
CHROMATICS
'.

CGC 7900 COLOR GRAPHICS COMPUTER SYSTEM

PRELIMINARY DOS MANUAL
(with Assembler and Text Editor)

July, 1981

Copyright (C) 1981 by Chromatics, Inc.
2558 Mountain Industrial Boulevard

Tucker, Georgia 30084

Phone (404) 493-7000
TWX 810-766-8099

This document is an advance
informational purposes only.
contained herein are subject
shipment of the product.

release, provided for
The specifications

to. revsion prior to

PUBLICATION COMMENT FORM

~ase use this sheet to give us feedback on the enclosed
:umentation. Your comments on errors or omissions, suggested
anges, format of presentation, etc., will be helpful .in
eparing future manuals. Wherever possible, refer to specific
ge numbers in your comments below. After completing this
rm, mail to:

Chromatics, Inc.
2558 Mountain Industrial Boulevard
Tucker, GA 30084

Attn: R&D Department

Name: Date: __________ __

Company Name:

Name/Model Number of Product: __________________________ _

Title of Publication:

Date of Publication Release: Preliminary? ____ _

Page No. Comments

CONVENTIONS USED IN THIS DOCUMENT

1. Any keys which have labeled caps will be called by their
full names, capitalized and underlined. For example, the
carriage return key will be denoted by

RETURN

2. The modifier keys, ~, SHIFT, Mi, and HZ, must be held
down while striking the key they are to modify. Note that these
four keys do not generate any characters on their own, but
simply modify the character which is struck simultaneously.
This process of holding down a modifier key while striking
another key will be denoted by the modifier AND the key being
underlined together. For example,

CTRL F

would indicate that the ~ key should be held down while
striking the· F key. If two or more modifiers are needed
simultaneously, they will all be underlined together:

CTRL SHIFT T

~ould mean that BOTH modifiers, SHIFT and~, should be held
30wn while striking the T key.

5. Variable parameters will be enclosed in angle brackets, < >.
~y items enclosed in th~se brackets will be explained in full
In the text which immediately follows.

l. Optional parameters will be enclosed in square brackets [].
~y items which may be repeated will be followed by an ellipsis
:three dots).

:xample of (3) and (4):

<X>, [<YI>,<Y2>, •••]

'he parameter <X> is required. The parameters <YI>, <Y2>, and
:0 on, are optional. Any number of these may be included. All
,hree types of parametOers would be explained immediately beneath
,he example which contained them •

• Zeros will be slashed (8), alphabetic 0 will not be slashed.

TABLE OF CONTENTS

SECTION 1 - THE DISK OPERATING SYSTEM

INTRODUCTION
DISKETTES
ENTRY INTO DOS
DOS COMMAND LINE
DISK FILE NAMES
DISK DRIVE NUMBERS
SECONDARY FILE NAMES
FILE NAME PATTERNS

TRANSIENTS
DIR
COPY
FORMAT
INITIALIZING A NEW DISKETTE
RENAME
KILL
COMPRESS
DELETE
BUFF
DRAW
APPEND
PICTURE
REFRESH
IMPLODE
EXPLODE
STORE
FETCH
DEBUG
VERSION
SUMS
XREF

DOS ERROR MESSAGES

SECTION 2 - THE EDITOR

INTRODUCTION TO THE EDITOR
INLINE

EDITOR COMMANDS
OPEN
GET
LIST
PRINT
INSERT
MODIFY
DELETE
FIND
SUBSTITUTE
LAST

1- 1

1- 3
1- 4
1- 7
1- 9
1- 19
1- 13
1- 14
1- 15

1- 17
1- 18
1- 23
1- 27
1- 29
1- 39
1- 33
1- 35
1- 37
1- 39
1- 49
1- 41
1- 42
1- 44
1- 45
1- 46
1- 47
1- 49
1- 59
1- 51
1- 52
1- 53

1- 55

2- 1

2- 3
2- 5

2- 7
2- 8
2- 9
2- 19
2- 11
2- 12
2- 14
2- 16
2- 17
2- 18
2- 29

PUT 2- 21
CLOSE 2- 22
PAGE , 2- 23
DRIVB 2- 24
EXI'!' 2- 25
ABOR~ 2- 26

SECTION 3 - THE ASSEMBLER 3- 1

INTRODUCTION TO THE ASSEMBLER 3- 3
ASSEMBLER COMMAND LINE 3- 4

SOURCE FIL.E FORMAT 3- 7
LABELS 3- 8
INSTRUCTIONS 3- 9
OPERANDS 3- 18
COMMENTS 3- 11

INSTRUCTION EXAMPLES 3- 13
ARITHMETIC' 3- 14
COMPARE 3- 15
LOGICAL 3- 16
SHIFT AND ROTATE 3- 16
BIT OPERATIONS 3- 17
EFFECTIVE ADDRESS 3- 17
MOVE DATA 3- 18
MOVE MULTIPLE 3- 19
BRANCH, JUMP 3- 28
DECREMENT AND BRANCH 3- 22
SET 3- 23
SYSTEM CONTROL 3- 24

INSTRUCTION TYPES 3- 25

EXPRESSIONS 3- 27

PSEUDO-INSTRUCTIONS 3- 29
ORG (ORIGIN) 3- 38 .. EQO (EQUATE) 3- 31
SET 3- 32
DC (DEFINE CONSTANT) 3- 33
DS (DEFINE STORAGE) 3-35
END 3- 36
PAGE 3- 37
LLEN 3- 37
NOLST 3- 38
LIST 3- 38

ADDRESSING MODES 3- 39
REGISTER DIRECT 3- 39
ADDRESS REGISTER INDIRECT 3- 4-8
ADDRESS REGISTER INDIRECT/POST INCREMENT 3- 48

ADDRESS REGISTER INDIRECT/PREDECREMENT
ADDRESS REGISTER INDIRECT/DISPLACEMENT
ADDRESS REGISTER INDIRECT WITH INDEX
ABSOLUTE SHORT
ABSOLUTE LONG
PC WITH DISPLACEMENT
PC WITH INDEX
IMMEDIATE

ASSEMBLY ERRORS

APPENDIX A - PROGRAMMING THE CGC 7999

MODULES
THE LINKING PROCESS
MODULE CONSTRUCTION
BOOT MODULES
INPUT/OUTPUT MODULES
ARGUMENT PARSING
MODE MODULES
PLOT MODULES
ESCAPE AND USER MODULES
REGISTER SETUP FOR MODULES

WINDOW TABLE
WINDOW STATUS AND ESCAPE CODE STATUS

JUMP TABLES
PLOTTING FUNCTIONS
DOS JUMP TABLES
INLINE CALLING SEQUENCE

CMOS MEMORY ALLOCATION
LOW RAM ALLOCATION
THE USER FILE TABLE

WRITING TRANSIENTS

CUSTOM CHARACTER SETS

INSTALLING A NEW CURSOR

DOS ERROR MESSAGES

3- 41
3- 41
3- 42
3- 43
3- 43
3- 44
3- 45
3- 46

3- 47

A- 1

A- 4
A- 6
A- 7
A- 8
A- 9
A- II
A- 12
A- 15
A- 18
A- 29

A- 21
A- 24

A- 25
A- 32
A- 37
A- 42

A- 43
A- 45
A- 47

A- 49

A- 57

A- 61

A- 65

CGC 79l:HJ Preliminary DOS Manual Page 1-1

,-

SECTION 1 - THE DISK OPERATING SYSTEM

CGC 7999 Preliminary DOS Manual Page 1-2

:GC 7900 Preliminary DOS Manual Page 1-3

INTRODUCTION

rhis is the manual for the Chromatics CGC 7900 Disk Operating
;ystem (DOS), an optional feature of the 7900 series of color
~raphic computers. The Disk Operating System uses two
jouble-density flexible disk drives for program and data
storage. A fixed disk drive with 10 megabytes of storage is
also available. The DOS option consists of these parts:

Disk drives

PROMs (firmware)

A diskette with system programs

This manual

The disk drives and PROMs are factory-installed, and should
require no attention by you· (except that the fixed disk may
require special unpacking; instructions for this· ·are attached to
your unit if applicable).

The diskette contains programs which provide an interface
between the disk drives and your programs or data. Routines are
provided to save data onto a disk, to retrieve data from a disk,
and to manipulate the contents of the disks. This diskette
should be handled carefully as you are learning to use the DOS.
You should make a copy of this diskette at your earliest
opportunity. Instructions for copying a diskette are included
in this manual (see the FORMAT. and COpy commands).

This manual begins by describing the commands and utility
routines available in DOS. In later sections, the Text Editor
and MC68000 Resident Assembler are discussed. These two
programs allow you to create text files and assembly language
programs on the disk, and to generate executable binary machine
code for the 68000 processor.

Detailed descriptions of the CGC 7900 special features, such as
the color graphics plotting capability, are not provided here.
Please refer to your User's Manual for information on other
aspects of the CGC 7900.

CGC 7908 Preliminary DOS Manual Page 1-4

DISKETTES

DOS stores information on the surface of disks, which are coated
with a magnetic material. Flexible diskettes, or -floppy
disks,- area very reliable and convenient way to store data. A
flexible disk will perform well for many hours of use, if a few
simple precautions are observed:

HANDLING - DO NOT touch the exposed surface
which is visible through a slot on either side
DO NOT attempt to remove the circular diskette
dark envelope. Handle the diskette carefully,
it.

of the diskette,
of the diskette.
from its square,
and do not fold

LABELING - A diskette is provided with adhesive labels which
should be used to note the contents of the diskette. Write on
these labels BEFORE attaching the label to the diskette. If you
must write on a label after it has been attached to the
diskette, use a felt-tip pen and press gently. A ball-point pen
will crease the disk and may cause permanent damage.

INSERTING - To insert a diskette into a drive, first remove the
diskette from its paper sleeve. Hold the diskette gently, with
the label UP, and the arrow on the label aiming toward the
drive. Open the drive door by pressing the rectangular button
until the door snaps open. GENTLY slide the diskette into the
drive until it is completely inside the door (it may seat with a
soft -click-). Press the door shut. To remove the diskette,
press the rectangular button again.

STORAGE - When a diskette is not in use, it should be removed
from the drive and stored in its paper sleeve. Store the
diskette away from dust, away from extremely high or low
temperatures, away from moisture, and AWAY FROM MAGNETIC FIELDS.
Protect the diskette from magnets, motors, transformers, or
anything else which could create magnetism.

OPERATION - When a disk drive is in use, the red light in the
drive door will illuminate. It is extremely important that
nothing interfere with the disk while this light is on. While a
disk is in use, removing the disk, pressing BESET on the
keyboard, or turning the power off, may damage the "data on a
disk.

:GC 7900 Preliminary DOS Manual Page 1-5

rhe fixed disk is a sealed unit, located in the base of the 7900
=hassis. It is not subject to many of the restrictions above,
since it is hidden away from normal view. But the warning about
interrupting a disk operation in progress is still valid: if you
bave any reason to believe the system is accessing your fixed
disk, DO NOT press RESET or otherwise interrupt the process. If
you give the system a command to access the fixed disk, be sure
the command has been completed before turning the system off or
pressing RESET.

WRITE-PROTECTION - A flexible diskette may be protected from
accidental destruction by uncovering its write-protect notch.
Some diskettes are shipped with the notch covered, and some have
it uncovered when you receive them. In either case, the notch
must be covered or DOS will not be able to write on the disk.
The write-protect notch is a small (1/4-) hole on the front edge
of the disk.

CGC 79"" Preliminary DOS Manual Page 1-6

CGC 7900 Preliminary DOS Manual Page 1-7

ENTRY INTO DOS

The Disk Operating System is entered by pressing the labeled key,

The DOS log-on message should immediately appear on the screen.
If this does not happen, it can be because the state of the
system is not what DOS expects to find (for example, if the
screen is not connected as the proper output device). You can
optionally enter the Disk Operating System by striking three
keys,

RESET CTRL BOOT ~

This sequence initializes the entire system and will always
cause entry into DOS.

The DOS log-on message should now appear:

CGC Disk Operating System --- Version 1.4
Copyright (c) 1981 by CHROMATICS, INC.

ENTER USER PASSWORD =

DOS will print its version number. This number should be noted
in any communications to Chromatics concerning the DOS.

The DOS log-on message will request your User Password. At this
point, you may enter a 2-character password and press the RETURN
key, or you may simply press RETURN. If you do not enter a
password, you will only have access to Public files which are
not assigned a password. If you do enter a password, you will
have access to all Public files, as well as any files whose
password matches yours.

Legal characters for a User Password are: digits 8-9, upper and
lower case alphabetic characters, and these special characters:

[\ 1 ~ _ ' { I } -

Entering any other characters may cause the system to ignore
your password and assign you to Public files.

CGC 790. Preliminary DOS Manual Page 1-8

NOTE: The User Password system in DOS is not· designed
to offer a high level of protection. Its main purpose
is to help organize files into groups, so that a user
will see only the files he must work with. This is
especially important in the case of the hard disk,
where several hundred files may exist in the directory.

After completing the log-on procedure, DOS prints a green
asterisk (*) as its prompt character. The asterisk means that
DOS is ready to accept a command.

CGC 7909 Preliminary DOS Manual Page 1-9

DOS COMMAND LINE

When you are entering commands to DOS, all of the text editing
functions labeled on the cursor keypad may be used to edit your
input line. The left and right arrow keys move the cursor.
around on the input line. the ~ key moves the cursor to the
beginning of the input line. The functions labeled in blue are
accessed by holding the ~ modifier and pressing the indicated
key: these functions are Insert Character, Delete Character,
Clear Line, and Clear EOL. Pressing RECA~L brings back a copy
of previous lines. RECALL and SHIFT RECALL may be used to
retrieve any line from the "Recall Buffer." Once recalled, a
previously entered line may be edited with the other functions.

Regardless of where the cursor is on the input line, ALL
characters visible on the input line are accepted when the
RETURN key is pressed. DOS does nothing with your commands until
you press RETURN. If you press PELETE instead of RETURN, DOS
ignores the line you typed.

(All of these functions are a part of the Inline Editor, used
for DOS, the Monitor, and other 7900 programs. The Inline
Editor is discussed in more detail in the 7900 User's Manual, and
in Section Two of this manual.)

DOS commands are described in detail in this manual.
simple words or abbreviations, such as

DIR (followed by RETURN)

Most are

which lists the directory of a disk (the names of the files on
that disk).

You may enter several DOS commands on the same line, separating
them by a colon (:). For example, the following command would
list the disk directories from drives I and 2:

DIR/l:DIR/2

(No space should be typed on either side of the colon.)· You may
type as many commands as will fit on a single line of the
screen. If any command causes an error, DOS will not process
the rest of the commands on that line.

CGC 7999 Preliminary DOS Manual Page 1-19

DISK FILE NAMES

DOS is a file oriented system. When you type a command . to DOS,
you are actually entering the name of a disk file. DOS looks
for the' file, and if the file is found (and is executable), it
is loaded into memory and executed.

A file name may have several parts:

The primary name, which may be one to eight alphanumeric
characters, and may contain the special characters

[\] ", , { I ,} -

The secondary name, which is always three alphanumeric
characters. The secondary' name is separated from the primary
name by a period (decimal point). The secondary name is
optional. If it is omitted, DOS will usually append a secondary
name to the file name (depending on what the file name is to be
used for).

A password, which must match the password assigned to the
The password is separated from the name by a dollar Sign
If a password is entered, it must precede the drive number.
password is optional. If it is omitted, it is assumed to be
password under which you logged onto DOS.

file.
($) •
The
the

A drive number, identifying the disk drive on which the file
resides. The drive number is separated from the name by a slash
(f). The drive number is optional. If it is omitted, it will
be assumed this file resides on the same drive which responded
to the last DOS command (the drive from which the last command
was loaded).

The four parts of a file name (primary
password, drive number) must occur in the
of the optional parts are omitted, the
occur in the required order.

name, secondary name,
order listed. If any

remaining parts must

CGC 79~" Preliminary DOS Manual Page 1-11

Examples of legal file names:

FILEname

STORY.SRC

PROGRAM/2

USRT29NE$PW

LISTING.OBJ/l

HardLuck.BUF$ED/3

Examples of improper file names:

THISISTOOLONG

oops/A

NOWAYl.SYS

BADone.GO

Wrong/l.SRC

Too many characters in primary name -
only the first eight characters would
be recognized, so this is equivalent
to THISISTO. It would, however, still
be accepted.

Illegal drive number.

Illegal character in primary name.

Secondary name too short.

Incorrect order.

CGC 7998 • Preliminary DOS Manual Page 1-12

CGC 7900 Preliminary DOS Manual Page 1-13

DISK DRIVE NUMBERS

The CGC 7900 supports up to three disk drives: two flexible disks
and a hard disk. Many disk commands require specifying the drive
number of the disk to which the command refers. The followin~
numbers apply:

Drive 1: the left-hand flexible disk

Drive 2: the right-hand flexible disk

Drive 3: the hard disk

You may always specify the drive number if you wish. Anytime
you do not specify a drive number, DOS assumes you are still
using the same drive you used in a previous command.

'--
If a drive number of B (zero) is entered, it implies that DOS
should search all drives to locate the requested file. The
search begins with drive 1. (If a new file is being created,
the drive number must be implicitly or explicitly specified, so
a drive number of zero is not allowed.)

When you enter DOS, immediately after pressing the DOS key, the
system does not know which drive you want to use. The FIRST
command you enter to DOS acts as if you had specified a drive
number of zero, so DOS will search all drives in your system in
an attempt to execute the command. If this search succeeds, DOS
now knows which drive you want to use, and it will stay with
that drive until you specify a different drive number.

On the other hand, if your first command to DOS fails (as it
would if you misspelled a command), DOS will display an error
message. DOS will now default back to drive 1. The next
command you enter will assume that drive 1 is in use.
Therefore, if an error occurs in your FIRST command to DOS, let
your SECOND command specify a drive number unless you want to
use drive 1.

The feature of -remembering- the current drive applies' only to
commands. DOS only remembers where the last COMMAND carne from,
not the last filename. If you type:

KILL/2 filename/3

The KILL command is coming from drive 2, so DOS remembers drive
2 and will search it for the next command (unless you specify a
different drive number).

CGC 7900 Preliminary DOS Manual Page 1-14

SECONDARY FILE NAMES

The following secondary file names are recognized by DOS:

.SYS "System" file. These are executable by DOS, simply
by typing the file name as a DOS command. .SYS files
are not listed by the OIR command unless specifically
requested. .SYS files are called "transients" since
they are part of the set of DOS commands, but do not
reside in memory at all times. .SYS files are listed
in the directory in YELLOW •

• KIL "Killed" file. These are files which have been
removed from active status by the KILL command. A
.KIL file will be removed by COMPRESS, however it may
be recovered before COMPRESS by using RENAME. .KIL
files are not listed by the OIR command unless
specifically requested. .KIL files are listed in the
directory in RED.'

All of the file types below are
listed in GREEN in the directory •

• SRC "Source" file. These files contain ASCII text, such
as the source code of an assembly program.

.BUF "Create"Buffer" files. These files are
the BUFF command and recalled with
contain commands used to draw pictures •

created by
DRAW. They

• PIC "Picture" files. These files contain a dump of up to
two megabytes of image memory. They are created with
PICTURE and recalled with REFRESH •

• RLE "Run-Length Encoded" files. These files contain a
compacted version of the data from image memory.
They are created with IMPLODE and recalled with
EXPLODE •

• ABS "Absolute" binary files. These files contain a dump
of bytes from selected areas of memory. They are
created with STORE and recalled with FETCH.-

CGC 79'H' Preliminary DOS Manual Page 1-15

FILE NAME PATTERNS

DOS allows a "pattern- to be u.sed in place of a file name under
many conditions. A pattern permits a single command to affect
several files at once, or permits a command to affect any file
meeting a set of criteria. Depending on the command, using a
pattern will either affect the FIRST file on a disk which
matches the pattern, or ALL files which match. Details are
given in the descriptions of the individual commands.

A pattern may consist of any combination of these items:

A primary name

A secondary name (example: .SYS)

A wild card -.- in either the primary or secondary name

A password

A drive number

The asterisk -.- performs a special function. If the primary
name is an asterisk, it will match any file name. If the
secondary name is an asterisk, it will match any secondary name.
If either field CONTAINS an asterisk (in addition to other
characters), the asterisk will match any single character in a
file name. If the asterisk is in the last position of a field
(in addition to other characters), it will match any set of zero
or more characters.

If the primary name is blank,
inserted in place of the blank.
two patterns are equivalent:

*.SRC

.SRC

an asterisk is assumed to be
This means that the following

Either of these patterns would match any file whose secondary
name is .SRC (a text file).

If the secondary name is blank, it will match any file EXCEPT a
.SYS or a .KIL file. These files are never matched except when
specifically asked for, by using a .SYS, .KIL, or .* pattern.

CGC 7998 Preliminary DOS Manual Page 1:-16

Some examples of patterns:

A* Matches any file beginning with -A-
except .SYS and .KIL files

A*.* Same as -A*-, but includes .SYS and .KIL

*.BUF Matches any .BUF file

. Matches ANY file

Patterns can be very convenient, but they
caution. Suppose a program created a set
named them Xl, X2, and so on. They could
with the command

should be used with
of scratch files, and
all be removed at once

KILL X*

but this would also KILL any other files whose names began with
the letter X.

CGC 7999 Preliminary DOS Manual

TRANSIENTS

Transients, or transient programs, are the files
the set of commands DOS recognizes. By typing
command, you tell DOS to search the disk for the
same name. If the file is found, it is loaded
causing your command to be carried out.

Page 1-17

which make up
the name of a
file with tha

and executed,

This system of swapping commands in and out of memory as needed
gives DOS great flexibility. The entire DOS need never reside
in memory at once; only the current command is occupying space
in memory. Further, it is simple for you (or Chromatics) to add
commands to the set of commands DOS recognizes, by writing
assembly language programs to carry out the command. Transients
are stored on the disk with a secondary name of .SYS, and are
not visible in the disk directory unless you specifically ask to
see them.

This section discusses the transients, or commands, supplied
with DOS. When typing in a command to DOS, the various parts of
the command line must be separated by delimiters. Valid
delimiters are:

SPACE

comma (,)

Certain control-characters and punctuation marks will also act
as delimiters, but their use is not recommended since it would
make the command line difficult to read.

If a command line contains several file names, delimiters must
occur between the names. Only a SINGLE delimiter should be used
to separate each pair of items on the command line; i.e., you
should NOT type a comma followed by a space. This would usually
cause a RSyntax Error R message.

CGC 7991

Format:

Where:

Preliminary DOS Manual

DIR

DIR [<pattern>] [,<options>] RETURN

<pattern> is a file name, or a pattern
which may contain wild cards.

<options> are described below.

Page 1-18

The DIR (Directory) command lists the files in the directory of
a disk. Several options can be specified to tell the DIR
command which files you are interested in.

Typing DIR by itself will give you a list of most files on the
disk whose password matches yours. Files with either a .SYS or
a .KIL secondary name are not listed when you type DIR.

If <pattern> is included, only files matching the pattern are
listed. Some examples of using a pattern with DIR are shown on
the following pages.

If you want to examine the files of another user, you may enter
that user's password as part of the pattern. It should be
separated from the rest of the pattern by a dollar sign ($).

You may use the DIR transient, residing on one disk, to examine
the files of another disk. This is normally done only if the
second disk does not contain the DIR transient. It is

~ accomplished by specifying the drive number of the .disk whose
directory is to be listed. This number is preceded by a slash
(I).

CGC 790S Preliminary DOS Manual Page 1-19

In the examples below, and on the following pages, the RETURN key
has been omitted, and a space bas been used as a delimiter, so
that the example will closely resemble what you will see on the
7900 screen.

DIR List all except .SYS and .KIL files

DIR .* List ALL files (including .SYS and .KIL)

DIR .SYS List all .SYS files

DIR *.SYS List all .SYS files (same as above)

DIR BR* List all files whose names begin with
the letters BR. Possible matches would
be BR, BREAK, BROWN, etc.

