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57 ABSTRACT 

A processor having the prior three user addressing modes 
and a new virtual system mode (VSM). The user modes 
include real mode, protected mode and virtual 8086 mode. 
In VSM, the processor can utilize the VSM addressing 
mechanism and the mode of operation prior to entering 
VSM. Transitions from the user modes to virtual system 
mode can be made by indirect calls through a call gate or 
through vectored entries. While in VSM the processor can 
utilize VSM memory and I/O space modes, but can also 
directly utilize the I/O space and memory of the user mode 
present prior to entry into VSM by using a segment override. 
The upper 16MB of the virtual system mode memory space 
(0xff000000 through 0xffffffff) is designated as non-mapped 
virtual system mode memory. Virtual system mode logical 
addresses below 0xff000000 will be translated to physical 
addresses by the current page table if paging is enabled 
(protected mode). Upon exiting VSM, any processor regis 
ters that were saved are restored so the user mode operation 
can continue as if the emulation operation were performed 
by the normal interrupt service routine. 

86 Claims, 8 Drawing Sheets 
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1. 

PROCESSOR WITH VIRTUAL SYSTEM 
MODE 

FIELD OF THE INVENTION 

This invention relates to a processor and more specifically 
to a processor having a mode of operation for emulating 
standard PC hardware transparently to the operating system, 
with this mode of operation allowing segment registers to 
operate according to different addressing modes at the same 
time. 

BACKGROUND OF THE INVENTION 

The x86 family of personal computers is well established 
in the marketplace. Computer manufacturers strive to design 
the highest performing systems at the lowest cost. However, 
often the highest performing or lowest cost parts from which 
a computer can be built are not PC-compatible. If a com 
puter is not PC compatible, the sales market for the com 
puter is severely diminished, thus PC-compatibility is very 
desirable. Currently, PC systems designers are limited in 
their ability to build systems that do not conform to PC 
hardware standards. The reason for the limitation is that 
much of the existing software that runs on PC's makes 
explicit assumptions about the nature of the hardware. If the 
hardware provided by the systems designer does not con 
form to those standards, many software programs will not be 
usable. This limits the systems designer's ability to reduce 
costs and improve functionality. 

Currently, the most common means of running the soft 
ware on a non-compatible machine is to use a software 
program that does complete emulation of a PC. The emu 
lation is performed on each instruction. This method is 
practical only for machines that are not binary compatible 
with x86 PC's because performance is poor. 
One prior approach to using non-standard hardware 

devices provided hardware circuitry to trap and store each 
bus access to a standard PC device and then cause the 
execution of an interrupt. The invoked interrupt handler then 
determined the accessed address from the hardware 
circuitry, converted this to the proper device address and 
executed that operation. This technique worked adequately 
when the processor and system were relatively simple and 
only for certain operating systems. However, it is not 
practical on current computer systems because of increased 
complexity of the processor, system and operating systems 
and the frequent unavailability of an interrupt. 
This interrupt problem could be solved by the use of 

System Management Mode (SMM) found in certain 
processors, such as the Intel 486SL, 486 S-class and Pen 
tium microprocessors. The SMIinterrupt cannot be masked 
by software and therefore is always available to the system 
manufacturer. However, there are several disadvantages to 
the current SMM implementations for doing hardware emu 
lation. The first is that entry to and exit from SMM requires 
many processor cycles. This is because SMM implementa 
tions were done with the assumption that the only thing that 
would be done in SMM is power management. This assump 
tion caused the SMM implementor to design the processors 
so that the full state of the processor was saved on entry to 
SMM and the full state of the processor was restored on exit 
from SMM. These operations require 100's of processor 
cycles. This entry/exit overhead of current SMM implemen 
tations greatly limits it's usefulness for emulation. 
A second disadvantage is that while in SMM access to 

user memory is limited and/or cumbersome because of the 
different modes of operation and their corresponding 
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2 
addressing mechanisms. In this context, user memory is 
memory that is used by programs when the processor is 
operating in one of its operating modes. In the 386 family of 
microprocessor, three different operating modes exist in 
addition to SMM. Real mode is the default mode of opera 
tion for the microprocessor and is provided for backwards 
compatibility with the earlier 8086 and 8088 processors. 
Protected mode was first introduced in the 80286 micropro 
cessor and improved in the 386 microprocessor. Protected 
mode removes most of the memory management limitations 
of the earlier processors. The preferred mode of operation 
for the 386 processor is its protected mode. Once the 
processor is in protected mode, an additional real mode 
environment, called virtual 8086 mode, can be created for 
backward compatibility with real mode applications. 
Memory management in the processor is performed by a 
segmentation unit and a paging unit. Real mode utilizes a 
16-bit selector, shifted left four bits, and a 16-bit offset to 
produce a 20-bit address for addressing up to 1MB of 
memory. The 16-bit offset limits the segment to a maximum 
of 64k of memory. In protected mode the segment register 
is redefined as a selector which points to a 32-bit segment 
base address and the offset is increased to 32 bits, with the 
segment base address and the offset simply being added to 
provide the linear address. Protected mode may enjoy a 4GB 
maximum memory segment. If paging is enabled, the linear 
address is then translated by the paging unit into a physical 
address. Paging is a mechanism to support a large physical 
address space in memory using a small amount of memory 
and some hard disk space. Virtual 8086 mode addressing is 
similar to real mode in that the same 16-bit selector and 
offset are used, however, it is different from real mode in that 
the 1MB address range can be placed anywhere within the 
32-bit protected mode addressing range. Thus, three differ 
ent addressing schemes may exist in a computer system 
using a 386 compatible processor. When the processor 
switches to system management mode, a fourth hybrid 
addressing mechanism is utilized. SMM generally uses a 
32-bit flat memory model addressing scheme. Segment 
register values are stilled shifted 4 bits and added to the 
offset values, but both can be 32 bit values. 

In a 386 compatible processor, addressing mechanisms 
cannot be mixed between different modes of operation. For 
example, when the processor is operating in 32-bit protected 
mode and then switches to 16-bit real mode, no protected 
mode addressing selectors or offsets can be directly used. To 
access a protected mode address space with a real mode 
addressing mechanism, the entire protected mode addressing 
mechanism including selectors, offsets, and paging must be 
calculated. Such is the case between any two addressing 
modes. This limitation complicates device emulation when 
using SMM because the SMM code must devote significant 
amounts of time in an address translation process which 
converts the address used by the user program into an 
address that SMM can use to access the same memory 
location. This process is complicated by the fact that the x86 
architecture supports several different addressing modes so 
that the SMM code must analyze the operational mode of the 
user program and select an address conversion algorithm 
that is appropriate to that mode. So this addressing mode 
change in SMM further exacerbates the overhead problems, 
so that use of the SMI is not readily feasible. 
Thus, it is desirable to have a processor that can provide 

emulation transparently to the operating system and appli 
cation software while using the built-in memory manage 
ment features but using very few processor cycles to enter 
and exit the emulation operations and not having large 
address translation burdens. 
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SUMMARY OF THE INVENTON 

A processor embodying the principles of the present 
invention includes a processor having the prior three user 
addressing modes and a new virtual system mode (VSM). 
The processor is preferably compatible with Intel 486 or 
higher processors, and therefore in this context, the user 
modes refer to normal operational modes of the processor, 
including real mode, protected mode and virtual 8086 mode. 

Virtual System mode (VSM) refers to the features pro 
vided by the present invention. In VSM, the processor can 
utilize the VSM addressing mechanism and one other, that 
being the addressing mechanism of the mode of operation 
prior to entering VSM. 

Transitions from the user modes to virtual system mode 
can be made by indirect calls through a callgate, such as by 
a jump or call instruction, or through vectored entries, such 
as a hardware interrupt or I/O fault. When transitioning from 
the user modes to virtual system mode, the processor treats 
the transition similar to a task switch, thus saving only 
certain minimal processor registers depending on the VSM 
entry cause. The remaining processor registers are not 
disturbed, thereby providing low overhead for entry and exit 
from virtual system mode. 
While in the user modes, user mode addressing mecha 

nisms remain unchanged. While in virtual system mode, the 
processor can utilize VSM memory and I/O space modes, 
but can also directly utilize the I/O space and memory of the 
user mode present prior to entry into VSM. If in VSM and 
a segment override is applied, the segment override register 
is interpreted according to the addressing mechanism of the 
mode of operation prior to entering VSM. 
While in virtual system mode, memory addresses may be 

paged or non-paged depending on the user mode from which 
virtual system mode was called. Virtual system mode code 
executes in a 32-bit logical space. The default data size is 
32-bits, but overrides may be used. The upper 16MB of the 
virtual system mode memory space (0xff000000 through 
0xffffffff) is designated as non-mapped virtual system mode 
memory. Virtual system mode logical addresses in this range 
are directly converted to an addressable range of the pro 
cessor. Virtual system mode logical addresses below 
0xff000000 will be translated to physical addresses by the 
current page table if paging is enabled (protected mode). 
Otherwise, these addresses become physical addresses with 
out modification (real mode). 
VSM may be exited by one of three instructions. Upon 

exiting, any processor registers that were saved are restored 
so the user mode operation can continue as if the emulation 
operation were performed by its own interrupt service 
routine. 

BREEF DESCRIPTION OF THE DRAWINGS 

A better understanding of the present invention can be 
obtained when the following detailed description of the 
preferred embodiment is considered in conjunction with the 
following drawings, in which: 

FIG. 1A is a block diagramillustrating a computer system 
C containing a processor according to the present invention. 

FIG. 1B is a block diagram of the processor. 
FIG. 2A illustrates the general purpose registers of the 

processor. 
FIG. 2B illustrates the segment registers and instruction 

pointer register of the processor. 
FIG. 2C illustrates the flags register of the processor. 
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4. 
FIG.2Dillustrates the Control Register 0 of the processor. 
FIG. 2E illustrates the VSM enable register of the pro 

CCSSO. 

