
c:
RESEARCH J INC.

CRAY® COMPUTER SYSTEMS

eFT77
REFERENCE MANUAL

S,R-0018 r<-w ~

Gopyright© 1986, 1988 by Gray Research, Inc. This manual or
parts thereof may not be reproduced in any form unless permitted
by contract or by written permission of Gray Research, Inc.

RECORD OF REVISION RESEARCH. INC. PUBLICATION NUMBER SR-0018

Eadchhtime this manu~1 is r~vised and reprinted. all changes issued against the previous version are incorporated into the new version
an t e new verSion IS assigned an alphabetic level.

~very page chan~ed by a reprint. with revisio~ has the revision level in the lower right hand corner. Changes to part of a page are noted
y ~ changl!. bar In the margin directly o~poslte the c~a~ge. A change bar in the margin opposite the page number indicates that the

entire page IS new. If the manual IS rewritten. the revIsion level changes but the manual does not contain change bars.

Reql:'est.s for copies of C~ay Research. Inc. publications should be directed to the Distribution Center and comments about these
publications should be directed to:

CRAY RESEARCH. INC.
1345 Northland Drive

Mendota Heights. Minnesota 55120

Revision Description

ii

A

B

April 1986 - Original printing.

September 1986 - Changes are the SUPPRESS directive and the
TARGET command. Sections on input/output have been
reorganized, with a new introduction in section 7. Other
editorial changes have been made. Trademarks are now
documented in the record of revision. The previous version is
obsolete.

February 1988 - This reprint with revision adds the INCLUDE
statement, Loopmark feature, BL and NOBL directives, ALLOC
directive, INTEGER directive, I/INDEF option, -v option
(UNICOS only), EDN keyword (COS only), and P and w options
(CRAY-2 systems only). Section 8, I/O formatting, is
reorganized. Descriptions of compiling and the use of
operating system features and utilities have been expanded.
An appendix on dynamic memory management has been added.

The UNICOS operating system is derived from the AT&T UNIX System V
operating system. UNICOS is also based, in part, on the Fourth
Berkeley Software Distribution under license from The Regents of the
University of California.

\

CRAY, CRAY-1, SSD, and UNICOS are registered trademarks and CFT,
CFT77, CFT2, COS, CRAY-2, CRAY X-MP, CRAY Y-MP, CSIM, HSX, lOS,
SEGLDR, and SUPERLINK are trademarks of Cray Research, Inc.

SR-0018 B

I

PREFACE

This is a reference manual for the Cray Fortran compiler CFT77, which
operates on all Cray computers and operating systems. The manual
includes a complete description of Fortran, CFT77 features, and
instructions for using the compiler. An effort has been made to make
this manual serve both as a Fortran text and as an introduction to the
use of Cray computers, to reduce the need for consulting other manuals
and books. This is accomplished as follows:

• The use of the Cray operating systems UNICOS and COS is shown for
typical programming needs.

• Reference material includes coding issues and examples.

• Tutorials are included for the benefit of programmers who are not
expert in Fortran, such as an introduction to lID in 7.1.

• The use of Cray programming tools is introduced: debuggers
(DEBUG, 1.1.3 and 1.2.4); program flow tracing (Flowtrace,
1.4.4.1); analysis of program structure and cross references
(FTREF, 4.6.1); analysis of program performance (prof and Spy,
10.1.3); and machine performance monitoring (Perf trace, 10.1.4).

Change bars appear on some text to indicate the most significant changes
from the previous edition of this manual (SR-0018 A). These do not
necessarily indicate changes in the CFT77 compiler; many change bars
appear on new discussions of existing usage issues. A change bar on the
page footer indicates that most of that page has been changed.

Of the numerous books about Fortran, the following can be recommended:

Merchant, Michael J. Fortran 77: Language and Style. Belmont, CA:
Wadsworth, 1981. Introductory text with emphasis on programming
style.

Ellis, T.M.R. ~ Structured ~pproach to Fortran 77 Programming.
Reading, MA: Addison-Wesley, 1981. Introductory text that explains
the ANSI standard in detail.

Press, William H., et. ale Numerical Recipes: The ~rt of Scientific
Programming and Numerical Recipes: Example Book (Fortran).
Explains the selection of algorithms for many mathematical purposes.

Metcalf, Michael. Fortran Optimization. New York: Academic Press,
1985. Discusses various approaches to improving execution speed.

SR-0018 B iii

I

Two ref~rence cards are available for CFT77:

SQ-0138 UNICOS CFT77 Reference Card
SQ-0137 COS CFT77 Reference Card

The following publications describe the UNICOS operating system:

SG-20S2 UNICOS Overview for Users
SG-2010 UNICOS Primer
SG-20S0 UNICOS Text Editors Primer
SQ-20S4 UNICOS vi Reference Card
SR-2040 UNICOS Performance Utilities Reference Manual
SR-2011 UNICOS User Commands Reference Manual
SR-2013 CRAY-2 UNICOS Libraries, Macros and Opdefs Reference Manual
SR-Ol12 UNICOS Symbolic Debugging Package Reference Manual

The following publications describe Cray software that is not specific to
an operating system:

SR-Ol13 Programmer's Library Reference Manual
SR-0066 Segment Loader (SEGLDR) Reference Manual

The following publications describe the COS operating system:

iv

SR-0146 COS Performance Utilities Reference Manual
SR-OOll COS Reference Manual
SR-0012 Macros and Opdefs Reference Manual

SR-0018 B

CONTENTS

PREFACE • • . • • • • • • • . • • • • • • • • • • • • • • • • • •• iii

1. THE CFT77 COMPILER • • • • • •

1.1

1.2

1.3
1.4

SR-0018 B

USING CFT77 UNDER UNICOS • •
1.1.1 Compiling and running a program •••••
1.1.2 Issues for successful use of CFT77
1.1.3 Preparing for debugging under UNICOS •
1.1.4 The cft77 command under UNICOS ••••••
1.1.5 Compiler options under UNICOS ••••
USING CFT77 UNDER COS • • • • • • • • • • • •
1.2.1
1.2.2

1.2.3
1.2.4
1.2.5
1.2.6

Preparing your program as a COS job
Running your job under COS: operations and
datasets . • • • • • •
Using datasets that are specific to your job
Preparing for debugging under COS
Issues for successful use of CFT77 • •
The CFT17 control statement under COS

1.2.1 Compiler options under COS ••••••
CROSS-COMPILING USING THE -C OR CPU= KEYWORD •
COMPILER DIRECTIVES • • • • • • . • • • • • •
1.4.1 Vectorization directives ••••••

1.4.2

1.4.3

1.4.1.1 Suppressing vectorization

1.4.1.2
1.4.1.3
1.4.1.4
1.4.1.5

(VECTOR and NOVECTOR)
Ignore dependencies (IVDEP)
Vectorizable functions (VFUNCTION) • •
Loops with low trip counts (SHORTLOOP)
Register storage across subprograms
(NO SIDE EFFECTS) •••••••

Scalar optimization directives • • • • • • • • •
1.4.2.1 Momentary suppression (SUPPRESS) •••
1.4.2.2 Bottom loading of operands (BL/NOBL) •
Output listing directives •• • • • • • • • • •
1.4.3.1 Inserting a page break (EJECT) ••
1.4.3.2 Listing of source program

1.4.3.3
(LIST and NOLIST) ••••
Listing of generated code
(CODE and NOCODE) ••••

1-1

1-2
1-2
1-3
1-4
1-5
1-10
1-13
1-13

1-14
1-14
1-16
1-16
1-11
1-23
1-25
1-27
1-28

1-28
1-28
1-29
1-30

1-30
1-31
1-31
1-32
1-32
1-33

1-33

1-33

v

2.

vi

1.4

1.5
1.6
1.7

COMPILER DIRECTIVES (continued)
1.4.4 Localized control of command options •••

1.4.4.1 Flowtrace (FLOW and NOFLOW)
1.4.4.2 Array bounds checking

(BOUNDS and NOBOUNDS)
1.4.4.3 Storage allocation (ALLOC) •
1.4.4.4 Integer length (INTEGER) ••

1.4.5 Dynamic common block directive (DYNAMIC) •
INCLUDE STATEMENT - INSERTING EXTERNAL SOURCE FILES
LISTABLE OUTPUT • • • • • • •
CROSS-REFERENCE LISTINGS . • • • • • • • • • • •
1.7.1 Symbol Cross-reference Table •••••••

1.7.2
1.7.3

1.7.1.1 Name, address, and type fields
1.7.1.2 Usage field ••••
1.7.1.3 Storage field •••••••.
1.7.1.4 Source program references
Parameter Table • • • •
Label Cross-reference Table • • • •

LANGUAGE ELEMENTS AND STRUCTURE

2.1

2.2

2.3

2.4

ELEMENTS OF THE FORTRAN LANGUAGE • •
2.1.1
2.1.2
2.1.3

2.1.4

Character set
Syntactic items • . . • •
Lines
2.1.3.1 Initial and terminal lines.
2.1.3.2 Continuation lines.
2.1.3.3 Comment lines and embedded comments
2.1.3.4 Compiler directive lines.
Statements • • • • • . • • • • • • •
2.1.4.1 Kinds of statements
2.1.4.2 Order of statements and lines

2.1.5 Symbolic names. • • ••••.
THE EXECUTABLE PROGRAM • • • • • • • . • • • . • •
2.2.1 Procedures: subroutines and functions
2.2.2 Summary of program structure ••••
2.2.3 Communicating data within programs •.•••
PROGRAM UNITS • • • • • • • • • •
2.3.1 PROGRAM statement ••••
FUNCTIONS • • • • •
2.4.1

2.4.2

2.4.3

Function reference • . . • • • •
2.4.1.1 Data type of a function: reference

2.4.1.2
2.4.1.3

versus value • • • • • ••••
Execution of functions • • • • •
Order of evaluation • • • •

Statement functions . • . • . . • .
2.4.2.1 Statement function definition

statement
Intrinsic functions • • • • • • • • • • •
2.4.3.1 Referencing intrinsic functions
2.4.3.2 Restrictions . • • • • • • • • • •

1-33
1-33

1-34
1-35
1-35
1-36
1-36
1-37
1-38
1-38
1-39
1-39
1-39
1-40
1-41
1-41

2-1

2-1
2-1
2-2
2-2
2-3
2-3
2-3
2-4
2-4
2-4
2-5
2-7
2-8
2-8
2-9
2-11
2-11
2-12
2-13
2-13

2-14
2-15
2-16
2-16

2-17
2-19
2-20
2-20

SR-0018 B

2. LANGUAGE ELEMENTS AND STRUCTURE (continued)

2.5 SUBPROGRAMS · · · · · · · · · · · · · · · · · · 2-21
2.5.1 External functions and function subprograms 2-22

2.5.1.1 Restrictions on external functions 2-22
2.5.1.2 Function subprograms · · · · 2-22
2.5.1.3 FUNCTION statement · · · · · · · · · · 2-24

2.5.2 Subroutines and subroutine subprograms 2-25
2.5.2.1 Requirements · · · · · · · · 2-26
2.5.2.2 CALL statement (subroutine reference) 2-26
2.5.2.3 SUBROUTINE statement · · · · · · · 2-28

2.5.3 Altering the transfer of control between
program units · · · · · · · · · · 2-28
2.5.3.1 ENTRY statement 2-29
2.5.3.2 RETURN statement 2-30

2.6 ARGUMENTS · · · · · · · · · 2-32
2.6.1 Association of arguments · · · · · · · 2-32
2.6.2 Actual arguments for external procedures · · 2-33
2.6.3 Dummy arguments · · · · · · · 2-34
2.6.4 Dummy procedures · · · · · · · 2-35

2.6.4.1 EXTERNAL statement · 2-36
2.6.4.2 INTRINSIC statement · · · · 2-36

3. DATA TYPES . . . · · · · · · · · · · · · · · 3-1

3.1 TYPE SPECIFICATION · · · · · · · · · 3-3
3.1.1 Type statements · · · · 3-3
3.1.2 IMPLICIT statement · · · · · · · · · · 3-4
3.1.3 IMPLICIT NONE statement (CFT77 extension) 3-6

3.2 INTEGER TYPE · · · · · · · · · · · · · · 3-6
3.3 REAL TYPE · · · · · 3-7
3.4 DOUBLE-PRECISION TYPE · · · · · · · · · · 3-8
3.5 COMPLEX TYPE · · 3-9
3.6 LOGICAL TYPE · · · · · · · · · · 3-9
3.7 CHARACTER TYPE · · · · · · · · · · · · · · · · · 3-10

3.7.1 CHARACTER type statement · · · · · 3-11
3.7.1.1 Asterisk specification · 3-11
3.7.1.2 Character function declaration · · 3-12

3.7.2 Character substrings · · · · · 3-13
3.7.3 Arguments of type character · · · · · 3-14

3.8 BOOLEAN TYPE (CFT77 EXTENSION) · · · · · · · · · 3-15
3.9 POINTER TYPE (CFT77 EXTENSION) · · · · 3-16

3.9.1 POINTER type statement (CFT77 extension) · · 3-17
3.9.2 Using pointers · · · · · · · · · · · · · · · 3-18

4. DATA STRUCTURES, STORAGE, AND ASSOCIATION · · · · 4-1

4.1 CONSTANTS · 4-1
4.1.1 PARAMETER statement · · · 4-1

4.2 VARIABLES · · · · · · · · · 4-3

SR-0018 B vii

4. DATA STRUCTURES, STORAGE, AND ASSOCIATION (continued)

4.3

4.4

4.5

4.6

viii

ARRAYS
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5

4.3.6

4.3.7
4.3.8
4.3.9
4.3.10

4.3.11

Dummy, actual, and pointee arrays •••••
Constant, adjustable, and assumed-size arrays
Automatic arrays (CFT77 extension) •
DIMENSION statement • . • • •
Array declarators • • • • • • • • •
4.3.5.1 Kinds of array declarators •
Array elements and subscripts
4.3.6.1 Array subscripts and storage sequence
Array size • • • . • •
Arrays- as arguments
Use of array names •
Array section (CFT?? extension)
4.3.10.1 Uses and restrictions
4.3.10.2 Array section name •.
4.3.10.3 Indexed section selectors
4.3.10.4 Vector-valued section selectors
Array expressions (CFT?7 extension)
4.3.11.1 Conformance of array operands ••••
4.3.11.2 Order of operations •••.••
4.3.11.3 . Array operands in intrinsic functions

DATA STATEMENT • . • • • • . • • • • . . • .
4.4.1 Implied-DO list in a DATA statement •••.
4.4.2 Data types in a DATA statement ••.••..
4.4.3 Entities that can appear in a DATA statement ••
STORAGE AND ASSOCIATION • . • • • . .
4.5.1 Storage units and sequences
4.5.2 Static and stack storage
4.5.3
4.5.4
4.5.5

4.5.6

Definition • • • • • . • •
SAVE statement • . • . • •
Association of entities .••.
4.5.5.1 Implicit association.
4.5.5.1 Global and local data (Cray terminology)
EQUIVALENCE statement • • • • • . • •. .••
4.5.6.1 Array names in EQUIVALENCE statements
4.5.6.2 Restrictions on EQUIVALENCE statements

COMMON BLOCKS • . • • • • • • • • . • • • • •
4.6.1 Features and utilities for using common blocks.
4.6.2 COMMON statement •••
4.6.3 Referencing common blocks
4.6.4 Common block storage sequence
4.6.5 Common block size •••.••
4.6.6 TASK COMMON statement (CFT?7 extension) ••••
4.6.7 LOCAL COMMON statement (for CRAY-2 systems)
4.6.8 Block data subprogram •••••

4.8.8.1 BLOCK DATA statement •.••••••.

4-4
4-5
4-5
4-6
4-6
4-7
4-8
4-9
4-10
4-12
4-12
4-13
4-16
4-16
4-17
4-17
4-18
4-20
4-21
4-21
4-23
4-24
4-26
4-27
4-28
4-28
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-34
4-36
4-36
4-37
4-38
4-39
4-39
4-40
4-42
4-43
4-44
4-44
4-4.5

SR-0018 B

5. EXPRESSIONS AND ASSIGNMENT · · · · · · · · · · 5-1

5.1 ARITHMETIC EXPRESSIONS · · · · · · · · · · · 5-2
5.1.1 Arithmetic assignment statement · · · · · · 5-3
5.1.2 Arithmetic operators · · · · · · · · · · 5-5

5.1.2.1 Precedence of arithmetic operators 5-5
5.1.3 Arithmetic operands · · · · · · · · · 5-6

5.1.3.1 Primaries · · · · · · · · · · 5-6
5.1.3.2 Factors · · · · · · · · · · 5-7
5.1.3.3 Terms · · · · · · 5-7
5.1.3.4 Arithmetic expressions · · · · · · · · 5-8

5.1.4 Data type of arithmetic expressions · · · · · · 5-8
5.1.4.1 Type conversion · · · · · · 5-12

5.1.5 Considerations in evaluating arithmetic
expressions · · · · · · · · · 5-13

5.2 CHARACTER EXPRESSIONS · · · · 5-13
5.2.1 Character assignment statement · · · · · · · 5-14
5.2.2 Character expression evaluation · · · · 5-15
5.2.3 Hollerith type · · · · · · · · · 5-15

5.3 RELATIONAL EXPRESSIONS · · · · · · · · · · · · · 5-15
5.3.1 Arithmetic relational expressions · · · · · · · 5-16
5.3.2 Character relational expressions · · · · · · · · 5-17

5.4 LOGICAL EXPRESSIONS · · · · · · · · · 5-17
5.4.1 Logical assignment statement · · · · · · · · · · 5-19
5.4.2 Logical operators · · · · · · · · 5-19
5.4.3 Form and interpretation of logical expressions · 5-21

5.5 MASKING EXPRESSIONS (CFT77 extension) · · · · · · · 5-22

6. PROGRAM CONTROL · · · · · · 6-1

6.1 CONDITIONAL BLOCKS . · · · · · · · · · 6-1
6.1.1 Block IF statement · · · · · · · 6-4
6.1.2 ENDIF statement · · · · · · · 6-4
6.1.3 ELSEIF statement · · · · · · · · · · · · · · 6-4
6.1.4 ELSE statement · · · · · · · · · · 6-5

6.2 OTHER IF STATEMENTS · · · · · · · · 6-5
6.2.1 Logical IF statement · · · · · · · · · 6-5
6.2.2 Arithmetic IF statement · · · · 6-6

6.3 DO LOOPS · · · · · · · · · · · · · 6-6
6.3.1 DO statement · · · · · · 6-8
6.3.2 Terminal statement and CONTINUE statement 6-9
6.3.3 Loop control and incrementation processing · 6-10

6.4 GOTO AND ASSIGN STATEMENTS · · · · · · · · · · 6-11
6.4.1 Unconditional GOTO statement · · · · · · · 6-11
6.4.2 Computed GOTO statement 6-12
6.4.3 Assigned GOTO statement 6-12
6.4.4 ASSIGN statement · · · · 6-13

6.5 SUSPENDING AND HALTING EXECUTION · · · · · · · 6-14
6.5.1 STOP statement · · · · · · · · · · · · · · · 6-14
6.5.2 END statement · · · · · · · · · · · 6-15
6.5.3 PAUSE statement · · · · 6-15

SR-0018 B ix

7. I/O OVERVIEW, TERMS, STATEMENTS · · · · · · · 7-1

7.1 I/O TUTORIAL · · · · · · · · · · · · 7-1
7.1.1 Using-nondefault files · · · · · · · · · · · · · 7-1

7.1.1.1 Using a data file from the front end · 7-2
7.1.1.2 Creating a file for transfer to the

front end · · · · · · · · · · · · 7-2
7.1.1.3 Creating a file for further

processing · · · · · · 7-3
7.1.2 The three kinds of standard I/O 7-3

7.1.2.1 Unformatted I/O · · · · · · 7-4
7.1.2.2 List-directed I/O 7-4
7.1.2.3 Formatted I/O · · · · · · 7-5

7.1.3 Examples of formatted I/O · · · · 7-6
7.1.4 Increasing I/O performance · · · · · · · · · 7-8

7.2 INPUT/OUTPUT RECORDS · · · · · · · · · · · · · · · 7-10
7.3 INPUT/OUTPUT FILES AND DATASETS · · · · · · · · · · · · 7-11

7.3.1 File structures · · · · · · · · · · · · 7-12
7.3.2 File identifier · · · · · · · · 7-13
7.3.3 COS dataset · · · · · · · · · · · · 7-14

7.3.3.1 Example: writing two files 7-14
7.3.3.2 Example: reading two files 7-15

7.4 INTERNAL RECORDS AND FILES · · · · · 7-15
7.5 UNITS . . . · · · · · · · · · · · · 7-16

7.5.1 Default units · · · · · · · · · · 7-17
7.5.2 Redirection to and from default files 7-17

7.6 I/O FORMATS · · · · · · · · · · · · · · 7-18
7.7 READ, WRITE, AND PRINT STATEMENTS · · · · · · 7-19

7.7.1 Control information list · · 7-20
7.7.2 I/O list · · · · · · · · · · 7-22

7.7.2.1 Input list items 7-22
7.7.2.2 Output list items · · · · · · · · 7-23
7.7.2.3 Implied DO list · · · · · · · · · · · 7-23

7.7.3 Data transfer operation · · · · · · · · · 7-24
7.7.3.1 Transferring data · · · · · 7-25
7.7.3.2 Unformatted data transfer 7-25
7.7.3.3 Formatted data transfer 7-25

7.7.4 Output to a printer · · · · · · · · 7-26
7.7.5 Error and end-of-file conditions · · · · · · 7-27
7.7.6 Restrictions on input/output statements 7-27
7.6.7 I/O error recovery · · · · · · · · 7-27

7.8 OPEN STATEMENT · · · · · · · · · · · · · · 7-28
7.8.1 Alternatives to the OPEN statement 7-29

7.9 CLOSE STATEMENT 7-32
7.10 INQUIRE STATEMENT · · · · · · · · 7-33
7.11 DIRECT AND SEQUENTIAL FILE ACCESS · · · · · · · · · · · 7-36

7.11.1 Direct file access · · · · 7-36

x SR-0018 B

7.11 DIRECT AND SEQUENTIAL FILE ACCESS (continued)
7.11.2 Sequential file access •.•••

7.11.2.1 BACKSPACE statement
7.11.2.2 ENDFILE statement

7-38
7-39
7-39

7.11.2.3 REWIND statement. • •.• • • 7-40

8.

7.12 CHANGING MAXIMUM LENGTH FOR I/O LISTS AND FORMAT
SPECIFICATIONS •

INPUT/OUTPUT FORMATTING

8.1
8.2

8.3

8.4
8.5

8.6

8.7

8.8

UNFORMATTED I/O
LIST-DIRECTED I/O • • . • . • •
8.2.1 List-directed input
8.2.2 List-directed output.
FORMATTED I/O • . • • . • .
8.3.1 FORMAT statement ••.•.••
8.3.2 Interaction between I/O lists and format

specifications • • . • • . • • .
8.3.3 Positioning by format control
FORMAT DESCRIPTORS SUMMARY . • . . • . • . • .
FORMATTING REAL NUMBERS (F, E, G, D) • • .•.
8.5.1 Real output without exponent (F) •.•.
8.5.2 Real output with exponent (E) •.•.
8.5.3 Real output with optional exponent (G) .
8.5.4 Real input (F, E, G) .••...•.•.
8.5.5 Double-precision (D) • . . • • • .•.
8.5.6 Scale factor (P) • . • • . • • . .••
FORMATTING OTHER DATA TYPES • • . • • .•.•.
8.6.1 Integer (I) • . • •. . ..•.
8. 6. 2 Complex • . • . . . • •. •.•.
8.6.3 Logical (L) . . • • . •.•.
8.6.4 Octal (0) (CFT77 extension)
8.6.5 Hexadecimal (Z) (CFT77 extension) ...•.
FORMATTING CHARACTER DATA (A, ., ", H) ..•..•.
8.7.1 Character type (A) •.•.••..•..•.
8.7.2 Output strings within format lines ., ..)
8.7.3 Hollerith character output (H) •••••••

SPECIAL-PURPOSE DESCRIPTORS (T, X, /, :, B, 5, $)
8.8.1 Position control (T, TL, TR, X) ••••
8.8.2 End of record (/) ...•.
8.8.3 Terminate format (:) . • . ..•.•.
8.8.4 Interpreting blanks (BN, BZ) • • . • .
8.8.5 Plus sign control (5, SP, SS) •.••
8.8.6 Carriage control ($) (COS only, CFT77 extension)

SR-0018 B

7-40

8-1

8-1
8-2
8-3
8-4
8-5
8-6

8-7
8-9
8-9
8-13
8-14
8-15
8-16
8-17
8-20
8-20
8-21
8-21
8-22
8-22
8-24
8-25
8-26
8-26
8-27
8-27
8-28
8-28
8-29
8-29
8-30
8-30
8-31

xi

9.

10.

CRAY IIO EXTENSIONS

9.1

9.2

9.3

BUFFER IN AND BUFFER OUT STATEMENTS (CFT?? EXTENSIONS) •
9.1.1 The UNIT function •••.••••••
9.1.2 The LENGTH function ••...••••••
RANDOM INPUTIOUTPUT OPERATIONS (CFT?? EXTENSION) •
9.2.1 BUFFER INIOUT with SETPOS •••.••••
NAMELIST STATEMENT (CFT?? EXTENSION) • • • •
9.3.1 NAMELIST input • • • • • • •

9.3.1.1 NAMELIST input variables • • •••
9.3.1.2 NAMELIST input processing ••••
9.3.1.3 User control subroutines ••

9.3.2 NAMELIST output ••••••
9.3.2.1 User control subroutines

OPTIMIZATION • • • •

10.1 ANALYZING YOUR PROGRAM AND ITS PERFORMANCE

10.2
10.3

10.1.1 FTREF •••••
10.1.2 Flowtrace •.•.
10.1.3 prof and SPY ••••••••
10.1.4 Perf trace (CRAY X-MP systems only)
MULTITASKING • • • • • • • • • • • •
VECTORI ZATION • . . . • • • •
10.3.1 Vectorizable loops.
10.3.2
10.3.3
10.3.4

Vectorizable statements
Vectorizable expressions • • • • •
Loops containing IFs ••••

10.3.5 Recurrences

9-1

9-1
9-3
9-4
9-5
9-?
9-10
9-12
9-13
9-14
9-15
9-16
9-1?

10-1

10-1
10-1
10-1
10-2
10-3
10-3
10-4
10-4
10-4
10-5
10-5
10-6

APPENDIX SECTIONS

A.

B.

C.

D.

xii

CHARACTER SET A-1

INTRINSIC FUNCTIONS B-1

POWERS AND CONSTANTS • • • • • • • • • . • . • • • • • • • • • C-1

MEMORY MANAGEMENT

0.1
0.2

Changing your code:
Changing your code:

recommended method
alternative method

0-1

D-2
D-3

SR-0018 B

E.

F.

G.

H.

OUTMODED FEATURES

E.1

E.2

E.3

E.4
E.s

E.6
E.1

HOLLERITH TYPE •
E.1.1 Hollerith constants
E.1.2 Hollerith expressions
E.1.3 Hollerith relational
FORMATTED DATA ASSIGNMENT
E.2.1 ENCODE statement .
E.2;2 DECODE statement ••
EDIT DESCRIPTORS • • • • • •

. . . .
expresssions

. . . .

E.3.1 Asterisk delimiters •••••

· · · · · · · ·
· · · · · · · ·

E.3.2 Negative-valued X descriptor •••••
E.3.3 A and R descriptors for non-character types
PUNCH STATEMENT • • • • • • • • • • • • • • •
TYPE DECLARATION • • • • • • • • • • • • • • •
E.s.1 Double declaration statements •••••
E.s.2 Type statement data length
DATA STATEMENT FEATURES •• • •
IF STATEMENTS • • • • • • • • •
E.7.1 Two-branch arithmetic IF •
E.7.2 Indirect logical IF

CREATING NON-FORTRAN PROCEDURES

F.1
F.2
F.3

CAL • • • •
CRAY PASCAL
CRAY C • • . •

MACHINE REPRESENTATION OF DATA • •

G.1
G.2

G.3
G.4
G.s
G.6

INTEGER TYPE • • • • • • • •
REAL TYPE • • • • • • • • •
G.2.1 Normalized floating-point numbers
DOUBLE-PRECISION TYPE
COMPLEX TYPE •
CHARACTER TYPE
LOGICAL TYPE • •

DIFFERENCES BETWEEN CFT17 AND CFT

H.1
H.2

FUNCTIONAL DIFFERENCES • • •
SYNTAX AND ERROR DETECTION •

FIGURES

1-1 Default Files Used in Compiling and Running (UNICOS)
1-2 Default Datasets Used in Compiling and Running (COS) •
2-1 Subcategories of Fortran Terms • • • • • • • • • • • • •

SR-0018 B

E-1

E-2
E-2
E-4
E-4
E-s
E-6
E-6
E-7
E-7
E-8
E-8
E-11
E-11
E-11
E-12
E-13
E-14
E-14
E-1s

F-1

F-1
F-1
F-2

G-1

G-l
G-2
G-3
G-3
G-4
G-4
G-4

H-1

H-1
H-3

1-3
1-15
2-9

(

xiii

FIGURES (continued)

2-2 Example Program Showing Fortran Structure
4-1 Array Specification and Size • • • • • • • • • • • •
4-2 Storage Sequence for Arrays in Figure 4-1 • • • • •
6-1 IF levels and Conditional Blocks in an IF Structure
9-1 Sample Program Using NAMELIST, with Input and Output • •
D-1 Memory Use under UNICOS • • • . • • • • • • • • •
D-2 Memory Use under COS • • • . • • •
G-1 Integer Data Formats • • • • . • • • • •
G-2 Floating-point Data Format • ••••
G-3 Double-precision Format • • • • • • •• ••• • • • • • •
G-4 Complex Format • • • • • • • • • •
G-5 Character Format • • • • • • • • • • • • •

TABLES

1-1
1-2
2-1
3-1
4-1
4-2
5-1
5-2
5-3
5-4
5-5

5-6
5-7
5-8
7-1
7-2
7-3
7-4
7-5
8-1
8-2
8-3
8-4

8-5
8-6
8-7
9-1
9-2
A-1
B-1

Compiler Options Under UNICOS . • • • •
Compiler Options Under COS • • . • • . • • • •
Required Order of Lines and Statements •
Values Represented in Different Data Types • • • • • • •
Possible Kinds of Arrays • • • • • • • •
Subscript Evaluation . • • • • . • • • .
Allowed Assignment Statements: y=x •••..••.
Arithmetic Operators and Their Use in Expressions • • • •
Use of Data Types with Arithmetic Operations: +, -, *, /
Data Types In Exponentiation: **
Data Types in Relational Operations: .EQ.,.NE.,.GT.,.GE.,
• LT. , LE. ...•...•... •
Logical Operators • • • . • •
Meanings of Logical Operators . • • •
Allowed Logical and Masking Operations
CFT77 Input/Output Statements
Print Control Characters • • • • • • •

and Result Types

OPEN Specifiers and Their Meanings • • • • • • • • • •
CLOSE Specifiers and Their Meanings
INQUIRE Specifiers and Their Meanings ••••••••.
Repeatable Format Descriptors • • • • •
Nonrepeatable Format Descriptors • • • • • • •
Format Descriptors with Data Types • • • • • •
format Descriptors and Data Types when SEGLDR and the EQUIV
Directive are Used • • • • • • • • • • • • • . • • • • •
Real Output Values with F, E, and G Descriptors
Output of Exponents with E Descriptor • • • •
Gw.d and Gw.dEe and Equivalent F Descriptors • • • • • • • • .
Performance Comparison of I/O Methods
Chracteristics of Random I/O Methods • • . • •
Character Sets: ASCII, FORTRAN 77, CFT77
General Arithmetic Functions

B-2 Type Conversion Functions

2-10
4-14
4-15
6-3
9-11
D-2
D-2
G-1
G-2
G-3
G-4
G-4

1-10
1-24
2-6
3-2
4-4
4-11
5-4
5-5
5-10
5-11

5-18
5-20
5-21
5-24
7-9
7-26
7-30
7-31
7-34
8-10
8-11
8-12

8-12
8-13
8-15
8-16
9-6
9-7
A-2
B-2
B-4

xiv SR-0018 B

TABLES (continued)

B-3
B-4
B-5
B-6
B-7
B-8
B-9

Maximum/Minimum Functions • • . • • • . • • .
Character Functions • • • • • • . • • •
Trigonometric Functions (Angles in radians) .•••
Exponential Functions • • • . • • • • . •
Logar i thmic Functions • . • • • • • • . •
Boolean and Logical Functions • • • •
Time and Date Functions • • • • • • • . •

B-10 Miscellaneous Functions • • . • • • • . •
B-11 Conditional Vector Merge Functions •
C-1 Miscellaneous Constants
E-1 Data Length • • • • • • •

INDEX

SR-0018 B

B-5
B-5
B-6
B-7
B-7
B-8
B-10
B-10
B-11
C-1
E-13

xv

NEW AND ENHANCED FEATURES

The 2.0 release of CFT77 contains many improvements to increase its
usefulness. External features that you can invoke include the following:

• The INCLUDE statement, page 1-36, allows external source code files
to be inserted in your program.

• The Loopmark feature, option m/M on pages 1-11 (UNICOS) and 1-24
(COS), marks loops in your source listing, indicating whether they
have been vectorized.

• Directives BL and NOBL, page 1-32, control bottom-loading of loops,
an optimization technique that can cause operand range errors.

• The I/INDEF option, pages 1-10 (UNICOS) and 1-23 (COS), prevents
the use of uninitialized variables.

• The ALLOC and INTEGER directives allow local control of the control
statement options -a/ALLOC and -i/INTEGER=, respectively.

• The tab character allows simpler keying of code.

• The format for cross-references, page 1-37, has been improved.

• The SHORTLOOP directive, page 1-30, although previously documented,
was not eff~ctive until this release.

• The -V option (UNICOS only), page 1-9, generates information
about the compile operation.

• The P and woptions (CRAY-2 systems only), pages 1-10 and 1-12,
allow more efficient use of local memory.

• The EDN keyword (COS only), page 1-21, creates a separate dataset
for error listings.

• TASK COMMON storage is now available on CRAY-2 systems.

The following improvements increase the utility of the compiler or improve
the compiled program's execution time:

• A new traceback format to make use of UNICOS shared code

• Improved analysis of data dependencies in loops and other
improvements in vectorizing capability

• Faster compiling and improved code generation

Other Changes to This Manual

This edition of the manual includes the following changes that do not
reflect changes in the compiler:

• New discussions of problems that some users have encountered in the
use of CFT17:

The use of the ema/EMA option for extended memory addressing,
page 1-1 (UNICOS) and 1-20 (COS); and cross-compiling, page 1-25

Other command-line options, compiler directives, and storage
issues, page 1-3 (UNICOS) and 1-16 (COS)

Other storage issues: stack and static allocation, page 4-29;
inputs to recursive calls, page 4-31; implicit association, 4-33

Vectorization of loops that use random numbers, appendix
page B-13

• New discussions of system actions and utilities:

Debugging with the DEBUG utility, page 1-4 (UNICOS) and
1-16 (COS)

Source code analysis with FTREF, page 4-38

Program flow tracing and timing with Flowtrace, page 1-33

Fine-grained program timing with prof (UNICOS) and Spy (COS),
page 10-2

CRAY X-MP performance monitoring with Perf trace, page 10-3

Specifying pure data/unblocked files for optimized I/O, page 9-8

• Improved discussions of subjects for newer users of Fortran and
Cray computers:

Compiling and running under both Cray operating systems, pages
1-2 (UNICOS) and 1-13 (COS)

Tutorial on standard I/O, beginning on page 1-1

I/O formatting, n~w organized by task, section 8

The use of common blocks, page 4-31

THE CFT77 COMPILER 1

Fortran is a computer programming language that is well suited to
mathematical problems. The CFT77 compiler compiles Fortran that conforms
to the American National Standards Institute (ANSI) standard X3.9-1978,
often called Fortran 77. CFT77 supports extensions to this standard to
offer broader capabilities and to take advantage of the features of the
CRAY-2 and CRAY X-MP computer systems; this manual identifies all CFT77
extensions to the ANSI standard. These extensions include the following:

• Most extensions supported by the CFT compiler

• Array syntax, including array sections, to allow operations on
arrays without DO loops.

• Automatic arrays

• Symbolic names of up to 31 characters, including " "

The CFT77 compiler converts Fortran language statements into
machine-language instruction sequences. The compiler is supported by the
Cray operating systems, UNICOS and COS.

This manual uses the following typographic conventions:

UPPERCASE

boldface

italics

[item]

Used for Fortran statements, CFT77 compiler
directives, acronyms such as "ANSI," and COS control
statements.

In text and formats, used with words of mixed case or
lowercase to indicate literal input and output, such
as a command, file name, or table entry. In examples,
used to highlight featured or changed material.

Identify user-provided items and terms being defined.

Identifies item as optional. In appendix B,
brackets indicate truncation of real numbers to
integers.

Fortran examples are indented as in actual code: seven spaces except for
directives, labels, and comment lines. Most operating system examples
are indented ten spaces. Except in character strings, blanks are not
significant in Fortran code and are used only to improve clarity.

SR-0018 B 1-1

I

1.1 USING CFT71 UNDER UNICOS

This subsection describes the use of CFT11 under the UNICOS operating
system, first the basic procedure of compiling and running a program, and
then the details of the cft77 command.

1.1.1 COMPILING AND RUNNING A PROGRAM

To compile and run a typical CFT11 job under UNICOS on a Cray computer
system, enter the following commands for a program contained in file
hello.f:

1. cft77 -e mx -v hello.f

The cft77 command invokes the compiler. This must include the
source file name; adding the .f extension or no extension to the
name simplifies the naming of other files. In this example, the -e
keyword enables these options: m causes listings to be written in
file hello.l and turns on the Loopmark feature (to highlight loops
in the listing); x causes the listing to include cross-reference
information. The -v option causes information about the
compilation to be added to the listing file and, typically, sent to
your terminal.

The compiler locates the file and compiles it, generates a binary
file, and optionally generates other files (including listing file
hello.l in this example). The binary file is used as input to the
loader (step 2) to create an executable program; this file is named
hello.o by default, where hello is taken from the input file name
hello.f. Other cft77 command options are shown in 1.1.4.

2. segldr hello.o

The segldr command invokes the loader, which loads the program with
the name of the CFT11 binary output file; the loader also loads
libraries needed for your program to run. The loader's output is an
executable program in file a.out.

3. a.out or a.out > outfile (infile

1-2

You run your program with command a.out. With the first version
above, your program's input and output data are contained either in
files named within the program or (when you use * as a file specifier
in an I/O statement) in default files stdin and stdout. With the
second version above, data file infile is directed to stdin, and
stdout is directed to outfile, so that * in an I/O statement
effectively specifies the non-default files.

SR-0018 B

I

Figure 1-1 shows the process of compiling and running in simplified form,
to clarify the use of the default files (assuming a source file named
hello.f). Each default file can be renamed, replaced, or redirected.

hello.f

Source
Code

stderr

Messages

stdin

Input
Data

hello.1

Listings

hello.o

Binary

Code

a.out stdout

Output

Data

a.out

---.t Executable

File

1929

Figure 1-1. Default Files Used in Compiling and Running

1.1.2 ISSUES FOR SUCCESSFUL USE OF CFT77

This subsection describes aspects of CFT77 that differ from some users'
assumptions or expectations. Also see appendix H.

The following points involve command-line options:

• Unlike CFT, CFT77 does not write a listing by default. You get a
listing by including, on the cft77 command, -e followed by
listing options .9, h, m, s, x, or L (see table 1-1).
This is shown in step 1 in 1.1.1.

• The default listing file is not stdout. For example, the command
cft77 -e mx hello.f > listfile writes a listing in file
hello.l and nothing in listfile. To use listfile, include
-1 listfile in the command.

• On machines that offer extended memory addressing (EMA), you must
include the -C,ema option to make use of the extra address space.

SR-0018 B 1-3

I

• A single compilation does not generate both a CAL file and a
binary load file. That is, when -s or -eS appears on the
command line, no binary file is generated, even if -b also
appears. This differs from CFT.

CFT77 compiler directives are used differently than those for CFT, as
follows:

• When an option is controlled by both a command line option and a
pair of compiler directives (such as -e f and FLOW/NOFLOW), the
use of the command option causes the compiler to ignore any
directives related to that option. This differs from CFT.

• Each CFT77 compiler directive, other
listings, applies until the end of a
canc~lled by a subsequent directive.
only within an optimization block.)

than those applying to
program unit unless it is

(Some CFT directives apply

Some aspects of CFT77 data storage differ from CFT and other compilers.
These compilers use conventions and assumptions, not specified in the
ANSI standard, that conflict with CFT77 optimization techniques. The
differences are the following:

• Local data (an entity that can be referenced by only one
subprogram) is not necessarIly preserved between subprogram calls
unless you use the SAVE statement (see 4.5.4).

• Your program must not attempt to associate data implicitly, based
on assumed storage sequences other than those resulting from
common block declarations and arrays. See 4.5.5 and 4.5.2.

1.1.3 PREPARING FOR DEBUGGING UNDER UNICOS

Several debugging utilities are offered for use under UNICOS, as
described in the Symbolic Debugging Package Reference Manual, CRI
publication SR-0112. If your job aborts, a starting point for debugging
is to use the debug command, which provides a program summary,
traceback, and variable dump.

To use any Cray debugger, including debug, compile your program
specifying -e D to generate a symbol table and -0 off to disable
optimization. Then create a file, mapdir, containing the directive
map=full. The following sequence would then create a debug traceback
and a load map. (Bold type indicates what you type.)

1-4

cft77 -e D -0 off hello.f
segldr mapdir hello.o > mapfile
a.out
error message, core dumped
debug > hello.dbg

1* Directive in file

SR-0018 B

The load map contained in file mapfi1e shows the starting addresses
for your program's routines and other information needed for
interpreting the debug traceback.

1.1.4 THE cft77 COMMAND UNDER UNICOS

Keywords in the cft77 command can be in any order, separated by spaces;
space between a keyword and its argument is optional. If a keyword and
option are omitted from the statement, the compiler uses a default value.

If an entry in the command is not a recognized keyword, the compilation
is aborted. If a keyword option is unrecognized, duplicated, or in
conflict with another option, the compilation is usually aborted.

If conflicting list output options appear on the cft77 command, a
warning message appears in the log file, and the option with the highest
precedence is used, as follows:

1. -1 0 (highest)
2. L option
3. m option (includes the equivalent of s; allows x, g)
4. h option
5. g, s, x options
6. CDIR$ (lowest)

Thus, if -es is specified, CDIR$ NOLIST is ignored.

Format of the cft77 command:

cft77 [-a alloe] [-b binfile] [-d offstrng] [-e onstrng] [-i intlen]

[-1 listfile] [-m msglev] [-0 optim] [-s ealfile] [-t trune]

[-C epu,hdw] [-V] [--] file.f

The command showing all default values is as follows. file.f must be
specified, and other appearances of file use the same name.

cft77 -a static -b file.o -d ADLPSafgjoswx -e Bpqr -i46 -1 file.l
-ml -0 fu11,nozeroinc -to -- file.f

-s defaults to no file. The -C default comes from the operating system,
except that -C,ema is required to make use of additional address space
available with EMA hardware. -1 file.1 is applicable only if a listing
option such as s appears after -e; all listing options are disabled by
default.

SR-0018 B 1-5

I

I -a alloc I
Default: static

Specifies the memory allocation method for entities in memory, and
supersedes the ALLOC directive. Storage allocation is discussed in
subsection 4.5.2. alloc can be one of the following:

alloc

static

stack

I -b binfile I

Description

All memory is statically allocatedt; a stack is not
used. Variables in subprograms are not always
preserved between calls, unless the SAVE statement is
used (see 4.5.4).

All entities are allocated on a stack except
constants and entities in a DATA statement, SAVE
statement, or a common block, which are statically
allocated.t

Default: file.a, taken from input file name file.f

Creates file binfile (if it does not already exist), on which the
compiler writes the binary version of your program, which can be
loaded and run. With -b 0 or -d B, no binary load files are written.
-b has no effect if -s or -eS appears on the command line; no binary
file is generated.

I -C cpu,hdw I
Default: obtained from the operating system; but you must include -C,ema

to use extra address space on machines with EMA

Specifies the mainframe type and optional characteristics of the
hardware running the generated code (does not apply to the CRAY-2
computer system). Because your system's hardware defaults might
differ from the generic defaults for a CPU type, the cpu value
should be used only for cross-compiling; this is discussed in 1.3. To
see what hardware is included on your machine, enter the target
command with no options.

To specify a hardware option when compiling a program to run on the
same machine, use the form -C,hdw. Multiple hdw options are
separated by commas. The hdw options are as follows:

t TASK COMMON variables and some compiler-generated temporary data, such
as automatic arrays and array temporaries, are allocated on the heap.

1-6 SR-0018 B

hdw

ema I noema
ciqs I nociqs
vpop I novpop

Target Machine Does/Does Not Have

Extended memory addressing
Compressed index and gather-scatter hardware
Vector population count functional unit

You must include -C,ema to make use of the extra memory space
available on computers equipped with extended memory addressing
(EMA). (This generates overhead.) The extra space is necessary
if code plus local data exceeds 2 Mwords or if code plus local
data plus Common Memory exceeds 4 Mwords. When your listing says
EMA[<4MW], your machine is equipped with EMA hardware, but you
have not used the ema option, and are therefore restricted to
the 4 Mwords memory size. These options are discussed in more
detail in 1.3.

CPU and hardware information can also be specified by the tarqet
command, which can apply to a group of compilations. (See the UNICOS
User Commands Reference Manual, publication SR-2011.)

I -d offstring I
I Default: ADLPSafqjoswx

Disables compile options; offstring can include any of the flags
listed in table 1-1.

I -e onstring I
Default: Bpqr

Enables compile options; onstring can include any of the flags
listed in table 1-1.

I -i intlen I
Default: 46

Specifies 64-bit or 46-bit integer arithmetic; intlen can be either
64 or 46. 46-bit arithmetic is faster, but 64-bit arithmetic permits
larger values. See 3.2. -i supersedes the INTEGER directive.

I -1 listfile I
Default (only with one or more options or directives shown below):

file.I, taken from input file name file.f

Creates file listfile to receive list output. Listings are written
only when enabled by -e options L, q, h, m, s, or x, which are all off
by default (see table 1-1), or by the LIST directive (see 1.4.4.2).
The default name file.I uses file from file.f on the command.

SR-0018 B 1-7

I -m msglev
Default: 3 (only warning and error messages issued)

Indicates the lowest message level to be issued. For example, -m2
allows Caution, Warning, and Fatal messages to appear.
O~msglev~4. -mO allows all messages; fatal errors are never
suppressed. Messages are sent to file stderr (which is sent to
your terminal in many installations) and to the listing file, if
enabled (see -1). The message levels are as follows:

Level ~ Description

0 Comment Inefficient programming
1 Note Possible compiler problems
2 Caution Possible user error
3 Warning Probable user error
4 Error Fatal error

I -0 optim I
Default: full,nozeroinc

1-8

Specifies optimization options. optim can be full, off, or novector;
and zeroinc or nozeroinc. The off option speeds up compilation
considerably, at the expense of execution speed.

full I novector I off

These options cause the compiler to attempt, respectively,
all optimizing and vectorizing, scalar optimizing only, and
no optimizing or vectorizing. With full (the default),
compiler directives for ve~torizing are recognized. Even
when off is specified, some processes occur that can be
broadly termed "optimizing," such as scheduling and register
allocation.

nozeroinc I zeroinc

Dozeroinc, the default, improves execution time by assuming
that constant increment variables (CIVs) are not incremented
by variables with the value O.

zeroinc adds runtime checks for zero increments of CIV
increments in DO-loops.

SR-0018 B

I

I

I -8 calfile
Default: No file or option S

Creates file calfile (if it does not already exist) to receive Cray
Assembly Language (CAL) output. This file can be manually modified to
be input to the CAL assembler. DATA statemepts are not supported. No
binary file is generated when -s or -eS is used, even if -b also
appears.

I -t trunc I
Default: 0

Indicates the number of bits to be truncated; the range is
O~trunc~47. This option specifies truncation for all floating-point
results but does not truncate double-precision results, function
results, or constants. Truncated bits are set to o.

I -v I
Default: No log file

Enables information concerning the compile operation to be sent to
file stderr (which is sent to your terminal at many sites) and to
the listing file, if enabled (see -1). Does not go to file stdout.

I file.f I
No default; must be specified.

Specifies the file containing your Fortran code. With the .f suffix
or with no suffix, default file names add a suffix to the name file.
With other suffixes (such as .pgm), default file names add suffixes
following the original suffix (for example, hel10.pgm.1).

SR-0018 B 1-9

1.1.5 COMPILER OPTIONS UNDER UNICOS

Table 1-1 shows eFT77 compiler options, which are turned on or off with
the -e and -d strings in the cft77 command. The options establish
settings throughout an executable program.

Compiler directives described in 1.4.5 can turn some of the same options
on or off within programs, but only options not included in the -e or
-d string; if an option appears in one of the strings, directives for
that option are ignored. Some other compiler actions are not set by
cft77 command options but only by compiler directives (see 1.4).

Option Default

A -d

B -e

D -d

I -d

L -d
(output
enabled
by other
options)

P -d

Table 1-1. Compiler Options Under UNICOS

Description

Generates messages to note all non-ANSI usages.

Enables creation of a binary object file; that is,
-dB disables the object file. See parameter -b.

Generates a symbol table for the debugger on the file
specified by -b binfile. Default is file.a, where
file is specified by file.f in the command.

Causes uninitialized memory to be set to an undefined
value. This causes an error to occur when an
uninitialized variable is used, such as in a floating­
point operation or as an array subscript.

Enables all available kinds of listings, except
Loopmark (option m). These include generated code,
full cross-references with unreferenced symbols, and
vectorization information. If L is not specified, use
options g, h, s, or x to select specific kinds of
output. Supersedes LIST and NOLIST directives.t

CRAY-2 systems only. Generates code to cause paging of
Local Memory on entry to and exit from each subprogram.
Also see option w.tt

t The precedence of listing options and directives is discussed at 1.1.4
introduction. Listings are written to the file specified by the -1
keyword, or to file.1 corresponding to the source file file.f.

tt Options P and ware used when programs with many subprograms cannot
otherwise be loaded because they require more than the maximum
available Local Memory. These options can slow execution becaus~ of
extra transfers between Local and Common Memory.

1-10 SR-0018 B

Table 1-1. Compiler Options Under UNICOS (continued)

Option Default

S -d

a -d

f -d

9 -d

h -d

j -d

m -d

o -d

Description

Creates CAL file file.s, where file is specified
by file.f in the command. Parameter -s creates a file
with a non-default name, which overrides option S.

Aborts job after compilation if any program unit
contains a fatal error.

Generates Flowtrace for the entire compilation unit.
Supersedes FLOW and NOFLOW directives. See 1.4.5.1.

Enables listing of generated code to the output file
(file.1 or the file named by -1). Not needed if -eL
is used; supersedes CODE and NOCODE directives.t

Enables listing of first statement in each program
unit, and error messages. Superseded by Land m
options; supersedes 9, s, and x.t

Causes at least one execution of each DO loop whose DO
statement is executed.

Enables the Loopmark option, which marks each loop in
the source listing and indicates loop type, as follows:
V, vector loop; Vs, short vector loop; Vc, conditional
vector loop; S, scalar loop. This option generates a
complete source listing without the use of the s
option; if the s option is also used, a message is
issued concerning conflicting options.t Supersedes
the h option.

Enables runtime checking of array bounds and
conformance of arrays in array expressions except those
contained in formatted WRITE statements. Out-of-bounds
subscripts result in a message but no error.

t The precedence of listing options and directives is discussed at 1.1.4
introduction. Listings are written to the file specified by the -1
keyword, or to file.1 corresponding to the source file file.f.

SR-0018 B 1-11

I

I

Table 1-1. Compiler Options Under UNICOS (continued)

Option Default

p -e

q -e

r -e

s -d

x -d

w -d

Description

Allows double prec1s1on. If -dp is specified, the
following occurs at compile time:

• Double-precision declaratives are treated as

• Double-precision functions are changed to the
corresponding single precision functions.

• Double-precision constants are converted as
double-precision and truncated to real.

• D format descriptor is changed to E.

real.

Aborts compilation when 100 fatal error messages are
counted.

Rounds the results on multiply operations. This option
cannot be disabled on CRAY-2 systems.

Enables listing of source code to the output file
(file.l or file named by -1). Supersedes LIST and
and EJECT directives; not needed with options L or m;
superseded by option h.t

Enables cross reference listing to the output file
(file.l or the file named by -1). Not needed with
option L; superseded by option h.t

CRAY-2 systems only. Causes the use of Common Memory
for many purposes in which Local Memory would be used
otherwise. Also see option P.tt

t The precedence of listing options and directives is discussed at 1.1.4
introduction. Listings are written to the file specified by the -1
keyword, or to file.l, corresponding to the source file file.f.

tt Options P and ware used when programs with many subprograms cannot
otherwise be loaded because they require more than the maximum
available Local Memory. These options can slow execution because of
extra transfers between Local and Common Memory.

1-12 SR-0018 B

I

1.2 USING CFT77 UNDER COS

This subsection describes the use of COS for running your Fortran
program. Consult the COS Reference Manual, publication SR-0011,
concerning the subjects mentioned.

1.2.1 PREPARING YOUR PROGRAM AS A COS JOB

The CFT77 compiler translates your Fortran source code into binary object
code. A single job can compile, load, and run your program, or these
steps can be performed by separate jobs.

To run a job, you submit to COS a dataset containing job control language
(JCL), which consists of COS control statements. This dataset can also
include a file containing your source program, and one or more files of
input data for your program (but the JCL file must be first).
Alternatively, those files can be in other datasets, which must be made
local (available) to your job (see 1.2.3). (If your program is
contained in a separate dataset, specify it on the CFT77 command as
I=name.)

Example:

Typically, you will prepare your input dataset on a front-end
computer and submit it to COS by means of the front-end CRSUBMIT
command or its equivalent. To compile and run your program in one
operation, using only the default input and output datasets, a job
dataset could contain the following. Notice that each statement ends
with a period; IEOF marks the end of a file.

JOB,JN=TEST,US=U1234.
ACCOUNT,AC=5678,UPW=JOE.
CFT77,ON=MX.
SEGLDR,GO.
IEOF

Fortran source file
IEOF

input data file
IEOF

The JOB statement above is a required statement that defines the job
to COS. At the minimum, it must contain a IN parameter to assign the
job a name. The user name (US) parameter is required at many sites.

The ACCOUNT control statement presents your account number and often
your password; these may be required by a site before access is
granted.

SR-0018 B 1-13

I

The CFT?? statement causes the compiler to be loaded and executed,
and is therefore not needed if your program has already been
compiled. In this example, the ON= keyword enables these options: M
causes listings to be written to dataset $OUT and turns on the
Loopmark feature (to highlight loops in the listing); X causes the
listing to include cross-reference information.

The SEGLDR statement with the GO parameter loads and runs your
compiled program; it also accesses the CFT?? runtime library.

1.2.2 RUNNING YOUR JOB UNDER COS: OPERATIONS AND DATASETS

The file you submit to COS becomes input dataset $IN. COS executes the
commands in the dataset's JCL file. When COS executes the CFT?? control
statement, it invokes the CFT?? compiler, which creates a relocatable
binary output dataset and an optional listing dataset.

The compiler writes the binary version of your program to a dataset, by
default $BLD, and writes source code and other listings, if enabled, to
another dataset, by default $OUT (see L= keyword in 1.2.6). The loader,
SEGLDR or LDR, can then load the binary version, to create an executable
file named $ABD by default; your program can then be executed. As shown
in the example in 1.2.1, the loader can execute it automatically; or you
can invoke the program by using the name of its executable file as a JCL
statement. When the program runs, COS writes a log file to $OUT; the log
file contains information about the job and the system.

When I/O statements in your program use * as a unit identifier, data is
transferred from $IN or to $OUT. Therefore, if you compile and run a
program in the same job, $OUT can contain your program's output, source
listing, error messages, and log file. In many installations, $OUT is
automatically transferred to your front-end computer.

To clarify the use of the default datasets, figure 1-2 shows, in
simplified form, the process of compiling and running a COS job. Files
for source code, output listings, input data, and output data can be
replaced by datasets that you specify, as described in the following
subsection.

1.2.3 USING DATASETS THAT ARE SPECIFIC TO YOUR JOB

Any nondefault datasets your job needs, such as a source file or data
file not included in $IN, must be made local (available) to your job.
To do this, you need to add control statements to the JCL shown in
1.2.1. For a file on your front-end computer, after the ACCOUNT
statement insert FETCH,DN=name. For a dataset on the Cray computer
system, insert ACCESS,DN=name. Other options for these statements are
shown in the COS Reference Manual, publication SR-0011.

1-14 SR-0018 B

I

$IN

JCL

CFT?? $BLD SEGLDR $ABD

Front-end Source Binary Executable

File Code Code File

$OUT
Input
Data

Listings
$ABD

Output Front-end

Data File

Log File

1931

Figure 1-2. Default Datasets Used in Compiling and Running

Similarly, if you use a nondefault dataset for output, you need a control
statement to specify what should be done wit~ it; otherwise it is
deleted. To transfer a dataset to your front-end computer, after the
SEGLDR statement insert DISPOSE,DN=name. To preserve a dataset on the
Cray computer system, insert SAVE,DN=name.

Example:

FETCH,DN=MYIN.
ACCESS,DN=MYPROG.
CFT77,ON=MX,I=MYPROG.
SEGLDR,GO.
DISPOSE,DN=MYPRINT.
SAVE,DN=MYOUT.
IEOF

The above JCL file is submitted to COS in dataset $IN. FETCH brings
data file MYIN from the front end and makes it local to the job.
ACCESS makes a Cray-resident dataset local to the job; the dataset is
MYPROG, which contains a Fortran source program. The eFT77 statement
specifies this dataset as the input to the compiler. DISPOSE sends
dataset MYPRINT to the front end, and SAVE makes dataset MYOUT
permanent on the Cray system.

SR-0018 B 1-15

Many Cray installations use $IN and $OUT for transfers with your
front-end computer. Some Fortran programs were originally written with
other assumptions about the use of the default files, in statements such
as WRITE(*,50) •••• For such programs, you can copy between $IN or $OUT
and other Cray-resident datasets; that is, you can change the JCL and
leave the Fortran as it is; see 1.5.2.

1.2.4 PREPARING FOR DEBUGGING UNDER COS

Several debugging utilities are offered for use under COS, as described
in the Symbolic Debugging Package Reference Manual, publication SR-0112.
If your job aborts, a starting point for debugging is to use the DEBUG
utility, which provides a program summary, traceback, and variable dump.

To use any Cray debugger, including DEBUG, compile your program
specifying DEBUG to generate a symbol table and OPT=OFF to disable
optimization. Then insert statements following the SEGLDR statement, so
that the JCL file reads as follows:

CFT11,OPT=OFF,DEBUG.
SEGLDR,CMD='MAP=FULL',GO.
EXIT.
DUMPJOB.
DEBUG.
IEOF

The EXIT statement above specifies a course of action if your program
is not successfully loaded or executed. DUMPJOB causes your aborted
job to be dumped to dataset $DUMP, and DEBUG causes debugging
information to be written in dataset $OUT. Information in the debug
traceback is interpreted with the aid of the load map (also in $OUT,
generated by the directive on the SEGLDR control statement).

1.2.5 ISSUES FOR SUCCESSFUL USE OF CFT11

This subsection describes aspects of CFT11 that differ from some users'
assumptions or expectations. Also see appendix H.

The following points involve command-line options:

• Unlike CFT, CFT11 does not write a listing file by default. As
shown in the CFT11 control statement in 1.2.1, you get a listing by
including ON= followed by listing options G, H, M, S, or X (see
table 1-2), or the LIST keyword •

• On machines that offer extended memory addressing (EMA), you must
include the CPU=:EMA option to make use of the extra address space.

1-16 SR-0018 B

• A single compilation does not generate both a CAL file and a
binary load file. That is, when C=cdn appears on the command
line, no binary file is generated, even if B=bdn also appears.
This differs from CFT.

CFT77 compiler directives are used differently than those for CFT, as
follows:

• When an option is controlled by both a control statement option
and a pair of compiler directives (such as ON=F and FLOW/NOFLOW),
the use of the control statement option causes the compiler to
ignore any directives related to that option. This differs from
CFT.

• Each CFT77 compiler directive, other
listings, applies until the end of a
cancelled by a subsequent directive.
only within an optimization block.)

than those applying to
program unit unless it is

(Some CFT directives apply

Some aspects of CFT77 data storage differ from CFT and other compilers.
These compilers use conventions and assumptions, not specified in the
ANSI standard, that conflict with CFT77 optimization techniques. The
differences are the following:

• Local data (an entity that can be referenced by only one
subprogram) is not necessarily preserved between subprogram calls
unless you use the SAVE statement (see 4.5.4).

• Your program must not attempt to associate data implicitly, based
on assumed storage sequences other than those resulting from
common block declarations and arrays. See 4.5.5 and 4.5.2.

1.2.5 THE CFT77 CONTROL STATEMENT UNDER COS

The CFT77 compiler is loaded and executed when a CFT77 control statement
is entered interactively or encountered in the JCL file in the $IN
dataset.

Keywords can be in any order. If a keyword and option are omitted from
the statement, the compiler uses a default value. If an entry on the
control statement is not a recognized keyword, the job is aborted. If a
keyword option is unrecognized, duplicated, or in conflict with another
option, the job is usually aborted.

A left parenthesis can be used in place of the first comma. A right
parenthesis can be used in place of the period. If all options are
omitted, a period can be used in place of empty parentheses. Dataset
names are limited to 7 alphanumeric characters.

SR-0018 B 1-17

If conflicting list output options appear on the CFT77 control statement,
a warning message appears in the log file, and the option is used with
the highest precedence as follows:

1. L=O (highest)
2. LIST option
3. M option (includes provision equivalent to S; allows C, X, G)
4. H option
5. G, S, X options
6. CDIR$ (lowest)

Thus, if ON=S is specified, CDIR$ NOLIST is ignored.

Format of the CFT77 control statement:

CFT77, ALLOC=a, B=binarydn, C=caldn, CPu=cpu:hdw, E=msglev,

EDN=errordn, I=inputdn, INTEGER=n, L=listingdn, OFF=string,

ON=string, OPT=optim, TRUNC=n, DEBUG, INDEF, LIST, STANDARD.

The control statement showing all default values is as follows:

CFT77, ALLOC=STATIC, B=$BLD, E=3, EDN=$OUT, I=$IN, INTEGER=46, L=$OUT,
OFF=AFGHJOSX, ON=PQR, OPT=FULL:NOZEROINC, TRUNC=O.

C defaults to no file. The CPU default comes from the operating system,
except that CPU=:EMA is always required to make use of additional address
space available with EMA hardware. L=$OUT applies only if a listing
option such as S appears after ON=; all listing options are disabled by
default (see table 1-2).

1-18 SR-OOI8 B

I

I

I

I ALLOC=a
Default: STATIC

Specifies the memory allocation method for entities in memory, and
supersedes the ALLOC directive. Storage allocation is discussed in
subsection 4.5.2. alloc can be one of the following:

alloc

STATIC

STACK

I B=binarydn I
Default: $BLD

Description

All memory is statically allocatedt; a stack is not
used. Variables in subprograms are not always
preserved between calls, unless the SAVE statement is
used (see 4.5.4).

All entities are allocated on a stack except constants
and entities in a DATA statement, SAVE statement, or a
common block, which are statically allocated.t

Creates dataset binarydn (if it does not already exist), on which
the compiler writes binary load modules. If B=O, no binary load files
are written. The B= keyword has no effect if C=caldn also appears;
no binary file is generated.

I C=caldn I
Default: No file

Creates dataset caldn (if it does not already exist) to receive Cray
Assembly Language (CAL) output. This file can be manually modified to
be input to the CAL assembler. DATA statements are not supported. No
binary file is generated with C=cdn, even if B=bdn also appears.

I CPU=cpu:hdw I
Default: Obtained from the operating system; but you must include

CPU=:EMA to use extra address space on machines with EMA

Specifies the mainframe type and optional characteristics of the
hardware running the generated code. Because your system's hardware
defaults might differ from the generic defaults for a CPU type, the
cpu value should be used only for cross-compiling; this is discussed
in subsection 1.3. To see what hardware is included on your machine,
use the TARGET control statement.

t TASK COMMON variables and some compiler-generated temporary data, such
as automatic arrays and array temporaries, are allocated on the heap.

SR-0018 B 1-19

To specify a hardware option when compiling a program to run on the
same machine, use the form CPU=:hdw. Multiple hdw options are
separated by colons. The hdw options are as follows:

EMA, NOEMA
CIGS, NOCIGS
VPOP, NOVPOP

Target Machine Does/Does Not Have

Extended memory addressing
Compressed index and gather-scatter hardware
Vector population count functional unit

You must include CPU=:EMA to make use of the extra memory space
available on computers equipped with extended memory addressing
(EMA). (This generates overhead.) The extra space is necessary if
code plus local data exceeds 2 Mwords or if code plus local data plus
Common Memory exceeds 4 Mwords. When your listing says
EMA[<4MW], your machine is equipped with EMA hardware, but you have
not used the :EMA option, and are therefore restricted to the
4 Mwords memory size. These options are discussed in more detail in
1.3.

CPU and hardware information can also be specified by the TARGET
command in a JCL file (see the COS Reference Manual, publication
SR-0011). The TARGET command allows specifying CPU information once
for a group of compilations.

I E=msglev I
Default: 3 (only WARNING and ERROR messages issued)

1-20

Indicates the lowest message level to be issued. For example, E=2
allows CAUTION, WARNING, and FATAL messages to appear. 0 i msglev
< 4. E=O allows all messages, and fatal errors are never
suppressed. The message levels are as follows:

Level ~ Description

0 Comment Inefficient programming

1 Note Possible problems with other compilers

2 Caution Possible user error. (Example: no path
to a statement)

3 Warning Probable user error. (Example: an array
with too few subscripts)

4 Error Fatal error

SR-0018 B

I EDN=errordn I
Default: $ OUT

Creates dataset errordn (if it does not already exist) to receive
error message listings. Messages written to dataset listingdn are
not affected.

I I=inputdn I
Default: $IN

Specifies the name of the dataset containing Fortran source code to
be input to the compiler. The default, $IN, refers to the same
dataset that contains the JCL. If the source code is in a different
dataset, that dataset must be local; it can be established by a JCL
command such as ACCESS (for a Cray-resident dataset) or FETCH or
ACQUIRE (for a front-end file).

I INTEGER=n I
Default: 46

n can equal 64 or 46, to specify 64-bit or 46-bit integer
arithmetic. 46-bit arithmetic is faster, but 64-bit arithmetic
permits larger values. See 3.2. INTEGER supersedes the INTEGER
directive.

I L=listingdn I
Default: $OUT (only with options or directives shown below)

Creates dataset listingdn (if it does not already exist) to receive
listed output. Unlike $OUT, this dataset must be explicitly provided
for in the JCL file, such as with a SAVE or DISPOSE command.

Listings are written only when enabled by ON options C, G, H, M, S,
or X, which are all off by default (see table 1-2), the LIST keyword,
or the LIST directive (see 1.4.4.2). L=O disables all listing
options and directives.

I OFF=string I
I Default: AFGHMJOSX

Disables compile options (see table 1-2); string can include any of
the flags listed in table 1-2.

SR-0018 B 1-21

I ON=string I
Default: PQR

Enables compile options (see table 1-2); string can include up to
12 characters representing options to be enabled.

I OPT=optim I
Default: FULL:NOZEROINC

Specifies optimization options. optim can be FULL, OFF, or
NOVECTOR; and ZEROINC or NOZEROINC. The OFF option speeds up
compilation considerably, at the expense of execution speed.

FULL, NOVECTOR, OFF

These options cause the compiler to attempt, respectively,
all optimizing and vectorizing, scalar optimizing only, and
no optimizing or vectorizing. With FULL (the default),
compiler directives for vectorizing are recognized. Even
when OFF is specified, some proc'esses occur that can be
broadly termed "optimizing," such as scheduling and
register allocation.

NOZEROINC, ZEROINC

NOZEROINC, the default, improves execution time by assuming
that constant increment variables (CIVs) are not
incremented by variables with the value O.

ZEROINC adds runtime checks for zero increments of CIV
increments in DO-loops.

I TRUNC=n
Default: 0

Indicates the number of bits to be truncated; the range is
O~trunc~47. This option specifies truncation for all
floating-point results but does not truncate double-precision
results, function results, or constants. Truncated bits are set to o.

I DEBUG I
Default: No table

1-22

Generates symbol table for debugger on the dataset specified by
B=binarydn.

SR-0018 B

I INDEF I
Default: Action is not performed.

Causes allocated but uninitialized memory to be set to an undefined
value. This causes an error to occur when an uninitialized variable
is used, such as in a floating-point operation or as an array
subscript.

I LIST I
Default: No listing or listings selected by other options

Enables all available kinds of output listing except Loopmark
(specified by ON=M). These include generated code, full
cross-references with unreferenced symbols, and vectorization
information. If LIST is not specified, listings are specified by ON=
options G, H, S, or X (see table 1-2), or by the LIST directive (see
1.4.4.2). The LIST keyword supersedes these; their precedence is
discussed in 1.2.1 introduction. Also see the L= keyword.

I STANDARD I
Default: Extensions are not noted.

Notes extensions to Fortran 77 syntax.

1.2.7 COMPILER OPTIONS UNDER COS

Table 1-2 shows CFT77 compiler options, which are turned on or off with
the ON and OFF strings in the CFT77 control 'statement. The options
establish settings throughout an executable program. Compiler directives
described in 1.4.5 can turn many of the same options on or off within
programs, but only those options not included in the ON or OFF string; if
an option appears in one of the strings, directives for that option are
ignored. Some other compiler actions are not set by control statement
options but only by compiler directives (see 1.4).