DIR T*N List all files whose names are three
characters long, begin with T, and end
with N (TEN, TON, etc.)

DIR $XY List fi~es under password ·XY·

DIR .*$XY List all files under password ·XY·

DIR/2 List files on drive 2

DIR/l /2 List files on drive 2, using the DIR
transient living in drive 1

DIR/l .KIL/2 List all killed files on drive 2, using
the DIR transient from drive 1

CGC 7900 Preliminary DOS Manual page ~-~~

You can also append some options to the
semicolon (;) to separate them from the
are:

DIR command,
pattern. These

using a
options

P List Public Files only, not the files under your
password (if you logged in with no password, this
is equivalent to listing the normal directory).

L Give Long version of the directory, including the disk
name, address of next available space on the disk,
address and length of each filel and -attribute-
flags pertaining to each file.

S Give Short version of the directory, with file names
only. Note: LONG version is default.

A List files stored under ALL passwords.

Examples:

DIR ;P List public files

DIR .*;P List all public files

DIR .*;L List all files, with details

DIR/3 .*;LP List all public files on drive 3, with
details

DIR ;AList files under all passwords (except
.SYS and .KIL files)

DIR .*;A List files under all passwords, including
.SYS and .KIL files

NOTE: A SPACE must be present after the command DIR.
No space is used between a pattern (if any) and the
semicolon. This is illustrated in the examples above.

CGC 7909 Preliminary DOS Manual Page 1-21

The disk directory is displayed in this form:

DISKNAME Free Address: $nnnn Free Length: $xxxxx
---~-------
Filename
Prefix Sfx

Status
••••••••

File . File File Origin Last Accesa
Address Length Date Time Date Time

Samp1e12.SRC w....... $4999 $298

The disk is named ·DISKNAME.- The first free byte on
byte number $nnnn, and the length of the free space
that byte is $xxxxx bytes. (All numbers prefixed by
sign are in hexadecimal, base 16.)

the disk is
located at
the dollar

One file is listed in this directory. It is named Samp1e12, and
has .SRC as a secondary name. The file begins at byte $4999 and
occupies $299 bytes of the disk. It is write-protected (see
below).

The ·Status· column of a directory may show any of the following
characters:

w The file is write-protected.

d The file is delete-protected and cannot be
destroyed by COMPRESS.

e The file is execute-only.

o The file is odd length. A file will only occupy
exactly the number of bytes it requires, unless
it contains an odd number of bytes. In this case,
a single extra byte of storage is used by DOS to
cause the file to occupy an even number of bytes.
Note the efficiency of this scheme, in comparison
with other disk operating systems which use blocks
of 128 or 256 bytes, regardless of the actual file
length.

k The file has been KILLed.

CGC 79~'" Preliminary DOS Manual Page 1-22

If your system contains the optional Real-Time Clock, DOS will
also display time and date information in the directory. The
last columns of the directory will show when a file was created,
and when it was last accessed.

The ·Free Length- entry in the directory always shows the length
of the largest free space available on the disk. If this number
approaches zero, the disk is getting full and should be
COMPRESSed. See the COMPRESS command for details.

CGC 7999 Preliminary DOS Manual Page 1-23

COpy

Format:

COpy <source> <dest> RETURN

Where:

<source> and <dest> are each file names, or file name
patterns. Wild cards are allowed.

COpy produces a copy of a file, on the original disk or on
another disk. The name of the copy may be the same as the
original, or different. It is NOT legal to copy a file to the
same disk and retain the same name, however.

If a pattern is used instead of a file name, all files
the pattern are copied. This provides an easy way to
only .SYS files to a new disk, for example.

matching
transfer

NOTE: If <dest> is located on the same
<source>, a wild card is not allowed in the
name.

drive as
secondary

NOTE: If the secondary names and the drive numbers of
<source> and <dest> are identical, only ONE file is
copied regardless of any wild cards in the file names.
This rule, and the one above, are required to prevent
DOS from copying a copy (of a copy of a copy •••)

.KIL and .SYS files are not recognized
specifically requested (see examples).

by COpy unless

The new file produced by COpy will have the same password as the
'old file, unless the command line specifically changes the
password (by providing a password on the destination name).

The new file produced by COpy will always have the same status as
the old file (execute-only, delete-protected, etc.). See DIR for
a discussion of status attributes.

CGC 7998

Examples:

Preliminary DOS Manua~ Page 1-24

COpy AX BX Make a copy of AX, call it BX, and
put it on the same disk with AX.

COpy AX/l /2 Copy AX from drive I to drive 2.

COpy AX/l BX/2 Copy AX from drive 1 to drive 2, and
call the copy BX.

COpy T*/l /2 Co~y all files beginning with the
letter T, from drive 1 to drive 2
(except .SYS and .KIL files)

COpy *.SYS/l /2 Copy all .SYS files from drive 1 to
drive 2

COpy AZ BZ$aa Make a copy of AZ, call it BZ, and
give it password waaw•

COpy AZ$aa $bb Copy file AZ from password waaw to
password wbb w•

COpy .SRC .BUF Copy all text files into .BUF files.

The destination disk should always be formatted before you try
to COpy anything onto it. Formatting prepares a disk to receive
data. (The FORMAT command is discussed after we complete the
description of COpy.)

C 7909 Preliminary DOS Manual Page 1-25

only the drive numbers are specified, and no file name
ttern is given, a special full-disk COpy occurs. This
pies all data from the source disk to the destination disk,
lcluding the disk name and the entire directory. This kind of
IPY is normally used to produce a backup copy of an entire disk._
FULL-DISK COPY DESTROYS ALL DATA ON THE DESTINATION DISK.

cample:

COpy /1 /2 Copy the entire disk in drive 1
onto the disk in drive 2.

NOTE: A SPACE must occur between the COpy command and
the source drive number. If drive 1 contains the COpy
transient, the command above is equivalent to

COPY/1 /1 /2

In this case, the drive ~umber of the disk containing
the COpy transient is - specified. . The following
command would NOT be legal:

COPY/l /2

This command specifies the transient drive and the
source drive, but does not specify the destination
drive. The result is an -Argument Error- message.

r~e~~m~nary UU5 Manual Page 1-26

When a diskette (floppy disk) is FORMATted, it is defined to be
either single-density or double-density. A single-density
diskette can hold up to 256,256 bytes and a double-density
diskette can hold up to 599,184 bytes. The 7909 normally uses
only double-density diskettes.

If you attempt a full-disk COpy between two disks which have
different densities, a warning will be displayed:

Density mismatch. Continue (YIN) ?

Press the ·Y· key if you want to proceed. If you asked DOS to
copy from a single-density diskette to a double-density
diskette, the -density mismatch· will not be a problem, since
all the data on a single-density diskette can easily fit onto a
double-density diskette. If, however, you asked DOS to copy
from a double-density diskette onto a single-density diskette,
you will get an error after the disk has been halfway copied.

A similar situation arises '--if you
between a diskette and the hard
diskette is approximately 256K bytes
the density. The hard disk capacity
this warning:

attempt a full-disk COpy
disk. The capacity of a
Or 5l2K bytes, depending on
is 10M bytes. You will see

Capacity mismatch. Continue (yIN) ?

If you press the ·Y· key, copying will proceed. BEWARE: If you
asked DOS to copy from a diskette to the hard disk, EVERYTHING
on the diskette will be copied and no errors will be displayed.
However, the hard disk directory will now be a copy of the
diskette directory, and will reflect a disk size of 5l2K bytes
instead of 19 Mbytes. This will render 95' of the hard disk
inaccessable until the hard disk is reformatted.

If you asked DOS to copy from the hard disk to a diskette, an
error will occur as DOS attempts to write past the end of the
diskette.

CGC 79""

Format:

Where:

Preliminary DOS Manual Page 1-27

FORMAT

FORMAT [<name>] I<n> [;<opt>] RETURN

<name> is the name given to the disk being formatted.
If omitted, the revision level of DOS is used
to form the'disk name.

<n> is the number of the disk drive containing the
disk to be formatted. <n> is required.

<opt> are options, desribed below.

FORMAT initializes a disk, preparing it for data. A new disk
must be formatted before it can be used. Formatting destroys all
data on a disk. After a disk has been formatted, it contains a
blank directory, and no files. The blank. directory shows only
the disk's name, its size, and allows POS to determine the disk's
density (single or double).

If <name> is specified, the disk is given this name. <name> may
be one to eight alphanumeric characters. If <name> is not
specified, the disk is named ·DOSRevXX· where XX is the version
of DOS which initialized the disk. A disk formatted by DOS 1.4
would be named ·DOSRev14·.

FORMAT prints the message:

Format drive n. Continue (yIN) ?

where n is the drive number FORMAT will initialize. You are
given this chance to abort the process. Press the ·Y· key to
continue, or any other key to abort. You may also insert a
different diskette in the drive before pressing ·Y·.

CGC 799" Preliminary DOS Manual Page 1-28

When DOS begins formatting the disk, it prints

Formatting drive n.

If successful, control returns to DOS with no further messages.
If an error occurs, such as a bad block detected on . the
diskette, ~rror messages are printed and the FORMAT should be
tried again. If errors continue, the diskette should be
discarded.

Options may be included in the <opt> field,
rest of the FORMAT command by a semicolon.

separated from the
Allowed options are:

;D double density

;S single density

;y. ·Yes,· proceed with formatting

The default format for diskettes is double density. If desired,
a single density diskette may be formatted using the ·S· option.
A diskette created for Single density may be used on any CGC
799" system, and may possibly be useful in exchanging data with
other computer systems using single density diskettes. However,
the directory of any 7999 disk will be different from that used
by other disk operating systems, so it will not generally be
possible to insert a CGC 799" disk into any other computer
system. Nor is it generally possible for the 79"9 to read a
diskette created by another computer system.

Option ·Y· prevents the system
question above. If option ·Y· is
will be immediately formatted with
·Y· should be used with caution.

from asking the ·Continue?·
used, the disk or diskette
no questions asked. Option

CGC 7gee Preliminary DOS Manual Page 1-29

INITIALIZING A NEW DISKETTE

Formatting prepares a disk for data, but does not store anything
on it. A freshly formatted disk has a blank directory. Here is
a sample procedure which might be used to format a brand new
diskette:

Load a disk containing the FORMAT command, and other transients,
into drive·l. Load a blank disk into drive 2.

Enter the following:

FORMAT/l NewDisk/2

and press RETURN. The FORMAT transient responds:

Format drive 2. Continue (Y/N) ?

Press the wyw key. The formatting proceeds. When complete, and
no error messages have been printed, you can assume the new disk
is now formatted properly. It has the name wNewDisk w• Now you
may wish to copy the DOS transients onto this disk, so that it
will be useable without referring to other disks. Enter:

COPY/l *.SYS/l /2

and press RETURN. All system transients (.SYS files) will be
copied to the new disk.

CGC 7999

Format:

Where:

Prel~minary DOS Manual Page 1-39

RENAME

RENAME <filel> [<file2>1 [,<opts>] RETURN

<filel> is the name of an existing file,

<file2> is the new name to be given to the file.

<opts> are options, described below.

RENAME alters a file's name. The primary name, secondary name,
or both, may be altered in the RENAME process. <file2> must not
specify a drive number, since the file itself does not move from
the disk where it currently resides. ,If <file2> specifies a
drive number, that number is ignored.

RENAME may also be used to change a file's attributes, such as
write-protection (see below). If you want to change a file's
attributes and leave its name the same, you may omit the <file2>
name. It is NOT legal to omit both <file2> and <opts>. At
least one of these must be present.

RENAME is not allowed to change a file's password.
be used for this purpose.

COpy should

If <filel> contains wild cards, any files matching the pattern
are renamed. If <file2> contains wild cards, characters are
pulled from the name of <filel> to substitute for *'s in <file2>.

If <filel> specifies only a primary name, all files with that
name (regardless of their secondary name) are renamed.
Likewise, if <filel> specifies only a secondary name, a~~ files
with that name are renamed (regardless of their primary name).
This can result in more than one file having exactly the same
name. If this occurs, you can rename the files again (giving
them different names) by specifying the primary AND secondary
name of the file to be renamed. If <filel> completely specifies
a file name, RENAME will only act on one file.

RENAME will not affect .SYS or .KIL files unless y.oo specify a
secondary filename of .SYS', .KIL, or .'. in <filel>. RDlAME can
change a .SYS file to a .KIL, and can revive a ,.Xn. Lile into
its original type. BE CAREFUL.

CGC 79"" Preliminary DOS Manual Page 1-31

The option field may be used to alter the file's status
attributes (see DIR). Allowed options are:

W Write-protect
-w Write-enable

D Delete-protect
-D Delete-enable

E Execute-only

If no options are specified, the file retains its old
attributes. Note: for security reasons, RENAME will not remove
the execute-only status from a file. Once a file has the -e
status, that status may not be altered.

Examples:

RENAME AX BX

RENAME AX BX;W

RENAME DATA OLDATA;WD

RENAME ZOO;-W-D

RENAME SECRET;E

RENAME XXll n/2

RENAME XX

RENAME AB* CD*

Rename file AX to BX, giving
it the same attributes AX had.

Same as above, but write
protect the file.

Rename DATA to OLDATA, write
and delete-protecting it.

Remove Wand D attributes from
the f.il e zoo.

Make file SECRET execute-only.

File XX on drive 1 is renamed
to YY; the -/2- is ignored.

This produces -Argument Error.-

Any file beginning with -AB
will now begin with -CD.-

RENAME can also change the name of a disk (the name given to the
disk when it was FORMATted). Use this form of the command:

RENAME 12 Newname

The disk in drive 2 will be renamed to -Newname-.

CGC 79"" Preliminary DOS Manual . Page 1-32

CGC 7900 Preliminary DOS Manual Page 1-33

KILL

Format:

KILL <filename> RETURN

Where:

<filename> is the file to be KILLed.

The KILL transient changes a file's secondary name to .KIL
(except if the file is a .SYS file, it cannot be killed by KILL).

KILL is used to remove a file from WactiveW status, and mark it
for eventual destruction with COMPRESS (see below). After a
file has been killed, it is still recoverable, but is not
recognized unless specifically requested. The DIR command will
not display killed files unless the .KIL or .* pattern is
included. Most programs will ignore killed files.

.SYS files may be killed using the RENAME
their secondary name to .KIL (this should
great care).

command,
only be

to change
done with

After a file has been killed, it 1s still recoverable
disk is compressed (see COMPRESS). A .KIL file may be
using the RENAME command, to change the secondary
something other than .KIL (.BUF, .SRC, etc.). After a
the file is NOT recoverable.

until the
recovered

name to
COMPRESS,

If a pattern is used instead of a filename, ALL files matching
the pattern are KILLed. Wild cards (*) may be included in the
pattern.

CGC 7998

Examples:

Preliminary DOS Manual Page 1-34

KILL DATA

KILL DATA/2

KILL DATA$XY/2

KILL X*

KILL TEST

KILL .SRC

Kill the file named DATA

Kill DATA on drive 2

Kill DATA on drive 2, passworded ·Xl~

Kill any file beginning with ·X·
Kill any file with primary name TEST

Kill any file with secondary name .SRC

CGC 7930

Format:

Where:

Preliminary DOS Manual Page 1-35

COMPRESS

COMPRESS [$<pw>1 (/<d>] (iA] RETURN

<pw> is the two-character password of the files to
be COMPRESSed. If omitted, the password under
which you logged onto DOS will be assumed.

<d> is the number of the drive containing the disk
to be compressed. If omitted, the disk which
contains the transient is compressed.

The COMPRESS transient disposes of all files whose secondary
name is .KIL (killed files). The space on the disk formerly
occupied by these files is now available for use again. The
disposed files are NOT recoverable. COMPRESS also reclaims the
space formerly occupied by deleted files (see DELETE).

If a file is delete-protected, it will not be affected by
COMPRESS even if it has been KILLed.

If the iA option is given, ALL files are compressed regardless
of their passwords.

It is advisable to make a backup copy of important files, or of
the entire disk, before executing COMPRESS. If COMPRESS is
interrupted by pressing Reset, by a power failure, or by
removing the diskette during COMPRESS, all data on the disk may
be lost.

COMPRESSing the hard disk (drive 3) may take several minutes.

CGC 79""

Examples:

Preliminary DOS Manual Page 1-36

COMPRESS Remove .KIL files

COMPRESS/2 Compress the disk in drive 2

COMPRESS/l /2 Compress the disk in drive 2, using the
COMPRESS transient from drive 1

COMPRESS $AB Remove .KIL files under password -AB

COMPRESS ,A Remov~ .KIL files under ALL passwords

CGC 7900 Preliminary DOS Manual Page 1-37

DELETE

Format:

DELETE <file> RETURN

Where:

<file> is the name of the file to be deleted.

DELETE removes a file from the disk directory. This process
immediately frees up the disk space formerly occupied by the
file. THE CONTENTS OF THE FILE ARE NOT RECOVERABLE.

The DELETE command is different from KILL. KILL
a file with a .KIL secondary name, thus the file
After a file has been deleted, however, the disk
longer shows the file's existance. , .

simply renames
still exists.
directory no

When the Disk Operating System is asked to create a new file, it
always takes the largest currently available chunk of disk
space. This means that it is not useful to DELETE a small file,
since the small chunk of space formerly occupied by that file
would never get used. DELETE is primarily useful for times when
you need to remove a large file (one occupying over 25' of the
disk, for example). DELETE allows you to reclaim the disk space
without going through the (time-consuming) process of KILLing
the file and then COMPRESSing the disk.

A pattern may be used in place of a file name.
matching the pattern will be DELETEd.

Example:

DELETE OLDdata

All files

The space formerly occupied by deleted files is reclaimed when
the disk is COMPRESSed. If you DELETE several small files
(going against the advice above), you will have to COMPRESS the
disk to make that space available for use again.

If a file is delete-protected, it cannot be deleted.

CGC 799" .. Preliminary DOS Manual Page 1-38

CGC79""

Format:

Where:

Preliminary DOS Manual Page 1-39

BUFF

BUFF <file> RETURN

<file> is the name to be given to the file being
created by BUFF.

The BUFF command stores the contents of the Create Buffer into a
disk file. The secondary name .BUF is given to the file. If ~
the file name already exists on this disk, the old file is
automatically KILLed •

• BUF files can be called back into the Create Buffer with the
DRAW transient.

Examples:

BUFF ANDWAX

BUFFII FUDD/2

Create a file called ANDWAX.

In this case the .BUF file is created
on a drive other than the drive where
the BUFF command resides.

When creating a picture to be stored as a .BUF file, the
following hints may be helpful:

1. Turn on CREATE before transmitting any other commands which
are necessary to set up the system for your picture. For
example, if your picture will be drawn in the Bitmap, your .BUF
file should include the ·Overlay Off- and -Overlay Transparent
commands. Remember that the best .BUF files can be drawn
directly from DOS, requiring no setup by the user.

2. Turn the cursor off at the start of your .BUF file. This
makes a picture redraw faster.

CGC 7900 Preliminary DOS Manual Page 1-48

DRAW

Format:

DRAW <file> RETURN

The file named <file> is called up from the disk and stored into
the Create Buffer. <file> must have a .BUF secondary name.

After using the DRAW command, pressing the REDRAW key will cause
the picture in the Create Buffer to be redrawn. Pressing XMIT
will cause the Create Buffer contents to be sent out Logical
Output Device 1, normally the RS-232 serial port.

Examples:

DRAW POKER The file POKER.BUF is loaded into
the Create Buffer.

DRAW/3 Fliesll The DRAW transient from drive 3 is
invoked to call up the file Flies.BUF
from drive 1.

NOTE: For best results, you are advised to pres~ the
TERMINAL key (leaving DOS and entering the Terminal
Emulator) before pressing REDRAW. If you do not press
TERMINAL before REPRAW, you will find that you are
still in DOS after your picture is redrawn, and
anything you type may obliterate your picture. To
re-enter DOS after the picture finishes redrawing,
press SOFT BOar and pas. This will leave any picture
in the Bitmap intact.

If <file> was created on a CGC 7900 containing a
number of image memory planes, the picture you generate
look the same as the original picture. .

different
may not

CGC 790" Preliminary DOS Manual Page ,1-41

APPEND

Format:

APPEND <file> RETURN

The APPEND command is similar to DRAW, except that the <file>
specified by APPEND is added to the end of the Create Buffer,
instead of replacing whatever was previously in the Create
Buffer. By performing a DRAW followed by one or more APPENDs,
several .BUF files may be concatenated. Then the BUFF transient
may be used to store the entire series as a single file.

Example:

DRAW Partl

APPEND Part2

APPEND Part3

BUFF ALLofit

See also BUFF and DRAW.

load part one of a picture

add the second part

and the third part

store the whole thing

....

CGe 791rJ1I .

Format:

Where:

PICTURE

PICTURE <file> [,<n>l RETURN

<file> is the name of a file to be created by
PICTURE. If a file with that name already
exists, the old file is KILLed.

<n> is a hex number (s,ee below).

PICTURE stores an image from Bitmap memory into a disk file.
This requires up to two megabytes of storage, depending on the
number of Image Memory planes installed in your system, and thus
consumes a large amount of disk space. If the disk becomes full
while PICTURE is storing data, an error occurs and no data is
saved on the disk.

PICTURE also stores the contents of the Color Lookup Table so
that the current colors on the Bitmap screen can be recreated
later.

The file created by PICTURE has a .PIC secondary name.

Example:

PICTURE THIS

:GC 7900 Preliminary DOS Manual Page 1-43

rhe optional argument <n> allows you to specify which planes of
Bitmap memory will be stored. You can store only the planes
~hich are applicable to your picture, and save disk space by not
storing unneeded planes. <n> is a hexadecimal number between I
and FFFF. Each bit in <n> which is SET corresponds to a plane
~hich will be stored. The least significant bit of <n>
corresponds to plane 0, the most significant bit to plane 15. If
you enter more than four hex digits, only the last four are used.

Example:

- PICTURE FRAME J 87 ~ ::

The hex number 87 bas bits 0, 1, 2, and 7 set. This command
stores the four planes which are normally installed in a
four-plane system. If your system contains only four planes,
this example is equivalent to using PICTURE without the optional
<n>.

NOTE: Each plane stored by PICTURE occupies l28K bytes
of a disk, or $20000 hex bytes. The -Free Length
entry in the directory must be enough to accomodate
this length (plus 1024 bytes for the Color Lookup
Table), or PICTURE will generate an error message.

Example:

PICTURE BOOK ;7

This example stores only planes I, 1, and 2, a total of 385K
bytes. If a picture was drawn on a four-plane system and the
blink plane was not in use, this command would store all
information necessary to reproduce the picture. Note that this
file would fit on a floppy diskette, but if four planes had been
stored, it would not fit.

For most applications, BUFF, DRAW and APPEND are much more
efficient methods of storing images. See the preceding pages
for descriptions of these transients. See also IMPLODE and
EXPLODE.

CGC 79S8 Preliminary DOS Manual Page 1-44

REFRESH

Format:

REFRESH <file> RETURN

Where:

<file> is the name of a .PIC file to be brought in
from the disk, and displayed in image memory.

REFRESH is the opposite of
megabytes of data from the
The Color Lookup Table is
description of PICTURE for

PICTURE. REFRESH brings in up to two
disk and displays them on the screen.
also loaded by REFRESH. See the

details.

If the .PIC file specified in the REFRESH command was created" on
a CGC 79SS containing a different number of Image Memory planes,
the image produce by REFRESH may not look exactly like the
original image stored by PICTURE.

Example:

REFRESH Yourself

CHROMATICS D.t:
CGC 7900

Color Graphics Computer

Preliminary DOS Manual
(including Assembler

and Text Editor)

July, 1981

:GC 7900

Format:

Where:

Preliminary DOS Manual Page 1-45

IMPLODE

IMPLODE <file> [;<n>] RETURN

<file> is the name of a file to be created by the
IMPLODE command. If a file by that name
already exists, the old file is KILLed.

<n> is a hexadecimal number (see below).

IMPLODE stores an image from Bitmap memory, similar to PICTURE.
However, IMPLODE uses a data compression technique which can
significantly reduce the amount of storage a picture requires.
Like PICTURE, IMPLODE also stores the Color Lookup Table.

