
THE CORVUS CONCEPT

PASCAL
REFERENCE MANUAL

*~ CORVUS SYSTEMS
* *

DISCLAIMER OF ALL WARRANTIES & LIABILITIES
Corvus Systems, Inc. makes no warranties, either expressed or implied, with respect to
this manual or with respect to the software described in this manual, its quality, perform
ance, merchantability, or fitness for any particular purpose. Corvus Systems, Inc. soft
ware is sold or licensed "as is:' The entire risk as to its quality or performance is with the
buyer and not Corvus Systems, Inc., its distributor, or its retailer. The buyer assumes the
entire cost of all necessary servicing, repair, or correction and any incidental or conse
quential damages. In no event will Corvus Systems, Inc. be liable for direct, indirect,
incidental or consequential damages, even if Corvus Systems, Inc. has been advised of
the possibility of such damages. Some states do not allow the exclusion or limitation of
implied warranties or liabilities for incidental or consequential damages, so the above
limitation may not apply to you.

Every effort has been made to insure that this manual accurately documents the opera
tion and servicing of Corvus products. However, due to the ongoing modification and
update of the software along with future products, Corvus Systems, Inc. cannot guaran
tee the accuracy of printed material after the date of publication, nor can Corvus Sys
tems, Inc. accept responsibility for errors or omissions.

NOTICE
Corvus Systems, Inc. reserves the right to make changes in the product described in this
manual at any time without notice. Revised manuals and update sheets will be published
as needed and may be purchased by writing to:

Corvus Systems, Inc.
2029 O'Toole Avenue
San Jose, CA 95131

Telephone: (408) 946-7700
TWX 910-338-0226

This manual is copywrited and contains proprietary information. All rights reserved.
This document may not, in whole or in part be copied, photocopied, reproduced, trans
lated or reduced to any electronic medium or machine readable form without prior con
sent, in writing. from Corvus Systems, Inc.

Copyright(<j 1982 by Corvus Systems, Inc. All rights reserved.

Mirror® patent pending, The Corvus Concept,'" Transporter,'· Corvus OMNINET,'·
Corvus Logicalc,'" Time Travel Editing.'" EdWord,'" Constellation,'" Corvus,'· Corvus Sys
tems,'· Personal Workstation,'" Tap Box,'· Passive Tap Box,'· Active Junction Box,'·
Omninet Unit'" are trademarks of Corvus Systems, Inc.

FCC WARNING
This equipment generates, uses, and can radiate radio frequency energy and if not
installed and used in accordance with the instruction manual, may cause interference to
radio communications. As temporarily permitted by regulation it has not been tested for
compliance with the limits for Class A computing devices pursuant to Subpart J of Part
15 of FCC Rules, which are designed to provide reasonable protection against such inter
ference. Operation of this equipment in a residential area is likely to cause interference
in which case the user at his own expense will be required to take whatever measures
may be required to correct the interference.

*

* CORVUS SYSTEMS
*

*
* The Corvus Concept Pascal

Reference Hanual

PART NO. : 7100-02827

DOCUMENT NO. CCC/34-33/1.1

RELEASE DATE February, 1982

CORVUS CONCEPT (TM) is a trademark of Corvus Systems, Inc.

Table of Contents

Chapter 1 Introduction

1.1 O'Jerview of the Pascal Language
1.2 Metalanguage
1. 3 Elementary Lexical Constructs

1.3.1 Alphabet
1.3.2 Pascal Identifiers
1. 3.3 Nunt>ers
1.3.4 Pascal Strings
1.3.5 Pascal Labels
1.3.6 Basic Symbols
1.3.7 Oonventions for Spaces
1.3.8 Cannents

Chapter 2 Defining Data Types

2.1 Defining Constants

2.1.1 Predefined COnstants

2.2 Standard Types
2.3 Defining Data Types
2.4 Simple Types

2.4.1 Scalar Types
2.4.2 Subrange Types

2.5 Structured Types

2.5.1 Array Types
2.5.2 String Types
2.5.3 Record Types
2.5.4 Set Types
2.5.5 File Types

2.6 Pointer Types
2.7 Type Identity and Assignment Compatibility

2.7.1 Identical Types
2.7.2 Assignment Compatible Types

Chapter 3 Declaring and Referencing Variables

3.1 Declaring Variables
3.2 Predeclared Var iables

- v -

1

2
6
7

7
8
8
9
10
11
13
13

15

15

16

17
18
19

19
20

20

21
23
24
25
26

27
28

28
29

31

:31
32

3.3 Establishing Variables
3.4 Lifetimes of Variables

3.4.1 Global Variables
3.4.2 Lifetime of Formal Parameters
3.4.3 Lifetfme of Dynamic Variables

3.5 Referencing or Accessing Variables

3.5.1 Entire Variables
3.5.2 Component Variables

3.5.2.1 Referencing Indexed Variables
3.5.2.2 Referencing Strings
3.5.2.3 Referencing Fields of Records
3.5.2.4 Referencing File Buffers

3.5.3 Pointer Referenced Variables

Chapter 4 Expressions

4.1 Operators in Expressions
4.2 Address Evaluation Operator
4.3 NOT Operator
4.4 Multiplying Operators
4.5 Adding Operators
4.6 Sign Operators
4.7 Relational Operators

4.7.1 Catparison of Scalars
4.7.2 COrrpa.r ison of Booleans
4.7.3 Direct Pointer Comparison
4.7.4 String Comparison
4. 7 • 5 Set Carpar ison
4.7.6 Non-catparable Types

4. 8 OUt of Range Values
4.9 Order of Evaluation in Expressions
4.10 COtt>ile Time Constant Expressions

4.10.1 Dead Code Elimination

Chapter 5 Statements

5.1 Statement Labels

5.1.1 Scx>pe Of Statement Labels

5.2 Assignnent Statements

5.2.1 Assignments to Variables and Functions

- vi -

32
33

33
33
33

34

34
34

35
35
36
36

37

39

40
40
40
41
42
43
44

44
45
45
45
46
47

47
47
48

48

51

51

51

51

52

5.3 Procedure Reference Statement 52
5.4 Structured Statements 53

5.4.1 BmIN •• END - catpollrXl Statements 53
5.4.2 IF •• THEN •• ELSE Statements 53
5.4.3 CASE Statements 55
5.4.4 WHILE •• 00 Statements 56
5.4.5 REPFAT •• UNl'IL Statements 57
5.4.6 FOR •• 00 Statements 57

5.5 The WITH Statement 59
5.6 The GOTO StatemP~t 60

Chapter 6 Inp.1t aoo OUtp.1t 61

6.1 General File Handling Procedures 61

6.1.1 The File Buffer Variable 61
6.1.2 GET - Get Oomponent from File 62
6.1.3 P\Jl' - Appeoo Carponent to a File 63
6.1.4 RESEr - Positicx1 to Start of File 63
6.1.5 REWRITE - Create or OVerwrite a File 64
6.1. 6 The Buffer ing Option on RESEr aoo REWRITE

64

6.2 Text File Hamling Procedures 65

6.2.1 REND am RENDLN Intrinsics 65
6.2.2 READ from a file of any type 66
6.2.3 WRITE am WRITElli Intrinsics 66
6.2.4 Write Parameters 67

6.2.4.1 Integer Element 68
6.2.4.2 Real or Double Element 68
6.2.4.3 scalar Subrange Element 69
6.2.4.4 Character Element 69
6.2.4.5 String Element or Packed Array of Char

69
6.2.4.6 Boolean Element 69

6.2.5 WRITE to file of any type 70
6.2.6 SEEK - Random Access to Typed Files 70
6.2.7 CLOSE - Close a File 71

6.3 Block Inp.1t Oltp.1t Intrinsics 72

6.3.1 BLOCKREAD - Read Block from File 72
6.3.2 BLOCRWRrTE - Write Block to File 73

6.4 Unit Inp.1t OUtp.1t 73

- vii -

6.4.1 UNlTBUSY - Check if Unit Busy
6.4.2 UNITCLEruR - Initialize the Unit
6.4.3 UNITSTATUS - Get Status of Device
6.4.4 UNITREAD - Read from a Unit
6.4.5 UNITWRITE - Write from a Unit
6.4.6 Notes On UNIT Inp.lt and OUtp.lt

6.5 IORESULT - Return Inp.lt-Qutp.1t Result

Chapter 7 Program Structure

7.1 Ccmpilatioo Units
7.2 Declarations and SCOpe of Identifiers
7.3 Program Hecrling

7.3.1 Predeclared Var iables

7.3.1.1 ruG:: am AIGl - Access to Cannand Line

74
74
74
75
76
76

77

79

79
81
83

83

84

7.4 Declarations 84

7.4.1 Label Declarations 84
7.4.2 Constant Definition 84
7.4.3 Type Definitioo 85
7.4.4 Variable Declaration 85

7.5 Procedure and Functioo Declaration 85

7.5.1 External and Forward Attributes 87
7.5.2 Parameters for Procedures and Functions

7.5.2.1 Value Parameters
7.5.2.2 Variable Parameters
7.5.2.3 Procedure am Function Parameters

Chapter 8 Standard Procedures and Functioos

8.1 String Manipulation Facilities

8.1.1 I..EK;TH - Determine Strin:) Length
8.1.2 COPY - Copy a Substring
8.1.3 OONCAT - Concatenate Strin:)s
8.1. 4 Ea) - Match a Substring in a String
8.1.5 SCANEQ and SCANNE - Scan for Character
8.1.6 DEIEl'E - Delete Characters from String
8.1. 7 INSERI' - Insert Characters into Strin:)

8.2 Storage Allocation Procedures

- viii -

87

88
88
88

91

91

92
92
93
94
94
95
96

96

8.2.1 NEW - Allocate Storage 97
8.2.2 DISPOSE - Dispose of Allocated Storage 98
8.2.3 MARK - Mark Position of Heap 98
8.2.4 RELEASE - Release Allocated Memory 99
8.2.5 MEMAVAIL - Determine Available Memory 99

8.3 Arithmetic Functions 99

8.3.1 ASS - Compute Absolute Value 99
8.3.2 SQR - Oompute Square of a Number ioo
8.3.3 SIN - Trigorx:rnetric Sine 100
8.3.4 ODS - Trigonometric Cosine ioo
8.3.5 ARCTAN - Trigonometric Arctangent 100
8.3.6 EXP - Oompute Exponential of Value 100
8.3.7 PWRDFTEN - Oompute Ten to a Power 100
8.3.8 LN - Natural Logarithm of Value 101
8.3.9 SQRT - Square Root of Value ~Ol

8.4 Predicates or Boolean Attributes 101

8.4.1 ODD - Test Integer for Odd or Even 101
8.4.2 EDLN - Determine if Errl of Line Read 101
8.4.3 EOF - Determine if End of File Read 101

8.5 Value Conversion Functions 102

8.5.1 TRONe - Truncate to Nearest Integer 102
8.5.2 ROUND - Round to Nearest Integer 102
8.5.3 ORO - Convert Type to Integer Value 102
8.5.4 OR04 - Convert to Long Integer 103
8.5.5 CHR - Integer to Character Representation

103

8.6 Other Standard Functions 103

8.6.1 SUOC - Determine Successor of Value 103
8.6.2 PRED - Determine Predecessor of Value 103

8.7 Miscellaneous Low Level Routines 104

8.7.1 MOVELEFl' arrl MOVERIGHl' 1.04
8.7.2 FILUCHAR - Fill A Storage Region With A

Character 105
8.7.3 SIZEOF - Determine Size of Data Element or

Type 105
8.7.4 POINTER - Convert Integer Expression to

Pointer 106

8.8 Control Procedures 106

- ix -

8.8.1 EXIT - Exit from Procedure 106
8.8.2 HALT - Terminate Program with Return Value

107
8.8.3 CALL - call up Another Program 107

Chapter 9 Pascal Compile TUne Options 109

Appendix A Messages from the Pascal System 113

A.l Compile TUne Lexical Errors 113
A.2 COmpile TUne Syntactic Errors 113
A.3 COmpile TUne Semantic Errors 114
A.4 Specific Limitations of the Compiler 116
A.5 Input Oltput Errors 117
A.6 COde Generation Errors 117
A.7 IORESULT Error COdes 117
A.8 COdes Returned From the HALT Procedure 118

~.ndix B Pascal Language Sumnary 119

B.l Predefined Identifiers 119
B.2 Pascal Syntax Definitions 120

AI;perXiix C Relationships to ISO Pascal 129

AWendix 0 Relationships b,) lCSD Pascal 131

0.1 Differences from UCSD Pascal 131

Appendix E Data Representations 135

E.l Storage Allocation 135
E.2 Representation of Integers 137
E.3 Representation of Reals arrl Doubles 137
E.4 Representation of Extreme Numbers 138
E.5 Representation of Sets 144
E.6 Representation of Arrays 145
E.7 Packing Methods 146
E.8 Parameter passir¥] Mechanism 150
E.9 Limitations On Size of Variables lS1
E.IO Compiler Generated Linker Names 151

AI;peOOix F Bibliography 153

Appendix G Pascal on the UNIX System 155

G.l Runnir¥] Pascal On the UNIX System 155
G.2 UNIX System DeperXiencies 162
G.3 Interfacing Pascal to UNIX C Programs 164

- x -

Chapter 1 Introduction

Chapter 1

Introduction

Pascal is a "modern" computer programming language designed by
Professor Niklaus wirth (of the Eidgenossiche Technische
Hocheschule, Zurich, Switzerland) in reaction to the perceived
disorder of contemporary programming languages. Originally
intended as an aid to teaching rigorous and disciplined computer
programming, Pascal has since gained international accept-ance as
a programming language for a multiplicity of applications ranging
from writing compilers (including Pascal compilers) to
controlling a grain elevator. Pascal is not an acronym for
anything. Pascal is named after Blaise Pascal, the 17th century
philosopher and mathematician.

Pascal is one of the many derivatives of Algol-60. Algol
introduced the notion of nested control structures such as
if •• then •• else that form ~basis of today' s structured
programming methods. In addition to the control structures,
Pascal goes one step further with the notion that data structures
play at least as important a part in rigorous programming as do
control structures. The absence of an adequate data structuring
notation was seen as Algol's most obvious deficiency.

Pascal's major contribution to the advance in programming
technology is the concept of user definable data types. This
provides powerful facilities for defining new data types and data
structures in terms of a few basic types.

This reference manual descr ibes the Pascal language as
implemented by Silicon Valley Software Incorporated. Throughout,
the term "SVS Pascal" means the Pascal implementation as
described in this reference manual.

Pascal Reference Manual Page 1

Introduction Chapter 1

1.1 Overview of the Pascal Language

A Pascal program consists of a ser ies of declarations and
statements. Declarations serve to define program objects.
Statements determine actions to be performed upon such objects.
These two things, declarations and statements, serve to describe
a computer program.

Definable Pascal objects include variables, functions,
procedures, and files. Declaring an instance of an object
requires an identifier and, usually, a .sl£! des.cr iption. An
objectls identifier serves to identify that object so that it can
be referenced later. The type associated with an object defines
its operational character istics, and in some cases, ind icates a
referential notation.

It is important to note that all user supplied objects must be
fully described, especially as to their type. Pascal is unlike
many other programming languages in that it does not supply any
default attributes for undeclared identifiers.

One of Pascali s strongest points is the abili ty for users to
define new types. Pascal supplies a small number of predefined
or basic types, such as integer. Pascal then supplies notations
for defining new (user defined) types, both in terms of the basic
types, and in terms of other user defined types.

A type can be described directly in a declaration, or, a type
can be referenced by a type identifier which, in turn, must be
defined by another explicit type declaration.

In general, a Pascal object is only subject to operations that
lie inside of a domain indicated by its type. For example, most
binary operators are restricted to objects of the same type (for
instance, characters and integers cannot be added directly).
These operational constraints are rigid, as are the rules for
type identity and assignment compatibility. Departures from the
rules have to be spelled out explicitly in terms of· conversion
functions.

The basic data type is the scalar type, often referred to as an
enumerated type. A scalar definition indicates an.ordered set of
values, where each identifier in the set stands for a spec if ic
value.

Page 2 Pascal Reference Manual

Chapter 1 Introduction

In addition to the definable scalar types, there are six,
standard basic ~, namely integer, longint, char (acter) , real,
double, and Boolean types. Wi th the exception of the Boolean
type, their values are denoted by numbers or quoted characters,
instead of by identifiers.

A typ~ may also be defined as a subrange of a scalar type by
indicating the lower and upper bounds of the subrange.

Structured ~ are aggregates, defined by describing the
types of their components, and by indicating a structuring
method. The structuring methods differ in the way that
components of a structured variable are selected, and the
operations in which they can participate. Pascal provides five
basic ways to construct an aggregate object, namely array,
record, set, string, and file.

An array has components which are all of the same type. A
component is selected by a computable index. The type of such an
index must be a scalar, and is determined at the time the array
is declared. '

A record has components called fields which need not be all of
the same type. A field selector ~ component of a record is
an identifier that is uniquely associated with the component to
be selected. Unlike an array element index, a field selector is
not a computable quantity. The field selectors are defined at
the same time that the record is defined. A record type may
consist of several variants. This means that different variables
of the same record type may actually contain different
structures. That is, the number and types of the components may
differ between different instances of the same type. The
particular variant which the specific variable assumes is
indicated by a field called the ~ fiel£, common to all variants
of that record.

A set is a homogeneous collection of elements selected from
some base~. The base type might be a user defined scalar
type or a sub range of some scalar type such as integer or char. A
Pascal set is the collection of values comprising the power set of
the base type. That means, the set of all subsets of that base
type.

A string data type is a sequence of characters whose length can
vary dynamically during program execution. A string has a
maximum length (its static length) which is determined when it is
defined. There are a rich set of intrinsic procedures and
functions to manipulate strings.

A file
sequence

is a sequence of components of the
is normally assoc iated wi th external

Pascal Reference Manual

same type.
storage or

The
input

Page 3

Introduction Chapter 1

and output devices, so that files are the means whereby a Pascal
program communicates with the world outside of the computer.
Files can be sequential such that there is a natural ordering,
and only one component of the file is accessible at anyone time,
or they can be random, such that any given component of the file
is accessible on demand.

Explicitly declared var iables are called static, in that they
are known at compile time (lexically stat~ A declaration
associates an identifier with the variable. The identifier is
subsequently used to refer to that variable. In contrast to
static var iables, dynamic var iables are created by executable
statements. Such a dynamic creation of a var iable yields a
pointer (which substitutes for an explicit declaration), that is
subsequently used to refer to the dynamically allocated
variable. Any given pointer variable may only assume values
pointing to variables of a specific type, and is said to be bound
to that type. A pointer may be assigned to other pointer
variables of the same type. Any pointer can assume the value nil
- a univ~rsal pointer that is not bound to a specific type.

The assignment statement is the fundamental Pascal statement.
It assigns a newly computed value to a variable or a component of
a variable. New values are obtained by evaluating expressions.
Expressions consist of variables, constants, sets, operators, and
functions, operating on specified objects, to produce new
values. Operands of expressions are either declared in the
program, or are standard Pascal entities. Pascal defines a fixed
set of operators that can be considered to define a mapping from
given operand types into result types. Operators encompass the
four groups: (1) arithmetic operators, (2) Boolean operators, (3)
set operators, and (4) relational operators.

A procedure statement causes execution of a designated
procedure. This is known as activating or calling the
procedure. Assignment and procedure statements are the basic
elements of structured statements. Structured statements specify
sequential, selective, or repetltive execution of their component
statements. Sequential execution is obtained by the compound
statement; Conditional and selective execution by the if
statement and the case statement; Repetitive execution is
specified by the while statement, the repeat statement, or the
for statement.

A statement can be given a name (an identifier), and
subsequently be referenced via that name. The statement is then
called a procedure, and its declaration is a procedure
declaration. A pI;ocedure declaration can itself contain type.
declarations, var iable declarations, and further procedure
declarations. These subsequent declarat;ions can only be
referenced within that procedure, and are thus said to be local

Page 4 Pascal Reference Manual

Chapter 1 Introduction

to the procedure. The program text that compr ises a procedure
body is called the scope of any identifiers aeclared local to
that procedure. Since procedures may be declared local to other
procedures, scopes may be nested. Objects declared in the main
program block, not local to any procedure, are said to be global,
in that their scope is that of the entire program.

A procedure can have a number of parameters (determined at
procedure declaration time), each parameter being denoted by an
identifier called the formal parameter. When a procedure is
activated, ~ach of the formal parameters has an actual quantity
substituted such that that quantity is accessed by reference to
the formal parameter identifier. These quanti ties are called
actual parameters. There are three sorts of parameters, namely
value parameters, variable parameters, and procedure or function
parameters. A value parameter is an actual parameter which is
evaluated once. The formal parameter then represents a local
var iable conveniently. initialized to the value of the actual
parameter. In the case of a var iable parameter, the actual
parameter is a variable the formal parameter actually
references and can alter that variable. Possible array indexes
are evaluated before activation of the procedure or function. In
the case of a procedure or function parameter, the actual
parameter is a procedure or function identifier.

Functions are declared in the same way as procedures. The
difference is that a function returns a value. Pascal functions
have intuitive similarities to the mathematical notion a
function is a computational entity that is applied to some
arguments and generates a result. Pascal functions differ from
the rigorous mathematical notion of functions in that they can
have side effects. The type of the returned value must be
specified as part of the function declaration. Functions can
only return scalar types or pointer types. A function reference
must appear in the context of an expression.

Pascal procedures and functions are inherently recursive. That
means that a procedure or function can call itself anew before
the current activation is complete. On each activation, a fresh
set of local data is created. Recursive activation can be direct
(the reference is contained within the procedure or function
itself) or indirect (the reference is from another procedure or
fUnction which in turn is referenced from the current procedure
or function).

Pascal Reference Manual Page 5

Introduction Chapter 1

1. 2 Metalanguage

A "metalanguage" is a collection of notations that descr ibe
another language. In this case the language being described is
Pascal. The metalanguage used in this manual to describe Pascal
is a modified version of the ubiquitous Backus-Naur Form, or BNF
(first used to describe Algol). A description of the metalanguage
follows.

Syntactic constructs enclosed between "angle
brackets" < and > define the basic language elements.
Every language construct should eventually be defined
in terms of basic lexical constructs defined in the
remainder of this chapter.

A construct appearing outside the angle brackets
stands for itself, that is, it is supposed to be self
denoting. Such a construct is known as a terminal
symbol. Terminal symbols and reserved words appear 1n
bold face text throughout this manual.

The symbol ::- is to be read "defined as".

The symbol •• means "through", indicating an ordered
sequence of things where only the start and end
elements are spec ified. (The reader is left to infer
the middle elements). For example, the notation
'a' •• 'z' means "the ordered collection starting with
the letter 'a', ending with the letter 'z', and
containing the letters fbi, 'c' •.•• 'x', 'y' in
between". In other words, all the lower case letters.

The "vertical bar" symbol I is read as "or". It
separates sequences of elements that represent a choice
of one out of many.

The metalanguage construct { ..• } (elements inside
braces) enclose elements which are to be repeated "zero
to many times". Although the braces are also used as
one of the forms of comment delimiters in Pascal, this
should not cause any ambiguity. The one case where
ambiguity would occur is in the definition of comments,
and this is explicitly pointed out at that time.

Page 6 Pascal Reference Manual

Chapter 1 Introduction

It is recognized that the syntactic descriptions are not
completely rigorous in that they do not cover semantic issues.
For example, the syntactic definition of a decimal number does
not mention how big a number can be. Where the formal
descriptions fall short they are augmented with narrative English
prose.

1.3 Elementary Lexical Constructs

Pascal language lexical units - identifiers, basic symbols, and
constants are constructed from one or more (juxtaposed)
elements of the alphabet described below.

1.3.1 Alphabet

SVS Pascal uses an extended form of the ASCII character set for
all text related processing. ASCII is the American Standard Code
for Information Interchange. There are 128 characters in the
ASCII character set: 52 letters (upper case 'A' thru 'Z', and
lower case 'a' thru 'z'), 10 digits, space (often called
"blank"), 33 "control codes" (such as "carriage return" and "line
feed"), and 32 graphic characters such as colon, equals sign, and
so on. Pascal also allows an additional 128 values to be used as
data values, for a total of 256 possible data values.

The Pascal compiler recognizes the following alEhabe~ or
character set:

<letter> : := 'A' 'Z' , 'a' 'z' , and ,

<digit> : := '0 ' , 9'

<hex digit> :: = <digit> 'a' 'f' 'A' 'F'

<ASCII graphic characters> : := " # $ % &
,

) *
+ - { < > ? \
@ '" - { }

Note that the definition of <letter> above includes the
underline character.

Pascal Reference Manual Page 7

Introduction Chapter 1

1.3.2 Pascal Identifiers

Pascal Identifiers serve to denote constants, variables,
procedures, and other language objects.

<identifier> ::= <letter> { <letter> I <digit> }

A Pascal identifier must start with a letter or an underline
character. It can contain letters, digits, and the underline
character. The underline is usually used to mark off spaces in
the identifier to provide for readable and meaningful names. A
Pascal identifier may be any length, but only the first 31
characters are significant to the compiler. Upper and lower case
letters are all "folded" to a single case in the compiler, making
them equivalent.

UPanddown

Examples of Identifiers

August_1979

Tau_Epsilon_Xi

upandOOWN

Steve_and_Jeff

DragonsEgg

upANDdown

The last three identifiers in the examples are equivalent because
the compiler folds letters to a single case.

Examples of Invalid Identifiers

1st_character must be a letter

1. 3.3 Numbers

Numbers are used to denote integer, real, and double data
elements. Integers are assumed to be in the decimal number base,
unless designated as a hexadecimal number.

<unsigned integer> ::= <digit> {<digit>}

<unsigned real> ::=

Page 8

<unsigned

I
<unsigned
<unsigned
<unsigned

nteger>.<unsigned integer>
nteger>.<unsigned integer>E<scale facto~
nteger>E<scale factor>
nteger>.<unsigned integer>D<scale facto.