FIG. 2F illustrates the VSM stack register and VSM 
Vector Base register of the processor. 

FIG. 2G illustrates the VSM I/O protection bitmap reg 
ister and VSM I/O protection bitmap of the processor. 

FIG. 3A illustrates the real mode addressing mechanism 
of the processor. 

FIG. 3B illustrates the protected mode addressing mecha 
nism of the processor. 

FIG. 3C illustrates an exemplary addressing situation for 
the VSM addressing mechanism of the processor. 

FIG. 4 illustrates a segment descriptor of the processor. 
DETALED DESCRIPTION OF THE 

PREFERRED EMBODIMENT 
The processor of the presentinventionis preferably based 

on an Intel compatible 486 or Pentium class microprocessor, 
however the invention could also be used with an Intel 386 
class microprocessor. The use of the features described 
herein could also be used with other types of microproces 
sors. For purposes here, the terms microprocessor and 
processor can be used interchangeably. The new mode 
defined according to the present invention is in addition to 
the existing modes of the 486 and Pentium processors, and 
unless otherwise indicated, the operation and features of the 
processors remain unchanged. Familiarity with the operation 
of the 486 and Pentium are assumed in this description. For 
any details, reference should be made to the appropriate data 
book. 
The processor of the present invention is designed to be 

used in a DBM compatible computer. FIG. 1A is a block 
diagram of the processor Pin an exemplary computer system 
C. The processor P is connected to a memory unit 102 and 
abus controller 106 by a hostbus 104. Processor P provides 
the data, address and control signals to the hostbus 104 for 
communicating with external circuits, and likewise receives 
data on the host bus 104 from the external circuits. One of 
such external circuits is the memory unit 102. Memory unit 
102 provides conventional memory storage for programs 
and data of the computer system C. The bus controller 106 
is connected by an I/O bus 108 to a ROM 110 and several 
I/O devices 112, such as a keyboard, floppy disk, hard disk, 
serial port, parallel port, and monitor. The items referred to 
herein but not explicitly shown on the figures are offered for 
illustrative purposes and are not generally important to the 
enablement of the present invention since the PC architec 
ture is well known to those of ordinary skill in the art. 
Additionally, the processor of the present invention could be 
used in a wide variety of computer systems. 

FIG. 1B illustrates the major portions of processor P. The 
processor P has a bus interface unit 120 connected to an 
execution unit 122 and a memory management unit 124. Bus 
interface unit 120 provides data, address and control signals 
for communicating with external circuits. Execution unit 
122 contains logic necessary for executing instructions, 
including an instruction prefetch and predecode unit, a 
control unit for decoding and sequencing of instructions, and 
an arithmetic logic unit containing a set of registers for 
executing each individual instruction. The execution unit 
122 works in conjunction and is connected to the memory 
management unit 124. The memory management unit 124 
contains the logic necessary for address generation and 
protection checking and includes a segmentation unit and a 
paging unit. These functions will be described in more detail 
below. 
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The bus controller 106 translates the processor P cycles 
into I/O bus 108 cycles for providing communication 
between the processor P and the I/O devices 112. In the 
preferred embodiment of the computer system C, the I/O 
devices 112 may not be PC-compatible. Compatibility is 
important because in the PC, software generally expects: 
certain registers and bits to be present in most I/O devices. 
If a device is designed into a computer that is not 
compatible, the software would not be able to communicate 
directly with the device, therefore the computer would not 
operate properly. A processor embodying the present inven 
tion would handle non-compatible device by having a facil 
ity for: interrupting the processor when software tries to 
access the known non-PC-compatible device; and process 
ing the operation transparently to the software so that the 
software believes the device is PC compatible. The feature 
that provides these benefits is hereinafter known as virtual 
system mode (VSM). 
The processor Phas four modes of operation, namely, real 

mode, protected mode, virtual 8086 mode and virtual system 
mode. In this context, real mode, protected mode and virtual 
8086 mode are referred to as user modes. Those having 
ordinary skill in the art will recognize that the user modes 
refer to the modes of operation for executing conventional 
software such as the operating system and applications 
software. A complete description of real mode, protected 
mode and virtual 8086 mode can be found in the Intel 486 
microprocessor databook. Briefly, the purpose of real mode 
operation is for backward compatibility with the earlier 
16-bit, 8086 processor. Additionally, real mode is the default 
mode of the processor and is required to setup the processor 
for protected mode operation. Real mode and virtual 8086 
mode are limited to accessing only 1MByte of physical 
memory and are thus not the preferred mode of operation. 
Protected mode provides access to the memory management 
capabilities of paging and protection, discussed below, and 
operates in a 32-bit environment with 4GByte physical 
memory limit and therefore, in conjunction with virtual 
system mode, is the preferred mode of operation of the 
processor. Within protected mode, software can perform a 
task Switch to enter into tasks known as virtual 8086 mode 
tasks thus emulating real mode as a task from within the 
protected mode of operation. 

Virtual system mode (VSM) provides an additional mode 
of operation from which a VSM emulation task can be 
performed transparently to the conventional software 
executing on the computer system. Abetter understanding of 
VSM can be obtained from the following detailed descrip 
tion. 

REGISTERS 
The processor P contains eight general purpose registers 

which are used for both address calculation and data opera 
tions and can support data operands of 1, 8, 16 and 32 bits. 
FIG. 2A illustrates the general purpose registers of the 
processor P. The eight registers are: the accumulator register 
(AX) 200, the base register (BX) 202, the count register 
(CX) 204, the data register (DX) 206, the base pointer 
register (BP) 208, the source index register (SI) 210, the 
destination index register (DD 212, and the stack pointer 
register (SP) 214. Those having ordinary skill in the art will 
recognize the terms in parenthesis as the commonly used 
names for the 16-bit form of the registers. The 32-bit form 
of the general purpose registers are named EAX, EBX, 
ECX, EDX, ESI, EDI, EBP and ESP respectively. The least 
significant 16-bits of the 32-bit general purpose registers can 
be accessed separately by using the 16-bit names of the 
registers AX, BX, CX, DX, SI, DI, BP and SP as described 
above. 
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6 
Turning now to FIG.2B, six 16-bit segment registers and 

the instruction pointer are shown. The six 16-bit segment 
registers are used for segmentation, discussed below, and are 
named the code segment register (CS) 220, the stack seg 
ment register (SS) 222, the data segment register (DS) and 
the extra data segment registers (ES, FS and GS) 226. The 
commonly used names are the CS, SS, DS, ES, FS and GS 
segment registers. The 16-bit segment registers hold values, 
called selectors, identifying the currently addressable 
memory segment. A segment is simply a section of memory 
whose boundaries can be described by a base address and an 
offset from the base address. The selectorin CS indicates the 
current code segment, the selectorin SS indicates the current 
stack segment while the selectors in DS, ES, FS and GS 
indicate the current data segments. 
The instruction pointer 232 holds the offset of the next 

instruction to be executed. The 32-bit instruction pointer 232 
is commonly referred to as the EP register and the 16-bit 
instruction pointer 232 is named the IP register. The offset 
contained in the instruction pointer 232 is always relative to 
the base of the code segment, thus the logical address for the 
next instruction address is calculated by adding the offset to 
the code segment base address. 

Referring now to FIG. 2C, the flags register 234 of the 
processor Pis shown. The flags register 234 contains a 32-bit 
value named EFLAGS, while the lower 16-bits of flags 
register 234 contain the 16-bit value named FLAGS. The 
16-bit portion is used when executing 8086 and 80286 code. 
Bit 17 is defined as the virtual 8086 mode (VM) flag and is 
set by the processor P if virtual 8086 mode is the current 
operating mode. Bit 3 is defined as the emulator busy (EB) 
flag and is set when, in virtual system mode, an exception is 
taken causing VSM to again be entered, and is cleared when 
the exception routine is exited. When set, and the next 
instruction executed causes an exception that enters VSM, 
the pushed EFLAGS/FLAGS image will have the EB flag 
sets. If the instruction does not cause a fault or exception, 
then a deferred interruptfault is generated. Bit 31 is defined 
as the Virtual System Mode (VSM) flag and is set when 
virtual system mode is entered and cleared when virtual 
system mode is exited by an IRET instruction or the flags 
register 234 is loaded without the VSM flag set. The VSM 
flag cannot be set with a Pop Stack into Flags (POPF) 
instruction or an Interrupt Return (IRET) instruction. It may 
be set by a task switch if VSM is enabled. All defined flags 
of the flags register 234, with the exception of the EB flag 
and VSM flag, are used by the user modes. When in virtual 
system mode, instructions are additionally responsive to the 
EB flag and VSM flag so that if VSM code is running and 
an additional exception is again taken to VSM code, upon 
return from the subsequent exception, processing will return 
to the original VSM routine instead of exiting VSM code 
completely. 

Referring now to FIG. 2D, Control Register 0 (CR0) 236 
of the processor P is shown. CR0 contains 6 bits for control 
and status purposes including the Paging Enable (PG) bit 
and the Protection Enable (PE) bit. Those skilled in the art 
will recognize that these bits help define the user modes of 
operation in the processor P, and are accessed by load and 
store instructions. If the PGbit and the PE bit are cleared, the 
processor Pis operating in real mode. If the PGbit is cleared 
and the PE bitis set, the processor Pis operating in protected 
mode. If the PG bit and the PE bit are set, the processor P 
is operating in paged protected mode. When the PGbit is set 
and the PE bit is cleared, the processor state is undefined and 
loading this combination will cause an exception. However, 
if this is attempted while operating in virtual system mode, 
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loading this combination will not raise an exception but will 
enable paging, thus having the effect of enabling paging for 
a real mode application. If the PE-bit is set and the VM-bit 
is set, the processor is operating in virtual 8086 mode. 
Virtual system mode selection is controlled by a bit in the 
VSM Enable register 238, discussed below, and is indepen 
dent of the user mode and therefore does not affect the use 
of the PG, PE or VM bits. 