SR-0018 B 1-23

Option Default

A OFF

F OFF

G OFF

H OFF

J OFF

M OFF

o OFF

P ON

Table 1-2. Compiler Options Under COS

Description

Aborts job after compilation if any of the program
units contains a fatal error

Generates Flowtrace for the entire compilation unit.
Supersedes FLOW and NOFLOW directives. See 1.4.3.

Enables listing of generated code to the output dataset
(listingdn or $OUT). Supersedes CODE and NOCODE
directives; not needed if LIST is specified.t

Enables listing of first statement in each program
unit, and error messages. Superseded by LIST and M;
supersedes G, S, and X.

Causes execution of all DO loops whose DO statements
are executed

Enables loopmark option, which marks each loop in the
source listing and indicates loop type, as follows:
V, vector loop; Vs, short vector loop; Vc, conditional
vector loop; S, scalar loop. This option generates a
complete source listing without the use of the S
option; if the S option is also used, a message is
issued concerning conflicting options. Supersedes the
H option. t

Enables runtime checking of array bounds and conformance
of arrays in array expressions except those contained in
formatted WRITE statements. Out-of-bounds subscripts
result in a message but no error.

Allows double precision. If OFF=P is specified, the
following occurs at compile time:

• All double-precision declaratives are treated as
real.

• Double-precision functions are changed to the
corresponding single precision functions.

• Double-precision constants are converted as
double-precision and truncated to real.

• 0 format descriptor is changed to E.

t The precedence of listing options and directives is discussed at 1.2.6
introduction. Listings are written to the dataset specified by the
L=listingdn keyword, or by default to dataset $OUT.

1-24 SR-0018 B

Table 1-2. Compiler Options Under COS (continued)

Option Default Description

Q ON Aborts compilation when 100 fatal error messages are
counted

R ON Rounds the results on multiply operations

S OFF Enables a listing of source code to the output dataset
(listingdn or $OUT). Supersedes LIST, NOLIST, and
EJECT directives; not needed if LIST or M is specified.t

X OFF Enables cross reference listing to the output dataset
($OUT or listingdn). Not needed if LIST is specified.t

t The precedence of listing options and directives is discussed at 1.2.6
introduction. Listings are written to the dataset specified by the
L=listingdn keyword, or by default to dataset $OUT.

1.3 CROSS-COMPILING USING THE -C OR CPU= KEYWORD

This subsection describes the use of the cpu options and hdw (particularly
ema/EMA) options, which are specified with the -C or CPU= keyword. The
issues described are of interest primarily for compiling a program on one
machine to run on another machine.

When you specify a cpu option, the defaults for hdw options are the
minimum configuration for that CPU type. Therefore, if you are compiling
on a CRAY X-MP system that has gather-scatter hardware on by default, the
specification -C cray-xmp or CPU=CRAY-XMP has the effect of turning off
gather-scatter, because this is the default for this CPU type·.

Except for vector population , count, all hdw defaults are "off" for all cpu
options. The following list of cpu options is divided according to the
default for the vpop option.

CPU types with a Dovpop/NOVPOP default:

-C cpu C=cpu Generates Code For

cray-lm CRAY-1M CRAY-1 M computer systems

cray-l CRAY-1 CRAY-1 computer systems
cray-la CRAY-1A
cray-lb CRAY-1B

SR-0018 B 1-25

I

I

I

CPU types with a vpop/VPOP default:

-C cpu

cray-ls

cray-xmp

cray-xl
cray-x2
cray-x4

CRAY-1S

CRAY-XMP

CRAY-X1
CRAY-X2
CRAY-X4

Generates Code For

CRAY-l S computer system

CRAY X-MP computer systems; code generated
with this option runs on one-, two-, or
four-processor CRAY X-MP computer systems.
One-processor CRAY X-MP computer systems
Two-processor CRAY X-MP computer systems
Four-processor CRAY X-MP computer systems

The presence of hardware for extended memory addressing (EMA) involves
two separate issues: load instructions and a special addressing
sequence. These are determined as follows:

• If EMA hardware is present on a machine, code running on the
machine must use 24-bit load instructions, even if the extra
address space is not used. The compiler therefore generates these
instructions automatically if the hardware is present.

• To make use of the extra address space, your binary code must
include a special addressing sequence, which adds overhead; this
is generated only if you specify -C,ema or CPU=:EMA. The extra
space is necessary if code plus local data exceeds 2 Mwords or if
code plus local data plus Common Memory exceeds 4 Mwords.

For cross-compiling between an EMA machine and a non-EMA machine, both of
the preceding considerations (load instructions and addressing sequence)
are determined only by the command-line specification. That is, the
compiler's hardware detection is overridden either by the ema/EMA
option specified on a non-EMA machine or by noema/NOEMA specified on an
EMA machine. Code generated on a non-EMA host for an EMA target always
includes the special addressing sequence; that is, it cannot use the
EMA[<4MW] default option available on EMA machines.

The listing designations EMA, NOEMA, and EMA[<4MW] are interpreted as
follows:

1-26

• EMA indicates that the generated code uses both 24-bit load
instructions and the special addressing sequence. This results
from -C,ema on the cft77 command or CPU=:EMA on the CFT??
control statement, whether or not the host machine has EMA
hardware.

• EMA[<4MW] indicates the use of 24-bit loads but not the special
addressing sequence. This occurs only when the host machine has
EMA hardware but no specification appears on the command line.

SR-0018 B

• NOEMA indicates that the generated code includes neither 24-bit
loads nor the addressing sequence, and results from either absence
of EMA hardware or (when compiled on an EMA machine) from the
-C,noema or CPU=:NOEMA specification.

1.4 COMPILER DIRECTIVES

Compiler directives are lines within source code that specify options
to be performed by the compiler; they are not Fortran code. Except for
EJECT, LIST, and NOLIST, directives can appear only within a program unit
and apply only to that program unit. Compiler directive lines are listed
in the source statement listing.

Compiler directives can turn options on or off within programs, but only
those options not enabled or disabled on the cft77 command or the CFT77
control statement (see 1.1.4 and 1.2.6). Command-line options apply to
an entire program. Some options set by directives cannot be set in the
compiler command.

A compiler directive line contains the characters CDIR$ in columns 1
through 5. Column 6 must be blank. Columns 7 through 72 contain zero or
more compiler directives separated by commas. If the directive includes
a list, no other directive can appear on the same line. Spaces can
precede, follow, or be embedded within a compiler directive. Columns 73
through 96 are ignored. Compiler directive lines cannot have
continuation lines.

The C in column 1 causes other compilers to treat CFT77 directives as
comments; this helps keep CFT77 programs transportable.

CFT77 provides the following categories of compiler directives.

• Vectorization control

• Controlling scalar optimization

• Listable output control

• Localized use of options available on the command line (storage
allocation, integer length, bounds checking, Flowtrace)

• Dynamic common block

If no format block is shown, directives described in this section consist
of the directive name only, with no parameters.

SR-0018 B 1-27

1.4.1 VECTORIZATION DIRECTIVES

Vectorization is described in section 10. The following directives are
used to control it:

• VECTOR
• NOVECTOR
• IVDEP
• VFUNCTION

1.4.1.1 Suppressing vectorization (VECTOR and NOVECTOR)

The NOVECTOR directive suppresses the compiler's attempts to vectorize
loops. NOVECTOR takes effect at the beginning of the next loop and
applies to the rest of the program unit unless it is superseded by a
VECTOR directive.

The VECTOR directive causes the compiler to resume its attempts to
vectorize loops if such attempts were suppressed by a previous
vectorization directive. After a VECTOR directive is specified, DO-loops
with a known trip count of one are executed in scalar mode; vectorization
is attempted for those with a trip count of 4 or more or with an unknown
trip count.

The VECTOR
vectorized
directive.
superseded

directive takes effect immediately; however, a loop is not
if any statement in the loop is in the range of a NOVECTOR

VECTOR applies to the rest of the program unit unless it is
by another vectorization directive.

The scope of the VECTOR and NOVECTOR directives is a single program
unit. VECTOR and NOVECTOR are superseded by the -o/OPT keyword. Both
VECTOR and NOVECTOR directives can be specified in a single program unit.

1.4.1.2 Ignore dependencies (IVDEP)

The IVDEP directive, appearing immediately before a loop, causes the
compiler to ignore vector dependencies, including explicit dependencies,
in any attempts to vectorize the loop. IVDEP applies only to DO loops
and affects only the loop it directly precedes. Whether or not IVDEP is
used, conditions other than vector dependencies can inhibit
vectorization. IVDEP is superseded by the -o/OPT keyword.

1-28 SR-0018 B

I

1.4.1.3 Vectorizable functions (VFUNCTION)

The VFUNCTION directive declares that a vector version of an external
function exists. The VFUNCTION directive must precede any statement
function definitions or executable statements in a program.

VFUNCTION f[,f] ...

f Symbolic name of a vector external function; cannot have
more than 6 characters. (This is because the ~ character
is added at the beginning and end of the name as part of
the calling sequence.)

The following rules and recommendations apply to any function f named as
an argument in a VFUNCTION directive:

• f must be written in CAL and must use the call-by-register
sequence.

• Arguments to f must be either vectorizable expressions or scalar
expressions; array expressions are not allowed.

• A call to f can pass a maximum of seven single-word items or three
double-word items. These can be mixed in any order with a maximum
of seven words total.

• f should receive inputs from its argument list rather than from a
common block.

• f should not change the value of its arguments or variables in
common blocks. Any changed value should be for variables that are
distinct from the arguments.

• f should not reference variables in common blocks that are also
used by a program unit in the calling chain.

• f must not have side effects.

If the argument list for f contains both scalar and vector arguments in
a vector loop, the scalar arguments are broadcast into the appropriate
vector registers. If all arguments are scalar or the function reference
is not in a vector loop, f is called with all arguments passed in S
registers.

SR-0018 B 1-29

1.4.1.4 Loops with low trip counts (SHORTLOOP)

The SHORTLOOP directive, placed before a DO statement, causes the DO loop
to be executed at least once and at most 64 times, allowing CFT77 to
generate special code. SHORTLOOP can shorten execution time because it
eliminates the runtime tests that determine whether a vectorized DO loop
has been completed. If the DO loop's trip count is outside the range of
1 to 64, results are unpredictable.

1.4.1.5 Register storage across subprograms (NO SIDE EFFECTS)

The NO SIDE EFFECTS directive allows the compiler to keep information in
registers across subprogram invocations without reloading the information
from memory after returning from the subprogram. The directive is not
needed for intrinsic functions and VFUNCTIONS.

NO SIDE EFFECTS declares that a called subprogram does not redefine any
variables that are local to the calling program, passed as arguments to
the subprogram, or declared in a common block.

f

NO SIDE EFFECTS f[,f] ...

Symbolic name of a subprogram the user guarantees to have
no side effects. f must not be the name of a dummy
procedure.

A NO SIDE EFFECTS subprogram should receive inputs from its arguments.
It should not reference or define variables in a common block shared by a
program unit in the calling chain, or redefine the value of its
arguments. If these conditions are not met, results are unpredictable.

The NO SIDE EFFECTS directive must precede arithmetic statement functions
and executable statements in a program.

CFT77 may move invocations of a NO SIDE EFFECTS subprogram from the body
of a DO loop to the loop preample if the arguments to that function are
invariant in the loop. This may affect the results of the program,
particularly if the NO SIDE EFFECTS subprogram calls functions like the
random number generator or the real-time clock.

1-30 SR-0018 B

1.4.2 SCALAR OPTIMIZATION DIRECTIVES

Two directives (SUPPRESS and NOBL) are available to deactivate
optimization to counteract occasional side-effects of register storage
and bottom-loading of loop operands.

1.4.2.1 Momentary suppression (SUPPRESS)

The SUPPRESS directive suppresses scalar optimization at the point where
the directive appears (and prevents vectorization of any loop that
includes SUPPRESS). At CDIR$ SUPPRESS, variables in registers are stored
to memory (to be read out at their next reference), and expressions are
recomputed at their next reference after CDIR$ SUPPRESS. The effect on
optimization is equivalent to that of a subroutine call whose argument
list includes every variable in the calling program unit. Example:

CALL DUMMY (all variables) Sbrtn only returns to calling unit

The above statement has the same effect on optimization as SUPPRESS,
if subroutine DUMMY does nothing but return to the calling program
unit. Optimization guarantees that all variables are stored to
memory before the call to DUMMY, because they are in the argument
list; and it guarantees that after the call, at the next reference,
each variable must be read from memory and each expression must be
recomputed.

Unlike other compiler directives, SUPPRESS takes effect only if it is on
an execution path. That is, optimization proceeds normally if the
directive's path is not executed because of a GOTO or IF. Example:

SUBROUTINE SUB (L)
LOGICAL L
A = 1.0
IF (L) THEN

CDIR$ SUPPRESS
CALL ROUTINE()

ELSE
PRINT *, A

ENDIF
END

A is local
SUPPRESS has no effect if L is false

In the PRINT statement above, optimization replaces the reference to
A with the constant 1, even though CDIR$ SUPPRESS appears between A=l
and the PRINT statement. The IF statement causes execution to bypass
CDIR$ SUPPRESS. If SUPPRESS appears before the IF statement, A in
PRINT *, A is not replaced by the constant 1.

SR-0018 B 1-31

1.4.2.2 Bottom loading of operands (BL/NOBL)

The NOBL directive disables bottom loading of loops; the BL directive
causes the compiler to resume bottom loading. Bottom loading, used only
on eligible scalar loops, consists of prefetching operands during each
iteration for use in the next iteration.

A prefetch is performed even during the final loop iteration, because the
final jump test has not been performed. If the final iteration accesses
the first or last address of an array, the final prefetch attempts to
access an address outside the array. If the address is outside the user
program area, an operand range error can occur. To prevent this problem,
use the NOBL directive to turn off bottom-loading. Example:

REAL ARRAY(10)
DO 10 1=1,10

Y = X*ARRAY(I) + •••
Operand ARRAY(I+1) is fetched for next iteration

10 CONTINUE

Storage of ARRAY:
ARRAY(1)

ARRAY(10) ~ End of user area
~ Final prefetch attempts to

access this address

The scope of the BL and NOBL directives is a single program unit. Either
directive applies for the remainder of the program unit or until the
appearance of the other directive in the same program unit. Both
directives can be specified in a single program unit.

1.4.3 OUTPUT LISTING DIRECTIVES

Listable output is described in 1.6. Directives have a lower precedence
than the listing keywords and options in the cft77 command and CFT77
control statement (precedence shown in 1.1.4 and 1.2.6 introductions).
Directives include the following.

• EJECT inserts a page break.

• LIST and NOLIST control listing of source code.

• CODE and NOCODE control listing of binary object code.

1-32 SR-0018 B

1.4.3.1 Inserting a page break (EJECT)

A compiler directive line containing an EJECT directive is printed as the
last line of the current page of source statement listing. The next page
has a page header and source listings are continued. The EJECT directive
has no effect if production of the source statement listing has been
suppressed. EJECT is superseded by the siS andlL/LIST options.

1.4.3.2 Listing of source program (LIST and NOLIST)

The LIST directive causes the production of a source statement listing.
The NOLlST directive suppresses the production of a source statement
listing.

1.4.3.3 Listing of generated code (CODE and NOCODE)

The CODE directive causes CFT77 to generate a code listing. Code is
listed for the program unit in which the CODE directive occurs, and for
subsequent program units until a NOCODE directive is encountered.

The NOCODE directive prevents CFT77 from producing a CFT77-generated code
listing. The NOCODE directive takes effect for the entire program unit
in which it is encountered, and no generated code is produced for
subsequent program units until a CODE directive is· encountered.

CODE and NOCODE are superseded by command options (see 1.1.4 and 1.2.6
introductions).

1.4.4 LOCALIZED CONTROL OF COMMAND OPTIONS

This subsection describes features that can be turned on and off within a
program or can be specified on the command line to apply to an entire
compilation.

1.4.4.1 Flowtrace (FLOW and NOFLOW)

The FLOW and NOFLOW directives control the Flowtrace feature, which
prints calling and timing information about each called procedure in a
program, as monitored during execution. (For a static calling tree based
only on source code, use FTREF, described in 4.6.1.). Flowtrace is
described in the UNICOS Performance Utilities Reference Manual,
publication SR-2040, and the COS Performance Utilities Reference Manual,
publication SR-0146. This subsection is a summary.

SR-0018 B 1-33

To use Flowtrace, include -e f on the eft77 command or ON=F on the
CFT?? control statement; or insert CDIR$ FLOW anywhere within a program
unit. If you use FLOW, you can disable Flowtrace with NOFLOW; these
directives let you localize the use of Flowtrace. The f/F option
supersedes these directives. With any of these methods, you must begin
your main program with a PROGRAM statement, and replace CALL EXIT or CALL
ABORT with STOP or END.

On CRAY-2 computer systems, to obtain Flowtrace output you must enter a
separate command after your program runs. Use flow for 80-column
output and flodump for 132-column output.

Flowtrace output is written to file stdout under UNICOS or dataset $OUT
under COS. UNICOS examples:

CRAY X-MP systems:

cft?? -e f hello.f
segldr hello.o
a.out > hello. flo

CRAY-2 systems:

cft?? -e f hello.f
segldr hello.o
a.out
flow> hello. flo

The SETPLIMQ subroutine prints a line of timing data for each CALL and
RETURN statement. Insert CALL SETPLIMQ(count) in your program, where
count is twice the number of CALL statements to be traced. Use
directives FLOW and NOFLOW to include only areas of special interest.

The FLOWMARK subroutine, only on CRAY-2 computer systems, allows Flowtrace
to treat any block of code in your program as a separate called procedure.
Precede the code block with CALL FLOWMARK('name'L), where name is a string
of no more than? characters. Follow the block with CALL FLOWMARK(O).

1.4.4.2 Array bounds checking (BOUNDS and NOBOUNDS)

The BOUNDS directive checks most array references for out-of-bounds
subscripts. The NOBOUNDS directive turns off array checking. Either
directive can specify particular arrays or can apply to all arrays.

The BOUNDS and NOBOUNDS directives are superseded by -e 0 in the eft77
command or ON=O in the CFT?? control statement. The % option is
global to all program units in the compilation; the BOUNDS and NOBOUNDS
directives are local to the program unit in which they appear.

Bounds checking typically increases program run time and may inhibit
vectorization of any DO-loop that references a checked array. If an
array's last dimension declarator is *, checking is not performed on the
last dimension. Arrays in formatted WRITE statements are not checked.

1-34 SR-0018 B

BOUNDS [arnm][,arnm] ••.

NOBOUNDS [arnm][,arnm] ..•

arnm Name of an array. When no array name is specified, the
directive applies to all arrays.

BOUNDS" remains in effect until a NOBOUNDS directive or the end of the
program unit. Bounds checking can be enabled and disabled many times in
a specific program unit.

1.4.4.3 Storage allocation (ALLOC)

The ALLOC directive specifies the allocation scheme for local data
(defined in 4.5.2). The directive can appear anywhere in a program unit
and applies only to that program unit, unlike the -a and ALLOC command
options, which apply to the entire program and supersede the ALLOC
directive. ALLOC has the following format; a can be either STATIC or
STACK, as explained under -a in 1.1.4 and under ALLOC in 1.2.6.

ALLOC=a

1.4.4.4 Integer length (INTEGER)

The INTEGER directive specifies the integer length to be used within one
program unit, and does not apply to subsequent program units. The
directive must immediately follow the program unit's header statement
(PROGRAM, FUNCTION, or SUBROUTINE). The -i and INTEGER command options
apply to the entire program and supersede the INTEGER directive. INTEGER
applies at both compile time and run time and has the following format;
n can be either 46 or 64.

INTEGER=n

SR-0018 B 1-35

1.4.5 DYNAMIC COMMON BLOCK DIRECTIVE (DYNAMIC)

The DYNAMIC directive declares dynamic common blocks for users with
dynamic common block capability (not supported by Cray loaders or
operating systems other than CTSS).

DYNAMIC b[,b] .••

b Name of a previously encountered common block

1.5 INCLUDE STATEMENT - INSERTING EXTERNAL SOURCE FILES

The INCLUDE statement names a file containing ASCII source code; during
compilation, this file is inserted where the INCLUDE appears. INCLUDE is
useful for managing code that is needed in several program units, such as
common block declarations. It also lets you structure your code without
the runtime overhead of calling a subprogram.

Notice that INCLUDE is a statement, not a compiler directive; like other
Fortran statements, it begins on column 7.

INCLUDE 'file'

file Name of the file to be inserted. Under UNICOS, any single
file name can contain up to 14 characters, and an entire
path name can contain up to 128 characters. Under COS, the
name can consist of up to 7 characters (ignoring blanks),
and the named dataset must be local to your job (see 1.2.3).

The INCLUDE statement can appear anywhere in a program unit but cannot
appear within another statement (such as logical IF) and cannot be
labeled or jumped to. The line following an INCLUDE statement cannot be
a continuation line. Like a compiler directive, INCLUDE is used
unconditionally at compile time. INCLUDE statements can appear in the
file to be inserted, up to 20 nesting levels.

The file to be inserted must not be empty, must not begin with a
continuation line, and must not be any file listed on the eft77 command
or CFT77 control statement. The text in the file can cross program
units; that is, it can contain the end of one program unit and the
beginning of another.

1-36 SR-0018 B

Your source listing will show a notation at the beginning and end of the
area of code that is inserted as the result of an INCLUDE. The notation
shows the INCLUDE statement, the name of the file inserted, the name of
the file containing the INCLUDE statement, and the line number of the
INCLUDE statement both within the file and within the entire program.

Under COS, the external file is rewound before it is used. If the
external file is $IN, it is rewound and the file containing the JCL is
skipped.

1.6 LISTABLE OUTPUT

CFT77 produces a listing only when it is enabled by keywords, options,
and directives shown under -1 in 1.1.4 and L= in 1.2.6. The output can
include the following:

Page
header
lines

Source
statement
listings

SR-0018 B

Each page of listable output begins with a header line
containing the following:

The name of the program unit
Current page number within the program unit
CFT77 revision level and assembly date
Truncation count if nonzero (see the -t and
TRUNC options)
Lists of compiler options that were on and off
for this compilation (see tables 1-1 and 1-2, and
the -C and CPU options)
Date and time when the compilation began
Global page number
Status of optimization for the compiler

A listing of CFT77 source statements is generated by
the siS, mlM, or L/LIST options. The listing is
a record of all statements in the program as they are
read from the source input file. Any error
encountered during compilation of a statement is
flagged by a line following that statement.

Two sequence numbers identify each statement's
position in the program, as follows:

The leftmost statement number reflects the
sequence within the source file; ~at the start of
an INCLUDE file, this sequence is reset to 1, and
following the INCLUDE file the numbering resumes
from the number preceding the INCLUDE statement.

1-37

The second number reflects the sequence within
the program unit. Statements inserted by an
INCLUDE statement are numbered as if they were
part of the main file; that is, the number
sequence continues across the beginning and end
of the INCLUDE file.

Cross
reference
listings

Separate tables showing address symbols, statement
labels, and parameters (see 1.7). These tables are
generated by the xiX or LILIST option.

Messages Up to five levels of messages are produced by CFT77,
depending on the -m parameter on the cft77 command
or the E= parameter on the CFT77 control statement.

1.7 CROSS-REFERENCE LISTINGS

The cross-reference listings are generated by the X option or LIST
keyword in the CFT77 control statement. They consist of the Symbol
Cross-reference Table, the Parameter Table, and the Label Cross-reference
Table.

The tables represent data types as follows:

Data Type

Integer of 64 bits
Integer of 46 bits
Real
Double precision
Complex
Character
Logical
Pointer

Representation

Int64
Int46
Real
Double
Complex
Char
Logical
Pointer

1.7.1 SYMBOL CROSS-REFERENCE TABLE

The Symbol Cross-reference Table alphabetically lists all symbols
included in the source program, with the following information:

• Name

• Address

• Type

• Usage

• Storage

• Source program references

1-38 SR-0018 B

1.7.1.1 Name, address, and type fields

The first three fields give the following information:

• Name: the symbol's name as represented in the symbol table.
The field is as long as the longest symbolic constant name in the
source program, but cannot exceed 31 characters; the minimum
length is 8 characters.

• Address: a symbol's address, represented in 8 octal digits, is
the offset of the variable's starting location in its
corresponding storage type block. This field is blank if a
storage location is not assigned to the symbol or if code is not
generated for the program.

• Data type: blank if the symbol is not associated with a type.

1.7.1.2 Usage field

The usage field describes the symbol's usage in the program unit. If a
symbolic name appears as a dummy argument, it is indicated in the storage
field. Symbol usages are as follows:

Variable
Array
External function or subroutine
Entry
Statement function
Intrinsic
Array in equivalence
Parameter
Variable in equivalence
Common block name

1.7.1.3 Storage field

Representation

Var
Array
External
Entry
Stmtfunc
Intrinsic
Array,Eqv
Parameter
Var,Eqv
Conun bIt

The storage field indicates the type of storage allocated to a symbol.
If a symbol is assigned to a common storage block; this field represents
the common block name corresponding to it. The corresponding address
field represents the offset from the start of the common block. For
symbols that have been assigned either static or stack storage type, the
address field represents the offsets in their corresponding storage
blocks. A blank field is printed if the variable is not assigned
storage. (This occurs frequently for local variables when optimization
is enabled.) Storage types and their representation are as follows:

SR-0018 B 1-39

I

Representation Storage or Use

Static Static storage

Stack Stack storage

Pointee Storage not
assigned

common block name Common storage

Heap Heap storage

Dum_arg Dummy argument

Description

Name resides in static memory

Name resides in stack memory

Name applies to content of any
address pointed to by the pointer

Name resides in block static
memory

Name resides in heap storage

Name is a dummy argument and does
not have storage

1.7.1.4 Source program references

The source field shows source program line numbers where the symbol has
appeared. Depe,nding on the statement and the context, cross reference
code is generated for each appearance of the symbol. The code uses the
following format:

1-40

linenum xrefcode [/count]

linenum Line number of the statement (not the statement number).
This number is counted from the beginning of the program
unit.

xrefcode Cross-reference code. Codes and their meanings are as
follows:

count

A Appeared as an actual argument
D Symbol is declared
M Symbol's value may get changed or modified
U Symbol's value is used

Number of appearances in the same line; contains a blank if
the variable has appeared only once in a line.

SR-0018 B

1.7.2 PARAMETER TABLE

The Parameter Table lists the names of symbolic constants in alphabetical
order. It contains the following information for each symbol found in
the PARAMETER statement of the source program.

• The Name column contains the name of the symbolic constant.

• The Type column shows the data type of the symbolic constant.
Data types are represented as shown in 1.7.

• The Value column gives the actual value of each symbolic
constant.

1.7.3 LABEL CROSS-REFERENCE TABLE

The Label Cross-reference Table consists of the following information for
each label in the program.

• The Label column shows the statement number in the program.

• The Defined column shows the source program line number where
the label is defined, counted from the beginning of the program
unit. If a label is not defined in the program it is marked
"undefined".

• The Reference list shows the source program line numbers where
the label is referenced.

SR-0018 B 1-41

I

LANGUAGE ELEMENTS AND STRUCTURE

This section describes the elements of the Fortran language, the
structure of a Fortran program, and the statements that determine a
program's structure.

2.1 ELEMENTS OF THE FORTRAN LANGUAGE

Fortran is coded in characters to form syntactic items, which are
used as elements in statements.

2.1.1 CHARACTER SET

CFT77 recognizes the following character set:

• The 49 characters specified by the ANSI standard: 26 capital
letters, 10 digits, the space character, and the following
special characters:

= + - * / () , . $,

• The lowercase letters (non-ANSI).

2

• The quotation mark ("), exclamation point (!), underscore (_), and
the tab character (ASCII HT). These characters are non-ANSI.

Appendix A shows the ASCII codes for these characters in octal,
hexadecimal, and decimal. These values establish an order for the
characters, called the collating sequence. In this sequence, digits
precede letters, and capitals precede lowercase. An alphanumeric
character is any letter or digit.

In a CFT77 program, a capital letter and the corresponding lowercase
letter are considered to be the same except within character or Hollerith
constants. Output listings show source programs as they are received,
leaving case intact. Error messages use mixed case. Other listings,
such as cross reference lists, use only uppercase, except within
character or Hollerith constants, where no case conversion occurs.

SR-0018 B 2-1

The ANSI Fortran Standard does not include lowercase letters, double
quotation-mark, underscore, exclamation point, or tab.

The ANSI Fortran Standard does not specify a collating sequence except
among capital letters (A through Z) and digits (0 through 9).

2.1.2 SYNTACTIC ITEMS

Syntactic items are sequences of characters recognized by the CFT77
compiler and used to form statements. Except within character and
Hollerith constants, blanks are ignored. Syntactic items are as follows:

• Constant: an unvarying value. See section 4 concerning
constants, variables, and arrays.

• Symbolic name: the name of an entity that can be any of several
possible kinds (see 2.1.5).

• Statement label: one to five digits, at least one nonzero.
Leading zeros are ignored. For example, 22, 022, and 2 2 are
equivalent.

• Keyword: a sequence of letters having special significance in
Fortran statements, such as INTEGER, WRITE, and GOTO. The context
in which a character sequence appears affects how it is
interpreted; for example, in GOTO 1, GOTO is a keyword; in
GOTO=3.2, GOTO is a symbolic name.

• Operator: one or two special characters or a combination of
special characters and letters, used to specify an operation. See
section 5.

• Special character: characters used as operators; commas in lists;
and parentheses to establish precedence in expressions. See
section 5.

A list is a sequence of one or more syntactic items separated, if more
than one, by commas. The syntactic items appearing in a list are called
list items.

2.1.3 LINES

A line can contain up to 96 columns. Columns 73 through 96 are ignored
by CFT77. A Fortran program is expressed as an ordered sequence of the
following types of lines:

2-2 SR-0018 B

I

• Initial

• Continuation

• Terminal

• Comment

• Compiler directive

The ANSI Fortran Standard limits line length to 72 characters.

2.1.3.1 Initial and terminal lines

An initial line contains all of, or the first part of, a single Fortran
statement in columns 7 through 72. Columns 1 through 5 can include a
statement label of one to five digits or blanks; the label is not part of
the statement. An initial line has neither the letter C nor an asterisk
in column 1, and must have either the digit 0 or a blank character in
column 6.

A terminal line, not to be confused with a DO-loop's terminal statement,
is an initial line containing only the END statement (see 6.5.2).

2.1.3.2 Continuation lines

A continuation line extends an initial line for expressing a single
Fortran statement; up to 19 can be used after an initial line, and comment
lines can be interspersed. (The initial line of such a sequence must not
be a terminal line.) A continuation line has a character other than 0 or
blank in column 6 and contains a portion of a Fortran statement in columns
7 through 72; columns 1 through 5 must be blank.

2.1.3.3 Comment lines and embedded comments

A comment line has the character C, *, or ! in column 1, or only blank
-characters in columns 1 through 72. (See compiler directive lines.)
Comment lines are ignored.

An embedded comment is a comment on the same line with a Fortran
statement. Comments can be embedded in any statement except a FORMAT
statement. When an exclamation point (!) appears outside a character
constant, the remainder of the line is treated as a comment. The
exclamation point cannot appear in columns 2 through 5. An exclamation
point in column 6 indicates continuation of the previous statement, not
continuation of an embedded comment on the previous line.

SR-0018 B 2-3

Example:

10 x=y*z
!. +SUM

Compute the product
and add it to the sum

The exclamation point in column 6 of the second line above causes the
line to be a continuation line of statement 10. The other exclamation
points denote embedded comments.

The ANSI Fortran Standard does not provide for embedded comments.

2.1.3.4 Compiler directive lines

A compiler directive line is a line having the characters CDIR$ in
columns 1 through 5; it can contain one or more compiler directives,
provided only one contains an argument list. The C in the first column
causes other compilers to treat CFT77 compiler directive lines as comments
(see 1.4).

The ANSI Fortran Standard does not provide for compiler directives.

2.1.4 STATEMENTS

A statement is a sequence of syntactic items specifying an operation to
be performed, characteristics of data, or information about the program.
Except in assignment statements and statement functions, the first
syntactic item (following the statement label if any) in a statement is a
keyword. A single statement comprises an initial line and up to 19
continuation lines. Blanks are ignored, except those within character or
Hollerith constants. A label can precede a statement but is not a part of
the statement.

The use of a statement is indicated by its keyword or by its form. A
statement can have up to 1,320 characters including blanks. Aside from
this limitation, blanks do not affect interpretation.

2.1.4.1 Kinds of statements

Executable statements specify actions and form an execution sequence.
They are the following. (Groupings are informal: not ANSI categories.)

2-4 SR-001B B

• Assignment:
= (arithmetic, logical, character)
ASSIGN (statement label)

• Program control:
DO
CALL, RETURN
Conditional block: Block IF (IF THEN), ELSEIF, ELSE, ENDIF
IF (arithmetic and logical)
GOTO (unconditional, assigned, computed)
CONTINUE, PAUSE, STOP, END

• Input/output:
Data transfer: READ, WRITE, PRINT, PUNCH
Sequential file positioning: REWIND, BACKSPACE, ENDFILE
File access control: OPEN, CLOSE
INQUIRE
BUFFER IN and BUFFER OUT
ENCODE and DECODE

Nonexecutable statements specify characteristics, arrangement, and
initial values of data; specify editing information; specify statement
functions; classify program units; and specify entry points within
subprograms. Nonexecutable statements are not part of the execution
sequence; they may be labeled but their labels cannot be used to control
the execution sequence. Nonexecutable statements are the following.
(Groupings are informal: not ANSI categories.)

• Program unit:
Header: PROGRAM, FUNCTION, SUBROUTINE, BLOCK DATA
ENTRY

• Specification:
Type declaration: INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
LOGICAL, CHARACTER, POINTER
IMPLICIT, IMPLICIT NONE
PARAMETER, DATA, SAVE, EQUIVALENCE
COMMON, TASK COMMON, LOCAL COMMON
EXTERNAL, INTRINSIC
FORMAT, NAMELIST
Statement function definition statement
DIMENSION

• INCLUDE

2.1.4.2 Order of statements and lines

The various kinds of statements and lines must appear in a specific
order. Table 2-1 illustrates the required order of statements and lines
for a program unit. The top-to-bottom order indicates the first-to-Iast
appearance of lines and statements in a program unit source code.
Statement order is shown as follows:

SR-0018 B 2-5

• Vertical lines divide varieties of statements that can be
interspersed. For example, FORMAT statements can be interspersed
with PARAMETER, DATA, executable, and statement function definition
statements.

• Horizontal lines divide varieties of statements that must not be
interspersed. For example, statement function definition
statements must not be interspersed among executable statements.

An END statement must appear in the last line of a program unit and cannot
be followed by a comment line intended as a part of that same program unit.

Source
statement
order
within a
program
unit

Table 2-1. Required Order of Lines and Statements

~ Intermixing of statements is permitted ~

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA statement

IMPLICIT NONE
and IMPLICITt

Comment PARAMETER
and statementst

compiler Other specification
directive ENTRY, statements

lines FORMAT,
and DATAtt
statements Statement function

definition statements

Other executable
statements

END statement

t An IMPLICIT statement must precede a PARAMETER statement
to affect the typing of constants named in the PARAMETER
statement.

tt The ANSI Fortran standard specifies that DATA statements
follow all specification statements.

2-6 SR-0018 B

2.1.5 SYMBOLIC NAMES

A symbolic name is the name of a constant, variable, array, common
block, main program, external function, subroutine, intrinsic function,
statement function, block data subprogram, dummy procedure, or namelist.
Each of these uses is referred to as a class.

A reference (to a constant, variable, array, array element, or function)
occurs when a symbolic name appears in a context where a value is
required; such a reference is called a constant reference, etc. A
reference to a variable, array, or array element provides the value
currently associated with that entity; the value is not modified.

The scope of a symbolic name is the range, within a program, where the
name can be used. Most names are either global or local:

• A global name has a scope of an entire executable program.
Global names identify the main program, common blocks,
subprograms, and external procedures. A global name must not
exceed eight alphanumeric characters or underscores and must not
have two different global uses in the same executable program.

• A local name's scope is a single program unit. A local name
identifies an array, variable, constant, statement function, or
intrinsic function. Local names must not exceed 31 alphanumeric
characters or underscores, the first of which must be a letter. A
name must not have two local uses in the same program unit and
must not be the same as any global name except that of a common
block (see 4.6.3).

• The names of variables that appear as dummy arguments in a
statement function statement have a scope of only that statement.

• The name of a DO variable in an implied-DO list within a DATA
statement has a scope of that list.

Notice that global and local names do not correspond to global and local
data, which is discussed in 4.5.5.2. The use of the terms global and
local for symbolic names is ANSI terminology; in Cray usage, the terms
are often replaced by external and internal, respectively. A global
name is external in the sense that it is used by system software, such as
the loader.

The ANSI Fortran Standard provides for symbolic names of up to 6
alphanumeric characters.

Some character sequences, such as format edit descriptors and keywords
that uniquely identify certain statements (GO TO, READ, FORMAT, and
so on) are not symbolic names.

SR-0018 B 2-7

2 •. 2 THE EXECUTABLE PROGRAM

An executable program consists of a group of one or more program units
and procedures. A program unit (see 2.3) is an ordered set of Fortran
statements, which can be a main program or a subprogram:

• The main program is the first program unit to receive control
and cannot be invoked by another program unit; there must be one
and only one main program in an executable program.

• A subprogram is any program unit other than the main program.
It can be a procedure subprogram, which specifies a procedure,
or a specification (block data) subprogram, which contains only
nonexecutable statements (such as for initializing variables).

2.2.1 PROCEDURES: SUBROUTINES AND FUNCTIONS

A procedure is executable code, not necessarily Fortran, that can be
called. That is, it can be invoked, from a program unit or another
procedure, by a procedure call. A called procedure can process
variables, and expressions containing variables, that are specified in a
procedure call, creating new values for the use of the calling program
unit. A call can appear at various points in either a pr'ogram unit or
another procedure.

A procedure can be a subroutine or a function:

• A subroutine (see 2.5.2) is invoked only by the CALL statement.

• A function (see 2.4 and 2.5.1) is invoked by a reference to it in
an expression; the function reference is given a value, called the
function value.

A function can be one of the following:

• A statement function (see 2.4.2) is specified by a single
statement within the program unit that uses the function.

• An intrinsic function (see 2.4.3) is included with a given
compiler and is always available with that compiler unless its name
is used in another way.

• An external function (see 2.5.1) is specified by user-supplied
code outside the calling program unit.

Code for specifying a procedure can be any of the following: a Fortran
subprogram (function or subroutine), a statement within a program unit
(statement function), code provided by the compiler (intrinsic function),
or non-Fortran code provided by the user or the system (external function
or subroutine).

2-8 SR-0018 B

If a procedure is specified by user-supplied code outside the calling
program unit, it is an external procedure, which can be either an
external function or a subroutine. An external procedure can be specified
either by a Fortran subprogram or by non-Fortran code. A Fortran
subprogram that specifies a procedure is a procedure subprogram, which can
be either a subroutine subprogram to specify a subroutine, or a function
subprogram to specify an external function.

2.2.2 SUMMARY OF PROGRAM STRUCTURE

The two primary categories of Fortran structure are the program unit and
the procedure. A program unit can call, and a procedure can be called. A
program unit must be coded in Fortran, whereas a procedure can be coded in
any language. These categories overlap in the procedure subprogram, which
is a Fortran entity that can both call and be called.

Figure 2-1 illustrates the breakdown of Fortran terms. All subcategories
of a given term appear below the term, connected to it with dashed lines.
All instances of program units are enclosed in boxes. The five instances
of the term function and and the two instances of the term subroutine
are not tied to unifying labels. Figure 2-2 shows a program that includes
examples of the most important terms.

I

pro?raml
Un~t

/ \

/ \

/

tl-Mai-n I
Program

_-----
I Subprogram I

Specification
(block data)
Subprogram

/ \

/ \

/ \

\ /

Iprocedure I
Subprogram

/ \

/

/

External
Procedure

External
Function

/

\

/

/

\ I \

/

I

Subroutine I
t Subprogram

\ I
\ I

I

Function I

t Subprogram

/

\

\

Procedure
/ \

\

\

Intrinsic
Function

t
\

\

Non-Fortran
Subroutine

\

Non-Fortran
Function

Boxes indicate examples of Fortran program units.

t An example of this term appears in figure 2-2.

Figure 2-1. Subcategories'of Fortran Terms

\

Statement
Function

t

SR-0018 B 2-9

Figure 2-2 shows a program that includes many of the Fortran concepts
defined in the preceding discussion and in 2.2.3. It does not include
programming concepts such as loops and arrays. Variable ARG is used as an
actual argument for statement function STMTFUNCT, intrinsic function SQRT,
and both subprograms. All dummy arguments begin with DUM. "c" indicates
a comment line.

C Main program reads value for ARG, computes value for variable
C VARIABLE, prints value. The expression to compute VARIABLE uses
C three kinds of functions: statement function STMTFUNCT, function
C subprogram FUNCTSUBP, and intrinsic function SQRT. Subroutine
C subprogram SUBRTINE is called to check values.
C

C
C

PROGRAM TERMS
STMTFUNCT(DUMSF) = DUMSF * 10.0 Stmt function definition
READ *, ARG
CALL SUBRTINE (ARG)
VARIABLE = STMTFUNCT(ARG) + FNCTSUBP(ARG) + SQRT(ARG)
CALL SUBRTINE (VARIABLE)
PRINT *, VARIABLE
END

C Subroutine subprogram checks for unreasonable values. DUMSR is
C the dummy argument; it takes the value of ARG from the CALL
C statement above.
C

C
C

SUBROUTINE SUBRTINE (DUMSR)
IF (DUMSR .GT. 10**8) STOP
END

C Function subprogram computes the function value FNCTSUBP
C depending on the value of dummy argument DUMFS.
C

FUNCTION FNCTSUBP (DUMFS)
IF (DUMFS .LT. 51.0) THEN

FUNCTSUBP DUMFS + 3.2/DUMFS**2 + 15.6
ELSE

FUNCTSUBP = DUMFS + 15.6
ENDIF
END

Figure 2-2. Example Program Showing Fortran Structure

2-10 SR-0018 B

2.2.3 COMMUNICATING DATA WITHIN PROGRAMS

If a called procedure is to process data known to the calling program
unit, entities (such as variables) in the procedure and program unit must
be associated; that is, they must represent the same memory locations
(see 4.5). This association is established by arguments and common
blocks, discussed in the following paragraph, as well as by variables and
arrays within a program unit. These methods can be used as follows:

Kind of Association

Subroutine or function
subprogram, or other
external procedure

Statement function

Intrinsic function

Arguments

x

x

x

Common
Blocks

x

Variables or Arrays
Within Program Unit

x

An actual argument is an entity specified in a procedure call; a dummy
argument is an entity, specified in a procedure, that becomes associated
with an actual argument used in a call to the procedure. If an actual
argument is an expression, its value is given to a temporary variable,
which is then associated with the called procedure's dummy argument.
Figure 2-2 shows the use of arguments in calls to subprograms; arguments
are discussed in detail in 2.6.

A common block is an area of memory that can be referenced by any program
unit or procedure in a program. When the same common block is declared in
two program units, corresponding entities in the common block are
associated, and their values are available to both program units without
the use of arguments. A named common block has a name specified in a
COMMON statement, along with the names of variables or arrays stored in
the block. See 4.6.

2.3 PROGRAM UNITS

A program unit contains a sequence of Fortran statements and optional
comment lines. An executable program must include one main program and
can include one or more subprograms.

The main program's first statement can be a PROGRAM statement. A
subprogram begins with a FUNCTION, SUBROUTINE, or BLOCK DATA statement.
Each program unit must end with an END statement. The main program can
reference one or more subprograms during its execution; neither the main
program nor a subprogram can reference a main program.

SR-0018 B 2-11

Execution of a subprogram can be begin or end at various points within the
subprogram, specified by the ENTRY and RETURN statements (see 2.5.3). In
static mode (the default), execution of a procedure subprogram must be
terminated by a RETURN or END statement before the subprogram can be
referenced again. In stack mode, CFT77 allows recursive use of procedures
(non-ANSI; see 2.5). Static and stack are discussed in 4.5.2.

2.3.1 PROGRAM STATEMENT

Although the PROGRAM statement is optional, it is required for option f/F
(Flowtrace; see 1.4.3); and option h/H (listing of all header statements;
see tables 1-1 and 1-2). When used, it is the first statement of the main
program.

PROGRAM pgm [(h)]

pgm Symbolic name of the main program in which the PROGRAM
statement appears; from one to eight alphanumeric
characters. The name is global.

h Any sequence of allowed characters (see 2.1.1); has no
effect on the executable program, but is allowed so that
programs for other implementations of Fortran will run.

The ANSI Fortran Standard does not provide for the h field in the
PROGRAM statement.

Example:

PROGRAM A1B2C3D4

PROGRAM X (INPUT,OUTPUT)

2-12 SR-0018 B

2.4 FUNCTIONS

A function is an executable entity invoked by a function reference (see
2.4.1) used as a primary in an expression. The reference becomes
associated with a value, called the function value. Example:

Y = FUN(X) + 2.0

The above statement calls function FUN to process the current value of
X. The function reference FUN(X) takes on a new value, which is then
used in the right-side expression to assign a new value to Y.

A function is one of the following:

• A statement function is specified by a single statement within the
program unit that uses the function (see 2.4.2).

• An intrinsic function is provided by CFT77 and is always available
unless an external function of the same name is substituted by use
of the EXTERNAL statement, or unless its name is used for another
entity (see 2.4.3).

• An external function is specified by user-supplied code outside
the calling program unit; if it is written in Fortran it is a
function subprogram. (Routines in other languages are not called
"subprograms" in ANSI terminology.) See 2.5.1.

2.4.1 FUNCTION REFERENCE

All functions use the same form of reference:

fun ([a [, a] •••])

fun Symbolic name of a function or dummy procedure

a Actual argument; the parentheses are required even with no
argument. Requirements for function arguments are discussed
in 2.4.2, 2.4.3.1, and 2.6.2.

The types of actual arguments specified in a function reference must agree
with associated dummy arguments defined in the called function. In
standard Fortran, the number of actual and dummy arguments must also
agree, but this requirement is not enforced by CFT77. However, if a dummy
argument that is not associated with an actual argument is referenced, an

SR-0018 B 2-13

error or undefined value will result. To prevent this, any dummy argument
not associated with an actual argument must follow, in the dummy argument
list, all dummy arguments that are associated with actual arguments.

Examples:

Intrinsic:

User-specified:

SIN(T)
LOG (X**2 + Y**3 - 1.53)
ATAN2(U,V)
MAX(I,J,K,L,M)

FUNCTSP(D+A/1.414)
STMTF(A,B)

Examples of function references within statements:

(1) Y = SIN(T)

(2) M = MIN«MOD(I,J)+3),14) - 7

Example 2 above shows nesting of functions and functions used within
expressions.

2.4.1.1 Data type of a function: reference versus value

The name used to call a function has a type within the calling program
unit. This type is distinct from the type of the value generated by the
function. For valid results, these types must agree, but the agreement is
not enforced in Fortran. The type of a function name is established in
the same way as a variable's type, either implicitly or by means of a type
or IMPLICIT statement (see 3.1). The type of the function value is
established in the code that executes the function. Example:

2-14

In the calling program unit:

INTEGER FUN, V, C Type declaration of function FUN

V = FUN(C)

In the called function subprogram:

INTEGER FUNCTION FUN(X)
INTEGER X

Header declares fnct as integer type
X requires its own declaration

FUN = ... Function value is defined here; integer type

The above subprogram generates a value whose type agrees with that of
the name used to call the function.

SR-0018 B

Fortran does not check for type agreement between an external function
reference and its function value; nor does it convert the types of
function values, as is done for variables in expressions. A function
value of the wrong type therefore causes invalid results. You are
responsible for agreement between external function references and their
values. See 2.4.3.1 and 2.6.4.2 concerning intrinsic functions.

In addition to the requirements for type agreement, functions of type
character also require agreement in the length of the character value.
The length of a character function reference must be declared by a
previous CHARACTER or IMPLICIT statement (see examples in 3.7.1.2).

2.4.1.2 Execution of functions

Execution of a function reference results in the following actions.

1. Actual arguments that are expressions are evaluated.

2. Actual arguments are associated with dummy arguments.

3. The function is executed.

4. Control is returned to the calling program unit. The function
value is then used in evaluating the expression that contains the
function reference.

Executing a function reference in a statement must not alter the value of
any other entity within the same statement. Nor may it alter the value of
any entity in a common block that affects the value of any other function
reference in the same statement (see 4.6). Example:

FUNCTION X(PX)
COMMONICIA

A=2
X= •••
END

FUNCTION Y(PY)
COMMONICIA

PY = A
Y= •••
END

PROGRAM P
Z = X(Z)+Y(J)
END

!Illegal statement

The next-to-Iast line above is illegal because function X changes a
variable in a common block that function Y also references.

SR-OOI8 B 2-15

If a function reference in a statement causes an actual argument of the
function to be defined, that argument or any associated entities (see
4.5.5) must not appear elsewhere in the same statement. Example:

A(I)=F(I)

Y=G(X)+X

The above statements, in which F and G are functions, produce
unpredictable results when the reference to F defines I or the
reference to G defines X.

The data type of an expression in which a function reference appears
neither affects nor is affected by the evaluation of the actual arguments
of the function.

2.4.1.3 Order of evaluation

The order of evaluation of mUltiple function references within a single
statement is fixed only within a logical IF statement and within nested
function references. In other statements that contain more than one
function reference, the value provided by each function reference must not
be affected by the order in which the other function references are
evaluated.

Examples:

(1)

(2)

IF (F(Y) .EQ. 1.0) A=F(Z)

In the above statement, where F is a function name, the function
reference in the conditional statement A=F(Z) is evaluated last (but
only if the IF expression is true).

A=F(G(X»

In the above statement, where F and G are functions, G is evaluated
first.

2.4.2 STATEMENT FUNCTIONS

A statement function is a function specified by a statement function
definition statement. This statement appears after the specification
statements, before the first executable statement, and before any
statement function definition that references the function; it is
nonexecutable and is not part of the normal execution sequence. A
statement function can be referenced only in the program unit that
contains the statement function definition statement.

2-16 SR-0018 B

An actual argument in a statement function reference can be any expression
except an array expression (see 4.3.10) or a character expression in which
one operand's length is specified as (*) (unless the operand is defined in
a PARAMETER statement).

A statement function definition statement in a function subprogram can
reference that function subprogram. This is recursion and is permitted
only if -a stack is on the cft77 command or ALLOC=STACK is on the
CFT77 control statement.

The ANSI Fortran Standard does not allow a statement function statement
in a function subprogram to reference that subprogram.

2.4.2.1 Statement function definition statement

The statement function definition statement specifies a function for use
within the same program unit. Its format is as follows:

fun ([d[,d] ...]) = e

fun Symbolic name of the statement function, from 1 to 31
alphanumeric characters; local to the program unit that
contains the function. The name must not appear in any
specification statement other than a type statement (to
specify the type of the function). The name cannot be an
actual argument, nor any local or global entity except a
common block name in the same program unit.

d

e

Dummy argument, local to this statement. The same name
cannot appear twice in the list.

Expression. The relationship between fun and e must
conform to the assignment rules in table 5-1. The data type
of expression e can differ from the type of the statement
function name fun.

The ANSI Fortran Standard specifies that symbolic names can have a
maximum of six characters.

SR-0018 B 2-17

Dummy arguments to a statement function serve only to indicate the order,
number, and type of arguments for the particular statement function. A
dummy argument name used outside the statement function statement does not
refer to the dummy argument, but can be used in the following ways:

• As a dummy argument of the same type in another statement function
definition statement

• As a variable of the same type appearing elsewhere in the program
unit

• As a common block name

• As a dummy argument in a FUNCTION or SUBROUTINE statement in the
same subprogram that contains the statement function statement

Each primary of expression e must be one of the following:

• A constant
• The symbolic name of a constant
• A statement function dummy argument referenced as a variable
• A reference to a variable, which can be used elsewhere in the same

program unit
• An array element reference
• An intrinsic function reference
• A reference to a statement function defined previously in the same

program unit
• An external function reference; this must not cause a dummy

argument of the statement function to become undefined or
redefined.

• A dummy procedure reference
• An expression enclosed in parentheses, subject to the same rules as

the larger expression e.

Examples:

(1) Definition statement: DISCR1M(X) = X**(2.32-X) + 1.5*X

Function in use: P = D1SCR1M(A)

(2) Definition statement: ROOT(A,B,C,S1GN) = (-B+S1GN*SQRT(4.*A*C»/(2.*A)

(3)

(4)

2-18

Function in use: DELTA = ROOT(Q,R,S,ON)

CHARACTER*10 S, T*20
S(1) = T(1:1+9)

E(A,1) = A(1)

!1llegal: substrings not allowed

!1llegal: array name cannot be actual argo

SR-0018 B

Expression e can contain variables that are not dummy arguments; and the
statement function statement does not require a dummy argument. Therefore
a statement function can generate a result that is derived exclusively
from variables outside the statement function statement. Example (where R
appears elsewhere in the same program unit):

VOL ()=4.1887901*R**3

If a name in expression e is the name of both a dummy argument and an
entity outside the statement function statement, it applies to the dummy
argument only, and is not a reference to the other entity. Example:

INTEGER X
F(X)=X+1
X=l
Y=F(2)

Function F above is evaluated for X=2, even though X has a value of 1
outside the definition statement; Y therefore equals 3 rather than 2;
the value of X outside the function statement is unaffected by the use
of the function.

The type of a statement function or a statement function dummy argument is
determined in the same way as a variable's type; that is, it can be
implicit in the name or can be declared in ~ type statement preceding the
statement function definition statement. Example:

LOGICAL EVEN
EVEN(N)=MOD(N,2).EQ.O

2.4.3 INTRINSIC FUNCTIONS

An intrinsic function is a prespecified function for performing common
operations and is always available unless you replace it with an external
,function of the same name, or unless it is the name of a dummy argument,
array, variable, statement function, or NAMELIST group.

Some intrinsic functions are called from libraries included with the CFT77
compiler, while others cause CFT77 to generate in-line code. Intrinsic
functions contain optimized code and frequently run faster than
user-supplied code. To replace an intrinsic function with a user-supplied
function of the same name, use the EXTERNAL statement to declare the name
an external function (see 2.6.4.1).

CFT77 intrinsic functions include the entire set specified in the ANSI
Fortran Standard, as well as a set of extensions; they are listed in
appendix B. Some utilities that are called as functions are described in
the Programmer's Library Reference Manual, CRI publication SR-Ol13.

SR-0018 B 2-19

I

2.4.3.1 Referencing intrinsic functions

Intrinsic functions are referenced as shown in 2.4.1. Actual arguments
for an intrinsic function must agree in type, number, and order with those
shown in appendix B. An actual argument can be any expression (including
an array expression; see 4.3.11.3), except a character expression in which
an operand's length is specified as (*) (unless the operand is the
symbolic name of a constant).

Generic function names are used for families of intrinsic functions that
perform similar operations but differ in the data types required for
arguments and generated as results. These names simplify referencing
because the same function name can be used with more than one type of
argument.

However, generic use of a function name used as an actual argument gives
invalid results, which cannot be detected in Fortran (see 2.6.4 and
2.6.4.2). Appendix B lists the intrinsic functions in groups, with the
first name in each group serving as a generic for the whole group.

Example:

REAL R
COMPLEX C
DOUBLE D
X = SQRT(R) • SQRT(C) • SQRT(D)

The assignment statement above invokes the real, complex, and double
precision versions of function SQRT. It is equivalent to the
following:

X = SQRT(R) • CSQRT(C) • DSQRT(D)

2.4.3.2 Restrictions

Intrinsic functions are undefined for some values such as LOG(-7.).
Out-of-range arguments cause run-time messages to be issued. Appendix B
shows allowable argument ranges.

Example:

2-20

T = TAN(THETA)

The above function reference is undefined if the value of THETA is
pi/2 radians (90°).

SR-0018 B

2.5 SUBPROGRAMS

A subprogram is a program unit that is not the main program. A
subprogram can be a procedure subprogram, which specifies a procedure
(function or subroutine) and is invoked by another program unit, or a
specification (block data) subprogram, which contains nonexecutable
statements such as those for assigning initial values to entities in common
blocks.

A procedure subprogram can be one of the following:

• A subroutine subprogram specifies a subroutine, which is a
procedure called by a CALL statement.

• A function subprogram specifies a function (see 2.4).

Some subroutines and external functions are not written in Fortran (and are
therefore not considered "subprograms" in ANSI terminology.) They can be
written in Cray Assembly Language (CAL) or a high-level language, and are
separately assembled or compiled. See appendix F and the Macros and Opdefs
Reference Manual, CRI publication SR-0012.

The block data subprogram exists so that initialization of common blocks
can be performed in a separate program unit. Because most requirements for
subroutine and function subprograms do not apply to the block data
subprogram, it is described with common blocks (see 4.6.6).

A subprogram begins with a header statement (FUNCTION, SUBROUTINE, or
BLOCK DATA), and ends with an END statement. In a procedure subprogram, a
RETURN statement allows the return of control to the calling program unit
before the end of the subprogram. A RETURN or END statement terminates
execution of a subprogram and returns control to the calling program unit.

Execution of a procedure subprogram normally begins with the first
executable statement following the header statement, but the ENTRY
statement allows execution to begin at points within the subprogram (see
2.5.3.1). The number of ENTRY statements in a program unit is not
restricted.

For a subprogram to process data that is known to the calling program unit,
variables in the calling and called program units must be associated; that
is, they must represent the same memory locations. This association can be
established by an argument list (see 2.6) or by common blocks (see 4.6).

Execution of a RETURN or END statement within a subprogram causes all
entities within the subprogram to become undefined, except the following:

• Entities in a common block
• Initially defined entities (that is, those defined in a DATA

statement; see 4.5.3 and 4.4)
• Entities specified by SAVE statements (see 4.5.4)
• Other entities in static storage

SR-0018 B 2-21

The ANSI Fortran Standard specifies that, on execution of a RETURN or END
statement in a subprogram, entities within the subprogram that are in a
named common block become undefined unless the common block name appears
in a program unit that is referencing the subprogram.

In static mode (the default), function and subroutine subprograms may not
reference themselves, either directly or indirectly. In stack mode a
subroutine or function subprogram can reference itself; this is recursion.
(Stack mode is specified by -a stack in the cft77 command or ALLOC=STACK
in the CFT77 control statement; see 4.5.2 concerning stack storage.)

The ANSI Fortran Standard does not allow a subprogram to call itself.

2.5.1 EXTERNAL FUNCTIONS AND FUNCTION SUBPROGRAMS

An external function is a function (see 2.4) specified by user-supplied
code that is external to the calling program unit; the code mayor may
not be a Fortran subprogram. A function subprogram is a Fortran
subprogram that defines a function, and is one kind of external
function. See 2.5 concerning non-Fortran functions.

2.5.1.1 Restrictions on external functions

If you wish to replace an intrinsic function with an external function,
declare its name in an EXTERNAL statement (see 2.6.4.1). The loader
determines which function is used.

An external function is not restricted to defining its function value.
It can also define dummy arguments or entities in common blocks, so long
as these redefinitions do not affect entities referenced in the same
statement that references the function.

An external function name is global; it cannot be the same as any local
name in a program unit where it is referenced or in the program unit that
defines it, except as the function's result variable (see 2.5.1.2).

2.5.1.2 Function SUbprograms

A function subprogram begins with a FUNCTION statement and can contain
any statement other than a BLOCK DATA, PROGRAM, SUBROUTINE, or another
FUNCTION statement. A subprogram ends with an END statement.

2-22 SR-0018 B

A function subprogram normally executes from beginning to end; then
control transfers to the executable statement (in another program unit)
that called the function. This sequence can be altered in the following
ways (see 2.5.3):

• The subprogram can begin executing at an ENTRY statement within the
subprogram.

• A RETURN statement or STOP statement can end execution before the
subprogram's END statement.

The symbolic name of a function subprogram and any entries (ENTRY
statements) must appear as variable names in the function subprogram and
must become defined during execution of the function; these variables are
called result variables within a subprogram. The function value of a
function reference is the value of the result variable of the same name
when a RETURN or END statement is executed in the subprogram.

The symbolic name of a function specified by a FUNCTION or ENTRY statement
must not appear in any other nonexecutable statement except a type or
EXTERNAL statement and must appear only as a variable or actual argument
in executable statements; this restriction does not apply to recursive use
of a function (CFT77 extension).

You must make sure that the function value generated by a function
subprogram agrees with the type of the function reference in the calling
program unit (see 2.4.1.1). The function value's type is specified in any
of the following ways:

• The type is implicit in the function name.

• The type is specified in the FUNCTION statement.

• The type is declared by a type statement that includes the function
name appearing in the subprogram.

If the type is specified in the FUNCTION statement, the function name must
not also appear in a type statement; redundant type specifications are not
allowed. If the function name is a character variable with a length
specification of (*), it must not appear as an operand for concatenation
except in a character assignment statement.

Each invocation of a function has its own function result variable,
including recursive calls. See 2.5 concerning recursion.

In a function subprogram, the symbolic name of a dummy argument is local
and must not appear in any of the following uses: in an EQUIVALENCE,
INTRINSIC, PARAMETER, SAVE, or DATA statement; as a pointee; in a COMMON
statement except as a common block name; or as a NAMELIST group name.

SR-0018 B 2-23

2.5.1.3 FUNCTION statement

A function subprogram begins with a FUNCTION statement, which identifies a
subprogram as a function subprogram, establishes the function's symbolic
name and, optionally, specifies its data type (see 2.4.1.1 concerning
function data types).

2-24

[type] FUNCTION fun([d[,d] .•.])

type

fun

d

Declares the function's data type, INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, LOGICAL, or CHARACTER[*len]. If the
type is not declared in the FUNCTION statement, it can be
declared in a type statement within the subprogram of the
form type fun as in REAL NOM in subprogram NOM.
Otherwise, the type is implicit in the function name.

len Length of the result of a character function; can be
an unsigned positive integer constant or a positive
integer constant expression enclosed in parentheses
(expression cannot include the symbolic name of a
constant), or (*). See 3.7 concerning character
type and 3.7.1.1 concerning the use of the asterisk
specification.

Symbolic name of the function subprogram; global name of 1
to 8 alphanumeric characters. fun must appear as a
variable name and become defined in the function
subprogram. fun must not appear in any other
nonexecutable statement other than a type statement or
EXTERNAL statement, except as a common block name. fun
must appear only as a variable or dummy argument in
executable statements, unless the function is to be used
recursively (non-ANSI; see 2.5).

Dummy argument representing a variable, array, or dummy
procedure name. Parentheses are required even with no
arguments listed. See 2.6 concerning arguments.

SR-0018 B

Examples:

(1)

(2)

(3)

FUNCTION MOM(N,L)

Because of implicit typing, a subprogram beginning with the above
statement generates an integer value unless its type is changed by a
type statement or IMPLICIT statement within the subprogram. A
reference to this function could be of the form I=MOM(J,K). In the
calling program unit, the function reference would be implicitly typed
integer unless declared otherwise (see 2.4).

REAL FUNCTION MOM(X,Y)

A function defined by a subprogram beginning with the above statement
is explicitly typed real, so the value generated is real for a
function call such as X=MOM(P,Q). The function reference would then
have to be declared real in the calling program unit.

FUNCTION AVERAGE(A,N)
REAL A(N)
SUM = 0.0
DO 10 I=1,N

SUM = SUM + A(I)
10 CONTINUE

AVERAGE = SUM/N

END

The above function subprogram uses a dummy array and a DO loop to
compute an average of the N values contained in an actual array. See
4.3 concerning arrays and 6.3 concerning DO loops. Notice that the
function name is defined within the subprogram.

2.5.2 SUBROUTINES AND SUBROUTINE SUBPROGRAMS

A subroutine is an executable entity that is invoked only by a CALL
statement within a program unit or other procedure. A subroutine is
distinct from a function in that it is called only by the CALL statement
and has no data value associated with its name. A subroutine name cannot
be used in an expression, and it has no data type.

A subroutine can be specified by either a Fortran subprogram or a
non-Fortran procedure (described in appendix F). A Fortran subprogram
that specifies a subroutine is a subroutine subprogram.

SR-0018 B 2-25

Users of Cray computer systems have access to a library of subroutines
for a variety of purposes, including mathematical, scientific, and system
utilities. These are described in the Programmer's Library Reference
Manual, CRI publication SR-Ol13.

If a subroutine is to process data known to the calling program unit,
variables in the subroutine and program unit must be associated; that is,
they must represent the same memory locations. This association can be
established by an argument list (see 2.6) or by common blocks (see 4.6).

A subroutine subprogram normally executes from beginning to end; then
control transfers to the statement following the CALL statement that
called the subroutine. This sequence can be altered in the following
ways (see 2.5.3):

• The subprogram can begin executing at any point that an ENTRY
statement appears.

• The RETURN statement can end execution before the end.

• The RETURN statement can specify a different point in the calling
program unit to resume execution. This is an alternate return.

2.5.2.1 Requirements

A subroutine subprogram begins with a SUBROUTINE statement containing the
subroutine's name and the names of any dummy arguments or alternate
return specifiers, and ends with an END statement. A subroutine
subprogram cannot contain a BLOCK DATA, FUNCTION, or PROGRAM statement,
or a second SUBROUTINE statement.

The name of a subroutine or subroutine entry is global, and within the
calling program unit cannot be used as a local name, function name,
function entry name, or namelist.

2.5.2.2 CALL statement (subroutine reference)

The CALL statement causes execution of the subroutine specified in the
statement. It can specify actual arguments to be associated with dummy
arguments in the subroutine, to allow the subroutine to process data as
needed by the calling program unit. The CALL statement can also specify
different statements to which control can be returned.

2-26 SR-0018 B

CALL sub [([a[,a] •..])]

sub Symbolic name of a subroutine, subroutine entry (see
2.5.3.1), or dummy subroutine. sub can be a dummy
subroutine name only within a subprogram, one of whose dummy
arguments is sub (see 2.6.4).

a Actual argument or alternate return specifier. Permitted
actual arguments are discussed in 2.6.2. An alternate
return specifier (*s, denoting a statement label) allows
control to be transferred to a different statement in the
calling program unit (see the RETURN statement, 2.5.3.2).

The types of actual arguments specified in a CALL statement must agree
with associated dummy arguments defined in the called subroutine. In
standard Fortran, the number of actual and dummy arguments must also
agree, but this requirement is not enforced by CFT77. However, if a dummy
argument that is not associated with an actual argument is referenced, an
error or undefined value will result. To prevent this, any dummy argument
not associated with an actual argument must follow, in the dummy argument
list, all dummy arguments that are associated with actual arguments.

Examples:

~LLS~

CALL GEORGE(X,-7.)
CALL TOM(*10,X,*20,Y)

Corresponding to the examples shown for the SUBROUTINE statement
(2.5.2.3, following), the first example above calls subroutine S~;
the second calls subroutine GEORGE with actual arguments X and -7.;
and the third calls subroutine TOM with actual arguments X and Y and
alternate return specifiers for statements 10 and 20.

Execution of a CALL statement results in the following:

• Evaluation of actual arguments that are expressions (see 2.6.2)

• Association of actual arguments with the corresponding dummy
arguments, as described in 2.6.2.

• The actions specified by the referenced subroutine

SR-0018 B 2-27

Control can be returned to the first executable statement following the
CALL statement or to a statement indicated by an alternate return
specifier in the CALL statement. Return of control to the referencing
program unit completes execution of the CALL statement.

2.5.2.3 SUBROUTINE statement

The SUBROUTINE statement identifies a subroutine subprogram. It contains
the subroutine name and an optional list of dummy arguments or asterisks
corresponding to alternate return specifiers.

SUBROUTINE sub [([d[,d] ••.])]

sub Symbolic name of the subroutine; the name is global.

d Dummy argument or asterisk. A dummy argument represents an
entity used in the subprogram, corresponding to an actual
argument in the CALL statement that calls the subprogram.
An asterisk corresponds to an alternate return specifier in
the CALL statement (see CALL statement, 2.5.2.2 and RETURN
statement, 2.5.3.2).

Examples:

SUBROUTINE SAM
SUBROUTINE GEORGE(A,B)
SUBROUTINE TOM(*,X,*,Y)

The first example is the first statement of subroutine SAM, which has
no dummy arguments or alternate returns. The second example is for a
subroutine with dummy arguments A and B. The third is for a
subroutine with dummy arguments X and Y, and two asterisks
corresponding to alternate return specifiers in the CALL statement.
The examples shown for the CALL statement (2.5.2.2, previous)
correspond to these examples.

2.5.3 ALTERING THE TRANSFER OF CONTROL BETWEEN PROGRAM UNITS

The following statements let you choose, with some restrictions, where
execution of a subprogram begins and ends, and to choose where execution
resumes in the calling program unit after execution of a subroutine.

2-28 SR-0018 B

2.5.3.1 ENTRY statement

The ENTRY statement is used in a procedure subprogram to allow execution
to begin at a point within the subprogram's execution sequence, rather
than at the beginning. In the procedure call, the name in the ENTRY
statement is used instead of the name appearing in the subprogram's
FUNCTION or SUBROUTINE statement.

The ENTRY statement is nonexecutable and can appear anywhere in a
procedure subprogram after the FUNCTION or SUBROUTINE statement, except
within a DO-loop or IF structure (see 6.1). Execution begins at the ENTRY
statement. A procedure subprogram can contain one or more ENTRY
statements following its FUNCTION or SUBROUTINE statement.

ENTRYen[([d[,d] ...])]

en Entry name; this name is a subroutine name or function name
used in procedure calls in the normal way. Restrictions are
listed in a subsequent paragraph.

d Dummy argument representing a variable name, array name,
procedure name, or an asterisk associated with an alternate
return specifier (only in a subroutine subprogram). 2.6.2
discusses requirements for dummy and actual arguments.

