UNIX™
for the

- 68000

VOLUME II *
Program Development Tools'

8/23/82

Copyright 1981, Bell Telephone Laboratories, Incorporated.
Holders of a UNIX(tm) software license are permitted to copy
" this document, or any portion of it, as mnecessary for

licensed use of the software, provided this copyright notice
and statement of permission are included.

- -CODATA P/N: 03-0305-01 REV D 10/83

Part 1:

Part 2:

Part 3:

VOLUME II

Program Development Tools

Table of Contents

System Programming Tools

An Introduction to the UNIX Shell

An Introduction to the C Shell

UNIX Programming - Second Edition

YACC: Yet Another Compiler-Compiler
SED: A Non-Interactive Text Editor
AWK: A Pattern Scanning and Processing
Language (Second Edition)

LEX: A Lexical Analyzer Generator

DC: An Interactive Desk Calculator

BC: An Arbitrary Precision Desk-Calculator
Language

O 00~ (o SN, I = S VLR U
e o e o o o

Program Maintenance

As Assembler Reference Guide

"C" Interface Notes for 68000 UNIX

The C Programming Language - Reference
Manual

Screen updating and Cursor Movement
Optimization: a Library Package

. A Tutorial Introduction to ADB

LINT: A Program Checker

MAKE: A program for Maintaining Computer
Programs

Source Code Control System User s Guide;
Function and Use of an SCCS Interface
Program

W =
o o o

S

~Nounm
e e

o
.

UNIX Maintenance and Information

. UNIX Implementation

. FSCK: the UNIX File System Check Program
. The UNIX I/O System

. Regenerating System Software

« A Tour Through the portable C Compiler

. Uucp Trplementation Descripticn

. A Dial-up Network of UNIX Systems

Nonmps LW -

An Introduction to the UNIX Shell

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The shell is a command programming language that provides an interface to the

- UNIXT operating system. Its features include control-flow primitives, parameter
passing, variables and string substitution. Constructs such as while, if then else,
case and for are available. Two-way communication is possibie between the
‘shell and commands. String-valued parameters, typically file names or flags,
may be passed to a command. A return code is set by commands that may be
used to determine control-flow, and the standard output from a command may
be used as shell input.

The shell can modify the environment in which commands run. Input and out-
put can be redirected to files, and processes that communicate through ‘pipes’
can be invoked. Commands are found by searching directories in the file sys-
tem in a sequence that can be defined by the user. Commands can be read
either from the terminal or from a file, which allows command procedures to be
stored for later use,

November 12, 1978

tUNIX is a Trademark of Bell Laboratories.

An Introduction to the UNIX Shell

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

1.0 Introduction

The shell is both a command language and a programming language that provides an interface
to the UNIX operating system. This memorandum describes. with examples, the UNIX shell.
The first section covers most of the averyday requirements of terminal users. Some familiarity
with UNIX is an advantage when reading this section: see. for example, "UNIX for beginners".!
Section 2 describes those features of the shell primarily intended for use within shell pro-
cedures. These include the control-flow primitives and string-valued variables provided by the
shell. A knowledge of a programming language would be a help when reading this section.
The last section describes the more advanced features of the shell. References of the form “see
pwe (2)" are to a section of the UNIX manual.?

1.1 Simple commands

Simple commands consist of one or more words separated by blanks. The first word is the
name of the command to be axecuted. any remaining words are passed as arguments to the
command. For example,

who
is a command that prints the names of users logged in. The command

Is =t
prints a list of files in the current directorv. The argument —/ tells /s to print status informa-
tion. size and the creation date for each file.

1.2 Background commands

To axecute a command the shell normally creates a new process and waits for it to finish. A
command may be run without waiting for it to finish. For axample.

ccpgm.c &

calls the C compiler to compile the file pem.c. The trailing & is in operator that instructs the
shell not to wait for the command to finish. To help keep track of such a process the shell
reports its process number tollowing its creation. A list of currantly active processes may be
obtained using the ps command.

1.3 Input output redirection

Most commands produce output on ihe standard output that is initially connected to the termi-
nal. This output may be sent :0 a file by writing, for example, Cene

Is =t >tile

The notation > #ie is interprated by the shell and is not passed is an argument to /s. [f n/e does
not exist then the sheil <craates it: otherwise the original contents of n/e are replaced with the
output from /s. Qutput may e ippended 10 i file using the notation

Is =1 >>file

In this case file is also created if it does not already exist.

The standard input of a command may be taken from a file instead of the terminal by writing,
for example,

we <file

The command wc reads its standard input (in this case redirected from file) and prints the
number of characters, words and lines found. If only the number of lines is required then

we =] <file

could be used.

1.4 Pipelines and filters

The standard output of one command may be connected to the standard input of another by
writing the ‘pipe’ operator, indicated by |, as in,

Is =1 | we
Two commands connected in this way constitute a pipeline and the overall effect is the same as
Is =1 >file; we <file

except that no file is used. Instead the two processes are connected by a pipe (see pipe (2)) and
are run in parallel. Pipes are unidirectional and synchronization is achieved by halting wc when
there is nothing to read and halting /s when the pipe is full.

A filter is a command that reads its standard input, transforms it in some way, and prints the

result as ouiput. One such filier, grep, seiecis from its input those lines that contain some
specified string. For example,
Is | grep old

prints those lines, if any, of the output from /s that contain the string o/d. Another useful filter
is sorr. For example,

who | sort

will print an alphabetically sorted list of logged in users.
A pipeline may consist of more than two commands, for example,

Is | grep old | wc =I

prints the number of file names in the current directory containing the string o/d.

1.5 File name generation
Many commands accept arguments which are file names. For example,
Is =l main.c
prints information relating to the file main.c.
The shell provides a mechanism for generating a list of file names that match a pattern. For
example,
Is =1 =.c

generates, as arguments to /s. all file names in the current directory that end in .c. The charac-
ter * is a pattern that will match any string including the null string. In general parrerns are
specified as follows.

-3

Matches any string of characters inciuding the null string.
? Matches any singie character.

[...] Matches any one of the charagters enclosed. A pair of characters separated by a
minus will match any character lexically between the pair.

For axample,
(a—z]»

matches all names in the current directory beginning with one of the letters a through -.
/usr/fred/test/?

matches all names in the directory /usr/fred/test that consist of a single character. If no file
name is found that matches the pattern then the pattern is passed. unchanged. as an argument.
This mechanism is useful both to save typing and to select names according to some pattern. It
may also be used to find files. For example,

echo /usr/fred/*/core

finds and prints the names of all core files in sub-directories of /use/fred. (echo is a standard
UNIX command that prints its arguments, separated by blanks.) This last feature can be expen-
sive, requiring a scan of all sub-directories of /usr/fred.

There is one exception to the general rules given for patterns. The character ‘.’ at the start of a
file name must be explicitly matched.

echo =
will therefore echo all file names in the current directory not beginning with *.".
echo .«

. ®

will echo all those file names that begin with .. This avoids inadvertent matching of the
names ‘.’ and '.." which mean ‘the current directory’ and ‘the parent directory’' respectively.
(Notice that /s suppresses information for the files *." and *..".)

1.6 Quoting

Characters that have a special meaning to the shell, suchas < > » ? | &, are cailed metachar-
acters. A complete list of metacharacters is given in appendix B. Any character preceded by a
\ is yuored and loses its special meaning, if any. The \ is elided so that

acho \?
will echo a single ?, and
echo \\

will echo a single \. To allow long strings to be continued over more than one line the
sequence ' newline is ignored.

\ is convenient for quoting single characters. When more than one character needs quoting the
above mechanism is clumsy and error prone. A string of charac:ers may be quoted by enclos-
ing the string between single quotes. For axample,

acho xx ===="xx
will 2cho
xx‘-l‘xx

The quoted stnng may not contain a single quote Hut may contiin newlines. which are
oreserved. This quoting mechanism is the most simpie and s -ecommended for casual use.

-4-

A third quoting mechanism using double quotes is also available that prevents interpretation of
some but not all metacharacters. Discussion of the details is deferred to section 3.4.

1.7 Prompting
When the shell is used from a terminal it will issue a prompt before reading a command. By
default this prompt is ‘$ *. It may be changed by saying. for example,

PS1=yesdear

that sets the prompt to be the string vesdear. If a newline is typed and further input is needed
then the shell will issue the prompt ‘> '. Sometimes this can be caused by mistyping a quote
mark. If it is unexpected then an interrupt (DEL) will return the shell to read another com-
mand. This prompt may be changed by saying, for examble,

PS2=more

1.8 The shell and login

Following login (1) the shell is called to read and execut2 commands typed at the terminal. If
the user’s login directory contains the file .profile then 11 is assumed to contain commands and
is read by the shell before reading any commands from the terminal.

1.9 Summary

° Is
Print the names of files in the current directorv.
° Is > file

Put the output from /s into file.
o Is | we -1
Print the number of files in the current directory.
° Is | grep old
' Print those file names containing the string o/c.
(] Is | grep old | we I
Print the number of files whose name contains the string o/d.

L cc pgm.c &
Run cc in the background.

2.0 Shell procedures
The shell may be used to read and execute commands contained in a file. For example,
sh file [args ...]

calls the shell to read commands from file. Such a file is called a command procedure or shell
procedure. Arguments may be supplied with the call and are referred to in file using the posi-
tional parameters S1, S2, For example, if the file w¢ contains

who | grep Sl
then
sh wg fred
is equivalent to
who | grep fred
UNIX files have three independent attributes. read. write and execure. The UNIX command
chmod (1) may be used to make a file executable. For exampie,
chmod +x wg ‘
will ensure that the file wg has execute status. Following this, the command
wg fred
is equivalent to
sh wg fred ‘

This allows shell procedures and programs to be used interchangeably. In either case a new
process is created to run the command.

As well as providing names for the positional parameters, the number of positional parameters
in the call is available as $#. The name of the file being executed is available as $0.

A special sheil parameter S» is used to substitute for all positional parameters except S0. A
typical use of this is to provide some defauit arguments. as in.

nroff =T450 —ms S»

which simply prepends some arguments to those already given.

2.1 Control flow - for

A frequent use of shell procedures is to loop through the arguments (S1, S2. ...) executing
commands once for sach argument. An example of such a procedure is re/ that searches the file
/usr/lib/telnos that contains lines of the form

fred mh0123
bert mhQ739

The text of ref is

for i
do grep Si /usr/lib/teinos; done

Tne command
ta] fred

arints those lines in /usr/lib/telnes that contain the string reqa.

tel fred bert

prints those lines containing fred followed by those for berr.
The for loop notation is recognized by the shell and has the general form
for name in w/ w2 ...

do command-list
"done

A command-list is a sequence of one or more simple commands separated or terminated by a
newline or semicolon. Furthermore, reserved words like do and done are only recognized fol-
lowing a newline or semicolon. name is a shell variable that is set to the words w/ w2 ... in
turn each time the command-list following do is executed. If in w/ w2 ... is omitted then the
loop is executed once for each positional parameter; that is, in $*is assumed.

Another example of the use of the for loop is the create command whose text is
for i do > 8$i; done

The command
create alpha beta

ensures that two empty files alpha and bera exist and are empty. The notation > file may be
used on its own to create or clear the contents of a file. Notice also that a semicolon (or new-
line) is required before done.

2.2 Control flow - case
A multiple way branch is provided for by the case notation. For example,
case $# in
1) cat >>81 ;;
2) cat >>82 <81 :;
*) echo ‘usage: append [from] to” ;;
esac

is an append command. When called with one argument as
append file
$# is the string / and the standard input is copied onto the end of file using the car command.
append filel file2
appends the contents of file/ onto file2. If the number of arguments supplied to append is other
than 1 or 2 then a message is printed indicating proper usage.
The general form of the case command is

case word in
pattern) command-list 33

esac

The shell attempts to match word with each parrern. in the order in which the patterns appear.
If a match is found the associated command-list is executed and execution of the case is com-
plete. Since * is the pattern that matches any string it can be used for the default case.

A word of caution: no check is made to ensure that only one pattern matches the case argu-
ment. The first match found defines the set of commands to be executed. In the exampie
below the commands following the second * will never be executed.

case S# in
=) ...
=) ...

esac

Another example of the use of the case construction is to distinguish between different forms
of an argument. The following example is a fragment of a cc command.

for i
do case Si in
~{ocs]) cee
—=) echo ‘unknown flag Si’ ::
=c) /lib/c0 Si ...
») echo ‘unexpected argument Si° .;
esac '
done

To allow the same commands to be associated with more than one pattern the case command
provides for alternative patterns separated by a | . For example,
case Si in
-xl=y) ...
esac

is equivalent to

case Si in
—[xyl) et
esac

The usual quoting conventions apply so that

case Si in
\?)

will match the character ?.

2.3 Here documents

The shell procedure re/ in section 2.1 uses the file /usr/lib/telnos to supply the data for ¢rep.
An alternative is to include this data within the shell procedure as a #ere document, as in,

for i

do grep Si <<!
fred mh0123
bert mh0739

ce e

1
done
[n this exampie the shell takes the lines between <<! and ! as the standard input for grep.

The string ! is arbitrary, the document being terminated by a line that consists of the string foi-
lowing <<.

Parameters are substituted in the document Sefcre it is made available to grep as illustrated by
the foilowing procedure called edg.

ed 83 <<%
g/81/s//82/g
w

%

The call
edg string] string2 file
is then equivalent to the command

ed file <<%
g/stringl/s//string2/g
w

%

and changes all occurrences of siring/ in file to string2. Substitution can be prevented using \ to
quote the special character $ as in

ed 83 << +
1,\8s/81/82/¢

w
+

(This version of edg is equivalent to the first except that ed will print a ? if there are no
occurrences of the string $1.) Substitution within a here document may be prevented entirely
by quoting the terminating string, for example,

grep 8i <<\#
#
The document is presented without modification to grep. If parameter substitution is not

required in a here document this latter form is more efficient.

2.4 Shell variables

The shell provides string-valued variables. Variable names begin with a letter and consist of
letters, digits and underscores. Variables may be given values by writing, for exampie,

user={red box =m000 acct=mh0000

which assigns values to the variables user, box and acct. A variable may be set to the null
string by saying, for example,

null =
The value of a variable is substituted by preceding its name with $; for exampie,
echo Suser

will echo fred.

Variables may be used interactively to provide abbreviations for frequently used strings. For
example,

b=/usr/fred/bin
mv pgm $b

will move the file pg'n from the current directory to the directory /usr/fred/bin. A more gen-
eral notation is availabie for parameter (or variabie) substitution, as in,

echo S{user)
which is equivalent to

acho Suser

and is used when the parameter name is followed by a letter or digit. For example.

tmp=/tmp/ps
ps a >S{tmpla

will direct the output of ps to the file /tmp/psa. whereas,

ps a >Stmpa

would cause the value of the variable tmpa to be substituted.
Except for S? the following are set initially by the shell. $? is set after executing each com-

mand.
s?

\M

S!
S

The exit status (return code) of the last command executed as a decimal string.
Most commands return a zero exit status if they complete successtully, otherwise
a non-zero exit status is returned. Testing the value of return codes is dealt with
later under if and while commands.

The number of positional parameters (in decimal). Used. for example, in the
append command to check the number of parameters.

The process number of this shell (in decimal). Since process numbers are
unique among all axisting processes. this string is frequently used to generate
unique temporary file names. For example.

ps a >/tmp/psSS
rm /tmp/psSS

The process number of the last process run in the background (in decimal).
The current shell flags. such as =xand —v.

Some variables have a special meaning to the shell and should be avoided for general use.

SMAIL

When used interactively the shell looks at the file specified by this variable
before it issues a prompt. [f the specified file has been modified since it was last
looked at the shell prints the message vou have mail before prompting for the
next command. This variable is typicaily set in the file .profile. in the user’s
login directory. For 2xamplie.

MAIL =/usr/mail/fred

SHOME The defauit argument for the 7 command. The current directory is used o

SPATH

resolve file name referances that do not begin with a /. and is changed using :he
cd command. For example.

cd /usr/fred/bin
makes the current directory /use/fred/bin.
cat wn

will print on the terminal :he fie wx in s directory The commund o/ with a0
argument is aquivaient ‘o

cd SHOME
This variabie is ilso typically sat in the (72 user’s login profile.

A list of diractories that contain commands (the search parir). Each ume 1 com-
mand is axecuted by the shell a list of diractorias 1s sezrched for an 2xecutapia

.10 -

file. If SPATH is not set then the current directory, /bin, and /usr/bin are
searched by default. Otherwise SPATH consists of directory names separated by
:. For example,

PATH = :/usr/fred/bin:/bin:/usr/bin \

specifies that the current directory (the null string before the first :),
/usr/fred/bin, /bin and /usr/bin are to be searched in that order. In this way
individual users can have their own ‘private’ commands that are accessible
independently of the current directory. If the command name contains a / then
this directorv search is not used; a single attempt is made to execute the com-
mand.

$PS1 The primary shell prompt string, by default, ‘S .

$PS2 The shell prompt when further input is needed, by default, *> °.

SIFS The set of characters used by biank interpretarion (see section 3.4).

2.5 The test command
The rest command, although not part of the shell, is intended for use by shell programs. For
example,

test —f file

returns zero exit status if file exists and non-zero exit status otherwise. In general resr evaluates
a predicate and returns the result as its exit status. Some of the more frequently used /esr argu-
ments are given here, see resr (1) for a complete specification.

test s true if the argument s is not the null string
test —f file true if file exists
test —r file true if file is readable

test —w file true if file is writable
test —d file true if file is a directory

2.6 Control flow - while

The actions of the for loop and the case branch are determined by data available to the shell.
A while or until loop and an if then else branch are also provided whose actions are deter-
mined by the exit status returned by commands. A while loop has the general form

while command-list,
do command-list,
done

The value tested by the while command is the exit status of the last simple command following
while. Each time round the loop command-iist, is executed; if a zero exit status is returned
then command-lisi . is executed; otherwise, the loop terminates. For example,

while test $1
do ...

shift
done

is equivalent to

fori
do ...
done

shifi is a shell command that renames the positional parameters $2, $3, ... as $1, $2. ... and
loses $1.

- 11 -

Another kind of use for the while/until loop is to wait until some external event occurs and
then run some commands. In an until loop the termination condition is reversed. For exam-
ple,

until test —f file
do sleep 300: done
commands

will loop until file exists. Each time round the loop it waits for 5 minutes before trying again.
(Presumably another process will eventually create the file.)

1.7 Control flow - if
Also available is a general conditionai branch of the form,
if command-list

then command-list
else command-list

fi
that tests the value returned by the last simple command following if.

The if command may be used in conjunction with the resr command to test for the existence of
afileasin

if test —=f file
then process file

alse do somerhing else
fi

An exampie of the use of if, case and for constructions is given in section 2.10.
A multiple test if command of the form

if ..
- then

alse if ...
then vee
else if ...
ﬁ .

i

may be written using an extension of the if notation as.

if ...

then cee

alif

then cee

alif

fi

The following example is the rouch command which changes the “last modified’ time for a list
of dles. The command may be used .n comjunction with /make (1) to force recompilation of a
list of files.

-12.

flag =
for i
do case $i in
—c) flag=N :.
*) if test —f Si
then In $i junk$S; rm junk$$
elif test $flag
then echo file \'$i\" does not exist
else >8i

fi
esac
done

The —c flag is used in this command to force subsequent files to be created if they do not
already exist. Otherwise, if the file does not exist, an error message is printed. The shell vari-
able flag is set to some non-null string if the —c argument is encountered. The commands

In...m...

make a link to the file and then remove it thus causing the last modified date to be updated.
The sequence

if command]l
then command2
fi

may be written
command]l && command2
Conversely,
commandl || command2
executes command? only if command! fails. In each case the value returned is that of the last
simple command executed.

2.8 Command grouping
Commands may be grouped in two ways,

{ command-hsi ; }
and

(command-hist)

In the first command-list is simply executed. The second form executes command-list as a
separate process. For example,

(cd x; rm junk)

executes rm junk in the directory x without changing the current directory of the invoking shell.
The commands

cd x. rm junk
have the same effect but leave the invoking shell in the directory x.

.13 -

2.9 Debugging shell procedures

The shell provides two tracing mechanisms to help when debugging sheil procedures. The first
is invoked within the procedure as

set —-v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to
help isolate syntax errors. It may be invoked without modifving the procedure by saying

sh =v proc ...

where proc is the name of the shell procedure. This flag may be used in conjunction with the
—-n flag which prevents execution of subsequent commands. (Note that saying ser —» at a ter-
minal will render the terminal useless until an end-of-file is typed.)

The command
set =x

will produce an execution trace. Following parameter substitution each command is printed as
it is executed. (Try these at the terminal to see what 2ffect they have.) Both flags may be
turned off by saying

set -

and the current setting of the shell tlags is available as $—.

2.10 The man command

The following is the man command which is used to print sections of the UNIX manual. [t is
called, for example, as

man sh
man —t ad
man 2 fork

[n the first the manual section for s/ is printed. Since no section is specified. section 1 is used.
The second example will typeset (—t option) the manual section for ed. The last prints the fork
manual page from section 2.

cd /usr/man

.14 -

: “colon is the comment command’
: “default is nroff (SN), section 1 (8s)’
N=pngs=|]

for i
do case

$i in

(1-9])

—t) Nm=t::

—n) N=n ;;

s=3i;;

—=*) echo unknown flag \'Si\" ;;

*)

esac
done

if test —f man$s/8%i.Ss

then
else

${N}roff man0/${N}aa man3s/$i.Ss
: "look through all manual sections’
found=no
forjin123456789
do if test ~f man3;j/3i.3;

then man $j $i

found=yes

fi
done
case $found in

no) echo “Si: manual page not found’

esac

Figure 1. A version of the man command

.

—

(V1Y
(]

3.0 Keyword parameters

Shell variables may be given values by assignment or when a shell procedure is invoked. An
argument to a shell procedure of the form nagme=vaiue that precedes the command name
causes value to be assigned to name before execution of the procedure begins. The value of
name in the invoking shell is not atfected. For example.

user =fred command

will execute command with user set to fred The —k flag causes arguments of the form
name =value to be interpreted in this way anywhere in the argument list. Such names are some-
times called keyword parameters. [f any arguments remain they are available as positional
parameters S1, S2,....

The ser command may also be used to set positional parameters from within a procedure. For
axample,

set — *

will set S1 to the first file name in the current directory, $2 to the next, and so on. Note that
the first argument, =, ensures correct treatment when the first file name begins with a —.

3.1 Parameter transmission

When a shell procedure is invoked both positional and keyword parameters may be supplied
with the call. Keyword parameters are also made available implicitly to a shell procedure by
specifving in advance that such parameters are to be exported. For example,

axport user box

marks the variables user and bex for export. When a shell procedure is invoked copies are
made of all exportable variables for use within the invoked procedure. Modification of such
variables within the procedura does not affect the values in the invoking shell. It is generaily
true of a shell procedure that it may not modify the state of its caller without explicit request
on the part of the cailer. (Shared file descriptors are an exception to this rule.)

Names whose value is intended to remain constant may be declared readonfyv. The form of this
command is the same as that of the exporr command.

readonly name ...

Subsequent attempts to set readonly variables are iilegal.

3.2 Parameter substitution

[f a shell parameter is not set then the null string is substituted for it. For exampie. if the vari-
able d is not set

echo Sd

or
echo S{d} '

will echo nothing. A default string may be given as in
acho S{d—.,

which will echo :he value of the variable d if it is set and °." otherwise. The default string 1s
evaluated using ine usuai quoting conventions so ihat

echo S{d="*"}

will echo # if +he variable d is not set. Simuilarly

-16 -

echo ${d-S1)

will echo the value of d if it is set and the value (if any) of $1 otherwise. A variable may be
assigned a default value using the notation

echo ${d=.}
which substitutes the same string as
echo ${d-.) ’
and if d were not previously set then it will be set to the string *.". (The notation ${...=...) is
not available for positional parameters.)
If there is no sensible default then the notation

echo ${d?message)

will echo the value of the variable d if it has one, otherwise message is printed by the shell and
execution of the shell procedure is abandoned. If message is absent then a standard message is
printed. A shell procedure that requires some parameters to be set might start as follows.

: ${user?) ${acct?} ${bin?}

Colon (:) is a command that is built in to the shell and does nothing once its arguments have
been evaluated. If any of the variables user, acct or bin are not set then the shell will abandon
execution of the procedure.

3.3 Command substitution

The standard output from a command can be substituted in a similar way to parameters. The
command pwd prints on its standard output the name.of the current directory. For example, if
the current directory is /usr/fred/bin then the command

d-!pwd\
is equivalent to
d=/usr/fred/bin
The entire string between grave accents (*...") is taken as the command to be executed and is

replaced with the output from the command. The command is written using the usual quoting
conventions except that a ' must be escaped using a \. For example,

Is ‘echo "$1"°
is equivalent to
Is $1

Command substitution occurs in all contexts where parameter substitution occurs (including
here documents) and the treatment of the resulting text is the same in both cases. This
mechanism allows string processing commands to be used within shell procedures. An exampie
of such a command is basename which removes a specified suffix from a string. For example,

basename main.c .c
will print the string main. Its use is illustrated by the following fragment from a cc command.
case SA in

=c) B="basename SA .c’

see

esac

.17 -

that sets B to the part of SA with the suffix .c stripped.
Here are some composite axamples.

foriin'ls —=t; do...
The variable i is set to the names of files in time order, most recent first.

set 'date’; echo $6 §2 3, 4
will print, e.g.. /977 Nov [, 23:59:39

3.4 Evaluation and quoting

The shell is a macro processor that provides parameter substitution, command substitution and
file name generation for the arguments to commands. This section discusses the order in which
these evaluations occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in appendix A. Before a com-
mand is executed the following substitutions occur.

parameter substitution, e.g. Suser
command substitution, e.g. ‘pwd’
Only one evaluation occurs so that if. for example, the value of the variable X is the
string Sy then
echo SX

will echo Sv.
blank interpretation

Following the above substitutions the resuiting characters are broken into non-blank
words (blank interprerarion). For this purpose "blanks’ are the characters of the
string SIFS. By default, this string consists of blank. tab and newline. The null
string is not regarded as a word uniess it is quoted. For exampie.

echo ’
will pass on the null string as the first argument t0 echo. wheraas
echo Snull

will call echo with no arguments if the variable null is not set or set to the null
string.

file name generation

Each word is then scanned for the file pattern characters », ? and [...] and an ulpha-
beticai list of file names is generated to replace the word. Each such file name is a
separate argument.

The avaluations just described also occur in ihe list of words associated with a for loop. Only
substitution occurs in the word used for a case branch.

As well as the quoting mechanisms described 2artier using ', and ... a third quoting mechan-
ism is provided using double quotes. Within doubie quotas parameter ind command substitu-
tion occurs but file name ge2neration and the interpretation of blanks does not. The fsilow.ng
characters have i spec:ai meaning within double quotes and may be quoted using - .

S parameter subsiituticn
' ccmmand substitution
2nas the quoted sirny
quotes the special cnaracters $

"

\

For axampie.

echo "Sx”

.18 -

will pass the value of the variable x as a single argument to echo. Similarly,
echo "$#"

will pass the positional parameters as a single argument and is equivaient to
echo "S1 82 ..."

The notation $@ is the same as $* except when it is quoted.
echo "$@"

will pass the positional parameters, unevaluated, to ecko and is equivalent to
echo "$1" "8$2" ...

The following table gives, for each quoting mechanism, the shell metacharacters that are
evaluated.

meracharacter

\ s - A " 4
’ n n n n n t
' y n n t n n
" y y n y t n

t terminator

y interpreted

n not interpreted

Figure 2. Quoting mechanisms

In cases where more than one evaluation of a string is required the built-in command eva/ may
be used. For example, if the variable X has the value 3y, and if y has the value pgr then

eval echo $X

will echo the string pgr.

In general the eva/command evaluates its arguments (as do all commands) and treats the result
. as input to the shell. The input is read and the resuiting command(s) executed. For exampie,

wg="eval who | grep’
Swg fred

is equivalent to
who | grep fred

In this example, eval is required since there is no interpretation of metacharacters, such as |,
following substitution.

3.5 Error handling

The treatment of errors detected by the shell depends on the type of error and on whether the
shell is being used interactively. An interactive shell is one whose input and output are con-
nected to a terminal (as determined by grry (2)). A shell invoked with the —i flag is also
interactive.

Execution of a command (see also 3.7) may fail for any of the following reasons.

® Input output redirection may fail. For example, if a file does not exist or cannot be
created.

-19.

The command itself does not exist or cannot be axecuted.

The command terminates abnormally. for example. with a "bus error” or "memory fault”.
See Figure 2 below tor a compleate list of UNIX signals.

° The command terminates normally but returns a non-zero exit status.

[n all of these cases the shell will g0 on to execute the next command. Except for the last case
an error message will be printed by the shell. All remaining errors cause the shell to exit from
a command procedure. An interactive shell will return to read another command from the ter-
minal. Such errors inciude the following.

