./

@ CONTROL DATA
CORPORATION

60435400

N~

NOS VERSION 1
REFERENCE MANUAL

Volume 1 of 2

CDC® COMPUTER SYSTEMS:

CYBER 170 SERIES
CYBER 70

MODELS 71, 72, 73, 74
6000 SERIES

ACCOUNT
ALGOL
ALGOLS5
APEX

APL
APPEND
ASCI
ASSIGN

ATTACH
BASIC
BEGIN
BKSP
BLANK
CALL
CATALOG
CATLIST
CHANGE
CHARGE
CKP
CLEAR
COBOL
COBOLS5
COMMENT
COMMON
COMPASS
CONVERT
COPY
COPYBF
COPYBR
COPYCF
COPYCR
COPYEI
COPYL
COPYLM
COPYSBF
COPYX
CSET
CTIME
DAYFILE
DEBUG
DEFINE
DISPLAY

DISPOSE

ALPHABETICAL LIST OF CONTROL STATEMENTS'

1-6-2
60496600
60481600
76070000
60454000
1-8-5
1-E-3
1-7-1;
1-10-5
1-8-6
19983900
1-4-12
1-7-3
1-10-7
1-H-5
1-14-4
1-8-8
1-8-12
1-6-2
1-11-1
1-7-4
60496800
60497100
1-6-2
1-7-4
60492600
1-7-4
1-7-6
1-7-10
1-7-11
1-7-12
1-7-14
1-7-15
1-14-7
1-14-7
1-7-16
1-7-17
1-E-3
1-6-3
1-6-3
60481400
1-8-13
1-4~15;
1-H-6
1-7-18

TReference to a page number indicates the statement is deseribed in this manual; a manual

DMD
DMDECS
DMP
DMPECS
DOCMENT
EDIT

ELSE
ENDIF
ENDW
ENQUIRE
ENTER
EVICT
EXECUTE
EXIT
FCOPY
FILE

FTN
FTN5

F45

GET
GOTO
GPSS
GTR
HTIME

IF

IFE
ITEMIZE
Job
KRONREF
LABEL
LBC

LDI
LDSET
LENGTH
LIBEDIT
LIBGEN
LIBLOAD
LIBRARY
LIMITS
LISTLB
LIST80
LOAD
LOC
LOCK

1-9-1
1-9-2
1-9-3
1-9-4
1-7-19
1-13-1
60436100
1-4-16
1-4-17
1-4-18
1-6-5
1-6-8
1-7-20
60429800
1-6-9
1-7-21
60495700
60497800
60481300
60483000
1-8-15
1-H-4
84003900
1-14-10
1-6-9
1-H-6
1-4-18
1-14-12
1-5-4
1-13-2
1-10-10
1-9-5
1-6-9
60429800
1-6-10
1-14-15
1-14-26
60429800
60429800
1-6-10
1-10-16
1-7-23
60429800
1-9-5
1-7-23

LO72
MAP
MFL
MODE
MODIFY

NEW
NOEXIT
NORERUN
NOTE
OFFSW
OLD
ONEXIT
ONSW
OPLEDIT

ouT
PACK
PACKNAM
PARITY
PASSWOR
PBC
PERMIT
PLI
PRIMARY
PROFILE
PROTECT
PURGALL
PURGE
RBR
REDUCE
RENAME
REPLACE
REQUEST

RERUN
RESEQ
RESOURC
RESTART
RETURN
REVERT
REWIND
RFL
ROLLOUT
ROUTE

1-7-24
60429800
1-6-14
1-6-14
1-13-3
60450100
1-7-27
1-6-16
1-6-16
1-6-16
1-6-17
1-8-16
1-6-17
1-6-17
1-13-7
60450100
1-7-27

RTIME
SATISFY -

SAVE
SET

SETASL
SETCORE
SETID
SETJSL
SETPR
SETTL
SKIP
SKIPEI
SKIPF
SKIPFB
SKIPR
SLOAD
SORT
SORTMRG
STIME
SUBMIT
SUMMARY
SWITCH
TCOPY
TDUMP
TRMDEF
UNLOAD
UNLOCK
UPDATE
UPMOD
USECPU
USER
VERIFY
VFYLIB
VSN

WBR
WHILE
WRITEF
WRITER
XEDIT

*

1-6-25
60429800
1-8-21
1-4-29;
1-H-7
1-6-26
1-6-26
1-7-39
1-6-27
1-6-27
1-6-28
1-4-27
1-7-39
1-7-40
1-7-40
1-7-40
60429800
1-7-41
60497500
1-6-28
1-6-28
1-6-33
1-6-33
1-7-42
1-7-45
1-E-4
1-7-47
1-7-47
1-13-12
1-13-16
1-6-34
1-6-34
1-7-48
1-14-28
1-10-20
1-9-7
1-4-27
1-7-51
1-7-51
1-13-17
60455730
1-6-3

publication number means the statement is described in that manual. Manual titles are listed in the
preface. Refer to the NOS System Maintenance Reference Manual for a list of systems-oriented

control statements.

60435400 M e

-

60435400

@ @ CONTROL DATA
CORPORATION

NOS VERSION 1
REFERENCE MANUAL

Volume 1 of 2

CDC® COMPUTER SYSTEMS:
CYBER 170 SERIES
CYBER 70

MODELS 71, 72, 73, 74
6000 SERIES

REVISION RECORD

REVISION DESCRIPTION
A Manual released. This manual reflects NOS 1.0 at PSR level 404.
(06-17-75)
B Revised to reflect NOS 1.1 at PSR level 419. New features include support of memory increments to
(03-08-76) 262K on CYBER 170 Series systems, 844-41 Disk Storage Subsystem, multimainframe, additional security
control, the Text Editor utility, and BASIC Version 3. Other additions include description of reserved
file names in section 2, new error messages, and new parameters on the BLANK, CONVERT,DAYFILE,
ENQUIRE, FTN, LDI, L072, and SUMMARY statements. Section 4 has been reorganized to more accurately
describe the system control language. In addition, the description of OPLEDIT usage has been removed
from section 14 and is included in the Modify Reference Manual. The entire description of the FAMILY
and SYSEDIT statements has been removed from section 14 and is included in the NOS Installation
Handbook. This edition obsoletes all previous editions.
C Revised to reflect NOS 1.2 at PSR level 439. New features include revised field length control, added
(12-03-76) security for the CHANGE and PASSWOR control statements, queued file management, security count, SRU
limit control, and additional parameters for the LIMITS statement. The parameters for the COBOL 5
statement have been added to the product set descriptions. Four new control statements are
deseribed: MFL, ROUTE, SETASL, and SETJSL. New examples are included for creating multifiles on tapé
and using LIBEDIT. Technical and literary corrections have been made.
D Revised to reflect NOS 1.2 at PSR level 452 and to make typographical and technical corrections. The
(07-15-77) revision includes the TCOPY control statement, extensions to the COPY and VERIFY control statements,
and support of the CYBER 171 computer system. In addition, the error messages in appendix B have been
reformatted.
E Revised to reflect NOS 1.2 at PSR level 460 and to make literary and technical corrections.
(11-21-77)
F Revised to reflect NOS 1.3 at PSR level 472. This revision adds descriptions of the following new
(05-26-178) control statements: BEGIN, DMDECS, DMPECS, ENTER, NOTE, and PROTECT. The V carriage control
character for programmable format is outlined. The new CYBER Control Language is presented with
extensive use of examples. Section 11, Product Set Control Statements, is deleted. The product
set control statement formats are given in the NOS Application Programmer's Instant. This edition
obsoletes all previous editions.
G Revised to reflect NOS 1.3 at PSR level 477 and to make literary and technical corrections.
(08-25-78)
H Revised to reflect NOS 1.3 at PSR level 485 and to correct literary and technical errors.
(12-22-78)
J Revised to reflect NOS 1.4 at PSR level 501. New features in this release include CYBER 170 Model 176
(08-10-79) and 885 disk support; the FCOPY, HTIME, and TRMDEF control statements; and the 12-bit ASCII code set.

This revision contains a new section 14, Library Maintenance, and a new appendix, Line Printer

Carriage Control (D). This edition obsoletes all previous editions.

60435400

Publication No,

REVISION LETTERS I, 0, @ AND X -ARE NOT USED

© 1975,1976, 1977, 1978, 1979, 1980
by Control Data Corporation
All rights reserved

Address comments concerning this

manual to:
Control Data Corporation

Publications and Graphics Division

4201 North Lexington Avenue
St. Paul, Minnesota 55112

this manual,

Printed in the United States of America

ii

or use Comment Sheet in the back of

REVISION RECORD (CONT'D)

REVISION , DESCRIPTION
K Revised to reflect NOS 1.4. at PSR level 509. This revision contains the permanent file statement
(12-21-79) parameters for the Mass Storage Faeility (MSF). This edition obsoletes all previous editions.
L Revised to reflect NOS 1.4 at PSR level 518. This revision contains the COPYL, COPYLM, and ITEMIZE
(05-23-80) control statements; and a new appendix, Obsolete Tape Formats. This edition obsoletes all previous editions.
M Revised to reflect NOS 1.4 at PSR level 530. This revision contains new UPDATE control statement
(12-05-80) parameters to support the 12-bit ASCII code set, and revised OPLEDIT control statement list options compatible

with the MODIFY control statement list options. Also included are the revised Procedures and Parameter
Matching subseections in section 4, and the revised coded magnetic tape conversion tables in appendix A.

Publication No,
60435400

ii-a/ii-b

N

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

>

M EE eSS E g AddEmE Sl EAnaddE S S S S S S S S EESEESEEEEEESaEasEE2aaadlaaaadas

w

o] NN O~ O OO M U O O N M H DO DNO v

S B SRR A O e SN R s drdnininninindninioiri b
COO0OOCOCOOOOOCmHmMAANANAANANNNNMNMMMMMOMNMMMMOMMMMNMO) PP P o Pt oo oot ot H ot ot
RROSDRORORRN DR AN RIS ARNDEDRNRNAIENANANRSNRNENEIAN
L e I R e I e e R R B R R e e I e R e R R e R e R R R e R R R e R R I R R e R e R R I R R e I R I e I R R I B B R I I e I T R T A R et Qe g

>

% HMEEEEAaaAanaalaaAd AR EEEE A EaEE S S agdESadAanadEadME gnaaaMMdEgaaq

w

S o

< N HIN OO DNO = NN INWE-00 O ™ O N MPNN OO NO =~ NN I OL-O M r v

[« 8 NN MMM I I I IO =N HNNOL~CONrmrd rdvd vl P il A = NN NN DO | | R R L I e |
____.__________________&____.________._..nwv_nmv_nr_muoooooouoooo
DR R R R R I A AR AR R R A A OSSOSO BRSO
L e R R e R I R R R R R R R e R e R R R R R R R

>

E SEEEE EREaaddaagadEaaaREaaaEEaREaanad aaaasSdd Al ARAaaaSSSEsSa

w ~ N

S o

< NN HNWW -0 NO- NN HIWOWE-ODN O I MWW O NN OO0 O = NMIWNWE-ODNO —A

| B M A N A 0 S O AR ARG RO RRORRORR OB R
R A T A A A A A A A A A A AR R A R R R N R A N RN
v rd v v o e ot v v e o v] v v] v v e v v v e v e v v v v v] v e v e v e v v e v v v e v v v e vt e v v v v e] e

REV

= EEE2AEEAaRAnAaEaaadaaa=SS=SEsSS =SS sEsSsSSsSSsSSsSSSnsEEsESsSaEEaaaardasaas

PAGE

1-4-10.2

1-4-11
1-4-12

W b= (=R
IO O ST S Oy i i 4
A Y T T A A A A A
o o e v e v e e e v e e v v e e e e

1-4-10
1-4-10.1/
1-4-13
1-4-14
1-4-15
1-4-16
1-4-17
1-4-18
1-4-19
1-4-20
1-4-21
1-4-22
1-4-23
1-4-24
1-4-25
1-4-26
1-4-27
1-4-28
1-4-29
1-4-30
1-4-31
1-4-32
1-4-33
1-4-34
1-4-35
1-4-36
1-4-37
1-4-38
1-4-39
1-4-40
1-4-41
1-4-42
1-4-43
1-4-44
1-4-45

REV

1 & 22 EEEnEEEEE s EMAasEsEasSEasS S aMaassSaasaaaansSaasSasSssSsSsSssSsSsSsSsgas

PAGE

O = NmHWw o =
A A A A R O A ST S SOROROR R B AT
O T R R TR A 1 W A
= iR R R R K R R R R R R R R R R R R e R e R R R e e R R R R R R R R e]

JLZ
0
H R

Cover
Title Page

ii

Front Cover
Inside Front
vi-¢/vi-d

ii-a/ii-b
vii

[ac)
1
i
L]

iii
iv
vi-a
vi-b
viii
1-1-
1-1-

v
vi

iii

60435400 M

>
w
o
w
]
<
o
>
w
[+ 4
w
(L]
<
o
H S EEEEEEEmnhreMM OIS S EESEE S g EEEEEE 2,
o«
3]
m..u_ 012345m W
< oran RO R RAORIRIRINROR R4,
all @S ran o LA E R R R R R E R E E R R E E -
L L L L L L RRIROET Y V] 000000000000 00E2H
ORIt i A 505005050 500 LR 4
w SEEEAaaAAAEaEEaanadadaddadaaasEsE EAaaaasS S S anaanSMESESESEEESE Rk ErnrhdAdanadddd anSSnES
o©
w ~
e JM Qi NM
]
hpaddaddhdpdaddddddaddd b ddd L Addd00R000RRRRRARALRARRALOPOPOPOQQO OO GEEE S S
e e et e v v v] v v vt e v e v v v v v v e v e v] v v v e v e v e e v v e vt v e v v v v] v v v v v v e e e e v v v v e v e e v e e]
H MR AR E AR A EE e ESndMMEEEESEAaEaaadadardadadddas SEEaaasa EEaaaaa E2aaaaaaaas
@
u 59 =59 59
Q NP WO NO DN . © T -]
(] N (]
] L L L e T E e TS b L L L L B LML LS LS ML EE LT
FITETIRIAINIIIII I edddddddddanddaddidadddadtiaddadddiadddddddad

60435400 M

iv

PREFACE
W

This manual describes the Network Operating System (NOS) Version 1.4. NOS controls the operation of
gDC@ CYBER 170 Series, CDC CYBER 70, Models 71, 72, 73, and 74, and CDC 6000 Series Computer
ystems.

AUDIENCE

This manual is written for all NOS users. Users can understand the manual contents without knowing the
NOS assembler language, COMPASS. However, they should read the NOS Batch User's Guide and/or the
Network Produets Interactive Facility User's Guide or the NOS Time-Sharing User's Guide before reading
this manual.

Users should consult the glossary in appendix C for definitions of terms used in this manual.

ORGANIZATION

The NOS Reference Manual is contained in two volumes to separate information useful only to the
assembly language programmer from information useful to all NOS users.

Volume 1 contains information for all NOS users. Included is a general description of the system and its
handling of files and jobs, and detailed descriptions of control statement formats and processing.
Appendixes include NOS character sets, messages, and a glossary.

Volume 2 contains information of use primarily to the assembly language programmer; however, several

sections contain information for users of higher level languages. For reference, the table of contents for
volume 2 follows the table of contents for this volume.

CONVENTIONS

Throughout this manual, cross-references to the NOS Reference Manual, volume 2, are in the form:
refer to section (or appendix) n, volume 2. If volume 2 is not stipulated, the reference is to volume 1.

Uppercase letters within statement formats should be entered exactly as given; lowercase letters should
be replaced with appropriate characters as described after the format. ’

Extended memory for the CYBER 170 Model 176 is large central memory extended (LCME). Extended
memory for all other NOS computer systems is extended core storage (ECS) or extended semiconductor
memory (ESM).

In this manual, the acronym ECS refers to all forms of extended memory, unless otherwise noted.

Programming information for the various forms of extended memory can be found in the COMPASS
Reference Manual and in the appropriate computer system hardware reference manual.

Program examples are written in the FORTRAN (Formula Translation) language.

60435400 M : : v

RELATED PUBLICATIONS

The following is a list of NOS operating system manuals and NOS product set reference manuals. The
NOS Manual Abstracts is a pocket-sized manual containing brief deseriptions of the contents and
intended audience of all NOS and NOS product manuals. The abstracts can be useful in determining
which manuals are of greatest interest to a particular user.

Control Data also publishes a Software Release History Report of all software manuals and revision
packets it has issued. This history lists the revision level of a particular manual that corresponds to the
level of software installed at the site.

These manuals are available through Control Data sales offices or Control Data Literature Distribution
Services (308 North Dale, St. Paul, Minnesota 55103).

Users requiring a list of the product control statements and their parameters should refer to the NOS
Applications Programmer's Instant.

Control Data Publication .) Publieation Number

ALGOL Version 4 Reference Manual ' 60496600
ALGOL~-60 Version 5 Reference Manual 60481600
APEX III Reference Manual 76070000
APL Version 2 Reference Manual 60454000
APT 1V Version 2 Reference Manual 17326900
BASIC Version 3 Reference Manual 19983900
COBOL Version 4 Reference Manual 60496800
COBOL Version 4 to COBOL Version 5 Conversion Aid

Version 1 Reference Manual 19265021
COBOL Version 5 Reference Manual 60497100
Common Memory Manager Version 1 Reference Manual 60499200
COMPASS Version 3 Reference Manual 60492600
Conversion Aids System Version 2 Reference Manual 19265358
CYBER Common Utilities Reference Manual - 60495600
CYBER Database Control System Version 1 Reference Manual 60498700
CYBER Database Control System Version 2 Reference Manual 60481800
CYBER Interactive Debug Version 1 Reference Manual 60481400
CYBER Loader Version 1 Reference Manual : 60429800

CYBER Record Manager Advanced Access Methods Version 2 .
Reference Manual 60499300

CYBER Record Manager Basic Access Methods Version 1.5 .
Reference Manual 60495700

vi ' 60435400 L

Control Data Publication

CYBER 170 Computer Systems Hardware Reference Manual

CYBER 170 Computer fystems Models 720, 730, 750, 760, and
176 (Level B) Hardware Reference Manual

CYBER 70/Model 71 Computer System Hardware Reference Manual
CYBER 70/Model 72 Computer System Hardware Reference Manual
CYBER 70/Model 73 Computer System Hardware Reference Manual
CYBER 70/Model 74 Computer System Hardware Reference Manual
Data Base Utilities Version 1 Reference Manual

Data Catalogue 2 Reference Manual

DDL Version 2 Reference Manual, Volume 1

DDL Version 2 Reference Manual, Volume 2

DDL Version 2 Reference Manual, Volume 3

DDL Version 3 Reference Manual, Volume 1

DDL Version 3 Reference Manual, Volume 2

DDL Version 3 Reference Manual, Volume 3

Export/Import Reference Manual

FORM Version 1 Reference Manqal

FORTRAN Common Library Mathematical Routines Reference Manual
FORTRAN Data Base Facility Version 1 Reference Manual
FORTRAN Extended Version 4 Reference Manual

FORTRAN Extended Version 4 to FORTRAN Version 5 Conversion
Aids Program Version 1 Reference Manual

FORTRAN Version 5 Common Library Mathematical Routines
Reference Manual

FORTRAN Version 5 Reference Manual

General Purpose Simulation System V (GPSS)
General Information Manual

Interactive Graphics System Application Executive
Reference Manual

Message Control System Version 1 Reference Manual

60435400 M

Publication Number

60420000

60456100
60453300
60347000
60347200
60347400
60498800
60483200
60498400
60498500
60498600
60481900
60482000
60482100
60436200
60496200
60498200
60482200
60497800

60483000

60483100
60481300

84003900

17322200
60480300

' vi-b

Control Data Publication

Modify Version 1 Instant Manual
Modify Version 1 Reference Manual

Network Produets Communication Control Program (CCP)
Version 3 Reference Manual

Network Products Interactive Facility Version 1
Reference Manual

Network Products Interactive Facility Version 1 User's Guide

Network Products Network Access Method Version 1 Network
Definition Language Reference Manual

Network Products Network Access Method Version 1
Reference Manual

Network Products Network Terminal User's Instant

Network Products Remote Batch Facility Version 1
Reference Manual

Network Products Stimulator Version 1 Reference Manual

Network Products Transaction Faeility Version 1 CYBER Record

Manager Data Manager Reference Manual

Network Produets Transaction Facility Version 1 Data Manager
Reference Manual

Network Produets Transaction Faeility Version 1
Reference Manual v

Network Products Transaction Facility Version 1 User's Guide
NOS Version 1 Application Installation Handbook

NOS Version 1 Applications Programmer's Instant

NOS Version 1 Batch User's Guide

NOS Version 1 Diagnostic Index

NOS Version 1 Installation Handbook

NOS Version 1 Manual Abstracts

NOS Version 1 Operator's Guide

NOS Version 1 Reference Manual, Volume 2

NOS Version 1 System Maintenance Reference Manual

NOS Version 1 Systems Programine'r's Instant

Publication Number

60450200
60450100

60471400

60455250
60455260

60480000

60499500
60455270

60499600

60480500

60456710

60455350

60455340
60455360
84000970
60436000
60436300
60455720
60435700
84000420
60435600
60445300
60455380
60449200

60435400 M

Control Data Publication ‘Publication Number

NOS Version 1 Terminal User's Instant Manual ‘ 60435800
NOS Version 1 Time-Sharing User's Guide 60436400
NOS Version 1 Time-Sharing User's Reference Manual 60435500
On-Line Maintenance Software Reference Manual 60454200
PERT/Time Version 2 Reference Manual 60456030
PL/I Version 1 Reference Manual 60388100
Query Update Version 3 Reference Manual 60498300
SIMSCRIPT Version 3 Reference Manual 60358500
Software Publications Release History 60481000
Sort/Merge Versions 4 and 1 Reference Manual 60497500
SYMPL Version 1 Reference Manual 60496400
TAF/TS Version 1 CYBER Record Manager Data Manhager

Reference Manual 60456700
TAF/TS Version 1 Data Manager Reference Manual 60453100
TAF /TS Version 1 Reference Manual 60453000
TAF/TS Version 1 User's Guide 60436500
Text Editor Version 1 Reference Manual 60436100
TOTAL-CDC Reference Manual 76070300
Update Version 1 Reference Manual 60449900
XEDIT Version 3 Reference Manual ' ‘ 60455730
6400/6500/6600 Computer Systems Hardware Reference Manual 60100000
8-Bit Subroutines Reference Manual 60495500

DISCLAIMER

This product is intended for use only as described in this document. Control Data cannot be responsible
for the proper functioning of undescribed features or undefined parameters.

60435400 M vi-e/vi-d l

1. SYSTEM DESCRIPTION

System Hardware
Central Processor Unit
Central Memory
Job Field Length
Central Memory Resident
Extended Memory
Peripheral Processors
Peripheral Fquipment
Svstem Software
User Programs
Operating System
CYBER Loader
CYBER Record Manager

2. FILES

File Names
File Structure
CYBER Record Manager File
Strueture
NOS File Structure
Physical File Structure
Card Files
Mass Storage Files
Magnetic Tape Files
File Types
Files Assigned to User Jobs
Input Files
Print Files
Punch Files
Local Files
Primary Files -
Direct Access Files
Library Files
Rollout Files
Timed/Event Rollout Files
Permanent Files
Indirect Access Permanent
Files
Direct Access Permanent
Files
Mass Storage File Residence
Family Devices
Auxiliary Devices
Mass Storage Facility (MSF)

60435400 M

CONTENTS

VOLUME 1

[y
]
Ry
]
—

[)
U UL
O LN DN -

iy
|

[
el ol

—‘F‘!—‘TF‘F‘:—‘
|
(=2 = 03, L N T~ -

1-2-1

)
DN -

T
P

|
e e b ek e b ek €D 20 €O OO0 LN W e GO D DD

DO DD = etk = OO

10 [
B2 53 £ 80 £ £ 183 63 B3 63 B3 BI 1D B BI BI DI 0

Tlfr—*s—h—-ﬂ-ﬂ-u—m—ter.—n—l;—-s-,-af-tr-r-a
D)

1-2-12

1-2-13
1-2-13
1-2-13
1-2-14
1-2-14

Libraries
User Number LIBRARY
Program Libraries
User Libraries

3. JOB FLOW AND EXECUTION

Job Initiation
Job Origin Types
Job Names
System Job Name Format
Local Batch and RBF Job Name
Format
Time-Sharing, IAF, and Export/
Import Job Name Format
Deferred Batch Job Name Format
Validation
Accounting
Job Scheduling
Job Control
Field Length Control
Input File Control
Time Limit Control
SRU Limit Control
Control Statement Limit Control
Rollout Control
Error Control
Security Control
Job Completion

4. CDC CYBER CONTROL LANGUAGE

Statement Syntax
Operators
Arithmetie Operators
Relational Operators
Logical Operators
Order of Evaluation
Operands
Constants
Svmbolic Names
Functions
FILE Funetion
DT Funection
NUM Funetion

U U U U UL L
ooy v eyt

AR e e e e e e e e e
wwwwwwwﬁawwwwwww
D WO -T~3~3D U U W W

T
-
[

VoL E e
TERELLE

i
= O3] oW LWWN NN

[}
[—}

bbb b ek ek ek ek ped ped bk b ek e

|
rh-bhrllknb»h

vii

SS Function

CCL Statements

BEGIN Statement

DISPLAY Statement

ELSE Statement

ENDIF Statement

ENDW Statement

IFE Statement

REVERT Statement

SET Statement

SKIP Statement

WHILE Statement

Procedures

Procedure Structure
Procedure Header Statement
Procedure Body

Procedure Commands
.JDATA Command
.EOR Command
.EOF Command
.* Command

Parameter Substitution
Order-Dependent Parameter

Matching Mode
Order-Independent Parameter
Matching Mode

1-4-10.1/
1-4-10.2
1-4-11
1-4-12
1-4-15
1-4-16
1-4-17
1-4-18
1-4-18
1-4-20

5. CONTROL STATEMENT PROCESSING 1-5-1

Control Statement Format

Job Statement (Job Card)

Control Statement Processing Flow
Exit Processing

6. JOB CONTROL CONTROL STATE-
MENTS

ACCOUNT Statement
CHARGE Statement
COMMENT Statement
CTIME Statement
DAYFILE Statement
ENQUIRE Statement
ENTER Statement
EXIT Statement
HTIME Statement
LDI Statement
LENGTH Statement
LIMITS Statement
MFL Statement
MODE Statement
NOEXIT Statement
NORERUN Statement

viii

o0 48 e
T e T 11

MR e e e
DR DDANDIDADDRDRADD
=k bt e e €D €O O 00 U GO €O DO DO B

NOTE Statement
OFFSW Statement
ONEXIT Statement
ONSW Statement
PASSWOR Statement
PROTECT Statement
RERUN Statement
RESOURC Statement
Deadlock Prevention
Single Resource Use
Tape Units
Resource Overcommitment
Altering Resource Requirements
Unit Assignment
RFL Statement
ROLLOUT Statement
RTIME Statement
SETASL Statement
SETCORE Statement
SETJSL Statement
SETPR Statement
SETTL Statement
STIME Statement
SUBMIT Statement
SUMMARY Statement
SWITCH Statement
USECPU Statement
USER Statement

7. FILE MANAGEMENT CONTROL
STATEMENTS

ASSIGN Statement
BKSP Statement
CLEAR Statement
COMMON Statement
CONVERT Statement
COPY Statement
Copy Termination
Block Sizes
Processing Options
COPYBF Statement
COPYBR Statement
COPYCF Statement
COPYCR Statement
COPYEI Statement
COPYSBF Statement
COPYX Statement
DOCMENT Statement
EVICT Statement
FCOPY Statement
LIST80 Statement
LOCK Statement
LO72 Statement
NEW Statement
OUT Statement

o

11
1
-3

-3~

|
C’:O):PG)O‘A

-3

1
P

[
wwwwt\’)l\?t\’)l\?wt\)l\?wl\?l‘g&&NMMMHHHD—‘D—LHHH
o

0

©o

o

[
g

[} 1
Lo N o

[
£

| R R L | | R R |]
i 1t 1 DU
(<=0 3, |

:—l‘r—‘.—‘i—lHHé—‘)-ldi—lHi—ln—ir—‘—ldﬁ‘r—ﬁl—li—!r—la-dplrdsﬂéd:—lb-‘e—‘I—l
cnma;c:a:c:mc;:mmmmcnmc»
W s 0O GO 00 0 00 ~3 3

60435400 M

~

4

~ 7

PACK Statement
PRIMARY Statement
RENAME Statement
REQUEST Statement
RESEQ Statement
RETURN Statement
REWIND Statement
ROUTE Statement
SKIPEI Statement
SKIPF Statement
SKIPFB Statement
SKIPR Statement
SORT Statement
TCOPY Statement
TDUMP Statement
UNLOAD Statement
UNLOCK Statement
VERIFY Statement
WRITEF Statement
WRITER Statement

8. PERMANENT FILE CONTROL
STATEMENTS

Common Control Statement Parameters
APPEND Statement
ATTACH Statement
CATLIST Statement
CHANGE Statement
DEFINE Statement
GET Statement

OLD Statement
PACKNAM Statement
PERMIT Statement
PURGALL Statement
PURGE Statement
REPLACE Statement
SAVE Statement

9. LOAD/DUMP CENTRAL MEMORY
UTILITY CONTROL STATEMENTS

DMD Statement
DMDECS Statement
DMP Statement
DMPECS Statement
LBC Statement
LOC Statement
PBC Statement
RBR Statement
WBR Statement

60435400 M

L A R S T S N AR A |
(U R UL U

a,.,_.,...‘_..,..‘...._.T,_.,_._._....,..,_.
q-aqﬂqqqq-lq-qq-qﬂ-q-q-q
P b e b b B 0O 0O O OO LN DN

]
0N
VLN
3

L
"LI
NN OOOW kW= OWwoo

1-7-48
1-7-51
1-7-51

1-8-1

.-n-.—Ap—A.-a.-an-A.-a;—Ar-A.—n-au—A
oooooooococooloooooooooooeooo

1
DO DO e fdb b ek = 0O O G DO
= Sw 000~

)
|

10. TAPE MANAGEMENT

Tape Assignment
Control Statement Rules
Processing Options
ASSIGN Statement
BLANK Statement
LABEL Statement
LISTLB Statement
REQUEST Statement
VSN Statement

11. CHECKPOINT/RESTART

CKP Statement
RESTART Statement

12. DEBUGGING AIDS

Exchange Package Durmnps
Using Dumps

13. SYSTEM UTILITY CONTRO
STATEMENTS '

EDIT Statement
KRONREF Statement
MODIFY Statement
OPLEDIT Statement
PROFILE Statement
UPDATE Statement
UPMOD Statement
XEDIT Statement

14. LIBRARY MAINTENANCE

File Access Methods
Library Record Types
CATALOG Statement
COPYL and COPYLM Statements
GTR Statement
ITEMIZE Statement
LIBEDIT Statement
Control Statement Format
- LIBEDIT Directives
Directive Syntax
ADD
BEFORE
BUILD
COMMENT

1-14-1

1-14-1
1-14-1
1-14-4
1-14-7
1-14-10
1-14-12
1-14-15
1-14-16

'1-14-18

1-14-19
1-14-20
1-14-21
1-14-21
1-14-22

COPY

DATE

DELETE

FILE

IGNORE

INSERT or AFTER
NOREP

RENAME

A. CHARACTER SETS

B. MESSAGES

C. GLOSSARY

D. SAMPLE JOB OUTPUT

E. TIME-SHARING INTERFACE

F. CARD FILE DATA CONVERSION

1-4-5
1-5-1

1-6-1

1-2-1

1-2-2

1-4-1

I 1-4-2

Central Memory Allocation

Sample Card File Structure

Use of ANSI Labels

FORTRAN Compile and
Execute Deck

Calling a Procedure

Procedure Access to a Data
Record :

Data File Written from a
Procedure to a Named File

Keyword Substitution in Two
Procedures

Keyword Substitution in
Nested Procedures

Control Statement Processing
‘Flow

Resource Commitment
Processing (Simplified)

Physical File Structure on
Storage Devices

Logical Structure of
Supported Mass Storage
Devices

Alterations of Parameters
in a Procedure Body by
Use of and

Parameter Substitution in
Order-Dependent Mode

1-14-22 REPLACE 1-14-24
1-14-22 REWIND 1-14-25
1-14-22 TYPE or NAME 1-14-25
1-14-23 LIBEDIT Output 1-14-26
1-14-23 LIBGEN Statement 1-14-26
1-14-23 VFYLIB Statement 1-14-28
1-14-24 Library Processing Examples 1-14-30
1-14-24
APPENDIXES
1-A-1 G. ANSI TAPE LABEL FORMATS 1-G-1
1-B-1 H. CONTROL LANGUAGE (KCL) 1-H-1
1-C-1 I. LINE PRINTER CARRIAGE
1-D-1 CONTROL 1-1-1
1-E-1 J. OBSOLETE TAPE FORMATS 1-J-1
1-F-1
INDEX
FIGURES
1-1-3 1-12-1 Exchange Package Dump 1-12-2
1-2-4 1-12-2 Exchange Package Dump for
1-2-6 CYBER 170 Model 176 1-12-2
1-12-3 Example 1: Program Listing
1-3-2 and Symbolic Reference
1-4-12 Map 1-12-5
1-12-4 Example 1: Partial Load
1-4-31 Map 1-12-6
1-12-5 Example 1: Dayfile from a
1-4-39 Job Run 1-12-6
1-12-6 Example 1: Exchange Pack-
1-4-43 age Dump 1-12-8
1-12-7 Example 2: Central Memory
1-4-47 Dump 1-12-8
1-14-1 Random Access File Structure 1-14-2
1-5-7 1-14-2 LIBEDIT Input and Output 1-14-16
1-14-3 User Library Structure - 1-14-27
1-6-20
TABLES
1-4-3 Parameter Substitution in I
1-2-3 Order-Independent Mode 1-4-46
1-7-1 Range of Permissible For-
mats for the COPY
1-2-5 Statement - 1-7-6
1-7-2 Compatible File Structures
for the VERIFY Statement 1-7-50
1-4-32 1-8-1 Access Mode Granted When
Attaching a Currently
1-4-42 Attached Direct Access
File 1-8-8
60435400 M

TN

’

A.

C.
D.

PROGRAM/SYSTEM COMMUNICA-
TION

FILE ENVIRONMENT TABLE (FET)
INPUT/OUTPUT

LOCAL FILE MANAQER '
PERMANENT FILE MANAGER

CONTROL POINT MANAGER

CPU COMMON DECKS

MESSAGES

GLOSSARY

INTERPRETIVE MODE READING
AND WRITING OF ECS :

SPECIAL USER INFORMATION

60435400 K

VOLUME 2

2-1-1
8. FILE ROUTING
2-2-1
9. SYSTEM FILE MANAGER
2-3-1
10. JOB CONTROL
2-4-1
11. SYSTEM/LOADER REQUESTS
2-5-1
12. PROGRAM WRITING TECHNIQUES
2-6-1
APPENDIXES
2-A-1 F. SPECIAL ENTRY POINTS
2-B-1 G. BINARY FORMATS
2-C-1 H. EXAMPLES OF RANDOM I/O
. - PROGRAMMING STANDARDS
2-D-1 J. MAGNETIC TAPE FORMATS
2-E-1

7. QUEUE FILE MANAGER

2-7-1

2-8-1

2-9-1

2-10-1

2-11-1 °

2-12-1

|
[l

TmQ
— 1

[}
0\
[

Xi

N

SYSTEM DESCRIPTION 1

NOS is capable of several concurrent processing modes. The following are. the processing modes
available. .

e Local bateh.

e Remote batch.

e Transaction.

e Time-sharing.
" The network processing modes (remote batch, transaction, and time-sharing) operate through the
Network Access Method (NAM) communications software. These processing modes are implemented,
respectively, by the following NAM applications: Remote Batch -Facility (RBF), Transaction Facility
(TAF), and Interactive Facility (IAF).

NOS can also perform time-sharing and transaction processing through the time-sharing executive and
remote batch processing through Export/Import.

The primary emphasis of this manual is on local batech processing. Users of the other processing modes
should consult the appropriate manual listed in the preface.

NOS, like all operating systems, is the interface between user software and the capabilities of system
hardware components. The remainder of this section describes the hardware and software that make up
a NOS-controlled computer system. In most cases, the user of this manual need not understand the

operation of system hardware or the internal operation of system software. This manual describes these
topies only as general background for understanding NOS control statements.

SYSTEM HARDWARE

NOS can opera‘te within the CYBER 170 Series, CYBER 70, Models 71, 72, 73, and 74, and 6000 Series
Computer Systems. The primary hardware components of each system are the following.

e Central processor unit(s).

e Central memory.

e Extended memory (optional).
o Peripheral processors.

o Peripheral equipment.

60435400 L ' ' Co1-1-1

CENTRAL PROCESSOR UNIT

The central processor unit (CPU) executes instructions and manipulates and stores data retrieved from
central memory. The number and type of CPUs within a mainframe vary with the machine model. As a
result, some models can execute additional COMPASS assembler instructions (refer to the COMPASS
Reference Manual). These model differences do not affect applications written in higher level languages.

CYBER 170 and CYBER 70 Series Computer Systems have the central exchange jump/monitor exchange
jump (CEJ/MEJ) feature. This feature enables a program to directly switch CPU control to the system
monitor. The information transferred from the CPU to central memory by an exchange jump operation is
called an exchange package. Section 12 describes the format and use of an exchange package dump.

CENTRAL MEMORY
The primary functions of central memory (CM) are:
e To buffer data to and from the peripheral processors.

e To transfer instructions and data to and from the CPU.

Job Field Length

The job field length is the portion of central memory that is assigned to a user's job. Several jobs can
reside in CM simultaneously. The field length separates each job while it resides in CM. The job is
assngned a starting CM address (its reference address or RA) and allocated an initial field length (the CM
words in which the job resides and executes). The field length is adjusted during job executlon as
described in section 3. Figure 1-1-1 shows a job field length within CM.

A reference to an address outside the job field length range causes a hardware error condition and job
termination.

The maximum field length depends on the CM size and installation parameters used to control memory
usage. The system assigns the CPU to jobs requiring CPU activity. Rapid switching of CPU control
between jobs enables them to execute concurrently. The exact amount of time allowed for each job
depends on system activity and system parameter settings. Thus, the time required to complete a job
may vary, although the actual CPU execution time is the same.

When a job completes, aborts, or rolls out (that is, its execution is suépended), the field length is released
and made available to another job.

1-1-2 60435400 M

7N

~

N

CENTRAL
"MEMORY
CENTRAL
MEMORY
RESIDENT
" ABSOLUTE REFERENCE e - — -
ADDRESS ADDRESS (p) ’
il 0 T] FIELD
RA +p 0< P < FL USER LENGTH
JOoB
(FL)
RA + FL FL ——— — -

Figure 1-1-1. Central Memory Allocation

Central Memory Resident
The portion of CM reserved for system use is called central memory resident (CMR). It contains system
tables, directories, and the CM portion of the system monitor (CPUMTR). Because its RA is always

address 0 and its field length (FL) is the size of central memory, CMR can access any CM address and
therefore specify addresses for CPU exchange jumps that switch CPU control between jobs. I

EXTENDED MEMORY

Extended memory for the NOS computer systems is called ECS (refer to preface). ECS can be used for I
the following purposes.

e As a directly accessible memory device via FORTRAN or COMPASS statements for ECS data
storage and retrieval (refer to the FORTRAN Extended 4 Reference Manual, FORTRAN 5
Reference Manual, or appendix D of volume 2). '

e As storage for frequently accessed data (refer to ASSIGN Statement in section 7 and Permanent
File Control Statements in section 8).

e - As an alternate system device for storing copies of frequently used routines.

e As alink between mainframes in a multimainframe cont‘iguration:r

. Only validated users can use extended memory (refer to LIMITS Statement in section 6). : l

TCYBER 170 Model 176 extended memory cannot link mainframes.

60435400 M : 1-1-3

PERIPHERAL PROCESSORS
The peripheral processors (PPs) process communications between CM and individual peripheral devices.
They also perform those system control functions that are better handled by a PP than by the central
processor. A peripheral processor can: : ‘

e Read and write CM.

e Read and write ECS indireetly via CM or directly via the distributive data path (DDP).t

° Tfansfer data to and from peripheral devices through the data channels.
NOS supports the 7, 8, 9, 10, and 20 PP configurations for 6000 Series computers and 10, 14, 17, and 20
PP configurations for CYBER 70, Models 71, 72, 73, and 74. NOS also supports 10, 14, 17, and 20 PP
configurations for all CYBER 170 models except Model 176. CYBER 170 Model 176 has two types of
peripheral processors, PPs and PPUs. The configurations supported by NOS can have from 10 to 20 PPs.

For more information on PPs, refer to the appropriate system hardware reference manual listed in the
preface. A :

PERIPHERAL EQUIPMENT

Peripheral equipment varies among installations but usually includes. card readers and punches, line
printers, mass storage devices, and magnetic tape units. NOS supports the following equipment models.

405 Card Reader

415 Card Punch

580-12, 580-16, and 580-20 Line Printers

- 844-21 Disk Storage Subsystem

844-41 and 844-44 Disk Storage Subsystems
885 Disk Storage Subsystem A
Mass Storage Facility (MSF)

667, 669, 677, and 679 Magnetic Tape Units

6671 Multiplexers for communication with 200 User Terminals and 731-12, 732-12, and 734 Remote
Batch Terminals

6671 or 6676 Multiplexers for communication with interactive terminals

255x Network Processing Units

T This funetion does not apply to CYBER 170 Model 176 peripheral processors.

1-1-4 . 60435400 L

./

SYSTEM SOFTWARE

Software executed within a computer system can be divided between software that is built into the
system during system initialization and software that executes as jobs within the running system.
Software present when the system begins running includes the operating system and produets such as
compilers, CYBER Loader, and CYBER Record Manager. Jobs run within the system are categorized
according to their origin as described in section 3. User jobs usually consist of user programs and the
system instructions required for program execution.

USER PROGRAMS

A user program is a group of CPU instructions defined by a user to perform a certain task or calculate a
result. A user program can be written in a language at any of three levels.

Compiler languages provide the user with a language suited to his particular needs. The
program statements are translated by the appropriate compiler [FORTRAN, COBOL (Common
Business-Oriented Language), ALGOL (Algorithmic Language), and so on], which generates
assembler language or machine language instructions. Programs written in compiler languages

are usually machine-independent.

Assembler languages provide a one-to-one relationship between instructions and machine
operation. Mnemonies are provided for each instruction. These languages, normally used by
advanced programmers, are machine-dependent. Most of the NOS system is written in
COMPASS, the assembler language of the CYBER 170, CYBER 70, and 6000 Series computers.

Hardware instructions are interpreted directly by the computer and, thus, require no
interpretation by a compiler or assembler. Each hardware instruction is a binary number. The
programmer is rarely concerned with instructions written at this level except when program
debugging requires that the user interpret memory dumps.

OPERATING SYSTEM

NOS is a group of programs that supervise and coordinate the operation of system hardware and the
execution of produets and user programs. The following lists some of the functions of NOS.

" Job validation and accounting.

Control statement translation.

File retrieval, manipulation, routing, and storage.

Job input and output.

Normal and abnormal job termination.

Memory dumps.

60435400 M 1-1-5

CYBER Loader

CYBER Loader prepares programs for execution. Following user directions, it allocates memory for a
program, loads the program modules into their appropriate locations, generates a load map, and initiates
program execution. It can load subdivided programs for more efficient use of memory Refer to the
CYBER Loader Reference Manual for more information.

CYBER Record Manager

CYBER Record Manager (CRM) is the interface between user input/output (I/O) functions and NOS
physical 1/0O functions. The NOS operating system control statements do not use CRM. Some of the

products that use CRM are COBOL 4, COBOL 5, FORTRAN Extended 4, FORTRAN 5, Sort/Merge 4,

- ALGOL 4, ALGOL 5, PL/I (Programming Language I), and DMS-170.

The functions of CRM are divided between two processors, Basic Access Methods (BAM) and Advanced
Access Methods (AAM). BAM handles sequential and word-addressable file organizations; AAM handles
indexed sequential, direct access, and actual key file organizations. Refer to the appropriate CYBER
Record Manager manual listed in the preface.

1-1-6 , 60435400 M

NN

N

./

/

A file is the largest collection of information addressable by name. All NOS data processing involves
operations performed on files. Files ean be differentiated by their name, structure, or file type or by
whether they are assigned to a job (NOS jobs are described in section 3). :

FILE NAMES
Each file has a unique one- to seven-alphanumeric-character name.|
Examples:

A 123 TAPE 1A2B COMPILE

If all the following conditions are true, the
seventh character of a file name does not make
the name unique, and NOS assumes that the tape
file is the file referenced. The conditions are:

e A tape file with a six- or seven-
character name is assigned to the job.

o The job references a six- or seven-
character name of a file that does not
exist.

e The first six characters of the file names
match.

Several file names are reserved for system use or have special significance to the system. The following
file names are reserved for use by system routines.

SCR SCR1 SCR2 SCR3 SCR4
Improper use of these file names produces the following dayfile méssage.

RESERVED FILE NAME.

Tsome products such as FORTRAN Extended 4, FORTRAN 5, and COBOL 5 do not support file names
that begin with a digit. Also, some products support only six-character file names. Refer to the
product reference manual listed in the preface for details. :

60435400 L ' 1-2-1

Many NOS products such as COMPASS, FORTRAN Extended 4, and Update use internal scratch files.

Many of these secratch files have names begmmng with ZZ. The user should avoid using the name of a
product scratch file for one of his own files.

The following file names are significant because they are associated with system input, print, or punch
queues or with time-sharing terminals.

INPUT OUTPUT PUNCH PUNCHB P8

Refer to the description of input, print, and punch file types for more information.

FILE STRUCTURE

File structure within a computer system has several meanings. The NOS user can think of a file as
having three representations; two logical representations (CYBER Record Manager file structure and
NOS file structure) and a physical representation. Logical file structure is how the user orders the data.
The user can define this logical file structure using higher level language statements within a source
program. CYBER Record Manager (CRM) translates the higher level language statements into the file
structure that it superimposes on the data. NOS file and record marks structure a file while it is being
processed within the system. NOS converts the NOS file and record marks to their physical tape, disk, or
card equivalents when the file is stored.

CYBER RECORD MANAGER FILE STRUCTURE

- CYBER Record Manager handles I/O for several products (refer to section 1) including FORTRAN
Extended 4, FORTRAN 5, and COBOL 5. CRM superimposes its file structure on the NOS file structure.
Through CRM, the user can specify a file organization, a blocking type, and a record type for his data.

The file organization determines how records are accessed, the blocking type determines how CRM -

records are grouped on their storage media, and the record type defines the smallest unit of data CRM
can retrieve. This manual does not deseribe CRM. A description of CRM including the FILE control
statement is included in the CRM manuals listed in the preface.

NOS FILE STRUCTURE
A NOS file can contain more than one logical file; if it does, it is called a multifile file. A multifile file
begins at beginning-of-information (BOI) and ends at end-of-information (EOI). A file within a multifile
file begins either at BOI or after the end-of-file (EOF) of the preceding file. It ends at its EOF.
Each file consists of zero or more logical records of information. A record is zero or more 60-bit CM
words. A record begins at the BOI, after an EOF, or after the end-of-record (EOR) of the preceding
record. It ends at its EOR. The following is the structure of a single-record file.

(BOI) data (EOR) (EOF) (EOI)
The following is the structure of a multirecord, multifile file,

(BOI) data (EOR) data (EOR) (EOF) data (EOR) data (EOR) (EOF) (EOI)

The last EOF in a file may or may not be present depending upon the program used to create the file.

1-2-2 60435400 M

a

N\

N

N

PHYSICAL FILE STRUCTURE

When NOS stores a file, it automatically converts the file to a structure that will conform to the physical

characteristics of the storage medium. The logical file and record marks are converted to physical BOI,

EOR, EOF, and EOI indicators.

The basis of all physieal file structures is the physical record unit (PRU), the amount of data that can be
read or written in a single device access. Table 1-2-1 lists the PRU size, and record and file mark

indicators for each supported storage device.

TABLE 1-2-1. PHYSICAL FILE STRUCTURE ON STORAGE DEVICES
Record and File Mark Indicators
Storage Device PRU Size BOI EOR EOF EOI
Magnetie disk 64 CM words. Disk address for PRU of less Zero-length Zero-length
or extended the file in the than 64 words PRU (no data) PRU with no
memory NOS file name with a link to with special forward link.
table (FNT/FST). the next PRU. link to next
PRU.
Card deckst One card. First card in Card with a Card with Card with
the deck. 7/8/9 punch 6/7/9 punch 6/7/8/9 punch
in column 1. in column 1.7 in eolumn 1.
Remote Batch RBF/HASP can
Facility also use /*EOI.
(RBF)/HASP can
also use /*EOR.
Integral num- If labeled, tape A PRU of less Zero-length Tape mark fol-
ber of CM words mark following than 512 words PRU whose lowed by an
(0 to 512); HDR1 label. If with level terminator EOF1 label.
(Internal) . each PRU in- unlabeled, load number of 0. contains a
cludes a 48-bit point. level number
terminator. of 17g.
Integral num- If labeled, tape A PRU of less Zero-length Tape mark fol-
) ber of CM words mark following than 512 words | PRU whose lowed by an
SI (0 to 512); HDRI1 label. If with level terminator EOF1 label.
(System each PRU of unlabeled, load number between contains a
internal) less than 512 point. 0 and 164. level number
words has a of 17g.
48-bit
terminator.
Magnetic Maximum of 512 If labeled, tape End of each Tape mark. If labeled, a
tape 1t words (refer mark following PRU. tape mark fol-
to BS parameter HDR! label. If lowed by an
-8 on COPY state- unlabeled, EOF1 label. If
(Stranger) ment in section load point. unlabeled, there
7 and to ap- is no EOI in-
pendix J in dicator.
volume 2),
No maximum If labeled, tape ~End of each Tape mark. If labeled, a
defined (refer mark following PRU. tape mark fol-
L . to BS param- HDRI1 label. lowed by an
(Long block eter on COPY If unlabeled, EOF1 label. If
stranger) statement in load point. unlabeled, there
section 7 and is no EOI in-
to appendix J dicator.
in volume 2).
Determined by Load point. None. Tape mark. None.
C or FC param-~
F eter on
(Foreign) ASSIGN,
LABEL, or
REQUEST state-
ment.

tFor more information, refer to appendix F.
t1The 6/7/9 card is not recognized in a remote batch job. In an RBF job the end-of-file marker is a card with a 7/8/9 punch in column
1 and a level number of 17g in columns 2 and 3. RBF/HASP can also use a card with /*EOR in columns 1 through 5 and a level |
number of 17g in columns 6 and 7.
111 For more information, refer to section 10 and appendix G.

60435400 M

1-2-3

Card Files

The physical file and record marks of a card file are shown in figure 1-2-1 and listed in table 1-2-1.
Although card decks do not have a defined PRU size, a card is the minimum data unit. NOS can read and
punch cards in coded (Hollerith), binary, and absolute binary formats as described in appendix F. Coded
cards are punched in 026 or 029 keypunch mode. The system uses the installation default keypunch
mode (chosen by the installation) unless a 26 or 29 is punched in columns 79 and 80 of a job, EOR, or EOF
card indicating that the subsequent cards are punched in that mode.T NOS can punch up to 80 characters
on a coded card and up to 150 characters (15 CM words) on a binary card.

Figure 1-2-1. Sample Card File Structure

Mass Storage Files
Mass storage files are stored on disk or ECS.

The physical structure of mass storage does not concern most users; they interact with the logical
structure, with logical devices, and logical tracks. A logical device is one or more physical disk units
known to the system as a single device. A logical track is a file allocation unit determined by the device
type (refer to table 1-2-2). ‘

T Keypunch mode selection is not supported for jobs entered through a 200 User Terminal or similar
remote batch terminal except for HASP.

1-2-4 ' : 60435400 L

S

TABLE 1-2-2. LOGICAL STRUCTURE OF SUPPORTED MASS STORAGE DEVICES

Number of Physical PRUs in a
Devices in a Logical Logical
Mass Storage Device Device (n) Track
844-21 disk (half-track)t 1 through 8 n *107
844-21 disk (full-track)t 1 through 8 n*112
. 844-41/44 disk (half- or full-track) 1 through 8 n * 227
885 disk (half- or full-track) 1 through 3 n * 640
ECS Undefined 16

T Half-track is a recording mode that accesses alternate PRUs during a disk
revolution; full-track recording mode accesses consecutive PRUs. Half-track
mode needs two revolutions to access all PRUs on a physical track; full-track
mode needs only one revolution.

Each permanent file on mass storage is accessed via a catalog track containing the permanent file
catalog of its owner. Indirect access files (refer to Permanent Files) must reside on the same device as
their catalog; direct access files may reside on another device. Space is allocated for mass storage files
in units called reservation blocks. An indirect access file reservation block is always 64 words (one
PRU). A direct access file reservation block is a logical track. The maximum size of a user's mass
storage file is determined by his validation limits (refer to LIMITS Statement in section 6).

Magnetic Tape Files

NOS supports tape units that read and write seven-track and nine-track, 1/2-inch magnetic tape in binary
and coded recording modes. In binary mode, NOS reads and writes 6-bit display code. In coded mode,
NOS converts display code to and from coded characters. The user can select 8-bit ASCII or EBCDIC for
coded nine-track tapes. Coded seven-track tapes use 6-bit external BCD code.

The user can select 200-, 556-, or 800-bit per inch (bpi) density for seven-track tapes or 800-, 1600-, or
6250~character per inch (epi) density for nine-track tapes, provided these densities are available with the
site hardware. NOS automatically processes tape parity errors and end-of-tape conditions unless the user
selects other processing options (refer to Processing Options in section 10).

60435400 K 1-2-5

Tape Labels

Tape labels identify and delimit tape volumes and tape files. Tape marks begin and end most tape
labels. A tape mark is a special bit sequence written and recognized by a tape unit.

NOS processes ANSI standard and nonstandard labeled tapes. Nonstandard labeled tapes are those whose
format or content do not conform to the ANSI standard deseribed in appendix G. NOS skips to the first
tape mark when reading a nonstandard labeled tape if the tape assignment statement specifies the LB=NS
parameter (refer to section 10). All information after the first tape mark is then handled as data.

ANSI standard labels are those that conform to the American National Standard Magnetic Tape Labels
for Information Interchange X3.27-1969 standard. NOS can create or verify ANSI labels if the LABEL
statement assigns the tape file. Label verification ensures that the correct volume has been mounted.
ANSI labels separate multifile set files and indicate if a file continues on another volume.

The ANSI label EOF: indicates end-of-information for a file within a file set. The use of ANSI labels to
delimit files within file sets is illustrated in figure 1-2-2.

File set configurations (* means tape mark):

Single file on single volume

(A) (A)
VOL1|{HDR1[* File A data 2{ *| EOF1{*|*
Single file on more than one volume
(A)
V°'1“'“e VOL1|HDR1|* File A data {{ | ov1[+]*
(A) (A)
Volume | yoL1|HpR |* File A data 22 *| eoF1 |*[*
More than one file on a single volume
(A) (A) (B) (B)
voL1|HDR1|* File A data ?2 *| EoF1|*| HDR1}* File B data EOF1|*|*
More than one file on more than one volume
(A) (A) (B)
V°';’m° VOL1| HDR1{* File A data ég *| EOF1|*|HDR1 |* File B data *| eov|*|*
(B)
VO';'“" VOL1|HDR1|[* File B data ({ * EOV1 |*|*
(B) (B) (C) (C)
V°';"‘e VOL1|HDR1|* File B datazz *| EoF1|*| HDR1|* File C data *| eOF1[*]*

Figure 1-2-2. Use of ANSI Labels

1-2-6 60435400 L

o/

/

An ANSI-labeled tape must have the following labels. Other optional labels are described in appendix G.

Label Location

VOL1 " Beginning of volume.

HDRI1 Beginning of information. If the file continues on to another volume, the HDR1 label
is repeated. It must follow the VOL1 label and precede the continuation of the file
information. '

EOF1 End of information.

EOV1 End of volume (required only if the file continues on another volume).

Appendix G gives the tape label formats.

Tape Data Formats

NOS can read and write data on magnetic tape in any of the following formats.

Format Mnemonic
Internal (NOS default) I
System internalt SI
Stranger S
Long block stranger L
Foreign F

These data formats differ in their PRU (block) size and in their record and file mark indicators (refer to
table 1-2-1). Other format differences are:

Tape)
Format Labels Recording Mode Noise SizetT
I Labeled or unlabeled .Binary only Seven-track: < eight
frames
Nine-track: . <six
. frames
SI Labeled or unlabeled Binary onlyTTT Seven-track: <eight
frames
Nine-track: <six
frames
S Labeled or unlabeled Binary or coded User-selected;
default is <18 frames

TNOS/BE system default tape format (binary mode only).
ttTape blocks read that are smaller than the noise size are discarded. An attempt to wnte a block
smaller than the noise size produces an error message.
t11Specification of coded mode aborts the job step; refer to TCOPY Statement in section 7.

60435400 L " 1-2-7

Tape
Format Labels Recording Mode Noise Size
L Labeled or unlabeled Binary or coded User-selected;
default is <18 frames
F Unlabeled (labels read Seven-track: User-selected;
as data) binary or default is < 18 frames
coded;
Nine-track:

binary onlyt

NOS terminates blocks on I and SI format tapes with a 48-bit block (PRU) terminator. The terminator
_ contains the total number of bytes in the block (including the terminator itself), the number of blocks
since the last HDR1 label, and the level number of the bloeck. This terminator enables read operations on
I format tapes to check whether the number of bytes read and the block number expected match the byte
count and block number in the terminator. If either does not match, the system attempts to recover the
missing data. This feature prevents dropped or fragmented blocks and provides a higher degree of
reliability than other data formats. ‘

Tapes should be read with the same format specified as when they were written. Data is then recovered
in its original form. For some formats, NOS writes extra bits which are discarded when the tape is read.
1 format nine-track tapes are always written with an even multiple of bytes per block. SI format
nine-track- tapes may have an extra 4 bits written per block to preserve the lower 4 bits of a CM word.
(A 60-bit CM word would be written in eight frames, 8 bits per frame.)

All nine-track tapes are written with odd parity. Binary seven-track tapes have odd parity; coded
seven-track tapes have even parity. If a parity error is detected on an F format seven-track tape, the
recording mode (binary or coded) is automatically switched.

Appendix J of volume 2 describes tape formats in greater detail.

FILE TYPES

Every file assigned to a user's job has a file type. A file assigned to a job is known to the system by its
entry in the file name table/file status table (FNT/FST). An FNT/FST entry contains the file name, the
device on which the file resides, the file type, and its current position and status.

A permanent mass storage file is known to the system by its entry in a permanent file catalog associated
with a user number. The catalog entry contains the file's name, location, length, permission modes, and
access history.

TNo code conversion is performed even if coded data is read.

1-2-8 ‘ , 60435400 M

-
/

=

N

S

FILES ASSIGNED TO USER JOBS

NOS uses the following mnemonics to define file types.

INFT Input PMFT Direct access
PRFT Print LIFT Library

PHFT Punch ROFT Rollout

LOFT Local TEFT Timed/event rollout

PTFT Primary terminal

Input files, print files, punch files, rollout files, and timed/event rollout files are queued files. A queued
file waits on mass storage until the system resource or peripheral equipment it requires becomes
available and its priority is the highest of the files in the queue.

input Files

An input file is also called a job file because it contains user-supplied control statements and data for a
job (refer to section 3). Initially, input files exist on mass storage in the input queue. A file enters the
input queue directly when a local or remote batch job enters the system or indirectly when a user job
submits another job via a SUBMIT, LDI, or ROUTE control statement. The input file of a time-sharing
job consists of all terminal input directed to the system during a time-sharing session. Because the
system processes the control statement immediately after it is read from the terminal, a time-sharing
input file is always empty except when processing a procedure file. A user job refers to its input file by
the file name INPUT (refer to Input File Control in section 3).

Print Files

A print file contains data to be printed. It is created and placed in the print queue as a result of the
following:

e At j‘?b termination when the system changes the local file OUTPUT, if present, into a print
file.

e At execution of an OUT, ROUTE, or. DISPOSE control statement naming a local file to be
printed.

The local or remote batch subsystem processes the files in the print queue. By default, jobs originating
at a central site card reader are routed to a line printer with the same ID as the card reader. Similarly,
remote batch output returns to the remote batch terminal where the job originated. Each remote batch
terminal is given a unique terminal identification code (TID) when it logs in. Remote bateh jobs and the
print files they generate are given the TID of their originating terminal.

Users can override the default routing of print files with the ROUTE statement (refer to section 7). The
ROUTE statement can specify a printer or printer type.

TNot applicable to time-sharing jobs.

60435400 M 1-2-9

As a print file waits in the print queue, its priority increases. The file is printed when a printer becomes
available and when its priority is higher than all other files destined for that printer.

Print files must be formatted for line printing. The user should add appropriate printer control

characters (refer to appendix I, Line Printer Carriage Control). Appendix D contains the printer output
from the compilation and execution of a sample program.

Punch Files
A punch file contains data to be punched on cards. A punch file is routed from the mass storage punch
queue according to the name the user assigns it or according to parameters specified on a ROUTE or
DISPOSE statement. The following are special punch file names.

PUNCH Contains Hollerith (coded) punch output.

PUNCHB Contains binary punch output.

P8 Contains 80-column absolute binary punch output.
Punch files enter the punch queue at job completion or upon execution of an OUT, ROUTE, or DISPOSE

control statement. The routing and scheduling procedures for punch files are the same as for print files.
Punched card formats are described in appendix F.

Local Files

Local files are temporary files. The local file type includes all scratch copies of files except the primary
file.

The user can create a local file by:

e Naming the file for the first time in a COPY control statement or in a read or write statement
within a program. A local file created in this manner always resides on mass storage.

¢ Naming the file for the first time in an ASSIGN or REQUEST control statement assigning the
local file to mass storage or to a time-sharing terminal or in an ASSIGN, LABEL, or REQUEST
control statement assigning the local file to magnetic tape.

o Naming the file in a GET control statement generating a local mass storage file.
To save the contents of a local mass storage file, the user issues a SAVE or REPLACE control statement
to copy the local file to a permanent indirect access file or an APPEND control statement to copy the

local file onto the end of an existing permanent indirect access file. Data written on a local file assigned
to magnetic tape is written on the tape for later access. Local files are released upon job completion.

1-2-10 60435400 L

7N\

7N

Ve

e

AN

Primary Files

The primary file is a temporary mass storage file designated as the primary file by a PRIMARY, NEW, or
OLD control statement. Only one primary file can exist for a job at a time. Some control statements
use the primary file as the default file when a file name is not specified. NOS rewinds the primary file
before each job step.

Direct Access Files
A user assigns a direct access permanent file to his job by issuing an ATTACH or DEFINE control

statement. When the user defines the file or attaches the file in a mode permitting file modification, he
can write on the permanent file. Refer to Permanent Files in this section.

Library Files

A library file is a read-only file that several users can access simultaneously. This file type should not be
confused with system library programs or with public permanent files stored under user number
LIBRARY. Refer to Libraries in this section for a description of the uses of the term library in NOS.

A user must be validated to access or create a library file. The validated user can create a library file as
follows:

1. Create a local file with file name 1fn.
2. Enter the following control statements.
LOCK(fn)
COMMON(1fn)
The validated user can read a library file after naming it in a COMMON control statement.
A library file cannot be removed from the system once it has been created except by a level 0 deadstart.

Library files are retained on level 1 or 2 deadstart if a system checkpoint was done after their creation.
They are always retained after a level 3 deadstart.

Rollout Files

If, during job processing, the system or the user determines that a job must be temporarily removed from
central memory, the system writes all information concerning the job on a system-defined rollout file.
The rollout file includes the contents of the CM field length and the ECS field length of the job and the
job-related system information from CMR. The file is read back into CM (and ECS) when the job is again
assigned to a control point (refer to Rollout Control in section 3).

60435400 L 1-2-11

Timed/Event Rollout Files

A timed/event rollout file is similar to a rollout file in that it contains all the information concerning a
job temporarily removed from central memory. However, a timed/event rollout file is rolled back into

central memory only when a specified event has occurred (such as a file becoming not busy or a tape
being mounted) or a speclfied time period has elapsed.

A job may be written on a timed/event rollout file as a result of system or user action. The system uses
a timed/event file if a job issues file or device requests that cannot be immediately honored. Users place
their jobs on a timed/event rollout file when they use the ROLLOUT control statement to roll out their
jobs for a specified time period.

PERMANENT FILES

Permanent files are retained on mass storage until their creator purges them. Each permanent file has a
permanent file catalog entry associated with a user number. Each permanent file catalog describes all
permanent files created under that user number and their location on mass storage. Unless another user
number is specified, the system assumes that all permanent file requests are made to the catalog of the
user number named on the last USER statement (or named in the login of a time-sharing job).

User numbers (refer to Validation in seection 3) that contain asterisks represent users with automatic
read-only permission to files in the catalogs of other users. The user number must match the other user
number in all characters not containing asterisks. For example, the user with user number *AB*DE* can
access the catalogs of the following users.

e UABCDEF
e UABDDEE
e MABCDEl

"The device residence of permanent files and their backup copies are described under Mass Storage File
Residence in this section,

The two types of permanent files, indirect access permanent files and direct access permanent files, are

described in the following paragraphs.

Indirect Access Permanent Files

The user accesses an indirect access permanent file by naming it in an OLD or GET control statement.

The system copies the permanent file from mass storage to a temporary file (local or primary file type).
To alter an indirect access permanent file the user makes the changes to the temporary copy and then
enters the REPLACE control statement which writes the temporary copy over the indireet access
permanent file. The user creates an indirect access permanent file by naming a temporary file in a SAVE
or REPLACE control statement.

Mass storage for indirect access permanent files is allocated in 640-character blocks (64 CM words).

Because of -its small allocation block size and the disk space required to maintain a working copy,

indirect files are usually relatively small files.

1-2-12 _ ; 60435400 M

N\

The maximum size of an indirect access file is determined either by the value of the FS validation
parameter described in LIMITS Statement in section 6, or if no FS restriction is imposed, by the device
limitations described in Mass Storage Files in this section.

Direct Access Permanent Files

The user accesses a direct access permanent file directly, not through a temporary copy. Data is written
directly on the permanent file.

The user creates a direct access permanent file with a DEFINE control statement, which determines its
name and residence and the default access mode available to other users. He accesses the file with an
ATTACH control statement. A number of users can attach the file concurrently, but only one user at a
time can change the file. To change the file, the user must attach it in modify, append, or write access
mode. If a user attaches the file in write mode, no other user can attach that file concurrently.

Even if a file is currently attached to a job, the user can purge the file from the permanent file catalog
with a PURGE statement. However, the purged direct access file remains attached to the job until it is
released by a RETURN, CLEAR, UNLOAD, OLD, or NEW statement or until the job ends.

Mass storage for direct access permanent files is allocated in large blocks; the block size depends on the
mass storage device type on which the file resides (refer to Mass Storage Files in this section). Because
of their large allocation block size and the write interlock feature, direct access files are often used for
database files.

The maximum size of a direct access file is determined by the DS validation parameter described in
LIMITS Statement in section 6, or if no DS restriction is imposed, by the device limitations desecribed in
Mass Storage Files in this section. :

MASS STORAGE FILE RESIDENCE

For most mass storage file operations, the user need not be concerned about the specific device on which
his file resides. However, under certain circumstances, the user may wish to override the default device
residence for local or permanent files.

With the ASSIGN control statement, any user who has the necessary validation can assign a local file to
either a specific device or to a device category.

Every permanent file the user creates resides either in his family of permanent file devices, on an

auxiliary device, or on the Mass Storage Facility. Unless the user specifies otherwise, all permanent files
are saved in his family.

FAMILY DEVICES
A family consists of a set of mass storage devices. Within a family, each user has a master device that

contains the user's permanent file catalog, indirect access files, and may contain some or all of his direct
access files. .

60435400 L 1-2-13

Normally, a system has only one family (the default family) of permanent file devices. However, because
families are interchangeable between NOS systems, several families may be active on one system, or a
system may be part of a multimainframe system. For example, consider an installation with two
systems, A and B. System B provides backup service to system A. If system A failed, its family of
permanent file devices could be introduced into system B without interrupting current operations on
system B.

The user identifies his family by supplying a one- to seven-character family name. The family name is
included on the USER statement in batch jobs and is entered during login in time-sharing jobs. If the
user's family is the system's default family, the user may, but need not, supply the family name. When
the family name is omitted, the system uses the system default family name. If the user's family has
been introduced into another system, he must supply his family name.

If the user chooses to save files on family devices, he has the option of either using the system default
device type or specifying another type of permanent file device.

AUXILIARY DEVICES

An auxiliary device is a supplement to the mass storage provided by family devices. It is identified by a
one- to seven-character pack name. An auxiliary device is not necessarily a disk pack that can be
physically removed as the pack name implies. Rather, an auxiliary device can be any mass storage
device supported by the system and defined as such by the installation. Each auxiliary device is' a
self-contained permanent file device; all direct and indirect access files represented by the catalogs on
the device reside on the device. Auxiliary devices may be defined as public or private. Anyone
permitted to use auxiliary devices who supplies the appropriate pack name can create, replace, and
access files on a public device. Only one user, the owner, can create and replace files on a private
auxiliary device, but others may access or replace those files as permitted by the owner.

