CONFIDENTIAL

Corvus Mass Storage Systems
General Technical Information

. (formerly titled Disk Technical Reference Manual)

Part Number: 7100-05945-01
Release Date: June 1984

i,

Copyright 1982, 1984, Corvus, Inc.

Trademark notices...

Corvus Concept, Omninet, Omnidrive, The Bank, Mirror...

Mail Monitor...

Apple I1I, Apple ///, Maclntosh, Apple Pascal, Apple DOS,
ProD0OS, Ss0OS, ...

IBM PC, PCDOS, ...

TI Professional...

MSDOS, MS Pascal, ...

Pascal MT+, Pascal MT86+, ...

Scope

Conventi

1.0 Cont
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17

CORHEENIAL

TABLE OF CONTENTS

ons
roller functions
Read-write commands
Logical sector address decoding
Write verify option
Fast tracks (Bank)
Semaphores
Pipes
Active user table
Booting
Drive parameters
Parking the heads
Changing Bank tapes or powering off the Bank
Checking drive interface (Echo command)
Prep mode
Format drive
Format tape
Media verify (CRC)

Track sparing

-1.18 Physical versus logical addressing

Mass Storage Systems GTI

2.0

3.0

COLF
lrlULleim

1.19 Interleave
1.20 Read-write firmware area
1.21 virtual drive table
1.22 Constellation parameters
Omninet Protocols
2.1 Constellation Disk Server Protocols
2.2 0l1d Disk Server Protocol
2.3 New Disk Server Protocol
2.4 Constellation Name Lookup Protocol
2.5 Active user table
Outline of a Disk driver
3.1 Omninet
0l1d Disk Server Protocol
New Disk Server Protocol
3.2 Flat cable
Using other disk commands
Using Semaphores

Using Pipes

Mass Storage Systems GTI

- ii -

TIm T

Uiidlubliniong

Appendices

Device specific information
Revision B/H Controller
Omnidrive

The Bank

Hardware description
Firmware and PROM code
Firmware layout

Drive parameters

Front Panel LED's

DIP switch settings

Tables

Constellation device type

Constellation boot number assignments
List of disk commands in numerical order
List of disk return codes

List of transporter return codes

Summary of transporter command vectors

Differences between Omnidrive and Revision B/H Series Drives

Transporter card information
Flat cable card information

Software Developer's Information

Mass Storage Systems GTI

- iii -

-

«

C[:!’r!"‘rr*. ‘
List of figures Pl eidnL

1.1 Functional list of controller commands

2.1 Message exchange for disk server protocol

2.2a Find all disk servers using directed commands

2.2b Find all disk servers using broadcast commands

3.1 Message exchange for disk server protocol, showing

timeouts
3.2 Flowchart
3.3 Flowchart

3.4 Flowchart
protocol

3.5 Flowchart
3.6 Flowchart
3.7 Flowchart

3.8 Flowchart
protocol

3.9 Flowchart

of
of
of

of
of
of
of

of

a short command, old disk server protocol
a long command, old disk server protocol

wait for disk server response, o0ld disk server

flush, old disk server protocol
a short command, new disk server protocol
a long command, new disk server protocol

wait for disk server response, new disk server

cancel, restart check, new disk server protocol

3.10 Flowchart of flush, new disk server protocol

3.11 Flat cable command segquence

3.12 Flat cable turn around routine

Mass Storage Systems GTI - iv -

et
SCOpe]] b ivide o

This manual describes the command protocols used by Corvus
mass storage systems. It covers the disk commands and the
Omninet protocols used to send those commands. It also describes
how to use the various features provided by the commands.

It is meant to be used in conjunction with the following manuals:

Omninet General Technical Information,
Corvus P/N 7100-02040

Constellation Software General Technical Information,
Corvus P/N 7100-05944-01

Omninet Protocol Book

Conventions

Hexadecimal values are suffixed with an h. For example,
FFh, 02h.

When not otherwise qualified, a sector is 512 bytes. A
block is always 512 bytes.

All program examples are given in psuedo-Pascal and are not
necessarily syntactically correct. The examples are meant to
serve as guidelines to you in implementing your own programs.

In command and table descriptions, 1lsb means least
significant byte or least significant bit, depending on
context. Similarly, msb means most significant byte or most
significant bit.

Mass Storage Systems GTI -V -

™ -

v
J

~'"7 "1

LU

r'—"’

\

L’ ¥

The TYPE column used in describing commands, protocols, and
tables has the following meanings:

Type

BYTE
WORD

FWRD

ADR3

FAD3

DADR

BSTR

NSTR

FLAG

ARRY

Meaning

An unsigned 8 bit value.

An unsigned 16

An unsigned 16
a byte-flipped

An unsigned 24

An unsigned 24
a byte-flipped

bit value;

bit value;

WORD.
bit value;

bit value;
ADR3.

msb, lsb format.

1sb, msb format;

msb..lsb format.

1sb..msb format;

A 3-byte field, called Disk address;
interpretation is shown in Chapter 1, section
titled Logical sector address decoding.

A string of 1 or more characters, padded on the
right with blanks (20h).

A string of 1 or more characters, padded on the
right with NULs (00h).

A byte with bits numbered 7..0; msb..lsb format.

An array of 1 or more BYTEs.

Mass Storage Systems GTI

- vi -

Controller functions

'rr P
Chapter 1: Controller functions E[} Utuif‘fu

Corvus currently supports three mass storage devices: the
Revision B/H Series drives, Omnidrive, and The Bank. Each of
these devices may be attached to a Corvus network. The Rev B/H
drives may be attached to a Corvus multiplexer, or through a disk
server to Omninet. Omnidrive and The Bank have built-in Omninet
interfaces. -

Although these devices have very different hardware
characteristics, the software interface to each is very similar.
For example, one software disk driver can interface to all these
devices.

This chapter describes the functions supported by Corvus mass
storage devices. Each section describes the function and lists
the relevant commands. Where needed, additional explanatory text
follows.

The commands are described as a string of bytes to be sent to
the device, and a string of bytes that is the expected reply. 1In
the case of an error, normally only one byte is received, which
is the disk error code. Disk error codes are summarized in
Appendix B.

Chapter 2 describes the Omninet protocols used to send the
commands.

Mass Storage Systems GTI 1-1

Controller functions

Command Result
Command name Code:Modifier Length Length

Read/Write Commands:

Read Sector (256 bytes) 02h 4 257
Write Sector (256 bytes) 03h 260 1
Read Sector (128 bytes) 12h 4 - 129
Read Sector (256 bytes) 22h 4 257
Read Sector (512 bytes) 32h 4 513
Read Sector (1024 bytes-Bank) 42h 4 1025
Write Sector (128 bytes) 13h 132 1
Write Sector (256 bytes) 23h 260 1
Write Sector (512 bytes) 33h 516 1l
Write Sector (1024 bytes-Bank) 43h 1028 1
Record Write (Bank) 16h 2 1

Semaphore Commands:

Semaphore Lock OBh:01h 10 12
Semaphore Unlock OBh:11h 10 12
Semaphore Initialize 1Ah:10h 5 1
Semaphore Status 1Ah:41h 5 257

Pipe Commands:

Pipe Read 1Ah:20h 5 516
Pipe Write 1Ah:21h 517 12
Pipe Close 1Ah:40h 5 12
Pipe Status 1 1Ah:41h 5 513
Pipe Status 2 1Ah:41h 5 513
Pipe Status 0 1Ah:41h 5 1025
Pipe Open Write 1Bh:80h 10 12
Pipe Area Initialize 1Bh:AOh 10 12
Pipe Open Read 1Bh:COh 10 12

Active User Table Commands:

AddActive 34h:03h 18 2
DeleteActiveUsr (Rev B/H) 34h:00h 18 2
DeleteActiveNumber (Omnidrive) 34h:00h 18 2
DeleteActiveUsr (Omnidrive) 34h:01h 18 2
FindActive 34h:05h 18 17
ReadTempBlock C4h 2 513
WriteTempBlock B4h 514 1

Figure 1.1: Summary of Disk Commands by PFunction
(continued on next page ...)

Mass Storage Systems GTI 1-2

Command name

Miscellaneous Commands:

Boot

Read Boot Block

Get Drive Parameters
Park heads (Rev H)
Park heads (Omnidrive)
Echo (Omnidrive,Bank)

Put Drive in Prep Mode:
Prep Mode Select
Prep Mode Commands:

Reset Drive

Format Drive (Rev B/H)
Format Drive (Omnidrive)
Fill Drive (Omnidrive)
Format Tape (Bank)
Reformat Track (Bank)
Verify (Rev B/H,Omnidrive)
Non-destructive Verify (Bank)
Destructive Verify (Bank)
Read Corvus Firmware
Write Corvus Firmware

Code:Modifier

14h
44h
10h
llh
80h
F4h

llh

00h
0lh
0lh
81lh
0lh
0lh
07h
07h
07h
32h
33h

:01h
:02h

:02h
:01h

514
513

514

w
=
BN OWH WH

(8]
b=

Controller functions

Command Result
Length Length

513
513
- 129

513

N b et

variable
10
10
513
1

Figure 1.1: Summary of Disk Commands by Function (cont.)

Mass Storage Systems GTI

1-3

Read-write commands

1.1 Read-write commands

Five sets of read-write commands are supported, each set
specifying a different sector size. Data can be read or written
in sectors of 128 bytes, 256 bytes, 512 bytes, or 1024 bytes.
There are two sets of commands that support 256 byte sectors;
they are identical.

The Rev B/H controller and the Omnidrive controller use a
physical sector size of 512 bytes. When a host sends a write of
a sector size other than 512 bytes to the drive, the controller
first reads the entire physical sector, overlays the written
data onto the appropriate chunk of the physical sector, and then
writes the physical sector. It is therefore recommended that
hosts, where possible, use a write command of 512 bytes to
minimize overhead when writing to the drive.

The Bank physical sector size is 1024 bytes. When a host
sends a write of a sector size other than 1024 bytes to the Bank,
the data is buffered until the whole sector is received; then the

~data is written to the media. 1If any other commands are received

before this buffer is full, or if another sector is to be written
to, the controller performs as described above; that is, it reads
the whole physical sector, overlays the written data onto the
appropriate chunks of the physical sector, and then writes the
physical sector. It is therefore recommended that hosts, where
possible, use a write command of 1024 bytes to minimize overhead
when writing to the Bank.

The fact that the Bank buffers write commands has one other
ramification: the controller always returns 0 as the disk result
code, indicating a successful write. When it comes time for the
Bank to actually write the sector and an error is encountered, no
error status is reported to the host.

The read function always reads the whole physical sector and
returns the appropriate chunk of data. Unlike the write mode, no
performance penalty is paid when using any particular sector
size,

All of the read-write commands decribed below use a three

byte sector number as the disk address. The interpretation of
sector number is described in the next section.

Mass Storage Systems GTI 1-4

Read-write commands

Command Name: Read a sector (256 byte sector)

Command Length: 4 bytes
Result Length: 257 bytes

- —————] ————— —— ——— t—————— — i~ - G ———— —— W ——— — —— —_———— ———— -~ - —

0/1 | BYTE | command code - 2h
1/ 3 | DADR | sector number
Result

G - —————————— o~ —— ———————————— ——————— G G- G —— G ———— ————————
- ——— ————— — ———————— — —— ———— - ———— ———— —— T — — G ————— ——————t— —— ———o———
- - —— - —————— o G- ——— o ———— — — —— ————————— - — — —— —— — - —— ————

- ————— ——————————— ——_——— ———— —— ————— ——— ———— - " G g - — - S — - G ———

Command Name: Write a sector (256 byte sector)

Command Length: 260 bytes
Result Length: 1 byte

Command

——
——
——
——

- ———————————————— — - G — - —— — G - — — G NS G GEA GNv W G G G G S G G — —— ——————— -

Mass Storage Systems GTI 1-5

Read-write commands

Command Name: Read a sector (128 byte sector)

Command Length: 4 bytes
Result Length: 129 bytes

Command

e s . G ———— " G —— ——————————— ——— ——————————— ——t—— ———{—_— ——————

0/1 | BYTE | command code - 12h
1 /3 | DADR | sector number
Result

Command Name: Write a sector (128 byte sector)

Command Length: 132 bytes
Result Length: 1 byte

Command

Mass Storage Systems GTI 1-6

Read-write commands

Command Name: Read a sector (256 byte sector)

Command Length: 4 bytes
Result Length: 257 bytes

Command

" . G ————————————— ——— ——— ————— O - ——————_—— S ———— — —— ————— - —

0/1 | BYTE | command code - 22h
1/ 3 | DADR | sector number
Result

o —_—— ———— ————— - — T {— O~ — — ——— — — ——————————————— g~ G—— — — ———— — ——— - -
- ———————— —— ———— —— — — —— ——————————————— G ———— — ——————- —————t— -
- ———————— ——————— ——— . —— ————— — ——— - ————— —— - —— ———— ——— — ———— -

Command Name: Write a sector (256 byte sector)

Command Length: 260 bytes
Result Length: 1 byte

- ——— ——— - — - —— - — —— G G . GhS TS G GEe SES G G G GRS G GEn E— —— —— — G ——— — G —— - —— —_———

Mass Storage Systems GTI 1-7

Read-write commands

Command Name: Read a sector (512 byte sector)

Command Length: 4 bytes
Result Length: 513 bytes
Command

0/1 | BYTE | command code - 32h
1/3 | DADR | sector number
Result

e — ——————— ————— ———— —————— ————_t————————————————— ——t—_——t——— G- ——
- ——— ————————— — — ————— ———_—————_—— - — O ———— t———————————_———————— =~ -
- ————————————— - ——————— ——————— ————— — —————————————— G ——— ——————

Command Name: Write a sector (512 byte sector)

Command Length: 516 bytes
Result Length: 1 byte

Mass Storage Systems GTI 1-8

Read-write commands

Command Name: Read a sector (1024 byte sector) (Bank only)

Command Length: 4 bytes
Result Length: 1025 bytes

Command

0/1 | BYTE | command code - 42h
1 /3 | DADR | sector number
Result

- . - ———— —— ——————— - ——— ————— Y~ — ——————— G > W W, SES S W S G W G S = = - ——
- ———— — ——— —— —— — ————————__ - - ———————— — — T ——— - —— — — _— ———————— -
- ——————— - ———— —— - ————————————— ——— —— — —— ————— —————— — ——————— — -

- — - —— ——— —— - ———— ———— — —_ —————— —— ————————————— — — ——————— ————— -

Command Name: Write a sector (1024 byte sector) (Bank only)

Command Length: 1028 bytes
Result Length: 1 byte

Command

——
——
——
——

1.2 Logical sector address decoding
On the Rev B/H drives, the three byte sector number specified

in a read or write command is decoded into a 4-bit drive number
and a 20-bit address. The decoding is described below:

Mass Storage Systems GTI 1-9

Ak,

=,

Read-write commands

byte 1 byte 2 byte 3
d 1sb msb

Byte 1, upper nibble, is the most significant nibble
of the address.

Byte 1, lower nibble, is the drive number.

Byte 2 is the least significant byte of the address.

Byte 3 is the middle byte of the address.

Thus to write to drive 1, address 02D348h, the host should
send to the controller these bytes:

21h, 48h, D3h

A 20-bit address allows the controller to address
approximately 1 million sectors per drive, or 512MB using 512
byte sectors. Virtual drives can be used to extend the
addressing capabilities of the Rev B/H controller; see the
section titled Virtual drive table later in this chapter.

For Omnidrive and The Bank, the three byte sector number is
treated as a 24-bit address; all three bytes are used to indicate
the address. The Omnidrive and Bank controllers can thus address
16 times more data than the Rev B/H controller, or approximately
8 gigabytes using 512 byte sectors. The three byte address is
decoded as follows:

byte 1 byte 2 byte 3
d 1sb msb

Byte 1, upper nibble, is bits 17-20 of the address.

Byte 1, lower nibble, is decremented by 1, and becomes
bits 21-24 of the address.

Byte 2 is the least significant byte of the address.

Byte 3 is the middle byte of the address.

Thus to write to an address, say 32D348h, the host should
send to the controller these bytes:

24h, 48h, D3h

The controller flips the nibbles in byte d, subtracts 10h
from the result and uses this value as the most significant byte
of the address. Byte 2 is used as the least significant byte and
byte 3 the middle byte.

Note that for addresses of 20 bits or less, the two
addressing schemes are equivalent. For example, to write to
drive 1, address 2D348h, the host sends these bytes:

21h, 48h, D3h

Mass Storage Systems GTI 1-10

Read-write commands

The address specified in the Read-Write commands is a sector
address, where the size of the sector is specified by the
command. For example, to read block 8 of the device, any of
the following commands can be used:

Command string Meaning

02h, 01h, 10h, O0Oh sector 16 (256-byte sector)
12h, 0l1h, 20h, 0Oh sector 32 (128-byte sector)
22h, 01h, 10h, 0Oh sector 16 (256-byte sector)
32h, 0l1h, 08h, 0Oh sector 8 (512-byte sector)

42h, 0l1h, 04h, O0Oh sector 4 (1024-byte sector; Bank only)

1.3 Write verify option

The Omnidrive provides the option of specifying
write-verify or non-write-verify. If the write-verify option is
chosen, the controller, after each write to the media, performs
a read operation of that sector to verify that the sector can be
read with a correct CRC. If the non-write-verify option is
specified, there is no read after write.

The tradeoff is between performance and reliability. The
write-verify costs at least an extra revolution of the disk but
it verifies that the data is recorded properly on the media. The
other provides higher performance without the assurance of data
integrity.

The option is represented by one byte in the firmware area.
The standard firmware release has this byte set to
non-write-verify. The option can be changed using the Corvus
diagnostic program.

Rev B/H drives always use write-verify. The Bank always uses
non-write-verify.

1.4 Past tracks (Bank only)

A Bank tape can be configured to use fast-track or
non-fast-track mode. In fast-track mode, a read completes much

faster than in non-fast-track mode. However, a write takes much
longer in fast-track mode than in non-fast-track mode.

Fast-track mode is therefore recommended for applications which
require heavy look-up of data, but little or no modification of
the data.

In fast-track mode, the first 16 tracks of the user data area
(4MB) are redundantly recorded. For a 200MB tape, the controller
records each sector of data 8 times, once on each of 8 tracks;
each succeeding track has the data skewed 1/8 around the tape
loop. For a 100MB tape, the controller records each sector of

Mass Storage Systems GTI 1-11

A

Read-write commands

data 4 times on 4 tracks; each succeeding track has the data
skewed 1/4 around the tape loop.

When a sector is read, the controller determines where
on the track its head is, and reads from the closest sector.
Thus, the average read access time is 1/8 (or 1/4) that of the
non-fast-track mode.

There are two types of write to the fast tracks area: normal
write and record write. For normal write, the controller updates
all the redundant sectors in one pass. Thus, it takes an entire
revolution to complete one write. For record write, the host can
specify the redundant sector to be written. The sector specified
is used for all succeeding Write commands, until the next Record
Write command is received. This feature allows the host to write
to a whole track, then repeat the process for the redundant
tracks.

To turn record write on or off, use the Record Write command.

Command Name: Turn on Record Write (Bank only)

Command Length: 2 bytes
Result Length: 1 byte

Command

o ———————— ————— - ———— ———————_—— - ————— ———— ————— — ————————— ————

0/1 | BYTE | command code - 16h
1 /1 | BYTE | sector number*
Result

* For a 200MB tape, valid sector numbers are 80h-87h, specifying
sector 0 through 7; for a 100MB tape, valid sector numbers are
80h-83h, specifying sector 0 through 3.

Mass Storage Systems GTI 1-12

Read-write commands

Command Name: Turn off Record Write (Bank only)

Command Length: 2 bytes
Result Length: 1 byte

o ——————————————— — - — - ———— - ————————_—— ———— ——— ————_t— ——————

0/1 | BYTE | command code - 16h
1 /1 | BYTE | 00h
Result

- ———— ———————_——_——— —————————_——— —— ———————————_——————————————

0 /1 | BYTE | disk result

When using normal write, updating 100 sectors requires 100
tape revolutions, one for each sector write. When updating many
consecutive sectors, it may be faster to use record write. Let's
assume you want to update sectors 100 to 199 on a 200MB tape.

You first issue a Record Write command for redundant sector 0
(80h), and then 100 sector write commands, one for each sector
100 to 199. Depending on the interleaving, this should take only
1 tape revolution. Next you issue a Record Write command for
redundant sector 1 (8l1lh), and then the same 100 sector write
commands. Repeat this sequence for redundant sectors 2 through
7, and you should complete the update in only 8 tape revolutions,
as opposed to the 100 revolutions used in normal write.

1.5 Semaphores

Semaphores provide an indivisible test and set operation for
use by application programs. See chapter 5 for examples of how
to use semaphores.

The semaphore commands are listed below:

Semaphore Lock
Semaphore Unlock

Initialize Semaphore Table
Semaphore Status

Any host can, at any time, request to lock a semaphore. 1If
the specified semaphore is not already locked, the controller
locks the semaphore. If a semaphore is already locked, the
application program using the semaphores can continue to poll the
semaphore table by resending the Lock command until the desired
semaphore is no longer locked.

Mass Storage Systems GTI 1-13

Semaphores

The Semaphore Unlock command always unlocks the semaphore.

The status of the semaphore prior to each operation is also
returned to provide for a full test-set or test-clear operation.

A semaphore can be any 8-byte name, except for 8 bytes of 20h
(ASCII space character). There is no limit on the number of
semaphores that may exist in a given application or network;
however, only 32 semaphores may be locked at any one time (on
each server).

Two semaphores are equivalent only if each character in the
name is exactly the same. For example, semaphore 'CORVUS1ll' is
different than semaphore 'corvusll', which is different than
'Corvusll'. The characters do not have to be printing
characters; eight bytes of 10h (ASCII LF character) is a legal
semaphore name,

Omnidrive and The Bank support a wild card character in
semaphore names. The character 00h (ASCII NUL character) matches
any other character in semaphore lock and unlock operations.

The Initialize Semaphore Table command clears the semaphore
table, which is equivalent to unlocking all the semaphores. The
semaphore table can be initialized by any processor, but this
should only be performed on system-wide initialization or for
recovery from error conditions.

The Semaphore Status command returns the semaphore table,
which can then be examined to see which semaphores are locked.

Mass Storage Systems GTI 1-14

Semaphores

Command Name: Semaphore lock

Command Length: 10 bytes
Result Length: 12 bytes

Command

0/1 | BYTE | command code - OBh

1 /1 | BYTE | 0lh

2/ 8 | ARRY | semaphore name
Result

- — —————— — — ————— ——— Y — T — G- S ————— —— — ———— — — - G_- G S — G —————— -

0/1 | BYTE | disk result
1 /1 | BYTE | semaphore result
2 /10 | ARRY | unused (no meaning)

Mass Storage Systems GTI 1-15

i

Semaphores

Command Name: Semaphore unlock

Command Length: 10 bytes
Result Length: 12 bytes

Command

0/1 | BYTE | command code - OBh

1/ 2 | BYTE | 11lh

2/ 8 | ARRY | semaphore name
Result

——
——
——
——

Command Name: 1Initialize semaphore table

Command Length: 5 bytes
Result Length: 1 byte

e - —————— ———————— ————— - ————— —————————— — -~ ———————————— —————-—

0/1 | BYTE | command code - 1lAh

1/1 | BYTE | 10h

2/ 3 | ARRY | don't care - use 00h
Result

Mass Storage Systems GTI 1-16

Semaphores

Command Name: Semaphore status

Command Length: 5 bytes
Result Length: 257 bytes

0/1 | BYTE | command code - lAh

1 /1 | BYTE | 41lh

2/1 | BYTE | 03h

3/ 2 | ARRY | don't care - use 00h
Result

S — ——————————— — —————— — G —— —— ————————— - ———— — - - —— ———— - —— - - —
- ——————— - — ———————— —_——————— ———— — —— - G G- G G- ————— - ——— —t— ——
- —— - — —— - —— ——— —— T ——— - ————— ——————— T — — T ——— ————— - —— - t— ————

0 Oh Semaphore Not Set/no error
128 80h Semaphore Set

253 FDh Semaphore table full
254 FEh Error on semaphore table read/write
255 FFh Semaphore not found

Implementation details for semaphores

The semaphores are implemented using a lookup table

containing an 8-byte entry for each of the 32 possible
semaphores. A used entry in the table indicates that the

semaphore is locked. Unused table entries are represented by 8
bytes of 20h (ASCII space character).

