60388300

G CONTROL DATA
CORPORATION

CYBER PL/I
GENERAL INFORMATION MANUAL

CDC” OPERATING SYSTEMS:
NOS
NOS/BE

REVISION RECORD

REVISION DESCRIPTION

A Original Release

(08-01-77)

Publication No.

60388300
Address comments concerning
REVISION LETTERS I, O, Q AND X ARE NOT USED this manual to:
CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE
© SUNNYVALE, CALIFORNIA 94086
1977
Control Data Corporation or use Comment Sheet in the

Printed in the United States of America back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the.
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina-
tion rather than content has changed.

Page

Revision

Cover
Title Page
ii

iiifiv

v/vi

vii

1-1

2-1

3-1

4-1

5-1

A-1, A-2
Cmt Sheet
Cover

[

e g g g g A

60388300 A

Page

Revision

Page

Revision

iii/iv

PREFACE

This general information manual introduces Control Data
Corporation's CYBER PL/I programming language. As
described in this publication, CYBER PL/I operates under
control of the following operating systems:

NOS2 for the CONTROL DATA® CYBER 170
Models 171, 172, 173, 174, and 175; CYBER 70
Models 71, 72, 73, and 74; and 6000 Series Computer
Systems

NOS/BE 2 for the CDC®CYBER 170 Series; CYBER 70
Models 71, 72, 73, and 74; and 6000 Series Computer
Systems

60388300 A

This manual is directed to individuals with some knowledge
of computer languages. The reader should be familiar with a
Control Data operating system and be acquainted with the
basic concepts of FORTRAN, COBOL, and CYBER Record
Manager. A knowledge of other software products, such as
ALGOL, is beneficial but not required.

As the Control Data implementation of CYBER PL/I
version 1 is essentially the same as other PL/I compilers in
common use today, references to PL/I in this publication are
interchangeable with CYBER PL/I. Where the term CYBER
PL/I is used, it is intended to point up a difference between
the Control Data implementation and the American National
Standards Institute (ANSI) standard for PL/L

v/vi

1. PL/I- A PROGRAMMING LANGUAGE

2, PROGRAM ORGANIZATION

Block Structure
Group Structure
Nesting

3. FLOW OF CONTROL

Block Activation

Storage Allocation
Recursion

Conditions

A KEYWORDS

60388300 A

CONTENTS

1-1 4. DATA HANDLING
2-1 Data Types
Data Aggregates
2-1 Arrays
2-1 Structures
2-1 Data Storage

Built-in Functions

5. INPUT/OUTPUT PROCESSING

Files and Datasefs
Input/Output Transmission

APPENDIX

A-1

4-1
4-1
4-1
4-1
4-1 -
4-1

vii

PL/1 - APROGRAMMING LANGUAGE | 1

PL/I was developed to fill the growing need for a program-
‘ming language suitable for both scientific and commercial
users. As computers grew in size and speed, established
computer programming languages, such as FORTRAN and
COBOL, did not evolve to take advantage of many of the
new hardware features. The rift between scientific and
commercial programming applications was widening while
the hardware was becoming more capable of coping with a
mixture of commerecial, scientific and systems applications.

PL/I was created by selectively incorporating desirable
features of established programming languages while avoid-
ing the less desirable facets of those languages. The new
language bears a strong resemblance to FORTRAN, COBOL,
and ALGOL, easing the transition for experienced program-
mers to PL/I. Moreover, beginning programmers need only
learn those parts of the language that satisfy their needs.
The modular design and extensive use of defaults (for values
not specified) make it easier for the novice to start writing
programs. As familiarity with PL/I grows, the programmer
can use more advanced features and take advantage of
aspects of the language to program more efficiently than in
other high-level programming languages.

As the number of PL/I users grew, various implementations
of PL/I appeared, creating a need for standards to be

60388300 A

imposed. The European Computer Manufacturers Associa-
tion (ECMA) and the American National Standards Institute
(ANSI) jointly developed a standard for PL/I. The PL/I
language standard was approved by ANSI in 1976 and is
published as ANSI X3.53-1976 under the title, "Programming
Language PL/I". Control Data's CYBER PL/I conforms
essentially to this ANSI specification. The few features that
have not been implemented in CYBER PL/I version 1
include:

Complex variables

DEFAULT statement

Aggregate expressions

File, format, and entry variables

Data-directed input/output

Generic functions
A significant plus available with CYBER PL/I is the handling
of input and output by CYBER Record Manager, which

allows the user of CYBER PL/I to use files produced by
other programming languages.

