CONTROL DATA® 66X EXERCISER TB113

GENERAL DESCRIPTION
OPERATION
INSTALLATION AND CHECKOUT
THEORY OF OPERATION
DIAGRAMS
MAINTENANCE
MAINTENANCE AIDS
PARTS

REVISION RECORD	
REVISION	DESCRIPTION
A	Initial Release
[12/31/72\}	
B	
[30 JUN 733	Incorporate changes per ECO \#CFOnOBa
c	
[18 OCT 76$\}$	Incorporate changes per ECO \#CEDCl 38
D	
(1 JULY 78)	
	-
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Publication No. } \\ 86816400 \end{array} \\ \hline \end{array}$	

Address comments concerning this manual to:
Control Data Corporation
Customer Engineering Division
Maintenance Equipment Engineering
© リワ72, 1977
by Control Data Corporation
2200 Berkshire Lane North
er
Plymouth, Minnesota 55441
or use Comment Sheet in the back of
this manual.

This manual provides information pertaining to the CONTROL DATA ${ }^{\circledR}$ b6X Exerciser \{TBlij\}. It is intended for use by Customer Engineering and other personnel involved in maintaining the CONTROL DATA® $66 X_{1}$ 34XXX ${ }_{7}$ and $92 X X X$ Magnetic Tape Transports.

The manual contains the following sections of information.

$$
\begin{array}{ll}
\text { Section l } & \text { General Description } \\
\text { Section 2 } & \text { Operation and Programming } \\
\text { Section } 3 & \text { Installation and Checkout } \\
\text { Section 4 } & \text { Theory of Operation } \\
\text { Section 5 } & \text { Diagrams } \\
\text { Section b } & \text { Maintenance } \\
\text { Section ? } & \text { Maintenance Aids } \\
\text { Section \& Parts Data }
\end{array}
$$

Section q_{n} Wire Lists, is not included. Wiring information is included in Section 57 Diagrams. Section lar Equation Summary, does not apply to this equipment.

Paragraph	Title	Page
Section 1. General Description		
1.0	Functional and Operational Description	1-1
2.0	Equipment Specification	コー2
3.0	Interface Lines	1-3
Section 2. Operation		
1.0	General	2-1
2.0	Operator Controls and Indicators	2-1
3.0	Operating Procedure	2-1?
Section 3. Installation and Checkout		
1.0	General	3-1
2.0	Installation	3-1
2.]	Crating	3-1
2.2	Uncrating	3-1
2.3	Physical Limitations	3-1,
2.4	Power Requirements	3-3
2.5	Cabling and Connectors	3-3
2.6	Cooling Requirements	3-3
2.7	Preparation For Use	3-3
2.8	Checkout	3-4
Section 4. Theory of Operation		
1.0	Introduction	4-1
2.0	General Description	4-2
3.0	Functional Description	4-4
3.1	General Exerciser Operating Conditions	4-4
3.2	Write Operation	4-6
$3 \cdot 3$	Read Operation	$4-8$
$3 \cdot 4$	Rewind	4-10
$3 \cdot 5$	Unload	4-10
3.6	Error Detection	4-11
3.7	Restrictions	4-13
Section 5. Diagrams		
\{Refer to List of Illustrations and Diagrams $\}$		

TABLE OF CONTENTS \{cont'd\}

Paragraph	Title	Page
Section b. Maintenance		
1.0	Introduction	b-l
2.0	Preventive Maintenance Index	b-l
3.0	Preventive Maintenance Procedures	--2
4.0	Removal and Replacement Procedures	b-1.3
Section 7. Maintenance Aids		
1. 1	Introduction	7-1
$2 . \square$	Circuit Elements	7-1
2.1	Integrated Circuits	7-1
2.1.1,	General	7-1
2.1.2	Logic Levels	7-2
2.1.2.1	Integrated Circuits	7-2
2.1. 3	Common Industrial DTL Circuits	7-2
2.1.3.1	Typical DTL Inverter	7-2
2.1.3.2	Wired-OR and Wired-AND Gates	?-3
2.1.3.3	Inverter Flip-Flops	7-4
2.].3.3.1	Normal Inverter Flip-Flop	7-4
2.1.3.3.2	Wired-OR Flip-Flop	7-6
2.1.3.4	Type laza Dual 4-Input Gate	?-8
2.1.3.5	Type lıb, Quad 2 -Input Gate	7-10
2.7.3.6	Type liza, Triple 3-Input Gate	?-10
2.1.3.7	Type 129, Hex I-Input Inverter	7-11
2.7.3.8	Type 150, Dual J-K Flip-Flop	?-12
2.].3.7	Type 151, Dual J-K Flip-Flop	?-14
2.1.4	Transistor - Transistor Logic	?-16
2.1.4.1	Type 140, Quad 2-Input NAND Gate	?-16
2.1.4.2	Type 146, Hex Inverter	?-1?
2.1.4.3	Type 147, Quad 2-Input Exclusive-OR Gate	?-18
2.1.4.4	Type 170, Dual 4 -Input Multiplexer	?-20
2.1.4.5	Type 189, Quad 2 -Input Multiplexer	?-23
2.1.4.6	Type 195, Dual Monostable Multivibrator	?-23
2.1.4.?	Type 240, Dual J-K Flip-Flop	?-25
2.1.4.8	Type 500, Synchronous 4-Bit Up/Down Counter	?-2?
2.1.4.9	Type 502, B-Bit Odd/Even Parity Generator/Checker	7-30
2.1.4.10	Type 514, 76 -Bit Register File [Memory\}	7-32
2.1.4.11	Type 515, 5-Bit Shift Register	7-35
2.1.5	DTL/TTL Compatible Interface Circuits	7-36
2.1.5.1	Type lben Dual Line Receiver	7-Зь
2.1.5.2	Type liphr Dual Line Driver	7-39
2.2	Discrete Component Circuits	?-41
2.2.1	Type AAlO Oscillator	7-41

Paragraph	Title	Page
	Section B Parts	
	LIST OF ILLUSTRATIONS AND DIAGRAMS	
Figure	Title	Page
I-I	Interface Pin Assignments	1-3
2-1	Operator Controls and Indicators	2-1.5
3-1	Recommended Packing Procedure Using Shipping Carton» CDC P/N 59322400	$3-2$
4-1	Exerciser Block Diagram	4-3
4-2	General Operation Timing Diagram	4-5
4-3	Write Timing Diagram	4-6
4-4	Forward or Reverse Read Timing Diagram	4-8
4-5	Write Jog Sequence Timing Diagram	4-9
4-6	Rewind Timing Diagram	4-10
4-7	Unload Timing Diagram	4-111
	Symbol Index	5-I
	Key to Logic Symbology	5-3
	Logic/Schematic Diagram, LBDF,	5-?
	Transmitters and Receivers \boldsymbol{r} Location $A 己$ Logic/Schematic Diagramı IAZF $_{7}$	5-11
	Display ${ }^{\text {Location } A 3}$	
	Logic/Schematic Diagramı IBCF $_{7}$	5-17
	Skew and Tachometer, Location A4 Logic/Schematic Diagrami IBAF_{7}	5-2]
	Read and End of Operation 1 Location A5	
	Logic/Schematic Diagramı $2 B A F$, Writer Location B2	5-27
	Logic/Schematic Diagramı 1BGF, Program Control, Location B3	5-33
		5-39
	Motion Control I_{1} Location B4	
	Logic/Schematic Diagram, I BFF,	5-43
	Motion Control IIr Location B5 Schematic Diagram Control Panel Assembly	
	Schematic Diagramı Control Panel Assembly Power Distribution Schematic	$5-51$ $5-57$
5-1	Card Compositer 1BDF	5-59
5-2	Card Compositer 1AZF	5-60
5-3	Card Compositer 1BCF	5-61
5-4	Card Compositeı l BAF	5-62
5-5	Card Compositer EBAF	5-63
5-b	Card Compositeı l BGF	5-64
5-7	Card Compositer 2A己F	5-65
5-8	Card Composite 7 l BFF	5-66
$\mathrm{L}-1$	Plug Pe on Baffle Plate	$5-1.5$

LIST OF ILLUSTRATIONS AND DIAGRAMS \{cont'd\}

Figure	Title	Page
¢-2	Power Supply Mounting Screws	$\square-1 \mathrm{~b}$
¢-3	Baffle Plate Mounting Screws	b-17
b-4	Printed Circuit Card Location	¢-23
b-5	Terminal Board TBl Location	Ь-28
7-1	Typical DTL Inverter	7-3
7-2	Wired-OR and Wired-AND Gates	7-4
7-3	Normal Inverter Flip-Flop	7-5
7-4	Wired-OR Flip-Flop	7-7
7-5	Type 122, Pin Assignments	7-8
7-6	Type le2, Logic Diagram	7-9
7-?	Type l2br Logic Diagram and Pin Assignments	7-10
7-8	Type leg, Logic Diagram and Pin Assignments	7-11
7-9	Type lid, Logic Diagram and Pin Assignments	7-12
7-10	Type 1507 Pin Assignments	7-13
7-11	Type 150, Logic Diagram	7-13
7-12	Type 151, Pin Assignments	7-15
7-1.	Type 151, Functional Logic Diagram	7-1.5
7-14	Type 140, Logic Diagram and Pin Assignments	7-17
?-1.5	Type 214 L , Logic Diagram and Pin Assignments	?-18
?-16	Type 147, Logic Diagram and Pin Assignments	7-19
?-1?	Type liph Pin Assignments	?-20
?-18	Type 170 Logic Diagram	?-21
7-19	Type 1897 Logic Diagram and Pin Assignments	?-24
?-20	Type 195,Logic Diagram and Pin Assignments	7-24
?-21	Type 240, Logic Diagram and Pin Assignments	7-25
?-22	Type 500, Pin Assignments	7-27
7-23	Type 500, Logic Diagram	7-28
7-24	Type 5007 Timing Diagram	7-29
?-25	Type 502, Pin Assignments	7-30
?-26	Type 5027 Logic Diagram	7-31
7-2?	Type 514, Pin Assignments	7-32
?-28	Type 514, Logic Diagram	7-33
?-29	Type 515, Logic Symbol	7-35
?-30	Type 5l5, Logic Diagram and Pin Assignments	7-36
?-31	Type lber Logic Symbol	?-3?
?-32	Type $\mathrm{lb}^{\text {a }}$, Logic Diagram and Pin Assignments	7-38
7-33	Type 17b, Logic Symbol	?-39
7-34	Type 1 РИ\% Logic Diagram and Pin Assignments	?-40
7-35	Type AAla, Schematic	7-41

Table		Title	Page
I－I	Equipment	Specifications	1－2
1－2	Interface	Signal Description	コーロ
2－1	Switches 7	Controls，Indicatorsı and Jacks	2－2
7－1	Type 1 ここı	Truth Table	ア－9
7－2	Type 1507	Truth Table	7－14
7－3	Type 1517	Asynchronous Operation Truth Table	7－16
7－4	Type 147，	Truth Table	7－19
7－5	Type lipat	Truth Table	7－22
7－6	Type 1897	Truth Table	7－2ヨ
7－7	Type 2407	Asynchronous Operation Truth Table	7－26
7－8	Type 2407	Synchronous Operation Truth Table	7－26
7－9	Type 502，	Truth Table	7－31
7－10	Type 51．4ヶ	Truth Table	？－34
7－1］	Type 7 b ¢	Truth Table	？－38
7－12	Type lipba	Truth Table	7－40

Section I
 General Description

Section 1

General Description

1.] Functional and Operational Description

The bbX Exerciser \{hereinafter referred to as the exerciser\} is a portable, hand-carried, tape transport maintenance aid. It is designed to provide maintenance capability for the Control Data ${ }^{\circledR}$ $66 X_{1} 92 X X X, ~ a n d ~ 35 X X X$ model Magnetic Tape Transports. The exerciser is approximately b inches high $h_{1} g$ inches wider and 13 inches deep and weighs approximately 25 pounds. It can easily be carried as on-board airline baggage as it fits under an airline seat, and can therefore be readily transported to wherever it is needed in support of tape transport maintenance.

The exerciser is housed in a light-weight aluminum carrying case. Medium-scale integrated circuits and miniature components have been incorporated into its design, thereby effecting a compact, lightweightr easy-to-carryr yet highly functional testing capability which can greatly simplify and reduce the time required to perform maintenance on the tape transport.

The exerciser receives status signals and read data from the tape transport and transmits control and write data signals to the tape transport. In this way, the tape transport may be operated while not connected to a computer or any other control device. The control signals and data are a simulation of the signals and data normally furnished by the controller, and provide a means of exercising the tape transport in order to isolate malfunctions and to perform routine preventive maintenance.

The exerciser is completely self-contained and includes the necessary cables to provide both operating power for the exerciser and interface to the tape transport. Ruggedness and reliability have been incorporated into the exerciser design.

The operator control panel contains the necessary switches, controls, and indicators to permit operator control of the unit. Exerciser logic is provided in a logic card rack under the operator panel. Program control is accomplished by a two-bit by eight-address memory. The operator stores the desired program in memory via the operator control panel switches.

Equipment Specifications
Refer to Table l－1 for a detailed list of exerciser physical and electrical specifications．

CHARACTERISTICS	REQUIREMENT
PHYSICAL	
	6.0 inches $\{15.24 \mathrm{~cm}\}$ 18.0 inches $\{45.72 \mathrm{~cm}\}$ 13.0 inches $\{33.02 \mathrm{~cm}\}$ 25.0 pounds $\{11.34 \mathrm{~kg}\}$
ENVIRONMENTAL	
Temperature	```Operating: b,0 to 70' F {15.50 to 32.20 c} Non-operating: -30' to 1550 F {-34.40 to 65.60 c}```
Relative Humidity	```Operating: 0% to 50% without condensation. Non-operating: 0% to 70% without condensation.```
Altitude	Maximum operating：15，fact feet \｛47921，meters\} Minimum operating：－1， 000 feet \｛304．8 meters\}
	Maximum non－operating：407000 feet \｛12っ】92 metersf
ELECTRICAL	
Power Source	120 volts $A C$ at 50 to 60 Hertz， or 220 volts $A C$ at 50 to $b 0$ Hertz， 2 wire plus ground．
Line Current	0.9 amperes at len volts AC
LOGIC LEVELS \｛Interface\}	
Logic ${ }^{\text {® }}$	+0.250 volts $D C$ nominal when connected to the tape transport． +0.025 volts $D C$ nominal when not connected to the tape transport．

Table l_{-1} Equipment Specifications

CHARACTERISTICS	REQUIREMEN T
LOGIC LEVELS \{contrd\} \{Interface\}	
Logic ${ }^{\circ}{ }^{\circ}$	-0. 250 volts $D C$ nominal when connected to the tape transport. -0.025 volts $D C$ nominal when not connected to the tape transport.
LOGIC LEVELS \{Internal\}	
Logic ${ }^{\circ} \mathrm{I}{ }^{\circ}$ \{DTL\}	+5.0 volts $D C$ nominal
Logic \square° \{DTL\}	+0.2 volts DC nominal
	+3. 3 volts $D C$ nominal
Logic ${ }^{\square} \mathrm{D}^{0}$ \{TTL\}	+0.2 volts DC nominal

Table l-l. Equipment Specifications \{cont‘d\}
3.0 Interface Lines

Figure $1-1$ shows the interface lines between the exerciser and the tape transport. Refer to Table l-z for a definition of the interface signals.

EXERCISER	ADDRESS LINES OPERATIONAL STATUS LINES	TAPE TRANSPORT
16400	Figure I-J Interface Pin Assignments	1-3

Figure l-I Interface Pin Assignments \{cont'd\}

Figure l-I Interface Pin Assignments \{contrd\}

Table I-2. Interface Signal Description \{contrd\}

SIGNAL	PINS	ACTIVE LEVEL	FUNCTION
TO THE TAPE TRANSPORT			
Read Data			In the NRZI format, the tape transport sends a ${ }^{\circ}{ }^{\circ} \mathrm{D}$ pulse to the exerciser any time there
${ }^{\square}$	A7, 84	810 or ∇°	is a change in the direction of the write
2	C2, CB		current. In the Phase Encoded format the
$2{ }_{3}$	Db, E3		tape transport sends a ${ }^{\circ} \mathrm{I}^{\circ}$ voltage level
2	Fl, F7		to the exerciser whenever there is a change
$2{ }^{2}$	$\begin{array}{cc}\mathrm{G5} & \mathrm{~Hz} \\ \mathrm{Hg} & \\ \end{array}$	$\bigcirc{ }^{\circ} \mathrm{D}$	in write current in one direction and sends
$2{ }^{2}$			a ${ }^{\circ} \mathrm{\square}$ voltage level to the exerciser when- ever there is a change in the write current
2?	Kb7 Ll	$\bigcirc 0^{\circ} \mathrm{or}$ or \square°	in the opposite direction.
${ }^{\text {® }}$	L?, M4	$\left.{ }^{\circ}\right]^{\circ}$ or ${ }^{\circ} \square^{\circ}$	
Forward	Lヨッ L9	$\nabla 10$ or ∇°	When Forward goes from a low to a high 1 tape moves in the forward direction. When Forward returns to a low tape motion stops.
Reverse	Mbı N4	${ }^{\circ} 1{ }^{\circ}$	When Reverse goes from a low to a high tape moves in the reverse direction. When Reverse returns to a low tape motion stops.
Rewind	Plı 7	${ }^{\circ} \mathrm{I}$	The Rewind signal is a one microsecond pulse. The tape transport will execute a rewind operation provided Busy is not present.
Rewind-Unload	R5, S3	${ }^{\circ} 1{ }^{\circ}$	The Rewind-Unload signal is a one microsecond pulse. The tape transport executes an unload operation. If the tape is not at load point, the unload operation is automatically preceded by a rewind operation.

SIGNAL	PINS	ACTIVE LEVEL	FUNCTION
TO THE TAPE TRANSPORT			
Density Request ${ }_{2}^{1}$	$\begin{array}{ll} A 2_{7} & A 5 \\ B I_{7} & B ⿱ 口 ⿰ 口 口 ⿺ \end{array}$	$\begin{aligned} & \nabla I \nabla \text { or } \nabla \square \nabla \\ & \nabla I_{i} \nabla \text { or } \nabla \square \nabla \end{aligned}$	Two lines are used to request one of three conditions．A fourth conditioni Local， permits the density to be selected at the operator control panel on the tape transport． The code is as follows：
Low Clip Select	B2ヶ B9 $^{\text {a }}$	${ }^{8} 1.0$	Over－rides the standard tape transport clipping level and commands a Low Read Threshold．
High Clip Select	$C \mathrm{C}, ~ D 4$	$\nabla^{\circ}{ }^{\circ}$	Over rides the standard tape transport clipping level and commands a High Read Threshold．
Unit Select		${ }^{\circ} \mathrm{D}$	When this line is held high the unit select light is lit on the tape transport．
Write Data			Seven or nine lines carry six or eight information bits and one parity bit．Odd
2^{\square}	$A_{1} 7$ A 4	$\nabla^{\circ} \mathrm{\nabla}$ or or ${ }^{\circ}$	parity is generated．In the NRZI format，
2	A9，Bb	－jo or \square°	the write current changes only when a ${ }^{\circ} \mathrm{l}{ }^{\circ}$
$2{ }^{2}$	C4，D1		is written on the tape．If a zero is
${ }^{2}$	DG7 E5	$\bigcirc \square^{\circ} \mathrm{D}$ or $\mathrm{\nabla}^{\circ}$	written there is no change in the write
$2{ }^{2}$	F37 Fq		current．In the Phase Encoded format the
$2{ }^{2}$	$\begin{array}{ll}\text { G77 } & \\ \text { H4 } \\ \text { H7 } & \\ 44\end{array}$		write current changes for both zeros and ones．
2？	衡 K3	$\nabla^{\circ} \mathrm{\nabla}$ or or ∇°	
${ }^{\text {a }}$	K7\％L2	$\bigcirc \bigcirc$ or ${ }^{\circ} \mathrm{O}$	

Table l－2．Interface Signal Description \｛contrd\}

Section
 2

Operation

Section 2

Operation

I．ロ General
The following section provides the procedures necessary to operate the exerciser．Instructions are given for programming the memory prior to placing the exerciser in a program mode．

Before operating the exerciser，insure that the procedures in Section 3_{7} Installation and Checkout，have been performed to insure the exerciser is ready for operation．

2．0 Operator Controls and Indicators
The controls and indicators on the operator control panel provide manual operation of the exerciser．Refer to Figure $2-1$ for the location of all operator controls and indicators and to Table 2－I for a description of each control or indicator．

In Table $2-1$, switch positions and control limits are indented under the component name．The index numbers on the illustration in Figure $2-1$ correspond to the item numbers in the table． The reference designators in Table 2－1 correspond to the desig－ nators on the back side of the operator control panel．In the ID［Identification\} column of Table $\mathrm{E-In}_{1}$ the following ab－ breviation definitions apply．

ABBREVIATION		DEFINITION
C	Control	
CB		Circuit－Breaker
D		Display
FTI	Elapsed Time Indicator	
I	Fuse	
J	Indicator	
PB	Jack	
PB－I	Pushbutton	
S	Pushbutton－Indicator	
	Switch	

ITEM	COMPONENT NAME	ID	REF. DESIG.	FUNCTION
1	AC POWER	J	J2	A three prongr malerrecessed connector that accepts the female end of the $A C$ power cable. Input may be 120 or 220 volts. Normal operation is on 120 volts. If 220 volts is used, a wiring change must be made within the exerciser.
2	AC POUER FUSE	F	XFI	A liza or 220 volt $A C_{7}$ one ampere7 SLO-BLO fuse.
3	TIMER	T	XMI	A \square to $200 \square$ hour elapsed time indicator 1 , measuring the time $A C$ power has been applied to the exerciser.
4	AC POWER ON OFF	s	S]	Applies 120 or 220 volt $A C$ power to exerciser AC components. Also Master Clears the exerciser, but not the tape transport. Removes $A C$ power from exerciser components.
5	DISPLAY	D	$\begin{aligned} & D S I_{1} \\ & D S 2 \\ & D S J \end{aligned}$	A bank of three light-emitting-diode arrays which display octal digits from 000 through 777. Data to be displayed is selected by the DISPLAY SELECT switch fitem b\}.
b	DISPLAY SELECT START STOP APP	S	S2	The data to be routed to the DISPLAY \{item 5\} is selected by this switch. Displays the time the tape transport takes to get up to required velocity after a motion command is received. The time is in terms of the number of tachometer pulses from the raising of a motion line to the raising of the Velocity line. Displays the time the tape transport takes to stop after a motion command is terminated. The time is in terms of the number of tachometer pulses from the lowering of a motion line \{Forward or Reversef to the next raising of a motion line.

Table 2-1. Switches, Controls, Indicators, and Jacks \{cont'd\}

Table 2-I. Switches, Controls, Indicatorsi and Jacks \{contddf

Table 2-1. Switches, Controls, Indicators, and Jacks \{contrd\}

ITEM	COMPONENT NAME	ID	$\begin{array}{\|c\|} \hline \text { REF: } \\ \text { DESIG. } \end{array}$	FUNCTION
10	BOT \{STATUS\}	I	DS11	Indicates that the tape transport detected a Beginning of Tape marker.
11	EOT \{STATUS\}	I	DS10	Indicates that the tape transport detected an End of Tape marker.
12	FWD [STATUS\}	I	DS9	Indicates that the exerciser Forward motion signal is high.
13	REV [STATUS\}	I	DSB	Indicates that the exerciser Reverse motion signal is high.
24	URITE REPLY \{STATUS\}	I	DS?	Indicates that the tape transport write and erase current is on.
15	DENSITY REQUEST $2^{\text {I }}$ and 2^{\square}	s	S7, 5b	The two switches are used to select one of three densities. $\begin{array}{llr} 2^{I} & 2^{\square} & \text { DENSITY } \\ 0 & 0 & 556 \mathrm{BPI} \\ 0 & 1 & 800 \mathrm{BPI} \\ \mathrm{I} & 0 & 1600 \mathrm{BPI} \end{array}$ When both switches are set to 1 the density may be selected at the tape transport.
1 b	DENSITY STATUS 2^{\square} and 2^{\square}	I	$\begin{aligned} & \text { DSI. } 5 \text { י } \\ & \text { DSI } 4 \end{aligned}$	Indicates the density at which the tape transport is operating. The code is the same as for the Density Request above.
17	WRITE PERMIT \{ERROR\},	PB-I	S/DSB	Indicates that the tape transport raised the Write Permit line before the Velocity line. The error may be cleared by pressing the pushbutton.
18	FAULT \{ERROR\}	PB-I	S/DST	Indicates that one or more of the tape transport Fault lines \{Load, Erase Currentr Vacuum Loopr or $^{\text {or }}$ Cooling Airf has been activated. Fault line that has been activated may be displayed on the DISPLAY by setting the DISPLAY SELECT to FAULT. The error indication may be cleared

Table 2-1. Switches, Controlsı Indicators, and Jacks \{contrd\}

\begin{tabular}{|c|c|c|c|c|}
\hline ITEM \& COMPONENT NAME \& ID \& \[
\begin{gathered}
\text { REF. } \\
\text { DESIG. }
\end{gathered}
\] \& FUNCTION \\
\hline 19 \& VELOCITY \{ERROR\} \& PB-I \& S/DSb \& Indicates that the tape transport dropped the Velocity signal during the time that a Motion Request \{Forward, Reverse or Rewind\} from the exerciser was active. The error indication may be cleared by pressing the pushbutton. \\
\hline 20 \& \begin{tabular}{l}
PARITY \\
\{ERROR\}
\end{tabular} \& PB-I \& S/DS5 \& Indicates that incorrect feven\} parity was detected on the Read Data lines. The error indication may be cleared by pressing the pushbutton. \\
\hline \multirow[t]{2}{*}{21} \& PARITY ERROR RESPONSE \& \(s\) \& S13 \& \\
\hline \& BACKSPACE

OFF \& \& \& | When a parity error is detected, the PARITY \{ERROR\} indicator lights. |
| :--- |
| The tape transport stops ${ }^{\text {a }}$ backs over the word where the error occured, and then attempts to re-execute the original instruction without a parity error. If successful, the PARITY \{ERROR\} indicator goes out and the tape transport continues executing the instructions in memory. If not successful, the tape transport will continue to back up and re-execute until it is successful or until the parity error is cleared by pressing the PARITY \{ERROR\} pushbutton. |
| When a parity error is detected, the PARITY \{ERRORJ indicator lights but the tape transport continues to execute the program without interruption. If the PARITY EERROR\} pushbutton is pressed, the indicator goes out and remains out unless another parity error is detected. |

\hline
\end{tabular}

Table 2-1. Switches, Controls, Indicators, and Jacks \{cont'd\}

ITEM	COMPONENT NAME	ID	$\begin{aligned} & \text { REF: } \\ & \text { DESIG. } \end{aligned}$	FUNCTION
$\underset{\text { fcontrad\} }}{2\rfloor}$	PARITY ERROR RESPONSE			
	TRAP			When a parity error is detected the PARITY \{ERROR\} indicator lights. The tape transport does not stop. The word containing the parity error is gated into a register. If the DISPLAY SELECT switch is set to READ, the octal value of the word is presented on the DISPLAY. Before parity can be checked again, the register must be cleared by either pressing the PARITY EERRORJ pushbutton or setting INT CONTROL switch to MC.
22	PATTERN	S	512	
	TRUE			The data output in a write operation are all true values of the settings of the DATA switches fitem 24\}.
	TRUE/COMP			The data output for the first frame in a write operation are all true values of the settings of the DATA switches. The data in each subsequent frame are alternating complement and true values of the settings of the data switch.
23	CLIPPING LEVEL	s	S11	
	HI			The high tape transport clipping level is commanded.
	NORMAL			The standard tape transport clipping level is commanded.
	Low			The low tape transport clipping level is commanded.