Pascal Reference Manual

Chapter 1 Introduction

I <unsigned integer>D<scale factor>

<unsigned number> ::= <unsigned integer> <unsigned real>

<scale factor> ::= <unsigned integer>

<sign> ::= + I -

<sign><unsigned integer>

<hex number> ::= $<hex digit> {<hex digit>}

Hexadecimal numbers are considered unsigned, unless they are
explicitly written as 32-bit values with the most significant bit
a one. For instance, the value $ffff is 65535 and not -1. The
value $ffffffff is a negative number.

integer numbers are represented internally in the
complement notation.. As a consequence, there is one
negative integer than there are positive integers.

two's
more

Values of type double ar designated by a letter D preceding the
exponent- part of the number.

666
+99 -457
$3e8
0.0
3.14159
1. 23D10

Examples of Valid ~umbers

unsigned decimal integer I}
signed decimal numbers
a hexadecimal number
the real number zero

a double number

Examples of Invalid Numbers

5.
.618

5.E10
2FC9
F034

1.3.4 Pascal Strings

should be a digit after the point
should be a digit before the point
should be a digit after the point
Invalid decimal number
An identifier, not a hex number

Sequences of characters enclosed in apostrophes are called
strings. Strings of one character are constants of type char. A
str ing of "n" characters, where "n" is greater than one, is an
ambiguous constant that is either a string value, or is a value
of the type packed array [1 •• n] of cbari The exact type of such
a str ing constant is determined from the context in which it

Pascal Reference Manual Page 9

Introduction Chapter 1

appe~rs.

A string constant which is just simply two juxtaposed
apostrophes •• represents a variable string constant of length
zero.

SVS Pascal provides for enter ing any character value into a
str ing by coding its two-digit hexadecimal value preceded by a
reverse slash \. This means that non-printing characters such as
nBEL n and nETX n may be entered into a string. A \ sign followed
by a non-hexadecimal digit is simply that character. Thus '\Y'
is equivalent to 'Y', '\ \' represents '\' and '\3X' represents
'\03X'. This last case is interesting in that leading zeros are
implicit in the hexadecimal number if there is only one
hexadecimal digit followed by a non-hexadecimal digit.

An apostrophe in a string is represented by two juxtaposed
apostrophes. The rules for reverse slash character
representations above means that an apostrophe can also be
represented by the string '\", or even more rebarbatively by the
string '\27'.

<string> ::= '<character> {<character>}'

<character value> ::- \<two digit hexadecimal number>

Examples of Strings

'This is a string constant'

'This string has an embedded " apostrophe'

'here is how to get a \07 bell character in a string'

'to get a back slash, just type \\'

1.3.5 Pascal Labels

A label is used to mark statements as the potential target of a
goto statement.

Pascal labels are unsigned integer constants in the range
o •• 9999.

<label> ::= <unsigned integer>

Page 10 Pascal Reference Manual

Chapter 1 Introduction

1.3.6 Basic Symbols

Pascal has a set of "basic symbols" which the compiler uses for
specific purposes in the language. These basic symbols include
selected identifiers (reserved words), graphic characters, and
pairs of graphic characters. These basic symbols are used as
keywords, operators, delimiters and separators. Such symbols are
introduced throughout the body of this manual.

Note that user-defined identifiers may not be the same as any
Pascal reserved word.

Identifiers (reserved words) used as basic symbols are shown in
this manual in bold faced typefont. For example, procedure,
else, and type are Pascal reserved words.

There are two lists of basic symbols shown below. One is a
list of Pascal reserved words and the other is a list of the
special graphic symbols that Pascal uses.

Pascal Reserved Words

and else interface procedure unit

array end label program until

begin file mod record uses

case for nil repeat var

const function not set while

div goto of string with

do if or then

implementation otherwise to

down to in packed type

Pascal Reference Manual Page 11

Introduction Chapter 1

Pascal Special Symbols

+ Adding Operator.

- Subtracting Operator.

* Multiplying Operator.

/ Division Operator (for real and double data types).

:- Assignment Operator •

• Terminates a Pascal Compilation unit, Separates integer from
fraction in a real or double number, Indicates reference to a
field of a record.

, Separates items in lists.

Statement and Declaration Separator.

used after case labels, statement labels, variable and
parameter descriptions.

I string delimiter.

Relational equality operator; Used in constant and type
definition.

<> Relational operator for inequality.

< Relational operator for "less than".

<- Relational operator for "less than or equal to".

>- Relational operator for "greater than or equal to".

> Relational operator for "greater than".

and) encloses lists of elements; encloses parts of expressions
that are to be considered indivisible factors.

and encloses array subscripts and lists of set elements.

and comment delimiters.

(* and *) are an alternative form of comment delimiters.

A pointer dereference operator.

Page 12 Pascal Reference Manual

Chapter 1 Introduction

•• indicates a range of elements.

1.3.7 Conventions for Spaces

Spaces (also called blanks) are used to separate lexical
items. Identifiers, reserved words and constants must not abut
each other, neither may they contain embedded spaces.
Mul tiple-character basic symbols such as <= must not contain
embedded spaces.

Other than that, spaces may be used freely (to improve program
readability for instance). They have no effect, outside of
character and string constants, where a space represents itself.

1. 3.8 Comments

Comments in Pascal may appear anywhere that a space may appear,
and in fact, serve the same purpose as do spaces. But note that
a comment within a string constant 'is part of the string constant
and is not really a comment. Pascal comments are enclosed
between braces { ..• } or between the characters (* and *).

<comment> ::= {<any printable characters except n}"> }
I (* <any printable characters except "*)" *)

In the description above, the braces enclosing the comment are
the comment delimiters, not metalanguage symbols.

For histor ical reasons, Pascal accepts two forms of comment
delimiters. The open and close braces { } can be used where the
character set provides such. Most modern computer systems and
terminalS accommodate those characters. 'l'hose systems which do
not accommodate the full ASCII character set can use the
alternative forms of (* and *) to delimit comments.

Comments that start with one kind of opening delimiter must end
with the corresponding closing delimiter. For example:

this Pascal comment is enclosed in braces

(* this comment uses the alternative delimiter *)

{ this Pascal comment would go on for ever because *)
(* does not close the comment. For that we need a
closing brace

Pascal comments can span multiple lines, thus providing a
"block comment" capability.

Pascal Reference Manual Page 13

Introduction Chapter 1

Page 14 Pascal Reference Manual

Chapter 2

Chapter 2

Defining Data Types

One of Pascal's major attractions is the
can describe and manipulate data. An
structured programming technology is the
data as well as control statements. This
through the notion of a data type.

Defining Data Types

ease with which users
important aspect of
abili ty to structure
is provided in Pascal

A ~ defines a collection of values that a variable, constant
or expression may take on. A type has an associated size, but of
itself reserves no storage space. Storage is only reserved when
a var iable is declared as an instance of that type. Although
Pascal data types can be quite complex, they are ultimately
composed of simple unstructured components. An example is the
predefined type integer. Its size is two bytes (16 bits). The
set of values it contains is -32768, ••• , -1, 0, 1 ..• , 32767.

In addition to having a size and a set of values, a type has a
collection of operations in which values of that type can
participate.

Pascal provides a number of predefined types (some of which
were described in chapter 1), as well as the means for users to
define their own types. Section 2.2 of this chapter describes
all predefined Pascal types.

Type constructors are the means by which users can define their
own types. Structured type constructors facilitate the
definition of new and larger types based upon other existing
types as components.

2.1 Defining Constants

A literal constant is a value that denotes itself - its value
is manifest from its appearance. The integer 1776 and the string
'Manila' are literal constants. A constant definition introduces
an identifier that is a synonym for a constant. Using the

Pascal Reference Manual Page 15

Defining Data Types Chapter 2

identifier is equivalent to using the associated literal
constant. Whereas the string "3.14159" is a literal constant, an
identifier called "Pi" could be defined which is a synonym for
the number. The identifier is then known as a constant
identifier, or just a constant.

'<constant identifier> ::- <identifier>

<constant> ::a <unsigned number>
<sign> <unsigned number>

<constant identifier>
<sign> <constant identifier>

<str ing>

<constant definition> ::- <identifier>· <const~rtt>;

The definition above means that a constant may be defined to be
another constant, but prohibits constant expressions.

2.1.1 Predefined Constants

Pascal provides three constants that are automatically declared
as part of the language. The three constants are:

true

false

maxint

Represents the truth value for a Boolean type.

Represents the falsity value for a Boolean
type.

An integer constant representing
integer that Pascal can store.
currently defined as 32767.

Examples of Constant Definitions

the largest
Maxint is

Liters per bottle = 0.750;
Bottles-per_Case = 12;
first vowel = 'a'i
Wi~ery = 'Chateau Montelena';
Carriage_Return • '\Od';

standard bottle is 750ml
standard case
a char constant

Page 16

a string constant
carriage return character

Pascal Reference Manual

Chapter 2 Defining Data Types

2.2 Standard Types

SVS Pascal has eight predefined types available:

integer

longint

real

double

integer type represents
defined subset of the
equivalent to a subrange
definition that looks like:

an implementation
integers. It is
defined by a type

integer = -32768 •• 32767

The integer data type therefore occupies 16 bits
of data storage.

is a long integer type. It is equivalent to a
subrange defined by a type definition that looks
like:

longint • -2147483648 •• 2147483647

The longint data type therefore occupies 32 bits
of data storage.

real type is a subset of the continuum of real
numbers. Reals are represented in the "floating
pointn format which consists of a fractional
part (a mantissa) and an exponent. The range of
real numbers is approximately
-3.4E38 •• +3.4E38, with a precision of
approximately seven decimal places. In
addition, the real data type can take on
"extreme values n , such as plus infinity, minus
infinity, and "Not a Number" (abbreviated NaN),
which arise from overflow and division by zero.
There is a detailed discussion of extreme values
in appendix E - nData Representations".

double type is a double precision form of ·the
real data type described above, and is a subset
of the continuum of real numbers. Double
numbe.rs are represented in the "floating pOint"
format which consists of a fractional part (a
mantissa) and an exponent. The range of double
numbers is approximately -1.80308 •• +1.80308,
with a precision of approximately 15 decimal
places. In addition, the double data type can

Pascal Reference Manual Page 17

Defining Data Types Chapter 2

Boolean

char

text

interactive

take on "extreme values", such as plus infinity,
minus infinity, and "Not a Number" (abbreviated
NaN), which ar ise from over flow and division by
zero. There is a detailed discussion of extreme
values in appendix E - "Data Representations".

Boolean type represents the ordered set of
"truth values" whose constant denotations are
false and true. Boolean is conceptually
equivalent to an ordinal type specified by a
type definition that looks like:

Boolean • (false, true)

character type defines the set of 256 values of
the ASCII character set, and is equivalent to
the subrange defined by a type definition that
looks like:

cbar - 1\00 1
00 I\ffl

An unpacked char data item occupies one word or
16 bits of data storage. A packed cbar data
item occupies one byte or 8 bits of data
storage.

is equivalent to a packed file of char.

is a file type the same as that of text, except
that the standard procedures READLN and WRITELN
treat the end-of-line in a way that is more
suitable for interactive (terminal) devices.

2.3 Defining Data Types

Pascal data types (or just ~ for short), are used to define
sets of values that Pascal var iables may assume and in many
cases, a notation for referencing such variables. Pascal
provides a small number of predefined types, reserved identifiers
for these types, and a notation for defining new types in terms
of existing types.

Type declarations introduce new (user defined) types, and
identifiers for those newly-declared types.

Page 18 Pascal Reference Manual

Chapter 2 Defining Data Types

<type spec> ::= <type identifier> • <Pascal type>J

Type declarations can be used for purposes of brevity, clarity
and accuracy. Once declared, a type may be referred to elsewhere
in the program by its declared type-identifier.

2.4 Simple Types

Simple ~ are those that have neither structure nor
components. The simple types are as follows:

<simple type> ::= <scalar type>

I
<standard type>

<subrange type>
<type identifier>

2.4.1 Scalar Types

A scalar ~ defines a well-ordered set of values by
enumeratlng t1'ieldentifiers that. denote those values. A scalar
type is also known as an enumerated type or an ordinal type. An
ordinal type is represented by the ordered set of integers
0, 1, 2, 3, ••••• , with the first identifier begin 0, up to the
last identifier which is "n"-l, where "n" is the number of
identifiers in the list.

<scalar type> ::= «identifier> {,<identifier>})

Examples g~ ~ ~ Definitions

salad_greens (Spinach, Lettuce, Coriander,
Escarole, Watercress);

bottle_sizes = (Fillette, Bottle, Magnum, Marie Jeanne,
Jeroboam, Imperial);

mealtimes (Breakfast, Elevenses, Lunch, AfternoonTea, Dinner);

Pascal Reference Manual Page 19

Defining Data Types Chapter 2

2.4.2 Subrange Types

A subrange ~ represents a sub range of values of another
scalar type. It is defined by a lower and an upper bound. The
lower bound must not be greater than the upper bound, and both
bounds must be of identical scalar types.

Values from a subrange and values from its parent range (or
another subrange of its parent range) can be assigned to each
other and 'can enter into the operations of assignment,
comparison, and other binary operations.

<subrange type> ::-
<subrange type identifier> I <lower> •• <upper>

<lower> ::- <signed scalar constant>
<upper> ::- <signed scalar constant>

Examples of Subrange ~ Definitions

small integer - 0 •• l5~
days:in-year - 1 •• 366~

positive integer - 0 •• 32767~
lower case-letters - 'a' •• 'z'~

- - colors • (red, orange, yellow, green, blue)J
hot colors = red •• yellowJ

cold-colors - green •• blue;
- hues - red •• blue~

weekdays - Monday .. Friday;
weekends = Saturday •• Sunday~

2.5 Structured Types

Structured ~ represent collections of objects. They are
defined by describing their element types and indicating a
structuring method. These differ in the accessing mechanisms and
1n the notatron-uied to select elements from the collection.

Pascal makes available five structuring methods: ~rray, string,
set, record and file. Each type is described in the subsections
to follow.

Page 20 Pascal Reference Manual

Chapter 2 Defining Data Types

A structured type may be given the packed storage attribute.
This "advises" the compiler that the structure is to use data
storage economically, by packing the components of the structure
densely. Packing is often aChieve4 at a cost of larger code size
and slower execution speed. Furthermore, a component of a packed
variable can not be passed as a var parameter to a procedure or
function (this restriction applies to components of packed array
of char). A full discussion on how components are packed can be
found in appendix E ~ "Data Representations".

<structured type> ::- <unpacked structured type>
I packed <unpacked structured type>

<unpacked structured type>

2.5.1 Airay Types

::- <array type>
<atr ing type>

<record type>
<set type>

<file type>

An array type is a structure cQnsisting of a fixed number of
components, all of the same type (called the comeonent ~).
Array elements are designated by indexes, wnic are valUes
belonging to the so-called index~. The array type-definition
specifies the component type as werr-as the index type.

<array type> ::- array [<index list» of <type>

<index list> ::- <simple type> {, <simple type>}

If "n" index types are specified, the array is an "n"
dimensional array. Note that the above definition for an array
type means that there are two alternative ways of specifying an
array. By definition, a component of an array can be another
array type. Thus a three dimensional array could be specified as
follows:

blivet = array [1 •• 10, 11 •• 20, 21 •• 30] of blimps~

widget • array [1 •• 10] of ~rray [11 •• 20] of
array [21 •• 30] of blimps~

The alternative forms of specifying array types are
equivalent. The first form can be thought of as a shorthand
notation for the second form. There is a similar choice of
notations when specifying the index elements for accessing an
array component.

Pa~cal Refer~nce Manual Page 21

Defining Data Types Chapter 2

When the index type is a subrange of the type integer, the
type:

packed array [1 .• n] of char

is a special C.:lse. Objects of this type can be assigned and
compared as si~gle e~tities, whereas arrays of other data types
must be assigned .3nd compared element by element. A literal
strIng constant ::.]0 be assigned to a packed array of char,
providing that the lengths are the same. The type of a literal
string of length 'n', where 'n~ is greater than 1 is the type:

packed array [1 •• n] of char

An object of type packed array of char can be
compared up to a ~3ximu~ length of 255 characters.
4 and 5 for deta:ls.

assigned and
See chapters

Page 22 Pascal Reference Manual

Chapter 2 Defining Data Types

Examples of Array ~ Definitions

rows = 1 •• 3,
columns = 1 .• 4;

bottle_quantities array [bottle_sizes] of integer;

standard_case = packed array [rows]
of array [columns]

of bottles,

token = packed array [1 •• 100] of char;

2.5.2 String Types

SVS Pascal has a structured type constructor called string. A
string variable has a maximum length (called its static length)
which is determined when the string is defined. A string
variable also has a dynamic length which can vary over the range
o through its static length dur ing execution of a program. The
standard function LENGTH can be.used to determine the string's
dynamic length. The maximum static length of a string var iable
is 255 characters.

Str ings can be manipulated by standard Pascal
using string handling intrinsiCs, described in
"Standard Procedures and Function~".

<string type> ::. string [<static length>]

syntax, or by
chapter 8

<static length> ::= integer constant in the range 1 •• 255

A string constant which is " (two juxtaposed apostrophes)
represents a null or zero-length string.

Example of String !lE! Definition

manila • string[l001;
punched_card • string[801i

Pascal Reference Manual Page 23

Defining Data Types Chapter 2

2.5.3 Record Types

A record ~ is a structure consisting of a fixed number of
components that may be of different types. For each component,
or field of the record, the definition specifies both a type and
an identifier used to reference the field. The scope of these
field identifiers is the definition of the record itself. This means that the same field identifier may appear in more than one
record. A field identifier is also accessible wi thin a field
designa tor when re fer ring to a var iable of th is ·record type.

Record components which are themselves records do not inherit
the packing attribute of the containing record. Each component
which is a record has independent packing attributes.

A variant record caters to the need for a record composed of a
portion whIch 1S always the same, plus one or more variants whose
layouts differ between different instances of the record. The
specific variant that is selected in any given instance is
determined by an optional ~ field. Such a structure is called
a variant record or a discriminated union. The tag field is
often callec:r-aciiscr iminant. The tag field' 5 value indicates
which variant the record assumes at a given time. Each variant
structure is identified via a case label which is a constant of
the tag field's type. Referencing a field of a variant that is
inconsistent with the tag fields's value is a serious programming
error.

<record type> ::= record <field list> end;
<field list> ::= <fixed part>

I <fixed part> ; <variant part>
<variant part>

<fixed part> ::= <record section> {; <record section>}
<record section> ::= <field identifier list> : <type>
<field identifier list> ::= <field identifier> {,<field identifier>}

<variant part> ::3
case {<tag field>} <type identifier> of <variant list>

<variant list> ::= <variant> {; <variant>}
<variant> ::= <case label list> : «field list»
<case label list> ::a <case label> {, <case label>}
<case label> ::= <constant>
<tag field> ::= <identifier>:

Note that the < tag field> is optional in a var iant record
definition.

Page 24 Pascal Reference Manual

Chapter 2 Defining Data Types

Examples of Record ~ Definitions

I
the example to follow illustrates an
ordinary record called ComplexNumber,
which contains two fields, namely the
real part and the imaginary part.

ComplexNumber = record
RealPart: real~
Imaginary: real~

end;

The example below illustrates a variant
record type which has different sections
that are accessed depending On the tags.
First we define an enumerated type which
is used as the variant case selector.

shapes = (rectangle, triangle, circle, polygon);

angle = -180 •• +180~

PositionRec = record

2.5.4 Set Types

x position: real1
y-position: real,
case whatshape: shapes of

rectangle: (base: real~
height: real) ~

tr iangle: (base: real ~
height: real~
skew: angle) ~

circle: (radius: real) ~
polygon: (SideCount: integer~

radius: real)~
end~

A set type definition serves to define the base type that the
set is to use in future manipulations. Sets are limited to 2032
elements. The range of the set elements must be within the range
o •• 2031.

< set type> :::= set of < simple type>

Pascal Reference Manual Page 25

Defining Data Types Chapter 2

Examples of Set ~ Definitions

salad_base = set of salad_greens:

dressings = set of salad_dressings;

lower_case = set of 'a' •• 'z';

2.5.5 File Types

A file ~ defines a sequence of elements. A file is usually
associated with external storage devices or communication
devices. SVS Pascal supports the standard Pascal typed files,
untyped files and an interactive file type more sui table for
terminals.

When a file variable "f" with components of type "T" is
declared, there is an additional implied declaration of a so
called buffer variable or "window", also of type "T". This window
is referenced by the notation fA where "f" is the file variable.
This window is used in conjunction with the GET and PUT
procedures (see chapter 6 - "Input and Output") and serves to
append components to the file when writing, and to access the
components when reading from the file.

<file type> ::=
I

file of <type>
file

SVS Pascal supports untyped files. An untyped file can be
considered to not have a w1.ndow var iable. Such files must be
accessed using the BLOCKREAD and BLOCKWRITE functions descr ibed
in chapter 6 - "Input and Output".

A file of the pre-defined type text can be considered to be
defined by a type definition of the form:

text = packed file of cbar;

Such a file is special in that the range of its components
(characters) are extended to include an end-of-line marker. Such
a file can then be conveniently structured into lin"es. The EOLN
predicate described in chapter 8 "Standard Procedures and
Functions", covers how the end-of-line is detected.

SVS Pascal also supports an interactive file type which display
different behavior 1.n the way that the READ, READLN and RESET
intr insics work. The differences are covered in chapter 6

Page 26 Pascal Reference Manual

Chapter 2 Defining Data Types

"Input and Output". An interactive file is more suitable for use
with interactive terminals.

Examples of File ~ Definitions

block_access

numbers

file;

file of integer;

capping_Line = file of bottles;

Terminal interactive;

text;

2.6 Pointer Types

Explicitly declared var iables are accessible by reference to
the identifier used to declare them. Such variables are
accessible during the activation (scope) of the procedure in
which they are declared. These variables are called static, that
is, lexically static.

Variables may also be created dynamically, in other words, with
no correlation to the program structure. These dynamic variables
are created via the procedure NEW. Since such variables do not
have an associated name, they are accessed via a pointer value
which is generated when the var iable is allocated. A pointer
type is therefore a value which points to a variable of a
specific type.

There is a universal pointer value called nil, which belongs to
any pointer type. It represents a pointer which points to no
element.

<pointer type> ::= A<type identifier>

:Bxamples of Pointer ~ Definitions

blackboard record
long side: integer;

short:side: integer;
end;

Pascal Reference Manual Page 27

Defining Data Types

cue = Ablackboard;

TwoWay = record

SymTree

next: "TwoWay;
previous: ATwoWay;
stuff: array[O •• 10) of integer;

end;

record
name: string[3l];
LeftNode: "SymTree;
RightNode: ""SymTree;

end;

2.7 Type Identity and Assignment Compatibility

Chapter 2

Pascal has str ict type checking such that objects of one type
cannot be combined in operations with objects of a different
type. There are two major concepts to be described here, namely
identical ~ and assignment compatible ~.

2.7.1 Identical Types

Two types, Tl and T2 are considered identical under the
following conditions:

• Tl and T2 are the same type •

• Tl is declared as synonymous with another type T3, where T2 and
T3 are identical.

Examples of ~ Identity

type_x = integer;

type _y ,. integer;

type_l = set of char;

type_2 ,. set of char;

id_type = type_l;

Page 28 Pascal Reference Manual

Chapter 2 Defining Data Types

In the above example, the types "type x" and "type y" are
identical, because they are defined to be the same type, integer.
The types "type 1" and "type 2" are not identical, since they
occur in different type definitions. The types "type 1" and
"id type" are identical however, because "id type" is defined to
be the same as "type_I". -

2.7.2 Assignment Compatible Types

A value of type Tl is considered to be assignment compatible
wi th a variable of type T2 if any of t"he following conditions are
true:

Tl and T2 are identical and do not contain a file as a
component.

Tl is a subrange of T2, or

T2 is a subrange of Tl, or

• Tl and T2 are subranges of identical types.

Tl is assignment compatible wi th integer and T2 is real or
double •

• Tl and T2 are both variable string types.

Tl and T2 are sets of elements of types T3 and T4, and T3 is
assignment compatible to T4.

Pascal Reference Manual Page 29

Defining Data Types Chapter 2

Page 30 Pascal Reference Manual

Chapter 3 Declaring and Referencing Variables

Chapter 3

Declaring and Referencing Variables

This chapter covers two topics. First there is a discussion of
how Pascal variables are declared in terms of the data types
described in the previous chapter. Then there is a description
of the way that variables of different types are accessed or
referenced.

3.1 Declaring Variables

A var iable has a type and a s tor age ar ea in memor y. At any
given time, a variable takes on one value out of the collection
of values that define its type. A variable is initially
undefined, and remains so until it is initialized by an explicit
assignment.

All variables in a Pascal program must be declared explicitly
and prior to their use.

Variable declarations consist of a list of identifiers that
represent the variables, followed by the type of the variable.

<variable declaration> ::=
<identifier> {,<identifier>}: <data type>,

Examples of Declaring Variables

Impedance: ComplexNumber;
ChainHead: TwoWaYi

1
a record variable
another record
and another TreeTop: S~lmTree;

First, Middle, Last:
ValueFile: Numbers;
CurChar: cbar;
Omega: real;

Pascal Reference Manual

integeri {plain integers
{ a file variable

{ a character variable
{ a real variable

Page 31

Declaring and Referencing Variables Chapter 3

3.2 Predeclared Variables

SVS Pascal has five pre-declared variables. These are:

input, output, and stderr

argc and

default files associated with
input, the standard output, and
error output file, respectively.

the
the

standard
standard

On those operating systems which do not have a
standard error output file, the file stderr is
directed to the same place as the output file.

argv are variables which provide
command line that invoked the
program.

access to the
current Pascal

These pre-declared variables are covered in detail in chapter 7
- "Program Structure".

3.3 Establishing Variables

Establishing a variable is a process that involves:

1. determination of the variable's type.

2. allocation of storage for the values that the var iable
takes on.

Explicitly declared variables are automatically established on
each entry to the procedure or function block in which they are
declared. "Global" variables (declared in the outermost block)
are established once and only once.