PROGRAM ORGANIZATION 2

e . S S

The following sections give an overview of the capabilities
available to the programmer writing in CYBER PL/L
Readers well acquainted with PL/I can proeeed to section 5
and appendix A. The list of CYBER PL/I keywords in
appendix A is probably of greatest interest to the exper-
ienced PL/I programmer.

The rudimentary elements of PL/I include keywords, names,
literal constants, and delimiters. These are quite similar to
their counterparts in FORTRAN and COBOL, and are easily
learned. When properly combined, the rudimentary elements
form statements, expressions, and references. When these
are properly organized (blocked), a program exists. There is
no requirement in PL/I that the entire language be mastered
before it can be used. A basic understanding of each of the
above facets will allow the novice programmer to write
programs that will run successfully. Numerous defaults and
automatic assumptions aid the noviee, often without requir-
ing an awareness of their existence. In fact, many users,
more interested in obtaining solutions to problems than in
programming skill, seldom venture much deeper into PL/L

BLOCK STRUCTURE

The high-level structural components of PL/I are groups of
statements called bloeks. A block is a delimited area of a
program containing some combination of statements and
other blocks. A PL/I program consists of one or more
blocks. Every statement in a PL/I program is part of a
bloek.

The two types of blocks are begin blocks and procedure
blocks, Procedure blocks are often referred to as proce-
dures. - A begin block is recognizable by the fact that it
starts with a BEGIN statement and terminates with an END
statement. A procedure block starts with a PROCEDURE
statement and terminates with an END statement.

The major difference between a begin block and a procedure
block is the manner in which each is executed. Execution
flows sequentially into begin blocks, statement by state-
ment. Procedure blocks are executed only when they are
invoked. Each procedure can be thought of as a subroutine.
Procedures .can invoke other procedures, and these proce-
dures or subroutines can be compiled separately, or they can
be nested in a calling procedure and compiled with it. Each
procedure can contain declarations that define names and
control alloeation of storage.

60388300 A

In addition to influencing the flow of a program, blocks
delimit areas within a program in which declared names are
known. A name declared in one block, for example, might
not be known in another block simply because of the
relationship of the two blocks to each other. This
phenomenon, called the scope of a name, is determined by
the position at which the name is declared within the
program. A name is known only within the bloek in which it
is declared and in blocks nested within that block.

Other high-level programming languages have lists of key-
words that are reserved to the compiler and cannot be used
by the programmer. Keywords are not reserved in PL/I
because they are recognized by the context in which they
appear. The same names can be declared in other blocks
with other values and will not cause confusion so long as the
rules of blocking are observed.

GROUP STRUCTURE

A group is a sequence of statements within a block that
starts with a DO statement and ends with a corresponding
END statement. Thus, a group is also called a DO group,
and functions much like FORTRAN DO loops. In PL/I, the
DO group allows three different forms of the DO statement:
the simple DO, the DO-WHILE, and the indexed DO.

NESTING

Any bloek can contain one or more other blocks. A
procedure block can be either an internal or external
procedure. An external procedure is a procedure block not
contained in any other block. The remaining procedure
blocks are called internal procedures because they are
contained in other blocks.

Blocks contained in other blocks are also called nested
blocks, and these can also have blocks nested within them.
The outermost block must be a procedure.

The manner in which blocks are nested controls the area of
the program in which the scope of a declared name is known;
influences the allocation and freeing of certain kinds of data
storage; and exerts an influence on the flow of control
through the program.

FLOW OF CONTROL | 3

S S S o IR TRk

The ordering of statements within blocks and the nesting of
blocks within other blocks controls the manner in which the
program is executed. Control of the program is determined
by the order.in which the statements are executed. Flow of
control begins with the activation of the main procedure
block in a PL/I program. Control passes sequentially from
statement to statement in a block until one of the
statements causes an alternate path to be taken.

The statements that can change the flow of control are:
CALL
END
RETURN
GOTO
IF

DO

BLOCK ACTIVATION

When the first or main procedure is activated, the first
statement in the program is executed and control starts to
pass from one statement to the next. When control passes
through the BEGIN statement for a block in the main
procedure, that begin block is said to be activated. Activa-
ted blocks remain active until they are terminated.

