO (71)

kQ.Iparjson;

~ fg~

0< (19)
0- (19)
0> (19)
< (23)

(24)
> (24)
AAHGE (72)

MacFORTH Glossary Page 13 - 101 June 6, 1984

ftrith,etlc and logicgl:

~ fJ!g!! ~ Pa9§!

* (11) 1+ (22)
*1 (11) 1- (22)
/MOO (11) 6 (22)
+ (11) 6+ (23)

(16) 6- (23)
1 (19) 61 (23)
IMOo (19) "CELLS (24)
OMAX (20) ABS (29)
1+ (20) AHo (30)
1- (20) BOOLEAH (32)
10+ (20) COS (36)
10- (20) FALSE (of5)
16* (20) M* (59)
16+ (20) MIMOD (59)
16- (20) MAX (60)
161 (20) MIH (60)
2* (21) MOD (61)
2+ (21) HEGATE (62)
2- (21) HOT (64)
21 (21) OR (67)
3+ (22) RAHDOM (72)
3- (22) TRUE (65)
4* (22) UI (66)
4+ (22) UIMOD (66)
4- (22) UMOO (90)
41 (22) XOR (90)
5+ (22)
5- (22)
6+ (22)
6- (22)

MacFORTH Glossary Page 13 - 102 June 6, 1984

ne.ory:

Uord fg9!! ~ Page·

(O-f) Ie. (52)
)COHSTAHT (11) IH.HEAP (5-f)
)U (11) LnOUE (58)
+! (12) LnOUE> (58)
+FOLLOUER (12) LOCK.FOHT (58)
2! (21) LOCK.HAHDLE (58)
2@ (21) HOH.PURGABLE (6-f)
<U&P (24) OFF (65)
>U!< (25) OH (65)
>U&P< (25) PURGABLE (11)
?HEAP.SI2E (26) RECOUER.HAHDLE (13)
@ (21) RESI2E.HAHDLE (1-f)
@@ (28) RRECTAHGLE (15)
@CLOCK (28) RSRUnEn (15)
C! (33) TO.HEAP (8-f)
e. (33) TOGGLE (8-f)
FROM.HEAP (-f1) UHLOCK.HAHDLE (86)
HAHDLE.SI2E (50) U! (81)
I! (51) U* (81)
1+ (51) U&P (89)
I+! (51)
1+(1 (51)
I+U! (51)
I+U&P (52)
1- (52)
I@ (52)
IC! (52)

MacFORTH Glossary Page 13 - 103 June 6, 1984

Control Structure;;

J!grjI fgg!! Uord Page-

(+LOOP) (07) I (51)
(DO) (06) IF (52)
(LOOP) (09) IFEHD (52)
(OF) (10) IFTRUE (53)
+LOOP (13) J (56)
OBRAHCH (20) LEAUE (57)
AGAIH (30) LOOP (56)
BACK (31) OF (65)
BEGIH (31) OTHERUISE (67)
BRAHCH (32) RAHGE.OF (72)
CASE (33) REPEAT (74)
DO (40) THEH (63)
ELSE (42) UHTIL (66)
EHDCASE (42) UHILE (69)
EHDOF (43)
EXIT (44)

Con~ole I/O:

~ Page- ~ fg~

. TYPE (19) nAC.COH (59)
?KEYSTROKE (26) nAC.COHSOLE (59)
?TERnIHAL (27) HO.ECHO (63)
CHT (35) PAGE (67)
CHTR (35) PHTR (69)
COL (35) QUERY (71)
COHSOLE (35) SCROLL (76)
CR (36) SCROLL.UP (76)
CURSOR. CHAR (37) SPACE (79)
DFLT.COHTROL (39) SPACES (60)
En IT (42) TAB. STOPS (61)
EHTER.FLAG (43) TYPE (65)
EXPECT (44) XEXPECT (90)
KEY (56)
LIHE- (57)

MacFORTH Glossary Page 13 - 104 June 6J 1984

HUleric Conuer~ion:

Uord Pagea ~ fg9§!

a> (05) FMT.DATE$ (46)
as (05) FMT. TlME$ (<f6)