Formal parameters of procedures or functions are automatically
established on each activation of that procedure or function.

So-called "dynamic" variables are explicitly established by
storage management operations (for type determination and storage
allocation), and by assignment operations (for initialization).

Page 32 Pascal Reference Manual

Chapter 3 Declaring and Referencing Variables

3.4 Lifetimes of Variables

The lifetime of a local variable is that of the block in which
it is declared. Allocation occurs on each entry to that block,
and de-allocation occurs on each exit from that block.

3.4.1 Global Variables

Global variables are those variables declared in the outermost
block (in the program block). The lifetime of such global
variables is the lifetime of the entire program.

3.4.2 Lifetime of Formal Parameters

The lifetime of a formal parameter is the lifetime of the
procedure or function which that formal parameter is a part of.
The formal parameter becomes established upon each entry to the
procedure or function, and becomes undefined upon exit from the
procedure or function.

3.4.3 Lifetime of Dynamic Variables

Dynamic variables are established (but not initialized) by an
explici t allocation operation (such as NEW). Dynamic variables
become undefined when they are explicitly freed, or when no
pointer variable points to them. Note that generally a pointer
value has a finite lifetime which may be different from that of
the pointer variable that can point to it. Local variables
belong ing to procedures and functions, cease to exist on exit
from the block in which they were declared. Dynamic variables,
on the other hand, cease to exist when they are explicitly freed
or when no pointer variable points to them. Attempts to
reference non-existent variables beyond their lifetimes is a
programming error, usually with undesirable results from the
programmer's viewpoint.

Pascal Reference Manual Page 33

Declaring and Referencing Variables Chapter 3

3.5 Referencing or AcCessing Variables

The method by which a variable or a component of a variable is
accessed differs depending on the structuring method used in the
type definition for that variable. There are three basic access
methods:

1. An entire var iable is a var iable of a simple type (no
structure) • An entire var iable is referenced simply by
giving its name.

2. A component variable is a variable of array, record or file
type. The access methods are explained below.

3. A referenced variable is accessed through a pOinter.

<variable> ::= <entire variable>

I
<component variable>

<referenced variable>

3.5.1 Entire Variables

An entire variable is denoted by its identifier. Since an
entire variable has no structure, its identifier alone is enough
to reference it.

<entire variable> ::8 <variable identifier>

Examples of Entire Variable References

ChickenTeeth
GiddyGoatHorns
First

3.5.2 Component Variables

A component of a variable is denoted by the variable followed
by some selector that specifies the component. The form of the
selector depends on the structur ing method used to access the
variable.

Page 34 Pascal Reference Manual

Chapter 3 Declaring and Referencing Variables

<component variable> <indexed variable>
<field designator>

<file buffer>

3.5.2.1 Refer'encing Indexed Variables

A component of an "n"-dimensional array variable is denoted by
the variable followed by "n" index expressions. An entire array
(which can be a component) of an array can be denoted by giving
"n"-l index expressions. In such a case, the entire last
dimension of the array is indicated. This occurs when an entire
array or an entire subarray is passed as an actual parameter to a
procedure or function.

<indexed variable>

<subscript list>

::= <array variable> <subscript list>

::= [<expression> {p<expression>}]
[<expression>] {[<expression>]

The {,<expression>} in the definition above implies that there
are as many expressions in the subscr ipt list as there are
dimensions in the array variable. Just as in defining an array
type, there are two alternative methods for referencing an array
variable. Either the subscripts can be listed, separated by
commas, inside the brackets, or there can be a list of bracketed
subscript expressions.

The index expression types must correspond with the index types
declared in the array type definition.

Examples of Array Variabl~ References

ladder [top)

stairs [flight) [step)

Footing[Left, Center, Right)

3.5.2.2 Referencing Strings

string variables can be referenced as single entities (when the
entire string is being operated upon) or single characters from a
string can be referenced just like a packed array of char.
Values can be assigned to string variables using assignment
statements, str ing intr insics or the READ or READLN procedure.
String indexing is based from one (1) so that the expression on
the str ing "s":

Pascal Reference Manual Page 35

Declaring and Referencing Variables Chapter 3

s[LENGTH(s)]

correctly yields the last character in the str ing. It is an
error to reference a string "s" with an index less than one (1)
or greater than LENGTH(S).

3.5.2.3 Referencing Fields of Records

A component of a record var iable is denoted by
variable followed by the component's field identifier.
identifiers are separated by periods.

the record
The field

<field designator> ::= <record variable>.<field identifier>

It is an error to reference a field of a variant record that is
inconsistent with the tag field for that variant.

Examples of Accessing Fields in Record Variables

The first example is a simple field reference
impedance. RealPart

The second example illustrates a reference
to a field of an array of records

bottles[BurgundyType).Loire

The third example illustrates a
deeply nested field reference

King_Caractacus.Court.Ladies.Faces.Noses

3.5.2.4 Referencing File Buffers

At any time, only the one component determined by the current
file position (read/wr i te head) is directly accessible. This
component is called the "current file component", and is
represented by the file's buffer variable.

<file buffer> ::= <file variable>A

<file variable> ::= <variable>

Page 36 Pascal Reference Manual

Chapter 3 Declaring and Referencing Variables

3.5.3 Pointer Referenced Variables

<referenced variable> ::= <pointer variable>~

<pointer variable> ::= <variable>

If Up" is a variable which is a pointer to type "T", Up" means
the pointer var iable and its pointer value, whereas "p"" means
the variable of type "T" that "p" references.

Examples of Pointer Reference

TreeTop.LeftNode~

cue~.longside

Pascal Reference Manual

Left Node in the tree variable

gets Long Side of Blackboard

Page 37

Declaring and Referencing Variables Chapter 3

Page 38 Pascal Reference Manual

Chapter 4 Expressions

Chapter 4

Expressions

An expression is a construct which defines the rules of
computation for creating a value by performing operations
(specified by operators) - on operands (specified by var iables,
constants, and function references). These newly-created values
can then be used in assignment statements or can be used (in
conditional expressions) to control subsequent program actions.

<unsigned constant>

<factor>

<set constructor>
<element>

<term>

<simple expr>

:::11

I
: :=

: :=

<unsigned number>
<string>

<constant identifier>
nil

<variable>
<unsigned constant>

<function designator>
<set constructor>

«expression»
not <factor>

[<element> {,<element>}
<expression>

<expression> •• <expression>

<factor>
<term> <multiplying operator> <factor>

<term>
<simple expr> <adding operator> <term>

<adding operator> <term>

<expression> ::
<simple expr>

<simple expr> <relational operator> <simple expr>

Pascal Reference Manual Page 39

Expressions Chapter 4

4.1 Operators in Expressions

Operators perform operations on a value or a pair of values to
produce a new value. Most operators are defined only on basic
types, though some are defined on most types. The following
subsections define the applicable range, as well as the result,
of the defined operators.

With the exception of the @ operator,
variable or field which has an undefined
undefined result.

4.2 Address Evaluation Operator

an operation on a
value, produces an

The @ operator generates the address of a variable, user
procedure or user function. Its precedence is above that of all
other operators, but below that of array indexing and record
field referencing. It can be applied to unpacked fields of
records and unpacked array elements and to the dynamic variables
pointed to by a pointer. It cannot be applied to components of
any packed structure.

Examples of the ! Operator

generates the address of a variable named
"Uncle_Bill".

@TypeWheel[tilde]

4.3 NOT Operator

generates the address of the "tilde"th element
of the array "Typewheel".

The not operator applies to factors of type Boolean or integer.

When applied to type Boolean, the meaning is negation.
is, not true = false, and not false = true.

That

Page 40 Pascal Reference Manual

Chapter 4 Expressions

When applied to type integer, the not operator negates all the
bits in the value. That is, it performs a one's complement
negation of each bit in the operand. The result of applying the
not operator to a value of type integer is type integer.

4.4 Multiplying Operators

The multiplying operators have the next highest precedence
after the not operator.

<multiplying operator> ::~ * / div and

The following table shows the multiplying operators, the
permissible types of their operands, and the result types.
Operands of the * (multiplication) and / (division) operators can
be mixed integer, real, and double data types.

If both operands of the * operator are of type integer, the
result is of type integer.

If either operand is of type double, the other operand is
converted to type double, and the result is of type double.
Otherwise, if either operand is of type real, the result is of
type real. The result of the / operator is either real, or in the
case when one or both operands are of type double, the result is
of type double.

+----------+------------------+----------------+---------------+
I Operator I Operation I Operands I Result I

+----------+------------------+----------------+---------------+
real, double, real, double, I

* multiplication or integer or integer

set intersection any set type T T
+----------+------------------+----------------+---------------+
I / I division I real, double, I real I

or integer double
+----------+------------------+----------------+---------------+
I div I divisio~ with I integer I integer I

truncat~on

+----------+------------------+----------------+---------------+
I mod I modulus I integer I integer I

+----------+------------------+----------------+---------------+

I
and I log ical and I Boolean I Boolean I

bitwise and integer integer
+----------+------------------+----------------+---------------+

Pascal Reference Manual Page 41

Expressions Chapter 4

The' div operator applies to values of type integer only and
represents truncating division. div always truncates towards
zero. It is an error to divide by zero. If the signs of the
operands are the same, the result is positive; if the signs are
different, the result is negative.

The mod operator defines the modulus operation between two
values of type integer. It is an error if the right operand of
mod is zero. The interpretation of mod is:

a mod b • a - (a div b) * b

When applied to operands of type Boolean, .the and operator
produces a result of type Boolean as one might expect. When
applied to operands of type integer however, the and operator
performs a bitwise logical and on the operands and produces a
result of type integer.

4.5 Adding Operators

The adding operators have the next highest precedence after the
multiplying operators.

<adding operator> ::- + or

The following table shows the adding operators, their
permissible operand types, and the result types. Operands of the
+ (addition) and - subtraction operators can be mixed integer,
real, and double data data types.

If both operands of the + or - operator are of type integer, the
result is of type integer.

If either operand is of type double, the other operand is
converted to type double, and the result is also of type double.
Otherwise, if either operand is of type real, the result is also
of type real.

Page 42 Pascal Reference Manual

Chapter 4 Expressions

+----------+----------------+----------------+---------------+ I operator I operation I operand types I result type I
+----------+----------------+----------------+---------------+

I
addition real, double, real, double, I

+ or integer or integer

set union any set type T T
+----------+----------------+----------------+---------------+

subtraction real, double, real, double,
or integer or integer

set difference any set type T T
+----------+----------------+----------------+---------------+

I
or I logical or I Boolean I Boolean I

bitwise or integer integer
+----------+----------------+----------------+---------------+

When applied to operands of type Boolean, the o~ operator
produces a result of type Boolean as one might expect. When
applied to operands of type integer however, the or operator
performs a bitwise logical or on the operands and produces a
result of type integer.

4.6 Sign Operators

The "+" and "-" signs can be used as unary operators. They
apply to integer, real, and double data types only. Applying a
unary operator to a data type produces a result which is the same
data type as that of the operand.

<sign operator> ::= + I -
The table below shows the sign operators, their permissible

operand types and their result types.

+----------+-----------+---------------+---------------+ I operator I operation I operand types I result type I
+----------+-----------+---------------+---------------+
I + I identi ty I real, double, I real ~ double, I

or integer or lnteger
+----------+-----------+---------------+---------------+
I I negation I real, double, I real~ double, I

or integer or lnteger
+----------+-----------+---------------+---------------+

Pascal Reference Manual Page 43

Expressions Chapter 4

4.7 Relational Operators

The following table shows the relational operators, their
permissible operand types, and the result type.

+----------+--------------------------------+-------------+ I operator I operand types I result type I
+----------+--------------------------------+-------------+

any scalar or subrange type
• <> set type

pointer type Boolean
packed array of char

string
+----------+--------------------------------+-------------+ any scalar or subrange type

<- >- set type
packed array of char Boolean

string
+----------+--------------------------------+-------------+

I
< > I any scalar or subrange type I I

packed array of char Boolean
string

+----------+--------------------------------+-------------+
I in I any scalar or subrange type I Boolean I

and its set type respectively.
+----------+--------------------------------+-------------+

Note that all scalar types define ordered sets of values.

4.7.1 Comparison of Scalars

All six relational operators «, <a, >, >-, - and <» are
defined between operands of the same scalar type.

For operands of type integer, real, or double, the operators
have their usual meaning. Operands of integer, real, and double
data types are considered to form a hierarchy, with the integer
data type at the bottom of the pecking order, the double data
type at the top, and the real data type in the middle. If the
operands are of different numeric types, the lower type of
operand is converted (or promoted) to the type. of the other
operand prior to the comparison. For example, in the expression:

integer type < double type

Page 44 Pascal Reference Manual

Chapter 4 Expressions

the integer operand is converted to double before the comparison
is made.

For operands of type Boolean the relation false < true defines
the ordering.

For operands of type char the relation "a" 2E "b" holds if and
only if the relation ORD(a) 2E ORD(b) , holds, where op denotes
any of the six comparison operators and ord is the mapping
function from type char to type integer defined by the ASCII
collating sequence.

For operands of any ordinal type "T", "a" - "b" if and only if,
"a" and "b" are the same value1 "a < b" if and only if, "a"
precedes "b" in the ordered list of values that define "T".

4.7.2 Comparison of Booleans

If "p" and "q" are Boolean expressions, "p q" means
equivalence, and "p <- q" means implication of "q" by "p"o

4.7.3 Direct Pointer Comparison

Two direct pointers can be compared if they are pointers to
identical types. To compare pointers of differing types, take
their ORD. (See chapter 8 - "Standard Procedures and Functions").

Pointers may be compared for equality or inequality only.

Two pointers with the value nil are always equal.

4.7.4 String Comparison

All six relational operators may be applied to string
operands. The relational operators compare both packed array of
char and string values.

In the case of a packed array of char, both operands must be
the same size. The maximum length of string comparison of values
of packed array of char is 255 characters. That is, a variable
whose declaration is like:

var
strtype: packed array [1 •• 255] of chari

is the largest string variable that can be compared in one
operation.

Pascal Reference Manual Page 45

Expressions Chapter 4

In the case of string comparison, the operands may be of
different sizes. If the operands ate of different sizes,
trailing spaces are significant. That is, the string

'A'

compares less than the string

'A '

Comparison of string operands or packed array of char operands
denotes alphabetical ordering according to the ASCII character
set collating sequence.

Note that because a string data type is represented differently
from a packed array of char, they cannot be compared with each
other. On the other hand, a character string constant is of
ambiguous type~ and so a string constant can be compared either
to a string operand or to a packed array of char operand, because
the type of the string constant is converted to the type of the
other operand in comparison operations.

4.7.5 Set Comparison

The relation "scalar value" in "some_set" is true if the
"scalar value" is a member of the "some set". The base type of
the set- must be the same as, or a subrange of, the type of the
scalar.

The set operations - (identical to), and <> (different from),
<= (is included in), and >- (includes) are defined between two
set values of the same base type. For two sets "Sl" and "S2" of
the same base type:

Sl ,. S2 is true if all members of Sl are contained in
S2, and all members of S2 are contained in S1.

Sl <> S2 is true when Sl = S2 is false.

Sl <- S2 is true if all members of Sl are also members of
S2.

Sl >= S2 is true if all members of S2 are also members of
S1.

Page 46 Pascal Reference Manual

Chapter 4 Expressions

4.7.6 Non-Comparable Types

Certain Pascal types cannot be compa.red. These include files,
arrays, variant records, and records containing fields of
non-comparable types. The exception to this rule is that packed
array of char operands can be compared if they are the same
size.

4.8 Out of Range Values

It is possible that expression evaluation can yield results
which are outside of the range of values for a given data type.
Expressions involving the real and double data types can generate
several different extreme values.

The extreme value of positive or negative infinity is a result
either of overflow, or by dividing a non-zero value by 0.0.

Underflow generates a value of zero.

Dividing 0.0 by 0.0 generates a value of Not a Number (NaN).

Appendix E - "Data Representations" contains a description of
the extreme values and their behavior in comparisons.

4.9 Order of Evaluation in Expressions

The rules of composition for expressions
precedence according to five operator classes.
as follows:

specify operator
The precedence is

1. the "address of" @ operator has the highest precedence.

2. then the not operator.

3. then the multiplying operators.

4. then the adding operators.

5. the lowest precedence is the relational operators.

Pascal Reference Manual Page 47

Expressions Chapter 4

Operators at the same precedence level are applied left to
right, except where parentheses are used to over r ide the' normal
order of evaluation. The order in which operators are applied is
according to the rules above. The precise order of operand
evaluation is undefined. Some operands may not be evaluated at
~ll, if the value of the expression can be determined without the
value of that particular operand.

4.10 Compile Time Constant Expressions

The Pascal compiler evaluates certain types of integer and
Boolean constant expressions at compile time. integer
expressions consisting of constant expression operands and the
following operators are folded into constant expressions:

Binary Operators - <> + *
unary Operators

Boolean expressions consisting of constant expression operands
and the following operators are folded into constant expressions:

Binary Operators <> and or
Unary Operators not

4.10.1 Dead Code Elimination

The Pascal compiler recognizes code of the form:

if FALSE then
statement 1

else -
statement_2

and generates code for statement_2 only. Similarly, if the
Boolean expression is TRUE, only statement 1 is generated.
Constant expressions which fold into constants-are recognized as
constant TRUE or FALSE. This feature facilitates keeping several
versions of similar source in the same file without adding extra
generated code after the code is compiled.

Example of Conditional Compilation

Page 48 Pascal Reference Manual

Chapter 4

const
version = 10;

if version = 7 then
writeln('Too old!')

else
writeln('Not too oldl');

Expressions

The code fragment above, with the constant "version" set equal to
10, has the same effect as a code fragment like this:

writeln('Not too oldl');

Pascal Reference Manual Page 49

Expressions Chapter 4

Page 50 Pascal Reference Manual

Chapter 5 Statements

Chapter 5

Statements

Statements denote algorithmic actions, and are said to be
executable. Statements define the actions that are to be
performed on program objects that were introduced via type and
variable declarations, discussed earlier in this manual.

5.1 Statement Labels

A statement can be labelled by preceding it with an unsigned
integer constant in the range 0 •• 9999, followed by a colon.
The statement can then be explicitly referred to by a goto
statement.

5.1.1 Scope Of Statement Labels

The scope of a statement label is the body of the procedure or
function in which the label is declared. This means that a goto
statement cannot transfer control into a procedure or function
body from outside the procedure or function.

5.2 Assignment Statements

The assignment statement replaces the current value of a
variable wlth a new value derived from expression evaluation, or
defines the value that a function variable returns.

<assignment statement> ::=
<variable> := <expression>

<function identifier> := <expression>

Pascal Reference Manual Page 51

Statements Chapter 5

5.2.1 Assignments to Variables and Functions

The part to the left of the assignment symbol (the :-) is
evaluated to obtain a reference to $ome variable. The expression
on the right side is evaluated to obtain a value. The referenced
variable's current value is discarded and replaced with the
expression's value.

The var iable on the left hand side of an assignment s"tatement
must be assignment compatible with the type of the expression on
the right hand side.

A string value may be assigned to a variable of type
packed array of char, providing that the string value is the same
length as the array object. The maximum length of such an
assignment is 255 characters.

Examples of Assignment Statements

x :- 5 ! y :- x * 10 + 18
ch :- CHR(lO)
rope :- 'hemp'

simple assignment to variable
assignment of expression
assignment of function value
string assignment

poke := POINTER($200)
poke~ :- 0 { clobber th~ system vector

5.3 Procedure Reference Statement

A procedure reference statement creates an environment for
execution of the specified procedure and transfers control to
that procedure.

<procedure call statement> ::-
<procedure identifier><actual parameter list>

<procedure identifier>

<actual parameter list> ::=
«actual parameter> {,<actual parameter>})

<actual parameter>

Page 52

<expression>
<procedure identifier>

<function identifier>

Pascal Reference Manual

Chapter 5 Statements

The actual parameter list must be compatible with the formal
parameter list of the procedure. An actual parameter corresponds
to the formal parameter which occupies the same ordinal position
in the formal parameter list.

Only formal parameters that are value parameters can have an
actual parameter which is an <expression>. Value parameters must
be assignment compatible with the type of the formal parameter.

Formal parameters that are var parameters must have actual
parameters that are identical types. In addition, the actual
parameters must not be packed objects or components of packed
objects.

5.4 Structured Statements

Structured statements are constructs composed of statement
lists. They prov1de scope control, selective execution, or
repetit~ve execution of the constituent statement lists.

<structured statement> ::= <begin statement>
<if statement>

<while statement>
<repeat statement>

<for statement>
<case statement>

5.4.1 BEGIN •• END - Compound Statements

A begin statement specifies execution of a statement list.
Exit from the statement list is either through completing
execution of the last statement in the statement list, or through
explicit transfer of control.

<begin statement> ::= begin <statement list> end

<statement list> ::= <statement> {, <statement>}

5.4.2 IF THEN •• ELSE Statements

The if statement specifies that another statement be executed
(or not) depending on the truth (or falsity) of a conditional
expression. If the value of the conditional expression is true,
the statement is executed. If the value of the conditional
expression is false, either no subsequent statement is executed,

Pascal Reference Manual Page 53

Statements Chapter 5

or the statement following an else clause is executed.

<if statement> ::=
if <Boolean expression> then <statement>

if <Boolean expression> then <statement> else.<statement>

Because Pascal statements are open forms, it is possible to
construct a chain of else if clauses to select "one out of many
different conditions".

In common with similar languages, Pascal has what is called the
"dangling else" problem. If an if statement contains another if
statement as a subordinate, when an else clause is encountered,
which if statement does the else clause apply to? In Pascal, the
else clause matches the most recent if statement that does not
have an else clause. One of the examples below clarifies this
point.

Examples of 11 Statements

{
if day in [Monday

Getup and go
else - - -

example of a simple if statement
•• Friday] then

Roll_over

an if statement with a
compound block }

if sun > yardarm then
be<jin

make cock ta ils;
prepare snacks;
relax -

end
else

flog_on

an else if chain
if weather 2 raining then

sleep in
else if- lawn 2 wet then

clip the hedge
else if grass > 6 then

mow the lawn
else - -

turn_on_lawn_sprinklers

Page 54 Pascal Reference Manual

Chapter 5

{ A dangling else clause
if condition 1 then 1 l~ I

if condition 2 then
if condition 3 then

•.••• statements
else { goes with statement 1

••••• statements
else {goes with statement 2

statements •••••
else { goes with statement 3

statements

5.4.3 CASE Statements

Statements

A case statement selects one of :its component statements
depending on the value of an expression. The expression is
called the case selector. Each of the component statements is
tagged with one or more simple scalar constants. The tag s are
called selection specifications «selection specs> for short).
If the value of the selector matches that of one of the statement
tags, that statement is executed. If the selector value matches
none of the statement selection specifications, the statement (if
any) following an otherwise symbol is executed.

Note that this Pascal implementation differs from the ISO
standard in the provision of the otherwise clause. ISO Pascal
has no provision for "what to do if none of the case selectors
match the selector expression" ~ Strict Pascal considers this
situation a run-time error.

<case statement> ::= case <expression> of <cases>
{otherwise: <statement>} end

<cases> ::= <a case> {<a case>}
<a case> ::=

<selection spec> {, <selection spec>}

<selection spec> ::= <scalar constant>

<statement>,

Case selectors and the statement tags must be non-real scalar
types. In addition, the case selectors and the statement tags
must be of assignment compatible types.

It must be stressed that the selection specifications which the
component statements are tagged with are not labels in the Pascal
sense, and as such, cannot be used as --the target of a goto
statement, and neither should they appear in any label
declaration part.

Pascal Reference Manual Page 55

Statements Chapter 5

Examples of Case Statements

case wine_type of

Champagne:
Anything_goes,

Cabernet:
Roast_LambJ

Chardonnay:
Veal_Piccata,

otherwise:
Hamburger,

end;

5.4.4 WHILE •• DO Statements

A while
statement
false.

statement controls repetitive execution of
until evaluation of a Boolean expression

<while statement> ::- while <expression> do <statement>

another
becomes

The <statement> is repeated while the value of <expression>
remains true. The <expression> must be of type Boolean. When
<expression> becomes false, control passes to the statement after
the while statement. If the value of <expression> is false at
the time that the while statement is encountered for the first
time, the subordinate statement is never executed at all. Thus
the while statement provides a means to "do nothing gracefully".
Contrast this behavior with the repeat statement described
below.

Page 56 Pascal Reference Manual

Chapter 5

Example of WHILE Statement

while bytes to go > 0 do
begin --

if bytes to go <~ BlockSize then
TransferLength :- bytes_to_go

else
TransferLength :- BlockSize~

DoTransfer;
bytes to go :- bytes to go - TransferLength;
BlockNumoer :- BlockNumoer + 1

end

5.4.5 REPEAT •• UNTIL Statements

Statements

The repeat statement controls the repetitive execution of a
list of statements. The statements are executed until the
condition at the end of the statement evaluates to true. The form
of a repeat statement is:

<repeat statement> ::~ repeat <statement list> until <expression>

The expression controlling repetition must be of type Boolean.
The statement between the repeat and until symbols is executed
repeatedly until the expression becomes true. Note that the body
of a repeat statement is always executed at least once, since the
termination test is at the end. Contrast this behavior with the
while statement described in the previous subsection.

Example of Repeat Statement

repeat
consume glassfull;
refill glass;

until (Champagne_Volume <- 0) or (Consumer - Blotto) ~

5.4.6 FOR .• DO Statements

The for statement executes its subordinate statement
repeatedly, while a progression of values is assigned to a
control variable of the for statement.

<for statement> ::=
for <control variable> := <for list> do <statement>

Pascal Reference Manual Page 57

Statements Chapter 5

<for list> ::- <initial value> to <final value>
I <initial value> downto <final value>

<control variable> ::- <identifier>

<initial value> ::- <expression>
<final value> ::- <expression>

The control variable is set to the initial value. After every
iteration the control variable is either incremented (to) or
decremented (downto) until its value is greater than or less than
the final value.