Procedure blocks are activated by a CALL statement or
funetion reference and remain active until an END or
RETURN statement terminates them. At that point, control
returns to the statement following the CALL statement,

STORAGE ALLOCATION

PL/I provides four classes of storage allocation, thus
allowing the programmer to choose the desired degree of
control. Storage allocation means associating an area of
storage with a variable.

All variables declared STATIC are allocated storage before
program execution begins, and this allocation remains
unchanged for the duration of the program. The remaining
three classes of storage define dynamic storage allocation
‘processes that depend on factors within the program.

60388300 A

All variables not declared to have a storage class are
defined, by default, as automatic. A variable of the
AUTOMATIC storage class is allocated storage upon activa-
tion of the block in which the variable is declared, but loses
this allocation ~ and its value — when the block is termin-
ated. Thus, storage is allocated only as it is needed, and is
freed when no longer needed, reducing the amount of
storage required and relieving the programmer of tasks
associated with storage management.

The programmer is allowed total control of storage alloca-
tion when a variable is declared CONTROLLED. The
programmer allocates storage and frees storage for each
variable, as desired. Further, with a controlled variable, the
programmer can allocate storage for a variable even when a
previous allocation for that variable exists, creating a
pushdown stack for that variable. Previous allocations are
not released; when the top allocation is freed, the next
allocation becomes available. These stacked allocations
remain even after the block in which they are declared is
terminated. Any reference to a stacked controlled variable
receives the latest allocation.

The highest degree of programmer control of storage
allocation for variables is the BASED class; however, it is
also the most difficult to use properly. Based storage can be
alloeated and freed, and more than one allocation can exist
for a variable, just as with controlled storage. The major
difference is that each of the current based allocations is
available at any time by use of a pointer value,

RECURSION

An active procedure can be reactivated from within itself or
by a call from another active procedure. When this occurs,
values of variables declared automatic are saved in an
environment similar to the pushdown stack of controlled
storage.

CONDITIONS

During execution of a PL/I program, exceptional conditions
(such as errors, special status, end-of-file, and so forth) are
detected when they occur. Each of these conditions has a
keyword name to aid the programmer in handling excep-
tional! conditions. Most conditions cause an interrupt when
they occur, which allows the system to handle them in a
predefined manner. Many of the conditions can be enabled
or disabled by the programmer to allow or override such an
interrupt.

3-1

DATA HANDLING : 4

The PL/I programmer must be familiar with the types of
data permitted, the organization of the data, and the
.methods available for referring to data. All data in a PL/I
program can be considered either computational data used
to represent values to be processed, or noncomputational
data used by the programmer to control execution of the
program.

The variety of data types that can be specified and used
contribute greatly to the range of applications for which
PL/I can be used.

DATA TYPES

Computational data consists of three general types:
Arithmetic data
String data
Pictured data

Arithmetic data items consist of numeric values that have
the characteristics of base, scale and precision. These
characteristics specify whether the value is decimal or
binary, fixed or floating point, the size of the value in digits,
and the placement of the decimal point.

String data consists of sequences of characters or bits.
Pictured data is similar to pictured data in COBOL.
Noncomputational data can be of six types:

Label
Area
File
Eﬁtry
Pointer
Offset

In addition to the variety of data types available, automatie
conversion from one data type to another, in most cases on
an as needed basis, is an intrinsic part of the language. This
conversion feature, in almost all cases, ensures that a
program will run to a satisfactory conclusion rather than
abort because of incompatible data types.

DATA AGGREGATES

PL/I supports arrays and structures. The arrays are similar
to FORTRAN arrays. The structures are analogous to
COBOL group items.

ARRAYS

Data elements with the same data type and of the same
precision or length can be grouped together to form an
array. When the array is created, it is given a name and is
considered a unit. A subsequent reference to an item in the
array can be made only by array name and the relative
position of the element in the array. Arrays can have as
many as 32 dimensions.

60388300 A

STRUCTURES

Data items that possess a logical relationship to one
another, but do not necessarily have identical characteris-
ties, can be grouped into structures. The entire structure is
given a name by which it can be referenced; however, unlike
an array, each element of a structure must also have a
name.

Structures are subdivided into units of different levels,
allowing hierarchies to be created. A structure can have up
to 63 levels.

It is possible to declare an array as an element of a
structure. It is also possible to create an array of
structures.