Referring now to FIGS. 2E-G, four VSM registers are 
shown. FIG. 2E illustrates the VSM enable register 238 for 
enabling most VSM functions. FIG. 2F illustrates the VSM 
stack register 240. FIG. 2G illustrates the VSM vector base 
register 242. FIG. 2G illustrates the VSM I/O protection 
bitmap register 244 and it's corresponding bitmap 246. The 
four VSM registers are used only during execution in virtual 
system mode and are not used by user mode tasks. These 
registers are accessible from any user mode until VSM is 
enabled. Turning now to FIG. 2E and Table 1 below, the 
format of the VSM Enable register 238 is defined. 

TABLE 1. 

Bits Name Description 

O VSME VSM Enable. Setting this bit enables 
Virtual System Mode. This bit may 
only be set when the processor is 
executing in real mode or protected 
mode level 0. Once set, accesses to 
this or any other VSM register may 
only be made while the processor is 
executing in VSM. 
Level 0 Enable. When this bit is set, 
all calls that target level 0 will 
cause a switch to WSM. When the RPL 
of the selector in the call gate is 0, 
WSM will be entered using the offset 
portion of the gate as the starting 
address in VSMlogical space. If the 
gate specifies an argument value, the 
specified number of words are copied 
to the WSM stack. This bit should 
only be set when the OS is VSM aware. 
The call frame on the VSM stack is 
slightly different from the call frame 
fora level 0 call. 
Setting this bit also causes the 
processor to maintain the WSM stack in 
the TSS of a task. When LOE is set, 
the level 0 stack pointer in the TSS 
contains the base of the VSM stack. 
The level OTSS is not used. A task 
switch to a TSS with the WSM bit set 
in the saved EFLAGS image will cause 
the new task to be started in WSM. If 
LOE is not set, the VSM bit in the 
EFLAGS register is ignored on a task 
switch. 
I/O Fault Enable. Setting this bit to 
1 causes all I/O accesses by other 
than VSM code to be checked against 
the VSM I/O protection bitmap. If the 
I/O location is protected, then 
accesses will cause a fault to VSM 
through the VSM I/O protection fault 
vector. When this bit is set and the 
processor is running in protected 
mode, the protected mode I/O 
protection bit map will be checked 
exceptions generated before the VSM 
I/O protection bitmap is checked. 
VSM I/O faults are generated after all 
other access checks have been 
completed. The normal protected mode 
I/O protection bitmap is checked and 
exceptions generated before any 
address checks. The VSM I/O 
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TABLE 1-continued 

Bits Description 

protection bitmap is checked last 
(after memory addresses have been 
validated). 
If SEE is set, this bit becomes 
redundant. 
Hardware InterruptEnable. Setting 
this bit to 1 causes all external 
hardware interrupt events (INTR and 
NMT) to be dispatched through the 
Hardware Interrupt Vector. 
Software Exception Enable. Setting 
this bit to 1 causes all exception 
conditions generated by user mode 
software to be dispatched through the 
Software Interrupt Vector. When this 
bit is set, I/O protection faults 
generated from the I/O protection 
bitmap in the TSS will fault using the 
VSM semantics and through the VSM I/O 
protection fault vector. Also, the 
I/O protection bitmap in the TSS will 
be checked instead of the WSMI/O 
protection bitmap (after address 
checking). 
Deferred Interrupt Enable. When this 
bit is set, a VSM Deferred Interrupt 
is generated when the IF bit is set by 
user code. This bit is used in 
combination with the Ignore IF bit to 
allow VSM to manage hardware 
interrupts regardless of the IF 
manipulations by other software. If a 
hardware event occurs that needs to be 
handled by non-VSM code, that code may 
have IF cleared, indicating that it is 
not capable of accepting a hardware 
interrupt at this time. If this 
occurs, the VSM hardware interrupt 
handler should setIDE so that VSM 
will regain control when the user code 
sets IF. The deferred interrupt may 
then be delivered. 
Ignore Interrupt Flag. Setting this 
bit causes the processor to allow 
entry to VSM when any external 
hardware interrupt pin is active 
regardless of the setting of IF in 
EFLAGS. IF is not ignored in WSM. 
VSM mode debug. Setting this bit 
enables the processor dependent debug 
exceptions when running in WSM 
Reserved for future use. 

5 DIE 

7 VDB 

8-31 Reserved 

FIG. 2F illustrates the VSM stack register 240 and VSM 
vector base register 242. The VSM stack register 240 is a 
32-bit register indicating the starting logical address, or top, 
of the VSM stack. The VSM vector base register 242 is also 
a 32-bit register indicating the logical base address of the 
VSM interrupt vector table. These registers are both acces 
sible from any user mode until VSM is enabled. In both 
registers, bits 0-1 are always "0" and writing a “1” is 
ignored and will not produce an exception. 

Turning now to FIG. 2G, the VSM I/O protection bitmap 
register 244 and its corresponding VSM I/O protection 
bitmap 246 are illustrated. The 28-bit base address field 
defines the physical base address of a physically contiguous, 
16-byte-aligned, VSM I/O protection bitmap 246. The size 
field is a 4-bit value that when raised to the power of two 
indicates the size, in bytes, of the bitmap. For example, a 
value of 0 indicates a single byte table, a value of 1 indicates 
a 2-byte table and a value of 12 indicates an 8-Kbyte table 
(64 kbits). Each bit of the bitmap specifies whether the 
byte-wide address associated with the bit can be accessed by 
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a user mode operation. This bitmap is in addition to the I/O 
permission bitmap of the Intel486 microprocessor. Thus, the 
normal I/O permission bitmap is checked, and exceptions 
generated before the VSM I/O protection bitmap is checked. 
When the VSME-bit is set, every I/O access is confirmed 
through the VSM I/O protection bitmap register. If access to 
that address is protected, then the user mode operation is 
vectored into a VSM handler. 

MEMORY MANAGEMENT 

Memory management in the processor P is performed by 
a segmentation unit and a paging unit. Segmentation is a 
mechanism for providing many independent address spaces. 
Paging is a mechanism to support a large physical address 
space in memory using a small amount of memory and some 
hard disk space. Addresses are generated differently depend 
ing upon the mode of operation. 
The processor has three distinct address spaces known as 

logical, linear, and physical. An address issued by a program 
is a logical address and consists of a selector and an offset. 
Generally, the selector identifies a particular segment, and 
the offset identifies an address within the segment. Selector 
values are used by loading the value into the corresponding 
segment register discussed above. By using segments and 
offsets the processor can access a total of 64 Terabytes of 
logical address space in protected mode. The segmentation 
unit translates the logical address into an address for a 
continuous, unsegmented address space, called the linear 
address space. If the paging unit is enabled, the linear 
address is translated into the physical address, otherwise, the 
linear address corresponds to the physical address. The 
processor can access up to 4 Gigabytes of physical address 
space. 
As stated, a logical address consists of a selector and an 

offset. One of the primary differences between real mode 
and protected mode is the way the segmentation unit trans 
lates the logical address into a linear address. 

FIG. 3A illustrates the real mode addressing mechanism. 
In real mode, the segmentation unit shifts the 16-bit selector 
302 left four bits and adds it to the 16-bit offset 304 to create 
a physical address 300. No paging is used and all tasks 
operate at the most privileged level. Virtual system mode 
addressing is similar, except that no segment values are used 
and the offset is 32-bit based, not 16-bit based as shown. 
Because no segment values are used, all offsets are zero 
based. Therefore VSM addressing is a flat 32 bit model. 

FIG. 3B illustrates the protected mode addressing mecha 
nism. Also referring briefly to FIG. 4, in protected mode, the 
16-bit selector 302 is used to specify an index to a segment 
descriptor 400 containing the 32-bit segment base address 
602 which the segmentation unit then adds to a 32-bit offset 
304 to create the linear address 308. Each selector has a 
corresponding segment descriptor 400 which is automati 
cally loaded into a segment descriptor register when a 
selector value is loaded into a segment register. The two 
lower bits of the 16-bit selector 302, are termed the requestor 
privilege level bits (RPL) and define the privilege level of 
the original supplier of the selector. Privileges are discussed 
in more detail below. 

In real mode, protected mode and virtual 8086 mode, 
there are two main types of non-system segments: code and 
data. Instructions do not explicitly need to specify which 
segment register is used to access a segment. In general, 
code references use the selector in the CS register, data 
references use the selector in the DS register, and stack 
references use the selector in the SS register, however, the 
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10 
defaults can be overridden. Special segment override pre 
fixes allow a specific segment register to be used in place of 
the default segment registers. However, since the addressing 
mechanism for real mode and protected mode are 
incompatible, real mode selectors and offsets cannot be used 
when operating the processor P in protected mode, and 
similarly, protected mode selectors and offsets cannot be 
used when operating the processor P in real mode. 
A similar problem is found in those processors having a 

system management mode. The addressing mechanism of 
the processor in system management mode, is incompatible 
with either real mode or protected mode, thus if using a 
processor with system management mode and emulation is 
desired, the user mode addresses must be translated into 
addresses compatible with the SMM addressing mechanism. 
This procedure is costly in terms of processing time. 
When the processor Pis operating in virtual system mode, 

the prior mode of the processor P (the mode of operation 
when the VSM event occurred), can be determined by the 
state of the PE-bit and the VM-bit. VSM can therefore be 
looked at as a submode of each of the user modes. When a 
segment register override is requested in VSM, the segment 
selector value is interpreted as being either a segment base 
address (real mode or virtual 8086 mode) or an index 
(protected mode) according to the context of the processor 
Pas defined by the PE-bit and VM-bit. Thus, whenin virtual 
system mode, the addressing mechanism of the previous 
mode of operation can be used for VSM operations, there 
fore making emulation much simpler. 