® Syntax errors. 2.g.. if ... then... done

] A signal such as interrupt. The shell waits for the current command. if any, to finish exe-
cution and then either axits or returns to the terminal.

° Failure of any of the built-in commands such as cd.
The shell flag —e causes the shell to terminate if any arror is detected.

l hangup

2 interrupt

K quit

4" illegal instruction-

5 trace trap

6° [OT instruction

7" EMT instruction

8 floating point exception

9 kill (cannot be caught or ignored)

10° bus arror
1e segmentation violation
12* bad argument to system call

13 write on a pipe with no one to read it
I alarm clock
15 software termination (from A« (1))

Figure 3. UNIX signals

Those signals marked with an asterisk produce a core dump if not caught. However, the shell
itself ignores quit which is the only axternal signal that can cause a dump. The signals in this
list of potenual intersst to shell programs are 1, 2, 3. 14 and 13.

3.6 Fault handling

Shell procedures normally terminate when an interrupt is received from the terminal. The (rap
command is used if some cleaning up is required. such as removing temporary files. For exam-
ple.

trap rm /tmp/psSS: exit” 2

sets a trap for signal 1 (terminal interrupt). and if this signal is received wiil execute the com-
mands

rm /tmp/ps3S: exit

exit (s another built-in command that terminates 2xecution of a shell procedure. The exir is
required. otherwise. after the trap has been raken. :ne sheil wiil resume executing the pro-
cedure at the place whera it was interrupted.

UNIX signals can be handled in one of three ways. They <can be ignored. in which case the sig-
nal 's never sent o the process. They can 2e caugnt. in which case :he process must dec:de
wnat iction to take when the signai :s recaived. Lasiiy. they can be left t0 cause ‘ermunation of

-20-

the process without it having to take any further action. If a signal is being ignored on entry to
the shell procedure, for example, by invoking it in the background (see 3.7) then #ap com-
mands (and the signal) are ignored.

The use of map is illustrated by this modified version of the touch command (Figure 4). The
cleanup action is to remove the file junkS.

flag =
trap ‘rm —f junk$$; exit" 123 15
for i
do case $i in
—c) flag=N ;;
*) if test —f Si
then In i junk$$; rm junk3S
elif test $flag
then echo file \'$i\" does not exist
else >Si
fi
esac
done

Figure 4. The touch command

The map command appears before the creation of the temporary file; otherwise it would be pos-
sible for the process to die without removing the file.

Since there is no signal 0 in UNIX it is used by the shell to indicate the commands to be exe-
cuted on exit from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to
trap. The following fragment is taken from the nohup command. ‘

rap " 12315

which causes hangup, interrupt, quir and kill to be ignored both by the procedure and by invoked
commands.

Traps may be reset by saying
trap 2 3

which resets the traps for signals 2 and 3 to their defauit values. A list of the current values of
traps may be obtained by writing

trap

The procedure scan (Figure 5) is an example of the use of wrap where there is no exit in the
trap command. scan takes each directory in the current directory, prompts with its name, and
then executes commands typed at the terminal until an end of file or an interrupt is received.
Interrupts are ignored while executing the requested commands but cause termination when
scan is waiting for input.

.21 -

d="pwd’
foriin=
do if test —=d Sd/Si
then cd Sd/Si
while echo "Si:"

trap exit 2
read x
do trap : 2: eval Sx: done
fi
done

Figure 5. The scan command

read x is a built-in command that reads one line from the standard input and places the result in
the variable x. [t returns a non-zero axit status if either an end-of-file is read or an interrupt is
received.

3.7 Command execution

To run a command (other than a built-in) the shell first creates a new process using the system
call fork. The axecution environment for the command includes input. output and the states of
signals. and is established in the child process before the command is exacuted. The buiit-in
command exec is used in the rare cases when no fork is required and simply raplaces the shetl
with a new command. For example. a simple version of the no/iup command looks like

trap " 12313
exec S»

The trap turns off the signals speciﬁed so that they are ignored by subsequently created com-
mands and exec replaces the shell by the command specified.

Most forms of input output redirection have already been described. In the following word is
only subject to parameter and command substitution. No file name generation or biank
interpretation takes place so that, for axample.

acho ... >»¢
will write its output into a file whose name is *.c. [nput output specifications are evaluated left
to right as they appear in the command.

> word The standard output (file descriptor 1) is sent to the file word which is created if it
does not already 2xist.

>> word The standard output is sent to file word. [f the file exists then output is appended
by seeking to the and): otherwise the file is created.

< word The standard input (file descriptor 0) is aken :;rom the file word.

<< word The standard input is taken from the lines of she!l input that follow up 0 but not
including a line consisting only of word. If word is Juoted :nen no interpratation
of the document occurs. [f word is not 1uoted "==2~ suramerer und command subd-
siitution occur and \ is used to quote th2 characiar: 3 and :he drst character HOf
word. In the latter case newline .s iwncrad (c.f. sucted strings).

>& e The fle descriptor digir is duplicatad using :he svsiem il Jup (2) ind the result s
used is the standard output.

<& dier The standard input is duplicated trom file descriotor ..z:x.

-22-

<&- The standard input is closed.
>&- The standard output is closed.
Any of the above may be preceded by a digit in which case the file descriptor created is that
specified by the digit instead of the defauit 0 or 1. For example,
... 2>file
runs a command with message output (file descriptor 2) directed to file.
e 2>&1

runs a command with its standard output and message output merged. (Strictly speaking file
descriptor 2 is created by duplicating file descriptor 1 but the effect is usually 1o merge the two
streams.)

The environment for a command run in the background such as
list*.c | lpr &

is modified in two ways. Firstly, the default standard input for such a command is the empty
file /dev/null. This prevents two processes (the shell and the command), which are running
in parallel, from trying to read the same input. Chaos would ensue if this were not the case.
For example,

ed file &

would allow both the editor and the shell to read from the same input at the same time.

The other modification to the environment of a background command is to turn off the QUIT
and INTERRUPT signals so that they are ignored by the command. This allows these signals
to be used at the terminal without causing background commands to terminate. For this reason
the UNIX convention for a signal is that if it is set to 1 (ignored) then it is never changed even
for a short time. Note that the shell command rrap has no effect for an ignored signal.

3.8 Invoking the shell

The following flags are interpreted by the shell when it is invoked. If the first character of
argument zero is a minus, then commands are read from the file .profile.

-C Siring
If the —c flag is present then commands are read from swring.

—s If the —s flag is present or if no arguments remain then commands are read from the
standard input. Shell output is written to file descriptor 2.

—i If the —i flag is present or if the shell input and output are attached to a terminal (as toid
by grev) then this shell is interacrive. In this case TERMINATE is ignored (so that kill 0
does not kill an interactive shell) and INTERRUPT is caught and ignored (so that wait is
interruptable). In all cases QUIT is ignored by the shell.

Acknowledgements

The design of the shell is based in part on the original UNIX shell® and the PWB/UNIX shell 4
some features having been taken from both. Similarities also exist with the command inter-
preters of the Cambridge Multiple Access System’ and of CTSS.6

I would like to thank Dennis Ritchie and John Mashey for many discussions during the design
of the shell. I am also grateful to the members of the Computing Science Research Center and
to Joe Maranzano for their comments on drafts of this document.

.23 -

References

B. W. Kernighan. UN/X for Beginners, Bell Laboratories internal memorandum (1978).

K. Thompson and D. M. Ritchie. L'~ix Programmer’'s Manual, Bell Laboratories (1978).
Seventh Edition.

K. Thompson, "The UxNix Command Lgnguage." pp. 375-384 in Srructured
Programmung —infotech State of the Art Reporr, Infotech International Lid., Nicholson
House. Maidenhead. Berkshire. England (March 1973).

J. R. Mashey, PWBIUNIX Shell Tutoral, Beil Laboratories internal memorandum (Sep-
tember 30, 1977). '

D. F. Haruey (Ed.). The Cambridge Multiple Access System — Users Reference Manual,
University Mathematical Laboratory, Cambridge, England (1968).

P. A. Crisman (Ed.). The Companble Time-Sharing System. M.1.T. Press. Cambridge, Mass.
(1963).

-2 .

Appendix A - Grammar

item: word
inpur-ourput
name = value

simple-command: item
simple-command item

command. simple-command
(command-list)
{ command-list)
for name do command-list done
for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part ... esac
if command-list then command-lis: else-par: fi

pipeline: command
pipeline | command

andor: pipeline
andor && pipeline
andor | | pipeline

command-list: andor
" command-list ;
command-list &
command-list ; andor
command-list & andor

input-output: > file
< file
>> word
<< word

file: word
& digit
& -
case-part: panern) command-list 33

pareern: word
pattern | word

else-part: elif command-ilist then command-list else-par
else command-list :
empry
empry:
word: a sequence of non-blank characters
name: a sequence of letters, digits or underscores starting with a letter

digir: 0123456789

.25.

Appendix B - Meta-characters and Reserved Words
a) syntactic

| pipe symbol

&& ‘andf’ symbol

Il ‘orf” symbol

H command separator
3 case delimiter

& background commands
() command grouping

< input redirection

<< input from a here document
> output creation

>> output append

b) patterns
» match any character(s) including none
? match any single character
[...] match any of the enclosed characters

¢) substitution
${...] substitute shell variable
‘e substitute command output

d) quoting
\ quote the next character
‘.o, quote the enciosed characters except for

... quote the enciosed characters except for $ '\ "

e) reserved words

if then else elif fi
case in esac
for while until do done

()

UNX 1.3.4

An introduction to the C shell

William Joy

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

ABSTRACT

Csh is a new command language interpreter for UNIX systems. It incor-
porates good features of other shells and a Aisrory mechanism similar to the redo
of INTERLISP. While incorporating many features of other shells which make
writing shell programs (shell scripts) easier, most of the features unique to csh
are designed more for the interactive UNIX user.

UNIX users who have read a general introduction to the system will find a
valuable basic. explanation of the shell here. Simple terminal interaction with
csh is possible after reading just the first section of this document. The second
section describes the shells capabilities which you can explore after you have
begun to become acquainted with the shell. Later sections introduce features
which are useful, but not necessary for all users of the shell.

Back matter includes an appendix listing special characters of the shell and
a glossary of terms and commands introduced in this manual.

January 17, 1979

An introduction to the C shell

William Joy

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

Introduction

A shell is a command language interpreter. Csh is the name of one particular command
interpreter on UNIX. The primary purpose of csh is to translate command lines typed at a termi-
nal into system actions, such as invocation of other programs. Csh is a user program just like
any you might write. Hopefully, csh# will be a very useful program for you in interacting with
the UNIX system.

In addition to this document, you will want to refer to a copy of the ‘‘UNIX Programmers
Manual.”” The csh documentation in the manual provides a full description of all features of the
shell and is a final reference for questions about the shell.

Many words in this document are shown in italics. These are important words; names of
commands, and words which have special meaning in discussing the shell and UNIX. Many of
the words are defined in a glossary at the end of this document. If you don’t know what is
meant by a word, you should look for it in the glossary.

Acknowledgements

Numerous people have provided good input about previous versions of csh and aided in
its debugging and in the debugging of its documentation. I would especially like to thank
Michael Ubell who made the crucial observation that history commands could be done well
over the word structure of input text, and implemented a prototype history mechanism in an
older version of the shell. Eric Allman has also provided a large number of useful comments

‘on the shell, helping to unify those concepts which are present and to identify and eliminate

useless and marginally useful features.

1. Terminal usage of the shell

1 The basic notion of commands

A shell in UNIX acts mostly as a medium through which other commands are invoked.
While it has a set of builtin commands which it performs directly, most useful commands are, in
fact, external to the shell. The shell is thus distinguished from the command interpreters of
other systems both by the fact that it is just a user program, and by the fact that it is used
almost exclusively as a mechanism for invoking other programs.

Commands in the UNIX system expect a list of strings or words as arguments. Thus the
command

mail bill

consists of two words. The first word mail names the command to be executed, in this case the
mail program which sends messages to other users. The shell uses the name of the command
in attempting to run it for you. It will look in a number of directories for a file with the name
mail which is expected to contain the mail program.

The rest of the words of the command are given to the command itself to execute. In
this case we specified also the word bill which is interpreted by the mail program to be the name
of a user to whom mail is to be sent. In normal terminal usage we might use the mail com-
mand as follows.

% mail bill
I have a question about the csh documentation.
My document seems to be missing page 5.
Does a page five exist?

Bill
%

Here we typed a message to send to bill and ended this message with a control-d which
sent an end-of-file to the mail program. The mail program then transmitted our message. The
characters ‘% ° were printed before and after the mail command by the shell to indicate that
input was needed.

After typing the ‘% ’ prompt the sheil was reading command input from our terminal.
We typed a complete command ‘mail bill’. The shell then executed the mail program with
argument bill and went dormant waiting for it to compiete. The’ mail program then read input
from our terminal until we signailed an end-of-file after which the shell noticed that mail had
completed and signaled us that it was ready to read from the terminal again by printing another
‘% * prompt.

This is the essential pattern of ail interaction with UNIX through the shell. A compiete
command is typed at the terminal, the shell executes the command and when this execution
completes prompts for a new command. If you run the editor for an hour, the sheil will
patiently wait for you to finish editing and obediently prompt you again whenever you finish
editing.

1.2. Flag arguments

A useful notion in UNIX is that of a flag argument. While many arguments to commands
specify file names or user names some arguments rather specify an optional capability of the
command which you wish to invoke. By convention, such arguments begin with the character
*=". Thus the command

Is

will produce a list of the files in the current directory. The option —sis the size option, and

Is —s

causes /s to also give, for each file the size of the file in blocks of 512 characters. The manual
page for each command in the UNIX programmers manual gives the availabie options for each
command. The /s command has a large number of useful and interesting options. Most other
commands have either no options or only one or two options. It is hard to remember options
of commands which are not used very frequently, so most UNIX utilities perform only one or
two functions rather than having a large number of hard to remember options.

1.3. Output to files

Many commands may read input or write output to files rather than simply taking input
and output from the terminal. Each such command could take special words as arguments indi-
cating where the output is to go. It is simpler, and usually sufficient, to connect these com-
mands. to files to which they wish to write, within the shell itself, and just before they are exe-
cuted.

Thus suppose we wish to save the current date in a file called ‘now’. The command
date

will print the current date on our terminal. This is because our terminal is the default standard
output for the date command and the date command prints the date on its standard output. The
shell lets us redirect the standard outpur of a command through a notation using the meracharac-
ter *>" and the name of the file where output is to be placed. Thus the command

date > now

runs the dare command in an environment where its standard output is the file ‘now’ rather
than our terminal. Thus this command places the current date and time in the file ‘now’. It is
important to know that the dare command was unaware that its output was going to a file rather
than to our terminal. The shell performed this redirection before the command began execut-
ing.

One other thing to note here is that the file ‘now’ need not have existed before the dare
command was executed; the shell would have created the file if it did not exist. And if the file
did exist? If it had existed previously these previous contents would have been discarded! A
shell option noclobber exists to prevent this from happening accidentally; it is discussed in sec-
tion 2.2.

1.4. Metacharacters in the shell

The shell has a large number of special characters (like ‘>’) which indicate special func-
tions. We say that these notations have synractic and semantic meaning to the shell. In general,
most characters which are neither letters nor digits have special meaning to the shell. We shall
shortly learn a means of quoranion which allows us to create words which contain meracharacrers
and to thus work without constantly worrying about whether certain characters are metacharac-
ters.

Note that the shell is only reading input when it has prompted with ‘% °. Thus metachar-
acters will normally have effect only then. We need not worry about placing shell metacharac-
ters in a letter we are sending via mail.

1.5. Input from files; pipelines

We learned above how to route the standard output of a command to a file. It is also pos-
sible to route the standard input of a command from a file. This is not often necessary since
most commands will read from a file name given as argument. We can give the command

sort < data

to run the sorr command with standard input, where the command normally reads. from the file

‘data’. We would more likely say
sort data

letting the sorr command open the file ‘data’ for input itself since this is less to type.
We should note that if we just typed

sort

then the sort program would sort lines from its standard input. Since we did not redirect the
standard input, it would sort lines as we typed them on the terminal until we typed a control-d
to generate an end-of-file.

A most useful capability is the ability to combine the standard output of one command
with the standard input of the next, i.e. to run the commands in a sequence known as a pipeline.
For instance the command

Is —s

normally produces a list of the files in our directory with the size of each in blocks of 512 char-
acters. If we are interested in learning which of our files is largest we may wish to have this
sorted by size rather than by name, which is the defauit way in which /s sorts. We could look at
the many options of /s to see if there was an option to do this but would eventually discover
that there is not. Instead we can use a couple of simple options of the sorr command, combin-
ing it with /s to get what we want.

The —n option of sort specifies a numeric sort rather than an alphabetic sort. Thus
Is —s|sort —=n

specifies that the output of the /s command run with the option —s is to be piped to the com-
mand sort run with the numeric sort option. This would give us a sorted list of our files by
size, but with the smallest first. We could then use the —r reverse sort option and the head
command in combination with the previous command doing

Is —=s|sort =n —r|head =5

Here we have taken a list of our files sorted alphabetically, each with the size in blocks. We
have run this to the standard input of the sorr command asking it to sort numerically in reverse
order (largest first). This output has then been run into the command head which gives us the
first few lines out. In this case we have asked head for the first § lines. Thus this command
gives us the names and sizes of our 5 largest files.

The metanotation introduced above is called the pipe mechanism. Commands separated
by ‘|* characters are connected together by the shell and the output of each is run into the input
of the next. The leftmost command in a pipeline will normally take its standard input from the
terminal and the rightmost will place its standard output on the terminal. Other examples of
pipelines will be given later when we discuss the history mechanism; one important use of pipes
which is illustrated there is in the routing of information to the line printer.

1.6. Filenames

Many commands to be executed will need the names of files as arguments. UNIX path-
names consist of a number of components separated by ‘/°. Each component except the last
names a directory in which the next component resides. Thus the pathname

/etc/motd

specifies a file in the directory ‘etc’ which is a subdirectory of the root directory */°. Within this
directory the file named is ‘motd’ which stands for ‘message of the day’. Filenames Which do
not begin with ‘/’ are interpreted starting at the current working directory. This directory is, by
default, your home directory and can be changed dynamically by the cAdir change directory com-
mand.

-5-

Most filenames consist of a number of alphanumeric characters and “.’s. In fact, all print-
ing characters except ‘/° may appear in filenames. It is inconvenient to have most non-
alphabetic characters in filenames because many of these have special meaning to the shell.
The character ‘.’ is not a shell-metacharacter and is often used as the prefix with an exiension of
a base name. Thus

Prog.c prog.o prog.errs prog.output

are four related files. They share a roor portion of a name (a root portion being that part of the
name that is left when a trailing *.” and following characters which are not ‘.’ are stripped off).
The file ‘prog.c’ might be the source for a C program, the file ‘prog.o’ the corresponding object
file. the file ‘prog.errs’ the errors resulting from a compilation of the program and the file
*prog.output’ the output of a run of the program.

If we wished to refer to all four of these files in a command, we could use the metanota-
tion v
prog.”

This word is expanded by the shell, before the command to which it is an argument is exe-
cuted, into a list of names which begin with ‘prog.’. The character ‘*’ here matches any
sequence (including the empty sequence) of characters in a file name. The names which match
are sorted into the argument list to the command alphabetically. Thus the command

echo prog.*
will echo the names
prog.c prog.errs prog.o prog.output

Note that the names are in lexicographic order here, and a different order than we listed them
above. The echo command receives. four words as arguments, even though we only typed one
word as as argument directly. The four words were generated by filename expansion of the
metasyntax in the one input word. '

Other metanotations for filename expansion are also available. The character ‘?’ matches
any single character in a filename. Thus

echo ? 7?7 777

will echo a line of filenames; first those with one character names, then those with two charac-
ter names, and finally those with three character names. The names of each length will be
independently lexicographically sorted.

Another mechanism consists of a sequence of characters between ‘[’ and ‘]’. This
metasequence matches any single character from the enclosed set. Thus

prog. [co]
will match
prog.c prog.o

in the example above. We can also place two characters astride a ‘=" in this notation to denote
arange. Thus i

chap.[1-5]
might match files
chap.1 chap.2 chap.3 chap.4 chap.5
if they existed. This is shorthand for
chap.[12345]

and otherwise equivalent.

-6-

An important point to note is that if a list of argument words to a command (an argument
list) contains filename expansion syntax, and if this filename expansion syntax fails to match
any existing file names, then the shell considers this to be an error and prints a diagnostic

No match.

Another very important point is that the character ‘." at the beginning of a filename is
treated specially. Neither ‘** or *?° or the ‘[’ ‘|’ mechanism will match it. This prevents
accidental matching of the filenames ‘.’ and ‘..’ in the current directory which have special
meaning to the system, as well as other files such as .csArc which are not normally visible. We
will discuss the special role of the file .cshrc later.

Another filename expansion mechanism gives access to the pathname of the home direc-
tory of other users. This notation consists of the character ‘™ followed by another users login
name. For instance the word ‘“bill’ would map to the pathname ‘/mnt/bill’ if the home direc-
tory for ‘bill’ was in the directory ‘/mnat/bill’. Since, on large systems, users may have login
directories scattered over many different disk volumes with different prefix directory names,
this notation provides a reliable way of accessing the files of other users.

A special case of this notation consists of a ‘= alone, e.g. ‘“/mbox’. This notation is
expanded by the shell into the file ‘mbox’ in your rome directory, i.e. into ‘/mnt/bill/mbox’ for
me on the Cory Hall UNix system. This can be very useful if you have used cAdir to change to
another users directory and have found a file you wish to copy using cp. You can do

cp thatfile ~
which will be expanded by the shell to
cp thatfile /mnt/bill

e.g.. which the copy command will interpret as a request to make a copy of ‘thatfile’ in the
directory ‘/mnt/bill’. The ‘"’ notation doesn’t, by itself, force named files to exist. This is use-
ful, for example, when using the cp command, e.g.

cp thatfile ~/saveit

There also exists a mechanism using the characters ‘(" and ‘)’ for abbreviating a set of
word which have common parts but cannot be abbreviated by the above mechanisms because
they are not files, are the names of files which do not yet exist, are not thus conveniently
described. This mechanism will be described much later, in section 4.1, as it is used much less
frequently.

1.7. Quotation

We have already seen a number of metacharacters used by the shell. These metacharacter
pose a problem in that we cannot use them directly as parts of words. Thus the command

echo *

(Y 1}

will not echo the character ‘*’. It will either echo an sorted list of filenames in the current
directory, or print the message ‘No match’ if there are no files in the current directory.

The recommended mechanism for placing characters which are neither numbers, digits,
*/°, *.’ or ‘=" in an argument word to a command is to enclose it with single quotation charac-
ters ‘7', i.e.

echo ™**

There is one special character *!" which is used by the history mechanism of the shelil and which
cannot be escaped in this way. It and the character ** itself can be preceded by a single ‘\’ to
prevent their special meaning. These two mechanisms suffice to place any printing character
into a word which is an argument to a shell command.

1.8. Terminating commands

When you are running a command from the shell and the shell is dormant waiting for it
to complete there are a couple of ways in which you can force such a command to complete.
For instance if you type the command

cat /etc/passwd

the system will print a copy of a list of all users of the system on your terminal. This is likely
to continue for several minutes uniess you stop it. You can send an INTERRUPT signal to the
cat command by hitting the DEL or RUBOUT key on your terminal. Actually, hitting this key
sends this INTERRUPT signal to all programs running on your terminal, including your shell.
The shell normally ignores such signals however, so that the only program affected by the
INTERRUPT will be car. Since car does not take any precautions to catch this signal the INTER-
RUPT will cause it to terminate. The shell notices that car has died and prompts you again with
‘% °. If you hit INTERRUPT again, the shell will just repeat its prompt since it catches INTERRUPT
signals and chooses to continue to execute commands rather than going away like car did,
which would have the effect of logging you out.

Another way in which many programs terminate is when they get an end-of-file from their
standard input. Thus the mail program in the first example above was terminated when we hit
a control-d which generates and end-of-file from the standard input. The shell also terminates
when it gets an end-of-file printing ‘logout’; UNIX then logs you off the system. Since this
means that typing too many control-d’s can accidentally log us off, the shell has a mechanism
for preventing this. This ignoreeof option will be discussed in section 2.2.

If a command has its standard input redirected from a file, then it will normally terminate
when it reaches the end of this file. Thus if we execute

mail bill < prepared.text

the mail command will terminate without our typing a control-d. This is because it read to the
end-of-file of our file ‘prepared.text’ in which we placed a message for ‘bill’ with an editor. We
could also have done

cat prepared.text | mail bill

since the car command would then have written the text through the pipe to the standard input
of the mail command. When the car command completed it would have terminated, closing
down the pipeline and the mai/ command would have received an end-of-file from it and ter-
minated. Using a pipe here is more complicated than redirecting input so we would more likely
use the first form. These commands could aiso have been stopped by sending an INTERRUPT.

If you write or run programs which are not fully debugged then it may be necessary to
stop them somewhat ungracefully. This can be done by sending them a QUIT signal, generated
by a control-\. This will usually provoke the shell to produce a message like:

a.out: Quit —— Core dumped

indicating that a file ‘core’ has been created containing information about the program ‘a.out’s
state when it ran amuck. You can examine this file yourself, or forward information to the
maintainer of the program telling him/her where the core file is.

If you run background commands (as explained in section 2.6) then these commands will
ignore INTERRUPT and QUIT signals’ at the terminal. To stop them you must use the kill pro-
gram. See section 2.6 for an example.

1.9. What now?

We have so far seen a number of mechanisms of the shell and learned a lot about the way
in which it operates. The remaining sections will go yet further into the internals of the shell,
but you will surely want to try using the shell before you go any further. To try it you can log
in to UNIX and type the following command to the system:

chsh myname /bin/csh
Here ‘myname’ should be replaced by the name you typed to the system prompt of ‘login:’ to
get onto the system. Thus [would use ‘chsh bill /bin/csh’. You only have to do this once; it
takes effect at next login. You are now ready to try using csh.
) Before ycu do the ‘chsh’ command, the shell you are using when you log into the system
is */bin/sh’. In fact. much of the above discussion is applicable to ‘/bin/sh’. The next section
will introduce many features particular to cs/ so you should change your shell to ¢sh before you

begin reading it.

2. Details on the shell for terminal users

2.1. Shell startup and termination

When you login, the shell is placed by the system in your home directory and begins by
reading commands from a file .cshrc in this directory. All shells which you may create during
your terminal session will read from this file. We will later see what kinds of commands are
usefully placed there. For now we need not have this file and the shell does not complain
about its absence.

A login shell, executed after you login to the system, will, after it reads commands from
.cshre, read commands from a file ./login also in your home directory. This file contains com-
mands which you wish to do each time you login to the UNIX system. My .login file looks
something like:

tset —d adm3a —p adm3a
fixexrc

set history=20

set time=3

on the cCORY Hall UNIX system. This file contains four commands to be executed by UNIX each
time I login. The first is a tser command which informs the system that I usually dial in on a
Lear-Siegler ADM—-3A terminal and that if] am on a patchboard port on the fifth floor of Evans
Hall I am probably also on an ADM-3A. The second command is a fixexrc which manipulates
my ex startup file in certain ways if I am on a dialup port. We need not be concerned with
exactly what this command does. In general you may have certain commands in your .login
which are particular to you.

The next two ser commands are interpreted directly by the shell and affect the values of
certain shell variables to modify the future behavior of the shell. Setting the variable time tells
the shell to print time statistics on commands which take more than a certain threshold of
machine time (in this case 3 CPU seconds). Setting the variable history tells the shell how much
history of previous command words it should save in case I wish to repeat or rerun modified
versions of previous commands. Since there is a certain overhead in this mechanism the shell
does not set this variable by default, but rather lets users who wish to use the mechanism set it
themselves. The value of 20 is a reasonably large value to assign to history. More casual users
of the history mechanism would probably set a value of 5 or 10. The use of the hisrory mechan-
ism will be described subsequently.

After executing commands from .login the shell reads commands from your terminal,
prompting for each with ‘% ’. When it receives an end-of-file from the terminal, the shell will
print ‘logout’ and execute commands from the file ‘.logout’ in your home directory. After that
the shell will die and UNIX will log you off the system. If the system is not going down, you
will receive a new login message. In any case, after the ‘logout’ message the shell is doomed
and will take no further input from the terminal. .

2.2. Shell variables

The shell maintains a set of variables. We saw above the variables Aisrory and rime which
had values ‘20’ and ‘3’. In fact, each shell variable has as value an array of zero or more
strings. Shell variables may be assigned values by the set command. It has several forms, the
most useful of which was given above and is

set name =value

Shell variables may be used to store values which are to be reintroduced into commands
later through a substitution mechanism. The shell variables most commonly referenced are.
however, those which the shell itself refers to. By changing the values of these variables one
can directly affect the behavior of the shell.