MASS STORAGE FACILITY {MSF)

Magnetic disk is the usual residence of permanent mass storage files. However, if the installation has an
MSF, some direct access files can be stored there. An MSF is suited for the storage of large, direct
access files that are accessed infrequently. Attaching a file residing on the MSF takes at least 10
seconds, because the file must be retrieved and copied (staged) to disk. Users can specify the preferred
residence of their direct access files with the PR parameter on the DEFINE or CHANGE statements
They can determine the actual residence of their files with the CATLIST, LO=F statement.

Usually, when attaching an MSF file, the system rolls out the job until the file has been staged and

. assigned to the job. (The time-sharing user can determine the status of his MSF file staging request with

the ENQUIRE statement.) However, if the user specifies the RT parameter on the ATTACH statement,
the job continues processing while the MSF file is being staged to disk. The user must then issue a second
ATTACH statement to assign the file to his job after staging. The user can then check that the file has
been attached by using either a FILE function (in a batch job or procedure file) or a LENGTH or
ENQUIRE(F) statement (in a time-sharing job).

1-2-14 - 60435400 L

NN

If a permanent file is lost or destroyed, site personnel can recover the file by loading its backup copy.
Generally, sites perform regular dumps of permanent files to magnetic tape to serve as the permanent
file backup. By specifying the BR parameter on the DEFINE or CHANGE statement, the user can choose
to have a tape backup copy of his direct access file kept even if the file resides on the MSF. He also can
choose to have the MSF file copy serve as backup, or he can require no backup copy of his direct access
file. i

LIBRARIES

As defined in the glossary (appendix C), the term library has several meanings. The applicable meaning
for the term must be determined from its context. The following describes some NOS libraries.

USER NUMBER LIBRARY

Files stored under user number LIBRARY need not be libraries themselves. An installation saves
programs or text as files under user number LIBRARY so that validated users can access them from a
centralized. location. - Users access those files by specifying the file name and the alternate user number
LIBRARY on their permanent file request or by issuing the LIB time-sharing command (refer to the
Networ)k Products Interactive Facility Reference Manual or the NOS Time-Sharing User's Reference
Manual).

PROGRAM LIBRARIES

A program library is a collection of source deck images stored in compressed Modify or Update format.
The validated user accesses these compressed source decks through MODIFY or UPDATE control
statements (refer to section 13).

USER LIBRARIES

User libraries are the files named in the LIBRARY or LDSET loader control statement or in the program
binaries. These files are searched by CYBER Loader to satisfy external references within the program it
is loading. They contain compiled or assembled routines. The first record of a user library is a ULIB
record; the last record is an OPLD directory record (refer to the LIBGEN statement in section 14).

User libraries are generated by the user, the product, or the system. CYBER Loader first searches the
user-generated libraries specified by a LIBRARY or LDSET control statement (refer to the CYBER
Loader Reference Manual). -CYBER Loader then searches the product set library (such as the FORTRAN
Extended library) stored on the system library. Finally, CYBER Loader searches the system default user
library SYSLIB, which is also on the system library.

Section 14 describes control statements that catalog and manipulate library records.

60435400 L o 1-2-15

JOB FLOW AND EXECUTION . 3

m

A job is a file of statement images. Its first record contains control statements that specify job
processing requirements. Every job begins with a job statement and a USER statement. The end of the
control statement record is marked by an EOR (or an EOI if there is no data in the job).

Records that follow the control statement record contain program, data, or directive input for processing
control statements. As each control statement requiring additional user input is processed, the system [
reads the next record in the input file (unless the control statement specifies otherwise). These followmg
records must be in the same order as the control statements that will use them.

For example, figure 1-3-1 illustrates a basic job deck. In the job deck, the first three control statements
are processed by system routines that require no additional user input. The fourth control statement,
FTN(GO), requests two job steps, the compilation' of a FORTRAN Extended program and its execution.
Because the I parameter is omitted from the statement, the compiler reads the next record of the input
file, expecting it to be a FORTRAN source program. After successful compilation, the system executes
the program. The program then takes input data from the third record of the input file. Normal job
termination oceurs when the system reads the control statement record EOR (the first 7/8/9 card).

JOB INITIATION

The user initiates jobs by:
e Reading a card deck in through a local or remote batch reader.
e Logging into a time-sharing terrﬁinal.

e Entering a job via an LDI, ROUTE, or SUBMIT control statement within a job already in the
system.

tA time-sharing job consists of all input entered during a time-sharing session (refer to the Network
Products Interactive Facility Reference Manual or the NOS Time-Sharing User's Reference Manual).

60435400 L 1-3-1

—_— -
5
8
q
/ e
DATA /:—‘—' —— —— {l
RECORD I
l -
|h <~ DATA DECK
5
)
q
PROGRAM ABCL{INPUT.OUTPUT} I\J
PROGRAM l «— SOURCE DECK
RECORD m
: ?
8
Cl
FTN{GO}
N CHARGE{59+b91NS2
USER{NAM+PASS+FAMAY
CONTROL FTNJ 0B. B
STATEMENT
RECORD
-

Figure 1-3-1. FORTRAN Compile and Execute Deck

JOB ORIGIN TYPES

When a job enters the system, the system determines the job origin type according to the means used for
job initiation. Its origin identification remains with the job throughout job processing. The job origin
type determines how the job is handled and how it exits from the system.

Jobs originating from the system console are assigned system origin type (SYOT). Jobs entered through
the time-sharing executive or the Interactive Facility (IAF) are assigned time-sharing origin type
(TXOT). Jobs entered through a local batch card reader are batch origin type (BCOT) jobs. Jobs entered
through Export/Import or the Remote Bateh Facility (RBF) are remote bateh origin (EIOT) jobs.

If validated, a user can initiate jobs using the LDI, ROUTE, or SUBMIT control statements. dJobs

initiated by ROUTE or SUBMIT statements can be either batch origin or remote origin jobs depending on
the statement parameters. Jobs initiated by LDI statements are batch origin jobs.

1-3-2 60435400 J

J

JOB NAMES

Afte‘r er.lterin_g t.he system, the job is assigned a unique seven-character job name to prevent job name
duplication within the system. This name is not the job name specified on the job statement. The job
name appears on the banner page of all batch output printed by the job.

SYSTEM JOB NAME FORMAT

The first four characters of a system job name are obtained from the job name entered or are display
code zero-filled if fewer than four characters are entered. The last three characters are a unique system
job sequence number in the range from AAA to ZZZ. For example, if the job entered is DIS, a possible
job name is DISOAAB.

LOCAL BATCH AND RBF JOB NAME FORMAT
The first four characters of a local batch or RBF job name are generated from the user index associated

with the user number supplied on the USER control statement. These four characters are unique to the
user. The last three characters are the job sequence number.

TIME-SHARING, IAF, AND EXPORT/IMPORT JOB NAME FORMAT

The first four characters of these job names are generated from the user index associated with the user
number supplied by the user when logging into the system. The last three characters represent the
connection number of the terminal on which the user is logged in. ‘

DEFERRED BATCH JOB NAME FORMAT
All jobs entered via a ROUTE, SUBMIT, or LDI control statement derive the first four characters of their

job names from the job's current user index. For all deferred batch jobs originating from system, local
batech, Export/Import, and RBF jobs, the last three characters are the system job sequence number.

VALIDATION

The USER statement follows the job statement and is used to validate the user as a legal user (refer to
USER Statement in section 6). If the user is validated, a set of control values is associated with the job;
these values are used by the system to control all system requests from the job. If the user is not
permitted to perform specifie funetions (such as aceess nonallocatable devices), the user's job is aborted
and a message such as

ILLEGAL USER ACCESS.

is issued when the illegal funetion is attempted.

60435400 M ’ 1-3-3

- To determine the extent of his validation, the user can issue the LIMITS control statement and receive a
listing of his current validation control values. Refer to LIMITS Statement in section 6 for an
explanation of these values. For further information or to change his validation, the user should contact
installation personnel.

Each user number has a unique user index associated with it. The system uses this index to determine the
location of the user's permanent file catalog. (Refer to the NOS System Maintenance Reference Manual
for an explanation of the user index.)

ACCOUNTING

The unit of accounting for the system is the system resource unit (SRU). The SRU is a composite value
of central processor time, I/O activity, and memory usage. SRU operations are initiated at the beginning
of a job and reinitiated whenever another CHARGE control statement is encountered. SRU information
includes:

e Central processor time.

e Mass storage activity.

e Adder activity (fixed charges for some highly variable system requests).
e Magnetic tape activity.

e Permanent file activity.

e SRU value.

e Application account charges.t

This information is written to the user's dayfile at the end of the job or whenever a CHARGE statement
is processed. The user may request SRU information to be written to his output file at any time during

the job by issuing the ENQUIRE or SUMMARY control statement. The format of SRU information
written in the dayfile is given under Job Completion in this seetion.

JOB SCHEDULING

When a job enters the system, it is placed in the input queue on mass storage, where it waits for the
required system resources to become available. The job is assigned an input queue priority depending on
its origin. The system priorities are system-defined and can be altered only by the system operator. The
job queue priority is advanced as the job waits in the queue. The priority ages to a system-defined limit.
The job scheduler periodically scans the queues and active jobs to determine whether action is necessary
to ensure that the highest priority jobs are being serviced. This action may include rolling out low
priority jobs or rolling in higher priority jobs. The job scheduler is also activated to analyze the system
status whenever there are changes (for example, when the field length of a job is released, a job enters a
queue, or a job completes).

Once a job is brought to a control point, normal control statement processing begins. The general flow of
the control statement processing is illustrated in figure 1-5-1.

T Not currently supported by the system but reserved for future use.

1-3-4 60435400 L

7

A

JOB CONTROL

While a job is at the centrol point, the system exercises the following controls over the job.

FIELD LENGTH CONTROL
The system controls the field length (central memory) assigned to a job, adjusting it according to the
requirements of each job step. A programmer can influence the field length assigned to his job by using
the central memory job statement parameter (refer to section 5) and the MFL and RFL control
statements (refer to section 6).
The maximum field length for a job (MAXFL) is set at the smallest of the following values.

e Central memory job statement parameter value, if specified.

e Maximum field length for which the user is validated.

e Maximum field length available for user jobs (dependent on machine size).

The maximum field length (MFL) for each subsequent job step is initially set equal to MAXFL. It can be
reset, however, by MFL control statements. MFL cannot exceed MAXFL.

The running field length (RFL) is initially set to zero, indiecating system control of field length. The RFL
control statement resets RFL. RFL cannot exceed the current MFL.

To set the initial field length for a job step, the system uses the first value set by one of the following.

© Predefined initial field length for a system routine (RFL= or MFL= special entry point as
deseribed in appendix F, volume 2).

o Highest high address (HHA) from EACP loader table (54 table) (refer to the CYBER Loader
Reference Manual).

e RFL value, if nonzero.

e The smaller of the MFL or the installation-defined default value (release value 50000B).

The system -automatically assigns a field length
for CM only. To set the initial field length for a
job step in ECS, the user must use the RFL
statement or the MEMORY macro (refer to
volume 2).

CYBER Loader further adjusts the field length during program loading. Memory may be added or

-removed as the needs of the program change. Refer to the description of the REDUCE control
- statement in the CYBER Loader Reference Manual. '

60435400 L ' 1-3-5

The following example shows a control statement record, the MAXFL, MFL, and RFL settings, and the
actual field length used to process the statement.

Field
Control Statement MAXFL MFL RFL Length Explanation

700 The CM parameter sets
700 the MAXFL and MFL
2 200 values. The system
sets the field length
as required for pro-
cessing the control
statements.

JOB(CM60000) 60 000 60 000
USER(USERABC,1234,FAM1) 60 000 60 000
CHARGE(4922,66X) 60 000 60 000

(=N]

GET(ABSPROG,RELPROG) 60 000 60 000 0 1 700 GET statement re-
trieves copies of an
absolute program and
arelocatable program.

RFL(40000) 60 000 60 000 -0 1 500 The user issues an
RFL statement to set
the field length for
execution of the abso-
lute program that
follows.

ABSPROG. 60 000 60 000 40 000 40 000 The absolute program
on file ABSPROG is
executed within a
40 000-word field
length.

MF1(50000) 60 000 60 000 40 000 1 500 The user issues an
MFL statement to set
the maximum field
length for the follow-
ing relocatable load.

RELPROG. 60 000 50 000 0 < 50 000 If more than-a 50 000-
word field length is
_required, the job.
aborts.

INPUT FILE CONTROL

All user jobs, when initiated, have a file named INPUT (INFT type file). This file contains the control
statements and other input records required for job execution. INPUT is a locked file. As a result, the
.user may read from it and reposition it, but the system does not allow him to write on it. If for some
special reason the user needs to write on INPUT, he should first issue a RETURN(INPUT) control
statement (refer to section 7). This statement changes the name of the file from INPUT to INPUT* and
leaves it assigned to the user's job. The user may then write on file INPUT. The change of name on
RETURN applies only if the input file is of type INFT (refer to File Types in section 2).

1-3-6 ' 60435400 M

4 /.\\x

N

TIME LIMIT CONTROL

The system sets a time limit for each job step unless the job statement or the SETTL statement specifies
a job step time limit. This time limit is the amount of central processor time that any one job step is
allowed. The user cannot increase the limit beyond that for whieh he is validated.

While a job is using the central processor, the CPU time is accumulated and checked against the time
limit for each job step. If the job is not a time-sharing (TXOT) job, the job in execution is aborted when
the time limit is reached. Time-sharing origin jobs are rolled out, after which the user can increment the
time limit and resume execution from the point where the time limit was exceeded. Refer to the
Network Produet Interactive Facility Reference Manual or the NOS Time-Sharing User's Reference
Manual for more details. _

SRU LIMIT CONTROL

The system sets a limit on the number of system resource units (SRU) that a job step or an account block
can accumulate. An SRU includes central processor time, central memory usage, permanent file
activity, and mass storage and tape I/O. An account block is that portion of a job from one CHARGE
statement to the end of the job or to another CHARGE statement. The user may alter these limits
through the SETJSL and SETASL control statements or macros; however, he may not set either limit
beyond that for which he is validated.

While a job is in the system, SRUs are accumulated and checked against the SRU step and account block
limits. If the job is not a time-sharing job (TXOT), the job is aborted when either limit is reached.
Time-sharing jobs are rolled out. After a time-sharing job is rolled out, the user can increment the limit
and resume execution from the point where the limit was reached. Refer to the Network Products

- Interactive Facility Reference Manual or the NOS Time-Sharing User's Reference Manual for more

details.

CONTROL STATEMENT LIMIT CONTROL

If a job attempts to execute more control statements than the number for which the user is validated,
the following message is issued. :

INITIAL CONTROL STATEMENT LIMIT.
NOS then searches for an EXIT statement. If it does not find one, it terminates the job immediately. If
it does find an EXIT statement, it allows processing of seven additional control statements for job error
processing. After processing the seven additional statements, NOS terminates the job after issuing the
following message.

CONTROL STATEMENT LIMIT.

A user can determine his control statement limit validation by entering a LIMITS statement (section 6).

60435400 L | 1-3-7

ROLLOUT CONTROL

Each executing program is allowed to reside in CM for a certain amount of time before relinquishing its
space to another program. When this CM time slice is exceeded, the program may be rolled out. This
means that the contents of the job field length (both CM and ECS), the job control area, and the control
registers (exchange package) are written to mass storage. The program remains on mass storage until it
is rolled back into memory. Execution resumes from the point where rollout occurred. The amount of
time the job is allowed to occupy CM is called the central memory time slice. The central memory time
slice is a system parameter that can be changed only by the system operator; time slices vary for each
origin type. Whether a job is rolled out when its time slice expires depends on several factors.

e Whether there are jobs waiting in the input and rollout queues.
e Whether the jobs that are waiting have a lower priority.

o Whether jobs that are waiting require more field length than would be available if all jobs of
lower priority were rolled out.

When a job is rolled out, it is assigned a queue priority. The priority assigned is a system parameter and
can be changed only by the system operator; queue priorities can also vary for each origin type. The
queue priority is aged (incremented) while the job is in the rollout queue. Normally, all other factors
being equal, the job with the highest queue priority is selected to be rolled in.

ERROR CONTROL

When job step activity ceases, the system must determine the next control statement to process. If
activity ceased due to normal termination, the next control statement processed is the next statement in
sequence. If an error caused activity to cease, the system issues the appropriate dayfile message and
exits from the job.

Errors may be detected by system software or hardware. When the system hardware detects an error
condition, NOS issues two or more dayfile messages. The first message gives the address where the error
was detected; the second and following messages give the types of errors that occurred. NOS then dumps
the exchange package for the job either to OUTPUT, for batch and remote batch origin jobs, or to local
mass storage file ZZZDUMP, for time-sharing jobs (refer to section 12). ZZZDUMP is not rewound
before or after the dump.

After issuing the appropriate dayfile message(s) for the error(s), the system searches for an EXIT control
statement. If an EXIT statement is found, processing continues with the statement following EXIT. If an
EXIT statement is not encountered, the system terminates the job. (Exit processing is further deseribed
in section 5.) If the user issues a NOEXIT statement, the system does not search for an EXIT statement
on subsequent errors, and processing continues with the next control statement.

The user can specify the error exit mode on which the system is to abort a job step with the MODE
statement. For example, the user can specify that address out of range, operand out of range, and/or
indefinite operand errors are allowed and program execution continues Frefer to section 6). The default
error exit mode specifies that all errors terminate the job.

Volume 2 describes the EREXIT, RECOVR, REPRIEVE, and MODE macros that can be used to control

error processing in COMPASS programs. The SETLOF macro, described in volume 2, specifies file
completion procedures when a job step abort occurs.

1-3-8 : : 60435400 M

;/.

\

i

_/

SECURITY CONTROL

A job cannot dump or direetly change the contents of the job field length immediately after processing a
protected control statement or user program. A COMPASS program can request protection through the
SETSSM macro (refer to section 6, volume 2). These security restrictions do not apply if the job is of
system origin or if the user is validated for system origin privileges and debug mode has been set at the
system console.

A load/dump central memory utility control statement cannot immediately follow a protected control
statement. . v

Protected Control Statements

ACCOUNT COoPY DISPLAY IFE - SKIP
ASSIGN - COPYBF EDIT . LABEL - TCOPY
BEGIN COPYBR ELSE LIBEDIT USER
BLANK COPYCF ENDIF " REQUEST VERIFY
CALL COPYCR ENDW RESOURC VFYLIB
CATALOG COPYEI ENQUIRE RESTART WHILE
CHARGE COPYSBF GOTO REVERT

CKP COPYX IF . SET

Load/Dump Central Memory Control Statements

DMD DMP LBC PBC WBR
DMDECS DMPECS LOC RBR

If the user attempts to change or dump protected memory, NOS issues an informative message to the
dayfile and aborts the job step. l

JOB COMPLETION

When there is no more activity at a control point, no outstanding central processor requests, and no .
control statements to process, the job is completed in the following manner.

1. All CM assigned to the job is released.

2. ECS assigned to the job is released.

3. All equipment assigned to the job is released.

4, All library files attached to the job are released; other jobs can then access them.
5. All scrateh (local) file space used by the job is released.

6. All direct access permanent files attached to the job are released; the status information for
these files is updated.

7. . The following summation of the number of cards read through a local or remote batch reader is

put in the beginning of the job dayfile. This information is also issued to the associated acecount
dayfile for site usage. The entries in the account dayfile also include the job name.

60435400 M ' 1-3-9

e Jobname:
hh.mm.ss.jobname.
e Cards read in kilocards:
hh.mm.ss.UCCR,mies, xxxxxx.xxxKCDS.
mi Machine ID.
es EST ordinal of the output device.
8. The following summations of job aectivity are added to the end of the job dayfile. This
information is also issued to the associated account dayfile for site usage. The entries in the

account dayfile also include the job name.

e Adder activity in kilounits (incremented by USER statements, CHARGE statements,
and resource assignments).

hh.mm.ss.UEAD, xxxxxx.xxxKUNS.

o Permanent file activity in kilounits:
hh.mm.ss.UEPF, xxxxxx.xxxKUNS.

e Mass storage activity in kilounits:
hh.mm.ss.UEMS, xxxxxX.xxxKUNS.

e Magnetic tape activity in kilounits:
hh.mm.ss.UEMT, xxxxxX.xxxKUNS.

e Accumulated central processor time in seconds: T
hh.mm.ss.UECP, xxxxxx.xxxSECS.

o SRU value in units for total job usage including CPU time, I/0 activity, and memory
usage: .

hh.mm.ss.AESR, xxxxxx.xxxUNTS.

TIf the installation defines a CPU multiplier value, the value given is the product of the actual CPU
seconds and the multiplier. The installation may assign a CPU multiplier value to each CPU within a
dual-processor machine (refer to the NOS System Maintenance Reference Manual).

I 1-3-10 . 60435400 M

r

)

N~

7

The following information is printed at the end of all print file listings.
e Lines printed in kilolines:
hh.mm.ss,UCLP, mies, xxxxxx.xxxKLNS.
or |
hh.mm.ss.UCLV, mies, xxxxxx.xxXxKLNS.
mi Machine ID.
es EST ordinal of the oiltput device.

The UCLV summation is issued if the V carriage control character was used (refer to
appendix I). '

The following information is issued to the account dayfile only.
e Cards punched in kilocards:
hh.mm.ss.jobname. UCPC. mies. xxxxxX.xxxKCDS.

4

9. Job dayfile is copied to the end of the OUTPUT file. If an OUTPUT file does not exist or if it is
a deferred routed file with EC=A9 specified, the dayfile is copied to another print file.

10. All deferred routed print and punch files are released to the print and punch queues. The files

named OUTPUT, PUNCH, PUNCHB, and P8 are also released to the queues, unless the user
discards job output (for example, using the N parameter in the SUBMIT control statement).

60435400 M ' 1-3-11

NS

/

CDC CYBER CONTROL LANGUAGE _ 4

CYBER Control Language (CCL) is the set of control statements that determine the processing sequence I
within the control statement record. CCL statements can insert control statements from a procedure
file and conditionally or unconditionally skip -control statements. To determine the conditions for
transfer of control, CCL can interrogate the system for error flags, file status, device type, and current
subsystem. The following subsections describe the statement syntax and the operators and operands
whiech make up a CCL expression. Following that is a discussion of CCL statements, their formats, and
their use of expressions. The last subsection discusses CCL procedures which can contain CCL

statements and expressions.

Another system control language, KCL (described
in appendix H), is also available. Support of KCL
will be dropped in a future NOS release, so users
are encouraged to convert their KCL procedures
to CCL and not to mix the KCL and CCL
statements. If the CCL BEGIN statement is
mixed with the KCL GOTO or CALL statements,
unpredictable results may oceur.

STATEMENT SYNTAX

CCL statement syntax is similar to the syntax of all other control statements. The syntax rules are:

e A comma or left parenthesis separates the statement name and the first parameter.

e Commas separate consecutive par_ameters.
o A period or a right parenthesis terminates the statement.

e A right parenthesis ending an expression within a statement cannot also serve as the statement
terminator. The user must include an additional right parenthesis or period to complete the
statement.

e Parentheses can nest expressions within expressions (parentheses do not imply multiplieation).
@ Comments can follow the statement terminator.

Unlike most NOS control statements, a CCL statement can be longer than 80 characters. It can extend
over more than one line if each line to be continued contains no more than 80 characters and ends with a

separator.

60435400 M 1-4-1

- OPERATORS

Operators separate operands in & CCL expression. There are three types of CCL operators: arithmetic,
relational, and logical. Operators are used in the expressions within the IFE, WHILE, DISPLAY, and SET
statements and the FILE funetion.

ARITHMETIC OPERATORS

Integer arithmetic is used in each step of the evaulation of a CCL expression. Division, multiplication,
and exponentiation produce a zero result if the absolute value exceeds 248 - 1, Computations are
accurate to 10 decimal digits (20 octal digits) and overflow is ignored. |

The following are the CCL arithmetic operators.

Operator Operation

+ Addition.

- Subtraction.

* Mul tiplication.
/ Division.

*k Exponentiation.
Leading - Negation.
Leading + Ignored.

RELATIONAL OPERATORS

A relational operator produces a value of 1 if the relationship is true, and 0 if it is false. The following
are the CCL relational operators (either form may be used).

Operator Operation
| = L.EQ. Equal to.
.NE. Not equal to.
< LLT. Less than.
> .GT. Greater_than.
LE. Less than or equal to.
.GE. Greater than or equal to.

1-4-2 60435400 M

TN

a

S

N/

LOGICAL OPERATORS

When a CCL expression contains a logical operator, CCL evaluates the full 60 bits of each operand and
produces a 60-bit result. If the result has any bits set, it is true (nonzero); if no bit is set, the result is

false (zero). The following are the CCL logical operators.

Operator Operation
EQV. Equivalence.
OR. Inclusive OR.
.AND. AND.

.XOR. Exclusive OR.
NOT. Complement.

ORDER OF EVALUATION

The order in which operators in an expression are evaluated is:

1.

2.

8.

Exponentiation.

Multiplication, division.

Addition, subtraction, negation. »
Relations.

Complement.

AND.

Inclusive OR.

Exclusive OR, equivalence.

Operators of equal order are evaluated from left to right.

OPERANDS

One or more operands separated by operators make up a CCL expression. Expressions are used within the
IFE, WHILE, DISPLAY, and SET statements. An expression within an expression must begin with a left
parenthesis and end with a right parenthesis. There is no limit on the length of an expression, except
that a period or a right parenthesis (not acting as a statement terminator) must appear within the first 50
operands. Expressions can contain operands of one or more types. There are three types of operands;

constants, symbolic names, and functions.

CONSTANTS

A constant is a string of 1 to 10 characters that CCL processes as an integer. If its first character is a
digit (0 through 9), all characters within the string must be digits, except the final character which may
be a postradix. A B postradix identifies an octal integer; a D postradix identifies a decimal integer. If

no postradix is specified, decimal is assumed.

60435400 M

If the first character of the constant is not a digit, it must be entered as a literal. A literal is a string of
from 1 to 10 characters delimited by dollar signs (for example, $ A LITERAL $). CCL interprets the
literal as right-justified display code with binary zero fill and processes it as an integer.

SYMBOLIC NAMES

A symbolic name is a string of characters that is recognized by CCL and has an assigned value. CCL
uses symbolic names to test for conditions. It can also display the value assigned to a symbolic name.

The value assigned to a symbolic name is defined by the installation or set either by the user or by CCL.

All variable symbolic names have an initial value of 0 except OT (job origin type), SYS (host operating

system), VER (operating system version number), and TIME (the current time of day).

The symbolic names used with the FILE and DT functions are listed with the deseriptions of the functions
in this section. The following symbolic names can be used in CCL expressions. They are grouped
according to a shared attribute. '

e Symbolic names whose values are passed to, but not from, a procedure (refer to the deseription
of procedures later in this seetion). When a procedure reverts, they are restored to the values
they held when the procedure was called.

Name Description

DSC Flag determining whether skipped control statements are entered in the
dayfile (refer to SET Statement in this section).

EF Previous error flag.

R1 Control register 1 contents.

R2 Control register 2 contents,

R3 Control register 3 contents. |

e Symbolic names whose values can be set by the user. All except EM are set by the SET control
statement or the SETJCI maero (refer to section 6 of volume 2).

Name : Description

DSC Flag determining whether skipped control statements are entered in the
dayfile.

EF Previous error flag,

EFG Global error flag.

EM Current exit mode (refer to MODE Statement, section 6).

R1 Control register 1 contents.

R1G Global control register 1 contents.

1-4-4 . ' 60435400 M

1/ A\\\ 4 /_\\

7N

%

Name Description
R2 Control register 2 contents.
R3 Control register 3 contents.

Symbolie names whose values are set by the operating system.

Name Description

CMN CM RFL setting divided by 100g (refer to RFL Statement, section 6).

DSC Flag indicating that skipped control statements are to be entered in the
dayfile.

ECN ECS RFL setting divided by 100g (refer to RFL Statement, section 6).

EF Previous error flag. '

FL Current CM field length.

MFL Maximum CM field length.

MFLL Maximum ECS field length.

oT Job origin type.

SYS Host operating system.

TIME Current time of day (hhmm).

VER Operating system version number.

Symbolic name whose value is set by the calling or termination of a procedure.
Name Description
PNL Procedure nesting level (0 when processing the original control statement
record, 1 when processing a first level procedure, and so forth). Its
maximum value is 50.

Symbolic name whose value can be set by the termination of a procedure (refer to SET
Statement in this section).

Name Description
EFG Global error flag.

“Symbolic names correspond to error code values. In an expression a user typieally checks the

error flag (EF) for a nonzero value; a nonzero value indicates an error, and a zero value
indicates no error. For detailed error examination, the user can compare EF with a particular
symbolic name or its error code value. Users are encouraged to use the symbolic name, because
the numeric values can change in future releases of NOS. The following list contains the errors

. that allow exit processing.

60435400 M) : 1-4-5

Name

ARE
CPE
ECE
FLE
FSE
MNE
MSE
ODE
OKE
PPE
PSE
RRE
SRE
SSE
TKE
TLE

Value

15

10

11
13

12

14

8
6

Description
Arithmetic error.
CPU abort.
ECS parity error.
File limit.
Forced error.
Monitor call error.
Mass storage error (same as track limit).
Operator drop.
Operator kill.
PPU abort.
Program stop.
Rerun error.
SRU limit.
Subsystem abort.
Track limit.

Time limit.

e Symbolic names with fixed values that can be compared with the origin type (OT) value within

an expression.

Name

BCO
EIO

SYO
TXO

Description

Local batch origin.

Remote batch origin.

System origin.

Time-sharing origin.

e Symbolic name with a fixed value that can be compared with the host operating system (SYS)

value within an expression.

Name

NOS

1-4-6

Description

Network Operating System.

60435400 M

!'/‘\ - \\

N

e Symbolic names with true or false values. True is 1; false is 0.

Name Description

F Fixed value of 0 (false).

FALSE Fixed value of 0 (false).

SWn One of six sense switches (n can be from 1 to 6). Their values are set by the

OFFSW, ONSW, and SWITCH statements (refer to section 6).

T Fixed value of 1 (true).

TRUE Fixed value of 1 (true).

FUNCTIONS

Funections are used as expressions or operands within expressions in CCL statements. Functions are not
control statements. The CCL functions are FILE, DT, NUM, and SS.

FILE Function

The FILE function determines whether a file has a specified attribute. The system returns a value of
true (1) or false (0) depending upon whether the file has or does not have the specified attribute(s). Only
the equipment number (EQ) and file ID attributes can return values other than 1 or 0. The list of file
attributes follows the description of the FILE function format.

The FILE funetion must be used as an expression or as a part of an expression in a CCL statement. A
left parenthesis must appear before the file name, a comma must appear between the file name and the
expression, and a right parenthesis must appear after the expression.

The format of the FILE function is:

FILE(1fn,exp)
ifn Name of the file for which attributes are being determined.
exp Either a special FILE function attribute or an expression, consisting of logical

operators and special FILE funection attributes. The expression must be appropriate for
the statement in which the FILE function appears. If the FILE funection is part of an
IFE statement, the expression should be one that can be evaluated as true or false. If
the FILE funection is part of the DISPLAY statement, the expression could have a
numeric value other than a true or false value.

The expression within a FILE funection ecannot include the NUM function, the SS
funetion, or another FILE function; the DT funection or the following symbolic names
can be used within the expression. Any other symbolic name within the expression is
treated either as an implicit DT function (refer to DT Funection which follows) or an an
unidentified variable.

60435400 M 1-4-7

1-4-8

Name

AS
BOI

EOF

EOI

EQ

EX
ID
IN
LB
LI
LO
MD
MS
oP
PH
PM
PR
PT
RA
RD
RM

TP

WR

Attribute

File is assigned or attached to the user's control point.

File is positioned at BOI. This is effective only for a file on mass storage.

- Last operation was a forward operation, which encountered an EOF and is

now positioned at that EOF. This is effective only for a file on mass storage.

Last operation was a forward operation, which encountered an EOI and is
now positioned at that EOL This is effective only for a file on mass storage.

EST number of the equ‘ipment on which the file resides. If the file is not

assigned to the job, it has an equipment number of zero.
File has execute-only permission.

File ID value.

File type is input.

File is on a labeled tape.

File type is library.

File type is local.

File has modify permission.

File is on mass storage.

File is opened.

File type is punch.

File is an attached direct access permanent file.
File type is print.

File type is primary.

File has read append permission.

File has read permission.

File has read modify permission.

File is on magnetic tape.

File is assigned to a terminal,

File has write permission.

60435400 L

Example:

The following job segment shows the FILE funection being used inside an IFE control statement. The FILE
function determines if file ACCT is not at the beginning-of-information (BOI). If ACCT is not at BOI,
the IFE statement is true and the system rewinds ACCT before copying it onto ITEM. If ACCT is at BOI,
the IFE statement is false and the system skips to the ENDIF control statement and copies ACCT onto
ITEM. In both cases, ACCT is copied to ITEM and is replaced.

IFE, FILE (ACCT, .NOT.BOI) ,LABELI.
REWIND,ACCT.

ENDIF,LABELI.

COPY (ACCT, ITEM)

REPLACE, ITEM.

DT Function

The DT function determines the device type on which a file resides. DT can be used only within a FILE
funetion. The value of the DT function is true if the two-charaeter mnemonie included in the function is
equal to the two-character device type. The operating system defines the mnemoniecs.

The format of the DT function as used in the FILE funetion is:

FILE(fn,DT(dt))
ifn Name of the file for which device residence is being determined.
dt A two-character mnemonic identifying the device, which may be any one of the
following:

Type Equipment
CP 415 Card Punch.
CR 405 Card Reader.
DE Extended core storage.
DI 844-21 Disk Storage Subsystem (half-track).
DJ 844-41 or 844-44 Disk Storage Subsystem (half-track).
DK 844-21 Disk Storage Subsystem (full-track).
DL 844-41 or 844-44 Disk Storage Subsystem (full-track).
DM 885 Disk Storage Subsystem (half-track).
DP Distributive data path to ECS.
DQ 885 Disk Storage Subsystem (full-track).

60435400 M 1-4-9

Type Equipment

LP Any line printer.

LR 580-12 Line Printer.

LS 580-16 Line Printer.

LT 580-20 Line Printer.

MT Magnetic tape drive (seven-track).
NE Null equipment.

NT Magnetic tape drive (nine-track).
TT Time-sharing terminal.

Example:

"The following dayfile segment shows that TAXES is on a nine-track magnetic tape, so it is copied to
output and then unloaded. If the DT function was false or if TAXES was not on magnetic tape, TAXES
would be unloaded without being copied. ’

14.00.45.IFE,FILE (TAXES,TP.AND.DT (NT)) ,LABL1.
14.00.46.COPY, TAXES, OUTPUT.

14.00.46. EOI ENCOUNTERED.
14.00.46.ENDIF,LABLI.

14.00.46.UNLOAD, TAXES.

NUM Function

The NUM funetion determines whether a character string is numeric. It evaluates the character string as

true (1) if it is numeric or false (0) if it is not. NUM must be used as an expression or as part of an -

expression in a CCL statement.
The format of the NUM function is:

NUM(e)

c¢ A string of 1 to 40 characters. If the string contains one or more special characters, it

must be delimited by dollar signs ($***$). If delimited by dollar signs, the string is always

evaluated as nonnumeric.

1-4-10 , 60435400 M

N

TN

Example:

The following procedure uses the NUM function to ensure that the passed parameter, NUMBER, is
numerie. If a nonnumeric value is passed, the procedure terminates with an appropriate message.

.PROC,PROC1,NUMBER.

IFE,MUM(NUMBER),QUIT.
WHILE,R1.LE.NUMBER,LOOP.
SET,R1=R1+1.

.

ENDW,LOOP.
REVERT. PROCESSING COMPLETED

ENDIF,QUIT.
REVERT,ABORT. NONNUMERIC PASSED

SS Function

The SS function determines or sets the current subsystem being used by a job. SS ean be used as an
expression or as part of an expression in a CCL statement.

The statement containing the SS funetion must end with a valid terminator. The SS funetion eannot be
used in the FILE function. If it is, an error message (CCL152) is issued and the job step aborts.

60435400 M 1-4-10.1/1-4-10.2

The format of the SS function is:
Ss
or
SS=name
name One of the following subsystem identifiers:
ACCESS BATCH FORTRAN NULL
BASIC EXECUTE FTNTS TRANACT T
The SS funetion is intended for use at a time-sharing terminal to determine and set subsystems by means
of procedure calls. For example, a time-sharing user in the batch subsystem could call a procedure

containing the statement SET,SS=FTNTS. Upon termination of the procedure, the user remains in the
FTNTS subsystem.

CCL STATEMENTS

The following are the CCL control statements grouped according to their common funections.

The following CCL statements are used to conditionally or unconditionally skip a sequence of statements.

Statement Description
SKIP Skips until a matching ENDIF statement is found.
IFE Evaluates a conditional expression. If its expression is true, the next statement is

processed; if its expression is false, statements are skipped until a matching ELSE
or ENDIF statement is found.

ELSE Termimates skipping initiated by a false expression within an IFE statement, or
initiates skipping to a matching ENDIF statement.

ENDIF Terminates skipping initiated by a matching IFE, SKIP, or ELSE statement.

The following CCL statements identify a sequence of control statements as a loop that can be repeatedly
processed.

Statement Description

WHILE - Establishes the beginning of the loop. If the associated expression is true, the loop
is processed; if it is false, the loop is not processed.

ENDW Establishes the end of the loop.

T Not applicable to IAF.

60435400 M 1-4-11

The following CCL statements assign and display values associated with symbolic names.

Statement Description
SET Allows the user to assign values to special CCL registers.
DISPLAY Evaluates an expression and displays the result in the dayfile of the job.

The following CCL statements initiate and end processing of a procedure.

Statement Desecription
BEGIN Initiates processing of a procedure.
REVERT Returns processing from a procedure to the control statement record or procedure

that called it.

Individual descriptions of the control statements follow in alphabetie order.

BEGIN STATEMENT

The BEGIN statement inserts a procedure into the control statement record or into another procedure
(refer to Procedures in this section). The procedure is stored in a procedure file. After the final control
statement in the procedure is processed, a CCL- or user-supplied REVERT statement is executed and job
processing continues with the statement following the BEGIN control statement. Use of a BEGIN
statement is illustrated in figure 1-4-1.

Job File
AJOB.
USER(USRNAME,PASSWRD)
CHARGE(CHRGNUM,PROJNUM) Procedure
L]
. / 'PROC'APROC'
[] L]
BEGIN,APROC. .
- \ [
. REVERT.
L . -
\
Job File
BJOB. Procedure
USER(USRNAME,PASSWRD)
CHARGE(CHRGNUM,PROJNUM) .PROC,BPROC. Procedure
[L
: / . / .PROC,CPROC.
L]
BEGIN,BPROC. BEGIN,CPROC. :
. N \ o
. \ . REVERT.
[] L J
REVERT.
Figure 1-4-1. Calling a Procedure 7

e 1-4-12 ' 60435400 M BN

The formats of the BEGIN statement are:

BEGIN,pname,pfile,p1,p9,...,Pp.

and

pname,pi,pP9y...,Pp-

pname

pfile

%1

60435400 L

Procedure name from the procedure header.
In the first format, pname is the name of a procedures on pfile.

If pname is omitted from the first format, two consecutive commas must be
specified. The default procedure is the record at the current position of pfile. If
pfile is at its end-of-information, CCL rewinds pfile and uses its first record. If
pfile is INPUT, the file is not rewound.

In the second format, pname is the name of the local file containing the procedure
pname or the name of a procedure on the system library. pname must be specified
in the second format.

Name of the file containing the procedure. pfile must be the second parameter in
the first format. Its omission is indicated by two consecutive commas following
pname.

If pfile is omitted from the first format, the installation-defined default file name
is used (PROCFIL is the default).

When the BEGIN statement is processed, CCL looks for a file named pfile assigned
to the job. If none exists, it looks for an indirect access file named pfile and
retrieves a local copy. If pfile is a direct access permanent file, the user must
attach the file before the BEGIN statement is processed.

Optional parameter specifying the substitution to be made for a keyword used in
the procedure. Refer to Keyword Substitution in this section for a full deseription
of keyword use in procedures.

The following parameter formats are available.

keyword The parameter is identical to a keyword on the procedure
header, so the second default for the keyword is used (as
specified on the procedure header).

keyword= References to the keyword in the procedure are removed
(null substitution).

value CCL assigns this 1- to 40-character symbolic name or
value to the keyword whose position in the procedure
header parameter list mateches the position of this
parameter in the BEGIN statement parameter list. A
value containing special characters, other than / or -,
must be $-delimited.

1-4-13

keyword=value The symboliec name or value is substituted for the keyword
wherever it appears in the procedure. If value is followed
by a +, value must be a symbolic name. (Refer to
Symbolic Names earlier in this section.) Keyword in the
BEGIN statement is the same keyword that is used in the
procedure header statement.

The following formats can be used.

Format Description
keyword=value Substitutes the value or sym-
or bolie name itself.

keyword=symbol

keyword=symbol+ Substitutes the decimal value
or associated with the symbolic
keyword=symbol+D name.

keyword=symbol+B Substitutes the octal value
associated with the symbolie
name or interprets the sym-
bolic name as an octal value.

When calling a procedure, a keyword can be named more than once if the
keyword=value parameter format is used each time. CCL issues a message
informing the user that a keyword is named more than once on the statement. It
uses the value specified with the last occurrence of the keyword.

Example:

The following procedure is accessed by a sequence of calling statements in the control statement record
of the job.

.PROC,TEST1,FK.
COMMENT. FK

1-4-14 ' 60435400 M

N

10.15.26.BEGIN,TEST1,FKTEST, 20.
10.15.27.COMMENT. 20
10.15.27.REVERT.CCL
10.15.27.SET(R2=100)
10.15.27.BEGIN,TEST! ,FKTEST,FK=R2+.
10.15.28.COMMENT . 100
10.15.28.REVERT.CCL
10.15.28.BEGIN,TESTI1,FKTEST ,FK=R2+D.
10.15.29.COMMENT . 100
10.15.29.REVERT.CCL
10.15.29.BEGIN,TEST1,FKTEST, FK=R2+B.
10.15.30.COMMENT. 144
10.15.30.REVERT.CCL
10.15.30.BEGIN,TEST!,FKTEST.
10.15.31.COMMENT . FK
10.15.31.REVERT.CCL
10.15.31.BEGIN,TEST1,FKTEST, FK=.
10.15.32.COMMENT.

10.15.32.REVERT.CCL
10.15.32.BEGIN,TEST1,FKTEST, VALUE.
10.15.33.COMMENT . VALUE
10.15.33.REVERT.CCL
10.15.33.BEGIN,TEST!,FKTEST ,VALUE-2.
10.15.33. CCL212- SEPARATOR INVALID VALUE-
10.15.33. CPU ABORT.

10.15.33. JOB REPRIEVED.

10.15.33. CCL263~ EXTERNAL ABORT DURING BEGIN
10.15.33.EXIT.

10.15.34 .BEGIN,TEST1,FKTEST,$VALUE-2$.
10.15.34.COMMENT . VALUE-2
10.15.34.REVERT.CCL

DISPLAY STATEMENT
The DISPLAY statement evaluates an expression and sends the result to the job dayfile in both decimal I
and octal integer form. The largest decimal value which can be displayed is 10 digits. If the value is
larger than 10 digits, GT followed by 9999999999 is displayed. If the value is negative and larger than 10
digits, LT followed by a minus and 9999999999 is displayed. In octal code, numbers as large as 20 digits
can be displayed. For an expression larger than 248-1, zeros are displayed.
The format of the DISPLAY statement is:

DISPLAY(exp) 5

exp A CCL expression.

60435400 L 1-4~15

Example:

The following sample dayfile shows several display operations.

15.14.59 . DISPLAY(TIME)

15.14.59. 1514 27528
15.15.07.SET(R1=99)

15.15.21.3ET(R2=901)

15.15.28.DISPLAY(R1)

15.15.28. 99 143B
15.15.38.DISPLAY(R1+R2)

15.15.38. 1000 1750B
15.15.47.DISPLAY(3/2)

15.15.47. 1 1B

15.16.04 . DISPLAY(2%¥47)

15.16.04. GT 9999999999 40000000000000008B
15.16.15.DISPLAY (-2%**47)

15.16.15. LT -9999999999 -4000000000000000B
15.16.27.DISPLAY(2%%48)

15.16.28. 0 0B
15.16.41.DISPLAY(99999999999)

15.16.41. -CCL156- STRING TOO LONG - 99999999999

The first DISPLAY statement displays the value of the TIME symbolic name. The current time given is
in the form hhmm. The next six lines demonstrate the use of the R1 and R2 symbolic names. The other
DISPLAY statements specify numeric expressions. The integer constant in the final DISPLAY statement
has more than 10 digits, resulting in an error message.

ELSE STATEMENT
The ELSE statement performs one of the following functions.

o It terminates skipping initiated by a false IFE statement whose label string matches that of the
ELSE statement. If the label string does not match, the ELSE statement is skipped.

o It initiates skipping from the ELSE statement to the ENDIF statement whose label string
matches that of the ELSE statement. This happens for a true IFE statement.

Neither a SKIP nor an FILSE statement terminates skipping initiated by another SKIP or ELSE statement.
The format of the ELSE statement is:
ELSE(ls)
Is Label string; 1 to 10 alphanumeric characters beginning with an alphabetic character.
Example:
The following control statements use the FILE function to determine if a file named TEST1 is local to

the job. If the file is loeal, it is copied to the OUTPUT file; if it is not, it is assumed to be an indirect
access permanent file, and a local copy is obtained and copied to OUTPUT.

1-4-16 60435400 L

-

N/

If the file is local, each succeeding statement, up to the ELSE statement, is processed, and the ELSE
statement initiates a skip to the ENDIF statement. If the file is not local, control skips to the ELSE
statement, and each statement sueceeding the ELSE statement is processed.

IFE,FILE(TEST1,L0O),LARELT.

COPYSRF(TEST1,0UTPUT)

FLSE(LABEL1)

GET(TEST1)

CHOPYSRF(TEST1,0UTPUT)

ENDIF(LABEL1)

The following dayfile segment results when the preceding control statements are processed and TEST1 is
not initially a local file.

11.33.00.IFE,FILE(TEST1,L0O),LABEL1.
11.33.00.FLSE(LAREL1)

11.33.00.GET(TEST1)
11.33.00.COPYSBF(TEST1,0UTPUT)

11.33.01. ENMD OF INFORMATIONM ENCOUNTERED.
11.33.01.FNDIF(LABELT)

The following dayfile segment results when the preceding control statements are processed and TEST1 is
initially a local file.

15.40.19.IFE,FILE(TEST1,L0),LABEL1.
15.40.19.COPYSBF(TEST1,0UTPUT)

15.40.21. END OF INFORMATION ENCOUNTERED.
15.40.21.ELSE (LABEL1)

15.40.21.ENDIF (LABEL1)

ENDIF STATEMENT
The ENDIF statement terminates skipping initiated by a SKIP, IFE, or ELSE statement. In all cases, the
label string on the ENDIF statement must match the label string on the statement that initiates the

skipping. If CCL encounters an ENDIF statement with a nonmatching label string, it ignores that
statement.

The format of the ENDIF statement is:
ENDIF(ls)
Is Label string; 1 to 10 alphanumeric characters beginning with an alphabetic character.
Example:

When the SKIP statement in the following sequence of control statements is processed, control skips to
ENDIF, LABEL1, and none of the control statements between these two statements are processed.
SKIP(LABEL1)

any sequence of
control statements

ENDII‘:(LABF.L1)

60435400 L 1-4-17 ||

ENDW STATEMENT

The ENDW statement identifies the end of the WHILE control statement loop. A control statement loop
is a sequence of statements that may be repeatedly processed. The number of times the loop is
processed depends on the evaluation of the expression specified in the WHILE statement that begins the
loop.

The ENDW statement must have a label string that matches the label string specified in the WHILE
statement that begins the loop.

The format of the ENDW statement is:
ENDW(ls)

Is Label string; 1 to 10 characters beginning with an alphabetic character. The string
cannot contain special characters

Refer to WHILE Statement in this section for an example of ENDW statement use.

IFE STATEMENT

The IFE statement conditionally initiates the skipping of succeeding statements. If the expression in the
IFE statement is true, the next statement is processed. If the expression is false, CCL skips statements
until it encounters a matching ELSE or ENDIF statement. The statements match when their label strings
are identical.

An IFE statement must have a matching ELSE or ENDIF statement. If the IFE statement initiates
skipping without a matching terminating statement, CCL aborts the job step. If the IFE statement is in a
procedure, the terminating statement must also be in that procedure.

The format of the IFE statement is:

IFE,exp,ls.
exp A CCL expression. The separator following exp must be a comma.
1s Label string; 1 to 10 alphanumeric characters beginning with an alphabetic character.
Example 1:

The following control statements initiate the compilation and execution of a FORTRAN program and
then test for any errors during execution. If an error was made, the error code is displayed.

FTN,I=IFTEST.

SET(EF=0) INITIALIZE ERROR FLAG
NOEXIT.

LGO.

ONEXIT.

IFE,EF.NE.O,LABL1.

DISPLAY(EF)

ENDIF,LABL1.

1-4-18 60435400 L

7N

o

If the job step executes without error, the error flag (EF) is 0. In this case, control passes to the
ENDIF,LABEL1 statement. If an error oceurs, the error flag is not 0, the statement is true, and control
passes to the next statement; CCL then displays the error code in the error flag register. (The NOEXIT
and ONEXIT statements are described in section 6.)

In the following sample dayfile segment resulting from processing of the preceding statements, the
FORTRAN program attempts to call a subroutine BETA which does not exist (outside the field length of
the job).

11.23.41.FTN,I=LFTEST.

11.23.44. .017 CP SECONDS COMPILATION TIME
11.23.44.SET(EF=0) INITIALIZE ERROR FLAG
11.23.44 .NOEXIT.

11.23.44.LGO.

11.23.45. NON-FATAL LOADER ERRORS -
11.23.45. UNSATISFIED EXTERNAL REF -- BETA
11.23.46. CPU ERROR EXIT AT 404253,
11.23.46. CM OUT OF RANGE.

11.23.48.0NEXIT.
11.23.48.IFE,EF.NE.O,LABLI.
11.23.48.DISPLAY (EF)

11.23.48. 1 1B

11.23.48.ENDIF,LABL1.

Example 2:

The following procedure file is an indirect access file called COLORPR. It uses the IFE statement to
determine if the color the BEGIN statement substituted for COLOR is red or blue. Different processing
is done for the colors red and blue. Any other color is ignored. The # character in the comment line
inhibits substitution for the word (CCLOR) it precedes (refer to Procedure Body later in this section).

.PROC,A,COLOR.
IFE, $COLORS$.EQ. SREDS,L1.

COMMENT. PROCESSING DONE FOR #COLOR OF COLOR
REVERT.

ENDIF,L1.

IFE, $COLORS.EQ. $BLUES,L2.

COMMENT. PROCESSING DONE FOR #COLOR OF COLOR
REVERT .

ENDIF,L2.

COMMENT. NO PROCESSING FOR #COLOR OF COLOR

60435400 L 1-4-19 ©

The following control statements call procedure A.

BEGIN,A,COLORPR,BLUE.
BEGIN,A,COLORPR,RED.
BEGIN,A,COLORPR,PINK.

The following dayfile segment results when the preceding control statements are processed It shows the
effect of the # character.

08.34.30.BEGIN,A,COLORPR,BLUE.
08.34.32.1FE,$BLUE$.EQ.SREDS,L1.

08.34.32.ENDIF,LI.

08.34.32.1FE,$BLUE$.EQ.$BLUES,L2.

08.34.32.COMMENT. PROCESSING DONE FOR COLOR OF BLUE
08.34.32.REVERT.

08.34.33.BEGIN,A,COLORPR,RED.

08.34.34.1FE,RED.EQ. $REDS,L1.

08.34 .34 .COMMENT . PROCESSING DONE FOR COLOR OF RED
08.34 .34 .REVERT .

08.34.34.BEGIN,A,COLORPR,PINK.
08.34.35.IFE,$PINK$.EQ.$REDS,L 1.

08.34.35.ENDIF,L1.

08.34.35.IFE,$PINK$.EQ.S$BLUES,L2.

08.34.35.ENDIF,L2.

08.34.36.COMMENT. NO PROCESSING FOR COLOR OF PINK
08.34.36.REVERT.CCL

REVERT STATEMENT

The REVERT statement terminates procedure processing. The formats are:

REVERT.comment

and

REVERT,ABORT.comment

comment

Optional character string appended after the statement terminator. This
comment is especially useful to the time-sharing user because, when the REVERT
statement is displayed at the terminal following procedure processing, the
comment can inform the user as to how the procedure reverted. The REVERT
statement is displayed at the terminal only if the time-sharing user is in the
BATCH subsystem. The REVERT,ABORT statement is always displayed at the
terminal. .

The REVERT statement returns control to the statement following the BEGIN statement that called the
procedure. The REVERT,ABORT statement sets the error flag EF=CPE (CPU abort). Unless a NOEXIT
statement has been processed, control.goes to the next EXIT statement in the control statement record
(refer to Exit Processing in section 5).

CCL always appends the following control statements to a procedure record.

REVERT.CCL
EXIT.CCL
REVERT,ABORT.CCL

These statements terminate CCL processing if no user REVERT statements are processed.

1-4-20

60435400 L

RN

7

Example:

The following procedure (REVTST) is on a file called PROCFL. It reverts to the job calling it if the
named file has no read permission and gives control to the job EXIT statement if the named file has no

read modify permission.

.PROC,REVTST,LFN1,LFN2.
IFE, FILE(LFN!,RD) ,LABEL1.

‘TDUMP (I=LFN1)

ELSE(LABEL1)

REVERT.NO READ PERMISSION
ENDIF,LABELI.

IFE,FILE(LFN1,RM) ,LABEL2.

COPY (LFN2,LFN1)

ELSE(LABEL2)

REVERT,ABORT. NO READ/MODIFY PERMISSION
ENDIF,LABEL2.

The following two jobs (REVJOB1 and REVJOB2) call the REVTST procedure. REVJOB1 attaches an
execute-only file; REVJOB2 attaches a read and/or execute file.

REVJOB1.
USER (USERNUM, PASWD , FAMNAME)

CHARGE (CHARGNUM, PROJNUM)
ATTACH(FILE!/UN=ALTUSER ,PW=PW1,M=E)
BEGIN,REVTST,PROCFL,FILE! ,XFIL.
COMMENT. RETURNS HERE

EXIT.
COMMENT. EXIT ON ERROR

REVJOB2.
USER (USERNUM, PASWD , FAMNAME)

CHARGE (CHARGNUM, PROJNUM)

ATTACH (FILE2 /UN=ALTUSER ,PW=PW2 ,M=R)
BEGIN,REVTST,PROCFL,FILE2,XFIL.
COMMENT. RETURNS HERE

EXIT.

COMMENT. EXIT ON ERROR

The following are the dayfile segments produced by REVJOB1 and REVJOB2. REVJOBI1 processes the
REVERT statement and terminates normally. REVJOB2 processes the REVERT,ABORT statement and
terminates via error processing.

10.
10.
.09.51.
.09.51.
.09.52.
.09.53.
.09.53.
.09.53.
.09.53.
.09.54,

09.51.
09.51.

60435400 M

REVJOB1.

USER (USERNUM, , FAMNAME)

CHARGE (CHARGNUM, PROJNUM)

ATTACH (FILE1/UN=ALTUSER, PW= , M=F)
BEGIN, REVTST, PROCFL,FILE1, XFIL.
IFE,FILE(FILE1,RD),LABEL1.
ELSE(LABEL1)

REVERT.NO READ PERMISSION
COMMENT. RETURNS HERE

EXIT.

10.10.11.REVJOB2.
10.10.11.USER (USERNUM, , FAMNAME)

10.10.
10.10.
10.10.
10.10.

1
1"

. CHARGE (CHARGNUM, PROJNUM)

.ATTACH (FILE2/UN=ALTUSER, PW=,M=R)
.BEGIN, REVTST,PROCFL ,FILE2, XFIL.
.IFE,FILE(FILE2,RD),LABEL1.
.TDUMP (I=FILE2)

. TDUMP COMPLETE.

.FLSE(LABEL1)

.ENDIF,LABEL1.
.IFE,FILE(FILE2,RM),LABEL2.
.ELSE(LABEL2)

.REVERT,ABORT. NO READ/MODIFY PERMISSION
.EXIT.

.COMMENT. EXIT ON ERROR

1-4-21

SET STATEMENT

The SET statement assigns a value to a control register, an error flag, or the flag that determines,
whether skipped control statements are entered in the dayfile. Using the SS funetion, it also can change
the current time-sharing subsystem:

To assign a value to a symbolic name, the following format is used.

SET(sym=exp)

sym One of the following symbolic names (initially these names are set to 0).
Name Description -
R1, R2, or R3 Local control registers. When a procedure is called, the

current values of R1, R2, and R3 are passed to the
procedure. The values of these registers may change
within the procedure. However, when processing reverts,
these registers are restored to the values they had when
the procedure was called.

R1G Global control register. When a procedure is called or
reverts, R1G keeps its current value.

EF Local error flag. When a procedure is called, the current
value of the error flag is passed to the procedure. The
value of the error flag may change within the procedure.
However, when processing reverts, the error flag is
restored to the value it had when the procedure was called.

EFG Global error flag. When a procedure is called or reverts,
EFG keeps its current value.

DSC Dayfile-skipped-control—statemeﬁt flag. Initially, it is set
to 0, so that control statements that are skipped (not
processed) are not entered in the dayfile.

exp A CCL expression. The value derived through evaluation of the expression is
assigned to the symbolic name. Acceptable values for each symbolic name follow.

sym Suggested Value

R1, R2, R3, or R1G Any integer between -131 071 and 131 071. If the
value is outside this range, it is truncated. CCL
does not issue a message as a result of the
truneation.

1-4-22 60435400 L

sym

EF or EFG

DSC

Suggested Value

Any integer between 0 and 63. If the value is
greater than 63, it is truncated. To assign the value
defined by the system for an error condition, the
user should set the error flag to one of the error
condition symbolic names (refer to Symbolic Names
at the beginning of this section). CCL sets the EF
flag to the appropriate error code when an error
occurs. If EFG is 0 when a REVERT statement is
processed, CCL sets EFG to the value in EF.

1 or 0. If the value of the expression is nonzero,
DSC is set to 1. While DSC is 1, skipped control
statements are entered in the dayfile preceded by
two periods. Some CCL error processing routines
set DSC to 1 so that skipped control statements are
written in the dayfile.

To change the current time-sharing subsystem, the following format is used.

SET(SS=subsystem)

subsystem Subsystem name. The subsystem names are ACCESS, BASIC, BATCH, EXECUTE, §
FORTRAN, FTNTS, NULL, and TRANACT.T

Examples:

The first three examples use procedures from the following procedure file. It is an indirect access

permanent file with the name SETFILE.

.PROC,P1.
DISPLAY(R1)
DISPLAY(R1G)
SET(R1=9)
SET(R1G=888)
end-of-record
.PROC, P2.

/ GET (ABC)
DISPLAY(EF)
DISPLAY(EFG)
end-of-record
.PROC,P3.
GET(BASIC1)
BASIC.
DISPLAY(EF)
DISPLAY(EFG)
end-of-record
end-of-file

N T TRANACT is not applicable to IAF.

60435400 L

1-4-23

Example 1 - Control Register Use:

The following control statements (below on the left side) set and display registers R1 and R1G. A

procedure, P1, is called which displays these registers, resets them, and then reverts to the control
statement record where they are again displayed.

I On the right is the dayfile segment resulting from processing of the control statements.

SET(R1=1) 16.34.42,SET(R1=1)
SET(R1G=10) 16.34.42.SET(R1G=10)
DISPLAY(R1) 16.34.43.DISPLAY(R1)
DISPLAY (R1G) 16.34.43. 1 1B
BEGIN,P1,SETFILE. 16.34.43.DISPLAY(R1G)
DISPLAY(R1) 16.34.43. 10 12B
DISPLAY(R1G) 16.34,.43,BEGIN,P1,SETFILE.
16.34.44 DISPLAY(R1)
16.34. 40, 1 1B
16.34.44 DISPLAY(R1G)
16.34. 44, 10 12B

16.34.44,SET(R1=9)
16.34.44, SET(R1G=888)
16.34. 44, REVERT. CCL
16,34, 44.DISPLAY(R1)

16.34.44, 1 1B
16.34.45,DISPLAY(R1G)

16.34.45. 888 1570B

The R1 and R1G registers retain their setting when the procedure is called. However, after new values

are set in the procedure and control reverts to the control statement record, R1 returns to its previous
value and R1G retains the value set in the procedure. ‘

1-4-24 ; 60435400 L

_

Example 2 - Error Flag Use (EFG Nonzero):

The following control statements (below on left side) set values in the error flags EF and EFG and then
call a procedure which attempts to access an indirect access permanent file. Control reverts to the
control statement record where EF and EFG are displayed to see if any error code generated is returned
via these flags. On the right side is the dayfile segment resulting from the processing of the control

statements.

NOEXIT.
SFT(EF=10)
SET(EFG=20)
DISPLAY(EF)
DISPLAY (EFG)
BEGIN,P2,SETFILE.
DISPLAY (EF)
DISPLAY (EFG)

16.

43.:
43,
U3,
43,
U3,
L3,
3.
LN3.3
L3
B3
N3,
LA3.7
A3
A3
.43,
LURL3
b3,
LU3.
LH3.

LHOEXTIT.
.SET(EF=10)
LSET(FFG=20)
.DISPLAY(EF)

10 128

.PISPLAY(EFG)

20 24P

.BEGIM,P2,SETFILE.
.GET(ARC)

ABC NOT FOUND, AT n00121,

.DISPLAY(FF)

3 3R

.DISPLAY (FFG)

20 24R

.RFVFRT.CCL
.DISPLAY(EF)

10 12R

:DISPLA‘{(FFG)
37.

20 2UR

The procedure attempts to get a permanent file which does not exist. This changes EF to error code 3.
It does not affeect EFG. Control reverts to the control statement record and displays EF and EFG. EF
returns to its initial setting; EFG remains unchanged throughout.

60435400 L

1-4-25

Example 3 - Error Flag Use (EFG Zero):

To return the error code generated in a procedure to the control statement record, EFG must be 0 before
there is an exit from the procedure. This is demonstrated by the following control statements (below left

side).

The dayfile segment (on the right) resulting from processing of the statements shows how the error code
is returned. .

NOEXIT. 09.42.52.NUEXIT.
SET(EF=10) 09.42.52.SET(EF=10)
BEGIN,P3,SETFILE. 09.42.52.BEGIN,P3,SETFILE.
DISPLAY(EF) 09.42.53.GET(BASIC1)

DISPLAY(EFG) 09.42.55.BASIC.
‘ 09.42.56. INPUT FILE EMPTY OR MISPOSITIONED
09.42.56.DISPLAY(EF)

09.42.56. 4 4B
09.42.57.DISPLAY(EFG)
09.42.57. 0 0B

09.42.57.REVERT. CCL
09.42.58.DISPLAY(EF)

09.42.58. 10 12B
09.42.58. DISPLAY(EFG)
09.42.58. 4 4B

The procedure attempts to compile a BASIC program that is not an INPUT record. This generates error
code 4 in EF but does not affeet EFG while control is still within the procedure. When control reverts to

the control statement record, EF returns to its original setting and error code 4 is set in EFG.

- 1-4-26 60435400 L

Example 4 - DSC Flag Use:

The following control statements (below on left side) demonstrate the effect of DSC=0 and DSC=1. On
the right side is the dayfile segment resulting from processing of the preceding control statements.

SET(DSC)=0) 16.49.36.SET(DSC=0)

SKIP(LABL1) 16.49.36.SKIP(LABL)

COMMENT. SINCE THE DAYFILE SKIP 16.49.36 .ENDIF(LABLI)

COMMENT. CONTROL IS SET TO ZERO, 16.49.37.SET(DSC=1)

COMMENT. THESE STATEMENTS WILL NOT 16.49.37 .SKIP(LABL2)

COMMENT. APPEAR IN THE DAYFILE. 16.49.37...COMMENT. SINCE THE DAYFILE SKIP
ENDIF(LABLI1) 16.49.37...COMMENT. CONTROL IS NOW SET TO ONE,
SET(DSC=1) 16.49.37...COMMENT. THESE STATEMENTS WILL
SKIP(LABL1) 16.49.37...COMMENT. APPEAR IN THE DAYFILE AND
COMMENT. SINCE THE DAYFILE SKIP 16.49.37...COMMENT. EACH WILL BE FLAGGED
COMMENT. 'CONTROL IS NOW SET TO ONE, 16.49.37...COMMENT. WITH TWO INITIAL PERIODS.
COMMENT. THESE STATEMENTS WILL 16.49.37.ENDIF(LABL2)

COMMENT. APPEAR IN THE DAYFILE AND
COMMENT. EACH WILL BE FLAGGED
COMMENT. WITH TWO INITIAL PERIODS.
ENDIF(LABL2)

SKIP STATEMENT

The SKIP statement initiates unconditional skipping of succeeding control statements. Skipping is
terminated by an ENDIF statement that has a label string matching the label string specified on the SKIP
statement. Only an ENDIF statement, and not an ELSE statement, terminates skipping initiated by a
SKIP statement.

The format of a SKIP statement is:

SKIP,ls.

Is Label string; 1 to 10 alphanumerie characters beginning with an alphabetic
character.

An example of the use of the SKIP statement is given after the description of the ENDIF statement.

WHILE STATEMENT

The CCL iterative statements WHILE and ENDW bracket a group of control statements into a loop that
can be repeatedly processed. The beginning of the loop is identified by a WHILE statement and the end
by an ENDW statement. The ENDW statement must have a label string that matches thelabel string
specified on the WHILE statement. The loop is repeated as long as the expression in the WHILE
statement is true. If the expression is initially false, control immediately skips to the ENDW statement;
if no ENDW statement is found, all the remaining statements in the control statement record are skipped.

Label strings of all WHILE statements within the control statement record of a job should be unique.
Duplication of a label string within a control statement record or within a procedure can produce
unpredictable results. The same label string can be used in a called procedure and in the calling control

statement record or procedure.

60435400 L 1-4-27

The format of the WHILE statement is:

WHILE,exp,ls.

exp A CCL expression. The separator following exp must be a comma.
Is Label string; 1 to 10 alphanumeric characters, beginning with an alphabetic
character.
Example:

The foﬂowing control statements initiate a loop which is repeated five times.

SET (R1=0)

SET (R2=5)
WHILE,R1.LT.R2,FINISH.
SET (R1=R1+1)

DISPLAY (R1)

ENDW,FINISH.

The user can vary the number of repetitions by setting different values in R2.

PROCEDURES

A procedure is a group of control statements which exist apart from the job control statement record. A
BEGIN statement inserts a procedure into the control statement record of a job or into another
procedure previously called by the job. A procedure is to a control statement record as a subroutine is to
a program. Like a subroutine, a procedure usually contains the control statements required to perform a
single function within a job. A procedure can be changed by parameters passed to the procedure from
the BEGIN statement.

A procedure is stored as a record on a file. Several procedures can exist on one file. The file may be a
local file, an indirect access permanent file, or an attached direct access permanent file. A procedure
file can reside on magnetic tape as well as on mass storage.

PROCEDURE STRUCTURE

A procedure consists of a procedure header statement and a procedure body. The procedure header
statement must be the first line in the procedure. It names the procedure and identifies any keywords
that can be used to transmit values to the procedure from the BEGIN statement.

The procedure body contains all statements between the header statement and the end-of-record or
end-of-file. An informative error message is issued if the body does not contain at least one control
statement. All control statements, including CCL statements, are legal within a procedure. The body
can also include special procedure commands and data (explained later in this section).

1-4-28 60435400 L

N

A CCL procedure should not include a NEW or
OLD statement without the ND parameter. These
statements return working files required by CCL
when it reverts to the previous level within the
job sequence of control statements.

A CCL statement can extend over more than one line if each line to be continued contains no more than
80 characters and ends with a separator. If a new line is not a legal CCL statement or command, it is
interpreted as a control statement error when executed.

Procedure Header Statement

The procedure header statement is the first line of the procedure. It identifies the procedure and
specifies the keywords for the BEGIN statement. The BEGIN statement substitutes the keywords into
the procedure body. Unless the header statement contains an error, it does not appear in the dayfile.

The syntax rules for header statements are:

The header statement must begin with a period followed by the characters PROC.
The separators between parameters must be commas.
A period terminates the header statement.

The header statement can extend over more than one line if each line to be continued ends with
a separator.

The format of the procedure header statement is:

.PROC,pname,py,p9,...,Pp.

pname Name of the procedure; one to seven alphanumeric characters. It can begin with a
numeric character.

P Optional formal parameters whose keywords are used in the body of the
procedure. Depending on the BEGIN statement parameters, keywords in the
procedure body can be removed, left as they are, replaced by a value specified in
the BEGIN statement, or replaced by first or second default values as specified on
the procedure header parameter (refer to Keyword Substitution in this seetion).

60435400 M 1-4-29

Procedure Body

The maximum number of procedure header keywords is defined by‘ the
installation. The default is 50. :

The following are the legal formats for p;.