The file produced by IMPLODE has a .RLE secondary name.

The advantage of IMPLODE over PICTURE depends on the complexity
of the image, and in extreme cases, IMPLODE can actually use
more disk space than PICTURE. IMPLODE will display the number of
bytes it stored, and will also display the number of bytes
PICTURE would have used. You can then decide whether to try.
PICTURE instead.

<n> is a hexadecimal number which tells IMPLODE which planes to
store. It acts exactly like the optional <n> argument in the
PICTURE command. See the description of PICTURE.

Examples:

IMPLODE Baseball

IMPLODE CRT ;7

....

CGC 7998 Preliminary DOS Manual Page 1-46

EXPLODE

Format:

EXPLODE <file> RETURN

Where:

<file> is the name of a .RLE file to be displayed
in Bitmap memory.

EXPLODE is the oPposite-- of· IMPLODE. The data produced by
IMPLODE will be expanded back into its original form and
displayed in Bitmap memory. The Color Lookup Table will be
restored to the colors it had at the time the picture was stored
by IMPLODE. See ~he description of IMPLODE for details.

If <file> was created on a CGC 7988 containing
number of Bitmap memory planes, the image produced
may not look the same as the original image.

Example:

EXPLODE Dynamite

a different
by EXPLODE

CGC 7900

Format:

Where:

Preliminary DOS Manual Page 1-47

STORE

STORE <file> <addrl> <addr2>

[+-<offset>] [@<exec>] [;<options>] RETURN

<file> is the name of the file to be created by STORE.

<addrl> and <addr2> are the starting and ending (hex)
addresses of the range to memory to be stored.

<offset> is an address offset (hex) specifying the
difference between the address the data was
STOREd from and the address it will be loaded
into. <offset> must be preceded by a + or -
sign.

<exec> is the address at which execution of the data
must begin (assuming the data is a program)

<options> are described below.

STORE creates a disk file containing all bytes from the range of
memory <addrl> thru <addr2>, inclusive. The file created by
STORE may contain an absolute binary image of memory, or it may
be an image in executable form (readable by the DOS loader).
STORE decides which type of file to create, based on the
secondary name of <file>.

STORE will allow you to specify any secondary name. If you do
not specify a secondary name, the default secondary name of .SYS
is used and a load module is generated. If you specify .OBJ as
a secondary name, a load module is also generated. Any other
secondary name causes an absolute binary image to be stored into
the file.

The arguments to STORE are affected by the secondary name of
<file>:

If the file type is .SYS, the default value for <offset> is
zero, and the default value for <exec> is <addrl>.

....

CGC 790" Preliminary DOS Manual Page 1-48

If the file type is .OBJ, the default value for <offset>
<exec> is zero. If the .OBJ file will be renamed to a
file, <exec> must be specified at this time: a .OBJ file
<exec> is zero cannot be executed.

and
.SYS

whose

If the file type is neither .SYS nor .OBJ, <offset> and <exec>
are not a1iowed. An absolute binary file is generated which
stores data in an unformatted form, storing just the bytes and
no addressing information. This type of file may be given any
secondary name, although .ASS is recommended.

A file created by STORE may be brought back into memory by FETCH
or DEBUG. If-STORE is used to create a .SYS file, the file may
be executed directly by typing its name as a DOS command.

Examples:

STORE/1 BOUSE.ASS/2 400" 4FFF

STORE Program 14000 14FFF-10"""@4400

Note that the + or - sign, and the @ sign, act as delimiters in
the command line and should not be preceded by a space.

The option .p. makes a file ·proprietary· by setting the execute
only status in the file's attributes:

STORE SECRETS 11C3C 12AF0-10"00;P

The 7900 expects .SYS files to
transient program area (TPA) or
these areas is set with the
normally be at least 16K bytes.
address $lC3C, and user programs
run in this area.

load and execute in the DOS
the DOS buffer. The size of
7900 ·Thaw· command, but will
The DOS areas begin at memory
should normally be arranged to

The STORE transient also runs in the OOS area, and would
overwrite any data in this area you are trying to STORE. That
is the reason for the <offset> parameter. Data to be STOREd can
be moved to a higher address with the Monitor ·Move Memory"
function, then the STORE command with an offset can be. used to
move the data back to its original addresses in the DOS area.

CGC 7930

Format:

Where:

Preliminary DOS Manual

FETCH

FETCH <file> [<addr>] [+-<offset>] RETURN

<file> is the name of the file to be loaded
into memory.

Page 1-49

<addr> is the address where the data from <file> is
to be loaded. <addr> is required if the
file is NOT a .SYS or .OBJ file.

<offset> is a displacement, to be added to the
normal load address of <file>. <offset>
is required for a .SYS or .OBJ file.

FETCH is the opposite of STORE. It may be used to retrieve
bytes saved by the STORE transient, or to load a .SYS or .OBJ
file into memory.

FETCH will not load an execute-only file.

If the file read in by FETCH happens to over-write important
areas of system memory, the system may hang.

Examples:

FETCH PGM.SYS/2+2000 Load the file PGN from drive 2,
at memory addresses 2000 (hex)
higher than it occupied when
it was STOREd.

FETCH BYTES.ABS lF000 Load the file BYTES into memory
beginning at address lF000 (hex)

CGC 7999

Format:

Where:

Preliminary DOS Manual

DEBUG

DEBUG <filename> [<args>] RETURH

<filename> is the name of a .SYS file to be
loaded i~to memory

<args> are the arguments expected by the
.SYS file

Page I-51

DEBUG loads a .SYS file into memory, just as if the file had
been executed by DOS. After loading the file, DEBUG jumps to
the Monitor. If the file normally expects any arguments to be
present on the command line, they may be entered as <args>.

DEBUG will not load an execute-only file.

To avoid having to use an offset when loading the .SYS file,
DEBUG relocates itself to the top of the DOS Transient Program
Area before loading <filename>. However, the TPA must be large
enough to accomodate both DEBUG and your file. (DEBUG occupies
about 512 bytes.) If necessary, the ·Thaw· command can be used
to change the DOS memory allocation. See the 7999 User's Manual
for details.

Example:

DEBUG Process

DEBUG Gnats 6 12

In the second example, 6 and'12 are arguments to be passed to
the program Gnats.

Since the current Monitor (version 1.1) reloads the stack
pointer, it will not be possible for your program to execute a
normal return to' DOS. After using DEBUG to load your program,
you may use the Monitor to trace program execution up until the
point where your programatteapts to retUt'D to DOS.

CGC 790B Prel~rninary DOS Manual Page 1-51

VERSION

Format:

VERSION <pattern> RETURN

VERSION displays the release date of the transients matching
<pattern>. You may use VERSION to see whether you have the
latest set of transients from Chromatics, or to indicate the
release date of a transient when reporting a bug to Customer
Service.

You must enter at least the disk number as <pattern>.
VERSION by itself causes an -Argument Error.-

Typing

Example:

VERSION /2 Display the release date of all
transients on the disk in drive 2.

.~

CGC 7908 Preliminary DOS Manual Page 1-52

SUMS

Format:

SUMS RETURN

SUMS performs a checksum of all PROMs in the 7908 system. This
is normally used as a check on the integrity of a PROM, or to
determine which version of firmware is installed in a system.

SUMS also displays the software revision level of the PROMs in
your 7900 system, by searching for the ASCII string ·VERi· in
each PROM. If your system contains PROMs version 1.1 or higher
(DOS version 1.4 or higher), SUMS will display the version
number of these programs.

Example:

SUMS

C 7900

)rmat:

here:

Preliminary DOS Manual . Page 1-53

XREF

<filel> XREF [A<options>]
«file2> ••• <filen» RETURN

<filel>, <file2>, etc. are ASCII files containing
an MC680"0 assembly language program.

<options> are described below.

~EF is a program designed to be used with the Chromatics
IC68000 Assembler (discussed in Section 3 of this manual). XREF
)roduces a cross-reference list of all labels in an MC68000
lssembly language source file. The line at which a label is
3efined is flagged with an asterisk (*).

(options> may include any of the following characters:

L Transmit output to Logical Device I (normally
the screen)

T Transmit output to Logical Device 1 (normally
the RS-232 serial port, assumed to connect to
a printer)

P<n> Print <n> lines per page (including 4 lines
used as a header)

W<m> Print lines up to <m> characters wide «m> may
range from 81 to 132)

-R Don't cross-reference registers (AI, Dl, etc.)

If <options> are omitted, the default is ATP61Wl32+R. This
causes listing to be directed to the printer, 61 lines per page,
132 columns per line, and registers are included in the XREF
listing.

Example:

XREF Program

XREF ALW85 Program
."

List on the screen, limit lines
to 85 characters wide.

• ,
,

•

CGC 79B8 Preliminary DOS Manual. Page I-54

:GC 7909 Preliminary DOS Manual Page 1-55

DOS ERROR MESSAGES

DOS will report errors which occur as a result of illegal
commands, faults in the disk system, or programming errors. One
of the messages below will be displayed when a DOS error occurs.
When possible, DOS will display the drive number where the error
occurred.

No index signal detected
No seek complete
Write fault
Drive not ready
Drive not selected
No track 000 detected

ID read error
Uncorrectable data error found during a read
ID address mark not found
Data address mark not found
Block not found
Seek error
No host acknowledgement
Diskette write protected
Data field error found and corrected
Bad track found
Format error

Invalid disk controller command
Illegal logical block address
Illegal function for the specified drive

Diagnostic RAM error

Disk controller not ready
Controller time out error
Unable to determine controller error
Undefined controller state
Controller protocol sequence error

Undefined load error state
Record cound error
Checksum error
Premature EOF during load
DOS buffer too small
Transient program size too small

End of file reached
File is write protected
Attempted to read thru density barrier
Attempted to transfer data on odd address

.....

CGC 79"" Preliminary DOS Manual

Unable to find requested file

Unable to create new file space

Unable to close requested file

Empty slot found
Unable to update the directory

No run address
Unable to find disk name
Argument error
Attempt to access a non-existant drive
Unable to initialize drive I
Unable to initialize drive 2
Syntax errorl Missing argument

Premature format termination
Error mapping routine not implemented
Unable to fetch this file
File is delete protected
File type error
File is execute only
File is to big to append
Insufficient stack size
/8 mode is not allowed in argument filenames
Undefined DOS error.

Page.I-56

:GC 79"0 Preliminary DOS Manual Page 1-57

CGC 7988 Preliminary DOS Manual Page 1-58

-

CGC 7ge0 Preliminary DOS Manual Page 2-1

"",

SECTION 2 - THE EDITOR

CGe 79"" Preliminary DOS Manual Page 2-2

....

•

CGC 79"'" Preliminary DOS Manual Page 2-3

INTRODUCTION TO THE EDITOR

The Chromatics' CGC 7900 Text Editor is a disk-based program used
for creating and maintaining text files. It is primarily used
in conjunction with the Assembler, for creating programs
executable by the Me68""" processor. The editor is also good
for workinq with other types of text files, such as
correspondence or documentation. This manual was, in fact,
written on a text editor.

The editor executes under DOS, the Disk Operating System, which
was described in Section One of this manual. If the DOS prompt
(a green asterisk) is not currently visible, press the ~ key.
Enter your password and press RETURN (or simply press RETURN).
Make sure that the system contains a disk which has the editor
on it, the program EDIT.SYS. Then type:

EDIT RETURN

It may be necessary to specify the number of the disk drive
containing the EDIT program, as:

EDIT/n

Where n is the number of the drive where EDIT.SYS resides. This
will only be necessary if another drive, not containing the
editor, has been in use.

When the editor expects input, it will prompt you in one of three
ways. If the editor expects a command, the prompt is a 4-digit
line number followed by a question mark. If, it expects a line
of text to be inserted into the file, the prompt is a 4-digit
line number followed by an -I- and a question mark. If you are
in MODIFY mode, the prompt is a number followed by the letter -M
and a question mark.

8888 ?

8888 I ?

8888 M ?

Command prompt

Inse,rt prompt

Modify prompt

....

CGC 7908 Preliminary DOS Manual Page 2-4

The line number is a pointer position within the file. The
editor refers to lines by number, and maintains an internal
pointer somewhere within the file. Commands are provided which
will explicitly move the pointer around, and many commands will
implicitly move the pointer. For example, if the pointer is on
line 3, and you LIST lines 3 thru 28 of the file, the pointer iJ!
now on line 28.

NOTE: When the edit pointer is at the beginning of the
file, the line number is displayed as "B". When it is
at the end, the line number is displayed as wEw.

When you see the command prompt, you may enter any of the legal
editor commands described in this manual. The INSERT command
will take you out of command mode and put you into insert mode.
When you see the insert prompt, anything you type will be
inserted into the file at the current pointer position. Hitting
the DELETE key will return you from insert mode to command mode.

Each of the commands in this section may be abbreviated to the
smallest number of characters which will uniquely identify that
command. For example, the OPEN command may be abbreviated to
the letter "0·, since no other command begins with that letter.
However, the command PRINT can only be abbreviated to two
characters, PR, so that it won't be confused with the PAGE
command (both begin with .p.). In general it is safe to
abbreviate commands to two or three characters •

:GC 7900 Preliminary DOS Manual Page 2-5

INLINE

-INLINE W is the standard subroutine used by the editor for
fetching a line of input from the keyboard. This routine is
also used by other CGC 7900 programs, such as DOS. INLINE
accepts a line of input, and allows editing, inserting and
deleting characters, and overstriking characters. When the line
is completed to your satisfaction, press RETURN. Note: the
cursor can be anywhere on the input line when RETURN is struck,
but the entire visible line will always be accepted as input.

The left and right arrow keys move the cursor around within the
line currently being typed. The Home key moves the cursor to the
left edge of the current line. The cursor position is used to
determine where text will be inserted, or where other commands
will take effect.

INLINE supports the editing commands printed in blue on the
front of the cursor control keys: Insert Character, Delete
Character, Clear Line, Clear to End Of Line, Recall Last Line.
These blue functions are accessed by holding down the ~
(control) key and pressing the indicated key.

Del Char (Delete Character) removes one character at the current
cursor position. All characters to the right of the cursor move
left one position.

Clear Line erases the line currently being typed.

Clear EOL (Clear to End Of Line) erases all characters from the
current cursor position to the end of the line.

Recall (Recall Last Line) replaces the line currently being
typed with the last complete line that was typed. This function
is useful for repeating a command, perhaps altering it slightly
with the other functions. Press Recall more than once to bring
back earlier lines; this moves backward into the recall buffer.
Press SHIFT with Recall to move forward· in the recall buffer.

CGC 790" Preliminary DOS Manual Page 2-6

Ins Char (Insert Character) puts the routine into insert mode.
The character under the cursor begins blinking, and any
characters typed are now inserted, forcing characters to the
right of the cursor to move out of the way. To leave insert
mode, use one of the arrow keys to move the cursor. This places
the routine in its normal (overstrike) mode, and any characters
typed now will simply overwrite existing characters under the
cursor.

INLINE is designed to be a general-purpose rQutine for ALL user
input in the CGC 7900. The Appendix describes the calling
sequence for INLINE, for users who wish to use it in their own
programs. It is STRONGLY SUGGESTED that all programs use INLINE
to accept input from the user. This means that all programs
will support character editing as described above, and the user
will become accustomed to using the same editing sequence for
all program input.

:GC 7900 Preliminary DOS Manual Page 2-7

EDITOR COMMANDS

rhis section discusses the commands accepted by the editor.
E:ach of these commands m.ay be entered at the command prompt.

In each command, one or more delimiters may be present to
separate the various parts of the command. A delimiter may be a
space or comma. For convenience, we will always use a space in
our exampl es.

If the editor cannot interpret a command, or if for any reason
an error occurs during a command, the command line is re-printed
on the screen with the cursor positioned over the error. You
may then edit the command line, using the INLINE editing
functions on the cursor keypad. This avoids retyping the entire
input line, and also illustrates exactly where the error
occurred.

...

CGC 7908 pre~iminary DOS Manual Page 2-8

OPEN

Format:

OPEN <file> RETURN

Where:

<file> is the name of an existing disk file containing
ASCII text. <file> is assumed to have. the
secondary name .SRC, unless a different
secondary name is entered.

Before a.file can be edited, it must be OPENed as an input file.
The OPEN command searches for a specified file and returns an
error if the file cannot be located. If the file does exist,
OPEN simply returns to command mode. Note: OPEN does not
actually cause any text to be read in from the file! See GET
below. .

The file is assumed to contain ASCII text. Each
file is terminated by a Carriage Return character,
Feed. The editor will provide a Line Feed after
when LISTing or PRINTing the text.

Examples:

OP DOOR

OP WINDOW

OP ThatFile/2

line of the
and no Line

each Return

CGC 7909 Preliminary DOS Manual Page 2-9

GET

Format;

GET RETURN

GET <.> RETURN

Where:

<.> is a decimal number.

GET reads in text from the currently open input file (the file
most recently specified by OPEN). If the GET command is used
without an argument, enough text is read in to approximately
half fill the available memory. If a <.> is specified, only
that many lines are read in. The text is appended to the end of
the text already in memory.

If the GET command causes the entire file to be read
message -End Of Input Data- is printed, and no more text
read in from the input file.

in, the
may be

If the GET command causes memory to be filled with text, the
message -Workspace Full- is printed, and no more text is read
in. It is now necessary to PUT some text back on disk, to make
room for more of tpe file~ See PUT and PAGE for examples.
Note: Using GET without arguments is recommended, since it will_
never totally fill the workspace.

Examples:

GET

GET 39

CGC 790. Preliminary DOS Manual . Page 2-10

LIST

Format:

LIST RETURN

LIST <11> RETURN

LIST <11> <12> RETURN

Where:

<11> and <12> are line numbers.

LIST displays lines of text from the contents of memory. If no
line numbers are entered, LIST begins at the current pointer
position. If one line number is given, listing begins at that
line and continues thru the end of the file. If two line
numbers are given, listfng begins at the first line number
entered and continues thru the second line number.

LIST may be paused by typing a Control-S, and restarted with
Control-Q. LIST may be stopped at any time by pressing DELETE.

The output from LIST is always directed to Logical Output Device
0, normally the screen or a part of the screen. Each line
displayed by LIST is shown with its line number, for reference.

Examples:

LI

LI 20"

CGC 7908

Format:

Preliminary DOS Manual

PRINT

PRINT RETURN

PRINT <.1> RETURN

PRINT <.1> <.2> RETURN

Page 2-11

PRINT performs the same function as LIST, but sends its output
to Logical Output Devices 0 and 1. Since Logical Output Device
1 is normally connected to a printer, this produces a hardcopy
of the lines listed. Unlike LIST, PRINT does not display line
numbers in front of each line.

Examples:

PR

PR 100 190

CGC 79SS Preliminary DOS Manual Page 2-12

INSERT

Format:

INSERT RETURN

INSERT <.> RETURN

Where:

<.> is a line number.
'--

INSERT takes the editor from command mode to insert mode.
in insert mode, the prompt is in the form:

NNNN I ?

While

The wI- indicates that material is being inserted into text.

If <.> is entered with the INSERT command, insertion begins at
the line specified. All lines from <.> up will move up in the
file to make room for lines being inserted. If <.> is not
specified, insertion begins at the current pointer position.

INSERT is the most important command in the editor. It
you to enter text to create a new file. While in inse~t
any of the INLINE editing features may be" used, such as
and delete character.

allows
mode,

insert

Insert mode remains in effect until the DELETE key isstruek, at
which time the editor returns to command mode.

CGC 7ge9 Preliminary DOS Manual Page 2-13

NOTE: The INSERT command causes the line numbers of
part of the text in memory to be changed, as all lines
past the insertion move up in memory. It is advisable
to LIST the file after leaving insert mode, before
performing any operations which are dependent on line
numbers.

Examples:

IN

IN 15

If you enter a Mode code sequence (such as a ·Set Color·
command) into the input line, the sequence is displayed in
compressed form, using special characters. It is not executed
until you press the RETURN key. If you enter a tab character
(CTRL I) into the line, it too is displayed but not executed.
The Mode character resembles a double tilde (-), and the tab
character resembles a right-pointing arrow. (These characters
are taken from the ·A7· character set, described in the CGC 7999
User's Manual.) Pressing RETURN will redisplay the input line
with all Mode codes executing as they normally would when
printed from a program. Tabs will be executed according to the
current tab stop spacing in effect (normally 4 characters apart).

Using the up and down arrow keys or the Delete Line function,
you can move from "INSERT mode into MODIFY mode. - Modify can also
be entered by giving the MODIFY command, as discussed next.

CGC 7998

Format:

Where:

Preliminary DOS Manual

MODIFY RETURN

MODIFY <.> RETURN

MODIFY

<.> is a line number.

MODIFY is the editor's most flexible mode.
MODIFY, the editor's prompt is in the form

NNNN M ?

Page 2-14

When you enter

and is displayed in magenta. The current line is also displayed
in magenta.

MODIFY allows you to use the INLINE editing features on existing
text in memory. You can insert or delete characters using the
labeled functions on the cursor keypad. When you have finished
altering a line, you must press RETURN to store that line in its
new form. If you move the cursor up or down using the arrow
keys, the line you modified will NOT be stored, but will return
to its previous condition.

Using the Insert Line and Delete line functions, you can move
between MODIFY mode and INSERT mode at will. When in MODIFY,
the prompt will be displayed in magenta and will be in the form
-NNNN M?- While in INSERT mode, the prompt is in yellow, and is
in the form -NNNN I ?-

Pressing DELETE moves you back to command mode.

Examples:

MO

MO 25

CGC 7900 Preliminary DOS Manual Page 2-15

When in MODIFY, as in INSERT, a special compressed form is used
to display Modes, tabs, and other control-characters. In
MODIFY, the line containing the cursor is always displayed in
compressed form so that any control-characters in the line will
be visible and may be edited. Other lines on the screen during
MODIFY are displayed normallYJ only the line with the cursor is
displayed in this special form.

CGC 7991 Preliminary DOS Manual Page 2-16

Format:

DELETE

DELETE RETURB

~ELETB <.1> RETURN

DELETE <.1> <.2> RETURB

DELETE removes a set of lines from
entered with no arguments, only the
(The curr'ent line is the line whose
prompt.)

the text. If DELETE is
current line is deleted.

number is printed in the

If DELETE is entered with one argument <.1>, the single
whose line number is <.1> is deleted. If DELETE is entered
both <.1> and <12>, all lines within the range <11> thru
inclusive, are deleted.

NOTE: The DELETE command causes the line numbers of
part of the text to be changed, as all lines past the
lines deleted are moved down in memory. After a
DELETE, it is advisable to LIST the file before doing
any other operations which are dependent on line
numbers.

line
with

<12>,

CGC7909 Preliminary DOS Manual Page 2-17

FIND

Format:

FIND \<string>\ RETURN

FIND <11> \<string>\ RETURN

FIND <11> <12> \<string>\ RETURN

FIND <11> <12> <N> \<string>\ RETURN

FIND locates a string. The range of lines to be searched, and
the number of searches to perform, are specified in the command:

FIND with no arguments other than <string> begins searching at
the current pointer position, and reports all occurances of
<string> until the end of the file.

FIND with <11> is the same as above, but begins searching at
line <11> rather than at the current pointer position.

FIND with <11> and <12> searches all lines from <11> to <12>,
inclusive.

FIND with <11>, <12> and <N> begins searching at line <11>, and
terminates when it reaches line <12> OR if it has found <N>
occurances of <string>.

The backslash character W\W is used as a delimiter to define the
search string. Any non-numeric character (except WlW) could be
used as a delimiter, provided it does not occur in <string>. The
terminating delimiter (just before RETURN) is not required.

Examples:

FI \8\

FI 1 999\.\

Find all zeroes from the current
pointer to the end of the file.

Find all decimal points in the file
(through line 999)

FI 1 999 l8\the\ Find up to 18 occurances of the
word Wthe W, between lines 1 and 999.

During a FIND, you may press CTRL S to pause the display, and
then CTRL 0 to continue. DELETE returns you to command mode.