-10 -

One of the most important variables is the variable parh. This variable contains a
sequence of directory names where the shell searches for commands. The ser command shows
the value of all variables currently defined (we usually say ser) in the shell. The default value
for path will be shown by ser to be

% set

argv

home /mnt/bill

path (. /bin /ust/bin)
prompt %

shell /bin/csh

status 0

%

This notation indicates that the variable path points to the current directory .’ and then ‘/bin’
and ‘/usr/bin’. Commands which you may write might be in *." (usuaily one of your direc-
tories). The most heavily used system commands live in ‘/bin’. Less heavily used system
commands live in ‘/usr/bin’.

A number of new programs on the system live in the directory ‘/usr/new’. If we wish, as
well we might, all shells which we invoke to have access to these new programs we can place
the command

set path=(. /usr/new /bin /usr/bin)
in our file .cshre in our home directory. Try doing this and then logging out and back in and do
set

again to see that the value assigned to path has changed.

Other useful built in variables are the variable home which shows your home directory,
the variable ignoreeof which can be set in your ./ogin file to tell the shell not to exit when it
receives an end-of-file from a terminal. To logout from UNIX with ignoreeof set you must type

logout

This is one of several variables which the sheil does not care about the value of, only whether
they are set or unset. Thus to set this variable you simply do

set ignoreeof
and to unset it do
unset ignoreeof

Both ser and unser are built-in commands of the sheil.

Finally, some other built-in shell variables of use are the variables noclobber and mail.
The metasyntax

> filename

which redirects the output of a command will overwrite and destroy the previous contents of
the named file. In this way you may accidentally overwrite a file which is valuable. If you
would prefer that the shell not overwrite files in this way you can)

set noclobber
in your .login file. Then trying to do
date > now

would cause a diagnostic if ‘now’ existed already. You could type

-11-

date >! now

if you really wanted to overwrite the contents of ‘now’. The ‘>!" is a special metasyntax indi-
cating that clobbering the file is ok.

If you receive mail frequently while you are logged in and wish to be informed of the
arrival of this mail you can put a command

set mail=/usr/mail/yourname

in your ./ogin file. Here you should change ‘yourname’ to your login name. The shell will look
at this file every 10 minutes to see if new mail has arrived. If you receive mail only infre-
quently you are better off not setting this variable. In this case it will only serve to delay the
shells response to you when it checks for mail.

The use of shell variables to introduce text into commands, which is most useful in shell
command scripts, will be introduced in section 2.4.

2.3. The shell’s history list

The shell can maintain a history list into which it places the words of previous commands.
It is possible to use a metanotation to reintroduce commands or words from commands in
forming new commands. This mechanism can be used to repeat previous commands or to
correct minor typing mistakes in commands.

Consider the following transcript:

% where michael

michael is on tty0 dialup 300 baud 642-7927
% write !$

write michael

Long time no see michael.

Why don’t you call me at 524-4510.

EOF

%

Here we asked the system where michael was logged in. It told us he was on ‘tty0’ and we told
the shell to invoke a ‘write’ command to *!$’. This is a history notation which means the last
word of the last command executed, in this case ‘michael’. The shell performed this substitu-
tion and then echoed the command as it would execute it. Let us assume that we don’t hear
anything from michael. We might do

% ps t0

PID TTY TIME COMMAND
4808 0 0:05 -
% I
ps t0

PID TTY TIME COMMAND
5104 0 0:00 -7
% 'where

where michael
michael is not logged in
%

Here we ran a ps on the teletype michael was logged in on to see that he had a shell. Repeating
this command via the history substitution ‘!!" we saw that he had logged out and that only a
gery process was running on his terminal. Repeating the where command showed that he was
indeed gone, most likely having hung up the phone in order to be able to call.

This illustrates several useful features of the history mechanism. The form ‘!!” repeats
the last command execution. The form ‘!string’ repeats the last command which began with a
word of which ‘string’ is a prefix. Another useful command form is ‘Tihs{rhs’ performing a

-12-

substitute similar to that in ed or ex. Thus after

% cat “bill/csh/sh..c .
/mnt/bill/csh/sh..c: No such file or directory
% 1.4\

cat “bill/csh/sh.c

#include “sh.h®

/.
* C Shell

* Bill Joy, UC Berkeley
* Qctober, 1978
*/

char °*pathlist(] = (SRCHP
%

here we used the substitution to correct a typing mistake, and then rubbed the command out
after we saw that we had found the file that we wanted. The substitution changed the two *
characters to a single ‘.’ character.

After this command we might do

% 1| lpr
cat ~bill/csh/sh.c | lpr

to put a copy of this file on the line printer, or (immediately after the car which worked above)

% pr!S | lpr
pr “bill/csh/sh.c | Ipr
%

to print a copy on the printer using pr.

More advanced forms of the history mechanism are also possible. A notion of
maodification on substitutions allows one to say (after the first successful car above).

% cd !S:h
cd “bill/csh
%

The trailing *:h’ on the history substitution here causes only the head portion of the pathname
reintroduced by the history mechanism to be substituted. This mechanism and related mechan-
isms are used less often than the forms above.

A complete description of history mechanism features is given in the C shell manual
pages in the UNIX Programmers Manual.

2.4. Aliases

The shell has an alias mechanism which can be used to make transformations on input
commands. This mechanism can be used to simplify the commands you type, to supply default
arguments to commands, or to perform transformations on commands and their arguments.
The alias facility is similar to the macro facility of many assembiers.

Some of the features obtained by aliasing can be obtained also using shell command files,
but .these take place in another instance of the shell and cannot directly affect the current shells
environment and commands such as chdir which must be done in the current shelil.

As an example, suppose that there is a new version of the mail program on the system
called ‘Mail’ you wish to use, rather than the standard mail program which is called ‘mail’. If
you place the shell command

-13-

alias mail Mail
in your .login file, the shell will transform an input line of the form
mail bill

into a call on ‘Mail’. More generally, suppose we wish the command ‘Is’ to always show sizes
of files, that is to always do ‘—s’. We can do

alias Is Is —s
or even
alias dir Is —s
creating a new command syntax ‘dir’ which does an ‘Is —s’. If we say
dir ~bill
then the shell will translate this to
Is —s /mnt/bill

Thus the alias mechanism can be used to provide short names for commands, to provide
default arguments, and to define new short commands in terms of other commands. It is also
possible to define aliases which contain multiple commands or pipelines, showing where the
arguments to the original command are to be substituted using the facilities of the history
mechanism. Thus the definition

aliascd ‘cd \!*; Is”’

would do an /s command after each change directory ¢cd command. We enclosed the entire alias
definition in ‘” characters to prevent most substitutions from occuring and the character °;’
from being recognized as a parser metacharacter. The ‘!’ here is escaped with a ‘\’ to prevent it
from being interpreted when the alias command is typed in. The ‘\!*’ here substitutes the
entire argument list to the pre-aliasing ¢d command, without giving an error if there were no
arguments. The ;" separating commands is used here to indicate that one command is to be

done and then the next. Similarly the definition
alias whois ‘grep \!1 /etc/passwd’
defines a command which looks up its first argument in the password file.

2.5. Detached commands; > > and > & redirection

There are a few more metanotations useful to the terminal user which have not been
introduced yet. The metacharacter ‘&’ may be placed after a command, or after a sequence of
commands separated by *;’ or . This causes the shell to not wait for the commands to ter-
minate before prompting again. We say that they are derached or background processes. Thus

% pr “bill/csh/sh.c | Ipr &
5120 .

5121

%

Here the shell printed two numbers and came back very quickly rather than waiting for the pr
and /pr commands to finish. These numbers are the process numbers assigned by the system to
the pr and /[pr commands.t

tRunning commands in the background like this tends 1o slow down the system and is not a good idea if the
system is overloaded. When overloaded. the system will just bog down more il you run a large number of
processes at once.

-14 -

Since havoc would result if a command run in the background were to read from your ter-
minal at the same time as the shell does, the default standard input for a command run in the
background is not your terminal, but an empty file called ‘/dev/null’. Commands run in the
background are also made immune to INTERRUPT and QUIT signals which you may subsequently
generate at your terminal.*

If you intend to log off the system before the command completes you must run the com-
mand immune to HANGUP signals. This is done by placing the word ‘nohup’ before each pro-
gram in the command, i.e.:

nohup man csh | nohup lpr &

In addition to the standard output, commands also have a diagnostic output which is nor-
mally directed to the terminal even when the standard output is directed to a file or a pipe. It is
occasionally desirable to direct the diagnostic output along with the standard output. For
instance if you want to redirect the output of a long running command into a file and wish to
have a record of any error diagnostic it produces you can do

command >& file

The ‘> &’ here tells the shell to route both the diagnostic output and the standard output into
‘file’. of the standard output. Similarly you can give the command

command |& Ipr
to route both standard and diagnostic output through the pipe to the line printer daemon /pr.#
Finally, it is possible to use the form
command > > file
to place output at the end of an existing file.t

2.6. Useful built-in commands

We now give a few of the useful built-in commands of the shell describing how they are
used.

The alias command described above is used to assign new aliases and to show the existing
aliases. With no arguments it prints the current aliases. It may also be given an argument such
as

alias Is

to show the current alias for, e.g., ‘Is’.

The cd and chdir commands are equivalent, and change the working directory of the shell.
It is useful to make a directory for each project you wish to work on and to place all files refated
to that project in that directory. Thus after you login you can do

“If a background command stops suddenly when you hit INTERRUPT or QuIT it is likely a bug in the back-
ground program.
#A command form

commund > &! file

exists, and is used when noclobber is set and file aiready exists.

T noclobber is set, then an error will result if file does not exist, otherwise the shell will create file if it
doesn’t exist. A form

command > >! file

makes it not be an error for tile 10 not exist when noclodber is set.

=15 -

% pwd

/mnt/bill

% mkdir newpaper
% chdir newpaper
% pwd
/mnt/bill/newpaper
%

after which you will be in the directory newpaper. You can place a group of related files there.
You can return to your ‘home’ login directory by doing just

chdir

with no arguments. We used the pwd print working directory command to show the name of
the current directory here. The current directory will usually be a subdirectory of your home
directory, and have it (here ‘/mnt/bill’) at the start of it.

The echo command prints its arguments. It is often used in shell scripts or as an interac-
tive command to see what filename expansions will yield.

The history command will show the contents of the history list. The numbers given with
the history events can be used to reference previous events which are difficult to reference
using the contextual mechanisms introduced above. There is also a shell variable called prompr.
By placing a ‘!’ character in its value the shell will there substitute the index of the current
command in the history list. You can use this number to refer to this command in a history
substitution. Thus you could

set prompt="\! % *
Note that the ‘!" character had to be escaped here even within ‘* characters.

The logout command can be used to terminate a login shell which has ignoreeof set.

The repear command can be used to repeat a command several times. Thus to make 5
copies of the file one in the file five you could do

repeat 5 cat one > > five

The serenv command can be used, on version 7 UNIX systems, to set variables in the
environment. Thus

setenv TERM adma3a

will set the value of the environment variable TERM to ‘adm3a’. A user program printenv exists
which will print out the environment. It might then show:

% printenv
HOME /usr/bill
SHELL /bin/csh
TERM adm3a
%

The source command can be used to force the current shell to read commands from a file.
Thus
source .cshrc

can be used after editing in a change to the .cshrc file which you wish to take effect before the
next time you login. ‘

The time command can be used to cause a command to be timed no matter how much
CPU time it takes. Thus

- 16 -

% time cp five five.save
0.0u 0.3s 0:01 26%
% time wc five.save
1200 6300 37650 five.save
1.2u 0.5s 0:03 55%
%

indicates that the cp command used less that 1/10th of a second of user time and only 3/10th
of a second of system time in copying the file ‘five’ to ‘five.save’. The command word count
‘we’ on the other hand used 1.2 seconds of user time and 0.5 seconds of system time in 3
seconds of elapsed time in counting the number of words, character and lines in ‘five.save’.
The percentage ‘55%’ indicates that over this period of 3 seconds, our command ‘wc’ used an
average of 55 percent of the available CPU cycles of the machine. This is a very high percentage
and indicates that the system is lightly loaded.

The unalias and unser commands can be used to remove aliases and variable definitions
from the shell.

The wait command can be used after starting processes with ‘&’ to quickly see if they
have finished. If the shell responds immediately with another prompt, they have. Otherwise
you can wait for the shell to prompt at which point they will have finished, or interrupt the
shell by sending a RUB or DELETE character. If the shell is interrupted, it will print the names
and numbers of the processes it knows to be unfinished. Thus:

% nroff paper | lpr &
2450
2451
% wait
2451 lpr
2450 nroff
wait: Interrupted.
%

You can check again later by doing another wait, or see which commands are still running
by doing a ps. As ‘time’ will show you, ps is fairly expensive. It is thus counterproductive to
run many ps commands to see how a background process is doing.t

If you run a background process and decide you want to stop it for whatever reason you
must use the kill program. You must use the number of the processes you wish to kill. Thus
to stop the nroffin the above pipeline you would do

% kill 2450

% wait

2450: nroff: Terminated.
%

Here the shell printed a diagnostic that we terminated ‘nroff” only after we did a wait. If we
want the shell to discover the termination of all processes it has created we must, in general,
use wait.

2.7. What else?

This concludes the basic discussion of the shell for terminal users. There are more
features of the shell to be discussed here, and all features of the shell are discussed in its
manual pages. One useful feature which is discussed later is the foreach built-in command
which can be used to run the same command sequence with a number of different arguments.

tIf you do you are usurping with these ps commands the processor lime the job needs to finish, thereby de-
laying its compietion!

-17-

If you intend to use UNIX a lot you you should look through the rest of this document and
the shell manual pages to become familiar with the other facilities which are available to you.

-18 -

3. Shell control structures and command scripts

3.1. Introduction

It is possible to place commands in files and to cause shells to be invoked to read and exe-
cute commands from these files, which are called shell scriprs. We here detail those features of
the shell useful to the writers of such scripts.

3.2. Make

It is important to first note what shell scripts are not useful for. There is a program called
make which is very useful for maintaining a group of related files or performing sets of opera-
tions on related files. For instance a large program consisting of one or more files can have its
dependencies described in a makefile which contains definitions of the commands used to create
these different files when changes occur. Definitions of the means for printing listings, cleaning
up the directory in which the files reside, and installing the resultant programs are easily, and
most appropriately placed in this makefile. This format is superior and preferable to maintain-
ing a group of shell procedures to maintain these files.

Similarly when working on a document a makefile may be created which defines how
different versions of the document are to be created and which options of nroff or rroff are
appropriate.

3.3. Invocation and the argv variable
A csh command script may be interpreted by saying

% csh script ...

where script is the name of the file containing a group of c¢s/ commands and °..." is replaced by a
sequence of arguments. The shell places these arguments in the variable argv and then begins
to read commands from the script. These parameters are then available through the same
mechanisms which are used to reference any other shell variables.

If you make the file ‘script’ executable by doing
chmod 755 script

and place a shell comment at the beginning of the shell script (i.e. begin the file with a ‘#’
character) then a */bin/csh’ will automatically be invoked to execute ‘script’ when you type

script
If the file does not begin with a ‘#’ then the standard shell ‘/bin/sh’ will be used to execute it.
This allows you to convert your older shell scripts to use cs# at your convenience.

3.4. Variable substitution

After each input line is broken into words and history substitutions are done on it, the
input line is parsed into distinct commands. Before each command is executed a mechanism
know as variable substitution is done on these words. Keyed by the character ‘S’ this substitu-
tion replaces the names of variables by their values. Thus

echo Sargv

when placed in a command script would cause the current value of the variable argv to be
echoed to the output of the shell script. It is an error for argv to be unset at this point.

A number of notations are provided for accessing components and attributes of variables.
The notation

S$7name

expands to ‘1’ if name is ser or to ‘0’ if name is not ser. It is the fundamental mechanism used

-19 -

for checking whether particular variables have been assigned values. All other forms of refer-
ence to undefined variables cause errors.

The notation
$#name
expands to the number of elements in the variable name. Thus

% set argv=(a b ¢)
% echo $?argv

1

% echo S#argv

3

% unset argv

% echo $?argv

0

% echo Sargv
Undefined variable: argv.
%

It is also possible to access the components of a variable which has several values. Thus
Sargv(1]
gives the first component of argv or in the example above ‘a’. Similarly
Sargv([S#argv]
would give ‘c’, and
Sargv(l—2]
Other notations useful in shell scripts are
$n
where n is an integer as a shorthand for
Sargv(n]
the nth parameter and
g
which is a shorthand for
Sargv
The form
$S

expands to the process number of the current shell. Since this process number is unique in the
system it can be used in generation of unique temporary file names.

One minor difference between ‘Sn’ and ‘Sargv(n]’ should be noted here. The form
‘Sargv(n]’ will yield an error if nis not in the range ‘1 —S$#argv’ while ‘Sn’ will never yield an
out of range subscript error. This is for compatibility with the way older shells handled parame-
ters.

Another important point is that it is never an error to give a subrange of the form ‘n—",
if there are less than n components of the given variable then no words are substituted. A
range of the form ‘m—n’ likewise returns an empty vector without giving an error when m
exceeds the number of elements of the given variable, provided the subscript n is in range.

-20-

3.5. Expressions

In order for interesting shell scripts to be constructed it must be possible to evaluate
expressions in the shell based on the values of variables. In fact, all the arithmetic operations
of the language C are available in the sheil with the same precedence that they have in C. In
particular, the operations ‘== and ‘!=" compare strings and the operators ‘&&" and 1[' imple-
ment the boolean and/or operations. '

The shell also allows file enquiries of the form
-? filename
where ‘7’ is replace by a number of single characters. For instance the expression primitive
—e filename

tell whether the file ‘filename’ exists. Other primitives test for read, write and execute access
to the file, whether it is a directory, or has non-zero length.

It is possible to test whether a command terminates normally, by a primitive of the form
*(command }> which returns true, i.e. ‘1’ if the command succeeds exiting normaily with exit
status 0, or ‘0’ if the command terminates abnormaily or with exit status non-zero. If more
detailed information about the execution status of a command is required, it can be executed
and the variable ‘Sstatus’ examined in the next command. Since ‘Sstatus’ is set by every com-
mand. it is very transient. It can be saved if it is inconvenient to use it only in the single
immediately following command.

For a full list of expression components available see the manual section for the shell.

3.6. Sample shell script

A sampie shell script which makes use of the expression mechanism of the shell and
some of its control structure follows:

% cat copyc

#

Copyc copies those C programs in the specified list
to the directory ~/backup if they differ from the files
already in ~/backup

#

set noglob

foreach i (Sargv)

if (Sicr.c != Si) continue # not a .c file so do nothing

if (! =r ~/backup/Si:t) then
echo Si:t not in backup... not cp\'ed
continue

endif

cmp —s Si “/backup/Si:t # to set Sstatus

if (Sstatus '= 0) then
echo new backup of Si
cp Si ~/backup/Si:t
endif
end

This script makes use of the foreach command, which causes the shell to execute the com-
mand; between the foreach and the matching end for each of the values given between *(* and
*)" with the named variable, in this case ‘i’ set to successive values in the list. Within this loop

-21-

we may use the command break to stop executing the loop and continue to prematurely ter-
minate one iteration and begin the next. After the foreach loop the iteration variable (/in this
case) has the value at the last iteration.

We set the variable nogfob here to prevent filename expansion of the members of argv.
This is a good idea, in general, if the arguments to a shell script are filenames which have
already been expanded or if the arguments may contain filename expansion metacharacters. It
is also possible to quote each use of a ‘$’ variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the form
if (expression) then
command
endif

The placement of the keywords here is not flexible due to the current implementation of the
shell.t

The shell does have another form of the if statement of the form
if (expression) command
which can be written

if (expression) \
command

Here we have escaped the newline for the sake of appearance, and the ‘\’ must immediately.
The command must not involve *|’, ‘&’ or *;’ and must not be another control command. The
second form requires the final ‘\’ to immediately precede the end-of-line.

The more general jfstatements above also admit a sequence of else—if pairs followed by a
single else and an endif, e.g.:

if (expression) then

commands

else if (expression) then
commands

else
commands

endif

Another important mechanism used in shell scripts is ‘.’ modifiers. We can use the
modifier “:r’ here to extract a root of a filename. Thus if the variable i has the value ‘foo.bar’
then)

$The following two formats are not currently acceptable to the sheil:

If (expression) # Won't work!
then

command
endif

and

if (expression) then command endif # Won't work

-22.

% echo Si Si:r

foo.bar foo

%
shows how the ‘:ir’ modifier strips off the trailing ‘.bar’. Other modifiers will take off the last
component of a pathname leaving the head “h’ or all but the last component of a pathname
leaving the tail “:t’. These modifiers are fully described in the csh manual pages in the program-
mers manual. It is also possible to use the command substitution mechanism described in the
next major section to perform modifications on strings to then reenter the shells environment.
Since each usage of this mechanism involves the creation of a new process, it is much more
expensive to use than the “:’ modification mechanism.# Finally, we note that the character ‘#’
lexically introduces a shell comment in shell scripts (but not from the terminal). All subse-
quent characters on the input line after a ‘#’ are discarded by the shell. This character can be
quoted using *** or ‘\’ to place it in an argument word.

3.7. Other control structures
The shell also has control structures while and switch similar to those of C. These take the
forms

while (expression)
commands
end

and
switch (word)

case strl:
commands
breaksw

e

case strn:
commands
breaksw

default:
commands
breaksw

endsw

For details see the manual section for csh. C programmers should note that we use breaksw to
exit from a swirch while break exits a while or foreach loop. A common mistake to make in csh
scripts is to use break rather than breaksw in switches.

Finally, csh allows a goto statement, with labels looking like they do in C, i.e.:

#1t 1s ulso important to note that the current impiementation of the shell limits the number of *:* modifiers
on a 'S’ substitution to 1. Thus

% echo Si Si:h:t

/a/bic la/ba

%

does not do what one would expect.

-23-

loop:
commands
goto loop

3.8. Supplying input to commands

Commands run from shell scripts receive by default the standard input of the shell which
is running the script. This it is different from previous shells running under UNIX. It allowing
shell scripts to fully participate in pipelines, but mandates extra notation for commands which
are to take inline data.

Thus we need a metanotation for supplying inline data to commands in shell scripts. As
an example, consider this script which runs the editor to delete leading bianks from the lines in
each argument file :

% cat deblank

deblank — — remove leading blanks
foreach i (Sargv)

ed — 8i << ‘EOF

1.8s/101%//

w

q
‘EOF
end
%

The notation ‘< < "EOF” means that the standard input for the ed command is to come from
the text in the shell script file up to the next line consisting of exactly “*EOF”. The fact that
the ‘EOF’ is enclosed in ‘"’ characters, i.e. quoted, causes the shell to not perform variable sub-
stitution on the intervening lines. In general, if any part of the word following the ‘< <’ which
the shell uses to terminate the text to be given to the command is quoted then these substitu-
tions will not be performed. In this case since we used the form ‘1,3’ in our editor script we
needed to insure that this ‘S’ was not variable substituted. We could also have insured this by
preceding the ‘S’ here with a *\’, i.e.:

1\$s/1[1*//
but quoting the ‘EOF’ terminator is a more reliable way of achieving the same thing.

3.9. Catching interrupts

If our shell script creates temporary files, we may wish to catch interruptions of the shell
script so that we can clean up these files. We can then do

onintr label

where /label is a label in our program. If an interrupt is received the sheil will do a ‘goto label’
and we can remove the temporary files and then do a exit command (which is built in to the
shell) to exit from the shell script. If we wish to exit with a non-zero status we can do

exit(1)
e.g. to exit with status ‘1°.

3.10. What else?

There are other features of the shell useful to writers of shell procedures. The verbose
and echo options and the related —v and —x command line options can be used to help trace
the actions of the shell. The —n option causes the shell only to read commands and not to
execute them and may sometimes be of use.

-24-

One other thing to note is that cs/# wiil not execute shell scripts which do not begin with
the character ‘#’, that is shell scripts that do not begin with a comment. Similarly, the
*/bin/sh’ on your system may well defer to ‘csh’ to interpret shell scripts which begin with ‘#’.
This allows shell scripts for both shells to live in harmony.

There is also another quotation mechanism using ‘"’ which allows only some of the
expansion mechanisms we have so far discussed to occur on the quoted string and serves to
make this string into a single word as *”* does.

-25.

4. Miscellaneous, less generally useful, shell mechanisms

4.1. Loops at the terminal; variables as vectors

It is occasionally useful to use the foreach control structure at the termmal to aid in per-
forming a number of similar commands. For instance, there were at one point three shells in
use on the Cory UNIX system at Cory Hall, ‘/bin/sh’, ‘/bin/nsh’, and ‘/bin/csh’. To count the
number of persons using each shell one could issue the commands

% grep —c csh$ /etc/passwd

27

% grep —c nsh$ /etc/passwd
128

% grep —c —v sh$ /etc/passwd
430

%
Since these commands are very similar we can use foreach to do this more easily.

% foreach i (‘sh$’ “csh$’ *—v sh$’)
? grep —c $i /etc/passwd

? end

27

128

430

%

Note here that the shell prompts for input with *? * when reading the body of the loop.

) Very useful with loops are variables which contain lists of filenames or other words You
- can, for example, do

% set a=(\is")
% echo 8a
csh.n csh.rm
% Is

csh.n

csh.rm

% echo $#a

2

%

The ser command here gave the variable a a list of all the filenames in the current directory as
value. We can then iterate over these names to perform any chosen function.

The output of a command within ‘™ characters is converted by the shell to a list of words.
You can also place the ‘™ quoted string within ‘"’ characters to take each (non-empty) line as a
component of the variable; preventing the lines from being split into words at blanks and tabs.
A modifier “:x" exists which can be used later to expand each component of the variable into
another variable splitting it into separate words at embedded blanks and tabs.

4.2. Braces (... | in argument expansion

Another form of filename expansion, alluded to before involves the characters ‘{* and ‘}".
These characters specify that the contained strings, separated by *,” are to be consecutively sub-
stituted into the containing characters and the results expanded left to right. Thus

Alstrl,str2,...strn}B
expands to

-26-

Astr1B Astr2B ... AstrnB

This expansion occurs before the other filename expansions, and may be applied recursively
(i.e. nested). The results of each expanded string are sorted separately, left to right order being
preserved. The resulting filenames are not required to exist if no other expansion mechanisms
are used. This means that this mechanism can be used to generate arguments which are not
filenames, but which have common parts.

A typical use of this would be
mkdir ~/{hdrs.retrofit,csh}

to make subdirectories ‘hdrs’, ‘retrofit’ and ‘csh’ in your home directory. This mechanism is
most useful when the common prefix is longer than in this example, i.e.

chown bin /ust/{bin/{ex,edit},lib/{ex1.1strings,how_ex}}

4.3. Command substitution
A command enclosed in ‘™ characters is replaced, just before filenames are expanded, by
the output from that command. Thus it is possible to do
set pwd="pwd’
to save the current directory in the variable pwd or to do
ex ‘grep -1l TRACE °¢’

to run the editor ex suppling as arguments those files whose names end in ‘.c’ which have the
string ‘TRACE’ in them.*

" 4.4. Other details not covered here

In particular circumstances it may be necessary to know the exact nature and order of
different substitutions performed by the shell. The exact meaning of certain combinations of
quotations is also occasionally important. These are detailed fully in its manual section.

The shell has a number of command line option flags mostly of use in writing UNIX pro-
grams, and debugging shell scripts. See the shells manuai section for a list of these options.

*Command expansion also occurs in input redirected with * < <’ and within ** quotations. Refer to the shell
manual section for full details.

-27-

Appendix — Special characters

The following table lists the special characters of csh and the UNIX system, giving for each the
section(s) in which it is discussed. A number of these characters also have special meaning in
expressions. See the csh manual section for a complete list.

Syntactic metacharacters

| 2.4 separates commands 1o be executed sequentially

| 1.5 separates commands in a pipeline

() 2.2,3.6 brackets expressions and variable values

& 2.5 follows commands to be executed without waiting for completion

Filename metacharacters

/ 1.6 separates components of a file’s pathname

? 1.6 expansion character matching any single character

* 1.6 expansion character matching any sequence of characters

(1 1.6 expansion sequence matching any single character from a set

- 1.6 used at the beginning of a filename to indicate home directories

{} 4.2 used to specify groups of arguments with common parts
Quotation metacharacters

\ 1.7 prevents meta-meaning of following single character

’ 1.7 prevents meta-meaning of a group of characters

" 4.3 like °, but allows variable and command expansion

Input/output metacharacters

< 1.3 indicates redirected input
> 1.5 indicates redirected output

Expansion/substitution metacharacters

s 3.4 indicates variable substitution

! 2.3 indicates history substitution

3.6 precedes substitution modifiers

2.3 used in special forms of history substitution
4.3 indicates command substitution

O

Other metacharacters

3.6 begins a shell comment
- 1.2 prefixes option (flag) arguments to commands

Glossary

-28 -

This glossary lists the most important terms introduced in the introduction to the shell
and gives references to sections of the shell document for further information about them.
References of the form ‘pr (1)' indicate that the command pr is in the UNIX programmers
manual in section 1. You can get an online copy of its manual page by doing

man 1 pr

References of the form (2.5) indicate that more information can be found in section 2.5 of this

manual.