Returning to FIG. 4, the segment descriptor register 
contains the segment descriptor 400 corresponding to the 
particular segment selector 302 loaded in a segment register 
(220-226). The segment descriptor 400 consists of a seg 
ment base address 402, a segment limit 404, and segment 
attribute and access right bits 406. The segment descriptor 
400 contains two access bits, called DPL or descriptor 
privilege level bits, which define the least privileged level at 
which a task may access that descriptor, and an attribute bit 
termed the D-bit which indicates the default length for 
operands and offsets. If D=1 then 32-bit operands and 32-bit 
addressing modes are assumed. If D=0 then 16-bit operands 
and addressing modes are assumed. Regardless of the 
default precision of the operands or addresses, the processor 
is able to execute either 16-bit or 32-bit instructions by 
specifying an override prefix. The segment base address 402 
defines the starting address of the segment. The segment 
limit 404 is combined with the granularity (G) bit to define 
a logical page size of 1 byte or 4kbytes with an offset limit 
of 1MB or 4 GB. The AVL, P, S, and Abits are used as in 
the 486 or Pentium and are described below. 

Virtual System Mode Addressing 
In virtual system mode, addresses are generated assuming 

32-bit addressing without segmentation, and the flat memory 
model is employed, thus resulting in code, stack and data 
segments pointing to the same 4 GB address space. If a 
segment override is applied, then the address generation is 
performed using the specified segment register(s) with the 
contents of the segment register(s) interpreted as being 
either a segment value (real mode or virtual 8086 mode) or 
a selector (protected mode) according to the context of the 
processor prior to entering VSM as defined by the PE-bit and 
VM-bit, followed by paging checks if enabled, as similarly 
performed in user mode addressing. For example, if the 
processor was in real mode, PE=0 and VM=0, prior to 
entering VSM (i.e., a VSM event occurred while in real 
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mode) and then if while in VSM a segment override is 
applied, the VSM addressing mechanism will interpret the 
address using the real mode addressing mechanism. 

FIG. 3C illustrates the exemplary addressing situation 
described above. The default mode, of an instruction is 
always 32-bits. Thus, the segment selector 312, here illus 
trated by the code segment, indexes to a base address 402 
that is the combined with an offset 310 to produce the linear 
address 308. Normally the paging unit 306 is disabled in 
VSM and the linear address is also the physical address. In 
the flat memory model used by VSM the base address 402 
is set to 0x00000000h and the offset produces the 32-bit 
address. If a segment override is applied, here represented as 
a data segment, the segment selectorisinterpreted according 
to the context of the processor prior to entering VSM-in 
this case real mode. Therefore the DS selector 314 is shifted 
left four bits and added to an offset 316 to produce a 20-bit 
real mode address. Protected mode addresses can be simi 
larly generated but only if the processor P was in protected 
mode prior to entering VSM. 
When a segment override prefix is present on an 

instruction, the address modulus of the operand is deter 
mined by the D-bitin the code segment descriptor. The D-bit 
in the code segment descriptor register represents the default 
addressing and data size for the user mode. For instructions 
which have two memory operands, the D bit only affects the 
address modulus of the operand associated with the segment 
override prefix. For example, if the D-bit is 0 and a move 
data from string to string instruction (MOVS) is executed, 
the source address will be ESI (a VSM memory source) and 
the destination address will be EDI (a VSM memory 
destination). If the same instruction is executed except a DS 
user mode segment override is applied, the source address 
will be DS:SI (a user mode source) and the destination will 
be EDI (a VSM memory destination). An instruction that 
uses ES as the default segment (i.e., no segment override 
allowed) may only have an address size prefix. An instruc 
tion that defaults to the DS segment and allows a segment 
override prefix, may use any segment as the override. 
Instructions that have two memory operands (e.g., MOVS, 
CMPS)may have two segment prefixes. For these 
instructions, if the ES override prefix is present, it will apply 
to the destination address only. Any segment overrides other 
than ES will apply to the source operand. ES may not be 
used twice to force its use for both source and destination. 
The foregoing discussion of VSM segment override prefixes 
is summarized in Table 2. 

TABLE 2 

Segment Address 
Override Size Address 
Prefix Prefix D-bit Modulus 

No X X 32 
Yes No O 16 
Yes No 1. 32 
Yes Yes O 32 
Yes Yes 1. 16 

In virtual system mode, instructions such as Loop Control 
with CX Counter (LOOP) and Repeat Following String 
Operation (REP) which have an implied CX/ECX counter 
will use ECX unless an segment override and/or address 
prefix is present. If only an address prefix is present, then CX 
is used as the count register. If a segment override prefix is 
present, then the D-bit of the code segment descriptor will 
govern the choice along with an address prefix, if present. 
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12 
Therefore, if a segment override prefix is present and, if the 
D-bit is 0 and no address prefix is present or if the D-bit is 
1 and an address prefix is present then CXis used, otherwise 
ECX is used. The foregoing discussion of LOOP/REP 
Counter usage is summarized in Table 3. 

TABLE 3 

Segment Address Count 
Override Size Register 
Prefix Prefix D-bit Used 

No No X ECX 
No Yes X CX 
Yes No O CX 
Yes No 1. ECX 
Yes Yes O ECX 
Yes Yes 1. CX 

The processor P can support 8-bit, 16-bit and 32-bit data 
types. While in virtual system mode, the default data size is 
32-bits, regardless of the D-bit, unless an instruction explic 
itly calls for a byte operand. Additionally, a operand-size 
prefix may be used to force a 16-bit operand. If a segment 
override prefix is present, the size of operands that are not 
explicitly byte operands are controlled by the D-bit in the 
code segment descriptor and an operand-size prefix. The 
foregoing discussion of VSM operand sizing is summarized 
in Table 4. 

TABLE 4 

Segment Operand 
Override Size Data 
Prefix Prefix D-bit Size 

No No X 32 
No Yes X 16 
Yes No O 16 
Yes No 1. 32 
Yes Yes O 32 
Yes Yes 1. 16 

If a segment override prefix is present on an instruction 
that has two memory operands, the size is determined by the 
combination of the D-bit in the code segment descriptor and 
the operand-size prefix and will apply to both operands. The 
combinations for an instruction having two memory oper 
ands and not explicitly a byte operand are listed in Table 5. 
Any segment register other than ES can be used as a segment 
override prefix to modify the source address. The destination 
operand address alone can be modified by using an ES 
prefix 

TABLE 5 

Oper- Ad 
Segment and dress 
Override Size Size Data 
Prefix Prefix Prefix D-bit Size Source Dest'n Count 

None No No X 32 ESI EDI ECX 
None No Yes X 32 ESI EDI CX 
None Yes No X 16 ESI EDI ECX 
None Yes Yes X 16 ES EDI CX 
DS No No O 16 SI EDI CX 
DS No No 1. 32 ESI EDI ECX 
DS No Yes O 16 ESI EDI ECX 
DS No Yes 1. 32 SI EDI CX 
DS Yes No O 32 SI EDI CX 
DS Yes No 1. 16 ESI EDI ECX 
DS Yes Yes O 32 ESI EDI ECX 
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TABLE 5-continued 

Oper- Ad 
Segment and dress 
Override Size Size Data 
Prefix Prefix Prefix D-bit Size Source Dest'n Count 

DS Yes Yes 1. 16 SI EDI CX 
DS, ES No No O 16 SI DI CX 
DS, ES No No 1. 32 ESI ED ECX 
DS, ES No Yes O 16 ESI EDI ECX 
DS, ES No Yes 1. 32 SI D CX 
DS, ES Yes No O 32 SI DI CX 
DS, ES Yes No 1. 16 ESE EDI ECX 
DS, ES Yes Yes O 32 ESI EDI ECX 
DS, ES Yes Yes 1. 16 SI DI CX 

While in virtual system mode, memory addressing to 
VSM memory may be paged or non-paged and is dependent 
on whether paging is enabled by the user mode operations. 
VSM code executes in a 32-bit logical space and VSM 
addresses are generated as 32-bit addresses by default. The 
upper 16-MByte of VSM memory (0xff000000 through 
0xffffffff) is designated as non-mapped VSM memory. Logi 
cal addresses generated in this range are converted to an 
address that is in the upper 16-Mbyte of the physically 
addressable range of the processor PVSMlogical addresses 
generated below 0xff000000 are translated to physical 
addresses by the current page table if paging is enabled, 
otherwise these addresses become physical addresses with 
out modification. 

If a segment override is applied when addressing VSM 
memory, and the resulting logical address references 
memory at or above 0xff000000, the address is deemed not 
to reference non-mapped VSM memory and is translated 
into a physical address by the paging unit, if enabled. If no 
segment override prefix is used, the access is to VSM 
memory. 

PROTECTION 

The processor Phas four levels of protection for support 
ing multi-tasking operating systems and to isolate and 
protect user programs from each other and the operating 
system. The privilege levels control the use of privileged 
instructions, I/O instructions, and access to segments and 
segment descriptors. Level 0 is the most privileged and level 
3 is the least privileged. The current privilege level (CPL) 
specifies the task's privilege level which equals the privilege 
level of the code segment being executed. For virtual system 
mode addressing, CPL is level 0. While in VSM, for 
purposes of protection checking of user mode addresses, 
CPL is determined by the settings of the PE-bit, the VM-bit 
and the two low bits of the CS register. If PE=0, then CPL 
is assumed to be level 0. Ef PE=1 and VM=1, then CPL is 
assumed to be level 3. If PE=1 and VM=0, then the CPL is 
the low two bits of the CS segment register. 

Segmentation provides another basis for protection. All of 
the descriptors in a system are contained in tables recog 
nized by processor hardware. As described above, segment 
descriptors are 8-byte quantities which contain the attribute 
information about a given segment. These attributes include 
the access rights such as: protection level, read, write or 
execute privileges, the default size of the operands, and the 
type of segment. There are two main types of non-system 
segments: code segments and data segments (includes 
stacks). The segment (S) bit determines if a given segment 
is a system segment (S=0), or a code or data segment (S=1). 
Code and data segments have several descriptor fields in 
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14 
common. The accessed (A) bit is set whenever the processor 
accesses a descriptor. The executable (E) bit indicates if a 
segment is a code (E=1) or data segment (E=0). 