(18) GET.DATE$ (<f8)
. DATES (18) GET. TlME$ (<f9)
.R (18) HEX (50)
. TIMES (19) HLD (51)
<a (23) HOLD (51)
? (25) MOHTHS (61)
?DAYS (25) HUMBER (65)
?PUHCT (21) SEED (11)
?SECOHDS (21) SIGH (19)
BASE (31) SIH (19)
COHUERT (36) SQRT (80)
DAYS> (31) TICKCOUHT (8<f)
DECIMAL (38)
DIGIT (39)
DPL (<f0)
EHCLOSE (<f2)

Ma~~ Storage:

~ Pa~ Uord Pagea

aFILES (05) ?OPEH (26)
(GET.FILE) (09) &FILE.HAME (28)
(LlHE) (09) ADD.BLOCKS (29)
(PUT. FILE) (10) ALLOCATE (30)
(R/U) (10) APPEHD.BLOCKS (30)
+MAX.BLKa (13) ASSIGH (31)
+REC.SI2E (13) BLOCK (32)
+SCRa (13) BLOCK-FILE (32)
>FCB (2<f) BUFFER (33)
?BLOCKS.FILE (25) CLOSE. ALL (3<f)
?EOF (26) COpy (36)
?FILES (26) CREATE. BLOCKS. FILE (36)

MacFORTH Glossary Page 13 - 105 June 6) 1984

Mass Storage (continued):

~ PaQ!! ~ Page·

CREATE.FILE (37) POIHT (69)
CURREHT-FILE (37) POSITIOH.FIXED (69)
CURREHT.POSITIOH (37) PREU (70)
DELETE (38) R/U (71)
DELETE. BLOCKS (38) READ.FIXED (72)
DISK (39) READ. TEXT (73)
EJECT (.{1) READ.UIRTUAL (73)
EMPTY-BUFFERS (-{2) REMOUE (73)
EXTERHAL (-{5) REHAME (73)
FCB.LEH (-{5) REUIHD (7-{)
FILE.ERROR.MSGS (-{5) SAUE-BUFFERS (75)
FILE. TYPE (-{5) SELECT (77)
FIRST (-{6) SET.EOF (77)
FLUSH (-{6) SET .FILE.IHFO (78)
FLUSH.FILE (-{6) SET.REC.LEH (78)
FLUSH.UOL (-{6) SYS.FILE (81)
FROM.CURREHT (-{7) UHLOCK.FILE (85)
FROM.EHD (-{7) UPDATE (86)
FROM.START (47) USE (86)
GET.EOF (-{8) USE- (86)
GET.FILE.IHFO (-{8) UIRTUAL (87)
GET.FILE.TYPE (-{8) URITE .FIXED (90)
GET.ICOH (48) URITE.TEXT (90)
GET.PICTURE (-{8) URITE.UIRTUAL (90)
GET.REC.LEH (-{8)
ILLEGAL.FILE (53)
I HCLUDE- (5-{)
IHTERHAL (55)
10-RESULT (55)
KILL-IO (56)
LIMIT (57)
LOCK.FILE (58)
MAC.FILES (59)
MAC.R/U (59)
HEXT.FCB (63)
OFFSET (65)
OPEH (66)
OPEH.RSRC (66)

MacFORTH Glossary Page 13 - 106 June 6, 1984

UQQabylari§§ gnd
DictiQnary Manag§l§nt:

Uord Page· Uord Page·

·FIHD (05) HFA (63)
(06) OBJECT. FULL! ! (65)

(FIHD) (09) OBJECT.HAHDLE (65)
+FIHD (12) OBJECT.ROOM (65)

(16) PFA (66) . (16) RESIZE.OBJECT (1<f) ,
-FIHD (17) RESIZE.UOCRB (1<f)
-FOUHD (17) SET.FEHCE (11)
-LRTEST (17) TRUHK (65)
?ALIGH (25) UOCABULARY (61)
ALLOT (30) U, (66)
APPEHD (30)
AXE (31)
BHERD (31)
C, (33)
COHTEXT (36)
CURREHT (31)
DEALLOT (31)
DEFIHIT 10HS (36)
DP (<f0)
EMPTY (<f2)
FEHCE «f5)
FIHD (<f5)
FORGET (41)
FORTH (41)
HERE (50)
LATEST (51)
MIHIMUM.OBJECT (61)
MIHIMUM.UOCAB (61)

