
THE CORVUS CONCEPT

FORTRAN
REFERENCE MANUAL

**. CORVUS SYSTEMS
* *

DISCLAIMER OF ALL WARRANTIES & LIABILITIES
Corvus Systems, Inc. makes no warranties, either expressed or implied, with respect to
this manual or with respect to the software described in this manual, its quality, perfornfi
ance, merchantability, or fitness for any particular purpose. Corvus Systems, Inc. soft·
ware is sold or licensed "as is:' The entire risk as to its quality or performance is with the
buyer and not Corvus Systems, Inc., its distributor, or its retailer. The buyer assumes the
entire cost of all necessary servicing, repair, or correction and any incidental or conse
quential damages. In no event will Corvus Systems, Inc. be liable for direct, indirect,
incidental or consequential damages, even if Corvus Systems, Inc. has been advised of
the possibility of such damages. Some states do not allow the exclusion or limitation of
implied warranties or liabilities for incidental or consequential damages, so the above
limitation may not apply to you.

Every effort has been made to insure that this manual accurately documents the opera
tion and servicing of Corvus products. However, due to the ongoing modification and
update of the software along with future products, Corvus Systems, Inc. cannot guaran
tee the accuracy of printed material after the date of publication, nor can Corvus Sys
tems, Inc. accept responsibility for errors or omissions.

NOTICE
Corvus Systems, Inc. reserves the right to make changes in the product described in this
manual at any time without notice. Revised manuals and update sheets will be published
as needed and may be purchased by writing to:

Corvus Systems, Inc.
2029 O'Toole Avenue
San Jose, CA 95131

Telephone: (408) 946-7700
TWX 910-338-0226

This manual is copywrited and contains proprietary information. All rights reserved.
This document may not, in whole or in part be copied, photocopied, reproduced, trans
lated or reduced to any electronic medium or machine readable form without prior con
sent, in writing, from Corvus Systems, Inc.

Copyright© 1982 by Corvus Systems, Inc. All rights reserved.

Mirror® patent pending, The Corvus Concept,'· Transporter:" Corvus OMNINET,'·
Corvus Logicalc,'" Time Travel Editing,'· EdWord,'" Constellation,'· Corvus,'· Corvus Sys
tems,'" Personal Workstation,'" Tap Box,'· Passive Tap Box,'· Active Junction Box,'·
Omninet Unit'" are trademarks of Corvus Systems, Inc.

FCC WARNING
This equipment generates, uses, and can radiate radio frequency energy and if not
installed and used in accordance with the instruction manual, may cause interference to
radio communications. As temporarily permitted by regulation it has not been tested for
compliance with the limits for Class A computing devices pursuant to Subpart J of Part
15 of FCC Rules, which are designed to provide reasonable protection against such inter
ference. Operation of this equipment in a residential area is likely to cause interference
in which case the user at his own expense will be required to take whatever measun'A
may be required to correct the interference.

*

* CORVUS SYSTEMS

*

*

*
The Corvus Concept Fortran

Reference Manual

PART NO. : 7100-02823

DOCUMENT NO. CCC/32-66/1.1

RELEASE DATE February, 1982

CORVUS CONCEPT (TM) is a trademark of Corvus Systems, Inc.

Table of Contents

Chapter 1 Introductioo 1

1.1 OIJerview of the EURl'RAN Language 1
1. 2 Notaticn and Termiro1ogy Used in this Manual

5
1. 3 Basic Elements of EURl'RAN 6

1.3.1 FOR'l'WIN Character Set 6
1.3.2 Collating Sequence and Graphics 7
1.3.3 Use of Spaces or Blanks or Tabs 7

Chapter 2 Lines, Statements, and Control Flow 9

2.1 Lines 9

2.1.1 Comment Lines 9
2.1.2 Initial Lines 10
2.1.3 Continuation Lines 10
2.1.4 Compiler Directive Lines 11

2.2 Statements 11

2.2.1 Statement Labels 12
2.2.2 Order of Statements and Lines 13

2.3 Executioo Sequence and Control Transfer 15

Chapter 3 Data Types and Constants 18

3.1 Data Type Rules 18
3.2 Constants 19
3.3 Integer Data Type 19
3.4 Real Data Type 20

3.4.1 Infinite and Indeterminate Real Values 21

3.5 Double Precision Data Type 22
3.6 Catp1ex Data Type 22
3.7 Character Data Type 22
3.8 klgica1 Data Type 24

Chapter 4 EURl'RAN Names, Arrays, and Substrings 25

4.1 EUR'l'IW'I Names 25

4.1.1 Scope of EURl'RAN Names 26

- iii -

4.1.2 Undeclared FORTRAN Names 27

4.2 Array Declarations 28

4.2.1 DUnension Declarations 28
4.2.2 Kinds of Array Declarations 29
4.2.3 Actual Arrays and Dummy Arrays 29
4.2.4 Referencing Array Elements - Array

Subscripts 30
4.2.5 Using Unsubscripted Array Names 31

4.3 Character Substrings 32

Chapter 5 Expressions 33

5.1 Arithmetic Expressions 33

5.1.1 Arithmetic Operators 33
5.1.2 Arithmetic Operands 34
5.1.3 Constant Expressions 35
5.1.4 Type Conversion Rules for Arithmetic

Expressions 35

5.1.4.1 Rules for Add, Subtract, Multiply and
Divide 36

5.1.4.2 Rules for Exponentiation Operator 37

5.1.5 Coercion Rules for Integers of Different
Size 38

5.1.6 Integer Division 38

5.2 Character Expressions 38

5.2.1 Restrictions on the use of Str ing
Expressions 39

5.3 Relational Expressions 39

5.3.1 Arithmetic Relational Expressions 40
5.3.2 Character Relational Expressions 40

5.4 Logical Expressions 41

5.4.1 Precedence of Logical Operators 41

5.5 Precedence of Operators 43
5.6 Evaluation Rules and Restrictions for

Expressions 43

5.6.1 Restrictions on Function References 43

- iv -

Chapter 6 Specification Statements 45

6.1 Type Statements . - Declar ing Data Types 45

6.1.1 Arithmetic Type Statements 46
6.1.2 CHARACl'ER Type Statement 47
6.1.3 IffiIC'AL Type Statement 48

6.2 Dll>1ENSIOO - Declare Data Dimension 48

6.2.1 Dimension Declarators 49

6.3 cx::r-M:N - Declare a <XJ.t.m Block 49
6.4 PARAMEIER - Make a SyItbolic Association 50
6.5 IMPLIcrr - Establish Default Data Type 50
6.6 EX'IERNI\L - Declare External or Dl.mmy Procedure

52
6.7 INTRINSIC - Declare Intrinsic Function '53
6.8 SAVE - Retain Definition Status 54
6.9 EXJJIVALENCE - Share Storage Between Elements

6.9.1 Restrictions on EC;m:VALENCE Statements

Chapter 7 Data Initialization

7.1 Initializing Character Variables
7.2 Initializing Non CHARl\CTER Variables to

CHARAC'lER Values
7.3 lnq?lied 00 in DATA Statements

Chapter 8 Assignnent Statements

8.1 Arithmetic Assignment
8.2 ID;Jical Assignnent
8.3 Statement Label Assignment
8.4 Character Assignnent

Chapter 9 Coltrol Statements

9.1 Block IF 'mEN ELSE Statement

9.1.1 Block IF Statement
9.1.2 ELSEIF Statement
9.1.3 ELSE Statement
9.1.4 ENDIF Statement

9.2 Logical IF Statement
9.3 Arithmetic IF Statement
9.4 00 Statement - Loop Control

- v -

55

55

57

58

59
60

63

63
65
65
66

69

70

71
72,
73
73

73
74
75

9.4.1 DO Loop Initialization Sequence 76
9.4.2 DO Loop Incrementation Processing 76
9.4.3 Events Which Terminate a DO Loop 77

9.5 cnn'INUE Statement - Null Statement 77
9.6 grop Statement - Stop PrCXJram Execution 78
9.7 PAUSE Statement - SuspeOO Program Execution 78
9.8 tJncorrlitional GO TO Statement 78
9.9 catpJted 00 TO Statement 79
9.10 Assigned GO TO Statement 80

Chapter 10 Inplt and ~tpJt 81

10.1 OVerview of the Input-Qutput System 81

10.1.1 Records 81
10.1.2 Files 82
10.1.3 Properties of Files 83

10.1.3.1 File Name 83
10.1.3.2 File Position 83
10.1.3.3 Formatted and Unfoonatted Files 83
10.1.3.4 ~ntial and Direct Access Files

10.1.4 Internal Files

10.1.4.1 Special Properties of Internal Files

10.1.5 units

10.2 General DiSOJssion of the Inplt ~tpJt System

84

84

85

85

86

10.2.1 Pre-connected Files 86
10.2.2 Exanples of c.arroon Input ~tput Operatioos

87
10.2.3 Less Common File Operations 88
10.2.4 Limitatioos of roRl'RAN Inplt ~tput System

89

10.2.4.1 Direct Files must be on Blocked
Devices 89

10.2.4.2 No Character Carpression in Direct
Files 89

10.2.4.3 BACKSPACE Only Applies to Files on
Blocked Devices 90

10.2.4.4 Length Limitations on Foonatted
Records 90

10.2.4.5 BACKSPACE may not be used on

- vi -

Unfonnatted Sequential Files 90
10.2.4.6 Side Effects of Functioos Used in

Input OUtput Statements 90

10.3 Elements of Input and OUtput Statements 90

10.3.1 The Unit Specifier lUi 91
10.3.2 The Fonnat'Specifier If' 91
10.,3.3 The Record Nuni>er 'rn' 92
10.3.4 The End of File Exit Specifier 92
10.3.5 The Error Exit Specifier 92
10.3.6 The Input OUtput Status specifier 'ios'

93
10.3.7 The Input-OUtput List 'iolist' 93

10.3.7.1 Input and OUtput Cbjects 93
10.3.7.2 Implied DO Lists 94

10.4 The Specific Input and OUtput Statements 95

10.4.1 OPEN Statement 95
10.4.2 CLOSE Statement 97
10.4.3 RFAD, WRITE and PRINl' Statements 97
10.4.4 File Positioning Statements 99

10.4.4.1 BACKSPACE Statement - Backspace a
File 100

10.4.4.2 ENDFILE Statement - Write an Endfile
Record 100

10.4.4.3 REWIND Statement - Rewind a File 100

10.4.5 INQUIRE Statement - Obtain File Properties

10.4.6 Notes on the INQUIRE Statement

10.5 List Directed Input and OUtput

10.5.1 List Directed RFAD

10.5.1.1 List Directed Value Separators
10.5.1.2 List Directed Input Values

10.5.2 List Directed WRITE and PRINT

Chapter 11 Fonnat Specifications

li.1 EORMAT Specificatioos and the :roRMi\T Statement

11.2 Interaction Between Format Specifications and

101
104

105

105

105
106

107

109

109

I/O List li2
11.3 Edit Descriptors 113

- vii -

11.3.1 Repeatable Edit Descriptors 113

11.3.1.1 Numeric Editirg 113
11.3.1.2 I - Integer Editing 114
11.3.1.3 F - Real Editirg 115
11.3.1.4 E and D - Real Editing 115
11.3.1.5 G - Real Editirg 116
11.3.1.6 L - Logical Editing 117
11.3.1. 7 A - Character Editing 117

11.3.2 Non Repeatable Edit Descriptors 118

11.3.2.1 'xxx' - ApostroJ;ile Editing 118
11.3.2.2 H - Hollerith Editing 118
11.3.2.3 X and T - Positional Editing 119
11.3.2.4 Slash Editing - End of Transfer 00

Recx>rd UO
11.3.2.5 Backs1ash or Dollar Editing - Inhibit

End of Recx>rd . UO
11.3.2.6 Co1oo Editing - Conditional

Terminatioo U1
11.3.2.7 P - Scale Factor Editing 121
11.3.2.8 BN and BZ - Blank Interpretatioo 121
11.3.2.9 S, SS and SP - Sign Control Editing

Chapter 12 Program and Suq>rogram Structure

U.1 Main Program
12.2 Access To Cannand Line Arguments
U.3 Formal Arguments and Actual Arguments

12.3.1 Argument Associatioo

12.4 Subroutines

12.4.1 SUBRXlTINE Statement
U. 4.2 CALL Statement

12. S FUnctions

U.S.1 External Furx:tioos
12.5.2 Intrinsic Functions
U.S.3 Statement Functioos

12.6 ENTRY Statement

U.6.1 Restrictioos 00 the ENTRY Statement

12.7 RETURN S~tement

- viii -

122

123

123
124
US

126

127

128
128

130

131
132
132

133

134

135

12.8 Definition Status 136
U.9 BIIXK IlM'A Subprogram 136
12.10 The FORTRAN Intrinsic Functions 138

Chapter 13 FORl'RAN Cor!t>ile T:ime Options 139

13.1 $INCLUDE - Include Source File 139
13.2 $XREF - Generate Cross Reference 139
13.3 $SEGMENT - Designate Segment Name 140
13.4 $BIGOODE - Set Max:imum Code Sizes 140
13.5 $OOL72 - Restrict Source Lines to 72 COlumns

141
13.6 FORl'RAN-66 COmpatibility Options 141

13.6.1 $F66oo - Implement FORl'RAN-66 00 Loops
141

13.6.2 $CHAREQU - Character and Numeric Data
Equivalence 141

13.6.3 $INT2 - Make Integers 16-Bits 141

Appendix A Messages from the FORl'RAN System 143

A.1 Compi1e-Ttme Error Messages 143
A.2 Run-T:ime Error Messages 149

AR;>endix B The FORTRAN Intrinsic Functions 153

B.1 Notes 00 the Intrinsic Functioos 156
B.2 Restrictions on Ranges of Arguments 157
B.3 Non Standard Intrinsic Functioos and Subroutines

AR?endix C Data Representations

C.1 Storage Allocation
C.2 Data Representations
C.3 Argument Passing Mechanism

AR?endix D AS::II Character Set Table

AR?endix E FORl'RAN on the UNIX System

E.1 Running FORI'RAN-77 On the UNIX System
E.2 UNIX System Qependencies
E.3 Interfacing FORrRAN-77 to UNIX C Programs

-ix-

158

161

161
163
172

173

175

175
182
183

Chapter 1 Introduction

Chapter 1

Introduction

FORTRAN is a computer programming language or iented towards
numerical computations. FORTRAN-77 is the latest (at the time of
this wr i ting) offer ing of the ANSI standardization committee.
This FORTRAN reference manual describes the language called
FORTRAN-77, as implemented by Silicon Valley Software, Inc.
(SVS). From now on, the word FORTRAN is used to mean this
implementation of FORTRAN-77.

1.1 Overview of the FORTRAN Language

A FORTRAN program is (ultimately) composed of characters.
Characters are grouped into lines. Lines are grouped into
program units. Program units are grouped into programs.

A line is either a comment line, an initial line of a statement
or a-continuation line of a statement. Llnes appear in columns 1
thru 120. For compatibility with older FORTRAN implementations,
the SVS FORTRAN-77 compiler will ignore lines past column 72 if
the user selects the $COL 72 compiler option (see chapter 13 -
"FORTRAN Compile Time Options" for a description of the compiler
options.)

Comment lines are blank lines, as are lines with the letter C
(upper-case or lower-case) or the asterisk character "*" in
column one. Comment lines can appear anywhere in a FORTRAN
program, including between initial lines and continuation lines
of a statement.

The initial line of a statement has a zero or a space character
in column 6. A continuation line of a statement has any other
character in column 6. A continuation line is also signalled by
an ampersand character (&) appear ing in column one of a source
line.

FORTRAN Reference Manual Page 1

Introduction Chapter 1

Statements may have up to 19 continuation lines. The initial
line of a statement may have a statement label in columns 1 thru
5. A statement label is one to five digits in length. At least
one of the digits must be non-zero. A statement label serves to
"tag" a statement so that it can be referenced by other
statements.

Statements are broadly divided into the two groups of
executable and non-executable. Executable statements perform
program actions that assign values to variables, evaluate
expressions, affect flow of execution and" perform data
transmission. Non-executable statements generally are those that
specify the forms and attributes of program objects. Statements
are discussed in more detail a few paragraphs further on.

Program objects include constants and variables. A constant is
a string of digits or other characters defining a value that does
not change. Variables occupy storage and have values that cpn be
changed dur ing program execution. Var iables and constants can
have both a ~ and a data~. The name serves to identify
that object in a program. The type of a data object defines,
among other things, the amount of storage it occupies, its range
and precision, and in some cases, the operations that can be
performed on it. FORTRAN names can have default data types
der ived from a naming convention or the default rules can be
overriddenoby explicit specifications.-

A variable can be a single object or it can be an aggregate.
There are two forms of aggregate data objects, namely array
variables and character variables. An array variable is a
collection of data occupying consecutive storage units. Arrays
can have up to seven dimensions. A character variable represents
string data and is a sequence of characters, which can be
accessed individually, or collectively, in the form of a
substring.

A complete FORTRAN program is composed of a main program and
any number of subprograms. Subprograms fall into the categories
of SUBROUTINE subprograms which can be activated via the CALL
statement to perform out-of-line groups of statements, FUNCTION
subprograms which compute and return a value in the context of an
expression, and BLOCK DATA subprograms which serve to initialize
data declared in COMMON blocks. The main program and subprograms
form what is called program units. In general, the terms
"subprogram" and "program unit" can be used interchangeably.
User-defined subroutines and functions are also called
"procedures".

A var iable may be given more than one name by a process of
association. There are several ways to associate data. The
COMMON statement provides a way to share data between separate

Page 2 FORTRAN Reference Manual

Chapter 1 Introduction

program units. The EQUIVALENCE statement associates variables in
the same program unit unit. Variables may also be associated
through the argument passing mechanism when subroutines or
functions are referenced.

Names of variables have a scope which is dependent on the way
that they are defined. In general, most names (except names of
program units, common areas and certain other names) have a scope
that is local to the program unit in which they are defined. A
name defined by being called as an external function has a global
scope by default. Names defined in a common area are local to
the program unit unit in which they are declared. The name of
the common area itself is global. Formal parameters to
statement-functions have a scope which is local to the
statement-function statement itself.

Specification statements are one of the two major groupings of
statements. Specification statements serve to declare variables
and symbolic constants. Specification statements include the
~ statement for defining the data type of a var iable, the
DIMENSION statement to define the size of ar ray var iables, the
COMMON and EQUIVALENCE statements to provide association of
variables, the PARAMETER statement to give a symbolic name to a
constant and the EXTERNAL and INTRINSIC statements to define
attributes of other program units.

The DATA statement provides a mechanism for static
initialization of data. The DATA statement includes an implied
DO loop construct to facilitate initializing array variables in a
concise manner.

Expressions combine data objects and operators to create new
values. FORTRAN supports arithmetic, character, logical and
relational expressions. Mixed-mode expressions are permitted,
with well defined rules for conversions between the operands and
generation of the result.

The assignment statement assigns the value of an expression to
a var iable. There are three var iations of assignment, namely
arithmetic, character and logical. The ASSIGN statement serves
to assign the value of a statement label to an integer variable.

Control statements are those that control the flow of execution
in a program. Various kinds of IF statements select other
statements for execution, depending on the result of evaluating a
logical or arithmetic expression. The DO statement provides for
repetition of a block of statements while a control variable is
assigned a sequence of values. The CALL and RETURN statements
provide for subroutine and function execution. Variations of the
GO TO statement provide for transfer of control within a program
unit.

FORTRAN Reference Manual Page 3

Introduction Chapter I

Statement-function statements are characterized by a
single-statement "template" defined in a program unit, with
operations on dummy arguments. The statement function is
referenced in a program unit just like a function, with actual
arguments supplied. The arguments are combined according to the
statement-function definition to yield a res~t that can be used
in an expression.

FORTRAN provides a pow~rful input and output capability. A
file can be external (connected to an external device) or
Internal (refers to a character variable). Files can be
formatted or unformatted. Files can be accessed sequentially or
randomly. Formatted flIes can be the subject of data conversion
operations from internal storage representations to external
character string representations and vice-versa.

Format conversion is performed via READ, WRITE or PRINT
statements. There is a rich set of format specifications to
control the form and layout of converted data. There is a
list-directed input-output capability, where default formatting
rules are applied to the conversion process.

SUBROUTINE and FUNCTION program units may have arguments which
a calling routine passes to them for processing. At the time a
subroutine or function is declared, its formal arguments are
declared. At the time the ~ubroutine or functlon lS referenced,
actual arguments are substituted for the formal arguments. A
subroutine or function may have multiple ENTRY points. An ENTRY
statement can cause execution of a subroutine or function to
begin at a statement other than the first executable statement.
Control is returned from a subroutine or function program unit
either by encountering the END statement, or by executing a
RETURN statement. FORTRAN provides for an alternate return
specification for subroutines, such that a subroutine program
unit can return to a different place in the caller than the
statement following the CALL statement.

FORTRAN supplies a comprehensive set of intrinsic functions
which perform data type conversion and provide an extensive
collection of arithmetic and transcendental functions.

Page 4 FORTRAN Reference Manual

Chapter 1 Introduction

1.2 Notation and Terminology Used in this Manual

This Section defines the notation that is used in this manual
to define FORTRAN language constructs.

Upper-case letters and special characters are written as shown
in programs. Lower-case letters and words indicate objects for
which there is a substitution in actual statements described in
the text. Once a lower-case object is defined, it can be assumed
to retain that meaning for the remainder of the construct being
defined.

Example of upper-case and lower-case usage

The format specification which describes integer editing is
denoted Iv, where v is a non-zero, unsigned integer constant. In
an actual FORMAT statement, the editing specification might be
written as 15 or 121. The editing specification for real numbers
is Fw.d, where d is an unsigned integer constant. An actual
FORMAT statement might contain an edit specification like PB.4 or
P14.0. Note that the period character is a special character as
defined above, and is taken literally.

Brackets "[" and "]" enclose optional items. For example, A[v]
indicates that either of the forms A or A12 are valid (as a means
of specifying a character format).

The ellipsis notation " ••• " indicates that the optional item
preceding the ellipsis may appear one or more times. For
example, the computed GOTO statement is described by the form:

GOTO (s [, s] •••) [,] i

which indicates that the syntactic item ',s' may be repeated any
number of times.

Spaces (blanks) normally have no significance in describing
FORTRAN statements. The general rules for spaces, supplied later
in this chapter, provide the interpretation of spaces in all
contexts. Throughout this manual, "space" and "blank" are
considered synonymous. In general, the word "space" is used.

FORTRAN Reference Manual Page 5

Introduction Chapter 1

1.3 Basic Elements of FORTRAN

This section covers the basic lexical and syntactic elements
that go towards constructing a FORTRAN program.

1.3.1 FORTRAN Character Set

The FORTRAN character set consists of 26 upper case letters, 26
lower case letters, and thirteen special characters.

A letter is one of the 52 characters:

ABC D E F G H I J K L M N 0 P Q R STU V W X Y Z
abc d e f g h i j k 1 m n 0 p q r stu v w x y z

A digit is one of the ten characters:

o 1 2 3 4 5 6 789

An alphanumeric character is a letter or a d!git.

The special characters consist of the following characters:

Page 6

+-----------+-------------------+ I Character I Name of Character I
+-----------+-------------------+

+

*
/
\
(
)

$,

Blank or Space
Equals sign
Plus sign
Minus sign
Asterisk
Slash
Reverse Slash
Left Parenthesis
Right Parenthesis
Comma
Decimal Point
Currency Symbol
Apostrophe
Colon

& Ampersand
+-----------+-------------------+

FORTRAN Reference Manual

Chapter 1 Introduction

1.3.2 Collating Sequence and Graphics

SVS FORTRAN uses the ASCII character set. The collating
sequence in ASCII is:

Space (blank) collates lowest, followed by:
Digits "0" thru "9", followed by:
Upper case letters "A" thru HZ", followed by:
Lower case letters "a" thru HZ".

The special characters appear in between digits and upper-case
letters and before and after lower-case letters. There is an
ASCII character set chart in the appendices.

Within each of the ordered sets, digits, upper case letters,
and lower case letters, the characters in those sequences are
contiguous - there are no "holes" in those sequences.

1.3.3 Use of Spaces or Blanks or Tabs

The space (also called blank) and the tab characters have no
meaning in a program unit, with the exceptions listed below.
Otherwise, spaces or tabs can be used freely to improve the
layout and readability of a program. Spaces or tabs are
significant in the following cases:

• Within string constants, and within Hollerith fields.

• On compiler directive lines, discussed in the chapter on "Using
the FORTRAN Compiler".

• In column 6, when a space or tab distinguishes an initial line
from a continuation line.

• Counting in the total number of characters per line and per
statement.

FORTRAN Reference Manual Page 7

Introduction Chapter 1

Page 8 FORTRAN Reference Manual

Chapter 2 Lines, State~ents, and Control Flow

Chapter 2

Lines, Statements, and Control Flow

This chapter consists of three sections. The first section
describes the notions of lines in a FORTRAN program. The second
section covers the rUles--fOr FORTRAN statements. The final
section in this chapter covers the concept of execution sequence
or control flow - the order in which FORTRAN statements are
executed.

2.1 Lines

A line in a program unit is a sequence of characters in columns
1 thru-I20 (1 thru 72 if the $COL72 compiler option is selected,
as described in chapter 13). All characters in a line must be
selected from the character set descr ibed in chapter 1. Comment
lines (described below), character constants and Hollerith fields
can contain any printable ASCII character.

The character positions on a line are called columns and are
numbered consecutively from 1 thru 120 (1 through 72), left to
right on a line.

The FORTRAN compiler ignores characters which appear to the
right of column 120 (column 72 if the $COL72 compiler option is
selected) on a line, thus the user may use these columns for any
purpose (such as sequence information).

2.1.1 Comment Lines

Comment lines can appear anywhere in a program unit, including
before the first statement or after the last statement of a
program unit. Comment lines may appear between an initial line
and its first continuation line, or between two continuation
lines.

FORTRAN Reference Manual Page 9

Lines, Statements, and Control Flow Chapter 2

Examples of Comment Lines

C This is a comment line.
* ~his is also a comment line.
C The line following this one is all blank •••••

C •••.• and is therefore considered to be a comment.
* * Comment lines are for documentary purposes and
* have no effect on compilation or execution.

2.1.2 Initial Lines

An initial line generally indicates the start of a statement
line. An initial line is any non-comment line containing the
space or tab character or the digit 0 in column 6. Columns 1 thru
5 of the initial line of a statement may contain a statement
label.

Examples of Initial Lines

C Here are initial lines without statement labels.
C

C

GO TO 999
OGO TO 999

C Here are initial lines with statement labels.
C

379 GO TO 999
4850GO TO 999

2.1.3 Continuation Lines

A continuation _ine is any non-comment line containing any
character from th,·-pQRTRAN character set (other than a space
character or the digit 0) in column 6, or having the ampersand
character & in column one. A continuation line must not have a
statement label. :here may be up to 19 continuation lines in a
statement.

Page 10 FORTRAN Reference Manual

Chapter 2 Lines, Statements, and Control Flow

Examples of Continuation Lines

C
C These contrived statements each span two lines.
C

*

*

GO TO
$ 999

843 GO TO
+ 999

GO TO
& 999

2.1.4 Compiler Directive Lines

Compiler Directives are an SVS extension to FORTRAN-77.
Compiler directives provide additional controls over the
compiler's actions. A compiler directive line is a line with a
dollar sign "$" in column 1. A compiler directive line can appear
anywhere that a comment line can appear, although certain
directives must appear in certain restricted places in the
program. Spaces are significant in compiler directive lines and
serve to delimit keywords and filenames. The compiler directives
are listed in the chapter on "Running the FORTRAN Compiler".

*
*
*
*
*

Examples of Compiler Directives

The following directive instructs the compiler to
include the body of the file 'rasp.text' into the
program source code.

$INCLUDE rasp.text

2.2 Statements

FORTRAN language statements are descr ibed in Chapters 6 thru
12. Statements are used to form program units.

Statements are written in columns 7 thru 72 of an initial line,
and as many as 19 continuation lines.

FORTRAN Reference Manual Page 11

Lines, Statements, and Control Flow Chapter 2

An END statement is the exception to the above rules. An END
statement must appear on an initial line on its own. No other
statement in a program unit may have an initial line that looks
like an END statement.

In general, statements must begin on new lines, that is, a
statement may not begin on ~he same line as another statement.
The exception to this rule is the logical IF statement.

Spaces before, within, and after statements have no effect,
except within character constants and Hollerith constants, where
they indicate blank characters.

Examples of Statements

C An assignment statement
C

A - 5.0
C
C A subroutine call statement
C

CALL COLECT(PAY, PHONE)
C
C A logical IF statement
C

IF (DAY .EQ. 'FRIDAY') RETURN

2.2.1 Statement Labels

Statement labels provide the means to "tag" a statement such
that other statements may refer to it.

Any statement may be labelled, but only labels associated with
executable statements and FORMAT statements can be referenced by
other statements.

A statement label is one to five digits appearing anywhere in
columns 1 thru 5 of the initial line of a statement. At least
one of the digits in a statement label must be non-zero.

In any given program unit, statement labels must be unique -
duplication of statement labels is an error.

Page 12 FORTRAN Reference Manual

Chapter 2 Lines, Statements, and Control Flow

Examples of Statement Labels

123 FORMAT('The result is', IS)
C
C An example of a DO block.
C

DO 110 ICON· 1, 100
DESK (ICON) = 0.0

110 CONTINUE

2.2.2 Order of Statements and Lines

In any given program unit, the order in which statements appear
must obey certain rules. These rules are detailed below.

A PROGRAM statement may appear only as the first statement of a
main program. The first statement of a subprogram must be either
a FUNCTION, SUBROUTINE, or a BLOCK DATA statement.

In a program unit, statements must appear in the following
order.

1. FORMAT statements can appear anywhere.

2. All specification statements
statements, statement-function
statements.

must precede all DATA
statements, and executable

3. All statement-function
executable statements.

statements must precede all

4. DATA statements may appear anywhere after the specification
statements.

5. ENTRY statements may appear anywhere except between a block
IF statement and its corresponding END IF statement or
between a DO statement and the terminal statement of its
DO-loop. In other words, a subprogram must not be entered
(via an ENTRY statement), in the middle of a block IF or DO
block.

within a program unit's specification statements, IMPLICIT
statements must precede all specification statements other than
PARAMETER statements. Any specification statement that defines
the type of a symbolic name must precede a PARAMETER statement
that defines the symbolic name of a constant.

FORTRAN Reference Manual Page 13

Lines, Statements, and Control Flow Chapter 2

PARAMETER statements that define symbolic constant names must
precede all uses of such names.

The last (non-comment) line of a program unit must be an END
statement.

The diagram below pictor ially descr ibes the manner in which
statements and comment lines may be interspersed.

+----------+---+

Comment
Lines

I PROGRAM, FUNCTION, SUBROUTINE, or I
BLOCK DATA statement.

+--------------+--------------+-----------------+

FORMAT
and

ENTRY
Statements

PARAMETER
Statements

I IMPLICIT I
Statements

+-----------------+
Other

Specification
Statements

+--------------+-----------------+
Statement
Function

DATA Statements
Statements

+-----------------+
I Executable I

Statements
+----------+--------------+--------------+-----------------+ I END Statement I
+--+

Figure 2-1
Ordering of Lines and Statements in a FORTRAN Program

In the diagram, vertical lines separate statement groups that
may be mixed. For example, FORMAT statements can be mixed with
statement-function statements and executable statements.

Hor izontal lines separate statement groups that must not be
mixed. For example, statement-function statements cannot be
mixed with executable statements. Note that an END statement, in
addition to being executable, must be the last statement in a
program unit.

Page 14 FORTRAN Reference Manual

Chapter 2 Lines, Statements, and Control Flow

2.3 Execution Sequence and Control Transfer

Normal execution sequence means that executable statements are
executed in the order in which they appear in the program unit.
Program execution starts with the first executable statement in
the main program. When an external procedure is referenced,
execution proceeds with the first executable statement that
follows the FUNCTION, SUBROUTINE or ENTRY statement in the
subprogram.

A control transfer means that the normal execution sequence is
altered. Statements that cause control transfer .are:

1. unconditional GO TO statement, computed GO TO statement or
assigned GO TO statement,

2. Arithmetic IF statement,

3. RETURN statement,

4. STOP statement,

5. input-output statement containing an error specifier or an
end-of-file specifier,

6. CALL with an alternate return specifier,

7. logical IF statement containing any of the above forms as
its subordinate statement,

8. Block IF and ELSE IF statements,

9. the last statement (if any) of an IF-block or ELSE
IF-block,

10. DO statement,

11. the terminal statement of a DO-loop,

12. END statement.

Normal execution sequence is not affected by non-executable
statements, comment lines or compiler directives appearing
between executable statements in the source code.