DATA STORAGE

Allocation of storage was often a problem to programmers
writing in the high-level languages which preceded PL/IL
One of the problems encountered was the assignment of
storage each time a variable was declared. This often
resulted in the assignment of more storage than required, or
worse, more than was available. In PL/I, the programmer is
greatly relieved of the task of allocating storage, and
storage management is simplified through the application of
concepts not previously available.

As explained in section 3, PL/I allows four ways of assigning
data storage. STATIC storage is assigned when a job is
loaded and remains assigned for the length of the job.
AUTOMATIC storage is assigned upon entry to the bloek in
which it is declared, and released upon exit from that block.
CONTROLLED storage is explicitly assigned and released by
the programmer. BASED storage is similar to CONTROL-
LED storage, but allows concurrent references to each
assigned storage area.

In addition to storage control, PL/I allows special handling
of structures and arrays through the use of special keyword
attributes. The DEFINED attribute specifies that a named
element, structure, or array is to occupy the same storage
location as that assigned to other data. It can also be used
to subdivide or overlay one data item on another. Other
keyword attributes allow the programmer to create a new
structure based on the attributes of a higher level structure,
to specify the positioning in storage of data elements, and to
specify initial values of variables.

BUILT-IN FUNCTIONS

PL/I includes a comprehensive set of predefined functions as
part of the language. These built-in functions include not
only the commonly used arithmetic functions but also other
useful functions related to language facilities, such as
functions for manipulating strings and arrays.

Built-in functions are invoked in the same manner as
functions defined by the programmer. A built-in function's
action is automatically performed when the built-in function
name is encountered in the execution of the program.

The built-in funetions are included in the list of keywords in
appendix A.

INPUT/OUTPUT PROCESSING 5

0

CYBER PL/I input/output processing is handled by CYBER
Record Manager. CYBER Record Manager is a standard
Control Data software product that supplies a group of
interface routines between user programs, and operating
system routines that read and write files on the input/output
devices. CYBER Record Manager provides common file and
record formats, thus promoting interchangeability of infor-
mation between higher level programming languages (such as
PL/I, FORTRAN, and COBOL) and between the NOS and
NOS/BE operating systems. The CYBER PL/I run-time
modules provide the interface required to translate a file
input/output statement into an appropriate CYBER Record
Manager dataset input/output request.

FILES AND DATASETS

A dataset is a collection of information that is not part of a
PL/1 program, but can be accessed by the program. The
dataset can reside on any storage medium available to the
PL/I program. ’

A file, in PL/I, is the entity through which data can be
channeled during program execution. - In PL/I, a file can be
associated with different datasets at different times during
program execution. The files defined in a compiled PL/I
program have no direct correlation to specific datasets. The
linkage between a file and a dataset is made only when the
file is opened during program execution.

A file name is the PL/I identifier with which the program-
mer declares and refers to a file.

A dataset name is used by the executing program to access
data resident in auxiliary storage. The dataset name, not
the file name, is the name known to CYBER Record
Manager and to the operating system. The dataset name in
PL/I corresponds to the logical file name used by CYBER
Record Manager and the rest of the CYBER operating
system and its related software produets.

When a file is opened, the interface between it and a
particular dataset is established. This association remains in
effect until the file is closed.

INPUT/OUTPUT TRANSMISSION

Two types of input/output transmission are available to the
CYBER PL/I user, record transmission and stream transmis-
sion. :

Record transmission is the input or output of whole records,
during which no conversions occur. Declaration of the

60388300 A

record attribute for a file ensures that the records remain
intact; such files can be accessed by the following state-
ments:

READ
WRITE

'REWRITE
DELETE

LOCATE

Stream transmission is the input or output of data as a
continuous flow of characters. The characters in the stream
are converted automatically on input to conform to the
variables to which they are assigned; on output, they are
automatically converted to character representation. The
stream is usually organized in lines. The programmer can
direct the editing and format of the data as well as the
organization of data items into lines.

Declaration of the stream attribute for a file enables the
programmer to use GET and PUT statements to transmit
data from and to datasets or internal storage. Stream
input/output statements options include:

FILE
STRING
LINE
COPY
PAGE

SKIP

The major difference between record transmission and
stream transmission is that stream input/output creates
datasets intended to be legible to the user, whereas record
input/output is intended for efficient input/output transmis-
sion and, therefore, utilizes internal machine forms.