Format ‘Example
keyword FILE1l
keyword= FILEl=
keyword=defaultl FILE1=LGO
keyword=defaultl/default2 FILE1=LGO/OLD
keyword=/default2 FILE1=/OLD
keyword=#DATA (CDC graphies: keyword==DATA) FILE1=#DATA
keyword=#FILE (CDC graphies: keyword==FILE) FILE1=#FILE
keyword A 1- to 10-character keyword.
defaultl A 1- to 40-character first default value. If defaultl
contains special characters, it must be $-delimited. This
default value replaces the keyword if this parameter is
omitted from the BEGIN statement.
default2 A 1- to 40-character second default value. If default2

contains special characters, it must be $-delimited. This
default value replaces the keyword if the BEGIN statement
specifies a parameter value identieal to the keyword.

defaultl and default2 could be either of the following special values.

#DATA

#FILE

Special default value used for keyword if an overriding
value is not specified on the BEGIN statement. If this
default value is used, the keyword within the procedure
body references the record that immediately follows the
procedure record on the file (refer'to figure 1-4-2).

Special default value used for keyword if an overriding
value is not specified on the BEGIN statement. If this
default value is used, the keyword within the procedure
body references a data file created within the procedure by
CCL procedure commands (refer to Procedure Commands
in this section).

The procedure body consists of all statements between the procedure header statement and the
end-of-record. These statements can be control statements, CCL statements (including calls to other
procedures), and CCL procedure commands. The parameters in these statements can be a mixture of
values defined in the procedure body and keywords defined in the procedure header statement. When the
procedure is called, substitutions are made for the keywords, and the procedure body becomes the control
statement record until a REVERT statement is encountered.

1-4-30

60435400 M

Program input from next record
on file containing procedure

Program input from record
on separate file, INFILE

Processing of the second procedure,B1,is initiated with the
control statement:

Processing of the second procedure,B2,is initiated with the
control statement:

BEGIN,B1,PROFIL1,INFILE. BEGIN,B2,PROFIL2.

PROFIL1 PROFIL2
. .PROC,A1,PFILE. .PROC,A2 PFILE.
First record } | GET (PFILE) First record ATTACH(PFILE)
of PROFILT) | coPYSBF(PFILE,) of PROFILZ | | cCOPYSBF(PFILE,)
end-of-record end-of-record
.PROC,B1,IFILE. .PROC,B2,P1==FILE.
Second and GET(IFILE) .
FTN(I=IFILE) Second record] | FTN,I=P1.
last record < .)
of PROFIL1 of PROFIL2 LGO.]
end-of-record end-of-record
end-of-file
. Source program
Third and to be compiled
last record by FTN
of PROFIL2
INFILE end-of-record
end-of-file
Source program
Single record to be compiled

on INFILE by FTN

Figure 1-4-2. Procedure Access to a Data Record

When specifying keywords in the procedure body, two special characters, ASCII graphics # and _ (or CDC
graphies = and™), are used to inhibit keyword substitution and to combine parts of a parameter after
keyword substitution.

A single # character placed immediately before a keyword in a procedure statement inhibits substitution
for that keyword. Two such characters (##) placed immediately before a keyword allow substitution; one
is retained. If # is placed before a nonkeyword, it has no effect; substitution takes place. If ## is
placed before such a parameter, one # is retained. The # does not affect a separator.

60435400 M 1-4-31 |

The linking character, underline (_), is used in a procedure statement to temporarily separate two
parameters (keyword or nonkeyword). After possible substitutions are made, the underline character is
removed and the two parameters are merged into one. # before _ retains _ and allows substitution. _
before # does not affect the inhibiting action of #.

Examples of use of the # and __ characters in a procedure are shown in table 1-4-1,

TABLE 1-4-1. ALTERATIONS OF PARAMETERS IN A PROCEDURE
BODY BY USE OF # AND _

Call statement: BEGIN,APROC,APROCFL.

Procedure header: .PROC,APROC,FK1=X,FK2=Y.

Procedure Parameters Procedure Parameters

in Procedure Body in Procedure Body

before Substitution after Substitution Comment
#FK1,FK1 , FK1,X # inhibits substitution in a
I,J I,J keyword that immediately follows.
FK1#FK2 XFK?2
I#J IJ
##FK1,FK1 #X,X ## allows substitution if a
##1,d #1,J keyword immediately follows;
##FK1=FK2 #X=Y one # is retained.
FK1#,FK1 X,X # does not affect a separator,
FK1_FK2 XY — Separates two parameters
1—J 1IJ before substitutions are made;
FK1..J XJ after all substitutions are
I_FK2 1Y made, they are joined into one

‘parameter.
FK1#_FK1 X_X # before _ retains _ and
FK1#_FK2 XY allows substitution.
FK1_#FK1 XFK1 — before an # does not affect
the inhibiting action of the #.

® 1-4-32 60435400 M

Example 1: # Character

The following procedure resides on file PROCFIL.

.PROC, INHIBIT, I=TEST.
GET(I)

FIN (#I=1,L=0)

LGO.

COMMENT. I, #I, I#I, #I#I.

On the left is the BEGIN statement that calls procedure INHIBIT. On the right is the resulting dayfile.

BEGIN, INHIBIT, , .

14.14 .24, $BEGIN, INHIBIT, , .

14.14.24 .GET(TEST)

14.14.24 . FTN (I=TEST,L=0)

14.14.27. .022 CP SECONDS COMPILATION TIME
14.14.27.1LGO.

14.14.28. END PROGI

14.14.28. 011500 MAXIMUM EXECUTION FL.
14.14.28. .002 CP SECONDS EXECUTION TIME.

14.14.28.COMMENT. TEST, I, TESTI, II.
14.14.28.SREVERT.CCL

~—

Example 2: _ Character

Procedure LINK resides on file FILE1.

.PROC,LINK, TYPE=SBF,LFN1,LFN2.
REWIND (LFN1)
COPY_TYPE (LFN1,LFN2)

) 60435400 M _ : 1-4-33 o

The first BEGIN statement does a COPYSBF of file PLAN to file SCHEME. The next BEGIN statement
does a COPYEI of file MAZE to file TAXES. Each resulting dayfile follows the BEGIN statement.

BEGIN,LINK,FILE!,TYPE=SBF,LFN1=PLAN,LFN2=SCHEME.

08.00.17.$BEGIN,LINK,FILE1, TYPE=SBF, LFN1=PLAN, LFN2=SCHEME.
08.00.18.REWIND (PLAN)

08.00.18.COPYSBF (PLAN, SCHEME)

08.00.18. EOI ENCOUNTERED.

08.00. 18.$REVERT.CCL

BEGIN,LINK,FILE!, TYPE=EI,LFN1=MAZE,LFN2=TAXES.

08.03.23.$BEGIN,LINK,FILE1, TYPE=EI,LFN1=MAZE,LFN2=TAXES.
08.03.23.REWIND (MAZE)

08.03.24.COPYEI (MAZE, TAXES)

08.03.24. EOI ENCOUNTERED.

08.03.24.$REVERT.CCL

o 1-4-34 | 60435400 M

PROCEDURE COMMANDS

Procedure commands enable the user to format a data file within a procedure and to insert documentary
comments within a procedure. The commands are in fixed format with a period in column 1 and the
ecommand name beginning in column 2. ; '

.DATA Command

A .DATA command in a procedure marks the beginning of a sequence of data lines to be written to a
separate file when the procedure is called. File marks generated by .EOR and .EOF commands can
subdivide the lines written to the data file. The sequence of data lines is terminated by one of the
following:

e Another .DATA command.

o A system end;of-record (not an .EOR command).
e A system end-of-file (not an .EOF command).

e A system end-of-information.

. The data file created does not include the .DATA command. Keyword substitution continues within the
data statements,

The format of the .DATA command is:

.DATA,Ifn
Ifn Optional name of the file on which the data lines are to be written. If a file

named Ifn is already assigned to the job, it is released, and new local file lfn is I
created. After the data file is written, it is automatically rewound.
If 1fn is omitted, the default file referenced by special default #DATA is used. At I
the first procedure level, the system calls this file ZZCCLAA; at the second
procedure level it is called ZZCCLAB; and so forth.

The following examples show three different ways of inserting a FORTRAN program into a procedure. i

60435400 M 1-4-35

Example 1: Procedure accesses program data with .DATA command

The following procedure file is an indirect access permanent file named DATAFIL.

.PROC, ALPHA, P1=#{DATA, X=FTNOUT .

FTN(I=P1,L=X)

LGO.

REPLACE (X=LISTFIL)

.DATA. FORTRAN PROGRAM FOLLOWS
PROGRAM X (OUTPUT)

FORTRAN SOURCE
PROGRAM

END

The following call statement in a control statement record of the job accesses procedure ALPHA on file
DATAFIL.

BEGIN, ALPHA,DATAFIL.

A sample of a resulting dayfile is:

15.32.15.$BEGIN, ALPHA, DATAFIL.
15.32.16.FTN(I=ZZCCLAA,L=FTNOUT)

15.32.20. .027 CP SECONDS COMPILATION TIME
15.32.20.LGO.

15.32.22. END FTNOUT

15.32.22. 011500 MAXIMUM EXECUTION FL.
15.32.22. .004 CP SECONDS EXECUTION TIME.

15.32.22.REPLACE (FTNOUT=LISTFIL)
15.32.22.$REVERT.CCL

All input after the .DATA command (the FORTRAN source program) is written onto the default
temporary file ZZCCLAA. Parameter substitution also oceurs in the data statements.

e 1-4-36

60435400 M

Example 2: Procedure accesses program data with #FILE

The following procedure is an indirect access permanent file named PFILE. The record immediately
following procedure BETA contains the program data. The #FILE default tells the FTN compiler to
search for input from the next record on file BETA.

.PROC, BETA, P1=#FILE,X=FTNOUT.
FTN(I=P1,L=X)
LGO.
REPLACE (X=LISTFIL)
-EOQR-
PROGRAM X (OUTPUT)

FORTRAN SOURCE
PROGRAM

END

The following call accesses procedure BETA on file PFILE.

BEGIN,BETA,PFILE.

The following is a segment of the resulting dayfile. Parameter substitution occurred within the
procedure but not within the FORTRAN program.

10.15.33.$BEGIN,BETA, PFILE.
10.15.33.FTN(I=PFILE,L=FTNOUT)

10.15.37. .026 CP SECONDS COMPILATION TIME
10.15.37.LGO.

10.15.39. END X

10.15.39. 011500 MAXIMUM EXECUTION FL.
10.15.39. .005 CP SECONDS EXECUTION TIME.

10.15.39.REPLACE (FTNOUT=LISTFIL)
10.15.39. $SREVERT.CCL

60435400 M ‘ 1-4-37 o

Example 3: Procedure accesses program data from another file

To access program data outside of the procedure file, the procedure must include a GET or an ATTACH
control statement. The following procedure is in the default file PROCFIL. It uses a GET statement to
access the program data on file TEST.

.PROC,GAMMA, P1=PROGRM, X=FTNOUT.
GET(P1)

FTN(I=P1,L=X)

LGO.

REPLACE (X=LISTFIL)

The following call accesses procedure file GAMMA.
BEGIN;GAMMA, ,P1=TEST.
Parameter substitution oceurred within the procedure but not within the FORTRAN program, as shown in

the following dayfile segment.

09.15.40.$BEGIN,GAMMA, ,P1=TEST.
09.15.40.GET (TEST)
09.15.40.FTN(I=TEST,L=FTNOUT)

09.15.44. .030 CP SECONDS COMPILATION TIME
09.15.44.LG0O.

09.15.46. END X

09.15.46. 011500 MAXIMUM EXECUTION FL.
09.15.46. .004 CP SECONDS EXECUTION TIME.

09.15.46.REPLACE (FTNOUT=LISTFIL)
09.15.46.$REVERT.CCL

An example of a data file written from a procédure to a named file is shown in figure 1-4-3.

e 1-4-38 60435400 M

PFILE3

.PROC,A.
DFILE
_Dé_T.-/:\;DﬂLE. _____ First data record
One Data for
record first record end-of-record
on PFILE3
.EOR
Data for . Second data record
second record
.EOF
end-of-record
Data for end-of-file
third record
end-of-record When procedure A is called, Third data record
Next .PROC,B. the data is written on a local
file named DFILE
record d-of d
on PFILE3 enc-ob-record
end-of-information

end-of-record

Figure 1-4-3. Data File Written from a Procedure to a Named File

.EOR Command

The .EOR command is used to separate records in a data file originating in a procedure. Whenever an
.EOR is placed, an actual end-of-record is recorded when the data file is written on #DATA or 1fn. Since
the data statements are written on an external file, the .EOR command has no effect on the system
end-of-record that terminates the procedure. The .EOR command is valid only after a .DATA command
(refer to figure 1-4-3). A terminator must not be used and nothing else can appear on the same line.

.EOF Command

The .EOF command generates an end-of-file on the data file originating in a procedure. An actual
end-of-file is recorded when the data statements are written on #DATA or lfn, This command has no
effect on the end-of-record that terminates the procedure. If the end of the data file format is also the
end of the procedure, no .EOF command is needed. In this case, an end-of-record mark is added. If the
user wants an end-of-file mark, he must include an .EOF command. The .EOF command is valid only
after a .DATA command (refer to figure 1-4-3). A terminator must not be used, and nothing else can
appear on the same line. ‘

60435400 M 1-4-39

.* Command

The .* command enables the user to document a procedure with internal comments. These comments
appear when the file is copied to output or displayed at a terminal; they do not appear in the dayfile
when the procedure is processed. The comment, which follows the *, can contain any combination of
characters.

PARAMETER SUBSTITUTION

The user who creates a procedure uses parameters in the procedure header statement, which the BEGIN
statement may change when the procedure is called. CCL can remove the parameter (null substitution),
leave it as is, or replace it with a value from the procedure call statement or with a default value from
the procedure header. The parameters are then substituted into the procedure body.

After substitutions are made in the procedure body, some control statements may be expanded beyond 80
characters. For most control statements, this is flagged as an error., Exceptions are CCL statements
and the ASSIGN, BLANK, LABEL, REQUEST, and VSN statements, which can extend over more than one
line if the statement is split at a separator. The user should ensure that the line containing the
parameter is short enough so that possible expansion does not extend the line beyond the 80th character.

When a procedure is ecalled, CCL must match each parameter on the call statement to a parameter on
the header statement. CCL uses two methods of parameter matching, order dependent and order
independent.

Order-Dependent Parameter Matching Mode

Parameter matching always begins in order-dependent mode (refer to Order-Independent Parameter
Matching Mode for information on changing parameter matching modes). CCL compares, in order, each
parameter on the BEGIN statement with the parameter in that position on the procedure header
statement. CCL then substitutes the selected parameters into the procedure body.

All possible parameter substitutions in order-dependent mode are summarized in table 1-4-2. The table
shows each parameter format on the BEGIN statement, each parameter format on the procedure header
statement, and the substitution resulting from each combination. In the table the word value indicates
that the parameter in the BEGIN statement (called value) is different than the corresponding keyword
and/or defaults on the procedure header statement. Keyword in the BEGIN Statement Parameter Format
heading means the keyword in the BEGIN statement is identical to the keyword in the procedure header
statement parameter.

Assuming that all parameter matches between the BEGIN statement and the procedure header are valid
for order-dependent mode (table 1-4-2), CCL completes parameter matching in order-dependent mode.

In order-dependent mode, CCL ignores excess parameters on the BEGIN statement.

The user should use table 1-4-2 with the following examples to clarify the meaning of the table entries
(keyword, defaultl, default2, value, and null).

® 1-4-40 60435400 M

Examples: Parameter Matching in Order-Dependent Mode.

Procedure on File
Named MYFILE
+PROC, SAMPL1,L,M,N=XY .

REWIND,L,A,M,N.

.PROC, SAMPL2, LFN1=,LFN2,

SBF=/SBF.
COPY_SBF(LFN1,LFN2)

.PROC, SAMPL3, PFN,P1=/$M=y$.
ATTACH,PFN/P1.

60435400 M

Call and Substitution
BEGIN, SAMPL1,MYFILE.

yields
REWIND,L,A,M,XY.

BEGIN, SAMPL1,MYFILE, ,,N.
yields
REWIND,L,A,M,N.

BEGIN, SAMPL1,MYFILE, $%$,C.

yields
REWIND,*,A,C,XY.

BEGIN, SAMPL2,MYFILE.
yields
COPY (,LFN2)

BEGIN, SAMPL2,MYFILE,,,SBF.
yields
COPYSBF(,LFN2)

BEGIN, SAMPL2,MYFILE, FORMS,
yields OUTPUT.

COPY (FORMS, OUTPUT)

BEGIN, SAMPL3,MYFILE, TAXES,PI.

yields
ATTACH, TAXES/M=W.

Explanation

When parameters are omitted on
the BEGIN statement, the system
uses the defaults from the

procedure header (L, M, and XY).

Omitted parameters indicate use
of the procedure header defaults
(L and M). N overrides the pro-
cedure header default (XY).

Special characters must be
$-delimited. The asterisk (¥)
replaces M. The system uses the
procedure header default (XY) for
the omitted parameter.

Omitted parameters indicate use
of procedure header defaults
(LFN2 and null substitution for
LFN1 and SBF).

Omitted parameters indicate use
of procedure header defaults

(null and LFN2). The BEGIN
statement parameter, SBF, indi-
cates use of the second default

of the SBF procedure header
parameter (SBF). The linking
character (_) econneets COPY and
SBF to make COPYSBF.

FORMS replaces LFN1= and OUTPUT
replaces LFN2. Since the third
parameter is omitted, the system
uses the procedure header default
(null).

TAXES replaces PFN and the char-
acter string M=W replaces P1.

1-4-41

TABLE 1-4-2. PARAMETER SUBSTITUTION IN ORDER-DEPENDENT MODE

BEGIN Statement Parameter Format

omitted keyword | $keyword$ | value | $value$
Procedure | keyword keyword keyword | keyword value value
Header
Parameter| keyword= null keyword | keyword value value
Format
keyword=defaultl defaultl keyword | keyword value | value
keyword=defaultl/default2 T defaultl default2 | default2 error | error

TSwitches keyword substitution to order-independent mode for all subsequent parameters.

Example 1:

The following procedure is on file PROCFIL.

It prepares a file for processing.

If the file is local,

it is

rewound. If it is not local, the system searches for the file in the user's permanent file catalog. If the
file is not found, the procedure reverts and aborts.

The user prepares file TEST with the following statement.

e 1-4-42

.PROC, PREPARE, FNAME=,M=R.
IFE,FILE (FNAME,AS) ,PREPI.
REWIND (FNAME)

REVERT. FNAME PREPARED.
ENDIF,PREPI.

ATTACH (FNAME/#M=M,NA)
IFE,FILE (FNAME, .NOT.AS) ,PREP2.
GET (FNAME/NA)
1FE,FILE (FNAME, .NOT.AS),PREP3.
REVERT,ABORT. FNAME NOT FOUND.
ENDIF,PREP3.

ENDIF, PREP2.

REVERT. FNAME PREPARED.

EXIT.

REVERT,ABORT. PREPARE ERRORS.

BEGIN,PREPARE, ,TEST.

60435400 M

Since PROCFIL is the default file, it does not have to be specified and is noted by successive commas.

The following-is a segment of the dayfile that results when the BEGIN statement is processed.

08.26.45.$BEGIN, PREPARE, ,TEST.
08.26.46.1FE,FILE (TEST,AS) ,PREP1.
08.26.46.ENDIF,PREP],

08.26.46.ATTACH (TEST/M=R,NA)

08.26.46. TEST IS INDIRECT ACCESS, AT 000121.
08.26.46.IFE,FILE(TEST, .NOT.AS) ,PREP2.
08.26.46.GET (TEST/NA)
08.26.47.IFE,FILE (TEST, .NOT.AS) ,PREP3.
08.26.47.ENDIF,PREP3.
08.26.47.ENDIF,PREP2.

08.26.47.REVERT. TEST PREPARED.

Example 2: Parameter Matching in Nested Procedures (Order-Dependent Parameter Matching Mode)

The substitutions made in a procedure that calls a second procedure is shown in figure 1-4-4. The
resultant dayfile is.shown on the right side of the figure.

GET(PROGRM1)
REGIM,FXICUTE,PFILE1,PROGRM1,PRINT.

RESULTANT DAYFILE

16.01.08.GFT(PROGRM1)
16.01.08 .BEGIN,EXECUTE,PFILE1,PROGRM1,PRINT.

PFILEL 16.01.09 ,FTN(I=PROGRMT,L=PRINT)

.PROC,EXECUTE, NAME, OUT. 16.01.10. .043 CP SECONDS COMPILATION TIME

FTH(I=NAME,L=0UT) 16.01.10.L6O.

LGO. 16.01.11. STOP

IFE. EF=0.DROP 16.01.11. .038 CP SECONDS EXECUTION TIME
sy b=ty . . .

REGIN,LISTING,PFILE2,0UT. 16.01.12.1IFF,EF=0,DR0OP,

EMDIF .DROP. 16.01.12.BEGIN,LISTING,PFILE2,PRINT.

16.01.12.REWIND(PRINT)
16.01.13.COPYSBF(PRINT,OUTPUT)
16.N01.13. FEMD OF INFORMATIOM FEMCOUNTERED.
16.01.13.REVERT.CCL
16.01.13.FNDIF,DROP.

PRILEZ2 16.01.13.REVERT.CCL

.PROC,LISTING,OUTFILFE=0UT.
REWIND(OUTFILE)
COPYSBF(OUTFILE,OUTPUT)

Figure 1-4-4. Keyword Substitution in Two Procedures

60435400 M ' 1-4-43 o

Order-Independent Parameter Matching Mode

CCL switches to order-indpendent mode to match the remainder of the parameters if in comparison of a
BEGIN statement parameter and a procedure header parameter one of the following occurs.

e A BEGIN statement parameter is in the format keyword= or keyword=value.

e A procedure header statement parameter is in the format keyword=default/default2.
For each BEGIN statement parameter, matching always begins in order-dependent mode. Onece in
order-independent mode, CCL matches each keyword of the BEGIN statement to the identical keyword in

the procedure header statement, regardless of order.

The following statements illustrate the parameter combinations that result in switching from
order-dependent mode to order-independent mode.

Procedure on Default
File PROCFIL Call and Substitution Explanation

.PROC, SALES, TAX, TOTAL=, FLAG=A. BEGIN, SALES, ,TAX, TOTAL=SUM, FLAG. Parameter matching starts in
COPYL (TAX, TOTAL,HOLD, ,FLAG) ‘ order-dependent mode. The

REPLACE (HOLD=TAX) yields BEGIN parameter TOTAL=SUM
: switches the mode to order-
COPYL (TAX, SUM,HOLD, ,A) independent mode. FLAG is then
REPLACE (HOLD=TAX) matched in order-independent
‘ mode, which yields A.
«PROC, TAXES, TAX=FED /MN,DEDUCT, BEGIN, TAXES, ,TAX,DEDUCT. The TAX=FED/MN procedure
FLAG=A. _ : yields parameter switches the mode to

COPYL (TAX,DEDUCT,HOLD, ,FLAG) COPYL (MN,DEDUCT, HOLD, ,A) " order-independent mode. All
REPLACE (HOLD=TAX) : REPLACE (HOLD=MN) : parameters will be matehed in

order-independent mode.

All possible parameter substitutions in order-independent mode are summarized in table 1-4-3. The table
shows each parameter format on the BEGIN statement, each parameter format on the procedure header
statement, and the substitution resulting from each combination.

In the table the word value indicates that the . parameter in the BEGIN statement (called value) is 7
different than the keyword and/or defaults on the procedure header statement. The user should use table
1-4-3 with the following examples to clarify the meaning of the table entries (keyword, defauitl,

default2, value, and null).

o 1-4-44 " 60435400 M

Examples of Parameter Matching:

Procedure on Default

File PROCFIL . Call and Substitution Explanation
o PROC, SANPL 1, L, M, N=XY . BEGLN, SAMPL1, ,L=SWITCH. The L=SWITCH BEGIN parameter
P T yields switches parameter matching mode
REWIND, SWITCH,A,M, XY . ‘to order-independent mode.
Order-independent mode uses the
procedure header defaults for
-7 omitted BEGIN parameters. Order-
dependent and order-independent
modes work identically for
omitted BEGIN parameters.
BEGIN, SAMPL1, ,L=CHANG,M,N. The L=CHANG parameter switches
or parameter matching to order-
BEGIN, SAMPL1, ,L=CHANG,N, M. independent mode. In order-
yields independent mode the order of the
REWIND, CHANG, A, M, XY . BEGIN parameters does not matter.
‘ M matches with M, and the N BEGIN
keyword indicates substitution
of the procedure header default
(XY).
BEGIN, SAMPL1, ,L=FLIP,M=B,N=2. BEGIN parameters in the form
yields keyword=value always override
REWIND, FLIP,A,B,Z. procedure header parameters.
FLIP replaces L, B replaces M,
and Z replaces XY.
.PROC,TRACE, IN,0OUT, BEGIN, TRACE, ,IN=,0UT=HOLD,N=. The IN= parameter switches
TC=EOI,N=1. yields parameter matching to order-

COPY (IN,0OUT,,,TC,N) COPY (,HOLD, , ,E0I,) independent' mode. All BEGIN
statements in the form keyword=
use null substitution.

.PROC, SAMPL4,FILE!, BEGIN, SAMPL4, ,COIN. COIN is substituted in order-

EC=B6/A6,DC=LP,REP=0. yields dependent mode. EC=B6/A6
REWIND (FILE1) REWIND (COIN) switches the mode to order-
ROUTE(FILE!, #DC=DC, ROUTE(COIN,DC=LP,EC=B6,REP=0) independent mode. The omitted

#EC=EC, #REP=REP) parameters indicate use of the

procedure header defaults (order-
dependent and order-independent
modes work alike for omitted
BEGIN parameters).

BEGLN, SAMPL4, ,COIN, EC,DC,REP. EC=B6/A6 switches the mode to
yields order-independent mode. Specify-

REWIND (COIN) ing the keyword on the BEGIN

ROUTE(COIN,DC=LP,EC=A6,REP=0) Statement produces the same re-
sult as omitting them (refer to
previous example) except for the
double default procedure param-
eter, EC=B6/A6. If EC is
omitted, B6 is used. If EC is
specified, A6 is used.

60435400 M 1-4-45 o

TABLE 1-4-3. PARAMETER SUBSTITUTION IN ORDER-INDEPENDENT MODE

BEGIN Statement Parameter Format

keyword keyword= keyword=value value
or or or or
omitted $keyword$ | $keyword$= | $keyword$=value $valuest

Procedure |{keyword keyword keyword null value error
Header
Parameter|keyword= null null null value error
Format

keyword=defaultl defaultl defaultl null value error

keyword=defaultl/ | defaultl default2 null value error

default2

T Assumes the parameter is entered under order-independent mode.

Example 1:

The following procedure is the same procedure as Example 2 in Order-Dependent Parameter Matching
Mode. It resides on file PROCFIL. It routes a specified file (FNAME) to the specified equipment
(default is any CDC-graphics line printer).

-PROC, PRINTR, FNAME, REP=0,DC=LP, EC=B6.
REWIND (FNAME) '
ROUTE (FNAME, #DC=DC, #REP=REP, #EC=EC)
REVERT. FNAME ROUTED.

EXIT.

REVERT,ABORT. PRINTR PARAMETER ERRORS.

The following control statement calls the procedure PRINTR. The system matches COLOR in
order-dependent form. DC=SB switches the mode to order-independent mode. SB indicates the file is to
be punched.

BEGIN,PRINTR, ,COLOR,DC=SB,EC=SB.

The following is a segment of the dayfile that results when the BEGIN statement is processed.

15.27.26.$BEGIN, PRINTR, ,COLOR,DC=SB,EC=SB.
15.27.27.REWIND (COLOR)

15.27.27 .ROUTE (COLOR, DC=SB ,REP=0, EC=SB)
15.27.27. ROUTE COMPLETE.

15.27.28.REVERT. COLOR ROUTED.

e 1-4-46 60435400 M

Example 2: Parameter Matching in Nested Procedures (Order-Dependent and Order-Independent
Parameter Matching Modes) '
As shown in figure 1-4-5, procedures ROUT and PREPARE reside on the default file PROCFIL. A BEGIN

statement within ROUT calls PREPARE. In procedure ROUT the substitution for the FNAME parameter
(TEST) is passed to procedure PREPARE by the BEGIN statement. The resulting dayfile is on the right

side of figure 1-4-5.

BEGIN,ROUT, ,TEST, EC=A9, SBF.

PROCFIL Resultant Dayfile

15.27.50.$BEGIN,ROUT, ,TEST,EC=A9, SBF.
15.27.50.BEGIN, PREPARE, ,FNAME=TEST.

-PROC, ROUT, FNAME=L , SBF=/SBF,REP=0,EC=B6,DC=LP. 5-27.51.IFE,FILE(TEST,AS),PREPI.

BEGIN, PREPARE, , #FNAMESFNAME. 15.27.51 .REWIND (TEST)
COPY_SBF(FNAME, HOLD) 15.27.51.REVERT. TEST PREPARED.

REWIND (HOLD) 15.27.51.COPYSBF(TEST,HOLD)
IFE, EC.EQ. $A9$, JUMP. 15.27.52. EOI ENCOUNTERED.

FCOPY (P=HOLD, N=TEMP) 15.27.52.REWIND (HOLD)
RENAME (HOLD=TEMP) 15.27.52.IFE, $A9$.EQ.$A9S, JUMP.
ENDIF (JUMP) 15.27.52.FCOPY (P=HOLD,N=TEMP)

REWIND,HOLD. 15.27.52. FCOPY COMPLETE.

ROUTE, HOLD , #DC=DC , #EC=EC , #REP=REP. 15.27.52.RENAME (HOLD=TEMP)

REVERT. FNAME -> PRINTER. 15.27.52. ENDIF (JUMP)
15.27.52.REWIND,, HOLD.

EXIT.
~EOR- 15.27.53. ROUTE COMPLETE.

. 15.27.53.REVERT. TEST -> PRINTER.
~EOR-

.PROC, PREPARE, FNAME=,M=R.
IFE,FILE (FNAME,AS) ,PREPI.
REWIND (FNAME)

REVERT. FNAME PREPARED.
ENDIF,PREPI.
ATTACH (FNAME / #M=M ,NA)
IFE,FILE (FNAME, .NOT.AS) ,PREP2.
GET (FNAME/NA)
IFE,FILE (FNAME, .NOT.AS) ,PREP3.
REVERT,ABORT. FNAME NOT FOUND.
ENDIF,PREP3.

ENDIF, PREP2.

REVERT. FNAME PREPARED.

EXIT.

REVERT,ABORT. PREPARE ERRORS.

BEGIN calls procedure ROUT. The SBF=/SBF parameter switches parameter matching to
order-independent mode. The first control statement of ROUT is a BEGIN statement that calls
procedure PREPARE. The parameters are matched in order-independent mode. PREPARE
readies a file for processing. If the file is local, it is rewound. If it is not local, the system
searches for the file in the user's permanent file catalog. If the file is not found, the procedure
reverts and aborts. If the file is found, processing continues with the second control statement
in procedure ROUT. The file is prepared for printing. Since the file is to be printed with the
ASCII graphic 95-character set (EC=A9), the file must be changed to a 12-bit ASCII code file
(FCOPY). The procedure then routes the file .to the printer and reverts to the statement
following the BEGIN control statement.

Figure 1-4-5. Keyword Substitution in Nested Procedures

60435400 M 1-4-47 o

\//

CONTROL STATEMENT PROCESSING 5

Jobs entering the system consist of one or more logical records. The first logical record contains system
directives (control statements) which describe the processing that is to oceur in the job file (job deck).
This section describes control statement processing and how the control statements affect other aspects

of job processing.

The operating system recognizes three types of control statements.

o Local File Control Statements These statements call files that are assigned to the job
control point. LGO is the system default local file used
for retaining object code generated by one of the
language processors.

e System Control Statements These statements are divided into eight categories.

Job control control statements
File management control statements

Permanent file control statements

Load and dump central memory utility control
statements

Tape management control statements
System utility control statements
Library utility control statements
Loader control statements¥
o - Product Set Control Statements The product set control statements call the various
products available under NOS. Their formats are given

in the applicable product reference manual and in the
Applications Programmer's Instant.

CONTROL STATEMENT FORMAT

All control statements may consist of one to four fields. The first field is the statement label field. If
present (the field is optional), it begins with a numeriec character and terminates with a separator
character. The field is used only in conjunction with the system control language deseribed in appendix H.

tRefer to the CYBER Loader Reference Manual.

60435400 J ' 1-5-1

The second field, also optional, is a $ or / prefix character which precedes the program name. If a $ is
present, it indicates that the specified program to be executed must be loaded from the system library.
Therefore, even if a local file of the same name is present, the system program, not the local program, is
executed.

The / option may be used on local file control statement calls. If a / is present, it indicates that the
parameters following the program name are to be processed in the operating system format. If a / is not
present, the parameters are processed in product set format. The default is product set format because
most programs specified in local file calls have been generated by one of the product set members. The /
option is ignored for control statement calls to programs residing on the system library. For those types
of calls, parameters are processed in the operating system format unless the SC directive to SYSEDIT
has been entered. Refer to the SYSEDIT control statement in the NOS System Maintenance Reference
Manual for a deseription of the SC directive.

The third field contains the name of the program to be executed. The fourth field (optional) contains
parameters which further define the operation to be performed. The parameter field is set off from the
name field by a separator character. A valid terminator character must follow the fourth field (or the
third field if no parameters are present).

The system allows continuation lines for CCL statements and ASSIGN, BLANK, LABEL, REQUEST, and
VSN control statements (for details, refer to Statement Syntax in section 4 and Control Statement Rules
in section 10). :

The following is a comparison of the operating system and product set formats (refer to the NOS
Applications Programmer's Instant for control statements using the product set format).

Operating Syste'm Format Product Set Format
1. Valid separators are 1. Same as for the operating system
format.
+-" / Ty (

and any other character with a display
code value greater than 444 except
*) $. and blank.

2. Valid terminators are 2. Same as for the operating system
format.
.)
3. Letters, numbers, and the * are 3. Same as for the operating system
the only characters allowed in the format.

parameter field. The one exception
to this rule is the use of literals
(that is, character strings delimited
by dollar signs). Characters other
than letters, numbers, and the * can
be included in literals. No char-
acters within a literal have special
meanings; the system merely checks
the syntax of the literal. The
called program must do its own
processing of the literal.

1-5-2 60435400 M

N

//

N

Operating System Format Product Set Format

4. All embedded blanks within a control 4. Same as for the operating system
statement except those appearing in format.
literals are ignored. :

5. Comments may appear on the control 5. Same as for the operating system
statement but they must follow format.

the terminator. They may contain
any character. Comments are not
printed for some control statements.

6. Parameters, separators, and termi- 6. Parameters are stored in their dis-
nators are stored in the user's field play code equivalent beginning at
length beginning at RA+2. The char- RA+2. Separators and terminators are
acters, . and) are stored as binary stored as follows:
zero. For all parameters and all valid
separators except the comma, their dis- Character Code (Octal)
play code equivalent is stored. Refer
to section 10 of volume 2 for more in- ’ 1
formation. ‘

= 2
/ 3
(1
+ 5
- 6
5 10
Yor. 17
Other valid 16
separators

Refer to section 10 of volume 2 for
more information.

-7. File names are one to seven alpha- 7. File names are one to seven alpha-
numerie characters. numeric characters. In some produets,

file names beginning with a numerie
character are illegal.

8. Not NOS/BE compatible. 8. NOS/BE compatible.

In general, no parameter can contain more than seven characters. If a parameter contains more than
seven characters, the entire control statement is issued to the dayfile, followed by the message:

FORMAT ERROR ON CONTROL CARD.

60435400 M : 1-5-3

There are two exceptions to this rule. If a statement calls a program from the system library that has an
ARG= entry point, parameters in the statement can contain more than seven characters. If a parameter
contains more than seven characters, the ARG= entry point is not present, and the SDM= entry point is
present (refer to appendix F in volume 2), the statement name (such as DEFINE) is issued to the dayfile
but all parameters are suppressed.

Depending on the program, the parameters can appear in either order dependent or order independent
format. Order dependent parameters are required when the parameters must be passed in a specific
order. An example of order dependent parameters is:

RESEQ(MYFILE,B,,20)

In this example, the system expeets the resequencing increment to be passed as the fourth parameter;
therefore, a separator must be present for the parameter not specified.

Order independent parameters may be passed in any order. This is made possible by the use of keywords.
A keyword is an identifier which has meaning either by itself or when used in conjunction with an option.
Usually, keywords are passed with an option and a separator. The separator must not be a comma. When
the list of parameters is passed to the called program, all separators except commas are also passed.

Some programs require specific separators (usually =), and others merely require that a separator be
present. Examples of keyword notation are:

1. COBOL(I=SFILE,B=BFILE) -
2. COBOL(B=BFILE,I=SFILE)
3. COBOL(L=0,A,F)

4. JOBX,T10,CM45000.

In examples 1 and 2, both parameters and separators are passed to the COBOL compiler. Since these
parameters are order independent, both statements produce the same result.

In example 3, two keywords are passed with no separator character or parameter. In example 4, the
keyword is the first character of the parameter.

The parameters and an image of the control statement being processed are written in the job
communication area (refer to section 10 of volume 2). The job communication area is the first 110g
words of the user's field length, from RA through RA+107g. Section 1 and appendix E in volume 2
describe the first 100g words of this area.

The following control statements produce the same image in the job communication area. Both
statements are processed using operating system format.

123,PERMIT(FILEABC,USERAAA=R,USERBBB=W)
123,$PERMIT(FILEABC,USERAAA=R,USERBBB=W)

JOB STATEMENT (JOB CARD)

The job statement, also known as the job card, names the job and may specify job processing parameters.
The first statement of a job input file must be a job statement.’

T Not applicable to time-sharing jobs.

1-5-4 . 60435400 M

7N

NS

7/

/

The user can issue the job statement in order independent or order dependent format. In order
independent format, a separator character does not appear between the keyword and its value. If the
order dependent format is used and parameter values are omitted between separators, the parameter
values are interpreted as zeros. A parameter value containing an 8 or 9 must not have a B suffix. If
there is a syntax error in the job statement, the system issues an error message and terminates the job.
All parameters are optional except jobname.

The job statement format is:

79 80

(jobname(Pp,Tt,CMfl,ECfe)g ? em I

or

ﬁobname(p,t,fl,fe) ?

jobname

Pporp

Ttort

CMf1 or f1

ECfe or fe

60435400 M

79 80

fem]

Alphanumeric job name (one to seven characters) which must begin with a
letter. This name identifies the individual jobs being run under the same user
number,

Priority level (octal) at which the job enters the system, ranging from 1 to

17g. A value containing an 8 or 9 or the suffix D is interpreted as decimal.
This parameter is not used by NOS (refer to Job Scheduling in section 3).

Central processor job step time limit in seconds. Values can range from 1 to
77777. Decimal is the default base. Octal values from 1 to 77777g (1 to
32767) can be entered if followed by a B suffix. The default limit is 64 (100g).
Decimal values from 32767 to 77777 set the time limit at its maximum. The
time limit set by this parameter must be sufficient for completion of each of
the steps in the job (refer to Time Limit Control in section 3).

Maximum octal field length for the job (refer to Field Length Control in
seetion 3). The system rounds the value to the next highest multiple of 100g,
The default field length is the maximum field length for which the user is
validated (refer to the LIMITS statement in section 6) or the maximum field
length available for user jobs (dependent on machine size), whichever is
smaller. The field length cannot exceed:

3777004 on a 198 K or a 262 K machine

3600005 on a 131 K machine

1630004 on a 65 K machine
A value containing an 8 or 9 or the suffix D is interpreted as decimal.
Maximum octal number of 1000g word ECS blocks required by the job. This
ECS field length cannot exeeed 3777 bloeks or the amount of user ECS allowed
by the installation (refer to the LIMITS statement in section 6). The user job
must request the ECS (refer to the RFL control statement in section 6) before

it can be used. A value containing an 8 or 9 or the suffix D is interpreted as
decimal,

1-5-5

cm Conversion mode entered in columns 79 and 80. A 26 indicates that coded
cards are to be converted in 026 mode; 29 indicates cards are converted in
029 mode. This initial keypunch mode can be changed within the job by a
conversion change card (refer to Coded Cards in appendix F) when reading
cards or a ROUTE statement when punching cards. If this parameter is
omitted, the installation default keypunch mode is used."

The system issues error messages when parameter specifications exceed validation limits. It also issues
an error message if an ECS field length is specified when the user's CM validation limit is less than
10000g words. The user should consult installation personnel for further installation restrictions based on
the machine configuration and subsystems used.
Example:

JOBAAA,,1,50000,20.
has the same effect as:

JOBAAA,T1,CM50000,EC20.

CONTROL STATEMENT PROCESSING FLOW

The system translates a control statement by:
1 Readiné the statement from the job control statement buffer.
2. Verifying the format of the statement as described in Control Statement Format.

3. Compai'ing special control statement names with the name of the control statement being

processed. If the statement name is CTIME, HTIME, RTIME, or STIME, the system processes
the control statement. A

4. Searching the file name table for a file assigned to the job with a name identical to the name of

"~ the control statement. However, if a $ precedes the program name, this step is skipped. If an

identical name is found, the program is loaded into memory. The arguments are extracted from

the control statement and stored in RA+2 through RA+n+1 (n is the number of parameters). The
CPU is requested to begin execution unless special loader control statements follow.

5. Searching the central library directory for a program name that matches the control statement
name. If the name is found, the system proceeds as in step 4; otherwise, the system searches
further.

TThis conversic.m'mode iqdicator is ineffective for remote batch jobs entered under Export/Import or
mode 4 RBF; it is effective for remote batch jobs entered under HASP RBF.

1-5-6 ‘ 60435400 M

£

i

./

6. If the statement name is a three-character name with the first character alphabetic, the system
searches the peripheral processor library directory for a program name that matches the control
statement name. If found, the name is placed, with a maximum of two arguments, as a
peripheral processor request, and the system exits to the program.

7. If the control statement name is not found during any of the above searches, the control

statement is declared illegal and the job is aborted.

Figure 1-5-1 illustrates the flow of control statement processing.

‘ START ’

READ A
CONTROL
STATEMENT

CONTROL STATEMENT
PROCESSOR SEARCHES
ITS LIST OF CONTROL
STATEMENT NAMES FOR
SPECIAL CONTROL
STATEMENT

PROCESS
SPECIAL
REQUEST

$
PRESENT

BEFORE CONTROL 55

FOUND YES
2

S

STATEMENT
NAME
2

PRESENT
BEFORE CONTROL
STATEMENT
NAME

USE NOS FORMAT
FOR PROCESS ING
PARAMETERS

NG

SEARCH FNT
FOR FILE
ASSIGNED TO
THIS JOB

O

Figure 1-5-1. Control Statement Processing Flow

60435400 L

SEARCH CPU
LIBRARY FOR
CONTROL
STATEMENT
NAME

YES

SEARCH PP
LIBRARY FOR
NAME, IF NAME
IS LEGAL PP
PROGRAM NAME

YES

DECLARE
CONTROL
STATEMENT
ILLEGAL

PROCESS FIELD
LENGTH CONTROL
(SEE SECTION 3)

LOAD PROGRAM
TO CENTRAL
MEMORY

STORE CONTROL
STATEMENT AND

J CONTROL STATEMENT

ARGUMENTS IN

USER'S FIELD
LENGTH

EXECUTE

PROGRAM

PLACE NAME
WITH UP TO TWO
OCTAL ARGUMENTS

AS A PP REQUEST

EXIT TO PROGRAM

(NO FL CHANGE)

1-5-7

EXIT PROCESSING

When an error condition occurs during job processing, the system searches the control statement record
for an EXIT statement. If the record does not contain an EXIT statement, the system terminates the
job. If the system finds an EXIT statement, it clears the error condition and processes the control
statements that follow the EXIT statement. If the error was a time limit error, the limit is reset to the
time used plus 8 seconds. This gives the user time for post-error cleanup operations. If the error was an
SRU limit error, the limit is reset to the SRUs used plus 8 SRUs.
]

If a NOEXIT statement is encountered, normal error processing is not performed. That is, if the no exit
flag has been set by the NOEXIT statement prior to the error, the error flag is cleared, no search is made
for an EXIT statement, and processing continues with the next control statement. An ONEXIT statement
can be used to return to error processing mode; it clears the no exit flag.

The following sequence of control statements illustrates this exit processing.

JoBcCC.
USER (SMITH22,SMA1)
CHARGE (55A19,69P5)
NOEXIT.

GET(A,B)

ONEXIT.

ATTACH (MASTER/M=W)
SKIPEI (MASTER)
COPYBF(A,MASTER)
COPYBF(B,MASTER)
PACK (MASTER)
COPYSBF (MASTER,)
EXIT.

ENQUIRE (F)

-EOR-

-EQOI-

-This job gets local copies of two indirect access permanent files and adds them to a direct access file.
The NOEXIT suspends error processing, and the job continues even if file A and/or B is not found. The
ONEXIT turns error processing back on. If any error occurs thereafter, processing skips to the EXIT
statement and continues with the ENQUIRE. If no error occurs after the NOEXIT, processing continues
until reaching the EXIT statement and then the job terminates (ENQUIRE is not processed).

1-5-8 60435400 M

7

N

N

/
/

JOB CONTROL CONTROL STATEMENTS 6

The job control control statements enable the user to alter information that econtrols his job while in the
system and to retrieve information concerning the status of his job. The control statements included in
this category are:

ACCOUNT MODE ROLLOUT
CHARGE NOEXIT RTIME
COMMENT NORERUN SETASL
CTIME NOTE SETJSL
DAYFILE OFFSW SETPR
ENQUIRE ONEXIT SETTL
ENTER ONSW STIME
EXIT PASSWOR SUBMIT
HTIME PROTECT SUMMARY
LDI RERUN SWITCH
LENGTH RESOURC USECPU
LIMITS RFL USER

MFL

The user must have specific validation parameters set to use LDI, PASSWOR, PROTECT, or SUBMIT. He
can use the remaining statements regardless of his validation. A listing of validation information can be
obtained using the LIMITS statement. Although the user is allowed to change several control values for
his job (such as RFL, SETPR, and SETTL), he can never specify more than that for which he is validated.

The system uses the USER statement and CHARGE statement for checking user validation and system
accounting information. The RESOURC statement is used by the system to prevent deadlocks from
occurring when several tapes or packs are used concurrently.

The user can submit files as batch origin type jobs through the LDI, SUBMIT, and ROUTE control
statements. He can specify the mode of error exit processing desired through use of the EXIT, ONEXIT,
NOEXIT, and MODE statements. He can also set conditions for his program with sense switches (such as
ONSW, OFFSW, and SWITCH). In the event of a system malfunction causing jobs to be recovered, he may
either allow his job to be run again with the RERUN statement or prevent it from being rerun with the
NORERUN statement. Additional information is returned to the user by the CTIME, RTIME, STIME,
HTIME, and DAYFILE statements. The COMMENT statement allows the user to provide his own dayfile
documentation.

60435400 M 1-6-1

ACCOUNT STATEMENT

The ACCOUNT control statement is included for compatibility with previous systems. The USER control
statement should be used with the present system.

CHARGE STATEMENT

The CHARGE statement causes the system to record on the account dayfile all information regarding
resources used in the previous account block, and designates a new charge and project number for
subsequent activity. Its purpose is to control the accounting activity of the system for a customer or the
installation. An account block is that portion of a job from one CHARGE statement to the end of the job
or to another CHARGE statement.

The control statement format is:

CHARGE(chargenum, projectnum)

chargenum A 1- to 10-alphanumerie-character charge number assigned to the user.
projectnum A 1- to 20-alphanumeric-character project number assigned to
‘ the user.

For added security, the user may issue the CHARGE statement without parameters. In this case, the
system reads the parameters from a record in the INPUT file. This record must be a single line with the
format:

chargenum,projectnum

The CHARGE statement is used in conjunction with user accounting control. An installation which
implements this feature can impose limits on the SRUs a user may accumulate or restrict his access to
the system to a certain time-of-day interval.

If access option 7 is not set (refer to LIMITS control statement in this section), the user must include a
CHARGE statement immediately following every USER statement in his job. If option 7 is set, the user
may but is not required to include a CHARGE statement. A user assigned more than one charge and/or
project number may include additional CHARGE statements in his job to record resources used under
each charge number/project number combination. Whenever a new CHARGE statement is issued, the
SRU information for the previous charge number/project number is written to the account dayfile and
then cleared. However, the other accumulators (central processor time, mass storage activity, and so on)
are not cleared but continue to increment.

For a complete list of accounting messages issued to the user's dayfile, refer to Job Completion in
section 3.

COMMENT STATEMENT

The COMMENT statement enters the specified comment in the system and user's dayfile. A COMMENT
statement must not occur between the job and USER statements.

1-6-2 ‘ 60435400 L

VR

/,

s

The control statement format is:
COMMENT.comments
or
*comments
comments Any combination of characters the user wishes to display.

If the second format is used, the * must be the first nonblank character.

CTIME STATEMENT

The CTIME control statement requests that the accumulated CPU time for the job be issued to the user's
dayfile (in seconds).

The control statement format is:

CTIME.

DAYFILE STATEMENT

The DAYFILE control statement causes the system to write the user's control point dayfile to the file
specified.

The control statement format is:
DAY FILE(ifn,string,0p,pd,pl,infile) |

or
DAYFILE(L=1fn,FR=string,0P=0p,PD=pd, PL=pl, I=infile)

L=1fn File on which the dayfile is to be written. If L=lfn is omitted, OUTPUT isl
assumed. Pagination will occur if listing file name is OUTPUT or.if the PD or PL
parameters are specified.

FR=string Specifies a character, string for which a search is to be made in the dayfile. The I
op parameter specifies the field to be searched.

The string specified must begin with the first character in the field to be
searched. The time field begins with a blank.

If the string contains characters other than letters and numbers (such as blanks), it
must be enclosed by $ delimiters. A $ within the string must be entered twice ($$)
so it is not interpreted as a delimiter. Time-sharing commands entered in the
dayfile are preceded by a $. To search for a time-sharing command, the $
preceding the command is replaced with two $'s, and the command is enclosed by
$ delimiters (for example, $$$OLD$).

If the string is found, the portion of the dayfile following the last occurrence of

the specified string is output. If the string is not found, an informative message
and the entire dayfile is output.

60435400 L 1-6-3

OP=0p Selects search option (single character):

op Meaning

T Search time field for string specified by FR=string.

M Search message field for string specified by FR=string.

I Incremental dump (dayfile printed from point of last dayfile
statement).

F Full dump.

If a literal string (string) is specified and op is omitted, OP=M is assumed; if both
string and op are omitted, OP=F is assumed.

PD=pd Print density (three, four, six, or eight lines per inch); if PD=pd is omitted, PD=6
is assumed.
PL=pl Selects page size; if PL=pl is omitted, page size is determined from print density.
Page size does not include title lines,
PD Assumed PL
3 30
4 40
6 60
8 80
I=infile A copy of a dayfile is to be used for input. If I=infile is omitted, the DAYFILE

statement uses the active dayfile for input.

A paginated dayfile listing cannot be used as the
input file (I=infile). Refer to L=Ifn.

Exafnples:
DAYFILE,,$ 11.21.$,T.
The dayfile is dumped to OUTPUT starting at the last occurrence of 11.21. in the time field.
DAYFILE,FR=$$$RFL$.
The dayfile is dumped to OUTPUT starting at the last occurrence of $RFL in the message field.
(The $RFL message is entered in the dayfile when a time-sharing user requests the batch
subsystem.) ;

DAYFILE,I=DAY,FR=$$$GET,STATS.$

The dayfile is dumped to OUTPUT starting at the last occurrence of $GET,STATS. in the
message field of the previously written dayfile named DAY.

The system may place diagnostic messages in the output produced by DAYFILE. They are not part of the

user dayfile from which the DAYFILE output is produced. These messages begin with NOTICE*** and
are described in appendix B.

1-6-4 60435400 L

ENQUIRE STATEMENT

The ENQUIRE control statement gives the user information about the job as it is being processed.
The control statement formats are: ‘
ENQUIRE(OP=pyp...p7,dN=jobname, FN=Ifn{,0=1fny)
or
ENQUIRE(p1pg...p7)
If no parameters (other than O=1fny) are specified on an ENQUIRE statement in a batch job, the system
assumes OP=A. In a time-sharing job, an ENQUIRE statement with no parameters outputs job status

information (refer to the Network Products IAF Reference Manual or the NOS Time-Sharing User's
Reference Manual).

OP=p1p2...p7 Any combination of the following options. The user can request a
maximum of seven options on a statement (for example, ENQUIRE,
OP=BDFJLRS.).

Di_ Description
A Gives listings of the B, D, R, U, J,L, and F options.
B Returns identification and priority information to the
user.
Example:
SYSTEM ACTIVITY,

USER NUMBER SAH3333 >

USER INDEX HASH AOUY

JOB NAME AOUYCIE

JOB SEQ.NO. ACIE

FAMILY cLs127

PACKNAME ¥NONE*,

PRIMARY FILE ¥NONE*,

SUB SYSTEM NULL.

QUEUE PRIORITY 4010

CPU PRIORITY 30

MAX FL (cM) 203700

MAX FL (EC) 0

LAST FL (CM) 0

LAST FL (EC) 0
D Returns a listing of the resources the user has

demanded and those which have been assigned (refer to
RESOURC Statement in section 6).

Example:

RESOURCE DEMAND INFORMATION.
RESOURCE DEMAND ASSIGNED

PE 1 0
HD 1 0

60435400 L 1-6-5 |

1-6-6

Py Description_

F Gives the status of files at the user's control point. An
asterisk (¥) after the file type indicates that the file is
locked. (The user cannot write on a locked file.)
Refer to the FILE function in section 4 for the
meaning of the file type mnemonics.
column lists the last operation performed on the file.

(I/C means incomplete.)

Example:

LOCAL FILE INFORMATION.

Loader Reference Manual).
Example:

LOADER INFORMATION.

MAP OPTIONS = DEFAULT
GLOBAL LIBRARY SET IS -

LIB3

The Status

FILENAME LENGTH/PRUS TYPE STATUS
FIL1 1 PM.¥ EOR READ
AFIL 4 LO. EOR WRITE
INPUT 2 IN.¥ EOR READ
OUTPUT 3 PR. I/C WRITE
TOTAL = 10
J Returns the contents of the user's control registers,
error flag field, and succeeding control statements.
If the J option is used within a CCL procedure, only
the remaining control statements in the procedure are
listed.
Example:
JOB CONTROL REGISTERS.
R1 = 1
‘R2 = 0
R3 = 0
EF = 0
EFG = 0
R1G = 0
CONTROL STATEMENT(S).
GET(ALPHA)
COPYSBF(ALPHA,)
EOR¥
L Returns user's loader information (refer to the CYBER

60435400 K

60435400 L

Description

Returns to the user the amount of resources used. The
resources listed include CPU time, mass storage
activity, magnetic tape activity, and permanent file
activity. These statistics are factors used in
calculating SRUs used. .

Example:

RESOURCES USED.

CPU TIME 0.107 SECS.
MS ACTIVITY -0.914 KUNS.
MT ACTIVITY 0.000 KUNS.
PF ACTIVITY 0.034 KUNS.
ADDER 0.003 KUNS.

SRU 3.157 UNTS.

'Returns the user's accumulated SRUs. The SRU

represents the total usage of the system by the user.
This unit is derived from central processor time, I/0
activity, and memory usage.

Example:

SRU ACCUMULATOR.
SRU 3.162 UNTS.

Returns accumulated CPU time.

Example:

CPU ACCUMULATOR.

CPU TIME 0.111 SECS.

Returns the initial amount of resources available to
the user in seconds, job step SRU, account bloeck SRU,
and the remaining resources available for dayfile
messages, control statements, dispose files, and mass
storage.

Example:

RESOURCE USAGE ALLOWED.

SECONDS 64

JOB STEP SRU 31808
ACCOUNT BLK SRU 31808
DAYFILE MESSAGES 993
CONTROL STATMTS NO LIMIT
DISPOSE FILES 12

MASS STORAGE 59008

1-6-7

JN=jobname Last three characters (job sequence number) of the name assigned by the
system to a job initiated by the SUBMIT, ROUTE, or LDI statement.
(The system job name is given in the message issued following processing
of the SUBMIT, ROUTE, or LDI statement.) When this parameter is
specified, the status of the job is returned. If JN (without =jobname) is
specified, the status of all jobs associated with the current user number
that are active in the system is returned. The user can obtain only the
status of jobs submitted under the current user number.

FN=Ifn; Local file name. When this parameter is specified, the status of the
particular file is returned in the same manner as when the F option is
specified.

O=lfng Name of alternate file to receive output. If omitted, the system assumes
OUTPUT.

If the JN=jobname or FN=Ifnj is executed, the information is printed on the OUTPUT file only if the
OUTPUT file is assigned to an interactive terminal; otherwise, this information is written in the user's
dayfile.

ENTER STATEMENT

The ENTER control statement enables the user to enter a series of control statements on one line. This
is especially useful for time-sharing users operating in the batch subsystem.

The control statement format is:
ENTER./statement/statementq/.../statement,,
/ Delimiting character used to separate the individual control statements

on one line. It can be any character not used within the control
statements and must immediately follow a period or right parenthesis.

statement; Any NOS control statement for which the user is validated.
Time-sharing commands for which there are no batch counterparts are
not acceptable,

The system supplies a terminator (period or right parenthesis) if it is missing from any statement.
Example:

tIf‘rom a terminal, a user enters the batch subsystem and types in an ENTER statement on one line as
ollows: .

batch
$RFL,O0.
/enter.#get,fprog#ftn,i:fprog#map,part#lgo#dmp#rewind,zzzdump#copy,zzzdump

This is the sequence of control statements used in seetion 12 to illustrate the reading of CM dumps.

Assuming that a FORTRAN Extended program is on the indireet access file FPROG, output like that
shown in the figures in section 12 is produced when this statement is processed.

1-6-8 , 60435400 M

4

Ve

7N

EXIT STATEMENT

The EXIT control statement indicates the position in the control statement record where processing will
resume if an error. is encountered or where to terminate normal control statement processing if an error
is not encountered. For additional information, refer to the description of the NOEXIT and ONEXIT
control statements later in this section and to the description of exit processing in section 5.

The control statement format is:

EXIT.

HTIME STATEMENT
The HTIME control statement issues a dayfile message giving the CYBER 170 Model 176 accumulated
clock cyele count for the job. A ecloek eycle on the CYBER 170 Model 176 is 27.5 nanoseconds.
COMPASS instructions require a certain number of clock cyecles to execute as described in the COMPASS
reference manual. This control statement can be used for performance comparisons. .
The control statement format is:

HTIME.
The resulting dayfile message has the following format. The cyele count is in kilocycle units.

HTIME nnnnnnnnnnnn.nnn KCYCLES.

An HTIME statement processed on a machine other than the CYBER 170 Model 176 produces the
following dayfile message.

HTIME NOT AVAILABLE.

LDl STATEMENT

The LDI routine copies the specified file to mass storage and submits the job(s) to the input queue with
IDs to identify each job. The copy begins at the current position of the file pointer and continues until an
EOI, double EOF, or EOF followed by an empty record is encountered. The jobs submitted are batch
origin type jobs. LDI does no reformatting of the job file .and therefore SUBMIT directives
(/JOB,/NOSEQ, and so forth) are not allowed.

The control statement format is:

LDI(1fn,id,m)

Ifn Name of file containing the job(s) to be submitted; if 1fn is omitted, LOAD is
assumed.
id Identification code (0 through 67g and 77g); if omitted, 0 is assumed. If an id of

77g is assigned, the special output files named OUTPUT, PUNCH, PUNCHB, and
P8 are discarded at job completion, unless they have been explicitly routed.

m Names of jobs loaded are listed in the dayfile for the submitting job; if omitted,
the list is suppressed.

60435400 L , 1-6-9

The number of executing jobs and output files a user has within the system cannot exceed the user's
deferred batch job validation limit (refer to the DB field description for the LIMITS control statement in
this section). If this limit is reached, no further jobs ean be loaded until an existing job completes. The
following message is issued to the dayfile.

TOO MANY DEFERRED BATCH JOBS.

If the submitted job contains an illegal USER statement, the job entering the LDI statement is aborted
(no exit processing), and the following messages are issued to the dayfile.

ILLEGAL USER CARD.
- SYSTEM ABORT.

In addition, the following message is issued to the account dayfile.

SIUN,usernum.

Terminal users are immediately logged off with no dayfile message. The security count for the user

number that entered the LDI statement is decremented accordingly.

LENGTH STATEMENT
The LENGTH control statement gives the user the current status of one of his local files..
The control statement format is:
LENGTH(1fn)
Ifn Name of a file assigned to the job.

The information given for the local file includes its length in PRUs, type, and current status. Similar
information can be obtained with the ENQUIRE control statement.

LIMITS STATEMENT

The LIMITS control statement directs the system to list validation information on file OUTPUT for the
user named on the latest USER statement.

The control statement format is:

LIMITS.

Generally, validation limits are the internal system controls associated with each user number which .

govern his use of certain system resources. The listing provided describes both the resources available to
the user and the extent to which they may be used. All numeric values listed are decimal unless the
postradix B appears, signifying an octal value. The following information is listed.

1-6-10 60435400 L

Field Description

ABT, Tt Answerback identifier (1 to 10 alphanumeric characters) used for terminal
identification.

MT Maximum number of magnetic tape units the user is allowed to have
assigned to his job concurrently.

RP Maximum number of removable auxiliary devices the user is allowed to have
assigned to his job concurrently.

TL Maximum amount of central processor time in seconds (cumulative CPU
time slices) allowed for each job step of the user's job.

CM Maximum number of central memory words that the user is allowed to
request. The value stored for CM represents the actual word limit divided
by 100g.

NF Maximum number of files that the user is allowed to have assigned to a job
concurrently.

DB Maximum number of deferred batch jobs that the user can have in the

system concurrently.

If the user is validated for system privileges and debug mode is set on the
system display console or if the user is submitting jobs from system origin,
this parameter is ignored. The user is allowed to submit as many jobs as

desired.
FC Maximum number of permanent files the user can have in the catalog.
CS Maximum number of PRUs available to the ﬁser for indirect access files.
FS fl\l.Ilaximum number of PRUs available to the user for any one indirect access
ile. -
pat,tf Terminal parity (EVEN or ODD).
rof,tt Number of rubout characters required for carriage retum delay.
pxt, it FULL or HALF duplex transmission mode.
rt, 1t Terminal type.
Tct Character set to be used by time-sharing terminal.
st Initial subsystem for time-sharing terminal.
MS Maximum number of mass storage PRUs the user is allowed to additionally

allocate via his job.

DF Maximum number of CPU program messages that the user's job can issue to
the system and/or job dayfiles. '

TFor further information about this field, refer to the IAF Reference Manual or Time-Sharing
User's Reference Manual.,
TiThese fields are not used with network terminals.

60435400 M _ 1-6-11

Field

CcC

OF

1074
LP
EC

SL
CN
PN

DS

AW

Description

Maximum number of batch control statements processed for a user.
Time-sharing control statements (listed in appendix E) are excluded.

Maximum number of print and punch files the user can dispose to output
queues. -

Maximum number of cards that can be punched from a user's punch file,
Maximum number of lines that can be printed from a user's print file.

Maximum number of ECS memory words that the user is allowed to request
divided by 1000g.

Maximum number of SRUs the user is allowed for a job.
Charge number to which the user is assigned.
Project number to which the user is assigned.

Maximum number of PRUs available to the user for any one direct access
permanent file. ‘

Access word; controls the user's access within the system according to the
following options (assumed values are options 0, 2, and 3),

Option v : Specifies
0 User can change his password.
1 User can use the privileged time-sharing com mands.T
2 User is allowed to create direct access files.
3) User is allowed to create indirect access files.
4 User can have system origin privileges for any job origin if the

system console is in debug mode.

The user is allowed to assign a device by its EST ordinal
although the system need not be in debug mode to do so.

The user is allowed to call the customer engiheering PP-based
diagnosties if engineering mode (ENGR) is set at the system

console.
5 User can access/create library files.
6 User can assign magnetic tape units. Refer to the REQUEST

statement in section 7 for further information.

TFor further information about privileged time-sharing commands, refer to the NOS
Time-Sharing User's Reference Manual or the Network Products IAF Reference Manual.

1-6-12

60435400 M

NS

Field Deseription

gg_ti_on_ Specifies
7 User is allowed to access the system without supplying his
assigned charge and projeet numbers.
8 User can define, save, and replace files on auxiliary devices.
9 User can access special transaction functions for library
i updates and batch transaction processing.
10 Allows no terminal timeout.
11 Allows use of the system control point (SCP) facility.
12 User has special accounting privileges.f
13 Allows BATCHIO subsystem privileges.TT
14 Allows use of the PROTECT statement. ,
15-23 Reserved for Control Data.
24-35 Used by Control Data for application validation,T TT
36-47 Available for user application validation.
48-59 Reserved for installation.

The numerical value listed for AW is an octal representation of the bit settings for the above
options. Thus bit 0 is option 0, bit 1 is option 1, and so forth. The rightmost octal number can
designate any combination of options 0, 1, and 2; the next octal number to the left can designate
any combination of options 3, 4, and 5; and so on. For example, if the access word were:

AW=00000000000100000215
the user would be validated for options 0, 2, 3, 7, and 24, as shown in the following:
AW= 100 0 00 2 1 5
001000000000000000010001101
Options= 24 7 320

If any parameters are included on the LIMITS statement, the system issues the following message
to the user's dayfile.

ERROR IN LIMITS ARGUMENTS.

Ny

T Refer to the NOS System Maintenance Reference Manual for a description of special user's
accounting privileges,
1 Currently this bit allows the user to use the V carriage econtrol character (refer to appendix I).
These options are deseribed in the NOS System Maintenance Reference Manual.

60435400 M 1-6-13

MFL STATEMENT

The MFL control statement resets the maximum field length for each subsequent job step. The control
statement format is:

MFL(nnnnnn,mmmm)
or
MFL(CM=nnnnnn,EC=mmmm)

nnnnnn Maximum central memory field length (octal is assumed unless decimal is
specified by a D suffix or use of the digits 8 or 9).

mmmm Maximum extended core storage (ECS) field length. The value of mmmm is the
actual extended core field length divided by 1000g.

The parameters may be specified positionally, by keyword, or intermixed positionélly and by keyword. If
intermixed, the positional parameters are evaluated according to their position among all the parameters.

The parameter nnnnnn sets an upper boundary for the field length of subsequent job steps. The value
cannot exceed the maximum field length for the job nor can it be less than 1500, the field length required
for the utility (CONTROL) that processes MFL. If ECS is assigned for the job, the CM field length
cannot be less than 10 000. Likewise, the parameter mmmm sets an upper boundary for the ECS field
length of subsequent job steps and cannot exceed the maximum field length for the job. If the value 0
(zero) is entered for CM or ECS field length, the MFL is set to either the maximum field length for which
the user is validated or the field length specified on the job statement, whichever is smaller.

The MFL control statement clears any initial running field length previously established with the RFL
control statement or the SETRFL macro and allows the system to determine the field length for each
succeeding job step. The system continues to determine field lengths until another RFL control
statement or SETRFL macro is encountered.

If the field length requested is greater than 377777g for CM, or 7777g for ECS, the following error
message is issued,

CM OR EC REQUEST EXCEEDS MAXIMUM.

MODE STATEMENT

The MODE statement allows the user to define the error conditions that cause the system to exit from
normal processing. When the error that the user specified occurs, the system sets the appropriate error
flag and exits from normal processing to perform any error processing required. If an error occurs for
which the user did not select the exit mode processing, the system ignores the error and continues
normal processing.

The control statement format is:

MODE(m,n)

m CPU program error exit mode (0sms<17g). Modes 10g through 17g are only legal for
the CYBER 170 Model 176. Selects the error condition(s) for which normal error
processing does and does not occur. If no mode is selected, the default is m=7.

n Included for compatibility with earlier versions of NOS. The system now ignores the

value specified on the control statement.

1-6-14 60435400 M

7N

7N

N

The following values can be supplied for m.

10,1171
12,1311T
14,15 111

16,17 11T

Normal Error Processing Occurs

None.)r

Address out of range.
Operand out of range.T

Address or operand out of range.

Indefinite operand.T

Address out of range or indefinite
operand.

Indefinite operand or operand out of
range.t

Indefinite operand, address out of
range, or operand out of range (default
value).

Underflow mode or address out of range.

Underflow mode, address out of range,
or operand out of range.

Underflow mode, address out of range, or

indefinite operand.

Underflow mode, address out of range,
operand out of range, or indefinite
operand.,

Error Ignored and Job Continues

Address out of range, operand out of
range, indefinite operand, or
underflow.

Indefinite operand, operand out of
range, or underflow.it

Address out of range,' indefinite oper-
and, or underflow.tt

Indefinite operand or underflow. Tt

Address or operand out of range, or
underflow. T

Operand or operand out of range, or
underflow.ft
Address out of range or underflow.TT

Underflow. T

Operand out of range, or indefinite
operand.
Indefinite operand.

Operand out of range.

None.

Address out-of-range error is caused by an attempt to reference CM or ECS outside of established limits,
or by an attempt to reference the last 60-bit word (word 7) in the relative address FL of ECS. Operand
out-of-range error is caused by a floating-point arithmetie unit receiving an infinite operand.” An
indefinite operand error is caused by a floating-point arithmetic unit receiving an indefinite operand.

Dividing zero by =zero results in an indefinite operand.
floating-point arithmetic unit receiving a negative exponent value that is too small.