In a data segment descriptor, the expansion direction (ED) 
bit specifies if a segment expands downward (ED=1, i.e., 
stack) or upward (ED=0, i.e., data). Data segments are 
readable and the write (W) bit controls the ability to write 
into a segment. Data segments are read-only if W-0. 
A code segment may be designated execute-only or 

execute/read as determined by the read (R) bit. Code seg 
ments are execute only if R=0, and execute/read if R=1. 
Code segments may never be written to, however in virtual 
system mode, the DS segment register may be loaded with 
a code selector with no exception generated. Upon loading 
the DS register, the access rights for the segment will be 
forced to E=1 (code), ED=1 (expand down segment) and 
W=1 (read/write). 

Protection checking is also automatically performed when 
a task switch is undertaken. Call gates are used to change 
privilege levels and are used to control access to entry points 
within the target code segment. Call gates are primarily used 
to transfer program control to a more privileged level. The 
call gate descriptor consists of three fields: the access byte, 
a selector and an offset which point to the start of a routine, 
and an argument count which specifies how many param 
eters are to be copied from the caller's stack to the stack of 
the called routine. The argument countfield is only used on 
call gates when there is a change in the privilege level. 

If the level 0 enable (LOE) is set in the VSM enable 
register 238, indirect calls through a call gate will enter 
virtual system mode if the requestor privilege level (RPL) of 
the gate's selectoris 0. In this case the calling routine pushes 
ESP, EFLAGS and EP onto the stack, and the gate's offset 
value is placed in EIP. If the gate indicates that an argument 
listis present, the specified number of words are transferred 
from the stack of the calling program into the VSM stack. 
When VSM is entered due to a level 0 call, the entry point 
for the routine cannot be the same as it is for WSM code 
calling the same routine. AVSM routine that is callable from 
privilege levels 1, 2 and 3 requires a stub routine. This stub 
routine may simply call the VSM routine, but when a return 
is made to the stub routine, it is responsible for adjusting the 
stackpointer (ESP) pushed on the stackso that the user stack 
will not pop the call values. The stub routine then executes 
an IRET that returns control to the outer level. If EFLAGS 
is used to convey the return conditions, the stub routine must 
also update the pushed EFLAGS values before returning. 

I/O SPACE 

The processor has two distinct physical address spaces, 
namely, memory and I/O space. The I/O space consists of 64 
kbytes of physical address space. The processor includes a 
VSM I/O protection bitmap register 244, as shown in FIG. 
2G. The VSM I/O protection bitmap register 244 contains a 
size field and an address field, as discussed above. While in 
virtual system mode and the hardware interrupt enable bit is 
set, the processor consults the VSM I/O protection bitmap 
246 to determine if access to the I/O port is allowed, or a 
VSM interrupt to be generated instead. If the bit correspond 
ing to an I/O address is set, then an access to that address will 
cause VSM to be entered through the VSM I/O protection 
fault vector for emulation. The VSM I/O protection bitmap 
address register 244 is only accessible in virtual system 
mode. 

INTERRUPTS/EXCEPTIONS 
Interrupts and exceptions alter the normal programflow in 

order to report errors or handle external events or excep 
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tional conditions. All VSM events excepta VSMStackFault 
are enabled in the VSM Enable register 238. If the VSM 
event is not enabled, then interrupt processing occurs 
through the conventional interrupt descriptor table. If the 
VSM event is enabled, for VSM events, interrupts and 
exceptions are handled through a VSM vector table. This 
vector table contains a single 32-bit value for each VSM 
event that points to the entry point for the VSM handler as 
defined in Table 6. The VSM vector table is located in VSM 
memory starting at the logical address contained in the VSM 
vector base register 242. 

TABLE 6 

Vector Offset WSMEvent 

O OOh VMI Instruction Trap 
1. 04h Deferred Interrupt Trap/Fault 
2 08h WSMTO Protection Fault 
3 0Ch. Hardware Interrupt 
4. 1Oh WSM Software Exception 
5 14h WSM Stack Fault 
6 18h RESERVED 
7 Ch. RESERVED 

VSM interrupts and exceptions are referred to here as 
VSM events. When an VSM event occurs, the following 
actions happen. First, at a minimum, the current program 
address (EIP) and the flags register 100 (EFLAGS) are 
pushed on the stack to allow resumption of the interrupted 
program. If the processor is not in virtual system mode when 
the VSM eventis generated, the current stackpointer (ESP) 
is pushed first before the current program address and flags 
register 100. Thus, the VSM-bit in the pushed EFLAGS 
value will indicate whether the stack pointer (ESP) was 
pushed on entry so that it can be restored on VSMexit. Next, 
an 8-bit vector is supplied to the processor which identifies 
the conventional entry in the user interrupt table. Interrupts 
have externally supplied vectors, while exceptions have 
internally supplied vectors. The processor then determines 
from the user vector which of the eight VSM vectors is 
applicable. The VSM vector table contains the starting 
address of the VSM interrupt service routine. Then the VSM 
interrupt service routine is executed. VSM code can then 
determine the source of the interrupt and respond 
appropriately, thus handling conventional interrupts conven 
tionally or handling non-conventional interrupts with VSM 
emulation code. The VSM vectors are individually described 
below. 

If enabled in the VSM enable register 238, a Virtual 
System Mode Interrupt (VMI) instruction will be trapped 
and the exception handled by VSM vector 0, thus immedi 
ately forcing the processor into virtual system mode. Traps 
are exceptions that are reported immediately after the execu 
tion of the instruction which caused the problem. Faults are 
exceptions that are detected and serviced before the execu 
tion of the faulting instruction. 

If the Deferred Interrupt Fault/Trap (DIE) bit is set in the 
VSM Enable register 238, and a user mode program 
executes an instruction that sets the interrupt enable (IF-bit) 
in EFLAGS, a trap is taken through VSM vector 1. A 
deferred interrupt fault/trap is required when the following 
situation arises. When certain programs do not want to 
service interrupts, the interrupt enable (IF) bit in EFLAGS 
may be disabled. However, the ignore interrupt flag (IIF-bit) 
in the VSM Enable register 238 allows the processor to enter 
VSM when any external hardware interrupt is active regard 
less of the setting of the F-bit. Therefore, a subsequent 
hardware interrupt will cause a VSM interrupt through VSM 
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vector 3. If the VSM hardware interrupt handler determines 
that the interrupt needs to be handled by non-VSMhandlers, 
the deferred interrupt enable (DIE) bit should be set so that 
the VSM deferred interrupt handler will regain control when 
the user code sets the IF-bit again and the deferred interrupt 
can then be delivered to the user code. 

If the DIE-bit is cleared in the VSM enable register 238 
but the emulator busy (EB) bit is set in EFLAGS and the user 
mode program executes an instruction that sets the IF-bit, 
but does not cause any otherfault or trap, thenafaultistaken 
through VSM vector 1. If the DIE-bit is set in the VSM 
enable register 238 and the emulator busy (EB) bit is set in 
EFLAGS and the user mode program executes an instruction 
that sets the IF-bit, then a fault is taken through VSM vector 
1, but the F-bit is left cleared. 

If the I/O fault enable (IOE) bit in the VSM enable register 
238 is set and an I/O access is made to a location that has the 
corresponding bit in the VSM I/O protection bitmap setto 1, 
then that I/O device requires a VSM handler, and the 
processor will enter virtual system mode and begin execut 
ing at the location pointed to by VSM vector 2. If the 
instruction causing the I/O access references more than one 
byte, any individual byte that has a corresponding bit in the 
VSM I/O protection bitmap 246 set will generate a I/O fault 
through this vector. When this fault is taken, the VSM stack 
will contain the following pushed register values, starting 
with the first pushed: ESP, EFLAGS, EIP, EAX, Next 
Instruction EP, SEGREG and VFLAGS. Table 7 defines the 
stack values. 

TABLE 7 

Stack 
Offset Value 

18h ESP (always) 
14h EFLAGS 
1Oh EP 
OC EAX 
08h Next 

Instruction 
EP 

04h SEGREG 
OOh WFLAGS 

EAX contains the I/O address referenced by the instruc 
tion causing the fault. Next Instruction EP contains the 
logical address of the instruction following the faulting 
instruction of the interrupted routine. If the VSM emulation 
is completed allowing execution to resume after the faulting 
instruction, the VSMhandler will then move this value to the 
location of the saved EP, thus effectively changing the fault 
into a trap. The SEGREG contains a copy of the segment 
register prefix specified in an OUTS instruction. Its contents 
are only defined for an OUTS instruction that has a segment 
prefix other than the DS segment. The pushed VFLAGS 
value is a 32-bit value having the definitions set forth in 
Table 8. 

TABLE 8 

Bits Name Description 

O IO This bit is set if the faulting 
instruction was an IN or INS. 

1. STR This bit is set if the faulting 
instruction was an NS or OUTS. 



5,644,755 
17 

TABLE 8-continued 

Bits Name Description 

This bit is set if the faulting 
instruction was an NS or OUIS that 
had a REP prefix. 
This bit is set if the processor was 
operating in protected mode and no 
address size prefix was used on the 
faulting instruction or if the 
processor was in any other mode and 
an address size prefix was used on 
the faulting instruction. If the 
instruction was not an INS or OUTS, 
this bit is set to zero. 
This bit is set if a segment override 
prefix other than DS was applied to 
an OUTS instruction. In all other 
cases, this bit will be 0. 
Reserved 
This bit is set if the data size of 
the operand is 32 or 16 bits. 
This bit is set if the data size of 
the operand is 32 bits. 
Reserved 

RES 
8 DSO 

9 DS1 

10 
31 

RES 

By providing all of this information in the stack, the VSM 
routine can readily determine the intended I/O operation 
which must be emulated. Then the use of a segment override 
allows the desired data to be obtained in the case of write 
emulation or placed in the case of read emulation without 
performing address translation. Thus, allowing two address 
ing modes to be active at one time, the short stack as 
compared to SMM and the detailed information provided, 
the I/O emulation can be rapid and efficient. 