Stream data formatting is simplified for the user familiar
with FORTRAN or COBOL because both a FORMAT
statement and a PICTURE attribute are available to the
programmer. The PL/I programmer can choose either
method, depending on the characteristics of the data to be
manipulated.

5-1

"KEYWORDS | A

o —

The following is an alphabetical list of keywords, including Keyword Context
built-in function names, and acceptable abbreviations. Key-
words and their abbreviations are not reserved words; they E Format item
have special meaning only in the contexts noted. EDIT Statement option (GET, PUT)
ELSE Statement option (IF)
EMPTY Built-in function
Keyword Context END Statement identifier
ENDFILE Condition
A Format item ENDPAGE Condition
ABS Built-in function ENTRY Attribute; statement identifier
ACOS Built-in function ENVIRONMENT/ENV Attribute; statement-option
ADD. Built-in funection (CLOSE, OPEN)
ADDR. Built-in function ERF Built-in function
AFTER Built-in function ERFC Built-in function
ALIGNED Attribute ERROR Condition
ALLOCATE/ALLOC Statement identifier EXP Built-in function
ALLOCATION EXTERNAL/EXT Attribute
/ALLOCN Built-in function
AREA Attribute; condition F Format item
ASIN Built-in function FILE Attribute; statement option
ATAN Built-in funetion (input/output statements)
ATAND Built-in funection FINISH Condition
ATANH Built-in funetion FIXED Attribute; built-in function
AUTOMATIC/AUTO Attribute FIXEDOVERFLOW
/FOFL Condition; enabled-condition-name
B Format item FLOAT At"(rib.ute; bui}t-in function
BASED Attribute FLOOR Built-in fuqctloq]
ol . FORMAT Statement identifier
BEFORE Built-in funetion . . cor
: < FREE Statement identifier
BEGIN Statement identifier Stat t opti
BINARY/BIN Attribute; built-in function FROM (WRITE. BEWRITE)
BIT Attribute; built-in funetion ’
BOOL Built-in function GET : Statement identifier
BUILTIN Attribute GOTO/GO TO Statement identifier
BY Statement option (DO; do- :
specification in GET, PUT) HBOUND Built-in function
™ HIGH Built-in function
CALL Statement identifier
CEIL Built-in funetion IF Statement identifier
CHARACTER/CHAR Attribute; built-in function IGNORE Statement option (READ)
CLOSE Statement identifier IN Statement option (ALLOCATE,
COLLATE Built-in function FREE)
COLUMN/COL Format item INDEX Built-in function
CONDITION/COND Condition INITIAL/INIT Attribute
CONTROLLED/CTL Attribute INPUT Attribute; statement option
CONVERSION/CONV Condition; enabled-condition-name (OPEN)
COPY Statement option (GET); INTERNAL/INT Attribute
built-in funetion INTO Statement option (READ)
COSs Built-in function
COsD Built-in function KEY Condition; statement option
COSH Built-in function (READ, DELETE, REWRITE)
KEYED Attribute; statement option
(OPEN)
DATE Built-in function KEYFROM Statement option (WRITE,
DECAT Built-in funetion LOCATE)
DECIMAL/DEC Attribute; built-in function KEYTO Statement option (READ)
DECLARE/DCL Statement identifier
DEFINED/DEF Attribute LABEL Attribute
DELETE Statement identifier LBOUND Built-in function
DIMENSION/DIM Built-in funetion LENGTH Built-in function
DIRECT Attribute; statement-~option LIKE Attribute
(OPEN) LINE Statement option (PUT);
DIVIDE Built-in function : format item
DO Statement identifier; statement- LINENO Built-in function
option (GET, PUT) LINESIZE Statement option {OPEN)
DOT Built-in function LIST Statement option (GET, PUT)

60388300 A

Keyword

LOCATE
LOG
LOG10
LOG2
LOW

MAIN

MAX

MIN

MOD
MULTIPLY

NOCONVERSION
/NOCONV

NOFIXEDOVERFLOW/
NOFOFL

NOOVERFLOW/NOOFL

NOSIZE
NOSTRINGRANGE
/NOSTRG

NOSUBSCRIPTRANGE/

NOSUBRG
NOUNDERFLOW/
NOUFL
NOZERODIVIDE
/NOZDIV
NULL

OFFSET
ON
ONCHAR
ONCODE
ONFILE
ONKEY
ONLOC
ONSOURCE
OPEN
OPTIONS
OUTPUT

OVERFLOW/OFL

P
PAGE

PAGENO
PAGESIZE
PICTURE/PIC
POINTER/PTR
POSITION/POS
PRINT

PROCEDURE/PROC
PROD
PUT

R

READ
REAL
RECORD

RECURSIVE
REFER
RETURN
RETURNS

Context

Statement identifier
Built-in function
Built-in funetion
Built-in funetion
Built-in funection