When a Lock command is received, the controller searches the
table for a matching entry. If one is found, a Semaphore Set
status (80h) is returned. Otherwise, the semaphore is written
over the first empty entry, and a status of Semaphore Not Set
(0) is returned.

Mass Storage Systems GTI 1-17

~
N

Semaphores

When an Unlock command is received, the controller searches
the table for a matching entry. If one is found, it is
overwritten with blanks, and a status of Semaphore Set (80h) is

returned. Otherwise, a status of Semaphore Not Set (0) is
returned.

The format of the semaphore table is shown below. See
Appendix A for the location of the semaphore table.

Table layout Entry layout
to—mm + byte 0 te=(tmmmmmmmm +
|semaphore #1 | | | lst byte |
o + | +- -+
|semaphore #2 |<======—-e—w- + | 2nd byte |
e ——— + | +- -+
I I | I I
= =] = =
I I I I I
trmrm e + | +- -+
|semaphore #31| | | 7th byte |
tommm + | +- -+
|semaphore #32] | | 8th byte |
tomm e + byte 255 +==(t=m—mm——m e +

For Rev B/H drives, the semaphore table is initialized to
blanks only when the firmware is rewritten or when an Initialize
Semaphore Table command is received. For Omnidrives and Banks,
the semaphore table is initialized at power up or when an
Initialize Semaphore Table command is received.

Performance considerations when using semaphores

For Rev B/H drives, a semaphore operation causes 2 disk
reads, and 0 or 1 disk writes. First the semaphore block must be
read from the firmware area. If the Lock or Unlock is
successful, then the semaphore table must be written back to the
disk. Finally, the dispatcher code must be reloaded from the
firmware area.

For Omnidrives and Banks, a semaphore operation causes no
disk I1/0, as the semaphore table is maintained in the controller
RAM. The table is not saved when the device is powered off.

1.6 Pipes

Pipes provide synchronized access to a reserved area of the
disk. Any computer can use the pipes commands to read or write
data to the pipes area at any time, and not worry about
conflicting with another computer's read or write to the pipes
area. See chapter 6 for examples of how to use pipes.

Mass Storage Systems GTI 1-18

Pipes

The pipe commands are listed below:

Pipe Open for Write

Pipe Open for Read

Pipe Write

Pipe Read

Pipe Close

Pipe Purge

Pipe Status o
Pipe Area Initialize

The pipes area must be initialized before any other pipe
commands are used.

The Pipe Area Initialize command specifies the pipe area
starting block number and the length in number of blocks. Note
that the block size is 512 bytes for the Bank as well as the
Omnidrive and Rev B/H drives. The pipes area must be entirely
within the first 32k blocks of the tape or disk; the starting
block number plus the number of blocks must be less than 32k.
The Pipe Area Initialize command does not actually write
anything to the pipes area, other than the pipes tables.

The normal sequence of events in using the pipes area is as
follows:

One host opens the pipe for write. It then uses Pipe Write
commands to write blocks to the pipe. When it has written all
the data, it uses the Pipe Close command to close the pipe.

Later on, either the same host or some other host issues a
Pipe Open for Read command. It uses Pipe Read commands to read
data from the pipe. When done reading, it issues a Pipe Close
command. If the pipe is empty (i.e., all of the data has been
read), it is deleted. 1If data is still remaining, the host can
open the pipe again later to finish reading the data.

Each time a pipe is opened for write, a new pipe is created.
When a Pipe Open for Read command is received, the lowest
numbered closed pipe with the specified name is opened.

The Pipe Purge command can be used to purge any unwanted
pipes.

The Pipe Status command is used to view the state of the
internally managed pipe tables.

Mass Storage Systems GTI 1-19

Pipes

Command Name: Pipe Open for Write

Command Length: 10 bytes
Result Length: 12 bytes

Command

T o ————————————————————————— —— - —————— ———] — ———— ———— —_——— = ———

0/ 1 | BYTE | command code - 1Bh
1 /1 | BYTE | 80h
2/ 8 | BSTR | pipe name

Result

- ————— ————————————————— ————_—————————————————_— ————————————

—— ——————————— ————— —————— — -~ —— — — —————— — —————— — — ——————————— —

0/ 1 | BYTE | disk result
1/ 1 | BYIE | pipe resamt
2/ 1 | BYTE | pipe number (1-62)
'3 /1 | FLAG | pipe state - see below
"4/ 8 | ARRY | unused (no meaning)

Mass Storage Systems GTI 1-20

Pipes

Command Name: Pipe Open for Read

Command Length: 10 bytes
Result Length: 12 bytes

Command

0/1 | BYTE | command code - 1Bh
1 /1 | BYTE | COh
2/ 8 | BSTR | pipe name

Result

0/1 | BYTE | disk result
171 | BYE | pipe resale
" 2/1 | BYIE | pipe number (1-62)
3/ 1 | FLAG | pipe state - see below
4/8 | ARRY | wnused (no meaning)

Mass Storage Systems GTI 1-21

Pipes

Command Name: Pipe Read

Command Length: 5 bytes
Result Length: 516 bytes

Command

0/1 | BYTE | command code - lAh

1 /1 | BYTE | 20h

2 /1 | BYTE | pipe number

3/ 2 | FWRD | data length - 00h, 02h (512 bytes)
Result

0/1 | BYTE | disk result
1 /1 | BYTE | pipe result
2/ 2 | FWRD | number of bytes read - 00h, 02h (512 bytes)

- ——————— —— — ——— — ——— - G G = - I G G G ———— — — G —— - ——————

Mass Storage Systems GTI 1-22

Pipes

Command Name: Pipe Write

Command Length: 517 bytes
Result Length: 12 bytes

Command

T G —————— - ————————— —— ———— — ———— — —————_————— - G ——————— - ——— - ——

0 /1 | BYTE | command code - 1lAh _
171 By |2 T
2 /1 | BYrE | pipe mumber
"3/ 2 | FWRD | data length - 00h, 02h (512 bytes)

- - ——— ————————— — —————— T~ — - ————— - —— ———— - - ———— — ———————— - ——t—— {— -

. - ————— —— —— ——— —— — ——— — G — G G G- G S Gme M G G G e e . Gh- G - ———— ———

e - —— ——— —————— ————— — —————] — ———— f— — S f———— ———— - ———— -~ —— ——— ——— -

0/1 | BYTE | disk result
1/1 | BYIE | pipe resuit
27/ 2 | FWRD | number of bytes written - 00h, 02h (512 bytes)
4/8 | ARRY | wused (no meaming)

Mass Storage Systems GTI 1-23

Pipes

Command Name: Pipe Close, Pipe Purge

Command Length: 5 bytes
Result Length: 2 bytes

Command

0/1 | BYTE | command code - lAh
1 /1 | BYTE | 40h
2 /1 | BYTE | pipe number
3 /1 | BYTE | FEh - close write
| | FDh - close read
I | 00h - purge
4 /1 | BYTE | don't care - use 00h
Result

- ————————————————— ——— — ——— - ——— ———— — ————— - —— ———— —————— - — -
e - ————————— o~ —————— ————— G ——————— — t— ——— —— t—— — — ——————— ———————
- ——— ———— — ——— ————— ——————— t— ———— — ——————— —_—— —— —— ——— — — S ————— -

Mass Storage Systems GTI 1-24

Pipes

Command Name: Pipe Status

Command Length: 5 bytes
Result Length: 513 bytes

O —————— —— O —————— —— — ———————— —— - —————— — -~ —_——————— — —— ———— -

0/1 | BYTE | command code - 1lAh
171 yevee oo T
2/1 | BYIE | Olh - Pipe Name table
| | 02h - Pipe Pointer table
372 | ARRY | don't care - wse 0Om
Result

- ——————— — —————— ————————— ————— ————— _— ———— — —— —— ——— ——— — — —— -
- ————— - ——— —_——— ————— ——————————— —— —————— —— — ————— ————— ———— -
- ————————— - ———— ———————— — —— —————— _— G —————————— ———————— - ——

Mass Storage Systems GTI 1-25

Pipes

Command Name: Pipe Status

Command Length: 5 bytes
Result Length: 1025 bytes

Command

0/1 | BYTE | command code - 1lAh

1 /1 | BYTE | 41h

2 /1 | BYTE | 00h

3/ 2 | ARRY | don't care - use 00h
Result

This is the only command which returns more than 530 bytes. 1If

you are using a general purpose command buffer for sending device

commands, you may wish to use the version of the Pipe Status

command which returns either the Pipe Name table or the Pipe

ﬁointer table, so that you do not have to declare a 1025-byte
uffer.

Mass Storage Systems GTI . 1-26

Pipes

Command Name: Pipe Area Initialize

Command Length: 10 bytes

Result Length: 2 bytes

Command

Offset/Len| Type | Description
0/1 |BYIE | command code - 18h

171 ey | aom T

"2 /2 | FWRD | starting block number

"4/ 2 | FWRD | length in blocks

6 /4 | ARRY | don't care - use OOh

Result

Offset/Len| Type | Description

"0 /1 | BYIE | disk result

171 | ByE | pipe resuit

Starting block number + Length in blocks must be less than 32k.

Pipe state flag (returned on Pipe Open)

10
11
12
13
14
15

OFh

Meaning

l=contains data / O=empty
l=open for read

l=open for write

Meaning

No error.

Tried to read an empty pipe.
Pipe not open for read or write.
Tried to write to a full pipe.
Tried to open an open pipe.

Pipe does not exist.

Pipe buffer full.

Illegal pipe command.

Pipes area not initialized.

Mass Storage Systems GTI 1-27

Pipes

Implementation details for pipes

Internally, the pipes area is managed by two tables: a Pipe
Name Table and a Pipe Pointer Table. These tables are stored in
different areas on the various disk devices; see appendix A. The
host can retrieve these tables by sending a Pipe Status command.

The Pipe Name Table contains 64 entries of 8 bytes each. The
first and last names in the table are reserved for system use,
The first name is WOOFWOOF and the last name is FOOWFOOW. An
entry of all blanks (20h) indicates an unused entry.

The format of the Pipe Name Table is shown below:

pipe number 0 | WOOFWOOF |
pipe number 1
pipe number 62| |

pipe number 63| FOOWFOOW |

The Pipe Pointer Table also contains space for 64 entries of
8 bytes each, each entry being formatted as shown below:

Rev B/H Omnidrive/Bank

o + ettt L +
| pipe number | byte 0 | pipe number |
e + et +
| starting (msb) | byte 1 | starting (0) |
+- -+ +- -+
| byte | | block (msb) |
+- -+ +- -+
| address (1sb) | | address (1sb) |
o + o +
| ending (msb) | byte 4 | ending (0)y |
+- -+ +- -+
| byte] | block (msb) |
+- -+ +- -+
| address (1sb) | | address (1sb) |
tomm e + o ———— e +
| pipe state | byte 7 | pipe state |
R et e + et L L LT e +

While the format of the Pipe Pointer table on the disk is
different for the Rev B/H drives than it is for Omnidrive and
Bank, the table returned by the Pipe Status command always has
the Rev B/H format. That is, the Omnidrive and Bank convert the

Mass Storage Systems GTI 1-28

Pipes

disk format to the Rev B/H format for the Pipe Status command.

Pipe number (byte 0) is an index into the Pipe Name Table. A
pipe number of 0 indicates the first entry in the Pipe Name
Table, and a pipe number of 63 indicates the last entry in the
Pipe Name table.

Entries in the Pipe Pointer Table are ordered by starting
address. Unlike the Pipe Name table, where unused entries are
interspersed with used entries, all of the unused entries in the
Pipe Pointer table occur at the end of the table. The entry with
pipe number 63 marks the end of the used entries.

For the Rev B/H drives, the starting and ending byte
addresses are absolute disk byte addresses. Each should be
divided by 512 to get an absolute block address.

The Pibe State is a flag which is interpreted as shown below:

bit # Meaning

bit 7 l=contains data / O=empty
bit 1 l=open for read

bit 0 l=open for write

The first entry in the Pipe Pointer Table always looks like
the following, which corresponds to the WOOFWOOF entry in the
Pipe Name Table:

Rev B/H Omnidrive/Bank
o —————— + tmm—————————————— +
| pipe number = 0 | byte 0 | pipe number = 0 |
o + tmm— e ——————— +
| starting byte | byte 1 | starting block |
+=- -+ +- -+
| address of pipes | | address of pipes |
+= -+ +- , -+
| area | | area |
tmmm e + o ——————————— +
| starting byte | byte 4 | same as bytes |
+- + +- +
| address of pipes | | 1 through 3 |
+- -+ +=- -+
| area + 1024 | | |
tmm—— e + Fomm e ———————— +
| pipe state = 80h | byte 7 | pipe state = 80h |
tmm—————————————— + fmm e ————————— +

Mass Storage Systems GTI 1-29

Pipes

The last entry in the Pipe Pointer Table always looks 1like
the following, which corresponds to the FOOWFOOW entry in the
Pipe Name Table):

Rev B/H omnidrive/Bank
i + fommm e +
| pipe number = 63 | byte 0 | pipe number = 63 |
Fomm e + dom e +
| ending byte | byte 1 | ending block o
+- -+ +- -+
| address of pipes | | address of pipes |
+- -+ +- -+
| area | | area |
Fommm e + Rt +
| same as bytes | byte 4 | same as bytes |
+- + +- +
| 1 through 3 | | 1 through 3 I
+- -+ +- -+
I I ! !
R e + tmmm e +
| pipe state = 80h | byte 7 | pipe state = 80h |
e et L + o e +

Whenever a Pipe Area Initialize command is received, the
pipes tables are initialized with the entries for pipes 0 and
63 shown above, and all other entries unused. The pipes area can
be deleted by rewriting the firmware.

Mass Storage Systems GTI 1-30

Pipes

The following example shows a typical state of the pipe
tables. It shows 3 existing pipes, two called PRINTER and one
called FASTLP. :

Pipe Pointer table offset Pipe Name table
T + o +
| entry for pipe 0 I 0 | WOOFWOOF |
o + Fomm e +
| entry for pipe 1 | 1 | PRINTER | --
et + e +
| entry for pipe 6 | 2 | FASTLP |
e + e e T +
| entry for pipe 2 | 3 | blanks |
e e + ettt +
| entry for pipe 63 | 4 | blanks |
o + ettt e +
| 0's | 5 | blanks |
o + o +
| 0's | 6 | PRINTER |
e TR + e +
l I I |
| I I I
e + o +
| 0's | 63 | FOOWFOOW |
e e + et e +

Individual pipe disk space allocation

The pipes area consists of used space and holes (unused
space). There are two kinds of holes:

Active hole -- a contiguous area of unused pipe space
bounded on the low address end by an open for writing pipe.

open for
writing
pipe

active the open pipe in front of the hole
hole can grow into this region.

—_————

N— 4 —— 4 ——
n— +

Mass Storage Systems GTI 1-31

s

Pipes

Inactive hole -- a contiguous area of unused pipe space
bounded on the low address end by the end of a closed
pipe or the end of an open for reading pipe.

tomm e +

| open for |

| reading or | o
| closed pipe |

R T +

| inactive | the pipe in front of the hole
| hole | cannot grow.
e +

I pipe

New pipe allocations are made by examining all the holes in
the pipe area. The allocator looks for the larger of: (1) the
largest inactive hole or (2) half the size of the largest active
hole. A new pipe starts at the beginning of an inactive hole or
at the midpoint of an active hole. All pipes grow in the same
direction, by increasing address.

When an open for writing pipe hits the end of a hole (that
is, it bumps into an existing pipe), the error code, tried to
write to a full pipe (0Ah), is returned. This can happen even if
there is space remaining in other holes.

Performance considerations when using pipes

On a Rev B/H drive, a Pipe Write results in 2 disk reads, and
2 disk writes. First, the pipes code is overlayed into the
controller RAM; then the data is written and the Pipe Pointer
Table rewritten; finally, the dispatcher code is reloaded. A
Pipe Read is similar, only there are 3 disk reads and 1 disk
write. Since the controller code is located in the firmware
area, and the pipes area is in the user area of the drive, a pipe
operation can cause considerable head movement.

For Omnidrives and Banks, the pipes controller code is loaded
at power-on time, and does not have to be swapped in and out.
Also, the Pipe Name Table and the Pipe Pointer Table are located
in the firmware area. For the Omnidrive, the tables are written
back to the drive only when a pipe is closed, so a Pipe Read is 1
disk read operation, and a Pipe Write is 1 disk write operation.
For the Bank, the pipe tables are only written to the media when
the Bank is ready to turn off the motor (see section titled

Changing Bank tapes later in this chapter).

Mass Storage Systems GTI 1-32

Active user table

1.7 Active User Table

The Active User Table is used by Corvus applications software
to keep track of the active devices on the network. At any
given time, it should contain a list of those users who are
connected to the network. See the section titled Active user
table in Chapter 2 for more explanation.

The Bank does not support the Active User Table.
There are six commands supported:

AddActive

DeleteActiveUsr

DeleteActiveNumber (Omnidrive only)
FindActive

ReadTempBlock

WriteTempBlock

The AddActive command adds a user to the table. The host
specifies the user name, the Omninet address, and the device
type. See Appendix B for a list of device types.

The DeleteActiveUsr command deletes a user from the table.
Note that the command code for DeleteActiveUsr is different
for the Rev B/H drives than it is for the Omnidrive.

The DeleteActiveNumber command deletes all users with the
specified Omninet address from the table (Omnidrive only).

The FindActive command returns the Omninet address and the
device type of the user with the specified name.

The ReadTempBlock command can be used to read the entire

Active User Table, and the WriteTempBlock can be used to
initialize the Active User Table.

Mass Storage Systems GTI 1-33

Active user table

‘Command Name: Add Active

Command Length: 18 bytes
Result Length: 2 bytes

——
——
——
——

- . G G —— = G G - ——— —— ————————————— — — — —— - ——— — —— ——— —— - G ——t—————

12 /1 | BYTE | host Omninet address
13 /1 | BYTE | host device type

14 / 4 | ARRY | unused - use 0's
Result

- —— — - ———————— —— - — ———————— — - ———— —_— —— ——— —— ———— —— ——— ———— -
s - ——— — ——— ——— — ———— —————— G —— — - ——— —— . — . ———— — ————————— —— T~ —— -
e - ————— —————————————————————————_— O ———— —————————— - ——— -

- — ——————— t— ———————————— —————— o~ —— — —————— (—— — —— ————— ————————

Mass Storage Systems GTI 1-34

Active user table

Command Name: Delete Active User (Rev B/H drives only)

Command Length: 18 bytes
Result Length: 2 bytes

Command

——
——
——
——
——

- ————————————— —_—————— —— —_——]— — ——————— — - Gw— G G - —— ——————
- ————————— — - ————— — —————————t———— O~ - G~ {——— ————————— ——— -~ ———— -
- ——————— —~— ——— ———— — — —— G - ————— —~ ———— - — —— — —— - —— — - ———————— -

Mass Storage Systems GTI 1-35

N

Active user table

@ Command Name: Delete Active User (Omnidrive only)
Command Length: 18 bytes
Result Length: 2 bytes
Command

——
——
——
——
——

Mass Storage Systems GTI 1-36

Active user table

Command Name: Delete Active Number (Omnidrive only)

Command Length: 18 bytes

Result Length: 2 bytes

Command

Offset/Len| Type | Description -
0/ 1 | BYIE | command code - 34n

171 Usve|oon T

e e ——— ———— ———— {— — — - S - — - ——————— - — —— —— T~~~ — G —— ——— ————————— -

12 /1 | BYTE | host Omninet address
13 / 5 | ARRY | unused - use 0's
Result

T — ———— - —————————_—— ———— —— ———————_———————— ———————————————— -
- - —————— — - ———— 1~ ——— —————————— ——————_—— - ——— o ——— ——t—— ——— - -
T —— — —— ——— —— —— —— —————— ——— - —_—————_— -~ ———_—— - ———— —— G —— G Gh" Ghe = —————— G

Mass Storage Systems GTI 1-37

Active user table

Command Name: Find Active

Command Length: 18 bytes
Result Length: 17 bytes

Command

0/ 1 | BYTE | disk result
1/ 1 | BYIE | first byte of name, or table result
"2/ 9 | BSIR | remaining bytes of name
11 /1 | BYTE | host Omninet address
12 /1 | BYTE | host device type
13 /4 | ARRY | wnusea

- o ————— ——— G — o~ ——————— — ———— - —— —— ———— G - ————— — —— G ——————— - — -

Mass Storage Systems GTI 1-38

Active user table

Command Name: Read Temp Block

Command Length: 2 bytes
Result Length: 513 bytes

Command

- . - —————— ———— - — — —— G~ —— G ——— - ——— G G t— ————— —— G - = Gm— -
T . ————— — ——— ——— - — ———— — ——————— —— ——— G ———— G G T ——— — ——————

1 /1 | BYTE | block number - 0 to 6 for Rev B/H,
| | 0 to 3 for Omnidrive

- ——— — — ——— —————— T ——— ———————— G ———— — - - G ——— - ———— — — — ————

- —— ————————— — - — ——— — - ——— ———— ——— - — - —— — ———— — - _— —— -~ O —— ————————
T o G G ——— — ——————————- — ————_——(—— ——(— — — T ——— —— - ———— - — - — - — - — ——
S —————— —— - —— T~ —————— ——— - —— —— G G G —— - G G ————— ———————— -

Command Name: Write Temp Block

Command Length: 514 bytes
Result Length: 1 bytes

- - —————— ——————————— — ——— - ——— — —— — ——— ——— - — —— — — — — ———— - —— -~
- — - G G —————— ——— ——————— ——— — —— ——— - —— — —— - ———— —— G ———— — — ——— ———

1 /1 | BYTE | block number - 0 to 6 for Rev B/H,
| | 0 to 3 for Omnidrive

Mass Storage Systems GTI 1-39

Active user table

Table results

Value Meaning
0 Ok.
1 No room to add.
2 Duplicate name.
3 User not found.

Implementation details for the Active User Table

The Active User Table implementation is similar to
semaphores, in that an unused entry is indicated by blanks. When
an AddActive command is received, the controller searches the
table for an entry with a matching name. If one is found, the
entry is overwritten with the new data, and a table result of
duplicate name (2) is returned. If no matching entry is found,
the first entry with blanks is overwritten with the specified
data, and a status of Ok (0) is returned.

For DelectActiveUsr, the first entry with a matching name is
overwritten with blanks. For DeleteActiveNumber, all entries
with matching Omninet addresses are overwritten with blanks.