Underflow mode error is caused by a
For further

information about the processing of error mode errors, refer to Error Control in section 3 and to the
CYBER 170, CYBER 70, and 6000 Series Computer Systems reference manuals,

Ton the CYBER 170 Model 176, address out of range (m=1) is always selected.
11 Underflow is applicable only to the CYBER 170 Model 176.

Tt These modes are legal only on the CYBER 170 Model 176. Since address out of range (m=1) is always

selected, the two modes are equivalent.

60435400 M

1-6-15 o

NOEXIT STATEMENT

The NOEXIT control statement suppresses EXIT statement processing. If an error occurs, control is not
transferred to the statement following the next EXIT statement. Instead, processing continues with the
next control statement (unless the error causes the job to unconditionally terminate). Refer to the
description of exit processing in section 5 for more information.

The control statement format is:

NOEXIT.

NORERUN STATEMENT

The NORERUN control statement allows a user to clear job rerun status.

N

The control statement format is:
~ NORERUN.

If the NORERUN statement has been issued, the job may not be rerun. This may be desirable to prevent
updating of a data base when the job would otherwise be rerun by the operator.

This statement is ignored from a time-sharing origin job.

NOTE STATEMENT ' ’

The NOTE control statement enables the user to create a file containing lines of data entered as a
character string on the same line as the control statement.

The control statement format is:

NOTE(1fn,NR)/line; /liney/.../line,

1fn Name of the file which contains the specified lines. Default is OUTPUT.

NR Inhibits rewind of Ifn. Default is to rewind the file at the beginning and end of
NOTE statement execution.

/ Delimiting character used to separate the individual entries that become lines in
the file. It can be any character. It must immediately follow a period or right
parenthesis.

line; A character string which constitutes one line of data in Ifn.

If a file contains more lines than can be entered with a single NOTE statement, a series of NOTE
statements, each with an NR, can be used. This series should be followed with a PACK statement since
each NOTE statement writes an EOR.

| 1616 , 60435400 M

N

N4

./

Example:

The following sequence of statements creates a procedure file (PFILE) that can insert an input record
after any record in an existing master file (LISTFIL).

NOTE(PFILE,NR)*,PROC,INSERT,N.*GET(LISTFIL)*COPYBR(LISTFIL,NEWLIST,N)
NOTE(PFILE,NR)*COPYBR(INPUT,NEWLIST)*COPYEI(LISTFIL,NEWLIST)
NOTE(PFILE,NR)*REPLACE(NEWLIST=LISTFIL)

PACK(PFILE)

SAVE(PFILE)

To insert an input record after the second record in LISTFIL, the user includes the following CCL
statement in the job that contains the new input record.

BEGIN,INSERT, PFILE,2.

60435400 M 1-6-16.1/1-6-16.2 I

I/’\\

2

i /’\\

OFFSW STATEMENT

The OFFSW control statement clears the pseudo-sense switches for reference by the user's program.

The control statement format is:

OFFSW(Sl,sz,...,Sn)
5i Sense switch to be cleared; 1<slss. If si=0 is specified, all sense switches are
cleared.

Refer to the description of the ONSW statement for further information on sense switch settings.

ONEXIT STATEMENT

The ONEXIT control statement causes the transfer of control to the statement following the next EXIT
statement if an error occurs.

The control statement format is:
ONEXIT.
The ONEXIT statement reverses the effect of a NOEXIT statement. If an error ocecurs in processing the

statement following ONEXIT, control transfers to the statement following the next EXIT statement.
Refer to the description of exit processing in section 5 for further information.

ONSW STATEMENT
The ONSW control statement sets the pseudo-sense switches for reference by the user's program.
The control statement format is:
ONSW(SI,Sz,...,Sn)
8§ Sense switch to be set; 1ssj<6. If s{=0 is specified, all sense switches are set.
The system stores the sense switch settings in the user's control point area and copies them to RA at the

beginning of each job step for use by the central program. The sense switch field in the eontrol point
area and the one in RA are updated separately.

PASSWOR STATEMENT
The PASSWOR control statement is used to change the user's password.
The control statement format is:
PASSWOR(oldpswd,newpswd)
oldpswd 0O1d password

newpswd New password

60435400 L 1-6-17

The new password must be the minimum length required by the installation. The default minimum is four
characters, its maximum length is seven characters. Only alphabetiec and numeric characters can be used
in the password.

For added security, the user may issue the PASSWOR statement without parameters. In this case, the
system reads the parameters from a record in the INPUT file. This record must be a single line with the
following format.

oldpswd,newpswd
The user's password is changed from oldpswd to newpswd. The user can change his password only if
access option 0 is set (refer to the LIMITS control statement in this seetion). If option 0 is not set and
the user submits a PASSWOR statement, the system issues the following message to his dayfile.

ILLEGAL CONTROL CARD.
If the control statement parameters are in error, the system issues the following message.

ERROR IN PASSWOR ARGUMENTS.
If the installation is currently updating the validation file or another user is modifying his password, a
nontime-sharing origin job is rolled out until the validation file is available. A time-sharing origin
PASSWOR command is aborted with the message:

MODVAL ABORTED.

If this situation is encountered, the time-sharing user should be able to retry his password change within
a short time.

PROTECT STATEMENT

The PROTECT statement is used to activate or deactivate preservation of a user's ECS field length
between job steps.

The control statement format is:

PROTECT ({ OFF})
or
PROTECT (EC= { on.

The parameter is activated by specifying ON and deactivated by specifying OFF. ECS preservation is
initially OFF.

Ordinarily, the ECS field length of a job is zeroed at the completion of a job step. With EC-ON the ECS
field length is preserved between job steps.

The PROTECT statement is available to the user only if option 14 of his access word is set (refer to the
LIMITS control statement in this section). If option 14 is not set and the user submits a PROTECT
statement, the system issues the following message to his dayfile.

CPM - ILLEGAL USER ACCESS.

1-6-18 . -~ 60435400 M

If no parameters are specified, an illegal keyword is used, or any parameter other than ON or OFF is
entered, the system issues the following message.

ERROR IN CONTROL ARGUMENTS.

RERUN STATEMENT

The RERUN control statement allows a user to set job rerun status.

The control statement format is:

RERUN.

If the RERUN statement has been issued, the operafor can rerun the job if necessary. This statement is

RESOURC STATEMENT

J ignored from a time-sharing origin job.

The RESOURC control statement is required in any job that uses more than one tape or pack
concurrently; it prevents deadlocks with other jobs which may need the same resources.

The control statement format is:

~ 60435400 L

RESOURC(I‘tl=U]_,I't2=uz,,"’['tn:un)

S
rtj Resource type:
LO 200 bpi, seven-track magnetie tape unit .
HI 556 bpi, seven-track magnetic tape unit
HY 800 bpi, seven-track magnetiec tape unit
HD 800 cpi, nine-track magnetic tape unit
PE 1600 cpi, nine-track magnetic tape unit
GE 6250 cpi, nine-track magnetic tape unit
MTT Seven-track magnetic tape unit
y NTT Nine-track magnetic tape unit (800/1600 cpi)
DIi 844-21 Disk Storage Subsystem (1<i<8)
DJi 844-41/44 Disk Storage Subsystem (1<i<8)
DKi 844-21 Disk Storage Subsystem (full-track)(1=i<8)
DLi 844-41/44 Disk Storage Subsystem (full-track)(1<i<8)
DMi 885 Disk Storage Subsystem (half-track)(1<i<3)
DQi 885 Disk Storage Subsystem (full-track)(1<i<3)
uj Maximum number of units of resource type rt; this job will use concurrently; any
rti=uj entry can be changed on subsequent RESOURC control statements. (Refer
to Altering Resource Requirements.) An rt=0 entry can be entered to clear a
resource type that is no longer required.
TRetained for compatibility with NOS 1.2. Refer to restrictions described under Tape Units in this
Y section.

1-6-19

DEADLOCK PREVENTION

The system manages the use of tape units and disk packs so as to prevent deadlocks from occurring. A
deadlock means that the system, by assigning a tape unit or pack to one job, prevents another job with
currently assigned resources from completing. For example, an installation with two tape units is
processing jobs A and B. Each job needs both units during some phase of processing. Job A is assigned
unit 1. If job B were assigned unit 2, neither A nor B could complete until the other job relinquishes its
assigned unit.

To prevent deadlocks from oceurring, the system requires that a RESOURC control statement be
included in any job that uses more than one tape or disk pack concurrently. Thus, in the previous
example, a RESOURC statement is required in both jobs. The information supplied by the statements
enables the system to anticipate the deadlock situation and roll out job B until job A no longer needs both
units. When the RESOURC statement is executed, the system first checks if the specified number of
units exceeds the number of units for which the user is validatedt or the number of units available at the
installation. If either of these situations ocecurs, the system issues an error message to the user's dayfile
and aborts the job. (Refer to figure 1-6-1.)

Statement first requesting a
particular tape or auxiliary pack T+

RESOURC
Statement

Resource
request

. Would
unit assignment
result in

yes yes

- Is unit
Print message "
and abort job ;g?ugisstk

pack
?

Resource
request

Is tape
or pack
requested
available
?

Timed rol!
—] out of job

. > .
installation
resources

Is NA
keyword
specified
on request,
?

Print message
and abort job

Figure 1-6-1. Resource Commitment Processing (Simplified)

yes

Assign tape
or pack to job

. Would
unit assignment
result in

Are units
already assigned
to job
?

Schedule
units

TFor jobs that use only one tape or pack at a time and do not contain a RESOURC statement, the
system checks validation limits when the request is made.
ttRefer to Resource Overcommitment later in this section.
t11The statements are described in sections 8 and 10.

1-6-20 60435400 L

-,

V4

When the job requests a tape or pack,I the system compares the number of units that jobs being
processed have scheduled via RESOURC statements with the number of units actually assigned. If it
determines that the assignment would cause a deadlock (refer to Resource Overcommitment), it rolls out
the job until a deadlock would not occur. If the assighnment would not cause a deadlock, the system
searches for the requested tape or pack. If found, it is assigned to the requesting job. If the pack is not
found and the NA keyword was included in the request or if the tape is not found, the requesting job is
rolled out until the operator makes the pack or tape available.

SINGLE RESOURCE USE

A job that uses only one tape or disk pack concurrently does not need to specify resource demand with a
RESOURC statement. However, before assigning the same or a different type of resource, the current
single resource (tape or disk pack) must be returned with either the RETURN or UNLOAD control
statement. To allow more flexible resource handling, both the RETURN and UNLOAD functions
decrement the default resource demand count from one to zero for jobs requiring only one tape or disk
pack concurrently. For those jobs requiring more than one tape or disk pack concurrently (as specified by
the RESOURC statement), UNLOAD does not decrement the resource demand count; RETURN
decrements the resource demand count only when all concurrent resource demands have been satisfied.

TAPE UNITS

Density resource identifiers (HD, PE, GE) should be used to indicate nine-track magnetic tape unit
demand. The system supports nine-track drives with alternate densities and needs this information to
prevent deadlocks and overcommitments. The 679-2/3/4 tape units are capable of processing both
800-cpi and 1600-cpi nine-track tapes; the 679-5/6/7 tape units handle both 1600-cpi and 6250-cpi
nine-track tapes. An 800-cpi nine-track tape cannot be processed on a 1600/6250-cpi unit, and 6250-cpi
nine-track tape cannot be processed on an 800/1600-cpi unit. The NT resource identifier, retained for
compatibility, can be used only to allocate 800/1600-cpi nine-track unitsit and cannot be specified
concurrently in the same job with HD, PE, and GE resource demands. Default nine-track resource
allocation is by density. }

Examples:
Assume that an installation has the following tape drive resources:
e Two 679-4 nine-track tape drives (800/1600-cpi densities).

e Two 679-7 nine-track tape drives (1600/6250-cpi densities).

TRefer to Permanent File Control Statements in section 8 for a deseription of disk pack requests and
to Tape Management Control Statements in section 10 for a description of tape requests.
TTNT resource demand cannot exceed the number of 800/1600-cpi nine-track drives at the
installation. However, at tape assignment time, a 1600-cpi tape mounted on a 1600/6250-cpi unit is
accepted for NT resource demand if it does not cause overcommitment (potential deadlock).

60435400 K 1-6-21

1. If a job makes a tape unit resource request with
RESOURC(NT=3)
the job is aborted with the message
INSUFFICIENT RESOURCES ON SYSTEM.
because only two units (the 679-4s) meet the NT specification.
2. If a job makes a tape unit resource request with
RESOURC(NT=1,PE=1)
the job is aborted with the message
CONFLICTING RESOURCE TYPES.
because the NT specification cannot be used with a density specification (HD/PE/GE).
3. If a job contains the following control statements

LABEL(TAPE,NT,D=PE,VSN=TAPE1)
RESOURC(NT=2)

the job is aborted with the message
CONFLICTING RESOURCE TYPES.

because the LABEL statement requested a tape unit by density (the default); therefore, later
statements cannot schedule tape units using the NT specification.

Density identifiers are provided for seven-track tape units even though these units do not have alternate
densities. This is done for consistency of format. The LO, HI, HY, and MT resource identifiers are all
equivalent, and the last specification of any one of these is the seven-track tape unit demand for the
job. For example, the resource request RESOURC(HI=1,HY=2) results in two seven-track tape resources
being allocated for the job.

RESOURCE OVERCOMMITMENT

Under certain conditions, the system overcommits resources, provided all jobs with currently assigned
resources can complete. For example, an installation with three tape units is processing jobs A and B.
Included in each job is a RESOURC statement scheduling two units. Job A requests its first tape. It is
assigned the tape (unit 1) because there are enough units available for job A to complete. Job B requests
its first tape. It is assigned the tape (unit 2) because either A or B can complete if assigned the last unit,
and when the job that is assigned the last unit completes, the other can then use that unit and also
complete. Job B then requests and is assigned its second tape (unit 3). It completes its operations {that
is, terminates or returns the files on the tape) and makes the unit available for job A to complete.

In a multimainframe environment, only the
configuration of the machine on which the job is
processed is considered in the over-commitment
algorithm.

1-6-22 , , 60435400 K

ALTERING RESOURCE REQUIREMENTS

The system manages its resources by keeping totals of the number of units of each device type scheduled
and assigned to jobs. The number of units scheduled and the number of units assigned to a job can vary
during job processing.

To change the number of units of a device type scheduled for this job, the user can issue another
RESOURC statement. When decreasing the number of units scheduled for the job via a RESOURC
statement, the total resulting scheduled units must not be less than the number of units currently
assigned to the job. If the resulting total would be less than the number currently assigned, the system
aborts the job with an error message.

If the job has tape and/or removable pack units assigned to it when it attempts to increase its resource
demands, the system determines if the request would cause a deadlock. If it would, it aborts the job with
an error message.

It is recommended that the user always return all
units assigned to his job before issuing another
RESOURC statement to inerease resource
demands. This action prevents a possible deadlock
condition resulting in job abort.

The scheduled units can also be decreased by a RETURN statement if the job, at the time of the
RETURN, is using its maximum scheduled units (refer to the description of the RETURN statement in
section 7).

Example:

The first RESOURC statement schedules two 800-cpi, nine-track tape units. The two LABEL statements
assign the tape units to the job. Because the maximum scheduled units were used concurrently, the
RETURN statement decreases the scheduled tape units to zero. The second RESOURC statement
schedules two 844-21 disk units and one 800-cpi, nine-track tape unit.

SAMSJOB(CM50000,T40)
USER(SJGREEN,WGT,ALTFAM)
CHARGE(D593,75)
RESOURC(HD=2)
LABEL(X,D=HD,VSN=TAPE1)
LABEL(Y,D=HD,VSN=TAPE2)
RETURN(X,Y)
RESOURC(DI1=2,HD=1)

-EOI-

60435400 L 1-6-23

UNIT ASSIGNMENT

The method of assigning units depends on the resource type. For example, all tapes and all private disk
packs not accessible by alternate users can only be assigned to one job at a time. All public packs and
those private packs accessible by alternate users are shareable, and therefore, can be assigned to several
jobs at the same time.

On indirect access file requests, the pack is charged to the job in fulfilling its resource demand only if
the request causes the pack to be mounted. For direct access file requests, the pack is charged to the
job when the first ATTACH of a direct access file is made.

A unit is assigned to a job until the job terminates or all direct access files residing on the unit that are
assigned to the job are returned. At this point, a tape or a nonshareable pack can be dismounted. A
shareable pack, however, can be dismounted only when there are no files residing on the unit that are
assigned to any of the jobs sharing the pack. .

In GET requests for indirect access files, a pack is
assigned to a job only as long as the pack is
actually being used (that is, until the system
retrieves the local copy of the file). Therefore,
during a series of GET requests, the operator may
determine that the pack is not being used and
. dismount it. If the user has a direct access file on
the pack, he can avoid this situation by attaching
the direct access file before issuing the GET
requests.

A single job cannot have more than 36 removable pack devices attached to the job concurrently.

RFL STATEMENT

The RFL control statement sets the initial running field length for each subsequent job step when neither
the routine for processing that step nor a loader table specifies a field length (refer to Field Length
Control in section 3). ,
The control statement format is:
RFL(nnnnnn,mmmm)
or
RFL(CM=nnnnnn,EC=mmmm)
nnnnnn Central memory field length (octal is assumed unless decimal is specified by a D
suffix or use of the digits 8 or 9). The value is rounded up to the nearest multiple

of 100g.

Specifying nnnnnn as 0 removes the effect of the previous RFL statement and
returns the setting of the field length to system control.

mmmm ECS field length in octal. The value of mmmm is the actual ECS divided by 1000g.

I 1-6-24 60435400 L

The parameters may be specified positionally, by keyword, or intermixed positionally and by keyword. If
intermixed, the positional parameters are evaluated according to their position among all the parameters.

The values of nnnnnn or mmmm cannot exceed the values specified on the last MFL control statement or
the maximum allowed for the job.

Prior to the appearance of the RFL control statement (or SETRFL macro), the system determines the
field length for each job step, provided no field length is specified by a system routine or loader table
(refer to Field Length Control in section 3).

If the field length requested is greater than 377777g for CM or 7777g for ECS, the following error
message is issued.

CM OR EC REQUEST EXCEEDS MAXIMUM.

ROLLOUT STATEMENT

The ROLLOUT control statement suspends job execution and places the job in the rollout queue. This
releases the control point, central memory, and ECS assigned to the job. The user can specify a time
period that must elapse before the job is returned. Otherwise, the job scheduler usually returns the job
to execut)ion when its priority is the highest of the jobs in the rollout queue (refer to Rollout Control in
section 3).

The control statement format is:
ROLLOUT(t)
t Optional time delay measured in job scheduler delay intervals. The delay interval
length is set by the installation; the default value is 1 second. Legal values for t

range from 0 to 262 080 (777700g) intervals. Although the default base is decimal,
octal values can be specified by a B suffix. Specifying a value containing an 8 or 9

and a B suffix is illegal.

RTIME STATEMENT

The RTIME control statement requests that the time be read from the real-time clock and issued to the
dayfile (in seconds). This is the accumulated time since the last system deadstart.

The control statement format is:
RTIME.
The dayfile message format is:

RTIME nnnnnn.nnn SECS.

60435400 L 1-6-25 |

SETASL STATEMENT

The SETASL control statement sets the system resource unit (SRU) limit for an account block. An
account block is the job step sequence whose execution is charged to an account (refer to SRU Limit
Control in section 3). The account is specified by the charge and project numbers on a CHARGE
statement, or if no CHARGE statement is required, by the user number on the USER statement. Each
user number and each account has an SRU validation limit (refer to the LIMITS and ENQUIRE
statements). Except for time-sharing jobs, the default account block SRU limit is the smaller of the user
number and the account validation limits. For time-sharing jobs, the default limit is 64 SRUs.

The control statement format is:
SETASL(s)

s Maximum number of SRUs allowed for account block execution. Although the
default base is decimal, octal values can be specified by a B suffix on the value.
Specifying a value with an 8 or 9 and a B suffix is illegal.
s must be greater than or equal to the current job step SRU limit,¥ and less than
or equal to the user's and the account's validation limits. Exceptions to this rule
are the asterisk (*) and values greater than 32 760 (77770B). These exceptions set
the account block SRU limit to the validation limit.

If the account block SRU limit is reached during account block execution, the system issues an error
message and terminates the job (refer to Exit Processing in section 5).

SETCORE STATEMENT
The SETCORE control statement presets each word wi_thin the field length.
The control statement format is:
SETCORE(p) ~
or

SETCORE(-p)

p Any of the following: (If a minus sign precedes the parameter p, the complement
of p is set in core.)
P Fill Characters
0 0
ZERO Zeros (0)
INDEF Indefinite (1777 0000 0000 0000 0000)
INF Infinite (3777 0000 0000 0000 0000)

Each word within the field length is set to p. If p is omitted, the system assumes p=0.

To preset memory within a load sequence, the user issues a LDSET,PRESET control statement as
described in the CYBER Loader Reference Manual.

T The job step SRU limit must be lowered in the job before the account block SRU limit is lowered.
Refer to the SETJSL control statement in this section.

I 1-6-26 ' 60435400 L

SETJSL STATEMENT

The SETJSL control statement sets the system resource unit (SRU) limit for each subsequent job step
(refer to SRU Limit Control in section 3). Except for time-sharing jobs, the default job step SRU limit is
the smaller of the user number and the account validation limits (refer to the LIMITS and ENQUIRE
statements). For time-sharing jobs, the default job step limit is 64 SRUs. Time-sharing users can
inerement their job step SRU limit to complete job step execution (refer to the Network Products IAF
Reference Manual or the NOS Time-Sharing User's Reference Manual).

The control statement format is:
SETJSL(s)

s Maximum number of SRUs allowed for job step execution. Although the default
base is decimal, octal values can be specified by a B suffix on the value.
Specifying a value with an 8 or 9 digit and a B suffix is illegal.

s must be greater than 0 and less than or equal to the current account block SRU
limit and the user's and the account's SRU validation limits. Exceptions to this
rule are the asterisk (*) and values greater than 32 760 (77770B). These values set
the job step SRU limit at the validation limit if the account block SRU limit is set
at the validation limit.T

The system issues an error message when the job step SRU limit is reached. A job step within a batch job
is then terminated (refer to Exit Processing in section 5). In time-sharing jobs, the user can inerement
the SRU limit after receiving the SRU limit message (refer to the Network Products IAF Reference
Manual or the NOS Time-Sharing User's Reference Manual).

SETPR STATEMENT
The SETPR control statement allows the user to decrease the CPU priority of a job.
SETPR(p)

p Priority, 1=p=<70g; if p exceeds 70g or the maximum priority defined for the origin
type of the job, it is reduced to that value.

Upon job initiation, a job is assigned the maximum priority allowed for its origin type. (The installation
defines these priority values.) If a job's CPU priority is lower than that of other jobs, the job is assigned
control of the CPU only when jobs of a higher priority. do not need it.

T The account block SRU limit must be raised before the job step SRU limit can be raised. Refer to
the SETASL control statement in this section.

60435400 K 1-6-27

SETTL STATEMENT

The SETTL control statement sets the CPU time limit for each subsequent job step. Each user number is
validated for a maximum job step time limit (refer to the LIMITS and ENQUIRE control statements). For
batch jobs, when the user does not specify a time limit, the system sets the limit at the user's maximum
validation. For time-sharing jobs, the defauit time limit is 64 CPU seconds. Time-sharing jobs can
inecrement their job step time limit to complete job step execution (refer to the Network Products IAF
Reference Manual or the NOS Time-Sharing User's Reference Manual).

The control statement format is:
SETTL(t)

t Maximum number of CPU seconds allowed for job step execution. Although the
default base is decimal, octal values can be specified by a B suffix on the value.
Specifying a value with an 8 or 9 digit and a B suffix is illegal.
t must be greater than 0 and less than or equal to the user's validated time limit.
Exceptions to this rule are the asterisk (*) and values greater than 32 760
(77770B). These values set the job step time limit at the user's validated time
limit.

The time limit set is the next multiple of 8 greater than or equal to t. For
example, SETTL(20) sets a time limit of 24.

The system issues an error message when the job step time limit is reached. A job step within a batch
job is then terminated (refer to Exit Processing in section 5). In time-sharing jobs, the user can
increment the time limit after receiving the time limit message.

To set a time limit for job step execution on one CPU of a dual-processor machine, the user must include

a USECPU statement in the job. Otherwise, the time limit is set for the cumulative job step execution
time on both CPUs.

STIME STATEMENT

ThefSTIME control statement requests that the accumulated SRU value for the job be issued to the user's
dayfile. :

The control statement format is:
STIME.
The dayfile message format is:

STIME nnnnnn.nnn UNTS.

SUBMIT STATEMENT

The SUBMIT control statement places a user-supplied job file into the input queue as a separate job.
SUBMIT can reformat the file according to directives within the file. Refer to Job Names in section 3
for a description of the submitted job's job name.

1-6-28 60435400 M

-

The control statement format is:

SUBMIT(1fn,q,NR)e
1fn Name of the file to be submitted to the system for processing as a batch job.
q Specifies disposition of job output files (OUTPUT, PUNCH, PUNCHB, and P8) as
follows:

B Job output is disposed to local batch queue to be printed and/or
punched at the central site (default value for nontime-sharing origin
jobs).

N Job output is discarded at job termination unless the files have been
explicitly routed (default value for time-sharing origin jobs).

E Job output is disposed to the remote batch queue for printing at a
remote batch terminal.

NR No rewind option; the submit file and the file specified on a eREAD reformatting

directive are not rewound before or after processing. If NR is omitted, the files
are rewound before, but not after processing.

¢ Escape character used to identify reformatting directives in the file to be
submitted (1fn). If omitted, the system assumes e is /.

The number of deferred batech (LDI, SUBMIT, and ROUTE) jobs that the user can have in the system
concurrently depends on his validation (refer to the DB field of the LIMITS control statement in this
section). If this limit is exceeded, an error message is issued to the dayfile, and the SUBMIT statement is
not processed.

For SUBMIT to process reformatting directives, the first line of the submit file must be a ¢JOB
directive. Each line preceded by an escape character is recognized as a reformatting directive. The
escape character is specified on the SUBMIT statement (/ by default). Throughout this deseription, the
letter ¢, preceding a directive, denotes the escape character. Reformatting directives may be
interspersed throughout the submit file as long as transparent submit mode is not in effect. Transparent
submit mode is selected by the ¢eTRANS directive and requires that the user observe special rules when
inserting subsequent directives into the file (refer to description of cTRANS and cNOTRANS directives).

The system does not process reformatting directives unless the first line of the submit file contains the
c¢JOB directive. In addition, the first two statements following the eJOB directive (second and third
statements of the submit file) must be a job and USER statement, respectively. All following
information is determined by the user. Thus, the first three lines of a submit file to be reformatted
should be:

Inl e¢JOB

In2 jobname,...

In3 USER,...
1nl, 1In2, and In3 are optional line numbers.
The user can include line numbers on the submit file and specify which line numbers are to be removed
during reformatting with the SEQ and NOSEQ directives. This is especially useful if the submit file

contains a BASIC program where line numbers are a requirement of the language. If line numbers are
included in a submit file, the file must begin with a ¢JOB directive.

60435400 L 1-6-29

The reformatting directives available are desecribed as follows:

cJOB

cEOR
cEOF
¢SEQ

cNOSEQ
cPACK

¢NOPACK

¢TRANS

I 1630

Indicates that the submit file is to be reformatted and selects the following default
reformatting directives. The default directives remain in effect until specified
otherwise.

ecNOTRANS (disabled by ¢cTRANS)
eSEQ (disabled by ¢cNOSEQ)
ePACK (disabled by eNOPACK)

The ¢JOB directive must be the first line of the submit file. If omitted, the file is
not reformatted. If line numbers are included in a submit file, the file must begin
with a ¢JOB directive.

-

Indicates that an end-of-record mark is to be placed at this point in the submit file
during reformatting.

Indicates that an end-of-file mark is to be placed at this point in the submit file
during reformatting.

Indicates that the following lines are preceded by line numbers and requests that they
be removed (default value). ’

Reverses the effect of the cSEQ directive. No attempt is made to remove leading
line numbers from subsequent lines. This is especially useful when line numbers are
required (such as in a BASIC program). :

Requests that all succeeding end-of-record and end-of-file marks be removed (default
value). This directive applies only to internal EOR and EOF marks that currently
exist. The cEOR and cEOF reformatting directives are not affected.

Reverses the effect of the ¢cPACK directive. Requests the system not to discard
succeeding internal end-of-record and end-of-file marks that currently exist.

Requests transparent submit mode. In transparent submit mode, SUBMIT ignores
reformatting directives until an EOR or EOF mark is encountered. The EOR or EOF
mark cannot be a mark to be created by a eEOR or c¢cEOF directive. SUBMIT
performs the following procedure for transparent submit mode processing.

1. Read cTRANS directive.

2. Check if the next line is a reformatting directive. If it is not, skip steps 3
and 4.

3. Process reformatting directive. If it is a eNOTRANS directive, end
transparent submit mode processing.

4. Return to step 2.

5. Select transparent submit mode and read lines until an internal EOR or EOF
mark is encountered.

6. If the cPACK directive is in effect, remove the EOR or EOF mark.

7. Return to step 2.

60435400 L

The ¢TRANS directive is typically used in conjunction with the cREAD directive. It
allows the user to copy the contents of an existing file into the submit file at the
location of the ¢READ directive. Because the file is read in transparent submit
mode, no check for reformatting directives is attempted until an internal EOR or
EOF is encountered. The ecREAD directive must follow the ¢TRANS directive and
must be located before the first succeeding line that is not a reformatting directive.
If not, transparent submit mode is selected before the cREAD directive is
encountered and the cREAD is ignored.

The ¢SEQ or c¢cNOSEQ directive in effect before transparent submit mode was
selected has no effect upon the submit file or the file being read (cREAD) while
transparent submit mode is in effect. However, the cPACK or cNOPACK directive in
effect before transparent submit mode was selected remains in effect after it is
selected.

ecNOTRANS Reverses the effect of the cTRANS directive and informs the system that the submit
file is to be examined on a line-by-line basis. All directives encountered in the
submit file while the eNOTRANS directive is in effect are processed. This directive
is initially selected by default and remains in effect until a ¢TRANS directive is
encountered in the submit file.

The user should be careful in placing this directive in the submit file. If transparent
submit mode is selected, this directive can possibly be ignored unless it immediately
follows either a cREAD directive or an internal EOR or EOF mark.

cREAD,Ifn Requests that the system read the contents of the specified file, 1fn, and insert that
file in place of the cREAD directive in the submit file, during reformatting. Reading
terminates when an EOF or EOI is encountered on Ifn. If the file to be read is not
currently local to the job, the system automatically attempts a GET and then an
ATTACH on the file. If lfn is not specified in the directive, TAPEl is assumed. If
the file specified cannot be found, the message

NO READ FILE - 1fn.

is issued to the user's dayfile, and the job is terminated. If the read file is found to be
busy (direct access files only), the message

READ FILE BUSY - Ifn.

is issued to the user's dayfile, and the job is terminated. The file specified by 1ifn in
the ecREAD directive is automatically rewound before the read operation unless the
NR parameter is specified on the SUBMIT control statement. In this case, the rewind
directive must precede the cREAD directive in the submit file if it is desired to
rewind file 1fn before the read operation begins. The system returns all files
specified in cREAD directives before completion of the job.

If the cPACK directive is in effeect when the file 1fn is read, all internal EOR marks

are removed. If the eNOPACK directive is in effect, all internal EOR marks are read
into the submit file in the proper position during reformatting.

60435400 L 1-6-31

Unless transparent submit mode is in effect when file 1fn is read, each line of that
file is also checked for a reformatting directive. Any directives contained in the file,
except another ¢cREAD, are processed. The cREAD directive cannot be nested. In
addition, any directives in effect before the eREAD directive is processed remain in
effect for the file being read, unless transparent submit mode is selected. Then, only
the cPACK or cNOPACK directive remains in effect for the file being read.
Moreover, only those directives that immediately follow an internal EOR in the file
being read are processed.

If the file to be read is a binary file, it is recommended that the cTRANS directive be
used to ensure that binary data is not mistaken for a reformatting directive. The
¢TRANS directive should immediately precede the ecREAD directive in the submit
file, if used.

cREWIND,Ifn Requests that the system rewind file 1fn to the beginning-of-information (BOI). If 1fn
is not supplied, TAPEl is assumed. This directive is required only if the NR
parameter is included in the SUBMIT command. Otherwise, file 1fn is automatically
rewound.

This directive is used in conjunction with the eREAD directive. Thus, if it is desired
to rewind a file before the read operation begins, this directive must precede the
cREAD directive in the submit file.

¢1EC=cy Indicates that the escape code character is to be changed from ej (current escape
code) to c9 (new escape code). The new escape code is used to recognize all
subsequent reformatting directives until further change.

Input lines must not exceed 150 6-bit characters. SUBMIT processes the first 80 characters as the
control statement. The remaining 70 characters are discarded and may contain a sequence number or
comments. If aline exceeds 150 characters, the results are unpredictable.

If the submitted job contains an illegal USER statement, the job entering the SUBMIT statement is
aborted (no exit processing). The following messages are issued to the dayfile.

ILLEGAL USER CARD.
SYSTEM ABORT.

The security count for the user number that entered the SUBMIT statement is decremented, and the
following message is issued to the account dayfile.

SIUN,usernum.

Terminal users are immediately logged off and no message is issued. The system then begins the login
sequence (for IAF users) if the security count is greater than zero. For further information concerning
use of the SUBMIT statement from a time-sharing terminal, refer to the Network Products IAF
Reference Manual or the NOS Time-Sharing User's Reference Manual.

The user should consult his job's dayfile to determine the cause of any errors that occurred during job
processing. The dayfile for the submitted job is disposed to the local batch queue or the remote batch
queue according to the disposition parameter on the SUBMIT statement.

When a user submits a batch job image from a time-sharing terminal, all output is dropped (unless
requested otherwise by the disposition parameter). This includes the dayfile output. Therefore, the
time-sharing user should make provisions within his job to save the contents of the dayfile if a processing
error occurs. This is done by including the following control statements at the end of the control
statement record.

I 1-6-32 60435400 L

N

N

EXIT.
DAYFILE(ifn)

REPLACE(Ifn)

SUMMARY STATEMENT

The SUMMARY control statement gives information about the system to the user. Three forms of the
command are allowed.

The control statement formats are:
SUMMARY(OP=pyp,...p,JN=jobname,FN=1fn;,0=1fny)
or
SUMMARY(p1p9...Pp)
or
SUMMARY.
The parameters and function of this control statement are identical with the ENQUIRE statement

described in this section, except that the third form of the statement (SUMMARY.) defaults to the OP=R
option. .

SWITCH STATEMENT

The SWITCH control statement sets the pseudo-sense switches for reference by the user's program.

The control statement format is:
SWITCH(S1,595e++ySp)

S Sense switeh to be set; 1<s;<6. If s;=0 is specified, all sense switches are set.

60435400 M 1-6-33

Refer to the description of the ONSW statement for further information on sense switch settings.

This control statement performs the same function as the ONSW control statement.

USECPU STATEMENT

The USECPU control statement specifies which eentral processor is to be used when more than one is
available for processing.

The control statement format is:

USECPU(n)
n=90 Either central processor is used.
n=1 CPU 0 is used.
n=32 CPU 1 is used.

The USECPU statement may be used only when the system is running on a CYBER 73-2x, 74-2x, 6500,
6700, or CYBER 174 system. On a 74-2x or 6700, CPU 0 is the parallel processor, and CPU 1 is the serial
processor. On the other systems, both CPUs are serial processors. This statement is ignored on single
CPU machines. ‘

USER STATEMENT

The system uses the parameters on the USER control statement to determine if a legal user initiated the
job, which resources he is validated to use, and the extent (limits) to which he may use those resources.
Comment statements are not allowed between the job and USER statements. If this is attempted, the
first comment statement is interpreted as an illegal USER statement, and the submitting job is aborted
with appropriate messages to the dayfile. The submitted job is dropped.

The control statement format is:
USER(usernum,passwrd,familyname)
usernum A one- to seven-character alphanumerie user number.

passwrd Alphanumeric password. Its maximum length is seven -characters; its
minimum length is defined by the installation.

familyname Optional parameter identifying the family? of permanent file devices on
’ which the user's permanent files reside. The user specifies a family name
when the system can access more than one permanent file device family,

T Refer to seection 2 for a description of permanent file device families.

1-6-34 60435400 L

7N

This statement defines controls and validation limits for the job and defines the user's permanent file
base. An installation may operate with secondary USER statements either enabled or disabled. If
enabled, the user may specify a different permanent file catalog during job processing by issuing another
USER statement. However, the access limits for the user named in the first USER statement remain in
effect for all subsequent USER statements (refer to the LIMITS control statement in this section for
information concerning access limits). If secondary USER statements are disabled (default mode) and a
secondary USER statement is issued, the job is aborted (no exit proecessing). The security count for the
current user number is deecremented accordingly, and the following messages are issued to the dayfile.

ILLEGAL USER CARD.
SYSTEM ABORT.

In addition, the following message is issued to the account dayfile.

SIUN,usernum.
The job is aborted, the security count is decremented, and the preceding messages are issued if a USER
statement containing an invalid user number is detected at any time, regardless of whether secondary
USER statements are enabled or disabled. In all cases, terminal users are immediately logged off with no
dayfile message issued to the terminal.
If the seeurity count for the user is exhausted, the system issues the following message.

ILLEGAL USER ACCESS - CONTACT SITE OPR.

When this occurs, the user number is denied all access to the system until the seeurity count has been
reset by the installation personnel.

The password is deleted from the USER control statement before this statement is issued to the dayfile.
Normally, the familyname parameter need not be included on the USER statement. However, if the user

makes a practice of specifying his family name each time he submits a job, he can be sure that his job
will be processed even if his normal system is not available and his permanent file family is moved to a

backup system. If, after the first USER statement, the user does not specify a familyname on the USER
statement, his permanent file family remains the same. If the user specifies the 0 (zero) familyname, his
permanent file family becomes the system default family.

Example:

An installation has two systems, A and B. System B provides backup service for system A. The system
default family name for system A is AFAM, and the system default family name for system B is BFAM.

During normal operations, system A user CWJONES with password JPWD could enter either of the
following USER statements.

USER(CWJONES,JPWD)
USER(CWJONES,JPWD;AFAM)

System B user JDSMITH with password SPWD could enter either of the following statements.
USER(JDSMITH,SPWD)

USER(JDSMITH,SPWD,BFAM)

60435400 L 1-6-35 |

If system A failed, user CWJONES would be required to enter
USER(CWJONES,JPWD,AFAM)

to identify his family of permanent file devices. User JDSMITH could enter either of the USER
statements as before because the default family name would still be valid.

If the user attempts to access permanent files on a device not present in the alternate system, one of the
following messages is issued to the user's dayfile.

DEVICE UNAVAILABLE, AT nnn. . This message is issued if the user's master devicel was
not transferred to the backup system.

DIRECT ACCESS DEVICE ERROR, AT nnn. This message is issued if the user attempted to
reference direct access files on a device (other than
his master device) not present in the backup system.¥

T Refer to section 2 for a description of permanent file device families.

| 1-6-36 60435400 L

‘/’,\‘

7

FILE MANAGEMENT CONTROL STATEMENTS 7

The file management control statements enable the user to manipulate flles assigned to his job. The
control statements included in this category are:

ASSIGN COPYSBF PACK SKIPFB
BKSP COPYX PRIMARY SKIPR
CLEAR DISPOSE RENAME SORT
COMMON DOCMEMT REQUEST TCOPY
CONVERT EVICT RESEQ TDUMP
COPY FCOPY RETURN : UNLOAD
COPYBF LIST80 REWIND UNLOCK
'COPYBR LOCK ROUTE VERIFY
COPYCF LO72 SETID WRITEF
COPYCR NEwW SKIPEI WRITER
COPYEI ouT SKIPF

The statements in this section allow the user to position his files, copy data from one file to another,
specify method and format of input/output, sort his files, and add corrections. He can assign his files to
a specific device type; change the file type, identification code, and write interlock status; and release
them from job attachment. The user can also receive information about records in a file or
documentation in a file containing COMPASS source code. The statements do not use CRM. !

If a file is not specifically assigned through the use of an ASSIGN, LABEL, or REQUEST control
statement, the system assigns the file to available mass storage.

ASSIGN STATEMENT

The ASSIGN control statement directs the system to assign a file to the specified device or device type.
The following descriptions refer to devices other than magnetic tape. For use of the ASSIGN statement
with magnetic tape, refer to section 10.

60435400 M | 1-7-1

The control statement format is:

ASSIGN(nn,1fn, | gg])

nn Device or device type to which the specified file is to be assigned; nn may be either
the EST ordinal T of a peripheral device or the device type as defined‘gs follows:
Type Equipment
DE Extended core storage
DI 844-21 Disk Storage Subsystem (half-track)
DJ 844-41 or 844-44 Disk Storage Subsystem (half-track)
DK 844-21 Disk Storage Subsystem (full-track)
DL 844-41 or 844-44 Disk Storage Subsystem (full-track)
DM 885 Disk Storage Subsystem (half-track)
DP Distributive data path to ECS
DQ 885 Disk Storage Subsystem (full-track)
MS Mass storage device
NE Null equipment
TT Time-sharing terminals T
Ifn Name of the file to be assigned to the specified equipment.

CK or CB Specifies that Ifn is to be used as a checkpoint file (refer to seetion 11).

CK Each dump is written at the previous EOI of 1fn.
CB Each dump is written at the BOI of 1fn.
Example 1:
ASSIGN(MS,0UTPUT)

This statement assigns file OUTPUT to mass storage. With this assignment, a time-sharing user causes
output normally printed at his terminal to be written on a mass storage file instead. Here, output means
information generated by a program during execution. Dayfile messages are still printed at the
terminal. Once this assignment is made, output is written on the mass storage file OUTPUT until the file
is returned or reassigned.

TContact installation personnel for a list of EST ordinals.
TThis device type applies only to time-sharing origin jobs.

1-7-2 60435400 M

7N

Example 2:
ASSIGN(TT,XYZ)
This statement assigns file XYZ to the user's time-sharing terminal. The assignment means tﬁat input
that the system would have read from file XYZ is instead solicited by a prompt at the terminal and that
output that the system would have written on file XYZ is instead displayed at the terminal.
Exammple 3:
ASSIGN(DI,ABC)
This statement assigns file ABC to an 844-21 disk drive, if one is available.
The ASSIGN statement can also be used to create or access existing seven- or nine-track unlabeled

tapes. For a description of the statement as it applies to magnetic tape assignment, refer to Tape
Management in section 10.

BKSP STATEMENT

The BKSP control statement directs the system to bypass a specified number of logical records in the
reverse direction.

The control statement format is:
BKSP(ifn,n,m)
1fn Name of the file to be backspaced.

n Number of logical records (decimal) to backspace; if this parameter is omitted,
the system assumes n=1.

m File mode: C for coded, B for binary. If m is omitted, the system assumes the
file is in binary mode. '

The BKSP request can be issued at any point in a logical record. If, for example, FILEl were positioned
within the third record, a

BKSP(FILE1)
request would reposition FILE1 to the beginning of the third record. The system does not backspace past
the beginning-of-information (BOI) or load point (tape file). However, EOF indicators are considered
separate records and are included in the record count. An unrecognizable record count causes the
message.

ERROR IN FILE ARGUMENTS.

to be issued to the user's dayfile.

The BKSP statement has no effect on a primary file since that file is rewound before every operation.

60435400 L 1-7-3

CLEAR STATEMENT

The CLEAR control statement releases all files currently assigned to the job. The user can also specify
files that are not to be released.

The control statement formats are:
CLEAR.
or
CLEAR(*,1fny,1fng,...,1fn,)

The first format releases all files. The second format releases all files except those named. If no files
are named, all files assigned to the job are released. : v

If the CLEAR control statement is included in a CCL procedure, the CCL work files (ZZZZZCO,
Z7Z7727.C1, and ZZZZZC2) are not returned. When the CLEAR control statement is not within a CCL
procedure, the CCL work files are returned, unless they are specified in the second format of the CLEAR
control statement.

Refer to RETURN statement in this section for the operations performed on each file type.

COMMON STATEMENT
The COMMON control statement creates or aceesses a library type file (LIFT).
The control statement format is:

COMMON(1fny,1fng,...,1fny)

1fn Logical file name.

The user must be validated to access or create library files. The specified file must be a local mass
storage file. If Ifn is not local, a search is made for a library file by that name, and an error message is
issued if the file is not found. If the operation completes successfully, the file is attached to the user's

job as a library type file.

Before a local file can be made a library file, it must be locked. Refer to LOCK Statement in this
section.

CONVERT STATEMENT

The CONVERT control statement converts records from one character set to another.

1-7-4 60435400 L

N

/'\\\

A

Y

N

The control statement format is:

CONVERT(py,p2,..-5P;)

bi

60435400 M

May be one of the following.

P=lfn1
N=1fn 2

RS=ny
64

TS=t

RC=ng

- Input on file 1fny; if omitted, file OLD is assumed.

Output on file Ifng; if omitted, file NEW is assumed.

Maximum record size in characters (decimal); 1 n 500. If omitted,
300 is the assumed maximum record size. (Each character is 8 bits.)

Convert from 63- to 64-character set; if omitted, no conversion
takes place. The TS option must be specified if 64 is not.

Convert from old time-sharing 61-character set to new time-sharing
63-character set; t may be one of the following terminal types.

t Terminal Type
TTY ASCII code terminal with standabd print.
COR Correspondence code terminal with standard print.

CORAPL Correspondence code terminal with APL print.

MEMAPL Memorex 1240 (ASCH code) terminal with APL
print.

BLKEDT Block transmission (ASCII code) terminal with full -

display screen editing capability and standard
print.

NAMIAF Virtual network terminal. Same as TTY.
If t is omitted, it is assumed to be TTY. If TS is omitted, no
time-sharing conversion takes place. The 64 option must be
specified if TS is not,

Rewind input and output files ‘before, but not after, processing. If
omitted, the files are not rewound before or after processing.

‘Convert ng decimal records. If ng is omitted, convert until an EOF

is encountered. If RC=n, is omitted, one record is assumed.

1-7-5

NM Used in conjunction with TS parameter and specifies that conversion
is to normal mode; if omitted, conversion is to ASCIH mode. Note
the effect of conversion on the following characters.

A (circumflex)

: (colon)

If TS is specified, display code 70
(circumflex character) is converted to
76. If NM is omitted, conversion is to
7402 (ASCII mode).

If TS and 64 are specified, display code
63 (colon character) is converted to 00.
If NM is omitted, conversion is to 7404
(ASCIH mode).

The following lists legal conversion using the appropriate CONVERT parameter.

Type of Record

63-character set, nontime-sharing record

01d time-sharing record
New NORMAL time-sharing record
(equivalent to BATCH character set)

New ASCII time-sharing record

COPY STATEMENT

Legal Conversion Parameters

64

TS or
64 and TS

64

None

The COPY control statement copies data from one file to another if the files are within the range of

permissible formats listed in table 1-7-1.

TABLE 1-7-1. RANGE OF PERMISSIBLE FORMATS FOR THE COPY STATEMENT

Output (O=1fngy)

Mass Tape Formats
Storage
or 1 - SI S L F
Terminal
Mass Storage 7777
or Terminal Yes Yes Yes Yes Yes %9 %/
P 77777
1 Yes Yes Yes Yes Yes %o ;
Z]
777777
St Yes Yes Yes Yes Yes é/ No %
Input Tape /” 7777
(I=1fny) Formats| S Yes Yes Yes Yes Yes %}‘I/o §
/ 7 // /7 7
L Yes Yes Yes ZI}(} /{é//Yei/ %/yg /
F Yes Yes Yes No ¥/ No Yes
/////A////é

1-7-6

60435400 L

~

The parameters can appear in order dependent format, order independent format, or a combination of
both. The completely order dependent format is:

COPY(lfnl,lfnz,x,.c,tc,copycnt,bsize,charcnt,erlimit,plpz...pn,lfng)

The completely order independent format is:

COPY(I=1fny,0=1fny,V=x,M=c, TC=te,N=copyent,BS=bsize,CC=charent, EL=erlimit,
PO=p1p3...pp,L=1fng)

If order dependent and order independent parameters are mixed in one COPY statement, the order
dependent parameters must appear in their proper position. All parameters are optional. However, the
specification of certain parameters precludes the application of others. A nonapplicable parameter may
be ignored or it may be illegal. This is stated in the individual descriptions of the parameters.

The parameters are defined as follows:

Parameter
I=lfny
O=lfny
V=x

M=c

TC=te

60435400 L

Description
Name of the file to copy from.
Name of the file to copy to.

If the x parameter (one to seven alpha-
numerie characters) is present, both files
are rewound, copied, rewound, verified,
and rewound. The x parameter must not be
zero.

M=C1 Coded mode is set on input only.
M=C2 Coded mode is set on output only.

M=any other value (one to seven alphanumerie
characters)

Coded mode is set on both input
and output.

This parameter applies only to S and L format
tapes. If coded mode is set on an SI tape,

the system aborts the job. For other formats,
the system ignores the mode setting.

Specifies the copy termination condition used
in conjunction with N=copyent. The termina-
tion condition can be specified as follows:

te Meaning

For The N keyword specifies the number
EOF of files to copy.

Ior Copy to the end of information. The
EOI N keyword is ignored.

Default
INPUT
OUTPUT

No verify

Binary

Copy to double
EOF (TC=D or
TC=EOD)

Parameter

N=copyent

BS=bsize

CC=charcn;

EL=erlimit

PO=p1p9...Pp

[178

Description

te Meaning

Dor The N keyword is the number of double

EOD EOFs to copy to. If N>1 is specified
together with this TC value, and verify
is also selected, the files are verified
only to the first empty file (COPY ecalls
VERIFY with N=0 parameter).

Copy count used with the copy termination
condition specified by the parameter TC.

Maximum block size (in central memory words)
which specifies S or L tape PRU size. This
applies only when copying to or from S and

L tapes. It cannot be specified with the

CC parameter.

Maximum number of characters inan Sor L
tape block. This parameter can be specified
only when copying to or from S and L tapes.
The PRU size and unused bit count are cal-
culated from the character count. However,
the unused bit count is used only when

writing a full block to an S or L output tape
during a copy from mass storage, I, or SI
format tape. The charent value should be a
multiple of 10. If it is not, the characters
that exceed the charent value in the last word
of the record are discarded when writing an

S or L format tape. This parameter eannot be
specified with the BS parameter.

Error limit which specifies the number of non-
fatal errors allowed before abort. This

includes both parity errors and block-too-large
errors which are returned by the tape subsystem
after completing recovery procedures. If EL=U
is specified, unlimited error processing is
allowed. Error recovery is supported on mass
storage and on all tape formats but is not
supported on a terminal or on unit record equip-
ment. In the latter cases, any error aborts

the job. i

One or more of the following processing
options:

E Input blocks with parity errors or
block~too-large errors are processed
(copied).

D Any noise blocks generated by a copy
from mass storage, I format tape, or
SI format tape to an S or L format
tape are deleted. This parameter can-
not be specified on any other type of
copy.

Default

If CC is not
specified, 1000g
for S tape copy
and 2000g for

L tape copy.

Not used (the PRU
size is specified
by the BS param-
eter)

0 (zero)

Error blocks are
skipped.

For S or L binary

tapes, noise blocks

are padded to noise

size with binary

zeros; for coded

mode, they are

padded with blanks.
60435400 L

N

Parameter . Description Default -

R Allows record splitting during a copy , Record splitting is
from mass storage, I format, or SI not allowed.
format to S or L format tape. This
parameter cannot be specified on any
other type of copy.

M Copy files according to the copy : Copy files according
termination condition specified by to specification of
the keyword TC, eliminating each the copy termination
EOF on output. This option is (TC), writing an EOF
primarily for use with labeled S after each file on
and L output tapes since it output.

eliminates the conflict of the
double meaning of a tape mark on
these formats (the tape mark on
these formats serves as both an EOF
and label group delimiter).

L=lfng Name of an alternate output file to receive : OUTPUT
parity error messages when extended error :
processing is in effect (nonzero EL specified),
in which case, the file name 1fng must not
be the same as 1fn; or 1fny.

Example:
The following COPY statement combines order dependent and order independent parameters.
COPY(FILE1,FILE2,VERIFY,CODED,EOF,6,L=MYOUT,PO=E,EL=10)

FILE1 is the input file, and FILE2 the output file. Six coded files are copied and verified. Up to 10
nonfatal errors are allowed, and the bad data is copied with informative error messages written to
the file MYOUT.

The COPY statement begins a copy operation at the current position of both files unless the verify option
is specified. If verify is specified, both files are rewound before the copy begins and rewound, verified,
and rewound again after the copy is completed. (This verify may not be meaningful if the logical
structure of the two files is incompatible.)

Copy Termination

Copying continues until the copy termination condition is met or EOI is encountered. The copy
termination condition can be a file count, a double EOF count, or EOL If the copy is terminated by a
double EOF (for TC=EOD option), the second EOF is detected on Ifny, but is not transferred to 1fng. If |
Ifn1=lfny the named file is read until the termination condition is satisfied or EOI is encountered.

If a copy specifies a file count, TC=EOF, and EOI is encountered on the input file before the file count is
satisfied, an additional EOF is written on the output file only if data or records have been transferred
since the previous EOF -was written (or since the begmmng of the copy if no EOFs have been
encountered).

60435400 L : 1-7-9

Block Sizes

Both L and F tapes may require additional field length to accommodate their maximum block size. The
maximum block size for an L tape copy is specified either by the BS=keyword (or its default), or it is .
calculated from the CC=keyword. The maximum block size for an F tape is determined by the maximum
frame or character count specified when the file was assigned. The more ‘accurate the selection of these
values which determine block size, the less are the requirements for field length, CPU time, and 1/0 time.

Processing Options

The PO=D option specifies noise block processing, and the PO=R option specifies record splitting for
copies from mass storage, I format, or SI format to S or L format tapes. Due to the incompatibilities
between the logical structure of the input and output files, records may be encountered on the input file
that are too small or too large to be copied directly to the S or L output tape. If the output file block
size is less than noise block size, it is deleted if PO=D is specified. If PO=D is not specified, the block
size is rounded to the word multiple of noise size with binary zero fill for a binary S or L tape or with
blank fill for a coded S or L tape. Empty records on the input file are skipped since they cannot exist on
an S or L tape. If PO=R is specified and an input file record length exceeds the S or L tape maximum
block size (the PRU size as specified by BS= or its default, or by CC=), it is split into multiple bloeks. If
PO=R is not specified and an input record length exceeds the S or L tape maximum block size, the job
aborts with the message

RECORD TOO LARGE ON Ifn.

The PO=M option makes it possible to copy a multifile file to a labeled S or L format tape without
. writing the EOF tape marks. This avoids the conflict of a tape mark serving the double purpose of
defining an EOF and delimiting a label group on S and L format tapes. This is in keeping with the

tendency in the computer industry to define a tape mark only as a label delimiter. , '

The EL and PO=E options provide extended error processing. If EL is set to a value greater than zero, a
parity error or a block-too-large error on the input file generates the following message on the alternate
output file.

PARITY/BLOCK TOO LARGE ERROR IN BLOCK n.

n is the decimal block count of the block in error.

COPYBF STATEMENT

The COPYBF control statement copies a specified number of files from one muttifile file to another.

The COPYBF statement is not recommended for
use with S, L, or F format tapes because it does
not have the data specification parameters needed
to acecommodate the variety of data formats
possible with those tape formats. For S, L, or F
format tape copy operations, the user should issue
a COPY statement with the appropriate
parameter specifications.

1-7-10 . 60435400 K

-

N~

The control statement format is:

COPYBF(Ifny,Ifng,n,c)

1fng Name of the file to copy from; if this parameter is omitted, file INPUT is assumed.

Ifng Name of the file to copy to; if this parameter is omitted, file OUTPUT is assumed.

n Number of files (decimal) on 1fn; to copy; if this parameter is omitted, n=1 is
assumed.

c Fourth parameter (one to seven alphanumeric characters) indicating that the copy

to or from an S or L format tape should be performed in coded rather than binary
mode. If coded mode is set on an SI tape, the system aborts the job. The system
ignores this parameter for mass storage files_ and I and F format tape files.

The copy begins at the current position of lfny. If Ifnj=lfng, the file is read until the file count is’
satisfied or EOI is encountered.

If EOI is encountered on 1fny before the file count is satisfied, an additional EOF is generated on 1fng
only if data or records have been transferred since the previous EOF was written (or since the beginning
of copy if no EOFs have been encountered).

COPYBR STATEMENT

The COPYBR control statement copies a specified number of records from one file to another.

The COPYBR statement is not recommended for
use with S, L, or F format tapes because it does
not have the data specification parameters needed
to accommodate the variety of data formats
possible with those tape formats. For an S, L, or
F format tape copy operation, the user should
issue a COPY statement with the appropriate
parameter specifications.

60435400 L | 711 |

The control statement format is:

COPYBR(ifnj,Ifng,n,c)

1fny Name of the file to copy from; if this parameter is omitted, file INPUT is assumed.
1fny Name of the file to copy to; if this parameter is omitted, file OUTPUT is assumed.
n Number of records (decimal) to copy; if this parameter is omitted, n=1 is assumed.

e Fourth parameter (one to seven alphanumerie characters) indicating that the ecopy

to or from an S or L format tape should be performed in coded rather than binary
mode. If coded mode is set on an SI tape, the system aborts the job. The system
ignores the mode setting for other formats.

The copy begins at the current position of 1fny, EOF indicators are considered separate records and are

included in the record count. If ifny=Ifng, the file is read until the record count is satisfied or EOI is
encountered.

If EOI is encountered on 1fn; before the record count is satisfied, an additional EOR is written on 1fng
only if data has been transferred since the previous EOR or EOF was written (or since the beginning of
the copy if no EORs or EOFs have been encountered).

COPYCF STATEMENT

The COPYCF control statement copies a specified number of coded files from one file to another. A

coded file is defined as a file containing lines of 150 characters or less, each terminated by a zero byte
(12 zero bits in the lowest byte of a word). :

The COPYCF statement is not recommended for
use with S, L, or F format tapes because it does
not have the data specification parameters needed
to accommodate the variety of data formats
possible with those tape formats. For an S, L, or
F format tape copy operation, the user should
issue a COPY statement with the appropriate
parameter specifications.

The COPYCF statement cannot copy SI format
tapes. If coded mode is set for an SI tape, the

system terminates the job. The TCOPY utility
converts SI coded tape files.

| 1712 - - 3 60435400 L

RN

N

NS

The control statement format is:

COPYCF(ifny,Ifng,n,fchar,lchar,na)

Ifny -~ - Name of the file to copy from; if this parameter is omitted, file INPUT is assumed.
Ifng Name of the file to copy to; if this parameter is omitted, file OUTPUT is assumed.
n. : Number of files (decimal) to copy; if this parameter is omitted, n=1 is assumed.
fehar First 6-bit character position of each line to copy (1 to 150); if this parameter is

omitted, the copy begins at character position 1.t

Iehar Last 6-bit character position of each line to copy (1 to 150); lchar must be greater
. than or equal to fchar. If this parameter is omitted,f the copy ends at character

position 136.

na Sixth parameter (one to seven alphanumeric characters) specifying that the job
step should not abort when a line terminator does not appear before an EOR.

The copy begins at the current position of Ifn;. If 1fny=lfng, the file is read until the file count is
satisfied or EOI is encountered. If EOI is encountered before the file count is satisfied, an EOF is
written on 1fng, and the operation terminates. If a line is encountered that has more than lchars, the
excess characters are truncated.

COPYCF writes lines with an even number of characters. If an input line has an odd character count and
the last character is a blank not immediately preceded by a colon, the last character is removed. If an
input line has an odd character count and the last character is not a blank or is a blank immediately
preceded by a colon, an additional trailing blank is appended. :

If COPYCF attempts to copy a line longer than 150 6-bit characters, the line is truncated, and an
informative message is issued to the dayfile after the copy completes.

If the last line of a record does not have an end-of-line terminator, COPYCEF issues a dayfile message. If
the na parameter is not specified, the job step then aborts.

T Since many characters in 6/12 display code require 12 bits rather than 6, this parameter may
produce unforeseen results when copying a file containing 6/12 display code data.

60435400 L 1-7-13

COPYCR STATEMENT

The COPYCR control statement copies a specified number of coded records from one file to another. A
coded record contains lines of 150 characters or less, each terminated by a zero byte (12 zero bits in the
lowest byte of a word).

The COPYCR statement is not recommended for
use with S, L, or F format tapes because it does
not have the data specification parameters needed
to accommodate the variety of data formats
possible with those tape formats. For an §, L, or
F format tape copy operation, the user should
issue a COPY statement with the appropriate
parameter specifications.

The COPYCR statement cannot copy SI format
tapes. If coded mode is set for an SI tape, the
system terminates the job. The TCOPY utility
converts SI coded tape files.

The control statement format is:

COPYCR(Ifny,Ifng,n,fchar,lchar,na)

Ifny Name of the file to copy from; if this parameter is omitted, file INPUT is assumed.
Ifng Name of the file to copy to; if this parameter is omitted, file OUTPUT is assumed.
n Number of records (decimal) to copy; if this parameter is omitted, n=1 is assumed.
fchar First 6-bit character position of each line to copy (1 to 150); if this parameter is

omitted, the copy begins at character position 1.t

Ichar Last 6-bit character position of each line to copy (1 to 150), lchar must be greater
than or equal to fchar. If this parameter is omitted, the copy ends at character
position 136.F

na Sixth parameter (one to seven alphanumerie characters) specifying that the job
step should not abort if a line terminator does not appear before an EOR.

The copy begins at the current position of 1fny. If Ifn;=lfng, the file is read until the record count is
satisfied or EOI is encountered. EOF indicators are considered separate records and are included in the
record count. If the EOI is encountered before the record count is satisfied, an EOF is written on 1fng,
and the operation terminates. COPYCR is processed in exactly the same manner as the COPYCF control
statement except that n specifies the number of records rather than the number of files.

T Since many characters in the 6/12 dlsplay code require 12 bits rather than 6, this parameter may
produce unforeseen results when copying a file containing 6/12 display code data.

1-7-14 S 60435400 L

N

\

TN

/

If COPYCR attempts to copy a line longer than 150 6-bit characters, the line is truncated, and an
informative message is issued to the dayfile after the copy completes.

If the last line of a record does not have an end-of-line terminator, COPYCR issues a dayfile message. If
the na parameter is not specified, the job step then aborts,

COPYElI STATEMENT

The COPYEI control statement copies one file to another. The copy begins at the current position of the
file and continues until the EOI is encountered. The EOI is not defined for certain tape formats (refer to

table 1-2-1).

The COPYEI statement is not recommended for

use with S, L, or F format tapes because it does

not have the data specification parameters needed

to accommodate the variety of data formats
possible with those tape formats. For an S, L, or

F format tape copy operation, the user should

issue a COPY statement with the appropriate

parameter specifications,

The control statement format is:

COPYEI(ifny,1fng,x,c)
Ifny Name of the file to copy from; if this parameter is omitted, file INPUT is assumed.
Ifny Name of the file to copy to; if this parameter is omitted, file OUTPUT is assumed.
X If a third parameter (one to seven alphanumeric characters) is present, both files
are rewound before the copy, and rewound, verified, and rewound again after the .
copy is complete.
c Fourth parameter (one to seven alphanumeric characters) indicating that the copy

to or from an S or L format tape should be performed in coded rather than binary

mode. If coded mode is set on an SI tape, the system aborts the job. For other
formats, the system ignores the mode setting.

If Ifny=1fny, the file is read until EOI is.encountered.

60435400 M

1-7-15

COPYSBF STATEMENT

The COPYSBF control statement enables the user to copy a file where the first character of each line is
not a printer control character and is to be printed.

The COPYSBF statement is not recommended for
use with S, L, or F format tapes because it does
not have the data specification parameters needed
to accommodate the variety of data formats
possible with those tape formats. For an S, L, or
F format tape copy operation, the user should
issue a COPY statement with the appropriate
parameter specifications.

The control statement format is:

COPYSBF(Ifny,1fng,n,na)

1fny Name of the file to copy from; if this parameter is ommitted, file INPUT is
assumed.

Ifny Name of the file to copy to; if this parameter is omitted, file OUTPUT is assumed.

n Number of files (decimal) to copy; if this parameter is omitted, n=1 is assumed.

na Fourth parameter (one to seven alphanumeric characters) specifying that the job

step should not abort if a line terminator does not appear before an EOR.

The COPYSBF routine copies n files beginning at the current position of 1fny to file 1fng, shifting each
line image one character to the right and adding a leading space. Each line image may contain up to 150
(6-bit) characters. Any characters beyond 150 are lost. A page eject character is inserted at the
beginning of each logical record (refer to appendix I for a list of carriage control characters). If
Ifn1=lfng, n files are skipped but no data transfer occurs. If the EOI is encountered before the file count
is satisfied, an EOF is written to Ifny, and the operation terminates.

If COPYSBF attempts to copy a line longer than 150 6-bit characters, the line is truncated, and an
informative message is issued to the dayfile after the copy completes.

If the last line of a record does not have an end-of-line terminator, COPYSBF issues a dayfile message.
If the na parameter is not specified, the job step then aborts.

1-7-16 ' 60435400 K

N

_A

COPYX STATEMENT

The COPYX control statement enables the user to specify certain conditions when copying logical
records.

The COPYX statement is not recommended for
use with S, L, or F format tapes because it does
not have the data specification parameters needed
to accommodate the variety of data formats
possible with those tape formats. For an S, L, or
F format tape copy operation, the user should
issue a COPY statement with the appropriate
parameter specifications.

The control statement format is:

COPYX(ifny,1fng,x,b,e)

‘

1fng Name of the file to copy from; if this parameter is omitted, file INPUT is assumed.
lfng Name of the file to copy to; if this parameter is omitted, file OUTPUT is assumed.
X Copy specifications; if omitted, one record is copied. The value for x may be one

of the following:

X Meaning
n Number of records (decimal) to copy.
00 Copy all records up to and including first zero-length record.
name Copy all records up to and including record of specified

name (record name is first seven characters of record or the
name in the prefix table, if present).

type/name . Copy all records up to and including record of specified type
and name (refer to Library Record Types in section 14 for
list of valid record types).

b Backspace control; if omitted, 0 is assumed.
b — Meaning
0 No backspace.
1 Backspace file 1fn; one record after copy completes.

(S

Backspace file 1fny one record after copy completes.

3. Backspace files 1fn; and 1fng one record after copy
completes.

60435400 K 1-7-17

c Fifth parameter (one to seven alphanumeriec characters) indicating that the -copy
* to or from an S or L format tape should be performed in coded rather than binary
mode. If coded mode is set on an SI tape, the system aborts the job. For mass

storage files and I and F format tape files, the mode setting is ignored.

The COPYX routine copies logical records from 1fn; to file Ifng at the current position of 1fnj until the
condition specified by x is met. It then backspaces the files according to the value specified by the b
parameter. If an EOF or EOI is encountered on 1fn; before the condition specified by x is met, the
operation terminates and the backspace parameter b is ignored. If 1fn{=Ifng, the file is read until the
termination condition is satisfied or an EOF or EOI is encountered. - :

If EOI is encountered on 1fn; before the termination condition is satisfied, an additional EOR is written

on 1fng only if data has been transferred since the previous EOR was written (or since the beginning of
the copy if no EORs have been encountered).

DISPOSE STATEMENT'
The DISPOSE control statement releases the specified files to the named output queues.
The control statement format is:

DISPOSE(Ifn; =q1,1fng=q9,...,1fny=qp,/ot=usernum)

ifn; ?fame of the file to be disposed. 1fn cannot be a direct access file or the primary
ile.
qj Queue type:
PR Print
PH Punch coded 026
P9 Punch coded 029
PB Punch binary
P8 Punch 80-column binary
ot Origin type to which files are to be disposed:
BC Local batch
El Remote batch
usernum Number of the remote batch userb to which the files are to be disposed (ignored if

ot is BC).- Also, usernum must match the number of the user performing the
DISPOSE on all character positions except those containing an *.

The file type for file Ifnj is changed to q; in the FNT/FST entry for 1fn;. The system then processes the
file according to queue type. The user can dispose coded punch files to either 026 or 029 regardless of
the job's initial keypunch mode. If the system cannot recognize g, the following message is issued.

ILLEGAL DISPOSE CODE.

T The user should employ the ROUTE' control statement for this operation, because the DISPOSE
statement will not be supported in future versions of NOS.

1-7-18 60435400 L

VRN

N

If the ot and usernum parameters are not specified, a remote batch job disposes the files to the remote
terminal from which it was submitted, and all other origin types .dispose the files to the central site
output devices. If ot is BC, the usernum parameter is ignored, and the files are disposed to the central I
site devices.

DOCMENT STATEMENT

The DOCMENT control statement enables the usér to extract either the external or internal
documentation from a file.

The control statement format is:

DOCMENT(p1,p9,..-,Pp)

pi The parameters can be in any order and must be in one of the following forms.
Omitted The first default value is éssumed.
a The alternate default value is assumed.
a=x x is substituted for the assumed value.

Any numeric parameter can be specified with a postradix character of either B or D. The values that p;
can assume are:

I=1fny Name of the file that contains the page footing information; this must be a single
statement in the following format.
Column(s) Contents
1 Blank
2-45 Document title
46-55 Publication number
56-60 Revision level
61-70 Revision date
S=1fny Name of the file containing the source statement images from which to extract
the documentation. This file is rewound by default unless the NR parameter is
specified.
L=lfng Name of the file on which the output is to be written.
N=nn Number of copies to be produced.
T=type Documentation type:
INT Internal documentation (detailed deseription of the internal

features of the software).