Table 2-1. Switches, Controls, Indicatorsi and Jacks \{contrd\}

ITEM	COMPONENT NAME	ID	$\begin{aligned} & \text { REF. } \\ & \text { DESIG. } \end{aligned}$	FUNCTION
24	DATA through $2^{?}$ I E \square	5	$\begin{aligned} & \text { S1, ? } \\ & \text { thru } \\ & \text { S24 } \end{aligned}$	A logic one is written on the respective track． The data on the respective track is erased，that is？no flux changes occur in the write head． A logic zero is written on the respective track．
25	P DATA ON OFF	5	S27	Automatic odd parity is generated for each word being written． Automatic parity generation is disabled．The output is a constant erase level．
己	PAUSE TIME OFF INCREASE	C	$S / R]$	The time between the execution of any two instructions is approximately b microseconds． As the control is rotated from the OFF position to the furthest clock－ wise position the time between the execution of any two instructions is increased from approximately I to lat milliseconds．
27	RECORD LENG TH ONE WORD	c	S／R2	When the exerciser is connected to an NRZI tape transport，the true value of the DATA switch settings is written twice for each record，once as a one word record and then as a simulated Longitudinal Redundancy Check \｛LRC\} word．When connected to a Phase Encoded tape transportr the true value of the DATA switch settings is written once for each record．

Table 2－1．Switches，Controls，Indicators，and Jacks fcontrd\}

ITEM	COMPONENT NAME	ID	$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	FUNCTION
$\begin{gathered} 27 \\ \{\operatorname{contrd\} } \end{gathered}$	RECORD LENGTH			
	INCREASE			As the control is rotated from the ONE WORD position to the furthest clockwise position the writing timen and therefore the number of words per record, is increased. The writing time is increased from 1 to lad milliseconds. When writing in the NRZI format, an even number of words is always written. In the Phase Encoded format, the number of words may be odd or even. The number of words is dependent upon the tape speed and density.
28	GND	J	13	A test point common to signal ground only - not $A C$ power ground.
29	SIGNAL MONITOR	\checkmark	J4	Signals selected by the SIGNAL MONITOR switch \{item 3l\} are routed to this test point. The signals are not attenuated or delayed.
30	SIGNAL MONITOR	I	DS116	Signals selected by the SIGNAL MONITOR switch are displayed. The signals are extended by 25 milliseconds so they can be observed on the indicator.
31	SIGNAL MONITOR I through 9 fRead Data 2 through $\left.2^{8}\right\}$ 10 fParity Error Pulse\}	S	S2b	Signals selected by the switch are displayed on the SIGNAL MONITOR indicator and routed to the SIGNAL MONITOR jack.
				Data bits \sum^{\square} through 2 3, being read by the exerciser, are selected by positions 1 through F_{1} respectively. Bit 这 is the parity bit. For seven track transportsi data at switch positions 7 and A are always zero.
				When a parity error is detected, a pulse sets the Parity Error flip flop. This pulse is available at this position. When the PARITY\{ERROR\} indicator is lit it remains on until cleared. A determination may be made as to whether or not more than one parity error is detected after the indicator is on by observing the signal at this switch position.

Table 2-1. Switches, Controls, Indicators and Jacks \{contid\}

ITEM	COMPONENT NAME	ID	$\begin{array}{r} \text { REF: } \\ \text { DESIG. } \end{array}$	FUNCTION
$\left\lvert\, \begin{gathered} 3 l \\ \text { contrd } \end{gathered}\right.$	SIGNAL MONITOR 11. [Write Enablef I2 \{Velocity\} 13 EWrite Permit\} 14 and 15 fTach.I and Tach IIJ Ib $\{$ Busy\} I. 7 fEnd of Operation\} Ig \{Forward I/O\} 19 RReverse I/ Of 20 \{Time 1\} 2l flast Motion Reversef 22 \{Go\}			Write Enable signal from the tape transport indicating that a write ring is present in the mounted reel of tape. Velocity signal from the tape transport indicating that tape is moving within ± 4 percent of full speed in either the forward or reverse direction. Write Permit signal from the tape transport indicating that the tape transport is ready to accept write data. The two outputs from the tape transport capstan tachometer electronics are pulse trains and may be selected at these two switch positions. The two signals should be 70 degrees out of phase with each other. The Busy signal from the tape transport indicating that tape is in motion. The End of Operation signal which is generated by the exerciser. The Forward motion signal on the input/output lines. The Reverse motion signal on the input/output lines. When the Busy signal goes from a ${ }^{\circ}{ }^{\circ}{ }^{\circ}$ to a ${ }^{\circ} \square^{\circ}$, a timing chain is initiated. Time l of this chain is selected at this position. The Last Motion Reverse signal from the tape transport. An internally generated signal which occurs when either a Forward motion signal or a Reverse motion signal is output by the exerciser.

Table 2-1. Switches, Controls, Indicators, and Jacks \{contrd\}

ITEM	COMPONENT NAME	ID	$\begin{aligned} & \text { REF } \\ & \text { DESIG. } \end{aligned}$	FUNCTION
$\underset{\text { fcont'd] }}{3\rfloor}$	SIGNAL MONITOR			
	23 furite Terminate $\}$ 24 fWrite Dataf			The set output of the Write Terminate flip-flop. The flip-flop is used to provide the Write Jog sequence. A 200-nanosecond pulse which occurs when the Data flip-flop is set. The Data flip-flop sets when a Write instruction is commanded.
32	TAPE CONTROL	S	S14	A spring-loaded momentary-on switch that returns to the OFF position when released.
	UNLOAD			An Unload request pulse is transmitted to the tape transport. Once the unload operation has started it cannot be stopped by the exerciser.
	OFF			Normal position of the switch and has no effect on exerciser operation.
	REWIND			A Rewind request pulse is transmitted to the tape transport. Once the rewind operation has started it cannot be stopped by the exerciser.
33	INT CONTROL	S	S1 5	A spring-loaded momentary-on switch that returns to the OFF position when released.
	LAMP TEST			Applies power to all operator panel indicators for as long as the switch is held in this position. The lamp test may be performed while a program is executing without affecting exerciser operation.
	OFF			Normal position of the switch and has no affect on exerciser operation.
	MC			All input/output ceases and all exerciser functions are returned to initial conditions, including the program address counter which returns to 00 .

Table 2-1. Switches, Controls, Indicators, and Jacks \{contrd\}

ITEM	COMPONENT NAME	ID	$\begin{aligned} & \text { REF: } \\ & \text { DESIG. } \end{aligned}$	FUNCTION
34	START	PB	SIb	A spring－loaded momentary－on push－ button that returns to the OFF posi－ tion when released．If the MODE switch［item 37］is set to RUN or STEP，pressing the pushbutton starts the execution of the instruction stored in memory at the address indicated by the ADDRESS indicator． If the MODE switch is set to LOAD， pressing the pushbutton increments the program address one count．
35	INT TEST ON S / S OFF	s	Ss	The responses from the tape trans－ port which are necessary for suc－ cessful completion of the instruc－ tions in memory are simulated in order that proper operation of the exerciser may be determined．The length of each instruction including Rewind is determined by the setting of the RECORD LENGTH control． The Ready，Busy，BOT，and EOT sig－ nals are accepted from the tape unit and are used in their ordinary con－ texts to control the Start／Stop ［S／S\} testi all other transport inputs are ignored． Normal position of the switch and does not affect exerciser operation．
36	OPERATION CONTINUOUS	s	59	Write or read operations continue findependent of the RECORD LENGTH． controlf without generating or rec－ ognizing record gaps until the End of Tape or Beginning of Tape marker is sensed，at which time the next instruction is executed．Two for－ ward or two Reverse instructions in succession would stop the operation at End of Tape，or Beginning of Tape， respectively．The operation will also stop if the INT CONTROL switch is set to MC．

Table 2－I．Switches，Controls，Indicators，and Jacks \｛contrd\}

ITEM	COMPONENT NAME	ID	$\begin{aligned} & \text { REF. } \\ & \text { DESIG. } \end{aligned}$	FUNCTION
$\begin{gathered} 3 b \\ \{\operatorname{con} t r d\} \end{gathered}$	OPERATION			
	CONT REC			Write or read operations are performed in record segments. The instruction changes at End of Tape or Beginning of Tape. The length of a write is determined by the RECORD LENGTH control; the length of a read by the length of the record on tape. Operation stops at End of Tape or Beginning of Tape if there are two forward or two reverse instructions in succession. Operation also stops if INT CONTROL is set to MC. Write or read operations are performed in record segments. The instructions change after each record. The length of a write is controlled by the RECORD LENGTH control; the length of a read by the length of the record on tape. The operation stops if the INT CONTROL switch is set to MC.
37	MODE	5	S10	
	RUN			Storage of instructions in memory is inhibited. When the START pushbutton is pressed. program execution begins at the current memory location and continues to the breakpoint, cycles to zeror and then repeats: Repetition is halted by setting the switch to STEP or by setting INT CONTROL switch to MC.
	STEP			Storage of instructions in memory is inhibited. When the START pushbutton is pressed, the instruction ${ }_{7}$ whose indicator was lity is executed and the program address counter is incremented by one count.
	LOAD			Program execution is inhibited. When an INSTRUCTION pushbutton is pressed. the corresponding instruction is stored at the current memory location. The INSTRUCTION indicator lights.

Table 2-1. Switches, Controls, Indicatorsı and Jacks \{cont’d\}

ITEM	COMPONENT NAME	ID	$\begin{aligned} & \text { REF: } \\ & \text { DESIG. } \end{aligned}$	FUNCTION
38	REWIND \{INSTRUCTION\}	PB-I	S/DSI	Lights to indicate a Rewind instruction is to be executed or is currently being executed. When the pushbutton is pressed a Rewind instruction is stored at the current memory location, if the MODE switch is set to LOAD.
39	WRITE [INSTRUCTION\}	PB-I	S/DS2	Lights to indicate a Write instruction is to be executed or is currently being executed. When the pushbutton is pressed a W rite instruction is stored at the current memory location, if the MODE switch is set to LOAD.
40	REVERSE \{INSTRUCTION\}	PB-I	S/DS3	Lights to indicate a Reverse motion instruction is to be executed or is currently being executed. When the pushbutton is pressed a Reverse motion instruction is stored at the current memory location, if the MODE switch is set to LOAD.
41	FORWARD \{INSTRUCTION\}	PB-I	S/DS 4	Lights to indicate a Forward motion instruction is to be executed or is currently being executed. When the pushbutton is pressed a Forward motion instruction is stored at the current memory location,if the MODE switch is set to LOAD.
42	BREAKPOINT 2^{\square} $2^{1} 9$ and $2 己$	5	53 thru S5	When the memory Iocation represented by the binary configuration of these switches is reached, the instruction at that address is executed and the program address counter is returned to zero. The position of the switches does not affect memory storage capability.
	1 \square			When set to this position the memory address represented by the binary configuration of the switches is enabled for execution. When set to this position the memory address represented by the binary configuration of the switches is disabled for execution.
43	ADDRESS $2^{\square}, 2^{\text {I }}$ and 2 2	I	DS 4 thru DSE	Provide binary indication of the current memory address.

Table 2-1. Switches, Controlsı Indicatorsı and dacks \{cont'd\}

1. Insure that both the exerciser and the tape transport are in a power down condition.
2. Disconnect the connector on the cable from the controller to the tape transport, at the tape transport.
3. Open the exerciser and remove the input/output cable that is stored under the lid on the top cover.
4. Connect the input/output cable to the I/O connector on the exerciser and to the connector on the tape transport where the controller cable was connected.
5. Remove the $A C$ power cable that is stored under the lid on the top cover of the exerciser.
b. Connect the female end of the $A C$ power cable to the recessed, male, AC POWER connector on the operator panel.
6. Power up the tape transport.

CAUTION
Before applying power to the exerciser, insure that the exerciser is properly wired for the power source being used. Internal wiring changes are required to convert from lea volt to 220 volt operation or vice-versa. See Section bl Maintenance, for input power change instructions.
8. Connect the $A C$ power cable to the 120 or 220 volt $A C$ outlet.

ๆ. Set the exerciser $A C$ POUER switch to ON.
10. Observe the exerciser ERROR indicators and if any are litr press the appropriate ERROR pushbutton and observe that the indicator goes out.
11. Bring the tape transport up to a Ready condition.
l2. Insure that the INT TEST switch on the exerciser is set to OFF.
13. Set the DENSITY REQUEST 2^{\square} and 2^{1} switches to the following positions, depending upon the desired read or write density.

2^{0}	2^{7}	DENSITY
\square	\square	55b BPI
1	0	$80 \square$ BPI
\square	1	I600 BPI
1	1	Local-Th selected

14. Observe that the DENSITY STATUS indicators light to indicate the density which has been selected either on the exerciser or at the tape transport.
15. Set the PARITY ERROR RESPONSE switch to either BACKSPACE ${ }_{7}$ OFF, or TRAP. When set to OFF, the PARITY \{ERRORJ indicator lights but the program continues when a parity error is detected. When set to BACKSPACE, the exerciser will continue trying to reread or rewrite until the parity error no longer exists. When set to TRAP ${ }_{7}$ the exerciser program continues but the word with the parity error is trapped in a register and may be displayed on the DISPLAY when the DISPLAY SELECT switch is set to READ.

1b. Set the PATTERN switch to either TRUE or TRUE/COMP depending upon whether writing of the true value of the DATA switches or the true and alternating complement value of the DATA switches is desired.
17. Set the CLIPPING LEVEL switch to either HI_{7} NORMAL7 or Low depending upon whether the high normal, or low clip level of the read data from the tape transport is desired.
18. If a write operation is to be performedn set the 2^{\square} through 2? DATA switches to I if a ${ }^{\circ} 1 \nabla$ is to be written 7 to \square if a ${ }^{\nabla} \square^{\circ}$ is to be written or to E if it is desired to erase the track.
19. Set the P DATA switch to ON or OFF depending upon whether it is desired to generate automatic parity or to erase the parity track, respectively.
20. Set the RECORD LENGTH control to either ONE WORD or to a position from just off the ONE WORD position to the fully clockwise position ${ }^{\text {copending upon whether a one word }}$ record or a record from 2 to 100 milliseconds long is desired.
21. Set the PAUSE TIME control to either OFF or to a position from just off the OFF position to the fully clockwise position, depending upon whether a time between execution of program instructions from b microseconds in the OFF position to from 2 to 100 milliseconds is desired.

22．Set the MODE switch to LOAD．
23．Load the desired program into memory by pressing the START pushbutton to increment the program to the desired address 7 as indicated by the ADDRESS indicators followed by pressing the appropriate INSTRUCTION pushbutton．Any of the four instructions［Forwardi Reverse，Uriter or Rewindf may be programmed at any of the eight addresses．

24．Set the $\sum^{\square} 2^{1}$ ，and \sum^{2} BREAKPOINT switches to 1 or \square depending upon the number of instructions to be executed． Refer to the following table．

2^{2}	2^{\beth}	2^{\square}	INSTRUCTIONS
0	0	0	1
0	0	1	2
0	1	0	3
0	1	1	4
1	0	0	5
1	0	1	6
1	1	0	7
1	1	1	8

25．Set the MODE switch to STEP or RUN depending upon whether the program is to be executed one instruction per depression of the START pushbutton or continuously in sequence after one depression of the START pushbutton7 respectively．

己b．Set the OPERATION switch to CONTINUOUS，CONT REC，or RECORD．When set to CONTINUOUS，one instruction will be executed until either the Beginning of Tape or End of Tape is reached disregarding record gaps ${ }^{\prime}$ then the program is incremented．When set to CONT REC one instruction will be executed until either the Beginning of Tape or End of Tape is reached，however record gaps will be written in the case of a Write operation or read in the case of a Read operation then the program is incremented． When set to $R E C O R D_{7}$ an instruction is executed until a record gap is written or read，then the program is incremented．

27．Set the DISPLAY SELECT switch to the appropriate position to display the desired information on the DISPLAY．Refer to the DISPLAY SELECT position definitions printed on the Iid on the top cover of the exerciser．

2，Set the IBM－CDC switch，located on logic card $7 B E F$ at location $B Z_{7}$ to either IBM or CDC depending upon whether the exerciser is connected to an IBM or CDC subsystem tape transport．

29．Press the START pushbutton to commence execution of the program instructions．
30. The program will halt any time that the INT CONTROL switch is set to MC.
31. When the TAPE CONTROL switch is set to REWIND or UNLOAD7 the tape transport tape will rewind or unload as applicable.
32. Set the SIGNAL MONITOR switch to position 1 through 24 to display any of the applicable signals on the SIGNAL MONITOR indicator and made available for monitoring on the SIGNAL MONITOR test point. Refer to the names of the SIGNAL MONITOR signals printed on the lid on the cover of the exerciser.

3ヨ. Set the TAPE CONTROL switch to UNLOAD.
34. Remove tape from and power down the tape transport.
35. Set the $A C$ POUER switch on the exerciser to OFF.

Section 3

Installation and Checkout

Section 3
Installation and Checkout

1.0	Genera 1
	This section provides detailed information pertaining to crating and uncrating, site installation $\boldsymbol{7}^{\prime}$ and preparation for use.
2.0	Installation
2.1	Crating
	Perform the following procedure. Refer to Figure \exists - $\mathbf{I}^{\text {. }}$
	1. Coil $A C$ power cable and input/output cable and insert behind hinged center partition.
	2. Insure six thumb screws holding exerciser main assembly in aluminum case are secure.
	3. Insure AC POUER fuse and TIMER are secure in place in operator panel.
	4. Close case cover and latch.
	5. Insert exerciser in place in shipping carton CDC Part Number 59322400, which may be ordered from Customer Engineering Materials. Refer to Figure 3-1.
	b. Close carton covers and seal.
2.2	Uncrating
	Perform crating procedure in reverse sequence. It is suggested that the cartons and packing be retained for future shipment.
$2 \cdot 3$	Physical Limitations
	When the cover case is opened completely 7 the exerciser requires an area approximately 7 g inches high, la inches wider and la inches deep. The exerciser weighs approximately 25 pounds. The input/output cable is ten feet longr therefore the exerciser must be placed on a workbench or other appropriate support which is within ten feet of the tape transport.

Figure 3-1. Recommended Packing Procedure Using Shipping Carton CDC PN 59322400

2.4	Power Requirements
	The exerciser requires either lia volt $A C_{1} b H_{z}$, single phase, three wire power or 220 volt $A C_{7} 5 \mathrm{DHz}$ single phase, two wire power. Normal operating power is 120 volt $A C_{1} 6 \mathrm{HHz}$. If 220 volt $A C, 5 \mathrm{~Hz}$ is used, a wiring change must be made to the exerciser. Refer to Section b, Maintenance, for procedures for wiring for either power source.
2.5	Cabling and Connectors
	Two cables are supplied with the exerciseri an $A C$ power cable and an input/output cable. The AC power cable is eight feet long and the input/output cable is ten feet long. The AC power cable has a female plug on one end to be inserted into the recessed male connector on the exerciser. The other end of the $A C$ power cable has a two wire plus ground male plug to fit into a normal wall outlet. The AC power cable can be used for either lat volts or 220 volts $A C$. The input/output cable has identical male lib-pin connectors on each end to mate with identical lba-pin female connectors on the exerciser and the tape transport.
2.6	Cooling Requirements
	Operating temperature for the exerciser should be from $60^{\circ} \mathrm{F}$ $\left\{15.5 \mathrm{~b} \mathrm{C} \mathrm{\}}\right.$ to $90^{\circ} \mathrm{F}\{32.22 \mathrm{C}\}$. Recommended operating temperature is $75^{\circ} \mathrm{F}$ \{23.89 C$\}$. Maximum temperature gradient should be 5° per hour. Permissable non-operating temperature is $-30^{\circ} \mathrm{F}$ $\left\{-34.44 \mathrm{C} \mathrm{\}}\right.$ to $150^{\circ} \mathrm{F}$ \{b5.5b C\}. Permissable operating and nonoperating relative humidity is non-condensing 0 to 90 percent.
2.7	Preparation For Use
	Perform the following before application of power.
	1. Uncrate the exerciser.
	2. Visually inspect the exterior of the case for dents or defects.
	3. Open the case and check the operator panel for loose or broken components. Replacement procedures for site replaceable components are given in Section Maintenance.
	4. Remove the operator panel from the case by loosening the six knurled spring-loaded captive screws from the panel. Lift the panel straight up from the aluminum case.
	5. Inspect the underside of the panel for broken wirer loose components, or bent connector pins.

b. Remove and inspect the two fuses on the $D C$ power supply. Replace if necessary.
7. Insure that all the printed circuit cards are installed and are properly seated in the logic rack. Compare the logic card designator on the logic card with the card placement diagram printed on the bottom of the logic rack to insure that the cards are located properly.
A. Insure that there is an Equipment Identification Plate on the plate on the bottom of the card rack and that an FCO Log form AAlg? ${ }_{7}$ is affixed to the inside bottom of the case.

ๆ. Replace the panel in the case. If checkout procedure is to follow the panel need not be replaced.

Checkout

1. Open the case cover.
2. Remove the operator panel from the case by loosening the six knurled spring-loaded captive screws and lifting the panel straight up from the case.
3. Remove and inspect the one ampere $A C$ fuse. Replace if necessary.
4. Insure a 2000 hour cartridge is installed in the TIMER.

CAUTION

> Do not connect the AC power cable until the exerciser has been inspected to insure it is wired properly for the power source to be used. Internal wiring changes are required to convert from Izd volt to 220 volt operation. or vice-versa.
5. Inspect terminal board TBI under the operator control panel. Refer to Figure b-5 for the location of TBl. If the exerciser is to be used for l20 volt operation one jumper should be connected between terminals 1 and 2 and one jumper should be connected between terminals 3 and 4. For purposes of identification terminal 1 is closest to the underside of the operator panel. For 220 volt operation both jumpers should be connected between pins 2 and 3 .
b. Remove the $A C$ power cable from under the lid of the case cover.
7. Insure the $A C$ POWER switch is set to OFF.
8. Insert the female plug on the $A C$ power cable straight into the recessed, male AC POWER connection on the operator panel.
9. Set the INT TEST switch to ON.
10. Set the DENSITY REQUEST 2^{0} and 2^{1} switches to 0 .
11. Set the DISPLAY SELECT switch to START.
12. Set the SIGNAL MONITOR switch to position 1 .
13. Rotate the PAUSE TIME and RECORD LENGTH controls to the fully clockwise position.
14. Set the P DATA switch to $O N$.
15. Set the 2^{0} through 2^{7} DATA switches to 1 .
16. Set the CLIPPING LEVEL switch to NORMAL.
17. Set the PATTERN switch to TRUE.
18. Set the PARITY ERROR RESPONSE switch to OFF.
19. Set the OPERATION switch to RECORD.
20. Set the MODE switch to LOAD.
21. Set the BREAKPOINT $2^{0}, 2^{1}$, and 2^{2} switches to 1 .
22. Install the internal test p lug connector onto the I / O connector.
23. Set the AC POWER switch to ON.
24. Observe the ERROR indicators. If any are lit, press the appropriate pushbutton and observe that the indicator goes out.
25. Observe that the READY \{STATUS\} indicator is lit, the DISPLAY indicates 000, and that one and only one of the INSTRUCTION indicators is 1it.
26. Set the SIGNAL MONITOR switch to positions 1 through 24 and observe that the SIGNAL MONITOR indicator is lit at positions 1 through 9, 11 and 21.
27. Return the SIGNAL MONITOR switch to position 1.
28. Set the INT CONTROL switch to LAMP TEST.
29. Observe that all the indicators on the operator panel are lit and that the DISPLAY indicates 888.
30. Alternately press the START and appropriate INSTRUCTION pushbutton and load a Forward instruction at address 0 , a'Reverse instruction at address 1 , a Write instruction at address 2, a Rewind instruction at address 3, a Forward instruction at address 4, a Reverse instruction at address 5, a Write instruction at address 6 , and a Rewind instruction at address 7.
31. Set the INT CONTROL switch to MC.
32. Set the MODE switch to STEP. Observe that (INSTRUCTION) indicators toggle between WRITE and FORWARD in steps 33-36 when the START pushbutton is depressed.
33. Press the START pushbutton one time and observe that when it is pressed that the BUSY and FWD \{STATUS\} indicators blink. Also observe that the program address incremented to 2 as observed on the ADDRESS indicators.
34. Press the START pushbutton one time and observe that when it is pressed that the BUSY and REV \{STATUS\} indicators blink. Also observe that the program address incremented to 4 .
35. Press the START pushbutton one time and observe that when it is pressed that the WRITE REPLY \{STATUS\} indicator lights and remains lit. Also observe that the program address incremented to 6 .
36. Press the START pushbutton one time and observe that when it is pressed that the WRITE REPLY \{STATUS\} indicator remains lit. Also observe that the program address incremented to 0 .
37. Set the MODE switch to RUN. PAUSE TIME and RECORD LENGTH controls to minimum CCW. Observe that BUSY, FWD and WRITE REPLY \{STATUS\} indicators and all ADDRESS and INSTRUCTION indicators are lit and running. (NOTE: The PARITY ERROR indicator may intermittently come on.)
38. Press the START pushbutton. Observe that the FORWARD, REVERSE, WRITE, and REWIND \{INSTRUCTION\} indicators are blinking in sequence. Also observe that the ADDRESS indicators are Lit, indicating the program is executing. Also observe that the BUSY, FWD, REV, and WRITE REPLY \{STATUS\} indicators are Lit and that' the SIGNAL MONITOR indicator is Lit.
39. Observe the DISPLAY. It should indicate between 004 and 010 .
40. Set the DISPLAY SELECT switch to RECORD GAP. Observe that the DISPLAY is changing values.
41. Set the DISPLAY SELECT switch to READ. Observe that the DISPLAY indicates 777 .
42. Set the DISPLAY SELECT switch to ADDRESS. Observe that the DISPLAY indicates 020.
43. Set the DISPLAY SELECT switch to MODEL and observe that the DISPLAY indicates 200.
44. Set the DISPLAY SELECT switch to FAULT and observe that the DISPLAY indicates 000 .
45. Set the DISPLAY SELECT switch to READ.
46. Set the P DATA switch to OFF.
47. Set RECORD LENGTH to maximum $C W$ and observe the DISPLAY. It should alternate between 377 and 777 .
48. Observe that the PARITY \{ERROR\} indicator is lit.
49. Set the PARITY \{ERROR\} RESPONSE switch to BACKSPACE.
50. Observe that the PARITY \{ERROR\} indicator is blinking and that the program is executing as observed on the ADDRESS indicators and that the INSTRUCTION indicator are sequencing. Also observe that the BUSY, FWD, REV, and WRITE REPLY \{STATUS\} indicators are blinking.
51. Set the PARITY ERROR RESPONSE switch to TRAP. Observe that the PARITY \{ERROR\} indicator is lit.
52. Set the P DATA switch to $O N$.
53. Set the 2^{0} through 2^{7} DATA switches to 0 .
54. Observe the DISPLAY. It should alternate between 400 and 777 .
55. Press the PARITY \{ERROR\} pushbutton and observe that the DISPLAY alternates between 400 and 777 and that the PARITY \{ERROR\} indicator blinks.
56. Set the PARITY ERROR RESPONSE switch to OFF.
57. Set the OPERATION switch to CONT REC. Observe that the program has stopped and that the WRITE \{INSTRUCTION\} indicator is lit. Also observe that the BUSY and FWD \{STATUS\} indicators are blinking and that the WRITE REPLY indicator is lit.
58. Set the INT CONTROL switch to MC. Observe that the RDY and WRITE REPLY \{STATUS\} indicators are lit. Also observe that the FWD \{INSTRUCTION\} indicator is lit.
59. Press the START pushbutton.
60. Set the OPERATION switch to CONTINUOUS. Observe that the BUSY, FWD and WRITE REPLY \{STATUS\} indicators are lit.