FORTRAN Reference Manual Page 15

Lines, Statements, and Control Flow Chapter 2

Executing a function reference or a CALL statement is not
considered a control transfer in the program that makes the
reference, except when control is returned to a statement
identified by an alternate return specifier in a CALL statement.

Executing a RETURN or an END statement in a referenced
procedure, or a control transfer in a referenced procedure, is
not considered a control transfer in the program unit that makes
the reference.

Function and subroutine subprograms cannot be invoked
recursively in SVS FORTRAN. Note, however, that FORTRAN
subprograms can reference subprograms written in other languages
(such as Pascal) that themselves can be recursive.

Page 16 FORTRAN Reference Manual

Chapter 2 Lines, Statements, and Control Flow

FORTRAN Reference Manual Page 17

Data Types and Constants Chapter 3

Chapter 3

Data Types and Constants

There are six data ~ in FORTRAN, namely: INTEGER, REAL
(floating point), DOUBLE PRECISION (extended precision REAL),

COMPLEX (elements of the complex number domain), CHARACTER
(character str ing data) and LOGICAL (able to assume the values
.TRUE. or .FALSE.). The various data types are discussed in the
sections to follow. SVS FORTRAN extends ANSI FORTRAN in such a
way that the user can specify the amount of computer storage
which a particular data type consumes. This extension is covered
in the appropriate sections below.

3.1 Data Type Rules

A symbolic name (associated with a constant, variable, array,
external function or statement-function) can have its type
specified in a type statement. The possible types are those
listed in the paragraph above.

If no explicit type statement is supplied for a program
element, the type is implied by the first letter of the name. A
first letter of I, J,. K, L, M or B implies type integer. Any
other first letter implies type real. These default type rules
can be overridden either by explicit type statements or by the
IMPLICIT statement, which changes the default type-rules.

The data type of an array element is the same as that of the
array. The data type of a function name specifies the type of
the value which that function returns. Intrinsic functions have
a type that is specified in the chart in the chapter on nprogram
Structure". Gener ic intr insic functions do not have a default
type. The type of a generic intrinsic function depends on the
type of its argument(s). An external function reference is given
a default type, based upon the first letter of its name, in the
same way as variables and arrays.

Page 18 FORTRAN Reference Manual

Chapter 3 Data Types and Constants

3.2 Constants

A constant is a value that defines itself and does not change.
A constant can be an arithmetic value, a logical value, or a
character string value. The representation of a constant
specifies both its value and its data type. A PARAMETER
statement associates a symbolic name with a constant.

Arithmetic constants are INTEGER, REAL, DOUBLE PRECISION, and
COMPLEX values.

For the purposes of definition in this manual, an unsigned
constant is a constant without any leading sign. A sIgned
constant is a constant with a leading plus or minus sign. An
0et10nally-signed constant is a constant that can be ei~her
s1gned or unsIgned. Integer, real, and double precision
constants may be optionally-signed except where otherwise noted.

3.3 Integer Data Type

Integers, as represented in the finite word size of a computer,
are only a subset of the infinite set of integers. An integer
value as represented in FORTRAN is an exact representation of the
corresponding integer.

An integer data value occupies two words (fou,: bytes or 32
bits) of storage and can represent values 1n the range
-2,147,483,648 thru +2,147,483,647. Integers can be designated as
fitting in 16 bits if the $INT2 compiler option is selected.

Note that integers are represented internally in two's
complement notation and that it is a consequence of this notation
that there is one more negative integer than there are positive
integers.

SVS FORTRAN also provides a means to specify the amount of
storage which integers occupy. This is an extension to ANSI
FORTRAN. The extended forms of integer are:

INTEGER*l occupies one byte (8 bits) and can assume values
in the range -128 thru +127.

FORTRAN Reference Manual Page 19

Data Types and Constants Chapter 3

INTEGER*2

INTEGER*4

occupies one word (16 bi ts) and assumes values
in the range -32768 thru +32767.

occupies two words (32 bits) and is the same as
the standard integer type discussed above.

An integer constant consists of a sequence of decimal digits,
preceded by an optional sign. Alternatively, an integer constant
can be expressed in the hexadecimal radix by a dollar sign ($)
followed by a sequence of digits or letters in the range 'A'
through 'F' or 'a' through 'fl. Note that hexadecimal numbers are
considered unsigned. To obtain a signed hexadecimal constant,
the user must explicitly code a 1 in the sign bit position.

72

$123

Examples of INTEGER Constants

-32768 32767

$ffffffff $Oa

o

$3e8

+56

3.4 Real Data Type

Real Data ~ are intended to represent the set of real
values whl.ch comp.rise the continuum. Because of a finite
representation imposed by a finite word size in the computer, the
real data type in FORTRAN can only represent a finite subset of
the entire set of rea1s.

A basic real constant has an optional sign, an integer part, a
decimal point, and a fractional part. Both the integer and the
real part are sequences of digits. Either part can be omitted,
but not both. Real constants are assumed to be decimal numbers.

3.14159
.7071

5.
0.0

Examples of Basic Real Constants

+2.236
+.5

+8.
O.

-1. 4142
-.618034

-6.
.0

A real exponent consists of the letter E followed by an
optionally signed integer constant. A real exponent indicates a
power of ten.

Page 20 FORTRAN Reference Manual

Chapter 3 Data Types and Constants

Examples of Real Exponents

El4 E+l2 E-lO EO

A real constant is anyone of: a basic real constant, a basic
real~nstant followed by an exponent part, or an integer
constant followed by an exponent part.

SVS FORTRAN provides a means to specify the amount of data
storage which a real data type is to occupy. The forms are:

REAL * 4

REAL * 8

+7.S2E-l

occupies two words (32 bits) and is the same as
a basic real datum as described above.

occupies four words (64 bits) and is the same as
the DOTJBLE PRECISION data type discussed below.

Examples of Real Constants

299793.SE3 20E-3

A real constant containing an exponent part is the product of
the constant preceding the E and the power of ten indicated by
the integer following the E.

A real value occupies four bytes of storage. The range of real
values is approximately -3.4E38 thru +3.4E38. The precision is
about seven decimal places.

3.4.1 Infinite and Indeterminate Real Values

The representation of real values in FORTRAN allows for
positive and negative "infinity", and for indeterminate values.
This is primar ily of interest when formatting such values for
output. There is more on this subject in the chapter on input
and output.

FORTRAN Reference Manual Page 21

Data Types and Constants Chapter 3

3.5 Double Precision Data Type

The Double-Precision data ~ is intended for applications
where the range and precision of Single-Precision data is
inadequate. Double-Precision extends the range to approximately
-10E308 thru +10E308 and the precision to about 16 decimal
digits.

A double precision exponent is the letter D followed by an
optionally-signed integer constant. The forms of a double
precision constant are either: a basic real constant followed by
a double precision exponent, or an integer constant followed by a
double precision exponent.

3.6 Complex Data Type

The Complex data ~ represents values from the complex number
domain.

A complex number consists of an ordered pair of numbers, each
of which is either an integer or a single-precision real number -
the first representing the "real" (sicl) part of the number, and
the second representing the "imaginary" part. A complex constant
is written as two integers or single-precision real numbers
enclosed in parentheses and separated by a comma.

Examples of Complex Constants

(1, 1) (0.707, -0.707) (-1.5ElO, 2.6E-5)

3.7 Character Data Type

A character data element is a string of characters.
can contain any of the printable ASCII characters.
significant in character str ings. The len~th of
string is the number of characters in the strlng.

The string
Spaces are

a character

Page 22 FORTRAN Reference Manual

Chapter 3 Data Types and Constants

The form of a character constant is a non-empty str ing of
characters enclosed in apostrophe h." signs. The apostrophes
serve to delimit the string constant, but are not part of it. An
apostrophe in the string is represented by two juxtaposed
apostrophes.

The length of a character constant is the number of characters
in the string, except that each pair of juxtaposed apostrophes in
the str ing is counted as one character. The delimiting
apostrophes are not part of the string and are not counted in the
string length.

The maximum length of a character constant is 255 characters.

There is no provision for expressing empty (null) character
str ings.

Examples of Character String Constants

'x' , , 'The hunting of the Snark'

'The time is One O"Clock' '" ,
The last two examples illustrate the representation of embedded
apostrophes.

FORTRAN source lines extend up to column 72 on a line. Shorter
lines are not space-filled to 72 columns but are left as typed.
When a character constant extends across a line boundary, its
value is as if the portion of the continuation line starting in
column 7 abuts the last character on the preceding line. Thus
the FORTRAN source statement:

200 example = 'First string part<cr>
$ Second string part'

(where <cr> is carriage-return) is equivalent to the statement:

200 example - 'First string part Second string part'

where the single space between the ntH at the end of the first
line and the usn at the start of the second line is the space in
column 7 of the continuation line. Long character constants can
be represented in this way.

FORTRAN Reference Manual Page 23

Data Types and Constants Chapter 3

3.8 Logical Data Type

A logical data element represents a Boolean quantity. It can
only take on the values true or false.

The form of
(representing the
false value).

a logical constant is
truth value) or ".FALSE."

either: ".TRUE."
(representing the

SVS FORTRAN provides a means to specify logical data items
which occupy less data storage than the standard logical type.
These forms are:

LOGICAL*l

LOGICAL*2

LOGICAL*4

Page 24

occupies one byte (8 bits).

occupies one word (16 bits).

occupies tWQ words (32 bits) and is the same as
the standard LOGICAL data type.

FORTRAN Reference Manual

Chapter 4 FORTRAN Names, Arrays, and Substrings

Chapter 4

PORTRAN Names r Arraysr and Substrings

This chapter introduces the rules for FORTRAN ~ - symbolic
names which may be used to identify program objects. The second
section descr ibes the way that arraYfi are defined and
referenced. The third section discusses t e ideas of character
variables and substrings of character variables.

4.1 FORTRAN Names

A FORTRAN name or identifier consists of one through six
alphanumeric characters, and must start with a letter. A FORTRAN
name can have embedded spaces in it the spaces have no
significance and are ignored. The FORTRAN compiler makes no
distinction between upper-case letters and lower-case letters -
the names PASCAL, PaScAl, pAsCaL and pascal are all equivalent as
far as FORTRAN is concerned.

A name is used to denote a user-defined var iable, a
system-defined variable, array variable, subroutine or function.
FORTRAN does not have any reserved words the compiler
recognizes keywords in context. For reasons of clarity and
readabili ty though, users are recommended to use names that are
distinct from those of FORTRAN.

Examples of Valid FORTRAN ~

XPos Eatup FilSet MAXO

RngKut L5 Shell Bubble

FORTRAN Reference Manual Page 25

FORTRAN Names, Arrays, and Substrings Chapter 4

Examples of Invalid FORTRAN Names

2ndTime Begins with digit

TooLarge More than six characters

Non-alphanumeric character

4.1.1 Scope of FORTRAN Names

The scope of a FORTRAN name is that region of a program over
which the name is known or can be referenced. In general, the
scope of a name is either local to a program unit or global to
the entire FORTRAN program. There are certain exceptions which
are described later.

A name with global scope can be used in more than one program
unit . (subroutine, function or the main program) and still refer
to the same object. Names with global scope can only be used in
a single, consistent manner within the same program. The names
of all subroutine, function and block-data program units, the
names of common areas, and the program name, have global scope.
Therefore, there cannot be a subroutine program unit that has the
same name as a function program unit or a common area.
Similarly, two function program units cannot have the same name.

A name with local scope is only known within a single program
unit. A name with local scope can therefore be used in other
program units with the same or different meanings everywhere it
is used. Within a specific local scope, a name must be used
consistently and refer to the same object. The names of
var iables, arrays, constants, arguments and statement-functions
all have local scope. A name with local scope can be used in the
same compilation as the same name with global scope as long as
the global name ~s not referenced within the program unit
containing the 1oc<.1 name. For example, there can be a function
called PARTY, ana a local variable called PARTY in another
program unit, as If.1g as the program unit containing the variable
called PARTY does 1t try to reference the function called PARTY.
The FORTRAN compi r detects all such scope errors and issues
diagnostics conceri ng them.

Common block nam
possible to refer
program unit conta
of the common blo(
block names alwaj
therefore the comp

Page 26

; are an exception to the scope rules. It is
'0 a globally scoped common block name in a
ling a locally scoped name identical to that

This situation· is allowed because common
appear in slashes, such as /COLD/, and

er can always distinguish such names.

FORTRAN Reference Manual

Chapter 4 FORTRAN Names, Arrays, and Substrings

Formal arguments to statement-functions are another exception
to the scope rules. The scope of formal arguments of
statement-functions is the body of the statement function
itself. Any other use of those names in the statement-function
is not allowed and neither is any other use of such names outside
the statement-function. For example, if a formal argument to a
statement-function has the same name as that of a function
subprogram, that function subprogram may not be referenced from
within the body of the statement-function. References to formal
argument names of a statement-function from outside the body of
the statement-function refer to objects which are different from
the arguments of the statement-function.

Names used as implied-DO control var iables in DATA statements
and input-output statements have a scope which is local to the
DATA statement or input-output statement.

4.1.2 Undeclared FORTRAN Names

When a user name that has not previously appeared in a program
uni t is referenced in an executable stateme'nt, FORTRAN decides
how to classify that name from. the context in which it appears.
If the name appears to be a variable, FORTRAN creates a
symbol-table entry for that name.

Its type is inferred from the first letter of the name.
Variables starting with the letters I, J, K, L, M and N are
considered to be of type integer, all others are considered to be
of type real. If an undeclared name appears in the context of a
function reference, the function's type is inferred from its name
in the same manner as for variables. In both cases, these
default type rules can be overridden by previous IMPLICIT
statements (see the chapter on "Specification Statements").
Similarly, a name appearing in the context of a subroutine call
has an entry created for it. If a symbol table entry exists for
a subroutine or function name, its attributes are coordinated
with those of the newly created entry. Inconsistencies such as a
subroutine name used in the context of a function or vice versa

,give rise to error diagnostics.

In general, users are encouraged to declare all names used in
each program unit, since it helps to assure that FORTRAN
associates the proper definition with the name. Letting FORTRAN
decide on the default can sometimes result in logical errors that
are hard to find, usually at execution time when strange results
or forms of behavior are exhibited.

FORTRAN Reference Manual Page 27

FORTRAN Names, Arrays, and Substrings Chapter 4

4.2 Array Declarations

Arrays provide the means to deal with data aggregates where the
elements of the aggregates are homogeneous. An arra~ declaration
specifies a symbolic name that identifies an array 1n a program
unit. The declaration also serves to specify properties of th~
array, such as its dimension and, optionally, the type of its
elements. In any given program unit only one array declaration
is allowed for any given array - duplicate declarations are
flagged as errors. The form of an array declaration is:

array name (dim [, dim] •••)

Each 'dim' above is a dimension declarator as defined below.
The number of dimensions for an array is equal to the number of
dimension declarations "given when the array is declared.

4.2.1 Dimension Declarations

A dimension declarator serves to define the bounds of a
specific dimension in an array. FORTRAN-77 provides for defining
both the lower and the upper bound of a dimension. The form of a
dimension declaration is:

[lower bound :] upper bound

The optional lower bound, and the upper bound are arithmetic
expressions, called dimension bound expressions, in which all
constants, symbolic constant names, and variables are of type
integer. The upper bound of the last dimension declaration can
be an asterisk (see 'assumed size arrays', later).

A dimension bound expression must not conta in any function or
array element references. Integer variables can appear in
dimension bound expressions only in adjustable array declarations
(see 'adjustable arrays', later). If a symbolic constant name or
variable in a dimension bound expression is not of default
implied integer type, it must be specified as integer via a type
statement or an IMPLICIT statement before its use in a dimension
bound expression.

Either dimension bound may have a positive, negative or zero
value. The upper bound must not be less than the lower bound.
If only the upper bound is specified, the lower bound has the
value one (1). An upper bound of * is always greater than or

Page 28 FORTRAN Reference Manual

Chapter 4 FORTRAN Names, Arrays, and Substrings

equal to the lower bound.

4.2.2 Kinds of Array Declarations

There are three basic forms of array declarations.

A constant array declaration is one in which all the dimension
bound expressions are integer constant expressions.

An adjustable array declaration is one in which the dimension
bounds contain integer variables. Adjustable arrays may be used
as dummy arguments in subroutines and functions. Variables which
define the bounds of adjustable arrays must either be formal
arguments themselves, or they must be i.n common blocks.

An assumed size array declaration is one in which the upper
bound of the last dimension is an asterisk character '*'. Assumed
size arrays may also only be used as dummy arguments to
subroutines and functions. Using assumed size arrays in
procedures circumvents any range checking which the FORTRAN
system can perform.

4.2.3 Actual Arrays and Dummy Arrays

An actual array declarator "actually" declares an array there
and then. Each actual array declarator must be a constant array
declarator as defined above. An actual array declarator can be
used in the type statement, the DIMENSION statement and the
COMMON statement, as defined in the chapter on "Specification
Statements".

A dummy array declarator defines a dummy argument for a
subroutine or function. A dummy array declarator can be any of
the forms given above: constant, adjustable or assumed size. A
dummy array declarator can only appear in subroutines and
functions. A dummy array declarator may not appear in a COMMON
statement.

FORTRAN Reference Manual Page 29

FORTRAN Names, Arrays, and Substrings Chapter 4

Examples of Array Declarations

*
* Constant array Declarations in type statements

* C a 100 element vector with bounds 1 - 100
INTEGER VECTOR(lOO)

C a 20 element matrix with 5 rows and 4 columns
REAL MATRIX(5, 4)

C a 256 element array with bounds 0 - 255
CHARACTER*2 CHARS(O : 255)

C a 3 element array
LOGICAL*2 BOOLS(-l : +1)

C a constant expression dimension
REAL WOOD (2*4)

*
* Adjustable Array Declaration in a DIMENSION statement
*

DIMENSION SCREEN(l : CHARS, 1 : LINES)
*
* Assumed size array declaration in a type statement.
*

REAL VARIAB(5, *)

4.2.4 Referencing Array Elements - Array Subscripts

An arra& SUbscriFt is the means to reference an element of the
array. T e form 0 an array subscript is:

(subexpr [, subexpr] •••)

Note that the term "subscr ipt" includes the parentheses that
enclose the subscript expression list.

A subscr ipt expression is an integer expression. A subscr ipt
expression can contain array element references and function
references. If a subscript expression contains a function
reference, the function must not change the value of any other
subscript expression in the same subscript.

In any given program unit, the value of each subscript
expression should not be less than the lower bound for the
dimension and should not be greater than the upper bound for the
dimension. If the upper dimension bound is an aster isk, the
subscr ipt expression must not be greater than the size of the
dummy array.

Page 30 FORTRAN Reference Manual

Chapter 4 FORTRAN Names, Arrays, and Substrings

Examples of Arrays with Subscripts

SCREEN (2, 3)

VARIAB(N+l, MAX(3, 4))

4.2.5 Using Unsubscripted Array Names

Generally speaking, array names must be followed by
subscripts. There are some exceptions where the array name alone
can be used. An unsubscripted array name can be used in the
following places:

• a list of dummy arguments for a subroutine or function program
unit,

• a COMMON statement when declaring that the array resides in
that common block,

• a type statement when the type of the array is established,

an array declaration when the array dimensions are being
established,

• an EQUIVALENCE statement,

• a DATA statement,

the list of actual arguments in a reference to an external
procedure,

the list of an input-output statement if the array is not an
assumed size dummy array,

a unit identifier for an internal file in an input-output
statement if the array is not an assumed size dummy array,

• the format identifier in an input-output statement if the array
is not an assumed size dummy array,

• a SAVE statement.

FORTRAN Reference Manual Page 31

FORTRAN Names, Arrays, and Substrings Chapter 4

4.3 Character Substrings

A Character Substr ing is a contiguous portion of a character
object. The type of a character substring is of type CHARACTER.
A character substring can be identified by a symbolic name, and
it can be referenced and assigned values by that name. The forms
of a substring ~ are:

character variable([start] [finish])

where 'start' and 'finish' are substring expressions. A
character variable may be an element of a character array.
'start' specifies the leftmost character position of the
substring. 'finish' specifies the rightmost character position
of the substring. The values of 'start' and 'finish' lI\ust be
such that:

1 ~ start ~ finish ~ length

where 'length' is the length of the character variable or
character array element. If 'start' is omitted, the value one
(1) is used. If 'finish' is omitted, the value 'length' is
used. Both 'start' and 'finish' can be omitted. In such a case,
a substr ing reference of the form s (:) is equivalent to s. The
length of a character substring is 'finish' - 'start' + 1.

A substr ing expression is any integer expression which can
contain array element references, and function references. The
same restrictions (with regard to side effects) apply to
substring expressions as apply to array subscripts.

ROPEY(1:3)

ACHAR(5:5)

Page 32

Examples of Character Substrings

THELOT(:)

FOURCH(:4)

FORTRAN Reference Manual

Chapter 5 Expressions

Chapter 5

Expressions

This chapter descr ibes the rules for expressions. An
expression is formed from operands, operators, and parentheses.
FORTRAN has four classes of expressions:

• Arithmetic expressions,
• Character expressions,
• Relational expressions,
• Logical expressions.

5.1 Arithmetic Expressions

An arithmetic expression expresses a numeric computation and
generates a numeric value.

5.1.1 Arithmetic Operators

The arithmetic operators are as follows:

+----------+-------------------------+ I Operator I Meaning I
+----------+-------------------------+ ** Exponentiation

I Division
* Multiplication

Subtraction or Negation
+ Addition or Identity

+----------+-------------------------+
The **, I, and * operators are binary operators. The + and -

operators can be unary or binary operators.

The ** operator has the highest precedence, then the * and I
operators, and lastly the + and - operators. Parentheses may be
used freely to change the order of evaluation.

FORTRAN Reference Manual Page 33

Expressions Chapter 5

5.1.2 Arithmetic Operands

An arithmetic operand consists of a trimarr, a factor, a ~
or an arithmetIc expression. These var QUS klnds of operands are
discussed below.

The primary operands are:

• Unsigned arithmetic constant,
• Symbolic name of an arithmetic constant,
• Arithmetic variable reference,
• Arithmetic array element reference,
• Arithmetic function reference,
• Arithmetic expression enclosed in parentheses.

The factor operands are:

• Pr imary,
• Primary ** factor.

A factor is formed from a sequence of one or more pr imar ies
separated by an exponentiation operator. The second form means
that an expression such as:

2**3**4

is to be interpreted as:

2**(3**4)

A term operand is:

• Factor,
• Term / factor,
• Term * factor.

A term
multiply
right.

is formed from one or more factors separated by the
or divide operator. Factors are combined left to

An arithmetic expression consists of:

• Term,
• +term or -term,

Page 34

Arithmetic expression + term,
Arithmetic expression - term.

FORTRAN Reference Manual

Chapter 5 Expressions

An arithmetic expression consists of a series of terms
separated by plus or minus operators. The first term in an
expression can be preceded by a plus or minus sign. Terms are
combined left to right. Note that the rules for expressions mean
that two consecutive operators form an incorrect expression.
Thus A**-B is wrong, whereas A**(-B) is correct.

5.1.3 Constant Expressions

Constant expressions are used in many language constructs
throughout FORTRAN, especially in specification statements.
There are two forms of constant expressions, namely ar i thmetic
constant expressions and integer constant expressions. These are
discussed below.

An arithmetic constant expression is an expression in which
each primary is an arithmetic constant, the symbolic name of an
arithmetic constant or a constant expression enclosed in
parentheses. Exponentiation is only allowed if the exponent is
of type integer.

Examples of Arithmetic Constant Expressions

5.0*2

-16/4

2**31-1

3.141592/2

2*(4.5, 9.8)

5**(3+2)

An integer constant expression is an arithmetic constant
expreSS10n in Wh1Ch each constant 1S of type integer.

Examples of Integer Constant Expressions

3*5 -10 4+5* (9-2)

5.1.4 Type Conversion Rules for Arithmetic Expressions

The data type of an expression is ultimately derived from the
data types of its operands according to the rules stated below.
When operands of mixed data types appear in an expression,
FORTRAN performs implicit type conversion on the operands
according to well-defined rules in order to generate the result.

When the plus "+" operator or the minus "-" operator operate
upon a single operand (they are used as unary operators), the
data type of the result is the same as the data type of the
operand.

FORTRAN Reference Manual Page 35

Expressions Chapter 5

When an arithmetic operator applies to a pair of operands, the
type of the results is as shown in the tables below. The letter
I stands for an operand or result of type Integer, the letter R
for Real, the letter D for Double-precision and the letter C for
Complex. The rules are 9iven in the form of assi9nments. The
result type is indicated by the letter to the left of the equals
si9n and the derivation of that result is 9iven by the expression
to the ri9ht of the equals si9n. The function names REAL, DBLE
and CMPLX are as defined in the table of intrinsic functions in
the appendix on "Intrinsic Functions".

5.1.4.1 Rules for Add, Subtract, Multiply and Divide

The two tables below define the types and interpretations for
the +, -, * and / operators. For example, to obtain the rule for
Il*C2 where '11' is an integer and 'C2' is a complex, look in the
second part of the table, find the '11' entry under 'Xl' and the
'C2' entry across from 'X2', the rule is then:

'C - CMPLX(REAL(Il), 0.0) + C2'

which is interpreted as:

'the result is of type complex 1 the first operand is
obtained by convertin9 the integer to a real, then
convertin9 that to a complex with the ima9inary part
0.0, the two complex numbers are then added'.

The rules for subtraction, multiplication and division are
obtained by replacin9 the "+" si9ns with the desired operator.

Page 36 FORTRAN Reference Manual

Chapter 5 Expressions

+------+-----------------------------+-----------------------+

I Xl X2 I 12 I R2 I
+------+-----------------------------+-----------------------+

11 I 11 + 12 R = REAL(Il) + R2
Rl R = Rl + REAL(I2) R = Rl + R2·
Dl D = Dl + DBLE(I2) D = Dl + DBLE(R2)
Cl C = Cl+CMPLX(REAL(I2), 0.0) C = Cl+CMPLX(R2, 0.0)

+------+-----------------------------+-----------------------+
+------+-------------------~-+-------------------------------+

I Xl X2 I D2 I C2 I
+------+---------------------+-------------------------------+

11 D = DBLE(Il) + D2 C = CMPLX(REAL(Il), 0.0)+C2
Rl D = DBLE(Rl) + D2 C = CMPLX(Rl, 0.0)+C2
Dl D = Dl + D2 Not Allowed
Cl N~t Allowed C = Cl+C2

+------+---------------------+-------------------------------+

5.1.4.2 Rules for Exponentiation Operator

The tables below define the types and interpretations for
expressions of the form Xl**X2.

+------+-----------------------------+--------------------------+

I X1X2 I 12 I R2 I
+------+-----------------------------+_._------------------------+

11 I = 11 ** 12 R REAL (11) ** R2
Rl R = Rl * * 12 R = Rl * * R2
Dl D = Dl ** 12 D • Dl ** DBLE(R2)
Cl C = Cl**I2 C = Cl**CMPLX(R2, 0.0)

+------+-----------------------------+--------------------------+
+------+----------------------+---------------------------------+

I Xl X2 I D2 I C2 I
+------+----------------------+---------------------------------+

11 D = DBLE(Il) ** D2 C = CMPLX(REAL(Il), 0.0)**C2
Rl D = DBLE(Rl) ** D2 C = CMPLX(Rl, 0.0)**C2
Dl D = Dl ** D2 Not Allowed
Cl Not Allowed C = Cl**C2

+------+----------------------+---------------------------------+

Four of the entr ies in the above table spec ify what happens
when a complex argument is raised to a complex power. In these
cases, the value of the expression is the principal value,
determined by the formula:

FORTRAN Reference Manual Page 37

Expressions Chapter 5

Xl**X2 = EXP(X2 * LOG(X2»

where EXP and LOG are the exponential and natural logarithm
intrinsics described in the chapter on "Program Structure".

Except for values raised to an integer power, in mixed mode
expressions, the operand which differs from the type of the
resul t is converted to the type of the result according to the
rules given in the tables above. The operator then operates on a
pair of operands of the same type. When a primary is raised to
an integer power, the integer does not need to be converted.

5.1.5 Coercion Rules for Integers of Different Size

In expressions involving INTEGER*l, INTEGER*2 and INTEGER*4
(INTEGER), the smaller sized operand is always "promoted" to the
size of the larger operand, and the arithmetic operation is
performed in the larger sized field. In all cases, elements of
type INTEGER* 1 are always promoted to INTEGER* 2. In any case,
assigning the resul t of an expression to a var iable of smaller
size produces an undefined result if the value stored exceeds the
range of values allowed for that specific var iable. Note also
that many FORTRAN statements and functions specifically require
arguments of type INTEGER. In such cases, ne i ther arguments of
size INTEGER*l nor INTEGER*2 may be used.

5.1.6 Integer Division

If an integer operand is divided by another integer operand,
the result is not the strict mathematical quotient. Instead, the
quotient is obtained by truncating towards zero. Thus 1/2 is 0
and (-8)/3 is -2.

5.2 Character Expressions

A character expression operates on character strings and
generates character values. The simplest form of character
expressions are:

character constant,
character variable,
character array element reference,
character substring reference,
character function reference,
character expression enclosed in parentheses.

Page 38 FORTRAN Reference Manual

Chapter 5 Expressions

There is only one character operator - the "II" sign, meaning
concatenation.

The result of a character concatenation operations such as:

Xl II X2

is a value which is 'Xl' concatenated on the right with 'X2'. The
length of the result is the sum of the lengths of the individual
operands.

5.2.1 Restrictions on the use of String Expressions

Formal arguments to procedures can be character strings whose
length is specified as (*). This designates the string as an
assumed size character string whose length is determined at the
time an actual string argument is asociated with that formal
argument. A character string expression involving concatenation
of such a string argument may not be passed as an actual argument
to any procedure, nor may it appear in the format specification
of an input-output statement, nor may it appear as an item in the
'iolist' of an input-output statement.

Example of String Concatenation

'Left Side' II 'Right Side'

5.3 Relational Expressions

Relational expressions compare arithmetic expression values or
character expression values. Relational expressions yield
logical values. The relational operators are:

FORTRAN Reference Manual Page 39

Expressions Chapter 5

+----------+--------------------------+ I Operator I Meaning I
+----------+--------------------------+

.LT. Less than

.LE. Less than or equal to

.EO. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to
+----------+--------------------------+

5.3.1 Arithmetic Relational Expressions

An ar i thmetic relational expression expresses a relationship
between arithmetic operands. The form of an arithmetic
relational expression is:

El relop E2

where 'El' and 'E2' are arithmetic operands, and 'relop' is one
of the operators selected from the table above.

Only the .EO. (equality) and .NE. (inequality) operators are
allowed for operands of complex type.

If the operands are of. different types, the relational
expression is treated as if it were in the form:

«El) - (E2» relop 0

where 0 (zero) is the same type as the expression.

Comparison of a double precision value and a complex value is
not allowed.

5.3.2 Character Relational Expressions

A character relational expression is of the form:

El relop E2

where 'Ell and 'E2' are character expressions and 'relop' is one
of the relational operators selected from the table above. The
order ing of character expressions is as defined in the ASCII
character set table in the appendices. The .EO. (equality) and
.NE. (inequality) operators do not use the order ing. If the
operands in a character relational expression are of different
lengths, the shorter operand is considered to be padded on the

Page 40 FORTRAN Reference Manual

Chapter 5 Expressions

right with spaces until the operands are of the same length.

5.4 Logical Expressions

A logical expression operates on values of type logical and
generates a result of type logical. The simplest forms of
logical expressions are:

• logical constant,
• logical variable reference,
• logical array element reference,
• logical function reference,
• relational expression.

Other logical expressions are built up from these simple forms
by using parentheses and the logical operators as follows:

+----------+------------------------+ I Operator I Meaning I
+----------+------------------------+

.NOT. Logical Negation

.AND. Logical Conjunction

.OR. Inclusive DiSjunction

.EQV. Logical Equivalence

.NEQV. Logical Nonequivalence
+----------+------------------------+

5.4.1 Precedence of Logical Operators

The precedence of the logical operators is shown on the next
page:

FORTRAN Reference Manual Page 41

Expressions Chapter 5

+-----------------+------------+ I Operator I Precedence I
+-----------------+------------+

.NOT. Highest

.AND •
• OR •

• EQV. or .NEQV. Lowest
+-----------------+------------+

The .AND. and .OR. operators are binary operators and must
appear· between their operands. The .NOT. operator is a unary
operator and appears before its operand. Operators of equal
precedence associate left to right.

A .AND. B .AND. C

is equivalent to:

(A .AND. B) .AND. C

.NOT. A .OR. B .AND. C

is equivalent to:

(.NOT. A) .OR. (B .AND. C)

Two .NOT. operators must not appear adjacent to each other.
The expression:

A .AND •• NOT. B

is an example of an allowable expression with two adjacent
operators.