The table consists of four blocks, located in the firmware

area. The blocks are numbered 0 to 3. Each table entry is 16
bytes long, as shown below:

Mass Storage Systems GTI 1-40

Table layout

Active user table

e T + block 0

| entry #1 |

o +

| | Entry layout

= = t==(Fmmmmm e +

| | | | name | byte
e + | +- -+

| entry #32 | | | | --

tom e + block 1 | = =

| entry #33 I | | l

R + | +- -+

I | I | | byte
= = (mmm——m e + e +

= = | |Omninet address| byte
| | | temmm +

Fom e + block 3 | | device type | byte
| entry #97 | | e +

Fomm e + | | unused | byte
l l I = (0's) =

= = | l ' byte
| | R e +
et +

| entry #128 |

tomm e ———————— +

Omninet address is 0 to 63. Device types are listed in

Appendix B.

The normal initialization of the Active User table is

described in the section titled AcEjve “ng tab%ﬁ
The table can also be initialize y rewriting

by issuing Write Temp Block commands.

Mass Storage Systems GTI

in Chapter 2.
e firmware, or

1-41

P

Boot commands

1.8 Booting

There are two commands which provide a boot function. The
purpose of these commands is to provide a machine independent
means of booting a host computer.

The first boot command, called the Boot command (1l4h),
was Corvus' first attempt to provide a boot function. The Boot
command was not flexible enough, so a second boot command, the
Read Boot Block command (44h), was added.

The first Boot command is used by Corvus to support Apple II
computers and Corvus Concept computers. The Read Boot Block
command is used to support all other computers. Each computer is
assigned a computer number by Corvus. See Appendix B for a list
of the currently assigned computer numbers.

Both boot commands return a block of 512 bytes to the host
computer. This block normally contains boot code for the
computer, but can be used for whatever the particular computer
requires.

In order to use the boot commands, an application program
must be written which sets up the data structures used by the
boot commands. Corvus provides such an application program,
called BOOTMGR, with its Constellation II software. Refer to

the manual titled Constellation Software General Technical
Information for more information on how Corvus software uses the
boot commands.

Command Name: Boot

Command Length: 2 bytes
Result Length: 513 bytes

0/1 | BYTE | command code - 1l4h
1 /1 | BYTE | boot block number (0-7)
Result

- —— —— —— — G —————— - G G G- G G D - ——— — - - Gh- G G —— G G — = - ——————
G e e - e Ga Gar = ——— G Gh- S G . G —— — T —— o5 G- G- . G- - ———— — — ——— G —— —— -
- ——————— ———— G — G — — ————— O G T G S G G G G- G ————— ———— - G- —— - —

Mass Storage Systems GTI 1-42

Boot commands

Command Name: Read Boot Block

Command Length: 3 bytes
Result Length: 513 bytes

T G G G - S ———— —— - —_——— ——— > G G- G G —— G ——————— - — - ———— - " G - ——————

0/1 | BYTE | command code - 44h
1 /1 | BYTE | computer number (See Appendix B)
2 /1 | BYTE | block number

Result

- ——— ————— — ————— —— {—— —————————— ——— - —— —————— ———— - —— ————— ———————
- —————————— —— — - ———— ——— t— — ——— - ———— Y ———————— — —— —————————————

- ————————————— — — ————— - —— - G ——— —— — T ———————— - ———— —— -~ ————— o

1l / 512 | BYTE | contents of block

* If the disk result = FFh, the block could not be found.
Implementation details

For the Boot command, the boot blocks are located in the
firmware area (see Appendix A for exact locations). Blocks 0
through 3 contain 6502 code for the Apple I1I, and blocks 4
through 7 contain 68000 code for the Corvus Concept. These
blocks are included in the firmware files distributed by Corvus.

For the Read Boot Block command, the following data
structures are used:

Block 8, bytes 36 - 39 contain the absolute block address of
the Corvus volume. The Boot Table is located 6 blocks past this
location. The format of the Boot Table is described below:

Mass Storage Systems GTI 1-43

Boot commands

Table format

R ettt +

| entry #0 | block 0

tommrm e + Entry format

| | +o(dmmmmmm e +

= = | | address (msb) | byte 0
| | (=== + +- -+
P + I | address (1sb | byte 1
| entry #127 I +=< Fmmmmmmmmmm e eeet

R ittt T +

| entry #128 | block 1

tomm e +

I l

I I

R ettt +

| entry #255 |

e e L L +

The address is a relative block address which is added to
the Boot Table address. The result is the block number of the
Oth block of boot code. The block number specified in the Read
Boot Block command is added to this result to get the absolute
block address of the data to be returned. Thus, the block
address of the data returned is computed as follows:

Boot Table address + boot code address + boot block #
(contents of block 8, (from Boot Table) (from Read Boot
bytes 36-39, + 6) Block command)

1.9 Drive parameters

The Get Drive Parameters command can be used by application
programs to find out the user-accessible size of the drive
(device capacity) and other device specific information.

The format given differs slightly from that used for other
commands: the first page shows the information that is returned
from all devices and the second page shows the device specific
information.

Mass Storage Systems GTI 1-44

Drive parameters

Command Name: Get drive parameters

Command Length: 2 bytes
Result Length: 129 bytes

Command

0/1 | BYTE | command code - 10h
1 /1 | BYTE | drive number (starts at 1)
Result

33 /1 | BYTE | ROM version |
34 /4 | ARRY | track information (see below)
38 /3 | FAD3 | capacity in 512 byte blocks
41 /16 | ARRY | unused (no meaning)
57/ 1 | BYTE | interleave factor
77U ARRY | Table information (see below)

58 / 12 | | MUX parameters

70 / 6 | | pipes information

76 / 14 | | virtual drive table

90 / 16 | | LSI-11 information
106 / 1 | BYTE | physical drive number
107 / 3 | FAD3 | capacity of physical drive
110/ 1T aure 1 acive tvpe ses below
III—;-E-—-T-;;;;_I—;;;;-;;;;rm;tZo;—;;;e-ggigw; --------
117 / 2 | WORD | media id (see below)
119 / 1 | BYTE | maximum number of bad tracks (see below)
120 / 8 | ARRY | unused (mo meaning)

Mass Storage Systems GTI 1-45

S~

Drive parameters

The table below shows the meanings of the status bytes that
are different for the various device types.

- —— ———————————— —————————————————————— ————————————————_——_——— - ———_———————{— -

Offset/Len| Type | Rev B/H Drives | Omnidrive | Bank
35 /1 | BYTE | sectors/track | sectors/track | sectors/track
-- | (1lsb,msb)
36 / 1 | BYTE | tracks/cylinder | tracks/cylinder|
37 / 2 | FWRD | cylinders/drive | cylinders/drive| tracks/tape
58 / 12 | ARRY | MUX parameters | unused | unused
70 2 | FWRD | pipe name tbl ptr | pipe area ptr | pipe area ptr
72 2 | FWRD | pipe pointer tbl | pipe area size | pipe area size
l | ptr ! |
74 2 | FWRD | pipe area size | unused | unused
76 14 | ARRY | Virtual drive tbl | unused | unused
90 8 | ARRY | LSI-11 VDO table | unused | unused
98 8 | ARRY | LSI-11 spared tbl | unused | unused
110 / 1 | BYTE | unused | drive type | drive type (82H)
111 / 3 | FAD3 | unused | unused |*tape life (% of
| | | | minutes)
114 / 2 | FWRD | unused | unused | start/stop count
ll6e / 1 | FLAG | unused | unused | fast track flag
| | | | (=1 fast tracks or
117 / 2 | WORD | unused | media id | media id
119 / 2 | BYTE | unused | max # of bad | reserved
I | | tracks |

* The tape life is specified at 500 hours and 2000 start/stops

Mass Storage Systems GTI 1-46

Park command

1.10 Parking the heads

Rev B drives do not require parking of heads.

The Rev H and Omnidrives provide a firmware command that
allows a host to instruct a drive to park its heads in a landing
zone or cylinder. This command is used in preparing the drive
for shipping.

The landing (or parking) cylinder is a reserved cylinder for
Rev H drives; for Omnidrives, the landing cylinder is specified
in the disk parameter block of each drive. Some drives
automatically park the heads during power off; the landing
cylinder in this case is specified as OFFFFh. No actual movement
of the heads is performed when a park command is sent to one of
these drives.

The park command only positions the heads over the landing
cylinder; it does not turn off the motor. When the drive is
parked, it is offline to the network, and no host can communicate
with it. The drive stays parked until it is reset.

Command Name: Park the heads (Rev H Drive ONLY)

Command Length: 514 bytes
Result Length: 1 bytes

——
——
——
——
——
——

D —————— — G — —— T — T G- G G GRS G G G G S SN NS A G - G G G - — - W —— G — — — - G-~ —
- — - G — . . S . - G G, W G S G G G G G G S G G G —— — > W CED G G G S G - G ———— G- G — —— —— -

This is really a special Prep block.

Mass Storage Systems GTI 1-47

Park command

Command Name: Park the heads (Omnidrive ONLY)

Command Length: 1 byte
Result Length: 1 byte

- —— — — ——— —————————— —— — —————— ——— - ————— —— — S —— ———— ————{——

e — — ——— — ——— - ———————— — G —— — —— ——_————————————_—— ——— ———— —— - a— o o=
- — e - —— — — —— — ———— ——————— (— ———— - — — - — — - — — — ————— ——— ———————— ——_—

- ————— —— - —— —— — —— — - ————— —————— - — ——— ——————— -~ — —————— ——_—a——t—

1.11 Changing Bank tapes or powering off the Bank

The Bank tape is continuously looping. While the motor is
on, the tape cannot be removed. If the tape is not accessed for
about 1 minute 15 seconds, the Bank goes into a "shut down" mode.
The controller flushes tape information back to the firmware
area, seeks to track 0, then turns off the motor. At this point,
the tape can be removed.

There is a reset switch on the Bank which can be used to
force the "shut down" sequence. However, this switch should
only be used when absolutely necessary.

1.12 Checking drive interface
The Echo command can be used to check the interface to the

drive. The host sends 512 bytes to the drive, and expects to
get the same 512 bytes back.

Mass Storage Systems GTI 1-48

Miscellaneous commands

Command Name: Echo (Omnidrive/Bank ONLY)

Command Length: 513 bytes
Result Length: 513 bytes

Command

- - —————— — —— —— — — ———— — ——— — — ————— - —— . —— " G G- ————— — - ——— —— G — -
- — ——— —— — G- — = — — — —— ———— - —— ———————— — ——— — —— S ——— G — ——————— ——— ——— —t—
T . - Gne S ——— - —— —— ——— G ——————— — ————— — G ——— . —————— — G G - ———— —— ——a——

. . — ——————— — - — - — —— — G U — G ————— G ——————— — ——— ——————— ———— ——— -~ - —
G e G e . ———— ——— ——— ——— - ———— ————— - T - —— — —— ———— ———————_——— - —— ———
e ———— ——— T ——— — —— - ————— —— —— — G - —— -~ ————— t————————— -~ - — -~

o —————— —— ———— — ————— — - ——_— -~ ——— ———————— o ———— -~ — - ———— ———— -~

1.13 Prep mode

The host can put the drive into prep mode by sending a prep
command with 512 bytes of executable controller code. The
controller loads this code over the RAM-resident dispatcher whose
function is to interpret the command bytes sent to the
controller. Thus in effect, the prep block can be considered as
a specialized dispatcher. Some applications requiring direct
control of the hardware can utilize this feature (e.g., burn-in
program). The standard prep block shipped by Corvus supports the
following functions:

format the drive or tape

verify the drive (Rev B/H, Omnidrives only)
read from the firmware area

write to the firmware area

£ill the drive with a pattern (Omnidrive only)

reformat a track (Bank only)
destructive verify a track (Bank only)
non-destructive verify a track (Bank only)

All prep blocks should support a reset function in order to
take the drive out of prep mode and back to the normal mode.
This is done through a reset command (command code = 00h) in prep
mode. Also, when the controller is put in prep mode, the front
panel LED's are set as a visual indication of this mode. For Rev
B/H drives, the FLT and RDY lights are turned off and the BSY

Mass Storage Systems GTI 1-49

Prep mode commands

light is turned on. For Omnidrives and Banks, the opposite is
true; i.e., the FLT and RDY lights are turned on and the BSY
light is turned off.

Rev B/H drives can use only one prep block at a time (maximum
512 bytes of code). Omnidrives and Banks, however, use a maximum
of 4 prep blocks (2K of code). The first prep command puts the
drive into prep mode. Any additional prep command blocks are
loaded after the previous block. After the fourth block has been
received, any additional block is overlayed over the fourth one.

Prep blocks are hardware dependent. Prep blocks for Rev B/H
drives contain Z80 code, whereas prep blocks for Omnidrives and
Banks contain 6801 code.

Command Name: Put drive in prep mode

Command Length: 514 bytes
Result Length: 1 byte

——
——
——
——

e - ———— ———————— —— T~ ——— ———— — G ———— - —— —— - —— —————— —— -~ ————-————_— — -

- — —————————— T —— ——— G — — —— —— G ——————— - - G ————— ——— G — — —— -
> ——————————— — — - — - — ———— - - ——— —— ——— = ————— —— ————— - —— - ———— -

Mass Storage Systems GTI 1-50

Prep mode commands

Command Name: Reset drive (take drive out of prep mode)

. Command Length: 1 bytes
Result Length: 1 byte

Command

- - — — ———————— —— — ——— — —————— ————— - ———— ————— G - G ————t———————
G s ————— — ——— — — Y — — — ——— — — Y — — ——— ————— — —— - —— - —————————

1.14 Format drive (Rev B/H, Omnidrive)

In prep mode using the Corvus prep block, the host can send a
format command to the controller. The controller lays down on
the media the sector format, and the data fields are filled with
whatever is specified by the Format command. Omnidrives use the
pattern FFFFh.

A Format command destroys ALL information on the drive,
including the firmware itself. The spared track table, the
virtual drive table, and the pipes tables, as well as the polling
parameters, interleave factor, read after write flag, etc., are
all destroyed by Format. You would not normally format a drive
until this information is written down, so that it may be
manually restored after formatting.

For Rev B/H drives, the controller refuses the Format
command if the Format switch (beneath the front panel LED's,
second from right) is set to the left. You must set this switch
to the right in order to format the drive.

Drives shipped from Corvus have been formatted, burned-in,

bad tracks logged in the spare table, and the firmware written,
If you must format the drive, you should always verify the drive

after formatting, and spare any bad tracks found. See the
section titled Verify, later in this chapter, for more
information.

Mass Storage Systems GTI 1-51

Py

.

Format command

Command Name: Format drive (Rev B/H drives ONLY)
(drive in prep mode)

Command Length: n bytes
Result Length: 1 byte
Command

- ————————— ——— - ——{—— ——— ——_—————————— —— ————————————— — ———— ——
e - — —— — —— T~ ———— - — ————————_————— o — ——— ——— ———— —————— ——————————
- - ——————— ——————]~ t————————t— —— ———— ——— t— f— — — — — —————————————

S G ——— ————— ——————— — ——— T —————— —— T G G ——— —— G GES i G—— G G — G ——————

- —————————— ——— ———— ————f— ———— ——— — ————————— At ——_—————————————

The Corvus diagnostic programs send 513 bytes and use pattern
76h or E5h.

Command Name: Format drive (Omnidrives ONLY)
(drive in prep mode)

Command Length: 1 byte
Result Length: 1 byte
Command

——— - - ——— —— —— —— —— —— ——— - Gmn S G G S—n G G e e SN G G GEn NS G SER G G G G N G G G Gu S - -

—— o ——————— — — —— ———— ———— - — —— —— — — — ———— G — G- G T —— — — G = == ————

Mass Storage Systems GTI 1-52

Format command

Command Name: Fill the drive (Omnidrives ONLY)
(drive in prep mode)

Command Length: 3 bytes
Result Length: 1 byte
Command

0/1 | BYTE | command code - 8lh
1/ 2 | WORD | fill pattern
Result

- - —— - ————————— - —— {———— —————— - — ———— -~ —————— ————— t———————
- —————— —— ——— — — ————— — — G — O_- - ——— o GhS G- —— . ———— —— — T —— ———— ——]—— o~ t—

————————————— —————t— ——— ——{———— {—]—— —— ———— g —— — - ————— ————_———— —_—

Note: The recommended fill pattern is B6D%h.

1.15 Format tape (Bank)

In prep mode using the Corvus prep blocks, the host can send
a tape format command to the Bank. With this command, the host
specifies whether fast tracks are to be used, the tape type
(100MB or 200MB), and the interleave factor to be used.

The interleave factor must be an odd number between 1 and 31.
The controller automatically increases by 1 any specified even
interleave. Any interleave greater than 31 is set to 31.

After receiving the format command (full tape format only),
the controller sends back a success status immediately to
acknowledge that the format command has been received. It then
turns off interrupts, thus taking the Bank offline. During this
time, no devices can communiate with the Bank. After formatting
the media, the controller fills the tape with a pattern (B6DSh).
It then attempts to verify the tape by reading all sectors. Any
bad sectors are spared automatically. The results of the format
are written to firmware block 2.

Any tracks reported as bad have more than 4 bad sectors, and
should not be used. If any bad tracks are reported, the tape
should either be discarded, or dummy volumes allocated over the
bad tracks. See the section titled Physical versus logical

addressing later in this chapter for more information on mapping
track numbers to block addresses.

Mass Storage Systems GTI 1-53

Format command

The prep block also allows the host to send a command to
reformat one track. The tape is assumed to have been formatted,
so the controller uses the current interleave and tape
parameters. This feature is provided in case one track has
read-write problems and needs to be reformatted.

The command to reformat one track returns the number of bad
sectors on the track. 1If the number of bad sectors is greater
than 4, the track is bad. You should use the Get Drive--
Parameters command to check the tape life. Tapes are rated for
500 hours and 2000 start-stops. If either of these numbers is
exceeded, the tape should be discarded. Otherwise, you should
allocate a dummy volume over the bad track. See the section

titled pPhysical version logical addressing later in this chapter

for information on mapping track numbers to block addresses.

Mass Storage Systems GTI 1-54

Format command

Command Name: Format tape (Bank ONLY)
(Bank in prep mode)

Command Length:
Result Length:

8 bytes
1 byte

0/1 | BYTE | command code - 0lh
1,1 (s om0
273 | ARRY | unused - use 0's
5 /1 | FLAG | fast track flag (Olh = fast tracks on)
"6 /1 | BYIE | tape size (Olh = 200MB; 00h = 100MB)
771 | BYIE | interleave factor (odd number 1 to 31)
Result
Offset/Len| Type | Descriptiom
0 /1 | BYmE | resae

> — —————————— — - ——— — ——— — -~ — —— — — ———— ——— —— —— - — —— - _——————— ——" —— —

An even interleave factor is automatically increased by 1.
Interleave greater than 31 is set to 31.

The results are recorded in firmware block 2 in the following

format:

Offset/Len| Type | Description
0/1 | BYTE | result
1 /1 | BYTE | bad track count (=n)

. —— — — T —— —— — - — - G GRS Ghn . G - G S —— - — — — . ——— ——— -~ —— — T — G - ———— = —

Mass Storage Systems GTI

1-55

Format command

Command Name: Reformat one track (Bank ONLY)
(Bank in prep mode)

Command Length: 8 bytes
Result Length: 2 bytes
Command

0/1 | BYTE | command code - 0lh

l1/1 | BYTE | 02h

2/ 2 | FWRD | track number to format

4 / 3 | ARRY | unused - use 0's
Result

Track number range is 0-100. The firmware track (track 1)
contains sparing information for the whole tape; if this track
is reformatted, the sparing information for the rest of the tape
will be lost.

1.16 Media verify (CRC)

The verify command is a prep mode command. For Rev B/H
drives, the verify is performed as follows: The controller reads
each sector on the disk. 1If it is unable to read a particular
sector, it tries again to read the sector. If it can read the
sector within 10 retries, it reports a soft error. If it cannot
read the sector, it rewrites the sector with the data it read,
which is probably bad, and reports a bad sector.

For Omnidrives, each sector is read only once, and a hard
error is reported if the sector is bad. The sector is not
rewritten.

Marginal sectors may be reported on one execution of the
Verify command, yet not show up on the next. Any sector which is
ever reported as bad should be spared. Each media has a maximum
number of tracks that may be spared. If the Verify command
reports more than this number, the media is bad, and should not

Mass Storage Systems GTI 1-56

Verify command

be used.

A list of spared tracks should be maintained on paper near
the drive. Then if it is ever necessary to reformat the drive or
rewrite the entire firmware area, the appropriate tracks can be
respared.

A list of bad sectors is returned to the host. The sector
numbers are physical sector numbers, and are converted to_ track
numbers with the following algorithm:

track # = [(cylinder #) * (number of heads)] + (head #)

Note that those sectors which are already spared may be
reported as bad.

For the Bank, the prep block provides two verify features: a
non-destructive verify and a destructive verify. These commands
work on one track at a time. The non-destructive track verify
reads all the sectors on the specified track and reports the
number of bad sectors found and the sector numbers of the first
four bad sectors. The destructive verify fills the track with
the input pattern (2 bytes) first and then verifies the track as
described for non-destructive verify.

See the section titled Physical versus logical addressins

later in this chapter for information on mapping track numbers to
block addresses.

Mass Storage Systems GTI 1-57

Verify command
Command Name: Verify drive (Omnidrive, Rev B/H ONLY)
(Drive in prep mode)

Command Length: 1 byte
Result Length: 2+4*n bytes

Command

- ———— — —_—— ————_——— — — ———— T —————— —— ———— ———— —— —— — G ——— —————
- ———————————— ———— —— = - " (> - ————— ————————— —————— —————_t— ——— -

0/ 1 | BYTE | result
"1 /1 | BYIE | number of bad sectors
2/ 4 | BRRY | head, cylinder, sector of lst bad sector
"6 /4 | ARRY | head, cylinder, sector of 2nd bad sector

n*4-2 / 4 | ARRY | head, cylinder, sector of nth bad sector

Offset/Len| Type | Description

0/1 | BYTE | head number
1/ 2 | FWRD | cylinder number
3/1 | BYTE | sector number

Mass Storage Systems GTI 1-58

Verify command

Command Name: Non-destructive track verify (Bank ONLY)
(Bank in prep mode)

Command Length: 6 bytes

Result Length: 10 bytes

Command

Offset/Len| Type | Description -
0/ 1 | BYIE | command code - 07h
171 iewe o T
272 | FWRD | track number
4/ 2 | ARRY | wnused - wse 0's
Result

s —— ——— - — — ——————— - — ——— - —————— —— - ————— —— - ——————— — - ————— —— -

0/1 | BYTE | result

1/1 | BYTE | number of bad sectors

2/ 2 | WORD | sector number of lst bad sector
8 / 2 | WORD | sector number of 4th bad sector

The sector number is interpreted as msb = head number and 1lsb
= sector number. Since there are 256 sectors per section, this
value is also an absolute sector number.

Mass Storage Systems GTI 1-59

Verify command

Command Name: Destructive track verify (Bank ONLY)
(Bank in prep mode)

Command Length: 6 bytes
Result Length: 10 bytes
Command

S G G S - —_— — ——— . —_——— ————— ————— ————— — ——— — ———— ——— ——————————— -~ o=

. — —————— — — T~ —— .. O —— ———————————————— ———— - —— — ——————————— -

0/1 | BYTE | command code - 07h

1 /1 | BYTE | 0lh

2/ 2 | FWRD | track number

4 / 2 | WORD | £ill pattern
Result

> - ————— ——— — —— — — —————— - ——_———— " ——— - —— . _————— ——— - ——— G~ ————— o=

0/ 1 | BYTE | result

1 /1 | BYTE | number of bad sectors

2/ 2 | WORD | sector number of lst bad sector
8 / 2 | WORD | sector number of 4th bad sector

o ——— ————— — G —— —. - G—— — — ———— ——————— ———————————————————————— - —

The recommended fill pattern is B6D9h.