The control var iable, the initial value, and the final value-,
must all be of the same scalar type or a subrange of that scalar
type. No part of the statement controlled by the for statement
may alter the control variable during the execution of the for
statement.

Neither the control var iable, nor the initial value, nor the
final value, may be of type real. The control variable must be
local to the procedure or function that contains the for
statement.

The value of the control variable is undefined on normal
termination from the for statement. If the for statement is
exited prematurely (via a goto statement), the value of the
control variable is defined.

Examples of the FOR Statement

{ initialize an array to zero
for index :- 1 to 100 do

row [index] : - 0

{ scan from the end of an array
for where :=- 200 downto 1 do

Page 58

if what [where] - thing then
foundit :- true

Pascal Reference Manual

Chap~ 5 Statements

5.5 The WITH Statement

The with statement provides a "shorthand" notation for
referring to fields in a record. The with statement effectively
"opens the scope" that contains field identifiers of a specified
record variable.

<with statement> ::=
with <record variable> {,<record variable>}

do <statement>

Within the body of the with statement, fields of the specified
record variable do not need to be qualified by the name of the
record.

If there is a local variable "x" 'and a field "x" in a record
which is the subject of a with statement, the statement:

with x do

"hides" the local variable "x" until the end of the with
statement.

A with statement which has multiple <record variable> fields is
interpreted as nested with statements. The statement:

with record_l, record_2, record_3 do

is equivalent to the statement:

with record 1 do
with record 2 do

with record 3 do
••••• statement

Pascal Reference Manual Page 59

Statements

Example of the WITH Statement

var
TreeTop: SymTree;

with TreeTop do
begin

LeftNode :- nil;
RightNode :- nil

end {with}

Chapter 5

This is a shorthand for the following statements

TreeTop.LeftNode :- nil;
TreeTop.RightNode :- nil

5.6 The GOTO Statement

The goto statement names as its successor, a labelled statement
designated by a label.

<goto statement> ::- goto <label>

The following should be noted concerning the goto statement and
the label that it designates:

The scope of a label is the procedure in which that label is
defined. Therefore it is not possible (nor valid) to jump into a
procedure from outside that procedure.

Every label in a procedure must be declared in the label
declaration part at the head of the procedure.

Example of ~ Statement

if status = error
goto 9999

Page 60

then
{ exit to end of procedure

Pascal Reference Manual

Chapter 6 Input and Output

Chapter 6

Input and Output

Input and Output facilities provide the means whereby a Pascal
program can communicate with the world outside the computer
system on which it runs.

SVS Pascal supports the input-output facilities as defined by
standard Pascal, and additionally supports untyped (block access)
files, interactive files, random access to typed files and unit
input-output (dire~t access to the devices on the system). ----

6.1 General File Handling Procedures

This Section covers the standard Pascal procedures for handling
files of any type. The four supplied procedures are GET, PUT,
RESET and REWRITE.

6.1.1 The File Buffer Variable

A Pascal file of some type is a sequential file its
components appear in str ict sequential order (ignore the SEEK
procedure for the duration of this discussion). Writing implies
appending a component to the end of the file. Reading implies
that the next component in sequence is obtained from the file.
The following discussion applies only to typed files.

Associated with each typed file variable there is an implicit
"buffer var iable", often called the file "window". The buffer
var iable can be thought of as a place holder where the current
file component is held. The buffer var iable holds the next
available component when reading. When writing, it holds the
component that will be appended to the file by a PUT procedure
call.

For a given file variable "f",
referenced by the notation "fA".

Pascal Reference Manual

the buffer variable is
Consider the following

Page 61

Input and Output

declarations:

type

var

whammo - fi1e of gobion;

frammis: whammo;
Curcomp: gobion;

Chapter 6

When the file "frammis" is opened for reading via the RESET
procedure call, the first component of the file is in the buffer
variable. An assignment statement of the form:

CurComp :- frammisA;

assigns the contents of the buffer variable to the variable
"CurComp". The contents of the buffer variable then become
undefined. The next component from the file is moved into the
buffer variable by a GET procedure call.

When the· file "frarnrnis" is opened for writing via the REWRITE
procedure call, the buffer variable is undefined. An assignment
of the form:

frammisA :- CurComp;

assigns the value of the variable "CurComp" to the buffer
variable. A subsequent PUT procedure call appends the contents
of the buffer variable to the file "frammis". The contents of the
buffer variable become undefined until another assignment defines
it •

. For files of type interactive the handling of the buffer
variable is different. In standard Pascal, when a file is RESET,
the first element of the file is read and placed in the file
buffer variable. means that the system would expect the user to
type a character at the terminal, else the system would "hang".
Thus a RESET on an interactive file does not perform an immediate
GET. This affects the way that EOLN functions. When an
end-of-line is read, EOLN becomes true and the character read is
a space.

6.1.2 GET - Get Component from File

The procedure GET obtains the next element from a file
(assuming there is a next element to be obtained) •. A call on the
GET procedure of the form:

GET (file)

Page 62 Pascal Reference Manual

Chapter 6 Input and Output

advances the current file position to the next component in the
file. The value of this component is then assigned to the buffer
var iable file".

If there was no "next component" in the file, the value of the
buffer variable is undefined and the predicate EOF(file) becomes
true.

If the predicate EOF(file) is already true, a GET (file) (in
other words, trying to read past end-of-file) has an undefined
result.

6.1.3 PUT - Append Component to a File

A call on the PUT procedure of the form:

PUT (file)

appends the value of the buffer variable file" to the file
'(file". The value of file" becomes undefined after the call to
PUT. The predicate EOF(file) becomes true after the PUT.

If the predicate EOF(file) was false before the call to PUT (in
other words, there were intervening GET's on the file), the call
to PUT has an undefined result.

6.1.4 RESET - Position to Start of File

A call to the RESET procedure of the form:

RESET(file, string [, buffering option])

resets the current file position to the beginning of the file.
If the file is not empty, the first element of the file is
assigned to the buffer variable file" and the predicate EOF(file)
becomes false. If the file is empty, the buffer variable file" is
undefined and the predicate EOF(file) becomes true.

If the file is an interactive file, RESET does not read the
first element of the file.

SVS Pascal provides for a second parameter to RESET. This
parameter is the name of an existing disk file or device. The
parameter takes the form of a string constant or variable.

The third parameter to RESET is an option to determine whether
the file is buffered or unbuffered. The buffering option may be
specified as the keyword BUFFERED or UNBUFFERED, and it is
described in the subsection following REWRITE, below.

Pascal Reference Manual Page 63

Input and Output Chapter 6

6.1.5 REWRITE - Create or Overwrite a File

The REWRITE procedure creates a new file of a specified name
and discards any existing file of the same name. Thus a call of
the form:

REWRITE (file, string [, buffering option])

discards the current value of the file variable "file",
effectively creating a new file. The value of the buffer
variable "fileA

" is undefined and the predicate EOF(file) becomes
true.

SVS Pascal provides for a second parameter to REWRITE. This
parameter is the name of a disk file. The parameter can be a
string variable or constant. REWRITE always creates a temporary
file of the specified name. Upon closing the file, it can either
be discarded, or the existinq file (if any) can be replaced.

The third parameter to RES..:."r is an option to determine whether
the file is buffered or unbuffered. The buffering option may be
specified as the keyword BUFFERED or UNBUFFERED, and it is
described in the subsection below.

6.1.6 The Buffering Option on RESET and REWRITE

The optional "buffering option" parameter to RESET and REWRITE
can be specified as either BUFFERED or UNBUFFERED. On some
operating systems, there is a significant difference in
throughput between buffered and unbuffered input output.

Normally, buffered input output is much more eff icient than
unbuffered input output. But, there can also be undesirable side
effects in buffered input output, most notably that output does
not appear at a terminal until a full buffer has been collected.

The "buffering option" parameter provides a means to request
either buffered or unbuffered input output for the file specified
in the RESET or REWRITE request. A given operating system might
well override the request. depending on the nature of the device
on which the file resides. The standard situation is unbuffered
input output, in the absence of the "buffer ing option"
parameter.

Page 64 Pascal Reference Manual

Chapter 6 Input and Output

6.2 Text File Handling Procedures

Pascal provides standard procedures for controlling text-file
input and output. These procedures apply to files of type text
or interactive.

6.2.1 READ and READLN Intrinsics

READ and READLN read character strings representing numbers
from a textfile and convert them into their internal
representations. There is more on converting numbers later in
this subsection.

v)
is e~uivalent to a

READ(input, vI' v 2 ' ••• , Vn)

READ (file, vl' v 2 ' ••• , v)
i'S equivaPent to a sequence of READ procedure
calls as follows:

READ (file, VI);
READ (file, v 2 T ;
READ (file, v n)

If nch" is a variable of type char, the two programs displayed
here are equivalent:

var
ch: char;

rasp: file of char;

begin
READ (rasp, ch)

end

var
ch: cbar;

rasp: file of char;

'begin

end

ch := rasp
GET (rasp)

If "v" is a variable of type integer v any subrange of integer,
real, or double, the procedure reference:

READ (file, v)

reads a sequence of characters from the file referenced by
"file". The sequence of characters should form a valid number

Pascal Reference Manual Page 65

Input and Output Chapter 6

according to Pascal's rules' for numbers (described in chapter 1).
Note that if a real or double number contains a decimal point,
there must be at least one digit on either side of the decimal
point. When the number is formed it is then assigned to the
var iable "v". Blank lines and spaces preceding the number are
skipped in the file. Reals are read in the same way as
integers. Booleans cannot be read via a READ or READLN call.
Structured types cannot be read.

If the sequence of characters read from the file do not form a
valid number according to the syntax rules, one of two actions
are taken: if I/O checking is on, the Pascal run-time system
issues an error diagnostic: if I/O checking is off, READ or
READLN return zero (0) and the IORESULT code is set. See
appendix A - "Messages from the Pascal System" for a list of I/O
error codes.

6.2.2 READ from a file of any type

The READ procedure can also read from a file of any type. A
READ procedure call of the form:

READ(file, v l ' v 2 ' ••. , vn):

is equivalent to the sequence:

v l := file ;
v 2 := file ;

GET (file) :
GET (file) :

v := file :
G~T(file):

GET (file) ;

where the "v " are the list of variables to read into. n

Note that the type of each variable in the list must be
identical to the type of the elements in the file.

6.2.3 WRITE and WRITELN Intrinsics

The WRITE and WRITELN intrinsics append character strings to a
textfile. Usually the character strings are generated by
converting one or more Write parameters (see below) from their
machine representations into external representations.

The procedure WRITELN differs from the procedure WRITE only in
that WRITELN sends an end-of-line to the output file after the
write is complete.

Page 66 Pascal Reference Manual

Chapter 6 Input and Output

<write intrinsic> ::= WRITE«file> <write parameters»;

<writeln intrinsic> ::= WRITELN«file> <write parameters»;
WRITELN;

<file> ::= <file variable>,

<write parameters> ::= <write parameter> {, <write parameter>}

The <file> parameter in all cases is a file variable which
refers to the file on which to append character strings. If the
<file> parameter is omitted, output is written to file output
(the computer standard output).

6.2.4 Wri~e Parameters

The WRITE and WRITELN procedures can control the format of the
individual elements that are written. Each parameter to WRITE or
WRITELN is of the form:

<write parameter> ::= <element>
<element>:<field width>

I <element>:<field width>:<fraction size>

<element> ::= is the value to be written.
(see descriptions below)

<field width> ::= <integer expression>

<fraction size> ::= <integer expression>

<element> is the value to be written. It may be of type char,
integer, real, double, Boolean, string or packed array of char.

<field width> and <fraction size> are optional. If
<fraction size> is present, <field width> must also be present.

<field width> specifies the size of the output field into which
the converted value is written. If the converted value is
smaller than <field width>, the field is filled out with leading
spaces.

<fraction size> is only applicable when the <element> is of
type real or double (see below) .

Pascal Reference Manual Page 67

Input and Output Chapter 6

6.2.4.1 Integer Element

The value of the integer expression is converted into a string
representation of that expression in the base 10. The resulting
string is placed right justified into the output field if a field
width greater than needed is specified. If <field width> is too
small to contain the resulting character string, the output field
is expanded until it can contain the output str ing. If the
integer expression is negative in value, a minus sign precedes
the leftmost significant digit in the field. If the integer
expression is positive, no space precedes the character str ing
unless the <field width> is greater than the number of characters
to be printed. If <field width> is omitted, the default field
width is eight (8) characters.

6.2.4.2 Real or Double Element

A real or double element is converted much the same as an
integer element, except that there can be a specification for the
number of digits after the decimal point. In this case,
<fraction size> specifies the number of digits to appear after
the decimal point. The converted value is then written in so
called "fixed point" notation. If <fraction size> is omitted,
the converted number is written out in the floating or
exponential notation. The diagram below illustrates the
different forms of writing real elements.

WRITE (number: f)
results in a number of the form:

±.x.yyyyyE±.nn

where "f" is the total number of characters in the converted
number. There is one digit before the decimal point and "f"-7
digits after the decimal point.

WRITE(number:f:w)

xxx.yyy

where "f" is the
decimal point), and
point.

results in a number of the form:

total number of characters (including the
"w" is the number of digits after the decimal

The extreme real and double values are pr int,ed as follows:
positive infinity prints as a row of + signs; negative infinity
prints as a row of - signs; NaN (Not a Number) prints as a row of
? marks.

Page 68 Pascal Reference Manual

Chapter 6 Input and Output

6.2.4.3 Scalar Subrange Element

A write parameter which is a scalar subrange is handled exactly
as the scalar range of which it is a subrange.

6.2.4.4 Character Element

A write parameter which is a character is output as a single
string character right justified in the output field. If
<field width> is greater than one (1), the field is filled with
leading spaces.

Furthermore, an <element> of type char means that the two
programs displayed below are equivalent.

WRITE(file, <char expression>:fi~ld width»
is equivalent to

file~ := , '7
PUT(file);

{ these two statements repeated
{<field width> - 1 times

file~ := <char expression>; PUT (file)

6.2.4.5 String Element or Packed Array of Char

A write parameter which is a string or packed array of char
expression is placed right justified into the output field with
leading spaces. If <field width> is less than the dynamic length
of the string expression, the output field is expanded to contain
the string. If <field width> is omitted, the output field is the
minimum length needed to hold the string.

6.2.4.6 Boolean Element

An expression which is of type Boolean is written as one of the
standard reserved words False or True. If <field width> is
greater than the length of the resulting string (5 for "False": 4
for "True"), the string is written with leading spaces. If
<field width> is less than the length of the string, the field is
expanded to contain the string. If the value of the expression
is not a valid Boolean, the string "UNDEF" is printed.

Pascal Reference Manual Page 69

Input and Output Chapter 6

6.2.5 WRITE to file of any type

The WRITE intrinsic can also write to a file of any type. A
WRITE procedure call of the form:

WRITE(file, expr l , expr 2 , ••• , expr n);

file'" :-
file'" :-

file'" :=

is equivalent to the sequence:

expr l ;
expr 2 ;

expr n ;

PUT (file) ;
PUT (file) ;

PUT (file) ;

where the exprn are a list of expressions to be wr i tten to the
file.

Note that the type of each expression in the list must be the
same as the type of the elements in the file. Integer subranges
are converted to the proper length as needed.

6.2.6 SEEK - Random Access to Typed Files

SVS Pascal supports random access to files of specific types.
The SEEK procedure has two parameters, namely the file variable
and an integer specifying. the record number to which the file
window should be moved. SEEK can only be applied to typed files
that are not text files. The format of SEEK is:

procedure SEEK(file: file_type; position: integer);

file

position

is the file variable for the specified file.

is the number of the record to which the file
window is to be moved. Records are numbered
sequentially from zero (0).

SEEK moves the file window to the "position" th record in the
file specified by "file". The EOF and EOLN predicates are set to
false.

An attempt to PUT a record beyond the physical end of file sets
the EOF predicate true. The physical end of file is the place
where the next record in the file would overwrite another file on
the storage device.

Page 70 Pascal Reference Manual

Chapter 6 Input and Output

If a GET or PUT is not performed between two SEEK procedures,
the contents of the file window are undefined.

6.2.7 CLOSE - Close a File

CLOSE removes the association of a file variable with an
external file. A CLOSE procedure call marks the file as closed.
The file variable for that file is then undefined. If a file is
already closed, a CLOSE call does nothing. The form of the CLOSE
procedure is:

procedure CLOSE(file [r close_option]) ~

file is a file variable.

close_option is an optional parameter that
disposition of the closed file.
can be one of the following:

controls the
"close_option"

normal

lock

purge

crunch

The state of the file is set to
closed. If the file was opened with
a RESET procedure call, the "normal"
option means that the file is
retained in the file system. If the
file was opened with a REWRITE
procedure call, the "normal" option
means that the file is removed from
the file system. The "normal"
option is the default.

makes the file permanent in the disk
system if it is a disk file. Any
existing file of the same name is
removed from the file system. If
the file is not a disk file, a
"normal" close is done.

deletes the file from the file
system if the file is on a
block-structured device. If the
file associated with "file" is a
device instead of a block-structured
volume, the device is set off-line.
If no physical device or file is
associated with "file", a "normal"
close is done.

is the same as the "lock" option but
in addition, truncates the file at
the point at which it was last

Pascal Reference Manual Page 71

Input and Output Chapter 6

accessed. That is, the end of the
file is the position at which the
last PUT or GET was performed.

6.3 Block Input Output Intrinsics

BLOCKREAD and BLOCKWRITE support random (block level) access to
untyped files only.

6.3.1 BLOCKREAD - Read Block from File

BLOCKREAD reads specific blocks from an untyped file. The
function definition is:

function BLOCKREAD(file, where, blocks [,relblock]): integer:

file

where

blocks

relblock

is an untyped file.

is a variable of any type. The variable must be
large enough to contain the number of blocks
requested.

is an integer value which specifies the number
of blocks to read from the file.

is an optional parameter. If "relblock" is
present, it represents the block number at which
to start reading from. Blocks are numbered
relative to zero (0).

if "relblock n is omitted, it implies a
sequential read of the next block in the file.
When the file is opened, or when the file is
reset, the starting block number is set to zero
(0). Thus a BLOCKREAD with the " re lblock"
parameter omitted starts reading from block
zero, and reads sequential blocks on every
subsequent call thjt has the " re lblock"
parameter omitted.

The return value of BLOCKREAD is the number of blocks actually
read. If the value is zero, it indicates either end-of-file or
an error condition. If the value is greater than zero, it
indicates the number of blocks read. If the return value is less
than the number of blocks specified in the function call, it is
possible that an end-of-file was encountered during the read.

Page 72 Pascal Reference Manual

Chapter 6 Input and Output

6.3.2 BLOCKWRITE - Write Block to File

BLOCKWRITE wr Hes spec ific blocks to an untyped file. The
function definition is:

function BLOCKWRITE(file, where, blocks [,relblock)): integer 1

file

where

blocks

relblock

is an untyped file.

is a var iable of any type. It must be large
enough to contain the number of blocks to be
transferred.

is an integer value which specifies the number
of blocks to write to the file.

is an optional parameter. If "relblock" is
present, it represents the block number at which
to start writing to. Blocks are numbered
relative to zero (0).

if "relblock" is omitted, it implies a
sequential write of the next block in the file.
When the file is opened, or when the file is
reset, the starting block number is set to zero
(0). Thus a BLOCKWRITE with the "relblock"
parameter omitted starts writing to block zero,
and writes blocks sequentially on every
subsequent call that has the "relblock"
parameter omitted.

The return value of BLOCKWRITE is the number of blocks that
were actually written. If the return value is zero, it means
either that there was an error or that there is no room for the
blocks on the device. If the value is greater than zero, it
indicates the number of blocks written. If the return value is
less than the number of blocks specified, it means that the
end-of-file was encountered.

6.4 unit Input Output

SVS Pascal provides UNIT input-output facilities that are
compatible with those of UCSD Pascal. Unit input output provides
the means to communicate directly with devices (units) on the
system.

Pascal Reference Manual Page 73

Input and Output Chapter 6

Note that because unit input output explicitly addresses
specific units, data transfers to or from units cannot be
re-directed at the system level.

6.4.1 UNITBUSY - Check if Unit Busy

UNITBUSY checks if the specified unit is busy (waiting for an
input output transfer to complete). If the unit is busy,
UNITBUSY returns true, otherwise UnitBusy returns false. The
function definition is:

function UNITBUSY(UnitNumber: integer): Boolean,

For example, UNITBUSY(l) is true if the is data available at
the console.

"UnitNumber" is an integer expression which is the number of
the device to check.

6.4.2 UNITCLEAR - Initialize the Unit

UNITCLEAR cancels all input output to a specifie"d unit, a.-.:'
then resets that unit to its initial state. The function
definition is:

procedure UNITCLEAR(UnitNumber: integer),

The IORESULT function can be used to check if an error
occurred.

6.4.3 UNITSTATUS - Get Status of Device

UNITSTATUS obtains status information for a specific device.
The function definition is:

procedure UNITSTATUS(UnitNumber: integer;
var StatusRecord,
Control: longint),

unitNumber

StatusRecord

Control

Page 74

is an integer expression which is the device
number from which to return status.

may be a variable of any type. Its size and the
values returned are determined by the specific
driver.

is an integer expression whose value depends
upon the specific input-output driver associated

Pascal Reference Manual

Chapter 6

with that unit.

6.4.4 UNITREAD - Read from a Unit

UNITREAD reads bytes from a specified
performs· no limit checks on the transfer
caller's responsibility to ensure that the
enough for the transfer. The definition is:

procedure UNITREAD(UnitNumber: integer:
var MemoryArray:
TransferLength: longint:
BlockNumber: longint:
mode: integer):

Input and Output

device. UNITREAD
area. It is the
variable is large

UnitNumber is the number of the unit to read from.

MemoryArray is the var iable in memory into which the bytes
are to be transferred. MemoryArray can be of
any type.

TransferLength is the number of bytes to read.

BlockNumber is optional. It is the number of the block from
which the read is to start. Blocks are numbered
from zero, and defaults to zero. BlockNumber
only has meaning when the device is a blocked
device.

mode is optional and device-dependent.

Note there is a potential problem with using the UNITREAD
intrinsic to read a single character to an unpacked char object.
Consider the following program fragment:

var
one_char: char:

UNITREAD(some_unit, one_char, 1):

This example will not have the expected result. SVS Pascal
represents a single unpacked char variable such as "one char" as
a l6-bi t word, with the character normally occupying the least
significant eight bits. The UNITREAD intr insic in the above
example, however, reads bytes on a byte-by-byte basis, and so the
single read places the byte into the upper eight bits of the
"one char" variable, leading to erroneous results. The
"some unit" unit number in the example is irrelevant to the
discussion - it doesn't matter which unit is involved in the
transfer.

Pascal Reference Manual Page 75

Input and Output Chapter 6

In order to have this program fragment work correctly, the
program would have to be changed as follows:

var
two_char: packed array [0 •. 1] of char;

UNITREAD(some_unit, two_char, 1);

which reads the data into the O'th element of "two_char".

6.4.5 UNITWRITE - Write from a Unit

UNITWRITE writes bytes from a specified device. UNITWRITE
performs no limit checks on the transfer area. It is the
caller's responsibility to ensure that the transfer area is large
enough. The definition is as follows:

procedure UNITWRITE(UnitNumber: integer;
var MemoryArray;
TransferLength: longint;
BlockNumber: longint;
mode: integer);

UnitNumber is the number of the unit to write from.

MemoryArray is the var iable in memory from which the bytes
are to be transferred. MemoryArray can be of
any type.

TransferLength is the number of bytes to write.

BlockNumber is optional. It is the number of the block from
which the write is to start. Blocks are
numbered from zero, and defaults to zero.
BlockNumber only has meaning when the device is
a blocked device.

Mode is optional and device-dependent.

Note that doing a UNITWRITE from an unpacked char object can
lead to the same problems as described under UNITREAD, above.

6.4.6 Notes On UNIT Input and Output

UNIT input output performs the function of direct communication
with a unit (device) in the computer system. When the Pascal
system performs UNIT transfers, no code conversions or any other
changes are done to the stream of bytes as they pass through the
system.

Page 76 Pascal Reference Manual

Chapter '6 Input and Output

As was mentioned in UNITREAD, the actions on a single character
UNIT transfer to or from an unpacked char objec~ do not lead to
the expected results, because an unpacked char data object is
stored as a word, with the actual character in the least
significant eight bits. UNIT transfers are done on a str ict
byte-by-byte basis, and are unaware of the data type of the
object to or from which the transfer is being performed.

Similarly, string data objects have the string length as their
first byte, so a UNITWRITE of a string will first send out the
length byte, which is not necessarily a printable ASCII
character. A UNITREAD to a string variable would place the first
character read into the length byte. Again, this does not always
lead to the desired result. It is up to the programmer to ensure
the correct interpretation of data involved in UNIT transfers.

6.5 IORESULT - Return Input-Output Result

IORESULT is a function that can be used after an input-output
operation to check on the validity of the operation. The
function definition is:

function IORESULT: integer;

Use of the IORESULT function is only appropriate if I/O
checking has been turned off. The $1- compiler option turns
checking off. If I/O checking is on (as it is by default) or
turned on via the $1+ compiler option, any I/O error generates a
non-recoverable run-time error.

If I/O checking has been turned off, I/O errors do not generate
run-time errors, and the programmer can then use IORESULT to
check the completion status of each input output operation.

The value of IORESULT is zero if an input-output operation has
a normal completion. If the value is non-zero, it indicates some
form or error has occurred. See appendix A - "Messages from the
Pascal System" for a list of error codes.

Pascal Reference Manual Page 77

Input and Output Chapter 6

Example of using IORESULT

{$I-} Turn off the I/O Checking
type

data_file • file of text~
var

data: data_file:

RESET (data, '/source/printer'),
if IORESULT <> 0 then begin {<> 0 • problem }

REWRITE (data, '/source/printer'), { so create it
if IORESULT <> 0 then begin

WRITELN('Cannot create printer file')~
HALT

end,
end~

In the above example, the $1- comment toggle turns off the I/O
checking for that part of the program. The "IORESULT function
returns a non-zero value to mean that the file could not be
RESET, so the program then tries a REWRITE statement. If that
fails, then the program halts.

