
CHAPTER 26

Designing A
VME-To-SCSI Adapter

By Donald Peterson

The Small Computer Systems Interface (SCSI) has grown dramatically in popularity.
For example, only a few years ago none of the 5.25 inch Winchester disk drive
vendors were selling drives with SCSI interfaces built in, and now most of the
models being sold include a SCSI interface. In fact, disk drives with SCSI interfaces
are now available from all the major disk drive manufacturers. In this chapter, Don
discusses features that should be on a VME-to-SCSI adapter board, to provide the
best possible performance.

As a system integrator, you're faced
with a wide range of choices when
it comes to putting together a disk
subsystem. For example, you can
purchase a disk drive with a standard
device-level interface, such as SMD or
ESDI, and interface it to your VMEbus
system with a VME-to-SMD or VME-to­
ESDI disk controller board, as shown in
Figure 1.

Another alternative is to buy a VME-to­
SCSI adapter board. At one time this
was not a very appealing approach,
since interfacing the SCSI bus to most
disk drives was awkward. You typically
had to purchase a bridge controller,
which provided a SCSI interface on one
side, and an SMD or ESDI interface on
the other, as shown in Figure 2.
However, that situation has changed,
and today most disk drive manufacturers
offer SCSI-compatible drives. With these
drives, you can simply daisy chain a
cable from the VME-to-SCSI adapter to
each of the disk drives in your system, as
shown in Figure 3.

ESDI disk drive

CPU RAM

Figure 1

ESDI disk drive

CPU RAM

Figure 2

VME
to

ESDI

VME
to

SCSI

312 Disk Interface Standards

However, although the initial SCSI
compatible products claimed conform­
ance to the SCSI specification, they were
often incompatible with each other. This
was because the SCSI specification
allowed for differing interpretations of
many of the SCSI bus commands. In an
effort to bring order out of chaos a group
of companies (led by OMTI, a division of
Scientific Micro Systems) formed a
committee and selected a subset of the
original SCSI commands, which they
called the Common Command Set
(CCS). Adherence to this standard
provides a much higher level of com­
patibility between products.

Early SCSI bus users expected to see
disk performance comparable to what
they had previously seen on device level
subsystems, such as SMD or ESDI.
However, they were disappointed for 2
basic reasons:

• Device-level disk controller vendors
had years of hardware and firmware
experience behind them, while SCSI
vendors had not yet developed that
level of expertise .

• The architecture of a SCSI-based
subsystem has one additional step in
the command flow.

The 1 st problem has largely been
solved, as SCSI compatible drive manu­
facturers have gained experience. The
2nd problem has not been so easy to
overcome.

Figure 4 shows the flow of control in
a typical ESDI-based disk subsystem.
Each disk access begins with an
operating system call. This activates the
software driver for the disk being
accessed. The driver builds an I/O
parameter block and passes it to the
disk controller board, which then
translates the logical block number to a
physical cylinder, track and sector
number.

SCSI SCSI SCSI
disk disk disk
drive drive drive

VME
CPU RAM to

SCSI

Figure 3

Operating
system call

~
Software driver

builds I/O
parameter block

t
I/O parameter

block passed to
disk controller

board

t
Disk controller

translates logical
block number to
cylinder number,
track number, &
sector number.

Figure 4

Chapter 26 313

Contrast that with the flow of control in a
SCSI-based subsystem, as shown in
Figure 5. The operating system call
activates the software driver, which
builds an I/O parameter block and
passes it to the VME-to-SCSI adapter
board. The adapter then extracts the
SCSI command from the parameter
block and sends it over the SCSI bus,
where the SCSI compatible disk
controller in the drive translates the
logical block number to a physical
cylinder, track and sector number.

Obviously, there is an extra step in the
flow of control in the SCSI-based
system. However, with careful design, a
SCSI-based system will be able to
deliver performance approaching that of
ESDI or SMD systems, while still
providing much greater flexibility in the
selection of disk drives.

There are 6 major factors that affect the
performance of a SCSI subsystem:

• The VME-to-SCSI adapter firmware
• The SCSI controller chip used
• The VM Ebus interface
• The adapter's buffer architecture
• The operating system's software

driver.
• The disk controller that interfaces the

disk drive to the SCSI bus

VME-to-SCSI adapter firmware
The adapter firmware should be written
to minimize the overhead needed to

Operating
system call

+
Software driver

builds 1/0
parameter block

t
1/0 parameter

block passed to
VME to SCSI

adapter ,
SCSI adapter

extracts command
& sends it over
the SCSI bus ,
Disk controller

translates logical
block number to
cylinder number,
track number, &
sector number

handle SCSI commands. One technique Figure 5
that works well is to embed the SCSI
command block into the I/O parameter block built by the operating system's software
driver. The VME-to-SCSI adapter can then simply extract the SCSI command block
from the parameter block, and send it directly over the SCSI bus, without any changes.
In addition to the speed benefits, this allows the VME-to-SCSI adapter firmware to
accept and transmit vendor-unique commands, in addition to the commands of the
common command set.

If the adapter firmware supports command queueing, you can also use another
technique called command combining. The firmware scans and sorts the queued
commands, and then combines groups of them into single SCSI bus commands,
reducing the SCSI command processing overhead. It also permits scatter/gather

314 Disk Interface Standards

operations, where the data from discontiguous memory areas is stored onto the disk
(or retrieved from it) with a single SCSI command.

Command sorting also permits the VME-to-SCSI adapter to minimize the amount of
head motion needed on each drive to access the required sectors. There are various
algorithms you can use to sort the accesses. One popular algorithm is called C-scan.
It accesses the lowest logical block number, and then the higher block numbers, in
ascending order. Assuming that the physical disk blocks are arranged on the disk in
the same sequence as the logical blocks (which they usually are) this will access the
sectors closest to cylinder zero (near the hub of the disk) and then access the sectors
further out toward the edge of the disk. Since the accesses are done in order, random
head motion (and the resulting seek latencies) are minimized. When the disk has
accessed the sector furthest from the hub, the head is repositioned to the center, and
the process begins again.

If the firmware sorts all pending disk access requests by disk drive, it can also improve
the performance of a multiple disk subsystem. It does this by sending concurrent
commands to several disk drives on the SCSI bus. Note: In order to do this, the firmware
must support the SCSI disconnect/reconnect protocols.

The SCSI controller chip
Command overhead is critical to the performance of SCSI controller chips. Initial SCSI
controller chip designs (such as NCR's 1 st generation chip, called the 5380, first
sold in 1983) had command overheads in the multiple msec range. However, 2nd
generation SCSI chips (such as the Western Digital 33C93A and Emulex ESP)
have command overheads under 500 /lsecs. The Western Digital chip also includes
SCSI drivers and receivers, reducing the component cost and the real estate
requirements.