Page 42 FORTRAN Reference Manual

Chapter 5 Expressions

5.5 Precedence of Operators

When arithmetic, relational and logical operators appear in the
same expression, their relative precedence is:

+------------+--------------+ I Operator I Precedence I
+------------+--------------+

I
Arithmetic I Highest I
Relational Intermediate
Logical Lowest

+------------+--------------+

5.6 Evaluation Rules and Restrictions for Expressions

Any variable, array element or function referenced in an
expression must be defined at the time it is referenced. Integer
variables must be defined with an arithmetic value rather than a
statement label set by an ASSIGN statement. If a character
string or substring is referenced in an expression, all the
referenced characters should be defined at the time of the
reference.

It is an error to divide by zero. It is also an error to raise
a zero value to a zero or negative power. It is also an error to
raise a negative value to a real or double precision power.

5.6.1 Restrictions on Function References

In any given statement, it is an error if a function reference
within that statement changes any other object in the statement.

If a function reference causes an actual argument to the
function to become defined, it is an error to reference that
object anywhere else in the statement containing the function
reference.

FORTRAN Reference Manual Page 43

Expressions Chapter 5

Page 44 FORTRAN Reference Manual

Chapter 6 Specification Statements

Chapter 6

Specification Statements

This chapter describes SVS FORTRAN specification statements.
Specification statements are non-executable. They are used to
define properties of user-defined variables, arrays and
functions. There are nine types of specification statements:

• Type statements,
• DIMENSION statements,
• COMMON statements,
• PARAMETER statements,
• IMPLICIT statements,
• EXTERNAL statements,
• INTRINSIC statements,
• SAVE statements,
• EQUIVALENCE statements.

Specification statements must precede all executable statements
in a subprogram unit. If any IMPLICIT statements appear in the
subprogram, they must precede all other specification
statements. Other than that, specification statements can appear
in any order within their own group.

6.1 Type Statements - Declaring Data Types

~ statements specify the data type of user-defined names. A
type statement either confirms or overr ides the default type
rules for names. Type statements can also convey dimension
information when declaring arrays. A user-defined name for a
variable, array, formal argument, external function or
statement-function can appear in a type statement. Such an
appearance defines the type of that name for the entire program
unit that contains the type statement. In any given program
unit, a user-defined name may only appear once in a type
statement.

FORTRAN Reference Manual Page 45

Specification Statements Chapter 6

A type statement can confirm the type of an intrinsic function,
but it is not required to do so. A main program name or a
subroutine name must not appear in a type statement. A type
statement can define the dimensions of an array, or the
dimensions can be declared in a DIMENSION statement (see below),
independently of the type statement.

6.1.1 Arithmetic Type Statements

Arithmetic type statements are used to declare arithmetic data
objects. The form of an arithmetic type statement is:

type var [, var1 •••

'type' is one of INTEGER, INTEGER*l, INTEGER*2,
INTEGER*4, REAL, REAL*4, REAL*8, DOUBLE
PRECISION or COMPLEX.

evart

INTEGER and INTEGER*4 are the same. REAL and
REAL * 4 are the same. DOUBLE PRECISION and
REAL*8 are the same.

is a variable name, array name, formal argument
name, function name or array declarator. See
the definition of array declarators in the
chapter on nFORTRAN Names, Arrays and
Substr ings".

Examples of Arithmetic ~ Statements

C declare some integer variables.
C

INTEGER CLOCK, HANDS(2), TlME(24)
C
C declare some real and double precision variables.
C

C

REAL RADIO, KlOl, VARBLS(lO, 10, 5)
DOUBLE PRECISION TWOS (50) , TWICE, SECOND

C declare some complex data items
C

COMPLEX FUNKS, ROCK, BACH(48)

Page 46 FORTRAN Reference Manual

Chapter 6 Specification Statements

6.1.2 CHARACTER Type Statement

The character type statement is used to declare CHARACTER data
objects. The form of a CHARACTER type statement Js:

'var'

'nnn'

CHARACTER [*nnn [,]] var [*nnn] [, var [*nnn]] •••

is a variable name, array name, formal argument
name or an array declarator. For a definition
of an array declarator, see the chapter on
"FORTRAN Names, Arrays and Substrings".

is the length, in characters, of a character
variable or character array element. The length
must be an unsigned integer in the range 1 to
255 or a constant expression enclosed in
parentheses, whose value lies in the range 1 to
255. The length can also be specified as (*),
when the name is being defined either as a
formal argument which is an assumed size
ciharacter string, or for the purpose of
establishing a type for later use in a PARAMETER
statement.

The length 'nnn', following the type name CHARACTER, is the
default length for any name in the list that does not have its
length specified explicitly. In the absence of a length
specification, the default length is one (1). A length
immediately following a var iable or array element overr ides the
default length for that item only. For an array, the length
specifies the length of each element of that array.

A formal argument defined as CHARACTER*(*) cannot be used as an
actual argument to a procedure if it is concatenated in a
character string expression, whereas a symbolic name of a
constant can be used in such a place.

Examples of CHARACTER !l£! Statements

CHARACTER FLIP*lO, FLOP*20
CHARACTER WILD(lS)*20
CHARACTER*80 LINE(24)
CHARACTER*(lO*20) LSTR
CHARACTER* (*) VARBLE

FORTRAN Reference Manual Page 47

Specification Statements Chapter 6

6.1.3 LOGICAL Type Statement

The logical type statement is used to declare logical data
objects. The form of a LOGICAL type statement is:

type var [, var]

'type'

'var'

is one of LOGICAL, LOG ICAL* 1, LOGICAL*2 or
LOGICAL*4.

LOGICAL is the same as LOGICAL*4.

is a variable name, array name, formal argument
name, function name, or an array declarator.
For a definition of an array declarator, see the
chapter on "FORTRAN Names, Arrays and
Substrings n

•

Examples of LOGICAL ~ Declarations

LOGICAL
LOG ICAL* 2
LOGICAL

SONG
BLACK, WHITE
YES(lO), NO(lO)

6.2 DIMENSION - Declare Data Dimension

A DIMENSION statement specifies the number of dimensions of a
user-defined array. The form of a DIMENSION statement is:

DIMENSION var (dim) [, var (dim)] •••

where each one of the 'var(dim) , pairs is an array declarator of
the form:

name{d [,dl •••)

'name'

'd'

Page 48

is the user-defined name of the array,

is a dimension declarator.

FORTRAN Reference Manual

Chapter 6 Specification Statements

6.2.1 Dimension Declarators

The number of dimensions in the array is the number of
dimension declarators in the. array declarator. The maximum
number of dimensions is seven. The rules for array and dimension
declarators are defined in the chapter on "FORTRAN Names, Arrays
and Substrings".

Examples of DIMENSION Statements

DIMENSION forth(lO, 5:15, 0:99)

DIMENSION axis(6)

6.3 COMMON - Declare a COMMON Block

Common blocks provide a means to share variables between
multiple independently-compiled program units. Common blocks and
their content~ are defined via the COMMON statement. The form of
the COMMON statement is:

COMMON [/[cname]/] nlist [[,] /[cname]/ nlist] •••

'cname'

'nlist'

is a common block name. If any 'cname' is
omitted, the blank common block is implied.

is a list of var iable names, array names and
array declarators, all separated by commas.
Formal argument names and function names must
not appear in a COMMON statement.

In each COMMON statement, all variables and arrays appearing in
each 'nlist', following a common block name, are declared to be
in that common block. If the 'cname' is omitted, all elements
appearing in the 'nlist' are specified to be in the blank common
block.

Any common block name can appear more than once in COMMON
statements in the same subprogram unit. All elements in all
'nlists' for the same common block are allocated storage,
sequentially in that common block, in the order of their
declaration.

FORTRAN Reference Manual Page 49

Specification Statements Chapter 6

All elements in a single common area must be all of type
character or none of type character.

The size of a common block is equal to the number of bytes of
storage needed to hold all elements in that common block. If the
same named common block is referenced in several subprogram
units, the size must be the same in all those units.

Examples of COMMON Statements

COMMON /horde/ TOKEN(lOO), SYMBOL (100)

6.4 PARAMETER - Make a Symbolic Association

A PARAMETER statement associates a symbolic name with a
constant value. That constant is thereafter associated with that
symbolic name, such that using the name is synonymous with a use
of the constant. The form of a PARAMETER statement is:

PARAMETER (name=expr [,name=expr] •••)

'name'

'expr'

C

is the symbolic name to be defined,

is an expression that is to be associated with
the name. The expression noted in the
definition above must be a constant expression.

~amples of PARAMETER Statements

PARAMET:.R (TODAY:II 'FRIDAY')

PARAMETr~:R (BASE" 1, LIMIT = 100)

6.5 IMPLICIT - Establish Default Data Type

FORTRAN normally assigns a default type to a variable depending
on the first letter of that variable. The IMPLICIT statement
overrides the default type rules and establishes a new default
type for variables. The form of the IMPLICIT statement is:

Page 50 FORTRAN Reference Manual

Chapter 6 Specification Statements

IMPLICIT type (letter-list) [, type (letter-list)] •••

'type'

'letter-list'

'nnn'

is one of the data types: INTEGER, INTEGER*I,
INTEGER*2, INTEGER*4, REAL, REAL*4, REAL * 8 ,
LOGICAL, LOG ICAL*I, LOGICAL*2, LOGICAL*4, DOUBLE
PRECISION, COMPLEX or CHARACTER [*nnn]

is a list of single letters or ranges of
letters. A range of letters is indicated by the
first and last letters in the range, separated
by a minus sign. If a range is specified, the
letters must be in alphabetical order.

is only applicable to a character data type, and
is the size of the character type that is to be
associated with that letter or letters. 'nnn'
must be an unsigned integer in the range 1 thru
255. If 'nnn' is not specified, a value of one
(1) is assumed.

An IMPLICIT statement defines the type and size for all
user-~efined names that begin with the letter or letters
appearing in the specif~cation. An IMPLICIT statement only
applies to the program unit in which it appears. IMPLICIT
statements do not change the type of any intrinsic functions.

Implicit types can be overriden or confirmed for any specific
user-defined name if that name appears in a subsequent type
statement. An explicit type in a FUNCTION statement also takes
precedence over an IMPLICIT statement. If the type in question
is a character type, the length is also overridden by any later
type specification.

A program unit can have more than one IMPLICIT statement, but
all IMPLICIT statements must precede all other specification
statements.

FORTRAN Reference Manual Page 51

Specification Statements Chapter 6

Examples of IMPLICIT Statements

*
*

declare all names beginning with A as integer.

IMPLICIT INTEGER (A)
*
*
*
*

declare all names starting with the letters
Q, X, Y or Z to be complex.

IMPLICIT COMPLEX (Q, X-Z)
*
* declare all names starting with C as CHARACTER.
*

IMPLICIT CHARACTER*255 (C)

6.6 EXTERNAL - Declare External or Dummy Procedure

An EXTERNAL statement specifies that a user-defined name is the
name of an external procedure or of a dummy procedure. It also
allows such a name to be used as an actual argument to a
subroutine or function reference. The form of an EXTERNAL
statement is:

EXTERNAL proc-name [, proc-name]

where each 'proc-name' is the name of
dummy procedure or block data subprogram.
EXTERNAL statement declares that name
procedure.

an external procedure,
A name appearing in an

to be an external

Statement-function names must not appear in an EXTERNAL
statement.

If an intrinsic function name appears in an EXTERNAL statement,
that name becomes the name of an external procedure and the
corresponding intrinsic function can no longer be called from
that program unit.

A user-defined name can only appear once in an EXTERNAL
statement.

Page 52 FORTRAN Reference Manual

Chapter 6 Specification Statements

6.7 INTRINSIC - Declare Intrinsic Function

An INTRINSIC statement declares that a name is an intr insic
function. It also allows a specific intrinsic function name to
be used as an actual argument to a subroutine or function
reference. The form of an INTRINSIC statement is:

INTRINSIC name [r name] •••

where 'name' is an intrinsic function name.

Each name may appear only once in an INTRINSIC statement. If a
name appears in an INTRINSIC statement, it may not appear in an
EXTERNAL statement.

All names used in an INTRINSIC statement must be' system-defined
intrinsic functions. For a list of intrinsic functions, see the
appendix on "Intrinsic Functions".

If a specific name of an intrinsic function is used as an
actual argument in a program unit, that name must be declared in
an INTRINSIC statement in that program unit.

If a generic function name appears in an INTRINSIC statement,
that function still retains its generic properties.

In a given program unit, a name must not'appear in more than
one INTRINSIC statement.

Certain intr insic functions may not be used as actual
arguments. These are:

• The type-conver s ion func tions: INT, IFIX, IDINT, FLOAT, SNGL,
REAL, DSLE, CMPLX, ICHAR and CHAR.

• The lexical relationship fUnctions: LGE, LGT, LLE and LLT.

• The functions for choosing largest or smallest values: MAX,
MAXO, AMAX1, DMAX1, AMAXO, MAX1, MIN, MINO, AM IN 1 , DMIN1, AMINO
and MIN1.

FORTRAN Reference Manual Page 53

Specification Statements Chapter 6

6.8 SAVE - Retain Definition Status

A SAVE statement is used to retain the definition of a program
object after returning from the procedure which defines that
program object. Within a subroutine or function subprogram, a
program object specified in a SAVE statement remains defined
after exit from the subroutine or function. The form of a SAVE
statement is:

SAVE [thing [, thing]

where 'thing' is a common "block name enclosed in slashes, a
variable name or an array name. Any given name may only appear
once in a SAVE statement. The names of dummy arguments,
procedures and objects appearing in common blocks must not appear
in a SAVE statement.

If a SAVE statement appears without an associated list of
program objects, it is the same as if all objects in that program
unit which could appear in the SAVE statement actually had
appeared in the SAVE statement.

Specifying a common block name in a SAVE statement is the same
as saving all the elements in that common block. A common block
mentioned in a SAVE statement must be mentioned in a SAVE
statement in every subprogram in which that common block
appears. A SAVE statement has no effect in the main program, and
is optional.

Examples of SAVE Statements

C
C Save everything in the subprogram with
C

SAVE
C
C Save some variables
C

SAVE dimes, nickels, pennies
C
C Save all of common blocks
C

SAVE /Stamps/, /Lettrs/

Page 54 FORTRAN Reference Manual

Chapter 6 Specification Statements

6.9 EQUIVALENCE - Share Storage Between Elements

An EQUIVALENCE statement specifies that two or more variables
or arrays are to share the same storage. If the shared variables
are of different types, the EQUIVALENCE statement does not cause
'any kind of automatic type conversion. The form of an
EQUIVALENCE statement is:

EQUIVALENCE (nlist) [, (nlist)] •••

where enlist' is a list of at least two variable names, array
names, array element names or character
substring names. Argument names must not appear
in EQUIVALENCE statements. Subscr ipts must be
integer constant expressions and must be within
the bounds of the array that they reference.

An EQUIVALENCE statement specifies ,that the storage sequences
of the elements that appear in the list 'nlist' have the same
first storage location. Two or more variables are said to be
associated if they refer to the same actual storage. Thus an
EQUIVALENCE statement causes its list of variables to become
associated. If an array name appears in an EQUIVALENCE list, it
refers to the first element of the array.

6.9.1 Restrictions on EQUIVALENCE Statements

An EQUIVALENCE statement must not specify that the same storage
location is to appear more than once. For example:

REAL R, S(lO)
EQUIVALENCE (R, S (1)), (R, S (5))

is in error because it forces the variable "Rn to appear in two
distinct memory locations, namely at Sell and S(5).

An EQUIVALENCE statement must not specify that consecutive
array elements be stored out of sequential order. For example:

REAL R(lO), S(lO)
EQUIVALENCE (R(l), S(l)), (R(5), S(6))

is in error because, having defined R(l) and Sell to be
associated, the statement then attempts to define R(5) and S(6)
to be associated, and this means that the array nRn has somehow

FORTRAN Reference Manual Page 55

Specification Statements Chapter 6

been "stretched R
•

Names of dummy arguments must not appear in an EQUIVALENCE
statement. Also, if a variable name is also a function name,
that name must not appear in an EQUIVALENCE statement.

When EQUIVALENCE statements and COMMON statements are used
together, there are further restr ictions. An EQUIVALENCE
statement must not try to associate storage elements in different
common blocks. An EQUIVALENCE statement can extend a common
block by adding storage elements following the common block, but
not preceding the common block. For example:

COMMON /MASSES/ R(lO)
REAL S(lO)
EQUIVALENCE (R(l), S(lO»

is in error because it tries to extend the common block by adding
storage before the start of the block. That is, when R(l) and
S(lO) are associated, it means that Sell would be nine locations
before the defined start of the block. .

Page 56 FORTRAN Reference Manual

Chapter 7 Data Initialization

Chapter 7

Data Initialization

The DATA statement is used to (statically) initialize data
var iables. The DATA statement is non-executable in the sense
that the compiler does not generate any code for it.

If a DATA statement is present wi thin a subprogram, it may
appear anywhere after the specification statements (if there are
any). The form of a DATA statement is:

DATA nlist /clist/ [[.] nlist /clist/] •••

'nlist' is a list of variables, arrays, array element
names, substring names and implied-DO lists.

'clist' is a list of constants, or constants preceded by
an integer-constant repeat-factor and an
asterisk. Examples of repeated data items are:

5*3.14159 3*'Help' 100*0

There must be the same number of values in each 'clist' as
there are variables or array elements in the corresponding
'nlist'. The appearance of an array in an 'nlist' is equivalent
to a list of all the elements in that array in order of storage
sequence. Array elements and substrings may be indexed by
integer constant expressions (but see the implied-DO loop
below) •

The type of each element in a 'clist' must be the same as the
type of the corresponding variable or array element in the
accompanying 'nlist'. If neccessary, the 'clist' constant is
converted to the type of the 'nlist' object according to the
rules for arithmetic conversion given in the table in the chapter
on "Assignment Statements.

A DATA statement can be used to initialize any variable, array
element or substring that is not one of the following:

• a dummy argument,

FORTRAN Reference Manual Page 57

Data Initialization Chapter 7

an object in blank common or any object which is associated
with an object in blank common,

• a variable in a function subprogram whose name is also the same
name as that of the function or one of its alternate
entry-point names.

Objects may only be initialized once in any given program
unit.

DATA statements in BLOCK DATA subprograms may only initialize
objects in named COMMON areas.

Examples of DATA Statements

* * Declare some variables
*

*

REAL FIRST, SECOND
INTEGER NIG, NOG
COMPLEX WEIRD (10)

DOUBLE PRECISION VECT(S)

* initialize some reals
*

DATA FIRST, SECOND /1.0, 2.0/
* * initialize some integers

DATA NIG /10/, NOG /20/
* * initialize two elements of the complex array
*

DATA WEIRD(2), WEIRD(S) /2 * (0.0, 0.0)/
* * initialize all the double precision array
*

DATA V:CT /0. 0, 0.0, 0.0, 0.0, 0.0/

7.1 Initializing aracter Variables

If an 'nlist' ,cem is of type character, the corresponding
'clist' item must ,e a character constant expression.

If the 'clist' :em is shorter than the length of the 'nlist'
item, the initial :laracters occupy the leftmost positions of the
character data it n and the remaining character positions are
filled with spac f • If the 'clist' item is longer than its

Page 58 FORTRAN Reference Manual

Chapter 7 Data Initialization

corresponding 'nlist' variable, only the characters needed to
initialize the 'nlist' item are used and the remaining characters
are ignored.

Examples of Character Initialization

DATA STRING /'Old Rope'/

DATA SVECT /6 * 'Attached'/

The second example assumes that SVECT is a 6 element character
array.

7.2 Initializing Non CHARACTER Variables to CHARACTER Values

The FORTRAN-77 standard explicitly forbids initializing
variables of any non-CHARACTER data type with CHARACTER values.
Almost all FORTRAN-66 compilers do allow such initializations
(they had to since there was no explicit CHARACTER data type in
FORTRAN-66). SVS FORTRAN-77 therefore allows such initialization,
provided the $CHAREQU option has been selected. For a
description of the $CHAREQU option, see chapter 13 - "FORTRAN
Compile Time Options".

When the $CHAREQU compiler option is selected, non-CHARACTER
variables may be initialized with CHARACTER constants. Each
character constant in the 'clist' initializes precisely one
variable in the 'nlist'. If the length of the CHARACTER constant
is longer than the number of bytes which the target var iable
occupies, the CHARACTER constant is truncated on the right to the
same size as the target variable. If the CHARACTER constant is
shorter in length than the number of bytes which the target
variable occupies, the CHARACTER constant is padded on the right
with trailing spaces.

In all cases, one ASCII character is stored in each byte of the
target variable. Thus a variable of type REAL*4 would receive
exactly four bytes, and a variable of type LOGICAL*l would
receive exactly one byte.

FORTRAN Reference Manual Page 59

Data Initialization Chapter 7

Example of Initializing non-CHARACTER Variables

* Select the option
$CHAREQU

* Declare some variables
*

LOG ICAL* 1 ARG
DOUBLE PRECISION LARJ

* * Initialize the variables
* DATA ARG, LARJ I'SING', 'SONG'I

In the example above, the variable ARG would receive the single
character value'S' (because of truncation), while the var iable
LARJ would receive the value 'SONG '(because of space
padding) •

7.3 Implied DO in DATA Statements

As an added convenience, the DATA statement can incorporate a
form of DO loop for initializing arrays (for example) in a
regular and concise way. This is known as an "implied-DO loop"
and has the same form as a DO statement (see the chapter on
"Control Statements"). The control var iables of an implied-DO
loop are declared implicitly and only for the duration of the DO
loop. The following example should clarify the use of implied-DO
loop initialization. In this case, the form of an implied-DO
list in the DATA statement is:

(dlist, i-first, last [, inc1)

'dlist'

'i'

is a list of array element names and implied-DO
lists.

is the name of an integer var iable,
implied-DO-variable.

the

'first', 'last' and 'inc'
are each integer constant expressions. The
expressions can contain implied-DO-variables of
other implied-DO lists whose range includes this
implied-DO list.

Page 60 FORTRAN Reference Manual

Chapter 7 Data Initialization

The range of an implied-DO list is the list 'd1ist'. An
iteration count and the values of the imp1ied-DO-variab1e are
established from 'first', 'last' and 'inc' just as for a DO loop,
but the iteration count must be positive.

When an implied-DO list appears in a DATA statement, the items
in 'd1ist' are specified once for each iteration of the
implied-DO list with the appropriate substitution of values for
any occurrence of the imp1ied-DO-variab1e Ii'.

The imp1ied-DO-variab1e can have the same name as a variable in
the subprogram unit containing the DATA statement - there is no
conflict of such names.

Examples of Implied DO Loop Initialization

C Declare some large arrays.
C

C

INTEGER PRIMES (1000)
INTEGER UPRTRI(20, 20)
REAL MATRIX(25, 80)

C Now initialize with DATA statements
C containing an implied-DO loop.
C

DATA (PRIMES(I), I - 1, 1000) /1000*1/
C

DATA «MATRIX (J, K), J - 1, 80), K = 1, 25) /2000*1. 0/
C
C The last DATA statement initializes the upper triangle
C of the array called UPRTRI.
C

DATA «UPRTRI(I, J), J-1, 21-1), 1= 1, 20) /210 * 0/

FORTRAN Reference Manual Page 61

Data Initialization Chapter 7

Page 62 FORTRAN Reference Manual

Chapter 8 Assignment Statements

Chapter 8

Assignment Statements

An assignment statement computes a value which is then assigned
to a program object. Because FORTRAN does not require that
variables be declared ahead of time, it is possible that
assignment actually causes that object to become allocated.
There are four distinct types of assignment statements:

Arithmetic,
Logical,
Statement Label assignment (the ASSIGN) statement,
Character assignment.

8.1 Arithmetic Assignment

Arithmetic assignment evaluates an arithmetic expression, and
assigns the resuit to a variable. The form is:

variable - expression

'variable'

'expression'

is a variable or an array element name, of type
INTEGER, INTEGER*l, INTEGER*2, INTEGER*4 REAL,
REAL*4, REAL*8, DOUBLE PRECISION or COMPLEX.

is an expression compatible with one of those
types.

If the type of 'variable' and the type of 'expression' are not
compatible, the value of 'expression' is automatically converted
to the type of 'variable' according to the following table.

FORTRAN Reference Manual Page 63

Assignment Statements Chapter 8

+------------------+-------------------+
I Type of variable I I

or array element Value Assigned
+------------------+-------------------+ I Integer I INT (expression) I
+------------------+-------------------+ I Real I REAL (expression) I
+------------------+-------------------+ I Double Precision I DBLE(expression) I
+------------------+-------------------+ I Complex I CMPLX(expression) I
+------------------+-------------------+

Table 8-1
Type Conversion for Arithmetic Assignment Statements

The functions in the "Value Assigned" column in the above table
are generic intrinsic functions described in the table of
intrinsic functions in the appendices.

If an integer expression is of type INTEGER*l, INTEGER*2 or
INTEGER*4, the result is automatically converted to the correct
type. In general, an operand is "promoted" to the larger size
when evaluating expressions. Operands of type INTEGER*l are
always promoted to INTEGER*2.

In the assignment statement, converting a longer INTEGER value
to a shorter one is done by truncation. The FORTRAN-77 compiler
does not issue any warning about it, and the running program
issues no error messages because of truncation.

*

*

Page 64

Examples of Arithmetic Assignment

INTEGER whole
REAL party
DOUBLE PRECISION huge
COMPLEX house

DATA whole /10/, party /5.5/

whole • 50 * party
party - 3.1415926388 * 5.7
huge - 547.987654e243
house • (1.0, -4.0)

FORTRAN Reference Manual

Chapter 8 Assignment Statements

8.2 Logical Assignment

Logical assignment assigns the value of an expression to a
logical var iable. The value of the expression must therefore
evaluate to either of the values .TRUE. or .FALSE. The form of a
logical assignment statement is:

logical variable = logical expression

If a logical variable is one of the types LOGICAL*l, LOGICAL*2
and LOGICAL*4, a logical expression is automatically converted to
the correct type.

Examples of Logical Assignment Statements

LOGICAL TELLME, NONO

TELLME • .TRUE.

NONO ,. • FALSE.

8.3 Statement Label Assignment

Statement label assignment is used to assign the value of a
format label-ora statement label to an integer var iable. The
form of statement label assignment is:

ASSIGN statement-label TO integer-variable

'statement-label'
is a format label or a statement label.

'integer-variable'
is an integer var iable. The integer var iable
must not be of type INTEGER*l or INTEGER*2.

FORTRAN Reference Manual Page 65

Assignment Statements Chapter 8

Executing an ASSIGN statement sets the integer variable to the
value of the label. The label can be either a format label or a
statement label. The label must appear in the same program unit
uni t as the ASSIGN statement. When used in an assigned GO TO
statement, a variable must currently have the value of a
statement label. When used as a format specifier in an
inpu t-output statement, a var iable must have the value of a
format statement label. The ASSIGN statement is the only way to
assign the value of a label to a variable.

Examples of Statement Label Assignment

INTEGER SLAB, FORLAB

ASSIGN 666 TO SLAB

ASSIGN 905 TO FORLAB

8.4 Character Assignment

Character assignment evaluates a character expressiori and
asslgns the result to a character variable, character
array-element or a character substring. The form of a character
assignment statement is:

character-variable • character-expression

None of the character positions being defined in the left-hand
side of the assignment may appear on the right-hand side of the
assignment. If th~y do, the results are undefined.

The left-hand side and the right-hand side of the assignment
may be of differen t lengths. If the left-hand side is longer,
the effect is to f xtend the right-hand side value to the right
wi th spaces until _ t is the same length as the left-hand side.
If the left-hand side is shorter, the effect is to take a
substring starting at position 1 of the right-hand side, short
enough to assign b the left-hand side.

Only as much of the right-hand side need be defined as is
necessary to defin the left-hand side. For example, consider
the following progr im fragment:

CHARACTER fre' '4, bill *8

fred .. bill

Page 66 FORTRAN Reference Manual

Chapter 8 Assignment Statements

The assignment of bi11 to fred above requires that the
substring bill(1:4) be defined, since that is enough to define
fred. It is not required that the rest of bi11 - bi11(5:8) - be
defined.

If the left-hand side of the assignment is a substring
reference, the right-hand side is assigned only to the
substring. The definition status of the character positions not
defined on the left-hand side does not change.

FORTRAN Reference Manual Page 67

Assignment Statements Chapter 8

Page 68 FORTRAN Reference Manual

Chapter 9

Chapter 9

Control Statements

Control Statements

Control statements are used to direct the sequence of execution
of a FORTRAN program. Control statements include constructs to
execute statements selectively depending on the outcome of a
logical expression (the block IF and logical IF statements),
perform blocks of statements repetitively (the DO statement), to
select one of a number of statements to execute depending on the
value of an integer expression (the computed GO TO statement, and
to terminate or suspend program execution (the STOP and PAUSE
statements). This chapter covers the control statements of
FORTRA~, in this order:

Block IF THEN ELSE

Logical IF

Ar i thmetic IF

DO

CONTINUE

STOP

PAUSE

a "structured coding" construct which was newly
introduced to FORTRAN with FORTRAN-77,

which executes or does not execute a subordinate
statement depending on the truth or falsity of a
logical expression,

which executes a three-way branch depending on
the value of an arithmetic expression,

which is FORTRAN's principal means of loop
control,

which acts as a "null" statement,

to stop program execution,

to suspend program execution,

Unconditional GO TO
which unconditionally transfers
another part of the program unit,

control to

Computed GO TO which selects a statement label to execute,
depending on the value of an expression,

FORTRAN Reference Manual Page 69

Control Statements Chapter 9

Assigned GO TO which uses the value of an integer variable as a
statement label.

9.1 Block IF THEN ELSE Statement

The block IF THEN ELSE statement group (described in the
subsections below) represent "structured coding" constructs that
control program execution flow without the need for
indiscriminate jumping around via GO TO statements. As an
overview of the subsections to follow, the three code skeletons
below illustrate the basic ideas of the IF THEN ELSE statement
groups.

Skeleton 1 a simple .block IF which skips a group of
statements if the expression is false:

IF (I .LT. 10) THEN
some statements that are executed

••••• only if I < 10
ENDIF

Skeleton 2 - block IF with a series of ELSEIF statements.

IF (J .GT. 1000) THEN
••••• some statements executed only

• • • •• if J > 1000
ELSEIF (J .GT. 100) THEN

••••• some statements executed only
••••• if J > 100 and < 1000

ELSEIF (J .GT. 10) THEN -

ELSE

••••• some statements executed only
••••• if J > 10 and ~ 100

••••• some statements executed only if
••••• none of the above conditions were true

ENDIF

Skeleton 3 - shows that the constructs can be nested and that
an ELSE statement can follow an IF block without intervening
ELSEIF statements. The indentation is here to enhance
readability - FORTRAN does not require it.

Page 70 FORTRAN Reference Manual

Chapter 9 Control Statements

IF (I .LT. 100) THEN
some statements executed only
•• if I < 100

IF (J .LT. 10) THEN
.• some statements executed only

•• if I < 100 and J < 10
ENDIF

•• some more statements executed only if
•• I < 100

ELSEIF (I .LT. 1000) THEN
some statements executed only

•• if I > 100 and I < 1000
IF (J .LT. loT THEN

some statements executed only
•• if I ~ 100 and I < 10000 and J < 10

ENDIF
•• some more statements executed on~y if

I ~ 100 and I < 1000
ENDIF

To provide a detailed understanding of the block IF and its
associated statements, the concept of ,the IF-level is
introduced. For any statement, its IF-leve: is:

nl - n2

where 'nl' is the number of block IF statements (including the
current statement) from the beginning of the current program unit
and 'n2' is the number of ENDIF statements (not including the
current statement) from the beginning of the current program
unit. The IF-level of every statement must be greater than or
equal to zero, and the IF-level of every block (IF, ELSEIF, ELSE
and ENDIF) must be greater than zero. The IF-level of every END
statement must be zero. The IF-level is used to define the
nesting rules for the block IF and its associated statements and
to define the extent of IF blocks, ELSEIF blocks, and ELSE
blocks.

9.1.1 Block IF Statement

The general f0rm of the Block IF statement is:

IF (logical expression) THEN

Execution of the block IF statement involves evaluating the
'logical expression'. If the value is true and there is at least
one statement in the IF block, the next statement executed is the
first statement of the IF block. After the last statement in the
IF block is executed, the next statement to be executed is the

FORTRAN Reference Manual Page 71

Control Statements Chapter 9

next ENDIF statement at the same IF-level as this IF statement.

If the value is true and there are no executable statements in
the IF block, the next statement to be executed is the next ENDIF
statement at the same IF-level as this IF statement.

If the value of the 'logical expression' is false,
statement to be executed is the next ELSEIF, ELSE
statement at the same IF-level as this IF statement.

the next
or ENDIF

Note that transfer of control into an IF block from outside the
IF block is not allowed.

The block IF statement, in fact, looks no different from the
logical IF statement descr ibed later J however, the presence of
the THEN keyword as the next statement indicates that a
structured block IF statement group follows.