EXT External documentation (detailed description of the external
features of the software).

60435400 L : 1-7-19

C=ce Key character for documentation.

P=pp Number of print lines per page.

NR Disable rewind on the S (source) file.
NT Negate table generator.

TC List table of contents.

The following are the default values for the parameters described.

First Alternate
Parameter Default Default Comment
I 0 INPUT Page footing information; if I is 0, no footing information is
printed.
S COMPILE SOURCE Source statement images.
L OUTPUT | ouTPUT List file.
N 1 1: Number of copies (decimal).
T EXT INT Documentation type.
C * 03 Check character (two octal digits).
P 60 80 Number of print lines per page.
NR REWIND NO REWIND Source file rewind status.
NT ON OFF Table generator status.
TC OFF ON ‘ Table of contents status.

Refer to appendix I in volume 2 for a detailed explanation of the documentation standards followed. This
appendix also contains an example of external and internal documentation for a sample program.

EVICT STATEMENT

The EVICT control statement releases file space for the specified files but does not release file
assignment to the job.

The control statement format is:
EVICT(fny,1fng,...,1fn,)

1fn; Name(s) of the file(s) to be evicted.

I 1-7-20 60435400 L

The operation that EVICT performs depends on the file characteristies.

File ; EVICT Action
Permanent and Releases all file space except the first track and writes an EOI on the
primary files first sector of the first track, but keeps file assigned to the job.
Deferred Releases all file space and clears all file routing information.
routed queue
file T
File with Unloads file.
write inter-
lock set
Tape files Releases tape from the job.
All other Releases file space, but keeps file assigned to job.
files

An EVICT of a tape file performs the same function as an UNLOAD and so cannot be used to decrease
the number of resource units scheduled via the RESOURC statement. »

FCOPY STATEMENT

The FCOPY control statement converts a file from one code set to another. Currently, the only
supported conversion is from 6/12 display code (used in time-sharing ASCII mode) to 12-bit ASCII code.
Refer to appendix A for code set definitions.

The control statement format is:

FCOPY(P=1fn{,N=Ifng,PC=cs1,NC=cs9,R)

P=Ifny - File to be converted (default is OLD). The user should assign 1fn; to the job
before performing the FCOPY operation.

N=lfng File on which the converted data from 1fn; is written (default is NEW). If lfng is
not assigned to the job, FCOPY creates it.

PC=csq Code set of Ifn;. The default and only currently supported value for esy is ASCII,
which refers to 6/12 display code.

NC=esg Code set of 1fng. The default and only currently supported value for esg is
ASCII8, which refers to 12-bit ASCI code.

R If R is specified, 1fny and Ifny are rewound before and after the conversion. If R
is omitted, 1fn; and Ifng are not rewound before or after the conversion.

T Refer to the ROUTE statement in this section.

/ 60435400 L 1-7-21

FCOPY reads Ifn; to-its EOI, preserving its EOR and EOF marks on the converted file. The maximum
line length that can be processed is 160 12-bit codes or 320 6-bit codes. Lines that exceed the maximum
length are truncated.

If 1fn is written in 6/12 display code based on the
63-character set, it must be converted to the
64-character set by the CONVERT control
statement before its conversion by the FCOPY
statement. .

Files converted to 12-bit ASCII code can be listed oh a local bateh printer (refer to the ROUTE control
statement) but cannot be listed at a time-sharing or remote batch terminal.

Example:

A time-sharing user wants to print a file (FILE1) created in ASCII mode. To do so, he enters a COPYSBF
statement to prefix the file lines with appropriate carriage control characters. He then enters an
FCOPY statement to convert the file containing 6/12 display code (FILE2) to a file containing 12-bit
ASCI code (FILE3). Finally, he routes the converted file (FILE3) to a line printer that prints the ASCII
graphic 95-character set. ‘ :

/ascii
/copy,filel.
AaBbCcDdEeFfGg
HhIid jKkL1MmNn
EOI ENCOUNTERED.
/rewind,filel.
$REWIND,FILE1.
/copysbf,filel,file2.
END OF INFORMATION ENCOUNTERED.
/rewind,file2.
$REWIND,FILEZ2.
/copy,file2.
1AaBbCcDdEeFfGg
HhIid jKkL1MmNn
EOI ENCOUNTERED.

I /fcopy,p=file2,n=file3,r.
- FCOPY COMPLETE.
/route,file3,dc=1p,ec=a9.

ROUTE COMPLETE.

] The following is the local bateh output from the ROUTE statement.

AaBbCcDdEeFfGg
HhIiJd jKkL1MmNn

1-7-22 60435400 L

LIST8O STATEMENT

The LIST80 routine reads a file containing list output produced by the COMPASS assembler and
compresses it to 80 columns, which fits on 8-1/2- by 11-inch printer paper.

The control statement format is:

LIST80(1fny,1fng,NR)

1fnq File to copy from; if this parameter is omitted, file LIST is assumed.
1fng File to copy to; if this parameter is omitted, file OUTPUT is assumed.
NR Parameter indicating that 1fn; should not be rewound.

The LIST80 statement output listing omits the following information that appears on the COMPASS
assembler output listing.

e COMPASS version number on the page heading.
e COMPASS assembler binary values.
e INVENTED SYMBOLS comment.

e Symbolic Reference Table block column that contains either the system text file name, the
overlay name, or the name of the block containing the symbol.

Comments are truncated to column 65.

LOCK STATEMENT
The LOCK control statement enables the user to prevent writing on a file.
The control statement format is:

LOCK(ifny,lfns,...,1fny,)

1fn; Logical file name of a local file.

With the LOCK statement, the user can set the write interlock bit in the FNT/FST entry for a local file.
Subsequently, the system allows only read operations on the file. The file specified must be a local file;
if it is not, the following message is issued.

ILLEGAL FILE TYPE.
The LOCK statement may also be used in conjunction with the COMMON statement to lock loecal files

before making them library files for multiple user access. Refer to Library Files in section 2 and the
COMMON control statement in this section.

60435400 L 1-7-23

LO72 STATEMENT

The LO72 control statement allows the user to specify the reformatting of his files.

The control statement format is:

LO72(p1,p9).+sPp)

Pj ~ Any of the following parameters in any order:

I
I=lfn1
1=0

S
S=1fng

L
L=lfng

T
T=x

H=xxx

LP

NR

1-7-24

Reformat parameters are on file INPUT.

Reformat parameters are on file Ifn;.

There is no input file of reformat parameters. If the I
parameter is omitted, I=0 is assumed.

Data to be reformatted is on file SCR.

Data to be reformatted is on file 1fng. If the S parameter is
omitted, SCR is assumed.

Reformatted data is listed on file OUTPUT.

Reformatted data is listed on file Ifng. If the L parameter is
omitted, OUTPUT is assumed.

File to be reformatted is of type B.
File to be reformatted is of type x.

X Description
M Modify sourée data.
c COMPASS source data.
B Other source data.
If the T parameter is omitted, B is assumed.
Number of characters per output line is 72.

Number of characters per output line is xxx (maximum allowed
is 150 characters). If the H parameter is omitted, 72 is assumed.

H must be greater than or equal to the number
of characters being moved (Nx) plus the starting
eolumn number of the destination field (Ox).

Output is formatted for the line printer.

Output file is not rewound.

60435400 L

Nx=y Specit)'ies the number of characters to be moved (up to six
fields).

x(1 to 6) Number of field being moved.

y Number of characters being moved.

The following restrictions apply to the H, N, I, and
O parameters.

(Nx+Ix).GT.150 Yields an error (ISx<6).
(Nx+Ox).GT.H Yields an error (I<x<6).
H.GT.150 Yields an error.

Ix=y Specifies the field the data originates from.

x(1-to 6) Number of field being moved.

. y A Starting column of originating field.
Ox=y Specifies the destination field the data is going to.
/ x(1 to 6) Number of the field to receive data.
y Starting column of destination field.
IT Suppresses query to terminal asking if user wants to change any

of the input parameters before processing begins. If omitted,
query is issued. This parameter is effective only from
time-sharing origin jobs.

The following shows the default values assumed for the N, O, and I parameters for the various source

. types.
Type N1 n 01 N2 12 02 N3 I3 03
B 72 1 1 0 0 0 0 0 0
C 7 9 1 50 41 8 15 A 112 58
M 2 6 1 48 10 3 22 82 51

The remaining parameters of these types are defaulted to 0.

LOT2 reformats files (output files in general). The user can rearrange each line (all lines must be
formatted the same) in the format he chooses. All default values compress output to 72 ecolumns, which
is appropriate for terminal output or 8-1/2- by 11-inch printer paper. If a 1 is encountered in column 1
(the page eject printer control character), the next two lines of source data are processed as a two-line
header. . This header is compressed to 72 columns for all source types. If no page eject control--

characters are encountered, no headers are processed.

60435400 L 1-7-25 ||

The following values apply to the first line of header and cannot be changed.

N1=42, 11=8, O1=0 (if LP not specified; otherwise, 01=1).

N2=20, 12=90, 02=42.

N3=5, 13=115, 03=62.

N4=5, 14=121, 04=617.
The subheader lines for COMPASS and Modify listings are processed uniquely.
For B listings, the following values apply to the reformatting.

N1=43, 11=8, O1=0 (if LP not specified; otherwise, 01=1).

N2=29, 12=70, 02=43.
All parameters are passed to LO72 by the control statement. If an input file is specified, LO72 reads it
for additional input parameters. If the job originates from a time-sharing terminal, and the IT parameter
is not specified, the user is asked if he wishes to change any of the input parameters. If he enters YES,
the system prints the current parameter values and allows him to change them individually. Pressing the
carriage return key for any parameter leaves the parameter at its former value. In the following
examples, the same input parameters are entered in three possible ways.
Examples: '
Control Statement:

LO72(I=0,S=SOURCE,T=B,L=OUT,N4=1,I4=2,04=75,H=90)
Time-Sharing Terminal:

/1072

DO YOU WANT TO CHANGE ANY CONTROL APGUMENT VALUES-
ENTER: YES OR NO

? yes

ARGUMENT VALUE

INPUT FILE NAME: ?
SOURCE FILE NAME: SCR ? source

OUTPUT FILE NAME: OUTPUT ? out €9

SOURCE FILE TYPE: BATCH ? b

OUTPUT LINE LENGTH: 72 CHARS.? 90
NO. OF MOVED FROM MOVED TO

CHARS. COLUMN COLUMN
(X) (NX) (IX) (0X)

1. 72 1 1

2. @ 0 0

3. @ 0 0

4. ©) 0

5. 0 0 0

6. 0 0 0 :
ENTER CHANGES IN THE FOLLOWING FORMAT:
NX=AA*CR*

IX=BB*CR*

OX=CC*CR*

ETC.

TO CONTINUE, ENTER *CR* ONLY. ? né=1l
? 14=2

? 04=75

2
LO72 COMPLETE.
| 172 60435400 L

User entries are in lowercase. The symbol indicates carriage return.
Input File:

S=SOURCE, L=OUT, T=B.

N4=1, 14=2, 04=75.

H=90.

-EOR-

Each line in the input file must end with a terminator.

NEW STATEMENT
The NEW control statement creates a primary file.

The control statement format is:

NEW(lfn/ND)
Ifn Name of file to be made primary file.
ND If this parameter is specified, no files currently assigned to the job are released.

The NEW statement creates an empty file and makes it the user's new primary file. All files assigned to
the job are released unless the ND parameter is specified. When the ND parameter is specified, any
currently existing primary file becomes a nonprimary temporary file.

The automatice rewinding of primary files is incompatible with some file manipulation statements. Refer
to the note in PRIMARY Statement later in this seetion.

OUT STATEMENT
The OUT control statement releases output files to the output (punch or print) queue.
The control statement format is:
OUT.
or
OUT(*,1fny,1fng,...,1fny)

The first format releases all eligible files to the appropriate output queues. The second format releases
all eligible files except those named (Ifn;). If no files are named, all eligible files are released.

Files eligible for release are:

e Print (PRFT) type.

e Punch (PHFT) type.

e Local (LOFT) type, if named OUTPUT, PUNCH, PUNCHB, or P8.
The file type determines the output queue to which the file is sent. For example, a print type file named
PUNCH is released to the print queue and a punch type file named PUNCHB is released to the punch

queue.

60435400 L ' 1-7-27

The number of files released is recorded in the job's dayfile with the message
nnn FILE(S) PROCESSED.
nmn is the decimal number of files to be released.

If no files with the above names or belonging to these types are found, the following message is issued to
the dayfile

NO FILE(S) RELEASED.
This control statement is used if the user wishes to initiate printing or punching of the files before job
termination. The PUNCH file is punched in either 026 or 029 mode, depending on the origin of the job.
If the job is a local batch job, the coded deck is punched in the initial keypunch mode of the job's control

statement record. For all other job origin types, the coded file is punched in the system default
keypunch mode.

PACK STATEMENT

The PACK control statement removes all EOR and EOF marks from a specified file and copies it as one
record to another file. i

The control statement format is:
PACK(Ifny,1fng,x)
Ifny Name of file to be packed. From batch origin, 1fn; must be specified; from

time-sharing origin, the primary file is used if 1fn, is omitted. The file must not
be assigned to a time-sharing terminal (file type T'I‘}

Ifng Name of file to receive packed data. If 1fng is omitted, the packed file is written
on]fl"ll.
X Third parameter (one to seven alphanumeric characters) indicating that 1fng

should not be rewound before the pack occurs.
The input file, 1fny, may consist of any number of records and/or files. If no third parameter is supplied,
Ifn is read from the BOI to the EOI, and all EOR and EOF marks are removed. It is written to file 1fng
at the current position as one record. File Ifng is rewound after the pack; 1fny is not. The results of

PACK may produce unpredictable results when used with certain CYBER Record Manager (CRM) files
(refer to CRM Basic Access Methods or CRM Advanced Access Methods Reference Manual).

PRIMARY STATEMENT
The PRIMARY control statement makes a local file the primary file, or it creates an empty primary file.
The control statement format is:

PRIMARY(ifn)

Ifn Name of local file.

1-7-28 60435400 M

TN

If Ifn already exists, it must be a local mass storage file in order to be made the primary file. If 1fn does
not exist, the PRIMARY statement creates it on mass storage. Any currently existing primary file (other
than the Ifn specified) becomes a nonprimary temporary file. If the specified file is already primary, the

operation is ignored.

The primary file is rewound before every
operation performed on that file. Therefore, the
file manipulation statements BKSP, SKIPEI,
SKIPF, SKIPFB, and SKIPR cannot be used to
position within the file. The user should also
remember that the primary file is rewound after
the completion of any of the COPY statements.
An attempt to add to the file using one of the

COPY statements may result in writing over

existing data at the BOL.

RENAME STATEMENT

The RENAME control statement allows the user to change the name of a local file.

The control statement format is:

RENAME(nlfn; =olfny,nlfng=olfny,...,nlf ny=olfn,)

nlfn;

olfn;

New name of the local file.

Existing name of the local file.

The RENAME control statement changes the name of the file olfn; to nlfn; in the FNT/FST. This does
not change the names of files in the permanent file system. Normaly, the file type of nlfn is the same as

the file type of olfn.

If a file by the name nifn; already exists, it is released. Under certain conditions, the system also
changes the file type of olfn; to that of the file which was released.

o If olfn; is a local mass storage file and the released file was a print, punch, or primary type file,

olfn; is renamed and its file type is changed to that of the released file.

e If olfn; is a local mass storage file and the released file was not a print, punch, or a primary
type file, olfn; is renamed but its file type is not changed.

e If olfn; is not a local file and nlfn and olfn are not the same file types or if olfn; does not reside
on mass storage, an

ILLEGAL FILE TYPE.

error message is issued.

60435400 M

1-7-29

For example, the user has only two files assigned to the job. File A is a local mass storage file and file B
is a print type file. If the user issues the following request

RENAME(X=A)
file A is renamed file X, and its file type (local) is not changed. However, if the user issues the request
RENAME(B=A)

file B no longer exists; file A is renamed file B and changed to print type file.

REQUEST STATEMENT

The REQUEST statement assigns a file to receive checkpoint dumps, or sends a message to the system
operator requesting that the named file be assigned to the device described in the comment field.

The control statement format is:

REQUEST(lfn, [gg])eomment

Ifn Name of the file to be assigned to the specified equipment.

CK Specifies that 1fn is to be used as a checkpoint file. Each time a checkpoint dump
is taken, the new information is written at the previous EOI of 1fn.

CB Specifies that 1fn is to be used as a checkpoint file. Each time a checkpoint dump
is taken, the new information is written at the BOI of 1fn.

comment The comment is displayed at the system console. In the ecomment field, the user
directs the operator to make the requested device assignment.

If the REQUEST statement is used to request assignment of file Ifn to the equipment specified in the
comment field, 1fn must not be a local file.

If the REQUEST statement is used to assign 1fn for checkpoint dumps, 1fn must be a local file and either
the CK or CB keyword is specified. These keywords are used in conjunction with the CKP and RESTART
control statements; they allow the user to:
e Save all checkpoint dumps by appending each dump to checkpoint file 1fn:
REQUEST(1fn,CK)
e Save the last checkpoint dump by writing each dump at the beginning of checkpoint file 1fn:
REQUEST(1fn,CB)
o Save two consecutive checkpoint dumps by alternately writing on two checkpoint files:

REQUEST(Ifn,CB)
REQUEST(Ifny,CB)

1-7-30 - : 60435400 M

If the CK parameter is specified for alternate files or if more than two checkpomt files are speclfled
the job is aborted and the following message is issued to the user's dayfile.

CHECKPOINT FILE ERROR.

The CK and CB parameters specify a checkpoint file that is local to the job. The user can make the
checkpoint file permanent by placing a DEFINE statement T before the REQUEST.

DEFINE(ifn)
REQUEST(1fn,CK)
CKP.

The user is not required to supply a REQUEST statement to define a checkpoint file. He can use an
ASSIGN or LABEL statement or he can use default values.

If no REQUEST statement specifying a checkpoint file has been detected when the first CKP statment is
encountered, the system requests a device for the user, specifies a file name of CCCCCCC, and selects
the CK option. For a subsequent restart job, however, the system assumes the user has made the
checkpoint file available.

If 1fn is a local file when the REQUEST is made, no new assignment is made and job processing continues
with the next control statement. However, the user can reassign 1fn by issuing a RETURN on the file
before making the REQUEST.,

Any user may use the REQUEST statement to assign a file to a mass storage device. However, the user §
must be validated to assign a file to a magnetic tape or auxiliary device.TT If the user does not have this
validation and attempts to request a tape unit or auxiliary device, the system aborts the job.

The REQUEST statement can also be used to create or access existing seven- or nine-track unlabeled
tapes. If a magnetic tape assignment is needed to satisfy a REQUEST, the MT or NT parameter should
be specified. For a description of magnetic tape assignment with the REQUEST statement, refer to Tape
Management in section 10.

RESEQ STATEMENT

The RESEQ control statement is used to resequence source files which have leading sequence numbers or
to add sequence numbers to an unsequenced file. The RESEQ command for time-sharing users has a
different parameter order (refer to the Network Products IAF Reference Manual or the NOS
Time-Sharing User's Reference Manual).

The control statement format is:

RESEQ(1fn, t,xxx,yy)
Ifn Name of the sorted file to be resequenced. RESEQ does not sort 1fn (refer to the
SORT statement).
t Type of file:
B BASIC source code.
T Text source information; a five-digit sequence number plus a blank
is added at the beginning of each lme, the file text, however, is not
inspected.

- Any mass storage file used as a checkpoint file must have write permission.
Tt Refer to LIMITS Statement in section 6. :

60435400 M 1-7-31

other or omitted

Any number at the beginning of a line is considered a sequence
number and is resequenced according to the xxx and yy.parameters;
numbers are added to lines where no leading sequence numbers are
present. This option can be used with time-sharing FORTRAN
statements.

XXX New line number of the first statement; if this parameter is omitted, the system
assumes xxx=100.

vy Increment to be added to xxx for each suceeeding line number; if this parameter is
omitted, the system assumes yy=10.

Files which have leading sequence numbers include time-sharing FORTRAN and BASIC source files. If
the file has no leading sequence numbers, five-digit numbers are inserted at the beginning of each line.
If the line number encountered or required exceeds 99999, RESEQ issues an error message.

When resequencing a BASIC source program, the user must specify B for the file type parameter, t, so
that RESEQ changes the line number references within the source statements. RESEQ supplies five-digit
line numbers and line number references; excess surrounding blanks are used in the expansion of line
number references.

Example:

File X contains the following BASIC source statements.

95 ON SGN(A)+2 GOTO 100,110,120 ' COMMENT
100 PRINT "A IS NEGATIVE" :
105 GOTO 130 ' COMMENT
110 PRINT "A IS ZERO"

115 GOTO 130 'COMMENT

120 PRINT "A IS POSITIVE"
130 LET B=A+130
135 END
The following statement changes the contents of file X.

RESEQ(X,B,90,10)
The user then rewinds and lists file X.

00090 ON SGN(A)+2 GOTO 00100,00120,00140 'COMMENT
00100 PRINT "A IS-NEGATIVE"

00110 GOTO 00150 'COMMENT
00120 PRINT "A IS ZERO"
00130 ' GOTO 00150 'COMMENT

00140 PRINT "A IS POSITIVE"
00150 LET B=A+130
00160 END

The RESEQ statement changes the line numbers and the line number references. Line numbers now begin
at 90 and increment by 10. The comment on the first line is moved to the right to allow for the expanded
line number references.

1-7-32 : ‘ 60435400 L

RETURN STATEMENT

The RETURN control statement releases files assigned to a job and may release file space depending on
the file type.

The control statement formats are:
RETURN(ifny,1fny,...,1fnp)
or
RETURN(*,1fny,Ifny,...,1fn,)
The first format returns the named files (1fny,Ifny,...,1fny). The second format returns all files assigned
to the job except the named files. In a CCL procedure the second format does not return the CCL work
files (ZZZZZC0, ZZZZZC1, and ZZZZZC2). A RETURN control statement not in a CCL procedure will

return these files. If no files are named on the second format the asterisk specification returns all files
assigned to the job. An error message is returned if neither an asterisk nor a file name is specified.

RETURN performs the following operations according to the file type.

Type - Operation

Input File name is changed to INPUT*. File space is not released (refer to Input File
Control in seetion 3 for further information).

Print File space is released, and the file is no longer assigned to the job. (The file is not
printed.)

Punch File space is released, and the file is no longer assigned to the job. (The file is not
punched.)

Local File space is released, and the file is no longer assigned to the job.

Primary Same as Local.

System File space remains, but the file is no longer assigned to the job.

Library File space remains, but the file is no longer assigned to the job.

Direct access File space remains, but the file is no longer attached to the job.
Tape Tape is no longer assigned to the job.

In addition, the RETURN of a magnetic tape file or the RETURN of the user's last direct access file on
an auxiliary removable disk pack deecrements the resource demand count as scheduled by the RESOURC
control statement if, and only if, the total concurrent resource demand (tapes and removable packs) is
presently assigned.

To release a file without decrementing the resource demand count, the user can issue an UNLOAD
statement. To release file space without releasing the file from the job, the user can issue an EVICT

statement.

60435400 L 1-7-33

REWIND STATEMENT

The REWIND control statement rewinds files. A mass storage file is positioned at its BOI. An unlabeled
tape file is positioned at its load point. A labeled tape file is positioned after the first HDR1 label for
the file. If the labeled tape file begins on a previous volume, the system notifies the operator to mount
that volume.

The control statement formats are:
REWIND(Ifnq,1fny,...,1fnp)
or
REWIND(*,1fn;,lfng,...,1fnp)
The first format rewinds the named files (fny,1fny,...,Jfn,). The second format rewinds all files assigned

to the job except the named files. If no files are named on the second format, the asterisk specification
rewinds all files assigned to the job.

If the previous operation on the magnetic tape file was a write, a REWIND statement causes the
following operations to be performed.

o If the tape is ANSI labeled, the system writes a tape mark, an EOF1 label, and three tape marks
and then rewinds the tape.

e If the tape is unlabeled and the data format specified on the ASSIGN, LABEL, or REQUEST
statement is S, L, or F, the system writes four tape marks and then rewinds the tape.

e If the tape is unlabeled and the data format is I or SI, the system writes a tape mark, an EOF1
label, and three tape marks and then rewinds the tape.

Refer to Magnetic Tape Files in section 2 and to Tape Management in section 10 for further information
about tape files and to appendix G for a description of EOF1 and EOV1 labels.

ROUTE STATEMENT

The ROUTE control statement prepares a designated file for release to an input or output queue. The
file routing requested may take effeet when the statement is processed, or it may be deferred. If
deferred, the routing characteristics specified define the handling of the file in later job steps or at job
termination. This statement also allows the user to rescind a prior deferred ROUTE statement, changing
the file type to local. For a description of job names assigned to routed files, refer to Job Names in
section 3.

The control statement format is:
ROUTE(fn,py,pg,...,Pp)

Descriptions of the statement parameters follow. The Ifn parameter is required on all ROUTE
statements.

1fn Name of the file to route. 1fn can be an input, print, punch, or local file type; it
cannot be a primary or direct access file.

1-7-34 ' 60435400 M

N

The remaining parameters are order independent.

p; Description
DC=xx Disposition code; assumes any one of the following two-character codes
(determination of the default code is deseribed following the code definitions).
XX Meaning
IN Release file to input queue. Normal job input file format is

required. If the job statement within the file is in error, the file is
not released and remains a local file. ROUTE issues a dayfile
message explaining the error.

NO Release file to input queue. Output not explicitly routed by the job I
is discarded at job completion.

LP Print on any printer.

PR SameasLP.

LR Print on 580-12 printer. Print codes

LS Print on 580-16 printer,

LT Print on 580-20 printer.

SB Punch system binary.

PB Same as SB.

P8 Punch 80-column binary. Punch codes

PU Punch coded.

PH Same as PU.

PL Plotter.

sC Rescind prior routing and change the file type to local. If no prior I
routing exists, SC is ignored.

If the DC parameter is omitted and ifn is a deferred routed file (refer to the DEF
parameter), the disposition code previously specified remains in effect. If the DC
parameter is omitted and Ifn is not a deferred routed file, the file name may
determine the default.

If DC is omitted and Ifn is: ROUTE assumes DC is:
OUTPUT DC=LP
PUNCH | DC=PU
PUNCHB DC=SB
P8 DC=P8

If the DC parameter is omitted, and if the file is not a deferred routed file and
does not have one of the preceding file names, the file type determines the
default.

60435400 M 1-7-35

DEF

EC=xx

1-7-36

Description

If DC is omitted and

the file type is: ROUTE assumes DC is:
Print DC=LP
Punch I?C=PH
Any other DC=SC

Defines external characteristies for print or punch files.

For print files, xx can be the following.

Indicates that routing of the file to the queue is deferred to a later job step or end
of job. If this parameter is specified, the file is created if it does not exist. DEF
is not allowed if DC=IN.

A4 Provided for NOS/BE compatibility. If a NOS user specifies A4, the
system uses the appropriate EC default (refer to following note).

A6 ASCI graphic 63/64-character set.

A9 ASCI graphic 95-character set. File 1Ifn must be a 12-bit ASCII file.
Refer to the FCOPY control statement earlier in this section.

B4 Provided for NOS/BE compatibility. If a NOS user specifies B4, the
' system uses the appropriate EC default (refer to following note).

B6 CDC graphic 63/64-character set.

For punch files, xx can be the following.

ASCIl Punch ASCII.

026 or 026 Punch 026 mode.

029 or 029 Punch 029 mode.

SB Punch system binary.
80COL Punch 80-column binary.

If an invalid external characteristic is specified,
the queue file processor cannot output the file.
The wuser must not specify a print (file
characteristic for a punch file or a punch file
characteristic for a print file. He also must not
specify an external characteristic not available at
the site, If EC is not specified, an appropriate EC

- default is set on the basis of the DC parameter

setting and installation options.

60435400 M

77N

FC=xx

FID=xx

FM

ID=xx
D

PRI=xx

REP=xx

SC=xx

Description

Forms code; specifies routing to the output device that the system operator
assigned the forms code xx. This parameter prevents output of a file before its
special forms are placed in the output device. xx can be any 2 alphanumeric
characters, but the combinations null, AA, AB, AC, AD, AE, and AF give
maximum system efficiency. A value of null results when no FC parameter is
specified.

NOS/BE parameter included for compatibility. It produces an informative.
message under NOS.

Implicit remote routing (refer to the note following the last parameter
description).

One- to seven-alphanumeric character family name; indicates routing to a remote
batch terminal logged in with the specified family name. The note following the
last parameter desecription describes the default procedures.

Internal characteristics; specifies one of the following:

DIS Display code.
ASCIH ASCII code.
BIN Binary.

This parameter is normally not specified since its default is automatically
established through the disposition code DC.

Selects local device ID from 0 to 67g (octal default). This is identical to the ID
specified by the SETID control statement.

Implicit central site routing (refer to the note following the last parameter

-description).

File priority. This is a NOS/BE parameter included for compatibility. It produces
an informative message under NOS.

Number of additional file copies to be routed to a destination.t The range for xx
is from 0 to 31; therefore, the number of copies that can be sent ranges from 1 to
32. Values for xx beyond its range are set to zero, an informative message is sent,
and one copy is routed to the destination. The default value is zero; only one copy
is routed. ,

Spacing code specifying a programmable format control (PFC) array for the 580
PFC printer. The system is released with two PFC arrays, a default (SC=0), and
an alternate (SC=1). The installation can define other PFC arrays. The user can
enter any spacing code from 0 to 774 (octal default), but if an array is not defined
for that code, the default array (SC= 0) is used. For more information on spacing
codes, refer to the NOS System Maintenance Reference Manual.

TThe REP parameter is ineffective in remote batch jobs printed via Export/Import. Regardless of the
xx value specified, only one copy is printed at the remote batch site. The REP parameter is
effective in remote batch jobs printed via RBF. :

60435400 M

1-7-37

P
ST=xx

TID

TIC=C

TID=xx

UN

UN=xx

1-7-38

Description

Station ID. This is a NOS/BE parameter included for compatibility. It produces
an informative message under NOS.

Implicit remote routing (refer to the note following the last parameter
description).

Central site routing. This is a NOS/BE parameter included for compatibility. Its
action is identical to the ID parameter.

Terminal ID. This form of the TID parameter is included for NOS/BE
compatibility. Under NOS, it is processed the same as TID; however, an
informative message is issued stating that xx is ignored. ’

Implicit remote routing (refer to the note following the last parameter
description).

Specifies the user number of the remote batch user to whom the named file is
routed. The parameter xx is valid only if it matches the user number of the user
performing the route. The matching is character for character, except for those
positions containing an * (refer to the note following the last parameter
description). :

For remote batch origin (EIOT) jobs, the following action is
taken.

e Specifying an ID, ID=xx, or TID=C parameter
causes routing to the central site.

e Specifying or omitting an FM, TID, or UN
parameter causes routing to the originating
remote batch terminal.

e Specifying an FM or UN parameter with legal

arguments causes routing to the specified remote
batch terminal.

For jobs of any origin other than EIOT, the following action is taken.

e Specifying. an ID, ID=xx, or TID=C parameter causes routing to the
central site,

e Specifying a UN, TID, or FM parameter causes routing to the terminal
specified by the job's FM and UN at the time of the processing of the
ROUTE statement,

e Specifying a UN or FM with legal arguments causes routing to the
specified remote batch terminal.

60435400 L

If a job is routed to the input queue with an illegal USER control statement, the following message is
issued.

DSP - ILLEGAL USER CARD.
SYSTEM ABORT.

and the job is aborted with no error exit processing or if submitted from a terminal, the terminal is
logged off. The security count for the user number that did the ROUTE is decremented accordingly.

SETID STATEMENT'
The SETID control statement assigns a new identification code for the specified file.

The control statement format is:

/
SETID(Ifnq =x1,1fng=x9,...,1fny=xp)

1fnj Logical file name.

Xj New identification code for the file (0 through 67g). This code must match the
device identification code specified in the EST. (The installation establishes the
device identification codes.)

i The identification code allows the user to route his file to an output device or device group with the
) same identification code. This is useful when a print file requires special forms. v

The file 1fn; must be an input (INFT), local (LOFT), print (PRFT), or punch (PHF'I‘) type file, or the I
following message is issued. ‘

ILLEGAL FILE TYPE

SKIPEI STATEMENT
The SKIPEI control statement directs the system.to position the specified file at the EOI.
The control statement format is:
SKIPEK(ifn)
1fn - Name of the file to be positioned.
On magnetic tapes where no EOI is defined, the operation stops at an EOF.

The SKIPEI statement has no effect on a primary file since the file is rewound before every operation.

tThe ROUTE control statement should be used to perform this operation, because the SETID
statement will not be supported in future versions of NOS.

60435400 L 1-7-39

SKIPF STATEMENT

The SKIPF control statement directs the system to bypass, in a forward direction, the specified number
of files from the current position of the named file. :

The control statement format is:

SKIPF(1fn,n,m)
1fn Name of the file to be positioned.
n Number (decimal) of files to be skipped; if the parameter is omitted, the system
assumes n=1.
m File mode: C for coded, B for binary. If m is omitted, the system assumes the
file is in binary mode. If coded mode is set on an SI tape, the system aborts the
job.

If an EOI is encountered before n files are bypassed, file Ifn remains positioned at the EOI.

The SKIPF statement has no effect on a primary file since the file is rewound before every operation.

SKIPFB STATEMENT

The SKIPFB control statement directs the system to bypass, in the reverse direction, the speclfled
number of files from the current position of the named file.

The control statement format is:

SKIPFB(1fn,n,m)
1fn Name of the file to be positioned.
n Number (decimal) of files to be skipped; if the parameter is omitted, the system
assumes n=1.
m File mode: C for coded, B for binary. If m is omitted, the system assumes the
file is in binary mode. If coded mode is set on an SI tape, the system aborts the
job.

The system does not backspace past the beginning-of-information (BOI) or load pomt (tape file) in the
event that BOI or load point is encountered before n files are bypassed.

The SKIPFB statement has no effect on a primary file since the file is rewound before every operation.

SKIPR STATEMENT

The SKIPR control statement directs the system to bypass, in a forward direction, the specified number
of logical record or file marks from the current position of the named file.

1-7-40 60435400 L

The control statement format is:
SKIPR(1fn,n,¢,m)
1fn Name of the file to be positioned.

n Number (decimal) of record and file marks to be skipped; if this parameter is
omitted, the system assumes n=1.

Level number; 0=¢<17., If 0<¢<16, both EOR and EOF marks are counted. If
/=17, only EOF marks are counted.

m File mode: C for coded, B for binary. If m is omitted, the system assumes the
file is in binary mode. If coded mode is set on an SI tape, the system aborts the
job.

- Consecutive EOR and/or EOF marks are counted separately. If the EOI is encountered before n EOR and
EOF marks are bypassed, file Ifn remains positioned at the EOI.

The SKIPR statement has no effect on a primary file since the file is rewound before every operation.

SORT STATEMENT

The SORT control statement enables the user to sort a file of line images or statements in numerical
order based on leading line numbers consisting of a specified number of digits.

The control statement format is:

SORT(1fn,NC=n)
Ifn Logical file name of the file to be sorted; 1fn may be a local file or a direct access
permanent file.
n Number of leading line number digits on which the file is to be sorted; n<10. If

the NC parameter is omitted, the system assumes n=5.

In the case of duplicate line numbers, all lines other than the first are considered correction lines. All
lines with the same number are deleted from the file except the last line encountered.

For input from a time-sharing terminal, SORT deletes a line image or statement if a line number is
followed by an empty line or a line number is followed by a blank and a carriage return.

For bateh input, SORT deletes a statement or line image if a card containing only the line number is
submitted.

If a line number contains more than n digits, the user can delete the line either by entering the first n
digits of the line number and pressing the carriage return (terminal input) or by submitting a card
containing only the first n digits of the line number (batch input).

After the sort, Ifn is packed and set at EOL

60435400 L 1-7-41

TCOPY STATEMENT

The TCOPY control statement copies X (external) format binary tapes or E (line image), B (blocked), or
SI (system internal) format coded tapes to mass storage, to an I format tape, or to an SI binary format
tape. It also writes E or B format tapes converted from files on mass storage, I format tape, or SI
format binary tape. The X binary and E, B, and SI coded tape formats were supported under earlier
versions of NOS. Refer to appendix J for the tape formats of B, E, and X format coded tapes. Now, to
access data or write data in one of these formats, the ‘tape must be assigned as an S (stranger) format
tape (refer to the tape assignment statements in section 10) and the file copied using the TCOPY
statement.

The parameters on the TCOPY control statement can appear in order dependent format, order
independent format, or a combination of both. The completely order dependent format is:

TCOPY(If n1,1f‘n2,format,tc,copycnt,charcnt,erlimit,plpz,lfng)
The completely order independent format is:

TCOPY(I=Ifny,0=1lfny,F=format,TC=te,N=copyent,CC=charent,EL=erlimit,
PO=p1p2,L=1fn3§

If order dependent and order independent parameters are mixed in one TCOPY statement, the order
dependent parameters must appear in their proper position. All parameters are optional. However, the
specification of certain parameters precludes the application of others. A nonapplicable parameter may
be ignored or it may be illegal. This is stated in the individual descriptions of the parameters.

The parameters are defined as follows:

Parameter Description Default
I=1fng Name of the file to copy from. INPUT

O=lfny Name of the file to copy to. OUTPUT
F=format Daté format that specifies the type of X

conversion for the copy operation. This
can be any one of the following.

format Conversion

E Copy an E format tape to mass storage,
an I, or an SI binary tape file, or
generate a new E format tape from mass
storage, an' I, or an SI binary tape file.
The E tape must be unlabeled and
assigned as S format.

B Copy a B format tape to mass storage,
an I, or an SI binary tape file, or
generate a new B tape from mass
storage, an I, or an SI binary tape file.
The B tape must be unlabeled and
assigned as S format.

1-7-42 60435400 L

Parameier
y
/

TC=te
)

N=copyent

CC=charent

60435400 L

format

X

SI

Description

Conversion

Copy an X format tape to mass storage,
an I, or an SI binary tape file. The
unlabeled input tape must be assigned an
S format, with noise size of eight frames
for seven-track tape or six frames for
nine-track tape (refer to NS parameter
on tape assignment control statement).

Copy an SI coded format tape to mass

.storage, an I, or an SI binary tape file.

The labeled or unlabeled input tape must
be assigned as S format, with noise size
of eight frames for seven-track tape or
six frames for nine-track tape (refer to
NS parameter on tape assignment control
statement). If the SI coded input tape is
completed before EOI is encountered;
the position of the input tape after the
copy is indeterminate. This is because
control words are used on the SI coded
tape read via S format (EOF on an SI
coded tape is a level 17g block
terminator, whereas EOF on an S tape is
a tape mark).

Specifies the copy termination condition used in
conjunction with N=copyent. The termination condi-
tion can be specified as follows:

F or
EOF

Ior
EOI

D or
EOD

When this TC value is set, the N key-
word specifies the number of files to
copy.

This specifies a copy to the end of
information. The N keyword is ignored.

When this TC value is set, the N key-
word is the number of double EOFs to

copy to.

Copy count used by the copy termination condition

TC.

The character count which determines maximum block
size (line length) in characters for an E or B

format tape. This parameter can only be specified

on an E or B format tape copy.

Default

Copy to double EOF (TC=D
or TC=EOD)

136 characters for E
format; 150 characters
for B format.

-1-7-43

Parameter Description Defauilt

EL=erlimit Error limit which sets the number of nonfatal Zero
errors allowed before abort. This includes
parity errors and block-too-large errors which
are returned by the tape subsystem after complet-
ing recovery procedures. It also includes illegal
bloek format errors (invalid byte-count and/or
unused bit eount) for X format and SI coded format
tapes. Error limit is ignored when generating an
E or B format tape from mass storage, an I format,
and an SI binary format file since control word
read is not used. Error limit is likewise ignored
if the input file device does not support control
word read (terminals). In that case, any error
aborts the job.

PO=p1p9 One or both of the following processing options
(not separated by commas).
E Input blocks with parity errors or block-too- Error blocks are skipped.
large errors are processed (copied).
T When generating a B or E format tape, blocks Lines exceeding the maxi-
exceeding the maximum block size (refer to mum line size are split
the CC parameter) are truncated. PO=T is into multiple blocks.

illegal for other file conversions.

L=lfng Name of an alternate output file to receive OUTPUT
parity error messages when extended error
processing is in effect (nonzero EL specified),
in which case, the file name 1fng must not be
the same as 1fny,

Example:
The following TCOPY statement combines order dependent and order independent parameters:
TCOPY(TAPEL,FILE2,E,CC=200,EL=12)

The input file TAPEL is an E format tape (assigned as an S format tape). It has a maximum of 200
characters per line. The copy terminates when a double EOF is encountered (default). The output
file FILE2 can be a mass storage file or an I or SI binary format tape. The error limit allows up to
12 nonfatal errors (parity/block-too-large), and the bad data is skipped (default) with informative
error messages written to the file OUTPUT (default).

The TCOPY statement begins a copy operation at the current position of both files and continues until
the copy termination condition is met or EOI is encountered. This termination condition can be a file
count, double EOF count, or EOL If the copy is terminated by a double EOF (for TC=EOD parameter),
the seeond EOF is detected on 1fn; but is not transferred to 1fnp. If 1fny=lfng, the named file is read
until the termination condition is satisfied or EOI is encountered. An SI coded tape can be positioned
correctly only to EOI (refer to the F=SI parameter description).

If a copy specifies a file count TC=EOF, and EOI is encountered on the input file before the file count is
satisfied, an additional EOF is written on the output file only if data or records have been transferred
since the previous EOF was written (or since the beginning of the copy, if no EOFs have been
encountered).

1-7-44 60435400 L

The EL or PO=E options provide extended error processing. This allows the processing or skipping of
blocks with parity errors or block-too-large errors. If EL is set to a value greater than zero, a parity
error or block-too-large error on the input tape generates the following message on the alternate output
file.

PARITY/BLOCK TOO LARGE ERROR IN BLOCK n.

n is the decimal bloek count of the bloeck in error. The block count for the first block to be copied is
initially set to zero and is incremented by one for every block and every EOF processed. For X and SI
coded formats, an illegal block format error (illegal byte count and/or unused bit count) produces the
following message on the alternate output file.

ILLEGAL FORMAT IN BLOCK n.

When creating a B format tape from a mass storage, I, or SI binary format file, a block shorter than the
noise size specified on the tape assignment statement is blank filled to the noise size. A noise block
could also be generated when a block exceeding the maximum block size for the B format tape is split
into multiple blocks. If the PO=T parameter is specified, blocks exceeding the maximum block size are
truncated.

When creating an E format tape from a mass storage, I, or SI binary format file, blocks that exceed the
maximum bloek size for the E format tape are split into multiple blocks. If a continuation block contains
only the end-of-line indicator (zero word), the continuation block is discarded. If the PO=T parameter is
specified, blocks exceeding the maximum block size are truncated (all continuation blocks are discarded). -

TDUMP STATEMENT

The TDUMP control statement lists a file in octal and/or alphanumeric format. It dumps the entire file
or the specified number of lines, records, or files. If more than one limit is set, the limit reached first
overrides the others.

TDUMP produces - unpredictable results when
dumping an S, L, or F format tape file. The user
should use the COPY statement to convert the S,
L, or F format tape file to a mass storage file or
to an I or SI binary format tape file before
attempting to dump the file using TDUMP.

The control statement format is:

TDUMP(p1,p2,...,Pn)
Pi Any of the following in any order:
=Ifny One to seven alphanumeric characters naming the local file to be
dumped (default is TAPE1).
‘L=1fny One to seven alphanumeric characters naming the local file to which

the output is written (default is OUTPUT). If Ifng is not a local file,
TDUMP creates it. It does not rewind 1fng before or after the dump.

60435400 L ' . 1-7-45 I

Octal dump only.

Alphanumerie dump only.

If both O and A are specified, the last one overrides. If neither O
nor A is specified, TDUMP lists both an octal and an alphanumeric
dump.

R=reount Maximum decimal number of records to be dumped. If R is omitted
or set to zero, the dump continues to EOI

The record count restarts at each EOF.

F=fcount Maximum decimal number of files to be dumped. If F is omitted,

the dump continues to EOL If F=0, dump continues until an empty
file (double EOF) or EOI is encountered.

N=lines Maximum decimal number of lines to be dumped. If N is omitted or
set to zero, the dump continues to EOL The blank line output with
the end-of-record, end-of-file, end-of-information, and ABOVE LINE
REPEATED messages is included in the line count.

NR Do not rewind file 1fny before dump (default is to rewind 1fny).

Example:

Two lines, each containing the alphabet, were input to file X from a time-sharing terminal. File X
was dumped to file Y producing the following output.

- FILE DUﬁP - TDUMP,I=X,L=Y. 78/10/23. 08.05.51. PAGE 1.
F 1R 1 W 0- 0102 0304 0506 0710 1112 1314 1516 1720 2122 2324 2526 2730 3132 0000 0000 0102 0304 0506 0710 1112
AB CD EF GH IJ KL MN OP QR ST UV WX Y2Z AB CD EF GH IJ
F 1R 1w B~ 1314 1516 1720 2122 2324 2526 2730 3132 0000 0000
KL MN OP QR ST UV WX Yz

-=- END OF RECORD --
== END OF INFORMATION --
== END OF DUMP ~-

The prefix
F 1. R 1 W 0

means file 1, record 1, word 0. The zeros following each alphabet are the end of line indicators.

1-7-46 60435400 K

UNLOAD STATEMENT

The UNLOAD control statement releases files assigned to the job and may release file space (depending
on the file type).

The control statement formats are:
UNLOAD(1fny,1fng,...,1fnp)
or
UNLOAD(*,1fny,1fny,...,1fn,)
The first format unloads the named files (Ifny,lfny,...,Ifn,). The second format unloads all files assigned
to the job except the named files. If no files are named on the second format, the asterisk specification
unloads all files assigned to the job. In a CCL procedure the second format does not release the CCL

work files (ZZZZZC0, ZZZZZC1, and ZZZZZC2). An UNLOAD control statement not in a CCL procedure
will release these files.

The UNLOAD statement performs the same funetion as the RETURN control statement except as noted
below. Refer to the description of the RETURN statement given earlier in this section to determine the

operation performed for each file type.

If the file being unloaded is a magnetic tape file or a direct access file residing on an auxiliary removable
pack and the job requires more than one tape or pack concurrently, the UNLOAD statement differs from
the RETURN statement in the following ways. '

o It does not decrease the number of tapes or packs scheduled for the job with the RESOURC
control statement.,

o It causes the following operations to be performed for magnetic tape files, if the previous
operation was a write. -

- If the tape is ANSI labeled, the system writes a tape mark, an EOF1 label, and three
tape marks and then unloads the tape.

- If the tape is unlabeled and the data format specified on the ASSIGN, LABEL, or
REQUEST card is S, L, or F, the system writes four tape marks and then unloads the
tape. .

- If the tape is unlabeled and the data format is I or SI, the system writes a tape mark,
an EQF1 label, and three tape marks and then unloads the tape. N

Refer to Magnetic Tape Files in section 2 and Tape Management control statements in section 10 for
further information about tape files, and to appendix G for a description of an EOF1 label.

UNLOCK STATEMENT

The UNLOCK control statement rescinds the LOCK command and clears the write interlock bit for the
specified file.

The control statement format is:
UNLOCK(Ifny,Ifng,...,1fnp)

1fn; Name(s) of local file(s)

60435400 L 1-7-47

The file must be a local file; if it is not, the following message is issued.

ILLEGAL FILE TYPE.

Library files cannot be unlocked.

VERIFY STATEMENT

The VERIFY statement performs a binary comparison of all data from the current position of the files
specified. The comparison is meaningful if the files are within the range of compatible formats listed in

table 1-7-2.
The control statement format is:

VERIF Y(Ifny,1fng,p1,P2se++sPp)

Ifny Name of the first file; if this parameter is omitted, TAPE1 is assumed.
1fng Name of the second file; if this parameter is omitted, TAPE2 is assumed.
pj Any of the following in any order:

N=0 Verification terminates on the first empty file encountered on
either file.

N=x Verify x files; default is N=1.

N Verification terminates when end of information is encountered
on both files.

E=y List the first y errors encountered on the comparison. If E is
omitted, the system assumes E=100.

E Same as E=0, no errors are listed.

L=1fng List errors on file 1fng. If L is omitted, the system assumes
L=0UTPUT.

Abort after verification completed if errors occurred.

Rewind both files before and after the verification.

Coded file mode is set on both files. This is applicable only to S
and L format tapes. If coded mode is set on an SI tape, the
system aborts the job.

Ci Coded file mode is set on the first file only. This is applicable
only to S and L format tapes. If coded mode is set on an SI
tape, the system aborts the job.

C2 Coded file mode is set on the second file only. This is
applicable only to S and L format tapes. If coded mode is set on
an SI tape, the system aborts the job.

BS=bsize Defines the maximum block size (PRU size) in central memory

| 1-7-48

words for an S or L tape. This parameter is legal only for S and
L tape verifies. The default for an S tape is 1000g words, and
for an L tape, it is 2000g words.

60435400 L

~

Whenever words on 1fn; and 1fng do not match, the VERIFY statement lists the following.

e Record number.

e Word number within the record.

e Words from both files that do not mateh.
If excess records are encountered on Ifn; or 1fng, the following message is listed.

n EXCESS RECORD(S) ON Ifn.
n is the decimal number of excess records. The title line of the error list file contains the decimal
number of the logical file being verified. If a nonstandard file (one in which an EOI or EOF is not
preceded by an EOR) is compared with a standard file, the VERIFY statement lists the following message.

r EOR MISSING ON Ifn

r Record number in decimal.

Ifn Name of the nonstandard file.

If EOI is encountered on one input file (1fn; or 1fng) and there are Stlll files remaining on the other input
file, each excess file generates the following message.

n RECORD(S) IN EXCESS FILE m ON Ifn.

n is the decimal number of excess records in logical file number m.

If errors are encountered, the following warning message is issued to the user's dayfile.
VERIFY ERRORS.

If any pair of 1fny, 1fng, and 1fn3 are identical, the following fatal message is issued.
FILE NAME CONFLICT.

If 1fny or 1fng did not exist prior to the verify, the following warning message is issued. "

FILE NOT FOUND - 1fn.

-In a verification involving S, L, or F format tapes, the VERIFY statement first clears the extraneous data

in the last word of each block (as specified by the byte count and the unused bit count) and then makes
the comparison. On these formats, every block is considered a record (returns EOR status).

If a verification of an L or F format tape requires additional field length, the VERIFY statement
increases the field length as needed. If the field length requirement exceeds the user's maximum field
length, the verify is aborted with the error message

VERIFY FL ABOVE USER LIMIT.

The maximum block size for an L format tape is specified by the BS=keyword or its default. The

- maximum block size for an F format tape is calculated from the frame or character count specified on

the control statement when the file is assigned.

60435400 L 1-1-49 |

Verification is not guaranteed when the logical structures of the two files are incompatible. Before the
VERIFY statement makes a comparison of such files, it issues the warning message

FILE STRUCTURES NOT COMPATIBLE.

1-7-50

TABLE 1-7-2. COMPATIBLE FILE STRUCTURES FOR THE VERIFY STATEMENT

FIRST
FILE

(1fny)

SECOND FILE (lfng)

Tape Formats
Mass
Storage I S S L F
Mass Storage Yes Yes Yes %ﬁg%% /%{I&//
L | oves | oves | ve N80 77507
I Yes Yes | Yes %%7/}6//%&2
Format| 5 554,757/ IR A% /4%,
v N %N e ki
v N8 N N J N) ves

The No entries indicate that the logical structures

of the files. compared are

VERIFY

statement

incompatible. The

may accept those

combinations, but the results require the user to
make a knowledgeable correlation of results with

the format descriptions in section 10.

In some

cases, the verification of an incompatible pair

may

result in a

VERIFY GOOD message;

otherwise, a VERIFY ERRORS message is listed.

60435400 L

VRN

7N

TN

N

WRITEF STATEMENT

The WRITEF control statement directs the system to write a specified number of file marks on the
named file.

The control statement format is:

WRITE(ifn,x)
1fn Name of the file to be written on.
X Number of filemarks to be written; if this parameter is omitted, the system assumes
x=1.

If the last operation to the file was a write that did not end with the writing of an EOR or EOF, WRITEF
writes a record mark before it writes the specified number of file marks. For all other cases, WRITEF
writes the file marks without a preceding record mark.

WRITER STATEMENT

The WRITER control statement directs the system to write a specified number of empty records on the
named file.

The control statement format is:

WRITER(ifn,x)
1fn Name of the file to receive the empty records.
X Number of empty records to be written; if this parameter is omitted, the system-

assumes x=1. X

60435400 L : 1-7-51 |

i
\

PERMANENT FILE CONTROL STATEMENTS R -

With permanent file control statements, the user can create, acecess, and purge permanent files.T- The
owner of a permanent file can also control other users' access to the file.

The following are the permanent file control statements and their funetions.

Statement
APPEND
ATTACH
CATLIST
CHANGE
DEFINE
GET

OLD
PACKNAM
PERMIT
PURGALL
PURGE
REPLACE

SAVE

Funetion
Appends data to an indirect access permanent file.
Assigns a direct access permanent file to a job.
Lists permanent file information.
Changes permanent file characteristics.
Creates a direct access permanent file.
Retrieves a copy of an indirect access permanent file as a local file.
Retrieves a copy of an indirect access permanent file as the primary file.
Specifies an auxiliary device from which permanent files are to be accessed.
Grants permanent file access permission to other users.
Purges all files having the specified characteristics.
Purges the named files.
Copies a local file over an indirect access permanent file,

Creates an indirect access permanent file,

If .an error occurs in an operation on one file of a multifile request, the operation is not performed on the
subsequent files. For example, if an error occurs in the processing of file B on the following control

statement:

GET(A,B,C,D)

files C and D are not processed.

For more information on permanent files, refer to Permanent Files, Mass Storage Files, and Mass Storage
File Residence in section 2.

To determine the meaning of a permanent file error message, refer to appendix B.

TThe batch user cannot access permanent files unless he has included a USER statement in his-job file.

60435400 M

1-8-1

COMMON CONTROL STATEMENT PARAMETERS

Some permanent file control statements can process several files. Each file is identified by a one- to
seven-character file name. The permanent file operation is performed on each file in the sequence
specified on the statement. If the NA parameter is not specified on the statement, and if an error oceurs
while one of the files is being processed, the job step terminates.

When this happens, the files preceding the file in error are processed, but the files succeeding it are not.
If the NA parameter is specified on the statement, the job step does not terminate as a result of the
error, and all files are processed except the file in error.

A slash separates the file names from other parameters. The parameters specified after the slash are
optional and order independent. Parameters specified after the slash affect all files named before the
slash.

Permanent file access is controlled by the access category (CT), user number (UN), file access password
(PW), and access mode (M) parameters. Permanent file residence is determined by the preferred
residence (PR), auxiliary device (PN), and device type (R) parameters. Processing options include the no
abort (NA), subsystem selection (SS), and backup copy (BR) parameters.

In the followmg list, parameters common to more than one permanent file control statement are
described in alphabetiec order. For the format of each control statement, refer to the control statement
descriptions following the parameter descriptions.

Parameter Description
BR=br Backup copy requirement. The user can request that a tape backup copy, an

MSF backup copy, or no backup copy be kept of the permanent file. If
BR=br is omitted when the file is created, a backup copy of the file is stored
on tape. For more information, refer to Mass Storage Facility in section 2.

br Backup Requirement

Y A tape backup copy should be kept, even if a copy of the file
exists on MSF,

MD A tape backup copy need not be kept, if a copy of the file
exists on MSF.

N A backup copy need not be kept for this file,
CT=ct File access category. If CT=ct is omitted when the file is created, the file
is private. The file category can be changed later.
ﬁ Category
P, PR, or PRIVATE Private files; available for access only by

their creator and by those granted explicit
access permission by the file creator (refer
to the PERMIT control statement).

S or SPRIV Semiprivate files; available for access by a
. user who knows the file name, user number,
and password and who has not been
explicitly denied permission to the file
(M=NULL parameter on a . PERMIT

statement).

| 1-8-2 ' 60435400 M

Parameter Description
ct Category

The system records the user number of each
user who accessed the file, the number of
accesses made,; and the date and time of the
last access by each user. The file creator
can list this information with the
CATLIST(LO=FP) statement.

PU or PUBLIC Public files; available for access by all users
who know the file name, user number, and
password. The system records the number
of times the file was accessed and the date
and time of the last access, but does not
record user numbers.

NA No abort. Normally, an error in statement processing terminates the job.
However, if NA is specified, the job does not terminate as a result of the
error. The error is handled in one of two ways.

e If the error condition is temporary, job processing is suspended
until the error condition ends (for example, when a requested direct
access file is busy or a requested auxiliary device is not available).
In a multimainframe environment, job processing is suspended until
the error condition ends and the rollout delay time has elapsed.

o If the error condition is not temporary, the job continues with the
next operation. The job processes the next file listed on the
statement or, if no more files are listed, processes the next control
statement,

PN=packnam One- to seven-character pack name used in conjunction with the R
parameter to identify the auxiliary device to be accessed in the permanent
file request. This parameter is specified only when the file to be accessed
resides on an auxiliary device.

An auxiliary device is a mass storage device that supplements the normal
family of permanent file devices. A RESOURC control statement must be
included in any job that concurrently uses two or more auxiliary disk packs
or an auxiliary pack and a magnetie tape.

PR=pr Preferred residence. If PR=pr is omitted when a direct access file is
defined, no preference is assumed. For more information, refer to Mass
Storage Facility in section 2.

pr Preference
M The user prefers that the direct access file be copied to MSF

between accesses. However, the system might not copy the
file to MSF despite the specified preference.

N The user has no preference.
PW=passwrd One-to-seven-character file password. If a password is assigned to the file,
users other than the file creator must specify the password when accessing
the file.

60435400 M 1-8-3

Parameter

R=r

SS=subsystem

Description
If only the keyword PW is specified, the user must include the password as a
single-line record in the INPUT file. In a time-sharing job, the password is
requested by a ? prompt at the terminal.

Device type on which the file resides or is to reside.

r Device
DE Extended memory
DIi 844-21 Disk Storage Subsystem (1 <i <8) (half-track)

DJi 844-41 or 844-44 Disk Storage Subsystem (1<i =<8) (half-track)
DKi 844-21 Disk Storage Subsystem (1 =i <8) (full-track)

DLi 844-41 or 844-44 Disk Storage Subsystem (1<i<8) (full-track)
DMi 885 Disk Storage Subsystem (1 =i <3) (half-track)

DQi 885 Disk Storage Subsystem (1 <i=<3) (full-track)

DP Distributive data path to eEcst

The R parameter can be specified on any permanent file control statement
to identify (with the PN parameter or a previous PACKNAM control
statement) the auxiliary device on which the permanent file resides. R is
specified only if the installation defines the auxiliary device as removable,
and if the desired device type differs from the installation-defined default
device type. If the R parameter is specified without the PN parameter in a
control statement, R is ignored on all control statements except the DEFINE
statement (refer to the DEFINE control statement in this section).

Specifies the time-sharing subsystem to be associated with the file. The
subsystem can be specified on a SAVE or CHANGE statement with one of
the following entries or its abbreviation (the abbreviation is the first three
characters of the entry). -

Subsystem Time-Sharing Subsystem
BASIC BASIC

BATCH Batch

EXECUTE Execute

FORTRAN FORTRAN 5

FTNTS FORTRAN Extended 4
NULL Null

If the SS parameter is specified without a subsystem, the currently active
subsystem is associated with the file. If the SS parameter is omitted, no
subsystem (null) is associated with the file, unless the file is the primary
file. In that case, the currently active subsystem is associated with the file.

TThe job must be of system origin or the user must be validated for system origin privileges.

1-8-4

60435400 M

TN

Parameter Deseription

UN=usernum User number. This parameter must be specified if the requested permanent
file is in another user's catalog. To access the file, the user must have one
of the following permissions.

e Explicit permission. The owner of the file granted access
permission to the user with a PERMIT statement.

e Implicit permission. The file is semiprivate or public and so can be
accessed by users who know the file name, user number, and
password and who have not been explicitly denied permission.

e Automatic permission. A user has automatic permission to access
files in the catalog of another user if his user number contains
asterisks, and if all nonasterisk characters match characters in the
other user's user number.

The UN keyword establishes alternate access validation, even if the
specified user number is the one under which the job is currently being run.

(Refer to the explanation of secondary user numbers in USER Statement in
section 6.)

APPEND STATEMENT

The APPEND control statement adds information to the end of an existing indirect access file without
retrieving the file. The APPEND statement cannot append data to direct access files.

The control statement format is:
APPEND(pfn,ifny,lfng,...,1fn,/UN=usernum ,PW=passwrd,PN=packnam,R=r,NA)
pfn Name of the indirect access permanent file to which data is appended. The user does
not retrieve the indirect access file before the append operation, but he must have

permission to access the file in append, modify, or write mode.

If a local copy of the indirect access file is assigned to the job, the append operation
does not change the local copy.

1fn; Name of a local mass storage file to be appended to pfn. The file must be assigned to I
the job. :

The full descriptions of the following optional parameters are given at the beginning of this section.

Parameter Description
UN=usernum User number. Specified if pfn is in another user's catalog.
PW=passwrd File password. Specified if UN=usernum is specified and pfn has a password.
PN=packnam ~ Auxiliary device name. Specified if pfn resides on an auxiliary device.

60435400 L ' . 1-8-5

Parameter

R=r

NA

Description

Device type. Specified if an auxiliary device on a device type other than the

installation-defined default is to be used.

No abort option. If NA is specified, processing errors do not terminate the job.

The logical structure of the files is retained; that is, EORs and EOFs are appended as well as data. The
append operation removes the EOI mark at the end of file pfn, but keeps all EOR and EOF marks.

ATTACH STATEMENT

The ATTACH control statement assigns a direct access permanent file to a job.

The control statement format is:

ATTACH(fny=pfny,lfn
PN=packnam,R=r,NA,

1fn;=pfn;

f§='ll‘))f ng,...,.fny=pfn,/M=m,UN=usernum,PW=passwrd,

One- to seven-character file name 1fn; references direct access file pfn;
while the file is assigned to the job. If 1fnj= is omitted, the direct access
file is referenced by its permanent file name, pfn;. User access is directly
to the permanent file; no working copy is generated.

If a local file name 1fn; exists when this statement is processed, it is
discarded (even if statement processing does not complete due to an error).

The full descriptions of the following optional parameters (except M=m and RT) are given at the

beginning of this section.

M=m

1-8-6

If m is:

E or EXECUTE
(execute mode)

R or READ
(read mode)

RA or READAP
(read append
mode)

RM or READMD
(read modify
mode)

A or APPEND
(append mode)

The user can:

Execute the file.

Read or execute
the file.

Read or execute
the file.

Read or execute
the file.

Read, execute, or
lengthen the file.

File access mode requested. If M=m is omitted, M=READ is assumed.

Concurrently, other users can:

Read or execute the file.
Read or execute the file.

Read or execute the file; one
user can lengthen the file.

Read or execute the file; one
user can lengthen or rewrite the
file. ,

Read or execute the file.

60435400 L

If m is: The user can: Concurrently, other users can:

M or MODIFY Read, execute, Read or execute the file.
(modify mode) lengthen, or re-
write the file.

W or WRITE Read, execute, No access allowed.
(write mode) lengthen, rewrite,

or shorten the

file.

The file cannot be changed by the user (including the creator) unless the file is
attached in append, modify, or write mode. Refer to table 1-8-1 for the access
mode granted when the file is already attached by another user.

If the file is attached in append, modify, or write mode, the current date is recorded
as the last modification date even if the file is not altered.

UN=usernum User number. Specified if the permanent file(s) is in another user's catalog.

PW=passwrd File password. Specified if UN=usernum is specified, and if the permanent file has a
password.

PN=packnam Auxiliary device name. Specified if the permanent file(s) resides on an auxiliary
device.

R=r Device type. Specified if an auxiliary device on a device type other than the
installation-defined default is used.

NA No abort option. If NA is specified, processing errors do.not terminate the job. The
NA parameter allows the user to attach a direct access file that has an error status
entry in its catalog (refer to the LO=0 parameter deseription in CATLIST Statement
in this section).

RT Real-time processing. If RT is specified, the job continues processing after
requesting staging of a direet access file from MSF to disk. If staging is not
required (the file is already resident on disk), the file is assigned to the job. If the
file is staged, the user must issue a second ATTACH statement to assign the file to
the job.

If RT is omitted and the file resides only on the MSF, job processing is suspended
while the MSF file is staged to disk and assigned to the job. For more information
on the MSF, refer to Mass Storage Facility in section 2. .

If an auxiliary device has been previously specified by a PACKNAM statement, the system attempts to
find pfn; on the auxiliary device rather than on a family device.

In the first column of table 1-8-1 is the access mode in which the first user attached a direct access file.
The remaining columns are the access modes that may be requested by another user. At the intersection
of the row and column is the access mode granted to the other user (assuming he has the appropriate
access permission). Busy means that the other user is sent a message that the file is busy and the job
step is aborted unless NA is specified.

Assuming that no user has the file attached in append, modify, or write mode, 12 285 users can attach the
file concurrently (4095 in read mode, 4095 in read append mode, and 4095 in read modify mode). If a user
has the file attached in append mode, 8190 other users can attach the file (4095 is read append mode and
4095 in read modify mode). If a user has the file attached in modify mode, 4095 other users can attach it
in read modify mode. If a user has the file attached in write mode, no other user can attach the file.

60435400 L 181

TABLE 1-8-1. ACCESS MODE GRANTED WHEN ATTACHING A CURRENTLY

ATTACHED DIRECT ACCESS FILE

Mode in Which Access Mode Requested by Another User

First User

Attached File Write | Modify | Append| Read| Read Modify | Read Append | Execute
Write Busy Busy Busy Busy | Busy Busy Busy
Modify Busy Busy Busy Busy { Read modify { Busy Busy
Append Busy Busy Busy Busy | Read modify | Read append | Busy
Read Busy Busy Busy Read | Read modify | Read append | Execute
Read Modify Busy Modify | Append| Read| Read modify | Read append | Execute
Read Append Busy Busy Append | Read| Read mddify Read append | Execute
Execute Busy Busy Busy Read | Read modify | Read append | Execute

CATLIST STATEMENT

The CATLIST control statement lists information about the user's permanent files or the permanent files
the user can access in the catalogs of other users.

. The control statement format is:

CATLIST(LO=p,FN=pfn,UN=usernum,PN=packnam,R=r,DN=dn,NA,L=1fn)

| 1ss

LO=p

One of the following list options. If LO is omitted, LO=0 is assumed.

p

F

FP

Description

Lists pertinent information about each file in the user's
catalog. An example of this list option is given following the
parameter descriptions.

If another user number is specified (UN=usernum), the user
receives a listing of all the files he can access in the other
user's catalog. The passwords for files in another user's
catalog are not listed. Passwords must be obtained from the
user. :

Lists the access permissions granted for the file specified on
the FN=pfn parameter. If a user number is also specified
(UN=usernum), only the file permission granted to that user is
listed.

The user numbers listed include those that have been granted

" explicit permission to access the file (private files only) and

those that have accessed the file through implicit permission
(semiprivate files only). (User numbers are not recorded for
accesses to public files.) An asterisk follows the user
number/permission mode if explicit permission has been
granted this user.

60435400 L

FN=pfn

UN=usernum

PN=packnam

R=r

DN=dn

60435400 M

p Description

0 (zero) Lists alphabetically the names of the indirect access files and
direct access files in the user's catalog. If he specifies a user
number (UN=usernum), the user receives a list of the files he
can access in the other user's catalog.

An -asterisk preceding a file name indicates an error status is
set in the catalog entry for the file, The cause of the error
may be one of the following.

e EOI was altered during mass storage recovery.
e Error exists in file data and/or per mit entries.

To clear an error status flag, refer to CHANGE Statement in
this section.

P Lists only the user numbers of users who have uaccess to the
specified private file or who have accessed the specified
semiprivate file. This option requires that a file name be
specified (FN=pfn).

Permanent file name. This parameter is required when listing access
permissions granted (when LO=FP or LO=P is specified).

If FN=pfn and LO=0 are specified, a message informs the user whether or not
the file is found in the user's catalog. If FN=pfn, LO=P, and UN=usernum are
specified, a message informs the user whether or not permission to access that
file has been granted to that user number (usernum FOUND.).

If pfn contains one or more asterisks, the CATLIST statement lists catalog
information for the subset of files whose names match except where the
asterisks appear. For example, FN=***QPL lists all six-character file names
ending in OPL. The asterisk is invalid when listing permit information with the
LO=FP and LO=P list options.

User number. This parameter has two purposes.

e For list options LO=F and LO=0, it specifies the alternate catalog for
which the user desires catalog information.

e For list options LO=FP and LO=P, it requests the permission
information recorded for the specified alternate user. '

When the short list options, LO=0 and LO=P, are specified, a message informs
the user whether or not the file or user number has been found.

Auxiliary device name. This parameter specifies that CATLIST should use the
catalog information on the named auxiliary device.