1.17 Track sparing

When the drive is formatted, it is filled with a pattern. A
burn-in can then be performed to find the marginal tracks. These
can be recorded in the firmware track sparing block to make them
invisible.

Each type of mechanism has a different number of spared
tracks allowed. This number is returned by the Get Drive
Parameters command to let the host know the maximum number of
tracks it can spare out. Rev B drives allow 7 spared tracks; Rev
H drives allow 31 spared tracks; Omnidrives allow from 7 to 64
spared tracks, depending on the drive type (see Appendix A).

Internally, the spared tracks are recorded in the firmware

area; see Appendix A for a complete description of the spared
track table. You should also maintain a list of the spared

Mass Storage Systems GTI 1-60

Track sparing

tracks on a piece of paper near the drive, so that if the
firmware is ever overwritten you can respare the proper tracks.

Tracks are spared by updating the firmware blocks containing
the spared track table. The Corvus Diagnostic program provides
this capability.

For Banks, when a tape is formatted, it is also verified and
all the bad sectors are logged in the firmware area. Each track
has four sectors reserved for use as spared tracks.

Since only four sectors are reserved, any track with five or
more bad sectors should not be used. The firmware has no
capability to skip these tracks. Therefore it is recommended
that the tape be discarded or dummy volumes be located over this
track. A dummy Constellation volume can be allocated to this
track to skip it. See the next section for information on
converting sector numbers to block numbers.

1.18 Physical versus logical addressing

The physical layout of each media is shown below.

Rev B/H Omnidrives Bank
Firmware tracks 0 - (m-1) tracks 0 - 3 track 1
User area tracks m - n tracks 4 - n tracks 2 - z
Unused tracks n+l - z tracks n+l - z
where m = (# of heads/drive) * 2 (see Appendix A)
z = total number of tracks -1
X = maximum number of spared tracks allowed

n =2z - x + number of tracks currently spared

The unused area is used up as tracks are spared.
Track 0 on the Bank is reserved for a landing area.

For Rev B/H drives and Omnidrives, the drive is viewed as a
series of consecutive physical tracks, where a track is
identified by a head numger and a cylinder number (head number
varies fastest). Logical tracks are mapped onto the physical
tracks one-to-one, skipping over spared tracks and the firmware
area. A typical layout of a hypothetical drive is shown below.
This example assumes a 4 track firmware area, 120 tracks total,
with 16 maximum spared tracks allowed. The drive has 4 heads and
20 sectors per track. Two tracks, tracks 34 and 67, are spared:

Mass Storage Systems GTI 1-61

Physical versus logical addressing

Physical Head, Cyl Logical

e + B ettt +
© | track 0 | 0,0 | firmware area |
firmware area = = = =
v | track 3 | 3,0 I |
e i + fommmm e +
“ | track 4 | 0,1 | track ©0 |

| e et Lt L + e s +
| | track 5 | 1,1 | track 1 I
| track 33 | 1,8 | track 29 |
Fomm e + e +
user | track 34 | 2,8 | spared track |
area o + R +
| track 35 | 3,8 | track 30 |
e + tmmmm e +
| I | |
tomm e + tmmmm e +
| track 67 | 3,16 | spared track |
| D ettt + e e D +
I - = - 3
v | track 103 | 3,25 | track 97 |
o + e +
“ | track 104 | 0,26 | track 98 |
reserved toemm e + Fommm e +
for spared | track 105 | 1,26 | track 99]
tracks = = tom—mm +
v | track 119 | 3,29 = unused =
e ettt + et +

When a track is spared, the user data following the spared
track is still there, but is no longer accessible, since the data
is now located at a different logical address.

The algorithm for converting block numbers to physical sector
numbers would be as shown below, if it were not for the firmware
area and spared tracks. The real algorithm is explained
immediately following the simplified form.

sector # = (block #) modulo (sectors per track)

track # = (block #) div (sectors per track)
head $ = (track #) modulo (number of heads)
cylinder # = (track #) div (number of heads)

Note that the track number is a temporary result and is not a
directly addressable entity in the drive; a given block is
addressed physically by sector number, head number and cylinder
number.

The real algorithm for converting block numbers to physical
sector numbers is shown below:

Mass Storage Systems GTI 1-62

Physical versus logical addressing

sector # = (block #) modulo (sectors per track)

logical track # = (block #) div (sectors per track)

physical' track # = (logical track #) plus (firmware
area offset)

physical track # = (physical' track #) plus (one for
every spared track preceding).

head # = (physical track #) modulo (number of heads)

cylinder # = (physical track #) div (number of heads)

Continuing with the example given above, let's convert block
number 1308 to a physical sector address.

sector # = 1308 mod 20 = 8

logical track # = 1308 div 20 = 65

physical' track # =65 + 4 = 69
Tracks 34 and 67 are spared, so add 2

physical track # = 69 + 2 = 71

head # = 71 mod 4 =1

cylinder # = 71 div 4 = 17

Alternatively, suppose you have run the Verify Drive command,
and it reported a bad track at head 2, cylinder 12, sector 10.
You want to compute the range of blocks that the bad sector lies
within. You must apply the above algorithm in reverse:

pPhysical track # = 2 + (12*4) = 50
Track 34 is already spared, so subtract 1

physical track #'= 50 - 1 = 49
logical track # = 49 - 4 = 45
starting sector # = 45 * 20 = 900
ending sector # = 900 + 20 -1 = 919

Thus, the bad sector lies somewhere between sector 900 and
sector 919. You must apply the interleave factor (see next
section) to determine exactly which sector is bad.

For Banks, the tape is viewed as a series of tracks numbered
0 to 100. Each track consists of a number of sections; a 200MB
tape has 8 sections per track, while a 100MB tape has 4 sections
per track. Each section contains 256 sectors, and a sector

contains 1024 bytes. On a Bank tape, each track has four sectors
reserved for sparing, so a given block number always falls within

the same track. The track number of the track in which a given
block is located is computed as follows:

sector # = (block #) div 2
logical track # (sector %) div (sectors per track)
physical track # logical track # + 2

To compute which blocks lie within a given track, use the
following algorithm:

Mass Storage Systems GTI 1-63

Physical versus logical addressing

blocks per track
starting block #
ending block #

(sectors per track - 4) * 2
(track # = 2) * (blocks per track)
(starting block #) + (blocks per track) -1

Thus, if track 17 is reported as bad (more that 4 bad sectors)
by the Track Verify command, you compute the bad blocks as
follows (assuming a 200MB tape):

blocks per track = (2048 - 4) * 2 = 4090 -
starting block # = (17-2) * 4090 = 81350
ending block # = 81350 + 4090 - 1 = 85439

In order to "spare" the track, you should allocate an unused
volume starting at block 81350 that is 4090 blocks in length.

1.19 Interleave

Interleaving provides a way of improving disk performance on
reading sequential sectors. The interleave factor specifies the
distance between logical sectors within a given track. For
example, if we assume 20 sectors per track, an interleave factor
of 1 specifies that the sectors are numbered logically 1 to 20.
An interleave factor of 2 specifies that the sectors are numbered
l, 11, 2, 12, ..., 10, 20. An interleave factor of 5 specifies
that the sectors are numbered 1, 5, 9, 13, 17, 2, 6, 10, 14, 18,
3 ...

As you can see, the interleave factor specifies how far apart
sequential sectors are located. If the interleave factor is
optimal, a sequential read operation is able to read more than
one sector per disk revolution. Note that different interleave
factors are optimal for different applications. You will have to
decide if changing the interleave factor will significantly
enhance the speed of one application without penalizing other
users of the drive.

The interleave is specified in the drive information block of
the firmware area. When the firmware is first updated, it uses
the standard interleave specified in the firmware file. Legal
values are given below:

min max default
Rev B/H 1 19 9
Omnidrive 1 17 9
Bank 1l 31 11

Interleave for the Bank must be odd.

'If the media has information recorded, a change of interleave
effectively scrambles the information. Changing the interleave
back to the o0ld value restores all information. When the
interleave is changed, the sparing information is preserved since

Mass Storage Systems GTI 1-64

Interleave

it is physical track information. Also, the firmware blocks are
not interleaved.

The interleave is changed by updating the firmware block
containing it. This capability is provided in the Corvus
Diagnostic program.

1.20 Read-write firmware area --

Each mass storage device has a designated firmware area which
is not accessible to normal read-write commands, and is not
counted in reporting the usable blocks on the drive. To access
this area, the host must put the drive in prep mode and send
firmware read-write commands. There is no interleaving performed
on the firmware area, nor may this area have any bad sectors.

For Rev B/H drives, the firmware file currently consists of
40 blocks. (Some old firmware files were 60 blocks.) The
firmware file occupies the first 2 tracks of cylinder 0; a
duplicate firmware file is located in the first 2 tracks of
cylinder 1. The remaining tracks of the first 2 cylinders are
unused. The user area starts at cylinder 2.

The read-write firmware commands require a head and sector as
the address, rather than a block number. Firmware blocks 0 - 19
are head 0, sectors 0 - 19, and blocks 20 - 39 are head 1,
sectors 0 - 19.

For Omnidrives, the firmware file consists of 36 blocks, thus
occupying two entire tracks. A total of four tracks are reserved
on the media so that a duplicate copy of the firmware can be
maintained. The user area starts at track 4.

The firmware blocks are numbered from 0 to 35. The
read-write firmware commands require a block number as the
address. Note that this is different from the Rev B/H drives
where a physical head and sector are specified instead.

For the Bank, track 1 of the tape has the first 38 sectors
designated as the firmware area; only the first 512 bytes of each
physical sector are used. The first three sectors contain

identical information and are called the boot blocks (triple
redundancy for safety). The firmware blocks are numbered 0 to

35, and a block number is used as the address for the firmware
read-write commands.

Mass Storage Systems GTI 1-65

Read-write firmware

Command Name: Read a block of Corvus firmware (Rev B/H ONLY)
(Drive in prep mode)

Command Length: 2 bytes

Result Length: 513 bytes

Command

Offset/Len| Type | Description

0 /1 | BYTE | command code - 320
1/1 | BYIE | head (3 bits), sector (5 bits)

Result

Command Name: Write a block of Corvus firmware (Rev B/H ONLY)
(Drive in prep mode)

Command Length: 514 bytes
Result Length: 1 byte

Command

. - — G G G —_—— . GEe Gue Gun S N G G G G G CE N GE GE G G G S G SR D G G G G . . —— G — —— G — -t ——

Mass Storage Systems GTI 1-66

Read-write firmware
Command Name: Read a block of Corvus firmware (Omnidrive/Bank)
(Drive in prep mode)

Command Length: 2 bytes
Result Length: 513 bytes

Command

0/1 | BYTE | command code - 32h
1 /1 | BYTE | block number
Result

- —————— —————— ——— —— — = ———_————————— — ——— Gu" Gme W - S —— —————— —————————
- —————————— — —— ———— — — ———— ——— S ————— —— G —————— ——————————————
T ———————— — ——— - — - —— ——— ———— G ————— — — G —— ———— — o —_—— ————_— = ———

Command Name: Write a block of Corvus firmware (Omnidrive/Bank)
(Drive in prep mode)

Command Length: 514 bytes
Result Length: 1 byte

——
——
——
——

Mass Storage Systems GTI 1-67

Virtual drive table

1.21 Virtual drive table (Rev B/H drives)

The Virtual Drive Table was implemented to avoid rewriting
drivers which had a 16MB addressing limitation.

The controller maintains a table of virtual drives in the
firmware area. This 14 byte table provides for the definition of
up to 7 virtual (logical) drives per physical drive. The format
for the virtual drive table is shown below: -

| track offset (lsb)|
+- of 1st virtual -+
| drive (msb) |

| track offset (1lsb) |
+- of 2nd virtual -+

| drive (msb) |
o ————————————— +
| . I
+- . -+
f . |
e ——————————— +

| track offset (1lsb) |
+- of 7th wvirtual -+
| drive (msb) |

An entry with a track offset equal to FFFFh indicates the
absence of the corresponding virtual drive.

The track offset is a logical track number, and is simply
multiplied by the number of sectors per track to obtain a block
offset. When a drive number is specified in a Read-Write
command, the controller examines its virtual drive table. If an
entry exists for that drive, the track offset is multiplied by 20
(ghe number of sectors per track), and the result is added to the
address.

For instance, on a 20MB Rev B drive, which has a user
capacity of 38460 blocks, the Constellation I Apple software
creates a virtual drive table with 0 as the entry for the first
drive, and 947 as the entry for the second drive. Virtual drive
1 consists of blocks 0 to 18939, and virtual drive 2 consists of
blocks 18940 (20*947) to 38459.

The controller does not check whether an address exceeds the
capacity of a virtual drive. I.e., if virtual drive 2 starts at
track 100 (address 2000 on a Rev B/H drive), then block 2010 can
be addressed as drive 1, block 2010, or as drive 2, block 10.
This allows hosts that do not need the artificial disk division
to share the same disk with those that do.

Mass Storage Systems GTI 1-68

Virtual drive table

The Virtual Drive Table is updated by editing the firmware
block containing it. The Corvus Diagnostic program provides
this capability.

The settings used by Corvus for Apple II Constellation I
systems are listed below:

Total Drive 2 Drive 1 Drive 2

Drive blocks offset blocks blocks --
Rev B 20MB 38460

DOS only 976 19520 18940

Pascal/Basics 947 18940 19520
Rev H 20MB 35960

DOS only 911 18220 17640

Pascal/Basics 896 17920 17940

1.22 Constellation parameters

The Constellation parameters are used when a Rev B/H drive
is connected to a master MUX, and the MUX switch (second from
left under the front panel LED's) is set to the right. The
parameters specify what kind of host is connected to each slot in
the MUX; a host cannot communicate with the drive if this table

is not set up properly. Note that the table must be set up
BEFORE the MUX is installed.

The format of the table is shown below:

R +
Ivalue for slot 1| byte 0
e +
Ivalue for slot 2]
R et +
| I
| |
R e T +
Ivalue for slot 8| byte 7
et +
| poll param 1 | byte 8
R et +
| poll param 2 | byte 9
tom e +
| poll param 3 | byte 10
Fom e +
| poll param 4 | byte 11
o +

Mass Storage Systems GTI 1-69

Constellation paramters

The slots on the MUX are numbered as shown below:

oo~y Wn
HD W

X
where the flat cable connects at X. o

Valid slot values are shown below:

Values Meaning
0 Nothing
1 MUX
2 LSI-11
128 Computer

Each slot value is set to 1 (MUX) by default. It is
possible to have a computer connected to a slot with a value of
l; and it is possible to have a MUX connected to a slot with a
value of 128; however, this is not recommended because
performance of the network suffers.

The meaning of each polling parameter is given below:

poll param 1l: Time scale factor for timing out on a
host. This is the total time the MUX
will stay at one slot, regardless of the
number of transactions completed. This
prevents a user from hogging the network.

poll param 2: Time scale factor for timing out on a
potential host. This determines how
long the multiplexer waits for the first
request at a particular slot,

poll param 3: The maximum number of transactions that
will be accepted from a host before the
multiplexer switches to the next slot.
poll param 4: unused
The default values for the polling parameters are:
poll param 1l: 180
poll param 2: 16

poll param 3: 32
poll param 4: 0

Mass Storage Systems GTI 1-70

Constellation paramters

The Constellation parameters are updated by editing the
firmware block containing them. The Corvus Diagnostic program
provides this capability.

Mass Storage Systems GTI 1-71

Omninet Protocols

Chapter 2: Omninet protocols CORFIDERTIAL

This chapter describes the Omninet functions of the
Omnidrive, Bank, and disk server for Rev B/H drives. It
describes how disk commands are sent over Cmninet.

A brief review of the Omninet General Technical Information
Manual, chapter 3, will help you understand the material
presented here. 1In that manual, the Omninet command vectors used
to send and receive messages are described. The two commands
that are relevant to this discussion are repeated below:

Send Message
Command vector

. e G G ——— —— — ——] YT, - - —— A T - ———— —— - —— —— — G —— ————————

0/1 | BYTE | Command code = 40h
173 | ADR3 | Result record address
"4/ 1 | BYIE | Destination socket
"5 /3 | ADR3 | Data address
"8/2 | womrD | pata length
10 /1 | BYTE | User control length
11 /1 | BYTE | Destinmation host

- ——————— — ——————————— — ———_— - — - ———— - - ——— — ———— - — — - - — t——— - ——-—

0/1 | BYTE | Return code - values are:
| | 00-7Fh - message sent successfully
| | 80h - message not acknowledged
| | 81lh - message too long
| | 82h - message sent to unitialized socket
| | 83h - control length mismatch
| | 84h - invalid socket number
| | 85h - invalid destination address
l1/3 | BYTE | Unused
4 / n | ARRY | User control information

. - —— T ——— T —— G G - I G G G G G S G G G G G G S G G G G S G S G - — ————

Mass Storage Systems GTI 2-1

Omninet Protocols

Setup Receive Message
Command vector

- ——— ————————————— - ————— ——— —— ——— ——— _——_—— _————————————————— ——

T G — — — — - - ——— — — —— ———— ——— - — ———— - — — o~ _—————————— ————— —————— -

0/1 | BYTE | Command code = FOh
1/3 | ADR3 | Result record address
4 /1 | BYIE | socket number
5 /3 | ADR3 | pata address
8/ 2 | WORD | Data length
10 /1 | BYTE | User control length

T — ——————— —————— — — — T —— —— — ————— —— o G G —————— — ——— o ———————

0 /1 | BYTE | Return code - values are:
| | FFh - initial value (set by user)
| | FEh - socket set up succesfully
| | 84h - invalid socket number
| | 85h - socket already set up
| | 00h - message received
1 /1 | BYTE | Source host
2/ 2 | WORD | Data length
4 / n | ARRY | User control information

Any message exchange on Omninet consists of setting up a
receive socket with a Setup Receive command, sending the message
with a Send command, and waiting for the reply to be received.
You always need at least 4 buffers for this task:

1) a command vector

2) a data buffer

3) a result record for the Setup Receive message,
4) a result record for the Send message.

You can use two separate command vectors: one for Setup Receive
and one for Send, but you don't have to. You can also use
separate data buffers. You MUST use separate result records.

The disk servers on Omninet currently provide two functions:

the execution of disk commands, and a name service. In the
future, they and other servers, developed by Corvus or other

Mass Storage Systems GTI 2-2

Omninet Protocols

software developers, will provide many more services. 1In order
for a server to distinguish which service is being requested,
Corvus has defined a message format which includes a protocol
identifier (protocol ID) as the first 2 bytes of each message.
This protocol ID identifies what type of service is being
requested or provided. For more information on protocol 1IDs,
refer to the Omninet Protocol Book.

2.1 Constellation Disk Server Protocols

The Disk Server Protocol is used to exchange commands and
data between Corvus disk devices on Omninet and the host
computers which they support. The disk commands were defined in
Chapter 1. The Disk Server Protocol defines the format of
Omninet messages which contain disk commands, data, and control
information. It also describes the mechanism for exchanging
those messages. 1In general, the Disk Server Protocol is a two
way conversation between a client and a server. The server is
usually a Corvus disk device and the client is usually a personal
computer., It is possible for a personal computer to run a
program which enables it to act as a Corvus disk device. Corvus
OmniShare for the IBM-PC, and Corvus DisketteShare for the
Apple II, are two examples of such a program.

The Disk Server Protocol is a transaction based protocol; in
other words, for each message sent, a reply is expected.
There are two basic types of transactions: short commands and
long commands. Short commands (4 bytes or less) involve the
exchange of two messages, while long commands require four
messages to complete a transaction. A disk read is a short
command and a disk write is a long command.

The general message exchange for data transfer is shown in
Figure 2.1. For a short command, the Disk Request message
contains the first four or fewer bytes of the command, and the
Results message contains the results of the command. For a long
command, the Disk Regquest message contains the first four bytes
of the command. After sending the Disk Reguest message, the host
waits for a Go message from the server. After receiving the Go
message, the host sends the remaining bytes of the command with a
Last message. The server finally sends the results of the
command with the Results message.

Mass Storage Systems GTI 2-3

Omninet Protocols

Short command Long command
Client Server Client Server
Disk Request Disk Request
O e e e e > Rt ity >
Results Go
D o ettt o {mm—mmmmmmm ——————— o
Last
R it e >
Results
Dt et o

FPigure 2.1: Message exchange for Disk Server Protocol

There are two versions of Disk Server Protocol: old and new.
These are described in detail in sections 2.2 and 2.3. The new
protocol follows the protocol guidelines established in the
Omninet Protocol Book, supports more operations than the old, and

uses different sockets. The operations supported are listed
below:

old new originator

Disk request (send disk command) X X client
Last (remainder of disk command) X X client
Abort request X client
Go X X server
Results (of disk command) X X server
Cancel request p 4 server
Restart request X server

An example is probably in order. Let's look at the process
of sending both a short and long command. This example uses the
0ld Disk Server protocol. You may wish to refer ahead to
section 2.2 for further explanation of the message contents,

Example of a short command:
We will use the Read a Sector (512-byte sector) command to
read sector 0 from drive 1 on server 1. Recall that this

command is 4 bytes long: command code is 32h, and the sector
address is 01lh, 00h, O0Oh.

Mass Storage Systems GTI 2-4

Sending a short command

First, we must issue a Setup Receive command to the

transporter. The fields mark
indicated data upon receipt o

Command vector

T + +
|command code = FOh | |
e et e +
| result ===+
+= -+
| record I
+= -+
| address |
e ———————————— +
|socket number = BOh |
e ————————————— +
| user j——-+
+- -+ |
| data l l
+= -+ |
| address | |
T +
| user data 02h | |
+- -+ +
| length = 512 00h |
tmm e ——————————————— +
|[control len = 03h |
e +

Mass Storage Systems GTI

ed with - will contain the

f the Results message.
Receive Result Record

------ P e ettt e e
| return code = FFh |
ettt L L L L Dt bt +
| - (source address) |
Fommm e +
| = (user data |
+- -+
| = 1length) |

——m e —————————— -

| = (user control |
+- -+
| = information) |
+= -+
I |
e +
User data buffer

------ Stm—mmm e
| = (512 bytes of |
+- -+
= data)
e ———— +

2-5

Sending a short command

When the return code field in the Receive Result Record
changes to FEh, the socket has been successfully set up. We
can now proceed to send the Disk Request message.

Command vector Send Result Record
e + e ———— Stemmm e +
|command code = 40h | | | return code = FFh |
e + | o e +
| result [=—-+ | unused |
+- -+ +- -- -+
| record | | |
+= -+ += -+
| address | | |
e ———— + e —————————————— +——
|socket number = BOh | | send length 00h |
e —————————— + +- -+
| user | ===+ | length = 4 04h |
+- L -4 | B ettt e +
| data |] | receive 02h |
+- -+ | += -+
| address | | | length = 512 00h |
e + | B ettt +
| user data 00h | |
+- -+ |
| length = 4 04h | | User data buffer
tmm + tomm——— Ptmm e +
|control len = 04h | | read 32h |
g Sy + += -+
|destination = 0lh | | command 0lh |
tmm e ——————————————— + +- -+
| 00h |
+= -+
| 00h |
B e ettt +

Mass Storage Systems GTI 2-6

Sending a short command

When the return code field of the Send Result Record changes
to less than 80h, the message has been successfully sent.