If the Hardware Interrupt Enable (HIE) bit in the VSM 
enable register 238 is set, all external hardware interrupts 
(INTR and NMI) will cause virtual system mode to be 
entered through vector 3. This vector allows conventional 
hardware to be transparently emulated with non 
conventional hardware and a VSM handler, 

If the Software Exception enable (SEE) bit in the VSM 
Enable register 238 is set, all software exceptions (including 
faults, traps, and aborts) and software interrupts (INT in 
instructions) are dispatched through VSM vector 4. This 
vector will also be used, regardless of the SEE setting, if 
while executing VSM code a software exception is gener 
ated. When this vector is entered, the VSM stack will 
contain the following pushed register values, starting with 
the first pushed: ESP (again, not present if exception gen 
erated by VSM code), EFLAGS, EIP, EAX, and CAUSE. 
Table 9 defines the stack. 

TABLE 9 

Stack 
Offset Value 

10h. ESP 
0Ch. EFLAGS 
08h EP 
04h EAX 
00h CAUSE 

EAX will contain the exception number as defined by the 
x86 architecture. If the trap was taken due to an INT in 
instruction, the exception number will be the interrupt 
number plus 256. A one byte interrupt, interrupt number 3 
(INT), will have an exception number of 3. CAUSE will 
contain the condition code associated with the exception. If 
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the exception type does not have an associated cause, the 
CAUSE value pushed onto the stack will be undefined. For 
a page fault, x86 architecture interrupt 14, the cause value is 
extended by one bit. Bit 3 will be cleared if the address 
causing the page fault had a segment override prefix in 
which case the access is to user memory space. If the address 
did not have an override prefix, then this bit is setto indicate 
that it was an access to VSM memory space. 
The VSM stackfault vector is used when there is a page 

fault on the VSM stack. No values are pushed onto the VSM 
stack because the stack is in an undefined state. When the 
fault occurs, the Control Register 2 (CR2) will contain the 
logical address of the instruction causing the fault. The VSM 
flag is set in the EFLAGS register but the remainder of 
EFLAGS is unchanged, including the interrupt enable (IF) 
bit, although while in VSM the interrupts are disabled. If the 
VSM stack can be repaired, EFLAGS and the logical 
address of the instruction causing the fault can be pushed 
onto the VSM stack and the VSM handler can return to the 
faulting instruction with an IRET instruction. The IRET 
instruction will re-enable interrupts if the IF bit is set in the 
popped EFLAGS. 
When VSM has completed processing the interrupting or 

excepting event, control can be passed back to the operating 
system through either an Interrupt Return (IRET), Reflect 
Exception with Condition Code (RECC) or Reflect Excep 
tion without Condition Code (RENCC) instruction. 

For VSM purposes, the IRET instruction restores the EIP 
register and EFLAGS register. If a return is being made to 
non-VSM code, the ESP register is also restored. If a return 
is being made to VSM code, the VSM bit of the EFLAGS 
register will be set and the ESP register will not be popped. 
The RECC instruction is used to transfer exception han 

dling back to the operating system service routine from 
VSM code when there is a condition code associated with 
the exception causing the VSM event. This instruction is 
executed with EAX containing the user mode interrupt 
number, or exception number, that is to be reflected back to 
the OS. This value is used by the user mode operating 
system to index to the user mode interrupt vector for 
processing of the condition code. When this instruction is 
executed, the VSM stack is pushed according to Table 10. 

TABLE 10 

Stack 
Offset Value 

10h. ESP 
0Ch EFLAGS 
08h EP 
04h EAX 
00h. CAUSE 

The CAUSE value contains the condition code to be 
processed. EAX contains the user mode interrupt number, or 
exception number. When EFLAGS is moved from the VSM 
stack to the stack appropriate for the exception processing, 
the EB bitmay be set. No further exception will be generated 
by the presence of the EB bit, but if set, EB will remain set 
when EFLAGS is written to the exception stack. These 
values are popped from the stack and located accordingly 
when the return occurs. 
The RENCC instruction is used for hardware interrupts 

and exceptions that do not have a condition code or cause 
value. When this instruction is executed, the VSM stack is 
pushed according to Table 11. Operation is otherwise similar 
to the RECC instruction. 
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TABLE 11 

Stack 
Offset Value 

10h ESP 
0Ch. EFLAGS 
08h EP 
04h EAX 

INSTRUCTION SET 

In addition to instructions already defined by the x86 
architecture, and the instructions previously discussed, a 
processor according to the present invention preferably 
would include the instructions set forth below to facilitate 
VSM operations. 
A Move String with Variable Size (VMOVS) instruction 

copies the operand at (E)SI to the location at ES:(E)DI. 
Format:VMOVS 
The destination operand must be addressable from the ES 

segment and no segment override prefix is allowed. A 
segment override can be used for the source operand, but the 
default is the DS segment. After the data is moved, both the 
(E)SI and (E)DIregisters are advanced automatically by a 
value contained in the AL register. The value loaded into AL 
prior to executing the VMOVS instruction specifies the size, 
in bytes, of the data being transferred with each iteration. 
The VMOVS instruction can be preceded by the Repeat 
(REP) instruction for block moves of (E)CXbytes. In this 
case, (E)CX will decrement by 1 on eachiteration regardless 
of the value in AL. 
A.Jump (JMP) instruction transfers control to a different 

point in the instruction stream without recording return 
information. A Call (CALL) instruction causes the proce 
dure named in the operand to be executed, and upon 
completion, execution continues at the instruction following 
the CALLinstruction. Intersegment jumps and calls may be 
performed while executing user mode code. While execut 
inginVSM, if an intersegment jump or callis specified, only 
the offset portion of the address is used. The segment value 
in the instruction is ignored. 
A Translate (VTOP) instruction returns the physical 

address of the memory operand in EAX, and if necessary 
EDX. 

Format: VTOP EAX, memory 
VTOP returns the upper 32-bits of the physical address 

into EDX and the lower 32-bits of the physical address into 
EAX. If paging is not enabled, this instruction returns the 
linear address of the operand. If paging is enabled, the 
address is translated using the current page table. If there is 
no corresponding address because the logical address is out 
of range of the segment orif the page is not present, the Page 
Fault (PF) bit is set in EFLAGS. If the translation is 
successful, PF is cleared. If the processor has a physical 
addressing range greater than 4GByte, the Carry Flag (CF) 
will be set in EFLAGS. If the address is a VSM logical 
address (in VSM and no segment prefix on the operand), and 
the logical address is at or above 0xff000000, and the 
processor has physical addressing capabilities above 
4GByte, then EDX will contain the most significant 32-bits 
necessary to cause the physical address to be in the upper 16 
MByte of the processor's physical address range and CF will 
be set. 
A Probe for Read Access (PROBER) instruction is used 

for testing a memory read operation for exceptions. 
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Format: PROBER regs, memory 
regió, memory 
reg32, memory 

The memory operand represents the location to be read 
into reg8/16/32, however, no data is actually returned and no 
exceptions are generated. If the read operation would have 
generated an exception (including page faults) had the read 
operation been performed, the Page Fault (PF) bit is set in 
EFLAGS. If the read operation would not have generated an 
exception, PF is cleared. Therefore, when operating in VSM, 
user mode memory may be checked for readability and if a 
page fault is anticipated by the PROBER instruction, VSM 
can call on the operating system to load the page into 
physical memory without requiring the pagefault to actually 
occur. Executing this instruction on real mode memory will 
never result in a page fault, however, a test on virtual 8086 
mode memory will only fail if paging is enabled (PE=1 and 
PG=1) and the page is not present or if the page is a 
supervisor page. No other bits in EFLAGS are modified as 
a result of this instruction. 
AProbe for Write Access (PROBEW) instruction is used 

for testing a memory write operation for exceptions. 

Format: PROBEW memory, reg& 
memory, reg16 
memory, reg32 

The regs/16/32 represents the value to be written into the 
location specified by memory value, however, no data is 
actually written and no exceptions are generated. If the write 
operation would have generated an exception (including 
page faults) had the write operation been performed, the 
Page Fault (PF) bit is set in EFLAGS. If the write operation 
would not have generated an exception, PF is cleared. 
Therefore, when operating in VSM, user mode memory may 
be checked for writeability and if a page fault is anticipated 
by the PROBER instruction, VSM can call on the operating 
system to load the page into physical memory. Executing 
this instruction on real mode memory will never result in a 
page fault, however, a test on virtual 8086 mode memory 
will only fail if paging is enabled (PE=1 and PG=1) and the 
page is not present or if the page is a supervisor page. No 
other bits in EFLAGS are modified as a result of this 
instruction. 
A Default Address and Data Size (DADS) instruction 

returns a value indicating the default address and data size 
by examining the settings of the PE bit in CR0 and the D bit 
of the current code descriptor. 

Format: DADS reg8 
regl6 
reg32 

If PE is set and the D bit is set, then DADS returns a value 
of 2, otherwise a value of 1 is returned. If DADS is executed 
while in VSM without a segment prefix a value of 2 is 
returned. 
A Test for Interrupt Pending (TIP) instruction sets the 

Parity Flag (PF) in EFLAGS if a hardware interrupt (INTR 
or NMI) is active. No other flags are altered. This allows 
VSM code to execute with interrupts disabled, because of 
the overhead of restarting an emulation sequence, but still 
periodically check interrupts. 
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As an additional change, while in VSM, for a Load Full 
Pointer (LDS, LES, LFS, LGS, or LSS) instruction, the 
offset values are always 32-bits unless a data size prefix is 
applied to the instruction. 
The addition of these instructions further simplifies device 

emulation by providing the effective results of the user code 
intended operation without actually executing the user code 
instruction, incurring exception or fault overheads and then 
handling the problem. Further, the emulator code does not 
have to be incorporated into the conventional exception or 
fault handlers, but can remain separate, thus greatly simpli 
fying the software requirements. 
While the use of two different addressing modes concur 

rently has been described with regard to a new mode, it is 
understood that such capabilities could be provided to 
processors having just two or three conventional user 
modes. For example, if this dual concurrent addressing 
mode technique were used with a 486 or Pentium processor, 
transitions between real and protected mode code due to 
exceptions and faults would be simplified as the required 
reflections and address translations could be eliminated or 
greatly simplified. 