Section 4
 Theory of Operation

Section 4
Theory of Operation

Introduction
The theory of operation for the exerciser is divided into four levels. They are as follows:

Level I General Description

This is a brief description of the operation of the major parts of the exerciser. The major parts are depicted in an overall exerciser block diagram. This description is intended for the person who needs only a brief understanding of the function and capabilities of the exerciser, therefore no detailed description of the exerciser operation is included. The general description is included in this section.

Level 2 Functional Description

This is a detailed description of the operation of the exerciser. It is supported by appropriate timing diagrams and is supplemented by information in Section 1 including interface pin assignments and interface signal descriptions. It is also supplemented by information in Section 2 including the complete description of all operator controls and indicators.

The functional description is intended for the person who needs to know in detail how the exerciser operates but who does not need to know how individual circuits and components work. The functional description is included in this section.

Level 3 Circuit Descriptions
The circuit descriptions are included in Section 57 Diagrams. They describe the operation of every logic circuit, power distribution diagram and control panel schematic in the section and are located on the page facing the diagram. They are intended for use by the Customer Engineer in troubleshooting the exerciser.

Level 4 Circuit Element Description

The circuit element descriptions are included in Section F_{i} Maintenance Aids. They describe the operation of every integrated circuit and discrete component circuit in the exerciser. They are supported by truth tables, logic diagrams and timing diagrams. They are intended to be used by the Customer Engineer primarily for isolating malfunctions down to the individual integrated circuit and discrete component circuit level.

2.0 General Description

The exerciser receives hardware status and address information from the tape transport. The hardware status indicates the speed of the tape transport and the method of recordingi i.e.i NRZI or Phase Encoded. The address indicates the unit number of the tape transport that is connected to the exerciser. The exerciser then transmits requests to the tape transport which have been programmed into the exerciser by the operator. The request may be motion commands \quad rewind or unload, write or readr density requestr or read clip level. When the tape transport receives the requests it transmits back operation status, which includes such information as write status, busy, ready, beginning of taper end of tape, velocity, density, and tachometer pulses. The exerciser then either transmits write data to the tape transport or receives read data from it depending upon the program instructions. Correct parity is either checked or generated depending upon whether the operation was read or writen respectively: During the read or write operation error checking of the operation is continually performed. In addition faults which may occur within the tape transport are transmitted to and displayed by the exerciser.

All interface between the exerciser and the tape transport is through the input/output section of the exerciser, which consists of the input/output connector and cable and the transmitters and receivers. Refer to Figure $4-1$ for a diagram depicting the relationships between the major sections of the exerciser and the tape transport.

Control of exerciser operations and storage of instructions is accompl ished by the program control and memory section. The operator control panel ADDRESS indicators 7 BREAKPOINT switches 1 and INSTRUCTION pushbutton-indicators are used to store up to eight instructions in a two-bit by eight-address memory. Tape Transport density is selected by the DENSITY REQUEST switches. The MODE switch, OPERATION switchr and START pushbuttons control the operation sequence of the exerciser. The length of time between execution of instructions and the length of a record are controlled by the PAUSE TIME and RECORD LENGTH controlsi respectively. A non-programmed unload or rewind operation can be initiated by the TAPE CONTROL switch. The exerciser can be master cleared or a lamp test may be performed by the INT CONTROL switch. To check for proper operation of the exerciser. an internal test may be made by the INT TEST switch.

Figure 4－1．Exerciser Block Diagram

Writing data on the tape transport tape is accomplished by the write section. Ones or zeros may be written on any track by setting the DATA switches to the appropriate setting. The true or alternating true and complement output of the data switch settings can be selected by the PATTERN switch. Odd parity will be generated if enabled by the P DATA switch.

Whenever a forward or reverse motion is commanded without a write commandi a read operation will be performed. odd parity will be checked if enabled by the P Data switch. A high or low read clip level may be selected by the CLIPPING LEVEL switch.

When enabled by the P DATA switch 7 odd parity is generated by the exerciser during a write operation and checked during a read operation. When a parity error is detected the PARITY ERROR indicator lights. The exerciser will either backspace and attempt to re-execute without a parity error or will trap and display the word with the parity error, depending upon the setting of the PARITY ERROR RESPONSE switch. Errors in tape transport operation detected by the exerciser are displayed on the ERROR indicators. When the tape transport detects a fault or malfunction in its operation, an indication is transmitted to the exerciser and is displayed on the DISPLAY.

The display section of the exerciser provides a visual indication of operational and hardware status. The STATUS indicators light to indicate the operational status of both the exerciser and the tape transport. The DISPLAY indicators provide both the operational status and the hardware status of the tape transport. The desired status may be selected by the DISPLAY SELECT switch. The SIGNAL MONITOR switch provides the ability to select different signals for display on the SIGNAL MONITOR indicator and for observation on an oscilloscope at the SIGNAL MONITOR jack.

```
3.[ Functional Description

\section*{General Exerciser Operating Conditions}
```