Dummy arguments in an ENTRY statement need not agree with those specified
in a FUNCTION, SUBROUTINE, or other ENTRY statement in the same
subprogram. Any dummy argument must be named in an ENTRY statement or
header statement before it appears in an executable statement or statement
function statement.

Restrictions on the entry name en are as follows:

• en cannot be used as a dummy argument in the same subprogram.

• In a function subprogram, en must not appear as a variable in any
statement preceding the ENTRY statement, except a type statement.

• en cannot be the same as any global name in the same executable
program.

• en cannot appear in a POINTER or NAMELIST statement.

• In a function subprogram of type character, en must be of type
character, with the same declared length as the function name,
either an integer or (*) to denote a value specified in the
function reference.

SR-0018 B 2-29

In a function subprogram, the function name en specified in an ENTRY
statement can appear as a result variable within the subprogram. Even if
it does not appear, it is associated with all other result variables
within the subprogram, including the function name shown in the FUNCTION
statement. Rules of association appiy as described in 4.5. Entry names
can differ in type from the name in the FUNCTION statement, except when
the type is character.

Example:

PROGRAM ENTRYEX
REAL MEAN

A=MEAN(ARR1)

J=MEDIAN(ARR2)

END

REAL FUNCTION MEAN (ARRX)

ENTRY MEDIAN (ARRX)

MEAN = •••
IF (••.) RETURN

MEDIAN =

END

In this example, because the functions MEAN and MEDIAN use some of
the same code, they are combined into one function subprogram. The
entry name MEDIAN is used as a function reference in the calling
program unit and as a result variable in the subprogram. Note that
MEAN is real and MEDIAN is integer type.

Because all result variables are associated, a conditional RETURN
statement is needed so that the value for function reference MEAN is
not changed by the assignment to MEDIAN. A change to MEAN would give
at least an unintended result in the calling program unit, and in
this case would create an undefined value because the two variables
are of different types. If MEDIAN and MEAN were of the same type,
the assignment to MEDIAN could instead be to MEAN, with the same
result, because they are associated.

2.5.3.2 RETURN statement

A RETURN statement returns control from a procedure subprogram to the
referencing program unit. The statement is used only in function
subprograms and subroutine subprograms. A subprogram can contain more
than one RETURN statement but need not contain any RETURN statements
because executing an END statement in a function or subroutine subprogram
has the same effect as executing a RETURN statement.

In a function subprogram, the statement consists of only the word
RETURN. In a subroutine subprogram, the format is as follows:

2-30 SR-0018 B

i

RETURN [i]

Integer expression specifying an alternate return. i
indicates the ith return specifier in the list of dummy
arguments in a subroutine subprogram; see the next
paragraph.

An alternate return allows a subroutine to return control to a
statement identified in the CALL statement that called the subroutine.
i in the RETURN statement references the ith asterisk in the dummy
argument list of a SUBROUTINE statement; this asterisk in turn specifies
a statement label preceded by the ith asterisk in the CALL statement.
If i is less than 1 or greater than the number of asterisks specified,
RETURN i is treated as RETURN.

Example:

4

5

6

PROGRAM ALTRET SUBROUTINE SUB (*,S,T,*)

CALL SUB (*5,A,B,*6) 10 RETURN 1
statement

11 RETURN 2
statement

12 RETURN I
statement

13 RETURN
END

Statement 10 returns control to statement 5 because RETURN 1 refers to
the first alternate return specifier in the SUBROUTINE statement and
therefore the first specifier (*5) in the CALL statement.

Statement 11 returns control to statement 6 because the second
asterisk in the SUBROUTINE statement corresponds to the second
specifier (*6) in the CALL statement.

Statement 12 returns control to statement 5 or 6 if I has a value of 1
or 2, respectively; otherwise control returns to statement 4.

Statement 13 returns control to statement 4.

SR-0018 B 2-31

2.6 ARGUMENTS

An actual argument is an entity, appearing in a procedure call, which
becomes associated with a name in the called procedure; the name in the
called procedure is a dummy argument. When the procedure is executed,
any new value of the dummy argument is also the new value of the actual
argument in the calling program unit.

Each procedure has a dummy argument list corresponding to the actual
argument list in the procedure call; for example, in a subprogram the
dummy argument list appears in the header statement. The two names are
associated by their corresponding positions in th~ argument lists. See
3.7.3 concerning character arguments and 4.3.7 concerning array arguments.

2.6.1 ASSOCIATION OF ARGUMENTS

A procedure call associates actual arguments with dummy arguments: the
first actual argument with the first dummy argument, and so on. The
association is valid only if the arguments are of the same type. A dummy
argument is undefined if it is not associated with an actual argument.
Association of actual and dummy arguments ends when the procedure
finishes executing; association is not continued to the next execution of
the procedure.

The following requirements apply to the use of arguments:

• Dummy procedures and nesting: When a procedure name is used as an
argument, its corresponding dummy argument must be a dummy
procedure name (see 2.6.4). Association of arguments can be
carried through more than one level of procedure reference; any
invalid association makes further associations also invalid.

• Alternate return specifiers must be associated with asterisk dummy
arguments (see 2.5.3.2).

• Variables and constants: If the actual argument is a variable
name, array element name, or substring name, the associated dummy
argument can be defined or redefined within the subprogram. A
dummy argument must not be redefined within the subprogram if the
associated actual argument is a constant, the name of a constant,
a function reference, or an expression involving operators or
enclosed in parentheses.

• Associating two dummy arguments: If a subprogram reference causes
two dummy arguments in the referenced subprogram to become
associated with each other, neither dummy argument can become
defined in the subprogram. For example, if two dummy arguments
are associated with the same actual argument, they become
associated with each other and cannot legally become defined.

2-32 SR-0018 B

• Common block entities: If a subprogram call associates a dummy
argument with an entity in a common block, and the common block is
declared or referenced in the subprogram, neither the common block
entity nor the argument can become defined within the subprogram.

Example:

In calling program unit: In called subprogram:

COMMON ICB/B
CALL XYZ (B)

SUBROUTINE XYZ (A)
COMMON ICB/C

The above subroutine call associates A with B; Band C are associated
in common block CB. Neither A nor C can become defined during the
execution of subroutine XYZ or by any procedures it references.

2.6.2 ACTUAL ARGUMENTS FOR EXTERNAL PROCEDURES

Actual arguments specify the entities to be associated with the dummy
arguments of a referenced subroutine or external function.

The actual arguments in a reference to an external procedure must agree
in order, number, and type with the dummy arguments in the procedure or
procedure entry. CFT77 does not enforce agreement in number, and you can
omit later arguments if you know that the corresponding dummy arguments
will not be referenced (non-ANSI). An actual argument can be a
subroutine name or an alternate return specifier (see 2.5.3.2); these do
not have data types, so the requirement for type agreement does not apply.

An actual argument in an external procedure reference must be one of the
following. (See 2.4.3.1 and 2.4.2 concerning actual arguments for
intrinsic functions and statement functions.)

• Expressions: Any expression other than a) an array syntax
expression or b) a character expression with an operand whose
length is specified as (*), unless the operand is the name of a
constant (see 3.7.3). If the expression includes an operator or
parentheses, it is evaluated and stored in a temporary variable,
which is then associated with the dummy argument. The following
kinds of expressions involve these considerations:

SR-0018 B

Array element or substring name. The array subscript or
substring designator is evaluated just before the arguments
are associated, and it remains constant as long as the
arguments are associated, even if the subscript or designator
contains variables that are redefined during the association.

Function reference has its own argument list (empty where
appropriate). The function is evaluated, and the function
result is associated with the dummy argument.

2-33

• Procedure name. The name of an intrinsic function, external
function, or subroutine. This allows a called procedure to call a
second procedure that is specified in the first call (see 2.6.4).

• Array name. The referenced actual array must be at least as large
as the dummy array in the called procedure (see 4.3.6.1 and 4.3.7).

• Alternate return specifier (subroutines only): A specifier of the
form *n, where n is a statement label in the calling program
unit (see 2.5.3.2).

• Dummy argument within the same subprogram that is making the
procedure call. Example:

CALL SUBA(X)
SUBROUTINE SUBA(Y)
CALL SUBB(Y)

SUBROUTINE SUBB(Z)

Variable Y above serves as a dummy argument within subroutine
SUBA, but is used as an actual argument in the call to subroutine
SUBB. This allows a value to be passed through several levels of
procedures. (Alternate return specifiers cannot be used this way.)

2.6.3 DUMMY ARGUMENTS

Subprograms use dummy arguments to indicate the types of actual arguments
and whether each is a single value, an array, or a procedure. A
reference to a subprogram causes its dummy arguments to become defined if
the corresponding actual arguments are defined. A dummy argument name is
local to a subprogram. Dummy arguments have the following requirements:

• Specify before using: If a dummy argument is referenced in an
executable statement or statement function statement, it must be
specified within the subprogram's header statement or a preceding
ENTRY statement; or as a dummy argument within the same statement
function statement.

• Kinds of dummy arguments: Each dummy argument is classified as a
variable, array, or procedure. A dummy argument that is a
variable can be associated with an actual argument that is a
variable, array element, substring, or expression.

• Prohibited statements: A dummy argument name cannot appear in an
EQUIVALENCE, DATA, SAVE, INTRINSIC, or PARAMETER statement, as a
pointee in a POINTER statement, or in a COMMON statement (except
as a common block name).

2-34 SR-0018 B

• Name duplication: A dummy argument name in a subprogram must not
be the subprogram's name or the name of a statement function in
the subprogram.

• Dummy array declarators: Adjustable dimension declarators can
contain dummy arguments of type integer.

• Statemept function dummy arguments must have scalar values
(see 4.2).

2.6.4 DUMMY PROCEDURES

A dummy procedure is a dummy argument used as a procedure name in a call
to an external procedure. This allows a procedure call to specify a
another procedure to be referenced by the called procedure.

Example:

EXTERNAL AFUN

CALL SUB (A,AFUN)

SUBROUTINE SUB (D,DFUN)

VAR = DFUN(D)
END

Above, dummy argument DFUN is associated with function name AFUN,
which causes the function reference in the subroutine to reference
function AFUN. Therefore DFUN(D) is equivalent to AFUN(A).

Before being used as an actual argument, a procedure name must be declared
in an EXTERNAL or INTRINSIC statement, to distinguish it from other kinds
of arguments. Statement functions cannot be used as dummy procedures.
The names of intrinsic functions for lexical relation, maximum/minimum,
and type conversion cannot be used as dummy arguments.

A dummy procedure name must be associated with an actual argument that is
a procedure name. A subroutine name, dummy or actual, must not appear in
a type statement or be referenced as a function.

The arguments for a dummy procedure must agree in number and type with
those specified for an actual procedure with which it becomes associated.
When a dummy procedure is a function, the dummy function reference must
match the type of the actual function reference. A name appearing in a
type statement and an EXTERNAL statement must be the name of a function.

SR-0018 B 2-35

2.6.4.1 EXTERNAL statement

The EXTERNAL statement declares a name to be the name of an external
function, subroutine, or dummy procedure; it must be used in the following
cases:

• When an external or dummy procedure name is to be passed as an
actual argument, even if the use of the name is not ambiguous. The
EXTERNAL statement appears in the same program unit as the name's
use as an actual argument.

• When you want to replace an intrinsic function with an external
function of the same name. The intrinsic function of the same name
is then unavailable, and the name becomes the name of an external
function, either a function subprogram or a non-Fortran function.

EXTERNAL proc [,proc] •.•

proc Name of an external procedure, dummy procedure, or block
data subprogram. Except for recursion (non-ANSI), proc
cannot be an entry name into the same subprogram that
contains the EXTERNAL statement. (Though block data
subprograms can be declared external, they cannot be
referenced or passed as arguments.)

A statement function name must not appear in an EXTERNAL statement. A
given symbolic name can appear only once in all of the EXTERNAL statements
of a program unit.

2.6.4.2 INTRINSIC statement

An INTRINSIC statement identifies a symbolic name as an intrinsic
function. If an intrinsic function name is an actual argument in a
program unit, it must appear in an INTRINSIC statement in that program
unit.

INTRINSIC fun[,fun] ...

fun Intrinsic function name

2-36 SR-0018 B

Some intrinsic function names cannot be used as actual arguments, though
they are allowed in an INTRINSIC statement. These functions are those for
lexical relation, maximum/minimum, type conversion, and vectorization, and
names that are generic but not specific function names. These categories
include the following functions:

AMAXO CVMGT IFIX MAX
AMAXl CVMGZ INT MAXO
AMINO DBLE LGE MAX 1
AMINl DMAXl LGT MIN
CHAR DMINl LLE MINO
CMPLX FLOAT LLT MINl
CVMGM ICHAR LOG REAL
CVMGN IDINT LOG1O SNGL
CVMGP

The appearance, in an INTRINSIC statement, of a generic function name
that is also a specific name does not cause the name to lose its generic
property when used in the same program unit. When the function name is
passed as an actual argument, it is not generic when referenced in the
called program unit. (This is because argument types cannot be known
when the called program unit is compiled, and the function is accessed
only by its address.)

Example:

INSTRINSIC SQRT
CALL JOE (SQRT)

SUBROUTINE JOE (F)
X = F(3.0,4.0) Invalid result: CSQRT is not called

A given symbolic name must not appear in both an EXTERNAL and an
INTRINSIC statement. In addition, it can appear only once in all of the
INTRINSIC statements of a program unit. Appendix B lists the intrinsic
functions.

SR-0018 B 2-37

DATA TYPES 3

Data can be specified in a Fortran program as a constant, a variable, an
array, an array element, or a function reference. A constant is an
invariant value, which cannot be modified. A variable is a name that
can assume different values during program execution. An array is an
ordered set of data items of the same type, identified by a single name.
An array element is one item in an array and, like a variable, can
assume different values during program execution; it is identified by the
array name and by one or more expressions to specify its position within
the array. See 2.4 concerning functions and section 4 concerning other
terms above.

Each data item has a data type, which specifies how the item is
represented, stored, and manipulated. Data types can be any of the

, following.

• Integer - integral, signed values

• Real - values approximating real numbers, consisting of a mantissa
and an exponent

• Double-precision - values that are the same as real values, but
extended to about twice the precision

• Complex - values approximating complex numbers as pairs of real
data items. The first item in the pair represents the real
portion and the second, the imaginary portion of the data.

• Logical - the logical values true and false

• Character - sequences of characters

• Pointer - values representing storage addresses; only a variable
can be of type pointer. CFT77 extension.

• Boolean - values representing the binary contents of Cray words;
only constants (octal, hexadecimal, or Hollerith), intrinsic
functions, or expressions can be Boolean. CFT77 extension.

An arithmetic value is a number that can be used in an arithmetic
operation; it can be of type integer, real, double-precision, or
complex. Table 3-1 shows some examples of values represented in these
data types. Pointer variables, Boolean constants, and Hollerith
constants can also be used in limited ways in arithmetic expressions.

SR-0018 B 3-1

Table 3-1. Values Represented in Oifferent Oata Types

Oouble
Value Int. Real Precision Complex

0 0 O. 00 (0. ,0.)

692. (692.,0.)
692.0 (692.0,0.)
692EO 69200 (692EO,0.)

692 692 692.EO 692.00 (692.EO,0.)
692.0EO 692.000 (692.0EO,0.)
6920E-1 69200-1 (6920E-1,0.)
.692E3 .69203 (.692E3,0.)
6.92E2 6.9202 (6.92E2,0.)

6.128547472 (6.128547472,0.)
6.128547472EO 6.12854747200 (6.128547472EO,0.)

6.128547472 6t 6128547472E-9 61285474720-9 (6128547472E-9,0.)
6128547472.0E-9 6128547472.00-9 (6128547472.0E-9,0.)
.6128547472E1 .612854747201 (.6128547472E1,0.)
612.8547472E-2 612.85474720-2 (612.8547472E-2,0.)

(0.,.875)
(0.,875E-3)

.875i ot O.t O.oot (0.,.875EO)
(0.,8.75E-1)
(0.,.000000875E6)

(692.,.875)
(692EO,0.875)

692+.875i 692t 692.t 692.000t (69.2E1,875E-3)
(.692E3,875.E-3)
(6.92E2,8.75E-1)

t This value differs significantly from the value in the leftmost
column, but results from normal type conversion of that value.

3-2 SR-0018 B

3.1 TYPE SPECIFICATION

A data type (for a symbolic constant, variable, array, external function,
or statement function) can be specified explicitly in a type statement or
implicitly by the first letter of its symbolic name. If no type is
specified, a first letter of I, J, K, L, M, or N implies type integer; any
other first letter implies type real. The default for implied typing can
be changed or confirmed by an IMPLICIT statement.

After a symbolic name is identified with a type, that type applies to all
uses of that name. Exception: a common block can have the same name as a
variable or array, but the common block name has no type.

The data type of an array element is the same as the data type of the
array that contains it.

A function's data type must, in effect, be specified twice; the two
specifications must agree for the function's result to be valid. The
specifications are as follows:

• The type of the function's result value is determined in the coding
of the function (see 2.4.2.1, 2.4.3.1, and 2.5.1.2).

• The type of the function reference in the calling program unit is
specified in the same way as a variable's type; the type is either
implicit in its name or declared within the same program unit (see
2.4.1 and 2.4.1.1).

3.1.1 TYPE STATEMENTS

A type statement declares the type of an entity, thereby either overriding
or confirming the entity's implicit type, and can specify array dimensions
by including array declarators with array names.

The appearance of a symbolic name (of a constant, variable, array, or
function) in a type statement specifies the data type for all appearances
of that name in the program unit. A name's type must not be explicitly
specified more than once within a program unit.

The name of a subroutine, main program, or block data subprogram must not
appear in a type statement.

If a specific intrinsic function name appears in a type statement that
conflicts with that function'S type (as specified in appendix B), and the
name is used as an intrinsic function name, the conflicting type statement
is ignored and a warning message is issued. Note the requirements for
function typing in the 3.1 introduction preceding.

SR-0018 B 3-3

The form of type statements other than POINTER and CHARACTER is as follows:

type v[,v] ••.

type

v

Specifies type INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or
LOGICAL. (CHARACTER and POINTER type statements have
different requirements; see 3.7.1 and 3.9.1. Boolean type
does not have a type statement.)

Symbolic name of a constant, variable name, array name,
function name, dummy procedure name, or array declarator.
An array declarator includes dimension declarators
(see 4.3.4).

Examples:

INTEGER NPAK(60,230),RTEST,XREF(20,2),ARRAY

DOUBLE PRECISION ANG(1014,8),KLIM,PTEST(10)

COMPLEX IMAG,COMARR(30,3),ZREF,KITEMS(64)

LOGICAL KEY2,BOOLSET(64,64),TTABLEB(2,20,15)

In the above examples, numbers in parentheses are dimension
declarators, and the names preceding the parentheses are array names.
Other names can represent entities as listed in the preceding format
description. See E.5 for extensions of the type declaration
statements.

3.1.2 IMPLICIT STATEMENT

An IMPLICIT statement changes or confirms the data typing of constants,
variables, arrays, and functions according to the first letter of their
symbolic names.

3-4 SR-0018 B

type

a

Data type: INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
CHARACTER[*len], or LOGICAL

len Length of the character entities. len can be an
unsigned, nonzero, positive integer constant or
expression; maximum values are shown in 3.7.

Letter; a range of letters within the alphabet can be
written in the form afirst-alast; for example, I-M.

An IMPLICIT statement specifies a type for names of constants, variables,
arrays, and functions (except intrinsic functions), beginning with any
letter appearing singly or within a range in the specification. IMPLICIT
statements do not change the types of intrinsic functions. An IMPLICIT
statement applies only to the program unit containing it.

The appearance of a constant, variable, array, or function name in a type
statement overrides or confirms type specification by an IMPLICIT
statement. An explicit type specification in a FUNCTION statement
overrides IMPLICIT statement typing for the name of that function
subprogram.

Within the specification statements of a program unit, IMPLICIT statements
must precede all specification statements other than PARAMETER
statements. An IMPLICIT statement must precede a PARAMETER statement to
affect the typing of constants named in the PARAMETER statement.

A letter can be specified (or implied within a range of letters) only once
in all of the IMPLICIT statements in a program unit.

Examples:

IMPLICIT LOGICAL(L)
IMPLICIT DOUBLE PRECISION(X,Y),COMPLEX(C)
IMPLICIT INTEGER(A,B,F-K),REAL(M-W,Z)

The last example declares variables starting with A, B, F, G, H, I, J,
and K to be integer type, and variables starting with M, N, 0, P, Q,
R, S, T, Uj V, W, and Z to be real type.

SR-0018 B 3-5

3.1.3 IMPLICIT NONE STATEMENT (CFT77 EXTENSION)

The IMPLICIT NONE statement prevents the use of implicit typing by
requiring all constant, variable, array, dummy argument, statement
function, and function (except intrinsic function) names to appear in an
explicit type statement. It also requires all nonintrinsic subroutine and
function names to appear in an EXTERNAL statement. The statement consists
of the words IMPLICIT NONE with no other parameters.

The IMPLICIT NONE statement applies only to the program unit containing it
and must be the first specification statement.

When IMPLICIT NONE is specified, failure to provide type or EXTERNAL
declarations is a fatal error for the cases already described. Intrinsic
subroutine and function names need not appear in explicit type statements
and must not be declared EXTERNAL.

3.2 INTEGER TYPE

An integer value represents positive, negative, or zero whole-number
values with no fractional part. The form of an integer constant is an
optional sign followed by a nonempty sequence of digits specifying a
decimal integer value. An integer value occupies one storage unit in a
storage sequence (see 4.5.1). Machine representation is shown in G.1.

The CFT77 default for internal representation of integers is 46 bits.
With this default, integer values (I) can be in the following range:

_2 46 < I < 246 or (approximately) _1014 < I < 1014

The use of 64-bit integers can be specified by -i64 in the cft77
command, INTEGER=64 in the CFT77 control statement, or CDIR$ INTEGER=64 in
your program. When this option is active, integer values can be
represented in the following range:

_2 63 ~ I < 263 or (approximately) _1019 < I < 1019

The ANSI Fortran Standard does not specify a range of values for
integer values.

3-6 SR-0018 B

3.3 REAL TYPE

A real value approximates the value of a real number. A real value
occupies one storage unit in a storage sequence (see 4.5.1). Machine
representation is shown in G.2.

A real constant is written as one of the following:

• Basic real constant
• Basic real constant followed by a real exponent
• Integer constant followed by a real exponent

A basic real constant consists of an optional sign, an integer portion,
a decimal point, and a fractional portion, in that order. The integer and
fractional portions are sequences of digits representing integer and
fractional decimal constants. Either, but not both, of these portions can
be omitted. A basic real constant can be written with more digits than
can be used to approximate its constant; the excess digits are lost by
CFT77 in roundoff. Examples:

692. 692.0 34.836 0.458 .458

A real exponent is a power of 10 specified by an optionally signed
integer constant following the letter E. The value preceding the exponent
is multiplied by 10 to the specified power. Examples:

692.EO 692.0EO 6920E-l

Nonzero real values are represented in the Cray computer by normalized
floating-point binary values (R) in the following range.

2-8193 < R < 28191 or (approximately) 10-2467 < R < 102465

The above numbers do not represent the range of values that can be used in
all operations. For example, X=2.**8190 causes an error, but
X=2.**8189 does not.

Nonzero real values have a maximum of 48 significant binary digits, or
approximately 15 decimal digits of prec1s1on. Rounding, cancellation, and
truncation can cause fewer than 48 reliable bits to be generated.

The ANSI Fortran Standard does not specify a range of real values.

SR-0018 B 3-7

3.4 DOUBLE-PRECISION TYPE

A double-precision value is a signed approximation of a real number,
extended to approximately twice the precision of a real value. Double­
precision values can be positive, negative, or zero, and occupy two
consecutive units in a storage sequence (see 4.5.1). Machine
representation is shown in G.3.

Because the precision of CFT77's real type is comparable to double
precision on many other systems, and because double precision slows
execution, -dp on the cft77 command and OFF=P on the CFT77 control
statement are provided to cause double-precision values to be treated as
single-precision real values. See tables 1-1 and 1-2.

A double-precision constant is written as one of the following.

• Basic real constant (see 3.3) followed by a double-precision
exponent

• Integer constant (see 3.2) followed by a double-precision exponent.

A double-precision exponent has the same range as a real exponent. The
form of a double-precision exponent is the letter D followed by an
optionally signed integer value; the value preceding the exponent is
multiplied by 10 to the specified integer value. Examples:

692DO .692D3 612.8547472D-2

Nonzero double-precision values are represented in the Cray computers by
normalized floating-point binary values (D) in the following range.

2-8193 < D < 28191 or (approximately) 10-2466 < D < 10 2465

Nonzero double-precision values have a maximum of 96 significant binary
digits, or approximately 29 decimal digits of precision. Rounding,
cancellation, and truncation during computation can cause fewer than 96
reliable bits to be generated.

The ANSI Fortran Standard does not specify a range of values for
double-precision values.

3-8 SR-0018 B

3.5 COMPLEX TYPE

A complex value approximates a complex number as a pair of real values.
The first item in the pair represents the real portion and the second, the
imaginary portion of the value. A complex constant is written as a pair
of integer or real constants, within parentheses and separated by a
comma. A complex value occupies two consecutive storage units in a
storage sequence (see 4.5.1): the first for the real portion and the
second for the imaginary portion. Machine representation is shown in G.4.

The real and imaginary components of nonzero complex values are
represented in the Cray computer by two real values (Creal,Cimag) in
the following range.

2-8193 < Creal or Cimag < 28191

or (approximately)

10-2466 < Creal or Cimag < 10 2465

Each component contains a maximum of 48 significant binary digits, or
approximately 15 decimal digits of accuracy.

The ANSI Fortran Standard does not specify a range of values for complex
value components.

3.6 LOGICAL TYPE

A logical entity is a single true or false value (occupying one storage
unit), which cannot be used as a number. Variables, arrays, and constants
can be of logical type. Logical entities are used in tests for
conditional code (see 6.1). The difference between logical and Boolean
types is discussed in 3.8.

A logical or relational expression results in a single logical value (or
one value per element in an array expression) and can therefore be used in
a conditional test. Logical expressions use logical operands, but
relational expressions do not (see 5.4 and 5.3).

Logical values are represented as .TRUE. or .T. for true, and .FALSE. or
.F. for false. Machine representation is shown in G.6.

The ANSI Fortran Standard does not provide for the .T. or .F. form of
the logical value.

SR-0018 B 3-9

I

3.7 CHARACTER TYPE

A character value or character string consists of one or more characters,
as listed in appendix A. See 5.2 concerning character expressions and
character assignment statements. Machine representation is shown in G.5.

A character constant is written as a sequence of characters preceded and
followed by a delimiter, which can be an apostrophe or quotation mark.
The delimiter can appear as a character within the string if it appears
twice in succession; the double character is interpreted as a single
character. Blanks in a character string are significant. Examples:

• 'ABC' or "ABC" represents ABC.

• , , , , or .. , .. represents'

• , , represents "".

Each character within a string has a position that is numbered ordinally
from the first character. These positions are used in specifying
character substrings (see 3.7.2).

The length of a character constant is the number of characters between its
delimiters (from 1 to 1316), with each pair of consecutive delimiters
counted as a single character.

A variable or user-specified function of type character is declared with
its length by the CHARACTER type statement. The bit length of a character
dummy argument must be less than or equal to the length of the
corresponding actual argument (see 3.7.3). A character value must have at
least 1 character, and, unless further restricted by machine memory, fewer
than 8,388,608 (223) characters on the CRAY-2 system or fewer than
2,147,483,648 (2 31) characters on other Cray systems.

When all characters of a character entity become defined, the character
entity becomes defined.

The ANSI Fortran Standard does not provide for the use of quotation
marks as delimiters, and does not specify a maximum length for a
character value.

3-10 SR-0018 B

3.7.1 CHARACTER TYPE STATEMENT

The CHARACTER statement declares a symbolic name to be of type character
and shows the length of each character entity declared.

CHARACTER [*len[,]]name[*len][,name[*len]] ..•

len

name

Length specifier (number of characters): an unsigned,
nonzero integer constant or a positive, nonzero integer
constant expression enclosed in parentheses. len can
follow one name or can follow the word CHARACTER to apply to
all names lacking length specifiers. If len does not
follow CHARACTER, it defaults to 1. len must be less than
223 on CRAY-2 systems and 231 on other Cray systems. It
can also be in the form (*); see 3.7.1.1.

Variable name, symbolic name of a constant, function name,
dummy procedure name, array name, or array declarator
(see 4.3.5).

Examples:

(1)

(2)

CHARACTER*5 W*2,X,Y*7,Z

The above declares character variables X and Z of length 5, W of
length 2, and Y of length 7.

CHARACTER ARR(3,5)*7,X

The above declares a 3-by-5 array ARR, each of whose elements contains
seven characters, and character variable X of length 1.

3.7.1.1 Asterisk specification

len can be specified as (*) if name is the name of an external function,
dummy argument, or character constant. The asterisk specification is
treated as follows:

• If name is the name of a FUNCTION or an ENTRY statement in the
same subprogram, the length is obtained from the calling program
unit. See 3.7.1.2.

SR-OOI8 B 3-11

• If name is a dummy argument, the dummy argument assumes the
length of the associated actual argument (see 3.7.3 concerning
character ·arguments).

• If name is a character constant with a symbolic name, the constant
will assume the length of its corresponding constant expression
defined later in a PARAMETER statement.

Example:

CHARACTER DUMARG1*(*)

This statement declares a dummy argument with the asterisk length
specification.

3.7.1.2 Character function declaration

When you use a character function, the function reference and function
value must agree not only in type (see 2.4.1.1) but also in length. Use
CHARACTER*(*) in a function subprogram when the length of the subprogram's
result variable is to be determined by the length of the function
refere.nce in the calling program unit. The length of a dummy argument can
be declared in the same manner, so that it has the same length as the
associated actual argument.

Example:

In the calling program unit:

CHARACTER*15 LOWRCASE, UPTITLE, TITLE Fnct reference declared

TITLE = LOWRCASE (UPTITLE)

In the called function subprogram LOWRCASE:

3-12

• The length of result value LOWRCASE can be declared in the
following ways:

CHARACTER*(*) FUNCTION LOWRCASE (STRING)

FUNCTION LOWRCASE(STRING)
CHARACTER*(*) LOWRCASE

CHARACTER*15 FUNCTION LOWRCASE (STRING)

FUNCTION LOWRCASE(STRING)
CHARACTER*15 LOWRCASE

SR-0018 B

I

• In each case just shown, dummy variable STRING can be declared
within the subprogram in the following ways:

CHARACTER*(*) STRING

CHARACTER*15 STRING

If a returned character value is longer than the function reference, the
rightmost characters are truncated. If the returned value is shorter than
the reference, the value is left-justified and blank-filled.

3.7.2 CHARACTER SUBSTRINGS

A character substring consists of one or more contiguous characters
within a character variable or character array element (see 4.3 and
4.3.5). A substring name takes the following form:

cvname ([first]: [last])

cvname Name of a character variable, character array element, or
character array section. See the restriction in the
following paragraph.

([first]:[last])
Substring designator. first and last are integer
expressions designating the beginning and ending character
positions of the substring. The minimum and default value
of first is 1; the maximum and default value of last is
the last position.

Examples:

Substring Designates Characters

STRINGA(6:9) 6 through 9 of variable STRINGA

STRINGB(4:) 4 through end of variable STRINGB

STRINGC(2,6)(1:3) 1 though 3 of array element STRINGC(2,6)

STRINGD(5,4)(:7) 1 through 7 of array element STRINGD(5,4)

STRINGE(:) Equivalent to STRINGE

SR-0018 B 3-13

Substring notation cannot be applied to an unqualified array name; that
is, a substring designator must follow either an array element name or an
array section name. Examples:

CHAR(5) refers to array element 5.

CHAR(1:5) refers to elements 1 through 5.

CHAR(1:5){1:10) refers to elements 1 through 5, positions 1-10.

3.7.3 ARGUMENTS OF TYPE CHARACTER

Actual arguments of type character can be character constants, the names
of character variables or array elements, substrings, functions, or (in
external procedures) character arrays. An actual argument associated with
a character dummy argument must be of type character, with a length
exceeding or equaling that of the dummy argument.

The preceding requirement for type agreement does not apply to character
constants; as actual arguments these can be associated not only with
character variables or arrays, but also, interpreted as Hollerith
constants, with integer or real variables or arrays. See 5.2.3 and E.1.

If a function subprogram name is of type character, each entry name in the
function subprogram must be of type character; the function name and all
entry names must have the same declared length, whether it is an integer
or (*), denoting adjustable length.

If a dummy argument of type character is an array name, the above
restriction on length is for the entire array and not for each array
element. The length of a dummy array element can differ from the length
of an associated actual array, element, or element substring; but the
dummy array must not extend beyond the end of the associated actual array.

If length len of a dummy argument of type character is less than the
length of an associated actual argument, the leftmost len characters of
the actual argument are associated with the dummy argument; that is, the
rightmost characters are not part of the dummy argument.

When an actual argument is a character substring, the argument's length is
the substring's length. Substring expressions in a substring name are
evaluated immediately preceding argument association; the expression
values remain constant as long as argument association continues.

If an actual argument is the concatenation of two or more operands, the
argument's length is the sum of the operands' lengths. A character dummy
argument whose length is specified as (*) must not appear as an operand
for concatenation (see 5.2), except in a character assignment statement.

3-14 SR-0018 B

3.8 BOOLEAN TYPE (CFT77 EXTENSION)

A Boolean constant represents the bit pattern (sequence of O's and l's)
of a single storage unit (64-bit Cray computer word). There are no
Boolean variables, arrays, or array elements, and there is no Boolean type
statement. A masking expression has a Boolean result, with each of its 64
bits representing the result of one or more logical operations on the
corresponding bit of-the expression's operands (see 5.5).

When an operand of a binary arithmetic or relational operator is Boolean,
the operation is performed as if the Boolean operand had the same type as
the other operand. If both operands are of type Boolean, the operation is
performed as if they were of type integer. See tables 5-3 and 5-5.

No user-specified function can generate a Boolean result, but some
intrinsic functions (non-ANSI) can generate Boolean results; see table B-8.

Following are some of the ways in which logical type differs from Boolean:

• Variables and arrays can be of logical type, and there is a LOGICAL
type statement.

• A logical variable or constant represents only one value of true or
false (rather than 64 separate bit values), and a logical
expression yields one true or false value.

• Logical entities are invalid in arithmetic, relational, or masking
expressions, while Boolean entities are valid. (Note, however,
that results of relational expressions are logical type.)

A Boolean constant is written in one of three forms:

• The octal form contains 1 to 22 octal digits (0 through 7) followed
by the letter B. 22 octal digits in a Boolean value correspond to
the binary contents of a complete storage unit (64-bit word). In
this case, the leftmost octal digit can be only 0 or I,
representing the content of the leftmost bit position (bit 0).
Each successive octal digit specifies the contents of the next
three bit positions until the last octal digit specifies the
contents of the rightmost three bit positions (bits 61, 62, and
63). A Boolean value represented by fewer than 22 octal digits is
right-justified; that is, it represents the rightmost bits of a
Cray word: bits x through 63. Other bits are set to zero.

• The hexadecimal form contains the letter X followed by a string of
1 to 16 hexadecimal digits (0-9, A-F) enclosed by apostrophes or
quotation marks. The hexadecimal digits may be preceded by an
optional + or - sign; blanks are ignored. When a Boolean value
contains 16 hexadecimal digits, their binary equivalents correspond
to the content of every bit position in the storage unit (64-bit
word). A Boolean value containing fewer than 16 hexadecimal digits
is right-justified and zero-filled, as in the octal representation.

SR-0018 B 3-15

• A Hollerith constant is of type Boolean. When a character constant
is used in a masking expression, the expression is evaluated as if
the value were Hollerith, and a message is issued (see 5.2.3 and
E.1). A Hollerith constant can have a maximum of 8 characters.

Examples:

Boolean Constant

Octal notation:

1274653312572676113745B
OB

1777777777777777777777B
77740B
00776B

Hexadecimal notation:

X'ABE'
X"2FO"
X"-340"
X'l 2 3'
X'FFFFFFFFFFFFFFFF'

Internal Representation (octal)

1274653312572676113745
0000000000000000000000
1777777777777777777777
0000000000000000077740
0000000000000000000776

0000000000000000005276
0000000000000000001360
1777777777777777776300
0000000000000000000443
1777777777777777777777

The ANSI Fortran Standard does not provide for Boolean values.

3.9 POINTER TYPE (eFT77 EXTENSION)

A pointer is a variable whose value is used as the address of another
entity, which is called a pointee. The POINTER type statement declares
both the pointer and its pointee.

You can use pointers to access user-managed storage, by dynamically
associating variables and arrays to particular locations in a block of
storage. CFT77 pointers do not provide convenient manipulation of linked
lists because, for optimization purposes, it is assumed that no two
pointers have the same value. Pointers also allow the accessing of
absolute memory locations.

A pointer's value occupies one storage unit (see 4.5.1). Its range of
values depends on the size of memory for the machine in use •.

3-16 SR-0018 B

Restrictions:

• A pointer cannot be pointed to by another pointer; that is, a
pointer cannot also be a pointee.

• A pointee cannot appear in a SAVE, EQUIVALENCE, COMMON, or
PARAMETER statement.

• A pointer cannot appear in a PARAMETER statement.

• A pointee cannot be a dummy argument; that is, it cannot appear in
a FUNCTION, SUBROUTINE, or ENTRY statement.

• A function value cannot be a pointee.

• Integers can be converted to pointers; no other conversions
involving pointers are allowed. An arithmetic expression
containing a variable of type pointer has a result of type integer.

• A pointer variable cannot be -declared to be of any other data type.

• A pointee cannot be of type character.

The ANSI Fortran Standard does not provide for the pointer data type.

3.9.1 POINTER TYPE STATEMENT (CFT77 EXTENSION)

The POINTER statement declares one variable to be a pointer (that is, to
have the pointer data type), and another variable to be its pointee; that
is, the pointer's value is the address of the pointee.

POINTER (p,a)[,(p,a)] •••

p

a

SR-0018 B

Pointer to the corresponding a. p contains the word
address of the location of a. Only a variable can be
declared type pointer: constants, arrays, statement
functions, and external functions cannot.

Pointee of corresponding p; must be a variable name, array
declarator, or array name. The value of p is used as the
address for any reference to a; therefore a is not
assigned storage. See restrictions in 3.9, preceding. If
a is an array declarator, it can be constant, adjustable,
or assumed-size.

3-17

Example:

POINTER (P,B),(Q,C)

This statement declares pointer P and its pointee B, and pointer Q and
pointee C; the pointer's current value is used as the pointee's
address whenever the pointee is referenced.

An actual array that is named as a pointee in a POINTER statement is a
pointee array (see 4.3.2). Its array declarator can appear in a
separate type or DIMENSION statement or in the pointer list itself. In a
subprogram, the dimension declarator in a can contain references to
variable,s in a common block or to dummy arguments. As with adjustable
array arguments to subprograms, each dimension's size is evaluated on
entrance to the subprogram, not when the pointee is referenced. Example:

POINTER (IX,X(N,O:M»

3.9.2 USING POINTERS

The pointer is a variable of type pointer and can appear in a COMMON list
or be a dummy argument in a subprogram.

The poi'ntee does not have an address until the pointer's value is defined:
the pointee's value starts at the location specified by the pointer. Any
change in the value of a pointer causes subsequent references to the
corresponding pointee to refer to the new location.

Pointers can be assigned values in the following ways:

3-18

• A pointer can be set as an absolute address. Example:

Q=O

• Pointers can have integer expressions added to or subtracted from
them and may be assigned to or from integer variables. Example:

P=Q+l00

However, pointers are not integers. For example, assigning a
pointer to a real variable is not allowed (see table 5-3)

• The LaC function generates the address of a variable and can be
used to define a pointer. Example:

P=LOC(X)

SR-0018 B

The following example uses pointers in the ways just described:

SUBROUTINE SUB(N)
COMMON POOL (100000)
INTEGER JCB (128), WORD64
REAL A(1000),B(N),C(100000-N-1000)
POINTER (PJCB,JCB),(IA,A),(IB,B),(IC,C),(ADDRESS,WORD64)
DATA ADDRESS/641
PJCB = 0
IA = LOC(POOL)
IB = IA + 1000
IC = IB + N

In effect, WORD64 above refers to the contents of absolute address 64;
JCB is an array occupying the first 128 words of memory; A is an array
of length 1000 located in blank common; B follows A and is of length
N; C follows B. A, B, and C are associated with POOL. Similarly,
WORD64 is the same as JCB(65), because JCB begins at address o.

For purposes of optimization, the CFT77 compiler assumes that a pointee's
storage is never overlaid on another variable's storage; that is, that a
pointee is not associated with another variable or array. This kind of
association occurs when a pointer has two pointees, or when two pointers
are given the same value. Although these practices are sometimes used
deliberately (such as for equivalencing arrays), results can differ
depending on whether optimization is on or off. You are responsible for
preventing such association. Example:

POINTER (P,B),(P,C)
REAL X,B,C
P=LOC(X)
B=1.0
C=2.0
PRINT *,B

Because Band C have the same pointer, the assignment of 2.0 to C
gives the same value to B; therefore B will print as 2.0 even though
it was assigned 1.0.

As with a variable in common storage, a pointee, pointer, or argument to a
LOC intrinsic function is stored in memory before a call to an external
procedure and is read out of memory at its next reference. The variable
is also stored before a RETURN or END statement of a subprogram.

SR-0018 B 3-19

DATA STRUCTURES, STORAGE,
AND ASSOCIATION

4

This section describes the methods of using and storing data: constants,
variables, arrays, and common blocks. It also describes how entities are
associated. Relevant CFT77 statements are included.

4.1 CONSTANTS

A constant is an unchanging value. A literal constant is a constant
represented by its value directly. A symbolic constant is a name
representing a constant. Except within character constants, blank
characters in a constant have no effect. A constant name is local to a
program unit and cannot be used as the name of anything else except a
common block.

A constant is given a symbolic name by the PARAMETER statement, in which
the name's data type is established as if it were a variable. That is,
the name can be declared in a preceding type statement, or the type can
be implicit. If the symbolic name and the constant are of different
types, the constant's type is converted to agree with the name, as in an
assignment statement (see table 5-1). Example:

REAL R
PARAMETER (R=1)

A signed constant is an arithmetic literal constant preceded by a sign
(+ or -) indicating either a positive or negative number. An unsigned
constant is a literal constant not preceded by a sign. An optionally
signed constant can be either signed or unsigned. Arithmetic constants
are optionally signed except where otherwise specified. If no sign is
shown preceding a constant, it is assumed to be positive. The constant
zero is neither positive nor negative; a signed zero has the same value
as an unsigned zero.

4.1.1 PARAMETER STATEMENT

A PARAMETER statement assigns a symbolic name to a constant. Because
this value is established at compile time, it can be used in optimization.

SR-0018 B 4-1

p

e

PARAMETER (p=e[,p=e] •..)

Symbolic name of a constant; must be integer, real, double
precision, complex, or logical. Pointers are not allowed.

Constant expression (see section 5 introduction); cannot
include a function reference or array reference. In an
exponentiation expression x**y, y must be an integer.
Other requirements are referenced in the next paragraph.

If the data type of p is arithmetic, e must be an arithmetic constant
expression (see 5.1). If P is of type character, e must be a character
constant expression (see 5.2). If P is of type logical, e must be a
logical constant expression (see 5.4). Any symbolic name in e must be a
constant that has been defined in the same or an earlier PARAMETER
statement.

Type conversion of a constant expression in a PARAMETER statement follows
the same rules used for assignment statements (see table 5-1). The type
of a symbolic name in a PARAMETER statement is specified by a previous
type statement or IMPLICIT statement, or by default.

The length of a character constant must be specified in a type statement
or an IMPLICIT statement before the first appearance of its name.
Otherwise, the length is assumed to be one. The length cannot be changed
by subsequent statements. If the length is specified as (*), the
parameter length is the length of the actual character string.

A symbolic name can be assigned a constant value only once in a program
unit. Constants named in a PARAMETER statement can be referenced in any
subsequent statement in the same program unit except in a format
specification or to form a part of any other constant, such as either part
of a complex constant.

Examples:

4-2

PARAMETER (PI=3.1415926, SPEED=1.86E5)

IMPLICIT LOGICAL(O)
PARAMETER (ON=.TRUE.,OFF=.FALSE.)

CHARACTER *(9) TITLE
PARAMETER (TITLE='CHAPTER 1')

CHARACTER * (*) STRING
PARAMETER (STRING='THIS IS TOO LONG TO COUNT')

SR-0018 B

COMPLEX Z
PARAMETER (Z = (1.0,2.0)/(7.0,8.0»

PARAMETER (FBASE=32, F=98.6, C=9./5.*(F-FBASE»

In the last example, FBASE is initialized first, then used later
within the same PARAMETER statement in an expression to initialize C.

4.2 VARIABLES

A variable is a name whose value can be changed during program execution;
it is unsubscripted and is not an array or array element. The term
subscripted variable is used in some books to apply to an array element;
this is not an ANSI term and is not used in this manual. Scalar and
simple variables are merely variables as defined above, as distinguished
from arrays or array elements. A variable name is local to a program unit
(see 2.1.5).

Storage of a variable can be static or stack, as specified by the alloc or
ALLOC option and the ALLOC directive. Storage allocation is discussed in
subsection 4.5.2.

A variable has one data type throughout a program, as specified by the
rules governing symbolic names (see 3.1). If a variable's type is implied
by its name, the variable is not required to be declared before it appears
in an executable statement, but it must have a value before being used in
an expression. Definition of a variable value is discussed in 4.5.3.

A variable can have the same name as a common block. A variable or common
block can have the same name as a dummy argument of a statement function,
but the dummy argument name is local to the statement function definition
statement. The data type (and, if type character, the length) is the same
in all of these uses, except for use as a common block name •

. A variable name has the following restrictions:

• It cannot appear in a PARAMETER, INTRINSIC, or EXTERNAL statement.

• It cannot be the name of an array, subroutine, main program, or
block data subprogram; the entry name in an ENTRY statement; nor a
NAMELIST group name.

SR-0018 B 4-3

4.3 ARRAYS

An array is a nonempty, ordered sequence of data items, called array
elements, that occupy consecutive locations in storage. An array name
is the symbolic name of an array and obeys the data typing rules used for
other symbolic names; all elements of a given array are of one type. An
array element name identifies one element and consists of an array name
with a subscript indicating the element's position within the array. Each
subscript expression corresponds to an array dimension. An array
declarator is a list item that specifies an array's symbolic name and the
size of each dimension of the array.

Example:

One-dimensional array IFOUR has four elements. Its declarator in a
type statement is INTEGER IFOUR(4). Its third element is IFOUR(3).

An array name with no subscript identifies the entire array in contexts
that allow such use (see 4.3.9). In an EQUIVALENCE statement, an array
name with no subscript identifies the first element of the array.

An array element substring is a character substring of a character array
element (see 3.7.2).

An array is classified as dummy, pointee, or actual, depending on its
relation to storage; and as constant-size, adjustable, or assumed-size
depending on how its size is determined. Table 4-1 shows the possible
combinations of these categories. An X indicates that the indicated pair
is valid, such as actual and constant-size. The position of the word
Automatic shows that this term applies to an array that is both
adjustable and actual; this usage is a CFT77 extension.

Table 4-1. Possible Kinds of Arrays

Actual Dummy Pointee

Constant-size X X X

Adjustable Automatic X X

Assumed-size X X

4-4 SR-0018 B

4.3.1 DUMMY, ACTUAL, AND POINTEE ARRAYS

An array is classified as dummy, pointee, or actual, depending on its use
as a dummy argument, a pointee, or neither. These uses determine how an
array is stored.

An actual array is allocated storage and is not a dummy or pointee array.
It can appear in the main program or in procedure subprograms and can be
constant-size or automatic (see 4.3.3).

A dummy array appears as a dummy argument in a procedure subprogram; it
is associated with an actual array or array element through one or more
procedure calls. A dummy array can be constant-size, adjustable, or
assumed-size. See 4.3.8 concerning arrays as arguments.

Example:

PROGRAM
REAL ACTARR(10)

CALL SUBRTN (ACTARR)

SUBROUTINE SUBRTN (DUMARR)
REAL DUMARR(10)

Actual array ACTARR above is used as an argument in the call to
subroutine SUBRTN. The subroutine declares dummy array DUMARR, which
becomes associated with ACTARR. Storage for ACTARR is allocated by
the calling program unit; this same storage is accessed by references
to DUMARR during the call to SUBRTN.

A pointee array is the object of a pointer (see 3.9); it can be constant,
adjustable, or assumed-size but cannot be a dummy argument. It is not
allocated storage; rather, its storage begins at the pointer address. The
name of a pointee array must appear in a POINTER statement, either alone
or as part of the array declarator; the declarator can also appear in a
DIMENSION or type statement. Subsection 3.9.2 includes an example in
which a pointee array is stored in a common block.

The ANSI Fortran Standard does not provide for pointers or pointee arrays.

4.3.2 CONSTANT, ADJUSTABLE, AND ASSUMED-SIZE ARRAYS

An array is constant-size, adjustable, or assumed-size, depending on how
its size is determined. Each category has a corresponding kind of
declarator (see 4.3.5).

SR-0018 B 4-5

A constant-size array has dimensions that do not vary in size; that is,
the dimension bounds in the array declarator are arithmetic constant
expressions (see 5.1).

An adjustable array is a dummy, pointee, or automatic array whose size
is determined during program execution, as specified by the array
declarator. Each reference to a subprogram can specify dimension sizes
for an adjustable array in the subprogram; the sizes are constant during
subprogram execution. Variables defining adjustable dimension bound
expressions (see 4.3.5) can be redefined or become undefined during
execution of the subprogram, with no effect on the bound or on array size.

An assumed-size array is a dummy or pointee array whose last dimension
is of an unknown size (specified as "*") that is assumed to be large
enough for all references made to the array. An assumed-size array cannot
be used in an I/O statement as an item in an I/O list, as a format
identifier, or as a unit identifier for an internal file. An assumed-size
array name cannot be used as a whole array reference (see 4.3.11) but can
be used to form an array section (see 4.3.10).

The ANSI Fortran Standard does not provide for array syntax or array
sections.

4.3.3 AUTOMATIC ARRAYS (CFT77 EXTENSION)

An automatic array is an actual array, appearing only in a procedure
subprogram, whose size is determined at runtime in the same way as that of
an adjustable array. An automatic array is typically needed for scratch
storage within a subprogram. Storage- for the array is allocated when the
procedure is entered and released on exit. As with an adjustable array
dummy argument, an automatic array declaration cannot be changed once it
is evaluated.

The ANSI Fortran Standard does not provide for automatic arrays.

4.3.4 DIMENSION STATEMENT

The DIMENSION statement specifies the symbolic names and dimension
specifications of arrays, by means of array declarators. Array
declarators can also appear in COMMON statements, type statements, and
POINTER statements.

4-6 SR-0018 B

DIMENSION a(d)[,a(d») ••.

a(d) Array declarator; see 4.3.5, following.

Each symbolic name a appearing in a DIMENSION statement declares a to
be an array in that program unit. An array name can appear only once in
an array declarator in a program unit.

4.3.5 ARRAY DECLARATORS

An array declarator is an item (within a declaration statement) that
specifies an array's symbolic name and the size of each dimension in the
array. Array declarators can be listed in DIMENSION, COMMON, or type
declaration statements, or as pointees in POINTER statements. Within one
program unit, only one array declarator is permitted for a given array
name. Figure 4-1 shows three array declarators and the arrays that they
specify. The format of an array declarator is as follows:

a Symbolic name of the array

Dimension declarator, one for each dimension in the array.
u and 1 are integer expressions called the dimension bound
expressions. Dimension declarators and dimension bound
expressions are discussed in the following text.

1 Lower bound of the dimension; default is 1.

u Upper bound of the dimension. This is specified as *
for the last dimension of an assumed-size array.

A dimension declarator specifies the number of array elements in one
dimension of an array; this number is (u-l)+l. u and 1 can be positive,
zero, or negative, provided that u~l. If the lower bound is omitted, its
value is assumed to be 1. An array declarator has as many dimension
declarators as the array has dimensions; there can be from one to seven.

A dimension bound expression specifies the upper or lower bound of a
dimension in an array declarator. The expression must be scalar and must

SR-OOI8 B 4-7

have an integer result. Any dimension bound expression can contain
constants and symbolic names of constants; Adjustable and assumed-size
dimension bound expressions can also contain: functions; array elements;
or variables of any type, provided the expression's result is an integer.

The ANSI Fortran Standard does not permit dimens~on bound expressions
to contain function references, array elements, or noninteger variables.

Examples:

DIMENSION ARRAY1 (34,0:24,1:34), ARRAY2 (64), Z7144X (5:10,-2:20)

REAL MATRIX (ROWS,COLUMNS), Y(2*N+1)

INTEGER TABLE (3,IVAL,IRUNS,2,2), TAB(6:IVALX,MAT:10)

In the first example, arrays ARRAY1 'and ARRAY2 can be implicitly real
or can be declared another data type in a separate statement. In the
last two examples, the use of variables defines adjustable dimensions;
these are used only in procedure subprograms.'

4.3.5.1 Kinds of array declarators

Reflecting the various kinds of arrays, array declarators are classified
as actual, dummy, or pointee; and as constant-size, adjustable,
assumed-size, or automatic.

Actual, dummy, pointee - An actual array declarator declares an actual
array and must be constant-size or automatic. Actual array declarators
are permitted in DIMENSION, COMMON, and type statements, with the
exception that automatic declarators are not permitted in COMMON
statements.

A dummy array declarator declares a dummy array within a procedure
subprogram; a dummy declarator can be constant, adjustable, or
assumed-size. Dummy declarators can appear in DIMENSION or type
statements but not COMMON statements.

A pointee array declarator has the same requirements as a dummy array
declarator, except that it can appear in a POINTER statement. If it does
not appear in a POINTER statement, the array name must appear in a POINTER
statement, and the declarator must appear in a type or DIMENSION statement.

Constant, adjustable, assumed-size, automatic - In a constant array
declarator, the dimension bound expressions contain only constants and
names of constants; that is, they contain no variables, functions, or
array elements.

4-8 SR-0018 B

Adjustable and automatic array declarators appear only in procedure
subprograms and have identical properties, but apply to adjustable and
automatic arrays, respectively. In either kind of declarator, at least
one of the dimension declarators contains one or more variables,
functions, or array elements. In a subprogram containing an automatic or
adjustable array reference, each variable or array element in the array's
declarator must be named as follows:

• Automatic (actual) array declarator: in every dummy argument list
or in a COMMON statement

• Adjustable (dummy or pointee) array declarator: in every argument
list that contains the array name, or in a COMMON statement

Array elements used in an adjustable or automatic array declarator must be
of arrays previously dimensioned.

In an assumed-size array declarator, the upper bound of the last
dimension declarator is an asterisk, indicating a value that is not
specified but is assumed to be large enough for any reference made to the
array. The other dimensions can be either constant or adjustable.

4.3.6 ARRAY ELEMENTS AND SUBSCRIPTS

The subscript of an array element name identifies the element's position
in the array, and consists of a group of subscript expressions separated
by commas and between parentheses. Within a subscript, each subscript
expression specifies the element's position in one array dimension. The
subscript value is the ordinal number of an element's position in the
array's storage sequence; see 4.3.6.1.

The format of an array element name is as follows:

a(s[,s] •.•)

a Array name

s Subscript expression; must be scalar and integer type.

Examples:

A(l) TABLE(45,27,106) TIME(NINT(B+4.5/PI»

SR-0018 B 4-9

NOTE

In ANSI usage, the term subscript refers to a group
of subscript expressions that completely specify an
element's position within an array. In common usage
the term often refers to just one subscript expression
within a group.

4.3.6.1 Array subscripts and storage sequence

A subscript expression must yield an integer value when evaluated and can
contain references to constants, variables, functions, or array elements
of any arithmetic type. The evaluation of the subscript expression must
not alter the value of other expressions within the same statement.

Although an array is arranged in dimensions for programming purposes, it
is stored in a single ordinal sequence. Each array element's position in
the sequence is specified by its subscript; this consists of one or more
subscript expressions, each of which specifies the element's position
within one array dimension. In relation to the storage sequence, the
leftmost expression is incremented most frequently, and each expression
to the right is incremented less frequently.

If an ordered pair of numbers represents an element's row and column,
respectively, the storage sequence for a two-dimension array corresponds
to the elements going down each column in succession. Figure 4-2 shows
the storage sequences for the arrays shown in figure 4-1.

Table 4-2 illustrates the conversion of subscript values to ordinal
positions within an array's storage sequence. CFT77 uses A registers for
subscript calculations. Overflow on intermediate values is not detected;
very large values in subscript expressions can produce unpredictable
results. Register sizes and values are as follows:

computer

CRAY-1 or CRAY X-MP
computer systems

CRAY-2 computer system

Register Size

24-bit

32-bit

Maximum Intermediate Value

223_1 (or 8,388,607)

231 _1 (or 2,147,483,647)

Notice that the above maximum values are only for intermediate values in
subscript calculations, and are distinct from the maximum number of words
in an array; see 4.3.7, following.

4-10 SR-0018 B

Table 4-2. Subscript Evaluation

As Shown in ANSI Fortran Standard As Computed by CFT77 Compiler

1 dimension: declarator (11:u1); subscript (S1)

1 + (51-11) I 1 + 51 - 11

+ •••

1 = Lower bound of dimension declarator
u = Upper bound of dimension declarator
si = Subscript expression (li~si~ui)
di = Dimension size (ui-1i)+1

SR-0018 B

+ •••

4-11

The number of subscript expressions normally equals the number of
dimension declarators in the array declarator. When fewer subscript
expressions are used, these are used for the leftmost dimensions, and the
lower bound is assumed for the missing expressions; a warning message is
issued. For example, in a three-dimensional array A with lower dimension
bounds of 1, A(7) is interpreted as A(7,1,1).

The ANSI Fortran Standard does not provide for fewer subscript
expressions than dimension declarators.

4.3.7 ARRAY SIZE

The size of an array (that is, the number of elements in the array) equals
the product of the sizes of all dimensions for that array. The number of
storage units in an array is the product of the number of the elements in
the array and the number of storage units required for each element.
Figure 4-1 shows the sizes of typical arrays.

CFT77 allows a maximum array size of 4,194,304 Cray computer words (CRAY-1
and CRAY X-MP computer systems); 16,777,215 words (CRAY X-MP computer
system with extended memory addressing); or 268,435,456 words (CRAY-2
computer system). The size is further restricted by the Cray computer
system in use, the executable program size, and the amount of memory
required, beyond that for the executable program and related data. These
maximum sizes are independent of the maximum values allowed in calculating
subscript values (see 4.3.6.1).

The ANSI Fortran Standard does not specify a maximum for array size.

4.3.8 ARRAYS AS ARGUMENTS

A dummy array can be associated with an actual argument that is an array
name, an array element name, or an array element substring.

Actual and dummy array elements are associated by their subscript values.
When the actual argument is an array element of subscript s, the
element's address is used as the dummy array's base address; element t
in the dummy array is then associated with element s+t-1 in the actual
array.

4-12 SR-0018 B

The number and size of dimensions in an actual array declarator can differ
from those in an associated dummy array declarator, but the dummy array
cannot be larger than the actual array. If an actual argument is an array
element name with a subscript value of s in an array of size n, the
size of the dummy array must not exceed n-s+1.

Dummy argument names of type integer can appear in adjustable dimension
declarators that are part of dummy array declarators. If an actual
argument is associated with a dummy argument appearing in an adjustable
dimension declarator, the actual argument must be defined with an integer
value at the time the procedure is referenced.

An adjustable array is undefined if the dummy argument array is not
currently associated with an actual argument array or if any variable
appearing in the adjustable array declarator is not currently associated
with an actual argument or is not in a common block.

4.3.9 USE OF ARRAY NAMES

The use of an array name with no subscript, or an array section name (see
4.3.10) implies that the number of values to be processed equals the
number of elements in the array or array section.

In a program unit, each appearance of an array name must be as part of an
array element name except when used in the following:

• Array expression

• Array declarator

• List of arguments

• COMMON, EQUIVALENCE, DATA, NAMELIST, or SAVE statement

• Type statement

• POINTER statement, as a pointee

• Input/output statement: as a format identifier, in a list, or as a
unit identifier for an internal file. These do not apply to an
assumed-size array or array expression.

SR-0018 B 4-13

One Dimension

1 ARX(l) 1 1,1

2 ARX(2) 2 2,1

3 ARX(3) 3 3,1

4 ARX(4) 4 4,1

5 ARX(5) 5 5,1

6 ARX(6) 6 6,1

7 7,1

8 8,1

9 9,1

1

Declaration statements:

DIMENSION ARX(6)
REAL ARY(9,4)
INTEGER ARZ(7,2,3)

Array declarator: ARX;(6)

Data type: Real

Dimension

Two Dimensions

1,2 1,3 1,4

2,2 2,3 2,4

3,2 3,3 3,4

4,2 4,3 4,4 1

5,2 5,3 5,4 2

6,2 6,3 6,4 3

7,2 7,3 7,4 4

8,2 8,3 8,4 5

9,2 9,3 9,4 6

2 3 4 7

ARY(9,4)

Real

sizes: 6 elements 9 and 4 elements

Total elements: 6 36

Number of words: 6 36

1

Three Dimensions
3

1,1,3 1,2,3

2 2,1,3 2,2,3
1,1,2 1,2,2

2,1,2 2,2,2
1,1,1 1,2,1 -

2,1,1 2,2,1 -

3,1,1 3,2,1 -
4,1,1 4,2,1 -
5,1,1 5,2,1 -

6,1,1 6,2,1 -

7,1,1 7,2,1

1 2

ARZ(7,2,3)

Integer

-

-

-

-

-

-

7, 2, and 3 elements

42

42

Figure 4-1. Array Specification and Size

4-14 SR-0018 B

1 ARX(l)
2 ARX(2)
3 ARX(3)
4 ARX(4)
5 ARX(5)
6 ARX(6)

Notice that the
leftmost subscript
expression is
incremented most
frequently. Each
expression to the
right is incremented
less frequently.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

ARY(l,l)
ARY(2,1)
ARY(3,1)
ARY(4,1)
ARY(5,1)
ARY(6,1)
ARY(7,1)
ARY(8,1)
ARY(9,1)
ARY(1,2)
ARY(2,2)
ARY(3,2)
ARY(4,2)
ARY(5,2)
ARY(6,2)
ARY(7,2)
ARY(8,2)
ARY(9,2)
ARY(I,3)
ARY(2,3)
ARY(3,3)
ARY(4,3)
ARY(5,3)
ARY(6,3)
ARY(7,3)
ARY(8,3)
ARY(9,3)
ARY(1,4)
ARY(2,4)
ARY(3-, 4)
ARY(4,4)
ARY(5,4)
ARY(6,4)
ARY(7,4)
ARY(8,4)
ARY(9,4)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ARZ(I,l,l)
ARZ(2,1,1)
ARZ(3,1,1)
ARZ(4,1,1)
ARZ(5,1,1)
ARZ(6,1,1)
ARZ(7,1,1)
ARZ(1,2,1)
ARZ(2,2,1)
ARZ(3,2,1)
ARZ(4,2,1)
ARZ(5,2,1)
ARZ(6,2,1)
ARZ(7,2,1)
ARZ(l,1,2)
ARZ(2,1,2)
ARZ(3,1,2)
ARZ(4,1,2)
ARZ(5,1,2)
ARZ(6,1,2)
ARZ(7,1,2)
ARZ(I,2,2)
ARZ(2,2,2)
ARZ(3,2,2)
ARZ(4,2,2)
ARZ(5,2,2)
ARZ(6,2,2)
ARZ(7,2,2)
ARZ(I,I,3)
ARZ(2,1,3)
ARZ(3,1,3)
ARZ(4,1,3)
ARZ(5,1,3)
ARZ(6,1,3)
ARZ(7,1,3)
ARZ(1,2,3)
ARZ(2,2,3)
ARZ(3,2,3)
ARZ(4,2,3)
ARZ(5,2,3)
ARZ(6,2,3)
ARZ(7,2,3)

Figure 4-2. Storage Sequence for Arrays in Figure 4-1

SR-0018 B 4-15

I

I

4.3.10 ARRAY SECTION (CFT77 EXTENSION)

An array section is a group of elements, within an array, that can be
used as an operand in an array expression (see 4.3.11). An array section
name has the same form as an array element name, except that one or more
subscript expressions are replaced by section selectors, each of which
specifies an entire dimension or part of a dimension. The simplest form
of a section selector is a colon, which specifies a whole dimension.

Example:

Array declarator: A(4,3,2)
Array section name: A(:,2,:)

The above section name specifies an array section with two dimensions.
The section's first dimension corresponds with A's first dimension,
and the second with A's third dimension. All elements of the
resulting array section occupy the second column of A. Elements of A
that are part of the array section are indicated by XIS in the
following diagram:

In an array section, a dimension's size equals the number of elements
selected by the section selector for that dimension. The size of an array
section equals the product of its dimension sizes.

4.3.10.1 Uses and restrictions

The following points apply to the use of array sections:

4-16

• Array sections can be formed from character arrays (see 3.7.2).

• Array sections are permitted only in assignment statements, on
either side of the equal sign.

• Array sections may not be used as actual arguments to external
functions or statement functions, but they may be actual arguments
to intrinsic functions.

• A section of an assumed-size array is allowed only if the section
selector for the last dimension is a subscript expression, an
indexed section selector with the upper bound specified, or a
vector-valued section selector with a known size.

SR-0018 B

4.3.10.2 Array section name

The format of an array section name is as follows:

a(s[,s] ...)

a Array name

s Section subscript expression, corresponding to one dimension
in an array section. The expression can be a subscript
expression, behaving the same as a subscript expression in
an array element name, or a section selector. A section
selector can be either indexed or vector-valued; see the
following text.

4.3.10.3 Indexed section selectors

An indexed section selector is a section subscript expression that
selects the elements of one dimension within a certain range and at a
certain interval. It takes the following form:

[1]:[u][:i]

1, u

i

Subscript expressions selecting (respectively) the lower and
upper bounds for one dimension of an array section. 1 and
u must be integer scalar expressions.

1 and u default to the lower and upper bounds for the
dimension in the array that contains the array section. 1
and u must be greater than or equal to the array dimension's
lower bound and less than or equal to the dimension's upper
bound. The upper bound u must be specified for the last
dimension of a section of an assumed-size array.

Increment, cannot be 0; default is 1.

A specifier consisting of only a colon uses all defaults and therefore
specifies the entire dimension. A specifier of 4:10:2 specifies positions
4, 6, 8, and 10 of a dimension.

Notation for substrings of character array sections is discussed in 3.7.2.

SR-0018 B 4-17

An indexed section selector selects the elements from 1 to u in increments
of i. Thus the elements selected are 1, l+i, 1+2i, and so on. The total
number of elements identified, which must be positive and greater than
zero, is given by the following expression:

INT«u-1+i)/i)

Examples:

(1)

(2)

REAL D (7,5)
= 0(2:6:2,2:4:2)

The array section name in the second line identifies rows 2 through 6
in increments of 2 (first dimension), and columns 2 through 4 in
increments of 2 (second dimension). The following diagram shows the
section within the array.

REAL A(10)

t
First

Dimension

... = A(1:10:2)

Second
~ Dimension ~

x X

X X

X X

The array section name in the second line specifies the following
elements:

I X I X X X X

4.3.10.4 Vector-valued section selectors

A vector-valued section selector is the name of a one-dimensional array
(not assumed-size), array expression, or array section; it must be type
integer. Vector-valued section selectors allow an array section to
include any arbitrary group of array elements.

4-18 SR-0018 B

A vector-valued section selector selects elements in positions given by
the elements of the section selector. The elements of the section
selector must be greater than or equal to the lower bound of the
dimension, and less than or equal to the upper bound. The number of
elements selected is equal to the number of elements in the vector-valued
section selector.

Example:,

INTEGER A(10), 1(20,20), 81(5), 82(5)

The following are array section names using vector-valued section
selectors:

A(81)

The array section's elements are selected by array 81.

A(81+82)

81+82 is an array expression; the resulting array is a
vector-valued selector.

A(I(81,3»

Array section 1(81,3) is a one-dimensional array section
selected by array 81 from the third column of array I. This
array section is in turn a vector-valued section selector
for an array section drawn from array A.

A problem occurs when two elements of a vector-valued section selector
have the same value. When this occurs, two elements of the specified
array section represent the same element of the original array. When an
assignment includes such an array section, the order of operations is not
guaranteed, leaving some values unpredictable. CFT77 implements array
sections as specified in the AN8I Fortran 8X standard, which explicitly
allows a reversed order of assignment.

SR-0018 B 4-19

Example:

INTEGER A(5),B(5),C(5),D(5),IX(5)
DATA IX/1,2,3,4,41
DO 10, J=1,5

A(J)=J**2

Repeated value

10 CONTINUE
B(IX)=A
C=B(IX)
D=A(IX)

Assignment order not guaranteed

Because IX(4) and IX(5) have the same value, the above array sections
cause one element of array A or B to be, in effect, specified twice
in the same assignment statement: that is, A(IX(4» and A(IX(5» are
both element A(4). When the above code was run, the final values of
arrays A, B, C, and D were as shown below; but this result could
change, depending on optimization and the particular release of CFT77.

A:
B:
C:
D:

1
1
1
1

4
4
4
4

9 16 25
9 25 0
9 25 25
9 16 16

4.3.11 ARRAY EXPRESSIONS (CFT77 EXTENSION)

An array expression is an expression (arithmetic, relational,
character, or logical) in which one or more primaries are array
operands. An array operand is an operand that is an array reference
with no subscript (a whole array reference), an array section
reference, or an array expression. The name of an assumed-size array
cannot be an array operand.

The result of an array expression is an array value. An array expression
can be used only in an assignment statement.

The ANSI Fortran Standard does not provide for array expressions.