It is noted that this description has used the phrase address 
mode to refer to the different addressing interpretations. It is 
not to be confused with the various addressing types, such 
as direct, indirect and indexed. The addressing types are 
available in each of the addressing modes and are indepen 
dent of the addressing mode. 
Thus a processor allowing is simplified use of non 

standard devices by providing efficient and operating system 
independent emulation has been described. 
The foregoing disclosure and description of the invention 

are illustrative and explanatory thereof, and various changes 
in the circuit elements as well as in the details of the 
illustrated circuitry and construction and method of opera 
tion may be made without departing from the spirit of the 
invention. 

I claim: 
1. A processor operable in a number of modes, compris 

Ing: 
a plurality of segment registers for specifying portions of 

an address; 
a first interpreter for interpreting values in said segment 

registers in a first mode to provide a linear address; 
a second interpreter for interpreting values in said seg 

ment registers in a second mode to provide a linear 
address; and 

a mode control circuit for allowing said first and second 
mode interpreters to operate concurrently on different 
of said segment registers. 

2. The processor of claim 1, further comprising: 
a memory management unit receiving said linear address 

provided by said first and second mode interpreters and 
providing a physical address. 

3. The processor of claim 2, further comprising: 
a third mode interpreter for interpreting values in said 

segment registers in a third mode to provide a linear 
address, and 

wherein said memory management unit receives said 
linear address provided by said third mode interpreter 
and provides a physical address, and wherein said 
mode control logic allows concurrent operation in said 
first mode and either of said second or third modes. 

4. The processor of claim3, further comprising: 
a fourth mode interpreter for interpreting values in said 

segment registers in a fourth mode to provide a linear 
address, and 

10 

15 

20 

25 

30 

35 

45 

50 

55 

65 

22 
wherein said memory management unit receives said 

linear address provided by said fourth mode interpreter 
and provides a physical address, and wherein said 
mode control logic allows concurrent operation in said 
first mode and either of said second, third or fourth 
modes. 

5. The processor of claim 4, wherein the processor is 
compatible with an Intel 386 processor. 

6. The processor of claim 5, wherein said second, third 
and fourth modes are real, protected and virtual 8086 modes. 

7. The processor of claim2, wherein the processor further 
includes an instruction for translating a memory operand 
into a physical address and providing a lower portion of said 
physical address into a first register and an upper portion of 
said physical address into a second register. 

8. The processor of claim 7, wherein said memory man 
agement unit further includes a selectably enabled paging 
unit and wherein if paging is enabled said memory operand 
is translated into a physical address and if paging is not 
enabled said memory operand is translated into a linear 
address. 

9. The processor claim 2, wherein said memory manage 
ment unit further includes a selectably enabled paging unit 
and wherein said first mode causes said memory manage 
ment unit to provide said linear address as said physical 
address if said linear address is in a reserved range. 

10. The processor of claim 9, wherein if said linear 
address is not in said reserved range then said first mode 
causes said memory management unit to either translate said 
linear address to said physical address by said paging unit if 
paging is enabled or provide said linear address as said 
physical address if paging is disabled. 

11. The processor of claim 9, wherein a segment override 
can be applied to the segment registers, and wherein if said 
segment override causes said linear address to be in said 
reserved range, then said first mode causes said memory 
management unit to either translate said linear address to 
said physical address by said paging unitif paging is enabled 
or provide said linear address as said physical address if 
paging is disabled. 

12. The processor of claim 2, further comprising: 
a code segment register for receiving a code segment 

selector for addressing a code segment containing 
instruction sequences; and 

a data segment register for receiving a data segment 
selector for addressing a data segment containing data; 
and 

wherein if the processor is in said first mode, an exception 
is not generated when said code segment selector is 
loaded into said data segment register. 

13. The processor of claim 12, wherein said code segment 
is write protected and said data segment is readable and 
writable and wherein if the processor is in said first mode, 
said code segment is writable when said code segment 
selector is loaded into said data segment register. 

14. The processor of claim 1, wherein entry into said first 
mode is performed under one of a plurality of conditions and 
wherein the processor further includes a stack for receiving 
values upon entry into said first mode, said stack values 
including a program address and flags. 

15. The processor of claim 14, wherein the processor 
further includes an input/output space and further compris 
ing: 

an input/output protection bitmap, each bit in said bitmap 
indicating entry or non-entry into said first mode from 
said second mode if an access is made to an input/ 
output address corresponding to said bit. 
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16. The processor of claim 15, wherein said stack values 
further include a current instruction address, next instruction 
address and bits for indicating instruction type, operand data 
size and prefix presence of an instruction causing the entry 
into said first mode. 

17. The processor of claim 14, wherein entry into said first 
mode is caused on receipt of a hardware interrupt. 

18. The processor of claim 17, wherein said stack values 
further include a stack pointer. 

19. The processor of claim 17, wherein the processor 
further includes the ability to ignore hardware interrupts in 
said second mode and wherein a first bit may be set to 
indicate entry into said first mode even if said second mode 
is set to ignore hardware interrupts. 

20. The processor of claim 19, wherein if said first bit is 
set and said second mode is operational and ignoring hard 
ware interrupts and a hardware interrupt occurs causing 
entry into said first mode, a second bit is set and said 
hardware interrupt is not responded to so that upon return to 
said second mode and when said second mode is no longer 
ignoring hardware interrupts, entry into said first mode 
occurs to handle said hardware interrupt. 

21. The processor of claim 20, wherein if the processor is 
operating in said first mode and one of said plurality of 
conditions causes reentry into said first mode a third bit is 
set, wherein said first mode reentry is further caused if said 
third bit is set and if an instruction is executed causing the 
hardware interrupts to be ignored in said second mode. 

22. The processor of claim 14, wherein entry into said first 
mode is caused by any software exception including faults, 
traps, aborts and software interrupts. 

23. The processor of claim 22, wherein said stack values 
further include an exception type and condition code of said 
condition causing said entry into said first mode and a stack 
pointer. 

24. The processor of claim 14, wherein entry into said first 
mode is caused if a page fault to said stack occurs. 

25. The processor of claim 24, further comprising: 
a control register; and 
wherein said control register receives a logical address of 

an instruction causing said page fault. 
26. The processor of claim 14, wherein entry into said first 

mode is caused by executing a special instruction for imme 
diately forcing the processor into said first mode. 

27. The processor of claim 26, wherein said stack values 
further include a stackpointer. 

28. The processor of claim 1, wherein exit from said first 
mode is caused by executing one of a plurality of instruc 
tions. 

29. The processor of claim 28, wherein the processor 
further includes an interrupt return instruction for exiting 
from said first mode after an interrupt. 

30. The processor of claim 29, wherein said interrupt 
return instruction causes a program address and flags to be 
provided to the processor from said stack. 

31. The processor of claim 30, wherein if said interrupt 
return instruction causes the processor to return to said first 
mode, a bit is set and if said interrupt return instruction 
causes the processor to return to said second mode, a stack 
pointer is provided to the processor from said stack. 

32. The processor of claim 28, wherein the processor 
further includes a reflect exception instruction for passing 
exception handling to said second mode from said first mode 
and for exiting said first mode to said second mode. 

33. The processor of claim 32, wherein said reflect 
exception instruction causes an exception number, program 
address, flags and stack pointer to be provided to the 
processor from said stack. 
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34. The processor of claim 28, wherein the processor 

further includes a reflect exception with condition code 
instruction for passing a condition code to said second mode 
from said first mode and for exiting said first mode after an 
exception having a condition code has occurred. 

35. The processor of claim 34, wherein said reflect 
exception with condition code instruction causes a condition 
code, exception number, program address, flags and stack 
pointer to be provided to the processor from said stack. 

36. The processor of claim 1, wherein the processor 
further includes an instruction for moving a string of vari 
able size, said instruction having a source operand for 
indicating a source address, a destination operand for indi 
cating a destination address, and a size operand for indicat 
ing a number of bytes to be moved from said source address 
to said destination address in the move operation. 

37. The processor of claim36, wherein said instruction for 
moving a string of variable size may be repeated for the 
number of operations in a count register, said source address 
and said destination address incrementing by said size 
operand value in each move operation and said count 
register being decremented by one in each move operation. 

38. The processor of claim 1, wherein the processor 
further includes an instruction for probing a memory loca 
tion for access exceptions and setting a bit if an exception 
would have been generated had said access occurred. 

39. The processor of claim 1, wherein the processor 
further includes an instruction for determining a default 
address and data size. 

40. The processor of claim 1, wherein the processor 
further includes an instruction for testing for presence or 
non-presence of an interrupt when the processor is set to 
ignore interrupts. 

41. The processor of claim 1, wherein said first mode 
operations have a default data and address size of 32-bit. 

42. The processor of claim 1, wherein the processor 
further includes a plurality of instructions having two 
memory operands, said memory operands each being 
capable of being overridden with a different segment register 
by a segment override, and wherein said plurality of instruc 
tions cause said mode control logic to operate when the 
processor is operating in said first mode and one of said 
memory operands are overridden with a segment override, 
whereby one said memory operand can be interpreted 
according to said first mode interpreter and a second said 
memory operand can be interpreted according to said second 
mode interpreter. 