MacFORTH Glossary Page 13 - 107 June 6, 1984

COlpi ler:

~ f.gg§! ~ Pa~

!CSP (04) LOAD (58)
• (04) nAKE,TOKEH (60)
'IHTERPRET (06) HEU,TOKEH (63)
((06) HEXT,PTR (63)
(iCODE@) (08) POCKET (69)
(>CODE) (08) QUIT (71)
(UORD) (11) SCAH,FROn (16)
+LOAD (12) SnUDGE (79)
+THRU (13) STATE (80)
--> (16) THRU (84)

(23) TlB (84)
; (23) TOKEH,FOR (84)
>IH (24) TOKEH>ADDR (84)
?LOADIHG (26) USER (81)
ALIT (30) UAR I ABLE (81)
BLK (32) UCOHSTAHT (89)
COnPILE (35) ULiT (89)
COnPILlHG (35) UORD (90)
COHSTAHT (36) [(91)
CREATE (36) [COnPILE] (91)
DOES> (40)] (91)
EXECUTE (44) { (91)
FIELD (45)
InnED lATE (53)
IHTERPRET (55)
LIT (51)
LITERAL (51)

Toolbox Interface:

Uord PaS!!! ~ Paget

2U>nT (21) nT>U (62)
FUHC>L (41) OS,TRAP (61)
FUHC>U (48) U>FUHC>L (88)
L>FUHC>L (56) U>nT (89)
nT (62)

MacFORTH Glossary Page 13 - 108 June 6, 1984

Error Handling:

Uord f!m! ~ Page·

«ABORT» (07) ABORT (29)
«ERROR)) (07) ABORT- (29)
(ABORT-) (08) CSP (37)
(ABORT) (08) ERROR (of3)
(ERROR-) (08) ERROR- (of3)
(ERROR) (08) HO.RETRY (63)
(E)(CPT) (09) OH.ERROR (66)
(OH.ERROR) (10) RECOUER (73)
. ABORT (18) REG.SET (73)
.FILE.ERROR (18) RESUME (7of)
.S (19) RETRY (7of)
?COMP (25) TRY (85)
?CSP (25)
?E)(EC (26)
?FILE.ERROR (26)
?PAIRS (26)
?STACK (27)

~

Uord PaS!! Uord Page·

(MEHU.SELECTIOH:) (09) MEHU.EHRBLE (60)
APPEHD. ITEMS (30) MEHU.HAHDLE (60)
DELETE.MEHU (38) MEHU.SElECTIOH: (60)
DRAU.MEHU.BRR (of 1) MEHUS (60)
HILI TE. MEHU (51) HEU.MEHU (62)
IH.MEHUBAR (5of) OPTIOHS.MEHU (66)
ITEM.CHECK (55) SET .ITEns (78)
ITEM.EHRBLE (55) SYSTEM. ED IT (81)
ITEn.ICOH (56)
ITEM.MARK (56)
ITEM.STYLE (56)

MacFORTH Glossary Page 13 - 109 June 6, 1984

Uindo.s:

~ Page· Uord Pa~

(!OH.ACTIUATE) (06) HIDE.UIHDOU (50)
(!OH.UPDATE) (06) HILITE.UIHDOU (51)
+HBAR (12) IH.CLOSE.BOX (53)
+OH.ACTIUATE (13) IH.DESKTOP (53)
+OH.UPDATE (13) IH.DRAG.BOX (53)
+UBAR (14) IH.LOUER.UIHDOU (5.f)
+U.RTTRIBUTES (1.f) IH.SIZE.BOX (5.f)
+U.BEHIHD (1.f) IH.SYS.UIHDOU (5.f)
+U.L1HK (H) IHURLID.RECT (55)
+U.TYPE (H) L1HE .HEIGHT (57)
+UBOUHDS (H) HEU.UIHDOU (63)
+UCBOUHDS (15) HO.CLlP (63)
+UFILE.PTR (15) HOLUISIBLE (6.f)
+ULIHE.HEIGHT (15) OH.RCTIUATE (65)
+UREFCOH (15) OH.UPDATE (66)
+UTITLE (15) SCROLL.LEFT/RIGHT (76)
+XYBIAS (15) SCROLL.UP/DOUH (76)
+XYOFFSET (15) SELECT.UIHDOU (77)
+XYPIUOT (15) SEHD.BEHIHD (77)
+XYPOS (16) SET.UTITLE (78)
+XYSCALE (16) SHOU.CURSOR (78)
>SYS.UIHDOU (25) SHOU.PEH (78)
?IH.COHTROL (26) SHOU.UIHDOU (79)
ADD.UIHDOU (29) SIZE.BOX (79)
BRIHG.TO.FROHT (32) SIZE.UIHDOU (79)
CHECK. BOX (3.f) SYS.UIHDOU (81)
CLIP>COHTEHT (3.f) UBRR.BOUHDS (87)
CLOSE (3.f) U.ATTRIBUTES (88)
CLOSE.BOX (3.f) U.BEHIHD (88)
CLOSE.UIHDOU (3.f) U.BOUHDS (88)
DEFAULT. ACT IUATE (38) U.L1HKAGE (88)
DFLT.UIHDOU.TAIL (39) U. TITLE (88)
DISCRRD.UPDATES (39) U.TYPE (88)
FIHD.COHTROL (.f5) UIHDOU (89)
FIHD.UIHDOU (.f6)
FROHT.UIHDOU (.f7)
GET.UIHDOU (.f9)
HBRR.BOUHDS (50)

MacFORTH Glossary Page 13 - 110 June 6, 1984

GrgDhic8:

Uord Page- Uord Page-

!PEHSTATE (O.f) GET.TEXTMODE (.f9)
IPOIHT (O.f) GET.TEXTSI2E (.f9)
!RECT (04) GET.TEXTSTYLE (49)
(LI HE. TO) (09) GET.XYOFFSET (.f9)
(MOUE) (10) GET.XYPIUOT (.f9)
(MOUE. TO) (10) GET.XYSCALE (.f9)
(PEHSI2E) (10) GIHIT (.f9)
(TEXTSI2E) (10) GLOBAL>LOCAL (50)
+CARTESIAH (12) GRAY (50)
+POIHT (13) HIDE.CURSOR (50)
-POIHT (17) HIDE.PEH (50)
ttPEH (28) I BEAM (52)
.PEHSTATE (28) I HIT. CURSOR (54)
.Po-IHT (28) I HUERT (55)
.RECT (29) ITALIC (55)
ARC (30) LOCAL>GLOBAL (58)
BACKPAT (31) LOUER.LEFT (59)
BLACK (32) LTGRAY (59)
BOLD (32) MAKE.RECT (59)
CARTESIAH (33) MAX.X (60)
CEHTER (33) MAX.Y (60)
CHARUIDTH (33) MOUE.TO (62)
CIRCLE (34) HOTPATBIC (64)
CLEAR (34) HOTPATCOPY (6.f)
COHDEHSED (35) HOTPATOR (6.f)
CURSOR (37) HOTPATXOR (64)
DKGRAY (.f0) HOTSRCBIC (64)
DOT (.fO) HOTSRCCOPY (6.f)
DRAU.CHAR (.f1) HOTSRCOR (6.f)
DRAU.TO (.f1) HOTSRCXOR (64)
DRAUSTRIHG (41) OPEH.PORT (66)
ERASE.RECT (.f3) OUTLIHE (67)
EXTEHDED (.f.f) OUAL (67)
FRAME (.f7) PAIHT (67)
GET.CURSOR (.f8) PATBIC (68)
GET.LIHE.HEIGHT (.f8) PATCOPY (68)
GET. PIXEL (48) PATOR (68)
GET.TEXTFOHT (49) PATTERH (68)

MacFORTH Glossary Page 13 - 111 June 6) 1984

Gcaphics (continued):