Pressing the START pushbutton initiates exerciser operation. A Forwardi Reverse, Urite, or Rewind command is transmitted to the tape transport when START is pressed. The tape transport returns a Busy signal when it receives the motion command indicating that tape is in motiono Write data is then transmitted to the tape transport if a write operation is to be performed, or read data is received by the exerciser if a read operation is to be performed. When a write operation is performed, read data is transmitted back to the exerciser for parity checking. Since the tape transport does not generate an End of Operation signal, the exerciser must determine when an operation has ended and then generate its own signal. This is done by the exerciser when it detects that there has been read data followed by a period of 50 microseconds when there has been no read data. An internal exerciser End of Operation signal is then generated. The End of Operation signal removes the motion command. An End of Tape or Beginning of Tape

```
signal also generates an End of Operation signal and removes the rewind command. When the tape transport Busy signal goes low the exerciser timing cha in is initiated. When the Time b pulse occurs, another motion command will be transmitted to the tape transport if the exerciser is in the RUN mode. If it is in the STEP mode another operation cannot be initiated until the START pushbutton is again pressed. Refer to the following timing diagram.


Figure 4-2. General Operation Timing Diagram

The exerciser read and write functions are conditioned by the recording mode \(\{N R Z I\) or PE\}, tape speed \(\{100,150\) or 200 IPS\}, and number of tracks \{? or 9\} information from the tape transport.

\section*{Write Operation}

The exerciser initiates a Write operation by raising the Forward line, then raising Write Request no later than 200 nanoseconds after Forward. When a write operation is initiated the tape transport returns a Busy within 50 nanoseconds after the Forward and Write Request signals are activated by the Exerciser, indicating that tape is in motion. Write reply is activated by the tape transport within 50 nanoseconds after Busy indicating that the tape transport has turned on the write current and erase heads. The Velocity signal is sent to the exerciser when the tape is up to speed. The tape transport sends the Write Permit signal after a given period of time has elapsed for inter-record gap generation. When Write Permit is received the exerciser begins outputting data. The exerciser cannot output data unless write Permit is active.


Figure 4-3. Write Timing Diagram

The PATTERN switch permits the value selected by the DATA switches to be output as a true value \{TRUE position\} or as alternating true and complement words fnot alternating records\}, beginning with a true word output. If TRUE/COMP is selected, in conjunction with the ONE WORD position of the RECORD LENGTH control, all output words will be true fone word record, first word must be true\}. The method and rate of recording \{NRZI or PEJ depends on the Density Status of the tape transport.
The DATA switches for bits \({ }^{2}\) or \(2^{?}\) are sampled or not sampled for automatic parity generation depending on the track information received from the tape transport. A seven-track tape unit does not require these bits so the exerciser does not include these bits in automatic parity generation.

Parity generation is automatically generated as a correct odd value when the oPD DATA switch is in the ON position. With this switch in the OFF position the parity output line is
 incorrect parity, since \(2{ }^{1}\) through 2 ? may be set for an odd number of bits, thus not requiring the generation of a parity bit.

When data are being output, they are also simultaneously being returned to the exerciser via the read heads and the Read lines and are continually being checked for proper parity. If an error is detected during a write, the exerciser will command a backspace with an attempt to re-execute without a parity error or will trap and display the wordr depending upon the setting of the PARITY ERROR RESPONSE switch.

The CLIPPING LEVEL switch is used by the exerciser to enable a higher [HI position\} or lower [LOW position\} Read Threshold at the tape transport. In the HI or Low position the High Clip Select or Low Clip Select line, respectively, is held at logical \({ }^{\circ}{ }^{\circ} \mathrm{D}\) by the exerciser, until the switch is moved to the NORMAL position, wherein both Clip Select lines are held at logical \({ }^{\circ} \mathrm{D}\).

The length of a write operation is controlled by the RECORD LENGTH control if the OPERATION switch is in the RECORD position. The control provides the capability of varying the length of a record from 1 data word \(\{\) in the detented position\} or from 2 millisecond Enominalf to approximately lan millisecond \{nominal\} under potentiometer control. When the control knob is rotated to its fully counter-clockwise limit fin the detented positionf, the switch is OFF and the potentiometer is disabled. This position is labeled ONE WORD. When a write is initiated in the NRZI recording mode with this selection two words are actually output. The exerciser, in this case, is simulating the fact that a one-word write from the Tape Control Unit \{TCU\} also consists of two words: a data word and an LRC fLongitudinal Redundancy Checkl word. The two corresponding words from the exerciser, however, are identical to each other and consist of the pattern selected by the PATTERN switch. In the Phase Encoded recording mode, only one word is output. This value is also the same as the settings of the DATA switches.

Rotating the RECORD LENGTH control clockwise turns the switch \(O N\) and enables the potentiometer. The exerciser outputs an even number of words in NRZI? regardless of the setting of the potentiometer. In the Phase Encoded moder an odd or even number of words may be output, depending on the exerciser internal timing.

With the OPERATION switch in the CONTINUOUS position the Write Operation is terminated automatically when the exerciser senses End of Tape or Beginning of Tape or by manual operator intervention, but is continuous until one of these actions occurs.

When the exerciser drops the Write Request and Forward 1 ines, the tape transport should drop Write Permit within 50 nanoseconds. After a maximum of 1 millisecondi Velocity drops. Busy drops within the Stop time period, which varies depending upon the model tape transport.

The exerciser prepares, during a write operation, to perform a Write Jog sequence: However this Write Jog sequence is not performed until reverse motion is requested under program control. Urite Jog is not performed for a manual Rewind or Unload as initiated by the TAPE CONTROL switch. The tape transport keeps Write Reply active until the Exerciser requests reverse motion.

Read
A read operation is performed when the exerciser raises the Forward line or the Reverse line without raising the Urite Request line. The inactive state of the Write Request line with the active state of a motion line is interpreted as a read by the tape transport.


Figure 4-4. Forward or Reverse Read Timing Diagram

Data are returned on the Read lines and are displayed in octal by the DISPLAY indicators if the DISPLAY SELECT switch is in the READ position. These data are continually being checked for odd parity. The absence of data for 50 microseconds is interpreted by the exerciser as the end of a record gap and the exerciser generates its own internal End of Operation.

The Urite Jog sequence is performed any time a Write operation is followed by either a Reverse Read operation or a Rewind operation while under program control. This sequence consists of a Forward signal which is 7 ? g Tachometer pulses in duration. Although the absence of Write Request would normally mean a read operation, Write Reply is still active, signifying that the erase heads are still on. Thus, during the time that Busy is active for the Urite Jog sequence, the erase heads are creating a one-inch record gap. The exerciser begins the reverse read by raising the Reverse line as soon as the tape transport drops Busy. The tape transport detection of the active state of the Reverse line drops Write Reply.


Figure 4-5. Write Jog Sequence Timing Diagram


Figure 4-b. Rewind Timing Diagram

Unload
The unload operation is initiated by the exerciser only when the TAPE CONTROL switch is momentarily placed in the UNLOAD position. The Unload signal is a l microsecond pulse. once this operation has been initiated, the exerciser cannot take further actions until the tape has been reloaded and brought to the BOT marker.


Figure 4-7. Unload Timing Diagram
3.6 Error Detection

Four errors are detected by the exerciser. They are Write Permit Error, Fault Error, Velocity Error, and Parity Error. These are defined below.

Write Permit Error: The tape transport raised the Write Permit line before raising the Velocity signal.

Fault: The tape transport has activated one of the five Fault lines.

Velocity:
The tape transport dropped the Velocity line for 100 nanoseconds minimum while a motion line was active.

Parity:
The exerciser has detected even fincorrect\} parity during a Write or Read operation during the period when sampling is permitted. The sampl ing period which the Exerciser uses depends on the tape speed of the transport.

The ERROR section consists of the WRITE PERMIT, FAULT, VELOCITY, and PARITY pushbutton/indicators.

Write Permit, Fault, and Velocity Errors once detected are retained until the associated pushbutton is pressed. provided the error is not steady state. An Error is cleared by pressing the associated pushbutton. Momentarily setting the INT CONTROL switch to the MC position will clear a Parity error only.

The first parity sampling period begins upon the first detection of any bit on the Read Data lines and ends after a period which depends on the tape speed as shown in the chart below.
Tape Speed Sampling Period \{nominal\}
\begin{tabular}{|c|c|c|}
\hline luaips & \{75ips for \(34 \times \times X\}\) & 3.0 microsecond \\
\hline 150ips & \{1, 5 ips for \(34 \times X X\}\) & 2.0 microsecond \\
\hline 200ips & & \\
\hline
\end{tabular}

At the end of the sampling period, parity is checked. Following the check, the next bits on the Read Data lines trigger another sampling period. Thus the sampling period is the word time and establishes the maximum skew period within which the exerciser can accurately detect parity errors.

The PARITY ERROR RESPONSE switch determines how the exerciser will respond to a detected parity error. With the OFF position selected, no action other than the indication \(\boldsymbol{n}_{1}\) is taken by the exerciser. With TRAP selected, the exerciser halts parity detection on the word containing the error by retaining the erroneous word in an internal register. Motion signals continue to be generated. The value of a retained \(\{t r a p p e d\}\) word is displayed on the DISPLAY when the DISPLAY SELECT switch is set to READ. The operator's only indications that a word has been trapped are the illumination of the PARITY ERROR indicator 7 in conjunction with the fact that TRAP has been selected. Following a trapped parity error 7 pressing the PARITY pushbutton will clear the error indication and clear the trap register.

When the PARITY ERROR RESPONSE switch is in the BACKSPACE position and a parity error is detected, the PARITY ERROR indicator lights and then immediately goes out. Tape motion momentarily stops and then startsi with tape motion in the opposite direction that it was in when the parity error occurred: When the tape has backed over the word where the parity error occurred it will again momentarily stop. The program address counter does not advance. The instruction is re-executed in an attempt to write or read without a parity error. If the parity error re-occurs the exerciser will continue trying to backspace and re-execute until the parity error does not occur.

Restrictions
Certain restrictions are imposed on the operation of the Exerciser PROGRAM CONTROL section by design parameters of both the exerciser and the tape transport. These restrictions are discussed below.

A Rewind instruction in the memory must be immediately followed by a command involving forward motion. If a Rewind is followed by a Rewind 7 the exerciser will recognize the transition of Busy to logical \(\nabla^{\circ} \nabla_{1}\) indicating the tape transport has reached Beginning of Tape following the first Rewind and will output another Rewind pulse. However, the tape transport ignores Rewind commands while sensing BOT and will ignore the second Rewind command. Thus, the Exerciser will hang waiting for the transition of Busy to logical \({ }^{\nabla} \square^{\nabla}\). If a Rewind is followed by a Reverse command the Exerciser will not attempt to activate the Reverse line and will halt. Both of the two conditions just discussed involve attempts to initiate reverse motion 1 other than Unloadn while BOT is being sensed.

A write operation initiated by the exerciser while the BOT line from the tape transport is active does not begin outputting data until 377 g Tachometer pulses from the tape transport have been counted by the Exerciser, following the tape transport de-activation of BOT.

A Write instruction in the memory must not be immediately followed by a Forward instruction. A reverse motion signal must be generated to allow the exerciser to generate a Urite Jog sequence. The Forward instruction following a Write instruction would involve a read with Urite Reply \{erase heads on\} still activer and is an undefined operation.

The exerciser will not attempt an operation involving forward motion while End of Tape \{EOT\} is being sensed. Thusr a Forward write or read must be followed by a Reverse or Rewind instruction if the detection of EOT as a result of the forward operation is anticipated \{OPERATION switch in the CONTINUOUS position\}.

The Exerciser is capable of detecting parity errors from Phase Encoded tapes only if the tape contains a pattern of all Irs.

Section 5
Diagrams

SYMBOL INDEX
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{The following is an alphanumeric listing of every logic symbol shown on the logic drawings，along with the manual page number on which that term is shown．} \\
\hline A500 & 5－27 & J220 & 5－13 & J405 & 5－21 & J51？ & 5－2？ & J631 & 5－37 & J737 & 5－4］ & K402 & 5－23 & K804 & 5－43 \\
\hline C300 & 5－19 & J22l & 5－17 & J406 & 5－21 & J518 & 5－27 & 小线 & 5－37 & Ј73a & 5－4］ & K403 & 5－23 & K805 & 5－43 \\
\hline C301 & 5－19 & Јอ22 & 5－13 & J40？ & 5－21 & J519 & 5－2？ & Ј¢ヨ3 & 5－37 & 」739 & \(5-41\) & K404 & 5－23 & K807 & 5－43 \\
\hline C500 & 5－2？ & Јอ23 & 5－13 & J408 & 5－21 & J520 & 5－27 & J634 & 5－3？ & J740 & \(5-4]\) & K405 & 5－23 & K808 & 5－43 \\
\hline C800 & 5－43 & Ј224 & 5－13 & J409 & 5－21 & J521 & 5－27 & ل695 & 5－37 & J74I & 5－4］ & K40？ & 5－23 & K809 & 5－43 \\
\hline C80］ & 5－43 & ل225 & 5－1．3 & 5410 & 5－21 & J522 & 5－27 & Ј636 & 5－37 & 1742 & 5－4］ & K408 & 5－2］ & K810 & 5－45 \\
\hline D200 & 5－13 & Ј226 & 5－1．3 & J411 & 5－21 & J523 & 5－29 & \(\checkmark 37\) & 5－3？ & J743 & 5－4］ & K409 & 5－21 & Kılı & 5－45 \\
\hline d202 & 5－13 & Ј22？ & 5－13 & 1472 & 5－21 & J524 & 5－29 & Ј698 & 5－37 & J744 & 5－4］ & K41］ & 5－21 & K812 & 5－45 \\
\hline D203 & 5－13 & Ј228 & 5－13 & J413 & 5－2］ & J525 & 5－29 & Ј6 39 & 5－37 & Jag & 5－43 & K413 & 5－21 & K8コ3 & 5－45 \\
\hline D300 & 5－19 & J229 & 5－13 & J414 & 5－21 & J526 & 5－29 & J640 & 5－3？ & J80］ & 5－43 & K415 & 5－23 & K 814 & 5－45 \\
\hline D301 & 5－19 & 1300 & 5－1？ & J415 & 5－21 & J52？ & 5－29 & ل64］ & 5－37 & Jate & 5－43 & K41 ？ & 5－23 & K815 & 5－45 \\
\hline D400 & 5－21 & J301 & 5－1］ & J416 & 5－21 & J528 & 5－29 & J642 & 5－37 & J803 & 5－43 & K501 & 5－2？ & Kılı & 5－45 \\
\hline D401 & 5－23 & J302 & 5－1？ & 541？ & 5－21 & J529 & 5－29 & J643 & 5－37 & J804 & 5－43 & K503 & 5－2？ & Kıl？ & 5－45 \\
\hline Itad & 5－33 & J303 & 5－17？ & 5418 & 5－21 & J530 & 5－29 & 小ア00 & 5－39 & J805 & 5－43 & K505 & 5－27 & K818 & 5－45 \\
\hline J100 & 5－7 & 1304 & 5－17 & 1419 & 5－23 & J531 & 5－29 & J701 & 5－39 & J806 & 5－43 & K50？ & 5－2？ & K819 & 5－45 \\
\hline U181 & 5－？ & 4305 & 5－17 & J420 & 5－23 & J532 & 5－29 & J702 & 5－39 & J80？ & 5－43 & K509 & 5－2？ & Mbob & 5－33 \\
\hline J102 & 5－？ & J306 & 5－17 & J42］ & 5－23 & J533 & 5－29 & J703 & 5－39 & Jgos & 5－43 & K510 & 5－2？ & Oba & 5－33 \\
\hline J103 & 5－？ & J30 & 5－17 & Ј422 & 5－23 & J534 & 5－29 & J704 & 5－39 & J809 & 5－43 & K511 & 5－2？ & P400 & 5－21 \\
\hline J104 & 5－？ & J308 & 5－17？ & J423 & 5－23 & J535 & 5－29 & J705 & 5－39 & J810 & 5－43 & K512 & 5－29 & P500 & 5－29 \\
\hline J105 & 5－7 & J309 & 5－17？ & J424 & 5－23 & ل00 & 5－33 & J706 & 5－39 & J11］ & 5－43 & K51．3 & 5－29 & Q300 & 5－17？ \\
\hline J106 & 5－7 & J310 & 5－17 & J425 & 5－23 & J60 & 5－33 & Ј70 & 5－39 & Jgiz & 5－43 & K514 & 5－29 & Q500 & 5－29 \\
\hline J10？ & 5－9 & 131］ & 5－17 & Ј426 & 5－23 & 小ロ2 & 5－33 & Ј7 & 5－39 & J813 & 5－43 & K515 & 5－29 & Q700 & 5－4］ \\
\hline J10a & 5－9 & J312 & 5－1？ & J42？ & 5－23 & Ј603 & 5－33 & 4709 & 5－39 & J814 & 5－45 & K51？ & 5－2？ & R100 & 5－7 \\
\hline J109 & 5－9 & 1313 & 5－17 & Ј428 & 5－23 & J604 & 5－33 & 小10 & 5－39 & Jal 5 & 5－45 & K519 & 5－2？ & Rlal & 5－？ \\
\hline J10 & 5－9 & 1314 & 5－17 & Ј429 & 5－23 & J605 & 5－33 & J711 & 5－39 & J816 & 5－45 & Kı01 & 5－33 & Rloz & 5－？ \\
\hline 11.11 & 5－7 & J31，5 & 5－17？ & J430 & 5－23 & J606 & 5－33 & J712 & 5－39 & J81？ & 5－45 & K¢03 & 5－33 & R103 & 5－？ \\
\hline J112 & 5－7 & J316 & 5－17 & J431 & 5－23 & J60？ & 5－33 & J713 & 5－39 & J818 & 5－45 & Kı05 & 5－33 & R104 & 5－7 \\
\hline J123 & 5－9 & J31？ & 5－1？ & J432 & 5－23 & J68 & 5－33 & J714 & 5－39 & J819 & 5－45 & Kba？ & 5－33 & R105 & 5－？ \\
\hline & 5－7 & J318 & 5－17 & J433 & 5－23 & J609 & 5－33 & J715 & 5－39 & J820 & 5－45 & Kı日 & 5－37 & R200 & 5－1． \\
\hline \[
1115
\] & 5－9 & 4319 & 5－1？ & J434 & 5－23 & J610 & 5－33 & J716 & 5－39 & J82］ & 5－45 & K609 & 5－37 & R20］ & 5－1．11 \\
\hline J 2001
J 201 & 5－11 & J320 & 5－1？ & J435 & 5－23 & J61］ & 5－33 & J71？ & 5－39 & Ј822 & 5－45 & Kblo & 5－3？ & R202 & 5－11 \\
\hline Ј 202 & 5－11 & Ј 3 22 & 5－17？ & 4 337 & 5－23 & ¢ 612 & \(5-33\)
\(5-33\) & J718
J 719 & 5－39 & J823 & 5－45 & Kblı & 5－37 & \(R 203\)
\(R 204\) & 5－11 \\
\hline Ј203 & 5－11 & 1323 & 5－17 & J500 & 5－27 & J614 & 5－39 & J720 & 5－39 & J825 & 5－45 & Kblu & 5－37 & R205 & 5－11 \\
\hline J204 & 5－11 & 1324 & 5－17 & J50 & 5－27 & J615 & 5－39 & 」72］ & 5－39 & Ј \({ }^{\text {¢ }}\) & 5－45 & K614 & 5－3？ & R20日 & 5－11 \\
\hline J205 & 5－11 & 4325 & 5－17 & J502 & 5－27 & Jblb & 5－39 & 」ア22 & 5－39 & Ј \({ }^{\text {de2 }}\) & 5－45 & Kılı 5 & 5－37 & R20？ & 5－1］ \\
\hline J206 & 5－13 & J326 & 5－17 & J503 & 5－27 & Jbi？ & 5－33 & Ј723 & 5－39 & Ј828 & 5－45 & K700 & 5－39 & Rbou & 5－37 \\
\hline J20？ & 5－13 & J327 & 5－19 & J504 & 5－27 & J618 & 5－39 & ل724 & 5－39 & Јヵ29 & 5－45 & K701 & 5－39 & R700 & 5－41 \\
\hline J208 & 5－13 & － 3 28 & 5－19 & J505 & 5－27 & J619 & 5－37 & J725 & 5－39 & J830 & 5－45 & K702 & 5－39 & RアOL & 5－41 \\
\hline J209 & 5－1．3 & 4329 & 5－19 & J506 & 5－27 & J620 & 5－37 & Ј726 & 5－39 & K301 & 5－1？ & K703 & 5－39 & R702 & 5－41 \\
\hline 小210 & 5－1． & J330 & 5－19 & J50？ & 5－27 & い62 & 5－3？ & J727 & 5－4］ & K303 & 5－1．7 & K？ 04 & 5－41 & R800 & 5－45 \\
\hline ป211 & 5－13 & J331 & 5－19 & J50a & 5－27 & い焅 & 5－37 & Ј728 & 5－41 & K 304 & 5－17 & K705 & 5－41 & T100 & 5－9 \\
\hline ป212 & 5－13 & J332 & 5－19 & J509 & 5－2？ & い63 & 5－37 & J729 & 5－41 & K305 & 5－1？ & Kアロ？ & 5－41 & T1．\({ }^{\text {d }}\) & 5－9 \\
\hline J213 & 5－13 & J333 & 5－19 & J510 & \(5-27\) & J624 & 5－37 & Ј730 & 5－41 & K306 & 5－17 & K709 & 5－41 & T102 & 5－9 \\
\hline Ј114 & 5－13 & \(\begin{array}{r}\text { J334 } \\ \\ \hline 400\end{array}\) & 5－1， 9 & J511 & 5－27 & J625 & 5－37 & Ј731 & 5－4］ & K307 & \(5-17 ?\) & K711 & 5－41 & T109 & 5－7 \\
\hline J215 & 5－1． & J401 & 5－2】 & J513 & 5－27 & ل62 & 5－37 & 」739 & 5－41 & K309 & 5－1？ & Kpla & 5－411 & T105 & 5－9 \\
\hline J2l？ & 5－13 & J402 & 5－21 & J514 & 5－27 & Ј¢28 & 5－37 & J734 & 5－41 & K310 & \(5-17\) & K기？ & 5－4］ & T400 & 5－23 \\
\hline J218 & 5－1．3 & 5403 & 5－21 & J515 & \(5-27\) & Ј629 & 5－37 & J735 & 5－41 & K31］ & \(5-27\) & K801， & 5－43 & T40］ & 5－23 \\
\hline J219 & 5－13 & J404 & 5－21 & J516 & 5－27 & い630 & 5－37 & J736 & 5－41 & K401 & 5－23 & Ka \({ }^{\text {¢ }}\) & 5－43 & Tbod & 5－3？ \\
\hline & & & & & & & & & & & & K803 & 5－43 & T800 & 5－45 \\
\hline
\end{tabular}



TRANSMITTERS \& RECEIVERS lBDF CARD
cragia

The lBDF logic board at location A己 contains: six, type lbe, dual line receivers; six, type lifb dual line driversi and an oscillator circuit. There are two receivers and two drivers, or transmitters, on each integrated circuit chip for a total of 12 receivers and 12 transmitters. One transmitter is not used. Each receiver and transmitter has two 56 -ohm terminator resistors.

Nine receivers accept the nine Read bits \(\left\{2^{\square}\right.\) through \(2^{?}\) and Read Parity\}. When the differential voltage between the plus and minus receiver inputs is greater than +0.025 volt, the receiver outputs a logic \({ }^{\circ} \mathrm{D} \mathrm{D}^{\prime}\). When the differential voltage is greater than -0.025 volt, the receiver outputs a logic \({ }^{\circ} \mathrm{D}\).

The Read \(2^{b}\) and \(\dot{e}^{7}\) receiver outputs each have two diodes with the cathodes wired together with a pull up resistor to +5 volts \(D C\). The anode of one diode is connected to the output of the receiver; the anode of the other diode to the \(\overline{? \text { TRACK }}\) signal. The circuit is a positive AND gate. When the exerciser is connected to a nine track tape transport, the \(\overline{7 \text { TRACK }}\) signal is a logic \({ }^{\circ}{ }^{0} \mathrm{D}\) enabling the AND gate. The output of the AND gate will be a \({ }^{\circ} I^{D}\), when the output of the receiver is a \({ }^{\circ} \mathrm{I}^{\mathrm{D}}\) and it will be a \({ }^{\circ} \square^{\circ}\) when the output of the receiver is a \({ }^{\circ} \square^{\circ}\). When the exerciser is connected to a seven track tape transport the \(\overline{? \text { TRACK }}\) signal is a logic \({ }^{\circ} \mathrm{D}\) and the positive AND gate is disabled. The output of the AND gate is then a constant \({ }^{\circ} 0^{\circ}\) regardless of the receiver output.

The Velocity signal from the tape transport is wired so the negative from the tape trarisport transmitter is connected to the exerciser receiver positive and the positive from the tape transport transmitter to the negative of the exerciser receiver. In this way when the velocity input is a \({ }^{\circ} \mathrm{l}\) ס the receiver output is a \({ }^{\circ} \mathrm{D}\) 。 This is done so that when the exerciser is in Internal Test, the Internal Test signal to inverter JlOH will provide a logic \({ }^{0} \mathrm{D}^{\circ}\) to pin B on the receiver. When the input
 thus permitting generation of the Veiocity signal, which is done on another board.

The Tachometer Phase \(l\) and Tachometer Phase II signals from the tape transport are connected to receiver RI03. They are connected positive to negative and negative to positive, the same as the Velocity signal. When the two tachometer pulses are logic
\({ }^{\circ}{ }^{\circ}{ }^{\circ}\), the output from the receiver is a logic \({ }^{\circ}{ }^{0}\). The logic \({ }^{\circ}{ }^{0}\). receiver output goes to inverters \(\sqrt{405}\) and \(\sqrt{40 b}\). The inverter outputs \(\{T\) Tachometer Phase \(l\) and 2\(\}\) are a logic \({ }^{\circ}{ }^{\circ} \mathrm{D}\).
 will be applied through CRI to pin la of AND gate Jlag. The Busy signal, which is also a logic \({ }^{\circ}{ }^{2} \mathrm{D}\) during internal test, is applied through CR2 to pin lo of diou.
 an oscillator. Capacitors ClO and Cll determine the oscillator frequency which is nominally 100 microseconds. Capacitor \(C 9\) serves to stabalize the oscillator output. The oscillator output, ANDed with Internal Test and Busyr provides the Tachometer Phase 1 and Phase 2 pulses through OR gates \(J 105\) and \(J 10\).


86816400 C

The eight Urite data bits \(\left\{2^{0}\right.\) through \(\left.\sum^{7}\right\}\) are input through inverters \(\operatorname{JJOP}\) through
 directly to transmitter Tlou without first going through an inverter. The Rewind
 through R2l to AD of transmitter Tlo3 is transmitted as the Unit Select signal to the tape transport and lights the UNIT SELECT switch.

When the P DATA switch \{CRDOqA\} is set to OFF, the Urite Parity signal to Thoo is a logic \(\square^{\circ}\) fground\}. A steady state logic \({ }^{\circ} \square^{\circ}\), which is a \(D C\) erase, is transmitted to the tape transport. When the P DATA switch is set to ON, odd Write Parity from the parity generator P500 \{CROO5B\} to TloD is transmitted to the tape transport.

When a DATA switch fCRODAA is set to E , there will be no Write data signals to the appropriate inverter \(\{\mathrm{JlOf}\) through dy 1 St . The +5 volts \(D C\) and the pull-up resistor supply a logic \({ }^{\circ}{ }^{0}{ }^{\circ}\) to the input of the inverter. The resultant logic \({ }^{\circ} \mathrm{D}\) ס output to the transmitter will provide a steady state logic \({ }^{\circ} \mathrm{D}\) [DC erase \(\}\) to the tape transport.

When a DATA switch is set to \(1, \overline{\text { las DATA }}\) from CRODEA will be input to the appropriate inverter. The output of the inverter will be li's DATA to the transmitter, so l's DATA will be transmitted to the tape transport. When the DATA switch is set to 0 , \(\overline{0 \text { Is DATA }}\) will be input to the inverter with ON DATA going to the transmitter and thus, dis DATA to the tape transport.

The Rewind Unload signal, from CRDOLB when the TAPE CONTROL switch fCRDDAAf is set to UNLOAD, is a one microsecond logic por pulse. The one microsecond pulse is provided by the one-shot circuit shown on CRODGB. The logic \({ }^{\circ}{ }^{\circ}{ }^{0}\) pulse to inverter
 transmitted to the tape transport.


\section*{DISPLAY laZF}

\section*{croaza}

Diagram CRODEA contains eight receivers, the three static display logic gates faddress, model, and faultf, and an inhibit for the eight receivers during Internal Test.
 input of inverters J 20 O and J20l. The logic \({ }^{\circ} \mathrm{O}\) output inhibits the eight receivers, therefore the \(l \mathrm{l}\) receiver outputs all go to a \(\operatorname{logic}{ }^{\circ}{ }^{\circ} \mathrm{D}\).

The Method of Recording \(2^{\square}\) and \(2^{\text {l }}\) signals, Tape Speed \(2^{2}\) signal, and Hold signal are connected to the receivers positve to positive and negative to negative. All the other signals are connected positive to negative and negative to positive. When the Method of Recording \(2^{\square}\) and \(2^{1}\) signals, Tape Speed \(2^{2}\) signal, and Hold signal are high the output from the receivers are high, and vice-versa. When the other signals are high the output of the receivers are low. An inverter on the output inverts these opposite polarity signals back to the correct polarity. When the INT TEST switch is set to \(O N\), a logic \({ }^{\circ} \square^{\circ}\) is applied to the inhibit pin \(b\) of each receiver and so all the receivers output a logic \({ }^{\circ} 1{ }_{1}{ }^{\circ}\). The signals from those receivers that have an inverter on the output will all be inverted during Internal Test. In this way, those signals which should be active during an Internal Test to simulate inputs from the tape transport will be high. They are; Method of Recording \(2^{\square}\) and \(2^{\beth}\), Tape Speed \(2^{0}\), and Hold. All the other signals will be low during Internal Test.

The static display logic provides the signals to the multiplexers on CRaozb to route the address model, and fault information to the DISPLAY. When the DISPLAY SELECT switch is set to ADDRESS, MODEL, or FAULT, a logic \({ }^{\circ} \mathrm{D}\) 解 is present on pin 9
 Address or Model or Fault signal.

When the switch \(S 2\) is set to ADDRESS or FAULT, a logic \({ }^{\circ} \mathrm{D}\) is present on pin la or le of J205. When the switch is set to MODEL, diode CR2 prevents the \(\operatorname{logic}{ }^{\circ} \mathrm{O}\) from being present on pin 19 of J205. Any logic \({ }^{\circ} 0^{\circ}\) into \(ل 205\) will give a logic \({ }^{\circ}{ }^{1}{ }^{\circ}\) out \({ }^{\circ}\) providing the Address or Fault signal.

When Jeaz is made by SE being set to ADDRESS or MODEL or FAULT, a logic \({ }^{\circ} \mathrm{l}, \mathrm{D}\) is present on pin l of J203. When the switch is set to Fault, a logic \({ }^{\circ} \mathrm{g}^{0}\) is present on pin 2 of J203. The logic \({ }^{\circ} \mathrm{l}^{\circ}\) out is the Address or Model signal.

When switch \(S 2\) is set to ADDRESS, MODEL, or FAULT, a logic \({ }^{\circ} \mathrm{O}^{\circ}\) is present on pin
 of J204. When SE is set to ADDRESS, a logic \({ }^{\circ} \mathrm{O}^{0}\) is present on pin 5 of Jeat. The logic \({ }^{\circ} \mathrm{O}\) in will provide a logic \({ }^{\circ} \mathrm{J} \mathrm{D}\) out, which is the \(\overline{\text { Model or Fault }}\) signal.


Diagram CROD2B contains four multiplexers \(\operatorname{D200}\) through D203. The outputs of the four multiplexers are the nine bits to light the three DISPLAY indicators. The output may be either the dynamic display information or the static display information.

Multiplexers D201, D202, and D203 output two display bits each, while D200 outputs three bits. The outputs of \(D 2 a 0\) are the three high order bits \(\left\{2^{B}, \sum^{7}\right.\), and \(\left.2^{b}\right\}\) and the outputs of D2OL, D2O2, and D203 are the six lower order bits.

The D200 multiplexer has a select \{SEL\} and an enable fEN\} control input. Data input is either dynamic or static. When the multiplexer is outputicing either Fault or Address information the left indicator is always a zero since none of the addresses or faults have three digits. Therefore, the D200 multiplexer has fewer data inputs than the other three multiplexers.

The outputs of the D200 multiplexer are either Fault, Address, Model, or Dynamic as indicated in the table below for each logic input on a \{Address or Fault or Modelf and \(T\) fAddress of Fault\}.

D200
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{INPUT} & QUTPUT \\
\hline Q \(\{\) SEL \(\}\) & \(T\) [EN\} & \\
\hline 0 or or \(0^{\circ}\) & \({ }^{1} \mathrm{O}\) & FAUL.T \\
\hline \(00^{\circ}\) or \({ }^{0}\) & \({ }^{\circ} \mathrm{O}\) & ADDRESS \\
\hline \({ }^{1}\) & 80 & model \\
\hline \(00^{\circ}\) & - & dYNAMIC \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline AD, BO & MODEL \\
\hline Al, Bl & ADDRESS \\
\hline A2, \(\mathrm{BL}^{\text {a }}\) & fault \\
\hline A3, \(\mathrm{Ba}^{\text {a }}\) & dynamic \\
\hline
\end{tabular}

The outputs of D2DI, D202, and D203 multiplexers are either Model, Address, Fault, or Dynamic as indicated in the table below for each logic input on \(R\) faddress or \(\overline{\text { Modelf }}\) and \(S\) \{Model or Fault .

INPUT
OUTPUT
\begin{tabular}{|c|c|c|}
\hline R \{SEL 2 \(\}\) & SfSEL 1\} & \\
\hline \({ }^{0}{ }^{\circ}\) & \({ }^{\circ} \mathrm{O}\) & FAULT \\
\hline \(\square^{\circ}\) & \({ }^{0} 10\) & ADDRESS \\
\hline \(\square^{\circ}\) & \(0^{\circ}\) & model \\
\hline \({ }^{0} 10\) & \({ }^{\circ} \mathrm{O}\) & dYnamic \\
\hline
\end{tabular}

On DEOL, DEDE, and DED3 multiplexers, the AD through \(A 3\) and \(B D\) through \(B 3\) inputs are as follows:


\section*{TACH FLIP FLOP}

The Tach flip－flop \(\{\mathbb{K} 30 \mathrm{~b} / \mathrm{K} \exists \mathrm{D}\} \mathrm{f}\) permits gating of the Tach I and Tach II pulses from the tape transport to the C 300 and C 301 counters \(\{\mathbb{C R O D F B J}\) and then to the operator panel DISPLAY．

The Tach flip－flop is set when：flf the \(\overline{\text { Skew }}\) signal from the DISPLAY SELECT switch \｛CRDAYA\} is present on pin 2 of \(J \exists 25\) ，and \｛2\} the Clear Counter one microsecond pulse from K301 flip－flop and capacitor Cb is present on pin 1 of J325．The set output of the Tach flip－flop provides a logic \({ }^{\circ} \mathrm{I}^{\circ}\) to pin 1 of \(\mathrm{J} \exists \mathrm{zb}\) ．The Tach \(I\) and Tach II pulses are ANDed with the Tach flip－flop set output at \(J \exists 3 \mathrm{~b}\) and provide the Gate Tachometer signal output to the counters and the DISPLAY．

The Tach flip－flop is cleared by the one microsecond Clear Tach signal from K30ヨ flip－flop and capacitor \(¢ 9\) ．That one－shot pulse is available when \(K 303\) is toggled by one of the outputs of AND gates \(\mathrm{J} 312, \mathrm{~J} 3 \mathrm{~L}, \mathrm{~h}, \mathrm{~J} 3 \mathrm{~L}\) ，and J 3 la through a wired－OR．

The J3le AND gate outputs a logic \({ }^{0} 0\) to \(K 303\) when both a Velocity signal from B5iCRODAAF is present and the Start Time signal from the DISPLAY SELECT switch fCRIDYAF through J3il is present．

The \(J 314\) AND gate outputs a logic \({ }^{0} 0\) to \(K 303\) when both the Go Pulse from B5\｛CRODBA and either the Stop Act or Stop App signal from the DISPLAY SELECT switch \｛CRODAA through \(\sqrt{ } 313\) is present．The J 3 ll AND gate outputs a logic \({ }^{\circ} 0^{0}\) to \(K 303\) when both
the Record Gap signal from the DISPLAY SELECT switch \(\{C R D O 9 A\}\) and no data from A5fCROD4AJ through J3l？are present．

The J3IB AND gate outputs a logic \({ }^{\circ} \mathrm{D}\) to K 303 when the \(\overline{\text { Skew }} \overline{\text { Stop App }} \overline{\text { Record Gap }}\) \(\overline{\text { Start Timer }}\) and \(\overline{\text { Stop Act signals from the DISPLAY SELECT switch fCRODqA\} are present. }}\) In other words，when the switch is set between any two positions，the AND gate J3ib is made and K 303 flip－flop provides a Clear Tach pulse to the Tach flip－flop．

Skew as measured by the exerciser，is the time from the receipt of the first data bit to the time of the receipt of the data bit selected by the SIGNAL MONITOR switch，positions l through 9 ．The three Skew flip－flops are used to enable skew measurement during that period of time．

The Skew I flip－flop \(\{K 304 / K \exists 05\}\) is set when the skew signal from the DISPLAY SELECT switch \｛CRIDAA\} is present at pin 13 of AND gate Jヨe3 and when there is an absence of data for at least one microsecond．When this occurs \({ }_{7}\) a logic \({ }^{\circ} \mathrm{J}, \mathrm{D}\) s present on pin le of J323

The purpose of the one microsecond delay，which is accomplished by capacitor cla， is so that the Skew I flip－flop will get set between frames of data；not between two data bits in the same frame．When there is an absence of datar the input to
 a logic \({ }^{\circ} \mathrm{I}^{\circ}\) out of \(\sqrt{222}\) ．If the data is absent for at least one microsecond \({ }_{7}\) a logic \({ }^{\circ} \mathrm{I}^{\circ}\) will be input to AND gate J 323 ．If the data is absent for less than one microsecondr capacitor Cl0 will not charge up and the input to J3e3 will remain a logic \({ }^{\circ} \mathrm{o}^{\circ}\) ，therefore the Skew \(I\) flip－flop will not get set．The logic \({ }^{\mathrm{ll}} \mathrm{D}\) out of the set side of the flip－flop through the wired－OR goes to the clear of the Skew III flip－flop，the clear of the Skew II flip－flop and to pin l of AND－gate J 3 A C and pin 2 of AND gate J 309 ．When the first Data bit from A5 through \(\sqrt{3} 17\) is present on pin 2 of AND gate J 3 L a ，the AND gate is enabled and the Skew III flip－flop is set．The set output of the flip－flop goes to exclusive－0R gate נヨгロ．The Skew II flip－flop is cleared at this time so the set output to \(\sqrt{320}\) is a logic \({ }^{\circ} 0^{\circ}\) ．The logic \({ }^{\circ} \mathrm{J}^{\circ}\) on pin 2 is output from J 320 as the Gate Skew signal．

When the Signal Monitor signal，which is the signal present at whatever position
 Since skew is a measurement of the time from the first data bit to the data bit selected by the SIGNAL MONITOR switch positions 1 through \(\mathrm{q}_{1}\) the Signal Monitor signal will normally be one of the read data bits on positions 1 through 9.

The Skew I flip-flop, which is set, provides a logic \({ }^{\circ} \mathrm{l}\) o through the wired-oR to pin llo of K 308 and \(K 31 \square_{\text {n }}\) removing the clear from the Skew II and Skew III flip-flops. The set output from the Skew I flip-flop also enables AND gates