Page 78 Pascal Reference Manual

Chapter 7 Program Structure

Chapter 7

Program Structure

A Pascal program is a collection of declarations and statements
which is meant to be translated, via a compilation process, into
a relocatable object-module. Object modules obtained from other,
separate compilations can be combined, via a linking process,
into a form suitable for execution.

The collection of declarations and statements may also include
compiler directives which control the compilation, and do not
change the meaning of the program.

7.1 Compilation units

SVS Pascal implements independent compilation via the unit
concept of UCSD Pascal. A compilation unit is either a program (a
main program), or a unit. A complete executable program consists
of a single program and zero or more units.

A program is a main program, consisting of all the statements
between a program statement and an end. statement. The main
program is described in more detail later in this chapter, in the
section entitled "Program Heading".

A unit is a collection of declarations and statements packaged
so as to make parts of the declarations in the unit public to
other parts of the same compilation unit or separate compilation
units. units are useful for sharing common code among different
programs or as a means to avoid compiling a huge program every
time one line is changed. Units are compiled separately.

A program or unit that uses another unit is known as a "host".
A host uses other uni ts' declarations by naming those uni ts in
uses declarations. The uses clause appears after a program
heading or it appears in a unit at the start of the interface
section (see below).

Pascal Reference Manual Page 79

Program Structure Chapter 7

A unit contains two major parts, namely an interface part which
describes how other units view this unit, and an implementation
part which supplies the actual body of code to implement this
unit.

<unit> ::= unit <identifier>J
<interface part>
<implementation part>

end.

<interface part> ::= interface
<uses clause>
<constant definition part>

<type definition part>
<variable definition part>

<procedure and function declaration part>

<implementation part> ::
iaplementation
<label declaration part>

<constant definition part>
<type definition part>
<variable definition part>

<procedure and function declaration part>

<uses clause> ::- uses <identifier> {,<identifier>} J

The interface part declares constants, types, variables,
procedures and functions that are globally available. A host
program that uses that unit has access to those objects just as
if they had been declared in the host program itself.

Procedures and functions declared in the interface part consist
only of the procedure or function name and the description of the
formal parameters. These declarations serve as procedure or
function erototypes - there is no executable code associated with
them. Th1S 1S equ1valent to a forward declaration except that no
forward attribute is allowed.

The implementation part follows the interface part. Local
objects are declared first, then the global procedures and
functions are declared. Formal parameters and function result
type declarations are omitted from the implementation part, since
they were already declared in the interface part.

A uni t can consist entirely of interface
(constants, types and variables)~ There need
procedure or function declarations.

The overall layout of a unit is like this:

declarations
not be any

Page 80 Pascal Reference Manual

Chapter 7 Program Structure

unit Ga~ipGanop;

interface This part declares the
interface section

uses names of This part is optional if
other units GanipGanop does not use any

things from other units
Note that any declarations
imported from other units are
also public to any unit that
uses GanipGanop.

{ •.••• declarations and
procedure headings

for the GanipGanop unit.
All these declarations and procedure

headings are PUBLIC to other units ••••• }

implementation { This part declares the
{ implementation section

{ ••• ~. declarations and
code for the GanipGanop unit.

All these declarations and code are
PRIVATE to GanipGanop •.••• }

end. of the GanipGanop unit }

7.2 Declarations and Scope of Identifiers

Declarations introduce program objects, together with their
identifiers, which denote these objects elsewhere in a program.

<declaration> ::= <label declaration>
<constant declaration>

<type declaration>
<variable declaration>

<procedure or function declaration>

The program region (over which all uses of an identifier are
associated with the same object) is called the scope of the
identifier. Within a compilation unit, such a region 1S either a
unit body or a block body. In the case of a unit, the scope is a
declaration list. In the case of a block, the scope is a
statement list preceded by an optional declaration list.

The scope of an identifier is determined by the context in
which it was declared.

Pascal Reference Manual Page 81

Program Structure Chapter 7

A program or a unit is a static construct intended to control
the scope of identifiers according to these rules:

1. The scope of an identifier declared at the outermost level
of a program is the body of that program.

2. The scope of an identifier listed in the interface part of
a unit is the body of that unit, and is also extended
"outwards" to any other unit that uses that unit.

3. Identifiers declared at the outermost level of the
t.plementation part of a unit have the entire body of that
unit as their scope, but are private to that unit.

Procedure or function blocks also control the scope of
identifiers. There are both similarities with, and differences
from, programs or units.

Like programs or units,
identifiers.

blocks control the scope of

Unlike programs or units, blocks control the processing of
declarations and determine when the declarations take effect.

The block-structured scope rules are as follows:

1. The scope of an identifier declared in the declaration list
of a block is the body of that block.

2. If the scope of an identifier includes another block, its
scope is extended "inward" to include the body of that
inner block, unless the body contains a re-dec1aration of
that identifier.

3. An identifier which is declared as a formal parameter of a
procedure or function has as its scope the body of that
procedure or function.

4. Field selectors are identifiers introduced as part of the
defini tion of a record type for the purpose of selecting
fields of records. The scope of a field selector is the
record in which it is declared. As with the nesting of
procedures, the existence of an inner scope identifier
masks the accessibility of any outer identifiers of the
same name. Field selectors must be unique within the
declaration of a record.

5. Identifiers must be unique within the bounds of a given
scope.

Page 82 Pascal Reference Manual

Chapter 7 Program Structure

7.3 Program Heading

The program statement identifies the main program for a Pascal
compilation. In SVS Pascal, the program header is scanned but
otherwise ignored. A program has the same form as a procedure
declaration except for the heading.

<program> ::= <program heading> {<uses clause>} <block>.

<program heading> ..
program <identifier> {«program parameters»};

<program parameters> ::= <identif~er> {,<identifier>}

The identifier following the word program is the program name.
It has no further meaning inside the program. The program
parameters are optional. No global identifiers in the program
may have the same name as any of the program parameters.

7.3.1 Predeclared Variables

SVS Pascal supplies five pre-declared var iables. First there
are standard files

input

output

stderr

is the standard file from which console input
can be done via READ and READLN statements,

is the standard file to which console output is
directed via WRITE and WRITELN statements,

is the standard error output file. On those
operating systems which support a separate file
for error responses, stderr is connected to that
stream. On those operating systems which do not
support a separate file for error responses,
stderr is connected to the same place as output.

Then there are the two variables associated with obtaining
arguments from the operating system command line (see the next
subject heading below):

argc is a count of the number of arguments supplied
on the command line.

Pascal Reference Manual Page 83

Program Structure Chapter 7

argv is an array of pointers to the character strings
containing the command line arguments.

7.3.1.1 ARGC and ARGV - Access to Command Line

As mentioned above, "argc" and "argv" provide access to the
Pascal program's command line as the user typed it. "argc" and
"argv" can be considered to be defined by a declaration of the
form:

type
pstring • AString;

var
argc: integer;
argv: array[l argc] of pstring;

Each element of argv contains a separate field from the command
line that invoked this Pascal program. If "argc" is zero (0), no
attempt should be made to reference "argv". The first element of
"argv" is the first parameter from the command line. The name of
the command itself is not available. Avoid assigning to any
element of "argv".

7.4 Declarations

7.4.1 Label Declarations

The label declaration part declares all labels (which tag
statements) in the statement part of the block.

<label declaration part> ::- label <label> {, <label>};

7.4.2 Constant Definition

The constant definition part declares all constant names and
their associated values that are local to the procedure or
function definition.

<constant definition part> ::= const <constant definition list>

<constant definition list> ::=
<constant definition> {<constant definitioj

Page 84 Pascal Reference Manual

Chapter 7 Program Structure

7.4.3 Type Definition

The type definition part contains all the type definitions that
are local to the procedure or function definition.

<type definition part> ::= type <type definition list>

<type definition list> ::= <type definition> {<type definition>}

7.4.4 Variable Declaration

The variable declaration part contains a definition of all the
variables that are local to the procedure or function.

<variable declaration part> ::= var <variable declaration list>

<variable declaration list> ::=
<variable declaration> {<variable declaration>}

7.5 Procedure and Function Declaration

A procedure declaration or a function declaration associates an
identifier (the procedure or function name) with a collection of
declarations and statements. A Pascal statement can then cause
that procedure to be executed (activated) by giving its name in a
procedure reference statement. A function declaration is similar
to that of a procedure with the additional capability that a
function can compute and return a value, called the value of the
function. A function is referenced by giving its name in an
expression, when the value of the function appears as a factor in
that expression.

The type of value that a function returns is specified when the
function is declared. The function return value is the value
last assigned to its function" identifier before a return is made
from the function. Returning from a function without ever
assigning a value to the function designator (for the current
activation of the function) produces an undefined result (usually
with undesirable results from the programmer's viewpoint).

Using a procedure or function identifier within the declaration
of that procedure or function implies recursiv,,: activation of
that procedure or function, except when a func -:. ~on identifier
appears on the left hand side of an assignment statement,

Pascal Reference Manual Page 85

Program Structure Chapter 7

(implying assignment to the function variable rather than
recursive activation - see below).

<procedure declaration> ::- <procedure heading> <block>

<block> ::- <label definition part>
<constant definition part>

<type definition part>
<variable declaration part>

<procedure and function declaration part>
<statement part>

<statement part> ::= begin <statement list> end

<statement list> ::- <statement> {f <statement>}

All the definition and declaration parts above are optional,
with the exception of the <statement part>.

The procedure heading specifies the identifier that names the
procedure, and any formal parameters for that procedure.

Procedure parameters are either value parameters, variable
parameters, or procedure or function parameters.

<procedure heading> ::=
procedure <identifier>J {<attribute>f}
procedure <identifier> «formal parameters»1 {<attribute>f}

<function heading> ::=
function <identifier>: <result type>J {<attribute>J}

I function <identifier>«formal parameters<)1{<attribute>f}

<formal parameters> "".
<formal ~~rameter> {J<formal parameter>}

<formal parameter> ::-
<parameter group>

I
var <parameter group>

<procedure heading>
<function heading>

<parameter group> ":-
" <identifier> {.<identifier>}:<type identifier>

<attribute> ::- external forward cexternal

<result type> ::= <simple type>

Page 86 Pascal Reference Manual

Chapter 7 Program Structure

Note that the "external", "forward", and "cexternal" attributes
are optional.

7.5.1 External and Forward Attributes

A Pascal host can use routines that are separately compiled or
assembled in languages other than Pascal. To use an external
routine, the host must make a procedure or function declaration
for that external routine just as if it is a Pascal routine that
is declared in this compilation unit or another compilation
unit. The declaration is then followed by the external attribute
to indicate that the body routine does not appear in the current
compilation unit. External routines must conform with the Pascal
calling conventions and data representation methods as defined in
appendix E "Data Representations". The cexternal attribute
means that the compiler generates calls to external procedures in
a manner which is compatibe with the SVS C compiler.

Pascal normally dictates that procedures and functions be
declared before they can be referenced. There are cases when
program layout makes this impossible, such that a procedure or
function must be referenced before it can be declared. The
forward attribute indicates that the particular procedure or
function declaration consists only of the header, and that the
body of that procedure or function appears later in the program
source text, possible after it is referenced. A forward-declared
procedure or function, then, is actually declared in two distinct
par ts: its header or prototype is declared, with the forward
attribute, before any reference is ever made to it; at some later
point in the program source text, its body is declared. At this
later point, the formal parameter section must not appear.

7.5.2 Parameters for Procedures and Functions

Parameters (also called arguments) provide a dynamic
substitution method such that a procedure or function can process
different sets of data in different activations.

There is a correspondence between the formal parameters
declared in a procedure or function headin~ the actual
parameters supplied when the procedure or function is activ~

The procedure or function heading declares a list of formal
parameters. These are "dummy" variables that are assigned values
when the procedure or function is activated.

A reference to the procedure or function supplies a list of
actual ;arameters that are substituted for the formal parameters,
which t en become local variables initialized to the value of the

Pascal Reference Manual Page 87

Program Structure

actual parameters.

There are four kinds of formal parameters:

Value parameters.
Variable or Reference parameters.
Procedure parameters.
Function parameters.

Chapter 7

A parameter group without a preceding specifier, implies that
the parameter is a value parameter.

7.5.2.1 Value Parameters

Value parameters are those whose formal parameter declaration
has no symbol marking them as one of the other three forms. The
corresponding actual parameter must be an expression. In the
body of the procedure or function, the formal parameter is
initialized to the value of the expression at the time the
procedure or function is activated. The formal parameter is then
just like a local variable. The value of the formal parameter
may be changed by assignment the actual parameter remains
unchanged.

7.5.2.2 Variable Parameters

Variable parameters, also called reference ~ameters, are
those whose declarations start with the symbol var (for
variable). The actual parameter must be a variable of a type
which is identical to that of the formal parameter. The formal
parameter directly represents, and can change, the actual
parameter's value during the entire execution of the procedure or
function.

var actual parameters must be distinct actual variables. It is
a programming error to supply the same variable to more than one
a=tual parameter in a procedure or function reference.

All index computations,
dereferencing are done at the
reference is made.

field
time

selection and
the procedure or

pointer
function

7.5.2.3 Procedure and Function Parameters

Procedure and Function parameters are the names and parameter
lists of procedures or functions that can be referenced by the
current procedure. These parameters are indicated by the symbol
procedure or function in the formal parameter declarations. Such

Page 88 Pascal Reference Manual

Chapter 7 Program Structure

procedures or functions are called parametric. Actual parameters
to parametric procedures and functions must be of identical type
to those declared in the formal parameter declarations.

Examples of Procedure and Function Declarations

{ a procedure with only value parameters
procedure ByTheBook(Chapter, Verse: integer);
begin

Chapter : .. 1; does not change the caller's
version of Chapter }

end;

{ a procedure with variable parameters
procedure Change(var winds: integer);
begin

end;
winds:= 76; Changes the callef's version

function
begin

{ the Ackerman function }
Ackerman(m, n: integer) :integer;

if m = 0 then
Ackerman := n + 1

else if n • 0 then
Ackerman := Ackerman(m - 1, 1)

else
Ackerman := Ackerman(m - 1, Ackerman(m,

end;

function
parametric function parameter

Integrate(lo, hi: real;
what(x: real):real): real;

var
start: integer;
finish: integer,
point: integer;
current: real;
sum: real;

begin
start := TRUNC(lo);

Pascal Reference Manual

n - 1»

Page 89

Program Structure

finish :- ROUND(hi),
sum :- O.O~

for point :- start to finish do
begin

current :- point;
sum :- sum + what(current);

end~

Chapter 7

Integrate :- sum / (finish - start)~
end

Page 90 Pascal Reference Manual

Chapter 8 Standard Procedures and Functions

Chapter 8

Standard Procedures and Functions

SVS Pascal (in common with other Pascal implementations)
supplies a number of standard ("built in") procedures and
functions. This Chapter covers those. The standard procedures
and functions fall into several logically related groups, as
follows:

• Str ing Manipulation. These intr insics handle the SVS Pascal
dynamic string types.

• Memory Management. These intr insics deal with dynamic memory
allocation and de-allocation.

• Arithmetic Functions.

• Boolean Predicates.

• Conversion Functions.

• Miscellaneous Low Level Procedures and Functions.

8.1 String Manipulation Facilities

This section discusses those facilities for manipulating string
data types in Pascal. Here is a brief summary of the facilities:

CON CAT concatenate a number of str ings into one
string.

copy Extract substring of a str ing.

DELETE delete characters from a strin].

INSERT insert characters into a str i'

Pascal Reference Manual Page 91

Standard Procedures and Functions Chapter 8

LENGTH determine the current dynamic length of a
string.

POS Scan for a pattern within a string.

SCANEQ and SCANNE
scan for a specific character within a string.

8.1.1 LENGTH - Determine String Length

LENGTH is an integer function that returns the length of a
string expression. The function definition is:

function LENGTH (source: string): integerJ

LENGTH returns an integer value which is the dynamic length of
the string "source".

The length of the string II is zero (0).

Examples of LENGTH

alphabet :- 'abcdefghijklmnopqrstuvwxyz'J
WRITELN(LENGTH(alphabet), , ,

alphabet[l], , ,
alphabet[LENGTH(alphabet)], ,
LENGTH("»~

the following output is displayed

26 a z o

8.1.2 COpy - Copy a Substring

COPY returns a string which is a substr ing of another str ing.
The function definition is:

function COpy (source: string~
index: integer 1
size: integer): string~

COpy returns a string which is a substring of the string
"source". COPY extracts "size" characters from "so'urce", starting
at the character position given by "index".

Page 92 Pascal Reference Manual

Chapter 8 Standard Procedures and Functions

The first character in the string is numbered 1.

If "index" is negative or zero, the result is a null string.

If "index" is greater than LENGTH(source), the result is a null
string.

If "index" + "size" is greater than LENGTH(source), the result
is a string which extends from "index" to LENGTH(.source).

Example of COpy

var
left: string[lOO),.
middle: string[lOO);
right: string[lOO],
title: string[255],

title :- 'Left Side. Middle Part. Right Side.';
left :- COPY(title, 1, 10),
middle := COPY(title, 12, 12);
right := COPY(title, 25, 11);
WRITELN(left);
WRITELN(middle);
WRITELN(right);

Left Side.
Middle Part.
Right Side.

This should generate the output:

8.1.3 CON CAT - Concatenate Strings

CON CAT returns a string result, which is the concatenation of
its (string) parameters. The function definition of CONCAT is:

function CONCAT (sl: string;
s2: string;
sn: string): string;

Each of the USn" is a string variable or a string constant or a
literal value. There may be any number of source strings, each
separated by a comma from the next. There must be at least two
source strings.

Pascal Reference Manual Page 93

Standard Procedures and Functions Chapter 8

Example of CONCAT

title :~ CONCAT('Here', " there', " and everywhere');
WRITELN (title) ;

This should generate the output:

Here, there, and everywhere

8.1.4 POS - Match a Substring in a String

POS is used for string matching. The function definition is:

function POS (pattern: string;
inwhat: string): integer;

POS scans from left to right trying to find an instance of the
string "pattern" in the string "inwhat". If a match is found, POS
returns an integer value that is the position in "inwhat" at
which the "pattern" starts to match.

If there is no match, the result is zero (0).

If "pattern" is longer than "inwhat", the result is zero (0),
or no match.

Example of POS

herbs := 'Basil, Chervil, Fennel, Tarragon';
WRITELN(POS('Chervil', herbs),' " POS('Nutmeg',
herbs));

This should generate the output:

8 0

8.1.5 SCANEQ and SCANNE - Scan for Character

SCANEQ and SCANNE search a character array until they find
(SCANEQ) or do not find (SCANNE) a specified character in the
array. The function definitions are:

Page 94 Pascal Reference Manual

Chapter 8 Standard Procedures and Functions

function SCANEQ(len: integer;
function SCANNE(len: integer;

what: char; object): integer:
what: char; object): integer;

SCAN xx scans "object" for "len" characters, or until the
character "what" is found (SCANEQ) or not found (SCANNE). The
result is the offset into "object" where the scan stopped. If
the character "what" is not found (SCANEQ) or is found (SCANNE),
SCAN xx returns the value "len". If the "len" parameter is
positive, scanning is from left to right; if the "len" parameter
is negative, the scan proceeds from right to left, and a negative
value is returned.

Note that the SCANxx functions simply look at bytes in memory.
They ignore any higher level structure that the user might
perceive or might have imposed on the object. Thus "object" is
simply an address in memory at which to begin scanning (or in the
case where "len" is negative, to end the scan). Thus, for
example, if the programmer were to do a SCANEQ on a data type of
string[80], the length byte of that str.ing would also be scanned,
and the results might be unexpected.

8.1.6 DELETE - Delete Characters from String

DELETE removes a specified number of characters from a string.
The procedure definition is:

procedure DELETE (destination: string;
index: integer;
size: integer);

"destination" is a string. "index" and "size" are integers.

DELETE removes "size" characters from "destination", starting
at the position specified by "index".

If "index" is greater than LENGTH (destination), there is no
action taken.

If "index" is negative or zero, there is no action taken.

If "index" + "size" is greater than LENGTH (destination) , DELETE
removes all characters from "index" up to the end of the
"destination" string.

Pascal Reference Manual Page 95

Standard Procedures and Functions Chapter 8

Example of DELETE

var
large: string[lOO];

large :- 'A long exhausting rally, eh what, chaps';
DELETE (large, a, 11),
WRITELN (large);

This should generate the output:

A long rally, eh what, chaps

8.1.7 INSERT - Insert Characters into String

INSERT inserts one character string into another character
string at a specified place. The procedure definition is:

procedure INSERT (source: string;
destination: string;
index: integer);

The "source" string is inserted into the "destination" string
at a position determined by the value of "index".

If the leng th of the result str ing is greater than the static
length of the destination string, the result varies depending on
whether run-time range checking is on or off:

if range checking is on (the $R+ option), a run-time error is
generated.

if range checking is off (the $R- option), the result string is
truncated to fit into the declared length of the destination
str ing.

8.2 Storage Allocation Procedures

Dynamically allocated storage is held in a large common storage
pool, called a "heap". Storage is allocated from that pool by
using the procedure NEW. Storage is released back to the pool
(de-allocated) by using the DISPOSE procedure. Alternatively,
some Pascal implementations handle memory de-allocation via the

Page 96 Pascal Reference Manual

Chapter 8 Standard Procedures and Functions

MARK and RELEASE procedures.
RELEASE for compatibility.

SVS Pascal provides MARK and

NEW

DISPOSE

MARK

RELEASE

MEMAVAIL

is responsible for allocating storage.

is responsible for freeing or releasing storage
back to the cornmon storage pool.

provides a means to "remember" the current top
of the heap.

releases memory from a previously MARK' ed
point.

determines the amount. of memory available for
allocation.

8.2.1 NEW - Allocate Storage

The procedure NEW allocates dynamically available storage. If
"p" is a variable of type pointer to "T", NEW (p) allocates
storage for a variable of type "T" and assigns a pointer to that
storage to the variable "p". There are two forms of the NEW
procedure reference:

NEW(p)

NEW(p, t l ,

allocates a new var iable "v", and assigns the
pointer reference of "v" t~ the pointer variable
"p". If the type of "v" 1S a var iant record,
storage is allocated for the largest variant of
the record. Storage for a specific variant can
be allocated by using the second form of the NEW
procedure, as follows:

t 2 , ••• , t)
all~ates a
fields tl ••
contiguolI"sly
declaration
definition.

variable of the variant, with tag
tn. The tag fields must be listed

and in the order of their
in the variant record type

If NEW is used to allocate storage for a specific variant
record, the subsequent call to DISPOSE must use exactly the same
variant. Any mismatch between the variants specified on the call
to NEW and those on the DISPOSE call can damage the integrity of
the heap, causing strange behavior at best and system crashes at
worst.

If NEW fails to allocate the requested storage (usually because
the storage is not available), the pointer variable "p" contains
the value nil upon return from the procedure.

Pascal Reference Manual Page 97

Standard Procedures and Functions

Example of NEW

const

type

var

UpperLimit = 255;

LArray • array[l •• UpperLimit] of integer;
ArrayAddr = ALArray;

head: ArrayAddr;

NEW(head};
if head· nil then

••••• take some recovery action
else

begin
headA[l] :- 0; zero fill array
MOVELEFT(headA[l], headA[2],

SIZEOF(integer}*(UpperLimit - I});
••••• and so on •••••

end

8.2.2 DISPOSE - Dispose of Allocated Storage

Chapter 8

DISPOSE frees (or de-allocates) dynamically allocated storage.
The procedure reference:

DISPOSE (p);

frees up the allocated storage referenced by the pointer variable
"p". Upon return from DISPOSE, the pointer variable "p" contains
the value nil.

Attempts to DISPOSE using a pOinter variable that contains nil
is a no-op and is ignored.

If NEW was used to allocate a variable with a specific variant,
DISPOSE should be called with exactly the same variant, else the
heap is likely to be corrupted.

8.2.3 MARK - Mark position of Heap

MARK is used to "remember" the current position of the top of
heap. MARK and RELEASE are used together to de-allocate memory
and return the top of the heap to a previously MARK' ed point.
For example, a procedure might, upon entry, MARK the heap top,

Page 98 Pascal Reference Manual

Chapter 8 Standard Procedures and Functions

then allocate large numbers of variables, and then, just prior to
exiting, RELEASE all the allocated memory. Such a situation
might occur, for instance, in allocating the local symbol table
for an assembly uni t. At the end of the uni t, all the local
labels need to disappear - MARK and RELEASE provide a handy means
to dispose of storage in bulk. The procedure definition of MARK
is:

procedure MARK (HeapPointer: ~anything);

"Heappointer" must be a pointer the pointer type is
irrelevant but conventionally it is a pointer to a longint.
"HeapPointer" must not be used for any purpose other than as a
MARK pointer.

8.2.4 RELEASE - Release Allocated Memory

RELEASE is used to cut the heap back to a point previously
MARK'ed. The procedure definition of RELEASE is:

procedure RELEASE (HeapPointer: ~anything);

As for MARK, "HeapPointer" is a pointer of any type bu t
conventionally is a pointer to longint. RELEASE cuts the heap
back to the place indicated by "HeapPointer". "HeapPointer" must
have been properly initialized by a previous call to MARK. MARK's
and RELEASE's must be matched properly.

8.2.5 MEMAVAIL - Determine Available Memory

MEMAVAIL returns the number of bytes available for allocation
in the storage pool. The function definition of MEMAVAIL is:

function MEMAVAIL: longint;

8.3 Arithmetic Functions

8.3.1 ABS - Compute Absolute Value

ABS (x) computes the absolute value of its argument "x". The
type of the result is the same as the type of "x", which must be
either integer, real, or double.

Pascal Reference Manual Page 99

Standard Procedures and Functions Chapter 8

8.3.2 SQR - Compute Square of a Number

SQR(x) computes the square of "x", that is, it computes x*x.
The type of the result is the same as the type of "x", which must
be either integer, real, or double.