Uord Pa9§! ~ ~

PATKOR (68) SHADOU (18)
PEH.HORnAL (68) SRCBIC (80)
PEHnODE (68) SRCCOPY (80)
PEHPAT (68) SRCOR (80)
PEHSIZE (68) SRCKOR (80)
PLAIH (69) STRIHGUIDTH (80)
PLOT .ICOH (69) TEKTFOHT (83)
POIHT>KY (69) TEKTnODE (83)
POLYGON (69) TEKTSIZE (83)
PTIHRECT (10) TEKTSTYLE (83)
RDRAU (12) UNDERLIHE (85)
RERL.FONT? (13) UPPER. LEFT (86)
RECT (13) UECTOR (81)
RECTAHGLE (13) UATCH (89)
REGIOH (13) UHITE (89)
RnOUE (1-f) KLATE (90)
SCALE (16) KY>POINT (90)
SCALE>KY (16) KYAKIS (91)
SCRLE>Y (16) KYOFFSET (91)
SCREEN.BITS (16) KYPIUOT (91)
SET. CURSOR (11) KYSCALE (91)
SET.ORIGIN (18)

String nanipulation:

Uord Pa~ Uord Page-

(04) CnOUE (3-f)
SAODR (06) CnOUE> (3-f)
SLIT (06) COUHT (36)
(SLIT) (01) CRLF (31)
(. -) (01) ERASE (-f3)
-TEKT (11) FILL (-f5)
-TRAILING (18) nATCH (60)
• (18) PAD (61)

?UORD (21) UPPER (86)
BLANKS (32)

MacFORTH Glossary Page 13 - 112 June 6J 1984

User Interface:

~ Pa~ Uord Page·

(GET) (09) STATUS (80)
>LlST< (2-0 STILL.DOUH (80)
?ROOM (27) TRIAD (85)
@IHIT (28) UERSIOH (87)
_MOUSE (28) UERSIOH· (87)
_MOUSE.DH (28) UAIT (89)
_MOUSEXY (28) UORDS (90)
BYE (33)
DIR (39)
DIRECTORY (39)
FOLLOUER (-f6)
GET (-f8)
10. (52)
MOUSE.BUTTOH (61)
RELEASE (73)
SHOU (78)

Mgchine Interfgce:

!SR (O-f)
>JSR (2-f)
_SR (29)
DEUICE.COHTROL (38)
DEUICE.STATUS (39)
START. FLAG (80)

MacFORTH Glossary Page 13 - 113 June 6, 1984

~

Uord Page·

(.S) (07)
(TRRCE) (10)
?TRRCE (27)
DEBUG (38)
DEBUG.OHLY (38)
DEPTH (38)
HAHDLER (50)
IHDEM (5<{)
IHITIALS (5<{)
I HPUT.HUMBER (55)
IHPUT.STRIHG (55)
LIST (57)
LOUER.CASE (59)
HEEDED (62)
PAUSE (68)
QUIET (71)

R· (71)

Printer and Serial:

+PRIHTER (13)
COHF I GURE . PR I HTER (35)
OPEH.DEUICE (66)
OPEH.PRIHTER (66)
PRIHT (70)
PRIHT.BITS (70)
PRIHT.FCB (70)
PRIHT.SCREEH (70)
PRIHT.UIHDOU (70)
PRIHTER (70)
PRIHTER.OHLY (70)
RST.PRIHTER (75)
SETUP.SERIAL (78)

MacFORTH G Jossary Page 13 - 114

Uord Page·

ROOM (75)
SCR (76)
SCRATCH (76)
STACK. ERROR (80)
TRRCE (8<{)
TRACE. TOKEH (85)
UHIQUE.MSG (85)

June 6, 1984

Event Related:

Uord f.g9l! Uord Pa9§,!

-KEYBOARD (17) KEY. DOUH (56)
?EUEHT (26) KEY.STROKE (56)
@EUEHT (28) KEY.UP (56)
ABORT. EUEHT (29) MOUSE.DOUH (61)
ACTIUATE.EUEHT .. (29) MOUSE.DOUH.RECORD (61)
APPlE.MEHU (30) MOUSE.UP (61)
AUTO.KEY (31) MOUSE.UP.RECORD (61)
COMMAHD.KEY (35) MOUSE.UAS .. (62)
DISK.EUEHT (39) HETUORK.EUEHT (62)
DO. EUEHTS ("0) HUll. EUEHT (65)
DRUR.EUEHT ("1) POST. EUEHT (70)
EUEHT.lOOP ("3) UPDATE.EUEHT (86)
EUEHT.RECORD ('H) UAIT.MOUSE.UP (89)
EUEHT.TABlE ("")
EUEHTS ("")
FlUSH.EUEHTS ("6)

Constants:

Uord Page- Uord f.g9l!