Option in OPTIONS-option
Built-in funetion
Built-in funection
Built-in funetion
Built-in funection

Disabled-condition-name

Disabled-condition-name
Disabled-condition-name
Disabled-condition-name

Disabled-condition-name
Disabled-condition-name
Disabled-condition-name

Disabled-condition-name
Built-in function

Attribute; built-in function

Statement identifier

Built-in function; pseudovariable

Built-in funetion

Built-in funetion

Built-in function

Built-in funection

Built-in funetion; pseudovariable

Statement identifier

Statement-option (PROCEDURE)

Attribute; statement-option
(OPEN)

Condition; enabled-condition-name

Format item

Statement option (PUT);
format item

Built-in funetion; pseudovariable

Statement option (OPEN)

Attribute

Attribute; built-in function

Attribute

Attribute; statement option
(OPEN)

Statement identifier

Built-in funetion

Statement identifier

Format item

Statement identifier

Attribute

Attribute; condition; statement-
option (OPEN)

Statement option (PROCEDURE)

Extent-expression option

Statement identifier

Attribute; statement option
(PROCEDURE, ENTRY)

Keyword

REVERSE
REVERT
REWRITE
ROUND

SEQUENTIAL/SEQL

SET

SIGN
SIGNAL
SIN
SIND
SINH
SIZE
SKIP

SNAP
SQRT
STATIC
STOP
STORAGE
STREAM

STRING

STRINGRANGE/STRG

SUBSCRIPTRANGE
/SUBRG

SUBSTR

SUBTRACT

SUM

SYSTEM

TAN
TAND
TANH
THEN
TIME
TITLE
TO

TRANSLATE
TRANSMIT
TRUNC

UNALIGNED/UNAL

UNDEFINEDFILE
/UNDF

UNDERFLOW/UFL

UNSPEC

UPDATE

VALID
VARYING/VAR
VERIFY

WHILE

WRITE

X

ZERODIVIDE/ZDIV

Context

Built-in funetion
Statement identifier
Statement identifier
Built-in function

Attribute; statement-option
(OPEN)

Statement option
(ALLOCATE, LOCATE, READ)

Built-in funetion

Statement identifier

Built-in funetion

Built-in function

Built-in function

Condition; enabled-condition-name

Statement option {GET,PUT);
format item

Statement option (ON)

Built-in funetion

Attribute)

Statement identifier

Condition

Attribute; statement-option
(OPEN)

Statement option (GET, PUT)

Condition; enabled-condition-name

Condition; enabled-condition-name
Built-in function; pseudovariable
Built-in function

Built-in funetion

Statement option ‘ON)

Built-in funetion

Built-in funetion

Built-in funection

Statement option (IF)

Built-in function

Statement option fOPEN)

Statement option (DO; do-
specification in GET, PUT)

Built-in function

Condition

Built-in funetion

Attribute

Condition

Condition; enabled-condition-name

Built-in function; pseudovariable

Attribute; statement-option
(OPEN)

Built-in function

Attribute

Built-in function

Statement option (DO; do-
specification in GET, PUT)

Statement identifier

Format item

Condition; enabled-condition-name

60388300 A

P S e NN

W T WY J T et

— - —— —— . wmmmmm — eagmms — e— ey

COMMENT SHEET

@ E CONTROL DATA
CORPORATION
TITLE: CYBER PL/I
General Information Manual

PUBLICATION NO. 60388300 REVISION A

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM NAME: POSITION:

COMPANY"
NAME :

ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND STAPLE

FOLD

STAPLE

STAPLE

FOLD

STAPLE

FIRST CLASS
PERMIT NO. 8241

MkINNEAPOLIS, MINN.

BUSINESS REPLY MAIL

NO POSTAGE STAMP-NECESSARY IF MAILED IN US.A.

POSTAGE WILL BE PAID BY
CONTROL DATA CORPORATION
Publications and Graphics Division

215 Moffett Park Drive
Sunnyvale, California 94086

STAPLE

CLIT ON THIS 1 INF