4-20 SR-0018 B

4.3.11.1 Conformance of array operands

When an operator (arithmetic, relational, character, or logical) operates
on a pair of operands, of which at least one is an array operand, the
operands must be conformable. An array or array section is conformable
with either of the following:

• An array or array section of the same shape; that is, one with
the same number of dimensions and the same number of elements in
corresponding dimensions. Assumed-size arrays are not conformable,
but a section of an assumed-size array can be conformable.

• A scalar item

Conformance is checked for all arrays and array sections whose sizes are
known at compile time. If -e 0 is on the cft77 command or ON=O is on
the CFT77 control statement, conformance is checked at runtime for arrays
and array sections whose sizes cannot be determined at compile time.

Example:

DIMENSION A(5), B(10,5), C(5:14,6:2)

Conformable:

Not

A

A

B

with
with
with

B(l,:)
C(6:10,2)
C

conformable:

A with B
B(:,2) with C(1:5,2)
B(:,l) with C

4.3.11.2 Order of operations

Same shaped arrays: (14-5)+1=10 and
(6-2)+1=5

(unequal number of dimensions)
(unequal number of elements in one dimension)
(unequal number of dimensions)

An array operation is performed element-by-element on corresponding
elements of the array operands, the correspondence established by their
subscripts. The operation's result has the same shape as the array
operand(s). Each element of the array result has the value of the
indicated operation performed on corresponding elements of the array
operands. The order in which the element-by-element operations are
performed is not specified.

SR-0018 B 4-21

Example:

DIMENSION A(10),B(10),C(10),D(10)
A=(B+C)*D

For the array operation shown in the second statement above, elements
B(2) and C(2) could be added before B(l) and C(l), and the result of
(B(2)+C(2» could by multiplied by D(2) before B(l) and C(l) are
added.

In an array syntax assignment statement, the expression's result is
assigned as if the entire right-side expression and left-side subscript
were evaluated first. That is, the destination name may be referenced in
the right-side expression or left-side subscript. Examples:

(1)

(2)

REAL X(4)
X(2:4) = X(1:3)

DATA X/1.,2.,3.,4.1

The last statement above yields X(1)=X(2)=1.0; X(3)=2.0; and
X(4)=3.0. However, the following DO-loop does not have the same
result, simply assigning 1.0 to elements X(2), X(3), and X(4).

DO 10 I=2,4
X(I) = X(I-l)

10 CONTINUE

A(2:11) = A(1:10)

!Unintended result

The above statement is equivalent to

TEMP(1:10) = A(1:10) A(2:11) = TEMP(1:10)

but not to

DO 20 I=1,10
A(I+1) = A(I)

20 CONTINUE

!Unintended result

(3)

4-22

INTEGER I(S)
I(I(5:1:-1» = I

DATA I/1,2,3,4,51

This assignment requires pre-evaluating of both array I and the
left-side subscript. The creation of temporary arrays used in the
pre-evaluation affects runtime performance.

SR-0018 B

Examples of array expressions and assignment statements:

DIMEN8ION A(10), B(10,10), C(10,10,20)

(1) A = B(:,3)

(2) C(:,I,1:19:2) = B * B

(3) A = B(3*I,10:1:-1) / C(:,5,5)

In this example, B(3*I,10) is divided by C(1,5,5); B(3*I,9) by
C(2,5,5), and so on.

(4) A(:) = A(10:1:-1)

The above statement reverses the elements in one-dimensional array A.

(5) A=5

The above statement assigns 5 to every element of array A.

4.3.11.3 Array operands in intrinsic functions

Array operands can be used as arguments to intrinsic functions that take
arguments; the result is an array that can itself be used as an array
operand. Functions with scalar arguments can be used in array
expressions in the same way that other scalar operands are used.

An intrinsic function that takes more than one argument, such as MAX,
operates on array operands element by element.

Examples:

(1)

(2)

(3)

REAL A(5,5),B(5,5)
A = 8IN(B)

REAL 8(3,3), T(3,3), U
8 = 8QRT(T) + U

Each element of array 8 is assigned the sum of scalar variable U and
the square root of the corresponding element of array T.

REAL U(4,4,4),V(4,4,4),W
U(:,:,3) = LOG(V(2,:,:» + W

SR-0018 B 4-23

(4)

(5)

INTEGER I(lO,12),J(lO,12),K(lO,12),L
I = MAX(J,K,L)

Each element of array I is assigned the highest among the
corresponding elements in arrays J and K, and scalar variable L.

INTEGER L(5,lO),M(5,lO),N(5,lO),I(5,lO),J
L = CVMGP(M,N,I)
L = CVMGM(M,N,J)

The CVMG intrinsic functions operate on array operands in the same
way as do other multi-argument intrinsic functions.

4.4 DATA STATEMENT

The DATA statement provides initial values for variables, arrays, and
array elements. A DATA statement can be intermixed with specification
statements but must follow type and DIMENSION statements for variables
appearing in the DATA statement. Outmoded features of the DATA statement
are described in E.6.

Entities appearing in DATA statements are treated as if they had been
named in a SAVE statement, even when stack mode is specified.

The ANSI Fortran standard specifies that the DATA statement follows all
specification statements.

The ANSI Fortran Standard does not specify storage allocation methods.

4-24 SR-0018 B

The format of a DATA statement is as follows:

DATA nlist/clist/[[,)nlist/clist/) ...

nlist

clist

List of variable names, array names, array element names,
substring names, and implied-DO lists separated by commas.
Subscript and substring expressions must be integer
constant expressions (see 5.1); subscript expressions can
include implied-DO variables. Declaration statements
affecting the names in nlist must precede the DATA
statement. nlist cannot include names of constants,
dummy arguments, functions, entities in blank common, or
entities associated with entities in blank common.

List of the form [r*]c[,[r*]c] ...

C Constant or the symbolic name of a constant
r Nonzero, unsigned, integer constant or the symbolic

name of such a constant

The r*c form is interpreted to provide r successive
values of constant c.

Examples:

DATA PI/3.14/, E/2.73/, G/4.77/
DATA C(1),C(2),C(3),C(4),C(5)/1.0,2.0,3*O.O/ C(10)/1.0/

Initial values of the entities are defined by the correspondence between
clist and nlist elements. Counting as separate items the elements of any
arrays in nlist, and counting an r*c entry in clist as r items, the ith
item in nlist becomes defined with the ith value from clist. Counted in
this way, the same number of items must be specified by an nlist and its
corresponding clist. (See E.6 for an exception to this rule.)

Examples:

(1)
REAL A(5)
DATA A/5*O.O/

Array A above has five elements, and the DATA statement assigns zero
to each element.

SR-0018 B 4-25

(2)

(3)

INTEGER J(2,3)
DATA J/1,2,3,4,5,61

Array J above has six elements, which are assigned different values
in the clist of the DATA statement. That is, J(l,l)=l, J(2,1)=2,
J(l,2)=3, J(2,2)=4, J(l,3)=5, and J(2,3)=6.

DIMENSION GRID(2,3), KBUF(10,200,2)
PARAMETER (XCON=6.0)
DATA GRID/11.0,21.0,12.0,22.0,13.0,23.01, KBUF/4000*XCONI
DATA I/11 K/20001
PARAMETER (NEG=-6)
INTEGER NB(10)
DATA NB/-3,7*-4,2*NEGI

The above code shows the interaction of several specification
statements with DATA statements. Notice that NEG is defined in a
PARAMETER statement and used in the last DATA statement.

4.4.1 IMPLIED-DO LIST IN A DATA STATEMENT

An implied-DO list allows a DATA statement to initialize a group of values
systematically as in a DO-loop. The implied-DO is used frequently for
initializing arrays. The following format represents one item in an
nlist as shown in the DATA statement format; the values assigned are
contained in a subsequent clist.

4-26

(dlist, dvar = init,lim[,incr])

dlist

dvar

List of array element names and implied-DO lists separated
by commas. dlist cannot contain substring names, even if
they are substrings of array elements.

Name of an integer variable called the implied-DO
variable. dvar is initially defined with init and is
incremented by incr on each iteration of the loop. The
range of this variable is dlist; that is, it does not
conflict with other uses of the same name. dvar must be
used in the subscript list of every array referenced in
dlist.

SR-0018 B

init, lim, and incr
Initial value, limit, and increment of the implied-DO
variable; must be integer constant expressions (see 5.1),
which can contain references to dvar. The expressions
can contain implied-DO variables of other implied-DO lists
containing this implied-DO list within their ranges.
incr cannot be zero, and defaults to 1.

The range of an implied-DO list is the list dlist. The trip count and
values of the implied-DO variable dvar are established as for a DO-loop
except that the trip count must be positive. Interpretation of an
implied-DO list in a DATA statement causes each item in the list dlist
to be specified once for each iteration, so that appropriate values are
substituted where implied-DO variables are referenced.

Examples:

(1)
REAL A(25)
DATA (A(I),I=1,10)/10*11

The first ten values of array A above are set to 1.

(2)

INTEGER J(100)
DATA (J(I),J(I-1),I=5,100,5)/10*O,10*l,10*0,10*11

The implied-DO in the above DATA statement selects 40 elements of
array J and assigns values of 0 and 1 to them in groups of ten each.

(3)
DIMENSION A(5), B(5)
DATA «A(I),B(I»,I=1,5)/10*0.01 ! Incorrect format

The implied-DO list in the above DATA statement is incorrect. The
list of array element names (A(I),B(I» is treated as a single
complex variable.

4.4.2 DATA TYPES IN A DATA STATEMENT

When the nlist entity is of type integer, real, or double-precision,
the corresponding clist constant is converted, if necessary, to the
type of the nlist entity according to the rules for arithmetic
conversion, as shown in table 5-3.

The type of the nlist entity and that of the clist constant must
agree when either is of type character or logical. (An exception for
type character is described in E.6).

SR-0018 B 4-27

If the length of a character entity in nlist is greater than the length
of the corresponding clist character constant, the additional rightmost
characters in the entity are initially defined with blank characters. If
the length of the character entity in the list nlist is less than the
length of its corresponding character constant, the additional rightmost
characters in the constant are ignored.

4.4.3 ENTITIES THAT CAN APPEAR IN A DATA STATEMENT

Any variable or array element can be initially defined in a DATA
statement except for the following:

• An entity that is a dummy argument

• A variable in a function subprogram whose name is also the name of
the function subprogram

• A pointee

• An automatic array or an element of an automatic array

• An entity in blank common or task common

The ANSI Fortran Standard does not permit a DATA statement to initialize
entities in named common blocks except in block data subprograms.

4.5 STORAGE AND ASSOCIATION

This subsection discusses the storage of variables, arrays, and common
blocks, and the way entities become associated.

4.5.1 STORAGE UNITS AND SEQUENCES

A numeric storage unit is a Cray word of 64 bits; a character storage
unit is an 8-bit byte. A storage sequence is a contiguous group of
storage units with a consecutive series of addresses. Each array and
each common block is stored in a storage sequence. The size of a storage
sequence is the number of storage units it contains. Two storage
sequences are associated if they share at least one storage unit.

4-28 SR-0018 B

An integer, real, or logical value occupies one numeric storage unit.
A character value is represented as an 8-bit ASCII code, packed eight
characters per word; the storage size depends on the value's length
specification. A double-precision or complex value uses a storage
sequence of two numeric storage units, with the first storage unit
containing the most significant bits of a double-precision value or the
real part of a complex value, and the second storage unit containing the
least significant bits of a double-precision value or the imaginary part
of a complex value.

The ANSI Fortran Standard does not specify the relationship between
storage units and computer words, nor does it specify any relation
between numeric and character storage units.

4.5.2 STATIC AND STACK STORAGE

with static storage, any variable that is allocated memory occupies the
same address throughout program execution. Allocation is determined
before program execution. Code using static storage is not reentrant and
does not adapt to multitasking.

A stack is an area of memory where storage for variables is allocated
when a subprogram or procedure begins execution and is released when
execution completes. The stack expands and contracts as procedures are
entered and exited. The amount of memory available for the stack is
determined by the STACK directive available with SEGLDR; see the Segment
Loader (SEGLDR) Reference Manual, publication SR-0066.

Variables are allocated to storage according to the following criteria:

• User variables appearing in COMMON statements are always allocated
in the order they appear in the source program.

• User variables that are defined or referenced in a program unit,
and that also appear in SAVE or DATA statements, are allocated to
static storage, but not necessarily in the order shown in your
source program.

• Other referenced user variables are assigned to the stack if
-a stack is on the cft77 command line, ALLOC=STACK is on the
CFT77 control statement, or CDIR$ ALLOC=STACK appears in the
program. If you have not specified stack storage, referenced
variables are allocated to static storage. This allocation does
not necessarily depend on the order in which the variables appear
in your source program.

SR-0018 B 4-29

• Compiler-generated variables are assigned to a register or to
memory (to the stack if stack storage is specified, to static
memory otherwise) depending on how the variable is used.
Compiler-generated variables include DO-loop trip counts, dummy
argument addresses, temporaries used in expression evaluation,
argument lists, and variables storing adjustable dimension bounds
at entries.

• In either allocation mode, heap allocation is used for TASK COMMON
variable and some compiler-generated temporary data such as
automatic arrays and array temporaries. A heap is memory that
is dynamically by the system as a program runs.

NOTE

Unreferenced user variables not appearing in COMMON
statements are not allocated.

4.5.3 DEFINITION

A defined variable or array element has a value. An undefined
variable or array element does not have a predictable value. Once
defined, a variable or array element keeps a value until it becomes
undefined or redefined.

All variables and array elements are initially undefined and can be
defined before or during program execution. They can be defined in the
following ways:

• By an assignment statement (see 5.1.1, 5.2.1, and 5.4.1)

• By an input statement (see section 7)

• By a DATA statement (see 4.4)

• Through association with other entities (see 4.5.5)

• When used as a dummy argument in a subprogram, when the subprogram
is called and the corresponding actual argument is defined
(see 2.5)

• By an ASSIGN statement (only for a variable representing a
statement label); see 6.4.4.

4-30 SR-0018 B

In addition, DO variables, implied-DO variables, and specifiers in 1/0
statements become defined when these statements and constructs are used.

An initially defined variable or array element is assigned a value in a
DATA statement. Constants are always defined and are never redefined. A
function's value is defined only when it is evaluated.

When an entity of a given type becomes defined, all totally associated
entities of different types become undefined. When an entity not of
character type becomes defined, all partially associated entities become
undefined. However, if two partially associated entities are of types
real and complex, one entity can become defined without causing the other
to become undefined.

If one array element is redefined, the whole array is considered
redefined. This can affect optimization.

4.5.4 SAVE STATEMENT

A SAVE statement retains the definition status of specified entities
after the execution of a RETURN or END statement in a subprogram. The
entity remains defined in the current program unit only. The SAVE
statement must appear before any executable statement in a program unit.

When a subprogram is called recursively (directly or indirectly), inputs
to the recursive invocation should be passed as arguments or within a
common block. Any SAVE statement has not yet taken effect, so you should
not assume that a variable's current value will be in storage when the
recursive invocation begins. That is, input variables used in recursive
calls should be passed as in any other subprogram call.

SAVE [a[,a] .•.]

a Variable name; array name; or common block name preceded and
followed by a slash. If a is omitted, all common blocks,
variables, and arrays that can legally appear in a SAVE
statement are assumed specified. A name must not appear more
than once in the SAVE statements of a program unit.

The names of dummy arguments, pointees, automatic arrays, or function
result variables must not be specified in a SAVE statement. Variables
and arrays within a common block can be specified only if the entire
block is included.

SR-0018 B 4-31

The ANSI Fortran standard specifies that a common block that is named in
a SAVE statement must also be specified in every subprogram where the
common block appears. This is not enforced by CFT77.

A SAVE statement in the main program has no effect.

All referenced entities specified in a SAVE statement are assigned to
static storage (see 4.5.2), with the following exception: when
optimization is enabled, local variables or arrays that are not referenced
or used might not be assigned storage, and in such cases are unaffected by
the SAVE statement.

The ANSI Fortran Standard does not specify storage allocation methods.

4.5.5 ASSOCIATION OF ENTITIES

Two entities are associated if their names represent the same storage
location, either within a program unit or in different program units:
that is, entities are associated if they use the same storage, or if their
storage sequences overlap. Character entities must not be associated with
arithmetic or logical entities.

Association of entities across program units allows a subprogram to
process data as needed by another program unit. This is accomplished by
the use of either arguments or common blocks. Arguments allow the calling
program unit to specify, in effect, an address to be accessed; this
associates entities in the called and calling program units (see 2.5).
With a common block, each program unit independently declares a group of
entities that occupy a common area of storage; corresponding entities
declared by different program units are then associated (see 4.6). Data
that can be referenced by more than one program unit is called global in
Cray parlance; see 4.5.5.2.

Within a program unit, an EQUIVALENCE statement associates entities. Such
association is used to organize storage in large common blocks (see 4.6.3).

Totally associated entities have the same storage sequence. Partially
associated entities share part but not all of a storage sequence. All
entities using a given storage unit are affected by the unit's value or
undefined status; totally associated entities of the same type have the
same values and definition status.

4-32 SR-0018 B

I

Partial association can exist between a double-precision or complex value
and a second value of type integer, real, logical, double-precision, or
complex; or between two character entities. Partial association can occur
through the use of COMMON, EQUIVALENCE, or ENTRY statements. (In a
function subprogram, all entry names are associated with one another and
with the function name.) Partial association must not occur through
argument association except for character arguments.

Partial association is illustrated in 4.5.6.

CAUTION

The order in which CFT77 stores variables may differ
from that used by other compilers, such as CFT.
Programs written for these compilers give invalid
results when compiled with CFT77 if they use weak
implicit association, described in the following
subsection.

4.5.5.1 Implicit association

With many Fortran compilers, including CFT, entities can be associated
based on assumptions about how storage is allocated. For example:

INTEGER T(5)
INTEGER A,B,C,D,E
EQUIVALENCE (T(l),A)

With such compilers, you can assume that variables A through E are stored
in the order declared in the above INTEGER statement; the EQUIVALENCE
statement would then associate element T(2) with B, and so on. This is
weak implicit association because it is merely a by-product of certain
compiler implementations.

Under eFT77, however, you should not make assumptions about storage
sequences except for those of an array or of the entities declared in a
COMMON statement. Only in these cases can association be reliably based
on implied positions, such as when two arrays are equivalenced. This is
strong implicit association because it results from storage
requirements defined in the ANSI standard. See example in 4.5.6,
following.

Storage order is discussed in 4.5.2; array storage sequences are
discussed in 4.3.6.1 and shown in figure 4-2.

SR-0018 B 4-33

4.5.5.2 Global and local data (Cray terminology)

In Cray usage, data is considered global if it is represented by entities
in common blocks or used as arguments, because such data can be referenced
and changed by more than one program unit. Local data is declared and
accessed only by one program unit.

The ANSI standard does not define these terms as just described but makes
the same distinction, such as in requirements for the SAVE statement. The
distinction is important in Cray usage, for such techniques as vectorizing
and multiprocessing. In the ANSI standard these terms apply only to the
scope of symbolic names (see 2.1.5); for example, a variable name is local
because the scope in which it can be referenced is a single program unit.
In Cray usage, however, a local variable not only has a local name but
also references local data; that is, it is not used as an argument and is
not contained in a common block.

4.5.6 EQUIVALENCE STATEMENT

An EQUIVALENCE statement specifies the sharing of one or more storage
units by two or more entities in a single program unit, in order to use
storage more efficiently. This causes the association of those entities.

EQUIVALENCE (nlist)[,(nlist)] ..•

nlist List of two or more variable names, array element names,
character substring names, or array names, separated by
commas. nlist cannot include names of subprogram dummy
arguments, pointees, or variable names that are also
function names. An array name with no subscript refers
only to the array's initial address.

Examples:

EQUIVALENCE (ARRAY1,VECTOR1), (ARRAY2,VECTOR2)
EQUIVALENCE (A(l),X), (A(73),Y), (A(247),Z)

An EQUIVALENCE statement specifies that the storage sequence of each
entity in a list nlist shares the same first storage unit. This
associates all entities in the list and can also indirectly associate
other entities, such as adjacent addresses (higher or lower) when two
array elements are associated. If entities are of different data types,
the EQUIVALENCE statement does not cause type conversion or imply
mathematical equivalence.

4-34 SR-0018 B

Associated entities are assigned to the same kind of storage, static or
stack. Stack storage is used if -a stack is in the cft77 command or
ALLOC=STACK is in the CFT?? control statement (see section 1) and the
entities have not been otherwise assigned to static storage (for example,
with a DATA statement).

The ANSI Fortran Standard does not specify storage allocation methods.

Example:

INTEGER I
REAL R(4)
COMPLEX C(2)
DOUBLE PRECISION D
EQUIVALENCE (C(2), R(2), I), (R,D)

The above EQUIVALENCE statement specifies that the following storage
units are the same:

• The third storage unit of C (that is, the first unit of the
second element of C)

• The second storage unit of R
• The storage unit of I

• The second storage unit of D

The storage sequences can be illustrated as follows:

Complex

Real

Integer

Double precision

Storage Unit
1 2 I 3 I 4 I 5

C(l) C(2) I

IR(1)IR(2)IR(3)IR(4)1

I I I
D I

As the preceding diagram shows, R(2) and I are totally associated.
The following are partially associated: R(l) and C(l), R(2) and
C(2), R(3) and C(2), I and C(2), R(l) and D, R(2) and D, I and D,
C(l) and D, and C(2) and D. Although C(l) and C(2) are each
associated with D, C(l) and C(2) are not associated with each other.
Association of element C(l) is implied by the association of C(2)
with R(2), even though C(l) does not appear in the EQUIVALENCE
statement.

SR-0018 B 4-35

4.5.6.1 Array names in EQUIVALENCE statements

The use of an array name in an EQUIVALENCE statement has the same effect
as using the name of the array's first array element. If an array
element name appears in an EQUIVALENCE statement, the number of subscript
expressions must be less than or equal to the number of dimensions in the
array declarator for the array. When the number of subscripts is less
than the number of dimensions, the lower bounds are used for the
unspecified subscripts; this does not conform to the ANSI Fortran
standard, and a warning is issued.

4.5.6.2 Restrictions on EQUIVALENCE statements

An EQUIVALENCE statement must not specify the same storage unit to occur
more than once in a storage sequence. Example:

DIMENSION A(2)
EQUIVALENCE (A(1),B) , (A(2),B) !Illegal statement

The above sequence is prohibited because it specifies the same
storage unit for A(1) and A(2).

An EQUIVALENCE statement must not specify consecutive storage units to be
nonconsecutive. For example, the following is prohibited:

REAL A(2)
DOUBLE PRECISION D(2)
EQUIVALENCE (A(1),D(1»,(A(2),D(2» !Illegal statement

An EQUIVALENCE statement must not associate the storage sequences of two
different common blocks in the same program unit. For example, the
following is prohibited:

COMMON/A/X
COMMON/B/Y
EQUIVALENCE (X,Y) !Illegal statement

An EQUIVALENCE statement must not extend a common block storage sequence
by adding storage units preceding the first storage unit in the block.
(This unit is the first entity specified in a COMMON statement for the
common block.) Example:

4-36

COMMON IX/A
REAL B(2)
EQUIVALENCE (A,B(2» !Illegal statement

The above sequence is not permitted because it would associate an
array element B(1) with a storage unit preceding A in common block X.

SR-0018 B

An entity tif type character can be equivalenced only with other entities
of type character. Lengths are not required to be the same. Partial
overlapping between character entities can occur through equivalance
association.

Example:

CHARACTER A*4,B*4,C(2)*3
EQUIVALENCE (A,C(l»,(B,C(2»

The above sequence partially associates A with C(2) as shown in the
following illustration.

Character number:

4.6 COMMON BLOCKS

1011021031041051061071
1---- A ----I

1---- B ----I
1--C(l)--I--C(2)--1

A common block is an area of memory that can be referenced by any
program unit in a program, allowing a subprogram to process data as needed
by another program unit. A common block can be referenced by any program
unit that declares the common block.

The COMMON statement declares a common block's name (if any) along with
the names of variables and arrays contained in the block. The order in
which these names appear within each COMMON statement determines how the
entities are associated across program units. TASK COMMON and LOCAL
COMMON work the same way for common blocks used in multitasking (see 4.6.6
and 4.6.7).

Example:

PROGRAM EXBLOK
COMMON ITIMEI ARRAYA(10),ARRAYB(20),FACTOR

CALL SWING

SUBROUTINE SWING
COMMON ITIMEI VECTORA(10),VECTORB(20),AMULT

The two COMMON statements above declare a common block named TIME and
associate VECTORA with ARRAYA, VECTORB with ARRAYB, and AMULT with
FACTOR. This allows subroutine SWING to process the current values
of entities appearing in the main program without the use of
arguments.

SR-0018 B 4-37

Because character and noncharacter data use different kinds of storage
units (see 4.5.1 and G.5), a common block must include either no
characters or all characters.

A named common block has a name specified in a COMMON, TASK COMMON, or
LOCAL COMMON statement, along with the names of variables or arrays
stored in the block. A blank common block, often called simply "blank
common," is declared in the same way but with no name shown. Blank
common cannot be initialized before run time, such as with a DATA
statement. You can use blank common to manage memory for your own
requirements, as described in appendix D.

4.6.1 FEATURES AND UTILITIES FOR USING COMMON BLOCKS

This subsection describes compiler features for managing common blocks,
and the FTREF utility.

If all program units in a program declare the same common block in the
same way, entities in the common block are effectively global, as in
Pascal usage. However, this global property is lost unless every change
in the declaration is made in all program units. You can make global
changes easily if the declaration is contained only in a separate file
and inserted in each program unit by an INCLUDE statement (see 1.5).

The optional Symbol Cross-reference Table in your program listing
indicates the storage type for each symbol; this includes the name of any
common block containing a symbol. To get this table, include -e sx on
the cft77 command or ON=SX on the CFT7? control statement.

To obtain a list of all references to entities in common blocks, use the
FTREF utility; this is described in the Performance Utilities Reference
Manual for either UNICOS or COS, respectively pUblications SR-2040 and
SR-0146. You can invoke FTREF as follows; the loader is not invoked
because FTREF performs only a static analysis of source code.

Under UNICOS:

cft77 -e sx hello.f
ftref -c full -t full hello.l > hello. ref

Under COS (JCL statements in $IN, following JOB and ACCOUNT statements):

CFT??,ON=SX,L=LISTX.
FTREF,I=LISTX,CB=FULL,TREE=FULL.
IEOF

As specified above, the two full options for FTREF give the information
most frequently needed: common block references and a calling tree.
Under COS, you must specify a nondefault listing dataset (here LISTX) in
the invocations of both CFT?? and FTREF.

4-38 SR-0018 B

4.6.2 COMMON STATEMENT

The COMMON statement specifies entities that are contained in a common
block. These entities are local to the program unit containing the
COMMON statement and become associated with those declared within other
program units for the same common block. This allows different program
units to share storage units and to define and reference the same data.

COMMON [/[cb]/]nlist[,/[cb]/nlist] ..•

cb Common block name; global name of 1 to 8 alphanumeric
characters, the first of which must be a letter. The blank
(unnamed) common block is specified when cb does not
appear between slashes.

nlist List of variable names, array names, and array declarators
separated by commas. Names of dummy arguments of a
subprogram cannot appear in the list.

The entities occurring in nlist following block name cb are declared
to be in common block cb. If the first cb is omitted, its enclosing
slashes are optional and all entities in nlist are specified to be in
blank common.

Any cb (or an omitted cb for blank common) can occur more than once
in one or more COMMON statements in a program unit. The nlist
following each successive appearance of the same common block name
continues the preceding list for that common block name.

An EQUIVALENCE statement must not extend a common block storage sequence
by adding storage units preceding the first storage unit in the block.
(This unit is the first entity specified in a COMMON statement for the
common block.) See example in 4.5.6.2.

4.6.3 REFERENCING COMMON BLOCKS

Because a common block associates entities by storage sequence rather
than by name, the names and types of variables and arrays can differ
across program units. To be referenced, an entity in a common block must
be defined, and the reference must be of the type which was declared for
that entity in the subprogram where the reference appears.
Qualifications:

• An integer variable that has been assigned an executable statement
label by an ASSIGN statement must not be referenced in any program
unit other than the one in which it was assigned.

SR-0018 B 4-39

• Either part of a complex entity can be referenced as a real entity.

• If any entity in a common block is of type character, all entities
in the block must be of type character, and the common block
definitions in all subprograms must be of type character.

A common block name may also be the name of any local entity, including a
constant, intrinsic function, or a local variable that is also a function
result. If a name is used for both a common block and a local entity, the
name identifies only the local entity in any context other than a COMMON
or SAVE statement.

The ANSI Fortran Standard does not allow a common block name to be the
name of a constant, intrinsic function, or external procedure.

In a subprogram that has declared a named or blank common block, the
entities in the block remain defined after the execution of a RETURN or
END statement.

The ANSI Fortran Standard specifies that variables in a named common
block become undefined on execution of a RETURN or END statement if no
executing program unit has declared the common block.

4.6.4 COMMON BLOCK STORAGE SEQUENCE

For each common block, a common block storage sequence is formed as
follows.

• A storage sequence is formed, consisting of the storage sequences
of all entities listed in a COMMON statement. The sequence order
is determined by the order of these entities.

• This storage sequence is extended to include all storage units of
any storage sequence associated with it by an EQUIVALENCE
statement. The sequence can be extended only by adding storage
units beyond the last storage unit. Entities associated with an
entity in a common block are considered to be in that common block.

For all declarations of a given common block within an executable program
(including blank common), the storage sequences are counted from a single
beginning storage unit. That is, all entities in a declaration are
positioned sequentially in relation to this starting address. The
practical effects of this method of positioning are discussed in the
following paragraph and in 4.6.5.

4-40 SR-0018 B

I

When any two local entities are to be associated across program units by
means of a common block, each must be preceded by the same amount of
storage within the block, as declared in the COMMON statement. Even if
one of the program units does not access part of the block (in a lower
address range than the entities to be associated), that program unit's
COMMON statement must still declare the unused storage, such as by the
use of a space-filling array.

Examples:

(1)

(2)

PROGRAM FILLER
REAL ARRAYC(10), ARRAYF(20)
COMMON lMARKETI A, B, ARRAYC, D, E, ARRAYF

SUBROUTINE TARIFF
REAL NOTHING(12), ARRAYR(20)
COMMON lMARKETI NOTHING, P, Q, ARRAYR

Subroutine TARIFF above does not reference the first 12 storage units
of common block MARKET, so array NOTHING is declared to account for
that storage. This allows P to be associated with D, and so on.

PROGRAM INDEX
REAL VECTOR1(100), VECTOR2(200)
COMMON IPLACEI VECTOR1, VECTOR2, S, T, U

SUBROUTINE NORMAL
REAL AINDEX(303)
COMMON IPLACEI AINDEX
EQUIVALENCE (AINDEX(1),A), (AINDEX(101),B), (AINDEX(201),C),

& (AINDEX(301),D), (AINDEX(303),RESULT)

Because subroutine NORMAL will reference only a few locations in
common block PLACE, array AINDEX is used as a means of specifying
locations within the block. The EQUIVALENCE statement uses the
element subscripts of AINDEX to locate variables within the common
block for the correct association.

SR-0018 B 4-41

I

4.6.5 COMMON BLOCK SIZE

The size of a common block is the size of its storage sequence, including
any extensions of the sequence resulting from association by an
EQUIVALENCE statement.

The declarations for a given common block, appearing in different program
units, are not required to declare the same amount of storage. Each
declaration represents storage beginning at the block's first storage
unit and equaling the total size of the entities shown in the
declaration. However, a declaration of that block in any given program
unit is not required to account for storage beyond the highest address
referenced by the program unit.

Example:

PROGRAM UNEQUAL
REAL ARRAYV(lO), ARRAYZ(20)
COMMON IGOODI T, U, ARRAYV, W, X, ARRAYZ

SUBROUTINE BENTHAM
REAL ARRAYH(lO)
COMMON IGOODI F, G, ARRAYH

Common block GOOD declared above is allocated 34 storage units, based
on its declaration in the main program. F, G, and ARRAYH are
associated with T, U, and ARRAYV, respectively. Subroutine BENTHAM
does not reference entities in the higher addresses in this block;
its declaration does not need to account for the space, because
entities are associated based only on their distance from the
starting address.

The amount of storage allocated for a common block depends on the loader
being used. LDR allocates the size of the common block's first
declaration; this constitutes a maximum size for all subsequent
declarations for that block. SEGLDR allocates the maximum size declared
for a block in any program unit; therefore you do not have to stay within
the size of the first declaration.

The ANSI Fortran Standard does not include variable sizes for named
common blocks.

In the simplest case (and always on CRAY-2 systems), storage for blank
common is statically allocated, similarly to the way it is allocated for
named common blocks. If you need dynamic storage, the recommended method
is the heap; see appendix D.

4-42 SR-0018 B

4.6.6 TASK COMMON STATEMENT (CFT77 EXTENSION)

When multitasking is used, some common blocks may need to be local to a
task. The TASK COMMON statement declares all variables in a common block
to be local to a task. If multiple tasks execute code containing the
same task common block, each task will have a separate copy of the block.

Keyword TASK must precede keyword COMMON to establish a task common
block. Task common blocks must be named. A task common block is
allocated at task invocation.

TASK COMMON Icblnlist[,ICblnlist] •••

cb Task common block name

nlist List of variable names, array names, and array declarators,
separated by commas. Names of subprogram dummy arguments
cannot appear in the list.

The variables in nlist cannot appear in a DATA statement and cannot be
used in NAMELIST I/O. With these exceptions, the variables can be used
like the other variables declared in common storage.

Stack allocation must be used with task common blocks; with static
allocation, all task common blocks are treated as regular common blocks.
(Stack storage is used if -a stack is in the cft77 command or
ALLOC=STACK is in the CFT77 control statement; see section 1. See 4.5.2
concerning storage modes.)

The ANSI Fortran Standard does not provide for task common blocks.

SR-0018 B 4-43

4.6.7 LOCAL COMMON STATEMENT (FOR CRAY-2 SYSTEMS)

The LOCAL COMMON statement assigns the contents of a named common block
to Local Memory on the CRAY-2 computer system. Blank common cannot be
declared as local common.

LOCAL COMMON Icblnlist[,lcblnlist] •••

cb

nlist

Local common block name

List of variable names, array names, and array declarators,
separated by commas. Names of subprogram dummy arguments
cannot appear in the list.

Local common block variables cannot be passed as actual arguments to
subprograms. The SAVE and EQUIVALENCE statements treat variables in
local common the same as variables in common blocks. The DATA statement
cannot initialize variables in local common.

The LOCAL COMMON statement is intended for use on CRAY-2 computer
systems; on other Cray computer systems, the statement is equivalent to
the TASK COMMON statement.

The ANSI Fortran Standard does not provide for local common blocks.

4.6.8 BLOCK DATA SUBPROGRAM

A block data subprogram provides, at compile time, initial values for
variables and array elements in named common blocks. In standard
Fortran, other program units cannot include DATA statements to initialize
common block entities, because different program units could declare
conflicting data. Because of this limitation, the block data subprogram
allows initialization outside of other program units. CFT77 does not
include this restriction on the DATA statement, so the block data
subprogram is not requi~ed.

A block data subproqram contains no executable statements and is not
called by another program unit. A block data subprogram can initialize
more than one common block, and one common block can be initialized in
more than one block data subprogram.

4-44 SR-0018 B

A block data subprogram begins with a BLOCK DATA statement and ends with
an END statement. The BLOCK DATA statement can contain the subprogram's
name; unnamed block data subprograms are described below. The only other
statements that can appear in a block data subprogram are IMPLICIT,
PARAMETER, DIMENSION, COMMON, EQUIVALENCE, SAVE, DATA, and type
statements.

During one invocation of CFT77, up to 26 unnamed block data subprograms
can be encountered. CFT77 assigns the name BLCKDATA to the first unnamed
block data subprogram, BLCKDATB to the second, BLCKDATC to the third, and
so on. Separate compilations can give the same name to two different
block data subprograms; this prevents proper loading of the routines, so
be careful to prevent such duplication. Any number of differently named
block data subprograms can be specified in an executable program.

The ANSI Fortran Standard does not allow a common block to be initialized
in more than one block data subprogram, and allows only one unnamed block
data subprogram in an executable program.

4.6.6.1 BLOCK DATA statement

The BLOCK DATA statement identifies a subprogram as a block data
subprogram and can contain a subprogram name. A block data subprogram
provides initial values for variables and array elements in named common
blocks.

BLOCK DATA [sub]

sub Symbolic name of the block data subprogram in which the
BLOCK DATA statement appears. sub is a global name and
must not be the same as any other global name or any local
name within the same subprogram.

The ANSI Fortran Standard does not allow the name of a block data
subprogram to be the same as a common block name.

Example:

BLOCK DATA BDI
COMMON/NAMEl/TABLEA,TABLEB,TESTl,TEST2
DIMENSION TABLEA(lO,lO),TABLEB(6,2,2)
DATA TABLEA/lOO*123.I,TABLEB/12*O.,12*1.1
DATA TESTl/72.35E-201
END

SR-0018 B 4-45

EXPRESSIONS AND ASSIGNMENT

An expression specifies either: a computation involving two or more
operands with one or more operators; or, one operand and an optional

5

+ or -. Operands can be constants, symbolic names of constants,
variables, array elements, arrays, array sections, substrings, or function
references. Operators can specify arithmetic, assignment, character,
relational, or logical operations. A constant expression is either an
arithmetic constant expression (see 5.1), a character constant expression
(see 5.2), or a logical constant expression (see 5.4).

Assignment statements, for defining variables and array elements during
program execution, are arithmetic, logical, and character. Table 5-1
shows which data types can be used together in an assignment statement.
The ASSIGN statement, for assigning statement labels, is described
in 6.4.4.

See 2.4 concerning the use of functions in expressions. Array
expressions, a CFT7? extension, are discussed in 4.3.11.

An operand (a variable, array element, array, array section, or function
referenced in an expression) must be defined at the time the reference is
executed. Any named constant must be established in a PARAMETER statement
preceding the statement where the constant is first referenced.

A parenthesized expression is treated as an entity. For example, in the
expression A*(B*C), the product of Band C is evaluated and then
multiplied by A. Because one operator cannot immediately follow another,
parentheses are used to render a mathematical expression such as a • -b
as A*(-B). Parenthesized expressions can be nested within other
parenthesized expressions.

Precedence among all kinds of operators is as follows:

Operator

Arithmetic
Character
Relational
Logical

Precedence

Highest

Lowest

An expression can contain more than one kind of operator. For example,
the following logical expression contains arithmetic, relational, and
logical operators:

SR-0018 B 5-1

L .OR. A + B .GE. C

The above expression would be interpreted the same as the following
expression:

L • OR • « A + B) • GE • C)

The compiler uses the following considerations to interpret an expression.
Shown in descending order of priority, these considerations determine the
order in which pairs of primaries are combined using operators.

(1) Use of parentheses

(2) Precedence of arithmetic, character, relational, and logical
operators

(3) Right-to-left interpretation of exponentiations in a factor

(4) Left-to-right interpretation of all other operators

Once an interpretation has been established, CFT77 may evaluate a
mathematically equivalent expression.

5.1 ARITHMETIC EXPRESSIONS

An arithmetic expression specifies a numeric computation. Its evaluation
produces a scalar or an array.

The simplest form of an arithmetic expression is an unsigned constant or
the symbolic name of a constant, variable, array element, array, array
section, or function. More complicated arithmetic expressions are formed
by using one or more arithmetic operands with arithmetic operators and
parentheses. As shown in table 5-3, arithmetic operands are normally of
type integer, real, double-precision, or complex; types Boolean and
pointer can also be used, with the qualifications shown in the table.

An arithmetic constant expression is an arithmetic expression that
contains as operands any combination of arithmetic constants, symbolic
names of arithmetic constants, or arithmetic constant expressions.
Exponents (y in expression x**y) must be of type integer. References to
variables, array elements, or functions are not permitted. Arithmetic
constant expressions are required in PARAMETER statements.

An integer constant expression is an arithmetic constant expression in
which each constant or name of a constant is of type integer. Variables,
array elements, and function references are not allowed. Integer constant
expressions are required in substring designators (see 3.7.2). The ANSI

5-2 SR-0018 B

Fortran standard requires integer constant expressions in array dimension
bound expressions, but CFT77 allows exceptions to this rule (see 4.3.5).

Expressions that raise 0 to a 0 or negative power or expressions that
raise a negative value to a noninteger power cause run-time faults.

5.1.1 ARITHMETIC ASSIGNMENT STATEMENT

An arithmetic assignment statement defines the entity on the left of the
equal sign, v, to be the value of the expression on the right, e,
whose type is converted to that of v if required. Table 5-1 shows
which combinations of operands are legal and which require conversion.

v = e

v Name of a variable, array, array section, or array element
of type integer, real, double-precision, or complex

e Arithmetic expression

If v is a scalar, e must be a scalar. If v is an array name or array
section name, the statement is an arithmetic array assignment statement
and e must be conformable with v (see 4.3.11.1). If e is a scalar
and v is an array name or array section name, the scalar value is
assigned to all elements of the array or array section.

Examples:

L = 12
C = (0.8,16.5) - (16.32,-6.1)
X = -B +(B**2-4*A*C)**0.5
ROOT = SQRT(65536.0)
ARRAY(6,2,1) = 0
MATRIX(I,J,K) = MATRIX(I,J,K)+l
MATRIX(I,:,K) = MATRIX(I,:,K)+l
ARRAY(:,:,:) = 0

!Non-ANSI
!Non-ANSI

The last two examples above make use of array sections and array
expressions (see 4.3.10 and 4.3.11).

SR-0018 B 5-3

Table 5-1. Allowed Assignment Statements: y=x

y=x y=I y=R y=D y=C y=B y=P y=L y=S

I=x I=I I=R2 I=D I=C I=B I=P I.L I.S1

R=x R=I R=R R=D R=C R=B R.P R.L R.S1

D=x D=I D=R D=D D=C D.B D.P D.L D.S

C=x C=I C=R C=D C=C C.B C.P C.L C.S

P=x P=I P.R P.D P.C P=B P=P P.L P.S

L=x L.I L.R L.D L.C L.B L.P L=L L.S

S=x S.I S.R S.D S.C S.B S.P S.L S=S

There are no Boolean variables, so Boolean cannot appear on the left of
the equal sign.

Legend:

= The assignment is legal.

An underscored letter indicates the x expression on the right
side of the equal sign is converted to the type of the
variable on the left side.

• The expression on the right cannot be assigned to the variable
on the left.

I Integer
B Boolean

R Real
L Logical

D Double-precision
S Character

C Complex
P Pointer

1 If S is a literal character string and length (S) ~ 8 characters, the
assignment is performed with S treated as a Hollerith constant; a
non-ANSI warning message is issued. See 5.2.

2 If the assignment is of the form I = X/Y, where I is integer and X and
Yare real, the integer result is sometimes one less than it should
be. This can occur because division on Cray systems can result in a
real value ending in .99999; this fraction is lost in the integer
conversion. The NINT function is one way to prevent this problem.

5-4 SR-0018 B

5.1.2 ARITHMETIC OPERATORS

Arithmetic operators and their interpretations are shown in table 5-2.
Each arithmetic operator operates on a pair of operands and appears
between them. The operators + and - can also operate on a single operand
when it precedes that operand. An operator cannot immediately follow
another operator; for example, A * -B is illegal.

The interpretation of a division operation depends on the type of the
operands. An integer quotient is the integer portion of a quotient
having an integer divisor and dividend. For example, the expression -5/2
yields an integer quotient of -2.

Table 5-2. Arithmetic Operators and Their Use in Expressions

Use of Operator

X**Y
X/Y
x*y
X-Y

-Y
X+Y

+Y

Interpretation

Exponentiate X to the power Y
Divide X by Y
Multiply X by Y
Subtract Y from X
Negate Y
Add X to Y
(Same as Y)

5.1.2.1 Precedence of arithmetic operators

In an arithmetic expression, quantities enclosed in parentheses are
evaluated first. If parentheses are within parentheses, the innermost
quantity is evaluated first. Then the operations are evaluated in the
following order:

First: **
Second: * and 1

Third: + and -

For example, in the expression -A**2, ** has precedence over - •
Therefore the result of ** is used as the operand for -. Thus, -A**2 is
interpreted as -(A**2).

When an expression involves two or more operations of the same precedence,
their positions within the expression determine how the expression is
interpreted. (The actual order of evaluation is affected by
optimization.) All operators are interpreted left to right except
exponentiation (**), which is interpreted right to left.

SR-0018 B 5-5

Examples:

• A+B+C is interpreted as (A+B)+C. This does not guarantee a
particular order of evaluation.

• A**B**C is interpreted as A**(B**C)

Once an interpretation has been established, CFT77 may evaluate a
mathematically equivalent expression. Example:

Expression Might Be Evaluated As

A/2./5. A * .1

1 + A + 2 A + 3

AlBIC A/(B*C)

Differences like those shown above can affect round-off and optimization.

5.1.3 ARITHMETIC OPERANDS

An arithmetic operand is an entity representing a number, which can be
manipulated by an arithmetic operator. Arithmetic operands can be any of
the following:

• Primaries
• Factors
• Terms
• Arithmetic expressions

The following subsections describe the forms of combining operands and
operators in arithmetic expressions.

5.1.3.1 Primaries

A primary is the most basic unit at one level of syntax, but can itself
be an expression with its own syntax. Primaries can be any of the
following:

• Unsigned arithmetic constants
• Symbolic names of arithmetic constants
• Variable references
• Array element references
• Function references
• Arithmetic expressions enclosed in parentheses
• Arithmetic array references
• Arithmetic array section references

5-6 SR-0018 B

The ANSI Fortran Standard does not provide for array expressions or
array sections.

Examples:

Primary Description

2309 Unsigned double-precision constant

KVALUE Integer constant name if named in a PARAMETER statement

COUNTER 8 Real variable name

IMAG(3,52,75) Complex array element name if declared in a COMPLEX
statement

EVAL(A,B,C)

(A/B**2)

5.1.3.2 Factors

Real function name if declared in a FUNCTION or
statement function statement

Parenthesized arithmetic expression

Array-valued arithmetic array expression if K and J
are declared as arrays and are conformable (see
4.3.11.1).

A factor is a sequence of one or more primaries, separated by the
exponentiation operator. A factor can be any of the following:

• primary

• primary ** factor

The second form above indicates that for interpreting a factor containing
two or more exponentiation operators, the primaries must be combined from
right to left. For example, the factor 2**3**2 is interpreted as
2**(3**2).

5.1.3.3 Terms

A term is a factor or a sequence of factors separated by multiplication
or division operators. A term can be any of the following:

• factor
• term / factor
• term * factor

SR-0018 B 5-7

The second and third forms show that a single term can include both the *
and / operators. The factors are combined from left to right in
interpreting a term containing two or more multiplication or division
operators.

5.1.3.4 Arithmetic expressions

An arithmetic expression is a term or sequence of terms separated by
addition (+) or subtraction (-) operators. The forms of an arithmetic
expression are as follows:

• term
• + term
• - term
• arithmetic expression + term
• arithmetic expression - term

The first term in an arithmetic expression can be preceded by an identity
(+) or negation (-) operator. The last two forms show that terms are
combined from left to right in interpreting an arithmetic expression
containing two or more addition or subtraction operators.

These formation rules prohibit expressions containing two consecutive
arithmetic operators such as A**-B or A+-B. However, expressions such as
A**(-B) and A+(-B) are permitted.

5.1.4 DATA TYPE OF ARITHMETIC EXPRESSIONS

The data type of an arithmetic expression containing one or more
arithmetic operators is determined from the data types of the operands.
The data types of arithmetic expressions are given in table 5-3, and those
for exponentiation in table 5-4. Each table item represents an expression
and a result, and each capital letter represents an operand or result, as
follows:

I Integer
B Boolean

R Real
L Logical

D Double-precision
S Character

C Complex
P Pointer

In table 5-3, an entry is similar in form to an assignment statement, but
also applies to expressions within parentheses. The 0 symbol represents
an arithmetic operator. If an arrow is shown, it points to the result
type; a square symbol with no arrow indicates the two operands cannot be
used in an arithmetic expression. In each row and column, one operand has
the same data type throughout, and the other operand changes; the
unchanging operand is indicated in the column head and at the beginning of
each row.

5-8 SR-0018 B

Example:

R~IoR

To the right of the arrow, 0 is an operator and I and R are operands
of types integer and real. To the left of the arrow, R indicates a
real result; the underscored I indicates that integers in such an
expression are converted to type real. The preceding entry would
apply to the following expression:

CTEMP * 9/5 + 32

This would be treated as

CTEMP * 9./5. + 32.

Note that CTEMP+(9/5)+32 is treated as CTEMP+l.+32.

When + or - operates on a single operand, the data type of the resulting
expression is the same as the data type of the operand.

In general, conversion of data types is determined by a hierarchy of
types, and is always upward within the hierarchy. The hierarchy is as
follows:

Complex

Double-precision

Real

Integer

Because type Boolean is not converted, it does not fit in the hierarchy;
it is used only with types integer, real, and pointer. Pointer type is
used only with types integer, Boolean, and pointer. Types character and
logical are not allowed in arithmetic expressions.

In an expression operating on either a single operand or a pair of
operands, the type and interpretation are independent of the context where
the expression appears, and independent of the type of any other operand
of a larger expression where the expression appears.

Example:

COMPLEX CPX
CPX = (-2.)**0.5 !Illegal

Although, in mathematics, complex numbers derive from operations on
real numbers, the above exponentiation is illegal, as shown in
table 5-4.

SR-0018 B 5-9

Table 5-3. Use of Data Types with Arithmetic Operations: +, -, *, /

y+-Iox y+-Rox y+-Dox y+-Cox y+-Box y+-Pox y+-Sox

y+-xoI 1+-101 R+-RoI D+-DoI C+-CoI 1I+-BoI 4I+-PoI 3. Sol

y+-xoR R+-IoR R+-RoR D+-DoR C+-Cos. 2R+-BoR • PoR 3. SoR

y+-xoD D+-IoO D+-RoD D+-DoD C+-CoD • BoD • PoD • SoD

y+-xoC C+-IoC C+-s.oC C+-DoC C+-CoC • BoC • PoC • SoC

y+-xoB 1I+-IoB 2R+-RoB • DoB • CoB 1B+-Bo B 4I+-PoB 3. SoB

y+-xoI 4I+-IoP • RoP • DoP • CoP 4I+-BoP 4I+-PoP • SoP

y+-xoS 3. loS 3. RoS • DoS • CoS 3. BoS • PoS 3. SoS

Legend:

x One of two operands. A capital letter represents another
operand of the indicated data type. Logical is never allowed.

o Arithmetic operator: + - * /. Two operands and an operator
are an expression.

y Result of arithmetic operation. A letter to the left of the
+- symbol represents a result of the indicated data type.

• Error
An underscored operand's data type is converted before
computation of the expression.

I Integer
B Boolean

R Real
P Pointer

D Double-precision
S Character

C Complex

1 Integer operation; no conversion is performed on the Boolean item.

2 Real operation; no conversion is performed on the Boolean item.

3 If S is a literal character string and length (S) ~ 8 characters, then
the operation is performed with S treated as Hollerith; a non-ANSI
warning message is issued. See 5.2.

4 The only allowed expressions are: P+I, P-I, I+P, I-P, P+B, P-B, B+P,
B-P, P+P, and P-P. All allowed expressions produce integer results.
Multiplication and division of pointers are not allowed.

The ANSI Fortran Standard does not allow complex and double-precision
types to be mixed in arithmetic operations.

5-10 SR-0018 B

Table 5-4. Data Types in Exponentiation: **

y+-I**x y+-R**x y+-D**x y+-C**x

y+-x**I 1+-1**1 R+-R**I D+-D**I C+-C**I

y+-x**R R+-I**R R+-R**R D+-D**R C+-C**R

y+-x**D D+-I**D D+-R**D D+-D**D lC+-C**D

y+-x**C C+-I**C C+-R**C C+-D**C C+-C**C

Types Boolean, logical, character, and pointer cannot be used in
exponentiation.

In an expression a**b, if a is negative, b must be of integer type.

Legend:

x One of two operands. A capital letter represents an
operand of the indicated data type.

** Exponentiation operator

y Result of exponentiation operation. A letter to the
left of the +- symbol represents a result of the
indicated type.

• Error

Underscore indicates that the indicated operand's
data type is converted before the operation is
performed.

I Integer R Real D Double-precision C Complex

1 The double-precision exponent is converted to type real.

The ANSI Fortran Standard does not allow complex and double-precision
types to be mixed in exponentiation operations.

SR-0018 B 5-11

I

5.1.4.1 Type conversion

Type conversion Qf operands can occur during an expression's evaluation or
when the results of an expression's evaluation are stored into a variable
or array element. Type conversion is based on the following two
operations.

(a) Integer-to-real conversion creates a real value from an integer
value.

(b) Real-to-integer conversion creates a 64-bit integer value from a
real value. The fractional part is truncated.

In the above conversions, the absolute value of the integer must be less
than 2**46, or less than 2**63 if 64-bit integer arithmetic is enabled. A
warning is issued if the value is determined at compile time to exceed
this range, but not for an out-of-range value that occurs at run time.

Integer - Type integer is converted to type real as described in item (a)
above. Integer is converted to double-precision by converting to real and
adding zeros to extend the precision of the value. For converting integer
to complex, the integer is converted to real as described in item (a)
above; then the integer value becomes the real portion of a complex value,
and zero is the imaginary portion.

Real - Real is converted to integer as described in item (b) above. For
converting to double-precision, zeros are added as the least significant
portion to extend the real number's prec1s1on. For converting real to
complex, the real value becomes the real portion of a complex value and
zero is the imaginary portion.

Complex - Complex is converted to integer by converting the real portion
of the complex value as described for the real value in item (b) above.
For converting complex to real, the real portion of the complex value
becomes the real value. For converting complex to double-precision, zeros
are added to extend the precision of the real portion of the complex
value; this extended real portion becomes the double-precision value.

Double-precision - Double-precision is converted to integer by converting
the most significant portion as in item (b) above. For converting to
real, the most significant portion of the double-precision value is used
as the real value; no rounding occurs. For converting to complex, the
most significant portion of the double-precision value becomes the real
portion of the complex value, and zero is the imaginary portion; no
rounding occurs.

The ANSI Fortran Standard does not provide for converting
double-precision to complex.

5-12 SR-0018 B

5.1.5 CONSIDERATIONS IN EVALUATING ARITHMETIC EXPRESSIONS

In expressions that include integers, truncation can cause unintended
results. Example:

(3.0*10)/3 equals 30.0/3 equals 10.0

3.0*(1013) equals 3.0*3 equals 9.0

Because the expression 10/3 gives an integer quotient, the placement
of parentheses in the two expressions above changes the result.

In addition to truncation in the use of integers, results can be affected
by round-off errors and finite approximation of real numbers. For
example, the difference between 5./10. and 5.*.1 is a computational
difference; that is, although the two expressions are mathematically
equivalent, the resulting values in a computer program could be different.
Predicting and controlling computational differences is beyond the scope
of this book but is discussed in various textbooks.

In addition to parentheses required for the intended interpretation of an
expression, other parentheses can be included to control the magnitude and
accuracy of intermediate values in the evaluation of an expression.

Example:

A+(B-C)

The term (B-C) above is evaluated and then added to A. Removing
parentheses could change the computed value.

5.2 CHARACTER EXPRESSIONS

A character expression is one character primary or a sequence of
character primaries joined by the concatenation operator II. A
character constant expression is a character expression in which each
primary is a character constant, the symbolic name of a character
constant, or a character constant expression enclosed in parentheses.

A character primary is one of the following:

• A character constant or the symbolic name of a character constant

• A character substring

• A variable, array element, or function reference of type character

• A character expression enclosed in parentheses

SR-0018 B 5-13

I

• Character array reference

• Character array section reference

• Character array substring reference

• Character array section substring reference

See 5.3 concerning relational expressions involving character operands.

To convert a numeric value to a character string that would print out as
that value, write the value to a character variable used as an internal
file (see 7.4). Example:

INTEGER I
CHARACTER CHVAR
WRITE (CHVAR,'(I5)') I

Following the above WRITE statement, character variable CHVAR contains
the digits from integer variable I, allowing the number to be
processed as a character string.

5.2.1 CHARACTER ASSIGNMENT STATEMENT

Execution of a character assignment statement causes the evaluation of a
character expression ee and the definition of character entity ev with
the value of ee.

cv = ee

ev

ee

Name of a character variable, array element, whole array,
array section, substringed array section, substring, or
substring of a whole· array. See 3.7.2 concerning substrings
of array elements.

Character expression

Where appropriate, ce is either truncated or padded with blanks on the
right to match the length of ev. No character positions defined in cv
can be referenced in ee.

5-14 SR-0018 B

5.2.2 CHARACTER EXPRESSION EVALUATION

The result of evaluating a character expression is always of type
character. Primaries are combined from left to right. Example:

CHARACTER*2 VAR1,VAR2
VAR1='CR'
VAR2='AY'

PRINT *,VAR11IVAR2

The preceding sequence produces the following printed result:

CRAY

5.2.3 HOLLERITH TYPE

The Hollerith data type is described in E.1. Because CFT77 supports the
representation of Hollerith using the same conventions as the character
type, the compiler must determine which type applies in ambiguous
situations.

A character constant is treated as Hollerith in contexts where a character
constant is illegal and a Hollerith constant is legal. Tables 5-1, 5-2,
5-5, and 5-8 indicate which expressions fall into this category. This
"passive" Hollerith typing (that is, letting the compiler determine that a
constant is Hollerith) causes a non-ANSI warning message to be issued. If
you intend a constant to be Hollerith, it is suggested that you make it
explicit by including an H after the second delimiter; for example 'ABC'H.

5.3 RELATIONAL EXPRESSIONS

A relational expression compares the values of two arithmetic or
character expressions, producing a logical value of true or false. A
relational expression can be assigned to a variable in a logical
assignment statement (see 5.4.1). Relational expressions can appear
within logical expressions. Relational operators are as follows:

Operator

.LT.

.LE.

.EQ.

.NE.

.GE.

.GT.

SR-0018 B

Operation (comparison)

Less than
Less than or equal to
Equal to
Not equal to
Greater than or equal to
Greater than

5-15

Relational operators have no precedence within this group because the use
of more than one operator in the same relational expression is illegal.

Table 5-5 shows which data types can be used together in relational
operations. The result type is logical for all relational operations.

5.3.1 ARITHMETIC RELATIONAL EXPRESSIONS

An arithmetic relational expression is a relational expression whose
operands are arithmetic expressions or arithmetic array expressions. An
arithmetic relational expression is interpreted as the logical value TRUE
if the values of the expressions satisfy the relation specified by the
operator; FALSE if they do not. If at least one of the operands is an
array, an array of logical values is returned.

Examples:

A .LE. B
INDEX .EO. ENDVALU
J(1,6,6)*COS(ALPHA/10.) .GT. Z

In the relational expression x relop y, the result of the expression x-y
must be within the range defined for the data type (see 3.2, 3.3, 3.4, and
3.5). If arithmetic expressions i and r are of different types, the
expression i relop r is evaluated as if it were «i)-(r» relop 0, with
the expression in parentheses evaluated according to the type conventions
for arithmetic expressions, as shown in table 5-3. The additional
parentheses affect round-off and optimization.

Example:

5-16

INTEGER INTG
COMPLEX CMPX
DOUBLE PRECISION DBPR
LOGICAL RELC, RELD
INTG = 2
CMPX = (2.,0.)
DBPR = 2.
RELC = INTG .EO. CMPX
RELD = INTG .EO. DBPR

Tests true
Tests true

The above code causes both logical variables RELC and RELD to be
true. In the assignment of RELC, the relational expression
INTG .EO. CMPX is treated as

(INTG - CMPX) .EO. 0

As shown in table 5-3, the arithmetic expression (INTG - CMPX) is
evaluated after INTG is converted to its complex equivalent; in the
example, this equivalent equals the value assigned to CMPX.

SR-0018 B

However, RELD is false in the following code:

INTG = 2
DBPR = 4.**0.5
RELD = DBPR .EQ. INTG Tests false

Although 4.**0.5 nominally equals 2., it does not compute to exactly
this value, and therefore does not equal the double-precision
equivalent of variable INTG. On the other hand, if DBPR is set to
SQRT(4.), RELD might be true; but program decisions should not be
based on assumptions about exact values of computations. For real
computations, a better approach is to define a range of accuracy. In
the following code, RELD tests true, indicating that DBPR and INTG are
within 10-10 of each other:

EPSILON=I.E-I0
INTG = 2
DBPR = 4.**0.5
RELD = ABS(DBPR-INTG) .LT. EPSILON

5.3.2 CHARACTER RELATIONAL EXPRESSIONS

Tests true

A character relational expression is a relational expression in which
both operands are character expressions. The result is interpreted as the
logical value TRUE if the values of the operands satisfy the relation
specified by the operator; otherwise, the result is interpreted as the
logical value FALSE.

The character expression that comes first in the collating sequence (see
appendix A) is considered to be of lower value. If the operands are of
unequal length, the shorter operand is extended on the right with blanks
to the length of the longer operand.

5.4 LOGICAL EXPRESSIONS

A logical expression specifies a logical operation on logical operands.
Evaluation of a logical expression produces a result of type logical with
a value of either true or false (see 3.6). A logical constant expression
is a logical expression in which each primary is a logical constant, the
symbolic name of a logical constant, a relational expression in which each
primary is a constant expression, or a logical constant expression
enclosed in parentheses. Note that relational expressions also give
logical ~esults and, within parentheses, can appear in logical
expressions. Logical values and expressions are contrasted to Boolean
values and masking expressions in 3.8.

Tables 5-6 and 5-7 show the logical operators and their usage.

SR-0018 B 5-17

Table 5-5. Data Types in Relational Operations:
.EQ.,.NE.,.GT.,.GE.,.LT.,LE.

I R D C B P S

I L L L La LC LC .b

R L L L La LC • .b

D L L L La • • •
C La La La La • • •
B LC LC • • L • .b

p LC • • • • L •
S .b .b • • .b • L

Relational operands cannot be of type logical.

Legend:

L The relational operation is allowed. The
result type is always logical.

• Prohibited

I Integer
B Boolean

R Real
L Logical

D Double-precision
S Character

a Only .EQ. and .NE. are allowed for complex comparisons.

C Complex
P Pointer

b If S is a literal and length (S) i 8 characters, the operation is
performed with S treated as a Hollerith constant; a non-ANSI warning
message is issued. See 5.2.

c The comparison is performed without conversion of either operand.

A complex expression is permitted only when the relational operator is
• EQ. or .NE.

5-18 SR-OOIS B

5.4.1 LOGICAL ASSIGNMENT STATEMENT

The logical assignment statement assigns the value of logical expression Ie
to logical entity Iv.

Iv = Ie

Iv Name of a logical variable, logical array, logical array
section, or logical array element

Ie Logical expression

If Iv is a scalar, Ie must be a scalar. If Iv is an array name or array
section name, the statement is a logical array assignment statement and Ie
must be conformable with Iv. If Ie is a scalar and Iv is an array name or
array section name, the scalar value is assigned to all elements of the
array or array section.

The ANSI Fortran Standard does not provide for array expressions or
array sections.

Examples:

All variable and array element names are assumed to be of type logical
except E and F, which are type real, and I, J, K, and L, which are type
integer.

T = .FALSE.
A = B
C = (A .AND. B) .OR. (C .AND. D)
T = .NOT. T
TRUTAB(I,J,K,L) = .T.
T = E.GE.F .OR. ElF .LT •• 4
T = A .EQV. B

5.4.2 LOGICAL OPERATORS

The logical operators are shown in table 5-6; their use with operands is
shown in table 5-7. The .NOT. or .N. operator produces the logical
complement of its operand.

SR-0018 B 5-19

For logical expressions containing two or more logical operators, the
precedence, as shown in table 5-6, determines the order in which they are
to be combined (unless changed by the use of parentheses).

Example:

A .OR. B .AND. C

In this expression, .AND. has higher precedence than .OR. Therefore
the expression is interpreted as follows:

A .OR. (B .AND. C)

Logical operators can also be written as functions; for example A.AND.B
can be written as AND(A,B). .NOT. is written as COMPL(). See table B-8.

The ANSI Fortran Standard does not provide for the function forms of
logical operators.

Table 5-6. Logical Operators

Operator Operation Precedence

.NOT. or .N. Logical negation Highest

.AND. or .A. Logical conjunction ·
• OR. or .0 . Logical inclusive disjunction ·
• XOR. or .X. or .NEQV . Logical exclusive disjunction · or logical nonequivalence

Lowest
.EQV. Logical equivalence

The ANSI Fortran Standard does not provide for the .XOR. operator or for
.N., .A., .0., or .X. as abbreviations.

5-20 SR-0018 B

Table 5-7. Meanings of Logical Operators

Xl X2 .NOT. X1.AND.X2 X1.0R.X2 X1.XOR.X2 X1.EQV.X2
Xl X1.NEQV.X2

true true false true true false true
true false false true true false
false true true false true true false
false false false false false true

5.4.3 FORM AND INTERPRETATION OF LOGICAL EXPRESSIONS

A logical operand is an entity that can be operated on by a logical
operator. Logical operands can be any of the following:

• Logical primaries

• Logical factors

• Logical terms

• Logical disjuncts

• Logical expressions

A logical primary is a primary in a logical expression. Logical
primaries can be any of the following:

• Logical constants
• Symbolic names of logical constants
• Logical variable or array element references
• Logical function references
• Relational expressions
• Logical expressions enclosed in parentheses
• Logical array references
• Logical array section references

A logical factor consists of a logical primary with or without the
.NOT. operator. The form of a logical factor is:

[.NOT.] logical-primary

A logical term is a sequence of logical factors separated by an .AND.
operator. If a logical term contains two or more .AND. operators, the
logical factors are combined from left to right. The form of a logical
term is:

[logical-term .AND.] logical-factor

SR-0018 B 5-21

A logical disjunct is a sequence of logical terms separated by an .OR.
operator. If a logical disjunct contains two or more .OR. operators, the
logical terms are combined from left to right. The form of a logical
disjunct is:

[logical-disjunct .OR.] logical-term

A logical expression is a sequence of logical disjuncts separated by
.XOR., .EQV., or .NEQV. operators. If a logical expression contains two
or more .XOR., .EQV., and/or .NEOV. operators, the logical disjuncts are
combined from left to right. The forms of a logical expression are:

[logical expression .XOR.] logical disjunct
[logical expression .EOV.] logical disjunct
[logical expression .NEQV.] logical disjunct

These forms allow the logical operator .NOT. to immediately follow any
other logical operator. For example, the following logical term is
permitted:

LOGICALX .AND •. NOT. LOGICALY

5.5 MASKING EXPRESSIONS (CFT77 EXTENSION)

A masking expression is an expression in which a logical operator
operates on individual bits within integer, real, pointer, or Boolean
operands, giving a result of type Boolean. Each operand is treated as a
single storage unit (a 64-bit Cray word), and the result is a single
storage unit. Boolean values and masking expressions are contrasted to
logical values and expressions in 3.8.

The ANSI Fortran Standard does not provide for masking expressions.

Masking operators can also be written as functions; for example A.AND.B
can be written as AND(A,B) •• NOT. is written as COMPL(). See
table B-S. The same table shows other functions that operate on Boolean
values, such as shifting, parity count, and tallying l's or leading O's.

Table 5-S shows which data types can be used together in masking
operations. Letters in the table indicate the result type for each
allowed operation. A masking expression cannot have operands of type
logical, double precision, or complex.

5-22 SR-0018 B

Masking expressions can be combined with expressions of Boolean or other
types by using arithmetic, relational, and logical (masking) operators.
Evaluation of an arithmetic or relational operator processes a masking
expression with no type conversion. Boolean data is never converted to
another type.

A logical (masking) operator processing a masking expression performs the
indicated logical operation separately on each bit. The interpretation
of individual bits in masking factors, terms, and expressions is the same
as for logical expressions (see 5.4). The results of binary 1 and 0
correspond to the logical results TRUE and FALSE, respectively, in each
of 64 bit positions. These values are summarized as follows:

.NOT. 1100
=0011

SR-0018 B

1100
.AND. 1010

1000

1100
.OR. 1010

1110

1100
.XOR. 1010

0110

1100
.EQV. 1010

1001

5-23

Table 5-8. Allowed Logical and Masking Operations and Result Types

I
B

Legend:

y I R B P L S
x

I B B B B • .1

R B B B B • .1

B B B B B • .1

P B B B B • .1

L • • • • L •
S .1 .1 .1 .1 • •

Types complex and double-precision cannot
be used in logical or masking operations.

x,y Operands for a masking or logical expression, using
operands .NOT., .AND., .OR., .XOR., and .EQV.

Entries in table:

B Masking operation with result type Boolean

L Logical operation with result type logical

• Prohibited

Integer R Real D Double-precision C Complex
Boolean L Logical S Character P Pointer

1 If S is a literal and length (S) ~ 8 characters, the operation is
performed with S treated as a Hollerith constant. A non-ANSI warning
message is also issued. See 5.2.

5-24 SR-0018 B

PROGRAM CONTROL

Program control statements are used when two or more alternative
sequences of statements exist and a decision is required, or when a
statement sequence is to be repeated, interrupted, or terminated. The
following statements, described in this section, control an execution
sequence.

• Conditional block statements: IF THEN, ELSEIF, ELSE, ENDIF

• Arithmetic IF

• Logical IF

• DO

• Unconditional GOTO

• Computed GOTO

• Assigned GOTO

• STOP

• PAUSE

• END

6

The ASSIGN and CONTINUE statements, used in conjunction with the above,
are also described in this section.

In addition to the above statements, the following statements can alter
the execution sequence from the order in which they appear in a program.