8.3.3 SIN - Trigonometric Sine

SIN (x) computes the trigonometric sine of the argument "x". The
type of "x" may be either integer, real, or double. The return
type of SIN is always real or double. The argument is in
radians.

8.3.4 COS - Trigonometric Cosine

COS (x) computes the trigonometric cosine of the argument "x".
The type of "x" may be either integer, real, or double. The
return type of COS is always real or double. The argument is in
radians.

8.3.5 ARCTAN - Trigonometric Arctangent

ARCTAN (x) computes the trigonometric arctangent of the argument
"x". The type of "x" may be either integer, real, or double. The
return type of ARCTAN is always real or double.

8.3.6 EXP - Compute Exponential of Value

EXP (x) computes the exponential of the argument "x". The type
of "x" may be either integer, real, or double. The return type of
EXP is always real or double.

8.3.7 PWROFTEN - Compute Ten to a Power

The function PWROFTEN(x) returns a value which is 10 raised to
the power specified by the argument. The function definition is:

function pwroften (exponent: integer): real;

The valid range of the "exponent" argument is a .. +38.

Page 100 Pascal Reference Manual

Chapter 8 Standard Procedures and Functions

8.3.8 LN - Natural Logarithm of Value

LN(x) computes the natural logarithm of the argument "x". The
type of "x" may be either integer, real, or double. The return
type of LN is always real or double. It is an error to supply an
argument less than or equal to zero.

8.3.9 SQRT - Square Root of Value

SQRT(x) computes the square root of the argument "x". The type
of "x" may be either integer, real, or double. The return type of
SQRT is always real or double. It is an error to supply an
argument less than or equal to zero.

8.4 Predicates or Boolean Attributes

8.4.1 ODD - Test Integer for Odd or Even

ODD (x) determines if the argument is odd or even. The type of
the argument "x" must be integer. The result is true if "x" is an
odd number, false if "x" is an even number.

8.4.2 EOLN - Determine if End of Line Read

The function EOLN returns true if the textfile position is at
an end-of-line character. Otherwise the EOLN function returns
false. EOLN is only defined for files whose components are of
type text or interactive.

8.4.3 EOF - Determine if End of File Read

The function EOF returns true if a read from a file encounters
an end-of-file. EOF returns false in all other cases. To set
EOF true for a file attached to the console, the EOF character
must be typed. In SVS Pascal this is Control-D. For a textfile,
EOF being true implies tha"t EOLN is true as well.

If a file is closed, EOF returns true. After a RESET takes
place, EOF is false for the RESET file. If EOF becomes true
during a GET or a READ, the "data obtained is not valid.

Pascal Reference Manual Page 101

Standard Procedures and Functions Chapter 8

8.5 Value Conversion Functions

8.5.1 TRUNC - Truncate to Nearest Integer

The function TRUNC(x) truncates its argument "x" to the nearest
integer. "x" must be of type real or double. If the result of
truncating the argument "x" cannot be stored in an integer
variable, the maximum integer value is returned.

For x >= 0, the result is the largest integer <= x.

For x < 0, the result is the smallest integer >= x.

8.5.2 ROUND - Round to Nearest Integer

The function ROUND (x) rounds its argument "x" to the nearest
integer. "x" must be of type real or double. The result is of
type integer. If the result of rounding the argument "x" cannot
be stored in an integer var iable, the maximum integer value is
returned.

For x >= 0, the result is TRUNC(x+0.5).

For x < 0, the result is TRUNC(x-0.5).

8.5.3 ORO - Convert Type to Integer Value

The function ORO (x) returns an integer which is the ordinal
number of the argument "x" in the set of values defined by the
type of "x". The argument "x" can be any non-floating point
scalar. For example:

var
one letter: char:
converted: integer;

begin
one letter := 'm';
converted := ORD(one_letter);

At the end of this program fragment, the variable "converted"
has the value 109, since that is the ordinal position of lower
case 'm' in the ASCII character set.

Page 102 Pascal Reference Manual

Chapter 8 Standard Procedures and Functions

8.5.4 ORD4 - Convert to Long Integer

The function ORD4 (x) returns a lonqint which is the ordinal
number of the argument "x". As for ORD, the argument "x" can be
any non-floating point scalar.

8.5.5 CHR - Integer to Character Representation

The function CHR(x) oonverts its argument "x" to a character.
The argument "x" must be an inteqer. The result type of CHR is
the character whose ordinal number is "x". The argument must
therefore lie in the range 0 •• 255 for CHR to return a valid
result.

8.6 Other Standard Functions

8.6.1 SUCC - Determine Successor of Value

The function SUCC (x) accepts an argument which is any scalar
type except real or double. The result of SUCC is the successor
value of the argument, if such a successor value exists.

SUCC(x) is undefined if "x" does not have a successor value.

8.6.2 PRED - Determine Predecessor of Value

The function PRED(x) accepts an argument which is any scalar
type except real or double. The result of PRED is the predecessor
value of the argument, if such a predecessor value exists.

PRED(x) is undefined if "x" does not have a predecessor value.

Pascal Reference Manual Page 103

Standard Procedures and Functions Chapter 8

8.7 Miscellaneous Low Level Routines

8.7.1 MOVELEFT and MOVERIGHT

MOVELEFT and MOVERIGHT transfer a number of bytes from a source
to a destination. MOVELEFT starts at the leftmost byte in the
source (the first byte), while MOVERIGHT starts at the rightmost
byte in the source (the last byte). In all cases the source and
destination strings can overlap, with the appropriate undesired
results if the move is in the wrong direction. The format of
MOVELEFT and MOVERIGHT is:

procedure MOVELEFT(var source, var destination, length);

procedure MOVERIGHT(var source, var destination, length);

source

destination

length

is the place to move bytes from.

is the place to move bytes to.

is an integer spec ifying the number of bytes to
move.

"source" and "destination" can be any sort of type. If either
"source" or "destination" is an array, the array can be
subscripted. If either "source" or "destination" is a record, a
field specification can be given.

For a MOVELEFT, the byte at "source" is moved to "destination"
and so on until the byte at "source"+"length"-l is moved to
"destination"+"length""'l. For a MOVERIGHT, the move starts from
the other end, so that the byte at "source"+"length"-l is moved
to "destination"+"length"-l and so on until the byte at "source"
is moved to "destination".

Neither MOVELEFT nor MOVERIGHT perform any range checking.
They should therefore be used with a modicum of caution.

Example of MOVELEFT

The example shown below illustrates how MOVELEFTcan be used to
"zero fill" an array.

Page 104 Pascal Reference Manual

Chapter 8 Standard Procedures and Functions

var
manifold: array[l •• 100] of -128 •• 127,

manifold[l] := 0, {place an initial zero
MOVELEFT(manifold[l] , manifold[2] , 99),

8.7.2 FILLCHAR - Fill A Storage Region With A Character

FILLCHAR is a procedure that replicates a byte throughout a
region of storage. The procedure definition of FILLCHAR is:

procedure FILLCHAR(var address; integer count, char byte);

address is the address of an arbitrary storage location
in memory. Note that 'address' is a var
parameter to FILLCHAR, so it may not be the
address of a packed object.

count

byte

is the number of times that the next parameter -
'byte' should be replicated.

is a single character value which is replicated
throughout the region of storage starting at
'address' and ending at 'address'+'count'-l.

Example of FILLCHAR

The example shown below illustrates how FILLCHAR can be used to
"space fill" a print buffer

var
printbuf: array[l •• 256] of char,

FILLCBAR(printbuf, 256, , I;

8.7.3 SIZEOF - Determine Size of Data Element or Type

SIZEOF is a function that returns the number of bytes that a
variable or type is allocated. The function definition of SIZEOF
is:

function SIZEOF(identifier): integer;

where "identifier" is a variable name or a type identifier. The
SIZEOF function is particularly useful as a parameter to MOVELEFT
or MOVERIGHT, or in performing unit input-output, where the
number of bytes to transfer must be known.

Pascal Reference Manual Page 105

Standard Procedures and Functions Chapter 8

8.7.4 POINTER - Convert Integer Expression to Pointer

POINTER converts an integer expression to a pOinter value. The
function definition of POINTER is:

function POINTER(expression): universal;

POINTER converts the "expression", which must be an integer
expression, to a pointer value. The result type of POINTER is a
"universal" pointer type that has the type of nil, which means
that it may be assigned to any pointer variable.

8.8 Control Procedures

8.3.1 EXIT - Exit from Procedure

EXIT provides the means to "get out of" a procedure
prematurely. EXIT finds especial use in recursive applications
such as expression evaluators or tree-walking procedures. Its
effect is to cause an immediate (and clean) return from a named
procedure or function. The procedure definition of EXIT is:

EXIT(name);

where "name" is the name of the procedure or function to be
exited.

If the "name" parameter is the name of a recursive procedure or
function, the most recent activation of that procedure or
function is terminated-.-----

Files that are local to an EXIT' ed procedure or function are
not implicitly closed upon exit - they must be closed explicitly
before the EXIT statement.

If an EXIT statement is made inside a function before any
assignment is made to the function identifier, the result of the
function is undefined.

EXIT is exactly the same as a goto a label at the end of the
named procedure or function.

Page 106 Pascal Reference Manual

Chapter 8 Standard Procedures and Functions

8.8.2 HALT - Terminate Program with Return Value

The HALT procedure terminates the currently executing program.
HALT returns a value to the host operating system to indicate a
successful termination or an error termination. The procedure
definition of the HALT procedure is:

HALT(i: integer);

The "in parameter is optional.
omitted, by simply executing a:

If the "i" parameter is

HALT

statement, the correct "no error" code is returned to the host
operating system.

The HALT procedure also returns a value to the CALL func tion,
described below.

A list of the values which the HALT procedure can return can be
found in appendix A - "Messages from the Pascal System".

8.8.3 CALL - Call up Another Program

The CALL function requests the host operating system to execute
another program. The function definition of CALL is:

function CALL(pathname: string;
var infile, outfile: interactive I text;
fargv: 1; fargc: integer): integer;

The parameters to the CALL function are:

pathname is a string containing the pathname of the file
in which the program resides which is to be
run. The definition of what constitutes a
pathname is operating system dependent.

infile and outfile
specify the standard input and standard output
for the program specified by "pathname". In
addition, the definition specifies whether the
standard input and standard output files for
that program are text files residing in the file
system, or the user's terminal.

Pascal Reference Manual Page 107

Standard Procedures and Functions Chapter 8

fargv

fargc

is an array of pointers to strings consisting of
the options and filename arguments for the
program in question.

is an integer count of the number of arguments
in "fargv".

The value returned from the CALL function is either the value
which a program returns via a HALT call, or is one of the
operating system error codes. A list of the values which the
HALT procedure can return can be found in appendix A - "Messages
from the Pascal System".

Page 108 Pascal Reference Manual

Chapter 9 Pascal Compile Time Options

Chapter 9

Pascal Compile Time Options

Pascal compile-time options are introduced via toggles embedded
in comments. Comment toggle format is like:

(*$T params*)
or

{$T params}

where either the (* and *) form, or the
delimiters may be used.

and } form of comment

The toggle must immediately follow the opening comment
delimiter, with no intervening spaces.

A comment toggle is always introduced by a $ sign. The $ sign
is followed by the toggle letter, either in upper or lower case,
followed. by the parameters for that toggle. Compiler options
that are followed by a + or - may be given in a list:

{ $C+ , 1+ ,L- •••• }

There must not be any spaces after the commas in the list.
Scanning of a list of compiler options terminates if any
incorrect syntax is encountered.

Compiler options do not obey any of the Pascal scope rules.
Once an option is selected by a toggle, it remains in effect
until another toggle in the source text de-selects that option.
Compiler options are described in the list below.

Some of the descriptions of the compiler options make
references to the options specified on the compiler command
line. A description of the command line options can be found in
appendix G - "Using The Pascal Compiler".

$C+ or $C- Turns Code generation on (+) or off (-). This is
done on a procedure by procedure basis. The
value of the options at the end of a procedure
controls code generation. The default is C+.

Pascal Reference Manual Page 109

Pascal Compile Time Options Chapter 9

$E filename

$1 filename

$1+ or $1-

$L filename

$L+ or $L-

$M+ or $M-

$P+ or $P-

$Q+ or $Q-

Page 110

starts listing Errors to the file specified by
"filename". Also-see the $L option below.

Include the file specified by "filename" at this
point in the source.

Turn automatic Input Output checks on (+) or off
(-). The default is 1+.

Make a compilation Listing on the file specified
by "filename". If a-listing file already exists,
that file is closed and saved before the new
file is opened.

Turn Listing on (+) or off (-) without changing
the listing file name. The listing filename
must be ,specified before turning listing on.
The default is $L+ (listing on) when a listing
file has been specified on the compiler's
command line or $L- (listing .off) when a listing
file was not specified. When the list option is
on, the listing is directed to whatever list
file was specified on the Pascal compiler's
command line.

The $M+ option specifies that the Pascal
run-time system should check the stack and heap
for over flow upon entry to each procedure. The
$M+ option enables the check. The $M- option
disables the check. The default setting is $M
(disable the check).

Specifies whether the Pascal compiler should
prompt the user for corrective action when
errors are detected. The $P+ option indicates
that the compiler should prompt the user as to
whether to continue the compilation when errors
are detected. The $P- option disables the
prompting feature. This feature is also
available via the -p or +p option on the
compiler command line. The default setting of
the $P option is operating system dependent.

Controls the amount of messages that the Pascal
compiler prints while compiling a program. The
$0+ option results in fewer messages. The $0-
option results in more messages. The default
setting of the $0 option depends upon the
operating system on which the Pascal system is
running.

Pascal Reference Manual

Chapter 9

$R+ or $R-

$S segment

$S+ or $S-

$U filename

$%+ or $%-

Pascal Compile Time Options

Turns Range checking on (+) or off (-). At
present, range checking is done in assignment
statements, on array indexes, and for string
value parameters. The default setting is $R+.

Places code modules into the Segment specified
by "segment". The default segm~nt name is
I I (eight spaces), which 1S where the
main program and all built-in support code is
always linked. All other code can be placed
into any segment.

Is the swapping option. The $S+ option
specifies that the compiler should run in
swapping mode. The $8- option specifies that
the compiler should not run in swapping mode.
In operating systems which support generalized
overlay schemes, swapping mode means that the
compiler runs in less memory, at the expense of
a considerable .speed penalty. The $S+ option
(if used) must appear before the initial program
or unit header, else the option has no effect.
The default setting is $S- (do not run in
swapping mode).

Searches for subsequent gnits in the file
specified by "filename".

Specifies that the percent sign % is a valid
character (+) or is not a valid character (-) in
identifiers. The default is $%-.

Pascal Reference Manual Page 111

Pascal Compile Time Options Chapter 9

Page 112 Pascal Reference Manual

Appendix A Messages from the Pascal System

Appendix A

Messages from the Pascal System

This appendix describes the error messages that the Pascal
system generates.

A.l Compile Time Lexical Errors

10 Too many digits in a number
11 Digit expected after '.' in a real number
12 Integer Overflow
13 Digit expected in the exponent of a real number
14 End of line encountered in a string constant
15 Invalid character in input
16 Premature end of file in source program
17 Extra characters encountered after the end of the program
18 End of file encountered in a comment

A.2 Compile Time Syntactic Errors

20 Illegal symbol
21 Error in simple type
22 Error in declaration part
23 Error in parameter list of a procedure or function
24 Error in constant
25 Error in type
26 Error in field list of a record declaration
27 Error in factor of an expression
28 Error in variable
29 Identifier expected

30 Integer expected
31 '(' expected
32 ')' expected

Pascal Reference Manual Page 113

Messages from the Pascal System

. 33
34

·35
36
37

.38
39

I [I
I] I
, :'
1.1

I
1 .. 1

I I
I

I * I

expected- .
expected
expected
expected
expected
expected
expected

40 1:-1 expected
41 program keyword expected
42 of keyword expected
43 begin keyword expected
44 end keyword expected
45 then keyword expected
46 until keyword expected
47 do keyword expected
48 to or downto keyword expected

50 if keyword expected
51 1.1 expected
52 ~lementation keyword expected
53 interface keyword expected

A.3 Compile Time Semantic Errors

100 Identifier declared twice in the same block
101 Identifier is not of the appropriate class
102 Identifier not declared
103 Sign not allowed
104 Number expected
105 Lower bound exceeds upper bound
106 Incompatible subrange types
107 Type of constant must be integer
108 Type must not be real
109 Tagfield must be a scalar or subrange

110 Type incompatible with tagfield type
111 Index type must not be real
112 Index type must be scalar or subrange
113 Index type must not be integer or longint
114 Unsatisfied forward reference

Appendix A

115 Forward reference type identifier cannot appear in a variable
declaration

116 Forward declaration repetition of parameter list not
allowed

117 Forward declared function - repetition of result type not
allowed

Page 114 Pascal Reference Manual

Appendix A Messages from the Pascal System

118 Function result type must be scalar, subrange, or pointer
119 File is not allowed as a value parameter

120 Missing result type in function declaration
121 F-format for real type only
122 Error in type of parameter to a standard function
123 Error in type of parameter to a standard procedure
124 Number of actual parameters does not agree with declaration
125 Illegal parameter substitution
126 Result type of parametric function does not agree with

declaration
127 Expression is not of set type
128 Only tests for equality allowed
129 Strict inclusion not allowed

130 Comparison of file variables not allowed
131 Illegal type of operand(s)
132 Operand type must be boolean
133 Set element type must be scalar or subrange
134 Set element types not compatible
~135 Type of variable is not array or string.
136 Index type is not compatible with declaration
137 Type of variable is not record
138 Type of variable must be file or pointer
139 Illegal type of loop control variable

140 Illegal Expression type
141 Assignment of files not allowed
142 Case selector incompatible with selecting expression
143 Subrange bounds must be scalar
144 Operand type conflict
145 Assignment to standard function is not allowed
146 Assignment to formal function is not allowed
147 No such field in this record
148 Type error in read
149 Actual parameter must be a variable

150 Multiply defined case selector
151 Missing corresponding variant declaration
152 real or string tagfields not allowed in variant record
153 Previous declaration was not forward
154 Substitution of standard procedure or function not allowed
155 Multiple defined label
156 Multiple declared label
157 Undefined label
158 Undeclared label
159 Value parameter expected

160 Multiple defined record variant
161 Pile not allowed here
162 Unknown compiler directive (not external or forward)

Pascal Reference Manual Page 115

Messages from the Pascal System

163 Variable cannot be a packed field
164 Set of real is not allowed

Appendix A

165 A field of a packed record cannot be a var parameter
166 Case selector expression must be a scalar or a subrange
167 String sizes must be equal
168 String too long
169 Value out of range

170 Cannot take the addres~ of a standard procedure or function
171 Assignment to function result must be done inside that

function
172 Control variable of a for statement must be local
173 BUFFERED or UNBUFFERED expected
174 NORMAL, LOCK, PURGE, or CRUNCH expected
175 pile variable expected
176 Must be within the procedure or function being exited.

190 No such uni~ in this file

A.4 Specific Limitations of the Compiler

300 Too many nested record scopes
301 Set limits out of range (maximum sized set is 0 •• 2031)
302 String limits out of range
303 Too many nested procedures or functions
304 Too many nested include or uses files
305 Include not allowed in interface section
306 Pack and unpack are not implemented
307 Too many units
308 Set constant out of range
309 Maximum comparable packed array of char is of size 255

characters

310 Too many nested with statements
311 Too many nested function references
312 Record too big (maximum size is 32766 bytes)
313 Too many elements in an array, or array too big (maximum size

of an array is 32766 bytes, or maximum number of elements is
32766 elements)

314 Too many variables in one scope (the maximum allowed is 32766
bytes in anyone scope, including the global level)

315 Too many bytes of value parameters (maximum allowed is 32766
bytes in anyone scope).

350 Procedure too large
351 File name in option too long

Page 116 Pascal Reference Manual

Appendix A Messages from the Pascal System

A.5 Input Output Errors

400 Not enough room for code file
401 Error in rereading code file
402 Error in reopening text file
403 Unable to open uses file
404 Error in reading uses file
405 Error in opening include file
406 Error in rereading previously read text block
407 Not enough room for intermediate code file
408 Error in writing code file
409 Error in reading intermediate code file

410 Unable to open listing file

A.6 Code Generation Errors

1000+ Code generator errors - in theory should never happen

A.7 IORESULT Error Codes

The codes listed below are those that the IORESULT function
returns.

o No Error - indicates a good result
1 Parity error or CRC error
2 Invalid device number
3 Invalid input-output request
4 Nebulous Hardware Error
5 Volume went off-line
6 File lost in directory
7 Bad file name
8 No room on volume
9 Volume not found
10 File not found

11 Duplicate directory entry
12 File already open

Pascal Reference Manual Page 117

Messages from the Pascal System

13 File not open
14 Bad input information
15 Ring buffer overflow
16 write protect
17 Invalid seek 64 Device error of unknown origin

A.a Codes Returned From the HALT Procedure

Appendix A

The codes listed below are those that the HALT procedure
returns either to the operating system, or to the CALL function.

o No Error - indicates a good result
1 No room in memory for code
2 Cannot read the executable code.file
3 File is not a code file
4 File must be linked before it can be executed
5 Cannot open the code file
6 Too many processes
7 Not enough space for data (stack space)

If the HALT procedure returns a code of less than zero, the
shell halts. This feature is for use in shell scripts.

If the HALT procedure returns a code of greater than 7, the
shell simply prints the error number, but continues. Such error
codes are available for user programs to convey information to
other user programs.

Page 118 Pascal Reference Manual

Appendix B Pascal Language Summary

Appendix B

Pascal Language Summary

•••• "what is the use of repeating all that stuff",
said the Mock~urtle, "if you don't explain it as you
go along. It's by far the most confusing thing I ever
heard!"

Lewis Carroll. Through the Looking Glass

B.l Predefined Identifiers

Constants
maxint TRUE FALSE

~
Boolean interactive longint text
char integer real double

Variables
Argc Argv Input Output
Stderr

Procedures
CLOSE HALT PUT UNITCLEAR
DELETE INSERT READ UNITREAD
DISPOSE MARK READLN UNITSTATUS
EXIT MOVE LEFT RELEASE UNITWRITE
FILLCHAR MOVERIGHT RESET WRITE
GET NEW REWRITE WRITELN
GOTOXY PAGE SEEK

Pascal Reference Manual Page 119

Pascal Language Summary

Functions
ABS
ARCTAN
BLOCKREAD
BLOCKWRITE
CHR .
CON CAT
COPY
COS

EOF
EOLN
EXP
IORESULT
LENGTH
LN
MEMAVAIL
ODD

B.2 Pascal Syntax Definitions

ORO
ORD4
POINTER
POS
PRED
PWROFTEN
ROUND
SCANEQ

Appendix B

SCANNE
SIN
SIZEOF
SQR
SQRT
SUCC
TRUNC
UNITBUSY

Syntactic constructs enclosed between, "angle
brackets" < and > define the basic language elements.
Every language construct should eventually be defined
in terms of basic lexical constructs defined in the
remainder of this appendix.

A construct appearing outside the angle brackets
stands for itself, that is, it is supposed to be self
denoting. Such a construct is known as a terminal
bym~o~. Terminal symbols and reserved words appear 1n

01 ace text throughout this manual.

The symbol ::- is to be read "defined as".

The symbol •• means "through", indicating an ordered
sequence of things where only the start and end
elements are specified. (The reader is left to infer
the middle elements). For example, the notation
'a' •• 'z' means "the ordered collection starting with
the letter 'a', ending with the letter 'z', and
containing the letters 'b', 'c' •••. 'x', 'y' in
between". In other words, all the lower case letters.

The "vertical bar" symbol I is read as "or". It
separates sequences of elements that represent a choice
of one out of many.

The metalanguage construct { .•• } (elements inside
braces) enclose elements which are to be repeated "zero
to many times". Although the braces are also used as
one of the forms of comment delimiters in Pascal, this
should not cause any ambiguity. The one case where
ambiguity would occur is in the definition of comments,
and this is explicitly pointed out at that time.

Page 120 Pascal Reference Manual

Appendix B Pascal Language Summary

The Pascal compiler recognizes the following alphabet or
character set:

<letter> ::= 'A' 'Z', 'a' .. 'z', and , ,

<d ig i t> : : = '0' , 9 '

<hex digit> ::= <digit> 'a' .. 'f' 'A' •• iF'

<ASCII graphic characters> ::- "# $ % & ' () * -
+ - _0 I.. < >? \ [
@ " { }]

<identifier> ::= <letter> { <letter> <digi't>

<unsigned integer> ::- <digit> {<digit>}
<unsigned real> ::=

<unsigned integer>.<unsigned integer>
<unsigned integer>.<unsigned integer>E<scale factor>
<unsigned integer>E<scale factor>
<unsigned integer>.<unsigned integer>D<scale factor>
<unsigned integer>D<scale factor~

<unsigned number> ::= <unsigned integer> <unsigned real>

<scale factor> ::= <unsigned integer> <sign><unsigned integer>

<sign> ::- + I -
<hex number> ::= $<hex digit> {<hex digit>}

<string> ::s '<character> {<character>}'

<character value> ::- \<two digit hexadecimal number>

<label> ::= <unsigned integer>

<comment> ::= {<any printable characters except "}"> }
I (* <any printable characters except "*)" *)

<any printable character> includes carriage-return, line-feed.
tab, and so on.