 so the Skew II flip-flop is set. When Data comes in from A5\{CRDO4A\} through
 gate, which had a logic \({ }^{\circ} \mathrm{l}^{\circ}\) output when the set output of Skew II flip-flop was present on pin \(l_{1}\) now has a \(\operatorname{logic}{ }^{\circ} \square^{\circ}\) output when a \(\operatorname{logic}^{\circ}{ }^{\circ} \mathrm{D}\) is present on pin 2. In this way the Gate Skew signal is present only when one of the two flip-flops fSkew II and Skew IIIf is set and one is clear. Skew III flipflop is set when Data comes in from A5 and Skew II flip-flop sets when Data selected by the SIGNAL MONITOR switch is present.

When either Skew II or Skew III flip-flop sets 9 OR-gate 1319 is made and the Q300 oscillator is started. Then every one-half second, Kal flip-flop is toggled and the C300 and C30l counters are cleared to zero. Therefore, every one-half second the skew display is updated.
,

The Skew \(I_{1}\) Skew II, and Skew III flip-flops are cleared when the Clear Counter signal from K30l flip-flop is available through inverter 3308 to_K \(304, \mathrm{~K} 310\), and K308.

\section*{CLEAR COUNTER SIGNAL}

The Clear Counter signal is a one microsecond pulse formed by flip-flop K 301 and
 zero. The Clear Counter pulse is provided any time one of the AND gates 1301 , Jヨロb, 1304 , and 3305 is made.

The \(J 301\) AND gate is made when the DISPLAY SELECT switch \{CRDOqAf is set to STOP ACT and when the Velocity signal goes low.

The \(J 304\) AND gate is made when the End of Operation signal is present and when the DISPLAY SELECT switch is set to either RECORD GAP or STOP APP.

The 1305 AND gate is made when the Go Pulse is present and the DISPLAY SELECT switch is set to START TIME．

The J30G AND gate is made when the .5 second \(Q 300\) oscillator signal is present．The oscillator is enabled whenever the Skew II or Skew III flip－ flop is set．Therefore，the counter is cleared and the skew is updated every one－half second．When the oscillator times out after having been enabled by the clear output of the Skew II or Skew III flip－flop ，the oscillator output pulse enables J 3 Bb and fires the K 301 flip－flop．The one microsecond output pulse then clears the two counters，C300 and C301．


SKEw AND TACHOMETER lBCF CARD
CRDojb
counting

The outputs from the D300 and D301 multiplexers and inverter 1334 are the nine Data bits which go to the three DISPLAY segments on the operator panel. Bits \(\sum^{\square}, ~ \sum^{1}\), and \(\sum^{2}\) go to segment DSI; bits \(\left.Z^{3}\right\urcorner 2^{4}\), and \(2^{5}\) go to segment DSE; and bits \(2^{b}, 2^{?}\), and \(2^{B}\) go to segment DS3. The Data bits go to the DISPLAY when any of the dynamic displays have been selected by the DISPLAY SELECT switch. They include; Start Time, Stop Act and Stop Appr Record Gapr Skew, and Read Data.

The \(2^{a}\) Data Bit is displayed only when the Read Data is displayed. When the DISPLAY

 When not in the READ position, a constant logic \({ }^{\circ} 0^{\circ}\) is forced out of J 334 .

In addition, when the DISPLAY SELECT switch is set to READ \({ }_{7}\) a logic \({ }^{\circ}{ }^{0}\) is present on pins l of D300 and D301 multiplexers. The Data \(2^{\square}\) through \(2^{?}\) bits are thus selected by the multiplexers and are output to the DISPLAY.

When the DISPLAY SELECT switch is not set to READ a logic \({ }^{\circ}{ }^{1}{ }^{0}\) is present on pin 1 of D300 and D301 multiplexers. The C 300 and C 301 counter outputs are then selected by the multiplexers. Counters \(\mathbf{C 3 0 0}\) and C 901 are both 4 -bit counters. The CLR input to the counters is from either the MC \{Master Clear\} position of the INT CONTROL switch \{CRDOqA] or the Clear Counter signal from CRDOBA. A logic \({ }^{\circ} 0\) on either one to \(\sqrt{ } 1330\) will produce a logic \({ }^{\circ} \mathrm{J}\)


 \(\mathrm{Z2}\) and \(\mathrm{Z3}\) outputs of C 301 will all be logic \({ }^{\mathrm{D}} \mathrm{d} \mathrm{s}^{\circ}\).

The Gate Tachometer pulses, which are the AND of the Tach I and Tach II pulses, when present at pin 12 of \(0 R\) gate J 33 l , are gated through and are counted by C 30 D and then C301.

When the Gate Skew signal is a logic \({ }^{\circ}{ }^{1}{ }^{\circ}{ }^{\circ}\), AND gate \(J \exists 29\) is enabled and 50 nanosecond pulses from \(Y \mathcal{Y l}\{20\) millihertz oscillator\} are gated to J 33 l and are then counted by C300 and C301.

read and end of operation lbaf card
CROD4A
RUNNING TIME METER

A +5 volts \(D C\) is provided through resistor \(R 9\) to the 2000 hour timer, XMI \{CRIJD9AF.

\section*{READ}

The Read Data from the tape transport is input to this logic board, where the Data is inserted into a register so it can be displayed. The data is also checked for proper parity \{odd\}. The nine Read Data signals into inverters J 4 IL through J 4 II are 0 R -ed together. If any Read Data signal is high, the output of the wired-OR will be low. The \(\overline{\text { Data }}\) signal goes to logic board A4 \{CRDOBA\} for skew measurement and also to CROD4B for generation of an End of Operation signal.

The Data signal goes to pin 5 of K4ll one-shot and pin lll of K4l3 one-shot. The time of the K 411 one-shot is determined by the Tape Speed \(2^{\square} 2^{1} 2^{1}\) and \(2^{2}\) inputs. The time is 3 microseconds for Tape Speed \(2^{[1] 00 ~ I P S\}, ~} 2\) microseconds for Tape Speed \(2^{1]}\) [150 IPS\}, and 1.5 microseconds for Tape Speed \(2^{2}\) f200 IPSJ.

The pulse out on pin b of one-shot K4ll permits Read Data to be gated into D400 and D401 shift registers during the time that the pulse is high. Therefore, the first time a data bit comes in, the shift registers gate in data for a certain period of time, and then the data is latched into the register. This is referred to as the skew sampling time and varies depending upon tape speed. If the skew is greater than the time selected, the word will be latched into the register with the one skewed bit missing resulting in a parity error. The two shift registers are cleared, to accept the new Read Datar by the output on pin 9 of K 413 one-shot which fires when the Read Data bit comes in on pin 11 .

After the Read Data is latched into the register, it is output to logic board A4\{CROD 3 B , , then to AFECRDOPBJ where it is subsequently sent to the DISPLAY when READ is selected on the DISPLAY SELECT switch.

The output of \(D 400\) and \(D 401\) also goes to parity checker \(P 400\). If the data coming in is even parity, a logic \({ }^{\circ} l^{0}\) is output on pin b. The logic \({ }^{\circ} 1 \mathrm{D}\) goes to AND gate J 405 . The trailing edge of the one-shot pulse out of K411 fires the one-shot circuit, composed of resistors R4 and R5 and capacitor ClO, which provides a one microsecond pulse to AND gate J 405 . When AND gate J 405 is made the pulse out sets the Parity Error flip-flop.

When the Parity Error flip-flop sets the logic \({ }^{\circ}{ }^{\circ}{ }^{\circ}\) out on the set side through inverter J 407 l lights the PARITY ERROR indicator. The pulse output of J 405 through inverter J 4 DG is the Parity Error pulse which goes to the SIGNAL MONITOR switch. The pulse output from J 405 , rather than the steady logic output of the Parity Error flip-flop, is supplied to the SIGNAL MONITOR so that if more than one parity error occurs the errors can be observed as pulses on the SIGNAL MONITOR indicator. If the output of the Parity Error flip-flop went to the SIGNAL MONITOR there would be no way of telling if more than one parity error occured.

The Parity Error flip-flop is cleared by ; [1] pressing the PARITY ERROR pushbutton \{CRODPBr, or \{2\} setting the INT CONTROL switch to MCr and \{3\} a Clear signal which is generated by the Backspace flip-flop being set and an End of Operation signal being generated. The Backspace and End of Operation signals clear the Parity Error flip-flop so that parity errors are not detected during a backspace operation.


\title{
read and end of operation lbaf card \\ \\ CRDO4B \\ \\ CRDO4B \\ \\ density request transmitter
} \\ \\ density request transmitter
}

The Density Request \(2^{0}\) and \(2^{1}\) signals are transmitted to the tape transport via T400 transmitter. The Density Request \(\sum^{\square}\) and \(\sum^{\text {l }}\) lines are high or low depending upon the setting of switch Sb and S7 fCROD9A\}, respectively. Resistors R21, R22, R23, and R24 serve as terminator resistors for the transmitter.

\section*{CLIPPING LEVEL TRANSMITTER}

The High and Low Clipping Level signals are transmitted to the tape transport via 7401 transmitter. The Clipping Level is selected by CLIPPING LEVEL switch Sll. Resistors \(R 25, R 2 b, R 2 ?_{7}\) and R2B serve as terminator resistors for the transmitter.

\section*{TRAP FLIP-FLOP}

When the PARITY ERROR RESPONSE switch fCRDOqAf is set to TRAP and a Parity Error signal is present, AND gate \(\sqrt{ } 427\) is made and the Trap flip-flop sets. When set, the clear output goes to CRDO4A and clears the two one-shots, K41l and K4l3. In this way, the two shift registers, \(D 400\) and \(D 401\), are disabled from gating any more Read Data in so that the registers will hold the previously detected parity error in order for it to be displayed.

The Trap flip-flop is cleared by either setting the INT CONTROL switch fCRODOAf to MC or by pressing the PARITY ERROR pushbutton.

\section*{BACKSPACE FLIP-FLOP}

The Backspace flip-flop is set when the PARITY ERROR RESPONSE switch is set to BACKSPACE, when a Parity Error signal is present, when Data is present, and when the OPERATION switch is not set to continuous.

The Backspace flip-flop is cleared by; \(\{1\}\) setting the INT CONT switch to MC, or fef by the set output of the Backspace Clear flip-flop which sets on Time 3 of the timing chain and when the Backspace set output is present. In other words? the Backspace Clear flip-flop is set on Time 3 after the Backspace flip-flop is set. Time 3 is the third pulse of the internal timing chain which is initiated after the Busy signal drops. The next time Busy drops the timing chain is again initiated and so Time I and the Backspace Clear flip-flop set output clear the Backspace flip-flop and on Time 2 the Backspace Clear flip-flop clears. This is so that when a Backspace operation is being performed that another Backspace operation cannot be commanded.

The set output of the Backspace flip-flop goes to logic board B3 \{CRODb \(B\}\) where it is used to perform a backspace operation.

\section*{END of operation}

The End of Operation signal is used to increment the program address counter and also to drop the Forward, Reverse, and Urite signals. One-shot K4l5 is designed to fire when a transition from a logic \({ }^{\circ}{ }^{\circ}\) to a logic \({ }^{\circ} \mathrm{l}^{\circ}\) input is present on pin 4. When it fires, a logic \({ }^{\circ} \mathcal{I}^{0}\) is output on pin \(b\) for 50 microseconds, at which time the one-shot times out. If another transition is applied to input pin 4 before the one-shot times out, the oneshot will retrigger and the output will remain high as long as inputs are applied. When there has been no transition for 50 microseconds, the one-shot times out and the output on pin b goes to a logic \({ }^{\circ}\)

When Read Data flogic \({ }^{\circ} \mathrm{DO}^{0}\) comes in to one-shot K 415 , the one-shot is enabled for firing
 applied to pin 4 of K 415 and it fires. A logic 0 o is then applied to AND gate J433, pin 10. When there has been an absence of data for 50 microseconds, K415 times out and a logic \({ }^{\circ} \mathrm{l} 0\) is output on pin \(?\) to J 433 . A logic \({ }^{\circ}{ }^{\circ} \mathrm{D}\) will also be present on pin ll of J433 200 nanoseconds after Read Data has gone away, therefore \(J 433\) will be made. When J 433 is mader one-shot K4l7 provides a one microsecond logic \({ }^{0} 0\) out to OR-gate J 434 , which outputs the End of Operation pulse.

The 14340 -gate is also made when the 10 microsecond one-shot composed of flip-flop K407 and capacitor C15 fires. This occurs whenever the Beginning of Tape or End of Tape signal arrives. It also occurs when the INT TEST switch \{CRODqA\} is set to \(O N\) or \(S / S\) and the Stop Pulse from Be\{CRDO5B\} arrives.


\section*{WRITE CBAF CARD}

CR005A

The primary purpose of the write logic is to produce phase enabled and NRZI ones and zeros data. Two oscillators, K517 and K519, are always running. Oscillator K51? produces a 3.0 microsecond waveform output and K 519 produces a 515 nanosecond waveform output. Oscillator K517 is used to produce a 556 BPI NRZI data pattern and oscillator K519 is used to produce a 1 bOD BPI phase enabled and an 800 BPI NRZI data pattern.

The output of oscillator K51? is fed directly to multiplexer A500 on pins 4 and 7. The output of oscillator K5l9 is fed to pin b of A500 and to the lban RPI flip-flop. The output of the lbog BPI flip-flop is fed to the 800 BPI flip-flop which is in turn fed to pin 5 of multiplexer A500.

Multiplexer A500 is used to select the appropriate density. The Density status \(z^{0}\) and \(2^{\text {l }}\) signals from the tape transport gate one of the four inputs out to counter C 500 . When Density status \(2^{\square}\) and \(2^{1}\) are both low, 55b BPI is output from A500. When Deinsity status \(2^{0}\) is high and \(2^{\mathbb{I}}\) is low, 800 BPI is output from A500. If Density status \(2^{0}\) and \(2^{1}\) were both high, 556 BPI would be output, however this Density status is not used.

The output of \(\mathrm{A5OO}\) multiplexer, which is 55 b , 800 , or IbOO BPI is input to C 500 counter on pin 4. To obtain the correct write data clock rate, the c500 counter is loaded at the \(A D, A I, A E\), and \(A 3\) inputs with a load factor which is dependent upon tape speed. The load factor is used to divide the count on pin 4 . When switch S1 is set to CDC and when the Tape Speed \(2^{0}\) [100 IPS\} signal is high a factor of six \(\{0110\}\) is loaded into C500. When \(S 1\) is set to CDC and Tape Speed \(2^{1}\) \{150 IPS\} is high a factor of four \(\{0100\}\) is loaded into C500. When SI is set to CDC and Tape Speed 22 \{200 IPS\} is highr a factor of three \{0011\} is loaded into C500. When \(S 1\) is set to IBM and Tape Speed \(2^{[0]}\) is high \(\left\{75\right.\) IPS\}, an eight \{2000\} is loaded into C500. When SI is set to IBM and Tape Speed \({ }^{1}\) is high \{le25 IPSt, a 5 fololf is loaded into C500. When Tape Speed \(z^{2}\) is high, a three [0011\} is loaded into C500 regardless of whether S1 was set to CDC or IBM.

Counter 6500 divides the input on pin 4 by a factor which is dependent upon what is loaded on \(A D_{1} A 1, A E\), and \(A \exists\). When the counter has counted to zeror a BOR output goes from pin l3 to Data flip-flop K505. The BOR output also goes back to the

LD input on the counter. In this way every time there is a \(B O R\) pulse the input at \(A D_{\text {, }}\) \(A 1, A 2\) and \(A \exists\) is again loaded into the counter.

The BOR output toggles the Data flip-flop. The flip-flop output is a square wave representation of the BOR input. The clear output of the Data flip-flop is fed into the toggle input of the l's Data True/Complement flip-flop, K507. The lis Data True/ Complement flip-flop divides the input in half for writing a true/complement pattern. The true/complement pattern is the same as the true pattern except the frequency is only one-half.

The clear output of K505 also goes to inverter \(J 514\) and then to the one-shot circuit composed of resistors R7 and RB and capacitor C7. The output of J 515 is Urite Data which goes to the SIGNAL MONITOR switch and also to CRODSB where it is used with the End of Tape signal or the set output of the Stop Enable flip-flop to clear the Write flip-flop. The set output of the Data flip-flop after going through J511 and J512, also goes to the toggle input of the a's Data True/Complement flip-flop, K509. Flipflop K509 divides the frequency of the Data flip-flop in half for producing a true/ complement pattern.

The set output of Data flip-flop K505 goes to AND gate J 51 l ? and AND gate J520. AND gate J51? is enabled when the TRUE position of the PATTERN switch \{CRODGA\} is selected. The wired-OR on the output of AND gates J51b and J51? outputs lis data when either lis Data is on pin 1 of J5ib and TRUE/COMPLEMENT from the PATTERN switch is on pin 2 of J51bror when the TRUE signal from the PATTERN switch is on pin 5 of J 51 ? and the set output of the Data flip-flop is on pin 4 of J517.

The wired-OR on the output of AND gates J 5 AB and J 519 outputs a 0 's Data signal when the True/Complement signal. is on pin 10 of 1518 and 0 's Data is on pin 9 of 1518 , or when the True signal is on pin ll of 1519 and the set output of the Data flip-flop is on pin q through inverters \(\mathrm{J} 5 \mathrm{ll}, \mathrm{J} 5 \mathrm{~h}\) 亿 and J513. Capacitor CB eliminates crossover. In addition, the set output of the Phase Enable flip-flop must be on pin 10 of 1519 .

The Parity signal. is output to P DATA switch S25 \{CRDDAA from this logic card. The P500 parity generator \{CRO05BJ receives the eight Write Data bits from the DATA switches \{CRODAAJ. The setting of the DATA switches determines whether ads or las parity will be generated. l ds Parity out of P500 is input to AND gate J520 \{CRDO5A\} and ars Parity from P500 is input to AND gate J52l. AND gate J 520 is made when the Data flip-flop is
set. AND gate J52l is made when; the output of the set side of the Data flip-flop fed through three inverters, is present on pin \(\mathrm{I}_{1}\) when the Phase Enable flip-flop is set, and the Odd Parity signal is present. The output of J 52 l or J 52 l through inverter J522 is the Parity bit.

When the exerciser is connected to a seven track tape transportr the Write Data \(\mathcal{Z}^{b}\) and \(\sum^{?}\) signals into AND gate \(J 523\) and \(J 524\) \{CROO5B\} are disabled by the 7 Track signal. In this way, only Urite Data \(2^{\square}\) through \(2^{5}\) signals are input to parity generator P500.

The Phase Enable flip-flop is set when Density status \(\sum^{l}\) is high, which indicates that the exerciser is connected to a phase enabled tape transport. When the Data flip-flop is set, the Data into J 5 l a sets the Phase Enable flip-flop. The flip-flop set output enables either phase \({ }^{\text {r }}\) s Data or phase Parity bit. The Phase Enable flip-flop is cleared as soon as the Write Instruction goes low.

1600 PPI PHASE


800 BPI NRZI



\section*{\(\underset{\text { CROOL }}{\text { WRITE }} \mathrm{EARD}\)}

\section*{WRITE FLIP FLOP}

The Write flip-flop is used to initiate sending of write data. When AND gate J525 is made, the logic \({ }^{\circ} \square^{\circ}\) out to the Urite flip-flop sets it. The one-shot circuit, composed of resistors R2.l and R2Z and capacitor \(C 7\), is used to provide a pulse to the set side of the Write flip-flop when \(J 525\) is made. This is done so that the flip-flop is set by a pulse and not a sțeady logic level so that when a clear signal comes back to the flip-flop it can be cleared. AND-gate \(J 525\) is made when a Urite Permit signal, a Velocity signalr a Beginning of Tape and 377 count signal, and a Write Instruction are present. The Write ermit signal is high when the tape has moved far enough to insure generation of a record gap. The Velocity signal is high when the tape is moving at the proper speed. BOT and 377 is high when the tape has moved \(377_{\mathrm{a}}\) counts from beginning of tape.

When the Write flip-flop is set, the set output goes to the clear of the Phase Enable flipflop, to the Clear Direct of the Data flip-flop, and to the lds Data flip-flop which removes the clear signal from those three flip-flops, permitting them to be set.

When the Urite flip-flop is set, the clear output through OR-gate J 52 B starts the \(\mathbb{Q} 500\) oscillator. This oscillator is used to vary the length of a record being written. The oscillator frequency is variable from 2 to 100 milliseconds by the RECORD LENGTH control \{CRODqAT. Write data will be sent out until Q500 oscillator times out and then the Stop Enable flip-flop will get set. When the Stop Enable flip-flop is set, a logic \({ }^{\circ} \mathrm{l}\) o out on the set side goes to AND gate J535. When Urite Data is present, J 535 is made and the logic \({ }^{\circ}{ }^{\circ}\) output goes back and clears the Urite flip-flop.

The Urite flip-flop is cleared in three ways; \{1\} when the Stop Enable flip-flop is set and Write Data is present, f2\} when the End of Tape signal and Urite Data are presentr so no writing will occur after the end of tape is reached, even though Q500 oscillator may not yet have timed out, and \{ \(\{3\}\) by the Master Clear signal.

\section*{STOP ENABLE FLIP-FLOP}

The Stop Enable flip-flop is set when the \(\mathbf{Q} 500\) oscillator pulse is high. The oscillator starts when [1] the Write flip-flop is set, or \{2\} when Write is not selected and a Write Terminate is not being performed, but when the INT TEST switch is set to ON and the Go flip-flop is set.

The Stop Enable flip-flop is also set when a one-word write is performed and the OPERATION switch \{CRDOYA\} is not set to CONTINUOUS. In this case, when doing a One-Word Urite, the Stop Enable flip-flop is set when the first Urite Data comes in. The Stop Enable flipflop set output then clears the Write flip-flop.

The Stop Enable flip-flop clears when a Go Pulse arrives. This is so that the Stop Enable flip-flop is initialized whenever the Go flip-flop sets.

The Stop Enable flip-flop is also cleared when the OPERATION switch is not set to RECORD. The flip-flop is thus held cleared. The Write flip-flop is cleared in this case when the End of Tape signal arrives.

When the Stop Enable flip-flop is setr the set output is ANDed at \(J 535\) with Write Data. The Urite Data is present when the one-shot circuit, composed of resistors R7 and RB and capacitor C3n \(_{3}\) has fired? which occurs every 200 nanoseconds or after every other flux change

The output of AND gate J 535 clears the Urite flip-flop which disables the write clock

When the OPERATION switch is not set to RECORD, Q5OD oscillator is disabled by the logic \(0^{\circ}\) through diode CR4. With \(Q 500\) disabled, the Stop Enable flip-flop cannot be set.

The Stop Pulse, when generated provides an End of Operation signal when doing a Read or Rewind operation in Internal Test. When doing a Write operation in Internal Testr the End of Operation signal is generated from having data followed by an absence of data. The Stop Pulse is only generated during a Read operation.

The Stop Pulse is generated by the output from \(\mathbb{Q} 500\) oscillator and also when a Write operation is not being performed and a Urite Termination sequence is not being performed.

\section*{Q500 OSCILLATOR}

The \(Q 500\) oscillator is initiated, \(\{1\}\) when the Urite flip-flop is set, or \(\{2\}\) when a Write instruction is not selected, and when a Urite Terminate sequence is not being performed, when INT TEST switch is \(O N\), or in \(S / S\) and \(\{3\}\) after the Go flip-flop gets set.


\section*{PROGRAM CONTROL}

CRODGA

The exerciser PROGRAM CONTROL section permits Forward, Reverser Writer and Rewind operations to be performed automatically, without requiring the operator to initiate each operation. The four instructions are loaded in memory and depending upon the setting of the MODE switch, may be executed one per depression of the START pushbutton or in automatically repeated sequences after being initiated by pressing the START pushbutton.

The PROGRAM CONTROL consists primarily of MbOD memory , IbOO and 0600 multiplexers and the program address counter which is made up of Address \(2^{0}\), Address \(2^{1}\), and Address \(2^{2}\) \{Kb03, Kb05 and Kb07\} flip-flops. The program address counter and Ibod multiplexer are used together to write instructions into memory. The program address counter and 0600 multiplexer are used together to read instructions out of memory. The location at which the memory stores or reads out instructions is determined by the program address counter. The information that is stored in memory is determined by the INSTRUCTION pushbuttons \{CRDOQB\} and the IbOD multiplexer. Information read from memory is determined by the program address counter and 0600 multiplexer.

The Mboo Memory is a lb-bit register file which is used as a 2 -bit by a -location memory. The memory is addressed on pins \(24,13,4\), and 5 . The memory is enabled for writing by a logic \(\mathrm{D}_{\mathrm{O}}\) on pin le. It is enabled for reading by a logic \({ }^{\circ} \mathrm{D}\) on pin lle. Since pin 11 is always grounded \{logic \(\left.{ }^{\circ} \mathrm{D}_{\mathrm{O}}\right\}\) the memory reads out at all times the information stored at the selected address. Data is input to the memory on pins 151117 , 1 and 3
 device by the addressing and accessing method used.

The output from Address \(2^{0}\) and Address \(2^{1}\) flip-flops determines the address in memory that the instruction will either be written into or read out from. The output from Address \(2^{2}\) flip-flop selects one of the two instructions that are being written into or read out of memory. Since the Mbon memory was designed as a 4-bit by 4-location device, two instructions are al.ways input to or output from it. The program address counter \{Address \(2^{2}\) flip-flop output\} and the Ib00 multiplexer select one of the two instructions to be input and the program address coumter and 0 ob multiplexer select one of the two instructions to be output.

The program address counter, having three stages, has eight possible output states. Each time the counter goes through these eight states, which is one pass through the counter \({ }^{\text {r }}\) the Address \(2^{0}\) and Address \(2^{1}\) flip-flops go through four states twice. That is, in one pass of the full counter from 000 through 111, the address \(2^{0}\) and address \(2^{1}\) flip-flops go from 00 through lilwice. During the period the two flip-flops are going from 00 through lil the first time, the Address \({ }^{2}\) flip-flop is clear. During the second pass of Address \(2^{0}\) and \(2^{1}\) flip-flops from 00 through 1 , the address \(2^{2}\) flip-flop is set. The output of the three flip-flops during one complete pass of the counter is as follows:
\begin{tabular}{llllllllll} 
ADDRESS & \(2^{0}\) & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
ADDRESS & \(2^{1}\) & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
ADDRESS & \(2^{2}\) & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{tabular}

There are four possible instructions; Rewind, Forward, Writer and Reverse. The instructions have the following binary value when inverter Jbog is assigned bit position \(2^{\square}\) and Jb 04 is assigned bit position \(2^{\mathrm{I}}\).
\(2^{\square} \quad 2^{1}\)
\begin{tabular}{lll} 
Rewind & 0 & 0 \\
Forward & \(I\) & \(I\) \\
Urite & \(I\) & 0 \\
Reverse & \(\square\) & \(I\)
\end{tabular}

Pressing one of the four INSTRUCTION pushbuttons, which have a ground to them when the MODE switch is set to LOAD, routs the ground to OR-gate JGOG or JbD4, except REWIND which routs the ground only to JbOD . Since there is no input to JEOB or Jbat when REWIND is pushed, the +5 volts \(D C\) through R5 and Rb provides a logic \({ }^{\circ} \mathrm{DO}\) out of JEOB and \(\mathrm{JbO4}\). The ground from any of the four pushbuttons into Jtoo provides a 25 milli second delayed I microsecond Load pulse. The pulse is delayed 25 milliseconds by capacitor C5 to eliminate spikes on the output of the pushbutton. The 1 microsecond pulse is provided by Load flip-flop Kbロl and capacitor Cb . The 1 microsecond logic \({ }^{\circ} 0\) pulse into MbOU memory at pin le permits writing the appropriate instruction during that 1 microsecond period.

When the set output from the Address \(\sum^{2}\) flip-flop is a logic \({ }^{\circ} 0^{\circ}\), which it will be for
 plexer will gate through the information that is on inputs \(A D_{1} B D_{7} C D_{1}\) and \(D(1)\). The information on \(A D\) and \(B D\) will be the instruction from the INSTRUCTION pushbutton. The information that is on \(C D\) and \(D D\) is one of the two instructions being fed back from MbOD memory. When the set output of Address \(2^{2}\) is a logic \({ }^{\circ}{ }_{\mathrm{I}}{ }^{\circ}\), which it is for the second four counts of the program address counter, the information on inputs Cl, , \(\mathrm{DI}_{1}\) \(A l\), and \(B l\) will be gated through. The information on \(C l\) and \(D l\) will be the instruction from the INSTRUCTION pushbutton and the information on \(A l\) and \(B l\) will be the other instructions fed back from memory.

For one complete pass through the program address counter feight countsf eight instructions can be loaded in or read out. On the first count i.e. 1 Address \(2^{\square}\), \(2^{\text {² }}\), and \(\sum^{2}\) flip-flop set outputs are \(\quad 00\), the instruction from the INSTRUCTION pushbutton present on IbDO input \(A D\) and \(B D\) and the instruction fed back from memory into \(C O\) and \(D O\) will be stored at the two addresses represented by logic \({ }^{\circ}{ }^{0} s^{\circ}\) into memory pins \(14,1,374\) and 5 . On the second count, the instruction present on the same pins will be stored at the address represented by a logic \({ }^{\circ} 10\) from Address \(2^{0}\) flip-flop into MbOD pins 14 and 5 and the address represented by a logic \({ }^{\circ}{ }^{\circ}\) from Address \(2^{\beth}\) flip-flop into pins \(1 \exists\) and 4. Every time a Load pulse enables the memory, four bits \{two instructions\} are stored at one address. One of the instructions is from the INSTRUCTION pushbutton. The other instruction is the one fed back from the memory. During the first four program address counter counts, the first half of the memory locations are stored with new instructions from the INSTRUCTION pushbuttons and the second half are stored with instructions fed back. During the second four counts, new instructions from the pushbuttons are stored in the second half and the four instructions fed back are stored in the first half. This is done because two instructions are always stored at one time. One instruction is the new one; the other one is a previously stored instruction, restored.


\section*{PROGRAM CONTROL IBGF CARD}

CRODGB
INTERNAL WRITE REPLY FLIP-FLOP

The Internal Urite Reply flip-flop \(\{\mathrm{Kble} 2 / \mathrm{Kbl} 3\}\) provides a simulated Write Reply signal when the exerciser is in the Internal Test Mode. The signal normally comes from the tape transport indicating that the write and erase current is on. When the flip-flop is set, the logic \({ }^{\circ} 0^{\circ}\) clear output through J 3 b and Jbla \{CRODGAf lights the URITE REPLY ight. The clear output also goes through لbab to AND gate \(\sqrt{\mathrm{J}} 4 \mathrm{ll}\) and during Time 3 of the timing chain and also when the Direction flip-flop is clearedr sets the Write Terminate flip-flop.

The Internal Write Reply flip-flop is set by the Urite signal when AND gate J644 is made. This occurs when the INT TEST switch is set to \(O N_{1}\) when a Write instruction is present, when the Direction flip-flop is set indicating a forward direction and when the Go pulse signal is present from logic card B4icRogiat.

The Internal write Reply flip-flop is clearedr providing a logic \({ }^{\circ}{ }^{\circ} \mathrm{D}\) output on pin br when INT TEST is set to OFF providing a ground on pin 5 of Kble. When not in Internal Test, the flip-flop is held cleared. The Urite Reply signal then comes from the tape transport through RbIO receiver.

The flip-flop is also cleared when the Direction flip-flop is cleared, indicating a Reverse direction and the Go pulse from B5fCROOAAJ is present.

\section*{FORUARD FLIP-FLOP}

The Forward Flip-Flop \{Kbll\} provides a Forward or Reverse command to the tape transport, When the flip-flop is set the set output is a Forward command and when it is cleared the clear output is a Reverse command.

The flip-flop is set when the Forward Direction signal is receiyed from memory through Jb 3 B and \(\overline{\text { Backspace }}\) is present from the clear output of the Backspace flip-flop on logic card A5tCRDD4B]

The flip-flop clears when a Reverse Direction signal is received from memory through \(\mathbf{J} 40\) and the \(\overline{\text { Backspace }}\) is again present.

The flip-flop toggles when the Backspace signal is present from the Backspace flip-flop and Time 2 from the internal timing chain is present. When toggled by Backspace and Time 2 , the flip-flop will provide a Forward signal out if it was Forward, and vice versa. During Backspace operations, the flip-flop is inhibited from being set or cleared.

\section*{BREAKPOINT FLIP FLOP}

The Breakpoint flip-flop is used to increment or to clear to zero the program address counter fAddress \(2^{0}, 2^{\beth}\), and \(2^{2}\) flip-flops\} on logic card B3\{CRDObA\}. The clear output of the flip-flop, in conjunction with other signals, performs this function through gates \(\mathrm{Jb28}\) and J629 and gates Jb 3 l and J633.

The program address counter is incremented by a logic \({ }^{\circ} \square^{\circ}\) out of AND gate \(\mathrm{Jb} \mathrm{E}^{2}\) or AND gate Jb 2 F . A logic \({ }^{\circ} \mathrm{Q}^{\circ}\) is output from Jb 28 wheni \(\{1 \mathrm{f}\) the Breakpoint flip-flop is cleared indicating we are not at breakpoint, \{2\} an End of Operation signal is present either from Load Point or End of Tape when not in the Record moder or from the internally generated End of Operation signal from logic card A5\{CRODYB\} when in the Record moder f3f the
 present. During a backspace operation the address should not be changed.

A logic \({ }^{\circ} \square{ }^{\circ}\) is output from Jb 2 l when the START pushbution is pressed and the MODE switch is set to LOAD

The program address counter can be cleared to zero by a logic \({ }^{0} 0\) out of AND gate J ( 31 or AND gate Jb33. A logic \({ }^{\circ}{ }^{\circ}\) is output from Jb 33 when a Master Clear is present from the
 is set indicating the exerciser is at breakpoint, \{2\} an End of Operation is present as described above, and \(\{3\}\) the Backspace signal is present.

The Breakpoint flip-flop is set when the output of the Address \(2^{[1}\), Address \({ }^{\mathrm{l}}\), and Address \(\sum^{2}\) flip-flops \{CRODbA\}, routed through the three BREAKPOINT switches \{CROOMA\}, coincides with the setting of the three switches. The output of the switches \(\left\{B P V^{\square}\right.\)
 J 2 D or when the START switch is pressed, the Breakpoint flip-flop sets.

The Breakpoint flip-flop is cleared when; \(\{1\}\) the Master Clear signal is present from the INT CONTROL switch, or \{2\} during Time 1 , or \(\{3\}\) when the MODE switch is set to LOAD. The flip-flop is held cleardd during a Load sequence so the program address counter is not cleared to zero during the load.

UNLOAD

When the TAPE CONTROL switch [CRODAA] is set to UNLOAD, a ground is routed to the 1 microsecond one-shot circuit composed of \(R I I_{1} R 2 D_{1}\) and \(C B\). The signal out is a lacrosecond negative going Rewind Unload pulse through TliO3 Transmitter \{CRODIB\} to the tape transport to unload tape.

\section*{REWIND}

When the TAPE CONTROL switch is set to REWIND, a ground is routed to one-shot circuit composed of \(R 17\), \(R 18\), and C?. The signal out is a 1 microsecond negative going pulse through OR-gate \(\quad 5477\) through TGOD transmitter 7 to the tape transport to rewind tape.

A rewind signal also is transmitted to the tape transport through TbOD when AND gate J 4 b is made. This occurs when a Rewind instruction from memory is presentr when the Go flipflop \{CRODBA\} is set producing the Go Pulse, and when the Write Terminate flip-flop \(\{K\llcorner 14 / K b 15\}\) is cleared. The tape transport is prevented from doing a Rewind during a write sequence until after a Write Jog sequence has been performed.

\section*{WRITE TERMINATE FLIP-FLOP}

The Write Terminate flip-flop \{Kbl4/Kbl5\} is used to provide a record gap after a record has been written \{Urite Jog sequence\}. When the flip-flop is set, a forward is forced for approximately one inch of tape after a write operation before the first subsequent reverse operation.