The VMEbus interface
The VMEbus has a theoretical bandwidth of about 40 Mbytes per sec, while the SCSI
bus (even in its synchronous mode) has an upper limit of around 5 Mbytes per second.
Therefore, you don't want to just directly couple the VMEbus and the SCSI bus. The
data would be transferred at too slow a rate over the VMEbus, and would waste much
of its available bandwidth.

A better approach is to design the VME-to-SCSI adapter board to accumulate incoming
data from the SCSI bus, and then periodically write it to VMEbus memory at a high
burst rate. (In the case of data being sent out to the disk, the adapter would read data
from the VMEbus in bursts, and then send it out at a slower rate over the SCSI bus.)
In order to do this, the adapter must be equipped with either a cache or a FIFO (First­
In-First-Out) buffer. By using a FIFO, a high performance adapter can transfer bursts
of data over the VMEbus at rates over 30 Mbytes per second.

Adapter buffer architecture
The physical architecture of a typical SCSI disk subsystem includes 3 components:

• A VME-to-SCSI adapter board in the VMEbus chassis
• A SCSI-compatible disk drive
• A cable from the adapter board to the disk drive

Chapter 26 315

This looks very similar to an ESDI or SMD disk subsystem. For example, in an ESDI
subsystem you have:

• A VME-to-ESDI controller board in the VMEbus chassis
• An ESDI-compatible disk drive
• A cable from the controller board to the disk drive

However, the functional architecture of the 2 types of subsystems is very different, and
should not be confused.

A VME-to-ESDI or VME-to-SMD disk controller board interfaces directly to the disk
drive's control electronics. In order to do this, the controller must be able to format the
drive, handle defects in the disk's media by reassigning sectors, and correct errors as
it reads from the disk, based on an ECC code.

A VME-to-SCSI adapter does not handle any of these functions. They are handled by
the disk controller circuitry, which is typically mounted inside the SCSI compatible disk's
enclosure. (In cases where SCSI-to-ESDI or SCSI-to-SMD bridge controllers are used,
the controller may be a free-standing board.) The VME-to-SCSI adapter just sends a
command over the SCSI bus, requesting the read or write of a logical block number.
The disk controller in the drive enclosure translates this logical block number into the
appropriate cylinder, track and sector numbers, and initiates the control signal sequence
needed to position the head over the appropriate track.

When an operating system reads a disk sector, it will quite likely read the next sector
some time soon. One technique that improves disk performance is to provide a multiple
sector cache. Whenever a sector is read from the disk, some of the subsequent sectors
on the same track are also read, and stored in the sector cache. Then, if the operating
system needs to read the next sector, the contents of that next sector can be made
available immediately from the cache, without waiting for the head to position itself over
the track again.

Sector caching in the disk controller works very well. However sector caching in the
VME-to-SCSI adapterdoesn't work nearly as well. The problem is that the adapter deals
only with logical block numbers: it doesn't know where one disk track ends and the
next begins. As a result, if it reads several subsequent blocks (to fill its local block cache)
it may initiate head movements (to an adjacent track) that tie up the disk needlessly
for several milliseconds. If another command is received by the adapter while the head
movement is taking place, that command won't be processed until the head movement
(and the subsequent sector reads) are completed. If the hit rate on the cached blocks
is low, this logical block caching might even decrease disk performance.

There's another reason that you don't want to try to cache the blocks in the adapter: it
requires you to first write each block into the adapter's local memory, and then to copy
the block to VMEbus memory. It's much faster to just route an incoming block directly
from the SCSI bus, through a FIFO, and onto the VMEbus.

If you use a FIFO in this manner, you must make sure that it's deep enough to continue
accepting data from the SCSI bus, even when the VMEbus is temporarily busy. For
example, suppose we have a 32-byte-deep FIFO. We first calculate the time required
to empty the FIFO over the VMEbus. If we assume that the adapter can transfer data

316 Disk Interface Standards

across the VMEbus 32 bits at a time, and that those 32-bit data transfers take place
every 400 nsecs, then it would take 3.2 I-lsecs to empty the 32-byte FIFO.

Next, we calculate the time required to fill the FIFO from the SCSI bus. If we assume
that data is coming to the adapter from the SCSI bus at a rate of 5 Mbytes per second,
then it would take 6.4 I-lsecs to fill the FIFO.

So, even with these conservative assumptions, the adapter will be able to keep a
32-byte FIFO from filling, as long as it is given access to the VMEbus at least once every
6.4l-lsecs. (You can ensure this by giving the adapter a high bus arbitration priority, as
is usually done for most mass storage devices.) In accomplishing the SCSI-to-VME data
transfer, the adapter will use only 50% of the VMEbus bandwidth. In general, a 32-byte
FIFO provides adequate buffering, because of the high speed of the VMEbus.

The software driver
The operating system's software driver should be designed to minimize overhead, and
to take full advantage of the specific features of the VME-to-SCSI adapter, such as
scatter/gather DMA transfers.

Writing drivers that work with all SCSI-based peripherals is not as simple as it seems.
Disk, tape, and optical SCSI devices each require different driver code, and there are
even subtle differences from model to model. Because of this you would be wise to
test your device drivers on several different models of SCSI devices.

The disk controller
Any high-performance disk controller should have a fairly large built-in sector cache.
This allows the controller to continue reading consecutive sectors after the requested
sector has been read. Then, if the next sector access is sequential to the previous one,
that sector will already be in the cache.

Some 2nd generation high performance SCSI compatible disks can also sort and
combine sector accesses. This sorting allows the disk to access all of the requested
sectors that lie along the same track, without repositioning the head. This feature can
be made even more effective if the disk controller is equipped with a feature called zero
latency read. If a disk controller has zero latency read, and if it's requested to read
several sectors scattered along a single track, it can start looking for any of the
requested sectors, as soon as the head arrives at the track.

Without zero latency read, the disk controller would first look for the lowest numbered
sector, and then read the additional sectors in ascending order. If the lowest numbered
sector just passed the head, none of the sectors would be read until the disk makes
one complete revolution. Then, if the highest numbered sector is at the end of the track,
the disk would have to make yet another complete revolution, before all the remaining
sectors could be read.

With the zero latency read feature, the disk controller can always read all of the needed
sectors from the track in only one rotation.

For the most part, 1 st generation SCSI compatible disk controllers didn't implement
these features. Fortunately, disk drive manufacturers saw the need to upgrade the
performance of their SCSI compatible drives. Vendors such as Hewlett-Packard,

Chapter 26 317

Quantum, and Micropolis introduced products that include track buffers, which capture
al/ of the sectors of a track in a single revolution of the disk. This allows them to
implement read-ahead caching and zero latency reads.