<constant identifier> : ::a

<constant> : I-

I

Pascal Reference Manual

<identifier>

<unsigned number>
<sign> <unsigned number>

<constant identifier>
<sign> <constant identifier>

<string>

Page 121

Pascal Language Summary Appendix B

<constant definition> ::- <identifier>" <constant>

<type declaration> ::- type <type spec> {,<type spec>}

<type spec> ::- <type identifier> .. <Pascal type>

<simple type> ::= <scalar type>

I

<standard type>
<subrange type>

<type identifier>

<scalar type> ::- «identifier> {,<identifier>})

<subrange type> ::-
<subrange type identifier> I <lower> •• <upper>

<lower> ::- <signed scalar constant>
<upper> ::- <signed scalar constant>
<structured type> ::- <unpacked structured type>

I packed <unpacked structured type>

<unpacked structured type> ::- <array type>
<str ing type>

<record type>
<set type>

<file type> --
<array type> ::- array [<index list» of <type>

<index list> ::- <simple type> {, <simple type>}

<component type> ::- <type>

<string type> ::= string[<static length>]

c~ta~ic length~ ::- integer constant in the range 1 •• 255

<record type> ::- record <field list> end,
<field list> ::- <fixed part>

I <fixed part> ; <variant part>
<variant part>

<fixed part> ::- <record section> {; <record section>}
<record section> ::- <field identifier list> : <type>

Page 122 Pascal Reference Manual

Appendix B Pascal Language Summary

<field identifier list> ::= <field identifier> {r<field identifier>}

<variant part> ::=
case {<tag field>} <type identifier> of <variant list>

<variant list> ::= <variant> {: <variant>}
<variant> ::= <case label list> : «field list»
<case label list> ::= <case label> {r <case label>}
<case label> ::= <constant>
<tag field> ::= <identifier>:

<set type> : :=

<file type>

set of <simple type>

file of <type)
file

<pointer type> ::- A<type identifier>
<variable declaration> ::=

<identifier> {r<identifier>}: <data type>:

<variable> ::= <entire variable>

I
<component variable>

<referenced variable>

<entire variable> ::= <variable identifier>

<component variable> : :-

I
<indexed variable>

<field designator>
<file buffer>

<indexed variable> ::= <array variable> <subscript list>

<subscript list> .• = [<expression> {r<expression>}]
• ·,1 [<expression>] {[<expression>]

<field designator> ::= <record variable>.<field identifier>

<file buffer> ::= <file variable>A
<file variable> ::= <variable>

~referenced variable> ::= <pointer variab1e>A

Pascal Reference Manual Page 123

Pascal Language Summary

<pointer variable> ::- <variable>
<unsigned constant> ::= <unsigned number>

I

<string>
<constant identifier>

nil

<factor> ::= <variable>

<set constructor>
<element>

<term>

:-:-
: :=

I

<unsigned constant>
<function designator>

<set constructor>
(<expression»

not <factor>

[<element> {,<element>}
<expression>

<expression> •• <expression>

<factor>

Appendix B

<term> <multiplying operator> <factor>

<simple expr> <term>
<simple expr> <adding operator> <term>

<adding operator> <term>

<expression> ::
<simple expr>

I <simple expr> <relational operator> <simple expr>

<multiplying operator> ::= * / div mod and

<adding operator> ::= + or

<sign operator> ::= + I -

<relational operator> ::= - I <> ~ I < I >- I <- I in

<assignment statement> ::=
<variable> :- <expression>

<function identifier> :- <expression>

<procedure call statement> ::-
<procedure identifier><actual parameter list>

<procedure identifier>

<actual parameter list> ::=
«actual parameter> {,<actual parameter>}}

Page 124 Pascal Reference Manual

Appendix B Pascal Language Summary

<actual parameter> ::=

I
<expression>

<procedure identifier>
<function identifier>

<structured statement> ::- <begin statement>
<if statement>

<while statement>
<repeat statement>

<for statement>
<case statement>

<begin statement> ::- begin <statement list> end

<statement list> ::- <statement> {, <statement>}

<if statement> ::-
if <Boolean e~ression> then <statement>

i~ <Boolean expression> then <statement> else <statement>

<case statement> ::- case <expression> of <cases>
{otherwise: <statement>} end

<cases> ::- <a case> {, <a case>}
<a case> ::-

<selection spec> {, <selection spec>} : <statement>

<selection spec> ::- <simple constant scalar expression>

<while statement> ::- while <expression> do <statement>

<repeat statement>. ::= repeat <statement> until <expression>

<for statement> ::-
for <control variable> :- <for list> do <statement>

<for list> <initial value> to <final value>
<initial value> down to <final value>

<control variable> ::- <identifier>

<initial value> ::= <expression>
<final value> ::= <expression>

Pascal Reference Manual Page 125

Pascal Language Summary Appendix B

<with statement> ::~

with <record variable> {,<record variable>}
do <statement>

<goto statement> ::- gote <label>

end.

<unit> ::- unit <identifier>,
<interface part>

<impementation part>

<interface part> ::- interface
<uses clause>
<constant definition part>
<type definition part>
<variable definition part>

<procedure and function declaration part>

<implementation part> ::- implementation
<label declaration part>
<constant definition part>
<type definition part>

<variable definition part>
<procedure and function declaration part>

<uses clause> ::- uses <unit name> {,<unit name>}

<declaration> ::~ <constant declaration>

I
<type declaration>

<variable declaration>
<procedure or function declaration>

<program> ::~ <program heading> <block>.

<program heading> ::-
program <identifier> «program parameters»;

<program parameters> ::- <identifier> {,<identifier>}

<label declaration 'part> ::~ label <label> {, <label>}~

<coristant definition part> ::= const <constant definition list>;

Page 126 Pascal Reference Manual

'opendix B Pascal Language Summary

<constant definition list> ::=
<constant definition> {; <constant definition>}

<type definition part> ::= type <type definition list>;

<type definition list> ::= <type definition> {; <type definition>}

<variable declaration part> ::- var <variable declaration list>

<variable declaration list> ::=
<variable declaration> {;<variable declaration>}

<procedure declaration> ::~ <procedure heading> <block>
<function declaration> ::= <function heading> <block>

<block> ::= <label definition part>
<constant definition part>

<type definition part>
<variable declaration part>

<procedure and function declaration part>
<statement part>

<statement part> ::= begin <statement list> end

<statement list> ::= <statement> {, <statement>}

<procedure heading> ::-
procedure <identifier>, {<attribute>,}

I procedure <identifier> «formal parameters»,
{<attribute>,}

<function heading> ::=
function <identifier>:<result type>, {<attribute>,}
I function <identifier> «formal parameters»:

<result type>, {<attribute>,}

<formal parameters> ::= <formal parameter> {,<formal parameter>}

<formal parameter> ::= <parameter group>

I
var <parameter group>

<procedure heading>
<function heading>

<parameter group> ::=
<identifier> {,<identifier>}:<type identifier>

<attribute> ::~ external forward cexternal

Pascal Reference Manual Page 127

Pascal Language Summary Appendix B

<result type> ::- <simple type>

Page 128 Pascal Reference Manual

Appendix C Relationships to ISO Pascal

Appendix C

Relationships to ISO Pascal

Myself when young did eagerly frequent
Doctor and Saint, and heard great argument

About it and about: but evermore
Came out by the same door as in I went •

••••••••• Omar Khayam, The Rubaiyat

The International Standards Organization (ISO) and the' American
National Standards Institute (ANSI) are engaged in a joint effort
to define a Pascal Standard.

In gener al, SVS Pascal conforms to the (proposed) ISO Pascal
standard as defined in Pascal User Group News, Number 20,
December 1980. There are however some differences that are
spelled out here.

In SVS Pascal, only eight characters are significant in
identifiers.

The Pascal standard procedures PACK and UNPACK are not
supplied.

Conformant arrays are not implemented in accordance with the
level 0 (U.S) standard.

There is a small difference in the way that a text file is
handled if the text file is associated with an interactive
terminal.

There is a string basic data type implemented.

There is a double basic data type implemented. The double data
type is a double precision real data type.

There is an otherwise clause in the case statement. This
provides for a "what to do if the case selector matches none of
the cases". Standard Pascal considers this situation an error.

Pascal Reference Manual Page 129

Relationships to ISO Pascal Appendix C

SVS Pascal implements a longint data type, which occupies four
bytes instead of the two bytes of the standard integer data
type.

The and, or, and not operators can be applied to operands of
type integer as well as operands of type Boolean. When applied to
operands of type integer, these operators perform bitwise logical
and, logical or, and logical not operations on their operands.

SVS Pascal supports many extensions. These mainly derive from
the UCSD P-System.

Page 130 Pascal Reference Manual

Appendix D Relationships to UCSD Pascal

Appendix D

Relationships to UCSD Pascal

The University of California at San Diego (UCSD) implemented a
widely used Pascal system, oriented towards small, personal
computer systems. This implementation is known as UCSD Pascal.

SVS Pascal uses a number of ideas from UCSD Pascal. The main
areas where SVS Pascal conforms to UCSD Pascal are:

1. Independent compilation is supported through the unit
concept of UCSD Pascal. The interface, iaplementation and
uses statements are implemented.

2. There is an include capability.

3. Many of the UCSD Pascal compatible standard procedures and
functions are implemented the same as UCSD Pascal.

D.l Differences from UCSD Pascal

In SVS Pascal, the under line character is significant in
identifiers. In UCSD Pascal it is ignored so that the
identifiers "Space Out" and "SpaceOut" are identical. In SVS
Pascal they are considered two different identifiers.

SVS Pascal supports a long integer type, with the predefined
type name longint. The UCSD construct integer [nn] is not
implemented.

There is a double basic data type implemented. The double data
type is a double precision real data type.

Fields of packed records and elements of packed arrays can
never be passed as reference parameters to procedures, even in
those places where UCSD Pascal allows.

Pascal Reference Manual Page 131

Relationships to UCSD Pascal Appendix D

The SVS Pascal string type packed array[low •• high] of char must
have a lower bound of 1 to be compatible with literal strings, or
to be used in array comparisons. UCSD Pascal allows any lower
bound.

SVS Pascal does not have the reserved word segment.
Consequently there is no segment procedure or segment function.
To segment a SVS Pascal program, use the $S compiler option,
which directs the compiler to place generated object code in a
named segment. See the Chapter on "Running the Compiler". That
Chapter contains a section on compiler options.

SVS Pascal does not implement unit initialization code.

SVS Pascal does not supply special units such as APPLESTUFF or
TURTLEGRAPHICS.

SVS Pascal does not have any default string length. Instead of
the declaration

var x~ string,

use the declaration

var x: string [80] ,

SVS Pascal does not have a predefined file called "keyboard".

SVS Pascal implements sets with elements 0 thru 4095, whereas
UCSD Pascal implements 0 thru 511.

Packing algorithms for arrays and records are different.

Internal storage for sets is different.

SVS Pascal does not support comparison of arrays and records,
with the single exception that packed array[l •• n] of char can be
compared.

Predefined string procedures and functions must have string
variable or string literal parameters. That is, not packed array
of char or char variable parameters.

SVS Pascal does not implement the procedure STR, since there is
no integer[nn] type.

The file procedures RESET and REWRITE require t;wo parameters,
namely (file,string).

End-of-file character from the keyboard is Control-D instead of
Control-C.

Page 132 Pascal Reference Manual

Appendix 0 Relationships to UCSD Pascal

SVS Pascal text files must be declared as packed file of char.

SVS Pascal text file reads allow additional parameters of
packed array of cbar.

SVS Pascal text file writes allow additional parameters of
packed array of char and Boolean.

SVS Pascal does not implement the UNITWAIT intrinsic.

SVS Pascal implements the procedure

UNITSTATUS{UnitNumber, Address, Integer)

SVS Pascal does not implement TREESEARCH.

SVS Pascal limits the EXIT procedure to exiting statically
compiled procedures or functions or the main-program. The
argument to EXIT must be the name of the routine to exit. That
is, EXIT (PROGRAM) is ~ot allowed.

The MEMAVAIL procedure returns the number of bytes of available
memory. The return parameter is of the type longint. See the
Section on "Memory Management".

SVS Pascal implements two procedures SCANEQ (scan equal) and
SCANNE (scan not equal), whereas UCSD Pascal implements a single
SCAN procedure with a ~ or <> parameter.

SVS Pascal does not have any INTRINSIC units.

SVS Pascal does not implement the unit initialization section
in units.

SVS Pascal implements an optional otherwise clause in case
statements. If the otherwise clause is present, it must be the
last statement. For example:

case huh of
1: do this,
3,5: do that,

otherwise: -
do the other,

end, - -

SVS Pascal implements true global goto statements. The UCSD
Pascal {$G+} compiler option is not needed in order to use goto
statements.

SVS Pascal has predeclared variables ARGC and ARGV that
describe the number and value of any parameters passed from the

Pascal Reference Manual Page 133

Relationships to UCSD Pascal

command line to a running program.

Procedures and functions may be
implementation is consistent with
Pascal.

Appendix D

passed as parameters. The
the proposed ISO standard

ORD(Boolean Expression) works properly in SVS Pascal.

The mod operator works properly in SVS Pascal.

SVS Pascal has added the unary operator @, which stands for
"address of". Placing the @ in front of a variable, function, or
procedure, generates the address of that entity. The type
returned is the type of nil, that is, it can be assigned to any
pOint.er variable. The @ operator does not work with most of the
predefined procedures and functions such as ORO or READLN.

SVS Pascal has added the function ORD4. It is the same as ORD
except that it returns a 32-bit integer.

All integer arithmetic operations are done at a precision of
ei ther 16 or 32 bits, depending on the maximum size of any
arguments. The rules are similar to FORTRAN's single and double
precision reals.

SVS Pascal statement labels are restricted to the range 0 thru
9999, as in the ISO Pascal standard.

SVS Pascal provides for hexadecimal integer constants. A
hexadecimal constant is prefixed with a $ sign. Hexadecimal
numbers must be 32 bits long to be considered signed numbers,
that is, $FFFF represents 65536, not -1. To represent -1, code
the hexadecimal constant $FFFFFFFF.

The and, or, and not operators can be applied to operands of
type integer as well as operands of type Boolean. When applied to
operands of type integer, these operators perform bitwise logical
and, logical or, and logical not operations on their operands.

Page 134 Pascal Reference Manual

Appendix E Data Representations

Appendix E

Data Representations

This appendix describes the ways that SVS Pascal represents
data in storage, how that data is packed for data objects that
have the packed storage attribute, and the mechanisms for passing
parameters to procedures and functions. This appendix is
intended as a guide to those programmers who wish to write
modules in languages other than Pascal and have those modules
interface to Pascal.

E.l Storage Allocation

This section describes the way in which storage is allocated to
variables of various types. The storage allocation descrlbed
here is for unpacked items.

In general, any word value is always aligned on a word
boundary. Anything larger than a word is also aligned on a word
boundary. Values that can fit into a single byte are aligned on
a byte boundary.

A Boolean variable
occupies one byte of storage, aligned on a byte
boundary. A value of 0 represents the value
false. A value of 1 represents the value true.
Any other value is an "undefined" Boolean
value.

A scalar (ordinal) type
of 128 elements or less, occupies one byte of
storage, aligned on a byte boundary. If there
are more than 128 elements in the scalar types,
it then occupies a word. Scalar types are
assigned the values 0, 1, 2, •..•• , n-1, where
"n" is the cardinal number of elements in the
scalar.

Pascal Reference Manual Page 135

Data Representations Appendix E

Subrange elements
in the range -128 •• 127 occupy one byte,
aligned on a byte boundary. A subrange element
in the range -32768 •• 32767 occupies one word,
aligned on a word boundary. A subrange element
greater than that occupies two words, aligned on
a word boundary.

An unpacked char element
is considered to be a subrange of 0 •• 255. This
means that it occupies a word.

An integer element
occupies one word, aligned on a word boundary.

A longint element
occupies two words, aligned on a word boundary.

real elements occupy two words, aligned on a word boundary. A
real element has a sign bit, an 8-bit exponent
and a 23-bit mantissa. SVS Pa"scal real elements
conform to the IEEE standard for reals as
defined in the March 1981 Computer magazine.
The layout of a real element is shown below.
The range of real numbers is approximately
-3.4E-38 •• +3.4E38, with a precision of
approximately seven decimal places. Normal
arithmetic operations upon real data types can
result in the "extreme values" of plus infinity,
minus infinity, or Not a Number (NaN). These are
described below.

double elements occupy four words, aligned on a word boundary.
A double element has a sign bit, an II-bit
exponent and a 52-bit mantissa. SVS Pascal
double elements conform to the IEEE standard for
double precision as defined in the March 1981
Computer magazine. The layout of a double
element is shown below. The range of double
numbers is approximately -1. 80-308 •• +1.80308,
with a precision of approximately 15 decimal
places. Normal arithmetic operations upon
double data types can res.ul t in the "extreme
values" of plus infinity, minus infinity, or Not
a Number (NaN). These are described below.

Whatever the size of the data element in question, the most
significant bit of the data element is always in the lowest
numbered byte of however many bytes are required to represent
that object. The diagrams below should clarify this.

Page 136 Pascal Reference Manual

Appendix E Data Representations

E.2 Representation of Integers

bit --> 7 o
+--------+

8-bit integer I byte 0 I
+--------+
15 o
+--------+--------+

integer I byte 0 I byte 1 I

+--------+--------+
31 o
+--------+--------+--------+--------+

longint I byte 0 I byte 1 I byte 2 I byte 3 I

+--------+--------+--------+--------+

E.3 Representation of Reals and Doubles

real and double data elements are represented according to the
proposed IEEE standard as defined in Computer magazine of March,
1981. The diagrams below illustrate the representation.

31 30 23 22 o
+---+----------------+--+
I s I Exponent I Mantissa I

+---+----------------+--+
real Data Representation

The format for a real or single-precision floating-point number
is as shown above. The three field of a real are as follows:

• a one-bit sign bit designated by "S" in the diagram above. The
sign bit is a 1 if, and only if, the number is negative.

• an 8-bit biased exponent. The values of all ones and all zeros
are reserved values for the exponent.

• a 23-bit mantissa.

Pascal Reference Manual Page 137

Data Representations Appendix E

63 62 52 51 o
+---+----------------+--+ I S I Exponent I Mantissa I
+---+----------------+--+

I I Mlntissa (52 + 1 bits)
Exponent, biased by 1023

Sign

double Data Representation

The parts of double numbers are as follows:

• a one-bit sign bit designated by "S" in the diagrams above.
The sign bit is a 1 if, and only if, the number is negative.

• an 11 bi t biased exponent. The values of all zeros and all
ones are reserved values for the exponent.

a normalized 52-bit mantissa, with the high-order 1 bit
"hidden".

A real or double number is represented by the form:

2exponent-bias * l.f

where If I is the bits in the mantissa.

Normalized real and double numbers are said to contain a
"hidden" bit, providing for one more bit of precision than would
normally be the case.

E.4 Representation of Extreme Numbers

When real or double data elements are stored in the system,
there arises the question of how to represent "values" such as
positive and negative infinity. The discussion below describes
the representations of these extreme numbers, and their behavior
in expression evaluation.

zero (signed) is represented by an exponent of zero, and a
mantissa of zero.

denormalized numbers

Page 138

are a product of "gradual underflow". They are
non-zero numbers with an exponent of zero. The
form of a denormalized number is:

Pascal Reference Manual

Appendix E Data Representations

2exponent-bias+1 * O.f

where If I is the bits in the mantissa.

signed infinity (that is, affine infinity) is represented by the
largest value that the exponent can assume (all
ones), and a zero mantissa.

Not-a-Number (NaN)
is represented by the largest value that the
exponent can assume (all ones), and a non-zero
mantissa. The sign is usually ignored.

Normalized real and double numbers are said to contain a
"hidden" bit, providing for one more bit of precision than would
normally be the case.

Pascal Reference Manual Page 139

Data Representations

Hexadecimal Representation of Selected Numbers

+-----------+----------+------------------+
I Value I real I double I
+-----------+----------+------------------+

+0 oooonooo 0000000000000000
-0 80000000 8000000000000000

+1.0 3F800000 3FFOOOOOOOOOOOOO
-1.0 BF800000 BFFOOOOOOOOOOOOO

+2.0 40000000 4000000000000000
+3.0 40400000 4008000000000000

+Infinity 7F800000 7FFOOOOOOOOOOOOO
-Infinity FF800000 FFFOOOOOOOOOOOOO

NaN 7F8xxxxx 7FFxxxxxxxxxxxxx
+-----------+----------+------------------+

Deviations from the Proposed IEEE Standard

Deviations from the proposed
implementation are as follows:

• affine mapping for infinities,

IEEE

• normalizing mode for denormalized numbers,

standard

Appendix E

in this

rounds approximately to nearest - 7 or more guard bits are
computed, but the "sticky" bit is not,

• exception flags are not implemented,

• conversion between binary and decimal is not implemented.

Page 140 Pascal Reference Manual

Appendix E Data Representations

Arithmetic Operations on Extreme Values

This subsection describes the results derived from applying the
basic arithmetic operations on combinations of extreme values and
ordinary values.

No traps or any other exception actions are taken.

All inputs are assumed to be positive. Overflow, underflow,
and cancellation are assumed not to happen.

In all the tables below, the abbreviations have the following
meanings:

+--------------+---------------------------------+
I Abbreviation I Meaning I
+--------------+---------------------------------+

Den Denormalized Number
Num Normalized Number
Inf Infinity (positive or negative)
NaN Not a Number
Uno Unordered

+--------------+---------------------------------+

Pascal Reference Manual Page 141

Data Representations Appendix E

+---+ I Addition and Subtraction I
+-----------+---------------------------------------+

Left I Right Operand I
Operand 0 I Den I Num I Inf I NaN

+-------+-------+-------+-------+-------+ o I 0 I De.n I Num I Inf I NaN 1

+-----------+-------+-------+-------+-------+-------+
I Den 1 Den 1 Den 1 Num 1 Inf I NaN 1

+-----------+-------+-------+-------+-------+-------+
1 Num I Num INurn 1 Num I Inf I NaN 1

+-----------+-------+-------+-------+-------+-------+
1 Inf 1 Inf 1 Inf I Inf 1 Note 11 NaN 1

+-----------+-------+-------+-------+-------+-------+
I Nan 1 NaN I NaN 1 NaN 1 NaN I NaN I
+-----------+-------+-------+-------+-------+-------+

Note 1: Inf + Inf - Inf; Inf - Inf = NaN

+------------------------~--------------------------+
1 . Mu1 tiplication 1

+-----------+---------------------------------------+
Left I Right Operand I

Operand OlDen 1 Num 1 Inf 1 NaN
+-------+-------+-------+-------+-------+ o I 0 I 0 1 0 I NaN I NaN I

+-----------+-------+-------+-------+-------+-------+
I Den 1 0 1 0 INurn 1 Inf I NaN I
+-----------+-------+-------+-------+-------+-------+
1 Num 1 0 INurn 1 Num 1 Inf 1 NaN 1

+-----------+-------+-------+-------+-------+-------+
I Inf 1 NaN I Inf I Inf 1 Inf 1 NaN I
+-----------+-------+-------+-------+-------+-------+
1 Nan 1 NaN I NaN 1 NaN 1 NaN I NaN 1

+----------~-------+-------+-------+-------+-------+

Page 142 Pascal Reference Manual

Appendix E Data Representations

+---+ I Division I
+-----------+---------------------------------------+

Left I Right Operand I
Operand 0 I Den I Num I I~f I NaN

+-------+-------+-------+-------+-------+ o I NaN I 0 I 0 I 0 I NaN I

+-----------+-------+-------+-------+-------+-------+
I Den I Inf I Num I Num I 0 I NaN I

+-----------+-------+-------+-------+-------+-------+
I Num I Inf I Num I Num I 0 I NaN I

+-----------+-------+-------+-------+-------+-----~-+
I Inf I Inf I Inf I Inf I NaN I NaN I

+-----------+-------+-------+-------+-------+-------+ I Nan I NaN I NaN I NaN I NaN I NaN I
+-----------+-------+-------+-------+-------+-------+
+---+ I Comparison I
+-----------+---------------------------------------+

Left I Right Operand I
Operand 0 I Den I Num I Inf I NaN

+-------+-------+-------+-------+-------+
o I I < I < I < I Uno I

+-----------+-------+-------+-------+-------+-------+
I Den I > I I < I < I Uno I
+-----------+-------+-------+-------+-------+-------+
I Num I > I > I I < I Uno I
+-----------+-------+-------+-------+-------+-------+
I Inf I > I > I > I I Uno I

+-----------+-------+-------+-------+-------+-------+
I Nan I Uno I Uno I Uno I Uno I Uno I

+-----------+-------+-------+---_._--+-------+-------+
Notes:

NaN compared with NaN is Unordered, and also results in
inequality.

+0 compares equal to -0.

Pascal Reference Manual Page 143

Data Representations Appendix E

+---+ I Max I
+-----------+---------------------------------------+

Left I Right Operand I
Operand 0 I Den I Num I lnf I NaN

+-------+-------+-------+-------+-------+ o I 0 I Den I Num I lnf I NaN I

+-----------+-------+-------+-------+-------+-------+
I Den I Den I Den I Num I lnf I NaN I

+-----------+-------+-------+-------+-------+-------+
I Num I Num I Num I Num I lnf I NaN I

+-----------+-------+-------+-------+-------+-------+
I lnf I lnf I lnf I lnf I lnf I NaN I

+-----------+-------+-------+-------+-------+-------+
I Nan I NaN I NaN I NaN I NaN I NaN I

+-----------+-------+-------+-------+-------+-------+
+---+ I Min I
+-----------+---------------------------------------+

Left I Right Operand I
Operand 0 I Den I. Num I lnf I NaN

+-------+-------+-------+-------+-------+ o I 0 I 0 I 0 I 0 I NaN I

+-----------+-------+-------+-------+-------+-------+
I Den I 0 I Den I Den I Den I NaN I

+-----------+-------+-------+-------+-------+-------+
I Num I 0 I Den I Num I Num I NaN I

+-----------+-------+-------+-------+-------+-------+
I lnf I 0 I Den I Num I lnf I NaN I

+-----------+-------+-------+-------+-------+-------+
I Nan I NaN I NaN I NaN I NaN I NaN I

+-----------+-------+-------+-------+-------+-------+

E.5 Representation of Sets

SVS Pascal represents a set like a "giant integer". The
zero'th element of a set is always present in the set Suppose
that a type and a variable are defined as in this example.

t~e
days_in_year - set of 1 00 366~

var

Page 144 Pascal Reference Manual

Appendix E Data Representations

The representation for the variable "blarg" is as in the diagram
below:

bit --> 366 o
+----+----+----+----+----+----+----+----+----+----+----+

byte-> I 0 I I I I.. . • I I I I 45 I
+----+----+----+-~--+----+----+----+----+----+----+----+

The number of bytes required to contain this a set of 1 .. 366
is 366/8 which is 46 bytes. The storage is allocated accordingly
as shown in the above diagram. The value 366 mod 8 is 6, and
there is one unfilled bit in the least significant byte of the
set.