- alias

argument

argv

background

bin

break

builtin

Your current directory has the name ‘.’ as well as the name printed by the
command pwd. The current directory *." is usually the first component of the
search path contained in the variable path, thus commands which are in *." are
found first (2.2). The character ‘.’ is also used in separating components of
filenames (1.6). The character *.’ at the beginning of a component of a path-
name is treated specially and not matched by the filename expansion metachar-
acters *7°, ***, and ‘[’ ‘]’ pairs (1.6).

Each directory has a file *.." in it which is a reference to its parent directory.
After changing into the directory with cAdir, i.e.

chdir paper
you can return to the parent directory by doing
chdir ..

The current directory is printed by pwd (2.6).

An alias specifies a shorter or different name for a UNIX command, or a
transformation on a command to be performed in the shell. The shell has a
command aglias which establishes aliases and can print their current values.
The command unalias is used to remove aliases (2.6).

Commands in UNIX receive a list of argument words. Thus the command
echoabec

consists of a command name ‘echo’ and three argument words ‘a’, ‘b’ and ‘¢’
(1.1).

The list of arguments to a command written in the shell language (a shell
script or shell procedure) is stored in a variable called argv within the shell.
This name is taken from the conventional name in the C programming
language (3.4).

Commands started without waiting for them to complete are called background
commands (1.5).

A directory containing binaries of programs and shell scripts to be executed is
typically called a ‘bin’ directory. The standard system ‘bin’ directories are
*/bin’ containing the most heavily used commands and ‘/usr/bin’ which con-
tains most other user programs. Other binaries are contained in directories
such as ‘/usr/new’ where new programs are placed. You can place binaries in
any directory. If you wish to execute them often, the name of the directories
should be a component of the variable parh.

Break is a built-in command used to exit from loops within the control struc-
ture of the shell (3.6).

A command executed directly by the shell is called a bwiltin command. Most
commands in UNIX are not built into the shell, but rather exist as files in ‘bin’
directories. These commands are accessible because the directories in which
they reside are named in the parh variable.

case

cat

cd

chdir

chsh

cmp

command

-29.

A case command is used as a label in a swirch statement in the shells control
structure, similar to that of the language C. Details are given in the shells
documentation ‘csh (NEW)"* (3.7).

The car program catenates a list of specified files on the standard output. It is
usually used to look at the contents of a single file on the terminal, to ‘cat a
file' (1.8, 2.3).

The cd command is used to change the working directory. With no arguments,
cd changes your working directory to be your home directory (2.3) (2.6).

The chdir command is a synonym for cd. Cdis usually used because it is easier
to type.

The chsh command is used to change the shell which you use on UNIX. By

default, you use an older ‘standard’ version of the shell which resides in
‘/bin/sh’. You can change your shell to */bin/csh’ by doing

chsh your-login-name /bin/csh
Thus I would do
chsh bill /bin/csh

It is only necessary to do this once. The next time you log in to UNIX after
doing this command, you will be using cs# rather than the shell in ‘/bin/sh’
(1.9).

Cmp is a program which compares files. It is usually used on binary files, or to
see if two files are identical (3.6). For comparing text files the program diff,
described in ‘diff (1)’ is used.

A function performed by the system, either by the shell (a builtin command)
or by a program residing in a file in a directory within the UNIX system is called
a command (1.1).

command substitution

component

continue

core dump

The replacement of a command enclosed in ‘™ characters by the text output by
that command is called command substitution (3.6, 4.3).

A part of a pathname between */° characters is called a componenr of that path-
name. A varigble which has multiple strings as value is said to have several
components, each string is a component of the variable.

A builtin command which causes execution of the enclosing foreach or while
loop to cycle prematurely. Similar to the continue command in the program-
ming language C (3.6).

When a program terminates abnormally, the system places an image of its
current state in a file named ‘core’. This ‘core dump’ can be examined with
the system debuggers ‘db (1)’ and ‘cdb (1)’ in order to determine what went
wrong with the program (1.8). If the shell produces a message of the form:

commandname: lIliegal instruction —— Core dumped

(where ‘lllegal instruction® is only one of several possible messages) you
should report this to the author of the program and save the ‘core’ file. If this
was a system program you should report this with the frouble command ‘trou-
ble (1)".

The cp (copy) program is used to copy the contents of one file into another
file. It is one of the most commonly used UNIX commands (2.6).

.cshre

date
debugging

default

DELETE

detached
diagnostic

directory

echo
else

EOF

escape

/etc/passwd

-30-

The file .csirc in your /home directory is read by each shell as it begins execu-
tion. It.is usually used to change the setting of the variable path and to set
alias parameters which are to take effect globally (2.1).

The dare command prints the current date and time (1.3).

Debugging is the process of correcting mistakes in programs and shell scripts.
The shell has several options and variables which may be used to aid in shell
debugging (4.4).

The label defauir: is used within shell swirch statements, as it is in the C
language to label the code to be executed if none of the case labels matches
the value switched on (3.7).

The DELETE or RUBOUT key on the terminal is used to generate an INTERRUPT
signal in UNIX which stops the execution of most programs (2.6).

A command run without waiting for it to complete is said to be detached (2.5).

An error message produced by a program is often referred to as a diagnostic.
Most error messages are not written to the standard output, since that is often
directed away from the terminal (1.3, 1.5). Error messsages are instead writ-
ten to the diagnostic output which may be directed away from the terminal, but
usually is not. Thus diagnostics will usually appear on the terminal (2.5).

A structure which contains files. At any time you are in one particular direc-
tory whose names can be printed by the command ‘pwd’. The c/dir command
will change you to another directory, and make the files in that directory visi-
ble. The directory in which you are when you first login is your some directory
(1.1, 1.6). <

The echo command prints its arguments (1.6, 2.6, 3.6, 3.10).

The else command is part of the ‘if-then-else-endif” control command con-
struct (3.6). ‘

An end-of-file is generated by the terminal by a control-d, and whenever a
command reads to the end of a file which it has been given as input. Com-
mands receiving input from a pipe receive an end-of-file when the command
sending them input completes. Most commands terminate when they receive
an end-of-file. The shell has an option to ignore end-of-file from a terminal
input which may help you keep from logging out accidentally by typing too
many control-d’s (1.1, 1.8, 3.8).

A character \ used to prevent the special meaning of a metacharacter is said to
escape the character from its special meaning. Thus

echo *
will echo the character *** while just
echo *

will echo the names of the file in the current directory. In this example, \
escapes *** (1.7). There is also a non-printing character called escape, usually
labelled ESC or ALTMODE on terminal keyboards. Some UNIX systems use this

character to indicate that output is to be suspended. Other systems use
controi-s.

This file contains information about the accounts currently on the system. If
consists of a line for each account with fields separated by *:' characters (2.3).
You can look at this file by saying

cat /etc/passwd

The command grep is often used to search for information in this file. See

exit

exit status

expansion

expressions

extension

filename

-31-

‘passwd (5)’ and ‘grep (1)* for more details.

The exit command is used to force termination of a shell script, and is built
into the shell (3.9).

A command which discovers a problem may reflect this back to the command
(such as a shell) which invoked (executed) it. It does this by returning a
non-zero number as its exit status, a status of zero being considered ‘normal
termination’. The exir command can be used to force a shell command script
10 give a non-zero exit status (3.5).

The replacement of strings in the shell input which contain metacharacters by
other strings is referred to as the process of expansion. Thus the replacement
of the word ‘*’ by a sorted list of files in the current directory is a ‘filename
expansion’. Similarly the replacement of the characters ‘!!’ by the text of the
last command is a ‘history expansion’. Expansions are also referred 1o as sub-
stitutions (1.6, 3.4, 4.2).

Expressions are used in the shell to control the conditional structures used in
the writing of shell scripts and in calculating values for these scripts. The
operators available in shell expressions are those of the language C (3.5).

Filenames often consist of a roor name and an extension separated by the char-
acter ‘.’. By convention, groups of related files often share the same root
name. Thus if ‘prog.c’ were a C program, then the object file for this program
would be stored in ‘prog.o’. Similarly a paper written with the ‘—me’ nroff
macro package might be stored in ‘paper.me’ while a formatted version of this
paper might be kept in ‘paper.out’ and a list of spelling errors in ‘paper.errs’
(1.6).

Each file in UNIX has a name consisting of up to 14 characters and not includ-
ing the character */° which is used in parhname building. Most file names do
not begin with the character ‘., and contain only letters and digits with perhaps
a ‘." separating the root portion of the filename from an extension (1.6).

filename expansion

flag

foreach

getty

Filename expansion uses the metacharacters **°, *?’ and ‘[’ and ‘]’ to provide a
convenient mechanism for naming files. Using filename expansion it is easy to
name all the files in the current directory, or all files which have a common
root name. Other filename expansion mechanisms use the metacharacter *~*
and allow files in other users directories to be named easily (1.6, 4.2).

Many UNIX commands accept arguments which are not the names of files or
other users but are used to modify the action of the commands. These are
referred 10 as flag options, and by convention consists of one or more letters
preceded by the character ‘=’ (1.2). Thus the /s list file commands has an
option ‘=—s’ to list the sizes of files. This is specified

Is —s

The foreach command is used in shell scripls and at the terminal to specify rep-
itition of a sequence of commands while the value of a certam shell variable
ranges through a specified list (3.6, 4.1).

The gerry program is part of the system which determines the speed at which
your terminal is to run when you first log in. It types the initial system banner
and ‘login:’. When no one is logged in on a terminal a ps command shows a
command of the form ‘- 7° where ‘7" here is often some other single letter or
digit. This ‘7" is an option to the gerry command, indicating the type of port
which it is running on. If you see a gerry command running on a terminal in
the output of ps you know that no one is logged in on that terminal (2.3).

goto

grep

hangup

head

history

home directory

if

ignoreeof

input

interrupt

-32-

The shell has a command goro used in shell scripts to transfer control to a
given label (3.7).

The grep command searches through a list of argument files for a specified
string. Thus

grep bill /etc/passwd

will print each line in the file ‘/etc/passwd’ which contains the string ‘bill’.
Actually, grep scans for regular expressions in the sense of the editors ‘ed (1)’
and ‘ex (1)’ (2.3). Grep stands for ‘globally find regular expression and print.’

When you hangup a phone line, a HANGUP signal is sent to all running
processes on your terminal, causing them to terminate execution prematurely.
If you wish to start commands to run after you log off a dialup you must use
the command nohup (2.6).

The head command prints the first few lines of one or more files. If you have
a bunch of files containing text which you are wondering about it is sometimes
is useful to run head with these files as arguments. This will usually show
enough of what is in these files to let you decide which you are interested in
(1.5, 2.3).

The history mechanism of the shell allows previous commands to be repeated,
possibly after modification to correct typing mistakes or to change the meaning
of the command. The sheil has a hisrory list where these commands are kept,
and a history variable which controls how large this list is (1.7, 2.6).

Each user has a home directory, which is given in your entry in the password
file, /etc/passwd. This is the directory which you are placed in when you first
log in. The cd or chdir command with no arguments takes you back to this
directory, whose name is recorded in the shell variable fome. You can also
access the home directories of other users in forming filenames using a file
expansion notation and the character =’ (1.6).

A conditional command within the shell, the ifcommand is used in shell com-
mand scripts to make decisions about what course of action to take next (3.6).

Normally, your sheil will exit, printing ‘logout’ if you type a control-d at a
prompt of ‘% °. This is the way you usually log off the system. You can ser
the ignoreeof variable if you wish in your ./ogin file and then use the command
logout to logout. This is useful if you sometimes accidentally type too many
control-d characters, logging yourself off. If the system is slow, this can waste
much time, as it may take a long time to log in again (2.2, 2.6).

Many commands on UNIX take information from the terminal or from files-
which they then act on. This information is called input. Commands normaily
read for input from their standard input which is, by default, the terminal. This
standard input can be redirected from a file using a shell metanotation with the
character ‘<’. Many commands will also read from a file specified as argu-
ment. Commands placed in pipelines will read from the output of the previous
command in the pipeline. The leftmost command in a pipeline reads from the
terminal if you neither redirect its input nor give it a file name.to use as stan-
dard input. Special mechanisms exist for suppling input to commands in shell
scripts (1.2, 1.6, 3.8).

An interrupt is a signal to a program that is generated by hitting the RUBOUT or
DELETE key. It causes most programs to stop execution. Certain programs
such as the shell and the editors handle an interrupt in special ways, usually by
stopping what they are doing and prompting for another command. While the
shell is executing another command and waiting for it to finish. the shell does
not listen to interrupts. The shell often wakes up when you hit interrupt

kill

Jogin

logout

Jogout

fpr

mail

make

makefile
manual

metacharacter

mkdir
modifier

-33.

because many commands die when they receive an interrupt (1.8, 2.6, 3.9).

A program which terminates processes run without waiting for them to com-
plete. (2.6)

The file ./login in your home directory is read by the shell each time you log in
to UNIX and the commands there are executed. There are a number of com-
mands which are usefully placed here especially rser commands and ser com-
mands to the shell itself (2.1).

The logour command causes a login shell to exit. Normally, a login shell will
exit when you hit control-d generating an end-of-file, but if you have set
ignoreeof in you .login file then this will not work and you must use logour to
log off the UNIX system (2.2).

When you log off of UNIX the shell will execute commands from the file ./logour
in your home directory after it prints ‘logout’.

The command /pr is the line printer daemon. The standard input of /pr is
spooled and printed on the UNIX line printer. You can also give /pr a list of
filenames as arguments to be printed. It is most common to use lpr as the last
component of a pipeline (2.3).

The Is list files command is one of the most commonly used UNIX commands.
With no argument filenames it prints the names of the files in the current
directory. It has 2 number of useful flag arguments, and can also be given the
names of directories as arguments, in which case it lists the names of the files
in these directories (1.2).

The mail program is used to send and receive messages from other UNIX users
(1.1, 2.2).

The make command is used to maintain one or more related files and to organ-
ize functions to be performed on these files. In many ways make is easier to
use, and more helpful than shell command scripts (3.2).

The file containing command for make is called ‘makefile’ (3.2).

The ‘manual’ often referred to is the ‘UNIX programmers manual.’ It contains
a number of sections and a description of each UNIX program. An online ver-
sion of the manual is accessible through the man command. Its documentation
can be obtained online via

man man

Many characters which are neither letters nor digits have special meaning
either to the shell or to UNIX. These characters are called meracharaciers. If it
is necessary to place these characters in arguments to commands without them
having their special meaning then they must be quored. An example of a
metacharacter is the character ‘>’ which is used to indicate placement of out-
put into a file. For the purposes of the history mechanism, most unquoted
metacharacters form separate words (1.4). The appendix to this user’s manual
lists the metacharacters in groups by their function.

The mkdir command is used to create a new directory (2.6).

Substitutions with the history mechanism, keyed by the character *!" or of vari-
ables using the metacharacter ‘S’ are often subjected to modifications, indicated
by placing the character *:’ after the substitution and following this with the
modifier itself. The command substitution mechanism can also be used to per-
form modification in a similar way, but this notation is less clear (3.6).

noclobber

nohup

nroff

onintr

output

path

pathname

pipeline

-34-

The shell has a variable nocfobber which may be set in the file ./ogin to prevent
accidental destruction of files by the ‘>’ output redirection metasyntax of the
shell (2.2, 2.5).

A shell command used to allow background commands to run to completion
even if you log off a dialup before they complete. (2.5)

The standard text formatter on UNIX is the program narofff Using nroff and one
of the available macro packages for it, it is possible to have documents
automatically formatted and to prepare them for phototypesetting using the
typesetter program troff (3.2).

The onintr command is built into the shell and is used to control the action of
a shell command script when an interrupt signal is received (3.9).

Many commands in UNIX resuilt in some lines of text which are called their our-
put. This output is usually placed on what is known as the standard output
which is normally connected to the users terminal. The shell has a syntax
using the metacharacter ‘>’ for redirecting the standard output of a command
to a file (1.3). Using the pipe mechanism and the metacharacter { it is also
possible for the standard output of one command to become the standard input
of another command (1.5). Certain commands such as the line printer dae-
mon /pr do not place their results on the standard output but rather in more
useful places such as on the line printer (2.3). Similarly the write command
places its output on another users terminal rather than its standard output
(2.3). Commands also have a diagnostic output where they write their error
messages. Normally these go to the terminal even if the standard output has
been sent to a file or another command, but it is possible to direct error diag-
nostics along with standard output using a special metanotation (2.5).

The shell has a variable path which gives the names of the directories in which
it searches for the commands which it is given. It always checks first to see if
the command it is given is built into the shell. If it is, then it need not search
for the command as it can do it internally. If the command is not builtin, then
the shell searches for a file with the name given in each of the directories in
the path variable, left to right. Since the normal definition of the pat# variable
is

path (. /bin /usr/bin)

the shell normally looks in the current directory, and then in the standard sys-
tem directories ‘/bin’ and ‘/ust/bin’ for the named command (2.2). If the
command cannot be found the shell will print an error diagnostic. Scripts of
shell commands will be executed using another shell to interpret them if they
have ‘execute’ bits set. This is normally true because a command of the form

chmod 755 script

was executed to turn these execute bits on (3.3).

A list of names, separated by ‘/° characters forms a pathname. Each com-
ponent, between successive ‘/° characters, names a directory in which the next
component file resides. Pathnames which begin with the character */° are
interpreted relative to the root directory in the filesystem. Other pathnames
are interpreted relative to the current directory as reported by pwd. The last
component of a pathname may name a directory, but usually names a file.

A group of commands which are connected together, the standard output of
each connected to the standard input of the next is called a pipeline. The pipe

mechanism used to connect these commands is indicated by the shell meta-
character ' (1.5, 2.3).

pr

printenv

process

program

-35.

The pr command is used to prepare listings of the contents of files with
headers giving the name of the file and the date and time at which the file was
last modified (2.3).

The printenv command is used on version 7 UNIX systems to print the current
setting of variables in the environment. As of this writing, only the VAX/UNIX
sysitem on the fifth floor of Evans Hall is running a version 7 UNIX system.
The other systems are running version 6, which does not have or need printenv
(2.6).

A instance of a running program is called a process (2.6). The numbers used
by kill and printed by wair are unique numbers generated for these processes by
UNIX. They are useful in kill commands which can be used to stop background
processes. (2.6)

Usually synonymous with command; a binary file or shell command script
which performs a useful function is often called a program.

programmers manual

prompt

ps

pwd
quit

quotation

redirection
repeat
RUBOUT

script

set

Also referred to as the manual. See the glossary entry for ‘manual’.

Many programs will print a prompt on the terminal when they expect input.
Thus the editor ‘ex (NEW)’ will print a ‘" when it expects input. The shell
prompts for input with ‘% ’ and occasionally with ‘? * when reading commands
from the terminal (1.1). The shell has a variable prompr which may be set to a
different value to change the shells main prompt. This is mostly used when
debugging the shell (2.6).

The ps command is used to show the processes you are currently running.
Each process is shown with its unique process number, an indication of the
terminal name it is attached to, and the amount of CPU time it has used so far.
The command is identified by printing some of the words used when it was
invoked (2.3, 2.6). Login shells, such as the csh you get when you login are
shown as ‘=",

The pwd command prints the full pathname of the current (working) directory.

The quir signal, generated by a control-\ is used to terminate programs which
are behaving unreasonably. It normally produces a core image file (1.8).

The process by which metacharacters are prevented their special meaning, usu-
ally by using the character *’ in pairs, or by using the character *\’ is referred to
as quoration (1.4). '

The routing of input or output from or to a file is known as redirection of input
or output (1.3).

The repear command iterates another command a specified number of times
(2.6). :

The RUBOUT or DELETE key generates an interrupt signal which is used to stop
programs or to cause them to return and prompt for more input (2.6).

Sequences of shell commands placed in a file are called shell command scripts.
It is often possible to perform simple tasks using these scripts without writing a
program in a language such as C, by using the shell to selectively run other
programs (3.2, 3.3, 3.10).

The builtin ser command is used to assign new values to shell variables and to
show the values of the current variables. Many shell variables have special
meaning to the shell itself. Thus by using the set command the behavior of
the shell can be affected (2.1).

setenv

shell

shell script
sort

source

special character

standard

status

substitution

switch

termination

then
time
troff

tset

unalias
UNIX

-36 -

On version 7 systems variables in the environment ‘environ (5)’ can be
changed by using the sefenv builtin command (2.6). The printenv command
can be used to print the value of the variables in the environment. Currently,
only the VAX/UNIX system on the fifth floor of Evans Hall is running version 7
UNIX. The other systems are running version 6, where sefenv is not necessary
and does not exist.

A shell is a command language interpreter. It is possible to write and run your
own shell, as shells are no different than any other programs as far as the sys-
tem is concerned. This manual deals with the details of one particular shell,
called csh.

See scripr (3.2, 3.3, 3.10).

The sorr program sorts a sequence of lines in ways that can be controlled by
argument flags (1.5).

The source command causes the shell to read commands from a specified file.
It is most useful for reading files such as .cshrc after changing them (2.6).

See metacharacters and the appendix to this manual.

We refer often to the standard input and standard output of commands. See
input and output (1.3, 3.8).

A command normally returns a staws when it finishes. By convention a sratus
of zero indicates that the command succeeded. Commands may return non-
zero status to indicate that some abnormal event has occurred. The shell vari-
able sratus is set to the status returned by the last command. It is most useful
in shell commmand scripts (3.5, 3.6).

The shell implements a number of substitutions where sequences indicated by
metacharacters are replaced by other sequences. Notable examples of this are
history substitution keyed by the metacharacter ‘!" and variable substitution
indicated by ‘'S’. We also refer to substitutions as expansions (3.4).

The switch command of the shell allows the shell to select one of a number of
sequences of commands based on an argument string. It is similar to the
switch statement in the language C (3.7).

When a command which is being executed finished we say it undergoes termi-
nation or terminates. Commands normally terminate when they read an end-
of-file from their standard input. It is also possible to terminate commands by
sending them an interrupt or quit signal (1.8). The kill program terminates
specified command whose numbers are given (2.6).

The then command is part of the shells ‘if-then-else-endif” control construct
used in command scripts (3.6).

The rime command can be used to measure the amount of CPU and real time
consumed by a specified command (2.1, 2.6).

The troff program is used to typeset documents. See also nroff (3.2).

The tser program is used to set standard erase and kill characters and to tell the

system what kind of terminal you are using. It is often invoked in a ./ogin file
(2.1).

The unalias command removes aliases (2.6).

UNIX is an operating system on which c¢s/ runs. UNIX provides facilities which
allow csh to invoke other programs such as editors and text formatters which
you may wish to use.

unset

-37-

The unser command removes the definitions of shell variables (2.2, 2.6).

variable expansion

variables

verbose

wait

where

while
word

See variables and expansion (2.2, 3.4).

Variables in c¢s# hold one or more strings as value. The most common use of
variables is in controlling the behavior of the shell. See path. noclobber, and
ignoreeof for examples. Variables such as argv are also used in writing shell
programs (shell command scripts) (2.2).

The verbose shell variable can be set to cause commands to be echoed after
they are history expanded. This is often useful in debugging shell scripts. The
verbose variable is set by the shells —v command line option (3.10).

The builtin command wair causes the shell to pause, and not prompt, until all
commands run in the background have terminated (2.6).

The where command shows where the users named as arguments are logged
into the system (2.3).

The while builtin control construct is used in shell command scripts (3.7).
A sequence of characters which forms an argument to a command is called a

word. Many characters which are neither letters, digits, ‘=", ‘.’ or ‘/° form
words all by themselves even if they are not surrounded by blanks. Any
sequence of character may be made into a word by surrounding it with *** char-
acters except for the characters *”* and ‘!" which require special treatment (1.1,
1.6). This process of placing special characters in words without their special

meaning is called quoting.

working directory

write

At an given time you are in one particular directory, called your working direc-
tory. This directories name is printed by the pwd command and the files listed
by Is are the ones in this directory. You can change working directories using
chdir.

The write command is used to communicate with other users who are logged in
to UNIX (2.3).

An introduction to the C shell
(Revised for the Third Berkeley Distribution)

William Joy

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

ABSTRACT

Csh is a new command language interpreter for UNIXt systems.
It incorporates good features of other shells and a history mechan-
ism similar to the redo of INTERLISP. While incorporating many
features of other shells which make writing shell programs (shell
scripts) easier, most of the features unique to csk are designed
more for the interactive UNIX user.

UNIX users who have read a general introduction to the system
will find a valuable basic explanation of the shell here. Simple ter-
minal interaction with csh is possible after reading just the first
section of this document. The second section describes the shells
capabilities which you can explore after you have begun to become
acquainted with the shell. Later sections introduce features which
are useful, but not necessary for all users of the shell.

Back matter includes an appendix listing special characters of
the shell and a glossary of terms and commands introduced in this
manual.

December 21, 1979

1UNIX is a Trademark of Bell Laboratories.

An introduction to the C shell
(Revised for the Third Berkeley Distribution)

William Joy

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

Introduction

A shell is a command language interpreter. Csh is the name of one particu-
lar command interpreter on UNX. The primary purpose of csh is to translate
command lines typed at a terminal into system actions, such as invocation of
other programs. Csh is a user program just like any you might write. Hopefully,
csh will be a very useful program for you in interacting with the UNIX system.

In addition to this document, you will want to refer to a copy of the *'UNIX
Programmers Manual:"" The csh documentation in the manual provides a full
description of all features of the shell and is a final reference for questions about
the shell.

Many words in this document are shown in italics. These are important
words; names of commands, and words which have special meaning in discussing
the shell and UNX. Many of the words are defined in a glossary at the end of this
document. If you don't know what is meant by a word, you should look for it in
the glossary.

Acknowledgements

Numerous people have provided good input about previous versions of csh
and aided in its debugging and in the debugging of its documentation. I would
especially like to thank Michael Ubell who made the crucial observation that his-
tory commands could be done well over the word structure of input text, and
implemented a prototype history mechanism in an older version of the shell.
Eric Allman has also provided a large number of useful comments on the shell,
helping to unify those concepts which are present and to identify and eliminate
useless and marginally useful features. Mike O'Brien suggested the pathname
hashing mechanism which speeds command execution.

1. Terminal usage of the shell

1.1. The basic notion of commands

A shell in UNIX acts mostly as a medium through which other commands are
invoked. While it has a set of duiltin commmands which it performs directly, mast
useful commands are, in fact, external to the shell. The shell is thus dis-
tinguished from the command interpreters of other systems both by the fact
that it is just a user program, and by the fact that it is used almost exclusively
as a mechanism for invoking other programs.

Commands in the UNIX system expect a list of strings or words as argu-
ments. Thus the command

mail bill

consists of two words. The first word mail names the command to be executed,
in this case the mail program which sends messages to other users. The shell
uses the name of the command in attempting to run it for you. It will look in a
number of directories for a file with the name mail which is expected to contain
the mail program.

The rest of the words of the command are given to the command itself to
execute. In this case we specified also the word &4ill which is interpreted by the
mail program to be the name of a user to whom mail is to be sent. In normal
terminal usage we might use the mail command as follows.

% mail bill
1 have a question about the csh documentation.
My document seems to be missing page S.
Does a page five exist?
Bill
EOT
7%

Here we typed a message to send to bill and ended this message with a
control-d which sent an end-of-file to the mail program. The mail program then
echoed the characters 'EOT" and transmitted our message. The characters ‘7%’
were printed before and after the mail command by the shell to indicate that
input was needed.

After typing the '% ' prompt the shell was reading command input from our
terminal. We typed a complete command ‘mail bill'. The shell then executed
the mail program with argument bill and went dormant waiting for it to com-
plete. The mail program then read input from our terminal until we signalled an
end-of-file after which the shell noticed that mail had completed and signaled us
that it was ready to read from the terminal again by printing another ‘7% °*
prompt.

This is the essential pattern of all interaction with UNIX through the shell. A
complete command is typed at the terminal, the shell executes the command
and when this execution completes prompts for a new command. If you run the
editor for an hour, the shell will patiently wait for you to finish editing and
obediently prompt you again whenever you finish editing.

An example of a useful command you can execute now is the {set command,
which sets the default erase and kill characters on your terminal — the erase
character erases the last character you typed and the kill character erases the
entire line you have entered so far. By default, the erase character is '#' and
the kill character is ‘@'. Most people who use CRT displays prefer to use the

-3- .

backspace (controi-h) character as their erase character since it is then easier
to see what you have typed so far. You can make this be true by typing

tset —e

which tells the program i¢sef to set the erase character, and its default setting
for this character is a backspace.

1.2, Flag arguments

A useful notion in UNKX is that of a flag argument. While many arguments to
commands specify file names or user names some arguments rather specify an
optional capability of the command which you wish to invoke. By convention,
such arguments begin with the character '='. Thus the command

s

will produce a list of the files in the current directory. The option —s is the size
option, and

ls -s

causes Is to also give, for each file the size of the file in blocks of 512 characters.
The manual page for each command in the UNIX programmers manual gives the
available options for each command. The ls command has a large number of
useful and interesting options. Most other commands have either no options or
only one or two options. It is hard to remember options of commands which are
not used very frequently, so most UNIX utilities perform only one or two functions
rather than having a large number of hard to remember options.