9.1.2 ELSEIF Statement

The form of the ELSE IF statement is:

ELSEIF (logical expression) THEN

The ELSEIF block associated with an ELSE IF statement consists of
the (possibly zero) executable statements up to, but not
including, the next ELSEIF, ELSE or ENDIF statement that has the
same IF-level as this ELSEIF statement.

Execution of an ELSE IF statement starts by evaluating the
'logical expression'. If the value is true and there is at least
one statement in the ELSE IF block~ the next statement executed is
the first statement of the ELSE IF block. After the last
statement in the ELSE IF block is executed, the next statement to
be executed is the next ENDIF statement at the same IF-level as
this ELSE IF statement.

If the value of 'logical expression' is true and there are no
executable statements in the ELSE IF block, the next statement to
be executed is the next ENDIF statement at the same IF-level as
this ELSEIF statement.

If the 'logical expression' evaluates to false, the next
statement to be executed is the next ELSE IF , ELSE or ENDIF
statement that has the same IF-level as this ELSEIF statement.

Note that transfer of control into an ELSEIF block from outside
of that ELSE IF block is not allowed.

Page 72 FORTRAN Reference Manual

Chapter 9 Control Statements

9.1.3 ELSE Statement

The form of an ELSE statement is:

ELSE

The ELSE block associated with an ELSE statement consists of
the (possibly zero) statements that follow the ELSE statement, up
to, but not including, the next ENDIF statement that has the same
IF-level as this ELSE statement. The "matching" ENDIF statement
must appear before any intervening ELSE or ELSE IF statements at
the same IF-level. In other words, there may only be one ELSE
statement in a block IF statement. There is no effect in
executing an ELSE statement.

Note that transfer of control into an ELSE block from outside
that ELSE block is not allowed.

9.1.4 ENDIF Statement

The ENDIF statement marks the end of a block IF group. The
form of the ENDIF statement is:

ENDIF

There is no effect in executing an ENDIF statement. There must
be a "matching" ENDIF statement for every block IF statement in a
program unit in order to specify which statements are in a
particular block IF statement.

9.2 Logical IF Statement

The logical IF statement evaluates an expression for logical
TRUE or FALSE, then either executes or does not execute a
following statement based on the truth or falsity, respectively,
of the expression. The form of the logical IF statement is:

IF (logical expression) statement

where 'logical expression' is a logical expression, and
'statement' is any executable statement except a DO statement,
Block IF, ELSEIF, ELSE, ENDIF statement, an END statement, or
another logical IF statement.

FORTRAN Reference Manual Page 73

Control Statements Chapter 9

The 'logical expression' is evaluated, and if the value of the
expression is true, the 'statement' is executed. If the 'logical
expression' evaluates to false, the 'statement' is not executed
and the execution sequence proceeds as if a CONTINUE statement
had been encountered.

Note that functions in the " logical expression' can affect
objects in the 'statement'.

Example of Logical IF Statement

IF (Token (1) .NE. 32) RETURN

9.3 Arithmetic IF Statement

The arithmetic IF statement performs a GO TO to one of three
statement labels depending on the value of an expression being
negative, zero, or positive. The form of the arithmetic IF
statement is:

IF (expres.sion) sl, s2, s3

The 'expression' in the description must be an INTEGER,
INTEGER*l, INTEGER*2, INTEGER*4, REAL, REAL*4, REAL*8 or DOUBLE
PRECISION expression.

'sl', 's2' and 's3' are the statement labels of executable
statements that appear in the same program unit as does the
arithmetic IF statement itself. The same statement label can
appear more than once among the three labels.

The effect of the arithmetic IF statement is to evaluate
'expression' and select a label based upon the value.

The statement lz.c1elled by 'sl' is executed if the value of the
expression is less than !!!.2.

The statement la l el1ed by 's2' is executed if the value of the
expression is !.!!.2

The statement 12- jelled by 's3' is executed if the value of the
expression is grea '_~ than !!!.2.

The next statem~-nt executed is the s.tatement labelled by the
selected label. t ne of the labels may appear wi thin the range
of a DO loop or inside an IF, ELSEIF or ELSE block, unless the

Page 74 FORTRAN Reference Manual

Chapter 9 Control Statements

ar i thmetic IF statement itself is also in the same range or
block.

Example of the Arithmetic IF Statement

IF (I - 100) 20, 30, 40
C

20 PRINT *, , I is less than 100'
STOP

C
30 PRINT *, , I is exactly 100'

STOP
C

40 PRINT *, , I is more than 100'
STOP

9.4 DO Statement - Loop Control

A DO statement block is used for "loop control" purposes such
as applying some operation to a each element of an aggregate.
The form of a DO statement is:

IS'

'i'

DO s [,] i-el, e2 [, e3]

is the statement label of an executable
statement. The label must follow this DO
statement and be contained in the same program
unit.

is an integer, real or double precision
variable, called the DO-variable.

'ell, 'e2' and 'e3'
are each an integer, real or double precision
expression.

The statement labelled by's' is called the "terminal
statement" of the DO statement. The terminal statement must not
be an unconditional GO TO, assigned GO TO, arithmetic IF, block
IF, ELSEIF, ELSE, 'ENDIF, RETURN, STOP, END or another DO
statement. If the terminal statement is a logical IF, it may
contain any executable statement except those not permitted
inside a logical IF statement.

A DO statement is said to have a "range", beginning with the
statement which follows the DO statement and ending with (and

FORTRAN Reference Manual Page 75

Control Statements Chapter 9

including) the terminal statement. If a DO statement appears in
the range of another DO loop, its range must be entirely
contained within the range of the enclosing DO loop. If a DO
statement appears within an IF block, ELSE IF block or ELSE block,
the range of the associated DO loop must be entirely contained in
the particular block. If a block IF statement appears within the
range of a DO loop, its associated ENDIF state'ment must also
appear within the range of the DO loop. More than one DO loop
can have the same terminal statement.

The DO control variable, lit, must not be set by any statement
within the range of the DO loop associated with that control
variable.

Transfer of control into the range of a DO loop from outside
the range of a DO loop is not allowed.

9.4.1 DO Loop Initialization Sequence

Execution of a DO statement causes the following events to
happen in order:

·
·

the expressions tel', 'e2' and 'e3' are evaluated, with
conversion to the type of the DO variable if neccessary,
according to the rules specified for type conversion in the
chapter on "Assignment Statements". If 'e3' is omitted, a
defaul t value of 1 is used. If' e3' is present, it must not
evaluate to zero,

the DO variable 'i' is set to the value of 'el' ,

The iteration count for the DO loop is computed as:

MAX {INT ({e2 - el + e3) / e3), 0)

which may be ~ero,

The iteration count is tested; if it exceeds zero, the
statements in the range of the DO loop are executed.

9.4.2 DO Loop Incrementation Processing

After the terminal statement of the DO loop is executed, the
following events occur in order:

• The ~alue of the DO control variable Ii' is incremented by the
value of 'e3' which was computed when the DO statement was
executed,

Page 76 FORTRAN Reference Manual

Chapter 9 Control Statements

• The iteration count is decremented by one (1),

The iteration count is tested, if it exceeds zero, the
statements in the range of the DO loop are executed again.

The value of the DO control variable is well-defined, whether
the DO loop is exited as a result of the iteration count being
zero, or as a result of an explicit transfer of control out of
the DO loop.

Example of the final value of a DO control variable:

C This program fragment prints the number
C 1 thru 11 on the console

DO 200 I s 1, 10
200 WRITE(*, 1 (IS)I) I

WRITE(*, 1 (IS) I) I

9.4.3 Events Which Terminate a DO Loop

A DO loop is exited under the following conditions:

• when its iteration count is zero, as described above under "DO
Loop Execution Sequence",

• a RETURN statement is executed within the range of the DO loop,

• control is transferred to a statement in the same program unit
but outside the range of the DO loop,

a subroutine called from wi thin the range of the DO loop
returns via an alternate return specifier to a statement which
is outside the range of the DO loop,

• the program terminates for any reason.

9.S CONTINUE Statement - Null Statement

The CONTINUE statement is a "null" or "no operation"
statement. It can appear just as any other statement in a
program. CONTINUE has no effect on program execution. CONTINUE
is almost always used as the final statement in a DO block, when
the DO block would otherwise end in a -statement that is
disallowed in that context. The form of a CONTINUE statement is:

FORTRAN Reference Manual Page 77

Control Statements Chapter 9

CONTINUE

9.6 STOP Statement - Stop Program Execution

The form of a STOP statement is:

STOP [n)

where Inl is either a character constant or a string of not more
than five digits. The effect of executing a STOP statement is to
cause the program to terminate. If the argument Inl is present
on the STOP statement, it is displayed on the console upon
termination.

9.7 PAUSE Statement - Suspend Program Execution

The form of a PAUSE statement is:

PAUSE [n)

where Inl is either a character constant or a string of not more
than five digits. The effect of executing a PAUSE statement is
to cause the program to be suspended until there is an indication
from the console that the program should proceed. If the
argument Inl is present on the PAUSE statement, it is displayed
on the console as part of a prompt, requesting input from the
console. If the indication is received from the console, program
execution resumes as if a CONTINUE statement had been executed.

9.8 Unconditional GO TO Statement

The unconditional GO TO causes an unconditional transfer of
control to a specific labelled statement. The form of the
unconditional GO TO statement is:

GO TO statement label

Page 78 FORTRAN Reference Manual

Chapter 9 Control Statements

The 'statement label' which is the target of the GO TO
statement must be defined wi thin the same program unit as the
GO TO statement. The 'label' must be the statement label of an
executable statement. Transfer of control into a DO, IF, ELSEIF
or ELSE block from outside such a block is not allowed.

9.9 Computed GO TO Statement

A computed GO TO statement acts as a means of transferring
control to one out of a set of labelled statements, depending on
the value of an expression. The form of the computed GO TO
statement is:

GO TO (s [, s] •••) [,] i

where 'i' is an integer expression and each's' is a statement
label of an executable statement in the same program unit as the
computed GO TO statement. The same statement label may appear
more than once in the list of statement labels.

The effect of the computed GO TO statement is to evalute the
integer expression indicated by Ii' to a value, say n. Control is
then transferred to the n'th statement label in the list,
counting from 1. If the val.ue of n is less than 1, or if the
value of n is greater than the number of statement labels in the
list, the- computed GO TO, statement has no effect, and program
execution proceeds as if a CONTINUE statement had been executed.

The same restrictions on transfer of control apply to the
computed GO TO statement as those that apply to the unconditional
GO TO statement.

C

C

C

C

C

Example of Computed GO TO Statement

WHERE • 3
GO TO (100, 200, 300, 400, 500), WHERE

••••• execution continues here when 5 < WHERE < 1

100 statements executed if WHERE ,.. 1

200 statements executed if WHERE 2

300 statements executed if WHERE = 3

400 statements executed if WHERE 4

500 statements executed if WHERE 5

FORTRAN Reference Manual Page 79

Control Statements Chapter 9

9.10 Assigned GO TO Statement

The assigned GO TO statement uses the value of an integer
variable as a statement label which is to be the target of a
GO TO statement. The effect is as if an unconditional GO TO had
been made to that statement label. The form of the assigned
GO TO is:

GO TO i [[,] (S[, s] •••)]

where 'i' is the name of an integer var iable and each's' is a
statement label of an executable statement in the same program
unit as the assigned GO TO statement. The same statement label
may appear more than once in the list of statement labels in an
assigned GO TO statement.

At the time the assigned GO TO is executed, the integer
variable Ii' must be defined with the value of a statement label
of an executable statement which appears in the same program unit
as the assigned GO TO statement. That variable must have been
defined with an ASSIGN statement. The integer variable Ii' must
be of type INTEGER or INTEGER*4. It must not be of type INTEGER*l
or INTEGER*2.

If the optional, parenthesized list of statement-labels is
present, the value of the integer variable Ii' must be that of
one of the statement-labels in the list. The same restrictions
apply to the assigned GO TO statement as those that apply to the
unconditional GO TO statement.

645

Page 80

Example of Assigned GO TO Statement

ASSIGN 645 TO SYSTEM
GO TO. SYSTEM, (360, 370, 635, 645, 1108)

statements starting here will be executed
because 'SYSTEM' has the value 645.

FORTRAN Reference Manual

Chapter 10

Chapter 10

Input and Output

FORTRAN Input and Output

This chapter and chapter 11 describe the FORTRAN input-output
system. This chapter covers the basic concepts of input and
output in FORTRAN. Chapter 11 describes the FORMAT statement.
Topics covered in this chapter and chapter 11 are:

• an overview of the input-output system. Covers the basics of
the FORTRAN file system. Defines the ideas of records, units
and various forms of file access,

• a general coverage of the input-output system,

• input-output statements are covered, with the exception of the
FORMAT statement, which is covered in chapter 11.

10.1 Overview of the Input-Output System

This section introduces the basic terms and concepts of the
FORTRAN input-output system. Most tasks related to input-output
can be done without a full understanding of this section, so the
reader can skip to the next section on first reading and use this
section for subsequent reference purposes.

10.1.1 Records

A record is the building block of the FORTRAN input-output
system. A record is a sequence of characters or a sequence of
values. There are three forms of records:

Formatted records,
Unformatted records,
Endfile records.

FORTRAN Reference Manual Page 81

FORTRAN Input and Output ,chapter 10

A formatted record is a sequence of characters terminated by
the character value corresponding to the "end-of-line" key on a
terminal (character value 13, or 10, or both, depending on the
particular operating system). Formatted records are interpreted
consistently on input the same way that the underlying operating
system and any text editor interprets characters. A formatted
record therefor·e corresponds to the notion of a "line" from a
device. Formatted files are normally transportable between
different language processors and other text-processing
applications.

An unformatted record is a sequence of values. The system does
not alter or interpret such records in any waY1 neither is there
any representation for an end-of-record as is the case with a
formatted record. Unformatted files are generally not
transportable between different language processors or computers
because of differences in the external representations of data.

An endfile record has no physical existence in a file, but the
underlying input-output system supplies an indication of one, as
if there had been some actual record after the last record in a
file.

10.1. 2 Files

A FORTRAN file is a sequence of records. FORTRAN files are
either External or Internal.

An external FORTRAN file is a file on a physical per ipheral
device or lt is an actual peripheral device.

An internal FORTRAN file is a character variable which is to
serve as the source or destination of some input-output action.

From here on, FORTRAN files and the files known to the
under lying operating system and any text processors are simply
called "files". The correct meaning is determined by the
context. The OPEN statement provides the association between the
two notions of files, and in most cases, there is no ambiguity
after the file is opened - the two notions of a file being the
same.

Page 82 FORTRAN Reference Manual

Chapter 10 FORTRAN Input and Output

10.1.3 Properties of Files

A file which is being operated upon by a FORTRAN program has a
number of properties which are described in the paragraphs
below. File properties which are discussed below encompass:

• Name of the file,
• Position of the file,
• Record format,
• Access method.

10.1.3.1 File Name

A file can have a name. If the name is present, it is a
character string identical to that by which it is known to the
operating system. A file can have a name such as
/source/fourier.text.

10.1.3.2 File position

A file has the property of position which is usually
established by the preceding input-output operation. There is
the notion of the beginning-of-file, endfile, the current record,
the preceding record, and the· next record in the file. It is
possible to be between records, in which case the next record is
the successor to the previous record, and there is no current
record. The position of the file after a sequential write is the
endfile but not beyond the endfile record. Executing an ENDFILE
statement positions the file beyond the endfile record. A READ
statement executed at end-oe-file (but not beyond the endfile
record) positions the file beyond the endfile record. The user
can trap reading of an endfile record via the END- option in a
READ statement.

10.1.3.3 Formatted and Unformatted Files

An external file is opened as either formatted or unformatted.
Internal files are always formatted. Formatted files consist
entirely of formatted records. Unformatted files consist
entirely of unformatted records. Formatted files have the
structural properties of being a sequence of lines with
end-of-line indicators (usually carriage-return).

FORTRAN Reference Manual Page 83

FORTRAN Input and Output Chapter 10

10.1.3.4 Sequential and Direct Access Files

An external file is opened as either seqUential ~ or
direct access. Sequential files contain records in an order
det'e"riiiined by the order in which- they were written. Sequential
files must not be read or written using the REC- option which
specifies a position for direct-access input-output. The system
attempts to extend sequential access files if a record is written
beyond the old endfile, if there is enough room to do this on the
external device.

Direct-access files can be written in any order (random
access) • Records in a direct-access file are numbered
sequentially with the first records having the number one (1).
All records in a direct-access file have the same length,
specified when the file is opened. Each record in the file is
uniquely referenced by its record number, specified at the time
the record is written. Records can be written out of order, with
holes in the sequence if desired. For example, records 9, 5 and
11 could be written in that order without writing the
intermediate records. Once written, a record cannot be deleted,
but a record can be rewritten with a new value. It is an error
to read a record that has not yet been written, but the system
can only detect this if the attempted read is to a record beyond
the highest numbered record in the file. Direct-access files
must reside on block-structured storage devices, such that a
position in the file is meaningful. The system attempts to
extend a direct-access file if a write is made to a position
beyond the current highest numbered record in the file, but the
success of this depends on the amount of space on the storage
device.

10.1.4 Internal Files

Internal files provide a means for using the formatting
capabilities of the input-output system to convert values to and
from their external character representations, within FORTRAN's
internal storage structures. That means that reading from a
character variable converts the character values into numeric,
log-ical or character variables. Writing to a character variable
converts values into their external character representation.

Page 84 FORTRAN Reference Manual

Chapter 10 FORTRAN Input and Output

10.1.4.1 Special Properties of Internal Files

An internal file is a character variable, character array
element, character array or character substring.

A record of an internal file is a character variable, character
array element or character substring.

If an internal file is a character variable, character array
element or character substr ing, such a file has exactly one
element, whose length is that of the character variable,
character array element or character substring. If an internal
file is a character array, each element of that array is a record
of the file, with each record being the same length.

If less than an entire record is written by a WRITE statement,
the remainder of the record is filled with spaces.

The position of an internal file is always at the beginning of
file prior to executing any input-output statement. Only
sequential, formatted input-output is allowed on an internal
file. Only the READ and WRITE statements can reference an
internal file. List-directed input-output is not allowed on an
internal file.

10.1. 5 Units

A unit is a means of specifying a file. A unit specified in an
input=OUtput statement is either of:

External unit specifier,
Internal unit specifier.

An external unit specifier is either a positive integer
expression or the character * which stands for the Standard Input
and Standard Output files for the running program. In most
cases, external unit specifiers are bound to physical devices (or
files on those devices) by name when the OPEN statement is
executed. Once this binding of a value to a system file name has
occurred, FORTRAN input-output statements refer to the unit
number as a means of referr ing to the external object. Once
opened, the external unit specifier is uniquely associated with
the external device or file until an explicit CLOSE statement is
executed or until the program terminates.

The only exception to the above rules is that unit specifier 0
is initially associated with the Standard Input and Standard

FORTRAN Reference Manual Page 85

FORTRAN Input and Output Chapter 10

Output files for reading and writing and an explicit OPEN
statement is not needed. The system interprets the character *
as specifying unit O.

An internal unit identifier is the name of a character
variable, character array, character array element or character
substr ing. Internal unit specifiers may only be used in the
READ, WRITE and PRINT statements - they are not allowed in any of
the auxiliary input-output statements such as OPEN, CLOSE,
INQUIRE and so on.

10.2 General Discussion of the Input Output System

FORTRAN supplies a rich selection of possible file structures.
At first there might seem to be a confusing array of choices.
However, two sorts of files will probably suffice for most
applications.

The Standard Input and Standard Output files. These are
referred to as unit 0 or by the character *. The Standard Input
and Output files are sequential, formatted files. When reading
from the Standard Input, the backspace and line-delete keys
familiar to the user have their normal editing functions. The
Standard Output file has the special property that it is
possible to write partial lines to it (lines which are not
terminated by a carriage-retur~) by using the "\" or "$" edit
descriptors. These edit-descriptors are described in the next
chapter. Writing to any other unit does not have this
property, even if that unit is explicitly bound to the Standard
Output file by an OPEN statement •

• Explicitly-opened external, sequential, formatted files. These
files are bound to a system file by name in an OPEN statement.
These files can be processed by system editors and other
text-processing utilities.

10.2.1 Pre-Connected Files

The FORTRAN rUn-time system preconnects unit 0 to the Standard
Input and Standard Output files, as mentioned above. On those
operating systems which support a standard error file, the
FORTRAN run-time system also preconnects unit 1 to that stream.
On those systems which do not support a standard error file, the
FORTRAN rUn-time system preconnects unit 1 to the same place as
the Standard Output.

Page 86 FORTRAN Reference Manual

Chapter 10 FORTRAN Input and Output

10.2.2 Examples of Common Input Output Operations

Here is an example program reading and writing the sorts of
files discussed in the paragraph above. The specific
input-output statements are discussed in detail in the next
section.

C Copy a file containing three columns of integers,
C each column being 7 characters wide. The user
C supplies the name of the input file. The output
C file is called OUT.TEXT. The first and second
C columns are swapped.
C

C

PROGRAM SWITCH
CHARACTER*23 FNAME
INTEGER FIRST, SECOND, THIRD

C Prompt to the Standard Output by writing to *
C

·WRITE(*, 900)
900 FORMAT('Input file name - '\)

C
C Read the file name from the Standard Input by
reading *.
C

C

READ(*, 910) FNAME
910 FORMAT(A)

C Use unit 3 for input - any unit but 0 will do.
C

OPEN(3, FILE-FNAME)
C
C Use unit 4 for output - any but 0 and 3 are ok.
C

OPEN (4, FILE-'OUT.TEXT', STATUS-'NEW')
C
C Read and write until end-of-file.
C

C

100 READ(3, 920, END-200) FIRST, SECOND, THIRD
WRITE(4, 920) SECOND, FIRST, THIRD

920 FORMAT(3I7)
GO TO 100

200 WRITE(*, 910) 'Done Copying'
END

FORTRAN Reference Manual Page 87

FORTRAN Input and Output Chapter 10

10.2.3 Less Common File Operations

The less common file
classes of applications.
these:

structures are suitable for certain
In general, the application areas are

Direct-access files are suitable for random access applications
such as maintaining a database.

Unformatted files are more efficient in input-output overhead
and in file space requirements. Unformatted access can be used
if data is to be written and read by FORTRAN on the same
processor.

The combination of direct-access and unformatted files is ideal
for a database management facility to be accessed exclusively
through the FORTRAN system.

If data is to be transferred without any system interpretation
(especially if all 256 character combinations are needed),
unformatted input output is neccessary, since .TEXT files are
limited to the printable character set. A good example of
unformatted input-output usage is to control a device with a
single-byte binary interface. In this situation, formatted
input-output would interpret certain characters (such as
carriage-return) and would change their meanings in certain
ways.

Internal files are not input-output in the conventional sense
but they provide valuable character string operations and
conversion via a standard mechanism.

Formatted direct-access files require special care. FORTRAN
formatted files try to comply with the operating system's rules
for .TEXT files. The FORTRAN input-output system is able to
enforce these rules for sequential files, but cannot always
enforce them for direct-access files. Direct-access files are
not neccessarily valid .TEXT files, since any unwritten records
leave "holes· which do not follow • TEXT file rules.
Direct-access files do, of course, follow FORTRAN'S input-output
rul,es.

A file opened in FORTRAN is either "old" or "new". There is no
notion of "open for reading" as distinct from "open for
writing". Therefore "old" (existing) files may be opened and
written on, with the effect of changing an existing file.
Similarly the same file may be alternately read from and written
to, providing that no attempts are made to read beyond
end-of-file or to read unwritten records in direct-access files.

Page 88 FORTRAN Reference Manual

Chapter 10 FORTRAN Input and Output

A write to a sequential file effectively deletes any records
which existed beyond the fresh record. Normally, when a device
(such as Standard Input or Standard Output) is opened as a file,
it makes no difference whether it is "new" or "old". with disk
files, opening "new· creates a new temporary file. If that file
is closed with the "keep" option, or the program terminates
before a CLOSE is performed on that file, a permanent file is
created with the name given when the file was opened. If a file
existed previously with the same name, the pr ior version is
deleted. If a file is closed using the "delete" option, the
newly created temporary file is deleted and any previously
existing file of the same name remains intact. Opening a disk
file as "old" generates a run-time error if the file does not
exist; if it does exist, any writes to that file change its
contents.

10.2.4 Limitations of FORTRAN Input Output System

This subsection discusses specific limitations that FORTRAN's
input-output system imposes.

10.2.4.1 Direct Files must be on Blocked Devices

The operating system underlying FORTRAN has two kinds of
devices, namely blocked and sequential.

Sequential files can be considered a stream of characters with
no explicit positioning; the only operations are reading and
writing. The Standard Input and Standard Output are examples of
sequential devices.

Blocked devices, such as disks, have the additional capability
to seek to a specific position. Blocked devices can be accessed
either sequentially or randomly and therefore can support
direct-access files. Since there is no notion of seeking to a
position on an unblocked file, FORTRAN prohibits direct access to
sequential devices.

10.2.4.2 No Character Compression in Direct Files

Direct-access formatted files must not contain any character
compression information.

FORTRAN Reference Manual Page 89

FORTRAN Input and Output Chapter 10

10.2.4.3 BACKSPACE Only Applies to Files on Blocked Devices

BACKSPACE can only be performed on files associated with
blocked devices, it cannot be applied to sequential devices.

10.2.4.4 Length Limitations on Formatted Records

Formatted records must not be greater than 512 characters in
length, including the terminating carriage-return character.

10.2.4.5 BACKSPACE may not be used on Unformatted Sequential
Files

It is not possible to apply the BACKSPACE statement to an
unformatted sequential file, because such a file contains no
indications of its record boundaries. In principle it is
possible to place end-of-record marks in such a file format, but
this conflicts with the notion of an unformatted file as a "pure"
sequence of values. Any structure imposed upon unformatted
sequential files would inter fere with their most common
application, which is direct control of external instruments.

10.2.4.6 Side Effects of Functions Used in Input Output
Statements

During execution of any input-output statement, expression
evaluation can reference functions. Any function so referenced
must not execute any other input-output statement.

10.3 Elements of Input and Output Statements

This section descr ibes the elements that compr ise input and
output statements that FORTRAN supports. The next section covers
the individual input-output statements in detail.

FORTRAN input-output statements require certain arguments and
parameters which specify sources and destinations of data
transfer, as well as other aspects of the operation.

Page 90 FORTRAN Reference Manual

Chapter 10 FORTRAN Input and Output

10.3.1 The Unit Specifier 'u'

The unit specifier
input-output operations.

indicates the unit to be used
The format of a unit specifier is:

in

[UNIT-] u

where 'u' is an external or internal unit identifier.

The unit identifier, 'u', can take one of these forms in an
input-output statement:

* refers to the Standard Input or Standard Output
files.

positive integer expression

name

refers to an external file whose unit number is
that of the expression. Unit 0 is the same .as *
- the Standard Input or Standard Output files.

the name of a character variable,
array, character array element or
substring.

character
character

In all input-output operations, if the UNIT- keyword is
omitted, the unit specifier, lUi, must be the first item in the
list of specifiers.

10.3.2 The Format Specifier If'

The format specifier is used to designate format lists when
performing formatted input-output. The form of the format
specifier is:

[FMT-] f

where 'f' is the format identifier, and can take one of these
forms in an input-output statement:

statement label refers to the FORMAT statement labelled by that
statement label.

integer variable name
refers to the FORMAT label assigned to that
integer variable using the ASSIGN statement.

character expression
the current value of the character expression is

FORTRAN Reference Manual Page 91

FORTRAN Input and Output Chapter 10

the format specifier.

asterisk character "*"
the aster isk is used to spe~ ify list-directed
formatting.

If the FMT- keyword is omitted in a list of specifiers, the
format specifier, If', must be the second item in the list and
the unit specifier, lUi, must be the first item in the list, with
the UNIT- keyword omitted.

See chapter 11 for a complete descr iption of the format list
and the elements it may contain.

10.3.3 The Record Number ern'

The record number is used in direct-access input-output only.
It specifies the"riUmber of the record to be read or written. The
format of the record num~er specifier is:

REC-rn

where 'rn' is the record number. The record number must be a
positive integer.

10.3.4 The End of File Exit Specifier

The end-of-file exit specifier designates a statement label at
which execution is to start when an end-of-file condition occurs
while reading from a file. The format is:

where 's' is a statement label in the same program unit as the
READ statement.

10.3.S The Error Exit Specifier

The error exit specifier designates a statement label at which
execution is to start when any errors occur during execution of
an . input-output statement. The format of the error exit
specifier is:

where 's' is a statement label in the same program unit as the
input-output statement.

Page 92 FORTRAN Reference Manual

Chapter 10 FORTRAN Input and Output

10.3.6 The Input Output Status specifier 'ios'

The input-output status specifier specifies an integer variable
into which an input-output status value is placed when the
current input-output statement completes. The format of the
specifier is:

IOSTAT=ios

where 'ios' is the name of an integer variable or integer array
element. The integer variable specified by 'ios' must be an
INTEGER (or INTEGER*4). When an input-output statement containing
this specifier terminates, 'ios' becomes defined with the
following values:

zero (0) indicates that the input-output
completed normally. There were no
end-of-file was not encountered,

operation
errors and

negative value indicates that an end-of-file was encountered
during a READ statement,

positive value indicates that an error condition occurred
during the input-output statement.

10.3.7 The Input-Output List 'iolist'

The input-output list - 'iolist' - specifies the objects whose
values are transferred by READ and WRITE statements. An 'iolist'
can be empty. If an 'iolist' is present, it is a list of
element.s separated by commas. Items in the list consist of:

• Input and output objects,
• Implied DOlists.

These two forms of 'iolist' are discussed in the two paragraphs
below.

10.3.7.1 Input and Output Objects

An input or output object can be specified in the 'iolist' of a
READ, WRITE or PRINT statement and is one of these forms:

• Variable name,

• Array element name,

FORTRAN Reference Manual Page 93

FORTRAN Input and Output Chapter 10

• Character substring name,

Array name. This form is a means of specifying all the
elements of the array, in the order in whi~h they are stored
internally,

On output only,
expression which
string.

any other expression except a
concatenates an assumed length

Example of Input and Output

character
character

WHITE (0, 100) 'Results are: " widget, blivet(j, 4)
100 FORMAT (A, IS, F10.S)

10.3.7.2 Implied DO Lists

Implied-DO lists can be specified as items in the 'iolist' of
READ, WRITE and PRINT statements and are of the form:

(dlist, i • el, e2 [, e3])

where the 'dlist' is an 'iolist' as defined previously ••

In a READ statement, the DO variable, 'i', (or an associated
object) must not appear as an input list item in the embedded
'dlist', but can be read in the same READ statement outside of
the implied-DO list.

The embedded 'dlist' is effectively repeated for each iteration
of 'i' with appropriate substitution of values for the DO control
variable 'i'.

Example of ~ Implied DO List

WRITE (0, 150) (jinx (i), i • 1, 100)
150 FORMAT (1017)

In the example above, the var iable 'i' iterates through 100
elements of the array 'jinx'. The format specified in the FORMAT
statement causes the results to be placed 10 per line on the
output.

Page 94 FORTRAN Reference Manual

Chapter 10 FORTRAN Input and Output

10.4 The Specific Input and Output Statements

The following input-output statements are supported in the
FORTRAN system. The possible form of each statement is specified
first, with an explanation of the meanings of the following
forms. Certain items are specified as required if they must
appear in the statement and are specified as optional if they
need not appear in the statement. Optional items normally result
in a default which is indicated if the item is omitted.

10.4.1 OPEN Statement

~he format of the OPEN statement is:

OPEN(open list)

where 'open list' is a list of specifiers as described below.
The argument list, 'open list' must contain one unit specifier
and may contain one of each of the other specifiers listed.

[UNIT-] u

IOSTAT-ios

FILE-fname

STATUS-sta

'u' is the unit specifier. It must not be an
internal unit specifier. If the UNIT- keyword
is omitted, the 'u' argument must be first in
the argument list to OPEN.

'ios' is an input-output status specifier as
defined above in "Elements of Input and Output
Statements".

is an error exit specifier as defined above in
-Elements of Input and Output Statements n •

The file name 'fname' is a character
expression. If the 'fname' argument is omitted,
OPEN opens a an anonymous file with a status of
'SCRATCH' (see below). This file is
automatically deleted when CLOSE'd or upon
program termination.