The Write Terminate flip-flop is set when AND gate Jb4l is made. This occurs wheni [1\} a Reverse command is given 1 as indicated by a logic \({ }^{0} \mathcal{l}^{\circ}\) out of the clear side of the Forward flip-flop \{Kbll\}, and \{2\} Urite Reply signal is active, and \{3\} Time 3 from the timing chain.

The Write Terminate flip-flop clears when the Busy pulse is received, indicating that tape motion has stopped.

WRITE

The Write signal is transmitted to the tape transport when AND gate J 44 is made. This occurs wheni \(\{1\}\) the direction is Forward as indicated by the Forward flip-flop being setr and \{2\} a Urite instruction from memory is presentr and \{3\} Write Enable is present from the tape transport indicating a write ring is installed, or from the INTERNAL TEST switch being in \(O N\) or \(S / S\) and \(\{4\} G O\) from the \(G o f l i p-f l o p ~ i s ~ p r e s e n t . ~\)

FORWARD

The Forward signal to the tape transport is present when either the Write Terminate flipflop is set or the Forward flip-flop is set, either one providing a logic \({ }^{\nabla}{ }^{\circ}\) into OR-gate J643.


\section*{MOTION CONTROL I \(\underset{\text { CROOPA }}{\text { I }}\) ZAZF CARD}

\section*{repeat flip flop}

Whenever the START pushbutton is pressed, a logic \({ }^{\circ} \mathrm{O}\) pulse is applied to J 700 with a logic
 applied to pin 4 of JPOL fwhen set to LOAD the AND-gate J PDI is inhibitedf. The two logic \({ }^{\circ}{ }^{2} s^{\circ}\) into Jpal provide a logic \({ }^{\circ} \mathrm{g}^{\circ}\) out and the Repeat flip-flop is set. The logic \(\mathrm{og}^{\circ}\) out

 10 of JPOL . If the MODE switch is set to STEP, JPO2 is enabled and a logic \({ }^{\circ} \mathrm{l} \mathrm{D}^{\circ}\) is available at pin 9 of JPO4. With AND gate JPO4 being mader the Repeat flip-flop is cleared. In other words, when START is pressed with the MODE switch in STEP \(7_{7}\) the Repeat flip-flop is set and the Go flip-flop is set. One microsecond later the Repeat flip-flop is cleared therefore only one operation will be performed.

When the MODE switch is set to RUN and the START pushbutton is pressed the Repeat and Go flip-flops are set, however AND gate J 704 is not made because of the logic \({ }^{\circ} \mathrm{I}^{\circ}\) on the input to \(J 702\) and so the Repeat flip-flop does not get cleared. The Repeat flip-flop can only be cleared then by setting the MODE switch to STEP or setting the INT CONTROL swit ch to MC.

\section*{GO FLIP FLOP}

The Go flip-flop \{KpaZ/K703J is set whenever any instruction fforward, Reverse, Write, or Rewindf is executed. No instruction can be executed until the flip-flop sets.

The Go flip-flop sets whenever the START pushbution is pressed, when MODE is not set to
 instruction from memory is present on pin 10 of JPlO a Forward signal is output from Jfle to the tape transport and also to the FORUARD \{STATUS\} indicator on the operator panel.

When a Reverse instruction from memory is present on pin 1 of J 709 , and if a Write Terminate sequence is not in progress and a Rewind is not commanded, the Reverse signal is output from J 71 l to the tape transport and to the REVERSE [STATUS\} indicator. The Rewind and Write Terminate inhibit a Reverse signal from being output.

The Go flip-flop is also set when the Urite Terminate flip-flop fCRoob Bf is cleared.
 J7Ob. The one-shot circuit composed of \(\mathrm{RE}, \mathrm{R3}\), and Cl 2 provide a one microsecond negative going pulse to the set side of the Go flip-flop. This is done so that after a

Forward Jog, the Go flip-flop is set to permit a Reverse signal output.

The Go flip-flop is also set when AND-gate \(J\) JOB is made. This occurs when the Repeat flipflop is set and the Set Enable signal is present. The Set Enable signal may come from
 is set to OFF and Time b from the timing chain is present. The timing chain is initiated after the Busy signal from the tape transport, indicating tape is in motion, rises and then falls. Time \(b\) is the sixth one microsecond pulse after the timing chain is initiated. In other words when PAUSE TIME is OFF and Time b comes upr the Go flip-flop sets. When PAUSE
 oscillator circuit \(Q 700\) is available on pin 9 of Jア3b then that AND-gate is made and the Set Enable signal is output from J73B. Oscillator \(Q 700\) is enabled when the Pause flip-flop is set. The Pause flip-flop is set when the Time b signal comes up and is cleared by the oscillator output signal. oscillator 2700 may be adjusted by the PAUSE TIME control \{CRODIAJ from a two millisecond to a 100 millisecond output.

The Go flip-flop is cleared as follows.
2. When \(\overline{\text { Ready }}\) is present. The Go flip-flop cannot be set when \(\overline{\text { Ready }}\) is present.
2. When INT CONTROL is set to MC.
3. When an End of Operation signal is present which comes from Load Point, End of Taper or generated internally after having received data followed by a period of at least 50 microseconds when no data is received.
4. When a Reverse instruction is present and the tape transport is at Beginning of Tape.
5. When a Forward instruction is present and the tape transport is at End of Tape and a Urite Terminate is not present. This is to permit doing a Urite Jog even though at end of tape.
b. When the Urite Terminate signal and the End Urite Terminate signal are both present. The End Write Terminate signal is present \(77_{\mathrm{B}}\) tachometer pulses after Write Terminate starts. Therefore after \(77_{8}\) tachometer pulses after Urite Terminate, the Go flip-flop is cleared.


\section*{MOTION CONTROL I ZAZF CARD}

\section*{CROOPB}
timing chain
 flip-flops are enabled when the Busy signal from the tape transport, through R70l receiver and \(\mathrm{J} 7 \mathrm{FD}, \mathrm{J} 3 \mathrm{B2}\), and J 733 gates, drops. During Write Terminate the timing chain is inhibited by a logic \({ }^{\circ}{ }^{\circ} \mathrm{D}\) on pin 10 of J 732 .

\section*{INTERNAL TEST}

When the INTERNAL TEST switch is set to \(0 N_{1}\) a logic \({ }^{\circ} \mathcal{I}^{\circ}\) through R2b to J7e? provides a logic \({ }^{\circ}{ }^{\circ}\) to J 2 BB . The logic \({ }^{\circ} \mathrm{l}^{\circ}\) out of J 2 B is the Ready signal. When INTERNAL TEST is not on the Ready signal comes from the tape transport through Rral receiver. The logic \({ }^{\circ} 0^{\circ}\) from \(J 727\) also goes to pin b of R 700 and R70l receivers, which inhibits their operation. When R700 is inhibited, the output on pins 4 and 9 are the Beginning of Tape and End of Tape signals. When Rrol is inhibited, the output on pins 4 and 9 are the \(\overline{\text { Ready }}\) and \(\overline{B u s y}\) signals

When INTERNAL TEST is set to \(O N_{1}\) a Busy signal will be output from J 7 BO as soon as the Go flip-flop sets. When the Go flip-flop is cleared, AND-gate J73l outputs a logic \({ }^{\circ}{ }^{\circ} \mathrm{D}\) which is delayed 100 microseconds by ClB . This delay is so that Busy will not be dropped until 100 microseconds after motion \(\{G 0\) commandf has been removed.

When the INT TEST switch is set to S/S ESTART/STOPF, B4-3B is connected to ground
 and provides a constant enable for receivers R3OO and R7Ol. The Ready, Busy, Bot, and EOT are thereby permitted to have the same effects as in normal operation however, the remaining receivers are inhibited fsee CRODLA, CROOZA, and CROOLBF.


\section*{MOTION CONTROL II IBFF CARD}
crooga
END WRITE TERMINATE FLIP FLOP

The End Write Terminate flip-flop \(\{K 804 / K 805\}\) is used to terminate the Write Jog sequence after \(1000_{\mathrm{g}}\) tachometer pulses or 0.800 inch of tape has advanced since W rite Jog sequence was initiated. The flip-flop is set when output Z 2 of CBOL counter goes to a logic \({ }^{\circ} \mathrm{l}\), . The Tachometer I and II pulses, together with a not Beginning of Tape condition are ANDed at JB0l and then counted at C800 counter. After \(17_{\mathrm{B}}\) tachometer pulses, CBOD outputs a



The End Write Terminate signal, which clears the Go flip-flop fCRa0zA\}, stops motion. When the Busy signal from the tape transport, indicating that tape motion has stopped, is received on pin 13 of K801 flip-flop, it sets and the clear output clears the End Write Terminate flip-flop. The Busy signal from the set output of KAOL is a one microsecond pulse created by capacitor C9. The clear output of K80l also clears C800 and C80l counters to zero. Flip-flop KB07 sets when the Go signal from logic board B4-LCRDOFAJ is present on pin 1. A one microsecond pulse produced by capacitor Cll clears CBOD and CBOL counters to zero.

\section*{BOT AND 377 FLIP FLOP}

The BOT and 377 flip-flop \(\{K B O 2 / K B 03\}\) is used to provide a 3.20 inch distance at the beginning of tape before any writing is enabled. The flip-flop is set at Beginning of Tape. It is cleared by a logic \({ }^{\circ}{ }^{\circ}\) from pin 12 of caOl counter which occurs on the \(400_{\mathrm{g}}\) tachometer pulse. The clear output, available after BOT and after \(377_{\mathrm{g}}\) tachometer pulses, enables writing on the tape.

\section*{INTERNAL YELOCITY FLIP FLOP}

The Internal Velocity flip-flop \(\{K 808 / K 809\}\) provides a Velocity signal when the INT TEST switch is set to \(O N\).

When INT TEST is set to \(O N\) or \(S / S\), a logic \({ }^{\circ} \mathcal{I}^{\circ}\) is present at pin 2 of JGOT. When the
 out of JaOP is delayed one milljsecond by capacitor ClO and then sets the Internal Velocity flip-flop.

The clear output through J\&ig provides the Velocity signal in Internal Test. When not in Internal Test, the Velocity signal from the tape transport enables JBl 3 and provides the Velocity signal out

The clear output of the Internal Velocity flip-flop is delayed one microsecond by capacitor cle and then goes to AND gate Jall. When the Go signal from the Go flip-flop is on pin le of Jall, the AND gate is made and the Urite Permit signal is output. One millisecond after the Go signal is present the Velocity signal is output and one microsecond after that the Write Permit signal is output. When not in Internal Test, the Write Permit signal from the tape transport is present on pin 13 of JBle and the Urite Permit signal is output.

The Internal Velocity flip-flop is cleared when the Go signal from the Go flip-flop goes to a logic \({ }^{\circ} \square^{\circ}\). The logic \({ }^{\circ} \square^{\circ}\) from the Go flip-flop also disables AND gate Jill and the Urite Permit signal is removed.


\section*{TBOD TRANSMITTER}

The I/O Forward and I/O Reverse signals from logic board B4 \{CRDOZA\} are output to the tape transport through T\&OD transmitter.

\section*{Rado receiver}

The four Density status lines from the tape transport are received on R800 receiver and the status is then output to the DENSITY STATUS indicators \{CRODYBf and to logic board вг.

\section*{SIGNaL MONITOR fLIP fLOP}

The Signal Monitor flip-flop \(\{K 818 / K 819\}\) is set whenever any signal is routed through
 of the flip-flop. The set output lights the SIGNAL MONITOR indicator fCRDOPB\}. The clear output is delayed 25 milliseconds by capacitor \(\mathrm{Cl} \exists\) and then clears the flip-flop In this manner, any pulse into the flip-flop will light the indicator for 25 milliseconds so it can be seen by the operator. If the signal that sets the flip-flop is a steady logic level, the indicator remains lit as long as the logic level is present. When the logic level is removed the flip-flop clears after 25 milliseconds and the indicator goes out.

FAULT FLIP FLOP

The Fault flip-flop \{KBlb/Kglpf is set whenever one of the five fault lines from the tape transport is activated. The set output lights the FAULT indicator \{CRID9B\}. The flip-flop is cleared by a logic \({ }^{0} 0^{0}\) \{groundlf from the FAULT pushbutton when it is pressed. If any of the Fault lines are active when the FAULT pushbutton is pressed, the flip-flop will set and the FAULT indicator will light again as soon as the pushbutton is released.

A Urite Permit Error occurs when a Write Permit signal is received without a Velocity signal being received.

The Urite Permit Error flip-flop \(\{K B 14 / K 815\}\) sets when the \(W\) rite Permit signal from logic board B5 fCRODAA is received at AND gate Jblb and the Velocity signal from B5 is not received at JBlb. When the Velocity signal is not present at inverter Jal 4 , a logic \({ }^{0} I^{\circ}\) is output from J8lu to J8lb, the AND gate is mader and the logic \({ }^{\circ} 0^{\circ}\) out sets the flip-flop. The set output lights the URITE PERMIT ERROR indicator.

The Write Permit Error flip-flop is cleared when the URITE PERMIT ERROR pushbutton is pressed. When the flip-flop is cleared the indicator goes out.

\section*{VELOCITY ERROR FLIP FLOP}

A Velocity Error occurs if, after the Go signal and the Velocity signal are both high, the Velocity signal goes low while the Go signal remains high.

The Velocity Error flip-flop sets when the Go signal from B5\{CROOBAf is high at pin 1 of AND gate JBl5, the Velocity signal from B5 through inverter JBl 4 is a logic \({ }^{\circ}{ }^{10}{ }^{\circ}\) on pin 2 of J8li5, and the Velocity Resync flip-flop \{KBla/K8lı\} is set and provides a logic \({ }^{\mathrm{O}} \mathrm{D}\) to pin 13 of JBl5. When the Velocity Error flip-flop is set, the VELOCITY ERROR indicator lights.

Whenever the Velocity signal is high and the Go signal is high the Velocity Resync flipflop is set. The set output provides a constant logic \({ }^{1} 10\) to Jill . As long as the Velocity signal remains high, the logic \({ }^{\circ} \mathrm{O}^{\circ}\) from JBl 4 prevents AND gate JBl5 from being made. If the Velocity signal goes low while the Go signal remains high a logic \({ }^{\circ} \mathrm{l}\) o from Jall enables AND gate J8l5 and the Velocity Error flip-flop gets set. The Velocity Resync flip-flop is cleared after the Go signal goes low and the Velocity signal again goes high.

The Velocity Error flip-flop may be cleared by pressing the VELOCITY ERROR pushbutton. The indicator then goes out.


\section*{CRDoqA}

\section*{display select}

A signal ground is input to the DISPLAY SELECT switch SE on pin la. When the switch is set to any of the nine positions, a ground is routed to the logic board and pin shown on the output line. Since a ground is actually a logic \({ }^{\circ}{ }^{0}\), the signal is the not representation of that which is labeled on the switch i.e.. the signal to logic card A4, pin \(73_{1}\) is the \(\overline{\text { START }}\) signal. The ground out of S2 causes the appropriate signal to be displayed at the DISPLAY on the operator control panel.

\section*{density request}

When switch \(S 6 \sum^{0}\) DENSITY REQUEST\} is set to \(0_{1}\) a ground is routed to card A5, pin 15.


\section*{Int test}

When switch \(S A\) is set to OFF, a ground is applied to several boards to prohibit the internal test. There is no connection at the ON position.

\section*{operation}

When switch \(S 9\) is set to RECORD \({ }_{n}\) a ground is supplied to logic card B3, pin 59. When set to CONTINUOUS, a ground is supplied to logic cards at A5, pin \(59_{1}\) and at B2, pin b6. There is no connection at the CONT REC position.

\section*{MODE}

When SIO is set to LOADra ground is supplied through pins 2 and \(l\) of section \(A\) to: B4, pin 4b; B3, pin 64; and to S/DS 1 fAF. When set to STEP, the ground is present through pins 2 and 3 of section \(A\) to pins 2 and \(l\) of section \(B\) to \(B 4\), pin \(2 a\). The RUN position has no connection.

\section*{BREAKPOINT}
 \(2^{\square}\), Address \(2^{1}\) and Address \(2^{2}\) flip-flops, respectively \(\{C R D 01 A\}\). The set output of the flip-flops goes to pin 3 and the clear output to pins l. When set to position \(0_{1}\) the set output of the flip-flops goes to AND gate \(\operatorname{lalq}\) \{CRODbBf; when set to 1 the clear output goes to Jbl9. Switches 53, S4, and 55 serve to supply either the set or clear output of the three flip-flops to the AND gate.

\section*{start}

The 2.7 megohm resistor and . Ol microfared capacitor on section B of switch Sly, in conjunction with 560 ohm resistor R9 on logic board B3 \{CRODEBF 7 form a one-shot circuit and serve to eliminate noise when the pushbutton is pressed. When START is.pressed, the . 01 microfared capacitor charges up at a relatively fast rate through the small 560 ohm resistor, providing a +5 volt \(D C\) output to logic card \(B 3\) and B4. When the pushbuttion is released, the . 01 capacitor discharges through the \(2 . ?\) megohm resistor in approximately 27 milliseconds. Another one-shot through the 560 ohm resistor and the . 01 microfared capacitor cannot be effected until the capacitor has discharged through the 2.7 megohm resistor. In this way, only one pulse per depression of the pushbutton is assured.

\section*{INT CONTROL}

Switch Sl5 has two 27 microfared capacitors mounted on it. Capacitor \(C 2\) between pins 3 and \(a\) eliminates high frequency noise in the ground circuitry when in the LAMP TEST position. When the switch is set to MC1 a Master Clear signal is output as long as the switch is held in the MC position. Capacitor Cl between pins \(l\) and \(\sum_{2}\) in conjunction with resistor R7 on logic card BYiCRODbBf, provides a 20 millisecond delay of the Master Clear signal after the switch is released.

When SJI 4 is set to REWIND or UNLOAD, a ground is supplied to logic card BJ\{CRQDGB\}. When set to REWIND, resistors Rll 7 and RIB and capacitor C? on B3 provide a one microsecond one-shot Rewind pulse. When set to UNLOAD, resistors Rli and R2D and capacitor CB on B3 provide a one microsecond one-shot Unload pulse.

\section*{PARITY ERROR RESPONSE}

When switch Sla is set to TRAP, a ground is output to logic card A5\{CRODYB\} to the input of inverter J425. When a Parity Error is present to inverter J427, the Trap flip-flop gets set. The parity error is ultimately displayed on the DISPLAY when the DISPLAY SELECT switch is set to READ.

When switch \(S 1 \exists\) is set to \(B A C K S P A C E\) a ground is routed to card \(A 5\{C R O D 4 B\}\) to inverter J423. If a Parity Error is present and the exerciser is in the Record moder the Backspace flip-flop gets set.

There is no connection to the OFF position of switch SI.ヨ.

\section*{PATTERN}

When switch Sle is set to TRUE/COMP, a ground is provided to logic card B2, pin 42 \{CROQ5\}. Since a ground is considered a logic \({ }^{\circ} \mathrm{O}_{\mathrm{O}}\), the signal name on logic diagram CROD5A is called True, not True/Complement. There is no connection to the TRUE position of the switch.

\section*{CLIPPING LEVEL}

When switch Sll is set to Low or \(\mathrm{HI}_{7}\) a ground is supplied to logic card A5, pin b5 or 73 respectively \{CROQ4BJ. There is no connection to the NORMAL position.

The Dis Data and lis Data，from logic card B2\｛CROD5A\}, pins 24 and 34 respectively，is input to the eight data switches \(\{S 17\) through \(S 24\}\) at pins 1 and 3 respectively．When any of the switches is set to \(\overline{\square^{3} s \text { Data }}\) is output on pin 2 of that switch to the Urite data transmitters on logic card \(A 己\) \｛CRODIB\}. When any of the switches is set to I，\(\overline{\text { Jr＇s Data }}\) is output on pin 2 of that switch to the Urite data transmitter．

There is no connection to the \(E\) \｛erase\} position of the switches. Whenever a switch is set to \(E_{7}\) a steady logic \({ }^{\circ} \square^{\circ}\)［DC erasef is transmitted to the tape transport from the +5 volts \(D C\) and the pull－up resistor on the input to the inverter on the input to the transmitter on logic card A己\｛CRODIB\}.

On the \(B\) section of the eight switches，when the switch is set to position \(I_{n}\) a ground is output on pin 3 to logic card B2\｛CROD5B\}, Parity Generator P5007 for generation of odd parity．
 logic card \(B 2\{C R O D 5 A\) and CRODSB\} is routed through the switch to the transmitter on logic card \(A 己\left\{C R O D B E\right.\) ．When the \(P\) switch is set to \(O F F_{7}\) a ground is routed to the trans－ mitter on logic board A己\｛CRODIB\}, providing a constant logic \({ }^{\circ} \mathrm{D}^{\circ}\) out to the tape trans－ port．This is used to erase the parity track．

When the exerciser is connected to a seven track tape transportr Write data is still transmitted from the exerciser to the tape transport，however it is not used by the tape transport．When the \(\sum^{b}\) and \(\sum^{7}\) Data switches \(\{S 2 \exists\) and S24\} are set to 1 when connected to a seven track tape transportr a ground is routed through \(\operatorname{S23B_{r}}\) pin \(3{ }_{3}\) and \(\mathrm{S}_{2} 4 \mathrm{~B}_{1}\) pin 37 to OR－gates J 523 and J 524 on logic card \(B 2\)［CROO5B］．However the \(\overline{7}\) Track signal which is a logic \({ }^{\circ} \nabla^{\circ}\) when connected to a seven track unit provides a logic \(\nabla_{1,0}\) out of \(J 523\) and J 524 to parity generator P50D．Since two \({ }^{\circ} 1\) ，\(s^{\circ}\) fan even number\} are input to P500，the output of P500 is not effected．
 J?35 and JP3? on logic card B4\{CRDOPB\}. The oscillator circuit Q7DO \{CRDOPB\} is bypassed and there will be no pause time between execution of program instructions. When R/Sl is moved from the OFF position, the ground to \(B 4\) is removed and the potentiometer becomes part of the QPOU oscillator circuit on card B5. The frequency determining elements of the oscillator circuit are the Rl4 potentiometer and Cll capacitor. As the control is rotated, the oscillator frequency varies from 2 milliseconds to 100 milliseconds.

RECORD LENGTH

This circuit is similar to the PAUSE TIME circuit described above. When set to ONE WORD, oscillator circuit \(Q 500\) on logic card B2\{CROD5B\} is by-passed. As the control is rotated, the frequency of \(Q 500\) is varied from 2 milliseconds to 100 milliseconds.

RUNNING TIME

The timer XMI is connected to +5 volts \(D C\) on logic card A5[CROD4A]. Any time the exerciser is on \(\boldsymbol{n}^{+5}\) volts \(D C\) is available to operate XMI.


The four INSTRUCTION indicators \(\{5 / D S 1\) through S/DS4] light when the appropriate instruction from memory MbDO on logic card B3\{CRODbA\}, through multiplexer 0600 and through inverters Jbll through \(\mathrm{Jbl4}\) is routed to the indicator. .The indicators also light when the pushbutton is pressed. When the MODE switch Sla \{CRIOqA\} is set to LOAD a ground \{A\} is present on pin 2 of the instruction pushbutton. The ground is routed through the pushbutton to load the instruction in Mb00 memory. The instruction is read out of memory, at the same time that the memory is loaded, and then returns to the INSTRUCTION indicator to light it. The indicators also light when the Lamp Test signal is received through diodes CRY through CRle on logic board B3.

\section*{adress}

The three ADDRESS indicators \(\{D S 4\), DS5, and DSb f light to indicate the status of the program address counter, which is composed of flip-flops \(\mathrm{KbOG}_{7} \mathrm{Kb057}\) and Kbap on logic card B3icRoobat. The set output of the flip-flops is inverted by Jbly , Jblb, and delf and provides a logic \({ }^{\circ} \mathrm{D}\) to the indicators to light them. The indicators are also lit by the Lamp Test signal through diodes CR13, CR14, and CR15 on logic card B 3 .

\section*{ERROR}

The four ERROR indicators [S/DS5 through S/DSB] light whenever the appropriate Error signal from logic card B5iCRDOBBJ or A5[CROD4AF is received. They also light whenever the Lamp Test signal is received from the same cards. The indicator goes out when the pushbutton is pressed, supplying a ground to logic card 85 or A5 which clears the flipflop that provided the signal to light the indicator.

\section*{density status}

The two DENSITY STATUS indicators [DS14 and DS15] light when the appropriate Density Status signal from the tape transport is received at receiver RADD on logic card \(B 5\{C R D O B B\}\) and is routed through inverters on \(B 5\) to the indicators. They also light when the Lamp Test signal is received through diodes CR? and CRB on B5.

The seven STATUS indicators \([D S 7\) through DSl.3f light whenever the appropriate status signal from the tape transport, which is received on logic board B4iCRODPBF or B3icRoabBy, is routed through inverters on B4\{CRDCPA\} or BJiCRODEAJ to the indicator. The Lamp Test signal, through diodes CR2 through CR7 on B4 and CRIb on B3, also lights the indicators.

\section*{DISPLAY}

Whenever INT CONTROL switch SI5fCRIDqAF is set to LAMP TESTra ground is routed through pin 3 to pin E of DSI, DSE, and DS3. The ground in on pin E with +5 volts \(D C\) in on pin \(?\) lights the digit eight on each LED array. The data input to the three displays is from the multiplexers on logic card A \(\operatorname{licRDOZB\} }\). The data that is displayed is determined by the setting of the DISPLAY SELECT switch. The ground on pin 3 of each display prohibits the digit nine from lighting since the display is used only as an octal read out.

\section*{SIGNAL MONITOR}

The data in on pins 1 through 24 of \(\operatorname{S2b}\) is routed through pin 25 to the SIGNAL MONITOR test point J 4 and to logic card B5icRDOBBJ and A4fCRODGAF. On logic card B5 the signal is extended by 25 milliseconds. Capacitor \(\mathrm{Cl} \exists\) delays the clearing of the Signal Monitor flipflop for that period of time. The delayed signal is then routed to the SIGNAL MONITOR indicator DS1b

The data is also routed from \(S_{\text {Eb }}\) to the Skew II flip-flop on logic card A4fCRODJAJ. In this way , the Read data bit selected by position 1 through 9 of \(\mathrm{Seb}^{\mathrm{s}}\) sets the flip-flop. The skew measurement, which is the time from the receipt of the first data bit to the data bit selected by the SIGNAL MONITOR switch positions 1 through \(q_{1}\) is thus effected.

\section*{GND}

The ground jack \(\sqrt{ } \exists\) is signal, not \(A C\) power ground.



\section*{POUER DISTRIBUTION SChEMATIC}

\section*{CR DIDA}

Connector J2, which is mounted on the operator control panel, is a combination male, three pin, recessed, \(A C\) power jack and a radio frequency interference \(\{R F I f\) filter. The \(A C\) power cable is connected between J2 and either 120 or 220 volts \(A C\). The connector is grounded to the exerciser by the screws which hold the connector to the operator panel. The ground wire is also connected to pin 5 on terminal board TBI, which is mounted on the baffle plate assembly. The hot line from J己 goes through a one-ampere SLO-BLO fuse to pin 2 of deck \(A\) on the \(A C\) POWER switch, Sl. The neutral line goes from la to pin 2 of deck \(B\) on Sl. When the \(A C\) POWER switch is set to \(O N, ~ l 20\) or 220 volts \(A C\) is supplied to pins \(l\) and 4 of TBI. When the exerciser is connected to l20 volts, there should be a jumper between pins 1 and 2 of TBl and a jumper between pins 3 and 4. When connected to 220 volts \(\mathfrak{r}\) both jumpers should be connected between pins 2 and 3 .

The output from TBl will be lea volts on each primary winding of transformer ti regardless of whether the input is 120 or 220 volts. The two fans, Bl and BL , each operate on l 2 CO volts.

The output of two of the secondary windings goes to bridge rectifiers BRI and BR2. The output of the third winding is not used.

The negative output of BRI is grounded. The positive output goes through three-ampere fuse Fl to two voltage regulators, VRI and VR2. Each voltage regulator is capable of delivering approximately 1.5 amperes current. Since approximately three-amperes total current is required, two voltage regulators are needed. Capacitor \(C l\) serves to filter the output of the bridge rectifier. The full-wave rectified output of the bridge rectifier normally goes from a low of zero volts to a high of approximately nine volts. Capacitor Cl changes the output to a low of approximately seven volts to a high of approximately nine volts. Voltage regulators VRl and VR2 then regulate the seven to nine volt swing to a steady five volt \(D C\) output.

The positive output of BRI goes through three-ampere fuse Fl to the two voltage regulators, VRI and VR2. Each voltage regulator is capable of delivering approximately l.5 amperes current output.

Capacitors C3 and C4 on the input to pin 3 of VRI and VR2 eliminate high frequency noise on the regulator output. Without these capacitors the regulators would tend to oscillate with a resultant oscillation on the output.

The +5 volts \(D C\) from VRI goes to the logic cards at location \(A 2\) through A5 and also to the DISPLAY LEDS on the operator panel. The +5 volts \(D C\) from VR2 goes to the logic cards at locations \(B 2\) through \(B 5\) and also to the remaining LEDS on the operator panel.

To obtain the -5 volts \(D C\), the positive output of BR2 goes to the input of VR3 at pin 1 . The negative output of BR2 goes through 0.5 ampere fuse F2 to pin 3 of VR3 and to the power supply -5 volt \(D C\) output jack. The normal output on pin 2 is grounded. With the positive output of \(\operatorname{BR} 2\) to pin l of VR3, the input to VR3 is positive with respect to ground. This relationship is necessary for the voltage regulator to operate. The output on pin 3 , which is normally grounded is now a regulated -5 volts \(D C\).

Capacitor C2 filters the output of BR2. Capacitor C5 el iminates high frequency noise on the regulator output.

The -5 volts \(D C\) goes to all cards that require the -5 volts \(D C\).







Figure 5-4 Card Compositeı IBAF



\(B E \wedge C\)


Figure 5-8 Card Composite, lBFF

\section*{Section b}

Maintenance

Section b
Maintenance
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{1.0} & Introduction \\
\hline & This section contains procedures necessary for maintenance of the exerciser. The recommended serviceability level is limited to replacement of switchesヶ indicators, printed circuit cardsi transistorsi diodes, capacitors, transformer, and fans. Procedures for removing integrated circuit packages are given but should be used only in emergencies. \\
\hline \multirow[t]{2}{*}{2.0} & Preventive Maintenance Index \\
\hline & This Preventive Maintenance Index is a chart reflecting preventive maintenance frequency and is cross-referenced to Preventive Maintenance Procedures. \\
\hline
\end{tabular}

PREVENTIVE MAINTENANCE INDEX

Equipment No. TB 113-AD1



\begin{tabular}{|c|c|c|c|}
\hline Number & Level & Title or Procedure & Time Est. Mins. \\
\hline I. 1 & 1 & 51.5 Nanosecond Clock Check & 5 \\
\hline I.2 & 1 & 3 Microsecond Clock Check & 5 \\
\hline 2.11 & 2 & Elapsed Time Indicator Check & 2 \\
\hline 2.2 & 2 & Power Supply Output & 5 \\
\hline \(2 \cdot 3\) & 2 & Clean & 5 \\
\hline 3.15 & 3 & General Inspection & 5 \\
\hline
\end{tabular}

This PMI lists the recommended frequency of performing preventive maintenance on this equipment. Scheduling of this preventive maintenance is a site responsiblity. Scheduling may include variations in the recommended frequency due to individual site conditions \{i.e.7 usage, environmentr timer etc.\}.

3．0 Preventive Maintenance Procedures
The following procedures should be performed as specified in the Preventive Maintenance Index．Procedures for removal and re－ placement of parts are referenced in the action step RR－In RR－2， etc．子．

\section*{PREVENTIVE MAINTENANCE PROCEDURE}

\section*{PM-1.1 51.5 Nanosecond Clock Check}

CHECK/conditions
I. Loosen b knurled springloaded captive screws and lift unit out from case.
2. Connect female end of \(A C\) power cable to male recessed AC POUER connector on operator panel.

CAUTION
Insure Exerciser is properly wired for power source used. Refer to Changing Input Power Procedure in this section.
3. Connect male end of \(A C\) power cable to 115 or 220 volt power source.
4. Set \(A C\) POWER switch to on.
5. Connect oscilloscope Channel A test probe to TP5 on 2BAF card at location \(B\) ㄹ. Connect probe ground to card ground.

CHECK: Does the oscilloscope display a 515 nanosecond waveform?

1. Loosen six knurled springloaded captive screws on operator panel and lift unit out from case.
2. Connect female end of \(A C\) power cable to male recessed AC POUER connector on operator panel.

CAUTION
Insure Exerciser is properly wired for power source used. Refer to Changing Input Power Procedure in this section.
3. Connect male end of \(A C\) power cable to lly or 220 volt power source.
4. Set AC POUER switch to ON.
5. Connect oscilloscope Channel A test probe to TP3 on 2BAF card at location B2. Connect probe ground to card ground.

CHECK: Does the oscilloscope display a 3 microsecond waveform?


\section*{PREVENTIVE MAINTENANCE PROCEDURE}

\section*{PM-2.I Elapsed Time Indicator Check}

\section*{CHECK/conditions \\ ACTION}
1. Removed from operator control panel.

CHECK: Does timer show
fewer than 1900 hours?
 has elapsed on old one.

\title{
PREVENTIVE MAINTENANCE PROCEDURE \\ PM-2.2 Power Supply Output
}

\section*{CHECK/conditions}

ACTION
1. Loosen six knurled spring-loaded captive screws on operator panel and lift unit out from case.
2. Connect female end of AC power cable to male recessed AC POWER connector on operator panel.
caution
Insure exerciser is properly wired for power source used. Refer to Changing Input Power procedure in this section.
3. Connect male end of \(A C\) power cable to leag or 220 volt power source.
4. Set the INT TEST switch to ON.
5. Install the internal test plug connector on the I/O connector.
b. Set AC POWER switch to ON.
7. Connect oscilloscope Channel A probe to pin I on card at location A5. Refer to card location diagram on the bottom of the logic card rack for the location of pin 1. Connect ground to card ground.

CHECK: Does oscilloscope indicate \(+5\{ \pm 0.25\}\) volts DC with less than 50 millivolts peak-to-peak ripple?

B. Connect oscilloscope

Channel A probe to pin
I on card at location
B5. Connect ground to card ground.

CHECK: Does oscilloscope indicate \(+5\{ \pm 0.25\}\) volts DC with less than 50 millivolts peak-to-peak ripple?


ๆ. Connect oscilloscope probe to pin 40 on bottom of the card connector at location B5. Refer to card location diagram on the bottom of the logic card rack for the location of pin 40. Connect oscilloscope ground to GND test point on operator panel.

CHECK: Does oscilloscope indicate -5 volts \(D C\) with less than 50 millivolts peak-to-peak ripple?


CHECK/conditions
I. Insure exerciser
power is off.
2. Loosen six knurled spring-loaded captive screws on operator control panel and remove unit from case.

ACTIONS
1. Using a dry cloth or kimwipe, clean dust and other residue from bottom of case.
2. Blow dust and other residue from card rack and other exerciser components.
3. Replace unit in case and tighten six captive screws.

PREVENTIVE MAINTENANCE PROCEDURE
PM-3.1, General Inspection

CHECK/conditions
ACTION
1. Insure exerciser
power is off.
2. Loosen six knurled
spring-loaded captive screws on operator control panel and remove unit from case.
1. Inspect entire unit for loose or broken components.
2. Inspect all wiring for evidence of fraying.
4.0 Removal and Replacement Procedures

The following procedures describe removal and replacement of major exerciser Components.

NUMBER

RR-I
RR-2
RR-3
RR-4
RR-5
RR-G
RR-7

\section*{PROCEDURE}

Power Supply
Baffle Plate
Fan
Transformer.
Printed Circuit Cards Integrated Circuits Broken Card Rack Wires

\title{
REMOVAL/REPLACEMENT PROCEDURE \\ RR-I Power Supply
}

Removal
1. Remove the round connector plug \{see Figure b-l,\} from the baffle plate.
2. Remove the four power supply mounting screws from the front side of the panel \{see Figure b-2\}.
3. Move the power supply to one side.
4. Disconnect the square connector from the baffle plate.

Replacement
1. Perform removal procedure in reverse order.


Figure \(\mathrm{b}^{-I .}\) Plug P2 on Baffle Plate


Figure b-2. Power Supply Mounting Screws

\section*{REMOVAL/REPLACEMENT PROCEDURE \\ RR-Z Baffle Plate}

Removal
I. Unsolder the wires from the round connector jack on the baffle plate \{see Figure b-1\}.
2. Disconnect terminal board leads.
3. Remove the four baffle plate mounting screws [see Figure b-3\}.

Replacement
1. Perform removal procedure in reverse order.


Figure b-3. Baffle Plate Mounting Screws

\section*{REMOVAL／REPLACEMENT PROCEDURE}

\section*{RR－3 Fan}

Removal

I．Remove baffle plate assembly in accordance with procedure RR－2．

2．Unsolder and disconnect fan wires．