The Rimfire 3510 VME-to-SCSI adapter
Figure 6 is the block diagram of Ciprico's 2nd generation VME-to-SCSI adapter, called
the Rimfire 3510. (See also Figure 7) The Rimfire 3510 is controlled by a 10 MHz 80186
microprocessor, which uses a private 16-bit-wide bus to access local RAM and EPROM.
The short burst FIFO is a custom gate array that provides 32 bytes of buffering between
the VMEbus and the SCSI bus. This FIFO has proven to be large enough to decouple
the VMEbus and the SCSI bus, without incurring any performance degradation.

Ciprico has also designed another custom gate array called the Pipelined System
Interface (PSI). It serves as a DMA controller, generating VMEbus addresses. However,
it has one special feature that allows it to transfer data much faster than a typical DMA
controller: a double-deep starting address register and a double-deep transfer length
register. These double-deep registers allow the onboard 80186 to preload the starting
address (and the transfer length) of a subsequent DMA operation, while the current

Local
RAM

PSI
custom

gate array

Floppy
drive

WD2793-02
floppy

controller

80186
CPU

FIFO
control

logic

Address
bus

VMEbus

Figure 6

WD33C93A
SCSI

controller

318 Disk Interface Standards

DMA transfer is still in progress. The use
of PSI and the short burst FIFO gate
arrays allows a DMA burst rate of greater
than 30 Mbytes per second over the
VMEbus.

The Western Digital WD33C93A SCSI
controller chip is used on the adapter.
This 2nd generation intelligent SCSI
controller chip (preceded by the
WD33C93) operates from a 16 MHz
clock, and dramatically reduces SCSI
command overhead. The overhead has
been reduced from 1.2 milliseconds for
the 1 st generation chip to less than 500
microseconds.

Figure 7

The SCSI controller chip also includes a 5-byte-deep FIFO. It can support
synchronous data rates up to 5 Mbytes per second and asynchronous rates up to
2 Mbytes per second. (The 1 st generation WD33C93 only provided 4 Mbytes
per second synchronous transfers, and 1.5 Mbytes per second asynchronous
transfers.)

The firmware on the Rimfire 3510 does command sorting and command combining,
for both read commands and write commands. This improves performance by
minimizing seek and rotational latency delays.

Many users still want to have a floppy disk drive on their system for software
distribution and testing. However, there are few (if any) SCSI floppy disk drives
available. For this reason, the Rimfire 3510 includes a floppy disk interface, which
allows a choice of 3.5-inch or 5.25-inch floppy drives. A portion of the on-board RAM
is used as a buffer for the floppy port, so SCSI performance is not degraded by floppy
activity. (SCSI transfers are always given first priority by the onboard firmware.)
Floppy drives are accessed from the VMEbus just as if they are normal SCSI devices.
(The floppy drive is given an unused SCSIID of FE (hexadecimal). Floppy commands
are passed to the adapter board via a parameter block that has a format identical to
normal SCSI commands.

Summary
SCSI provides a very flexible method for connecting multiple types of mass storage
devices to VMEbus systems. With drive vendors improving the performance of their
SCSI compatible drives, the VME-to-SCSI adapter design has become critical. A good
adapter should have:

• Minimal overhead in the firmware
• A 2nd generation SCSI controller chip
• A 32-bit, FIFO-buffered VMEbus interface
• An efficient, well-debugged software driver

Chapter 26 319

The resulting SCSI-based mass storage solution will give you the performance and
flexibility you need at a reasonable cost.

Donald C. Peterson is the director of marketing at Ciprico, in
Plymouth, Minnesota. He has been involved in the marketing of
board level products for 12 years. Prior to joining Ciprico in 1986,
he worked as product marketing manager at Qualogy in San
Jose, California, and held various marketing positions at Intel in
Hillsboro, Oregon. He holds a BSEE and MS in business from the
University of Wisconsin, Madison.

CHAPTER 28

SCSI-2:
SCSI's High Performance Offspring

By Bill Moren

On June 23rd, 1986 (after more than 4 years of work) the American National
Standards Institute approved ANSI X3.131-1986. Slightly over 200 pages in length,
the document contains 14 sections and 7 appendices. It defines an interface
standard called the Small Computer System Interface (SCSI) bus for connecting
peripherals to microcomputers. As the SCSI bus has become widely used in
systems of all sizes and performance levels, it has been found to have some
performance limitations. In this chapter Bill discusses those limitations, and
describes the new version of SCSI (called SCSI-2) which has been designed to
allow higher-performance operation.

The Small Computer System Interface (SCSI) bus is a cable bus, used to connect
peripherals to microcomputers. Each peripheral can request access to (and gain control
of) the SCSI bus, in order to transfer data to (and from) the host system. The bulk of
the ANSI standard specifies the bus's physical and logical characteristics, and defines
command sets for each of 6 device types:

• Direct-Access (disk)
• Sequential-Access (tape)
• Printers
• Processors
• Write-Once-Read-Many (WORM) optical drive
• Read-Only-Direct-Access optical drive

Most of the commands defined in each command set are used exclusively on that type
of device. However, there are some commands that are common to all device types.

SCSI hosts and SCSI targets
The SCSI bus is typically interfaced to a VMEbus-based system through a plug-in board
called a VME-to-SCSI adapter, as shown in Figure 1. The VME-to-SCSI adapter
provides an intelligent link between the VMEbus and the SCSI bus. Peripheral drives
are interfaced to SCSI with a peripheral controller.

There are 2 basic types of SCSI devices:

• Initiators
• Targets

330 Disk Interface Standards

Peripheral
Drive

Peripheral
Controller

Peripheral
Drive

Peripheral
Controller

SCSI Bus

VME-to-SCSI
Adapter

VMEbus

Figure 1

Peripheral
Drive

Peripheral
Controller

The VME-to-SCSI adapter is typically the initiator. It sends commands from the VMEbus
system over the SCSI bus, initiating activity in the peripherals. Peripheral controllers
are considered target devices, since they receive the commands sent by the VME-to­
SCSI adapter. Each target can support up to 8 individual drives.

SCSI signal lines and drivers
SCSI provides an 8-bit-wide parallel data transfer bus. The SCSI signals include:

• 9 data signals (including 1 parity signal)
• 9 control signals

Two driver/receiver options are defined:

• Single-ended
• Differential

The single-ended drivers allow a maximum cable length of 6 meters, while the
differential drivers allow a maximum cable length of 25 meters.

Chapter 28 331

Both single-ended and differential configurations use a 50-conductor cable. The signals
for the single-ended configuration are shown in Figure 2. Single-ended signal
conductors are interleaved with grounded return conductors. The signals for the
differential configuration are shown in Figure 3.