Now you must wait for the return code field of the Receive
Result Record to change to 00h, indicating that a message has
been received. If there are no errors, the Receive Result
Record and the User Data Buffer will look like this:

Receive Result Record

B e ————t
| return code = 00h |
Bt +
| source addr = 0lh |
Fmm e +
| user data 02h |
+- -+
| length = 512 00h |
e ———————————— -
| length of 02h |
+=- -+
| response=513 0lh |
tmm e +
| disk rslt 00h |
e +

Example of a long command:

We will use the Write a Sector (512-byte sector) to write
sector 0 to drive 1 on server 1. Recall that this command is
516 bytes long: command code is 33h, and the sector address
is 01h, 00h, 00h, followed by 512 bytes of data.

Mass Storage Systems GTI 2-7

Sending a long command

First, we must set up a socket to recevie the Go message. The
fields marked with - will contain the indicated data upon

receipt of the Go message.

Command vector

tmm e +
|command code = FOh |
et STETEPPPEE R +
| result | ===+
+- -+
| record |
+= -+
| address |
i +
|socket number = BOh |
e ——————————— +
| user | ===+
+= -+
| data |
+=- -+
| address I
tm e +
| user data 00h |
+=- -+
| length = 2 02h |
tmm— e ——————— +
|control len = 00h |
Ty Sy +

Mass Storage Systems GTI

Receive Result Record

Smmmm e +
| return code = FFh |
ittt et +
| - (source address) |
e e e L L L s +
| = (user data |
+- -+
| = length) |
tommm e +

P ittt Il Dt bl Dt T +
| = (2 bytes of data)|
+- -+
| - !
l I
e it +

2-8

Sending a long command

When the return code field in the Receive Result Record
changes to FEh, the socket has been successfully set up.
can now proceed to send the Disk Request message.

Command vector

B T S ——— +
|command code = 40h |
T TS S —— +
| result

+- -+
| record |
+- -+
| address |
e —————— e ————— +
|socket number = BOh |
T ——— +
| user

+- -+
| data |
+- -+
| address |
T T R ———— +
| user data 00h |
+- -+
| length = 4 04h |
o +
|control len = 04h |
T S ——— +
|destination = 0lh |
e ————————— +

Mass Storage Systems GTI

Send Result Record

tmm———— D R +

| | return code = FFh

| tmmmmmmm e

| ===+ | unused
+- - -4
I
+- -+
|
R Sttt L T +

| send 02h
+- -+

| | length = 516 02h
+ ————————————————————

| | receive 00h

| +- -+

| | length = 0 00h

| TR

|

] User data buffer

tm————— D T et
| 1st four 33h
+= -+
| bytes of 0lh
+- -+
| write 00h
+- -+
| command 00h
g

We

Sending a long command

When the return code field of the Send Result Record changes
to less than 80h, the message has been successfully sent.

Now you must wait for the return code field of the Receive
Result Record to change to 00h, indicating that a message has
been received. 1If there are no errors, the Receive Result
Record and the User Data Buffer will look like this:

Receive Result Record

R T +
| return code = O00h |
e +
| source addr = O01lh |
tmm— +
| user data 00h |
+- -+
| length = 2 02h |
e +

e T +
| 'G!' 47h |
+- -+
| 'O’ 4Fh |
I \ I
o +

Mass Storage Systems GTI 2-10

After the Go message has been

Sending a long command

recevied, we are ready to send

the Last message, but first we must set up to receive the

Results message.

There will be no user data received, since

the Write command returns only a disk return code, but we
will specify a data buffer anyway.

Command vector

et et + +
|command code = FOh | |
trmm e e + |
| result ===+
+- -+
| record |
+- -+
| address |
T +
|socket number = BOh |
i +
| user | ==+
+- -+ |
| data I |
+- -+ |
| address | |
e L P r e e e + |
| user data 02h | |
+- -+ +
| length = 512 00h |
tmm +
fcontrol len = 03h |
tmm e ————————————— +

Mass Storage Systems GTI

Receive Result Record

------ D R e
| return code = _FFh |
o e +
{ - (source address) |
e +
| = (user data |
+- -+
| = 1length) |

——fr———— e ———————— .
| = (user control |
+- -+
| = information) |
+- -+
I I
o —————— +

User data buffer

—————— D ittt
I I
+- -+
I I
| |
Fmm e ————— +

2-11

When the return code field in the Receive Result Record

changes to FEh, the socket has been successfully set up.
can now proceed to send the Last message.

socket number is AOh.

Command vector

tmm e + +
|command code = 40h | |
e G +
| result | ===+
+- -+
| record |
+- -+
| address |
tmm e ———————— +
|socket number = AOh |
B +
| user | ===+
+= -+ |
| data | +
+- -+
| address |
e +
| user data 02h |
+= -+
| length = 512 00h |
tmm e +
|control len = 00h |
tomm e +
|destination = 0lh |
tmm e —————————— +

Mass Storage Systems GTI

Sending a long command

We
Note that the
Send Result Record
------ Stmm e
| return code = FFh |
o ————————————— e +
| unused |
+- -+
I |
+- -4+
| |
o +
User data buffer
------ D e e
| 512 bytes of data |
+- -+
] to be written]
| |
Rt ittt +
2-12

3

Sending a long command

When the return code field of the Send Result Record changes
to less than 80h, the message has been successfully sent.

Now you must wait for the return code field of the Receive
Result Record to change to 00h, indicating that a message has
been received. If there are no errors, the Receive Result
Record and the User Data Buffer will look like this:

Receive Result Record

e it
| return code = 00h |
e +
| source addr = 0lh |
B T ettt +
| user data 00h |
+- -+
| length = 0 00h |
—— e - - —— - - - ———— - o ———— +_-
| length of 00h |
+= -+
| response=1 0lh |
tomm +
| disk rslt 00h |
B TS ——— +

+
l
+- -+
I
l
+

For the example above, the sequence of message exchange using
the new protocol would be exactly the same; only the contents of
the User Control and the User Data buffers and the socket usage
would differ.

As you can see from the above example, the disk server
protocol uses the transporter's message splitting feature. The
disk server protocol always knows what packet is expected next,
s0 it can specify the user's buffer when it sets up a receive.
The control information always goes to a separate data area
managed by the driver. This feature cuts down on the amount of
data movement that must take place, by putting the command
results directly into the user's buffer.

The concept of short and long commands is used because of
limited buffer space in the disk server. The disk server is
capable of queuing one request for each network device. When it
is ready for the Last portion of the disk command, it sends the

Mass Storage Systems GTI 2-13

Sending a long command

Go message. The disk server emulates the Constellation
multiplexer in that once the server services a particular host,
it accepts up to 32 commands before going on to the next host.
See Chapter 3 for more information on disk server service times.

The Omnidrive and Bank controllers support both the o0ld and
the new protocols, while the disk server for Rev B/H drives
supports only the o0ld protocol. All the hosts on the network are
treated separately, i.e. the Omnidrive and Bank can support one
protocol for one host and a different protocol for another host.
The protocol to be used is derived from the type of Omninet
message format received by the controller. It will be used for
only that command.

2.2 01d Constellation Disk Server Protocol
(The 01d Disk Server Protocol was written before the idea of

protocol IDs was finalized; therefore it does not abide by the
current protocol guidelines.)

Mass Storage Systems GTI 2-14

01d Disk Server Protocol

Name: Disk request Protocol ID: -
User Control Length: 4 Message Type: -
User Data Length: 4 or less Socket Usage: BOh

User Control Format:

Field Name |Offset/Len| Type | Description

M | 0/ 2 | WORD | Number of bytes in command.
| If M>4, then this is a long
| | | command.
N | 2/ 2 | WORD | Maximum number of return bytes,

I | | excluding the disk return code.

- ———————————————————————— ———————————————— — - S Sme - - G- Gw> G G G ———

Field Name |Offset/Len| Type | Description

DATA | 0/ n | - | First 4 or fewer bytes of
| | disk command.

——— ——————————— —————————— — ———— - — - — G — —— —— G - — — G ——— ———— -

This message is used to send the first four bytes of a disk
command to the server.

If M > 4, then a Go message is expected next, otherwise a Results
message is expected.

(

Mass Storage Systems GTI 2-15

0ld Disk Server Protocol

Name: Last Protocol ID: -
User Control Length: 0 Message type: -

User Data Length: depends on command Socket Usage: AOh

User Data Format:

- — ——— — ———— —— ——— T —— — — —— — ————— — - — - — —— G - — — G ————————

The Last message is used to send the last M-4 bytes of a long
command to the server., This message is sent in response to a Go
message from the server. M is the M from the Disk Request
message.

If there are no errors, the next message from the server should
be the Results message.

This command is always sent to socket AOh.

Mass Storage Systems GTI 2-16

AE,

0l1d Disk Server Protocol

Name: Go Protocol ID: -
User Control Length: 0 Message type: -
User Data Length: 2 Socket Usage: BOh

User Data Format:

T —— ———— —— - — —————— . S f_————— — " G —— —— —— G ———— —————— —_————————

Field Name |Offset/Len| Type | Description

- —— — ——— —————— — — — — —— — —— O ———— —— — G ———————— . - ——————— ——t— ———

GO | 0/ 2 | WORD | 'GO' - 474Fh

The Go message is sent by the server in response to a Disk
Request message. It tells the client that the server is ready to
receive the Last message.

If the most significant bit of the first byte of the GO Field

(i.e., the 'G' byte) is on, the disk has been reset and the
operation should be restarted.

Mass Storage Systems GTI 2-17

Name: Results
User Control Length: 3

User Data Length:

User Control Format:

depends on command

0l1d Disk Server Protocol

Protocol ID: -
Message type: -

Socket Usage:

Number of bytes actually returned,

including the disk return code

Field Name |Offset/Len|
NACTUAL | ©0 / 2 |
RETCODE | 2 /1 |

Field Name |Offset/Len|

| Results of disk command

(NACTUAL-1 bytes).

This message contains the results of a disk command.

If the most significant bit of the first byte of the NACTUAL
field is on, the disk has been reset and the operation should be

restarted.

Mass Storage Systems GTI

2-18

0l1d Disk Server Protocol

Name: Find a server Protocol ID: OlFEh
User Control Length: 0 Message type: Olh
User Data Length: 8 bytes Socket Usage: 80h

User Data Format:

Field Name |Offset/Len| Type | Description

PID | 0/ 2 | WORD | Protocol ID # - OlFEh
" MSGTYP | 2 /1 | BYIE | Message type - 01n
M | 3/2 | WORD | Length of command - 0001h
"N 1 s/ 2 [WORD | Expected length of result - 0000h
COMMAND | 7 /1 | BYIE | Illegal command code

This message is used to broadcast an illegal disk command. The
Disk server and the Omnidrive respond to this message with a
Results message; the Bank does not respond to this message.

Some host systems using this protocol broadcast an illegal disk
command during power on to find servers on the network. They try
to boot from the first server that replies. To prevent host
systems from booting from the Bank, the Bank controller ignores
the illegal command opcode FFh and does not return any status.
Other illegal commands are acknowledged.

Mass Storage Systems GTI 2-19

New disk server protocol

2.3 New Constellation disk server protocol

Disk servers with PROM versions DS8A.A or DSD18A do not
support the new disk server protocol.

Disk servers with PROM version DSD9B1D and later, Omnidrives,
and Banks support the o0ld disk server protocol as well as the new
disk server protocol.

The new disk server protocol is similar to the o0ld in basic
message exchange; that is, for a short command the client sends a
Disk Request message and expects a Results message; for a long
command, the client sends a Disk Request message, the server
replies with a Go message, the client sends a Last message, and
the server replies with a Results message. However, the new
protocol uses different sockets that the old, and includes more
information with each message. The new protocol also includes
three new messages: Abort, Cancel and Restart.

With the new disk server protocol, the client always sends
the Disk Request message to socket 80h of the server, and the
server always sends the Go message to socket 80h of the client.
For the Last and Results messages, the server and the client
respectively specify to which socket (AOh or BOh) to send the
message., All asynchronous messages (Cancel, Restart, and Abort)
are sent to socket 80h.

The new disk server protocol requires that a media ID be sent
along with each Disk Request. This is to prevent the case when
the media is swapped and the host unknowingly attempts to write
to the wrong tape. During power up, the controller generates a
random number to be used as the media ID of the tape. This
number is based on the value of the free running counter of the
6801 clocks; it is very random and has a value between 0-0FFFFh.

The host can obtain the current media ID by issuing a Get
Drive Parameters command with a media ID of zero. A media ID of
zero is honored by the controller regardless of the current ID.
The current media ID is one the parameters returned by the Get
Drive Parameters command.

The controller broadcasts a Cancel message during power up to
inform all hosts on the network about a media change. If a host
does not receive or act upon the Cancel message, it will receive
a Wrong Media ID error message when it tries to access the tape.
The host can recover by reissuing a Get Drive Parameters command
with an ID of zero in order to obtain the new media ID number.

The new disk server protocol also requires that a request ID
be sent along with each disk command. This is done so that
either the disk server or the host can cancel, abort, or restart
a particular command. The request ID is selected by the host,
and can simply be an integer which is incremented for each

Mass Storage Systems GTI 2-20

request.

New disk server protocol

Any Cancel, Restart, or Abort message includes a field which
indicates the reason for the abnormal condition. The possible
reason codes are summarized below:

02h

03h

04h

05h

Meaning

Timed out - either the disk server timed out
waiting for a Last message, or the host timed out
waiting for a Go or Results message. See chapter
3 for more information on timeouts.

Offline - the disk device is currently offline for
backup or reformatting.

Out of synch - the server has received a Last
message when it was not expecting one.

Wrong media - the MEDIAID in the Disk Request
message does not match the current media ID.

Rebooted - the server has just come online,.

Mass Storage Systems GTI 2-21

New disk server protocol

Name: Disk reguest Protocol ID: O0lFFh
User Control Length: 0 Message Type: 000l1h
User Data Length: 18 Socket Usage: 80h

User Data Format:

PID | 0 /2 | WORD | Protocol ID & - OlFFh
MSGTYP | 2 / 2 | WORD | Message type - 0001h
RQSTID | 4 / 2 | WORD | Request ID
MEDIAID | 6 / 2 | WORD | Media ID
RESHOST | 8 /1 | BYTE | Result host
RESSOCK | 9 /1 | BYTE | Result socket - AO0h or BOh
M | 10 / 2 | WORD | Number of bytes in command.
| I | If M>4, then this is a long
l l | command.
N | 12 / 2 | WORD | Maximum number of return bytes,
| | | excluding the disk return code.
DCMD | 14 / 4 | ARRY | First 4 or fewer bytes of disk

| | | command.

This mesage is used to send the first four bytes of a disk
command to the server. It tells the server to which host
(ResHost) and to which socket (ResSock) to send the reply.

The host selects the request ID. The media ID was established
during the first message exchange between the host and this
server. If the media ID does not match the server's current
media ID (because someone has switched Bank tapes, for example),
then the server will not respond to the Disk Request message,
but will send a Cancel message instead. The Cancel message
includes the current media ID.

If M > 4, then a Go message is expected next, otherwise a
Results message is expected.

Mass Storage Systems GTI 2-22

N

New disk server protocol

Name: Last Protocol ID: OlFFh
User Control Length: 12 Message Type: 0002h

User Data Length: depends on command Socket Usage: AOh or BOh

User Control Format:

- — — —————— —— ————— ——————— — ——— ————————————— ————— — —— —— —— —_———— -

PID | 0/ 2 | WORD | Protocol ID # - 01FFh
MSGTYP | 2/ 2 | WORD | Message type - 0002h
ROSTID | 4/ 2 | WORD | Request 10
reserved | 6/ 2 | WORD | Reserved - use 0's
reserved | 8/ 2 | WORD | Reserved - use 0's
" reserved | 10 / 2 | WORD | Reserved - use 0's

o —————————————————— —————_——————————— . S ———————————_————— —— -

Field Name |Offset/Len| Type | Description

The Last message is used to send the last (M-4) bytes of a long
command to the server, where M is the M from the Disk Request
message. This message is sent in response to a Go message from
the server. Last messages are sent to socket AOh or BOh,
whichever was specified in the Go message.

If there are no errors, the next message from the server should
be the Results message.

Mass Storage Systems GTI 2-23

Name: Abort
User Control Length: 0

User Data Length: 8

User Data Format:

Field Name |[Offset/Len| Type

PID I 0/ 2 | WORD
CMseTYe | 2/ 2 | WORD |
RQSTID | 4/ 2 | WORD |
" REASON | 6/ 2 | WORD |

New disk server protocol

Protocol ID: O0lFFh
Message Type: 0003h

Socket Usage: 80h

—————————————————————————————
—————————————————————————————
—————————————————————————————
—————————————————————————————

————— - - ——— - — - — —— -

| Reason for abort:

0lh = timed out waiting for
disk server response

This message tells the server to abort request RQSTID. If the
RQSTID is 0 then abort any requests from this host.

Mass Storage Systems GTI

New disk server protocol

Name: Go Protocol ID: OlFFh
User Control Length: O Message Type: 0100h
User Data Length: 8 Socket Usage: 80h

User Data Format:

Field Name |Offset/Len| Type | Description

PID | 0/ 2 | WORD | Protocol ID # - OlFFh
MSGTYP | 2/ 2 | WORD | Message type - 0100n
" RQSTID | 4/ 2 | WORD | Request 10
" reserved | 6/ 1 | BYTE | Reserved - use 0
" LASTSOCK | 7/ 1 | BYIE | Socket number to which Last

| | | message should be sent (AOh or BOh)

The Go message is sent by the server in response to a Disk
Request message. It tells the client that the server is ready to
receive the Last message for request RQSTID.

Mass Storage Systems GTI 2-25

New disk server protocol

Name: Results Protocol ID: OlFFh
User Control Length: 12 Message Type: 0200h

User Data Length: depends on command Socket Usage: AOh or BOh

User Control Format:

s € - —— ——— . ——————— — — ——— ————— —— —— ———— — — . —— —————— ——— ————— a— o— ———

PID I 0/ 2 | WORD | Protocol ID # - OlFFh
" MSGTYP | 2 /2 | WORD | Message type - 0200h
RQSTID | 4 /2 | WORD | Request Ip
NACTUAL | 6/ 2 | WORD | Number of bytes acutally returned,
| | | including the disk return code.
reserved | 8 /1 | BYTE | Reserved - use 0
RETCODE | 9 / 1 | BYTE | Disk return code
reserved | 10 / 2 | WORD | Reserved - use 0's

- — —— — - ———— ——— ——— — — - - —————— ————_———_— — ———— ——— —— —— — — G —— ——t—————

Field Name |Offset/Len| Type | Description

S —— ——————————— - ———————— —— ———————————— ————— ——— — ——— _——t—————————

DATA | 0 / n | ARRY | Results of disk command
| | | (NACTUAL-1 bytes)

This message contains the results of a disk command. It is sent
to socket AOh or BOh, whichever was specified in the Disk Request
message.

Mass Storage Systems GTI 2-26

EEN Y

New disk server protocol

Name: Cancel Protocol ID: O0lFFh
User Control Length: O Message Type: 0300h
User Data Length: 10 Socket Usage: 80h

User Data Format:

Field Name |Offset/Len| Type | Description

PID I 0/ 2 | WORD | Protocol ID # - OlFFh
" MSGTYP | 2/ 2 | WORD | Message type - 0300h
RQSTID | 4/ 2 | WORD | Request 1D
REAsoN | 6 /2 | WORD | Reason for camcel:

I

| 02h - disk device has gone

| offline

| 04h - the MEDIAID in the Disk

| Request message does not
| match the current MEDIAID

T e - ————— —————— — — — ———— —_— —— f—— — ——— ———— ————— — - —— —— —— — G G G G G ——————

This is the server's mechanism for cancelling a request. RQSTID
identifies the request which was cancelled.

Mass Storage Systems GTI 2-27

New disk server protocol

Name: Restart Protocol ID: O01FFh
User Control Length: 0 Message Type: FFO0Oh
User Data Length: 10 Socket Usage: 80h

User Data Format:

Field Name |Offset/Len| Type | Description

PID | 0/ 2 | WORD | Protocol ID # - O0l1FFh
MSGTYP | 2/ 2 | WORD | Message type - FFOOh
RQSTID | 4 / 2 | WORD | Request 1D
REASON | 6/ 2 | WORD | Reason for restart:

|
| 05h - server has been rebooted

| 03h - out of synch: a Last message
| was received when one was not
| expected.

| O0lh - timed out: Last message not
| received after Go was sent

- ——————— — ————— —— ——— —————————— — —— ————— —— - —— — — — ———— —————— ——

This is the server's mechanism for telling the host to restart a
request. This tells the client to send request RQSTID again. If
RQSTID is zero then the client should restart any requests
pending to that server.

MEDIAID is the current media ID. If it does NOT match the

MEDIAID of the pending request, then the the media was changed
(e.g., changing a Bank tape) while the server was offline.

Mass Storage Systems GTI 2-28

PN

C

Name lookup protocoil

2.4 Constellation name lookup protocol

The Constellation name lookup protocol is used to identify
devices on the network by name. It is currently supported by
disk servers DSD18A, DSD9B1D, and later, all Omnidrives, and all
Banks. It is NOT supported by disk server DS8A.A.

The messages are summarized below:

Hello o
Goodbye

Who Are You

Where Are You

My ID Is

The Hello and Goodbye messages are broadcast during power up
and power down respectively, to announce the presence or absence
of a device. The Who Are You and Where Are You messages can
either be broadcast or directed; a My ID Is message is expected
in response.

Each device on the network can be identified by its name, its
Omninet address, or its device type. Using the name lookup
protocol, you can find the answers to such questions as, What are
the addresses of all the disk servers on the network? and What is
the address of the disk server named RDSERVER?

Each device is assigned one or more device types which are
used to identify the types of services it supports. There are
two kinds of device types: generic and specific. Generic device
types define a class of Omninet hosts, while specific device
types define a specific service. The currently assigned device
types are listed in Appendix B.

As always, there are a few exceptions to the rules; the
device types for disk devices are listed below. As you can see,
the disk server and the Bank each respond to only one device

type.

Generic Specific
Rev B/H disk server 1 1l
Omnidrive ‘ 1 6
Bank - 5

Mass Storage Systems GTI 2-29

Name lookup protocol

For example, the following algorithm finds all (booting)

disk servers on the network:

dut =« @

Do Echo .
dosh natione Dest

=

&A.f&w-abw
Sodud 80k, Sevd

e M\’N)&V“‘VU
=1 drshadan: Pest
e

Pest &« Dest & \

Dest > 03

N
‘ Y

Figure 2.2a: FPind all disk servers using directed messages

Mass Storage Systems GTI 2-30

You could also use the following algorithm, but it is not

Name lookup protocol

guite as reliable since it uses a broadcast command and timeouts:

«

Sehup Recuive
on sochux BOh

Send WhoAreYou
dev <L
10 dashnation FFh

!

e e bt R

Emee bme- 4

@

Figure 2.2b:

Mass Storage Systems GTI

Sduf e-l-o—wb
on sockat 80W
o aan

Counk a dask s

)

Pind all disk servers using broadcast messages

2-31

Name lookup protocol

The following algorithm is used to reply to Who Are You and
Where Are You messages:

1. Respond to all device types that apply.

2. If the device type is FFh, the device responds with its
most specific device type.

3. If the device type is generic, and it is one of the
generic types assigned to this device, then the device
responds with the same generic device type. For example,
if the Omnidrive receives a Who Are You, device type =
O0lh, it replies with a My ID Is, device type = 0lh.