-BlKS (04) 1 HOUR (21)
-DATA (05) 2 (21)
-M4TH (05) 3 (21)
-PICT (05) 4 (22)
-TEXT (05) B/BUF (31)

- (OS) Bl (32)
-1 (16) BS (32)
-2 (16) C/l (33)
-3 (16)
-4 (17)

0 (19)
1 (20)
12HOURS (20)
lDAY (20)

MacFORTH Glossary Page 13 - 115 June 6, 1984

Sound:

~ fg9§!

?SOUHD (21)
APLAY (30)
HUSH (51)
OPEH.SOUHD (66)
PLAY (69)
SOUHO.FCB (19)
SYSBEEP (81)
TOHE (8<f)

Toolbox:

Uord Page· Uord Pa9§!

(TRACK.COHTROL) (11) PUSH. BUTTOH (11)
+TUISRECT (14) PUT. SCRAP (11)
DISPOSE.COHTROL (39) RADIO.BUTTOH (12)
DOUH.BUTTOH (40) SCRAP.COUHTER (16)
DRAU.COHTROLS (41) SCRAP.HAHDLE (16)
GET.COHTROL (<f8) SCRAP.LEH (16)
GET. SCRAP (48) SET.COHTROL (11)
HILITE.COHTROL (50) SET.COHTROL.MAX (11)
IH.BUTTOH (53) SET.COHTROL.MIH (11)
IH.CHECKBOX (53) SET.COHTROL.RAHGE (11)
IH.THUMB (54) SET.STRIHG (18)
KILL.COHTROLS (56) SHOU.COHTROLS (18)
LOAD. SCRAP (58) SYSPARMS (81)
MUHGER (62) TEACTIUATE (81)
HEU.STRIHG (62) TECALTEXT (81)
OFF.COHTROL (65) TECLICK (81)
OH.COHTROL (65) TECOPY (81)
PAGE.DOUH (61) TECUT (81)
PAGE.UP (61) TEDEACTIUATE (81)

MacFORTH Glossary Page 13 - 116 June 6, 1984

Toolbox (continued):

TEDELETE (82)
TEDISPOSE (82)
TEIDLE (82)
TEIHSERT (82)
TEKEY (82)
TEHEU (82)
TEPASTE (82)
TERECORD (82)
TESCROLL (82)
TESET.JUST (82)
TESET.SELECT (82)
TESET.TEXT (82)
TEST.COHTROL (82)
TEUPDATE (82)
TEXT.BOX (83)
TEXT.CLICK (83)
TEXT.FIELD (83)
TEXT.RECORD (83)
THIS.COHTROL (83)
THIS.PART (84)
TOGGLE.COHTROL (84)
TRACK.COHTROL (85)
UHLOAD.SCRAP (85)
UP. BUTTOH (86)
2ERO.SCRAP (91)
2ERO.SCRAP (91)

MacFORTH Glossary Page 13 - 117 June 6, 1984

MacFORTH Glossary Page 13 - 118 June 6, 1984

MacFORTH Index

Access1ng f1les
Allocation:

of ftle space
of memory

Arrays
Assigning Files

Backup
Beeper
Blocks Flles

Creating
Allocat1on
Access1ng Source

Booting MacFORTH
Buffers, block

Cartesian Coordinates
Case statement
Catalog of flles
Comments
Compllat1on
Copy
Create:

files
menus
w1ndows

Cursor
modifying
h1de
show

Cutting and Pasting

Index

-A-

9-7 thru 9-14

9-12
5-23,11-10
5-21
5-3,9-4

-8-

1-2,3-13
11-20
9-11
9-11
9-12
9-13
(see loading MacFORTH)
3-4

-(-

6-4
Going FORTH
(see Directory)
Going FORTH
Going FORTH
3-13

9-6, 9-7
7-3
4-3,8-2

5-11,11-15
5-10
5-10
3-14,11-16

Page 1- 1 June 4, 1984

Data flles
Debugging
Delete:

files
menus

Demos, edi t ing
Demos, loading
Directory

Editor
entering
exiting
menu
selecting a file
ejecting a disc

Error conditions, default
Error

Handl ing, user
messages
compiler
interpreter
recovery
summary
while loading

Event actions, default
Events Jist

Fl1e:
aSSignments
blocks files
closing flies
data f1Jes
errors
1/0 result codes
numbers
opening files