3．Remove four screws and nuts holding fan to baffle plate． Observe direction screws go through baffle plate to insure they are installed in the same direction in the replacement procedure：

Replacement

I．Perform removal procedure in reverse order．Refer to Power Distribution Schematicヶ 59338500，when connecting wires．The fans are labeled \(B 1\) and \(B 2\) on the schematic．

\title{
removal/replacement procedure \\ RR-4 Transformer
}

Removal
I. Remove baffle plate assembly in accordance with procedure RR-Z.
2. Unsolder and disconnect wires from transformer.
3. Remove four screws and nuts holding transformer to baffle plate. Observe direction screws go through baffle plate to insure they are installed in the same direction in the replacement procedure.

\section*{Replacement}
1. Perform removal procedures in reverse order. Refer to Power Distribution Schematic 57338500 , when connecting wires.

Removal

1．Grasp the card to be removed and pull straight out． The connectors hold the board tightly and sometimes require the use of a long nose pliers in removal．

2．A card extender，PN 593149007 may be ordered from Customer Engineering Materials for use in trouble－ shooting printed circuit cards．

Replacement

1．Insure logic card to be inserted is oriented with components facing away from front panel as per Figure b－4．

2．Insert card into connector and push into place．Insure that card is well seated into the connector．


Figure b－4．Printed Circuit Card Location

\section*{REMOVAL/REPLACEMENT PROCEDURE}

RR-G Integrated Circuits

Removal \(\{14\) and lb pin dual in-line packages, Figure b-5 and b-b子.
1. Cut each pin on the component side of the board.
2. When all pins have been cutr lift the integrated circuit off and throw it away.
3. Apply heat \(\{25\) watt iron\} to the eyelets on the opposite \{foilf side of the board. Heat each eyelet individually with the soldering iron, while pulling on the cut pin from the component side of the board.
4. When all the cut pins have been removed, use either a solder sucker \{CDC part number l22la43b\} or rapid movement of the soldering iron to open up the eyelets.

\section*{Replacement}
1. Insert pins through holes in board. Insure that the integrated circuit is installed in the correct position.
2. Turn board over and insure that the integrated circuit is held in position up against the board.
3. Hold soldering iron in contact with one pin the foil, and the solder until solder melts and flows around pin.
4. When the solder has melted first remove the solder \({ }_{7}\) then the soldering iron.
5. Continue by soldering all pins.

\section*{REMOVAL／REPLACEMENT PROCEDURES}

\section*{RR－7 Broken Card Rack Wires}

\section*{Removal}

\title{
1．If wires are inadvertently broken on the card rack it is advisable to replace the entire wire since there will not be enough left to provide the proper wrap on the connector．Remove broken wire．Use of long nose pliers may be helpful．The card rack is hinged and may be raised up for ease of maintenance． Remove two screws on end opposite hinge and two screws in center of rack．
}

\section*{Replacement}

1．Strip the wire back approximately I inch．
2．Insert the wire into the wire wrap tube all the way up to the insulation．The Gardner Denver model I \(4 \times 1\) ， 42 wire wrap gun with size 24－梠 gauge insert is recommended for this work．

\section*{3．With the wire threaded in the wire wrap tuber place} the insert down over the wire wrap pin．

4．Energize the gun to the point at which the wire is firmly wrapped around the post．

5．In emergencies onlyn solder the wire to the pin．

Miscellaneous Maintenance Procedures

Changing Input Power
NOTE
The terminal board at which input power changes are made is TBl and is mounted on the baffle plate assembly．It is located near \(\sqrt{ } 3\) which is the GND jack． Refer to Figure b－5．
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{5.1.11} & 220 & Volt Operation \{Convert from ] 20 volt\} \\
\hline & 1. & Disconnect jumper between terminals 1 and 2. \\
\hline & 2. & Disconnect jumper between terminals 3 and 4. \\
\hline & 3. & Connect both jumpers between terminals 2 and 3 . \\
\hline \multirow[t]{4}{*}{5.].2} & 120 & Volt Operation [Convert from 220 Volt] \\
\hline & I. & Disconnect the two jumpers between terminals 2 and 3 . \\
\hline & 2. & Connect one of the jumpers removed in step I between terminals 3 and 4 . \\
\hline & 3. & Connect one of the jumpers removed in step I between terminals 1 and 2 . \\
\hline
\end{tabular}


Figure b-5. Terminal Board TBI Location

Section ?
Maintenance Aids

\section*{Section ?}

Maintenance Aids
\begin{tabular}{ll} 
I.I & \begin{tabular}{l} 
Introduction \\
This section contains information concerning the operation of \\
individual circuit elements which are used in the exerciser.
\end{tabular} \\
2.I. & \\
Circuit Elements
\end{tabular}\(\quad\)\begin{tabular}{l} 
Integrated Circuits
\end{tabular}

INDUSTRIAL DTL

Type I_ ᄅ Dual 4-input gate
Type lat Quad 2 -input gate Type lag Triple 3-input gate
Type lı9 Hex I-input inverter
Type 150 Dual J-K flip-flop
Type 151 Dual J-K flip-flop

TTL

Type 140 Quad 2-input NAND gate
Type 146 Hex l-input inverter
Type 149 Quad 2 -input exclusive-0R gate
Type lipa Dual 4-bit digital multiplexer
Type 1 时 Quad 2-input multiplexer
Type 195 Dual monostable multivibrator
Type 240 Dual J-K flip-flop
Type 500 Synchronous 4-bit binary up/down counter
Type 502 g-bit odd/even parity generator/checker
Type 5lu lb-bit register file
Type 515 5-bit shift register
\begin{tabular}{|c|c|}
\hline & Type Jbe Dual Line Receiver Type lifb Dual Line Driver \\
\hline & This section also includes a deseription of a typical DTL inverter，wired－OR and wired－AND gates，an inverter flip－flop， and a wired－OR flip－flop． \\
\hline 2．1．2 & Logic Levels \\
\hline 2．102．1 & Integrated Circuits \\
\hline & Logic levels are as follows： \\
\hline & Industrial DTL Logic \({ }^{\circ} \mathrm{J}\) \\
\hline & TTL Logic \({ }^{\circ} \mathrm{H} 0\)＋3．3VDC \｛nominal\} \\
\hline & \begin{tabular}{l}
DTL／TTL Compatible Interface Logic \({ }^{\circ}{ }^{\circ}\) \\
Differential voltage greater than＋．025VDC
\end{tabular} \\
\hline &  \\
\hline &  \\
\hline & \begin{tabular}{ll} 
DTL／TTL Compatible Interface & Differential voltage greater \\
Logic & than \(-.025 V D C\)
\end{tabular} \\
\hline 2．1．3 & Common Industrial DTL Circuts \\
\hline 2．1．3．1 & Typical DTL Inverter \\
\hline & An integrated circuit common industrial DTL inverter is shown in Figure \(7-1\). This circuit is the basic building block for the exerciser logic functions．This diagram shows an extender input which most package types do not have．However，since this input merely expands a positive AND gate by allowing more diodes to be added \(_{7}\) it is unimportant from a circuit operation viewpoint． Consider the input gate a positive AND gate．This can also be classed as a negative OR gate．Thus，the same inverter package can be assigned an AND or an OR function．The primary difference is in the output polarity which is considered active at any point in time．Assume a logic \(\nabla \square \nabla\) input to any input pin．This forward－ biases the respective input diode and places \(+\square\). GVDC on the base of Q1．Ql cuts off and since it is an emitter－follower，feeds a voltage of less than D．BVDC to the base of Q2．Q2 cuts off and its collector approaches +5 VDC．Thus 7 any logic \({ }^{\circ} 0^{0}\) input yields a logic \({ }^{\circ} \mathcal{H}^{\nabla}\) output to provide the or function．Next assume all inputs at logic \({ }^{\circ} 10\) ．All input diodes are reverse－biased and the base of Q1 approaches \(+1.75 V D C\) ．QI conducts and provides base current for \(Q \mathcal{Q} . \quad Q 己\) conducts and its collector approaches ground． Thus all logic \({ }^{\nabla} \not \nabla^{\nabla}\) inputs yield a logic \(\nabla^{\circ} \nabla^{\circ}\) output for the AND function．The maximum voltage which is observable with an \\
\hline
\end{tabular}
oscilloscope on the extender input pin is approximately +1. PSVDC. This voltage is present only when alłogic \({ }^{\circ} \mathrm{I} \circ\).


GND
81

Figure 7-1. Typical DTL Inverter
2.I.3.2 Wired-OR and Wired-AND Gates

The wired-OR and wired-AND functions are identical except that the polarity when the gate is considered active determines the name of the logic function. Since an inverter OR gate is enabled by logic \(\nabla_{0}\) fwith DTL elements\}, wiring the outputs of two or more inverters together as a gate and using the output signal of that gate when at logical \({ }^{\nabla} \square^{\circ}\) makes up the wired-OR function. In Figure \(\mathrm{F}_{1} \boldsymbol{Z}_{1}\) assume the \(\mathrm{A}_{1} \mathrm{~B}_{7}\) and C inputs to be logic \(\nabla^{\circ} \nabla\) and input \(D\) at logical \(\nabla^{\circ}\). The AND gate on the input to Jullul will be made and the AND gate on the input to JXXX will be broken. If the outputs of these two inverters were isolated from each other \(\boldsymbol{I}\) JXXX would output logical \({ }^{\nabla} D^{\nabla}\) and JYYY would output logical \({ }^{\circ}{ }_{l} \nabla_{0}\). However \(\quad\) when these outputs are tied together, the logic \({ }^{\circ} \square^{\circ}\) takes precedence and both outputs go to logic \({ }^{\nabla} \square^{\circ}\). The wired-AND function requires that both JYYY and JZZZ have at least one logic \({ }^{\circ} 0^{\circ}\) input each. This causes the
wired-AND to go to logic \({ }^{\nabla} \mathrm{l}^{\nabla}\), which is the desired active polarity into IYYY.


Figure \(7-2\). Wired-OR and Wired-AND Gates
2.I.3.3 Inverter Flip-Flops
2.I.3.3.1 Normal Inverter Flip-Flop

This flip-flop circuit is made up of two normal inverters. Refer to Figure 7-3. The set and clear inputs 7 when active; are logical \({ }^{\circ} \square^{\nabla}\). The outputs when activen are logical \({ }^{\circ} \mathrm{I}^{\nabla}\). Assume logical \({ }^{\circ} \square^{\circ}\) in the input to \(K X X I\) and logic \(\nabla_{1} \nabla\) on the input to KXXD. Since \(K X X I\) is an \(O R\), the set output goes to logic \({ }^{\circ}{ }^{\circ} \mathrm{D}\).

The set output may feed some other logic function but also serves as a feedback path for the set state. With both the clear input and the feedback path at logic \({ }^{\circ} \nabla_{1}, ~ K X X D\) outputs logic \({ }^{\circ} \nabla^{\circ}\). This logic \({ }^{\circ} \square^{\square}\) is fed back to \(K X X 1\) and serves as a latch, holding \(K X X 1\) at logic \({ }^{\nabla} \mathrm{g}^{\nabla}\) after the set input logic \({ }^{\circ} \square^{\nabla}\) has been removed. The clear of the flip-flop is similar.

With both set and clear inputs at logic \({ }^{\nabla} \nabla^{\nabla}\) simultaneously 1 both outputs go to logic \(\nabla 1 \nabla\) because of the \(O R\) function of each inverter. With both inputs at logic \({ }^{\nabla} \mathrm{l}^{\circ}\), the flip-flop will remain in its previous state.


Figure 7-3. Normal Inverter Flip-Flop

This flip-flop circuit is made up of two single input inverters. Refer to Figure \(7-4\). The set input is combined with the clear output in a wired-OR configuration. The clear input is combined with the set output in a wired-OR configuration. Assume a logic \({ }^{\nabla 1 \nabla} \nabla\) into both inputs \(A \& B\). If JXXX were not tied to the wired-OR on the set input of \(\mathrm{KXXI}_{1}\) its output would be at logic \(\nabla \square \nabla\) and its duration would be the same as the \(B\) input \{shown by dotted 1 ines\}. But because of the set input wired-OR, the pulse output from JXXX will not appear as a duplicate of the B ANDed input. It will appear only as an inversion of the set output.

KXXI outputs \(\operatorname{logic}{ }^{\nabla}{ }^{\circ}{ }^{\nabla}\) on the \({ }^{\nabla} \mathcal{I}^{\nabla}\) to \({ }^{\nabla} \square^{\nabla}\) transisitions of \(J X X X\) output. JYYY is not made on its input and cannot output logic \({ }^{\circ} \square^{\circ}\). The flip-flop latches with KXXD logic \(\nabla^{\circ}{ }^{\circ}\) output because of the wired-OR configuration. The output of KXXD is as shown in the diagram.

This flip-flop has the advantages of speed and space saving. When the logic \({ }^{\nabla} \square^{\nabla}\) output from \(K X X \square\) is used to perform some function, there is none of the normal inverter delay. The clear output goes to logic \({ }^{\nabla} \nabla^{\nabla}\) at the same instant as the set input. This arrangement also saves input pins. The normal inverter flip-flop requires at least 4 input pins. Since the number of inputs determines packaging density 7 fewer packages are necessary for a given number of wired-OR 2-input flip-flops.


Figure 7 -4. Wired-OR Flip-Flop
2.1.3.4 Type İスı Dual 4-Input Gate

The type liz consists of two expandable 4-input gate circuits. Figures 7-5 and 7-b show pin assignments and a logic diagram. The gate is shown on logic diagrams with the circles on the output of AND gates and on the input of OR gates. The circle is drawn according to its logic function, however, the same basic inverter circuit is used on both applications. Each gate has an extended input.


B5

Figure 7-5. Type 1 ²ᄅ , Pin Assignments


Figure 7－b．Type lı己ろ Logic Diagram

The output of either the AND or the OR gate is high for all input combinations except when all the inputs are high then the output is low．Refer to Truth Table ？－1．
\begin{tabular}{|l|l|l|l|l|l|}
\hline A & B & C & D & E r etc． & output \\
\hline & & & & & \\
L & L & L & L & L & \(H\) \\
L & L & L & H & \(H\) & \(H\) \\
L & L & \(H\) & \(H\) & \(H\) & \(H\) \\
H & \(H\) & \(H\) & \(H\) & \(H\) & \(H\) \\
\(H\) & \(H\) & \(H\) & \(H\) & H \\
\hline
\end{tabular}

Table ？－1．Type 122，Truth Table

Figure \(7-7\) shows a quad 2 －input package．Its function is the
 it has no diode extender．


Figure 7－7．Type lebr Logic Diagram and Pin Assignments

2．1．3．6 Type I2Aッ Triple 3－Input Gate
Figure \(7-8\) shows a triple \(\exists\)－input gate package．Its function is the same as a Jココュ except for the number of inputs and the fact that it has no diode extender．


Figure 7-Bo Type lagn Logic Diagram and Pin Assignment
2.1.3.7

Type I.29ッ Hex 1 -Input Inverter
Figure \(7^{-9}\) shows a hex one-input inverter package. Each circuit performs the function of inversion only. The circular logic level indicator on the input or the output denotes the state, when activer of the signal feeding the 1 2. 9 or the signal being output by the 1 ², respectively.


Figure 7-9. Type leq, Logic Diagram and Pin Assignments
2.1.3.日 Type 150, Dual J-K Flip-Flop

The type 150 is a dual J-K flip-flop consisting of two separate flip-flops, each one incorporating a master slave design. Pin assignments and a logic diagram are shown in Figures 7-10 and 7-11.

Data is accepted by the master flip-flop while the clock is high. Transfer of data from the master flip-flop to the slave flip-flop occurs on the high to low transition of the clock. When the clock is low the \(J\) and \(K\) inputs are inhibited. The SD input provides a means of presetting the flip-flop.


GND \(=7\)
Vcc \(=14\)
810

Figure 7 -la. Type 150 , Pin Assignments


Figure 7-11. Type 150, Logic Diagram

Truth Table 7-2 defines the next state of the flip-flop after a high to low transition of the clock pulse. The output of the flip-flop is a function of the previous state of the flip-flop and the conditions of the inputs prior to a high to low transition of the clock.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{INPUTS} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{OUTPUT BEFORE CLOCK GOES HIGH TO LOW}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{OUTPUT AFTER CLOCK GOES HIGH TO LOW}} \\
\hline J & \multirow[t]{2}{*}{K} & & & & \\
\hline & & ONE & ZERO & ONE & ZERO \\
\hline L* & \(x\) & L & H & L & H \\
\hline H凶 & X & L & H & H & L \\
\hline X & L* & H & L & H & L \\
\hline X & H凶 & H & L & L & H \\
\hline
\end{tabular}

LM = defined as a low input that does not go high at any time while the clock is high.
\(\mathrm{L}=\) steady state low voltage output.
Hw = defined as an input that is high at some time while the clock is high.
\(H=s^{\prime t} t e a d y\) state high voltage output.
\(x=\) the condition of the input or output has no effect on the next state of the flip-flop.

Table 7-2. Type 150, Truth Table
2.1.3.9 Type 151, Dual J-K Flip-Flop

The type 151 is a dual \(J-K\) flip-flop. Refer to Figure \(7-12\) for pin assignments and to Figure ?-13 for a functional logic diagram.


Vcc \(=\operatorname{Pin} 14\)
Gnd \(=\operatorname{Pin} 7\)

Figure 7-12. Type 151, Pin Assignments


Figure \(\operatorname{P-13.}\) Type 151, Functional Logic Diagram

The type 151 is similar to the type 150 dual \(J-K\) flip-flop however the type 151 has a clear direct input which the type 130 does not. The asynchronous set and clear inputs provide the ability to control the state of the flip-flop independent of static conditions on the clock and synchronous inputs.

Synchronous operation of the type 151, is the same as synchronous operation of the type 150. Refer to Table \(7-2\) for a truth table on synchronous operation of the type 1.50 and type 151. Refer to Table \(7-3\) for a truth table on asynchronous operation of the type 151.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ INPUTS } & \multicolumn{2}{|c|}{ OUTPUTS } \\
\hline SD & CD & ONE & ZERO \\
\hline L & L & H & H \\
L & \(H\) & \(H\) & L \\
H & L & L & H \\
H & \(H\) & \begin{tabular}{l} 
STATE DETERMINED \\
\\
\end{tabular} & \begin{tabular}{l} 
INY SYNCHRONOUS \\
INPUTS AND CLOCK
\end{tabular} \\
\hline
\end{tabular}

Table 7-3. Type 151, Asynchronous Operation Truth Table
2.1.4 Transistor-Transistor Logic
2.1.4.I Type 140 r Quad 2-Input NAND Gate

The type 140 is a quad 2 -input NAND gate. The function of the TTL type 140 is the same as the DTL type 1 Ib quad 2-input NAND gate 7 however it operates at a higher speed. Refer to Figure 7-14 for a logic diagram and pin configuration.

\(V c c=\operatorname{Pin} 14\) Gnd \(=\operatorname{Pin} 7\)

Figure 7-14. Type 140, Logic Diagram and Pin Assignments

\subsection*{2.1.4.2 Type 1467 Hex Inverter}

The type l4b is a hex inverter. It is similar to the DTL type lᄅ7, however it operates at a higher speed. Refer to Figure p-15 for a logic diagram and pin assignments.


815

Figure \(7-15\). Type 146, Logic Diagram and Pin Assignments

\subsection*{2.1.4.3 Type 1497 Quad 2-Input Exclusive-OR Gate}

The type 149 is a quad 2 -input exclusive 0 R gate. Each circuit performs the function \(Y=\bar{A} B+A \bar{B}\) When the input states are complementary, the output goes to a logic \({ }^{\circ}{ }^{\circ} \mathrm{D}\). Refer to Table 7-4, Truth Table.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ INPUTS } & OUTPUTS \\
\hline\(A\) & \(B\) & \(Y\) \\
\hline 0 & 0 & 0 \\
0 & \(I\) & \(I\) \\
\(I\) & 0 & \(I\) \\
\(I\) & \(I\) & 0 \\
\hline
\end{tabular}

Table 7-4. Type 149, Truth Table

Refer to Figure \(7-1 \mathrm{lb}\) for a logic diagram and pin assignments.


818

Figure 7 -lb. Type 1497 Logic Diagram and Pin Assignments
2.1.4.4 Type 170, Dual 4-Input Multiplexer

The 170 is a dual 4 -input digital multiplexer. It consists of two multiplexing circuits with common input select logic \{SO and Slu. Each circuit contains four inputs and two fully buffered complementary outputs. The 170 allows two bits of data to be switched in parallel to either the high or low outputs from four 2-bit data sources. Both polarities of outputs are available.

The 170 is used to move data from up to four sources to a common output. The movement of the data is enabled by the select input. Refer to Figure ?-1? for pin assignments and to Figure ?-1a for a logic diagram of the lip. A truth table is shown in Table \(7-5\).


VCC \(=\) PIN 16
GND \(=\) PIN 8
817

Figure 7-17. Type \(177 D_{1}\) Pin Assignments


Figure 7-lB. Type l 7 D , Logic Diagram
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SELECT & INPUTS & & \multicolumn{3}{|c|}{INPUTS} & \multicolumn{2}{|l|}{OUTPUTS} \\
\hline SELD & SELI & A3 & A2 & A 1 & \(A D\) & ZA & ZA \\
\hline L & L & \(\dot{L}\) & \(x\) & \(x\) & \(x\) & L & H \\
\hline L & L & H & X & X & X & H & L \\
\hline H & L & X & L & X & \(x\) & L & H \\
\hline H & L & X & H & X & \(x\) & H & L \\
\hline L & H & \(x\) & \(x\) & L & \(x\) & L & H \\
\hline L & H & \(x\) & \(x\) & H & \(x\) & H & L \\
\hline H & H & \(x\) & \(x\) & \(x\) & L & L & H \\
\hline H & H & \(x\) & \(x\) & \(x\) & H & H & L \\
\hline SELD & SELI & B3 & B2 & B1 & BD & ZB & ZB \\
\hline L & L & L & \(x\) & \(x\) & \(x\) & L & H \\
\hline L & L & H & X & \(x\) & \(x\) & H & L \\
\hline H & L & X & L & \(x\) & \(x\) & L & H \\
\hline H & L & X & H & X & X & H & L \\
\hline L & H & X & X & L & \(x\) & L & H \\
\hline L & H & X & X & H & x & H & L \\
\hline H & H & \(x\) & x & \(x\) & L & L & H \\
\hline H & H & X & X & \(x\) & H & H & L \\
\hline
\end{tabular}
\(L=\) low voltage level
\(H=\) high voltage level
\(X=\) either high or low logic level

Table 7-5. Type 17D, Truth Table
2.1.4.5 Type 1听, Quad 2-Input Multiplexer

The type 189 is a quad 2 -input multiplexer. It has a common enable \{active low\} input \{EN\}, a common select input \(\left\{\right.\) SEL \(_{1}\) and active high outputs \(\left\{Z_{A} Z_{B_{7}} Z C_{7}\right.\) and \(\left.Z D\right\}\). Refer to Figure ?-1. It allows four bits of data to be switched in parallel to the appropriate outputs from two 4 -bit data sources \(\{A D\) and \(A 1, ~ B D\) and \(\mathrm{Bl}, \mathrm{CD}\) and Cl, and DD and DIJ. When the enable is not active \{low, all the outputs are held low. Refer to Table 7-b, Truth Table.
\begin{tabular}{|c|c|c|c|c|}
\hline\(\overline{E N}\) & SEL & \(A D\) thru \(D O\) & \(A 1\) thru \(D 1\) & ZA thru ZD \\
\hline\(H\) & \(X\) & \(X\) & \(X\) & \(L\) \\
L & L & \(H\) & \(X\) & \(H\) \\
L & L & L & X \\
L & \(H\) & \(X\) & \(H\) & \(H\) \\
L & \(H\) & \(X\) & \(L\) & \(L\) \\
\hline
\end{tabular}

H = high voltage level
\(\mathrm{L}=\) low voltage level
\(X=\) either high or low voltage level

Table 7-女. Type 189, Truth Table
2.1.4.b Type 195, Dual Monostable Multivibrator

The type 195 is a dualy retriggerable monostable multivibrator \{one-shot\}. The 195 provides an output pulse whose duration and accuracy is a function of external timing components. An active low reset input \{CLR\} allows the one shot to be reset. The inputs are \(D C\) coupled making triggering independent of input transition times. If the input signal is applied to an active high input, triggering will occur on the rising edge of the waveform. By applying the input signal to an active low input, triggering will occur on the falling edge of the waveform. The input conditions to be satisfied for triggering are indicated by external logic symbols in Figure 7 -20.

Each time the input conditions for triggering are metr the external capacitor is discharged and a new cycle is started. Successive inputs with a period shorter than the delay time retrigger the monostable resulting in a continuous true output. Refer to Figure ?-20.


Figure 7-Iף. Type lıףッ Logic Diagram and Pin Assignments


Vac \(=\operatorname{Pin} 16\)
Gnd \(=\operatorname{Pin} 8\)
820

Figure 7-20. Type 1957 Logic Diagram and Pin Assignments

The type 240 is a dual \(J-K\) flip-flop. It is of the master-slave design.

The 240 is a dual edge triggered flip-flop which allows the inputs to change while the clock is lowr and changes state according to the input conditions present a short set up period before the clock transition from low to high. This information is transferred to the outputs after the clock transition from low to high. The clocking operation is independent of the rise and fall times of the clock waveform. When the clock is highi the \(J\) and \(K\) inputs are inhibited. Refer to Figure \(7-2 l\) for pin assignments and a logic diagram of the 240.


Vcc \(=\operatorname{Pin} 16\)
Gnd \(=\operatorname{Pin} 8\)
821

Figure \(7-2 \beth\). Type 240, Logic Diagram and Pin Assignments

The 240 has asynchronous inputs \(\{S D\) and \(C D\}\) which provide the ability to control the state of the flip-flop independent of static conditions of the clock and synchronous inputs. Refer to Table \(7-7\) for an asynchronous operation truth table.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ INPUTS } & \multicolumn{2}{|c|}{ OUTPUTS } \\
\hline SD & CD & Q & \(\bar{Q}\) \\
\hline L & L & \(H\) & \(H\) \\
L & H & \(H\) & L \\
H & L & L & H \\
H & H & \begin{tabular}{l} 
Synchronous \\
Inputs Control
\end{tabular} \\
\hline
\end{tabular}

Table \(7-7\). Type \(24 \square_{7}\) Asynchronous Operation Truth Table

Truth Table \(7-B\) defines the next state of the flip-flop after a low to high transition of the clock pulse during synchronous operation. The next state is a function of the \(ل\) and \(K\) inputs.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ INPUTS } & \multicolumn{2}{|c|}{ OUTPUTS } \\
\hline J & K & Q & \(\bar{Q}\) \\
\hline L & \(H\) & NO CHANGE \\
L & L & L & H \\
\(H\) & \(H\) & \(H\) & L \\
\(H\) & L & TOGGLE \\
\hline
\end{tabular}

Table 7-8. Type \(24 \square\), Synchronous Operation Truth Table
2.1.4.8 Type 500, Synchronous 4-Bit Binary Up/Down Counter

The type 500 is a synchronous 4-bit binary up/down counter. The direction of counting is selected by the input on pins 4 and 5. Refer to Figure 7-22. Synchronous operation is provided by having the four flip-flops clocked simultaneously so that the outputs change coincidentally with each other.

The outputs of the four master-slave flip-flops are triggered by a low-to-high transition of either the count down or count up input. Direction of counting is determined by which count input is pulsed while the other count input is high.

The counter is programmable. That isi the outputs may be preset to any state by entering the desired data at the data inputs while the load input \{pin lif\} is low. The output will change to agree with the data inputs independently of the count pulses.

The clear input forces all outputs to the low level when a high level is applied. The clear function is independent of the count and load inputs.

The counter has look ahead borrow and carry pulses. The borrow output produces a pulse at the same time and equal in width to the count-down input when the counter underflows. The carry output produces a pulse equal in width to the count up input when an overflow condition exists.


Figure 7-22. Type 500, Pin Assignments


Figure 7-23. Type 500, Logic Diagram
typical clear, load, and count sequences

Illuitrated below is the following sequence:
1. Clear outputs to zero.
2. Load (preset) to BCD thirteen
3. Count up to fourteen, fifteen, carry, zero, one, and two.
4. Count down to one, zero, borrow, fifteen, fourteen, and thirteen.


NUTES: A. Ciear overrides icad, data, and count inputs.
B. When counting up, court down input must be high, when counting down, count up infut must be high.

Figure 7-24. Type 500, Timing Diagram

The type 502 is a 8 -Bit odd/even parity generator/checker. The eight data bits are input on pins a through \(13{ }_{3} 1\) and 2. To function as an even parity generator/checker, the input to pin 3 must be a \({ }^{\circ} l^{\nabla}\) and to pin 4 a \({ }^{\circ} \square^{\square}\). To function as an odd parity generator/checker, the input to pin 4 must be a \({ }^{\circ} \mathrm{l}, \mathrm{D}\) and to pin 3 a \(\nabla^{\square}\). An even parity generator/checker will output \(a{ }^{\circ} \mathrm{I}^{\circ}\) on pin 5 and \(a \nabla \nabla^{\circ}\) on pin \(b\) when the sum of the data inputs is even. An odd parity generator/checker will
 data inputs is odd. When the inputs to pins 3 and 4 are both \({ }^{\circ} \mathrm{D}\) the outputs on pins 5 and \(b\) will be \({ }^{\circ} \mathrm{O} \nabla\) regardless of data inputs. When the inputs to pins 3 and 4 are both \({ }^{\circ} \square \square\) the output on pins 5 and \(b\) will be \({ }^{\circ} \mathrm{D}\) regardless of data inputs. Refer to Figures 7-25 and 7-2b. Refer to Table 7-9 for a truth table for the type 502.


Figure 7-25. Type 502, Pin Assignments


\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{INPUTS} & \multicolumn{2}{|l|}{OUTPUTS} \\
\hline \(\Sigma\) of Irs AT 0 thru ? & EVEN & ODD & \[
\begin{gathered}
\Sigma \\
\text { EVEN }
\end{gathered}
\] & \[
\begin{gathered}
\Sigma \\
O D D
\end{gathered}
\] \\
\hline EVEN & 1 & \(\square\) & 1 & \(\square\) \\
\hline ODD & 1 & \(\square\) & \(\square\) & 1 \\
\hline EVEN & \(\square\) & 1 & \(\square\) & 1 \\
\hline ODD & \(\square\) & J & 1 & 0 \\
\hline \(X\) & 1 & 1 & \(\square\) & \(\square\) \\
\hline \(X\) & \(\square\) & \(\square\) & 1 & 1 \\
\hline
\end{tabular}
\(x=\) irrelevant
Table 7-9。 Type 502, Truth Table

The type 514 is a lb-Bit register file \{memory\}. It is designed for four word, four bits each operation. Separate on-chip decoding is provided for addressing the word locations for either writing in or retrieving data. This permits simultaneous writing into one location and reading from another word location. The data inputs supply the word to be stored. Location of the word is determined by the write address inputs \(A\) and \(B\) in conjunction with the write enable signal. Data applied to the inputs will be the same as the data output for a particular location. That is, if a high level signal is desired at the output, a high level signal should be applied at the input. Refer to Figures 7-2? and 7-28. Refer to Table ?-10 for a truth table for the type 514.


Figure 7-27. Type 514ヶ Pin Assignments


Figure 7-28. Type 514, Logic Diagram

WRITE FUNCTION TABLE \｛See Notes \(A_{7} B_{1}\) and \(\left.C\right\}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{WRITE INPUTS} & \multicolumn{4}{|c|}{WOR D} \\
\hline \[
\stackrel{B}{\text { URADRS }}
\] & \[
\stackrel{A}{\text { WRADRS }}
\] & UREN & 0 & 1 & 2 & 3 \\
\hline L & L & L & \(Q=D\) & \(Q_{n}\) & \(Q_{n}\) & \(Q_{n}\) \\
\hline L & H & L & \(Q_{n}\) & \(Q=D\) & \(Q_{n}\) & \(Q_{n}\) \\
\hline H & L & L & \(Q_{n}\) & \(Q_{n}\) & \(Q=D\) & \(Q_{n}\) \\
\hline H & H & L & \(Q_{n}\) & \(a_{n}\) & \(Q_{n}\) & \(Q=D\) \\
\hline \(x\) & X & H & \(Q_{n}\) & \(Q_{n}\) & \(Q_{n}\) & \(Q_{n}\) \\
\hline
\end{tabular}

READ FUNCTION TABLE \｛See Notes \(A\) and \(D\}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{READ INPUTS} & \multicolumn{4}{|c|}{OUTPUTS} \\
\hline \[
\begin{gathered}
B \\
\text { RDADRS }
\end{gathered}
\] & \[
\begin{gathered}
A \\
\text { RDADRS }
\end{gathered}
\] & RDEN & Z0 & Z1 & Z2 & Z3 \\
\hline \(L\) & L & L & WOBI， & แロB2 & W0B3 & WOB4 \\
\hline L & H & L & W1］Bl & W］B2 & W133 & W1． \(\mathrm{B}_{4}\) \\
\hline H & \(L\) & L & WอB1， & แอВ2 & い2B3 & W2B4 \\
\hline H & H & L & W3B］ & い 3 B2 & W3B3 & W3B4 \\
\hline \(x\) & \(x\) & H & H & H & H & H \\
\hline
\end{tabular}

Table 7－10．Type 514，Truth Table

NOTES：A． \(\mathrm{H}=\) high level
\(L=\) low level
\(x=\) irrelevant
B．\(\{Q=D\}=\) The four selected internal flip－flop outputs will assume the states applied to the four external data inputs．

> C. \(\mathbb{Q}_{n}=\) No change.
> D. \(W O B I=\) The first bit of word \(Q_{1}\) etc.
2.1.4.11 Type 515ヶ5-Bit Shift Register

The 515 is a 5-bit shift register. It consists of five \(R-S\) master-slave flip-flops connected to form parallel-to-serial or serial-to-parallel conversion of binary data. Since both inputs and outputs to all flip-flops are accessibleヶ parallel-in/parallel-out or serial-in/serial-out operation may be performed. The five flip-flops are simultaneously set to the logical \({ }^{\nabla} \square^{\nabla}\) state by applying a logical \({ }^{\nabla} \square^{\nabla}\) voltage to the clear input. This condition may be applied independent of the state of the clock input.

The flip-flop may be independently set to the logic \({ }^{\circ}{ }^{\circ}{ }^{\nabla}\) state by applying a logic \(\nabla \mathbb{1} \nabla\) to both the preset input of the specific flip-flop and the common preset input. The common preset input is provided to permit setting each flip-flop independently or setting two or more flip-flops simultaneously. Preset is also independent of the state of the clock input or clear input.

Transfer of information to the output pins occurs when the clock input goes from a logic \({ }^{\circ} \square^{\nabla}\) to a logic \({ }^{\circ}{ }^{\circ} \nabla\). Since the flip-flops are \(R-S\) master-slave circuits \({ }^{\prime}\) the proper information must appear at the \(R-S\) inputs of each flip-flop prior to the rising edge of the clock input voltage waveform. The serial input provides this information to the first flip-flop while the outputs of the subsequent flip-flop provide information for the remaining \(R-S\) inputs. The clear input must be at a logic \(\nabla \boldsymbol{I}\) and the preset input must be at a logic \({ }^{\nabla} \square^{\circ}\) when clocking occurs. Refer to Figure \(7-29\) for the logic symbol and to Figure \(7-30\) for pin assignments and a logic diagram.


Figure 7-2ף. Type 515 Logic Symbol


Figure \(7-30\). Type 5l5, Logic Diagram and Pin Assignments
2.1.5 DTL/TTL Compatible Interface Circuits
2.1.5.1 Type lb己⿱ Dual Line Receiver

The type lbe is a DTL/TTL compatible high speed dual line receiver. The receiver has two independent channels with common voltage supply and ground. The lbe is designed to detect low-level differential signals \(\{25\) millivolts or greater \(\}\) and convert the polarity of the signal into appropriate TTL compatible output logic levels. Refer to Figure \(7-31\) for a logic symbol.


Figure ？－31．Type lbされ Logic Symbol

The receiver has a Strobe input to each channel \｛STBA and STBB\} and a common Strobe \｛STBAュB\} to both channels.

Refer to Table \(\quad\)－ll，Truth Table．When the voltage differential between pins \(A\) and \(B\{I D\}\) is equal to or greater than \(\pm 25\) millivolts 1 output \(Y\) will be high regardless of the Strobe inputs．If the differential input voltage \｛ID\} is greater than -25 millivolts but less than +25 millivolts the output \(Y\) will be high for any Strobe input except when the Strobes are both high，then the output is indeterminate．If the differential input voltage is equal to or less than－25 millivolts the output will be high for any Strobe input except when both the inputs are high then the output is low．Refer to Figure \(7-32\) for a logic diagram and pin assignments．
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
DIFFERENTIAL \\
INPUTS \｛IDJ \\
A－B
\end{tabular} & \begin{tabular}{c} 
STBA \\
OTBB
\end{tabular} & STBAっB & OUTPUT \\
YTB
\end{tabular}

Table \(7-11\). Type lbar Truth Table


Figure \(7-32\). Type lb己 Logic Diagram and Pin Assignments

2．1．5．2 Type Iアbィ Dual Line Driver
The type 1 Pb is a DTL／TTL compatible high speed dual line driver． The driver has two independent channels with common voltage supply and ground terminals．The libb provides a constant output that is switched to either of the two output terminalsi depending upon the logic level at the two input terminals．The output can be switched off finhibited\} by appropriate logic levels on the inhibited inputs．Refer to Table \(7-1 \imath_{1}\) Truth Table．If either the INHA or INHB or INHA，B are lown the output will be high \｛off state\} regardless of the inputs. If an INHA or INHB and INHA，\(B\) are high，the \(\mathrm{ZA}\{+\}\) and \(\mathrm{ZB}\{+\}\) outputs will be low fon state\} and the \(\mathrm{ZA}[-\}\) and \(\mathrm{ZB}\{-\}\) outputs high if either or both input are low．If both an INHA or INHB and INHAっB are high and both the inputs are high the \(Z A\{+\}\) and \(Z B\{+\}\) outputs will be high and the \(\mathrm{ZA}\{-\}\) and \(\mathrm{ZB}\{-\}\) output low．Refer to Figure 7－33 for a logic symbol．Refer to Figure \(7-34\) for a logic diagram and pin assignments．


B33

Figure 7－33．Type lifb Logic Symbol


Figure 7 -34. Type 17 b, Logic Diagram and Pin Assignments
\begin{tabular}{|c|c|c|c|c|c|}
\hline LOGIC & INPUTS & INHA or & INHA \({ }_{7} \mathrm{~B}\) & OUTP & \\
\hline A & B & & & \(\mathrm{ZA}[+\}, \mathrm{ZB}\{+\}\) & ZA\{-\}, ZBE-\} \\
\hline L or H & L or H & L & L or H & H & H \\
\hline L or H & L or H & L or H & L & H & H \\
\hline L & L or H & H & H & L & H \\
\hline L or H & L & H & H & L & H \\
\hline H & H & H & H & H & L \\
\hline \multicolumn{6}{|c|}{Low output represents the on state. High output represents the off state.} \\
\hline
\end{tabular}