• CALL (see 2.5.2.2)

• RETURN (see 2.5.3.2)

• An 1/0 statement containing an error specifier or an end-of-file
specifier (described in section 7)

6.1 CONDITIONAL BLOCKS

A conditional block is a group of executable statements delimited by
the following conditional block statements, ~hich control execution of
the blocks:

• Block IF
• ENDIF
• ELSEIF
• ELSE

SR-0018 B 6-1

A conditional block is executed if a certain condition is true; the
condition is specified in an IF or ELSEIF statement as a logical
expression. The statements that define conditional blocks interact as
described below.

The IF level of a statement is the number of block IF statements from
the beginning of the program unit to that statement minus the number of
ENDIF statements from the beginning of the program unit up to but not
including that statement. That is, the IF level is incremented by a block
IF statement and decremented by an ENDIF statement.

Each block IF statement must correspond to a later ENDIF statement at the
same IF level. Between a block IF and its ENDIF is a group of one or more
conditional blocks; in this manual the entire range from an IF through its
ENDIF is called an IF structure. Only one conditional block in an IF
structure can be executed (at the IF level of the structure's IF
statement); this is the first block whose condition is true, or, if none
is true, an ELSE block if present.

Conditional blocks are IF blocks, ELSEIF blocks, or ELSE blocks; a block
begins with a block IF, ELSEIF, or ELSE statement and continues up to an
ENDIF at the same IF level or the beginning of the next block. ELSEIF and
ELSE blocks are optional in an IF structure. Control must not be
transferred to a statement within a block from outside that block. Any
conditional block may be empty.

Figure 6-1 shows the three kinds of blocks both in schematic form and in a
sample of Fortran code. Notice that an IF structure is not equivalent to
an IF block; an IF structure includes the IF and ENDIF statements and can
include other blocks at the same IF level.

An IF block is a group of executable statements that are executed if the
condition specified in the block IF statement is true. The block is
preceded by a block IF statement and ends with (but does not include) the
next conditional block statement (ENDIF, ELSEIF, or ELSE) at the same IF
level.

An ELSEIF block is a group of executable statements that are executed if
the ELSEIF's condition is true, and if no preceding block was executed in
the same IF structure (either the IF block or a previous ELSEIF block at
the same IF level). The block begins with an ELSEIF statement and ends
with (but does not include) the next conditional block statement (ENDIF,
ELSEIF, or ELSE) at the same IF level.

An ELSE block is a group of executable statements that are executed if
no preceding block in the same IF structure (and at the same IF level) was
executed. An ELSE block begins with an ELSE statement and ends with (but
does not include) an ENDIF statement of the same IF level. No other
conditional block state~ent at the same level can appear after the ELSE
statement or before the ENDIF statement.

6-2 SR-0018 B

IF
structure,

level 1

IF structures

IF level ~ 1

IF
struc­
ture,
level

2

(IF level 0)

IF (e1) THEN __________ __

IF (e2) THEN

I

IF
______ block

ELSEIF
• --==IELSEIF block

ELSE
• -===IELSE block

ENDIF
ELSEIF (e3) THEN

ELSEIF
_____________ block

ELSE __________ __

ELSE
___________ block

___________ ENDIF

2

IF(X.GT.1.)THEN
X=SQRT(X)
IF(I.NE.J)THEN

A(I,J)=O.
IF (I 0. GT • J) THEN

3 A(I,J)=1.0 ==1
ENDIF

ENDIF
ELSEIF(X.GT.O.)THEN __

X=O. IELSEIF
A(I,J)=2.0 __ block

ELSE

IF block

IF blocks

CALL ABORT
ENDIF

==IELSE block

Figure 6-1. IF levels and Conditional Blocks in an IF Structure

SR-0018 B 6-3

6.1.1 BLOCK IF STATEMENT

The block IF statement determines, from the value of logical expression
Ie, whether to execute the group of statements up to the next
conditional block statement at the same IF level: ENDIF, ELSEIF, or
ELSE. The block IF statement must always have a corresponding ENDIF
statement of the same IF level.

IF (Ie) THEN

Ie Logical expression (see 5.4)

If a block IF statement appears within the range of a DO loop, the entire
block must appear within that range.

Transfer of control into an IF block from outside the IF block is
prohibited.

6.1.2 ENDIF STATEMENT

The ENDIF statement indicates the end of an IF level and must always
correspond to an earlier block IF statement of the same IF level. The
ENDIF statement consists of the word ENDIF alone.

6.1.3 ELSEIF STATEMENT

The ELSEIF statement is executed if no preceding block has been executed
(at the same IF level and in the same IF structure). The ELSEIF statement
determines, from the value of logical expression Ie, whether to execute
the group of statements up to the next conditional block statement at the
same IF level: ENDIF, ELSEIF, or ELSE.

ELSEIF (Ie) THEN

Ie Logical expression (see 5.4)

Transfer of control into an ELSEIF block from outside the ELSEIF block is
prohibited. Statement labels on ELSEIF statements cannot be referenced.

6-4 SR-0018 B

6.1.4 ELSE STATEMENT

The ELSE statement is executed if no previous block has been executed (at
the same IF level and in the same IF structure). If it is executed, its
ELSE block is executed (the group of statements up to the next ENDIF at
the same IF level). The statement consists of the word ELSE alone; any
statement label on an ELSE statement cannot be referenced.

6.2 OTHER IF STATEMENTS

Fortran includes two other conditional statements besides those for
conditional blocks. The logical IF can replace an IF block of only one
statement; the arithmetic IF transfers control based on the value of an
expression. See E.S concerning outmoded kinds of IF statements.

6.2.1 LOGICAL IF STATEMENT

The logical IF statement determines, from the value of logical expression
Ie, whether to execute the statement following Ie. If the value of
Ie is false, the statement is not executed and the execution sequence
proceeds as though a CONTINUE statement were executed.

IF (Ie) st

Ie Logical expression (see 5.4). A function reference in Ie
might affect related entities in the statement st.

st Any executable statement other than DO, END, block IF,
ELSEIF, ELSE, ENDIF, or another logical IF statement.

Examples:

IF (X.GT.O) X=A
IF(K) K=.NOT.K
IF (A.EQ.B) GOTO 100

SR-0018 B 6-5

6.2.2 ARITHMETIC IF STATEMENT

The arithmetic IF statement transfers control to one of three statements,
depending on the value of a specified expression.

e Integer, real, or double-precision expression. If the
expression's value is less than 0, control transfers to the
statement identified by sl: if 0, statement s2:
greater than 0, statement s3.

sl,S2' and s3
Statement labels of executable statements that appear in the
same program unit as the arithmetic IF statement. The same
statement label can appear more than once in this statement.

Examples:

IF (VTEST) 20,21,20

IF (B**2-4*A*C) 70,80,90

6.3 DO LOOPS

A DO loop consists of a DO statement and a set of statements to be
executed repeatedly. The range of a DO loop consists of all executable
statements from the first executable statement following the DO statement
and ending with the terminal statement of the DO loop.

The number of times a DO loop is to be repeated is the trip count, which
is initially determined from expressions in the DO statement, and
decremented for each iteration of the loop. The DO variable is set to
an initial value and incremented or decremented by the increment value
until its value reaches or exceeds the limit value. -e j on the cft77
command or ON=J in the CFT77 control statement causes at least one
execution of any DO loop whose DO statement is reached.

6-6 SR-0018 B

Example:

DO 20 I=1,10
ARR(I) = SQRT(100.*I)

20 CONTINUE

I is the loop's DO variable
This statement is in the loop's range
Terminal statement

In the DO statement above, I is the DO variable; the DO variable's
initial value is 1; its limit value is 10; and its increment value is
the default of 1. The resulting trip count is 10. Notice that the DO
variable I is used within the loop.

A DO loop can appear within another DO loop and must be entirely contained
within the outer DO loop range. More than one DO loop can have the same
terminal statement, but separate terminal statements improve programming
clarity.

A DO loop can appear within a conditional block but must be entirely
contained within that block. If a block-IF statement appears within the
range of a DO loop, the corresponding ENDIF statement must appear within
the same DO loop.

A DO loop is either active or inactive. A DO loop is initially inactive
and becomes active only when its DO statement is executed. Control must
not transfer into the range of an inactive DO loop. An active DO loop
becomes inactive under any of the following conditions.

• Its trip count is tested and determined to be zero.

• A RETURN statement is executed within the DO loop.

• A STOP statement is executed, or program execution is terminated in
any other way.

• Control is transferred outside the DO loop within the same program
unit.

When a DO loop becomes inactive, the DO variable is unaffected: it retains
its last defined value or remains undefined.

SR-0018 B 6-7

I

6.3.1 DO STATEMENT

A DO statement specifies necessary information to control the repeated
execution of a set of statements.

DO label [,] dvar = init,lim[,incr]

label

dvar

Statement label of the loop's terminal statement, which
must be executable

Name of the DO variable; must be a simple variable of type
integer, real, double-precision, or pointer. dvar is
initially defined with init and is incremented by incr
on each iteration of the loop. Within the range of a loop,
dvar can be used but cannot be redefined, including by a
nested DO statement.

init, lim, and incr
Initial value, limit, and increment of the DO variable; must
be integer, real, or double-precision expressions. If
necessary, types are converted to the type of the DO
variable, according to the rules for arithmetic conversion.
incr defaults to 1 and cannot equal O.

init, lim, and incr can be redefined with no effect on loop control
processing. -e J ~n the cft77 command or ON=J in the CFT77 control
statement causes at least one execution of each DO loop.

The initial trip count is established as the integer portion of the
following expression, or as zero if either condition shown in the next
paragraph is true. (incr cannot equal 0.)

(lim-init+incr) / incr

The initial trip count must be less than 232 _1 on the CRAY-2 computer
system and less than 224_1 on other Cray systems.

Execution of the loop ends when the trip count is zero, which occurs when
either of the following conditions is true:

• init > lim and incr > 0

• init < lim and incr < 0

If either of the above conditions is true initially, the loop is not
executed and a message is issued; see example 2 in 6.3.3.

6-8 SR-0018 B

6.3.2 TERMINAL STATEMENT AND CONTINUE STATEMENT

The terminal statement is an executable statement that ends the DO loop.
The statement can be executed in the normal sequence, or control can be
transferred to it. The statement must not be a block IF, ELSEIF, ENDIF,
arithmetic IF, unconditional GOTO, assigned GOTO, RETURN, STOP, END, or
another DO statement. It can be a logical IF statement.

The CONTINUE statement is commonly used as a terminal statement; it has no
effect. As with any terminal statement, the next statement executed
depends only on the result of DO loop processing.

Examples:

1)

2)

3)

DIMENSION ARRAY(16)

DO 10,1=1,16
IF(ARRAY(I).NE.O) ARRAY(I)=1.0/ARRAY(I)

10 CONTINUE

The ,above loop replaces nonzero elements of ARRAY with their
reciprocals. The initial trip count is (16-1+1)/1 or 16, the number
of elements in the array.

DIMENSION TABLE(50)

DO 10 1=1,49
IF(TABLE(I).LE.O) THEN

TABLE(I)=-TABLE(I)
ELSE

TABLE(I)=-TABLE(I+1)
ENDIF

10 CONTINUE

9

The above loop uses an IF block to determine the effect of each
iteration.

INTEGER A(10,9)
DO 10 1=1,10

DO 9 J=1,9
A(I,J)=I*J

CONTINUE

!Nested loop

10 CONTINUE

The above example shows a loop nested within another loop, which is
used for a two-dimensional array.

SR-0018 B 6-9

6.3.3 LOOP CONTROL AND INCREMENTATION PROCESSING

Loop control processing determines if further execution of a DO loop is
required. If the trip count is not 0, control transfers to the first
statement in the range of the DO loop. If the trip count is 0, the loop
becomes inactive, and control is transferred to the first executable
statement after the terminal statement (provided that other DO loops
sharing the same terminal statement are also inactive; otherwise execution
resumes with incrementation processing, but without execution of the
terminal statement). After the terminal statement executes,
incrementation processing occurs unless the terminal statement results in
a transfer of control.

Incrementation processing consists of the following sequence.

1. The value of the DO variable is incremented by the value of incr.

2. The trip count is decremented by 1.

3. Execution continues with loop control processing of the same DO
loop whose trip count was decremented.

A DO variable can increase or decrease in value during incrementation
processing.

Examples:

1) For discussion only; NOT RECOMMENDED

M=O
DO 10 I=I,10

J=I
DO 10 K=1,5

L=K
10 M=M+l !Combined terminal stmt to show processing

6-10

After the last execution of the final statement above, I=ll, J=10,
K=6, L=5, and M=50.

SR-OOI8 B

2) For discussion only; NOT RECOMMENDED

N=O
DO 20 1=1,10

J=I
DO 20 K=5,1

L=K
!Specification prevents loop execution

20 N=N+1
CONTINUE

!Combined terminal stmt to show processing

The nested loop above does not execute because of the specification
K=5,1. (A specification like this causes a message to be issued.)
Because the nested loop's trip count is always 0, statement 20 is
never executed, but merely activates incrementation processing for the
outer loop. Therefore, at execution of the CONTINUE statement, 1=11,
J=10, K=5, and N=O. L is not defined by these statements because it
is in the nested loop.

6.4 GOTO AND ASSIGN STATEMENTS

GOTO statements specify other statements within the same program unit to
which control is transferred.

6.4.1 UNCONDITIONAL GOTO STATEMENT

The unconditional GOTO statement transfers control to the statement
identified by the statement label.

GOTO s

s

Examples:

Statement label of an executable statement in the same
program unit.

GO TO 845
GOTO 910

SR-0018 B 6-11

6.4.2 COMPUTED GOTO STATEMENT

The computed GOTO statement transfers control to the statement identified
by the ith statement label in a list, when i is the value of integer
expression e. If i is less than 1 or more than the number of statement
labels, the execution sequence proceeds as if the GOTO were a CONTINUE
statement.

s

e

GOTO (s [, s] • • •) [,] e

Statement label of an executable statement that appears in
the same program unit as the computed GOTO statement. A
given statement label can appear more than once in a
computed GaTO statement.

Integer expression

Examples:

GOTO (0031,59,728)IX
GaTO (0031,59,728)MSIZE/2
GaTO (6,3,6,6,7,2,7),NBRANCH

6.4.3 ASSIGNED GOTO STATEMENT

The assigned GaTO statement transfers control to the statement identified
by variable i. i is defined with a statement label by an ASSIGN statement
in the same program unit (see 6.4.4). The label must be for an executable
statement and i must be defined when the assigned GaTO is executed. The
statement following the assigned GaTO must have a label; otherwise, it
cannot be transferred to or executed.

i

s

6-12

GaTO i [[,] (s [, s] • • •)]

Integer variable name, assigned by previous ASSIGN statement.

Statement label of an executable statement in the same
program unit. A given statement label can appear more than
once in this statement. CFT77 does not restrict i to
values shown in this list.

SR-0018 B

The ANSI Fortran Standard specifies that if the optional list is present,
i must have been assigned a statement label from the list.

Examples:

(1) ASSIGN 76 TO LAB

GOTO LAB

(2) ASSIGN 999 TO KFIN

GOTO KFIN (997,997,999)

(3) ASSIGN 1 TO JAIL

GOTO JAIL,(1,2,3,4,5)

6.4.4 ASSIGN STATEMENT

An ASSIGN statement assigns a statement label to an integer variable and
is the only way to define a variable with a statement label. See examples
immediately preceding.

ASSIGN s TO i

s

i

Statement label for an executable statement or a FORMAT
statement in the same program unit as the ASSIGN statement.

Integer variable name

A variable defined with the label of an executable statement should be
referenced only in an assigned GO TO statement or as a format identifier
in an IIO statement, and only in the same program unit. While so defined,
the variable should not be referenced for any other purpose; if it is
referenced, the results are unpredictable.

SR-0018 B 6-13

A variable representing a statement label should be defined only by the
ASSIGN statement. Any code like the following is bad practice:

ASSIGN 10 TO I
ASSIGN 20 TO J
I=J Not recommended

6.5 SUSPENDING AND HALTING EXECUTION

The remaining control statements are used to show the end of code, or to
suspend or terminate execution.

6.5.1 STOP STATEMENT

A STOP statement terminates execution of a main program or procedure
subprogram. A program unit can have more than one STOP statement, which
can appear anywhere that an executable statement can appear. That is,
STOP ends execution, whereas END is the last source statement of a program
unit.

id

STOP rid]

Identifier of the STOP statement for use in messages; has no
effect on the executable program. id can be an unsigned
integer constant of up to 8 digits, a character constant of
up to 8 characters, or the name of a character variable,
array element, or function containing or providing 8
characters.

The ANSI Fortran Standard limits noncharacter id to 5 digits, sets
no limit on the length of character constants, and does not permit id
to be the name of a character variable, an array element, or a function.
The Standard does not specify a use for the identifier.

6-14 SR-0018 B

6.5.2 END STATEMENT

The last source statement in each program unit must be an END statement.
In a subprogram it has the effect of a RETURN statement; in a main program
it has the effect of a STOP statement. A single END statement can appear
in the same program unit with one or more STOP statements and one or more
RETURN statements.

If an initial line contains only the characters END in that order, the
line cannot have a continuation line. This form of initial line is a
terminal line. Example:

Legal: END=1.2 (but not an END statement)

Illegal: END
+ =1.2

Embedded comments can be included on an END statement when preceded by an
exclamation point.

6.5.3 PAUSE STATEMENT

A PAUSE statement suspends or terminates a main program or procedure
subprogram. An installation parameter determines whether execution can be
resumed or is unconditionally terminated.

PAUSE [id]

id Identifier of the PAUSE statement for use in messages; has
no effect on the executable program. id can be an unsigned
integer constant of up to 8 digits, a character constant of
up to 8 characters, or the name of a character variable,
array element, or function containing or providing 8
characters.

The ANSI Fortran Standard does not provide for the option of resuming or
terminating execution.

The ANSI Fortran Standard limits noncharacter id to 5 digits, sets
no limit on the length of character constants, and does not permit id
to be the name of a character variable, array element, or function.

SR-0018 B 6-15

I

1/0: OVERVIEW, TERMS, STATEMENTS

7.1 IIO TUTORIAL

This subsection is not reference material but is intended to show how
typical input and output are performed. Input statements transfer data
from a file to program memory. This process is called reading. Output
statements transfer data from program memory to a file. This process is
called writing. The CFT77 statements for IIO operations are summarized
in table 7-1.

7

Each IIO statement must specify the file to be read or written, the format
of the data, and the items to be transferred. Both the file and format
can be specified by asterisks, which indicate defaults and allow the
simplest coding. Example:

REAL ARR(10)
READ (*,*) I, R, ARR
WRITE (*,*) I, R, ARR

In the above READ and WRITE statements, the first asterisk indicates a
default file to be used for the data transfer. The second asterisk
indicates the default method of formatting, called list-directed.
These statements transfer the values of variables I and R and array
ARR.

Under UNICOS, the default files are stdin and stdout, which are linked
to your terminal. Under COS the default datasets are $IN and $OUT, which
are typically used for transfers with your front-end computer, allowing.
data to be transferred in with your source code and out with output
listings. Default files are discussed in 7.5.1.

7.1.1 USING NONDEFAULT FILES

To read or write a nondefault file in standard Fortran, you should first
open it with an OPEN statement. This statement assigns the file a unit
number, which you choose (in the range 1-4 or 7-99). After the file is
opened, lID statements identify it only by this number. A CRAY X-MP
extension also allows using the file's name instead of a number, without
any need to open the file.

Most aspects of file management are handled by the operating system; for
example, transferring a file to or from the front end, or (under COS)
saving a file so that it is not deleted. The following examples show the

SR-0018 B 7-1

I

Fortran and operating system actions that are taken for typical needs.
For more about units, see 7.5; OPEN statement, 7.8; file names, 7.3.2.

7.1.1.1 Using a data file from the front end

To use a front-end file, such as DATAFL, as input to your program, do the
following. (The READ and WRITE statements shown use the asterisk format,
assuming the file is suitable for list-directed reading.)

• In the Fortran code, do either of the following.

•

Standard Fortran: Choosing unit 4 for the file, insert
OPEN(4,FILE='DATAFL',STATUS='OLD') in the program. You can
then read the values of variables R and I with READ(4,*)R,I •

Using the CRAY X-MP extension allowing direct use of a file
name: You can read the values of variables R and I from
DATAFL with READ('DATAFL',*)R,I. The first such use of the
file name opens the file; no OPEN statement is needed.

Operating system actions: To transfer DATAFL from the front end to
a Cray system, do one of the following.

Under UNICOS, use the fetch command if you have a station,
or, with TCP/IP, use rcp or the get command under ftp.

Under COS, insert in the JCL file, before commands for
executing the CFT77 program, the command FETCH,DN=DATAFL.

7.1.1.2 Creating a file to be transferred to the front end

The following actions do the following: create Fortran file paFILE, write
to the file using list-directed 1/0, and transfer it to a front-end
computer.

7-2

• In the Fortran code, do either of the following.

Standard Fortran: Choosing unit 7 for the file, insert
OPEN(7,FILE='PRFILE',STATUS='NEW') in the program. You can
then write variables R and I to PRFILE with WRITE(7,*)R,I.

On the CRAY X-MP system, you can write variables R and I to
PRFILE with WRITE('PRFILE',*)R,I. The first such use of the
file name opens the file; no OPEN statement is needed.

SR-0018 B

I

• Operating system actions: To transfer PRFILE to a front-end
computer, such as for printing, do one of the following.

Under UNICOS, use the dispose command if you have a station,
or, with TCP/IP, use rep or the put command under ftp.

Under COS, insert in the JCL file, after commands for
executing the CFT77 program, the command DISPOSE,DN=PRFILE.
See 7.7.4 concerning printing.

7.1.1.3 Creating a file for further processing

If you wish a program, PGMl, to create a UNICOS file or COS dataset so
that another program, PGM2, can use it as input, do the following (for
Fortran file KEEPER). The read and write operations shown use
unformatted I/O, discussed in 7.1.2.1, fOllowing.

• In the Fortran code, do either of the following.

Standard Fortran: You must open KEEPER in both programs.
Choosing unit 8, insert OPEN(8,FILE='KEEPER',STATUS='NEW') in
PGM1. Use OPEN(8,FILE='KEEPER',STATUS='OLD') in PGM2. PGMl
can write the values of variables R and I to file KEEPER with
WRITE(8)R,I ; PGM2 can read them with READ(8)R,I.

On the CRAY X-MP system: PGM1 can write variables R and I to
KEEPER with WRITE('KEEPER')R,I; PGM2 can read them with
READ('KEEPER')R,I. No OPEN statements are needed.

• Operating system actions:

UNICOS automatically creates a permanent file from a Fortran
file; you do not need to take further action.

Under COS, if PGMl and PGM2 are different jobs, you need to
add commands to the jobs' JCL files, in order to save file
KEEPER as written by PGM1, and to let PGM2 access it.
Following the JCL commands for executing PGM1, insert
SAVE,DN=KEEPER. Preceding the JCL commands for executing
PGM2, insert ACCESS,DN=KEEPER. These additions are not needed
if PGM1 and PGM2 are in the same job.

7.1.2 THE THREE KINDS OF STANDARD I/O

Standard Fortran can transfer data between a program and another entity in
three ways: unformatted I/O, list-directed I/O, and formatted I/O. Cray
Research provides additional forms of I/O; see section 9 and the
Programmer's Library Reference Manual, publication SR-Ol13.

SR-0018 B 7-3

7.1.2.1 Unformatted I/O

Unformatted I/O (see 8.1) does not convert data from its internal (binary)
representation and is not suitable for printing or for use by other
vendors' computers. Unformatted I/O is fast and retains the full
precision of any numbers used by a program; it is appropriate when a file
is needed primarily to be read by another program, as shown in the
previous paragraph, Creating a file for further processing. Example of
unformatted I/O:

First program:

WRITE (9) ARR1,ARR2 To unit 9, no format specified

Second program:

READ (9) ARR1,ARR2 ! Reads same info as above

The above statements transfer arrays ARRI and ARR2. The unit number
(9) is the shortest form of a control information list (see 7.7.1);
if this does not include a format specifier, the transfer is
unformatted.

7.1.2.2 List-directed I/O

List-directed I/O (see 8.2) reads or writes data in the form of ASCII
characters, and is the default format where formatting is used (indicated
by an asterisk for a format specifier). A list-directed file can be
transferred to other vendors' systems and can be printed. Each data item
is written or read in a manner appropriate to its data type, at full
precision. In printed output, items are separated by commas unless a
character string is included.

In the following example, the WRITE and PRINT statements give equivalent
results, except that they specify different ,destinations.

7-4

WRITE (7,*) A,B,C,' Best:' ,BST
WRITE (*,*) A,B,C,' Best:' ,BST
PRINT *, A,B,C,' Best: ',BST
WRITE ('RESULTS',*) A,B,C,' Best: ',BST

To unit 7
1st * is default unit
To the default unit
To file RESULTS

In the second WRITE statement above, the first asterisk indicates the
default unit. All other asterisks are format specifiers, indicating
list-directed I/O. The PRINT statement is like WRITE but only uses
the default unit. The last WRITE does not require a preceding OPEN
statement (CRAY X-MP extension). All four statements above would give
the following result:

3.316624790355, 2.236067977, 4. Best: 4.

SR-0018 B

7.1.2.3 Formatted IIO

Formatted IIO (see 8.3), like list-directed IIO, writes and reads data in
the form of ASCII characters, but specifies the format of the data.
Formatted output can be printed or ported across different computers and
operating systems, but this is the slowest kind of I/O. The format is
specified as a list of format descriptors (see 8.4) enclosed in
parentheses. A format can be used by a READ, WRITE, or PRINT statement
entered as either the number of a FORMAT statement (see 8.3), or as a
character expression (such as a literal string enclosed in single quotes;
see examples 2 and 3 following). In the following example, the WRITE and
PRINT statements give equivalent results, except that they specify
different destinations.

WRITE (*,15) PEOPLE,ALTlTUDE,FUEL
PRINT 15, PEOPLE, ALTITUDE, FUEL
WRITE (8,15) PEOPLE, ALTITUDE, FUEL
WRITE ('AIR',15) PEOPLE,ALTlTUDE,FUEL

15 FORMAT (' Number of passengers:
& 'Altitude:',13X,I5,' feet'l

',I21

& 'Remaining fuel:',6X,F6.1,' gallons')

To default unit, format 15
To default unit, format 15
To unit 8, format 15
To file AIR; non-ANSI

Format 15 above uses the I and F descriptors for integer and real
values (see 8.4.8.3, 8.4.8.4), X for skipping spaces (8.4.3.2), and I
for starting a new line or record (8.4.4). All four statements shown
above would give the following result:

Number of passengers: 8
Altitude: 12371 feet
Remaining fuel: 29.4 gallons

SR-0018 B 7-5

7.1.3 EXAMPLES OF FORMATTED IIO

The following examples are intended to show aspects of IIO coding but do
not represent the fastest kind of I/O. See 7.1.4.

(1) Formatting an array. This example shows the use of an implied-DO
list (see 7.7.2.3) and a format repeat specifier (see B.3). These
allow you to control the formatting of each array element in an ASCII
file, to allow a particular presentation of data. (Because implied-DO
lists hurt IIO performance, use them only to specify either a subset
of an array or an element order that differs from the array's storage
sequence.)

OPEN(B,FILE='KEEPFL',STATUS='NEW')
REAL ARRAY1(10)
WRITE(B,50) (ARRAY1(L),L=3,7) Only elements 3 to 7 are printed

50 FORMAT(5(3X,F5.2» Insert spaces between elements

The above implied-DO list specifies elements 3 through 7 of array
ARRAY1; the number of elements, 5, agrees with the repeat specifier in
format 50. A READ statement would be coded the same way, except that
the OPEN statement would show STATUS='OLD'. For a write operation,
format 50 could also use the string' 'in place of 3X, but a read
operation cannot include a literal string.

In a read operation from an ASCII file, an array is read into a
Fortran program as a group of numeric values, not as characters; that
is, the write process is completely reversed, except that the data
might have fewer digits of precision than it had in the program that
originally wrote the file.

(2) Shorthand for example 1

7-6

WRITE ('KEEPFL','(5(3X,F5.2»') (ARRAY1(L),L=3,7)
--,--- ------T-----

Replaces OPEN statement Replaces FORMAT statement

For many purposes, the above statement is equivalent to the statements
shown in example 1. If a format is needed by only one transfer
statement, it can be put directly in the statement as a character
constant in single quotes (apostrophes). Similarly, the file name can
be used instead of a number (CRAY X-MP extension).

SR-001B B

(3) Formatting a two-dimensional array. To see how a two-dimensional
array is formatted, consider an array that is defined as follows:

INTEGER IARR(3,4)
DO 10, J=1,3

DO 20, K=1,4
IARR(J,K)=10*J+K

20 CONTINUE
10 CONTINUE

Element values echo subscript values

When an array name appears in a WRITE statement without subscripts and
with no implied-DO list, the array's elements are printed in the order
of their storage sequence, as shown in figure 4-2. Specified in this
way, array IARR could be formatted as follows:

WRITE(*,90) IARR
90 FORMAT (/4(25X,3(I2,2X)/»

The above repeat specifiers 4 and 3 correspond to the dimensions of
the array. Each I symbol starts a new line, and nx causes n
spaces to be skipped. The resulting print-out is as follows:

11 21 31
12 22 32
13 23 33
14 24 34

Notice that the above arrangement of elements is reversed from the
conventional arrangement of rows and columns used in mathematics. For
example, element IARR(2,1) is the second element of the first row. To
print an array according to mathematical convention, a WRITE statement
needs a nested implied-DO list (which decreases 1/0 speed). The write
operation is then coded as follows:

WRITE(*,91) «IARR(J,K),K=1,4),J=1,3)
91 FORMAT (/3(25X,4(I2,2X)/»

To agree with the element order specified by the implied-DO list, the
above repeat specifiers 3 and 4 are reversed from their positions in
the previous format. The resulting print-out is as follows:

SR-0018 B

11 12 13 14
21 22 23 24
31 32 33 34

7-7

7.1.4 INCREASING I/O PERFORMANCE

You can speed up I/O operations by minimizing the amount of processing
required. Following are some basic ways to accomplish this:

• Unformatted I/O is considerably faster than formatted I/O (by a
factor of 130 for transferring a 1000-element array).

• Naming a whole array with no implied-DO list is faster than using
an implied-DO (by a factor of 4 for a 1000-element array).

• BUFFER IN and BUFFER OUT (see 9.1) increase performance by allowing
other processing to occur during a transfer. These statements can
be further speeded up by the use of the pure data/unblocked file
structure (see 9.2.1 and 7.3.1).

More advanced methods of I/O are introduced in 9.2.

7-8 SR-0018 B

Statement

READ

WRITE

PRINT

FORMAT

OPEN

CLOSE

INQUIRE

BACKSPACE

ENDFILE

REWIND

NAMELISTt

BUFFER INt

BUFFER OUTt

Table 7-1. CFT77 Input/Output Statements

Description and Subsection Reference

Transfers data from a file to the program (7.7)

Writes to a file using a control information list (7.7)

Writes to default output, specifying only a format (7.7)

Formats data transferred between program and file (8.3)

Initializes a file for I/O operations (7.8)

Returns a file to the operating system (7.9)

Returns information about a file's properties (7.10)

Repositions file before the preceding record (7.11.1.2)

Writes end-of-file at file's current position (7.11.1.2)

Repositions file to the beginning of data (7.11.2.3)

Enables data transfer between the program and a file
containing lists of variables with assigned values (9.3)

Initiates transfer of data from a file to the program;
allows concurrent execution of later statements (9.1)

Initiates transfer of data from the program to a file;
allows concurrent execution of later statements (9.1)

t CFT77 extension

SR-0018 B 7-9

I

7.2 INPUT/OUTPUT RECORDS

A record is the smallest entity that can be read or written by a Fortran
I/O statement. A record is a sequence of values or characters, typically
a line. For printed output, each print line is a record. A record mayor
may not correspond to a physical entity.

Records can be of the following types:

• A formatted record consists of a sequence of characters. Its
length, measured in characters or 8-bit bytes, depends primarily on
the number of characters transferred when the record is written.
The length also depends on characteristics of the peripheral device
(for example, a printer or terminal) serving as the origin or
ultimate destination of the data. Formatted records can be read or
written by formatted I/O statements, or prepared by means other
than Fortran.

Unformatted and buffered I/O statements can also read and write
formatted records, but in a manner ignoring their formatted
characteristics. Because of record blocking, reading formatted
records with unformatted I/O statements may not be practical. The
structure of COS blocked records is described in the COS Reference
Manual, publication SR-0011.

• An unformatted record consists of a sequence of character and/or
noncharacter data. The length of an unformatted record is measured
in storage units (words) unless the record contains character data
items. In that case, each character entity of length len takes
«len-1)/8)+1 words. Unformatted records can be read or written
by unformatted and buffered I/O statements. Unformatted records
cannot be read or written with formatted I/O.

• An end-of-file (endfile) record occurs as the last record of a
blocked file. An endfile record can be written at the end of a
file by an ENDFILE statement (see 7.11.2.2).

• An end-of-data (EOD) record occurs as the last record of a UNICOS
blocked file or COS dataset. It cannot be explicitly written by
any Fortran statement except a CLOSE statement (see 7.9). In COS,
the utility function EODW can be called from a CFT77 program to
write an EOD, record.

The ANSI Fortran Standard does not provide for end-of-data records.

7-10 SR-0018 B

7.3 INPUT/OUTPUT FILES AND DATASETS

A file is a sequence of records. A CFT77 data file can contain formatted
records, unformatted records, or (only under COS) a combination of both.

I/O statements perform operations on Fortran files. A Fortran file can be
either internal or external:

• An internal file (see 7.4) is internal to the program and ceases
to exist when the program terminates. Internal files are not
associated with operating system files •

• An external file is a file that is associated with a UNICOS file
or COS dataset. UNICOS automatically makes a file permanent after
it is created by a Fortran program, but COS requires a SAVE command
in the program's JCL file to make the file permanent. (Note: a
scratch file is considered external but is not associated with a
UNICOS file or COS dataset.) To create Fortran files and assign
unit numbers, do the following:

Standard Fortran: An external file has a unit number (see
7.5). The OPEN statement (see 7.8) can create a file and
associate it with a unit number, or the file can already exist
and be preassociated with a unit.

CRAY X-MP extension: An external file that does not already
exist is created when its name (within single quotes) is used
in place of a unit number in a data transfer statement. The
file can be accessed in the same way in subsequent transfer
statements but has no unit number.

See 7.9 concerning explicit and implicit closing of files.

The ANSI Fortran Standard does not provide for the mixing of formatted
and unformatted records in a file.

SR-0018 B 7-11

I

7.3.1 FILE STRUCTURES

CFT77 uses file structures with the following characteristics:

• The blocked file structure is used for UNICOS sequential
unformatted I/O and for all COS I/O except as noted in the
following paragraph concerning the unblocked structure.

Each block (512 words) begins with a block control word (BCW), and
each record is terminated by an end-of-record word (EOR). EOR is
one kind of record control word (RCW); the others are end-of-file
(EOF) and end-of-data (EOD). A file ends with the following
records, in this order: EOR; an empty record called an endfile;
EOF; EOD. Each record begins on a word boundary.

• The UNICOS text file structure consists of 8-bit ASCII
characters; each record is terminated by a \n character. This
file structure is used for all UNICOS formatted I/O, either
sequential or direct access.

• The UNICOS pure data file structure and COS unblocked file
structure have no record boundaries. You can get faster
performance with this file structure, but you must know the data
length for each read operation. This structure can be used in the
following ways:

Unformatted direct access I/O: system- and library-buffered,
synchronous, with buffer size control. Each item in the
iolist must be an array name without subscripts, for an
array whose dimension sizes are multiples of 512.

BUFFER IN/BUFFER OUT (see 9.1) with pure-data or unblocked
structure is asynchronous and only system-buffered. The
LENGTH function will not work.

Random I/O (see 9.2) generally uses this structure. Some
subroutines add their own structure.

The pure-data/unblocked structure must be specified to th~
operating system, as shown in subsection 9.2.1.

The structure of blocked files and datasets is further described under
BLOCKED in the UNICOS File Formats and Special Files Reference Manual,
publication SR-2014, and in the COS Reference Manual, publication SR-0011.

UNICOS does not have datasets or any other mUltiple file entity. To use
more than one file, a program must separately associate each file with a
unit number, in an OPEN statement or by other means (see 7.8 and 7.8.1).

7-12 SR-0018 B

7.3.2 FILE IDENTIFIER

A file identifier specifies a file. It can be one of the following:

• A character
appear with
statement.
(including
path name.

expression is the name of an external file, and can
the FILE= specifier in an OPEN, CLOSE, or INQUIRE
UNICOS allows 14 characters for any file name

a directory name) and 128 characters for the complete
COS allows 7 characters for a dataset name. If the

expression is a literal name, it is enclosed in single quotes
(apostrophes). Examples:

OPEN (UNIT=8, FILE='BEAUTY')
OPEN (UNIT=9, FILE=FILENM)
OPEN (UNIT=10, FILE=FNAMEIIFNUM)

FILENM above is a character variable whose value is the file name.
The character expression FNAMEIIFNUM is evaluated, and its result
is the file name.

• A character constant of up to seven characters (enclosed in single
quotes) is the name of an external file, and can appear in place of
a unit number in a READ, WRITE, BACKSPACE, ENDFILE, or REWIND
statement (CRAY X-MP extension; see 7.7.1). Example:

READ ('INFILE',100) A
WRITE ('QUTFILE',200) A

• The name of an internal file can appear in a READ, WRITE, or PRINT
statement. It is the name of a character variable or other
character entity (which is not enclosed in single quote~). See
7.4. Example:

WRITE (FILTER,300) ARRAYM

• An integer variable or array element containing Hollerith data
constitutes an external file name that can be used in the same
contexts allowed for a character expression, with the same size
limits.

The ANSI Fortran Standard does not provide for file identifiers to be
used in place of unit identifiers.

SR-0018 B 7-13

7.3.3 COS DATASET

Under COS, a dataset is a sequence of files identified by a single name
and having the same unit number. Whether a file's unit number is
preassociated or assigned by the OPEN statement, all files in the same
dataset have the same unit number. The use of datasets and related JCL
commands are discussed in 1.3 and, in section 7, under the heading Using
Nondefault files. Datasets are further described in the COS Reference
Manual, publication SR-0011.

The ANSI Fortran Standard does not provide for datasets or other
multiple-file entities.

7.3.3.1 Example: writing two files

The following program, executing under COS, writes two files within a
dataset. It creates a CFT77 file named CIRCLES; reads an input file
containing values for the diameters of circles; and writes (to file
CIRCLES) the diameters, an end-of-file mark, and the circumferences.

PROGRAM TWOWRITE
PARAMETER(PI=3.14)
DIMENSION CIRCUM(10)
OPEN(UNIT=l,FILE='CIRCLES',STATUS='NEW')
DO 5 I=1,10

READ(*,*,END=10) DIAM
WRITE(l,*) DIAM
CIRCUM(I)=DIAM * PI

5 CONTINUE
10 ENDFILE 1

WRITE(1,*)(CIRCUM(J),J=1,I-1)
CLOSE(l)

IEOF
6.15
72.54
18.42
IEOF

END

Read diameter from input file
Write diameter to file CIRCLES

At end of read, write EOF marker
Implied-DO writes to file CIRCLES

CFT77 associates file CIRCLES with a COS dataset of the same name.
Although CIRCLES is treated as one file by the above WRITE statements, at
program termination it is (in COS terms) a dataset containing two files:
one containing the diameters and the other containing the circumferences.
The division is established by the ENDFILE statement.

Defaults can be used in the preceding example: if the OPEN statement is
omitted and the WRITE statements use * as the unit identifier, the data is
written to dataset SOUTo

7-14 SR-0018 B

7.3.3.2 Example: reading two files

Files within datasets do not have individual identifiers but are accessed
sequentially with the READ statement (see 7.7), using its END parameter to
detect file boundaries within the dataset. The following program reads
and prints the two files that were written in the previous example.

PROGRAM TWOREADS
REAL CIRCUM(10),DIAM(10)
OPEN(UNIT=I,FILE='CIRCLES',STATUS='OLD')
READ(I,*,END=10) (DIAM(I)/I=1,10)

10 READ(I,*,END=30) (CIRCUM(J),J=I,10)
30 PRINT*,('DIAMETER = ',DIAM(K),'CIRCUMFERENCE = ',CIRCUM(K),K=I,10)

END

The second READ statement above reads the second file in dataset CIRCLES
because the first READ statement executes until the first end-of-file
marker is reached. As in the preceding example, the OPEN statement treats
the dataset as a single CFT77 file.

7.4 INTERNAL RECORDS AND FILES

An internal file allows conversion of data within a program, using the
full range of format descriptors described in section 8. An internal file
is in fact a character variable, or other character entity, that is
written to as if it were a file. In 1/0 statements, the name of the
character variable (that is, the name of the internal file) is used in
place of a unit identifier. Internal files are useful for changing the
form of input data before using it.

An internal file is a character variable, character array element,
character array, or character substring. A record of an internal file is
a character variable, character array element, or character substring. If
the internal file is a character variable, character array element, or
character substring, it consists of a single record with the same length
as the file. If the internal file is a character array, it is treated as
a sequence of character array elements. Each array element is a record of
the internal file. The ordering of the file records is the same as the
ordering of elements in the array. Every record of the file has the same
length as an element in the array.

The contents of a record of the internal file are defined by writing the
record with an output statement, or by modifying it as a character
variable, such as with a character assignment statement or an input
statement. If the number of characters written in a record is less than
the length of the record, the remaining portion of the record is filled
with blanks.

SR-0018 B 7-15

An internal file is always positioned at the beginning of the first record
before data transfer. Reading and writing records is done only by
sequential access formatted I/O statements not specifying list-directed
formatting.

Example:

INTEGER POSN
CHARACTER *10 TEMP

READ(6,1)TEMP
1 FORMAT(A10)

IF (INDEX(TEMP,'$').NE.O) THEN
POSN = INDEX(TEMP,'$')
TEMP(POSN:POSN) = ' ,

ENDIF
READ(TEMP,2) VALUE

2 FORMAT(F10.2)

Variable TEMP, to be internal file

Read record from device 6 to TEMP

Replace dollar
sign with
a blank

Read result into real variable

The above statements read numbers from an input file that have been
entered with a dollar sign preceding them. The statements place an
input value in an internal file (that is, character variable TEMP),
remove the dollar sign, then transfer the value to a type REAL
variable.

7.S UNITS

A unit is a means of referring to a file or dataset; it equates a file
used by a Fortran program and a file known to the operating system. At a
given time, a set of units exists for an executable program; these are
the units that can be connected in OPEN statements. See 7.9 concerning
explicit and implicit closing of files.

A unit identifier is a means of referring to a file and is an integer
constant or expression in the range 0-101 (UNICOS) or 1-102 (COS), or the
character *. Permissible kinds of unit identifiers are described under
UNIT= in 7.7.1.

A file identifier can be used in place of a unit identifier; this can be
for an internal file (see 7.4) or (only on the CRAY X-MP system) an
external file. If the file does not exist, it is created and the
operation proceeds. See 7.3.2 and 7.7.1.

7-16 SR-0018 B

7.5.1 DEFAULT UNITS

Two kinds of defaults (that is, preconnections) are used for unit numbers:

• The asterisk is used only in READ and WRITE statements as a
default; in addition, the PRINT statement always uses the default
output unit, although no asterisk appears. The default unit is
used only for formatted, sequential transfers; it is always unit
100 for input and unit 101 for output.

Under UNICOS, 100 and 101 are preconnected to files stdin and
stdout, respectively; under COS, to datasets $IN and $OUT. In
addition, unit 102 under COS is preconnected to $PUNCH (see E.4).
These assignments cannot be changed, and the numbers cannot appear
in an OPEN statement. (Therefore they do not exist, either as
defined at 7.5 or as reported by an INQUIRE statement.)

• Units 5, 6, and 0 are preconnected to UNICOS files stdin, stdout,
and stderr, respectively; units 5 and 6 are preconnected to COS
datasets $IN and $OUT. These unit numbers are not equivalent to
the asterisk. They can be reassigned, but the effects of such
reassignment depend on the machine and operating system in use.

The ANSI Fortran Standard does not include the following:

• A maximum value for the external unit identifier
• Provision for the definition and preconnection of unit

identifiers 100, 101, 102, 5 and 6
• The use of an external file name as a unit identifier

7.5.2 REDIRECTION TO AND FROM DEFAULT FILES

If you are porting a program from a system whose default files are used
differently than the Cray default files available to you, you can take
operating system actions to copy between the default files and other
files, so that you do not need to change your program. For example, you
might want the statements READ(*,10) ... or WRITE(*,20) ••. to access
permanent Cray-resident files rather than files that are transferred to or
from your terminal or front end. This might be needed for porting from
another vendor's computer or for porting between COS and UNICOS. It is
done as follows:

• Under UNICOS: To redirect file indata to default file stdin,
and then default file stdout to file outdata, enter the a.out
command as follows:

a.out < indata > outdata

SR-0018 B 7-17

• Under cos: To copy Cray-resident dataset INDS to default dataset
$IN, and the output data file of default dataset $OUT to Cray­
resident dataset OUTDS, alter your JCL as follows:

REWIND,DN=$OUT.
SAVE,DN=$OUT,PDN=MYLOG,UQ.
CFT77.
RELEASE,DN=$IN.
ACCESS,DN=$IN,PDN=INDS.
SEGLDR,GO.
SKIPF,DN=$OUT,O=MYOUT,NF=l.
SAVE,DN=MYOUT.

The above JCL assumes that your source program is contained in the
next file within $IN. If your program is in a nondefault file, you
need an additional FETCH or ACCESS statement along with the
I=name parameter on the CFT77 statement, as shown in 1.2.3.

7.6 1/0 FORMATS

A format specifies the form of input or output data. Formats are
identified in most 1/0 statements, as described in 8.3. A format
identifier must be one of the following:

7-18

• A FORMAT statement label appearing in the same program unit as the
format identifier (see 8.3.1)

• An integer variable name that has been assigned the value of a
FORMAT statement label, in an ASSIGN statement. The variable name
cannot also appear as a dummy argument in the same program unit.

• An asterisk, specifying list-directed formatting (see 8.2)

• A character expression whose value is a format specification. For
instance, a format can be entered directly in a data transfer
statement as a literal string enclosed in single quotes
(apostrophes). Examples:

WRITE(*, '(F7.3,4X,I3)')C,J
WRITE(*,FMTARR(M»P,Q,R,S
READ(ll,SPECAIISPECB)A,B

The above statements use different kinds of character expressions
as format specifiers: a literal string, a character array element,
and an expression using the concatenation operator. The values of
these expressions are used for formatting.

SR-0018 B

• A character array name, representing a single format. The elements
of the array are combined in ascending order into a single string.
For character array FA with three elements, the following
specifications are equivalent:

WRITE(*,FA) •••
WRITE(*,FA(1)IIFA(2)IIFA(3» •••

7.7 READ, WRITE, AND PRINT STATEMENTS

Data transfer statements cause the transfer of data between files and
other entities, such as printers or disk drives.

The READ statement is the input statement; it causes values to be
transferred from an external or internal file to the entities specified in
the input list, if present.

The WRITE and PRINT statements are output statements; they cause values to
be transferred from the entities specified in the output list, if present,
to an external or internal file. As shown in the following formats, PRINT
does not allow the use of a control information list.

READ (cilist)[iolist]

READ f [,iolist]

WRITE (cilist)[iolist]

WRITE f [,iolist] (non-ANSI)

PRINT f [,iolist]

cilist Control information list; includes a reference to the source
or destination of the data to be transferred and an optional
format identifier. Other cilist entries are shown in
7.7.1.

f Format identifier

iolist liD list specifying the data to be transferred

SR-0018 B 7-19

Examples, as shown in subsection 7.1.2:

WRITE (*,*) I, R, ARR
READ(4,*)R,I
READ('DATAFL',*)R,I
WRITE(8,50) (ARRAY1(L),L=3,7) Writing with implied DO

The ANSI Fortran Standard does not provide for the WRITE f [,iolist]
format.

7.7.1 CONTROL INFORMATION LIST

The control information list (cilist) can be used in data transfer
statements to specify the source or destination of data, the data format
(if any), a statement where execution continues at an error or end of
data, a record number for direct access I/O, or a variable to receive
status information.

7-20

[UNIT=]id[,[FMT=]f][,END=sn][,REC=rn][,ERR=S][,IOSTAT=ios]

[UNIT=]id
Unit identifier or file identifier; one or the other must be
specified, but not both. If the UNIT= keyword is omitted,
parameters are positional, and the file identifier must
appear first in the list.

A unit identifier (see 7.5) corresponds to an external file;
it is either: an integer constant or expression in the
range 0-101 (UNICOS) or 1-102 (COS); or (in a READ or WRITE
statement) the character * for a default value (see 7.5.1).
Nondefault unit numbers 1-4 and 7-99 are connected with the
OPEN statement (see 7.8).

A file identifier for a character variable or array (that
is, a name not enclosed in single quotes) specifies an
internal file (see 7.4). A file identifier of up to seven
characters in single quotes refers to an external file (CRAY
X-MP extension). If an external file specified in place of
the unit does not already exist, it is created; that is, it
is not required to be opened in an OPEN statement. It can
be saved or disposed by normal operating system actions but
is not given a unit number.

SR-0018 B

The ANSI Fortran Standard does not provide for an external file
identifier to be used for the [UNIT=] parameter, nor for reading or
writing to a file that does not exist.

[FMT=]f

END=sn

REC=rn

ERR=S

Format identifier (see 7.6, 8.3). This parameter must be
present for formatted I/O statements. If f is an
asterisk, the statement is list-directed and a record
identifier cannot be present. If the optional UNIT= keyword
is specified with the unit or file identifier, the FMT=
keyword must be specified with the format identifier. If
both the UNIT= and the FMT= keywords are omitted, f must
follow the identifier for the [UNIT=] parameter.

End-of-file identifier. sn is the number of the statement
where execution continues after an EOF on a READ statement
has been encountered. An end-of-file identifier must not
appear in a WRITE statement or in the same control
information list as a record identifier. Under UNICOS,
control-D sends an end-of-file identifier from a terminal.

Record identifier. rn must be an integer expression with
a positive value. A record identifier appears only in
direct-access I/O statements (see 7.11.1). A statement
containing a record identifier cannot contain an end-of-file
identifier.

Error identifier. s is the statement label of the
statement where control continues after a recoverable error
occurs.

IOSTAT=ios

SR-0018 B

Status identifier that becomes defined when an I/O statement
is executed. ios must be an integer variable or an
integer array element. Following are the identifier values
and their meanings:

=0 Transfer is complete; no error or end-of-file
condition exists.

>0 Error message number; see coded $IOLIB messages in
COS Message Manual, publication SR-0039.

<0 End-of-file was encountered; no error condition
exists.

7-21

Examples of control information lists:

Statement Comment

READ(10)... Unit 10, unformatted

WRITE(10,430)... Unit 10, format 430

WRITE(10,REC=J)... Unit 10, direct access

READ('FILE1',30)... External file FILE1, format 30

READ(*,*,END=200)... Unit 100 (default); list-directed;
jump to statement 200 at end of data.

READ(END=100,FMT=20,UNIT=5)... Order is optional with keywords

WRITE(98, '(6E11.4)',ERR=75)... Format is a character expression

READ(J,ARRAYF,ERR=10,END=25) ••• Unit id is the value of J; format is
a character array.

7.7.2 1/0 LIST

An 110 list (iolist) specifies entities whose values are transferred by
1/0 statements. This list is composed of one or more 1/0 list items
separated by commas. Optionally, one or more implied DO lists can be
included in the list.

An array name appearing as an 1/0 list item is treated as if all elements
of the array were specified in the order given by array element ordering.

7.7.2.1 Input list items

Only input list items can appear in an input statement. An input list
item must be one of the following:

• Variable name
• Array element name
• Array name
• Character substring name

7-22 SR-0018 B

I

7.7.2.2 Output list items

An output list item must be one of the following.

• Variable name
• Array element name
• Array name
• Character substring name
• An expression, with the following exceptions: an array syntax

expression; or a character expression in which one operand's length
is specified as (*).

Examples of input and output lists:

(1) READ(23)X,Y variable names

(2) WRITE(23)A(1),A(4),X(2) Array element names

(3) DIMENSION Z(64)

READ(23)Z Array name

(4) CHARACTER*10 WORD

READ(23)WORD(2:3) Character substring

(5) WRITE(23)A+B Expression

7.7.2.3 Implied DO list

An implied-DO list allows a statement to operate on a list of entities
systematically as in a DO-loop. The following format represents an I/O
list or one item in an I/O list.

(dlist, dvar = init,lim[,incr])

dlist

dvar

SR-0018 B

An I/O list. List items are separated by commas.

Name of an integer variable called the implied-DO
variable. dvar is initially defined with init and
incremented by incr on each iteration of the loop.
variable has the normal range for a variable: the
program unit.

is
This

whole

7-23

init, lim, and incr
Initial value, limit, and increment of the implied-DO
variable; must be expressions containing only integer
constants, the names of integer constants, and implied-DO
variables of other implied-DO lists containing this
implied-DO list within their ranges. incr must be
nonzero; it defaults to 1.

The range of an implied-DO list is the list dlist. The trip count and
values of the implied-DO variable dvar are established as for a DO-loop
except that the trip count must be positive. Interpretation of an
implied-DO list causes each item in the list dlist to be specified once
for each iteration, and for appropriate values to be substituted where
implied-DO variables are referenced. When an implied-DO list appears
within another implied-DO list, the inner list is iterated through its
full trip count for each single iteration of the outer list. When the
values of dvar and of the trip count are established, dvar, init, lim,
and incr can be redefined with no effect on the loop control process.

A DO variable in an implied-DO list becomes defined at the beginning of
processing the implied-DO list as an IIO list item. If a premature exit
from an implied DO occurs due to an IIO error or end-of-file, the loop
indices become undefined.

Examples (also see example 3in 7.1.3):

PRINT 311,(VECTOR(I),I=l,100)
READ(12,345)«XREF(M,N),M=1,N),N=1,3)
WRITE(6,350)(M,(N,XREF(M,N),N=1,3),M=2,l,-1)
READ(5,1,END=50,ERR=60)(BUFF(I),I=1,1000)
READ(5,1,END=50,ERR=60)«BUFFER(I,J),I=1,20),J=1,1000)

7.7.3 DATA TRANSFER OPERATION

When a data transfer IIO statement (READ, WRITE, or PRINT) is executed,
the following operations are performed in the order specified.

1. The direction of data transfer is determined (input for READ,
output for WRITE and PRINT).

2. The unit involved in the transfer is identified (see 7.5 and 7.7.2
under UNIT=).

3. The format (if specified) is established (see 7.6 and 7.7.2 under
FMT=).

4. Data is transferred between the external or internal file and the
entities specified by the IIO list (if any).

5. The status identifier (if specified) is defined.

7-24 SR-0018 B

7.7.3.1 Transferring data

Data is transferred between records and entities specified in the 1/0
list. List items are processed in the order of their left-to-right
appearance in the 1/0 list.

All values needed to determine entities specified by an 1/0 list item are
determined at the beginning of the processing of that item. For example,
the following statements cause a value to be read into N(3).

N(1)=3
READ(8)N(N(1»

All values are transmitted to or from the entities specified by a list
item before the processing of any succeeding list item. For example, the
following statement causes two values to be read.

READ(3)N,A(N)

The first value read is assigned to N, and the second is assigned to A(N),
where the new value of N is used as the subscript.

An input list item, or any entity associated with it, must not affect any
portion of the established format specification.

7.7.3.2 Unformatted data transfer

During unformatted data transfer, data is transferred without editing
between the current record and the entities specified by the 1/0 list.
Exactly one record is read or written.

On input, the file should be positioned so the record read is an
unformatted record or an endfile record. (Under COS, CFT77 allows
formatted and unformatted records on the same file or dataset (non-ANSI).
This is not allowed in UNICOS.) The number of values required by the
input list must be less than or equal to the number of values in the
record and must not require more values than the record contains.

7.7.3.3 Formatted data transfer

During formatted data transfer, data is transferred with editing between
the entities specified by the 1/0 list and the file. The current record
and possibly additional records are read or written.

On input, the record read should be a formatted record or an endfile
record. (Under COS, CFT77 allows formatted and unformatted records on the
same file or dataset (non-ANSI). This is not allowed in UNICOS.)

SR-0018 B 7-25 '

I

The IIO list and format specification must not specify more than 152
characters. Some formats larger than 133 characters generate warninq
errors. If the input record length is less than the input list requires,
the additional characters are defined as blanks.

The ANSI Fortran Standard does not provide for a maximum number of
characters per record, nor for blank padding if the record is less than
that required for the input list.

7.7.4 OUTPUT TO A PRINTER

The transfer of formatted record information to certain devices is called
printing. The first character of a formatted record is not printed.
The remaining characters of the record, if any, are printed in one line
beginning at the left margin.

The first character of such a record determines the vertical spacing to
occur before printing. The character codes specifying vertical spacing
(carriage) control are shown in table 7-2. Under UNICOS, a file with
these control characters can be filtered by routine asa.

If the record contains no characters, an advance of one line occurs and
nothing is printed in that line. A PRINT statement can be used for
carriage control without printing any characters.

Table 7-2. Print Control Characters

Character

Blank
o
1
+
All othert

Vertical Spacing Before Printing

Advance one line
Advance two lines
Advance to first line of next page
No advance
Advance one line

t Certain other characters have an effect on carriage
control in other operating systems. Refer to the
documentation for your front-end processor's operating
system if you intend to use a front-end processor to
print output files.

7-26 SR-0018 B

7.7.5 ERROR AND END-OF-FILE CONDITIONS

If an error condition occurs during data transfer, the position of the
file is indeterminate.

If an end-of-file (EOF) condition exists as a result of reading an endfile
record, the file is positioned after the endfile record.

If no error condition or EOF condition exists, the file is positioned
after the last record read or written.

If an error condition or EOF condition is encountered during a read
operation, the read terminates and the entities specified in the I/O list
become undefined.

7.7.6 RESTRICTIONS ON INPUT/OUTPUT STATEMENTS

A function must not be referenced in an I/O statement if it causes an I/O
statement to be executed.

An I/O statement must not reference a unit or file not having all the
properties required for its execution. For example, an attempt to read
from a printer will fail.

7.7.7 1/0 ERROR RECOVERY

If an irrecoverable error occurs during the execution of an I/O statement,
the operating system aborts the current job step. The current job step is
aborted even if an error identifier (ERR=sn) appears in the IIO
statement's control information list. Generally, error conditions
detected by code in LIBIO under UNICOS or in $IOLIB under COS are
recoverable and return control to the statement indicated by the error
identifier; error conditions detected by the operating system are
irrecoverable and abort the current job step.

The ANSI Fortran Standard does not distinguish between recoverable and
irrecoverable errors.

SR-0018 B 7-27

7.S OPEN STATEMENT

The OPEN statement establishes an external file for use in a Fortran
program. The file is assigned a unit number that you select and specify
in the OPEN statement. Subsequent IIO statements use this number to
specify the file. (No OPEN statement is needed for the default units
specified by an asterisk; these are files stdin and stdout and
datasets $IN and $OUT.) Depending on the status of the file, you can do
one of the following with the OPEN statement; examples are for a file
named F on unit s.

• Create a new file (specifying a unit number, which you select):
OPEN(S,FILE='F',STATUS='NEW'). Under COS, if this file is to be
kept in Cray storage, insert in the JCL file for the Fortran
program, SAVE,DN=F. Under UNICOS, the file is automatically made
permanent. To transfer the file to a front-end computer, use the
dispose command under UNICOS; under COS, use DISPOSE,DN=F.

• Allow the Fortran program to access an existing file by assigning
it a unit number: OPEN(S,FILE='F',STATUS='OLD'). Under COS, if
this file is in Cray storage, insert in the JCL file for the
Fortran program, ACCESS,DN=F.

• Create a file that is preconnected to a unit

• Change the characteristics of an existing connection between a file
and a unit

Notice that most specifiers in an OPEN statement must be character
expressions. This allows the use of a character variable, and it means
that a specifier. entered literally must be enclosed in single quotes
(apostrophes).

OPEN (olist)

olist An external unit identifier and at most one of each of the
other identifiers described in table 7-4

Even if a unit is already connected to a file, an OPEN statement can
connect a different file to the same unit; this causes the first file to
be disconnected (equivalent to a CLOSE statement with no status
identifier). If the FILE= identifier is not included in the OPEN
statement, the OPEN statement applies to whatever file is already
connected to that unit, if any.

If the file to be connected to the unit does not exist but is the same as
the file to which the unit is preconnected, the specifications in the OPEN
statement become a part of the connection.

7-28 SR-0018 B

If an OPEN statement specifies a file and unit that are already connected,
only the BLANK= identifier can have a value that is different from the
current value. The new BLANK= value is then used for that connection.
The file position is unaffected.

If a file is connected to a unit, execution of an OPEN statement on that
file and a different unit is not permitted.

7.8.1 ALTERNATIVES TO THE OPEN STATEMENT

The OPEN statement is used for establishing nondefault files, but other
methods are available for this purpose, including the,following:

• You can open a file by using its name in place of a unit number in
the first data transfer statement that is to access the file.
(This is a CRAY X-MP extension; see 7.3, 7.3.2, and 7.7 under
UNIT=, and Using Nondefault Files, p. 7-1.) Example:

WRITE ('NEWFILE',*) R,I

• As shown in 7.5.1, the default files can be directed to and from
nondefault files, using actions of the operating system.

• You can preconnect a file to a Fortran unit. These actions
establish the file's alias, an alternative file name that
includes the file's Fortran unit number); the file does not need to
be opened within the Fortran program. Examples:

UNICOS: In infile fort.9

COS: ACCESS,DN=INFILE.
ASSIGN,DN=INFILE,A=FT09.

When either of the above actions is taken, a Fortran program can
read from file infile or dataset INFILE with the Fortran
statement READ(9,*)R,I. No OPEN statement is needed. Under
UNICOS, the assign command can also perform this function, as
described in the UNICOS User Commands Reference Manual, publication
SR-2011.

SR-0018 B 7-29

I

Table 7-3. OPEN Specifiers and Their Meanings

Specifier Type
'II

Meaning Input Value

UNIT=ut I External unit number Unit number; user-selected

FILE=fintt C File specifier Name of file to be connected

STATUS=sta C Disposition specifier 'OLD': file must already exist; you
must specify file with FILE=fin.tt

Default: 'UNKNOWN'
'NEW': creates a file; you must
specify a file name with FILE=fin.tt
Status becomes OLD.

'SCRATCH': file is deleted by a CLOSE
statement or when program terminates.

'UNKNOWN'(default)ttt: 'SCRATCH' if
file is not specified and unit is not
connected; otherwise status is 'OLD'.

IOSTAT=ios i ios name is assigned Symbolic name for error status
error status: 0 for no specifier

ERR=S

FORM=fm~r

error, or message num.

S Statement transferred Fortran statement label
to if error occurs

C Formatting specifier 'FORMATTED', formatted I/O;
Default: 'FORMATTED' 'UNFORMATTED', unformatted
for sequential access,
'UNFORMATTED' direct

ACCESS=acc C Access specifier 'SEQUENTIAL' is access method;

RECL=rl

Default: 'SEQUENTIAL' 'DIRECT' is access method.

i Record length for Formatted I/O: number of characters
direct access method; per record. Unformatted I/O: 8 times
omitted for sequential the number of words. Maximum 267 on

UNICOS, 152 on COS.

BLANK=blnk C Blank specifier 'NULL': numeric input blanks are
ignored; 'ZERO': all nonleading
blanks are treated as O's. Allowed on
files opened for formatted IIO only.
Overridden by BN and BZ descriptors.

Default: 'NULL'
(also applies to
default files)

All footnotes are on the following page.

7-30 SR-0018 B

Table 7-4. CLOSE Specifiers and Their Meanings
~

Specifier Type
*

Meaning Input Value

IOSTAT=ios

I External unit number

i Error status is assigned
to ios name: 0 for no
error, or message number.

Unit number

Symbolic name for error status
specifier

STATUS=sta C Disposition specifier 'KEEP': dataset continues to

ERR=S

Default, 'KEEP' if OPEN exist after CLOSE stmt executes;
status is 'OLD', 'NEW' or do not use 'KEEP' for a dataset
'UNKNOWN'. with 'SCRATCH' status on an OPEN

statement.
Default, 'DELETE' if
OPEN status is 'SCRATCH'
or if file is memory­
resident.

'DELETE': the dataset does not
exist after execution of the
CLOSE statement.

S Statement transferred to Fortran statement label
if an error occurs

* The types for tables 7-3 and 7-4 are as follows:

I Integer constant, variable, or array element
i Integer variable or array element
S Statement label
C Character expression

t UNIT= does not need to be included in the unit specification if u is
the first item in the list.

tt fin is a character expression. Other than names passed as character
variables, UNICOS allows 14 characters for any file name and 128
characters for the complete path name. If a file name is passed to a
subroutine as a character variable to be used in an OPEN statement, it
is limited to 7 characters. COS allows 7 characters for a dataset
name. See 7.3.2.

ttt UNICOS only: If a file specifier is supplied, the status becomes
OLD. If no file specifier is supplied but a file exists by the name
fort.u where u is the unit number, the status also becomes
'OLD'. If such a file does not exist, the status becomes 'NEW'.

,r COS allows formatted and unformatted records in same file (non-ANSI).

SR-0018 B 7-31

7.9 CLOSE STATEMENT

A CLOSE statement disconnects a particular file from a unit, writes an
end-of-data record, and rewinds the file.

CLOSE (cllist)

cllist An external unit identifier and at most one of each of the
other identifiers described in table 7-4

A CLOSE statement can appear in any executable program and need not appear
in the same program unit as the OPEN statement that opened the file.

A disconnected file or unit can be reconnected within the same executable
program either to the same file or unit, or to a different file or unit,
provided the file still exists. Files can be deleted within a program by
a CLOSE statement that includes STATUS='DELETE'. Under COS, if the file
is memory resident (as established by an ASSIGN JCL command), CLOSE
deletes the file regardless of the STATUS identifier.

Under UNICOS, all files are closed at termination of program execution.
Under COS, automatic file closing occurs only at the end of an entire job,
even if the job includes more than one program: datasets are not made
permanent unless they are saved with a SAVE command in the job's JCL.
Files are not automatically rewound during program termination.

The ANSI Fortran Standard provides an implicit CLOSE for all files
upon normal program termination.

The ANSI Fortran Standard does not provide for automatic deletion of
files regardless of the STATUS identifier.

7-32 SR-0018 B

7.10 INQUIRE STATEMENT

An INQUIRE statement returns various kinds of information about a unit or
file, such as whether a connection exists, the file name, or the kind of
IIO that is currently specified. This information is returned as values
assigned to variables that you specify. You can inquire about either a
unit or a file.

By unit: By file name:

INQUIRE (u,islist) INQUIRE (FILE=fin,islist)

U

fin

islist

An external unit identifier (see 7.5). The unit specified
need not be connected to a file.

A character expression that specifies the name of an
external file. A file name entered literally must be
enclosed in single quotes (apostrophes). The file need not
be connected to a unit. Under UNICOS, fin can include 31
characters. Under COS, fin is limited to seven characters,
not counting trailing blanks. Any trailing blanks are
discarded.

A list of inquiry identifiers that contains at most one of
each of the inquiry identifiers described in table 7-5.

islist identifiers are in a form such as EXIST=YES or NAME=FN, where YES
and FN are user-named variables of types logical and character,
respectively. These variables become defined by the INQUIRE and can be
referenced in subsequent statements. Example:

LOGICAL AROUND

INQUIRE(FILE='NAMES',EXIST=AROUND)
IF(.NOT.AROUND)OPEN(UNIT=8,FILE='NAMES',STATUS='NEW')

The INQUIRE statement above determines if file NAMES exists; if it
does not, the program creates an empty file NAMES.

A variable or array element can be referenced as an identifier only once
in an INQUIRE statement.

If an error condition occurs during execution of an INQUIRE statement, all
of the inquiry identifiers except ios become undefined. ex and od
always become defined unless an error condition occurs. Other identifiers
are undefined if the unit or file inquired about does not exist; rcl and
nr are undefined if an existing file is sequential access.

SR-0018 B 7-33

*

Table 7-5. INQUIRE Specifiers and Their Meanings

Data
Specifier Type

*
Meaning Return Value

IOSTAT=ios i Error status specifier 0 if no error condition exists;
error message number if error
condition exists.

ERR=S

EXIST=ex

OPENED=od

NUMBER=num

NAMED=nmd

RECL=rel

NEXTREC=nr

NAME=fn

S Statement label
where control is
transferred if error
condition exists

L Existence specifier

L Connection specifier

i External unit
specifier

L Unit name specifier

i Record length of unit
or file connected for
direct access

i Next record

C File name

None

.TRUE. if unit or file exists;
else, .FALSE.

.TRUE. if unit and file are
connected; else, .FALSE.

Unit currently connected; if no
unit, num is undefined.

True if unit is connected to a
file with a name; otherwise false

Record length in characters. (For
unformatted 1/0, the record length
is a positive integer multiple of
eight.) If not connected for
direct access, reI is undefined.

The record number that follows the
last record read or written for
direct access. If none have been
written, nr=l. If access is not
direct, nr is undefined.

File name associated with the unit
if file is named; else, undefined.

i = Integer variable or array element
L = Logical variable or array element
C = Character variable or array element
S = Statement label

7-34 SR-0018 B

Table 7-5. INQUIRE Specifiers and Their Meanings (continued)

Data
Specifier Type

•
Meaning

ACCESS=acc C Access specifier

Return Value

'SEQUENTIAL' is access method;
'DIRECT' is access method.

SEQUENTIAL= C Sequential as possible 'YES' if sequential is allowed;
seq access method 'NO' if sequential is not allowed;

'UNKNOWN' if unable to determine.

DIRECT=dir C Direct as possible
access method

FORM=fmt C Format specifier

FORMATTED = C Formatted as a
fmtt possible allowed form

UNFORMATTED C Unformatted as a
=unft possible allowed form

BLANK=blnkt C Blank control
specifier

'YES' if direct is allowed;
'NO' if direct is not allowed;
'UNKNOWN' if unable to determine.