Index

-0-

9-6
11-3

9-15
7-8
6-27
1-3
9-5

-E-

3-4
3-4
3-8
3-2
9-15
12-2

11-6
9-3,9-20,12-5
12-3
12-3
11-6
12-5
3-11
8-7
8-9

-F-

3-3
9-11
9-14
9-6
9-3
9-3
9-4
9-5

Page 1- 2 June 4,1984

posit ton modes
program f 11 es
reading/writing data
volumes

Fixed flles
Fonts, Character
Forgetting windows

Glossary
Graphics Inltlallzatlon

Hotline

IF statement
Including a File
Input

from keyboard
number
string

I nterrupt, user
I/O result codes
Item execut 1 on

Keystrokes

Index

-F- (continued)

9-16
See Fl1e: blocks flles
9-7,9-9
9-4,9-15
9-8
6-14
5-7

-6-

Chapter 13
6-4

-H-
1-5

-1-

Going FORTH
9-14

5-15
5-15
5-16
11-3
9-3
7-6

-J-

-K-

8-6

Page 1- 3 June 4, 1984

Levels 1,2,3
L1cens1ng Informat1on
Line Drawing
Line Height
L1stlng programs
Loading blocks
Loading MacFORTH
Loops
Lower Case

MacFORTH environment
Memory Allocation
Memory Maps
Menu

bar item attributes
creation
deletion
disable/enable
display
example
execution
items
list
modIfying

Mounting a Volume
Multiple windows

Options
Origin, moving
Output:

text

Index

-l-

11-7
1-1
6-8,6-23
6-18
3-12
3-11
1-2
Going FORTH
11-5

-M-

if-9
11-10
11-11

7-4, 7-7
7-3
7-8
7-9
7-5
7-2, 7-10
7-6
7-4
7-3
7-7
9-15
5-19

-N-

-0-

11-4,5,6,7
6-19

5-12,10-2

Page 1- 4 June 4, 1984

to window
graphics
window

Pen Characteristics
Pointers to flles
Print, window
Processor exceptions

QuickDraw System

Re-titllng a window
Relative graphics
Recover (REVERT)
Rotation, Coordinates

Scal1ng coordinates
Scroll
Selecting a Flle
Shapes
Sound
Special characters
Storage map
Strings

Index

-0- (contfnued)
5-12
10-4
10-3

-p-

6-9 thru 6-13
9-15
4-8,10-3
12-4

-0-

6-2,6-4

-R-

4-7,5-8
6-23
3-10
6-24

-5-
6-24
3-6
3-2
6-20
5-20,11-19
7-5
11-11
5-14

Page 1- 5 June 4, 1984

Text:
CharacterIstIcs
Files
Mode
Output
Size
Style

Timer
Toolbox Interface
TrIg functions
TRACE

Virtual flles
Vocabulary structure (FORTH)

WHILE statement
Window:

assigning a program to
attributes
bounds
closing a window
event handling
example
defining
forgetting
function template
hiding a window
program
show
sizing
title
tracking the mouse

Work flIes

Index

-1-

6-14
9-9
6-17
5-13,6-14,10-2
6-18
6-15
11-2
11-17
6-25
11-4

-u-

-y-

9- t t
11-12,11-14

-w-
Going FORTH

5-17
5-8,8-3
5-10,8-3
5-9
8-4
4-3,8-6
8-2
5-7
5-19
5-9
5-19,4-6,8-3
5-9
8-5
5-7
8-5
5-3

Page 1- 6 June 4, 1984

-x-

-y-

-z-

Index Page 1- 7 June 4, 1984 I

CREATIVE ,SOlOTIOtiS
4701 Randolph Road , Suite 12
Rockville, Maryland 20852
(301) 984-0262