```

2.2 Discrete Component Circuits
2.2.I Type AAlO Oscillator

```


Figure \(7-35\). Type AAlO, Schematic

This circuit consists of a unijunction relaxation oscillator, a differentiator, and a pulse-shaping amplifier. The quiescent state of the circuit is with \(Q 1\) cut off and \(Q 2\) conducting. Refer to Figure 7-35. This causes the collector of \(Q 2\) to be clamped at a voltage close to ground. The RC circuit composed of Rl \(\{f r\) ront panel\}, \(R 1\) \{logic board\}, and \(C 1\) is the frequency determining element of the oscillator.

As Cl charges, a voltage is reached on the emitter of Ql which will fire RI. When QI fires, Cl discharges back through the Base l Emitter junction. While this discharge is occurring, a negative-going pulse of approximately 0.5 volts is formed on Base 2. C2 and R4 differentiate the Base 2 pulse. The negative portion of the differentiated waveform cuts off \(Q 2\). The collector of Q2 goes to \(+5 V D C\) for nominally three microseconds.

Section B
Parts

Section B
Parts

The following parts are replaceable by the Customer Engineer and are available from Customer Engineering Materials．
\begin{tabular}{|c|c|c|}
\hline DESCRIPTION & CDC PART NUMBER & REFERENCE DESIGNATOR \\
\hline  & 72407205 & C37 C4 \\
\hline Capacitor \(920 \square\) ufdı & 58018802 & \(\mathrm{Cl}, \mathrm{Cl}\) \\
\hline Diode，Gernianium & 510ロ127？ & \\
\hline Dioder Silicon & 51407385 & \\
\hline Display Unit， 3 Digit & 59327300 & DSI，DS2，DS3 \\
\hline Fan & 58007101 & \(B]_{1}\) ，\(B 2\) \\
\hline Indicator，Light Emitting Diodeı \｛LED\} & 5931，5704 &  \\
\hline Integrated Circuitr CDC Type 」」2 & 51577500 & \\
\hline Motorola MC830P Fairchild SL46女9 ITT NC 2520 & & \\
\hline Integrated Circuit，CDC Type l른 & 51577900 & \\
\hline \begin{tabular}{l}
Motorola MC 846 \\
Fairchild SL 946
\end{tabular} & & \\
\hline Integrated Circuit，CDC Type las & 51578100 & \\
\hline Motorola MC 8b2P Fairchild SL 4b75 ITT NC 252b & & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|}
\hline DESCRIPTION & CDC PART NUMBER & REFERENCE DESIGNATOR \\
\hline Printed Circuity Card 1BAF & 59330400 & \\
\hline Printed•Circuit, Card 2 AZF & 86816900 & \\
\hline Printed Circuit, Card, I \(B C F\) & 59331000 & \\
\hline Printed Circuit Card, I BDF & 59331300 & \\
\hline Printed Circuit Card, 2 BAF & 86817200 & \\
\hline Printed Circuit Card, I BFF & 59331900 & \\
\hline Printed Circuit Card 1 BGF & 59332200 & \\
\hline Switch-Indicator, Light Emitting Diode \{LED\} & 59315604 & S/DS] thru S/DSA \\
\hline Switch, Pushbutton, DPDT & 58046151 & Slb \\
\hline Switch, Rotary, l Deck 7 position & 58006815 & S26 \\
\hline Switch \(\quad\) Rotary, I Deck 24 position & 59327500 & S16 \\
\hline Switch, Toggle, SPDT, \(\mathrm{ON}-\mathrm{ON}\) & 58008503 & \[
\begin{aligned}
& \text { S3 thru S7 } \\
& \text { S12, } 525
\end{aligned}
\] \\
\hline \[
\begin{gathered}
\text { Switch }, \text { Toggle, } \mathrm{SPBT} \\
\text { ON-NONE-ON }
\end{gathered}
\] & 58008504 &  \\
\hline Switch \({ }^{\text {r Togglen SP3T }}\) \(\mathrm{ON}-\mathrm{ON}-\mathrm{ON}\) & 58008509 & SB, \(S^{1}\) \\
\hline ```
Switch, Toggle, SP3T
    ON {mom.}-OMF-ON-{mom.}
``` & 58008505 & 514,515 \\
\hline \[
\begin{aligned}
& \text { Switch } \underset{O N-O N}{\text { Toggle, }} \text { DPDT }
\end{aligned}
\] & 58008502 & S1 \\
\hline Timer, 200 Hour & 58045205 & XMI \\
\hline Transistor, CDC DDI LIL & 51,003059 & \[
\begin{aligned}
& \text { Q2 (1BCF) } \\
& \text { Q3 }{ }^{(1 \mathrm{BAF}, 2 \mathrm{AZF})}
\end{aligned}
\] \\
\hline Transistor, T1S43 & 51569300 & QI (1BCF) \\
\hline Transistor, 2N3414 & 38906100 & Q \({ }^{\text {L }}\) (2BAF, 2AZF) \\
\hline Transistor, Unijunction, 2N264? & 51,569300 & Q1 (2BAF, 2AZF) \\
\hline Transformer, Step Down & 58007006 & TI \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline DESCRIPTION & CDC PART NUMBER & REFERENCE DESIGNATOR \\
\hline Rectifier, Bridge 25A & 59319700 & BR1, BR2 \\
\hline Regulator, Voltage Type 352, LM309K & 15105300 & VR1 - VR3 \\
\hline \[
\begin{aligned}
& \text { Switch, Togg1e, DP3T, } \\
& \text { ON-OFF-ON }
\end{aligned}
\] & 58008500 & S17-S24 \\
\hline
\end{tabular}

\section*{COMMENT SHEET}

\section*{COMMENTS:}

This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may be made below. Please include page number references and fill in publication revision level as shown by the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged to use the TAR.
STAPLE

CONTROL DATA CORPORATION```