43. The processor of claim 1, wherein the processor 
further includes a plurality of instructions for performing 
operations in said first and second modes, said instructions 
having operands for performing the instruction, wherein in 
said first mode if a segment override is applied to said 
instruction or said instruction operand said values in said 
segment registers are interpreted according to said second 
mode interpreter. 

44. A computer system having a processor for emulating 
input/output devices, the computer system comprising: 

a host bus; 
an I/O bus; 
abus controller for communicating between said hostbus 
and said I/O bus; 

a hard disk system coupled to said I/O bus; and 
a processor coupled to said hostbus for accessing said a 

hard disk system, said processor comprising: 
a plurality of segment registers for specifying portions of 

an address; 
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a first mode interpreter for interpreting values in said 
segment registers in a first mode of said processor to 
provide a linear address; 

a second mode interpreter for interpreting values in said 
segment registers in a second mode of said processor to 
provide a linear address; and 

mode control logic for allowing said first and second 
mode interpreters to operate concurrently on different 
of said segment registers. 

45. The computer system of claim 44, wherein said 
processor further comprises: 

a memory management unit receiving said linear address 
provided by said first and second mode interpreters and 
providing a physical address. 

46. The computer system of claim 45, wherein said 
processor further comprises: 

a third interpreter for interpreting values in said segment 
registers in a third mode to provide a linear address, and 

wherein said memory management unit receives said 
linear address provided by said third mode interpreter 
and provides a physical address, and wherein said 
mode control logic allows concurrent operation in said 
first mode and either of said second or third modes. 

47. The computer system of claim 46, wherein said 
processor further comprises: 

interpreter for interpreting values in said segment regis 
ters in a fourth mode to provide a linear address, and 

wherein said memory management unit receives said 
linear address provided by said fourth mode interpreter 
and provides a physical address, and wherein said 
mode control logic allows concurrent operation in said 
first mode and either of said second, third or fourth 
modes. 

48. The computer system of claim 47, wherein said 
processor is compatible with an Intel 386 processor. 

49. The computer system of claim 48, wherein said 
second, third and fourth modes are real, protected and virtual 
8086 modes. 

50. The computer system of claim 45, wherein said 
processor further includes an instruction for translating a 
memory operand into a physical address and providing a 
lower portion of said physical address into a first register and 
an upper portion of said physical address into a second 
register. 

51. The computer system of claim 50, wherein said 
memory management unit further includes a selectably 
enabled paging unit and wherein if paging is enabled said 
memory operand is translated into a physical address and if 
paging is not enabled said memory operand is translated into 
a linear address. 

52. The computer system claim 45, wherein said memory 
management unit further includes a selectably enabled pag 
ing unit and wherein said first mode causes said memory 
management unit to provide said linear address as said 
physical address if said linear address is in a reserved range. 

53. The computer system of claim 52, wherein if said 
linear address is not in said reserved range then said first 
mode causes said memory management unit to either trans 
late said linear address to said physical address by said 
paging unit if paging is enabled or provide said linear 
address as said physical address if paging is disabled. 

54. The computer system of claim 52, wherein a segment 
override can be applied to the segment registers, and 
wherein if said segment override causes said linear address 
to be in said reserved range, then said first mode causes said 
memory management unit to either translate said linear 
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address to said physical address by said paging unitif paging 
is enabled or provide said linear address as said physical 
address if paging is disabled. 

55. The computer system of claim 45, wherein said 
processor further comprises: 

a code segment register for receiving a code segment 
selector for addressing a code segment containing 
instruction sequences; and 

a data segment register for receiving a data segment 
selector for addressing a data segment containing data; 
and 

wherein if said processor is in said first mode, an excep 
tion is not generated when said code segment selector 
is loaded into said data segment register. 

56. The computer system of claim 55, wherein said code 
segmentis write protected and said data segmentis readable 
and writable and wherein if said processor is in said first 
mode, said code segment is writable when said code seg 
ment selector is loaded into said data segment register. 

57. The computer system of claim 44, wherein entry into 
said first mode is performed under one of a plurality of 
conditions and wherein said computer system further com 
prises: 

an input/output device coupled to said I/O bus; and 
a memory unit, coupled to said hostbus, for storing data 

including instruction sequences and a stack; 
wherein said stack receives values upon entry into said 

first mode, said stack values including a program 
address and flags. 

58. The computer system of claim 57, wherein said 
processor further includes an input/output space and said 
computer system further comprises: 

an input/output protection bitmap, stored in said memory 
unit, each bit in said bitmap indicating entry or non 
entry into said first mode from said second mode if an 
access is made to an input/output device having an 
input/output address corresponding to said bit, said bit 
indicating entry if access is made to an input/output 
device requiring emulation, said bit indicating non 
entry if an access is made to an input/output device not 
requiring emulation. 

59. The computer system of claim.58, wherein said stack 
values further include a current instruction address, next 
instruction address and bits for indicating instruction type, 
operand data size and prefix presence of an instruction 
causing the entry into said first mode. 

60. The computer system of claim 57, wherein said 
input/output device is capable of providing a hardware 
interrupt and entry into said first mode is caused on receipt 
of a hardware interrupt. 

61. The computer system of claim 60, wherein said stack 
values further include a stack pointer. 

62. The computer system of claim 60, wherein said 
processor further includes the ability to ignore hardware 
interrupts in said second mode and wherein a first bit may be 
set to indicate entry into said first mode even if said second 
mode is set to ignore hardware interrupts. 

63. The computer system of claim 62, wherein if said first 
bit is set and said second mode is operational and ignoring 
hardware interrupts and a hardware interrupt occurs causing 
entry into said first mode, a second bit is set and said 
hardware interrupt is not responded to so that upon return to 
said second mode and when said second mode is no longer 
ignoring hardware interrupts, entry into said first mode 
occurs to handle said hardware interrupt. 

64. The computer system of claim 63, wherein if said 
processor is operating in said first mode and one of said 
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plurality of conditions causes reentry into said first mode a 
third bit is set, wherein said first mode reentry is further 
caused if said third bit is set and if an instruction is executed 
causing the hardware interrupts to be ignored in said second 
mode. 

65. The computer system of claim 57, wherein entry into 
said first mode is caused by any software exception includ 
ing faults, traps, aborts and software interrupts. 

66. The computer system of claim 65, wherein said stack 
values further include an exception type and condition code 
of said condition causing said entry into said first mode and 
a stack pointer. 

67. The computer system of claim 57, wherein entry into 
said first mode is caused if a page fault to said stack occurs. 

68. The computer system of claim 67, wherein said 
processor further comprises: 

a control register; and 
wherein said control register receives a logical address of 

an instruction causing said page fault. 
69. The computer system of claim 57, wherein entry into 

said first mode is caused when said processor executes a 
special instruction for immediately forcing said processor 
into said first mode. 

70. The computer system of claim 69, wherein said stack 
values further include a stackpointer. 

71. The computer system of claim 44, wherein exit from 
said first mode is caused by executing one of a plurality of 
instructions. 

72. The computer system of claim 71, wherein said 
processor further includes an interrupt return instruction for 
exiting from said first mode after an interrupt. 

73. The computer system of claim 72, wherein said 
interrupt return instruction causes a program address and 
flags to be provided to said processor from said stack. 

74. The computer system of claim 73, wherein if said 
interrupt return instruction causes said processor to return to 
said first mode, a bit is set in said processor and if said 
interrupt return instruction causes the processor to return to 
said second mode, a stack pointer is provided to said 
processor from said stack. 

75. The computer system of claim 71, wherein said 
processor further includes a reflect exception instruction for 
passing exception handling to said second mode from said 
first mode and for exiting said first mode to said second 
mode. 

76. The computer system of claim 75, wherein said reflect 
exception instruction causes an exception number, program 
address, flags and stack pointer to be provided to said 
processor from said stack. 

77. The computer system of claim 71, wherein said 
processor further includes areflect exception with condition 
code instruction for passing a condition code to said second 
mode from said first mode and for exiting said first mode 
after an exception having a condition code has occurred. 
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78. The computer system of claim 77, wherein said reflect 

exception with condition code instruction causes a condition 
code, exception number, program address, flags and stack 
pointer to be provided to said processor from said stack. 

79. The computer system of claim 44, wherein said 
processor further includes an instruction for moving a string 
of variable size, said instruction having a source operand for 
indicating a source address, a destination operand for indi 
cating a destination address, and a size operand for indicat 
ing a number of bytes to be moved from said source address 
to said destination address in the move operation. 

80. The computer system of claim 79, wherein said 
instruction for moving a string of variable size may be 
repeated for the number of operations in a count register, 
said source address and said destination address increment 
ing by said size operand value in each move operation and 
said count register being decremented by one in each move 
operation. 

81. The computer system of claim 44, wherein said 
processor further includes an instruction for probing a 
memory location for access exceptions and setting a bit if an 
exception would have been generated had said access 
occurred. 

82. The computer system of claim 44, wherein said 
processor further includes an instruction for determining a 
default address and data size. 

83. The computer system of claim 44, wherein said 
processor further includes an instruction for testing for 
presence or non-presence of an interrupt when said proces 
sor is set to ignore interrupts. 

84. The computer system of claim 44, wherein said first 
mode operations have a default data and address size of 
32-bit, 

85. The computer system of claim 44, wherein said 
processor further includes a plurality of instructions having 
two memory operands, said memory operands each being 
capable of being overridden with a different segment register 
by a segment override, and wherein said plurality of instruc 
tions cause said mode control logic to operate when said 
processor is operating in said first mode and one of said 
memory operands are overridden with a segment override, 
whereby one said memory operand can be interpreted 
according to said first mode interpreter and a second said 
memory operand can be interpreted according to said second 
mode interpreter. 

86. The computer system of claim 44, wherein said 
processor further includes a plurality of instructions for 
performing operations in said first and second modes, said 
instructions having operands for performing the instruction, 
wherein in said first mode if a segment override is applied 
to said instruction or said instruction operand said values in 
said segment registers are interpreted according to said 
second mode interpreter. 
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