'sta' is the status of the file when opened.
'stat is a character expression whose value must
be one of 'OLD', 'NEW', 'SCRATCH' or 'UNKNOWN'.
'OLD' is the default for reading or writing
existing files. 'NEW' may be used for wr i ti ng

FORTRAN Reference Manual Page 95

FORTRAN Input and Output Chapter 10

ACCESS-acc

RECL-r1

BLANK-b1nk

new files. If the 'OLD' or 'NEW' keywords are
used, the FILE- argument must be supplied. If
'SCRATCH' is specified, the file is deleted when
a CLOSE is performed on that file. If 'UNKNOWN'
is specified, it is treated the same as if 'OLD'
had been specified.

specifies the access mode for this file. 'acc'
is a character expression whose value must be
either 'SEQUENTIAL' or 'DIRECT'. 'SEQUENTIAL' is
the default.

specifies whether the file is formatted or
unformatted. 'fm' is a character expression
whose value must be either 'FORMATTED' or
'UNFORMATTED'. 'FORMATTED' is the default.

The record length 'r1' is
expression. This argument to
DIRECT-access files only and is
that file type.

an integer
OPEN is for
required. for

'b1nk' controls the default treatment of blanks
(spaces) in formatted reads, which can be
altered, in a particular formatted READ, by a BN
or BZ edit-descriptor in a format
specification. 'b1nk' is a character expression
whose value must be either 'NULL' or 'ZERO'. The
default is 'NULL'. If 'NULL' is specified, all
spaces are ignored in numeric input fields. If
'ZERO' is specified, all spaces other than
leading spaces are treated as zeros.

BUFFERED-'buffered'
The BUFFERED option selects buffered or
unbuffered input or output on a unit. in the
system. If the option is 'BUFFERED', buffered
input output is selected. If the option is
'UNBUFFERED', unbuffered input output is
selected. Note that the operating system might
override the option. Some operating systems
show a substantial improvement in throughput if
the 'BUFFERED' option is selected. All files
are opened with the 'BUFFERED' option by
default, except for the * unit and unit 1 (the
standard error).

The OPEN statement binds a unit number with an external device,
or file on an external device, by specifying its file name. If
the file is· to be a direct access file, the RECL-r1 option
specifies the length of records in that file. If the unit

Page 96 FORTRAN Reference Manual

Chapter 10 FORTRAN Input and Output

specified in an OPEN statement is already open, it is closed
before being bound to a file.

10.4.2 CLOSE Statement

The format of the CLOSE statement is:

CLOSE(c10se list)

where 'close list' is a list of specifiers. 'close list' must
contain an external unit specifier and at most one of any of the
other specifiers, which are as follows:

[UNIT=]u

IOSTAT=:Los

ERR=s

STATUS=sta

'u' is the unit number of an external unit. If
the UNIT- keyword is omitted, the unit
specifier, 'u', must be the first specifier in
the list.

'ios' is an input-output status specifier. as
defined above in "Elements of Input and Output
Statements".

IS' is an error exit specifier as defined above
in "Elements of Input and Output Statements".

'stat is an optional argument which applies only
to files opened with STATUS='NEW'. 'stat
dictates the disposition of the file after it is
CLOSE'd. 'stat is a character expression whose
value must be either 'KEEP' or 'DELETE'. In SVS
FORTRAN-77, All files are closed with the KEEP
option in effect.

CLOSE disconnects the specified unit and prevents input-output
from being directed to that unit (unless the same unit number is
re-opened, possibly bound to a different file or device). Files
opened NEW are temporary files and are discarded if
STATUS-' DELETE , is specified. Normal termination of a FORTRAN
program automatically closes all open files as if a CLOSE with
STATUS'" KEEP' had been spec i£1 ed. STATUS- 'KEEP' should not be
specified for a file which was opened as 'SCRATCH'.

10.4.3 READ, WRITE and PRINT Statements

The READ statement transfers data into storage. The WRITE and
PRINT statements transfer data from storage. All three
statements have similar forms, as defined here:

FORTRAN Reference Manual Page 97

FORTRAN Input and Output Chapter 10

READ (control list) (iolistj

READ f (, iolistj

WRITE (control list) [iolistj

PRINT f [, iolist)

where 'f' and ' iolist' are a format identifier and an
input-output list as previously described in "Elements of Input
and Output Statements". Note that the PRINT statement has no
connection with "printing- on the system printer device (even if
such a device exists).

The 'control list' is a list whose elements may be any of the
following:

[UNIT-) u

[FMT-j f

IOSTAT-ios

END-s

is a unit specifier. If the optional UNIT
keyword is omitted from the specifier, the unit
specifier, 'u', must be the first item in the
L.st.

. s a format specifier. If the optional FMT
k yword is omitted from this specifier, the
f ,rmat spec if i er , ' f', must be the second item
in the list and the first item must then be the
u",it specifier, 'u', without the UNIT- keyword.

i a record number specifier. If this specifier
i included in the list, the statement is a
d rect-access data transfer statement, otherwise
t.e statement is a sequential access data
t·ansfer.

I ~s' is an input-output status specifier as
d !ined above in "Elements of Input and Output
S atements".

, I is an error exit specifier as defined above
i -Elements of Input and Output Statements".

i an end-of-file exit specifier as defined
al'.>ve in -Elements of Input and Output
S~ .'1tements". This specifier is only applicable
t the READ statement.

If the 'contr i list' contains a format specifier, the
statement is a formatted input-output statement, otherwise it is
an unformatted inr:1t-output statement.

Page 98 FORTRAN Reference Manual

Chapter 10 FORTRAN Input and Output

If the format identifier is an asterisk character,
statement is a list-directed input-output statement.
case, the record specifier must not appear in the
list' •

"*", the
In this
'control

List-directed input-output must not be done on an internal
file. If the unit specifier designates an internal file, the
'control list' must not contain a record specifier.

The end-of-file specifier must not appear in the 'control list'
for a WRITE or PRINT statement.

The 'control list' must not contain both a record specifier and
an end-of-file specifier.

10.4.4 File Positioning Statements

FORTRAN supplies
explicitly:

three statements which position files

BACKSPACE

ENDFILE

REWIND

to backspace a file by one record.

to write an endfile record on a file.

to position or re-position a file at its first
record.

Each of the file positioning statements has two different
forms:

BACKSPACE u
BACKSPACE (alist)

ENDFILE
ENDFILE

REWIND
REWIND

u
(alist)

u
(alist)

In each case, the 'u' is a unit number.
parenthesized list of specifiers of the form:

The 'alist' is a

[UNIT-] u

IOSTAT"ios

'u' is a unit specifier for the unit. This
argument is required. If the UNIT- keyword is
omi tted, the 'u' argument must be first in the
list.

'ios'
the

is an
status

integer var iable which
of the specific

is assigned
input-output

FORTRAN Reference Manual Page 99

FORTRAN Input and Output Chapter 10

statement. ' ios' is defined previously in
"Elements of Input and Output Stataments".

's' is a statement label to, which control is
passed if there are any errors in the
input-output statement. The statement label's'
must appear in the program unit that contains
the input-output statement. IS' is defined
previously in "Elements of Input and Output
Statements".

,10.4.4.1 BACKSPACE Statement - Backspace a File

BACKSPACE positions the file connected to the specified unit,
before the preceding record. If there is no preceding record,
the file position is not changed. If the preceding record is the
endfile record, the file is positioned before the endfile
record.

A non-connected unit may be BACK'SPACE'd without any error. In
other words a BACKSPACE command issued against a non-connected
unit has no effect.

BACKSPACE can only be issued
sequential-formatted. BACKSPACE must
sequential-unformatted file.

on units which are
not be applied to a

10.4.4.2 ENDFILE Statement - Write an Endfile Record

ENDFILE "writes" an endfile record as the
file connected to the specified unit lute
positioned after the endfile record, so that
data transfers are prohibited until either
REWIND statement is executed.

10.4.4.3 REWIND Statement - Rewind a File

next record on the
The file is then
further sequential
a BACKSPACE or a

The REWIND statement positions the file associated with the
unit 'u' to its initial point. The unit must be sequential.

A non-connected unit may be rewound without any error. In
other words a REWIND command issued against a non-connected unit
has no effect.

Page 100 FORTRAN Reference Manual

Chapter 10 FORTRAN Input and Output

10.4.5 INQUIRE Statement - Obtain File Properties

The INQUIRE statement is used to obtain information about the
properties of a particular named file or about the connection to
a particular unit. There are two forms of INQUIRE, namely,
inquire by file and inquire by unit.

The INQUIRE statement can be executed before, while or after a
file is connected to a unit. Any values assigned as a result of
INQUIRE are values which are current at the time the INQUIRE is
executed. The two forms of the INQUIRE statement are:

INQUIRE (iflist) 2£ INQUIRE(iulist)

where 'iflist', used for the inquire by file form, is a list of
specifiers containing exactly one file specifier and 'iulist',
used for the inquire by unit form, is a list of specifiers
containing exactly one unit specifier. Both forms may then
contain other specifiers ~s described below. The format of the
file specifier is:

FILE-fin

where 'fin' is a character expression which, when trailing spaces
are removed, is the name of the file which is the subject of the
enquiry. The named file does not need to exist or to be
connected to a unit.

The form of the unit specifier is as described previously in
"Elements of Input Output Statements". The unit specified does
not have to exist, nor be connected to a file. If the unit is
connected to a file, the enquiry is being made about the
connection and the file connected to it.

The remainder of the list in the INQUIRE statement is the
inquiry specifiers. This is a list of one or more inquiry
specifiers as described below. There may be only one of each
inquiry specifier. Furthermore, each variable name may only
appear once in the list of specifiers, in other words, the same
variable name must not be given to more than one specifier.

The inquiry specifiers are summar ized here and descr ibed in
more detail below.

FORTRAN Reference Manual Page 101

FORTRAN Input and Output Chapter 10

+-------------------+
IOSTAT • ios
ERR - s
EXIST - ex
OPENED • 00
NUMBER • num
NAMED - nmd
NAME • fn
ACCESS • acc
SEQUENTIAL - seq
DIRECT - dir
FORM • fm
FORMATTED '"' fmt
UNFORMATTED • unf
RECL • rcl
NEXTREC • nr
BLANK - blnk

+-------------------+
In every case where an integer variable is speCified, it must

be an INTEGER*4 (which is the same as INTEGER). In all cases
where a logical variable is specified, it must be a LOGICAL*4
(which is the same as LOGICAL). The specifiers given here are as
defined previously in "Elements of Input and Output Statements".
The meaning of each of the inquiry specifiers is as follows:

IOSTAT'"'ios

ERR=-s

EXIST-ex

OPENED-OO

NUMBER'"'num

Page 102

is an input-output status specifier. The
variable 'ios' is set to zero (0) by the INQUIRE
statement.

's' is a statement label to which control is
passed if an error occurs. The INQUIRE
statement never causes any error conditions.

'ex' is a logical variable. If a !ile with the
specified name exists (in the FORTRAN milieu)
'ex' is set to .TRUE., else 'ex' is set to
.FALSE. For an inquire by unit, 'ex' is set to
true if and only if the unit actually exists.
'ex' always gets defined by the INQUIRE
statement.

'00' is a logical variable. If the specified
file is opened (connected to a unit), 'od' is
set to .TRUE., else '00' is set to .FALSE. '00'
always gets defined by the INQUIRE statement.

'num' is an integer variable. 'num' is set to
the the external unit number for the unit
currently connected to the file. If the file is

FORTRAN Reference Manual

Chapter 10 FORTRAN Input and Output

not connected to a unit, 'num' is undefined.

If the file has a name, the log ical var iable
'nmd' is set to .TRUE., else, 'nmd' is set to
.FALSE.

NAME-fn 'fn' is a character var iable that is set to the
name of the file if the file has a name. If the
file does not have a name, 'nmd' is undefined.

ACCESS-acc 'acc' is a character variable that is assigned
the string 'SEQUENTIAL' if the file is connected
for sequential access, and is assigned the value
'DIRECT' if the file is connected for direct
access. If the file is not connected to a unit,
the value of 'acc' is undefined.

SEQUENTIAL-seq 'seq' is a character variable which is assigned
the value 'YES' if this file can be connected
for sequential access. 'seq' receives the value
'NO' if the file cannot be connected for
sequential access. If FORTRAN cannot determine
what access methods are allowed for the file,
'seq' receives the value 'UNKNOWN'.

DIRECT-dir 'dir' is a character var iable which is assigned
the value 'YES' if this file can be connected
for direct access. 'dir' receives the value
'NO' if the file cannot be connected for direct
access. If FORTRAN cannot determine what access
methods are allowed for the file, 'dir' receives
the value 'UNKNOWN'.

FORM-fm 'fm' is a character variable which is assigned.
the value 'FORMATTED' if the file is connected
for formatted input-output, and is assigned the
value 'UNFORMATTED' if the file is connected for
unformatted input-output. If the file is not
connected, 'fm' is undefined.

FORMATTED-fmt 'fmt' is a character variable which is assigned
the value 'YES' if this file can be connected
for formatted input-output. 'fmt' receives the
value 'NO' if the file cannot be connected for
formatted input-output. If FORTRAN cannot
determine if the file can be connected for
formatted input-output, 'fmt' is assigned the
value 'UNKNOWN'.

UNFORMATTED-unf 'fmt' is a character variable which is assigned
the value 'YES' if this file can be connected

FORTRAN Reference Manual Page 103

FORTRAN Input and Output Chapter 10

REeL-rcl

NEXTREC-nr

BLANK-blnk

for unformatted input-output. 'unf' receives
the value 'NO' if the file cannot be connected
for unformatted input-output. If FORTRAN cannot
determine if the file can ,be connected for
unformatted input-output, 'unf' is assigned the

.value 'UNKNOWN'.

'rcl' is an integer var iable which is assigned
the record length of the file connected for
direct access. If the connection is not for
direct-access or the' the file is not connected
at all, 'rcl' is undefined.

'nr' is an integer var iable which is assigned
the number of the next record to be read or
written on a direct-access file. If the file is
connected but no data transfer has been done,
Inri is assigned the value 1. If the file is not
a direct-access file or if the position cannot
be determined (possibly because of a previous
error), Inri is undefined.

'blnk' is a character variable which is assigned
the value 'NULL' if the BN ed i t-descr iptor is
the default for blank control and is assigned
the value 'ZERO' if the BZ edit-descr iptor is
the default for blank control (see the OPEN
statement and the chapter on "Format
Specifications). If the file is not connnected
or if the file is connected but not for
formatted input-output, 'blnk' is undefined.

10.4.6 Notes on the INQUIRE Statement

The INQUIRE statement never returns an error condition. The
specifiers 'ex' (exists) and 'od' (opened) always get defined.
When a specifier is said to be "undefined" in the descr iptions
above, it means that certain of the specifiers are meaningless in
certain contexts. For example, if the access method for a unit
is SEQUENTIAL, the 'rcl' (record length) and Inri (next record)
specifiers have no meaning, and are thus said to be undefined (in
the context that a program should not be examining those
specifiers in such a case).

Page 104 FORTRAN Reference Manual

Chapter 10 FORTRAN Input and Output

10.5 List Directed Input and Output

List-directed input-output serves to process formatted records
without the use of a FORMAT statement. Values in the records are
in a "free-form". List-directed input-output is convenient for
those cases where the precise layout of the data is not
important.

10.5.1 List Directed READ

The elements in the list-directed READ statement are the same
as those for the READ statement previously described, with the
exception that an asterisk character "*" is supplied as the
format specifier.

Data is read into storage locations as specified in the
'iolist'. Input data consists of a number of values and value
separators. The next paragraph descr ibes value separators and
the following paragraph describes values.

10.5.1.1 List Directed Value Separators

Value separators are used to delimit values in a list-directed
input list. A value separator is one of the following:

• a comma, with optional spaces on either side.

• a slash, with optional spaces on each side.

• one or more contiguous spaces between constants or after the
last constant in the list.

• end-of-record, which appears as a space between two constants.

A comma is used to separate values.
indicate a null value.

Two commas in a row

A slash has the effect that the remaining items in in the input
list are discarded and null values substituted.

A value separator adjacent to an end-of-record is not
considered to be a null value.

FORTRAN Reference Manual Page lOS

FORTRAN Input and Output Chapter 10

10.5.1.2 List Directed Input Values

A value is a constant, a null (empty) value or one of the
forms:

r*c

r*

where 'r' is a repeat factor which must be an unsigned non-zero
integer constant. The form of 'r*c' represents 'r' successive
appearances of the constant 'ct. The form 'r*' is the same as 'r'
successive null values. Neither of these forms may contain
embedded spaces except where 'c' is a character constant.

Individual values in list-directed input are in the forms
descr ibed below. Values may not have embedded spaces, except
character constants, where a space stands for itself. The
acceptable forms of input values are:

Null

Integers

Real Number s

A null value is indicated by the presence of two
contiguous value separators, no characters or
spaces preceding the first value separator in an
Lnput list, or by an 'r*' form. A null value
cannot be used as the real or imaginary part of
a complex constant but can be used as an entire
complex constant. List items which are null
have no effect on the definition status of
variables in the corresponding 'iolist'.
Variables in the 'iolist' which are already
defined stay defined and variables which are not
defined stay undefined.

Must be the same form as for integer constants.

Any valid format for a FORTRAN real number.
Furthermore the decimal point can be omitted
from a real number, in which case the number is
assumed not to have a fractional part.

COJgplex Numbers A complex value is represented by an ordered
pair of real numbers in the format descr ibed
above for real numbers. The pair of reals are
separated from each other by a comma, and
enclosed in parentheses. There can be spaces
surrounding the numbers. An end of record can
appear before or after the comma in a complex
number.

Page 106 FORTRAN Reference Manual

Chapter 10 FORTRAN Input and Output

Character string values
A str ing of characters enclosed in apostrophes.
Embedded spaces are significant and are part of
the constant. An apostrophe is represented by
two juxtaposed apostrophes in the str ing.
Character constants can span record boundar ies.
A record boundary in a character constant does
not generate any gratuitous characters in the
value. Character constants can be continued
over as many records as needed. Note that
unterminated character constants can lead to
disastrous results.

If the character constant as read is longer than
the length of the corresponding 'iolist' item,
it is truncated to fit. If the character
constant is shorter than the corresponding
'iolist' item, it is placed left justified in
the variable and the remaining positions in the
variable are filled with spaces.

Logical values Logical values are represented by a T (.TRUE.)
or an P (.FALSE.). An optional per iod character
"." may appear before the T or P character. The
T or P can be followed by optional characters,
but these characters must not be value
separators - slashes or commas.

10.5.2 List Directed WRITE and PRINT

The list-directed WRITE and PRINT statements are similar to the
formatted WRITE and PRINT statements described previously, with
the exception that the FORMAT specifier is a *.

Data is transferred from the variables specified by the
'iolist' to the specified unit. In general, values are written
on the output device in a manner consistent with list-directed
input, but there are exceptions, the most notable being that
character string data written out by a list-directed WRITE or
PRINT statement cannot be re-read by a list directed input
statement. FORTRAN starts new records when neccessary. Values
in the output are separated by three spaces, except that
character values are not preceded or followed by any spaces.
FORTRAN never generates slashes or null values on list-directed
output. The forms of the different data types are as follows:

Integer values are generated as for an Iv edit-descriptor. 'w'
is the minimum number of characters required to
print the integer value.

FORTRAN Reference Manual Page 107

FORTRAN Input and Output Chapter 10

Real and Double Precision
are generated with the effect of either an F
edit-descriptor or an B edit-descriptor,
depending on the magnitude of the numbers
involved. The specific edit-descriptors used
are as described in the table below.

+------------------+------------------------------+
I Range of Number I Edit-Descriptor Used I

Real I Double Precision
+------------------+-----------+------------------+ I 1.0 ~ val < 10.0 I OPF9.6 I OPF17.14 I
+------------------+-----------+------------------+
I val < 1.0 or I I I

val ~ 10.0 lPB13.6B2 lPB22.14El
+------------------+-----------+------------------+

Complex numbers are generated as a pair of real numbers enclosed
in parentheses with a comma separating the real
and imaginary parts.

Character string values
are generated as strings of characters.
However, character constants are not surrounded
by apostrophes, meaning that they cannot be read
back in using listrdirected input.

Logical values are generated as T for .TRUE. and P for .FALSE.

Page 108 FORTRAN Reference Manual

Chapter 11 Format Specifications

Chapter 11

Poraat Specifications

This chapter descr ibes formatted input-output and the FORMAT
statements available from FORTRAN. The reader is assumed to be
familiar with the FORTRAN file system, units, records, access
methods and input-output statements as described in the previous
chapter.

A format specification is used in conjunction
input-output to supply information which directs
conversion between the internal representations
and the representations of character strings
character data item.

wi th formatted
the editing or
of the machine
in a file or

11.1 FORMAT Specifications and the FORMAT Statement

If a READ, WRITE or PRINT statement specifies a format, it is
considered to be a formatted input-output statement as opposed to
an unformatted input-output statement. To reiterate what was
described in the previous chapter, a format can be specified by
any of the following forms:

• giving the label of a FORMAT statement,

• the name of an integer var iable containing the label of a
FORMAT statement,

a character variable, character array element or character
expression which has the correct form of a format specifier,

an asterisk
input-output.

character, "*", indicating list-directed

The following examples illustrate valid ways to specify a
format:

FORTRAN Reference Manual Page 109

Format Specifications Chapter 11

•
•
•

•
•
•
•

* • •
•

* •
•
•

•
•
•
•

Example the first
reference to a FORMAT statement

WRITE(·, 990) IGOR, JOHANN, KLUTZ
990 FORMAT(2I5, 13)

Example the second •••••
assigned FORMAT label to integer

ASSIGN 880 TO MORFAT
880 FORMAT(2IS, 13)

~TE(·, MORFAT) IVAN, JANUS, KLONG

Example the third
using a character variable

CHARACTER· 9 FORCH
FORCH • '(215,13)'
WRITE(·, FORCH) IVOR, JACKO, KELP

Example the fourth •••••
using a character expression

CHARACTER. 7 CHAREX
DATA CHAREX 1'215, 13'1
WRITE(·, '(' II CHAREX II I)') IRENE, JAN~T, KLARG

Example the fifth •••••
List-directed write

WRITE(*, .) INEZ, JACKIE, KRON

The format specification itself must begin' with a left
parenthesis .(. and must end with a right parenthesis .) ••
Characters after a matching right parenthesis are ignored.

A FORMAT statement must have a label. Like all non-executable
statements, a FORMAT statement may not be the target of a
branching statement.

Between the • (. and .). characters, the format specifications
appear. The format specifications are a list of items, separated
by.commas. Each of the items in the format list is one of:

[r) ed

ned

[r] fs

Page 110

repeatable edit descriptors.

non-repeatable edit descriptors.

a nested format specification. At most ten
levels of nested parentheses are allowed wi thin
the outermost level.

FORTRAN Reference Manual

Chapter 11 Format Specifications

where 'r' is an optional, non-zero, unsigned integer constant
called a repeat specification. The comma separating two list
items may be omitted if the resulting format is unambiguous, such
as after a P edit descriptor or before or after a / edit
descriptor.

The repeatable edit descriptors (described in more detail
below) are:

Iv and IV.II for Integer editing
h.d for Real editing
h.d and Bw.dBe for Real editing
Dw.d for Real editing
Gv.d and Gv.dBe for Real editing
Lv for Logical editing
A and Av for Character editing

The wand e are unsigned non-zero integer constants. The d and
~ are unsigned integer constants.

The non-repeatable edit descriptors (also described in detail
below) are:

'xxxxxxx'
nBxxxxxxxxxxxx
Tc, '1'Lc and TRc
nx
/
\ or $

5, 55 and 5P
kP
BN and BZ

apostrophe editing
Hollerith editing
Tabbing to column
inserting spaces
starting a new record
inhibits starting new record
conditionally terminates format list
optional Sign control
Scale factor editing
Blank control

~ is one of the characters from the character set that FORTRAN
supports. nand c are unsigned, non zero integer constants. ~
is an optionally slgned integer constant.

Note that the FORTRAN compiler performs as much checking of
FORMAT statements as is possible at compilation time. There can
however, be incorrect FORMAT statements which the compiler cannot
detect, and such incorrect statements will not manifest
themselves until the program is actually run.

FORTRAN Reference Manual Page 111

Format Specifications Chapter 11

11.2 Interaction Between Format Specifications and I/O List

Before going into the full details of how the various edit
descriptors control the editing, it is necceassry to describe how
the format specification interacts with the input-output list
('iolist') in a given READ, WRITE or PRINT statement.

If an 'iolist' contains any items, at least one repeatable
edit-descriptor must appear in the format specification. In
particular, the empty edit specification We)" may only be used if
there are no items in the 'iolist', in which case the only action
the input-output statement performs is the implicit record
skipping action associated with formatted input-output. Each
item in the 'iolist' is associated in turn, with a repeatable
edit-descriptor during the execution of the input-output
statement. In contrast, the remaining non-repeatable
format-control items interact directly with the record and are
not associated with items in the 'iolist'.

Items in a format specification are interpreted from left to
right. Repeatable edit-descriptors act as if they were present
'r' times - if 'r' is omitted it is treated as a repeat factor of
1. Similarly, a nested format specification is treated as if its
list of items appears 'r' times.

Format specifications are interpreted at execution time. The
term "format controller" is used here to describe the entity that
interprets the list. The formatted input-output process proceeds
as follows:

The format controller scans the format items in the order noted
above. When a repeatable edit-descriptor is found, either:

• a corresponding item appears in the 'iolist'. In this case the
item and the edit-descriptor are associated and input or output
of that item proceeds under format control of the
edit-descriptor, or:

• the format controller terminates the input-output process.

If the format controller encounters a colon edi t-descr iptor,
.:" in the format list and there are no further items in the
'iolist', the format controller terminates input-output.

If the format controller encounters the matching final ")" of
the format specification and there are no further items in the

Page 112 FORTRAN Reference Manual

Chapter 11 Format Specifications

'iolist', the format controller terminates input-output. If
there are further items in the 'iolist', the file is positioned
at the beginning of the next record and the format controller
continues by re-scanning the format, starting at the beginning of
the format specification terminated by the last preceding right
parenthesis. If there is no such preceding right parenthesis,
the format controller re-scans the format from the beginning.
Within the portion of the re-scanned format, there must be at
least one repeatable edit-descriptor. Should the re-scan of the
format specification begin with a repeated, nested, format
specification, the repeat factor indicates the number of times to
repeat that nested format specification. The re-scan does not
change the previously set scale-factor, BN or BZ blank control or
5, SP or 55 sign control.

When the format controller terminates, the remaining characters
of an input record are skipped or an end-of-record is written on
output, except as noted under the \ or $ edit-descriptors.

11.3 Edit Descriptors

Edi t-descr iptors are used to specify a field of a record. A
detailed description of the various edit-descriptors follows.
The repeatable edit-descriptors appear first, followed by the
non-repeatable edit-descriptors.

11.3.1 Repeatable Edit Descriptors

Repea table ed i t-descr iptor s are assoc iated wi th items from an
'iolist'. Repeatable edit-descriptors are concerned with the
editing of numeric, logical, and character data items. These are
described in the paragraphs to follow.

11.3.1.1 Numeric Editing

The I, E, P and G edit-descriptors
integer, real and complex data. The
apply to all of those edit-descriptors:

are used for formatting
following general rules

• On input, leading spaces are not significant. Other spaces are
interpreted differently depending on the BN or BZ flag in
effect, but all blank fields are always treated as the value
zero (0). Plus signs are optional.

FORTRAN Reference Manual Page 113

Format Specifications Chapter 11

• On input, with Band P editing, an explicit decimal point
appearing in the input field overrides position of the decimal
point as specified in the edit-descriptor.

• On output, generated characters are right' justified in the
field with leading spaces if required.

• On output, if the number of characters produced exceeds the
field width, or the exponent exceeds its specified width, the
entire field is filled with asterisks, but also see the next
list item, concerning infinite and indeterminate values.

• On output, a value of plus infinity fills the field with plus
signs, a value of minus infinity fills the field with minus
signs, and an indeterminate value fills the field with question
marks.

• Editing of complex numbers is controlled by two B, P or G
edit-descriptors in succession, each of which controls the
editing of RhalfR of the complex value. The two
edit-descriptors for a given complex number do not have to be
the same.

11.3.1.2 I - Integer Editing

The edit-descriptor Iv must be associated with an 'iolist' item
which is of type INTEGER (which is the same as INTEGER*4),
INTEGER*l or INTEGER*2. The field width is 'Wi characters long.
On input, an optional sign may appear in the field.

The Iv •• edit-descriptor specifies the field width 'Wi as
above, but the 'm' part specifies a minimum field width for the
integer value.

On input, the 'm' specification has no effect.

On output, if the converted integer is shorter than 'm'
characters, leading zeros are placed in the field. If 'm' is
zero and the integer value to be "formatted is also zero, the
output field consists of 'w' spaces, regardless of any sign
control in effect (see later). 'm' must not be greater than 'Wi.

Page 114 FORTRAN Reference Manual

Chapter 11 Format Specifications

11.3.1.3 F - Real ~diting

The edit-descriptor h.d must be associated' with an 'iolist'
item which is of type real, double-precision or one half of a
complex number. The width of the field is 'we characters. The
fractional part is 'de digits long.

The input field begins with an optional sign, followed by a
string of digits optionally containing a decimal point. If the
decimal point is present, it overrides the 'de specified in the
edit-descriptor. If the decimal point is not present, the
rightmost 'de digits of the string are interpreted as following
the decimal point - leading spaces are converted to zeros if
neccessary. The number may be followed by an optional exponent
which is either of the forms:

• plus or minus followed by an integer, or

E or D, followed by zero or more spaces, followed by an
optional sign, followed by an integer. E and 0 are treated
identically.

The output field occupies 'Wi digits, 'de of which follow the
decimal point. The output value is controlled both by the
'iolist' item and by the current scale-factor (see the paragraph
later, on "Scale Factor Editing", in the discussion on
non-repeatable edit-descriptors). The output value is rounded,
not truncated.

11.3.1.4 E and D - Real Editing

The E or D edit-descriptors control formatting of real
elements. These edit-descriptors must be associated with an
'iolist' item which is of type real, double-precision or one half
of a complex number.

An E or D edit-descriptor takes one of the forms Ev.d, OW.d or
Ev.dEe. The forms Ev.d and OW.d have identical editing effects.
In each case, the field width is 'Wi characters.

The Ie' has no effect on input. The input field for an B
edit-descr iptor is identical to that descr ibed by an F
edit-descriptor which has the same 'Wi and 'de fields.

The form of the output field depends on the scale-factor (set
by the P edit-descriptor) in effect. For a scale-factor of 0,
the output field contains a minus sign (if needed), followed by a
decimal point, followed by a string of digits, followed by an

FORTRAN Reference Manual Page llS

Format Specifications Chapter 11

exponent field for an exponent 'exp' of one of the following
forms:

Ew.d -99 <- 'exp' <- 99
B, followed by plus or minus, followed by the
two digit exponent.

Ew.d -999 <- 'exp' <- 999
plus or minus,
exponent.

Ew.dEe -lOe-l <- 'exp' <- 10e-l

followed by three digit

B, followed by plus or minus, followed by Ie'
digits of exponent with possible leading zeros.

The form h.d must not be used if the absolute value of the
exponent to be printed exceeds 999.

The scale-factor controls decimal normalization of the printed
'E' field. If the scale-factor 'k' is in the range -d < k <- 0,
the output field contains exactly 'd'-'k' leading zeros after the
decimal point and 'd'+'k' significant digits after that. If
o < k < d+2, the output field contains exactly 'k' significant
digi ts before the decimal point and 'd' -' k' -1 places after the
decimal point. Other values of 'k' are errors.

11.3.1.5 G - Real Editing

The G edit-descriptor is similar to the Band F
edit-descriptors except that the G edit-descriptor provides for
an "adaptable" output format depending on the magnitude of the
number being converted - it gives the user a flexible choice of
output formats without the need to pre-check on the size of the
numbers ahead of time.

The G edit-descriptor must be associated with an 'iolist' item
which is of type real, double-precision or one half of a complex
number.

The G edit-descriptor takes one of the forms Gw.d or Gw.dEe. In
either case, the final output field width is 'Wi characters. The
number of digits after the decimal point is 'd' digits unless a
scale-factor greater than 1 is in effect.

On input, G editing acts the same as P editing (see above).

On output, the format of the converted number is dependent on
its magnitude. If B is the number to be converted, the table
below describes the action of the G edit-descriptor:

Page 116 FORTRAN Reference Manual

Chapter 11 Format Specifications

+---------------------------+--------~-----------------------+
I Magnitude of N I Equivalent Conversion I
+---------------------------+--------~-----------------------+

I N < 0.1 or I Gw.d is the same as kPEv.d I
N > 10**d Gw.dEe is the same as kPBv.dEe

+---------------------------+--------------------------------+
0.1 < N < 1 P(w-n) .d, n('h')

1 < N < 10 P(w-n). (d-l), n('b')

10** (d-2) < N < 10**(d-l) P(w-n) .1, n('b')

10** (d-l) < N < 10**d P(w-n).O, n('b')
+---------------------------+--------------------------------+

where 'b' stands for a blank (space) in the above table, and 'n'
is 4 for Gw.d editing and 'e'+2 for Gw.dEe editing.