1 GNO 1 GNO
2 -08(0) 2 GNO
3 GNO 3 +08(0)
4 -08(1)
5 GNO

4 -08(0)
5 +08(1)

6 -08(2) 6 -08(1)
7 GNO 7 +08(2)
8 -08(3)
9 GNO

8 -08(2)
9 +08(3)

10 -08(4) 10 -08(3)

11 GNO 11 +08(4)
12 -08(5)
13 GNO

12 -08(4)
13 +08(5)

14 -08(6)
15 GNO

14 -08(5)
15 +08(6)

16 -08(7)
17 GNO

16 -08(6)
17 +08(7)

18 -08(P) 18 -08(7)
19 GNO 19 +08(P)
20 GNO 20 -08(P)

21 GNO 21 OIFFSENS
22 GNO 22 GND
23 RESERVED 23 RESERVED
24 RESERVED 24 RESERVED
25 OPEN 25 TERMPWR
26 TERMPWR 26 TERMPWR
27 RESERVED 27 RESERVED
28 RESERVED 28 RESERVED
29 GNO 29 +ATN
30 GNO 30 -ATN

31 GNO 31 GND
32 -ATN 32 GND
33 GNO 33 +BSY
34 GNO 34 -8SY
35 GNO 35 +ACK
36 -8SY 36 -ACK
37 GNO 37 +RST
38 -ACK 38 -RST
39 GNO 39 +MSG
40 -RST 40 -MSG

41 GNO 41 +SEL
42 -MSG 42 -SEL
43 GNO 43 +C/D
44 -SEL 44 -C/D
45 GNO 45 +REO
46 -C/O 46 -REO
47 GNO 47 +1/0
48 -REO 48 -110
49 GNO 49 GND
50 -1/0 50 GNO

Figure 2 Figure 3

332 Disk Interface Standards

The SCSI standard permits the use of either shielded or non-shielded cabling and
connectors. For both options, the standard provides mechanical drawings of the
connectors.

SCSI bus operation
The SCSI interface is always in 1 of 4 states, called phases:

• bus free
• arbitration (optional)
• selection/reselection
• information

The permissible state transitions are depicted in Figure 4.

Figure 4

The information phase refers collectively to 4 other sub-phases:

• command
• data
• status
• message

During the information phase, information passes between initiators and targets. Each
target peripheral controller can accept one command at a time for each of the peripheral
drives attached it.

SCSI data transfer modes:
SCSI supports 2 modes of data transfer:

• asynchronous
• synchronous

During asynchronous data transfers the receiving device acknowledges receipt of each
byte before the next is sent.

The synchronous mode allows the sender to send several data bytes over the SCSI
bus at a previously established data transfer rate, without waiting for an acknowledge
for each byte. To establish the data transfer rate, the initiator uses the asynchronous
mode to send a synchronous data transfer request message to the target. Within
that message is a parameter that specifies a data transfer rate.

Chapter 28 333

Each time it sends a data byte over the SCSI bus synchronously, the sender
generates a strobe on the REQ line. If it were sending the data in the asynchronous
mode, the sender would then need to wait until the recipient responded with
a transition on the ACK line. However, in the synchronous mode, the sender need
not wait for the ACK. Instead, it continues to send data bytes at the specified data
rate.

As the sender sends bytes to the receiver, the receiver stores them in a FIFO, to
await later processing. However, this FIFO has a finite depth, so some provision must
be made to avoid FIFO overruns. For this reason the sender is only permitted to send
a specified number of bytes before it must stop and wait for an acknowledge on the
ACK line (this number is known as the REQ/ACK offset). For example, the initiator
specifies the number of bytes a target can send to it, before waiting for an ACK.

The minimum data transfer period
permitted by the SCSI specification
is 200 nsec. This allows a maximum
synchronous data transfer rate of
5 Mbytes/sec. However, the actual
synchronous data transfer rates are
typically determined by the speed of the
SCSI controller chips chosen by the
engineer who designs the adapter
board. These controller chips are
available from:

• Western Digital

• NCR
• Emulex
• National
• Fujitsu

SCSI command descriptor blocks
Commands are sent to peripherals
in the form of command descriptor
blocks. A typical command descriptor
block is shown in Figure 5. This block
includes:

• an operation code (op code)
• a logical unit number
• a logical block address
• a data transfer length
• a control byte

There are also other types of command
descriptor blocks, which permit access
to disks with larger storage capacity.
(For example, Figure 6 shows a 1 a-byte
block.) In each case, the recipient can

B
Y
T
E

N
U
M
B
E
R

B
y
T
E

N
U
M
B
E
R

BIT NUMBER

716151413121110

0 Operation Code

1 Logical 1
Unit number

2 21-bit
r-- Logical Block Address

3

4 8-bit Transfer Length

5 Control Byte

Figure 5

BIT NUMBER

716151413121110

0 Operation Code

1 Logical 1
Unit number Reserved

2
-

3 32-bit
- Logical Block Address

4
-

5

6 Reserved

7 16-bit Data Transfer Length
- 16-bit Parameter List Length

8 16-blt AllocatIOn Length
J

9 / Control Byte

Op Code Dependent

Figure 6

334 Disk Interface Standards

deduce the length of the block from the op code in the first byte of the block. The
256 op codes are divided into groups:

• Group 0 OOOx xxxx 6-byte parameter block

• Group 1 001x xxxx 10-byte parameter block

• Group 2 010x xxxx Reserved

• Group 3 011x xxxx Reserved

• Group 4 100x xxxx Reserved
• Group 5a 1010 xxxx Vendor Unique

• Group 5b 1011 xxxx Reserved

• Group 6 110x xxxx Vendor Unique

• Group 7 111 x xxxx Vendor Unique

SCSI command classes
Within each of these groups, individual op codes are designated as:

• Mandatory
• Extended
• Optional
• Vendor unique
• Reserved

The SCSI standard specifies commands and command descriptor block formats for the
mandatory, extended and optional op codes. All SCSI devices must respond properly
to mandatory commands. If a SCSI device allows system software to configure it in a
device-independent fashion, it must do so through the extended commands. Devices
need not be able to respond to optional commands to be considered SCSI compatible.

Vendor unique command codes are available for use at the discretion of an
implementer.

Reserved commands are reserved for future standardization.

Figure 7 lists the SCSI commands used to access disk drives. (Disk drives are called
direct access devices in the SCSI specification.)

The common command set
As peripheral vendors gained experience with SCSI, they found that it didn't go far
enough in some respects. For example, important commands, which should have been
mandatory were only made optional. Another example was where the SCSI standard
left important operations to be implemented with vendor unique commands.

Recognizing the potential for incompatibility, several SCSI disk vendors agreed among
themselves to support an informal standard called the common command set.

Another problem with SCSI was that the intelligence within each SCSI peripheral was
sometimes forced to make decisions over which the host system should have some
influence. For example, when the host system issued a SCSI format command to a
disk controller on the SCSI bus, it needed to specify how many spare sectors to allocate,
for later use when media defects were detected. However, the SCSI specification made
no provision for passing such a parameter.