1.3. Output to files

Many commands may read input or write output to files rather than simply
taking input and output from the terminal. Each such command could take spe-
cial words as arguments indicating where the output is to go. It is simpler, and
usually sufficient, to connect these commands to files to which they wish to
write, within the shell itself, and just before they are executed.

Thus suppose we wish to save the current date in a file called ‘now’. The
command

date

will print the current date on our terminal. This is because our terminal is the
default steandard output for the date command and the date command prints
the date on its standard output. The shell lets us redirect the standard output
of a command through a notation using the metacharacter '>' and the name of
the file where output is to be placed. Thus the command

date > now

runs the date command in an environment where its standard output is the file
‘now’ rather than our terminal. Thus this command places the current date and
time in the file ‘now’. It is important to know that the dafe command was
unaware that its output was going to a file rather than to our terminal. The shell
performed this redirection before the command began executing.

One other thing to note here is that the file ‘'now’ need not have existed
before the date command was executed; the shell would have created the file if
it did not exist. And if the file did exist? If it had existed previously these previ-
ous contents would have been discarded! A shell option noclobber exists to
prevent this from happening accidentally; it is discussed in section 2.2.

-4 -

The system normally keeps files which you create with '>' and all other files.
Thus the default is for files to be permanent. If you wish to create a file which
will be removed automatically, you can begin its name with a ‘#' character, this
‘scratch’ character denotes the fact that the file will be a scratch file.* The sys-
tem will remove such files after a couple of days, or sooner if file space becomes
very tight. Thus, in running the date command above, we don't really want to
save the output forever, so we would more likely do

date > #now

1.4. Metacharacters in the shell

The shell has a large number of special characters (like '>') which indicate
special functions. We say that these notations have syntactic and semantic
meaning to the shell. In general, most characters which are neither letters nor
digits have special meaning to the shell. We shall shortly learn a means of quo-
tation which allows us to create words which contain metacharacters and to thus
work without constantly worrying about whether certain characters are meta-
characters.

Note that the shell is only reading input when it has prompted with ‘% .
Thus metacharacters will normally have effect only then. We need not worry
about placing shell metacharacters in a letter we are sending via mail

1.5. Input from files; pipelines

We learned above how to route the standard output of a command to a file.
It is also possible to route the standard input of a command from a file. This is
not often necessary since most commands will read from a file name given as
argument. We can give the command

sort < data

to run the sort command with standard input, where the command normally
reads, from the file ‘data’. We would more likely say

sort data

letting the sort command open the file ‘data’ for input itself since this is less to
type.
We should note that if we just typed

sort

then the sort program would sort lines from its standard input. Since we did
not redirect the standard input, it would sort lines as we typed them on the ter-
minal until we typed a control-d to g=nerate an end-of-file.

A most useful capability is the ability to combine the standard output of one
command with the standard input of the next, i.e. to run the commands in a
sequence known as a pipeline. For instance the command

s —s

normally produces a list of the files in our directory with the size of each in

*Note that if your erase character is a '#', you will have to precede the '# with a °\'. The fact
that the '# character is the old (pre-cr?) standard erase character means that it seldom ap-
pearsin a flle name, and allows this convention to be used for scratch flles. If you are using a
CRT, your erase character should be a control-h, as we demonstrated in section 1.1 how this
could be set up.

-5-

.blocks of 512 characters. If we are interested in learning which of our files is
largest we may wish to have this sorted by size rather than by name, which is
the default way in which Is sorts. We could look at the many options of s to see
if there was an option to do this but would eventually discover that there is not.
Instead we can use a couple of simple options of the sor{ command, combining it
with Is to get what we want.

The —n option of sort specifies a numeric sort rather than an alphabetic
sort. Thus)

ls =s | sort =n

specifies that the output of the Is command run with the option -s is to be piped
to the command sor? run with the numeric sort option. This would give us a
sorted list of our files by size, but with the smallest first. We could then use the
-7 reverse sort option and the head command in combination with the previous
command doing

ls =s | sort =n =r | head =5

Here we have taken a list of our files sorted alphabetically, each with the size in
blocks. We have run this to the standard input of the sort command asking it to
sort numerically in reverse order (largest first). This output has then been run
into the command head which gives us the first few lines out. In this case we
have asked head for the first § lines. Thus this command gives us the names and
sizes of our 5 largest files.

The metanotation introduced above is called the pipe mechanism. Com-
mands separated by ‘|’ characters are connected together by the shell and the
output of each is run into the input of the next. The leftmost command in a
pipeline will normally take its standard input from the terminal and the right-
most will place its standard output on the terminal. Other exampiles of pipelines
will be given later when we discuss the history mechanism; one important use of
pipes which is illustrated there is in the routing of information to the line
printer.

1.6. Filenames

Many commands to be executed will need the names of files as arguments.
UNIX pathnames consist of a number of components separated by ‘/*. Each com-
ponent except the last names a directory in which the next component resides.
Thus the pathname

/ete/motd

specifies a file in the directory ‘etc’ which is a subdirectory of the root directory
‘/’. Within this directory the file named is ‘motd’ which stands for ‘message of
the day’. Filenames which do not begin with ‘/* are interpreted starting at the
current working directory. This directory is, by default, your home directory
and can be changed dynamically by the chdir change directory command.

Most filenames consist of a number of alphanumeric characters and ‘.'s. In
fact, all printing characters except '/’ may appear in filenames. It is incon-
venient to have most non-alphabetic characters in filenames because many of
these have special meaning to the shell. The character.'.’ is not a shell-
metacharacter and is often used as the prefix with an extension of a base name.

Thus
prog.c prog.o prog.errs prog.output

are four related files. They share a root portion of a name (a root portion being

-8 -

that part of the name that is left when a trailing ‘.' and following characters
which are not '.’ are stripped off). The file ‘prog.c' might be the source for a C
program, the file ‘prog.o’ the corresponding object file, the file ‘prog.errs’ the
errors resulting from a compilation of the program and the file 'prog.output’ the
output of a run of the program.

[f we wished to refer to all four of these files in a command, we could use
the metanotation
prog.*
This word is expanded by the shell, before the command to which it is an argu-
ment is executed, into a list of names which begin with ‘prog.’. The character '*
here matches any sequence (including the empty sequence) of characters in a

file name. The names which match are sorted into the argument list to the com-
mand alphabetically. Thus the command

echo prog.*
will echo the names
prog.c prog.errs prog.o prog.output

Note that the names are in lexicographic order here, and a different order than
we listed them above. The echo command receives four words as arguments,
even though we only typed one word as as argument directly. The four words
were generated by filename expansion of the metasyntax in the one input word.

Other metanotations for filename ezpansion are also available. The charac-
ter '?* matches any single character in a filename. Thus

echo ? ?7? ?7?

will echo a line of filenames; first those with one character names, then those
with two character names, and finally those with three character names. The
names of each length will be independently lexicographically sorted.

Another mechanism consists of a sequence of characters between ‘[’ and ']".
This metasequence matches any single character from the enclosed set. Thus

prog.[co]
will match
prog.c prog.o

in the example above. We can also place two characters astride a '=' in this
notation to denote a range. Thus

chap.[1-5]
might match files
chap.l chap.2 chap.3 chap.4 chap.3
if they existed. This is shorthand for
chap.[12345]

and otherwise equivalent.

An important point to note is that if a list of argument words to a command
(an argument list) contains filename expansion syntax, and if this filename
expansion syntax fails to match any existing file names, then the shell considers
this to be an error and prints a diagnostic

No match.

Another very important point is that the character ‘.’ at the beginning of a
filename is treated specially. Neither ‘* or '?" or the ‘[' ‘]’ mechanism will
match it. This prevents accidental matching of the filenames ‘.' and '..' in the
current directory which have special meaning to the system, as well as other
files such as .cshrc which are not normally visible. We will discuss the special
role of the file .cshrc later.

Another filename expansion mechanism gives access to the pathname of the
home directory of other users. This notation consists of the character '~' fol-
lowed by another users login name. For instance the word ‘~bill' would map to
the pathname ‘/usr/bill’ if the home directory for 'bill’ was in the directory
‘/usr/bill’. Since, on large systems, users may have login directories scattered
over many different disk volumes with different prefix directory names, this
notation provides a reliable way of accessing the files of other users.

A special case of this notation consists of a ‘'~ alone, e.g. '~/mbox'. This
notation is expanded by the shell into the file ‘mbox’ in your home directory, i.e.
into ‘/usr/bill/mbox’ for me on Ernie Co-vax, the UCB Computer Science
Department Vax machine, where this document was prepared. This can be very
useful if you have used chdir to change to another users directory and have
found a file you wish to copy using cp. You can do

cp thatfile ~
which will be expanded by the shell to
cp thatfile /usr/bill

e.g., which the copy command will interpret as a request to make a copy of
‘thatfile’ in the directory ‘/usr/bill’. The ‘~’' notation doesn't, by itself, force
named files to exist. This is useful, for example, when using the cp command,
e.g.

cp thatfile ~/saveit

There also exists a mechanism using the characters '{’ and '}’ for abbreviat-
ing a set of word which have common parts but cannot be abbreviated by the
above mechanisms because they are not files, are the names of files which do
not yet exist, are not thus conveniently described. This mechanism will be
described much later, in section 4.1, as it is used less frequently.

1.7. Quotation

We have already seen a number of metacharacters used by the shell. These
metacharacters pose a problem in that we cannot use them directly as parts of
words. Thus the command

echo *

will not echo the character ‘*'. It will either echo an sorted list of filenames in
the current directory, or print the message ‘No match’ if there are no files in
the current directory.

The recommended mechanism for placing characters which are neither

numbers, digits, ‘/*, '.' or '=' in an argument word to a command is to enclose it
with single quotation characters ‘', i.e.

echo “*

There is one special character ‘!’ which is used by the history mechanism of the

-8-

shell and which cannot be escaped by placing it within * characters. It and the
character *“' itself can be preceded by a single *\' to prevent their special mean-
ing. Thus

echo \'\!

prints
“

These two mechanisms suffice to place any printing character into a word which
is an argument to a shell command. They can be combined, as in

echo \""*

which prints

‘n

1.8. Terminating commands

When you are running a command from the shell and the shell is dormant
waiting for it to complete there are a couple of ways in which you can force such
a command to stop. For instance if you type the command

cat /etc/passwd

the system will print a copy of a list of all users of the system on your terminal.
This is likely to continue for several minutes unless you stop it. You can send an
INTERRUPT signal to the cat command by hitting the DEL or RUBOUT key on your ter-
minal. Actually, hitting this key sends this INTERRUPT signal to all programs run-
ning on your terminal, including your shell. The shell normally ignores such sig-
nals however, so that the only program affected by the INTERRUPT will be cat.
Since cat does not take any precautions to catch this signal the INTERRUPT will
cause it to terminate. The shell notices that cat has died and prompts you again
with ‘% '. If you hit INTERRUPT again, the shell will just repeat its prompt since it
catches INTERRUPT signals and chooses to continue to execute commands rather
than going away like cat¢ did, which would have the effect of logging you out.

Another way in which many programs terminate is when they get an end-of-
file from their standard input. Thus the mail program in the first example above
was terminated when we hit a control-d which generates and end-of-file from the
standard input. The shell also terminates when it gets an end-of-file printing
‘logout’; UNIX then logs you off the system. Since this means that typing too
many control-d's can accidentally log us off, the shell has a mechanism for
preventing this. This ignoreeof option will be discussed in section 2.2.

If a command has its standard input redirected from a file, then it will nor-
mally terminate when it reaches the end of this file. Thus if we execute

mail bill < prepared.text

the mail command will terminate without our typing a control-d. This is because
it read to the end-of-file of our file ‘prepared.text’ in which we placed a message
for 'bill' with an editor. We could also have done

cat prepared.text | mail bill

since the catf command would then have written the text through the pipe to the
standard input of the mail command. When the cat command completed it
would have terminated, closing down the pipeline and the mail command would
have received an end-of-file from it and terminated. Using a pipe here is more
complicated than redirecting input so we would more likely use the first form.

-9-

These commands could also have been stopped by sending an INTERRUPT.

If you write or run programs which are not fully debuggead then it may be
necessary to stop them somewhat ungracefully. This can be done by sending
them a QUIT signal, generated by a control-\. This will usually provoke the shell
to produce a message like:

a.out: Quit =— Core dumped

indicating that a file ‘core’ has been created containing information about the
program ‘a.out’s state when it ran amuck. You can examine this file yourself, or
forward information to the maintainer of the program telling him/her where the
core file is.

If you run background commands (as explained in section 2.6) then these
commands will ignore INTERRUPT and QUIT signals at the terminal. To stop them
you must use the kill program. See section 2.6 for an example.

If you want to examine the output of 2 command without having it shoot off
the screen as the output of the

cat /etc/passwd
command will, you can use the command
more /etc/passwd

The more program pauses after each complete screenful and types ‘=—More—-'
at which point you can hit a space to get another screenful, a return to get
another line, or a ‘q’ to end the more program. You can also use more as a
filter, i.e.

cat /etc/passwd | more

works just like the more simple more command above.

For stopping output of commands not involving more you can use the
control-s key to stop the typeout. The typeout will resume when you hit
control-q or any other key, but control-q is normally used because it only res-
tarts the output and does not become input to the program which is running.
This works well on low-speed terminals, but at 9600 baud it is hard to type
control-s and control-q fast enough to paginate the output nicely, and a program
like more is usually used.

1.9. What now?

We have so far seen a number of mechanisms of the shell and learned a lot
about the way in which it operates. The remaining sections will go yet further
into the internals of the shell, but you will surely want to try using the shell
before you go any further. To try it you can log in to UNIX and type the following
command to the system:

chsh myname /bin/csh

Here 'myname’ should be replaced by the name you typed to the system prompt
of ‘login:' to get onto the system. Thus I would use ‘chsh bill /bin/csh’. You
only have to do this once; it takes eflect at next login. You are now ready to try
using csh.

Before you do the ‘chsh’' command, the shell you are using when you log
into the system is ‘'/bin/sh’. In fact, much of the above discussion is applicable
to ‘/bin/sh’. The next section will introduce many features particular to csh so
you should change your shell to csh before you begin reading it.

-10-

2. Details on the shell for terminal users

2.1. Shell startup and termination

When you login, the shell is placed by the system in your home directory
and begins by reading commands from a file .cshrc in this directory. All shells
which you may create during your terminal session will read from this file. We
will later see what kinds of commands are usefully placed there. For now we
ne=d not have this file and the shell does not complain about its absence.

A login shell, executed after you login to the system, will, after it reads
commands from .cshrc, read commands from a file .login also in your home
directory. This file contains commands which you wish to do each time you login
to the UNX system. My .login file looks something like:

set ignoreeof mail=(/usr/spool/mail/bill)
switch('tty")
case /dev/ttyd™
setenv TERM 3a
breaksw
endsw
tset —e —-Q
echo "${promptjusers"” ; users
set time=15
msgs -f
if (-e Smail) then
echo "${promptimail”
mail
endif

This file contains .several commands to be executed by UNIX each time I
login. The first is a set command which is interpreted directly by the shell. It
sets the shell variable ignoreeof which causes the shell to not log me off if | hit
control-d. Rather, | use the logout command to log off of the system. By setting
the mail variable, | ask the shell to watch for incoming mail to me. Every 5
minutes the shell looks for this file and tells me if more mail has arrived there.

The next series of commands causes the shell to examine the output of the
‘tty’ command, and if this command returns a teletype path name of the form
‘/dev/ttyd*, then | have logged in on a dialup and the shell sets the terminal
type in the environment to adm3a, since this is the type of terminal | normally
dial in on. If I am not on a dialup, then the system attempts to set the terminal
type from a table of types it has for hardwired ports.

The ¢set command next sets up any special initialization [require on the
terminal | am using. The '—e’ option forces tsef to always use a control-h as my
erase character (even on a hardcopy terminal), and the ‘~=Q’ option causes it to
be quiet, not printing any messages (since | am familiar with what it is doing, I
don't need to be reminded.)

Next [set the shell variable ‘time’ to ‘15’ causing the shell to automaticzally
print out statistics lines for commands which execute for at least 15 seconds of
machine time. I then run the ‘msgs’ program, which provides me with any sys-
tem messages which | haven't seen before; the '=f option here prevents it from
telling me if there are no new messages. Finally, if my mailbox file exists, then I
run the ‘mail’ program to process my mail.

When the ‘mail' and 'msgs' programs finish, the shell will complete execu-
tion of the .login script and begin reading commands from the terminal,

-11 -

prompting for each with ‘% '. When it receives an end-of-file from the terminal,
the shell will print ‘'logout’ and execute commands from the file '.logout’ in your
home directory. After that the shell will die and UNIX will log you off the system.
If the system is not going down, you will receive a new login message. In any
case, after the ‘logout’ message the shell is doomed and will take no further
input from the terminal.

2.2. Shell variables

The shell maintains a set of variables. We saw above the variables history
and time which had values '20' and '15'. In fact, each shell variable has as value
an array of zero or more strings. Shell variables may be assigned values by the
set command. It has several forms, the most useful of which was given above
and is

set name=value

Shell variables may be used to store values which are to be reintroduced
into commands later through a substitution mechanism. The shell variables
most commonly referenced are, however, those which the shell itself refers to.
By changing the values of these variables one can directly affect the behavior of
the shell.

One of the most important variables is the variable path. This variable con-
tains a sequence of directory names where the shell searches for commands.
The set command shows the value of all variables currently defined {we usually
say set) in the shell. The default value for path will be shown by set to be

% set

argv 0

home: /usr/bill

path (. /usr/ucb /bin /usr/bin)

prompt 7
shell /bin/csh
status 0

7%

This notation indicates that the variable path points to the current directory ‘.’
and then ‘'/bin’ and ‘/usr/bin’. Commands which you may write might be in ‘.’
(usually one of your directories). Other commands, developed at Berkeley, live
in ‘/usr/ucb’ while commands developed at Bell Laboratories live in ‘/bin’ and
*/usr/bin’.

A number of locally developed programs on the system live in the directory
‘/usr/local'. If we wish, as well we might, all shells which we invoke to have
access to these new programs we can place the command

set path=(. /usr/ucb /bin /usr/bin /usr/local)

in our file .cshrc in our home directory. Try doing this and then logging out and
back in and do

set

again to see that the value assigned to path has changed.*

*The current version of csh does not correctly export the path contained in ‘path’' to the en-
vironment as the standard version 7 variable PATH, thus you should concoct a string consist-
ing of the words of 'path’ and 'setenv’ it into the variable PATH, i.e.:

setenv PATH .:/usr/ucb:/bin:/usr/bin: /usr/local

-12 -

One thing you should be aware of is that the shell examines each directory
which you insert into your path and determines which commands are contained
there. Except for the current directory '.", which the shell treats specially, this
means that if commands are added to a directory in your search path after you
have started the shell, they will not necessarily be found by the shell. If you wish
to use a command which has been added in this way, you should give the com-

mand
rehash

to the shell, which will cause it to recompute its internal table of command loca-
tions, so that it will find the newly added command.

Other useful built in variables are the variable home which shows your home
directory, the variable ignoreeof which can be set in your .login file to tell the
shell not to exit when it receives an end-of-file from a terminal (as described
above). The variable ‘ignoreeof’ is one of several variables which the shell does
not care about the value of, only whether they are set or unset. Thus to set this
variable you simply do

set ignoreeof
and to unset it do
unset ignoreeof

These give the variable ‘ignoreeof’ no value, but none is desired or required.
Finally, some other built-in shell variables of use are the variables noclobber

and mail. The metasyntax

V > filename

which redirects the output of a command will overwrite and destroy the previous
contents of the named file. In this way you may accidentally overwrite a file
which is valuable. I[f you would prefer that the shelli not overwrite files in this
way you can

set noclobber
in your .login file. Then trying to do
date > now ‘
would cause a diagnostic if ‘now’ existed already. You could type
date >! now

if you really wanted to overwrite the contents of ‘now'. The ‘>!' is a special
metasyntax indicating that clobbering the file is ok. The space between the ‘I’
and the word ‘now’ is critical here, as ‘‘now’ would be a invocation of the his-
tory mechanism, and have a totally different effect.

2.3. The shell’s history list

The shell can maintain a history list into which it places the words of previ-
ous commands. It is possible to use a metanotation to reintroduce commands
or words from commands in forming new commands. This mechanism can be
used to repeat previous commands or to correct minor typing mistakes in com-
mands.

e = 2 s . e @ e e

in the example above.

-13-

The following figure gives a sample session involving typical usage of the his-
tory mechanism of the shell.

7% cat bug.c
main()

printf("hello);

!
% cc!'$
cc bug.c
"bug.c"”, line 3: newline in string or char constant
"bug.c”, line 4: syntax error
% ex!$
ex bug.c
"bug.c" 4 lines, 28 characters
:3s/):/"&

printf(""hello");
wq
"bug.c" 4 lines, 29 characters
% Ic
cc bug.c
7% a.out
helloZ !e
ex bug.c
"bug.c" 4 lines, 29 characters
:3s/10/1o\\n

printf("hello\n");
wq
"bug.c" 4 lines, 31 characters
% lc -0 bug '
cc bug.c -o bug
7% size a.out bug
a.out: 2784+364+1028 = 4176b = 0x1050b
bug: 2784+364+1028 = 4178b = 0x1050b
% 1s —=11*
ls =1 a.out bug
-rwxr-xr-x 1 bill 3932 Dec 19 09:41 a.out
-rwxr-xr-x 1 bill 3932 Dec 19 09:42 bug
7% bug
hello
% pr bug.c | sps
sps: Command not found.
7% ~sps~ssp
pr bug.c | ssp
Dec 19 09:41 1979 bug.c Page 1

main()
printf("hello\n");

% 1| lpr
pr bug.c | ssp | lpr
%

-14 -

In this example we have a very simple C program which has a bug (or two) in it
in the file 'bug.c’, which we ‘cat’ out on our terminal. We then try to run the C
compiler on it, referring to the file again as '!$', meaning the last argument to
the previous command. Here the ‘!" is the history mechanism invocation charac-
ter, and the '$' starnds for the last argument, by analogy to ‘$' in the editor
which stands for the end of the line. The shell echoed the command, as it would
have been typed without use of the history mechanism, and then executed it.
The compilation yielded error diagnostics so we now run the editor on the file we
were trying to compile, fix the bug, and run the C compiler again, this time
referring to this command simply as '!e’, which repeats the last command which
started with the letter ‘c’. If there were other commands starting with ‘c’ done
recently we could have said 'lcc’ or even ‘lcc:p’ which would have printed the
last command starting with ‘cc’ without executing it.

After this recompilation, we ran the resulting ‘a.out' file, and then noting
that there still was a bug, ran the editor again. After fixing the program we ran
the C compiler again, but tacked onto the command an extra ‘-0 bug’ telling the
compiler to place the resultant binary in the file '‘bug' rather than ‘a.out'. In
general, the history mechanisms may be used anywhere in the formation of new
commands and other characters may be placed before and after the substituted
commands.

We then ran the 'size’ command to see how large the binary program
images we have created were, and then an ‘'ls ~1' command with the same argu-
ment list, denoting the argument list ‘'*'. Finally we ran the program ‘'bug’ to see
that its output is indeed correct.

To make a listing of the program we ran the ‘pr’' command on the file
‘bug.c'. In order to compress out blank lines in the output of 'pr’ we ran the
output through the filter ‘ssp’, but misspelled it as sps. To correct this we used
a shell substitute, placing the old text and new text between '~' characters. This
is similar to the substitute command in the editor. Finally, we repeated the
same command with ‘!!’, but sent its output to the line printer.

There are other mechanisms available for repeating commands. A history
command will prints out a number of previous commands with numbers by
which they can be referenced. There is a way to refer to a previous command by
searching for a string which appeared in in, and there are other, less useful,
ways to select arguments to include in a new command. A complete description
of all these mechanisms is given in the C shell manual pages in the UNX Program-
mers Manual.

2.4. Aliases

The shell has an alias mechanism which can be used to make transforma-
tions on input commands. This mechanism can be used to simplify the com-
mands you type, to supply default arguments to commands, or to perform
transformations on commands and their arguments. The alias facility is similar
to a macro facility. Some of the features obtained by aliasing can be obtained
also using shell command files, but these take place in another instance of the
shell and cannot directly affect the current shells environment or involve com-
mands such as caAdir which must be done in the current shell.

As an example, suppose that there is a new version of the mail program on
the systern called ‘newmail’ you wish to use, rather than the standard mail pro-
gram which is called ‘mail'. If you place the shell command

alias mail newmail

in your .cshrc file, the shell will transform an input line of the form

-15 -

mail bill

into a call on ‘newmail’. More generally, suppose we wish the command ‘Is’ to
always show sizes of files, that is to always do ‘=s’. We can do

aliasls ls =s
or even
alias dir Is -s
creating a new command syntax 'dir’ which does an ‘ls —s’. If we say
dir ~bill
then the shell will translate this to
Is -s /mnt/bill

Thus the alias mechanism can be used to provide short names for com-
mands, to provide default arguments, and to define new short commands in
terms of other commands. It is also possible to define aliases which contain
multiple commands or pipelines, showing where the arguments to the original
command are to be substituted using the facilities of the history mechanism.
Thus the definition

alias cd ‘ed \!*;Is”’

would do an Is command after each change directory cd command. We enclosed
the entire alias definition in '“’ characters to prevent most substitutions from
occurring and the character ‘;' from being recognized as a parser metacharac-
ter. The '!" here is escaped with a '\’ to prevent it from being interpreted when
the alias command is typed in. The ‘\!*' here substitutes the entire argument
list to the pre-aliasing cd command, without giving an error if there were no
arguments. The '}’ separating commands is used here to indicate that one com-
mand is to be done and then the next. Similarly the definition

alias whois ‘grep \!t /etc/passwd’

defines a command which looks up its first argurmnent in the password file.

Warning: The shell currently parses the .cshrc file each time it starts up. If
you place a large number of commands there, shells will tend to start slowly. A
mechanism for saving the shell environment after reading the .cshrc file and
quickly restoring it is under development, but for now you should try to limit the
number of aliases you have to a reasonable number... 10 or 15 is reasonable, 50
or 60 will cause a noticeable delay in starting up shells, and make the system
seemn sluggish when you execute commands from within the editor and other
programs.

2.5. Detached commands; >> and > & redirection

There are a few more metanotations useful to the terminal user which have
not been introduced yet. The metacharacter ‘&' may be placed after a com-
mand, or after a sequence of commands separated by ‘;’ or ‘|'. This causes the
shell to not wait for the commands to terminate before prompting again. We say
that they are detached or background processes. Thus

% pr ~bill/csh/sh.c | lpr &
5120

5121

%

-18 -

Here the shell printed two numbers and came back very quickly rather than
waiting for the pr and !pr commands to finish. These numbers are the process
numbers assigned by the system to the pr and {pr commands.

Since havoc would result if a command run in the background were to read
from your terminal at the same time as the shell does, the default standard
input for a command run in the background is not your terminal, but an empty
file called '/dev/null’. Commands run in the background are also made immune
to INTERRUPT and QUIT signals which you may subsequently generate at your termi-
nal, and are not killed if you hang up a phone connection.

In addition to the standard output, commands also have a diagnostic output
which is normally directed to the terminal even when the standard output is
directed to a file or a pipe. It is occasionally desirable to direct the diagnostic
output along with the standard output. For instance if you want to redirect the
output of a long running command into a file and wish to have a record of any
error diagnostic it produces you can do

command >& file

The '>&' here tells the shell to route both the diagnostic output and the stan-
dard output into 'fle’. Similarly you can give the command

command | & lpr

to route both standard and diagnostic output through the pipe to the line
printer daemon lp7. #

Finally, it is possible to use the form
command >> file

to place output at the end of an existing file.t

2.8. Useful built-in commands

We now give a few of the useful built-in commands of the shell describing
how they are used.

The alias command described above is used to assign new aliases and to
show the existing aliases. With no arguments it prints the current aliases. It
may also be given an argument such as

alias Is

to show the current alias for, e.g., ‘ls’.

The cd and chdir commands are equivalent, and change the working direc-
tory of the shell. It is useful to make a directory for each project you wish to
work on and to place all files related to that project in that directory. Thus after
you login you can do

= e e s e s e

#A command form
command >&! fille
exists, and is used when ncclobbar is set and file already exists.
tf naclobber is set, then an error will result if file does not exist, otherwise the shell will
create jfilg if it doesn't ezist. A form

command >>! file

makes it not be an error for file to not exist when noclabder is set.

-17-

% pwd

/usr/bill

% mkdir newpaper
% chdir newpaper

% pwd
/usr/bill/newpaper
%

after which you will be in the directory newpaper. You can place a group of
related files there. You can return to your 'home’ login directory by doing just

chdir

with no arguments. We used the pwd print working directory command to show
the name of the current directory here. The current directory will usually be a
subdirectory of your home directory, and have it (here ‘'/usr/bill’) at the start
of it.