Device type on which the permanent file catalog resides. R=r is used with the
PN and NA parameters (refer to the R parameter description at the beginning
of this section).

Device number assigned to a device at system initialization. If specified, the
CATLIST statement lists eatalog information from that device. ’

1-8-9

NA No abort option. If NA is specified, processing errors do not terminate the job.

L=Ifn Output file name. 1lfn is the name of the file assigned to the job on which
CATLIST information is written. If L=1fn is omitted, the system assumes
L=0UTPUT.

1fn is not rewound before or after the CATLIST operation.

Example 1:

Listing of current files in the catalog of BJK2201. The statement is entered by user BJK2201 in the
form: CATLIST (it is not necessary to specify the LO=0 option since it is the default value).

CATALOG OF BJK2201 FM/NOSCLSH 79/03/14. 09.10.47.
INDIRECT ACCESS FILE(S)

ADD EXAM GRADES ID MODIFY2 RESEQ XX
CAPITAL FIND #HEROFTN LIST PRIME T

DIRECT ACCESS FILE(S)
DIRFILE DRFILE TV

13 INDIRECT ACCESS FILE(S), TOTAL PRUS
3 DIRECT ACCESS FILE(S), TOTAL PRUS

14.
2.

An asterisk preceding a file name indicates error flag set.

Example 2:

Listing of current files that begin with the letters PROC in the catalogue of WAC3651. The statement is

entered by user WAC3651 in the form: CATLIST,FN=PROC***,

CATALOG 0OF WAC365]1 FM/NOSCLSH 80/04/18. 13.27.02.
INDIRECT ACCESS FILE(S)
PROCART PROCFIL PROCI PROCTA

4 INDIRECT ACCESS FILE(S), TOTAL PRUS = 15.

Example 3:

Listing of alternate users that have accessed file PRIME in the catalog of BJK2201 The statement is
entered by user BJK 2201 in the form: CATLIST,LO=P,FN=PRIME.

CATALOG OF BJK2201 FM/NOSCLSH 79/03/08. 07.48.55.
FILE NAME PRIME
USER NUMBER(S)

CML2011 JLC2016 KXK4277
3 USER(S)

1-8-10 _ _ 60435400 L

N

Example 4:

Listing of current files in the catalogue of SAH3523. The statement is entered by user SAH3523 in the

form: CATLIST,LO=F.
CATALOG OF SAH3523

FM/NOSCLSH 79/07/20. 13.49.09. PAGE 1

FILE NAME ACCESS FILE-TYPE LENGTH DN CREATION ACCESS DATA MOD -
PASSWORD MD/CNT INDEX PERM. SUBSYS DATE/TIME DATE/TIME DATE/TIME

PR BR RS
1 FJOB IND. PRIVATE 21 79/06/08. 79/06/18. 79/06/18.
22 WRITE 13.31.46. 11.10.23. 11.10.23.
N MD D
/ 2 PROGF DIR. PRIVATE 88 * 79/07/20. T79/07/20. 79/07/20.
0 WRITE 13.40.52. 13.40.52. 13.40.52.
M MD A
1 INDIRECT ACCESS FILE(S), TOTAL PRUS = 21.
1 DIRECT ACCESS FILE(S), TOTAL PRUS = 88.

The page heading gives the user number, the family name, and the date and time. If the PN=packnam

parameter is specified, the family name in the heading is replaced by PN/packnam.

Column headings are printed when the LO=F parameter is specified.

The following are the column headings and their meanings.

Heading
FILE NAME

ACCESS
MD/CNT

FILE-TYPE
LENGTH
DN
PASSWORD

: INDEX

PERM.

60435400 M

Meaning
Permanent file name.
ACCESS MD is the permanent file type; direct acecess file
(DIR) or indirect access file (IND). ACCESS CNT is the
number of times the file has been accessed. It is listed on
the line below ACCESS MD.
File access category. The entry is PRIVATE, SPRIV, or PUBLIC.
Length of the file in decimal PRUs.
Device number of the mass storage device on which the direct
access file is stored. If the file resides on the master
device, this field contains an asterisk.

File password. It is not listed if the file belongs to
another user.

This heading is not used by the CATLIST statement. It is
used by the PFCAT system utility.

Permission mode allowed the user. The entry is WRITE,
MODIFY, APPEND, READ, READMD, READAP, or EXECUTE.

1-8-11

Heading Meaning

SUBSYS Time-sharing subsystem associated with the file. The
possible entries are FORT., FTNTS, BASIC, EXEC., and BATCH.
If this field contains no entry, a subsystem is not
associated with the file (null).

CREATION : : File creation time and date in the following format.
DATE/TIME
yy/mm/dd.
hh.mm.ss.
~ACCESS Time and date of the last access to the file.
DATE/TIME
DATA MOD Time and date of the last modification of the file data.
DATE/TIME ’
PR Preferred residence for this file. M means MSF and N means

no preference. For more information, refer to the
desceription of the PR parameter at the beginning of this
section.

BR Requested backup copy for this file. Y means tape backup, MD
means MSF or tape backup, and N means no backup required.
For more information, refer to the description of the BR
parameter at the beginning of this section.

RS Actual residence of the file. D means disk, A means MSF, and

B means copies of the file exist on disk and MSF. For more
information, refer to Mass Storage Facility in section 2.

CHANGE STATEMENT

The CHANGE control statement changes certain characteristics of a permanent file. The file need not
be assigned to the job.

The control statement format is:

CHANGE(nfn;=ofny,nfng=ofny,...,nfnp=ofn,/PW=passwrd,CT=ct,M=m,BR=br,PR=pr,
SS=subsystem,PN=packnam,R=r,NA,CE)

nfn;=ofn; : One- to seven-character file name nfn; replaces old permanent file name
ofn;. If no name change is desired, only ofn; is specified.

The full deseriptions of the following optional parameters (except CE and M=m) are given at the
beginning of this section. '

PW=passwrd New password. If PW=0 is specified, the CHANGE statement clears the old
password without setting a new password.
CT=ct New access category for the file; entries are PRIVATE, SPRIV, and
: PUBLIC.

1-8-12 : 60435400 M

M=m New alternate user permission mode for semiprivate and public files. For
direct access files, refer to the permission modes deseribed in the DEFINE
statement deseription; for indirect access files, refer to the permission
modes described in the SAVE statement description.

BR=br New backup ecopy selection; entries are tape (Y), MSF (MD), and no backup
(N).

PR=pr New preferred residence; entries are MSF (M) and no preference (N).

SS=subsystem New time-sharing subsystem to be associated with the file; entries are
BASIC, BATCH, EXECUTE, FORTRAN, FTNTS, and NULL.

PN=packnam Auxiliary device on which the file resides. This parameter cannot specify a
new file residence,

R=r Device type on which the file resides. ThlS parameter cannot specify a new
file residence.

NA No abort option. If NA is specified, processing errors do not terminate the
job.

CE Clear file error code. For more information, refer to section 5 in volume 2.

DEFINE STATEMENT

The DEFINE control statement can create an empty direct access permanent file. It can also change a
file of the local file type into a direct access file, if the file resides on a permanent file device.

The control statement format is:

DEFIN E(lfnl—pfnl,]fnz—pfn yoesslfNp=pfn, /PW=passwrd,CT=ct,M=m,BR= br,PR—pr,
PN=packnam,R=r,S=space,NA)

Ifnj=pfn; If the DEFINE statement creates an empty direct access permanent file,
Ifn; is specified if the user wants (in the current job) to reference the file
by a name other than its permanent file name, pfn;. Each file name can be
from one to seven characters.

If the DEFINE statement defines an existing local file as a direct aceess

file, Ifn; is the name of the local file, and pfn; is its new permanent file

name. If Ifn;j= is omitted, pfn; is assumed to be the local file name and the
permanent file name.

The full descriptions of the following optional parameters (except M=m and S=space) are given at the
beginning of this section.

PW=passwrd One- to seven-character password that other users must specify to access
the file.
CT=ct Access category of the defined file; entries are PRIVATE, SPRIV, and

PUBLIC. If CT=ct is not specified, CT=PRIVATE is assumed.

60435400 M 1813 |

M=m

BR=br
PR=pr

PN=packnam

R=r

1-8-14

File access mode permitted to other users if the file is semiprivate or
publie, and if explicit access permission has not been granted to that user.
If M=m is omitted, M=WRITE is assumed.

Other users ean attach the file in the
following modes (refer to the ATTACH

If m is: statement desecription):

E or EXECUTE Execute.

R or READ Read or execute.

RA or READAP Read append, read, or execute.

RM or READMD Read modify, read append, read, or execute.

A or APPEND Append, read modify, read append, read, or
execute,
M or MODIFY Modify, append, read modify, read append, read,

or execute.

W or WRITE Write, modify, append, read modify, read append,
read, or execute.

N or NULL None.

Special care should be taken when using the read modify or read append
mode., Programs using access techniques that do not expeet concurrent
updating of a file may get erroneous results if these modes are used.

CRM AAM (refer to the CYBER Record Manager Advanced Access
Methods Reference Manual) does not anticipate concurrent updating of a
file by another user. Therefore, if an attempt is made to alter and read a
file by a concurrent user, a warning diagnostic message is issued stating
that the file is bad when, in faet, it is not.

After a file is defined, it is always assigned to the job in write mode,

Backup copy requirement; entries are tape (Y), MSF (MD), and no backup
(N). If BR=br is omitted, a backup copy of the file is stored on tape.

Preferred file residence; entries are MSF (M) or no preference (N). If
PR=pr is omitted, no preference is assumed.

Name of an auxiliary device on which the direct access file is to reside. If
PN=packnam is omitted, the file residence is determined by the PR, R, and
S parameters. '

Device type on which the permanent file is to reside. The device must be a
permanent file mass storage device on which direet access files are
allowed. If 1fn; already exists on a device other than that specified or if an
illegal device is specified, a dayfile message so informs the user. If an
auxiliary device name is not specified by the PN=packnam parameter or a
previous PACKNAM control statement, the file is defined on a family
device.

60435400 M

W,

S=space Decimal number of PRUs requested for the file. It cannot be larger than
the user's validation limit (refer to LIMITS Statement in section 6). If no
device has the specified amount of space available, a dayfile message so
informs the user.

This parameter ensures that the file is assigned to a device that has the
requested space available at the time the file is defined. It does not
guarantee that the space will be available when the file is written.

NA No abort option. If NA is specified, processing errors do not terminate the
job.

If 1fn; does not exist, the device on which pfn; resides depends on the R=r and S=space parameters.

R=r =space File Residence
Specified : Not specified The file resides on the device of type r with the most space
available.
Specified Specified The file resides on the device of type r with the most space

available, provided that device has as many PRUs available as
specified by the space parameter.

Not specified Specified The file resides on the device with the most space available,
provided that device has as many PRUs available as specified
by the space parameter.

Not specified Not specified - The file resides on the device with the most space available.

If an auxiliary device has been previously specified by a PACKNAM statement, the file resides on that
auxiliary device rather than a family device.

After the DEFINE statement has been processed, the new direct access file remains attached to the job
in write mode. After the file is returned, the user must issue an ATTACH statement to access the direct
access file. If the user purges an attached direct access file, the file remains attached to the job,

although it has been removed from the user's permanent file catalog. Until the user returns the purged
file, he cannot define a direct access file having the same local file name as the purged file.

GET STATEMENT

The GET control statement retrieves copies of indirect access permanent files for use as local files.
The control statement format is:
GET(ifny =pfn1,1fng=pfny,...,fny=pfn,/UN=usernum,PW=passwrd, PN=packnam,R=r,NA)-
Ifn;=pfn; Local file name 1fn; is the name given the retrieved copy of indirect access
permanent file pfn;. If Ifnj= is omitted, the local copy of the permanent

file is called pfn;. If no files are named, NOS uses the primary file name;
the retrieved file copy is then the new primary file.

60435400 L 1-8-15 |

The full descriptions of the following optional parameters are gi?en at the beginning of this section.

UN=usernum User number. Specified if the permanent file(s) is in another user's
catalog. The user must have permission to read or execute the file(s) (refer
to SAVE Statement in this section). If only execute permission has been
granted, the file is retrieved in execute-only mode.

PW=passwrd File password. Specified if UN=usernum is specified, and if the permanent
file has a password.
PN=packnam Auxiliary device name. Specified if the permanent file(s) resides on an
auxiliary device.
R= Device type. Specified if PN=packnam is specified, or if a PACKNAM
control statement has been processed and the device type is other than the
system default. Y
NA No abort option. If NA is specified, processing errors do not terminate the >
job.

Each permanent file named must be an indirect access file. If the file, 1fn;, is assigned to the job before
this statement is processed, it is returned. The new local file is rewound after it is retrieved. More than
one user can have local copies of an indirect access file assigned to their jobs simultaneously.

If the user's current primary file is specified as an 1fn on the statement, a copy of the associated
permanent file, pfn, becomes the primary file. The time-sharing subsystem associated with the
permanent file, pfn, becomes the job's current time-sharing subsystem (refer to the Network Produects Ve
IAF Reference Manual or the NOS Time-Sharing User's Reference Manual). |

If an auxiliary device has been previously specified by a PACKNAM statement, the system attempts to
find pfn; on the auxiliary device rather than on the family device.

OLD STATEMENT

The OLD control statement retrieves a copy of an indirect access permanent file and makes it the
primary file. . o

The control statement format is: ~

OLD(fn=pfn/UN=usernum,PW=passwrd,PN=packnam,R=r,NA,ND)

Ifn=pfn One- to seven-character file name 1fn is given to the primary file copy of
indirect access permanent file pfn. If 1Ifn= is omitted, the primary file is
named pfn.

The full descriptions of the following optional parameters (except ND) are given at the beginning of
this section.

UN=usernum User number. Specified if the indirect access permanent file is in another
user's catalog.

PW=passwrd File password. Specified if UN=usernum is specified, and if the permanent
file has a password.

] 1816 60435400 L < -

PN=packnam Auxiliary device name. Specified if the permanent file resides on an
auxiliary device.

R=r Device type. Specified if an auxiliary device on a device type other than
the installation-defined default is to be used.

NA No abort option. If NA is specified, processing errors do not terminate the
job.

ND - No drop option. If ND is specified, OLD changes the former primary file

into a local file, but does not return any files, If ND is omitted, OLD
returns all files assigned to the job.

If an auxiliary device has been previously specified. by a PACKNAM statement, the system attempts to §
find the permanent file, pfn, on the auxiliary device rather than on the family device.

An OLD statement without the ND parameter releases all files assigned to the job. A copy of the
indireet access permanent file named on the OLD statement becomes the primary file. The primary file

is positioned at its BOIL.

The primary file is rewound before every job step. Therefore, the file positioning statements, BKSP,
SKIPEI, SKIPF, SKIPFB, and SKIPR, have no effect on the primary file. Also, when two copy statements
are issued to write on the primary file, the second copy writes over the data written by the first copy
because the primary file is rewound between copy statements.

PACKNAM STATEMENT

The PACKNAM control statement directs subsequent permanent ﬁleb requests to the specified auxiliary
device.

The control statement format is:
PACKNAM(PN=packnam)
or
PACKNAM(packnam)

packnam One- to seven-character name that identifies the auxiliary device to be
accessed in subsequent permanent file requests.

PACKNAM allows the user to omit the PN keyword from control statement requests for files that reside
on the specified packnam device, However, if permanent files on another auxiliary device are to be
requested by a control statement, the PN keyword must be specified in the file request, or another
PACKNAM request can be issued before the control statement. Refer to Mass Storage File Residence in
section 2 for information eoncerning auxiliary permanent file devices.

The user cannot access permanent files residing on the family system devices while the PACKNAM
request is in effect. To access these files, he must include a PACKNAM statement in either of the
following formats.

PACKNAM.

or

PACKNAM(PN=0)

60435400 M 1-8-17

PERMIT STATEMENT

The PERMIT control statement allows a user to explicitly permit another user to access a priVate file in
his permanent file catalog. The PERMIT statement can also change the mode in which another user can

access a semiprivate file.

The control statement format is:

PERMIT(pfn,usernumj =mj,usernumg=my,...,usernump=mp/PN=packnam,R=r,NA)

pfn

usernum;j=mj

Name of the private or semiprivate file for which access permission is
granted.

Specifies that user number usernumj is granted the access permissions
indicated by access mode mj. If mj is omitted, the read access mode is
assumed. If m; is NULL, the user is explicitly denied permission to access
the file. For {he available access modes, refer to DEFINE Statement or
SAVE Statement in this section.

The full descriptions of the following optional parameters are given at the beginning of this section.

PN=packnam

R=

NA

Auxiliary device name. Specified if the permanent file resides on an
auxiliary device.

Device type. Specified if an auxiliary device on a device type other than
the installation-defined default is to be used.

No abort option. If NA is specified, processing errors do not terminate the
job.

If pfn is a public file, the following message is issued.

PFM ILLEGAL REQUEST, AT nnn.

PURGALL STATEMENT

The PURGALL control statement purges all permanent files in the user's catalog that satisfy the criteria
specified by the parameters.

The control statement format is:

PURGALL(TY=ty,CT=et,AD=ad,MD=md,CD=ed,AF,TM=tm,DN=dn,PN=packnam,R=r,NA)

TY=ty

1-8-18

File type to be purged.

ty | Action
I or INDIR Purges all indirect access files.
D or DIRECT Purges all direct access files.
A or ALL Purges all files.

If this parameter is omitted, but other parameters are specified, the
system assumes ty is ALL. To purge all files if no other parameters are
specified, the user must specify TY=A. (

60435400 L \

CT=ct

AD=ad
MD=md
CD=cd

AF

A TM=tm
DN=dn
PN=packnam

R=r

) NA

File category to be purged; entries are PRIVATE, SPRIV, and PUBLIC.

Last access date; its format is yymmdd. All files last accessed before this
date are purged, unless the AF parameter is specified.

Last modification date; its format is yymmdd. All files last modified
before this date are purged, unless.the AF parameter is specified.

Creation date; its format is yymmdd. All files created before this date are
purged, unless the AF parameter is specified.

All files accessed after the date specified by the AD=ad parameter,
modified after the date specified by the MD=md parameter, or created
after the date specified by the CD=cd parameter are purged.

Time of day on the date specified by the AD, MD, or CD parameter; its
format is hhmmss.

Device number assigned to a device during system initialization. Only files
on that device are purged.

Name of the auxiliary device on which the files to be purged reside. The .
PN parameter cannot be specified if a device number is specified (DN=dn).

Type of auxiliary device on which the files to be purged reside. The R
parameter cannot be specified if a deviece number is specified (DN=dn).

No abort option. If the specified auxiliary device is not available, the job is
suspended until it becomes available.

To purge all files in his catalog, the user must enter

PURGALL(TY=A)

AF, CT, DN, NA, R, TY, TM, and one date (either AD, MD, or CD) can be entered on a single PURGALL l

statement.

The PURGE control statement names files to be removed from the permanent file device.

PURGE(pfnl,pfn2,...,pfnn/UN=usernum ,PW=passwrd,PN=packnam,R=r,NA)

Name of a permanent file to be purged. If no file is named, and if a
permanent file exists that has the same name as the primary file, that
permanent file is purged; the primary file remains assigned to the job.

PURGE STATEMENT
The control statement format is:
pfn;
“,‘
/ 60435400 L

1-8-19

The full descriptions of the following optional parameters are given at the beginning of this section.

UN=usernum User number. Specified if the file(s) to be purged is in another user's
catalog. To purge a file, the user must have write permission for that file.

PW=passwrd File password. Specified if UN=usernum is specified, and if the permanent
file to be purged has a password.

PN=packnam Auxiliary device name. Specified if the permanent file resides on an
auxiliary device.

R=r Device type. Specified if an auxilihry device on a device type other than
the installation-defined default is to be used.

NA No abort option. If NA is specified, processing errors do not terminate the
job.

When a PURGE statement is issued for any direct access file, the file is purged and the permanent file
catalog is altered accordingly. However, if the direet access file is attached to a job, it remains
attached to the job until the user returns it.

If pfn; does not exist, the following message is issued.

pfn NOT FOUND, AT nnn.

REPLACE STATEMENT

The REPLACE control statement can purge an indirect access permanent file and replace it with a copy
of a local file on mass storage. It can also save a copy of a local file on mass storage as a new indirect
access permanent file. -

The control statement format is: .
REPLACE(fny=pfnj,1fng=pfns,...,1fn,=pfn,/UN=usernum,PW=passwrd, PN=packnam,R=r,NA)

1fnj=pfn; Specifies that a copy of local file 1fn; becomes an indirect access
permanent file named pfn; (one- to seven-character name). If an indirect
access file named pfn; already exists, it is replaced.

If ifn; is omitted, the name of the local file is assumed to be pfn;. If no
files are named, a copy of the primary file becomes an indirect access
permanent file, replacing any existing indirect access permanent file by
that name. '

The full deseriptions of the following optional parameters are given at the beginning of this section.
UN=usernum User number. Specified if the file to be replaced is in another user's
catalog. To replace another user's file, the user must have write
permission and be validated to create indireet access permanent files (refer
to LIMITS Statement in section 6).

PW=passwrd File password. Specified if the UN=usernum is specified, and if the
' permanent file to be replaced has a password.

1-8-20 ’ 60435400 L

_/

s
-

PN=packnam

R=r

NA

Auxiliary device name. Specified if the permanent file to be replaced
resides on an auxiliary device.

Device type. Specified if an auxiliary device on a device type other than
the installation-defined default is to be used.

No abort option. If NA is specified, processing errors do not terminate the
joh.

The local files, 1fn;, are rewound before and after the replace operation.

The indirect access file created has the same access category as the file it replaces. Permission
information and alternate user access data for the file are retained when a file is replaced. If the file
created is a new file, it is created as a private file.

SAVE STATEMENT

The SAVE control statement allows the user to retain a copy of a local file on mass storage as an indirect

access file.

The control statement format is:

SAVE(lfn1=pfn1,1fn2=pfn2,...,lfnn=pfnn/P W=passwrd,CT=ct,M=m,SS=subsystem,
BR=br,PN=packnam,R=r,NA)

1fn;=pfn;

Specifies that a copy of local file 1lfn; becomes an indirect access
permanent file named pfn; (one- to seven-character name). If Ifn;= is
omitted, the name of the local file is assumed to be pfnj. If no files are
named, a copy of the primary file becomes an indirect access permanent
file with the same name as the primary file.

The full descriptions of the following optional parameters {except M_=m) are given at the beginning

of this seection.

PW=passwrd

CT=ct

M=m

60435400 L

One- to seven-character password that other users must specify to access
the file.

File access category; entries are PRIVATE, SPRIV, and PUBLIC. If CT=ct
is omitted, CT=PRIVATE is assumed.

File access mode permitted to other users if the file is public or
semiprivate, and if explicit access permission has not been granted to that
user. If M=m is omitted, M=WRITE is assumed.

If m is: Other users can:

R or READ Retrieve a copy of the file. This copy can
RA or READAP be read or executed.
RM or READMD

E or EXECUTE Retrieve a copy of the file, This copy can
only be executed.

A or APPEND Append data to the file with the APPEND
statement.

1-8-21

SS=subsystem

BR=br

PN=packnam

R=r

NA

If mis: Other users can:

M or MODIFY Retrieve a copy of the file or append data
to the file. The user can enter GET,
OLD, NEW, and APPEND statements, but not
a REPLACE statement, for the file.

W or WRITE Retrieve a copy of the file, append data to
it, replace it, or purge it.

N or NULL No access is allowed.

Time-sharing subsystem associated with the file. If SS=subsystem is
omitted, SS=NULL is assumed unless 1fn is the primary file. In that case,
the file is associated with the currently active subsystem. If SS is specified
without a subsystem, the file is associated with the currently active
subsystem.

Backup copy requirement; entries are tape (Y), tape or MSF (MD), or no
backup (N). If BR=br is omitted, a backup copy of the file is stored on
tape. Because indirect access files are not stored on the MSF, BR=MD on a
SAVE statement is equivalent to BR=Y.

Name of the auxiliary device on which the indirect access file is to reside.
Device type on which the indirect access file is to reside. The device must
be a permanent file mass storage device on which indirect access files are
allowed.

No abort option. If NA is specified, processing errors do not terminate the
job.

The local files, 1fn;, are rewound before and after the save operation.

| 152

60435400 L

=

N

LOAD/DUMP CENTRAL MEMORY 9
UTILITY CONTROL STATEMENTS

The load/dump central memory utility control statements allow the user to transfer information that
resides in his job field length to a peripheral device or to transfer information from that device into his
job field length. The following statements are included in this category.

DMD DMPECS PBC
DMDECS LBC RBR
DMP LOC WBR

For information concerning security restrictions
associated with the wuse of these control
statements, refer to Security Control in section 3.

The DMP and DMD control statements dump the exchange package or central memory in octal

- representation and/or display code equivalences. Likewise, the DMDECS and DMPECS control
statements dump ECS memory. These statements are particularly helpful in creating dumps for
debugging purposes (refer to section 12, Debugging Aids). Other transfers of data from central memory
use the PBC statement which dumps a binary record to PUNCHB and the WBR statement which writes a
binary record on a specified file.

Data is loaded to central memory by the LBC, LOC, and RBR statements. The LBC control statement is
useful in loading binary data in an unknown format. All numeric parameters may be expressed in octal
(postradix is B) or decimal (postradix is D) notation. If no radix is specified, octal is assumed.

DMD STATEMENT
The DMD control statement requests a dump similar to that of the DMP statement but adds the display
code equivalences to the right of the octal representations. If lines are duplicated, they are suppressed
and the following message is issued to the output file.

DUPLICATED LINES.
The control statement formats are:

DMD(fwa,lwa)

DMD(iwa)

DMD.

fwa - ‘First word address of memory to be dumped; fwa is relative to RA. If fwa is absent,
dump mode depends on the presence or absence of lwa.

60435400 K 1-9-1

lwa Last word address plus one of memory to be dumped; lwa is relative to RA. If lwa
alone is present, DMD assumes fwa is 0. If neither fwa nor lwa is present, MDM
dumps the exchange package and 40g locations before and after the program address
in the exchange package. Only the lower 17 bits of the program address are used.

In batch jobs, the dump is written on file OUTPUT. Central memory dumps are written four words per
line,

In time-sharing jobs, DMD is effective only within procedure files or when specified on the ENTER
statement. A dump from a terminal is formatted for 72-column output and written on local file
ZZZDUMP. DMD displays an informative message at the terminal. ZZZDUMP is not rewound before or
after the dump.

DMDECS STATEMENT

The DMDECS control statement requests a dump of ECS memory on file OUTPUT. The dump is four
words per line with display code equivalences to the right of the octal representations. If lines are
duplicated, they are suppressed, and the following message is issued to the output file.

DUPLICATED LINES.
The control statement formats are:

DMDECS(fwa,lwa)
DM DECS(1wa)

fwa First word address of ECS memory to be dumped; fwa is relative to the reference
address of the field in ECS being used by the job (RAE). If fwa is absent, DMDECS
assumes fwa is 0.

lwa Last word address of ECS memory to be dumped; lwa is relative to RAE.

The DMDECS statement must immediately follow a program to be dumped, except that another DMDECS
or a DMPECS, DMP, DMD, or EXIT may intervene.

Dumping always stops at the field length in ECS (FLE) if lwa is greater than FLE. If either fwa or lwa is
nonnumeric, the following error message is issued to the user's dayfile.

ARGUMENT ERROR.
If fwa is greater than FLE, fwa is set to FLE-10. If both fwa and lwa are greater than FLE, fwa is set to
FLE-10 and 1lwa is set to FLE. If fwa is greater than 1wa, the system issues the following message to the
user's dayfile,

FWA .GE. LWA+1,
If neither fwa nor 1lwa is specified, the following message is issued to the user's dayfile.

ILLEGAL REQUEST.

If no ECS field length exists for the user, the following message is issued to the user's dayfile.

NO ECs.

1-9-2 60435400 M

TN

J

The DMDECS statement can be used from a time-sharing terminal only in a procedure file and only after
OUTPUT is assigned to mass storage, as in the following example.

.PROC,PROCB.

ASSIGN(MS,0UTPUT)

FTN(I=PROG)

LGO.

EXIT.

DMDECS(0,100)
_ROUTE(OUTPUT)

DMP STATEMENT

The DMP control statement can request an exchange package dump or a central memory dump.

The control statement formats are:

DMP(fwa,lwa))
DMP(lwa)
DMP.
fwa First word address of memory to be dumped; fwa is relative to the first word of the

user's field length. If fwa is absent, the resulting dump depends on the presence or
absence of lwa.

If fwa is greater than the user's field length, fwa is set at the user's field length
minus 10g. If fwa is greater than or equal to 400000g, the first dump address is fwa
minus 400000g, memory from the first dump address through lwa is dumped, and the
job is aborted.

1lwa Last word address plus one of memory to be dumped; lwa is relative to the first word
of the user's field length. If lwa alone is present, DMP assumes fwa is 0. If neither
fwa nor lwa is present, DMP dumps the exchange package and 40g locations before
.and after the address in the program address register in the exchange package. Only
the lower 17 bits of the program address are used. If lwa is greater than the user's
field length, the dump stops at the end of the field length.

If either fwa or lwa is nonnumerie, DMP dumps the exchange package and 40g locations before and after -
the program address register in the exchange package. If both fwa and lwa are greater than the user's
field length, the last 10g words of the user's field length are dumped. If fwa equals lwa, the 10g words
beginning at fwa are dumped. If fwa is greater than lwa, DMP issues an error message and terminates
the job step.

The user must not place another control statement (other than DMP, DMD, DMPECS, DMDECS, or EXIT)
between the program to be dumped and the DMP statement.)

DMP suppresses duplicate lines and then issues the following output message.
DUPLICATED LINES.

In batch jobs, the dump is written on file OUTPUT. Central memory dumps are written four words per
line.

In time-sharing jobs, DMP is effective only within procedure files or when specified on the ENTER
statement. A dump from a terminal is formatted for 72-column output and written on local file
ZZZDUMP. DMP displays an informative message at the terminal. ZZZDUMP is not rewound before or
after the dump.

60435400 L » ' 1-9-3

DMPECS STATEMENT

The DMPECS control statement dumps the contents of an ECS field length on file OUTPUT or a
user-specified file. The dump is four words per line. If lines are duplicated, they are suppressed and the
following notation is issued to the output file.

DUPLICATED LINES.

A DMPECS statement within a time-sharing job copies the contents of the ECS field length to the loecal
file ZZZDUMP and displays a message at the terminal informing the user of the dump. ZZZDUMP is not
rewound before or after the dump.

The control statement formats are:
DMPECS(fwa,lwa)
DMPECS(1wa)
DMPECS(fwa,lwa,f,l1fn)

fwa First word address of ECS memory to be dumped; fwa is relative to the reference
address of the field in ECS being used by the job (RAE).

Iwa Last word of ECS memory to be dumped; lwa is relative to RAE.
f Print format (included for compatibility with NOS/BE).
1fn File to dump to.

If the first format is used, the field in ECS memory defined by fwa and lwa is dumped to the file
OUTPUT. Display code equivalences do not appear.

If the second format is used, DMPECS assumes fwa is 0. Display code equivalences do not appear.

If the third format is used, the specified field in ECS is dumped to 1fn. The parameter f is ignored.
Display code equivalences appear to the right of the octal representations, the same as the DMDECS
control statement. .

The DMPECS statement must immediately follow a program to be dumped, except that another DMDECS
or DMPECS, DMP, DMD, or EXIT may intervene.

Dumping always stops at the field length in ECS (FLE) if 1wa is greater than FLE. If either fwa or lwa is
nonnumeric, the following error message is issued to the user's dayfile.

ARGUMENT ERROR.
If fwa is greater than FLE, fwa is set to FLE-10. If both fwa and lwa are greater than FLE, fwa is set to
FLE-10 and lwa is set to FLE. If fwa is greater than lwa, the system issues the following message to the
user's dayfile.

FWA .GE. LWA+1.
If neither fwa nor lwa is specified, the following message is issued to the user's dayfile.

ILLEGAL REQUEST.

If no ECS field length exists for the user, the following message is issued to the user's dayfile.

NO ECS.

1-9-4 : 60435400 K

LBC STATEMENT

The LBC control statement is intended for loading binary data of unknown format.
The control statement format is:

LBC(addr)

addr Address relative to RA at which binary load begins; if addr is omitted, 0 (RA) is
assumed. '

LBC reads only one record from file INPUT. The user must make an LBC call for each record of data to
be loaded. If addr is specified in the program call, binary data is loaded beginning at that address;
otherwise, loading begins at the reference address (RA).

LOC STATEMENT

The LOC control statement reads octal line images from file INPUT and enters them in the user's CM
field length.)

The control statement format is:

LOC(fwa,lwa)
LOC(1wa)
LOC.
fwa First word address of an area to clear {zero) before loading correction statements.
If fwa is absent, LOC assumes 0. :
lwa Last word address plus 1 of the area to be cleared. If lwa is absent, LOC assumes 0.

To process the LOC statement, the system reads correction statement images from the. current INPUT
record. A correction statement consists of an octal address and a data field. The address field specifies
the location to be corrected, and the data field contains the data to be placed in that location. Both
fields may start at any column as long as the address precedes the data. The address field consists of a
one- to six-digit address. If it is five characters or less, it is separated from the data field by a nonoctal
character (for example, a blank). If it is six characters, no separator is required. '

The data field consists of ‘1 to 20 octal characters. If it is less than 20 characters, it is terminated by a
nonblank, nonoetal character and is stored right-justified. If it is 20 characters, no terminator is
required. Embedded blanks in the data field are ignored.

If both fwa and lwa are specified and both are nonzero, storage is cleared from fwa to lwa, and the octal
line images are loaded at the specified addresses. If the current INPUT record is empty, LOC clears the
indicated area of memory.

60435400 K 1-9-5

PBC STATEMENT
l The PBC routine writes one record from the specified area of CM to file PUNCHB.

The control statement format is:

PBC(fwa,lwa)

PBC(1wa)
PBC.

fwa

lwa

Address relative to RA at which the binary deck begins; if this parameter is omitted,
the PBC operation depends upon the presence or absence of 1wa.

Last word address of the binary deck. If lwa alone is present, PBC assumes that fwa
is RA. If lwa equals fwa, and a nonzero value is specified, PBC adds 10g to lwa. If
fwa and 1wa are 0 or are omitted, lwa is set to the value in the lower 18 bits of RA.
If the upper 12 bits of RA are 7700g, lwa is the lower 18 bits of the location
following the prefix (77) table plus the length of the prefix table,

CM is not altered by PBC.

RBR STATEMENT

The RBR routine loads one binary record from a specified file.

The control statement format is:

RBR(n,name)

n

name

n is used in constructing the name of the file containing the binary record to be
read. If n is less than four characters and is numeric, TAPEn is the file name. If n
contains a nonnumeric character or is four or more characters long, n itself is used
as the file name. If n is absent, TAPE is the file name.

One- to seven-character name used in a record prefix.

The RBR routine loads one binary record from the specified file into central memory starting at RA. If
the name parameter is included, a record prefix is placed in central memory starting at RA. The record
itself follows. The following is the format of the record prefix.

60435400 M

Ed -A_\.

-

TN

RA
RA+1

RA+2

RA+3

RA+17
RA+204

59 53

47 35 17 0

77 | oo | o016 | 0 length .

name 0

date (yy/mm/dd.)

0
P
0
5200 L 0 l length;
“length Record length including the prefix.
length, Record length minus words RA through RA+17

g*

If the record is too long for available memory, memory is filled, excess data is skipped, and the following

message is issued to the user's dayfile.

RECORD TOO LONG.

WBR STATEMENT

The WBR routine writes a binary record from CM to a file at its current position.

The control statement format is:

WBR(n,rl)

n

rl

n is used in constructing the name of the file on which the binary record is to be
written. If n is less than four characters and is numeric, TAPEn is the file name. If
n contains a nonnumeric character or is four or more characters long, n itself is used
as the file name. If n is absent, TAPE is the file name.

Record length in words. If rl is 0 or absent, the length is taken from the lower 18
bits of RA.

WBR begins writing from RA.

60435400 L

1-9-7 ||

TAPE MANAGEMENT 10

This section describes control statements used with magnetic tape files.t For additional information on
NOS magnetic tape files, consult the glossary for definitions of terms; Magnetic Tape Files in section 2
for descriptions of tape labels and data formats; and appendix G for tape label formats. Section 6
describes the RESOURC statement required in jobs that use more than one tape or removable auxiliary
pack concurrently.

The term file as used in this section may refer to
a multifile file. Refer to table 1-2-1 for the EOR
and EOF marks for tape files.

The control statements deseribed in this section are:

ASSIGN Assigns a local file to a tape unitf (system origin jobs or jobs with system origin
privileges only). Section 7 describes the ASSIGN statement for nontape files.

BLANK Blank labels a tape and may restrict access to the labeled tape.

LABEL Assigns a local file to a magnetic tape,f creates and verifies tape labels, and

creates and accesses multifile set tapes.

LISTLB Lists tape labels.
REQUEST Assigns a local file to a magnetic tape device.
VSN Associates a file name with one or more VSNs for later assignment by a LABEL or

REQUEST statement.

TAPE ASSIGNMENT

Whenever a tape is mounted, the system checks for labels. If the tape is labeled, the system records the
volume serial number (VSN) read from the VOL1 label and the equipment on which the tape is mounted.
When a tape assignment is requested by a LABEL or REQUEST statement specifying an 1fn and a VSN (or
an Ifn that has been named in a previous VSN statement), the system compares the VSN with the VSNs
read from mounted tapes. If a match is found, the system automatlcally assigns the tape to the
requesting job, provided a deadlock would not occur.t? If the tape is not mounted, the system rolls out
the job until a tape with the requested VSN is mounted.

TIf the user does not specify a VSN parameter or an MT or NT parameter on the tape assignment
statement, the operator can assign any device to the file.
fTRefer to the RESOURC statement in section 6.

60435400 J 1-10-1

For a mounted, unlabeled tape, the operator enters a command specifying the requested VSN. The
system can then assign the tape. A VSN which contains nonalphanumeric characters should not be
specified in a request for an unlabeled tape because nonalphanumeric characters cannot be entered with
the operator command.

If a VSN is not associated with the requested 1fn, the system directs the operator to assign an available
device.

CONTROL STATEMENT RULES

On the tape assignment control statements (LABEL, REQUEST, and ASSIGN), the user can specify the
tape label contents, tape density, track type, nine-track conversion mode, data format, noise size, and
processing options. If any of these specifications are omitted, the system uses a default value.

For nine-track tapes, the density specification
given on the tape assignment is used only when
.the tape is written from load point. Otherwise,
the tape is read or written using the density
previously used for that tape. To ensure that a
labeled tape is at load point for rewriting the tape
at a new density, perform one of the following
before the write operation.

e Rewind the tape.

e Specify the W parameter on the LABEL
statement used to assign the tape.

e Assign the tape using a REQUEST or
ASSIGN control statement.

Specification of duplicate or equivalent parameters is not allowed on tape assignment control statements.

The user is advised not to create labeled S or L
format tapes with tape marks embedded in the
data. Future adherence to ANSI standards will
make these tapes nonstandard as the ANSI
standard allows tape marks to be used only as
delimiters of label groups.

' 1-10-2 60435400 L

o

The system allows use of a continuation line for an ASSIGN, BLANK, LABEL, REQUEST, and VSN control
statement when any one of these requires more than 80 characters. If, in processing one of these
statements, the system does not encounter a termination character prior to the end of the line, it
assumes the next line is a continuation line. A continuation line should be terminated with a valid
terminator. The terminator for a continuation line must appear in or before column 80.

The system accepts continuation lines’ from a
time-sharing terminal only if they are within a
procedure file.

The programmer can use literals for parameters that contain nonalphanumerie characters. These
parameters are FI/L, FA, SI/M, VA, FA, OFA, and VSN. Nonalphanumeric characters are characters
other than letters, numbers, and asterisks.

A literal is a character string delimited by dollar signs. Blanks within literals are retained. If the literal
is to contain a dollar sign, two consecutive dollar signs must be included. Thus, the literal

$A B$$41$
is interpreted as
A B$41

When continuation lines are used, a literal cannot extend from one line to another.

PROCESSING OPTIONS

The PO= parameter on the LABEL, ASSIGN, and REQUEST tape assig'nment statements allows the user
to specify one or more processing options that are to apply to that tape file. The characters representing
the processing options and their meaning are listed below.

PO=S gives the default end-of-tape conditions. Default error recovery attempts to recover blocks having
errors by repeatedly rereading the block. If the A, E, or N processing options are not specified, the
program determines whether an error aborts the job or the program performs error processing (refer to
the FET ep bit description in volume 2).

Pj Description

A Automaﬁca]ly aborts job on an irrecoverable read or write parity error (refer to.the N
option).

E Error inhibit. All hardware read/write errors are ignored and processing continues. The

system does not attempt error recovery, issue error messages, or return error status.
During a read operation, blocks less than noise size (refer to the NS parameter) are
unconditionally bypassed. This option is not intended for the normal user. It can be used
to recover portions of data from a bad tape, to check out hardware, and to write on tape
without skipping bad spots; in the latter case, the user is responsible for verifying that
the data is written correctly.

60435400 L ' 1-10-3 ff

l 1-10-4

Description -
Force unload. Unload at end of usage. (Refer to the U option.)

Disables all hardware error correction activity in GE (6250 cpi) write mode. An
on-the-fly error while writing a GE tape results in standard error recovery processing.
The system erases the defective portion of tape, thereby reducing the amount of data
that can be stored on the tape. The default is installation-defined (refer to the H option).

Enables hardware error correction activity in GE (6250 cpi) write mode. The system
allows certain types of single track errors to be written that can be corrected when the
tape is read (on-the-fly correction). This is the recommended mode because it provides
efficient throughput, error recovery, and tape usage when writing GE tapes on a medium
that is suitable for use at 3200 fei or 6250 cpi. The default option (G or H) is
installation-defined.

Rewrites the block on which the end-of-tape occurred as the first block on the next
volume, if the system senses the EOT during a write operation. During a read operation,
the block on which the EOT occurred is ignored and reading continues on the next
volume. If a tape mark and the EOT are sensed at the same time, the EOT is ignored.
This option cannot be specified for I or SI format tapes. Refer to the P and S options.

Issues only the first and last error messages for each bad tape block. Numerous attempts
are made to read each bad block, but only the messages for the first and last attempts
are issued to the dayfile. The default is installation-defined (refer to the M option).

Issues an error message for each attempt to read a bad tape block. The default is
installation-defined (refer to the L option).

Specifies that job is not automatically aborted on an irrecoverable read or write parity
error (refer to the A option); data is passed to the job on a read operation without error
status set even if the program requested error processing. This option is not intended for
the normal user.

Writes a trailer sequence following the block on which the EOT was sensed, if the system
senses the EOT during a write operation. Any data that oecurs following the block on
which EOT was sensed, yet before the tape mark, is ignored. During a read operation,
the system transfers the bloeck on which the EOT was sensed to the user job. The read
operation resumes on the next reel. If a tape mark and the EOT are sensed at the same
time, the EOT is ignored. Refer to theI and S options.

Enforce ring out. If the tape is mounted with the write ring in, job processing is
suspended until the operator remounts the tape correctly.

Specifies where the system is to stop on an exit condition. For unlabeled tape, it directs
the system to stop at the first tape mark after the EOT is sensed. For labeled tape, it
directs the system to stop at the tape mark plus EOF1 or the tape mark plus EOV1 when
the EOT is encountered.

If, during a write operation, the system senses the end-of-tape, the system writes a
trailer sequence following the block on which the EOT was sensed. This trailer sequence
consists of a tape mark followed by an EOV1 label for labeled tapes and four tape marks
for unlabeled tapes. The next block is written on the next volume. During a read
operation, the EOT is noted and the system transfers to the user job the block on which
the EOT was sensed plus all following blocks until a trailer sequence (as desecribed
previously) is recognized. Reading resumes on the next volume.

60435400 L

Pj Description

U Inhibit unload. Do not unload at the end of usage. For system origin jobs, the inhibit

unload option is selected by default; for all other jobs, omission of the U option causes
the tape to be unloaded at end of usage.

w Enforce ring in. If the tape is mounted without the write ring in, job processing is
suspended until the operator remounts the tape correctly.

If both ring enforcement options (R and W) are specified or more than one EOT option (I, P, or S) is
specified, the system issues a dayfile message and terminates the job step.

For further information on end-of-tape/end-of-reel conditions, refer to the CLOSER, REWIND, and
UNLOAD macros in section 3 and the LABEL macro in section 4 of volume 2.

ASSIGN STATEMENT

The ASSIGN control statement names a tape unit and the local file to be assigned to that unit. It can
create an unlabeled tape file or access an existing labeled or unlabeled tape. It cannot create or verify
tape labels.

Only system origin jobs or users validated for
system origin privileges (debug mode) and for use
of magnetic tapes can use the ASSIGN statement
to assign a tape unit.

Jobs that use this statement without proper validation are aborted, and a dayfile message is issued.

Before performing the assignment, the system unloads the local file (refer to the UNLOAD statement in
section 7). ‘

The following description applies only to6 magnetic tape files; for use of the ASSIGN statement with
devices other than magnetic tape, refer to section 7.

The control statement format is:

ASSIGN(nn,1fn,VSN=vsny /vsng=...=vsnp_1 /vsnp, {II\;I:II: ’ {D=den},F=format,LB=f,

den
FC=fcount

Ceccount [CV=cONV, NS=ns,PO=p1py...pp, {85})

Required parameters:

nn Device or device type to which the file 1fn is assigned. nn can be the EST ordinalf of a
magnetic tape unit or one of the device types MT or NT. Specifying MT informs the
operator to assign the file to a seven-track magnetic tape drive; NT informs the
operator to assign the file to a nine-track magnetic tape drive. Omission of this
parameter results in an error.

T Contact installation personnel for a list of EST ordinals.

60435400 K 1-10-5

ifn Name of the file to be assigned to the device nn. Omission of this parameter results in
an error. ' .

Optional parameters:

VSN=vsnj/vsng=

MT or NT

D=den or den

F=format

...=VSNp-1/Vsnp

One- to six-character volume serial number that
uniquely identifies a reel of tape. ASSIGN does not
use the VSN parameter to assign the tape. The nn
parameter determines the tape assignment.

Specifies seven-track (MT) or nine-track (NT) tape
drive. It must not conflict with the nn specification.

Tape density; must not conflict with the MT or NT
specification. The default is installation~defined.
The parameter is ignored for nine-track tapes not
positioned at load point. Can be one of the
following:

Seven-track (MT) Nine-track (NT)

den Density den Density
LO 200 bpi HD 800 cpi
HI ~ 556 bpi PE 1600 cpi
HY 800 bpi GE 6250 cpi
200 200 bpi 800 800 cpi
556 556 bpi 1600 1600 cpi
800 800 bpi 6250 6250 cpi

Data format. Default is I. Refer to Magnetic Tape
Files in section 2 for descriptions of the data formats.

I Internal.

SI System internal.t

L Long block stranger.
S Stranger.

F Foreign.

Labeled or unlabeled tape. Default is KU if VSN is
omitted or KL if VSN is specified.

KU Unlabeled.

KL ANSI-labeled. If the tape is a NOS tape,
volume and header label access restrictions
are enforced (refer to appendix G).

NS Nonstandard-labeled. Assumes data begins
immediately after the first tape mark.

T NOS/BE system default tape format (binary mode only); used for tape interchange with NOS/BE

systems.

1-10-6

60435400 K

FC=fecount or C=ccount Whenever F format is specified, this parameter must
be specified. It specifies maximum block size in
frames. No default value. Illegal for other tape
formats.

CV=conv Conversion mode for nine-track tapes; applies to
both labels and data on coded tapes; applies only to
labels on binary tapes. Default is instal-
lation-defined. Parameter is ignored for unlabeled I
or SI format binary tapes whose trailer labels are
always ASCI. Must not be specified with MT or
seven-track density specification.

AS ASCII/display code conversion.
US Same as AS.
EB EBCDIC/display code conversion.

NS=ns ‘ Noise size. Ignored for I and SI format tapes.
Default is 18 frames for other formats. Maximum
value is 31 frames. If NS=0 is specified, the default
is used.

PO=pypg...pp A string of characters (not separated by commas)
that specify processing options (refer to Processing
Options in this seetion).

CK or CB lfn) is to be used as a checkpoint file (refer to section
11).

CK Each dump is written at the previous EOI
of Ifn.

CB Each dump is written at the BOI of 1fn.
Example:
ASSIGN(51,TAPE1,D=PE,F=SI)

This statement assigns the file TAPE1 to the nine-track magnetic tape unit identified by EST ordinal 51.

BLANK STATEMENT.

The BLANK control statement writes the ANSI standard labels VOL1, HDR1, and EOF1 following the
load point of a tape. The labels are written as follows (asterisks represent tape marks):

VOL1 | HDR1 | * * EOF1 | * *

If the value of a labeled field is specified by a BLANK statement parameter, that value is written;
otherwise, the default value is used. Refer to appendix G for the tape label formats and default values.

TRefer to Magnetic Tape Users in appendix A.

/ 60435400 M 1-10-7

A BLANK statement issued in a nonsystem origin
job cannot overwrite a label containing an
unexpired expiration date or a nonblank VA field.

If the FA field within the label is nonblank, a

nonsystem

origin job must specify the FA

character using the OFA parameter. If the FA
character is A, only the owner or a system origin
job can overwrite the label.

The control statement format is:

BLANK(VSN=vsn, { %,’l{' }, {D=de“

den

},CV=conv,FA=fa,OFA=of a,VA=va,

OWNER=usernum/familyname,LSL=1s1,U)

VSN=vsn

MT or NT

D=den or den

CV=conv

One- to six-character volume serial number that uniquely
identifies the reel of tape. It is entered in the VOL1 label. It
need not mateh the VSN previously recorded on the tape.

Specifies seven-track (MT) or nine-track (NT) tape drive.
Installation-defined default. Must not confliect with D=den
specification.

Tape density; must not conflict with the MT or NT
specification. The default is installation-defined. den can be
one of the following.

Seven-track (MT) Nine-track (NT)

den Density den Density
LO 200 bpi HD 800 cpi
HI 556 bpi PE 1600 cpi
HY 800 bpi GE 6250 cpi
200 200 bpi 800 800 cpi
556 556 bpi 1600 1600 cpi
800 800 bpi 6250 6250 cpi

Conversion mode for nine-track tape labels.

Installation-defined default. Must not be specified with MT or
seven-track density specification.

AS ASCIl/display code conversion.
Us Same as AS.

EB EBCDIC/display code conversion.

tRefer to Magnetic Tape Users in appendix A.

1-10-8

60435400 L

FA=fa

OFA=ofa

VA=va

"OWNER=usernum/familyname

LSL=lsl

File accessibility character indicating who has access to the
labeled tape. Value entered in HDR1 and EOF1 labels.

Blank Unlimited access (default).

A Only the owner of this NOS written tape can
aceess it.

Other In all future accesses of this tape, the user inust
specify this character.

Old file accessibility character on a labeled tape that is to be
relabeled. This parameter must be specified if the FA field is
currently other than A or blank. Future accesses of the tape
must specify the character specified with the FA parameter.

Volume accessibility character indicating that the volume
must be accessed as an ANSI-labeled tape (LB=KL). If VA is
nonblank, only a system origin job can destroy VOL1 (for
example, assign tape as unlabled). Default is unrestricted
access. Refer to the VOL1 format in appendix G.

Owner identification entered in VOL1 label. Determines the
owner for file accessibility (FA) parameter.

Label standard level entered in VOL1 label. Default is 1.

1 Tape labels and data format for this volume
conform to the ANSI standard.

Blank Tape labels and data format for this volume may
or may not conform to the ANSI standard.

If U is specified, the tape is physically unloaded when returned
after blank labeling. If U is omitted, physical unloading is
inhibited. This parameter does not apply to system origin jobs.

An.installation can use the BLANK statement to restrict use of its labeled tapes. Once a tape has been
blank labeled, the user can modify the labels as follows: ‘

1. If the volume accessibility field of VOL1 indicates unlimited access (that is, VA is blank), the

user can:

e Include another BLANK statement to change VOL1, HDR1, or EOF1 values.

o Request the tape as unlabeled (with the parameter LB=KU) and write it in whatever
format the user specifies.

e Include a LABEL statement to change HDR1 by specifying one or more of the
parameters associated with that label and specifying the W parameter.

60435400 L

1-10-9

2. If the volume accessibility field is nonblank, the user can:

e Include a LABEL statement to change HDR1. However, in requesting a tape in which
VA is nonblank, the user must specify an ANSI-labeled tape (with the parameter
LB=KL), and therefore, cannot change or destroy the VOL1 label.

e If validated, submit a system origin job to change VOL1.

LABEL STATEMENT

Like ASSIGN and REQUEST statements, the LABEL control statement associates a file name 1fn with a
magnetic tape, usually identified by its VSN. Unlike the ASSIGN and REQUEST statements, the LABEL
statement can create and verify tape labels. It can also position a multifile set for access to any of its
existing files or for appending a new file. The LABEL statement can create and access unlabeled as well
as labeled tapes.

A LABEL statement cannot overwrite a label with
an unexpired expiration date (refer to appendix G).

To write the labels that begin a labeled tape (refer to Magnetic Tape Files in section 2), the user should
specify a write label (W) parameter. The W parameter always rewinds the tape to load point and rewrites
the first label group. The label contents remain the same when a LABEL statement with the W
parameter names an 1fn already assigned to a tape file.

If the tape was not previously part of a multifile set (the SI field in the first HDR1 label is blank), then
specification of the SI and QN=9999 parameters rewrites the initial tape labels.

To position the tape after any HDR1 label other than the first HDR1 label (multifile set only), the SI
parameter must be specified. When SI is specified, the R and W parameters are ignored unless QN=1 and
the first file on the tape is to be written. The system determines where to position the tape by matching
the SI, FI, and QN parameter values (if specified) to the corresponding values in the HDR1 label. (The
HDR1 label format is given in appendix G.)

To write the EOF1 and HDRI labels between two files in a multifile set (refer to figure 1-2-2), the user
specifies the SI and QN=9999 parameters. The W parameter is ignored if specified when appending the
file (QN=9999). To ensure that all files in a file set have the same set identifier, an appended file is
given the same file set identifier as the previous file in the file set regardiess of the Sl=setid
specification.

If neither the MT nor NT parameter is specified and no VSN is named, the operator can assign the file to
any equipment. The user must be validated for the assigned equipment or the job is terminated.

| 1-10-10 60435400 L

A

The control statement format is:

LABEL(1fn, VSN=vsn; /vsng=...=vsnp1/vsnp, { ur ’,DEN=den,F=form at,LB=1,

FC=fcount
C=ccount

y,CV=conv,NS=ns,PO=p1p3...pp, {8“

SI=setid }
BJ’ M=setid’

{SN-secnO} QN=seqno} {Fl=fileid} FA=fa,G=genno, E=gvn,

V=secnof’ |P=seqno L=fileid §’
]CR—cdate} RT=yyddd| (W })
=cdate |’ |T=ddd

Required parameter:

1Ifn Name of the file that resides or is to reside on magnetic tape. If 1fn is already
assigned to a mass storage file, processing continues with the next control
statement. To assign a previously assigned 1fn, the user must return 1fn before its
reassignment. If 1fn is already assigned to a tape and R parameter is specified, the

contents of the tape labels are

compared to the statement parameter specifications.

If the label verification fails, the job aborts. Omission of 1fn results in an error.

Optional parameters:

VSN=vsnj /vsng=...=vsnp-1/vsnp

MT or NT

D=den

60435400 L

One- to six-character volume serial number that
uniquely identifies a reel of tape. If VSN is omitted,
the operator assigns an available unit to 1fn.
Multiple VSNs can be specified if separated by / or =
characters. If the VSNs are separated by the =
character, LABEL assigns 1Ifn to the first available
VSN in the list. If the VSNs are separated by the /
charaecter, 1fn is a multivolume file set, and LABEL
assigns the volumes in the sequence given. If VSN=,
VSN=0, or VSN=SCRATCH is specified, a scratch
tape is assigned. If a scratch tape is unavailable,
the job is suspended until a tape is available.

Requests seven-track (MT) or nine-track (NT). tape
drive. Installation-defined default. Must not
conflict with D=den specification.

Tape density; must not conflict with MT or NT
specification. The default is installation-defined.
The parameter is ignored for nine-track tape not
positioned at load point. Can be one of the
following:)

Seven-track (MT) Nine-track (NT)

den Density den Density
LO 200 bpi HD 800 cpi
HI 556 bpi PE 1600 cpi
HY 800 bpi GE 6250 cpi
200 200 bpi 800 800 cpi
556 556 bpi 1600 1600 cpi
800 800 bpi 6250 6250 cpi

1-10-11

F=format

LB=

FC=fcount or C=cecount

CV=conv

NS=ns

PO=pqp9...Pn

Data format. Default is I. Refer to Magnetic Tape
Files in section 2 for descriptions of the data
formats.

I Internal.
SI System internal.’
S Stranger.
L Long block stranger.
F Foreign.
Labeled or unlabeled tape. Default is KL.
KL ANSI-labeled.
KU Unlabeled.

NS Nonstandard-labeled. Assumes data
begins immediately after the first tape
mark.

Whenever F format is specified, this parameter must
be specified. It specifies the maximum block size in
frames (no default value). Ilegal for other tape
formats,

Conversion modett for nine-track tapes; applies to
both labels and data on coded tapes; applies only to
labels on binary tapes. Installation-defined default.
Ignored for unlabeled I or SI format binary tapes
whose trailer labels are always ASCII. Must not be
specified with MT or seven-track density
specification.

AS ASCIl/display code conversion.
US Same as AS,
EB EBCDIC/display code conversion.

Noise size; any bloek containing fewer than ns
frames is considered noise and discarded. Ignored
for I and SI format tapes. Default is 18 frames for
other formats. Maximum value is 31 frames. If
NS=0 is specified, the default is used.

A string of characters (not separated by commas)
that specifies processing options. Refer to
Processing Options in this section. '

TNOS/BE system default tape format (binary mode only); used for tape interchange with NOS/BE
systems.

TTRefer to Magnetic Tape Users in appendix A.

1-10-12

60435400 M

77N\

N

N~

N

-

CK or CB

Ifn is to be used as a checkpoint file (refer to
section 11).

CK Each dump is written at the previous EOI -
of 1fn.

CB Each dump is written at the BOI of 1fn.

Optional tape label parameters (refer to appendix G):

SI=setid

SN=secno

QN=segno

FI=fileid or L=fileid

FA=fa

G=genno

E=gvn

CR=cdate

60435400 M

One- to six-character file set identifier; must be specified for file
positioning within a multifile set.

A file set identifier should be specified when the first file of a file
set is written. When appending a file to a file set, the Sl=setid
parameter must be specified to position the multifile set, but the
specified set identifier is not written in the HDR1 label. The
appended file is given the same set identifier as the previous file in
the file set.

If the SI-setid parameter is omitted when the first file of a file set
is written, the set identifier field in the HDR1 label is left blank. A
blank set identifier field is then written in the HDR1 labels of all
files in the file set.

One- to four-digit file section number specifying the position of the
volume within a multivolume file set (numbered consecutively from
0001). The default is 1.

One- to four-digit file sequence number specifying the position of
the file within the multifile set (numbered consecutively from
0001). The default is 1. QN must be set to 9999 to append a new
file to a multifile set.

A one- to seventeen-character file identifier recorded in the HDR1
label (refer to appendix G). The default is blank.

File accessibility charaecter indicating who has access to the labeled
tape.

Blank Unlimited access (default).
A Only the owner of the tape can access it.
Other To aceess the tape, the user must specify the

character in the FA field of the HDR1 label.

One- to four-digit generation number. The number zero cannot be
used. The default is 1.

One- to two-digit generation version number. The default is 0.

Creation date in the form yyddd where 1 < ddd=< 366. Used only on
read operations; write operations always use the current date.

1-10-13

RT=yyddd or T=ddd

Ror W

RT=yyddd specifies the expiration date where yy is the last two
digits of the year, and ddd is the day of the year (1 ddd 366).
T=ddd specifies the number of days the file is to be retained
(0 ddd 999). The expiration date is entered in the HDR1 label. On
or after this date the label and the file can be overwritten.

If R is specified, the system compares the values recorded on the
file labels with the LABEL statement parameter values. If the
comparison fails, it terminates the job. R is the default.

If W is specified, the system writes ANSI standard labels on the
tape. The labels contain the values specified with the LABEL
statement parameters or their default values. If the tape is
mounted without the write ring, job processing is suspended until the
operator remounts the tape correctly. If both the W and the PO=R
parameters are specified, the job step aborts.

W and R are ignored when Sl is specified and QN- 1. When QN =1
(default value) and W are specified, the initial header label is
rewritten.

Example 1 - Reading and Writing a Single-File File Set:

In the following job, the user reads data from one tape and writes data on another tape. Program input

data previously written at 1600 cpi on a nine-track tape unit is read from tape TP0l. Output data is
written on tape TPO02.

FTNJ

OR.

USER(USRNAME ,PASSWRD, FAMNAME)

CHARGE(CHRGNUM ,PROJNUM)

RESOURC(PE=2)

FTN.

LABEL(TAPE1,VSN=TPO1,D=PE,P0O=R)
LABEL (TAPE2,VSN=TP02,D=PE,PO=W,W)

LGO.
/EOR

/EOR

.PROGRAM SORT(INPUT,OUTPUT, TAPE1=INPUT, TAPE?:\OUTPUT)

-

END

The RESOURC statement schedules two nine-track, 1600-cpi tape units for concurrent use in the job.
The tapes are not requested until af ter compilation of the program in case compilation errors occur.

Assuming the compilation completes without fatal error, the LABEL statements request that two tapes,
TPO01 and TP02, be mounted and assigned to the job. The tape files are called TAPE1l and TAPE2 within
this job. PO=R is specified for the input tape, ensuring that the tape does not have a write ring. PO=W
is specified for the output tape which requires a write ring. The W parameter on the second LABEL
statement specifies the writing of ANSI standard labels. Default values are used in the label fields.,

Following completion of the job, the tapes are rewound and unloaded.

1-10-14

60435400 M

VRN

Example 2 - Reading and Writing a Multifile Set:

The following job writes the object programs produced by three compilations as three files of a multifile
set. It then copies one of the files to mass storage and executes it.

SJOB.
USER (USRNAME , PASSWRD, FAMNAME)

CHARGE (CHRGNUM, PROJNUM)

GET,BSORT,QSORT, LSORT.

LABEL (STAPE , VSN=TP03,D=PE, SI=BINSET,FI=BSORT, PO=W, W)
FTN, I=BSORT, B=STAPE.

LABEL (STAPE,VSN=TP03,D=PE,SI=BINSET,FI=QSORT,QN=9999)
FTN,I=QSORT,B=STAPE.
LABEL(STAPE,VSN=TP03,D=PE,SI=BINSET,FI=LSORT,QN=9999)
FTN,I=LSORT,B=STAPE.

LABEL (STAPE,VSN=TP03,D=PE,SI=BINSET,QN=2)
COPYEI,STAPE,QSORTB.

QSORTB.

The GET statement retrieves three indirect access files - BSORT; QSORT, and LSORT - containing
FORTRAN Extended source programs. The first LABEL statement requests the mounting and assignment
of tape TP03 to the job. The W parameter specifies the writing of ANSI standard labels. The set
identifier and file identifier fields are written using the values specified on the SI and FI parameters.
The B=STAPE parameter on the FTN statement specifies that the object program is to be written on the
tape file.

The QN=9999 parameter on the second and third LABEL statements specifies that a file is to be
appended to the tape. Although the same set identifier is used for all files within a file set, the SI
parameter must be specified when positioning a multifile set. The second and third compilations write
the second and third files of the file set.

The QN=2 parameter on the fourth LABEL statement positions the tape at the second file of the file set.
The tape could also have been positioned according to the file identifier (FIF=QSORT). The second file is
copied to a local mass storage file, QSORTB, and executed.

Example 3 - Replacing a File within a Multifile Set:

To replace a file within a multifile set, the user must first copy to temporary storage the files that
follow the file to be replaced, then write the replacement file, and last rewrite the succeeding files in
the file set. .

RWJOB.
USER(USRNAME, PASWRD, FAMNAME)

CHARGE (CHRGNUM, PROJNUM)

GET, SORT2.

LABEL (STAPE, VSN=TP03,D=PE, SI= BINSET QN=2,P0O=W)
COPYET(STAPE, SCRATCH)

LABEL (STAPE, VSN=TP03, D=PE, SI=BINSET,QN=1)
COPYEI(SORT2, STAPE)

LABEL (STAPE, VSN=TP03,D=PE, SI=BINSET, FI=QSORT,QN=9999)
COPYEI (SCRATCH, STAPE)

The first LABEL statement requests tape TP03 containing the multifile set created in example 2. The
tape is mounted with a write ring inserted (PO=W) and is positioned at the second file of the file set
(QN=2). The COPYEI statement copies the second file to the mass storage file, SCRATCH.

The second LABEL statement positions the tape at the first file. Although the contents of the first file
are rewritten, the file labels remain unaltered.

60435400 L 1-10-15

The third LABEL statement appends the second file to the file set' (QN=9999). The labels are rewritten
so the user can change the-label contents. The third COPYEI statement writes the second file as stored
on file SCRATCH.

The third file of the multifile set is lost, because it was not saved before the tape was rewritten.

LISTLB STATEMENT

The LISTLB control statement lists the labels of an ANSI-labeled tape file previously assigned the file
name Ifn.

The control statement format is:

LISTLB(fn, {

1-10-16

Sl=setid
M=setid|)’

1fn
SI=setid or M=setid

QN=segno

LO=ltype

L=out

gi:ii%no} ,LO=ltype,L=out)

File name assigned to tape file whose labels are to be listed.
Default is file name TAPE.

One- to six-character file set identifier. If specified, only label
groups whose HDR1 label contains this value are listed.

One- to four-digit file sequence number. If seqno is specified, only
the label group whose HDR1 label contains this value is listed. If
seqno is specified, SI must be specified; otherwise, LISTLB
terminates.
Label type(s) to be listed. The default is R. Required and optional
labels are listed in appendix G. Combinations of ltype mnemonics
can be specified, such as LO=VH to list only the VOLn and HDRn
labels.

A List all labels.
List required labels.
List optional labels.
List VOLn labels.
List HDRn labels.

List EOFn labels.

m m o < 0O W

List EOVn labels.
U List UVLn, UHLn, and UTLn labels.

File on which the labels are to be listed. Default is OUTPUT.

60435400 L

N

N

N

To list labels for a multifile set (Ifn contains more than one HDR1/EOF1 label pair), the tape must be
positioned at load point. LISTLB then positions the tape for reading the requested labels. It searches for
labels through all volumes associated with 1fn. At the end of the multifile set or if an expected label
group is not found, the following dayfile message is issued. n is the sequence number of the last file
found. (nnn should be ignored.)

MULTI-FILE NOT FOUND, 1fn AT nnn.
REQUEST SECTION n+l.
FOUND SECTION n.

After issuing this dayfile message, LISTLB leaves the tape positioned after the last listed label. The next
statement processed for the tape file must be either RETURN, EVICT, UNLOAD, or LABEL.

Example 1:
The following statements list the second label group of file set ABCDEF.

LABEL(T,VSN=EXAMP1,MT,D=HY,SI=ABCDEF)
LISTLB(T,SI=ABCDEF,QN=2)

Example 2:

To list only the volume and header labels (trailer labels omitted) of a multivolume file set, the user must
request a volume of the file set, list its labels, and return the file set, repeating the procedure for each
volume of the file set.

LABEL(T,VSN=REEL1,MT,D=HY)
LISTLB(T,LO=VH)
RETURN(T)

. LABEL(T,MT,D=HY,VSN=REEL?2)
LISTLB(T,LO=VH)

Example 3:

To list all labels of the following file set, only one LISTLB control statement is required.
VSN(T=REEL1/REEL2)
LABEL(T,VSN=REEL1,D=HY)
LISTLB(T)

The LISTLB(T) statement lists all labels on the volumes associated with T, that is, REEL1 and REEL2.

60435400 L 1-10-17

REQUEST STATEMENTT

The REQUEST control statement associates a file name, 1fn, with a magnetic tape device,TT usually
described in a comment following the statement terminator. This comment is displayed at the system
console, directing the operator to make the requested assignment. However, if the tape is labeled and
the user previously specified a VSN via the VSN control statement or included the VSN parameter on the
REQUEST statement, the system can automatically assign the tape.

The REQUEST statement can ereate unlabeled tape files and access existing labeled and unlabeled tape
files. It cannot create or verify tape labels.

The control statement format is:

REQUEST(Ifn,VSN=vsn; /vsng=...=vsnp_1 /vsnp, {%'}‘1}’ I‘i;;ien} ,F=format,
LB=¢, {F(C;fcount} ,CV=conv,NS=ns,PO=p1p9...pp, {gg =) comment

=ccount

Required parameter:

ifn Name of the file that resides or is to reside on magnetic tape. If 1fn is already
assigned to ‘a mass storage file, processing continues with the next control
statement. To assign a previously assigned Ifn, the user must return ifn before its
reassignment. Omission of this parameter results in an error.

Optional parameters:

VSN=vsn,/vsng=...=vsn,_;/vsn, One- to six-character volume serial number Gniquely
identifying a reel of tape. The user should specify a
VSN for labeled and unlabeled tapes. If VSN is
omitted, the operator must assign an available
device to ifn.