11.3.1.6 L - Logical Editing

The edit-descript<:>r for a logical item is Lw, indicating that
the field width 1S 'WI characters. The 'iolist' element
associated with an L edit-descriptor must be o.f type LOGICAL
(which is the same as LOGICAL*4), LOGICAL*l or LOGICAL*2.

On input, the field consists of optional spaces, followed by an
optional decimal point, followed by a T (for .TRUE.) or P (for
.FALSE.). Any further characters in the field are ignored but
accepted on input, so that the strings .TRUE. and .FALSE. are
vali d inpu ts •

On output, 'w'-l spaces are followed by either the character T
or F as appropriate.

11.3.1.7 A - Character Editing

The forms of the edit-descriptor for character items are A or
Aw. The straight A format acquires an implied field width, 'WI,
from the number of characters in the 'iolist' item it is
associated with. The 'iolist' item must be of type character to
be associated with an A or Aw edit-descriptor.

On input, if 'WI equals or exceeds the number of characters in
the 'iolist' element, the rightmost characters of the input field
are used as the input characters, otherwise the input characters
are left-justified in the input 'iolist' item, and trailing
spaces are added.

FORTRAN Reference Manual Page 117

Format Specifications Chapter 11

On output, if 'w' exceeds the characters produced by the
'iolist' item, leading spaces are provided, otherwise the
leftmost 'w' characters of the 'iolist' item are output.

It is also possible to read and write non-character items with
the A ed i t-descr iptor • When th is is done, the var iable is
treated as if it were a CHARACTER variable whose length is the
number of bytes that that variable occupies.

11.3.2 Non Repeatable Edit Descriptors

Non-repeatable edit-descriptors are format list items which are
not associated with any 'iolist' items.

11.3.2.1 'xxx' - Apostrophe Editing

Apostrophe editing has the form of a character constant. It
causes characters to be wr itten from the enclosed characters g

including spaces, of the edit descriptor itself. Wi thin the
str ing, two • signs in a row are interpreted as one apostrophe.
Apostrophe edit descriptors cannot be used on input.

11.3.2.2 H - Hollerith Editing

The nB edit-descriptor (called Hollerith editing) transmits the
In' characters (including spaces) following the descriptor to the
output. Hollerith editing cannot be used for input.

C
C
C
C
C

C

C

C

970

960

Page 118

Examples of Apostrophe ~ Hollerith Editing

Each of the following WRITE statements writes
the characters

ABC'DEF
to the output.

WRITE(*, 970)
FORMAT (, ABC t 'DEF')

WRITE(*, , (, 'ABC' , , 'DEF' ,) ,)

WRITE(*, , (7HABC' , DEF) ,)

WRITE(*, 960)
FORMAT (7HABC ' DEF)

FORTRAN Reference Manual

Chapter 11 Format Specifications

11.3.2.3 X and T - positional Editing

The X and T edit-descriptors described below have the effect of
positioning the format controller within a record. They do not
by themselves transmit any characters to or from a record.

When a formatted record is read on input, it is treated as if
it were of infinite length, with as many trailing spaces as
needed to satisfy input requests. Positioning using the X and T
edit-descriptors determines the position of the next character to
be read from the record. These edit-descriptors may therefore be
used to skip portions of the input record or to re-read the same
positions in the record more than once.

On output, it is as if the input-output system initially
creates a record which is potentially of infinite length and
filled with spaces. As formatted output transmits characters to
the record, the final length of the record is determined by the
rightmost position to which a character is transmitted. Changing
the position with the X or T edit-descriptors does not directly
affect the length of the record, but does affect the position at
which the next character is transmitted to the output record.
Using the X or T edit-descriptors, positions in the record may
never have any characters transmitted to them (they are skipped),
which means that those positions retain their original blank
values, providing, of course, that characters are transmitted
after the skipped positions so that those character positions are
eventually included in the output record. It is also possible to
overwrite positions of formatted output records using the X and T
edit-descriptors by positioning to a place where data was
previously written. in this case, only the last value written to
a given character position becomes part of the final formatted
record.

nX edit-descriptor advances the record position by 'n' spaces.
If 'n' is omitted, the value 1 is used.

The Tc, TLc and TRc edit-descr iptors position the record to a
specified column. The Tc edit-descriptor positions the record to
absolute column position 'c'. The TLc edit-descriptor moves the
column position to 'c' characters to the Left (backwards),
relative to the current position. The TRc edit-descriptor moves
the column position 'c' characters to the Right (forwards)
relative to the current position. -

On input, the T edit-descriptors have the effect of skipping or
allowing re-reading of portions of the input record. If the TLc
edit-descr iptor moves the character position to a place where
input fields were previously transmitted, those items can be

FORTRAN Reference Manual Page 119

Format Specifications Chapter 11

re-transmitted.

On output, if a character is transmitted to a position where
another character has already been transmitted, the earlier
transmission is replaced.

11.3.2.4 Slash Editing - End of Transfer on Record

The slash character "I" indicates end of transfer on the
current record.

On input, the file is positioned to the beginning of the next
record.

On output, an end-of-record is written and the file is
positioned to write at the start of the next record.

11.3.2.5 Backslash or Dollar Editing - Inhibit End of Record

The backslash "'" and dollar "$" edit-descriptors only apply
when writing to the * device (the Standard Ouput).

Normally, when the format controller terminates a format list,
data transmission to the current record ceases and the file is
positioned so that a new WRITE starts a new record. If, while
scanning the format list, the format controller finds a backslash
character "'" or a dollar character "$", the automatic
end-of-record action is inhibited. This means that subsequent
input-output statements can continue reading from or writing to
the same record. The most common usa for this mechanism is to
prompt to the Standard Input and read a response on the same
line. For example:

~TE(*, '(\A)') 'Please type your weight -> '
READ(*, '(BN, 16)') LIGHT

The backslash or dollar ed i t-descr iptor does not inh ibi t the
automatic end-of-record generated when reading from the * unit.
Input from the std-input must always be terminated by a
carriage-return. This permits proper functioning of the
backspace and line-delete keys.

Page 120 FORTRAN Reference Manual

Chapter 11 Format Specifications

11.3.2.6 Colon Editing - Conditional Termination

The : character appearing in a format list has the effect of
terminating processing of the format list if there are no more
items in the 'iolist'. If there are more items in the 'iolist'
when the colon is encountered, the colon is ignored. There may
be more than one colon in a format list.

The colon edit-descriptor is useful for terminating extraneous
textual data that might otherwise be printed after all
appropriate numeric items have been transferred. It is also
useful for preventing further / edit-descriptors on input.

11.3.2.7 P - Scale Factor Editing

The kP edit-descriptor sets the scale-factor for subsequent B,
F and G edit-descriptors until another kP edit-descriptor fs
encountered. At the start of each input-output statement, the
scale-factor is zero (0). The scale-factor affects format editing
as follows:

• On input with E, F or G editing, providing that an explicit
exponent does not appear, the externally represented number is
equal to the internally represented number multipled by 10**k.

On input wi th B, F and G editing, the scale-factor has no
effect if there is an explicit exponent in the input field.

On output with B editing, the real part of the quantity is
multiplied by lO**k and the exponent is reduced by 'k',
effectively altering the column position of the decimal point,
but not the actual output value.

• On output with F and G editing, the externally represented
number is equal to the internally represented number multiplied
by 10**k.

11.3.2.8 BN and BZ - Blank Interpretation

The BN and BZ edi t-descr iptors specify the interpretation of
blanks (spaces) in numeric input fields.

The initial setting of this edit-descriptor is dependent on the
BLANK= parameter to the OPEN statement when this file was
opened. See the OPEN statement for a description of the BLANK=
parameter.

FORTRAN Reference Manual Page 121

Format Specifications Chapter 11

If BI editing is in effect, leading blanks are ignored and
embedded blanks are treated as zeros. This edit-descriptor stays
in effect until a BH edit-descriptor is encountered in the format
list.

If BH editing. is in effect, blanks in subsequent input fields
are ignored until a BZ edit-descriptor is processed. The effect
of ignor ing blanks is to treat all the non-blank characters in
the input field as if they were right justified in the field,
with the number of leading blanks equal to the number of ignored
blanks. In the example below, the READ statement treats the
characters shown between the vertical bars as the value 123,
where the term <cr> indicates a carriage-return:

READ(*, 100) I
100 FORMAT(BN, 16)

123 <cr>1
123 4S6<cr>
l23<cr>1

123<cr>I

Using the BH edit-desccriptor in conjunction with the infinite
blank padding at the end of formatted records makes interactive
input very convenient.

11.3.2.9 S, SS and SP - Sign Control Editing

An output field generated by I, D, B, F or G editing includes
an optional sign immediately preceding the digits of the value.
The sign always appears if the number is negative, but if the
number is positive, FORTRAN omits the plus sign.

At the start of a format list, FORTRAN opts to omi t plus
signs. An S, SS or SP edit-descriptor controls the option. Any
option chosen remains in effect until another one is found in the
format list.

An SP format code specifies that "optional" plus signs are
always printed. An SS edit-descriptor specifies that they are to
be suppressed always. A.n S option restores FORTRAN's option to
omit plus signs.

On input, these format codes have no effect and are ignored.

Page 122 FORTRAN Reference Manual

Chapter 12 Program and Subprogram Structure

Chapter 12

Program and Subprogram Structure

A complete executable FORTRAN program consists of the following
elements:

• a main program,

• any number of SUBROUTINE subprograms,

• any number of FUNCTION subprograms,

• any number of BLOCK DATA subprograms.

A subprogram is a program unit which begins with a SUBROUTINE,
FUNCTION or BLOCK DATA statement. A subprogram is defined
separately and can be compiled independently of the main
program. Subroutine and function subprograms are procedures
which can share values and results through argument lists, common
blocks or both. A BLOCK DATA subprogram acts as a container for
initializing common blocks.

A procedure can be a subroutine, external function, intrinsic
function or statement-function.

12.1 Main Program

A main program is any program unit that does not start with a
SUBROUTINE, FUNCTION or BLOCK DATA statement. A main program may
start with a PROGRAM statement. Execution of a FORTRAN program
starts with the first executable statement in a main program.
Consequently there must be precisely one main program in every
executable FORTRAN program. The form of a PROGRAM statement is:

PROGRAM progname

where 'progname' is a user-defined name of the main program.

FORTRAN Reference Manual Page 123

Program and Subprogram Structure Chapter 12

The name 'progname' is a global name. Therefore it must not be
the same as the name of another external procedure or the name of
a common block. The name 'progname' is also local to the main
program and must not be the same as any other local name in the
main program. The PROGRAM statement may only appear as the first
statement of a main program.

Example of ~ PROGRAM Statement

PROGRAM BESSEL

12.2 Access To Command Line Arguments

The SVS FORTRAN-77 system provides for access to the command
line which called up the running program.

The FORTRAN-77 run-time library contains two routines which
enable a FORTRAN-77 program to access its command line
arguments.

IARGC (Argument Count) is an INTEGER FUNCTION which returns the
number of arguments actually typed on the command line.

GETARG is a subroutine which returns a specified argument. The
definition of GETARG is:

SUBROUTINE GETARG(ARGNUM, ARGCH)
INTEGER ARGNUM
CHARACTER * (*) ARGCH

ARGNUM is the number of the argument which is to be accessed
from the command line. Arguments are numbered from 1 (not from a
as on some operating systems). Indexing from 1 is done for
compatibility with the Pascal numbering, and with FORTRAN-77's
default lower array bounds. The value passed to ARGNUM must be
in the range 1 through IARGC. If it is not, the results are
undefined.

The first argument (argument 1) is the name of the program.

The receiving variable is treated just as it is in a character
assignment statement in FORTRAN-77. If the source character
string is shorter than the target variable, it is padded with
spaces on the right. If the source character str ing is longer
than the receiving variable, it is truncated.

Page 124 FORTRAN Reference Manual

Chapter 12 Program and Subprogram Structure

Here is a short example of using the argument acce~s facility
to echo the command line to the standard output.

PROGRAM ECHO
INTEGER ARGC
CHARACTER *100 ARG
INTEGER I

DO 200 I • 1, IARGC()
CALL GETARG(I, ARG)

200 WRITE(*, *) ARG
END

12.3 Formal Arguments and Actual Arguments

This section covers the relationship between f~rmal arguments
and actual arguments in function and subroutine subprograms.
Throughout the discussion, the terms "formal argument" and "dummy
argument" are synonymous.

A formal argument
which the argument
subprogram.

is the name (local to the subprogram) by
is known during the execution of the

The actual argument is the actual value (variable, expression,
array and so on) passed to the subprogram in question at the time
a caller references the subprogram.

There are a number of ways to pass values into and out of
subprograms. One way is via common blocks. Another way is to
use the argument mechanism of subroutines and functions. It is
this second way that this section covers.

Arguments are used to pass values into and out of subprograms.
The number of actual arguments must be the same as the number of
formal arguments. The types of the cor responding formal and
actual arguments must also agree.

FORTRAN Reference Manual Page 125

Program and Subprogram Structure Chapter 12

12.3.1 Argument Association

On entry to a subroutine or function, the actual arguments
become associated with the formal arguments. The association
remains effective until execution of the subprogram terminates.
Thus assigning a value to a formal argument while executing a
subprogram can change the value of the corresponding actual
argument. If an actual argument is a constant, function
reference, or an expression other than a simple variable,
assigning a value to the formal argument should not be done, and
can lead to strange and hard to diagnose side effects.-

A formal argument that is a variable can be associated with an
actual .argument that is a variable, an array element or an
expresslon. The length attributes of integer and logical
arguments must match exactly, that is, an actual argument of type
INTEGER*2 must only be associated with a formal argument of
INTEGER*2.

Actual arguments which are integer expressions can only be
associated with formal arguments of type INTEGER or INTEGER*4.
Similarly, actual arguments which are logical expressions can
only be associated wi th formal arguments of type LOGICAL or
LOGICAL*4. An "expression" in this context is any construct which
is not a variable, array or array element.

If an actual argument is an expression (anything not a
variable, array, or array element), it is evaluated immediately
prior to the association of actual and formal arguments. If an
actual argument is an array element, its subscript expression is
evaluated just prior to the association and remains constant
during execution of the subprogram, even if the subscript
expression contains variables that are re-defined while the
subprogram executes.

A formal argument that is an array can be associated with an
actual argument that is an array or an array element. The number
and size of dimensions in the formal argument can differ from
those of the actual argument, but any reference to the formal
argument must be within the limits of the actual array's storage
sequence. While the FORTRAN system cannot detect such an
out-of-bounds reference, the results are generally unpredictable
and undesirable.

A formal argument which is an asterisk character, "*", may only
appear in the argument list of a subroutine or in an ENTRY
statement in a subroutine. The actual argument is· an alternate
return specifier in the subroutine CALL statement (see below).

Page 126 FORTRAN Reference Manual

Chapter 12 Program and Subprogram Structure

Formal arguments which are arrays qr character strings may have
adjustable dimensions. This enables writing more general
subprograms which can accept objects of varying size. A formal
argument which is an array may have its dimensions specified by
var iables passed as actual arguments. This is an adjustable
array. An array formal argument may also have the upper bound of
its last dimension specified as an asterisk character, "*", which
declares it to be an assumed size array. In this case, the value
of that dimension is not passed as an actual argument, but is
determined by the number of elements in the array. If an array
is dimensioned as *, it is the programmer's responsibility to
ensure that the calling program unit has provided an array big
enough to contain all the elements stored into it in the
subprogram.

Character strings may have their length specified as (*). This
declares the str ing to be of varying size. The length of the
string is not passed explicitly as an argument, but is determined
by the system from the length of the actual argument.

A formal argument which is Of type character must not be
greater than the length of the actual argument. If the length of
the actual argument is greater than that of the formal argument,
the actual argument is truncated on the right.

If a formal argument is of type character whose length is
specified as (*), a character expression involving concatenation
of that argument must not be used as an actual argument to any
other procedure, format specification or input-output list in an
input-output statement.

12.4 Subroutines

A subroutine is a program unit that is called from other
program units via the CALL statement. When invoked, the
subroutine performs the actions that its executable statements
define, and then returns control to the program unit that called
it. A subroutine does not directly return a value, although
values can be passed to the caller via the subroutine's arguments
or via common variables.

FORTRAN Reference Manual Page 127

Program and Subprogram Structure Chapter 12

12.4.1 SUBROUTINE Statement

A subroutine starts with a SUBROUTINE statement and ends with
the first END statement that follows. A subroutine can contain
any kind of statement except a PROGRAM statement, a FUNCTION
statement or a BLOCK DATA statement. The form of a SUBROUTINE
statement is:

SUBROUTINE subname [(farg [. farg] •••)

'subname' is the user-defined name of the subroutine.

'farg' is a formal argument specification. A formal
argument can be the user-defined name of a
variable, array, dunany procedure, or it can be
an alternate-return specifier designated by the
asterisk character -.-.

The subroutine name 'subname' is a global name. It is also
local to the subroutine it names. The list of argument names
defines the number (and with any. subsequent IMPLICIT, type or
DIMENSION statements) the type of arguments to that subrou tine.
Argument names must not appear in COMMON, DATA, EQUIVALENCE or
INTRINSIC statements.

If a subroutine does not have any formal arguments, an empty
argument list indicated by a pair of parentheses may follow the
name, as shown in the examples below.

Examples of SUBROUTINE Statements

SUBROUTINE NOARGS

SUBROUTINE ZILCH()

SUBROUTINE ONEARG (RILEY)

SUBROUTINE ALTRET(LIMIT, *)

12.4.2 CALL Statement

A subroutine is executed when a CALL statement in another
subprogram references that subroutines by name. The form of a
CALL statement is:

Page 128 FORTRAN Reference Manual

Chapter 12 Program and Subprogram Structure

CALL subname J ([arg [. arg] •••])]

'subname' is the name of the subroutine to call.

'arg' is an actual argument. The actual arguments are
described below.

The actual arguments in the CALL statement must agree in type
and number with the corresponding formal arguments specified in
the SUBROUTINE statement of the referenced subroutine. Actual
arguments may be one of the following:

• An exp'ression,

• An array name,

• An intrinsic function name,

• An external procedure name,

• A durr~y procedure name,

An alternate-return specifier of the form *s, where IS' is the
statement-label of an executable statement in the same program
unit as the CALL statement.

If there are no arguments in the SUBROUTINE statement, a CALL
statement that references that subroutine must not have any
actual arguments. A pair of parentheses following the subroutine
name is optional in the CALL statement. A formal argument can be
used as an actual argument in another subroutine call.

Execution of a CALL statement proceeds as follows:

1. All actual arguments that are expressions are evaluated.

2. All actual arguments are then associated with their
corresponding formal arguments.

3. The body of the specified subroutine is executed.

4. Control is returned to the subroutine's caller when a
RETURN or and END statement is executed in the subprogram,
either at the statement following the CALL statement, or at
the alternate return specifier designated in a RETURN
statement.

A subroutine specified in any program unit can be called from
any other subprogram within the same executable program.
Recursive subroutine calls are not allowed in FORTRAN. That is, a
subroutine cannot call itself directly, nor may a subroutine

FORTRAN Reference Manual Page 129

Program and Subprogram Structure Chapter 12

called by the current subroutine subsequently call the current
subroutine.

12.5 Functions

A function is referenced in the context of an expression and
returns a value that is used in the evaluation of that
expression. There are three kinds of functions, namely: external
functions, intrinsic functions and statement functions. The
subsections to follow describe the three kinds of functions.

A function reference can appear in an expression. Referencing
a function in the context of an expression causes that function
to be executed. The resulting value that the function returns is
used as an operand in the expression that references the
function. The form of a function reference is:

funcname ([arg [, arg]...])

'funcname' is the name of an external, intrinsic, or
statement function.

'arg' is an
forms
below.

actual
of the

argument to the
actual arguments

function. The
are described

The number of actual arguments must be the same as the number
of formal arguments. Except for generic intrinsic functions, the
types of the actual arguments must agree with the types of the
corresponding formal arguments. An actual argument can be any
one of:

• An expression,

• An array name,

• An external procedure name,

• An intrinsic function name,

• A dummy procedure name.

Page 130 FORTRAN Reference Manual

Chapter 12 Program and Subprogram Structure

12.5.1 External Functions

An external function is specified by a function subprogram. It
starts with a FUNCTION statement and ends with an END statement.
A function can contain any kind of statement except a SUBROUTINE
statement, PROGRAM statement or BLOCK DATA statement. The form
of a FUNCTION statement is:

[type] FUNCTION function_name ([farg [, farg] •••])

'type' defines the return type of the function. 'type'
is one of INTEGER, INTEGER*l, INTEGER*2,
INTEGER*4, REAL, REAL*4, REAL*8,
DOUBLE PRECISION, CHARACTER[*len] , LOGICAL,
LOGICAL*l, LOGICAL*2, LOGICAL*4 or COMPLEX.

'function_name' is the user-defined name of the function.

'farge is a user-defined name of the formal argument.

The function name 'function name' is a global name. It must
not be the same as the name -of any other PROGRAM, SUBROUTINE,
FUNCTION or BLOCK DATA subprogram. The function name is also
local to the function it names.

If the 'type' specification is omitted from the function
declaration, the function's type is determined by default and any
subsequent IMPLICIT statements that would determine the type of
an ordinary variable. If the 'type' specifier is present, the
function name must not appear in any subsequent type statements.

The list of argument names determines the number (and with any
subsequent IMPLICIT, type or DIMENSION statements) the type of
the arguments to the function. Neither the argument names nor
the function name may appear in any COMMON, DATA, EQUIVALENCE or
INTRINSIC statements.

The function name must appear as a variable in the subprogram
that defines the function. Each execution of the function must
assign a value to that variable. The final value of this
variable upon execution of a RETURN or END statement, defines the
value of the function. After this variable is defined, its value
can be referenced in an expression just like any other variable.
In addition to the value returned, an external function can
return values via assignment to one or more of its formal
arguments or through variables in common areas.

A function which is declared as type CHARACTER*(*) derives its
length from the specification (declaration) of the function in

FORTRAN Reference Manual Page 131

Program and Subprogram Structure Chapter 12

the calling program unit.

12.5.2 Intrinsic Functions

Intrinsic functions are those functions that the FORTRAN
compiler pre-defines. Intrinsic functions are available for use
in a FORTRAN program. The table in the appendix on "Intr insic
Functions" gives the name, definition, number of arguments, and
type of the intrinsic functions available in SVS FORTRAN-77.
Those intrinsic functions which accept several types of arguments
must have all those arguments of the same type in any given
reference.

An intrinsic function can appear in an INTRINSIC statement, but
only those intrinsic functions listed in the table in the
appendix on "Intrinsic Functions" may do so. An intrinsic
function may also appear in a type statement, but only if the
type is the same as the standard type of that intrinsic
function.

Certain intrinsic functions limit the range of their arguments
in certain ways determined by the defini Hon of the function
being computed. For example, the logarithm of a negative number
is mathematically undefined, and is therefore not allowed.

12.5.3 Statement Functions

A statement-function is a function that is defined by a single
statement. It is similar in form to an assignment statement. A
statement-function statement must appear in a subprogram after
any specification statements and before any executable
statements. A statement-function statement is not executable -
rather the body of the statement-function statement serves to
define the meaning of the statement-function. A
statement-function is executed (in the body of the subprogram in
which it is defined) by referencing it just like a function. The
form of a statement-function statement is:

function_name ([arg [. arg] •••]) - expression

'function_name'

'arg'

'expression'

Page 132

is the name
defined.

of the statement-function being

is the user-defined
argument(s), if any.

name

is an expression
arguments are to
function result

that defines
be combined

when the

of the formal

how the formal
to generate a

function is

FORTRAN Reference Manual

Chapter 12 Program and Subprogram Structure

referenced.

The type of the 'expression' must be assignment compatible with
the type of the statement-function name. The list of formal
argument names serves to define the number and 'types of arguments
to the statement-function. The scope of the formal arguments is
the statement-function. Therefore the formal argument names may
be used as other user-defined names in the rest of the program
unit that contains the statement-function statement. The name of
the statement-function is local to the containing program unit,
and therefore must not be used for any other purpose, other than
as the name of a common block, or as the name of a formal
argument to another statement-function statement. The type of
all such other uses must be the same. If a formal argument to a
statement-function statement is the same as a local name in the
program unit, a reference to that name within the
statement-function always refers to the formal argument, never to
the other usage.

Within the 'expression', references, to variables, formal
arguments of the containing subprogram, other functions, array
elements and constants, are all allowed. Statement-function
references, however, must refer to statement-functions defined
prior to the statement-function in which they appear.
Statement-functions must not be called recursively, either
directly or indirectly.

A statement-function can only be referenced in the subprogram
in which it is defined. A statement-function name must not
appear in any specification statement other than a type statement
or a COMMON statement. If a statement-function name appears in a
type statement, that name must not be defined as an array name.
If a statement-function name appears in a COMMON statement, that
name can only be the name of the common area.

12.6 ENTRY Statement

A subroutine or function subprogram has a primary entry-point
which is established via the SUBROUTINE or FUNCTION statement
which declares that program unit. A subroutine call or a
function reference normally activates that subprogram at its
primary entry-point, and the first statement which is executed is
normally the first executable statement in the subprogram.

It is possible, however, to define alternate entry-points in a
subroutine or function subprogram. These alternate entry-points
are the start of sequences of statements which are different from

FORTRAN Reference Manual Page 133

Program and Subprogram Structure Chapter 12

the sequence executed by entering the subprogram at its primary
entry-point. In addition, such alternate entry-·points can have
formal argument lists which differ in number and type from those
found in the primary entry-point, and from those of other ENTRY
statements in the same subprogram. The format of the ENTRY
statement is:

ENTRY entname [(farg [. farg] •••)

'entname' is the user-defined name of the entry-point for
the subroutine or function subprogram.

'farg' is a :forma1 argument specification. A formal
argument can be the user-defined name of a
variable, array, dummy procedure, or, if the
subprogram is a subroutine subprogram, it can be
an alternate-return specifier designated by the
asterisk character w.w.

The entry-point name 'entname' is a global .name. I t is also
local to the subprogram in which it appears. The list of
argument names defines the number (and with any IMPLICIT, type or
DIMENSION statements) the type of arguments to that subroutine.
Argument names must not appear in COMMON, DATA, EQUIVALENCE or
INTRINSIC statements.

If the entry-point name, 'entname' is in a function subprogram,
the name can appear in a type statement.

An ENTRY statement must not appear within the body of an IF
block or a DO block.

As wi th SUBROUTINE and FUNCTION statements, if there are no
arguments to the ENTRY statement, an empty argument list can be
supplied.

When a subprogram is referenced or called via an alternate
entry-point, the actual arguments must agree in number, order and
type with the formal arguments (except for subroutine names and
alternate return specifiers which do not have a type).

12.6.1 Restrictions on the ENTRY Statement

An entry name must not appear as a dummy argument in a
FUNCTION, SUBROUTINE or another ENTRY statement, and must not
appear in an EXTERNAL statement.

In a function subprogram, the only place the entry-pOint name
may be used prior to the ENTRY statement is in a type statement.

Page 134 FORTRAN Reference Manual

Chapter 12 Program and Subprogram Structure

If a function subprogram is of type character, all entry-points
to that function must also be of type character. If the length
of the character function is specified as (*), all entry-points
to that function must also have a length of (*), otherwise all
entry-points must have the same length specification.

An argument in an ENTRY statement cannot appear prior to that
ENTRY statement unless it:

• is either a type statement,
• is an argument in the SUBROUTINE or FUNCTION statement which

begins the procedure containing the ENTRY statement,
• appears in a prior ENTRY statement in the same procedure.

12.7 RETURN Statement

A RETURN statement returns control from a subprogram to the
program unit which called it. A RETURN statement can only appear
in a function or subroutine subprogram. The form of a RETURN in
a function subprogram is:

RETURN

The form of a RETURN statement in a subroutine subprogram is:

RETURN [.!]

Where the optional.! is an integer expression.

Execution of a RETURN statement terminates the execution of the
containing function or subroutine subprogram. If the RETURN
statement is in a function subprogram, the value of the function
is the current value of the variable with the same name as the
function. If the function var iable has not been assigned to
prior to executing a RETURN or an END statement, the function
value is undefined.

The RETURN statement is optional in a subprogram. Executing an
END statement is equivalent to executing a RETURN statement.

If e is supplied on the RETURN statement, it ind icates an
alternate return from the subroutine. If e lies between 1 and
'n', where 'n' is the number of aster isks in the SUBROUTINE or
ENTRY statement, the value of e selects the e' th aster isk from
the formal argument list. Control then returns to the caller at
the label specified by the .!'th alternate return specifier.

FORTRAN Reference Manual Page l35

Program and Subprogram Structure Chapter 12

If e is omitted, or if e lies outside the range 1 to 'n', the
effect is to execute a normal return. Control then returns to
the caller at the statement after the CALL statement that invoked
the current subroutine.

12.8 Definition Status

When a RETURN statement or an END statement is executed in a
subprogram, all objects wi thin the subprogram become undefined,
with the following exceptions:

• Objects specified by SAVE statements.

• Objects in blank common.

Anything in a named common block that appears in the current
subprogram and also appears in at least one other subprogram
that directly or indirectly references the current subprogram.

• Initially-defined objects that have neither been re-defined nor
become undefined.

If a named common block appears in the main program, anything
in that common block does not become undefined.

12.9 BLOCK DATA Subprogram

A BLOCK DATA subprogram is a non-executable subprogram which is
used to initialize the values of variables and array elements in
named common areas. There may be more than one block data
subprogram in a FORTRAN program, but if there is more than one
block data subprogram, only one of them can be un-named. The
format of a BLOCK DATA statement is:

BLOCK DATA [block name]

where 'b1ockname' is the optional name of the block data
subprogram.

The BLOCK DATA statement must appear as the first statement of
the block data subprogram. The name, 'b10ckname', if present,
must not be the same as any the name of any any external
procedure, main program, common area or other block data

Page 136 FORTRAN Reference Manual

Chapter 12 Program and Subprogram Structure

subprogram. The name, 'blockname' must not be the same as any
local name in the subprogram.

A block data subprogram can contain type statements, IMPLICIT,
PARAMETER, DIMENSION, COMMON, SAVE, EQUIVALENCE. or DATA
statements. A block data subprogram ends with an END statement.

More than one named common block can be initialized in the same
block data subprogram. All the variables in a given named common
block must be specified, even if they are not all initialized.

A given named common block may only be specified in one block
data subprogram in the same executable program.

*

Examples of BLOCK DATA Subprogram

BLOCK DATA Whammo

* Declare a common block with variables
*

*

COMMON /DRINKS/ Beer, Wine, Scotch
REAL Beer
COMPLEX Wine
DOUBLE PRECISION Scotch

* Declare another common block with variables
*

*

COMMON /FOODS/ Burger, Dogs, Fries
LOGICAL Burger
REAL Dogs
COMPLEX Fries

* Now initialize some of the variables.
*

*

DATA Beer /3.2/, Wine /(11.5, 1.5)/

DATA Burger /.TRUE./, Fries /(1.1, 2.8)/

END

In the example above, note that not all the var iables were
initialized.

FORTRAN Reference Manual Page 137

Program and Subprogram Structure Chapter 12

12.10 The FORTRAN Intrinsic Functions

Intrinsic functions are those system supplied (Rbuilt-inR)
functions which are otherwise difficult to express in FORTRAN. An
intrinsic function is supplied by FORTRAN. An intrinsic function
returns a single value and is referenced in the same way as a
user-defined function.

If a variable, array or statement-function is defined with the
same name as that of an intrinsic function, the name is local to
the program unit in which it is declared and the intrinsic
function of that name is no longer available to that program
unit.

If a function subprogram is defined which has the same name as
that of an intrinsic function, use of that name references the
intrinsic function, unless the name is declared as the name of an
external function via the EXTERNAL statement.

Certain intrinsic functions are generic. In general, if a
generic name exists, a generic name can be used in place of a
specific name and permits greater flexibility than a specific
name. Except for the type conversion functions, the type of the
argument to a generic function determines the type of the
result. For example, the generic function LOG computes the
natural logarithm of its argument, which may be real, double
precision or complex. The type of the result is the same as the
type of its argument. The specific functions ALOG, DLOG and CLOG
also compute the natural logarithm. ALOG computes the log of a
real argument and returns a real result. Likewise, DLOG and CLOG
accept double precision and complex arguments and return double
precision and complex results, respectively.

Only the specific name can be used as an actual argument when
an intrinsic function name is passed to a user-defined procedure
or function.

The table in the appendix, RFORTRAN Intrinsic Functions", shows
the intrinsic functions, their generic and specific names, their
number of arguments and their argument types and result types.

Page 138 FORTRAN Reference Manual

Chapter 13 FORTRAN Compile Time Options

Chapter 13

FORrRAR Ca.pile T~e Options

Compiler Directives are a SVS extension to ANSI FORTRAN. SVS
FORTRAN compiler dlrectives provide additional controls over the
compiler's actions.