Chapter 28 335

Code Command SCSI SCSI-2

00 Test unit ready 0 M
01 Rezero unit 0 0
03 Request sense M M
04 Format unit M M
07 Reassign blocks 0 0
08 Read M M
OA Write M M
08 Seek 0 0

12 Inquiry E M
15 Mode Select 0 0
16 Reserve 0 M
17 Release 0 M
18 Copy 0 0
1A Mode Sense 0 0
18 Start/Stop Unit 0 0
1C Receive diagnostic results 0 0
1D Send diagnostic 0 M
1E PrevenVAliow medium removal 0 0

25 Read capacity E M
28 Read E M
2A Write E M
28 Seek 0 0
2E Write and Verify 0 0
2F Verify 0 0

30 Search data high 0 0
31 Search data equal 0 0
32 Search data low 0 0
33 Set limits 0 0
34 Prefetch R 0
35 Synchronize cache R 0
36 Lock/Unlock cache R 0
37 Read defect data R 0
39 Compare 0 0
3A Copy and Verify 0 0
38 Write buffer R 0
3C Read buffer R 0
3E Read long R 0
3F Write long R 0

40 Change definition R 0
41 Write same R 0
4C Log select R 0
4D Log sense R 0
55 Mode select R 0
5A Mode sense R 0

M = Mandatory, 0 = Optional, E = Extended, R = Reserved

Figure 7

336 Disk Interface Standards

To provide for this, the common command set defines a data structure called a page.
This page (which contains a value for each device-specific parameter stored inside the
peripheral) can be passed back and forth between the host and the target.

Even though the common command set was not officially endorsed by ANSI (or by any
other recognized standard-setting organization) it was supported by SCSI disk vendors
because it ensured compatibility between vendors, and within each vendor's product
line.

SCSI has been able to evolve
Many interface standards (once they have been created) remain static until they're
eventually obsoleted by a subsequent standard. However, it is possible to evolve an
interface standard in a way that permits it to continue serving an industry. That only
happens if the industry is involved not only in developing the standard, but also in its
modification, as time passes. The SCSI standard is a good example of this. As the need
for higher performance became apparent, peripheral manufacturers evolved SCSI into
a new upward-compatible standard, called SCSI-2.

The goals of SCSI-2 are compatibility and connectivity
Many high performance disk users are drawn to SCSI-2 because of its high data transfer
rate. However, although SCSI-2 provides high performance, the 3 objectives stated in
the scope of the SCSI-2 draft emphasize compatibility and connectivity:

• " ... to provide host computers with device independence within a class of devices."
• " ... to provide compatibility with those SCSI-1 devices that support bus parity and

that meet conformance level 2 of SCSI-1."
• " ... to move device-dependent intelligence out to the SCSI-2 devices."

The last objective emphasizes SCSI's ability to hide the device-specific details of each
peripheral drive from the host system. For example, when you interface directly to a disk
drive, you must understand the physical organization of the disk drive media, including:

• how many heads the disk has.
• how many tracks the disk has.
• how many sectors per track the disk has.
• where the imperfections are in the media.

With a SCSI disk, you don't have to concern yourself with these physical details. A disk
just looks like a string of logical blocks, starting with block 1 , and ending with the size
of the disk. The disk appears to have perfect media: no defects require you to remap
sectors that lie on blemishes. If the host system reads logical block 100, the SCSI disk
controller inside the drive enclosure translates logical block number 100 into the
appropriate physical head number, track number, and sector number.

SCSI-2 is upward compatible with SCSI
Even though a considerable amount of functionality has been added to SCSI-2,
compatibility with SCSI is still preserved. SCSI and SCSI-2 devices may reside on the
same bus and may interact. The physical characteristics of SCSI-2 are the same as
SCSI. For example, SCSI-2 uses the same cabling and electrical scheme as SCSI,
unless wide data transfers (discussed later) are implemented, in which case a 2nd cable
is added. The standard SCSI cable is referred to as the A-cable in SCSI-2
nomenclature, and the 2nd cable is called the B-cable.

Chapter 28 337

SCSI targets can reject SCSI-2 commands that aren't defined in the SCSI standard.
For example, suppose you have a VME-to-SCSI-2 adapter sending commands to a
SCSI disk drive. The adapter may attempt to initiate a wide data transfer, by sending
a message to the disk drive. However, since the SCSI disk drive has no notion of wide
data transfers, it doesn't understand the message, and responds by rejecting the
message, using the SCSI rejection protocol. The SCSI-2 adapter then detects the
rejection, and initiates the data transfer using byte-wide SCSI-compatible data transfers.

Note: The actual strategy used by the SCSI-2 host adapter is not prescribed in the SCSI-2
standard. For example, the adapter might first respond to the rejection by initiating a
synchronous SCSI data transfer, before finally defaulting to an asynchronous SCSI data
transfer.

Since a SCSI-2 host bus adapter implements the entire mandatory SCSI protocol (and
in many cases the entire common command set) it can choose to operate entirely within
those protocols. That ensures compatibility with SCSI peripherals.

Since SCSI-2 peripherals respond to all mandatory SCSI commands, they can be
directed by SCSI host adapters.

SCSI-2 offers 3 extensions for increased performance
SCSI-2's performance capabilities are the result of 3 extensions:

• Fast synchronous data transfers
• Wide data transfers
• Tagged commands

Fast synchronous data transfers and wide data transfers combine to increase SCSI-
2's maximum data transfer rate to 40 Mbytes/sec. The other extension (tagged
commands) allows target peripheral controllers to queue multiple commands, and to
sequence the execution of those commands for optimum throughput.

Fast synchronous data transfers
The fast synchronous data transfer option (fast SCSI) is the best-known SCSI-2 feature.
It doubles the 5 MHz maximum SCSI synchronous data transfer rate to 10 MHz. In
doing this, the minimum period for synchronous data transfers has been reduced from
SCSI's 200 nsec to a minimum of 100 nsec for SCSI-2.

The term fast SCSI refers only to the number of transfers per second. When fast SCSI
transfers are done over a single cable (which permits only 8-bit transfers) data transfers
can be done at 10 Mbytes/sec. When 2 cables are used, data can be transferred 32
bits at a time. This permits data transfer rates up to 40 Mbytes/sec.

Fast SCSI is an optional mode of operation, and can only be used if both the initiator
and the target are equipped to handle it. To initiate a fast SCSI data transfer, the initiator
sends a synchronous data transfer request message to the target. Embedded in the
message are 2 parameters:

• a parameter that specifies the REQ/ACK offset
• a parameter which specifies the data transfer period

338 Disk Interface Standards

The REQ/ACK offset tells the target
peripheral controller how many REO
pulses it can send during a data transfer
before it must wait for an ACK pulse from
the adapter.

The data transfer period tells the target
peripheral controller the data rate to use
when sending to the adapter. If the
peripheral controller can't send at that
rate, it rejects the message. Then the
adapter sends a new message specify­
ing a lower data rate.