4, If the device type is specific, then the device
responds with the same device type.

Mass Storage Systems GTI 2-32

£

«

Name lookup protocol

Name: Hello Protocol ID: OlFEh
User Control Length: O Message Type: 0000h
User Data Length: 18 Socket Usage: 80h

User Data Format:

Field Name |Offset/Len| Type | Description --

PID I 0 /2 | WORD | Protocol ID # - O01FEh
MSGTYP | 2/ 2 | WORD | Message type - 0000h
SOURCE | 4/ 2 | WORD | Omninet address of device
CDEVTYPE | 6 / 2 | WORD | Device type
"~ NaME | 8 /10 | BSTR | Device name

This message should be broadcast whenever a host "logs onto" the
network.

Whenever a disk server receives one of these messages, it adds
the device to its Active User Table. If DEVTYPE is 1,
indicating that the Hello message came from some other disk
server, then the receiving disk server sends back a My ID Is
message to the originator of the Hello message. See the
discussion of the Active User Table in the next section.

Mass Storage Systems GTI 2-33

Name lookup protocol

Name: Goodbye Protocol ID: OlFEh
User Control Length: 0 Message Type: FFFFh
User Data Length: 18 Socket Usage: 80h o

User Data Format:

Field Name |[Offset/Len| Type | Description -

" PID | 0/ 2 |WORD | Protocol ID # - O1FER
MSGTYP | 2/ 2 | WORD | Message type - FFFFh
""SOURCE | 4/ 2 | WORD | Omninet address of device
CDEVTYPE | 6/ 2 | WORD | Device type
" NAME | 8/ 10 | BSTR | Device name

This message should be broadcast whenever a host "logs off" the
network.

Mass Storage Systems GTI 2-34

Name lookup protocol

Name: Who Are You Protocol ID: OlFEh
User Control Length: O Message Type: 0200h
User Data Length: 8 Socket Usage: 80h

User Data Format:

Field Name |Offset/Len| Type | Description -

- - ———— ——— —— —— — — — " - ———————— —— — ———— —— — — — ——— — ————— ————— -

PID | 0/ 2 | WORD | Protocol ID # - OlFEh
" MSGTYP | 2/ 2 | WORD | Message type - 0200h
" SOURCE | 4/ 2 | WORD | Omninet address of deivce
" DEVTYPE | 6/ 2 | WORD | Device type

This message can be directed or broadcast. Only devices which
are assigned the specified DEVTYPE will respond. If DEVTYPE =
FFh, all devices will respond.

The expected response is a My ID Is message.

Mass Storage Systems GTI 2-35

Name: Where Are You
User Control Length: 0

User Data Length: 18

User Data Format:

Field Name |Offset/Len| Type

PID | 0 / 2 | WORD
MSGTYP | 2/ 2 | WORD |
" SOURCE | 4 /2 | WORD |
CDEVIYPE | 6/ 2 | WORD |
" NaME | 8 /10 | BSTR |

———— — —— —————————————— ———————— - {—-—

This message is broadcast.

Name lookup protocol

Protocol ID: OlFEh
Message Type: 0300h

Socket Usage: 80h

—————————————————————————————
—————————————————————————————
—————————————————————————————
—————————————————————————————
—————————————————————————————

Only devices with the specified name
and device type will respond.

The expected response is a My ID Is message.

Mass Storage Systems GTI

2-36

e = =

Name: My ID Is

User Control Length: 0

=3

User Data Length: 18

User Data Format:

Name lookup protocol

Protocol ID: OlFEh
Message Type: 1000h

Socket Usage: 80h

Field Name |Offset/Len|

- —— —— — — — ————— - T - - ———— ————— — G ————— ———— —_———— ———— —— — ————

PID I 0/ 2 |
MSGTYP 2/ 2 |
SOURCE | 4 /2 |
DEVTYPE | 6/ 2 |

NAME | 8/ 10 |

This message is sent in
You message.

«

Mass Storage Systems GTI

reponse to a Who Are You or a Where Are

2-37

Active user table

2.5 Active User Table

It is not pratical to implement the Constellation name
protocol on all hosts, because the name lookup protocol requires
that a host respond to an asynchronous message. Not all
processors or operating systems support asynchronous events,
Therefore, Corvus provides a rudimentary name service with the
Active User Table. This contents of this table was described in
Chapter 1. The Active User Table commands are repeated below:

AddActive
DeleteActiveUsr
DeleteActiveNumber
FindActive
ReadTempBlock
WriteTempBlock

An Active User Table is maintained on each disk device on the
network. Whenever a disk device receives a Hello message, it
adds the user to its Active User Table with an AddActive command.
Similarly, whenever a disk device receives a Goodbye message, it
deletes the user with a DeleteActiveUsr command.

If all the hosts on the network broadcast a Hello message
on boot up, and broadcast a Goodbye message as part of the
shut-down procedure, then the Active User Table will usually
contain a list of which hosts are currently active on the
network.

However, since the Hello and Goodbye messages are normally
broadcast, it is possible that a disk device may miss a Hello or
Goodbye message, and that an Active User Table may not reflect
the actual state of the network. It is also possible, in a
multiple disk server network, that the Active User Table on one
disk device may not be the same as that on another disk device.

Each disk device is responsible for initializing its Active

User Table. Here is the sequence of events that occurs when a
disk server is powered on:

Mass Storage Systems GTI 2-38

e -, =

(

Active user table

1. The disk server broadcasts a Hello message with a
device 1D of 1.

2, If another server is present on the network, it will
add the new server to its Active User table, and send a My
ID Is message back to the new server.

3. If the new server receives a My ID Is message, it
reads the Active User table from the server that sent the
message, and uses it to initialize its own table.

4, If the new server does not receive a My ID Is ﬁessage,
then there are no other disk servers on the network, so it
initializes its Active User table to blanks.

The Omnidrive goes through a process similar to the one
detailed above, with one difference. The Omnidrive broadcasts a
Hello message with a device ID of 1, so that the o0ld disk server
PROM will recognize it as a disk device. The Omnidrive then
broadcasts another Hello message with a device ID of 6, so that
the Active User Table will contain device ID 6 instead of 1.

Also for the sake of compatability, the Omnidrive replies to
a Hello message with a My ID Is message of device type 1. For
the Who Are You and Where Are You messages, the Omnidrive replies
with device type 6.

The Bank has an Omninet device type of 5. This number is
used for the Hello message during power on and for response to
the Who Are You message. The Bank does not implement the Active
User Table.

Mass Storage Systems GTI 2-39

Disk drivers

. . . LNt
Chapter 3: Outline of a disk driver [:UI‘HuﬂJ hL

This chapter outlines a simple disk driver that interfaces to
any Corvus mass storage device. If written properly, the same
Omninet driver can support a disk server, an Omnidrive, or a
Bank. A flat cable driver can support a Rev B/H drive directly,
or one connected via a MUX.

When writing a disk driver, you should remember that the
Corvus disk merely supports absolute disk sector reads-writes.
It knows nothing about which computers are connected to it, nor
whether it is connected over flat cable or Omninet. It knows
nothing about volumes or users or file systems. 1In a network
environment, the drive merely knows which command came from which
computer, so that it can send the reply to the proper computer.
Thus, a disk driver for a Corvus device resides at the BIOS level
of the operating system. This is different from other network
implementations, where references to the disk may be intercepted
at the file level.

A typical BIOS level interface for a disk driver has at least
three entry points: Driver Initialization, Device Read, and
Device Write. These are the only functions discussed here.

The Device Read and Write entry points generally have the
following parameters:

Device number: this number is used as an index into a
table of device characteristics, such as device type,
device location, device size, etc.

Sector number: this is the sector number to be read or
written. Disk devices consist of n sectors, numbered 0
to n-1.

Number of sectors: this is the number of sectors to be
read or written.

Buffer: this is the address of a buffer where the data is
to be read into or written from.

Result code: this value is returned. It either indicates
a successful operation, or indicates the nature of the
failure.

The Device Read portion of the driver sends a Corvus disk
Read Sector command, and returns the data in the user's buffer.
The Device Write portion sends a Write Sector command along with
the data in the user's buffer. The sector command used (128,
256, 512, or 1024 bytes) depends upon the sector size used by the
operating system. The examples below assume a 512 byte sector
size. Any information that depends on sector size is marked.

Mass Storage Systems GTI 3-1

»

Disk drivers

For the purposes of this chapter, it is assumed that the disk o
driver treats the entire disk as one device. See the
Constellation Software General Technical Information Manual for
information on how a Constellation disk driver treats a disk as
more than one device.

There are several types of errors that the driver can
encounter: timeout errors (device does not respond), disk
errors (controller errors), hardware errors (Omninet transporter
errors). Your driver must map these errors into the codes that
your operating system defines.

3.1 Omninet

You may want to refer to the following manuals while reading
this section:

Omninet General Technical Information, Chapter 3, pages
31-38, which describes the Omninet commands Setup
Receive, Send, etc.

Chapter 2 of this manual, which describes the disk server
protocols.

Chapter 1 of this manual, which describes the sector read
and write commands.

The disk driver described here is simplified in two ways.
First, this description assumes that the disk driver is the only
user of the tranporter; that is, the disk driver expects to be
able to use the transporter at will and it throws away messages
it does not recognize. 1In reality, the transporter functions
should be handled by a transporter driver, and the disk driver
should call on the transporter driver to do transporter
functions. Corvus is currently developing a specification of a
transporter driver and software which uses such a driver.

Secondly, the description of the disk driver given here
ignores whether the transporter is buffered or unbuffered. A
driver which handles a buffered transporter will naturally be
more complicated since it must manage the buffer space and move
data to and from user memory. Of course, if a transporter driver
existed which the disk driver could use, then the transporter
driver would handle the buffering, and the disk driver would not
have to worry about whether the transporter were buffered or not.
This is another reason for having a transporter driver.

However, as mentioned above, the driver described here
does not assume the existence of a transporter driver.

The driver is described by the data structures, flowcharts
and notes on the next few pages. The flowcharts cover how to P

Mass Storage Systems GTI 3-2

Disk drivers |

send short and long commands and describe timeout recovery
procedures. Many systems have no recourse when a timeout error
occurs. A driver written for one of these systems should
implement the timeout recovery described here, but instead of
reporting a timeout error, restart the operation from the
appropriate point.

Figbre 3.1 reviews the flow of data for a read (short)
command, and for a write (long) command, and shows the areas
where timeouts can occur.

Sh@r‘{’ oM I ande LOW & Comniaaild
Fuson_.«l. disle perzon N ad e
Conpudir EAdal Cew-f?v—t'f Sea v O

/ ‘l[\ T

L e
//

—

[—

Figure 3.1 Timeouts for short and long command exchanges

There are two types of events which would cause a driver to
time out: waiting for a response from the local transporter,
and waiting for a disk server response. These can be broken
down further as follows:

Transporter timeouts
TO: The time between a command strobe and the next ready.

Recommended timeout value: 10ms.

Mass Storage Systems GTI 3-3

. om

Disk drivers

Tl: The time between strobing a receive command and the
receive result changing from FFh to FEh. This is very
fast, ususally within 200 microseconds. However, an
incoming receive could happen during the processing of
the Setup Receive, so the elapsed time could be
several milliseconds. Recommended timeout value:
10ms.

T2: The time between strobing a Send command and its
result changing. The result for a Send command does
not change until an acknowledgement is received or the
transporter gave up after sending 10 retransmissions.
This can produce a very long delay (in computer time),
since 11 transmissions are possible and the
transporter will accept messages for any receives
which are set up. Recommended timeout value: 100ms.

Disk Server timeouts (refer to figure 3.1)

T3: The time between the completion of the Send of the
Disk Request message and the receipt of the Results
or Go message. This interval could be as long as 3
minutes for a disk, and 11 hours for a Bank.
Recommended timeout value: see below.

T4: The time between the completion of the Send of the
Last message and the receipt of the Results message.
Recommended timeout value: 150ms for a disk, 20
seconds for a Bank.

The disk server itself will timeout between sending a Go
message and receiving the Last message. This timeout value is
768ms. This time is indicated in figure 3.1 by TDS.

Most systems do not use the transporter timeouts (T0, Tl, and
T2) since there is nothing they can do if the transporter is not
working reliably.

All systems must support the disk server timeouts (T3 and T4)
in order to work reliably in a multiple server environment. The
timeout value for T3 must be variable, since a 3 minute or 11
hour timeout is not practical.

The recommended approach to implementing the T3 timeout is to
use an adaptable timeout. Since different devices have
different timing characteristics, the timeout value must depend
upon the device type. Also, as more servers are added to a
network, the response times will lengthen. Therefore, the
timeout value must also adapt to the network environment.

The flow chart in figure 3.4 shows a very simple method for
adapting the timeout values. The timeout value should start out

Mass Storage Systems GTI 3-4

Disk drivers

relatively short (3 seconds for a disk, 20 seconds for a Bank),
and increase only when a long delay is encountered.

The 0ld Disk Server Protocol is described first, ant then the
New Disk Server Protocol is described.

Mass Storage Systems GTI 3-5

Server Protocol

WO WO WO NE _NE Ne N Ve We w0 N

commands.

TCmd .BYTE O H
.BYTE 0 :

.WORD 0 H

.BYTE 0 H

.BYTE 0 H

.WORD 0 :

WORD O H

.BYTE 0 :

.BYTE OFFh H

’

OpCode .EQU O H
ResAdr .EQU 1 H
Sock .EQU 4 H
DatAdr .EQU 5 ;
Datalen.EQU 8 H
CrtlLen.EQU 10 :
Dest .EQU 11 H

Mass Storage Systems GTI

0ld disk server protocol

Transporter command vector (see Omninet GTI, pgs. 32,33)
It is not necessary to have more than one command vector,
although it is sometimes more convenient to use separate
records which are preinitialized as Send and Setup receive

OpCode - command code
- high order byte of result address
- low order word of result address

Sock - socket number
- high order byte of data address
- low order word of data address

DataLen - data length

CrtlLen - user control length

Dest - destination host number

ResAdr

DatAdr

offsets

offset
offset
offset
offset
offset
offset
offset

to
to
to
to
to
to
to

OpCode

ResAdr

socket number

DatAdr

data length

user control length
destination host number

Sample data structures for a disk server driver using 0ld Disk

First the data structure is declared, then a list of offsets
into the structure are declared.

(Send only)

0ld disk server protocol

Sample data structures for a disk server driver using 0l1d Disk
Server Protocol (cont.)

Result record definitions (see section 2.2)
Every driver must have 2 separate result records, one for
sends, and one for receives.
; Send result record

we we we we we ~o

SndRes .BYTE 0 transporter return code
.BYTE 0 unused
+WORD 0 unused

SnduC .WORD 0 M - the number of data bytes to send to drive
.WORD 0 N - the maximum number of data bytes

expected on receive
offsets
offset to transporter return code
offset to M
offset to N

RCode L.EQU 0
M .EQU O
N .EQU 2

WO NE Ve Ne N NO we Ne we wo

Receive result record

offset to DLen
offset to DCode

DLen +EQU 0
DCode .EQU 2

’
RcvRes .BYTE 0 ; transporter return code
+BYTE 0 ; Src - source host number
.WORD 0 ; Len - actual length of data received
RcvUC .WORD O ; DLen - number of bytes actually returned from drive
.BYTE 0 ; DCode - disk return code
; offsets
Src .EQU 1 ; offset to Src
Len .EQU 2 ; offset to Len
4
H

Data area buffers

G) Se ~e ~e ~o

oData .BYTE OFFh
.BYTE OFFh

this is where we receive the 'GO' packet

-.

DCmd .WORD 0
.WORD 0

space for the disk command

e

Mass Storage Systems GTI 3-7

0l1d disk server protocol

Sample data structures for a disk server driver using 01d Disk
Server Protocol (cont.)

sets. It is the value that will be returned to the operating
system upon completion of the driver call.

O ~e Se e e S e e

rvRet .BYTE 0 ; Driver return code

DrvRet values:
The codes which are marked with an asterisk (*) are those
which may be returned to the caller of the driver. All
others are used internally. The codes which are marked with
a T are transporter return codes.

® We %o we we wo

SndErr .EQU 140
TOErrDS.EQU 252
TOErrTR.EQU 253

- unable to send messages to disk server

- timed out waiting for disk server response
timed out waiting for transporter
(hardware error)

*
!

OkCode .EQU 0 ; *T
GiveUp .EQU 128 : T - gave up after n retries
TooLong.EQU 129 ; T - message too long
NoSock .EQU 130 ; T - socket not initialized
BadHdr .EQU 131 + T - header length mismatch - should never happen
« %
!
H
i

The following global variables are set on each read or
write, to the values specified for the device.

~e “eo o

TimeOut .WORD 0
DSNum .BYTE 0

used to control disk server wait loop
disk server number

- “o

Mass Storage Systems GTI 3-8

DrvRet is a global variable in the driver which each routine e

014 disk server protocol

@

Sd“‘? Pecaive L
DV ST D)
message
V.
2
Send dislke
onmasd.
Flsh. ., <
|
Setup Receive
. b Resllis
message
X -

Figure 3.2: Flowchart of a short (read) command
014 Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions on
the following pages.

«

Mass Storage Systems GTI 3-9

1.

2.

0l1d disk server protocol

Setup receive for results.

TCmd+OpCode <~ FOh (Setup Receive command)
TCmd+ResAdr <- address of RcvVvRes

TCmd+Sock <- BOh

TCmd+DatAdr <- address of user's buffer
TCmd+DataLen <- 512 (use appropriate sector size)
TCmd+CrtlLen <- 3

RcvRes+Rcode <- FFh (must initialize result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

Send disk command.

TCmd+OpCode <~ 40h (Send command)
TCmd+ResAdr <- address of SndRes
TCmd+Sock <- BOh

TCmd+DatAdr <- address of DCmd buffer
TCmd+DatalLen <- 4 (4 byte read command)
TCmd+CrtlLen <- 4

TCmd+Dest <- DSNum

SndRes+Rcode <- FFh (initialize result code)
SndUC +M <- 4

SndUC +N <- 512 (use appropriate sector size)
DCmd+0 <- 32h (use appropriate read command)
DCmd+1 <- sector address byte d

DCmd+2 <- sector address 1lsb

DCmd+3 <- sector address msb

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

Wait for disk server response.

This is a loop which is checking the transporter return code
in the receive buffer (RcvRes+Rcode). When this value goes
to zero, the disk read has completed. See figure 3.4 and
accompanying notes.

If a timeout error occurred, try to recover. See figure 3.5
for a description of the recovery procedure,.

Check the responding disk server (RcvRes+Src). If it does
not match the destination disk server (DSNum) the message
received is irrelevant. Setup the receive again, and wait
for another response.

Check the first byte of the User Control Data (RcvUC +DLen).
If the most significant bit is on, the disk has been reset.

Mass Storage Systems GTI 3-10

0l1d disk server protocol
Start the entire segquence over.

Check the disk result (RcvUC+Dcode). If the most
significant bit is on, report an error.

Mass Storage Systems GTI 3-11

01d disk server protocol

Stark
Sduf raceat 1
Hr Go
mes sy
Z
Semd daske Sckup Rucave 8
comnard £r Resubds
NSﬂc«
Flush ... <
Wed G 3
Mol scveere A
responsc . S‘Md Last
ey
Y Waik for
d&*\c Cevver
fcslbvaz ...
SU“-P EUMJQ,
1 :br &s«.ﬁ.&s
\N.sau.y.,
A
N

Figure 3.3: Flowchart of a long (write) command
0l1d Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions on
the following pages,

Mass Storage Systems GTI 3-12

1.

2.

6.

0ld disk server protocol

Setup receive for the 'GO' command.

TCmd+OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <- address of RcvRes
TCmd+Sock <= BOh

TCmd+DatAdr <- address of GoData
TCmd+DataLen <- 2

TCmd+CrtlLen <- 0

RcvRes+Rcode <- FFh (must initialize the result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

Send the first 4 bytes of the write command.

TCmd+OpCode <- 40h (Send command)
TCmd+ResAdr <- address of SndRes
TCmd+Sock <= BOh

TCmd+DatAdr <- address of DCmd buffer
TCmd+DataLen <- 4

TCmd+CrtlLen <- 4

TCmd+Dest <- DSNum

SndRes+Rcode <- FFh (initialize result code)

SnduC +M <- 516 (use appropriate sector size)
SndUC +N <- 0

DCmd+0 <- 33h (use appropriate read command)
DCmd+1 <- sector address byte d

DCmd+2 <- sector address 1lsb

DCmd+3 <- sector address msb

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

Wait for disk server response.

This is a loop which is checking the transporter return code
(SsndrRes+Rcode). When this value goes to zero, the 'GO'
message has been received. See figure 3.4 and accompanying
notes.

If a timeout error occurred, try to recover. See figure 3.5
for a description of the recovery procedure.

Check the responding disk server (RcvRes+Src). If it does
not match the destination disk server (DSNum) the message

received is irrelevant. Setup the receive again, and wait
for another response.

Check the first byte of the data buffer (GoData). 1If the

Mass Storage Systems GTI 3-13

10.

0ld disk server protocol

most significant bit is on, the disk server has been reset,
and you should restart the sequence from the beginning.

If the data received is anything but the 2 bytes 'GO', the
message is irrelevant. Setup the receive again, and wait for
another response.

Set up another receive to get the results of the next Send.

TCmd+OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <- address of RcvRes
TCmd+Sock <= BOh

TCmd+DatAdr <- address of DCmd buffer
TCmd+DatalLen <- 4

TCmd+CrtlLen <= 3

RcvRes+Rcode <- FFh (must initialize the result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

Send the rest of the Write command. Note that the socket
number is AOh, not BOh as for the previous commands.

TCmd+OpCode <- 40h (Send command)

TCmd+ResAdr <- address of SndRes

TCmd+Sock <= AOh

TCmd+DatAdr <- address of user's buffer
TCmd+DataLen <- 512 (use appropriate sector size)
TCmd+CrtlLen <= 0

TCmd+Dest <- DSNum

SndRes+Rcode <- FFh (initialize result code)
User's buffer contains the data to be written.

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

If the transporter result code is 82h (uninitialized socket),
then the disk server has timed out waiting for the second
half of the disk command. You should restart the operation
from the beginning.

Check the first byte of the User Control Data (RcvUC +DLen).
If the most significant bit is on, the disk has been reset.
Start the entire sequence over,

Check the disk result code (RcvUC+Dcode). If the most
significant bit is on, report an error.

Mass Storage Systems GTI 3-14

@ 0l1d disk server protocol

v [X3 !

TimedOl o FRLSE

Tomad O © TeVE

@

Figure 3.4: Wait for disk server response
01d Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions
below.

1. The timeout value should be set to whatever is specifed in
the device table for this device. If the timeout value is O,
the driver loops forever, waiting for a response. A timeout
value of 0 should be used only for Mirror and Prep mode
commands.

2, The count of 3 is arbitrary. It is basically a retry count.

3. The loop terminates when the transporter return code goes to
0 (message received), or when the timeout value is reached.