A compiler directive line is a line with a dollar sign $ in
column one. A compiler directive line can appear anywhere that a
comment line can appear. Spaces are significant in compiler
directive lines, where they delimit keywords and filenames.

Some of the compiler directives listed below are to make
FORTRAN-77 cater to FORTRAN-66 features.

13.1 $INCLUDE - Include Source File

$INCLUDE filename

the file specified by "filename" is textually included in the
program source, as if the actual contents of the included file
had been written there.

Included files may be nested to a maximum depth of five.

13.2 $XREF - Generate Cross Reference

$XREF

generate a cross-reference listing at the end of each compiled
subprogram.

FORTRAN Reference Manual Page 139

FORTRAN Compile Time Options Chapter 13

13.3 $SEGMENT - Designate Segment Name

$SEGMENT [identifier]

the generated object-code of subsequent procedures is placed into
the segment named by 'identifier'. If the $SEGMENT directive
appears without any 'identifier' field, the generated object-code
is placed in a segment whose name is ' , (eight spaces).

13.4 $BIGCODE - Set Maximum Code Sizes

$BIGCODE

indicates that a procedure can be 32K bytes long. If $BIGCODE is
not specified, the maximum length of a procedure is 16K bytes.

The maximum size of a single linked segment (a collection of
procedures) is 32K bytes. This is a restriction on f77's

. internal code-generation scheme.

In addition, the maximum size of any subroutine or function is
16K bytes, unless the $BIGCODE option has been selected, in which
case the limit Is 32K bytes. But, the specific details of these
restrictions are:

• In any procedure, there may not be more than 16K bytes (32K
bytes if $BIGCODE) of the .text plus .data segments. The .text
is the executable code, and the .data is the initialized data
areas •

• Uninitialized data goes in the .bss area, but, if ~ of that
data is initialized via a DATA statement, all that data ends up
in the .data area. This is because of FORTRAN's rules that
data declared in a procedure must be contiguous in storage.

Page 140 FORTRAN Reference Manual

Chapter 13 FORTRAN Compile Time Options

13.5 $COL72 - Restrict Source Lines to 72 Columns

$COL72

indicates that source lines are to end in column 72. If this
option is not specified, source lines can be up to 120 characters
long. But, the ANSI FORTRAN-77 standard restriction of a maximum
of 1360 characters per statement still applies. This corresponds
to 20 lines of 66 columns.

13.6 FORTRAN-66 Compatibility Options

The FORTRAN compiler accepts options which change features of
the language in a manner compatible with FORTRAN-66. These
options are listed in the following paragraphs.

13.6.1 $F66DO - Implement FORTRAN-66 DO Loops

If the $F66DO option is used, DO loops always execute at least
once.

13.6.2 $CHAREQU - Character and Numeric Data Equivalence

The $CHAREQU option means that CHARACTER and numeric data can
now be assigned to the same COMMON areas. Using this option,
CHARACTER and numeric-data can also be EQUIVALENCE'd.

In addition, the CHAREQU option indicates that non-CHARACTER
variables can be initialized with CHARACTER data constants via
the DATA statement. See chapter 7 - "Data Initialization" for
details.

13.6.3 $INT2 - Make Integers l6-Bits

If the $INT2 option is used, the INTEGER data type is INTEGER*2
by default, although all the length specifications are still
available if explicitly used in specification statements.

FORTRAN Reference Manual Page 141

FORTRAN Compile Time Options Chapter 13

If the $INT2 option is used, LOGICAL var iables default to
LOGlCAL*l. Just as for INTEGER, all the length specifications for
LOGICAL are still available if explicitly used in specification
statements.

It should be noted that these last two features conflict with
the Wstorage unitW standards of FORTRAN-77, but are useful
nevertheless.

Hote: Although the $INT2 option changes the default size of
INTEGER and LOGICAL variables, the FORTRAN system still expects
to see 4-byte variables in those contexts where an INTEGER*4 (or
a LOGICAL*4) is required. For example, the assigned GO TO
statement still expects a 4-byte var iable as the subject of the
ASSIGN statement and any GO TO statement which references that
variable.

Page 142 FORTRAN Reference Manual

Appendix A Messages from the FORTRAN System

Appendix A

Messages fro. the FORTRAN System

A.l Compile-Time Error Messages

o Unknown error
1 Fatal error reading source block
2 Non-numeric characters in label field
3 Too many continuation lines
4 Fatal end-of-file encountered
5 Labeled continuation line
6 Missing field on $ compiler directive line
8 Unrecognizable $ compiler directive
9 Input source file not a valid text file format

10 Maximum depth of include file nesting exceeded

11 Integer constant overflow
12 Error in real con.tant
13 Too many digits in constant
14 Identifier too long
15 Character constant extends to end of line
16 -_Character constant is zero length
17 Illegal character in input
18 Integer constant expected
19 Label expected
20 Error in label

21 Type name expected (INTEGER[*n], REAL[*n], DOUBLE PRECISION,
COMPLEX, LOGICAL[*n], or CHARACTER[*n]

22 INTEGER constant expected
23 Extra characters at end of statement
24 I (I expected
25 Letter IMPLICITIed more than once
26 1)1 expected
27 Letter expected
28 Identifier expected
29 Dimension(s) required in DIMENSION statement
30 Array dimensioned more than once

FORTRAN Reference Manual Page 143

Messages from the FORTRAN System

31 Maximum of 7 dimensions in an array
32 Incompatible arguments to EQUIVALENCE

Appendix A

33 Variable appears more than once in a type specification
statement

34 This identifier has already been declared
3S This intrinsic function cannot be passed as an argument
36 Identifier must be a variable
37 Identifier must be a variable or the current FUNCTION name
38 'I' expected
39 Named COMMON block already saved
40 Variable already appears in a COMMON block

41 Variables in different COMMON blocks cannot be EQUIVALENCE'd
42 Number of subscripts in EQUIVALENCE statement does not agree

with variable declaration
43 EQUIVALENCE subscript out of range
44 Two distinct cells EQUIVALENCE'd to the same location in a

COMMON block
45 EQUIVALENCE statement extends a COMMON block in a negative

direction
46 EQUIVALENCE statement forces a variable to two distinct

locations, not in a COMMON block
47 Statement number expected
48 Mixed CHARACTER and numeric items not allowed in same COMMON

block
49 CHARACTER items cannot be EQUIVALENCEld to non-CHARACTER items
50 Illegal symbols in an expression

51 Cannot use SUBROUTINE name in an expression
52 Type of argument must be INTEGER or REAL
53 Type of argument must be INTEGER, REAL or CHARACTER
54 Types of comparisons must be compatible
55 Type of expression must be LOGICAL
56 Too many subscripts
57 Too few subscripts
58 Variable expected
59 '_I expected
60 Size of EQUIVALENCEld CHARACTER items must be the same

61 Illegal assignment - types do not match
62 Can only call SUBROUTINES
63 Dummy arguments cannot appear in COMMON statements
64 Dummy arguments cannot appear in EQUIVALENCE statements
65- Assumed-size array declarations can only be used for dummy

arrays
66 Adjustable-size array declarations can only be used for dummy

arrays
67 Assumed-size array dimension specifier, "*", must be the upper

bound of the last dimension
68 Adjustable bound must be either a dummy argument or be in

COMMON prior to appearance

Page 144 FORTRAN Reference Manual

Appendix A Messages from the FORTRAN System

69 Adjustable bound must be simple integer expression containing
only constants, COMMON variables, or PARAMETER constant names

70 Cannot have more than one main program .

71 The size of a named COMMON block must be the same in all
subprograms

72 Dummy arguments cannot appear in DATA statements
73 Variables in blank COMMON cannot appear in DATA statements
74 Names of SUBROUTINES, FUNCTIONS, INTRINSIC FUNCTIONS and such

cannot appear in DATA statements
75 Subscripts out of range in DATA statement
76 Repeat count must be integer value greater than zero
77 Constant expected
78 Type conflict in DATA statement
79 Number of variables does not match the number of values in

DATA statement list
80 Statement cannot have a label

81 No such INTRINSIC function
82 Type declaration for INTRINSIC function does not match actual

type of INTRINSIC function
83 Letter expected
84 Type of FUNCTION does not agree with previous usage
85 This subprogram has already appeared in this compilation
86
87 Error in type of argument to INTRINSIC function
88 SUBROUTINE/FUNCTION previously used as a FUNCTION/SUBROUTINE
89 Unrecognizable statement
90 Expression not allowed

91 Missing END statement
92
93 Fewer actual arguments than formal arguments in a FUNCTION or

SUBROUTINE reference
94 More actual arguments than formal arguments in a FUNCTION or

SUBROUTINE reference
95 Type of actual argument does not agree with formal argument
96 The following procedures were called but not defined
97
98 Size of type CHARACTER item must be between 1 and 255
99 INTEGER*4 variable required

100 Statement out of order

101 Unrecognizable statement
102 Illegal jump into block
103 Label already used for FORMAT
104 Label already defined
105 Jump to FORMAT label
106 DO statement forbidden in this context
107 DO label must follow a DO statement
108 ENDIF forbidden in this context

FORTRAN Reference Manual Page 145

MeRsages from the FORTRAN System

109 No matching IF for this ENOIF
110 Improperly nested DO block in IF block

111 ELSEIF forbidden in this context
112 No matching IF for ELSEIF
113 Improperly nested DO or ELSE block
114 '(' expected
115 ')' expected
116 THEN expected
117 Logical expression expected
118 ELSE statemenr forbidden in this context
119 No matchfng IF for ELSE
120 Unconditional GOTO forbidden in this context

121 Assigned GOTO forbidden in this context
122 Block IF statement forbidden in this context
123 Logical IF statement forbidden in this context
124 Arithmetic IF statement forbidden in this context
125 ',' expected
t26 Expression of wrong type
127 RETURN forbidden in this context
128 STOP forbidden in this context
129 END forbidden in this context

131 Label referenced but not defined
132 DO or IF block not terminated
133 FORMAT statement not permitted in this context
134 FORMAT label already referenced
135 FORMAT must be labelled
136 Identifier expected
137 Integer variable expected
138 'TO' expected
139 Integer expression expected
140 Assigned GOTO but no ASSIGN statements

141 Unrecognizable character constant as option
142 Character constant expected as option

Appendix A

143 Integer expression expected for unit designation
144 STATUS option expected after ',' in CLOSE statement
l~S Character expression as filename in OPEN
146 FILE- option must be present in OPEN statement
147 RECL= option specified twice in OPEN statement
148 Integer expression expected for RECL= option in OPEN statement
149 Unrecognizable option in OPEN statement
150 Direct access files must specify RECL- in OPEN statement

151 Adjustable arrays not allowed as input-output list elements
152 End of statement encountered in implied DO, expressions

beginning with' (' not allowed as input-output list elements
153 Variable required as control for implied DO
154 sxpressions not allowed as reading input-output list elements

Page 1.46 FORTRAN Reference Manual

Appendix A Messages from the FORTRAN System

155 REC- option appears twice in statement
156 REC- options expects integer expression
157 END- option only allowed in READ statement
158 END- option appears twice in statement
159 Unrecognizable input-output unit
160 Unrecognizable format in input-output statement

161 Options expected after I,' in input-output statement
162 Unrecognizable input-output list element
163 Label used as format but not defined in FORMAT statement
164 Integer variable used as assigned format but no ASSIGN statement
165 Label of an executable statement used as format
166 Integer variable expected for assigned format
167 Label defined more than once as format
169 FUNCTION references require "()"
170 INTEGER expression expected for array dimension bound

171 Lower dimension bound must be less than or equal to
upper dimension bound

172 DATA statement cannot initialize arrays of unknown size

200 Variable name of named COMMON name expected
201 This variable already SAVE'd
202 Cannot SAVE dummy arguments
203 Cannot SAVE COMMON variables
204 INTEGER and LOGICAL *1, *2, or *4 only
205 No *n allowed for DOUBLE PRECISION
206 Only REAL*4 or REAL*8 allowed
207 No *n allowed for COMPLEX
208 Size expression only allowed for CHARACTER
209 INTEGER constant expression expected
210 INTEGER constant or INTEGER constant expression expected

211 CHARACTER substring expression out of range
212 CHARACTER substring expression must be of type INTEGER
213 Error in CHARACTER substring expression
214 CHARACTER expression expected
215 LOGICAL expression expected
216 CHARACTER*(*) only allowed for dummy arguments
217 Undeclared PARAMETER constant
218 Constant expression not allowed
219 Arithmetic operators only apply to numeric values
220 Malformed COMPLEX constant

221 Maximum of seven levels of implied-DO allowed
222 Error in DATA statement variable list
223 Error in implied DO list in data statement
224 Variables in named COMMON can only appear in a DATA statement

which is in a BLOCK DATA subprogram
225 Integer subscript expected
226 Subscript error

FORTRAN Reference Manual Page 147

Messages from the FORTRAN System

227 This identifier is already in use as an implied-DO
control variable

228 Integer constant expression or implied DO control
variable expected

229 Integer expression required
230 Division by zero

231 Error in COMPLEX primary

Appendix A

232 Numeric expression or CHARACTER expression expected
233 COMPLEX can only compare for equality
234 COMPLEX is not compatible with DOUBLE PRECISION
235 Constant expression expecte~
236 ENTRY statements must appear in SUBROUTINE or FUNCTION

subprograms
237 ENTRY statements cannot be within a block IF or a DO

statement range
238 Concatenation only applies to CHARACTER values
239 ':' expected
240 Substring operations only apply to CHARACTER variables

or CHARACTER array elements

241 Error in implied DO expression in a DATA statement
242 Implied DO iteration count is zero in a DATA statement
243 Error in formal argument list
244 Alternate return is not allowed in a FUNCTION subprogram
245 Substring error in EQUIVALENCE statement
246 EQUIVALENCE statement must not require *2, *4, or *8

variables to be allocated on odd byte addresses
247 EQUIVALENCE statement must not require a COMMON block to

be allocated on odd byte addresses
248 CHARACTER arguments cannot contain concatenation of values

that are of size *(*)
249 Numeric expression expected
250 SUBROUTINE or FUNCTION name has already been used as a

COMMON name

251 Recursive calls are not allowed
252 Statement-FUNCTIONS require variable or value arguments
253 Alternate ENTRY in CHARACTER FUNCTION must be of type

CHARACTER and must be the same size as the FUNCTION
254 This INTRINSIC FUNCTION cannot be passed as an,argument
255 Executable statements cannot appear in BLOCK DATA subprograms
256 An argument to an ENTRY statement has already appeared as

a local variable '

270 Assigned GO TO variable must be INTEGER or INTEGER*4
271 INTEGER, REAL, or DOUBLE PRECISION variable expected
272 INTEGER, REAL, or DOUBLE PRECISION expression expected
273 Unrecognizable element in option list
274 Option appears more than once in an option list
275 Incorrect type for variable

Page 148 FORTRAN Reference Manual

Appendix A Messages from the FORTRAN System

276 Variable must be *4 in size
277 CHARACTER variable or CHARACTER array element required
278 CHARACTER expression expected
279 Cannot have FILE and UNIT specifier in same INQUIRE statement
280 Must have a FILE or UNIT specifier in INQUIRE statement

281 Must have UNIT specifier
282 PRINT statement requires no option list - use WRITE
283 WRITE statement must have an option list
284 READ statement must not have both REC- and END- options
285 Must not specify REC- option with * format specifier
286 Internal Input Output must be formatted·
287 Cannot use REC- specifier with internal input-output
288 Malformed implied DO loop
289 Implied DO loop must have simple variable for loop control
290 Wrong number of arguments to intrinsic function

291 Unit set more than once in input-output statement
292 No unit specified in input-output statement
293 Error in FORMAT statement
294 Hexadecimal constant expected
295 Too many characters in statement
296 Can't find $INCLUDE file
297 Sub arrays cannot exceed 32766 bytes in size

400 Code file write error
401 Error in rereading code file
402 Error in reopening text file
403 Procedure too large (code buffer too small)
407 Not enough room for intermediate code file
408 Error in writing code file
409 .Error in reading intermediate code file

A.2 Run-Time Error Messages

These messages are issued by the input-output run time system,
and represent the possible values of 'iostat' in an 'iolist'.

-1 End of file found on a READ with no END- option.
600 FORMAT statement missing final ')'
601 Sign not expected in input
602 Sign not followed by digit in input
603 Digit expected in input
604 Missing N or Z after B in format
605 Unexpected character in format
606 Zero repetition factor in format not allowed
607 Integer expected for w field in format

FORTRAN Reference Manual Page 149

Messages from the FORTRAN System

608 Positive integer required for w field in format
609 '.' expected in format
610 Integer expected for d field in format

611 Integer expected for e field in format
612 Positive integer required for e field in format
613 Positive integer required for w field in A format

Appendix A

614 Hollerith field in format must not appear for reading
615 Hollerith field in format requires repetition factor
616 X field in format requires repetition factor
617 P field in format requires repetition factor
618 Integer appears before '+' or I_I in format .
619 Integer expected after '+' or I_I in format
620 P format expected after signed repetition factor in

format

621 Maximum nesting level (10 levels) for formats exceeded
622 I)' has repetition factor in format
623 Integer followed by',' illegal in format
624 '.' is illegal format control character
625 Character constant must not appear in format for reading
626 Character constant in format must not be repeated
627 'I' in format must not be repeated
628 '\', '$', I:', IS', esP' and ISS' in format must not be

repeated
629 BR or BZ format control must not be repeated
630 Attempt to perform input-output on unknown unit number

631 Formatted or list-directed input-output attempted on file
opened as unformatted

632 Format fails to begin with' ('
633 I format expected for integer read
634 P, D, G or E format expected for real read
635 Two '.' characters in formatted real read
636 Digit expected in formatted real read
637 L format expected for logical read
639 T or P expected in logical read
640 A format expected for character read

641 I format expected for integer write
642 w field in P format not greater than d field + 1
643 Scale factor out of range of d field in E format
644 E, D, G or P format expected for real write
645" L format expected for logical write
646 A format expected for character write
647 Attempt to do unformatted input-output to a file opened

as formatted
648 Unable to write blocked output - possibly no room on

output device
649 Unable to read blocked input
650 Error in formatted text file - no carriage-return in last

Page 150 FORTRAN Reference Manual

Appendix A Messages from the FORTRAN System

512 bytes

651 Integer overflow on input
652 T, TL or TR in format must not be repeated,
653 Positive integer expected for c field in T, TL

or TR format
654 Attempt to open direct-access unit on unblocked device
655 Attemp't to do external input-output on a uni t beyond

end-of-file record
656 Attempt to positiqn a unit for direct-access on a non-positive

record number
657 Attempt to do direct-access on a unit opened as sequential
658 Attempt to position direct-access unit on an unblocked device
659 Attempt to position direct-access unit beyond end-of-file

for reading
660 Attempt to backspace unit connected to unblocked device

or unformatted file

661 Attempt to backspace sequential, unformatted unit
662 Argument to ASIN or ACOS out of bounds - ABS(x6 > 1.0
663 Argument ot SIN or COS too large - ABS(x) > 10
664 Attempt to do unformatted input-output to internal unit
665 Attempt to put more than one record into an internal unit
666 Attempt to write more characters to an internal unit than

its length
667 EOF called on unknown unit
668 Direct-access formatted input files must not use OLE

blank compression
669 Error in opening file
670 Error in closing file

671 Can't specify KEEP in close if file opened SCRATCH
672 Unrecognizable option specified as character value in

input-output statement
673 File name required unless status is SCRATCH
674 Must not name file if status is SCRATCH
675 Record length not allowed for sequential files
676 Record length must be positive
677 Record length must be sepcified for direct-access files
678 BLANK option only for formatted files
679 Rewind only allowed on sequential files
680 Endfile only allowed on sequential files

681 Backspace only allowed on sequential files
682 Formatted records must be less than or equal to 512

characters
683 More characters written to internal file record than record

length
684 Incorrect number of characters read in formatted record of

direct-access file
685 Attempt to write too many characters into formatted record of

FORTRAN Reference Manual Page 151

Messages from the FORTRAN System Appendix A

direct-access file
686 No repeatable edit descriptor found and format exhausted
687 Digit expected in input field exponent
688 Too many digits in input real number
689 Numeric field expected in input
690 Unexpected character encountered in list-directed input

691 Repeat factor in list-directed input must be positive
692 I,' between reals for complex expected in list-directed input
693 I)' expected to terminate complex in list-directed input
694 Attempt to do list-directed input-output to direct-access file
697 Integer variable not currently assigned a FORMAT label
698 End-of-file encountered on a read with no END- option
699 Integer variable not assigned a label used in assigned

GOTO statement

701 Integer input item expected for list-directed input
702 Numeric input item expected for list-directed input
703 Logical input item expected for list-directed input
704 Complex input item expected for list-directed input
705 Character input item expected for list-directed input
706 Incorrect number of bytes read or written to direct-access

unformatted file
707 Substring index range error

1000+ Compiler debug error messages - should never appear in
correct programs

Page 152 FORTRAN Reference Manual

Appendix B The FORTRAN Intrinsic Functions

Appendix B

The FORTRAN Intrinsic Punctions

+------------+------------+---------+----------+---------------------+
I Intrinsic I Number of 'GeneriC' Specific , Type of I

Function Arguments Name Name Argument I Function
+------------+------------+---------+----------+----------+----------+

I ~~n~~~:!~~ I 1 lINT I ~~ix I :::i I ~~~:~:~ I
IDINT Double Integer

+I-~~~~:~ii~~-+I-----:------+I-::::----+I-~~:----+I-~~~:~:~--+I-:::f-----+I
SNGL Double Real

+------------+------------+---------+----------+----------+----------+
Conversion
to Double

1 DBLE
Integer Double
Real Double
Double Double
Complex Double

+------------+------------+---------+----------+----------+----------+
Conversion
to Complex

1 or 2 CMPLX
Integer Complex
Real Complex
Double Complex
Complex Complex

+------------+------------+---------+----------+----------+----------+
I Conversion I l' 'ICHAR' Character, Integer I

to Integer
+------------+------------+---------+----------+----------+----------+
I Conversion I l, I CHAR 'Integer I Character,
to Character .

+------------+------------+---------+----------+----------+----------+
I Truncation , 'AINT' AINT , Real , Real I

1 DINT Double Double
+------------+------------+---------+----------+----------+----------+
I Nearest , 1 I ANINT I ANINT I Real I Real I

Whole DNINT Double Double
+------------+------------+---------+----------+----------+----------+

FORTRAN Reference Manual Page 153

The FORTRAN Intrinsic Functions Appendix B

+------------+------------+---------+----------+---------------------+
I

Intrinsic I Number of I Generic I Specific I Type of I

Function Arguments Name Name Argument I Function
+. -----------+------------+---------+----------+-~--------+----------+
I

Nearest I I I NINT I NINT I Real I Integer I

Integer IDNINT Double Integer
+ -----------+------------+---------+----------+----------+----------+

lABS Integer Integer
Absolute I ABS ABS Real Real

Value DABS Double Double
CABS Complex Real

+------------+------------+---------+----------+----------+----------+

I

~:~f~~- I 2 I MOD I ~gD I i~;!ger I i~;!ger I

DMOD Double Double
+------------+------------+---------+----------+----------+----------+

I

~~a~~~~r I 2 I SIGN I ~~~~N I i~;!ger I i~;!ger I

DSIGN Double Double
+------------+------------+---------+----------+----------+----------+

I

~~~i;;:~ce I 2 I DIM I ~~~M I i~;!ger I i~;!ger I 

DDIM Double Double 

+------------+------------+---------+----------+----------+----------+ 
I :~~!~~on I 2 I I DPROD I Real I Double I 

+------------+------------+---------+----------+----------+----------+ 
Choosing I ~~l I i~!!ger I i~!~ger I 

Largest 2 or more MAX DMAXI Double Double 
Value +----------+----------+----------+ 

I 

AMAXO I Integer I Real I 

MAXI Real Integer 
+------------+------------+---------+----------+----------+----------+ 

I

MINO I Integer I Integer I 

Choosing AMINI Real Real 
Smallest 2 or more MIN DMINI Double Double 
Value +----------+----------+----------+ 

I AMINO I Integer I Real I 
MINI Real Integer 

+------------+------------+---------+----------+----------+----------+ I Length I I I I LEN I Character I Integer I 
+------------+------------+---------+----------+----------+----------+ 
~. Index ,?f I I I INDEX I Character I Integer I t Substrlng 2 
+------------+------------+---------+----------+----------+----------+ 

Page 154 FORTRAN Reference Manual 



Appendix B The FORTRAN Intrinsic Functions 

+------------+------------+---------+----------+---------------------+ 
I 

Intrinsic I Number of I Generic I Specific I Type of I 

Function Arguments Name Name Argument I Function 
+------------+------------+---------+-----_._---+----------~----------+ 

Imaginary AIMAG Complex Real 
Part of I 
Complex 
Argument 

+------------+------------+---------+----------+----------+----------+ 
I Complex I I I I CONJG I Complex I Complex I 

Conjugate . 
+------------+------------+---------+----------+----------+----------+ 

I 

~~~re 1 1 I SQRT 1 ~~~~T 1 ~~~~le 1 ~~~~le 1 

CSQRT Complex Complex
+------------+------------+---------+----------+----------+----------+

I

~~~~nen- 1 1 I EXP I ~~ip I ~~~~le 1 ~~~~le 1 

CEXP Complex Complex 
+------------+------------+---------+----------+----------+----------+ 

1 

~~~~~~~hm 1 1 I LOG I ~t~ I· ~~~~le 1 ~~~~le I 

CLOG Complex Complex
+------------+------------+---------+----------+----------+----------+
I

Common I 1 I I ALOGIO I Real I Real I
Logarithm LOGIO DLOGIO Double Double

+------------+------------+------~--+----------+----------+----------+

I

Sine I 1 1 SIN 1 ~~~N 1 ~~~~le I ~~~~le I

CSIN Complex Complex
+------------+------------+---------+----------+----------+----------+

1

Cosine I 1 1 COS 1 gg~s 1 ~~~~le I ~~~~le 1

CCOS Complex Complex
+------------+------------+---------+------.----+----------+----------+
I

Tangent I 1 I TAN I TAN I Real I Real I
DTAN Double Double

+------------+------------+---------+----------+----------+----------+
I

Arcsine I 1 I ASIN I ASIN I Real I Real I

DASIN Double Double
+------------+------------+---------+----------+----------+----------+
I

Arccosine I 1 I ACOS I ACOS I Real I Real I

DACOS Double Double
+------------+------------+---------+----------+----------+----------+

FORTRAN Reference Manual Page 155

The FORTRAN Intrinsic Functions Appendix B

+------------+------------+---------+----------+---------------------+
I Intrinsic I Number of I Generic I Specific I Type of I

Function Arguments Name Name Argument I Function
+------------+------------+---------+----------+----------+----------+

I II ATAN I ATAN I Real I Real I
DATAN Double Double

Arctangent +------------+---------+----------+----------+----------+
I 2 I ATAN2 I ATAN2 I Real I Real I

DATAN2 Double Double
+------------+------------+---------+----------+----------+----------+
I Hyperbolic I 1 I SINH I SINH I Real I Real I

Sine DSINH Double Double
+------------+------------+---------+----------+----------+----------+
\

Hyperbolic I 1 I COSH I COSH \ Real \ Real I
Cosine . DCOSH Double Double

+------------+------------+---------+----------+----------+----------+
I Hyperbolic I 1 I TANH I TANH I Real I Real I

Tangent DTANH Double Double
+------------+------------+---------+----------+----------+----------+
,~~=:~~!~y, 2' , LGE , Character' Logical ,

+------------+------------+---------+----------+----------+----------a
'~~:~~:;lY' 2' , LGT , Character I Logical I
+------------+------------+---------+----------+----------+----------+
,~;=::~:~~, 2' , LLE , Character' Logical ,

+------------+------------+---------+----------+----------+----------+
I Lexically I 2 I I LLT I Character \ Logical I

Less Than
+------------+------------+---------+----------+----------+----------+

B.l Notes on the Intrinsic Functions

The INT function truncates real or double precision arguments
towaras zero. If the argument to INT is a complex number, the
function is applied to the real part of the complex argument.
IFIX is the same as INT for real arguments.

If the REAL or DBLE functions are applied to a complex
argument, the result is the real part of the argument.

Page 156 FORTRAN Reference Manual

Appendix B The FORTRAN Intrinsic Functions

CMPLX can have one or two arguments. If there is one argument,
it can be of type integer, real, double precision or complex. If
the argument is of type integer, real or double precision, the
result is a complex value whose real part is that of the
argument, and whose imaginary part is zero.

If CMPLX has two arguments, they must both be of the same
type. The arguments can be of type integer, real or double
precision. The result is a complex value whose real part is the
first argument and whose imaginary part is the second argument.

ICHAR converts from character to integer. The first character
in the collating sequence is position 0 and the last character in
the sequence is 'n'-l, where In' is the number of characters in
the character set.

In the trigonometric functions, all angles are in radians.

Functions of complex arguments yield a result which is the
principal value of the function.

The INDEX function returns the index where its second argument
starts in its first argument. If the first argument does not
contain the second argument, or if the second argument is longer
than the first argument, the INDEX function returns a value of
zero.

All arguments in an intrinsic function reference must be of the
same type.

B.2 Restrictions on Ranges of Arguments

When intrinsic functions are referenced by their specific
names, the restrictions on ranges of arguments and results are as
follows:

Remaindering MOD, AMOD and DMOD are undefined when their
second argument is zero.

Transference of Sign

Square Root

If the first argument to ISIGN, SIGN or DSIGNis
zero, the result is zero.

SORT and DSORT require an argument which is not
less than zero. CSORT returns a value which is
the principal value and is greater than or equal
to zero. If the real part of the result is

FORTRAN Reference Manual Page 157

The FORTRAN Intrinsic Functions Appendix B

Logarithms

zero, the imaginary part is greater than or
equal to zero.

ALOG, DLOG, ALOG10 and DLOGlO require an
argument greater than zero. The argument to
CLOG must not be (0.0, 0.0). If the real part of
the argument is less than zero and the imaginary
part is zero, the imaginary part of the result
is 'pi', otherwise the imaginary part of the
result lines in the range:

-pi < imaginary part <- pi

Arcsine and Arccosine
ASIN, DASIN, ACOS and DCOS require that the
absolute value of their argument be not greater
than one. The result of arcsine lies in the
range

-pi/2 <- result <- pi/2

and the result of arccosine lies in the range

o <- result <- pi

B.3 Non Standard Intrinsic Functions and Subroutines

The functions and subroutines described here are non-standard
SVS FORTRAN-77 extensions to the FORTRAN-77 language.

POKE - Store Into Arbitrary Memory Location

The POKE subroutine stores a byte into an arbitrary memoryy
location. The interface definition is:

SUBROUTINE POKE(IADDR, IVAL)
INTEGER IADDR, IVAL

The POKE subroutine sets the memory location addressed by IADDR
to the byte value of the variable IVAL.

Page 158 FORTRAN Reference Manual

Appendix B The FORTRAN Intrinsic Functions

IPEEK - Read From Arbitrary Memory Location

The IPEEK function gets a byte from an arbitrary memory
location. The interface definition is:

INTEGER*4 FUNCTION IPEEK(IADDR)
INTEGER IADDR

IADDR is the address of a memory location. The IPEEK function
returns the signed value of the byte stored at that location.

VERS - Print Date and Version

The VERS subroutine prints the date and version of the SVS
FORTRAN-77 run-time system. The interface definition is:

SUBROUTINE VERS

There are no arguments to the VERS subroutine.

FORTRAN Reference Manual ~age 159

The FORTRAN Intrinsic Functions Appendix B

Page 160 FORTRAN Reference Manual

Appendix C Data Representations

Appendix C

Data Representations

This appendix descr ibes the ways that SVS FORTRAN represents
data in storage and the mechanisms for passing arguments to
subroutines and functions. This appendix is intended as a guide
to those programmers who wish to write modules in languages other
than FORTRAN and have those modules interface to FORTRAN.

C.l Storage Allocation

This section describes the way in which storage is allocated to
variables of various types.

In general, any word value (a value which occupies 16 bits) is
always aligned on aword boundary. Anything larger than a word
is also aligned on a word boundary. Values that can fit into a
single byte are aligned on a byte boundary.

INTEGER, REAL and LOGICAL data types all occupy the same amount
of storage, namely 32 bits (four bytes or two words). DOUBLE
PRECISION occupies 64 bits (eight bytes or four words). COMPLEX
is represented as a pair of single precision real data values and
so occupies 64 bits (eight bytes or four words). There are
provisions for indicating that integer and logical data types
occupy less storage.

INTEGER*l occupies 8 bits (one byte) , aligned on a byte
boundary.

INTEGER*2 occupies 16 bits (two bytes or one word) ,
aligned on a word boundary.

INTEGER and INTEGER*4
occupy 32 bits (four bytes or two words) ,
aligned on a word boundary.