Wide data transfers
The wide data transfer mode of opera­
tion (often called wide SCSI) increases
the data path width from 8 bits (SCSI) to
either 16 bits or 32 bits (SCSI-2), through
the used of a 2nd cable, called the B
cable. This 2nd cable is a 68-conductor
cable that provides 24 additional
data bus signals, 3 parity signals, a
REO signal, and an ACK signal. (See
Figures 8 and 9) Note: The B cable is
only required if wide data transfers are
used.

The wider data path is used only for data
transfers. Commands and status are still
passed using 8-bit transfers. Widening
the data path increases data transfer
rates by transferring more data per
transfer cycle.

Like fast SCSI, wide SCSI is an option.
Wide data transfers are initiated with a
wide data transfer request message.
This message includes a parameter that
specifies the data transfer width.

SCSI-2 allows commands to be
queued in the target
SCSI only permits the VME-to-SCSI
adapter to send one command at a time
to each peripheral drive. The adapter
must then wait for a status response
from that drive, before sending another
command to it.

1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68

GNO
GNO
GNO

-OB(8)
GNO

-OB(9)
GNO

-OB(10)
GNO

-OB(11)

GNO
-OB(12)

GNO
-OB(13)

GNO
-OB(14)

GNO
-OB(15)

GNO
-OB(P1)

GNO
-ACKB

GNO
GNO
GNO

-REQB
GNO

-OB(16)
GNO

-OB(17)

GNO
-OB(18)

TERMPWRB
TERMPWRB
TERMPWRB
TERMPWRB

GNO
-OB(19)

GNO
-OB(20)

GNO
-OB(21)

GNO
-OB(22)

GNO
-OB(23)

GNO
-OB(P2)

GNO
-OB(24)

GNO
-OB(25)

GNO
-OB(26)

GNO
-OB(27)

GNO
-OB(28)

GNO
-OB(29)

GNO
-OB(30)

GNO
-OB(31)

GNO
-OB(P3)

GNO
GNO

Figure 8

Chapter 28 339

SCSI-2 has tag messages, which allow
an adapter to send multiple commands
to a peripheral drive, without waiting for
a status response for previously sent
commands. As the SCSI-2 peripheral
controller receives these commands, it
queues them for later execution.

Tagged commands are commands that
are preceded by a tag message. The tag
message contains a 1-byte unsigned
integer, called the tag value. When the
target receives a tagged command, it
puts the tag value into the queue, along
with the command.

There are 2 types of tagged commands:

• Ordered tagged commands
• Unordered tagged commands

Ordered tagged commands can be
used to ensure that commands are
executed in a first-come-first-served
manner.

Unordered tagged commands are used
when the command execution order is
not important. The target takes these
unordered tagged commands, and
queues them, just as it would queue
ordered tagged commands. However, it
is then allowed to sort the unordered
tagged commands, to speed up overall
throughput. There are 2 techniques used
to improve throughput:

• Command combining
• Seek optimization

Command combining is when the
disk controller searches for queued
commands that access adjacent
sectors, and combines them into a
single, multiple-sector disk access. This
reduces the number of disk revolutions
needed to execute a series of com­
mands.

Seek optimization reduces seek laten­
cies by reordering the sequence of the

1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68

GNO
GNO

+OB(8)
-OB(8)
+OB(9)
-OB(9)

+OB(10)
-OB(10)
+OB(11)
-OB(11)

+OB(12)
-OB(12)
+OB(13)
-OB(13)
+OB(14)
-OB(14)
+OB(15)
-OB(15)
+OB(P1)
-OB(P1)

+ACKB
-ACKB

GNO
OIFFSENS

+REQB
-REQB

+OB(16)
-OB(16)
+OB(17)
-OB(17)

+OB(18)
-OB(18)

TERMPWRB
TERMPWRB
TERMPWRB
TERMPWRB

+OB(19)
-OB(19)
+OB(20)
-OB(20)

+OB(21)
-OB(21)
+OB(22)
-OB(22)
+OB(23)
-OB(23)
+OB(P2)
-OB(P2)
+OB(24)
-OB(24)

+OB(25)
-OB(25)
+OB(26)
-OB(26)
+OB(27)
-OB(27)
+OB(28)
-OB(28)
+OB(29)
-OB(29)

+OB(30)
-OB(30)
+OB(31)
-OB(31)
+OB(P3)
-OB(P3)

GNO
GNO

Figure 9

340 Disk Interface Standards

queued commands, so that the drive's read heads will never pass over a cylinder for
which there is a pending request.

SCSI-2 offers 3 upgrades in the logical interface
Even though most of the fanfare is directed at the physical changes that allow higher
SCSI-2 data transfer rates, much of the effort put into SCSI-2 involves upgrading the
logical interface with 3 broad types of enhancements:

• Incorporation of the common command set
• Addition of new logical functions
• Addition of new device types

Incorporation of the common command set
Much of the SCSI common command set has been made mandatory in SCSI-2. An
example of this is the use of pages to pass parameter values between the host system
and SCSI-2 peripherals. For example, several page types have been defined for use
with disk drives:

• Caching
• Floppy disks
• Formatting
• Medium types
• Notching
• Partitioning
• Read/Write error recovery
• Rigid disk geometry
• Verify error recovery

SCSI-2 also defines page formats for accessing and modifying the parameters stored
in other types of peripherals.

New logical functions
SCSI protocols require a peripheral to return a status to the host adapter, upon receiving
each command. However, depending upon the peripheral, this might take considerable
time. For example, suppose a host system initiates a REWIND operation on one of its
SCSI tape drives. The host would not get a completion status until the rewind operation
is finished.

It would be convenient if the tape drive could initiate the rewind operation, and then
return a status to the host, indicating that it had accepted the command. Then, at some
later time, the drive could notify the host when the rewind was complete.

Unfortunately the SCSI standard has no provision for doing this. However, SCSI-2
defines an asynchronous event notification protocol. This protocol allows a peripheral
to notify an adapter of some event that has occurred inside the drive. This event need
not be the result of a previous command from the host. For example, if someone takes
the tape drive off-line to change tapes, the drive could notify the host system that it
has been taken off-line.

Chapter 28 341

New device types in SCSI-2
SCSI-2 also defines 3 new device types:

• Scanner
• Medium Changer
• Communications

In addition, SCSI-2 has redefined the optical device types previously defined by SCSI...

• write-once-read-many (WORM) direct access
• read-only direct access

... to give 3 new types of optical devices:

• write-once-read-many direct access
• CD-ROM serial access
• read-only or write-many direct access

Each of these SCSI-2 device types have command sets that have been designed to
support currently available products.