If VSN=, VSN=0, or VSN=SCRATCH is specified, a
scratch tape is assigned. If a secratch tape is
unavailable, the job is suspended until a tape is
available.

Multiple VSNs can be specified if separated by a / or
= character. If the VSNs are separated by the =
character, the system assigns 1fn to the first
available VSN in the list. If the VSNs are separated
by the / character, Ifn is a multivolume file set, and
LABEL assigns the volumes in the sequence given.

MT or NT Requests seven-track (MT) or nine-track (NT) tape
drive. Installation-defined default. Must not
conflict with D=den specification.

TThe user should employ the LABEL control statement for this operation.
TTIf the user does not specify a VSN parameter or an MT or NT parameter on the statement, the

operator can assign any device to the file. If the user is not validated for the assigned device, the
job aborts.

1-10-18 : 60435400 M

VRN

7N\

N

N S

v

NG

o N

D=den or den Tape density; must not confliect with MT or NT
specification. The default is installation-defined.
The parameter is ignored for nine-track tape not
positioned at load point. Can be one of the

following.

Seven-track (MT) Nine-track (NT)

den Density den Density

LO 200 bpi HD 800 cpi

HI 556 bpi PE 1600 cpi

HY 800 bpi GE 6250 cpi

200 200 bpi 800 800 cpi

556 556 bpi 1600 1600 cpi

800 800 bpi 6250 6250 cpi

F=format Data format. Default is I. Refer to Magnetic Tape

Files in section 2 for descriptions of the data
formats.

I Internal.

SI System internal.f

S Stranger.

L Long block stranger.
F Foreign.

LB=¢ Labeled or unlabeled tape, Default is KL if a
volume serial number is specified by the VSN
parameter or by a VSN control statement;
otherwise, the default is KU.

KL ANSI-labeled.
KU Unlabeled.

NS Nonstandard-labeled. Assumes that data
begins immediately after the first tape
mark.

FC=fcount or C=ccount Whenever F format is specified, this parameter must
be specified. It specifies the maximum block size in
frames (no default value). Illegal for other tape
formats,

CV=conv Conversion mode Tt for nine-track tapes; applies to
both labels and data on coded tapes; applies only to
labels on binary tapes. Installation-defined default.
Ignored for unlabeled I or SI format binary tapes
whose trailer labels are always ASCII. Must not be
specified with MT or seven-track density
specification.

AS ASCIl/display code conversion.

TNOS/BE system default tape format (binary mode only); used for tape interchange with NOS/BE
systems.
Tt Refer to Magnetic Tape Users in appendix A.

60435400 M 1-10-19

NS=ns

PO=p1p9...Pp

CKor CB

comment

Example:

US Same as AS.
EB EBCDIC/display code conversion.

Noise size. Ignored for 1 and SI format tapes.
Default is 18 frames for other formats. Maximum
value is 31 frames. If NS=0 is specified, the default
is used.

A string of characters (not separated by commas)
that specifies processing options. Refer to
Processing Options in this seetion.)

File 1fn is to be used as a checkpoint file (refer to
seetion 7 and section 11).

'CK Each dump is written at the previous EOI
of Ifn.

CB Each dump is written at the BOI of Ifn.
The comment is displayed at the system console. In

the comment field the user directs the operator to
make the requested assignment.

To send a message to the operator requesting that volume XYZ be mounted on tape unit NT62 and

assigned to Ifn TAPE]L,

the user could issue the following statement.

REQUEST,TAPE1. NEED VSN=XYZ ON NT62,

VSN STATEMENT

The VSN control statement associates a file name 1fn with one or more volumes of tape.f An 1fn/VSN
association allows the system to assign the specified VSN to Ifn without reference to a VSN parameter on
the LABEL or REQUEST statement or to an operator command. Once declared, an 1fn/VSN association
remains until the file is returned by an operation such as an EVICT, RETURN, or UNLOAD statement.

The control statement

format is:

VSN(Ifny=vsny,lfng=vsngy,...,1fn,=vsn)

1fn;

vsn;

File name to be associated with vsn;. This parameter is required if parameters
are specified.

One or more one- to six-character volume serial numbers to be associated with
Ifn;. If vsn; contains nonalphanumerie characters, it must be a literal delimited by
dollar signs ($) .

vsn; Meaning
Omitted An available scratch tape is automatically

assigned to 1fn;,

TUp to 60 VSNs can be specified for a single file name in any combination of duplicate reel and/or
multireel specifications.

1-10-20

60435400 M

p

.//\\

N

N

vsnj © Meaning
0 : Same as omitted.
- SCRATCH Same as omitted.

VSN =VSNp=...=VSNy Names duplicate volumes,
any of which may be used
with 1fn;.

vSng /vsnp/.../vsny Successive volumes to be

assigned to 1fn;.T The system
assigns volumes in the order
listed.

With a VSN statement the user can:

® Omit the VSN keyword from his LABEL or REQUEST statements and specify 1fn/VSN
associations on the VSN statement instead. This allows the user to specify new VSNs without
changing LABEL or REQUEST statements.

e Override the VSN specified on subsequent ASSIGN, LABEL, REQUEST, or VSN statements. For
example, the sequence

VSN(FILEA=123)
VSN(FILEA=124)
LABEL(FILEA)

directs the system to assign FILEA to the tape with VSN 123. However, by returning file ifn,
the user can specify another 1fn/VSN association. Thus, the following sequence directs the
system to assign FILEA to the tape with VSN 124.

VSN(FILEA=123)
RETURN(FILEA)
VSN(FILEA=124)
LABEL(FILEA)

o Associate the VSNs of two or more duplicate volumes with one file name. For example, the
following statement indicates that either the tape with VSN VOL100 or the tape with VSN
VOL101 can be assigned to FILEL.

VSN(FILE1=VOL100=VOL101)

o Specify the VSNs of a multivolume file set. For example, the following statement indicates
that FILE2 may extend through the three volumes identified by VSN23, VSN 24, and VSN 25.

VSN(FILE2=VSN23/VSN24/VSN25)
o Specify alternate volumes within a multivolume file set.
VSN(FILE3=VSNA=VSN1/VSN2/VSNB=VSN3=VSN4)

The first volume of the set can be either VSNA or VSN1. The second volume is VSN2. The third
volume can be either VSNB, VSN3, or VSN4, depending on which is available.

T Al subsequent volumes must have the same characteristics as the first volume in the sequence.
(Characteristies include labels, track type, density, and conversion mode.) It is recommended that
all volumes be blank labeled (refer to the BLANK statement) before use in a multivolume sequence.

60435400 M 1-10-21 I

7N\

N

\-’/

CHECKPOINT/RESTART 1

A job may terminate as the result of system, operator, or programmer error. For some jobs, it becomes
more advantageous to accept the overhead of checkpoint procedures than to run the risk of losing the
entire job output. The checkpoint/restart feature is implemented through the CKP control statement
and the RESTART control statement. :

For information concerning security restrictions
associated with the wuse of these control
statements, refer to Security Control in section 3.

CKP STATEMENT
The CKP control statement causes a checkpoint dump to be taken.
The control statement format is:

CKP(ifny,lfng,...,1fn,)

1fn; Specifies a file to be included in the checkpoint dump. If no files are specified, all
files local to the job at the time the CKP statement is processed are checkpointed.

Each time a CKP statement is processed, the system takes a checkpoint dump. The dump is written on
the tape or mass storage checkpoint file specified on a REQUEST, ASSIGN, or LABEL control statement
with the CK or CB parameter. The dump weonsists of a copy of the user's central memory, the system
information used for job control, and the names and contents of all assigned files explicitly or implicitly
identified by the CKP statement. These files are:

e INPUT, OUTPUT, PUNCH, PUNCHB, P8, CCCCCCO, and LGO. These files are always included
in the checkpoint dump. CCL ZZZZZxx working files are also included if present.

o Common files, library type files, working copies of indirect access files, and some direct access
files. If one of these types of files is specified on the CKP statement, it is included in the
checkpoint dump, and all other files of that type are excluded. If no files are specified, all files
of these types assigned to the job are included in the dump.

Each checkpointed file is copied according to the last operation performed on it. If the last operation
was a write, the file is copied from the BOI to its position at checkpoint time; only that portion is
available at restart time. The file is positioned at the latter point.

If the last operation was a read and the EOI was not detected, the file is copied from its position at

checkpoint time to the EOI; only that portion is available at restart time. The file is positioned at the
former point. If the last operation was a read and the EOI was detected, no copy is performed.

60435400 L, 1-11-1 I

The exception to this rule is the type of operation performed on execute-only direct access files. If a
dump is specified for this type of file, its name and associated system information are copied but the
contents of the file itself is not copied. Thus, if the user attempts to resume from such a dump,
RESTART is unable to retrieve that file and aborts. The user can avoid this by selecting the NA and FC
options of the RESTART statement and retrieving the file himself. :

If the checkpoint file is to reside on mass storage, the user must include a SAVE or DEFINE control
statement in the checkpoint job and a GET or ATTACH control statement in the restart job.

If the checkpoint file is to reside on magnetic tape, care should be taken to use a labeled or nonblank
tape. An unlabeled blank tape (one which has never been used) cannot be specified as the checkpoint file
since the checkpoint program attempts to read the tape to determine the number of the last checkpoint.
The tape subsystem then aborts the job with a blank tape read message.

The system numbers checkpoints starting at 1 and increases by 1 to a limit of 4095. At this point, a
second cycle of numbering begins, again starting at 1. An example showing how to restart from a
specific checkpoint is given in the RESTART control statement section.

RESTART STATEMENT

The RESTART control statement directs the system to restart a previously terminated job from a
specified checkpoint.

The control statement format is:
RESTART(1fn,nnnn,x;)
1fn Identifies the checkpoint file; the user must have write permission to lfn.

nnnn Number of the checkpoint from which to restart; if nnnn is *, the last available
checkpoint on ifn is used; if nnnn is omitted, the first checkpoint is used. The
nnnn parameter can be obtained from the CHECKPOINT nnnn COMPLETE
messages issued to the user's dayfile in response to CKP control statements.

Xj Any of the following in any order:

RI If this parameter is included, the control statement file on Ifn is not
restored. The control statement file of this restart job at its current
position is used instead. If this parameter is not included, the entire
control statement file of the checkpointed job is restored and set to
its position at checkpoint time; any control statements following
RESTART are not processed.

NA If this parameter is included, RESTART does not abort if a required
file is not available. Also, if NA is included and a read parity error
occurs in an attempt to obtain a file from checkpoint nnnn, RESTART
selects checkpoint nnnn-1 if it is available.

FC Normally RESTART restores all files included in the specified
checkpoint. However, if this option is selected, RESTART first
checks if a file is already local to the restart job. If it is, RESTART
does not replace it with the file on the echeckpoint dump.

| 112 | 60435400 L,

The user must assign 1fn to his job before the RESTART statement is processed. He must include a
REQUEST, ASSIGN, or LABEL control statement if ifn resides on magnetic tape or a GET or ATTACH
control statement if 1fn resides on mass storage.

Checkpoint dumps are numbered in ascending order from. 1 to 4095. ‘When nnnn equals 4095, the
numbering sequence begins again at nnnn equal to 1. The value of nnnn depends on the structure of the
checkpoint file, as defined by the CK and CB parameters of the REQUEST, ASSIGN, or LABEL control
statements.

If CK was specified when the checkpoints occurred, each dump is appended to the checkpoint file, and
therefore, all dumps up to the time the job aborted are available for restart. The user may specify a
particular checkpoint dump in the following manner. ’

Assume a CK file of the name CHKFILE is being used and checkpoint number 4095 has been passed. The
job is terminated at checkpoint number 10 in the second eycle of numbering. To restart the job from
checkpoint 4 of the second numbering cyele, the following control statements can be used.

SKIPR(CHKFILE,8196) There are two records for every checkpoint, and 4098 checkpoints
must be skipped to reach checkpoint 4 of the second numbering cycle.

COPYBR(CHKFILE,AA,2) The fourth checkpoint is copied to file AA. At this point, file
CHKFILE is not positioned correctly for subsequent checkpoints. If
the user intends to continue checkpointing on this file, a

BKSP,CHKFILE.
statement should be included.
RESTART(AA...) The job is restarted from file AA using the fourth checkpoint.
If the CB parameter was specified on the ASSIGN, LABEL, or REQUEST statement naming the
checkpoint file, each dump is written over the preceding dump, and therefore, only the last dump is
available. If two REQUEST, ASSIGN, or LABEL statements with CB specified are submitted, successive

dumps are alternated between two files; therefore, the last two dumps are available. T

If the CK parameter is specified for alternate files or if more than two checkpoint files are specified,
the system issues a dayfile message and aborts the job.

A1l files copied by RESTART are made local to the restart job. Therefore, the user must make sure that
any direct access files are not lost. For example, assume that direct access files X, Y, and Z are
attached to a job. The job is then checkpointed and X, Y, and Z are copied to the checkpoint file Ifn. To
retain these files as direct access files during restart, the user should include the following sequence of

control cards.
PURGE(X,Y,Z)
DEFINE(X,Y,Z)
RESTART (Ifn,nnnn,x;)

If the information table associated with a file was included on the checkpoint file, but the file itself was
not copied, RESTART issues the appropriate commands to retrieve the file.

TIf alternate checkpoint files are used and a read parity error occurs in an attempt to read the last
checkpoint, RESTART aborts even if the NA option was selected.

60435400 L 1-11-3 |

//\\\

N

S

DEBUGGING AIDS 12

Some program errors prevent compilation or assembly of the source program; other errors prevent
execution of the object program. A programmer determines the cause of a compilation error using the
compiler diagnosties, a source listing, and the compiler reference manual. The cause of an execution
error is often more difficult to determine. If the programmer cannot determine the cause of the error
from the execution error message, he can use the CDC CYBER Interactive Debug Utility or interpret
memory dumps to locate the cause. CYBER Interactive Debug is described in its reference manual
(listed in the preface). This section deseribes eentral memory dumps and their use as a debugging aid.

A programmer can dump the job exchange package and locations within the job field length using the
DMP and DMD control statements described in section 9. (Dump restrictions are deseribed under
Security Control in section 3.) Most CPU mode errors result in an exchange package dump.

A programmer interprets a memory dump using the load map and the compiler-generated symbolic
reference map. Dump interpretation may also require knowledge of display code equivalences (appendix
A), machine codes, and internal integer and floating point number representations (refer to the
COMPASS Reference Manual).

EXCHANGE PACKAGE DUMPS

The user can dump a job's exchange package using a DMP or DMD statement within the job (refer to
section 9). Figures 1-12-1 and 1-12-2 show actual exchange package dumps. The format of the first
dump is produced by all CYBER 170 models except model 176; all CYBER 70 models; and all 6000 Series I
computer systems. The second dump format is produced only by the CYBER 170 Model 176 computer
system.

The following are the exchange package fields and their contents.

Label Contents

P Program address at which execution stopped.

RA Reference address; starting address of central memory field length.

FL Field length in central memory.

EmT Exit mode. Each bit set indicates that if this hardware-detected error occurs, the

program aborts. The bit positions are numbered with 0 as the rightmost bit (each digit
shown represents 3 bits).

Bit Position Error
11 CM data error. Tt
10 Central memory control (CMC) input error.TT

TDoes not apply to CYBER 170 Model 176.
TTApplies to all CYBER 170 models except model 176. I

60435400 M 1-12-1

EXCHANGE PACKAGE.

P 242 A0

RA 622400 A1
FL 52000 A2
EM 7007 A3
RAE 0 A4
FLE 0 A5
MA 3600 A6
A7

X0 7077 7777

X1 0000 0000
X2 0000 0000

X3 0000 0000

X4 2000 0000

X5 1717 0631

X6 0516 0420

X7 0000 0000
(RA) 0000 0000
(RA+1) 0516 0420

EXCHANGE PACKAGE.

P
RA
FL
PSD
RAE
. FLE
MA
EEA

X0
X1
X2
X3
Xy
X5
X6
X7

(RA)
(RA+1)

1-12-2

10435
136100
15000
70000
0

0

1200
1200

0000
0000
1717
2000
2000
0000
0516
2000

0000
0516

AO
A1
A2
A3
A4
A5
A6
A7

0000
0000
0631
0000
0000
0000
0420
0000

0000
0420

0000
0000
4631
0000
0000
0000
0000
0000

0000
0000

51760
1

114
574
557
573

1

277

00
00
00
00

7777
0000

0000
o040
0000
4631
0000
0000

u6
00
00

0000
0000

00

00
00
00
00

0000

31
00
00

00

0000

BO 0
B1 1
B2 30
B3 6
BL 22
B5 1
B6 7776
B7 14657

0000
0000
0000
0000
0012
4632
0000
0000

0000
0000

(A0)
(a1)
(a2)
(A3)
(AY)
(A5)
(A6)
(AT)

0000
0516
0400
5555
7777
1717
0516
3232

Figure 1-12-1. Exchange Package Dump

2165
1
6251
2
6207
4324
1
12557

0000
0000
4640
0000
0000

0000
0000

0000
0000

0000

BO
B1
B2
B3
B4
B5
B6
B7

0
0
3
0
0
0
0
0

0
0

0
1
TT7755
6032
11437
12711
776677
30
000
000
615
012
000
000
000
001
000
000

(A0)
(A1)
(A2)
(A3)
(Al)
(A5)
(A6)
(AT)

1725
0516
1717
0000
0400
2000
0516
6000

0000
0420
0005
5555
7777
0631
0420
3232

2420
0420
0631
0000
0062
0000
0420
0000

0000
0000
0300
5555
7777
4631
0000
3206

2524
0000
4631
0000
4600
0000
0000
0000

Figure 1-12-2. Exchange Package Dump for CYBER 170 Model 176

0000
0000
0007
5555
7777
4631
0000
0300

0000
0000
4640
0000
0000
0000
0000
0001

60435400 J

0000
0000
7775
5555
7776
4632
0000
0171

0131
0000
3615
0000
0000
0065
0000
5000

7N

N

AN

Label

psptit

Bit Position
9
5-8
3-4
2
1
0

The EM field in figure 1-12-1 has bit positions 11, 10, 9, 2, 1, and 0 set.

Contents

Error

ECS flag register operation parity error.
Not used.

Hardware error exit status bits.TT
Indefinite operand.

Operand out of range.

Address out of range.

Program status designator (PSD) register. Each bit set indicates the setting of a mode

flag or an error condition. The bit positions are numbered with 0 as the rightmost bit
(each digit shown represents 3 bits).

Bit Position

14
13
12
11
10

<D =N o ©

Error
Indefinite mode.
Overflow mode.
Underflow mode.
LCME error.
CM error.
LCME block range error.
CM block range error.
LCME direct range error.
CM direct range error.
Program range error.
Not used.
Step condition.
Indefinite condition.
Overflow condition.

Underflow condition.,

TApplies to all CYBER 170 models except model 176.
Tt Applies to CYBER 70 Model 74 only.
ttTApplies to CYBER 170 Model 176 only.

60435400 M

1-12-3

The PSD field in figure 1-12-2 has bit positions 14, 13, and 12 set.

RAE ECS reference address; starting address of ECS field length. '

FLE ECS field length,

MA Monitor address (normal exit address for the CYBER 170 Model 176).1'

EEA Error exit address (CYBER 170 Model 176).T

Ai Contents of the address registers.

(A1) Contents of the ecentral memory word addressed by the named address register.
Bi Contents of the increment registers.

Xi Contents of the operand registers.

(RA) Contents of the reference address word.

(RA+1) Contents of the request word following the reference address word.

USING DUMPS

A NOS user receives an exchange package and partial CM dump when a hardware-detected error occurs.
He can also obtain dumps of his job's exchange package and field length by including a DMP or DMD
statement in his job. FORTRAN users can generate a CM dump within a program using the DMP
subroutine (refer to the FORTRAN Extended 4 or FORTRAN 5 Reference Manual). COMPASS users ean
specify the REPRIEVE macro to control error processing and the SYSTEM maero to generate dumps
(refer to sections 10 and 11 of volume 2).

When the system hardware detects one of the error conditions listed in the MODE statement description
(section 6), NOS dumps the job exchange package and the contents of the 32 words preceding and the 32
words succeeding the address where the job step terminated.

The user can specify control statements after an EXIT statement; the control statements then are
processed only if the job step terminates abnormally (refer to Error Control in section 3). Users
frequently specify a dump statement to be executed if the job step aborts. The resulting dump is
analyzed to determine the cause of the job step abort.

Example 1 - Finding the Source Program Location Where the Program Terminated:
This example uses a dump to find the cause of an execution error.

The user submits the following job to compilé and execute a FORTRAN Extended program called FPROG.

FJOB.
USER(USRNAME, PASSWRD, FAMNAME)
CHARGE (CHRGNUM ,PROJNUM)
GET, FPROG.
FTN,I=FPROG.

" MAP(PART) ¥
LDSET(PRESET=ZERO)
LGO.

I TN ormally this does not apply to the applications programmer.

1-12-4 : 60435400 M

N

1

The FTN statement compiles the source program in the retrieved file FPROG. The resulting program
listing and symbolic reference map are shown in figure 1-12-3. The fields within the reference map are
defined in the FORTRAN Extended 4 Reference Manual.

PROGRAM FPROG 73/74 0OPT=1 FTN 4.84505 79/08/29. 11.03.07 PAGE 1

1 PROGRAM FPROG (INPUT,OUTPUT)
DIMENSION N(10)
DATA (N(I),I=1,10)/1,2,3,4,5,6,7,8,9,10/
NSUM=0
DO 10 I=1,111111
10 NSUM=NSUM+N(I)
STOP
END

N

SYMBOLIC REFERENCE MAP (R=1)

ENTRY POINTS
4137 FPROG

VARIABLES SN TYPE RELOCATION

4153 I INTEGER 4154 N INTEGER ARRAY
4152 NSUM INTEGER
FILE NAMES MODE

0 INPUT 2054 UOUTPUT

STATEMENT LABELS
0 10

LOGPS LABEL INDEX FROM-TO LENGTH PROPERTIES
4144 10 I 5 6 3B INSTACK
STATISTICS
PROGRAM LENGTH 1608 112
BUFFER LENGTH 4006B 2054

520008 CM USED

Figure 1-12-3. Example 1: Program Listing and Symbolic Reference Map

The MAP(PART) statement instructs the loader to generate a partial load map when it loads the
program. The LDSET(PRESET=ZERO) statement tells the loader to set uninitialized memory words to
zero during the next load. (Refer to the CYBER Loader Reference Manual for loader statement

descriptions.)

The LGO statement loads and executes the object program that the compiler wrote on file LGO. The
partial load map is shown in figure 1-12-4. The fields within the load map are defined in the CYBER
Loader Reference Manual.

The job dayfile is shown in figure 1-12-5. Program execution terminates abnormally, resulting in the
following error message. ' ’

CM OUT OF RANGE.

As explained in appendix B, this message indicates that the program references an address outside the job
field length. :

60435400 L 1-12-5 I

LOAD MAP - FPROG CYBER LOADER 1.5-505

FWA OF THE LOAD 1

- LWA+1 OF THE LOAD 7446
TRANSFER ADDRESS -- FPROG 4250
PROGRAM ENTRY POINTS ~- FPROG 4250
rOGRAM AND BLOCK ASSIGNMENTS.
BLOCK ADDRESS LENGTH FILE DATE PROCSSR VER LEVEL HARDWARE
FPROG 111 4166 LGO 79/08/29 FTN 4.8 505 666X I
/STP.END/ 4277 1
/FCL.C./ 4300 26
/Q8.10./ 4326 144 -
Q2NTRY= uu72 1 SL-FORTRAN 79/07/09 COMPASS 3.6 505
/FCL=ENT/ 4473 40
FCL=FDL 4533 40 SL-FORTRAN 79/07/09 COMPASS 3.6 505
FEIFST= . 4573 3 SL-FORTRAN 79/07/09 COMPASS 3.6 505
FORSYS= 4576 515 SL-FORTRAN 79/07/09 COMPASS 3.6 505
FORUTL= 5313 25 SL-FORTRAN 79/07/09 COMPASS 3.6 505
GETFIT= 5340 64 SL-FORTRAN 79/07/09 COMPASS 3.6 505
SYSAID= 5424 1 SL-FORTRAN 79/07/09 COMPASS 3.6 505
CPUCPM 5425 5 SL-SYSLIB 79/06/09 COMPASS 3.6 498
CPU. 3YS 5432 40 SL-SYSLIB 79/07/09 COMPASS 3.6 505
CMF.ALF 5472 162 SL-SYSLIB 79/07/09 COMPASS 3.6 505
CMF.CSF 5654 6 SL-SYSLIB 79/07/09 COMPASS 3.6 505
CMM.FFA 5662 14 SL-SYSLIB 79/07/09 COMPASS 3.6 505
CMF .FRF 5676 36 SL-SYSLIB 79/07/09 COMPASS 3.6 505
CMF.GSS 5734 22 SL-SYSLIB 79/07/09 COMPASS 3.6 505
CMM.KIL 5756 12 SL-SYSLIB 79/07/09 -COMPASS 3.6 505
CMM.MEM 5770 7 SL-SYSLIB 79/07/09 COMPASS 3.6 505
CMM.R S5T77 206 SL-SYSLIB 79/07/09 COMPASS 3.6 505
CMF.SLF 6205 22 SL-SYSLIB 79/07/09 COMPASS 3.6 505
/FDL.COM/ 6227 14 .
FDL.RES 6243 211 SL-SYSLIB 79/07/09 COMPASS 3.6 505
FDL.MMI 6454 222 SL-SYSLIB 79/07/09 COMPASS 3.6 505
CTL$RM 6676 427 SL-SYSLIB 79/07/09 COMPASS 3.6 505
ERR$RM 7325 25 SL-SYSLIB 79/07/09 COMPASS 3.6 505
LIST$RM 7352 67 SL-SYSLIB 79/07/09 COMPASS 3.6 505
RM$SYS= 7441 5 SL-SYSLIB 79/07/09 COMPASS 3.6 505

.285 CP SECONDS 24000B CM STORAGE USED

79/08/29. 11.03.09. PAGE 1

COMMENTS

PROGRAM OPT=1

FCL INITIALIZATION ROUTINE.

FCL CAPSULE LOADING
CONVERTED DATA STORAGE
FORTRAN OBJECT LIBRARY UTILITIES.
FCL MISC. UTILITIES.
LOCATE AN FIT GIVEN A FILE NAME.
LINK BETWEEN SYS=AID AND INITIALIZATION CO
79/05/10. CONTROL POINT MANAGER
-PROCESS SYSTEM REQUEST.
CMM V1.1 - ALLOCATE FIXED.
CMM V1.1 - CHANGE SPECS FIXED.
CMM V1.1 - FIXED FREE ALGORITHM.
CMM V1.1 - FREE FIXED.
CMM V1.1 « GET SUMMARY STATISTICS.
CMM V1.1 - DEACTIVATE CMM.

CMM V1.1 RESIDENT SUBROUTINES.
CMM V1.1 - SHRINK AT LWA FIXED.

FAST DYNAMIC LOADER RESIDENT.

FDL MEMORY MANAGER INTERFACE.

CRM CONTROLLING ROUTINE.

CRM ERROR PROCESSOR ENTRY.

CRM - ALLOCATE SPACE FOR LIST OF FILES
CRM - POST RA+1 REQUEST

2 TABLE MOVES

Figure 1-12-4. Example 1: Partial Load Map

11.03.06.FJOB.
11.03.06.USER(USRNAME, ,FAMNAME)
11.03.06.CHARGE (CHRGNUM, PROJNUM)
11.03.07.GET, FPROG.
11.03.07.FTN, I=FPROG.

11.03.08.
11.03.08.MAP(PART)
11.03.08.LDSET(PRESET=ZERO)
11.03.08.LGO.

11.03.09. CPU ERROR EXIT AT
11.03.09. CM OUT OF RANGE.

.093 CP SECONDS COMPILATION TIME

004256.

Figure 1-12-5. Example 1: Dayfile from a Job Run

| 1126

60435400 L

7

The exchange package dump that results from the job step abort is shown in figure 1-12-6. The address
in register A4 is 7500, the same value as that given for the job field length (FL). An A register
containing an address greater than or equal to the job field length indicates that the job step attempts to
reference data outside its field length. A bad address in registers Al through A5 indicates the error
occurs on a read request. A bad address in register A6 or A7 indicates an attempt to write outside the
job field length.

The address where the program terminated and the type of error that occurred are given in the dayfile.

CPU ERROR EXIT AT 004256.
CM OUT OF RANGE.

This address can also be found in bits 48 through 30 in the RA field of the exchange package. Usually,
the program actually terminates at the instruction word preceding the address given, in this case, word
4255. Bits 59 through 49 of the RA contain the value 1, indicating that a mode 1 error occurred (CM
OUT OF RANGE).

To find the approximate object program address to which memory address 42565 corresponds, the user
refers to the load map (figure 1-12-4). The load map lists each of the blocks loaded, its length, and
where it was loaded. If overlays or capsules are used in the program, an area within the field length may
contain different program blocks at different times during program execution. In that case, the user
must also determine which overlay or capsule was in memory at program termination.

Program FPROG has only one program block, FPROG. The remainder of the load is from various system

libraries. It is 4166g words long and was loaded at address 111g according to the load map. The relative
address where the program terminated is therefore 4255g-111g, or 4144g.

Referring to the symbolie reference map (figure 1-12-3), the user finds that relative address 41444 is the
address of loop label 10. Loop label 10 is on line 6 of the source program. By examining that loop, the
user can determine that the execution error occurred when loop index I was set too large. :

The symbolic reference map generated by the loader does not provide relative addresses for each line of
source code. In the usual case, the user is not given the exact source code location corresponding to the
termination address. The user must approximate the termination location as being between two relative
addresses given in the reference map.

Example 2 - Finding the Contents of a Program Variable:

The user can also use a CM dump to determine the contents of a program variable when program
execution terminated. For example, assume that the user submitted FJOB after correcting the source
code and adding the statement, DMP,5000. The resulting symbolic reference map and load map are
identical to those shown in figures 1-12-3 and 1-12-4. To determine the contents of the variable NSUM
following normal program termination, the user must determine its absolute address.

The relative address of NSUM as given in the reference map in figure 1-12-3 is 4152g. The block
containing the object program, FPROG, was loaded at absolute address 111g so the absolute address of
NSUM is 111g+4152g, or 4263g.

The user then finds address 4263g in the memory dump. (Portions of the dump are shown in figure
1-12-7.) The content of address 4263y is

00000 00000 00000 00067

Because NSUM is an integer variable, the number is stored in integer format. Converted to base 10, this
value is 55 (the sum of the numbers 1 through 10).

60435400 M : I C1-12-7

EXCHANGE PACKAGE.

P
RA
FL
EM
RAE
FLE
MA

(RA)
(RA+1)

CM DUMP
4214

4240
yauy
4250
4254
4260
4264
4270
4274
4300
4304
4310
4314

CM DUMP

1-12-8

0 A0

375500 A1

7500 A2
7007 A3

0000 0000
0000 0000
00C0 0000
0000 0000
0000 0000
0631 6514
0000 0000
0631 6514

0001 0042
0000 0000

FROM

11162
04000
63750
51700
00000
00000
00000
55555
17171
00000
00000

FROM

4263 B7

0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
3474 6057
0000 0000
3474 6057

5600 0000
0000 0000

4216 TO

000
02524
04251
46000
04264
00000
00000
00000
55555
27432
00000
00000

0 TO

4316.

00000 00000 00000
DUPLICATED LINES.

00000
00000
00000
46000
51100
00000
00000
00000
55555
14774
00000
00000

00000

00000
00111
00001
46000
04262
00001
00004
00010
55555
13155
11610
00000

00000

20020
17252
43700
51500
04000
00000
00000
00000
40404
20001
00009
uu000

0001
0001
0001
0001
0000
0631
0000
0631

00000

00000
42025
71600
04263
04700
00000
00000
00000
o4ouo
20726
00000
00000

0042 5600 0000
0042 5600 0000
0042 5600 0000
0042 5600 0000
0000 0000 0000
6514 3474 6057
0000 0000 0000
6514 3474 6057

00000

00000
24000
00001
51470
46000
00000
00000
00000
40404
42717
00000
00000

00000

o424y
02165
46000
ou264
46000
00001
00005
00011
04040
30565
00000
00000

0000
0000
0000
0000
0000
1525
0001

1525

00000

00000
00000
51700
61770
00000
00000
00000
00000
11162
00000
00000
00000

00000

00000
00000
04263
00001
00000
00000
00000
00000
02524
00000
00000
00000

00000

00000
00000
51600
36745
00000
00000
00000
00000
00000
00000
00000
00000

00000

11610
00000
ou264
54750
00000
00002
00006
00012
00000
00000
00000
00024

Figure 1-12-6. Example 1: Exchange Package Dump

5000.

00000 00000 00000
00000 00000 00000
DUPLICATED LINES.

56110
15051
14071
145071
00000
54000
00000
06202
00000
00000
00000
00000
00000

DUPLICATED LINES.

03110
52000
70000
75700
00000
00000
00000
21707
00000
00000
00022
00006
00000

00054
00000
00000
00000
00000
01000
00000
00000
00000
00000
00000
00000
00000

00000 00000 00000
00000 00000 00000
00000 00000 00000
00000 00022 00000
00000 00006 00000
00000 00000 00000
VUPLICATED LINES.

00000
11162
04000
63750
51700
00000
00000
00000
55555

00000
02524
04251
46000
04264
00000
00000
'00000
55555

00000
00000
00000
46000
51100
00000
00000
00000
55555

00000
00000

S4710
00061
00000
00000
00000
00001
07446
04250
00000
00000
00000
00000
00000

00000
00000
00000
00000
00000
00000

00000
00111
00001
46000
04262
00013
00004
00010
55555

05160
00000

51100
00000
40000
00000
00000
00733
00000
11162
00000
00000
00000
C0000
00000

17252
00000
00000
0V000
00000
00000

20020
17252
43700
51500
04000
00000
00000
00000
40404

42000 00000
00000 00000

00001

03110

07500 00000
00000 00000
00000 00000
00000 00000
50000 00000
00000 00000
02524 00000
00000 00000
00000 00000
00000 00000
00000 00000
00000 00000

42025 24000
00000 00000
00000 00000
00000 00000
00000 00000
00000 00000

00000 00000
42025 24000
71600 00001
04263 51470
04700 46000
00000 00000
00000 00000
00000 00000
04040 4o4OU

00000
00000

00055
00001
07446
00000
00000
07446
00000
00001
00000
00000
00000
00000
00000

00001
00000
00000
00000
00000
00000

ou24y
02165
46000
04264
46000
00001
00005
00011
ouo40

00000
00000

64550
© 00000
40000
00000
00000
00000
00000
00000
00000
00000
14000
00000
00000

00000
- 00000
00000
14000
00000
00000

00000
00000
51700

61770°

00000
00000
00000
00000
11162

00000
00000

02550
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

00000
00000
00000
00000
00000
00000

00000
00000
04263
00001
00000
00000
00000
00000
02524

00000
00000

00000
00000
01000
00000
00000
00000
00000
‘00000
00000
00000
00000
00000
00000

00000
00000
00000
00000
00000
00000

00000
000Q0
51600
36745
00000
00000
00000
00000
00000

00000
00000

46000
00000
00111
00000
00000
00000
00000
00162
00000
00000
00000
02003
00000

02236
00000
00000
00000
02003
00000

11610
00000
o426u
54750
00000
00002
00006
00012
00000

Figure 1-12-7. Example 2: Central Memory Dump

00000

00000
06202
51500
06670
06316
00000
00000
04000
17252
00000
00000
00000

00000
00000

00000
00000
40000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

00000
00000
00000
00000
00000
00000

00000
06202
51500
06670
00000
00000
00000
04000
17252

00000

00000
21707
04264
04255
51434
00000
00000
ou727
42025
00000
00000
00000

00000
00000

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

00000
00000
00000
00000
00000
00000

00000
21707
04264
04255
00000
00000
00000
our27
42025

00000

00000
55550
61603
76770
74605
00000
00000
61000
24000
00000
00000
00000

00000
00000

00000
00000
00000
00000
00000
00000
00000
00000
00000
00600
00000
00000
00000

00000
00000
00600
00000
00000
00000

00000
55550
61600
76770
00000
00000
00000
61000
24000

00000

00000
ou250
31007
46000
71525
00003
00007
46000
00000
o424y
00000
00000

00000
00000

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

00000
00000
00000
00000
00000
00000

00000
04250
00012
46000
00067
00003
00007
46000
00000

60435400 L

J

SYSTEM UTILITY CONTROL STATEMENTS 13

NOS provides the following utilities for file maintenance.

EDIT
KRONREF
MODIFY

OPLEDIT

PROFILE
UPDATE
UPMOD

XEDIT

Edits a text file.
Generates a cross-reference listing of system symbols.
Edits a Modify-formatted program library file.

Removes modification decks and identifiers from a Modify-formatted program library
file.

Enables a master user to update and inquire about a profile file.
Edits an Update-formatted program library file.

Converts an Update-formatted program library file to a Modify-formatted program
library file.

Edits a text file.

EDIT STATEMENT

The EDIT control statement calls the Text Editor utility. The Text Editor enables a user to manipulate
data on a specified mass storage file through use of special input directives called edit commands. For a
detailed description of the Text Editor and an explanation of these commands, refer to the Text Editor
Reference Manual.

The control statement format is:

EDIT(1fny,m,lfng,1fn3)

or

EDIT(FN=1fn{,M=m,I=1fng, L=1fn3)

1fny

1fng

1fng

60435400 J

Name of file to be edited (referred to as edit file). This specification is required
for batch origin jobs.

Mode of file processing:
ASCI or AS ASCI mode edit file.
NORMAL or N NORMAL mode edit file.

File from which directives (edit commands) are to be read. If omitted, INPUT is
assum ed.

File to which output is to be written. If omitted, OUTPUT is assumed.

1-13-1

KRONREF STATEMENT

The KRONREF control statement generates a cross-reference listing of system symbols used by decks on
a Modify OPL.

The control statement format is:

KRONREF (P=1fn;,L=lfng,S=lfn3,G=1fng)

P=1fny OPL input from file 1fn;. If the P option is omitted or P alone is specified, file
OPL is assumed.

L=1fny List output on file Ifny. If the L option is omitted or L alone is specified, file
OUTPUT is assumed.

S=1fng System text from overlay Ifng. The system text must eontain symbol definitions. e
If the S option is omitted or S alone is specified, file NOSTEXT is assumed., If S=0
is specified, only the common deck references and statisties are listed.

7

G=lfny System text from local file 1fng. The system text must contain symbol
definitions. ‘If G is omitted, system text is acquired as specified or defaulted by
the S option. If G alone is specified, local file TEXT is used. Use of the G option
overrides any S specification.

The names of programs on the OPL are listed for those decks that reference the following.

1-13-2

PP direct cell locations defined in 1fng or 1fng. -
PP resident entry points defined in Ifng. h

Monitor functions.

- Central memory pointers (in low eentral memory) defined in Ifng or 1fny.

Central memory locations (in low central memory) defined in Ifng or 1fny.

Control point area words defined in 1fng or 1fng.

Dayfile message options, » ' (
File types and mass storage constants.

Job origin types, queue types, and priorities.

Error flags referenced.

Common deck calls.

PP packages called.

Special entry points.

—
L
60435400 M (

MODIFY STATEMENT

The MODIFY control statement edits a Modify-formatted program library file.
The control statement format is:
MODIFY(py,p9,...,0p)
The following optional parameters can be specified in any order.
Pj Meaning
A Compressed compile file.
Omitted Write the compile file in uncompressed format.
A Write the compile file in compressed format.
C Compile file output.

Omitted or C Write compile output on file COMPILE.

C=filename Write compile output on named file.
C=0 Write no compile output.
CB " COMPASS binary; meaningful only if Q or X parameter specified.

Omitted or CB Write COMPASS binary output on the load-and-go file (B=LGO).

CB=filename Write COMPASS binary output on the named file (B=filename).

CB=0 Write no binary output (B=0).
CG COMPASS text retrieval; méaningful only if Q or X parameter specified (takes precedence
over CS).
CG Load system text from SYSTEXT (G=SYSTEXT).

CG=filename Load system text from named file (G=filename).

CG=0 SYSTEXT not defined (G=0).
Omitted Load system text from overlay named in CS option.
CL COMPASS list output including *comment lines; meaningful only if Q or X parameter
specified.
CL List full listing on OUTPUT file (L=OUTPUT).
CL=filename List full listing on named file (L=filename).

Omitted or CL=0 List short listing on OUTPUT file (L=0).

60435400 L 1-13-3 I

Pi
CS

Ccv

b 13-4

Meaning
COMPASS system text; meaningful only if Q or X parémeter specified.
Omitted or CS Take system text from SYSTEXT overlay (S=SYSTEXT).
CS=filename Take system text from named file (S=filename).
CS=0 Take no system text (S=0).

Character set conversion.

Omitted or CV=0 No conversion takes place.

CV=63 Convert library ecreated using 64-character set to 63-character
set.

CV=64 Convert library created using 63-character set to 64-character
set. :)

When the CV=63 or CV=64 parameter is specified,
Modify prevents compile file generation (C=0). :

Debug.
Omitted Abort the job on a directive or fatal error.

D ' Do not abort the job on a directive error; the D option does not affect fatal
error processing. ' .

Full edit.
Omitted Decks to be edited are determined by the U parameter or by EDIT
directives.
F All decks on the library'are to be edited and written on new program

library, compile file, and source file if the respective options are selected.
Directive input.
Omitted or I Take directives from job INPUT file.
I=filename Take directives from next record on named file.

1=0 Do not use directives.

60435400 L

N

Pj © Meaning

L List output.
Omitted or L Write list output on job OUTPUT file. This file is automatically
printed. '
L=filename Write list output on the named file, It is the user's responsibility
to assure that the file is saved at job termination or is printed.
L=0 Do not generate a list output file.
LO List options.
| Omitted or LO Selects list option E if the list output file is assigned to the
terminal in a time-sharing job; otherwise, list options E, C, T, M,
W, D, and S are selected.
LO=¢ycq...cp Each character (cj) selects an option to a maximum of seven
options. The characters must not be separated.
S Significance
A Active lines in deck.
C Directives other than INSERT, DELETE, RESTORE,
MODNAME, I, or D.
"D Deck status,
Errors.
I Inactive lines in deck.
M Modifications performed.
S Statistics.
T Text input.
w Compile file directives.
Example: LO=EMS
N New program library output.
N Write new program library on file NPL,
N=filename Write new program library on named file. It is the wuser's

responsibility to assure that the file is saved at job termination.

Omitted or N=0 Do not generate a new program library.

If a new program library is being generated, an
EVICT statement is performed upon it (NPL or
filename) before it is written.

60435400 M 1-13-5

NR

] 1-13-6

Meaning

No rewind of compile file.'

Omitted
NR

Program library input.
Omitted or P
P=filename

P=0

Rewind compile file at beginning and end of Modify run.
Do not rewind compile file at beginning or end of Modify run.

Take program library input from file OPL..
Take program library from named file.

Do not generate program library input file.

Execute nam ed program; no rewind of directives file or list output file.

Omitted or Q=0

Q=program

Do not call assembler or compiler end of the Modify run.

Set LO=E and the A parameter at the beginning of the Modify run.
Call the assembler or compiler specified by program at the end of
the run.

Set LO=E and the A parameter at the beginning of the Modify run.
Call the COMPASS assembler at the end of the run. When this
option is selected, the CB, CL, CS, and CG parameters are
meaningful. Compiler input is assumed to be COMPILE., All other
parameters are set by default. If CL is not specified with Q, lines
beginning with an asterisk in column 1 are not written to the
compile file (compile file directives are processed).

Source output; illegal when A, Q, or X are selected.

S

S=filename

Omitted or S=0
Update edit.
Omitted

U

Write source output on file SOURCE.

Write source output on named file. It is the user's responsibility to
assure that the file is saved at job termination.

Do not generate a source output file.

Decks to be edited are determined by EDIT statement directives -or
by the F parameter.

Only decks for which directives file contains deck directives are
edited and -written on the compile file, new program library, and
source file (if the respective options are on). F, if specified, takes
precedence.

Execute named program; directives file and list output file rewound.

X

Same as Q option, except Modify directives input (I parameter) and
list output (L parameter) files are rewound before processing.

60435400 M

e

o

Meaning

The MODIFY control statement contains the input directives following the terminator; the
input file is not read. This eliminates the need for a separate input file fqr the directives
when only a few directives are needed. The first character following the control
statement terminator is the separator character for all directives on the control
statement. Any display code character that is not used in any of the directives, including a

" space, can be used as the separator character. The directives can extend to column 72 on

the statement. Continuation lines are not permitted. If Z is omitted, the control
statement does not contain the input directives.

Do not place another terminator after the
directive.

For a detailed description of the Modify utility, refer to the Modify Reference Manual.

OPLEDIT STATEMENT

The OPLEDIT control statement removes modification decks and identifiers from a Modify-formatted
program library file,

The control statement format is:

OPLEDIT(py,p,...,Pp)

Pj

60435400 M

Any of the following in any order:

I Use directive input from file INPUT. If the I option is
omitted, file INPUT is assumed.

I=lfng Use directive input from file Infy,

I=0 Use no directive input.

P Use file OPL for the old program library. If the P option is

) omitted, file OPL is assumed.

P=1lfn, Use file Ifny for the old program library.

P= Use no old program library.

N Write new program library on file NPL.

N=1fng Write new program library on file 1fng.

N=0 Write no new program library. If this option is omitted, N=0
is assumed.

L List output on file OUTPUT. If the L option is omitted, file

OUTPUT is assumed.

1-13-7

L=lfn4
L=0

M=lfn5

LO=ejeg...0p

U=0

List output on file 1fng.
List no output.

Write output from *PULLMOD directives on file lfng, If
this option is omitted, M=MODSETS is assumed.

Selects up to five c;j list options.
Description

Errors.

Input directives.

Modifications made.

U 2 Q o|o

Deck status.

S Statistics.
If this parameter is omitted or just LO is specified, selects
all list options. If the output file is assigned to the terminal
in a time-sharing job and this parameter is omitted or just
LO is specified, selects list option E.
Modify all decks.
Debug; ignore errors.

Generate *EDIT directives for all decks; meaningful only for
*PULLMOD executions.

Generate no *EDIT directives. If the U option is omitted,
generate *EDIT directives for common decks. This is
meaningful only for *PULLMOD execution.

The OPLEDIT control statement contains the input
directives following the terminator; the input file is not

" read. This eliminates the need to use a separate input file

for the directives when only a few directives are needed.
The first character following the control statement
terminator is the separator character. If Z is omitted, the
control statement does not contain the input directives.

Do not place another terminator after the directives.

For a complete description of the OPLEDIT utility, refer to the Modify Reference Manual.

1-13-8

60435400 M

PROFILE STATEMENT

The PROFILE control statement enables the master user to update and inquire about a project profile
file for user profile control. Other capabilities of PROFILE (available only to system origin jobs) are
described in the NOS System Maintenance Reference Manual.

The control statement format is:

PROFILE(py,Dgye..,Dp)

pj Any of the following in any order:
I=lfny File 1fny contains input directives for an update (OP=U). If omitted,
file INPUT is assumed.
L=Ifngy File Ifng receives output listings. If omitted, OUTPUT is assumed.
P=1fng File Ifng is the project profile file. If omitted, file PROFILB is
assum ed.

CN=cnum Charge number inquiry. All project numbers valid for charge
number enum are written to output file. Valid only if OP=I option
specified.

PN=pnum Project number inquiry. The "control values and all valid user
numbers for project number pnum are written to the output file.
The OP=I and CN=cnum options must also be specified to use the PN
option.,

CvV Convert option. Specifies that directives on the input.file are in
NOS 1.0 or 1.1 format and are to be converted to update an NOS 1.2,
1.3, or 1.4 profile file. Obsolete directives are ignored. OP=U or
OP=T option must also be specified.

OP=optn PROFILE processing option. One of the following:

optn Description
L Lists portions of the profile file as specified by the

LO parameter.

U Updates the project profile file with directives
supplied by the input file. U is the default value for
the master user if the OP option is omitted.

T Time-sharing update. Processing is the same as
OP=U, but preliminary instructions are suppressed.

I Intjuire option. Output is dependent ﬁpon CN and/or
PN options specified.

60435400 M ' 1-13-9 I

LO={sop PROFILE list option (OP=L must be specified). One of the following:

£ sop Description
FM Full list of everything accessible on the profile file by

the master user. This is the default for a nonsystem
origin job if the LO parameter is omitted.

CM Charge number list of all charge numbers accessible
on the profile file by the master user.

PM Projeet number list of all project numbers accessible
on the profile file by the master user.

Directives are available to the master user as input to PROFILE to add or update information concerning
each charge number. The input file for a PROFILE update (OP=U) is divided into groups of entries that

each begin with a charge number directive. Each directive following a particular charge number entry
applies only to that charge number, until another charge number entry ocecurs.

Each line of the input file ean contain one or more directives (up to 72 characters per line) in the
following format.

diry,dirg,...,dirp

Each directive is separated by a delimiter which can be any special character (display code greater than
44g) except the following:

[+=*:

I 1-13-10 ' 60435400 M

P

dll‘i

/enum

APN=pnum:
AUN=un
CN=cnum

DPN=pnum
DUN=un

ISV=x
PEX=yymmdd.
PN=pnum

SMA=acc

SML=lim

TI=ti

TO=to

60435400 M

An end-of-line or end-of-card also delimits directives. The followmg directives are available to the
master user for PROFILE input.

Description
Specifies the charge number enum to which the following directives apply. If this
form of charge number specification is used (refer to CN=cnum directive), it must
begin in column 1 with the slash (/).
Adds or activates project number pnum.
Adds user number un (must be preceded by PN directive).

Same as /enum except that it can begin in any column.

Deactivates project number pnum. This directive does not delete the specified
project number entry but sets its status such that it cannot be specified by users.

Deletes user number un from the list of those who may access the project number
(must be preceded by PN directive).

Sets x as the maximum SRU accumulation for any job using the charge number and
project number specified by preceding CN and PN directives.

Specifies expiration date for project number of preceding PN directive. If PEX=0
is entered, the project number is not limited by an expiration date.

Project number for which the following directives (until the next PN directive)

’ apply.

Sets the current number of accumulated SRUs the project number has used (PN
directive required). This accumulator is updated at the end of a job or terminal
session and each time a CHARGE control statement is entered. When the SMA
value surpasses the SML value, the project is not available to users until either the
limit or acecumulator is respecified.

Specifies the maximum number of accumulated SRUs the project (PN directive)
may use. SML=0 implies no restriction.

Specifies the time of day before which the project number specified by the PN
directive cannot be used. The time is specified in 24-hour clock notation. For
example, a ti specification of 1315 indicates the project number cannot be used
before 1:15 in the afternoon.

Specifies the time of day before which the pro_]ect number specified by the PN
directive cannot be used. The time is specified in 24-hour clock notation. For
example, a ti specification of 1315 indicates that the project number cannot be
used before 1:15 in the afternoon.

1-13-11 I

UPDATE STATEMENT

The UPDATE control statement creates, edits, or copies an Update-formatted program library file. The-
UPDATE statement is processed in product set format (refer to section 5). For complete information on
Update directives and processing, refer to the Update Reference Manual.

The control statement format is:

UPDATE(pl,pz’o-o!pn)

The following parameters can be specified in any order.

Pj

A

C=1fn1

Cé=lfn;

G=1fng

G 6=lfn2

o 1-13-12

Description

Copies the old sequential access program library to a new random
access program library.

Copies the old random access program library to a new sequential
access program library. -

Writes compile file decks on file 1fny. Update writes the compile
file using the same character code that was used in the old program
library. C=PUNCH writes the decks on file PUNCH and implies the
D and 8 parameters. If C=0 is specified, the compile file is
suppressed. If 1fn; or C=1fn; is omitted, the compile file is written
on file COMPILE, If the K parameter: is specified, the C parameter
is ignored.

Writes display code compile file decks on file Ifny. If Ifnj is
omitted, the compile file is written on file COMPILE. If C6=ifn; is
omitted, the compile file is determined by the C parameter. Do not
specify both the C and C6 parameters.

Writes 80-column lines on the compile file. If D is omitted,
72-column lines are written.

Edits the old program library. To completely edit the library, the E
parameter must be specified on two UPDATE control statements.
The first occurrence of the E parameter causes the system to
rearrange the directory to reflect the actual order of the decks on
the library and to remove previously purged identifiers. The second
occurrence of the E parameter causes the system to remove the
identifiers that exist only as directory entries.

Specifies full update mode.

Writes PULLMOD directive output on file Ifny using the same
character code that was used in the old program library. If G=lfn, is
omitted, PULLMOD directive output is appended to the source file.

Writes PULLMOD directive output in display code on file ifny. The
user should specify G6=1fng only when OLDPL is in 12-bit ASCII
code, If G6=1fng is omitted, the G parameter determines PULLMOD
directive output. Do not specify both G and G6 parameters.

60435400 M

7N

./

N

;
7/

H=

I=lfng

K=1fn1

K6=1fn1

L=0102...cn

60435400 M

Deseription
Specifies the character set used in the Update run.
Meaning

63-character set.

e w |3

64-character set.

omitted Character set that was used in the old program
library.

Specifies primary input file lfng. If lfng or I=lfng is omitted,
directives and text are on file INPUT. Directives and text are
assumed to be in display code.

Writes compile file decks on file 1fn; in the order specified on
COMPILE directives. Update writes the decks using the same
character code that was used in the old program library. . If 1fng is
omitted, compile file decks are written on COMPILE. If K=Ifny is
omitted, the compile file is determined by the K6, C, or Cé6
parameters.

Writes display code compile file decks on file 1Ifny in the order
specified on COMPILE directives. If 1fn; is omitted, display code
compile file decks are written on COMPILE. If K6=Ifny is omitted,
the compile file is determined by the K, C, or C6 parameters. Do
not specify both the K and the K6 parameters.

Specifies one or more of the following list options.

e List Options
A List deck names and correction set identifiers,

COMDECK directives, definitions, and decks written on
the compile file.

F All list options except 0.

0 All listing is suppressed.

1 Lists cards in error.

2 Lists active Update directives.

3 Comments on each card that changed status during
current execution.

4 Lists text cards.

5 Lists active compile file directives.

6 Lists active and inactive cards.

7 Lists all active cards.

8 Lists all inactive cards.

9 Lists correction history of all cards selected by list

options 5, 7, and 8. :
1-13-13 o

M=1fn4

N =1fl’15

N6=1fng

N8=Ifng

O=lfng

08=lfng

‘P=lfn7/51/82/.../87

Q
R=cje9...cq

* 1-13-14

Description

Specifies program library file 1fny to be merged with the old
program library. If Ifng is omitted, file MERGE is assumed. If
M=1fny is omitted, no merge program library exists.

Writes the new program library on file lIfn;. Update writes the new
program library using the same character code that was used in the
old program library. If 1fng is omitted, the new program library is
written on NEWPL. If N=lfng is omitted, a new program library is
not generated for a correction run; creation and copy runs generate
a new program library on NEWPL,

Writes the new program library in display code on file 1fns. The user
should specify the N6=lfn; parameter only when OLDPL is in 12-bit
ASCII code. If Ifng is omitted, the new program library is written in
display code on NEWPL. If N6=lfns is omitted, the new program
library file is determined by the N or N8 parameters.

Writes the new program library in 12-bit ASCII code on file 1Ifn5. If
Ifng is omitted, the new program library is written in 12-bit ASCII
code on NEWPL. If N8=lfng is omitted, the new program library file
is determined by the N or N6 parameters. Specify only one new
program library parameter (N, N6, or N8).

Writes output on file lifng. Update writes the output file using the
same character code that was used in the old program library. If
Ifng is_ omitted, the output is written on OUTPUT.

Writes output in 12-bit ASCII code on lfng. If Ifng is omitted,
display code output is written on OUTPUT. If O8=lfng is omitted,
the output file is determined by the O parameter. Do not specify
both the O and O8 parameters.

Specifies file Ifny as the old program library. If just P is specified,
file OLDPL is assumed. If sy/sg/.../s7 is specified, secondary old
program libraries will reside on files s,,s9,...,57.

Process only decks on COMPILE directives (quick mode).

Rewind specified files before and after the Update run.

Files

Compile file.
New program library.

Old program library and merge library.

w v oz Qe

Source and PULLMOD files.
If ¢; is omitted, no files are rewound. If R=cjes...c4 is omitted, the

old program library, new program library, compile file, source file,
and PULLMOD file are rewound.

60435400 M

7N

N

e

N~

Pi : Description
S=1fng Writes source file output on lfng using the same character code that

was used in the old program library. If 1fng is omitted, source
output is written on SOURCE, If S=lfng is omitted, source output is
suppressed unless selected by the S6, T, or T6 parameters.

S6=lfng Writes display code source file output on 1fng. Specify the S6=lfng
parameter only when OLDPL is in 12-bit ASCI code. If lfng is
omitted, display code source output is written on SOURCE. If
$6=1fng is omitted, source output is suppressed unless selected by
the S, T, or T6 parameters.

T=lfng Writes source file output on lfng with common decks excluded.

Update writes the source file using the same character code that

N was used in the old program library. If lfng is omitted, source

output is written on SOURCE with eommon decks excluded., If

T=lfng is omitted, source output is suppresed unless selected by the
S, S6, or T6 parameters.

T6=1fng Writes display code source file output on Ifng with common decks
excluded. Speclfy T6“lfn8 only when OLDPL is in 12-bit ASCII
code. If 1fng is omitted, display code source output with common
decks excluded is written on SOURCE. If T6=lfng is omitted, source
file output is suppressed unless selected by the S, S6, or T
parameters.

> U Specifies that a fatal error does not terminate Update execution. If
: - U is omitted, a fatal error terminates Update execution.

w The new program library is written in sequential access format. If
' W is omitted, the new program library is written in random access
format unless the file is on magnetic tape.

X - Writes the compile file in compressed format. If X is omitted, the
compile file is not compressed.

8 Writes compile file output as 80-column card images. If 8 is
omitted, the compile file is written as 90-column card images.

*=char The master control character (first character of each directive) for
this Update run is char which can be any character having a display
code octal value in the range 01 through 54 except for 51 and 52 (the
open and close parentheses). If this option is omitted, the master
control character is *.

=char The comment control character for this Update run is char which
can be A through Z, 0 through 9, or +~*/$=. The character should
not be changed to one of the abbreviated forms of the directives
unless NOABBREV is in effect. If this option is omitted, the
comment control character is a slant bar.

S 60435400 M . 1-13-15 o

UPMOD STATEMENT

The UPMOD control statement converts an Update-formatted program library file to a Modify-formatted
program library file.

The control statement format is:

UPMOD(py,Dg,e++,Pn)
pP; Any of the following in any order:

P Update program hbrary from file OLDPL. If the P option is
omitted, file OLDPL is assumed.

P=lfn; ‘Update program library from file Ifn;. Ve

N Modify program library on file OPL. A

N=1fng Modify program library on file 1fng.

M Modify program library name is OPL. If the M 6ption is omitted,
file OPL is assumed.

M=1fng Modify program library name is 1fng.

F Convert to file mark. Ve

NR Do not rewind file ifn,. h

The Update file must be in sequential format. A random Update file must first be changed to sequential
format via Update before being submitted to UPMOD for conversion. Unless otherwise specified, only
one record from the Update file is converted. After the Modify OPL has been created, no references
should be made to modset identifiers present on the Update library. The new OPL should be treated as
any other program library created by a Modify creation run. .

I 1-13-16 ‘ : 60435400 M

~

XEDIT STATEMENT

The XEDIT control statement calls the text editor, XEDIT. For a complete descmptlon of XEDIT
parameters and commands, refer to the XEDIT Reference Manual.

The control statement format is:

XEDIT(Ifng,py1,pg,...,Pp)des

All parameters are optional. The following are brief parameter descriptions.

Ifny Name of the file to be edited or created. If lfny is omitted (indicated by two
separators before other parameters), the primary file is edited.

p; One or more of the following parameters in any order.

AS

Edit lfn; in ASCII time-sharing mode. After the XEDIT job step,
processmg returns to the original mode.

Process the job as a batch origin job.

C Create a new file lfnl.

FR Take the first editing command from the first line of 1fn;.

[=lfng Take editing directives from 1lfng. If I is omitted, commands are taken
from file INPUT.

=0 Take all editing directives from the trailing delimited command
sequence. (If the FR parameter is also specified, process the delimited
command sequence after processing directives from the first line of

L=lfng Put all XEDIT output on the specified file.

L=0 Suppress all output.

NH Suppress printing of the XEDIT header.

P Retrieve and edit permanent file 1fn;. Direct access files are attached
in write mode. If P is omitted, the file 1fn; is assumed to be a local file.

des Delimited command. sequence with the folldwing format (; represents the delimiter
character).

seommand,;ecommando;...;command
1 2 n

60435400 M

1-13-17

LIBRARY MAINTENANCE 14

‘A library is a file containing records that are accessed individually. Library records can be of several
types and can be accessed randomly or sequentially.

This section describes library access methods, library record types, and the following control statements
and their functions.

CATALOG Describes the records on a file.

COPYL and COPYLM Copies an old file to a new file, updating the records from a replacement
file.

GTR Appends records selected from one file to another file,

ITEMIZE Describes the records on a file,

LIBEDIT . Generates a file containing records from one or more other files. The

records may be of several types. LIBEDIT handles a LIBGEN-generated
library as a single record.

LIBGEN Generates a user library; that is, a library of relocatable and capsule
records that can be accessed by CYBER Loader.

VFYLIB Compares the records in two files and lists their differences.

FILE ACCESS METHODS

The methods used to access records within NOS files are sequential access and random access.

To access a record sequentially, NOS rewinds the file to BOI and then reads records until it finds the
requested one. To replace, insert, or delete records from a sequential access file, NOS must rewrite the

entire file. (Records can be appended at-EOI without rewriting the file.)

To acecess a record randomly, the file must be on mass storage and must have a directory containing the
address of each record (figure 1-14-1). The GTR, LIBGEN, and LIBEDIT statements can generate random
access directories. Records within a file can then be replaced, inserted, or deleted by rewriting the
directory instead of rewriting the entire file. Records within a random access file can also be aceessed

sequentially.

LIBRARY RECORD TYPES
NOS determines the type and the name of a record from information contained within the record. If the
record begins with a prefix table, the record name (if any) is obtained from that table and the type of the
record is determined from the first word following the prefix table. Otherwise, the first word of the
record determines the type and name (if any) of the record.
Prefix tables exist, unless they have been specifically suppressed, for:

e Assembled or compiled programs.

e System text overlays. , :
60435400 M - 1-14-1

RELATIVE
PRU
ADDRESS
1
record1
6
record3
14) DIRECTORY CONTENTS
17 NAME LENGTH . ADDRESS
record2
23 - rec:ord1 5 1
directory >
recordz 6 17
record3 8 6

Figure 1-14-1. Random Access File Structure

e User library header records and directory records.
e Modify program library decks, common decks, or directory records.

The prefix table consists of a header word with an octal table type identifier followed by varying
amounts of control information.

The prefix table is identified by octal digits 7700 in bits 59 through 48 of its first word; consequently, it
is often referred to as a 77 or 7700 table. Information in the prefix table, which originates with the
assembler, compiler, or other program that creates the table, can specify items such as the date created
and the system on which the job was processed (refer to CYBER Loader Version 1 Reference Manual).

If a prefix table is not present, the first word in a record is examined. If a record meets the criteria for
a given type of record, the utilities identify it as such. For instance, a load file beginning with a job
statement may be identified as type TEXT, depending on the particular characters in the job statement.

Although some of the:records may contain display coded data (loader directives, for instance, are coded),
they are considered binary records.

The following record types can be specified on the GTR and LIBEDIT control statements and are
recognized by the CATALOG and VFYLIB statements. LIBGEN generates a user hbrary from relocatable
(REL) and capsule (CAP) records.

Mnemonic Meaning
ABS Multiple entry point overlay.
CAP CYBER Loader capsule.
OPL Old program library deck.
1-14-2 60435400 M

o NS

_/

J

Mnemonie Meaning
OPLC 0O1d program library common deck,
OPLD 01d program library directory.
OVL Central processor overlay.
PP Peripheral processor program,
PPU Peripheral processor unit program.
PROC CCL procedure file.
REL Relocatable central processor program.
TEXT Unrecognizable as a program.

ULIB User library directory.

The following record types are recognized by COPYL, COPYLM, and ITEMIZE control statements.
Record types ACF, DATA, OPLD; UCF, ULIB, and UPLx are recognized by the ITEMIZE control
statement and are not recognized by COPYL or COPYLM.

Mnemonie ’ Meaning
ABS Multiple entry point overlay.
ACF Modify compressed compile file. It has no record name. This record type is
determined by nonzero in bits 17 through 0 in the second word of the 77 table.
CAP CYBER Loader capsule.
DATA A record that does not have a preflx table or a record name. The first word of the

record is binary zero.

OPL O1d program library deck.

OPLC 0O1d program library common deck.

OPLD 0O1d program library directory.

OVL Central processor overlay.

PROC CCL procedure file.

REL Relocatable central processor program.

TEXT A record that has no prefix table. It has a record name in bits 59 through 18 and

binary zero in bits 17 through 0.

UCF Update compressed compile file. It has no record name. This record type is
determined by a 77 table with a 0 word count.

ULIB User library directory.

60435400 M 1-14-3

Mnemonic Meaning

UPLx Update sequential program with x master control character. It has no record name,
This record type is determined by no 77 table and the characters CHECK in bits 59
through 30; control characters are obtained from bits 5 through 0.

6PP Peripheral processor program.
7PP Peripheral processor unit program.

Appendix G in volume 2 contains the formats of PP (6PP), OPL, OPLD, ULIB, and TEXT records. (The
OPLC record format is identical to that of the OPL record.) The Modify Reference Manual deseribes
how to create ACF, OPL, OPLC, and OPLD records. The CYBER Loader Reference Manual contains the
formats of ABS, CAP, OVL, PP, and REL records. The CYBER Loader Instant contains the PPU (7PP)
record format. The Update Reference Manual contains the formats of UCF and UPLx records. Section 4
describes the creation of CCL procedures (PROC).

A user determines the record types contained in a file by issuing a CATALOG statement naming the file.
VFYLIB lists the differences between the record types of two files,

CATALOG STATEMENT

The CATALOG control statement lists information about each record in a file assigned to the job. The
record types recognized by CATALOG are listed in Library Record Types in this section.

CATALOG produces unpredictable results when
attempting to catalog an S, L, or F format tape.
The user should use the COPY statement to
convert the S, L, or F format tape to a mass
storage file or to an I or SI binary format tape
before attempting to catalog the file.

The control statement format is:

CATALOG(Ifn,pq,pg,..-sPp)

ifn ‘Name of the file to be cataloged.

Di May be any of the following:
N=0 Catalog until an empty file is encountered (two consecutive EOF marks).
N=n Catalog n files; if N=n is omitted, N=1 is assumed.
N | Catalog until EOI is encountered.

L=fname Specifies the name of the output file; if L=fname is omitted, CATALOG
assumes L=OUTPUT.

1-14-4 : 60435400 M

NN

./

.U - Lists records within a userlibrary; if U is omitted, only the ULIB record
: within the user library is listed.
D Suppresses the comments field; suppresses all page headmgs after the
initial page heading for each file.
. CS Suppresses character set indicator (63 or 64) for OPL and OPLC records,
R Rewinds 1fn before and after cataloging; if R is omitted, fn is not
rewound.

The listing for each file of a multifile file begins on a new page with a page heading for that file, If the
D option has been specified, the page heading appears only once, at the beginning of the file. The
information listed under each heading is as follows:

Heading . Information

REC Record number (zero-length records and EOF marks are counted).

NAME Record name [the contents of the name field from the second word of the prefix
(77) table, if present; otherwise, the first seven characters of the record]

TYPE Record type (refer to Library Record Types in this section).

LENGTH Record length in words (less prefix table length) printed as an octal number.

CKSUM A checksum [a value used to verify that the contents of a record (excluding the
prefix table) were copied correctly] .

DATE Record creation date (taken from the third word of the prefix table, if present).

COMMENTS Additional information taken from th\e prefix table, if present; message

terminates before COPYRIGHT comment. (This field is not shown when
CATALOG is used in a time-sharing job.)

CATALOG lists additional information depending on the record type. Entry points are listed for REL and
ABS records. The character set used, correction identifiers, and their YANK status (refer to the Modify
Reference Manual) are listed for OPL and OPLC records.

If the TEXT record name begins with the characters AFRDC, AFRDECK, CMRDC, CMRDECK, DDSDC,
DDSDECK, IPRDC, IPRDECK, LIBDC, or LIBDECK, CATALOG lists the entire record. If the TEXT
record name begins with OVERLAY, CATALOG lists the first line in the record. '

A ULIB record suppresses listing of the other records in the user hbrary unless the U parameter is
specified on the control statement.

If an OPLD record in the user library is not encountered before an EOF or EOI within the cataloged file,
the following message is output before the *EOF* or *EOI* line.

OPLD MISSING
When a zero-length record is encountered, the length since the last zero-length record is given. If an
EOR does not precede an EOF or EOI within the cataloged file, the following message is output before
the *EOF* or *EQI* line.

EOR MISSING

60435400 M : 1-14-5

‘The ITEMIZE control statement is ‘similar to the- CATALOG statement but ITEMIZE recogmzes

- additional record types (refer to Library Record Types, earlier in this section).