CGC 7998 Preliminary DOS Manual Page 2-18

SUBSTITUTE

Format:

SUBSTITUTE \<stringl>\<string2>\ RETURN

SUBSTITUTE <11> \<stringl>\<string2>\ RETQRN

SUBSTITUTE <11> <12> \<stringl>\<string2>\

SUBSTITUTE <11> <12> <P>
\<stringl>\<string2>\

SUBSTITUTE <11> <12> <P> <p>
\<stringl>\<string2>\

SUBSTITUTE performs a search-and-replace
enter a number of options to specify
substitution takes place:

function.
exactly

RETURN

RETURN

B~TQBH

You
how

can
the

SUBSTITUTE with no arguments affects only the current line, and
if <stringl> is on that line, it is replaced by <string2>. Only
one occurance of <stringl> will be replaced.

SUBSTITUTE with <11> affects only the line specified, and only
one occurance will be replaced.

SUBSTITUTE with <11> and <12> begins at line number <.1> and
continues thru line number <.2>. If <stringl> is found on any
line, it is replaced by <string2>, but only the first occurance
of <stringl> per line will be affected.

SUBSTITUTE with <11>, <12> and <P> affects all. lines from <11>
to <.2>, inclusive, and replaces <P> occurances per line.

SUBSTITUTE with <11>, <12>, <P> and <P> affects all lines from
<11> to <.2>, inclusive, replaces <P> occurances per line, but

.... begins at occurance <F> on each line.

The backslash W\W is used as a delimiter to define the beginning
and end of each string. Any non-numeric character (except W(W)
could also be used as a delimiter, provided it does not occur in
either <stringl> or <string~>.

The terminating delimiter (just before the RETURN) 1s not
required.

CGC 799"

Examples:

Preliminary DOS Manual page. 2-19

SU \A\B\

SU 54\123\321\

SU 1"9 2"8\me\I\

SU 188 2"8 99\me\I\

Change the first occurance of
RA" to "B" on the current
line (if any).

On line 54, change "123" to
·321" (one occurance at most)

Change "me" to "I· everywhere
between lines 188 and 288 (not
more than once per line).

Same as above, but up to 99
times per line (effectively
changes all occurances on
each line in the range).

SU 1 188 1 2\this\the\ Between lines 1 and 188,
change the second occurance
"this· to ·the· on each line.

SU 1 188 99 2\this\the\ Same as above, but changes
all occurances EXCEPT the
first occurance on each line.

SU 18 55.\./. Change backs1ash to slash
using a period as a
delimiter), once per line,
between lines 18 and 55.

SUBSTITUTE displays each line it changes. To abort the
SUBSTITUTE process, press the DELETE key. You will return to
command mode, and any lines which have not already been
displayed by SUBSTITUTE will not be affected.

SUBSTITUTE can be very destructive, if not used carefully. It
is good practice to use FIND before SUBSTITUTE, to see exactly
what will be affected by SUBSTITUTE. For example,

PI 1 99 1\A\

so \A\B\

Find the first occurance of "A·
and display the line.

Change "A· to "B· at thi' line

By using the Recall Last Line function, you can repeat these two
commands as often as required, examining each occurance of "A·
before changing it to "8".

CGC 7988 Preliminary DOS Manual Page 2-28

LAST

Format:

LAST RETURN

Each time the command prompt is printed, the current pointer
position is memorized. The LAST command moves the pointer to
its most recent location in memory. Using LAST more than once
will flip back and forth between the current location and the
most recent location.

Here is a sample session with the LAST command:

7988's Output User's Input

8818 ? LIST 28 38

(Lines 28 thru 38 are listed)

8838 ? LAST

8818 ? LAST

8838 ?

CGC 79"9 Preliminary DOS Manual Page 2-21

PUT

Format:

PUT RETURN

PUT <11> RETURN

PUT <11> <12> RETURN

PUT removes text from memory, and writes it back to the disk.

If PUT is entered with no arguments, all text
written out to the disk. If one argument <11> is
lines from the beginning of text thru line <11> are
to the disk.

in memory
entered,
written

is
all
out

If two arguments are entered, only lines between line number
<11> and line number <12> are written out to the disk.

PUT is primarily useful for dividing up a file into smaller
files. By doing a PUT followed by a CLOSE, a new file is
created which contains only the lines which were POT.

PAGE and EXIT are more general-purpose commands for ending an
editing session.

Examples:

PO

PO 69 99

CGC 7999 Preliminary DOS Manual Page 2-22

CLOSE

Format:

CLOSE RETURN

CLOSE <filename> RETURN

CLOSE enters the output file into the disk directory, and closes
the file. If CLOSE is entered without a <filename>, the new
file has the same name as the old file; the editor will then
automatically KILL the old file.

If a <filename> is specified, the new file has that
file will have .SRC as a secondary name unless you
different secondary name.

name. The
specify a

Once a file has been closed, either by CLOSE or by EXIT, it
exists on the disk and can be re-opened by OPEN as an input file.

Examples:

CL

CL MIND

CL NEWFILE

PAGE and EXIT are more general-purpose commands for ending an
editing session.

3C 7900 Preliminary DOS Manual Page 2-23

PAGE

ormat:

PAGE RETURN

~he PAGE command is used when editing large files. If a file is
~o large that it cannot all fit into memory at once, it is
lecessary to bring in a portion of the file, edit that portion,
~hen go on to the next. PAGE dumps all of the text in memory
~ack to the disk, then brings in enough text from the input file
to half fill the available memory.

PAGE is thus equivalent to doing a PUT of all text in memory,
followed by a GET.

Example:

PA

CGC 7998 Preliminary DOS Manual

DRIVE

Format:

DRIVE (N) RETURN

The output-from the editor normally goes onto the
which the input file was read. You may alter
DRIVE command, forcing the editor's output onto
DRIVE causes the editor to create a new output
specified disk.

Example:

DR 2

Page 2-24

same disk from
this with the
another disk.
file, on the

If you have already written some text to the output file, using
PAGE or PUT, DRIVE is not allowed until you CLOSE the currently
open output file. (If it were allowed, the text you had written
to the disk would be lost.)

:GC 7900 Preliminary DOS Manual Page 2-25

EXIT

Format:

EXIT RETURN

EXIT <filename> RETlJRN

EXIT is the proper way to end an editing
PUTs all text in memory onto the disk.
series of GETs and PUTs (if necessary) to
input file has been written to the output
remains in the input file, the output file

session. EXIT first
Then it performs a

insure that the entire
file. When no text
is closed.

If EXIT is entered with no <filename>, the output
same name as the input file. The editor then
KILLs the old input file.

file has the
automatically

If EXIT is entered with a <filename>, the output file is given
that name. The file will have .SRC as a secondary name unless
you specify otherwise.

Example:

EX

EX RAMP

CGC 7991 Preliminary DOS Manual Page 2-26

ABORT

Format:

ABORT RETURN

The ABORT command ends an editing session, but does not close
the output file. If any changes had been made in the file, the
changes are lost.

ABORT is used if you decide that you don't want to alter the
file after all. If you had been using the editor simply to
examine a file (rather than making changes), ABORT would be the
logical way to end the session.

Example:

AB

NOTE: Pressing the nas, MONITOR, or TERMINAL keys will
also result in leaving the editor. To Ie-enter the
editor after an abort, execute the key sequence

SHIFT USER W

this will -warm-start- the editor, with the data in
memory intact.

:;C 7900 Preliminary DOS Manual Page 2-27

CGC 7999 Preliminary DOS Manual Page 2-28

CGC 7909 Pre~iminary DOS Manual Page 3-1

"'.

SECTION 3 - THE ASSEMBLER

CGC 790e Preliminary DOS Manual Page 3-2

CGC 7999 Preliminary DOS Manual Page 3-3

INTRODUCTION TO THE ASSEMBLER

The Chromatics MC68099 resident assembler is used to
machine-readable object code from assembly language
files. The assembler executes under the Chromatics
Operating System, described in Part I of this manual.

produce
source

Disk

The full MC68090 instruction set is supported by the assembler.
In this manual, it is assumed that you understand the MC68990
processor architecture, as described in the Motorola MC68900
Userls Guide (available from Chromatics). The examples provided
in this manual are intended only to demonstrate .proper syntax,
and do not necessarily show useful programming techniques.

It is assumed that you are familiar with basic operating
techniques used in the CGC 79901 if not, consult the CGC 7900
Userls Manual before attempting to use the assembler.

tGC 7999 Preliminary DOS Manual Page 3-4

FiQrmat:

Where:

ASSEMBLER COMMAND LINE

ASMB ["<options>] <filel> RETURN

ASMB ["<options>] <filel>

["<options>] <file2> ••• RETURN

<filel>,<file2>, etc. are the names of source
files to be assembled

<options> are characters which specify assembly
options (see below)

Yhe ASMB command invokes the file ASMB.SYS, the Chromatics
~C68999 resident assembler. The ASMB command must be entered at
the DOS prompt, the green asterisk (*).

The assembler expects its input files to be in ASCII text form.
Input files must have the secondary name .SRC.

The assembler produces an output file of type .SYS, which may be
directly executed by DOS. If you enter the command line

and press
assembled
produced.
name as a

ASMB PROGRAM

the RETURN key, the file PROGRAM.SRC would
and an output file named PROGRAM.SYS would
This .SYS file can be directly executed by typing

DOS command:

PROGRAM

be
be

its

GC 79"" Preliminary DOS Manual Page 3-5

rhen the assembler closes its output .SYS file, any old .SYS
:ile with the same name is KILLed. Thus, a program can be
!dited, assembled, re-edited and re-assembled any number of
:imes, but only the most recent version of the source and object
:ode will be active on the disk.

Several options are available to control the assembly and the
output listing. The option field is indicated by the ·carat
character, A. The options may be entered in any order.

C Close output file, producing an executable program
file as output.

-C Do not close output file.

T Type listing on prin~er (through Logical Output 1).

-T Display listing on screen (through Logical Output ").

L Follow LIST/NOLST commands in source file. The
listing is on until a NOLST is encountered.

+L Force listing ON regardless of source file.

-L Force listing OFF regardless of source file.

The default conditions for options are C and L. If no options
are specified, this will result in the output file being closed,
listing on the 79"" screen, and listing being controlled by LIST
or HOLST commands in the program source file.

If you do not specify any options, you must not enter the carat
(A) •

.....

CGC 79"" Preliminary DOS Manual

All options are valid at the
the first file name <filel>.
options prior to other files,
various files indi~idually.

start of the command line, before
You may repeat any of the -L
in order to control listing of the

Examples:

ASMB TEST Assemble the file TEST, close output
file, listing on the screen. Output
file is named TEST.SYS.

ASMB A_C TEST Assemble, list to screen, do not close
output file.

ASMB A_L TEST Assemble and close, no listing.

ASMB AT-C+L TEST Assemble, list on printer, do not
close output file, listing ON.

ASMB AT_L TESTI A+L TEST2

The last example assembles the program which is contained in
both files, TESTI and TEST2. The output file is clos~d, and is
given the name TEST2.SYS. This file is created on the same drive
which contained the file TEST2. Listing is supressed for file
TESTI and is forced on for TEST2. (Options other than the -L
family would not be valid prior to TEST2.)

If a program is contained in more than one file, each file must
have its own END statement.

:;C 79"" Preliminary DOS Manual

SOURCE FILE FORMAT

he text editor is used to create program source
re processed by the assembler. Source files have
ame of .SRC, and are stored in ASCII text form.

~he general form of a line in the source file is:

[<label» <instr> [<operands>] [<comments>]

rhe four fields may be separated by spaces or tabs.

Page 3-7

files, which
a secondary

<label> is optional. If included, it must be alphanumeric, from
one to twenty-four characters. Other lines of code may refer to
this line by referencing <label>.

<instr> is required. It must be a legal instruction mnemonic,
as defined in the MC680"" instruction set, or it may be a
pseudo-instruction recognized by the assembler. This manual
includes descriptions of the pseudo-ops available. Consult
Motorola literature for details on the MC680"" instruction set.

(operands> are the arguments to the instruction.
instructions require different arguments.

Different

(comments> may be included on any line,
convenience. It may be useful to use
beginning of a comment, to distinguish
a program.

at the programmer's
a color-code at the

different sections of

In addition, any line beginning with an asterisk (*) is ignored,
and whole-line comments may be included in this way.

The first (or only) source file in a program will' generally
begin with an ORG statement, to initialize the Internal Program
Counter (IPC). Each source file must end with an END statement •

.
=···- _~· ·.·_ .. ~_." .. _"'~ .. , __ ._,.·.u .. _~_ .• __ '_ ._

-

CGC 7908 Preliminary DOS Manual Page 3-8

"LABELS

Labels always begin in the first column (character position) of
a line of code. If the first character in a line is a space or
tab, the line does not contain a label.

A label may contain any upper or lower case letter, A-Z or a-z,
or digits 0-9. It may contain up to 24 characters, and all
characters are significant. Opper and lower case characters are
distinct; that is, the. l~bels AB and Ab are considered
different. A label must begin with a letter.

A label is assigned the value of the IPC at the instruction
where the label occurs, unless the instruction is EgO or SET
(see Pseudo-Instructions).

Certain reserved words have special meanings to the assembler,
and may not be used as labels. They are:

D8 Dl D2 D3 D4 D5 D6 D7
AI Al A2 A3 A4 AS A6 A7
SP OSP CCR SR IPC

It is possible, but not wise, to use an instruction mnemonic as
a label.

CGC 7900 Preliminary DOS Manual Page 3-9

INSTRUCTIONS

The instruction field is separated from the label by a space or
a tab. If a line does not contain a label, the instruction must
be preceded by a space or tab to separate it from the beginnin9
of the line.

An instruction will either be a member of
instruction set, or a pseudo-instruction which is
the assembler as an order to do somethin9.

the MC68000
recognized by

If an instruction is a le9al MC68000 op code, it may have a data
size associated with it. Certain MC68000 instructions can
operate on different data sizes: Byte (8 bit), Word (16 bit), or
Lon9 (32 bit). For these instructions, the desired. data size
may be specified by appending the characters -.B-, -.W- or -.L
to the op code. The default ',data size of Word (16 bit) is
assumed if the data size code 1s omitted.

If an instruction does not have a variable data size associated
with it, the characters B, W or L may NOT be appended.

Examples:

MOVE Dl,D2

MOVE.B D3,D4

LEA (Al),A2

Word size is assumed by default.

Byte size is declared.

Lon9 word size 1s required for this
instruction; a data size code would
not be permitted here.

CGC 79"" Preliminary DOS Manual Page 3-1"

OPERANDS

The operands, if any, follow the instruction. Operands are
separated from the instruction by a space or tab. If more than
one operand is present, they are separated by commas.

Most instructions have one or two operands. Instructions which
use two operands consider the first to be a "source" and the
second to be a "destination", as:

MOVE.W 01,05

ANDI.L t$7F, (A2)

SUB.W OS, (A3) +

Move l6-bit data from 01 to 05.

Get 32-bit data from the address
pointed to by A2; AND it with
immediate data $7F (hex); then put
the result back where we got it.

Subtract OS from the l6-bit word
'- pointed to by A3; put back the

result, then increment A3 by 2.

The same terminology of "source" and "destination" is applied to
compare operations. Note that the "destination" is compared to
the "source", not the other way around:

CMP.L
BGT

AS,A!
Somewhre

Is Al greater than AS?
If YES, do the branch.

CGC 7900 Preliminary DOS Manual Page 3-11

COMMENTS

Any line may contain a comment field. The comment field may be
separated from the remainder of the line by a ·Set Color·
command, which will cause the comment to be displayed in a
different color from the program code. The color code is not
necessary in most cases (except as mentioned in the note below),
but it will improve the legibility of your programs. Color
codes in a source line are never transmitted to a printer.

"-To insert a color-coded comment into a line of program source
using the 7900 editor, first separate it from the rest of the
line by a tab (CTRL I) or spaces. Then press ~, followed by a
color key. When displayed by the editor in response to LIST,
the color will be executed as typed. When in MODIFY or INSERT
mode, the line containing the cursor is always displayed in
compressed form, using special symbols for control-characters.
A typical statement might normally appear as:

LABEL EQU value This is a comment

If a color code had been'typed before ·This·, the comment field
would appear in that color. In MODIFY mode, or when entering
the line in INSERT mode, the same line would appear as:

LABEL-EQU-value--C6,This is a comment

The tab character is abbreviated with a right-arrow symbol, and
This

color.
of a

'the Mode character is abbreviated with a double tilde.
example uses color number 6, or yellow, as the comment
You may wish to'define a Function Key to be the equivalent
·Set Color· command.

If a color code (or any Mode sequence) is present in a source
line, the assembler assumes that it delimits a comment, and does
not attempt to parse any items beyond the Mode character.

NOTE: Certain op-codes will accept an indefinite
number of arguments (Example: Define Constant, DC).
In these cases, the assembler will continue to parse
arguments from the source line until it reaches a Mode
character or a carriage return. If you include a
comment in a source line of this type, you . MOST
delimit the comment with 'a Mode code, or the comment

'will be assembledl Note that the END pseudo-op also
accepts a variable number of arguments (zero or one
expressions). A comment on an END statement should be
delimited with a color code. ,"

CGC 7ge8 Preliminary DOS Manual Page 3-12

X;C 7908 Preliminary DOS Manual Page 3-13

INSTRUCTION EXAMPLES

rhis section discusses the instructions available in the MC68000
instruction set, and provides examples.

....

CGC 79BB Preliminary DOS Manual Page 3-14

ARITHMETIC

Format:

<op-code.size> <source>,<dest>

Add, subtract, multiply, divide, and negate are provided.
Multiplication and division may use signed or unsigned
arithmetic. BCD operations of add, subtract and negate are
provided. Operations may use the X (extend) bit of the
condition codes for multiprecision operations. CLR sets an
operand to zero. Test, and Test-And-Set, set the condition codes
according to an operand's value. TAB is also used to synchronize
processors in.a multiprocessor system.

Examples:

ADD.L (Al),02

MULU 03,04

SUB.W .5,01

OIVS D5,09

CLR.B (A3)

TST.W D4

Add the 32-bit data pointed to
by Al, to the contents of 02,
results in 02.

Multiply, with unsigned numbers,
04 by D3, results in 04.

Subtract 5 from the lower 16 bits
of Dll put the result in Dl.

Oivide OB by 05 using signed
numbers. Put the result in DB.
(See Motorola literature for
details of this instruction.)

Zero the byte whose address is
in A3 •

Set condition codes according to
the low 16 bits of D4.

CGC 7999 Preliminary DOS Manual Page 3-15

COMPARE

Format:

CMP.<size> <source>,<dest>

CBK <bound>,Dn

<source> is subtracted from <dest> and condition codes are set
accordingly. The conditional branch instructions are arranged
so that a -Greater Than- condition tests true if <dest> is
Greater Than <source>.

Neither <source> nor <dest> is altered by a compare.

CBK causes a processor trap to occur if the contents of register
Dn are less than zero or greater than <bound>.

Examples:

CMP.L (A3) ,01 Compare Dl to 32-bit data at
address AJ,

BLT Labell Branch here if 01 < (A3)
BGT Labe12 Branch here if 01 > (A3)

Else 01 == (AJ) I (Profound •••)

CBK '$199,09 trap if D9 > 256.

....

CGC 798" Preliminary DOS Manual Page 3-16

LOGICAL

Format:

<op-code.size> <source>,<dest>

Logical operations of AND, OR, Exclusive OR, and NOT are
provided.

Examples:

Format:

ORI.W '1, (A6)

AND.L D4,D3

OR immediate data (1) with the
word whose address is in A6.

Logical AND P4 with 03 (32 bits),
results in D3.

SHIFT AND ROTATE

<op-code.size> <count> ,<dest> ,.

Arithmetic and logical shifts and rotates are provided. The
shift count may be specified by immediate data or by a register.
If the effective address of the destination is in memory, only
one bit position at a time may be shifted. Rotates may use the X
(extend) bit •

Examples:

ASR (A8)+ Shift the data pointed to by AS,
one bit right. Word size is implicit
since no other size is allowed here.

ROL.L '3,01 Rotate Dl 3 bits left, using all
32 bits of data in the register.

:GC 7909 Preliminary DOS Manual Page 3-J.1

BIT OPERATIONS

Format:

<op-code> <bit no.>,<dest>

A single bit may be tested and/or modified in a register or
memory location. The condition codes are always set according
to the state of the bit BEFORE any modification. If <dest> is a
register, any of the 32 bits may be tested. If <dest> is an
effective address in memory, the operation may only be byte
size, and therefore only bits S through 7 may be tested.

Examples:

BTST IS,StatWord Check bit S in memory location
StatWord. Set condition codes.

BCRG '18,DS Set condition codes according to
bit 18 in OS, then flip that bit.

EFFECTIVE ADDRESS

The effective address of an operand may be computed and loaded
into an address register, or pushed onto the stack.

Examples:

PEA RetnBere Push the effective address of the

LEA

label RetnBere onto the stack. The
next RTS (Return from Subroutine)
will cause a jump to this address.

Displ(AS,Dl.L),A6 Load the effective address
found by adding AS to Dl
and to the value Displ,
put the result 1noA6.

CGC 7999

Format:

MOVE.<size>

~OVEQ.L

EXG

Preliminary DOS Manual

MOVE DATA

<source>,<dest>

l<immed>,Dn

Rn,Rn

Page 3-18

Move operations transfer data between registers and/or memory.
MOVEQ (Move Quick) is a special form which will load small data
into the low byte of a data register, sign-extended into the
upper three bytes. Using MOVEQ, <immed> must be between -128 and
+127. EXG exchanges the 32-bit contents of two registers.

The MOVE instruction is very flexible, as all addressing modes
may be used for <source> and most modes are also valid for
<dest>.

Examples:

MOVE.L Dl,(A3)+

MOVE.B I' ',D7

MOVEQ.L I$F,DS

EXG Dl,D5

Move 32-bit data from Dl to
the address pointed to by Al.
Postincrement Al.

Put a space character into the
low byte of D7.

Move a hex F (15) into DS.
MOVE would work here, but would
take extra object code.

Exchange register contents"

3C 7900

ormat:

Preliminary DOS Manual

MOVE MULTIPLE

MOVEM.<size> <Register list>,<dest)

MOVEM.<size> <source>,<Register list>

Page 3-~~

10ve Multiple stores several registers into memory or retrieves
:hem with a single instruction. <size> of word (.W) or long
(.L) is allowed. <Register list> may include the names of data
or address registers. A hyphen implies that all registers
~ithin the hyphenated list should be saved, while a slash implies
that only the listed registers should be saved:

Dl-D7 registers 01 thru 07, inclusive

OS/Al/A3 registers OS, Al, and A3 only

The registers must be specified in ascending order, with data
registers listed first. MOVEM makes it easy to "push" and then
·pop· a set of registers for temporary storage.

Examples:

MOVEM.L D0-A6,-(SP)

MOVEM.L (SP)+,00-A6

Push all regist&rs-D0 thru
07 and A0 thru A6 onto the
stack (pointed to by SP).

Restore these registers.

MOVEM.W DS-07/A0,Storage Store registers A0, OS,
06 and D7 into words of
memory beginning at
label Storage.

-

CGC 7908 Preliminary DOS Manual Page 3-28

BRANCH, JUMP

Format:

<op-code> <location>

JMP is an Unconditional transfer to an absolute address. JSR is
a subroutine call to an absolute address. There is no
instruction to conditionally transfer to an absolute address.

BRA and its variations are relative transfers. The assembler
computes the relative distance between the current IPC and the
destination operand, and ent~rs this as the relative
displacement in object code. A branch must always reference a
label within plus or minus 32767 bytes of the current IPC. (See
also ·short branch· below.)

Branches may be conditional or unconditional. Conditional
branches are in the form Bcc, where cc is the condition under
which the branch is taken. For example, BEQ will branch if the
condition codes show the last comparison came out EQual (zero).