FORTRAN Reference Manual Page 161

Data Representations Appendix C

REAL and REAL*4 occupy 32 bits (four bytes or two words),
aligned on a word boundary. A REAL element has
a sign bit, an 8-bit exponent and a 23-bit
mantissa. SVS FORTRAN REAL elements conform to
the IEEE standard for teals "as defined in the
March 1981 Computer magazine. The layout of a
REAL element is shown below.

DOUBLE PRECISION and REAL*8
elements occupy 64 bits (eight bytes or four
words), aligned on a word boundary. A DOUBLE
PRECISION element has a sign bit, an Il-bit
exponent and a 52-bit mantissa. SVS FORTRAN
DOUBLE PRECISION elements conform to the IEEE
standard for double precision data as defined in
the March 1981 Computer magazine. The layout of
a DOUBLE PRECISION element is shown below.

COMPLEX elements are represented by two REAL elements.
The first element represents the real part of
the number, the second represents the imaginary
part.

LOGICAL*l occupies one byte (8 bits) of storage, aligned
on a byte boundary. A value of 0 represents the
value .PALSE. A value of 1 represents the
value .TRUE. • Any other value is an ftundefined"
logical value.

LOG ICAL* 2 occupies two bytes (16 bits) of storage, aligned
on a word boundary. A value of 0 represents the
value .PALSE. • A value of 1 represents the
value .TRUE. • Any other value is an ·undefined"
logical value.

LOGICAL and LOGICAL*4
occupies four bytes (32 bits) of storage,
aligned on a word boundary. A value of 0
represents the value .PALSE. A value of 1
represents the value .TRUE. • Any other value is
an ·undefined ft logical value.

Page 162 FORTRAN Reference Manual

Appendix C Data Representations

C.2 Data Representations

whatever the size of the data element in question, the most
significant bit of the data element is always in the lowest
numbered byte of however many bytes are required to represent
that object. The diagrams below should clarify this.

Representation of Integers

bit --> 7 o
+--------+

INTEGER*l I byte 0 I
+--------+
15 o
+--------+--------+

INTEGER*2 I byte 0 I byte 1 I
+--------+--------+
31 o
+--------+--------+--------+--------+

INTEGER*4 I byte 0 I byte 1 I byte 2 I byte 3 I
+--------+--------+--------+--------+

Representation of REAL and DOUBLE PRECISION

REAL and DOUBLE PRECISION data elements are represented
according to the proposed IEEE standard descr ibed in Computer
magazine of March, 1981. The diagrams below illustrates the
representation.

FORTRAN Reference Manual Page 163

Data Representations Appendix C

31 30 23 22 o
+---+----------------+--+ I S I Exponent I Mantissa I
+---+----------------+--+

I I M~ntissa (23 + 1 bits)
Exponent, biased by 127

Sign

~ Representation

63 62 52 Sl o
+---+----------------+--+ I S I Exponent I Mantissa I
+---+----------------+--+

I I M~ntiSSa (S2 + 1 bits)
Exponent, biased by 1023

Sign

DOUBLE PRECISION Representation

The parts of REAL and DOUBLE PRECISION numbers are as follows:

• a' one-bit sign bi t designated by "S" in the diagrams above.
The sign bit is a 1 if, and only if, the number is negative.

• a biased exponent. The exponent is eight bits for a REAL
number, and is eleven bits for a DOUBLE PRECISION number. The
values of all zeros, and all ones, are reserved values for
exponents.

• a normalized mantissa, with the high-order 1 bit "hidden". The
mantissa is 23 bits for a REAL number, and is S2 bits for a
DOUBLE PRECISION number. A REAL or DOUBLE PRECISION number is
represented by the form:

2exponent-bias * 1.f

where 'f' is the bits. in the mantissa.

Page 164 FORTRAN Reference Manual

Appendix C Data Representations

Representation of Extreme Numbers

zero (signed) is represented by an exponent of zero, and a
mantissa of zero.

denormalized numbers
are a product of "gradual underflow". They are
non-zero numbers with an exponent of zero. The
form of a denormalized number is:

2exponent-bias+l * O.f

where if' is the bits in the mantissa.

signed infinity (that is, affine infinity) is represented by the
largest value that the exponent can assume (all
ones), and a zero mantissa.

Not-a-Number (NaN)
is represented by the largest value that the
exponent can assume (all ones), and a non-zero
mantissa. The sign is usually ignored.

Normalized REAL and DOUBLE PRECISION numbers are said to
contain a "hidden" bit, providing for one more bit of precision
than would normally be the case.

FORTRAN Reference Manual Page 165

Data Representations

Hexadecimal Representation of Selected Numbers

+-----------+----------+------------------+
I Value I REAL I PRECISION I
+-----------+----------+------------------+

+0 00000000 0000000000000000
-0 80000000 8000000000000000

+1.0 3F800000 3FFOOOOOOOOOOOOO
-1.0 8F800000 8FFOOOOOOOOOOOOO

+2.0 40000000 4000000000000000
+3.0 40400000 4008000000000000

+Infinity 7F800000 7FFOOOOOOOOOOOOO
-Infini ty FF800000 FFFOOOOOOOOOOOOO

NaN 7F8xxxxx 7FFxxxxxxxxxxxxx
+-----------+----------+------------------+

Deviations from the Proposed IEEE Standard

Deviations from the proposed
implementation are as follows:

• affine mapping for infinities,

IEEE

• normalizing mode for denormalized numbers,

standard

Appendix C

in this

• rounds approximately to nearest - 7 or more guard bits are
computed, but the "sticky" bit is not,

• exception flags are not implemented,

• conversion between binary and decimal is not implemented.

Page 166 FORTRAN Reference Manual

Appendix C Data Representations

Arithmetic Operations on Extreme Values

This subsection describes the results derived from applying the
baasic ar i thmetic operations on combinations of extreme values
and ordinary values.

No traps or any other exception actions are taken.

All inputs are assumed to be positive. Overflow, underflow,
and cancellation are assumed not to happen.

In all the tables below, the abbreviations have the following
meanings:

+--------------+---------------------------------+ I Abbreviation I' Meaning I
+--------------+---------------------------------+

Den Denormalized Number
Num Normalized Number
Inf Infinity (positive or negative)
NaN Not a Number
Uno Unordered

+--------------+---------------------------------+

FORTRAN Reference Manual Page 167

Data Representations Appendix C

+---+
1 Addition and Subtraction 1

+-----------+---------------------------------------+
Left I Right Operand I

Operand OlDen 1 Num 1 Inf 1 NaN
+-------+-------+-------+-------+-------+ o 1 OlDen 1 Num 1 Inf 1 NaN 1

+-----------+-------+-------+-------+-------+-------+
1 Den 1 Den 1 Den 1 ·Num 1 Inf 1 NaN 1

+-----------+-------+-------+-------+-------+-------+
1 Num 1 Num 1 Num 1 Num 1 Inf 1 NaN 1

+-----------+-------+-------+-------+-------+-------+
1 Inf 1 Inf 1 Inf 1 Inf 1 Note 11 NaN 1

+-----------+-------+-------+-------+-------+-------+
1 Nan 1 NaN 1 NaN 1 NaN 1 NaN 1 NaN 1

+-----------+-------+-------+-------+-------+-------+
Note 1: Inf + Inf - Inf, Inf - Inf = NaN

+---+
1 Multiplication 1

+-----------+---------------------------------------+
Left I Right Operand I

Operand OlDen 1 Num 1 Inf 1 NaN
+-------+-------+-------+-------+-------+ o 1 0 1 0 1 0 1 NaN 1 NaN 1

+-----------+-------+-------+-------+-------+-------+
1 Den 1 0 1 0 1 Num 1 Inf 1 NaN 1

+-----------+-------+-------+-------+-------+-------+
1 Num 1 0 1 Num 1 Num 1 Inf 1 NaN 1

+-----------+-------+-------+-------+-------+-------+
1 Inf 1 NaN 1 Inf 1 Inf 1 Inf 1 NaN 1

+-----------+-------+-------+-------+-------+-------+
1 Nan 1 NaN 1 NaN 1 NaN 1 NaN 1 NaN I

+-----------+-------+-------+-------+-------+-------+

Page 168 FORTRAN Reference Manual

Appendix C Data Representations

+---+ I Division I
+-----------+---------------------------------------+

Left I Right Operand I
Operand 0 I Den I Num I Inf I NaN

+-------+-------+-------+-------+-------+ o I NaN I 0 I 0 I 0 I NaN I

+-----------+-------+-------+-------+-------+-------+
I Den I In£ I Num I Num I 0 I NaN I

+-----------+-------+-------+-------+-------+-------+
I Num I Inf I Num I Num I 0 I NaN I

+-----------+-------+-------+-------+-------+-------+
I Inf I Inf I Inf I Inf I NaN I NaN I

+-----------+-------+-------+-------+-------+-------+ I Nan I NaN I NaN I NaN I NaN I NaN I
+-----------+-------+-------+-------+-------+-------+
+---+ I . Compar ison I
+-----------+---------------------------------------+

Left I Right Operand I
Operand 0 I Den I Num I Inf. I NaN

+-------+-------+-------+-------+-------+ o I I < I < I < I Uno I
+-----------+-------+-------+-------+-------+-------+ I Den I > I I < I < I Uno I
+-----------+-------+-------+-------+-------+-------+ I Num I > I > I I < I Uno I
+-----------+-------+-------+-------+-------+-------+ I Inf I > I > I > I I Uno I
+-----------+-------+-------+-------+-------+-------+ I Nan I Uno I Uno I Uno I Uno I Uno I
+-----------+-------+-------+-------+-------+-------+

Notes:

NaN compared with NaN is Unordered, and also results in
inequali ty.

+0 compares equal to -0.

FORTRAN Reference Manual Page 169

Data Representations Appendix C

+---~-----+ I M~ I
+-----------+---------------------------------------+

Left I Right Operand' I
Operand 0 I Den I Num I Inf NaN

+-------+-------+-------+-------+-------+ o I 0 I Den I Num I Inf I NaN I

+-----------+-------+-------+-------+-------+-------+
I Den I Den I Den I Num I Inf I NaN I

+-----------+-------+-------+-------+-------+-------+
I Num I Num I Num I Num i Inf I NaN I

+-----------+-------+-------+-------+-------+-------+
I Inf I Inf I Inf I Inf I Inf I NaN I

+-----------+-------+-------+-------+-------+-------+
I Nan I NaN I NaN I NaN I NaN I NaN I

+-----------+-------+-------+-------+-------+-------+
+---+ I Min I
+-----------+---~-----------------------------------+

Left I Right Operand I
Operand 0 I Den I Num I Inf I NaN

+-------+-------+-------+-------+-------+ o I 0 I 0 I 0 I 0 I NaN I

+-----------+-------+-------+-------+-------+-------+
I Den I 0 I Den I Den I Den I NaN I

+-----------+-------+-------+-------+-------+-------+
I Num I 0 I Den I Num I Num I NaN I

+-----------+-------+-------+-------+-------+-------+
I Inf I 0 I Den I Num I Inf I NaN I

+-----------+-------+-------+-------+-------+-------+
I Nan I NaN I NaN I NaN I NaN I NaN I

+-----------+-------+-------+-------+-------+-------+

Page 170 FORTRAN Reference Manual

Appendix C Data Representations

Representation of Logica1s

bit --> 7 o
+--------+

LOGICAL*l , byte 0 ,
+--------+

15 o
+--------+--------+

LOGICAL*2 , byte 0 , byte 1 ,
+--------+--------+

31 o
+--------+--------+--------+--------+

LOGICAL*4 , by te 0 , by te 1 , by te 2 "' by te 3 ,
+--------+---~----+--------+--------+

Storage of Arrays

Arrays are stored with their elements in a specific storage
order. The elements are actually stored in a linear sequence of
storage elements.

FORTRAN arrays are stored in column major order, such that the
first subscript in a multi-dimensional array varies fastest. The
position of an arbitrary element in an array is:

l+SUM«Si-Li*PRODUCT(Uj-Lj »

where 'Ski is the value of the subscript expression specified for
dimension 'k', 'Uk' is the upper bound for dimension 'k' and 'Lk'
is the lower bound of dimension 'k'. The subscr ipt 'j' in tlie
product above varies between 1 and 'i'-l for any given
dimension.

FORTRAN Reference Manual Page 171

Data Representations Appendix C

C.3 Argument Passing Mechanism

This section describes the way in which arguments are passed in
SVS FORTRAN.

All arguments to FORTRAN subroutines and functions are passed
by reference. For every argument except a CHARACTER object, a
32-bit pointer to the object is pushed onto the stack.

When CHARACTER objects are passed in FORTRAN-77, a 32-bit
pointer to the CHARACTER object is pushed onto the stack,
followed by a l6-bit length of the CHARACTER object.

Pointers to actual arguments are pushed onto the stack in the
order in which they are declared in a subroutine or function
declaration. .

Actual arguments which are expressions are evaluated before the
subroutine or function call. The result of the expression is
assigned to a temporary storage area and a pointer to the
temporary is pushed onto the stack.

If the callee is a FUNCTION, room for the function result is
allocated on the stack before any arguments are pushed.
Functions which return CHARACTER data types return a pointer and
length pair on the stack.

A DOUBLE PRECISION FUNCTION in FORTRAN-77 returns its result
with the following pair of instructions:

movl
movl

dO,sp@
dl,sp@(4)

Upon return from a procedure, all arguments are discarded from
the stack. The only thing that should be on the stack upon
return, is a function result.

Page 172 FORTRAN Reference Manual

Appendix 0 ASCII Character Set Table

Appendix D

ASCII Character Set Table

+-------------+-------------+-------------+--------------+
I hex char I hex char I hex char I hex char I +-------------+-------------+-------------+--------------+

00 NUL 20 SP 40 @ 60
01 SOH 21 1 41 A 61 a
02 STX 22 42 B 62 b
03 ETX 23 • 43 C 63 c
04 EOT 24 $ 44 D 64 d
05 ENQ 25 .% 45 E 65 e
06 ACK 26 & 46 F 66 f
07 BEL 27 47 G 67 g
08 BS 28 (48 H 68 h
09 HT 29) 49 I 69 i
OA LF 2A * 4A J 6A j
OB VT 2B + 4B K 6B k
OC FF 2C 4C L 6C 1
OD CR 2D 4D M 6D m
OE SO 2E 4E N 6E n
OF SI 2F / 4F 0 6F 0

+-------------+-------------+-------------+--------------+
10 DLE 30 0 50 P 70 P
11 DC1 31 1 51 Q 71 q
12 DC2 32 2 52 R 72 r
13 DC3 33 3 53 S 73 s
14 DC4 34 4 54 T 74 t
15 NAK 35 5 55 U 75 u
16 SYN 36 6 56 V 76 v
17 ETB 37 7 57 W 77 w
18 CAN 38 8 58 X 78 x
19 EM 39 9 59 y 79 Y
1A SUB 3A 5A Z 7A z
1B ESC 3B 7 5B [7B I IC FS 3C < 5C \ 7C
1D GS 3D 5D 1 7D
1E RS 3E > 5E 7E
IF US 3F ? 5F 7F DEL

+-------------+-------------+-------------+--------------+

FORTRAN Reference Manual Page 173

ASCII Character Set Table Appendix D

Page 174 FORTRAN Reference Manual

Appendix E Using The FORTRAN Compiler

Appendix B

FORTRAN on the UNIX System

This appendix describes the ~pecific details of using the SVS
FORTRAN-77 compiler on the UNIX Operating System. Later sections
cover specific dependencies and features of SVS FORTRAN-77 on the
UNIX system.

E.l Running FORTRAN-77 On the UNIX System

The FORTRAN-77 compiler, f77, compiles programs written in the
FORTRAN-77 language, and optionally links (or binds) the result
with intermediate files generated by f77 or other language
processors.

The descr iption below covers the UNIX system inter face to the
compiler. At the end of this section can be found a description
on how to run the individual phases separately.

NAME
f7'1 - FORTRAN-77 Compiler

SYNOPSIS
f77 [-0 ofile] [-i] [-c] [-u] [-v] file •••

DESCRIPTION

f77, the FORTRAN-77 compiler, accepts a list of FORTRAN-77 source
files and various intermediate texts contained in the list of
files specified by file. The resulting executable object-module
is placed in the fire-i.out, unless the -0 option was specified
(see below). -----

1. UNIX is a trademark of Bell Laboratories

FORTRAN Reference Manual Page 175

Using The FORTRAN Compiler Appendix E

To understand the use of f77, the reader should be aware of the
steps through which the compiler goes in order to turn a
FORTRAN-77 source program into an executable object-file. £77
goes through several separate phases (or passes) when compiling a
program.

£77 source files must have a .for suffix. £77 generates three
intermediate files (.i, .obj, and .0) on the way to generating
the final executable binary file. The first phase of the
compiler generates intermediate files with the same names as the
source files, but with a .i suffix. These intermediate files are
destined for processing by the code generator.

Code generation is the second phase of the process. The code
generator produces files of the same name as the source files,
but with a .obj suffix. The * .obj files are the input to the
next phase, called ulinker.

The ulinker phase of the process per forms two functions: it
links the .obj files, resolving external references to the
FORTRAN-77 run-time library, then it converts the .obj file
format into a UNIX-style object file, with a .0 suffix. This
means that one file in the list of files specified on the £77
command line must contain a main program. This.o file can then
be processed by ld - the UNIX system loader utility.

The final stage of the process is when the ld utility generates
the final executable object code file.

When using f77, any combination of FORTRAN-77 source files
(each with a .for suffix) can be combined with FORTRAN-77 (or SVS
Pascal) intermediate files (each with a .i suffix), FORTRAN-77 or
FORTRAN object-code files (each with a .obj suffix), and UNIX
system object-code files (having .0 suffixes). When the
compilation completes successfully, the result of the combination
of all those files is placed in the file a.out, or in the file
specified by the -0 option. -----

The -0 option, if used, specifies that the file ofile (runnable
file) whose name follows the -0 option is the file~eceive the
final executable code. If the -0 option is not specified, the
resultant executable code is placed in the file a.out.

If the -1 option is used, the FORTRAN-77 intermediate code (the
result of running /lib/fortran) is placed in a file of the same
name as the source file, but with a suffix of .i appended. The
compilation then terminates.

If the -c option is used, the FORTRAN-77 unlinked object-code
(the result of running /lib/code) is placed in a file of the same
name as the source file, but with a suffix of .obj appended. The

Page 176 FORTRAN Reference Manual

Appendix E Using The FORTRAN Compiler

compilation then terminates.

If the -u option is used, the linked object-code (the result of
running /lib/ulinker) is placed in a file of the same name as the
source file, but with a suffix of .0 appended. The compilation
then terminates at that point.

The -v (for verbose) option tells f77 to display a running
progress report as it goes through each of the compilation and
linking phases. If the -v option is specified, the compiler also
generates a listing file, of the same name as the source file,
but with a suffix of .lst appended.

If only one file argument is supplied on the command line, then
all the intermedlate files (*. i, * .obj, * .0) are removed at the
end of the compilation. If multiple file arguments are specified
on the command line, any existing intermediate files are not
removed.

EXAMPLES

f77 progl. for

compiles progl. for and places the resulting executable file in
a.out.

f77 -0 frammis ~rog2.for prog3.obj

compiles the FORTRAN-77 program called prog2. for and links the
result with the object-file prog3.obj. The resulting executable
binary is placed in the output file called frammis.

FILES

*.for
*.i
* .obj
* .0
/lib/ftnlib .obj
/lib/paslib.obj
/lib/fortran
/lib/code
/lib/ulinker
/lib/ftncter r s
/lib/ftnrterrs
/lib/wraplib

FORTRAN-77 source,
Intermediate code,
Compiled but unlinked f77 object-code,
Compiled but unlinked UNIX object-code,
FORTRAN-77 run-time library,
Pascal run-time library,
FORTRAN-77 compiler,
Code generator,
SVS to UNIX object-file converter,
FORTRAN-77 compile-time error message file.
FORTRAN-77 run-time error message file.
Interfaces for calling C routines.

Note that all the files appear ing in /lib above can
alternatively reside in /usr/lib.

FORTRAN Reference Manual Page 177

Using The FORTRAN Compiler Appendix E

Running The Coapiler Phases Sepa~ately

The separate parts of the FORTRAN-77 Language system can be run
independently if required. The separate phases are:

The FORTRAN-77 compiler (front end) is in /lib/fortran (or
/usr/lib/fortran). The compiler turns FORTRAN-77 source text
into an intermediate form sui table for processing by the
code generator.

The Code Generator is in /lib/code (or /usr/lib/code). It
converts the intermediate file into a form which will be
processed by ulinker.

ulinker is in /lib/ulinker (or /usr/lib/ulinker). It links
the output of the code generator, and converts the resulting
linked file into UNIX compatible .0 file format, ready for
processing by the UNIX link-editor (ld) utility.

Examples shown in the following subsections assume that there
is a program called. 'hello.for', which is to be compiled,
code-generated, linked, and link-edited, ready for execution.

Running the FORTRAN-77 Compiler Independently

The FORTRAN-77 compiler (front end) is run with a command line
like this:

/lib/fortran [+q] [-p) sfile -llfile -iifile -eefile
or,

/usr/lib/fortran [+q) [-p] sfile -llfile -iifile -eefile

where 'sfile'
source program •
• for suffix.

is the name of a file containing the FORTRAN-77
The source is expected to be on a file with a

Other files (such as listing or error files) are introduced by
the options descr ibed below. Note that there must not be any
spaces between an option letter and its corresponding filename.

-llfile

Page 178

'lfile'is the optional name of
receive the compiler generated

the file
listing.

to
No

FORTRAN Reference Manual

Appendix E

-iifile

-eefile

Using The FORTRAN Compiler

suffix is appended to the list filename. If the
-1 option is omitted, no listing is generated.

'ifile'is the optional name of the intermediate
file destined for processing by the code
generator. If the 'ifile' is not specified on
the command line, the intermediate output is
placed on a file with the same name as the
source file (minus the .for suffix) with a .i
suffix appended.

'efile'is the optional name of a file to receive
the compiler error summary. No suffix is
appended to the error summary filename. ·An
error summary file is not generated unless it is
requested by the -e option.

The +q (for quiet)
option makes the compiler print less. The-q
option ,increases the amount of data displayed.
The default is +q (quiet).

In tne f77 UNIX command, the -q option is called
up via the -v (for verbose) option on the
command line.

The +p(for prompt)
option makes the compiler display each error on
the standard output, and prompt for a user
response from the standard input. The user has
the option to continue or abort the compilation
at that point. If the -p option is used, the
compiler automatically continues processing and
searching for more errors after an error is
found. The normal default for this option is -p
(continue automatically).

Example of Running the FORTRAN-77 Compiler

fortran hello. for

In this example, the FORTRAN-77 compiler compiles the source in
the file 'hello. for'. The intermediate text is placed in the
'hello.i' file.

FORTRAN Reference Manual Page 179

Using The FORTRAN Compiler Appendix E

Running the Code Generator

The code generator is the second phase of a FORTRAN-77
compilation. The code generator processes the intermediate file
from the compiler and generates a .obj file ready for processing
by the u1inker utility. The code generator is run simply by
typing the command:

/1 ib/code file
or,
/usr/1ib/code file

where 'file' is the name of the intermediate file to process.
The intermediate file must have a .i suffix. The output of the
code generator is a file ready for processing by u1inker. The
output filename is the same as the input filename, minus the .i
suffix, and with a .obj suffix appended.

Example of Running the Code Generator

/lib/code he110.i

In this example, the code generator is generating code for the
file 'he110.i'. The result of the code generation appears on a
file called 'he110.obj'.

Running the U1inker Utility

The u1inker utility links the output of the code generator,
resolves external references to run-time routines, and converts
the output of the code generator into a form that can be
processed by the UNIX link-editor. The ulinker utility is run
like this:

/lib/u1inker [-1) ofi1e objfile •••
or,
/usr/1ib/u1inker [-1) ofi1e objfile ...

Page 180 FORTRAN Reference Manual

Appendix E

-1

'ofile'

'obj file'

using The FORTRAN Compiler

if supplied, suppresses link map information.
If the -1 option is omitted, the first filename
on the ulinker command line must be the name of
a file to receive the listing.

is the name of the file to receive the final .0
file.

is a list of .obj files (and libraries) to
process.

The output of ulinker is a file ready for processing by the
UNIX link-editor.

The -1 option, if typed on the command line, tells ulinker to
display progress information on the standard output.

Example of Running ulinker

/lib/ulinker -1 hello.o hello.obj /lib/ftnlib.obj /lib/paslib.obj

This example links the 'hello.obj' file generated by the code
generator, resolves external references to the FORTRAN-77 and
Pascal run-time libraries, then converts the code format to a
form acceptable to ld, the UNIX link-editor. The result appears
in the 'hello.o' file shown on the command line.

The FORTRAN-77 run-time routines make calls upon certain C
library routines. The interface between these is supplied by a
.0 file called 'wraplib.o', which resides either in the /lib or
/usr/lib directories. 'wraplib.o' must be included in the
link-edit process, after the user's .0 files, and before the C
library. A description of the interface between FORTRAN-77 and C
routines can be found later in this appendix.

The final stage in the process of obtaining an executable
binary file is to run the UNIX link-editor:

ld /lib/crtO.o hello.o /lib/wraplib.o -lc

This example links the 'hello.o' file .with the run-time
routines from 'wraplib.o', and the C run-time library indicated
by the -1e option on the ld command line. The 'crtO.o' file must
come first in the link sequence, so as to get the run-time
startup routines in the correct place. The resulting executable
binary appears on the file 'a.out'.

FORTRAN Reference Manual Page 181

Using The FORTRAN Compiler Appendix E

E.2 UNIX System Dependencies

This section covers specific features of the SVS FORTRAN-77
compiler on the UNIX operating system.

Action on C10sing Fi1es

Contrary to what is said in chapter 10 - "FORTRAN Input and
Output" about the actions taken on closing a file, on the UNIX
system, all files are closed with the 'lock' option, regardless
of what option was actually specified in the CLOSE statement.

English Error Messages

The FORTRAN-77 system now can display English style error
messages by accessing the error message files which reside in the
file /lib/ftncterrs (or in /usr/lib/ftncterrs) (fortran compile
time errors), and in /lib/ftnrterrs (or /usr/lib/ftnrterrs)
(fortran run time errors).

Page 182 FORTRAN Reference Manual

Appendix E Using The FORTRAN Compiler

E.3 Interfacing FORTRAN-77 to UNIX C Programs

This part of the appendix is intended to give the user some
clues in how to link programs wr i tten in SVS FORTRAN-77 with
external routines written in C on the UNIX system.

Because the interfaces and calling conventions differ between
FORTRAN-77 and C, FORTRAN-77 routines are linked with C routines
via a small assembler language routine called a "wrapper". The
purpose of the "wrapper" is to make the interface between
FORTRAN-77 and C compatible with each other.

The user must be aware of the following relationships between
FORTRAN-77 and C:

All C parameters expect four bytes on the stack for each
argument, regardless of what they are.

C parameters are pushed onto the stack in the reverse order
from those of FORTRAN-77. So the FORTRAN-77 call:

func (a, b, c)

is seen by the C routine as:

func (c, b, a)

The C language returns function results in register DO.
FORTRAN-77 returns function results on the stack. The
interface routine must be aware of this and act accordingly.

The representation of REAL and DOUBLE PRECISION data in
FORTRAN-77 is incompatible with the float and double data types
of C, so the user should avoid passing these data types.

Examples

The four sets of declarations below are representative samples
of some C routines and the FORTRAN-77 declarations to provide the
interface to those routines. Following the declarations, are the
"wrappers" to interface those C routines with the FORTRAN-77
programs.

FORTRAN Reference Manual Page 183

Using The FORTRAN Compiler Appendix E

FORTRAN-77 Declaration:

INTEGER add (a, b)

£. Function:

add (b, a) /* add two numbers */
int *a, *b;

return (*a + *b);

£ Function:

hello() /* print the word 'HELLO' */
{

}
printf (nHELL01\n");

£ Function:

swap(b, a) /* swap two numbers */
int *a, *b;

int temp;

temp = *a;
*a -*b;
*b .. temp;

Note that in the declarations above we have one FUNCTION and
two SUBROUTINES. One of the SUBROUTINES has no parameters. The
other SUBROUTINE and the FUNCTION have parameters. Note that the
FORTRAN program only needs to declare the FUNCTIONS, since it
will simply CALL the SUBROUTINES, and these don't have to be
declared. In the discussions to follow, these differences will
illustrate the different pieces of assembler coding necessary for

Page 184 FORTRAN Reference Manual

Appendix E Using The FORTRAN Compiler

the interface.

A fairly simple FORTRAN program to call those routines might
look something like this:

C

C

C

pr.ogram testC

integer a, b, r
integer add

a • 10
b • 13
call hello ()
r - add (a, b)
call swap (a, b)
stop

end

Connecting the Pieces

Unless the C program segments are already in the C library
(that is, they are standard C functions), they should be compiled
and left as .0 files (using the cc -c compiler call).

An assembly language inter face routine must be provided for
each C routine to be called. This interface routine is called a
"wrapper".

The external reference passed from the FORTRAN-77 program will
be in upper case. The wrapper must call the corresponding
lower-case routine (the C routine), and then clean up the stack
on return. For every parameter that the FORTRAN-77 program
passes, four bytes must be removed from the stack.

The wrapper must also ensure that the function return value (if
there is one) must be pushed onto the stack from register DO.

Exaaples of Wrapper Routines

The assembly language fragments below are the wrappers to
interface the three FORTRAN-77 and C routines shown in the
examples above. There is a common theme throughout each

FORTRAN Reference Manual Page 185

Using The FORTRAN Compiler Appendix E

routine.

Each wrapper declares as global (the .globl declaration)
both the upper case name (which FORTRAN-77 generates) and
the corresponding lower case name (which C generates). Note
that the C routines have an underline character in front of
them, but not the FORTRAN routine names, because the
underline character cannot be used in FORTRAN names.

In all cases, FORTRAN-77 places its return address on the
stack. The wrapper pops that stack entry into register A3,
which is guaranteed not to be clobbered by any C routines
which are called (user wr i tten assembler codes must also
honor this convention to avoid disaster).

Upon return from the C routine, the wrapper pops four bytes
for every parameter that was passed from the FORTRAN-77
program.

Lastly, if the calling FORTRAN-77 routine is a function
which expects a result, the wrapper must push the C
function's return value onto the stack from register DO.

First there is the wrapper for the 'add' function:

.globl ADD, add
ADD: movl sp@+,a3-
address

jsr
addl
movl
jmp

add
J8,sp
dO,sp@
a3@

declare ADD global
save FORTRAN-77 return

call the C add routine
remove 8 bytes from stack
put return value on stack
return to FORTRAN-77.

The 'add' function passes two parameters, so after the C
routine returns it pops eight bytes from the stack. The caller
is a FORTRAN-77 function, so the return value is pushed onto the
stack.

Then there is the wrapper for the 'hello' procedure, which does
not have any parameters: .

• globl HELLO, hello
HELLO: movl sp@+,a3-
address

jsr
jmp

hello
a3@

declare HELLO global
save FORTRAN-77 return

call the C hello routine
nothing to remove/return,
so just jump to FORTRAN-77.

This routine has no parameters, and the caller expects no
return value, so there is nothing to do except return to the
caller.

Page 186 FORTRAN Reference Manual

Appendix E Using The FORTRAN Compiler

Lastly there is the wrapper for the 'swap' procedure which has
two parameters:

.globl SWAP, swap
SWAP: movl sp@+,a3
address

jsr
addl
jmp

swap
Ja,sp
a3@

declare SWAP global
save FORTRAN-77 return

call the C routine
remove a bytes from stack
nothing to return, so just
jump to FORTRAN-77

The wrapper should be assembled into a .0 module using the
assembler. Now, all the pieces must be presented to the loader
(which may be done by calling the compiler).

In addition to any "wrapper" routines that the user writes,
there is also a file in /lib/wraplib (or /usr/lib/wraplib) which
contains some predefined interfaces to the C run-time library.

For example, if the pieces of the C program are in the file
called 'zork.o', and the wrapper is in 'wrp.o', and the
FORTRAN-77 program is in 'prog.o', the pieces can be linked by
typing:

f77 prog.o wrp.o zork.o

or (more complicated):

cc prog.o wrp.o zork.o /lib/wraplib.o

or (even more complicated):

ld /lib/crtO.o prog.o wrp.o zork.o /lib/wraplib.o -lc

The file /lib/wraplib (or /usr/lib/wraplib) already contains
wrappers for the C language routines:

CLOSE
-CREAT
-LSEEK
-OPEN
-READ
-SBRK
:WRITE

Note that these wrapper routines have underline characters in
front of them, even though underline characters are not allowed
in FORTRAN-77 names. The names in the library above are treated
specially by the linker.

FORTRAN Reference Manual Page 187

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187