The echo command prints its arguments. It is often used in shell scripts or
as an interactive command to see what filename expansions will yield.

The history command will show the contents of the history list. The
numbers given with the history events can be used to reference previous events
which are difficult to reference using the contextual mechanisms introduced
above. There is also a shell variable called prompt{. By placing a ‘!' character in
its value the shell will there substitute the index of the current command in the
history list. You can use this number to refer to this command in a history sub-
stitution. Thus you could

set prompt="\! % *

(vl

Note that the ‘!' character had to be escaped here even within ‘** characters.

The logout command can be used to terminate a login shell which has
ignoreeof set.

The rehash command causes the shell to recompute a table of where com-
mands are located. This is necessary if you add a command to a directory in the
current shells search path and wish the shell to find it, since otherwise the hash-
ing algorithm may tell the shell that the command wasn’'t in that directory when
the hash table was computed.

The repeat command can be used to repeat a command several times. Thus
to make 5 copies of the file one in the file five you could do

repeat 5 cat one >> five

The setenv command can be used, on version 7 UNIX systems, to set vari-
ables in the environment. Thus

setenv TERM adm3a

will set the value of the environment variable TERM to ‘adm3a’. A user program
printenv exists which will print out the environment. It might then show:

7% printenv

HOME=/

SEELL=/bin/csh
PATH=:/usr/ucb:/bin:/usr/bin: /usr/local
TERM=3a

%

-18 -

The source command can be used to force the current shell to read com-
mands from a fle. Thus

source .cshre

can be used after editing in a change to the .cshrc file which you wish to take
effect before the next time you login.

The time command can be used to cause a command to be timed no matter
how much CPU time it takes. Thus

% time cp five five.save
0.0u 0.3s 0:01 287
7% time we five.save
1200 6300 37850 five.save
1.2u 0.5s 0:03 557
7%

indicates that the cp command used less that 1/10th of a second of user time
and only 3/10th of a second of system time in copying the file ‘five’ to ‘five.save'.
The command word count ‘we’' on the other hand used 1.2 seconds of user time
and 0.5 seconds of system time in 3 seconds of elapsed time in counting the
number of words, character and lines in ‘five.save'. The percentage ‘55%' indi-
cates that over this period of 3 seconds, our command ‘wc’ used an average of
55 percent of the available CPU cycles of the machine. This is a very high percen-
tage and indicates that the system is lightly loaded.

The unalias and unset commands can be used to remove aliases and vari-
able definitions from the shell.

The wait command can be used after starting processes with ‘&’ to quickly
see if they have finished. If the shell responds immediately with another
prompt, they have. Otherwise you can wait for the shell to prompt at which
point they will have finished, or interrupt the shell by sending a RUB or DELZTE
character. If the shell is interrupted, it will print the names and numbers of the
processes it knows to be unfinished. Thus:

% nrofl paper | lpr &
2450
2451
% wait
2451 lpr
2450 nroff
wait: Interrupted.
%

If you run a background process and decide you want to stop it for whatever
reason you must use the kill program. You must use the number of the
processes you wish to kill. Thus to stop the nroff in the above pipeline you would
do

7% kill 2450

7% wait

2450: nrofl: Terminated.
A

Eere the shell printed a diagnostic that we terminated ‘nroff’ only after we did a
wait. If we want the shell to discover the termination of all processes it has
created we must, in general, use wait.

-19 -

If you don't remember the number of a command you have executed, you
call also issue a ps command, which will print out the numbers and names of the
processes (other than shells) which you are running, showing with each the
amount of processor time it has used so far.)

2.7. What else?

This concludes the basic discussion of the shell for terminal users. There
are more features of the shell to be discussed here, and all features of the shell
are discussed in its manual pages. One useful feature which is discussed later is
the foreach built-in command which can be used to run the same command
sequence with a number of different arguments.

If you intend to use UNX a lot you you should look through the rest of this
document and the shell manual pages to become familiar with the other facili-
ties which are available to you.

-20 -

3. Shell control structures and command scripts

3.1. Introduction

It is possible to place commands in files and to cause snells to be invoked to
read and execute commands from these files, which are called shell scripts. We
here detail those features of the shell useful to the writers of such scripts.

3.2. Make

It is important to first note what shell scripts are not useful for. There is a
program called make which is very useful for maintaining a group of related files
or performing sets of operations on related files. For instance a large program
consisting of one or more files can have its dependencies described in a makefile
which contains definitions of the commands used to create these different files
when changes occur. Definitions of the means for printing listings, cleaning up
the directory in which the files reside, and installing the resultant programs are
easily, and most appropriately placed in this makefile. This format is superior
and preferable to maintaining a group of shell procedures to maintain these
files.

Similarly when working on a document a makefile may be created which
defines how different versions of the document are to be created and which
options of arcff or troff are appropriate.

3.3. Invocation and the argv variable
A csh command script may be interpreted by saying

7% csh script ...

where script is the name of the file containing a group of csh commands and ‘...’
is replaced by a sequence of arguments. The shell places these arguments in
the variable argv and then begins to read commands from the script. These
parameters are then available through the same mechanisms which are used to
reference any other shell variables.

If you make the file 'script’ executable by doing
chmod 755 script

and place a shell comment at the beginning of the shell script (i.e. begin the file
with a '# character) then a '/bin/csh’ will automatically be invoked to execute
‘script’ when you type

script
If the file does not begin with a '# then the standard shell ‘'/bin/sh' will be used

to execute it. This allows you to convert your older shell scripts to use csh at
your convenience.

3.4. Variable substitution

After each input line is broken into words and history substitutions are
done on it, the input line is parsed into distinct commands. Before each com-
mand is executed a mechanism know as variable substitution is done on these
words. Keyed by the character '$' this substitution replaces the names of vari-
ables by their values. Thus -

echo $argv

when placed in a command script would cause the current value of the variable
argv to be echoed to the output of the shell script. It is an error for argv to be

-21-

unset at this point.

A number of notations are provided for accessing components and attri-
butes of variables. The notation

$7name

expands to ‘1’ if name is set or to ‘0’ if name is not sef. It is the fundamental
mechanism used for checking whether particular variables have been assigned
values. All other forms of reference to undefined variables cause errors.

The notation
$#name
expands to the number of elements in the variable name. Thus
set argv=(a b ¢)
echo $?argv

echo $#argv

unset argv
echo $?argv

1O a9 9 03 39~ 39 Y

% echo $argv
Undefined variable: argv.
7%

It is also possible to access the components of a variable which has several
values. Thus)

$argv(1]
gives the first component of argv or in the example above ‘a’. Similarly
Sargv{$#argv]
would give ‘c’, and
$argv[1-2]
Other notations useful in shell scripts are
$n ‘
where n is an integer as a shorthand for
Sargv(n]
the nth parameter and
st
wt_xich is a shorthand for
$argv
The form
$3

expands to the process number of the current shell. Since this process number
is unique in the system it can be used in generation of unique temporary file
names.

One minor diflerence between ‘$n’ and ‘Sargv[n]’ should be noted here.

-22-

The form ‘Sargv[n]’ will yield an error if n is not in the range ‘1-$#argv’ while
‘3$n' will never yield an out of range subscript error. This is for compatibility
with the way older shells handled parameters.

Another important point is that it is never an error to give a subrange of
the form ‘n-'; if there are less than n components of the given variable then no
words are substituted. A range of the form ‘m—n' likewise returns an empty vec-
tor without giving an error when m exceeds the number of elements of the given
variable, provided the subscript n is in range.

3.5. Expressions

In order for interesting shell scripts to be constructed it must be possible
to evaluate expressions in the shell based on the values of variables. In fact, all
the arithmetic operations of the language C are available in the shell with the
same precedence that they have in C. In particular, the operations '==' and ‘!=’
compare strings and the operators '&&’ and ‘| |' implement the boolean and/or
operations.

The shell also allows file enquiries of the form
-7 filename

where '?' is replace by a number of single characters. For instance the expres-
sion primitive

—-e filename

tell whether the file 'filename’ exists. Other primitives test for read, write and
execute access to the file, whether it is a directory, or has non-zero length.

It is possible to test whether a command terminates normally, by a primi-
tive of the form ‘{ command }' which returns true, i.e. ‘1’ if the command
succeeds exiting normally with exit status 0, or 'O’ if the command terminates
abnormally or with exit status non-zero. If more detailed information about the
execution status of a command is required, it can be executed and the variable
‘Sstatus’ examined in the next command. Since ‘$status’ is set by every com-
mand, it is very transient. It can be saved if it is inconvenient to use it only in
the single immediately following command.

For a full list of expression components available see the manual section for
the shell.

3.6. Sample shell script

A sample shell seript which makes use of the expression mechanism of the
shell and some of its control structure follows:

-23-

7% cat copyc

#
Copyc copies those C programs in the specified list

to the directory ~/backup if they differ from the files
already in ~/backup

#

set noglob

foreach i ($argv)

if ($i:r.c != $i) continue# not a .c file so do nothing

if (! =r ~/backup/$i:t) then

echo $i:t not in backup... not cp\’ed
continue

endif

cmp -s $i ~/backup/$i:t# to set $status

if ($status != 0) then
echo new backup of $i
cp $i ~/backup/$i:t
endif

end

This script makes use of the foreach command, which causes the shell to
execute the commands between the foreach and the matching end for each of
the values given between ‘(' and ')’ with the named variable, in this case 'i' set to
successive values in the list. Within this loop we may use the command break to
stop executing the loop and conéinue to prematurely terminate one iteration .
and begin the next. After the foreach loop the iteration variable (i in this case)
has the value at the last iteration.

We set the variable noglob here to prevent filename expansion of the
members of argv. This is a good idea, in general, if the arguments to a shell
script are filenames which have already been expanded or if the arguments may
contain filename expansion metacharacters. It is also possible to quote each
use of a ‘$' variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the form
if (expression) then
command
endif

The placement of the keywords here is not flexible due to the current implemen-
tation of the shell.t

{The following two formats are not currently acceptable to the shell:

if (expression) # Won't work!
then

command
endif

and

if (expression) then command endif # Won't work

-24 -

The shell does have another form of the if statement of the form
if (expression) command
which can be written

if (expression) \
command

Here we have escaped the newline for the sake of appearance. The command
must not involve *|', ‘&’ or ‘;' and must not be another control command. The
second form requires the final '\ to immediately precede the end-of-line.

The more general if statements above also admit a sequence of else—if
pairs followed by a single else and an endif, e.g.:

if (expression) then

commands
else if (expression) then

commands
else

commands
endif

Another important mechanism used in shell scripts is *:' modifiers. We can
use the modifier ‘:r’ here to extract a root of a filename. Thus if the variable 1
has the value 'foo.bar’ then

% echo 3i 8i:r
foo.bar foo
%

shows how the ":r' modifier strips off the trailing ‘.bar’'. Other modifiers will take
off the last component of a pathname leaving the head ':h' or all but the last
component of a pathname leaving the tail “:t'. These modifiers are fully
described in the csh manual pages in the programmers manual. It is also possi-
ble to use the command substilution mechanism described in the next major
section to perform rnodifications on strings to then reenter the shells environ-
ment. Since each usage of this mechanism involves the creation of a new pro-
cess, it is much more expensive to use than the ':' modification mechanism.#
Finally, we note that the character ‘#' lexically introduces a shell comment in
shell scripts (but not from the terminal). All subsequent characters on the
input line after a '#' are discarded by the shell. This character can be quoted
using '“' or ‘\' to place it in an argument word.

#1t is also important to note that the current implementation of the shell limits the number
of ':' modifiers on a '$' substitution to 1. Thus

% echo $i $i:h:t
/a/b/c /a/bit
%

does not do what one would expect.

-25-

3.7. Other control structures

The shell also has contrcl structures while and switch similar to those of C.
These take the forms '

while (expression)
commands
end

and

switch (word)

case stri:
commands
breaksw
case strn:
commands
breaksw
default:
commands
breaksw
endsw

For details see the manual section for csh. C programmers should note that we
use breaksw to exit from a switch while break exits a while or foreach loop. A
common mistake to make in csh scripts is to use break rather than breaksw in
switches.

Finally, csh allows a goto statement, with labels looking like they do in C,
ie.:

loop:
commands
goto loop

3.8. Supplying input to commands

Commands run from shell scripts receive by default the standard input of
the shell which is running the script. This it is different from previous shells
running under UNIX. It allowing shell scripts to fully participate in pipelines, but
mandates extra notation for commands which are to take inline data.

Thus we need a metanotation for supplying inline data to commands in shell
scripts. As an example, consider this script which runs the editor to delete lead-
ing blanks from the lines in each argument file

-28 -

% cat deblank

4 deblank —— remove leading blanks
foreach i (Sargv)

ed — $i << “EQF”

1.8s/+[1*//

w

q
‘EQF”
end
7%

The notation ‘<< ‘EOF’' means that the standard input for the ed command is to
come from the text in the shell script file up to the next line consisting of
exactly Y’EQF”". The fact that the 'EQOF’ is enclosed in '*’ characters, i.e. quoted,
causes the shell to not perform variable substitution on the intervening lines. In
general, if any part of the word following the ‘<<’ which the shell uses to ter-
minate the text to be given to the command is quoted then these substitutions
will not be performed. In this case since we used the form '1,$' in our editor
script we needed to insure that this '$' was not variable substituted. We could
also have insured this by preceding the '$' here with a '\, i.e.:

1\3s/[1*//

but quoting the 'EOF' terminator is a more reliable way of achieving the same
thing.

3.9. Catching interrupts

If our shell scx;ipt creates temporary files, we may wish to catch interrup-
tions of the shell script so that we can clean up these files. We can then do

onintr label

where label is a label in our program. If an interrupt is received the shell will do
a ‘goto label' and we can remove the temporary files and then do a ezxif com-
mand (which is built in to the shell) to exit from the shell script. If we wish to
exit with a non-zero status we can do

exit(1l)

e.g. to exit with status ‘1",

3.10. What else?

There are other features of the shell useful to writers of shell procedures.
The verbose and echo options and the related —u and -z command line options
can be used to help trace the actions of the shell. The -n option causes the
shell only to read commands and not to execute them and may sometimes be of
use. :

One other thing to note is that csh will not execute shell scripts which do
not begin with the character '#', that is shell scripts that do not begin with a
comment. Similarly, the '/bin/sh’' on your system may well defer to ‘csh’ to
interpret shell scripts which begin with '‘#'. This allows shell scripts for both
shells to live in harmony.

There is also another quotation mechanism using ‘""" which allows only some
of the expansion mechanisms we have so far discussed to occur on the quoted
string and serves to make this string into a single word as ‘*' does.

-27-

4. Other, less commonly used, shell features

4.1. Loops at the terminal; variables as vectors

It is occasionally useful to use the foreach control structure at the terminal
to aid in performing a number of similar commands. For instance, there were at
one point three shells in use on the Cory UNX system at Cory Hall, ‘/bin/sh’,
‘/bin/nsh’, and ‘/bin/csh’. To count the number of persons using each shell one
could have issued the commands

% grep —c csh$ /etc/passwd
27

% grep —c nsh$ /etc/passwd
128

% grep —c —=v sh$ /etc/passwd
430

%

Since these commands are very similar we can use foreach to do this more
easily.

% foreach i (‘sh$’ ‘csh$’ *=v sh$’)
? grep —c $i /etc/passwd

? end

27

128

430

7%

Note here that the shell prompts for input with '? ' when reading the body of the
loop.

Very useful with loops are variables which contain lists of filenames or other
words. You can, for example, do

% set a=("Is")
% echo $a
csh.n esh.rm
% s

csh.n
csh.rm

% echo $#a

2

%

The set command here gave the variable a a list of all the filenames in the
current directory as value. We can then iterate over these names to perform
any chosen function.

The output of a command within ‘"' characters is converted by the shell to a
list of words. You can also place the '*' quoted string within ' characters to
take each (non-empty) line as a component of the variable; preventing the lines
from being split into words at blanks and tabs. A modifier ":x' exists which can
be used later to expand each component of the variable into another variable
splitting it into separate words at embedded blanks and tabs.

-28 -

4.2, Braces | ...} in argument expansion

Another form of filename expansion, alluded to before involves the charac-
ters '{’ and '}'. These characters specify that the contained strings, separated
by ',' are to be consecutively substituted into the containing characters and the
results expanded left to right. Thus

Afstri,str2,...strn{B
expands to
Astr1B Astr2B ... AstrnB

This expansion occurs before the other filename expansions, and may be applied
recursively (i.e. nested). The results of each expanded string are sorted
separately, left to right order being preserved. The resulting filenames are not
required to exist if no other expansion mechanisms are used. This means that
this mechanism can be used to generate arguments which are not filenames, but
which have common parts.

A typical use of this would be
mkdir ~/{hdrs,retrofit,cshj

to make subdirectories 'hdrs’, ‘retrofit' and 'csh’ in your home directory. This
mechanism is most useful when the common prefix is longer than in this exam-
ple, i.e.

chown bin /usr/{bin/{ex,edit},lib/fexl.1strings, how_exj{}

4.3. Command substitution

A command enclosed in '* characters is replaced, just before filenames are
expanded, by the output from that command. Thus it is possible to do

[RY]

set pwd="pwd"
to save the current directory in the variable pwd or to do
ex ‘grep -1 TRACE *.c*

to run the editor ez suppling as arguments those files whose names end in ‘.c’
which have the string ‘TRACE' in themn.*

4.4. Other details not covered here

In particular circumstances it may be necessary to know the exact nature
and order of different substitutions performed by the shell. The exact meaning
of certain combinations of quotations is also occasionally important. These are
detailed fully in its manual section.

The shell has 2 number of command line option flags mostly of use in writ-
ing UNIX programs, and debugging shell scripts. See the shells manual section
for a list of these options.

*Command expansion also occurs in input redirected with '<<’ and within "' quotations.
Refer to the shell manual section for full details.

-29 -

Appendix - Special characters

The following table lists the special characters of csh and the UNIX system, giving
for each the section(s) in which it is discussed. A number of these characters
also have special meaning in expressions. See the csh manual section for a com-
plete list.

Syntactic metacharacters
2.4 separates commands to be executed sequentially
1.5 separates commands in a pipeline

|
() 2.2,3.6brackets expressions and variable values
& 2.5 follows commands to be executed without waiting for completion

Filename metacharacters

/ 1.8 separates components of a file's pathname

? 1.6 expansion character matching any single character

. 1.8 expansion character matching any sequence of characters

[] 1.8 expansion sequence matching any single character from a set

~ 1.8 used at the beginning of a filename to indicate home directories
{3 4, used to specify groups of arguments with common parts

Quotation metacharacters

\ 1.7 prevents meta-meaning of following single character
’ 1.7 prevents meta-meaning of a group of characters
" 4.3 like °, but allows variable and command expansion

Input/output metacharacters

< 1.3 indicates redirected input
> 1.5 indicates redirected output

Expansion/substitution metacharacters

$ 3.4 indicates variable substitution
! 2.3 indicates history substitution
: 3.8 precedes substitution modifiers
2.3 used in special forms of history substitution
* 4.3 indicates command substitution

Other metacharacters

1.3,3.8begins scratch file names; indicates shell comments
- 1.2 prefixes option (flag) arguments to commands

Glossary

-30-

This glossary lists the most important terms introduced in the introduction
to the shell and gives references to sections of the shell document for further
information about them. References of the form 'pr (1)’ indicate that the com-
mand p7 is in the UNX programmers manual in section 1. You can get an online
copy of its manual page by doing

man 1 pr

References of the form (2.5) indicate that more information can be found in sec-
tion 2.5 of this manual.

a.out

alias

argument

argv

background

bin

Your current directory has the name ‘.' as well as the name
printed by the command pwd. The current directory ‘.’ is usually
the first component of the search path contained in the variable
path, thus commands which are in ‘.’ are found first (2.2). The
character '.' is also used in separating components of filenames
(1.8). The character '.' at the beginning of a component of a path-
name is treated specially and not matched by the filename expan-
sion metacharacters '?’, **', and ‘[’ ‘]’ pairs (1.8).

Each directory has a file ..’ in it which is a reference to its parent
directory. After changing into the directory with chdir, i.e.

chdir paper
you can return to the parent directory by doing
chdir ..

The current directory is printed by pwd (2.8).

Compilers which create executable images create them, by
default, in the file ‘a.out’, for historical reasons (2.3).

An alias specifies a shorter or different name for a UNXX command,
or a transformation on a command to be performed in the shell.
The shell has a command alias which establishes aliases and can
print their current values. The command unalias is used to
remove aliases (2.8).

Commands in UNIX receive a list of argument words. Thus the com-
mand

echoabe

consists of a command name 'echo’ and three argument words ‘a’,
‘b’ and ‘e’ (1.1).

The list of arguments to a command written in the shell language
(a shell seript or shell procedure) is stored in a variable called
argv within the shell. This name is taken from the conventional
name in the C programming language (3.4).

Commands started without waiting for them to complete are
called background commands (1.5).

A directory containing binaries of programs and shell scripts to be
executed is typically called a 'bin' directory. The standard system
‘bin’' directories are ‘/bin' containing the most heavily used com-
mands and ‘/usr/bin' which contains most other user programs.
Programs developed at UC Berkeley live in ‘/usr/ucb’, while
locally written programs live in ‘/usr/local’. Games are kept in
the directory ‘/usr/games’. You can place binaries in any

break

builtin

case

cat

cd

chdir

chsh

cmp

command

-31 -

directory. If you wish to execute them often, the name of the
directories should be a component of the variable path.

Break is a built-in command used to exit from loops within the
control structure of the shell (3.8).

A command executed directly by the shell is called a bduiltin com-
mand. Most commands in UNIX are not built into the shell, but
rather exist as files in ‘bin’' directories. These commands are
accessible because the directories in which they reside are named
in the path variable.

A case command is used as a label in a switch statement in the
shells control structure, similar to that of the language C. Details
are given in the shells documentation ‘esh(1)’ (3.7).

The cat program catenates a list of specified files on the standard
output. It is usually used to look at the contents of a single file on
the terminal, to ‘'cat a file’ (1.8, 2.3).

The cd command is used to change the working directory. With no
arguments, cd changes your working directory to be your home
directory (2.3) (2.8).

The chdir command is a synonym for cd. Cd is usually used
because it is easier to type.

The chsh command is used to change the shell which you use on
UNKX. By default, you use an different version of the shell which
resides in ‘/bin/sh’. You can change your shell to ‘/bin/esh’ by
doing

chsh your-login-name /bin/csh
Thus I would do
chsh bill /bin/csh

It is only necessary to do this once. The next time you log in to
UNKX after doing this command, you will be using csh rather than
the shell in ‘/bin/sh’ (1.9).

Cmp is a program which compares files. It is usually used on

binary files, or to see if two files are identical (3.8). For comparing
text files the program diff, described in ‘diff (1)’ is used.

A function performed by the system, either by the shell (a builtin
command) or by a program residing in a file in a directory within
the UNX system is called a command (1.1).

command substitution

component

continue

The replacement of a command enclosed in 'Y characters by the
text output by that command is called command substitution (3.6,
4.3).

A part of a pathname between '/' characters is called a component
of that pathname. A variable which has multiple strings as value
is said to have several components, each string is a component of
the variable.

A builtin command which causes execution of the enclosing
foreach or while loop to cycle prematurely. Similar to the con-
tinue command in the programming language C (3.6).

core dump

cp

.cshre

date
debugging

default

JELETE

detached

diagnostic

directory

echo
else

-32-

When a program terminates abnormally, the system places an
image of its current state in a file named ‘core’. This 'core dump'
can be examined with the system debuggers ‘adb(1)’ or ‘sdb(1)’ in
order to determine what went wrong with the program (1.8). If the
shell produces a message of the form:

commandname: [llegal instruction ~— Core dumped

(where ‘lllegal instruction’ is only one of several possible mes-
sages) you should report this to the author of the program or a
system administrator, saving the ‘core’ file.

The cp (copy) program is used to copy the contents of one file into
another file. It is one of the most commonly used UNIX commands
{2.8).

The file .cshrc in your home directory is read by each shell as it
begins execution. It is usually used to change the setting of the
variable path and to set alias parameters which are to take effect
globally (2.1).

The date command prints the current date and time (1.3).

Debugging is the process of correcting mistakes in programs and
shell scripts. The shell has several options and variables which
may be used to aid in shell debugging (4.4).

The label default: is used within shell switch statements, as it is in
the C language to label the code to be executed if none of the case
labels matches the value switched on (3.7).

The DELEZTE or RUBOUT key on the terminal is used to generate an

INTERRUPT signal in UNIX which stops the execution of most pro--

grams (2.8).

A command run without waiting for it to complete is said to be
detached (2.5).

An error message produced by a program is often referred to as a
diagnostic. Most error messages are not written to the standard
output, since that is often directed away from the terminal (1.3,
1.5). Error messsages are instead written to the diagnostic output
which may be directed away from the terminal, but usually is not.
Thus diagnostics will usually appear on the terminal (2.5).

A structure which contains files. At any time you are in one par-
ticular directory whose names can be printed by the command
‘pwd’. The chdir command will change you tc another directory,
and make the files in that directory visible. The directory in which
you are when you first login is your home directory (1.1, 1.6).

The echo command prints its arguments (1.6, 2.6, 3.8, 3.10).

The else command is part of the ‘if-then-else-endif’ control com-
mand construct (3.8).

An end- of- file is generated by the terminal by a control-d, and
whenever a command reads to the end of a file which it has been
given as input. Commands receiving input from a pipe receive an
end-of-file when the command sending them input completes.
Most commands terminate when they receive an end-of-file. The
shell has an option to ignore end-of-file from a terminal input
which may help you keep from logging out accidentally by typing
too many control-d's (1.1, 1.8, 3.8).

escape

/etc/passwd

exit

exit status

expansion

expressions

extension

-33-

A character \ used to prevent the special mearing of a metachar-
acter is said to escape the character from its special meaning.
Thus

echo *
will echo the character ‘*' while just
echo *

will echo the names of the file in the current directory. In this
example, \ escapes '*' (1.7). There is also a non-printing charac-
ter called escape, usually labelled ESC or ALTMODE on terminal key-
boards. Some older UNKX systems use this character to indicate
that output is to be suspended. Most systems use control-s to stop
the output and control-q to start it.

This file contains information about the accounts currently on the
system. If consists of a line for each account with fields separated
by ':' characters (2.3). You can look at this file by saying

cat /etc/passwd

The commands finger and grep are often used to search for infor-
mation in this file. See ‘finger(1)’, ‘passwd(5)' and ‘grep(1)’ for
more details.

The erit command is used to force termination of a shell script,
and is built into the shell (3.9).

A command which discovers a problem may reflect this back to
the command (such as a shell) which invoked (executed) it. It
does this by returning a non-zero number as its exit status, a
status of zero being considered ‘normal termination’. The ezit
command can be used to force a shell command script to give a
non-zero exit status (3.5).

The replacement of strings in the shell input which contain meta-
characters by other strings is referred to as the process of ezpan-
sion. Thus the replacement of the word ‘* by a sorted list of files
in the current directory is a ‘filename expansion’. Similarly the
replacement of the characters ‘'!!’ by the text of the last command
is a ‘history expansion’. Expansions are also referred to as substi-
tutions (1.6, 3.4, 4.2).

Expressions are used in the shell to control the conditional struc-
tures used in the writing of shell scripts and in calculating values
for these scripts. The operators available in shell expressions are
those of the language C (3.5).

Filenames often consist of a 7roof name and an ezxtension separated
by the character ‘.. By convention, groups of related files often
share the same root name. Thus if ‘prog.c’ were a C program,
then the object file for this program would be stored in ‘prog.o’.
Similarly a paper written with the ‘~me' nroff macro package
might be stored in ‘paper.me' while a formatted version of this
paper might be kept in '‘paper.out’ and a list of spelling errors in

‘paper.errs’ (1.6).

filename

-34 -

Each file in UNIX has a name consisting of up to 14 characters and
not including the character ‘/' which is used in pathname build-
ing. Most file names do not begin with the character *.’, and con-
tain only letters and digits with perhaps a ‘.’ separating the root

portion of the filename from an extension (1.6).

filename expansion

flag

foreach

goto

grep

head

history

Filename expansicn uses the metacharacters '*', ' and ‘[’ and ']’
to provide a convenient mechanism for naming files. Using
filename expansion it is easy to name all the files in the current
directory, or all files which have a common root name. Other
filename expansion mechanisms use the metacharacter ‘'~ and
allow files in other users directories to be named easily (1.8, 4.2).

Many UNX commands accept arguments which are not the names
of files or other users but are used to modify the action of the
commands. These are referred to as flag options, and by conven-
tion consists of one or more !etters preceded by the character '~’
(1.2). Thus the (s list file commands has an option ‘=5’ to list the
sizes of files. This is specified

ls -s

The foreach command is used in shell scripts and at the terminal
to specify repitition of a sequence of commands while the value of
a certain shell variable ranges through a specified list (3.8, 4.1).

The shell has a command goto used in shell scripts to transfer con-
trol to a given label (3.7).