'FORMATTED' if file is connected
for formatted I/O;
'UNFORMATTED' if file is connected
for unformatted I/O.

'YES' if formatted is allowed;
'NO' if formatted is not allowed;
'UNKNOWN' if unable to determine.

'YES' if unformatted is allowed;
'NO' if unformatted not allowed;
'UNKNOWN' if unable to determine.

'NULL' if null blank control
effect;
'ZERO' if zero blank control
effect.
Blank control applies only to
formatted records.

is in

is in

t COS allows formatted and unformatted records in the same file
(non-ANSI).

• i = Integer variable or array element
L = Logical variable or array element
C = Character variable or array element
S = Statement label

SR-0018 B 7-35

7.11 DIRECT AND SEQUENTIAL FILE ACCESS

External files can be accessed in two standard ways: with sequential
access (the default), records are stored in the order in which they are
written, and read back out in the same order; with direct access, records
can be read or written in any order, and are assigned numbers. Random
access is a Cray extension of direct access, described in 9.2.

A file can be created to support sequential access, direct access, or
both, using the ACCESS specifier in the OPEN statement. If a file
supports both methods of access, the first record accessed by sequential
access is the record numbered 1 for direct access, the second record
accessed by sequential access is the record numbered 2 for direct access,
and so on.

While a file is connected for one kind of access (sequential or direct),
only liD statements using that kind of access may be used with the file.

7.11.1 DIRECT FILE ACCESS

In direct access operations, records can be read or written in any
order; each record is specified by its number, and all records in a file
have the same length. To use direct access 1/0, do the following:

7-36

• In the OPEN statement that opens a direct access file, specify
ACCESS='DIRECT' and RECL=len, where len is the record length.
The maximum value for len is 267 characters under UNICOS and 152
under COS.

• In subsequent statements that access the direct access file,
specify the record number with the REC=r specifier, where r is
a positive integer that must be specified when the record is
written. Examples:

WRITE(lO,REC=J) •••
WRITE(11,14,REC=52) •.•
READ(12,REC=K) •••

SR-0018 B

Example:

PROGRAM DIRCTIO
OPEN(UNIT=50,FILE='DAOUT',FORM='FORMATTED',ACCESS='DIRECT',

& RECL=15)
DO 10, 1=1,5

WRITE(50,900,REC=I)I
10 CONTINUE

900 FORMAT(I2)
A=SQRT(2.0)
WRITE(50,901,REC=3)A

901 FORMAT(G10.4)
END

The above DO loop 10 writes the first five records in file DAOUT with
their respective record numbers. The final WRITE statement replaces,
in record 3, the value 3 with the value of A. The resulting file has
the following content:

1
2
1.414
4
5

Once established, a record's number cannot be changed. When an input or
output operation is performed on a file, the file is positioned at the
beginning of the record specified by the next higher record number, which
becomes the current record. A record can be overwritten but not deleted.

Records must not be read or written with list-directed or NAMELIST
formatting. Multifile COS datasets cannot be direct access.

Random access I/O, described in 9.2, allows records of variable length,
and automatic handling of record numbers, using nonstandard library
routines in place of Fortran data transfer statements.

Word-addressable I/O can also be performed using standard direct-access
I/O statements, if the file being accessed is in the pure data/unblocked
structure. I/O operations are then automatically carried out by the
word-addressable routines. Files created in this way cannot be used for
blocked direct access or sequential I/O. The pure data/unblocked file
structure is specified to the operating system as shown in 9.2.1; file
structures are discussed in 7.3.1; word-addressable I/O is introduced
in 9.2.

SR-0018 B 7-37

7.11.2 SEQUENTIAL FILE ACCESS

Sequential access operations are based on the sequential storage of
records within files. The order of the records is the order in which they
are written.

When a sequential input operation is performed on a file, the file is
positioned at the beginning of the next record, which becomes the current
record. When an output operation is performed on a file, a new record is
created, becoming the last record of the file. The position of an
internal file is always at the beginning of the character variable, array,
array element, or substring referenced by the 1/0 operation.

The BACKSPACE, ENDFILE, and REWIND statements perform operations on
sequential files. The BACKSPACE statement positions a file at the
beginning of the previous record from the current record; the ENDFILE
statement writes an end-of-file (EOF) mark at the file's current position;
and the REWIND statement positions the file to the first record of the
file. The formats of these statements are as follows:

BACKSPACE id

ENDFILE id

REWIND id

id One of the following:

Unit number

File identifier; character expression such as a literal
string in single quotes.

A list enclosed in parentheses, containing the
following set of identifiers:

[UNIT=]U
IOSTAT=ios
ERR=S

The preceding list must contain a single external unit identifier or file
identifier and can contain at most one of each of the other identifiers.
See the UNIT, IOSTAT, and ERR identifiers described for the OPEN and CLOSE
statement in tables 7-3 and 7-4, respectively.

7-38 SR-0018 B

The external unit or file specified in a BACKSPACE or ENDFILE statement
must not be connected for direct access. If the external unit or file
specified by a BACKSPACE, ENDFILE, or REWIND statement is not connected,
it becomes connected and the file is created.

BACKSPACE, ENDFILE, and REWIND operations on internal files are not
allowed.

The ANSI Fortran Standard does not provide for positioning of an
unconnected file.

The ANSI Fortran Standard does not provide for the file identifier on
BACKSPACE, ENDFILE, or REWIND statements.

7.11.2.1 BACKSPACE statement

A BACKSPACE statement causes the file related to the specified unit to be
positioned at the beginning of the preceding record. If no preceding
record exists, the position of the file is unchanged. If the preceding
record is an endfile record, the file is positioned before it.

The ANSI Fortran Standard does not provide for backspacing a file that
is not connected, a file that is connected but does not exist, or one
that has been written with list-directed format.

7.11.2.2 ENDFILE statement

An ENDFILE statement writes an endfile record as the next record of the
file; the file is then positioned after the endfile record, and the
remainder of the file is truncated. A BACKSPACE or REWIND statement must
be used before the file can be read. In environments where multi-file
structures are supported (such as COS), the same unit can still be written
to, in a new file that is positioned after the one just ended; see
examples in 7.3.3.1 and 7.3.3.2.

Execution of an ENDFILE statement for a file that is connected but does
not exist creates the file.

The ANSI Fortran Standard does not provide for the writing of an
endfile on a file that is not connected.

SR-0018 B 7-39

7.11.2.3 REWIND statement

A REWIND statement causes the specified file to be positioned at its
initial point. If the file is already positioned at its initial point,
execution of the statement has no effect on the file position.

The ANSI Fortran Standard does not provide for the rewinding of an
unconnected file or a file connected for direct access, nor does it
provide for the creation of a connected file when one does not exist.

7.12 CHANGING MAXIMUM LENGTH FOR I/O LISTS AND FORMAT SPECIFICATIONS

Normally, all formatted I/O is restricted to an input/output record length
of 267 characters on UNICOS or 152 characters on COS. Your site analyst
can adjust these lengths within the I/O library used with CFT77. Or, if
you use SEGLDR on a CRAY X-MP system, you can change the I/O buffer
lengths at load time by performing the following steps:

• Specify the sizes of two common blocks that contain the working
storage for formatted reads and writes.

• Change the values of two externally defined symbols that determine
the maximum length of a formatted record.

SEGLDR directives COMMONS and SET can be used to make these changes.
Common block $RFDCOM and symbol $RBUFLN determine the size of the buffer
used for formatted reads. Common block $WFDCOM and symbol $WBUFLN
determine the size of the buffer used for formatted writes. The size of
either common block must be 9 words greater than the value of the symbol
that defines the maximum size.

For example, to increase the maximum record length for formatted writes to
522 characters and the maximum record length for formatted reads to 384
characters, use the following SEGLDR directives:

SET=$WBUFLN:522
COMMONS=$WFDCOM:531
SET=$RBUFLN:384
COMMONS=$RFDCOM:393

See the Segment Loader (SEGLDR) Reference Manual, CRI publication SR-0066,
for further information on the SET and COMMONS directives.

7-40 SR-0018 B

I

INPUT/OUTPUT FORMATTING

CFT77 allows both formatted and unformatted input/output (I/O).
Unformatted I/O is considerably faster than formatted I/O.

8

CFT77 provides two methods of formatting program input and output.
List-directed 110 is easy to use, but allows limited control over the
format of input and output records. Formatted 110 permits detailed
specification of data formats. Unformatted, formatted, and list-directed
I/O are introduced with examples in the first part of section 7.

8.1 UNFORMATTED I/O

Unformatted I/O does not convert data from its internal (binary)
representation and is not suitable for printing or for use by other
vendors' computers. It is fast and retains the full precision of any
numbers used by a program. Unformatted I/O uses blocked files under both
UNICOS and COS, and can write unblocked COS datasets (see 7.3.1).

In a data transfer statement, a control information list showing no format
specifier causes an unformatted transfer. Example:

WRITE(9)X

The above statement writes one record containing the value of X to the
file connected to unit 9.

With unformatted I/O, all items in the input or output list are written to
or read from a single record. Example:

WRITE(9)X,y,Z

The above statement writes one record containing the values of X, Y,
and Z to the file connected to unit 9.

List items are written and read based on their type. Integers, real
numbers, and logical values each occupy one word of memory; complex and
double-precision numbers each occupy two words of memory; and character
strings are stored eight characters per memory word, left-justified.
Unformatted READ statements read the appropriate number of memory words
for the type of each variable in the input list.

SR-0018 B 8-1

Example:

LOGICAL TEST
CHARACTER*24 STRING
INTEGER Z

READ(9)TEST, STRING, Z

In the above program, one word from the file connected to unit 9 would
be assigned to the variable TEST, the next three words would be
assigned to STRING, and the next word would be assigned to Z.

Implied-DO lists can be used in unformatted IIO statements. Example:

WRITE(9)(VECTOR(I),I=1,55)

The above statement writes one record, containing the values of
VECTOR(l) through VECTOR(55), to the file connected to unit 9.

8.2 LIST-DIRECTED IIO

List-directed IIO allows data formatting to be performed according to the
type of the list item instead of by a format identifier. List-directed
records consist of values and value separators. Each value is either a
constant, a null value, or one of the following forms.

r Unsigned, nonzero, integer constant

The r*c form is equivalent to r successive appearances of the constant
c. The r* form is equivalent to r successive null values. Neither
of these forms can contain embedded blanks, except where permitted within
the constant c.

Example of list-directed IIO, as shown in section 7 introduction:

WRITE (7,*) A,B,C,' Best: ',BST ! To unit 7

The above statement would give the following result:

3.316624790355, 2.236067977, 4. Best: 4.

8-2 SR-0018 B

8.2.1 LIST-DIRECTED INPUT

The form of a list-directed input value must be acceptable for the type of
the input list item. Blanks cannot be used as zeros. Embedded blanks are
permitted only in complex constants and character constants.

In an input file to be read, value separators can have one of the
following forms:

• A comma optionally preceded and followed by one or more contiguous
blanks

• A slash optionally preceded and followed by one or more contiguous
blanks

• One or more contiguous blanks between two constants or following
the last constant

Notice that record separators (commonly created by the RETURN key on a
terminal) do not serve as value separators for list-directed input.

Real or double-precision list items must be numeric and suitable for F
formatting (see 8.5.4).

A complex list item consists of an ordered pair of numeric fields
separated by a comma and enclosed in parentheses. The first numeric field
is the real portion of the complex constant; the second numeric field is
the imaginary portion. An end-of-record can occur between the real
portion and the comma or between the comma and the imaginary portion.
Each numeric field can be preceded or followed by blanks.

A logical list item must not include either slashes or commas among the
optional characters permitted for L formatting.

A type character list item has an input form with a nonempty string of
characters enclosed in apo~trophes. Each apostrophe in a character
constant must be represented by two consecutive apostrophes without a
blank or end-of-record. Character constants can be continued from the end
of one record to the beginning of the next record. The end of the record
does not cause a blank or any other character to become part of the
constant. The constant can be continued to as many records as needed. A
blank, comma, and slash can appear in character constants.

For example, for item length len and character constant length w, if
len ~ w, the leftmost len characters of the constant are read into the
list item. If len > w, the constant is transmitted to the leftmost w
characters of the list item and the remaining len-w characters of the list
item are filled with blanks. The effect is as if the constant were
assigned to the list item in a character assignment statement.

SR-0018 B 8-3

A null value has no characters before or between value separators. A null
value has no effect on the definition status of the corresponding input
list item. A single null value can represent an entire complex constant
but it cannot be used as either the imaginary or the real portion alone.
The end of a record following any other separator, with or without
separating blanks, does not specify a null value.

A slash encountered as a value separator during execution of a
list-directed input statement terminates execution of that input statement
after the assignment of the previous value. If additional items are
present in the input list, the effect is as if null values had been
supplied for them.

All blanks in a list-directed input record are considered to be part of
some value separator except for the following.

• Embedded blanks surrounding the real or imaginary portion of a
complex constant

• Leading blanks in the first record read, unless immediately
followed by a slash or comma

• In character values

8.2.2 LIST-DIRECTED OUTPUT

The output format for list-directed lID is the same as that required for
input, except as noted below. The values are separated by one of the
following.

• One or more blanks

• A comma optionally preceded or followed by one or more blanks

If two or more successive values in an output record have identical
values, a repeated constant of the form r*c is produced instead of the
sequence of identical values.

New records begin as necessary but, except for complex and character
constants, the end of a record does not occur within a constant and blanks
do not appear within a constant.

Logical output constants are T for the value true and F for the value
false.

Integer output constants are produced with the effect of an Iw
descriptor, for some value of w.

8-4 SR-0018 B

Real and double-precision constants are produced with the effect of either
an F descriptor or an E descriptor, depending on the magnitude x of the
value and a range 10-2466~x<102466. If the magnitude x is within this
range, the constant is produced with OPFw.d; otherwise IPEw.dEe is used
(where nP specifies a change in the constant's magnitude). Reasonable
values of w, d, and e are used for each of the cases involved.

A complex constant is enclosed in parentheses, with a comma separating the
real and imaginary portions.

A character constant is not delimited by apostrophes and is not preceded
or followed by a value separator. Each internal apostrophe in a character
constant is represented externally by one apostrophe. For carriage
control, the processor inserts a blank character in a character constant
at the beginning of any record that begins with the continuation of a
character constant from the preceding record.

List-directed formatting does not produce slashes as value separators or
null values.

Each output record begins with a blank character for carriage control when
the record is printed.

8.3 FORMATTED 1/0

Formatted 1/0 writes and reads data in the form of ASCII characters, and
specifies the format of the data. A format specification provides
explicit formatting information to direct the formatting of data between
its internal representation and corresponding character strings. A format
specification can be given in a FORMAT statement, whose statement label
(or a variable representing the label) is used as a format specifier in
transfer statements. Example:

WRITE(7,50)A,B
50 FORMAT(/,E5.2,3X,E4.1)

In the above WRITE statement, 50 refers to the FORMAT statement that
follows it.

Otherwise a format can be included in a transfer statement as a character
expression. See 7.6, 7.7, 7.7.3.3, and pages 7-5 through 7-7.

A format is enclosed in parentheses. One format can contain another
format; such nesting can be carried to nine levels. Character data
following the right parenthesis of a format is ignored only when the
format is contained in an array.

SR-0018 B 8-5

The ANSI Fortran Standard does not limit nesting of format specifications.

8.3.1 FORMAT STATEMENT

The FORMAT statement is a nonexecutable statement that allows more than
one data transfer statement to use the same format specification. The
statement label of a FORMAT statement is used as the format specifier in a
READ, WRITE, or PRINT statement. A FORMAT statement must appear in the
same program unit as any statement that references it.

label FORMAT (flist)

label

flist

Statement label (required)

List of items, each having one of the following forms:

ned
[r]ed
[r](Elist)

ned Nonrepeatable descriptor

ed Repeatable descriptor

r Nonzero, unsigned integer constant called a repeat
specification; if not specified, a value of 1 is
assumed.

Commas can separate list items in Elist but are required only under the
following conditions.

• Between two adjacent digits which belong to different list items

• Between two adjacent apostrophe or quotation mark delimiters of
separate format descriptors

• After a D, E, or G specification that precedes an E specification

8-6 SR-0018 B

The ANSI Fortran Standard does not provide for the optional use of commas
except before or after the slash or the colon descriptor or between a P
descriptor and an immediately following F, E, D, or G edit descriptor.

Examples:

1999 FORMAT ('F',5X,6F6.2)

1234 FORMAT ('ABC123',2X,"=",D15.5,2X,I6)

NOTE

To maintain compatibility with CFT and to prevent
ambiguity, CFT77 interprets any labeled statement
beginning with the character string FORMAT(as a
FORMAT statement. That is, this cannot be part of an
assignment statement to an element of an array named
FORMAT, even though this would be allowed by the ANSI
standard.

8.3.2 INTERACTION BETWEEN I/O LISTS AND FORMAT SPECIFICATIONS

The beginning of execution of a formatted I/O statement initiates format
control. Each action of format control depends on information from the
next descriptor provided by the format specification, and the next item in
the I/O list, if one exists.

If a statement has an I/O list, at least one repeatable descriptor must
'exist in the format specification.

An empty format specification of the form () can be used unless contained
within another format ,specification. An empty format specification causes
one input or internal record to be skipped or one output or internal
record containing no characters to be written. No I/O list items can
correspond to an empty format specification.

Except for repeated descriptors and embedded format specifications, a
format specification is interpreted from left to right.

SR-0018 B 8-7

An embedded format specification or format descriptor preceded by an r
is processed as a list of r format specifications or descriptors. An
omitted repeat specification is treated the same as a repeat specification
with a value of 1.

Each repeatable descriptor interpreted in a format specification
corresponds to one item specified by the IIO list, except that an item of
type complex requires the interpretation of two F, E, D, G, A, or R format
descriptors. An IIO list contains no items corresponding to nonrepeatable
format descriptors.

When format control encounters a repeatable format descriptor, it
determines whether the IIO list has specified a corresponding item. If it
has, format control transmits appropriately formatted information between
the item and the record, then ~roceeds. If no corresponding item exists,
format control terminates.

Format control also terminates if the rightmost parenthesis of a complete
format specification is encountered and no additional IIO list items are
specified. If another list item is specified, the file is positioned to
the next record and format control reverts to the beginning of that format
specification terminated by the next-to-Iast right parenthesis. If there
is none, format control reverts to the first left parenthesis of the
complete format specification. If reversion occurs, the reused portion of
the format specification must contain at least one repeatable descriptor.
If format control reverts to a parenthesis that is immediately preceded by
a repeat specification, the repeat specification is reused. Reversion of
format control, of itself, has no effect on the scale factor (see 8.5.6)
or on S, SP, SS, BN, or BZ.

Examples:

In the following examples, the t indicates the reversion point if list
items remain when format control encounters the closing parenthesis.

8-8

1 FORMAT(10F10.3,1PE20.6)
t

2 FORMAT(lOFIO.3,(lPE20.6»
t

3 FORMAT(IIO,3(I5,2(I5,I7),3(Ll,L2),I7»
t

4 FORMAT(I5,2(I4,I6),3(I1,I2»
t

SR-0018 B

8.3.3 POSITIONING BY FORMAT CONTROL

If a T or X descriptor is the first descriptor encountered after format
control is initiated, the action of the descriptor causes the next record
to become the current record.

After the processing of each repeatable descriptor or an H, apostrophe, or
quotation mark descriptor, the file is positioned after the last character
read or written in the current record.

After a T, TL, TR, X, slash, or colon descriptor is processed, the file is
positioned as separately described for each.

If format control reverts, the file is positioned in the same manner as
when a slash descriptor is processed.

After a read operation, any unprocessed characters of the record read are
skipped.

When format control terminates, the file is positioned after the current
record.

8.4 FORMAT DESCRIPTORS SUMMARY

Format descriptors specify the form of a record and direct the editing
between characters in a record and their corresponding internal
representation.

An edit descriptor is either repeatable, shown in table 8-1, or
nonrepeatable, shown in table 8-2. A repeatable descriptor can be
preceded by an integer; for example, 6F5.2 indicates 6 consecutive F
fields that are 5 characters wide.

SR-0018 B 8-9

The legend for the following descriptors is on the following page.

Data Type

Real

Double
precision

Integer

Character

Boolean

Logical

New line

Table 8-1. Repeatable Format Descriptors

Format
Descriptor

Ew.d

Ew.dEe

Fw.d

GW.d

Gw.dEe

Dw.d

IW

Iw.m

A

Aw

Rw

Ow

Ow.m

Zw

Zw.m

Lw

/ t

Description

Real with exponent

Real with specified exponent length

Real without exponent

Real with or without exponent

Real with or without exponent or length

Double-precision with exponent

Base-10 integer

Base-10 integer, minimum number of digits

Character with data-dependent length

Character with specified length

Right-justified character with length

Octal integer

Octal integer with leading zeros and
minimum number of digits

Hexadecimal integer

Hexadecimal integer with leading zeros
and minimum number of digits

Logical

Causes the beginning of a new record.

t The / descriptor is nonrepeatable as described in the ANSI standard.

8-10 SR-0018 B

Legend for descriptors in table 8-1:

W Field width in number of character positions in external record;
including leading blanks, + or - , decimal point, and exponent.

d Number of digits to the right of the decimal point within the
field. On output all numbers are rounded.

e Number of digits in the exponent; must not be greater than 6.
m Minimum number of digits to be output.

All of the above values must be unsigned integer constants. wand e
cannot be zero.

Table 8-2. Nonrepeatable Format Descriptors

Format
Function Descriptor Description

Real-number
magnitude

kp Scale factor for later F, E, G, and
D descriptors. Multiplier is 10k •

Character output " or ' Literal string within format

Hollerith Data nH Output Hollerith string

Blank Control BN Blanks ignored

BZ Blanks treated as zeros

Format Control Terminate format control

Position Control Tn Character position within record

TRn position forward

TLn Position backward

nx Position forward

$ Suppress carriage control

Plus sign control SP Include plus signs on positive values

SS,S Suppress plus signs

k Scale factor
n Number of positions: positive nonzero integer

SR-0018 B 8-11

Table 8-3 describes the usage of the CFT?? format descriptors with data
types. * indicates legal usage for input and output. + indicates legal
usage for output. - indicates illegal usage.

Table 8-3. Format Descriptors with Data Types

Format Descriptors

Data Types I F E D G L A 0 Z R

Character *
Complex * * * * * * * *
Double-precision * * * * +

Integer * * * * *
Logical * * * *
Real * * * * * * * *

Format restrictions for integer, logical, and real variables can be lifted
using SEGLDR and its EQUIV directive. To change the limitations for read
and write operations, specify EQUIV=$RNOCHK($RCHK) or
EQUIV=$WNOCHK($WCHK), respectively. Both of these EQUIV statements must
be specified if changes are desired. Table 8-4 describes the format
descriptors and data types when SEGLDR and the EQUIV directive is used.
* indicates legal usage for input and output. - indicates illegal usage.

Table 8-4. Format Descriptors and Data Types when SEGLDR and the
EQUIV Directive are Used

Format Descriptors

Data Types I F E D G L A 0 Z R

Integer * * * * * * * * *
Logical * * * * * * * * *
Real * * * * * * * * * *

8-12 SR-0018 B

8.5 FORMATTING REAL NUMBERS (F, E, G, D)

This subsection describes 1/0 formatting of real numbers, including
double precision. Real values can be formatted with the F, E, and G
descriptors; their use for output is described in 8.5.1 through 8.5.3.
Because these descriptors have the sarne effect on input, their use for
input is described separately in 8.5.4.

The following general rules apply to output of real values:

• A positive or zero internal value in the field is prefixed with
blank characters except as described in 8.8.5 for plus-sign
control (S descriptors). A negative internal value in the field
is prefixed with blank characters followed by a minus sign.

• The value is right-justified in the field. If the number of
characters produced by the formatting is smaller than the field
width, leading blanks are inserted in the field.

• If the number of characters exceeds the field width, the entire
field is filled with asterisks.

Real output using the F, E, and G descriptors lets you choose between
scientific and conventional notation; G results in the use of scientific
notation only when the output field cannot otherwise accommodate a given
value. Table 8-5 illustrates how these descriptors affect output.

Table 8-5. Real Output Values with F, E, and G Descriptors

Internal (F12.5) (E12.5) (G12.5)

269181.0 269181.00000 0.26918E+06 0.26918E+06

-269181.0 ************ -0.26918E+06 -0.26918E+06

26918.1 26918.10000 0.26918E+05 26918.

-41.27 -41.27000 -0.41270E+02 -41.27

0.38176 0.38176 0.38176E+00 0.38176

0.038176 0.03817 0.38176E-01 0.38176E-01

0.00038176 0.00038 0.38176E-03 0.38176E-03

SR-0018 B 8-13

8.5.1 REAL OUTPUT WITHOUT EXPONENT (F)

Use the Fw.d descriptor to express a real value as a decimal number with
no exponent. The value occupies w positions, and the fractional portion
consists of d digits.

The output field consists of blanks, if necessary, followed by a minus
sign if the internal value is negative, followed by a string of digits
that contains a decimal point. This string of digits represents the
magnitude of the internal value. The value is altered by an applicable
scale factor and is rounded to d fractional digits.

If the output field value is less than 1, a single 0 is written
immediately to the left of the decimal point, space permitting. If the
output field value is 0 and d is 0, a single 0 is written. In no other
cases are leading zeros written. If the value is too large to print in
the specified field, the field is filled with asterisks. If the value is
an out-of-range floating-point value, a single R is printed,
right-justified in the field.

Examples:

Internal F Output Field Positions
Representation Descriptor 1 2 3 4 5 6 7 8 9 10

3.1415926 F10.5 3 . 1 4 1 5 9

-3.1415926 F7.4 - 3 . 1 4 1 6

747 F4.0 7 4 7 .
0 F8.6 0 . 0 0 0 0 0 0

0 F8.5 0 . 0 0 0 0 0

0 F7.6 . 0 0 0 0 0 0

The ANSI Fortran Standard does not specify output formatting for values

too large to be printed in the specified field.

8-14 SR-0018 B

8.5.2 REAL OUTPUT WITH EXPONENT (E)

Use the Ew.d and Ew.dEe descriptors to represent real numbers in
scientific notation; that is, with exponents. w indicates that the
external field occupies w positions. The exponent portion consists of e
digits. If the value is an out-of-range floating-point value, a single R is
printed, right-justified in the field.

The format of the output field in the absence of the P descriptor
(see 8.5.5) is as follows:

x1x2 ••• xd
The most significant digits of the rounded data

exp Decimal exponent of one of the following forms

Table 8-6 shows the forms used for exponents with E formatting. Each n
is a single digit. If lexpl~1000, the entire field is shifted left one
position to provide for n4; if space has not been provided, the entire
field is replaced with asterisks. If e is greater than the number of
digits necessary to express exp, leading zeros are inserted. w ~ d+5.

Table 8-6. Output of Exponents with E Descriptor

Absolute Value Output Form
Descriptor of Exponent of Exponent

Ew.d exp = 0 E+OO

Ew.d O<lexpl~99 E,:tm1m2

Ew.d 100~lexpl~999 ,:tm1m2m3

Ew.d 1000~lexpl~2466 ,:tm1m2m3m4

Ew.dEe lexpl~(10**e)-1 E.:tm1m2m3··· ne

SR-0018 B 8-15

Internal E Output Field Positions
Representation Descriptor 1 2 3 4 5 6 7 8 9 10 12

365.26 E10.2 o . 3 7 E + 0 3

-365.26 E11.5 - . 3 6 5 2 6 E + 0 3

• 000000099 E11.3 0 . 9 9 0 E - 0 7

100. E11.2E1 . 1 0 E + 3

100. E11.2E4 . 1 0 E + 0 0 0 3

8.5.3 REAL OUTPUT WITH OPTIONAL EXPONENT (G)

Use the Gw.d and GW.dEe descr~ptors to output real numbers in
scientific notation only when the field cannot accommodate conventional
notation. w, d, and e have the same meanings as in F formatting. The
total output field width w must be at least 6 spaces wider than the
fractional value d, to accommodate the decimal point, signs, and
exponent notation.

Each value's representation depends on its magnitude. Table 8-7 shows how
values are formatted for a magnitude of M. The number of spaces (nx) is
4 for descriptors with no Ee value, and e+2 when Ee is present. k
is the scale factor, which is effective only if a value's magnitude
exceeds the range for F formatting.

8-16

Table 8-7. GW.d and GW.dEe and Equivalent F or E Descriptors

Magnitude of Data

O.l<M<l

1<M<10

M<O.l or M>10d

Equivalent
Descriptors

F(w-n).d,nx

F (w-n) • (d-1) , nx

F(w-n).l,nx

F(w-n).O,nx

kP,Ew.d

SR-0018 B

Examples:

Internal G Output Field Positions
Representation Descriptor 1 2 3 4 567 8 9 10 12

-324.876 G12.6 - 3 2 4 . 8 7 6

• 487295343397 G10.5 . 4 8 7 3 0

-72.59 G10.3 - 7 2 . 6

• 000000000019 G12.2 · 1 9 E - 1 0

.000000000019 G9.1 . 2 E - 1 0

10000. G12.2 · 1 0 E + 0 5

10000.01 G12.2 · 1 0 E + 0 5

10000. G12.2E1 . 1 0 E + 5

10000. G12.2E4 . 1 0 E + 0 0 0 5

8.5.4 REAL INPUT (F, E, G)

This subsection describes the input of real values with the F, E, and G
descriptors, which behave identically for input. The following rules
apply to real input formatting:

• Leading blanks are not significant.

• Plus signs can be omitted.

• A field of all blanks has the value O.

• A decimal point appearing in the input field overrides the portion
of a descriptor that specifies the decimal point location.

• The input field can have more digits than are used by the processor
in approximating the value of the data. The excess digits are used
for round-off but are otherwise discarded.

SR-0018 B 8-17

The E, F, and G descriptors take the following forms:

Fw.d

Ew.d

Gw.d

w

d

e

Ew.dEe

Gw.dEe

Total positions in the input field

Number of digits in the fractional portion. If the input
value contains more than this number of digits, the number
of digits that fit in the total field length are stored.
(The number of input fractional digits includes not only
those shown explicitly, but also those resulting from an
exponent in the input value or from an applicable kp scale
factor.)

Number of digits in the exponent

The input field consists of an optional sign followed by a string of
digits including an optional decimal point, followed by an optional
exponent. The exponent can take one of the following forms.

• Signed integer constant

• E followed by an optionally signed integer constant

• D followed by an optionally signed integer constant

An exponent containing a D is processed identically to an exponent
containing an E.

Examples:

Input Field Positions Format Internal
1 2 3 456 7 8 9 10 Descriptor Representation

1 7 8 7 . 1 9 8 7 F9.4 1787.1987

- 1 7 8 7 . 1 9 8 7 F10.4 -1787.1987

6 . 0 2 3 D 2 3 F8.3 602300000000000000000000.

+ 1 0 4 8 5 7 5 . 7 5 E11.2 1048575.75

1 . 5 9 2 E 3 E12.3 1592 .

8-18 SR-0018 B

Input Field Positions
1 2 3 4 5 6 7 8 9 10

- 3 2 • 7 6 8 D 0 4

+ 8 7 8 • 492 1

Format
Descriptor

E10.3

G9.4

Internal
Representation

-327680.

878.4921

When they fit in the total field width, extra fractional digits in
the input take precedence over the d fractional value in the
descriptor:

- 1 7 8 7 . 1 9 8 7 F10.3 -1787.1987

- 1 0 4 8 5 7 5 . 7 5 E11.0 -1048575.75

4 7 2 1 . 0 E - 2 G12.1 47.21

. 6 2 9 0 0 0 0 G10.2 -.629

Rightmost decimal digits are truncated when the total field length
is too short to accommodate them:

- 1 7 8 7 • 198 7 F9.4 -1787.198

If you omit the decimal point, the compiler uses the rightmost d digits
of the string as the fractional part of the value, with leading zeros
assumed if necessary. This requires that format specifications be
perfectly matched to the form of your input data and therefore increases
the risk of invalid data. To make sure your data is correct, it is
suggested that you include explicit decimal points.

Examples:

Input Field Positions Format Internal
1 2 3 4 5 6 7 8 9 10 12 Descriptor Representation

1 9 8 7 F4.0 1987.

1 9 8 7 F4.4 .1987

1 9 8 7 F2.0 19.

6 5 5 3 6 E - 5 E8.3 .00065536

3 8 E11.11 .00000000038

- 1 4 9 2 E - 3 F8.0 -1.492

7 2 D 1 0 G5.0 720000000000.

SR-0018 B 8-19

8.5.5 DOUBLE-PRECISION (D)

D formatting is used for double-precision real numbers; its use is
identical to E formatting.

8.5.5 SCALE FACTOR (P)

The P descriptor takes the form kp, where k is an optionallk signed
integer constant called the scale factor. kp represents 10 as a
multiplier.

The scale factor is 0 at the beginning of each IIO statement. It applies
to all subsequently interpreted F, E, D, and G descriptors until another
scale factor is encountered and established. Note that reversion of
format control does not affect the established scale factor.

The scale factor, k, affects formatting in the following ways:

• With F, E, D, and G input formatting (provided that no exponent
exists in the field) and with F output formatting, the scale factor
causes the externally represented number to correspond to the
internally represented number multiplied by 10 to the kth power.

• On input with F, E, D, and G formatting, the scale factor has no
effect if there is an exponent in the field.

• On output with E and D formatting, the basic real constant part of
the quantity to be produced is multiplied by the kth power of 10
and the exponent is reduced by k.

• On output with G formatting, the effect of the scale factor is
suspended unless the magnitude of the data to be formatted requires
the use of E formatting. In this case, the scale factor has the
same effect as with E output formatting.

Examples:

Input
field: 9876.54 98.7654E2 9876.54 987.654

FORMAT
statement: FORMAT (2PF8.3, -2PE9.4, F9.4, OPG9.4)

Internal
representation: 98.7654 9876.54 987654. 987.654

8-20 SR-0018 B

Internal
representation: 9.87654 9876.54 9876.54 987.654

FORMAT
statement: FORMAT (2PF12.2, -2PE12.4, F12.4, 1PG12.2)

Output
field: 987.65 0.0099E+06 98.7654 9.88E+02

Scale factor k controls decimal normalization. If -d~k~O, there are
Ikl leading zeros and d-Ikl significant digits after the decimal point.
If 0<k«d+2), there are k significant digits to the left of the decimal
point and d-k+1 significant digits to the right of the decimal point.
Other values of k are not permitted.

8.6 FORMATTING OTHER DATA TYPES

This subsection presents descriptors that are used for integer, complex,
and logical values, and bit strings in octal or .hexadecimal form.

8.6.1 INTEGER (I)

The Iw and Iw.m descriptors are used for integers, and indicate that
the field to be formatted occupies w positions. The specified I/O list
item must be of type integer. On input, the specified list item becomes
defined with an integer value. On output, the specified list item must be
defined with an integer value.

In the input field, the character string must be in the form of an
optionally signed integer constant. Leading blanks in the input field are
ignored. The Iw.m descriptor is treated identically to the Iw
descriptor.

The output field for the Iw descriptor consists of zero or more leading
blanks followed by a minus if the value of the internal datum is negative,
followed by the magnitude of the internal value in the form of an unsigned
integer constant without leading zeros. If the value (plus the possible
minus sign) exceeds w digits, the field is filled with asterisks.

If the Iw.m descriptor is used on output, the unsigned, integer constant
consists of at least m digits and, if necessary, has leading zeros. The
value of m must not exceed the value of w. If m is 0 and the value
of the internal datum is 0, the output field consists of only blank
characters.

SR-0018 B 8-21

Example (_ represents a blank character):

READ 20,I,J,K
20 FORMAT(I2,I5,I3)

PRINT 10,I,J,K
10 FORMAT(I5,I3,I4)

~ input line

Execution of the above results in the following printout:

8.6.2 COMPLEX

Complex data consists of a pair of separate real data. Data formatting
must be specified by two successively interpreted A, D, E, F, G, 0, R, or
Z descriptors. The first of the descriptors specifies formatting for the
real part; the second for the imaginary part. The two descriptors can
differ. Nonrepeatable descriptors can appear between two successive A, D,
E, F, G, 0, R, or Z descriptors.

8.6.3 LOGICAL (L)

The Lw descriptor indicates processing of a logical list item and an
input or output field width of w positions. The specified 1/0 list item
must be of type logical. On input, the list item becomes defined with
logical data. On output, the list item must be defined with logical data.

The input field consists of a T for true or an F for false, optionally
followed by additional characters. The field can contain a leading period
or leading blanks.

The output field consists of w-1 blanks followed by a T or F, depending
on the value of the internal data.

8-22 SR-0018 B

Examples:

Input Field positions
1 2 3 4 5 6 7 8 9 10 12

T

. T RUE

F

• F A L S E

T 1 2 3

F ABC

. T

. F

Internal L
Representation Descriptor

(true) L6

(false) L12

(true) LI0

(false) Ll

(true) Ll

(false) L3

SR-0018 B

L Internal
Descriptor Representation

Ll (true)

L4 (true)

L3 (false)

L12 (false)

L7 (true)

L9 (false)

L12 (true)

L12 (false)

Output Field Positions
1 2 3 4 5 6 7 8 9 10 12

T

F

T

F

T

F

8-23

8.6.4 OCTAL (0) (CFT77 EXTENSION)

The Ow descriptor specifies octal representation of a list item of type
integer, real, complex, Boolean, or logical and a field width of w
positions. A double-precision list item can be used with an Ow
descriptor for output only. The octal value represents the bit content of
the list item in memory, not its numeric value as used within a program.

Example:

R=10.0
I=10
WRITE(*, '(022/022)')R,I

The above code writes values R and I as follows:

0400045000000000000000
0000000000000000000012

On input, the field contains a string of from 0 to 22 octal digits or
blanks, representing a binary value to be stored into the list item. This
value represents a bit pattern that is interpreted depending on the data
type of the value, as shown in appendix G.

The value is right-justified in the list item if fewer than 22 octal
digits are contained in the field. Unspecified bit positions are cleared
to O. A blank field is considered to be a field containing all zeros. If
the first nonblank character in the field is a minus, the ones complement
of the value is stored.

On output, the internal representation of the list item is converted to
octal and the rightmost w octal digits are right-justified in the field.

If the list item is not of type double-precision and the field is larger
than 22 positions, the output contains leading blank characters. If the
list item is of type double-precision and w is greater than 45, the
output contains leading blank characters. If w is greater than 22, a
blank character occupies position (w-22) in the output field. This
character indicates the beginning of the double-precision portion. To
completely output a double-precision value, the value of w must be at
least 45.

8-24 SR-0018 B

8.6.5 HEXADECIMAL (Z) (CFT77 EXTENSION)

The Zw descriptor specifies hexadecimal representation of a list item of
type integer, real, complex, Boolean, or logical and a field width of w
positions. The hexadecimal value represents the bit content of the list
item in memory, not its numeric value as used within a program.

Example:

R=10.0
1=10
WRITE(*, '(Z16/Z16)')R,I

The above code writes values R and I as follows:

4004AOOOOOOOOOOO
OOOOOOOOOOOOOOOA

On input, the field contains a string of from 0 to 16 hexadecimal
characters representing a value to be stored into the list item. This
value represents a bit pattern that is interpreted depending on the data
type of the value, as shown in appendix G.

This value is right-justified in the list item if fewer than 16
hexadecimal characters are contained in the field; leading zeros are
assumed. A blank field is assumed to be a field of all zeros. If the
first nonblank character in the field is a minus, the ones complement of
the value is stored.

On output, the internal representation of the list item is converted to a
zero or positive hexadecimal value and the rightmost w digits are
right-justified in the field. If the field is larger than 16 positions,
leading blank characters are output.

SR-0018 B 8-25

8.7 FORMATTING CHARACTER DATA (A, I, ", H)

Most transfers of character data use the A descriptor. Single and double
quotation marks allow a literal string to be included directly in a format
line. H is used for output of Hollerith data.

8.7.1 CHARACTER TYPE (A)

Use the A[W] descriptor for IIO list items of type character. (See
appendix E.3.3 concerning the use of Aw with other data types.) There
are three character lengths to consider:

• len is the character length of the list item, as declared in your
program by CHARACTER*len.

• W is the character length of the transfer field, as in the format
descriptor A8; if W is not specified, the field has the same length
as the list item. The relation between wand len is described in
the next paragraph.

• For input, the length, s, of a string to be read might differ from
w. If w < s, only the leftmost w characters are read. If w > s,
the string is left-justified in the field.

If len i w, the data is handled as follows:

On input:

On output:

w > len

The rightmost len
characters of the input
field are stored.

The item from storage
is right-justified within
the output field,
preceded by blanks.

w < len

Input characters are
left-justified in storage,
followed by blanks.

Field contains the
leftmost w characters
from storage.

Input examples for a list item declared as CHARACTER*6:

Input Positions A Storage Positions
1 2 3 4 567 8 Descriptor 1 2 3 4 567 8 Case

A B C D E F G H A or A6 A B C D E F w = len

A B C D E F G H A4 A B C D w < len

A B C D E F G H A8 C D E F G H w > len

8-26 SR-0018 B

Output examples for a list item declared as CHARACTER*6:

Storage positions A Output positions
1 2 3 4 S 6 7 8 Descriptor 1 2 3 4 S 6 7 8 Case

A B C D E F A or A6 A B C D E F W' = len

A B C D E F A4 A B C D W' < len

A B C D E F A8 A B C D E F W' > len

8.7.2 OUTPUT STRINGS WITHIN FORMAT LINES (, , ")

Use the apostrophe or quotation mark descriptor to include a literal
character string, including blanks, in a format specification. These
descriptors apply only to output. The width of the field is the number of
characters contained between (but not including) the delimiting quotation
marks or apostrophes. Within the field, two adjacent apostrophes or
quotation marks are counted as one and not as members of a delimiting
apostrophe or quotation mark character pair, respectively.

The ANSI Fortran Standard does not include the quotation mark descriptor.

Example:

INTEGER J,B,G

WRITE(*,12) J,B,G
12 FORMAT(' John"s: ',12/," Bill's: ",12/,' "Great": ',12)

Execution of the above produces the following printout:

John's: 4
Bill's: 6
"Great": 10

8.7.3 HOLLERITH CHARACTER OUTPUT (H)

The nH descriptor causes character information to be written from the
n characters (including blanks) following the H of the descriptor. An H
descriptor can be used only for output. Hollerith is discussed in E.1.

Example:

WRITE(41,16)
16 FORMAT(' LABEL',SH UNIT,' 41')

SR-0018 B 8-27

8.8 SPECIAL-PURPOSE DESCRIPTORS (T, X, I, :, B, S, $)

This subsection describes special-purpose descriptors for position
control, the use of blanks, the use of plus signs, printer control, and
format control.

8.8.1 POSITION CONTROL (T, TL, TR, X)

The T, TL, TR, and X descriptors specify the position where the next
character will be transmitted to or from within the record. This allows
portions of a record to be written or read more than once, possibly with
different formatting.

The Tc descriptor specifies an absolute character position, c, within the
record. The TL, TR, and X descriptors specify a character position
relative to the current position: TLn moves n spaces to the left, and TLn
or nx moves n spaces to the right. If n in TLn exceeds the current
character position, the new position is the first character. If the use
of T, TR, or X specifies a position past the end of the record, the record
is extended to include that position, and the extra positions are filled
with blanks.

These descriptors allow you to replace a character that is already in the
record, without affecting other characters. The new position is the
position following the most recently written position.

Example:

8-28

CHARACTER*l N,S,JR*2,NAME*12
NAME='norm swenson'
N='N'
S='S'
JR='Jr'
WRITE(*,'(lX, A12, T2, A1, T7, A1, T1S, A2)') NAME,N,S,JR
WRITE(*, '(lX, A12, TL12, A1, 4X, A1, 7X, A2)') NAME,N,S,JR
WRITE(*,'(lX, A12, TL12, A1, TR4, A1, TR7, A2)') NAME,N,S,JR

All three WRITE statements above write the following record:

Norm Swenson Jr

The formats shown include an initial blank space for printer control.
This space must be accounted for in the use of the T descriptor. The
space between Swenson and Jr is not included in character values NAME
or JR; it results only from the positioning specified by the
descriptors. Notice that the TR and X descriptors use the same
character counts and have the same effects.

SR-0018 B

8.8.2 END OF RECORD (/)

The slash descriptor indicates the end of a record. During transmission
from a file, the remaining portion of any current record is skipped and
the file is positioned at the beginning of the next record. If no current
record exists, the file is positioned after the next record. During
transmission to a file, an empty record is written as the last record of
the file. Thus, an empty record can be written on output and an entire
record can be skipped on input.

Slash formatting of n adjacent records can be specified by the appearance
of n consecutive slashes (optionally separated by commas) or by preceding
a single slash with a value, n, equal to the number of records to be
processed.

The ANSI Fortran Standard does not provide for a repeat count for
slash formatting.

Examples:

PRINT 39
39 FORMAT('lLINE 1',/,' LINE 2'/' LINE 3'///' LINE 6')

READ(99,42) RECORD3
42 FORMAT(2/, ••.)

8.8.3 TERMINATE FORMAT (:)

The colon prevents the printing of some or all text information by a
format that is used with a varying number of list items. When encountered
in a format specification, a colon descriptor terminates the formatted
transfer of data if no I/O list items remain to be processed. If
unprocessed I/O list items remain, the colon descriptor has no effect on
format control. Termination of format control by a colon descriptor
causes the record being processed to become the preceding record.

Examples:

(1)
PRINT 10,X

10 FORMAT(' X= 'F10.5,· Y= 'F10.5)

Execution of the above results in the following printout:

X= 1234.56789 Y=.

SR-0018 B 8-29

(2)
PRINT 20,X

20 FORMAT(' X= 'F10.5,:' y= 'F10.5)

Execution of the above results in the following printout:

X= 1234.56789.

8.8.4 INTERPRETING BLANKS (BN, BZ)

The BN and BZ descriptors specify whether blanks other than leading blanks
are interpreted as nulls (ignored) or zeros. BN and BZ affect only input
fields using the I, F, E, D, or G descriptors.

Either descriptor overrides the BLANK= specification in the file's OPEN
statement, which defaults to NULL or BN. Notice that this default is the
same for both opened files and default files, but programs ported from
other vendors' systems may have been written on the assumption that
default files use BZ as the default for blank interpretation. The ANSI
standard does not specify a default.

The BN descriptor causes blanks to be ignored. Ignoring blanks has the
effect of removing blanks, right-justifying the remaining portion of the
field, and replacing the removed blanks as leading blanks. A field of all
blanks has the value O. The BZ descriptor causes nonleading blank
characters to be treated as zeros.

Either descriptor applies to all subsequent descriptors in the
specification until the next BN or BZ descriptor, if any. Example:

40 FORMAT (BZ,F6.3,2X, BN,F5.1,2X,F9.7)
50 FORMAT (F6.3,2X, BZ,F5.1,2X,F9.7)

In the first statement aboye, BZ applies to the first F descriptor;
the BN descriptor applies to the second and third F descriptors. In
the second statement, the default value of BN applies until the BZ
descriptor, which applies to the second and third F descriptors.

8.8.5 PLUS SIGN CONTROL (S, SP, SS)

The S, SP, and SS descriptors control plus signs in numeric output
fields. Normally, the compiler suppresses plus signs. The SP descriptor
causes plus signs to be produced on numeric output fields until either an
S or an SS descriptor is encountered. The SS descriptor specifies
suppression of plus signs; the S descriptor restores the normal compiler
option, which, in this case, is also the suppression of plus signs.

8-30 SR-0018 B

8.8.6 CARRIAGE CONTROL ($) (COS ONLY, CFT77 EXTENSION)

The dollar sign character ($) in a format specification modifies the
carriage control specified by the first character of the record. In an
output statement, the $ descriptor suppresses the carriage return/line
feed. In an input statement, the $ descriptor is ignored. The $
descriptor is intended primarily for interactive I/O; it leaves the
terminal print position at the end of the text (instead of returning it to
the left margin), so a typed response follows the output on the same line.

Example:

WRITE (6,100)
100 FORMAT(' WHAT IS YOUR NAME?',$)

READ (5,105) NAME
105 FORMAT (4A8)

Execution of the above results in the following printout:

WHAT IS YOUR NAME?

The response (in this example, HARRY) can go on the same line:

WHAT IS YOUR NAME? HARRY

SR-0018 B 8-31

CRAY 1/0 EXTENSIONS 9

This section describes nonstandard liD features of CFT77: buffer in and
buffer out, NAMELIST, and random I/O.

9.1 BUFFER IN AND BUFFER OUT STATEMENTS (CFT77 EXTENSIONS)

BUFFER IN and BUFFER OUT cause data to be transferred while allowing the
subsequent execution sequence to proceed concurrently. BUFFER IN and
BUFFER OUT operations can proceed simultaneously on several units or
files. BUFFER IN is for reading; BUFFER OUT is for writing. A buffered
operation includes only data from a single array or a single common block.

Either statement initiates a data transfer between the specified file or
unit (at the current record) and the specified memory range. If the unit
or file is completing a buffered IIO operation initiated earlier, BUFFER
IN or BUFFER OUT suspends the execution sequence until the earlier
operation is complete. At termination, execution of the BUFFER IN or
BUFFER OUT statement completes as if no delay had occurred.

Under UNICOS, BUFFER IN and BUFFER OUT work only on pure data files.
Under COS, they work on unblocked files (equivalent to pure data), and
also on blocked; but blocked files are considerably slower, and BUFFER OUT
cannot be used on blocked random datasets. The pure datalunblocked
structure must be specified to the operating system, as shown in
subsection 9.2.1. File structures are discussed in 7.3.1.

Buffered data transfers must be performed in multiples of 512 words,
except those on COS blocked datasets.

Use the UNIT or LENGTH function to delay the execution sequence until the
buffered liD operation is complete (see 9.1.1 and 9.1.2). These functions
can also return information about the liD operation at its termination.
You can use SETPOS with BUFFER IN and BUFFER OUT for random positioning;
see 9.2.1 and the Programmer's Library Reference Manual, CRI publication
SR-0113.

SR-0018 B 9-1

BUFFER IN (id,m) (bloc,eloc)

BUFFER OUT (id,m) (bloc,eloc)

id

m

bloc
eloc

Identifier, one of the following:

Unit identifier expressed as an integer or as a
Hollerith expression of up to seven characters

File name expressed as a character string or a
character or integer variable containing Hollerith data
of up to seven characters. The file identifier cannot
be used on the CRAY-2 system.

Mode identifier controls the record position following the
data transfer; must be an integer expression. Discussed in
the following text. The mode identifier is not used on the
CRAY-2 system; only full-record processing is available.

Symbolic names of the variables, arrays, or array elements
that mark the beginning and end locations of the buffered
I/O transfer. Must be either elements of a single array (or
equivalenced to an array) or members of the same common
block. Neither eloc nor bloc can be a character entity.

The mode identifier m controls the position of the record at unit u
after the data transfer is complete. Values of m have the following
effects:

• m>O causes full record processing, so that file and record
positioning works as with conventional I/O. The record position
following such a transfer is always between the current record (the
record with which the transfer occurred) and the next record.
BUFFER OUT with m>O ends a series of partial-record buffered
output transfers.

• m<O causes partial record processing. In BUFFER IN, the record is
positioned to transfer its (n+l)th word if the nth word was the
last transferred. In BUFFER OUT, the record is left positioned to
receive additional words.

The amount of data to be transferred is specified in 'Cray words without
regard to types or formats. However, the data type of eloc affects the
exact ending location of a transfer. If eloc is double-precision or
complex, the location of the second word in its two-word form of
representation marks the ending location of the data transfer.

9-2 SR-0018 B

BUFFER OUT with bloc=eloc+l causes a zero-word transfer and concludes
the record being created. Except for terminating a partial record, bloc
following eloc in a storage sequence causes a run-time error.

Example:

PROGRAM XFR
DIMENSION A(1000), B(2,10,100), C(500)
BUFFER IN(32,0) (A(1),A(1000»

DO 10 J=1,100
B(l,l,J) = B(l,l,J) + B(2,1,J)

10 CONTINUE
BUFFER IN(32,0) (C(1),C(500»
BUFFER OUT(22,0) (A(1),A(1000»

END

The BUFFER IN statement above initiates a transfer of 1000 words from
unit 32. Processing unrelated to that transfer proceeds; when this is
complete, a second BUFFER IN is encountered, causing a delay in the
execution sequence until the last of the 1000 words is received. A
transfer of another 500 words is initiated from unit 32 as the
execution sequ~nce continues. A BUFFER OUT begins the transfer of the
first 1000 words to unit 22. m=O in all cases, indicating full
record processing.

9.1.1 THE UNIT FUNCTION

After execution of BUFFER IN or BUFFER OUT, the normal execution sequence
continues concurrently with the data transfer. If the UNIT function is
called in this execution sequence, the sequence is delayed until the
transfer is complete. After the BUFFER IN operation, use the UNIT or
LENGTH function before using memory locations where the data is stored.

When the transfer is complete, the UNIT function provides one of the
following real data type values to the expression that calls it.

CRAY X-MP computer system:

-2.0

-1.0

0.0

1.0

2.0

SR-0018 B

Partial record read operation (BUFFER IN with m<O) completed
successfully without encountering the end of the current record

Operation other than a partial read completed successfully

End-of-file was read

Disk parity error occurred during reading

Other device malfunction occurred during reading or writing

9-3

CRAY-2 computer system:

-1.0 Successful completion.

0.0 An end-of-file was read.

1.0 An error occurred.

Example:

PROGRAM TESTUNIT
DIMENSION M(200,S)

10 BUFFER IN (32,0) (M(1,1),M(200,S»
IF (UNIT(32) .GE. 0.0) GOTO 14

11 0013 J=1,5
0012 1=1,200

M(I,J)=M(I,J)*2
12 CONTINUE
13 CONTINUE

BUFFER OUT (22,0) (M(1,1),M(200,5»
IF (UNIT(22) .LT. 0.0) GOTO 10

14 END

9.1.2 THE LENGTH FUNCTION

If the LENGTH function is called during a buffered I/O operation, the
execution sequence is delayed until the transfer is complete. LENGTH then
returns the number of Cray words successfully transferred. This value is
o if an end-of-file was read.

Example:

PROGRAM PGM
DIMENSION V(16384)

10 BUFFER IN (32,-1) (V(1),V(16384»
X= UNIT(32)
K= LENGTH(32)
IF (X .GE. 0.0) GOTO 14

11 DO 12 I=l,K,l
12 IF (V(I) .EQ. 'KEY') GOTO 13

IF (X .EQ. -2.0) GOTO 10
STOP

13

14 END

9-4 SR-0018 B

I

9.2 RANDOM INPUT/OUTPUT OPERATIONS (CFT77 EXTENSION)

Random access I/O offers high speed along with nonsequential access to
any part of a file. As with direct access, (see 7.11.1), this allows you
to modify the contents of a file without writing over the remainder of the
file. Different kinds of random access I/O are performed by a set of Cray
subroutines, which are documented in the Programmer's Library Reference
Manual, CRI publication SR-0113. This is a summary of the available
routines and their uses.

Table 9-1 shows comparative performance for different aspects of I/O
operations, and table 9-2 shows the general characteristics of these
routines. Buffering is a system activity that frees you from
controlling the lengths of segments being transferred. An unbuffered
transfer is faster because it frees the system from this function. This
buffering is distinct from the concurrent execution allowed by the BUFFER
IN and BUFFER OUT statements.

GETPOS and SETPOS are analogous to using a pointer that is set with the
LOC function. This allows you to control the file position with variable
record lengths, without the need to specify actual record numbers. GETPOS
returns the current record number for a given file; SETPOS sets the record
number for a file. GETPOS and SETPOS can be used with READ and WRITE or
BUFFER IN and BUFFER OUT (see 9.2.1).

GETWA and PUTWA perform read and write operations that are word
addressable, random access, and buffered. They can be synchronous or
asynchronous. They are used only with the pure data/blocked file
structure (see 7.3.1). The buffer defaults to 16 sectors or can be set up
with the WOPEN routine. SEEK can be used to read ahead before GETWA.

READMS and WRITMS perform read and write operations that are record
addressable, of variable record length, and buffered, using the default
buffer size of 16 sectors (also changeable with WOPEN). They can be used
asynchronously if ASYNCMS is called. In this case the calls to READMS and
WRITMS must not be overwritten before the operation is completed; repeated
calls to the same unit do not suspend processing. READMS and WRITMS are
used only with the pure data/blocked file structure (see 7.3.1).

READDR and WRITDR perform read and write operations that are record
addressable and unbuffered. These routines work on multiples of 512
words. SYNCDR makes them synchronous, and ASYNCDR makes them
asynchronous; WAITDR waits until an I/O instruction has completed. For
asynchronous use, the calls to READDR and WRITDR must not be overwritten
before'the operation is completed; repeated calls to the same unit do not
suspend processing. READMS and WRITMS are used only with the pure
data/blocked file structure (see 7.3.1).

SR-0018 B 9-5

Table 9-1. Performance Comparison of liD Methods

Blckd Unblckd Blockd Unblckd Direct READMS READDR GETWA
READI READI BUFINI BUFINI Access WRITMS WRITDR PUTWA
WRITE WRITE BUFOUT BUFOUT

Striping1 C E B A D D A D

Positioning C A C A C C/A2 A C/A2

Random rewrite D A E A D C/A2 A C/A2

File status chk B B B B B B A B

File statistics C C C C C A A A

Sequential spd. A C A C B/D3 B C B

Data reusabilty E E E E E A E A

CPU overhead B A B A B D A D

Memory use B A B A B C A C

A through E indicate relative speeds for different operations. A is the
fastest; E is the slowest.

1 Striping allows two operations to execute simultaneously. When
striping is logical and user-driven rather than a hardware operation,
the transfers must be asynchronous. (See the following example, in
which two BUFFER IN or OUT operations occur at the same time.) BUFFER
IN and BUFFER OUT are asynchronous; READDR and WRITDR also can be.

2 If record length is a multiple of 512, positioning and random rewrite
are enhanced.

3 B for reading, D for writing

9-6 SR-0018 B

Table 9-2. Characteristics of Random I/O Methods

READ, BUFFER IN, GETWA READMS,
WRITE BUFFER OUT PUTWA WRITMS

Sequential or Random either either1 either either

Synchronous or Async. Sync Asynchron. either either

Formatted or Unformtd either Unformatted Unfmtd Unfmtd

Buffered blocked3 yes yes

Buffered unblocked3 yes yes

Unbuffered and unblckd yes 4 yes

1 BUFFER IN and BUFFER OUT do not work on blocked random files.
2 Record length = 512 * n

READDR,
WRITDR

either

either2

Unfmtd

yes

3 This buffering is distinct from BUFFER IN/OUT. See preceding text.
4 Only unformatted

In the above table, the entry yes indicates that this combination of
characteristics is available. A blank box indicates the combination is
not available.

9.2.1 BUFFER IN/OUT WITH SETPOS

The following example shows two subroutines for reading and writing,
offering flexibility and high performance. They use SETPOS with the
BUFFER IN and BUFFER OUT statements, and have the following advantages:

• Large records do not involve extensive overhead and do not need
buffer space.

• I/O is performed directly with the user array.

• Blocking and deblocking do not entail any CPU overhead.

• You can rewrite freely in the file space.

• Two I/O streams can be active simultaneously.

• The file is extendable.

SR-0018 B 9-7

I
This example works only with the pure-data/unblocked file structure. File
structures are discussed in 7.3.1. For files FILEA and FILEB, this
structure is specified as follows.

Under COS:

The following JCL statements should appear before the statement that runs
your program (such as SEGLDR,GO.):

ASSIGN,DN=FILEA,U.
ASSIGN,DN=FILEB,U.

Under UNICOS:

(1) The following works with either shell.

env FILENV=asnfile assign -s u FILEA
env FILENV=asnfile assign -s u FILEB

env FILENV=asnfile a.out

(2) The following works with the Bourne shell:

FILENV=asnfile
export FILENV
assign -s u FILEA
assign -s u FILEB

a.out

(3) The following works with the C shell:

setenv FILENV=asnfile
export FILENV
assign -s u FILEA
assign -s u FILEB

a.out

In the example, I and M are record numbers; ISIZE is the record size.
Each record holds one complete array. Subroutines FILLA, FILLB, and
COMPUTE are not shown; the first two put initial data in the arrays, and
the third changes this data.

9-8 SR-0018 B

I

I

C

PARAMETER (NRECS = 100)
PARAMETER (ISIZE = 65536)
REAL ARRAYA(ISIZE), ARRAYB(ISIZE)

Number of records
Must be multiple of 512

OPEN (UNIT=l,FILE='FILEA',ACCESS='DIRECT',FORM='UNFORMATTED')
OPEN (UNIT=2,FILE='FILEB',ACCESS='DIRECT',FORM='UNFORMATTED')

Write initial data to two files simultaneously

DO 10 I=l,NRECS
CALL FILLA (ARRAYA,ISIZE,I) Fill ARRAY with data to write
CALL FILLB (ARRAYB,ISIZE,I)
CALL RDMWRITE (l,ARRAYA,I,ISIZE) ARRAYA to record I on unit 1
CALL RDMWRITE (2,ARRAYB,I,ISIZE) ARRAYB to record I on unit 2

10 CONTINUE

C Read random record N from both files and rewrite. l<N<NRECS

N = NRECS
CALL RDMREAD (l,ARRAYA,N,ISIZE)
CALL RDMREAD (2,ARRAYB,N,ISIZE)
CALL IWAIT(l) Calls to IWAIT follow RDMREAD calls
CALL IWAIT(2) so both streams can go in parallel
CALL COMPUTE (ARRAYA,ARRAYB,N,ISIZE) Alter array contents
CALL RDMWRITE (l,ARRAYA,N,ISIZE) ! Rewrite in place
CALL RDMWRITE (2,ARRAYB,N,ISIZE)
END

C Subroutine sets file to record M. Assume record sizes are fixed and
C equal to ISIZE,which must be a multiple of 512. IWA=O is start of file.

SUBROUTINE RDMWRITE (IUNIT,ARRAYX,M,MSIZE)
DIMENSION ARRAYX(MSIZE)
IWA = (M-l) * MSIZE
CALL IWAIT (IUNIT)

Start adrs = records x record size
Unit must be idle for SETPOS to work

CALL SETPOS (IUNIT,3,IWA)
BUFFER OUT (IUNIT,l) (ARRAYX(l),ARRAYX(MSIZE»
RETURN
END

SUBROUTINE RDMREAD (IUNIT,ARRAYX,M,ISIZE)
DIMENSION ARRAYX(ISIZE)
IWA = (M-1)*ISIZE
CALL IWAIT (IUNIT)
CALL SETPOS (IUNIT,3,IWA)
BUFFER IN (IUNIT,l) (ARRAYX(l),ARRAYX(ISIZE»
RETURN
END

SUBROUTINE IWAIT (NUNIT)
X = UNIT(NUNIT) Waits for operation to complete
END

SR-0018 B 9-9

I

9.3 NAMELIST STATEMENT (CFT77 EXTENSION)

The NAMELIST statement gives a name toa list of variables or arrays; the
name can then be used in an 1/0 statement in place of the 1/0 list.
Namelist 1/0 uses a standard format for input and output files, in the
form var=value; for example X=1.0. Figure 9-1 is an example showing
Fortran code with namelist input and output.

NAMELIST/grouplv[,v] ••• [[,]lgrouplv[,V] •.•] •••

group Group name for the following list, cannot be used in any
other way within the program unit.

v Variable name or array name. v cannot be a dummy
argument, a pointee, or a variable in TASK COMMON.

In an 1/0 statement, the group name group is used in place of the 1/0
list but is entered in the position where the format specifier normally
appears. A group name can be used in the following 1/0 statements
(keywords explained in 7.7):

READ
WRITE
READ
PRINT
PUNCH

Example:

(unit,group [,ERR=sn,END=sn])
(unit,group [,ERR=sn])
group
group
group See E.4

NAMELIST/RECORD1/SIZE1,NUM1
READ(5,RECORD1)
WRITE(6,RECORD1)

The above READ statement would read the following input record:

&RECORD1 NUM1=25,SIZE1=1.234 &END

The above WRITE statement would write the following record:

&RECORD1 SIZE1=1.234 NUM1=25 &END

Every occurrence of a group name in any NAMELIST statement after the first
occurrence is treated as a continuation of the first. Lists with the same
group name are treated as a single group.

9-10 SR-0018 B

Program:

PROGRAM EXAMPLE
LOGICAL ALL DONE
REAL LENGTH

Typical NAMELIST usage

DATA DENSITY,LENGTH,WIDTH,HEIGHT,ALLDONE 14*1.0,.FALSE.I
NAMELIST IINPUTI LENGTH, WIDTH, HEIGHT, ALLDONE, DENSITY
NAMELIST IOUTPUTI WEIGHT, LENGTH, WIDTH, HEIGHT, DENSITY

10 READ INPUT
IF (ALLDONE) STOP
WEIGHT = DENSITY*LENGTH*WIDTH*HEIGHT
PRINT OUTPUT
GOTO 10
END

Input:

Input data for program EXAMPLE
Note that comment lines may be interspersed between complete groups

$INPUT $ Use values from DATA stmt if not in file
$INPUT LENGTH = 3.0, ; a long wide case

WIDTH = 3. $
&INPUT

&INPUT
IEOF

Output:

DENSITY = .5
ALLDONE = TRUE

&END
&

&OUTPUT WEIGHT=l., LENGTH=l., WIDTH=l., HEIGHT=l., DENSITY=l., &END
&OUTPUT WEIGHT=9., LENGTH=3., WIDTH=3., HEIGHT=l., DENSITY=l., &END
&OUTPUT WEIGHT=4.5, LENGTH=3., WIDTH=3., HEIGHT=l., DENSITY=0.5, &END

Figure 9-1. Sample Program Using NAMELIST, with Input and Output

SR-0018 B 9-11

I

Variable or array names are separated by commas in the NAMELIST
statement. These names can be members of more than one NAMELIST group.

The NAMELIST statement must follow all declaratives affecting the variable
or array names and must precede the first use of the group name in any lID
statement.

9.3.1 NAMELIST INPUT

An input NAMELIST group record can consist of one or more physical
records. Column 1 is ignored, except for a possible echo flag (CRAY X-MP
only). In the first physical record, the first nonblank character
following column 1 must contain a NAMELIST delimiter ($ or &), immediately
followed by the group name and one or more blanks. The remaining portion
of an input record contains as many variables as needed, with their
assigned values. You may specify as many variables as you want and in any
order. Use commas to separate items and to separate values for elements
of the same array. Input items take the following forms.

variable=value

array=value[,value,] ••.

array(subscripts)=value[,value,] •.•

subscript An integer constant; multiple array values are assigned in
storage order. Any value can be repeated by n*value,
where n is the repetition count.

Example:

REAL X(100)
NAMELIST/RECORD1/I,X
READ(5,RECORD1)

The preceding code uses the following input record:

&RECORD1 I=10,X=50*O.,51.0,49*O. &END

An input NAMELIST physical record can contain up to 152 characters. Your
site analyst can change this value by altering values in the source code
for the RNL routine, reassembling, and loading the new version with your
program.

9-12 SR-0018 B

Blanks can be used for readability but must not be embedded in names or
values. Names or values cannot be continued from one physical record to
another. A delimiter $ or & terminates a group record. The next group
record begins with the next delimiter.

An optional comment can appear between input NAMELIST group records. It
can also appear within an input NAMELIST group record. A comment within
the record must be preceded by a colon or semicolon. A comment, if
included, is the last item in a physical record. An input NAMELIST group
record can contain only comments, or can be entirely blank.

9.3.1.1 NAMELIST input variables

NAMELIST input variables can be of type integer, real, double prec1s1on,
complex or logical. If a type mismatch occurs across the equal sign, the
value is converted to the declared type of the variable, following the
rules for assignment statements (see table 5-1), except that conversions
between complex and double precision, or logical and any other type are
not allowed.

Character constants can be assigned to noncharacter variables, where they
are treated as Boolean. Character constants cannot be assigned to a
complex or double-precision variable.

Integer, real, and double-precision values are specified in the normal
Fortran manner.

Octal and hexadecimal constants are considered to be Boolean. They are
specified as follows:

• Octal constants are specified as dddd ..• dB or as O'ddd ... d['],
where each d is a digit from 0 through 7; each value can include
a maximum of 22 digits •

• Hexadecimal constants are specified as Z'hhh ... h['], where each h
is a hexadecimal digit from A through F; each value can include a
maximum of 16 digits.

If octal and hexadecimal values contain fewer than the maximum number of
digits shown above, the values are right-justified in the input word.

SR-0018 B 9-13

Logical values are specified in one of the following ways:

.T[string] .F[string]

T[string] F[string]

string An optional string used for clarity. For example, .TRUE is
more explicit than T. string cannot contain the following
characters, which have special meanings in namelist 110:

= Replacement
$ or & Delimiter

Separator
or Comment

() Array name indicator

Complex constants are represented as follows:

(real,imag)

real and imag can be integer or floating-point constants.

9.3.1.2 NAMELIST input processing

Variables encountered in the NAMELIST record are redefined with the value
specified; other variables in the group retain their current value.

The NAMELIST processor scans forward from the current position on the
input file until it encounters a delimiter ($ or &) as the first nonblank
character immediately followed by the group name.

If end-of-file or end-of-data is encountered before the group name is
located, the job either aborts or branches to the END= address.

If the processor finds a NAMELIST record other than the one it is looking
for, that record is skipped with an informative message to the logfile.

If the processor encounters an echo flag (E) in column 1 of any record,
that record and all subsequent records processed by the current read are
echoed to $OUT.

9-14 SR-0018 B

The job aborts or the ERR= branch is taken if one or more of the following
conditions exists.

• The record contains a variable name that is not in a NAMELIST
group.

• Punctuation is missing.

• The format of a constant is illegal.

9.3.1.3 User control subroutines

The following routines provide for control of the NAMELIST input
defaults. The mode setting indicates the action to be taken.