Valid conditional tests are:

CC carry clear LS low or same
CS carry set LT less than
EQ equal MI minus
GE greater or equal NE not equal
GT greater than PL plus
HI high VC no overflow
LE less or equal VS overflow

The conditional tests PL, MI, GE, LT, GT, and LE treat operands
as sign-extended numbers. If the high bit of the operand is
set, the operand is negative. The other conditional tests treat
operands as unsigned numbers. Motorola MC68000 processor
literature lists the flags examined by each of the conditional
tests above.

CGC 79"9 Preliminary DOS Manual Page 3-21

A branch may be in the form BRA.S, where the "S- implies
"short-. Since these are relative branches, a short branch may
only be used to transfer to a location within plus or minus 127
bytes of the current pc. Using short branches whenever possible
saves time and space. The assembler will automatically convert
a branch to a short branch if possible. If the program contains
a short branch to an address more than 127 bytes away, an error
occurs.

Branches to a subroutine (BSR and its variations) push the
return address onto the stack. A short form of subroutine call
(BSR.S) is also provided. A RTS (Return from Subroutine) pops
this address off the stack.

Examples:

JMP Overhill

BRA Faraway

BRA.S Nearby

BLT.S Wasless

BSR Subpgm

JSR Farsub

Unconditional transfer to label
Overhill.

Unconditional Branch to label
Faraway.

Unconditional Short branch to
label Nearby.

Short, conditional branch to
label Wasless, occurs if condition
codes show the last comparison
came out -Less.Than- (LT).

Call to a subroutine.

Call to a subroutine which is
more than 32767 bytes away, or
which is accessed through an
absolute address (such as a jump
table).

CGC 7908 Preliminary DOS Manual Page 3-22

DECREMENT AND BRANCH

Format:

DBee Dn,(loeation)

The DBee instruction will implement a loop in a very simple
fashion. It first tests the condition codes specified by ee. If
this test is true, the instruction falls through (does not
branch or perform any other operation).

If the test is NOT true, the lower word of data register (Dn) is
decremented by one. Then if the lower word of the register does
not contain a -1, the branch to (location) is taken. (location)
must be within a 16-bit displacement of the DBce instruction.

The loop will therefore conti~ue ~ti1 either (1) the test in ce
is true, OR (2) the lower word of Dn contains -1.

Example:

Loop

MOVE.W 11881,D1

TST.B

DBEO

(A2)+

D1,LOOp

Loop up to 1001 times

Is memory • I here?

If not,· look again until
D1=-1 or the test came out
-EO-, meaning ·(A2)=1

A special form of this instruction is DBRA. No condition codes
are tested by DBRA; the loop simply continues until the lower
word of Dn is -1.

CGC 7900 Preliminary DOS Manual Page 3-23

SET

Format:

See <dest>

The byte specified by <dest) Is set true or false, according to
the result of the conditional test cc. If cc is true, <dest) Is
set to all ones. If false, <dest) is cleared.

Example:

SEQ D4 If the zero flag is set, set D4 true.

See also TST (Test) and TAB (Test-And-Set), .discussed with the
arithmetic operators.

CGC 7981 Preliminary DOS Manual Page 3-24

SYSTEM CONTROL

These instructions are used to control overall system operation
or to set system flags.

RESET

RTE

STOP

TRAP

TRAPV

Reset external hardware.

Return from exception (interrupt).

Stop execution and load status register.

Load trap vector and execute routine.

Trap on overflow.

The MOVE, ANDI, ORI, and EORl instructions may be used to modify
the SR (status register) or the GCR (condition code register).

NOTE: All current 7988 software runs in Supervisor
state •. If your programs modify the SR, they should
maintain the Supervisor bit SET at all times, or not
al ter this bit.

CGC 7900 Preliminary DOS Manual Page 3-25

INSTRUCTION TYPES

The MC68000 instruction set includes certain op-codes which can
be varied according to the addressing mode in use. These
instructions are:

ADD (add)

AND (logical AND)

CMP (compare)

EOR (logical Exclusive OR)

MOVE (move data)

NEG (two's complement)

OR (logical OR)

SUB (subtract)

The allowed variations are selected by appending one of the
following characters to the basic instruction:

A Address. Destination register must be
A0-A7, and byte size (.B) is not allowed.

I Immediate. The size of the immediate data
is (if possible) a9justed to the size
specified by the instruction.

M Memory. The CMPM form requires that source
and destination operands must use
postincrement (An)+ addressing mode.

Q Quick. Allows small data to be operated on
using a special, short form of the instruction.
Size limits depend on the instruction.

X Extend. Used for multiprecision operations.

In the case of the variations A, I and Q, the assembler
automatically chooses one of these three if the program does not
specify one. The program may always specify a variation, in
which case, the rules for that variation must be followed. It
is useful to explicitly specify the variation when writing
well-documented code.

....

CGC 79"" Preliminary DOS Manual Page 3-26

CGC 7909 Preliminary DOS Manual Page 3-;U

EXPRESSIONS·

Many types of assembler instructions may contain arithmetic
expressions. An expression is evaluated according to the
standard rules of algebra. Spaces must not be typed within an
expression, since the space character is used to delimit fields
i~ the source program line.

The following operators are provided, and are listed in the
order in which they are evaluated:

Unary minus (a minus sign with nothing in front of it)

Logical AND (&), logical OR (I)

Multiply (*), divide (/)

.
Add (+), subtract (-)

Operators with the same precedence are evaluated from left to
right. Parentheses may be used to override the normal
precedence, if desired.

Numbers are assumed to be decimal, unless preceded by a dollar
sign ($) in which case they are interpreted as hex. ASCII
constants (up to 4 characters long) and symbols may also be used
in expressions. All intermediate results are stored in 32-bit
form, and an '0' error results if an expression overflows •

.. Examples:

9876+$A9B

BABY-grand*(PIANO/88)

'This'I'That'&TBEM

CGC 79"" Preliminary DOS Manual Page 3-28

:GC 7909 Preliminary DOS Manual

PSEUDO-INSTRUCTIONS

?seudo-instructions, or pseudo-ops, are instructions to the
lssembler. They affect the way the assembler generates object
:ode. They do not, in general, generate code themselves. (The
i)C pseudo-op is a.n exception, and does generate code.)

CGC 79""

Formata

Preliminary DOS Manual

ORG (ORIGIN)

ORG <expression>

ORG.L <expression>

Page 3-3"

ORG is used to set the -origin- of the code generated by the
assembler. ORG loads a value into the Internal Program Counter
(IPC). When using the (default) ORG form, all absolute
addresses are assembled in -absolute short- form, which confines
them to values between $"""" and $7FFF, and between $FF8""" and
$FFFFFF.

In the CGC 79"", the -long W ORG.L is more commonly used.
forces all absolute addresses to long form, which allows
to the entire 79"" address space (~"""""" to $FFFFFF).

ORG.L
access

(The exception to this rule occurs if a symbol name
with a w.Ww or w.Lw specifier. In this case, the
used and the ORG type is overridden.)

is suffixed
specifier is

Examples:

ORG.L PROGSTART

ORG.L $lC3C.

DOS expects programs to run in the DOS Transient Program Area,
which begins at $IC3C. Your programs should normally be ORG'ed
at this address.

ORG may be used in several places during a program, if desired.

Preliminary DOS Manual Page 3-31

EQU (EQUATE)

Format:

<label> EOO <expression>

EQU equates a label to a value, the value of <expression>.
<label> is required in this context, for the EQU statement is
meaningless without a label. <expression> may contain constants
or other labels which have been previously defined in the
program.

Examples:

BexNum EQU $0A0A

Gold EQU Silver+32

HERE EQO IPC

The last example equates the label wHERE w to the value of the
assembler's Internal Program Counter. The IPC always has the
value of the address for which code is currenty being generated.
Note the equivalence of the following two pieces of code:

and,

SUBRT- MOVE.L Dl,D3

SUBRT EQO
MOVE.L

IPC
Dl,D3

Either of these two sections would generate identical object
code if used in the same place in a program.

OGe 79B8 Preliminary DOS Manual Page 3-32

SET

Format:

<label> SET <expression>

SET assigns the value of <expression> to <label>. The
difference between SET and EOO is that a label defined by SET may
be re-defined later in the program by another SET. A label
defined by SET may not be defined by EOO, nor may it be used in
the label field of a line of,qode.

The rules for <expression> are the same as for EOO.

:GC 7911 Preliminary DOS Manual

DC (DEFINE CONSTANT)

Format:

DC.B (expression> [,(expression> •••]

DC.W (expression> [,(expression> •••]

DC.L (expression> [,(expression> •••]

The DC pseudo-ops generate bytes, words or
whose value is equal to (expression>. More
may be defined by a single DC statement, by
expressions.

Examples~

DC.B 'hi'

DC.B I,0,l,-S,$A9,$FF

DC.W $4S04,7001,-l,'WO'

DC.L $l81lA4C9,'LONG'

long-words
than one
using a

Pa~';.; 3-3J

of code
constant
list of

NOTE: The DC.B pseudo-op may cause the IPC to end up
on an odd address after assembling an odd ·number of
bytes. This will cause instructions following the
DC.B to assemble on odd addresses, which is illegal.
See DS.L below for a way around this problem. .

If the expression does not evaluate to a number within the size
range specified (8, 16 or 32 bits), an ·S· error occurs.

CGC 79"" Preliminary DOS Manual Page 3-34

When entering an ASCII string in
string packed into memory as one
number of bytes is entered, the
zero-filled on the right, to the
boundary.

a DC.W or DC.L statement, the
character per byte. If an odd
last word (or long word) is
nearest word (or long word)

Examples:

DC.W ' A' would put 'A' ," in memory

DC.W 'ABC' would put 'A','B','C'," in memory

DC.L ' A' would put 'A',","," in memory

DC.L 'AB' would put 'A' ,'B' ,"," in memory

.' -~.--

CGC 7903

Format:

Preliminary DOS Manual

OS (DEFINE STORAGE)

OS.B <expression>

os.w <expression>

OS.L <expression>

Page 3-35

The OS pseudo-ops reserve space by advancing the IPC past a
number of bytes, words or long words. <expression> determines
the number of bytes, words, or long words skipped. No code is
generated by OS pseudo-ops.

Examples:

OS.B 14

OS.L 1

NOTE: The DS.B and OC.B pseudo-ops may cause an odd
number of bytes to be assembled. This causes the IPC
to end up on an odd address, and subsequent
instructions will be assembled on odd addresses, which
is illegal. To avoid this problem, always follow DC.B
ana OS.B pseudo-ops with a wOS.L 3n ~ine. This
insures that no machine instructions will begin on odd
addresses. OS.L used with an argument of zero bumps
the IPC to the nearest even boundary.

Example:

OS.B 9
OS.L 8

Reserve some space, then
align IPC to a word boundary.

CGe 7998 Preliminary DOS Manual

END

Format:

END [<addr>]

The END statement tells the assembler that no more
source code exist in the file. Each file must end with
or the assembler will attempt to read past the end of
and an error will occur.

Page 3-36

lines of
an END,

the file

The last (or only) source file in a program may have an address,
<addr>, in the argument field of its END statement. <addr>
tells DOS where to begin execution of the program, if and when
the program is executed as a .SYS file. If <addr> is omitted,
the assembler assumes the program begins at the beginning, and
will set <addr> by default to the first instruction in the
program.

CGC 79B" Preliminary DOS Manual Page 3-37

PAGE

Format:

PAGE

The PAGE pseudo-op tells the assembler to output a form-feed
during the assembly listing. It may be used to break up a
listing into convenient pieces. PAGE has no effect on the
object code.

LLEN

Format:

LLEN <length>

LLEN instructs the assembler that it may print lines containing
up to <length> characters. The default value for <length> is
85, corresponding to the width of the OGC Overlay screen.
<length> may be set to suit the width of your printer, and must
be a number between I and 255.

Example:

LLEN 132

CGC 790" Preliminary DOS Manual

NOLST

Format:

NOLST

NOLST turns off the assembly listing. It is typically
conjunction with LIST, to cause only selected parts
program to be listed during assembly.

LIST

Format:

LIST

Page 3-38

used
of

in
the

LIST resumes the assembly listing, following a NOLST. LIST is
in effect by default, unless a NOLST has been encountered.

CGC 7900 Preliminary DOS Manual Page 3-3~

ADDRESSING MODES

The MC68000 provides a large number of effective address modes,
which define the source and/or destination operands in an
instruction. This section discusses and provides examples of
each of the addressing modes supported by the MC68000, and the
proper syntax for their use.

REGISTER DIRECT

Format:

An or On where n is a number, S thru 7.

This mode operates directly on the C9ntents of a register, DO
thru 07 or AO thru A7.

Examples:

MOVE.L A1 ,A4

ADD.W DS,03

Move the contents of register Al
into register A4 (32 bits).

Add the lower 16 bits of the contents
of DO to the lower 16 bits of the
contents of 03. Put the result into
the lower 16 bits of 03.

CGC 7908 Preliminary DOS Manual Page 3-48

ADDRESS REGISTER INDIRECT

Format:

(An) where n is a number, 8 thru 7.

This mode operates on the memory location whose address is in
the specified address register, An.

Examples:

Format:

MOVE.B (A0),Dl Move the byte whose address is
in A0, into register Dl.

ADD.L D3,(AS) Move the contents of register D3
(32 bits) into the long word whose
address is in AS.

ADDRESS REGISTER INDIRECT WITH POST INCREMENT

(An)+ where n isa number, 8 thru 7.

The operand is pointed to by the specified address register, as
it was in Address Register Indirect; After the address is used,
the register An is incremented by 1, 2, or 4, depending on
whether the operation specifies byte, word, or long word.

Examples:

MOVE.B D4,(A2)+ Move the low byte of D4 to the
address in A2, then add 1 to A2.

ADD.L . (A3)+,D8 Add the long word whose address
is in A3, to D0; then add 4 to Al.

CGC 7900 Preliminary DOS Manual

ADDRESS REGISTER INDIRECT WITH PREDECREMENT

Format:

-(An) where n is a number, 0 thru 7.

The operand is pointed to by the specified address
Before the address is used, it is decremented by
depending on whether the operation specifies byte,
word.

register, An.
1, 2, or 4,
word, or long

Examples:

Format:

MOVE.L D2,-(Al) Decrement Al by 4; then move 32-bit
data from D2 to the location whose
address is in Al.

CLR.B -(AS) Decrement AS by 1, then clear the byte
at that address (set it to zero).

ADDRESS REGISTER INDIRECT WITH DISPLACEMENT

deAn) where n is a number, 0 thru 7;
d is a 16-bit displacement.

The displacement d is added to the contents ot register An.
This sum provides the address of the operand. d is a used as a
Sign-extended 16-bit number.

Examples:

MOVE.B D3,TABLE(A3)

CMP.W 2(AB),D7

Move the low byte of D3 to
the address pointed to by the
sum of TABLE plus the contents
of Al.

Compare the lower word (16 bits)
of D7, to the word whose address
is two plus the contents of A0.
This is the address of the first
word after (AI).

CGC 7908

Format:

Preliminary DOS Manual Page 3-42

ADDRESS REGISTER INDIRECT WITH INDEX

where n is a number, 0 thru 7, d(An,Rn.W)

d(An,Rn.L)
d is an 8-bit displacement.

The index register (Rn) may be any address or data register.
The low word or the entire register may be used as index,
depending on whether the suffix ·.W· or -.L- is appended to the
index register name.

The displacement d is used as an 8-bit sign-extended numb'er. If
the low word of Rn is specified, its value is also sign-extended.

Examples:

MOVE.L Name(Al,D4.W),DS Move 32-bit data from the
address given by: the
contents of Al, plus the
l6-bit contents of D4, plus
the 8-bit value of Name.
Data moves into DS.

AND.B D0,1(A0,D7.L) Logical AND the low byte of D8,
with the byte whose address is
given by: AS plus D7 (32 bits)
plus 1. The result is placed
in this same memory address.

~GC 7909 Preliminary DOS Manual Page 3-43

ABSOLUTE SHORT

rhe absolute address of the operand is specified.
a sign-extended l6-bit number, which limits
addressing memory between $0000 and $7FFF, and
and $FFFFFF.

It is used as
this mode to

between $FF8000

NOTE: If the statement ORG.L is included in the
program, this addressing mode will not be used by the
assembler. Absolute Long will be substituted (see
below).

Example:

JMP $4B0C Jump to address 4B9C (hex)

MOVE.L Al,$l29 Move the 32-bit contents of A1
to address 120 (hex)

ABSOLUTE LONG

The absolute address of the operand is specified, and is used as
a 32-bit number.

Example:

ADO.W

JMP

$lA2BC,D3 Add the l6-bit data from address
lA2BC to register 03, leave the
result in 03.

$890998 Jump to address 809B08 (hex)

-

CGC 79fc'" Preliminary DOS Manual Page 3-44

PC WITH DISPLACEMENT

Format:

*+d where d is a 16-bit expression.

*-d

The address of the operand is given by adding the sign-extended
displacement d to the current value of the program counter.

The expression "*" has the value of the SECOND w()rd of the code
which is generated for this instruction. Therefore, if the
instruction has a label NAME, the value of "*" is NAME+2.

Examples:

BRA *+$18 Branch to the address 20 hex bytes
(16 words) past this instruction.

LEA *+LABE,L-(IRC+2'> ,AS

The second example above would be used to generate
position-independent code for loading the address of LABEL into
AI. It would be operationally similar to the statement

MOVEA.L 'J:,ABEL,AS

which would also load AS ,~4'd.~.Lh,fL,~",a.dl:!l·~ess of
the LEA sta tement above takjts_ .. f~l{~.J;'. by"tes);; and
LABEL is within the 16-bit OIsplacemene""range
addressing mode.

LABEL. However,
is preferred if

required by this

CGC 7909

Format:

*+d eRn.if)

*-d (Rn.L)

Preliminary DOS Manual

PC WITH INDEX

where d is an 8-bit expression,
Rn is an address or data register.

The address of the operand is given by adding the sign-extended
displacement d, to the 16 or 32-bit contents of register Rn, and
to the current value of the program counter.

Examples:

JMP *+OFFSET(D3.L) Jump to the address given
by OFFSET plus the 32-bit
contents of D3, plus the
current Program Counter.

MOVE.W *+(DATA-(IPC+2»(AB.W),D4

Move a word into D4
from the address which is
beyond label DATA by an
amount contained in AB.W
(the low 16 bits of AB).

.....

CGC 79"" Preliminary DOS Manual Page 3-46

IMMEDIATE

Format:

'<expression)

Immediate aata is always preceded by the pound sign (I). It is
used to specify an absolute number other than absolute
addresses. The' character tells the assembler to use immediate
data, rather than an address. Consider the distinction between
these two statements:

MOVE.L $4"",D" Move a long word from address $4""
into DI (getting data from memory
at address 411 hex).

MOVE.L 1$4"",D" Move the hex number $4"" into DI.

Certain instructions require immediate data1 for example, Move
Quick:

MOVEO.L III,DI Put decimal II into Dl.

CGC 791.;l0 PrEliminary DOS Manual page j-41

ERRORS

The assembler indicates errors as a one-character abbreviation,
to the left of the source line listing_ Errors are always
printed regardless of the NOLST pseudo-opcode or the -L
(suppress listing) option.

Error Code Description

M Mode error (,wrong operand type)

Z Size error (wrong size operand)

C Code error (unrecognized opcode)

B Division by zero

D Doubly defined label

U Undefined label

A Argument error in operand

(Parentheses error

L Label too long

E Expression error

I Error in number

o Overflow (number out of range)

The following are non-fatal errors:

Phasing error (label does not agree with IPC)

S Storage Error (overflow from a DC instruction)

Phasing errors are usually the result of other errors earlier in
the program, in which a statement did not assemble properly_ It
is a good practice to fix other errors first, and phasing errors
will usually disappear as a result.

. .
. . . ~... .. _ .. -- - - - .. - - .- _. - - -.- ~- ... -- .--

CGC 798' Preliminary DOS Manual Page 3-48

CGC 79as Preliminary DOS Manual Page 3-49

CGC 7999 Preliminary DOS Manual Page 3-58

CGC 7908 Preliminary DOS Manual Page A-l

APPENDIX A - PROGRAMMING THE CGC 7980

CGC 7998 Preliminary DOS Manual Page A-2

-

CGC 7900 Preliminary DOS Manual Page A-3

APPENDIX A - PROGRAMMING THE CGC 7900

This section deals with programming techniques applicable to the
Chromatics CGC 7909. Two important concepts are discussed,
which greatly simplify the process of adding user-written
software to the CGC 7900: modules, and jump tables.

Modules are sub-programs which are loaded into memory (RAM or
EPROM). When the system is booted, all modules are "linked
together in a fashion which allows any of them to be executed by
ASCII code sequences. All of the features implemented in the
7900 are written as modules: this includes I/O drivers, Plot
submodes, Mode, Escape and User codes. Using the information in
this section, the user can write modules which perform custom
functions, and link them into the CGC 7900 system.

Jump tables provide access to important routines in the CGC 7900
software. Functions such as character input and output, Escape
code processing, plotting primitives (dot and vector), and the
programmable sound generator, can all be accessed thru the jump
tables described in this section. Judicious use of these tables
prevents the user from -re-inventing the wheel- in his own
programs.

CGC 798. Preliminary DOS Manual Page A-4

MODULES

A module is a sub-program, written according to a list of
guidelines so that it may be linked into the CGC 798. software.
There are seven types of modules:

B: Boot only. This module contains code which is executed at
boot time, but not otherwise used by the system.

I: Input device. This is a driver which interfaces a physical
input device to the system. Currently defined wI· modules drive
the keyboard and serial port.

0: Output device. This is a driver which interfaces a physical
output device to the system. Currently defined ·0· modules
drive the serial ports, windows, and keyboard lights.

Mode: Mode code. This module performs functions which modify
the attributes of a window. The window software calls Mode
modules when it receives a Mode code sequence.

Plot: Plot submode. This module describes a Plot submode, and l

is called when a window receives a Plot code sequence.

Escape: Escape code. This module is called by the .Escape code
processor when an Escape code sequence is received. Escape
codes generally alter the status of the entire system.

User: User code. This module is called by the Escape code
processor when a User code sequence is received. User codes
generally alter the status of the entire system, or cause
execution of a controlling program (such as DOS).

:GC 7900 Preliminary DOS Manual Page A-S

~odu1es may exist in EPROM or in RAM. Most of the
firmware in the 7900 consists of modules. For each Mode,
Escape and User code sequence recognized by the 790B, there
module in firmware which defines the actions taken by that
sequence. All modules in the system are w1inked w whenever:
system is powered-up; the BESET key is pressed; or the keys
and BOOT are pressed together.

EPROM
Plot,
is a
code
the
~

The process of wlinkingW means that the system is scanned for
modules, the addresses of all modules are loaded into dispatch
tables, and any necessary initialization is performed. Note
that this w1inkingW is done sequentially, through EPROM, then
through any RAM modules which may have been loaded by the user.
This means that two or more modules may define the same code
sequence, and the LAST one linked will be the one in the
dispatch table after linking is complete. This makes it easy
for a user module to re-define a system function, with his
module replacing the firmware module which has -the same
identifying code at its beginning.

Mode, Plot, Escape and User modules may accept arguments. The
arguments required by the module are defined by the module, and
the system automatically parses arguments before passing control
to the module. This relieves the user from writing argument
parsing routines, and insures that all arguments are parsed in a
consistent manner.

A module must save any registers it modifies, and restore the
registers before exiting. As decribed below, sever-a! registers
are pre-loaded before the module is executed. These registers
provide the module with system status information.

CGC 79". Preliminary DOS Manual Page A-6

THE LINKING PROCESS

The system scans two areas for modules when linking is
performed: first, each EPROM pair on the 79""· Raster Processor
Board is checked. If an EPROM pair is installed, and if a valid
module is found at the start of the EPROM, linking proceeds thra
the EPROM.' Linking terminates when an invalid length descriptor
or an invalid module type code (one not in the set B, I, 0,
etc.) is found. Linking then proceeds to the start of the next
EPROM pair.