Migrating from SCSI to SCSI-2
Many current SCSI users want to migrate from SCSI to SCSI-2, as long as that migration
doesn't preventthem from using existing (proven) SCSI peripherals. To allow for this,
the SCSI-2 designers provided a migration path that can be followed in an incremental
fashion. (See Figure 10)

Migration step 1 : Replace the VME-to-SCSI adapter
A VME-to-SCSI-2 adapter should provide an operational superset of the VME-to-SCSI
adapter it replaces. To avoid redesign of the existing adapter's software device driver,

VME-to-SCSI
Adapter

VME-to-SCSI-2
Adapter

..
VME-to-SCSI

Adapter
'------I . '-_

Figure 10

VME-to-SCSI-2
Adapter

342 Disk Interface Standards

the VME-to-SCSI-2 adapter should also be designed to preserve the existing adapter's
register interface. This allows you to substitute the VME-to-SCSI-2 adapter for the VME­
to-SCSI adapter, while maintaining the full function of the existing system, with no
changes in the SCSI peripherals.

Migration step 2: Add SCSI-2 peripherals
Once the VME-to-SCSI adapter has been replaced with a VME-to-SCSI-2 adapter,
SCSI-2 peripheral devices can be added to the system. The SCSI-2 peripherals are
simply plugged into the bus. Since the old VME-to-SCSI software device driver may
not fully use the features of the VME-to-SCSI-2 adapter, you can't exercise all of the
SCSI-2 features in these new peripherals. However, you can still test and verify them
as SCSI devices. Even though you only use a portion of their full functionality, they
can still be useful in the system.

Migration step 3: Update the adapter device drivers
The final step to an incremental SCSI-2 migration is to replace the VME-to-SCSI
adapter's device drivers with drivers that fully support the extended features of the new
VME-to-SCSI-2 adapter. The VME-to-SCSI-2 adapter can then send SCSI-2 messages
and commands, when interacting with the peripherals.

Note: If the SCSI-2 system will be using wide data transfers, an additional step is
required. You must install a 2nd cable between the VME-to-SCSI-2 adapter and the
SCSI-2 peripherals. This cable provides the additional data lines that will be needed
to move data 16 bits (or 32 bits) at a time.

An alternative migration path is also shown in Figure 10. SCSI-2 peripherals can be
incorporated into the SCSI system before the VME-to-SCSI adapter is upgraded to a
VME-to-SCSI-2 adapter. Since the SCSI-2 peripherals recognize all SCSI commands,
they can be controlled by the VME-to-SCSI adapter.

PTDs and PDAs: 2 ways to build fast disk systems
There are 2 popular techniques for building high performance disk subsystems:

• Parallel Transfer Disks (PTDs)
• Parallel Disk Arrays (POAs)

What are PTDs?
PTOs allow very fast data transfer rates by performing parallel data transfers to multiple
disk surfaces, which all share a common spindle. The actual data transfer rate is the
product of the data transfer rate for each surface and the number of surfaces. PTOs
are often special versions of standard disks. For example, Fujitsu makes a PTO with
an 18 Mbyte/sec data transfer rate. It reads from 6 heads in parallel, at data transfer
rates of 3 Mbytes/sec, and routes the data to the host through an SMO-like interface.
Its interface differs from SMO in that it has 6 serial data channels, instead of just one.
(One channel for each disk head.)

What are PDAs?
A Parallel Drive Array (POA) is a disk subsystem consisting of several independent
disk drives, which are all accessed through a single disk controller. This POA controller
provides fast data transfer rates by using a technique called striping. As the controller

Chapter 28 343

writes data to the disks, it divides the data up on a byte-by-byte basis. It then writes
the 1 st byte to drive 1, the 2nd byte to drive 2, etc.

Data transfers to the various drives in the drive array occur in parallel, so the resulting
data transfer rate is the product of the number of drives in the array and each individual
drive's data transfer rate. Because all of the striping details are handled by the intelligent
PDA controller, the host sees the PDA subsystem as a single, fast, large-capacity drive.

Using PTDs and PDAs in microcomputers
PTDs and PDAs have traditionally been used in very expensive, extremely high
performance systems, such as supercomputers or special imaging systems. However,
extremely fast else microprocessors, RiSe processors, and multiple-processor
VMEbus systems have created a demand for disk 1/0 performance levels that can only
be provided with PTDs and PDAs.

Historically, PTDs and PDAs have been
built using proprietary interfaces.
However, SeSI-2 now provides a viable
interface for PTDs and PDAs. In addition
to SeSI-2's performance, it also provides
the benefits of the huge base of SCSI
compatible disk drives.

The Rimfire 6600
The Rimfire 6600 PDA SeSI-2 disk
controller (shown in Figure 11) interfaces
5 ESDI compatible disks to the SeSI-2
bus. (See Figure 12) It contains 6
processors. One is a supervisory
processor, which controls overall board
operation. The other 5 processors each
serve as an ESDI controller for one disk
drive.

The onboard intelligence provided by
these processors allows striping of the
data bytes to 4 of the drives, as well as
a parity byte to the 5th drive. The parity
byte is generated from the data bytes
stored on the 4 data drives. (See Figure
13.) Since this striping is hidden from the
host computer, the disk array looks (to
the host) like a single, fast, large capacity
drive.

The actual data transfer rate of this disk
array depends on the drives used. With
20 MHz ESDI drives (available from
Hitachi and from Hewlett Packard) the

ESDI
Disk
Drive

Figure 11

ESDI
Disk
Drive

ESDI
Disk
Drive

ESDI
Disk
Drive

Figure 12

ESDI
Disk
Drive

344 Disk Interface Standards

Figure 13

burst data transfer rate is 10 M bytes/sec , as shown by the following computations:

(20 Mbits/sec)/(8 bits/byte) = 2.5 Mbytes/sec

(2.5 Mbytes/sec) x (4 drives) = 10 Mbytes/sec

The Rimfire 6600 controller board can sustain this 10 Mbyte/sec SCSI-2 data transfer
rate indefinitely. However the actual data transfer rate will be lower because, even
though the data in each sector is read from the disk at 20 Mbits/sec, the gaps between
the sectors lower the average data transfer rate. In addition, when the head reaches
the end of a track, it must be repositioned. This takes time.

In fact, head repositioning times can be quite large. As a result, the average sustained
data rate is usually defined to be the rate at which you can read a track of data. That
depends on how the disk is formatted.

In general, a disk is formatted with a fixed number of bytes per sector, plus a few bytes
of overhead, associated with each sector. If you have 512-byte sectors, and 80 bytes
of overhead per sector, you will not be able to put as much data on each track as you
could with 1024-byte sectors, and the same 80 bytes of overhead per sector.

For example, suppose you have a total unformatted track capacity of 20,000 bytes. If
you format it with 512-byte sectors, you might get about 16.5 Kbytes of storage per
track. However, if you use 2-Kbyte sectors, you might get 18 Kbytes of storage on the
track.