4. If the number of retries is exceeded, report a timeout error
and exit.

Mass Storage Systems GTI 3-15

0ld disk server protocol

Semd Flush

SON Wi, \A i

I
| (s

Pigure 3.5: Flush
014 Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions
below.

l. Do an End Receive on socket BOh.
TCmd+OpCode <- 10h (End receive command)
TCmd+ResAdr <~ address of SndRes
TCmd+Sock <= BOh
SndRes+Rcode <~ FFh (initialize result code)

If transporter result (SndRes+Rcode) does not change within
10ms, report a hardware error (DrvRet <- TOErrTR) and exit.

If transporter result (SndRes+Rcode) is not 0, report a
hardware error (DrvRet <- TOErrTR) and exit.

Mass Storage Systems GTI 3-16

0ld disk server protocol

2. Send a Flush command.

TCmd+0OpCode <- 40h (Send command)
TCmd+ResAdr <- address of SndRes
TCmd+Sock <- BOh

TCmd+DatAdr <- address of DCmd buffer
TCmd+DataLen <- 4

TCmd+CrtlLen <- 4

TCmd+Dest <- DSNum

SndRes+Rcode <- FFh (initialize result code)
SnduC +M <= 0

SnduC +N <- 0

If transporter result (SndRes+Rcode) does not change within
100 ms, report a hardware error (TOErrTR) and exit.

Mass Storage Systems GTI 3-17

New disk server protocol

The description of the New Disk Server Protocol is very
similar to that of the 0ld Disk Server Protocol, but there are
two important differences. The first is that the driver must be
prepared to generate request IDs and use media IDS. The second
is that the driver must be prepared to receive a Cancel or
Restart message at any time. The flowcharts for Wait for Disk
Server Response (figure 3.9) and Flush (figure 3.10) are
therefore more complicated. The flowcharts for the Short
(figure 3.6) and Long (figure 3.7) commands look similar to
those for the 01d Disk Server Protocol (figures 3.2 and 3.3),
but the explanations differ.

The new disk server protocol requires that you specify to
which socket, AOh or BOh, the server should send the Results
message. The server tells you to which socket you should send
the Last message.

You will also see that some of the fields in the declarations
are described in three places: as part of the RcvUC record, as
part of the SndUc record, and as part of the Dcmd record. This
is because the protocol information is sometimes included in the
User Data portion of the message, and sometimes in the User
Control portion.

Mass Storage Systems GTI 3-18

s

s

Sample data structures
Server Protocol

into the structure are

WO WO N N NE Ne NE NE Ve e wo “o

commands.

TCmd .BYTE O H
.BYTE 0 :

.WORD 0 :

.BYTE 0 :

.BYTE 0 :

.WORD 0 :

.WORD O :

.BYTE 0 :

.BYTE OFFh :

’

OpCode .EQU 0 :
ResAdr .EQU 1 ;
Sock .EQU 4 ;
DatAdr .EQU 5 ;
DatalLen.EQU 8 H
CrtlLen.EQU 10 H
Dest .EQU 11 ;

Mass Storage Systems GTI

New disk server protocol

for a disk server driver using New Disk

First the data structure is declared, then a list of offsets

declared.

Transporter command vector (see Omninet GTI, pgs. 32,33)
It is not necessary to have more than one command record,
although it is sometimes more convenient to use separate
records which are preinitialized as Send and Setup receive

OpCode - command code

ResAdr - high order byte of result address
- low order word of result address

Sock - socket number

DatAdr - high order byte of data address
- low order word of data address

DatalLen - data length

CrtlLen - user control length

Dest - destination host number

offsets

offset to OpCode

offset to ResAdr

offset to socket number

offset to DatAdr

offset to data length

offset to user control length

offset to destination host number (Send only)

3-19

sends, and one for

WO WO N9 e e we ~o

SndRes .BYTE
+BYTE
«WORD
snduC .WORD
+WORD
«WORD
«WORD
«WORD

[eNoNoloNoNolo N

RCode .EQU
ProtoID.EQU
MsgTyp .EQU
RgstID .EQU
Reason .EQU
MedialI2.EQU

O SNOO

RcvRes .BYTE
.BYTE
«WORD
RcvUC .WORD
«WORD
«WORD
«WORD
.BYTE
.BYTE
.WORD

[eNeoNoNoNoRoNoNololo)

Src .EQU 1
Len .EQU 2
NActual.EQU 6
DCode .EQU 9

Rcv80 .BYTE O
.BYTE 0
.WORD 0

Mass Storage Systems GTI

New disk server protocol

Sample data structures for a disk server driver using New Disk
Server Protocol (cont.) ' I

Result record definitions (see section 2.3)
Every driver should have 2 separate result records, one for

receives.

WO NS WO NG NG VO N VO N Ve VP WP We Ve N Ve w

O MO N Ve WO MO N0 N0 NG VO N NE Ve We WE N N Wo W “o

Send result record

transporter return code

unused

unused

ProtolID - Protocol ID

MsgTyp - message type

RgstID - request ID

M - the number of data bytes to send to drive

N - the maximum number of data bytes
expected on receive

offsets

offset to transporter return code

offset to ProtolD

offset to MsgTyp

offset to RgstID

offset to Reason (for Cancel and Restart)

offset to MedialD (for Cancel and Restart)

Receive result record

transporter return code

Src - source host number

Len - actual length of data received

ProtolID - Protocol ID

MsgTyp - message type

RgstID - request ID

NActual - number of bytes returned from drive
reserved

DCode - disk return code

reserved

offsets

offset to Src

offset to Len

offset to NActual

offset to DCode

Second receive result record for Cancel or Restart
transporter return code

Src - source host number

s,

Data area buffers

T ~e Se Se ~o ~e

(@)
3
Q

+WORD
+WORD
«WORD
+.WORD
.BYTE
.BYTE
+«WORD
.WORD
.WORD
.WORD

NE WO N0 N Ne N Ne N o

[eNeoNeNoloNoNoNoNoNo]

MedialID.EQU 6
ResHost .EQU 8
ResSock .EQU 9
M .EQU 10
N .EQU 12
Cmd .EQU 14

e WO N0 N Ve we “o

S80Msg .WORD
.WORD
.WORD
.WORD
.WORD

[N e N N N

WO WO WO N0 N S0 N0 N

LstSock .EQU 7

Mass Storage Systems GTI

ProtolID
MsgTyp
RgstID
MedialD
ResHost
ResSock
M

N

space £

offsets
offset
offset
offset
offset
offset
offset

space f
ProtolID
MsgTyp
RgstID
Reason,
MedialID
offsets

or

to
to
to
to
to
to

or

New disk server protocol

Sample data structures for a disk server driver using New Disk
Server Protocol (cont.)

the disk command (4 bytes)

MedialD

ResHost

ResSock

M

N

start of command

socket B0h messages (Go, Cancel or Restar!

LastSock

Last socket for Go message

3-21

New disk server protocol

Sample data structures for a disk server driver using New Disk
Server Protocol (cont.)

DrvRet is a global variable in the driver which each routine
sets. It is the value that will be returned to the operating
system upon completion of the driver call.

TJ we ~o Se Se ~o we ~e

rvRet .BYTE 0 ; Driver return code

DrvRet values:
The codes which are marked with an asterisk (*) are those
which may be returned to the caller of the driver. All
others are used internally. The codes which are marked with
a T are transporter return codes.

Ny W0 W N we

SndErr .EQU 140
TOErrDS.EQU 252
TOErrTR.EQU 253

- unable to send messages to disk server

- timed out waiting for disk server response
timed out waiting for transporter
(hardware error)

*
I

’

OkCode .EQU O ; *T

GiveUp .EQU 128 : T - gave up after n retries

TooLong.EQU 129 ; T - message too long

NoSock .EQU 130 ; T - socket not initialized

BadHdr .EQU 131 : T - header length mismatch should never happen
¢« %
’

The following global variables are set on each call from the
values specified for the device.

o we we e

’

TimeOut .WORD 0 ; used to control disk server wait loop
DSNum .BYTE OFFh ; disk server number

Media .WORD 0 ; media id

; The following global variables are set on each call.

!’
UseSock .BYTE 0

; which socket to use (AOh or BOh)
Request ,WORD 0 ; bumped by 1 on each call
; The following global variables are set at driver
; initialization
MyAddr .BYTE 0 ; this computer's transporter address

Mass Storage Systems GTI 3-22

New disk server protocol

&)

i
Sdu-? Cecaive L
bor Cosudie
messaqe
Y
2
Semd. dusle
Cornm ande
Fushw. .,
Wud b 3
ke Cemver
"‘.-Po-\:g e
|
Sdu{) Ruceive
Lo Resulis
1 WS‘—“—%}
N\

Figure 3.6: Flowchart of a short (read) command

New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions on
the following pages.

Mass Storage Systems GTI

New disk server protocol

1. Setup receive for results.

TCmd+OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <- address of RcvVRes

TCmd+Sock <- UseSock

TCmd+DatAdr <- address of user's buffer
TCmd+DataLen <- 512 (use appropriate sector size)
TCmd+CrtlLen <- 12

RcvRes+Rcode <= FFh (must initialize result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

Setup receive for possible socket 80h message (Cancel or

Restart):

TCmd+OpCode <- FOh (Setup Receive command)

TCmd+ResAdr <- address of Rcv80

TCmd+Sock <- 80h

TCmd+DatAdr <- address of S80Msg

TCmd+DataLen <- 8

TCmd+CrtlLen <- 0

Rcv80+Rcode <- FFh (must initialize result code)
2. Send disk command.

TCmd+OpCode <- 40h (Send command)

TCmd+ResAdr <- address of SndRes

TCmd+Sock <- 80h

TCmd+DatAdr <- address of DCmd buffer

TCmd+DataLen <- 18

TCmd+CrtlLen <- 4

TCmd+Dest <= DSNum

SndRes+Rcode <- FFh (initialize result code)

SndUc +M <- 4

SndUc +N <= 512 (use appropriate sector size)

DCmd+ProtolID <- O0l1lFFh

DCmd+MsgTyp <- 0001h (Disk request)

DCmd+RgstID <- Request

DCmd+MedialD <- Media

DCmd+ResHost <- MyAddr

DCmd+ResSock <- UseSock

DCmd+M <- 4 (4 byte read command)

DCmd+N <- 512 (use appropriate sector size)

DCmd+Cmd <= 32h (use appropriate read command)

DCmd+Cmd+1 <- sector address byte d

DCmd+Cmd+2 <- sector address lsb

DCmd+Cmd+3 <- sector address msb

Mass Storage Systems GTI

3-24

New disk server protocol

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) andé exit.

Wait for disk server response.

This is a loop which is checking the transporter return coce
in the receive buffer (FEcvRce+Rcode). When this value goecs
to zero, the disk read has completec. See figure 3.8 and
accompanying notes.

This loop must also check whether a Cancel or Restart
message has been received. See figure 3.9 and accompanying
notes.

If a timeout error or cancellation occurred, try to recover.
See figure 3.10 for a description of the recovery procedure.

Check the responding disk server (RcvRes+Src). If it does
not match the destination disk server (DSNum) the message

received is irrelevant. Setup the receive again, and wait
for another response.

Check the User Control Data (RcvUC). Ensure the ProtolD is
1FFh, and that MsgTyp is 0200h. If not, the message
received is irrelevant. Setup the receive again, and wait
for another response.

Check the disk result (RcvUC+Dcode). If the most
significant bit is on, report an error.

Do an End Receive on socket 80h.
TCmd+OpCode <- 10h (End Receive command)
TCmd+ResAdr <- address of SndRes
TCmd+Sock <- 80h

SndRes+Rcode <- FFh (initialize result code)

Mass Storage Systems GTI 3-25

6.11’.

ya

Flush ...

Svluf racedisc i
L Go
meslages

Semd dasle
Command

<
<

A
wad fre 3

Jiel ecvece

Yespon se .

Timadous,

Cuvulad e
u;g« ct

Gr Go

messagpe

N

Figure 3.7:

New disk server protocol

dusk cevver
(cs'bnx ..

Flush . ..

Flowchart of a long (write) command
New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions on
the following pages.

Mass Storage Systems GTI

' 3-26

1.

2.

New disk server protocol

Setup receive for the Go message. The Go message is sent to
socket 80h.

TCmd+OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <- address of RcvRes
TCmd+Sock <- 80h

TCmd+DatAdr <- address of S80Msg
TCmd+DataLen <- 8

TCmd+CrtlLen <- 0

Rcv80+Rcode <~ FFh (must initialize result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

Send the first 4 bytes of the write command.

TCmd+0pCode <- 40h (Send command)
TCmd+ResAdr <- address of SndRes
TCmd+Sock <- 80h

TCmd+DatAdr <- address of DCmd buffer
TCmd+DatalLen <- 18

TCmd+CrtlLen <- 4

TCmd+Dest <= DSNum

SndRes+Rcode <- FFh (initialize result code)

DCmd+0 <- 1lFFh (protocol id)

DCmd+2 <- 001h (message type = Disk request)
DCmd+4 <- request id

DCmd+6 <- media id

DCmd+8 <- FFh

DCmd+9 <- UseSock

DCmd+10 <- 516 (use appropriate sector size)
DCmd+12 <=1

DCmd+14 <- 33h (use appropriate read command)
DCmd+15 <- sector address byte d

DCmd+16 <- sector address 1lsb

DCmd+17 <- sector address msb

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

Wait for disk server response.

This is a loop which is checking the transporter return code.
Since the Go message will be received on socket 80h, the
driver must check Rcv80+Rcode, not RcvRes+Rcode, as in all
the other cases. When this value goes to zero, a message has
been received. See figure 3.8 and accompanying notes,

This loop must also check whether a Cancel or Restart
message has been received. See figure 3.9 and accompanying

Mass Storage Systems GTI 3-27

New disk server protocol

notes.

4. If a timeout or cancellation error occurred, try to recover.
See figure 3.10 for a description of the recovery procedure,

5. Check the responding disk server (Rcv80+Src). If it does
not match the destination disk server (DSNum) the message
received is irrelevant. Setup the receive again, and wait
for another response.

6. No box.

7. If the data received is anything but the Go message
(S80Msg+ProtolID=01FFh, S80Msg+MsgTyp=0100h), the message
is irrelevant. Setup the receive again, and wait for another
response.

8. Set up another receive to get the results of the next Send.

TCmd+OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <- address of RcvRes
TCmd+Sock <- UseSock

TCmd+DatAdr <- address of DCmd buffer
TCmd+DataLen <- 4

TCmd+CrtlLen <- 12

RcvRes+Rcode <= FFh (must initialize result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

Setup receive for possible socket 80h message (Cancel or
Restart): .

TCmd+OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <- address of Rcv80

TCmd+Sock <- 80h

TCmd+DatAdr <- address of S80Msg
TCmd+DataLen <- 8

TCmd+CrtlLen <- 0

Rcv80+Rcode <- FFh (must initialize result code)
9. Send the rest of the Write command.

TCmd+OpCode <- 40h (Send command)

TCmd+ResAdr <- address of SndRes

TCmd+Sock <- specified in Go message (S80Msg+LstSock)
TCmd+DatAdr <- address of user's buffer

TCmd+DatalLen <- 512 (use appropriate sector size)
TCmd+CrtlLen <- 12

TCmd+Dest <- DSNum

Mass Storage Systems GTI 3-28

8

10.

New disk server protocol

SndRes+Rcode <- FFh (initialize result code)
SndUC +Protold<-1FFh

SndUC +Msgtyp<- 002h (Last message)

SndUC +RgstId<- RegestId

SndUC +Reserl<- 0

SndUC +Reser2<- 0

SndUC +Reser3<- 0

User's buffer contains the data to be written.

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

If the transporter result code is 82h (uninitialized socket),
then the disk server has timed out waiting for the second
half of the disk command. You should restart the operation
from the beginning.

Check that the Results message was received (RcvUC+ProtolD =
1FFh; RcvUC+MsgTyp = 0200h). If not, the message received

is irrelevant. Setup the receive again, and wait for another
response.

Check the disk result (RcvUC+Dcode). If the most
significant bit is on, report an error.

Do an End Receive on socket 80h.
TCmd+OpCode <- 10h (End Receive command)
TCmd+ResAdr <- address of SndRes
TCmd+Sock <- 80h

SndRes+Rcode <- FFh (initialize result code)

Mass Storage Systems GTI 3-29

@ New disk server protocol

timz o~ Time Ot

me ‘wf'
reeeivd ?

e OWd &
Tinw Oud *+ 2

Toad Ot & TEVE

Figure 3.8: Wait for disk server response
New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions
below.

1.

The timeout value should be set to whatever is specifed in
the device table for this device. If the timeout value is 0,
the driver loops forever, waiting for a response. A timeout
value of 0 should be used only for Mirror and Prep mode
commands.

The count of 3 is arbitrary. It is basically a retry count.
The loop terminates when the transporter return code goes to
0 (message received), when a Cancel or Restart message is
received, or when the timeout value is reached.

See figure 3.9 for the Cancel and Restart check.

If the number of retries is exceeded, report a timeout error
and exit.

Mass Storage Systems GTI 3-30

New disk server protocol

Concalfed & FALSE
Lastarte FALSE

[ARWE S Goneatls deTEVE

Lectavt Lestont =T ug

N:‘ﬁl—

Lasek up Lu.ul—s
on sodut 8O

dont

Figure 3.9: Check for Cancel or Restart
New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions
below.

1. Has a message been received on socket 80h (Rcv80+Rcode=00h)?
If not, continue waiting for disk server response,

2, Is the message from our server (RcvB80+Src=DSNum)? If not,
ignore the message, resetup the receive on socket 80h, and
go back to waiting.

3. Is the message a Cancel message (S80Msg+ProtolID=01FFh,
S80Msg+MsgTyp=0300h)? If so, set Cancelled flag, and exit
the wait for response loop.

4. Is the message a Restart message (S80Msg+ProtolID=01FFh,
S80Msg+MsgTyp=FF00h)? If so, set Restart flag, and exit
the wait for response loop.

5. The message is not a Cancel or Restart, so ignore it.
Resetup the receive, and go back to waiting.

Mass Storage Systems GTI 3-31

@ New disk server protocol

End vecuive on
SQM US‘SD&L—

Leport evroc

[PV QRIS 4

End recrive on
sodd Euh

Send Abock °
russage

drone

Figure 3.10: Flush
New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions
below.

l. Do an End Receive on socket UseSock.
TCmd+OpCode <- 10h (End receive command)
TCmd+ResAdr <- address of SndRes
TCmd+Sock {- UseSock.

SndRes+Rcode <

FFh (initialize result code)

If transporter result (SndRes+Rcode) does not change within
10ms, report a hardware error (DrvRet <- TOErrTR) and exit.

If transporter result (SndRes+Rcode) is not 0, report a
hardware error (DrvRet <- TOErrTR) and exit.

Mass Storage Systems GTI 3-32

New disk server protocol

2. Check the Cancelled flag. If set, report an error and exit.

3. Check the Restart flag. If set, restart from the beginning.

4. End receive on socket 80h, in preparation for restart.

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock

SndRes+Rcode

=
-
<_

=

10h (End receive command)
address of SndRes
80h

FFh (initialize result code)

5. Send an Abort command.

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock
TCmd+DatAdr
TCmd+Datalen
TCmd+CrtlLen
TCmd+Dest

SndRes+Rcode

Dcmd+ProtolD
Dcmd+MsgTyp
Dcmd+RgstID
Dcmd+Reason

<~
<
=
-
=
<=
<=

<=

<=
<—
=
{=-

40h (Send command)
address of SndRes

80h

address of DCmd buffer
8

0

DSNum

FFh (initialize result code)

1FFh

0003h (Abort message)
Request

0lh (Timedout)

If transporter result (SndRes+Rcode) does not change within
100ms, report an error (TOErrTR) and exit.

Mass Storage Systems GTI 3-33

Flat cable driver

3.2 Flat cable

You may want to refer to the following manuals while reading
this section:

Chapter 1 of this manual, which describes the sector
read and write commands.

Appendix A of this manual, which describes the flat cable
interface bus.

Mass Storage Systems GTI 3-34

Flat cable driver

e
' A
N
Y L
[}
oud put LA\ (3

Courdt & wund -1

J
,\(,
waid For F

Lne 4o
-‘-u.tn A(O\L'\-‘L vor

Lound & Cound 4}

——————7—
Figure 3.11 Figure 3.12
Flat cable command sequence Flat cable turnaround routine

Mass Storage Systems GTI 3-35

Flat cable driver

Refer to the interface signal descriptions at the end of
Appendix A.

Disk read

l. Send out read command (4 bytes). For each byte, check
that drive is ready (READY line high), then output byte.
See note below.

2. Wait for bus to turn around (READY line high and DIRC
line low).

3. Receive results until drive stops sending. For each byte,
wait for READY line to go high. Then check the DIRC line.
If it is high, the drive has stopped sending; if it is 1low,
read the data byte and increment the count of bytes received.
In our example, we expect to receive 512 bytes; you should
expect to receive the number of bytes specified by the read
command (128, 256, 512, or 1024).

4. Check first byte received. If the most significant bit
is on, an error occurred.

Disk write

1. Send out write command. In our example, we send out 516
bytes. You should send out the appropriate number for the
write command that you are using (132, 260, 516, or 1028).
For each byte, check that drive is ready (READY line high),
then output byte. See note below,

2. Wait for bus to turn around (READY line high and DIRC line
low).

3. Receive results until drive stops sending. For each byte,
wait for READY line to go high. Then check the DIRC line.
If it is high, the drive has stopped sending; if it is low,
read the data byte and increment the count of bytes received.
In our example, we expect to receive 1 byte.

4. Check first byte received. If the most significant bit is
on, an error occurred.

Note: Some care must be exercised in sending out at least the
first byte of a command if a multiplexer is being used. There is
a potential timing problem if the system software can be
interrupted during the send of this first byte. On a multiplexer
network, the individual computers must respond within
approximately 50 microseconds after the READY line goes high, or
the multiplexer will switch to the next slot. (It will first
wait for a while after dropping the READY line -- a period

TN

Mass Storage Systems GTI 3-36

Flat cable driver

controlled by the second polling parameter.) If your driver is
interrupted after it detects that the READY line is high, and
before it sends the first byte, then by the time it is ready to
send the first byte, the multiplexer may have already switched to
the next slot.

This problem can be avoided by turning off the interrupt
system during part of the send loop to insure that if your driver
finds the drive ready, it can send out the byte without being
interrupted. See the sample 8086 driver in Appendix E for an
example of this sequence.

Mass Storage Systems GTI 3-37

Sending disk commands

M

[
Py

Chapter 4: Sending other disk commands EU[;HSHJ

The Corvus mass storage devices support more operations than
just read and write. Semaphores, pipes, mirror operations, etc.,
can all be invoked by application programs. This chapter
discusses how these commands may be used by application
programs.

This chapter merely describes how to send the command bytes
and receive the results. The functionality of the commands
is described in other chapters (Chapter 5: Semaphores,
Chapter 6: Pipes).

The interface for sending a drive command generally consists
of specifying the number of bytes to send, the maximum number of
bytes expected to be received, and 2 buffers, one which contains
the bytes to be sent and one which will contain the results,

PROCEDURE SendCom(SendLen: INTEGER; VAR RecvLen: INTEGER;
VAR SendBuf, RecvBuf: Dbuf);

After a call to SendCom, RecvLen contains the number of bytes
actually received, and RecvBuf contains the data.