After all EPROM modules have been linked, the system checks for
RAM modules. RAM modules, if they exist, must be loaded into
system RAM at· the address pointed to by MDLE. (MOLE is a
pointer in CMOS memory, and its contents may be altered with the
-Thaw· command. See the 79"" Oser's Manual for details.) The
default address for RAM modules is $lF""", this allows 4K of
space for modules, with a single Buffer Memory card installed.

If RAM modules exist, they must follow all the
in this section, with an additional provision:
presence of RAM modules, the bytes 'MDLE' must
RAM at the start of the first RAM module:

rules described
to indicate the

be loaded into

ORG.L
De.L

$lF"".
'MDLE'

Org where Thaw wants us to be
Identify we have RAM modules here

etc.

The bytes'MDLE' must NOT be included if a module is being put
into EPROM.

Modules are expected to be wback to
consecutive words of code through memory.
any tables or other data used by a module
module, not after it.

backW,
This

must

existing
requires

be WITHIN

The last module should end with the following statement:

De.L -1,-1
. .

This indicates to the linker that no more modules follow. . .

in
that
the

CGC 7909 Preliminary DOS Manual Page A-7

MODULE CONSTRUCTION

Each module begins with a length descriptor. The length is
to determine where one module ends, and where the next
begins. The address of each module is determined at boot
during the linking process, and loaded into a dispatch table
future reference.

used
one

time
fo~

Next, a module contains one of the characters B, I, 0, Mode
(Control-A), Plot (Control-B), Escape (Control-[), or User
(Control-U), to define the type of module. This is immediately
followed by a character which uniquely identifies that module.

The remainder of the module is variable, depending on the type
of module you are writing. Each of the seven types of modules
is discussed in this section, and examples are provided.

....

CGC 7988 Preliminary DOS Manual Page A-8

BOOT MODULES

A Boot module is executed upon power-up, when the system RESET
key is pressed, or when the system 1s booted (by pressing the
~RL and BOOT keys). A Boot module might be written to
initialize a piece of hardware, or to pre-load the Case Table
for interf~cing to a certain host computer.

The Boot module contains a length descriptor (word), the
character 'B' followed by a dummy character, and the code to be
executed. It ends with a RTS instruction.

ORG.L $lF888 Org where Thaw says to Org
DC.L 'MOLE' Required for RAM modules

DC.W MdleEnd-IPC This is our length
DC.B 'B' ,8 Identify a Boot module

• '--

• Boot code begins here •••
• • • • • and ends here.
•

RTS

MdleEnd EQU IPC
DC.L -1,-1 Make sure linking ends here
END

:GC 791313 Preliminary DOS Manual Page A-9

INPUT/OUTPUT MODULES

I/O modules define the interface between a physical device, such
as a printer, and the logical device assignment structure in the
791313. The I or 0 module must be responsible for handling all
transfers to or from the device, checking the status of th~
device (if applicable), and booting the device (if necessary).
Note that the Boot section of an I or 0 module performs the
function of a B module.

The I or 0 module begins with a length descriptor (word). This
is followed by the character 'I' or '0', defining an input or
output module, and a character between A and Z to identify this
particular I/O module. This character (A-Z) is used in the
-Assign- command to identify the phyical device which is being
assigned.

Two words of code must follow the identifying character. These
must be either SHORT branches to Boot and Status sections of the
module, or RTS instructions. The Status section is used in an
'I' module to see whether a character is ready to be read. The
Status code should return the Z flag SET if no character is
availabl.e, or clear it if a character is available. If the
Status code returns Z set, the system will not execute the main
code.

The Status section is not used in an '0' module •. An '0' module
must not return until it has completed processing a character.

The main body of the module follows, terminated by a RTS. The
Boot and Status portions of the module must also terminate with
a RTS. The system passes a character to an Output module in
register D13, and expects an Input module to return a character
in D13. The low 8 bits of the register are used.

Note that a single device capable of both input and output
requires two modules, one I and one O. (Our device '0' below may
have an I module and an 0 module associated with it.)

CGC 798" Preliminary DOS Manual Page A-l"

* * Sample Input module (type 'I') for a device named O.
*

*

ORG.L $lF88B
DC.L 'MDLS'

Org where Thaw says to Org
Required for RAM modules

DC.V MdleEnd-IPC Our length
DC.B '1','0' Input module for device '01

BRA.S Qboot
BRA.S Qstat

* Main code for inputting a character from device Q.
*

*

MOVE.B QDataPort,D"
RTS

Get input data

* Code for booting device Q. (Executed at Boot time)
*
Qboot

*

MOVE.B ''',QCtrlPort
MOVE.B '$FF,QCtrlPort
RTS

Initialize device Q with
funny little numbers.

* Code for checking status of O.
*
Qstat MOVEM.L D",-(SP)

MOVE.W QStatusPort,D"
BTST.L '3,DB
MOVEM.L (SP)+,DB

RTS

MdleEnd EQO
DC.L
END

IPC
-1,-1

Save the register we use
Get l6-bit status word
Bit 3 says ready if SET
Restore DB (MOVEM doesn't
change any flags)

No more modules here

CGC 79ag Preliminary DOS Manual Page A-ll

ARGUHENT PARSING

The module types discussed beyond this point may have arguments
associated with them. An argument is a set of characters or
numbers which is passed to the module. Mode, Plot, Escape anq
User modules may accept arguments. The arguments required by a
module are defined by that module, and are parsed by the system
before the module is called. The module then simply picks up
its arguments and processes them.

The system will parse ten types of arguments:

Arg type Description

1 A single character

2 A string of characters, delimited
by a space, comma, or semicolon

3 A string of characters, delimited
by a semicolon ONLY

4 A signed l6-bit decimal number (or a
number in Binary Coordinate form, if
the system is in Binary Mode)

5 A l6-bit hexadecimal number

6 A decimal number, or the X component
ofa coordinate defined by the cursor

7 A decimal number, or the Y component
of a coordinate defined by the cursor

8 An X-Y coordinate pair (combination of
6 and 7, will accept cursor position)

9 Any number of coordinate pairs,
delimited by a semicolon

A A decimal number, scaled but without
translation

Argument types 6, 7, 8 and 9 are designed
data. Each of these will scale and
according to the scale factors in use
executed the module.

to parse coordinate
translate arguments

in the window which

OGC 7908 Preliminary DOS Manual Page A-l2

MODE MODULES

A Mode module is executed when a window receives the Mode code
sequence identifying that module. Mode ~odules are expected to
affect only the window which called them, although nothing in
the system will prevent a Mode module ·from affecting other
windows or.other aspects of the system.

A Mode module consists of a length descriptor (word), followed
by the Mode character (control-A, decimal 1), and a character
which uniquely identifies the module. This character may be any
ASCII character above '8' (hex $38).

The next long word in .the Mode module defines a list of
argu~ents, to be parsed and passed to the module. Each nybble
(4 bits) of the long word specify one of the ten argument types
listed above. The argument list in this long word is
right-justified, and the least-significant nybble defines the
FIRST argument to be parsed. The long word must be left-filled
with zeros to indicate the end of the argument list. Up to 8
arguments may be defined in this long word.

Example:

DC.W MdleEnd-IPC Length Descriptor

DC.L $88888144 Argument list

This list would specify that the module requires two decimal
numbers, followed by a Single character.

Arguments to a Mode module are put onto the WAl stack.w That is,
the Mode module may assume that its a~guments are waiting for it
at the address pointed to by (AI), and successive bytes.

CGC 7900 Preliminary DOS Manual Page A-13

ORG.L $lF000 Org where Thaw says to Org
DC.L 'MDLE' Required for RAM modules

DC.W MdleEnd-1PC Length descriptor

DC.B Mode,'Z' Module identifier
Mode EOU 1 (Mode is Control-A)

DC.W $0000 Our arg list (one decimal
DC.W $0014 and one character)

* * Code for module -Mode Z· begins here.
* * The user would type Mode Z <n>, <c>
* * where <n> is a decimal number (the terminating
* comma is required by the arg parser)
*
* :*

<c> is a single character
i

MOVEM.L D0-D2,-(SP) Save what we use

1

MOVE.W (Al)+,D2
MOVE.B (AI) ,D0

Get first argument (decimal I)
Get second argument (char)

'~*
* Now do something useful with the args •••
* Print character <c> on the screen, <n> times.
*

CLR.L Dl Specify Logical Output Dev "
PRNT JSR CHAR OUT Print the char in D0
CHAR OUT EOU $800008 (See Jump Table description)

SUBO.W Il,D2 Decrement the count
BNE.S PRNT Do until D2 = "

MOVEM.L (SP)+,D0-D2 Restore what we saved
RTS

MdleEnd EOU 1PC
DC.L -1,-1 End of modules
END

CGC 79"1 Preliminary DOS Manual Page A-14

....

CGC 790" Preliminary DOS Manual Page A-IS

PLOT MODULES

A Plot module performs a graphics function. All of the plotting
features in the 7900 firmware are written as Plot modules. Plot
modules generally accept coordinate data as arguments, and
perform some plotting function based on this data. The
nlinking- procedure used for all modules means that you can
write your own Plot modules, link them in to replace existing
modules in the 7900 firmware, and implement any features you
desire.

Plot modules begin with a length descriptor (word). This is
followed by the Plot character (control-B, decimal 2) and a
character which identifies the module. The identifier may be
any character above ASCII R@_ (hex $40). The next two words
specify arguments to be passed to the Plot module. This
argument list is similar, but not identical, to the argument
list for Mode modules.

Once a Plot code sequence has been entered, execution of the
Plot module begins. The module is then repeatedly called, each
time enough arguments have been entered to satisfy its list.
The FIRST time a Plot module is entered, it may wish to perform
a different sequence of instructions to initialize itself. A
status bit tells the module whether it is being entered for the
first time, or on subsequent calls. Also, the second word of
the argument list is used to select arguments for the first
call, and the first word selects arguments for subsequent calls:

DC.W
DC.B

DC.W
DC.W

ModEnd-IPC
Plot, • Z'

$0011
$0008

Two chars for repeated calls
Coord arg for first call

In this example, the Plot module requires a coordinate argument
when it is first executed. After the coordinate argument is
satisfied, the module is entered. The system will, from that
point on, accept two single characters before entering the
module. (This is the argument scheme used by Incremental
Vector.) The process of scanning for a pair of characters, and
calling the module, continues until another Plot submode is
entered or until the user turns -Plot Off.-

~ ..

....

CGC 7988 Preliminary DOS Manual Page A-16

On entry to the Plot module (and other modules), certain
registers are set up for convenience. Applicable to this
discussion is D7, which contains window status. The wSubmode w
bit of D7 (bit 17) is set when a Plot module is first entered,
to indicate that -this Plot Submodewas just entered. w If t2l Plot
module cares about whether the submode has just been entered,. it
must check this bit and perform any necessary initialization if
the bit is' set. Then, it must clear the -Submode- bit.

If the Plot module does not make this distinction, and does not
care whether it has just been entered, then the argument list
should be duplicated in the first and second word:

DC.W ModEnd-IPC
DC.B Plot,'Z'

DC.W
DC.W

$SSS8
$SSS8

A coord for repeated calls
and also for the first call.

Note that Plot modules may only parse FOOR arguments before
execution begins; Mode modules could have up to eight.

So that Plot code and Mode code arguments will not
Plot arguments are stacked on the wA3 Stack w and may
up from the addresses pointed to by Al.

conflict,
be picked

Remember that more than one window at a time may be in the same
Plot Submode. A Plot module should not store any local data
which could interfere with another window calling the Plot
module. Local data should be stored in the window table, or
somehow be localized to the window •

:GC 790S Preliminary DOS Manual Page A-17

*
* A sample Plot module.
* ORG.L $lFSeS

DC.L 'MDLE'

DC.W ModEnd-IPC
DC.B Plot,'Z'

Plot EOO 2 (Plot is Control-B)

DC.W $eeeS One coord pair normally,
DC.W $eeSS Two pair the first time thru.

Submode EOO 17

..
*
*
*

*

BTST tSubmode,D7 Did we just enter the submode?
BEO.S Norm No ••• normal entry

Submode was just entered. We can initialize ourself
in this block of. code if necessary.

BCLR tSubmode,D7 Prepare for next entry
RTS

* Come here if submode was NOT just entered.
*
Norm

*

MOVEM.L DS-D2,-(SP)
MOVE.W (A3)+,DS
MOVE. W (A3) ,D1

Save registers
Get X argument into DB
Get Y argument into D1

* Now, do something with the arguments here ••••
* Maybe plot a vector or something.
*

MOVEM.L (SP)+,DS-D2 Restore registers
RTS

....

CGC 7908 Preliminary DOS Manual Page A-IS

ESCAPE AND USER MODULES

Escape and User modules are identical to each other, and are
similar to the Mode modules discussed earlier.

An Escape or User module begins with a length descriptor (word),
followed by the Esc ($lB hex) or User ($15 hex) character, and a
single ASCII character which identifies the module. The
identifier may be any character above ASCII '@' ($48 hex).

The next two words define an argument list, exactly like a Mode
module. All arguments (up to eight) are parsed by the Escape
Code Processo.r and are passed to the Escape or User module.
Arguments are found on the Al stack (pointed to by Al). This
does not conflict with the stack of Mode arguments because
Escape and User codes are processed by a different routine than
Mode codes.

Remember that Escape and User codes have
the 7900 code processing scheme. Escape
not specific to a window, so they should
functions affecting the entire machine.

identical
and User
be used

priority in
modules are

to implement

CGC 7999 Preliminary DOS Manual Page A-l9

* * A sample Escape code module to play with the
* lights on the keyboard. This could also have
* been written as a User module.
* ORG.L

DC.L

DC.W
DC.B

Esc EQU

DC.W
DC.W

MOVE.W
Keybrd EQU

RTS

MdleEnd EQU
DC.L

END

$lF000
'MDLE' Identify a module is here

MdleEnd-IPC Length descriptor
Esc,'X' Escape X is our sequence
$lB

$0000
$0004 We want one decimal I

(Al),Keybrd Send it to the keyboard
$FF8080 (Keyboard address)

I PC-
-1,-1

CGC 7900 Preliminary DOS Manual Page A-2S

REGISTER SETUP FOR MODULES

When a module is executed, several registers are pre-loaded for
convenience. The following table defines what each register is
used for, when each type of module is entered.

Module

B (boot)

I (input)

o (output)

Mode, Plot

Escape, User

Register Usage

No registers pre-loaded.

No registers pre-loaded.

No registers pre-loaded.

Am: Points to base of Window Table for
the window which called the module
(see Window Table description).

A1: Points to Mode arguments (parsed
before module execution begins).

A3: Points to Plot arguments (parsed
before module. execution begins).

D7: Contains window status for the window
which called the module (see Window
Table description).

Am: Points to base of the Window Table
for window A (the Master Window).

A1: Points to arguments (parsed before
module execution begins).

D7: Contains window status for window A
and Escape code status.

CGC 7900 Preliminary DOS Manual Page A-2l

WINDOW TABLE

512 bytes of data are allocated as a Window Table for each
active window. These bytes hold the current status of the
window, including such items as color, blink, scale, window
limits, and most other window attributes. Window attributes are
usually set by Mode code sequences, and Mode modules will often
want to alter items in a Window Table.

The following chart lists the location of each item in the
window table, by giving an offset into the table where each item
may be found. An item can be altered by a module by using the
listed offset as a displacement from (AI), since AI is
pre-loaded with the base of the Window Table. For example,

FrgCol EQO $8E Offset in table
for Foreground color

MOVE.W FrgCol(AB),DI Get color into D0

In this table, entries are marked with -.8-, -.W-, or -.L-, to
indicate the appropriate data size (where possible).

$11 .L
$94 .L
$98 .L
$9C .L
$19 .L
$14 .L
$18 .L
$lC .L

TVALUE:
Arglst:
Parglst:
STATUS:
AArgstk:
Atgdsp:
Aprgstk:
Prgdsp:

Temporary storage area (reserved)
Mode argument list
Plot argument list
copy of D7 status long word
pointer to Mode argument stack
Mode dispatch address
pointer to Plot argument stack
Plot dispatch address (submode)

Window variables are stored beginning here
and occupy one word each.

$21 .W
$22 .W

•
•

$5C .W
$5E .W

Window Variable A
Window Variable B

Window Variable _
Window Variable '

CGC 7988 Preliminary DOS Manual Page A-22

The following items are also Window Variables but
are used for system data as well.

$"68 .W
$62 .W
$64 .w
$66 .W
$68 .W
$6A .W
$6C .W
$68 .W
$78 .W
$72 .W
$74 .W
$76 .W
$78 .W
$7A .W
$7C .W
$7E .W

·$88 .W
$82 .W
$84 .W
$86 .W
$88 .W
$8A .W
$8C .W
$8E .W
$98 .W
$92 .W
$94 .W
$96 .W
$98 .W
$9A .W
$9C .L
$A8 .L
$A4 .L
$A8 .L

AcursX:
AcursY:
CursX:
CursY:
AwindX8:
AwindYI:
AwindX1:
AwindY1:
WindXI
WindY8
WindX1
WindYl
CharXZ
CharYZ
CharDX
CharDY
CharXM
CharYM
XVmin:
YVmin:
Tabcol:
Vecwid:
BkgCo1:
FrgCo1:
P1aneE:
CursCol:
01dX:
OldY:
Xscl:
YScl:
Charadr:
Endbuf:
Plotdot:
Plotvect:

Overlay cursor X position
Overlay cursor Y position
Bitmap cursor X position
B~tmap cursor Y position
Overlay window upper left corner X
Overlay window upper left corner Y
Overlay window lower right corner X
Overlay window lower right corner Y
Bitmap window upper left corner X
Bitmap window upper left corner Y
Bitmap window lower right corner X
Bitmap window lower right corner Y
Character X raster size
Character Y raster size
Character delta X after write
Character delta Y after write
Character X multiplier
Character Y multiplier
Virtual X minimum value
Virtual Y minimum value
Tab stop spacing
Vector width
Background color
Foreground color
Planes enabled
Cursor color (not used, reserved)
Rubber band X position
Rubber band Y position
Virtual X Scale value
Virtual Y Scale value
Character set base address
End of arguments for virtual coordinate
Dispatch address for dot plotting
Dispatch address for vectors

The following five items are u.sed for
raster processor operations in the window.

$AC .W
$AE .W
$B8 .W
$B2 .W
$B4 .W

WXsrc:
WYsrc:
WDXsrc:
WDYsrc:
Wctrl:

X source raster operating point
Y source raster operating point
Delta X for source raster
Delta Y for source raster
Control bytes for rasters

:GC 7999 Preliminary DOS Manual Page A-23

$B6-$F5 Curstg:
$F6-$135 Argstk:
$136-$lB5 Pargstk:

32 words for cursor pixel storage
Argument stack for Mode args (32 words)
Argument stack for Plot args (64 words)

The following four bytes contain the current
Overlay color, blink and transparency attributes.

$lB6
$lB7
$lB8
$lB9

$lBA-$lFF

AentSt:
AentBCc
AentFC:
AentCh:

Transparency
Background color
Foreground color
ASCII character portion

Reserved for future expansion

CGC 7908 Preliminary DOS Manual Page A-24 .

WINDOW STATUS AND ESCAPE CODE STATUS

As shown before, register D7 is pre-loaded with status
information when certain types of modules are executed. The
bits in D7 are defined as follows:

Bit

8
1
2
3
4
5
6
7
8
9

18
11
12
15
16
17.
18
19
20
21
23
24
25
26
27
28
29
38
31

modeF:
plotF:
Moredat::
Negnum:
visctrl:
Pltmode:
Overlay:
Curson:
FilIon:
Blinkon:
Rollon:
OvrStrk:
Binmode:
Rubron:
Patton:
Submode:
Cursin:
BinTwo:
VScale:
A7on:
Local:
Full:
Escflg:
Osrflg:
Create:
LitP0 :
LitPl:
Literal:
Escdone:

Other bits are reserved.

Meaning

Mode flag used by window processor
Plot flag used by window processor
Control bit used by argument scanners
Control bit used by argument scanners
SET when visible ctrls are on
SET when in a plot submode (not alpha)
SET when Overlay on (not Bitmap)
SET when cursor is on
SET when fill is on
SET when blink is on
SET when roll is on
SET when overstrike is on
SET when binary mode is on
SET when rubber band is on
SET when patterns are on
SET when plot submode just entered
SET when Bitmap cursor in screen RAM
Flag for binary coordinate parser
SET when scaling is on
SET when A7 character set active
SET in LOCAL mode
SET in FULL duplex
Escape code processor flag.
Escape code processor flag
SET if Create is on
Escape code processor flag
Escape code processor flag
SET if Literal Create is on
Escape code processor flag

CGC 79~1/J Preliminary DOS Manual Page A-25

JUMP TABLES

This section desribes the utilities available in CGC 7901/J PROM
firmware. Each of these· routines may be accessed through a
subroutine call (JSR) to the appropriate address. Note that BSR
would not work because in general, jump tables are located more
than a l6-bit displacement from your program in RAM.

Registers used in each routine are defined in this section.
Unless noted, the routine only alters registers as necessary to
return values to the caller. The notation "Dl.W" means that the
low word (16 bits) of 01 are used by the routine, DI/J.B means the
low byte of 00, and so on.

Name: CHAROUT
Address: $801/J1/J1/J8

Entry: D0.B = character to pass to logical device
Dl.W = logical device number (I/J to 4 are defined)

CHAROUT is the system character-out routine. It passes a
character to a logical output device. The system's device
assignment structure will then pass the character on to a
physical device, if possible. Logical output device I/J is
normally used to put characters on the screen, and device 1 is
normally connected to the serial port. If the character 'is part
of a Mode or Plot code sequence, it will be processed when it
reaches a Window (physical device). Escape and User codes are
NOT processed by CHAROUT, but are treated as normal-characters.
To process Escape and User codes, see CTRLOUT, CTRLIN and
ESCPROC below.

Name: CHAR IN
Address: $801/J1/J1/JC

Entry:

Exit:

Dl.W = logical device number to read from

Zero flag SET if no character was available
Zero flag CLEAR and character in DI/J.B if available

CBARIN is the system character-in routine. It reads a . character
from a logical input device. Reading from device 8 will
normally get a character from the keyboard (If available),
device 1 will normally be the serial port.

....

CGC 79"" Preliminary DOS Manual Page A-26

TO wait for a character from CHARIN, use a loop on the EQ
condition:

L.oop JSR CHAR IN
8EQ.S Loop

Get a character, if any
No character yet

Escape and Oser codes are not processed by CHARIN, but are
treated as· normal characters. See CTRLOOT, CTRLIN and ESCPROC
below.

Name: CTRLOOT
Address: $899911

Entry: 01.8 = character to pass to logical device
Dl.W • logical device number
Zero flag must NOT be set

Gt-{hf<Du1
CTRLOOT is like c!RLI~, but processes Escape and User codes
before passing the character on to the logical output device.
It does this by calling ESCPROC (see below), then calling
CHAROOT. Note: do not call CTRLOOT if the zero flag is set.
This will cause your character to be ignored.

Name: CTRLIN
Address: $89""14

Entry:

Exit:

Dl.W • logical device number to read from

Zero flag SET if no character was available
Zero flag CLEAR and character in 01.8 if available

CTRLIN is like CHARIN, but processes Escape and User codes
before returning a character to you. It does this by calling
CHARIN and then ESCPROC. If an Escape or User code was entered,
it will be -eaten- by ESCPROC and the zero flag will be returned
to you, indicating that no character was available.

CGC 790B Preliminary DOS Manual

Name: ESCPROC
Address: $80ee18

Entry: DB.B = character to process
Zero flag must NOT be set

Page A-27

Exit: Zero flag SET if character was eaten by ESCPROC
Zero flag CLEAR if character is still available

ESCPROC handles Escape and User code processing. It is used by
CTRLIN and CTRLOUT, and may also be called directly. ESCPROC
detects Escape and User codes, and processes them by setting the
zero flag to indicate that the character was processed (and thus
should not be considered available). After the Escape or User
code is detected, ESCPROC will process subsequent characters to
satisfy the argument list of that particular Escape or User
function, then execute the function. This will normally be
transparent to the user.

Name: BOOT
Address: $80BB4C

BOOT boots the system. It does not return to the caller. One
reason for calling BOOT would be to link in any RAM modules you
have loaded into system memory.