The grep command searches through a list of argument files for a
specified string. Thus

grep bill /etc/passwd

will print each line in the file ‘/etc/passwd’ which contains the
string ‘bill'. Actually, grep scans for regular ezpressions in the
sense of the editors ‘ed(1)’ and 'ex(1)' (2.3). Crep stands for ‘glo-
bally find regular expression and print.’

The head command prints the first few lines of one or more files.
If you have a bunch of files containing text which you are wonder-
ing about it is sometimes is useful to run head with these files as
arguments. This will usually show enough of what is in these files
to let you decide which you are interested in (1.5).

The history mechanism of the shell allows previous commands to
be repeated, possibly after modification to correct typing mis-
takes or to change the meaning of the command. The shell has a
history list where these commands are kept, and a history vari-
able which controls how large this list is (1.7, 2.6).

home directoryEach user has a home directory, which is given in your entry in

the password file, /etc/passwd. This is the directory which you
are placed in when you first log in. The cd or chdir command with
no arguments takes you back to this directory, whose name is
recorded in the shell variable home. You can also access the home
directories of other users in forming filenames using a file expan-
sion notation and the character '~' (1.8).

ignoreeof

input

interrupt

kill

Jlogin

logout

Jogout

lpr

1s

-35-

A conditional command within the shell, the if command is used in
shell command scripts to make decisions about what course of
action to take next (3.8).

Normally, your shell will exit, printing ‘logout’ if you type a
control-d at a prompt of '% '. This is the way you usually log off
the system. You can set the ignoreeof variable if you wish in your
.login file and then use the command logout to logout. This is use-
ful if you sometimes accidentally type too many control-d charac-
ters, logging yourself off (2.2, 2.6).

Many commands on UNKX take information from the terminal or
from files which they then act on. This information is called input.
Commands normally read for input from their stiandard input
which is, by default, the terminal. This standard input.can be
redirected from a file using a shell metanotation with the charac-
ter ‘<’. Many commands will also read from a file specified as
argument. Commands placed in pipelines will read from the out-
put of the previous command in the pipeline. The leftmost com-
mand in a pipeline reads from the terminal if you neither redirect
its input nor give it a file name to use as standard input. Special
mechanisms exist for suppling input to commands in shell scripts
(1.2, 1.8, 3.8).

An interrupt is a signal to a program that is generated by hitting-
the RUBOUT or DELETE key. It causes most programs to stop execu-
tion. Certain programs such as the shell and the editors handle an
interrupt in special ways, usually by stopping what they are doing
and prompting for another command. While the shell is executing
another command and waiting for it to finish, the shell does not
listen to interrupts. The shell often wakes up when you hit inter-
rupt because many commands die when they receive an interrupt
(1.8, 2.6, 3.9).

A program which terminates processes run without waiting for
them to complete. (2.8)

The file .login in your home directory is read by the shell each
time you log in to UNX and the commands there are executed.
There are a number of commands which are usefully placed here
?speciauy tset commands and sef commands to the shell itself
2.1).

The logout command causes a login shell to exit. Normally, a login
shell will exit when you hit control-d generating an end-of-file, but
if you have set ignoreeof in you .login file then this will not work
and you must use logout to log off the UNIX system (2.2).

When you log off of UNKX the shell will execute commands from the
file .logout in your home directory after it prints 'logout’.

The command lpr is the line printer daemon. The standard input
of lpr is spooled and printed on the UNKX line printer. You can also
give lpr a list of filenames as arguments to be printed. It is most
common to use lpr as the last component of a pipeline (2.3).

The s list files command is one of the most commonly used UNKX
commands. With no argument filenames it prints the names of the
files in the current directory. It has a number of useful flag argu-
ments, and can also be given the names of directories as argu-
ments, in which case it lists the names of the files in these

mail

make

makefile
manual

- 136 -

directories (1.2).

The mail program is used to send and receive messages from
other UNIX users (1.1, 2.2).

The make command is used to maintain one or more related files
and to organize functions to 'be performed on these files. In many
ways make is easier to use, and more helpful than shell command
scripts (3.2).

The file containing commands for make is called ‘makefile’ (3.2).

The ‘manual’ often referred to is the 'UNIX programmers manual.’
It contains a number of sections and a description of each UNKX
program. An online version of the manual is accessible through
the man command. Its documentation can be obtained online via

man man

metacharacterMany characters which are neither letters nor digits have special

mkdir
modifier

noclobber

nroff

onintr

output

meaning either to the shell or to UNX. These characters are called
metacharacters. If it is necessary to place these characters in
arguments to commands without them having their special mean-
ing then they must be quoted An example of a metacharacter is
the character '>' which is used to indicate placement of output
into a file. For the purposes of the history mechanism, most
unquoted metacharacters form separate words (1.4). The appen-
dix to this user's manual lists the metacharacters in groups by
their function.

The mkdir command is used to create a new directory (2.8).

Substitutions with the history mechanism, keyed by the character
‘I' or of variables using the metacharacter ‘$' are often subjected
to modifications, indicated by placing the character ‘:' after the
substitution and following this with the modifier itself. The com-
mand substitution mechanism can also be used to perform
modification in a similar way, but this notation is less clear (3.8).

The shell has a variable noclobber which may be set in the file
.login to prevent accidental destruction of files by the ‘>’ output
redirection metasyntax of the shell (2.2, 2.5).

The standard text formatter on UNIX is the program nroff. Using
nroff and one of the available macro packages for it, it is possible
to have documents automatically formatted and to prepare them
for phototypesetting using the typesetter program troff (3.2).

The onintr command is built into the shell and is used to control
the action of a shell command script when an interrupt signal is
received (3.9).

Many commands in UNIX result in some lines of text which are
called their output. This output is usually placed on what is known
as the standard output which is normally connected to the users
terminal. The shell has a syntax using the metacharacter '>’ for
redirecting the standard output of a command to a file (1.3).
Using the pipe mechanism and the metacharacter ‘|’ it is also pos-
sible for the standard output of one command to become the stan-
dard input of another command (1.5). Certain commands such as
the line printer daemon [pr do not place their results on the stan-
dard output but rather in more useful places such as on the line

path

pathname

pipeline

pr

printenv

process

-37-

printer (2.3). Similarly the write command places its output on
another users terminal rather than its standard output (2.3).
Commands also have a diagnostic output where they write their
error messages. Normally these go to the terminal even if the
standard output has been sent to a file or another command, but
it is possible to direct error diagnostics along with standard out-
put using a special metanotation (2.5).

The shell has a variable path which gives the names of the direc-
tories in which it searches for the commands which it is given. It
always checks first to see if the command it is given is built into
the shell. If it is, then it need not search for the command as it
can do it internally. If the command is not builtin, then the shelil
searches for a file with the name given in each of the directories in
the path variable, left to right. Since the normal definition of the
path variable is

path (. /usr/ucb /bin /usr/bin)

the shell normally looks in the current directory, and then in the
standard system directories ‘'/usr/ucb’, ‘/bin’ and */usr/bin’ for
the named command (2.2). If the command cannot be found the
shell will print an error diagnostic. Scripts of shell commands will
be executed using another shell to interpret them if they have
‘execute’ bits set. This is normally true because a command of
the form

chmod 755 script

was executed to turn these execute bits on (3.3). If you addh new
commands to a directory in the path, you should issue the com-
mand ‘rehash’ (2.2).

A list of names, separated by '/’ characters forms a pathname.
Each component, between successive ‘/' characters, names a
directory in which the next component file resides. Pathnames
which begin with the character '/’ are interpreted relative to the
root directory in the filesystemn. Other pathnames are interpreted
relative to the current directory as reported by pwd. The last
component of a pathname may name a directory, but usually
names a file.

A group of commands which are connected together, the standard
output of each connected to the standard input of the next is
called a pipeline. The pipe mechanism used to connect these
commands is indicated by the shell metacharacter ‘i (1.5, 2.3).

The pr command is used to prepare listings of the contents of files
with headers giving the name of the file and the date and time at
which the file was last modified (2.3).

The printenv command is used on version 7 UNIX systems to print
the current setting of variables in the environment (2.6).

A instance of a running program is called a process (2.6). The
numbers used by kill and printed by wail are unique numbers
generated for these processes by UNX. They are useful in kill com-
mands which can be used to stop background processes. (2.6)

program

-38 -

Usually synonymous with command; a binary file or shell com-
mand script which performs a useful function is often called a pro-
gram.

programmers manual

prompt

ok}

pwd

quit

quotation

redirection
repeat

RCBOTT

scratch

script

set

Also referred to as the manual. See the glossary entry for
‘manual’.

Many programs will print a prompt on the terminal when they
expect input. Thus the editor 'ex(1)’ will prini a ‘:' when it expects
input. The shell prompts for input with '% ' and occasionally with
'? ' when reading commands from the terminal (1.1). The shell has
a variable prompt which may be set to a different value to change
the shells main prompt. This is mostly used when debugging the
shell (2.6).

The ps command is used to show the processes you are currently
running. Each process is shown with its unique process number,
an indication of the terminal name it is attached to, and the
amount of CPU time it has used so far. The command is identified
by printing some of the words used when it was invoked (2.8).
Shells, such as the csh you use to run the ‘ps’' command are not
normally shown in the output.

The pwd command prints the full pathname of the current (work-
ing) directory.

The quit signal, generated by a control-\ is used to terminate pro-
grams which are behaving unreasonably. It normally produces a
core image file {1.8).

The process by which metacharacters are prevented their special
meaning, usually by using the character '“ in pairs, or by using the
character '\ is referred to as quotation (1.4).

The routing of input or output from or to a file is known as redirec-
tion of input or output (1.3).

The repeat command iterates another command a specified
number of times (2.8).

The RUBOUT or DELETE key generates an interrupt signal which is
used to stop programs or to cause them to return and prompt for
more input (2.6).

Files whose names begin with a '#' are referred to as scratch files,
since they are automatically removed by the system after a cou-
ple of days of non-use, or more frequently if disk space becomes
tight (1.3).

Sequences of shell commands placed in a file are called shell com-
mand scripts. It is often possible to perform simple tasks using
these scripts without writing a program in a language such as C,
by using the shell to selectively run other programs (3.2, 3.3,
3.10).

The builtin set command is used to assign new values to shell vari-
ables and to show the values of the current variables. Many shell
variables have special meaning to the shell itself. Thus by using
the set command the behavior of the shell can be affected (2.1).

/

setenv

shell

shell script
sort

source

-39 -

On version 7 systems variables in the environment ‘environ(5)' can
be changed by using the sefenv builtin command (2.6). The prin-
tenv command can be used to print the value of the variables in
the environment.

A shell is a command language interpreter. It is possible to write
and run your own shell, as shells are no different than any other
programs as far as the system is concerned. This manual deals
with the details of one particular shell, called csh.

See script (3.2, 3.3, 3.10).
The sort program sorts a sequence of lines in ways that can be
controlled by argument flags (1.5).

The source command causes the shell to read commands from a
specified file. It is most useful for reading files such as .cshrc after
changing them (2.8).

special character

standard

status

substitution

switch

termination

then

time

troff

tset

See metacharaciers and the appendix to this manual.

We refer often to the standard input and standard output of com-
mands. See input and output (1.3, 3.8).

A command normally returns a status when it finishes. By conven-
tion a status of zero indicates that the command succeeded.
Commands may return non-zero status to indicate that some
abnormal event has occurred. The shell variable stafus is set to
the status returned by the last command. It is most useful in
shell commmand scripts (3.5, 3.8).

The shell implements a number of substitutions where sequences
indicated by metacharacters are replaced by other seguences.
Notable examples of this are history substitution keyed by the
metacharacter ‘!’ and variable substitution indicated by ‘$'. We
also refer to substitutions as expansions (3.4).

The switch command of the shell allows the shell to select one of a
number of sequences of commands based on an argument string.
It is similar to the switch statement in the language C (3.7).

When a command which is being executed finished we say it under-
goes termination or terminates. Commands normally terminate
when they read an end-of-file from their standard input. It is also
possible to terminate commands by sending them an interrupt or
quit signal (1.8). The kill program terminates specified command
whose numbers are given (2.8).

The then command is part of the shells ‘if-then-else-endif’ control
construct used in command scripts (3.8).

The time command can be used to measure the amount of CPU and
real time consumed by a specified command (2.1, 2.8).

The ¢roff program is used to typeset documents. See also nroff
(3.2).
The ¢set program is used to set standard erase and kill characters

and to tell the system what kind of terminal you are using. It is
often invoked in a .login file (2.1).

unalias
UNKX

unset

-40 -

The unalias command removes aliases (2.8).

UNKX is an operating system on which csh runs. UNKX provides facili-
ties which allow csh to invoke other programs such as editors and
text formatters which you may wish to use.

The unset command removes the definitions of shell variables (2.2,
2.8).

variable expansion

variables

verbose

wait

while

word

See variables and ezpansion (2.2, 3.4).

Variables in csh hold one or more strings as value. The most com-
mon use of variables is in controlling the behavior of the shell.
See path, noclobber, and ignoreeof for examples. Variables such
as argv are also used in writing shell programs (shell command
scripts) (2.2).

The verbose shell variable can be set to cause commands to be
echoed after they are history expanded. This is often useful in
debugging shell scripts. The verbose variable is set by the shells
—v command line option (3.10).

The builtin command wait causes the shell to pause, and not
prompt, until all commands run in the background have ter-
minated (2.8).

The while builtin control construct is used in shell command
scripts (3.7).

A sequence of characters which forms an argument to a command
is called a word. Many characters which are neither letters, -
digits, ‘=", *." or '/’ form words all by themselves even if they are
not surrounded by blanks. Any sequence of character may be
made into a word by surrounding it with ‘'’ characters except for
the characters ‘' and '!' which require special treatment (1.1,
1.8). This process of placing special characters in words without
their special meaning is called quoting.

working directory

write

At an given time you are in one particular directory, called your
working directory. This directories name is printed by the pwd
command and the files listed by Is are the ones in this directory.
You can change working directories using chdir.

The write command is used to communicate with other users who
are logged in to UNIX (2.3).

UNIX Programming — Second Edition

Brian W. Kernighan
Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is an introduction to programming on the UNIXt system. The
emphasis is on how to write programs that interface to the operating system.
either directly or through the standard 1/0 library. The topics discussed include

® handling command arguments
e rudimentary [/O; the standard input and output
® the standard 1/0 library; file system access
® low-level 1/0: open, read. write, close, seek
® processes: exec, fork, pipes
® signals — interrupts, etc.
There is also an appendix which describes the standard 1/0 library in detail.

November 12, 1978

TUNIX is a Trademark of Beil Laboratories.

UNIX Programming — Second Edition

Brian W. Kernighan
Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

This paper describes how to write programs that interface with the UNIX operating system
in a non-trivial way. This includes programs that use files by name, that use pipes, that invoke
other commands as they run, or that attempt to catch interrupts and other signals during execu-
tion.

The document collects material which is scattered throughout several sections of The UNIX
Programmer’s Manual (1] for Version 7 UNIX. There is no attempt to be complete; only gen-
erally useful material is dealt with. It is assumed that you will be programming in C, so you
must be able to read the language roughly up to the level of The C Programming Language (2].
Some of the material in sections 2 through 4 is based on topics covered more carefuily there.
You should also be familiar with UNIX itself at least to the level of UNIX for Beginners [3].

2. BASICS

2.1. Program Arguments

When a C program is run as a command, the arguments on the command line are made
available to the function main as an argument count argec and an array argv of pointers to
character strings that contain the arguments. By convention, argv (0] is the command name
itself, so argc is always greater than 0.

The following program illustrates the mechanism: it simply echoes its arguments back to
the terminal. (This is essentially the echo command.)

main(arge, argv) /* echo arguments =/
int arxge;
char rargv{];
{

int i;

for (i = 1; i < arge; i++) z

printf("ws%c”, argv(i], (i<arge-1) ? ’* ' : ’'\n’);

}

argv is a pointer to an array whose individual elements are pointers to arrays of characters.
each is terminated by \0, so they can be treated as strings. The program starts by printing
argv{1] and loops until it has printed them all.

The argument count and the arguments are parameters to main. If vou want to keep them
around so other routines can get at them. you must copy them to external variables.

2.2. The ‘‘Standard Input’® and “‘Standard Output’

The simplest input mechanism is to read the ‘‘standard input,”’ which is generaily the
user’s terminal. The function getchar returns the next input character each time it is cailed.
A file may be substituted for the terminal by using the < convention: if prog uses getchar,

then the command line
prog <file
causes prog to read file instead of the terminal. prog itself need know nothing about

where its input is coming from. This is also true if the input comes from another program via
the pipe mechanism:

otherprog | prog
provides the standard input for prog from the standard output of otherprog.

getchar returns the value EOF when it encounters the end of file (or an error) on what-
ever vou are reading. The value of EOF is normally defined to be -1, but it is unwise to take
any advantage of that knowledge. As will become clear shortly, this value is automatically
defined for you when you compile a program, and need not be of any concern.

Similarly, putchar (c) puts the character ¢ on the ‘‘standard output,” which is also by
default the terminal. The output can be captured on a file by using >: if prog uses putchar,

prog >outfile

writes the standard output on outfile instead of the terminal. outfile is created if it
doesn’t exist. if it already exists, its previous contents are overwritten. And a pipe can be used:

prog | otherprog

puts the standard output of prog into the standard input of otherprog.

The function print£, which formats output in various ways, uses the same mechanism as
putchar does. so calls 10 printf and putchar may be intermixed in any order; the output
will appear in the order of the calls.

Similarly. the function scanf provides for formatted input conversion; it will read the
standard input and break it up into strings, numbers, etc., as desired. scanf uses the same
mechanism as getchar. so calls to them may also be intermixed.

Many programs read only one input and write one output. for such programs 1/0 with
getchar. putchar. scanf. and printf may be entirely adequate. and it is almost always
enough to get started. This is particularly true if the UNIX pipe facility is used to connect the
output of one program to the input of the next. For example, the following program strips out
all ascii control characters from its input (except for newline and tab).

#include <stdio.h>

main() /* ccstrip: strip non-graphic characters #/
(
int ¢;
while ((c = getchar()) != EOF)
if ((c>= ' ' &8& ¢ < 0177) || ¢ == ’\t’ || ¢ == ’\n')

putchar(c);
exit(0);
)

The line
#include <stdio.h>

should appear at the beginning of each source file. It causes the C compiler to read a file
{Jusrlinclude/sidio. h) of standard routines and symbols that includes the definition of EOF.

If it is necessary to treat multiple files, you can use cat to collect the files for you:
cat filel £ile2 ... | ccstrip >output

and thus avoid learning how to access files from a program. By the way, the call to exit at the
end is not necessary (0 make the program work properly, but it assures that any caller of the

-3.

program will see a normal termination status (conventionally 0) from the program when it com-
pletes. Section 6 discusses status returns in more detail.

3. THE STANDARD [/0 LIBRARY

The ‘‘Standard I/O Library” is a collection of routines intended to provide efficient and
portable 1/0 services for most C programs. The standard 1/0O library is available on each sys-
tem that supports C, so programs that confine their system interactions to its facilities can be
transported from one system to another essentially without change.

In this section, we will discuss the basics of the standard [/O library. The appendix con-
tains a more complete description of its capabilities.

3.1. File Access

The programs written so far have all read the standard input and written the standard out-
put, which we have assumed are magically pre-defined. The next step is to write a program that
accesses a file that is nor aiready connected to the program. One simple example is we, which
counts the lines, words and characters in a set of files. For instance, the command

we X.C y.c

prints the number of lines, words and characters in x.¢ and y.c¢ and the totals.

The question is how to arrange for the named files to be read — that is, how to connect the
file system names to the /O statements which actually read the data.

The rules are simple. Before it can be read or written a file has to be opened by the stan-
dard library function fopen. fopen takes an external name (like x.c or y.c), does some
housekeeping and negotiation with the operating system. and returns an internal name which
must be used in subsequent reads or writes of the file.

This internal name is actually a pointer, called a file pointer, to a structure which contains
information about the file, such as the location of a buffer, the current character position in the
buffer, whether the file is being read or written, and the like. Users don’t need to know the
details, because part of the standard [/O definitions obtained by including stdio.h is a struc-
ture definition called FILE. The only declaration needed for a file pointer is exemplified by

FILE »fp, w~fopen();

This says that £p is a pointer to a FILE. and fopen returns a pointer to a FILE. (FILE isa
type name, like int. not a structure tag.

The actual call 1o fopen in a program is
fp = fopen(name, mode);

The first argument of fopen is the name of the file, as a character string. The second argu-.
ment is the mode, also as a character string, which indicates how you intend to use the file.
The only allowable modes are read ("r'), write ("w"), or append ("a").

If a file that vou open for writing or appending does not exist. it is created (if possibie).
Opening an existing file for writing causes the old contents to be discarded. Trying to read a
file that does not 2x1st is an error. and there may be other causes of error as well (like trying to
read a file when vou don’t have permission). [f there is any error. fopen will return the nuil
pointer value NULL (which is defined as zero in stdio.h).

The next thing needed is a way to read or write the file once it is open. There are several
possibilities. of which getc and putc are the simpiest. getc returns the next character from
a file: it needs the file pointer to tell it what file. Thus

c = getc{fp)

places in ¢ the next character from the file referred to by £p: it returns =CF when it reaches
end of file. putc is the inverse of getc:

putc(c, £p)
puts the character c on the file £p and returns c. getc and putc return EOF on error.

When a program is started. three files are opened automatically, and file pointers are pro-
vided for them. These files are the standard input, the standard output. and the standard error
output; the corresponding file pointers are called stdin. stdout., and stderr. Normally
these are all connected to the terminal, but may be redirected to files or pipes as described in
Section 2.2. stdin. stdout and stderr are pre-defined in the I/O library as the standard
input, output and error files; they may be used anywhere an object of type FILE * can be.
They are constants, however, nor variables, so don’t try to assign to them.

With some of the preliminaries out of the way. we can now write wc. The basic design is
one that has been found convenient for many programs: if there are command-line arguments,
they are processed in order. If there are no arguments, the standard input is processed. This
way the program can be used stand-alone or as part of a larger process.

#include <stdio.h>

main(arge, argv) /* wc: count lines, words, chars =/

int argc;
char wargv(];
{
int ¢, i, inword;
FILE +fp, «fopen();
long linect, wordct, charct;
long tlinect = 0, twordct = 0, tcharct = 0;

i=1;
. fp = stdin;
do |

if (argc > 1 && (fp=fopen(argv(i], "r")) == NULL) |
fprintf (stderr, "wc: can’t open %s\n", argv(i]);
continue;

)
linect = wordct = charct = inword = 0;

while ({c = getc(fp)) != EOF) |(

charct++;
if (c == ‘\n’)
linect++;
if (¢ == ‘ ' || c mm '\t’ || c == ’\n’)

inword = 0;

else if (inword == Q) (
inword = 1;
wordct++;

)

)
printf ("%71d %714 %71d4", linect, wordct, charct);

printf(arge > 1 ? " %s\n" : "\n", argv(i]);
fclose (fp);
tlinect += linect;
twordct += wordct;
tcharct += charct;
} while (++i < argc);
if (arge > 2)
printf ("%71d %714 %71d total\n", tlinect, twordct, tcharct);
exit(0);
)

The function £printf£ is identical to printf. save that the first argument is a file pointer that
specifies the file to be written.

-5-

The function fclose is the inverse of fopen: it breaks the connection between the file
pointer and the external name that was established by fopen, freeing the file pointer for
another file. Since there is a limit on the number of files that a program may have open simul-
taneously, it's a good idea to free things when they are no longer needed. There is also another
reason to call fclose on an output file — it flushes the buffer in which putec is collecting out-
put. (fclose is called automatically for each open file when a program terminates normally.)

3.2. Error Handling — Stderr and Exit

stderr is assigned to a program in the same way that stdin and stdout are. Output
written on stderr appears on the user’s terminal even if the standard output is redirected. wc
writes its diagnostics on stderr instead of stdout so that if one of the files can't be accessed
for some reason. the message finds its way to the user’s terminal instead of disappearing down
a pipeline or into an output file.

The program actually signals errors in another way, using the function exit to terminate
program execution. The argument of exit is available to whatever process called it (see Sec-
tion 6), so the success or failure of the program can be tested by another program that uses this
one as a sub-process. By convention, a return value of 0 signals that all is well; non-zero
values signal abnormal situations.

exit itself calls fclose for each open output file, to flush out any buffered output, then
calls a routine named _exit. The function _exit causes immediate termination without any
buffer flushing; it may be called directly if desired.

3.3. Miscellaneous 1/0 Functions

The standard 1/0 library provides several other 1/0 functions besides those we have iilus-
trated above.

Normally output with pute. etc., is buffered (except to stderr): to force it out immedi-
‘ately, use ££lush(£p).

fscanf is identical t0 scanf. except that its first argument is a file pointer (as with
fprintf£) that specifies the file from which the input comes:; it returns EOF at end of file.

The functions sscanf and sprintf are identical to £scanf and £print£, except that
the first argument names a character string instead of a file pointer. The conversion is done
from the string for sscanf and into it for sprintf£.

fgets (buf, size, £p) copies the next line from £p. up to and including a newline,
into buf.: at most size-1 characters are copied: it returns NULL at end of file.
fputs (buf, £p) writes the string in buf onto file £p.

The function ungetc (e, £p) ‘‘pushes back’’ the character ¢ onto the input stream £p: a
subsequent call to getc, £scanf£, etc., will encounter c. Only one character of pushback per
file is permitted.

4. LOW-LEVEL /0

This section describes the bottom levei of [/0 on the UNIX system. The lowest level of
[/0 in UNIX provides no buffering or any other services: it is in fact a direct entry into the
operating system. You are entirely on your own, but on the other hand, you have the most
control over what happens. And since the calls and usage are quite simple, this isn’t as bad as
it sounds.

4.1. File Descriptors

In the UNIX operating system, ail input and output is done by reading or writing files.
because all peripheral devices, even the user’'s terminal, are files in the file system. This means
that a single. homogeneous interface handles all communication between a program and peri-
pheral devices.

-6 -

In the most general case. before reading or writing a file. it is necessary to inform the sys-
tem of your intent to do so. a process called ‘‘opening™” the file. If you are going to write on a
file, it may also be necessary to create it. The system checks your right to do so (Does the file
exist? Do you have permission to access it?), and if all is well, returns a small positive integer
called a file descripror. Whenever 1/0 is to be done on the file, the file descriptor is used instead
of the name to identify the file. (This is roughly analogous to the use of READ(S....) and
WRITE(6....) in Fortran.) All information about an open file is maintained by the system; the
user program refers to the file only by the file descriptor.

The file pointers discussed in section 3 are similar in spirit to file descriptors. but file
descriptors are more fundamental. A file pointer is a pointer to a structure that contains,
among other things, the file descriptor for the file in question.

Since input and output involving the user’s terminal are so common, special arrangements
exist 1o make this convenient. When the command interpreter (the ‘*shell’’) runs a program, it
opens three files, with file descriptors 0, 1. and 2, called the standard input, the standard out-
put. and the standard error output. All of these are normally connected to the terminal, so if a
program reads file descriptor 0 and writes file descriptors 1 and 2, it can do terminal I/O
without worrying about opening the files.

If 1/0 is redirected to and from files with < and >, as in
prog <infile >outfile

the shell changes the default assignments for file descriptors 0 and 1 from the terminal to the
named files.. Similar observations hold if the input or output is associated with a pipe. Nor-
mally file descriptor 2 remains attached to the terminal, so error messages can go there. In all
cases, the file assignments are changed by the shell. not by the program. The program does not
need to know where its input comes from nor where its output goes, so long as it uses file 0 for
input and 1 and 2 for output.

4.2. Read and Write

All input and output is done by two functions called read and write. For both, the first
argument is a file descriptor. The second argument is a buffer in your program where the data
is to come from or go to. The third argument is the number of bytes to be transferred. The
calls are

n_read = read(fd, buf, n);

n_written = write(£f4, buf, n);

Each call returns a byte count which is the number of bytes actually transferred. On reading,.
the number of bytes returned may be less than the number asked for, because fewer than n
bvtes remained to be read. (When the file is a terminal, read normally reads only up to the
next newline. which is generally less than what was requested.) A return value of zero bytes
implies end of file. and -1 indicates an error of some sort. For writing, the returned value is
the number of bytes actually written; it is generally an error if this isn't equal to the number
supposed to be written.

The number of bvtes to be read or written is quite arbitrary. The two most common values
are 1. which means one character at a time (‘‘unbuffered’’), and 512, which corresponds to a
physical blocksize on many peripheral devices. This latter size will be most efficient, but even
character at a time 1/0 is not inordinately expensive.

Putting these facts together, we can write a simple program to copy its input to its output.
This program will copy anvthing to anything, since the input and output can be redirected to
any file or device.

-7-

#define BUFSIZE S12 /» best size for PDP-11 UNIX #»/

main () /* copy input to output =/
{

char buf [BUFSIZE];

int n;

while ((n = read(0, buf, BUFSIZE)) > 0)
write(1, buf, n);
exit(0);
}

If the file size is not a multiple of BUFSIZE, some read will return a smaller number of bytes
to be written by write: the next call to read after that will return zero.