For example, the code to send a semaphore lock command would
look something like this (the semaphore name is 'S ')

TYPE Dbuf: PACKED ARRAY [1..530] OF 0..255;

VAR SendBuf, RecvBuf: Dbuf;
SendLen, RecvLen: INTEGER;

BEGIN

SendLen := 10; { semaphore lock sends 10 bytes 1}

RecvLen := 530; { the size of RecvBuf }

SendBuf[l] := 11; SendBuf[2] :=1; { command code and subop }
SendBuf[3] := ORD('S'); { semaphore name }
SendBuf[4] := ORD(' '"):

SendBuf[10] := ORD(' ');
SendCom(SendLen, RecvLen, SendBuf, RecvBuf);

{ now check resuls }
IF RecvBuf[l] > 127 THEN { disk error ... } ELSE
IF RecvBuf[2] =0 THEN { semaphore successfully locked } ELSE
CASE RecvBuf[2] OF { couldn't lock, report error }
128: { already locked }
253: { table full }
254: { table read-write error }

Mass Storage Systems GTI 4-1

Sending disk commands

END;

END.

Corvus provides a version of the SendCom procedure for each
operating system it supports. The next sections describe each
implementation in detail. Often, there are several layers of
interface, and the application developer can pick the level of
interface desired. Generally, the highest level interface is the
most flexible, but also the most costly in terms of execution
time and memory space required. Of course, you as a software
developer may choose to ignore any software provided by Corvus,
and develop your own interface which talks directly to the
transporter or flat cable card. The flowcharts given in Chapter
3, Disk Drivers, should be helpful in this case.

The same example, a semaphore lock, is used in each
description below, but the procedures described may be used to
send any disk command.

The implementation of the SendCom procedure takes one of two
forms: 1) the SendCom procedure calls an entry point in the
disk driver to do the actual send of the command, or 2) the
SendCom procedure is a stand-alone procedure, which does not
require the disk driver to be present.

The advantages and disadvantages of form 1, where the SendCom
procedure calls the driver, are summarized below:

Advantages: the send-receive need only be coded once, and it
becomes part of the operating system. Application programs
then do not have to change when they are ported from one
hardware environment to another.

Disadvantages: the application program cannot run unless the
driver is installed. Drivers become part of the resident
operating system, and therefore occupy memory, leaving less
memory available to those applications which do not use
the feature.

The advantages and disadvantages of form 2, where the SendCom
procedure is a stand-alone procedure, are summarized below:

Advantages: the driver need not be installed, leaving more
memory available to the application.

Disadvantages: each application which uses the interface must
be relinked if the interface changes, either because of
bugs or hardware changes.

Most of the early Corvus implementations, including Apple

Constellation I and CP/M 80, use form 2, a stand-alone procedure,

Mass Storage Systems GTI 4-2

Sending disk commands

to send drive commands. The later implementations, including
MSDOS Constellation II, use form 1.

In most of the Corvus implementations, the procedure SendCom
is usually coded as two separate procedures: CDSEND and CDRECV
(the reason for this is historical). A call to CDSEND must
always be followed immediately by a call to CDRECV. Also, in
most of the Corvus implementations, the SendBuf and RecvBuf are
the same buffer; i.e., the results of a command overlay the
command itself.

Corvus Concept Operating System

Direct communication with the Corvus drive is handled by the
two procedures CDSEND and CDRECV. Any command described in
Chapter 1 may be sent to the Corvus drive using these routines.
These procedure are contained in the unit CCDRVIO, which is in
library C2LIB. C2LIB is included in the standard release of
Concept software.

Please refer to the Pascal Library User Guide

(Corvus P/N 7100-04978). You will need to look at Chapter 14,
Corvus Disk Interface Unit (ccDRVIO).

CDSEND and CDRECV each have two parameters described by the
following type declarations, which appear in the interface
section of unit ccDrvio:

const SndRcvMax = 530;

type CDhaddr = RECORD
SlotNo: byte;
Kind: SlotTypes;
NetNo: byte;
Stationno: byte;
Driveno: byte;
BlkNo: LONGINT;

slot number 1}

OmninetDisk or LocalDisk (defined in CCDefn)
unused }

Omninet server address }

drive number }

block number }

s Xann Yane Xann Xaen X oo

type SndRcvStr= RECORD
sln: INTEGER; { length of command to be sent }
rin: INTEGER; { maximum number of bytes to be returned }
CASE INTEGER OF
2: (c: PACKED ARRAY [l..SndRcvMax] OF CHAR);
l: (b: ARRAY [1..SndRcvMax] OF byte);
END;

Calls to these procedures occur in pairs. That is, a call to
CDSEND is followed immediately by a call to CDRECV. The same
variables are normally used for both calls.

The unit ccDRVIO must be initialized by calling the
procedure ccDrvIolInit BEFORE calling any other procedures in the

Mass Storage Systems GTI 4-3

Sending disk commands

unit., ccDrvIoInit should only be called once, at the beginning of
your program.

The following program fragment demonstrates a normal command
sequence:

USES {CCLIB} CCDhefn,
{C2LIB} ccDrvio;

VAR xcv: SndRcvStr;
NetLoc: CDAddr;
X: INTEGER;

BEGIN
ccDrvIolnit; { initialize the unit }
InitSlot(NetLoc); { sets NetLoc to boot device }

:= 10; xcv.rln := 530
Xcv.b[l] := 11; =xcv.b[2] :=
:= 'S'; xcv.c[4] :=

- = ~e

: { semaphore lock command }
LY
’

Xcv.c[10] = ' ';

CDSEND (NetLoc, xcv):
CDRECV (NetLoc, xcv):

IF xcv.b[1]
IF xcv.b[2]
BEGIN

X := xcv.b[2];
IF x < 0 THEN x := x+256;
CASE x OF
128: { already locked }
253: { table full }
254: { error on table read-write }
END;
END;

< 0 THEN { report disk error } ELSE
= 0 THEN { semaphore successfully locked } ELSE

The procedures CDSEND and CDRECV are found in the unit
ccDrvio in the file C2LIB. This unit has several other
procedures in it, so the unit is rather large. If space is a
problem, you can interface directly to the SlotIO driver as

described below.

Commands are sent using the UNITWRITE procedure. Results
are received with the UNITREAD procedure. The parameters are
described below:

Mass Storage Systems GTI 4-4

Sending disk commands

UNITWRITE (unitno, the SlotIO driver }

buffer, the command to be sent }
length, length of the command }
0, not used }

control contains the slot and
server # where the command is
to be sent; msb is server # and
lsb is slot #. server # is.0
for slots 1 to 4 (local disk) 1}

control);

UNITREAD (unitno, the SlotIO driver }

buffer, where the results will be stored }
length, maximum length to be received }
0, not used }

control); same as on UNITWRITE }

UNITWRITE and UNITREAD should always be used in pairs; i.e.,
a UNITWRITE should be followed immediately by a UNITREAD. The
function IORESULT should be called following each call to
UNITWRITE or UNITREAD to check for an error. The following
errors may be returned:

Value Meaning
0 no error
4 disk error (disk result > 7Fh)

The unit number to which the SlotIO driver is assigned may be
obtained by calling the EXTERNAL procedure 0SS1tDv.

For instance, the following code fragment sends a semaphore
lock command:

VAR c: PACKED ARRAY [1..530] OF CHAR; { the longest command
{ is 530 bytes }

FUNCTION OSS1tDv: EXTERNAL;

BEGIN

éii] := CHR(11); { semaphore command }
c[2] := CHR(1l); { lock }

c[3] := 's'; { semaphore name }
éEiO] e= ' 1,

UNITWRITE(OSSlotDv, ¢, 10, 0, $105); { send command to }
{ slot 5, server 1 }
ior := IORESULT;
IF ior = 0 THEN BEGIN
UNITREAD(0OSSlotDv, ¢, 530, 0, $105); { get results }
ior := IORESULT;
END;
IF ior=0 THEN {all ok} ELSE {report error};

Mass Storage Systems GTI 4-5

Sending disk commands

CASE ORD(c[2]) OF
0: { semaphore locked successfully }

i 128: { semaphore was already locked }

) 253: { semaphore table full }
254: { error reading-writing semaphore table }
END;

MSDOS 1.x, 2.x Constellation 1II

For MSDOS, direct communication with the Corvus drive is
handled by the two procedures CDSEND and CDRECV. Any command
described in the Chapter 1 may be sent to the Corvus drive
using these routines.

The source and object files for the routines described here
are available on diskette as part of the Software Developer's
Kit for MSDOS. See Appendix F for details.

The procedures CDSEND and CDRECV are written in machine
language and are assembled using the Microsoft Assembler.
Because there is no standard or dominant language for MSDOS
applications developers, we have chosen to give the examples here
in the language used by Corvus for MSDOS applications, MS Pascal.
Unfortunately, each language uses a slightly different parameter
passing mechanism. On the developer's diskette mentioned above,
interfaces are provided for MS Pascal and compiled Basic. If you
are using some other language, you will have to make the

appropriate changes to the source for DRIVEC2.ASM and reassemble
it.

The procedures CDSEND and CDRECV are contained in the module
DRIVEC2.0BJ. The routines in this module must be initialized by
calling the function INITIO BEFORE calling any other procedures
in the module. INITIO should be called only once, at the
beginning of your program.

CDSEND and CDRECV each have one parameter described by the
following type declaration:

type Longstring= RECORD

length: INTEGER;

CASE INTEGER OF
{ n should be equal to the length of the longest }
{ command you intend to send or receive }
l: (int: PACKED ARRAY [l..n] OF 0..255);
2: (str: PACKED ARRAY [l..n] OF CHAR);

END;

Calls to these procedures occur in pairs. That is, a callkto
CDSEND is followed immediately by a call to CDRECV. The same
variable is normally used for both calls. The following program

«

Mass Storage Systems GTI 4-6

Sending disk commands

fragment demonstrates a normal command segquence:

PROCEDURE CDSEND(xcv:longstring); EXTERN;
PROCEDURE CDRECV(xcv:longstring); EXTERN;
FUNCTION INITIO: INTEGER; EXTERN;

VAR xcv: longstring;
BEGIN
IF INITO <> 0 THEN {error...}; { initialize the unit }

xcv.length
Xcv.int [1]
Xcv.str[3]
xcv.str 4]

xcv.str[10] : v,

CDSEND (xcv) ;
CDRECV (xcv) ;

IF xcv.int[1]>127 THEN { report disk error } ELSE
IF xcv.int[2]=0 THEN { semaphore successfully locked } ELSE
BEGIN
CASE xcv.int[2] OF
128: { already locked }
253: { table full }
254: { error on table read-write }
END;
END;

In a multiple server environment, the default server to be
accessed is the boot server. If you wish to send a command to a
server other than the boot server, you can so specify by calling
the procedure SETSRVR. The declaration for this procedure is:

function SETSRVR(srvr: INTEGER): INTEGER; EXTERNAL;

The following function call sets the server to server 3:

IF INITIO <> 0 THEN { error ... }
b := SETSRVR(3);

The function SETSRVR returns the boot server address, and ignores

the parameter if it is greater than 255, or negative. Thus, you
can also use this function to find out the boot server address:

IF INITIO <> 0 THEN { error... }

Mass Storage Systems GTI 4-7

xcv.int[2] := 1; { semaphore lock command }

Sending disk commands

: SETSRVR(-1) ;
now b contains the Omninet address of the boot server }

b
{

CP/M 86 Constellation II

For CP/M 86, direct communication with the Corvus drive is
handled by the two procedures SEND and RECV. Any command
described in the Chapter 1 may be sent to the Corvus drive
using these routines.

The source and object files for the routines described here
are available on diskette as part of the Software Developer's
Kit for CP/M 86. See Appendix F for details.

The procedures SEND and RECV are written in machine
language and are assembled using the Digital Research assembler.
Because there is no standard or dominant language for CP/M
applications developers, we have chosen to give the examples here
in the language used by Corvus for CP/M applications, Pascal MT+.
Unfortunately, each language uses a slightly different parameter
passing mechanism. On the developer's diskette mentioned above,
an interface is provided for Pascal MT+. If you are using some
other language, you will have to make the appropriate changes to
the source for CPMIO86.ASM and reassemble it.

The procedures SEND and RECV are contained in the module
CPMIO86 .R86. The routines in this module must be initialized by
calling the function INITIO BEFORE calling any other procedures
in the module. INITIO should be called only once, at the
beginning of your program.

SEND and RECV each have one parameter described by the
following type declaration:

type Longstring= RECORD
length: INTEGER;
CASE INTEGER OF
{ n should be equal to the length of the longest }
}

{ command you intend to send or receive

l: (int: PACKED ARRAY [l..n] OF 0..255);

2: (str: PACKED ARRAY [l..n] OF CHAR);
END;

Calls to these procedures occur in pairs. That is, a call to
SEND is followed immediately by a call to RECV. The same
variable is normally used for both calls. The following program
fragment demonstrates a normal command sequence:

EXTERNAL PROCEDURE SEND(xcv:longstring);
EXTERNAL PROCEDURE CDRECV(xcv:longstring);
EXTERNAL FUNCTION INITIO: INTEGER;

Mass Storage Systems GTI 4-8

Sending disk commands

VAR xcv: longstring;
BEGIN
IF INITO <> 0 THEN {error...}:; { initialize the unit }

Xxcv.length
xcv.int[1]
Xxcv,.str[3]
Xcv.str[4]

Xcv,.str[10] := ' ';

xcv.int[2] := 1; { semaphore lock command }

nuwnn

ee o0 se oo

SEND (xcv) ;
RECV(xcv) ;

IF xcv.int[1]>127 THEN { report disk error } ELSE
IF xcv.int[2]=0 THEN { semaphore successfully locked } ELSE
BEGIN
CASE xcv.int[2] OF
128: { already locked }
253: { table full }
254: { error on table read-write }
END;
END;

LN]

In a multiple server environment, the default server to be
accessed is the boot server. If you wish to send a command to a
server other than the boot server, you can so specify by calling
the procedure SETSRVR. The declaration for this procedure is:

EXTERNAL function SETSRVR(srvr: INTEGER): INTEGER;

The following function call sets the server to server 3:

IF INITIO <> 0 THEN { error ... }
b := SETSRVR(3);

The function SETSRVR returns the boot server address and ignores
the parameter, if the parameter is greater than 255, or negative.
Thus, you can also use this function to find out the boot server
address:

IF INITIO <> 0 THEN { error... }
b := SETSRVR(-1);
{ now b contains the Omninet address of the boot server }

Mass Storage Systems GTI 4-9

Sending disk commands

Apple DOS Constellation II

Please read the section on Apple DOS Constellation I first.
Constellation II is not supported on multiplexer networks. If
you are using an Omninet network, you should assemble and use the
code given below in place of OMNIBCI.OBJ, because the transporter
RAM code is different for Constellation II than it was for
Constellation I.

For Apple Constellation 1I, direct communication with the
Corvus drive is handled by calling an entry point in the Corvus
driver. The Corvus driver must have been previously loaded into
the RAM on the transporter card; it is loaded by the boot
process.

The driver is called by activating the slot containing the
card, and then executing a JSR to location C80Bh. The next 8
bytes following the JSR instruction contain the parameters to the
driver:

Bytes Meaning

0 and 1 Address of command buffer.
2 and 3 Length of command.

4 and 5 Address of result buffer.
6 and 7 Maximum length of result.

Here is a listing of OMNIBCI.OBJ for Constellation II:

.ABSOLUTE
.PROC OMNIBCI

LEN .EQU 0300
BUF .EQU 0302

START .ORG B8A00

LDA LEN ; move command length

STA CmdLen

LDA LEN+1

STA CmdLen+l

LDA BUF : move command address

STA CmdBuf

STA RsltBuf : make result address same as command
LDA BUF+1 ; address

STA CmdBuf+l
STA RsltBuf+l

LDY #28. ; make result length = 530
STY RsltLen
LDY #2

STY RsltLen+l

JSR GoRAM RAM code will return to next instruction

-,

Mass Storage Systems GTI 4-10

Sending disk commands

LDA RsltLen return result length

~e

STA LEN

LDA RsltLen+l

STA LEN+1

RTS ; return to caller

GoRAM BIT OCFFF
BIT 0C600
JSR 0C80B

enable Omninet RAM
assumes slot 6
no return necessary

~e “o weo

CmdBuf .WORD O ; address of command

CmdLen .WORD O ; length of command

RsltBuf .WORD O ; address of result

RsltLen.WORD O ; maximum length of result
. END

If you use this version of OMNIBCI.OBJ, your programs that
were coded using the OMNIBCI.OBJ provided by Corvus for
Constellation I need not be modified for Constellation II.

Version IV p-system and Apple Pascal Constellation II

Direct communication with the Corvus drive is handled by the
two procedures CDSEND and CDRECV. Any command described in the
Chapter 1 may be sent to the Corvus drive using these routines.
These procedure are contained in the file CORVUS.LIBRARY, which
is part of the Software Developer's Kit available for Version IV
p-system and Apple Pascal 1.2. See Appendix F for details.

CDSEND and CDRECV are contained in unit UCDRVIO.

CDSEND and CDRECV each have two parameters described by the
following type declarations (these declarations appear in the
interface section of unit UCDrvio):

const SndRcvMax = 530;

type CDhaddr = RECORD
SlotNo: byte; { slot number }
Kind: SlotTypes; { OmninetDisk or LocalDisk (defined in CCDefn)
NetNo: byte; { unused }
Stationno: byte; { Omninet server address }
Driveno: byte; { drive number }
BlkNo: LONGINT; { block number }

type SndRcvStr= RECORD
sln: INTEGER; { length of command to be sent }
rin: INTEGER; { maximum number of bytes to be returned }
CASE INTEGER OF
2: (c: PACKED ARRAY [l..SndRcvMax] OF CHAR);

Mass Storage Systems GTI 4-11

P

Sen

l: (b: PACKED ARRAY [1l..SndRcvMax]
END;

Calls to these procedures occur in pairs.

ding disk commands

OF byte);

That is, a call to

CDSEND is followed immediately by a call to CDRECV. The same

variables are normally used for both calls.

The unit UCDRVIO must be initialized by cal
procedure ccDrvIolInit BEFORE calling any other

ling the
procedures in the

unit. ccDrvIolInit should only be called once, at the beginning of

your program.

The following program fragment demonstrates
sequence:

USES {CORVUS.LIBRARY} UCDefn, UCDRVIO;

VAR xcv: SndRcvStr;
NetLoc: CDAddr;
X: INTEGER;

a normal command

BEGIN

ccDrvIolInit; { initialize the unit }
InitSlot(NetLoc) { sets NetLoc to boot device }
Xxcv.sln := 10; xcv.rln := 530;

xcv.b[l] := 11; =xcv.b[2] := 1; { semaphore lock command }
xcv.c[3] := 'S'; xcv.c[4] =" ';

xcv.c[10] := ' ',

CDSEND (NetLoc, xcv):;
CDRECV (NetLoc, xcv);

IF xcv.b[1l] > 127 THEN { report disk error

} ELSE

IF xcv.b[2] = 0 THEN { semaphore successfully locked } ELSE

BEGIN
X := xcv.b[2];
CASE x OF
128: { already locked }
253: { table full }
254: { error on table read-write }
END;
END;

e o @

The procedures CDSEND and CDRECV are found
UCDrvio in the file CORVUS.LIBRARY. This unit
procedures in it, so the unit is rather large.

in the unit
has several other
If space is a

problem, you can interface directly to the machine language

routines contained in the module DRVSTF.CODE.

Mass Storage Systems GTI

The routines are:

4-12

Sending disk commands

PROCEDURE drvSend (VAR s:sndRcvStr); EXTERNAL
PROCEDURE drvRecv (VAR s:sndRcvStr); EXTERNAL
Uses PASCAL global variable DISK_SERVER 2

FUNCTION OSactS1t:INTEGER; EXTERNAL

Returns 1 if we have booted up under CONSTELLATION 1I1I,
0 if we have not.

FUNCTION OSS1tType(slot : INTEGER) : INTEGER; EXTERNAL;
For valid slots, return the interface card type, ‘
1=flat cable 2=Omninet; for all other slots
returns 0O=no disk

FUNCTION OSactSrv : INTEGER;
Return the active disk server. This procedure assumes
that the driver is attached and we have booted up under
CONSTELLATION II. No checking is done

FUNCTION XPORTER_OK : BOOLEAN;
Returns true if transporter is ok, false if transporter
with duplicate address is on the network. Returns true
if flatCable interface is present.

FUNCTION FIND_ANY_SERVER (VAR server : INTEGER): BOOLEAN;
Returns true if any disk server is found on the network,
and sets the variable server to the address of the disk
server. Returns false if no disk server replys.

Returns true with a server of zero if the interface card
is flat cable

Commands are sent using the drvSend procedure. Results
are received with the drvRecv procedure.

Two global variables must also be declared: active_slot
and disk_server. These must be set prior to calling drv_send.

For instance, the following code fragment sends a semaphore
lock command:

VAR active_slot: INTEGER;
disk_server: INTEGER;
omni_error: INTEGER;

xcv: SndRcvStr;

BEGIN

active_slot := OSactSlt; Disk_server := OSActSrv;

;é;.sln t= 10; xcv.rln := 530;

xcv.b[1l] := 11; xcv.b[2] := 1; { semaphore lock command }
xcv.c[3] := 'S'; xcv.c[4] := "' ';

xcv.c[10] := ' ';

Mass Storage Systems GTI 4-13

Sending disk commands

drv_send (xcv) ;
drv_recv(xcv) ;

IF xcv.b[1l] > 127 THEN { report disk error } ELSE
IF xcv.b[2] = 0 THEN { semaphore successfully locked } ELSE
BEGIN
X := xcv.b[2];
CASE x OF
128: { already locked }
253: { table full }
254: { error on table read-write }
END;
END;

Apple Pascal Constellation I

In Pascal, direct communication with the Corvus drive is
handled by the two procedures CDSEND and CDRECV. Any command
described in the Chapter 1 may be sent to the Corvus drive
using these routines.

These procedures are contained in the unit Driveio of
CORVUS.LIBRARY. This unit must be initialized by calling the
procedure Driveioinit BEFORE calling any other procedures in the
unit., Driveioinit should only be called once, at the beginning of
your program.

CDSEND and CDRECV each have one parameter described by the
following type declaration (which appears in the interface
section of Driveio):

type LONGSTR= RECORD

length: INTEGER;

CASE INTEGER OF
{ n should be equal to the length of the longest }
{ command you intend to send or receive }
l: (int: PACKED ARRAY [l..n] OF 0..255);
2: (byt: PACKED ARRAY [l..n] OF CHAR);

END;

Calls to these procedures occur in pairs. That is, a call to
CDSEND is followed immediately by a call to CDRECV. The same

variable is normally used for both calls. The following program
fragment demonstrates a normal command sequence:

USES Driveio;

VAR xcv: LONGSTR;

Mass Storage Systems GTI 4-14

Sending disk commands

BEGIN
Driveioinit; { initialize the unit }

xcv.length
Xcv.int[1]
Xcv.byt[3]
Xcv.byt[4]

xcv,int[2] := 1; { semaphore lock command }

- -
nH+HO
- - Ne weo

xcv.byt[10] := ' !';

CDSEND (xcv) ;
CDRECV (xcv) ;

IF xcv.int[1]1>127 THEN { report disk error } ELSE
IF xcv.int[2]=0 THEN { semaphore successfully locked } ELSE
BEGIN :
CASE xcv.int[2] OF
128: { already locked }
253: { table full }
254: { error on table read-write }
END;
END;

The procedures CDSEND and CDRECV are found in the unit
DRIVEIO in the file CORVUS.LIBRARY. These procedures are
independent of whether you are using flat cable or Omninet. The
price you pay for this independence is<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>