Example:

Compilation of the FORTRAN program SUBROUT and its subroutines SUB1, SUB2, and SUB3 wrote
relocatable object code on file LGO. The following is a catalog of file LGO (refer to the heading
definitions given earlier). The I/O file name listed in the FORTRAN PROGRAM statement is flagged by

character.

CATALOG OF LGO

REC NAME TYPE

1 SUBROUT REL
SUBROUT
OUTPUT#

2 suBl REL

SUB1
3 suB2 REL

SUB2
& SUB3 REL

SUB3

5 * EOF * SUM =

e 1-14-6

FILE

LENGTH

105

45

45

264

1

CKSUM

5355

0263

3276

1542

80/05/19. 11.55.50.

DATE COMMENTS

80/05/19. PROGRAMT

80/05/19. SUBROUTINET
80/05/19. SUBROUTINET

80/05/19. SUBROUTINET

PAGE 1

60435400 M

e

/

COPYL AND COPYLM STATEMENTS

The COPYL and COPYLM control statements copy an old file to a new file, substituting records from a
replacement file for the matching records on the old file. Records on the replacement file which do not
match records on the old file are either ignored or appended to the new file as specified by the user.
Records are considered to mateh if they have the same type and same name. However, the user may
specify that the record type be ignored, COPYL and COPYLM are commonly used to maintain files of
procedures or relocatable records.

COPYL and COPYLM differ only in the handling of multiple occurrences of a record on the old file.
COPYL uses each record on the replacement file only once, replacing the first matching record from the
old file. COPYLM uses the first matching record encountered on the replacement file to replace each
matching record from the old file. COPYL can be used to replace multiple occurrences of the same
record if multiple occurrences of the record are in the replacement file.

The old file and the replacement file must reside on mass storage or an I or SI format tape. Only a single
file terminated by an end-of-file marker is processed by a single call to COPYL or COPYLM unless the
user requests processing to the end-of-information by using the E processing option. When working with
multifile files, the user must be sure to position the multifile file to the file that is to be processed.

The order of the records on the replacement file is not significant. The system copies the records to the
new file in the same order as they are on the old file.

COPYL and COPYLM issue dayfile messages during processing; no other printed output is produced. The
dayfile messages list which replacement records were copied and which replacement records were not
copied to the new file.

COPYL and COPYLM replace only the types of records listed in Library Record Types, earlier in this
section. Any record on the old file that is not recognized as one of the listed types is copied to the new
file without further processing. Any replacement file record type that is not listed in Library Record
Type is ignored without comment.

The control statement format is:

COPYL(oldifn,replfn,newlfn,last,flag) ‘ Single replacement.
or
COPYLM(oldifn,replfn,newlifn,last,flag) Multiple replacement.

All parameters are optional and order-dependent. A user denotes an omitted parameter by consecutive
commas.

oldifn File name of the old file; default name is OLD.

replfn File name of the replacement file; default name is LGO.

newlfn File name of the updated file; default name is NEW.

last Name of the last record on oldlfn to be processed. If last is not specified, all records

on oldlfn are processed from its current position to the next EOF (or EOI if the E
processing option is used).

60435400 L 1-14-7

flag Processing options.
Flag Description
R Rewind oldlfn and newlfn files before processing. (The replfn file is

always rewound before and after processing. oldlfn and newlfn are not
necessarily rewound to beginning-of-information in multifile (files.
Refer to explanation below.)

A Append to the end of newlfn all replfn records that do not matech any
records on the oldifn. If A is not selected, records on the replacement
file that do not matech any records on the oldlfn are ignored and a
dayfile message is issued.

T Check for matching name of record, but omit check for matching type
: of record. If T is not selected, records match only if both the type and
name of the records are the same.

E Process oldifn until the end-of-information.

These options can be specified by combining one or more letters in any order, such as
TRA, AR, ERTA, or TR.

COPYL and COPYLM check only the first four flag optxons, if more than four are
specified, the remaining characters are ignored.

The R option affects file positioning of the old and new files before processing. If R is specified, the old
and new files are rewound before processing. In a multifile file, if there is one or more end-of-file
markers between the current position of the file and the beginning-of-information, the R option rewinds
the file to the first preceding EOF. In the absence of R, the user is responsible for positioning the oldifn
and newlfn files. The R option does not affect the file of replacement records, since the current file of
the replacement file always is rewound to the beginning-of-information before and after processing.

The E option causes the old file to be processed to the end-of-information. Each end-of-file encountered
on the old file causes a matching end-of-file to be written on the new file. Records that are added to the
new file as a result of combining the A and E options are appended with an end-of-file prior to the
end-of-information. In this case, such appended records will follow an end-of-file if both end-of-file and
end-of-information existed at the end of the old file.

Processing stops after an end-of-file, end-of-record, or end-of-information is reached, depending on the
structure of the old file and the processing options selected. If processing stopped because end-of-file or
end-of-record was reached, the old file is positioned after that EOF or EOR. If processing stopped
because end-of-information was reached, the old file is positioned just prior to the end-of-information.

COPYL and COPYLM add an end-of-file to the new file even if no end-of-file is encountered on the old
file. No further positioning of the new file takes place.

1-14-8 ' 60435400 M

4

Example:

- The following COPYL control statement updates OLDFILE with replacement records from REPFILE and
writes them on NEWFILE. The A option appends to the end of NEWFILE any records in REPFILE that do
not match a record on OLDFILE.

COPYL(OLDFILE,REPFILE,NEWFILE,,A)

The following dayfile segment shows that COPYL updated the record named B and appended the record
named C.

08.53.23.COPYL(OLDFILE,REPFILE,NEWFILE, ,A)
08.53.24. UPDATED -~ PROC / B

08.53.24 .APPENDED -- PROC / C

08.53.24. COPYL COMPLETE.

The ITEMIZE control statements show the record information for all records in OLDFILE, REPFILE, and
NEWFILE.

/ITEMIZE (OLDFILE)

1 ITEMIZE OF OLDFILE FILE 1
REC NAME TYPE LENGTH CKSUM DATE
1 A PROC 4 3310
2 B PROC . 4 5306
3 (00) SUM = 10
* EOL * SUM = 10

ITEMIZE COMPLETE.

/ITEMIZE (REPFILE)
1 ITEMIZE OF REPFILE FILE 1
REC NAME TYPE LENGTH CKSUM DATE
1 B PROC 4 1535
2 c PROC 4 7304
* EQL * SUM = 10

ITEMIZE COMPLETE.

/ITEMIZE (NEWFILE)
i ITEMIZE OF NEWFILE FILE 1
REC NAME TYPE LENGTH CKSUM DATE
1 A PROC ’ 4 3310
2 B PROC 4 1535
3 (00) SUY = 10
4 ¢ PROC 4 7304
5 * EOF * SUY = 14

ITEMIZE COMPLETE.
60435400 L ~) v 1-14-9

GTR STATEMENT

. The GTR control statement appends records selected from one file to the end of another file. The
records are selected aceording to directives specifying their type and name. (Refer to Library Record
Types in this section for the list of valid record types.) Records can be accessed randomly (default if a
directory exists) or sequentially. If specified, a random access directory is appended to the changed file.
GTR cannot append records after the directory.

The control statement format is:

. GTR(Ifny,1fng,d,nr,s,na)directivey,directivesy,...,directive,

The parameters must be in the order shown. GTR
identifies its parameters by their position, not by
keywords. An omitted parameter is denoted by
consecutive commas. Blanks are illegal between

~ the terminator (right parenthesis or period) and
directive;.

The parameters are defined as follows:

Ifnl

1fn2

1-14-10

File which is searched for the requested records; if 1fny is omitted, file OLD is
assumed. 1fnj is always rewound before the GTR operation.

File on which the selected records are written; if Ifny is omitted, file LGO is
assumed. GTR always positions 1fng at EOI before copying the selected records.

Random access directory parameter. If d is specified, lfnz must be a mass storage
file. GTR cannot append records after a directory. '

If Ifn; has a random access directory and if sequential access (the S parameter) is not
specified, the Ifng directory record is given the same name as the 1fnj directory
record. Otherwise, the lIfny directory record is named 1fn,.

da Deseription

Omitted No new random access directory (OPLD) is added to lfng, If the
directives specify the user library record type (ULIB), the first record
of the user library (ULIB) is not copied to Ifny, the relocatable
records .are copied, and the last record (OPLD) is copied without
alteration.

U No new random access directory (OPLD) is added to 1fn,. If the
directives specify the user library record type (ULIB), the first reeord
of the user library (ULIB) is copied without alteration to 1fny along
V(Nith t;1e relocatable records and the old random access directory
OPLD). ’

60435400 M

N

7N

2

-~

N

directivei

60435400 M

d Description
D or other Writes a new random acecess directory (OPLD) at the end of

Ifny. - If the directives specify the user library record type
(UEIB), the first record of the user library (ULIB) is copied
without alteration to lfny along with the relocatable records
and the old random access directory (OPLD).

No rewind option. 1fn; is not rewound after the operation; Ifny is not rewound before
or after the operation. If 1fny has a directory, the directory is copied to 1fny.

If nr is omitted, both files are rewound before and after the operation.

Ifn, is searched sequentially; no attempt is made to read a directory.

No abort option. If specified, GTR does not search for an EXIT statement when an I
error occurs. It issues a dayfile message for the error and continues GTR processing
at the next directive.

Specifies a record or group of records to be retrieved. One or more of the following
formats can be used. Valid record types are listed under Library Record Types in this
section. The default type is the last type specified on a directive, or if none
specified, TEXT. The record name is the first seven characters of the record, or if a
prefix table is present, the contents of the name field in its second word.

Directive Meaning
type/name Record with the specified type and name.
name Record with the specified name and the

default type.

typei/namej-typeg/namesy Group of records beginning with namej of
type; and ending with nameq of types.

typej/name;-namesg Group of records beginning with namep of
: type; and ending with namey of typey.

namej-names Group of records beginning with namej of the
default type and ending with nameg of the
default type.

type/name-* All records of thé specified type beginning
' with the named record.
name-* ' All records of the default type beginning with
the named record.
type/* . All records of the specified type.
* All records of the default type.
] : A zero-length record is inserted.

1-14-11

GTR searches file 1fn] for the records specified by the selection directives. If GTR cannot find a record
specified by type and name, it issues the following dayfile message.

GTR ERRORS.

If also issues this message when the record specified is within a user library and when the GTR statement
syntax is incorrect.

If 1fn; has a directory (OPLD) record, GTR writes the selected records on 1fng in the order specified on
the GTR statement. If 1fn, does not have a directory record, GTR writes the selected records in the
order that it finds them on 1fny, rather than in the order specified on the control statement.
If 1fng is on tape, the selected records are copied from the current file position; if 1fng is on mass
storage, the copy starts at the current EOI of the file. If an EOF exists before the EOl, GTR appends the
records as a file following the existing EOF.
Examples:

e GTR(SYSTEM,BIN,D)PP/*

GTR copies all PP records from file SYSTEM to file BIN. It then builds a random access
directory and writes it as the last record on BIN.

e GTR(OPL,NEW,NR)OPLC/COMCARG,0,COMCCIO
GTR retrieves common decks COMCARG and COMCCIO from file OPL. It then writes
COMCARG, a zero-length record, and COMCCIO at the current position of file NEW. NEW is
not rewound before the operation; OPL and NEW are not rewound following the operation.

e GTR(SYSTEM,SYSLIB,D)ULIB/SYSLIB
GTR copies the user library SYSLIB from file SYSTEM to the end of file SYSLIB.

e GTR.REL/A

GTR retrieves the relocatable record A from file OLD and copies it to file LGO.

ITEMIZE STATEMENT

ITEMIZE lists pertinent information about each record of a binary file in a format suitable for printing.
Earlier in this section, Library Record Type describes the types of records processed by ITEMIZE.

ITEMIZE processes mass storage files or I or SI format tape files. A file can be processed from
beginning-of-information through end-of-information.

Output from ITEMIZE is affected by the type of record and parameters selected. A header appears for
each file terminated by an end-of-file marker within the file specified by the file name. The first line of
the header identifies the file name, file position within that file, and the date and time of the run. The
second line of the header has the following fields:

REC Position of the record within the file.

NAME Record name obtained from the seecond word of the prefix table or from the first word
of the record.

1-14-12 ' ‘ 60435400 L

—

TYPE Type of record. Refer to Library Record Type, earlier in this section, for a description
of the record types.

LENGTH Number of words (octal) in the record, excluding the prefix table.
CKSUM Logical checksum (octal), excluding the prefix table.
DATE Date record was created as stored in the prefix table.
COMMENTS Contents of the comments field in the prefix table.

If no prefix table is present, the associated fields are blank.

Additional information listed depends on the type of record:
ABS Entry point names are listed.

OPL, OPLC, UPL Deck names are listed.

OVL Overlay level is listed (octal).

TEXT Entire record is listed if the name of the record is CMRDC, IPRDECK, IPRDC,
LIBDECK, LIBDC, or COMMENT.

6 PP Lists the octal equivalent of the load address.

7PP Lists the octal equivalent of the load address.

The E parameter can seleect further details about several types of records (refer to the following control
statement description). :

The last record in each file is the end-of-file marker, which appears on the listing as the characters
EQF. The SUM= identification is the total length, in words for all records in the file, including the
prefix table lengths.
Any zero-length record in the file appears with the record name (00). When a zero-length record is
encountered, a sum of the lengths of the records encountered since the beginning of the file, or since the
last sum was taken, is listed on the output. The length includes prefix tables. Record numbering is not
restarted until a new file is encountered.
If a record of type UPL has more correction identifier names and/or deck names than can be
accommodated within ITEMIZE, the following message appears on the listing in place of the excess
names:

TRUNCATED—IDENT OR DECK LIST TOO LONG
In this instance, the Update utility must be used to obtain a complete list of identifiers and deck names.
A dayfile message is issued when ITEMIZE completes execution.
The control statement format is:

ITEMIZ E(1fn, L=list1fn,BL, PW=n,PD,NR,N=n, E)

The first parameter is order-dependent; if 1fn is omitted, its position must be indicated by a comma.
All the other parameters are optional and order-independent.

60435400 L 1-14-13 ©

Parameter

Ifn
L=listlfn

BL

PW=n

PD

NR

N=n

U

Description
Name of file to be itemized; default name is LGO.
List output on file listlfn; default is L=OUTPUT.
Burstable listing; each file output starts at the top of a page. Default is a
compact listing in which a page eject occurs only when the current page is
nearly full.
Print either 136-character lines or 72-character lines, depending on the value of
the decimal integer n. If n=136, print 136-character line. If n <136, print

72-character lines.

If just PW is specified, print 72-character lines regardless of the listing file
device.

If PW=n is omitted, the default value is 72-character lines if the listing file is a
terminal; otherwise, the default value is 136~character lines.

Print density at eight lines per inch; default is six lines per inch. If this
parameter is to produce the desired result, the programmer must ensure that
output appears at a printer capable of eight lines per inch.

No rewind of 1fn before or after processing; default is rewind before and after
processing.

Itemize n files, where n is a decimal integer; default is N=1.

If just N is specified, itemize until end—of—inf’ormation.

If N=0, itemize until an empty file is processed.

Expand output to list further inf orrﬁation; default is no expansion.

For record types CAP and REL, list entry points.

For types OPL and OPLC, list modification set names and their YANK status.
For record types UPL, list correction identifier names.

Itemize all records within ULIB type records; default is list only the user library
directory.

If both E and U are selected for ULIB type records, all records in the library are itemized; since the
records are all type REL, their entry points are listed.

e 1-14-14

60435400 L

~

Example:

A FORTRAN program named SUBROUT has three subroutines. The following ITEMIZE control statement
lists the records of the binary object file LGO. The E option lists the entry point for each REL type
record listed.

/ITEMIZE (LGO,E)

1 ITEMIZE OF LGO FILE 1
REC NAME TYPE LENGTH CKSUM DATE

1 SUBROUT REL 105 5355 08/04/18.
SUBROUT OUTPUT#

2 SUB1 REL 45 0263 08/04/18.
SUB1

3 SUB2 REL 45 3276 08/04/18.
SUB2

4 SUB3 REL 45 1542 08/04/18.
SUB3

* EOL * SUM = 264

ITEMIZE COMPLETE.

LIBEDIT STATEMENT

LIBEDIT is a general-purpose utility that generates a file containing records copied from one or more

- other files (figure 1-14-2). LIBEDIT can build a random acecess directory for the new file. It recognizes

the record types listed in Library Record Types in this section. LIBEDIT processes a user library as a
single record.

LIBEDIT can edit a library aecording to directives requesting addition, deletion, or replacement of
specified records from one or more replacement files. Replacement is the implicit mode of a LIBEDIT
run. The user must explicitly identify records to be added and records that are not to be replaced (refer
to the description of the NOREP directive).

LIBEDIT executes in two phases. During the first phase, it reads directives and replacement records. It
groups directives by type and file and groups changes when several insertions take place relative to the

same record.

During the second phase, LIBEDIT writes the new file. If LIBEDIT cannot process the specified
combination of directives, and the D option (refer to the following control statement desecription) was not
specified, LIBEDIT lists its interpretation of the conflicting directives, issues an error message, and
aborts the job step. If the D option was specified, LIBEDIT continues processing the directives.

60435400 L 1-14-15

Directives
file
(INPUT)

Old
library
(OLD)

“—-omw-r

New
library
(NEW)

Replace-
ment file
(LGO)

C option copies NEW over OLD)|

r———""=—"7""="

Figure 1-14-2. LIBEDIT Input and Output

CONTROL STATEMENT FORMAT

The following control statement calls LIBEDIT. Its parameters specify options and files used for the call
as illustrated in figure 1-14-2,

LIBEDIT(p1,p9,.++,Pp)

Optional parmeters p; can be in any order. Each parameter cannot be specified more than once. 1fn
is a file name of from one to seven alphanumeric characters.

Pi Meaning
P=1fn; Edit file 1fny (the old file).
P=0 No old file; new file created from replacement file(s).
P omitted Edit file OLD.
N=Ifngy Write new file on file 1fn.
N=0 Illegal; error message issued.
N omitted Write new file on file NEW.

The new file is evicted prior to processing (refer
to EVICT Statement in seection 7).

I 1-14-16 60435400 L

VR

P
I=1fng
I=0
I omitted

Z

Z omitted

B=1fny
B=0
B omitted

LO=1fns

LO=0

LO omitted
L=1

L=0

L omitted
\

V omitted
R

R omitted
C

C omitted
-D

D omitted

60435400 L

Meaning
Take directives from the next record of 1fns.
No directive input.

Take directives from file INPUT.

Take LIBEDIT directives from the control statement line. The directives
immediately follow the control statement terminator. The first character
following the terminator is the separator character used to separate the
directives in the sequence. If can be any character not used in the

directives. For example:

LIBEDIT,Z.#*DELETE REL/PROG1#*ADD PROG2

Determine the source of directives for the run according to the I parameter

specification.

Use records from file 1fn4 for insertions and replacements.

No replacement file used (unless specified by a FILE directive).
Use file LGO as a replacement file.

List output on file Ifng

List no output.

List output on file OUTPUT.

List directives, modifications, and errors on output file.
List only errors.

Same as L=1.

Call VFYLIB after LIBEDIT processing.

Do not call VFYLIB.

Do not rewind files after processing.

Rewind old and new files after processing.

Copy the new file over the old file after processing.
Do not copy the new file over the old file.

Ignore errors and continue.

Do not ignore errors; abort job step.

1-14-17 |

LIBEDIT DIRECTIVES

The user can specify directives to control LIBEDIT processing. These directives can be in a record on
file INPUT, on the file specified by the control statement I parameter, or when the Z parameter is
specified, as a comment following the control statement.

Directives are not required. [f I=0 is specified, LIBEDIT compares the name and type of each record on

the old file with those of the records on the replacement file (specified by the B parameter). If a record

with the same name and type appears on the replacement file, LIBEDIT writes that record on the new
file and skips the record on the old file; otherwise, it copies the record from the old file to the new file.
If I=0 and B=0 are specified, LIBEDIT copies the old file to the new file until it encounters an EOF mark
or an OPLD directory on the old file.

LIBEDIT recognizes the following directives.

Directive . ' "~ Funetion
*ADD Inserts records before a zero-length re-cord within the file.
*BEFORE or *B Inserts record before the named record.
*BUILD Builds a directory at the end of the new file.
*COMMENT Adds a comment to the prefix table.
*COPY Copies the new file to the old at the end of editing.
*DATE Adds the date and a comment to the prefix table.
*DELETE or *D Does not copy specified records to the new file.
*FILE Declares a file to be a replacement file.
*IGNORE Ignores records when reading the replacement file.
*INSERT or *I or *AFTER or *A Copies record from the replacement file after copying. the

specified old file record.

*NOREP " Does not automatically replace old file records with records
from the specified file.

*RENAME Renames record.

*REPLACE Replaces the named records from the old file with records
from the replacement file. S ‘

*REWIND ’ Names file to be rewound before and after editing.

*TYPE or *NAME g Sets default record type.

l 1-14-18 60435400 L

7N

d

Directive Syntax

A directive begins with an asterisk in column 1 followed immediately by the directive identifier. The
directive identifier and the first parameter are both delimited by a comma and/or one or more spaces. If ﬂ
a directive does not begin with an asterisk and a directive identifier, LIBEDIT assumes that the operation
is a continuation of the previous directive operation. If an asterisk and directive identifier do not begin
the first line of the directives record, LIBEDIT prefixes the following to the first line.

BEFORE,

Parameters other than the first parameter are delimited by a space, an end-of-line, or a comma. A ﬂ
hyphen (-) indicates a record group. Record group identifiers (gid entries) cannot be split between lines.
For example, the lines

*B,0VL/P1,0VL/P2,0VL/P
3

do not constitute a valid directive. The last entry would not be processed as OVL/P3. On the other hand,
the lines

*B,0VL/P1,0VL/P2
OVL/P3

do constitute a valid directive and would be processed as
*B,0VL/P1,0VL/P2,0VL/P3

Parameters common to many directives are the reference record identifier (rid) and the record group
identifier (gid). Valid record types for these parameters are listed in Library Record Types in this
section. The default type is the last type specified in a directive; if none are specified, TEXT is the
default. The record name is the first seven characters of the record, or if a prefix table is present, the
name in its second word. The first character of a record name specified in a directive must not be an
asterisk.

rid Reference record identifier specifying the reference point for the requested change. It can
have the following formats.

type/name Reference record has the specified type and name.
name " Reference record has the specified name and is of the default type.
* ’ Reference point is an end-of-file mark (used with *BEFORE directive only).

gid ~ Record group identifier indicating a record or group of records to be inserted, deleted, or
replaced. It can have the following formats.

type/name : Record with the specified type and name.
name Record witﬁ the specified name of the default type.
type/namej-typeg/namesg Group of records beginning with namey of typej

and ending with nameg of types.

type;/namej-nameg Group of records beginning with name; of typei
and ending with nameg of typej. :

60435400 L 1-14-19

namej-nameg Group of records beginning with namej of the
default type and ending with namey of the default

type.

type/name-* All records of the specified type beginning with the
named record.

name-* All records of the default type beginning with the
named record.

type/* All records of the specified type.

* All records of the default type.

0 A zero-length record is inserted.

ADD

The ADD directive inserts records before a zero-length record. A CATALOG listing of the old file
numbers each group of records ending with a zero-length record (called a library on the listing). This
number on the ADD directive identifies the record group.

Adding a zero-length record does not change the
directory.

The directive format is:
*ADD LIBn,gidy,gids,...,gid,

LIBn Specifies the record group to which the records are appended. Values for n are 1 to
63 and can be determined from a CATALOG listing of the old file.

gid; Identifies the records or groups of records from the current replacement file that
are to be inserted before the zero-length record.

Example:
The following is a CATALOG listing of file Q.

- CATALOG OF Q FILE 1
REC NAME TYPE LENGTH CKSUM DATE
1 REC1 TEXT 1 5302
2 REC2 TEXT 1 5304
3 (00) SUM = 2 LIBRARY = 1
4 RECH TEXT 1 5310
¥ EOT * SUM = 3

1-14-20 ‘ 60435400 L

N

The following output results when a record was added to file Q, producing file Y.

LIBEDIT DIRECTIVE CARDS. 78/11/13.15.12.51. PAGE 1
*ADD LIB1,REC3

RECORDS WRITTEN ON FILE Y 78/11/13. 15.12.51. PAGE 2
RECORD TYPE FILE DATE COMMENT
REC1 TEXT Q
REC2 TEXT Q

INSERTED REC3 TEXT X
00 Q
RECH TEXT Q
KREOF*% Q
BEFORE

A BEFORE directive inserts records or groups of records before a specified reference record on the old
file. An old file record with the same name and type as an inserted record is not copied to the new file.

The directive formats are:
*BEFORE rid,gidy,gidy,...,gid,
or
*B rid,gidy,gid9,...,gidy

rid Names the old file record before which the specified replacement file records are
to be inserted.

gig; Identifies records or groups of records from the current replacement file that are
to be inserted before the reference record (rid).

If the first line of the LIBEDIT directives record does not begin with an asterisk and directive name,
LIBEDIT assumes that the line is the gid parameters following a *BEFORE#¥, directive.

BUILD
A BUILD directive constructs and appends a random access directory to the new file. The directory is in
Modify format (an OPLD record). If the old file has an OPLD directory, LIBEDIT constructs a directory

for the new file with or without a BUILD directive. BUILD can also be used to change the directory
name.

The directive format is:
*BUILD dname

dname One- to seven-alphanumeric-character name for the directory record. No default.

60435400 L 1-14-21]

COMMENT
The COMMENT directive adds a comment to the prefix (77) table of a record written on the new file.
The directive format is: |
*COMMENT rid comment
rid Name of a record to be writtén on the new file.

comment A string of up to 40 characters that appears in the comment field of the prefix:
table. Additional characters are truncated.

COPY

The COPY directive directs LIBEDIT to copy the new file over the old file after it has processed all
directives. :

The directive format is:
*COPY

It performs the same function as the C parameter on the LIBEDIT control statement.

DATE

The DATE directive adds the current date and the specified comment to the prefix (77) table of a record
written on the new file.

The directive format is:
*DATE rid comment
rid Record to be written on the new file.

comment A string of up to 40 characters to be written in the comment field of the prefix
table. Additional characters are truncated.

DELETE
The DELETE directive suppresses copying of the specified records from the old file to the new file.
The directive formats are:
*DELETE gidy,gidy,...,gidy
or
*D gidy,gidg,...,gidp

gid; Identifies records or groups of records that are not to be copied from the old file to
the new file.

1-14-22 60435400 L

N

Example:
v *DELETE OVL/LAD-REL/RUN

This directive requests LIBEDIT not to copy the sequence of records starting with overlay LAD through
relocatable CPU program RUN.

FILE

The FILE directive names a file assigned to the job that contains replacement records. LIBEDIT
directives following the FILE directive refer to records on the decl@red replacement file.

The directive format is:

*FILE Ifn
Ifn One- to seven-character name of a relacement file. If 1fn is an asterisk (*), LIBEDIT
uses the replacement file specified by the LIBEDIT control statement. If the B-
parameter was omitted from the control statement, LGO is used.
IGNORE

The IGNORE directive requests LIBEDIT to ignore a record or group of records on the current
replacement file. .

The directive format is:
*[GNORE gidj,gids,...,gidy
gid; Identifies records or groups of records on the replacement file that are to be ignored.
Example:

*FILE ALPHA
IGNORE C-

LIBEDIT ignores the sequence of records on file ALPHA starting with record C of the default type and
including all records of the default type from C to the EOF mark.

INSERT OR AFTER
The INSERT or AFTER directive requests LIBEDIT to copy the specified records or groups of records

from the current replacement file after it has copied the specified old file record onto the new file. Any
record on the old file that has the same name and type as an inserted record is not copied to the new file.

60435400 L : 1-14-23 |

The formats for the directives are:
*INSERT rid,gidy,gids,...,gidp
or
*1 rid,gidy,gidy,...,gidy
or
*AFTER rid,gid;,gidg,...,gidy
or
*A rid,gidq,gidsg,...,gidy
Example:
*INSERT OPL/K,TEXT/L
This directive requests LIBEDIT to copy the replacement file text record L to the new file after it has
copied the old file OPL record K. ’
NOREP
The NOREP directive declares the specified files to be no-replace files. A no-replace file is a
replacement file whose records do not automatically replace old file records having the same name and
type. The user selects records to be written on the new file from no-replace files by specifying the file
on a FILE directive and then naming -the records on *AFTER, *BEFORE, *INSERT, and *REPLACE
directives.

The directive format is:

*NOREP 1fnj,lfny,...,1fn,

RENAME
The RENAME directive assigns a new name to a record written on the new file. If the renamed record is
referenced by another directive in the directive record, the old name should be used. A RENAME is not
allowed on a PROC record. '
The directive format is:

*RENAME rid,name

rid Name of the replacement file record or old file record to be renamed.

name One- to seven-alphanumeric-character new name of the record.

REPLACE

The REPLACE directive requests LIBEDIT to replace the old file records having the specified names and
types with the replacement file records having matching names and types. This directive is used when
the current replacement file has been declared a no-replace file (refer to the NOREP directive
description). -If the replacement file is not a no-replace file, LIBEDIT performs the replace operation
automatically. :

1-14-24 60435400 L

The directive format is:
*REPLACE gids,gids,...,gidy

gid; Specifies records or groups of records that appear on both the old file and the current
replacement file. -

Example:
The old file contains text records A, B, C, and D; the replacement file RF also contains text records
named A, B, C, and D. Either of the following directive sequences writes records A and B from the old

file and records C and D from file RF onto the new file.

Sequence 1 Sequence 2

*FILE RF *FILE RF
*NOREP RF *IGNORE A-B
*REPLACE C-D

REWIND
The REWIND directive tells LIBEDIT to rewind the specified file before and after processing.
The directive format is: v |

*REWIND 1fn

Ifn Name of the file to be rewound.

TYPE OR NAME
A TYPE or NAME directive sets the default record type.
The directive formats are:

*TYPE type
*NAME type

type Specifies default record types. Valid record types are listed in Library Record Types
in this section.

The default record type can also be set by an explicit record type specification within a directive. In
either case, the default record type setting remains in effeet until another record type is explicitly
named. If a default record type is not declared in the directive sequence, the default is TEXT. For
example, the following two directive sequences are equivalent.

Sequence 1 Sequence 2
*TYPE REL *INSERT REL/X,Y
*INSERT X,Y *DELETE FILE1-FILE4

*DELETE FILE1-FILE4

60435400 L 1-14-25 l

LIBEDIT OUTPUT

LIBEDIT interprets all directives in the directive record before beginning dlrectxve processmg If one or
more errors are found, LIBEDIT issues the dayfile message

DIRECTIVE CARD ERROR.

and aborts the job step (unless the D parameter is specified on the control statement). The following
LIBEDIT output shows the results of a directive syntax error (the FILE directive is not followed by a
space or comma).

LIBEDIT DIRECTIVE CARDS. 78/11/15. 10.36.47. PAGE 1
*ERROR® *FILERF) '

Directive which cannot be executed are listed as LIBEDIT interpreted them. The following LIBEDIT run P
called for a replacement file not assigned to the job.

LIBEDIT DIRECTIVE CARDS. 78/11/15. 10.37.39. PAGE 1

*FILE RF1
*B * X
*ERROR® DIRECTIVE CARD CAN NOT BE FOLLOWED.
*FILE RF1
BEFORE TEXT/,TEXT/X

Nonfatal errors are listed in an error directory following the listing of records written to the new file.

The RECORDS NOT REPLACED error shown in the following example could be corrected by including an j
*IGNORE directive naming the records not to be replaced.
LIBEDIT DIRECTIVE CARDS. 79/02/23. 08.37.43. PAGE 1
*FILE RF2 '
*B * ,REC1
RECGRDS WRITTEN O3 FILE WEW 79/02/23. 08.37.43. PAGE 2
RECORD TYPE FILE DATE COMMENT
INSERTED RECT TEXT RF2
SYEQF A oLb
ERROR DIRECTORY - RECORDS HOT REPLACED. 79/02/23. 03.37.43. PAGE 3
RECORD TYPE FILE .
REC3 TEXT RF2 ‘
RECH TEXT RF2

LIBGEN STATEMENT

The LIBGEN control statement generates a user library of routines for use with CYBER Loader. The
control statement format is:

LIBGEN(pl,pz,...,pn)

Any of the following parameters may be specified in any order (only one instance of each).

I 1-14-26 : 60435400 L, i

Pi
F=1fn1
F or F omitted
P=Ifny
P or P omitted

N=name

N or N omitted

NX=n

NX or NX omitted

Meaning

Source file containing the relocatable (REL) and/or capsule (CAP) records
for the user library. Other record types are ignored.

LGO is the source file.
File on which the user library is to be written.
User library is to be written on file ULIB.

Name of the user library generated; name entered in ULIB and OPLD
records.

User library name specified by P parameter.

If n is not zero, no cross-references are included in the ULIB directory. If n
is zero, cross-references are included.

LIBGEN assumes NX=0 (cross-references are included in the directory).

If the F and P parameters specify the same file, LIBGEN issues a dayfile message and does not generate

a user library.

Figure 1-14-3 illustrates the structure of a user library. To generate a user library, LIBGEN rewinds and
scans the source file, building a directory of all entry points, program names, and external references in
the relocatable and capsule records in the file. LIBGEN then copies the source file to the user library
file adding the ULIB and OPLD records.

uLiB] User library directory

REL
REL Relocatable routines
REL

OPLD] Random access directory

Figure 1-14-3. User Library Structure

Unless the NX parameter specifies otherwise, the ULIB directory contains the external reference/entry
point linkage between routines in the user library. When CYBER Loader loads a routine from the user
library, it loads (at the same time) all user library routines referenced by the requested routine. Al
externals for user library routines are satisfied from the user library, if possible. If desired, the user ean
request with the NX parameter that the ULIB directory contain no cross-linking of records. In that case,
when a routine from the user library is requested, only that routine is loaded.

60435400 L

1-14-27

Example 1:

File RELB contains relocatable routines that are used for execution of several applications. To enable
loading of these routines as needed during execution of an application program, the user generates a user’
library using the following control statement.

LIBGEN(F=RELB,P=MYLIB,N=APPLIB)

This creates user library APPLIB on file MYLIB. The following loader sequence allows use of the APPLIB
routines during execution of a compiled FORTRAN Extended program on file LGO.

LDSET(LIB=MYLIB)
LOAD(LGO)
EXECUTE.

The program is loaded and executed with externals satisfied first from user library MYLIB and then from
the system default library SYSLIB. Refer to the CYBER Loader Reference Manual for more information
on library search procedures.

Example 2:

If a routine has no external references, no entry is made in the ULIB directory. To load this routine, the
user must include the loader statement LDSET(USEP=pname) in a loader sequence.

Suppose a FORTRAN Extended program contains a BLOCK DATA subroutine without external references
to any of its enfry points. The user has not named the block, and it has the default name BLKDAT. To
load this routine, the user must include the following control statement in the loader sequence.

LDSET(USEP=$BLKDAT.$)

VFYLIB STATEMENT

The VFYLIB control statement rewinds two files, compares their records, and lists the differences. The
record types that VFYLIB recogizes are listed in Library Record Types in this section. VFYLIB lists
changes in residence (between record groups separated. by zero-length records), replacements, deletions,
and insertions. A record is defined as being replaced when its name and type remain the same, but its
contents differ. VFYLIB does not compare prefix (77) table information such as last modification date
and lastfalssembly date. VFYLIB does not consider a difference in record order as a difference between
the two files. :

The control statement format is:

VFYLIB(Ifny,}ng,lfng,NR)

1fnq Name of the first file; if this parameter is omitted, VFYLIB assumes file OLD.

1fng Name of the second file; if this parameter is omitted, VFYLIB assumes file NEW.
Ifng Name of the output file; if this parameter is omitted, VFYLIB assumes file OUTPUT.
NR If specified, 1fny and Ifny are not rewound after verification.

1-14-28 ' ‘ 60435400 M

Example:

The following are CATALOG listings of file OLD and file NEW.

CATALOG OF OLD
REC NAME TYPE
1 A REL
A
2 (20) SU4 =
3 3 REL
3
4 ¥ REL
c
5 * EOF * SU41 =

The control statement,

FILE 1
LEWNGTH CK3UM DATE REC NAME

25 TS54T 13/02/28. 1 A

A
25 LIBRARY = 1 2 B

8
25 4410 79/02/28. 3 (00)
25 1450 79/902/29. 4 D

5 * EOF #

7

VFYLIB., produces the following listing. -

VFYLIB. OLD FILE = LD HEW FILE = NEW 79/02/28. 03.58.32.
RECORD TYPE ULIB LI3 DATE COMMENT
RECORDS REPLACED.
A REL 1 73/02/28. 08.55.04 H0os .4
CHANGES IN REZSIDEICE.
o B REL 1 79/02/28. 08.4).14 A03 1.4
/ OELETED PROGRAMé.
c REL 2 79/02/23. 08.40.14 NO3 1.4

INSERTED PROUGRAMS.

D TEXT

/ 60435400 L

FTH

CATALLG OF NEW
TYPE

w
s
"

H.7085

n,7485

4.7485

LENG

FILE
TH

30

25

v
v

1
CKSuM DATE
4122 739/02/28.
4410 75/02/23.
LIBRARY = 1
1000
SUBROUTINEOPT =1
SUBROUTINEOPT =1
SUBRDUTINEDPT=1

1-14-29 I

LIBRARY PROCESSING EXAMPLES

The following examples illustrate the use of CATALOG, GTR, LIBEDIT, and LIBGEN control statements.
To duplicate the examples, the user should execute the jobs in sequence.

Example 1:

The following job builds a program librarj from areplacement file of relocatable binary (REL) records.

LIBTESL.
USER(EFD25,PW)
CHARGE(16,13N122)
FTN(L=0)
DEFINE(TESTLIB)
CATALOG(LGO,R) P
LIBEDIT(P=0,N=TESTLIB) :
CATALOG(TESTLIB,R)
/EOR
SUBROUTINE A
STOP
END
SUBROUTINE D
STOP
END
SUBROUTINE C
STOP P
END .
SUBROUTINE B
STOP
END
/EOR
*BUILD LIBRARY
B, REL/A,B,C,D
/EOF

The FORTRAN Extended compilation produces relocatable binaries on the default file LGO. The
DEFINE statement creates a direct access permanent file TESTLIB on which the new program library is

written. The first CATALOG statement lists the LGO file as follows: e
CATALOG OF LGO FILE 1 79/03/01. 08.17.27. PAGE 1
REC NAME TYPE LENGTH CKSUM DATE COMMENTS

1 A REL 25 7547 79/03/01. 08.16.29 NOS 1.4 FIN 4,7485 666X I SUBROUTINE
A .

2 D REL . 25 6705 79/03/01. 08.16.29 NOS 1.4 FTN 4,7485 666X 1 SUBROUTINE
D

3 c REL 25 1450 79/03/01. 08.156,29 NOS 1.4 FTN 4,7435 656X I SUBROUTINE
c

y 8 REL 25 4410 79/03/01, 08.16.29 NOS 1.4 FTN 4.7435 666X I SUBROUTINE
3

5 ® EOF * SUM = 124

The P=0 in the LIBEDIT statement indicates that no old program library exists. The N parameter
indicates that the new program library is written on file TESTLIB. The replacement file is the default
LGO. The directives are on the default INPUT file.

1-14-30 ' 60435400 L ‘L

LIBEDIT reads the binaries from LGO and the directives from INPUT. On the basis of the directive
specifications, the binaries are inserted before the end-of-file on file TESTLIB in the order specified in
the directives (A, B, C, D). The directory record created is given the name LIBRARY as a result of the
*BUILD directive. Itis written before the end-of-file on the new program library TESTLIB.

The directives are written to OUTPUT. The records on file TESTLIB are listed on the next page of

OUTPUT. The following listing consists of these two pages.

‘LIBEDIT DIRECTIVE CARDS. 79/03/91. 03.20.52. PAGE

*3UILD LIBRARY

*B, *,REL/A,3,C,D

RECORDS ARITTEN ON FILE TESTLIB 79/03/91. 08.20.52. PAGE

RECORD TYPE FILE DATE COMMENT
INSERTED A REL LGD 79/03/01. 03.15.29 HOS 1.4 FTN 4. 7835 656X T
INSERTED 3 REL LGO 79/03/701, 08.15.29 NOS 1.4 FTi 4.7435 566X I
I¥SERTED C REL LGO 79/03/01. 08.16.29 NOS 1.4 FTN 4,7435 665X I
I4SERTED D REL LG 79703701, 03.15.29 NS 1.4 FTN 4.7435 665X I
ADDED LIBRARY OPLD EERRR 79/03/91.

‘*E(JF‘!

The second CATALOG statement produces the

TESTLIB.
CATALOG OF TESTLIB FILE
REC NAME TYPE LENGTH
1A REL 25
A
2 8B REL 25
B
3 ¢ REL 25
c
4 o REL <25
b)
5 LIBRARY OPLD 13
6 % EOF * sud = 137

Example 2:

1
CKSUM

7547
4410
1450
6705
2073

DATE COMMENTS
79/03/01. 03.16.29
79/03/01, 08.16.29
73/03/01. 08.15.29
79/03/01. 03.15.29
79/93/791.

following listing

73/903/21. 08.21.

NOS 1.4 FTH
NOS 1.4 FTH
NOS 1.4 FTN
NOS 1.4 FTN

45,

4,7435
4.7485
4.7435
4.7485

PAGE

666X
566X
666X
565X

SUBROUTINEDPT=1
SUSROUTINEDPT=1
SUBROUTINEOPT =1
SUBROUTINEOPT=1

of information about the records on

SUBROUTINE
SUBROUTINE
SUBROUTIHE
SUBROUTINE

This job builds a new program library from an old program library by inserting new relocatable routines

into and deleting routines from the old program library created in example 1 (TESTLIB).

60435400 L

1-14-31 I

LIBTES2.
USER(EFD2S,PW)
CHARGE(16,13N122)
FTN(L=0)
ATTACH(OLD=TESTLIB)
DEFINE(NEW=TES2LIB)

LIBEDIT.
CATALOG(NEW,R)
/EOR
SUBROUTINE BONE
STOP
END
SUBROUTINE D
STOP
END
SUBROUTINE NEWC
STOP
END
/EOR
*TYPE REL
*], B,BONE
*I,C,NEWC
*D,C
/EOF

Three relocatable binaries (BONE, D, and NEWC) are produced via a FORTRAN Extended compilation.
The old program library (TESTLIB) is attached in read mode and referenced as OLD. A direct access file
(TES2LIB) is created for the new program library. This file is referenced as NEW.

LIBEDIT reads the binaries from the replacement file LGO and the input directives from file INPUT. It
writes the modified old program library (OLD) to the new program library (NEW). BONE and NEWC are
inserted after records B and C, respectively, and record C is deleted. Record D, which already existed
on the old program library, is replaced by record D from the replacement file LGO. The following action
is taken on file NEW.

LIBEDIT DIRECTIVE CARDS. 79/03/01. 03.25.52. PAGE 1
*TYPE REL
*I,B,BONE
*I,C,NEWC
*D,C
RECORDS WRITTEN ON FILE NEW 79/03/01, 08.25.52. PAGE 2
RECORD TYPE FILE DATE COMMENT
A REL OLD 79/03/01. 08.16.29 XNOS 1.4 FTN 4.7485 666X 1 SUBROUTINEOPT =1
B REL OLD 79/03/01. 08.15.29 HOS 1.4 FTN 4,7485 666X 1 SUBROUTINEOPT =1
INSERTED BONE REL LGO 79/03/01. 08.25.07 NOS 1.4 FTN 45,7485 666X I SUBROUTINEOPT =1
DELETED-(C) REL oLD
INSERTED NEWC REL. LGO 79/03/01. 08.25.07 NOS 1.4 FIN 4, 7485 666X I SUBROUTINEOPT =1
REPLACED D REL LGO 79/03/01. 08.25.07 NOS 1.4 FTN 4.7435 666X I SUBROUTINEOPT=1
ADDED LIBRARY OPLD reRRn 79/03/01. .
EREOF*Y OLD

I 1-14-32 60435400 L

N

The CATALOG shows the following contents of the new program library.

CATALOG OF NEW FILE 1 79/03/01. 08.26.u8, PAGE 1
REC NAME TYPE - LENGTH CKsuM DATE COMMENTS

1 AA REL : 25 7547 79/03/01.-03.16.29 NOS 1.4 FTN 4.7485 666X I SUBROUTINE
2 BB REL 25 4410 79/03/01. 03.16.29 NOS 1.4 FTN 4.7435 666X I SUBROUTINE
3 33255 REL 25 1103 79/03/01. 08.25.07 NOS .1.4 FTN 4.7435 666X I SUBROUTINE
4 NENFJ REL 25 0371 79/03/01. 08.25.07 NOS 1.4 FTN 4.7435 666X I SUBROUTINE
5 Df;EvlC REL 25 6705 79/03/01. 08.25.07 NOS 1.4 FTH 4.7435 666X I SUBROUTINE
[} LIBRARY 9PLD 15 1312 79/03/01.

7 ¥ EZOF ¥ SUM = 166

Example 3:

This job uses LIBGEN to generate a user library file from the program library file TES2LIB created in
example 2.

LIBTES3.

USER(EFD25)

CHARGE(16,13N122)

ATTACH(TES2LIB)

DEFINE(LIBFILE)

LIBGEN(F=TES2LIB, P=LIBFILE, N=LOADLIB)
CATALOG(LIBFILE,R,U)

-EOF-

The program library TES2LIB is attached to the job. A direct access file LIBFILE is defined for writing l
the user library file. . '

LIBGEN scans TES2LIB and builds a ULIB directory of entry points, program names, and external
references for relocatable (REL) records in the file. ULIB is copied to the file LIBFILE, followed by the
records from TES2LIB. A file index of addresses for each record in the file is added as the last record of
LIBFILE. LOADLIB is the name of the ULIB and OPLD records.

The CATALOG of the user library file LIBFILE shows the following content. :

CATALOG OF LIBFILE FILE 1 79/03/01. 03.29.02. PAGE 1

REC NAME TYPE LENGTH CK3UA DATE COMAENTS

1 LOADLIB ULI3 13 4267 79/03/01.

2 A REL 25 T547 79/03/01. 03.15.29 NS 1.4 FTH 4.7435 665X I SUBROUT[NE
A

3 3 REL 25 4410 79/03/01. 08.15.29 NOS 1.4 FTH 4.7435 6A6X I 3UBROUUTIHE
3

4 BONE REL 25 1103 79/03/01. 03.25.07 495 1.4 FTN 7435 666X I SUBROUTINE
BOHE

5 HNEWC REL 25 0371 79/03/01. 03.25.07 NOS 1.4 FTN H.7435 666X I SUBROUTTHE
HEWC

5 DD) REL 25 5705 73/03/01. 08.25.07 {93 1.4 FTH B.7435 665X 1 SUBROJUTINE

7 LOADLIB OPLD 15 5303 79/03/01.

3 *EOF SU4 = 201

60435400 L 1-14-33

Example 4:

This job illustrates a method for deleting records from a user library. GTR removes the relocatable
records (REL) from the user library, LIBEDIT makes the desired changes, and LIBGEN generates a new
user library. ' :

LIBTESA4.
USER(EFD25,PW)
CHARGE(16,13N122)
ATTACH(LIBFILE/M=W)
GTR(LIBFILE,OLD)REL/*
LIBEDIT.
LIBGEN(F=NEW,P=LIBFILE,N=LOADLIB)
CATALOG(LIBFILE,R,U)
-EOR-

*D,REL/NEWC

-EOF-

The user library generated in example 4 (LIBFILE) is attached to the job's control point.

Because LIBEDIT handles a user library as a single record, the GTR statement must be used to extract
the relocatable records from LIBFILE and write them on the file OLD. (This control statement
terminates after OLD; the REL/* is a directive specifying all relocatable records.)

LIBEDIT references the program library OLD and the directive record, deletes NEWC, and writes this
modified file on the default NEW. The following is a listing of NEW.

LIBEDIT DIRECTIVE CARDS. 79/03/01. 08.30.05. PAGE 1
*D, REL/NEWC

RECORDS WRITTEN ON FILE NEW . 79/03/01. 03.30.05. PAGE 2

RECORD TYPE FILE DATE COMMENT

A REL oLD 79/03/01. 08.15.29 NOS 1.4 FTN 4,74835 666X I SUBROUTINEOPT =1
B REL OLD 79/03/01. 03.16.29 NOS 1.4 FTN 4.7435 665X 1 SUBROUTINEQPT=1
BONE REL - OLD 79/03/701. 08.25.07 NOS 1.4 FTN 4.7435 666X 1 SUBROUTINEOPT=1

DELETED-(NEWC) REL oLD . '

D - REL oLD 79/03/01. 08.25.07 NOS 1.4 FTN 4.7435 666X I SUBROUTINEOPT=1
#REOF %R OLD ’

LIBGEN generates a new user library on the file LIBFILE. It uses NEW as the source and names the new
user library LIBFILE. .

The user library is cataloged, showing the following contents.

CATALOG OF LIBFILE FILZ 1 79/93/01. 03.30.54. PAGE 1

REC NAME TYPE LENGTH CKsU4 DATE COMMENTS

1 LOADLIB ULIB 1 1055 79/303/91.

2 A REL 25 7547 79/03/731. 03.15.29 NJS 1.4 FTH 4.7435 665X 1 SUBROUTINE
A

3 B REL 25 4410 79/03/31. 03.15.23 NS 1.4 FTH N.7435 565X I SUBROUTINE
B

4 30HE REL 25 1103 73/03/21. 03.25.07 NS 1.4 FTN L.7435 665X 1 SUBROUTINE
BONE .

5 D REL 25 5705 73/23/01. 03.25.07 oS 1.4 FTN 4.7435 666X 1 SUBROUTINE
D

6 LOADLIB QPLD 13 J418 793/03/01.

' 1-14-34 ‘ - 60435400 L

CHARACTER SETS A

A character set is composed of graphic and/or control characters. A code set is a set of codes used to
represent each character within a character set.

A graphic character may be displayed at a terminal or printed by a line printer. Examples are the
characters A through Z and the digits 0 through 9. A control character initiates, modifies, or stops a
control operation. An example is the backspace character that moves the terminal carriage or cursor
back one space. Although a control character is not a graphie character, a terminal may produce a
graphie representation when it receives a control character.

A1l references within this manual to the ASCI character set or the ASCII code set refer to the character
set and code set defined in the American National Standard Code for Information Interchange (ASCII,

ANSI Standard X3.4-1977). References in this manual to the ASCII character set do not necessarily refer
to the ASCII code set.

NOS supports the following character sets.

e CDC graphic 64~ (or 63-) character set.

e ASCIH 128-character set.

e ASCI graphic 64- (or 63-) character set.

e ASCIH graphie 95-character set.
Each installation selects either the 64-character set or the 63-character set. The differences between
the two are described in Character Set Anomalies in this appendix. Any reference in this appendix to the
64-character set implies either the 63- or 64-character set, unless otherwise stated.
NOS supports the following code sets.

e Display code.

o 6/12 display code.

e 12-bit ASCII code.
Display code is a set of 6-bit ecodes from 00g to 77g.
The 6/12 display code is a combination of 6-bit codes and 12-bit codes. The 6-bit codes are 00g through
77g, excluding 74g and 76g. (Refer to Character Set Anomalies for the interpretation of the 00g and 63g
codes.) The 12-bit codes begin with either 74g or 76g and are followed by a 6-bit code. Thus, 74g and
76g are considered escape codes and are never used as 6-bit codes within the 6/12 display code set. The

12-bit codes are 7401g, 7402g, 7404g, 7407g, and 7601g through 7677g. All other 12-bit codes (74xxg and
7600g) are undefined. .

60435400 M 1-A-1

The 12-bit ASCII code is the ASCII 7-bit code (as defined by ANSI Standard X3.4-1977) right-justified in a
12-bit byte. Assuming that the bits are numbered from the right starting with 0, bits 0 through 6 contain
the ASCII code, bits 7 through 10 contain zeros, and bit 11 distinguishes the 12-bit ASCIH 0000g code
from the end-of-line byte. The 12-bit codes are 0001g through 0177g and 4000g.

CHARACTER SET ANOMALIES

NOS interprets two codes differently when the installation selects the 63-character set rather than the
64-character set. In tables 1-A-1, 1-A-2, and 1-A-3, the codes for the colon and percent graphic
characters in the 64-character set are unshaded; the codes for the colon and percent graphic characters
in the 63-character set are shaded.

If an installation uses the 63-character set, the colon graphic character is always represented by a 63g
code. However, if the installation uses the 64-character set, output of 6/12 display codes 7404g or 00g
produces a colon. In ASCII time-sharing mode, a colon can be input only as a 7404g 6/12 display code.

When using either the 63- or 64-character set, the use of undefined 6/12 display codes in output files
produces unpredictable results and should be avoided.

On input, NOS recognizes alternate 029 punch codes of 11-0 for the right bracket (J) and 12-0 for the left
bracket ([). The alternate codes support the COBOL sign overpunch convention and are not
recommended for other uses. Refer to the COBOL 4 or COBOL 5 Reference Manual.-

Also, two 00g codes may be confused with an end-of-line byte and should be avoided (refer to appendix F
for further explanatlon)

CHARACTER SET TABLES

This appendix contains character set tables for time-sharing users, batch users, and magnetic tape users.
Table 1-A-1 is for time-sharing users, and table 1-A-2 is for batch users. Table 1-A-3 is a conversion
table used to cross-reference 12-bit ASCII codes and 6/12 display codes and to convert ASCII codes from
octal to hexadecimal.

Tables 1-A-4, 1-A-5, and 1-A-6 list the magnetic tape codes and their display code equivalents.

The character set tables are designed so that the user can find the character represented by a ‘code (such
as in a dump) or find the code that represents a character. To find the character represented by a code,
the user looks up the code in the column listing the appropriate code set and then finds the character on
that line in the column listing the appropriate character set. To find the code that represents a -
chiaracter, he first looks up the character and then finds the code on the same line in the appropriate
column. .

TIME-SHARING USERS

Table 1-A-1 shows the character sets and code sets available to an ASCII code terminal user. When in
NORMAL time-sharing mode (specified by the NORMAL time-sharing command), NOS displays the ASCII
graphic 64-character set and interprets all input and output as display code. When in ASCII time-sharing
mode (specified by the ASCI time-sharing command), NOS displays the ASCIH 128-character set and
interprets all input and output as 6/12 display code.

1-A-2 60435400 M

N

To determine the octal or hexadecimal ASCII code for a character, refer to table 1-A-3. (Certain
terminal definition commands require specification of an ASCII eode.)

On output, the US code is reserved for network use and defined as an end-of-line. Use of this character,
except in transparent mode, causes incorrect formatting and possible loss of output characters.

BATCH USERS

Table 1-A-2 lists the CDC graphic 64~character set, the ASCII graphie 64-character set, and the ASCII
graphic 95-character sets. It also lists the code sets and eard punch codes (026 and 029) that represent
the characters.

The 64-character sets use display code as their code set; the 95-character set uses 12-bit ASCII code.
The 95-character set is composed of all the characters in the ASCII 128-character set that can be printed
at a line printer (refer to Line Printer Usage). Only 12-bit ASCII code files can be printed using the
ASCI graphic 95-character set. To print a 6/12 display code file (usually created in time-sharing ASCII
mode), the user must convert the file to 12-bit ASCII code. To do this, he issues the FCOPY control
statement (section 7). The 95-character set is represented by 12-bit ASCII codes 0040g through 0176g."

LINE PRINTER USAGE

The batch character set printed depends on the print train used on the line printer to which the file is
sent (refer to the ROUTE control statement in section 7). The following are the print trains
corresponding to each of the batch character sets.

Character Set) Print .Train
CDC graphie 64-character set 596-1
ASCI graphic 64-character set 596~5
ASCII graphic 95-character set 596-6

The characters of the default 596-1 print train are listed in the table 1-A-2 column labeled CDC Graphic
(64 Char); the 596-5 print train characters are listed in the table 1-A-2 column labeled ASCII Graphic (64
Char); and the 596-6 print train characters are listed in the table 1-A-2 column labeled ASCI Graphic (95
Char).

If a' transmission error occurs when printing a line, the system prints the line again. The CDC graphic
print train prints a concatenation symbol (™) in the first printable column of a line containing errors.
The ASCII print trains print an underline (_) instead of the concatenation symbol.

If an unprintable character exists in a line (that is, a 12-bit ASCII code outside the range 0040g through
0176g), the number sign (#) appears in the first printable column of a print line, and a space replaces the
unprintable character.

To route and correctly, print a 6/12 display code file on a line printer with the ASCII graphiec 95-character
set, a user must convert the 6/12 display code file to a 12-bit ASCH code file with the FCOPY control
statement (refer to section 7). The resulting 12-bit ASCII file ean be routed to a line printer (refer to
the ROUTE statement in section 7) but cannot be output at a time-sharing ter minal.

60435400 M ‘ 1-A-3

TABLE 1-A-1. TIME-SHARING CHARACTER SETS

ASCII ASCII 6/12 12-Bit ASCII ASCII 6/12 12-Bit
Graphic Character Display | Display | ASCII Graphic Character Display | Display | ASCII
(64 Char) (128 Char) Code Code Code (64 Char) (128 Char) Code Code Code
colont 0ot # num. sign num. sign 60 60 0043

[1. bracket 1. bracket. 61 61 0133
J r. bracket r. bracket 62 62 0135
A A 01 01 0101
B B 02 02 0102
¢ c 03 03 0103 q q
D D 04 04 0104 __ underline _ underline 65 0137
E E 05 05 0105 ! ! 66 0041
F F 06 06 0106 & ampersand | & ampersand 67 0046
G G 07 07 0107
' apostrophe | ' apostrophe 70 70 0047
? ? 71 71 0077
H H 10 10 0110 < < 72 72 0074
1 1 11 11 0111 > > 73 73 0076
J J 12 12 0112 3] 74
K K 13 13 0113 \ rev. slant |\ rev. slant 75 75 0134
L L 14 14 0114 " circumflex 76
M ‘M 15 15 0115 ; semicolon | ; semicolon 77 77 0073
N N 16 16 0116
0 0 17 17 0117 ? 7401 0100
® circumflex 7402 0136
colon ¥ 76047 | 0072
P P 20 20 0120 T
Q Q 21 21 0121 grave accent 7407 0140
R R 22 22 0122
S S 23 23 0123 a 7601 0141
T T 24 24 0124 b 7602 0142
u u 25 25 0125 c 7603 0143
v v 26 26 0126 d 7604 0144
W W - 27 27 0127 e 7605 0145
f 7606 0146
X X 30 30 0130 9 7607 0147
Y Y 31 31 0131
z I3 32 32 0132 h 7610 0150
0 0 33 33 0060 i 7611 0151
1 1 34 34 0061 j 7612 0152
2 2 35 35 0062 k 7613 0153
3 3 36 36 0063 L 7614 0154
4 4 37 37 0064 m 7615 0155
n 7616 0156
o 7617 0157
5 5 40 40 0065
[) 41 41 0066 p 7620 0160
7 7 42 42 0067 q 7621 0161
8 8 43 43 0070 r 7622 0162
9 9 44 44 0071 s 7623 0163
+ + 45 45 0053 t 7624 0164
- - 46 46 0055 u 7625 0165
* * 47 47 0052 v 7626 0166
. W 7627 0167
/ / 50 50 0057 X 7630 0170
((51 51 0050 y 7631 0171
)) 52 52 0051 2 7632 0172
$ $ 53 53 0044 { left brace 7633 0173
= = 54 54 0075 | vert. line 7634 0174
space space 55 55 0040 3} right brace 7635 0175
, comma , comma 56 56 0054 ~ tilde 7636 0176
. period . period 57 57 0056 DEL 7637 0177

\, . . - .
t The interpretation of this character or code depends on its context. Refer to Character Set Anomalies

in this appendix.

1-A-4

79AAIA
| OF 2

60435400 J

N

TABLE 1-A-1. TIME-SHARING CHARACTER SETS (Contd)

ASCII ASCII 6/12 12-Bit ASCII ASCII 6/12 12-Bit
Graphic Character Display | Display | ASCII Graphic Character Display | Display | ASCII
(64 Char) (128 Char) Code Code Code (64 Char) (128 Char) Code Code Code
NUL 7640 4000 DLE 7660 0020
SOH 7641 0001 DC1 © 7661 0021
STX 7642 0002 DC2 7662 0022
ETX 7643 0003 DC3 7663 0023
EOT 7644 0004 DC4 7664 0024
ENQ 7645 0005 NAK 7665 0025
ACK 7646 0006 SYN 7666 0026
BEL 7647 0007 ETB 7667 0027
BS 7650 0010 CAN 7670 0030
HT 7651 0011 EM 7671 0031
LF 7652 0012 SUB 7672 0032
VT 7653 0013 ESC 7673 0033
FF 7654 0014 FS 7674 0034
CR 7655 0015 GS 7675 0035
SO 7656 0016 RS 7676 0036
SI 7657 0017 ust 7677 0037
TReserved for network use. Refer to Time-Sharing Users in this appendix.
79AAIA
2 OF 2
60435400 K 1-A-5

TABLE 1-A-2. BATCH CHARACTER SETS

1-A-6

CDC ASCII ASCII 6/12 12-Bit

Graphic Graphic Graphic Display Display ASCII Punch Code

(64 Char) (64 Char) (95 Char) Code Code Code 026 029

colont colont 00t
B B B 0102 12-2
C C C 0103 12-3
D D D 0104 12-4
E E E 0105 12-5
F F F 0106 12-6
G G G 0107 12-7
H H H 10 10 0110 12-8 12-8
I 1 I 11 11 0111 12-9 12-9
J J J 12 12 0112 11-1 11-1
K K K 13 13 0113 11-2 11-2
L L L 14 14 0114 11-3 11-3
M M M 15 15 0115 11-4 11-4
N N N 16 16 0116 11-5 11-5
0 0 0 17 17 0117 11-6 11-6
P P P 20 20 0120 11-7 11-7
Q Q Q 21 21 0121 11-8 11-8
R R R 22 22 0122 11-9 11~-9
S S S 23 23 0123 0-2 0-2
T T T 24 24 0124 0-3 0-3
u U u 25 25 0125 0-4 0-4
v v v 26 26 0126 " 0-5 0-5
W W W 27 27 0127 0-6 0-6
X X X 30 30 0130 0-7 0-7
Y Y Y 31 31 0131 0-8 0-8
z z Z 32 32 0132 0-9 0-9
0 0 0 33 33 0060 0 0
1 1 1 34 34 0061 1 1
2 2 2 35 35 0062 2 2
3 3 3 36 36 0063 3 3
4 4 4 37 37 0064 4 4
5 5 5 40 40 0065 5 5
6 6 6 41 41 0066 6 6
7 7 7 42 42 0067 7 7
8 8 8 43 43 0070 8 8
9 9 9 44 44 0071 9 9
+ + + 45 45 0053 12 12-8-6
- - - 46 46 0055 11 11
* * * 47 47 0052 11-8-4 11-8-4
t The interpretation of this character or code depends on its context. Refer to

Character Set Anomalies in this appendix.

T9AA2A
1 OF 3
60435400 J

TABLE 1-A-2. BATCH CHARACTER SETS (Contd)

colon T

' grave accent

Q -+~ o0 0o

7404 T

7407

7601
7602
7603
7604
7605
7606
7607

0072

0140

0141
0142
0143
0144
0145
0146
0147

cDC ASCII ASCII 6/12 12-Bit punch Code
Graphic Graphic Graphic Display Display ASCII
(64 Char) (64 Char) (95 Char) Code Code Code 026 029
/ / / 50 50 0057 0-1 0-1
(((51 51 0050 0-8-4 12-8-5
))) 52 52 0051 12-8-4 | 11-8-5
$ $ $ 53 53 0044 11-8-3 11-8-3
= = = 54 54 0075 8-3 8-6
space space space 55 55 0040 |no punch|no punch
, comma , comma , comma 56 56 0054 0-8-3 0-8-3
. period . period . period 57 57 0056 12-8-3 12~-8-3
equiv. num. sign |# num. sign 60 60 0043 0-8-6 8-3
1. bracket 1. bracket [C 1. bracket 61 61 0133 8-7 12-8-2%
r. bracket r. bracket |J r. bracket 62 62 0135 0-8-2 11-8-2F
i 6371 63T 0045 8-6 -4
" quote " quote 64 64 0042 8-4 8-7
r __underline |_ underline 65 65 0137 0-8-5 0-8-5
v ! ! 66 66 0041 11-0 12-8-7
A & ampersand |& ampersand 67 67 0046 0-8-7 12
4 ' apostrophe | ' apostrophe 70 70 0047 11-8-5 8-5
¥ ? ? 71 71 0077 11-8-6 0-8-7
< < < 72 72 0074 12-0 12-8-4
> > > 73 73 0076 11-8-7 0-8-6
<) 74 8-5 8-4
> \ rev. slant |\ rev. slant 75 75 0134 12-8-5 0-8-2
- ~ circumflex 76 12-8-6 11-8-7
; semicolon | ; semicolon |; semicolon 77 77 0073 12-8~-7 11-8-6
a 7401 0100
" circumflex 7402 0136

60435400 M

in this appendix.

T The interpretation of this character or code depends on its context.
Character Set Anomalies

Refer to

79AA2A
2 OF 3

1-A-7

TABLE 1-A-2. BATCH CHARACTER SETS (Contd)

cDe ASCII ASCII 6/12 12-Bit
Graphic Graphic Graphic Display | Display ASCIT Punch Code
(64 Char) (64 Char) (95 Char) Code Code Code 026 029
h 7610 0150
i 7611 0151
j 7612 0152
k 7613 0153
L 7614 0154
m 7615 0155
n 7616 0156
o 7617 0157
p 7620 0160
q 7621 0161
r 7622 0162
s 7623 0163
t 7624 0164
u 7625 0165
. v 7626 0166
W 7627 0167
X 7630 0170
y 7631 0171
z 7632 0172
{ left brace 7633 0173
| vert. line 7634 0174
} right brace 7635 0175
~ tilde 7636 0176
79AA2A
3 0F 3
1-A-8 60435400 J

TN

TABLE 1-A-3. ASCI TO 6/12 DISPLAY CODE CONVERSION

60435400 K

12-Bit 12-Bit
ASCII 6/12 ASCIT 6/12
Character ASCIT Code Display Character ASCIT Code Display
(128 Char) Octal| Hex Code (128 Char) Octal| Hex Code
NUL 4000 00 7640 0 0060 30 33
SOH 0001 0l 7641 1 0061 31 34
STX 0002 02 7642 2 0062 32 35
ETX 0003 03 7643 3 0063 33 36
EOT 0004 | 04 7644 4 0064 | 34 37
ENQ 0005 05 7645 5 0065 35 40
ACK 0006 06 7646 6 0066 36 41
BEL 0007 | 07 7647 7 0067 37 42
BS 0010 08 7650 8 0070 38
HT 0011 09 - 7651 9 0071 39
LF 0012 | 0A 7652 colon T 0072
VT 0013 | OB 7653
FF 0014 | OC 7654 ;
CR 0015 0D 7655 < 0074
S0 0016 OE 7656 = 0075
SI 0017 OF 7657 > 0076
? 0077
DLE 0020 10 7660
DC1 0021 11 7661 3] 0100 40 7401
DC2 0022 | 12 7662 A 0101 | 41 01
DC3 0023 13 7663 B 0102 42 02
DC4 0024 | 14 7664 o 0103 | 43 03
NAK 0025 | 15 7665 D 0104 | 44 04
SYN 0026 | 16 7666 E 0105 | 45 05
ETB 0027 | 17 7667 F 0106 | 46 06
G 0107 47 07
CAN 0030 18 7670
EM 0031 19 7671 H 0110 | 48 10
SUB 0032 1A 7672 I 0111 49 11
ESC 0033 | 1B 7673 J 0112 | 4A 12
FS 0034 | '1C 7674 K 0113 | 4B 13
GS 0035 1D 7675 L 0114 4C 14
RS 0036 1E 7676 M 0115 4D 15
Us 1 0037 1F 7677 N 0116 4E 16
0 0117 4F 17
space 0040 55
! 0041 66 P 0120 50 20
" quote 0042 64 Q 0121 51 21
number sign 0043 60 R 0122 52 22
0044 53 S 0123 | 53 23
T 0124 | 54 24
u 0125 | 55 25
P v 0126 | 56 26
' apostrophe 0047 W 0127 | 57 27
(0050 28 51 X 0130 58 30
) 0051 | 29 52 Y 0131 | 59 31
* 0052 | 2A 47 z 0132 | 54 32
+ 0053 2B 45 [left bracket 0133 5B 61
, comma 0054 2C 56 \ reverse slant 0134 5C 75
- 0055 2D 46 J right bracket 0135 5D 62
. period 0056 | 2E 57 ® circumflex 0136 | 5E 7402
/ 0057 | 2F 50 _ underline 0137 | 5F 65
T The interpretation of this character or code may depend on its context. Refer to Character
Set Anomalies elsewhere in this appendix.
ttReserved for network use. Refer to Time-Sharing Users in this appendix.
79AA3A
I OF 2

1-A-9

TABLE 1-A-3. ASCI TO 6/12 DISPLAY CODE CONVERSION (Contd)

- 1-A-10

12-Bit 12-Bit
ASCII 6/12 ASCII 6/12
Character ASCIT Code Display Character ASCIT Code Display
(128 Char) Octal| Hex Code (128 Char) Octal | Hex Code
grave accent 0140 | 60 7407 P 0160 |