CGC 791. Preliminary DOS Manual Page A-28

Name: NOISE
Address: $800154

Entry: AD points to tone descriptor block (14 bytes)

Exit: AI is incremented past block

NOISE feeds data to the sound generator. 14 bytes are loaded
sequentially into the tone chip. These bytes go into registers
• through 13 of the tone chip (a General Instruments AY-3-89ll),
and control the following attributes:

Register I Purpose

• Fine Tune A (8 bits)
1 Coarse Tune A (4 bits)
2 Fine Tune B (8 bits)
3 Coarse Tune B (4 bits)
4 Fine Tune C (8 bits)
5 Coarse Tune C (4 bits)
6 Noise Period (5 bits)
7 Output Enable
8 A Amplitude (5 bits)
9 B Amplitude (5 bits)

11 C Amplitude (5 bits)
11 Envelope Period Fine (8 bits)
12 Envelope Period Coarse (8 bits)
13 Envelope Shape/Cycle Control (4 bits)

The tone generator has three voices, A, B, and C, each of" which
can be programmed to produce tone or noise. If a given voice is
programmed for both tone and noise, noise will usually dominate.
Tone and/or noise are enabled by register 7:

7 6 5 4 3 2 1 D

x I X I An I Bn I Cn I At I Bt I Ct I

A zero on any of the wnw bits enables noise from that channel,
and a zero on any of the at w bits enables tone from that
channel. Unused channels are turned off by writing ones in the
desired bits.

:GC 7900 Preliminary DOS Manual Page A-29

~egisters 8, 9 and 10 control the output amplitudes:

7 6 5 4 3 2 1

x I X I X I A I manual level ctrl I
-----------------------~--------------~--

A one in bit 4 specifies the channel's amplitude to be
controlled by the envelope generator (Auto mode). If bit 4 is a
zero, the amplitude is fixed by the value in bits 0-3.

The envelope generator is controlled by register 13:

7 6 5 4 3 .2 I

X I X I X I X Icontlattkl altlholdl

Bits 0-3 describe the envelope with ·continue,· "attack,·
"alternate," and ·hold." See General Instruments literature for
the envelope waveforms.

-

CGC 790" Preliminary DOS Manual

Name: PRTDEC
Address: $8"""58

Entry: D0.W = decimal number to convert to ASCII
Al.L • pointer to buffer where ASCII goes

PRTDEC prints a decimal number as an ASCII string.
is placed into memory at: (A1)+.

Name: SIND0
Address: $80"064

Entry:

Exit:

D0.W = angle in integer degrees

D0.W = sine of that angle

Page A-30

The string

SIND0 takes the sine of an angle and returns the value as a
14-bit fraction. The form of the fraction is:

ISM F F F F F F F F F F F F F F I
-----------------------------------...

Binary point

S is the sign of
(zero except if
fractional bits.
Y • SIN(theta).
word of 01. The

Name: PLRRCT
Address: $800"68

Entry: D0.W =
D1.W •

Exit: D0.W =
Dl.W=-

the value (1 is negative), M is the mantissa
the value is one or negative), F are the
The following example uses SIND0 to compute

00 is the angle theta, and Y is in the lower
value is returned in 01.

JSR
MULS
ASL.L
SWAP
EXT.L

radius
angle in

X
J

SIND0
00,01
'2,01
01
01

Get sine of theta
Y=Y·SIN(theta)
Adjust for 14-bit fraction

Clear garbage from hi word

integer degrees

PLRRCT performs polar to rectangular conversion, using SIND0 and
a technique similar to the example above.

jC 7900 Preliminary DOS Manual

;une: READ,]OY
3dress: $800018

rltry:

xit:

Al.L = pointer to joystick X, Y or Z axis

D8.W = value read from joystick

Page A-3l

EADJOY returns the current value of a joystick axis as a 10-bit
umber in the range 0 to 1023. Al must be set to the address of
ne of the joystick axes, as follows:

X $FF8BC6
Y $FF80CA
Z $FF80CC

CGC 7988 Preliminary DOS Manual Page A-32

PLOTTING FUNCTIONS

Many of the plotting primitives in the 7988 may be accessed
through jump tables. Plot functions are specific to a window,
which means the system must know which window to use for
executing the plot routine. Data from the Window Table
determines·such things as the color of the plotted figure, and
whether or not the figure will be filled.

All of the plot routines discussed below require that register
AI be pointing to the base of the Window Table for the window in
which the plot will occur. This will be done automatically if
your program is linked as a module, but if you are writing a
transient, you must load A8 in your program. If plotting in
window 8 is desired, you may set up A8 by this code:

BtmGWin EQO $C48 Pointer to W table base
MOVE.L .BtmGWin,AI Get pointer

Each Window Table occupies 5t2 ~ytes. If D8.L contains th~
window number (8 through 7), the following code would point AI
to the base of any Window Table:

MOVE.L BtmGWin,A8
ASL.L '9,D8
ADD.L D8,AI

Get pointer
DI=5l2*D8
Add to base

Some of the functions described below require an argument list,
which is passed on the -AJ stack.- The values passed to the
routine are pointed to by (A3), and the words following (A3).
An area of the Window Table called Pargstk (Plot Argument Stack)
is normally used to Pass arguments, or your program can use
other RAM for this purpose. To load the Pargstk area with four
values for a vector, the following code could be used:

Pargstk EQO

LEA
MOVE.W
MOVE.W
MOVE.W
MOVE.W
JSR

$136 Offset in W table for plot args

Pargstk(A8),AJ Point to Pargstk
Xl, (A3)
Yl,2(AJ) Load XY values on A3 stack
X2,4(AJ)
Y2,6(AJ)
FVECT Draw a vector

Before calling any of these plot routines, the data to be
plotted must be scaled to screen coordinates, between 8 and
1823. Data outside this range will be plotted unpredictably.

GC 790" Preliminary DOS Manual

'ame: PLOTXY
.ddress: $8000SC

:ntry: D0.W - X value
Dl.W -= Y value
A0.L - pointer to Window Table

Page A-33

?LOTXY plots a single dot in the Overlay or Bitmap, at the XY
:oordinate specified by D" and Dl. PLOTXY vectors through the
iindow Table entry called P10tdot, which holds the address of a
=outine to plot a dot in the 'Overlay or Bitmap. Plotdot may
l1so hold the address of a routine which plots patterns in the
aitmap, if patterns have been enabled. The address in Plotdot
is loaded by any of the "Mode 0" or "Mode T" commands. The
current foreground color of the window is used unless patterns' ~.
are active.

Name: FVECT
Address: $80006"

Entry: A3.L - pointer to Xl, Yl, X2, Y2 (words)
A".L • pointer to Window Table

FVECT plots a vector in the Overlay or Bitmap, from (Xl, Yl) to
(X2, Y2). FVECT vectors through the Window Table entry called
Plotvect, which holds the address of a routine to plot a vector
in the Overlay or Bitmap (see the discussion of Plotdot above).
The address in Plotvect is loaded by any of the "Mode O· or
·Mode T" commands. The current foreground color of the window
is used unless patterns are active, OR UNLESS . THE· VECTOR IS
HORIZONTAL. If Yl-Y2, a special fast vector routine is used
which writes part of the vector through proprietary Color Status
hardware. The color produced by Color Status is determined by
loading the Color Status Foreground latch, a word at address
$E4""16. To use FVECT properly, you must load the Window Table
and the Color Status latch with your desired color.

CGC 7900 Preliminary DOS Manual

Name: BVEccr
Address: $800074

Entry: A3.L .. pointer to Xl, Yl, X2, Y2 (words)
A0.L .. pointer to Window Table

Name: CIRCLE
Address: $800078

Entry: A3.L .. pointer to X, Y, radius (words)
A0.L .. pointer to Window Table

Name: ARC
Address: $80007C

Entry: A3.L =- pointer to X, Y, radius, start, delta
A0.L .. pointer to Window Table

Name: CURVE
Address: $800084

Page A-3

(words)

Entry: A3.L .. pointer to Xl, Yl, X2, Y2, X3, Y3, X4, Y4 (words)
A0.L .. pointer to Window Table

Each of these routines plots a figure according to the
attributes of the Window Table pointed to by A0. Plotting will
occur in the Overlay or Bitmap, with or without patterns,
according to the current status of the window.

:GC 79"" Preliminary DOS Manual Page A-35

~ame: POLYG
~ddress: $8"""8"

Entry: A3.L = pointer to coordinate pairs (words)
A".L = pointer to Window Table

POLYG is similar to the other plot routines described above,
except that it can accept a variable-length argument list. The
beginning of the list is pointed to by A3.L, and the end of the
list is pointed to by an entry in the Window Table named Endbuf.
Endbuf is a long word, and it holds the address of the word PAST
the last coordinate in the polygon argument list.

BB

BB

(A3) -> Xl

YI

X2

Y2
------------1

X3

Y3

•
•
•

Xn

Yn

Endbuf(A0) -> EE

EE

Pairs of words before and after the
above) ate used as scratch areas by
should allow room for them.

Each item in this
table is one word.

list (marked BB
POLYG, and your

and EE
program

CGC 790" Preliminary DOS Manual Page A-36

The following code might be used to call POLYG:

Pargstk EOO $136 Offsets in W table
Endbuf EOO $A"

LEA Pargstk(Ae),Al Point to arg stack
MOVE.L AJ,-(SP) Save pointer
MOVE.W Xl, (A3) +
MOVE.W YI, (A3) + Load coordinates
MOVE.W X2,(Al) + onto AJ stack
MOVE.W Y2, (Al) +

•
•
•

MOVE.W Xn, (A3) + Put last values
MOVE.W Yn, (Al) +
MOVE.L A3 , Endbuf (AO) Set up end of list
MOVE.L (SP)+,AJ Retrieve pointer to

start of list
JSR POLYG Do polygon

....

:GC 7geB Preliminary DOS Manual Page A-37

DOS JUMP TABLES

~ame: DOS
\ddress: $8~C~B8

rhis is the main entry point to DOS. It requests the user's
password and begins accepting DOS commands.

Name: EXDOS
Address: $8~C0IC

Entry:

Exit:

Al.L = pointer to command line

Al.L = pointer to next (unprocessed) character in line
De.B = error code (if any), or zero if no error

EXDOS attempts to execute a transient. The name of the
transient should be pointed to (on the command line) by Al.
EXDOS calls GETNAM to parse the transient name, OPEN to locate
the file on disk, and LOAD to load the file into memory. If
successful, execution begins at the transient's start address.
The TRANSIENT is responsible for returning Al and DB as required
above.

Name: OPEN
Address: $8~CIII

Entry: AI.L = pointer to OFT in use

Exit: DI.B = error code (if any), or zero if no error

OPEN looks up a file on a disk. Before calling OPEN, the OFT
(Oser File Table) should contain the complete filename: primary,
secondary, password, and drive. (The OFT is an area of RAM
which defines the current status of a file, and includes all of
the file's vital statistics. OFT's are discussed later.) See
GETNAM for a way to parse the filename. If successful, OPEN
will add the following information to the OFT: START, LENGTH,
ACCESS, STATUS, BPNTER, BLNGTH, SLOT. If unsuccessful, DI.B
holds the error code.

CGC 7908 Preliminary DOS Manual Page A-38

Name: CLOSE
Address: $80C014

Entry: A0.L - pointer to UFT in use

Exit: 08.B • error code (if any), or zero if no error

CLOSE enters a new file into the disk directory. The UFT must
be completely built before callin9 CLOSE. CLOSE is only used on
files which have been created by CREATE, not on existing files
which have been OPENed. If the file name specified in the UFT
already exists, the old file by that name is killed
automatically.

Name: CREATE
Address: $8fiJC018

Entry: AB.L = pointer to UFT to be used

Exit: OB.B = error code (if any), or zero if no error

CREATE prepares the largest available free space on the disk for
writing. Before calling CREATE, the UFT should contain the
complete filename: primary, secondary, password, and drive
number. CREATE will add SLOT, START, LENGTH, ORIGIN, ACCESS,
BPNTER and BLNGTH. These items will reflect the largest
currently available disk space.

Name: LOAD
Address: $80C02B

Entry: AB.L • pointer to OFT in use

Exit: 00.B· error code (if any), or zero if no error

LOAD reads an executable file into memory. The file must be in
load module form, as a .SYS file.. If the file is loaded
successfully, RAM location GOAD DR ($11B4) will contain the
file's normal execution address. LOAD returns to the caller,
who may then jump to the address in GOADDR if desired.

CGC 799" Preliminary DOS Manual Page A-39

Name: RWBYTE
Address: $80C024

Entry: A".L = pointer to UFT in use

Exit: D".B = error code (if any), or zero if no error

RWBYTE is the main disk read/write routine. The UFT must
contain proper values in BUFFP, MBYTES, DRIVE, CONTROL, BPNTER,
BLNGTH, and STATUS. BUFFP is the memory address to/from which
data will be moved. MBYTES is the number of bytes. If MBYTES <
128, then data may be transferred to/from an odd memory address.
If MBYTES >= 128, data must be transferred to/from even
addresses only.

On exit, BUFFP points past the memory location where the last
transfer took place. MBYTES will be zero if all requested bytes
were transferred, else it will be the number of bytes NOT
transferred (due to error). The EOF bit of CONTROL will be set
appropriately. BPNTER and BLNGTH will be updated according to
the current state of the file.

Name: GETNAM
Address: $8"C"64

Entry:

Exit:

A".L = pointer to UFT to use
Al.L = pointer to input buffer (command line)
A2.L = pointer to default filename

D".B = error code (if any), or zero if no error
Dl.B = last character processed
Al.L = pointer to first unprocessed character

GETNAM parses the input buffer and extracts a file name. All
parts of the file name are loaded into the UFT. A string of 11
characters to be used as a default name (if no name was entered)
must be pointed to by A2. If no password was entered, the
current user password is copied into the OFT. If no drive
number was entered, the current drive number is copied into the
OFT.

GETNAM returns Di.B with the delimiter it found after the file
name. This may be a colon, in which case you must flag to DOS
that another command exists on the input line. It may also be a
semicolon, used to delimit an option field. Al should be saved
for return to DOS, or used as a pointer to further arguments on
the command line (if your program expects any).

....

CGC 7981 Preliminary DOS Manual Page A-48

Name: PRTMSG
Address: $88C184

Entry: AI.L • pointer to ASCII string (terminated by zero)

PRTMSG transmits an ASCII string to Logical Output Device zero,
which will. normally display it on the screen. PRTMSG goes
through CTRLOUT to allow Escape and User code processing.

Name: PRTBEX
Address: $88C894

Entry: D8.L • data (hex long word)
Dl.L • number of hex digits to print (1 to 8)

PRTHEX prints a hex number to Logical Output Device zero
(normally the screen). The number is preceded by a dollar sign
($). 01 specifies the number of hex digits to print, and these
are taken from the least significant digits of 08. (If Dl = 2,
then the low byte of D8 is printed.) The hex number is
left-justified, and padded on the right with spaces if
necessary, to fill out the number of characters specified by 01.
This is the format of hex numbers printed in the disk directory.

Name: GETCLK
Address: $88C898

Entry: No setup required

Exit: D8.L • packed time and date information from clock

GETCLK reads the Real Time Clock and encodes
information into a long word. If tbeclock
installed, the long word contains zero •

time and date
option is not

:GC 7900 Preliminary DOS Manual

lame: CLKBCD
~ddress: $80C0A0

~ntry:

Exit:

D0.L = packed time and date in GETCLK format
A0.L = pointer to 19-character buffer

Buffer is loaded with ASCII time and date

Page A-4l

CLKBCD unpacks the time and date information produced by GETCLK.
The buffer pointed to by A0 will be loaded with month, day,
year, hour, and minute information in ASCII form. A zero byte
is appended to the ASCII text so that it can be printed by
PRTMSG. If D0 contained zero on entry to CLKBCD, the buffer·
will be loaded with 18 spaces and a zero.

Name: GETARG
Address: $80C0A8

Entry:

Exit:

A1.L = pointer to input· 'buffer

Al.L = pointer to character past delimiter
Dl.L = hex argument returned
D0.B = zero if no error, non-zero if error

GETARG parses a hex number from an input buffer. The value of
the argument is returned in Dl. D0 is non-zero if a non-hex
character was detected before the delimiter was reached. If 00
is zero, no error was detected. Al is advanced past the
argument.

Name: DOSERR
Address: $80C9BC

Entry: A0.L = pointer to OFT of the file which caused an error
D9.B = error code

DOSERR prints a DOS error message. The drive number of the
offending file is printed also. Error codes available in DOSERR
are listed in the Appendix. Note that DOS automatically prints
error messages if your transient returns to DOS with D9.B
non-zero.

CGC 799" Preliminary DOS Manual Page A-42

INLINE CALLING SEQUENCE

Name: INLINE
Address: $89A09C

Entry:

Exit:·

Al.L • pointer to input buffer to be used
Dl.W • Logical Input Device number to read from
D7.8 • control bits (see below)

Zero flag SET if the user hit DELETE
Zero flag CLEAR if the user hit RETURN

"--,

INLINE is the 7999's general-purpose input routine, used by DOS,
the Monitor, and Thaw. It reads a line of up to 83 characters
from the user, allowing character editing, Recall Last Line,
etc. Bits in D7 control INLINE as follows:

Bit Meaning if SET

3 Echo the input line to the screen after
RETURN is pressed (in expanded form, Modes
and tabs executed normally).

2 Process Escape and User codes as they are
entered.

1 Use wA7 w character set for control-characters
displayed in compressed form.

Do not display the characters as they are
entered (you can't see what you type).

DOS uses D7 equal to $0E, Dl equal to zero, and Al pointing to
the DOS input buffer in low RAM. The input buffer supplied to
INLINE should be at least 85 characters long. The end of the
user's input line is indicated by a Return character in the
buffer.

GC 790" Preliminary DOS Manual Page A-43

CMOS MEMORY ALLOCATION

~096 .bytes of CMOS or static memory· are installed on the 790"
:PU card. This memory is used to store Function Key
iefinitions, information for buffer sizes, and other important
;ystem pointers. The CMOS memory is optional, and comes with a
)ettery-backed supply so that user-defined parameters will be
naintained while the system is turned off. This concept is
Jescribed in detail in the 7900 User's Manual description of the
"Thaw" command. If your system does not contain the CMOS option,
you will have static RAM installed at these addresses, but the
data in this RAM will still correspond to the following table.

This section describes the allocation of CMOS memory in the
current version of firmware, TERMEM 1.1. Allocation may change
slightly or greatly in future releases. All CMOS is reserved
for system use, and any user programs which occupy CMOS do so at
the risk of interfering with future system programs.

The CMOS entries which determine buffer
altered except through the Thaw command.
not agree with actual RAM allocation at
can crash.

sizes should not be
If these entries do

all times, the system

Addresses $E40000 through $E4"l"" are also used by hardware
registers in the 7900 system. Accessing these addresses affects
CMOS and the hardware as well.

Where appropriate in the following tables, each entry is marked
with ".B", ".W", or ".L", to indicate the data size of the entry.

Address

$E40000 .W
$E4""02 .W
$E4""04 .W
$E4""06 .B
$E40007 .B
$E40008-$E400"9
$E4"00A-$E4000F
$E4"0l0 .W
$E4"0l2 .W
$E400l4 .W
$E400l6 .W
$E4"0l8 .W
$E40"lA .W
$E4001C-$E4001F
$E40020-$E4003E

Use

Bitmap roll counter
X pan register
Y pan register
X zoom register
Y zoom register
(Reserved)
Raster processor registers
Blink select register
Plane select register
Plane video switch register
Color status foregrou~d register
Color status background register
Overlay roll counter
(Reserved)
Raster processor registers

CGC 7900

$E40040-$E4010B
$E4010C .L
$E40110-$E40113

$E40114 .w
$E40116 .W
$E40118 ~B
$E40119
$E4811A .W
$E4011C .W
$E4811E .W
$E48128 .W
$E40122 .W
$E48124 .W
$E40126 .W
$E48128 .W
$E4012A .L

$E4812E .L
$E48132 .L
$E48136-$E48141
$E48142 .L
$E48146 .L
$E4814A .L

$E4814E-$E4815D
$E4815E .L
$E48162 .L
$E40166-$E48169
$E4816A .L
$E4016E .L
$E40172-$E40179
$E4017A-$E4817B
$E4817C-$E481C7
$E401C8-$E48213
$E40214-$E4021D
$E4021E .L

$E40222 .B
$E40223-$E48224
$E48225 .B
$E48226-$E40229
$E4022A .B
$E4822B-$E4822C
$E4822D .B
$E4822E-$E48231

$E48232-$E487FP
$E40808-$E488FP
$E40900-$E40BFP
$E40C08-$E40CFF
$E40D00-$E40PFP

Preliminary DOS Manual

(Reserved)
CMOS verifier long word
(Reserved)

Size of DOS Transient Program Area
Size of DOS Buffer
Number of active windows
(Reserved)
Size of keyboard buffer
Size of Function Key stack (nesting)
Size of RS-232 input buffer
Size of RS-232 output buffer
Size of RS-449 input buffer
Size of RS-449 output buffer
Size of Escape code argument stack
Size of system stack
Highest RAM address used by system

Pointer to INtINE recall buffer
Recall bu.ffer size
Pointers for INtINE

Page A-44

Pointer to start of Function Key buffer
Pointer to end of Function Key buffer
Pointer to Case Table

(Reserved)
Address of default program (executed by Boot)
Address to search for RAM modules
TERMEM status flags
Address of Bitmap plot cursor descriptor
Address of Bitmap alpha cursor descriptor

. (Reserved)
INtINE Recall flags
Default Boot string
Default Reset string
Bost EOt sequence
Address of vector-drawn character font

RS-232 mode command
(Reserved)
RS-232 handshake flags
(Reserved)
RS-449 mode command
(Reserved)
RS-449 handshake flags
(Reserved)

(Reserved)
Case Table
Function Key buffer
INLINB Recall buffer
(Reserved)

CGC 7900 Preliminary DOS Manual Page A-45

LOW RAM ALLOCATION

The area of RAM between addresses $400 and $FFF is used by the
7900 system for pointers and miscellaneous constants. The area
between $1000 and $lC3B is used for DOS tables and pointers. As
mentioned earlier, areas marked "Reserved- should be left alone,
or risk incompatibility with future releases of software.