In general, with an optimal sector size, a Rimfire 6600-based PDA can provide
sustained rates of about 85% to 90% of the combined burst data transfer rates of the
drives.

Surviving a disk failure
The parity drive allows the array to continue operating in the event of a single drive
failure. If a single drive failure occurs, the failed drive can be removed, and a
replacement drive installed. Then the data from the failed drive is regenerated on the
replacement drive.

Chapter 28 345

The removal, replacement, and data regeneration process is performed while the
Rimfire 6600 continues to execute SCSI-2 commands. The ability to tolerate single drive
failures improves the Mean Time Data Availability (MTDA) of the disk subsystem. The
MTDA of an array of disk drives predicts the mean time between simultaneous failures
of two disk drives, and can be calculated as follows ...

MTDA=

Where ...

Nd = Number of data drives
Np = Number of parity drives

(MTBF)2

For a 5-drive array, with individual drive MTBFs of 40,000 hours, and a Mean Time To
Repair (MTTR) for a single drive failure of 72 hours, the calculated MTDA is
approximately 1.1 million hours (127 years).

Spindle synchronization
One problem with using a simple parallel drive array is that the various disks may be
at different rotational positions when an access is started. Since striping stores data
on all the disks, the access cannot be completed until the last drive rotates far enough
to bring the needed sector under its read head.

If there were only a single disk drive, the average time would be half a rotation. However,
with 5 drives, it's quite likely that at least one drive will need more than half a rotation,
so the average time is greater.

To reduce this average time, a technique called spindle synchronization is used. One
drive serves as a master, and the other drives are slaves. The master drive provides
a reference signal, and the other drives synchronize their spindle motion to that
reference. Once synchronized, the corresponding sectors on each of the disk drives
pass under their respective read heads at the same time. This reduces the average
access time to what it would be for a single drive: half a rotation.

The advantages of spindle synchronization were great enough to convince ESDI
vendors to add the needed signals, as an appendix to the ESDI specification. The
Rimfire 6600 controller board uses these signals to tell the various drives in the array
who is the master, and who are the slaves. If a drive fails, its dedicated processor (on
the 6600 board) detects the failure, and reports it to the supervisory processor. If the
supervisory processor detects a failure of the master drive, it selects another drive to
be the master drive, allowing the failed drive to be pulled out and replaced.

Note: The information on the parity drive is not used to detect drive failures. A drive
failure is detected by the dedicated processor, based upon CRC errors, etc. The parity
information is used, after a failed drive has been replaced, to regenerate the data.

Cache Memory
To further improve throughput, the Rimfire 6600 controller board has 512-Kbytes of
cache memory. This cache is physically organized as 128 Kbytes of cache per data

346 Disk Interface Standards

drive. If the controller is commanded to read a block of data, it can pre-read an entire
track of data from each of the drives into the cache. With 128 Kbytes per drive, the
cache can hold 3 to 5 tracks per drive at any given time. Sequential requests (typical
of applications requiring PDA technology) can then be satisfied by simply accessing
the cache, eliminating the need for additional disk accesses.

The Rimfire 6600'5 SCSI-2 interface
The Rimfire 6600's SCSI-2 interface supports burst transfers across the SCSI-2 bus
at rates up to 20 Mbytes/sec. This is achieved through 32-bit-wide data transfers, and
a 5 MHz synchronous data transfer rate. The board also implements tagged commands,
allowing it to receive multiple commands from the host. The controller optimizes
command execution through command combining and seek optimization.

The Rimfire 3550
Ciprico has also designed a VME-to­
SCSI-2 adapter board called the Rimfire
3550. (See Figure 14) This VME-to­
SCSI adapter supports both the A cable
and the B cable of the SCSI-2 bus,
allowing wide (32-bit) data transfers. It
also allows the VMEbus system to send
tagged commands over SCSI-2. Like the
Rimfire 6600, the 3550 supports
synchronous SCSI-2 data transfers at 20
Mbytes/sec.

The 3550 board uses a short-burst FIFO
to buffer the data flow between the SCSI- Figure 14
2 bus and the onboard 2-Kbyte FIFO.
(See Figure 15.) This 1 st Short-Burst FIFO, and the 2-Kbyte FIFO, accept data from
the SCSI-2 bus, while the board waits for permission to use the VMEbus. Once the
board gains access to the VMEbus, a 2nd Short-Burst FIFO empties the 2-Kbyte FIFO at
VMEbus rates. This 2nd Short-Burst FIFO allows the board to transfer data over the
VMEbus in excess of 30 Mbytes/sec.

The adapter also uses a pipelined system interface to optimize VMEbus DMA transfers.
Its address and counter registers are pipelined. This allows the adapter's onboard
processor to preload the starting address (and the data transfer count) for each DMA
transfer while the previous DMA transfer is still in progress.

This pipelined register architecture is especially useful for scatter/gather data transfers,
often seen in UNIX-based systems. Suppose an application program requests the UNIX
operating system to open and read several contiguous sectors from a disk file. UNIX
then selects memory buffers from a buffer pool, directing one sector into each buffer.
Since the available buffers in the pool aren't usually contiguous in memory, sequential
sectors from the disk may not be contiguous in memory. Because of this you need some
way to DMA each sector to a different buffer location in memory. The pipelined address
and counter registers allow the board to DMA sequential sectors into different areas
of memory, without pausing at the end of each DMA transfer to reconfigure the DMA
controller.

Chapter 28 347

80186
Processor

PROM

64 Kbyte
RAM

SCSI
Controller

Pipelined
System

Interface

VMEbus

Figure 15

The Rimfire 3550 software interface

Short
Burst
FIFO

Short
Burst
FIFO

The software interface to the Rimfire 3550 VME-to-SCSI-2 adapter consists of
parameter blocks, which include SCSI-2 command descriptor blocks (like the ones
shown earlier in Figures 5 and 6) plus some additional parameters that are needed to
execute the command. For example, in order to transfer data between VMEbus memory
and the disk drive, you need to provide a VMEbus address.

A VMEbus processor board builds a circular queue of these parameter blocks in
VMEbus memory, and then writes a pointer to the 3550 adapter board, to indicate the
memory location of the head of the queue. The 3550 board then extracts and executes
these parameter blocks, updating the pointer each time.

Since this method of operation is the same as that used on the earlier Rimfire 3510
Series of VME-to-SCSI adapters, the Rimfire 3550 board operates as a VME-to-SCSI
adapter when used with 3510 device drivers. If minor coding changes are incorporated
into the 3510 drivers, the wide data transfer option, and the tagged command facility
of the 3550 can also be used.

Bill Moren has worked for Ciprico since June of 1978, and has
served in various engineering and marketing positions prior to his
current position as product manager. His current responsibilities
include the marketing management of the company's products
from concept to obsolescence.