E.6 Representation of Arrays

Components of unpacked arrays and records are allocated
contiguously as defined above. There is no attempt made to
conserve space in units smaller than bytes.

Arrays are stored in row order, that is, the last index varies
fastest. This follows from the strict definition that a
multi-dimensional array in Pascal is actually an:

array[first index] of array[second index] •••••
of array[n'th index] of whatever type;

Representation of Pointers

Pointers always occupy four bytes.
represented by a value of zero (0).

The nil pointer is

Pascal Reference Manual Page 145

Data Representations Appendix E

E.7 Packing Methods

Packed records are expensive in terms of the amount of
generated code needed to reference a field of a packed record.
In general, avoid packing records unless there are many more
instances of a particular records than there are references to
it.

Components of a packed record are allocated in the order in
which they appear. Components never cross word boundaries. The
allocator never backtracks to fill in holes in the structure.

Within a word, components are allocated on bit boundaries. The
allocation proceeds from the least significant end of the word
towards the most significant end. If there is not enough room in
the current ·word for a component, a hole is left in the current
word, and the next word is started.

After allocation, it is possible that the allocator" might shift
and expand fields in a word. For example, a signed field might
be expanded to use the remainder of a word for faster access, or
two 5-bit fields might be allocated a full byte each. The
diagrams below provide graphic illustrations of the packing
methods. In each case, a type definition is given, followed by a
diagram of how that type is allocated.

packed record
a: 0 .. 7~
b: char~
c: 0 .. 3~
d: Boolean~
e: 0 .. 3;

end~

bit --> 15 13 12 5 4 3 2 1 0

+---------+-----------------------+------+---+------+
I a I b I c Idl e I
+---------+-----------------------+------+---+------+

Page 146 Pascal Reference Manual

Appendix E Data Representations

packed
a:
b:

end:

bit -->

packed
a:
b:

end:

bit -->

record
0 .. 4095:
cbar:

15 11 0

+------------+-----------------------------------+ I extended ••• a I
+------------+-----------------------------------+
15 o
+--+ I b I
+--+

record
0
0

63:
63:

15 10 9 4 3 0
+------------------+------------------+------------+ I a I b I hole I
+------------------+------------------+------------+
The record above is allocated as in the above

picture, but will be re-allocated as shown below.

bit --> 15 14 13 8 7 6 5 o
+------+------------------+------+------------------+ I a I b I
+------+------------------+--_ .. _-+------------------+

packed record

end:

a: -1024 •• +1023~
b: 0 •• 7:

bit --> 15 5 4 3 2 o
+---------------------------------+------+---------+ I a I hole I b I
+---------------------------------+------+---------+

In the last example above, the signed subrange field was moved
up to the left hand end of the word and sign extended for faster
access.

Pascal Reference Manual Page 147

Data Representations Appendix E

Packed arrays are also code consuming, with one exception:
packed array of char is treated as a special case, and the
generated code is compact.

Elements of packed arrays are stored with multiple values in a
byte whenever more than one value can fit in a byte. Elements
are allocated on 1, 2, 4 or 8-bit boundaries. This only happens
when the value requires 4 bits or less. 3-bit values are stored
in 4 bits.

The first value in a packed array is stored in the lowest
numbered bit position of the lowest addressed (that is, the most
significant) byte. Subsequent values are stored in the next
available higher numbered bit positions in that byte. When the
first byte is full, the same positions are used in the next
higher addressed byte. Consider the following examples:

var
a: packed array[l •• 12] of boolean;

byte 1 bit 0
+----+----+----+----+----+----+----+----+
I a8 I a7 I a6 I a5 I a4 I a3 I a2 I al I
+----+----+----+----+----+----+----+----+
byte 2
+----+----+----+----+----+----+----+----+
I •••• Unused .••• I a121 alII a10 I a9 I
+----+----+----+----+----+----+-~--+----+

var
b: packed array[3 •. 8] of 0 •• 3;

byte 1 bit 0
+----+----+----+----+----+----+----+----+
I a[6] I a[s] I a[4] I a[3] I
+----+----+----+----+----+----+----+----+
byte 2
+----+----+----+----+----+----+----+----+
I ••••• Unused •••• I a [8] I a [7] I
+----+----+----+----+----+----+----+----+

var
c: packed array[O •. 2] of 0 7;

or
c: packed array[O .:-2] of 0 15;

Page 148 Pascal Reference Manual

Appendix E Data Representations

byte 1 bit 0
+----+----+----+----+----+----+----+----+
I all] I a[O] I
+----+----+----+----+----+----+----+----+
byte 2
+----+----+----+----+----+----+----+----+
I ••••• Unused •••• I a[2] I
+----+----+----+----+----+----+----+----+

Pascal Reference Manual Page 149

Data Representations Appendix E

E.8 Parameter Passing Mechanism

This Section describes the way in which parameters are passed
in SVS Pascal.

Parameters are passed on the stack. Parameters are pushed onto
the stack in order in which they are declared in procedure and
function declarations.

If the callee is a function, room for the function result is
allocated on the stack before any parameters are pushed.

If the callee is not a procedure or function at the global
level, the static link is the last thing pushed onto the stack
before the routine is called.

Upon return from a routine, all parameters are discarded from
the stack. The only thing that should be on the stack upon
return, is a function result.

var parameters (call by reference) always have a four-byte
pointer to the variable pushed onto the stack.

Value parameters are divided into the three categories of sets,
doubles, and everything else.

The caller always pushes sets onto the stack. A set which
occupies one byte is pushed with a move.b instruction. A set
which occupies more storage than one byte is pushed with the
least significant element in the most significant word. Thus the
representation of a set on the stack is the same as the
representation in memory.

The caller always pushes doubles onto the stack as well. This
is usually accomplished by two move.l instructions in such a
manner that the rpresentation a double on the stack is the same
as the representation in memory (that is, with the sign bit in
the lowest addressed byte).

Other value parameters are pushed as follows:

• a one-byte value is pushed with a move.b instruc.tion •

• a two-byte value is pushed with a move.w instruction.

Page 150 Pascal Reference Manual

Appendix E Data Representations

• a four-byte value is pushed with a move.l instruction.

• if a value is longer than four bytes, and not a double, the
address of the data is pushed onto the stack and the called
procedure or function copies the data into local storage.

Procedure and function parameters are pushed as follows:

• the address of the procedure or function is pushed onto the
stack.

• the static link is then pushed onto the stack if the procedure
or function is not at the global (outermost) level. If the
procedure or function is global (at the outermost level), the
value nil (0) is pushed onto the stack instead of the static
link.

E.g Limitations On Size of Variables

There is no limitation on the number of bytes allocatable for
variables. However, a maximum of 30K bytes of value parameters
cannot be exceeded. Furthermore, when more than-JOK bytes of
variables exist in either the main program's global scope, or in
any local scope of a procedure or function (but not unit
globals), the largest values will be accessed via a pointer,
resulting in somewhat slower code. This mechanism is transparent
to the user, so that no changes to source code are required.

Global var iables in units are accessed via 32-bi t absolute
addressing modes. Therefore the pointer mechanism does not apply
to units with more than 30K bytes of globals.

The maximum size of a record variable is 32K bytes.

There is no limitation on the size of variables which can be
allocated by the NEW procedure.

E.lO Compiler Generated Linker Names

This section describes the manner in which the Pascal compiler
generates names of local and global procedures so that the Linker
can resolve external references at link time.

Pascal Reference Manual Page 151

Data Representations Appendix E

Procedures which are global (or external) are given the names
which the user assigns to them. The compiler converts all such
names to upper case, and truncates them to eight characters in
length.

Procedures which are local (not visible in the global scope)
are assigned names of the form:

$nnn

where 'nnn' is a decimal number. The numbers may possibly have
trailing spaces. Procedures of the same name but in different
scopes have different names. In other words, all local names in
a given compilation unit are unique.

When the linker or librar ian sees a collection of compiled
units, the local names may be renumbered, but the actual name
that the user assigned to the procedures are carr ied along with
the number.

Page 152 Pascal Reference Manual

Appendix F

Appendix F

Bibliography

Bibliography

This appendix is a short bibliography of Pascal related
literature.

The Programming Language Pascal. By Niklaus wirth.
Acta Informatica, 1, pp 35-63. 1971.

Pascal User Manual and Report. Kathleen Jensen and Niklaus Wirth.
Springer-Verlag. 1974.

Beginner's Guide to the UCSD Pascal System. Kenneth Bowles.
Byte Books. 1980.

Software Tools in Pascal. Kernighan and Plauger.
Addison wesley. 1981.

ISO Standard for Pascal appeared in the Pascal Newsletter, number
20, December 1980, published by the Pascal User's Group, and in
SIGPLAN Notices, April 1980, Published by ACM.

In addition to the references above, there is a Pascal User~'
Group (known as PUG) which publishes a newsletter relating to all
things Pascal.

Pa~cal Reference Manual Page 153

Bibliography Appendix F

Page 154 Pascal Reference Manual

Appendix G Using The Pascal Compiler

Appendix G

Pascal on the UNIX System

This appendix describes th~ specific details of using the SVS
Pascal compiler on the UNIX Operating System. Later sections
cover specific dependencies and features of SVS Pascal on the
UNIX system.

G.l Running Pascal On the UNIX System

The Pascal compiler, pc, compiles programs written in the
Pascal language, and optionally links (or binds) the result with
intermediate files generated by pc or other language processors.

The description below covers the UNIX system interface to the
compiler. At the end of this section can be found a description
on how to run the individual phases separately.

NAME
pc - Pascal Compiler

SYNOPSIS
pc [-0 ofile] [-i] [-c] [-u] [-vl file •••

DESCRIPTION

pc, the Pascal compiler,
and var ious intermediate
specified by file. The
placed in the !lIe a.out,
below) • -----

accepts a list of Pascal source files
texts contained in the list of files
resulting executable object-module is
unless the -0 option was specified (see

To understand the use of pc, the reader should be aware of the
steps through which the compiler goes in order to turn a Pascal

1. UNIX is a trademark of Bell Laboratories

Pascal Reference Manual Page 155

Using The Pascal Compiler Appendix G

source program into an executable object-file. pc goes through
several separate phases (or passes) when compiling a program.

pc source files must have a .pas suffix. pc generates three
intermediate files (.i, .obj, and .0) on the way to generating
the final executable binary file. The first phase of the
compiler generates intermediate files with the same names as the
source files, but with a .i suffix. These intermediate files are
destined for processing by the code generator.

Code generation is the second phase of the process. The code
generator produces files of the same name as the source files,
but with a .obj suffix. The *.obj files are the input to the
next phase, called ulinker.

The ulinker phase of the process per forms two functions: it
links the .obj files, resolving external references to the Pascal
run-time library: then it converts the .obj file format into a
UNIX-style object file, with a .0 suffix. This means that one
file in the list of files specified on the pc command line must
contain a main program. This.o file can then be processed by Id
- the UNIX system loader utility.

The final stage of the process is when the Id utility generates
the final executable object code file.

When using pc, any combination of Pascal source files (each
with a .pas suffix) can be combined with Pascal (or SVS FORTRAN)
intermediate files (each with a • i suffix), Pascal or FORTRAN
object-code files (each with a .obj suffix), and UNIX system
object-code files (having .0 suffixes). When the compilation
completes successfully, the result of the combination of all
those files is placed in the file a.out, or in the file specified
by the -0 option. -----

The -0 option, if used, specifies that the file ofile (runnable
file) whose name follows the -0 option is the file~eceive the
final executable code. If the -0 option is not specified, the
resultant executable code is placed in the file ~.

If the -i option is used, the Pascal intermediate code (the
result of running /lib/pascal) is placed in a file of the same
name as the source file, but with a suffix of .i appended. The
compilation then terminates.

If the -c option is used, the Pascal unlinked object-code (the
result of running /lib/code) is placed in a file of the same name
as the source file, but with a suffix of .obj appended. The
compilation then terminates.

Page 156 Pascal Reference Manual

Appendix G Using The Pascal Compiler

If the -u option is used, the linked object-code (the result of
running (lib/ulinker) is placed in a file of the same name as the
source flle, but wlth a suffix of .0 appended. The compilation
then terminates at that point.

The -v (for verbose) option tells pc to display a running
progress report as it goes through each of the compilation and
linking phases. If the -v option is specified, the compiler also
generates a listimg file, of the same name as the source file,
but with a suffix of .lst appended.

If only one file argument is supplied on the command line, then
all the intermediate files (*. i, * .obj, * .0) are removed at the
end of the compilation. If multiple file arguments are specified
on the command line, any existing Tntermediate files are not
removed.

EXAMPLES

pc prog 1. pas

compiles prog1. pas and places the resul Hng execu table file in
a.out.

pc -0 frammis prog2.pas prog3.obj

compiles the Pascal program called prog2.pas and links the result
wi th the object-file prog3 .obj. The resul Hng executable binary
is placed in the output file called frammis.

FILES

*.pas
*.i
* .obj
*.0
/lib/paslib .obj
/lib/pascal
/lib/code
/lib/ulinker
/lib/pascterrs
/lib/wraplib

Pascal source,
Intermediate code,
Compiled but unlinked pc object-code,
Compiled but unlinked UNIX object-code,
Pascal run-time library,
Pascal compiler,
Code generator,
SVS to UNIX object-file converter,
Pascal compile-time error message file.
Interfaces for calling C routines.

Note that all the file~ appearing in /lib above can
alternatively reside in /usr/lib.

Pascal Reference Manual Page 157

using The Pascal Compiler Appendix G

Running The Compiler Phases Separately

The separate parts of the Pascal Language system can be run
independently if required. The separate phases are:

The Pascal compiler (front end) is in /lib/pascal (or
/usr/lib/pascal). The compiler turns Pascal source text into
an intermediate form sui table for processing by the code
generator.

The Code Generator is in /lib/code (or /usr/lib/code). It
converts the intermediate file into a form which will be
processed by ulinker.

ulinker is in /lib/ulinker (or /usr /lib/ulinker). It links
the output of the code generator, and converts the resulting
linked file into UNIX compatible .0 file format, ready for
processing by the UNIX link-editor (ld) utility.

Examples shown in the following subsections assume that there
is a program called 'hello.pas', which is to be compiled,
code-generated, linked, and link-edited, ready for execution.

Running the Pascal Compiler Independently

The Pascal compiler (front end) is run with a command line like
this:

/lib/pascal [+q] [-p] sfile -llfile -iifile -eefile
or,

/usr/lib/pascal [+q] [-p] sfile -llfile -iifile -eefile

where 'sfile' is the name of a file containing the Pascal source
program. The source is expected to be on a file with a .pas
suffix.

Other files (such as listing or error files) are introduced by
the options descr ibed below. Note that there must not be any
spaces between an option letter and its corresponding filename.

-llfile

Page 158

'lfile'is the optional name of
receive the compiler generated

the file
listing.

to
No

Pascal Reference Manual

Appendix G

-Ufile

-eefile

Using The Pascal Compiler

suffix is appended to the list filename. If the
-1 option is omitted, no listing is generated.

I ifile I is the optional name of the intermediate
file destined for processing by th-e code
generator. If the I ifile I is not specified on
the command line, the intermediate output is
placed on a file with the same name as the
source file (minus the .pas suffix) with a .i
suffix appended.

'efile'is the optional name of a file to receive
the compiler error summary. No suffix is
appended to the error summary filename. An
error summary file is not generated unless it is
requested by the -e option.

The +q (for quiet)
option makes the compiler pr int less. The-q
option increases the amount of data displayed.
The default is +q (quiet).

In the pc UNIX command, the -q option is called
up via the -v (for verbose) option on the
command line.

The +p (for prompt)
option makes the compiler display each error on
the standard output, and prompt for a user
response from the standard input. The user has
the option to continue or abort the compilation
at that point. If the -p option is used, the
compiler automatically continues processing and
searching for more errors after an error is
found. The normal default for this option is -p
(continue automatically).

Example of Running the Pascal Compiler

pascal bello. pas

In this example, the Pascal compiler compiles the source in the
file 'hello.pas ' • The intermediate text is placed in the
'hello.i ' file.

Pascal Reference Manual Page 159

Using The Pascal Compiler Appendix G

Running the Code Generator

The code generator is the second phase of a Pascal
compilation. The code generator processes the intermediate file
from the compiler and generates a .obj file ready for processing
by the ulinker utility. The code generator is run simply by
typing the command:

/lib/code file
or,
/usr/lib/code file

where 'file' is the name of the intermediate file to process.
The intermediate file must have a .i suffix. The output of the
code generator is a file ready for processing by ulinker. The
output filename is the same as the input filename, minus the .i
suffix, and with a .obj suffix appended.

Example of Running the Code Generator

/lib/code hello.i

In this example, the code generator is generating code for the
file 'hello.i'. The result of the code generation appears on a
file called 'hello.obj'.

Running the Ulinker Utility

The ulinker utility links the output of the code generator,
resolves external references to run-time routines, and converts
the output of the code generator into a form that can be
processed by the UNIX link-editor. The ulinker utility is run
like this:

/lib/ulinker [-1] ofile objfile •••
or,
/usr/lib/ulinker [-1] ofile objfile •••

Page 160 Pascal Reference Manual

Appendix G

-1

'ofile'

'objfile'

Using The Pascal Compiler

if supplied, suppresses link map information.
If the -1 option is omitted, the first filename
on the ulinker command line must be the name of
a file to receive the listing.

is the name of the file to receive the final .0
file.

is a list of .obj files (and librar ies) to
process.,

The output of ulinker is a file ready for processing by the
UNIX link-editor.

The -1 option, if typed on the command line, tells ulinker to
display progress information on the standard output.

Example of Running ulinker

/lib/ulinker -1 hello.o hello.obj /lib/paslib.obj

This example links the 'hello.obj' file generated by the code
generator, resolves external references to the Pascal run-time
library, then converts the code format to a form acceptable to
ld, the UNIX link-editor. The result appears in the 'hello.o'
file shown on the command line.

The Pascal run-time routines make calls upon certain C library
routines. The interface between these is supplied by a .0 file
called 'wraplib.o', which resides either in the /lib or /usr/lib
directories. 'wraplib.o' must be included in the link-edit
process, after the user's .0 files, and before the C library. A
description of the interface between Pascal and C routines can be
found later in this appendix.

The final stage in the process of obtaining an executable
binary file is to run the UNIX link-editor:

Id /lib/crtO.o hello.o /lib/wraplib.o -lc

This example links the 'hello.o' file with the run-time
routines from 'wraplib.o', and the C run-time library indicated
by the -lc option on the Id command line. The 'crtO.o' file must
come first in the link sequence, so as to get the run-time
startup routines in the correct place. The resulting executable
binary appears on the file 'a.out'.

Pascal Reference Manual Page 161

Using The Pascal Compiler Appendix G

G.2 UNIX System Dependencies

This section covers specific features of the SVS PAscal
compiler on the UNIX operating system.

Unt.plemented Language Peatures

On the UNIX operating system, these procedures are not
implemented:

unitread,
unitwrite,
unitclear,
unitstatus,
memavail.

Return Values from Pascal Programs

A Pascal program can issue the call:

halt(O)

to generate a UNIX system error return code, and:

halt(l)

to generate a normal termination code.

This feature is provided for use with programs which are used
in Shell scripts containing commands to test the error flag.

Page 162 Pascal Reference Manual

Appendix G Using The Pascal Compiler

Action on Closing Files

Contrary to what is said in chapter 6 - "Input and Output"
about the actions taken on closing a file, on the UNIX system,
all files are closed with the 'lock' option, regardless of what
option was actually specified in the CLOSE statement.

English Error Messages

The Pascal system now can display English style error messages
by accessing the error message file which resides in the file
/lib/pascterrs or in /usr/lib/pascterrs (pascal compile time
errors.

Pascal Reference Manual Page 163

Using The Pascal Compiler Appendix G

G.3 Interfacing Pascal to UNIX C Programs

This part of the appendix is intended to give the user some
clues in how to link programs written in SVS Pascal with external
routines written in C on the UNIX system.

Because the interfaces and calling conventions differ between
Pascal and C, Pascal routines are linked with C routines via a
small assembler language routine called a "wrapper". The purpose
of the "wr apper" is to make the inter face between Pascal and C
compatible with each other.

The user must be aware of the following relationships between
Pascal and C:

All C parameters expect four bytes on the stack for each
argument, regardless of what they are. Pascal programs which
will call C routines should declare all their parameters of
type longint in order to maintain the four-byte parameter
convention.

• C parameters are pushed onto the stack in the reverse order
from those of Pascal. So the Pascal call:

_func(a, b, c)

is seen by the C routine as

func(c, b, a)

• The C language returns function results in register DO. Pascal
returns function results on the stack. The interface routine
must be aware of this and act accordingly. If a value is to be
returned, a Pascal-style external function should be declared,
otherwise just declare the routine as an external procedure.

If the called C routine is to alter any of the parameters
passed, the parameters should be declared as var parameters in
the Pascal procedure or function declaration. The C routine
should then treat such parameters as pointers.

The representation of real data in Pascal is incompatible with
the float and double data types of C, so the user should avoid
passing these data types.

Page 164 Pascal Reference Manual

Appendix G Using The Pascal Compiler

• SVS Pascal does not support a double-precision floating point
data type.

Examples

The four sets of declarations below are representative samples
of some C routines and the Pascal declarations to provide the
interface to those routines. Following the declarations, are the
"wrappers" to interface those C routines with the Pascal
programs.

Pascal Declaration:

function _add (a, b: longint): longint, external,

£ Function:

add (b, a) /* add two numbers */
int *a, *b,

return (*a + *b),

Pascal Declaration:

procedure _hello, external,

£ Function:

hello()
{

/* print the word 'HELLO' */

printf ("HELL01\n"),

Pascal Reference Manual Page 165

Using The Pascal Compiler Appendix G

Pascal Declaration:

procedure _swap(var a, b: longint) external;

~ Function:

swap(b, a) /* swap two numbers */
int *a, *b;

int temp;

temp .. *a;
*a .. *b;
*b -temp;

Note that in the declarations above we have one function and
two procedures. One of the procedures has no parameters. The
other procedure and the fUDction have parameters. In the
discussions to follow l these differences will illustrate the
different pieces of assembler coding necessary for the
interface.

Connecting the Pieces

Unless the C program segments are already in the C library
(that is, they are standard C functions), they should be compiled
and left as .0 files (using the cc -c compiler call).

An assembly language interface routine must be provided for
each C routine to be called. This interface routine is called a
"wrapper".

The external reference passed from the Pascal program will be
in upper case. The wrapper must call the corresponding
lower-case routine (the C routine), and then clean up the stack
on return. For every parameter th~t the Pascal program passes,
four bytes must be removed from the stack.

The wrapper must also ensure that the function return value (if
there is one) must be pushed onto the stack from register DO.

Page 166 Pascal Reference Manual

Appendix G Using The Pascal Compiler

Examples of Wrapper Routines

The assembly language fragments below are the wrappers to
interface the three Pascal and C routines shown in the examples
above. There is a common theme throughout each routine.

Each wrapper declares as global (the .globl declaration)
both the upper case name (which Pascal generates) and the
corresponding lower case name (which C generates).

In all cases, Pascal places its return address on the
stack. The wrapper pops that stack entry into register A3,
which is guaranteed not to be clobbered by any C routines
which are called (user wr i tten assembler codes must also
honor this convention to avoid disaster).

Upon return from the C routine, the wrapper pops four bytes
for every parameter that was passed from the Pascal
program.

Lastly, if the calling Pascal routine is a function which
expects a result, the wrapper must push the C function's
return value onto the stack from register DO.

First there is the wrapper for the 'add' function:

.globl ADD, add
movl sp@+,a3
jsr add
addl Ja,sp
movl dO,sp@
jmp a3@

declare ADD global
save Pascal return address
call the C add routine
remove a bytes from stack
put return value on stack
return to Pascal.

The 'add' function passes two parameters, so after the C
routine returns it pops eight bytes from ·the stack. The caller
is a Pascal function, so the return value is pushed onto the
stack.

Then there is the wrapper for the 'hello' procedure, which does
not have any parameters:

.globl HELLO,_hello
_HELLO: movl sp@+,a3

jsr hello
jmp a3@

Pascal Reference Manual

declare HELLO global
save Pascal return address
call the C hello routine
nothing to remove/return,
so just jump to Pascal.

Page 167

Using The Pascal Compiler Appendix G

This routine has no parameters, and the caller expects no
return value, so there is nothing to do except return to the
caller.

Lastly there is the wrapper for the 'swap' procedure which has
two parameters:

_SWAP:
.globl SWAP, swap
movl sp@+,a3-
jsr swap
addl Ja,sp
jmp a3@

declare SWAP global
save Pascal return address
call the C routine
remove a bytes from stack
nothing to return, so just
jump to Pascal

The wrapper should be assembled into a .0 module using the
assembler. Now, all the pieces must be presented to the loader
(which may be done by calling the compiler).

In addition to any "wrapper" routines that the user wr i tes,
there is also a file in /lib/wraplib (or /usr/lib/wraplib) which
contains some predefined interfaces to the C run-time library.

For example, if the pieces of the C program are in the file
called 'zork.o', and the wrapper is in 'wrp.o', and the Pascal
program is in 'prog.o', the pieces can be linked by typing:

pc prog.o wrp.o zork.o

or (more complicated):

cc prog.o wrp.o zork.o /lib/wraplib.o

or (even more complicated):

ld /lib/crtO.o prog.o wrp.o zork.o /lib/wraplib.o -lc

The file /lib/wraplib (or /usr/lib/wraplib) already contains
wrappers for the C language routines:

CLOSE
-CREAT
-LSEEK
-OPEN
-READ
-SBRK
:WRITE

These routines are recognized specially by the system.

Page 16a Pascal Reference Manual

	00001
	00002
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168