Address

$400-$463
$464-$495
$496-$4E5
$4E6-$509
$50A-$69B
$69C-$BFF
$C00 .L
$C04 .L
$C08 .L
$C0C .W
$C0E .L
$C12 .W
$C14 .W
$C16 .W
$C18-$ClB
$ClC .L
$C20 .L
$C24 .L
$C28 .L
$C2C .L
$C30.L
$C34 .L
$C38 .L
$C3C .L
$C40 .L
$C44 .L
$C48 .L
$C4C .L
$C5e .L
$C54 .L
$C58-$C5D
$C5E-$C6l
$C62 .W
$C64 .W
$C66 .W

.$C68-$C7F
$C8e .L
$C84 .L
$C88-$C8D
$CSE .L

Use
-

Monitor input line
Monitor flags and breakpoint storage
Monitor pseudo-register storage
Monitor register display formats
Monitor stack
(Reserved)
Pointer to base of TERMEM dispatch tables
Pointer to Keyboard buffer ·start
Keyboard input pointer
Keyboard buffer character count
Pointer to Keyboard buffer end
Joystick X center offset
Joystick Y center offset
Joystick Z center offset
Light pen argument list
Function Key stack pointer
Pointer to Function Key buffer
Pointer to Function Key stack
Pointer to RS-232 input buffer
Pointer to RS-232 output buffer
Pointer to RS-449 input buffer
Pointer to RS-449 output buffer
Pointer to Esc argument stack
Pointer to DOS buffer
Pointer to window table base
Pointer to top (start) of stack
Pointer to bottom (end) of stack
Pointer to start of Create Buffer
Pointer to end of Create Buffer space
Pointer to DOS transient area
TERMEM storage for keyboard light data
TERMEM storage for HVS calculations
Active image planes in system
Copy ot interrupt mask register
Copy of baud rate generator data
Escape code processor storage area
Pointer to current character in Create Buffer
Pointer to end of Create Buffer data (EOF+l)
Joystick data storage area
Warmstart vector (for USER W)

CGC 798"

$C92-$C99
·$C9A-$CAl
$CA2-$CA9
$CAA-$CB1
$CB2-$FFI'

Preliminary DOS Manual

RS232 input ring buffer pointers
RS232 output ring buffer pointers
RS449 input ring buffer pointers
RS449 output ring buffer pointers
(Reserved)

DOS memory allocation begins here ••••

$1888-$1889

$188A-$183F

$1848-$113F
$1148-$1143
$1144-$118B
$118C-$11B3

DOS command block for disk controller

Default DOS OFT (details below)

Directory buffer space
Command block variable space
DOS input line buffer
DOS variables and pointers

Page A-46

$11B4 .L GOADDR: Start address for executable files

$11B8-$11C3 DOS pointers

$llC4 .B
$llCS .B
$11C6 .W

REVN: Revision number of file (not used)
DRIVEN: Drive from which last transient came
OSERN: Password of current user (** = public)

$11C8-$11CD DOS variables

$llCE .W
$llD" .W

FLSTAT: File status used by CLOSE
SLASH8: Slash/8 mode flag

$11D2-$11E1 Disk controller variables

$11E2-$1217 TOFT1: Transient OFT II

$1218-$1243 DOS variables

$1244-$1279 TOFT2: Transient UFT 12

$127A-$1389 DOS variables

$l38A-$13FI' Reserved for DOS expansion

CGC 79fiJS Preliminary DOS Manual Page A-47

THE USER FILE TABLE

DOS maintains a User File Table (UFT) in memory for each file
currently being accessed. The UFT contains the file name,
password, directory location, size, and various pointers which
uniquely identify that file. Whenever DOS reads from or writes
to a file, the UFT is updated to show the current file status.
The OFT must remain intact as long as a file is in use, or until
a new file is closed.

Each UFT occupies 54 bytes. DOS has three UFTs allocated in low
RAM, and your program may use these areas to built UFTs, or you
may use other RAM.

Each item in the OFT is defined below. If A0 points to the
start of a UFT, the item of interest may be accessed with the
wIndirect with Displacement- addressing mode, as OFFSET (A0) •

Offset in OFT

$S0 .W

$02 .L

$S6 .L

$fiJA .W

$SC .B

Description

SLOT: Location of a file in the disk
directory.

BUFFP: Memory address to/from which the
data transfer will take place on
the next read or write.

MBYTES: Number of bytes to transfer on
next read or write.

CONTRL: Defines the next operation to
be performed. In this word,

Bit Meaning
9 l. End of file
8 I-Read, S-Write
7 I. Enable retry
6 l. Enable ECC

DRIVE: Logical unit number of disk
drive: S and I are floppy
disks, 2 is the hard disk.

ERROR: Error code of last operation.

CGC 798.

$8E .L

$12 .L

$16-$lD

$lE-$28

$21

$22-$23

$24 .L

$28 .L

$2C .L

$3 •• L

$34 .w

Preliminary DOS Manual· Page A-48

BPNTER: Pointer to current byte in
file.

BLNGTB: Current fength of file (goes to
zero as file is read in).

PNAME: 8-character primary filename.

SRAME: 3-character secondary filename.

REV: File revision number (not used
in DOS 1.4).

PSWRD: 2-character password. Public
files are given password -**-.

START: Starting address of file on
disk (bytes).

LENGTH: Length of file on disk (bytes).

ORIGIN: File origin time/date.

ACCESS: Time/date of last access.

STATUS: File attributes as follows •••

Bit
15

8
7
6
4
3
1 •

Meaning if SET
Blind file
Active slot
Write-protected
Delete-protected
Free (deleted)
Execute-only
Odd length
Killed

CGC 7999 Preliminary DOS Manual Page A-49

WRITING TRANSIENTS

This section describes the procedure for writing a transient
program executable under DOS.

A transient must be located in an appropriate area of RAM,
usually the DOS Transient Program Area. This begins at address
$lC3C (hex). The length of this area is variable depending on
your requirements, but will normally be at least 16K bytes.

ORG.L $lC3C

Any RAM used by a transient should be in this same area of
memory, or in the DOS Buffer which immediately follows it. RAM
allocations are defined by pointers in system RAM and in CMOS,
described earlier. Your transient should be careful not to
exceed these allocations or the system may become confused.

When a transient is executed, DOS loads it at whatever address
it was assembled (DOS does not check whether this is a legal
address!). DOS then begins execution at the start address' you
defined in your END statement. On entry to a transient, Al
points to the first unused character in the command line.

from the
to that

SINGLE
could

If your transient expects to pick up an argument
command line, such as a file name, Al will be pointing
argument. Note: DOS will only advance Al past a
delimiter. If the user typed two spaces, commas, etc., Al
be pointing to a delimiter.

If the last delimiter found by your program was a colon, assume
that another command follows on the command line, and flag this
before returning to DOS. This is done by setting Dl.B non-zero,
and pointing Al to the first character of the command following
the colon. Note that most DOS argument parsing routines
automatically bump Al to the next character after gathering
arguments.

Your transient now has control of the system. Using routines
provided in the jump t'ables, your transient can. pick up
arguments from the command line, open and close files, and
control the entire 7999 system. (See AppendixD in the 7999

, Oser's Manual for information on Traps.)

CGC 7~S8 Preliminary DOS Manual Page A-58

Before returning to DOS, your transient must set DS.B zero if no
errors occurred. If you want DOS to report an error, put the
error number in DS.B and DOS will display the error message for
you. If an error is reported, DOS will not attempt to process
any further commands which were entered on the same command line.

If no errors were reported, and you return to DOS with Dl.B
non-zero, DOS assumes another command is waiting on the input
line to be processed. Al should be pointing to the first
character of the next command. Your transient will have to
determine whether a colon existed on the command line, possibly
by backing up Al to look for it. (Some DOS routines, such as
GETNAM, assist in this process by returning the delimiter
character to you).

DGe 7900 Preliminary DOS Manual Page A-51

Summary of registers used by DOS transients:

On entry to a transient:

Al.L points to the first unused character in the
command line.

On exit from a transient:

DO.B must equal zero if no error occurred. If DS.B
equals zero and Dl.B is non-zero, then DOS will
attempt to process another command from the
command line. Al.L must point to the proper
character in the command line.

DO.B must not equal zero if an error occurred. If
DS.B is non-zero, DOS assumes it is an error
number and will print the corresponding error
message. In this case, Dl and Al are not used,
but AS.L must point to the OFT of the file
which caused the error (so DOS can report the
offending drive number).

AB.L is required if DS.B is non-zero (see above).

Dl.B is required if DS.B is zero and another command
follows on the command line (see above).

Al.L is required if DS.B is zero and another command
follows on the command line (see above).

....

CGC 799. Preliminary DOS Manual Page A-52

*
* * Sample transient: READ
* Command format: READ <filename>
*
* * This transient demonstrates:
* * Parsing a file name as a command line argument
* Opening a file
* Reading data from the file
* Exiting from a transient, returning properly to DOS
*
*
* ***
* *
* DOS Equates
*
GETNAM EQU $81CI64
RWBYTE EQU $81C924
OPEN EQU $81CI19
PRTMSG EQU $81CI84
*
*
* DOS UFT Equates
* TUFT1 EQU $11E2
U . EQU • SLOT EQU U
BUFFP EQU SLOT+2
MaYTES EQU BUFFP+4
CONTRL EQU MBYTES+4
DRIVE EQU CONTRL+2
ERROR EQU DRIVE+1
BPNTR EQU ERROR+1
BLNGTH EQU BPNTR+4
PNAME EQU BLNGTH+4
SNAME EQU PNAME+8
REV EQU SNAME+3
PSWRD EQU REV+1
START EQU PSWRD+2
LENGTH EQU START+4
ORIGIN EQU LENGTH+4
ACCESS EQU ORIGIN+4
STATUS EQU ACCESS+4
*

Get file name from input line
Read/Write bytes to disk
Open existing disk file
Print ASCII string

OFT .1 for transients
Base of UFT
Logical file number
Memory pointer for transfer
• of bytes to transfer
various flags
Drive • (LUN)
Error I of last operation
Current pointer to file on disk
Current file length
Primary file name
Secondary file name
Revision level (not used)
File password
Points to file start on disk
Length of file on disk
Time/Date of file origin
Time/Date of last access
File status

CGC 7900 . Preliminary DOS Manual Page A-53

* * TERMEM Equates
* CHAROUT EOU
CHARIN EOU
CTRLIN EOU
CTRLOUT EOU
DOSBUFP EOU
DOSBUFZ EOU
*
*

$800008
$80000C
$800014
$800010
$C3C
$E40ll6

* ASCII Equates
*
CR
LF
DEL
XOFF
*

EOU
EQU
EOU
EOU

13
10
$7F
$13

Character-out
Character-in
Character-in with Esc processing
Character-out with Esc proc
Pointer to DOS buffer
Size of DOS buffer

Carriage return
Line feed
Delete
X-off (Control-S)

* ***
*
* The transient begins execution here.
*

READ

*
*

ORG.L
LLEN

EOU
MOVE.L
MOVE.L
JSR
MOVE.L
TST.B
BNE

CMPI.B
SEQ

$lC3C
132

IPC
ITUFT1,Ae
IDefName,A2
GETNAM
Al ,SaveAl
DO
READerr

1':',01
Another

We run in DOS transient area
Printer is 132 columns wide

Point to OFT to use
Point to default name: '*.SRCI
Get file name into UFT.
Save cmd line pointer for DOS

GETNAM found an error.

Was command delimiter a colon?
If YES, another command follows.

* The UFT now contains a filename, parsed by GETNAM. (If
* no filename was entered, the default filename remains
* in the UFT, *.SRC)
*
*

*

JSR
TST.B
BNE

OPEN
De
READerr

Attempt to open .the file.

OPEN found an error.

CGC 79S" Preliminary DOS Manual Page A-54

* * OPEN bas now provided the UFT with details of the file
* s~ch as its length and disk location.
*
* READl MOVE.L BLNGTB-U(A"),D4

BEQ.S READex
D4.L • file length remaining
If zero, file is empty now.

MOVE.L DOSBUFP,BUFFP-U(AS)
CLR.L D5

Put data in DOS buffer

D5.L = size of DOS buffer MOVE.W DOSBUFZ,D5 ,
* * Check if bytes left in file will fit into DOS buffer.
*

READ 2

*

CMP.L D4,D5
BBI.S READ2
MOVE.L D5,D4

MOVE.L
BSET
JSR
TST.B
BNE

D4,MBYTES-U(AS)
.S,CONTRL-U(AS,
RWBYTE
D" READerr

Will it all fit?
Yes.
NO, so only read what WILL fit.

Read this many bytes
Say READ
Go and read bytes from disk.

Error from RWBYTE.

* We have read bytes into the DOS buffer. D4 is the number
* of bytes.
*

*

MOVE.L DOSBUFP,A2
SUBO.L '1,D4
CLR.W 01

* Display the bytes.
* READ 3 MOVE.B (A2)+,D"

*

JSR CBAROUT
CMP.B 'CR,D"
BNE.S READ4
MOVEO.L 'LF,DS
JSR CBAROUT

Point to the data
Decrement count for DBRA below
Specify Device " for CBAROOT

Get a byte of data
Display it
Was it a Carriage Return?
No

Follow Return with Line Feed.

* After printing each character, check if we should pause.
* READ4

*

JSR
BEO.S
CMP.B
BEO
CMP.B
BNE.S

CBARIN
READS
'DEL,D"
READ ex
'XOFF,D"
READS

Check the keyboard.
No key was hit.
Did he hit DELETE?
yes •••• quit.
Did he hit Ctrl-S?
No, so ignore the key.

CGC 7900 Preliminary DOS Manual Page A-55

*
* Control-S was hit, so pause.
•
READp JSR CHAR IN Wait for another key

BEQ.S READp
CMP.B IDEL,D0 DELETE?
BEQ READex Yes, so quit.

READS DBRA D4,READ3 Go display more data.
BRA READI Go get more data from disk.

.**
'* '* Come here for normal exit from the transient.
•
READex CLR.B D0 Flag NO error and fall into exit.

'* • • •
Come here to go back to DOS with error message.
D0.B holds the error code.

READerr CLR.W
MOVE.W
MOVE.B
JSR
JSR
MOVE.B
MOVE.L
MOVE.W
RTS

DefName DC.B
DS.L

SaveAl DS.L
Another DS.B

DS.L
• • •
'* END
'*
'* •

Dl
D0,-(SP)
ILF,D0
CHAR OUT
CHAR OUT
Another,Dl
SaveAl,Al
(SP)+,D0

'. o

4
1

"
READ

SRC'

,--,

Logical Device 0 for CHAR OUT
Save the error flag
Print a line feed
Or two •••

Flag if another command existed
Restore command line pointer
Restore the error flag
Back to you, DOS!

Default name for UFT (11 chars)
Align even addresses after DC.B

Place to save Al
Flag for colon on command line
Align even addresses after DS.B

Begin execution at label READ

CGC 7988 Preliminary DOS Manual Page A-56

"- ..'

CGC 790S Preliminary DOS Manual Page A-57

CUSTOM CHARACTER SETS

The 7900 allows user-defined character sets to be used in the
Bitmap in place of the two character sets supplied with the
system. An entry in each Window Table (Charadr) points to the
base of the character set for that window, and the size of the
font (X by Y pixels) may also be defined for each window
individually. The character font dimensions may be up to 16 in
the X direction, and 256 in the Y direction.

~

Since the character set address for a window is stored in the
Window Table, it will default back to the normal character set
whenever Boot or Soft Boot is executed.

The character set for the Overlay is stored in high-speed PROM,
and is not alterable through software.

The following program is a module, designed to be linked into
the 7900 system software. It will install a custom character
set in any window which receives a wMode i W command. This
program is an example ONLY. It does not include a complete
character set definition. The data set which should accompany
this program would be too long to fit into the standard 7900
memory, unless you do one of the following: (1) change the ORG
address, which requires changing address MDLE with the Thaw
command, (2) change the height of the character set to reduce
the data required, or (3) install additional memory above
address $20000.

CGC 799" Preliminary DOS Manual Page A-58

* * Sample module to install a new character set.
* The set is installed in a window by the command:
* * MODE 1
* * To return to the standard set, use SOFT BOOT.
*
*
* * CGC 7999 equates •••
*
Mode EQO

CharXZ EQO
CharYZ EQO
CharDX EQO
CharDY EQO
Charadr EQO

*
*
*
*
*
*
*
*
*
*
*
*

ORG.L

DC.L

DC.W

DC.B

DC.W
DC.W

I

$78
$7A
$7C
$7E
$9C

$IF999

'MOLE'

MODE.is Control-A

Offset in window table for X raster size
Y raster size
X intercharcter spacing (step)
Y intercharcter spacing
Address of font for this window

This is the address called "MOLE
as specified by the Thaw command.

This header must be present if
the modu.le is located in RAM.

CharEnd-IPC This is the length of the
module (including the
character set at end)

Mode,'i' We are executed when the user
types this sequence.

We require no arguments.

*
*
*
*

Execution begins here after MODE i is entered.
TERMEM preloads A9 with the base of the window table.

MOVE.W t6,CharXZ(A9) Load character size (X)
MOVE.W tS,CharYZ(A9) , (Y)
MOVE.W t6,CharXZ(A9) Load step size (X)
MOVE.W tS,CharYZ (AB) (Y)
MOVE.L tBASE,Charadr(AI} Load address of .font
RTS That's all!

CGC 79~1 Preliminary DOS Manual Page A-59

* * What follows is the character font definition.
* * It is arranged as 128 regular characters, followed by 128 .
* A7 characters. All 256 characters should be defined.
* * Assume the font is set in a field X by Y. (Default is
* X = 6 and Y = 8.) Then each character requires 8 words
* of data, one for each Y scan: and 6 bits of each word
* are used. The active 6 bits are left-justified in the
* 16-bit word.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Example: the character "AW

1
2
3

Word • 4
(one per Y scan) 5

6
7
8

bit •
111111 Hex value
54321~98765432l1

.xxx••. $7111
X ••• X ••••••••••• $88~1
X ••• X ••••••••••• $8811
XXXXX ••••••••••• $F811
X ••• X ••••••••••• $881S
x ... x•.. $88~S
X ••• X ••••••••••• $881S
• • • • • • • • • • • • • • • • $IIIS

* The X by Y field must include any.necessary
* spacing between characters or between lines.
*
*
*
*
*
*
*
*
*
*
*

Memory requirements:

This module will require 256 * Y words, plus 23 words of
overhead for the preceding code. This much memory must
exist between address "MOLE" and the physical end of memory.
If necessary, use Thaw to alter the address of "MOLE" (be
sure to put it where nothing will stomp on itl)

CGC 7908

*
*

Preliminary DOS Manual Page A-68

* This 5cale Factor will left-justify a 6-bit number in a
* 16-bit field, by shifting 18 bits. All of the numbers in
* this database are 6-bit for convenience, and S justifies
* them properly.
*
S

*
*
BASE

*

EQO

EQO

1824

IPC This is where it all begins.

* This is the regular character set.
*

*
*
*

*
*
*
*
*
*

*
*
*

* *

DC.W $24*S,$34*S,$3C*S,$2C*S,$24*S,$04*S,$04*5,$07*S A@
DC.W $0C*S,$10*S,$08*S,$05*S,$lD*5,$07*5,$05*5,$05*5 AA

•
• etc. for regular set.
•

DC.W $01*5,$0E*S,$10*S,$00*S,$00*5,$00*S,$00*5,$00*5
DC.W $0A*S,$15*S,$0A*5,$15*S,$0A*S,$15*5,$0A*S,$00*S DL

Alternate (A7) character set begins here.

DC.W $lF*5,$15*S,$15*5,$lF*S,$15*5,$15*5,$lF*S,$00*S A@
DC.W $08*5,$15*S,$02*S,$08*S,$15*S,$02*5,$00*S,$00*S AA

•
• etc. for A7 set.
• DC.W $01*5,$02*5,$02*5,$04*5,$08*5,$10*5,$10*5,$28*5

DC.W $00*5,$0"*S,$00*5,$0"*5,$0"*5,$00*S,$00*S,$3F*5 DL

Char End EQO
DC.L

IPC
-1,-1

This is the end of our module.
No more modules follow this one.

*
*
*
*
*

END

::GC 7901 Preliminary DOS Manual Page A-6l

INSTALLING A NEW CURSOR

The 7900 Bitmap cursors, Plot_and Alpha, are each described
by a set of data. This set is pointed to by pointers in CMOS,
one pointer for the Plot cursor and one for the Alpha cursor • .

Plotcur
Alphcur

EQU
EQU

$E40l6A
$E40l6E

The cursor descriptor data is a list of up to 32 long words.
Each long word describes the displacement of one pixel of the
cursor, with respect to the center pixel of the cursor. The
list is terminated with a zero word. Since this zero word is
part of the descriptor, the center pixel of the cursor is always
ON.

The displacements are given as addresses in Bitmap memory. Each
pixel in Bitmap memory corresponds to a word (two bytes) of
memory, so an X displacement of one pixel is produced by an
address displacement of two. (Positive X displacement is to the
right.) Similarly, a Y displacement of one pixel corresponds to
an address change of 2148 bytes (1024 pixels per Y line of the
screen, times two bytes per pixel). A positive Y displacement is
in the down direction.

A sample cursor might look like this, where X's correspond to
pixels included in the cursor:

X
XXX

X

The data list for this cursor would be:

+2
-2

+2148
-2148

1

(the pixel to the right of center)
(the pixel to the left of center)
(the pixel below center)
(the pixel above center)
(the center pixel, and end of the list)

To install a new cursor, first define it in the form above.
Store this data in memory. Then, alter "the pointer in CMOS
(either Plotcur or Alphcur) so that it points to your data.
Note that if you store your cursor in RAM other than CMOS, the
description will vanish when system power is turned off,' but the
CMOS pointer will remainl This will cause you to have NO cursor
at all. To reload CMOS defaults, use CTRL SHIFT Ml M2 RESET.

CGC 7998 Preliminary DOS Manual Page A-62

Sample program PUTCURS
/'

*
*
*
*
*
*
*
*
*
*
*

Installs a new cursor as the Bitmap plot cursor.

This program stores its cursor descriptor in upper CMOS
memory, unused by current 7998 sofware. This may not be
compatible with future 7989 releases.

ORG.L

PUTCURS MOVE.L
MOVE.L

PUT100p MOVE.L
TST.L
BNE.S

MOVE.L

CLR.L
CLR.L
RTS

HiCMOS EQU
P10tcur EQU

Cursor DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L

$lC3C

IHiCMOS,Al
ICursor,A3

(A3) +, (Al) +
-4 (A2)
PUT100p

We run in DOS area

Point to some unused CMOS
Point to our new cursor descriptor

Copy a long word into CMOS
Was it zero?
No, continue copying

IHiCMOS,P1otcur Set up pointer to new cursor

De Flag no error occurred
D1 (We don't check for colon on line)

Return to DOS

$E49E00 CMOS area (unused in TERMEM 1.1)
$E4016A Plot cursor pointer

-4*1924 New cursor descriptor
-4*1024+2
-4*1024-2
-2*1024-4
-2*1924+4
-4
+4
+6
+8
-2*1924+8
-2*1024+19
-2*1924+12
-2*UJ24+14
-4*1924+18
-4*1924+12
-4*1924+14
-4*1024+16
4*1024

X;C 7999 Preliminary DOS Manual Page A-63

DC.L 4*1924+2
DC.L 4*1024-2
DC.L 2*1124-4
DC.L 2*1@24+4
DC.L 2*1024+8
DC.L 2*1924+18
DC.L 2*1024+12
DC.L 2*1924+14
DC.L 4*1024+19
DC.L 4*1924+12
DC.L 4*1924+14
DC.L 4*1924+16
DC.L " (end of list)

END PUTCURS
*
*
*

CGC 79B9 Preliminary DOS Manual Page A-64

.....

:GC 7900 Preliminary DOS Manual Page A-65

DOS ERROR MESSAGES

rhe following errors may be reported by DOS. To force DOS to
~rint an error message, load the error number into D0.B before
returning to DOS.

Error (hex) Message

01 No index signal detected
02 No seek complete
03 Write fault
04 Drive not ready
05 Drive not selected
06 No track 000 detected

10 ID read error
11 Uncorrectable data error found during a read
12 ID address mark not found
13 Data address mark not found
14 Block not found
15 Seek error .
16 No host acknowledgement
17 Diskette write protected
18 Data field error found and corrected
19 Bad track found
lA Format error

20 Invalid disk controller command
21 Illegal logical block address
22 Illegal function for the specified drive

30 Diagnostic RAM error

40 Disk controller not ready
41 Controller time out error
42 Unable to determine controller error
43 Undefined controller state
44 Controller protocol sequence error

50 Undefined load error state
51 Record count error
52 Checksum error
53 Premature EOF during load
54 DOS buffer too small
55 Transient program size too small

60 End of file reached
61 File is write protected
62 Attempted to read thru density barrier
63 Attempted to transfer data on odd address

...

CGC 79"" Preliminary DOS Manual

7" Unable to find requested file

88 Unable to create new f11e space

98 Unable to close requested file

AI . Empty slot found
Al Unable to update the directory

81
82
83
84
85
B6
87

NO run address
Unable to find disk name
Argument error

- "-

Attempt to a~cessa non-existant drive
Unable to initialize drive 1
Unable to initialize drive 2
Syntax errorl Missing argument

C8 Premature format termination
C1 Error mapping routine not implemented
C2 Unable to fetch this file
C3 File is delete protected
C4 File type error
C5 File is execute only
C6 File is to big to append
C7 Insufficient stack size
C8 I" mode is not allowed in argument filenames

Page A-66

:X;C 790" Preliminary DOS Manual Page 11.-67

CGC 7999 . Preliminary DOS Manual Page A-68