CALL RNLSKIP(mode)

mode > 0

mode = 0

mode (0

CALL RNLTYPE(mode)

mode ~ 0

mode = 0

CALL RNLECHO(unit)

unit (0

unit) 0

SR-0018 B

Determines action taken if NAMELIST sees a
group name that is not the one being sought

Skips the record and issues a logfile
message (default)

Skips the record

Aborts the job or goes to the optional ERR=
branch

Determines action taken if a type mismatch
occurs across the equal sign

Converts the constant to the type of the
variable (default)

Aborts the job or goes to the optional ERR=
branch

Specifies output unit for error message and
echo lines

Specifies that error messages go to $OUT.
Lines echoed because of an E in column 1 go
to $OUT. (Default)

Specifies that error messages go to unit.
All input lines are echoed on unit,
regardless of any echo flags present.
(unit=6 or 101 imply $OUT.)

9-15

In the following user control subroutine argument lists, char is a
character specified as 1Lx or 1Rx, and mode is a value which, if
nonzero, adds the character to the set and which, if zero, removes the
character from the set.

No checks are made to determine the reasonableness, usefulness, or
consistency of the changes.

CALL RNLFLAG(char,mode) Adds or removes char from the set of
characters that, if found in column 1,
initiates echoing of the input lines onto
$OUT. (char default is E.)

CALL RNLDELM(char,mode) Adds or removes char from the set of
characters that precede the NAMELIST group
name and signal end of input. (char
default is $ or &.)

CALL RNLSEP(char,mode) Adds or removes char from the set of
characters that must follow each constant to
act as a separator. (char default is ,.)

CALL RNLREP(char,mode) Adds or removes char from the set of
characters that occurs between the variable
name and the value. (char default is =.)

CALL RNLCOMM(char,mode) Adds or removes char from the set of
characters that initiates trailing comments
on a line. (char default is : or ;.)

9.3.2 NAMELIST OUTPUT

An output NAMELIST group record is written in the following general form:

& group variable=value, ... , array=value, ••. ,value, ... ,&END

group, variable, and array
Names corresponding to names in the NAMELIST statement.

9-16 SR-0018 B

For arrays, the values are listed in storage order and repeated values are
listed as n*value. Example:

&OUTPUT ARRAYX=3,7,4*5,2,&END

Logical values are listed as .T. or .F. Example:

&OUTPUT LOGVAL=.T.,&END

Complex values are listed with real and imaginary portions, respectively.
Example:

&OUTPUT COMVAL=(2.5,3.),&END

An output NAMELIST group record can extend any number of lines (physical
records). The first position of each line is normally blank. The first
line contains the delimiter & in column 2, followed by the group name.
The last line ends with the character string &END.

The default line width is 133 characters unless (COS only) the unit is 102
($PUNCH), in which case the default line width is 80 characters. NAMELIST
output is readable as NAMELIST input.

9.3.2.1 User control subroutines

The following routines provide the user control of NAMELIST output format.
char can be any ASCII character specified by lLX, or lRx. No checks
are made to determine if char is reasonable, useful, or consistent with
other characters. If the default characters are changed, use of the
output line as NAMELIST input might not be possible.

CALL WNLLONG(len)

CALL WNLDELM(char)

CALL WNLSEP(char)

CALL WNLREP(char)

SR-0018 B

Sets the output line length to len.
8<len<161. If len is too short for an
actual output line, the job aborts.
len=-1 restores the default line length
(80 for $PUNCH; otherwise, 133).

Changes the character preceding the group
name and END from & to char.

Changes the separator character immediately
following each value from , to char.

Changes the replacement operator that comes
between name and value, from = to char.

9-17

CALL WNLFLAG(char)

CALL WNLLINE(value)

9-18

Changes the character written in column 1 of
the first line from blank to char.
Typically, char is used for carriage
control if the output is to be listed, or
for forcing echoing if the output is to be
used as input for NAMELIST reads.

Allows each namelist variable to begin on a
new line.

value = 0, no new line
value = 1, new line for each variable

SR-0018 B

I

OPTIMIZATION 10

Run-time efficiency, a prime objective of the CFT77 compiler, consists of
producing the most effective instruction sequence for e"ach Fortran
statement, and making full use of all Cray hardware capabilities and
techniques to enhance execution speed. The compiler's capability for
automatic optimizing of code is being constantly improved.

10.1 ANALYZING YOUR PROGRAM AND ITS PERFORMANCE

This subsection introduces Cray utilities to help you analyze your program
structure, determine which parts of the program use the most execution
time, and assess machine performance. These are described in detail in
the Performance Utilities Reference Manuals, publication SR-2040 for
UNICOS and publication SR-0146 for COS.

10.1.1 FTREF

FTREF statically analyzes your source code to show program structure and
the use of common blocks. Usage examples are shown in 4.6.1. Additional
information specific to multitasking can be generated by adding -D to
the ftref command under UNICOS, or by adding MULTI to the FTREF control
statement under COS.

10.1.2 FLOWTRACE

The Flowtrace feature monitors your program as it executes and prints
statistics about subprogram calls and their timings. Usage examples of
Flowtrace are shown in 1.4.4.1. You can also get statistics on specific
areas of code, such as loops, by inserting calls to FLOWMARK, also
discussed in 1.4.4.1. (FLOWMARK is available under UNICOS on CRAY-2
systems, and will be available under UNICOS 4.0 for CRAY X-MP systems.)

SR-0018 B 10-1

I

10.1.3 prof AND Spy

prof (under UNICOSt) and SPY (under COS) monitor program execution, but
with a different emphasis than Flowtrace. The results are finer-grained
than those of Flowtrace and contain almost no overhead from the utilities
themselves; "spikes" in the output histogram clearly show where the most
execution time is spent. However, these utilities do not provide
Flowtrace information such as counts of subprogram calls, a call tree, or
other information on the calling sequence.

The example below shows UNICOS commands for using prof. Before you
follow this procedure, create file profdir, containing the directive
lib=/lib/libprof.a. Example for program hello:

cft77 -e sg hello.f
segldr hello.o profdir
a.out
prof > hello.prof

1* see directive above

File hello.prof contains prof output; file hello.l contains generated
code and source code listings.

In the prof output, a spike in the histogram indicates an address range
where a large amount of execution time was spent. The address on the same
line as the spike is the first address of the range. This address is part
of a routine indicated on a previous line that shows only a name and an
address. In the CAL listing for that routine, search the left column for
the address that is shown in the Address column of the spike line in the
prof output. On the CAL line with that address, the number in the right
column is the number of a line in your source code listing; this part of
your program caused the timing spike.

The following example shows COS JCL for using Spy; it is part of your JCL
file in $IN, following your JOB and ACCOUNT statements. It is assumed
that other required user files are also contained in $IN. The example is
for program MYPROG, with SPY output in dataset $OUT.

CFT77,DEBUG.
SEGLDR,CMD='ABS=MYPROG'.
Spy, PREP.
MYPROG.
SPY, POST.
IEOF

Labels in SPY output are, where possible, based on labels of DO loops in
your program. For example, 11B is the second address bucket for the DO 11
loop in a program unit.

t prof will be available on CRAY X-MP systems under UNICOS 4.0.

10-2 SR-0018 B

I

10.1.4 PERFTRACE (CRAY X-MP SYSTEMS ONLY)

Perf trace reports computer performance for each program unit in a
program. Perf trace output gives information about computations,
hold-issue conditions, memory use, or vectorization.

The example below shows UNICOS commands for using Perf trace. Before you
follow this procedure, create file perfdir, containing the directive
lib=/lib/libperf.a; it can also contain the directive set=group:n,
where n is either 2, 3, or 4. Without the set directive, Pertrace
gives an execution summary. 2 reports on hold-issue conditions, 3 on
memory references, and 4 on instruction and vector operation. Example for
program hello:

cft77 -e f hello.f
segldr hello.o perfdir /*Ignore messages*/
a.out > hello.perf

The following example shows COS JCL for using Perf trace; it is part of
your JCL file in $IN, following your JOB and ACCOUNT statements. It is
assumed that other required user files are also contained in $IN.
Perf trace output is in dataset $OUT.

CFT77,ON=F.
SEGLDR,CMD='LIB=$PERFLIB;SET=GROUP:n',GO.

The underscored part in the SEGLDR command is optional. n has the same
meaning as described in the previous UNICOS example.

10.2 MULTITASKING

Multitasking is the simultaneous use of different processors to increase
the speed of execution. The subroutines for multitasking are all usable
with CFT77. The Multitasking Programmer's Manuals, CRI publications
SR-0222 (CRAY X-MP) and SN-2026 (CRAY-2) describe the use of these
routines, which are called from CFT77 by the CALL statement.

SR-0018 B 10-3

10.3 VECTORIZATION

Vectorization is the process of changing an operation to a vector
operation. An operation that can be vectorized is one that is in a loop
and operates on successive array elements; this is replaced by an
operation operating on vectors of array elements. A vector operation
takes a vector, two vectors, or a vector and a scalar, and produces a
vector of results. On a Cray computer, a vector operation produces a
vector of up to 64 results. CFT77 vectorizes only when the compiler can
determine that the program's meaning will not change.

The following terms are used in this subsection:

• A branch is a transfer of control caused by a GOTO, arithmetic
IF, or alternate return.

• A backward branch is a GOTO or arithmetic IF statement that
transfers control to a point in the program preceding that
statement.

• A constant increment variable is a variable that is incremented
by a constant amount on each iteration of a loop.

• An invariant value is a constant or simple expression referenced
but not redefined within a loop. An invariant expression contains
only invariant values.

• A vector array reference is an array element reference whose
subscript expression is not invariant.

• A recurrence is a set of expressions in a loop in which
computation of each expression requires the value of the expression
from a previous iteration of the loop.

10.3.1 VECTORIZABLE LOOPS

A vectorizable loop is a DO loop; exceptions to this are described in
10.3.5. If any statement branches into a loop from outside it, the lo~p
cannot be vectorized. If a loop contains a backward branch, the loop
cannot be vectorized.

10.3.2 VECTORIZABLE STATEMENTS

To be vectorized, an arithmetic or logical assignment statement must have
a vector array reference on the left side and must not involve a
recurrence. Some particular types of recurrence can be vectorized; see
10.3.5.

10-4 SR-0018 B

Character assignment statements are not vectorized. IF statements can be
vectorized if the IF condition is a vectorizable expression, defined later
in this subsection. Other statements aren't vectorized. However, a
vectorizable expression used as an argument in a CALL or WRITE statement
can be vectorized if it is not part of a recurrence.

10.3.3 VECTORIZABLE EXPRESSIONS

An arithmetic or logical expression is vectorizable if it is in a
vectorizable loop and is not part of a recurrence. Vectorizable
expressions can include constants, invariant variables, and array element
references. CFT77 does not vectorize external function references except
VFUNCTION references.

An array element whose subscript is a linear function of a constant
increment integer is vectorized using a vector load or store. An array
element whose subscript is not a linear function of a constant increment
variable, but is some other vectorizable expression, is vectorized using
gather/scatter instructions if available. An array element with an
invariant subscript expression is treated as a scalar.

Examples:

(1) REAL A(100), B(100), C(100), D(100), E(100)
INTEGER INDEX(100)
DO 10 1=1,100

A(I) = 6.0 + I
C(I) = 0.0
D(INDEX(I» = B(I) + E(l)

10 CONTINUE

All the expressions in the above loop are vectorizable.

(2) DO 10 1=1,100
A(INDEX(I» = A(INDEX2(I»

10 CONTINUE

The above loop will not be vectorized: CFT77 often has to assume that
statements containing array elements with nonlinear subscripts involve
recurrences and therefore cannot be vectorized.

10.3.4 LOOPS CONTAINING IFS

For an IF to be vectorized, the IF condition must be a vectorizable
expression. Loops containing IF statements are compiled using either
conditional vector merge hardware or gather-scatter and compress-index
hardware.

SR-0018 B 10-5

Vectorization of a loop is not prevented by any of the following uses of
IF statements within the loop:

• A block IF

• An arithmetic IF, including one that transfers control out of the
loop

• A vectorizable IF controlling a GOTO that transfers out of the loop

• A logical IF whose conditional statement either is not a branch or
branches forward within the same loop

10.3.5 RECURRENCES

A recurrence is a set of expressions in a loop in which computation of
each expression requires the value of the expression from a previous
iteration of the loop. Recurrences cannot normally be vectorized, because
many iterations of a loop are calculated simultaneously, so values from
previous iterations are often unavailable.

Example:

REAL A, B(0:100), T, C
DO 10 I=1,100

5 A = A + 1
6 B(I) = B(I-1)
7 T = C
8 C = T + 1

10 CONTINUE

Statements 5 and 6 are recurrences, as is the pair of statements 7
and 8.

CFT77 detects recurrences, and does not vectorize an expression unless the
expression is not part of a recurrence. (Exceptions are listed below.)
When CFT77's recurrence analysis cannot determine whether a recurrence
exists, it can take one of two courses of action. In some cases it
assumes a recurrence and does not vectorize the expressions involved. In
other cases, it decides that the recurrence exists only for certain array
subscript values; it then generates code to compute the expression as
scalar or vector, depending on the existence of a recurrence.

10-6 SR-0018 B

Recurrences that can be vectorized are as follows:

• First order linear recurrences (vector reductions). Some
recurrences are reductions; that is, they apply a binary operation
to all the elements of a linear array, producing a scalar result.
Example:

DO 10 1=1,100
R = R + A(I)

10 CONTINUE

Reductions where the operation is multiply, add, divide, logical
AND, logical OR, MAX or MIN can be vectorized.

• Recurrences with a large threshold. The threshold of a recurrence
is the number of iterations that occur before a value is reused.
Example:

DO 10 I = 7, 100
A(I) = A(I-6) + 1.0

'10 CONTINUE

In the preceding code, the recurrence has a threshold of 6. A
recurrence with a threshold greater than 64 can be vectorized on
the Cray computer system. A recurrence with a threshold of k,
1<k<64, can be vectorized with a vector length of k.

SR-0018 B 10-7

APPENDIX SECTION

CHARACTER SET A

The ASCII character set contains 128 control and graphic characters shown
in the following table. Numbers, letters, and special characters in the
CFT77 character set are identified by the letter C in the fifth column.
All other characters are members of the auxiliary character set. The
letter A in the fifth column indicates those characters belonging to the
ANSI FORTRAN character set.

Letters in parentheses following the descriptions in the sixth column
indicate the following control character usage.

• CC - Communication control

• FE - Format effector

• IS - Information separator

SR-0018 B A-l

A-2

Table A-1. Character Sets: ASCII, FORTRAN 77, CFT77

Char- Deci-
acter Octal mal Hex

NUL 000
SOH 001
STX 002
ETX 003
EOT 004
ENQ 005
ACK 006
BEL 007
BS 010
HT 011
LF 012
VT 013
FF 014
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

space
!

"

$
~

&

(
)

*
+

015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047
050
051
052
053

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B

ANSI,
Cray

C

A,C
C
C

A,C

A,C
A,C
A,C
A,C
A,C

Description

Null
Start of heading (CC)
Start of text (CC)
End of text (CC)
End of transmission (CC)
Enquiry (CC)
Acknowledge (CC)
Bell (audible signal)
Backspace (FE)
Horizontal tabulation (FE)
Line feed (FE)
Vertical tabulation (FE)
Form feed (FE)
Carriage return (FE)
Shift out
Shift in
Data link escape (CC)
Device control 1
Device control 2
Device control 3
Device control 4 (stop)
Negative acknowledge (CC)
Synchronous idle (CC)
End of transmission block (CC)
Cancel
End of medium
Substitute
Escape
File separator (IS)
Group separator (IS)
Record separator (IS)
Unit separator (IS)
Space (blank)
Exclamation point
Quotation marks
Number sign
Dollar sign (currency symbol)
Percent
Ampersand
Apostrophe (single quote)
Opening (left) parenthesis
Closing (right) parenthesis
Asterisk
Plus

SR-0018 B

Table A-I. Character Sets: ASCII, FORTRAN 77, CFT77 (continued)

Char- Deci- ANSI,
acter Octal mal Hex Cray Description

, 054 044 2C A,C Comma (cedilla)
- 055 045 2D A,C Minus (hyphen)

· 056 046 2E A,C Period (decimal point)
/ 057 047 2F A,C Slant (slash, virgule)
0 060 048 30 A,C Zero
1 061 049 31 A,C One
2 062 050 32 A,C Two
3 063 051 33 A,C Three
4 064 052 34 A,C Four
5 065 053 35 A,C Five
6 066 054 36 A,C Six
7 067 055 37 A,C Seven
8 070 056 38 A,C Eight
9 071 057 39 A,C Nine

· 072 058 3A A,C Colon · · 073 059 3B Semicolon ,
< 074 060 3C Less than

= 075 061 3D A,C Equal
> 076 062 3E Greater than
? 077 063 3F Question mark
@ 100 064 40 Commercial at-sign
A 101 065 41 A,C Uppercase letter
B 102 066 42 A,C Uppercase letter
C 103 067 43 A,C Uppercase letter
D 104 068 44 A,C Uppercase letter
E 105 069 45 A,C Uppercase letter
F 106 070 46 A,C Uppercase letter
G 107 071 47 A,C Uppercase letter
H 110 072 48 A,C Uppercase letter
I 111 073 49 A,C Uppercase letter
J 112 074 4A A,C Uppercase letter
K 113 075 4B A,C Uppercase letter
L 114 076 4C A,C Uppercase letter
M 115 077 4D A,C Uppercase letter
N 116 078 4E A,C Uppercase letter
0 117 079 4F A,C Uppercase letter
P 120 080 50 A,C Uppercase letter
Q 121 081 51 A,C Uppercase letter
R 122 082 52 A,C Uppercase letter
S 123 083 53 A,C Uppercase letter
T 124 084 54 A,C Uppercase letter
U 125 085 55 A,C Uppercase letter
V 126 086 56 A,C Uppercase letter
W 127 087 57 A,C Uppercase letter

SR-0018 B A-3

Table A-1. Character Sets: ASCII, FORTRAN 77, CFT77 (continued)

Char- De"ci- ANSI,
acter Octal mal Hex Cray Description

X 130 088 58 A,C Uppercase letter
y 131 089 59 A,C Uppercase letter
Z 132 090 5A A,C Uppercase letter
[133 091 5B Opening (left) bracket
\ 134 092 5C Reverse slant (backslash)
] 135 093 5D Closing (right) bracket
" 136 094 5E Circumflex
- 137 095 5F C Underline
\ 140 096 60 Grave accent
a 141 097 61 C Lowercase letter
b 142 098 62 C Lowercase letter
c 143 099 63 C Lowercase letter
d 144 100 64 C Lowercase letter
e 145 101 65 C Lowercase letter
f 146 102 66 C Lowercase letter
g 147 103 67 C Lowercase letter
h 150 104 68 C Lowercase letter
i 151 105 69 C Lowercase letter
j 152 106 6A C Lowercase letter
k 153 107 6B C Lowercase letter
1 154 108 6C C Lowercase letter
m 155 109 6D C Lowercase letter
n 156 110 6E C Lowercase letter
0 157 111 6F C Lowercase letter
p 160 112 70 C Lowercase letter
q 161 113 71 C Lowercase letter
r 162 114 72 C Lowercase letter
s 163 115 73 C Lowercase letter
t 164 116 74 C Lowercase letter
u 165 117 75 C Lowercase letter
v 166 11~ 76 C Lowercase letter
w 167 119 77 C Lowercase letter
x 170 120 78 C Lowercase letter
y 171 121 79 C Lowercase letter
z 172 122 7A C Lowercase letter
{ 173 123 7B Opening (left) brace

I 174 124 7C Vertical line
} 175 125 7D Closing (right) brace
- 176 126 7E Overline (tilde, general accent)

DEL 177 127 7F Delete

A-4 SR-0018 B

INTRINSIC FUNCTIONS B

The tables in this section show the intrinsic functions available with
CFT17. See 2.4.1 and 2.4.3. Conventions used in the tables are described
below.

The rightmost column in each table includes letter codes to indicate
conformance with the ANSI standard, the level of vectorization, and the
kind of code generated. The codes use the following format:

First letter: ANSI standard
A The function is specified in the ANSI FORTRAN 77 standard.
C The function is a Cray extension to the standard.

Second letter: level of vectorization
F Full vectorization
N No vectorization

Third letter: what kind of code is generated
E External
I Inline

Unless noted otherwise, the first function name in each group of functions
can be used as a generic function name. A generic function name can be
used to call any of a group of related functions, so that one name can be
used with arguments of different data types (see section 3). Groups of
related functions are separated by horizontal lines, with the arguments
and results shown for each specific function.

In the Definition column, y is the function's result, and the x values are
function arguments separated by parentheses in the function call.
Examples:

A = SQRT(B) K = MOD(L,M)

Square brackets indicate truncation of a term: if x has a value of
5.61, [xl equals 5.

Data types shown in the Function and Argument columns are as follows:

I

R
D

C

SR-0018 B

Integer
Real
Double precision
Complex

P

B
CH
L

Pointer
Boolean
Character
Logical

B-1

Table B-1. General Arithmetic Functions

Function Arqument(s)
Purpose Definition Name, Type No Type Range Codes

Truncation y=[x]t No rounding. AINT R 1 R Ixl<246
Also see INT, table B-2. DINT D 1 D Ixl<295

Nearest y=[x+.5]t if xl.0 ANINT R 1 R I x 1<246
whole y=[x-.5] if x<o DNINT D 1 D Ixl<295
number Also see INT, table B-2.

Nearest y=[x+.5]t if xl.0 NINT I 1 R I x 1<246
integer y=[x-.5] if x<O IDNINT I 1 D

Absolute y=lxl ABS R 1 R Ixl<infinity
value lABS I 1 I

DABS D 1 D·
y=(xr 2+Xi 2)1/2 CABStt R 1 C

Divide for y=x1-x2[x1 /x 2] MOD I 2 I
remainder AMOD R 2 R ttt
of x1/x2 DMOD D 2 D

Transfer y= IX11 if x2l.0 SIGN R 2 R Ixl<infinity
sign or ISIGN I 2 I

Y= -l x11 if x2<O DSIGN D 2 D

The first function name in each group can be used generically.

t [xl indicates that the fractional part of x is truncated.

ttt Argument ranges for MOD functions:

MOD: I xli <263

AMOD: I xli <247

DMOD : I xli < 295

O<I X21<2 63

O<lx21<247

O<l x21<2 95

2-63<lx1/x21<263

2-47<lx1/x21<247

2-95<lx1/x21<295

•
A F
A F

A F
A F

A F
A F

A F
A F
A F
A F

A F
A F
A F

A F
A F
A F

• A=ANSI standard, C=Cray extension; F=full vectorizing, N=no vectorizing;
E=external code, I=inline code.

B-2 SR-0018 B

I
E

I
E

I
E

I
I
I
E

I
I
E

I
I
I

Table B-1. General Arithmetic Functions (continued)

Function Argument(s)
Purpose Definition Narne,Type No Type Range Codes

*
Positive y=xl-x2 if xl>x2 DIM R 2 R Ixl<infinity A F I
difference y=O if xl~x2 IDIM I 2 I A F I

DDIM D 2 D A F E

Double- y=xl· x2 DPROD D 2 R Ixl<infinity A F I
precision
product

Imaginary y=xi AIMAGt R 1 C Ixl<infinity A F I
portion of
complex
value

Conjugate y=xr-i·xi CONJGt C 1 C Ixl<infinity A F I
of complex
value

Obtain y=r where r is the first RANFtt R 0 C F E
random or next in a series of
numbertt random numbers (O<y<I).

Obtain The current random number RANGET I 1 I Ixl<infinity C N E
rndm seed seed

Establish Y=x RANSET R 1 B Ixl<infinity C N E
rndm seed

The first function name in each group can be used generically.

tt If RANF is called more than once in a loop, vectorization is inhibited,
because the result differs from that produced by scalar code. You can
force vectorization with CDIR$ IVDEP. This is further discussed at the
end of this appendix.

* A=ANSI standard, C=Cray extension; F=full vectorizing, N=no vectorizing;
E=external code, I=inline code.

SR-OOI8 B B-3

Table B-2. Type Conversion Functions

Note: The functions listed below cannot be passed as arguments. Some
functions in Table B-1 also change data types of arguments.

Function Argument(s)
Purpose Definition Name, Type No Type Range

Conversion Truncation toward zero INT I 1 C IXrl<246
to integer (fraction lost) I 1 R Ixl <246

I 1 Bt Ixl<263
Also see AINT, ANINT, IFIX I 1 R,Bt Ixl<246
and NINT, table B-1. IDINT I 1 D

Conversion y=xrtt REAL R 1 C IXrl<infin.
to real R 1 R Ixl<infinity

y=x R 1 I Ixl<246
FLOAT R 1 Bt Ixl<246 or

y=x Accuracy may be lost SNGL R 1 D 264 ttt

Conversion y=xrtt Accuracy may be DBLE D 1 C IXrl<infin.
to double- lost. D 1 I Ixl <246
precision y=x Extra bit positions D 1 R

are added to real D 1 D Ixl<infinity
and Boolean values. D 1 Bt

Conversion y=x CMPLX C 1 C Ixl<infinity
to complex C 1,2 I Ixl<246

All two-argument uses can C 1,2 Bt
be either y = xl + i·x2 C 1,2 R Ixl<infinity
or y = xl + i·O C 1,2 D

Character ICHAR(x) returns position ICHAR I 1 CH any legal
to integer of character x in character

collating sequence

Integer to CHAR(x) returns the xth CHAR CH 1 I 0-255
character character in collating CH 1 B

sequence

Codes

*
A F I

A F I
A F I

A F I

A F I
A F I

A F I

A F I

A N E

A N I

t Type conversion routines assign appropriate types to Boolean arguments
without shifting or manipulating the bit patterns they represent.

tt x=xr+i·xi
ttt When used with 46-bit or 64-bit integers, respectively.

B-4 SR-OOI8 B

Table B-3. Maximum/Minimum Functionst

Function Argument(s)
Purpose Definition Name, Type No Type Range Codes

*
Select Generic is MAX MAXO I I A F I
maximum AMAXl R R A F I
value y=The largest of all x DMAXl D 64>n>2 D Ixl<infinity A F I

AMAXO R I A F I
MAXi I R A F I

Select Generic is MIN MINO I I A F I
minimum AMINi R R A F I
value y=The smallest of all x DMINl D 64>n>2 D Ixl<infinity A F I

AMINO R I A F I
MINi I R A F I

Table B-4. Character Functionst

Function Arqument(s)
Purpose Definition Name, Type No Type Range Codes

*
Lex .GE. y=all.a 2 in collating seq LGE L 2 CH any string A N E

Lex .GT. y=al>a2 in collating seq LGT L 2 CH any string A N E

Lex .LE. y=alia 2 in collating seq LLE L 2 CH any string A N E

Lex .LT. y=al<a2 in collating seq LLT L 2 CH any string A N E

Length of Number of characters in a LEN I 1 CH any string A N I
string character entity

Index of a Returns the starting INDEX I 2 CH any string A N E
substrng position of 2nd argument

in 1st argo 0 = not found

t Cannot be passed as arguments, except LEN and INDEX.

* A=ANSI standard, C=Cray extension; F=full vectorizing N=no vectorizing;
E=external code, I=inline code.

SR-0018 B B-5

Table B-S. Trigonometric Functions (Angles in radians)

Function Argument(s)
Purpose Definition Name, Type No Type Range Codes

."

Sine y=sin(x) SIN R 1 R Ixl<224 A F
DSIN D 1 D Ixl<248 A F
CSINt C 1 C IXrl<224, A F

IXil<2 l3 ·1n2

Cosine y=cos(x) COS R 1 R Ixl<224 F
DCOS D 1 D Ixl<248 F
ccost C 1 C IXrl<224, F

IXil<2 l3 ·1n2

Tangent y=tan(x) TAN R 1 R Ixl<224 A F
DTAN D 1 D A F

Cotangent y=cot(x) COT R 1 R Ixl<224 C F
DCOT D 1 D C F

Arcsine y=arcsin(x) ASIN R 1 R Ixl~l A F
DASIN D 1 D A F

Arccosine y=arccos(x) ACOS R 1 R Ixl~l A F
DACOS D 1 D A F

Arctangent y=arctan(x) ATAN R 1 R A F
DATAN D 1 D Ixl<infinity A F

y=arctan(xl/x2) ATAN2 R 2 R I xli <infin., A F
DATAN2 D 2 D IX21~O A F

Hyperbolic y=sinh(x) SINH R 1 R Ixl<2 l3 ·1n2 A F
sine DSINH D 1 D A F

The first function name in each group can be used generically •

." A=ANSI standard, C=Cray extension; F=full vectorizing, N=no vectorizing;
E=external code, I=inline code.

B-6 SR-0018 B

E
E
E

E
E
E

E
E

E
E

E
E

E
E

E
E

E
E

E
E

Table B-S. Trigonometric Functions (Angles in radians) (continued)

Function Argument(s)
Purpose Definition Name, Type No Type Range Codes

*
Hyperbolic y=cosh(x) COSH R 1 R Ixl<2 13 ·ln2 A F E
cosine DCOSH D 1 D A F E

Hyperbolic y=tanh(x) TANH R 1 R Ixl<2 13 ·ln2 A F E
tangent DTANH D 1 D A F E

Table B-6. Exponential Functions

Function Argument(s)
Purpose Definition Name, Type No Type Range Codes

*
Square y=x 1/2 SQRT R 1 R O~x~infinity A F E
root DSQRT D 1 D A F E

CSQRTt C 1 C xr~O, A F E
xi<infinity

Exponent y=ex EXP R 1 R Ixl<2 13 ·ln2 A F E
DEXP D 1 D A F E
CEXPt C 1 C Ixr l<2 13 ·ln2 A F E

IXil<224

The first function name in each group can be used generically.

Table B-7. Logarithmic Functions

Function Argument(s)
Purpose Definition Name, Type No Type Range Codes

*
Natural y=ln(x) Generic is LOG; ALOG R 1 R A F E
logarithm cannot be an argument. DLOG D 1 D O<x<infinity A F E

CLOGt C 1 C A F E

Common y=log(x) Generic is ALOG10 R 1 R A F E
logarithm LOGIO. Cannot be an argo DLOG10 D 1 D O<x<infinity A F E

SR-0018 B B-7

Table B-8. Boolean and Logical Functions

Function Argument(s)
Purpose Definition Name, Type No Type Range Codes

*

Logical Logical product (AND) AND B 2 B,I, C F I
product of xl and x2 R,P
t L 2 L

Logical Logical sum (OR) of OR B 2 B,I, C F I
sum xl and x2 R,P
t L 2 L

Logical Logical difference XOR, B 2 B,I, C F I
difference (XOR or NEQV) of NEQV R,P
(not xl and x2 L 2 L
equiv.) t

--
Equiva- Equivalence (XOR) EQV B 2 B,I, C F I
lence of xl and x2 R,P
t L 2 L

Complement Logical complement of xl COMPL B I B,I, C F I
t R,P

L 2 L

Mask x=number of one-bits to MASK B I I C F I
be left-justified if
O<x(63.
(128-x)=number of I-bits
to be right-justified
if 64<x<128

t With logical operands, the function is a logical operation with a single
logical result. With Boolean operands, the function is a masking
operation; each bit in the result represents a separate Boolean operation
on the corresponding bit in the operands. These types are discussed in 3.6
and 3.8; the operations are discussed in 5.4 and 5.5.

* A=ANSI standard, C=Cray extension; F=full vectorizing, N=no vectorizing;
E=external code, I=inline code.

B-8 SR-OOI8 B

Table B-8. Boolean and Logical Functions (continued)

Function Argument(s)
Purpose Definition Name, Type No Type Range Codes

*
Circular xl shifts left x2 SHIFT B 2 xl: 0~x2<64 C F
shift positions; leftmost B,I,

positions replace vacated R,P
positions x2: 1

Logical xl shifts left x2 SHIFTL B 2 xl: 0~x2<64 C F
sh'ift positions; leftmost B,I,

positions lost; rightmost R,P
positions set to zero x2: 1

xl shifts right x2 SHIFTR B 2 xl: C F
positions; rightmost B,I,
positions lost; leftmost R,P
positions set to zero x2: 1

Leading Tallies number of leading LEADZ I 1 B,I, C F
zeros zeros in x R,P

Population Tallies number of ones POPCNT I 1 B,I, C F
count in x R,P

Population 0, if x has an even POPPAR I 1 B,I, C F
parity number of ones; R,P
count 1, if x has odd number

of ones

Conditionl Bit-by-bit selective CSMG B 3 B,I, C F
Scalar merge: (xl AND x3) OR R,P
Merge (x2 AND NOT x3). See the

end of this appendix.

* A:ANSI standard, C:Cray extension; F:full vectorizing, N:no vectorizing;
E:external code, I:inline code.

SR-0018 B B-9

I

I

I

I

I

I

I

Table B-9. Time and Date Functions

Function Argument(s)
Purpose Definition Name, Type No Type Range Codes

."

Real-time Low order 46 bits of RTC R 0 C N I
clock clock register expressed

as floating point integer

Current clock register IRTC I 0 C N I
content

Time Current time in ASCII CLOCKt B 0 C N E
code (hh:mm:ss)

Julian Current Julian date in JDATEt B 0 C N E
date ASCII code (yyddd)

Date Current date in ASCII DATEt B 0 C N E
code (rrun/dd/yy)

t These procedures can be called as subroutines also. An integer or real
argument is passed to return the result.

Table B-10. Miscellaneous Functions

Function Argument(s)
Purpose Definition Name, Type No Type Range Codes

."

Location Returns memory address of LOC P 1 B,I, C N I
specified variable or R,L,
array C,D,

P

Number of Tallies number of NUMARG I 0 C N I
arguments arguments used to call a

subprogram

." A=ANSI standard, C=Cray extension; F=full vectorizing, N=no vectorizing;
E=external code, I=inline code.

B-10 SR-0018 B

Table B-11. Conditional Vector Merge Functions

Function Arqument(s)
Tests for Definition Name I Type No Type Range Codes ,.,

Positive xl returned if x3 > 0 CVMGP C F
or zero x2 returned if x3 (0

B 3 B,I
R,P

Minus xl returned if x3 (0 CVMGM
(negative) x2 returned if x3 ~ 0

L 3 xl'
x2: L

Zero xl returned if x3 = 0 CVMGZ
x2 returned if x3 -A 0 x3:

I,R
B,P

Non-zero xl returned if x3 -A 0 CVMGN
x2 returned if x3 = 0

True xl returned if x3 CVMGT B 3 x1,x2: C F
is true B,I,

x2 returned if x3 R,P
is false x3: L

L 3 L

,., A=ANSI standard, C=Cray extension; F=full vectorizing, N=no vectorizing;
E=external code, I=inline code.

Conditional Vector Merge (CVMG functions)

The conditional vector-merge instructions shown in the above table are
used when an IF statement involving arrays prevents vectorization of a
loop. Both CFT and CFT?? can now vectorize almost all such loops, but
these functions are used in older codes. Scalar arguments can also be
~sed with these functions. CVMG functions cannot be passed as arguments.

For operands other than logical type, the vector merge functions are not
generic with respect to data typing. They accept arithmetic values of
different types but interpret them as Boolean type (that is, as bit
patterns). The returned function value is also Boolean. Therefore the
function reference CVMGT(1.0,2.0,.TRUE.) is not type real (with a value
of 1.0), but a Boolean value that acts the same as 1.0 in a
floating-point operation.

SR-0018 B B-11

I

I

A problem arises if you assume that the function reference is type real
and use it in an expression or assignment that causes automatic type
conversion. For example, if you use the function reference in a context
where an integer is needed, the result is invalid because 1.0 and 1 have
different bit patterns (see G.1 and G.2).

Because CVMG function values are Boolean, a binary operation involving two
CVMG functions uses integer arithmetic. This can give unexpected results
in assignments such as the following, where A, B, C, and 0 are real:

x = CVMGT(A,B,LOGIC1) +
& CVMGT(C,D,LOGIC2)

Integer arithmetic, invalid results

However, when used in an expression with another operand, a CVMG function
value takes on the type of the other operand, without any explicit type
conversion. For example, the following expression uses real arithmetic:

x = 1.0 + CVMGT(2.0,3.0,LEXP) ! Valid because types agree

Following are suggestions for preventing bugs in the use of these
functions:

B-12

• Use only one CVMG function in a given expression.

• If you use more than one CVMG function in an expression, use
explicit type conversion; this does not generate any additional
code. For example:

x = REAL (CVMGT (1.0,2.0,LTEST» +
& REAL (CVMGT (X,Y,LTEST2»

• Make sure that the assignment type matches the function argument.
For example:

x = CVMGT (1.0,2.0,LTEST)

or x = IFIX (CVMGT (1,2,LTEST» Uses auto. type conversion

not x = CVMGT (1,2,LTEST) Type mismatch

• Never use mixed typing in the first two arguments of a CVMGT
function. For example:

CVMGT (1,2.0,LTEST) DON'T DO THIS!!

SR-0018 B

CSMG (Conditional Scalar Merge Function)

CSMG(x,y,z) equals (x .AND. z) .OR. (y .AND •• NOT.z)

CSMG merges x and y, controlled by the bit mask in z. When a 1 bit
appears in z, the corresponding bit of x is taken; when a 0 bit appears in
z, the corresponding bit of y is taken.

CSMG compiles to very efficient inline code because the Cray hardware
includes a scalar merge instruction that is generated for CSMG. Because
CSMG uses Cray-specific hardware, it should not normally be used where
portability is important.

Some typical uses of CSMG follow.

To select one of the arguments, for any x and y:

CSMG(x,y,MASK(64» equals CSMG(x,y,-l) equals x.

CSMG (x,y,O) equals y.

To replace bit fields:

CSMG('ABCDEFGH'H, '12345678'H, X'OOOOFFFFFFOOOOFF') = '12CDE67H'H

INTEGER EXPONENT, EXPMASK
PARAMETER (EXPMASK = X'7FFFOOOOOOOOOOOO')
EXPONENT(X) = SHIFTR(X.AND.EXPMASK, 48)
DIVBY2(X) =

& CSMG(SHIFTL(EXPONENT(X)-1,48),
&
&

X,
EXPMASK)

Then, for example, DIVBY2(-28.0) = -14.0.

RANF (Get random number)

Statement function
Statement function

The use of the RANF function differs between CFT77 and CFT. CFT77
inhibits vectorization of a loop containing more than one RANF call,
whereas CFT does not. This restriction is imposed because the sequence of
function calls differs between vector and scalar code. Since each call
gives (by definition) an unpredictable value, a different sequence gives
different results.

SR-0018 B B-13

Example:

DO 10, I=1,64
10 A(I) = RANF() + RANF() ! CFT77 does not vectorize this; CFT does.

B-14

The above calls to RANF affect the result. If RANF() is called
repeatedly, it returns a series of values xl' x2' x3 •••• Using
these values, the above loop is processed as follows:

Scalar Code:

A(l) = xl + x2
A(2) = xl + x4

Vector Code:

A(l) = xl + x65
A(2) = xl + x66

CFT77 follows a policy that vector and scalar code should always give
the same results. Because the above results differ, CFT77 inhibits
vectorization. Nevertheless, for many practical purposes, a change in
the order of random numbers is insignificant. Therefore, to allow
vectorization, you may wish to insert CDIR$ IVDEP before a loop
containing more than one call to RANF.

SR-0018 B

POWERS AND CONSTANTS C

Table C-l. Miscellaneous Constants

Constant Decimal Octal

1 Angstrom unit 10-8 cm 0 37746 5274616704302141

Avogadro's number 6.0247+.0002 x 10 23 mole-1 0 40117 7762375551021105
(physical scale)

Degree 0.01745 32925 19943 radians 0 37773 4357506504512347

e 2.71828 18284 59045 23536 0 40002 5337412426121273
I

K (constant of 6.670xl0-8 (The attraction 0 37751 4363626636225066
gravitation) in dynes between two gram

masses one centimeter apart)

1 Knot 101.3 ft/min. 0 40007 6251463146314631
1.689 ft/sec. 0 40001 6603044672274324
1.152 mi/hr. 0 40001 4467227432477371

In 2 0.69314 71805 59945 3 0 40000 5427102775750717

In 10 2.30258 50929 94045 68402 0 40002 4465661567325250

10910 2 0.30102 99956 63981 0 37777 4642023241175717

10910e 0.43429 44819 03251 82765 0 37777 6745573052233450

10910l0910e 9.63778 43113 00537 - 10 1 37777 5627212554417747

10910 (pi) 0.49714 98726 94133 85435 0 37777 7750515546156435

10910 (5) 0.69897 00043 36019 0 40000 5456766257301030

1 micron 10-4 cm 0 37763 6433342726161031

Planck's constant 6.6254~.0002x10-27erg sec 0 37652 4063530471550577

SR-0018 B C-l

Table C-1. Miscellaneous Constants (continued)

Constant Decimal Octal

pi 3.14159 26535 89793 23846 o 40002 6220773250420550
26433 83279 50

pi/180 0.01745 32925 19943 29576 o 37773 4357506504512351
92369 07684 9

(pi/2)2 2.46740 11002 72339 6 0 40002 4736474623371056

(pi/2)3 3.87578 45850 37477 4 0 40002 7600633262342353

(pi/2)4 6.08806 81896 25152 0 0 40003 6055056430244101

(pi/2)5 9.56311 51495 40044 9 0 40004 4620120501771201

(pi/2)6 15.02170 61496 14130 7 0 40004 7405435043025557

(pi/2)7 23.59604 08420 06186 2 0 40005 5714226103715771

(pi/2)8 37.06457 24815 25675 7 0 40006 4504103722360577

(pi/2)9 58.22089 71356 37125 9 0 40006 7216106266752535

(pi/2)10 91.45317 13633 62315 3 0 40007 5556400604731077

(pi/2)11 143.65430 56513 1374 95 0 40010 4372360044636773

(pi/2)12 225.65165 56453 50 0 40010 7032332271702410

(pi/2)13 354.45279 18229 1051 47 0 40011 5423476505215646

(pi/2)14 556.77314 34176 24 0 40012 4263057313503564

1 radian 57.29577 95131 degrees 0 40006 7122734064617135

Velocity of light 2.99776x10 10 cm/sec 0 40043 6765467400000000
in a vacuum 9.83514x10 8 ft/sec 0 40036 7247635620000000
(Birge, 1941) 186272 mi/sec 0 40022 5536400000000000

C-2 SR-0018 B

Powers of Two

Decimal !!.

2 1
4 2
8 3

16 4
32 5
64 6

128 7
256 8
512 9

1024 10
2048 11
4096 12
8192 13

16384 14
32768 15
65536 16

1 31072 17
2 62144 18
5 24288 19

10 48576 20
20 97152 21
41 94304 22
83 88608 23

167 77216 24
335 54432 25
671 08864 26

1342 17728 27
2684 35456 28
5368 70912 29

10737 41824 30
21474 83648 31
42949 67296 32
85899 34592 33

1 71798 69184 34
3 43597 38368 35
6 87194 76736 36

13 74389 53472 37
27 48779 06944 38
54 97558 13888 39

109 95116 27776 40
219 90232 55552 41
439 80465 11104 42
879 60930 22208 43

1759 21860 44416 44
3518 43720 88832 45
7036 87441 77664 46

14073 74883 55328 47

SR-0018 B

2 1
4 2

10 3
20 4
40 5

100 6
200 7
400 8

1000 9
2000 10
4000 11

10000 12
20000 13
40000 14

1 00000 15
2 00000 16
4 00000 17

10 00000 18
20 00000 19
40 00000 20

100 00000 21
200 00000 22
400 00000 23

1000 00000 24
2000 00000 25
4000 00000 26

10000 00000 27
20000 00000 28
40000 00000 29

1 00000 00000 30
2 00000 00000 31
4 00000 00000 32

10 00000 00000 33
20 00000 00000 34
40 00000 00000 35

100 00000 00000 36
200 00000 00000 37
400 00000 00000 38

1000 00000 00000 39
2000 00000 00000 40
4000 00000 00000 41

10000 00000 00000 42
20000 00000 00000 43
40000 00000 00000 44

1 00000 00000 00000 45
2 00000 00000 00000 46
4 00000 00000 00000 47

Hexadecimal

2
4
8

10
20
40
80

100
200
400
800

1000
2000
4000
8000

10000
20000
40000
80000

1 00000
2 00000
4 00000
8 00000

10 00000
20 00000
40 00000
80 00000

100 00000
200 00000
400 00000
800 00000

1000 00000
2000 00000
4000 00000
8000 00000

10000 00000
20000 00000
40000 00000
80000 00000

1 00000 00000
2 00000 00000
4 00000 00000
8 00000 00000

10 00000 00000
20 00000 00000
40 00000 00000
80 00000 00000

C-3

28147 49767 10656 48
56294 99534 21312 49

1 12589 99068 42624 50
2 25179 98136 85248 51
4 50359 96273 70496 52
9 00719 92547 40992 53

18 01439 85094 81984 54
36 02879 70189 63968 55
72 05759 40379 27936 56

144 11518 80758 55872 57
288 23037 61517 11744 58
576 46075 23034 23488 59

10 00000 00000 00000 48
20 00000 00000 00000 49
40 00000 00000 00000 50

100 00000 00000 00000 51
200 00000 00000 00000 52
400 00000 00000 00000 53

1000 00000 00000 00000 54
2000 00000 00000 00000 55
4000 00000 00000 00000 56

10000 00000 00000 00000 57
20000 00000 00000 00000 58
40000 00000 00000 00000 59

100 00000 00000
200 00000 00000
400 00000 00000
800 00000 00000

1000 00000 00000
2000 00000 00000
4000 00000 00000
8000 00000 00000

10000 00000 00000
20000 00000 00000
40000 00000 00000
80000 00000 00000

1152 92150 46068 46976 60 100000 00000 00000 00000 60 100000 00000 00000
2305 84300 92136 93952
4611 68601 84273 87904
9223 37203 "68547 75808

61 200000 00000 00000 00000
62 400000 00000 00000 00000
63 1000000 00000 00000 00000

61 200000 00000 00000
62 400000 00000 00000
63 800000 00000 00000

pi 2 =
2 x pi 2 =
3 x pi 2 =
4 x pi 2 =
5 x pi 2 =
6 x pi 2

7 x pi 2 =
8 x pi 2 =
9 x pi 2

9.86960 44010 89358 61883 43909 9988
19.73920 88021 78717 23766 87819 9976
29.60881 32032 68075 85680 31729 9964
39.47841 76043 57434 47533 75639 9952
49.34802 20054 46793 09417 19549 9940
59.21762 64065 36151 71300 63459 9928
69.08723 08076 25510 33184 07364 9916
78.95683 52087 14868 95067 51279 9904
88.82643 96098 04227 56950 95189 9892

20 • 5

1 + 20 . 5

(1 + 20 . 5)2
(1 + 20 . 5)4
(1 + 20 • 5)6
(1 + 20 • 5)8

=
=
=
=
=
=

(1 + 20 • 5)10 =
(1 + 20 • 5)12 =
(1 + 20 • 5)14 =
(1 + 2 0 . 5)16 =
(1 + 20 . 5)18 =

In radians:

1.41421 35623 73095 04880 1688
2.41421 35623 73095 04880 1688
5.82842 71247 4618

33.97056 27484 7708
197.99494 93661 1630

1153.99913 34482 2072
6725.99985 13232 0802

39201.99997 44910 2740
228485.99999 56229 5638

1331713.99999 92467 11
7761797.99999 98847 51

Sin.5 = 0.47942 55386 04203
Cos.5 = 0.87758 25618 90373
Tan.5 = 0.54630 24898 43790
Sin 1 = 0.84147 09848 07896
Cos 1 = 0.54030 23058 68140
Tan 1 = 1.55740 77246 5490
Sin 1.5 = 0.99749 49866 04054
Cos 1.5 = 0.07073 72016 67708
Tan 1.5 = 14.10141 99471 707

C-4 SR-0018 B

I

MEMORY MANAGEMENT D

Many programs contain a memory allocation scheme that expands an array in
a common block located in Central Memory at the end of the program. This
practice of expanding blank common or expanding a dynamic common block
(sometimes referred to as overindexing) works under COS. Expanding blank
common blocks under UNICOS, however, causes conflicts between user
management of memory and the dynamic memory requirements of UNICOS
libraries. CRI recommends that you modify programs rather than expand
blank common, particularly when migrating.

Figures D-1 and D-2 show the structure of UNICOS and COS in relation to
expanding blank common. In both figures, the user area includes code,
data, and common blocks.

SR-0018 B D-1

I

Without an expandable
common block:

Heap

User Area

Address 0

Figure 0-1.

Without an expandable
common block:

lID Area

Heap

With an expandable
common block:

Address 0

Dynamic
Area

Heap

User Area

Memory Use under UNICOS

With an expandable
common block:

lID Area

Dynamic Area

Heap

User Area User Area

JCB JCB
Address 0 Address 0

Figure 0-2. Memory Use under COS

There are two ways to change your code. The first method, outlined in
0.1, is the preferred method.

0-2 SR-0018 B

I

D.1 CHANGING YOUR CODE: RECOMMENDED METHOD

CRI recommends that you change your program using the following two-step
process. This method will work under both COS and UNICOS.

Step 1 - For arrays that expand in a common block, define pointers that
will point to the first address in each array.

Step 2 - Change any calls to memory to calls to library routine HPALLOC.

Original Code:

PROGRAM TEST
COMMON/WORK/IPTR

CALL MEMORY ('UC',100000)

DO 10 I = 1,100000
X (I) = RANF ()

10 CONTINUE

Converted Code (After Steps 1 and 2):

PROGRAM TEST
COMMON/WORK/IPTR

C STEP 1:
POINTER (IPTR,X(l»

C STEP 2:
CALL HPALLOC (IPTR,100000,ERRCODE,ABORT»

DO 10 I = 1,100000
X (I) = RANF ()

10 CONTINUE

SR-0018 B 0-3

I

D.2 CHANGING YOUR CODE: ALTERNATIVE METHOD

If possible, use the conversion method outlined in D.1. You can also use
the following two-step method for moving COS code to a CRAY X-MP UNICOS
system, but not to a CRAY-2 UNICOS system.

Step 1:

Modify the program by changing calls to MEMORY to calls to SBRK. SBRK
calls system routine sbrk to instruct UNICOS to allocate space for the
planned expansion. (See brk(2) in the UNICOS System Calls Reference
Manual, publication SR-2012.)

COS Example: UNICOS Example:

Step 2:

PROGRAM TEST

COMMON/WORK/X(l)

CALL MEMORY ('UC',100000)

DO 10 I = 1,100000
X (I) = RANF ()

10 CONTINUE

END

PROGRAM TEST

COMMON/WORK/X(l)

CALL SBRK (100000)

DO 10 I = 1,100000
XCI) = RANF()

10 CONTINUE

END

When building the program, specify the following SEGLDR directives:

DYNAMIC=comblk or DYNAMIC=//

comblk is the common block to be expanded. // specifies blank
common as dynamic. This directive is also required for expanding
under COS.

HEAP=init

init is the initial size of the heap, which contains I/O buffers
and calling sequence information along with any user-requested
heap areas. Since the heap cannot be expanded when a dynamic
common block exists, you must make sure that the heap is initially
large enough to accommodate your program's needs concerning
buffering and the calling sequence requirements. Generally, when
the heap cannot expand, the value of init must be at least 5000,
but larger values may be required.

For more information on SEGLDR, see the Segment Loader (SEGLDR) Reference
Manual, CRI publication SR-0066.

0-4 SR-0018 B

I

OUTMODED FEATURES E

This appendix describes obsolete or nonstandard FORTRAN features
supported by CFT77 that have been replaced by alternatives that enhance
the portability of CFT77 programs. The outmoded features and their
preferred alternatives are as follows.

Obsolete Feature

Hollerith data

ENCODE and DECODE

Asterisk format descriptor

[-b]X format descriptor

R descriptor and A used for
noncharacter data

EOF, IEOF, and IOSTAT functions

PUNCH statement

DATA statement with declaratives

DATA statement nlistlclist
logical/Hollerith correspondence

DOUBLE type statement

DOUBLE FUNCTION statement

Type statements with *n

Two-branch arithmetic IF

Indirect logical IF

SR-0018 B

Preferred Alternative

Character data

Internal files

Quotation mark format
descriptor

TL format descriptor

Character type and other
conventional matchings of data
with descriptors

End-of-file specifier (END=)
or status specifier (IOSTAT=)

WRITE statement

DATA statement after other
declaratives

nlistlclist both logical or
both character

DOUBLE PRECISION type statement

DOUBLE PRECISION FUNCTION
statement

Standard type statements

Arithmetic IF or block IF

Logical IF

E-l

E.1 HOLLERITH TYPE

Hollerith data is a sequence of any characters capable of internal
representation as specified in appendix A. Its length is the number of
characters in the sequence, including blank characters. Each character
occupies a position within the storage sequence identified by one of the
numbers 1, 2, 3, ••• indicating its placement from the left (position 1).
Hollerith data must contain at least one character.

E.1.1 HOLLERITH CONSTANTS

A Hollerith constant is expressed in one of three forms. The first of
these is specified as a nonzero integer constant followed by the letter H
and as many characters as equal the value of the integer constant. The
second form of Hollerith constant specification delimits the character
sequence between a pair of apostrophes followed by the letter H.

The third form is like the second, except that quotation marks replace
apostrophes.

Example:

CHARACTER SEQUENCE Form 1 Form 2 Form 3

ABC 12 6HABC 12 'ABC 12'H "ABC 12"H

Two adjacent apostrophes or quotation marks ap~earing between delimiting
apostrophes or quotation marks are interpreted and counted as a single
apostrophe within the sequence. Thus the sequence DON'T USE "'Ir" would be
specified with apostrophe delimiters as 'DON' 'T USE "'Ir"'H, and with
quotation mark delimiters as "DON'T USE '''''Ir'' " "H.

Each character of a Hollerith constant is represented internally by an
8-bit code (see appendix A) with up to eight such codes in a single
64-bit Cray word. The codes corresponding to character positions 1
through 8 of a Hollerith constant are sequentially represented from left
to right in a Cray word. The unused portion of the word is to the right
and contains up to seven blank character codes (2016).

When the number of characters in a character sequence is fewer than
eight, the Cray word used can contain up to seven null character codes
(0016). Null codes can be produced by substituting the letter L for
the letter H in the Hollerith forms described above.

When fewer than 8 characters appear in a Hollerith constant, the unused
portion of a Cray word can contain up to seven null character codes at
the left. The null codes can be produced by substituting the letter R
for the letter H in the first form of Hollerith constant expression or by
following the second apostrophe or quotation mark delimiter with the
letter R in the second form.

E-2 SR-0018 B

All of the following Hollerith constant expressions yield the same
Hollerith constant and differ only in specifying the content and
placement of the unused portion of the single Cray word containing the
constant:

Hollerith
Constant Internal ReEresentation (64-bit Cray word)

(bit position) (0-7 8-15 16-23 24-31 32-39 40-47 48-55 56-63)

6HCRAY-2 C R A Y 2 (2016) (2016)

'CRAY-2'H C R A Y 2 (20 16) (2016)

"CRAY-2"H C R A Y 2 (2016) (2016)

6LCRAY-2 C R A Y 2 (00) (00)

'CRAY-2'L C R A Y 2 (00) (00)

"CRAY-2"L C R A Y 2 (00) (00)

6RCRAY-2 (00) (00) C R A Y 2

'CRAY-2'R (00) (00) C R A Y 2

"CRAY-2"R (00) (00) C R A Y 2

A Hollerith constant is limited to 8 characters except when specified in
a CALL statement, a function argument list, or a DATA statement. All
Hollerith constants with R suffixes are limited to eight characters. An
all-zero computer word follows the last word containing a Hollerith
constant specified as an actual argument in an argument list.

A character constant of 8 or fewer characters is used as a Hollerith
constant in situations where a character constant is illegal and a
Hollerith constant is legal. See 5.2.3.

NAMELIST Hollerith constants are specified by the following forms.

SR-0018 B

nH •••
nL •••
nR •••

"

H
L
R

H
L
R

E-3

If the R form is used, the string must contain 8 or less characters.
Within the' or " delimited format, a ' or " is specified as " or "",
respectively.

E.l.2 HOLLERITH EXPRESSIONS

Hollerith expressions contain no operators and only a single operand. A
Hollerith expression is evaluated to yield a sequence of characters. Its
value is that sequence. The forms of a Hollerith expression appear below:

• A Hollerith constant

• The name of a variable containing a Hollerith datum

• The name of an array element containing a Hollerith datum

• The name of a function that provides a Hollerith datum when
referenced

A Hollerith constant comprising a Hollerith expression is limited to 8
characters.

The data type of the name referencing a variable or array element
containing a Hollerith datum can affect its evaluation during program
execution. A variable or array element of type integer or real contains 8
Hollerith characters. Hollerith characters can appear only in variables,
array elements, or DATA statements of type integer, real, or logical. A
variable or array element of type logical containing Hollerith characters
must first be initialized in a DATA statement.

A Hollerith datum provided when a function is referenced contains as many
characters as a variable or array element of corresponding type.

When used in arithmetic or relational expressions, Hollerith expressions
are considered to be type integer.

E.l.3 HOLLERITH RELATIONAL EXPRESSIONS

Used with a relational operator, the Hollerith expression el is less
than e2 if its value precedes the value of e(2) in the collating
sequence and is greater if its value follows the value of e2 in the
collating sequence. Examples:

The following are evaluated as true if the integer variable LOCK contains
the Hollerith characters K, E, and Y in that order and left-justified with
five trailing blank character codes.

E-4 SR-0018 B

3HKEY.EQ.LOCK
'KEY'.EQ.LOCK
LOCK.EQ.LOCK
'KEY1'.GT.LOCK
'KEYO'H.GT.LOCK

E.2 FORMATTED DATA ASSIGNMENT

Formatted data assignment operations define entities by transferring data
between input/output list items and internal records. The preferred
method for achieving this is now the use of internal files (see 7.4).

Like other assignment statements, formatted data assignment statements
perform only internal data transfers. Like formatted input/output
statements, formatted data assignment statements specify an input/output
list and invoke format control during their operations. The two formatted
data assignment statements are ENCODE and DECODE.

ENCODE (n,f,dent)[elist]

DECODE (n,f,sent)[dlist]

n

f

dent

sent

Number of characters to be processed, specified by a nonzero
integer expression not to exceed 152

Format identifier, except for an asterisk

Symbolic name of a destination variable, array element, or
array where the n characters of elist are packed (8 per
word) by ENCODE

Symbolic name of the source variable, array element, or
array where characters are unpacked and stored into dlist
by DECODE

elist, dlist

SR-0018 B

Lists specified the same as for formatted input/output
statements. elist is the list written to the destination
entity; dlist is the list receiving the source entity.

E-5

E.2.1 ENCODE STATEMENT

The ENCODE statement produces a sequence of n characters (packed eight
per word) from values contained in the input list items specified in
elist under control of the format specification identified by f. The
character sequence is stored in a variable, array element or array
identified by dent.

If n is not an integer multiple of eight, the last word in each record
is padded with spaces to a word boundary. In effect, n is rounded up to
be a multiple of eight.

Example:

elist: array ZD(5): ZD(l)
ZD(2)
ZD(3)
ZD(4)
ZD(5)

E: FORMAT (5A4)
n = 20

dent: array ZE(3)

The sequence

ENCODE (20,1,ZE)ZD
1 FORMAT (5A4)

produces

dent = ZE(l) = 'THISMUST'
ZE(2) = 'HAVEFOUR'
ZE(3) = 'CHARbbbb'

E.2.2 DECODE STATEMENT

= 'THISbbbb'
= 'MUSTbbbb'
= 'HAVEbbbb'
= 'FOURbbbb'
= 'CHARbbbb'

The DECODE statement processes a sequence of n characters (packed eight per
word) contained in the variable, array element, or array identified by sent
under control of the format specification identified by f. The resulting
values define the input list items specified in dlist.

If n is not an integer multiple of eight and. the DECODE format calls for
more than one DECODE record, the second and all subsequent DECODE records
begin on a word boundary. In effect, n is rounded up to be a multiple of
eight.

E-6 SR-0018 B

Example:

sent: ZE: ZE(l) = 'WHILETHI'
ZE(2) = 'SbHASbbF'
ZE(3) = 'IVEbbbbb'

n: = 20

f: FORMAT (5A5)

The sequence

DECODE (20,2,ZE)ZD
2 FORMAT (4A5)

produces

dlist = ZD(l) = 'WHILEbbb'
ZD(2) = 'THISbbbb'
ZD(3) = 'HASbbbbb'
ZD(4) = 'FIVEbbbb'

E.3 FORMAT DESCRIPTORS

This subsection shows obsolete format descriptors and outmoded uses of
current descriptors.

E.3.1 ASTERISK DELIMITERS

The asterisk is used to delimit a literal character constant. It has been
replaced by the single quotation mark (apostrophe).

*
h· ~

Example:

Delimiter for a literal character string

Any ASCII character indicated by a C in appendix A (that is,
capable of internal representation)

AN ASTERISK FORMAT DESCRIPTOR

SR-0018 B E-7

E.3.2 NEGATIVE-VALUED X DESCRIPTOR

A negative value can be used with the X descriptor to indicate a move to
the left. This has been replaced by the TL descriptor.

[-b]X

b Any nonzero, unsigned integer constant

X Indicates a move of as many positions as indicated by b

Example:

-55X (Moves current position 55 spaces to left.)

E.3.3 A AND R DESCRIPTORS FOR NONCHARACTER TYPES

The Rw descriptor and the use of the Aw descriptor for non-character
data are available primarily for programs that were written before a true
character type was available. Other uses include adding labels to binary
files and the transfer of data whose type is not known in advance.

List items can be of type real, integer, complex, or logical. For
character use, the data's binary form is converted to or from ASCII
codes. Note that a variable's conventional numeric form (as used in
mathematics, depending on its data type) is not used for ASCII
interpretation.

w specifies a field width of 1 through 8 eight-bit characters, or 1
through 16 for complex values. Complex items use two storage units (Cray
words) and require two A descriptors, for the first and second storage
units respectively.

The Aw descriptor works with noncharacter data in essentially the same
way as described in 8.7.1. The Rw descriptor works like Aw with the
following exceptions.

• Characters in an incompletely filled input list item are
right-justified with the remainder of that list item containing
binary zeros.

• Partial output of an output list item is from its rightmost
character positions.

E-8 SR-0018 B

The ANSI Fortran Standard does not provide for the use of A with
noncharacter list items.

Examples:

In the following examples, characters shown here signify the corresponding
ASCII codes used in storage or transmission; 0 is a binary 0, not a code
for the 0 character; and _ represents a blank character.

Input Field Positions
1 2 3 4 5 6 7 B 9 10 12

ABC D E F G H I J K L

ABC

ABC D E F G H I J K

Internal Item
Representation Type

ABCDEFGH Integer

ABCDEFGH Real

ABCDEFGH Integer

SR-001B B

Item
Type

Integer

Integer

Complex

A or R
Descriptor

AB

RB

A9

R9

A6

R6

A or R

Descr.

AB

RB

A3

R3

AB,A3

Internal
Representation

ABCDEFGH

ABCDEFGH

ABC00000

00000ABC

ABCDEFGHIJK00000

Output Field Positions
1 2 3 4 567 B 9

A B C D E F G H

A B C D E F G H

A B C D E F G H

A B C D E F G H

A B C D E F

C D E F G H

E-9

I
Code examples:

The following examples are typical of older codes that were written before
character type was available.

For the Aw descriptor:

INTEGER lMAGE(10)
READ (*,901) IMAGE

901 FORMAT (10AS) ! Accommodates an SO-column card

The above code would write a character string into memory as follows
(where characters represent their ASCII codes in storage and 0 is a
binary 0, not an ASCII code for the 0 character):

ABC D E F G H
I J K L M N 0 P
Q R S T 0 000
o 0 000 000

For the Rw descriptor:

INTEGER lMAGE(SO)
READ (5,902) IMAGE

902 FORMAT (SOR1)
IF (IMAGE(1).EQ.65) GOTO ••.

The above code would write one character per word of memory,
right-justified, as shown below (represented as in previous example):

0 0 0 0 0 0 0 A
0 0 0 0 0 0 0 B
0 0 0 0 0 0 0 C
0 0 0 0 0 0 0 D

With the character type,

CHARACTER*SO IMAGE
READ (5,902) IMAGE

902 FORMAT(ASO)

the above code would be written as follows:

IF (IMAGE(l:l).EQ.'A') GOTO •••

E-l0 SR-001S B

E.4 PUNCH STATEMENT

The PUNCH statement is a data transfer output statement. Under COS, the
default output dataset is $PUNCH. The format is as follows.

PUNCH f [,iolist]

f Format identifier

iolist Input/output list specifying the data to be transferred

E.S TYPE DECLARATION

Outmoded means of declaring data types are the DOUBLE statement for double
precision, and the type statement including data length.

E.S.l DOUBLE DECLARATION STATEMENTS

The form of the DOUBLE declaration type statement is:

DOUBLE v[,v] •.•

DOUBLE

v

SR-0018 B

Desired data type

Name of a constant, variable, array, function, or dummy
procedure name; or an array declarator

E-ll

The form of the double-precision FUNCTION statement is:

DOUBLE FUNCTION fun[([d[,d] .•.])

fun Symbolic name of the function subprogram in which the
FUNCTION statement appears

d Dummy argument representing a variable, array, or external
procedure name

E.5.2 TYPE STATEMENT DATA LENGTH

The formats of a type declaration with data length included are as
follows.

E-12

type [*n] v[,v] .•.

type Can be INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, or
CHARACTER [*len] len is the length of a character entity

v

a

and can be an unsigned, nonzero, positive integer constant
expression.

Data length as shown in table E-l. Any other data length
gives a fatal error.

Name of a constant, variable, array, function, or dummy
procedure; or an array declarator.

Letter or range of letters denoted by the first and last
letters of the range separated by a hyphen. A range
(aI-an) has the same effect as a list of the letters
(al,a2,···an)·

SR-0018 B

Table E-1. Data Length

\
Data Type \ n 1 2 4 8 16

\

INTEGER 64-bitt 64-bit integer

REAL 64-bit real 128-bit real
single precisiontt double prec.

COMPLEX 64-bit complex single precision

LOGICAL 64-bit logical

DOUBLE PRECISION 128-bit real
double prec.

t This usage causes a warning message to be issued.
tt REAL*8 causes a warning message to be issued.

E.6 DATA STATEMENT FEATURES

The DATA statement has the following features, in addition to those
described in 4.4:

• One constant must exist for each element of a whole array named in
an nlist, unless the array is the last item in the list. In this
case, the values in clist can specify any number of consecutive
array element values, beginning with the first.

• If a variable, array element, or entity associated with either is
defined by a DATA statement more than once in an executable
program, the one nearest the end of the program is the only
definition to apply.

• An nlist entity of type logical can correspond to a clist
constant of type Hollerith. A character constant can be specified
to correspond to entities of any type except logical.

SR-0018 B E-13

• A Hollerith constant (including the character literal form, ' •.• ')
can initialize more than one element of an integer or real array if
the array is specified without subscripts. For example, if an
array is declared by INTEGER A(2), the following DATA statements
have the same effect:

DATA A/'1234567890123456'1
DATA A/'12345678', '90123456'1

E.7 IF STATEMENTS

Outmoded IF statements are the two-branch arithmetic IF and the indirect
logical IF.

E.7.1 TWO-BRANCH ARITHMETIC IF

A two-branch arithmetic IF statement transfers control to statement sl if
expression e is evaluated as nonzero or to statement s2 if e is zero.

e Integer, real, or double-precision expression

Labels of executable statements in the same program unit

Example:

IF (I+J*K) 100,101

E-14 SR-0018 B

E.7.2 INDIRECT LOGICAL IF

An indirect logical IF statement transfers control to statement St if
logical expression Ie is true and to statement sf if Ie is false.

Ie Logical expression

Labels of executable statements in the same program unit

Example:

IF(X.GE.Y)148,9999

SR-0018 B E-15

CREATING NON-FORTRAN PROCEDURES

Functions and subroutines written in Cray Assembly Language (CAL), Cray
C, and Cray Pascal can be used with CFT77 programs. This section lists
the primary considerations in making external procedures compatible with
CFT77.

F.1 CAL

F

Specific macros are available to aid the CAL programmer in writing
routines to be used with CFT77. These macros maintain compatibility with
different versions of Fortran. Following are some CAL linkage macros and
their purposes:

• DEFARG defines argument transmission

• DEFB defines B register use

• DEFT defines T register use

• ENTRY defines CFT77-callable entry points

• ARGADD allows argument retrieval

• LOAD allows local variable reference

• STORE allows local variable updat~s

See the Macros and Opdefs Reference Manual, CRr publication SR-0012, for
more information on linkage macros.

F.2 CRAY PASCAL

To use Pascal routines with CFT77, consider the following differences
between Pascal and Fortran:

• Because all CFT77 arguments are passed by address, all arguments
in Pascal must be declared VAR.

SR-0018 B F-l

• Pascal and Fortran store arrays differently. Multidimensional
arrays defined in one language are transposed in the other.

• Cray Pascal is a stack-based language. The Cray Pascal compiler
uses the standard Cray stack management routines, so CFT77 routines
also using the stack will not have a problem. A CFT77 program
executing in static mode that calls a Pascal routine will have a
stack allocated for the Pascal routine.

• If a Pascal routine performs any 1/0 with the default input or
output files and the main routine is not a Pascal routine, the
Pascal routine must reset (for input) or rewrite (for output)
appropriately.

• A reference to a Pascal procedure name is a level of indirection
more than a reference to a CFT77 subroutine name, when the name is
specified as an argument. For example, the following Fortran and
Pascal programs pass different information to B.

SUBROUTINE A
EXERNAL P
CALL B(P)
END
SUBROUTINE B(P)
EXTERNAL P
CALL P
END

program A;
procedure B (procedure P);
begin;
end;
procedure P; external;

begin
B(P)

end;

In CFT77 the parcel address of P is passed to subroutine B. In
Pascal, a parameter descriptor containing the address of a word
containing the parcel address of P is passed to procedure B.