It is instructive to see how read and write can be used to construct higher level routines
like getchar, putchar, etc. For example, here is a version of getchar which does
unbuffered input.

#define CMASK 0377 /» for making char’'s > 0 »/

getchar() /+ unbuffered single character input #/

{
char ¢;

return((read(0, &c, 1) > 0) ? ¢ & CMASK : EOF);
)

¢ must be declared char. because read accepts a character pointer. The character being
returned must be masked with 0377 to ensure that it is positive; otherwise sign extension may
make it negative. (The constant 0377 is appropriate for the PDP-11 but not necessarily for
other machines.) '

The second version of getchar does input in big chunks, and hands out the characters
one at a time.

#define CMASK 0377 /+ for making char’'s > 0 #/
#define BUFSIZE 512

getchar() /+ buffered version #/
{
static char buf (BUFSIZE];
static char »bufp = buf;
static int n=20;

if (n == Q) (/% buffer is empty #/
n = read(0, buf, BUFSIZE);
bufp = buf;
}
return((--n >= Q) ? ~bufp++ & CMASK : EOF);

4.3. Open, Creat, Close, Unlink _

Other than the defauit standard input. output and error files. you must explicitly open files
in order to read or write them. There are two system entry points for this, open and creat
(sic].

open is rather like the fopen discussed in the previous section. except that instead of
returning a file pointer, it returns a file descriptor. which is just an int.

int £4;

fd = open(name, rwmode);

As with fopen, the name argument is a character string corresponding to the external file
name. The access mode argument is different, however: rwmode is 0 for read, 1 for write, and
2 for read and write access. open returns -1 if any error occurs; otherwise it rewrns a valid
file descriptor.

It is an error to try to open a file that does not exist. The entry point creat is provided
to create new files, or to re-write old ones.

fd = creat(name, pmode);

returns a file descriptor if it was able to create the file called name. and -1 if not. If the file
already exists. creat will truncate it to zero length: it is not an error to creat a file that
already exists.

If the file is brand new, creat creates it with the protection mode specified by the pmode
argument. In the UNIX file system, there are nine bits of protection information associated
with a file, controlling read. write and execute permission for the owner of the file, for the
owner's group, and for all others. Thus a three-digit octal number is most convenient for
specifying the permissions. For example, 0755 specifies read. write and execute permission for
the owner, and read and execute permission for the group and everyone else. ‘

To illustrate, here is a simplified version of the UNIX utility cp, a program which copies one
file to another. (The main simplification is that our version copies only one file, and does not
permit the second argument to be a directory.)

#define NULL 0
#define BUFSIZE 512)
#define PMODE 0644 /+ RW for owner, R for group, others =/

main(argc, argv) /* cp: copy £1 to £2 »/
int argc;
char rargv(];
{
int €£1, £2, n;
char buf [BUFSIZE];

if (argc != 3)
error ("Usage: cp from to'", NULL);

if ((£1 = open(argv(1], 0)) == =1)
error("cp: can’'t open %s", argv(1]);

if ((£f2 = creat(argv(2], PMODE)) == -1)
error('cp: can't create %s", argv(2]);

while ((n = read(f1, buf, BUFSIZE)) > 0)
if (write(f2, buf, n) |= n)
error ("cp: write error", NULL);
exit(0);
}

error(s?l, s2) /« print error message and die =/
char »s1, »s2;
{

printf(s1, s2);

printf ("\n");

exit(1);

.9.

As we said earlier, there is a limit (typically 15-25) on the number of files which a program
may have open simultaneously. Accordingly, any program which intends to process many files
must be prepared to re-use file descriptors. The routine close breaks the connection between
a file descriptor and an open file, and frees the file descriptor for use with some other file. Ter-
mination of a program via exit or return from the main program closes ail open files.

The function unlink (filename) removes the file £ilename from the file system.

4.4. Random Access — Seek and Lseek

File /0 is normally sequential: each read or write takes place at a position in the file
right after the previous one. When necessary, however, a file can be read or written in any
arbitrary order. The system cail 1seek provides a way to move around in a file without actu-
ally reading or writing:

lseek(£fd, offset, origin);

forces the current position in the file whose descriptor is £4 to move to position offset,
which is taken relative to the location specified by origin. Subsequent reading or writing will
begin at that position. offset is a long; £4 and origin are int’s. origin can be 0, 1,
or 2 to specify that offset is to be measured from the beginning, from the current position,
or from the end of the file respectively. For example, to append to a file, seek to the end
before writing:

lseek(fd, 0L, 2);
To get back to the beginning (*‘rewind’’),
lseek(£fd, OL, 0);

Notice the OL argument; it could also be written as (long) 0.

With 1seek. it is possible to treat files more or less like large arrays, at the price of slower
access. For example, the following simple function reads any number of bytes from any arbi-
trary place in a file.

get(fd, pos, buf, n) /+ read n bytes from position pos =/
int £4, n;
long pos;
char ebuf;
{
lseek(fd, pos, J); /+ get to pos «/
return(read(£fd, buf, n));
}

In pre-version 7 UNIX, the basic entry point to the [/O system is cailed seek. seek is
identical to 1seek, except that its of£set argument is an int rather than a long. Accord-
ingly, since PDP-11 integers have only 16 bits, the offset specified for seek is limited to
65,535 for this reason, origin values of 3, 4, 5 cause seek to multiply the given offset by
512 (the number of bytes in one physical block) and then interpret origin as if it were 0, 1,
or 2 respectively. Thus to get to an arbitrary place in a large file requires two seeks, first one
which selects the block, then one which has origin equal to | and moves to the desired byte
within the block.

4.5. Error Processing

The routines discussed in this section. and in fact all the routines which are direct entries
into the system can incur errors. Usually they indicate an error by returning a vaiue of —1.
Sometimes it is nice to know what sort of -error occurred: for this purpose ail these routines,
when approoriate, leave an error number in the external cell errno. The meanings of the
various error numbers are listed in the introduction to Section II of the UNIX Programmer’s
Manual, so your program can, for example, determine if an attempt to open a file failed

- 10 -

because it did not exist or because the user lacked permission to read it. Perhaps more com-
monly, you may want to print out the reason for failure. The routine perror will print a mes-
sage associated with the value of errno:. more generally, sys_errno is an array of character
strings which can be indexed by errno and printed by your program.

s. PROCESSES

It is often easier to use a program written by someone eise than to invent one’s own. This
section describes how to execute a program from within another.

5.1. The ‘‘System’ Function

The easiest way to execute a program from another is to use the standard library routine
system. system takes one argument, a command string exactly as typed at the terminal
(except for the newline at the end) and executes it. For instance, to time-stamp the output of
a program,

main ()
{

system('date");

/* rest of processing =/
)

If the command string has to be built from pieces, the in-memory formatting capabilities of
sprintf may be useful.

Remember than getc and putc normally buffer their input; terminal 1/0 will not be prop-
erly synchronized unless this buffering is defeated. For output, use ££1lush: for input, see
setbuf in the appendix. :

5.2. Low-Level Process Creation — Execl and Execv

If you're not using the standard library, or if you need finer control over what happens, you
will have to construct calls to other programs using the more primitive routines that the stan-
dard library's system routine is based on.

The most basic operation is to execute another program without rerurning, by using the rou-
tine execl. To print the date as the last action of a running program, use

execl("/bin/date", "date'", NULL);

The first argument to execl is the file name of the command; you have to know where it is
found in the file system. The second argument is conventionally the program name (that is,
the last component of the file name), but this is seldom used except as a place-hoider. If the
command takes arguments, they are strung out after this; the end of the list is marked by a
NULL argument.

The execl call overlays the existing program with the new one, runs that, then exits.
There is no return to the original program.

More realistically, a program might fail into two or more phases that communicate only
through temporary files. Here it is natural to make the second pass simply an exec1l call from
the first.

The one exception to the rule that the original program never gets control back occurs
when there is an error, for exampie if the file can’t be found or is not executable. If you don’t
know where date is located. say

execl ("/bin/date", '"date', NULL);
execl ("/usr/bin/date', "date", NULL);
fprintf (stderr, "Someone stole ’‘date’\n");

A variant of execl called execv is useful when you don’t know in advance how many
arguments there are going to be. The call is

211 -

execv(filename, argp);

where argp is an array of pointers to the arguments: the last pointer in the array must be
NULL so execv can tell where the list ends. As with execl, £ilename is the file in which
the program is found, and argp (0] is the name of the program. (This arrangement is identi-
cal to the argv array for program arguments.)

Neither of these routines provides the niceties of normal command execution. There is no
automatic search of multiple directories — you have to know precisely where the command is
located. Nor do you get the expansion of metacharacters like <, >, », ?, and [] in the argu-
ment list. If you want these, use execl to invoke the shell sh, which then does all the work.
Construct a string commandline that contains the compiete command as it would have been
typed at the terminal, then say

execl ("/bin/sh", "sh", "-c", commandline, NULL);

The shell is assumed to be at a fixed piace, /bin/sh. [ts argument -c says to treat the next
argument as a whole command line, so it does just what you want. The only problem is in con-
structing the right information in commandline.

5.3. Coatrol of Processes — Fork and Wait

So far what we've talked about isn’t really all that useful by itself. Now we will show how
to regain control after running a program with execl or execv. Since these routines simply
overlay the new program on the old one, to save the old one requires that it first be split into
two copies; one of these can be overlaid, while the other waits for the new, overlaying program
to finish. The splitting is done by a routine called fork:

proc_id = fork();

splits the program into two copies, both of which continue to run. The only difference between
the two is the value of proc_id. the ‘‘process id.”’ In one of these processes (the ‘‘child™),
proc_id is zero. In the other (the ‘“‘parent’), proc_id is non-zero: it is the process number
of the child. Thus the basic way to call, and return from, another program is

if (fork() == Q)
execl ("/binssh", '"sh", "-c", cmd, NULL); /% in child =/

And in fact, except for handling errors, this is sufficient. The fork makes two copies of the
program. [n the child. the value returned by fork is zero, so it calls execl which does the
command and then dies. In the parent, fork returns non-zero so it skips the execl. (If
there is any error, fork returns -1).

More often, the parent wants to wait for the child to terminate before continuing itself.
This can be done with the function wait:

int status;

if (fork() == Q)
execl(...);
wait(astatus);

This still doesn’t handle any abnormal conditions, such as a failure of the execl or fork. or
the possibility that there might be more than one child running simultaneously. (The wait
returns the process id of the terminated child, if you want to check it against the value returned
by fork.) Finally, this fragment doesn’t deal with any funny behavior on the part of the child
(which is reported in status). Sitill. these three lines are the heart of the standard library’'s
system routine, which we'll show in a moment. ’

The status returned by wait encodes in its low-order eight bits the svstem’s idea of the
child's termination status: it is 0 for normal termination and non-zero to indicate various xinds
of problems. The next higher eight bits are taken from the argument of the call to exit which
caused a normai termination of the child process. It is good coding practice for ail programs to

.12 -

return meaningful status.

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set up point-
ing at the right files. and all other possible file descriptors are available for use. When this pro-
gram calls another one. correct etiquette suggests making sure the same conditions hold. Nei-
ther fork nor the exec calls affects open files in any way. If the parent is buffering output
that must come out before output from the child, the parent must flush its buffers before the
execl. Conversely, if a caller buffers an input stream, the called program will lose any infor-
mation that has been read by the caller.

5.4. Pipes

A pipe is an 1/0 channel intended for use between two cooperating processes: one process
writes into the pipe. while the other reads. The sysitem looks after buffering the data and syn-
chronizing the two processes. Most pipes are created by the shell, as in

ls | pr

which connects the standard output of 1s to the standard input of pr. Sometimes. however, it
is most convenient for a process to set up its own plumbing; in this section, we will illustrate
how the pine connection is established and used.

The system call pipe creates a pipe. Since a pipe is used for both reading and writing, two
file descriptors are returned: the actual usage is like this:

int £d4(2];

stat = pipe(£fd);
if (stat == -1)
/% there was an error ... */

£4d is an array of two file descriptors, where £4[0] is the read side of the pipe and fd([1] is
for writing. These may be used in read, write and close calls just like any other file
descriptors.

If a process reads a pipe which is empty, it will wait until data arrives. if a process writes
into a pipe which is too full, it will wait until the pipe empties somewhat. If the write side of
the pipe is closed. a subsequent read will encounter end of file.

To illustrate the use of pipes in a realistic setting, let us write a function called
popen (cmd, mode), which creates a process cmd (just as system does). and returns a file
descriptor that will either read or write that process, according to mode. That is, the call

fout = popen("pr'", WRITE);

creates a process that executes the pr command: subsequent write calls using the file descrip-
tor fout will send their data to that process through the pipe.

popen first creates the the pipe with a pipe system call. it then forks to create two
copies of itself. The child decides whether it is supposed to read or write, closes the other side
of the pipe. then calls the shell (via execl) to run the desired process. The parent likewise
closes the end of the pipe it does not use. These closes are necessary to make end-of-file tests
work properly. For example, if a child that intends to read fails to close the write end of the
pipe. it will never see the end of the pipe file. just because there is one writer potentially active.

.13 -

#include <stdio.h>

#define READ O

#define WRITE 1
#define tst(a, b) (mode == READ ? (b) : (a))
static int popen_pid;

popen (cmd, mode)
char scmd;
int mode;
{
int p(2];

if (pipe(p) < 0)
return (NULL) ;

if ((popen_pid = fork()) == Q) {
close(tst(p(WRITE], p(READ]));
close(tst (0, 1));
dup(tst (p(READ], p(WRITE]));
close(tst(p(READ], p(WRITE]));
execl ("/bin/sh", "sh", "-c", cmd, 0);
-exit(1); /» disaster has occurred if we get here =/

)

if (popen_pid == =1)
return (NULL) ;

close(tst(p(READ], p(WRITE]));

return(tst(p(WRITE], p(READ]));

)

The sequence of closes in the child is a bit tricky. Suppose that the task is to create a child
process that wiil read data from the parent. Then the first close closes the write side of the
pipe, leaving the read side open. The lines

clogse(tst (0, 1));
dup(=st(p(READ], p(WRITE]));

are the conventional way to associate the pipe descriptor with the standard input of the chiid.
The close closes file descriptor 0. that is, the standard input. dup is a system call that returns
a duplicate of an already open file descriptor. File descriptors are assigned in increasing order
and the first available one is returned. so the effect of the dup is to copy the file descriptor for
the pipe (read side) to file descriptor 0. thus the read side of the pipe becomes the standard
input. (Yes, this is a bit tricky, but it’s a standard idiom.) Finally, the old read side of the pipe
is closed. , '

A similar sequence of operations takes place when the child process is supposed to write
from the parent instead of reading. You may find it a useful exercise to step through that case.

The job is not quite done, for we still need a function pclose to close the pipe created by
popen. The main reason for using a separate function rather than close is that it is desirable
to wait for the termination of the child process. First, the return value from pclose indicates
whether the process succeeded. Equally important when a process creates several children is
that only a bounded number of unwaited-for children can exist, even if some of them have ter-
minated: performing the wait lays the child to rest. Thus:

.14 -

#include <signal.h>

pclose (£4) /* close pipe f4 w/
int £4;
{
register r, (whstat) (), (wistat) (), (+gstat)();

int status;
extern int popen_pid;

close(£d);
istat = signal (SIGINT, SIG_IGN);
gstat = signal (SIGQUIT, SIG_IGN);
hstat = signal (SIGHUP, SIG_IGN);
while ((r = wait(astatus)) != popen_pid && r != -=1);
if (r == -1)
status = -1;

signal (SIGINT, istat);
signal (SIGQUIT, gstat);
signal (SIGHUP, hstat);
return(status);

)

The calls to signal make sure that no interrupts, etc., interfere with the waiting process; this
is the topic of the next section.

The routine as written has the limitation that only one pipe may be open at once, because
of the single shared variable popen_pid: it really should be an array indexed by file descrip-
tor. A popen function. with slightly different arguments and return value is available as part
of the standard 1/0 library discussed below. As currently written, it shares the same limitation.

6. SIGNALS — INTERRUPTS AND ALL THAT

This section is concerned with how to deal gracefully with signals from the outside world
(like interrupts), and with program faults. Since there’s nothing very useful that can be done
from within C about program faults, which arise mainly from illegal memory references or from
execution of peculiar instructions, we'll discuss only the outside-worid signais: interrupt, which
is sent when the DEL character is typed: quit, generated by the FS character. hangup, caused by
hanging up the phone:. and rermunare, generated by the kill command. When one of these
events occurs, the signal is sent to all processes which were started from the corresponding ter-
minal. unless other arrangements have been made. the signal terminates the process. In the
quit case, a core image file is written for debugging purposes.

The routine which alters the default action is called signal. It has two arguments: the
first specifies the signal. and the second specifies how to treat it. The first argument is just a
number code. but the second is the address is either a function, or a somewhat strange code
that requests that the signal either be ignored, or that it be given the default action. The
include file signal.h gives names for the various arguments, and should always be inciuded
when signals are used. Thus

#include <signal.h>

signal (SIGINT, SIG_IGN);
causes interrupts to be ignored. while
signal (SIGINT, SIG_DFL);

restores the default action of process termination. In all cases, signal returns the previous
value of the signal. The second argument to signal may instead be the name of a function
(which has to be declared explicitly if the compiler hasn't seen it aiready). In this case. the
named routine will be called when the signal occurs. Most commonly this facility is used to

.15 -

allow the program to clean up unfinished business before terminating, for example to delete a
temporary file:

#include <signal.h>

main()
{
int omintr();

if (signal (SIGINT, SIG_IGN) != SIG_IGN)
signal (SIGINT, onintz);

/« Process ... #/

exit(0);
)

onintr()

{
unlink(tempfile);
exit(1);

)

Why the test and the double cail to signal? Recall that signals like interrupt are sent to
all processes started from a particular terminal. Accordingly, when a program is to be run non-
interactively (started by &), the shell turns off interrupts for it so it won’t be stopped by inter-
rupts intended for foreground processes. If this program began by announcing that all inter-
rupts were to be sent to the onintzr routine regardless, that would undo the sheil’s effort to
protect it when run in the background.

The solution, shown above, is to test the state of interrupt handling, and to continue to
ignore interrupts if they are already being ignored. The code as written depends on the fact
that signal returns the previous state of a particular signal. If signals were aiready being
ignored, the process should continue to ignore them: otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a
request to stop what it is doing and return to its own command-processing loop. Think of a
text editor: interrupting a long printout should not cause it to terminate and lose the work
already done. The outline of the code for this case is probably best written like this:

#include <signal.h>
¢include <setjmp.h>
imp_buf sjbuf;

main()
{
int (»istat) (), onintr();

istat = gsignal (SIGINT, SIG_IGN); /% save original status =/
setimp(sjbuf); /+ save current stack position =»/
if (istat != SIG_IGN)

signal (SIGINT, onintr);

/* main processing lcop «/

-16 -

onintr ()
(

printf ("\nInterrupt\n");

longjmp(sjbuf); /* return to saved state */
)

The include file setjmp.h declares the type jmp_buf an object in which the state can be
saved. sjbuf is such an object: it is an array of some sort. The setjmp routine then saves
the state of things. When an interrupt occurs, a call is forced to the onintr routine. which
can print a message. set flags, or whatever. longjmp takes as argument an object stored into
by setimp. and restores control to the location after the call to setjmp, so control (and the
stack level) will pop back to the place in the main routine where the signal is set up and the
main loop entered. Notice, by the way, that the signal gets set again after an interrupt occurs.
This is necessary, most signals are automatically reset to their default action when they occur.

Some programs that want to detect signals simply can’t be stopped at an arbitrary point. for
example in the middle of updating a linked list. If the routine called on occurrence of a signal
sets a flag and then returns instead of calling exit or longjmp, execution will continue at the
exact point it was interrupted. The interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is reading the
terminal when the interrupt is sent. The specified routine is duly called; it sets its flag and
returns. If it were really true, as we said above, that ‘‘execution resumes at the exact point it
was interrupted,’’ the program would continue reading the terminal until the user typed another
line. This behavior might well be confusing, since the user might not know that the program is
reading; he presumably would prefer to have the signal take effect instantly. The method
chosen to resolve this difficulty is to terminate the terminal read when execution resumes after
the signal. returning an error code which indicates what happ_ened.

Thus programs which catch and resume execution after signals should be prepared for
“*errors’’ which are caused by interrupted system calls. (The ones to watch out for are reads
from a terminal, wait. and pause.) A program whose onintr program just sets intflag,
resets the interrupt signal, and returns, should usually include code like the following when it
reads the standard input:

if (getchar() == EOF)
if (intflag)
/% EOF caused by interrupt #/
else
/% true end-of-file =/

A final subtlety to keep in mind becomes important when signal-catching is combined with
execution of other programs. Suppose a program catches interrupts, and aiso includes a method
(like **!"* in the editor) whereby other programs can be executed. Then the code should look
something like this:

if (fork() == 0)

execl(...);
signal (SIGINT, SIG_IGN); /+» ignore interrupts #/
wailt (&status); /+ until the child is done =/
signal (SIGINT, onintr); /+ restore interrupts w/

Why is this? Again. it's not obvious but not really difficult. Suppose the program you call
catches its own interrupts. If you interrupt the subprogram, it will get the signal and return to
its main loop. and probably read your terminal. But the cailing program will also pop out of its
wait for the subprogram and read your terminal. Having two processes reading your terminal is
very unfortunate. since the svstem figuratively flips a coin to decide who should get each line of
input. A simple way out is to have the parent program ignore interrupts until the child is done.
This reasoning is reflected in the standard 1/0 library function system:

-17-

#include <signal.h>

system(s) /+ run command sString s #/
char =s;
{

int status, pid, w; .

register int (wistat) (), (w»gstat)();

if ((pid = fork()) == Q) (
execl("/bin/sh", "sh", "-c", s, 0);
exiz(127);

}

istat = signal (SIGINT, SIG_IGN);

gstat = signal (SIGQUIT, SIG_IGN);

while ((w = wait(sstatus)) != pid && w != =1)
’

if (W =m =1)
statug = -1;

signal (SIGINT, istat);

signal (SIGQUIT, gstat);

return(status);

}

As an aside on declarations, the function signal obviously has a rather strange second
argument. It is in fact a pointer to a function delivering an integer, and this is also the type of
the signal routine itself. The two values SIG_IGN and SIG_DFL have the right type, but are
chosen so they coincide with no possible actual functions. For the enthusiast, here is how they
are defined for the PDP-11; the definitions should be sufficiently ugly and nonportabie to
encourage use of the include file.

#define SIG_DFL (ine (#)())O
#define SIG_IGN (int (») ())1

References

(1] K. L. Thompson and D. M. Ritchie, The UNIX Programmer’s Manual, Bell Laboratories,
1978.

(2] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hail, Inc.,
1978.

(3] B. W. Kernighan, *“*UNIX for Beginners — Second Edition."” Bell Laboratories. 1978.

.18 -

Appendix — The Standard /0O Library

D. M. Ritchie
Bell Laboratories
Murray Hill, New Jersey 07974
The standard 1/0 library was designed with the following goals in mind.

1. It must be as efficient as possible, both in time and in space, so that there will be no hesita-
tion in using it no matter how critical the application.

2. It must be simple to use, and also free of the magic numbers and mysterious calls whose
use mars the understandability and portability of many programs using older packages.

3. The interface provided should be applicable on all machines, whether or not the programs
which implement it are directly portable to other systems, or to machines other than the
PDP-11 running a version of UNIX.

1. General Usage
Each program using the library must have the line

#include <stdio.h>

which defines certain macros and variables. The routines are in the normal C library, so no
special library argument is needed for loading. All names in the include file intended only for
internal use begin with an underscore _ to reduce the possibility of collision with a user name.
The names intended to be visible outside the package are

stdin The name of the standard input file
stdout The name of the standard output file
stderr The name of the standard error file

EOF is actually —1, and is the value returned by the read routines on end-of-file or error.

NULL is a notation for the null pointer, returned by pointer-valued functions to indicate an
error

FILE expands to struct _iob and is a useful shorthand when declaring pointers to
streams.

BUFSIZ is a number (viz. 512) of the size suitable for an 1/0 buffer supplied by the user.
See setbuf,. below.

getc, getchar, putc, putchar, feof, ferror, fileno
are defined as macros. Their actions are described below: they are mentioned here
to point out that it is not possible to redeclare them and that they are not actually
functions: thus, for example, they may not have breakpoints set on them.

The routines in this package offer the convenience of automatic buffer allocation and out-
put flushing where appropriate. The names stdin. stdout, and stderr are in effect con-
stants and may not be assigned to.

2. Calls

FILE #fopen(filename, type) char *filename, *type;
opens the file and. if needed. allocates a buffer for it. filename is a character string
specifying the name. type is a character string (not a single character). It may be "r",
"w"_ or "a" to indicate intent to read. write, or append. The value returned is a file
pointer. If it is NULL the attempt 1o open failed.

FILE *freopen(filename, type, ioptr) char *filename, *type; FILE *ioptr;

-19 -

The stream named by ioptr is closed, if necessary, and then reopened as if by fopen. If
the attempt to open fails, NULL is returned, otherwise ioptz, which wiil now refer to the
new file. Often the reopened stream is stdin or stdout.

int getc(ioptr) FILE wioptzr;
returns the next character from the stream named by ioptx. which is a pointer to a file
such as returned by fopen, or the name stdin. The integer EOF is returned on end-of-
file or when an error occurs. The nuil character \0 is a legal character.

int fgetc(ioptr) FILE wioptr;
acts like getc but is a genuine function, not a macro, so it can be pointed to, passed as an
argument, etc.

putc{c, ioptr) FILE *ioptr;
putc writes the character ¢ on the output stream named by ioptz, which is a value
returned from fopen or perhaps stdout or stderr. The character is returned as value,
but EOF is returned on error.

fputc(c, ioptr) FILE w*ioptr;
acts like putc but is a genuine function, not a macro.

fclose(ioptr) FILE wioptr;
The file corresponding to ioptr is closed after any buffers are emptied. A buffer allocated
by the 1/0 system is freed. £close is automatic on normal termination of the program.

fflush(ioptr) FILE w»ioptr;
Any buffered information on the (output) stream named by ioptz is written out. Output
files are normally buffered if and only if they are not directed to the terminal, however,
stderr always starts off unbuffered and remains so unless setbuf is used, or uniess it is
reopened.

exit{errcode);
terminates the process and returns its argument as status to the parent. This is a special
version of the routine which calls ££1ush for each output file. To terminate without flush-
ing, use _exit.

feof (ioptr) FILE *ioptr;
returns non-zero when end-of-file has occurred on the specified input stream.

ferror{ioptr) FILE w*ioptr;
returns non-zero when an error has occurred while reading or writing the named stream.
The error indication lasts until the file has been closed.

getchar!();
is identical to gete (stdin).

putchar(c);
is identical t0o putc(c, stdout).

char »fgets(s, n, ioptr) char *s; FILE *ioptr;
reads up to n-1 characters from the stream ioptr into the character pointer s. The read
terminates with a newline character. The newline character is placed in the buffer followed
by a nuil character. fgets returns the first argument, or NULL if error or end-of-file
occurred.

fputs(s, ioptr) char *s; FILE *ioptr;
writes the null-terminated string (character array) s on the stream ioptr. No newline is
appended. No value is returned.

ungetc{c, ioptr) FILE *ioptr;

-20 -

The argument character ¢ is pushed back on the input stream named by ioptx. Only one
character may be pushed back.

printf (format, al, ...) char *format;

fprintf (ioptr, format, a1, ...) FILE wioptr; char *format;

sprintf (s, format, al, ...)char *s, xformat;
printf writes on the standard output. fprintf writes on the named output stream.
sprintf puts characters in the character array (string) named by s. The specifications are
as described in section print£(3) of the UNIX Programmer’s Manual.

scanf (format, a1, ...) char *format;

fscanf (ioptr, format, al, ...) FILE *ioptr; char *format;

sscanf (s, format, al, ...) char »s, *format;
scanf reads from the standard input. fscanf reads from the named input stream.
sscanf reads from the character string supplied as s. scanf reads characters, interprets
them according to a format, and stores the results in its arguments. Each routine expects
as arguments a control string format, and a set of arguments, each of which must be a
pointer, indicating where the converted input should be stored.

scanf returns as its value the number of successfully matched and assigned input items.
This can be used to decide how many input items were found. On end of file, EOF is
returned; note that this is different from 0, which means that the next input character does
not match what was called for in the control string.

fread(ptr, sizeof(*ptr), nitems, ioptr) FILE wioptr;

reads nitems of data beginning at ptr from file ioptr. No advance notification that binary
/0 is being done is required; when, for portability reasons, it becomes required, it will be done
by adding an additional character to the mode-string on the fopen call.

fwrite(ptr, sizeof (*ptr), nitems, ioptr) FILE *ioptr;
Like fread. but in the other direction.

rewind (ioptr) FILE *ioptr;
rewinds the stream named by ioptr. It is not very useful except on input, since a rewound
o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>