F.3 CRAY C

To use C routines with CFT77, consider the following differences between C
and Fortran:

F-2 SR-0018 B

• Because all CFT77 parameters are passed by address, all parameters
in the C routines must be declared as "pointer to." This is true
for all single-word items. Arrays and structures declared in Care
correctly passed by address.

• CFT77 arrays and C arrays have different storage allocation.
Multidimensional arrays defined in one language are transposed in
the other.

• The C character pointer is incompatible with the CFT77 character
type. Character values should not be passed between C and CFT77
routines.

• Cray C is a stack-based language. The Cray C compiler uses the
standard Cray stack management routines, so CFT77 routines also
using the stack will not have a problem. A CFT77 program executing
in static mode that calls a C routine will have a stack allocated
for the C routine.

• The CFT77 calling routine expects the C routine's name to be in
uppercase. A lowercase C routine name produces an unsatisfied
external reference.

See the Cray C Reference Manual, publication SR-2024, for more information
about using C routines in CFT77 programs.

SR-0018 B F-3

MACHINE REPRESENTATION OF DATA G

This section shows how words of storage are used to represent values of
different data types. Numbers shown above the formats are bit positions,
which represent powers of two in binary notation. Code that depends on
internal representation is not portable and does not conform with the ANSI
standard.

G.1 INTEGER TYPE

All integer data, whether 46 bits or 64 bits, is twos complement and is
represented as illustrated in figure G-1.

46-bit integer

Range: _246 ~ I < 246 or (approximately) _10 14 < I (1014

63
II

Sign

64-bit integer

46 45

Propagation of
Sign Bit

Integer

Range: _2 63 ~ I < 2 63 or (approximately) -1019 (I (1019

o

63 0
II I

Sign Integer

Figure G-1. Integer Data Formats

SR-0018 B G-1

G.2 REAL TYPE

Real (floating-point) numbers are represented in a packed representation
of a binary mantissa and an exponent (power of two). The mantissa is a
48-bit signed fraction. The sign of the mantissa is separated from the
rest of the mantissa as shown in figure G-2. Since the mantissa is a
signed magnitude, it is not complemented for negative values.

63
II

Mantissa
Sign

48 47

Exponent
t

Assumed
Binary Point

Mantissa

Figure G-2. Floating-point Data Format

o

The exponent portion of the floating-point format is represented as a
biased integer in bits 62 through 48. The bias that is added to the
exponents is 400008. The positive range of exponents is 400008 through
577778. The negative range of exponents is 377778 through 200008. Thus,
the unbiased range of exponents is the following (note the negative range
is one larger):

2-200008 through 2+177778

Example:

G-2

A real value of 10.0 is represented as follows.

Hexadecimal:
Octal:

Binary:

4004AOOOOOOOOOOO
0400045000000000000000

010000000000010010100
t
Bit 47

The leftmost bit, with a 0 value, indicates a positive mantissa; that
is, the real value is positive. The next bit, set to 1, is in effect
a sign bit for the exponent. It indicates a positive exponent value,
meaning that the number's absolute value is 1.0 or greater. The value
4 in the exponent (100 appearing to the left of bit 47) means that the
binary fraction in the mantissa is multiplied by 24 (Or, to express
it another way, the binary point is moved 4 bits to the right from the
mantissa's highest bit.) The first four bits of the mantissa, 1010,
then indicate the real value of 10.0.

SR-0018 B

In terms of decimal values, the floating-point format of the CPU allows
accurate representation of numbers to about 15 significant decimal digits
in the approximate decimal range of 10-2466 through 10+2466 •

A zero value is not biased and is represented as a word of all zeros.

G.2.1 NORMALIZED FLOATING-POINT NUMBERS

A nonzero floating-point number is normalized if the most significant bit
of the mantissa is nonzero. This condition implies the mantissa has been
shifted as far left as possible and the exponent adjusted accordingly.
Therefore, the floating-point number has no leading zeros in the
mantissa. The exception is that a normalized floating-point zero is all
zeros.

When your program creates a floating-point number by inserting an exponent
of 400608 into a 48-bit integer word, you should normalize the result
before using it in a floating-point operation. To do this, add the
unnormalized floating-point operand to O. However, CFT77 optimization
suppresses an operation like X=X+O. ; you can perform it with code like
the following:

DATA REALZERO/O.I
X = X + REALZERO

G.3 DOUBLE-PRECISION TYPE

A double-precision value is represented by two words. The first has the
same format as the real type, shown in figure G-3. The second word uses
bits 0-47 as 48 additional bits of the mantissa. The other 16 bits of the
second word must be zeros.

Approximate decimal range: 10-2466<D<102465

Sign
63
II

Binary Point
~

Exponent 48 47 Mantissa, High-order Bits

10000000000000001
Mantissa, Low-order Bits

Figure G-3. Double-precision Format

o

SR-0018 B G-3

G.4 COMPLEX TYPE

A complex value is represented by two words, each of which has the same
format as the real type, shown in figure G-4. The first word represents
the real part, and the second represents the imaginary part. Each word
has the same range as a real value.

Real part:

Sign
63

II

Binary Point
J,

Exponent 48 47 Mantissa o

Imaginary part: ~I~I ______________ ~ ____________________________________ ~

Figure G-4. Complex Format

G.5 CHARACTER TYPE

Characters are represented by 8-bit ASCII codes packed eight per word, as
shown in appendix A.

63 55 47 39 31 23 15 7 o

Figure G-5. Character Format

G.6 LOGICAL TYPE

A logical variable uses one 64-bit Cray word. Its value is represented
differently under COS and UNICOS:

Computer System True False Normal

CRAY-2 Nonzero Zero 1 and 0

Not CRAY-2 Negative Non-negative -1 and 0

CRI does not guarantee a particular internal representation of logical
values on any machine or system; CFT77 is designed on the assumption that
logical values will be used only as described in the ANSI standard.
Therefore it is not good programming practice to exploit gaps in type
checking, such as between a function reference and its function value, to
use logical values as numbers or vice versa.

G-4 SR-0018 B

DIFFERENCES BETWEEN CFT77 AND CFT H

This section lists differences between the CFT and CFT77 compiler that are
likely to be of interest to users.

H.1 FUNCTIONAL DIFFERENCES

The following are differences between CFT77 and CFT in such areas as
computation and optimization:

• CFT77 optimization is significantly different from CFT's.
Consequently small numeric differences because of rounding may
occur.

• CFT attempts to compensate for the inaccuracy inherent in division
of real values by forcing strong rounding if the division occurs in
an integer context. Although this may appear to give better
results in some cases, the results are inconsistent depending on
whether the compiler can detect the use of integers. Because of
this possible inconsistency, CFT77 does not use this technique.

• CFT77 deletes statements that cannot be executed. A warning
message is printed if a deleted statement has a label that is
referenced in an ASSIGN statement.

• CFT77's optimizations include strength reduction of exponentiation
operations. Since this can cause numeric differences, a warning
message is printed during compilation.

• CFT77 does not allow assignments to a DO variable within the DO
loop.

• CFT77 does not allow the traditional form of Hollerith (such as
3HSAM) to be used as the identifier in a STOP or PAUSE statement,
although the quoted form of Hollerith ('SAM'H) is allowed. This
restriction eliminates a possible ambiguity (such as STOP3H=1.).

• With CFT77, IMPLICIT NONE applies to implied-DO variables. With
CFT, it does not. CFT77 does not support IMPLICIT SKOL.

SR-0018 B H-1

I

H-2

• CFT77 and CFT treat pointers differently. Pointer is a separate
data type in CFT77 rather than being integer as in CFT. Therefore
operations with pointers are more restricted with CFT77. Pointers
can be assigned to and from integers, but not to and from reals.
Integers may be added or subtracted from pointers, and pointers may
be added or subtracted, both with integer results. A program that
first declares a variable as integer and then as a pointer causes
an error with CFT77 but is correct with CFT.

• The default integer size for CFT77 is 46 bits; with CFT it is 64
bits. The INTEGER=64 or -i64 option on the control statement may
be used to specify 64-bit prec~s~on. CFT's INT24 directive is not
supported, but A-register arithmetic is used whenever possible.

• CFT77 generates explicit calls to the system heap manager for
automatic arrays, array syntax temporaries, and some character
code, even when ALLOC=STATIC is used. CFT never calls the heap
manager directly.

• Character variables in CFT are limited to a length of 16383, and no
more than 511 different lengths of character strings may appear in
a single program unit. CFT77 does not have these restrictions.

• Three features proposed for the next Fortran standard have been
included in CFT77 that are not in CFT:

Longer identifier names (up to 31 characters for internal
names) which may contain underscores

A subset of the array syntax

Automatic arrays

• The two compilers have different compiler directives and control
statement options. CFT directives that are not used by CFT77 are
recognized, and warning messages are given that these are not
implemented. The IVDEP directive must immediately precede a DO
loop with CFT77, and directives cannot be continued. Bounds
checking is disabled by the NOBOUNDS directive instead of
BOUNDS(). The interaction between control statement options and
compiler directives is also different with CFT77.

• When list-directed output is used, several copies of the same value
may be printed with a repetition count. This occurs at different
times with eFT and CFT77, although both of the compilers are in
accord with the standard.

• CFT77 optimization precludes the use of implicit association. This
is discussed in 4.3.5.

SR-0018 B

• CFT77 does not vectorize a loop containing more than one reference
to the RANF function; CFT does vectorize such a loop. This can
cause widely varying results. This is discussed at the end of
appendix B.

H.2 SYNTAX AND ERROR DETECTION

Compile-time error detection is more extensive with CFT77 than with CFT.
The following cases are errors with both compilers but are either not
diagnosed by CFT or are handled differently by the two compilers.

1. CFT77 gives an error message for arguments to CLOCK, JDATE, and DATE
that are not REAL or INTEGER; CFT does not.

2. CFT77 gives an error message when extraneous parentheses appear in
PARAMETER statements: the form PARAMETER (list),(list), ••• is
flagged as an error. CFT does not detect an error for this form.

3. CFT77 does not permit extra sets of parentheses around the
input/output lists in I/O statements or the implied-DO list of array
element names in DATA statements. CFT does not detect an error in
these cases. The following examples have illegal extra parentheses:

WRITE(6,12) (A,B)
ENCODE(N,12,A)(B,C)

WRITE(6,12)«A(I),B(I»,I=1,10)
DATA «A(I),B(I»,I=1,10)

4. CFT77 gives an error when an array is used as a statement function
dummy argument; CFT does not detect this. CFT77 also does not allow
an array name to be an actual argument to a statement function; an
array element must be used.

5. CFT77 gives an error when a name that has been used as a function is
later used as a subroutine (or vice versa); CFT does not.

6. CFT77 gives a warning message if it encounters the REC= or IOSTAT=
specifiers in a NAMELIST I/O statement; CFT does not. Both compilers
ignore the specifiers.

7. CFT77 gives an error if it detects a NAMELIST group name in the FMT=
specifier of a READ or WRITE control item list; CFT does not.

8. CFT77 detects whether a statement label on an ELSE statement is
referenced and gives an error message if it is. CFT produces a
warning message if it encounters a statement label on an ELSE
statement and then ignores the label.

9. CFT77 gives an error if there is no EXTERNAL statement for a dummy
procedure that is passed as an actual argument. CFT does not detect
an error if it sees a use of the name in a CALL statement or as a
function reference before it sees the name used as an actual ar~ent.

SR-0018 B H-3

10. CFT?? enforces the requirement that a dummy argument used in an
adjustable array bound must appear in every dummy argument list in
the program unit that contains the array name; CFT does not enforce
this.

11. CFT?? produces an error message when an implied-DO variable in a DATA
statement is not an integer; CFT does not detect this error.

12. CFT?? prohibits an out-of-bounds array reference in an EQUIVALENCE
,statement and gives an error message. CFT gives a warning message
unless the out-of-bound subscript expression is less than the lower
bound for the dimension; CFT produces an error in this case.

13. CFT?? disallows an attempt to dimension a variable that has
previously appeared (as a scalar) in a DATA statement. CFT does not
detect this error.

14. CFT?? detects PARAMETER, DATA, or FORMAT statements appearing before
a SUBROUTINE or FUNCTION statement in a program unit. CFT does not
detect this.

15. CFT?? rejects the use of a logical third argument to the intrinsic
functions CVMGP, CVMGM, CVMGZ, and CVMGN; CFT does not detect this
error.

16. CFT?? detects illegal m1x1ng of logical with other types in masking
expressions or as arguments to logical intrinsics; CFT does not.
This use is invalid with both compilers since the bit representation
used for logical is not guaranteed and may change between releases or
machines. In fact, the internal representation for logical is
different on the CRAY-2 computer system than on the CRAY X-MP
computer system.

1? CFT?? issues a CAUTION when an intrinsic function is explicitly typed
and the declared type differs from the intrinsic's type. CFT issues
a CAUTION whenever an intrinsic function is explicitly typed.

18. CFT?? does not allow assigning different lengths to variables in a
type statement for noncharacter types. CFT does not detect this
error. For example, the following statements produce errors with
CFT?? but not with CFT:

COMPLEX*8 X, Y*16

REAL*8 X,Y

19. CFT?? gives an error message, but CFT does not detect, when ~
character array is dimensioned in a CHARACTER statement by the
following non-standard construct:

name * length (dimensions)

H-4 SR-0018 B

20. CFT77 does not allow an ENTRY name in a subroutine subprogram to
appear in a type statement. CFT does not detect this error.

21. CFT77 allows only integer and Boolean expressions in a computed GOTO
statement and gives an error if any other type is used. CFT does not
detect the use of character or logical types and allows the use of
other arithmetic types.

22. CFT77 rejects the use of an external name as an argument to the LOC
function; CFT does not detect this error. Make LOC external if you
need to do this.

23. CFT77 gives an error if END= is specified on a random access READ
statement. CFT does not detect this error; the library routine
ignores the specifier in this case.

24. Overindexing of arrays as a means of achieving dynamic common storage
is allowed but causes a message to be issued. Heap storage is
suggested for this purpose, as discussed in appendix D. The
following generates a warning with CFT77 but not with CFT:

SR-0018 B

COMMON A, B, C(1500)
DIMENSION R(1)
EQUIVALENCE (R(1),C(1»

H-5

INDEX

INDEX

$ format descriptor (carriage control), 8-31
-a cft77 command parameter, 1-6

stack, 2-22, 4-3, 4-26, 4-35, 4-43
and ALLOC directive, 1-35

a.out UNICOS file, 1-2
alA compiler option, 1-10 (UNICOS),

1-24 (COS)
ABORT and Flowtrace, 1-34
ABS, intrinsic function, B-2
Absolute value, intrinsic function, B-2
ACCESS command, for Cray-resident dataset,

1-14, 1-21
Access method, INQUIRE specifier, 7-34
ACCESS=, OPEN specifier, 7-30
ACCOUNT control statement, 1-14
ACOS, intrinsic function, B-6
ACQUIRE command, for remote file, 1-21
Actual argument, 2-33

in function reference, 2-13
in statement function reference, 2-17
passed through subprogram, 2-32

Actual array, 4-5
as pointee, 3-18

Address reference Table, 1-19
Adjustable array, 4-5, 4-11
AIMAG, intrinsic function, B-3
AINT, intrinsic function, B-2
ALLOC directive, 1-35
ALLOC parameter, CFT77 statement, 1-19

STACK option, 2-22, 4-26, 4-3, 4-35,
4-43

ALOG and ALOG10, intrinsic function, B-7
Alphanumeric character set, 2-1
Alternate return, 2-31

specifier, 10-4, 2-26 to 2-34
AMAX, intrinsic function, B-5, 2-37
American National Standards Institute

(ANSI), 1-1
AMIN, intrinsic function, B-5, 2-37
AMOD, intrinsic function, B-2
AND, int~insic function, B-8
ANINT, intrinsic function, B-2
ANSI (American National Standards

Institute), 1-1
messages about nonstandard usage, 1-10,

1-23
Apostrophe format descriptor, 8-27
Arguments, 2-32

overview, 2-11
actual, for external procedures, 2-33
association, 2-32, 4-32
character type, 3-14
dummy procedures, 2-35

EXTERNAL statement, 2-36

SR-0018 B

Arguments (continued)
INTRINSIC statement, 2-36

dwnmy, 2-34
for intrinsic function, 2-20
number, intrinsic function, B-10

Arithmetic expressions, 5-2, 5-8
array section in, 4-18
assignment statement, 5-3
data type, 5-8, 5-10 (table)
factors, 5-7
operands, 5-6
operators, 5-5
precedence of operators, 5-5
primar ies, 5-6
terms, 5-7
type conversion, 5-12

Arithmetic functions (table), B-2
Arithmetic IF statement, 10-4, 6-6

in vectorization, 10-6
Arithmetic operands, 5-6
Arithmetic operations, data types in

(table), 5-10
Arithmetic operators in expressions

(table), 5-5
Arithmetic value (definition), 3-1
Array expression, 4-20

array operands in intrinsic functions,
4-23

conformance of array operands, 4-21
not an argument, 2-20, 2-33
not in statement function, 2-17
order of operations, 4-21

Array section (CFT77 extension), 4-16
indexed section selectors, 4-17
name, 4-17, 4-16
vector-valued section selectors, 4-18

Array, 4-4
actual, 4-5
adjustable, 4-5, 4-11
and implicit association, 4-33
arguments, 2-34, 4-12
assumed-size, 4-5
automatic, 4-6
bounds checking
bounds directives (BOUNDS and

NOBOUNDS), 1-34
constant, 4-5
declarators, 4-7, 3-3

in POINTER statement, 3-17
in type statement, 3-4

DIMENSION statement, 4-6
dimension, 3-3
dimension, 4-4
dummy array, 4-12

Index-l

Array (continued)
d~y, 4-5
element, 4-9

as argument, 2-33
name, as argument, 2-33
substring, 4-4

in EQUIVALENCE statement, 4-4, 4-34
equivalencing, 3-19
expression, 4-20
implied-DO list, 4-26
kinds (table), 4-4
names, use of, 4-13
pointee, 4-5
scope, 2-7
section, 4-16
size, 4-12
specification and size (figure), 4-14
storage sequence, 4-10
subscripts, 4-9
in type statement, 3-4

asa routine, 7-26
ASIN, intrinsic function, B-6
ASSIGN command, for COS datasets, 7-32
ASSIGN statement, 6-13

for FORMAT label, 7-18
Assigned GOTO statement, 6-12
Assignment, 5-1

arithmetic, 5-3
and array sections, 4-16
character, 5-13
data types (table), 5-4
logical, 5-19
relational, 5-16
in vectorizing, 10-4

Associated, term defined, 4-28
Association, 4-28, 4-32

of arguments, 2-32
overview, 2-11
via pointers, 3-19

Assumed-size array, 4-5
Asterisk

default unit, 7-17
format descriptor, 7-18
in CHARACTER statement, 3-11

ASYNCDR, 9-5
AS¥NCMS, 9-5
ATAN and ATAN2, intrinsic function, B-6
Automatic array, 1-1, 1-6, 4-6

and static allocation, 1-6
element, in DATA statement, 4-28

-b parameter, cft77 command, 1-4, 1-6
B compiler option (UNICOS), 1-10
B= parameter, CFT77 statement, 1-19
BACKSPACE statement, 7-38

file identifier, 7-13
Backward format descriptor (TL), 8-28
Basic real constant, definition, 3-7
Binary output

UNICOS, 1-2, 1-4,1-10
COS, 1-14, 1-17, 1-19
disabling, 1-10, 1-19

Index-2

BL/NOBL directives, 1-32
Blank as zero, format descriptor (BZ), 8-30
Blank character, 4-1

control specifier, INQUIRE, 7-35
Blank common block, 4-38

and local common, 4-44
and pointers, 3-19
size, 4-38

BLANK= OPEN specifier, 7-30
BLANK= INQUIRE specifier, 7-35
BLCKDATA, name for block data subprogram,

4-45
$B~D dataset, 1-14, 1-19
BLOCK DATA statement, 4-45, 2-6, 2-11, 2-21
Block data subprogram, 2-21, 2-8, 4-44

name in EXTERNAL statements, 2-36
Block IF statement, 6-2, 6-6

in vectorization, 10-6
Blocked files and datasets, 7-12
Boolean type, 3-15

function, B-8 (table)
item, in expression, 5-10
operand, in masking expression, 5-23
versus logical type, 3-15

Bottom-loading, 1-32
Bounds checking, array, 1-11, 1-24

directives (BOUNDS and NOBOUNDS), 1-34
Branch backward, in vectorizing, 10-4
Branch, 10-4
BUFFER IN and BUFFER OUT statements, 9-1,

7-8, 7-10, 7-12
LENGTH function, 9-4
UNIT function, 9-3
with SETPOS, 9-7

BZ format descriptor (blank as zero), 8-30

-C parameter, cft77 command, 1-6, 1-25
C language, procedures in, F-2
C parameter, CFT77 statement (COS), 1-19
CABS, intrinsic function, B-2
CALL statement, 2-26, 2-8, 2-25

CAL

and alternate return, 2-31
d~y argument in, 2-28
timing with Flowtrace, 1-34
transfer back to, 2-26
vectorizing, 10-4

output, 1-9, 1-4 (UNICOS),
1-19, 1-17 (COS)

procedures in, F-1
vectorizable function in, 1-29

Cancellation, effect on accuracy, 3-7
Carriage control edit descriptor ($), 8-31
CCOS, intrinsic function, B-6
CDIR$, 1-27

also see Compiler directives
listing, 1-5, 1-18

CEXP, intrinsic function, B-7
CFT77 compiler, 1-1

conventions, 1-1
cross reference listings, 1-38
directives, 1-27

SR-0018 B

CFT77 compiler (continued)
Flowtrace, 1-33
language elements, 2-1
listable output, 1-37
using with COS, 1-13
using with UNICOS, 1-2

CFT77/CFT differences, 1-1
functional differences, 1-1
syntax, error detection, 1-3

CHAR, intrinsic function, 2-37, B-4
Character set, 2-1, A-1
Character type, 3-10

arguments, 3-14, 3-10
array, as format specifier, 7-19
assignment statement, 5-14
association of entities, 4-33
CHARACTER statement, 3-11

asterisk specification, 3-11
in common block, 4-38
constant in DATA statement, 4-27
constant in PARAMETER statement, 4-2
delimiter, 3-10
entry name, 2-29
equivalence, 4-37
expression, 5-13

as actual argument, 2-20, 2-33
as format specifier, 7-18
evaluation, 5-15
in statement function, 2-17

format (figure), G-4
function, 3-10, 3-11, B-5 (table)

declarations, 3-12
length, 2-24

Hollerith, 5-15, 5-10, 8-27, E-2
internal file, 7-15
length, 3-5
machine representation, G-4
position in string, 3-10
primary, 5-13
and records, 7-10
set, A-1
storage unit, 4-28
substrings, 3-13
variable, 3-10

cigs, 1-7
CIGS, 1-20
cilist, 7-20
Circular shift, intrinsic function, B-9
Class, of symbolic name, 2-7
CLOCK, intrinsic function, B-10
CLOG, intrinsic function, B-7
CLOSE statement, 7-32

and EOD record, 7-10
file identifier, 7-13
specifiers (table), 7-31

CMPLX, intrinsic function, B-4, 2-37
CODE and NOCODE directives, 1-33
Code, see Source code or Generated code
Collating sequence, 2-1
Colon format descriptor, 8-29
Comment, source, 2-3
Comment lines, 2-11
Common block, 4-37

overview, 2-11
allocation, 1-19

SR-0018 B

Common block (continued)
association of arguments, 2-33
BLOCK DATA statement, 4-45
block data subprogram, 4-44
COMMON statement, 4-39
and DATA statement, 4-25
directive (DYNAMIC), 1-36
EQUIVALENCE statement, 4-37
LOCAL COMMON statement, 4-44
names, 4-38, 4-1, 4-3, 4-39, 3-3, 1-39

and statement function argument, 2-17
same as function name, 2-24

redefined in subprogram, 1-30
referencing, 4-39
SAVE statement, 4-32
size, 4-42
storage sequence, 4-40, 4-28
TASK COMMON statement, 4-43

Common logarithm, intrinsic function, B-7
COMMON statement, 4-39

association, 4-33
block data subprogram, 4-45
entities defined in subroutines, 2-26
pointer in list, 3-19
static variables, 4-3
storage, 4-26

COMMONS, SEGLDR directive, 7-40
Compiler options, 1-10 (UNICOS), 1-24 (COS)

enabling, 1-7 (UNICOS), 1-20 (COS)
local control, 1-33

Compiler directives, 1-27
array bounds checking, 1-34
dynamic common block, 1-36
flowtrace directives, 1-33
issues, 1-4 (UNICOS), 1-17 (COS)
listable output control, 1-32
range, 1-17
suppressing optimization, 1-31
vectorization control, 1-28

Compiling under UNICOS, 1-2---­
cft77 command, 1-5
compiler options, 1-10

Compiling under COS, 1-13
CFT77 control statement, 1-17
compiler options, 1-23

COMPL, intrinsic function, B-8
Complement, logical, intrinsic function, B-8
Complex type, 3-9

conjugate or imaginary portion,
function, B-3

conversion, intrinsic function, B-4
conversion to and from, 5-12
format descriptor, 8-22
internal format (figure), G-4
machine representation, G-4
storage, 4-26
type statement, 3-4

Compress-index hardware, 10-5, 1-7, 1-20
Computed GOTO statement, 6-12
Concatenation

in actual argument, 3-14
operator II , 5-13

Conditional blocks, 6-1, 6-6
block IF statement, 6-4
ELSE statement, 6-5
ELSEIF statement, 6-4
ENDIFstatement, 6-4

Index-3

Conditional scalar merge, intrinsic
function, B-9

Conditional vector merge functions, B-11
Conditional vector merge hardware, 10-5
Conformance of array operands, 4-21

checking, 1-11 (UNICOS), 1-24 (COS)
CONJG, intrinsic function, B-3
Conjugate of complex value, intrinsic

function, B-3
Connection specifier, INQUIRE, 7-34
Constant, character, 3-11
Constant array, 4-5
Constant expression, in declarators, 4-5
Constant expression, in PARAMETER

statement, 4-2
Constant increment variable, 1-8, 1-22, 10-4
Constant-size array, 4-5
Constant, 2-2, 4-1

in type statement,
reference, 2-7
commonly used, C-1

Continuation line, 2-3
CONTINUE statement, 6-9

3-4
I

Control information list, I/O, 7-20
Control statement under COS, 1-17
Conventions, 1-1
COS (cosine) intrinsic function, B-6
COS (Cray operating system)

compiling under, 1-13
dataset, 7-14: also see Dataset
debugging under, 1-16
listing file, 1-16
range of units, 7-16
object file, 1-10

COSH, intrinsic function, B-7
COT, intrinsic function, B-6
CPU parameter, CFT77 statement, 1-19
CPU targeting, 1-6 (UNICOS), 1-19 (COS)
CPU= parameter, CFT77 statement, 1-25
Cray Assembly Language, see CAL
CRAY X-MP, CPU targeting, 1-7 (UNICOS),

1-19 (COS), 1-26
CRAY-2 systems

memory paging, 1-10, 1-12
and local common, 4-44

Cross reference listings, 1-38
enabling, 1-12, 1-25
labels, 1-41
Parameter Table, 1-41
source program references, 1-41
symbol table, 1-38

Cross-compiling, 1-25
Cross-reference listings, 1-2
CRSUBMIT command, 1-13
CSIN, intrinsic function, B-6
CSMG, intrinsic function, B-9
CSQRT, intrinsic function, B-7
CVMGx, intrinsic functions, 2-37
CVMGx, intrinsic functions, B-11

-d cft77 command parameter, 1-7, 1-10
D compiler option, 1-10

Index-4

D format descriptor (double precision),
8-13, 8-20

automatic disabling, 1-12
overriding, 1-24

DABS, intrinsic function, B-2
DACOS, intrinsic function, B-6
DASIN, intrinsic function, B-6
Data, machine representation, G-1
Data Length (table), E-13
DATA statement, 4-23, 2-6

allowed entities, 4-28
CAL output, 1-9, 1-19
data types in, 4-27
and definition, 2-21, 4-30, 4-31
with dummy argument, 2-34
implied-DO list, 4-26
in block data subprogram, 4-45
memory allocation, 1-6, 1-19, 4-26
outmoded features, E-13
and static variables, 4-3
task common variables, 4-43

Data structures and storage, 4-1
arrays, 4-4
association, 4-28
common blocks, 4-37
constants, 4-1
DATA statement, 4-23
storage, 4-28
variables, 4-3

Data transfer statements (READ, WRITE,
PRINT), 7-19

control information list, 7-20
end-of-file condition, 7-27
error condition, 7-26, 7-27
I/O list, 7-22
implied DO list, 7-23
operation, 7-24
output to a printer, 7-26
restrictions, 7-27

Data type, 3-1
arithmetic expressions, 5-8
arithmetic operations (table), 5-10
array element, 3-3
in assignment statements (table), 5-4
Boolean, 3-15
character, 3-10

also see Character type
format descriptor (A), 8-26

complex, 3-9
format descriptor, 8-22

constant, 4-1
conversion, 5-12

to pointers, 3-17
in PARAMETER statement, 4-2
functions (table), B-4

double-precision, 3-8
format descriptor (D), 8-13, 8-20

example values, 3-2
exponentiation (table), 5-11
functions, 2-14
implicit, 3-3
integer, 3-6

also see Integer type
64-bit, 1-7, 1-i1, 1-35
format descriptor (I), 8-21

SR-0018 B

Data type (continued)
logical, 3-9

format descriptor (L), 8-22
pointer, 3-16
real, 3-7

formatting, 8-13
input formatting (F, E, G), 8-17
output, 8-14 (F), 8-15 (E), 8-16 (G)

relational operations (table), 5-18
specification, 3-3

data length in statement, E-12
DOUBLE statement, E-11
function value, 2-23
IMPLICIT NONE statement, ~
IMPLICIT statement, 3-4
in a FUNCTION statement, 3-5
in block data subprogram, 4-45
pointee array, 3-17
statement function, 2-19
statements, 3-3, 3-5

DATAN, intrinsic function, B-6
Dataset, COS, 7-14

with BUFFER IN/OUT, 9-2
job input, 7-15
creating, 7-2
I/O, 7-11
name length, 1-17
fetching from front end, 1-21
local, 1-14
making local to job, 1-21
nondefault, 1-14
structure, 7-12

DATE, intrinsic function, B-10
Date functions (table), B-10
Date of compilation, 1-37
DBLE, intrinsic function, B-4, 2-37
DCOS, intrinsic function, B-6
DCOSH, intrinsic function, B-7
DCOT, intrinsic function, B-6
DDIM, intrinsic function, B-3
DEBUG keyword, CFT77 statement, 1-16, 1-22
DEBUG control statement, 1-16
debug utility (UNICOS), 1-4
Debugging, 1-4 (UNICOS), 1-16 (COS)

symbol table for, 1-10, 1-23
DECODE statement, E-6
Default

files (UNICOS) 1-3 (figure)
units, I/O, 7-17
values, cft77 command, 1-5
values, CFT77 control statement, 1-18

Definition, 4-30
entities in subprograms, 2-21

DELETE, CLOSE status, 7-31, 7-32
Delimiter, character, 3-10
Dependencies, vector, 1-28
DEXP, intrinsic function, B-7
Difference, positive, intrinsic function,

B-3
Differences between CFT77 and CFT, I-I
DIM, intrinsic function, B-3
Dimension declarator and bound expression,

4-7

SR-0018 B

DIMENSION statement, 4-6
and DATA statement, 4-23
in block data subprogram, 4-45

DINT, intrinsic function, B-2
DIRECT, file status, 7-30
Direct file access, 7-36; also see File
access
Direct-access I/O, record identifier, 7-21
DIRECT=, INQUIRE specifier, 7-35
Directives

control of command options, 1-33
issues, 1-4 (UNICOS), 1-17 (COS)
listing, 1-18
range, 1-17
scalar optimization, 1-31
vectorization, 1-28

DISPOSE control statement, 1-15
dispose/DISPOSE command, 7-2, 7-28,

1-21 (COS)
Division, prohibition on pointers, 5-10
DLOG, intrinsic function, B-7
DMAX1, intrinsic function, B-5, 2-37
DMIN1, intrinsic function, B-5, 2-37
DMOn, intrinsic function, B-2
DNINT, intrinsic function, B-2
DO loop, 6-6

array syntax, 1-1
DO statement, 6-8
ENTRY statement in, 2-29
loop control, 6-10
low trip count, 1-30
option j/J to force execution, 1-24
option to force execution, 1-11
prefetching operands, 1-32
terminal statement, 6-9
vectorizing, 10-4

directives, 1-~
DO variable, 6-6, 6-8, 6-10

in implied-DO list (I/O), 7-23
Dollar sign format descriptor (carriage

control), 8-31
Double-precision type, 3-8

conversion to and from, 5-12
disabling, 1-12
exponent, 3-8, 5-11
format descriptor (D), 8-13, 8-20
machine representation (figure), G-3
product, intrinsic function, B-3
range, 3-8
type statement, 3-4

outmoded, E-11
value, storage, 4-29

DPROD, intrinsic function, B-3
DSIN and DSINH intrinsic functions, B-6
DSQRT, intrinsic function, B-7
DTAN and DTANH, intrinsic functions, B-6
Dummy argument, 2-35

as actual argument, 2-34
as alternate return, 2-31
character, 3-11
cross reference listing, 1-40
DATA statement, 4-28
definition, 2-32

Index-5

Dummy argument (continued)
ENTRY statement, 2-29
function subprogram, 2-24
and pointers, 3-17
SAVE statement, 4-31
statement function, 2-17
subroutine, 2-26

Dummy array, 4-5, 4-12
adjustable, 4-13

Dummy procedure, 2-35
name, 2-7

in type statement, 3-4
subroutine name, 2-27

DUMP JOB statement, 1-16
$DUMP dataset, 1-16
Dynamic common block directive (DYNAMIC),

1-36
Dynamic allocation, and pointers, 3-16

-e cft77 command parameter, 1-7, 1-10
E format descriptor (real)

output, 8-13, 8-15
input, 8-17

E parameter, CFT77 statement, 1-20
Edit descriptors, see Format descriptors
EON parameter, CFT77 statement, 1-21
EJECT directive, 1-33
ELSE block, 6-2
ELSEIF block, 6-2
ema/EMA (extended memory addressing)

optimization option, 1-3, 1-7 (UNICOS),
1-20 (COS)

cross-compiling for, 1-26
Embedded comment, 2-3
ENCODE statement, E-6
END statement, 6-15, 2-6, 2-11, 2-21, 2-22,

2-23, 2-26
and RETURN statement, 2-30
block data subprogram, 4-45

End-of-data (EOD) record, 7-10
namelist processing, 9-14

End-of-file, 7-27, 7-10, 7-38
continuing execution, 7-21
identifier, I/O, 7-21
namelist processing, 9-14
with implied-DO, 7-24

END= specifier, I/O statement, 7-21
ENDFILE statement, 7-10, 7-38

file identifier, 7-13
ENDIF statement, 6-2, 6-6
ENTRY statement, 2-29, 2-6, 2-21, 2-23, 2-26

association, 4-33
dummy argument in, 2-34

EOF, see End-of-file
.EQ. operator, 5-15, 5-18
Equivalence, logical, intrinsic function,

B-8
EQUIVALENCE statement, 4-34, 4-40

and local common, 4-44
array names in, 4-36, 4-4
common storage, 4-42
and dummy argument, 2-34
restrictions, 4-36

Index-6

EQV, intrinsic function, B-8
ERR= specifier, I/O statement, 7-21

CLOSE specifier, 7-31
INQUIRE specifier, 7-34
OPEN specifier, 7-30

Error, I/O, 7-20
EOF, 7 -27
recovery, 7-27
with implied-DO, 7-24

Exclamation point (embedded comment), 2-3
Executable statement, 2-4
EXIST=, INQUIRE specifier, 7~34
EXIT control statement, 1-16

and Flowtrace, 1-34
EXP, intrinsic function, B-7
Exponent, real, 3-7
Exponentiation

data types in (table), 5-11
expression in PARAMETER statement, 4-2
functions (table), B-7

Expression, 5-1
as argument, 2-33, 3-14
character, 5-13

as actual argument, 2-20
in statement function, 2-17
logical, 5-17
masking, 5-22
operators (table), 5-5
relational, 5-15
vectorizable, and functions, 1-29

Extended memory addressing (EMA)
UNICOS, 1-3, 1-7
COS, 1-16, 1-20
cross-compiling, 1-26

EXTERNAL declaration, 3-6
External file, see File
External function, 2-22, 2-7, 2-8, 2-13

restrictions, 2-22
External procedure, 2-8
EXTERNAL statement, 2-36, 2-13, 2-19, 2-22,

2-35
entry name in, 2-29

F format descriptor (real), 8-13, 8-14, 8-17
f/F compiler option, 1-11 (UNICOS),

1-24 (COS), 1-33, 1-34
and PROGRAM statement, 2-12

Factors, in arithmetic expressions, 5-7
FETCH command for remote file, 1-21
FETCH control statement, 1-14, 1-15
file.f output file, 1-9
FILE=, OPEN specifier, 7-13, 7-30
File, 7-11

creating, 7-1, 7-2
default, 7-17, 1-3 (UNICOS),

1-14, 1-15 (COS)
direct access, 7-36
identifier, 7-13

in INQUIRE statement, 7-33
in OPEN statement, 7-30
as unit identifier, 7-16, 7-20

internal, 7-15

SR-0018 B

File (continued)
sequential access, 7-38

BACKSPACE statement, 7-39
ENDFILE statement, 7-39
REWIND statement, 7-40

structure, 7-12
FLOAT, intrinsic function, 2-37, B-4
Floating-point data format (figure), G-2
flodump command (CRAY-2 Flowtrace), 1-34
flow command, 1-34
FLOWMARK subroutine, 1-34
Flowtrace, 1-33, 10-1, 10-2

directives, 1-33
generating, 1-11, 1-24

FMT= specifier, 7-21
FORM=, INQUIRE specifier, 7-35
FORM=, OPEN specifier, 7-30
Format descriptor, 8-10, 8-12 (table)

A (character), 8-26
apostrophe, 8-27
asterisk, E-7
BN (ignore blanks), 8-30
BZ (blanks as zeros), 8-30
colon, 8-29
complex, 8-22
D (double precision), 8-13, 8-20
dollar sign (carriage control), 8-31
E (real), 8-15, 8-13, 8-17
F (real), 8-14, 8-13, 8-17
G (real), 8-16, 8-13, 8-17
H (Hollerith), 8-27
I/O lists and formats, 8-7
integer (I), 8-21
L (logical), 8-22
o (octal), 8-24
outmoded, E-7
P (scale factor), 8-20
positional, 8-28
quotation mark, 8-27
R (right-justified), E-8
real numbers, 8-13
S, SS (suppress + sign), 8-30
scale factor, 8-20
slash, 8-29
SP (include + sign), 8-30
T (character position), 8-28
TL (backward), 8-28
TR (forward), 8-28
X (forward), 8-28

FORMATTED, file status, 7-30
Formatted data assignment, E-5

also see Internal files, 7-15
DECODE statement, E-6
ENCODE statement, E-6

Formatted I/O, 8-5
descriptors, 8-9
format identifier, 7-21
FORMAT statement, 2-6, 8-6

label as specifier, 7-18
format, 7-18

also see Format descriptors
changing max length, 7-40
in INQUIRE, 7-35 --

tutorial, 7-5

SR-0018 B

Formatted record, 7-10
FORMATTED=, INQUIRE specifier, 7-35
Fortran language elements, 2-1

Also see Executable program
character set, 2-1
lines, 2-2
order of statements and lines, 2-5

Fortran language elements (continued)
statements, 2-4
symbolic names, 2-7
syntactic items, 2-2

Forward format descriptor (TR and X), 8-28
Front-end computer, transferring file to,

7-2
FTREF, 4-38
full, optimization option, 1-8
FULL, optimization option (COS), 1-22
FUNCTION statement, 2-24, 2-6, 2-11, 2-22,

2-23, 3-5
and character name, 3-11
argument used. in statement function,

2-18
Function, 2-13, 2-8

array operands in, 4-23
and array sections, 4-16
Boolean, 3-15
character, 3-11
data type, 2-14
declarations, character, 3-12
execution, 2-15
external, 2-22

vector version, 1-29
generic, 2-19

name as argument, 2-20
in logical IF statement, 2-16
intrinsic functions, 2-19

referencing, 2-20
restrictions, 2-20

name, 2-7
as actual argument, 2-34
in ENTRY statement, 2-30
in type statement, 3-4

order of evaluation, 2-16
and pointees, 3-17
reference, 2-13
statement function, 2-16
subprograms, 2-22, 2-8, 2-13

and association, 4-32
calling itself, 2-17
character, 3-14
name, in DATA statement, 4-28
type, 3-5

value, 2-8, 2-23
definition, 4-31

.f extension on file names, 1-2

G format descriptor (real)
Output, 8-13, 8-16
Input, 8-17

giG compiler option
UNICOS, 1-3, 1-5, 1-11
COS, 1-16, 1-18, 1-24

Index-7

Gather-scatter hardware, 1-7 (UNICOS),
1-20 (COS), 10-5

.GE. operator, 5-15, 5-18
Generic function names, 2-20

in INTRINSIC statement, 2-37
GETPOS, 9-5
GETWA, 9-5
Global data, 4-34
Global name, 2-7
Global variable (as in Pascal), 4-38
GO parameter, SEGLDR statement, 1-14
GOTO statements, 6-11

assigned, 6-12
computed, 6-12
in vectorization, 10-6
unconditional, 6-11

.GT. operator, 5-15, 5-18

H format descriptor (Hollerith), 8-27
h/H compiler option

UNICOS, 1-3, 1-5, 1-11
COS, 1-16, 1-18, 1-24
and PROGRAM statement, 2-12

Header statement, 2-21, 2-4
dummy argument in, 2-34

Heap allocation, 1-6, 1-19, 1-30, H-l
Hollerith type, 5-15, E-2

expression, E-4
relational expresssion, E-4
format descriptor (H), 8-27
in file id, 7-13
in expression, 5-10
in masking expression, 3-16, 5-22
in relational expression, 5-18

Hyperbolic trig, intrinsic function, B-7

-i parameter, cft77 command, 1-7, 3-6
and INTEGER directive, 1-35

I option, cft77 command, 1-10
I parameter, CFT77 statement, 1-21
I/O 7-1 (tutorial), 8-1, 9-1

BUFFER IN/OUT statements, 9-1
buffer lengths, changing, 7-40
CLOSE statement, 7-32
datasets, 7-11
default units, 7-17
extensions, 9-1
files, 7-11

access methods, 7-36
internal, 7-15
structures, 7-12

format descriptors, 8-10
formats, 7-18
formatted I/O, 8-5

format descriptors, 8-10
INQUIRE statement, 7-33
internal files and records, 7-15
list-directed I/O, 8-2
list, 7-22

changing max length, 7-40
NAMELIST statement, 9-10
OPEN statement, 7-28

Index-8

I/O (continued)
performance, 7-8

comparison, random I/O, 9-6
PRINT statement, 7-19
random, 9-5
READ statement, 7-19
records, 7-10
statements (table), 7-9

assumed-size array in, 4-6
unformatted I/O, 8-1
units, 7-16
WRITE statement, 7-19

lABS, intrinsic function, B-2
ICHAR, intrinsic function, B-4, 2-37
IDIM, intrinsic function, B-3
IDINT, intrinsic function, B-4, 2-37
IDNINT, intrinsic function, B-2
IF statements

arithmetic, 6-6
two-branch, E-14
block, 6-4, 6-2
functions in, 2-16
IF level, 6-2
logical, 6-5

indirect, E-14
as loop terminal statement, 6-8
relational expression in, 5-15
structure (figure), 6-2, 6-3

IFIX, intrinsic function, 2-37, B-4
Imaginary part (complex) range, 3-9
Implicit association, 4-33
IMPLICIT statement, 2-6, 2-14, 3-4, 4-2

in block data subprogram, 4-45
IMPLICIT NONE, 3-6

Implied DO list
DATA statement, 4-26
I/O, 7-23
and I/O speed, 7-8

INCLUDE statement, 1-36
Increment value, 6-6
Incrementation count, also see Trip count,

6-6
INDEF parameter, CFT77 statement, 1-23
INDEX, intrinsic function, B-5
Initial line, 2-3
Initial values, in DATA statement, 4-23
Initially defined variable, 4-31
Input/Output, see I/O
INQUIRE statement, 7-33

specifiers (table), 7-34
INT, intrinsic function, B-4, 2-37
INTEGER directive, 1-35
INTEGER= parameter, CFT77 statement, 1-21,

3-6
Integer type, 3-6

constant expression, 5-2
constant, 3-6
conversion to and from, 5-12

intrinsic function, B-4
to pointers, 3-17

data formats (figure), G-l
expressions and pointers, 3-17
format descriptor, 8-21
INTEGER directive, 1-35

SR-0018 B

Integer type (continued)
machine representation, G-1
nearest, intrinsic function, B-2
operation, 5-10
quotient, 5-5
range, 3-6
selecting 64-bit, 1-7 (UNICOS),

1-21 (COS), 1-35
storage, 4-28
type statement, 3-4

Internal files, 7-15
Intrinsic function, 2-19, 2-13, 2-8, B-1

array operands in, 4-23
as dummy arguments, 2-35

Intrinsic function (continued)
referencing, 2-20
replacing with same name, 2-36
restrictions, 2-20

INTRINSIC statement, 2-36
and dummy argument, 2-35

Invariant value or expression, in
vectorizing, 10-4

$IN dataset, 1-15, 1-16, 1-21, 7-15, 7-17
$IOLIB, errors detected by, 7-27
IOSTAT=, specifier, 1/0 statement, 7-21,

7-30, 7-31, 7-34
IRTC, intrinsic function, B-10
ISIGN, intrinsic function, B-2
IVDEP directive, 1-28

j/J compiler option, 1-11 (UNICOS),
1-24 (COS), 6-6

JCL file, 1-13
JDATE, intrinsic function, B-10
JN parameter, JOB statement, 1-13
JOB control statement, 1-13
Julian date, intrinsic function, B-10

KEEP, CLOSE status, 7-31
Keyword, 2-2

-1 parameter (listing file), cft77 command,
1-7

L format descriptor (logical), 8-22
LILIST compiler option

UNICOS, 1-10, 1-3, 1-5
COS, 1-21, 1-16, 1-18

Label Cross-reference Table, 1-41
Labels, 2-2
LDR control statement, common block size,

4-42
.LE. operator, 5-15, 5-18
Leading zeros, intrinsic function, B-9
LEADZ, intrinsic function, B-9
LEN, intrinsic function, B-5
Length, character value, 3-10, 3-11
LENGTH function, 9-4, 9-1
Lexical relation, intrinsic function, B-5
LGE, intrinsic function, B-5, 2-37
LGT, intrinsic function, B-5, 2-37
LIBIO, errors detected by, 7-27

SR-0018 B

Limit, of DO variable, 6-6
Line number in source, 1-41
Lines, 2-2

comment, 2-3
compiler directive, 2-4
continuation, 2-3
initial and terminal, 2-3

Linked lists, 3-16
LIST and NOLIST directives, 1-33, 1-18
LIST keyword, CFT77 statement, 1-21, 1-37
List-directed 1/0, 8-2

tutorial, 7-4
Listable output, 1-37

directives (EJECT, LIST, CODE), 1-33
file, 1-7 (UNICOS), 1-21 (COS)
INCLUDE file, 1-37
options, 1-10 (UNICOS), 1-23 (COS),

1-3, 1-4, 1-16
conflicting, 1-5, 1-18

Literal constant, 4-1
LLE, intrinsic function, B-5, 2-37
LLT, intrinsic function, B-5, 2-37
Loader, and common block size, 4-42

Also see SEGLDR
LaC function, 3-18, 3-19, B-10
Local and global data, 1-4
LOCAL COMMON statement, 4-44, 4-38
Local data, 4-34, 1-17
Local dataset, 1-14
Local name, 2-7
Local memory paging (CRAY-2), 1-10, 1-12
Location, intrinsic function, B-10
LOG, intrinsic function, B-7, 2-37
LOG10, intrinsic function, B-7, 2-37
Logarithmic functions (table), B-7
Logical expression, 5-17

array section in, 4-21
assignment statement, 5-19
components of, 5-21
operations (table), 5-24
operators, 5-19, 5-20 (table)

as functions (table), B-8
for masking expressions, 5-22

Logical IF statement, 6-5
in vectorization, 10-5
storage, 4-28

Logical shift, intrinsic function, B-9
Logical type, 3-9

entity, in DATA statement, 4-27
format descriptor (L), 8-22
machine representation, G-4
type statement, 3-4
versus Boolean type, 3-15

Loopmark, 1-12 (UNICOS), 1-24 (COS), 1-2,
1-15

Loop, DO, 6-6; also see DO loop
.LT. operator, 5-15, 5-18

-m cft77 command parameter, 1-8
m/M compiler option

UNICOS, 1-2, 1-3, 1-12, 1-37
COS, 1-18, 1-24, 1-37

Index-9

Machine representation, G-1
character type, G-4
complex type, G-4
double-precision type, G-3
integer type, G-1
logical type, G-4
real type, G-2

Main program, 2-8
scope of name, 2-7

MASK, intrinsic function, B-8
Masking expressions, 5-22, 5-24 (table),

3-15
with Hollerith operand, 3-16

MAX, intrinsic function, 2-37, B-5
Maximumlminimum functions (table), B-5
Memory management, D-1
Memory, see Storage
Messages

Levels, 1-8 (UNICOS), 1-20 (COS)
COS dataset, 1-21
listings, 1-37

MIN, intrinsic function, B-5, 2-37
MOD, intrinsic function, B-2
Mode, BUFFER INIOUT statements, 9-2
Multiplication, 5-5

prohibition on pointers, 5-10
rounding, 1-12

Multitasking, 10-3
and storage, 4-29

NAME=, INQUIRE specifier, 7-34
NAMED=, INQUIRE specifier, 7-34
NAMELIST statement, 9-10

Name

and entry name, 2-29
input, 9-12
name, 2-6
output, 9-17
processing, 9-14
user control subroutines, ~, 9-16
variables, 9-13

array, 4-13
common block, 4-32, 4-38
symbolic, 2-7

Natural log, intrinsic function, B-7
.NE. operator, 5-15, 5-18
NEQV, intrinsic function, B-8
NEW, file status, 7-30
NEXTREC=, INQUIRE specifier, 7-34
NINT, intrinsic function, B-2
NO SIDE EFFECTS directive, 1-30
NOBL directive, 1-32
NOEMA designation, 1-26
NOLIST directive, 1-5, 1-18
Non-Fortran procedures, 2-26, F-1

CAL, F-1
Cray C, F-2
Cray Pascal, F-1
functions, 2-21
subroutines, 2-21

Nondefault dataset, 1-14
Nonexecutable statement, 2-4
Normalized values, 3-7

Index-10

Novector, optimization option, 1-8, 1-22
NULL, blank specifier, 7-30
NUMARG, intrinsic function, B-10
NUMBER=, INQUIRE specifier, 7-34
Numeric storage unit, 4-28

-0 parameter (optimization), cft77 command,
1-8

o format descriptor (octal), 8-24
0/0 compiler option (bounds checking), 1-11

(UNICOS), 1-24 (COS), 1-34, 4-21
Octal format descriptor (0), 8-24
OFF= parameter (disables options under

COS), 1-21
Off, optimization option, 1-8, 1-22
OLD, file status, 7-30
ON parameter, CFT77 statement, 1-22, 1-24
OPEN statement, 7-28

access specifier, 7-36
alternatives to, 7-29
creating files, 7-11
example, 7"-1
file identifier, 7-13

OPEN statement (continued)
specifiers (table), 7-30
unit specifier, 7-16

OPENED=, INQUIRE specifier, 7-34
Operands, arithmetic, 5-6, 5-1
Operators

arithmetic, 5-5
contatenation (II), 5-13
defined, 2-2
in expression, 5-1, 5-5 (table)
logical and masking, 5-22

OPT parameter, CFT77 statement, 1-22
Optimizing, 10-1

bottom-loading, 1-32
command options, 1-8 (UNICOS),

1-22 (COS)
directives, 1-31
multitasking, 10-3
options, 1-22
and pointers, 3-19
status, 1-37
suppressing (SUPPRESS directive), 1-31
vectorization, 10-4

Optionally signed constant, 4-1
Options, compiler, 1-10 (UNICOS), 1-24 (COS)

enabling, 1-7 (UNICOS), 1-20 (COS)
local control, 1-33

OR, intrinsic function, 8-8
Order of statements and lines, 2-5
Output to a printer, 7-26
$OUT dataset, 1-18, 1-13, 1-21, 1-24, 7-17

and namelist processing, 9-14

P format descriptor (scale factor), 8-20
piP compiler option, 1-10, 1-12 (UNICOS),

1-24 (COS)
Page of source listing, 1-33

header lines, 1-37

SR-0018 B

PARAMETER statement, 4-1, 2-6
and character constant, 3-12
dummy argument not in, 2-34
in block data subprogram, 4-45

Parameter table, 1-41
Parentheses in expressions, 5-1
Partial association, 4-33
Pascal, procedures in, F-l
PAUSE statement, 6-15
Plus sign format descriptor (S, SS, SP),

8-30
Pointer type, 3-16

and SAVE statement, 4-31
array, 3-17, 4-5
in DATA statement, 4-28
listing, 1-40
not dummy argument, 2-34

POINTER type statement, 3-17
and entry name, 2-29
for array, 4-5

using pointers, 3-18
POPARR, intrinsic function, B-9
POPCNT, intrinsic function, B-9
Population count, intrinsic function, B-9
Population parity, intrinsic function, B-9
Position format (T, TL, TR, X), 8-28
Powers and constants, C-l
Precedence of all operators, 5-1
Prefetching operands, 1-32
Primaries, in arithmetic expressions, 5-6
Print control characters (table)~ 7-26
PRINT statement, see Data transfer, 7-19,

1-16
unit specifier, 7-16
with namelist 1/0, 9-10

Printer, output to, 7-26
Procedure

call, 2-8
dummy, 2-35, 2-7, 2-27, 3-4
subprogram, 2-8, 2-9

Produc~, logical, intrinsic function, B-8
Program control, 6-1

conditional blocks, 6-1
DO loops, 6-6
GOTO and ASSIGN, 6-11
IF statement, 6-4
suspending execution, 6-14

Program example, 2-10
using NAMELIST, 9-11

PROGRAM statement, 2-12, 2-6
with Flowtrace, 1-34

Program structure, 2-8
arguments, 2-32
function, 2-13
program unit, 2-11, 2-8
subprogram, 2-21
example, 2-10
summary, 2-9

PUNCH statement, E-ll
with namelist 1/0, 9-10

$PUNCH, 7-17
Pure data file, 7-12
PUTWA, 9-5

SR-0018 B

q/Q compiler option, 1-12 (UNICOS),
1-25 (COS)

R format descriptor (right-justified), E-8
rlR compiler option, 1-12 (UNICOS)

1-25 (COS)
Random 1/0, 9-5, 7-12

comparison, 9-6 (table)
characteristics of (table), 9-7

Random number, intrinsic function, B-3
RANF, intrinsic function, B-3
Range, real type, 3-7
RANGET, intrinsic function, B-3
RANSET, intrinsic function, B-3
$RBUFLN, 7-40
READ statement, see Data transfer, 7-19

and end-of-file, 7-21
file identifier, 7-13
unit specifier, 7-16, 7-21
with namelist 1/0, 9-10

READDR, 9-5
READMS, 9-5
REAL, intrinsic function, 2-37, B-4
Real type, 3-7

conversion, intrinsic function, B-4
conversion to and from, 5-12
formatting, 8-13

input (F, E, G), 8-17
output, 8-14 (F), 8-15 (E), 8-16 (G)

machine representation-G-2
normalized values, G-3
operation, with Boolean item, 5-10
type statement, 3-4

Real-time clock, intrinsic function, B-10
REC= specifier, 1/0 statement, 7-21
RECL=, INQUIRE specifier, 7-34
RECL=, OPEN specifier, 7-30
Record, 7-10, 7-21

blocking, 7-10
length specifier, OPEN statement, 7-30
specifier, INQUIRE, 7-34

Recurrence, in vectorizing, 10-4
Recursion, 2-17, 2-22, 2-29

and dummy procedures, 2-36
and SAVE statement, 1-31
of function subprogram, 2-23

Redirection of 1/0 files, 7-17
Reference (to a constant, etc.), 2-7
Relational expressions, 5-15

arithmetic, 5-16
array section in, 4-21
character, 5-17
data types in (table), 5-18

Remainder, divide for (MOD), intrinsic
function, B-2

Representation of data, machine, G-1
Result variable, function, 2-14, 2-23
RETURN statement, 2-21, 2-23, 2-26, 2-30,

6-7
storing pointee variable, 3-19
timing with Flowtrace, 1-34

REWIND statement, 7-38
file identifier, 7-13

Index-11

$RFDCOM, common blocks, 7-40
Right-justified character specifier (R), E-8
RNL routines, 9-15
RNLTYPE routines, 9-15
Rounding, 3-7, 3-8

multiply operations, 1-12
RTC, intrinsic function, B-I0

-s parameter (CAL file), cft77 command, 1-9
S, SS format descriptor (suppress + sign),

8-30
sIS compiler option (listings)

UNICOS, 1-3, 1-4, 1-5, 1-11, 1-12, 1-37
COS, 1-18, 1-25, 1-37

SAVE command (COS datasets), 7-11, 7-28
SAVE statement, 4-31, 1-4, 1-17

block data subprogram, 4-45
common block name in, 4-40
definition of entities in, 2-21
dummy argument not in, 2-34
and local common, 4-44
and pointees, 3-17
static allocation, 1-6
static variables, 4-3
storage, 4-29

Scalar item, in array syntax, 4-21
Scalar merge, intrinsic function, B-9
Scalar optimization, 1-31
Scalar variable, 4-3
Scale factor format descriptor (P), 8-20
Scope of a symbolic name, 2-7
SCRATCH, file status, 7-30
Section selectors, array, 4-16
SEEK, with GETWA routine, 9-5
SEGLDR

and common block size, 4-42
control statement, 1-15
directives

changing 1/0 buffers, 7-40
load map, 1-4, 1-16
loading UNICOS libraries (prof and

Perf trace), 10-2, 10-3
renaming program for running, 10-2

statement (COS), 1-14
command (UNICOS), 1-2
and stack storage, 4-29

Sequence, storage, 4-28
Sequential file access, also see File

access, 7-36
file status, 7-30
INQUIRE specifier, 7-34

SET, SEGLDR directive, 7-40
SETPLIMQ subroutine, Flowtrace~, 1-34
SETPOS, 9-5

with BUFFER INIOUT, 9-7
with buffered 1/0, 9-1

Shape, of array operands, 4-21
SHIFTL/R, intrinsic functions, B-9
SHORTLOOP directive, 1-30
Side effects, in vectorization, 1-30
Sign transfer, intrinsic function, B-2
Signed constant, 4-1

Index-12

Simple variable, 4-3
SIN, SINH, intrinsic function, B-6
SNGL, intrinsic function, 2-37
SNGL, intrinsic function, B-4
Source code

listing directives, 1-33
listing, 1-37

UNICOS, 1-2, 1-3, 1-5, 1-7, 1-10,
1-11, 1-12

COS, 1-13, 1-14, 1-16, 1-21, 1-24,
1-25

INCLUDE files, 1-36
Source program references, 1-41
SP format descriptor (include + sign), 8-30
Special character, 2-1
Specification statement, 2-5, 2-6

and DATA statement, 4-23
Specification subprogram, 2-8
Specifier, 7-35
SQRT, intrinsic function, B-7
Square root, intrinsic function, B-7
STACK directive, SEGLDR control statement,

4-29
STACK option, 1-19
Stack storage, 4-29, 4-43

and association, 4-34
and DATA statement, 4-23
listing, 1-40
mode, 1-6, 2-22
variable, 4-3

STANDARD parameter, CFT77 statement, 1-23
Statement function, 2-16, 2-13, 2-8

definition statement, 2-17
Type specification, 2-19

Statements, 2-4
labels, 2-2

and numbers, 1-37, 1-41
for alternate return, 2-31

order, 2-5, 2-6
STATIC option, 1-19
Static storage, 4-29, 4-43

and association, 4-34
and SAVE statement, 4-31
listing, 1-40
mode, 1-6, 2-22
variable, storage allocation, 4-3

Status identifier, 7-21
STATUS=, CLOSE specifier, 7-31
STATUS=, OPEN specifier, 7-30
stderr UNICOS file, 7-17
stdin UNICOS file, 1-2, 7-17
stdout UNICOS file, 1-2, 1-3, 7-17
STOP statement, 6-14, 2-23, 6-7
Storage, 4-28

absolute locations, 3-17
allocation, 1-4, 1-6, 1-19, 3-16

directive, 1-35
heap, 1-6, 1-19, 1-30, 0-1
static variable, 4-3

array
sequence (figure), 4-10, 4-11

and association, 4-28, 4-32
and data structures, 4-1

SR-0018 B

Storage (continued)
heap, 1-6, 1-19, 1-30, D-1
listing, 1-40
memory paging (CRAY-2), 1-10, 1-12
register, and subprogram calls, 1-20
sequence, 4-28

and association, 4-28, 4-32
array, 4-10, 4-11
common block, 4-28, 4-40
of an array (figure), 4-15

stack and static, 4-29, 1-6, 2-22, 4-43
unit, 4-28, 5-22

and arrays, 4-12
character, 4-28

with pointers, 3-16, 3-19
String length, intrinsic function, B-5
Striping, random I/O, 9-6
Subprogram, 2-21, 2-8, 4-9

altering transfer of control, 2-28
ENTRY statement, 2-29
RETURN statement, 2-30.

argument, 2-32
array in, 4-5
external functions, 2-22

restrictions, 2-22
FUNCTION statement, 2-24
function subprograms, 2-22
name, 2-7

as argument, 2-32, 2-34
referencing itself, 2-22, 4-31
side effects, 1-30
stack storage, 4-29
subroutines, 2-25, 2-26, 2-8, 2-9

CALL statement, 2-26
requirements, 2-26
SUBROUTINE statement, 2-28

tracing, 1-33
SUBROUTINE statement, 2-28, 2-6, 2-21,

2-22, 2-26
alternate return specifier in, 2-31
argument used in statement function,

2-18
Subscript expressions, array, 4-9

value in argument, 2-33
Subscripted variable (term), 4-3
Substring, character, 3-13, 3-14

of array element, 4-12
of array, 4-4
index, intrinsic function, B-5
name as argument, 2-32, 2-33
name in implied-DO list, 4-26
name in EQUIVALENCE statement, 4-34

Sum, logical, intrinsic function, B-8
Suppressing optimization (SUPPRESS), 1-31
Symbol Cross-reference Table, 1-38

enabling, 1-10, 1-12, 1-23, 1-25·
Symbolic constant, 4-1
Symbolic names, 2-2, 2-7, 3-4

data type of, 3-3
number of characters, 1-1, 2-7

SYNCDR, 9-5
Syntactic items, 2-2

SR-0018 B

-t cft77 command parameter, 1-9
T format descriptor (position), 8-~
TAN, TANH, intrinsic functions, B-6
TARGET command (COS), 1-20
target command (UNICOS), 1-6
Task common, entity in DATA statement, 4-28
TASK COMMON statement, 4-43, 4-38

variables, 4-3
TASK common, 1-30, 1-6
Term, in arithmetic expression, 5-7
Terminal line, 2-3, 6-15
Terminal statement of DO loop, 6-8, 6-6, 6-7
Text file, 7-12
Time functions (table), B-10
Time of compilation, 1-37
TL format descriptor (backward), 8-28
Total association, 4-32
TR format descriptor (forward), 8-28
Transferring file to front-end computer, 7-2
Trigonometric functions (table), B-6
Trip count, 6-6, 6-8, 6-10

of implied-DO (I/O), 7-24
TRUNC parameter, CFT77 statement, 1-22
Truncation, 3-7, 3-8

in expressions, 5-13
parameter, 1-9 (UNICOS), 1-22 (COS)

in listing, 1-37
Types, data, 3-1: also see Data types

Unblocked datasets, with BUFFER IN/OUT, 9-1
Undefined variable, 4-30
UNFORMATTED, file status, 7-30
Unformatted I/O, 8-1

I/O statements, 7-10
tutorial, 7-3

Unformatted record, 7-10
UNFORMATTED=, INQUIRE specifier, 7-35
UNICOS, compiling under, 1-2
UNICOS, range of units, 7-16
Uninitialized variable, 1-10, 1-23
Unit, I/O, 7-20
Unit, storage, 4-28
UNIT function, 9-3, 9-1
UNIT= identifier, I/O statements, 7-20,

7-30, 7-31
Unit, I/O, 7-16

assigned in OPEN statement, 7-28
creation and assignment, 7-11
in INQUIRE statement, 7-33
in INQUIRE statement, 7-34

UNKNOWN, file status, 7-30
Unsigned constant, 4-1
US parameter, JOB statement, 1-13

-V option, cft77 command, 1-2
Variable, 4-3

name in type statement, 3-4
name, 2-7
pointer, 3-16
uninitialized, 1-10

VECTOR and NOVECTOR directive, 1-28

Index-13

Vectorization, 10-4
and array bounds checking, 1-34
command options, 1-8 (UNICOS),

1-22 (COS)
dependencies, 1-28
directives, 1-28
enabling listings, 1-10
expressions, 10-5
loops containing IF, 10-5
loops, 10-4
options, 1-22
recurrences, 10-6
statements, 10-4
suppressing, 1-28

Vectorization control directives, 1-28
IVDEP, 1-28
NO SIDE EFFECTS, 1-30
SHORTLOOP, 1-30
VECTOR and NOVECTOR, 1-28
VFUNCTION, 1-29

Vector array reference, 10-4
Vector merge functions (table), B-11
Vector population count, 1-20
VFUNCTION directive, 1-29, 10-5
vpop/VPOP option, 1-7 (UNICOS), 1-20 (COS)

w/W compiler option, 1-12 (UNICOS)
WAITDR, 9-5
$WBUFLN, 7-40
$WFDCOM, common blocks, 7-40
Whole array reference, 4-20
Whole number, nearest, intrinsic function,

B-2
WNL routines, 9-17
WNLDELM routines, 9-17
WRITDR, 9-5

Also see Data transfer
WRITE statement, 1-16, 7-19

file identifier, 7-13
unit identifier, 7-20, 7-16

WRITE statement (continued)
vectorizing, 10-4
with namelist I/O, 9-10

WRITMS, 9-5
WWAIT function, 9-5

X format descriptor (forward), 8-28
xiX compiler option

UNICOS, 1-12, 1-2, 1-3, 1-5
COS, 1-25, 1-13, 1-16, 1-18

XOR, intrinsic function, B-8

ZERO, blank specifier, 7-30
zeroinc optimization option, 1-8
ZEROINC, optimization option (COS) 1-22

Index-14 SR-0018 B

READER'S COMMENT FORM

CFT77 Reference Manual SR-0018

Your reactions to this manual will help us provide you with better documentation. Please take a moment t
check the spaces below, and use the blank space for additional comments.

1) Your experience with computers: __ 0-1 year __ 1-5 years __ 5+ years
2) Your experience with Cray computer systems: __ 0-1 year __ 1-5 years __ 5+ years
3) Your occupation: __ computer programmer __ non-computer professional

__ other (please specify): _______________ _
4) How you used this manual: __ in a class __ as a tutorial or introduction __ as a reference guide

__ for troubleshooting

Using a scale from 1 (poor) to 10 (excellent), please rate this manual on the following criteria:

5) Accuracy __ 8) Physical qualities (binding, printing) __
6) Completeness __ 9) Readability __
7) Organization __ 10) Amount and quality of examples __

Please use the space below, and an additional sheet if necessary, for your other comments about this
manual. If you have discovered any inaccuracies or omiSSions, please give us the page number on which
the problem occurred. We promise a quick reply to your comments and questions.

Name Address ---------------- ------------
Title ------------------------ City ____________ _
Company ____________ _ Statel Country _______ _
Telephone _______ _ Zip Code _________ _
Teday's Date ______ _

---~

111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUL. MN

POSTAGE WILL BE PAlO BY ADDRESSEE

RESEARCH. INC.

Attention: PUBLICATIONS
1345 Northland Drive
Mendota Heights, MN 55120

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

---~

("')
C
-I
»
r o
Z
Cl
-I
:J:
Cii
r
Z
m

READER'S COMMENT FORM

CFT77 Reference Manual SR-OOl8

Your reactions to this manual will help us provide you with better documentation. Please take a moment
check the spaces below, and use the blank space for additional comments.

1) Your experience with computers: __ 0-1 year __ 1-5 years __ 5+ years
2) Your experience with Cray computer systems: __ 0-1 year __ 1-5 years __ 5+ years
3) Your occupation: __ computer programmer __ non-computer professional

__ other (please specify): ___________ _
4) How you used this manual: __ in a class __ as a tutorial or introduction __ as a reference guide

__ for troubleshooting

Using a scale from 1 (poor) to 10 (excellent), please rate this manual on the following criteria:

5) Accuracy __ 8) Physical qualities (binding, printing) __
6) Completeness __ 9) Readability __
7) Organization __ 10) Amount and quality of examples __

Please use the space below, and an additional sheet if necessary, for your other comments about this
manual. If you have discovered any inaccuracies or omissions, please give us the page number on which
the problem occurred. We promise a quick reply to your comments and questions.

Name ---------------------- Address _________ _
Title __________ __ City _____________ _
Company ________________ _ Statel Country ______ _
Telephone _______ __ Zip Code _________ _
Today's Date ______ __

.--~

111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUL MN

POSTAGE Will BE PAID BY ADDRESSEE

RESEARCH) INC.

Attention: PUBLICATIONS
1345 Northland Drive
Mendota Heights, MN 55120

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

---~

(")
C
-I
»
r o
Z
(;)

-I
::I:
Ci5
r
Z
m

